name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
FractionalIdeal.count_well_defined
Mathlib/RingTheory/DedekindDomain/Factorization.lean
theorem count_well_defined {I : FractionalIdeal R⁰ K} (hI : I ≠ 0) {a : R} {J : Ideal R} (h_aJ : I = spanSingleton R⁰ ((algebraMap R K) a)⁻¹ * ↑J) : count K v I = ((Associates.mk v.asIdeal).count (Associates.mk J).factors - (Associates.mk v.asIdeal).count (Associates.mk (Ideal.span {a})).factors : ℤ)
R : Type u_1 inst✝⁴ : CommRing R K : Type u_2 inst✝³ : Field K inst✝² : Algebra R K inst✝¹ : IsFractionRing R K inst✝ : IsDedekindDomain R v : HeightOneSpectrum R I : FractionalIdeal R⁰ K hI : I ≠ 0 a : R J : Ideal R h_aJ : I = spanSingleton R⁰ ((algebraMap R K) a)⁻¹ * ↑J a₁ : R := choose ⋯ J₁ : Ideal R := choose ⋯ h_a₁J₁ : I = spanSingleton R⁰ ((algebraMap R K) a₁)⁻¹ * ↑J₁ h_a₁_ne_zero : a₁ ≠ 0 h_J₁_ne_zero : J₁ ≠ 0 h_a_ne_zero : Ideal.span {a} ≠ 0 h_J_ne_zero : J ≠ 0 h_a₁' : spanSingleton R⁰ ((algebraMap R K) a₁) ≠ 0 ⊢ spanSingleton R⁰ ((algebraMap R K) a) ≠ 0
rw [ne_eq, spanSingleton_eq_zero_iff, ← (algebraMap R K).map_zero, Injective.eq_iff (IsLocalization.injective K (le_refl R⁰))]
R : Type u_1 inst✝⁴ : CommRing R K : Type u_2 inst✝³ : Field K inst✝² : Algebra R K inst✝¹ : IsFractionRing R K inst✝ : IsDedekindDomain R v : HeightOneSpectrum R I : FractionalIdeal R⁰ K hI : I ≠ 0 a : R J : Ideal R h_aJ : I = spanSingleton R⁰ ((algebraMap R K) a)⁻¹ * ↑J a₁ : R := choose ⋯ J₁ : Ideal R := choose ⋯ h_a₁J₁ : I = spanSingleton R⁰ ((algebraMap R K) a₁)⁻¹ * ↑J₁ h_a₁_ne_zero : a₁ ≠ 0 h_J₁_ne_zero : J₁ ≠ 0 h_a_ne_zero : Ideal.span {a} ≠ 0 h_J_ne_zero : J ≠ 0 h_a₁' : spanSingleton R⁰ ((algebraMap R K) a₁) ≠ 0 ⊢ ¬a = 0
59f81f9cebadacb0
ProbabilityTheory.hasFiniteIntegral_compProd_iff
Mathlib/Probability/Kernel/Composition/IntegralCompProd.lean
theorem hasFiniteIntegral_compProd_iff ⦃f : β × γ → E⦄ (h1f : StronglyMeasurable f) : HasFiniteIntegral f ((κ ⊗ₖ η) a) ↔ (∀ᵐ x ∂κ a, HasFiniteIntegral (fun y => f (x, y)) (η (a, x))) ∧ HasFiniteIntegral (fun x => ∫ y, ‖f (x, y)‖ ∂η (a, x)) (κ a)
α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝² : NormedAddCommGroup E a : α κ : Kernel α β inst✝¹ : IsSFiniteKernel κ η : Kernel (α × β) γ inst✝ : IsSFiniteKernel η f : β × γ → E h1f : StronglyMeasurable f ⊢ ∫⁻ (b : β), ∫⁻ (c : γ), ‖f (b, c)‖ₑ ∂η (a, b) ∂κ a < ⊤ ↔ (∀ᵐ (x : β) ∂κ a, ∫⁻ (a : γ), ‖f (x, a)‖ₑ ∂η (a, x) < ⊤) ∧ ∫⁻ (a_1 : β), ‖∫ (y : γ), ‖f (a_1, y)‖ ∂η (a, a_1)‖ₑ ∂κ a < ⊤
have : ∀ x, ∀ᵐ y ∂η (a, x), 0 ≤ ‖f (x, y)‖ := fun x => Eventually.of_forall fun y => norm_nonneg _
α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝² : NormedAddCommGroup E a : α κ : Kernel α β inst✝¹ : IsSFiniteKernel κ η : Kernel (α × β) γ inst✝ : IsSFiniteKernel η f : β × γ → E h1f : StronglyMeasurable f this : ∀ (x : β), ∀ᵐ (y : γ) ∂η (a, x), 0 ≤ ‖f (x, y)‖ ⊢ ∫⁻ (b : β), ∫⁻ (c : γ), ‖f (b, c)‖ₑ ∂η (a, b) ∂κ a < ⊤ ↔ (∀ᵐ (x : β) ∂κ a, ∫⁻ (a : γ), ‖f (x, a)‖ₑ ∂η (a, x) < ⊤) ∧ ∫⁻ (a_1 : β), ‖∫ (y : γ), ‖f (a_1, y)‖ ∂η (a, a_1)‖ₑ ∂κ a < ⊤
09df794e8ec71c81
Polynomial.dickson_one_one_zmod_p
Mathlib/RingTheory/Polynomial/Dickson.lean
theorem dickson_one_one_zmod_p (p : ℕ) [Fact p.Prime] : dickson 1 (1 : ZMod p) p = X ^ p
p : ℕ inst✝ : Fact (Nat.Prime p) ⊢ ∃ K x, ∃ (_ : CharP K p), Infinite K
let K := FractionRing (Polynomial (ZMod p))
p : ℕ inst✝ : Fact (Nat.Prime p) K : Type := FractionRing (ZMod p)[X] ⊢ ∃ K x, ∃ (_ : CharP K p), Infinite K
84ee1673e653698a
contDiffGroupoid_le
Mathlib/Geometry/Manifold/IsManifold/Basic.lean
theorem contDiffGroupoid_le (h : m ≤ n) : contDiffGroupoid n I ≤ contDiffGroupoid m I
m n : WithTop ℕ∞ 𝕜 : Type u_1 inst✝³ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E H : Type u_3 inst✝ : TopologicalSpace H I : ModelWithCorners 𝕜 E H h : m ≤ n ⊢ (contDiffPregroupoid n I).groupoid ≤ (contDiffPregroupoid m I).groupoid
apply groupoid_of_pregroupoid_le
case h m n : WithTop ℕ∞ 𝕜 : Type u_1 inst✝³ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E H : Type u_3 inst✝ : TopologicalSpace H I : ModelWithCorners 𝕜 E H h : m ≤ n ⊢ ∀ (f : H → H) (s : Set H), (contDiffPregroupoid n I).property f s → (contDiffPregroupoid m I).property f s
8c73166a142ed72c
AkraBazziRecurrence.base_nonempty
Mathlib/Computability/AkraBazzi/AkraBazzi.lean
lemma base_nonempty {n : ℕ} (hn : 0 < n) : (Finset.Ico (⌊b (min_bi b) / 2 * n⌋₊) n).Nonempty
α : Type u_1 inst✝¹ : Fintype α T : ℕ → ℝ g : ℝ → ℝ a b : α → ℝ r : α → ℕ → ℕ inst✝ : Nonempty α R : AkraBazziRecurrence T g a b r n : ℕ hn : 0 < n b' : ℝ := b (min_bi b) hb_pos : 0 < b' ⊢ ↑⌊b' / 2 * ↑n⌋₊ ≤ b' / 2 * ↑n
exact Nat.floor_le (by positivity)
no goals
7e3cff39f102cb90
GaloisField.finrank
Mathlib/FieldTheory/Finite/GaloisField.lean
theorem finrank {n} (h : n ≠ 0) : Module.finrank (ZMod p) (GaloisField p n) = n
case succ.refine_5 n : ℕ h : n ≠ 0 n✝ : ℕ h_prime : Fact (Nat.Prime (n✝ + 1)) this : Fintype (GaloisField (n✝ + 1) n) g_poly : (ZMod (n✝ + 1))[X] := X ^ (n✝ + 1) ^ n - X hp : 1 < n✝ + 1 aux : X ^ (n✝ + 1) ^ n - X ≠ 0 key : Fintype.card ↑(g_poly.rootSet (GaloisField (n✝ + 1) n)) = (n✝ + 1) ^ n nat_degree_eq : g_poly.natDegree = (n✝ + 1) ^ n x✝ : GaloisField (n✝ + 1) n hx✝¹ : x✝ ∈ Subring.closure (Set.range ⇑(algebraMap (ZMod (n✝ + 1)) (GaloisField (n✝ + 1) n)) ∪ (X ^ (n✝ + 1) ^ n - X).rootSet (X ^ (n✝ + 1) ^ n - X).SplittingField) x : GaloisField (n✝ + 1) n hx✝ : x ∈ Subring.closure (Set.range ⇑(algebraMap (ZMod (n✝ + 1)) (GaloisField (n✝ + 1) n)) ∪ (X ^ (n✝ + 1) ^ n - X).rootSet (X ^ (n✝ + 1) ^ n - X).SplittingField) hx : (aeval x) (X ^ (n✝ + 1) ^ n - X) = 0 ⊢ (aeval (-x)) (X ^ (n✝ + 1) ^ n - X) = 0
simp only [g_poly, sub_eq_zero, aeval_X_pow, aeval_X, map_sub, sub_neg_eq_add] at *
case succ.refine_5 n : ℕ h : n ≠ 0 n✝ : ℕ h_prime : Fact (Nat.Prime (n✝ + 1)) this : Fintype (GaloisField (n✝ + 1) n) g_poly : (ZMod (n✝ + 1))[X] := X ^ (n✝ + 1) ^ n - X hp : 1 < n✝ + 1 aux : X ^ (n✝ + 1) ^ n - X ≠ 0 key : Fintype.card ↑((X ^ (n✝ + 1) ^ n - X).rootSet (GaloisField (n✝ + 1) n)) = (n✝ + 1) ^ n nat_degree_eq : (X ^ (n✝ + 1) ^ n - X).natDegree = (n✝ + 1) ^ n x✝ : GaloisField (n✝ + 1) n hx✝¹ : x✝ ∈ Subring.closure (Set.range ⇑(algebraMap (ZMod (n✝ + 1)) (GaloisField (n✝ + 1) n)) ∪ (X ^ (n✝ + 1) ^ n - X).rootSet (X ^ (n✝ + 1) ^ n - X).SplittingField) x : GaloisField (n✝ + 1) n hx✝ : x ∈ Subring.closure (Set.range ⇑(algebraMap (ZMod (n✝ + 1)) (GaloisField (n✝ + 1) n)) ∪ (X ^ (n✝ + 1) ^ n - X).rootSet (X ^ (n✝ + 1) ^ n - X).SplittingField) hx : x ^ (n✝ + 1) ^ n = x ⊢ (-x) ^ (n✝ + 1) ^ n + x = 0
111b60fe849d791c
mul_zpow_neg_one
Mathlib/Algebra/Group/Basic.lean
@[to_additive neg_one_zsmul_add] lemma mul_zpow_neg_one (a b : α) : (a * b) ^ (-1 : ℤ) = b ^ (-1 : ℤ) * a ^ (-1 : ℤ)
α : Type u_1 inst✝ : DivisionMonoid α a b : α ⊢ (a * b) ^ (-1) = b ^ (-1) * a ^ (-1)
simp only [zpow_neg, zpow_one, mul_inv_rev]
no goals
0ee58090f0f23253
Nat.cast_div
Mathlib/Data/Nat/Cast/Field.lean
@[simp] lemma cast_div (hnm : n ∣ m) (hn : (n : K) ≠ 0) : (↑(m / n) : K) = m / n
case intro K : Type u_1 inst✝ : DivisionSemiring K n : ℕ hn : ↑n ≠ 0 k : ℕ this : n ≠ 0 ⊢ ↑(n * k / n) = ↑(n * k) / ↑n
rw [Nat.mul_div_cancel_left _ <| zero_lt_of_ne_zero this, mul_comm n, cast_mul, mul_div_cancel_right₀ _ hn]
no goals
48215f7c253f50b8
UniformOnFun.nhds_eq_of_basis
Mathlib/Topology/UniformSpace/UniformConvergenceTopology.lean
theorem nhds_eq_of_basis {ι : Sort*} {p : ι → Prop} {V : ι → Set (β × β)} (h : (𝓤 β).HasBasis p V) (f : α →ᵤ[𝔖] β) : 𝓝 f = ⨅ s ∈ 𝔖, ⨅ (i) (_ : p i), 𝓟 {g | ∀ x ∈ s, (toFun 𝔖 f x, toFun 𝔖 g x) ∈ V i}
α : Type u_1 β : Type u_2 inst✝ : UniformSpace β 𝔖 : Set (Set α) ι : Sort u_5 p : ι → Prop V : ι → Set (β × β) h : (𝓤 β).HasBasis p V f : α →ᵤ[𝔖] β ⊢ 𝓝 f = ⨅ s ∈ 𝔖, ⨅ i, ⨅ (_ : p i), 𝓟 {g | ∀ x ∈ s, ((toFun 𝔖) f x, (toFun 𝔖) g x) ∈ V i}
simp_rw [nhds_eq_comap_uniformity, UniformOnFun.uniformity_eq_of_basis _ _ h, comap_iInf, comap_principal, UniformOnFun.gen, preimage_setOf_eq]
no goals
b5b0addf48c7957c
MeasureTheory.hausdorffMeasure_pi_real
Mathlib/MeasureTheory/Measure/Hausdorff.lean
theorem hausdorffMeasure_pi_real {ι : Type*} [Fintype ι] : (μH[Fintype.card ι] : Measure (ι → ℝ)) = volume
ι : Type u_4 inst✝ : Fintype ι a b : ι → ℚ H : ∀ (i : ι), a i < b i i : ι ⊢ 0 ≤ ↑(b i) - ↑(a i)
simpa only [sub_nonneg, Rat.cast_le] using (H i).le
no goals
90212ad5e070d6f0
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
Mathlib/Analysis/SpecificLimits/FloorPow.lean
theorem tendsto_div_of_monotone_of_exists_subseq_tendsto_div (u : ℕ → ℝ) (l : ℝ) (hmono : Monotone u) (hlim : ∀ a : ℝ, 1 < a → ∃ c : ℕ → ℕ, (∀ᶠ n in atTop, (c (n + 1) : ℝ) ≤ a * c n) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / c n) atTop (𝓝 l)) : Tendsto (fun n => u n / n) atTop (𝓝 l)
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N aN : a + 1 ≤ N Npos : 0 < N aN' : a ≤ N - 1 cNn : c (N - 1) ≤ n ⊢ (1 + ε) * ↑(c (N - 1)) * l - u (c (N - 1)) = ↑(c (N - 1)) * l - u (c (N - 1)) + ε * ↑(c (N - 1)) * l
ring
no goals
2aab76659c6dcba8
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.sat_of_insertRat
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/LRAT/Internal/Formula/RatAddSound.lean
theorem sat_of_insertRat {n : Nat} (f : DefaultFormula n) (hf : f.ratUnits = #[] ∧ AssignmentsInvariant f) (c : DefaultClause n) (p : PosFin n → Bool) (pf : p ⊨ f) : (insertRatUnits f (negate c)).2 = true → p ⊨ c
n : Nat f : DefaultFormula n hf : f.ratUnits = #[] ∧ f.AssignmentsInvariant c : DefaultClause n p : PosFin n → Bool pf : p ⊨ f insertUnit_fold_success : (List.foldl insertUnit (f.ratUnits, f.assignments, false) c.negate).2.snd = true i : PosFin n hboth : (List.foldl insertUnit (f.ratUnits, f.assignments, false) c.negate).snd.fst[i.val] = both i_in_bounds : i.val < f.assignments.size h0 : InsertUnitInvariant f.assignments ⋯ f.ratUnits f.assignments ⋯ insertUnit_fold_satisfies_invariant : let update_res := List.foldl insertUnit (f.ratUnits, f.assignments, false) c.negate; let_fun update_res_size := ⋯; InsertUnitInvariant f.assignments ⋯ update_res.fst update_res.snd.fst update_res_size j : Fin (List.foldl insertUnit (f.ratUnits, f.assignments, false) c.negate).fst.size b : Bool i_gt_zero : ↑⟨i.val, ⋯⟩ > 0 h1 : (List.foldl insertUnit (f.ratUnits, f.assignments, false) c.negate).fst[j] = (⟨↑⟨i.val, ⋯⟩, ⋯⟩, b) h2 : (List.foldl insertUnit (f.ratUnits, f.assignments, false) c.negate).snd.fst[↑⟨i.val, ⋯⟩] = addAssignment b f.assignments[↑⟨i.val, ⋯⟩] h3 : ¬hasAssignment b f.assignments[↑⟨i.val, ⋯⟩] = true h4 : ∀ (k : Fin (List.foldl insertUnit (f.ratUnits, f.assignments, false) c.negate).fst.size), k ≠ j → (List.foldl insertUnit (f.ratUnits, f.assignments, false) c.negate).fst[k].fst.val ≠ ↑⟨i.val, ⋯⟩ i_rw : i = ⟨i.val, ⋯⟩ ⊢ (List.foldl insertUnit (f.ratUnits, f.assignments, false) c.negate).fst[j] ∈ (List.foldl insertUnit (f.ratUnits, f.assignments, false) c.negate).fst.toList
apply List.get_mem
no goals
c0b439908684a182
VitaliFamily.ae_tendsto_lintegral_enorm_sub_div'_of_integrable
Mathlib/MeasureTheory/Covering/Differentiation.lean
theorem ae_tendsto_lintegral_enorm_sub_div'_of_integrable {f : α → E} (hf : Integrable f μ) (h'f : StronglyMeasurable f) : ∀ᵐ x ∂μ, Tendsto (fun a => (∫⁻ y in a, ‖f y - f x‖ₑ ∂μ) / μ a) (v.filterAt x) (𝓝 0)
case intro α : Type u_1 inst✝⁴ : PseudoMetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : SecondCountableTopology α inst✝¹ : BorelSpace α inst✝ : IsLocallyFiniteMeasure μ f : α → E hf : Integrable f μ h'f : StronglyMeasurable f A : μ.FiniteSpanningSetsIn {K | IsOpen K} := μ.finiteSpanningSetsInOpen' t : Set E t_count : t.Countable ht : range f ⊆ closure t main : ∀ᵐ (x : α) ∂μ, ∀ (n : ℕ), ∀ c ∈ t, Tendsto (fun a => (∫⁻ (y : α) in a, ‖f y - (A.set n).indicator (fun x => c) y‖ₑ ∂μ) / μ a) (v.filterAt x) (𝓝 ‖f x - (A.set n).indicator (fun x => c) x‖ₑ) x : α h'x : ∀ᶠ (a : Set α) in v.filterAt x, 0 < μ a c : E hc : c ∈ t n : ℕ xn : x ∈ A.set n hx : Tendsto (fun a => (∫⁻ (y : α) in a, ‖f y - (A.set n).indicator (fun x => c) y‖ₑ ∂μ) / μ a) (v.filterAt x) (𝓝 ‖f x - (A.set n).indicator (fun x => c) x‖ₑ) ⊢ Tendsto (fun a => (∫⁻ (y : α) in a, ‖f y - c‖ₑ ∂μ) / μ a) (v.filterAt x) (𝓝 ‖f x - c‖ₑ)
simp only [xn, indicator_of_mem] at hx
case intro α : Type u_1 inst✝⁴ : PseudoMetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : SecondCountableTopology α inst✝¹ : BorelSpace α inst✝ : IsLocallyFiniteMeasure μ f : α → E hf : Integrable f μ h'f : StronglyMeasurable f A : μ.FiniteSpanningSetsIn {K | IsOpen K} := μ.finiteSpanningSetsInOpen' t : Set E t_count : t.Countable ht : range f ⊆ closure t main : ∀ᵐ (x : α) ∂μ, ∀ (n : ℕ), ∀ c ∈ t, Tendsto (fun a => (∫⁻ (y : α) in a, ‖f y - (A.set n).indicator (fun x => c) y‖ₑ ∂μ) / μ a) (v.filterAt x) (𝓝 ‖f x - (A.set n).indicator (fun x => c) x‖ₑ) x : α h'x : ∀ᶠ (a : Set α) in v.filterAt x, 0 < μ a c : E hc : c ∈ t n : ℕ xn : x ∈ A.set n hx : Tendsto (fun a => (∫⁻ (y : α) in a, ‖f y - (A.set n).indicator (fun x => c) y‖ₑ ∂μ) / μ a) (v.filterAt x) (𝓝 ‖f x - c‖ₑ) ⊢ Tendsto (fun a => (∫⁻ (y : α) in a, ‖f y - c‖ₑ ∂μ) / μ a) (v.filterAt x) (𝓝 ‖f x - c‖ₑ)
38b9ca590c2fbd74
centralBinom_factorization_small
Mathlib/NumberTheory/Bertrand.lean
theorem centralBinom_factorization_small (n : ℕ) (n_large : 2 < n) (no_prime : ¬∃ p : ℕ, p.Prime ∧ n < p ∧ p ≤ 2 * n) : centralBinom n = ∏ p ∈ Finset.range (2 * n / 3 + 1), p ^ (centralBinom n).factorization p
case h n : ℕ n_large : 2 < n no_prime : ¬∃ p, Nat.Prime p ∧ n < p ∧ p ≤ 2 * n ⊢ Finset.range (2 * n / 3 + 1) ⊆ Finset.range (2 * n + 1)
exact Finset.range_subset.2 (add_le_add_right (Nat.div_le_self _ _) _)
no goals
98816716a310ec27
Nat.clog_mono_right
Mathlib/Data/Nat/Log.lean
theorem clog_mono_right (b : ℕ) {n m : ℕ} (h : n ≤ m) : clog b n ≤ clog b m
b n m : ℕ h : n ≤ m ⊢ clog b n ≤ clog b m
rcases le_or_lt b 1 with hb | hb
case inl b n m : ℕ h : n ≤ m hb : b ≤ 1 ⊢ clog b n ≤ clog b m case inr b n m : ℕ h : n ≤ m hb : 1 < b ⊢ clog b n ≤ clog b m
0d30e1a0e662f4b9
ContinuousLinearMap.isUnit_of_forall_le_norm_inner_map
Mathlib/Analysis/InnerProductSpace/Positive.lean
lemma isUnit_of_forall_le_norm_inner_map (f : E →L[𝕜] E) {c : ℝ≥0} (hc : 0 < c) (h : ∀ x, ‖x‖ ^ 2 * c ≤ ‖⟪f x, x⟫_𝕜‖) : IsUnit f
𝕜 : Type u_1 E : Type u_2 inst✝³ : RCLike 𝕜 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace 𝕜 E inst✝ : CompleteSpace E f : E →L[𝕜] E c : ℝ≥0 hc : 0 < c h : ∀ (x : E), ‖x‖ ^ 2 * ↑c ≤ ‖⟪f x, x⟫_𝕜‖ h_anti : AntilipschitzWith c⁻¹ ⇑f _inst : CompleteSpace ↥(LinearMap.range f) ⊢ ∀ x ∈ (LinearMap.range f)ᗮ, x = 0
intro x hx
𝕜 : Type u_1 E : Type u_2 inst✝³ : RCLike 𝕜 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace 𝕜 E inst✝ : CompleteSpace E f : E →L[𝕜] E c : ℝ≥0 hc : 0 < c h : ∀ (x : E), ‖x‖ ^ 2 * ↑c ≤ ‖⟪f x, x⟫_𝕜‖ h_anti : AntilipschitzWith c⁻¹ ⇑f _inst : CompleteSpace ↥(LinearMap.range f) x : E hx : x ∈ (LinearMap.range f)ᗮ ⊢ x = 0
86f45fd4ee3ea972
Std.Sat.CNF.unsat_relabelFin
Mathlib/.lake/packages/lean4/src/lean/Std/Sat/CNF/RelabelFin.lean
theorem unsat_relabelFin {f : CNF Nat} : Unsat f.relabelFin ↔ Unsat f
case isTrue.hw.isTrue f : CNF Nat h : ∃ v, Mem v f a b : Nat ma : a < f.numLiterals mb : b < f.numLiterals a_lt : a < f.numLiterals ⊢ ⟨a, a_lt⟩ = ⟨b, mb⟩ → a = b
simp
no goals
253377bcdcffdbab
UniformSpace.compactSpace_iff_seqCompactSpace
Mathlib/Topology/Sequences.lean
theorem UniformSpace.compactSpace_iff_seqCompactSpace : CompactSpace X ↔ SeqCompactSpace X
X : Type u_1 inst✝¹ : UniformSpace X inst✝ : (𝓤 X).IsCountablyGenerated ⊢ CompactSpace X ↔ SeqCompactSpace X
simp only [← isCompact_univ_iff, seqCompactSpace_iff, UniformSpace.isCompact_iff_isSeqCompact]
no goals
ad97f450c6082814
Set.mem_prod_list_ofFn
Mathlib/Algebra/Group/Pointwise/Set/ListOfFn.lean
theorem mem_prod_list_ofFn {a : α} {s : Fin n → Set α} : a ∈ (List.ofFn s).prod ↔ ∃ f : ∀ i : Fin n, s i, (List.ofFn fun i ↦ (f i : α)).prod = a
case zero α : Type u_1 inst✝ : Monoid α n : ℕ a : α s : Fin 0 → Set α ⊢ a ∈ (List.ofFn s).prod ↔ ∃ f, (List.ofFn fun i => ↑(f i)).prod = a
simp_rw [List.ofFn_zero, List.prod_nil, Fin.exists_fin_zero_pi, eq_comm, Set.mem_one]
no goals
a43de69c1f07753d
nilpotencyClass_eq_zero_of_subsingleton
Mathlib/RingTheory/Nilpotent/Defs.lean
@[simp] lemma nilpotencyClass_eq_zero_of_subsingleton [Subsingleton R] : nilpotencyClass x = 0
R : Type u_1 x : R inst✝² : Zero R inst✝¹ : Pow R ℕ inst✝ : Subsingleton R s : Set ℕ := {k | x ^ k = 0} this : s = univ ⊢ sInf {k | x ^ k = 0} = 0
simp [s] at this
R : Type u_1 x : R inst✝² : Zero R inst✝¹ : Pow R ℕ inst✝ : Subsingleton R s : Set ℕ := {k | x ^ k = 0} this : {k | x ^ k = 0} = univ ⊢ sInf {k | x ^ k = 0} = 0
a12c1a51157c0cb3
ConjClasses.mk_bijOn
Mathlib/GroupTheory/Subgroup/Center.lean
theorem mk_bijOn (G : Type*) [Group G] : Set.BijOn ConjClasses.mk (↑(Subgroup.center G)) (noncenter G)ᶜ
case refine_3.mk G : Type u_2 inst✝ : Group G a✝ : ConjClasses G g : G hg : (carrier (Quot.mk (⇑(IsConj.setoid G)) g)).Subsingleton h : G ⊢ ∃ c, c * g * c⁻¹ = h * g * h⁻¹
exact ⟨h, rfl⟩
no goals
e98f5eec083003f7
CategoryTheory.TwoSquare.GuitartExact.vComp_iff_of_equivalences
Mathlib/CategoryTheory/GuitartExact/VerticalComposition.lean
lemma vComp_iff_of_equivalences (eL : C₂ ≌ C₃) (eR : D₂ ≌ D₃) (w' : H₂ ⋙ eR.functor ≅ eL.functor ⋙ H₃) : (w ≫ᵥ w'.hom).GuitartExact ↔ w.GuitartExact
case mp C₁ : Type u_1 C₂ : Type u_2 C₃ : Type u_3 D₁ : Type u_4 D₂ : Type u_5 D₃ : Type u_6 inst✝⁵ : Category.{u_11, u_1} C₁ inst✝⁴ : Category.{u_7, u_2} C₂ inst✝³ : Category.{u_8, u_3} C₃ inst✝² : Category.{u_12, u_4} D₁ inst✝¹ : Category.{u_9, u_5} D₂ inst✝ : Category.{u_10, u_6} D₃ H₁ : C₁ ⥤ D₁ L₁ : C₁ ⥤ C₂ R₁ : D₁ ⥤ D₂ H₂ : C₂ ⥤ D₂ w : TwoSquare H₁ L₁ R₁ H₂ H₃ : C₃ ⥤ D₃ eL : C₂ ≌ C₃ eR : D₂ ≌ D₃ w' : H₂ ⋙ eR.functor ≅ eL.functor ⋙ H₃ hww' : (w ≫ᵥ w'.hom).GuitartExact this : CatCommSq H₂ eL.functor eR.functor H₃ := { iso' := w' } ⊢ w.GuitartExact
have hw' : CatCommSq.iso H₂ eL.functor eR.functor H₃ = w' := rfl
case mp C₁ : Type u_1 C₂ : Type u_2 C₃ : Type u_3 D₁ : Type u_4 D₂ : Type u_5 D₃ : Type u_6 inst✝⁵ : Category.{u_11, u_1} C₁ inst✝⁴ : Category.{u_7, u_2} C₂ inst✝³ : Category.{u_8, u_3} C₃ inst✝² : Category.{u_12, u_4} D₁ inst✝¹ : Category.{u_9, u_5} D₂ inst✝ : Category.{u_10, u_6} D₃ H₁ : C₁ ⥤ D₁ L₁ : C₁ ⥤ C₂ R₁ : D₁ ⥤ D₂ H₂ : C₂ ⥤ D₂ w : TwoSquare H₁ L₁ R₁ H₂ H₃ : C₃ ⥤ D₃ eL : C₂ ≌ C₃ eR : D₂ ≌ D₃ w' : H₂ ⋙ eR.functor ≅ eL.functor ⋙ H₃ hww' : (w ≫ᵥ w'.hom).GuitartExact this : CatCommSq H₂ eL.functor eR.functor H₃ := { iso' := w' } hw' : CatCommSq.iso H₂ eL.functor eR.functor H₃ = w' ⊢ w.GuitartExact
3c08a0c3ff12f8dc
Set.infinite_iff_tendsto_sum_indicator_atTop
Mathlib/Algebra/Order/Archimedean/IndicatorCard.lean
lemma infinite_iff_tendsto_sum_indicator_atTop {R : Type*} [OrderedAddCommMonoid R] [AddLeftStrictMono R] [Archimedean R] {r : R} (h : 0 < r) {s : Set ℕ} : s.Infinite ↔ atTop.Tendsto (fun n ↦ ∑ k ∈ Finset.range n, s.indicator (fun _ ↦ r) k) atTop
case mp.intro R : Type u_1 inst✝² : OrderedAddCommMonoid R inst✝¹ : AddLeftStrictMono R inst✝ : Archimedean R r : R h : 0 < r s : Set ℕ h_mono : Monotone fun n => ∑ k ∈ Finset.range n, s.indicator (fun x => r) k hs : s.Infinite n : R n' : ℕ hn' : n < n' • r ⊢ ∃ a, n ≤ ∑ k ∈ Finset.range a, s.indicator (fun x => r) k
obtain ⟨t, t_s, t_card⟩ := hs.exists_subset_card_eq n'
case mp.intro.intro.intro R : Type u_1 inst✝² : OrderedAddCommMonoid R inst✝¹ : AddLeftStrictMono R inst✝ : Archimedean R r : R h : 0 < r s : Set ℕ h_mono : Monotone fun n => ∑ k ∈ Finset.range n, s.indicator (fun x => r) k hs : s.Infinite n : R n' : ℕ hn' : n < n' • r t : Finset ℕ t_s : ↑t ⊆ s t_card : #t = n' ⊢ ∃ a, n ≤ ∑ k ∈ Finset.range a, s.indicator (fun x => r) k
431e7584f4bd6fdf
PiToModule.fromEnd_apply_single_one
Mathlib/LinearAlgebra/Matrix/Charpoly/LinearMap.lean
theorem PiToModule.fromEnd_apply_single_one [DecidableEq ι] (f : Module.End R M) (i : ι) : PiToModule.fromEnd R b f (Pi.single i 1) = f (b i)
ι : Type u_1 inst✝⁴ : Fintype ι M : Type u_2 inst✝³ : AddCommGroup M R : Type u_3 inst✝² : CommRing R inst✝¹ : Module R M b : ι → M inst✝ : DecidableEq ι f : Module.End R M i : ι ⊢ ((fromEnd R b) f) (Pi.single i 1) = f (b i)
rw [PiToModule.fromEnd_apply]
ι : Type u_1 inst✝⁴ : Fintype ι M : Type u_2 inst✝³ : AddCommGroup M R : Type u_3 inst✝² : CommRing R inst✝¹ : Module R M b : ι → M inst✝ : DecidableEq ι f : Module.End R M i : ι ⊢ f (((Fintype.linearCombination R R) b) (Pi.single i 1)) = f (b i)
c01aa1bfae675e55
Ideal.ideal_prod_eq
Mathlib/RingTheory/Ideal/Prod.lean
theorem ideal_prod_eq (I : Ideal (R × S)) : I = Ideal.prod (map (RingHom.fst R S) I : Ideal R) (map (RingHom.snd R S) I)
case h.mk.intro.intro.mk.intro.intro.mk.intro R : Type u S : Type v inst✝¹ : Semiring R inst✝ : Semiring S I : Ideal (R × S) r : R s' : S h₁ : (r, s') ∈ I r' : R s : S h₂ : (r', s) ∈ I ⊢ ((RingHom.fst R S) (r, s'), (RingHom.snd R S) (r', s)) ∈ I
simpa using I.add_mem (I.mul_mem_left (1, 0) h₁) (I.mul_mem_left (0, 1) h₂)
no goals
01de65c949d940b4
ENNReal.rpow_lt_rpow_of_exponent_gt
Mathlib/Analysis/SpecialFunctions/Pow/NNReal.lean
theorem rpow_lt_rpow_of_exponent_gt {x : ℝ≥0∞} {y z : ℝ} (hx0 : 0 < x) (hx1 : x < 1) (hyz : z < y) : x ^ y < x ^ z
x : ℝ≥0∞ y z : ℝ hx0 : 0 < x hx1 : x < 1 hyz : z < y ⊢ x ^ y < x ^ z
lift x to ℝ≥0 using ne_of_lt (lt_of_lt_of_le hx1 le_top)
case intro y z : ℝ hyz : z < y x : ℝ≥0 hx0 : 0 < ↑x hx1 : ↑x < 1 ⊢ ↑x ^ y < ↑x ^ z
d32e37149ac5db61
SetTheory.Game.birthday_add_le
Mathlib/SetTheory/Game/Birthday.lean
theorem birthday_add_le (x y : Game) : (x + y).birthday ≤ x.birthday ♯ y.birthday
x y : Game a : PGame ha₁ : ⟦a⟧ = x ha₂ : a.birthday = x.birthday b : PGame hb₁ : ⟦b⟧ = y hb₂ : b.birthday = y.birthday ⊢ (⟦a⟧ + ⟦b⟧).birthday ≤ (a + b).birthday
exact birthday_quot_le_pGameBirthday _
no goals
d7c58819e137ff8d
IsPathConnected.exists_path_through_family
Mathlib/Topology/Connected/PathConnected.lean
theorem IsPathConnected.exists_path_through_family {n : ℕ} {s : Set X} (h : IsPathConnected s) (p : Fin (n + 1) → X) (hp : ∀ i, p i ∈ s) : ∃ γ : Path (p 0) (p n), range γ ⊆ s ∧ ∀ i, p i ∈ range γ
case h.right X : Type u_1 inst✝ : TopologicalSpace X s : Set X h : IsPathConnected s p' : ℕ → X hp' : ∀ i ≤ 0, p' i ∈ s ⊢ range ⇑(Path.refl (p' 0)) ⊆ s
rw [range_subset_iff]
case h.right X : Type u_1 inst✝ : TopologicalSpace X s : Set X h : IsPathConnected s p' : ℕ → X hp' : ∀ i ≤ 0, p' i ∈ s ⊢ ∀ (y : ↑I), (Path.refl (p' 0)) y ∈ s
b08141240b56f283
Filter.sInter_comap_sets
Mathlib/Order/Filter/Map.lean
theorem sInter_comap_sets (f : α → β) (F : Filter β) : ⋂₀ (comap f F).sets = ⋂ U ∈ F, f ⁻¹' U
case h.mp α : Type u_1 β : Type u_2 f : α → β F : Filter β x : α h : ∀ (A : Set α), ∀ B ∈ F, f ⁻¹' B ⊆ A → x ∈ A U : Set β U_in : U ∈ F ⊢ f x ∈ U
simpa only [Subset.rfl, forall_prop_of_true, mem_preimage] using h (f ⁻¹' U) U U_in
no goals
bf2c20d986e732fa
StieltjesFunction.outer_trim
Mathlib/MeasureTheory/Measure/Stieltjes.lean
theorem outer_trim : f.outer.trim = f.outer
f : StieltjesFunction s : Set ℝ t : ℕ → Set ℝ ht : s ⊆ ⋃ i, t i ε : ℝ≥0 ε0 : 0 < ε h : ∑' (i : ℕ), f.length (t i) < ⊤ ε' : ℕ → ℝ≥0 ε'0 : ∀ (i : ℕ), 0 < ε' i hε : ∑' (i : ℕ), ↑(ε' i) < ↑ε g : ℕ → Set ℝ hg : ∀ (i : ℕ), t i ⊆ g i ∧ MeasurableSet (g i) ∧ f.outer (g i) ≤ f.length (t i) + ↑(ε' i) ⊢ f.outer (iUnion g) ≤ ∑' (a : ℕ), (f.length (t a) + ↑(ε' a))
exact le_trans (measure_iUnion_le _) (ENNReal.tsum_le_tsum fun i => (hg i).2.2)
no goals
f9dd01cdb673361c
PiTensorProduct.mapL_coe
Mathlib/Analysis/NormedSpace/PiTensorProduct/InjectiveSeminorm.lean
theorem mapL_coe : (mapL f).toLinearMap = map (fun i ↦ (f i).toLinearMap)
case H.H ι : Type uι inst✝⁵ : Fintype ι 𝕜 : Type u𝕜 inst✝⁴ : NontriviallyNormedField 𝕜 E : ι → Type uE inst✝³ : (i : ι) → SeminormedAddCommGroup (E i) inst✝² : (i : ι) → NormedSpace 𝕜 (E i) E' : ι → Type u_1 inst✝¹ : (i : ι) → SeminormedAddCommGroup (E' i) inst✝ : (i : ι) → NormedSpace 𝕜 (E' i) f : (i : ι) → E i →L[𝕜] E' i x✝ : (i : ι) → E i ⊢ ((↑(mapL f)).compMultilinearMap (tprod 𝕜)) x✝ = ((map fun i => ↑(f i)).compMultilinearMap (tprod 𝕜)) x✝
simp only [mapL, LinearMap.compMultilinearMap_apply, ContinuousLinearMap.coe_coe, liftIsometry_apply_apply, lift.tprod, ContinuousMultilinearMap.coe_coe, ContinuousMultilinearMap.compContinuousLinearMap_apply, tprodL_toFun, map_tprod]
no goals
e1b9e9a534ca092b
LinearMap.BilinForm.iIsOrtho.nondegenerate_iff_not_isOrtho_basis_self
Mathlib/LinearAlgebra/BilinearForm/Orthogonal.lean
theorem iIsOrtho.nondegenerate_iff_not_isOrtho_basis_self {n : Type w} [Nontrivial R] [NoZeroDivisors R] (B : BilinForm R M) (v : Basis n R M) (hO : B.iIsOrtho v) : B.Nondegenerate ↔ ∀ i, ¬B.IsOrtho (v i) (v i)
case intro.h.h₁ R : Type u_1 M : Type u_2 inst✝⁴ : CommSemiring R inst✝³ : AddCommMonoid M inst✝² : Module R M n : Type w inst✝¹ : Nontrivial R inst✝ : NoZeroDivisors R B : BilinForm R M v : Basis n R M hO : B.iIsOrtho ⇑v ho : ∀ (i : n), ¬B.IsOrtho (v i) (v i) vi : n →₀ R i : n hB : ∑ x ∈ vi.support, vi x * (B (v x)) (v i) = 0 hi : i ∉ vi.support ⊢ vi i * (B (v i)) (v i) = 0
convert zero_mul (M₀ := R) _ using 2
case h.e'_2.h.e'_5 R : Type u_1 M : Type u_2 inst✝⁴ : CommSemiring R inst✝³ : AddCommMonoid M inst✝² : Module R M n : Type w inst✝¹ : Nontrivial R inst✝ : NoZeroDivisors R B : BilinForm R M v : Basis n R M hO : B.iIsOrtho ⇑v ho : ∀ (i : n), ¬B.IsOrtho (v i) (v i) vi : n →₀ R i : n hB : ∑ x ∈ vi.support, vi x * (B (v x)) (v i) = 0 hi : i ∉ vi.support ⊢ vi i = 0
270c734da50eb6ed
Stream'.Seq.cons_append
Mathlib/Data/Seq/Seq.lean
theorem cons_append (a : α) (s t) : append (cons a s) t = cons a (append s t) := destruct_eq_cons <| by dsimp [append]; rw [corec_eq] dsimp [append]; rw [destruct_cons]
α : Type u a : α s t : Seq α ⊢ ((cons a s).append t).destruct = some (a, s.append t)
dsimp [append]
α : Type u a : α s t : Seq α ⊢ (corec (fun x => match x.fst.destruct with | none => match x.snd.destruct with | none => none | some (a, b) => some (a, nil, b) | some (a, s₁') => some (a, s₁', x.snd)) (cons a s, t)).destruct = some (a, corec (fun x => match x.fst.destruct with | none => match x.snd.destruct with | none => none | some (a, b) => some (a, nil, b) | some (a, s₁') => some (a, s₁', x.snd)) (s, t))
df82e73275a060c3
List.erase_range'
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Nat/Range.lean
theorem erase_range' : (range' s n).erase i = range' s (min n (i - s)) ++ range' (max s (i + 1)) (min s (i + 1) + n - (i + 1))
case pos.intro.intro.intro s n i : Nat h : i ∈ range' s n as bs : List Nat h₁ : range' s n = as ++ i :: bs h₂ : ¬i ∈ as ⊢ (range' s n).erase i = range' s (min n (i - s)) ++ range' (max s (i + 1)) (min s (i + 1) + n - (i + 1))
rw [h₁, erase_append_right _ h₂, erase_cons_head]
case pos.intro.intro.intro s n i : Nat h : i ∈ range' s n as bs : List Nat h₁ : range' s n = as ++ i :: bs h₂ : ¬i ∈ as ⊢ as ++ bs = range' s (min n (i - s)) ++ range' (max s (i + 1)) (min s (i + 1) + n - (i + 1))
4481dd96f216c300
CategoryTheory.Functor.shiftIso_add'_hom_app
Mathlib/CategoryTheory/Shift/ShiftSequence.lean
lemma shiftIso_add'_hom_app (n m mn : M) (hnm : m + n = mn) (a a' a'' : M) (ha' : n + a = a') (ha'' : m + a' = a'') (X : C) : (F.shiftIso mn a a'' (by rw [← hnm, ← ha'', ← ha', add_assoc])).hom.app X = (shift F a).map ((shiftFunctorAdd' C m n mn hnm).hom.app X) ≫ (shiftIso F n a a' ha').hom.app ((shiftFunctor C m).obj X) ≫ (shiftIso F m a' a'' ha'').hom.app X
C : Type u_1 A : Type u_2 inst✝⁶ : Category.{?u.56941, u_1} C inst✝⁵ : Category.{?u.56945, u_2} A F : C ⥤ A M : Type u_3 inst✝⁴ : AddMonoid M inst✝³ : HasShift C M G : Type u_4 inst✝² : AddGroup G inst✝¹ : HasShift C G inst✝ : F.ShiftSequence M n m mn : M hnm : m + n = mn a a' a'' : M ha' : n + a = a' ha'' : m + a' = a'' X : C ⊢ mn + a = a''
rw [← hnm, ← ha'', ← ha', add_assoc]
no goals
a6401748df147a76
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.contradiction_of_insertUnit_success
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/LRAT/Internal/Formula/RupAddSound.lean
theorem contradiction_of_insertUnit_success {n : Nat} (assignments : Array Assignment) (assignments_size : assignments.size = n) (units : Array (Literal (PosFin n))) (foundContradiction : Bool) (l : Literal (PosFin n)) : let insertUnit_res := insertUnit (units, assignments, foundContradiction) l (foundContradiction → ∃ i : PosFin n, assignments[i.1]'(by rw [assignments_size]; exact i.2.2) = both) → insertUnit_res.2.2 → ∃ j : PosFin n, insertUnit_res.2.1[j.1]'(by rw [size_insertUnit, assignments_size]; exact j.2.2) = both
case inr n : Nat assignments : Array Assignment assignments_size : assignments.size = n units : Array (Literal (PosFin n)) foundContradiction : Bool l : Literal (PosFin n) insertUnit_res : Array (Literal (PosFin n)) × Array Assignment × Bool := insertUnit (units, assignments, foundContradiction) l h : foundContradiction = true → ∃ i, assignments[i.val] = both l_in_bounds : l.fst.val < assignments.size hl : ¬hasAssignment l.snd assignments[l.fst.val]! = true assignments_l_ne_unassigned : (assignments[l.fst.val]! != unassigned) = true ⊢ (insertUnit (units, assignments, foundContradiction) l).snd.fst[l.fst.val] = both
simp only [insertUnit, hl, ite_false, Array.getElem_modify_self, reduceCtorEq]
case inr n : Nat assignments : Array Assignment assignments_size : assignments.size = n units : Array (Literal (PosFin n)) foundContradiction : Bool l : Literal (PosFin n) insertUnit_res : Array (Literal (PosFin n)) × Array Assignment × Bool := insertUnit (units, assignments, foundContradiction) l h : foundContradiction = true → ∃ i, assignments[i.val] = both l_in_bounds : l.fst.val < assignments.size hl : ¬hasAssignment l.snd assignments[l.fst.val]! = true assignments_l_ne_unassigned : (assignments[l.fst.val]! != unassigned) = true ⊢ addAssignment l.snd assignments[l.fst.val] = both
7d5ecc4c40b25bd1
MeasureTheory.lintegral_const_mul''
Mathlib/MeasureTheory/Integral/Lebesgue.lean
theorem lintegral_const_mul'' (r : ℝ≥0∞) {f : α → ℝ≥0∞} (hf : AEMeasurable f μ) : ∫⁻ a, r * f a ∂μ = r * ∫⁻ a, f a ∂μ
α : Type u_1 m : MeasurableSpace α μ : Measure α r : ℝ≥0∞ f : α → ℝ≥0∞ hf : AEMeasurable f μ A : ∫⁻ (a : α), f a ∂μ = ∫⁻ (a : α), AEMeasurable.mk f hf a ∂μ ⊢ ∫⁻ (a : α), r * f a ∂μ = r * ∫⁻ (a : α), f a ∂μ
have B : ∫⁻ a, r * f a ∂μ = ∫⁻ a, r * hf.mk f a ∂μ := lintegral_congr_ae (EventuallyEq.fun_comp hf.ae_eq_mk _)
α : Type u_1 m : MeasurableSpace α μ : Measure α r : ℝ≥0∞ f : α → ℝ≥0∞ hf : AEMeasurable f μ A : ∫⁻ (a : α), f a ∂μ = ∫⁻ (a : α), AEMeasurable.mk f hf a ∂μ B : ∫⁻ (a : α), r * f a ∂μ = ∫⁻ (a : α), r * AEMeasurable.mk f hf a ∂μ ⊢ ∫⁻ (a : α), r * f a ∂μ = r * ∫⁻ (a : α), f a ∂μ
cf82783884c5cc86
MeasureTheory.hahn_decomposition
Mathlib/MeasureTheory/Decomposition/UnsignedHahn.lean
theorem hahn_decomposition (μ ν : Measure α) [IsFiniteMeasure μ] [IsFiniteMeasure ν] : ∃ s, MeasurableSet s ∧ (∀ t, MeasurableSet t → t ⊆ s → ν t ≤ μ t) ∧ ∀ t, MeasurableSet t → t ⊆ sᶜ → μ t ≤ ν t
case refine_2 α : Type u_1 mα : MeasurableSpace α μ ν : Measure α inst✝¹ : IsFiniteMeasure μ inst✝ : IsFiniteMeasure ν d : Set α → ℝ := fun s => ↑(μ s).toNNReal - ↑(ν s).toNNReal c : Set ℝ := d '' {s | MeasurableSet s} γ : ℝ := sSup c hμ : ∀ (s : Set α), μ s ≠ ⊤ hν : ∀ (s : Set α), ν s ≠ ⊤ to_nnreal_μ : ∀ (s : Set α), ↑(μ s).toNNReal = μ s to_nnreal_ν : ∀ (s : Set α), ↑(ν s).toNNReal = ν s d_split : ∀ (s t : Set α), MeasurableSet t → d s = d (s \ t) + d (s ∩ t) d_Union : ∀ (s : ℕ → Set α), Monotone s → Tendsto (fun n => d (s n)) atTop (𝓝 (d (⋃ n, s n))) d_Inter : ∀ (s : ℕ → Set α), (∀ (n : ℕ), MeasurableSet (s n)) → (∀ (n m : ℕ), n ≤ m → s m ⊆ s n) → Tendsto (fun n => d (s n)) atTop (𝓝 (d (⋂ n, s n))) bdd_c : BddAbove c c_nonempty : c.Nonempty d_le_γ : ∀ (s : Set α), MeasurableSet s → d s ≤ γ this : ∀ (n : ℕ), ∃ s, MeasurableSet s ∧ γ - (1 / 2) ^ n < d s e : ℕ → Set α he : ∀ (x : ℕ), MeasurableSet (e x) ∧ γ - (1 / 2) ^ x < d (e x) he₁ : ∀ (n : ℕ), MeasurableSet (e n) he₂ : ∀ (n : ℕ), γ - (1 / 2) ^ n < d (e n) f : ℕ → ℕ → Set α := fun n m => (Finset.Ico n (m + 1)).inf e hf : ∀ (n m : ℕ), MeasurableSet (f n m) f_subset_f : ∀ {a b c d : ℕ}, a ≤ b → c ≤ d → f a d ⊆ f b c f_succ : ∀ (n m : ℕ), n ≤ m → f n (m + 1) = f n m ∩ e (m + 1) n m : ℕ h : m ≤ n ⊢ ∀ (n : ℕ), m ≤ n → γ - 2 * (1 / 2) ^ m + (1 / 2) ^ n ≤ d (f m n) → γ - 2 * (1 / 2) ^ m + (1 / 2) ^ (n + 1) ≤ d (f m (n + 1))
intro n (hmn : m ≤ n) ih
case refine_2 α : Type u_1 mα : MeasurableSpace α μ ν : Measure α inst✝¹ : IsFiniteMeasure μ inst✝ : IsFiniteMeasure ν d : Set α → ℝ := fun s => ↑(μ s).toNNReal - ↑(ν s).toNNReal c : Set ℝ := d '' {s | MeasurableSet s} γ : ℝ := sSup c hμ : ∀ (s : Set α), μ s ≠ ⊤ hν : ∀ (s : Set α), ν s ≠ ⊤ to_nnreal_μ : ∀ (s : Set α), ↑(μ s).toNNReal = μ s to_nnreal_ν : ∀ (s : Set α), ↑(ν s).toNNReal = ν s d_split : ∀ (s t : Set α), MeasurableSet t → d s = d (s \ t) + d (s ∩ t) d_Union : ∀ (s : ℕ → Set α), Monotone s → Tendsto (fun n => d (s n)) atTop (𝓝 (d (⋃ n, s n))) d_Inter : ∀ (s : ℕ → Set α), (∀ (n : ℕ), MeasurableSet (s n)) → (∀ (n m : ℕ), n ≤ m → s m ⊆ s n) → Tendsto (fun n => d (s n)) atTop (𝓝 (d (⋂ n, s n))) bdd_c : BddAbove c c_nonempty : c.Nonempty d_le_γ : ∀ (s : Set α), MeasurableSet s → d s ≤ γ this : ∀ (n : ℕ), ∃ s, MeasurableSet s ∧ γ - (1 / 2) ^ n < d s e : ℕ → Set α he : ∀ (x : ℕ), MeasurableSet (e x) ∧ γ - (1 / 2) ^ x < d (e x) he₁ : ∀ (n : ℕ), MeasurableSet (e n) he₂ : ∀ (n : ℕ), γ - (1 / 2) ^ n < d (e n) f : ℕ → ℕ → Set α := fun n m => (Finset.Ico n (m + 1)).inf e hf : ∀ (n m : ℕ), MeasurableSet (f n m) f_subset_f : ∀ {a b c d : ℕ}, a ≤ b → c ≤ d → f a d ⊆ f b c f_succ : ∀ (n m : ℕ), n ≤ m → f n (m + 1) = f n m ∩ e (m + 1) n✝ m : ℕ h : m ≤ n✝ n : ℕ hmn : m ≤ n ih : γ - 2 * (1 / 2) ^ m + (1 / 2) ^ n ≤ d (f m n) ⊢ γ - 2 * (1 / 2) ^ m + (1 / 2) ^ (n + 1) ≤ d (f m (n + 1))
b74e26e9476d0e19
CategoryTheory.MorphismProperty.map_id_eq_isoClosure
Mathlib/CategoryTheory/MorphismProperty/Basic.lean
lemma map_id_eq_isoClosure (P : MorphismProperty C) : P.map (𝟭 _) = P.isoClosure
C : Type u inst✝ : Category.{v, u} C P : MorphismProperty C ⊢ P.map (𝟭 C) = P.isoClosure
apply le_antisymm
case a C : Type u inst✝ : Category.{v, u} C P : MorphismProperty C ⊢ P.map (𝟭 C) ≤ P.isoClosure case a C : Type u inst✝ : Category.{v, u} C P : MorphismProperty C ⊢ P.isoClosure ≤ P.map (𝟭 C)
be21352197170292
Real.cosh_sub_sinh
Mathlib/Data/Complex/Trigonometric.lean
theorem cosh_sub_sinh : cosh x - sinh x = exp (-x)
x : ℝ ⊢ cosh x - sinh x = rexp (-x)
rw [← ofReal_inj]
x : ℝ ⊢ ↑(cosh x - sinh x) = ↑(rexp (-x))
05d89db7fd280dae
LieAlgebra.isKilling_of_equiv
Mathlib/Algebra/Lie/Killing.lean
/-- Given a Killing Lie algebra `L`, if `L'` is isomorphic to `L`, then `L'` is Killing too. -/ lemma isKilling_of_equiv [IsKilling R L] (e : L ≃ₗ⁅R⁆ L') : IsKilling R L'
R : Type u_1 L : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : LieRing L inst✝³ : LieAlgebra R L L' : Type u_4 inst✝² : LieRing L' inst✝¹ : LieAlgebra R L' inst✝ : IsKilling R L e : L ≃ₗ⁅R⁆ L' x' : L' hx' : ∀ y ∈ ⊤, ((LieModule.traceForm R L' L') x') y = 0 y : L ⊢ ∀ (y' : L'), ((killingForm R L') x') y' = 0
simpa using hx'
no goals
edcf9b2ce3c479d9
Metric.diam_thickening_le
Mathlib/Topology/MetricSpace/Thickening.lean
theorem diam_thickening_le {α : Type*} [PseudoMetricSpace α] (s : Set α) (hε : 0 ≤ ε) : diam (thickening ε s) ≤ diam s + 2 * ε
case neg ε : ℝ α : Type u_2 inst✝ : PseudoMetricSpace α s : Set α hε : 0 ≤ ε hs : ¬Bornology.IsBounded s ⊢ diam (thickening ε s) ≤ diam s + 2 * ε
obtain rfl | hε := hε.eq_or_lt
case neg.inl α : Type u_2 inst✝ : PseudoMetricSpace α s : Set α hs : ¬Bornology.IsBounded s hε : 0 ≤ 0 ⊢ diam (thickening 0 s) ≤ diam s + 2 * 0 case neg.inr ε : ℝ α : Type u_2 inst✝ : PseudoMetricSpace α s : Set α hε✝ : 0 ≤ ε hs : ¬Bornology.IsBounded s hε : 0 < ε ⊢ diam (thickening ε s) ≤ diam s + 2 * ε
d0b75f623e4efeae
ProbabilityTheory.setLIntegral_stieltjesOfMeasurableRat
Mathlib/Probability/Kernel/Disintegration/CDFToKernel.lean
lemma setLIntegral_stieltjesOfMeasurableRat [IsFiniteKernel κ] (hf : IsRatCondKernelCDF f κ ν) (a : α) (x : ℝ) {s : Set β} (hs : MeasurableSet s) : ∫⁻ b in s, ENNReal.ofReal (stieltjesOfMeasurableRat f hf.measurable (a, b) x) ∂(ν a) = κ a (s ×ˢ Iic x)
case neg.h_directed α : Type u_1 β : Type u_2 mα : MeasurableSpace α mβ : MeasurableSpace β κ : Kernel α (β × ℝ) ν : Kernel α β f : α × β → ℚ → ℝ inst✝ : IsFiniteKernel κ hf : IsRatCondKernelCDF f κ ν a : α x : ℝ s : Set β hs : MeasurableSet s hρ_zero : ¬(ν a).restrict s = 0 h : ∫⁻ (b : β) in s, ENNReal.ofReal (↑(stieltjesOfMeasurableRat f ⋯ (a, b)) x) ∂ν a = ∫⁻ (b : β) in s, ⨅ r, ENNReal.ofReal (↑(stieltjesOfMeasurableRat f ⋯ (a, b)) ↑↑r) ∂ν a h_nonempty : Nonempty { r' // x < ↑r' } ⊢ Directed (fun x1 x2 => x1 ≥ x2) fun r b => ENNReal.ofReal (↑(stieltjesOfMeasurableRat f ⋯ (a, b)) ↑↑r)
refine Monotone.directed_ge fun i j hij b ↦ ?_
case neg.h_directed α : Type u_1 β : Type u_2 mα : MeasurableSpace α mβ : MeasurableSpace β κ : Kernel α (β × ℝ) ν : Kernel α β f : α × β → ℚ → ℝ inst✝ : IsFiniteKernel κ hf : IsRatCondKernelCDF f κ ν a : α x : ℝ s : Set β hs : MeasurableSet s hρ_zero : ¬(ν a).restrict s = 0 h : ∫⁻ (b : β) in s, ENNReal.ofReal (↑(stieltjesOfMeasurableRat f ⋯ (a, b)) x) ∂ν a = ∫⁻ (b : β) in s, ⨅ r, ENNReal.ofReal (↑(stieltjesOfMeasurableRat f ⋯ (a, b)) ↑↑r) ∂ν a h_nonempty : Nonempty { r' // x < ↑r' } i j : { r' // x < ↑r' } hij : i ≤ j b : β ⊢ ENNReal.ofReal (↑(stieltjesOfMeasurableRat f ⋯ (a, b)) ↑↑i) ≤ ENNReal.ofReal (↑(stieltjesOfMeasurableRat f ⋯ (a, b)) ↑↑j)
2b5f63b20150553c
gaussSum_aux_of_mulShift
Mathlib/NumberTheory/DirichletCharacter/GaussSum.lean
lemma gaussSum_aux_of_mulShift (χ : DirichletCharacter R N) {d : ℕ} (hd : d ∣ N) (he : e.mulShift d = 1) {u : (ZMod N)ˣ} (hu : ZMod.unitsMap hd u = 1) : χ u * gaussSum χ e = gaussSum χ e
case intro N : ℕ inst✝¹ : NeZero N R : Type u_1 inst✝ : CommRing R e : AddChar (ZMod N) R χ : DirichletCharacter R N d : ℕ hd : d ∣ N he : e.mulShift ↑d = 1 u : (ZMod N)ˣ hu : (ZMod.unitsMap hd) u = 1 a : ℤ ha : ↑(↑u).val - 1 = ↑d * a this : ↑u - 1 = ↑(↑(↑u).val - 1) ⊢ e.mulShift ↑(↑d * a) = 1
ext1 y
case intro.h N : ℕ inst✝¹ : NeZero N R : Type u_1 inst✝ : CommRing R e : AddChar (ZMod N) R χ : DirichletCharacter R N d : ℕ hd : d ∣ N he : e.mulShift ↑d = 1 u : (ZMod N)ˣ hu : (ZMod.unitsMap hd) u = 1 a : ℤ ha : ↑(↑u).val - 1 = ↑d * a this : ↑u - 1 = ↑(↑(↑u).val - 1) y : ZMod N ⊢ (e.mulShift ↑(↑d * a)) y = 1 y
4a9c5b831778ada1
Equicontinuous.tendsto_uniformFun_iff_pi
Mathlib/Topology/UniformSpace/Ascoli.lean
theorem Equicontinuous.tendsto_uniformFun_iff_pi [CompactSpace X] (F_eqcont : Equicontinuous F) (ℱ : Filter ι) (f : X → α) : Tendsto (UniformFun.ofFun ∘ F) ℱ (𝓝 <| UniformFun.ofFun f) ↔ Tendsto F ℱ (𝓝 f)
case inr.mpr ι : Type u_1 X : Type u_2 α : Type u_3 inst✝² : TopologicalSpace X inst✝¹ : UniformSpace α F : ι → X → α inst✝ : CompactSpace X F_eqcont : Equicontinuous F ℱ : Filter ι f : X → α ℱ_ne : ℱ.NeBot H : Tendsto F ℱ (𝓝 f) ⊢ Tendsto (⇑UniformFun.ofFun ∘ F) ℱ (𝓝 (UniformFun.ofFun f))
set S : Set (X → α) := closure (range F)
case inr.mpr ι : Type u_1 X : Type u_2 α : Type u_3 inst✝² : TopologicalSpace X inst✝¹ : UniformSpace α F : ι → X → α inst✝ : CompactSpace X F_eqcont : Equicontinuous F ℱ : Filter ι f : X → α ℱ_ne : ℱ.NeBot H : Tendsto F ℱ (𝓝 f) S : Set (X → α) := closure (range F) ⊢ Tendsto (⇑UniformFun.ofFun ∘ F) ℱ (𝓝 (UniformFun.ofFun f))
f9a2abc711557ca2
quasiIsoAt_iff_isIso_homologyMap
Mathlib/Algebra/Homology/QuasiIso.lean
lemma quasiIsoAt_iff_isIso_homologyMap (f : K ⟶ L) (i : ι) [K.HasHomology i] [L.HasHomology i] : QuasiIsoAt f i ↔ IsIso (homologyMap f i)
ι : Type u_1 C : Type u inst✝³ : Category.{v, u} C inst✝² : HasZeroMorphisms C c : ComplexShape ι K L : HomologicalComplex C c f : K ⟶ L i : ι inst✝¹ : K.HasHomology i inst✝ : L.HasHomology i ⊢ QuasiIsoAt f i ↔ IsIso (homologyMap f i)
rw [quasiIsoAt_iff, ShortComplex.quasiIso_iff]
ι : Type u_1 C : Type u inst✝³ : Category.{v, u} C inst✝² : HasZeroMorphisms C c : ComplexShape ι K L : HomologicalComplex C c f : K ⟶ L i : ι inst✝¹ : K.HasHomology i inst✝ : L.HasHomology i ⊢ IsIso (ShortComplex.homologyMap ((shortComplexFunctor C c i).map f)) ↔ IsIso (homologyMap f i)
acf7f89a4a17afd0
ProbabilityTheory.Kernel.iIndepSets.iIndep
Mathlib/Probability/Independence/Kernel.lean
theorem iIndepSets.iIndep (m : ι → MeasurableSpace Ω) (h_le : ∀ i, m i ≤ _mΩ) (π : ι → Set (Set Ω)) (h_pi : ∀ n, IsPiSystem (π n)) (h_generate : ∀ i, m i = generateFrom (π i)) (h_ind : iIndepSets π κ μ) : iIndep m κ μ
case inr.intro.intro α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : Kernel α Ω μ : Measure α m : ι → MeasurableSpace Ω h_le : ∀ (i : ι), m i ≤ _mΩ π : ι → Set (Set Ω) h_pi : ∀ (n : ι), IsPiSystem (π n) h_generate : ∀ (i : ι), m i = generateFrom (π i) h_ind : iIndepSets π κ μ hμ : μ ≠ 0 η : Kernel α Ω η_eq : ⇑κ =ᶠ[ae μ] ⇑η hη : IsMarkovKernel η s : Finset ι f : ι → Set Ω ⊢ (∀ i ∈ s, f i ∈ (fun x => {s | MeasurableSet s}) i) → ∀ᵐ (a : α) ∂μ, (η a) (⋂ i ∈ s, f i) = ∏ i ∈ s, (η a) (f i)
refine Finset.induction ?_ ?_ s
case inr.intro.intro.refine_1 α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : Kernel α Ω μ : Measure α m : ι → MeasurableSpace Ω h_le : ∀ (i : ι), m i ≤ _mΩ π : ι → Set (Set Ω) h_pi : ∀ (n : ι), IsPiSystem (π n) h_generate : ∀ (i : ι), m i = generateFrom (π i) h_ind : iIndepSets π κ μ hμ : μ ≠ 0 η : Kernel α Ω η_eq : ⇑κ =ᶠ[ae μ] ⇑η hη : IsMarkovKernel η s : Finset ι f : ι → Set Ω ⊢ (∀ i ∈ ∅, f i ∈ (fun x => {s | MeasurableSet s}) i) → ∀ᵐ (a : α) ∂μ, (η a) (⋂ i ∈ ∅, f i) = ∏ i ∈ ∅, (η a) (f i) case inr.intro.intro.refine_2 α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : Kernel α Ω μ : Measure α m : ι → MeasurableSpace Ω h_le : ∀ (i : ι), m i ≤ _mΩ π : ι → Set (Set Ω) h_pi : ∀ (n : ι), IsPiSystem (π n) h_generate : ∀ (i : ι), m i = generateFrom (π i) h_ind : iIndepSets π κ μ hμ : μ ≠ 0 η : Kernel α Ω η_eq : ⇑κ =ᶠ[ae μ] ⇑η hη : IsMarkovKernel η s : Finset ι f : ι → Set Ω ⊢ ∀ ⦃a : ι⦄ {s : Finset ι}, a ∉ s → ((∀ i ∈ s, f i ∈ (fun x => {s | MeasurableSet s}) i) → ∀ᵐ (a : α) ∂μ, (η a) (⋂ i ∈ s, f i) = ∏ i ∈ s, (η a) (f i)) → (∀ i ∈ insert a s, f i ∈ (fun x => {s | MeasurableSet s}) i) → ∀ᵐ (a_3 : α) ∂μ, (η a_3) (⋂ i ∈ insert a s, f i) = ∏ i ∈ insert a s, (η a_3) (f i)
839768f1641edae0
Collinear.wbtw_of_dist_eq_of_dist_le
Mathlib/Analysis/Convex/StrictConvexBetween.lean
theorem Collinear.wbtw_of_dist_eq_of_dist_le {p p₁ p₂ p₃ : P} {r : ℝ} (h : Collinear ℝ ({p₁, p₂, p₃} : Set P)) (hp₁ : dist p₁ p = r) (hp₂ : dist p₂ p ≤ r) (hp₃ : dist p₃ p = r) (hp₁p₃ : p₁ ≠ p₃) : Wbtw ℝ p₁ p₂ p₃
case neg V : Type u_1 P : Type u_2 inst✝⁴ : NormedAddCommGroup V inst✝³ : NormedSpace ℝ V inst✝² : StrictConvexSpace ℝ V inst✝¹ : PseudoMetricSpace P inst✝ : NormedAddTorsor V P p p₁ p₂ p₃ : P r : ℝ h : Collinear ℝ {p₁, p₂, p₃} hp₁ : dist p₁ p = r hp₂ : dist p₂ p ≤ r hp₃ : dist p₃ p = r hp₁p₃ : p₁ ≠ p₃ hw : Wbtw ℝ p₂ p₃ p₁ hp₃p₂ : ¬p₃ = p₂ hs : Sbtw ℝ p₂ p₃ p₁ hs' : r < dist p₂ p ⊢ Wbtw ℝ p₁ p₂ p₃
exact False.elim (hp₂.not_lt hs')
no goals
964124f3e10d07e0
OrthogonalFamily.summable_iff_norm_sq_summable
Mathlib/Analysis/InnerProductSpace/Subspace.lean
theorem OrthogonalFamily.summable_iff_norm_sq_summable [CompleteSpace E] (f : ∀ i, G i) : (Summable fun i => V i (f i)) ↔ Summable fun i => ‖f i‖ ^ 2
case mpr.intro 𝕜 : Type u_1 E : Type u_2 inst✝⁵ : RCLike 𝕜 inst✝⁴ : SeminormedAddCommGroup E inst✝³ : InnerProductSpace 𝕜 E ι : Type u_4 G : ι → Type u_5 inst✝² : (i : ι) → NormedAddCommGroup (G i) inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V inst✝ : CompleteSpace E f : (i : ι) → G i hf : ∀ ε > 0, ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → |∑ i ∈ m, ‖f i‖ ^ 2 - ∑ i ∈ n, ‖f i‖ ^ 2| < ε ε : ℝ hε : ε > 0 hε' : 0 < ε ^ 2 / 2 a : Finset ι H : ∀ (m : Finset ι), a ≤ m → ∀ (n : Finset ι), a ≤ n → |∑ i ∈ m, ‖f i‖ ^ 2 - ∑ i ∈ n, ‖f i‖ ^ 2| < ε ^ 2 / 2 ⊢ ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → ‖∑ i ∈ m, (V i) (f i) - ∑ i ∈ n, (V i) (f i)‖ < ε
use a
case h 𝕜 : Type u_1 E : Type u_2 inst✝⁵ : RCLike 𝕜 inst✝⁴ : SeminormedAddCommGroup E inst✝³ : InnerProductSpace 𝕜 E ι : Type u_4 G : ι → Type u_5 inst✝² : (i : ι) → NormedAddCommGroup (G i) inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V inst✝ : CompleteSpace E f : (i : ι) → G i hf : ∀ ε > 0, ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → |∑ i ∈ m, ‖f i‖ ^ 2 - ∑ i ∈ n, ‖f i‖ ^ 2| < ε ε : ℝ hε : ε > 0 hε' : 0 < ε ^ 2 / 2 a : Finset ι H : ∀ (m : Finset ι), a ≤ m → ∀ (n : Finset ι), a ≤ n → |∑ i ∈ m, ‖f i‖ ^ 2 - ∑ i ∈ n, ‖f i‖ ^ 2| < ε ^ 2 / 2 ⊢ ∀ (m : Finset ι), a ≤ m → ∀ (n : Finset ι), a ≤ n → ‖∑ i ∈ m, (V i) (f i) - ∑ i ∈ n, (V i) (f i)‖ < ε
ef6c5d8e8db28ff0
ProbabilityTheory.strong_law_aux2
Mathlib/Probability/StrongLaw.lean
theorem strong_law_aux2 {c : ℝ} (c_one : 1 < c) : ∀ᵐ ω, (fun n : ℕ => ∑ i ∈ range ⌊c ^ n⌋₊, truncation (X i) i ω - 𝔼[∑ i ∈ range ⌊c ^ n⌋₊, truncation (X i) i]) =o[atTop] fun n : ℕ => (⌊c ^ n⌋₊ : ℝ)
case intro Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) ℙ hindep : Pairwise ((fun f g => IndepFun f g ℙ) on X) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) ℙ ℙ hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c v : ℕ → ℝ v_pos : ∀ (n : ℕ), 0 < v n v_lim : Tendsto v atTop (𝓝 0) this : ∀ (i : ℕ), ∀ᵐ (ω : Ω), ∀ᶠ (n : ℕ) in atTop, |∑ i ∈ range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ∫ (a : Ω), (∑ i ∈ range ⌊c ^ n⌋₊, truncation (X i) ↑i) a| < v i * ↑⌊c ^ n⌋₊ ω : Ω hω : ∀ (i : ℕ), ∀ᶠ (n : ℕ) in atTop, |∑ i ∈ range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ∫ (a : Ω), (∑ i ∈ range ⌊c ^ n⌋₊, truncation (X i) ↑i) a| < v i * ↑⌊c ^ n⌋₊ ε : ℝ εpos : 0 < ε i : ℕ hi : v i < ε ⊢ ∀ᶠ (x : ℕ) in atTop, ‖∑ i ∈ range ⌊c ^ x⌋₊, truncation (X i) (↑i) ω - ∫ (a : Ω), (∑ i ∈ range ⌊c ^ x⌋₊, truncation (X i) ↑i) a‖ ≤ ε * ‖↑⌊c ^ x⌋₊‖
filter_upwards [hω i] with n hn
case h Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) ℙ hindep : Pairwise ((fun f g => IndepFun f g ℙ) on X) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) ℙ ℙ hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c v : ℕ → ℝ v_pos : ∀ (n : ℕ), 0 < v n v_lim : Tendsto v atTop (𝓝 0) this : ∀ (i : ℕ), ∀ᵐ (ω : Ω), ∀ᶠ (n : ℕ) in atTop, |∑ i ∈ range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ∫ (a : Ω), (∑ i ∈ range ⌊c ^ n⌋₊, truncation (X i) ↑i) a| < v i * ↑⌊c ^ n⌋₊ ω : Ω hω : ∀ (i : ℕ), ∀ᶠ (n : ℕ) in atTop, |∑ i ∈ range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ∫ (a : Ω), (∑ i ∈ range ⌊c ^ n⌋₊, truncation (X i) ↑i) a| < v i * ↑⌊c ^ n⌋₊ ε : ℝ εpos : 0 < ε i : ℕ hi : v i < ε n : ℕ hn : |∑ i ∈ range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ∫ (a : Ω), (∑ i ∈ range ⌊c ^ n⌋₊, truncation (X i) ↑i) a| < v i * ↑⌊c ^ n⌋₊ ⊢ ‖∑ i ∈ range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ∫ (a : Ω), (∑ i ∈ range ⌊c ^ n⌋₊, truncation (X i) ↑i) a‖ ≤ ε * ‖↑⌊c ^ n⌋₊‖
0a014d4dcbee42df
HurwitzZeta.hurwitzZetaEven_one_sub_two_mul_nat
Mathlib/NumberTheory/LSeries/HurwitzZetaValues.lean
theorem hurwitzZetaEven_one_sub_two_mul_nat (hk : k ≠ 0) (hx : x ∈ Icc (0 : ℝ) 1) : hurwitzZetaEven x (1 - 2 * k) = -1 / (2 * k) * ((Polynomial.bernoulli (2 * k)).map (algebraMap ℚ ℂ)).eval (x : ℂ)
k : ℕ x : ℝ hk : k ≠ 0 hx : x ∈ Icc 0 1 h1 : ∀ (n : ℕ), 2 * ↑k ≠ -↑n ⊢ 2 * ↑k ≠ 1
norm_cast
k : ℕ x : ℝ hk : k ≠ 0 hx : x ∈ Icc 0 1 h1 : ∀ (n : ℕ), 2 * ↑k ≠ -↑n ⊢ ¬2 * k = 1
2c88f7923e28da1c
WeierstrassCurve.coeff_preΨ
Mathlib/AlgebraicGeometry/EllipticCurve/DivisionPolynomial/Degree.lean
@[simp] lemma coeff_preΨ (n : ℤ) : (W.preΨ n).coeff ((n.natAbs ^ 2 - if Even n then 4 else 1) / 2) = if Even n then n / 2 else n
R : Type u inst✝ : CommRing R W : WeierstrassCurve R n : ℤ ⊢ (W.preΨ n).coeff ((n.natAbs ^ 2 - if Even n then 4 else 1) / 2) = ↑(if Even n then n / 2 else n)
induction n using Int.negInduction with | nat n => exact_mod_cast W.preΨ_ofNat n ▸ W.coeff_preΨ' n | neg ih n => simp only [preΨ_neg, coeff_neg, Int.natAbs_neg, even_neg] rcases ih n, n.even_or_odd' with ⟨ih, ⟨n, rfl | rfl⟩⟩ <;> push_cast [even_two_mul, Int.not_even_two_mul_add_one, Int.neg_ediv_of_dvd ⟨n, rfl⟩] at * <;> rw [ih]
no goals
4a18ee8f7b8f8975
Module.FinitePresentation.exists_free_localizedModule_powers
Mathlib/RingTheory/Localization/Free.lean
/-- If `M` is a finitely presented `R`-module such that `Mₛ` is free over `Rₛ` for some `S : Submonoid R`, then `Mᵣ` is already free over `Rᵣ` for some `r ∈ S`. -/ lemma Module.FinitePresentation.exists_free_localizedModule_powers (Rₛ) [CommRing Rₛ] [Algebra R Rₛ] [Module Rₛ M'] [IsScalarTower R Rₛ M'] [Nontrivial Rₛ] [IsLocalization S Rₛ] [Module.FinitePresentation R M] [Module.Free Rₛ M'] : ∃ r, r ∈ S ∧ Module.Free (Localization (.powers r)) (LocalizedModule (.powers r) M) ∧ Module.finrank (Localization (.powers r)) (LocalizedModule (.powers r) M) = Module.finrank Rₛ M'
case intro.intro.intro R : Type u_4 M : Type u_5 inst✝¹³ : CommRing R inst✝¹² : AddCommGroup M inst✝¹¹ : Module R M S : Submonoid R M' : Type u_1 inst✝¹⁰ : AddCommGroup M' inst✝⁹ : Module R M' f : M →ₗ[R] M' inst✝⁸ : IsLocalizedModule S f Rₛ : Type u_3 inst✝⁷ : CommRing Rₛ inst✝⁶ : Algebra R Rₛ inst✝⁵ : Module Rₛ M' inst✝⁴ : IsScalarTower R Rₛ M' inst✝³ : Nontrivial Rₛ inst✝² : IsLocalization S Rₛ inst✝¹ : FinitePresentation R M inst✝ : Free Rₛ M' I : Type u_1 := Free.ChooseBasisIndex Rₛ M' b : Basis I Rₛ M' := Free.chooseBasis Rₛ M' this : Module.Finite Rₛ M' r : R hr : r ∈ S b' : Basis I (Localization (Submonoid.powers r)) (LocalizedModule (Submonoid.powers r) M) h✝ : ∀ (i : I), (LocalizedModule.lift (Submonoid.powers r) f ⋯) (b' i) = b i ⊢ ∃ r ∈ S, Free (Localization (Submonoid.powers r)) (LocalizedModule (Submonoid.powers r) M) ∧ finrank (Localization (Submonoid.powers r)) (LocalizedModule (Submonoid.powers r) M) = finrank Rₛ M'
have := (show Localization (.powers r) →+* Rₛ from IsLocalization.map (M := .powers r) (T := S) _ (RingHom.id _) (Submonoid.powers_le.mpr hr)).domain_nontrivial
case intro.intro.intro R : Type u_4 M : Type u_5 inst✝¹³ : CommRing R inst✝¹² : AddCommGroup M inst✝¹¹ : Module R M S : Submonoid R M' : Type u_1 inst✝¹⁰ : AddCommGroup M' inst✝⁹ : Module R M' f : M →ₗ[R] M' inst✝⁸ : IsLocalizedModule S f Rₛ : Type u_3 inst✝⁷ : CommRing Rₛ inst✝⁶ : Algebra R Rₛ inst✝⁵ : Module Rₛ M' inst✝⁴ : IsScalarTower R Rₛ M' inst✝³ : Nontrivial Rₛ inst✝² : IsLocalization S Rₛ inst✝¹ : FinitePresentation R M inst✝ : Free Rₛ M' I : Type u_1 := Free.ChooseBasisIndex Rₛ M' b : Basis I Rₛ M' := Free.chooseBasis Rₛ M' this✝ : Module.Finite Rₛ M' r : R hr : r ∈ S b' : Basis I (Localization (Submonoid.powers r)) (LocalizedModule (Submonoid.powers r) M) h✝ : ∀ (i : I), (LocalizedModule.lift (Submonoid.powers r) f ⋯) (b' i) = b i this : Nontrivial (Localization (Submonoid.powers r)) ⊢ ∃ r ∈ S, Free (Localization (Submonoid.powers r)) (LocalizedModule (Submonoid.powers r) M) ∧ finrank (Localization (Submonoid.powers r)) (LocalizedModule (Submonoid.powers r) M) = finrank Rₛ M'
c12b2df14689aeb4
CharP.quotient'
Mathlib/Algebra/CharP/Quotient.lean
theorem quotient' {R : Type*} [CommRing R] (p : ℕ) [CharP R p] (I : Ideal R) (h : ∀ x : ℕ, (x : R) ∈ I → (x : R) = 0) : CharP (R ⧸ I) p := ⟨fun x => by rw [← cast_eq_zero_iff R p x, ← map_natCast (Ideal.Quotient.mk I)] refine Ideal.Quotient.eq.trans (?_ : ↑x - 0 ∈ I ↔ _) rw [sub_zero] exact ⟨h x, fun h' => h'.symm ▸ I.zero_mem⟩⟩
R : Type u_1 inst✝¹ : CommRing R p : ℕ inst✝ : CharP R p I : Ideal R h : ∀ (x : ℕ), ↑x ∈ I → ↑x = 0 x : ℕ ⊢ ↑x = 0 ↔ p ∣ x
rw [← cast_eq_zero_iff R p x, ← map_natCast (Ideal.Quotient.mk I)]
R : Type u_1 inst✝¹ : CommRing R p : ℕ inst✝ : CharP R p I : Ideal R h : ∀ (x : ℕ), ↑x ∈ I → ↑x = 0 x : ℕ ⊢ (Ideal.Quotient.mk I) ↑x = 0 ↔ ↑x = 0
b01577067e6efc09
CategoryTheory.Adjunction.map_μ_comp_counit_app_tensor
Mathlib/CategoryTheory/Monoidal/Functor.lean
@[reassoc] lemma map_μ_comp_counit_app_tensor (X Y : D) : F.map (μ G X Y) ≫ adj.counit.app (X ⊗ Y) = δ F _ _ ≫ (adj.counit.app X ⊗ adj.counit.app Y)
C : Type u₁ inst✝⁶ : Category.{v₁, u₁} C inst✝⁵ : MonoidalCategory C D : Type u₂ inst✝⁴ : Category.{v₂, u₂} D inst✝³ : MonoidalCategory D F : C ⥤ D G : D ⥤ C adj : F ⊣ G inst✝² : F.OplaxMonoidal inst✝¹ : G.LaxMonoidal inst✝ : adj.IsMonoidal X Y : D ⊢ F.map (μ G X Y) ≫ adj.counit.app (X ⊗ Y) = δ F (G.obj X) (G.obj Y) ≫ (adj.counit.app X ⊗ adj.counit.app Y)
rw [IsMonoidal.leftAdjoint_μ (adj := adj), homEquiv_unit]
C : Type u₁ inst✝⁶ : Category.{v₁, u₁} C inst✝⁵ : MonoidalCategory C D : Type u₂ inst✝⁴ : Category.{v₂, u₂} D inst✝³ : MonoidalCategory D F : C ⥤ D G : D ⥤ C adj : F ⊣ G inst✝² : F.OplaxMonoidal inst✝¹ : G.LaxMonoidal inst✝ : adj.IsMonoidal X Y : D ⊢ F.map (adj.unit.app (G.obj X ⊗ G.obj Y) ≫ G.map (δ F (G.obj X) (G.obj Y) ≫ (adj.counit.app X ⊗ adj.counit.app Y))) ≫ adj.counit.app (X ⊗ Y) = δ F (G.obj X) (G.obj Y) ≫ (adj.counit.app X ⊗ adj.counit.app Y)
278e3a0dbc956dd2
ModuleCat.Tilde.exists_const
Mathlib/AlgebraicGeometry/Modules/Tilde.lean
theorem exists_const (U) (s : (tildeInModuleCat M).obj (op U)) (x : PrimeSpectrum.Top R) (hx : x ∈ U) : ∃ (V : Opens (PrimeSpectrum.Top R)) (_ : x ∈ V) (i : V ⟶ U) (f : M) (g : R) (hg : _), const M f g V hg = (tildeInModuleCat M).map i.op s := let ⟨V, hxV, iVU, f, g, hfg⟩ := s.2 ⟨x, hx⟩ ⟨V, hxV, iVU, f, g, fun y hyV => (hfg ⟨y, hyV⟩).1, Subtype.eq <| funext fun y => by obtain ⟨h1, (h2 : g • s.1 ⟨y, _⟩ = LocalizedModule.mk f 1)⟩ := hfg y exact show LocalizedModule.mk f ⟨g, by exact h1⟩ = s.1 (iVU y) by set x := s.1 (iVU y); change g • x = _ at h2; clear_value x induction x using LocalizedModule.induction_on with | h a b => rw [LocalizedModule.smul'_mk, LocalizedModule.mk_eq] at h2 obtain ⟨c, hc⟩ := h2 exact LocalizedModule.mk_eq.mpr ⟨c, by simpa using hc.symm⟩⟩
R : Type u inst✝ : CommRing R M : ModuleCat R U : Opens ↑(PrimeSpectrum.Top R) s : ↑(M.tildeInModuleCat.obj (op U)) x✝ : ↑(PrimeSpectrum.Top R) hx : x✝ ∈ U V : Opens ↑(PrimeSpectrum.Top R) hxV : ↑⟨x✝, hx⟩ ∈ V iVU : V ⟶ unop (op U) f : ↑M g : R hfg : ∀ (x : ↥V), g ∉ (↑x).asIdeal ∧ g • (fun x => ↑s (iVU x)) x = (LocalizedModule.mkLinearMap (↑x).asIdeal.primeCompl ↑M) f y : ↥(unop (op V)) h1 : g ∉ (↑y).asIdeal x : Localizations M ↑(iVU y) h2 : g • x = LocalizedModule.mk f 1 ⊢ LocalizedModule.mk f ⟨g, h1⟩ = x
induction x using LocalizedModule.induction_on with | h a b => rw [LocalizedModule.smul'_mk, LocalizedModule.mk_eq] at h2 obtain ⟨c, hc⟩ := h2 exact LocalizedModule.mk_eq.mpr ⟨c, by simpa using hc.symm⟩
no goals
c4a16fba34ea7eba
Fin.Iio_last_eq_map
Mathlib/Data/Fintype/Fin.lean
theorem Iio_last_eq_map : Iio (Fin.last n) = Finset.univ.map Fin.castSuccEmb := coe_injective <| by ext; simp [lt_def]
n : ℕ ⊢ ↑(Iio (last n)) = ↑(map castSuccEmb univ)
ext
case h n : ℕ x✝ : Fin (n + 1) ⊢ x✝ ∈ ↑(Iio (last n)) ↔ x✝ ∈ ↑(map castSuccEmb univ)
5a0290270028545b
CategoryTheory.Adjunction.CommShift.compatibilityUnit_right
Mathlib/CategoryTheory/Shift/Adjunction.lean
/-- Given an adjunction `adj : F ⊣ G`, `a` in `A` and commutation isomorphisms `e₁ : shiftFunctor C a ⋙ F ≅ F ⋙ shiftFunctor D a` and `e₂ : shiftFunctor D a ⋙ G ≅ G ⋙ shiftFunctor C a`, if `e₁` and `e₂` are compatible with the unit of the adjunction `adj`, then we get a formula for `e₂.inv` in terms of `e₁`. -/ lemma compatibilityUnit_right (h : CompatibilityUnit adj e₁ e₂) (Y : D) : e₂.inv.app Y = adj.unit.app _ ≫ G.map (e₁.hom.app _) ≫ G.map ((adj.counit.app _)⟦a⟧')
C : Type u_1 D : Type u_2 inst✝⁴ : Category.{u_4, u_1} C inst✝³ : Category.{u_5, u_2} D F : C ⥤ D G : D ⥤ C adj : F ⊣ G A : Type u_3 inst✝² : AddMonoid A inst✝¹ : HasShift C A inst✝ : HasShift D A a : A e₁ : shiftFunctor C a ⋙ F ≅ F ⋙ shiftFunctor D a e₂ : shiftFunctor D a ⋙ G ≅ G ⋙ shiftFunctor C a h : CompatibilityUnit adj e₁ e₂ Y : D ⊢ e₂.inv.app Y = adj.unit.app ((shiftFunctor C a).obj (G.obj Y)) ≫ G.map (e₁.hom.app (G.obj Y)) ≫ G.map ((shiftFunctor D a).map (adj.counit.app Y))
have := h (G.obj Y)
C : Type u_1 D : Type u_2 inst✝⁴ : Category.{u_4, u_1} C inst✝³ : Category.{u_5, u_2} D F : C ⥤ D G : D ⥤ C adj : F ⊣ G A : Type u_3 inst✝² : AddMonoid A inst✝¹ : HasShift C A inst✝ : HasShift D A a : A e₁ : shiftFunctor C a ⋙ F ≅ F ⋙ shiftFunctor D a e₂ : shiftFunctor D a ⋙ G ≅ G ⋙ shiftFunctor C a h : CompatibilityUnit adj e₁ e₂ Y : D this : (shiftFunctor C a).map (adj.unit.app (G.obj Y)) = adj.unit.app ((shiftFunctor C a).obj (G.obj Y)) ≫ G.map (e₁.hom.app (G.obj Y)) ≫ e₂.hom.app (F.obj (G.obj Y)) ⊢ e₂.inv.app Y = adj.unit.app ((shiftFunctor C a).obj (G.obj Y)) ≫ G.map (e₁.hom.app (G.obj Y)) ≫ G.map ((shiftFunctor D a).map (adj.counit.app Y))
929e4c22cc2da90b
Topology.IsScott.scottHausdorff_le
Mathlib/Topology/Order/ScottTopology.lean
lemma IsScott.scottHausdorff_le [IsScott α univ] : scottHausdorff α univ ≤ ‹TopologicalSpace α›
α : Type u_1 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : IsScott α univ ⊢ scottHausdorff α univ ≤ inst✝¹
rw [IsScott.topology_eq α univ, scott]
α : Type u_1 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : IsScott α univ ⊢ scottHausdorff α univ ≤ upperSet α ⊔ scottHausdorff α univ
737e480bc3aa8fec
SimpleGraph.ComponentCompl.infinite_iff_in_all_ranges
Mathlib/Combinatorics/SimpleGraph/Ends/Defs.lean
theorem infinite_iff_in_all_ranges {K : Finset V} (C : G.ComponentCompl K) : C.supp.Infinite ↔ ∀ (L) (h : K ⊆ L), ∃ D : G.ComponentCompl L, D.hom h = C
case mpr V : Type u G : SimpleGraph V K : Finset V C : G.ComponentCompl ↑K h : ∀ (L : Finset V) (h : K ⊆ L), ∃ D, hom h D = C Cfin : C.supp.Finite ⊢ False
obtain ⟨D, e⟩ := h (K ∪ Cfin.toFinset) Finset.subset_union_left
case mpr.intro V : Type u G : SimpleGraph V K : Finset V C : G.ComponentCompl ↑K h : ∀ (L : Finset V) (h : K ⊆ L), ∃ D, hom h D = C Cfin : C.supp.Finite D : G.ComponentCompl ↑(K ∪ Cfin.toFinset) e : hom ⋯ D = C ⊢ False
7750b531648eedbf
Subfield.relrank_eq_rank_of_le
Mathlib/FieldTheory/Relrank.lean
theorem relrank_eq_rank_of_le (h : A ≤ B) : relrank A B = Module.rank A (extendScalars h)
E : Type v inst✝ : Field E A B : Subfield E h : A ≤ B this : A ⊓ B = A ⊢ Module.rank ↥(A ⊓ B) ↥(extendScalars ⋯) = Module.rank ↥A ↥(extendScalars h)
congr!
no goals
0f38d756ef028952
List.head_attach
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Attach.lean
theorem head_attach {xs : List α} (h) : xs.attach.head h = ⟨xs.head (by simpa using h), head_mem (by simpa using h)⟩
case nil α : Type u_1 h : [].attach ≠ [] ⊢ [].attach.head h = ⟨[].head ⋯, ⋯⟩
simp at h
no goals
51ffd11ee9e3ea75
finrank_span_singleton
Mathlib/LinearAlgebra/FiniteDimensional/Defs.lean
theorem finrank_span_singleton {v : V} (hv : v ≠ 0) : finrank K (K ∙ v) = 1
case h K : Type u V : Type v inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V v : V hv : v ≠ 0 ⊢ ↑⟨v, ⋯⟩ ≠ ↑0
simp [hv]
no goals
48480f47f7aa4f58
ProbabilityTheory.integrable_rpow_abs_mul_exp_add_of_integrable_exp_mul
Mathlib/Probability/Moments/IntegrableExpMul.lean
/-- If `exp ((v + t) * X)` and `exp ((v - t) * X)` are integrable then for nonnegative `p : ℝ` and any `x ∈ [0, |t|)`, `|X| ^ p * exp (v * X + x * |X|)` is integrable. -/ lemma integrable_rpow_abs_mul_exp_add_of_integrable_exp_mul {x : ℝ} (h_int_pos : Integrable (fun ω ↦ exp ((v + t) * X ω)) μ) (h_int_neg : Integrable (fun ω ↦ exp ((v - t) * X ω)) μ) (h_nonneg : 0 ≤ x) (hx : x < |t|) {p : ℝ} (hp : 0 ≤ p) : Integrable (fun a ↦ |X a| ^ p * exp (v * X a + x * |X a|)) μ
Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω t v x : ℝ h_int_pos : Integrable (fun ω => rexp ((v + t) * X ω)) μ h_int_neg : Integrable (fun ω => rexp ((v - t) * X ω)) μ h_nonneg : 0 ≤ x hx : x < |t| p : ℝ hp : 0 ≤ p ht : t ≠ 0 hX : AEMeasurable X μ a : Ω ⊢ |X a| ^ p * rexp (v * X a + x * |X a|) ≤ (p / (|t| - x)) ^ p * rexp (v * X a + |t| * |X a|)
simp_rw [exp_add, mul_comm (exp (v * X a)), ← mul_assoc]
Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω t v x : ℝ h_int_pos : Integrable (fun ω => rexp ((v + t) * X ω)) μ h_int_neg : Integrable (fun ω => rexp ((v - t) * X ω)) μ h_nonneg : 0 ≤ x hx : x < |t| p : ℝ hp : 0 ≤ p ht : t ≠ 0 hX : AEMeasurable X μ a : Ω ⊢ |X a| ^ p * rexp (x * |X a|) * rexp (v * X a) ≤ (p / (|t| - x)) ^ p * rexp (|t| * |X a|) * rexp (v * X a)
6d408f5eb4922de2
CategoryTheory.IsGrothendieckAbelian.generatingMonomorphisms.lt_largerSubobject
Mathlib/CategoryTheory/Abelian/GrothendieckCategory/EnoughInjectives.lean
lemma lt_largerSubobject (A : Subobject X) (hA : A ≠ ⊤) : A < largerSubobject hG A
C : Type u inst✝¹ : Category.{v, u} C G : C inst✝ : Abelian C hG : IsSeparator G X : C A : Subobject X hA : A ≠ ⊤ ⊢ A < ⋯.choose
exact (exists_larger_subobject hG A hA).choose_spec.choose
no goals
c90847f45ced9dc3
BitVec.getMsbD_rotateRight_of_lt
Mathlib/.lake/packages/lean4/src/lean/Init/Data/BitVec/Lemmas.lean
theorem getMsbD_rotateRight_of_lt {w n m : Nat} {x : BitVec w} (hr : m < w) : (x.rotateRight m).getMsbD n = (decide (n < w) && (if (n < m % w) then x.getMsbD ((w + n - m % w) % w) else x.getMsbD (n - m % w)))
case neg n m w : Nat x : BitVec (w + 1) hr : m < w + 1 h : ¬n < m ⊢ (decide (n < w + 1) && x.getMsbD (n - m)) = (decide (n < w + 1) && if n < m % (w + 1) then x.getMsbD ((w + 1 + n - m % (w + 1)) % (w + 1)) else x.getMsbD (n - m % (w + 1)))
by_cases h₁ : n < w + 1
case pos n m w : Nat x : BitVec (w + 1) hr : m < w + 1 h : ¬n < m h₁ : n < w + 1 ⊢ (decide (n < w + 1) && x.getMsbD (n - m)) = (decide (n < w + 1) && if n < m % (w + 1) then x.getMsbD ((w + 1 + n - m % (w + 1)) % (w + 1)) else x.getMsbD (n - m % (w + 1))) case neg n m w : Nat x : BitVec (w + 1) hr : m < w + 1 h : ¬n < m h₁ : ¬n < w + 1 ⊢ (decide (n < w + 1) && x.getMsbD (n - m)) = (decide (n < w + 1) && if n < m % (w + 1) then x.getMsbD ((w + 1 + n - m % (w + 1)) % (w + 1)) else x.getMsbD (n - m % (w + 1)))
446d3dd4304c7f2b
le_mul_inv_iff_le
Mathlib/Algebra/Order/Group/Unbundled/Basic.lean
theorem le_mul_inv_iff_le : 1 ≤ a * b⁻¹ ↔ b ≤ a
α : Type u inst✝² : Group α inst✝¹ : LE α inst✝ : MulRightMono α a b : α ⊢ 1 ≤ a * b⁻¹ ↔ b ≤ a
rw [← mul_le_mul_iff_right b, one_mul, inv_mul_cancel_right]
no goals
a94cf124ea788b34
ContinuousLinearEquiv.comp_right_differentiable_iff
Mathlib/Analysis/Calculus/FDeriv/Equiv.lean
theorem comp_right_differentiable_iff {f : F → G} : Differentiable 𝕜 (f ∘ iso) ↔ Differentiable 𝕜 f
𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace 𝕜 G iso : E ≃L[𝕜] F f : F → G ⊢ Differentiable 𝕜 (f ∘ ⇑iso) ↔ Differentiable 𝕜 f
simp only [← differentiableOn_univ, ← iso.comp_right_differentiableOn_iff, preimage_univ]
no goals
d7f6712b744022bd
Std.DHashMap.Internal.Raw₀.Const.getD_insertMany_empty_list_of_contains_eq_false
Mathlib/.lake/packages/lean4/src/lean/Std/Data/DHashMap/Internal/RawLemmas.lean
theorem getD_insertMany_empty_list_of_contains_eq_false [LawfulBEq α] {l : List (α × β)} {k : α} {fallback : β} (contains_eq_false : (l.map Prod.fst).contains k = false) : getD (insertMany (empty : Raw₀ α (fun _ => β)) l) k fallback = fallback
α : Type u inst✝² : BEq α inst✝¹ : Hashable α β : Type v inst✝ : LawfulBEq α l : List (α × β) k : α fallback : β contains_eq_false : (List.map Prod.fst l).contains k = false ⊢ getD (insertMany empty l).val k fallback = fallback
rw [getD_insertMany_list_of_contains_eq_false _ Raw.WF.empty₀ contains_eq_false]
α : Type u inst✝² : BEq α inst✝¹ : Hashable α β : Type v inst✝ : LawfulBEq α l : List (α × β) k : α fallback : β contains_eq_false : (List.map Prod.fst l).contains k = false ⊢ getD empty k fallback = fallback
6e80c75e01ccffe2
Nat.pos_of_lt_mul_right
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Nat/Lemmas.lean
theorem pos_of_lt_mul_right {a b c : Nat} (h : a < b * c) : 0 < b
a b c : Nat h : 0 < b * c ⊢ 0 < b
exact Nat.pos_of_mul_pos_right h
no goals
d9ecb2226b6aa123
Finset.Ico_union_Ico
Mathlib/Order/Interval/Finset/Basic.lean
theorem Ico_union_Ico {a b c d : α} (h₁ : min a b ≤ max c d) (h₂ : min c d ≤ max a b) : Ico a b ∪ Ico c d = Ico (min a c) (max b d)
α : Type u_2 inst✝¹ : LinearOrder α inst✝ : LocallyFiniteOrder α a b c d : α h₁ : a ⊓ b ≤ c ⊔ d h₂ : c ⊓ d ≤ a ⊔ b ⊢ Ico a b ∪ Ico c d = Ico (a ⊓ c) (b ⊔ d)
rw [← coe_inj, coe_union, coe_Ico, coe_Ico, coe_Ico, Set.Ico_union_Ico h₁ h₂]
no goals
e71eda4f9f3352cf
OrthonormalBasis.det_to_matrix_orthonormalBasis_of_same_orientation
Mathlib/Analysis/InnerProductSpace/Orientation.lean
theorem det_to_matrix_orthonormalBasis_of_same_orientation (h : e.toBasis.orientation = f.toBasis.orientation) : e.toBasis.det f = 1
E : Type u_1 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E ι : Type u_2 inst✝¹ : Fintype ι inst✝ : DecidableEq ι e f : OrthonormalBasis ι ℝ E h : e.toBasis.orientation = f.toBasis.orientation ⊢ e.toBasis.det ⇑f = 1
apply (e.det_to_matrix_orthonormalBasis_real f).resolve_right
E : Type u_1 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E ι : Type u_2 inst✝¹ : Fintype ι inst✝ : DecidableEq ι e f : OrthonormalBasis ι ℝ E h : e.toBasis.orientation = f.toBasis.orientation ⊢ ¬e.toBasis.det ⇑f = -1
851823c3b25d5435
exists_subset_affineIndependent_affineSpan_eq_top
Mathlib/LinearAlgebra/AffineSpace/Independent.lean
theorem exists_subset_affineIndependent_affineSpan_eq_top {s : Set P} (h : AffineIndependent k (fun p => p : s → P)) : ∃ t : Set P, s ⊆ t ∧ AffineIndependent k (fun p => p : t → P) ∧ affineSpan k t = ⊤
case inr.intro k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : Set P p₁ : P h✝ : LinearIndependent k fun (v : ↑((fun p => p -ᵥ p₁) '' (s \ {p₁}))) => ↑v h : LinearIndepOn k id ((fun p => p -ᵥ p₁) '' (s \ {p₁})) hp₁ : p₁ ∈ s bsv : Basis (↑(LinearIndepOn.extend h✝ ⋯)) k V := Basis.extend h✝ hsvi : LinearIndepOn k id (LinearIndepOn.extend h✝ ⋯) hsvt : Submodule.span k (Set.range Subtype.val) = ⊤ hsv : (fun p => p -ᵥ p₁) '' (s \ {p₁}) ⊆ h.extend ⋯ ⊢ ∃ t, s ⊆ t ∧ (AffineIndependent k fun p => ↑p) ∧ affineSpan k t = ⊤
have h0 : ∀ v : V, v ∈ h.extend (Set.subset_univ _) → v ≠ 0 := by intro v hv simpa [bsv] using bsv.ne_zero ⟨v, hv⟩
case inr.intro k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : Set P p₁ : P h✝ : LinearIndependent k fun (v : ↑((fun p => p -ᵥ p₁) '' (s \ {p₁}))) => ↑v h : LinearIndepOn k id ((fun p => p -ᵥ p₁) '' (s \ {p₁})) hp₁ : p₁ ∈ s bsv : Basis (↑(LinearIndepOn.extend h✝ ⋯)) k V := Basis.extend h✝ hsvi : LinearIndepOn k id (LinearIndepOn.extend h✝ ⋯) hsvt : Submodule.span k (Set.range Subtype.val) = ⊤ hsv : (fun p => p -ᵥ p₁) '' (s \ {p₁}) ⊆ h.extend ⋯ h0 : ∀ v ∈ h.extend ⋯, v ≠ 0 ⊢ ∃ t, s ⊆ t ∧ (AffineIndependent k fun p => ↑p) ∧ affineSpan k t = ⊤
122f1472a0ca940a
Std.Tactic.BVDecide.BVExpr.bitblast.denote_blastAppend
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/Bitblast/BVExpr/Circuit/Lemmas/Operations/Append.lean
theorem denote_blastAppend (aig : AIG α) (target : AppendTarget aig newWidth) (assign : α → Bool) : ∀ (idx : Nat) (hidx : idx < newWidth), ⟦ (blastAppend aig target).aig, (blastAppend aig target).vec.get idx hidx, assign ⟧ = if hr : idx < target.rw then ⟦aig, target.rhs.get idx hr, assign⟧ else have := target.h ⟦aig, target.lhs.get (idx - target.rw) (by omega), assign⟧
case mk.refl α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α aig : AIG α assign : α → Bool idx✝ lw✝ rw✝ : Nat lw : aig.RefVec lw✝ rw : aig.RefVec rw✝ hidx✝ : idx✝ < rw✝ + lw✝ ⊢ ⟦assign, { aig := aig, ref := if h : idx✝ < rw✝ then rw.get idx✝ h else lw.get (idx✝ - rw✝) ⋯ }⟧ = if hr : idx✝ < rw✝ then ⟦assign, { aig := aig, ref := rw.get idx✝ hr }⟧ else ⟦assign, { aig := aig, ref := lw.get (idx✝ - rw✝) ⋯ }⟧
split <;> rfl
no goals
6e9237775dc6efbb
Decidable.List.Lex.ne_iff
Mathlib/Data/List/Lex.lean
theorem _root_.Decidable.List.Lex.ne_iff [DecidableEq α] {l₁ l₂ : List α} (H : length l₁ ≤ length l₂) : Lex (· ≠ ·) l₁ l₂ ↔ l₁ ≠ l₂ := ⟨to_ne, fun h => by induction' l₁ with a l₁ IH generalizing l₂ <;> rcases l₂ with - | ⟨b, l₂⟩ · contradiction · apply nil · exact (not_lt_of_ge H).elim (succ_pos _) · by_cases ab : a = b · subst b apply cons exact IH (le_of_succ_le_succ H) (mt (congr_arg _) h) · exact rel ab ⟩
case pos α : Type u inst✝ : DecidableEq α a : α l₁ : List α IH : ∀ {l₂ : List α}, l₁.length ≤ l₂.length → l₁ ≠ l₂ → Lex (fun x1 x2 => x1 ≠ x2) l₁ l₂ b : α l₂ : List α H : (a :: l₁).length ≤ (b :: l₂).length h : a :: l₁ ≠ b :: l₂ ab : a = b ⊢ Lex (fun x1 x2 => x1 ≠ x2) (a :: l₁) (b :: l₂)
subst b
case pos α : Type u inst✝ : DecidableEq α a : α l₁ : List α IH : ∀ {l₂ : List α}, l₁.length ≤ l₂.length → l₁ ≠ l₂ → Lex (fun x1 x2 => x1 ≠ x2) l₁ l₂ l₂ : List α H : (a :: l₁).length ≤ (a :: l₂).length h : a :: l₁ ≠ a :: l₂ ⊢ Lex (fun x1 x2 => x1 ≠ x2) (a :: l₁) (a :: l₂)
a44d94936aa5dbcc
Matrix.BlockTriangular.toBlock_inverse_mul_toBlock_eq_one
Mathlib/LinearAlgebra/Matrix/Block.lean
theorem BlockTriangular.toBlock_inverse_mul_toBlock_eq_one [LinearOrder α] [Invertible M] (hM : BlockTriangular M b) (k : α) : ((M⁻¹.toBlock (fun i => b i < k) fun i => b i < k) * M.toBlock (fun i => b i < k) fun i => b i < k) = 1
case a α : Type u_1 m : Type u_3 R : Type v M : Matrix m m R b : m → α inst✝⁴ : CommRing R inst✝³ : DecidableEq m inst✝² : Fintype m inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i < k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 i : { a // ¬p a } j : { a // p a } ⊢ M.toBlock (fun i => ¬p i) p i j = 0 i j
simpa using hM (lt_of_lt_of_le j.2 (le_of_not_lt i.2))
no goals
f05aada380a2baba
convex_segment
Mathlib/Analysis/Convex/Basic.lean
theorem convex_segment (x y : E) : Convex 𝕜 [x -[𝕜] y]
𝕜 : Type u_1 E : Type u_2 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : Module 𝕜 E x y : E ⊢ Convex 𝕜 [x-[𝕜]y]
rintro p ⟨ap, bp, hap, hbp, habp, rfl⟩ q ⟨aq, bq, haq, hbq, habq, rfl⟩ a b ha hb hab
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : Module 𝕜 E x y : E ap bp : 𝕜 hap : 0 ≤ ap hbp : 0 ≤ bp habp : ap + bp = 1 aq bq : 𝕜 haq : 0 ≤ aq hbq : 0 ≤ bq habq : aq + bq = 1 a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ a • (ap • x + bp • y) + b • (aq • x + bq • y) ∈ [x-[𝕜]y]
757d93ea383d1ef8
Nat.shiftLeft'_tt_eq_mul_pow
Mathlib/Data/Nat/Size.lean
theorem shiftLeft'_tt_eq_mul_pow (m) : ∀ n, shiftLeft' true m n + 1 = (m + 1) * 2 ^ n | 0 => by simp [shiftLeft', pow_zero, Nat.one_mul] | k + 1 => by rw [shiftLeft', bit_val, Bool.toNat_true, add_assoc, ← Nat.mul_add_one, shiftLeft'_tt_eq_mul_pow m k, mul_left_comm, mul_comm 2, pow_succ]
m : ℕ ⊢ shiftLeft' true m 0 + 1 = (m + 1) * 2 ^ 0
simp [shiftLeft', pow_zero, Nat.one_mul]
no goals
f4c329a32e4a1345
DifferentiableWithinAt.rpow
Mathlib/Analysis/SpecialFunctions/Pow/Deriv.lean
theorem DifferentiableWithinAt.rpow (hf : DifferentiableWithinAt ℝ f s x) (hg : DifferentiableWithinAt ℝ g s x) (h : f x ≠ 0) : DifferentiableWithinAt ℝ (fun x => f x ^ g x) s x
E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E f g : E → ℝ x : E s : Set E hf : DifferentiableWithinAt ℝ f s x hg : DifferentiableWithinAt ℝ g s x h : f x ≠ 0 ⊢ DifferentiableWithinAt ℝ (fun x => f x ^ g x) s x
exact (differentiableAt_rpow_of_ne (f x, g x) h).comp_differentiableWithinAt x (hf.prod hg)
no goals
1ed5555add232720
not_isOfFinOrder_of_injective_pow
Mathlib/GroupTheory/OrderOfElement.lean
theorem not_isOfFinOrder_of_injective_pow {x : G} (h : Injective fun n : ℕ => x ^ n) : ¬IsOfFinOrder x
G : Type u_1 inst✝ : Monoid G x : G h : Injective fun n => x ^ n n : ℕ hn_pos : 0 < n hnx : x ^ n = 1 ⊢ False
rw [← pow_zero x] at hnx
G : Type u_1 inst✝ : Monoid G x : G h : Injective fun n => x ^ n n : ℕ hn_pos : 0 < n hnx : x ^ n = x ^ 0 ⊢ False
ef4bd2a52e1e4d05
SimpleGraph.Walk.IsCycle.snd_ne_penultimate
Mathlib/Combinatorics/SimpleGraph/Path.lean
lemma IsCycle.snd_ne_penultimate {p : G.Walk u u} (hp : p.IsCycle) : p.snd ≠ p.penultimate
V : Type u G : SimpleGraph V u : V p : G.Walk u u hp : p.IsCycle h : p.snd = p.penultimate ⊢ False
have := hp.three_le_length
V : Type u G : SimpleGraph V u : V p : G.Walk u u hp : p.IsCycle h : p.snd = p.penultimate this : 3 ≤ p.length ⊢ False
0a5276b29b15aedb
Int.units_ne_iff_eq_neg
Mathlib/Algebra/Ring/Int/Units.lean
lemma units_ne_iff_eq_neg {u v : ℤˣ} : u ≠ v ↔ u = -v
u v : ℤˣ ⊢ u ≠ v ↔ u = -v
simpa only [Ne, Units.ext_iff] using isUnit_ne_iff_eq_neg u.isUnit v.isUnit
no goals
dcd8c3a043f9047e
Real.toNNReal_rpow_of_nonneg
Mathlib/Analysis/SpecialFunctions/Pow/NNReal.lean
theorem _root_.Real.toNNReal_rpow_of_nonneg {x y : ℝ} (hx : 0 ≤ x) : Real.toNNReal (x ^ y) = Real.toNNReal x ^ y
x y : ℝ hx : 0 ≤ x ⊢ (↑x.toNNReal ^ y).toNNReal = x.toNNReal ^ y
rw [← NNReal.coe_rpow, Real.toNNReal_coe]
no goals
3a7adf9d465f234e
PartENat.pos_iff_one_le
Mathlib/Data/Nat/PartENat.lean
theorem pos_iff_one_le {x : PartENat} : 0 < x ↔ 1 ≤ x := PartENat.casesOn x (by simp only [le_top, natCast_lt_top, ← @Nat.cast_zero PartENat]) fun n => by rw [← Nat.cast_zero, ← Nat.cast_one, PartENat.coe_lt_coe, PartENat.coe_le_coe] rfl
x : PartENat n : ℕ ⊢ 0 < n ↔ 1 ≤ n
rfl
no goals
1ba41efab5b17963
Real.quadratic_root_cos_pi_div_five
Mathlib/Analysis/SpecialFunctions/Trigonometric/Basic.lean
theorem quadratic_root_cos_pi_div_five : letI c := cos (π / 5) 4 * c ^ 2 - 2 * c - 1 = 0
θ : ℝ := π / 5 hθ : θ = π / 5 c : ℝ := cos θ s : ℝ := sin θ ⊢ ∀ (n : ℤ), ↑n * π ≠ π / 5
intro n hn
θ : ℝ := π / 5 hθ : θ = π / 5 c : ℝ := cos θ s : ℝ := sin θ n : ℤ hn : ↑n * π = π / 5 ⊢ False
9a015197b0eb09bb
CategoryTheory.Localization.Construction.morphismProperty_is_top
Mathlib/CategoryTheory/Localization/Construction.lean
theorem morphismProperty_is_top (P : MorphismProperty W.Localization) [P.IsStableUnderComposition] (hP₁ : ∀ ⦃X Y : C⦄ (f : X ⟶ Y), P (W.Q.map f)) (hP₂ : ∀ ⦃X Y : C⦄ (w : X ⟶ Y) (hw : W w), P (wInv w hw)) : P = ⊤
case h.h.h.a.mp C : Type uC inst✝¹ : Category.{uC', uC} C W : MorphismProperty C P : MorphismProperty W.Localization inst✝ : P.IsStableUnderComposition hP₁ : ∀ ⦃X Y : C⦄ (f : X ⟶ Y), P (W.Q.map f) hP₂ : ∀ ⦃X Y : C⦄ (w : X ⟶ Y) (hw : W w), P (wInv w hw) X Y : W.Localization f : X ⟶ Y a✝ : P f ⊢ ⊤ f
apply MorphismProperty.top_apply
no goals
bfd1f03091fbe383
Std.Tactic.BVDecide.BVExpr.bitblast.blastUdiv.denote_blastDivSubtractShift_q
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/Bitblast/BVExpr/Circuit/Lemmas/Operations/Udiv.lean
theorem denote_blastDivSubtractShift_q (aig : AIG α) (assign : α → Bool) (lhs rhs : BitVec w) (falseRef trueRef : AIG.Ref aig) (n d : AIG.RefVec aig w) (wn wr : Nat) (q r : AIG.RefVec aig w) (qbv rbv : BitVec w) (hleft : ∀ (idx : Nat) (hidx : idx < w), ⟦aig, n.get idx hidx, assign⟧ = lhs.getLsbD idx) (hright : ∀ (idx : Nat) (hidx : idx < w), ⟦aig, d.get idx hidx, assign⟧ = rhs.getLsbD idx) (hq : ∀ (idx : Nat) (hidx : idx < w), ⟦aig, q.get idx hidx, assign⟧ = qbv.getLsbD idx) (hr : ∀ (idx : Nat) (hidx : idx < w), ⟦aig, r.get idx hidx, assign⟧ = rbv.getLsbD idx) (hfalse : ⟦aig, falseRef, assign⟧ = false) (htrue : ⟦aig, trueRef, assign⟧ = true) : ∀ (idx : Nat) (hidx : idx < w), ⟦ (blastDivSubtractShift aig falseRef trueRef n d wn wr q r).aig, (blastDivSubtractShift aig falseRef trueRef n d wn wr q r).q.get idx hidx, assign ⟧ = (BitVec.divSubtractShift { n := lhs, d := rhs } { wn := wn, wr := wr, q := qbv, r := rbv }).q.getLsbD idx
case hright α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α w : Nat aig : AIG α assign : α → Bool lhs rhs : BitVec w falseRef trueRef : aig.Ref n d : aig.RefVec w wn wr : Nat q r : aig.RefVec w qbv rbv : BitVec w hleft : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := n.get idx hidx }⟧ = lhs.getLsbD idx hright : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := d.get idx hidx }⟧ = rhs.getLsbD idx hq : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := q.get idx hidx }⟧ = qbv.getLsbD idx hr : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := r.get idx hidx }⟧ = rbv.getLsbD idx hfalse : ⟦assign, { aig := aig, ref := falseRef }⟧ = false htrue : ⟦assign, { aig := aig, ref := trueRef }⟧ = true idx✝ : Nat hidx✝ : idx✝ < w idx : Nat hidx : idx < w ⊢ ⟦assign, { aig := (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig, ref := { gate := ({ lhs := (((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := (((d.cast ⋯).cast ⋯).cast ⋯).cast ⋯ }.rhs.get idx hidx).gate, hgate := ?hright } }⟧ = rhs.getLsbD idx case hright α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α w : Nat aig : AIG α assign : α → Bool lhs rhs : BitVec w falseRef trueRef : aig.Ref n d : aig.RefVec w wn wr : Nat q r : aig.RefVec w qbv rbv : BitVec w hleft : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := n.get idx hidx }⟧ = lhs.getLsbD idx hright : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := d.get idx hidx }⟧ = rhs.getLsbD idx hq : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := q.get idx hidx }⟧ = qbv.getLsbD idx hr : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := r.get idx hidx }⟧ = rbv.getLsbD idx hfalse : ⟦assign, { aig := aig, ref := falseRef }⟧ = false htrue : ⟦assign, { aig := aig, ref := trueRef }⟧ = true idx✝ : Nat hidx✝ : idx✝ < w idx : Nat hidx : idx < w ⊢ ({ lhs := (((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := (((d.cast ⋯).cast ⋯).cast ⋯).cast ⋯ }.rhs.get idx hidx).gate < (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig.decls.size
rw [AIG.LawfulVecOperator.denote_mem_prefix (f := blastShiftConcat)]
case hright α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α w : Nat aig : AIG α assign : α → Bool lhs rhs : BitVec w falseRef trueRef : aig.Ref n d : aig.RefVec w wn wr : Nat q r : aig.RefVec w qbv rbv : BitVec w hleft : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := n.get idx hidx }⟧ = lhs.getLsbD idx hright : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := d.get idx hidx }⟧ = rhs.getLsbD idx hq : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := q.get idx hidx }⟧ = qbv.getLsbD idx hr : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := r.get idx hidx }⟧ = rbv.getLsbD idx hfalse : ⟦assign, { aig := aig, ref := falseRef }⟧ = false htrue : ⟦assign, { aig := aig, ref := trueRef }⟧ = true idx✝ : Nat hidx✝ : idx✝ < w idx : Nat hidx : idx < w ⊢ ⟦assign, { aig := (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig, ref := { gate := ({ lhs := (((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := (((d.cast ⋯).cast ⋯).cast ⋯).cast ⋯ }.rhs.get idx hidx).gate, hgate := ?hright } }⟧ = rhs.getLsbD idx case hright α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α w : Nat aig : AIG α assign : α → Bool lhs rhs : BitVec w falseRef trueRef : aig.Ref n d : aig.RefVec w wn wr : Nat q r : aig.RefVec w qbv rbv : BitVec w hleft : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := n.get idx hidx }⟧ = lhs.getLsbD idx hright : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := d.get idx hidx }⟧ = rhs.getLsbD idx hq : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := q.get idx hidx }⟧ = qbv.getLsbD idx hr : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := r.get idx hidx }⟧ = rbv.getLsbD idx hfalse : ⟦assign, { aig := aig, ref := falseRef }⟧ = false htrue : ⟦assign, { aig := aig, ref := trueRef }⟧ = true idx✝ : Nat hidx✝ : idx✝ < w idx : Nat hidx : idx < w ⊢ ({ lhs := (((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := (((d.cast ⋯).cast ⋯).cast ⋯).cast ⋯ }.rhs.get idx hidx).gate < (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig.decls.size
11112d18501f0fd9
Std.Tactic.BVDecide.BVExpr.bitblast.blastZeroExtend.go_denote_mem_prefix
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/Bitblast/BVExpr/Circuit/Lemmas/Operations/ZeroExtend.lean
theorem go_denote_mem_prefix (aig : AIG α) (w : Nat) (input : AIG.RefVec aig w) (newWidth curr : Nat) (hcurr : curr ≤ newWidth) (s : AIG.RefVec aig curr) (start : Nat) (hstart) : ⟦ (go aig w input newWidth curr hcurr s).aig, ⟨start, by apply Nat.lt_of_lt_of_le; exact hstart; apply go_le_size⟩, assign ⟧ = ⟦aig, ⟨start, hstart⟩, assign⟧
case hprefix.size_le α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α assign : α → Bool aig : AIG α w : Nat input : aig.RefVec w newWidth curr : Nat hcurr : curr ≤ newWidth s : aig.RefVec curr start : Nat hstart : start < aig.decls.size ⊢ { aig := aig, ref := { gate := start, hgate := hstart } }.aig.decls.size ≤ (go aig w input newWidth curr hcurr s).aig.decls.size
apply go_le_size
no goals
1678e18958c48989
CategoryTheory.ShortComplex.exact_iff_surjective_abToCycles
Mathlib/Algebra/Homology/ShortComplex/Ab.lean
lemma exact_iff_surjective_abToCycles : S.Exact ↔ Function.Surjective S.abToCycles
S : ShortComplex Ab ⊢ S.Exact ↔ Function.Surjective ⇑S.abToCycles
rw [S.abLeftHomologyData.exact_iff_epi_f', abLeftHomologyData_f', AddCommGrp.epi_iff_surjective]
S : ShortComplex Ab ⊢ Function.Surjective ⇑(ConcreteCategory.hom (AddCommGrp.ofHom S.abToCycles)) ↔ Function.Surjective ⇑S.abToCycles
41fd2613a593a33d
Finset.noncommProd_induction
Mathlib/Data/Finset/NoncommProd.lean
@[to_additive] lemma noncommProd_induction (s : Finset α) (f : α → β) (comm) (p : β → Prop) (hom : ∀ a b, p a → p b → p (a * b)) (unit : p 1) (base : ∀ x ∈ s, p (f x)) : p (s.noncommProd f comm)
α : Type u_3 β : Type u_4 inst✝ : Monoid β s : Finset α f : α → β comm : (↑s).Pairwise (Commute on f) p : β → Prop hom : ∀ (a b : β), p a → p b → p (a * b) unit : p 1 base : ∀ x ∈ s, p (f x) ⊢ p (s.noncommProd f comm)
refine Multiset.noncommProd_induction _ _ _ hom unit fun b hb ↦ ?_
α : Type u_3 β : Type u_4 inst✝ : Monoid β s : Finset α f : α → β comm : (↑s).Pairwise (Commute on f) p : β → Prop hom : ∀ (a b : β), p a → p b → p (a * b) unit : p 1 base : ∀ x ∈ s, p (f x) b : β hb : b ∈ Multiset.map f s.val ⊢ p b
a8fc2db953f6e503
MeasureTheory.hitting_le_iff_of_exists
Mathlib/Probability/Process/HittingTime.lean
theorem hitting_le_iff_of_exists [WellFoundedLT ι] {m : ι} (h_exists : ∃ j ∈ Set.Icc n m, u j ω ∈ s) : hitting u s n m ω ≤ i ↔ ∃ j ∈ Set.Icc n i, u j ω ∈ s
case mpr.intro.intro Ω : Type u_1 β : Type u_2 ι : Type u_3 inst✝¹ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω : Ω inst✝ : WellFoundedLT ι m : ι h_exists : ∃ j ∈ Set.Icc n m, u j ω ∈ s h' : ∃ j ∈ Set.Icc n i, u j ω ∈ s k : ι hk₁ : k ∈ Set.Icc n (m ⊓ i) hk₂ : u k ω ∈ s ⊢ hitting u s n m ω ≤ i
refine le_trans ?_ (hk₁.2.trans (min_le_right _ _))
case mpr.intro.intro Ω : Type u_1 β : Type u_2 ι : Type u_3 inst✝¹ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω : Ω inst✝ : WellFoundedLT ι m : ι h_exists : ∃ j ∈ Set.Icc n m, u j ω ∈ s h' : ∃ j ∈ Set.Icc n i, u j ω ∈ s k : ι hk₁ : k ∈ Set.Icc n (m ⊓ i) hk₂ : u k ω ∈ s ⊢ hitting u s n m ω ≤ k
6e57d46d60229728
PartialHomeomorph.contDiffAt_symm
Mathlib/Analysis/Calculus/ContDiff/Operations.lean
theorem PartialHomeomorph.contDiffAt_symm [CompleteSpace E] (f : PartialHomeomorph E F) {f₀' : E ≃L[𝕜] F} {a : F} (ha : a ∈ f.target) (hf₀' : HasFDerivAt f (f₀' : E →L[𝕜] F) (f.symm a)) (hf : ContDiffAt 𝕜 n f (f.symm a)) : ContDiffAt 𝕜 n f.symm a
𝕜 : Type u_1 inst✝⁵ : NontriviallyNormedField 𝕜 E : Type uE inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace 𝕜 E F : Type uF inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F n✝ : WithTop ℕ∞ inst✝ : CompleteSpace E f : PartialHomeomorph E F f₀' : E ≃L[𝕜] F a : F ha : a ∈ f.target hf₀' : HasFDerivAt (↑f) (↑f₀') (↑f.symm a) n : ℕ IH : ContDiffAt 𝕜 (↑↑n) (↑f) (↑f.symm a) → ContDiffAt 𝕜 (↑↑n) (↑f.symm) a hf : ContDiffAt 𝕜 (↑↑n.succ) (↑f) (↑f.symm a) f' : E → E →L[𝕜] F hf' : ContDiffAt 𝕜 (↑n) f' (↑f.symm a) u : Set E hu : u ∈ 𝓝 (↑f.symm a) hff' : ∀ x ∈ u, HasFDerivAt (↑f) (f' x) x eq_f₀' : f' (↑f.symm a) = ↑f₀' h_deriv₁ : ContDiffAt 𝕜 (↑n) inverse (f' (↑f.symm a)) ⊢ ContDiffAt 𝕜 (↑n) (↑f.symm) a
refine IH (hf.of_le ?_)
𝕜 : Type u_1 inst✝⁵ : NontriviallyNormedField 𝕜 E : Type uE inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace 𝕜 E F : Type uF inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F n✝ : WithTop ℕ∞ inst✝ : CompleteSpace E f : PartialHomeomorph E F f₀' : E ≃L[𝕜] F a : F ha : a ∈ f.target hf₀' : HasFDerivAt (↑f) (↑f₀') (↑f.symm a) n : ℕ IH : ContDiffAt 𝕜 (↑↑n) (↑f) (↑f.symm a) → ContDiffAt 𝕜 (↑↑n) (↑f.symm) a hf : ContDiffAt 𝕜 (↑↑n.succ) (↑f) (↑f.symm a) f' : E → E →L[𝕜] F hf' : ContDiffAt 𝕜 (↑n) f' (↑f.symm a) u : Set E hu : u ∈ 𝓝 (↑f.symm a) hff' : ∀ x ∈ u, HasFDerivAt (↑f) (f' x) x eq_f₀' : f' (↑f.symm a) = ↑f₀' h_deriv₁ : ContDiffAt 𝕜 (↑n) inverse (f' (↑f.symm a)) ⊢ ↑↑n ≤ ↑↑n.succ
db52077be919f1af
Module.exists_nontrivial_relation_sum_zero_of_finrank_succ_lt_card
Mathlib/LinearAlgebra/Dimension/Finite.lean
theorem Module.exists_nontrivial_relation_sum_zero_of_finrank_succ_lt_card {t : Finset M} (h : finrank R M + 1 < t.card) : ∃ f : M → R, ∑ e ∈ t, f e • e = 0 ∧ ∑ e ∈ t, f e = 0 ∧ ∃ x ∈ t, f x ≠ 0
case intro R : Type u M : Type v inst✝⁴ : Ring R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : Module.Finite R M inst✝ : StrongRankCondition R t : Finset M h : finrank R M + 1 < #t x₀ : M x₀_mem : x₀ ∈ t shift : M ↪ M := { toFun := fun x => x - x₀, inj' := ⋯ } t' : Finset M := Finset.map shift (t.erase x₀) h' : finrank R M < #t' ⊢ ∃ f, ∑ e ∈ t, f e • e = 0 ∧ ∑ e ∈ t, f e = 0 ∧ ∃ x ∈ t, f x ≠ 0
obtain ⟨g, gsum, x₁, x₁_mem, nz⟩ := exists_nontrivial_relation_of_finrank_lt_card h'
case intro.intro.intro.intro.intro R : Type u M : Type v inst✝⁴ : Ring R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : Module.Finite R M inst✝ : StrongRankCondition R t : Finset M h : finrank R M + 1 < #t x₀ : M x₀_mem : x₀ ∈ t shift : M ↪ M := { toFun := fun x => x - x₀, inj' := ⋯ } t' : Finset M := Finset.map shift (t.erase x₀) h' : finrank R M < #t' g : M → R gsum : ∑ e ∈ t', g e • e = 0 x₁ : M x₁_mem : x₁ ∈ t' nz : g x₁ ≠ 0 ⊢ ∃ f, ∑ e ∈ t, f e • e = 0 ∧ ∑ e ∈ t, f e = 0 ∧ ∃ x ∈ t, f x ≠ 0
9ccb45a24efab47f
List.length_sym
Mathlib/Data/List/Sym.lean
theorem length_sym {n : ℕ} {xs : List α} : (xs.sym n).length = Nat.multichoose xs.length n := match n, xs with | 0, _ => by rw [List.sym, Nat.multichoose]; rfl | n + 1, [] => by simp [List.sym] | n + 1, x :: xs => by rw [List.sym, length_append, length_map, length_cons] rw [@length_sym n (x :: xs), @length_sym (n + 1) xs] rw [Nat.multichoose_succ_succ, length_cons, add_comm]
α : Type u_1 n : ℕ xs x✝ : List α ⊢ [Sym.nil].length = 1
rfl
no goals
def3512bb619a560
ltTrichotomy_eq_iff
Mathlib/Order/Basic.lean
lemma ltTrichotomy_eq_iff : ltTrichotomy x y p q r = s ↔ (x < y ∧ p = s) ∨ (x = y ∧ q = s) ∨ (y < x ∧ r = s)
case refine_3 α : Type u_2 inst✝ : LinearOrder α P : Sort u_5 x y : α p q r s : P h : y < x ⊢ ltTrichotomy x y p q r = s ↔ x < y ∧ p = s ∨ x = y ∧ q = s ∨ y < x ∧ r = s
simp only [ltTrichotomy_gt, false_and, true_and, false_or, h, h.not_lt, h.ne']
no goals
2bb4e93ee92100a9
RootPairing.rootForm_self_smul_coroot
Mathlib/LinearAlgebra/RootSystem/Finite/CanonicalBilinear.lean
/-- This is SGA3 XXI Lemma 1.2.1 (10), key for proving nondegeneracy and positivity. -/ lemma rootForm_self_smul_coroot (i : ι) : (P.RootForm (P.root i) (P.root i)) • P.coroot i = 2 • P.Polarization (P.root i)
ι : Type u_1 R : Type u_2 M : Type u_3 N : Type u_4 inst✝⁵ : CommRing R inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : AddCommGroup N inst✝¹ : Module R N P : RootPairing ι R M N inst✝ : Fintype ι i : ι ⊢ P.Polarization (P.root i) = ∑ j : ι, P.pairing i ((P.reflection_perm i) j) • P.coroot ((P.reflection_perm i) j)
simp_rw [Polarization_apply, root_coroot'_eq_pairing]
ι : Type u_1 R : Type u_2 M : Type u_3 N : Type u_4 inst✝⁵ : CommRing R inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : AddCommGroup N inst✝¹ : Module R N P : RootPairing ι R M N inst✝ : Fintype ι i : ι ⊢ ∑ x : ι, P.pairing i x • P.coroot x = ∑ j : ι, P.pairing i ((P.reflection_perm i) j) • P.coroot ((P.reflection_perm i) j)
b31518e23e6e08dd
LocallyBoundedMap.cancel_left
Mathlib/Topology/Bornology/Hom.lean
theorem cancel_left {g : LocallyBoundedMap β γ} {f₁ f₂ : LocallyBoundedMap α β} (hg : Injective g) : g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ := ⟨fun h => ext fun a => hg <| by rw [← comp_apply, h, comp_apply], congr_arg _⟩
α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : Bornology α inst✝¹ : Bornology β inst✝ : Bornology γ g : LocallyBoundedMap β γ f₁ f₂ : LocallyBoundedMap α β hg : Injective ⇑g h : g.comp f₁ = g.comp f₂ a : α ⊢ g (f₁ a) = g (f₂ a)
rw [← comp_apply, h, comp_apply]
no goals
bf1a3367323999d8
Real.sin_bound
Mathlib/Data/Complex/Trigonometric.lean
theorem sin_bound {x : ℝ} (hx : |x| ≤ 1) : |sin x - (x - x ^ 3 / 6)| ≤ |x| ^ 4 * (5 / 96) := calc |sin x - (x - x ^ 3 / 6)| = ‖Complex.sin x - (x - x ^ 3 / 6 : ℝ)‖
x : ℝ hx : |x| ≤ 1 ⊢ ‖(cexp (-↑x * I) - ∑ m ∈ range 4, (-↑x * I) ^ m / ↑m.factorial - (cexp (↑x * I) - ∑ m ∈ range 4, (↑x * I) ^ m / ↑m.factorial)) * I / 2‖ ≤ ‖(cexp (-↑x * I) - ∑ m ∈ range 4, (-↑x * I) ^ m / ↑m.factorial) * I / 2‖ + ‖-((cexp (↑x * I) - ∑ m ∈ range 4, (↑x * I) ^ m / ↑m.factorial) * I) / 2‖
rw [sub_mul, sub_eq_add_neg, add_div]
x : ℝ hx : |x| ≤ 1 ⊢ ‖(cexp (-↑x * I) - ∑ m ∈ range 4, (-↑x * I) ^ m / ↑m.factorial) * I / 2 + -((cexp (↑x * I) - ∑ m ∈ range 4, (↑x * I) ^ m / ↑m.factorial) * I) / 2‖ ≤ ‖(cexp (-↑x * I) - ∑ m ∈ range 4, (-↑x * I) ^ m / ↑m.factorial) * I / 2‖ + ‖-((cexp (↑x * I) - ∑ m ∈ range 4, (↑x * I) ^ m / ↑m.factorial) * I) / 2‖
c2aa302ba94aae5a
OrderEmbedding.image_Ioi
Mathlib/Order/UpperLower/Basic.lean
theorem OrderEmbedding.image_Ioi (e : α ↪o β) (he : IsUpperSet (range e)) (a : α) : e '' Ioi a = Ioi (e a)
α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : Preorder β e : α ↪o β he : IsUpperSet (range ⇑e) a : α ⊢ ⇑e '' Ioi a = Ioi (e a)
rw [← e.preimage_Ioi, image_preimage_eq_inter_range, inter_eq_left.2 <| he.Ioi_subset (mem_range_self _)]
no goals
d05cf5b2d12bdba7
MvPolynomial.coeff_map
Mathlib/Algebra/MvPolynomial/Eval.lean
theorem coeff_map (p : MvPolynomial σ R) : ∀ m : σ →₀ ℕ, coeff m (map f p) = f (coeff m p)
case h_add R : Type u S₁ : Type v σ : Type u_1 inst✝¹ : CommSemiring R inst✝ : CommSemiring S₁ f : R →+* S₁ p q : MvPolynomial σ R hp : ∀ (m : σ →₀ ℕ), coeff m ((map f) p) = f (coeff m p) hq : ∀ (m : σ →₀ ℕ), coeff m ((map f) q) = f (coeff m q) m : σ →₀ ℕ ⊢ coeff m ((map f) (p + q)) = f (coeff m (p + q))
simp only [hp, hq, (map f).map_add, coeff_add]
case h_add R : Type u S₁ : Type v σ : Type u_1 inst✝¹ : CommSemiring R inst✝ : CommSemiring S₁ f : R →+* S₁ p q : MvPolynomial σ R hp : ∀ (m : σ →₀ ℕ), coeff m ((map f) p) = f (coeff m p) hq : ∀ (m : σ →₀ ℕ), coeff m ((map f) q) = f (coeff m q) m : σ →₀ ℕ ⊢ f (coeff m p) + f (coeff m q) = f (coeff m p + coeff m q)
4d9796f81242803c