name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
Nat.one_sub
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Nat/Lemmas.lean
theorem one_sub : ∀ n, 1 - n = if n = 0 then 1 else 0 | 0 => rfl | _+1 => by rw [if_neg (Nat.succ_ne_zero _), Nat.succ_sub_succ, Nat.zero_sub]
n✝ : Nat ⊢ 1 - (n✝ + 1) = if n✝ + 1 = 0 then 1 else 0
rw [if_neg (Nat.succ_ne_zero _), Nat.succ_sub_succ, Nat.zero_sub]
no goals
9a7412d67d205851
List.suffix_cons_iff
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Sublist.lean
theorem suffix_cons_iff : l₁ <:+ a :: l₂ ↔ l₁ = a :: l₂ ∨ l₁ <:+ l₂
case mp.intro.cons α✝ : Type u_1 l₁ : List α✝ a : α✝ l₂ : List α✝ head✝ : α✝ tail✝ : List α✝ hl₃ : head✝ :: tail✝ ++ l₁ = a :: l₂ ⊢ l₁ = a :: l₂ ∨ l₁ <:+ l₂
simp only [cons_append] at hl₃
case mp.intro.cons α✝ : Type u_1 l₁ : List α✝ a : α✝ l₂ : List α✝ head✝ : α✝ tail✝ : List α✝ hl₃ : head✝ :: (tail✝ ++ l₁) = a :: l₂ ⊢ l₁ = a :: l₂ ∨ l₁ <:+ l₂
3985de2c4a53c38e
Multiset.toEmbedding_coeEquiv_trans
Mathlib/Data/Multiset/Fintype.lean
theorem toEmbedding_coeEquiv_trans (m : Multiset α) : m.coeEquiv.toEmbedding.trans (Function.Embedding.subtype _) = m.coeEmbedding
α : Type u_1 inst✝ : DecidableEq α m : Multiset α ⊢ m.coeEquiv.toEmbedding.trans (Function.Embedding.subtype fun x => x ∈ m.toEnumFinset) = m.coeEmbedding
ext <;> rfl
no goals
894800d40a2b0a9a
WeierstrassCurve.map_b₆
Mathlib/AlgebraicGeometry/EllipticCurve/Weierstrass.lean
@[simp] lemma map_b₆ : (W.map φ).b₆ = φ W.b₆
R : Type u inst✝¹ : CommRing R W : WeierstrassCurve R A : Type v inst✝ : CommRing A φ : R →+* A ⊢ φ W.a₃ ^ 2 + 4 * φ W.a₆ = φ (W.a₃ ^ 2 + 4 * W.a₆)
map_simp
no goals
b870cc1b285dec7e
Polynomial.valuation_of_mk
Mathlib/FieldTheory/RatFunc/AsPolynomial.lean
theorem valuation_of_mk (f : Polynomial K) {g : Polynomial K} (hg : g ≠ 0) : (Polynomial.idealX K).valuation _ (RatFunc.mk f g) = (Polynomial.idealX K).intValuation f / (Polynomial.idealX K).intValuation g
K : Type u_1 inst✝ : Field K f g : K[X] hg : g ≠ 0 ⊢ (valuation (RatFunc K) (idealX K)) (RatFunc.mk f g) = (idealX K).intValuation f / (idealX K).intValuation g
simp only [RatFunc.mk_eq_mk' _ hg, valuation_of_mk']
no goals
ace054a4a9f8a2f2
Std.DHashMap.Internal.List.getValueCast!_alterKey
Mathlib/.lake/packages/lean4/src/lean/Std/Data/DHashMap/Internal/List/Associative.lean
theorem getValueCast!_alterKey {k k' : α} [Inhabited (β k')] {f : Option (β k) → Option (β k)} (l : List ((a : α) × β a)) (hl : DistinctKeys l) : getValueCast! k' (alterKey k f l) = if heq : k == k' then (f (getValueCast? k l)).map (cast (congrArg β <| eq_of_beq heq)) |>.get! else getValueCast! k' l
α : Type u β : α → Type v inst✝² : BEq α inst✝¹ : LawfulBEq α k k' : α inst✝ : Inhabited (β k') f : Option (β k) → Option (β k) l : List ((a : α) × β a) hl : DistinctKeys l ⊢ (if h : (k == k') = true then cast ⋯ (f (getValueCast? k l)) else getValueCast? k' l).get! = if heq : (k == k') = true then (Option.map (cast ⋯) (f (getValueCast? k l))).get! else (getValueCast? k' l).get!
split
case isTrue α : Type u β : α → Type v inst✝² : BEq α inst✝¹ : LawfulBEq α k k' : α inst✝ : Inhabited (β k') f : Option (β k) → Option (β k) l : List ((a : α) × β a) hl : DistinctKeys l h✝ : (k == k') = true ⊢ (cast ⋯ (f (getValueCast? k l))).get! = (Option.map (cast ⋯) (f (getValueCast? k l))).get! case isFalse α : Type u β : α → Type v inst✝² : BEq α inst✝¹ : LawfulBEq α k k' : α inst✝ : Inhabited (β k') f : Option (β k) → Option (β k) l : List ((a : α) × β a) hl : DistinctKeys l h✝ : ¬(k == k') = true ⊢ (getValueCast? k' l).get! = (getValueCast? k' l).get!
8eb57811416acb53
LieAlgebra.derivedSeries_of_bot_eq_bot
Mathlib/Algebra/Lie/Solvable.lean
theorem derivedSeries_of_bot_eq_bot (k : ℕ) : derivedSeriesOfIdeal R L k ⊥ = ⊥
R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L k : ℕ ⊢ D k ⊥ ≤ ⊥
exact derivedSeriesOfIdeal_le_self ⊥ k
no goals
2c82da78fd86ffef
Finmap.erase_union_singleton
Mathlib/Data/Finmap.lean
theorem erase_union_singleton (a : α) (b : β a) (s : Finmap β) (h : s.lookup a = some b) : s.erase a ∪ singleton a b = s := ext_lookup fun x => by by_cases h' : x = a · subst a rw [lookup_union_right not_mem_erase_self, lookup_singleton_eq, h] · have : x ∉ singleton a b
α : Type u β : α → Type v inst✝ : DecidableEq α a : α b : β a s : Finmap β h : lookup a s = some b x : α ⊢ lookup x (erase a s ∪ singleton a b) = lookup x s
by_cases h' : x = a
case pos α : Type u β : α → Type v inst✝ : DecidableEq α a : α b : β a s : Finmap β h : lookup a s = some b x : α h' : x = a ⊢ lookup x (erase a s ∪ singleton a b) = lookup x s case neg α : Type u β : α → Type v inst✝ : DecidableEq α a : α b : β a s : Finmap β h : lookup a s = some b x : α h' : ¬x = a ⊢ lookup x (erase a s ∪ singleton a b) = lookup x s
1c1c576ab183c6a1
Finset.piAntidiag_cons
Mathlib/Algebra/Order/Antidiag/Pi.lean
lemma piAntidiag_cons (hi : i ∉ s) (n : μ) : piAntidiag (cons i s hi) n = (antidiagonal n).disjiUnion (fun p : μ × μ ↦ (piAntidiag s p.snd).map (addRightEmbedding fun t ↦ if t = i then p.fst else 0)) (pairwiseDisjoint_piAntidiag_map_addRightEmbedding hi _)
case h.mpr.intro.intro.intro.intro.intro.intro ι : Type u_1 μ : Type u_2 inst✝³ : DecidableEq ι inst✝² : AddCancelCommMonoid μ inst✝¹ : HasAntidiagonal μ inst✝ : DecidableEq μ i : ι s : Finset ι hi : i ∉ s n a : μ g : ι → μ hg : ∀ (i : ι), ¬g i = 0 → i ∈ s hn : a + s.sum g = n ⊢ (addRightEmbedding fun t => if t = i then a else 0) g i + ∑ x ∈ s, (addRightEmbedding fun t => if t = i then a else 0) g x = n ∧ ∀ (i_1 : ι), ¬(addRightEmbedding fun t => if t = i then a else 0) g i_1 = 0 → i_1 = i ∨ i_1 ∈ s
have := hg i
case h.mpr.intro.intro.intro.intro.intro.intro ι : Type u_1 μ : Type u_2 inst✝³ : DecidableEq ι inst✝² : AddCancelCommMonoid μ inst✝¹ : HasAntidiagonal μ inst✝ : DecidableEq μ i : ι s : Finset ι hi : i ∉ s n a : μ g : ι → μ hg : ∀ (i : ι), ¬g i = 0 → i ∈ s hn : a + s.sum g = n this : ¬g i = 0 → i ∈ s ⊢ (addRightEmbedding fun t => if t = i then a else 0) g i + ∑ x ∈ s, (addRightEmbedding fun t => if t = i then a else 0) g x = n ∧ ∀ (i_1 : ι), ¬(addRightEmbedding fun t => if t = i then a else 0) g i_1 = 0 → i_1 = i ∨ i_1 ∈ s
19ca49fbd299904c
Polynomial.sup_ker_aeval_eq_ker_aeval_mul_of_coprime
Mathlib/RingTheory/Polynomial/Basic.lean
theorem sup_ker_aeval_eq_ker_aeval_mul_of_coprime (f : M →ₗ[R] M) {p q : R[X]} (hpq : IsCoprime p q) : LinearMap.ker (aeval f p) ⊔ LinearMap.ker (aeval f q) = LinearMap.ker (aeval f (p * q))
case intro.intro R : Type u M : Type w inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M f : M →ₗ[R] M p q : R[X] v : M hv : v ∈ LinearMap.ker ((aeval f) (p * q)) p' q' : R[X] hpq' : p' * p + q' * q = 1 ⊢ ∃ y ∈ LinearMap.ker ((aeval f) p), ∃ z ∈ LinearMap.ker ((aeval f) q), y + z = v
have h_eval₂_qpp' := calc aeval f (q * (p * p')) v = aeval f (p' * (p * q)) v := by rw [mul_comm, mul_assoc, mul_comm, mul_assoc, mul_comm q p] _ = 0 := by rw [aeval_mul, LinearMap.mul_apply, LinearMap.mem_ker.1 hv, LinearMap.map_zero]
case intro.intro R : Type u M : Type w inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M f : M →ₗ[R] M p q : R[X] v : M hv : v ∈ LinearMap.ker ((aeval f) (p * q)) p' q' : R[X] hpq' : p' * p + q' * q = 1 h_eval₂_qpp' : ((aeval f) (q * (p * p'))) v = 0 ⊢ ∃ y ∈ LinearMap.ker ((aeval f) p), ∃ z ∈ LinearMap.ker ((aeval f) q), y + z = v
bb84be2e4bee1df0
List.Perm.eq_of_sorted
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Perm.lean
theorem Perm.eq_of_sorted : ∀ {l₁ l₂ : List α} (_ : ∀ a b, a ∈ l₁ → b ∈ l₂ → le a b → le b a → a = b) (_ : l₁.Pairwise le) (_ : l₂.Pairwise le) (_ : l₁ ~ l₂), l₁ = l₂ | [], [], _, _, _, _ => rfl | [], b :: l₂, _, _, _, h => by simp_all | a :: l₁, [], _, _, _, h => by simp_all | a :: l₁, b :: l₂, w, h₁, h₂, h => by have am : a ∈ b :: l₂ := h.subset (mem_cons_self _ _) have bm : b ∈ a :: l₁ := h.symm.subset (mem_cons_self _ _) have ab : a = b
α : Type u_1 le : α → α → Prop a : α l₁ l₂ : List α h₁ : Pairwise le (a :: l₁) w : ∀ (a_1 b : α), a_1 ∈ a :: l₁ → b ∈ a :: l₂ → le a_1 b → le b a_1 → a_1 = b h₂ : Pairwise le (a :: l₂) h : a :: l₁ ~ a :: l₂ am : a ∈ a :: l₂ bm : a ∈ a :: l₁ ⊢ a :: l₁ = a :: l₂
simp only [perm_cons] at h
α : Type u_1 le : α → α → Prop a : α l₁ l₂ : List α h₁ : Pairwise le (a :: l₁) w : ∀ (a_1 b : α), a_1 ∈ a :: l₁ → b ∈ a :: l₂ → le a_1 b → le b a_1 → a_1 = b h₂ : Pairwise le (a :: l₂) am : a ∈ a :: l₂ bm : a ∈ a :: l₁ h : l₁ ~ l₂ ⊢ a :: l₁ = a :: l₂
ac7218468435b086
Real.Wallis.W_eq_factorial_ratio
Mathlib/Data/Real/Pi/Wallis.lean
theorem W_eq_factorial_ratio (n : ℕ) : W n = 2 ^ (4 * n) * n ! ^ 4 / ((2 * n)! ^ 2 * (2 * n + 1))
n : ℕ ⊢ W n = 2 ^ (4 * n) * ↑n ! ^ 4 / (↑(2 * n)! ^ 2 * (2 * ↑n + 1))
induction' n with n IH
case zero ⊢ W 0 = 2 ^ (4 * 0) * ↑0! ^ 4 / (↑(2 * 0)! ^ 2 * (2 * ↑0 + 1)) case succ n : ℕ IH : W n = 2 ^ (4 * n) * ↑n ! ^ 4 / (↑(2 * n)! ^ 2 * (2 * ↑n + 1)) ⊢ W (n + 1) = 2 ^ (4 * (n + 1)) * ↑(n + 1)! ^ 4 / (↑(2 * (n + 1))! ^ 2 * (2 * ↑(n + 1) + 1))
386b2268ddd44bec
Nat.pow_lt_pow_succ
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Nat/Lemmas.lean
theorem pow_lt_pow_succ (h : 1 < a) : a ^ n < a ^ (n + 1)
a n : Nat h : 1 < a ⊢ a ^ n < a ^ (n + 1)
rw [← Nat.mul_one (a^n), Nat.pow_succ]
a n : Nat h : 1 < a ⊢ a ^ n * 1 < a ^ n * a
4954a059e63dd328
Std.Tactic.BVDecide.BVExpr.bitblast.blastShiftRightConst.go_get_aux
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/Bitblast/BVExpr/Circuit/Lemmas/Operations/ShiftRight.lean
theorem go_get_aux (aig : AIG α) (distance : Nat) (input : AIG.RefVec aig w) (curr : Nat) (hcurr : curr ≤ w) (s : AIG.RefVec aig curr) : ∀ (idx : Nat) (hidx : idx < curr) (hfoo), (go aig input distance curr hcurr s).vec.get idx (by omega) = (s.get idx hidx).cast hfoo
case isFalse α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α aig : AIG α distance curr : Nat s : aig.RefVec curr idx : Nat hidx : idx < curr input : aig.RefVec curr hcurr : curr ≤ curr res : RefVecEntry α curr h✝ : ¬curr < curr hgo : { aig := aig, vec := ⋯ ▸ s } = res ⊢ ∀ (hfoo : True), (⋯ ▸ s).get idx ⋯ = (s.get idx hidx).cast ⋯
simp
no goals
411d6c36c2c282f7
Complex.hasFPowerSeriesOnBall_of_differentiable_off_countable
Mathlib/Analysis/Complex/CauchyIntegral.lean
theorem hasFPowerSeriesOnBall_of_differentiable_off_countable {R : ℝ≥0} {c : ℂ} {f : ℂ → E} {s : Set ℂ} (hs : s.Countable) (hc : ContinuousOn f (closedBall c R)) (hd : ∀ z ∈ ball c R \ s, DifferentiableAt ℂ f z) (hR : 0 < R) : HasFPowerSeriesOnBall f (cauchyPowerSeries f c R) c R where r_le := le_radius_cauchyPowerSeries _ _ _ r_pos := ENNReal.coe_pos.2 hR hasSum := fun {w} hw => by have hw' : c + w ∈ ball c R
E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E R : ℝ≥0 c : ℂ f : ℂ → E s : Set ℂ hs : s.Countable hc : ContinuousOn f (closedBall c ↑R) hd : ∀ z ∈ ball c ↑R \ s, DifferentiableAt ℂ f z hR : 0 < R w : ℂ hw : w ∈ EMetric.ball 0 ↑R hw' : c + w ∈ ball c ↑R ⊢ HasSum (fun n => (cauchyPowerSeries f c (↑R) n) fun x => w) (f (c + w))
rw [← two_pi_I_inv_smul_circleIntegral_sub_inv_smul_of_differentiable_on_off_countable hs hw' hc hd]
E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E R : ℝ≥0 c : ℂ f : ℂ → E s : Set ℂ hs : s.Countable hc : ContinuousOn f (closedBall c ↑R) hd : ∀ z ∈ ball c ↑R \ s, DifferentiableAt ℂ f z hR : 0 < R w : ℂ hw : w ∈ EMetric.ball 0 ↑R hw' : c + w ∈ ball c ↑R ⊢ HasSum (fun n => (cauchyPowerSeries f c (↑R) n) fun x => w) ((2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, ↑R), (z - (c + w))⁻¹ • f z)
cdf5cba971469b1e
Nat.AM_GM
Mathlib/Data/Nat/Sqrt.lean
private lemma AM_GM : {a b : ℕ} → (4 * a * b ≤ (a + b) * (a + b)) | 0, _ => by rw [Nat.mul_zero, Nat.zero_mul]; exact zero_le _ | _, 0 => by rw [Nat.mul_zero]; exact zero_le _ | a + 1, b + 1 => by simpa only [Nat.mul_add, Nat.add_mul, show (4 : ℕ) = 1 + 1 + 1 + 1 from rfl, Nat.one_mul, Nat.mul_one, Nat.add_assoc, Nat.add_left_comm, Nat.add_le_add_iff_left] using Nat.add_le_add_right (@AM_GM a b) 4
a b : ℕ ⊢ 4 * (a + 1) * (b + 1) ≤ (a + 1 + (b + 1)) * (a + 1 + (b + 1))
simpa only [Nat.mul_add, Nat.add_mul, show (4 : ℕ) = 1 + 1 + 1 + 1 from rfl, Nat.one_mul, Nat.mul_one, Nat.add_assoc, Nat.add_left_comm, Nat.add_le_add_iff_left] using Nat.add_le_add_right (@AM_GM a b) 4
no goals
c5edabcb7b92faa4
ContDiffBump.tendsto_support_normed_smallSets
Mathlib/Analysis/Calculus/BumpFunction/Normed.lean
theorem tendsto_support_normed_smallSets {ι} {φ : ι → ContDiffBump c} {l : Filter ι} (hφ : Tendsto (fun i => (φ i).rOut) l (𝓝 0)) : Tendsto (fun i => Function.support fun x => (φ i).normed μ x) l (𝓝 c).smallSets
E : Type u_1 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℝ E inst✝⁵ : HasContDiffBump E inst✝⁴ : MeasurableSpace E c : E μ : Measure E inst✝³ : BorelSpace E inst✝² : FiniteDimensional ℝ E inst✝¹ : IsLocallyFiniteMeasure μ inst✝ : μ.IsOpenPosMeasure ι : Type u_2 φ : ι → ContDiffBump c l : Filter ι hφ : ∀ ε > 0, ∀ᶠ (x : ι) in l, (φ x).rOut < ε ε : ℝ hε : 0 < ε i : ι hi : (φ i).rOut < ε ⊢ (support fun x => (φ i).normed μ x) ∈ 𝒫 ball c ε
rw [(φ i).support_normed_eq]
E : Type u_1 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℝ E inst✝⁵ : HasContDiffBump E inst✝⁴ : MeasurableSpace E c : E μ : Measure E inst✝³ : BorelSpace E inst✝² : FiniteDimensional ℝ E inst✝¹ : IsLocallyFiniteMeasure μ inst✝ : μ.IsOpenPosMeasure ι : Type u_2 φ : ι → ContDiffBump c l : Filter ι hφ : ∀ ε > 0, ∀ᶠ (x : ι) in l, (φ x).rOut < ε ε : ℝ hε : 0 < ε i : ι hi : (φ i).rOut < ε ⊢ ball c (φ i).rOut ∈ 𝒫 ball c ε
3e51bd2d58daa661
Finset.prod_range_div_prod_range
Mathlib/Algebra/BigOperators/Intervals.lean
theorem prod_range_div_prod_range {α : Type*} [CommGroup α] {f : ℕ → α} {n m : ℕ} (hnm : n ≤ m) : ((∏ k ∈ range m, f k) / ∏ k ∈ range n, f k) = ∏ k ∈ (range m).filter fun k => n ≤ k, f k
α : Type u_3 inst✝ : CommGroup α f : ℕ → α n m : ℕ hnm : n ≤ m ⊢ (∏ k ∈ range m, f k) / ∏ k ∈ range n, f k = ∏ k ∈ filter (fun k => n ≤ k) (range m), f k
rw [← prod_Ico_eq_div f hnm]
α : Type u_3 inst✝ : CommGroup α f : ℕ → α n m : ℕ hnm : n ≤ m ⊢ ∏ k ∈ Ico n m, f k = ∏ k ∈ filter (fun k => n ≤ k) (range m), f k
d8c3c7f95763a0f2
Polynomial.Gal.ext
Mathlib/FieldTheory/PolynomialGaloisGroup.lean
theorem ext {σ τ : p.Gal} (h : ∀ x ∈ p.rootSet p.SplittingField, σ x = τ x) : σ = τ
F : Type u_1 inst✝ : Field F p : F[X] σ τ : p.Gal h : ∀ x ∈ p.rootSet p.SplittingField, σ x = τ x x : p.SplittingField ⊢ AlgHom.equalizer ↑σ ↑τ = ⊤
rwa [eq_top_iff, ← SplittingField.adjoin_rootSet, Algebra.adjoin_le_iff]
no goals
fbf3c970f0153c29
Algebra.adjoin_induction₂
Mathlib/RingTheory/Adjoin/Basic.lean
theorem adjoin_induction₂ {s : Set A} {p : (x y : A) → x ∈ adjoin R s → y ∈ adjoin R s → Prop} (mem_mem : ∀ (x) (y) (hx : x ∈ s) (hy : y ∈ s), p x y (subset_adjoin hx) (subset_adjoin hy)) (algebraMap_both : ∀ r₁ r₂, p (algebraMap R A r₁) (algebraMap R A r₂) (algebraMap_mem _ r₁) (algebraMap_mem _ r₂)) (algebraMap_left : ∀ (r) (x) (hx : x ∈ s), p (algebraMap R A r) x (algebraMap_mem _ r) (subset_adjoin hx)) (algebraMap_right : ∀ (r) (x) (hx : x ∈ s), p x (algebraMap R A r) (subset_adjoin hx) (algebraMap_mem _ r)) (add_left : ∀ x y z hx hy hz, p x z hx hz → p y z hy hz → p (x + y) z (add_mem hx hy) hz) (add_right : ∀ x y z hx hy hz, p x y hx hy → p x z hx hz → p x (y + z) hx (add_mem hy hz)) (mul_left : ∀ x y z hx hy hz, p x z hx hz → p y z hy hz → p (x * y) z (mul_mem hx hy) hz) (mul_right : ∀ x y z hx hy hz, p x y hx hy → p x z hx hz → p x (y * z) hx (mul_mem hy hz)) {x y : A} (hx : x ∈ adjoin R s) (hy : y ∈ adjoin R s) : p x y hx hy
case mem.algebraMap R : Type uR A : Type uA inst✝² : CommSemiring R inst✝¹ : Semiring A inst✝ : Algebra R A s : Set A p : (x y : A) → x ∈ adjoin R s → y ∈ adjoin R s → Prop mem_mem : ∀ (x y : A) (hx : x ∈ s) (hy : y ∈ s), p x y ⋯ ⋯ algebraMap_both : ∀ (r₁ r₂ : R), p ((algebraMap R A) r₁) ((algebraMap R A) r₂) ⋯ ⋯ algebraMap_left : ∀ (r : R) (x : A) (hx : x ∈ s), p ((algebraMap R A) r) x ⋯ ⋯ algebraMap_right : ∀ (r : R) (x : A) (hx : x ∈ s), p x ((algebraMap R A) r) ⋯ ⋯ add_left : ∀ (x y z : A) (hx : x ∈ adjoin R s) (hy : y ∈ adjoin R s) (hz : z ∈ adjoin R s), p x z hx hz → p y z hy hz → p (x + y) z ⋯ hz add_right : ∀ (x y z : A) (hx : x ∈ adjoin R s) (hy : y ∈ adjoin R s) (hz : z ∈ adjoin R s), p x y hx hy → p x z hx hz → p x (y + z) hx ⋯ mul_left : ∀ (x y z : A) (hx : x ∈ adjoin R s) (hy : y ∈ adjoin R s) (hz : z ∈ adjoin R s), p x z hx hz → p y z hy hz → p (x * y) z ⋯ hz mul_right : ∀ (x y z : A) (hx : x ∈ adjoin R s) (hy : y ∈ adjoin R s) (hz : z ∈ adjoin R s), p x y hx hy → p x z hx hz → p x (y * z) hx ⋯ x y z : A hz : z ∈ s r✝ : R ⊢ p ((algebraMap R A) r✝) z ⋯ ⋯
exact algebraMap_left _ _ hz
no goals
a48d8c6c65956c35
CoxeterSystem.IsReduced.nodup_rightInvSeq
Mathlib/GroupTheory/Coxeter/Inversion.lean
theorem IsReduced.nodup_rightInvSeq {ω : List B} (rω : cs.IsReduced ω) : List.Nodup (ris ω)
B : Type u_1 W : Type u_2 inst✝ : Group W M : CoxeterMatrix B cs : CoxeterSystem M W ω : List B rω : cs.IsReduced ω j j' : ℕ j_lt_j' : j < j' dup : (cs.rightInvSeq ω)[j]? = (cs.rightInvSeq ω)[j']? j'_lt_length : j' < ω.length ⊢ j < (cs.rightInvSeq ω).length
simp
B : Type u_1 W : Type u_2 inst✝ : Group W M : CoxeterMatrix B cs : CoxeterSystem M W ω : List B rω : cs.IsReduced ω j j' : ℕ j_lt_j' : j < j' dup : (cs.rightInvSeq ω)[j]? = (cs.rightInvSeq ω)[j']? j'_lt_length : j' < ω.length ⊢ j < ω.length
4f092e79e4ea2c15
Finpartition.exists_mem
Mathlib/Order/Partition/Finpartition.lean
theorem exists_mem (ha : a ∈ s) : ∃ t ∈ P.parts, a ∈ t
α : Type u_1 inst✝ : DecidableEq α s : Finset α P : Finpartition s a : α ha : a ∈ s ⊢ ∃ t ∈ P.parts, a ∈ t
simp_rw [← P.sup_parts] at ha
α : Type u_1 inst✝ : DecidableEq α s : Finset α P : Finpartition s a : α ha : a ∈ P.parts.sup id ⊢ ∃ t ∈ P.parts, a ∈ t
bc797f3d133f7276
Filter.isCoboundedUnder_ge_add
Mathlib/Order/LiminfLimsup.lean
lemma isCoboundedUnder_ge_add (hu : f.IsBoundedUnder (· ≤ ·) u) (hv : f.IsCoboundedUnder (· ≥ ·) v) : f.IsCoboundedUnder (· ≥ ·) (u + v)
case intro.intro α : Type u_6 R : Type u_7 inst✝⁴ : LinearOrder R inst✝³ : Add R f : Filter α inst✝² : f.NeBot inst✝¹ : CovariantClass R R (fun a b => a + b) fun x1 x2 => x1 ≤ x2 inst✝ : CovariantClass R R (fun a b => b + a) fun x1 x2 => x1 ≤ x2 u v : α → R hu : IsBoundedUnder (fun x1 x2 => x1 ≤ x2) f u hv : IsCoboundedUnder (fun x1 x2 => x1 ≥ x2) f v U : R hU : ∀ᶠ (x : α) in f, u x ≤ U V : R hV : ∃ᶠ (x : α) in f, v x ≤ V ⊢ IsCoboundedUnder (fun x1 x2 => x1 ≥ x2) f (u + v)
apply IsCoboundedUnder.of_frequently_le (a := U + V)
case intro.intro α : Type u_6 R : Type u_7 inst✝⁴ : LinearOrder R inst✝³ : Add R f : Filter α inst✝² : f.NeBot inst✝¹ : CovariantClass R R (fun a b => a + b) fun x1 x2 => x1 ≤ x2 inst✝ : CovariantClass R R (fun a b => b + a) fun x1 x2 => x1 ≤ x2 u v : α → R hu : IsBoundedUnder (fun x1 x2 => x1 ≤ x2) f u hv : IsCoboundedUnder (fun x1 x2 => x1 ≥ x2) f v U : R hU : ∀ᶠ (x : α) in f, u x ≤ U V : R hV : ∃ᶠ (x : α) in f, v x ≤ V ⊢ ∃ᶠ (x : α) in f, (u + v) x ≤ U + V
5e0281c3505ce3a2
BoxIntegral.unitPartition.tendsto_card_div_pow₂
Mathlib/Analysis/BoxIntegral/UnitPartition.lean
theorem tendsto_card_div_pow₂ (hs₁ : IsBounded s) (hs₄ : ∀ ⦃x y : ℝ⦄, 0 < x → x ≤ y → x • s ⊆ y • s) {x y : ℝ} (hx : 0 < x) (hy : x ≤ y) : Nat.card ↑(s ∩ x⁻¹ • L) ≤ Nat.card ↑(s ∩ y⁻¹ • L)
ι : Type u_1 inst✝ : Fintype ι s : Set (ι → ℝ) hs₁ : Bornology.IsBounded s hs₄ : ∀ ⦃x y : ℝ⦄, 0 < x → x ≤ y → x • s ⊆ y • s x y : ℝ hx : 0 < x hy : x ≤ y ⊢ Nat.card ↑(s ∩ x⁻¹ • ↑(span ℤ (Set.range ⇑(Pi.basisFun ℝ ι)))) ≤ Nat.card ↑(s ∩ y⁻¹ • ↑(span ℤ (Set.range ⇑(Pi.basisFun ℝ ι))))
rw [Nat.card_congr (tendsto_card_div_pow₁ s hx.ne'), Nat.card_congr (tendsto_card_div_pow₁ s (hx.trans_le hy).ne')]
ι : Type u_1 inst✝ : Fintype ι s : Set (ι → ℝ) hs₁ : Bornology.IsBounded s hs₄ : ∀ ⦃x y : ℝ⦄, 0 < x → x ≤ y → x • s ⊆ y • s x y : ℝ hx : 0 < x hy : x ≤ y ⊢ Nat.card ↑(x • s ∩ ↑(span ℤ (Set.range ⇑(Pi.basisFun ℝ ι)))) ≤ Nat.card ↑(y • s ∩ ↑(span ℤ (Set.range ⇑(Pi.basisFun ℝ ι))))
5e10a1a1aca1cc38
MonoidAlgebra.mapDomain_mul
Mathlib/Algebra/MonoidAlgebra/MapDomain.lean
theorem mapDomain_mul {α : Type*} {β : Type*} {α₂ : Type*} [Semiring β] [Mul α] [Mul α₂] {F : Type*} [FunLike F α α₂] [MulHomClass F α α₂] (f : F) (x y : MonoidAlgebra β α) : mapDomain f (x * y) = mapDomain f x * mapDomain f y
case h_add α : Type u_3 β : Type u_4 α₂ : Type u_5 inst✝⁴ : Semiring β inst✝³ : Mul α inst✝² : Mul α₂ F : Type u_6 inst✝¹ : FunLike F α α₂ inst✝ : MulHomClass F α α₂ f : F x y : MonoidAlgebra β α ⊢ ∀ (b : α₂) (m₁ m₂ : β), (sum (mapDomain (⇑f) y) fun a₂ b₂ => single (b * a₂) ((m₁ + m₂) * b₂)) = (sum (mapDomain (⇑f) y) fun a₂ b₂ => single (b * a₂) (m₁ * b₂)) + sum (mapDomain (⇑f) y) fun a₂ b₂ => single (b * a₂) (m₂ * b₂)
simp [add_mul]
no goals
7e14c1d9f46ae3b4
Subgroup.exists_finiteIndex_of_leftCoset_cover
Mathlib/GroupTheory/CosetCover.lean
theorem exists_finiteIndex_of_leftCoset_cover : ∃ k ∈ s, (H k).FiniteIndex
G : Type u_1 inst✝ : Group G ι : Type u_2 H : ι → Subgroup G g : ι → G s : Finset ι hcovers : ∅ = Set.univ hempty : s = ∅ ⊢ False
exact Set.empty_ne_univ hcovers
no goals
a157e4700b8dbc0e
Subgroup.comap_normalizer_eq_of_surjective
Mathlib/Algebra/Group/Subgroup/Basic.lean
theorem comap_normalizer_eq_of_surjective (H : Subgroup G) {f : N →* G} (hf : Function.Surjective f) : H.normalizer.comap f = (H.comap f).normalizer := le_antisymm (le_normalizer_comap f) (by intro x hx simp only [mem_comap, mem_normalizer_iff] at * intro n rcases hf n with ⟨y, rfl⟩ simp [hx y])
G : Type u_1 inst✝¹ : Group G N : Type u_5 inst✝ : Group N H : Subgroup G f : N →* G hf : Surjective ⇑f x : N hx : x ∈ (comap f H).normalizer ⊢ x ∈ comap f H.normalizer
simp only [mem_comap, mem_normalizer_iff] at *
G : Type u_1 inst✝¹ : Group G N : Type u_5 inst✝ : Group N H : Subgroup G f : N →* G hf : Surjective ⇑f x : N hx : ∀ (h : N), f h ∈ H ↔ f (x * h * x⁻¹) ∈ H ⊢ ∀ (h : G), h ∈ H ↔ f x * h * (f x)⁻¹ ∈ H
a9a02fd3dfef1407
HasCompactSupport.enorm_le_lintegral_Ici_deriv
Mathlib/MeasureTheory/Integral/IntegralEqImproper.lean
lemma _root_.HasCompactSupport.enorm_le_lintegral_Ici_deriv {F : Type*} [NormedAddCommGroup F] [NormedSpace ℝ F] {f : ℝ → F} (hf : ContDiff ℝ 1 f) (h'f : HasCompactSupport f) (x : ℝ) : ‖f x‖ₑ ≤ ∫⁻ y in Iic x, ‖deriv f y‖ₑ
case h.e'_4.h.e'_4.h F : Type u_2 inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace ℝ F f : ℝ → F hf : ContDiff ℝ 1 f h'f : HasCompactSupport f x : ℝ I : F →L[ℝ] Completion F := Completion.toComplL f' : ℝ → Completion F := ⇑I ∘ f hf' : ContDiff ℝ 1 f' h'f' : HasCompactSupport f' this : ‖f' x‖ₑ ≤ ∫⁻ (y : ℝ) in Iic x, ‖deriv f' y‖ₑ y : ℝ ⊢ ‖deriv f y‖ₑ = ‖I (deriv f y)‖ₑ
simp [I]
no goals
43d9795b86d3ea3e
BitVec.and_eq_allOnes_iff
Mathlib/.lake/packages/lean4/src/lean/Init/Data/BitVec/Lemmas.lean
theorem and_eq_allOnes_iff {x y : BitVec w} : x &&& y = allOnes w ↔ x = allOnes w ∧ y = allOnes w
case mpr w : Nat x y : BitVec w h : x = allOnes w ∧ y = allOnes w ⊢ x &&& y = allOnes w
simp [h]
no goals
0e7a9a27b7e9b2f9
MeasureTheory.Filtration.filtrationOfSet_eq_natural
Mathlib/Probability/Process/Filtration.lean
theorem filtrationOfSet_eq_natural [MulZeroOneClass β] [Nontrivial β] {s : ι → Set Ω} (hsm : ∀ i, MeasurableSet[m] (s i)) : filtrationOfSet hsm = natural (fun i => (s i).indicator (fun _ => 1 : Ω → β)) fun i => stronglyMeasurable_one.indicator (hsm i)
case h.refine_2.intro.intro.intro.intro Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : TopologicalSpace β inst✝⁴ : MetrizableSpace β mβ : MeasurableSpace β inst✝³ : BorelSpace β inst✝² : Preorder ι inst✝¹ : MulZeroOneClass β inst✝ : Nontrivial β s : ι → Set Ω hsm : ∀ (i : ι), MeasurableSet (s i) i : ι t✝ : Set Ω n : ι ht : MeasurableSet t✝ t : Set Ω hn : n ≤ i u : Set β left✝ : MeasurableSet u hu' : ((s n).indicator fun x => 1) ⁻¹' u = t ⊢ MeasurableSet t
obtain heq | heq | heq | heq := Set.indicator_const_preimage (s n) u (1 : β)
case h.refine_2.intro.intro.intro.intro.inl Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : TopologicalSpace β inst✝⁴ : MetrizableSpace β mβ : MeasurableSpace β inst✝³ : BorelSpace β inst✝² : Preorder ι inst✝¹ : MulZeroOneClass β inst✝ : Nontrivial β s : ι → Set Ω hsm : ∀ (i : ι), MeasurableSet (s i) i : ι t✝ : Set Ω n : ι ht : MeasurableSet t✝ t : Set Ω hn : n ≤ i u : Set β left✝ : MeasurableSet u hu' : ((s n).indicator fun x => 1) ⁻¹' u = t heq : ((s n).indicator fun x => 1) ⁻¹' u = Set.univ ⊢ MeasurableSet t case h.refine_2.intro.intro.intro.intro.inr.inl Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : TopologicalSpace β inst✝⁴ : MetrizableSpace β mβ : MeasurableSpace β inst✝³ : BorelSpace β inst✝² : Preorder ι inst✝¹ : MulZeroOneClass β inst✝ : Nontrivial β s : ι → Set Ω hsm : ∀ (i : ι), MeasurableSet (s i) i : ι t✝ : Set Ω n : ι ht : MeasurableSet t✝ t : Set Ω hn : n ≤ i u : Set β left✝ : MeasurableSet u hu' : ((s n).indicator fun x => 1) ⁻¹' u = t heq : ((s n).indicator fun x => 1) ⁻¹' u = s n ⊢ MeasurableSet t case h.refine_2.intro.intro.intro.intro.inr.inr.inl Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : TopologicalSpace β inst✝⁴ : MetrizableSpace β mβ : MeasurableSpace β inst✝³ : BorelSpace β inst✝² : Preorder ι inst✝¹ : MulZeroOneClass β inst✝ : Nontrivial β s : ι → Set Ω hsm : ∀ (i : ι), MeasurableSet (s i) i : ι t✝ : Set Ω n : ι ht : MeasurableSet t✝ t : Set Ω hn : n ≤ i u : Set β left✝ : MeasurableSet u hu' : ((s n).indicator fun x => 1) ⁻¹' u = t heq : ((s n).indicator fun x => 1) ⁻¹' u = (s n)ᶜ ⊢ MeasurableSet t case h.refine_2.intro.intro.intro.intro.inr.inr.inr Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : TopologicalSpace β inst✝⁴ : MetrizableSpace β mβ : MeasurableSpace β inst✝³ : BorelSpace β inst✝² : Preorder ι inst✝¹ : MulZeroOneClass β inst✝ : Nontrivial β s : ι → Set Ω hsm : ∀ (i : ι), MeasurableSet (s i) i : ι t✝ : Set Ω n : ι ht : MeasurableSet t✝ t : Set Ω hn : n ≤ i u : Set β left✝ : MeasurableSet u hu' : ((s n).indicator fun x => 1) ⁻¹' u = t heq : ((s n).indicator fun x => 1) ⁻¹' u ∈ {∅} ⊢ MeasurableSet t
7ffbace60117795e
MvPFunctor.M.map_dest
Mathlib/Data/PFunctor/Multivariate/M.lean
theorem M.map_dest {α β : TypeVec n} (g : (α ::: P.M α) ⟹ (β ::: P.M β)) (x : P.M α) (h : ∀ x : P.M α, lastFun g x = (dropFun g <$$> x : P.M β)) : g <$$> M.dest P x = M.dest P (dropFun g <$$> x)
case e_a n : ℕ P : MvPFunctor.{u} (n + 1) α β : TypeVec.{u} n g : α ::: P.M α ⟹ β ::: P.M β x : P.M α h : ∀ (x : P.M α), lastFun g x = dropFun g <$$> x ⊢ lastFun g = lastFun (dropFun g ::: fun x => dropFun g <$$> x)
simp only [lastFun_appendFun]
case e_a n : ℕ P : MvPFunctor.{u} (n + 1) α β : TypeVec.{u} n g : α ::: P.M α ⟹ β ::: P.M β x : P.M α h : ∀ (x : P.M α), lastFun g x = dropFun g <$$> x ⊢ lastFun g = fun x => dropFun g <$$> x
3bd96d98f9faee82
Ordinal.CNF_foldr
Mathlib/SetTheory/Ordinal/CantorNormalForm.lean
theorem CNF_foldr (b o : Ordinal) : (CNF b o).foldr (fun p r ↦ b ^ p.1 * p.2 + r) 0 = o
case refine_2 b o✝ o : Ordinal.{u_1} ho : o ≠ 0 IH : foldr (fun p r => b ^ p.1 * p.2 + r) 0 (CNF b (o % b ^ log b o)) = o % b ^ log b o ⊢ foldr (fun p r => b ^ p.1 * p.2 + r) 0 (CNF b o) = o
rw [CNF_ne_zero ho, foldr_cons, IH, div_add_mod]
no goals
596aaa490422ccf7
Finsupp.sum_ite_self_eq
Mathlib/Algebra/BigOperators/Finsupp.lean
theorem sum_ite_self_eq [DecidableEq α] {N : Type*} [AddCommMonoid N] (f : α →₀ N) (a : α) : (f.sum fun x v => ite (a = x) v 0) = f a
α : Type u_1 inst✝¹ : DecidableEq α N : Type u_16 inst✝ : AddCommMonoid N f : α →₀ N a : α ⊢ (f.sum fun x v => if a = x then v else 0) = f a
classical convert f.sum_ite_eq a fun _ => id simp [ite_eq_right_iff.2 Eq.symm]
no goals
5c76290e980ef3f2
Ordinal.mem_closure_tfae
Mathlib/SetTheory/Ordinal/Topology.lean
theorem mem_closure_tfae (a : Ordinal.{u}) (s : Set Ordinal) : TFAE [a ∈ closure s, a ∈ closure (s ∩ Iic a), (s ∩ Iic a).Nonempty ∧ sSup (s ∩ Iic a) = a, ∃ t, t ⊆ s ∧ t.Nonempty ∧ BddAbove t ∧ sSup t = a, ∃ (o : Ordinal.{u}), o ≠ 0 ∧ ∃ (f : ∀ x < o, Ordinal), (∀ x hx, f x hx ∈ s) ∧ bsup.{u, u} o f = a, ∃ (ι : Type u), Nonempty ι ∧ ∃ f : ι → Ordinal, (∀ i, f i ∈ s) ∧ ⨆ i, f i = a]
case intro.intro.intro.intro.refine_2.refine_2 s t : Set Ordinal.{u} hts : t ⊆ s hne : t.Nonempty hbdd : BddAbove t tfae_1_to_2 : sSup t ∈ closure s → sSup t ∈ closure (s ∩ Iic (sSup t)) tfae_2_to_3 : sSup t ∈ closure (s ∩ Iic (sSup t)) → (s ∩ Iic (sSup t)).Nonempty ∧ sSup (s ∩ Iic (sSup t)) = sSup t tfae_3_to_4 : (s ∩ Iic (sSup t)).Nonempty ∧ sSup (s ∩ Iic (sSup t)) = sSup t → ∃ t_1 ⊆ s, t_1.Nonempty ∧ BddAbove t_1 ∧ sSup t_1 = sSup t hlub : IsLUB t (sSup t) y : Ordinal.{u} hyt : y ∈ t x : Ordinal.{u} hx : x ∈ t ⊢ x ≤ (succ (sSup t)).bsup fun x x_1 => if x ∈ t then x else y
refine (if_pos hx).symm.trans_le (le_bsup _ _ <| (hlub.1 hx).trans_lt (lt_succ _))
no goals
f361ec1995f661dc
Module.finitePresentation_of_ker
Mathlib/Algebra/Module/FinitePresentation.lean
lemma Module.finitePresentation_of_ker [Module.FinitePresentation R N] (l : M →ₗ[R] N) (hl : Function.Surjective l) [Module.FinitePresentation R (LinearMap.ker l)] : Module.FinitePresentation R M
case fg_top R : Type u_1 M : Type u_3 N : Type u_2 inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : AddCommGroup N inst✝² : Module R N inst✝¹ : FinitePresentation R N l : M →ₗ[R] N hl : Function.Surjective ⇑l inst✝ : FinitePresentation R ↥(LinearMap.ker l) s : Finset M hs : Submodule.span R ↑s = ⊤ π : ({ x // x ∈ s } →₀ R) →ₗ[R] M := linearCombination R Subtype.val H : Function.Surjective ⇑π ⊢ (LinearMap.ker (l ∘ₗ π)).FG
exact Module.FinitePresentation.fg_ker _ (hl.comp H)
no goals
888cd3f368652bf6
LinearMap.bound_of_sphere_bound
Mathlib/Analysis/NormedSpace/RCLike.lean
theorem LinearMap.bound_of_sphere_bound {r : ℝ} (r_pos : 0 < r) (c : ℝ) (f : E →ₗ[𝕜] 𝕜) (h : ∀ z ∈ sphere (0 : E) r, ‖f z‖ ≤ c) (z : E) : ‖f z‖ ≤ c / r * ‖z‖
𝕜 : Type u_1 inst✝² : RCLike 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E r : ℝ r_pos : 0 < r c : ℝ f : E →ₗ[𝕜] 𝕜 h : ∀ z ∈ sphere 0 r, ‖f z‖ ≤ c z : E z_zero : ¬z = 0 z₁ : E := (↑r * (↑‖z‖)⁻¹) • z hz₁ : z₁ = (↑r * (↑‖z‖)⁻¹) • z norm_f_z₁ : ‖f z₁‖ ≤ c r_ne_zero : ↑r ≠ 0 eq : f z = ↑‖z‖ / ↑r * f z₁ ⊢ 0 ≤ c * ‖z‖
exact mul_nonneg ((norm_nonneg _).trans norm_f_z₁) (norm_nonneg z)
no goals
7391d26c013b6c1e
CategoryTheory.presheafHom_isSheafFor
Mathlib/CategoryTheory/Sites/SheafHom.lean
lemma presheafHom_isSheafFor : Presieve.IsSheafFor (presheafHom F G) S.arrows
case hex C : Type u inst✝¹ : Category.{v, u} C A : Type u' inst✝ : Category.{v', u'} A F G : Cᵒᵖ ⥤ A X : C S : Sieve X hG : ⦃Y : C⦄ → (f : Y ⟶ X) → IsLimit (G.mapCone (Sieve.pullback f S).arrows.cocone.op) x : Presieve.FamilyOfElements (presheafHom F G) S.arrows hx : x.Compatible Y : C g : Y ⟶ X hg : S.arrows g ⊢ app hG x hx g = (x g hg).app (op (Over.mk (𝟙 Y)))
have H := app_cond hG x hx g (𝟙 _) (by simpa using hg)
case hex C : Type u inst✝¹ : Category.{v, u} C A : Type u' inst✝ : Category.{v', u'} A F G : Cᵒᵖ ⥤ A X : C S : Sieve X hG : ⦃Y : C⦄ → (f : Y ⟶ X) → IsLimit (G.mapCone (Sieve.pullback f S).arrows.cocone.op) x : Presieve.FamilyOfElements (presheafHom F G) S.arrows hx : x.Compatible Y : C g : Y ⟶ X hg : S.arrows g H : app hG x hx g ≫ G.map (𝟙 Y).op = F.map (𝟙 Y).op ≫ (x (𝟙 Y ≫ g) ⋯).app (op (Over.mk (𝟙 Y))) ⊢ app hG x hx g = (x g hg).app (op (Over.mk (𝟙 Y)))
03e610e11f4d0fc5
BoundedContinuousFunction.norm_integral_le_mul_norm
Mathlib/MeasureTheory/Integral/BoundedContinuousFunction.lean
lemma norm_integral_le_mul_norm [IsFiniteMeasure μ] (f : X →ᵇ E) : ‖∫ x, f x ∂μ‖ ≤ ENNReal.toReal (μ Set.univ) * ‖f‖
X : Type u_1 inst✝⁸ : MeasurableSpace X inst✝⁷ : TopologicalSpace X μ : Measure X E : Type u_2 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : OpensMeasurableSpace X inst✝⁴ : SecondCountableTopology E inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : NormedSpace ℝ E inst✝ : IsFiniteMeasure μ f : X →ᵇ E ⊢ Integrable (fun x => ‖f x‖) μ
exact (integrable_norm_iff f.continuous.measurable.aestronglyMeasurable).mpr (f.integrable μ)
no goals
d89709ec32a2079f
BitVec.toInt_allOnes
Mathlib/.lake/packages/lean4/src/lean/Init/Data/BitVec/Lemmas.lean
theorem toInt_allOnes : (allOnes w).toInt = if 0 < w then -1 else 0
case neg w : Nat h : ¬w = 0 ⊢ (allOnes w).toInt = if 0 < w then -1 else 0
have : 1 < 2 ^ w := by simp [h]
case neg w : Nat h : ¬w = 0 this : 1 < 2 ^ w ⊢ (allOnes w).toInt = if 0 < w then -1 else 0
f00205704d5f5dc2
Plausible.InjectiveFunction.List.applyId_zip_eq
Mathlib/Testing/Plausible/Functions.lean
theorem List.applyId_zip_eq [DecidableEq α] {xs ys : List α} (h₀ : List.Nodup xs) (h₁ : xs.length = ys.length) (x y : α) (i : ℕ) (h₂ : xs[i]? = some x) : List.applyId.{u} (xs.zip ys) x = y ↔ ys[i]? = some y
case cons.zero α : Type u inst✝ : DecidableEq α y x' : α xs ys : List α h₀ : (x' :: xs).Nodup h₁ : (x' :: xs).length = ys.length xs_ih : ∀ {ys : List α}, xs.Nodup → xs.length = ys.length → ∀ (i : ℕ), xs[i]? = some x' → (applyId (xs.zip ys) x' = y ↔ ys[i]? = some y) ⊢ applyId ((x' :: xs).zip ys) x' = y ↔ ys[0]? = some y
cases ys
case cons.zero.nil α : Type u inst✝ : DecidableEq α y x' : α xs : List α h₀ : (x' :: xs).Nodup xs_ih : ∀ {ys : List α}, xs.Nodup → xs.length = ys.length → ∀ (i : ℕ), xs[i]? = some x' → (applyId (xs.zip ys) x' = y ↔ ys[i]? = some y) h₁ : (x' :: xs).length = [].length ⊢ applyId ((x' :: xs).zip []) x' = y ↔ [][0]? = some y case cons.zero.cons α : Type u inst✝ : DecidableEq α y x' : α xs : List α h₀ : (x' :: xs).Nodup xs_ih : ∀ {ys : List α}, xs.Nodup → xs.length = ys.length → ∀ (i : ℕ), xs[i]? = some x' → (applyId (xs.zip ys) x' = y ↔ ys[i]? = some y) head✝ : α tail✝ : List α h₁ : (x' :: xs).length = (head✝ :: tail✝).length ⊢ applyId ((x' :: xs).zip (head✝ :: tail✝)) x' = y ↔ (head✝ :: tail✝)[0]? = some y
b43790ed7cfe4c9d
CategoryTheory.Functor.additive_of_full_essSurj_comp
Mathlib/CategoryTheory/Preadditive/AdditiveFunctor.lean
lemma additive_of_full_essSurj_comp [Full F] [EssSurj F] (G : D ⥤ E) [(F ⋙ G).Additive] : G.Additive where map_add {X Y f g}
case intro.intro C : Type u_1 D : Type u_2 E : Type u_3 inst✝⁹ : Category.{u_4, u_1} C inst✝⁸ : Category.{u_5, u_2} D inst✝⁷ : Category.{u_6, u_3} E inst✝⁶ : Preadditive C inst✝⁵ : Preadditive D inst✝⁴ : Preadditive E F : C ⥤ D inst✝³ : F.Additive inst✝² : F.Full inst✝¹ : F.EssSurj G : D ⥤ E inst✝ : (F ⋙ G).Additive X Y : D f g : X ⟶ Y f' : F.objPreimage X ⟶ F.objPreimage Y hf' : F.map f' = (F.objObjPreimageIso X).hom ≫ f ≫ (F.objObjPreimageIso Y).inv g' : F.objPreimage X ⟶ F.objPreimage Y hg' : F.map g' = (F.objObjPreimageIso X).hom ≫ g ≫ (F.objObjPreimageIso Y).inv ⊢ G.map (f + g) = G.map f + G.map g
simp only [← cancel_mono (G.map (F.objObjPreimageIso Y).inv), ← cancel_epi (G.map (F.objObjPreimageIso X).hom), Preadditive.add_comp, Preadditive.comp_add, ← Functor.map_comp]
case intro.intro C : Type u_1 D : Type u_2 E : Type u_3 inst✝⁹ : Category.{u_4, u_1} C inst✝⁸ : Category.{u_5, u_2} D inst✝⁷ : Category.{u_6, u_3} E inst✝⁶ : Preadditive C inst✝⁵ : Preadditive D inst✝⁴ : Preadditive E F : C ⥤ D inst✝³ : F.Additive inst✝² : F.Full inst✝¹ : F.EssSurj G : D ⥤ E inst✝ : (F ⋙ G).Additive X Y : D f g : X ⟶ Y f' : F.objPreimage X ⟶ F.objPreimage Y hf' : F.map f' = (F.objObjPreimageIso X).hom ≫ f ≫ (F.objObjPreimageIso Y).inv g' : F.objPreimage X ⟶ F.objPreimage Y hg' : F.map g' = (F.objObjPreimageIso X).hom ≫ g ≫ (F.objObjPreimageIso Y).inv ⊢ G.map ((F.objObjPreimageIso X).hom ≫ f ≫ (F.objObjPreimageIso Y).inv + (F.objObjPreimageIso X).hom ≫ g ≫ (F.objObjPreimageIso Y).inv) = G.map ((F.objObjPreimageIso X).hom ≫ f ≫ (F.objObjPreimageIso Y).inv) + G.map ((F.objObjPreimageIso X).hom ≫ g ≫ (F.objObjPreimageIso Y).inv)
7c8555e61c3aa8c9
SimplexCategory.eq_id_of_mono
Mathlib/AlgebraicTopology/SimplexCategory/Basic.lean
theorem eq_id_of_mono {x : SimplexCategory} (i : x ⟶ x) [Mono i] : i = 𝟙 _
case hf x : SimplexCategory i : x ⟶ x inst✝ : Mono i ⊢ Function.Bijective (Hom.toOrderHom i).toFun
dsimp
case hf x : SimplexCategory i : x ⟶ x inst✝ : Mono i ⊢ Function.Bijective ⇑(Hom.toOrderHom i)
5ceb9935050d299a
CategoryTheory.Subpresheaf.eq_top_iff_isIso
Mathlib/CategoryTheory/Subpresheaf/Basic.lean
theorem eq_top_iff_isIso : G = ⊤ ↔ IsIso G.ι
case mpr.obj.h.h C : Type u inst✝ : Category.{v, u} C F : Cᵒᵖ ⥤ Type w G : Subpresheaf F H : IsIso G.ι U : Cᵒᵖ x : F.obj U ⊢ (ConcreteCategory.hom (G.ι.app U)) ((ConcreteCategory.hom (inv (G.ι.app U))) x) ∈ G.obj U
exact ((inv (G.ι.app U)) x).2
no goals
59961e19256fb918
iteratedFDerivWithin_comp_of_eventually_mem
Mathlib/Analysis/Calculus/ContDiff/Basic.lean
theorem iteratedFDerivWithin_comp_of_eventually_mem {t : Set F} (hg : ContDiffWithinAt 𝕜 n g t (f x)) (hf : ContDiffWithinAt 𝕜 n f s x) (ht : UniqueDiffOn 𝕜 t) (hs : UniqueDiffOn 𝕜 s) (hxs : x ∈ s) (hst : ∀ᶠ y in 𝓝[s] x, f y ∈ t) {i : ℕ} (hi : i ≤ n) : iteratedFDerivWithin 𝕜 i (g ∘ f) s x = (ftaylorSeriesWithin 𝕜 g t (f x)).taylorComp (ftaylorSeriesWithin 𝕜 f s x) i
𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type uE inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type uF inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type uG inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace 𝕜 G s : Set E f : E → F g : F → G x : E n : WithTop ℕ∞ t : Set F hg : ContDiffWithinAt 𝕜 n g t (f x) hf : ContDiffWithinAt 𝕜 n f s x ht : UniqueDiffOn 𝕜 t hs : UniqueDiffOn 𝕜 s hxs : x ∈ s hst : ∀ᶠ (y : E) in 𝓝[s] x, f y ∈ t i : ℕ hi : ↑i ≤ n hxt : f x ∈ t hf_tendsto : Tendsto f (𝓝[s] x) (𝓝[t] f x) ⊢ ∃ u, x ∈ u ∧ IsOpen u ∧ HasFTaylorSeriesUpToOn (↑i) f (ftaylorSeriesWithin 𝕜 f s) (s ∩ u) ∧ HasFTaylorSeriesUpToOn (↑i) g (ftaylorSeriesWithin 𝕜 g t) (f '' (s ∩ u))
have H₁ : ∀ᶠ u in (𝓝[s] x).smallSets, HasFTaylorSeriesUpToOn i f (ftaylorSeriesWithin 𝕜 f s) u := hf.eventually_hasFTaylorSeriesUpToOn hs hxs hi
𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type uE inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type uF inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type uG inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace 𝕜 G s : Set E f : E → F g : F → G x : E n : WithTop ℕ∞ t : Set F hg : ContDiffWithinAt 𝕜 n g t (f x) hf : ContDiffWithinAt 𝕜 n f s x ht : UniqueDiffOn 𝕜 t hs : UniqueDiffOn 𝕜 s hxs : x ∈ s hst : ∀ᶠ (y : E) in 𝓝[s] x, f y ∈ t i : ℕ hi : ↑i ≤ n hxt : f x ∈ t hf_tendsto : Tendsto f (𝓝[s] x) (𝓝[t] f x) H₁ : ∀ᶠ (u : Set E) in (𝓝[s] x).smallSets, HasFTaylorSeriesUpToOn (↑i) f (ftaylorSeriesWithin 𝕜 f s) u ⊢ ∃ u, x ∈ u ∧ IsOpen u ∧ HasFTaylorSeriesUpToOn (↑i) f (ftaylorSeriesWithin 𝕜 f s) (s ∩ u) ∧ HasFTaylorSeriesUpToOn (↑i) g (ftaylorSeriesWithin 𝕜 g t) (f '' (s ∩ u))
0ff5459c06f40f96
OrderIso.isMax_apply
Mathlib/Order/Hom/Basic.lean
theorem OrderIso.isMax_apply {α β : Type*} [Preorder α] [Preorder β] (f : α ≃o β) {x : α} : IsMax (f x) ↔ IsMax x
α : Type u_6 β : Type u_7 inst✝¹ : Preorder α inst✝ : Preorder β f : α ≃o β x : α ⊢ IsMax x → IsMax (f x)
conv_lhs => rw [← f.symm_apply_apply x]
α : Type u_6 β : Type u_7 inst✝¹ : Preorder α inst✝ : Preorder β f : α ≃o β x : α ⊢ IsMax (f.symm (f x)) → IsMax (f x)
4ab86bbfbe5770b3
LinearPMap.mem_inverse_graph_snd_eq_zero
Mathlib/LinearAlgebra/LinearPMap.lean
theorem mem_inverse_graph_snd_eq_zero (x : F × E) (hv : x ∈ (graph f).map (LinearEquiv.prodComm R E F)) (hv' : x.fst = 0) : x.snd = 0
case intro.intro.intro.intro.refl R : Type u_1 inst✝⁴ : Ring R E : Type u_2 inst✝³ : AddCommGroup E inst✝² : Module R E F : Type u_3 inst✝¹ : AddCommGroup F inst✝ : Module R F f : E →ₗ.[R] F a : E b : F ha : a ∈ f.domain h1 : ↑f ⟨a, ⋯⟩ = 0 hv' : b = 0 hf : ⟨a, ha⟩ = 0 ⊢ a = 0
simp only [Submodule.mk_eq_zero] at hf
case intro.intro.intro.intro.refl R : Type u_1 inst✝⁴ : Ring R E : Type u_2 inst✝³ : AddCommGroup E inst✝² : Module R E F : Type u_3 inst✝¹ : AddCommGroup F inst✝ : Module R F f : E →ₗ.[R] F a : E b : F ha : a ∈ f.domain h1 : ↑f ⟨a, ⋯⟩ = 0 hv' : b = 0 hf : a = 0 ⊢ a = 0
ebcf3facfad50c42
Finset.prodMk_sup'_sup'
Mathlib/Data/Finset/Lattice/Prod.lean
/-- See also `Finset.sup'_prodMap`. -/ lemma prodMk_sup'_sup' (hs : s.Nonempty) (ht : t.Nonempty) (f : ι → α) (g : κ → β) : (sup' s hs f, sup' t ht g) = sup' (s ×ˢ t) (hs.product ht) (Prod.map f g) := eq_of_forall_ge_iff fun i ↦ by obtain ⟨a, ha⟩ := hs obtain ⟨b, hb⟩ := ht simp only [Prod.map, sup'_le_iff, mem_product, and_imp, Prod.forall, Prod.le_def] exact ⟨by aesop, fun h ↦ ⟨fun i hi ↦ (h _ _ hi hb).1, fun j hj ↦ (h _ _ ha hj).2⟩⟩
case intro.intro ι : Type u_7 κ : Type u_8 α : Type u_9 β : Type u_10 inst✝¹ : SemilatticeSup α inst✝ : SemilatticeSup β s : Finset ι t : Finset κ f : ι → α g : κ → β i : α × β a : ι ha : a ∈ s b : κ hb : b ∈ t ⊢ ((∀ b ∈ s, f b ≤ i.1) ∧ ∀ b ∈ t, g b ≤ i.2) ↔ ∀ (a : ι) (b : κ), a ∈ s → b ∈ t → f a ≤ i.1 ∧ g b ≤ i.2
exact ⟨by aesop, fun h ↦ ⟨fun i hi ↦ (h _ _ hi hb).1, fun j hj ↦ (h _ _ ha hj).2⟩⟩
no goals
0af939cf04ef6168
HomologicalComplex.extend.leftHomologyData.lift_d_comp_eq_zero_iff'
Mathlib/Algebra/Homology/Embedding/ExtendHomology.lean
/-- Auxiliary lemma for `lift_d_comp_eq_zero_iff`. -/ lemma lift_d_comp_eq_zero_iff' ⦃W : C⦄ (f' : K.X i ⟶ cone.pt) (hf' : f' ≫ cone.ι = K.d i j) (f'' : (K.extend e).X i' ⟶ cone.pt) (hf'' : f'' ≫ cone.ι ≫ (extendXIso K e hj').inv = (K.extend e).d i' j') (φ : cone.pt ⟶ W) : f' ≫ φ = 0 ↔ f'' ≫ φ = 0
ι : Type u_1 ι' : Type u_2 c : ComplexShape ι c' : ComplexShape ι' C : Type u_3 inst✝² : Category.{u_4, u_3} C inst✝¹ : HasZeroMorphisms C inst✝ : HasZeroObject C K : HomologicalComplex C c e : c.Embedding c' i j k : ι i' j' : ι' hj' : e.f j = j' hi : c.prev j = i hi' : c'.prev j' = i' cone : KernelFork (K.d j k) hcone : IsLimit cone W : C f' : K.X i ⟶ cone.pt hf' : f' ≫ Fork.ι cone = K.d i j f'' : (K.extend e).X i' ⟶ cone.pt hf'' : f'' ≫ Fork.ι cone ≫ (K.extendXIso e hj').inv = (K.extend e).d i' j' φ : cone.pt ⟶ W hij : c.Rel i j hi'' : e.f i = i' ⊢ (K.extendXIso e hi'').hom ≫ f' = f''
apply Fork.IsLimit.hom_ext hcone
ι : Type u_1 ι' : Type u_2 c : ComplexShape ι c' : ComplexShape ι' C : Type u_3 inst✝² : Category.{u_4, u_3} C inst✝¹ : HasZeroMorphisms C inst✝ : HasZeroObject C K : HomologicalComplex C c e : c.Embedding c' i j k : ι i' j' : ι' hj' : e.f j = j' hi : c.prev j = i hi' : c'.prev j' = i' cone : KernelFork (K.d j k) hcone : IsLimit cone W : C f' : K.X i ⟶ cone.pt hf' : f' ≫ Fork.ι cone = K.d i j f'' : (K.extend e).X i' ⟶ cone.pt hf'' : f'' ≫ Fork.ι cone ≫ (K.extendXIso e hj').inv = (K.extend e).d i' j' φ : cone.pt ⟶ W hij : c.Rel i j hi'' : e.f i = i' ⊢ ((K.extendXIso e hi'').hom ≫ f') ≫ Fork.ι cone = f'' ≫ Fork.ι cone
47e14c7240329723
PowerSeries.eq_zero_or_eq_zero_of_mul_eq_zero
Mathlib/RingTheory/PowerSeries/Basic.lean
theorem eq_zero_or_eq_zero_of_mul_eq_zero [NoZeroDivisors R] (φ ψ : R⟦X⟧) (h : φ * ψ = 0) : φ = 0 ∨ ψ = 0
R : Type u_1 inst✝¹ : Ring R inst✝ : NoZeroDivisors R φ ψ : R⟦X⟧ h : φ * ψ = 0 H : ¬φ = 0 ex : ∃ m, (coeff R m) φ ≠ 0 m : ℕ := Nat.find ex ⊢ ψ = 0
have hm₁ : coeff R m φ ≠ 0 := Nat.find_spec ex
R : Type u_1 inst✝¹ : Ring R inst✝ : NoZeroDivisors R φ ψ : R⟦X⟧ h : φ * ψ = 0 H : ¬φ = 0 ex : ∃ m, (coeff R m) φ ≠ 0 m : ℕ := Nat.find ex hm₁ : (coeff R m) φ ≠ 0 ⊢ ψ = 0
d0b45343dbc828b7
Complex.partialGamma_add_one
Mathlib/Analysis/SpecialFunctions/Gamma/Basic.lean
theorem partialGamma_add_one {s : ℂ} (hs : 0 < s.re) {X : ℝ} (hX : 0 ≤ X) : partialGamma (s + 1) X = s * partialGamma s X - (-X).exp * X ^ s
s : ℂ hs : 0 < s.re X : ℝ hX : 0 ≤ X F_der_I : ∀ x ∈ Ioo 0 X, HasDerivAt (fun x => ↑(rexp (-x)) * ↑x ^ s) (-(↑(rexp (-x)) * ↑x ^ s) + ↑(rexp (-x)) * (s * ↑x ^ (s - 1))) x cont : Continuous fun x => (ofReal ∘ fun y => rexp (-y)) x * ↑x ^ s der_ible : IntervalIntegrable (fun x => -(↑(rexp (-x)) * ↑x ^ s) + ↑(rexp (-x)) * (s * ↑x ^ (s - 1))) volume 0 X int_eval : (∫ (x : ℝ) in 0 ..X, ↑(rexp (-x)) * ↑x ^ s) + -∫ (x : ℝ) in 0 ..X, ↑(rexp (-x)) * (s * ↑x ^ (s - 1)) = -((ofReal ∘ fun y => rexp (-y)) X * ↑X ^ s - (ofReal ∘ fun y => rexp (-y)) 0 * ↑0 ^ s) this : (fun x => ↑(rexp (-x)) * (s * ↑x ^ (s - 1))) = fun x => s * ↑(rexp (-x)) * ↑x ^ (s - 1) t : ∫ (x : ℝ) in 0 ..X, s * (↑(rexp (-x)) * ↑x ^ (s - 1)) = s * ∫ (x : ℝ) in 0 ..X, ↑(rexp (-x)) * ↑x ^ (s - 1) ⊢ (∫ (x : ℝ) in 0 ..X, s * ↑(rexp (-x)) * ↑x ^ (s - 1)) - (ofReal ∘ fun y => rexp (-y)) X * ↑X ^ s = (∫ (x : ℝ) in 0 ..X, s * (↑(rexp (-x)) * ↑x ^ (s - 1))) - ↑(rexp (-X)) * ↑X ^ s
congr 2
case e_a.e_f s : ℂ hs : 0 < s.re X : ℝ hX : 0 ≤ X F_der_I : ∀ x ∈ Ioo 0 X, HasDerivAt (fun x => ↑(rexp (-x)) * ↑x ^ s) (-(↑(rexp (-x)) * ↑x ^ s) + ↑(rexp (-x)) * (s * ↑x ^ (s - 1))) x cont : Continuous fun x => (ofReal ∘ fun y => rexp (-y)) x * ↑x ^ s der_ible : IntervalIntegrable (fun x => -(↑(rexp (-x)) * ↑x ^ s) + ↑(rexp (-x)) * (s * ↑x ^ (s - 1))) volume 0 X int_eval : (∫ (x : ℝ) in 0 ..X, ↑(rexp (-x)) * ↑x ^ s) + -∫ (x : ℝ) in 0 ..X, ↑(rexp (-x)) * (s * ↑x ^ (s - 1)) = -((ofReal ∘ fun y => rexp (-y)) X * ↑X ^ s - (ofReal ∘ fun y => rexp (-y)) 0 * ↑0 ^ s) this : (fun x => ↑(rexp (-x)) * (s * ↑x ^ (s - 1))) = fun x => s * ↑(rexp (-x)) * ↑x ^ (s - 1) t : ∫ (x : ℝ) in 0 ..X, s * (↑(rexp (-x)) * ↑x ^ (s - 1)) = s * ∫ (x : ℝ) in 0 ..X, ↑(rexp (-x)) * ↑x ^ (s - 1) ⊢ (fun x => s * ↑(rexp (-x)) * ↑x ^ (s - 1)) = fun x => s * (↑(rexp (-x)) * ↑x ^ (s - 1))
64c3078f05c8af7b
Fintype.card_embedding_eq
Mathlib/Data/Fintype/CardEmbedding.lean
theorem card_embedding_eq {α β : Type*} [Fintype α] [Fintype β] [emb : Fintype (α ↪ β)] : ‖α ↪ β‖ = ‖β‖.descFactorial ‖α‖
case refine_3 β : Type u_2 inst✝ : Fintype β γ : Type u_1 h : Fintype γ ih : ‖γ ↪ β‖ = ‖β‖.descFactorial ‖γ‖ ⊢ ‖Option γ ↪ β‖ = ‖β‖.descFactorial ‖Option γ‖
rw [card_option, Nat.descFactorial_succ, card_congr (Embedding.optionEmbeddingEquiv γ β), card_sigma, ← ih]
case refine_3 β : Type u_2 inst✝ : Fintype β γ : Type u_1 h : Fintype γ ih : ‖γ ↪ β‖ = ‖β‖.descFactorial ‖γ‖ ⊢ ∑ i : γ ↪ β, ‖↑(Set.range ⇑i)ᶜ‖ = (‖β‖ - ‖γ‖) * ‖γ ↪ β‖
52dcb38ad480110e
Ordinal.infinite_pigeonhole
Mathlib/SetTheory/Cardinal/Cofinality.lean
theorem infinite_pigeonhole {β α : Type u} (f : β → α) (h₁ : ℵ₀ ≤ #β) (h₂ : #α < (#β).ord.cof) : ∃ a : α, #(f ⁻¹' {a}) = #β
case intro β α : Type u f : β → α h₁ : ℵ₀ ≤ #β h₂ : #α < (#β).ord.cof x : α h : #β ≤ #↑(f ⁻¹' {x}) ⊢ ∃ a, #↑(f ⁻¹' {a}) = #β
refine ⟨x, h.antisymm' ?_⟩
case intro β α : Type u f : β → α h₁ : ℵ₀ ≤ #β h₂ : #α < (#β).ord.cof x : α h : #β ≤ #↑(f ⁻¹' {x}) ⊢ #↑(f ⁻¹' {x}) ≤ #β
8fa0d4d26a8c4da8
MvPolynomial.degree_degLexDegree
Mathlib/RingTheory/MvPolynomial/MonomialOrder/DegLex.lean
theorem degree_degLexDegree : (degLex.degree f).degree = f.totalDegree
case neg.a σ : Type u_1 inst✝² : LinearOrder σ R : Type u_2 inst✝¹ : CommSemiring R inst✝ : WellFoundedGT σ f : MvPolynomial σ R hf : ¬f = 0 ⊢ (f.support.sup fun s => s.sum fun x e => e) ≤ (degLex.degree f).degree
apply Finset.sup_le
case neg.a.a σ : Type u_1 inst✝² : LinearOrder σ R : Type u_2 inst✝¹ : CommSemiring R inst✝ : WellFoundedGT σ f : MvPolynomial σ R hf : ¬f = 0 ⊢ ∀ b ∈ f.support, (b.sum fun x e => e) ≤ (degLex.degree f).degree
8a62b59720df2b16
LieSubmodule.comap_bracket_eq
Mathlib/Algebra/Lie/IdealOperations.lean
theorem comap_bracket_eq [LieModule R L M] (hf₁ : f.ker = ⊥) (hf₂ : N₂ ≤ f.range) : comap f ⁅I, N₂⁆ = ⁅I, comap f N₂⁆
R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M inst✝⁶ : LieRingModule L M inst✝⁵ : AddCommGroup M₂ inst✝⁴ : Module R M₂ inst✝³ : LieRingModule L M₂ N₂ : LieSubmodule R L M₂ f : M →ₗ⁅R,L⁆ M₂ inst✝² : LieAlgebra R L inst✝¹ : LieModule R L M₂ I : LieIdeal R L inst✝ : LieModule R L M hf₁ : f.ker = ⊥ hf₂ : N₂ ≤ f.range ⊢ comap f ⁅I, N₂⁆ = ⁅I, comap f N₂⁆
conv_lhs => rw [← map_comap_eq N₂ f hf₂]
R : Type u L : Type v M : Type w M₂ : Type w₁ inst✝¹⁰ : CommRing R inst✝⁹ : LieRing L inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M inst✝⁶ : LieRingModule L M inst✝⁵ : AddCommGroup M₂ inst✝⁴ : Module R M₂ inst✝³ : LieRingModule L M₂ N₂ : LieSubmodule R L M₂ f : M →ₗ⁅R,L⁆ M₂ inst✝² : LieAlgebra R L inst✝¹ : LieModule R L M₂ I : LieIdeal R L inst✝ : LieModule R L M hf₁ : f.ker = ⊥ hf₂ : N₂ ≤ f.range ⊢ comap f ⁅I, map f (comap f N₂)⁆ = ⁅I, comap f N₂⁆
e8e8a110167c4b1f
List.prev_reverse_eq_next
Mathlib/Data/List/Cycle.lean
theorem prev_reverse_eq_next (l : List α) (h : Nodup l) (x : α) (hx : x ∈ l) : prev l.reverse x (mem_reverse.mpr hx) = next l x hx
case intro.intro α : Type u_1 inst✝ : DecidableEq α l : List α h : l.Nodup k : ℕ hk : k < l.length hx : l[k] ∈ l lpos : 0 < l.length key : l.length - 1 - k < l.length ⊢ l.reverse.prev l[k] ⋯ = l.next l[k] hx
rw [← getElem_pmap l.next (fun _ h => h) (by simpa using hk)]
case intro.intro α : Type u_1 inst✝ : DecidableEq α l : List α h : l.Nodup k : ℕ hk : k < l.length hx : l[k] ∈ l lpos : 0 < l.length key : l.length - 1 - k < l.length ⊢ l.reverse.prev l[k] ⋯ = (pmap l.next l ⋯)[k]
223a9f0719f3b161
ENNReal.mul_rpow_eq_ite
Mathlib/Analysis/SpecialFunctions/Pow/NNReal.lean
theorem mul_rpow_eq_ite (x y : ℝ≥0∞) (z : ℝ) : (x * y) ^ z = if (x = 0 ∧ y = ⊤ ∨ x = ⊤ ∧ y = 0) ∧ z < 0 then ⊤ else x ^ z * y ^ z
case inr x y : ℝ≥0∞ z : ℝ hz : z < 0 ∨ 0 < z ⊢ (x * y) ^ z = if (x = 0 ∧ y = ⊤ ∨ x = ⊤ ∧ y = 0) ∧ z < 0 then ⊤ else x ^ z * y ^ z
wlog hxy : x ≤ y
case inr.inr x y : ℝ≥0∞ z : ℝ hz : z < 0 ∨ 0 < z this : ∀ (x y : ℝ≥0∞) (z : ℝ), z < 0 ∨ 0 < z → x ≤ y → (x * y) ^ z = if (x = 0 ∧ y = ⊤ ∨ x = ⊤ ∧ y = 0) ∧ z < 0 then ⊤ else x ^ z * y ^ z hxy : ¬x ≤ y ⊢ (x * y) ^ z = if (x = 0 ∧ y = ⊤ ∨ x = ⊤ ∧ y = 0) ∧ z < 0 then ⊤ else x ^ z * y ^ z x y : ℝ≥0∞ z : ℝ hz : z < 0 ∨ 0 < z hxy : x ≤ y ⊢ (x * y) ^ z = if (x = 0 ∧ y = ⊤ ∨ x = ⊤ ∧ y = 0) ∧ z < 0 then ⊤ else x ^ z * y ^ z
6f5669cb0b4bcc9c
Finset.sum_pow_of_commute
Mathlib/Data/Nat/Choose/Multinomial.lean
theorem sum_pow_of_commute (x : α → R) (s : Finset α) (hc : (s : Set α).Pairwise (Commute on x)) : ∀ n, s.sum x ^ n = ∑ k : s.sym n, k.1.1.multinomial * (k.1.1.map <| x).noncommProd (Multiset.map_set_pairwise <| hc.mono <| mem_sym_iff.1 k.2)
case insert.e_a α : Type u_1 R : Type u_2 inst✝¹ : DecidableEq α inst✝ : Semiring R x : α → R a : α s : Finset α ha : a ∉ s hc : (↑(insert a s)).Pairwise (Commute on x) n : ℕ ih : ∀ (n : ℕ), s.sum x ^ n = ∑ k : { x // x ∈ s.sym n }, ↑(↑↑k).multinomial * (Multiset.map x ↑↑k).noncommProd ⋯ m : { x // x ∈ (insert a s).sym n } ⊢ x a ^ Multiset.count a ↑↑m * ↑(Multiset.filter (fun x => a ≠ x) ↑↑m).multinomial * (Multiset.map x (Multiset.filter (fun a_1 => ¬a = a_1) ↑↑m)).noncommProd ⋯ = x a ^ ↑((symInsertEquiv ha) m).fst * ↑(↑↑((symInsertEquiv ha) m).snd).multinomial * (Multiset.map x ↑↑((symInsertEquiv ha) m).snd).noncommProd ⋯
rfl
no goals
602c53a5a4f37e3f
Real.binEntropy_two_inv_add
Mathlib/Analysis/SpecialFunctions/BinaryEntropy.lean
/-- `binEntropy` is symmetric about 1/2. -/ lemma binEntropy_two_inv_add (p : ℝ) : binEntropy (2⁻¹ + p) = binEntropy (2⁻¹ - p)
p : ℝ ⊢ binEntropy (2⁻¹ + p) = binEntropy (2⁻¹ - p)
rw [← binEntropy_one_sub]
p : ℝ ⊢ binEntropy (1 - (2⁻¹ + p)) = binEntropy (2⁻¹ - p)
2d3b63cd00ded4af
InfiniteGalois.krullTopology_mem_nhds_one_iff_of_isGalois
Mathlib/FieldTheory/Galois/Profinite.lean
lemma krullTopology_mem_nhds_one_iff_of_isGalois [IsGalois k K] (A : Set (K ≃ₐ[k] K)) : A ∈ 𝓝 1 ↔ ∃ (L : FiniteGaloisIntermediateField k K), (L.fixingSubgroup : Set _) ⊆ A
k : Type u_3 K : Type u_4 inst✝³ : Field k inst✝² : Field K inst✝¹ : Algebra k K inst✝ : IsGalois k K A : Set (K ≃ₐ[k] K) ⊢ (∃ E, FiniteDimensional k ↥E ∧ Normal k ↥E ∧ ↑E.fixingSubgroup ⊆ A) ↔ ∃ L, ↑L.fixingSubgroup ⊆ A
exact ⟨fun ⟨L, _, hL, hsub⟩ ↦ ⟨{ toIntermediateField := L, isGalois := ⟨⟩ }, hsub⟩, fun ⟨L, hL⟩ ↦ ⟨L, inferInstance, inferInstance, hL⟩⟩
no goals
816baa46f1df36d8
StrictMonoOn.Iic_union_Ici
Mathlib/Order/Monotone/Union.lean
theorem StrictMonoOn.Iic_union_Ici (h₁ : StrictMonoOn f (Iic a)) (h₂ : StrictMonoOn f (Ici a)) : StrictMono f
α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : Preorder β a : α f : α → β h₁ : StrictMonoOn f (Iic a) h₂ : StrictMonoOn f (Ici a) ⊢ StrictMono f
rw [← strictMonoOn_univ, ← @Iic_union_Ici _ _ a]
α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : Preorder β a : α f : α → β h₁ : StrictMonoOn f (Iic a) h₂ : StrictMonoOn f (Ici a) ⊢ StrictMonoOn f (Iic a ∪ Ici a)
2e41e2c2f854a0da
BoundedContinuousFunction.norm_lt_iff_of_compact
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
theorem norm_lt_iff_of_compact [CompactSpace α] {f : α →ᵇ β} {M : ℝ} (M0 : 0 < M) : ‖f‖ < M ↔ ∀ x, ‖f x‖ < M
α : Type u β : Type v inst✝² : TopologicalSpace α inst✝¹ : SeminormedAddCommGroup β inst✝ : CompactSpace α f : α →ᵇ β M : ℝ M0 : 0 < M ⊢ ‖f‖ < M ↔ ∀ (x : α), ‖f x‖ < M
simp_rw [norm_def, ← dist_zero_right]
α : Type u β : Type v inst✝² : TopologicalSpace α inst✝¹ : SeminormedAddCommGroup β inst✝ : CompactSpace α f : α →ᵇ β M : ℝ M0 : 0 < M ⊢ dist f 0 < M ↔ ∀ (x : α), dist (f x) 0 < M
4eb6bff83c919205
Dynamics.netMaxcard_empty
Mathlib/Dynamics/TopologicalEntropy/NetEntropy.lean
@[simp] lemma netMaxcard_empty {T : X → X} {U : Set (X × X)} {n : ℕ} : netMaxcard T ∅ U n = 0
X : Type u_1 T : X → X U : Set (X × X) n : ℕ s : Finset X s_net : s = ∅ ⊢ ↑s.card = ⊥
rw [s_net, Finset.card_empty, CharP.cast_eq_zero, bot_eq_zero']
no goals
4c397c9c537e4b8f
Algebra.adjoin_induction'
Mathlib/RingTheory/Adjoin/Basic.lean
theorem adjoin_induction' {p : adjoin R s → Prop} (mem : ∀ (x) (h : x ∈ s), p ⟨x, subset_adjoin h⟩) (algebraMap : ∀ r, p (algebraMap R _ r)) (add : ∀ x y, p x → p y → p (x + y)) (mul : ∀ x y, p x → p y → p (x * y)) (x : adjoin R s) : p x := Subtype.recOn x fun x hx => by induction hx using adjoin_induction with | mem _ h => exact mem _ h | algebraMap _ => exact algebraMap _ | mul _ _ _ _ h₁ h₂ => exact mul _ _ h₁ h₂ | add _ _ _ _ h₁ h₂ => exact add _ _ h₁ h₂
case add R : Type uR A : Type uA inst✝² : CommSemiring R inst✝¹ : Semiring A inst✝ : Algebra R A s : Set A p : ↥(adjoin R s) → Prop mem : ∀ (x : A) (h : x ∈ s), p ⟨x, ⋯⟩ algebraMap : ∀ (r : R), p ((_root_.algebraMap R ↥(adjoin R s)) r) add : ∀ (x y : ↥(adjoin R s)), p x → p y → p (x + y) mul : ∀ (x y : ↥(adjoin R s)), p x → p y → p (x * y) x✝¹ : ↥(adjoin R s) x x✝ y✝ : A hx✝ : x✝ ∈ adjoin R s hy✝ : y✝ ∈ adjoin R s h₁ : p ⟨x✝, hx✝⟩ h₂ : p ⟨y✝, hy✝⟩ ⊢ p ⟨x✝ + y✝, ⋯⟩
exact add _ _ h₁ h₂
no goals
adbccfa244789925
Polynomial.SplittingFieldAux.splits
Mathlib/FieldTheory/SplittingField/Construction.lean
theorem splits (n : ℕ) : ∀ {K : Type u} [Field K], ∀ (f : K[X]) (_hfn : f.natDegree = n), Splits (algebraMap K <| SplittingFieldAux n f) f := Nat.recOn (motive := fun n => ∀ {K : Type u} [Field K], ∀ (f : K[X]) (_hfn : f.natDegree = n), Splits (algebraMap K <| SplittingFieldAux n f) f) n (fun {_} _ _ hf => splits_of_degree_le_one _ (le_trans degree_le_natDegree <| hf.symm ▸ WithBot.coe_le_coe.2 zero_le_one)) fun n ih {K} _ f hf => by rw [← splits_id_iff_splits, algebraMap_succ, ← map_map, splits_id_iff_splits, ← X_sub_C_mul_removeFactor f fun h => by rw [h] at hf; cases hf] exact splits_mul _ (splits_X_sub_C _) (ih _ (natDegree_removeFactor' hf))
n✝ : ℕ K✝ : Type u inst✝ : Field K✝ n : ℕ ih : (fun n => ∀ {K : Type u} [inst : Field K] (f : K[X]), f.natDegree = n → Splits (algebraMap K (SplittingFieldAux n f)) f) n K : Type u x✝ : Field K f : K[X] hf : f.natDegree = n.succ ⊢ Splits (algebraMap K (SplittingFieldAux n.succ f)) f
rw [← splits_id_iff_splits, algebraMap_succ, ← map_map, splits_id_iff_splits, ← X_sub_C_mul_removeFactor f fun h => by rw [h] at hf; cases hf]
n✝ : ℕ K✝ : Type u inst✝ : Field K✝ n : ℕ ih : (fun n => ∀ {K : Type u} [inst : Field K] (f : K[X]), f.natDegree = n → Splits (algebraMap K (SplittingFieldAux n f)) f) n K : Type u x✝ : Field K f : K[X] hf : f.natDegree = n.succ ⊢ Splits (algebraMap (AdjoinRoot f.factor) (SplittingFieldAux n f.removeFactor)) ((X - C (AdjoinRoot.root f.factor)) * f.removeFactor)
7582f06879320b9f
CategoryTheory.NonPreadditiveAbelian.σ_comp
Mathlib/CategoryTheory/Abelian/NonPreadditive.lean
theorem σ_comp {X Y : C} (f : X ⟶ Y) : σ ≫ f = Limits.prod.map f f ≫ σ
C : Type u inst✝¹ : Category.{v, u} C inst✝ : NonPreadditiveAbelian C X Y : C f : X ⟶ Y ⊢ diag X ≫ prod.map f f ≫ σ = 0
rw [prod.diag_map_assoc, diag_σ, comp_zero]
no goals
b7d15c6a05369a0f
Stream'.nats_eq
Mathlib/Data/Stream/Init.lean
theorem nats_eq : nats = cons 0 (map succ nats)
⊢ nats = 0 :: map succ nats
apply Stream'.ext
case a ⊢ ∀ (n : ℕ), nats.get n = (0 :: map succ nats).get n
e0d9653b559896b4
Int.add_mul_ediv_right
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Int/DivModLemmas.lean
theorem add_mul_ediv_right (a b : Int) {c : Int} (H : c ≠ 0) : (a + b * c) / c = a / c + b := suffices ∀ {{a b c : Int}}, 0 < c → (a + b * c).ediv c = a.ediv c + b from match Int.lt_trichotomy c 0 with | Or.inl hlt => by rw [← Int.neg_inj, ← Int.ediv_neg, Int.neg_add, ← Int.ediv_neg, ← Int.neg_mul_neg] exact this (Int.neg_pos_of_neg hlt) | Or.inr (Or.inl HEq) => absurd HEq H | Or.inr (Or.inr hgt) => this hgt suffices ∀ {k n : Nat} {a : Int}, (a + n * k.succ).ediv k.succ = a.ediv k.succ + n from fun a b c H => match c, eq_succ_of_zero_lt H, b with | _, ⟨_, rfl⟩, ofNat _ => this | _, ⟨k, rfl⟩, -[n+1] => show (a - n.succ * k.succ).ediv k.succ = a.ediv k.succ - n.succ by rw [← Int.add_sub_cancel (ediv ..), ← this, Int.sub_add_cancel] fun {k n} => @fun | ofNat _ => congrArg ofNat <| Nat.add_mul_div_right _ _ k.succ_pos | -[m+1] => by show ((n * k.succ : Nat) - m.succ : Int).ediv k.succ = n - (m / k.succ + 1 : Nat) by_cases h : m < n * k.succ · rw [← Int.ofNat_sub h, ← Int.ofNat_sub ((Nat.div_lt_iff_lt_mul k.succ_pos).2 h)] apply congrArg ofNat rw [Nat.mul_comm, Nat.mul_sub_div]; rwa [Nat.mul_comm] · have h := Nat.not_lt.1 h have H {a b : Nat} (h : a ≤ b) : (a : Int) + -((b : Int) + 1) = -[b - a +1]
case neg a b c : Int H✝ : c ≠ 0 k n m : Nat h✝ : ¬m < n * k.succ h : n * k.succ ≤ m H : ∀ {a b : Nat}, a ≤ b → ↑a + -(↑b + 1) = -[b - a+1] ⊢ (↑(n * k.succ) - ↑m.succ).ediv ↑k.succ = ↑n - ↑(m / k.succ + 1)
show ediv (↑(n * succ k) + -((m : Int) + 1)) (succ k) = n + -(↑(m / succ k) + 1 : Int)
case neg a b c : Int H✝ : c ≠ 0 k n m : Nat h✝ : ¬m < n * k.succ h : n * k.succ ≤ m H : ∀ {a b : Nat}, a ≤ b → ↑a + -(↑b + 1) = -[b - a+1] ⊢ (↑(n * k.succ) + -(↑m + 1)).ediv ↑k.succ = ↑n + -(↑(m / k.succ) + 1)
b62a45e15f46c8a0
SzemerediRegularity.le_sum_distinctPairs_edgeDensity_sq
Mathlib/Combinatorics/SimpleGraph/Regularity/Increment.lean
lemma le_sum_distinctPairs_edgeDensity_sq (x : {i // i ∈ P.parts.offDiag}) (hε₁ : ε ≤ 1) (hPα : #P.parts * 16 ^ #P.parts ≤ card α) (hPε : ↑100 ≤ ↑4 ^ #P.parts * ε ^ 5) : (G.edgeDensity x.1.1 x.1.2 : ℝ) ^ 2 + ((if G.IsUniform ε x.1.1 x.1.2 then 0 else ε ^ 4 / 3) - ε ^ 5 / 25) ≤ (∑ i ∈ distinctPairs hP G ε x, G.edgeDensity i.1 i.2 ^ 2 : ℝ) / 16 ^ #P.parts
α : Type u_1 inst✝³ : Fintype α inst✝² : DecidableEq α P : Finpartition univ hP : P.IsEquipartition G : SimpleGraph α inst✝¹ : DecidableRel G.Adj ε : ℝ inst✝ : Nonempty α x : { i // i ∈ P.parts.offDiag } hε₁ : ε ≤ 1 hPα : #P.parts * 16 ^ #P.parts ≤ Fintype.card α hPε : 100 ≤ 4 ^ #P.parts * ε ^ 5 ⊢ ↑(G.edgeDensity (↑x).1 (↑x).2) ^ 2 + ((if G.IsUniform ε (↑x).1 (↑x).2 then 0 else ε ^ 4 / 3) - ε ^ 5 / 25) ≤ (∑ i ∈ SzemerediRegularity.distinctPairs hP G ε x, ↑(G.edgeDensity i.1 i.2) ^ 2) / 16 ^ #P.parts
rw [distinctPairs, ← add_sub_assoc, add_sub_right_comm]
α : Type u_1 inst✝³ : Fintype α inst✝² : DecidableEq α P : Finpartition univ hP : P.IsEquipartition G : SimpleGraph α inst✝¹ : DecidableRel G.Adj ε : ℝ inst✝ : Nonempty α x : { i // i ∈ P.parts.offDiag } hε₁ : ε ≤ 1 hPα : #P.parts * 16 ^ #P.parts ≤ Fintype.card α hPε : 100 ≤ 4 ^ #P.parts * ε ^ 5 ⊢ (↑(G.edgeDensity (↑x).1 (↑x).2) ^ 2 - ε ^ 5 / 25 + if G.IsUniform ε (↑x).1 (↑x).2 then 0 else ε ^ 4 / 3) ≤ (∑ i ∈ (chunk hP G ε ⋯).parts ×ˢ (chunk hP G ε ⋯).parts, ↑(G.edgeDensity i.1 i.2) ^ 2) / 16 ^ #P.parts
287f013480af0bef
CategoryTheory.PreGaloisCategory.has_non_trivial_subobject_of_not_isConnected_of_not_initial
Mathlib/CategoryTheory/Galois/Basic.lean
/-- An object that is neither initial or connected has a non-trivial subobject. -/ lemma has_non_trivial_subobject_of_not_isConnected_of_not_initial (X : C) (hc : ¬ IsConnected X) (hi : IsInitial X → False) : ∃ (Y : C) (v : Y ⟶ X), (IsInitial Y → False) ∧ Mono v ∧ (¬ IsIso v)
C : Type u₁ inst✝ : Category.{u₂, u₁} C X : C hi : IsInitial X → False hc : ∀ (Y : C) (v : Y ⟶ X), (IsInitial Y → False) → Mono v → IsIso v ⊢ IsConnected X
exact ⟨hi, fun Y i hm hni ↦ hc Y i hni hm⟩
no goals
9fcd084466ecbce4
Zsqrtd.nonneg_mul
Mathlib/NumberTheory/Zsqrtd/Basic.lean
theorem nonneg_mul {a b : ℤ√d} (ha : Nonneg a) (hb : Nonneg b) : Nonneg (a * b) := match a, b, nonneg_cases ha, nonneg_cases hb, ha, hb with | _, _, ⟨_, _, Or.inl rfl⟩, ⟨_, _, Or.inl rfl⟩, _, _ => trivial | _, _, ⟨x, y, Or.inl rfl⟩, ⟨z, w, Or.inr <| Or.inr rfl⟩, _, hb => nonneg_mul_lem hb | _, _, ⟨x, y, Or.inl rfl⟩, ⟨z, w, Or.inr <| Or.inl rfl⟩, _, hb => nonneg_mul_lem hb | _, _, ⟨x, y, Or.inr <| Or.inr rfl⟩, ⟨z, w, Or.inl rfl⟩, ha, _ => by rw [mul_comm]; exact nonneg_mul_lem ha | _, _, ⟨x, y, Or.inr <| Or.inl rfl⟩, ⟨z, w, Or.inl rfl⟩, ha, _ => by rw [mul_comm]; exact nonneg_mul_lem ha | _, _, ⟨x, y, Or.inr <| Or.inr rfl⟩, ⟨z, w, Or.inr <| Or.inr rfl⟩, ha, hb => by rw [calc (⟨-x, y⟩ * ⟨-z, w⟩ : ℤ√d) = ⟨_, _⟩ := rfl _ = ⟨x * z + d * y * w, -(x * w + y * z)⟩
d : ℕ a b : ℤ√↑d ha✝ : a.Nonneg hb✝ : b.Nonneg x y z w : ℕ ha : { re := -↑x, im := ↑y }.Nonneg hb : { re := ↑z, im := -↑w }.Nonneg ⊢ { re := { re := -↑x, im := ↑y }.re * { re := ↑z, im := -↑w }.re + ↑d * { re := -↑x, im := ↑y }.im * { re := ↑z, im := -↑w }.im, im := { re := -↑x, im := ↑y }.re * { re := ↑z, im := -↑w }.im + { re := -↑x, im := ↑y }.im * { re := ↑z, im := -↑w }.re } = { re := -(↑x * ↑z + ↑d * ↑y * ↑w), im := ↑x * ↑w + ↑y * ↑z }
simp [add_comm]
no goals
46d597e584ea62c6
Int.natCast_mul
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Int/Lemmas.lean
theorem natCast_mul (a b : Nat) : ((a * b : Nat) : Int) = (a : Int) * (b : Int)
a b : Nat ⊢ ↑(a * b) = ↑a * ↑b
simp
no goals
7ed6e7945c7dcf89
Complex.Gammaℝ_mul_Gammaℝ_add_one
Mathlib/Analysis/SpecialFunctions/Gamma/Deligne.lean
/-- Reformulation of the doubling formula in terms of `Gammaℝ`. -/ lemma Gammaℝ_mul_Gammaℝ_add_one (s : ℂ) : Gammaℝ s * Gammaℝ (s + 1) = Gammaℂ s
s : ℂ ⊢ ↑π ^ (-s / 2) * ↑π ^ (-(s + 1) / 2) * (Gamma (s / 2) * Gamma (s / 2 + 1 / 2)) = 2 ^ (1 - s) * (↑π ^ (-1 / 2 - s) * ↑π ^ (1 / 2)) * Gamma s
rw [← cpow_add _ _ (ofReal_ne_zero.mpr pi_ne_zero), Complex.Gamma_mul_Gamma_add_half, sqrt_eq_rpow, ofReal_cpow pi_pos.le, ofReal_div, ofReal_one, ofReal_ofNat]
s : ℂ ⊢ ↑π ^ (-s / 2 + -(s + 1) / 2) * (Gamma (2 * (s / 2)) * 2 ^ (1 - 2 * (s / 2)) * ↑π ^ (1 / 2)) = 2 ^ (1 - s) * (↑π ^ (-1 / 2 - s) * ↑π ^ (1 / 2)) * Gamma s
fd9946926629d4d4
SetTheory.PGame.Domineering.moveRight_smaller
Mathlib/SetTheory/Game/Domineering.lean
theorem moveRight_smaller {b : Board} {m : ℤ × ℤ} (h : m ∈ right b) : Finset.card (moveRight b m) / 2 < Finset.card b / 2
b : Board m : ℤ × ℤ h : m ∈ right b ⊢ Finset.card (moveRight b m) / 2 < Finset.card b / 2
simp [← moveRight_card h, lt_add_one]
no goals
c067a6d73c618920
CategoryTheory.isSeparating_iff_epi
Mathlib/CategoryTheory/Generator/Basic.lean
theorem isSeparating_iff_epi (𝒢 : Set C) [∀ A : C, HasCoproduct fun f : ΣG : 𝒢, (G : C) ⟶ A => (f.1 : C)] : IsSeparating 𝒢 ↔ ∀ A : C, Epi (Sigma.desc (@Sigma.snd 𝒢 fun G => (G : C) ⟶ A))
case refine_2 C : Type u₁ inst✝¹ : Category.{v₁, u₁} C 𝒢 : Set C inst✝ : ∀ (A : C), HasCoproduct fun f => ↑f.fst h : ∀ (A : C), Epi (Sigma.desc Sigma.snd) X Y : C f g : X ⟶ Y hh : ∀ G ∈ 𝒢, ∀ (h : G ⟶ X), h ≫ f = h ≫ g this : Epi (Sigma.desc Sigma.snd) j : Discrete ((G : ↑𝒢) × (↑G ⟶ X)) ⊢ colimit.ι (Discrete.functor fun b => ↑b.fst) j ≫ Sigma.desc Sigma.snd ≫ f = colimit.ι (Discrete.functor fun b => ↑b.fst) j ≫ Sigma.desc Sigma.snd ≫ g
simpa using hh j.as.1.1 j.as.1.2 j.as.2
no goals
8ce658f474840320
PrimeMultiset.coePNat_nat
Mathlib/Data/PNat/Factors.lean
theorem coePNat_nat (v : PrimeMultiset) : ((v : Multiset ℕ+) : Multiset ℕ) = (v : Multiset ℕ)
v : PrimeMultiset ⊢ Multiset.map Subtype.val (Multiset.map Coe.coe v) = Multiset.map Subtype.val v
rw [Multiset.map_map]
v : PrimeMultiset ⊢ Multiset.map (Subtype.val ∘ Coe.coe) v = Multiset.map Subtype.val v
8d06f49f08abee13
OreLocalization.smul'_char
Mathlib/GroupTheory/OreLocalization/Basic.lean
theorem smul'_char (r₁ : R) (r₂ : X) (s₁ s₂ : S) (u : S) (v : R) (huv : u * r₁ = v * s₂) : OreLocalization.smul' r₁ s₁ r₂ s₂ = v • r₂ /ₒ (u * s₁)
R : Type u_1 inst✝² : Monoid R S : Submonoid R inst✝¹ : OreSet S X : Type u_2 inst✝ : MulAction R X r₁ : R r₂ : X s₁ s₂ u : ↥S v : R huv : ↑u * r₁ = v * ↑s₂ v₀ : R := oreNum r₁ s₂ u₀ : ↥S := oreDenom r₁ s₂ h₀ : ↑u₀ * r₁ = v₀ * ↑s₂ r₃ : R s₃ : ↥S h₃ : ↑s₃ * ↑u₀ = r₃ * ↑u ⊢ r₃ * v * ↑s₂ = r₃ * (↑u * r₁)
rw [mul_assoc, ← huv]
no goals
158523f845373f5e
Submodule.iSup_map_single
Mathlib/LinearAlgebra/Pi.lean
theorem iSup_map_single [DecidableEq ι] [Finite ι] : ⨆ i, map (LinearMap.single R φ i : φ i →ₗ[R] (i : ι) → φ i) (p i) = pi Set.univ p
case intro R : Type u ι : Type x inst✝⁴ : Semiring R φ : ι → Type u_1 inst✝³ : (i : ι) → AddCommMonoid (φ i) inst✝² : (i : ι) → Module R (φ i) p : (i : ι) → Submodule R (φ i) inst✝¹ : DecidableEq ι inst✝ : Finite ι val✝ : Fintype ι ⊢ ⨆ i, map (single R φ i) (p i) = pi Set.univ p
refine (iSup_le fun i => ?_).antisymm ?_
case intro.refine_1 R : Type u ι : Type x inst✝⁴ : Semiring R φ : ι → Type u_1 inst✝³ : (i : ι) → AddCommMonoid (φ i) inst✝² : (i : ι) → Module R (φ i) p : (i : ι) → Submodule R (φ i) inst✝¹ : DecidableEq ι inst✝ : Finite ι val✝ : Fintype ι i : ι ⊢ map (single R φ i) (p i) ≤ pi Set.univ p case intro.refine_2 R : Type u ι : Type x inst✝⁴ : Semiring R φ : ι → Type u_1 inst✝³ : (i : ι) → AddCommMonoid (φ i) inst✝² : (i : ι) → Module R (φ i) p : (i : ι) → Submodule R (φ i) inst✝¹ : DecidableEq ι inst✝ : Finite ι val✝ : Fintype ι ⊢ pi Set.univ p ≤ ⨆ i, map (single R φ i) (p i)
635e11935f20cbf9
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.derivedLitsInvariant_confirmRupHint
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/LRAT/Internal/Formula/RupAddResult.lean
theorem derivedLitsInvariant_confirmRupHint {n : Nat} (f : DefaultFormula n) (f_assignments_size : f.assignments.size = n) (rupHints : Array Nat) (i : Fin rupHints.size) (acc : Array Assignment × CNF.Clause (PosFin n) × Bool × Bool) (ih : ∃ hsize : acc.1.size = n, DerivedLitsInvariant f f_assignments_size acc.1 hsize acc.2.1) : let rupHint_res := (confirmRupHint f.clauses) acc rupHints[i] ∃ hsize : rupHint_res.1.size = n, DerivedLitsInvariant f f_assignments_size rupHint_res.1 hsize rupHint_res.2.1
n : Nat f : DefaultFormula n f_assignments_size : f.assignments.size = n rupHints : Array Nat i : Fin rupHints.size acc : Array Assignment × CNF.Clause (PosFin n) × Bool × Bool hsize : acc.fst.size = n ih : f.DerivedLitsInvariant f_assignments_size acc.fst hsize acc.snd.fst hsize' : (confirmRupHint f.clauses acc rupHints[i]).fst.size = n h✝ : ¬(acc.2.2.snd || acc.2.2.fst) = true c : DefaultClause n rupHint_clause_eq_c : f.clauses[rupHints[↑i]]? = some (some c) l : Literal (PosFin n) ⊢ ReduceResult.reducedToUnit l = ReduceResult.encounteredBoth ∨ ReduceResult.reducedToUnit l = ReduceResult.reducedToEmpty ∨ (∃ l_1, ReduceResult.reducedToUnit l = ReduceResult.reducedToUnit l_1) ∨ ReduceResult.reducedToUnit l = ReduceResult.reducedToNonunit
exact (Or.inr ∘ Or.inr ∘ Or.inl ∘ Exists.intro l) rfl
no goals
0f20fdb04006be12
Topology.IsEmbedding.completelyNormalSpace
Mathlib/Topology/Separation/Regular.lean
theorem Topology.IsEmbedding.completelyNormalSpace [TopologicalSpace Y] [CompletelyNormalSpace Y] {e : X → Y} (he : IsEmbedding e) : CompletelyNormalSpace X
case refine_2 X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : CompletelyNormalSpace Y e : X → Y he : IsEmbedding e s t : Set X hd₁ : Disjoint (closure s) t hd₂ : Disjoint s (closure t) ⊢ Disjoint (e '' s) (closure (e '' t))
rwa [← subset_compl_iff_disjoint_right, image_subset_iff, preimage_compl, ← he.closure_eq_preimage_closure_image, subset_compl_iff_disjoint_right]
no goals
f98c51ef2e25fae3
LinearMap.IsSymmetric.hasEigenvector_eigenvectorBasis
Mathlib/Analysis/InnerProductSpace/Spectrum.lean
theorem hasEigenvector_eigenvectorBasis (i : Fin n) : HasEigenvector T (hT.eigenvalues hn i) (hT.eigenvectorBasis hn i)
𝕜 : Type u_1 inst✝³ : RCLike 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace 𝕜 E T : E →ₗ[𝕜] E inst✝ : FiniteDimensional 𝕜 E hT : T.IsSymmetric n : ℕ hn : Module.finrank 𝕜 E = n i : Fin n v : E := (hT.eigenvectorBasis hn) i ⊢ HasEigenvector T (↑(hT.eigenvalues hn i)) ((hT.eigenvectorBasis hn) i)
let μ : 𝕜 := (hT.direct_sum_isInternal.subordinateOrthonormalBasisIndex hn i hT.orthogonalFamily_eigenspaces').val
𝕜 : Type u_1 inst✝³ : RCLike 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace 𝕜 E T : E →ₗ[𝕜] E inst✝ : FiniteDimensional 𝕜 E hT : T.IsSymmetric n : ℕ hn : Module.finrank 𝕜 E = n i : Fin n v : E := (hT.eigenvectorBasis hn) i μ : 𝕜 := ↑T (DirectSum.IsInternal.subordinateOrthonormalBasisIndex hn ⋯ i ⋯) ⊢ HasEigenvector T (↑(hT.eigenvalues hn i)) ((hT.eigenvectorBasis hn) i)
3fdf2eae1da3fdea
InitialSeg.isMin_apply_iff
Mathlib/Order/InitialSeg.lean
theorem isMin_apply_iff [PartialOrder α] (f : α ≤i β) : IsMin (f a) ↔ IsMin a
α : Type u_1 β : Type u_2 inst✝¹ : PartialOrder β a : α inst✝ : PartialOrder α f : (fun x1 x2 => x1 < x2) ≼i fun x1 x2 => x1 < x2 h : IsMin a b : β hb : b ≤ f a ⊢ f a ≤ b
obtain ⟨x, rfl⟩ := f.mem_range_of_le hb
case intro α : Type u_1 β : Type u_2 inst✝¹ : PartialOrder β a : α inst✝ : PartialOrder α f : (fun x1 x2 => x1 < x2) ≼i fun x1 x2 => x1 < x2 h : IsMin a x : α hb : f x ≤ f a ⊢ f a ≤ f x
9b5efa0ad03b3af6
LinearMap.ofIsCompl_eq
Mathlib/LinearAlgebra/Projection.lean
theorem ofIsCompl_eq (h : IsCompl p q) {φ : p →ₗ[R] F} {ψ : q →ₗ[R] F} {χ : E →ₗ[R] F} (hφ : ∀ u, φ u = χ u) (hψ : ∀ u, ψ u = χ u) : ofIsCompl h φ ψ = χ
case h.intro.intro.intro R : Type u_1 inst✝⁴ : Ring R E : Type u_2 inst✝³ : AddCommGroup E inst✝² : Module R E F : Type u_3 inst✝¹ : AddCommGroup F inst✝ : Module R F p q : Submodule R E h : IsCompl p q φ : ↥p →ₗ[R] F ψ : ↥q →ₗ[R] F χ : E →ₗ[R] F hφ : ∀ (u : ↥p), φ u = χ ↑u hψ : ∀ (u : ↥q), ψ u = χ ↑u w✝¹ : ↥p w✝ : ↥q right✝ : ∀ (r : ↥p) (s : ↥q), ↑r + ↑s = ↑w✝¹ + ↑w✝ → r = w✝¹ ∧ s = w✝ ⊢ (ofIsCompl h φ ψ) (↑w✝¹ + ↑w✝) = χ (↑w✝¹ + ↑w✝)
simp [ofIsCompl, hφ, hψ]
no goals
635b36cc788f370b
ContinuousSMul.of_basis_zero
Mathlib/Topology/Algebra/FilterBasis.lean
theorem _root_.ContinuousSMul.of_basis_zero {ι : Type*} [IsTopologicalRing R] [TopologicalSpace M] [IsTopologicalAddGroup M] {p : ι → Prop} {b : ι → Set M} (h : HasBasis (𝓝 0) p b) (hsmul : ∀ {i}, p i → ∃ V ∈ 𝓝 (0 : R), ∃ j, p j ∧ V • b j ⊆ b i) (hsmul_left : ∀ (x₀ : R) {i}, p i → ∃ j, p j ∧ MapsTo (x₀ • ·) (b j) (b i)) (hsmul_right : ∀ (m₀ : M) {i}, p i → ∀ᶠ x in 𝓝 (0 : R), x • m₀ ∈ b i) : ContinuousSMul R M
case hmul.intro.intro.intro.intro R : Type u_1 M : Type u_2 inst✝⁶ : CommRing R inst✝⁵ : TopologicalSpace R inst✝⁴ : AddCommGroup M inst✝³ : Module R M ι : Type u_3 inst✝² : IsTopologicalRing R inst✝¹ : TopologicalSpace M inst✝ : IsTopologicalAddGroup M p : ι → Prop b : ι → Set M h : (𝓝 0).HasBasis p b hsmul : ∀ {i : ι}, p i → ∃ V ∈ 𝓝 0, ∃ j, p j ∧ V • b j ⊆ b i hsmul_left : ∀ (x₀ : R) {i : ι}, p i → ∃ j, p j ∧ MapsTo (fun x => x₀ • x) (b j) (b i) hsmul_right : ∀ (m₀ : M) {i : ι}, p i → ∀ᶠ (x : R) in 𝓝 0, x • m₀ ∈ b i i : ι hi : p i V : Set R V_in : V ∈ 𝓝 0 j : ι hj : p j hVj : V • b j ⊆ b i ⊢ V ×ˢ b j ⊆ {x | (fun x => x.1 • x.2 ∈ b i) x}
rintro ⟨v, w⟩ ⟨v_in : v ∈ V, w_in : w ∈ b j⟩
case hmul.intro.intro.intro.intro.mk.intro R : Type u_1 M : Type u_2 inst✝⁶ : CommRing R inst✝⁵ : TopologicalSpace R inst✝⁴ : AddCommGroup M inst✝³ : Module R M ι : Type u_3 inst✝² : IsTopologicalRing R inst✝¹ : TopologicalSpace M inst✝ : IsTopologicalAddGroup M p : ι → Prop b : ι → Set M h : (𝓝 0).HasBasis p b hsmul : ∀ {i : ι}, p i → ∃ V ∈ 𝓝 0, ∃ j, p j ∧ V • b j ⊆ b i hsmul_left : ∀ (x₀ : R) {i : ι}, p i → ∃ j, p j ∧ MapsTo (fun x => x₀ • x) (b j) (b i) hsmul_right : ∀ (m₀ : M) {i : ι}, p i → ∀ᶠ (x : R) in 𝓝 0, x • m₀ ∈ b i i : ι hi : p i V : Set R V_in : V ∈ 𝓝 0 j : ι hj : p j hVj : V • b j ⊆ b i v : R w : M v_in : v ∈ V w_in : w ∈ b j ⊢ (v, w) ∈ {x | (fun x => x.1 • x.2 ∈ b i) x}
4f90af5932a68739
EReal.induction₂
Mathlib/Data/Real/EReal.lean
theorem induction₂ {P : EReal → EReal → Prop} (top_top : P ⊤ ⊤) (top_pos : ∀ x : ℝ, 0 < x → P ⊤ x) (top_zero : P ⊤ 0) (top_neg : ∀ x : ℝ, x < 0 → P ⊤ x) (top_bot : P ⊤ ⊥) (pos_top : ∀ x : ℝ, 0 < x → P x ⊤) (pos_bot : ∀ x : ℝ, 0 < x → P x ⊥) (zero_top : P 0 ⊤) (coe_coe : ∀ x y : ℝ, P x y) (zero_bot : P 0 ⊥) (neg_top : ∀ x : ℝ, x < 0 → P x ⊤) (neg_bot : ∀ x : ℝ, x < 0 → P x ⊥) (bot_top : P ⊥ ⊤) (bot_pos : ∀ x : ℝ, 0 < x → P ⊥ x) (bot_zero : P ⊥ 0) (bot_neg : ∀ x : ℝ, x < 0 → P ⊥ x) (bot_bot : P ⊥ ⊥) : ∀ x y, P x y | ⊥, ⊥ => bot_bot | ⊥, (y : ℝ) => by rcases lt_trichotomy y 0 with (hy | rfl | hy) exacts [bot_neg y hy, bot_zero, bot_pos y hy] | ⊥, ⊤ => bot_top | (x : ℝ), ⊥ => by rcases lt_trichotomy x 0 with (hx | rfl | hx) exacts [neg_bot x hx, zero_bot, pos_bot x hx] | (x : ℝ), (y : ℝ) => coe_coe _ _ | (x : ℝ), ⊤ => by rcases lt_trichotomy x 0 with (hx | rfl | hx) exacts [neg_top x hx, zero_top, pos_top x hx] | ⊤, ⊥ => top_bot | ⊤, (y : ℝ) => by rcases lt_trichotomy y 0 with (hy | rfl | hy) exacts [top_neg y hy, top_zero, top_pos y hy] | ⊤, ⊤ => top_top
case inl P : EReal → EReal → Prop top_top : P ⊤ ⊤ top_pos : ∀ (x : ℝ), 0 < x → P ⊤ ↑x top_zero : P ⊤ 0 top_neg : ∀ x < 0, P ⊤ ↑x top_bot : P ⊤ ⊥ pos_top : ∀ (x : ℝ), 0 < x → P ↑x ⊤ pos_bot : ∀ (x : ℝ), 0 < x → P ↑x ⊥ zero_top : P 0 ⊤ coe_coe : ∀ (x y : ℝ), P ↑x ↑y zero_bot : P 0 ⊥ neg_top : ∀ x < 0, P ↑x ⊤ neg_bot : ∀ x < 0, P ↑x ⊥ bot_top : P ⊥ ⊤ bot_pos : ∀ (x : ℝ), 0 < x → P ⊥ ↑x bot_zero : P ⊥ 0 bot_neg : ∀ x < 0, P ⊥ ↑x bot_bot : P ⊥ ⊥ x : ℝ hx : x < 0 ⊢ P ↑x ⊤ case inr.inl P : EReal → EReal → Prop top_top : P ⊤ ⊤ top_pos : ∀ (x : ℝ), 0 < x → P ⊤ ↑x top_zero : P ⊤ 0 top_neg : ∀ x < 0, P ⊤ ↑x top_bot : P ⊤ ⊥ pos_top : ∀ (x : ℝ), 0 < x → P ↑x ⊤ pos_bot : ∀ (x : ℝ), 0 < x → P ↑x ⊥ zero_top : P 0 ⊤ coe_coe : ∀ (x y : ℝ), P ↑x ↑y zero_bot : P 0 ⊥ neg_top : ∀ x < 0, P ↑x ⊤ neg_bot : ∀ x < 0, P ↑x ⊥ bot_top : P ⊥ ⊤ bot_pos : ∀ (x : ℝ), 0 < x → P ⊥ ↑x bot_zero : P ⊥ 0 bot_neg : ∀ x < 0, P ⊥ ↑x bot_bot : P ⊥ ⊥ ⊢ P ↑0 ⊤ case inr.inr P : EReal → EReal → Prop top_top : P ⊤ ⊤ top_pos : ∀ (x : ℝ), 0 < x → P ⊤ ↑x top_zero : P ⊤ 0 top_neg : ∀ x < 0, P ⊤ ↑x top_bot : P ⊤ ⊥ pos_top : ∀ (x : ℝ), 0 < x → P ↑x ⊤ pos_bot : ∀ (x : ℝ), 0 < x → P ↑x ⊥ zero_top : P 0 ⊤ coe_coe : ∀ (x y : ℝ), P ↑x ↑y zero_bot : P 0 ⊥ neg_top : ∀ x < 0, P ↑x ⊤ neg_bot : ∀ x < 0, P ↑x ⊥ bot_top : P ⊥ ⊤ bot_pos : ∀ (x : ℝ), 0 < x → P ⊥ ↑x bot_zero : P ⊥ 0 bot_neg : ∀ x < 0, P ⊥ ↑x bot_bot : P ⊥ ⊥ x : ℝ hx : 0 < x ⊢ P ↑x ⊤
exacts [neg_top x hx, zero_top, pos_top x hx]
no goals
32d20d4f0c0a2e49
Polynomial.monomial_add_erase
Mathlib/Algebra/Polynomial/Basic.lean
theorem monomial_add_erase (p : R[X]) (n : ℕ) : monomial n (coeff p n) + p.erase n = p := toFinsupp_injective <| by rcases p with ⟨⟩ rw [toFinsupp_add, toFinsupp_monomial, toFinsupp_erase, coeff] exact Finsupp.single_add_erase _ _
R : Type u inst✝ : Semiring R p : R[X] n : ℕ ⊢ ((monomial n) (p.coeff n) + erase n p).toFinsupp = p.toFinsupp
rcases p with ⟨⟩
case ofFinsupp R : Type u inst✝ : Semiring R n : ℕ toFinsupp✝ : R[ℕ] ⊢ ((monomial n) ({ toFinsupp := toFinsupp✝ }.coeff n) + erase n { toFinsupp := toFinsupp✝ }).toFinsupp = { toFinsupp := toFinsupp✝ }.toFinsupp
89ce8c69cb49a811
Std.Sat.AIG.RefVec.zip_decl_eq
Mathlib/.lake/packages/lean4/src/lean/Std/Sat/AIG/RefVecOperator/Zip.lean
theorem zip_decl_eq {aig : AIG α} (target : ZipTarget aig len) : ∀ idx (h1 : idx < aig.decls.size) (h2), (zip aig target).1.decls[idx]'h2 = aig.decls[idx]'h1
α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α len : Nat aig : AIG α target : ZipTarget aig len ⊢ ∀ (idx : Nat) (h1 : idx < aig.decls.size) (h2 : idx < (zip aig target).aig.decls.size), (zip aig target).aig.decls[idx] = aig.decls[idx]
intros
α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α len : Nat aig : AIG α target : ZipTarget aig len idx✝ : Nat h1✝ : idx✝ < aig.decls.size h2✝ : idx✝ < (zip aig target).aig.decls.size ⊢ (zip aig target).aig.decls[idx✝] = aig.decls[idx✝]
8244d107cdd1419b
Ideal.finprod_heightOneSpectrum_factorization
Mathlib/RingTheory/DedekindDomain/Factorization.lean
theorem finprod_heightOneSpectrum_factorization {I : Ideal R} (hI : I ≠ 0) : ∏ᶠ v : HeightOneSpectrum R, v.maxPowDividing I = I
case h R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDedekindDomain R I : Ideal R hI : I ≠ 0 ⊢ ∀ (p : Associates (Ideal R)), Irreducible p → p.count (Associates.mk (∏ᶠ (v : HeightOneSpectrum R), v.maxPowDividing I)).factors = p.count (Associates.mk I).factors
intro v hv
case h R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDedekindDomain R I : Ideal R hI : I ≠ 0 v : Associates (Ideal R) hv : Irreducible v ⊢ v.count (Associates.mk (∏ᶠ (v : HeightOneSpectrum R), v.maxPowDividing I)).factors = v.count (Associates.mk I).factors
b3b84ace84306993
IntermediateField.adjoin_le_subfield
Mathlib/FieldTheory/IntermediateField/Adjoin/Defs.lean
theorem adjoin_le_subfield {K : Subfield E} (HF : Set.range (algebraMap F E) ⊆ K) (HS : S ⊆ K) : (adjoin F S).toSubfield ≤ K
F : Type u_1 inst✝² : Field F E : Type u_2 inst✝¹ : Field E inst✝ : Algebra F E S : Set E K : Subfield E HF : Set.range ⇑(algebraMap F E) ⊆ ↑K HS : S ⊆ ↑K ⊢ (adjoin F S).toSubfield ≤ K
apply Subfield.closure_le.mpr
F : Type u_1 inst✝² : Field F E : Type u_2 inst✝¹ : Field E inst✝ : Algebra F E S : Set E K : Subfield E HF : Set.range ⇑(algebraMap F E) ⊆ ↑K HS : S ⊆ ↑K ⊢ Set.range ⇑(algebraMap F E) ∪ S ⊆ ↑K
22def3c7240358f7
CategoryTheory.PreGaloisCategory.nhds_one_has_basis_stabilizers
Mathlib/CategoryTheory/Galois/Topology.lean
/-- The stabilizers of points in the fibers of Galois objects form a neighbourhood basis of the identity in `Aut F`. -/ lemma nhds_one_has_basis_stabilizers : (nhds (1 : Aut F)).HasBasis (fun _ ↦ True) (fun X : PointedGaloisObject F ↦ MulAction.stabilizer (Aut F) X.pt) where mem_iff' S
C : Type u₁ inst✝² : Category.{u₂, u₁} C F : C ⥤ FintypeCat inst✝¹ : GaloisCategory C inst✝ : FiberFunctor F S : Set (Aut F) ⊢ (∃ t ⊆ S, IsOpen t ∧ 1 ∈ t) ↔ ∃ i, True ∧ ↑(MulAction.stabilizer (Aut F) i.pt) ⊆ S
refine ⟨?_, ?_⟩
case refine_1 C : Type u₁ inst✝² : Category.{u₂, u₁} C F : C ⥤ FintypeCat inst✝¹ : GaloisCategory C inst✝ : FiberFunctor F S : Set (Aut F) ⊢ (∃ t ⊆ S, IsOpen t ∧ 1 ∈ t) → ∃ i, True ∧ ↑(MulAction.stabilizer (Aut F) i.pt) ⊆ S case refine_2 C : Type u₁ inst✝² : Category.{u₂, u₁} C F : C ⥤ FintypeCat inst✝¹ : GaloisCategory C inst✝ : FiberFunctor F S : Set (Aut F) ⊢ (∃ i, True ∧ ↑(MulAction.stabilizer (Aut F) i.pt) ⊆ S) → ∃ t ⊆ S, IsOpen t ∧ 1 ∈ t
420621663a2a4989
AnalyticAt.preimage_of_nhdsNE
Mathlib/Analysis/Analytic/IsolatedZeros.lean
theorem AnalyticAt.preimage_of_nhdsNE {x : 𝕜} {f : 𝕜 → E} {s : Set E} (hfx : AnalyticAt 𝕜 f x) (h₂f : ¬EventuallyConst f (𝓝 x)) (hs : s ∈ 𝓝[≠] f x) : f ⁻¹' s ∈ 𝓝[≠] x
case h 𝕜 : Type u_1 inst✝² : NontriviallyNormedField 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E x : 𝕜 f : 𝕜 → E s : Set E hfx : AnalyticAt 𝕜 f x hs : s ∈ 𝓝[≠] f x this : ∀ᶠ (z : 𝕜) in 𝓝 x, f z ∈ insert (f x) s h : ¬f ⁻¹' s ∈ 𝓝[≠] x z : 𝕜 h₁z : f z ∈ s → False h₂z : f z ∈ insert (f x) s ⊢ f z = f x
rw [Set.mem_insert_iff] at h₂z
case h 𝕜 : Type u_1 inst✝² : NontriviallyNormedField 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E x : 𝕜 f : 𝕜 → E s : Set E hfx : AnalyticAt 𝕜 f x hs : s ∈ 𝓝[≠] f x this : ∀ᶠ (z : 𝕜) in 𝓝 x, f z ∈ insert (f x) s h : ¬f ⁻¹' s ∈ 𝓝[≠] x z : 𝕜 h₁z : f z ∈ s → False h₂z : f z = f x ∨ f z ∈ s ⊢ f z = f x
d911f70f139eb823
MeasureTheory.isProbabilityMeasure_map
Mathlib/MeasureTheory/Measure/Typeclasses.lean
theorem isProbabilityMeasure_map {f : α → β} (hf : AEMeasurable f μ) : IsProbabilityMeasure (map f μ) := ⟨by simp [map_apply_of_aemeasurable, hf]⟩
α : Type u_1 β : Type u_2 m0 : MeasurableSpace α inst✝¹ : MeasurableSpace β μ : Measure α inst✝ : IsProbabilityMeasure μ f : α → β hf : AEMeasurable f μ ⊢ (Measure.map f μ) univ = 1
simp [map_apply_of_aemeasurable, hf]
no goals
95b2589a4bebd7a6
MeasureTheory.OuterMeasure.IsMetric.borel_le_caratheodory
Mathlib/MeasureTheory/Measure/Hausdorff.lean
theorem borel_le_caratheodory (hm : IsMetric μ) : borel X ≤ μ.caratheodory
X : Type u_2 inst✝ : EMetricSpace X μ : OuterMeasure X hm : μ.IsMetric t : Set X ht : t ∈ {s | IsClosed s} s : Set X S : ℕ → Set X := fun n => {x | x ∈ s ∧ (↑n)⁻¹ ≤ infEdist x t} Ssep : ∀ (n : ℕ), Metric.AreSeparated (S n) t Ssep' : ∀ (n : ℕ), Metric.AreSeparated (S n) (s ∩ t) S_sub : ∀ (n : ℕ), S n ⊆ s \ t hSs : ∀ (n : ℕ), μ (s ∩ t) + μ (S n) ≤ μ s iUnion_S : ⋃ n, S n = s \ t htop : ¬μ (s \ t) = ⊤ r n i j : ℕ hj : i < j ⊢ (↑(2 * j + r))⁻¹ < (↑(2 * i + 1 + r))⁻¹
rw [ENNReal.inv_lt_inv, Nat.cast_lt]
X : Type u_2 inst✝ : EMetricSpace X μ : OuterMeasure X hm : μ.IsMetric t : Set X ht : t ∈ {s | IsClosed s} s : Set X S : ℕ → Set X := fun n => {x | x ∈ s ∧ (↑n)⁻¹ ≤ infEdist x t} Ssep : ∀ (n : ℕ), Metric.AreSeparated (S n) t Ssep' : ∀ (n : ℕ), Metric.AreSeparated (S n) (s ∩ t) S_sub : ∀ (n : ℕ), S n ⊆ s \ t hSs : ∀ (n : ℕ), μ (s ∩ t) + μ (S n) ≤ μ s iUnion_S : ⋃ n, S n = s \ t htop : ¬μ (s \ t) = ⊤ r n i j : ℕ hj : i < j ⊢ 2 * i + 1 + r < 2 * j + r
603b48ab3190787f
CategoryTheory.GrothendieckTopology.Plus.res_mk_eq_mk_pullback
Mathlib/CategoryTheory/Sites/ConcreteSheafification.lean
theorem res_mk_eq_mk_pullback {Y X : C} {P : Cᵒᵖ ⥤ D} {S : J.Cover X} (x : Meq P S) (f : Y ⟶ X) : (J.plusObj P).map f.op (mk x) = mk (x.pullback f)
case h C : Type u inst✝⁵ : Category.{v, u} C J : GrothendieckTopology C D : Type w inst✝⁴ : Category.{max v u, w} D FD : D → D → Type u_1 CD : D → Type (max v u) inst✝³ : (X Y : D) → FunLike (FD X Y) (CD X) (CD Y) instCC : ConcreteCategory D FD inst✝² : PreservesLimits (forget D) inst✝¹ : ∀ (X : C), HasColimitsOfShape (J.Cover X)ᵒᵖ D inst✝ : ∀ (P : Cᵒᵖ ⥤ D) (X : C) (S : J.Cover X), HasMultiequalizer (S.index P) Y X : C P : Cᵒᵖ ⥤ D S : J.Cover X x : Meq P S f : Y ⟶ X ⊢ (ConcreteCategory.hom ((J.diagramPullback P f).app (op S))) ((Meq.equiv P S).symm x) = (Meq.equiv P (S.pullback f)).symm (x.pullback f)
apply (Meq.equiv P _).injective
case h.a C : Type u inst✝⁵ : Category.{v, u} C J : GrothendieckTopology C D : Type w inst✝⁴ : Category.{max v u, w} D FD : D → D → Type u_1 CD : D → Type (max v u) inst✝³ : (X Y : D) → FunLike (FD X Y) (CD X) (CD Y) instCC : ConcreteCategory D FD inst✝² : PreservesLimits (forget D) inst✝¹ : ∀ (X : C), HasColimitsOfShape (J.Cover X)ᵒᵖ D inst✝ : ∀ (P : Cᵒᵖ ⥤ D) (X : C) (S : J.Cover X), HasMultiequalizer (S.index P) Y X : C P : Cᵒᵖ ⥤ D S : J.Cover X x : Meq P S f : Y ⟶ X ⊢ (Meq.equiv P (unop ((J.pullback f).op.obj (op S)))) ((ConcreteCategory.hom ((J.diagramPullback P f).app (op S))) ((Meq.equiv P S).symm x)) = (Meq.equiv P (unop ((J.pullback f).op.obj (op S)))) ((Meq.equiv P (S.pullback f)).symm (x.pullback f))
4a32216862819df6
MeasureTheory.Measure.haveLebesgueDecomposition_of_finiteMeasure
Mathlib/MeasureTheory/Decomposition/Lebesgue.lean
theorem haveLebesgueDecomposition_of_finiteMeasure [IsFiniteMeasure μ] [IsFiniteMeasure ν] : HaveLebesgueDecomposition μ ν where lebesgue_decomposition
α : Type u_1 m : MeasurableSpace α μ ν : Measure α inst✝¹ : IsFiniteMeasure μ inst✝ : IsFiniteMeasure ν g : ℕ → ℝ≥0∞ h✝ : Monotone g hg₂ : Filter.Tendsto g Filter.atTop (nhds (sSup (measurableLEEval ν μ))) f : ℕ → α → ℝ≥0∞ hf₁ : ∀ (n : ℕ), f n ∈ measurableLE ν μ hf₂ : ∀ (n : ℕ), (fun f => ∫⁻ (x : α), f x ∂ν) (f n) = g n ξ : α → ℝ≥0∞ := ⨆ n, ⨆ k, ⨆ (_ : k ≤ n), f k hξ : ξ = ⨆ n, ⨆ k, ⨆ (_ : k ≤ n), f k hξ₁ : sSup (measurableLEEval ν μ) = ∫⁻ (a : α), ξ a ∂ν hξm : Measurable ξ hξle : ∀ (A : Set α), MeasurableSet A → ∫⁻ (a : α) in A, ξ a ∂ν ≤ μ A hle : ν.withDensity ξ ≤ μ this : IsFiniteMeasure (ν.withDensity ξ) μ₁ : Measure α := μ - ν.withDensity ξ hμ₁ : μ₁ = μ - ν.withDensity ξ h : ¬(μ₁, ξ).1 ⟂ₘ ν ε : ℝ≥0 hε₁ : 0 < ε E : Set α hE₁ : MeasurableSet E hE₂ : 0 < ν E hE₃ : ∀ (A : Set α), MeasurableSet A → ↑ε * ν (A ∩ E) ≤ (μ - ν.withDensity ξ) (A ∩ E) hε₂ : ∀ (A : Set α), MeasurableSet A → ∫⁻ (a : α) in A ∩ E, ↑ε + ξ a ∂ν ≤ μ (A ∩ E) ⊢ (ξ + E.indicator fun x => ↑ε) ∈ measurableLE ν μ
refine ⟨hξm.add (measurable_const.indicator hE₁), fun A hA ↦ ?_⟩
α : Type u_1 m : MeasurableSpace α μ ν : Measure α inst✝¹ : IsFiniteMeasure μ inst✝ : IsFiniteMeasure ν g : ℕ → ℝ≥0∞ h✝ : Monotone g hg₂ : Filter.Tendsto g Filter.atTop (nhds (sSup (measurableLEEval ν μ))) f : ℕ → α → ℝ≥0∞ hf₁ : ∀ (n : ℕ), f n ∈ measurableLE ν μ hf₂ : ∀ (n : ℕ), (fun f => ∫⁻ (x : α), f x ∂ν) (f n) = g n ξ : α → ℝ≥0∞ := ⨆ n, ⨆ k, ⨆ (_ : k ≤ n), f k hξ : ξ = ⨆ n, ⨆ k, ⨆ (_ : k ≤ n), f k hξ₁ : sSup (measurableLEEval ν μ) = ∫⁻ (a : α), ξ a ∂ν hξm : Measurable ξ hξle : ∀ (A : Set α), MeasurableSet A → ∫⁻ (a : α) in A, ξ a ∂ν ≤ μ A hle : ν.withDensity ξ ≤ μ this : IsFiniteMeasure (ν.withDensity ξ) μ₁ : Measure α := μ - ν.withDensity ξ hμ₁ : μ₁ = μ - ν.withDensity ξ h : ¬(μ₁, ξ).1 ⟂ₘ ν ε : ℝ≥0 hε₁ : 0 < ε E : Set α hE₁ : MeasurableSet E hE₂ : 0 < ν E hE₃ : ∀ (A : Set α), MeasurableSet A → ↑ε * ν (A ∩ E) ≤ (μ - ν.withDensity ξ) (A ∩ E) hε₂ : ∀ (A : Set α), MeasurableSet A → ∫⁻ (a : α) in A ∩ E, ↑ε + ξ a ∂ν ≤ μ (A ∩ E) A : Set α hA : MeasurableSet A ⊢ ∫⁻ (x : α) in A, (ξ + E.indicator fun x => ↑ε) x ∂ν ≤ μ A
0e340e69a0abebdf
AbsoluteValue.not_isNontrivial_iff
Mathlib/Algebra/Order/AbsoluteValue/Basic.lean
lemma not_isNontrivial_iff (v : AbsoluteValue R S) : ¬ v.IsNontrivial ↔ ∀ x ≠ 0, v x = 1
R : Type u_5 inst✝¹ : Semiring R S : Type u_6 inst✝ : OrderedSemiring S v : AbsoluteValue R S ⊢ (∀ (x : R), x ≠ 0 → v x = 1) ↔ ∀ (x : R), x ≠ 0 → v x = 1
rfl
no goals
86edd53a032b0895
Std.Sat.AIG.RefVec.fold.denote_go_and
Mathlib/.lake/packages/lean4/src/lean/Std/Sat/AIG/RefVecOperator/Fold.lean
theorem denote_go_and {aig : AIG α} (acc : AIG.Ref aig) (curr : Nat) (hcurr : curr ≤ len) (input : RefVec aig len) : ⟦ (go aig acc curr len input mkAndCached).aig, (go aig acc curr len input mkAndCached).ref, assign ⟧ = ( ⟦aig, acc, assign⟧ ∧ (∀ (idx : Nat) (hidx1 : idx < len), curr ≤ idx → ⟦aig, input.get idx hidx1, assign⟧) )
case isTrue.mpr α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α len : Nat assign : α → Bool aig : AIG α acc : aig.Ref curr : Nat hcurr : curr ≤ len input : aig.RefVec len res : Entrypoint α h✝ : curr < len hgo : go (aig.mkAndCached { lhs := acc, rhs := input.get curr h✝ }).aig (aig.mkAndCached { lhs := acc, rhs := input.get curr h✝ }).ref (curr + 1) len (input.cast ⋯) mkAndCached = res hacc : ⟦assign, { aig := aig, ref := acc }⟧ = true hrest : ∀ (idx : Nat) (hidx1 : idx < len), curr ≤ idx → ⟦assign, { aig := aig, ref := input.get idx hidx1 }⟧ = true ⊢ (⟦assign, { aig := aig, ref := acc }⟧ = true ∧ ⟦assign, { aig := aig, ref := input.get curr h✝ }⟧ = true) ∧ ∀ (idx : Nat) (hidx1 : idx < len), curr + 1 ≤ idx → ⟦assign, { aig := (aig.mkAndCached { lhs := acc, rhs := input.get curr h✝ }).aig, ref := (input.get idx hidx1).cast ⋯ }⟧ = true
constructor
case isTrue.mpr.left α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α len : Nat assign : α → Bool aig : AIG α acc : aig.Ref curr : Nat hcurr : curr ≤ len input : aig.RefVec len res : Entrypoint α h✝ : curr < len hgo : go (aig.mkAndCached { lhs := acc, rhs := input.get curr h✝ }).aig (aig.mkAndCached { lhs := acc, rhs := input.get curr h✝ }).ref (curr + 1) len (input.cast ⋯) mkAndCached = res hacc : ⟦assign, { aig := aig, ref := acc }⟧ = true hrest : ∀ (idx : Nat) (hidx1 : idx < len), curr ≤ idx → ⟦assign, { aig := aig, ref := input.get idx hidx1 }⟧ = true ⊢ ⟦assign, { aig := aig, ref := acc }⟧ = true ∧ ⟦assign, { aig := aig, ref := input.get curr h✝ }⟧ = true case isTrue.mpr.right α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α len : Nat assign : α → Bool aig : AIG α acc : aig.Ref curr : Nat hcurr : curr ≤ len input : aig.RefVec len res : Entrypoint α h✝ : curr < len hgo : go (aig.mkAndCached { lhs := acc, rhs := input.get curr h✝ }).aig (aig.mkAndCached { lhs := acc, rhs := input.get curr h✝ }).ref (curr + 1) len (input.cast ⋯) mkAndCached = res hacc : ⟦assign, { aig := aig, ref := acc }⟧ = true hrest : ∀ (idx : Nat) (hidx1 : idx < len), curr ≤ idx → ⟦assign, { aig := aig, ref := input.get idx hidx1 }⟧ = true ⊢ ∀ (idx : Nat) (hidx1 : idx < len), curr + 1 ≤ idx → ⟦assign, { aig := (aig.mkAndCached { lhs := acc, rhs := input.get curr h✝ }).aig, ref := (input.get idx hidx1).cast ⋯ }⟧ = true
2185fe5626c5bad5
Std.DHashMap.Internal.Raw₀.getKeyD_erase
Mathlib/.lake/packages/lean4/src/lean/Std/Data/DHashMap/Internal/RawLemmas.lean
theorem getKeyD_erase [EquivBEq α] [LawfulHashable α] (h : m.1.WF) {k a fallback : α} : (m.erase k).getKeyD a fallback = if k == a then fallback else m.getKeyD a fallback
α : Type u β : α → Type v m : Raw₀ α β inst✝³ : BEq α inst✝² : Hashable α inst✝¹ : EquivBEq α inst✝ : LawfulHashable α h : m.val.WF k a fallback : α ⊢ (m.erase k).getKeyD a fallback = if (k == a) = true then fallback else m.getKeyD a fallback
simp_to_model [erase] using List.getKeyD_eraseKey
no goals
543384042f4eaee8
FermatLastTheoremForThreeGen.Solution.exists_minimal
Mathlib/NumberTheory/FLT/Three.lean
/-- If there is a solution then there is a minimal one. -/ lemma Solution.exists_minimal : ∃ (S₁ : Solution hζ), S₁.isMinimal
K : Type u_1 inst✝ : Field K ζ : K hζ : IsPrimitiveRoot ζ ↑3 S : Solution hζ ⊢ ∃ S₁, S₁.isMinimal
classical let T := {n | ∃ (S' : Solution hζ), S'.multiplicity = n} rcases Nat.find_spec (⟨S.multiplicity, ⟨S, rfl⟩⟩ : T.Nonempty) with ⟨S₁, hS₁⟩ exact ⟨S₁, fun S'' ↦ hS₁ ▸ Nat.find_min' _ ⟨S'', rfl⟩⟩
no goals
bd5d5a3a7e2e42fd
Equiv.Perm.ofSubtype_eq_iff
Mathlib/GroupTheory/Perm/Support.lean
/-- A permutation c is the extension of a restriction of g to s iff its support is contained in s and its restriction is that of g -/ lemma ofSubtype_eq_iff {g c : Equiv.Perm α} {s : Finset α} (hg : ∀ x, x ∈ s ↔ g x ∈ s) : ofSubtype (g.subtypePerm hg) = c ↔ c.support ≤ s ∧ ∀ (hc' : ∀ x, x ∈ s ↔ c x ∈ s), c.subtypePerm hc' = g.subtypePerm hg
case mp α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α g c : Perm α s : Finset α hg : ∀ (x : α), x ∈ s ↔ g x ∈ s h : ∀ (x : α), (ofSubtype (g.subtypePerm hg)) x = c x ⊢ c.support ≤ s ∧ ((∀ (x : α), x ∈ s ↔ c x ∈ s) → ∀ a ∈ s, c a = g a)
constructor
case mp.left α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α g c : Perm α s : Finset α hg : ∀ (x : α), x ∈ s ↔ g x ∈ s h : ∀ (x : α), (ofSubtype (g.subtypePerm hg)) x = c x ⊢ c.support ≤ s case mp.right α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α g c : Perm α s : Finset α hg : ∀ (x : α), x ∈ s ↔ g x ∈ s h : ∀ (x : α), (ofSubtype (g.subtypePerm hg)) x = c x ⊢ (∀ (x : α), x ∈ s ↔ c x ∈ s) → ∀ a ∈ s, c a = g a
ab1e7a47010d0039
UnitAddCircle.mem_approxAddOrderOf_iff
Mathlib/NumberTheory/WellApproximable.lean
theorem mem_approxAddOrderOf_iff {δ : ℝ} {x : UnitAddCircle} {n : ℕ} (hn : 0 < n) : x ∈ approxAddOrderOf UnitAddCircle n δ ↔ ∃ m < n, gcd m n = 1 ∧ ‖x - ↑((m : ℝ) / n)‖ < δ
case mpr.intro.intro.intro δ : ℝ x : UnitAddCircle n : ℕ hn : 0 < n m : ℕ hm₁ : m < n hm₂ : gcd m n = 1 hx : ‖x - ↑(↑m / ↑n)‖ < δ ⊢ ∃ b, (∃ m < n, m.gcd n = 1 ∧ ↑(↑m / ↑n) = b) ∧ ‖x - b‖ < δ
exact ⟨↑((m : ℝ) / n), ⟨m, hm₁, hm₂, rfl⟩, hx⟩
no goals
6c2242c810a53b2d