name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
PosNum.succ_to_nat
Mathlib/Data/Num/Lemmas.lean
theorem succ_to_nat : ∀ n, (succ n : ℕ) = n + 1 | 1 => rfl | bit0 _ => rfl | bit1 p => (congr_arg (fun n ↦ n + n) (succ_to_nat p)).trans <| show ↑p + 1 + ↑p + 1 = ↑p + ↑p + 1 + 1 by simp [add_left_comm]
p : PosNum ⊢ ↑p + 1 + ↑p + 1 = ↑p + ↑p + 1 + 1
simp [add_left_comm]
no goals
f89e8a33aaa689e3
MulAction.quotient_preimage_image_eq_union_mul
Mathlib/GroupTheory/GroupAction/Defs.lean
theorem quotient_preimage_image_eq_union_mul (U : Set α) : letI := orbitRel G α Quotient.mk' ⁻¹' (Quotient.mk' '' U) = ⋃ g : G, (g • ·) '' U
case h.mpr.intro.intro.intro G : Type u_1 α : Type u_2 inst✝¹ : Group G inst✝ : MulAction G α U : Set α this : Setoid α := orbitRel G α f : α → Quotient (orbitRel G α) := Quotient.mk' a : α g : G u : α hu₁ : u ∈ U hu₂ : (fun x => g • x) u = a ⊢ g⁻¹ • (fun x => g • x) u ∈ U
convert hu₁
case h.e'_5 G : Type u_1 α : Type u_2 inst✝¹ : Group G inst✝ : MulAction G α U : Set α this : Setoid α := orbitRel G α f : α → Quotient (orbitRel G α) := Quotient.mk' a : α g : G u : α hu₁ : u ∈ U hu₂ : (fun x => g • x) u = a ⊢ g⁻¹ • (fun x => g • x) u = u
089d93c3a4497d0d
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.derivedLitsInvariant_confirmRupHint
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/LRAT/Internal/Formula/RupAddResult.lean
theorem derivedLitsInvariant_confirmRupHint {n : Nat} (f : DefaultFormula n) (f_assignments_size : f.assignments.size = n) (rupHints : Array Nat) (i : Fin rupHints.size) (acc : Array Assignment × CNF.Clause (PosFin n) × Bool × Bool) (ih : ∃ hsize : acc.1.size = n, DerivedLitsInvariant f f_assignments_size acc.1 hsize acc.2.1) : let rupHint_res := (confirmRupHint f.clauses) acc rupHints[i] ∃ hsize : rupHint_res.1.size = n, DerivedLitsInvariant f f_assignments_size rupHint_res.1 hsize rupHint_res.2.1
n : Nat f : DefaultFormula n f_assignments_size : f.assignments.size = n rupHints : Array Nat i : Fin rupHints.size acc : Array Assignment × CNF.Clause (PosFin n) × Bool × Bool hsize : acc.fst.size = n ih : f.DerivedLitsInvariant f_assignments_size acc.fst hsize acc.snd.fst hsize' : (confirmRupHint f.clauses acc rupHints[i]).fst.size = n h✝ : ¬(acc.2.2.snd || acc.2.2.fst) = true ⊢ none = none ∨ none = some none ∨ ∃ c, none = some (some c)
exact Or.inl rfl
no goals
0f20fdb04006be12
Lean.Omega.IntList.gcd_cons_div_right
Mathlib/.lake/packages/lean4/src/lean/Init/Omega/IntList.lean
theorem gcd_cons_div_right : gcd (x::xs) ∣ gcd xs
x : Int xs : List Int ⊢ x.natAbs.gcd (List.foldr (fun x g => x.natAbs.gcd g) 0 xs) ∣ List.foldr (fun x g => x.natAbs.gcd g) 0 xs
apply Nat.gcd_dvd_right
no goals
0c75c6152b61dcde
Submodule.eq_top_of_nonempty_interior'
Mathlib/Topology/Algebra/Module/Basic.lean
theorem Submodule.eq_top_of_nonempty_interior' [NeBot (𝓝[{ x : R | IsUnit x }] 0)] (s : Submodule R M) (hs : (interior (s : Set M)).Nonempty) : s = ⊤
case intro R : Type u_1 M : Type u_2 inst✝⁷ : Ring R inst✝⁶ : TopologicalSpace R inst✝⁵ : TopologicalSpace M inst✝⁴ : AddCommGroup M inst✝³ : ContinuousAdd M inst✝² : Module R M inst✝¹ : ContinuousSMul R M inst✝ : (𝓝[{x | IsUnit x}] 0).NeBot s : Submodule R M y : M hy : ↑s ∈ 𝓝 y x : M this : Tendsto (fun c => y + c • x) (𝓝[{x | IsUnit x}] 0) (𝓝 y) ⊢ x ∈ s
obtain ⟨_, hu : y + _ • _ ∈ s, u, rfl⟩ := nonempty_of_mem (inter_mem (Filter.mem_map.1 (this hy)) self_mem_nhdsWithin)
case intro.intro.intro.intro R : Type u_1 M : Type u_2 inst✝⁷ : Ring R inst✝⁶ : TopologicalSpace R inst✝⁵ : TopologicalSpace M inst✝⁴ : AddCommGroup M inst✝³ : ContinuousAdd M inst✝² : Module R M inst✝¹ : ContinuousSMul R M inst✝ : (𝓝[{x | IsUnit x}] 0).NeBot s : Submodule R M y : M hy : ↑s ∈ 𝓝 y x : M this : Tendsto (fun c => y + c • x) (𝓝[{x | IsUnit x}] 0) (𝓝 y) u : Rˣ hu : y + ↑u • x ∈ s ⊢ x ∈ s
0f5438c3c47b1300
ProbabilityTheory.Kernel.borelMarkovFromReal_apply
Mathlib/Probability/Kernel/Disintegration/StandardBorel.lean
lemma borelMarkovFromReal_apply (Ω : Type*) [Nonempty Ω] [MeasurableSpace Ω] [StandardBorelSpace Ω] (η : Kernel α ℝ) (a : α) : borelMarkovFromReal Ω η a = if η a (range (embeddingReal Ω))ᶜ = 0 then (η a).comap (embeddingReal Ω) else (Measure.dirac (range_nonempty (embeddingReal Ω)).choose).comap (embeddingReal Ω)
α : Type u_1 mα : MeasurableSpace α Ω : Type u_5 inst✝² : Nonempty Ω inst✝¹ : MeasurableSpace Ω inst✝ : StandardBorelSpace Ω η : Kernel α ℝ a : α ⊢ (borelMarkovFromReal Ω η) a = if (η a) (range (embeddingReal Ω))ᶜ = 0 then Measure.comap (embeddingReal Ω) (η a) else Measure.comap (embeddingReal Ω) (Measure.dirac (Exists.choose ⋯))
rw [borelMarkovFromReal, comapRight_apply, piecewise_apply, deterministic_apply]
α : Type u_1 mα : MeasurableSpace α Ω : Type u_5 inst✝² : Nonempty Ω inst✝¹ : MeasurableSpace Ω inst✝ : StandardBorelSpace Ω η : Kernel α ℝ a : α ⊢ Measure.comap (embeddingReal Ω) (if a ∈ (fun a => (η a) (range (embeddingReal Ω))ᶜ) ⁻¹' {0} then η a else Measure.dirac (Exists.choose ⋯)) = if (η a) (range (embeddingReal Ω))ᶜ = 0 then Measure.comap (embeddingReal Ω) (η a) else Measure.comap (embeddingReal Ω) (Measure.dirac (Exists.choose ⋯))
0d8be79f96546288
PartialHomeomorph.ball_subset_univBall_target
Mathlib/Analysis/NormedSpace/HomeomorphBall.lean
theorem ball_subset_univBall_target (c : P) (r : ℝ) : ball c r ⊆ (univBall c r).target
E : Type u_1 inst✝³ : SeminormedAddCommGroup E inst✝² : NormedSpace ℝ E P : Type u_2 inst✝¹ : PseudoMetricSpace P inst✝ : NormedAddTorsor E P c : P r : ℝ ⊢ ball c r ⊆ (univBall c r).target
by_cases hr : 0 < r
case pos E : Type u_1 inst✝³ : SeminormedAddCommGroup E inst✝² : NormedSpace ℝ E P : Type u_2 inst✝¹ : PseudoMetricSpace P inst✝ : NormedAddTorsor E P c : P r : ℝ hr : 0 < r ⊢ ball c r ⊆ (univBall c r).target case neg E : Type u_1 inst✝³ : SeminormedAddCommGroup E inst✝² : NormedSpace ℝ E P : Type u_2 inst✝¹ : PseudoMetricSpace P inst✝ : NormedAddTorsor E P c : P r : ℝ hr : ¬0 < r ⊢ ball c r ⊆ (univBall c r).target
38ee5f85990fea06
finprod_mem_union_inter
Mathlib/Algebra/BigOperators/Finprod.lean
theorem finprod_mem_union_inter (hs : s.Finite) (ht : t.Finite) : ((∏ᶠ i ∈ s ∪ t, f i) * ∏ᶠ i ∈ s ∩ t, f i) = (∏ᶠ i ∈ s, f i) * ∏ᶠ i ∈ t, f i
case intro.intro α : Type u_1 M : Type u_5 inst✝ : CommMonoid M f : α → M s t : Finset α ⊢ (∏ᶠ (i : α) (_ : i ∈ ↑s ∪ ↑t), f i) * ∏ᶠ (i : α) (_ : i ∈ ↑s ∩ ↑t), f i = (∏ᶠ (i : α) (_ : i ∈ ↑s), f i) * ∏ᶠ (i : α) (_ : i ∈ ↑t), f i
rw [← Finset.coe_union, ← Finset.coe_inter]
case intro.intro α : Type u_1 M : Type u_5 inst✝ : CommMonoid M f : α → M s t : Finset α ⊢ (∏ᶠ (i : α) (_ : i ∈ ↑(s ∪ t)), f i) * ∏ᶠ (i : α) (_ : i ∈ ↑(s ∩ t)), f i = (∏ᶠ (i : α) (_ : i ∈ ↑s), f i) * ∏ᶠ (i : α) (_ : i ∈ ↑t), f i
274cf09bf950a217
Filter.limsup_sdiff
Mathlib/Order/LiminfLimsup.lean
theorem limsup_sdiff (a : α) : limsup u f \ a = limsup (fun b => u b \ a) f
α : Type u_1 β : Type u_2 inst✝ : CompleteBooleanAlgebra α f : Filter β u : β → α a : α ⊢ (⨅ s ∈ f, ⨆ a ∈ s, u a) ⊓ aᶜ = ⨅ s ∈ f, ⨆ a_1 ∈ s, u a_1 ⊓ aᶜ
rw [biInf_inf (⟨univ, univ_mem⟩ : ∃ i : Set β, i ∈ f)]
α : Type u_1 β : Type u_2 inst✝ : CompleteBooleanAlgebra α f : Filter β u : β → α a : α ⊢ ⨅ i ∈ f, (⨆ a ∈ i, u a) ⊓ aᶜ = ⨅ s ∈ f, ⨆ a_1 ∈ s, u a_1 ⊓ aᶜ
9e3d0b82dbd812d0
CategoryTheory.MorphismProperty.transfiniteCompositionsOfShape_eq_of_orderIso
Mathlib/CategoryTheory/MorphismProperty/TransfiniteComposition.lean
lemma transfiniteCompositionsOfShape_eq_of_orderIso (e : J ≃o J') : W.transfiniteCompositionsOfShape J = W.transfiniteCompositionsOfShape J'
C : Type u inst✝⁸ : Category.{v, u} C W : MorphismProperty C J : Type w inst✝⁷ : LinearOrder J inst✝⁶ : SuccOrder J inst✝⁵ : OrderBot J inst✝⁴ : WellFoundedLT J J' : Type w' inst✝³ : LinearOrder J' inst✝² : SuccOrder J' inst✝¹ : OrderBot J' inst✝ : WellFoundedLT J' e : J ≃o J' ⊢ W.transfiniteCompositionsOfShape J = W.transfiniteCompositionsOfShape J'
ext _ _ f
case h C : Type u inst✝⁸ : Category.{v, u} C W : MorphismProperty C J : Type w inst✝⁷ : LinearOrder J inst✝⁶ : SuccOrder J inst✝⁵ : OrderBot J inst✝⁴ : WellFoundedLT J J' : Type w' inst✝³ : LinearOrder J' inst✝² : SuccOrder J' inst✝¹ : OrderBot J' inst✝ : WellFoundedLT J' e : J ≃o J' X✝ Y✝ : C f : X✝ ⟶ Y✝ ⊢ W.transfiniteCompositionsOfShape J f ↔ W.transfiniteCompositionsOfShape J' f
6fdc6de3075a9720
StieltjesFunction.outer_Ioc
Mathlib/MeasureTheory/Measure/Stieltjes.lean
theorem outer_Ioc (a b : ℝ) : f.outer (Ioc a b) = ofReal (f b - f a)
f : StieltjesFunction a b : ℝ s : ℕ → Set ℝ hs : Ioc a b ⊆ ⋃ i, s i ε : ℝ≥0 εpos : 0 < ε h : ∑' (i : ℕ), f.length (s i) < ⊤ δ : ℝ≥0 := ε / 2 ⊢ 0 < ↑δ
simpa [δ] using εpos.ne'
no goals
c3b0d539cbbc47aa
FractionalIdeal.dual_dual
Mathlib/RingTheory/DedekindDomain/Different.lean
@[simp] lemma dual_dual : dual A K (dual A K I) = I
A : Type u_1 K : Type u_2 L : Type u B : Type u_3 inst✝¹⁸ : CommRing A inst✝¹⁷ : Field K inst✝¹⁶ : CommRing B inst✝¹⁵ : Field L inst✝¹⁴ : Algebra A K inst✝¹³ : Algebra B L inst✝¹² : Algebra A B inst✝¹¹ : Algebra K L inst✝¹⁰ : Algebra A L inst✝⁹ : IsScalarTower A K L inst✝⁸ : IsScalarTower A B L inst✝⁷ : IsDomain A inst✝⁶ : IsFractionRing A K inst✝⁵ : FiniteDimensional K L inst✝⁴ : Algebra.IsSeparable K L inst✝³ : IsIntegralClosure B A L inst✝² : IsFractionRing B L inst✝¹ : IsIntegrallyClosed A inst✝ : IsDedekindDomain B I : FractionalIdeal B⁰ L ⊢ dual A K 1 ≠ 0
rw [dual_ne_zero_iff]
A : Type u_1 K : Type u_2 L : Type u B : Type u_3 inst✝¹⁸ : CommRing A inst✝¹⁷ : Field K inst✝¹⁶ : CommRing B inst✝¹⁵ : Field L inst✝¹⁴ : Algebra A K inst✝¹³ : Algebra B L inst✝¹² : Algebra A B inst✝¹¹ : Algebra K L inst✝¹⁰ : Algebra A L inst✝⁹ : IsScalarTower A K L inst✝⁸ : IsScalarTower A B L inst✝⁷ : IsDomain A inst✝⁶ : IsFractionRing A K inst✝⁵ : FiniteDimensional K L inst✝⁴ : Algebra.IsSeparable K L inst✝³ : IsIntegralClosure B A L inst✝² : IsFractionRing B L inst✝¹ : IsIntegrallyClosed A inst✝ : IsDedekindDomain B I : FractionalIdeal B⁰ L ⊢ 1 ≠ 0
8fa9ea92bb952992
addRothNumber_le_ruzsaSzemerediNumber
Mathlib/Combinatorics/Extremal/RuzsaSzemeredi.lean
lemma addRothNumber_le_ruzsaSzemerediNumber : card α * addRothNumber (univ : Finset α) ≤ ruzsaSzemerediNumber (Sum α (Sum α α))
α : Type u_1 inst✝³ : Fintype α inst✝² : DecidableEq α inst✝¹ : CommRing α inst✝ : Fact (IsUnit 2) ⊢ Fintype.card α * addRothNumber univ ≤ ruzsaSzemerediNumber (α ⊕ α ⊕ α)
obtain ⟨s, -, hscard, hs⟩ := addRothNumber_spec (univ : Finset α)
case intro.intro.intro α : Type u_1 inst✝³ : Fintype α inst✝² : DecidableEq α inst✝¹ : CommRing α inst✝ : Fact (IsUnit 2) s : Finset α hscard : #s = addRothNumber univ hs : ThreeAPFree ↑s ⊢ Fintype.card α * addRothNumber univ ≤ ruzsaSzemerediNumber (α ⊕ α ⊕ α)
2f78b728f5941b04
minpolyDiv_spec
Mathlib/FieldTheory/Minpoly/MinpolyDiv.lean
lemma minpolyDiv_spec : minpolyDiv R x * (X - C x) = (minpoly R x).map (algebraMap R S)
R : Type u_2 S : Type u_1 inst✝² : CommRing R inst✝¹ : CommRing S inst✝ : Algebra R S x : S ⊢ map (algebraMap R S) (minpoly R x) /ₘ (X - C x) * (X - C x) = map (algebraMap R S) (minpoly R x)
rw [mul_comm, mul_divByMonic_eq_iff_isRoot, IsRoot, eval_map, ← aeval_def, minpoly.aeval]
no goals
0e3f7575f08e79f8
mabs_mul_le
Mathlib/Algebra/Order/Group/Unbundled/Abs.lean
/-- The absolute value satisfies the triangle inequality. -/ @[to_additive "The absolute value satisfies the triangle inequality."] lemma mabs_mul_le (a b : α) : |a * b|ₘ ≤ |a|ₘ * |b|ₘ
case a α : Type u_1 inst✝² : Lattice α inst✝¹ : CommGroup α inst✝ : MulLeftMono α a b : α ⊢ a⁻¹ * b⁻¹ ≤ mabs a * mabs b
exact mul_le_mul' (inv_le_mabs _) (inv_le_mabs _)
no goals
89ddb6739385a93f
List.Nodup.rotate_congr_iff
Mathlib/Data/List/Rotate.lean
theorem Nodup.rotate_congr_iff {l : List α} (hl : l.Nodup) {i j : ℕ} : l.rotate i = l.rotate j ↔ i % l.length = j % l.length ∨ l = []
case inl α : Type u i j : ℕ hl : [].Nodup ⊢ [].rotate i = [].rotate j ↔ i % [].length = j % [].length ∨ [] = []
simp
no goals
965e918a3e97caa0
FDerivMeasurableAux.isOpen_A
Mathlib/Analysis/Calculus/FDeriv/Measurable.lean
theorem isOpen_A (L : E →L[𝕜] F) (r ε : ℝ) : IsOpen (A f L r ε)
case intro.intro.intro.intro 𝕜 : Type u_1 inst✝⁴ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E F : Type u_3 inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F f : E → F L : E →L[𝕜] F r ε : ℝ x : E r' : ℝ r'_mem : r' ∈ Ioc (r / 2) r hr' : ∀ y ∈ ball x r', ∀ z ∈ ball x r', ‖f z - f y - L (z - y)‖ < ε * r s : ℝ s_gt : r / 2 < s s_lt : s < r' this : s ∈ Ioc (r / 2) r x' : E hx' : x' ∈ ball x (r' - s) B : ball x' s ⊆ ball x r' ⊢ ∀ y ∈ ball x' s, ∀ z ∈ ball x' s, ‖f z - f y - L (z - y)‖ < ε * r
intro y hy z hz
case intro.intro.intro.intro 𝕜 : Type u_1 inst✝⁴ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E F : Type u_3 inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F f : E → F L : E →L[𝕜] F r ε : ℝ x : E r' : ℝ r'_mem : r' ∈ Ioc (r / 2) r hr' : ∀ y ∈ ball x r', ∀ z ∈ ball x r', ‖f z - f y - L (z - y)‖ < ε * r s : ℝ s_gt : r / 2 < s s_lt : s < r' this : s ∈ Ioc (r / 2) r x' : E hx' : x' ∈ ball x (r' - s) B : ball x' s ⊆ ball x r' y : E hy : y ∈ ball x' s z : E hz : z ∈ ball x' s ⊢ ‖f z - f y - L (z - y)‖ < ε * r
6e3e46aca5615231
ZFSet.sUnion_empty
Mathlib/SetTheory/ZFC/Basic.lean
theorem sUnion_empty : ⋃₀ (∅ : ZFSet.{u}) = ∅
⊢ ⋃₀ ∅ = ∅
ext
case a z✝ : ZFSet.{u} ⊢ z✝ ∈ ⋃₀ ∅ ↔ z✝ ∈ ∅
ab36a3c52f4f0608
DFinsupp.mapRange.linearMap_comp
Mathlib/LinearAlgebra/DFinsupp.lean
theorem mapRange.linearMap_comp (f : ∀ i, β₁ i →ₗ[R] β₂ i) (f₂ : ∀ i, β i →ₗ[R] β₁ i) : (mapRange.linearMap fun i => (f i).comp (f₂ i)) = (mapRange.linearMap f).comp (mapRange.linearMap f₂) := LinearMap.ext <| mapRange_comp (fun i x => f i x) (fun i x => f₂ i x) (fun i => (f i).map_zero) (fun i => (f₂ i).map_zero) (by simp)
ι : Type u_1 R : Type u_2 inst✝⁶ : Semiring R β : ι → Type u_6 β₁ : ι → Type u_7 β₂ : ι → Type u_8 inst✝⁵ : (i : ι) → AddCommMonoid (β i) inst✝⁴ : (i : ι) → AddCommMonoid (β₁ i) inst✝³ : (i : ι) → AddCommMonoid (β₂ i) inst✝² : (i : ι) → Module R (β i) inst✝¹ : (i : ι) → Module R (β₁ i) inst✝ : (i : ι) → Module R (β₂ i) f : (i : ι) → β₁ i →ₗ[R] β₂ i f₂ : (i : ι) → β i →ₗ[R] β₁ i ⊢ ∀ (i : ι), ((fun i x => (f i) x) i ∘ (fun i x => (f₂ i) x) i) 0 = 0
simp
no goals
e578daa14cf2cc8c
CategoryTheory.IsHomLift.of_fac'
Mathlib/CategoryTheory/FiberedCategory/HomLift.lean
lemma of_fac' {R S : 𝒮} {a b : 𝒳} (f : R ⟶ S) (φ : a ⟶ b) (ha : p.obj a = R) (hb : p.obj b = S) (h : p.map φ = eqToHom ha ≫ f ≫ eqToHom hb.symm) : p.IsHomLift f φ
𝒮 : Type u₁ 𝒳 : Type u₂ inst✝¹ : Category.{v₁, u₂} 𝒳 inst✝ : Category.{v₂, u₁} 𝒮 p : 𝒳 ⥤ 𝒮 R S : 𝒮 a b : 𝒳 f : R ⟶ S φ : a ⟶ b ha : p.obj a = R hb : p.obj b = S h : p.map φ = eqToHom ha ≫ f ≫ eqToHom ⋯ ⊢ p.IsHomLift f φ
subst ha hb
𝒮 : Type u₁ 𝒳 : Type u₂ inst✝¹ : Category.{v₁, u₂} 𝒳 inst✝ : Category.{v₂, u₁} 𝒮 p : 𝒳 ⥤ 𝒮 a b : 𝒳 φ : a ⟶ b f : p.obj a ⟶ p.obj b h : p.map φ = eqToHom ⋯ ≫ f ≫ eqToHom ⋯ ⊢ p.IsHomLift f φ
092cc10978a73530
comap_upperCentralSeries
Mathlib/GroupTheory/Nilpotent.lean
@[simp] lemma comap_upperCentralSeries {H : Type*} [Group H] (e : H ≃* G) : ∀ n, (upperCentralSeries G n).comap e = upperCentralSeries H n | 0 => by simpa [MonoidHom.ker_eq_bot_iff] using e.injective | n + 1 => by ext simp [mem_upperCentralSeries_succ_iff, ← comap_upperCentralSeries e n, ← e.toEquiv.forall_congr_right]
case h G : Type u_1 inst✝¹ : Group G H : Type u_2 inst✝ : Group H e : H ≃* G n : ℕ x✝ : H ⊢ x✝ ∈ comap (↑e) (upperCentralSeries G (n + 1)) ↔ x✝ ∈ upperCentralSeries H (n + 1)
simp [mem_upperCentralSeries_succ_iff, ← comap_upperCentralSeries e n, ← e.toEquiv.forall_congr_right]
no goals
0ff1007cdb39a046
Algebra.FinitePresentation.mvPolynomial_of_finitePresentation
Mathlib/RingTheory/FinitePresentation.lean
theorem mvPolynomial_of_finitePresentation [FinitePresentation.{w₁, w₂} R A] (ι : Type v) [Finite ι] : FinitePresentation.{w₁, max v w₂} R (MvPolynomial ι A)
case intro.intro.intro.intro.intro.refine_1 R : Type w₁ A : Type w₂ inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : Algebra R A inst✝¹ : FinitePresentation R A ι : Type v inst✝ : Finite ι ι' : Type v w✝ : Fintype ι' f : MvPolynomial ι' R →ₐ[R] A hf_surj : Surjective ⇑f hf_ker : (RingHom.ker f.toRingHom).FG g : MvPolynomial (ι ⊕ ι') R →ₐ[R] MvPolynomial ι A := (MvPolynomial.mapAlgHom f).comp ↑(MvPolynomial.sumAlgEquiv R ι ι') val✝ : Fintype (ι ⊕ ι') ⊢ ⊥.FG
exact Submodule.fg_bot
no goals
2529be89e207e207
Turing.PartrecToTM2.pred_ok
Mathlib/Computability/TMToPartrec.lean
theorem pred_ok (q₁ q₂ s v) (c d : List Γ') : ∃ s', Reaches₁ (TM2.step tr) ⟨some (Λ'.pred q₁ q₂), s, K'.elim (trList v) [] c d⟩ (v.headI.rec ⟨some q₁, s', K'.elim (trList v.tail) [] c d⟩ fun n _ => ⟨some q₂, s', K'.elim (trList (n::v.tail)) [] c d⟩)
case nil q₁ q₂ : Λ' s : Option Γ' c d : List Γ' ⊢ ∃ s', Reaches₁ (TM2.step tr) { l := some (q₁.pred q₂), var := s, stk := elim (trList []) [] c d } (Nat.rec { l := some q₁, var := s', stk := elim (trList [].tail) [] c d } (fun n x => { l := some q₂, var := s', stk := elim (trList (n :: [].tail)) [] c d }) [].headI)
refine ⟨none, TransGen.single ?_⟩
case nil q₁ q₂ : Λ' s : Option Γ' c d : List Γ' ⊢ Nat.rec { l := some q₁, var := none, stk := elim (trList [].tail) [] c d } (fun n x => { l := some q₂, var := none, stk := elim (trList (n :: [].tail)) [] c d }) [].headI ∈ TM2.step tr { l := some (q₁.pred q₂), var := s, stk := elim (trList []) [] c d }
b57c75f21d3c3b50
continuous_clm_apply
Mathlib/Analysis/Normed/Module/FiniteDimension.lean
theorem continuous_clm_apply {X : Type*} [TopologicalSpace X] [FiniteDimensional 𝕜 E] {f : X → E →L[𝕜] F} : Continuous f ↔ ∀ y, Continuous (f · y)
𝕜 : Type u inst✝⁷ : NontriviallyNormedField 𝕜 E : Type v inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace 𝕜 E F : Type w inst✝⁴ : NormedAddCommGroup F inst✝³ : NormedSpace 𝕜 F inst✝² : CompleteSpace 𝕜 X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : FiniteDimensional 𝕜 E f : X → E →L[𝕜] F ⊢ Continuous f ↔ ∀ (y : E), Continuous fun x => (f x) y
simp_rw [continuous_iff_continuousOn_univ, continuousOn_clm_apply]
no goals
e817dfd1b43b46ee
PadicSeq.norm_eq_of_equiv_aux
Mathlib/NumberTheory/Padics/PadicNumbers.lean
theorem norm_eq_of_equiv_aux {f g : PadicSeq p} (hf : ¬f ≈ 0) (hg : ¬g ≈ 0) (hfg : f ≈ g) (h : padicNorm p (f (stationaryPoint hf)) ≠ padicNorm p (g (stationaryPoint hg))) (hlt : padicNorm p (g (stationaryPoint hg)) < padicNorm p (f (stationaryPoint hf))) : False
case intro p : ℕ hp : Fact (Nat.Prime p) f g : PadicSeq p hf : ¬f ≈ 0 hg : ¬g ≈ 0 hfg : f ≈ g hpn : 0 < padicNorm p (↑f (stationaryPoint hf)) - padicNorm p (↑g (stationaryPoint hg)) N : ℕ hlt : padicNorm p (↑g (N ⊔ (stationaryPoint hf ⊔ stationaryPoint hg))) < padicNorm p (↑f (N ⊔ (stationaryPoint hf ⊔ stationaryPoint hg))) h : padicNorm p (↑f (N ⊔ (stationaryPoint hf ⊔ stationaryPoint hg))) ≠ padicNorm p (↑g (N ⊔ (stationaryPoint hf ⊔ stationaryPoint hg))) hN : ∀ j ≥ N, padicNorm p (↑(f - g) j) < padicNorm p (↑f (stationaryPoint hf)) - padicNorm p (↑g (stationaryPoint hg)) i : ℕ := N ⊔ (stationaryPoint hf ⊔ stationaryPoint hg) hi : N ≤ i hN' : padicNorm p (↑(f - g) i) < padicNorm p (↑f (N ⊔ (stationaryPoint hf ⊔ stationaryPoint hg))) - padicNorm p (↑g (N ⊔ (stationaryPoint hf ⊔ stationaryPoint hg))) ⊢ False
have hpne : padicNorm p (f i) ≠ padicNorm p (-g i) := by rwa [← padicNorm.neg (g i)] at h
case intro p : ℕ hp : Fact (Nat.Prime p) f g : PadicSeq p hf : ¬f ≈ 0 hg : ¬g ≈ 0 hfg : f ≈ g hpn : 0 < padicNorm p (↑f (stationaryPoint hf)) - padicNorm p (↑g (stationaryPoint hg)) N : ℕ hlt : padicNorm p (↑g (N ⊔ (stationaryPoint hf ⊔ stationaryPoint hg))) < padicNorm p (↑f (N ⊔ (stationaryPoint hf ⊔ stationaryPoint hg))) h : padicNorm p (↑f (N ⊔ (stationaryPoint hf ⊔ stationaryPoint hg))) ≠ padicNorm p (↑g (N ⊔ (stationaryPoint hf ⊔ stationaryPoint hg))) hN : ∀ j ≥ N, padicNorm p (↑(f - g) j) < padicNorm p (↑f (stationaryPoint hf)) - padicNorm p (↑g (stationaryPoint hg)) i : ℕ := N ⊔ (stationaryPoint hf ⊔ stationaryPoint hg) hi : N ≤ i hN' : padicNorm p (↑(f - g) i) < padicNorm p (↑f (N ⊔ (stationaryPoint hf ⊔ stationaryPoint hg))) - padicNorm p (↑g (N ⊔ (stationaryPoint hf ⊔ stationaryPoint hg))) hpne : padicNorm p (↑f i) ≠ padicNorm p (-↑g i) ⊢ False
e74467e76172943d
Turing.ToPartrec.stepRet_eval
Mathlib/Computability/TMConfig.lean
theorem stepRet_eval {k v} : eval step (stepRet k v) = Cfg.halt <$> k.eval v
case fix f : Code k : Cont IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> k.eval v v : List ℕ ⊢ eval step (if v.headI = 0 then stepRet k v.tail else stepNormal f (Cont.fix f k) v.tail) = Cfg.halt <$> if v.headI = 0 then k.eval v.tail else f.fix.eval v.tail >>= k.eval
split_ifs
case pos f : Code k : Cont IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> k.eval v v : List ℕ h✝ : v.headI = 0 ⊢ eval step (stepRet k v.tail) = Cfg.halt <$> k.eval v.tail case neg f : Code k : Cont IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> k.eval v v : List ℕ h✝ : ¬v.headI = 0 ⊢ eval step (stepNormal f (Cont.fix f k) v.tail) = Cfg.halt <$> (f.fix.eval v.tail >>= k.eval)
298dd0c162c2a772
Array.flatten_toArray
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/Lemmas.lean
theorem flatten_toArray (l : List (Array α)) : l.toArray.flatten = (l.map Array.toList).flatten.toArray
case h α : Type u_1 l : List (Array α) ⊢ l.toArray.flatten.toList = (List.map toList l).flatten.toArray.toList
simp
no goals
c003cf217c77b854
Submodule.submodule_eq_sSup_le_nonzero_spans
Mathlib/LinearAlgebra/Span/Defs.lean
theorem submodule_eq_sSup_le_nonzero_spans (p : Submodule R M) : p = sSup { T : Submodule R M | ∃ m ∈ p, m ≠ 0 ∧ T = span R {m} }
case a R : Type u_1 M : Type u_4 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M p : Submodule R M S : Set (Submodule R M) := {T | ∃ m ∈ p, m ≠ 0 ∧ T = span R {m}} ⊢ sSup {T | ∃ m ∈ p, m ≠ 0 ∧ T = span R {m}} ≤ p
rw [sSup_le_iff]
case a R : Type u_1 M : Type u_4 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M p : Submodule R M S : Set (Submodule R M) := {T | ∃ m ∈ p, m ≠ 0 ∧ T = span R {m}} ⊢ ∀ b ∈ {T | ∃ m ∈ p, m ≠ 0 ∧ T = span R {m}}, b ≤ p
d695d79774d3d39d
Directed.disjoint_iSup_right
Mathlib/Order/CompactlyGenerated/Basic.lean
theorem Directed.disjoint_iSup_right (h : Directed (· ≤ ·) f) : Disjoint a (⨆ i, f i) ↔ ∀ i, Disjoint a (f i)
ι : Sort u_1 α : Type u_2 inst✝¹ : CompleteLattice α f : ι → α inst✝ : IsCompactlyGenerated α a : α h : Directed (fun x1 x2 => x1 ≤ x2) f ⊢ Disjoint a (⨆ i, f i) ↔ ∀ (i : ι), Disjoint a (f i)
simp_rw [disjoint_iff, h.inf_iSup_eq, iSup_eq_bot]
no goals
4f1eb4f5d3709b11
Computation.terminates_parallel
Mathlib/Data/Seq/Parallel.lean
theorem terminates_parallel {S : WSeq (Computation α)} {c} (h : c ∈ S) [T : Terminates c] : Terminates (parallel S)
case succ.inr.inr.none α : Type u S✝ : WSeq (Computation α) c✝ : Computation α h✝ : c✝ ∈ S✝ T✝ : c✝.Terminates n : ℕ IH : ∀ (l : List (Computation α)) (S : Stream'.Seq (Option (Computation α))) (c : Computation α), c ∈ l ∨ some (some c) = S.get? n → c.Terminates → (corec parallel.aux1 (l, S)).Terminates l : List (Computation α) S : Stream'.Seq (Option (Computation α)) c : Computation α T : c.Terminates a : some (some c) = S.get? (n + 1) l' : List (Computation α) h : parallel.aux2 l = Sum.inr l' C : corec parallel.aux1 (l, S) = (corec parallel.aux1 (match S.destruct with | none => (l', Seq.nil) | some (none, S') => (l', S') | some (some c, S') => (c :: l', S'))).think TT : ∀ (l' : List (Computation α)), (corec parallel.aux1 (l', S.tail)).Terminates e : S.get? 0 = none D : S.destruct = none ⊢ (corec parallel.aux1 (match S.destruct with | none => (l', Seq.nil) | some (none, S') => (l', S') | some (some c, S') => (c :: l', S'))).Terminates
rw [D]
case succ.inr.inr.none α : Type u S✝ : WSeq (Computation α) c✝ : Computation α h✝ : c✝ ∈ S✝ T✝ : c✝.Terminates n : ℕ IH : ∀ (l : List (Computation α)) (S : Stream'.Seq (Option (Computation α))) (c : Computation α), c ∈ l ∨ some (some c) = S.get? n → c.Terminates → (corec parallel.aux1 (l, S)).Terminates l : List (Computation α) S : Stream'.Seq (Option (Computation α)) c : Computation α T : c.Terminates a : some (some c) = S.get? (n + 1) l' : List (Computation α) h : parallel.aux2 l = Sum.inr l' C : corec parallel.aux1 (l, S) = (corec parallel.aux1 (match S.destruct with | none => (l', Seq.nil) | some (none, S') => (l', S') | some (some c, S') => (c :: l', S'))).think TT : ∀ (l' : List (Computation α)), (corec parallel.aux1 (l', S.tail)).Terminates e : S.get? 0 = none D : S.destruct = none ⊢ (corec parallel.aux1 (match none with | none => (l', Seq.nil) | some (none, S') => (l', S') | some (some c, S') => (c :: l', S'))).Terminates
b95c6ab968566afe
Finset.mem_image
Mathlib/Data/Finset/Image.lean
theorem mem_image : b ∈ s.image f ↔ ∃ a ∈ s, f a = b
α : Type u_1 β : Type u_2 inst✝ : DecidableEq β f : α → β s : Finset α b : β ⊢ b ∈ image f s ↔ ∃ a ∈ s, f a = b
simp only [mem_def, image_val, mem_dedup, Multiset.mem_map, exists_prop]
no goals
4632438d56323977
Subalgebra.SeparatesPoints.rclike_to_real
Mathlib/Topology/ContinuousMap/StoneWeierstrass.lean
theorem Subalgebra.SeparatesPoints.rclike_to_real {A : StarSubalgebra 𝕜 C(X, 𝕜)} (hA : A.SeparatesPoints) : ((A.restrictScalars ℝ).comap (ofRealAm.compLeftContinuous ℝ continuous_ofReal)).SeparatesPoints
case h 𝕜 : Type u_1 X : Type u_2 inst✝¹ : RCLike 𝕜 inst✝ : TopologicalSpace X A : StarSubalgebra 𝕜 C(X, 𝕜) hA : A.SeparatesPoints x₁ x₂ : X hx : x₁ ≠ x₂ f : C(X, 𝕜) hfA : f ∈ ↑A.toSubalgebra hf : (fun f => ⇑f) f x₁ ≠ (fun f => ⇑f) f x₂ F : C(X, 𝕜) := f - const X (f x₂) a✝ : X ⊢ (f x₂ • 1) a✝ = (const X (f x₂)) a✝
simp only [coe_smul, coe_one, smul_apply, one_apply, Algebra.id.smul_eq_mul, mul_one, const_apply]
no goals
bd04a32b97b71309
IsSepClosed.exists_root_C_mul_X_pow_add_C_mul_X_add_C
Mathlib/FieldTheory/IsSepClosed.lean
theorem exists_root_C_mul_X_pow_add_C_mul_X_add_C [IsSepClosed k] {n : ℕ} (a b c : k) (hn : (n : k) = 0) (hn' : 2 ≤ n) (hb : b ≠ 0) : ∃ x, a * x ^ n + b * x + c = 0
k : Type u inst✝¹ : Field k inst✝ : IsSepClosed k n : ℕ a b c : k hn : ↑n = 0 hn' : 2 ≤ n hb : b ≠ 0 f : k[X] := C a * X ^ n + C b * X + C c hdeg : f.degree ≠ 0 hsep : f.Separable ⊢ ∃ x, a * x ^ n + b * x + c = 0
obtain ⟨x, hx⟩ := exists_root f hdeg hsep
case intro k : Type u inst✝¹ : Field k inst✝ : IsSepClosed k n : ℕ a b c : k hn : ↑n = 0 hn' : 2 ≤ n hb : b ≠ 0 f : k[X] := C a * X ^ n + C b * X + C c hdeg : f.degree ≠ 0 hsep : f.Separable x : k hx : f.IsRoot x ⊢ ∃ x, a * x ^ n + b * x + c = 0
1f3e118ba5e9f6ba
tangentBundle_model_space_coe_chartAt_symm
Mathlib/Geometry/Manifold/VectorBundle/Tangent.lean
theorem tangentBundle_model_space_coe_chartAt_symm (p : TangentBundle I H) : ((chartAt (ModelProd H E) p).symm : ModelProd H E → TangentBundle I H) = (TotalSpace.toProd H E).symm
𝕜 : Type u_1 inst✝³ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E H : Type u_4 inst✝ : TopologicalSpace H I : ModelWithCorners 𝕜 E H p : TangentBundle I H ⊢ ↑(TotalSpace.toProd H E).toPartialEquiv.symm = ⇑(TotalSpace.toProd H E).symm
rfl
no goals
8796e6c99e525bf9
Set.pi_eq_empty_iff
Mathlib/Data/Set/Prod.lean
theorem pi_eq_empty_iff : s.pi t = ∅ ↔ ∃ i, IsEmpty (α i) ∨ i ∈ s ∧ t i = ∅
ι : Type u_1 α : ι → Type u_2 s : Set ι t : (i : ι) → Set (α i) ⊢ (¬∀ (i : ι), ∃ x, i ∈ s → x ∈ t i) ↔ ∃ i, IsEmpty (α i) ∨ i ∈ s ∧ t i = ∅
push_neg
ι : Type u_1 α : ι → Type u_2 s : Set ι t : (i : ι) → Set (α i) ⊢ (∃ i, ∀ (x : α i), i ∈ s ∧ x ∉ t i) ↔ ∃ i, IsEmpty (α i) ∨ i ∈ s ∧ t i = ∅
80c1016a8619f3f9
Finset.injOn_of_surjOn_of_card_le
Mathlib/Data/Finset/Card.lean
lemma injOn_of_surjOn_of_card_le (f : α → β) (hf : Set.MapsTo f s t) (hsurj : Set.SurjOn f s t) (hst : #s ≤ #t) : Set.InjOn f s
α : Type u_1 β : Type u_2 s : Finset α t : Finset β f : α → β hf : Set.MapsTo f ↑s ↑t hsurj : Set.SurjOn f ↑s ↑t hst : #s ≤ #t this✝¹ : image f s = t this✝ : #(image f s) = #t this : #(image f s) ≤ #s ⊢ #(image f s) = #s
omega
no goals
64e237fbcbdd78d5
padicValRat.lt_sum_of_lt
Mathlib/NumberTheory/Padics/PadicVal/Basic.lean
theorem lt_sum_of_lt {p j : ℕ} [hp : Fact (Nat.Prime p)] {F : ℕ → ℚ} {S : Finset ℕ} (hS : S.Nonempty) (hF : ∀ i, i ∈ S → padicValRat p (F j) < padicValRat p (F i)) (hn1 : ∀ i : ℕ, 0 < F i) : padicValRat p (F j) < padicValRat p (∑ i ∈ S, F i)
p j : ℕ hp : Fact (Nat.Prime p) F : ℕ → ℚ S : Finset ℕ hn1 : ∀ (i : ℕ), 0 < F i s : ℕ S' : Finset ℕ Hnot : s ∉ S' Hne : S'.Nonempty Hind : (∀ i ∈ S', padicValRat p (F j) < padicValRat p (F i)) → padicValRat p (F j) < padicValRat p (∑ i ∈ S', F i) hF : ∀ i ∈ Finset.cons s S' Hnot, padicValRat p (F j) < padicValRat p (F i) i : ℕ hi : i ∈ S' ⊢ i = s ∨ i ∈ S'
exact Or.inr hi
no goals
f5e32c7b1adff659
List.map_orderedInsert
Mathlib/Data/List/Sort.lean
theorem map_orderedInsert (f : α → β) (l : List α) (x : α) (hl₁ : ∀ a ∈ l, a ≼ x ↔ f a ≼ f x) (hl₂ : ∀ a ∈ l, x ≼ a ↔ f x ≼ f a) : (l.orderedInsert r x).map f = (l.map f).orderedInsert s (f x)
case cons α : Type u β : Type v r : α → α → Prop s : β → β → Prop inst✝¹ : DecidableRel r inst✝ : DecidableRel s f : α → β x✝ x : α xs : List α ih : (∀ a ∈ xs, r a x✝ ↔ s (f a) (f x✝)) → (∀ a ∈ xs, r x✝ a ↔ s (f x✝) (f a)) → map f (orderedInsert r x✝ xs) = orderedInsert s (f x✝) (map f xs) hl₁ : (r x x✝ ↔ s (f x) (f x✝)) ∧ ∀ x ∈ xs, r x x✝ ↔ s (f x) (f x✝) hl₂ : (r x✝ x ↔ s (f x✝) (f x)) ∧ ∀ x ∈ xs, r x✝ x ↔ s (f x✝) (f x) ⊢ map f (if r x✝ x then x✝ :: x :: xs else x :: orderedInsert r x✝ xs) = if r x✝ x then f x✝ :: f x :: map f xs else f x :: orderedInsert s (f x✝) (map f xs)
split_ifs
case pos α : Type u β : Type v r : α → α → Prop s : β → β → Prop inst✝¹ : DecidableRel r inst✝ : DecidableRel s f : α → β x✝ x : α xs : List α ih : (∀ a ∈ xs, r a x✝ ↔ s (f a) (f x✝)) → (∀ a ∈ xs, r x✝ a ↔ s (f x✝) (f a)) → map f (orderedInsert r x✝ xs) = orderedInsert s (f x✝) (map f xs) hl₁ : (r x x✝ ↔ s (f x) (f x✝)) ∧ ∀ x ∈ xs, r x x✝ ↔ s (f x) (f x✝) hl₂ : (r x✝ x ↔ s (f x✝) (f x)) ∧ ∀ x ∈ xs, r x✝ x ↔ s (f x✝) (f x) h✝ : r x✝ x ⊢ map f (x✝ :: x :: xs) = f x✝ :: f x :: map f xs case neg α : Type u β : Type v r : α → α → Prop s : β → β → Prop inst✝¹ : DecidableRel r inst✝ : DecidableRel s f : α → β x✝ x : α xs : List α ih : (∀ a ∈ xs, r a x✝ ↔ s (f a) (f x✝)) → (∀ a ∈ xs, r x✝ a ↔ s (f x✝) (f a)) → map f (orderedInsert r x✝ xs) = orderedInsert s (f x✝) (map f xs) hl₁ : (r x x✝ ↔ s (f x) (f x✝)) ∧ ∀ x ∈ xs, r x x✝ ↔ s (f x) (f x✝) hl₂ : (r x✝ x ↔ s (f x✝) (f x)) ∧ ∀ x ∈ xs, r x✝ x ↔ s (f x✝) (f x) h✝ : ¬r x✝ x ⊢ map f (x :: orderedInsert r x✝ xs) = f x :: orderedInsert s (f x✝) (map f xs)
516a054b6e3caddb
CategoryTheory.GrothendieckTopology.MayerVietorisSquare.SheafCondition.bijective_toPullbackObj
Mathlib/CategoryTheory/Sites/MayerVietorisSquare.lean
lemma bijective_toPullbackObj : Function.Bijective (S.toPullbackObj P)
C : Type u inst✝¹ : Category.{v, u} C J : GrothendieckTopology C inst✝ : HasWeakSheafify J (Type v) S : J.MayerVietorisSquare P : Cᵒᵖ ⥤ Type v' h : S.SheafCondition P ⊢ Function.Bijective (S.toPullbackObj P)
rwa [← sheafCondition_iff_bijective_toPullbackObj]
no goals
9619a9c04ac7eded
List.Perm.dropSlice_inter
Mathlib/Data/List/Perm/Lattice.lean
theorem Perm.dropSlice_inter {xs ys : List α} (n m : ℕ) (h : xs ~ ys) (h' : ys.Nodup) : List.dropSlice n m xs ~ ys ∩ List.dropSlice n m xs
α : Type u_1 inst✝ : DecidableEq α xs ys : List α n m : ℕ h : xs ~ ys h' : ys.Nodup this : n ≤ n + m ⊢ take n xs ++ drop (n + m) xs ~ ys ∩ (take n xs ++ drop (n + m) xs)
have h₂ := h.nodup_iff.2 h'
α : Type u_1 inst✝ : DecidableEq α xs ys : List α n m : ℕ h : xs ~ ys h' : ys.Nodup this : n ≤ n + m h₂ : xs.Nodup ⊢ take n xs ++ drop (n + m) xs ~ ys ∩ (take n xs ++ drop (n + m) xs)
6eb3e2973d049b65
SeminormFamily.basisSets_zero
Mathlib/Analysis/LocallyConvex/WithSeminorms.lean
theorem basisSets_zero (U) (hU : U ∈ p.basisSets) : (0 : E) ∈ U
case intro.intro.intro 𝕜 : Type u_1 E : Type u_5 ι : Type u_8 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p : SeminormFamily 𝕜 E ι U : Set E hU✝ : U ∈ p.basisSets ι' : Finset ι r : ℝ hr : 0 < r hU : U = (ι'.sup p).ball 0 r ⊢ 0 ∈ U
rw [hU, mem_ball_zero, map_zero]
case intro.intro.intro 𝕜 : Type u_1 E : Type u_5 ι : Type u_8 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p : SeminormFamily 𝕜 E ι U : Set E hU✝ : U ∈ p.basisSets ι' : Finset ι r : ℝ hr : 0 < r hU : U = (ι'.sup p).ball 0 r ⊢ 0 < r
ee3cc5ec86a6eab4
AlgebraicGeometry.germ_stalkClosedPointIso_hom
Mathlib/AlgebraicGeometry/Stalk.lean
@[reassoc (attr := simp)] lemma germ_stalkClosedPointIso_hom : (Spec R).presheaf.germ ⊤ (closedPoint _) trivial ≫ (stalkClosedPointIso R).hom = (Scheme.ΓSpecIso R).hom
R : CommRingCat inst✝ : IsLocalRing ↑R ⊢ (Spec R).presheaf.germ ⊤ (closedPoint ↑R) trivial ≫ (stalkClosedPointIso R).hom = (Scheme.ΓSpecIso R).hom
rw [← ΓSpecIso_hom_stalkClosedPointIso_inv, Category.assoc, Iso.inv_hom_id, Category.comp_id]
no goals
206b085eee6546c7
AddMonoidAlgebra.mul_of'_modOf
Mathlib/Algebra/MonoidAlgebra/Division.lean
theorem mul_of'_modOf (x : k[G]) (g : G) : x * of' k G g %ᵒᶠ g = 0
case H k : Type u_1 G : Type u_2 inst✝¹ : Semiring k inst✝ : AddCancelCommMonoid G x : k[G] g g' : G ⊢ (x * of' k G g %ᵒᶠ g) g' = 0
obtain ⟨d, rfl⟩ | h := em (∃ d, g' = g + d)
case H.inl.intro k : Type u_1 G : Type u_2 inst✝¹ : Semiring k inst✝ : AddCancelCommMonoid G x : k[G] g d : G ⊢ (x * of' k G g %ᵒᶠ g) (g + d) = 0 case H.inr k : Type u_1 G : Type u_2 inst✝¹ : Semiring k inst✝ : AddCancelCommMonoid G x : k[G] g g' : G h : ¬∃ d, g' = g + d ⊢ (x * of' k G g %ᵒᶠ g) g' = 0
746a91a884eb3ea6
Matrix.conjTranspose_mul_self_mul_eq_zero
Mathlib/LinearAlgebra/Matrix/DotProduct.lean
lemma conjTranspose_mul_self_mul_eq_zero {p} (A : Matrix m n R) (B : Matrix n p R) : (Aᴴ * A) * B = 0 ↔ A * B = 0
m : Type u_1 n : Type u_2 R : Type u_4 inst✝⁶ : Fintype m inst✝⁵ : Fintype n inst✝⁴ : PartialOrder R inst✝³ : NonUnitalRing R inst✝² : StarRing R inst✝¹ : StarOrderedRing R inst✝ : NoZeroDivisors R p : Type u_5 A : Matrix m n R B : Matrix n p R h : Bᴴ * (Aᴴ * A * B) = Bᴴ * 0 ⊢ A * B = 0
rwa [Matrix.mul_zero, Matrix.mul_assoc, ← Matrix.mul_assoc, ← conjTranspose_mul, conjTranspose_mul_self_eq_zero] at h
no goals
4f2a91332cdad436
ConvexOn.lipschitzOnWith_of_abs_le
Mathlib/Analysis/Convex/Continuous.lean
lemma ConvexOn.lipschitzOnWith_of_abs_le (hf : ConvexOn ℝ (ball x₀ r) f) (hε : 0 < ε) (hM : ∀ a, dist a x₀ < r → |f a| ≤ M) : LipschitzOnWith (2 * M / ε).toNNReal f (ball x₀ (r - ε))
E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E f : E → ℝ x₀ : E ε r M : ℝ hf : ConvexOn ℝ (ball x₀ r) f hε : 0 < ε hM : ∀ (a : E), dist a x₀ < r → |f a| ≤ M K : ℝ := 2 * M / ε hK : K = 2 * M / ε x y : E hx : x ∈ ball x₀ (r - ε) hy : y ∈ ball x₀ (r - ε) hx₀r : ball x₀ (r - ε) ⊆ ball x₀ r hx' : x ∈ ball x₀ r hy' : y ∈ ball x₀ r z : E := x + (ε / ‖x - y‖) • (x - y) hxy : 0 < ‖x - y‖ hz : z ∈ ball x₀ r a : ℝ := ε / (ε + ‖x - y‖) b : ℝ := ‖x - y‖ / (ε + ‖x - y‖) hab : a + b = 1 hxyz : x = a • y + b • z ⊢ 0 ≤ b
positivity
no goals
f794e80453a6298e
isLocalMax_of_deriv_Ioo
Mathlib/Analysis/Calculus/FirstDerivativeTest.lean
/-- The First-Derivative Test from calculus, maxima version. Suppose `a < b < c`, `f : ℝ → ℝ` is continuous at `b`, the derivative `f'` is nonnegative on `(a,b)`, and the derivative `f'` is nonpositive on `(b,c)`. Then `f` has a local maximum at `a`. -/ lemma isLocalMax_of_deriv_Ioo {f : ℝ → ℝ} {a b c : ℝ} (g₀ : a < b) (g₁ : b < c) (h : ContinuousAt f b) (hd₀ : DifferentiableOn ℝ f (Ioo a b)) (hd₁ : DifferentiableOn ℝ f (Ioo b c)) (h₀ : ∀ x ∈ Ioo a b, 0 ≤ deriv f x) (h₁ : ∀ x ∈ Ioo b c, deriv f x ≤ 0) : IsLocalMax f b := have hIoc : ContinuousOn f (Ioc a b) := Ioo_union_right g₀ ▸ hd₀.continuousOn.union_continuousAt (isOpen_Ioo (a := a) (b := b)) (by simp_all) have hIco : ContinuousOn f (Ico b c) := Ioo_union_left g₁ ▸ hd₁.continuousOn.union_continuousAt (isOpen_Ioo (a := b) (b := c)) (by simp_all) isLocalMax_of_mono_anti g₀ g₁ (monotoneOn_of_deriv_nonneg (convex_Ioc a b) hIoc (by simp_all) (by simp_all)) (antitoneOn_of_deriv_nonpos (convex_Ico b c) hIco (by simp_all) (by simp_all))
f : ℝ → ℝ a b c : ℝ g₀ : a < b g₁ : b < c h : ContinuousAt f b hd₀ : DifferentiableOn ℝ f (Ioo a b) hd₁ : DifferentiableOn ℝ f (Ioo b c) h₀ : ∀ x ∈ Ioo a b, 0 ≤ deriv f x h₁ : ∀ x ∈ Ioo b c, deriv f x ≤ 0 hIoc : ContinuousOn f (Ioc a b) hIco : ContinuousOn f (Ico b c) ⊢ DifferentiableOn ℝ f (interior (Ioc a b))
simp_all
no goals
8e32ca355c9dee01
TopologicalSpace.nhds_generateFrom
Mathlib/Topology/Order.lean
theorem nhds_generateFrom {g : Set (Set α)} {a : α} : @nhds α (generateFrom g) a = ⨅ s ∈ { s | a ∈ s ∧ s ∈ g }, 𝓟 s
α : Type u g : Set (Set α) a : α this : TopologicalSpace α := generateFrom g ⊢ 𝓝 a = ⨅ s ∈ {s | a ∈ s ∧ s ∈ g}, 𝓟 s
rw [nhds_def]
α : Type u g : Set (Set α) a : α this : TopologicalSpace α := generateFrom g ⊢ ⨅ s ∈ {s | a ∈ s ∧ IsOpen s}, 𝓟 s = ⨅ s ∈ {s | a ∈ s ∧ s ∈ g}, 𝓟 s
658fd288ee295c79
MeasureTheory.setLIntegral_tilted
Mathlib/MeasureTheory/Measure/Tilted.lean
lemma setLIntegral_tilted [SFinite μ] (f : α → ℝ) (g : α → ℝ≥0∞) (s : Set α) : ∫⁻ x in s, g x ∂(μ.tilted f) = ∫⁻ x in s, ENNReal.ofReal (exp (f x) / ∫ x, exp (f x) ∂μ) * g x ∂μ
case pos α : Type u_1 mα : MeasurableSpace α μ : Measure α inst✝ : SFinite μ f : α → ℝ g : α → ℝ≥0∞ s : Set α hf : AEMeasurable f μ ⊢ ∫⁻ (a : α) in s, ((fun x => ENNReal.ofReal (rexp (f x) / ∫ (x : α), rexp (f x) ∂μ)) * g) a ∂μ = ∫⁻ (x : α) in s, ENNReal.ofReal (rexp (f x) / ∫ (x : α), rexp (f x) ∂μ) * g x ∂μ
simp only [Pi.mul_apply]
no goals
2d68f42b681337c9
AlgebraicGeometry.isIntegral_of_isOpenImmersion
Mathlib/AlgebraicGeometry/Properties.lean
theorem isIntegral_of_isOpenImmersion {X Y : Scheme} (f : X ⟶ Y) [H : IsOpenImmersion f] [IsIntegral Y] [Nonempty X] : IsIntegral X
X Y : Scheme f : X ⟶ Y H : IsOpenImmersion f inst✝¹ : IsIntegral Y inst✝ : Nonempty ↑↑X.toPresheafedSpace ⊢ IsIntegral X
constructor
case nonempty X Y : Scheme f : X ⟶ Y H : IsOpenImmersion f inst✝¹ : IsIntegral Y inst✝ : Nonempty ↑↑X.toPresheafedSpace ⊢ autoParam (Nonempty ↑↑X.toPresheafedSpace) _auto✝ case component_integral X Y : Scheme f : X ⟶ Y H : IsOpenImmersion f inst✝¹ : IsIntegral Y inst✝ : Nonempty ↑↑X.toPresheafedSpace ⊢ autoParam (∀ (U : X.Opens) [inst : Nonempty ↑↑(↑U).toPresheafedSpace], IsDomain ↑Γ(X, U)) _auto✝
d1ee1e1bef31e6c7
Set.exists_superset_subset_encard_eq
Mathlib/Data/Set/Card.lean
theorem exists_superset_subset_encard_eq {k : ℕ∞} (hst : s ⊆ t) (hsk : s.encard ≤ k) (hkt : k ≤ t.encard) : ∃ r, s ⊆ r ∧ r ⊆ t ∧ r.encard = k
case inr.intro.intro.intro.intro α : Type u_1 s t : Set α hst : s ⊆ t hs : s.encard ≠ ⊤ k' : ℕ∞ r' : Set α hr' : r' ⊆ t \ s hsk : s.encard ≤ s.encard + r'.encard hkt : s.encard + r'.encard ≤ t.encard hk' : t.encard = s.encard + r'.encard + k' hk : r'.encard ≤ (t \ s).encard ⊢ ∃ r, s ⊆ r ∧ r ⊆ t ∧ r.encard = s.encard + r'.encard
refine ⟨s ∪ r', subset_union_left, union_subset hst (hr'.trans diff_subset), ?_⟩
case inr.intro.intro.intro.intro α : Type u_1 s t : Set α hst : s ⊆ t hs : s.encard ≠ ⊤ k' : ℕ∞ r' : Set α hr' : r' ⊆ t \ s hsk : s.encard ≤ s.encard + r'.encard hkt : s.encard + r'.encard ≤ t.encard hk' : t.encard = s.encard + r'.encard + k' hk : r'.encard ≤ (t \ s).encard ⊢ (s ∪ r').encard = s.encard + r'.encard
1897db25f460fe99
List.dropWhile_filter
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/TakeDrop.lean
theorem dropWhile_filter (p q : α → Bool) (l : List α) : (l.filter p).dropWhile q = (l.dropWhile fun a => !p a || q a).filter p
α : Type u_1 p q : α → Bool l : List α ⊢ dropWhile q (filter p l) = filter p (dropWhile (fun a => !p a || q a) l)
simp [← filterMap_eq_filter, dropWhile_filterMap]
no goals
0c44eef09025b4de
hasStrictDerivAt_zpow
Mathlib/Analysis/Calculus/Deriv/ZPow.lean
theorem hasStrictDerivAt_zpow (m : ℤ) (x : 𝕜) (h : x ≠ 0 ∨ 0 ≤ m) : HasStrictDerivAt (fun x => x ^ m) ((m : 𝕜) * x ^ (m - 1)) x
case h.e'_9.e_a.e_a 𝕜 : Type u inst✝ : NontriviallyNormedField 𝕜 m : ℤ x : 𝕜 h : x ≠ 0 ∨ 0 ≤ m this✝ : ∀ (m : ℤ), 0 < m → HasStrictDerivAt (fun x => x ^ m) (↑m * x ^ (m - 1)) x hm : m < 0 hx : x ≠ 0 this : HasStrictDerivAt (fun x => x ^ m) (↑(-m) * x ^ (-m - 1) * -((x ^ m)⁻¹ ^ 2)⁻¹) x ⊢ m - 1 = -m - 1 + (m + m)
abel
no goals
c222b9aa15688dc1
LowerSet.sdiff_sup_lowerClosure
Mathlib/Order/UpperLower/Basic.lean
lemma sdiff_sup_lowerClosure (hts : t ⊆ s) (hst : ∀ b ∈ s, ∀ c ∈ t, c ≤ b → b ∈ t) : s.sdiff t ⊔ lowerClosure t = s
case inr α : Type u_1 inst✝ : Preorder α s : LowerSet α t : Set α hts : t ⊆ ↑s hst : ∀ b ∈ s, ∀ c ∈ t, c ≤ b → b ∈ t a : α ha : a ∈ ↑s hat : a ∉ t ⊢ a ∉ ↑(upperClosure t)
rintro ⟨b, hb, hba⟩
case inr.intro.intro α : Type u_1 inst✝ : Preorder α s : LowerSet α t : Set α hts : t ⊆ ↑s hst : ∀ b ∈ s, ∀ c ∈ t, c ≤ b → b ∈ t a : α ha : a ∈ ↑s hat : a ∉ t b : α hb : b ∈ t hba : b ≤ a ⊢ False
727f3e5c7c505993
Profinite.exists_isClopen_of_cofiltered
Mathlib/Topology/Category/Profinite/CofilteredLimit.lean
theorem exists_isClopen_of_cofiltered {U : Set C.pt} (hC : IsLimit C) (hU : IsClopen U) : ∃ (j : J) (V : Set (F.obj j)), IsClopen V ∧ U = C.π.app j ⁻¹' V
case refine_2 J : Type v inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F U : Set ↑C.pt.toTop hC : IsLimit C hU : IsClopen U i j : J f : i ⟶ j V : Set ↑((F ⋙ toTopCat).obj j) hV : IsClopen V ⊢ ⇑(ConcreteCategory.hom ((F ⋙ toTopCat).map f)) ⁻¹' V ∈ (fun j => {W | IsClopen W}) i
exact ⟨hV.1.preimage ((F ⋙ toTopCat).map f).hom.continuous, hV.2.preimage ((F ⋙ toTopCat).map f).hom.continuous⟩
no goals
0fb8cdb8a6309b67
Set.MapsTo.restrict_inj
Mathlib/Data/Set/Function.lean
theorem MapsTo.restrict_inj (h : MapsTo f s t) : Injective (h.restrict f s t) ↔ InjOn f s
α : Type u_1 β : Type u_2 s : Set α t : Set β f : α → β h : MapsTo f s t ⊢ Injective (restrict f s t h) ↔ InjOn f s
rw [h.restrict_eq_codRestrict, injective_codRestrict, injOn_iff_injective]
no goals
816cd1014af11570
CategoryTheory.eHom_whisker_cancel
Mathlib/CategoryTheory/Enriched/Ordinary/Basic.lean
/-- Given an isomorphism `α : Y ≅ Y₁` in C, the enriched composition map `eComp V X Y Z : (X ⟶[V] Y) ⊗ (Y ⟶[V] Z) ⟶ (X ⟶[V] Z)` factors through the `V` object `(X ⟶[V] Y₁) ⊗ (Y₁ ⟶[V] Z)` via the map defined by whiskering in the middle with `α.hom` and `α.inv`. -/ @[reassoc] lemma eHom_whisker_cancel {X Y Y₁ Z : C} (α : Y ≅ Y₁) : eHomWhiskerLeft V X α.hom ▷ _ ≫ _ ◁ eHomWhiskerRight V α.inv Z ≫ eComp V X Y₁ Z = eComp V X Y Z
V : Type u' inst✝³ : Category.{v', u'} V inst✝² : MonoidalCategory V C : Type u inst✝¹ : Category.{v, u} C inst✝ : EnrichedOrdinaryCategory V C X Y Y₁ Z : C α : Y ≅ Y₁ ⊢ (((ρ_ (EnrichedCategory.Hom X Y)).inv ≫ EnrichedCategory.Hom X Y ◁ (eHomEquiv V) α.hom ≫ eComp V X Y Y₁) ≫ (ρ_ (EnrichedCategory.Hom X Y₁)).inv ≫ EnrichedCategory.Hom X Y₁ ◁ (eHomEquiv V) α.inv ≫ eComp V X Y₁ Y) ▷ EnrichedCategory.Hom Y Z ≫ eComp V X Y Z = eComp V X Y Z
change (eHomWhiskerLeft V X α.hom ≫ eHomWhiskerLeft V X α.inv) ▷ _ ≫ _ = _
V : Type u' inst✝³ : Category.{v', u'} V inst✝² : MonoidalCategory V C : Type u inst✝¹ : Category.{v, u} C inst✝ : EnrichedOrdinaryCategory V C X Y Y₁ Z : C α : Y ≅ Y₁ ⊢ (eHomWhiskerLeft V X α.hom ≫ eHomWhiskerLeft V X α.inv) ▷ EnrichedCategory.Hom Y Z ≫ eComp V X Y Z = eComp V X Y Z
651af7bfc1e40d25
aemeasurable_add_measure_iff
Mathlib/MeasureTheory/Measure/AEMeasurable.lean
theorem _root_.aemeasurable_add_measure_iff : AEMeasurable f (μ + ν) ↔ AEMeasurable f μ ∧ AEMeasurable f ν
α : Type u_2 β : Type u_3 m0 : MeasurableSpace α inst✝ : MeasurableSpace β f : α → β μ ν : Measure α ⊢ AEMeasurable f (μ + ν) ↔ AEMeasurable f μ ∧ AEMeasurable f ν
rw [← sum_cond, aemeasurable_sum_measure_iff, Bool.forall_bool, and_comm]
α : Type u_2 β : Type u_3 m0 : MeasurableSpace α inst✝ : MeasurableSpace β f : α → β μ ν : Measure α ⊢ AEMeasurable f (bif true then μ else ν) ∧ AEMeasurable f (bif false then μ else ν) ↔ AEMeasurable f μ ∧ AEMeasurable f ν
a88eb6032f3277f5
Measurable.piecewise
Mathlib/MeasureTheory/MeasurableSpace/Basic.lean
theorem Measurable.piecewise {_ : DecidablePred (· ∈ s)} (hs : MeasurableSet s) (hf : Measurable f) (hg : Measurable g) : Measurable (piecewise s f g)
α : Type u_1 β : Type u_2 s : Set α f g : α → β m : MeasurableSpace α mβ : MeasurableSpace β x✝ : DecidablePred fun x => x ∈ s hs : MeasurableSet s hf : Measurable f hg : Measurable g t : Set β ht : MeasurableSet t ⊢ MeasurableSet (s.ite (f ⁻¹' t) (g ⁻¹' t))
exact hs.ite (hf ht) (hg ht)
no goals
8f6f4e30f872c5e0
Part.mem_chain_of_mem_ωSup
Mathlib/Order/OmegaCompletePartialOrder.lean
theorem mem_chain_of_mem_ωSup {c : Chain (Part α)} {a : α} (h : a ∈ Part.ωSup c) : some a ∈ c
α : Type u_2 c : Chain (Part α) a : α h : a ∈ Part.ωSup c ⊢ some a ∈ c
simp only [Part.ωSup] at h
α : Type u_2 c : Chain (Part α) a : α h : a ∈ if h : ∃ a, some a ∈ c then some (Classical.choose h) else none ⊢ some a ∈ c
3ffe6431a6dc63d9
MeasureTheory.LocallyIntegrableOn.exists_nat_integrableOn
Mathlib/MeasureTheory/Function/LocallyIntegrable.lean
theorem LocallyIntegrableOn.exists_nat_integrableOn [SecondCountableTopology X] (hf : LocallyIntegrableOn f s μ) : ∃ u : ℕ → Set X, (∀ n, IsOpen (u n)) ∧ (s ⊆ ⋃ n, u n) ∧ (∀ n, IntegrableOn f (u n ∩ s) μ)
X : Type u_1 E : Type u_3 inst✝³ : MeasurableSpace X inst✝² : TopologicalSpace X inst✝¹ : NormedAddCommGroup E f : X → E μ : Measure X s : Set X inst✝ : SecondCountableTopology X hf : LocallyIntegrableOn f s μ T : Set (Set X) T_count : T.Countable T_open : ∀ u ∈ T, IsOpen u sT : s ⊆ ⋃ u ∈ T, u hT : ∀ u ∈ T, IntegrableOn f (u ∩ s) μ T' : Set (Set X) := insert ∅ T T'_count : T'.Countable T'_ne : T'.Nonempty u : ℕ → Set X hu : T' = range u x : X hx : x ∈ s v : Set X hv : v ∈ T h'v : x ∈ v ⊢ v ∈ range u
rw [← hu]
X : Type u_1 E : Type u_3 inst✝³ : MeasurableSpace X inst✝² : TopologicalSpace X inst✝¹ : NormedAddCommGroup E f : X → E μ : Measure X s : Set X inst✝ : SecondCountableTopology X hf : LocallyIntegrableOn f s μ T : Set (Set X) T_count : T.Countable T_open : ∀ u ∈ T, IsOpen u sT : s ⊆ ⋃ u ∈ T, u hT : ∀ u ∈ T, IntegrableOn f (u ∩ s) μ T' : Set (Set X) := insert ∅ T T'_count : T'.Countable T'_ne : T'.Nonempty u : ℕ → Set X hu : T' = range u x : X hx : x ∈ s v : Set X hv : v ∈ T h'v : x ∈ v ⊢ v ∈ T'
7d50e417c306b9b4
ProbabilityTheory.gaussianReal_const_mul
Mathlib/Probability/Distributions/Gaussian.lean
/-- If `X` is a real random variable with Gaussian law with mean `μ` and variance `v`, then `c * X` has Gaussian law with mean `c * μ` and variance `c^2 * v`. -/ lemma gaussianReal_const_mul {X : Ω → ℝ} (hX : Measure.map X ℙ = gaussianReal μ v) (c : ℝ) : Measure.map (fun ω ↦ c * X ω) ℙ = gaussianReal (c * μ) (⟨c^2, sq_nonneg _⟩ * v)
μ : ℝ v : ℝ≥0 Ω : Type inst✝ : MeasureSpace Ω X : Ω → ℝ hX : Measure.map X ℙ = gaussianReal μ v c : ℝ ⊢ Measure.map (fun ω => c * X ω) ℙ = gaussianReal (c * μ) (⟨c ^ 2, ⋯⟩ * v)
have hXm : AEMeasurable X := aemeasurable_of_map_neZero (by rw [hX]; infer_instance)
μ : ℝ v : ℝ≥0 Ω : Type inst✝ : MeasureSpace Ω X : Ω → ℝ hX : Measure.map X ℙ = gaussianReal μ v c : ℝ hXm : AEMeasurable X ℙ ⊢ Measure.map (fun ω => c * X ω) ℙ = gaussianReal (c * μ) (⟨c ^ 2, ⋯⟩ * v)
a890cf9da6070524
CategoryTheory.Functor.map_opShiftFunctorEquivalence_unitIso_inv_app_unop
Mathlib/CategoryTheory/Triangulated/Opposite/Functor.lean
@[reassoc] lemma map_opShiftFunctorEquivalence_unitIso_inv_app_unop (X : Cᵒᵖ) (n : ℤ) : F.map ((opShiftFunctorEquivalence C n).unitIso.inv.app X).unop = ((opShiftFunctorEquivalence D n).unitIso.inv.app (op (F.obj X.unop))).unop ≫ (((F.op).commShiftIso n).hom.app X).unop⟦n⟧' ≫ ((F.commShiftIso n).inv.app _)
C : Type u_1 D : Type u_2 inst✝⁴ : Category.{u_4, u_1} C inst✝³ : Category.{u_3, u_2} D inst✝² : HasShift C ℤ inst✝¹ : HasShift D ℤ F : C ⥤ D inst✝ : F.CommShift ℤ X : Cᵒᵖ n : ℤ ⊢ F.map (𝟙 ((𝟭 Cᵒᵖ).obj X)).unop = ((opShiftFunctorEquivalence D n).unitIso.inv.app (op (F.obj (unop X)))).unop ≫ (shiftFunctor D n).map ((F.op.commShiftIso n).inv.app X ≫ (F.op.commShiftIso n).hom.app X).unop ≫ ((opShiftFunctorEquivalence D n).unitIso.hom.app (op (F.obj (unop X)))).unop
simp
no goals
37d63bf51b1caab7
Order.Iic_subset_Iio_succ
Mathlib/Order/SuccPred/Basic.lean
theorem Iic_subset_Iio_succ (a : α) : Iic a ⊆ Iio (succ a)
α : Type u_1 inst✝² : Preorder α inst✝¹ : SuccOrder α inst✝ : NoMaxOrder α a : α ⊢ Iic a ⊆ Iio (succ a)
simp
no goals
347e573a04a53ef2
LinearMap.BilinForm.toQuadraticMap_isOrtho
Mathlib/LinearAlgebra/QuadraticForm/Basic.lean
theorem _root_.LinearMap.BilinForm.toQuadraticMap_isOrtho [IsCancelAdd R] [NoZeroDivisors R] [CharZero R] {B : BilinMap R M R} {x y : M} (h : B.IsSymm) : B.toQuadraticMap.IsOrtho x y ↔ B.IsOrtho x y
R : Type u_3 M : Type u_4 inst✝⁵ : CommSemiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : IsCancelAdd R inst✝¹ : NoZeroDivisors R inst✝ : CharZero R B : BilinMap R M R x y : M h : LinearMap.IsSymm B this : AddCancelMonoid R := let __src := inst✝²; let __src_1 := inferInstanceAs (AddCommMonoid R); AddCancelMonoid.mk ⋯ ⊢ B.toQuadraticMap.IsOrtho x y ↔ LinearMap.IsOrtho B x y
simp_rw [isOrtho_def, LinearMap.isOrtho_def, B.toQuadraticMap_apply, map_add, LinearMap.add_apply, add_comm _ (B y y), add_add_add_comm _ _ (B y y), add_comm (B y y)]
R : Type u_3 M : Type u_4 inst✝⁵ : CommSemiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : IsCancelAdd R inst✝¹ : NoZeroDivisors R inst✝ : CharZero R B : BilinMap R M R x y : M h : LinearMap.IsSymm B this : AddCancelMonoid R := let __src := inst✝²; let __src_1 := inferInstanceAs (AddCommMonoid R); AddCancelMonoid.mk ⋯ ⊢ (B x) x + (B y) y + ((B y) x + (B x) y) = (B x) x + (B y) y ↔ (B x) y = 0
3f0621dd0d52a0f6
BitVec.ofInt_mul
Mathlib/.lake/packages/lean4/src/lean/Init/Data/BitVec/Lemmas.lean
theorem ofInt_mul {n} (x y : Int) : BitVec.ofInt n (x * y) = BitVec.ofInt n x * BitVec.ofInt n y
case a n : Nat x y : Int ⊢ (BitVec.ofInt n (x * y)).toInt = (BitVec.ofInt n x * BitVec.ofInt n y).toInt
simp
no goals
4a695bf3af345d85
CategoryTheory.GrothendieckTopology.Plus.exists_of_sep
Mathlib/CategoryTheory/Sites/ConcreteSheafification.lean
theorem exists_of_sep (P : Cᵒᵖ ⥤ D) (hsep : ∀ (X : C) (S : J.Cover X) (x y : ToType (P.obj (op X))), (∀ I : S.Arrow, P.map I.f.op x = P.map I.f.op y) → x = y) (X : C) (S : J.Cover X) (s : Meq (J.plusObj P) S) : ∃ t : ToType ((J.plusObj P).obj (op X)), Meq.mk S t = s
C : Type u inst✝⁶ : Category.{v, u} C J : GrothendieckTopology C D : Type w inst✝⁵ : Category.{max v u, w} D FD : D → D → Type u_1 CD : D → Type (max v u) inst✝⁴ : (X Y : D) → FunLike (FD X Y) (CD X) (CD Y) instCC : ConcreteCategory D FD inst✝³ : PreservesLimits (forget D) inst✝² : ∀ (X : C), HasColimitsOfShape (J.Cover X)ᵒᵖ D inst✝¹ : ∀ (P : Cᵒᵖ ⥤ D) (X : C) (S : J.Cover X), HasMultiequalizer (S.index P) inst✝ : ∀ (X : C), PreservesColimitsOfShape (J.Cover X)ᵒᵖ (forget D) P : Cᵒᵖ ⥤ D hsep : ∀ (X : C) (S : J.Cover X) (x y : ToType (P.obj (op X))), (∀ (I : S.Arrow), (ConcreteCategory.hom (P.map I.f.op)) x = (ConcreteCategory.hom (P.map I.f.op)) y) → x = y X : C S : J.Cover X s : Meq (J.plusObj P) S ⊢ ∃ t, Meq.mk S t = s
have inj : ∀ X : C, Function.Injective ((J.toPlus P).app (op X)) := inj_of_sep _ hsep
C : Type u inst✝⁶ : Category.{v, u} C J : GrothendieckTopology C D : Type w inst✝⁵ : Category.{max v u, w} D FD : D → D → Type u_1 CD : D → Type (max v u) inst✝⁴ : (X Y : D) → FunLike (FD X Y) (CD X) (CD Y) instCC : ConcreteCategory D FD inst✝³ : PreservesLimits (forget D) inst✝² : ∀ (X : C), HasColimitsOfShape (J.Cover X)ᵒᵖ D inst✝¹ : ∀ (P : Cᵒᵖ ⥤ D) (X : C) (S : J.Cover X), HasMultiequalizer (S.index P) inst✝ : ∀ (X : C), PreservesColimitsOfShape (J.Cover X)ᵒᵖ (forget D) P : Cᵒᵖ ⥤ D hsep : ∀ (X : C) (S : J.Cover X) (x y : ToType (P.obj (op X))), (∀ (I : S.Arrow), (ConcreteCategory.hom (P.map I.f.op)) x = (ConcreteCategory.hom (P.map I.f.op)) y) → x = y X : C S : J.Cover X s : Meq (J.plusObj P) S inj : ∀ (X : C), Function.Injective ⇑(ConcreteCategory.hom ((J.toPlus P).app (op X))) ⊢ ∃ t, Meq.mk S t = s
adc5a5926d46b74e
Matroid.closure_insert_closure_eq_closure_insert
Mathlib/Data/Matroid/Closure.lean
@[simp] lemma closure_insert_closure_eq_closure_insert (M : Matroid α) (e : α) (X : Set α) : M.closure (insert e (M.closure X)) = M.closure (insert e X)
α : Type u_2 M : Matroid α e : α X : Set α ⊢ M.closure (insert e (M.closure X)) = M.closure (insert e X)
simp_rw [← singleton_union, closure_union_closure_right_eq]
no goals
4c9deaa38576e877
CategoryTheory.FintypeCat.Action.pretransitive_of_isConnected
Mathlib/CategoryTheory/Galois/Examples.lean
theorem Action.pretransitive_of_isConnected (X : Action FintypeCat G) [IsConnected X] : MulAction.IsPretransitive G X.V where exists_smul_eq x y
case h G : Type u inst✝¹ : Group G X : Action FintypeCat G inst✝ : IsConnected X x y : X.V.carrier T : Set X.V.carrier := MulAction.orbit G x this✝² : Fintype ↑T this✝¹ : MulAction G (FintypeCat.of ↑T).carrier := inferInstanceAs (MulAction G ↑(MulAction.orbit G x)) T' : Action FintypeCat G := Action.FintypeCat.ofMulAction G (FintypeCat.of ↑T) i : T' ⟶ X := { hom := Subtype.val, comm := ⋯ } this✝ : Mono i this : IsIso i hb : Function.Bijective i.hom y' : X.V.carrier g : G hg : g • x = y' hy' : y' = y ⊢ g • x = y
exact hg.trans hy'
no goals
b8f6bd012ef672f6
SimpleGraph.Walk.nodup_tail_support_reverse
Mathlib/Combinatorics/SimpleGraph/Walk.lean
theorem nodup_tail_support_reverse {u : V} {p : G.Walk u u} : p.reverse.support.tail.Nodup ↔ p.support.tail.Nodup
V : Type u G : SimpleGraph V u : V p : G.Walk u u ⊢ 0 ≤ p.length
omega
no goals
afd639d7e42502db
Set.mem_Icc_Ico_Ioc_Ioo_of_subset_of_subset
Mathlib/Order/Interval/Set/Basic.lean
theorem mem_Icc_Ico_Ioc_Ioo_of_subset_of_subset {s : Set α} (ho : Ioo a b ⊆ s) (hc : s ⊆ Icc a b) : s ∈ ({Icc a b, Ico a b, Ioc a b, Ioo a b} : Set (Set α))
case pos α : Type u_1 inst✝ : PartialOrder α a b : α s : Set α ho : Ioo a b ⊆ s hc : s ⊆ Icc a b ha : a ∉ s hb : b ∈ s ⊢ s ∈ {Icc a b, Ico a b, Ioc a b, Ioo a b}
refine Or.inr <| Or.inr <| Or.inl <| Subset.antisymm ?_ ?_
case pos.refine_1 α : Type u_1 inst✝ : PartialOrder α a b : α s : Set α ho : Ioo a b ⊆ s hc : s ⊆ Icc a b ha : a ∉ s hb : b ∈ s ⊢ s ⊆ Ioc a b case pos.refine_2 α : Type u_1 inst✝ : PartialOrder α a b : α s : Set α ho : Ioo a b ⊆ s hc : s ⊆ Icc a b ha : a ∉ s hb : b ∈ s ⊢ Ioc a b ⊆ s
fc159751b675bff0
Cardinal.aleph0_le
Mathlib/SetTheory/Cardinal/Basic.lean
theorem aleph0_le {c : Cardinal} : ℵ₀ ≤ c ↔ ∀ n : ℕ, ↑n ≤ c := ⟨fun h _ => (nat_lt_aleph0 _).le.trans h, fun h => le_of_not_lt fun hn => by rcases lt_aleph0.1 hn with ⟨n, rfl⟩ exact (Nat.lt_succ_self _).not_le (Nat.cast_le.1 (h (n + 1)))⟩
case intro n : ℕ h : ∀ (n_1 : ℕ), ↑n_1 ≤ ↑n hn : ↑n < ℵ₀ ⊢ False
exact (Nat.lt_succ_self _).not_le (Nat.cast_le.1 (h (n + 1)))
no goals
8a8d523c3adcb040
minpoly.aeval
Mathlib/FieldTheory/Minpoly/Basic.lean
theorem aeval : aeval x (minpoly A x) = 0
A : Type u_1 B : Type u_2 inst✝² : CommRing A inst✝¹ : Ring B inst✝ : Algebra A B x : B ⊢ (Polynomial.aeval x) (if hx : IsIntegral A x then ⋯.min (fun x_1 => x_1.Monic ∧ eval₂ (algebraMap A B) x x_1 = 0) hx else 0) = 0
split_ifs with hx
case pos A : Type u_1 B : Type u_2 inst✝² : CommRing A inst✝¹ : Ring B inst✝ : Algebra A B x : B hx : IsIntegral A x ⊢ (Polynomial.aeval x) (⋯.min (fun x_1 => x_1.Monic ∧ eval₂ (algebraMap A B) x x_1 = 0) hx) = 0 case neg A : Type u_1 B : Type u_2 inst✝² : CommRing A inst✝¹ : Ring B inst✝ : Algebra A B x : B hx : ¬IsIntegral A x ⊢ (Polynomial.aeval x) 0 = 0
b712d46c9cd74d4a
Convex.locPathConnectedSpace
Mathlib/Topology/Algebra/Module/LocallyConvex.lean
theorem Convex.locPathConnectedSpace [Module ℝ E] [ContinuousSMul ℝ E] [LocallyConvexSpace ℝ E] {S : Set E} (hS : Convex ℝ S) : LocPathConnectedSpace S
E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : TopologicalSpace E inst✝³ : IsTopologicalAddGroup E inst✝² : Module ℝ E inst✝¹ : ContinuousSMul ℝ E inst✝ : LocallyConvexSpace ℝ E S : Set E hS : Convex ℝ S x : ↑S s : Set ↑S hs : s ∈ 𝓝 x t : Set E ht : t ∈ 𝓝 ↑x ∧ Subtype.val ⁻¹' t ⊆ s t' : Set E ht' : (t' ∈ 𝓝 ↑x ∧ Convex ℝ t') ∧ id t' ⊆ t ⊢ ∃ i, (i ∈ 𝓝 x ∧ IsPathConnected i) ∧ id i ⊆ s
refine ⟨(↑) ⁻¹' t', ⟨?_, ?_⟩, (preimage_mono ht'.2).trans ht.2⟩
case refine_1 E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : TopologicalSpace E inst✝³ : IsTopologicalAddGroup E inst✝² : Module ℝ E inst✝¹ : ContinuousSMul ℝ E inst✝ : LocallyConvexSpace ℝ E S : Set E hS : Convex ℝ S x : ↑S s : Set ↑S hs : s ∈ 𝓝 x t : Set E ht : t ∈ 𝓝 ↑x ∧ Subtype.val ⁻¹' t ⊆ s t' : Set E ht' : (t' ∈ 𝓝 ↑x ∧ Convex ℝ t') ∧ id t' ⊆ t ⊢ Subtype.val ⁻¹' t' ∈ 𝓝 x case refine_2 E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : TopologicalSpace E inst✝³ : IsTopologicalAddGroup E inst✝² : Module ℝ E inst✝¹ : ContinuousSMul ℝ E inst✝ : LocallyConvexSpace ℝ E S : Set E hS : Convex ℝ S x : ↑S s : Set ↑S hs : s ∈ 𝓝 x t : Set E ht : t ∈ 𝓝 ↑x ∧ Subtype.val ⁻¹' t ⊆ s t' : Set E ht' : (t' ∈ 𝓝 ↑x ∧ Convex ℝ t') ∧ id t' ⊆ t ⊢ IsPathConnected (Subtype.val ⁻¹' t')
78fdc754cd76e5d0
isLocalStructomorphOn_contDiffGroupoid_iff
Mathlib/Geometry/Manifold/ContMDiff/Atlas.lean
theorem isLocalStructomorphOn_contDiffGroupoid_iff (f : PartialHomeomorph M M') : LiftPropOn (contDiffGroupoid n I).IsLocalStructomorphWithinAt f f.source ↔ ContMDiffOn I I n f f.source ∧ ContMDiffOn I I n f.symm f.target
case mpr 𝕜 : Type u_1 inst✝⁸ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace 𝕜 E H : Type u_3 inst✝⁵ : TopologicalSpace H I : ModelWithCorners 𝕜 E H M : Type u_4 inst✝⁴ : TopologicalSpace M inst✝³ : ChartedSpace H M n : WithTop ℕ∞ inst✝² : IsManifold I n M M' : Type u_5 inst✝¹ : TopologicalSpace M' inst✝ : ChartedSpace H M' IsM' : IsManifold I n M' f : PartialHomeomorph M M' ⊢ ContMDiffOn I I n (↑f) f.source ∧ ContMDiffOn I I n (↑f.symm) f.target → LiftPropOn (contDiffGroupoid n I).IsLocalStructomorphWithinAt (↑f) f.source
rintro ⟨h₁, h₂⟩ x hx
case mpr.intro 𝕜 : Type u_1 inst✝⁸ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace 𝕜 E H : Type u_3 inst✝⁵ : TopologicalSpace H I : ModelWithCorners 𝕜 E H M : Type u_4 inst✝⁴ : TopologicalSpace M inst✝³ : ChartedSpace H M n : WithTop ℕ∞ inst✝² : IsManifold I n M M' : Type u_5 inst✝¹ : TopologicalSpace M' inst✝ : ChartedSpace H M' IsM' : IsManifold I n M' f : PartialHomeomorph M M' h₁ : ContMDiffOn I I n (↑f) f.source h₂ : ContMDiffOn I I n (↑f.symm) f.target x : M hx : x ∈ f.source ⊢ LiftPropWithinAt (contDiffGroupoid n I).IsLocalStructomorphWithinAt (↑f) f.source x
52ce8090c899c270
Bool.not_ite_eq_true_eq_false
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Bool.lean
theorem not_ite_eq_true_eq_false {p : Prop} [h : Decidable p] {b c : Bool} : ¬(ite p (b = true) (c = false)) ↔ (ite p (b = false) (c = true))
case isTrue p✝ : Prop b c : Bool p : p✝ ⊢ (¬if p✝ then b = true else c = false) ↔ if p✝ then b = false else c = true
simp [p]
no goals
c73c046739a7ec39
CategoryTheory.Functor.prod'_μ_snd
Mathlib/CategoryTheory/Monoidal/Functor.lean
@[simp] lemma prod'_μ_snd (X Y : C) : (μ (prod' F G) X Y).2 = μ G X Y
C : Type u₁ inst✝⁷ : Category.{v₁, u₁} C inst✝⁶ : MonoidalCategory C D : Type u₂ inst✝⁵ : Category.{v₂, u₂} D inst✝⁴ : MonoidalCategory D E : Type u₃ inst✝³ : Category.{v₃, u₃} E inst✝² : MonoidalCategory E F : C ⥤ D G : C ⥤ E inst✝¹ : F.LaxMonoidal inst✝ : G.LaxMonoidal X Y : C ⊢ (μ (F.prod' G) X Y).2 = μ G X Y
change _ ≫ G.map (𝟙 _) = _
C : Type u₁ inst✝⁷ : Category.{v₁, u₁} C inst✝⁶ : MonoidalCategory C D : Type u₂ inst✝⁵ : Category.{v₂, u₂} D inst✝⁴ : MonoidalCategory D E : Type u₃ inst✝³ : Category.{v₃, u₃} E inst✝² : MonoidalCategory E F : C ⥤ D G : C ⥤ E inst✝¹ : F.LaxMonoidal inst✝ : G.LaxMonoidal X Y : C ⊢ (μ (F.prod G) ((diag C).obj X) ((diag C).obj Y)).2 ≫ G.map (𝟙 ((diag C).obj X ⊗ (diag C).obj Y).2) = μ G X Y
fbdf2f8e1e1d9731
LieDerivation.ad_ker_eq_center
Mathlib/Algebra/Lie/Derivation/AdjointAction.lean
/-- The kernel of the adjoint action on a Lie algebra is equal to its center. -/ lemma ad_ker_eq_center : (ad R L).ker = LieAlgebra.center R L
case h R : Type u_1 L : Type u_2 inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L x : L ⊢ x ∈ (ad R L).ker ↔ x ∈ LieAlgebra.center R L
rw [← LieAlgebra.self_module_ker_eq_center, LieHom.mem_ker, LieModule.mem_ker]
case h R : Type u_1 L : Type u_2 inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L x : L ⊢ (ad R L) x = 0 ↔ ∀ (m : L), ⁅x, m⁆ = 0
b20ce324fe5b3354
seminormFromBounded_of_mul_le
Mathlib/Analysis/Normed/Ring/SeminormFromBounded.lean
theorem seminormFromBounded_of_mul_le (f_nonneg : 0 ≤ f) {x : R} (hx : ∀ y : R, f (x * y) ≤ f x * f y) (h_one : f 1 ≤ 1) : seminormFromBounded' f x = f x
case h.intro R : Type u_1 inst✝ : CommRing R f : R → ℝ f_nonneg : 0 ≤ f x : R hx : ∀ (y : R), f (x * y) ≤ f x * f y h_one : f 1 ≤ 1 y : R ⊢ (fun y => f (x * y) / f y) y ≤ f x
by_cases hy0 : f y = 0
case pos R : Type u_1 inst✝ : CommRing R f : R → ℝ f_nonneg : 0 ≤ f x : R hx : ∀ (y : R), f (x * y) ≤ f x * f y h_one : f 1 ≤ 1 y : R hy0 : f y = 0 ⊢ (fun y => f (x * y) / f y) y ≤ f x case neg R : Type u_1 inst✝ : CommRing R f : R → ℝ f_nonneg : 0 ≤ f x : R hx : ∀ (y : R), f (x * y) ≤ f x * f y h_one : f 1 ≤ 1 y : R hy0 : ¬f y = 0 ⊢ (fun y => f (x * y) / f y) y ≤ f x
76683e2ec4692258
FormalMultilinearSeries.comp_id
Mathlib/Analysis/Analytic/Composition.lean
theorem comp_id (p : FormalMultilinearSeries 𝕜 E F) (x : E) : p.comp (id 𝕜 E x) = p
case h.h₀.intro.intro.intro.H 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F p : FormalMultilinearSeries 𝕜 E F x : E n : ℕ b : Composition n a✝ : b ∈ Finset.univ hb : b ≠ Composition.ones n k : ℕ hk : k ∈ b.blocks lt_k : 1 < k i : Fin b.blocks.length hi : b.blocks[i] = k j : Fin b.length := ⟨↑i, ⋯⟩ A : 1 < b.blocksFun j v : Fin n → E ⊢ (id 𝕜 E x (b.blocksFun j)) (v ∘ ⇑(b.embedding j)) = 0
rw [id_apply_of_one_lt _ _ _ A, ContinuousMultilinearMap.zero_apply]
no goals
03268d569a4e7489
StarConvex.affine_preimage
Mathlib/Analysis/Convex/Star.lean
theorem StarConvex.affine_preimage (f : E →ᵃ[𝕜] F) {s : Set F} (hs : StarConvex 𝕜 (f x) s) : StarConvex 𝕜 x (f ⁻¹' s)
𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F x : E f : E →ᵃ[𝕜] F s : Set F hs : StarConvex 𝕜 (f x) s y : E hy : y ∈ ⇑f ⁻¹' s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ a • f x + b • f y ∈ s
exact hs hy ha hb hab
no goals
705edbda48559109
Vector.mapIdx_setIfInBounds
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Vector/MapIdx.lean
theorem mapIdx_setIfInBounds {l : Vector α n} {i : Nat} {a : α} : (l.setIfInBounds i a).mapIdx f = (l.mapIdx f).setIfInBounds i (f i a)
case mk α : Type u_1 α✝ : Type u_2 f : Nat → α → α✝ i : Nat a : α l : Array α ⊢ mapIdx f ({ toArray := l, size_toArray := ⋯ }.setIfInBounds i a) = (mapIdx f { toArray := l, size_toArray := ⋯ }).setIfInBounds i (f i a)
simp
no goals
15859b165dc8bfc9
InformationTheory.mul_log_le_toReal_klDiv
Mathlib/InformationTheory/KullbackLeibler/Basic.lean
lemma mul_log_le_toReal_klDiv (hμν : μ ≪ ν) (h_int : Integrable (llr μ ν) μ) : (μ univ).toReal * log ((μ univ).toReal / (ν univ).toReal) + (ν univ).toReal - (μ univ).toReal ≤ (klDiv μ ν).toReal
case neg α : Type u_1 mα : MeasurableSpace α μ ν : Measure α inst✝¹ : IsFiniteMeasure μ inst✝ : IsFiniteMeasure ν hμν : μ ≪ ν h_int : Integrable (llr μ ν) μ hμ : ¬μ = 0 hν : ¬ν = 0 ⊢ (μ univ).toReal * log ((μ univ).toReal / (ν univ).toReal) + (ν univ).toReal - (μ univ).toReal ≤ (klDiv μ ν).toReal
refine (le_of_eq ?_).trans (mul_klFun_le_toReal_klDiv hμν h_int)
case neg α : Type u_1 mα : MeasurableSpace α μ ν : Measure α inst✝¹ : IsFiniteMeasure μ inst✝ : IsFiniteMeasure ν hμν : μ ≪ ν h_int : Integrable (llr μ ν) μ hμ : ¬μ = 0 hν : ¬ν = 0 ⊢ (μ univ).toReal * log ((μ univ).toReal / (ν univ).toReal) + (ν univ).toReal - (μ univ).toReal = (ν univ).toReal * klFun ((μ univ).toReal / (ν univ).toReal)
66371ee4c0033ef9
Wbtw.trans_left_right
Mathlib/Analysis/Convex/Between.lean
theorem Wbtw.trans_left_right {w x y z : P} (h₁ : Wbtw R w y z) (h₂ : Wbtw R w x y) : Wbtw R x y z
case intro.intro.intro.intro R : Type u_1 V : Type u_2 P : Type u_4 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P w z : P t₁ : R ht₁ : t₁ ∈ Set.Icc 0 1 t₂ : R ht₂ : t₂ ∈ Set.Icc 0 1 ⊢ ((t₁ - t₂ * t₁) * ((1 - t₂ * t₁) / (1 - t₂ * t₁)) + t₂ * t₁) • (z -ᵥ w) = t₁ • (z -ᵥ w)
by_cases h : 1 - t₂ * t₁ = 0
case pos R : Type u_1 V : Type u_2 P : Type u_4 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P w z : P t₁ : R ht₁ : t₁ ∈ Set.Icc 0 1 t₂ : R ht₂ : t₂ ∈ Set.Icc 0 1 h : 1 - t₂ * t₁ = 0 ⊢ ((t₁ - t₂ * t₁) * ((1 - t₂ * t₁) / (1 - t₂ * t₁)) + t₂ * t₁) • (z -ᵥ w) = t₁ • (z -ᵥ w) case neg R : Type u_1 V : Type u_2 P : Type u_4 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P w z : P t₁ : R ht₁ : t₁ ∈ Set.Icc 0 1 t₂ : R ht₂ : t₂ ∈ Set.Icc 0 1 h : ¬1 - t₂ * t₁ = 0 ⊢ ((t₁ - t₂ * t₁) * ((1 - t₂ * t₁) / (1 - t₂ * t₁)) + t₂ * t₁) • (z -ᵥ w) = t₁ • (z -ᵥ w)
a064a78f0fcc4db8
Matrix.cramer_eq_adjugate_mulVec
Mathlib/LinearAlgebra/Matrix/Adjugate.lean
theorem cramer_eq_adjugate_mulVec (A : Matrix n n α) (b : n → α) : cramer A b = A.adjugate *ᵥ b
case h n : Type v α : Type w inst✝² : DecidableEq n inst✝¹ : Fintype n inst✝ : CommRing α A : Matrix n n α b : n → α this : b = ∑ i : n, b i • Pi.single i 1 k : n ⊢ A.cramer (∑ i : n, b i • Pi.single i 1) k = ((of fun i => Aᵀᵀ.cramer (Pi.single i 1))ᵀ *ᵥ b) k
simp [mulVec, dotProduct, mul_comm]
no goals
bdebf67a17df8200
Std.Tactic.BVDecide.BVExpr.bitblast.blastRotateLeft.go_get_aux
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/Bitblast/BVExpr/Circuit/Lemmas/Operations/RotateLeft.lean
theorem go_get_aux (aig : AIG α) (distance : Nat) (input : AIG.RefVec aig w) (curr : Nat) (hcurr : curr ≤ w) (s : AIG.RefVec aig curr) : ∀ (idx : Nat) (hidx : idx < curr), (go input distance curr hcurr s).get idx (by omega) = s.get idx hidx
case isTrue.isTrue α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α w : Nat aig : AIG α distance : Nat input : aig.RefVec w curr : Nat hcurr : curr ≤ w s : aig.RefVec curr idx : Nat hidx : idx < curr h✝¹ : curr < w h✝ : curr < distance % w ⊢ (go input distance (curr + 1) ⋯ (s.push (input.get (w - distance % w + curr) ⋯))).get idx ⋯ = s.get idx hidx
rw [go_get_aux]
case isTrue.isTrue α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α w : Nat aig : AIG α distance : Nat input : aig.RefVec w curr : Nat hcurr : curr ≤ w s : aig.RefVec curr idx : Nat hidx : idx < curr h✝¹ : curr < w h✝ : curr < distance % w ⊢ (s.push (input.get (w - distance % w + curr) ⋯)).get idx ?isTrue.isTrue.hidx = s.get idx hidx case isTrue.isTrue.hidx α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α w : Nat aig : AIG α distance : Nat input : aig.RefVec w curr : Nat hcurr : curr ≤ w s : aig.RefVec curr idx : Nat hidx : idx < curr h✝¹ : curr < w h✝ : curr < distance % w ⊢ idx < curr + 1
e1ea21e0c26513f1
mdifferentiableWithinAt_iff_target
Mathlib/Geometry/Manifold/MFDeriv/Basic.lean
theorem mdifferentiableWithinAt_iff_target : MDifferentiableWithinAt I I' f s x ↔ ContinuousWithinAt f s x ∧ MDifferentiableWithinAt I 𝓘(𝕜, E') (extChartAt I' (f x) ∘ f) s x
𝕜 : Type u_1 inst✝¹⁰ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁹ : NormedAddCommGroup E inst✝⁸ : NormedSpace 𝕜 E H : Type u_3 inst✝⁷ : TopologicalSpace H I : ModelWithCorners 𝕜 E H M : Type u_4 inst✝⁶ : TopologicalSpace M inst✝⁵ : ChartedSpace H M E' : Type u_5 inst✝⁴ : NormedAddCommGroup E' inst✝³ : NormedSpace 𝕜 E' H' : Type u_6 inst✝² : TopologicalSpace H' I' : ModelWithCorners 𝕜 E' H' M' : Type u_7 inst✝¹ : TopologicalSpace M' inst✝ : ChartedSpace H' M' f : M → M' x : M s : Set M ⊢ ContinuousWithinAt f s x ∧ DifferentiableWithinAtProp I I' (↑(chartAt H' (f x)) ∘ f ∘ ↑(chartAt H x).symm) (↑(chartAt H x).symm ⁻¹' s) (↑(chartAt H x) x) ↔ (ContinuousWithinAt f s x ∧ ContinuousWithinAt (↑(extChartAt I' (f x)) ∘ f) s x) ∧ DifferentiableWithinAtProp I 𝓘(𝕜, E') (↑(chartAt E' ((↑(extChartAt I' (f x)) ∘ f) x)) ∘ (↑(extChartAt I' (f x)) ∘ f) ∘ ↑(chartAt H x).symm) (↑(chartAt H x).symm ⁻¹' s) (↑(chartAt H x) x)
have cont : ContinuousWithinAt f s x ∧ ContinuousWithinAt (extChartAt I' (f x) ∘ f) s x ↔ ContinuousWithinAt f s x := and_iff_left_of_imp <| (continuousAt_extChartAt _).comp_continuousWithinAt
𝕜 : Type u_1 inst✝¹⁰ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁹ : NormedAddCommGroup E inst✝⁸ : NormedSpace 𝕜 E H : Type u_3 inst✝⁷ : TopologicalSpace H I : ModelWithCorners 𝕜 E H M : Type u_4 inst✝⁶ : TopologicalSpace M inst✝⁵ : ChartedSpace H M E' : Type u_5 inst✝⁴ : NormedAddCommGroup E' inst✝³ : NormedSpace 𝕜 E' H' : Type u_6 inst✝² : TopologicalSpace H' I' : ModelWithCorners 𝕜 E' H' M' : Type u_7 inst✝¹ : TopologicalSpace M' inst✝ : ChartedSpace H' M' f : M → M' x : M s : Set M cont : ContinuousWithinAt f s x ∧ ContinuousWithinAt (↑(extChartAt I' (f x)) ∘ f) s x ↔ ContinuousWithinAt f s x ⊢ ContinuousWithinAt f s x ∧ DifferentiableWithinAtProp I I' (↑(chartAt H' (f x)) ∘ f ∘ ↑(chartAt H x).symm) (↑(chartAt H x).symm ⁻¹' s) (↑(chartAt H x) x) ↔ (ContinuousWithinAt f s x ∧ ContinuousWithinAt (↑(extChartAt I' (f x)) ∘ f) s x) ∧ DifferentiableWithinAtProp I 𝓘(𝕜, E') (↑(chartAt E' ((↑(extChartAt I' (f x)) ∘ f) x)) ∘ (↑(extChartAt I' (f x)) ∘ f) ∘ ↑(chartAt H x).symm) (↑(chartAt H x).symm ⁻¹' s) (↑(chartAt H x) x)
a7b5d80b8ac37cc5
MeasureTheory.OuterMeasure.exists_measurable_superset_forall_eq_trim
Mathlib/MeasureTheory/OuterMeasure/Induced.lean
theorem exists_measurable_superset_forall_eq_trim {ι} [Countable ι] (μ : ι → OuterMeasure α) (s : Set α) : ∃ t, s ⊆ t ∧ MeasurableSet t ∧ ∀ i, μ i t = (μ i).trim s
α : Type u_1 inst✝¹ : MeasurableSpace α ι : Sort u_2 inst✝ : Countable ι μ : ι → OuterMeasure α s : Set α ⊢ ∃ t, s ⊆ t ∧ MeasurableSet t ∧ ∀ (i : ι), (μ i) t = (μ i).trim s
choose t hst ht hμt using fun i => (μ i).exists_measurable_superset_eq_trim s
α : Type u_1 inst✝¹ : MeasurableSpace α ι : Sort u_2 inst✝ : Countable ι μ : ι → OuterMeasure α s : Set α t : ι → Set α hst : ∀ (i : ι), s ⊆ t i ht : ∀ (i : ι), MeasurableSet (t i) hμt : ∀ (i : ι), (μ i) (t i) = (μ i).trim s ⊢ ∃ t, s ⊆ t ∧ MeasurableSet t ∧ ∀ (i : ι), (μ i) t = (μ i).trim s
cfb6c437a6630ff3
IsRelPrime.prod_left_iff
Mathlib/RingTheory/Coprime/Lemmas.lean
theorem IsRelPrime.prod_left_iff : IsRelPrime (∏ i ∈ t, s i) x ↔ ∀ i ∈ t, IsRelPrime (s i) x
α : Type u_1 I : Type u_2 inst✝¹ : CommMonoid α inst✝ : DecompositionMonoid α x : α s : I → α t : Finset I x✝ : I ⊢ x✝ ∈ ∅ → IsRelPrime (s x✝) x
simp
no goals
9be85dd8865208e0
Bool.ofNat_le_ofNat
Mathlib/Data/Bool/Basic.lean
theorem ofNat_le_ofNat {n m : Nat} (h : n ≤ m) : ofNat n ≤ ofNat m
case isTrue n m : ℕ h : n ≤ m hn : n = 0 ⊢ (!true) ≤ !decide (m = 0)
exact Bool.false_le _
no goals
a12bab163ba4b474
SimpleGraph.edgeDisjointTriangles_iff_mem_sym2_subsingleton
Mathlib/Combinatorics/SimpleGraph/Triangle/Basic.lean
lemma edgeDisjointTriangles_iff_mem_sym2_subsingleton : G.EdgeDisjointTriangles ↔ ∀ ⦃e : Sym2 α⦄, ¬ e.IsDiag → {s ∈ G.cliqueSet 3 | e ∈ (s : Finset α).sym2}.Subsingleton
case h α : Type u_1 G : SimpleGraph α a b : α hab : a ≠ b s : Finset α ⊢ (∃ a b c, G.Adj a b ∧ G.Adj a c ∧ G.Adj b c ∧ s = {a, b, c}) ∧ a ∈ s ∧ b ∈ s ↔ G.Adj a b ∧ ∃ c, G.Adj a c ∧ G.Adj b c ∧ s = {a, b, c}
constructor
case h.mp α : Type u_1 G : SimpleGraph α a b : α hab : a ≠ b s : Finset α ⊢ (∃ a b c, G.Adj a b ∧ G.Adj a c ∧ G.Adj b c ∧ s = {a, b, c}) ∧ a ∈ s ∧ b ∈ s → G.Adj a b ∧ ∃ c, G.Adj a c ∧ G.Adj b c ∧ s = {a, b, c} case h.mpr α : Type u_1 G : SimpleGraph α a b : α hab : a ≠ b s : Finset α ⊢ (G.Adj a b ∧ ∃ c, G.Adj a c ∧ G.Adj b c ∧ s = {a, b, c}) → (∃ a b c, G.Adj a b ∧ G.Adj a c ∧ G.Adj b c ∧ s = {a, b, c}) ∧ a ∈ s ∧ b ∈ s
dd5ab32164f7deff
derived_le_lower_central
Mathlib/GroupTheory/Nilpotent.lean
theorem derived_le_lower_central (n : ℕ) : derivedSeries G n ≤ lowerCentralSeries G n
G : Type u_1 inst✝ : Group G n : ℕ ⊢ derivedSeries G n ≤ lowerCentralSeries G n
induction' n with i ih
case zero G : Type u_1 inst✝ : Group G ⊢ derivedSeries G 0 ≤ lowerCentralSeries G 0 case succ G : Type u_1 inst✝ : Group G i : ℕ ih : derivedSeries G i ≤ lowerCentralSeries G i ⊢ derivedSeries G (i + 1) ≤ lowerCentralSeries G (i + 1)
b685699a973e345f
geom_sum_inv
Mathlib/Algebra/GeomSum.lean
theorem geom_sum_inv [DivisionRing α] {x : α} (hx1 : x ≠ 1) (hx0 : x ≠ 0) (n : ℕ) : ∑ i ∈ range n, x⁻¹ ^ i = (x - 1)⁻¹ * (x - x⁻¹ ^ n * x)
α : Type u inst✝ : DivisionRing α x : α hx1 : x ≠ 1 hx0 : x ≠ 0 n : ℕ ⊢ ∑ i ∈ range n, x⁻¹ ^ i = (x - 1)⁻¹ * (x - x⁻¹ ^ n * x)
have h₁ : x⁻¹ ≠ 1 := by rwa [inv_eq_one_div, Ne, div_eq_iff_mul_eq hx0, one_mul]
α : Type u inst✝ : DivisionRing α x : α hx1 : x ≠ 1 hx0 : x ≠ 0 n : ℕ h₁ : x⁻¹ ≠ 1 ⊢ ∑ i ∈ range n, x⁻¹ ^ i = (x - 1)⁻¹ * (x - x⁻¹ ^ n * x)
90f187432f831566
Matroid.loopyOn_isBasis_iff
Mathlib/Data/Matroid/Constructions.lean
theorem loopyOn_isBasis_iff : (loopyOn E).IsBasis I X ↔ I = ∅ ∧ X ⊆ E := ⟨fun h ↦ ⟨loopyOn_indep_iff.mp h.indep, h.subset_ground⟩, by rintro ⟨rfl, hX⟩; rw [isBasis_iff]; simp⟩
α : Type u_1 E I X : Set α ⊢ I = ∅ ∧ X ⊆ E → (loopyOn E).IsBasis I X
rintro ⟨rfl, hX⟩
case intro α : Type u_1 E X : Set α hX : X ⊆ E ⊢ (loopyOn E).IsBasis ∅ X
a7e289444aeca3df
FirstOrder.Language.LHom.funext
Mathlib/ModelTheory/LanguageMap.lean
theorem funext {F G : L →ᴸ L'} (h_fun : F.onFunction = G.onFunction) (h_rel : F.onRelation = G.onRelation) : F = G
case mk.mk L : Language L' : Language Ff : ⦃n : ℕ⦄ → L.Functions n → L'.Functions n Fr : ⦃n : ℕ⦄ → L.Relations n → L'.Relations n Gf : ⦃n : ℕ⦄ → L.Functions n → L'.Functions n Gr : ⦃n : ℕ⦄ → L.Relations n → L'.Relations n h_fun : { onFunction := Ff, onRelation := Fr }.onFunction = { onFunction := Gf, onRelation := Gr }.onFunction h_rel : { onFunction := Ff, onRelation := Fr }.onRelation = { onFunction := Gf, onRelation := Gr }.onRelation ⊢ { onFunction := Ff, onRelation := Fr } = { onFunction := Gf, onRelation := Gr }
simp only [mk.injEq]
case mk.mk L : Language L' : Language Ff : ⦃n : ℕ⦄ → L.Functions n → L'.Functions n Fr : ⦃n : ℕ⦄ → L.Relations n → L'.Relations n Gf : ⦃n : ℕ⦄ → L.Functions n → L'.Functions n Gr : ⦃n : ℕ⦄ → L.Relations n → L'.Relations n h_fun : { onFunction := Ff, onRelation := Fr }.onFunction = { onFunction := Gf, onRelation := Gr }.onFunction h_rel : { onFunction := Ff, onRelation := Fr }.onRelation = { onFunction := Gf, onRelation := Gr }.onRelation ⊢ Ff = Gf ∧ Fr = Gr
7d892da77329675e
Flow.omegaLimit_omegaLimit
Mathlib/Dynamics/OmegaLimit.lean
theorem omegaLimit_omegaLimit (hf : ∀ t, Tendsto (t + ·) f f) : ω f ϕ (ω f ϕ s) ⊆ ω f ϕ s
case intro.intro τ : Type u_1 inst✝³ : TopologicalSpace τ inst✝² : AddCommGroup τ inst✝¹ : IsTopologicalAddGroup τ α : Type u_2 inst✝ : TopologicalSpace α f : Filter τ ϕ : Flow τ α s : Set α hf : ∀ (t : τ), Tendsto (fun x => t + x) f f x✝ : α h : ∀ n ∈ 𝓝 x✝, ∀ {U : Set τ}, U ∈ f → ∃ x ∈ U, (ϕ.toFun x '' ω f ϕ.toFun s ∩ n).Nonempty n : Set α hn : n ∈ 𝓝 x✝ u : Set τ hu : u ∈ f o : Set α ho₁ : o ⊆ n ho₂ : IsOpen o ho₃ : x✝ ∈ o t : τ _ht₁ : t ∈ u ht₂ : (ϕ.toFun t '' ω f ϕ.toFun s ∩ o).Nonempty l₁ : (ω f ϕ.toFun s ∩ o).Nonempty b : α hb₁ : b ∈ closure (image2 ϕ.toFun u s) hb₂ : b ∈ o ⊢ (o ∩ image2 ϕ.toFun u s).Nonempty
exact mem_closure_iff_nhds.mp hb₁ o (IsOpen.mem_nhds ho₂ hb₂)
no goals
3464979464374ec5
extend_partialOrder
Mathlib/Order/Extension/Linear.lean
theorem extend_partialOrder {α : Type u} (r : α → α → Prop) [IsPartialOrder α r] : ∃ s : α → α → Prop, IsLinearOrder α s ∧ r ≤ s
case refine_3.intro.intro.intro.intro.inr α : Type u r : α → α → Prop inst✝ : IsPartialOrder α r S : Set (α → α → Prop) := {s | IsPartialOrder α s} c : Set (α → α → Prop) hc₁ : c ⊆ S hc₂ : IsChain (fun x1 x2 => x1 ≤ x2) c s : α → α → Prop hs : s ∈ c this✝¹ : IsPreorder α s x y : α s₁ : α → α → Prop h₁s₁ : s₁ ∈ c h₂s₁ : s₁ x y s₂ : α → α → Prop h₁s₂ : s₂ ∈ c h₂s₂ : s₂ y x this✝ : IsPartialOrder α s₁ this : IsPartialOrder α s₂ h : s₂ ≤ s₁ ⊢ x = y
apply antisymm h₂s₁ (h _ _ h₂s₂)
no goals
f4cf57fbd32a5c9a
unitary.star_mem
Mathlib/Algebra/Star/Unitary.lean
theorem star_mem {U : R} (hU : U ∈ unitary R) : star U ∈ unitary R := ⟨by rw [star_star, mul_star_self_of_mem hU], by rw [star_star, star_mul_self_of_mem hU]⟩
R : Type u_1 inst✝¹ : Monoid R inst✝ : StarMul R U : R hU : U ∈ unitary R ⊢ star U * star (star U) = 1
rw [star_star, star_mul_self_of_mem hU]
no goals
0304e8c706770550
Set.image_preimage_eq_range_inter
Mathlib/Data/Set/Image.lean
theorem image_preimage_eq_range_inter {f : α → β} {t : Set β} : f '' (f ⁻¹' t) = range f ∩ t := ext fun x => ⟨fun ⟨_, hx, HEq⟩ => HEq ▸ ⟨mem_range_self _, hx⟩, fun ⟨⟨y, h_eq⟩, hx⟩ => h_eq ▸ mem_image_of_mem f <| show y ∈ f ⁻¹' t by rw [preimage, mem_setOf, h_eq]; exact hx⟩
α : Type u_1 β : Type u_2 f : α → β t : Set β x : β x✝ : x ∈ range f ∩ t y : α h_eq : f y = x hx : x ∈ t ⊢ y ∈ f ⁻¹' t
rw [preimage, mem_setOf, h_eq]
α : Type u_1 β : Type u_2 f : α → β t : Set β x : β x✝ : x ∈ range f ∩ t y : α h_eq : f y = x hx : x ∈ t ⊢ x ∈ t
63a53823e8c4689a
Algebra.FormallyUnramified.isField_of_isAlgClosed_of_isLocalRing
Mathlib/RingTheory/Unramified/Field.lean
theorem isField_of_isAlgClosed_of_isLocalRing [IsAlgClosed K] [IsLocalRing A] : IsField A
case intro K : Type u_1 A : Type u_2 inst✝⁶ : Field K inst✝⁵ : CommRing A inst✝⁴ : Algebra K A inst✝³ : FormallyUnramified K A inst✝² : EssFiniteType K A inst✝¹ : IsAlgClosed K inst✝ : IsLocalRing A x : K hx : (algebraMap K A) x ∈ IsLocalRing.maximalIdeal A ⊢ (algebraMap K A) x ∈ ⊥
show _ = 0
case intro K : Type u_1 A : Type u_2 inst✝⁶ : Field K inst✝⁵ : CommRing A inst✝⁴ : Algebra K A inst✝³ : FormallyUnramified K A inst✝² : EssFiniteType K A inst✝¹ : IsAlgClosed K inst✝ : IsLocalRing A x : K hx : (algebraMap K A) x ∈ IsLocalRing.maximalIdeal A ⊢ (algebraMap K A) x = 0
5080e195e5854ef7
Fin.insertNth_mem_piFinset_insertNth
Mathlib/Data/Fin/Tuple/Finset.lean
lemma insertNth_mem_piFinset_insertNth {x_pivot : α p} {x_remove : ∀ i, α (succAbove p i)} {s_pivot : Finset (α p)} {s_remove : ∀ i, Finset (α (succAbove p i))} : insertNth p x_pivot x_remove ∈ piFinset (insertNth p s_pivot s_remove) ↔ x_pivot ∈ s_pivot ∧ x_remove ∈ piFinset s_remove
n : ℕ α : Fin (n + 1) → Type u_1 p : Fin (n + 1) x_pivot : α p x_remove : (i : Fin n) → α (p.succAbove i) s_pivot : Finset (α p) s_remove : (i : Fin n) → Finset (α (p.succAbove i)) ⊢ p.insertNth x_pivot x_remove ∈ piFinset (p.insertNth s_pivot s_remove) ↔ x_pivot ∈ s_pivot ∧ x_remove ∈ piFinset s_remove
simp [mem_piFinset_iff_pivot_removeNth p]
no goals
a6ae7a5b62a6de5e