name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
BoxIntegral.IntegrationParams.MemBaseSet.exists_common_compl
Mathlib/Analysis/BoxIntegral/Partition/Filter.lean
theorem MemBaseSet.exists_common_compl (h₁ : l.MemBaseSet I c₁ r₁ π₁) (h₂ : l.MemBaseSet I c₂ r₂ π₂) (hU : π₁.iUnion = π₂.iUnion) : ∃ π : Prepartition I, π.iUnion = ↑I \ π₁.iUnion ∧ (l.bDistortion → π.distortion ≤ c₁) ∧ (l.bDistortion → π.distortion ≤ c₂)
ι : Type u_1 inst✝ : Fintype ι I : Box ι c₁ c₂ : ℝ≥0 l : IntegrationParams r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0) π₁ π₂ : TaggedPrepartition I h₁ : l.MemBaseSet I c₁ r₁ π₁ h₂ : l.MemBaseSet I c₂ r₂ π₂ hU : π₁.iUnion = π₂.iUnion ⊢ ∃ π, π.iUnion = ↑I \ π₁.iUnion ∧ (l.bDistortion = true → π.distortion ≤ c₁) ∧ (l.bDistortion = true → π.distortion ≤ c₂)
wlog hc : c₁ ≤ c₂ with H
case inr ι : Type u_1 inst✝ : Fintype ι I : Box ι c₁ c₂ : ℝ≥0 l : IntegrationParams r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0) π₁ π₂ : TaggedPrepartition I h₁ : l.MemBaseSet I c₁ r₁ π₁ h₂ : l.MemBaseSet I c₂ r₂ π₂ hU : π₁.iUnion = π₂.iUnion H : ∀ {ι : Type u_1} [inst : Fintype ι] {I : Box ι} {c₁ c₂ : ℝ≥0} {l : IntegrationParams} {r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0)} {π₁ π₂ : TaggedPrepartition I}, l.MemBaseSet I c₁ r₁ π₁ → l.MemBaseSet I c₂ r₂ π₂ → π₁.iUnion = π₂.iUnion → c₁ ≤ c₂ → ∃ π, π.iUnion = ↑I \ π₁.iUnion ∧ (l.bDistortion = true → π.distortion ≤ c₁) ∧ (l.bDistortion = true → π.distortion ≤ c₂) hc : ¬c₁ ≤ c₂ ⊢ ∃ π, π.iUnion = ↑I \ π₁.iUnion ∧ (l.bDistortion = true → π.distortion ≤ c₁) ∧ (l.bDistortion = true → π.distortion ≤ c₂) ι✝ : Type u_1 inst✝¹ : Fintype ι✝ I✝ : Box ι✝ c₁✝ c₂✝ : ℝ≥0 l✝ : IntegrationParams r₁✝ r₂✝ : (ι✝ → ℝ) → ↑(Set.Ioi 0) π₁✝ π₂✝ : TaggedPrepartition I✝ ι : Type u_1 inst✝ : Fintype ι I : Box ι c₁ c₂ : ℝ≥0 l : IntegrationParams r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0) π₁ π₂ : TaggedPrepartition I h₁ : l.MemBaseSet I c₁ r₁ π₁ h₂ : l.MemBaseSet I c₂ r₂ π₂ hU : π₁.iUnion = π₂.iUnion hc : c₁ ≤ c₂ ⊢ ∃ π, π.iUnion = ↑I \ π₁.iUnion ∧ (l.bDistortion = true → π.distortion ≤ c₁) ∧ (l.bDistortion = true → π.distortion ≤ c₂)
2df11db01408e2ca
tendsto_tsum_of_dominated_convergence
Mathlib/Analysis/Normed/Group/Tannery.lean
/-- **Tannery's theorem**: topological sums commute with termwise limits, when the norms of the summands are eventually uniformly bounded by a summable function. (This is the special case of the Lebesgue dominated convergence theorem for the counting measure on a discrete set. However, we prove it under somewhat weaker assumptions than the general measure-theoretic result, e.g. `G` is not assumed to be an `ℝ`-vector space or second countable, and the limit is along an arbitrary filter rather than `atTop ℕ`.) See also: * `MeasureTheory.tendsto_integral_of_dominated_convergence` (for general integrals, but with more assumptions on `G`) * `continuous_tsum` (continuity of infinite sums in a parameter) -/ lemma tendsto_tsum_of_dominated_convergence {α β G : Type*} {𝓕 : Filter α} [NormedAddCommGroup G] [CompleteSpace G] {f : α → β → G} {g : β → G} {bound : β → ℝ} (h_sum : Summable bound) (hab : ∀ k : β, Tendsto (f · k) 𝓕 (𝓝 (g k))) (h_bound : ∀ᶠ n in 𝓕, ∀ k, ‖f n k‖ ≤ bound k) : Tendsto (∑' k, f · k) 𝓕 (𝓝 (∑' k, g k))
case inr.inr α : Type u_1 β : Type u_2 G : Type u_3 𝓕 : Filter α inst✝¹ : NormedAddCommGroup G inst✝ : CompleteSpace G f : α → β → G g : β → G bound : β → ℝ h_sum : Summable bound hab : ∀ (k : β), Tendsto (fun x => f x k) 𝓕 (𝓝 (g k)) h_bound : ∀ᶠ (n : α) in 𝓕, ∀ (k : β), ‖f n k‖ ≤ bound k h✝¹ : Nonempty β h✝ : 𝓕.NeBot h_g_le : ∀ (k : β), ‖g k‖ ≤ bound k h_sumg : Summable fun x => ‖g x‖ h_suma : ∀ᶠ (n : α) in 𝓕, Summable fun x => ‖f n x‖ ε : ℝ hε : ε > 0 S : ℝ hS : HasSum bound S ⊢ ∀ᶠ (x : α) in 𝓕, dist (∑' (k : β), f x k) (∑' (k : β), g k) < ε
obtain ⟨T, hT⟩ : ∃ (T : Finset β), dist (∑ b ∈ T, bound b) S < ε / 3 := by rw [HasSum, Metric.tendsto_nhds] at hS classical exact Eventually.exists <| hS _ (by positivity)
case inr.inr.intro α : Type u_1 β : Type u_2 G : Type u_3 𝓕 : Filter α inst✝¹ : NormedAddCommGroup G inst✝ : CompleteSpace G f : α → β → G g : β → G bound : β → ℝ h_sum : Summable bound hab : ∀ (k : β), Tendsto (fun x => f x k) 𝓕 (𝓝 (g k)) h_bound : ∀ᶠ (n : α) in 𝓕, ∀ (k : β), ‖f n k‖ ≤ bound k h✝¹ : Nonempty β h✝ : 𝓕.NeBot h_g_le : ∀ (k : β), ‖g k‖ ≤ bound k h_sumg : Summable fun x => ‖g x‖ h_suma : ∀ᶠ (n : α) in 𝓕, Summable fun x => ‖f n x‖ ε : ℝ hε : ε > 0 S : ℝ hS : HasSum bound S T : Finset β hT : dist (∑ b ∈ T, bound b) S < ε / 3 ⊢ ∀ᶠ (x : α) in 𝓕, dist (∑' (k : β), f x k) (∑' (k : β), g k) < ε
d4198172206cf97e
toSubalgebra_toIntermediateField
Mathlib/FieldTheory/IntermediateField/Basic.lean
theorem toSubalgebra_toIntermediateField (S : Subalgebra K L) (inv_mem : ∀ x ∈ S, x⁻¹ ∈ S) : (S.toIntermediateField inv_mem).toSubalgebra = S
K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L S : Subalgebra K L inv_mem : ∀ x ∈ S, x⁻¹ ∈ S ⊢ (S.toIntermediateField inv_mem).toSubalgebra = S
ext
case h K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L S : Subalgebra K L inv_mem : ∀ x ∈ S, x⁻¹ ∈ S x✝ : L ⊢ x✝ ∈ (S.toIntermediateField inv_mem).toSubalgebra ↔ x✝ ∈ S
2225d3d557e3190c
lp.sum_rpow_le_of_tendsto
Mathlib/Analysis/Normed/Lp/lpSpace.lean
theorem sum_rpow_le_of_tendsto (hp : p ≠ ∞) {C : ℝ} {F : ι → lp E p} (hCF : ∀ᶠ k in l, ‖F k‖ ≤ C) {f : ∀ a, E a} (hf : Tendsto (id fun i => F i : ι → ∀ a, E a) l (𝓝 f)) (s : Finset α) : ∑ i ∈ s, ‖f i‖ ^ p.toReal ≤ C ^ p.toReal
α : Type u_3 E : α → Type u_4 p : ℝ≥0∞ inst✝¹ : (i : α) → NormedAddCommGroup (E i) ι : Type u_5 l : Filter ι inst✝ : l.NeBot _i : Fact (1 ≤ p) hp : p ≠ ⊤ C : ℝ F : ι → ↥(lp E p) hCF : ∀ᶠ (k : ι) in l, ‖F k‖ ≤ C f : (a : α) → E a hf : Tendsto (id fun i => ↑(F i)) l (𝓝 f) s : Finset α ⊢ ∑ i ∈ s, ‖f i‖ ^ p.toReal ≤ C ^ p.toReal
have hp' : p ≠ 0 := (zero_lt_one.trans_le _i.elim).ne'
α : Type u_3 E : α → Type u_4 p : ℝ≥0∞ inst✝¹ : (i : α) → NormedAddCommGroup (E i) ι : Type u_5 l : Filter ι inst✝ : l.NeBot _i : Fact (1 ≤ p) hp : p ≠ ⊤ C : ℝ F : ι → ↥(lp E p) hCF : ∀ᶠ (k : ι) in l, ‖F k‖ ≤ C f : (a : α) → E a hf : Tendsto (id fun i => ↑(F i)) l (𝓝 f) s : Finset α hp' : p ≠ 0 ⊢ ∑ i ∈ s, ‖f i‖ ^ p.toReal ≤ C ^ p.toReal
3c76cdccdea461fc
Orthonormal.sum_inner_products_le
Mathlib/Analysis/InnerProductSpace/Orthonormal.lean
theorem Orthonormal.sum_inner_products_le {s : Finset ι} (hv : Orthonormal 𝕜 v) : ∑ i ∈ s, ‖⟪v i, x⟫‖ ^ 2 ≤ ‖x‖ ^ 2
𝕜 : Type u_1 E : Type u_2 inst✝² : RCLike 𝕜 inst✝¹ : SeminormedAddCommGroup E inst✝ : InnerProductSpace 𝕜 E ι : Type u_4 x : E v : ι → E s : Finset ι hv : Orthonormal 𝕜 v h₂ : ∑ i ∈ s, ∑ j ∈ s, inner (v i) x * inner x (v j) * inner (v j) (v i) = ∑ k ∈ s, inner (v k) x * inner x (v k) ⊢ ∑ i ∈ s, ‖inner (v i) x‖ ^ 2 ≤ ‖x‖ ^ 2
have h₃ : ∀ z : 𝕜, re (z * conj z) = ‖z‖ ^ 2 := by intro z simp only [mul_conj, normSq_eq_def'] norm_cast
𝕜 : Type u_1 E : Type u_2 inst✝² : RCLike 𝕜 inst✝¹ : SeminormedAddCommGroup E inst✝ : InnerProductSpace 𝕜 E ι : Type u_4 x : E v : ι → E s : Finset ι hv : Orthonormal 𝕜 v h₂ : ∑ i ∈ s, ∑ j ∈ s, inner (v i) x * inner x (v j) * inner (v j) (v i) = ∑ k ∈ s, inner (v k) x * inner x (v k) h₃ : ∀ (z : 𝕜), re (z * (starRingEnd 𝕜) z) = ‖z‖ ^ 2 ⊢ ∑ i ∈ s, ‖inner (v i) x‖ ^ 2 ≤ ‖x‖ ^ 2
991788cdd3b9c14c
List.pairwise_replicate
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Pairwise.lean
theorem pairwise_replicate {n : Nat} {a : α} : (replicate n a).Pairwise R ↔ n ≤ 1 ∨ R a a
case pos.h α : Type u_1 R : α → α → Prop a : α n : Nat ih : Pairwise R (replicate n a) ↔ n ≤ 1 ∨ R a a h : ¬n = 0 → R a a h' : n ≤ 1 w : n = 0 ⊢ n + 1 ≤ 1
subst w
case pos.h α : Type u_1 R : α → α → Prop a : α ih : Pairwise R (replicate 0 a) ↔ 0 ≤ 1 ∨ R a a h : ¬0 = 0 → R a a h' : 0 ≤ 1 ⊢ 0 + 1 ≤ 1
2d4c357c8a7b913e
Filter.compl_mem_kernMap
Mathlib/Order/Filter/Map.lean
theorem compl_mem_kernMap {s : Set β} : sᶜ ∈ kernMap m f ↔ ∃ t, tᶜ ∈ f ∧ m '' t = s
α : Type u_1 β : Type u_2 m : α → β f : Filter α s : Set β ⊢ sᶜ ∈ kernMap m f ↔ ∃ t, tᶜ ∈ f ∧ m '' t = s
simp_rw [mem_kernMap_iff_compl, compl_compl]
no goals
620ad1b8fac9b277
Convex.helly_theorem'
Mathlib/Analysis/Convex/Radon.lean
theorem helly_theorem' {F : ι → Set E} {s : Finset ι} (h_convex : ∀ i ∈ s, Convex 𝕜 (F i)) (h_inter : ∀ I ⊆ s, #I ≤ finrank 𝕜 E + 1 → (⋂ i ∈ I, F i).Nonempty) : (⋂ i ∈ s, F i).Nonempty
case h.h.intro.intro.a 𝕜 : Type u_2 E : Type u_3 inst✝³ : LinearOrderedField 𝕜 inst✝² : AddCommGroup E inst✝¹ : Module 𝕜 E inst✝ : FiniteDimensional 𝕜 E n k : ℕ h_card : finrank 𝕜 E + 1 ≤ k hk : ∀ {ι : Type u_1} {F : ι → Set E} {s : Finset ι}, (∀ i ∈ s, Convex 𝕜 (F i)) → (∀ I ⊆ s, #I ≤ finrank 𝕜 E + 1 → (⋂ i ∈ I, F i).Nonempty) → #s = k → (⋂ i ∈ s, F i).Nonempty ι : Type u_1 F : ι → Set E s : Finset ι h_convex : ∀ i ∈ s, Convex 𝕜 (F i) h_inter : ∀ I ⊆ s, #I ≤ finrank 𝕜 E + 1 → (⋂ i ∈ I, F i).Nonempty hn : #s = k + 1 a : { x // x ∈ s } → E := fun i => ⋯.some h_ind : ¬AffineIndependent 𝕜 a I : Set { x // x ∈ s } p : E hp_I : p ∈ (convexHull 𝕜) (a '' I) hp_Ic : p ∈ (convexHull 𝕜) (a '' Iᶜ) i✝ : ι hi✝ : i✝ ∈ Membership.mem s.val i : { x // x ∈ s } := ⟨i✝, hi✝⟩ J : Set { x // x ∈ s } hi : i ∈ J v : E j : { x // x ∈ s } hj : j ∈ Jᶜ hj_v : a j = v ⊢ a j ∈ ⋂ k ∈ s.erase ↑j, F k
apply Nonempty.some_mem
no goals
d589b7c5c4686ede
FirstOrder.Language.Theory.exists_large_model_of_infinite_model
Mathlib/ModelTheory/Satisfiability.lean
theorem exists_large_model_of_infinite_model (T : L.Theory) (κ : Cardinal.{w}) (M : Type w') [L.Structure M] [M ⊨ T] [Infinite M] : ∃ N : ModelType.{_, _, max u v w} T, Cardinal.lift.{max u v w} κ ≤ #N
case intro L : Language T : L.Theory κ : Cardinal.{w} M : Type w' inst✝² : L.Structure M inst✝¹ : M ⊨ T inst✝ : Infinite M N : ((L.lhomWithConstants (Quotient.out κ)).onTheory T ∪ L.distinctConstantsTheory Set.univ).ModelType this : ↑N ⊨ L.distinctConstantsTheory Set.univ ⊢ lift.{max u v w, w} κ ≤ #↑N
refine _root_.trans (lift_le.2 (le_of_eq (Cardinal.mk_out κ).symm)) ?_
case intro L : Language T : L.Theory κ : Cardinal.{w} M : Type w' inst✝² : L.Structure M inst✝¹ : M ⊨ T inst✝ : Infinite M N : ((L.lhomWithConstants (Quotient.out κ)).onTheory T ∪ L.distinctConstantsTheory Set.univ).ModelType this : ↑N ⊨ L.distinctConstantsTheory Set.univ ⊢ lift.{max (max u v) w, w} #(Quotient.out κ) ≤ #↑N
cb2210ff1dd443c9
AlgebraicGeometry.IsAffineOpen.fromSpec_image_zeroLocus
Mathlib/AlgebraicGeometry/AffineScheme.lean
lemma IsAffineOpen.fromSpec_image_zeroLocus {X : Scheme.{u}} {U : X.Opens} (hU : IsAffineOpen U) (s : Set Γ(X, U)) : hU.fromSpec.base '' PrimeSpectrum.zeroLocus s = X.zeroLocus s ∩ U
X : Scheme U : X.Opens hU : IsAffineOpen U s : Set ↑Γ(X, U) ⊢ ⇑(ConcreteCategory.hom hU.fromSpec.base) '' PrimeSpectrum.zeroLocus s = X.zeroLocus s ∩ ↑U
rw [← hU.fromSpec_preimage_zeroLocus, Set.image_preimage_eq_inter_range, range_fromSpec]
no goals
4ba67f81fdf1eb9e
MeasureTheory.Measure.haar.chaar_sup_eq
Mathlib/MeasureTheory/Measure/Haar/Basic.lean
theorem chaar_sup_eq {K₀ : PositiveCompacts G} {K₁ K₂ : Compacts G} (h : Disjoint K₁.1 K₂.1) (h₂ : IsClosed K₂.1) : chaar K₀ (K₁ ⊔ K₂) = chaar K₀ K₁ + chaar K₀ K₂
case intro.intro.intro.intro.h.refine_2 G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : IsTopologicalGroup G K₀ : PositiveCompacts G K₁ K₂ : Compacts G h : Disjoint K₁.carrier K₂.carrier h₂ : IsClosed K₂.carrier U₁ U₂ : Set G h1U₁ : IsOpen U₁ h1U₂ : IsOpen U₂ h2U₁ : K₁.carrier ⊆ U₁ h2U₂ : K₂.carrier ⊆ U₂ hU : Disjoint U₁ U₂ L₁ : Set G h1L₁ : L₁ ∈ 𝓝 1 V₁ : Set G h1V₁ : V₁ ⊆ L₁ h2V₁ : IsOpen V₁ h3V₁ : 1 ∈ V₁ h2L₁ : K₁.carrier * V₁ ⊆ U₁ L₂ : Set G h1L₂ : L₂ ∈ 𝓝 1 V₂ : Set G h1V₂ : V₂ ⊆ L₂ h2V₂ : IsOpen V₂ h3V₂ : 1 ∈ V₂ h2L₂ : K₂.carrier * V₂ ⊆ U₂ eval : (Compacts G → ℝ) → ℝ := fun f => f K₁ + f K₂ - f (K₁ ⊔ K₂) this : Continuous eval V : Set G := V₁ ∩ V₂ U : Set G h1U : U ⊆ ↑{ carrier := V⁻¹, is_open' := ⋯, mem' := ⋯ }.toOpens h2U : IsOpen U h3U : 1 ∈ U ⊢ U⁻¹ ⊆ V₂
exact Subset.trans (inv_subset.mpr h1U) inter_subset_right
no goals
f819296e30b05cf2
mellin_comp_mul_left
Mathlib/Analysis/MellinTransform.lean
theorem mellin_comp_mul_left (f : ℝ → E) (s : ℂ) {a : ℝ} (ha : 0 < a) : mellin (fun t => f (a * t)) s = (a : ℂ) ^ (-s) • mellin f s
case h E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E f : ℝ → E s : ℂ a : ℝ ha : 0 < a t : ℝ ht : t ∈ Ioi 0 ⊢ ¬a = 0 ∨ ¬s - 1 ≠ 0
exact Or.inl ha.ne'
no goals
eba6520b29ea7f1f
Ordinal.card_iSup_Iio_le_card_mul_iSup
Mathlib/SetTheory/Cardinal/Arithmetic.lean
theorem card_iSup_Iio_le_card_mul_iSup {o : Ordinal.{u}} (f : Iio o → Ordinal.{max u v}) : (⨆ a : Iio o, f a).card ≤ Cardinal.lift.{v} o.card * ⨆ a : Iio o, (f a).card
o : Ordinal.{u} f : ↑(Iio o) → Ordinal.{max u v} ⊢ (sum fun i => (f (o.enumIsoToType.symm i)).card) ≤ Cardinal.lift.{v, u} o.card * ⨆ a, (f a).card
convert ← sum_le_iSup_lift _
case h.e'_4.h.e'_5.h.e'_1 o : Ordinal.{u} f : ↑(Iio o) → Ordinal.{max u v} ⊢ #o.toType = o.card case h.e'_4.h.e'_6 o : Ordinal.{u} f : ↑(Iio o) → Ordinal.{max u v} ⊢ ⨆ i, (f (o.enumIsoToType.symm i)).card = ⨆ a, (f a).card
c3d702eab5714f39
IsSimpleRing.isField_center
Mathlib/RingTheory/SimpleRing/Field.lean
lemma isField_center (A : Type*) [Ring A] [IsSimpleRing A] : IsField (Subring.center A) where exists_pair_ne := ⟨0, 1, zero_ne_one⟩ mul_comm := mul_comm mul_inv_cancel
A : Type u_1 inst✝¹ : Ring A inst✝ : IsSimpleRing A x✝ : A hx1✝ : x✝ ∈ Subring.center A hx1 : ∀ (g : A), g * x✝ = x✝ * g hx2 : x✝ ≠ 0 x : A ⊢ (fun x => x✝ * x) (-x) = -(fun x => x✝ * x) x
simp
no goals
08d555f2a5a9e7b4
CategoryTheory.Equivalence.changeFunctor_refl
Mathlib/CategoryTheory/Equivalence.lean
theorem changeFunctor_refl (e : C ≌ D) : e.changeFunctor (Iso.refl _) = e
C : Type u₁ inst✝¹ : Category.{v₁, u₁} C D : Type u₂ inst✝ : Category.{v₂, u₂} D e : C ≌ D ⊢ e.changeFunctor (Iso.refl e.functor) = e
aesop_cat
no goals
d0b11db58d671a14
WeierstrassCurve.Projective.toAffine_negAddY_of_eq
Mathlib/AlgebraicGeometry/EllipticCurve/Projective.lean
private lemma toAffine_negAddY_of_eq {P : Fin 3 → F} (hPz : P z ≠ 0) {n d : F} (hd : d ≠ 0) : W.toAffine.negAddY (P x / P z) (P x / P z) (P y / P z) (-n / P z / d) = (-n * (n ^ 2 - W.a₁ * n * P z * d - W.a₂ * P z ^ 2 * d ^ 2 - 2 * P x * P z * d ^ 2 - P x * P z * d ^ 2) + P y * P z ^ 2 * d ^ 3) / P z ^ 2 / (P z * d ^ 3)
F : Type u inst✝ : Field F W : Projective F P : Fin 3 → F hPz : P z ≠ 0 n d : F hd : d ≠ 0 ⊢ (-(n * ((n ^ 2 - W.a₁ * n * P z * d - W.a₂ * P z ^ 2 * d ^ 2 - 2 * P x * P z * d ^ 2) * d * P z - P z * (P z * d ^ 3) * P x) * P z) + P y * (P z * d * (P z * (P z * d ^ 3) * P z))) * (P z ^ 2 * (P z * d ^ 3)) = (-(n * (n ^ 2 - W.a₁ * n * P z * d - W.a₂ * P z ^ 2 * d ^ 2 - 2 * P x * P z * d ^ 2 - P x * P z * d ^ 2)) + P y * P z ^ 2 * d ^ 3) * (P z * d * (P z * (P z * d ^ 3) * P z) * P z)
ring1
no goals
236121ded01b30f2
DirectSum.coe_of_mul_apply_aux
Mathlib/Algebra/DirectSum/Internal.lean
theorem coe_of_mul_apply_aux [AddMonoid ι] [SetLike.GradedMonoid A] {i : ι} (r : A i) (r' : ⨁ i, A i) {j n : ι} (H : ∀ x : ι, i + x = n ↔ x = j) : ((of (fun i => A i) i r * r') n : R) = r * r' j
ι : Type u_1 σ : Type u_2 R : Type u_4 inst✝⁵ : DecidableEq ι inst✝⁴ : Semiring R inst✝³ : SetLike σ R inst✝² : AddSubmonoidClass σ R A : ι → σ inst✝¹ : AddMonoid ι inst✝ : SetLike.GradedMonoid A i : ι r : ↥(A i) r' : ⨁ (i : ι), ↥(A i) j n : ι H : ∀ (x : ι), i + x = n ↔ x = j ⊢ ↑(((of (fun i => ↥(A i)) i) r * r') n) = ↑r * ↑(r' j)
rw [coe_mul_apply_eq_dfinsupp_sum]
ι : Type u_1 σ : Type u_2 R : Type u_4 inst✝⁵ : DecidableEq ι inst✝⁴ : Semiring R inst✝³ : SetLike σ R inst✝² : AddSubmonoidClass σ R A : ι → σ inst✝¹ : AddMonoid ι inst✝ : SetLike.GradedMonoid A i : ι r : ↥(A i) r' : ⨁ (i : ι), ↥(A i) j n : ι H : ∀ (x : ι), i + x = n ↔ x = j ⊢ (DFinsupp.sum ((of (fun i => ↥(A i)) i) r) fun i ri => DFinsupp.sum r' fun j rj => if i + j = n then ↑ri * ↑rj else 0) = ↑r * ↑(r' j)
9f8e036478d3d2eb
BitVec.getLsbD_twoPow
Mathlib/.lake/packages/lean4/src/lean/Init/Data/BitVec/Lemmas.lean
theorem getLsbD_twoPow (i j : Nat) : (twoPow w i).getLsbD j = ((i < w) && (i = j))
case pos i j w : Nat hj : j < i ⊢ i < w + 1 → ¬i = j
omega
no goals
ee3f3c24ee66326c
ZFSet.rank_eq_wfRank
Mathlib/SetTheory/ZFC/Rank.lean
theorem rank_eq_wfRank : lift.{u + 1, u} (rank x) = IsWellFounded.rank (α := ZFSet) (· ∈ ·) x
x : ZFSet.{u} ⊢ lift.{u + 1, u} x.rank = IsWellFounded.rank (fun x1 x2 => x1 ∈ x2) x
induction' x using inductionOn with x ih
case h x✝ x : ZFSet.{u} ih : ∀ y ∈ x, lift.{u + 1, u} y.rank = IsWellFounded.rank (fun x1 x2 => x1 ∈ x2) y ⊢ lift.{u + 1, u} x.rank = IsWellFounded.rank (fun x1 x2 => x1 ∈ x2) x
677b5f91f98d45d8
Ring.DirectLimit.lift_unique
Mathlib/Algebra/Colimit/Ring.lean
theorem lift_unique (F : DirectLimit G f →+* P) (x) : F x = lift G f P (fun i ↦ F.comp <| of G f i) (fun i j hij x ↦ by simp) x
ι : Type u_1 inst✝² : Preorder ι G : ι → Type u_2 inst✝¹ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j P : Type u_3 inst✝ : CommRing P F : DirectLimit G f →+* P x : DirectLimit G f ⊢ F x = (lift G f P (fun i => F.comp (of G f i)) ⋯) x
obtain ⟨x, rfl⟩ := Ideal.Quotient.mk_surjective x
case intro ι : Type u_1 inst✝² : Preorder ι G : ι → Type u_2 inst✝¹ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j P : Type u_3 inst✝ : CommRing P F : DirectLimit G f →+* P x : FreeCommRing ((i : ι) × G i) ⊢ F ((Ideal.Quotient.mk (Ideal.span {a | (∃ i j, ∃ (H : i ≤ j), ∃ x, FreeCommRing.of ⟨j, f i j H x⟩ - FreeCommRing.of ⟨i, x⟩ = a) ∨ (∃ i, FreeCommRing.of ⟨i, 1⟩ - 1 = a) ∨ (∃ i x y, FreeCommRing.of ⟨i, x + y⟩ - (FreeCommRing.of ⟨i, x⟩ + FreeCommRing.of ⟨i, y⟩) = a) ∨ ∃ i x y, FreeCommRing.of ⟨i, x * y⟩ - FreeCommRing.of ⟨i, x⟩ * FreeCommRing.of ⟨i, y⟩ = a})) x) = (lift G f P (fun i => F.comp (of G f i)) ⋯) ((Ideal.Quotient.mk (Ideal.span {a | (∃ i j, ∃ (H : i ≤ j), ∃ x, FreeCommRing.of ⟨j, f i j H x⟩ - FreeCommRing.of ⟨i, x⟩ = a) ∨ (∃ i, FreeCommRing.of ⟨i, 1⟩ - 1 = a) ∨ (∃ i x y, FreeCommRing.of ⟨i, x + y⟩ - (FreeCommRing.of ⟨i, x⟩ + FreeCommRing.of ⟨i, y⟩) = a) ∨ ∃ i x y, FreeCommRing.of ⟨i, x * y⟩ - FreeCommRing.of ⟨i, x⟩ * FreeCommRing.of ⟨i, y⟩ = a})) x)
051b292ba4e666cf
LinearMap.ker_le_iff
Mathlib/Algebra/Module/Submodule/Range.lean
theorem ker_le_iff [RingHomSurjective τ₁₂] {p : Submodule R M} : ker f ≤ p ↔ ∃ y ∈ range f, f ⁻¹' {y} ⊆ p
case mpr.intro.intro R : Type u_1 R₂ : Type u_2 M : Type u_5 M₂ : Type u_6 inst✝⁸ : Ring R inst✝⁷ : Ring R₂ inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M₂ inst✝⁴ : Module R M inst✝³ : Module R₂ M₂ τ₁₂ : R →+* R₂ F : Type u_10 inst✝² : FunLike F M M₂ inst✝¹ : SemilinearMapClass F τ₁₂ M M₂ f : F inst✝ : RingHomSurjective τ₁₂ p : Submodule R M y : M₂ h₁ : y ∈ range f h₂ : ⇑f ⁻¹' {y} ⊆ ↑p z : M hz : f z = 0 ⊢ z ∈ p
rw [← SetLike.mem_coe, range_coe, Set.mem_range] at h₁
case mpr.intro.intro R : Type u_1 R₂ : Type u_2 M : Type u_5 M₂ : Type u_6 inst✝⁸ : Ring R inst✝⁷ : Ring R₂ inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M₂ inst✝⁴ : Module R M inst✝³ : Module R₂ M₂ τ₁₂ : R →+* R₂ F : Type u_10 inst✝² : FunLike F M M₂ inst✝¹ : SemilinearMapClass F τ₁₂ M M₂ f : F inst✝ : RingHomSurjective τ₁₂ p : Submodule R M y : M₂ h₁ : ∃ y_1, f y_1 = y h₂ : ⇑f ⁻¹' {y} ⊆ ↑p z : M hz : f z = 0 ⊢ z ∈ p
4607f9408a9aa2c2
Matrix.adjugate_fin_succ_eq_det_submatrix
Mathlib/LinearAlgebra/Matrix/Adjugate.lean
theorem adjugate_fin_succ_eq_det_submatrix {n : ℕ} (A : Matrix (Fin n.succ) (Fin n.succ) α) (i j) : adjugate A i j = (-1) ^ (j + i : ℕ) * det (A.submatrix j.succAbove i.succAbove)
α : Type w inst✝ : CommRing α n : ℕ A : Matrix (Fin n.succ) (Fin n.succ) α i j h : Fin n.succ hjk : h ≠ i ⊢ (-1) ^ (↑j + ↑h) * Pi.single i 1 h * (A.submatrix j.succAbove h.succAbove).det = 0
rw [Pi.single_eq_of_ne hjk, mul_zero, zero_mul]
no goals
fb700ffdfc785acd
Coalgebra.sum_map_tmul_tmul_eq
Mathlib/RingTheory/Coalgebra/Basic.lean
theorem sum_map_tmul_tmul_eq {B : Type*} [AddCommMonoid B] [Module R B] {F : Type*} [FunLike F A B] [LinearMapClass F R A B] (f g h : F) (a : A) {repr : Repr R a} {a₁ : (i : repr.ι) → Repr R (repr.left i)} {a₂ : (i : repr.ι) → Repr R (repr.right i)} : ∑ i ∈ repr.index, ∑ j ∈ (a₂ i).index, f (repr.left i) ⊗ₜ (g ((a₂ i).left j) ⊗ₜ h ((a₂ i).right j)) = ∑ i ∈ repr.index, ∑ j ∈ (a₁ i).index, f ((a₁ i).left j) ⊗ₜ[R] (g ((a₁ i).right j) ⊗ₜ[R] h (repr.right i))
R : Type u A : Type v inst✝⁷ : CommSemiring R inst✝⁶ : AddCommMonoid A inst✝⁵ : Module R A inst✝⁴ : Coalgebra R A B : Type u_1 inst✝³ : AddCommMonoid B inst✝² : Module R B F : Type u_2 inst✝¹ : FunLike F A B inst✝ : LinearMapClass F R A B f g h : F a : A repr : Repr R a a₁ : (i : repr.ι) → Repr R (repr.left i) a₂ : (i : repr.ι) → Repr R (repr.right i) this : (TensorProduct.map (↑f) (TensorProduct.map ↑g ↑h)) (∑ i ∈ repr.index, ∑ j ∈ (a₁ i).index, (a₁ i).left j ⊗ₜ[R] (a₁ i).right j ⊗ₜ[R] repr.right i) = (TensorProduct.map (↑f) (TensorProduct.map ↑g ↑h)) (∑ i ∈ repr.index, ∑ j ∈ (a₂ i).index, repr.left i ⊗ₜ[R] (a₂ i).left j ⊗ₜ[R] (a₂ i).right j) ⊢ ∑ i ∈ repr.index, ∑ j ∈ (a₂ i).index, f (repr.left i) ⊗ₜ[R] g ((a₂ i).left j) ⊗ₜ[R] h ((a₂ i).right j) = ∑ i ∈ repr.index, ∑ j ∈ (a₁ i).index, f ((a₁ i).left j) ⊗ₜ[R] g ((a₁ i).right j) ⊗ₜ[R] h (repr.right i)
simp_all only [map_sum, TensorProduct.map_tmul, LinearMap.coe_coe]
no goals
b7ef1cfd9f54811e
ZMod.eq_one_or_isUnit_sub_one
Mathlib/FieldTheory/Finite/Basic.lean
theorem ZMod.eq_one_or_isUnit_sub_one {n p k : ℕ} [Fact p.Prime] (hn : n = p ^ k) (a : ZMod n) (ha : (orderOf a).Coprime n) : a = 1 ∨ IsUnit (a - 1)
case inr.inr n p k : ℕ inst✝ : Fact (Nat.Prime p) hn : n = p ^ k a : ZMod n ha : (orderOf a).Coprime n hn0 : n ≠ 0 ha0 : a ≠ 0 this : NeZero n ⊢ a = 1 ∨ IsUnit (a - 1)
obtain ⟨a, rfl⟩ := ZMod.natCast_zmod_surjective a
case inr.inr.intro n p k : ℕ inst✝ : Fact (Nat.Prime p) hn : n = p ^ k hn0 : n ≠ 0 this : NeZero n a : ℕ ha : (orderOf ↑a).Coprime n ha0 : ↑a ≠ 0 ⊢ ↑a = 1 ∨ IsUnit (↑a - 1)
e140f007bb03a360
NumberField.mixedEmbedding.fundamentalCone.card_isPrincipal_dvd_norm_le
Mathlib/NumberTheory/NumberField/CanonicalEmbedding/FundamentalCone.lean
theorem card_isPrincipal_dvd_norm_le (s : ℝ) : Nat.card {I : (Ideal (𝓞 K))⁰ // (J : Ideal (𝓞 K)) ∣ I ∧ IsPrincipal (I : Ideal (𝓞 K)) ∧ absNorm (I : Ideal (𝓞 K)) ≤ s} * torsionOrder K = Nat.card {a : idealSet K J // mixedEmbedding.norm (a : mixedSpace K) ≤ s}
case inl K : Type u_1 inst✝¹ : Field K inst✝ : NumberField K J : ↥(Ideal (𝓞 K))⁰ s : ℝ hs : 0 ≤ s x✝ : { x // x ∈ Finset.Iic ⌊s⌋₊ } i : ℕ hi : i ∈ Finset.Iic ⌊s⌋₊ ⊢ { a // (fun I => ⟨absNorm ↑↑I.1, ⋯⟩) a = ⟨i, hi⟩ } ≃ { b // (fun a => ⟨intNorm ↑((idealSetEquiv K J) ↑a), ⋯⟩) b = ⟨i, hi⟩ }
simp_rw [Subtype.mk.injEq]
case inl K : Type u_1 inst✝¹ : Field K inst✝ : NumberField K J : ↥(Ideal (𝓞 K))⁰ s : ℝ hs : 0 ≤ s x✝ : { x // x ∈ Finset.Iic ⌊s⌋₊ } i : ℕ hi : i ∈ Finset.Iic ⌊s⌋₊ ⊢ { a // absNorm ↑↑a.1 = i } ≃ { b // intNorm ↑((idealSetEquiv K J) ↑b) = i }
676cab8481af674a
convex_stdSimplex
Mathlib/Analysis/Convex/Basic.lean
theorem convex_stdSimplex : Convex 𝕜 (stdSimplex 𝕜 ι)
case refine_2 𝕜 : Type u_1 ι : Type u_5 inst✝¹ : OrderedSemiring 𝕜 inst✝ : Fintype ι f : ι → 𝕜 hf : f ∈ stdSimplex 𝕜 ι g : ι → 𝕜 hg : g ∈ stdSimplex 𝕜 ι a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ a + b = 1
exact hab
no goals
ecf6e08a2aba6b78
ClassGroup.exists_mk0_eq_mk0
Mathlib/NumberTheory/ClassNumber/Finite.lean
theorem exists_mk0_eq_mk0 [IsDedekindDomain S] [Algebra.IsAlgebraic R S] (I : (Ideal S)⁰) : ∃ J : (Ideal S)⁰, ClassGroup.mk0 I = ClassGroup.mk0 J ∧ algebraMap _ _ (∏ m ∈ finsetApprox bS adm, m) ∈ (J : Ideal S)
R : Type u_1 S : Type u_2 inst✝⁹ : EuclideanDomain R inst✝⁸ : CommRing S inst✝⁷ : IsDomain S inst✝⁶ : Algebra R S abv : AbsoluteValue R ℤ ι : Type u_5 inst✝⁵ : DecidableEq ι inst✝⁴ : Fintype ι bS : Basis ι R S adm : abv.IsAdmissible inst✝³ : Infinite R inst✝² : DecidableEq R inst✝¹ : IsDedekindDomain S inst✝ : Algebra.IsAlgebraic R S I : ↥(Ideal S)⁰ M : R := ∏ m ∈ finsetApprox bS adm, m hM : (algebraMap R S) M ≠ 0 b : S b_mem : b ∈ ↑I b_ne_zero : b ≠ 0 b_min : ∀ c ∈ ↑I, abv ((Algebra.norm R) c) < abv ((Algebra.norm R) b) → c = 0 J : Ideal S hJ : Ideal.span {(algebraMap R S) M} * ↑I = Ideal.span {b} * J ⊢ b ∈ ↑↑I
exact b_mem
no goals
b8ed2f844c81c819
CStarModule.norm_triangle
Mathlib/Analysis/CStarAlgebra/Module/Defs.lean
protected lemma norm_triangle (x y : E) : ‖x + y‖ ≤ ‖x‖ + ‖y‖
A : Type u_1 E : Type u_2 inst✝⁷ : NonUnitalCStarAlgebra A inst✝⁶ : PartialOrder A inst✝⁵ : AddCommGroup E inst✝⁴ : Module ℂ E inst✝³ : SMul Aᵐᵒᵖ E inst✝² : Norm E inst✝¹ : CStarModule A E inst✝ : StarOrderedRing A x y : E ⊢ ‖x + y‖ ≤ ‖x‖ + ‖y‖
have h : ‖x + y‖ ^ 2 ≤ (‖x‖ + ‖y‖) ^ 2 := by calc _ ≤ ‖⟪x, x⟫ + ⟪y, x⟫‖ + ‖⟪x, y⟫‖ + ‖⟪y, y⟫‖ := by simp only [norm_eq_sqrt_norm_inner_self, inner_add_right, inner_add_left, ← add_assoc, norm_nonneg, Real.sq_sqrt] exact norm_add₃_le _ ≤ ‖⟪x, x⟫‖ + ‖⟪y, x⟫‖ + ‖⟪x, y⟫‖ + ‖⟪y, y⟫‖ := by gcongr; exact norm_add_le _ _ _ ≤ ‖⟪x, x⟫‖ + ‖y‖ * ‖x‖ + ‖x‖ * ‖y‖ + ‖⟪y, y⟫‖ := by gcongr <;> exact norm_inner_le E _ = ‖x‖ ^ 2 + ‖y‖ * ‖x‖ + ‖x‖ * ‖y‖ + ‖y‖ ^ 2 := by simp [norm_eq_sqrt_norm_inner_self] _ = (‖x‖ + ‖y‖) ^ 2 := by simp only [add_pow_two, add_left_inj]; ring
A : Type u_1 E : Type u_2 inst✝⁷ : NonUnitalCStarAlgebra A inst✝⁶ : PartialOrder A inst✝⁵ : AddCommGroup E inst✝⁴ : Module ℂ E inst✝³ : SMul Aᵐᵒᵖ E inst✝² : Norm E inst✝¹ : CStarModule A E inst✝ : StarOrderedRing A x y : E h : ‖x + y‖ ^ 2 ≤ (‖x‖ + ‖y‖) ^ 2 ⊢ ‖x + y‖ ≤ ‖x‖ + ‖y‖
6038718c406b66b0
LeftOrdContinuous.comp
Mathlib/Order/OrdContinuous.lean
theorem comp (hg : LeftOrdContinuous g) (hf : LeftOrdContinuous f) : LeftOrdContinuous (g ∘ f) := fun s x h => by simpa only [image_image] using hg (hf h)
α : Type u β : Type v γ : Type w inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ g : β → γ f : α → β hg : LeftOrdContinuous g hf : LeftOrdContinuous f s : Set α x : α h : IsLUB s x ⊢ IsLUB (g ∘ f '' s) ((g ∘ f) x)
simpa only [image_image] using hg (hf h)
no goals
14a0b7b8640f6f40
List.find?_flatten_eq_some_iff
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Find.lean
theorem find?_flatten_eq_some_iff {xs : List (List α)} {p : α → Bool} {a : α} : xs.flatten.find? p = some a ↔ p a ∧ ∃ as ys zs bs, xs = as ++ (ys ++ a :: zs) :: bs ∧ (∀ a ∈ as, ∀ x ∈ a, !p x) ∧ (∀ x ∈ ys, !p x)
α : Type u_1 p : α → Bool a✝ : α h : p a✝ = true zs : List α as : List (List α) bs : List α c : α cs : List α ds : List (List α) h₁ : a✝ :: zs = c :: cs ++ ds.flatten h₂ : ∀ (a : α), a ∈ as.flatten ++ bs → (!p a) = true l : List α ml : l ∈ as a : α m : a ∈ l ⊢ a ∈ as.flatten ++ bs
simpa using .inl ⟨l, ml, m⟩
no goals
b3081438100b7db8
innerDualCone_univ
Mathlib/Analysis/Convex/Cone/InnerDual.lean
theorem innerDualCone_univ : (univ : Set H).innerDualCone = 0
H : Type u_1 inst✝¹ : NormedAddCommGroup H inst✝ : InnerProductSpace ℝ H ⊢ univ.innerDualCone = 0
suffices ∀ x : H, x ∈ (univ : Set H).innerDualCone → x = 0 by apply SetLike.coe_injective exact eq_singleton_iff_unique_mem.mpr ⟨fun x _ => (inner_zero_right _).ge, this⟩
H : Type u_1 inst✝¹ : NormedAddCommGroup H inst✝ : InnerProductSpace ℝ H ⊢ ∀ x ∈ univ.innerDualCone, x = 0
f5ace980151c53a2
MeasureTheory.withDensity_absolutelyContinuous'
Mathlib/MeasureTheory/Measure/WithDensity.lean
/-- If `f` is almost everywhere positive, then `μ ≪ μ.withDensity f`. See also `withDensity_absolutelyContinuous` for the reverse direction, which always holds. -/ lemma withDensity_absolutelyContinuous' {μ : Measure α} {f : α → ℝ≥0∞} (hf : AEMeasurable f μ) (hf_ne_zero : ∀ᵐ x ∂μ, f x ≠ 0) : μ ≪ μ.withDensity f
α : Type u_1 m0 : MeasurableSpace α μ : Measure α f : α → ℝ≥0∞ hf : AEMeasurable f μ s : Set α hs : MeasurableSet s hf_ne_zero : μ {a | f a = 0} = 0 hμs : μ {a | a ∈ s ∧ ¬f a = 0} = 0 ⊢ μ s = 0
have hle : s ⊆ {a | a ∈ s ∧ ¬f a = 0} ∪ {a | f a = 0} := fun x hx ↦ or_iff_not_imp_right.mpr <| fun hnx ↦ ⟨hx, hnx⟩
α : Type u_1 m0 : MeasurableSpace α μ : Measure α f : α → ℝ≥0∞ hf : AEMeasurable f μ s : Set α hs : MeasurableSet s hf_ne_zero : μ {a | f a = 0} = 0 hμs : μ {a | a ∈ s ∧ ¬f a = 0} = 0 hle : s ⊆ {a | a ∈ s ∧ ¬f a = 0} ∪ {a | f a = 0} ⊢ μ s = 0
5729584ad57cfef7
CommGrp.isZero_of_subsingleton
Mathlib/Algebra/Category/Grp/Zero.lean
theorem isZero_of_subsingleton (G : CommGrp) [Subsingleton G] : IsZero G
case refine_1 G : CommGrp inst✝ : Subsingleton ↑G X : CommGrp f : G ⟶ X ⊢ f = default
ext x
case refine_1.hf.h G : CommGrp inst✝ : Subsingleton ↑G X : CommGrp f : G ⟶ X x : ↑G ⊢ (Hom.hom f) x = (Hom.hom default) x
0109e12937cbcbd9
Prod.mk_lt_mk_of_le_of_lt
Mathlib/Order/Basic.lean
lemma mk_lt_mk_of_le_of_lt (h₁ : a₁ ≤ a₂) (h₂ : b₁ < b₂) : (a₁, b₁) < (a₂, b₂)
α : Type u_2 β : Type u_3 inst✝¹ : Preorder α inst✝ : Preorder β a₁ a₂ : α b₁ b₂ : β h₁ : a₁ ≤ a₂ h₂ : b₁ < b₂ ⊢ (a₁, b₁) < (a₂, b₂)
simp [lt_iff, *]
no goals
5cc46f1809ad3b04
continuous_inf_dom_left₂
Mathlib/Topology/Constructions.lean
theorem continuous_inf_dom_left₂ {X Y Z} {f : X → Y → Z} {ta1 ta2 : TopologicalSpace X} {tb1 tb2 : TopologicalSpace Y} {tc1 : TopologicalSpace Z} (h : by haveI := ta1; haveI := tb1; exact Continuous fun p : X × Y => f p.1 p.2) : by haveI := ta1 ⊓ ta2; haveI := tb1 ⊓ tb2; exact Continuous fun p : X × Y => f p.1 p.2
X✝ : Type u Y✝ : Type v Z✝ : Type u_1 W : Type u_2 ε : Type u_3 ζ : Type u_4 inst✝⁵ : TopologicalSpace X✝ inst✝⁴ : TopologicalSpace Y✝ inst✝³ : TopologicalSpace Z✝ inst✝² : TopologicalSpace W inst✝¹ : TopologicalSpace ε inst✝ : TopologicalSpace ζ X : Type ?u.27326 Y : Type ?u.27332 Z : Type ?u.27338 f : X → Y → Z ta1 ta2 : TopologicalSpace X tb1 tb2 : TopologicalSpace Y tc1 : TopologicalSpace Z h : Continuous fun p => f p.1 p.2 this✝ : TopologicalSpace X this : TopologicalSpace Y ⊢ Sort ?u.27343
exact Continuous fun p : X × Y => f p.1 p.2
no goals
997f870b6f34fc9d
StrictMonoOn.eq_iff_eq
Mathlib/Order/Monotone/Basic.lean
theorem StrictMonoOn.eq_iff_eq (hf : StrictMonoOn f s) {a b : α} (ha : a ∈ s) (hb : b ∈ s) : f a = f b ↔ a = b := ⟨fun h ↦ le_antisymm ((hf.le_iff_le ha hb).mp h.le) ((hf.le_iff_le hb ha).mp h.ge), by rintro rfl rfl⟩
α : Type u β : Type v inst✝¹ : LinearOrder α inst✝ : Preorder β f : α → β s : Set α hf : StrictMonoOn f s a b : α ha : a ∈ s hb : b ∈ s ⊢ a = b → f a = f b
rintro rfl
α : Type u β : Type v inst✝¹ : LinearOrder α inst✝ : Preorder β f : α → β s : Set α hf : StrictMonoOn f s a : α ha hb : a ∈ s ⊢ f a = f a
1781a1b6aa54cbbe
Cardinal.ord_le
Mathlib/SetTheory/Ordinal/Basic.lean
theorem ord_le {c o} : ord c ≤ o ↔ c ≤ o.card := inductionOn c fun α => Ordinal.inductionOn o fun β s _ => by let ⟨r, _, e⟩ := ord_eq α simp only [card_type]; constructor <;> intro h · rw [e] at h exact let ⟨f⟩ := h ⟨f.toEmbedding⟩ · obtain ⟨f⟩ := h have g := RelEmbedding.preimage f s haveI := RelEmbedding.isWellOrder g exact le_trans (ord_le_type _) g.ordinal_type_le
c : Cardinal.{u_1} o : Ordinal.{u_1} α β : Type u_1 s : β → β → Prop x✝ : IsWellOrder β s r : α → α → Prop w✝ : IsWellOrder α r e : (#α).ord = type r ⊢ (#α).ord ≤ type s ↔ #α ≤ (type s).card
simp only [card_type]
c : Cardinal.{u_1} o : Ordinal.{u_1} α β : Type u_1 s : β → β → Prop x✝ : IsWellOrder β s r : α → α → Prop w✝ : IsWellOrder α r e : (#α).ord = type r ⊢ (#α).ord ≤ type s ↔ #α ≤ #β
76676751ae2ef84e
ContinuousLinearEquiv.comp_right_differentiableOn_iff
Mathlib/Analysis/Calculus/FDeriv/Equiv.lean
theorem comp_right_differentiableOn_iff {f : F → G} {s : Set F} : DifferentiableOn 𝕜 (f ∘ iso) (iso ⁻¹' s) ↔ DifferentiableOn 𝕜 f s
case a 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type u_3 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace 𝕜 G iso : E ≃L[𝕜] F f : F → G s : Set F H : DifferentiableOn 𝕜 (f ∘ ⇑iso) (⇑iso ⁻¹' s) y : F hy : y ∈ s ⊢ iso.symm y ∈ ⇑iso ⁻¹' s
simpa only [mem_preimage, apply_symm_apply] using hy
no goals
dcf460cd45203f0a
AffineSubspace.coe_direction_eq_vsub_set_right
Mathlib/LinearAlgebra/AffineSpace/AffineSubspace/Defs.lean
theorem coe_direction_eq_vsub_set_right {s : AffineSubspace k P} {p : P} (hp : p ∈ s) : (s.direction : Set V) = (· -ᵥ p) '' s
k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : AffineSubspace k P p : P hp : p ∈ s ⊢ ↑s -ᵥ ↑s = (fun x => x -ᵥ p) '' ↑s
refine le_antisymm ?_ ?_
case refine_1 k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : AffineSubspace k P p : P hp : p ∈ s ⊢ ↑s -ᵥ ↑s ≤ (fun x => x -ᵥ p) '' ↑s case refine_2 k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : AffineSubspace k P p : P hp : p ∈ s ⊢ (fun x => x -ᵥ p) '' ↑s ≤ ↑s -ᵥ ↑s
d2d0dab6124cb47b
Std.Sat.AIG.LawfulVecOperator.isPrefix_aig
Mathlib/.lake/packages/lean4/src/lean/Std/Sat/AIG/LawfulVecOperator.lean
theorem isPrefix_aig (aig : AIG α) (input : β aig len) : IsPrefix aig.decls (f aig input).aig.decls
α : Type inst✝² : Hashable α inst✝¹ : DecidableEq α β : AIG α → Nat → Type f : {len : Nat} → (aig : AIG α) → β aig len → RefVecEntry α len inst✝ : LawfulVecOperator α β fun {len} => f len : Nat aig : AIG α input : β aig len ⊢ IsPrefix aig.decls (f aig input).aig.decls
apply IsPrefix.of
case idx_eq α : Type inst✝² : Hashable α inst✝¹ : DecidableEq α β : AIG α → Nat → Type f : {len : Nat} → (aig : AIG α) → β aig len → RefVecEntry α len inst✝ : LawfulVecOperator α β fun {len} => f len : Nat aig : AIG α input : β aig len ⊢ ∀ (idx : Nat) (h : idx < aig.decls.size), (f aig input).aig.decls[idx] = aig.decls[idx] case size_le α : Type inst✝² : Hashable α inst✝¹ : DecidableEq α β : AIG α → Nat → Type f : {len : Nat} → (aig : AIG α) → β aig len → RefVecEntry α len inst✝ : LawfulVecOperator α β fun {len} => f len : Nat aig : AIG α input : β aig len ⊢ aig.decls.size ≤ (f aig input).aig.decls.size
5c23bef39116f766
cfcₙ_mono
Mathlib/Analysis/CStarAlgebra/ContinuousFunctionalCalculus/NonUnital.lean
lemma cfcₙ_mono {f g : R → R} {a : A} (h : ∀ x ∈ σₙ R a, f x ≤ g x) (hf : ContinuousOn f (σₙ R a)
R : Type u_1 A : Type u_2 p : A → Prop inst✝¹⁵ : OrderedCommSemiring R inst✝¹⁴ : Nontrivial R inst✝¹³ : StarRing R inst✝¹² : MetricSpace R inst✝¹¹ : IsTopologicalSemiring R inst✝¹⁰ : ContinuousStar R inst✝⁹ : ∀ (α : Type ?u.940962) [inst : Zero α] [inst_1 : TopologicalSpace α], StarOrderedRing C(α, R)₀ inst✝⁸ : TopologicalSpace A inst✝⁷ : NonUnitalRing A inst✝⁶ : StarRing A inst✝⁵ : PartialOrder A inst✝⁴ : StarOrderedRing A inst✝³ : Module R A inst✝² : IsScalarTower R A A inst✝¹ : SMulCommClass R A A inst✝ : NonUnitalContinuousFunctionalCalculus R p f g : R → R a : A h : ∀ x ∈ σₙ R a, f x ≤ g x hf : autoParam (ContinuousOn f (σₙ R a)) _auto✝ hg : autoParam (ContinuousOn g (σₙ R a)) _auto✝ hf0 : autoParam (f 0 = 0) _auto✝ hg0 : autoParam (g 0 = 0) _auto✝ ⊢ cfcₙ f a ≤ cfcₙ g a
by_cases ha : p a
case pos R : Type u_1 A : Type u_2 p : A → Prop inst✝¹⁵ : OrderedCommSemiring R inst✝¹⁴ : Nontrivial R inst✝¹³ : StarRing R inst✝¹² : MetricSpace R inst✝¹¹ : IsTopologicalSemiring R inst✝¹⁰ : ContinuousStar R inst✝⁹ : ∀ (α : Type ?u.940962) [inst : Zero α] [inst_1 : TopologicalSpace α], StarOrderedRing C(α, R)₀ inst✝⁸ : TopologicalSpace A inst✝⁷ : NonUnitalRing A inst✝⁶ : StarRing A inst✝⁵ : PartialOrder A inst✝⁴ : StarOrderedRing A inst✝³ : Module R A inst✝² : IsScalarTower R A A inst✝¹ : SMulCommClass R A A inst✝ : NonUnitalContinuousFunctionalCalculus R p f g : R → R a : A h : ∀ x ∈ σₙ R a, f x ≤ g x hf : autoParam (ContinuousOn f (σₙ R a)) _auto✝ hg : autoParam (ContinuousOn g (σₙ R a)) _auto✝ hf0 : autoParam (f 0 = 0) _auto✝ hg0 : autoParam (g 0 = 0) _auto✝ ha : p a ⊢ cfcₙ f a ≤ cfcₙ g a case neg R : Type u_1 A : Type u_2 p : A → Prop inst✝¹⁵ : OrderedCommSemiring R inst✝¹⁴ : Nontrivial R inst✝¹³ : StarRing R inst✝¹² : MetricSpace R inst✝¹¹ : IsTopologicalSemiring R inst✝¹⁰ : ContinuousStar R inst✝⁹ : ∀ (α : Type ?u.940962) [inst : Zero α] [inst_1 : TopologicalSpace α], StarOrderedRing C(α, R)₀ inst✝⁸ : TopologicalSpace A inst✝⁷ : NonUnitalRing A inst✝⁶ : StarRing A inst✝⁵ : PartialOrder A inst✝⁴ : StarOrderedRing A inst✝³ : Module R A inst✝² : IsScalarTower R A A inst✝¹ : SMulCommClass R A A inst✝ : NonUnitalContinuousFunctionalCalculus R p f g : R → R a : A h : ∀ x ∈ σₙ R a, f x ≤ g x hf : autoParam (ContinuousOn f (σₙ R a)) _auto✝ hg : autoParam (ContinuousOn g (σₙ R a)) _auto✝ hf0 : autoParam (f 0 = 0) _auto✝ hg0 : autoParam (g 0 = 0) _auto✝ ha : ¬p a ⊢ cfcₙ f a ≤ cfcₙ g a
7bbcd08f70e05623
MeasureTheory.condExp_bot'
Mathlib/MeasureTheory/Function/ConditionalExpectation/Basic.lean
theorem condExp_bot' [hμ : NeZero μ] (f : α → E) : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ
case pos.intro α : Type u_1 E : Type u_3 m₀ : MeasurableSpace α μ : Measure α inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E hμ : NeZero μ f : α → E hμ_finite : IsFiniteMeasure μ h_meas : StronglyMeasurable (μ[f|⊥]) c : E h_eq : μ[f|⊥] = fun x => c h_integral : (μ Set.univ).toReal • c = ∫ (x : α), f x ∂μ ⊢ ¬μ Set.univ = 0 ∧ ¬μ Set.univ = ⊤
exact ⟨NeZero.ne _, measure_ne_top μ Set.univ⟩
no goals
46233d8f5b2c46f3
MeasureTheory.withDensity_tsum
Mathlib/MeasureTheory/Measure/WithDensity.lean
theorem withDensity_tsum {ι : Type*} [Countable ι] {f : ι → α → ℝ≥0∞} (h : ∀ i, Measurable (f i)) : μ.withDensity (∑' n, f n) = sum fun n => μ.withDensity (f n)
case h α : Type u_1 m0 : MeasurableSpace α μ : Measure α ι : Type u_2 inst✝ : Countable ι f : ι → α → ℝ≥0∞ h : ∀ (i : ι), Measurable (f i) s : Set α hs : MeasurableSet s ⊢ (μ.withDensity (∑' (n : ι), f n)) s = (sum fun n => μ.withDensity (f n)) s
simp_rw [sum_apply _ hs, withDensity_apply _ hs]
case h α : Type u_1 m0 : MeasurableSpace α μ : Measure α ι : Type u_2 inst✝ : Countable ι f : ι → α → ℝ≥0∞ h : ∀ (i : ι), Measurable (f i) s : Set α hs : MeasurableSet s ⊢ ∫⁻ (a : α) in s, (∑' (n : ι), f n) a ∂μ = ∑' (i : ι), ∫⁻ (a : α) in s, f i a ∂μ
64c96120ee87d086
IsDedekindDomainInv.dimensionLEOne
Mathlib/RingTheory/DedekindDomain/Ideal.lean
theorem dimensionLEOne : DimensionLEOne A := ⟨by -- We're going to show that `P` is maximal because any (maximal) ideal `M` -- that is strictly larger would be `⊤`. rintro P P_ne hP refine Ideal.isMaximal_def.mpr ⟨hP.ne_top, fun M hM => ?_⟩ -- We may assume `P` and `M` (as fractional ideals) are nonzero. have P'_ne : (P : FractionalIdeal A⁰ (FractionRing A)) ≠ 0 := coeIdeal_ne_zero.mpr P_ne have M'_ne : (M : FractionalIdeal A⁰ (FractionRing A)) ≠ 0 := coeIdeal_ne_zero.mpr hM.ne_bot -- In particular, we'll show `M⁻¹ * P ≤ P` suffices (M⁻¹ : FractionalIdeal A⁰ (FractionRing A)) * P ≤ P by rw [eq_top_iff, ← coeIdeal_le_coeIdeal (FractionRing A), coeIdeal_top] calc (1 : FractionalIdeal A⁰ (FractionRing A)) = _ * _ * _ := ?_ _ ≤ _ * _ := mul_right_mono ((P : FractionalIdeal A⁰ (FractionRing A))⁻¹ * M : FractionalIdeal A⁰ (FractionRing A)) this _ = M := ?_ · rw [mul_assoc, ← mul_assoc (P : FractionalIdeal A⁰ (FractionRing A)), h.mul_inv_eq_one P'_ne, one_mul, h.inv_mul_eq_one M'_ne] · rw [← mul_assoc (P : FractionalIdeal A⁰ (FractionRing A)), h.mul_inv_eq_one P'_ne, one_mul] -- Suppose we have `x ∈ M⁻¹ * P`, then in fact `x = algebraMap _ _ y` for some `y`. intro x hx have le_one : (M⁻¹ : FractionalIdeal A⁰ (FractionRing A)) * P ≤ 1
A : Type u_2 inst✝¹ : CommRing A inst✝ : IsDomain A h : IsDedekindDomainInv A P : Ideal A P_ne : P ≠ ⊥ hP : P.IsPrime M : Ideal A hM : P < M ⊢ M = ⊤
have P'_ne : (P : FractionalIdeal A⁰ (FractionRing A)) ≠ 0 := coeIdeal_ne_zero.mpr P_ne
A : Type u_2 inst✝¹ : CommRing A inst✝ : IsDomain A h : IsDedekindDomainInv A P : Ideal A P_ne : P ≠ ⊥ hP : P.IsPrime M : Ideal A hM : P < M P'_ne : ↑P ≠ 0 ⊢ M = ⊤
ec848de7999ea57e
DirichletCharacter.BadChar.F_eq_LSeries
Mathlib/NumberTheory/LSeries/Nonvanishing.lean
/-- `B.F` agrees with the L-series of `zetaMul χ` on `1 < s.re`. -/ private lemma F_eq_LSeries (B : BadChar N) {s : ℂ} (hs : 1 < s.re) : B.F s = LSeries B.χ.zetaMul s
case hf N : ℕ inst✝ : NeZero N B : DirichletCharacter.BadChar N s : ℂ hs : 1 < s.re ⊢ LSeriesSummable (⇑↑ζ) s
exact LSeriesSummable_zeta_iff.mpr hs
no goals
1a2b47fd23bb26b9
CategoryTheory.Limits.preservesBinaryBiproduct_of_preservesBiproduct
Mathlib/CategoryTheory/Limits/Preserves/Shapes/Biproducts.lean
/-- A functor that preserves biproducts of a pair preserves binary biproducts. -/ lemma preservesBinaryBiproduct_of_preservesBiproduct (F : C ⥤ D) [PreservesZeroMorphisms F] (X Y : C) [PreservesBiproduct (pairFunction X Y) F] : PreservesBinaryBiproduct X Y F where preserves {b} hb := ⟨{ isLimit := IsLimit.ofIsoLimit ((IsLimit.postcomposeHomEquiv (diagramIsoPair _) _).symm (isBilimitOfPreserves F (b.toBiconeIsBilimit.symm hb)).isLimit) <| Cones.ext (Iso.refl _) fun j => by rcases j with ⟨⟨⟩⟩ <;> simp isColimit := IsColimit.ofIsoColimit ((IsColimit.precomposeInvEquiv (diagramIsoPair _) _).symm (isBilimitOfPreserves F (b.toBiconeIsBilimit.symm hb)).isColimit) <| Cocones.ext (Iso.refl _) fun j => by rcases j with ⟨⟨⟩⟩ <;> simp }⟩
C : Type u₁ inst✝⁵ : Category.{v₁, u₁} C D : Type u₂ inst✝⁴ : Category.{v₂, u₂} D inst✝³ : HasZeroMorphisms C inst✝² : HasZeroMorphisms D F : C ⥤ D inst✝¹ : F.PreservesZeroMorphisms X Y : C inst✝ : PreservesBiproduct (pairFunction X Y) F b : BinaryBicone X Y hb : b.IsBilimit j : Discrete WalkingPair ⊢ ((Cocones.precompose (diagramIsoPair (Discrete.functor (F.obj ∘ pairFunction X Y))).inv).obj (F.mapBicone b.toBicone).toCocone).ι.app j ≫ (Iso.refl ((Cocones.precompose (diagramIsoPair (Discrete.functor (F.obj ∘ pairFunction X Y))).inv).obj (F.mapBicone b.toBicone).toCocone).pt).hom = (F.mapBinaryBicone b).toCocone.ι.app j
rcases j with ⟨⟨⟩⟩ <;> simp
no goals
2ed16a28f912a87b
MeasureTheory.ae_eq_zero_restrict_of_forall_setIntegral_eq_zero
Mathlib/MeasureTheory/Function/AEEqOfIntegral.lean
theorem ae_eq_zero_restrict_of_forall_setIntegral_eq_zero {f : α → E} (hf_int_finite : ∀ s, MeasurableSet s → μ s < ∞ → IntegrableOn f s μ) (hf_zero : ∀ s : Set α, MeasurableSet s → μ s < ∞ → ∫ x in s, f x ∂μ = 0) {t : Set α} (ht : MeasurableSet t) (hμt : μ t ≠ ∞) : f =ᵐ[μ.restrict t] 0
case intro.intro α : Type u_1 E : Type u_2 m0 : MeasurableSpace α μ : Measure α inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : α → E hf_int_finite : ∀ (s : Set α), MeasurableSet s → μ s < ⊤ → IntegrableOn f s μ hf_zero : ∀ (s : Set α), MeasurableSet s → μ s < ⊤ → ∫ (x : α) in s, f x ∂μ = 0 t : Set α ht : MeasurableSet t hμt : μ t ≠ ⊤ u : Set E u_sep : IsSeparable u hu : ∀ᵐ (x : α) ∂μ.restrict t, f x ∈ u c : Dual ℝ E ⊢ (fun x => c (f x)) =ᶠ[ae (μ.restrict t)] 0
refine ae_eq_zero_restrict_of_forall_setIntegral_eq_zero_real ?_ ?_ ht hμt
case intro.intro.refine_1 α : Type u_1 E : Type u_2 m0 : MeasurableSpace α μ : Measure α inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : α → E hf_int_finite : ∀ (s : Set α), MeasurableSet s → μ s < ⊤ → IntegrableOn f s μ hf_zero : ∀ (s : Set α), MeasurableSet s → μ s < ⊤ → ∫ (x : α) in s, f x ∂μ = 0 t : Set α ht : MeasurableSet t hμt : μ t ≠ ⊤ u : Set E u_sep : IsSeparable u hu : ∀ᵐ (x : α) ∂μ.restrict t, f x ∈ u c : Dual ℝ E ⊢ ∀ (s : Set α), MeasurableSet s → μ s < ⊤ → IntegrableOn (fun x => c (f x)) s μ case intro.intro.refine_2 α : Type u_1 E : Type u_2 m0 : MeasurableSpace α μ : Measure α inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : α → E hf_int_finite : ∀ (s : Set α), MeasurableSet s → μ s < ⊤ → IntegrableOn f s μ hf_zero : ∀ (s : Set α), MeasurableSet s → μ s < ⊤ → ∫ (x : α) in s, f x ∂μ = 0 t : Set α ht : MeasurableSet t hμt : μ t ≠ ⊤ u : Set E u_sep : IsSeparable u hu : ∀ᵐ (x : α) ∂μ.restrict t, f x ∈ u c : Dual ℝ E ⊢ ∀ (s : Set α), MeasurableSet s → μ s < ⊤ → ∫ (x : α) in s, c (f x) ∂μ = 0
e9059c5fe2b96d38
GenContFract.IntFractPair.coe_of_rat_eq
Mathlib/Algebra/ContinuedFractions/Computation/TerminatesIffRat.lean
theorem coe_of_rat_eq (v_eq_q : v = (↑q : K)) : ((IntFractPair.of q).mapFr (↑) : IntFractPair K) = IntFractPair.of v
K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q ⊢ mapFr Rat.cast (IntFractPair.of q) = IntFractPair.of v
simp [IntFractPair.of, v_eq_q]
no goals
4cb0dce41cf6fec4
MeasureTheory.tendsto_lintegral_nn_filter_of_le_const
Mathlib/MeasureTheory/Measure/HasOuterApproxClosed.lean
theorem tendsto_lintegral_nn_filter_of_le_const {ι : Type*} {L : Filter ι} [L.IsCountablyGenerated] (μ : Measure Ω) [IsFiniteMeasure μ] {fs : ι → Ω →ᵇ ℝ≥0} {c : ℝ≥0} (fs_le_const : ∀ᶠ i in L, ∀ᵐ ω : Ω ∂μ, fs i ω ≤ c) {f : Ω → ℝ≥0} (fs_lim : ∀ᵐ ω : Ω ∂μ, Tendsto (fun i ↦ fs i ω) L (𝓝 (f ω))) : Tendsto (fun i ↦ ∫⁻ ω, fs i ω ∂μ) L (𝓝 (∫⁻ ω, f ω ∂μ))
case refine_2 Ω : Type u_1 inst✝⁴ : TopologicalSpace Ω inst✝³ : MeasurableSpace Ω inst✝² : OpensMeasurableSpace Ω ι : Type u_2 L : Filter ι inst✝¹ : L.IsCountablyGenerated μ : Measure Ω inst✝ : IsFiniteMeasure μ fs : ι → Ω →ᵇ ℝ≥0 c : ℝ≥0 fs_le_const : ∀ᶠ (i : ι) in L, ∀ᵐ (ω : Ω) ∂μ, (fs i) ω ≤ c f : Ω → ℝ≥0 fs_lim : ∀ᵐ (ω : Ω) ∂μ, Tendsto (fun i => (fs i) ω) L (𝓝 (f ω)) ⊢ ∀ᵐ (a : Ω) ∂μ, Tendsto (fun n => ↑((fs n) a)) L (𝓝 ↑(f a))
simpa only [Function.comp_apply, ENNReal.tendsto_coe] using fs_lim
no goals
e702473d2b1c276c
reflection_orthogonal
Mathlib/Analysis/InnerProductSpace/Projection.lean
theorem reflection_orthogonal : reflection Kᗮ = .trans (reflection K) (.neg _)
case h 𝕜 : Type u_1 E : Type u_2 inst✝³ : RCLike 𝕜 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace 𝕜 E K : Submodule 𝕜 E inst✝ : HasOrthogonalProjection K x✝ : E ⊢ (reflection Kᗮ) x✝ = ((reflection K).trans (LinearIsometryEquiv.neg 𝕜)) x✝
apply reflection_orthogonal_apply
no goals
f2144d29979d50da
ProbabilityTheory.strong_law_aux5
Mathlib/Probability/StrongLaw.lean
theorem strong_law_aux5 : ∀ᵐ ω, (fun n : ℕ => ∑ i ∈ range n, truncation (X i) i ω - ∑ i ∈ range n, X i ω) =o[atTop] fun n : ℕ => (n : ℝ)
case neg Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) ℙ hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) ℙ ℙ hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω A : ∑' (j : ℕ), ℙ {ω | X j ω ∈ Set.Ioi ↑j} < ⊤ ω : Ω hω : ∀ᶠ (n : ℕ) in atTop, X n ω ∉ Set.Ioi ↑n n : ℕ hn : X n ω ∉ Set.Ioi ↑n npos : n ∈ Set.Ioi 0 h : ¬(-↑n < X n ω ∧ X n ω ≤ ↑n) ⊢ 0 = 0 - X n ω
have : -(n : ℝ) < X n ω := by apply lt_of_lt_of_le _ (hnonneg n ω) simpa only [Right.neg_neg_iff, Nat.cast_pos] using npos
case neg Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) ℙ hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) ℙ ℙ hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω A : ∑' (j : ℕ), ℙ {ω | X j ω ∈ Set.Ioi ↑j} < ⊤ ω : Ω hω : ∀ᶠ (n : ℕ) in atTop, X n ω ∉ Set.Ioi ↑n n : ℕ hn : X n ω ∉ Set.Ioi ↑n npos : n ∈ Set.Ioi 0 h : ¬(-↑n < X n ω ∧ X n ω ≤ ↑n) this : -↑n < X n ω ⊢ 0 = 0 - X n ω
89dd352ac6ec4b05
MeasureTheory.lintegral_prod_of_measurable
Mathlib/MeasureTheory/Measure/Prod.lean
theorem lintegral_prod_of_measurable : ∀ (f : α × β → ℝ≥0∞), Measurable f → ∫⁻ z, f z ∂μ.prod ν = ∫⁻ x, ∫⁻ y, f (x, y) ∂ν ∂μ
α : Type u_1 β : Type u_2 inst✝² : MeasurableSpace α inst✝¹ : MeasurableSpace β μ : Measure α ν : Measure β inst✝ : SFinite ν ⊢ ∀ (f : α × β → ℝ≥0∞), Measurable f → ∫⁻ (z : α × β), f z ∂μ.prod ν = ∫⁻ (x : α), ∫⁻ (y : β), f (x, y) ∂ν ∂μ
have m := @measurable_prod_mk_left
α : Type u_1 β : Type u_2 inst✝² : MeasurableSpace α inst✝¹ : MeasurableSpace β μ : Measure α ν : Measure β inst✝ : SFinite ν m : ∀ {α : Type ?u.165217} {β : Type ?u.165216} {m : MeasurableSpace α} {mβ : MeasurableSpace β} {x : α}, Measurable (Prod.mk x) ⊢ ∀ (f : α × β → ℝ≥0∞), Measurable f → ∫⁻ (z : α × β), f z ∂μ.prod ν = ∫⁻ (x : α), ∫⁻ (y : β), f (x, y) ∂ν ∂μ
4d25298bbc46afab
CategoryTheory.Limits.colimitLimitToLimitColimit_surjective
Mathlib/CategoryTheory/Limits/FilteredColimitCommutesFiniteLimit.lean
theorem colimitLimitToLimitColimit_surjective : Function.Surjective (colimitLimitToLimitColimit F)
case intro.intro.h.w J : Type u₁ K : Type u₂ inst✝⁴ : SmallCategory J inst✝³ : Category.{v₂, u₂} K inst✝² : Small.{v, u₂} K inst✝¹ : FinCategory J F : J × K ⥤ Type v inst✝ : IsFiltered K x : limit (curry.obj F ⋙ colim) k : J → K y : (j : J) → F.obj (j, k j) e : ∀ (j : J), colimit.ι ((curry.obj F).obj j) (k j) (y j) = limit.π (curry.obj F ⋙ colim) j x k' : K g : (j : J) → k j ⟶ k' kf : {j j' : J} → (j ⟶ j') → K hf gf : {j j' : J} → (f : j ⟶ j') → k' ⟶ kf f wf : ∀ {j j' : J} (f : j ⟶ j'), F.map (𝟙 j', g j' ≫ gf f) (y j') = F.map (f, g j ≫ hf f) (y j) k'' : K i : {j j' : J} → (f : j ⟶ j') → kf f ⟶ k'' s : ∀ {j₁ j₂ j₃ j₄ : J} (f : j₁ ⟶ j₂) (f' : j₃ ⟶ j₄), gf f ≫ i f = hf f' ≫ i f' ⊢ ∀ (j : J), limit.π (curry.obj F ⋙ colim) j (colimitLimitToLimitColimit F (colimit.ι (curry.obj (swap K J ⋙ F) ⋙ lim) k'' (id (Limit.mk ((curry.obj (swap K J ⋙ F)).obj k'') (fun j => F.map (𝟙 j, g j ≫ gf (𝟙 j) ≫ i (𝟙 j)) (y j)) ⋯)))) = limit.π (curry.obj F ⋙ colim) j x
intro j
case intro.intro.h.w J : Type u₁ K : Type u₂ inst✝⁴ : SmallCategory J inst✝³ : Category.{v₂, u₂} K inst✝² : Small.{v, u₂} K inst✝¹ : FinCategory J F : J × K ⥤ Type v inst✝ : IsFiltered K x : limit (curry.obj F ⋙ colim) k : J → K y : (j : J) → F.obj (j, k j) e : ∀ (j : J), colimit.ι ((curry.obj F).obj j) (k j) (y j) = limit.π (curry.obj F ⋙ colim) j x k' : K g : (j : J) → k j ⟶ k' kf : {j j' : J} → (j ⟶ j') → K hf gf : {j j' : J} → (f : j ⟶ j') → k' ⟶ kf f wf : ∀ {j j' : J} (f : j ⟶ j'), F.map (𝟙 j', g j' ≫ gf f) (y j') = F.map (f, g j ≫ hf f) (y j) k'' : K i : {j j' : J} → (f : j ⟶ j') → kf f ⟶ k'' s : ∀ {j₁ j₂ j₃ j₄ : J} (f : j₁ ⟶ j₂) (f' : j₃ ⟶ j₄), gf f ≫ i f = hf f' ≫ i f' j : J ⊢ limit.π (curry.obj F ⋙ colim) j (colimitLimitToLimitColimit F (colimit.ι (curry.obj (swap K J ⋙ F) ⋙ lim) k'' (id (Limit.mk ((curry.obj (swap K J ⋙ F)).obj k'') (fun j => F.map (𝟙 j, g j ≫ gf (𝟙 j) ≫ i (𝟙 j)) (y j)) ⋯)))) = limit.π (curry.obj F ⋙ colim) j x
1be585fb623fc3d9
Language.mem_pow
Mathlib/Computability/Language.lean
theorem mem_pow {l : Language α} {x : List α} {n : ℕ} : x ∈ l ^ n ↔ ∃ S : List (List α), x = S.flatten ∧ S.length = n ∧ ∀ y ∈ S, y ∈ l
case succ.mp α : Type u_1 l : Language α n : ℕ ihn : ∀ {x : List α}, x ∈ l ^ n ↔ ∃ S, x = S.flatten ∧ S.length = n ∧ ∀ y ∈ S, y ∈ l x : List α ⊢ (∃ a ∈ l, ∃ b, (∃ S, b = S.flatten ∧ S.length = n ∧ ∀ y ∈ S, y ∈ l) ∧ a ++ b = x) → ∃ S, x = S.flatten ∧ S.length = n + 1 ∧ ∀ y ∈ S, y ∈ l
rintro ⟨a, ha, b, ⟨S, rfl, rfl, hS⟩, rfl⟩
case succ.mp.intro.intro.intro.intro.intro.intro.intro α : Type u_1 l : Language α a : List α ha : a ∈ l S : List (List α) hS : ∀ y ∈ S, y ∈ l ihn : ∀ {x : List α}, x ∈ l ^ S.length ↔ ∃ S_1, x = S_1.flatten ∧ S_1.length = S.length ∧ ∀ y ∈ S_1, y ∈ l ⊢ ∃ S_1, a ++ S.flatten = S_1.flatten ∧ S_1.length = S.length + 1 ∧ ∀ y ∈ S_1, y ∈ l
e5967997d999f9f2
Std.Tactic.BVDecide.BVExpr.bitblast.blastShiftRight.go_denote_eq
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/Bitblast/BVExpr/Circuit/Lemmas/Operations/ShiftRight.lean
theorem go_denote_eq (aig : AIG α) (distance : AIG.RefVec aig n) (curr : Nat) (hcurr : curr ≤ n - 1) (acc : AIG.RefVec aig w) (lhs : BitVec w) (rhs : BitVec n) (assign : α → Bool) (hacc : ∀ (idx : Nat) (hidx : idx < w), ⟦aig, acc.get idx hidx, assign⟧ = (BitVec.ushiftRightRec lhs rhs curr).getLsbD idx) (hright : ∀ (idx : Nat) (hidx : idx < n), ⟦aig, distance.get idx hidx, assign⟧ = rhs.getLsbD idx) : ∀ (idx : Nat) (hidx : idx < w), ⟦ (go aig distance curr acc).aig, (go aig distance curr acc).vec.get idx hidx, assign ⟧ = (BitVec.ushiftRightRec lhs rhs (n - 1)).getLsbD idx
case isTrue.hacc.hright α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α n w : Nat aig : AIG α distance : aig.RefVec n curr : Nat hcurr : curr ≤ n - 1 acc : aig.RefVec w lhs : BitVec w rhs : BitVec n assign : α → Bool hacc : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := acc.get idx hidx }⟧ = (lhs.ushiftRightRec rhs curr).getLsbD idx hright : ∀ (idx : Nat) (hidx : idx < n), ⟦assign, { aig := aig, ref := distance.get idx hidx }⟧ = rhs.getLsbD idx idx✝ : Nat hidx✝ : idx✝ < w res : RefVecEntry α w h✝ : curr < n - 1 hgo : go (twoPowShift aig { n := n, lhs := acc, rhs := distance, pow := curr + 1 }).aig (distance.cast ⋯) (curr + 1) (twoPowShift aig { n := n, lhs := acc, rhs := distance, pow := curr + 1 }).vec = res idx : Nat hidx : idx < w ⊢ ∀ (idx : Nat) (hidx : idx < { n := n, lhs := acc, rhs := distance, pow := curr + 1 }.n), ⟦assign, { aig := aig, ref := { n := n, lhs := acc, rhs := distance, pow := curr + 1 }.rhs.get idx hidx }⟧ = rhs.getLsbD idx
simp [hright]
no goals
fc604db047a9b54b
Seminorm.convex_ball
Mathlib/Analysis/Seminorm.lean
theorem convex_ball : Convex ℝ (ball p x r)
case h.e'_6.h 𝕜 : Type u_3 E : Type u_7 inst✝⁵ : NormedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : NormedSpace ℝ 𝕜 inst✝² : Module 𝕜 E inst✝¹ : Module ℝ E inst✝ : IsScalarTower ℝ 𝕜 E p : Seminorm 𝕜 E x : E r : ℝ y : E ⊢ p (y + -x) < r ↔ y ∈ {x_1 | (⇑p ∘ fun z => z + -x) x_1 < r}
rfl
no goals
79b4594360c61d7c
IsProperMap.comp
Mathlib/Topology/Maps/Proper/Basic.lean
/-- The composition of two proper maps is proper. -/ lemma IsProperMap.comp (hf : IsProperMap f) (hg : IsProperMap g) : IsProperMap (g ∘ f)
X : Type u_1 Y : Type u_2 Z : Type u_3 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : TopologicalSpace Z f : X → Y g : Y → Z hf : IsProperMap f hg : IsProperMap g ℱ : Filter X z : Z h : MapClusterPt z (map f ℱ) g ⊢ ∃ x, (g ∘ f) x = z ∧ ClusterPt x ℱ
rcases hg.clusterPt_of_mapClusterPt h with ⟨y, rfl, hy⟩
case intro.intro X : Type u_1 Y : Type u_2 Z : Type u_3 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : TopologicalSpace Z f : X → Y g : Y → Z hf : IsProperMap f hg : IsProperMap g ℱ : Filter X y : Y hy : ClusterPt y (map f ℱ) h : MapClusterPt (g y) (map f ℱ) g ⊢ ∃ x, (g ∘ f) x = g y ∧ ClusterPt x ℱ
634c3b9b89655115
affineIndependent_iff_of_fintype
Mathlib/LinearAlgebra/AffineSpace/Independent.lean
theorem affineIndependent_iff_of_fintype [Fintype ι] (p : ι → P) : AffineIndependent k p ↔ ∀ w : ι → k, ∑ i, w i = 0 → Finset.univ.weightedVSub p w = (0 : V) → ∀ i, w i = 0
case mp k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁴ : Ring k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P ι : Type u_4 inst✝ : Fintype ι p : ι → P ⊢ AffineIndependent k p → ∀ (w : ι → k), ∑ i : ι, w i = 0 → (univ.weightedVSub p) w = 0 → ∀ (i : ι), w i = 0
exact fun h w hw hs i => h Finset.univ w hw hs i (Finset.mem_univ _)
no goals
3193bfa1279ee234
PointedCone.toConvexCone_injective
Mathlib/Analysis/Convex/Cone/Pointed.lean
theorem toConvexCone_injective : Injective ((↑) : PointedCone 𝕜 E → ConvexCone 𝕜 E) := fun _ _ => by simp [toConvexCone]
𝕜 : Type u_1 E : Type u_2 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : Module 𝕜 E x✝¹ x✝ : PointedCone 𝕜 E ⊢ ↑x✝¹ = ↑x✝ → x✝¹ = x✝
simp [toConvexCone]
no goals
7918ed4c536c3d15
MeasureTheory.setIntegral_condExpL2_indicator
Mathlib/MeasureTheory/Function/ConditionalExpectation/CondexpL2.lean
theorem setIntegral_condExpL2_indicator (hs : MeasurableSet[m] s) (ht : MeasurableSet t) (hμs : μ s ≠ ∞) (hμt : μ t ≠ ∞) : ∫ x in s, (condExpL2 ℝ ℝ hm (indicatorConstLp 2 ht hμt 1) : α → ℝ) x ∂μ = (μ (t ∩ s)).toReal := calc ∫ x in s, (condExpL2 ℝ ℝ hm (indicatorConstLp 2 ht hμt 1) : α → ℝ) x ∂μ = ∫ x in s, indicatorConstLp 2 ht hμt (1 : ℝ) x ∂μ := @integral_condExpL2_eq α _ ℝ _ _ _ _ _ _ _ _ _ hm (indicatorConstLp 2 ht hμt (1 : ℝ)) hs hμs _ = (μ (t ∩ s)).toReal • (1 : ℝ) := setIntegral_indicatorConstLp (hm s hs) ht hμt 1 _ = (μ (t ∩ s)).toReal
α : Type u_1 m m0 : MeasurableSpace α μ : Measure α s t : Set α hm : m ≤ m0 hs : MeasurableSet s ht : MeasurableSet t hμs : μ s ≠ ⊤ hμt : μ t ≠ ⊤ ⊢ (μ (t ∩ s)).toReal • 1 = (μ (t ∩ s)).toReal
rw [smul_eq_mul, mul_one]
no goals
de7ef7724338c15b
WeierstrassCurve.natDegree_coeff_preΨ'
Mathlib/AlgebraicGeometry/EllipticCurve/DivisionPolynomial/Degree.lean
private lemma natDegree_coeff_preΨ' (n : ℕ) : (W.preΨ' n).natDegree ≤ expDegree n ∧ (W.preΨ' n).coeff (expDegree n) = expCoeff n
case odd.right R : Type u inst✝ : CommRing R W : WeierstrassCurve R dm : ∀ {m n : ℕ} {p q : R[X]}, p.natDegree ≤ m → q.natDegree ≤ n → (p * q).natDegree ≤ m + n := fun {m n} {p q} => natDegree_mul_le_of_le dp : ∀ {m n : ℕ} {p : R[X]}, p.natDegree ≤ m → (p ^ n).natDegree ≤ n * m := fun {m n} {p} => natDegree_pow_le_of_le n cm : ∀ {m n : ℕ} {p q : R[X]}, p.natDegree ≤ m → q.natDegree ≤ n → (p * q).coeff (m + n) = p.coeff m * q.coeff n := fun {m n} {p q} => coeff_mul_of_natDegree_le cp : ∀ {m n : ℕ} {p : R[X]}, p.natDegree ≤ n → (p ^ m).coeff (m * n) = p.coeff n ^ m := fun {m n} {p} => coeff_pow_of_natDegree_le m : ℕ h₁ : (W.preΨ' (m + 1)).natDegree ≤ WeierstrassCurve.expDegree (m + 1) ∧ (W.preΨ' (m + 1)).coeff (WeierstrassCurve.expDegree (m + 1)) = ↑(WeierstrassCurve.expCoeff (m + 1)) h₂ : (W.preΨ' (m + 2)).natDegree ≤ WeierstrassCurve.expDegree (m + 2) ∧ (W.preΨ' (m + 2)).coeff (WeierstrassCurve.expDegree (m + 2)) = ↑(WeierstrassCurve.expCoeff (m + 2)) h₃ : (W.preΨ' (m + 3)).natDegree ≤ WeierstrassCurve.expDegree (m + 3) ∧ (W.preΨ' (m + 3)).coeff (WeierstrassCurve.expDegree (m + 3)) = ↑(WeierstrassCurve.expCoeff (m + 3)) h₄ : (W.preΨ' (m + 4)).natDegree ≤ WeierstrassCurve.expDegree (m + 4) ∧ (W.preΨ' (m + 4)).coeff (WeierstrassCurve.expDegree (m + 4)) = ↑(WeierstrassCurve.expCoeff (m + 4)) ⊢ (if Even m then W.Ψ₂Sq ^ 2 else 1).natDegree ≤ if Even m then 2 * 3 else 0
split_ifs <;> simp only [apply_ite natDegree, natDegree_one.le, dp W.natDegree_Ψ₂Sq_le]
no goals
9ededa4b854063c6
CoxeterSystem.exists_rightDescent_of_ne_one
Mathlib/GroupTheory/Coxeter/Length.lean
theorem exists_rightDescent_of_ne_one {w : W} (hw : w ≠ 1) : ∃ i : B, cs.IsRightDescent w i
B : Type u_1 W : Type u_2 inst✝ : Group W M : CoxeterMatrix B cs : CoxeterSystem M W w : W hw : w ≠ 1 ⊢ ∃ i, cs.IsLeftDescent w⁻¹ i
apply exists_leftDescent_of_ne_one
case hw B : Type u_1 W : Type u_2 inst✝ : Group W M : CoxeterMatrix B cs : CoxeterSystem M W w : W hw : w ≠ 1 ⊢ w⁻¹ ≠ 1
bbf0e2f284ab3b9a
GaussianFourier.integrable_cexp_neg_mul_sq_norm_add
Mathlib/Analysis/SpecialFunctions/Gaussian/FourierTransform.lean
theorem integrable_cexp_neg_mul_sq_norm_add (hb : 0 < b.re) (c : ℂ) (w : V) : Integrable (fun (v : V) ↦ cexp (-b * ‖v‖^2 + c * ⟪w, v⟫))
case h.e'_6.h b : ℂ V : Type u_1 inst✝⁴ : NormedAddCommGroup V inst✝³ : InnerProductSpace ℝ V inst✝² : FiniteDimensional ℝ V inst✝¹ : MeasurableSpace V inst✝ : BorelSpace V hb : 0 < b.re c : ℂ w : V e : EuclideanSpace ℝ (Fin (Module.finrank ℝ V)) ≃ₗᵢ[ℝ] V := (stdOrthonormalBasis ℝ V).repr.symm v : EuclideanSpace ℝ (Fin (Module.finrank ℝ V)) ⊢ ((fun v => cexp (-b * ↑‖v‖ ^ 2 + c * ↑(inner w v))) ∘ ⇑e) v = cexp (-b * ↑‖v‖ ^ 2 + c * ↑(inner (e.symm w) v))
simp only [neg_mul, Function.comp_apply, LinearIsometryEquiv.norm_map, LinearIsometryEquiv.symm_symm, conj_trivial, ofReal_sum, ofReal_mul, LinearIsometryEquiv.inner_map_eq_flip]
no goals
3e4da7d6638a8196
ContMDiffWithinAt.mfderivWithin
Mathlib/Geometry/Manifold/ContMDiffMFDeriv.lean
theorem ContMDiffWithinAt.mfderivWithin {x₀ : N} {f : N → M → M'} {g : N → M} {t : Set N} {u : Set M} (hf : ContMDiffWithinAt (J.prod I) I' n (Function.uncurry f) (t ×ˢ u) (x₀, g x₀)) (hg : ContMDiffWithinAt J I m g t x₀) (hx₀ : x₀ ∈ t) (hu : MapsTo g t u) (hmn : m + 1 ≤ n) (h'u : UniqueMDiffOn I u) : haveI : IsManifold I 1 M := .of_le (le_trans le_add_self hmn) haveI : IsManifold I' 1 M' := .of_le (le_trans le_add_self hmn) ContMDiffWithinAt J 𝓘(𝕜, E →L[𝕜] E') m (inTangentCoordinates I I' g (fun x => f x (g x)) (fun x => mfderivWithin I I' (f x) u (g x)) x₀) t x₀
𝕜 : Type u_1 inst✝¹⁵ : NontriviallyNormedField 𝕜 m n : WithTop ℕ∞ E : Type u_2 inst✝¹⁴ : NormedAddCommGroup E inst✝¹³ : NormedSpace 𝕜 E H : Type u_3 inst✝¹² : TopologicalSpace H I : ModelWithCorners 𝕜 E H M : Type u_4 inst✝¹¹ : TopologicalSpace M inst✝¹⁰ : ChartedSpace H M E' : Type u_5 inst✝⁹ : NormedAddCommGroup E' inst✝⁸ : NormedSpace 𝕜 E' H' : Type u_6 inst✝⁷ : TopologicalSpace H' I' : ModelWithCorners 𝕜 E' H' M' : Type u_7 inst✝⁶ : TopologicalSpace M' inst✝⁵ : ChartedSpace H' M' F : Type u_8 inst✝⁴ : NormedAddCommGroup F inst✝³ : NormedSpace 𝕜 F G : Type u_9 inst✝² : TopologicalSpace G J : ModelWithCorners 𝕜 F G N : Type u_10 inst✝¹ : TopologicalSpace N inst✝ : ChartedSpace G N Js : IsManifold J n N Is : IsManifold I n M I's : IsManifold I' n M' x₀ : N f : N → M → M' g : N → M t : Set N u : Set M hf : ContMDiffWithinAt (J.prod I) I' n (uncurry f) (t ×ˢ u) (x₀, g x₀) hg : ContMDiffWithinAt J I m g t x₀ hx₀ : x₀ ∈ t hu : MapsTo g t u hmn : m + 1 ≤ n h'u : UniqueMDiffOn I u this✝³ : IsManifold I 1 M this✝² : IsManifold I' 1 M' this✝¹ : IsManifold J 1 N this✝ : IsManifold J m N t' : Set N := t ∩ g ⁻¹' (extChartAt I (g x₀)).source ht't : t' ⊆ t hx₀gx₀ : (x₀, g x₀) ∈ t ×ˢ u h4f✝ : ContinuousWithinAt (fun x => f x (g x)) t x₀ h4f : (fun x => f x (g x)) ⁻¹' (extChartAt I' (f x₀ (g x₀))).source ∈ 𝓝[t] x₀ h3f : ∀ᶠ (x' : N × M) in 𝓝[t ×ˢ u] (x₀, g x₀), ContMDiffWithinAt (J.prod I) I' 1 (uncurry f) (t ×ˢ u) x' h2f : ∀ᶠ (x₂ : N) in 𝓝[t] x₀, ContMDiffWithinAt I I' 1 (f x₂) u (g x₂) h2g : g ⁻¹' (extChartAt I (g x₀)).source ∈ 𝓝[t] x₀ hg' : ContinuousWithinAt g t' x₀ ∧ ContDiffWithinAt 𝕜 m (↑(extChartAt I (g x₀)) ∘ g ∘ ↑(extChartAt J x₀).symm) (↑(extChartAt J x₀).symm ⁻¹' t' ∩ range ↑J) (↑(extChartAt J x₀) x₀) hf' : ContinuousWithinAt (uncurry f) (t' ×ˢ u) (x₀, g x₀) ∧ ContDiffWithinAt 𝕜 n (fun x => ↑(extChartAt I' (f x₀ (g x₀))) (f (↑(extChartAt J x₀).symm x.1) (↑(extChartAt I (g x₀)).symm x.2))) ((fun p => (↑(extChartAt J x₀).symm p.1, ↑(extChartAt I (g x₀)).symm p.2)) ⁻¹' t' ×ˢ u ∩ range ↑J ×ˢ range ↑I) (↑((extChartAt J x₀).prod (extChartAt I (g x₀))) (x₀, g x₀)) this : (fun p => (↑(extChartAt J x₀).symm p.1, ↑(extChartAt I (g x₀)).symm p.2)) ⁻¹' t' ×ˢ u ∩ range ↑J ×ˢ (extChartAt I (g x₀)).target ⊆ (fun p => (↑(extChartAt J x₀).symm p.1, ↑(extChartAt I (g x₀)).symm p.2)) ⁻¹' t' ×ˢ u ∩ range ↑J ×ˢ range ↑I ⊢ ContDiffWithinAt 𝕜 n (uncurry fun x x_1 => ↑(extChartAt I' (f x₀ (g x₀))) (f (↑(extChartAt J x₀).symm x) (↑(extChartAt I (g x₀)).symm x_1))) ((↑(extChartAt J x₀).symm ⁻¹' t' ∩ range ↑J) ×ˢ ((extChartAt I (g x₀)).target ∩ ↑(extChartAt I (g x₀)).symm ⁻¹' u)) (↑(extChartAt J x₀) x₀, ↑(extChartAt I (g x₀)) (g (↑(extChartAt J x₀).symm (↑(extChartAt J x₀) x₀))))
convert hf'.2.mono this
case h.e'_11 𝕜 : Type u_1 inst✝¹⁵ : NontriviallyNormedField 𝕜 m n : WithTop ℕ∞ E : Type u_2 inst✝¹⁴ : NormedAddCommGroup E inst✝¹³ : NormedSpace 𝕜 E H : Type u_3 inst✝¹² : TopologicalSpace H I : ModelWithCorners 𝕜 E H M : Type u_4 inst✝¹¹ : TopologicalSpace M inst✝¹⁰ : ChartedSpace H M E' : Type u_5 inst✝⁹ : NormedAddCommGroup E' inst✝⁸ : NormedSpace 𝕜 E' H' : Type u_6 inst✝⁷ : TopologicalSpace H' I' : ModelWithCorners 𝕜 E' H' M' : Type u_7 inst✝⁶ : TopologicalSpace M' inst✝⁵ : ChartedSpace H' M' F : Type u_8 inst✝⁴ : NormedAddCommGroup F inst✝³ : NormedSpace 𝕜 F G : Type u_9 inst✝² : TopologicalSpace G J : ModelWithCorners 𝕜 F G N : Type u_10 inst✝¹ : TopologicalSpace N inst✝ : ChartedSpace G N Js : IsManifold J n N Is : IsManifold I n M I's : IsManifold I' n M' x₀ : N f : N → M → M' g : N → M t : Set N u : Set M hf : ContMDiffWithinAt (J.prod I) I' n (uncurry f) (t ×ˢ u) (x₀, g x₀) hg : ContMDiffWithinAt J I m g t x₀ hx₀ : x₀ ∈ t hu : MapsTo g t u hmn : m + 1 ≤ n h'u : UniqueMDiffOn I u this✝³ : IsManifold I 1 M this✝² : IsManifold I' 1 M' this✝¹ : IsManifold J 1 N this✝ : IsManifold J m N t' : Set N := t ∩ g ⁻¹' (extChartAt I (g x₀)).source ht't : t' ⊆ t hx₀gx₀ : (x₀, g x₀) ∈ t ×ˢ u h4f✝ : ContinuousWithinAt (fun x => f x (g x)) t x₀ h4f : (fun x => f x (g x)) ⁻¹' (extChartAt I' (f x₀ (g x₀))).source ∈ 𝓝[t] x₀ h3f : ∀ᶠ (x' : N × M) in 𝓝[t ×ˢ u] (x₀, g x₀), ContMDiffWithinAt (J.prod I) I' 1 (uncurry f) (t ×ˢ u) x' h2f : ∀ᶠ (x₂ : N) in 𝓝[t] x₀, ContMDiffWithinAt I I' 1 (f x₂) u (g x₂) h2g : g ⁻¹' (extChartAt I (g x₀)).source ∈ 𝓝[t] x₀ hg' : ContinuousWithinAt g t' x₀ ∧ ContDiffWithinAt 𝕜 m (↑(extChartAt I (g x₀)) ∘ g ∘ ↑(extChartAt J x₀).symm) (↑(extChartAt J x₀).symm ⁻¹' t' ∩ range ↑J) (↑(extChartAt J x₀) x₀) hf' : ContinuousWithinAt (uncurry f) (t' ×ˢ u) (x₀, g x₀) ∧ ContDiffWithinAt 𝕜 n (fun x => ↑(extChartAt I' (f x₀ (g x₀))) (f (↑(extChartAt J x₀).symm x.1) (↑(extChartAt I (g x₀)).symm x.2))) ((fun p => (↑(extChartAt J x₀).symm p.1, ↑(extChartAt I (g x₀)).symm p.2)) ⁻¹' t' ×ˢ u ∩ range ↑J ×ˢ range ↑I) (↑((extChartAt J x₀).prod (extChartAt I (g x₀))) (x₀, g x₀)) this : (fun p => (↑(extChartAt J x₀).symm p.1, ↑(extChartAt I (g x₀)).symm p.2)) ⁻¹' t' ×ˢ u ∩ range ↑J ×ˢ (extChartAt I (g x₀)).target ⊆ (fun p => (↑(extChartAt J x₀).symm p.1, ↑(extChartAt I (g x₀)).symm p.2)) ⁻¹' t' ×ˢ u ∩ range ↑J ×ˢ range ↑I ⊢ (↑(extChartAt J x₀).symm ⁻¹' t' ∩ range ↑J) ×ˢ ((extChartAt I (g x₀)).target ∩ ↑(extChartAt I (g x₀)).symm ⁻¹' u) = (fun p => (↑(extChartAt J x₀).symm p.1, ↑(extChartAt I (g x₀)).symm p.2)) ⁻¹' t' ×ˢ u ∩ range ↑J ×ˢ (extChartAt I (g x₀)).target case h.e'_12.h.e'_4 𝕜 : Type u_1 inst✝¹⁵ : NontriviallyNormedField 𝕜 m n : WithTop ℕ∞ E : Type u_2 inst✝¹⁴ : NormedAddCommGroup E inst✝¹³ : NormedSpace 𝕜 E H : Type u_3 inst✝¹² : TopologicalSpace H I : ModelWithCorners 𝕜 E H M : Type u_4 inst✝¹¹ : TopologicalSpace M inst✝¹⁰ : ChartedSpace H M E' : Type u_5 inst✝⁹ : NormedAddCommGroup E' inst✝⁸ : NormedSpace 𝕜 E' H' : Type u_6 inst✝⁷ : TopologicalSpace H' I' : ModelWithCorners 𝕜 E' H' M' : Type u_7 inst✝⁶ : TopologicalSpace M' inst✝⁵ : ChartedSpace H' M' F : Type u_8 inst✝⁴ : NormedAddCommGroup F inst✝³ : NormedSpace 𝕜 F G : Type u_9 inst✝² : TopologicalSpace G J : ModelWithCorners 𝕜 F G N : Type u_10 inst✝¹ : TopologicalSpace N inst✝ : ChartedSpace G N Js : IsManifold J n N Is : IsManifold I n M I's : IsManifold I' n M' x₀ : N f : N → M → M' g : N → M t : Set N u : Set M hf : ContMDiffWithinAt (J.prod I) I' n (uncurry f) (t ×ˢ u) (x₀, g x₀) hg : ContMDiffWithinAt J I m g t x₀ hx₀ : x₀ ∈ t hu : MapsTo g t u hmn : m + 1 ≤ n h'u : UniqueMDiffOn I u this✝³ : IsManifold I 1 M this✝² : IsManifold I' 1 M' this✝¹ : IsManifold J 1 N this✝ : IsManifold J m N t' : Set N := t ∩ g ⁻¹' (extChartAt I (g x₀)).source ht't : t' ⊆ t hx₀gx₀ : (x₀, g x₀) ∈ t ×ˢ u h4f✝ : ContinuousWithinAt (fun x => f x (g x)) t x₀ h4f : (fun x => f x (g x)) ⁻¹' (extChartAt I' (f x₀ (g x₀))).source ∈ 𝓝[t] x₀ h3f : ∀ᶠ (x' : N × M) in 𝓝[t ×ˢ u] (x₀, g x₀), ContMDiffWithinAt (J.prod I) I' 1 (uncurry f) (t ×ˢ u) x' h2f : ∀ᶠ (x₂ : N) in 𝓝[t] x₀, ContMDiffWithinAt I I' 1 (f x₂) u (g x₂) h2g : g ⁻¹' (extChartAt I (g x₀)).source ∈ 𝓝[t] x₀ hg' : ContinuousWithinAt g t' x₀ ∧ ContDiffWithinAt 𝕜 m (↑(extChartAt I (g x₀)) ∘ g ∘ ↑(extChartAt J x₀).symm) (↑(extChartAt J x₀).symm ⁻¹' t' ∩ range ↑J) (↑(extChartAt J x₀) x₀) hf' : ContinuousWithinAt (uncurry f) (t' ×ˢ u) (x₀, g x₀) ∧ ContDiffWithinAt 𝕜 n (fun x => ↑(extChartAt I' (f x₀ (g x₀))) (f (↑(extChartAt J x₀).symm x.1) (↑(extChartAt I (g x₀)).symm x.2))) ((fun p => (↑(extChartAt J x₀).symm p.1, ↑(extChartAt I (g x₀)).symm p.2)) ⁻¹' t' ×ˢ u ∩ range ↑J ×ˢ range ↑I) (↑((extChartAt J x₀).prod (extChartAt I (g x₀))) (x₀, g x₀)) this : (fun p => (↑(extChartAt J x₀).symm p.1, ↑(extChartAt I (g x₀)).symm p.2)) ⁻¹' t' ×ˢ u ∩ range ↑J ×ˢ (extChartAt I (g x₀)).target ⊆ (fun p => (↑(extChartAt J x₀).symm p.1, ↑(extChartAt I (g x₀)).symm p.2)) ⁻¹' t' ×ˢ u ∩ range ↑J ×ˢ range ↑I ⊢ ↑(extChartAt I (g x₀)) (g (↑(extChartAt J x₀).symm (↑(extChartAt J x₀) x₀))) = (((extChartAt J x₀).prod (extChartAt I (g x₀))).1 (x₀, g x₀)).2
b011e1f26afdb375
ContMDiffAt.comp_of_eq
Mathlib/Geometry/Manifold/ContMDiff/Basic.lean
theorem ContMDiffAt.comp_of_eq {g : M' → M''} {x : M} {y : M'} (hg : ContMDiffAt I' I'' n g y) (hf : ContMDiffAt I I' n f x) (hx : f x = y) : ContMDiffAt I I'' n (g ∘ f) x
𝕜 : Type u_1 inst✝¹⁵ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝¹⁴ : NormedAddCommGroup E inst✝¹³ : NormedSpace 𝕜 E H : Type u_3 inst✝¹² : TopologicalSpace H I : ModelWithCorners 𝕜 E H M : Type u_4 inst✝¹¹ : TopologicalSpace M E' : Type u_5 inst✝¹⁰ : NormedAddCommGroup E' inst✝⁹ : NormedSpace 𝕜 E' H' : Type u_6 inst✝⁸ : TopologicalSpace H' I' : ModelWithCorners 𝕜 E' H' M' : Type u_7 inst✝⁷ : TopologicalSpace M' E'' : Type u_8 inst✝⁶ : NormedAddCommGroup E'' inst✝⁵ : NormedSpace 𝕜 E'' H'' : Type u_9 inst✝⁴ : TopologicalSpace H'' I'' : ModelWithCorners 𝕜 E'' H'' M'' : Type u_10 inst✝³ : TopologicalSpace M'' inst✝² : ChartedSpace H M inst✝¹ : ChartedSpace H' M' inst✝ : ChartedSpace H'' M'' f : M → M' n : WithTop ℕ∞ g : M' → M'' x : M hf : ContMDiffAt I I' n f x hg : ContMDiffAt I' I'' n g (f x) ⊢ ContMDiffAt I I'' n (g ∘ f) x
exact hg.comp x hf
no goals
57724353c0bc4d14
Ordnode.Sized.induction
Mathlib/Data/Ordmap/Ordset.lean
theorem Sized.induction {t} (hl : @Sized α t) {C : Ordnode α → Prop} (H0 : C nil) (H1 : ∀ l x r, C l → C r → C (.node' l x r)) : C t
α : Type u_1 t : Ordnode α hl : t.Sized C : Ordnode α → Prop H0 : C nil H1 : ∀ (l : Ordnode α) (x : α) (r : Ordnode α), C l → C r → C (l.node' x r) ⊢ C t
induction t with | nil => exact H0 | node _ _ _ _ t_ih_l t_ih_r => rw [hl.eq_node'] exact H1 _ _ _ (t_ih_l hl.2.1) (t_ih_r hl.2.2)
no goals
613d76c6108cb818
JacobsonNoether.exist_pow_eq_zero_of_le
Mathlib/FieldTheory/JacobsonNoether.lean
/-- If `D` is a purely inseparable extension of `k` of characteristic `p`, then for every element `a` of `D \ k`, there exists a natural number `m` greater than 0 such that `(a * x - x * a) ^ n = 0` (as linear maps) for every `n` greater than `(p ^ m)`. -/ lemma exist_pow_eq_zero_of_le (p : ℕ) [hchar : ExpChar D p] {a : D} (ha : a ∉ k) (hinsep : ∀ x : D, IsSeparable k x → x ∈ k): ∃ m, 1 ≤ m ∧ ∀ n, p ^ m ≤ n → (ad k D a)^[n] = 0
case intro D : Type u_1 inst✝¹ : DivisionRing D inst✝ : Algebra.IsAlgebraic (↥k) D p : ℕ hchar : ExpChar D p a : D ha : a ∉ k hinsep : ∀ (x : D), IsSeparable (↥k) x → x ∈ k m : ℕ hm : 1 ≤ m ∧ a ^ p ^ m ∈ k n : ℕ hn : p ^ m ≤ n inter : (⇑((ad (↥k) D) a))^[p ^ m] = 0 ⊢ (⇑((ad (↥k) D) a))^[n] = 0
rw [(Nat.sub_eq_iff_eq_add hn).1 rfl, Function.iterate_add, inter, Pi.comp_zero, iterate_map_zero, Function.const_zero]
no goals
6921e21d57128a1f
CategoryTheory.MorphismProperty.iSup_iff
Mathlib/CategoryTheory/MorphismProperty/Basic.lean
@[simp] lemma iSup_iff {ι : Sort*} (W : ι → MorphismProperty C) {X Y : C} (f : X ⟶ Y) : iSup W f ↔ ∃ i, W i f
C : Type u inst✝ : Category.{v, u} C ι : Sort u_2 W : ι → MorphismProperty C X Y : C f : X ⟶ Y ⊢ iSup W f ↔ ∃ i, W i f
apply (sSup_iff (Set.range W) f).trans
C : Type u inst✝ : Category.{v, u} C ι : Sort u_2 W : ι → MorphismProperty C X Y : C f : X ⟶ Y ⊢ (∃ W_1, ↑W_1 f) ↔ ∃ i, W i f
7d58f46f1390332b
Real.BohrMollerup.tendsto_logGammaSeq_of_le_one
Mathlib/Analysis/SpecialFunctions/Gamma/BohrMollerup.lean
theorem tendsto_logGammaSeq_of_le_one (hf_conv : ConvexOn ℝ (Ioi 0) f) (hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y) (hx : 0 < x) (hx' : x ≤ 1) : Tendsto (logGammaSeq x) atTop (𝓝 <| f x - f 1)
f : ℝ → ℝ x : ℝ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx : 0 < x hx' : x ≤ 1 ⊢ Tendsto (logGammaSeq x) atTop (𝓝 (f x - f 1))
refine tendsto_of_tendsto_of_tendsto_of_le_of_le' (f := logGammaSeq x) (g := fun n ↦ f x - f 1 - x * (log (n + 1) - log n)) ?_ tendsto_const_nhds ?_ ?_
case refine_1 f : ℝ → ℝ x : ℝ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx : 0 < x hx' : x ≤ 1 ⊢ Tendsto (fun n => f x - f 1 - x * (log (↑n + 1) - log ↑n)) atTop (𝓝 (f x - f 1)) case refine_2 f : ℝ → ℝ x : ℝ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx : 0 < x hx' : x ≤ 1 ⊢ ∀ᶠ (b : ℕ) in atTop, (fun n => f x - f 1 - x * (log (↑n + 1) - log ↑n)) b ≤ logGammaSeq x b case refine_3 f : ℝ → ℝ x : ℝ hf_conv : ConvexOn ℝ (Ioi 0) f hf_feq : ∀ {y : ℝ}, 0 < y → f (y + 1) = f y + log y hx : 0 < x hx' : x ≤ 1 ⊢ ∀ᶠ (b : ℕ) in atTop, logGammaSeq x b ≤ f x - f 1
2a2b50b4ebb10e89
Std.DHashMap.Internal.List.containsKey_insertList
Mathlib/.lake/packages/lean4/src/lean/Std/Data/DHashMap/Internal/List/Associative.lean
theorem containsKey_insertList [BEq α] [PartialEquivBEq α] {l toInsert : List ((a : α) × β a)} {k : α} : containsKey k (List.insertList l toInsert) = (containsKey k l || (toInsert.map Sigma.fst).contains k)
case cons α : Type u β : α → Type v inst✝¹ : BEq α inst✝ : PartialEquivBEq α k : α hd : (a : α) × β a tl : List ((a : α) × β a) ih : ∀ {l : List ((a : α) × β a)}, containsKey k (insertList l tl) = (containsKey k l || (List.map Sigma.fst tl).contains k) l : List ((a : α) × β a) ⊢ (k == hd.fst || containsKey k l || (List.map Sigma.fst tl).contains k) = (containsKey k l || (k == hd.fst || (List.map Sigma.fst tl).contains k))
conv => left; left; rw [Bool.or_comm]
case cons α : Type u β : α → Type v inst✝¹ : BEq α inst✝ : PartialEquivBEq α k : α hd : (a : α) × β a tl : List ((a : α) × β a) ih : ∀ {l : List ((a : α) × β a)}, containsKey k (insertList l tl) = (containsKey k l || (List.map Sigma.fst tl).contains k) l : List ((a : α) × β a) ⊢ (containsKey k l || k == hd.fst || (List.map Sigma.fst tl).contains k) = (containsKey k l || (k == hd.fst || (List.map Sigma.fst tl).contains k))
0e1771d36311393a
Polynomial.natDegree_eq_zero_of_derivative_eq_zero
Mathlib/Algebra/Polynomial/Derivative.lean
theorem natDegree_eq_zero_of_derivative_eq_zero [NoZeroSMulDivisors ℕ R] {f : R[X]} (h : derivative f = 0) : f.natDegree = 0
case inr R : Type u inst✝¹ : Semiring R inst✝ : NoZeroSMulDivisors ℕ R f : R[X] h : ∀ (n : ℕ), (derivative f).coeff n = coeff 0 n hf : f ≠ 0 f_nat_degree_pos : 0 < f.natDegree m : ℕ := f.natDegree - 1 hm : m + 1 = f.natDegree h2 : (derivative f).coeff m = f.coeff (m + 1) * (↑m + 1) ⊢ False
rw [h m, coeff_zero, ← Nat.cast_add_one, ← nsmul_eq_mul', eq_comm, smul_eq_zero] at h2
case inr R : Type u inst✝¹ : Semiring R inst✝ : NoZeroSMulDivisors ℕ R f : R[X] h : ∀ (n : ℕ), (derivative f).coeff n = coeff 0 n hf : f ≠ 0 f_nat_degree_pos : 0 < f.natDegree m : ℕ := f.natDegree - 1 hm : m + 1 = f.natDegree h2 : m + 1 = 0 ∨ f.coeff (m + 1) = 0 ⊢ False
1a3451df08199868
Submodule.finite_quotient_smul
Mathlib/RingTheory/Ideal/Quotient/Index.lean
/-- Let `N` be a finite index f.g. `R`-submodule, and `I` be a finite index ideal. Then `I • N` also has finite index. -/ lemma Submodule.finite_quotient_smul [Finite (R ⧸ I)] [Finite (M ⧸ N)] (hN : N.FG) : Finite (M ⧸ I • N)
R : Type u_1 M : Type u_2 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M I : Ideal R N : Submodule R M inst✝¹ : Finite (R ⧸ I) inst✝ : Finite (M ⧸ N) hN : N.FG e : (↥N ⧸ comap N.subtype (I • N)) ≃ₗ[R] (R ⧸ I) ⊗[R] ↥N := (comap N.subtype (I • N)).quotEquivOfEq (I • ⊤) ⋯ ≪≫ₗ (quotTensorEquivQuotSMul (↥N) I).symm ⊢ Nat.card ((R ⧸ I) ⊗[R] ↥N) ≠ 0
have : Module.Finite R N := Module.Finite.iff_fg.mpr hN
R : Type u_1 M : Type u_2 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M I : Ideal R N : Submodule R M inst✝¹ : Finite (R ⧸ I) inst✝ : Finite (M ⧸ N) hN : N.FG e : (↥N ⧸ comap N.subtype (I • N)) ≃ₗ[R] (R ⧸ I) ⊗[R] ↥N := (comap N.subtype (I • N)).quotEquivOfEq (I • ⊤) ⋯ ≪≫ₗ (quotTensorEquivQuotSMul (↥N) I).symm this : Module.Finite R ↥N ⊢ Nat.card ((R ⧸ I) ⊗[R] ↥N) ≠ 0
f225d1fd83c53ea4
Computation.LiftRel.equiv
Mathlib/Data/Seq/Computation.lean
theorem LiftRel.equiv (R : α → α → Prop) : Equivalence R → Equivalence (LiftRel R) | ⟨refl, symm, trans⟩ => ⟨LiftRel.refl R refl, by apply LiftRel.symm; apply symm, by apply LiftRel.trans; apply trans⟩
α : Type u R : α → α → Prop refl : ∀ (x : α), R x x symm : ∀ {x y : α}, R x y → R y x trans : ∀ {x y z : α}, R x y → R y z → R x z ⊢ ∀ {x y : Computation α}, LiftRel R x y → LiftRel R y x
apply LiftRel.symm
case H α : Type u R : α → α → Prop refl : ∀ (x : α), R x x symm : ∀ {x y : α}, R x y → R y x trans : ∀ {x y z : α}, R x y → R y z → R x z ⊢ Symmetric R
fa7d5dbe914e8b11
wbtw_iff_sameRay_vsub
Mathlib/Analysis/Convex/Between.lean
theorem wbtw_iff_sameRay_vsub {x y z : P} : Wbtw R x y z ↔ SameRay R (y -ᵥ x) (z -ᵥ y)
case inr.inr.intro.intro.intro.intro R : Type u_1 V : Type u_2 P : Type u_4 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x y z : P r₁ r₂ : R hr₁ : 0 < r₁ hr₂ : 0 < r₂ h : r₁ • (y -ᵥ x) = r₂ • (z -ᵥ y) ⊢ Wbtw R x y z
refine ⟨r₂ / (r₁ + r₂), ⟨div_nonneg hr₂.le (add_nonneg hr₁.le hr₂.le), div_le_one_of_le₀ (le_add_of_nonneg_left hr₁.le) (add_nonneg hr₁.le hr₂.le)⟩, ?_⟩
case inr.inr.intro.intro.intro.intro R : Type u_1 V : Type u_2 P : Type u_4 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x y z : P r₁ r₂ : R hr₁ : 0 < r₁ hr₂ : 0 < r₂ h : r₁ • (y -ᵥ x) = r₂ • (z -ᵥ y) ⊢ (lineMap x z) (r₂ / (r₁ + r₂)) = y
3cdc41d133486434
Finset.Ico_add_one_left_eq_Ioo
Mathlib/Algebra/Order/Interval/Finset/SuccPred.lean
lemma Ico_add_one_left_eq_Ioo (a b : α) : Ico (a + 1) b = Ioo a b
α : Type u_2 inst✝⁴ : LinearOrder α inst✝³ : One α inst✝² : LocallyFiniteOrder α inst✝¹ : Add α inst✝ : SuccAddOrder α a b : α ⊢ Ico (a + 1) b = Ioo a b
simpa [succ_eq_add_one] using Ico_succ_left_eq_Ioo a b
no goals
d78c1d7db28e005a
SetTheory.PGame.ext
Mathlib/SetTheory/Game/PGame.lean
lemma ext {x y : PGame} (hl : x.LeftMoves = y.LeftMoves) (hr : x.RightMoves = y.RightMoves) (hL : ∀ i j, HEq i j → x.moveLeft i = y.moveLeft j) (hR : ∀ i j, HEq i j → x.moveRight i = y.moveRight j) : x = y
x y : PGame hl : x.LeftMoves = y.LeftMoves hr : x.RightMoves = y.RightMoves hL : ∀ (i : x.LeftMoves) (j : y.LeftMoves), HEq i j → x.moveLeft i = y.moveLeft j hR : ∀ (i : x.RightMoves) (j : y.RightMoves), HEq i j → x.moveRight i = y.moveRight j ⊢ x = y
cases x
case mk y : PGame α✝ β✝ : Type u_1 a✝¹ : α✝ → PGame a✝ : β✝ → PGame hl : (mk α✝ β✝ a✝¹ a✝).LeftMoves = y.LeftMoves hr : (mk α✝ β✝ a✝¹ a✝).RightMoves = y.RightMoves hL : ∀ (i : (mk α✝ β✝ a✝¹ a✝).LeftMoves) (j : y.LeftMoves), HEq i j → (mk α✝ β✝ a✝¹ a✝).moveLeft i = y.moveLeft j hR : ∀ (i : (mk α✝ β✝ a✝¹ a✝).RightMoves) (j : y.RightMoves), HEq i j → (mk α✝ β✝ a✝¹ a✝).moveRight i = y.moveRight j ⊢ mk α✝ β✝ a✝¹ a✝ = y
c76b2fd227da4270
NumberField.mixedEmbedding.exists_primitive_element_lt_of_isComplex
Mathlib/NumberTheory/NumberField/CanonicalEmbedding/ConvexBody.lean
theorem exists_primitive_element_lt_of_isComplex {w₀ : InfinitePlace K} (hw₀ : IsComplex w₀) {B : ℝ≥0} (hB : minkowskiBound K ↑1 < convexBodyLT'Factor K * B) : ∃ a : 𝓞 K, ℚ⟮(a : K)⟯ = ⊤ ∧ ∀ w : InfinitePlace K, w a < Real.sqrt (1 + B ^ 2)
case pos.refine_1 K : Type u_1 inst✝¹ : Field K inst✝ : NumberField K w₀ : InfinitePlace K hw₀ : w₀.IsComplex B : ℝ≥0 hB : minkowskiBound K 1 < ↑(convexBodyLT'Factor K) * ↑B this : minkowskiBound K 1 < volume (convexBodyLT' K (fun w => if w = w₀ then NNReal.sqrt B else 1) ⟨w₀, hw₀⟩) a : 𝓞 K h_nz : a ≠ 0 h_le : ∀ (w : InfinitePlace K), w ≠ ↑⟨w₀, hw₀⟩ → w ↑a < ↑(if w = w₀ then NNReal.sqrt B else 1) h_le₀ : |(w₀.embedding ↑a).re| < 1 ∧ |(w₀.embedding ↑a).im| < ↑(NNReal.sqrt B) ^ 2 w : InfinitePlace K h_eq : w = w₀ ⊢ |(w₀.embedding ↑a).re| < 1
exact h_le₀.1
no goals
b1817ae1b2a5d1e1
Polynomial.tendsto_div_exp_atTop
Mathlib/Analysis/SpecialFunctions/PolynomialExp.lean
theorem tendsto_div_exp_atTop (p : ℝ[X]) : Tendsto (fun x ↦ p.eval x / exp x) atTop (𝓝 0)
case h_monomial n : ℕ c : ℝ ⊢ Tendsto (fun x => eval x ((monomial n) c) / rexp x) atTop (𝓝 0)
simpa [exp_neg, div_eq_mul_inv, mul_assoc] using tendsto_const_nhds.mul (tendsto_pow_mul_exp_neg_atTop_nhds_zero n)
no goals
3682270aa5dd2711
FirstOrder.Language.DirectLimit.exists_fg_substructure_in_Sigma
Mathlib/ModelTheory/DirectLimit.lean
theorem exists_fg_substructure_in_Sigma (S : L.Substructure (DirectLimit G f)) (S_fg : S.FG) : ∃ i, ∃ T : L.Substructure (G i), T.map (of L ι G f i).toHom = S
case h L : Language ι : Type v inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → L.Structure (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝² : IsDirected ι fun x1 x2 => x1 ≤ x2 inst✝¹ : DirectedSystem G fun i j h => ⇑(f i j h) inst✝ : Nonempty ι S : L.Substructure (DirectLimit G f) S_fg : S.FG A : Finset (DirectLimit G f) A_closure : (Substructure.closure L).toFun ↑A = S i : ι y : { x // x ∈ A } → G i eq_y : (fun a => ↑a) = fun a => ⟦Structure.Sigma.mk f i (y a)⟧ ⊢ (Substructure.closure L).toFun (⇑(of L ι G f i).toHom '' range y) = S
simp only [Embedding.coe_toHom, of_apply]
case h L : Language ι : Type v inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → L.Structure (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝² : IsDirected ι fun x1 x2 => x1 ≤ x2 inst✝¹ : DirectedSystem G fun i j h => ⇑(f i j h) inst✝ : Nonempty ι S : L.Substructure (DirectLimit G f) S_fg : S.FG A : Finset (DirectLimit G f) A_closure : (Substructure.closure L).toFun ↑A = S i : ι y : { x // x ∈ A } → G i eq_y : (fun a => ↑a) = fun a => ⟦Structure.Sigma.mk f i (y a)⟧ ⊢ (Substructure.closure L).toFun ((fun a => ⟦Structure.Sigma.mk f i a⟧) '' range y) = S
133e2af1566ef3d4
hasSum_mellin_pi_mul_sq
Mathlib/NumberTheory/LSeries/MellinEqDirichlet.lean
/-- Tailored version for even Jacobi theta functions. -/ lemma hasSum_mellin_pi_mul_sq {a : ι → ℂ} {r : ι → ℝ} {F : ℝ → ℂ} {s : ℂ} (hs : 0 < s.re) (hF : ∀ t ∈ Ioi 0, HasSum (fun i ↦ if r i = 0 then 0 else a i * rexp (-π * r i ^ 2 * t)) (F t)) (h_sum : Summable fun i ↦ ‖a i‖ / |r i| ^ s.re) : HasSum (fun i ↦ Gammaℝ s * a i / |r i| ^ s) (mellin F (s / 2))
case h.e'_5.h.h.e'_6 ι : Type u_1 inst✝ : Countable ι a : ι → ℂ r : ι → ℝ F : ℝ → ℂ s : ℂ hs : 0 < s.re h_sum : Summable fun i => ‖a i‖ / |r i| ^ s.re hs' : 0 < (s / 2).re hF : ∀ t ∈ Ioi 0, HasSum (fun i => if r i ^ 2 = 0 then 0 else a i * ↑(rexp (-π * r i ^ 2 * t))) (F t) i : ι ⊢ ↑|r i| ^ s = ↑|r i| ^ (↑2 * (s / 2))
ring_nf
no goals
96f69737f30abb4f
Subalgebra.LinearDisjoint.of_linearDisjoint_finite_left
Mathlib/RingTheory/LinearDisjoint.lean
theorem of_linearDisjoint_finite_left [Algebra.IsIntegral R A] (H : ∀ A' : Subalgebra R S, A' ≤ A → [Module.Finite R A'] → A'.LinearDisjoint B) : A.LinearDisjoint B
case intro.intro.intro.intro.intro.intro R : Type u S : Type v inst✝³ : CommRing R inst✝² : CommRing S inst✝¹ : Algebra R S A B : Subalgebra R S inst✝ : Algebra.IsIntegral R ↥A H : ∀ A' ≤ A, ∀ [inst : Module.Finite R ↥A'], A'.LinearDisjoint B x y : ↥(toSubmodule A) ⊗[R] ↥(toSubmodule B) hxy : ((toSubmodule A).mulMap (toSubmodule B)) x = ((toSubmodule A).mulMap (toSubmodule B)) y M' : Submodule R S hM : M' ≤ toSubmodule A hf : Module.Finite R ↥M' s : Finset S hs : Submodule.span R ↑s = M' hs' : ↑s ⊆ ↑A A' : Subalgebra R S := Algebra.adjoin R ↑s hf' : Module.Finite R ↥A' hA : toSubmodule A' ≤ toSubmodule A h : {x, y} ⊆ ↑(LinearMap.range (LinearMap.rTensor (↥(toSubmodule B)) (Submodule.inclusion hA))) x' : ↥(toSubmodule A') ⊗[R] ↥(toSubmodule B) hx' : (LinearMap.rTensor (↥(toSubmodule B)) (Submodule.inclusion hA)) x' = x y' : ↥(toSubmodule A') ⊗[R] ↥(toSubmodule B) hy' : (LinearMap.rTensor (↥(toSubmodule B)) (Submodule.inclusion hA)) y' = y ⊢ (LinearMap.rTensor (↥(toSubmodule B)) (Submodule.inclusion hA)) x' = (LinearMap.rTensor (↥(toSubmodule B)) (Submodule.inclusion hA)) y'
congr
case intro.intro.intro.intro.intro.intro.h.e_6.h R : Type u S : Type v inst✝³ : CommRing R inst✝² : CommRing S inst✝¹ : Algebra R S A B : Subalgebra R S inst✝ : Algebra.IsIntegral R ↥A H : ∀ A' ≤ A, ∀ [inst : Module.Finite R ↥A'], A'.LinearDisjoint B x y : ↥(toSubmodule A) ⊗[R] ↥(toSubmodule B) hxy : ((toSubmodule A).mulMap (toSubmodule B)) x = ((toSubmodule A).mulMap (toSubmodule B)) y M' : Submodule R S hM : M' ≤ toSubmodule A hf : Module.Finite R ↥M' s : Finset S hs : Submodule.span R ↑s = M' hs' : ↑s ⊆ ↑A A' : Subalgebra R S := Algebra.adjoin R ↑s hf' : Module.Finite R ↥A' hA : toSubmodule A' ≤ toSubmodule A h : {x, y} ⊆ ↑(LinearMap.range (LinearMap.rTensor (↥(toSubmodule B)) (Submodule.inclusion hA))) x' : ↥(toSubmodule A') ⊗[R] ↥(toSubmodule B) hx' : (LinearMap.rTensor (↥(toSubmodule B)) (Submodule.inclusion hA)) x' = x y' : ↥(toSubmodule A') ⊗[R] ↥(toSubmodule B) hy' : (LinearMap.rTensor (↥(toSubmodule B)) (Submodule.inclusion hA)) y' = y ⊢ x' = y'
1d56e99b263dd6b5
PiNat.iUnion_cylinder_update
Mathlib/Topology/MetricSpace/PiNat.lean
theorem iUnion_cylinder_update (x : ∀ n, E n) (n : ℕ) : ⋃ k, cylinder (update x n k) (n + 1) = cylinder x n
case h E : ℕ → Type u_1 x : (n : ℕ) → E n n : ℕ y : (n : ℕ) → E n ⊢ y ∈ ⋃ k, cylinder (update x n k) (n + 1) ↔ y ∈ cylinder x n
simp only [mem_cylinder_iff, mem_iUnion]
case h E : ℕ → Type u_1 x : (n : ℕ) → E n n : ℕ y : (n : ℕ) → E n ⊢ (∃ i, ∀ i_1 < n + 1, y i_1 = update x n i i_1) ↔ ∀ i < n, y i = x i
822a9c224bc12ada
Set.univ_pi_ite
Mathlib/Data/Set/Prod.lean
theorem univ_pi_ite (s : Set ι) [DecidablePred (· ∈ s)] (t : ∀ i, Set (α i)) : (pi univ fun i => if i ∈ s then t i else univ) = s.pi t
case h ι : Type u_1 α : ι → Type u_2 s : Set ι inst✝ : DecidablePred fun x => x ∈ s t : (i : ι) → Set (α i) x✝ : (i : ι) → α i ⊢ (x✝ ∈ univ.pi fun i => if i ∈ s then t i else univ) ↔ x✝ ∈ s.pi t
simp_rw [mem_univ_pi]
case h ι : Type u_1 α : ι → Type u_2 s : Set ι inst✝ : DecidablePred fun x => x ∈ s t : (i : ι) → Set (α i) x✝ : (i : ι) → α i ⊢ (∀ (i : ι), x✝ i ∈ if i ∈ s then t i else univ) ↔ x✝ ∈ s.pi t
c7cef90aa3ee129f
CFC.monotoneOn_one_sub_one_add_inv
Mathlib/Analysis/CStarAlgebra/ApproximateUnit.lean
lemma CFC.monotoneOn_one_sub_one_add_inv : MonotoneOn (cfcₙ (fun x : ℝ≥0 ↦ 1 - (1 + x)⁻¹)) (Set.Ici (0 : A))
case funProp.discharger A : Type u_1 inst✝² : NonUnitalCStarAlgebra A inst✝¹ : PartialOrder A inst✝ : StarOrderedRing A a b : A hab : ↑a ≤ ↑b ha : 0 ≤ ↑a hb : 0 ≤ ↑b c : Unitization ℂ A hc : autoParam (0 ≤ c) _auto✝ x✝ : ℝ≥0 a✝ : x✝ ∈ σ ℝ≥0 c ⊢ 1 + x✝ ≠ 0
positivity
no goals
66ae445c802b501c
PythagoreanTriple.isPrimitiveClassified_of_coprime_of_odd_of_pos
Mathlib/NumberTheory/PythagoreanTriples.lean
theorem isPrimitiveClassified_of_coprime_of_odd_of_pos (hc : Int.gcd x y = 1) (hyo : y % 2 = 1) (hzpos : 0 < z) : h.IsPrimitiveClassified
x y z : ℤ h : PythagoreanTriple x y z hc : x.gcd y = 1 hyo : y % 2 = 1 hzpos : 0 < z h0 : ¬x = 0 v : ℚ := ↑x / ↑z w : ℚ := ↑y / ↑z ⊢ ↑x * ↑x + ↑y * ↑y = ↑z * ↑z
norm_cast
no goals
e128c623fada3541
ENNReal.inv_mul_cancel_right'
Mathlib/Data/ENNReal/Inv.lean
/-- See `ENNReal.inv_mul_cancel_right` for a simpler version assuming `b ≠ 0`, `b ≠ ∞`. -/ protected lemma inv_mul_cancel_right' (hb₀ : b = 0 → a = 0) (hb : b = ∞ → a = 0) : a * b⁻¹ * b = a
case inr a b : ℝ≥0∞ hb₀✝ : b = 0 → a = 0 hb : b = ⊤ → a = 0 hb₀ : b ≠ 0 ⊢ a * b⁻¹ * b = a
obtain rfl | hb := eq_or_ne b ⊤
case inr.inl a : ℝ≥0∞ hb₀✝ : ⊤ = 0 → a = 0 hb : ⊤ = ⊤ → a = 0 hb₀ : ⊤ ≠ 0 ⊢ a * ⊤⁻¹ * ⊤ = a case inr.inr a b : ℝ≥0∞ hb₀✝ : b = 0 → a = 0 hb✝ : b = ⊤ → a = 0 hb₀ : b ≠ 0 hb : b ≠ ⊤ ⊢ a * b⁻¹ * b = a
f8034e58fad9e03c
AlgebraicGeometry.RingedSpace.basicOpen_res
Mathlib/Geometry/RingedSpace/Basic.lean
theorem basicOpen_res {U V : (Opens X)ᵒᵖ} (i : U ⟶ V) (f : X.presheaf.obj U) : @basicOpen X (unop V) (X.presheaf.map i f) = unop V ⊓ @basicOpen X (unop U) f
case h.h.mpr.intro.intro X : RingedSpace U V : (Opens ↑↑X.toPresheafedSpace)ᵒᵖ i : U ⟶ V f : ↑(X.presheaf.obj U) x : ↑↑X.toPresheafedSpace hxV : x ∈ ↑(unop V) w✝ : x ∈ unop U hx : IsUnit ((ConcreteCategory.hom (X.presheaf.germ (unop U) x w✝)) f) ⊢ IsUnit ((ConcreteCategory.hom (X.presheaf.germ (unop U) x ⋯)) f)
exact hx
no goals
95747598eb7ff13b
AlgebraicGeometry.universallyClosed_eq_universallySpecializing
Mathlib/AlgebraicGeometry/Morphisms/UniversallyClosed.lean
lemma universallyClosed_eq_universallySpecializing : @UniversallyClosed = (topologically @SpecializingMap).universally ⊓ @QuasiCompact
⊢ @UniversallyClosed = (topologically @SpecializingMap ⊓ @QuasiCompact).universally
apply le_antisymm
case a ⊢ @UniversallyClosed ≤ (topologically @SpecializingMap ⊓ @QuasiCompact).universally case a ⊢ (topologically @SpecializingMap ⊓ @QuasiCompact).universally ≤ @UniversallyClosed
862e4b8e16a6249b
AlgebraicGeometry.StructureSheaf.germ_toOpen
Mathlib/AlgebraicGeometry/StructureSheaf.lean
theorem germ_toOpen (U : Opens (PrimeSpectrum.Top R)) (x : PrimeSpectrum.Top R) (hx : x ∈ U) (f : R) : (structureSheaf R).presheaf.germ U x hx (toOpen R U f) = toStalk R x f
R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) x : ↑(PrimeSpectrum.Top R) hx : x ∈ U f : R ⊢ (ConcreteCategory.hom ((structureSheaf R).presheaf.germ U x hx)) ((ConcreteCategory.hom (toOpen R U)) f) = (ConcreteCategory.hom (toOpen R ?U ≫ (structureSheaf R).presheaf.germ ?U x ?hx)) f case U R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) x : ↑(PrimeSpectrum.Top R) hx : x ∈ U f : R ⊢ Opens ↑(PrimeSpectrum.Top R) case hx R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) x : ↑(PrimeSpectrum.Top R) hx : x ∈ U f : R ⊢ x ∈ ?U
rfl
no goals
6df7d707c53e07ef
LieAlgebra.zeroRootSubalgebra_normalizer_eq_self
Mathlib/Algebra/Lie/Weights/Cartan.lean
theorem zeroRootSubalgebra_normalizer_eq_self : (zeroRootSubalgebra R L H).normalizer = zeroRootSubalgebra R L H
case h R : Type u_1 L : Type u_2 inst✝³ : CommRing R inst✝² : LieRing L inst✝¹ : LieAlgebra R L H : LieSubalgebra R L inst✝ : LieRing.IsNilpotent ↥H x y : L hy : y ∈ H hx : ∀ (y_1 : ↥H), ∃ k, ((toEnd R (↥H) L) y_1 ^ k) ⁅x, y⁆ = 0 k : ℕ hk : ((toEnd R (↥H) L) ⟨y, hy⟩ ^ k) ⁅y, x⁆ = 0 ⊢ ((toEnd R (↥H) L) ⟨y, hy⟩ ^ (k + 1)) x = 0
rw [LinearMap.iterate_succ, LinearMap.coe_comp, Function.comp_apply, toEnd_apply_apply, LieSubalgebra.coe_bracket_of_module, Submodule.coe_mk, hk]
no goals
02d44c0a4b4e91a4
CategoryTheory.eqToHom_comp_iff
Mathlib/CategoryTheory/EqToHom.lean
theorem eqToHom_comp_iff {X X' Y : C} (p : X = X') (f : X ⟶ Y) (g : X' ⟶ Y) : eqToHom p ≫ g = f ↔ g = eqToHom p.symm ≫ f := { mp := fun h => h ▸ by simp mpr := fun h => h ▸ by simp [whisker_eq _ h] }
C : Type u₁ inst✝ : Category.{v₁, u₁} C X X' Y : C p : X = X' f : X ⟶ Y g : X' ⟶ Y h : g = eqToHom ⋯ ≫ f ⊢ eqToHom p ≫ eqToHom ⋯ ≫ f = f
simp [whisker_eq _ h]
no goals
ba8ae4b6aa96e40a
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.deleteOne_preserves_strongAssignmentsInvariant
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/LRAT/Internal/Formula/Lemmas.lean
theorem deleteOne_preserves_strongAssignmentsInvariant {n : Nat} (f : DefaultFormula n) (id : Nat) : StrongAssignmentsInvariant f → StrongAssignmentsInvariant (deleteOne f id)
case neg n : Nat f : DefaultFormula n id : Nat hsize : f.assignments.size = n hf : ∀ (i : PosFin n) (b : Bool), hasAssignment b f.assignments[i.val] = true → unit (i, b) ∈ f.toList hsize' : (f.deleteOne id).assignments.size = n i : PosFin n b : Bool hb : hasAssignment b (f.deleteOne id).assignments[i.val] = true i_in_bounds : i.val < f.assignments.size c : DefaultClause n heq : f.clauses[id]! = some c hl : ¬∃ l, c = unit l ⊢ unit (i, b) ∈ (match some c with | none => { clauses := f.clauses, rupUnits := f.rupUnits, ratUnits := f.ratUnits, assignments := f.assignments } | some { clause := [l], nodupkey := nodupkey, nodup := nodup } => { clauses := f.clauses.set! id none, rupUnits := f.rupUnits, ratUnits := f.ratUnits, assignments := f.assignments.modify l.fst.val (removeAssignment l.snd) } | some val => { clauses := f.clauses.set! id none, rupUnits := f.rupUnits, ratUnits := f.ratUnits, assignments := f.assignments }).toList
simp only [Prod.exists, Bool.exists_bool, not_exists, not_or, unit] at hl
case neg n : Nat f : DefaultFormula n id : Nat hsize : f.assignments.size = n hf : ∀ (i : PosFin n) (b : Bool), hasAssignment b f.assignments[i.val] = true → unit (i, b) ∈ f.toList hsize' : (f.deleteOne id).assignments.size = n i : PosFin n b : Bool hb : hasAssignment b (f.deleteOne id).assignments[i.val] = true i_in_bounds : i.val < f.assignments.size c : DefaultClause n heq : f.clauses[id]! = some c hl : ∀ (x : PosFin n), ¬c = { clause := [(x, false)], nodupkey := ⋯, nodup := ⋯ } ∧ ¬c = { clause := [(x, true)], nodupkey := ⋯, nodup := ⋯ } ⊢ unit (i, b) ∈ (match some c with | none => { clauses := f.clauses, rupUnits := f.rupUnits, ratUnits := f.ratUnits, assignments := f.assignments } | some { clause := [l], nodupkey := nodupkey, nodup := nodup } => { clauses := f.clauses.set! id none, rupUnits := f.rupUnits, ratUnits := f.ratUnits, assignments := f.assignments.modify l.fst.val (removeAssignment l.snd) } | some val => { clauses := f.clauses.set! id none, rupUnits := f.rupUnits, ratUnits := f.ratUnits, assignments := f.assignments }).toList
0ab20a88767ce69e
nsmul_eq_mul
Mathlib/Data/Nat/Cast/Basic.lean
@[simp] lemma _root_.nsmul_eq_mul (n : ℕ) (a : α) : n • a = n * a
case succ α : Type u_1 inst✝ : NonAssocSemiring α a : α n : ℕ ih : n • a = ↑n * a ⊢ (n + 1) • a = ↑(n + 1) * a
rw [succ_nsmul, ih, Nat.cast_succ, add_mul, one_mul]
no goals
8fc2fe51086d4864
Nat.all_eq_finRange_all
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Nat/Fold.lean
theorem all_eq_finRange_all {n : Nat} (f : (i : Nat) → i < n → Bool) : all n f = (List.finRange n).all (fun ⟨i, h⟩ => f i h)
case succ n : Nat ih : ∀ (f : (i : Nat) → i < n → Bool), n.all f = (List.finRange n).all fun x => match x with | ⟨i, h⟩ => f i h f : (i : Nat) → i < n + 1 → Bool ⊢ (n + 1).all f = (List.finRange (n + 1)).all fun x => match x with | ⟨i, h⟩ => f i h
simp [ih, List.finRange_succ_last, List.all_map, Function.comp_def]
no goals
bb52d533e39be240
Finset.mem_finsuppAntidiag'
Mathlib/Algebra/Order/Antidiag/Finsupp.lean
lemma mem_finsuppAntidiag' : f ∈ finsuppAntidiag s n ↔ f.sum (fun _ x ↦ x) = n ∧ f.support ⊆ s
ι : Type u_1 μ : Type u_2 inst✝³ : DecidableEq ι inst✝² : AddCommMonoid μ inst✝¹ : HasAntidiagonal μ inst✝ : DecidableEq μ s : Finset ι n : μ f : ι →₀ μ hf : f.support ⊆ s ⊢ s.sum ⇑f = n ↔ (f.sum fun x x => x) = n
rw [sum_of_support_subset (N := μ) f hf (fun _ x ↦ x) fun _ _ ↦ rfl]
no goals
e81896c5da58f374
LinearIndependent.finite_of_isNoetherian
Mathlib/RingTheory/Noetherian/Basic.lean
theorem LinearIndependent.finite_of_isNoetherian [Nontrivial R] {ι} {v : ι → M} (hv : LinearIndependent R v) : Finite ι
R : Type u_1 M : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : IsNoetherian R M inst✝ : Nontrivial R ι : Type u_5 v : ι → M hv : LinearIndependent R v i : ι contra : span R {v i} = ⊥ ⊢ False
apply hv.ne_zero i
R : Type u_1 M : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : IsNoetherian R M inst✝ : Nontrivial R ι : Type u_5 v : ι → M hv : LinearIndependent R v i : ι contra : span R {v i} = ⊥ ⊢ v i = 0
1f9db6538c2d4f91
List.Forall.imp
Mathlib/Data/List/Basic.lean
theorem Forall.imp (h : ∀ x, p x → q x) : ∀ {l : List α}, Forall p l → Forall q l | [] => id | x :: l => by simp only [forall_cons, and_imp] rw [← and_imp] exact And.imp (h x) (Forall.imp h)
α : Type u p q : α → Prop h : ∀ (x : α), p x → q x x : α l : List α ⊢ Forall p (x :: l) → Forall q (x :: l)
simp only [forall_cons, and_imp]
α : Type u p q : α → Prop h : ∀ (x : α), p x → q x x : α l : List α ⊢ p x → Forall p l → q x ∧ Forall q l
d3e3250726717199
Ordinal.nmul_assoc
Mathlib/SetTheory/Ordinal/NaturalOps.lean
theorem nmul_assoc (a b c : Ordinal) : a ⨳ b ⨳ c = a ⨳ (b ⨳ c)
case a a b c a' : Ordinal.{u_1} ha : a' < a b' : Ordinal.{u_1} hb : b' < b c' : Ordinal.{u_1} hc : c' < c ⊢ a' ⨳ b ⨳ c ♯ a ⨳ b' ⨳ c ♯ a ⨳ b ⨳ c' ♯ a' ⨳ b' ⨳ c' < a ⨳ b ⨳ c ♯ a' ⨳ b' ⨳ c ♯ a' ⨳ b ⨳ c' ♯ a ⨳ (b' ⨳ c')
rw [← nmul_assoc]
case a a b c a' : Ordinal.{u_1} ha : a' < a b' : Ordinal.{u_1} hb : b' < b c' : Ordinal.{u_1} hc : c' < c ⊢ a' ⨳ b ⨳ c ♯ a ⨳ b' ⨳ c ♯ a ⨳ b ⨳ c' ♯ a' ⨳ b' ⨳ c' < a ⨳ b ⨳ c ♯ a' ⨳ b' ⨳ c ♯ a' ⨳ b ⨳ c' ♯ a ⨳ b' ⨳ c'
af6a958d5cf6546a
Cardinal.aleph0_le
Mathlib/SetTheory/Cardinal/Basic.lean
theorem aleph0_le {c : Cardinal} : ℵ₀ ≤ c ↔ ∀ n : ℕ, ↑n ≤ c := ⟨fun h _ => (nat_lt_aleph0 _).le.trans h, fun h => le_of_not_lt fun hn => by rcases lt_aleph0.1 hn with ⟨n, rfl⟩ exact (Nat.lt_succ_self _).not_le (Nat.cast_le.1 (h (n + 1)))⟩
c : Cardinal.{u_1} h : ∀ (n : ℕ), ↑n ≤ c hn : c < ℵ₀ ⊢ False
rcases lt_aleph0.1 hn with ⟨n, rfl⟩
case intro n : ℕ h : ∀ (n_1 : ℕ), ↑n_1 ≤ ↑n hn : ↑n < ℵ₀ ⊢ False
8a8d523c3adcb040
AdjoinRoot.of.injective_of_degree_ne_zero
Mathlib/RingTheory/AdjoinRoot.lean
theorem of.injective_of_degree_ne_zero [IsDomain R] (hf : f.degree ≠ 0) : Function.Injective (AdjoinRoot.of f)
R : Type u inst✝¹ : CommRing R f : R[X] inst✝ : IsDomain R p : R hp : f ∣ C p h : ¬f = 0 h_contra : p ≠ 0 ⊢ (C p).degree ≤ f.degree
rwa [degree_C h_contra, zero_le_degree_iff]
no goals
f750c2be586c9c7b