name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
Finset.card_le_card_shatterer
Mathlib/Combinatorics/SetFamily/Shatter.lean
/-- Pajor's variant of the **Sauer-Shelah lemma**. -/ lemma card_le_card_shatterer (𝒜 : Finset (Finset α)) : #𝒜 ≤ #𝒜.shatterer
case refine_3.refine_1 α : Type u_1 inst✝ : DecidableEq α 𝒜✝ : Finset (Finset α) a : α 𝒜 : Finset (Finset α) ih₀ : #(nonMemberSubfamily a 𝒜) ≤ #(nonMemberSubfamily a 𝒜).shatterer ih₁ : #(memberSubfamily a 𝒜) ≤ #(memberSubfamily a 𝒜).shatterer ℬ : Finset (Finset α) := image (insert a) ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer) hℬ : #ℬ = #((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer) ⊢ (memberSubfamily a 𝒜).shatterer ⊆ 𝒜.shatterer
simp only [subset_iff, mem_shatterer]
case refine_3.refine_1 α : Type u_1 inst✝ : DecidableEq α 𝒜✝ : Finset (Finset α) a : α 𝒜 : Finset (Finset α) ih₀ : #(nonMemberSubfamily a 𝒜) ≤ #(nonMemberSubfamily a 𝒜).shatterer ih₁ : #(memberSubfamily a 𝒜) ≤ #(memberSubfamily a 𝒜).shatterer ℬ : Finset (Finset α) := image (insert a) ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer) hℬ : #ℬ = #((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer) ⊢ ∀ ⦃x : Finset α⦄, (memberSubfamily a 𝒜).Shatters x → 𝒜.Shatters x
7b2e4a2398648e6f
SetTheory.PGame.birthday_def
Mathlib/SetTheory/Game/Birthday.lean
theorem birthday_def (x : PGame) : birthday x = max (lsub.{u, u} fun i => birthday (x.moveLeft i)) (lsub.{u, u} fun i => birthday (x.moveRight i))
x : PGame ⊢ x.birthday = (lsub fun i => (x.moveLeft i).birthday) ⊔ lsub fun i => (x.moveRight i).birthday
cases x
case mk α✝ β✝ : Type u a✝¹ : α✝ → PGame a✝ : β✝ → PGame ⊢ (mk α✝ β✝ a✝¹ a✝).birthday = (lsub fun i => ((mk α✝ β✝ a✝¹ a✝).moveLeft i).birthday) ⊔ lsub fun i => ((mk α✝ β✝ a✝¹ a✝).moveRight i).birthday
0e9d2c95a121b08b
Std.DHashMap.Raw.size_alter_eq_add_one
Mathlib/.lake/packages/lean4/src/lean/Std/Data/DHashMap/RawLemmas.lean
theorem size_alter_eq_add_one [LawfulBEq α] {k : α} {f : Option (β k) → Option (β k)} (h : m.WF) (h₁ : k ∉ m) (h₂ : (f (m.get? k)).isSome) : (m.alter k f).size = m.size + 1
α : Type u β : α → Type v inst✝² : BEq α inst✝¹ : Hashable α m : Raw α β inst✝ : LawfulBEq α k : α f : Option (β k) → Option (β k) h : m.WF ⊢ m.contains k = false → (f (m.get? k)).isSome = true → (m.alter k f).size = m.size + 1
simp_to_raw using Raw₀.size_alter_eq_add_one
no goals
36b9c2a1dc985d01
Nat.rfindOpt_mono
Mathlib/Computability/Partrec.lean
theorem rfindOpt_mono {α} {f : ℕ → Option α} (H : ∀ {a m n}, m ≤ n → a ∈ f m → a ∈ f n) {a} : a ∈ rfindOpt f ↔ ∃ n, a ∈ f n := ⟨rfindOpt_spec, fun ⟨n, h⟩ => by have h' := rfindOpt_dom.2 ⟨_, _, h⟩ obtain ⟨k, hk⟩ := rfindOpt_spec ⟨h', rfl⟩ have := (H (le_max_left _ _) h).symm.trans (H (le_max_right _ _) hk) simp at this; simp [this, get_mem]⟩
case intro α : Type u_1 f : ℕ → Option α H : ∀ {a : α} {m n : ℕ}, m ≤ n → a ∈ f m → a ∈ f n a : α x✝ : ∃ n, a ∈ f n n : ℕ h : a ∈ f n h' : (rfindOpt f).Dom k : ℕ hk : (rfindOpt f).get h' ∈ f k this : Option.some a = Option.some ((rfindOpt f).get h') ⊢ a ∈ rfindOpt f
simp at this
case intro α : Type u_1 f : ℕ → Option α H : ∀ {a : α} {m n : ℕ}, m ≤ n → a ∈ f m → a ∈ f n a : α x✝ : ∃ n, a ∈ f n n : ℕ h : a ∈ f n h' : (rfindOpt f).Dom k : ℕ hk : (rfindOpt f).get h' ∈ f k this : a = (rfindOpt f).get h' ⊢ a ∈ rfindOpt f
dcee59b58e9bc853
rank_subsingleton
Mathlib/LinearAlgebra/Dimension/Basic.lean
theorem rank_subsingleton [Subsingleton R] : Module.rank R M = 1
case h₂ R : Type u M : Type v inst✝³ : Semiring R inst✝² : AddCommMonoid M inst✝¹ : Module R M inst✝ : Subsingleton R this✝ : Subsingleton M this : Nonempty { s // LinearIndepOn R id s } w : Cardinal.{v} hw : w < 1 ⊢ ∃ i, w < #↑↑i
exact ⟨⟨{0}, LinearIndepOn.of_subsingleton⟩, hw.trans_eq (Cardinal.mk_singleton _).symm⟩
no goals
04529e8e88b39ed6
List.sublist_replicate_iff
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Sublist.lean
theorem sublist_replicate_iff : l <+ replicate m a ↔ ∃ n, n ≤ m ∧ l = replicate n a
case cons.mp.succ.cons.intro.intro α✝ : Type u_1 b : α✝ m n : Nat le : n ≤ m ih : ∀ {m : Nat}, replicate n b <+ replicate m b ↔ ∃ n_1, n_1 ≤ m ∧ replicate n b = replicate n_1 b w : b :: replicate n b <+ replicate m b ⊢ ∃ n_1, n_1 ≤ m + 1 ∧ b :: replicate n b = replicate n_1 b
exact ⟨n+1, Nat.add_le_add_right le 1, rfl⟩
no goals
b36e6729c3d1c9f6
Lean.Grind.decide_eq_false
Mathlib/.lake/packages/lean4/src/lean/Init/Grind/Lemmas.lean
theorem decide_eq_false {p : Prop} {_ : Decidable p} : p = False → decide p = false
p : Prop x✝ : Decidable p ⊢ p = False → decide p = false
simp
no goals
31b2819c3ab52cc8
TensorProduct.finsuppLeft_symm_apply_single
Mathlib/LinearAlgebra/DirectSum/Finsupp.lean
@[simp] lemma finsuppLeft_symm_apply_single (i : ι) (m : M) (n : N) : (finsuppLeft R M N ι).symm (Finsupp.single i (m ⊗ₜ[R] n)) = Finsupp.single i m ⊗ₜ[R] n
R : Type u_1 inst✝⁵ : CommSemiring R M : Type u_2 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M N : Type u_3 inst✝² : AddCommMonoid N inst✝¹ : Module R N ι : Type u_4 inst✝ : DecidableEq ι i : ι m : M n : N ⊢ (finsuppLeft R M N ι).symm (Finsupp.single i (m ⊗ₜ[R] n)) = Finsupp.single i m ⊗ₜ[R] n
simp [finsuppLeft, Finsupp.lsum]
no goals
f7e7ed6f2e501d86
PiTensorProduct.map_comp_reindex_symm
Mathlib/LinearAlgebra/PiTensorProduct.lean
theorem map_comp_reindex_symm (f : Π i, s i →ₗ[R] t i) (e : ι ≃ ι₂) : map f ∘ₗ (reindex R s e).symm = (reindex R t e).symm ∘ₗ map (fun i => f (e.symm i))
ι : Type u_1 ι₂ : Type u_2 R : Type u_4 inst✝⁴ : CommSemiring R s : ι → Type u_7 inst✝³ : (i : ι) → AddCommMonoid (s i) inst✝² : (i : ι) → Module R (s i) t : ι → Type u_11 inst✝¹ : (i : ι) → AddCommMonoid (t i) inst✝ : (i : ι) → Module R (t i) f : (i : ι) → s i →ₗ[R] t i e : ι ≃ ι₂ ⊢ map f ∘ₗ ↑(reindex R s e).symm = ↑(reindex R t e).symm ∘ₗ map fun i => f (e.symm i)
ext m
case H.H ι : Type u_1 ι₂ : Type u_2 R : Type u_4 inst✝⁴ : CommSemiring R s : ι → Type u_7 inst✝³ : (i : ι) → AddCommMonoid (s i) inst✝² : (i : ι) → Module R (s i) t : ι → Type u_11 inst✝¹ : (i : ι) → AddCommMonoid (t i) inst✝ : (i : ι) → Module R (t i) f : (i : ι) → s i →ₗ[R] t i e : ι ≃ ι₂ m : (i : ι₂) → s (e.symm i) ⊢ ((map f ∘ₗ ↑(reindex R s e).symm).compMultilinearMap (tprod R)) m = ((↑(reindex R t e).symm ∘ₗ map fun i => f (e.symm i)).compMultilinearMap (tprod R)) m
eb43e0ef2f5c1f07
TopologicalSpace.nhds_mkOfNhds_single
Mathlib/Topology/Order.lean
theorem nhds_mkOfNhds_single [DecidableEq α] {a₀ : α} {l : Filter α} (h : pure a₀ ≤ l) (b : α) : @nhds α (TopologicalSpace.mkOfNhds (update pure a₀ l)) b = (update pure a₀ l : α → Filter α) b
case h.inr α : Type u inst✝ : DecidableEq α l : Filter α b✝ a : α s : Set α h : pure a ≤ l hs : s ∈ update pure a l a b : α hb✝ : b ∈ s hb : b ≠ a ⊢ s ∈ update pure a l b
rwa [update_of_ne hb]
no goals
870f5cf084a599e2
Finset.centroid_mem_convexHull
Mathlib/Analysis/Convex/Combination.lean
theorem Finset.centroid_mem_convexHull (s : Finset E) (hs : s.Nonempty) : s.centroid R id ∈ convexHull R (s : Set E)
case hw₀ R : Type u_1 E : Type u_3 inst✝² : LinearOrderedField R inst✝¹ : AddCommGroup E inst✝ : Module R E s : Finset E hs : s.Nonempty ⊢ ∀ i ∈ s, 0 ≤ centroidWeights R s i
simp only [inv_nonneg, imp_true_iff, Nat.cast_nonneg, Finset.centroidWeights_apply]
no goals
4a96c136a460710a
strictAnti_of_succ_lt
Mathlib/Order/SuccPred/Archimedean.lean
lemma strictAnti_of_succ_lt (hf : ∀ a, ¬ IsMax a → f (succ a) < f a) : StrictAnti f
α : Type u_3 β : Type u_4 inst✝³ : PartialOrder α inst✝² : Preorder β inst✝¹ : SuccOrder α inst✝ : IsSuccArchimedean α f : α → β hf : ∀ (a : α), ¬IsMax a → f (succ a) < f a ⊢ StrictAnti f
simpa using strictAntiOn_of_succ_lt Set.ordConnected_univ (by simpa using hf)
no goals
cac69e7fe6b4e543
MeasureTheory.Measure.exists_integral_isMulLeftInvariant_eq_smul_of_hasCompactSupport
Mathlib/MeasureTheory/Measure/Haar/Unique.lean
/-- Given two left-invariant measures which are finite on compacts, they coincide in the following sense: they give the same value to the integral of continuous compactly supported functions, up to a multiplicative constant. -/ @[to_additive exists_integral_isAddLeftInvariant_eq_smul_of_hasCompactSupport] lemma exists_integral_isMulLeftInvariant_eq_smul_of_hasCompactSupport (μ' μ : Measure G) [IsHaarMeasure μ] [IsFiniteMeasureOnCompacts μ'] [IsMulLeftInvariant μ'] : ∃ (c : ℝ≥0), ∀ (f : G → ℝ), Continuous f → HasCompactSupport f → ∫ x, f x ∂μ' = ∫ x, f x ∂(c • μ)
case pos.intro.mk.intro.intro G : Type u_1 inst✝⁷ : TopologicalSpace G inst✝⁶ : Group G inst✝⁵ : IsTopologicalGroup G inst✝⁴ : MeasurableSpace G inst✝³ : BorelSpace G μ' μ : Measure G inst✝² : μ.IsHaarMeasure inst✝¹ : IsFiniteMeasureOnCompacts μ' inst✝ : μ'.IsMulLeftInvariant H : LocallyCompactSpace G g : G → ℝ g_cont : Continuous g g_comp : HasCompactSupport ⇑{ toFun := g, continuous_toFun := g_cont } g_nonneg : 0 ≤ { toFun := g, continuous_toFun := g_cont } g_one : { toFun := g, continuous_toFun := g_cont } 1 ≠ 0 int_g_pos : 0 < ∫ (x : G), g x ∂μ c : ℝ := (∫ (x : G), g x ∂μ)⁻¹ * ∫ (x : G), g x ∂μ' c_nonneg : 0 ≤ c f : G → ℝ f_cont : Continuous f f_comp : HasCompactSupport f ν : Measure G := μ.inv A : (∫ (x : G), f x ∂μ) * (∫ (x : G), g x ∂μ)⁻¹ = ∫ (y : G), f y * (∫ (z : G), g (z⁻¹ * y) ∂ν)⁻¹ ∂ν B : ∫ (x : G), f x ∂μ' = ((∫ (x : G), g x ∂μ)⁻¹ * ∫ (x : G), g x ∂μ') * ∫ (x : G), f x ∂μ ⊢ ∫ (x : G), f x ∂μ' = ∫ (x : G), f x ∂⟨c, c_nonneg⟩ • μ
simp [B, integral_smul_nnreal_measure, c, NNReal.smul_def]
no goals
f459b191694f5c04
Std.Sat.AIG.denote_mkAtom
Mathlib/.lake/packages/lean4/src/lean/Std/Sat/AIG/Lemmas.lean
theorem denote_mkAtom {aig : AIG α} : ⟦(aig.mkAtom var), assign⟧ = assign var
case h_2 α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α assign : α → Bool var : α aig : AIG α idx✝ : α heq✝ : (aig.mkAtom var).aig.decls[(aig.mkAtom var).ref.gate] = Decl.atom idx✝ ⊢ assign idx✝ = assign var
next heq => rw [mkAtom, Array.getElem_push_eq] at heq injection heq with heq rw [heq]
no goals
209125ccf5e1ce3b
Matrix.det_updateCol_smul_left
Mathlib/LinearAlgebra/Matrix/Determinant/Basic.lean
theorem det_updateCol_smul_left (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateCol (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateCol M j u)
n : Type u_2 inst✝² : DecidableEq n inst✝¹ : Fintype n R : Type v inst✝ : CommRing R M : Matrix n n R j : n s : R u : n → R ⊢ s ^ (Fintype.card n - 1) * (Mᵀ.updateRow j u).det = s ^ (Fintype.card n - 1) * (M.updateCol j u).det
simp [updateRow_transpose, det_transpose]
no goals
e3cf10bd7e79875e
LieModule.isTrivial_iff_max_triv_eq_top
Mathlib/Algebra/Lie/Abelian.lean
theorem isTrivial_iff_max_triv_eq_top : IsTrivial L M ↔ maxTrivSubmodule R L M = ⊤
case mpr.trivial R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M h : maxTrivSubmodule R L M = ⊤ x : L m : M ⊢ ⁅x, m⁆ = 0
revert x
case mpr.trivial R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M h : maxTrivSubmodule R L M = ⊤ m : M ⊢ ∀ (x : L), ⁅x, m⁆ = 0
7b69b1178ad50453
gauge_smul_of_nonneg
Mathlib/Analysis/Convex/Gauge.lean
theorem gauge_smul_of_nonneg [MulActionWithZero α E] [IsScalarTower α ℝ (Set E)] {s : Set E} {a : α} (ha : 0 ≤ a) (x : E) : gauge s (a • x) = a • gauge s x
case inr.e_a.h.mpr.intro.intro.intro E : Type u_2 inst✝⁶ : AddCommGroup E inst✝⁵ : Module ℝ E α : Type u_3 inst✝⁴ : LinearOrderedField α inst✝³ : MulActionWithZero α ℝ inst✝² : OrderedSMul α ℝ inst✝¹ : MulActionWithZero α E inst✝ : IsScalarTower α ℝ (Set E) s : Set E a : α ha : 0 ≤ a x : E ha' : 0 < a r : ℝ hr : 0 < r hx : r⁻¹ • x ∈ s ⊢ 0 < a • r ∧ (a • r)⁻¹ • a • x ∈ s
rw [← mem_smul_set_iff_inv_smul_mem₀ hr.ne'] at hx
case inr.e_a.h.mpr.intro.intro.intro E : Type u_2 inst✝⁶ : AddCommGroup E inst✝⁵ : Module ℝ E α : Type u_3 inst✝⁴ : LinearOrderedField α inst✝³ : MulActionWithZero α ℝ inst✝² : OrderedSMul α ℝ inst✝¹ : MulActionWithZero α E inst✝ : IsScalarTower α ℝ (Set E) s : Set E a : α ha : 0 ≤ a x : E ha' : 0 < a r : ℝ hr : 0 < r hx : x ∈ r • s ⊢ 0 < a • r ∧ (a • r)⁻¹ • a • x ∈ s
2224562162173f32
AffineBasis.convexHull_eq_nonneg_coord
Mathlib/Analysis/Convex/Combination.lean
theorem AffineBasis.convexHull_eq_nonneg_coord {ι : Type*} (b : AffineBasis ι R E) : convexHull R (range b) = { x | ∀ i, 0 ≤ b.coord i x }
case h.refine_1 R : Type u_1 E : Type u_3 inst✝² : LinearOrderedField R inst✝¹ : AddCommGroup E inst✝ : Module R E ι : Type u_8 b : AffineBasis ι R E x : E ⊢ x ∈ {x | ∃ s w, (∀ i ∈ s, 0 ≤ w i) ∧ s.sum w = 1 ∧ (affineCombination R s ⇑b) w = x} → x ∈ {x | ∀ (i : ι), 0 ≤ (b.coord i) x}
rintro ⟨s, w, hw₀, hw₁, rfl⟩ i
case h.refine_1.intro.intro.intro.intro R : Type u_1 E : Type u_3 inst✝² : LinearOrderedField R inst✝¹ : AddCommGroup E inst✝ : Module R E ι : Type u_8 b : AffineBasis ι R E s : Finset ι w : ι → R hw₀ : ∀ i ∈ s, 0 ≤ w i hw₁ : s.sum w = 1 i : ι ⊢ 0 ≤ (b.coord i) ((affineCombination R s ⇑b) w)
1fd8376dbf4dc8b4
clusterPt_iff_lift'_closure'
Mathlib/Topology/Basic.lean
theorem clusterPt_iff_lift'_closure' {F : Filter X} : ClusterPt x F ↔ (F.lift' closure ⊓ pure x).NeBot
X : Type u x : X inst✝ : TopologicalSpace X F : Filter X ⊢ pure x ≤ F.lift' closure ↔ (pure x ⊓ F.lift' closure).NeBot
constructor
case mp X : Type u x : X inst✝ : TopologicalSpace X F : Filter X ⊢ pure x ≤ F.lift' closure → (pure x ⊓ F.lift' closure).NeBot case mpr X : Type u x : X inst✝ : TopologicalSpace X F : Filter X ⊢ (pure x ⊓ F.lift' closure).NeBot → pure x ≤ F.lift' closure
70879bd9b2cfc6e6
SimpleGraph.Walk.IsCycle.ncard_neighborSet_toSubgraph_eq_two
Mathlib/Combinatorics/SimpleGraph/Connectivity/Subgraph.lean
lemma ncard_neighborSet_toSubgraph_eq_two {u v} {p : G.Walk u u} (hpc : p.IsCycle) (h : v ∈ p.support) : (p.toSubgraph.neighborSet v).ncard = 2
case neg V : Type u G : SimpleGraph V u v : V p : G.Walk u u hpc : p.IsCycle i : ℕ hi : p.getVert i = v ∧ i ≤ p.length he : ¬(i = 0 ∨ i = p.length) ⊢ (p.toSubgraph.neighborSet v).ncard = 2
push_neg at he
case neg V : Type u G : SimpleGraph V u v : V p : G.Walk u u hpc : p.IsCycle i : ℕ hi : p.getVert i = v ∧ i ≤ p.length he : i ≠ 0 ∧ i ≠ p.length ⊢ (p.toSubgraph.neighborSet v).ncard = 2
ab28954a43d4f7d4
Algebra.PreSubmersivePresentation.baseChange_jacobian
Mathlib/RingTheory/Smooth/StandardSmooth.lean
@[simp] lemma baseChange_jacobian : (P.baseChange T).jacobian = 1 ⊗ₜ P.jacobian
case intro R : Type u S : Type v inst✝⁴ : CommRing R inst✝³ : CommRing S inst✝² : Algebra R S T : Type u_1 inst✝¹ : CommRing T inst✝ : Algebra R T P : PreSubmersivePresentation R S val✝ : Fintype P.rels ⊢ (baseChange T P).jacobian = 1 ⊗ₜ[R] P.jacobian
letI : Fintype (P.baseChange T).rels := inferInstanceAs <| Fintype P.rels
case intro R : Type u S : Type v inst✝⁴ : CommRing R inst✝³ : CommRing S inst✝² : Algebra R S T : Type u_1 inst✝¹ : CommRing T inst✝ : Algebra R T P : PreSubmersivePresentation R S val✝ : Fintype P.rels this : Fintype (baseChange T P).rels := inferInstanceAs (Fintype P.rels) ⊢ (baseChange T P).jacobian = 1 ⊗ₜ[R] P.jacobian
8d698f05bd3b180b
contDiff_iff_contDiffAt
Mathlib/Analysis/Calculus/ContDiff/Defs.lean
theorem contDiff_iff_contDiffAt : ContDiff 𝕜 n f ↔ ∀ x, ContDiffAt 𝕜 n f x
𝕜 : Type u inst✝⁴ : NontriviallyNormedField 𝕜 E : Type uE inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E F : Type uF inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F f : E → F n : WithTop ℕ∞ ⊢ ContDiff 𝕜 n f ↔ ∀ (x : E), ContDiffAt 𝕜 n f x
simp [← contDiffOn_univ, ContDiffOn, ContDiffAt]
no goals
a1785a9a09bdd27d
Metric.dist_le_infDist_add_diam
Mathlib/Topology/MetricSpace/HausdorffDistance.lean
theorem dist_le_infDist_add_diam (hs : IsBounded s) (hy : y ∈ s) : dist x y ≤ infDist x s + diam s
α : Type u inst✝ : PseudoMetricSpace α s : Set α x y : α hs : Bornology.IsBounded s hy : y ∈ s ⊢ (edist x y).toReal ≤ (infEdist x s).toReal + (EMetric.diam s).toReal
exact toReal_le_add (edist_le_infEdist_add_ediam hy) (infEdist_ne_top ⟨y, hy⟩) hs.ediam_ne_top
no goals
9c70edebbffebde5
Rel.interedges_disjoint_left
Mathlib/Combinatorics/SimpleGraph/Density.lean
theorem interedges_disjoint_left {s s' : Finset α} (hs : Disjoint s s') (t : Finset β) : Disjoint (interedges r s t) (interedges r s' t)
α : Type u_4 β : Type u_5 r : α → β → Prop inst✝ : (a : α) → DecidablePred (r a) s s' : Finset α hs : ∀ ⦃a : α⦄, a ∈ s → a ∉ s' t : Finset β a✝ : α × β hx : a✝ ∈ interedges r s t hy : a✝ ∈ interedges r s' t ⊢ False
rw [mem_interedges_iff] at hx hy
α : Type u_4 β : Type u_5 r : α → β → Prop inst✝ : (a : α) → DecidablePred (r a) s s' : Finset α hs : ∀ ⦃a : α⦄, a ∈ s → a ∉ s' t : Finset β a✝ : α × β hx : a✝.1 ∈ s ∧ a✝.2 ∈ t ∧ r a✝.1 a✝.2 hy : a✝.1 ∈ s' ∧ a✝.2 ∈ t ∧ r a✝.1 a✝.2 ⊢ False
ef2275d757111a1a
Asymptotics.isLittleOTVS_iff_isLittleO
Mathlib/Analysis/Asymptotics/TVS.lean
lemma isLittleOTVS_iff_isLittleO {f : α → E} {g : α → F} {l : Filter α} : f =o[𝕜;l] g ↔ f =o[l] g
case h₁ α : Type u_1 𝕜 : Type u_3 E : Type u_4 F : Type u_5 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : SeminormedAddCommGroup E inst✝² : SeminormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 E inst✝ : NormedSpace 𝕜 F f : α → E g : α → F l : Filter α c : 𝕜 hc : 1 < ‖c‖₊ hc₀ : 0 < ‖c‖₊ h : ∀ (i : ℝ), 0 < i → ∃ j, 0 < j ∧ ∀ (ε : ℝ≥0), ε ≠ 0 → ∀ᶠ (x : α) in l, egauge 𝕜 (ball 0 i) (f x) ≤ ↑ε * egauge 𝕜 (ball 0 j) (g x) ε δ : ℝ≥0 hδ : ∀ (ε_1 : ℝ≥0), ε_1 ≠ 0 → ∀ᶠ (x : α) in l, egauge 𝕜 (ball 0 ↑ε) (f x) ≤ ↑ε_1 * egauge 𝕜 (ball 0 ↑δ) (g x) hε : 0 < ε hδ₀ : 0 < δ x : α hx : egauge 𝕜 (ball 0 ↑ε) (f x) ≤ ↑(δ / ‖c‖₊) * egauge 𝕜 (ball 0 ↑δ) (g x) ⊢ ↑(δ / ‖c‖₊) ≤ ↑δ / ↑‖c‖₊ case h₂ α : Type u_1 𝕜 : Type u_3 E : Type u_4 F : Type u_5 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : SeminormedAddCommGroup E inst✝² : SeminormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 E inst✝ : NormedSpace 𝕜 F f : α → E g : α → F l : Filter α c : 𝕜 hc : 1 < ‖c‖₊ hc₀ : 0 < ‖c‖₊ h : ∀ (i : ℝ), 0 < i → ∃ j, 0 < j ∧ ∀ (ε : ℝ≥0), ε ≠ 0 → ∀ᶠ (x : α) in l, egauge 𝕜 (ball 0 i) (f x) ≤ ↑ε * egauge 𝕜 (ball 0 j) (g x) ε δ : ℝ≥0 hδ : ∀ (ε_1 : ℝ≥0), ε_1 ≠ 0 → ∀ᶠ (x : α) in l, egauge 𝕜 (ball 0 ↑ε) (f x) ≤ ↑ε_1 * egauge 𝕜 (ball 0 ↑δ) (g x) hε : 0 < ε hδ₀ : 0 < δ x : α hx : egauge 𝕜 (ball 0 ↑ε) (f x) ≤ ↑(δ / ‖c‖₊) * egauge 𝕜 (ball 0 ↑δ) (g x) ⊢ egauge 𝕜 (ball 0 ↑δ) (g x) ≤ ↑‖c‖₊ * ↑‖g x‖₊ / ↑δ
exacts [ENNReal.coe_div_le, egauge_ball_le_of_one_lt_norm hc (.inl <| ne_of_gt hδ₀)]
no goals
edd1acc6d74b4b2d
Set.Finite.infClosure
Mathlib/Order/SupClosed.lean
/-- The semilatice generated by a finite set is finite. -/ protected lemma Set.Finite.infClosure (hs : s.Finite) : (infClosure s).Finite
α : Type u_3 inst✝ : SemilatticeInf α s : Set α hs : s.Finite ⊢ (infClosure s).Finite
lift s to Finset α using hs
case intro α : Type u_3 inst✝ : SemilatticeInf α s : Finset α ⊢ (infClosure ↑s).Finite
107c23b3c856e816
ContinuousLinearMap.opNorm_extend_le
Mathlib/Analysis/NormedSpace/OperatorNorm/Completeness.lean
theorem opNorm_extend_le : ‖f.extend e h_dense (isUniformEmbedding_of_bound _ h_e).isUniformInducing‖ ≤ N * ‖f‖
case refine_1 𝕜 : Type u_1 𝕜₂ : Type u_2 E : Type u_3 F : Type u_4 Fₗ : Type u_5 inst✝⁹ : NormedAddCommGroup E inst✝⁸ : NormedAddCommGroup F inst✝⁷ : NormedAddCommGroup Fₗ inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : NontriviallyNormedField 𝕜₂ inst✝⁴ : NormedSpace 𝕜 E inst✝³ : NormedSpace 𝕜₂ F inst✝² : NormedSpace 𝕜 Fₗ σ₁₂ : 𝕜 →+* 𝕜₂ f : E →SL[σ₁₂] F inst✝¹ : CompleteSpace F e : E →L[𝕜] Fₗ h_dense : DenseRange ⇑e N : ℝ≥0 h_e : ∀ (x : E), ‖x‖ ≤ ↑N * ‖e x‖ inst✝ : RingHomIsometric σ₁₂ ⊢ 0 ≤ ↑N * ‖f‖
cases le_total 0 N with | inl hN => exact mul_nonneg hN (norm_nonneg _) | inr hN => have : Unique E := ⟨⟨0⟩, fun x ↦ norm_le_zero_iff.mp <| (h_e x).trans (mul_nonpos_of_nonpos_of_nonneg hN (norm_nonneg _))⟩ obtain rfl : f = 0 := Subsingleton.elim .. simp
no goals
1e363b3609cf7221
MulAction.smul_mem_fixedBy_iff_mem_fixedBy
Mathlib/GroupTheory/GroupAction/FixedPoints.lean
theorem smul_mem_fixedBy_iff_mem_fixedBy {a : α} {g : G} : g • a ∈ fixedBy α g ↔ a ∈ fixedBy α g
α : Type u_1 G : Type u_2 inst✝¹ : Group G inst✝ : MulAction G α a : α g : G ⊢ g • a = a ↔ a ∈ fixedBy α g
rfl
no goals
c3092fe306a81fbd
LinearMap.tendsto_birkhoffAverage_of_ker_subset_closure
Mathlib/Analysis/InnerProductSpace/MeanErgodic.lean
theorem LinearMap.tendsto_birkhoffAverage_of_ker_subset_closure [NormedSpace 𝕜 E] (f : E →ₗ[𝕜] E) (hf : LipschitzWith 1 f) (g : E →L[𝕜] LinearMap.eqLocus f 1) (hg_proj : ∀ x : LinearMap.eqLocus f 1, g x = x) (hg_ker : (LinearMap.ker g : Set E) ⊆ closure (LinearMap.range (f - 1))) (x : E) : Tendsto (birkhoffAverage 𝕜 f _root_.id · x) atTop (𝓝 (g x))
case intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 inst✝² : RCLike 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E f : E →ₗ[𝕜] E hf : LipschitzWith 1 ⇑f g : E →L[𝕜] ↥(eqLocus f 1) hg_proj : ∀ (x : ↥(eqLocus f 1)), g ↑x = x hg_ker : ↑(ker g) ⊆ closure ↑(range (f - 1)) y : E hy : g y = 0 z : E hz : IsFixedPt (⇑f) z this✝ : IsClosed {x | Tendsto (fun x_1 => birkhoffAverage 𝕜 (⇑f) _root_.id x_1 x) atTop (𝓝 0)} x : E this : Bornology.IsBounded (Set.range fun x_1 => _root_.id ((⇑f)^[x_1] x)) H : ∀ (n : ℕ) (x y : E), (⇑f)^[n] (x - y) = (⇑f)^[n] x - (⇑f)^[n] y ⊢ (f - 1) x ∈ {x | Tendsto (fun x_1 => birkhoffAverage 𝕜 (⇑f) _root_.id x_1 x) atTop (𝓝 0)}
simpa [birkhoffAverage, birkhoffSum, Finset.sum_sub_distrib, smul_sub, H] using tendsto_birkhoffAverage_apply_sub_birkhoffAverage 𝕜 this
no goals
ffcebdb2b0436857
Matroid.Indep.eq_union_image_of_disjointSum
Mathlib/Data/Matroid/Sum.lean
lemma Indep.eq_union_image_of_disjointSum {h I} (hI : (disjointSum M N h).Indep I) : ∃ IM IN, M.Indep IM ∧ N.Indep IN ∧ Disjoint IM IN ∧ I = IM ∪ IN
α : Type u_1 M N : Matroid α h : Disjoint M.E N.E I : Set α hI : (M.disjointSum N h).Indep I ⊢ ∃ IM IN, M.Indep IM ∧ N.Indep IN ∧ Disjoint IM IN ∧ I = IM ∪ IN
rw [disjointSum_indep_iff] at hI
α : Type u_1 M N : Matroid α h : Disjoint M.E N.E I : Set α hI : M.Indep (I ∩ M.E) ∧ N.Indep (I ∩ N.E) ∧ I ⊆ M.E ∪ N.E ⊢ ∃ IM IN, M.Indep IM ∧ N.Indep IN ∧ Disjoint IM IN ∧ I = IM ∪ IN
019f7a9decf15201
Int.ne_iff_lt_or_gt
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Int/Order.lean
theorem ne_iff_lt_or_gt {a b : Int} : a ≠ b ↔ a < b ∨ b < a
a b : Int gt : b < a ⊢ a ≠ b
exact Int.ne_of_gt gt
no goals
a2564da64123f791
Multiset.powersetCardAux_zero
Mathlib/Data/Multiset/Powerset.lean
theorem powersetCardAux_zero (l : List α) : powersetCardAux 0 l = [0]
α : Type u_1 l : List α ⊢ powersetCardAux 0 l = [0]
simp [powersetCardAux_eq_map_coe]
no goals
348e428319e078f4
Array.SatisfiesM_mapM
Mathlib/.lake/packages/batteries/Batteries/Data/Array/Monadic.lean
theorem SatisfiesM_mapM [Monad m] [LawfulMonad m] (as : Array α) (f : α → m β) (motive : Nat → Prop) (h0 : motive 0) (p : Fin as.size → β → Prop) (hs : ∀ i, motive i.1 → SatisfiesM (p i · ∧ motive (i + 1)) (f as[i])) : SatisfiesM (fun arr => motive as.size ∧ ∃ eq : arr.size = as.size, ∀ i h, p ⟨i, h⟩ arr[i]) (Array.mapM f as)
m : Type u_1 → Type u_2 α : Type u_3 β : Type u_1 inst✝¹ : Monad m inst✝ : LawfulMonad m as : Array α f : α → m β motive : Nat → Prop h0 : motive 0 p : Fin as.size → β → Prop hs : ∀ (i : Fin as.size), motive ↑i → SatisfiesM (fun x => p i x ∧ motive (↑i + 1)) (f as[i]) i : Nat hi : i < as.size arr : Array β ih₁ : motive ↑⟨i, hi⟩ eq : arr.size = ↑⟨i, hi⟩ ih₂ : ∀ (i : Fin as.size) (h2 : ↑i < arr.size), p i arr[↑i] a✝ : β x✝ : p ⟨i, hi⟩ a✝ ∧ motive (↑⟨i, hi⟩ + 1) h₁ : p ⟨i, hi⟩ a✝ h₂ : motive (↑⟨i, hi⟩ + 1) j : Fin as.size hj : ↑j < arr.size + 1 ⊢ p j (if h : ↑j < arr.size then arr[↑j] else a✝)
split
case isTrue m : Type u_1 → Type u_2 α : Type u_3 β : Type u_1 inst✝¹ : Monad m inst✝ : LawfulMonad m as : Array α f : α → m β motive : Nat → Prop h0 : motive 0 p : Fin as.size → β → Prop hs : ∀ (i : Fin as.size), motive ↑i → SatisfiesM (fun x => p i x ∧ motive (↑i + 1)) (f as[i]) i : Nat hi : i < as.size arr : Array β ih₁ : motive ↑⟨i, hi⟩ eq : arr.size = ↑⟨i, hi⟩ ih₂ : ∀ (i : Fin as.size) (h2 : ↑i < arr.size), p i arr[↑i] a✝ : β x✝ : p ⟨i, hi⟩ a✝ ∧ motive (↑⟨i, hi⟩ + 1) h₁ : p ⟨i, hi⟩ a✝ h₂ : motive (↑⟨i, hi⟩ + 1) j : Fin as.size hj : ↑j < arr.size + 1 h✝ : ↑j < arr.size ⊢ p j arr[↑j] case isFalse m : Type u_1 → Type u_2 α : Type u_3 β : Type u_1 inst✝¹ : Monad m inst✝ : LawfulMonad m as : Array α f : α → m β motive : Nat → Prop h0 : motive 0 p : Fin as.size → β → Prop hs : ∀ (i : Fin as.size), motive ↑i → SatisfiesM (fun x => p i x ∧ motive (↑i + 1)) (f as[i]) i : Nat hi : i < as.size arr : Array β ih₁ : motive ↑⟨i, hi⟩ eq : arr.size = ↑⟨i, hi⟩ ih₂ : ∀ (i : Fin as.size) (h2 : ↑i < arr.size), p i arr[↑i] a✝ : β x✝ : p ⟨i, hi⟩ a✝ ∧ motive (↑⟨i, hi⟩ + 1) h₁ : p ⟨i, hi⟩ a✝ h₂ : motive (↑⟨i, hi⟩ + 1) j : Fin as.size hj : ↑j < arr.size + 1 h✝ : ¬↑j < arr.size ⊢ p j a✝
2d55fc71b4122bfa
t1Space_TFAE
Mathlib/Topology/Separation/Basic.lean
theorem t1Space_TFAE (X : Type u) [TopologicalSpace X] : List.TFAE [T1Space X, ∀ x, IsClosed ({ x } : Set X), ∀ x, IsOpen ({ x }ᶜ : Set X), Continuous (@CofiniteTopology.of X), ∀ ⦃x y : X⦄, x ≠ y → {y}ᶜ ∈ 𝓝 x, ∀ ⦃x y : X⦄, x ≠ y → ∃ s ∈ 𝓝 x, y ∉ s, ∀ ⦃x y : X⦄, x ≠ y → ∃ U : Set X, IsOpen U ∧ x ∈ U ∧ y ∉ U, ∀ ⦃x y : X⦄, x ≠ y → Disjoint (𝓝 x) (pure y), ∀ ⦃x y : X⦄, x ≠ y → Disjoint (pure x) (𝓝 y), ∀ ⦃x y : X⦄, x ⤳ y → x = y]
X : Type u inst✝ : TopologicalSpace X tfae_1_iff_2 : T1Space X ↔ ∀ (x : X), IsClosed {x} tfae_2_iff_3 : (∀ (x : X), IsClosed {x}) ↔ ∀ (x : X), IsOpen {x}ᶜ tfae_5_iff_3 : (∀ ⦃x y : X⦄, x ≠ y → {y}ᶜ ∈ 𝓝 x) ↔ ∀ (x : X), IsOpen {x}ᶜ tfae_5_iff_6 : (∀ ⦃x y : X⦄, x ≠ y → {y}ᶜ ∈ 𝓝 x) ↔ ∀ ⦃x y : X⦄, x ≠ y → ∃ s ∈ 𝓝 x, y ∉ s tfae_5_iff_7 : (∀ ⦃x y : X⦄, x ≠ y → {y}ᶜ ∈ 𝓝 x) ↔ ∀ ⦃x y : X⦄, x ≠ y → ∃ U, IsOpen U ∧ x ∈ U ∧ y ∉ U tfae_5_iff_8 : (∀ ⦃x y : X⦄, x ≠ y → {y}ᶜ ∈ 𝓝 x) ↔ ∀ ⦃x y : X⦄, x ≠ y → Disjoint (𝓝 x) (pure y) tfae_8_iff_9 : (∀ ⦃x y : X⦄, x ≠ y → Disjoint (𝓝 x) (pure y)) ↔ ∀ ⦃x y : X⦄, x ≠ y → Disjoint (pure x) (𝓝 y) tfae_1_to_4 : T1Space X → Continuous ⇑CofiniteTopology.of tfae_4_to_2 : Continuous ⇑CofiniteTopology.of → ∀ (x : X), IsClosed {x} ⊢ [T1Space X, ∀ (x : X), IsClosed {x}, ∀ (x : X), IsOpen {x}ᶜ, Continuous ⇑CofiniteTopology.of, ∀ ⦃x y : X⦄, x ≠ y → {y}ᶜ ∈ 𝓝 x, ∀ ⦃x y : X⦄, x ≠ y → ∃ s ∈ 𝓝 x, y ∉ s, ∀ ⦃x y : X⦄, x ≠ y → ∃ U, IsOpen U ∧ x ∈ U ∧ y ∉ U, ∀ ⦃x y : X⦄, x ≠ y → Disjoint (𝓝 x) (pure y), ∀ ⦃x y : X⦄, x ≠ y → Disjoint (pure x) (𝓝 y), ∀ ⦃x y : X⦄, x ⤳ y → x = y].TFAE
tfae_have 2 ↔ 10 := by simp only [← closure_subset_iff_isClosed, specializes_iff_mem_closure, subset_def, mem_singleton_iff, eq_comm]
X : Type u inst✝ : TopologicalSpace X tfae_1_iff_2 : T1Space X ↔ ∀ (x : X), IsClosed {x} tfae_2_iff_3 : (∀ (x : X), IsClosed {x}) ↔ ∀ (x : X), IsOpen {x}ᶜ tfae_5_iff_3 : (∀ ⦃x y : X⦄, x ≠ y → {y}ᶜ ∈ 𝓝 x) ↔ ∀ (x : X), IsOpen {x}ᶜ tfae_5_iff_6 : (∀ ⦃x y : X⦄, x ≠ y → {y}ᶜ ∈ 𝓝 x) ↔ ∀ ⦃x y : X⦄, x ≠ y → ∃ s ∈ 𝓝 x, y ∉ s tfae_5_iff_7 : (∀ ⦃x y : X⦄, x ≠ y → {y}ᶜ ∈ 𝓝 x) ↔ ∀ ⦃x y : X⦄, x ≠ y → ∃ U, IsOpen U ∧ x ∈ U ∧ y ∉ U tfae_5_iff_8 : (∀ ⦃x y : X⦄, x ≠ y → {y}ᶜ ∈ 𝓝 x) ↔ ∀ ⦃x y : X⦄, x ≠ y → Disjoint (𝓝 x) (pure y) tfae_8_iff_9 : (∀ ⦃x y : X⦄, x ≠ y → Disjoint (𝓝 x) (pure y)) ↔ ∀ ⦃x y : X⦄, x ≠ y → Disjoint (pure x) (𝓝 y) tfae_1_to_4 : T1Space X → Continuous ⇑CofiniteTopology.of tfae_4_to_2 : Continuous ⇑CofiniteTopology.of → ∀ (x : X), IsClosed {x} tfae_2_iff_10 : (∀ (x : X), IsClosed {x}) ↔ ∀ ⦃x y : X⦄, x ⤳ y → x = y ⊢ [T1Space X, ∀ (x : X), IsClosed {x}, ∀ (x : X), IsOpen {x}ᶜ, Continuous ⇑CofiniteTopology.of, ∀ ⦃x y : X⦄, x ≠ y → {y}ᶜ ∈ 𝓝 x, ∀ ⦃x y : X⦄, x ≠ y → ∃ s ∈ 𝓝 x, y ∉ s, ∀ ⦃x y : X⦄, x ≠ y → ∃ U, IsOpen U ∧ x ∈ U ∧ y ∉ U, ∀ ⦃x y : X⦄, x ≠ y → Disjoint (𝓝 x) (pure y), ∀ ⦃x y : X⦄, x ≠ y → Disjoint (pure x) (𝓝 y), ∀ ⦃x y : X⦄, x ⤳ y → x = y].TFAE
92ea821073dea3c3
DFinsupp.Lex.acc_single
Mathlib/Data/DFinsupp/WellFounded.lean
theorem Lex.acc_single (hbot : ∀ ⦃i a⦄, ¬s i a 0) (hs : ∀ i, WellFounded (s i)) [DecidableEq ι] {i : ι} (hi : Acc (rᶜ ⊓ (· ≠ ·)) i) : ∀ a, Acc (DFinsupp.Lex r s) (single i a)
case intro ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬s i a 0 hs : ∀ (i : ι), WellFounded (s i) inst✝ : DecidableEq ι i✝ i : ι h✝ : ∀ (y : ι), (rᶜ ⊓ fun x1 x2 => x1 ≠ x2) y i → Acc (rᶜ ⊓ fun x1 x2 => x1 ≠ x2) y ih : ∀ (y : ι), (rᶜ ⊓ fun x1 x2 => x1 ≠ x2) y i → ∀ (a : α y), Acc (DFinsupp.Lex r s) (single y a) ⊢ ∀ (a : α i), Acc (DFinsupp.Lex r s) (single i a)
refine fun a => WellFounded.induction (hs i) (C := fun x ↦ Acc (DFinsupp.Lex r s) (single i x)) a fun a ha ↦ ?_
case intro ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬s i a 0 hs : ∀ (i : ι), WellFounded (s i) inst✝ : DecidableEq ι i✝ i : ι h✝ : ∀ (y : ι), (rᶜ ⊓ fun x1 x2 => x1 ≠ x2) y i → Acc (rᶜ ⊓ fun x1 x2 => x1 ≠ x2) y ih : ∀ (y : ι), (rᶜ ⊓ fun x1 x2 => x1 ≠ x2) y i → ∀ (a : α y), Acc (DFinsupp.Lex r s) (single y a) a✝ a : α i ha : ∀ (y : α i), s i y a → (fun x => Acc (DFinsupp.Lex r s) (single i x)) y ⊢ (fun x => Acc (DFinsupp.Lex r s) (single i x)) a
4e9f90d22d70a2fd
Real.deriv_qaryEntropy
Mathlib/Analysis/SpecialFunctions/BinaryEntropy.lean
lemma deriv_qaryEntropy (hp₀ : p ≠ 0) (hp₁ : p ≠ 1) : deriv (qaryEntropy q) p = log (q - 1) + log (1 - p) - log p
case hf q : ℕ p : ℝ hp₀ : p ≠ 0 hp₁ : p ≠ 1 ⊢ DifferentiableAt ℝ (fun p => p * log ↑(↑q - 1)) p case hg q : ℕ p : ℝ hp₀ : p ≠ 0 hp₁ : p ≠ 1 ⊢ DifferentiableAt ℝ binEntropy p
all_goals fun_prop (disch := assumption)
no goals
a8878fef28b9e7fe
Nat.all_succ
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Nat/Fold.lean
theorem all_succ {n : Nat} (f : (i : Nat) → i < n + 1 → Bool) : all (n + 1) f = (all n (fun i h => f i (by omega)) && f n (by omega))
n : Nat f : (i : Nat) → i < n + 1 → Bool i : Nat h : i < n ⊢ i < n + 1
omega
no goals
cac12ba618906a84
LieSubalgebra.mem_ofLe
Mathlib/Algebra/Lie/Subalgebra.lean
theorem mem_ofLe (x : K') : x ∈ ofLe h ↔ (x : L) ∈ K
case mp R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L K K' : LieSubalgebra R L h : K ≤ K' x : ↥K' ⊢ (∃ y, ⟨↑y, ⋯⟩ = x) → ↑x ∈ K
rintro ⟨y, rfl⟩
case mp.intro R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L K K' : LieSubalgebra R L h : K ≤ K' y : ↥K ⊢ ↑⟨↑y, ⋯⟩ ∈ K
5d9bb5db043a9471
MeasureTheory.self_mem_ae_restrict
Mathlib/MeasureTheory/Measure/Restrict.lean
theorem self_mem_ae_restrict {s} (hs : MeasurableSet s) : s ∈ ae (μ.restrict s)
α : Type u_2 m0 : MeasurableSpace α μ : Measure α s : Set α hs : MeasurableSet s ⊢ ∃ t₁ ∈ ae μ, ∃ t₂, s ⊆ t₂ ∧ s = t₁ ∩ t₂
exact ⟨_, univ_mem, s, Subset.rfl, (univ_inter s).symm⟩
no goals
42080b33a9f5bcb5
Nat.succ_sub
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Nat/Basic.lean
theorem succ_sub {m n : Nat} (h : n ≤ m) : succ m - n = succ (m - n)
m n : Nat h : n ≤ m k : Nat hk : n + k = m ⊢ m.succ - n = (m - n).succ
rw [← hk, Nat.add_sub_cancel_left, ← add_succ, Nat.add_sub_cancel_left]
no goals
286b51de4d0e7224
CategoryTheory.Iso.map_inv_hom_id_app
Mathlib/CategoryTheory/Functor/Category.lean
theorem map_inv_hom_id_app {X Y : C} (e : X ≅ Y) (F : C ⥤ D ⥤ E) (Z : D) : (F.map e.inv).app Z ≫ (F.map e.hom).app Z = 𝟙 _
C : Type u₁ inst✝² : Category.{v₁, u₁} C D : Type u₂ inst✝¹ : Category.{v₂, u₂} D E : Type u₃ inst✝ : Category.{v₃, u₃} E X Y : C e : X ≅ Y F : C ⥤ D ⥤ E Z : D ⊢ (F.map e.inv).app Z ≫ (F.map e.hom).app Z = 𝟙 ((F.obj Y).obj Z)
simp [← NatTrans.comp_app, ← Functor.map_comp]
no goals
bb340065915ccdab
Interval.coe_sInf
Mathlib/Order/Interval/Basic.lean
theorem coe_sInf [DecidableRel (α := α) (· ≤ ·)] (S : Set (Interval α)) : ↑(sInf S) = ⋂ s ∈ S, (s : Set α)
α : Type u_1 inst✝¹ : CompleteLattice α inst✝ : DecidableRel fun x1 x2 => x1 ≤ x2 S : Set (Interval α) ⊢ ↑(if h : ⊥ ∉ S ∧ ∀ ⦃s : NonemptyInterval α⦄, ↑s ∈ S → ∀ ⦃t : NonemptyInterval α⦄, ↑t ∈ S → s.toProd.1 ≤ t.toProd.2 then ↑{ toProd := (⨆ s, ⨆ (_ : ↑s ∈ S), s.toProd.1, ⨅ s, ⨅ (_ : ↑s ∈ S), s.toProd.2), fst_le_snd := ⋯ } else ⊥) = ⋂ s ∈ S, ↑s
split_ifs with h
case pos α : Type u_1 inst✝¹ : CompleteLattice α inst✝ : DecidableRel fun x1 x2 => x1 ≤ x2 S : Set (Interval α) h : ⊥ ∉ S ∧ ∀ ⦃s : NonemptyInterval α⦄, ↑s ∈ S → ∀ ⦃t : NonemptyInterval α⦄, ↑t ∈ S → s.toProd.1 ≤ t.toProd.2 ⊢ ↑↑{ toProd := (⨆ s, ⨆ (_ : ↑s ∈ S), s.toProd.1, ⨅ s, ⨅ (_ : ↑s ∈ S), s.toProd.2), fst_le_snd := ⋯ } = ⋂ s ∈ S, ↑s case neg α : Type u_1 inst✝¹ : CompleteLattice α inst✝ : DecidableRel fun x1 x2 => x1 ≤ x2 S : Set (Interval α) h : ¬(⊥ ∉ S ∧ ∀ ⦃s : NonemptyInterval α⦄, ↑s ∈ S → ∀ ⦃t : NonemptyInterval α⦄, ↑t ∈ S → s.toProd.1 ≤ t.toProd.2) ⊢ ↑⊥ = ⋂ s ∈ S, ↑s
432700be06931a9b
Metric.hausdorffDist_le_of_mem_dist
Mathlib/Topology/MetricSpace/HausdorffDistance.lean
theorem hausdorffDist_le_of_mem_dist {r : ℝ} (hr : 0 ≤ r) (H1 : ∀ x ∈ s, ∃ y ∈ t, dist x y ≤ r) (H2 : ∀ x ∈ t, ∃ y ∈ s, dist x y ≤ r) : hausdorffDist s t ≤ r
case H2 α : Type u inst✝ : PseudoMetricSpace α s t : Set α r : ℝ hr : 0 ≤ r H1 : ∀ x ∈ s, ∃ y ∈ t, dist x y ≤ r H2 : ∀ x ∈ t, ∃ y ∈ s, dist x y ≤ r ⊢ ∀ x ∈ t, infDist x s ≤ r
intro x xt
case H2 α : Type u inst✝ : PseudoMetricSpace α s t : Set α r : ℝ hr : 0 ≤ r H1 : ∀ x ∈ s, ∃ y ∈ t, dist x y ≤ r H2 : ∀ x ∈ t, ∃ y ∈ s, dist x y ≤ r x : α xt : x ∈ t ⊢ infDist x s ≤ r
628fd108fcb99ee2
Behrend.threeAPFree_image_sphere
Mathlib/Combinatorics/Additive/AP/Three/Behrend.lean
theorem threeAPFree_image_sphere : ThreeAPFree ((sphere n d k).image (map (2 * d - 1)) : Set ℕ)
n d k : ℕ ⊢ ThreeAPFree (⇑(map (2 * d - 1)) '' ↑(sphere n d k))
apply ThreeAPFree.image' (α := Fin n → ℕ) (β := ℕ) (s := sphere n d k) (map (2 * d - 1)) (map_injOn.mono _) threeAPFree_sphere
n d k : ℕ ⊢ ↑(sphere n d k) + ↑(sphere n d k) ⊆ {x | ∀ (i : Fin n), x i < 2 * d - 1}
e8af164492af265d
Real.antitone_rpow_of_base_le_one
Mathlib/Analysis/SpecialFunctions/Pow/Real.lean
lemma antitone_rpow_of_base_le_one {b : ℝ} (hb₀ : 0 < b) (hb₁ : b ≤ 1) : Antitone (b ^ · : ℝ → ℝ)
case inl b : ℝ hb₀ : 0 < b hb₁✝ : b ≤ 1 hb₁ : b < 1 ⊢ Antitone fun x => b ^ x case inr hb₀ : 0 < 1 hb₁ : 1 ≤ 1 ⊢ Antitone fun x => 1 ^ x
case inl => exact (strictAnti_rpow_of_base_lt_one hb₀ hb₁).antitone
case inr hb₀ : 0 < 1 hb₁ : 1 ≤ 1 ⊢ Antitone fun x => 1 ^ x
70788659184c90ef
hasSum_mellin_pi_mul
Mathlib/NumberTheory/LSeries/MellinEqDirichlet.lean
/-- Shortcut version for the commonly arising special case when `p i = π * q i` for some other sequence `q`. -/ lemma hasSum_mellin_pi_mul {a : ι → ℂ} {q : ι → ℝ} {F : ℝ → ℂ} {s : ℂ} (hq : ∀ i, a i = 0 ∨ 0 < q i) (hs : 0 < s.re) (hF : ∀ t ∈ Ioi 0, HasSum (fun i ↦ a i * rexp (-π * q i * t)) (F t)) (h_sum : Summable fun i ↦ ‖a i‖ / (q i) ^ s.re) : HasSum (fun i ↦ π ^ (-s) * Gamma s * a i / q i ^ s) (mellin F s)
case h.e'_5.h ι : Type u_1 inst✝ : Countable ι a : ι → ℂ q : ι → ℝ F : ℝ → ℂ s : ℂ hq : ∀ (i : ι), a i = 0 ∨ 0 < q i hs : 0 < s.re hF : ∀ t ∈ Ioi 0, HasSum (fun i => a i * ↑(rexp (-π * q i * t))) (F t) h_sum : Summable fun i => ‖a i‖ / q i ^ s.re hp : ∀ (i : ι), a i = 0 ∨ 0 < π * q i i : ι this : a i / ↑(π * q i) ^ s = ↑π ^ (-s) * a i / ↑(q i) ^ s ⊢ ↑π ^ (-s) * Complex.Gamma s * (a i / ↑(q i) ^ s) = Complex.Gamma s * (↑π ^ (-s) * a i / ↑(q i) ^ s)
ring_nf
no goals
29b92a7c6424e7e6
CategoryTheory.Presheaf.isLeftKanExtension_along_yoneda_iff
Mathlib/CategoryTheory/Limits/Presheaf.lean
lemma isLeftKanExtension_along_yoneda_iff : L.IsLeftKanExtension α ↔ (IsIso α ∧ PreservesColimitsOfSize.{v₁, max u₁ v₁} L)
C : Type u₁ inst✝² : Category.{v₁, u₁} C ℰ : Type u₂ inst✝¹ : Category.{v₁, u₂} ℰ A : C ⥤ ℰ inst✝ : yoneda.HasPointwiseLeftKanExtension A L : (Cᵒᵖ ⥤ Type v₁) ⥤ ℰ α : A ⟶ yoneda ⋙ L ⊢ L.IsLeftKanExtension α ↔ IsIso α ∧ PreservesColimitsOfSize.{v₁, max u₁ v₁, max u₁ v₁, v₁, max u₁ (v₁ + 1), u₂} L
constructor
case mp C : Type u₁ inst✝² : Category.{v₁, u₁} C ℰ : Type u₂ inst✝¹ : Category.{v₁, u₂} ℰ A : C ⥤ ℰ inst✝ : yoneda.HasPointwiseLeftKanExtension A L : (Cᵒᵖ ⥤ Type v₁) ⥤ ℰ α : A ⟶ yoneda ⋙ L ⊢ L.IsLeftKanExtension α → IsIso α ∧ PreservesColimitsOfSize.{v₁, max u₁ v₁, max u₁ v₁, v₁, max u₁ (v₁ + 1), u₂} L case mpr C : Type u₁ inst✝² : Category.{v₁, u₁} C ℰ : Type u₂ inst✝¹ : Category.{v₁, u₂} ℰ A : C ⥤ ℰ inst✝ : yoneda.HasPointwiseLeftKanExtension A L : (Cᵒᵖ ⥤ Type v₁) ⥤ ℰ α : A ⟶ yoneda ⋙ L ⊢ IsIso α ∧ PreservesColimitsOfSize.{v₁, max u₁ v₁, max u₁ v₁, v₁, max u₁ (v₁ + 1), u₂} L → L.IsLeftKanExtension α
fb09d1319e0f9b0d
Finset.extract_gcd
Mathlib/Algebra/GCDMonoid/Finset.lean
theorem extract_gcd (f : β → α) (hs : s.Nonempty) : ∃ g : β → α, (∀ b ∈ s, f b = s.gcd f * g b) ∧ s.gcd g = 1
case neg.refine_1 α : Type u_2 β : Type u_3 inst✝¹ : CancelCommMonoidWithZero α inst✝ : NormalizedGCDMonoid α s : Finset β f : β → α hs : s.Nonempty g' : {b : β} → b ∈ s → α hg : ∀ {b : β} (hb : b ∈ s), f b = s.gcd f * g' hb h : ∃ x ∈ s, f x ≠ 0 b : β hb : b ∈ s ⊢ f b = s.gcd f * (fun b => if hb : b ∈ s then g' hb else 0) b
simp only [hb, hg, dite_true]
no goals
330403550ff056bb
traceForm_dualBasis_powerBasis_eq
Mathlib/RingTheory/Trace/Basic.lean
/-- The dual basis of a powerbasis `{1, x, x²...}` under the trace form is `aᵢ / f'(x)`, with `f` being the minimal polynomial of `x` and `f / (X - x) = ∑ aᵢxⁱ`. -/ lemma traceForm_dualBasis_powerBasis_eq [FiniteDimensional K L] [Algebra.IsSeparable K L] (pb : PowerBasis K L) (i) : (Algebra.traceForm K L).dualBasis (traceForm_nondegenerate K L) pb.basis i = (minpolyDiv K pb.gen).coeff i / aeval pb.gen (derivative <| minpoly K pb.gen)
case a.a K : Type u_4 L : Type u_5 inst✝⁴ : Field K inst✝³ : Field L inst✝² : Algebra K L inst✝¹ : FiniteDimensional K L inst✝ : Algebra.IsSeparable K L pb : PowerBasis K L i j : Fin pb.dim this : ∑ x : L →ₐ[K] AlgebraicClosure K, x pb.gen ^ ↑j / x ((aeval pb.gen) (derivative (minpoly K pb.gen))) * x ((minpolyDiv K pb.gen).coeff ↑i) = if j = i then 1 else 0 ⊢ ∀ x ∈ Finset.univ, x pb.gen ^ ↑j / x ((aeval pb.gen) (derivative (minpoly K pb.gen))) * x ((minpolyDiv K pb.gen).coeff ↑i) = x ((minpolyDiv K pb.gen).coeff ↑i / (aeval pb.gen) (derivative (minpoly K pb.gen)) * pb.gen ^ ↑j)
intro σ _
case a.a K : Type u_4 L : Type u_5 inst✝⁴ : Field K inst✝³ : Field L inst✝² : Algebra K L inst✝¹ : FiniteDimensional K L inst✝ : Algebra.IsSeparable K L pb : PowerBasis K L i j : Fin pb.dim this : ∑ x : L →ₐ[K] AlgebraicClosure K, x pb.gen ^ ↑j / x ((aeval pb.gen) (derivative (minpoly K pb.gen))) * x ((minpolyDiv K pb.gen).coeff ↑i) = if j = i then 1 else 0 σ : L →ₐ[K] AlgebraicClosure K a✝ : σ ∈ Finset.univ ⊢ σ pb.gen ^ ↑j / σ ((aeval pb.gen) (derivative (minpoly K pb.gen))) * σ ((minpolyDiv K pb.gen).coeff ↑i) = σ ((minpolyDiv K pb.gen).coeff ↑i / (aeval pb.gen) (derivative (minpoly K pb.gen)) * pb.gen ^ ↑j)
619b8227edc12ad8
SeparationQuotient.tendsto_lift₂_nhds
Mathlib/Topology/Inseparable.lean
theorem tendsto_lift₂_nhds {f : X → Y → α} {hf : ∀ a b c d, (a ~ᵢ c) → (b ~ᵢ d) → f a b = f c d} {x : X} {y : Y} {l : Filter α} : Tendsto (uncurry <| lift₂ f hf) (𝓝 (mk x, mk y)) l ↔ Tendsto (uncurry f) (𝓝 (x, y)) l
X : Type u_1 Y : Type u_2 α : Type u_4 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y f : X → Y → α hf : ∀ (a : X) (b : Y) (c : X) (d : Y), (a ~ᵢ c) → (b ~ᵢ d) → f a b = f c d x : X y : Y l : Filter α ⊢ Tendsto (uncurry (lift₂ f hf)) (𝓝 (mk x, mk y)) l ↔ Tendsto (uncurry f) (𝓝 (x, y)) l
rw [← map_prod_map_mk_nhds, tendsto_map'_iff]
X : Type u_1 Y : Type u_2 α : Type u_4 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y f : X → Y → α hf : ∀ (a : X) (b : Y) (c : X) (d : Y), (a ~ᵢ c) → (b ~ᵢ d) → f a b = f c d x : X y : Y l : Filter α ⊢ Tendsto (uncurry (lift₂ f hf) ∘ Prod.map mk mk) (𝓝 (x, y)) l ↔ Tendsto (uncurry f) (𝓝 (x, y)) l
49b4006fda81687a
Fintype.card_filter_piFinset_eq
Mathlib/Data/Fintype/BigOperators.lean
lemma card_filter_piFinset_eq [∀ i, DecidableEq (α i)] (s : ∀ i, Finset (α i)) (i : ι) (a : α i) : #{f ∈ piFinset s | f i = a} = if a ∈ s i then ∏ b ∈ univ.erase i, #(s b) else 0
ι : Type u_4 α : ι → Type u_6 inst✝² : DecidableEq ι inst✝¹ : Fintype ι inst✝ : (i : ι) → DecidableEq (α i) s : (i : ι) → Finset (α i) i : ι a : α i ⊢ #(filter (fun f => f i = a) (piFinset s)) = if a ∈ s i then ∏ b ∈ univ.erase i, #(s b) else 0
split_ifs with h
case pos ι : Type u_4 α : ι → Type u_6 inst✝² : DecidableEq ι inst✝¹ : Fintype ι inst✝ : (i : ι) → DecidableEq (α i) s : (i : ι) → Finset (α i) i : ι a : α i h : a ∈ s i ⊢ #(filter (fun f => f i = a) (piFinset s)) = ∏ b ∈ univ.erase i, #(s b) case neg ι : Type u_4 α : ι → Type u_6 inst✝² : DecidableEq ι inst✝¹ : Fintype ι inst✝ : (i : ι) → DecidableEq (α i) s : (i : ι) → Finset (α i) i : ι a : α i h : a ∉ s i ⊢ #(filter (fun f => f i = a) (piFinset s)) = 0
2fd67ab890630265
FormalMultilinearSeries.radius_rightInv_pos_of_radius_pos
Mathlib/Analysis/Analytic/Inverse.lean
theorem radius_rightInv_pos_of_radius_pos {p : FormalMultilinearSeries 𝕜 E F} {i : E ≃L[𝕜] F} {x : E} (hp : 0 < p.radius) : 0 < (p.rightInv i x).radius
𝕜 : Type u_1 inst✝⁴ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E F : Type u_3 inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F p : FormalMultilinearSeries 𝕜 E F i : E ≃L[𝕜] F x : E hp : 0 < p.radius C r : ℝ Cpos : 0 < C rpos : 0 < r ple : ∀ (n : ℕ), ‖p n‖ ≤ C * r ^ n I : ℝ := ‖↑i.symm‖ a : ℝ apos : 0 < a ha1 : 2 * I * C * r ^ 2 * (I + 1) ^ 2 * a ≤ 1 ha2 : r * (I + 1) * a ≤ 1 / 2 S : ℕ → ℝ := fun n => ∑ k ∈ Ico 1 n, a ^ k * ‖p.rightInv i x k‖ n : ℕ one_le_n : 1 ≤ n hn : S n ≤ (I + 1) * a In : 2 ≤ n + 1 rSn : r * S n ≤ 1 / 2 ⊢ 1 / 2 < 1
norm_num
no goals
8af3e9ca55cc3d57
Complex.tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero
Mathlib/Analysis/SpecialFunctions/Complex/Arg.lean
theorem tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) : Tendsto arg (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π))
case convert_3 z : ℂ hre : z.re < 0 him : z.im = 0 ⊢ ‖z‖ ≠ 0
lift z to ℝ using him
case convert_3.intro z : ℝ hre : (↑z).re < 0 ⊢ ‖↑z‖ ≠ 0
fa827d9e0ddf2875
HahnModule.mul_smul'
Mathlib/RingTheory/HahnSeries/Multiplication.lean
theorem mul_smul' [Semiring R] [Module R V] (x y : HahnSeries Γ R) (z : HahnModule Γ' R V) : (x * y) • z = x • (y • z)
case h.h Γ : Type u_1 Γ' : Type u_2 R : Type u_3 V : Type u_5 inst✝⁶ : OrderedCancelAddCommMonoid Γ inst✝⁵ : PartialOrder Γ' inst✝⁴ : AddAction Γ Γ' inst✝³ : IsOrderedCancelVAdd Γ Γ' inst✝² : AddCommMonoid V inst✝¹ : Semiring R inst✝ : Module R V x y : HahnSeries Γ R z : HahnModule Γ' R V b : Γ' ⊢ ((of R).symm ((x * y) • z)).coeff b = ((of R).symm (x • y • z)).coeff b
rw [coeff_smul_left (x.isPWO_support.add y.isPWO_support) HahnSeries.support_mul_subset_add_support, coeff_smul_right (y.isPWO_support.vadd ((of R).symm z).isPWO_support) support_smul_subset_vadd_support]
case h.h Γ : Type u_1 Γ' : Type u_2 R : Type u_3 V : Type u_5 inst✝⁶ : OrderedCancelAddCommMonoid Γ inst✝⁵ : PartialOrder Γ' inst✝⁴ : AddAction Γ Γ' inst✝³ : IsOrderedCancelVAdd Γ Γ' inst✝² : AddCommMonoid V inst✝¹ : Semiring R inst✝ : Module R V x y : HahnSeries Γ R z : HahnModule Γ' R V b : Γ' ⊢ ∑ ij ∈ VAddAntidiagonal ⋯ ⋯ b, (x * y).coeff ij.1 • ((of R).symm z).coeff ij.2 = ∑ ij ∈ VAddAntidiagonal ⋯ ⋯ b, x.coeff ij.1 • ((of R).symm (y • z)).coeff ij.2
948382d12ebb34ef
Multiset.noncommProd_coe
Mathlib/Data/Finset/NoncommProd.lean
theorem noncommProd_coe (l : List α) (comm) : noncommProd (l : Multiset α) comm = l.prod
case cons α : Type u_3 inst✝ : Monoid α hd : α tl : List α hl : {x | x ∈ ↑tl}.Pairwise Commute → List.foldr (fun x1 x2 => x1 * x2) 1 tl = tl.prod comm : {x | x ∈ ↑(hd :: tl)}.Pairwise Commute ⊢ List.foldr (fun x1 x2 => x1 * x2) 1 (hd :: tl) = (hd :: tl).prod
rw [List.prod_cons, List.foldr, hl]
case cons α : Type u_3 inst✝ : Monoid α hd : α tl : List α hl : {x | x ∈ ↑tl}.Pairwise Commute → List.foldr (fun x1 x2 => x1 * x2) 1 tl = tl.prod comm : {x | x ∈ ↑(hd :: tl)}.Pairwise Commute ⊢ {x | x ∈ ↑tl}.Pairwise Commute
61949c74a00986e6
ProbabilityTheory.gaussianReal_map_const_mul
Mathlib/Probability/Distributions/Gaussian.lean
/-- The map of a Gaussian distribution by multiplication by a constant is a Gaussian. -/ lemma gaussianReal_map_const_mul (c : ℝ) : (gaussianReal μ v).map (c * ·) = gaussianReal (c * μ) (⟨c^2, sq_nonneg _⟩ * v)
μ : ℝ v : ℝ≥0 c : ℝ hv : ¬v = 0 hc : ¬c = 0 e : ℝ ≃ᵐ ℝ := (Homeomorph.mulLeft₀ c hc).symm.toMeasurableEquiv ⊢ ∀ (x : ℝ), HasDerivAt (fun x => c⁻¹ * x) (c⁻¹ * 1) x
exact fun _ ↦ HasDerivAt.const_mul _ (hasDerivAt_id _)
no goals
1ceed6d297abcf77
refinement_of_locallyCompact_sigmaCompact_of_nhds_basis_set
Mathlib/Topology/Compactness/Paracompact.lean
theorem refinement_of_locallyCompact_sigmaCompact_of_nhds_basis_set [WeaklyLocallyCompactSpace X] [SigmaCompactSpace X] [T2Space X] {ι : X → Type u} {p : ∀ x, ι x → Prop} {B : ∀ x, ι x → Set X} {s : Set X} (hs : IsClosed s) (hB : ∀ x ∈ s, (𝓝 x).HasBasis (p x) (B x)) : ∃ (α : Type v) (c : α → X) (r : ∀ a, ι (c a)), (∀ a, c a ∈ s ∧ p (c a) (r a)) ∧ (s ⊆ ⋃ a, B (c a) (r a)) ∧ LocallyFinite fun a ↦ B (c a) (r a)
case refine_1.mk.mk X : Type v inst✝³ : TopologicalSpace X inst✝² : WeaklyLocallyCompactSpace X inst✝¹ : SigmaCompactSpace X inst✝ : T2Space X ι : X → Type u p : (x : X) → ι x → Prop B : (x : X) → ι x → Set X s : Set X hs : IsClosed s hB : ∀ x ∈ s, (𝓝 x).HasBasis (p x) (B x) K' : CompactExhaustion X := CompactExhaustion.choice X K : CompactExhaustion X := K'.shiftr.shiftr Kdiff : ℕ → Set X := fun n => K (n + 1) \ interior (K n) hKcov : ∀ (x : X), x ∈ Kdiff (K'.find x + 1) Kdiffc : ∀ (n : ℕ), IsCompact (Kdiff n ∩ s) this : ∀ (n : ℕ) (x : ↑(Kdiff (n + 1) ∩ s)), (K n)ᶜ ∈ 𝓝 ↑x r : (n : ℕ) → (x : ↑(Kdiff (n + 1) ∩ s)) → ι ↑x hrp : ∀ (n : ℕ) (x : ↑(Kdiff (n + 1) ∩ s)), p (↑x) (r n x) hr : ∀ (n : ℕ) (x : ↑(Kdiff (n + 1) ∩ s)), B (↑x) (r n x) ⊆ (K n)ᶜ hxr : ∀ (n : ℕ) (x : X) (hx : x ∈ Kdiff (n + 1) ∩ s), B x (r n ⟨x, hx⟩) ∈ 𝓝 x T : (n : ℕ) → Finset ↑(Kdiff (n + 1) ∩ s) hT : ∀ (n : ℕ), Kdiff (n + 1) ∩ s ⊆ ⋃ x ∈ T n, B (↑x) (r n ⟨↑x, ⋯⟩) T' : (n : ℕ) → Set ↑(Kdiff (n + 1) ∩ s) := fun n => ↑(T n) n : ℕ x : ↑(Kdiff (n + 1) ∩ s) hx : x ∈ T' n ⊢ (fun a => ↑↑a.snd) ⟨n, ⟨x, hx⟩⟩ ∈ s ∧ p ((fun a => ↑↑a.snd) ⟨n, ⟨x, hx⟩⟩) ((fun a => r a.fst ↑a.snd) ⟨n, ⟨x, hx⟩⟩)
exact ⟨x.2.2, hrp _ _⟩
no goals
d7d8360667f4b953
Real.Gamma_ne_zero
Mathlib/Analysis/SpecialFunctions/Gamma/Basic.lean
theorem Gamma_ne_zero {s : ℝ} (hs : ∀ m : ℕ, s ≠ -m) : Gamma s ≠ 0
case zero s : ℝ hs✝ : ∀ (m : ℕ), s ≠ -↑m hs : -↑0 < s ⊢ 0 < s
rwa [Nat.cast_zero, neg_zero] at hs
no goals
b27fef48da598597
GenContFract.convs_eq_convs'
Mathlib/Algebra/ContinuedFractions/ConvergentsEquiv.lean
theorem convs_eq_convs' [LinearOrderedField K] (s_pos : ∀ {gp : Pair K} {m : ℕ}, m < n → g.s.get? m = some gp → 0 < gp.a ∧ 0 < gp.b) : g.convs n = g.convs' n
case refl.intro.intro K : Type u_1 inst✝ : LinearOrderedField K g : GenContFract K gp' : Pair K m : ℕ IH : ∀ {g : GenContFract K}, (∀ {gp : Pair K} {m_1 : ℕ}, m_1 < m.succ → g.s.get? m_1 = some gp → 0 < gp.a ∧ 0 < gp.b) → g.convs m.succ = g.convs' m.succ s_pos : ∀ {gp : Pair K} {m_1 : ℕ}, m_1 < m.succ + 1 → g.s.get? m_1 = some gp → 0 < gp.a ∧ 0 < gp.b g' : GenContFract K := g.squashGCF m.succ not_terminatedAt_n : ¬g.TerminatedAt m.succ this : g.convs (m.succ + 1) = g'.convs m.succ s_mth_eq' : g'.s.get? m = some gp' gp_succ_m : Pair K s_succ_mth_eq : g.s.get? (m + 1) = some gp_succ_m gp_m : Pair K mth_s_eq : g.s.get? m = some gp_m m_lt_n : m < m.succ ⊢ 0 < gp_succ_m.a / gp_succ_m.b
have : 0 < gp_succ_m.a ∧ 0 < gp_succ_m.b := s_pos (lt_add_one <| m + 1) s_succ_mth_eq
case refl.intro.intro K : Type u_1 inst✝ : LinearOrderedField K g : GenContFract K gp' : Pair K m : ℕ IH : ∀ {g : GenContFract K}, (∀ {gp : Pair K} {m_1 : ℕ}, m_1 < m.succ → g.s.get? m_1 = some gp → 0 < gp.a ∧ 0 < gp.b) → g.convs m.succ = g.convs' m.succ s_pos : ∀ {gp : Pair K} {m_1 : ℕ}, m_1 < m.succ + 1 → g.s.get? m_1 = some gp → 0 < gp.a ∧ 0 < gp.b g' : GenContFract K := g.squashGCF m.succ not_terminatedAt_n : ¬g.TerminatedAt m.succ this✝ : g.convs (m.succ + 1) = g'.convs m.succ s_mth_eq' : g'.s.get? m = some gp' gp_succ_m : Pair K s_succ_mth_eq : g.s.get? (m + 1) = some gp_succ_m gp_m : Pair K mth_s_eq : g.s.get? m = some gp_m m_lt_n : m < m.succ this : 0 < gp_succ_m.a ∧ 0 < gp_succ_m.b ⊢ 0 < gp_succ_m.a / gp_succ_m.b
b83d55996ff7dd7d
Real.Gamma_ne_zero
Mathlib/Analysis/SpecialFunctions/Gamma/Basic.lean
theorem Gamma_ne_zero {s : ℝ} (hs : ∀ m : ℕ, s ≠ -m) : Gamma s ≠ 0
s : ℝ hs : ∀ (m : ℕ), s ≠ -↑m this : ∀ {n : ℕ}, -↑n < s → Gamma s ≠ 0 ⊢ Gamma s ≠ 0
apply this
case a s : ℝ hs : ∀ (m : ℕ), s ≠ -↑m this : ∀ {n : ℕ}, -↑n < s → Gamma s ≠ 0 ⊢ -↑?n < s case n s : ℝ hs : ∀ (m : ℕ), s ≠ -↑m this : ∀ {n : ℕ}, -↑n < s → Gamma s ≠ 0 ⊢ ℕ
b27fef48da598597
isBoundedUnder_le_finset_sup
Mathlib/Order/LiminfLimsup.lean
theorem isBoundedUnder_le_finset_sup [LinearOrder β] [OrderBot β] {f : Filter α} {F : ι → α → β} {s : Finset ι} (h : ∀ i ∈ s, f.IsBoundedUnder (· ≤ ·) (F i)) : f.IsBoundedUnder (· ≤ ·) (fun a ↦ sup s (fun i ↦ F i a))
case h α : Type u_1 β : Type u_2 ι : Type u_4 inst✝¹ : LinearOrder β inst✝ : OrderBot β f : Filter α F : ι → α → β s : Finset ι m : ι → β hm : ∀ i ∈ s, ∀ᶠ (x : β) in Filter.map (F i) f, (fun x1 x2 => x1 ≤ x2) x (m i) ⊢ ∀ᶠ (x : β) in Filter.map (fun a => s.sup fun i => F i a) f, (fun x1 x2 => x1 ≤ x2) x (s.sup m)
simp only [eventually_map] at hm ⊢
case h α : Type u_1 β : Type u_2 ι : Type u_4 inst✝¹ : LinearOrder β inst✝ : OrderBot β f : Filter α F : ι → α → β s : Finset ι m : ι → β hm : ∀ i ∈ s, ∀ᶠ (a : α) in f, F i a ≤ m i ⊢ ∀ᶠ (a : α) in f, (s.sup fun i => F i a) ≤ s.sup m
2c89705f49896138
WittVector.iterate_frobenius_coeff
Mathlib/RingTheory/WittVector/Identities.lean
theorem iterate_frobenius_coeff (x : 𝕎 R) (i k : ℕ) : (frobenius^[i] x).coeff k = x.coeff k ^ p ^ i
case zero p : ℕ R : Type u_1 hp : Fact (Nat.Prime p) inst✝¹ : CommRing R inst✝ : CharP R p x : 𝕎 R k : ℕ ⊢ ((⇑frobenius)^[0] x).coeff k = x.coeff k ^ p ^ 0
simp
no goals
c214fc875b9b7f93
LinearMap.charpoly_nilpotent_tfae
Mathlib/LinearAlgebra/Eigenspace/Zero.lean
lemma charpoly_nilpotent_tfae [IsNoetherian R M] (φ : Module.End R M) : List.TFAE [ IsNilpotent φ, φ.charpoly = X ^ finrank R M, ∀ m : M, ∃ (n : ℕ), (φ ^ n) m = 0, natTrailingDegree φ.charpoly = finrank R M ]
R : Type u_1 M : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : IsDomain R inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : Module.Finite R M inst✝¹ : Free R M inst✝ : IsNoetherian R M φ : End R M ⊢ [IsNilpotent φ, charpoly φ = X ^ finrank R M, ∀ (m : M), ∃ n, (φ ^ n) m = 0, (charpoly φ).natTrailingDegree = finrank R M].TFAE
tfae_have 1 → 2 := IsNilpotent.charpoly_eq_X_pow_finrank
R : Type u_1 M : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : IsDomain R inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : Module.Finite R M inst✝¹ : Free R M inst✝ : IsNoetherian R M φ : End R M tfae_1_to_2 : IsNilpotent φ → charpoly φ = X ^ finrank R M ⊢ [IsNilpotent φ, charpoly φ = X ^ finrank R M, ∀ (m : M), ∃ n, (φ ^ n) m = 0, (charpoly φ).natTrailingDegree = finrank R M].TFAE
9c8228786990f11d
Char.card_pow_card
Mathlib/NumberTheory/GaussSum.lean
theorem Char.card_pow_card {F : Type*} [Field F] [Fintype F] {F' : Type*} [Field F'] [Fintype F'] {χ : MulChar F F'} (hχ₁ : χ ≠ 1) (hχ₂ : IsQuadratic χ) (hch₁ : ringChar F' ≠ ringChar F) (hch₂ : ringChar F' ≠ 2) : (χ (-1) * Fintype.card F) ^ (Fintype.card F' / 2) = χ (Fintype.card F')
case intro.intro.intro.intro.a F : Type u_1 inst✝³ : Field F inst✝² : Fintype F F' : Type u_2 inst✝¹ : Field F' inst✝ : Fintype F' χ : MulChar F F' hχ₁ : χ ≠ 1 hχ₂ : χ.IsQuadratic hch₁✝ : ringChar F' ≠ ringChar F hch₂ : ringChar F' ≠ 2 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n n' : ℕ+ hp' : Nat.Prime (ringChar F') hc' : Fintype.card F' = ringChar F' ^ ↑n' ψ : PrimitiveAddChar F F' := FiniteField.primitiveChar F F' hch₁✝ FF' : Type u_2 := CyclotomicField ψ.n F' hch₁ : IsUnit ↑(ringChar FF') hchar : ringChar F' = ringChar FF' this✝ : Fact (Nat.Prime (ringChar F')) this : Fact (Nat.Prime (ringChar FF')) ⊢ ((χ.ringHomComp (algebraMap F' FF')) (-1) * ↑(Fintype.card F)) ^ (ringChar FF' ^ ↑n' / 2) = (χ.ringHomComp (algebraMap F' FF')) (↑(ringChar FF') ^ ↑n')
exact Char.card_pow_char_pow (hχ₂.comp _) ψ.char (ringChar FF') n' hch₁ (hchar ▸ hch₂) (gaussSum_sq ((ringHomComp_ne_one_iff (RingHom.injective _)).mpr hχ₁) (hχ₂.comp _) ψ.prim)
no goals
e01707f133d9b7bd
Stream'.WSeq.exists_of_mem_join
Mathlib/Data/Seq/WSeq.lean
theorem exists_of_mem_join {a : α} : ∀ {S : WSeq (WSeq α)}, a ∈ join S → ∃ s, s ∈ S ∧ a ∈ s
case h2.h1.h2.h.inl α : Type u a : α ss : WSeq α h : a ∈ ss s : WSeq α S : WSeq (WSeq α) IH : ∀ (s_1 : WSeq α) (S_1 : WSeq (WSeq α)), s_1.append S_1.join = s.append S.join → a ∈ s_1.append S_1.join → a ∈ s_1 ∨ ∃ s, s ∈ S_1 ∧ a ∈ s ej : (s.append S.join).think = (s.append S.join).think m : a ∈ s.append S.join as : a ∈ s ⊢ ∃ s_1, (s_1 = s ∨ s_1 ∈ S) ∧ a ∈ s_1
exact ⟨s, Or.inl rfl, as⟩
no goals
ec68064248c6eec8
Turing.ToPartrec.cont_eval_fix
Mathlib/Computability/TMConfig.lean
theorem cont_eval_fix {f k v} (fok : Code.Ok f) : Turing.eval step (stepNormal f (Cont.fix f k) v) = f.fix.eval v >>= fun v => Turing.eval step (Cfg.ret k v)
case pos f : Code k : Cont v : List ℕ fok : f.Ok x : Cfg this : ∀ (c : Cfg), x ∈ eval step c → ∀ (v : List ℕ) (c' : Cfg), c = c'.then (Cont.fix f k) → Reaches step (stepNormal f Cont.halt v) c' → ∃ v₁ ∈ f.eval v, ∃ v₂ ∈ if v₁.headI = 0 then pure v₁.tail else f.fix.eval v₁.tail, x ∈ eval step (Cfg.ret k v₂) h : x ∈ eval step (stepNormal f (Cont.fix f k) v) v₁ : List ℕ hv₁ : v₁ ∈ f.eval v v₂ : List ℕ h₃ : x ∈ eval step (Cfg.ret k v₂) h✝ : v₁.headI = 0 hv₂ : v₂ ∈ pure v₁.tail ⊢ Sum.inl v₂ ∈ Part.some (Sum.inl v₁.tail) ∨ ∃ a', Sum.inr a' ∈ Part.some (Sum.inl v₁.tail) ∧ v₂ ∈ PFun.fix (fun v => Part.map (fun v => if v.headI = 0 then Sum.inl v.tail else Sum.inr v.tail) (f.eval v)) a'
rw [Part.mem_some_iff.1 hv₂]
case pos f : Code k : Cont v : List ℕ fok : f.Ok x : Cfg this : ∀ (c : Cfg), x ∈ eval step c → ∀ (v : List ℕ) (c' : Cfg), c = c'.then (Cont.fix f k) → Reaches step (stepNormal f Cont.halt v) c' → ∃ v₁ ∈ f.eval v, ∃ v₂ ∈ if v₁.headI = 0 then pure v₁.tail else f.fix.eval v₁.tail, x ∈ eval step (Cfg.ret k v₂) h : x ∈ eval step (stepNormal f (Cont.fix f k) v) v₁ : List ℕ hv₁ : v₁ ∈ f.eval v v₂ : List ℕ h₃ : x ∈ eval step (Cfg.ret k v₂) h✝ : v₁.headI = 0 hv₂ : v₂ ∈ pure v₁.tail ⊢ Sum.inl v₁.tail ∈ Part.some (Sum.inl v₁.tail) ∨ ∃ a', Sum.inr a' ∈ Part.some (Sum.inl v₁.tail) ∧ v₁.tail ∈ PFun.fix (fun v => Part.map (fun v => if v.headI = 0 then Sum.inl v.tail else Sum.inr v.tail) (f.eval v)) a'
4a2318a05b9f1866
Stream'.WSeq.mem_rec_on
Mathlib/Data/Seq/WSeq.lean
theorem mem_rec_on {C : WSeq α → Prop} {a s} (M : a ∈ s) (h1 : ∀ b s', a = b ∨ C s' → C (cons b s')) (h2 : ∀ s, C s → C (think s)) : C s
case none.a.inl α : Type u C : WSeq α → Prop a : α s : WSeq α M : a ∈ s h1 : ∀ (b : α) (s' : WSeq α), a = b ∨ C s' → C (cons b s') h2 : ∀ (s : WSeq α), C s → C s.think s' : Seq (Option α) h✝ : some a = none ⊢ C s'
contradiction
no goals
33df928e7244e2c7
padicValRat_two_harmonic
Mathlib/NumberTheory/Harmonic/Int.lean
theorem padicValRat_two_harmonic (n : ℕ) : padicValRat 2 (harmonic n) = -Nat.log 2 n
n : ℕ ih : padicValRat 2 (harmonic n) = -↑(Nat.log 2 n) hn : n ≠ 0 ⊢ padicValRat 2 (harmonic n) ≠ padicValRat 2 (↑(n + 1))⁻¹
rw [ih, padicValRat.inv, padicValRat.of_nat, Ne, neg_inj, Nat.cast_inj]
n : ℕ ih : padicValRat 2 (harmonic n) = -↑(Nat.log 2 n) hn : n ≠ 0 ⊢ ¬Nat.log 2 n = padicValNat 2 (n + 1)
058460957d5d8ddd
EReal.mul_eq_top
Mathlib/Data/Real/EReal.lean
lemma mul_eq_top (a b : EReal) : a * b = ⊤ ↔ (a = ⊥ ∧ b < 0) ∨ (a < 0 ∧ b = ⊥) ∨ (a = ⊤ ∧ 0 < b) ∨ (0 < a ∧ b = ⊤)
case symm.refine_2.inr.inr x✝ y✝ : EReal h✝ : x✝ * y✝ = ⊤ ↔ x✝ = ⊥ ∧ y✝ < 0 ∨ x✝ < 0 ∧ y✝ = ⊥ ∨ x✝ = ⊤ ∧ 0 < y✝ ∨ 0 < x✝ ∧ y✝ = ⊤ h : y✝ = ⊤ ∧ 0 < x✝ ∨ 0 < y✝ ∧ x✝ = ⊤ ⊢ x✝ = ⊥ ∧ y✝ < 0 ∨ x✝ < 0 ∧ y✝ = ⊥ ∨ x✝ = ⊤ ∧ 0 < y✝ ∨ 0 < x✝ ∧ y✝ = ⊤
cases h with | inl h => exact Or.inr (Or.inr (Or.inr ⟨h.2, h.1⟩)) | inr h => exact Or.inr (Or.inr (Or.inl ⟨h.2, h.1⟩))
no goals
5482c4c67a9994f2
PNat.dvd_iff
Mathlib/Data/PNat/Basic.lean
theorem dvd_iff {k m : ℕ+} : k ∣ m ↔ (k : ℕ) ∣ (m : ℕ)
case mp k m : ℕ+ h : k ∣ m ⊢ ↑k ∣ ↑m
rcases h with ⟨_, rfl⟩
case mp.intro k w✝ : ℕ+ ⊢ ↑k ∣ ↑(k * w✝)
35c69359256e7052
Function.FactorsThrough.extend_apply
Mathlib/Logic/Function/Basic.lean
lemma FactorsThrough.extend_apply {g : α → γ} (hf : g.FactorsThrough f) (e' : β → γ) (a : α) : extend f g e' (f a) = g a
α : Sort u_1 β : Sort u_2 γ : Sort u_3 f : α → β g : α → γ hf : FactorsThrough g f e' : β → γ a : α ⊢ extend f g e' (f a) = g a
simp only [extend_def, dif_pos, exists_apply_eq_apply]
α : Sort u_1 β : Sort u_2 γ : Sort u_3 f : α → β g : α → γ hf : FactorsThrough g f e' : β → γ a : α ⊢ g (Classical.choose ⋯) = g a
c7f09213ea3f0a7a
Filter.comap_snd_neBot_iff
Mathlib/Order/Filter/Map.lean
theorem comap_snd_neBot_iff {f : Filter β} : (f.comap (Prod.snd : α × β → β)).NeBot ↔ Nonempty α ∧ f.NeBot
case inl α : Type u_1 β : Type u_2 f : Filter β hα : IsEmpty α ⊢ ¬⊥.NeBot ↔ ¬(Nonempty α ∧ f.NeBot)
simp
no goals
af15d3b1c17460fe
IsometryEquiv.midpoint_fixed
Mathlib/Analysis/Normed/Affine/MazurUlam.lean
theorem midpoint_fixed {x y : PE} : ∀ e : PE ≃ᵢ PE, e x = x → e y = y → e (midpoint ℝ x y) = midpoint ℝ x y
E : Type u_1 PE : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : MetricSpace PE inst✝ : NormedAddTorsor E PE x y : PE z : PE := midpoint ℝ x y s : Set (PE ≃ᵢ PE) := {e | e x = x ∧ e y = y} this : Nonempty ↑s h_bdd : BddAbove (range fun e => dist (↑e z) z) R : PE ≃ᵢ PE := (pointReflection ℝ z).toIsometryEquiv ⊢ ∀ (e : PE ≃ᵢ PE), e x = x → e y = y → e z = z
set f : PE ≃ᵢ PE → PE ≃ᵢ PE := fun e => ((e.trans R).trans e.symm).trans R
E : Type u_1 PE : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : MetricSpace PE inst✝ : NormedAddTorsor E PE x y : PE z : PE := midpoint ℝ x y s : Set (PE ≃ᵢ PE) := {e | e x = x ∧ e y = y} this : Nonempty ↑s h_bdd : BddAbove (range fun e => dist (↑e z) z) R : PE ≃ᵢ PE := (pointReflection ℝ z).toIsometryEquiv f : PE ≃ᵢ PE → PE ≃ᵢ PE := fun e => ((e.trans R).trans e.symm).trans R ⊢ ∀ (e : PE ≃ᵢ PE), e x = x → e y = y → e z = z
b718555705b87dec
Ring.jacobson_le_of_eq_bot
Mathlib/RingTheory/Jacobson/Radical.lean
theorem jacobson_le_of_eq_bot {I : Ideal R} [I.IsTwoSided] (h : jacobson (R ⧸ I) = ⊥) : jacobson R ≤ I := Module.jacobson_le_of_eq_bot <| by rw [← le_bot_iff, ← SetLike.coe_subset_coe] at h ⊢ rwa [← coe_jacobson_quotient]
R : Type u_1 inst✝¹ : Ring R I : Ideal R inst✝ : I.IsTwoSided h : jacobson (R ⧸ I) = ⊥ ⊢ Module.jacobson R (R ⧸ I) = ⊥
rw [← le_bot_iff, ← SetLike.coe_subset_coe] at h ⊢
R : Type u_1 inst✝¹ : Ring R I : Ideal R inst✝ : I.IsTwoSided h : ↑(jacobson (R ⧸ I)) ⊆ ↑⊥ ⊢ ↑(Module.jacobson R (R ⧸ I)) ⊆ ↑⊥
dbebedd335a09a0b
IntermediateField.bot_eq_top_of_finrank_adjoin_eq_one
Mathlib/FieldTheory/IntermediateField/Adjoin/Basic.lean
theorem bot_eq_top_of_finrank_adjoin_eq_one (h : ∀ x : E, finrank F F⟮x⟯ = 1) : (⊥ : IntermediateField F E) = ⊤
case h F : Type u_1 inst✝² : Field F E : Type u_2 inst✝¹ : Field E inst✝ : Algebra F E h : ∀ (x : E), finrank F ↥F⟮x⟯ = 1 y : E ⊢ y ∈ ⊥ ↔ y ∈ ⊤
rw [iff_true_right IntermediateField.mem_top]
case h F : Type u_1 inst✝² : Field F E : Type u_2 inst✝¹ : Field E inst✝ : Algebra F E h : ∀ (x : E), finrank F ↥F⟮x⟯ = 1 y : E ⊢ y ∈ ⊥
ff249bea377d24b1
IsLocalization.AtPrime.comap_maximalIdeal
Mathlib/RingTheory/Localization/AtPrime.lean
theorem comap_maximalIdeal (h : IsLocalRing S := isLocalRing S I) : (IsLocalRing.maximalIdeal S).comap (algebraMap R S) = I := Ideal.ext fun x => by simpa only [Ideal.mem_comap] using to_map_mem_maximal_iff _ I x
R : Type u_1 inst✝³ : CommSemiring R S : Type u_2 inst✝² : CommSemiring S inst✝¹ : Algebra R S I : Ideal R hI : I.IsPrime inst✝ : IsLocalization.AtPrime S I h : optParam (IsLocalRing S) ⋯ x : R ⊢ x ∈ Ideal.comap (algebraMap R S) (IsLocalRing.maximalIdeal S) ↔ x ∈ I
simpa only [Ideal.mem_comap] using to_map_mem_maximal_iff _ I x
no goals
b881c82fa6463eb9
MeasureTheory.tendsto_lintegral_filter_of_dominated_convergence
Mathlib/MeasureTheory/Integral/Lebesgue.lean
theorem tendsto_lintegral_filter_of_dominated_convergence {ι} {l : Filter ι} [l.IsCountablyGenerated] {F : ι → α → ℝ≥0∞} {f : α → ℝ≥0∞} (bound : α → ℝ≥0∞) (hF_meas : ∀ᶠ n in l, Measurable (F n)) (h_bound : ∀ᶠ n in l, ∀ᵐ a ∂μ, F n a ≤ bound a) (h_fin : ∫⁻ a, bound a ∂μ ≠ ∞) (h_lim : ∀ᵐ a ∂μ, Tendsto (fun n => F n a) l (𝓝 (f a))) : Tendsto (fun n => ∫⁻ a, F n a ∂μ) l (𝓝 <| ∫⁻ a, f a ∂μ)
case intro.refine_5.hg α : Type u_1 m : MeasurableSpace α μ : Measure α ι : Type u_5 l : Filter ι inst✝ : l.IsCountablyGenerated F : ι → α → ℝ≥0∞ f bound : α → ℝ≥0∞ hF_meas : ∀ᶠ (n : ι) in l, Measurable (F n) h_bound : ∀ᶠ (n : ι) in l, ∀ᵐ (a : α) ∂μ, F n a ≤ bound a h_fin : ∫⁻ (a : α), bound a ∂μ ≠ ⊤ h_lim✝ : ∀ᵐ (a : α) ∂μ, Tendsto (fun n => F n a) l (𝓝 (f a)) x : ℕ → ι xl : Tendsto x atTop l hxl : ∀ s ∈ l, ∃ a, ∀ b ≥ a, x b ∈ s k : ℕ h : ∀ b ≥ k, x b ∈ {x | (fun n => Measurable (F n)) x} ∩ {x | (fun n => ∀ᵐ (a : α) ∂μ, F n a ≤ bound a) x} a : α h_lim : Tendsto (fun n => F n a) l (𝓝 (f a)) ⊢ Tendsto (fun n => F n a) ?intro.refine_5.y (𝓝 (f a))
assumption
no goals
879da8b2b29c96c4
Subalgebra.isSimpleOrder_of_finrank
Mathlib/LinearAlgebra/FiniteDimensional.lean
theorem Subalgebra.isSimpleOrder_of_finrank (hr : finrank F E = 2) : IsSimpleOrder (Subalgebra F E) := let i := nontrivial_of_finrank_pos (zero_lt_two.trans_eq hr.symm) { toNontrivial := ⟨⟨⊥, ⊤, fun h => by cases hr.symm.trans (Subalgebra.bot_eq_top_iff_finrank_eq_one.1 h)⟩⟩ eq_bot_or_eq_top
case «1».h F : Type u_1 E : Type u_2 inst✝² : Field F inst✝¹ : Ring E inst✝ : Algebra F E hr : finrank F E = 2 i : Nontrivial E := nontrivial_of_finrank_pos (LT.lt.trans_eq zero_lt_two (Eq.symm hr)) S : Subalgebra F E this✝² : FiniteDimensional F E this✝¹ : FiniteDimensional F ↥S h : finrank F ↥S = 1 this✝ : 1 ≤ 2 this : 0 < 1 ⊢ S = ⊥
exact Subalgebra.eq_bot_of_finrank_one h
no goals
c7e4894f93ed9891
TopCat.Presheaf.stalkToFiber_injective
Mathlib/Topology/Sheaves/Sheafify.lean
theorem stalkToFiber_injective (x : X) : Function.Injective (F.stalkToFiber x)
case w.intro.intro.intro.intro.intro.intro.intro.intro X : TopCat F : Presheaf (Type v) X x : ↑X U V : OpenNhds x fU : (y : ↥U.obj) → F.stalk ↑y hU : (Sheafify.isLocallyGerm F).pred fU fV : (y : ↥V.obj) → F.stalk ↑y hV : (Sheafify.isLocallyGerm F).pred fV U' : Opens ↑X mU : ↑⟨x, ⋯⟩ ∈ U' iU : U' ⟶ U.obj gU : F.obj (op U') e : F.germ U' x ⋯ gU = fV ⟨x, ⋯⟩ wU : ∀ (x_1 : ↥U'), (fun x_2 => fU (iU x_2)) x_1 = F.germ U' ↑x_1 ⋯ gU V' : Opens ↑X mV : ↑⟨x, ⋯⟩ ∈ V' iV : V' ⟶ V.obj gV : F.obj (op V') wV : ∀ (x_1 : ↥V'), (fun x_2 => fV (iV x_2)) x_1 = F.germ V' ↑x_1 ⋯ gV ⊢ ∃ W iU iV, ∀ (w : ↥W.obj), fU (iU w) = fV (iV w)
have wVx := wV ⟨x, mV⟩
case w.intro.intro.intro.intro.intro.intro.intro.intro X : TopCat F : Presheaf (Type v) X x : ↑X U V : OpenNhds x fU : (y : ↥U.obj) → F.stalk ↑y hU : (Sheafify.isLocallyGerm F).pred fU fV : (y : ↥V.obj) → F.stalk ↑y hV : (Sheafify.isLocallyGerm F).pred fV U' : Opens ↑X mU : ↑⟨x, ⋯⟩ ∈ U' iU : U' ⟶ U.obj gU : F.obj (op U') e : F.germ U' x ⋯ gU = fV ⟨x, ⋯⟩ wU : ∀ (x_1 : ↥U'), (fun x_2 => fU (iU x_2)) x_1 = F.germ U' ↑x_1 ⋯ gU V' : Opens ↑X mV : ↑⟨x, ⋯⟩ ∈ V' iV : V' ⟶ V.obj gV : F.obj (op V') wV : ∀ (x_1 : ↥V'), (fun x_2 => fV (iV x_2)) x_1 = F.germ V' ↑x_1 ⋯ gV wVx : (fun x_1 => fV (iV x_1)) ⟨x, mV⟩ = F.germ V' ↑⟨x, mV⟩ ⋯ gV ⊢ ∃ W iU iV, ∀ (w : ↥W.obj), fU (iU w) = fV (iV w)
c3bddb63a4c72896
Classical.em
Mathlib/.lake/packages/lean4/src/lean/Init/Classical.lean
theorem em (p : Prop) : p ∨ ¬p := let U (x : Prop) : Prop := x = True ∨ p let V (x : Prop) : Prop := x = False ∨ p have exU : ∃ x, U x := ⟨True, Or.inl rfl⟩ have exV : ∃ x, V x := ⟨False, Or.inl rfl⟩ let u : Prop := choose exU let v : Prop := choose exV have u_def : U u := choose_spec exU have v_def : V v := choose_spec exV have not_uv_or_p : u ≠ v ∨ p := match u_def, v_def with | Or.inr h, _ => Or.inr h | _, Or.inr h => Or.inr h | Or.inl hut, Or.inl hvf => have hne : u ≠ v
p : Prop U : Prop → Prop := fun x => x = True ∨ p V : Prop → Prop := fun x => x = False ∨ p exU : ∃ x, U x exV : ∃ x, V x u : Prop := choose exU v : Prop := choose exV u_def : U u v_def : V v not_uv_or_p : u ≠ v ∨ p hp : p hpred : U = V ⊢ ∀ (exU exV : ∃ x, V x), choose exU = choose exV
intros
p : Prop U : Prop → Prop := fun x => x = True ∨ p V : Prop → Prop := fun x => x = False ∨ p exU : ∃ x, U x exV : ∃ x, V x u : Prop := choose exU v : Prop := choose exV u_def : U u v_def : V v not_uv_or_p : u ≠ v ∨ p hp : p hpred : U = V exU✝ exV✝ : ∃ x, V x ⊢ choose exU✝ = choose exV✝
70edce7f91918fea
Std.Tactic.BVDecide.BVExpr.bitblast.blastRotateRight.go_get
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/Bitblast/BVExpr/Circuit/Lemmas/Operations/RotateRight.lean
theorem go_get (aig : AIG α) (distance : Nat) (input : AIG.RefVec aig w) (curr : Nat) (hcurr : curr ≤ w) (s : AIG.RefVec aig curr) : ∀ (idx : Nat) (hidx1 : idx < w), curr ≤ idx → (go input distance curr hcurr s).get idx hidx1 = if hidx3 : idx < w - distance % w then input.get ((distance % w) + idx) (by omega) else input.get (idx - (w - (distance % w))) (by omega)
case isTrue.inl.isFalse.isFalse α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α w : Nat aig : AIG α distance : Nat input : aig.RefVec w curr : Nat hcurr : curr ≤ w s : aig.RefVec curr idx : Nat hidx1 : idx < w hidx2 : curr ≤ idx h✝² : curr < w heq : curr = idx h✝¹ : ¬curr < w - distance % w h✝ : ¬idx < w - distance % w ⊢ (go input distance (curr + 1) ⋯ (s.push (input.get (curr - (w - distance % w)) ⋯))).get idx hidx1 = input.get (idx - (w - distance % w)) ⋯
rw [go_get_aux]
case isTrue.inl.isFalse.isFalse α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α w : Nat aig : AIG α distance : Nat input : aig.RefVec w curr : Nat hcurr : curr ≤ w s : aig.RefVec curr idx : Nat hidx1 : idx < w hidx2 : curr ≤ idx h✝² : curr < w heq : curr = idx h✝¹ : ¬curr < w - distance % w h✝ : ¬idx < w - distance % w ⊢ (s.push (input.get (curr - (w - distance % w)) ⋯)).get idx ?isTrue.inl.isFalse.isFalse.hidx = input.get (idx - (w - distance % w)) ⋯ case isTrue.inl.isFalse.isFalse.hidx α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α w : Nat aig : AIG α distance : Nat input : aig.RefVec w curr : Nat hcurr : curr ≤ w s : aig.RefVec curr idx : Nat hidx1 : idx < w hidx2 : curr ≤ idx h✝² : curr < w heq : curr = idx h✝¹ : ¬curr < w - distance % w h✝ : ¬idx < w - distance % w ⊢ idx < curr + 1
24de4b0f184e4333
ProperSpace.of_nontriviallyNormedField_of_weaklyLocallyCompactSpace
Mathlib/Analysis/Normed/Field/ProperSpace.lean
/-- A weakly locally compact normed field is proper. This is a specialization of `ProperSpace.of_locallyCompactSpace` which holds for `NormedSpace`s but requires more imports. -/ lemma ProperSpace.of_nontriviallyNormedField_of_weaklyLocallyCompactSpace (𝕜 : Type*) [NontriviallyNormedField 𝕜] [WeaklyLocallyCompactSpace 𝕜] : ProperSpace 𝕜
𝕜 : Type u_1 inst✝¹ : NontriviallyNormedField 𝕜 inst✝ : WeaklyLocallyCompactSpace 𝕜 r : ℝ rpos : 0 < r hr : IsCompact (closedBall 0 r) c : 𝕜 hc : 1 < ‖c‖ n : ℕ this : c ^ n ≠ 0 ⊢ IsCompact (closedBall 0 (‖c‖ ^ n * r))
convert hr.smul (c ^ n)
case h.e'_3 𝕜 : Type u_1 inst✝¹ : NontriviallyNormedField 𝕜 inst✝ : WeaklyLocallyCompactSpace 𝕜 r : ℝ rpos : 0 < r hr : IsCompact (closedBall 0 r) c : 𝕜 hc : 1 < ‖c‖ n : ℕ this : c ^ n ≠ 0 ⊢ closedBall 0 (‖c‖ ^ n * r) = c ^ n • closedBall 0 r
095c2cdeb26cc130
MeasureTheory.Measure.ae_ae_comm
Mathlib/MeasureTheory/Measure/Prod.lean
theorem ae_ae_comm {p : α → β → Prop} (h : MeasurableSet {x : α × β | p x.1 x.2}) : (∀ᵐ x ∂μ, ∀ᵐ y ∂ν, p x y) ↔ ∀ᵐ y ∂ν, ∀ᵐ x ∂μ, p x y := calc _ ↔ ∀ᵐ x ∂μ.prod ν, p x.1 x.2 := .symm <| ae_prod_iff_ae_ae h _ ↔ ∀ᵐ x ∂ν.prod μ, p x.2 x.1
α : Type u_1 β : Type u_2 inst✝³ : MeasurableSpace α inst✝² : MeasurableSpace β μ : Measure α ν : Measure β inst✝¹ : SFinite ν inst✝ : SFinite μ p : α → β → Prop h : MeasurableSet {x | p x.1 x.2} ⊢ (∀ᵐ (x : β × α) ∂ν.prod μ, p x.swap.1 x.swap.2) ↔ ∀ᵐ (x : β × α) ∂ν.prod μ, p x.2 x.1
simp
no goals
6daedaed0d9d67c4
Equiv.Perm.Disjoint.commute
Mathlib/GroupTheory/Perm/Support.lean
theorem Disjoint.commute (h : Disjoint f g) : Commute f g := Equiv.ext fun x => (h x).elim (fun hf => (h (g x)).elim (fun hg => by simp [mul_apply, hf, hg]) fun hg => by simp [mul_apply, hf, g.injective hg]) fun hg => (h (f x)).elim (fun hf => by simp [mul_apply, f.injective hf, hg]) fun hf => by simp [mul_apply, hf, hg]
α : Type u_1 f g : Perm α h : f.Disjoint g x : α hg : g x = x hf : f (f x) = f x ⊢ (f * g) x = (g * f) x
simp [mul_apply, f.injective hf, hg]
no goals
6be8e54c61f441bb
nonempty_sections_of_finite_cofiltered_system.init
Mathlib/CategoryTheory/CofilteredSystem.lean
theorem nonempty_sections_of_finite_cofiltered_system.init {J : Type u} [SmallCategory J] [IsCofilteredOrEmpty J] (F : J ⥤ Type u) [hf : ∀ j, Finite (F.obj j)] [hne : ∀ j, Nonempty (F.obj j)] : F.sections.Nonempty
J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofilteredOrEmpty J F : J ⥤ Type u hf : ∀ (j : J), Finite (F.obj j) hne : ∀ (j : J), Nonempty (F.obj j) ⊢ F.sections.Nonempty
let F' : J ⥤ TopCat := F ⋙ TopCat.discrete
J : Type u inst✝¹ : SmallCategory J inst✝ : IsCofilteredOrEmpty J F : J ⥤ Type u hf : ∀ (j : J), Finite (F.obj j) hne : ∀ (j : J), Nonempty (F.obj j) F' : J ⥤ TopCat := F ⋙ TopCat.discrete ⊢ F.sections.Nonempty
1c6bf88426a36d9a
Complex.arg_mul_cos_add_sin_mul_I
Mathlib/Analysis/SpecialFunctions/Complex/Arg.lean
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (r * (cos θ + sin θ * I)) = θ
case pos r : ℝ hr : 0 < r θ : ℝ hθ : θ ∈ Ioc (-π) π h₁ : θ ∈ Icc (-(π / 2)) (π / 2) ⊢ (if 0 ≤ Real.cos θ then Real.arcsin (Real.sin θ) else if 0 ≤ Real.sin θ then Real.arcsin (-Real.sin θ) + π else Real.arcsin (-Real.sin θ) - π) = θ
rw [if_pos]
case pos r : ℝ hr : 0 < r θ : ℝ hθ : θ ∈ Ioc (-π) π h₁ : θ ∈ Icc (-(π / 2)) (π / 2) ⊢ Real.arcsin (Real.sin θ) = θ case pos.hc r : ℝ hr : 0 < r θ : ℝ hθ : θ ∈ Ioc (-π) π h₁ : θ ∈ Icc (-(π / 2)) (π / 2) ⊢ 0 ≤ Real.cos θ
b22411895133f55c
Dense.isSeparable_iff
Mathlib/Topology/Bases.lean
theorem _root_.Dense.isSeparable_iff (hs : Dense s) : IsSeparable s ↔ SeparableSpace α
α : Type u t : TopologicalSpace α s : Set α hs : Dense s ⊢ IsSeparable s ↔ SeparableSpace α
simp_rw [IsSeparable, separableSpace_iff, dense_iff_closure_eq, ← univ_subset_iff, ← hs.closure_eq, isClosed_closure.closure_subset_iff]
no goals
af1336bf85955924
hasStrictDerivAt_abs
Mathlib/Analysis/Calculus/Deriv/Abs.lean
theorem hasStrictDerivAt_abs {x : ℝ} (hx : x ≠ 0) : HasStrictDerivAt (|·|) (SignType.sign x : ℝ) x
x : ℝ hx : x ≠ 0 ⊢ HasStrictDerivAt (fun x => |x|) (↑(SignType.sign x)) x
obtain hx | hx := hx.lt_or_lt
case inl x : ℝ hx✝ : x ≠ 0 hx : x < 0 ⊢ HasStrictDerivAt (fun x => |x|) (↑(SignType.sign x)) x case inr x : ℝ hx✝ : x ≠ 0 hx : 0 < x ⊢ HasStrictDerivAt (fun x => |x|) (↑(SignType.sign x)) x
47b4b623c1f919c3
LinearPMap.sup_aux
Mathlib/LinearAlgebra/LinearPMap.lean
theorem sup_aux (f g : E →ₗ.[R] F) (h : ∀ (x : f.domain) (y : g.domain), (x : E) = y → f x = g y) : ∃ fg : ↥(f.domain ⊔ g.domain) →ₗ[R] F, ∀ (x : f.domain) (y : g.domain) (z : ↥(f.domain ⊔ g.domain)), (x : E) + y = ↑z → fg z = f x + g y
case w.refine_1.mk.mk R : Type u_1 inst✝⁴ : Ring R E : Type u_2 inst✝³ : AddCommGroup E inst✝² : Module R E F : Type u_3 inst✝¹ : AddCommGroup F inst✝ : Module R F f g : E →ₗ.[R] F h : ∀ (x : ↥f.domain) (y : ↥g.domain), ↑x = ↑y → ↑f x = ↑g y x : ↥(f.domain ⊔ g.domain) → E hx : ∀ (z : ↥(f.domain ⊔ g.domain)), x z ∈ f.domain y : ↥(f.domain ⊔ g.domain) → E hy : ∀ (z : ↥(f.domain ⊔ g.domain)), y z ∈ g.domain hxy : ∀ (z : ↥(f.domain ⊔ g.domain)), x z + y z = ↑z fg : ↥(f.domain ⊔ g.domain) → F := fun z => ↑f ⟨x z, ⋯⟩ + ↑g ⟨y z, ⋯⟩ fg_eq : ∀ (x' : ↥f.domain) (y' : ↥g.domain) (z' : ↥(f.domain ⊔ g.domain)), ↑x' + ↑y' = ↑z' → fg z' = ↑f x' + ↑g y' z₁ : E hz₁ : z₁ ∈ f.domain ⊔ g.domain z₂ : E hz₂ : z₂ ∈ f.domain ⊔ g.domain ⊢ fg (⟨z₁, hz₁⟩ + ⟨z₂, hz₂⟩) = fg ⟨z₁, hz₁⟩ + fg ⟨z₂, hz₂⟩
rw [← add_assoc, add_right_comm (f _), ← map_add, add_assoc, ← map_add]
case w.refine_1.mk.mk R : Type u_1 inst✝⁴ : Ring R E : Type u_2 inst✝³ : AddCommGroup E inst✝² : Module R E F : Type u_3 inst✝¹ : AddCommGroup F inst✝ : Module R F f g : E →ₗ.[R] F h : ∀ (x : ↥f.domain) (y : ↥g.domain), ↑x = ↑y → ↑f x = ↑g y x : ↥(f.domain ⊔ g.domain) → E hx : ∀ (z : ↥(f.domain ⊔ g.domain)), x z ∈ f.domain y : ↥(f.domain ⊔ g.domain) → E hy : ∀ (z : ↥(f.domain ⊔ g.domain)), y z ∈ g.domain hxy : ∀ (z : ↥(f.domain ⊔ g.domain)), x z + y z = ↑z fg : ↥(f.domain ⊔ g.domain) → F := fun z => ↑f ⟨x z, ⋯⟩ + ↑g ⟨y z, ⋯⟩ fg_eq : ∀ (x' : ↥f.domain) (y' : ↥g.domain) (z' : ↥(f.domain ⊔ g.domain)), ↑x' + ↑y' = ↑z' → fg z' = ↑f x' + ↑g y' z₁ : E hz₁ : z₁ ∈ f.domain ⊔ g.domain z₂ : E hz₂ : z₂ ∈ f.domain ⊔ g.domain ⊢ fg (⟨z₁, hz₁⟩ + ⟨z₂, hz₂⟩) = ↑f (⟨x ⟨z₁, hz₁⟩, ⋯⟩ + ⟨x ⟨z₂, hz₂⟩, ⋯⟩) + ↑g (⟨y ⟨z₁, hz₁⟩, ⋯⟩ + ⟨y ⟨z₂, hz₂⟩, ⋯⟩)
0acdd19d93971ad5
CategoryTheory.Limits.PullbackCone.mono_snd_of_is_pullback_of_mono
Mathlib/CategoryTheory/Limits/Shapes/Pullback/Mono.lean
theorem mono_snd_of_is_pullback_of_mono {t : PullbackCone f g} (ht : IsLimit t) [Mono f] : Mono t.snd
C : Type u inst✝¹ : Category.{v, u} C X Y Z : C f : X ⟶ Z g : Y ⟶ Z t : PullbackCone f g ht : IsLimit t inst✝ : Mono f ⊢ Mono t.snd
refine ⟨fun {W} h k i => IsLimit.hom_ext ht ?_ i⟩
C : Type u inst✝¹ : Category.{v, u} C X Y Z : C f : X ⟶ Z g : Y ⟶ Z t : PullbackCone f g ht : IsLimit t inst✝ : Mono f W : C h k : W ⟶ t.pt i : h ≫ t.snd = k ≫ t.snd ⊢ h ≫ t.fst = k ≫ t.fst
4a08ad6ab69bebb6
Nat.choose_symm_of_eq_add
Mathlib/Data/Nat/Choose/Basic.lean
theorem choose_symm_of_eq_add {n a b : ℕ} (h : n = a + b) : Nat.choose n a = Nat.choose n b
n a b : ℕ h : n = a + b this : (a + b).choose a = (a + b).choose b ⊢ n.choose a = n.choose b
rwa [h]
no goals
1664122da5c3e255
DyckWord.firstReturn_nest
Mathlib/Combinatorics/Enumerative/DyckWord.lean
@[simp] lemma firstReturn_nest : p.nest.firstReturn = p.toList.length + 1
case right p : DyckWord u : ↑p.nest = U :: ↑p ++ [D] j : ℕ hj : j < (↑p).length + 1 this : count D (List.take j ↑p) ≤ count U (List.take j ↑p) ⊢ ¬count U (List.take j ↑p) + 1 = count D (List.take j ↑p)
omega
no goals
7eee40486e6509d1
sum_mul_Ico_le_integral_of_monotone_antitone
Mathlib/Analysis/SumIntegralComparisons.lean
lemma sum_mul_Ico_le_integral_of_monotone_antitone (hab : a ≤ b) (hf : MonotoneOn f (Icc a b)) (hg : AntitoneOn g (Icc (a - 1) (b - 1))) (fpos : 0 ≤ f a) (gpos : 0 ≤ g (b - 1)) : ∑ i ∈ Finset.Ico a b, f i * g i ≤ ∫ x in a..b, f x * g (x - 1)
case h.h₂ a b : ℕ f g : ℝ → ℝ hab : a ≤ b hf : MonotoneOn f (Icc ↑a ↑b) hg : AntitoneOn g (Icc (↑a - 1) (↑b - 1)) fpos : 0 ≤ f ↑a gpos : 0 ≤ g (↑b - 1) i : ℕ x : ℝ hx : ↑i ≤ x ∧ x < ↑i + 1 hi : a ≤ i ∧ i < b I0 : ↑i ≤ ↑b - 1 I1 : ↑i ∈ Icc (↑a - 1) (↑b - 1) I2 : x ∈ Icc ↑a ↑b ⊢ g ↑i ≤ g (x - 1)
apply hg
case h.h₂.x a b : ℕ f g : ℝ → ℝ hab : a ≤ b hf : MonotoneOn f (Icc ↑a ↑b) hg : AntitoneOn g (Icc (↑a - 1) (↑b - 1)) fpos : 0 ≤ f ↑a gpos : 0 ≤ g (↑b - 1) i : ℕ x : ℝ hx : ↑i ≤ x ∧ x < ↑i + 1 hi : a ≤ i ∧ i < b I0 : ↑i ≤ ↑b - 1 I1 : ↑i ∈ Icc (↑a - 1) (↑b - 1) I2 : x ∈ Icc ↑a ↑b ⊢ x - 1 ∈ Icc (↑a - 1) (↑b - 1) case h.h₂.x a b : ℕ f g : ℝ → ℝ hab : a ≤ b hf : MonotoneOn f (Icc ↑a ↑b) hg : AntitoneOn g (Icc (↑a - 1) (↑b - 1)) fpos : 0 ≤ f ↑a gpos : 0 ≤ g (↑b - 1) i : ℕ x : ℝ hx : ↑i ≤ x ∧ x < ↑i + 1 hi : a ≤ i ∧ i < b I0 : ↑i ≤ ↑b - 1 I1 : ↑i ∈ Icc (↑a - 1) (↑b - 1) I2 : x ∈ Icc ↑a ↑b ⊢ ↑i ∈ Icc (↑a - 1) (↑b - 1) case h.h₂.a a b : ℕ f g : ℝ → ℝ hab : a ≤ b hf : MonotoneOn f (Icc ↑a ↑b) hg : AntitoneOn g (Icc (↑a - 1) (↑b - 1)) fpos : 0 ≤ f ↑a gpos : 0 ≤ g (↑b - 1) i : ℕ x : ℝ hx : ↑i ≤ x ∧ x < ↑i + 1 hi : a ≤ i ∧ i < b I0 : ↑i ≤ ↑b - 1 I1 : ↑i ∈ Icc (↑a - 1) (↑b - 1) I2 : x ∈ Icc ↑a ↑b ⊢ x - 1 ≤ ↑i
cf3bc679c1354b33
Module.Relations.map_single
Mathlib/Algebra/Module/Presentation/Basic.lean
@[simp] lemma map_single (r : relations.R) : relations.map (Finsupp.single r 1) = relations.relation r
A : Type u inst✝ : Ring A relations : Relations A r : relations.R ⊢ relations.map (Finsupp.single r 1) = relations.relation r
simp [map]
no goals
6c53bb1ffaf7695f
LinearMap.isOrthogonal_of_forall_apply_same
Mathlib/LinearAlgebra/SesquilinearForm.lean
lemma isOrthogonal_of_forall_apply_same {F : Type*} [FunLike F M M] [LinearMapClass F R M M] (f : F) (h : IsLeftRegular (2 : R)) (hB : B.IsSymm) (hf : ∀ x, B (f x) (f x) = B x x) : B.IsOrthogonal f
R : Type u_20 M : Type u_21 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M B : LinearMap.BilinForm R M F : Type u_22 inst✝¹ : FunLike F M M inst✝ : LinearMapClass F R M M f : F h : IsLeftRegular 2 hB : IsSymm B hf : ∀ (x : M), (B (f x)) (f x) = (B x) x x y : M ⊢ (B (f x)) (f y) = (B x) y
suffices 2 * B (f x) (f y) = 2 * B x y from h this
R : Type u_20 M : Type u_21 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M B : LinearMap.BilinForm R M F : Type u_22 inst✝¹ : FunLike F M M inst✝ : LinearMapClass F R M M f : F h : IsLeftRegular 2 hB : IsSymm B hf : ∀ (x : M), (B (f x)) (f x) = (B x) x x y : M ⊢ 2 * (B (f x)) (f y) = 2 * (B x) y
87f8ecad436eb885
minpoly.two_le_natDegree_iff
Mathlib/FieldTheory/Minpoly/Basic.lean
theorem two_le_natDegree_iff (int : IsIntegral A x) : 2 ≤ (minpoly A x).natDegree ↔ x ∉ (algebraMap A B).range
A : Type u_1 B : Type u_2 inst✝³ : CommRing A inst✝² : Ring B inst✝¹ : Algebra A B x : B inst✝ : Nontrivial B int : IsIntegral A x h : (minpoly A x).natDegree < 2 ⊢ (minpoly A x).natDegree = 1
linarith only [minpoly.natDegree_pos int, h]
no goals
217915a11973e4b8
DirichletCharacter.even_or_odd
Mathlib/NumberTheory/DirichletCharacter/Basic.lean
lemma even_or_odd [NoZeroDivisors S] : ψ.Even ∨ ψ.Odd
S : Type u_2 inst✝¹ : CommRing S m : ℕ ψ : DirichletCharacter S m inst✝ : NoZeroDivisors S this : ψ (-1) ^ 2 = 1 ⊢ ψ.Even ∨ ψ.Odd
convert sq_eq_one_iff.mp this
no goals
80d6617dc6d1d7a7
ContinuousLinearMap.IsInvertible.inverse_comp_of_left
Mathlib/Topology/Algebra/Module/Equiv.lean
lemma IsInvertible.inverse_comp_of_left {g : M₂ →L[R] M₃} {f : M →L[R] M₂} (hg : g.IsInvertible) : (g ∘L f).inverse = f.inverse ∘L g.inverse
R : Type u_3 M : Type u_4 M₂ : Type u_5 M₃ : Type u_6 inst✝⁹ : TopologicalSpace M inst✝⁸ : TopologicalSpace M₂ inst✝⁷ : TopologicalSpace M₃ inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid M₂ inst✝² : Module R M₂ inst✝¹ : AddCommMonoid M₃ inst✝ : Module R M₃ g : M₂ →L[R] M₃ f : M →L[R] M₂ hg : g.IsInvertible ⊢ (g.comp f).inverse = f.inverse.comp g.inverse
rcases hg with ⟨N, rfl⟩
case intro R : Type u_3 M : Type u_4 M₂ : Type u_5 M₃ : Type u_6 inst✝⁹ : TopologicalSpace M inst✝⁸ : TopologicalSpace M₂ inst✝⁷ : TopologicalSpace M₃ inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid M₂ inst✝² : Module R M₂ inst✝¹ : AddCommMonoid M₃ inst✝ : Module R M₃ f : M →L[R] M₂ N : M₂ ≃L[R] M₃ ⊢ ((↑N).comp f).inverse = f.inverse.comp (↑N).inverse
2a57f4a02d19e1d6
AlgHom.IsArithFrobAt.restrict_injective
Mathlib/RingTheory/Frobenius.lean
lemma restrict_injective [Q.IsPrime] : Function.Injective H.restrict
R : Type u_1 S : Type u_2 inst✝³ : CommRing R inst✝² : CommRing S inst✝¹ : Algebra R S φ : S →ₐ[R] S Q : Ideal S H : φ.IsArithFrobAt Q inst✝ : Q.IsPrime x : S ⧸ Q hx : H.restrict x = 0 ⊢ x = 0
simpa [restrict_apply, H.card_pos.ne'] using hx
no goals
f0a4d893fa08d0c7
MeasureTheory.OuterMeasure.isCaratheodory_compl
Mathlib/MeasureTheory/OuterMeasure/Caratheodory.lean
theorem isCaratheodory_compl : IsCaratheodory m s₁ → IsCaratheodory m s₁ᶜ
α : Type u m : OuterMeasure α s₁ : Set α ⊢ m.IsCaratheodory s₁ → m.IsCaratheodory s₁ᶜ
simp [IsCaratheodory, diff_eq, add_comm]
no goals
a291054f540212f9