name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
gaussSum_mul
Mathlib/NumberTheory/GaussSum.lean
/-- A formula for the product of two Gauss sums with the same additive character. -/ lemma gaussSum_mul {R : Type u} [CommRing R] [Fintype R] {R' : Type v} [CommRing R'] (χ φ : MulChar R R') (ψ : AddChar R R') : gaussSum χ ψ * gaussSum φ ψ = ∑ t : R, ∑ x : R, χ x * φ (t - x) * ψ t
case i_surj R : Type u inst✝² : CommRing R inst✝¹ : Fintype R R' : Type v inst✝ : CommRing R' χ φ : MulChar R R' ψ : AddChar R R' x : R ⊢ ∀ b ∈ univ, ∃ a, ∃ (_ : a ∈ univ), a + x = b
exact fun b _ ↦ ⟨b - x, mem_univ _, by rw [sub_add_cancel]⟩
no goals
c2a4995a365e510c
WeierstrassCurve.natDegree_coeff_preΨ'
Mathlib/AlgebraicGeometry/EllipticCurve/DivisionPolynomial/Degree.lean
private lemma natDegree_coeff_preΨ' (n : ℕ) : (W.preΨ' n).natDegree ≤ expDegree n ∧ (W.preΨ' n).coeff (expDegree n) = expCoeff n
case odd.left.refine_2 R : Type u inst✝ : CommRing R W : WeierstrassCurve R dm : ∀ {m n : ℕ} {p q : R[X]}, p.natDegree ≤ m → q.natDegree ≤ n → (p * q).natDegree ≤ m + n := fun {m n} {p q} => natDegree_mul_le_of_le dp : ∀ {m n : ℕ} {p : R[X]}, p.natDegree ≤ m → (p ^ n).natDegree ≤ n * m := fun {m n} {p} => natDegree_pow_le_of_le n cm : ∀ {m n : ℕ} {p q : R[X]}, p.natDegree ≤ m → q.natDegree ≤ n → (p * q).coeff (m + n) = p.coeff m * q.coeff n := fun {m n} {p q} => coeff_mul_of_natDegree_le cp : ∀ {m n : ℕ} {p : R[X]}, p.natDegree ≤ n → (p ^ m).coeff (m * n) = p.coeff n ^ m := fun {m n} {p} => coeff_pow_of_natDegree_le m : ℕ h₁ : (W.preΨ' (m + 1)).natDegree ≤ WeierstrassCurve.expDegree (m + 1) ∧ (W.preΨ' (m + 1)).coeff (WeierstrassCurve.expDegree (m + 1)) = ↑(WeierstrassCurve.expCoeff (m + 1)) h₂ : (W.preΨ' (m + 2)).natDegree ≤ WeierstrassCurve.expDegree (m + 2) ∧ (W.preΨ' (m + 2)).coeff (WeierstrassCurve.expDegree (m + 2)) = ↑(WeierstrassCurve.expCoeff (m + 2)) h₃ : (W.preΨ' (m + 3)).natDegree ≤ WeierstrassCurve.expDegree (m + 3) ∧ (W.preΨ' (m + 3)).coeff (WeierstrassCurve.expDegree (m + 3)) = ↑(WeierstrassCurve.expCoeff (m + 3)) h₄ : (W.preΨ' (m + 4)).natDegree ≤ WeierstrassCurve.expDegree (m + 4) ∧ (W.preΨ' (m + 4)).coeff (WeierstrassCurve.expDegree (m + 4)) = ↑(WeierstrassCurve.expCoeff (m + 4)) ⊢ (if Even m then 1 else W.Ψ₂Sq ^ 2).natDegree ≤ if Even m then 0 else 2 * 3
split_ifs <;> simp only [apply_ite natDegree, natDegree_one.le, dp W.natDegree_Ψ₂Sq_le]
no goals
9ededa4b854063c6
MeasureTheory.FiniteMeasure.map_fst_prod
Mathlib/MeasureTheory/Measure/FiniteMeasureProd.lean
@[simp] lemma map_fst_prod : (μ.prod ν).map Prod.fst = ν univ • μ
case h α : Type u_1 inst✝¹ : MeasurableSpace α β : Type u_2 inst✝ : MeasurableSpace β μ : FiniteMeasure α ν : FiniteMeasure β s✝ : Set α a✝ : MeasurableSet s✝ ⊢ ↑((μ.prod ν).map Prod.fst) s✝ = ↑(ν univ • μ) s✝
simp
no goals
83ce0c5517f6d9c1
convexIndependent_iff_finset
Mathlib/Analysis/Convex/Independent.lean
theorem convexIndependent_iff_finset {p : ι → E} : ConvexIndependent 𝕜 p ↔ ∀ (s : Finset ι) (x : ι), p x ∈ convexHull 𝕜 (s.image p : Set E) → x ∈ s
case refine_2 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p : ι → E h : ∀ (s : Finset ι) (x : ι), p x ∈ (convexHull 𝕜) ↑(image p s) → x ∈ s s : Set ι x : ι hx : p x ∈ ⋃ t, ⋃ (_ : ↑t ⊆ p '' s), (convexHull 𝕜) ↑t hp : Injective p ⊢ x ∈ s
simp_rw [Set.mem_iUnion] at hx
case refine_2 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p : ι → E h : ∀ (s : Finset ι) (x : ι), p x ∈ (convexHull 𝕜) ↑(image p s) → x ∈ s s : Set ι x : ι hp : Injective p hx : ∃ i, ∃ (_ : ↑i ⊆ p '' s), p x ∈ (convexHull 𝕜) ↑i ⊢ x ∈ s
04d80ee248bee17b
Finset.toLeft_disjSum
Mathlib/Data/Finset/Sum.lean
@[simp] lemma toLeft_disjSum : (s.disjSum t).toLeft = s
α : Type u_1 β : Type u_2 s : Finset α t : Finset β ⊢ (s.disjSum t).toLeft = s
ext x
case h α : Type u_1 β : Type u_2 s : Finset α t : Finset β x : α ⊢ x ∈ (s.disjSum t).toLeft ↔ x ∈ s
caef727a42445544
Finsupp.mul_prod_erase'
Mathlib/Algebra/BigOperators/Finsupp.lean
theorem mul_prod_erase' (f : α →₀ M) (y : α) (g : α → M → N) (hg : ∀ i : α, g i 0 = 1) : g y (f y) * (erase y f).prod g = f.prod g
case neg α : Type u_1 M : Type u_8 N : Type u_10 inst✝¹ : Zero M inst✝ : CommMonoid N f : α →₀ M y : α g : α → M → N hg : ∀ (i : α), g i 0 = 1 hyf : y ∉ f.support ⊢ g y (f y) * (erase y f).prod g = f.prod g
rw [not_mem_support_iff.mp hyf, hg y, erase_of_not_mem_support hyf, one_mul]
no goals
b036a31ae1b6fc3f
Ideal.isPrime_map_C_iff_isPrime
Mathlib/RingTheory/Polynomial/Basic.lean
theorem isPrime_map_C_iff_isPrime (P : Ideal R) : IsPrime (map (C : R →+* R[X]) P : Ideal R[X]) ↔ IsPrime P
case mpr.mem_or_mem' R : Type u inst✝ : CommRing R P : Ideal R h : P.IsPrime f g : R[X] ⊢ f * g ∈ map C P → f ∈ map C P ∨ g ∈ map C P
simp only [mem_map_C_iff]
case mpr.mem_or_mem' R : Type u inst✝ : CommRing R P : Ideal R h : P.IsPrime f g : R[X] ⊢ (∀ (n : ℕ), (f * g).coeff n ∈ P) → (∀ (n : ℕ), f.coeff n ∈ P) ∨ ∀ (n : ℕ), g.coeff n ∈ P
851bc056ada1d54f
MeasureTheory.SignedMeasure.of_symmDiff_compl_positive_negative
Mathlib/MeasureTheory/Decomposition/SignedHahn.lean
theorem of_symmDiff_compl_positive_negative {s : SignedMeasure α} {i j : Set α} (hi : MeasurableSet i) (hj : MeasurableSet j) (hi' : 0 ≤[i] s ∧ s ≤[iᶜ] 0) (hj' : 0 ≤[j] s ∧ s ≤[jᶜ] 0) : s (i ∆ j) = 0 ∧ s (iᶜ ∆ jᶜ) = 0
case left.hA α : Type u_1 inst✝ : MeasurableSpace α s : SignedMeasure α i j : Set α hi : MeasurableSet i hj : MeasurableSet j hi' : (∀ ⦃j : Set α⦄, MeasurableSet j → j ⊆ i → ↑0 j ≤ ↑s j) ∧ ∀ ⦃j : Set α⦄, MeasurableSet j → j ⊆ iᶜ → ↑s j ≤ ↑0 j hj' : (∀ ⦃j_1 : Set α⦄, MeasurableSet j_1 → j_1 ⊆ j → ↑0 j_1 ≤ ↑s j_1) ∧ ∀ ⦃j_1 : Set α⦄, MeasurableSet j_1 → j_1 ⊆ jᶜ → ↑s j_1 ≤ ↑0 j_1 ⊢ MeasurableSet (jᶜ ∩ i)
exact hj.compl.inter hi
no goals
36f2a6a398061eba
coeff_minpolyDiv_sub_pow_mem_span
Mathlib/FieldTheory/Minpoly/MinpolyDiv.lean
lemma coeff_minpolyDiv_sub_pow_mem_span {i} (hi : i ≤ natDegree (minpolyDiv R x)) : coeff (minpolyDiv R x) (natDegree (minpolyDiv R x) - i) - x ^ i ∈ Submodule.span R ((x ^ ·) '' Set.Iio i)
case succ.refine_1.h.a R : Type u_2 S : Type u_1 inst✝² : CommRing R inst✝¹ : CommRing S inst✝ : Algebra R S x : S hx : IsIntegral R x i : ℕ IH : i ≤ (minpolyDiv R x).natDegree → (minpolyDiv R x).coeff ((minpolyDiv R x).natDegree - i) - x ^ i ∈ Submodule.span R ((fun x_1 => x ^ x_1) '' Set.Iio i) hi : i + 1 ≤ (minpolyDiv R x).natDegree ⊢ 1 ∈ (fun x_1 => x ^ x_1) '' Set.Iio (i + 1)
exact ⟨0, Nat.zero_lt_succ _, pow_zero _⟩
no goals
36fcc4f5170c6e08
MvQPF.Cofix.bisim_aux
Mathlib/Data/QPF/Multivariate/Constructions/Cofix.lean
theorem Cofix.bisim_aux {α : TypeVec n} (r : Cofix F α → Cofix F α → Prop) (h' : ∀ x, r x x) (h : ∀ x y, r x y → appendFun id (Quot.mk r) <$$> Cofix.dest x = appendFun id (Quot.mk r) <$$> Cofix.dest y) : ∀ x y, r x y → x = y
n : ℕ F : TypeVec.{u} (n + 1) → Type u q : MvQPF F α : TypeVec.{u} n r : Cofix F α → Cofix F α → Prop h' : ∀ (x : Cofix F α), r x x h : ∀ (x y : Cofix F α), r x y → (TypeVec.id ::: Quot.mk r) <$$> x.dest = (TypeVec.id ::: Quot.mk r) <$$> y.dest x y : (P F).M α rxy : r (Quot.mk Mcongr x) (Quot.mk Mcongr y) r' : (P F).M α → (P F).M α → Prop := fun x y => r (Quot.mk Mcongr x) (Quot.mk Mcongr y) hr' : r' = fun x y => r (Quot.mk Mcongr x) (Quot.mk Mcongr y) a b : (P F).M α r'ab : r' a b h₀ : (TypeVec.id ::: Quot.mk r ∘ Quot.mk Mcongr) <$$> MvQPF.abs (M.dest (P F) a) = (TypeVec.id ::: Quot.mk r ∘ Quot.mk Mcongr) <$$> MvQPF.abs (M.dest (P F) b) h₁ : ∀ (u v : (P F).M α), Mcongr u v → Quot.mk r' u = Quot.mk r' v c : (P F).M α ⊢ ∀ (a : (P F).M α), r (Quot.mk Mcongr c) (Quot.mk Mcongr a) → Quot.lift (Quot.mk r') h₁ (Quot.mk Mcongr c) = Quot.lift (Quot.mk r') h₁ (Quot.mk Mcongr a)
intro d rcd
n : ℕ F : TypeVec.{u} (n + 1) → Type u q : MvQPF F α : TypeVec.{u} n r : Cofix F α → Cofix F α → Prop h' : ∀ (x : Cofix F α), r x x h : ∀ (x y : Cofix F α), r x y → (TypeVec.id ::: Quot.mk r) <$$> x.dest = (TypeVec.id ::: Quot.mk r) <$$> y.dest x y : (P F).M α rxy : r (Quot.mk Mcongr x) (Quot.mk Mcongr y) r' : (P F).M α → (P F).M α → Prop := fun x y => r (Quot.mk Mcongr x) (Quot.mk Mcongr y) hr' : r' = fun x y => r (Quot.mk Mcongr x) (Quot.mk Mcongr y) a b : (P F).M α r'ab : r' a b h₀ : (TypeVec.id ::: Quot.mk r ∘ Quot.mk Mcongr) <$$> MvQPF.abs (M.dest (P F) a) = (TypeVec.id ::: Quot.mk r ∘ Quot.mk Mcongr) <$$> MvQPF.abs (M.dest (P F) b) h₁ : ∀ (u v : (P F).M α), Mcongr u v → Quot.mk r' u = Quot.mk r' v c d : (P F).M α rcd : r (Quot.mk Mcongr c) (Quot.mk Mcongr d) ⊢ Quot.lift (Quot.mk r') h₁ (Quot.mk Mcongr c) = Quot.lift (Quot.mk r') h₁ (Quot.mk Mcongr d)
0af76fe163f43a26
Finset.maximal_iff_forall_insert
Mathlib/Order/CompleteLattice/Finset.lean
theorem maximal_iff_forall_insert (hP : ∀ ⦃s t⦄, P t → s ⊆ t → P s) : Maximal P s ↔ P s ∧ ∀ x ∉ s, ¬ P (insert x s)
α : Type u_2 inst✝ : DecidableEq α P : Finset α → Prop s : Finset α hP : ∀ ⦃s t : Finset α⦄, P t → s ⊆ t → P s ⊢ Maximal P s ↔ P s ∧ ∀ x ∉ s, ¬P (insert x s)
simp only [Maximal, and_congr_right_iff]
α : Type u_2 inst✝ : DecidableEq α P : Finset α → Prop s : Finset α hP : ∀ ⦃s t : Finset α⦄, P t → s ⊆ t → P s ⊢ P s → ((∀ ⦃y : Finset α⦄, P y → s ≤ y → y ≤ s) ↔ ∀ x ∉ s, ¬P (insert x s))
9f02cf77d2e1d69f
Complex.Gamma_ne_zero
Mathlib/Analysis/SpecialFunctions/Gamma/Beta.lean
theorem Gamma_ne_zero {s : ℂ} (hs : ∀ m : ℕ, s ≠ -m) : Gamma s ≠ 0
s : ℂ hs : ∀ (m : ℕ), s ≠ -↑m h_im : ¬s.im = 0 ⊢ sin (↑π * s) ≠ 0
rw [Complex.sin_ne_zero_iff]
s : ℂ hs : ∀ (m : ℕ), s ≠ -↑m h_im : ¬s.im = 0 ⊢ ∀ (k : ℤ), ↑π * s ≠ ↑k * ↑π
a4fbdcf127ba8136
Metric.cthickening_eq_iInter_cthickening'
Mathlib/Topology/MetricSpace/Thickening.lean
theorem cthickening_eq_iInter_cthickening' {δ : ℝ} (s : Set ℝ) (hsδ : s ⊆ Ioi δ) (hs : ∀ ε, δ < ε → (s ∩ Ioc δ ε).Nonempty) (E : Set α) : cthickening δ E = ⋂ ε ∈ s, cthickening ε E
case h₂ α : Type u inst✝ : PseudoEMetricSpace α δ : ℝ s : Set ℝ hsδ : s ⊆ Ioi δ hs : ∀ (ε : ℝ), δ < ε → (s ∩ Ioc δ ε).Nonempty E : Set α ⊢ ⋂ ε ∈ s, cthickening ε E ⊆ cthickening δ E
unfold cthickening
case h₂ α : Type u inst✝ : PseudoEMetricSpace α δ : ℝ s : Set ℝ hsδ : s ⊆ Ioi δ hs : ∀ (ε : ℝ), δ < ε → (s ∩ Ioc δ ε).Nonempty E : Set α ⊢ ⋂ ε ∈ s, {x | infEdist x E ≤ ENNReal.ofReal ε} ⊆ {x | infEdist x E ≤ ENNReal.ofReal δ}
6f877c5032a5d223
mem_leftCoset_leftCoset
Mathlib/GroupTheory/Coset/Basic.lean
theorem mem_leftCoset_leftCoset {a : α} (ha : a • (s : Set α) = s) : a ∈ s
α : Type u_1 inst✝ : Monoid α s : Submonoid α a : α ha : a • ↑s = ↑s ⊢ a ∈ a • ↑s
exact mem_own_leftCoset s a
no goals
02d577c82cbff820
List.get?_set_of_lt'
Mathlib/.lake/packages/batteries/Batteries/Data/List/Lemmas.lean
theorem get?_set_of_lt' (a : α) {m n} (l : List α) (h : m < length l) : (set l m a).get? n = if m = n then some a else l.get? n
α : Type u_1 a : α m n : Nat l : List α h : m < l.length ⊢ (l.set m a).get? n = if m = n then some a else l.get? n
simp [getElem?_set]
α : Type u_1 a : α m n : Nat l : List α h : m < l.length ⊢ (if m = n then if m < l.length then some a else none else l[n]?) = if m = n then some a else l[n]?
1b679c7b7ad7a355
Submonoid.closure_eq_one_union
Mathlib/Algebra/Group/Submonoid/Basic.lean
/-- The `Submonoid.closure` of a set is the union of `{1}` and its `Subsemigroup.closure`. -/ lemma closure_eq_one_union (s : Set M) : closure s = {(1 : M)} ∪ (Subsemigroup.closure s : Set M)
case a.one M : Type u_1 inst✝ : MulOneClass M s : Set M x : M ⊢ 1 ∈ {1} ∪ ↑(Subsemigroup.closure s)
exact Or.inl <| by simp
no goals
2ccb3e3d18b60b77
AlgebraicGeometry.isIso_ΓSpec_adjunction_unit_app_basicOpen
Mathlib/AlgebraicGeometry/Morphisms/QuasiSeparated.lean
theorem isIso_ΓSpec_adjunction_unit_app_basicOpen {X : Scheme} [CompactSpace X] [QuasiSeparatedSpace X] (f : X.presheaf.obj (op ⊤)) : IsIso ((ΓSpec.adjunction.unit.app X).c.app (op (PrimeSpectrum.basicOpen f)))
X : Scheme inst✝¹ : CompactSpace ↑↑X.toPresheafedSpace inst✝ : QuasiSeparatedSpace ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op ⊤)) ⊢ IsIso ((ΓSpec.adjunction.unit.app X).c.app (op (PrimeSpectrum.basicOpen f)) ≫ X.presheaf.map (eqToHom ⋯).op)
rw [ConcreteCategory.isIso_iff_bijective]
X : Scheme inst✝¹ : CompactSpace ↑↑X.toPresheafedSpace inst✝ : QuasiSeparatedSpace ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op ⊤)) ⊢ Function.Bijective ⇑(ConcreteCategory.hom ((ΓSpec.adjunction.unit.app X).c.app (op (PrimeSpectrum.basicOpen f)) ≫ X.presheaf.map (eqToHom ⋯).op))
02965fe549346ba3
RootPairing.isReduced_iff
Mathlib/LinearAlgebra/RootSystem/Reduced.lean
lemma isReduced_iff : P.IsReduced ↔ ∀ i j : ι, i ≠ j → ¬ LinearIndependent R ![P.root i, P.root j] → P.root i = - P.root j
case refine_2 ι : Type u_1 R : Type u_2 M : Type u_3 N : Type u_4 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : AddCommGroup N inst✝ : Module R N P : RootPairing ι R M N h : ∀ (i j : ι), i ≠ j → ¬LinearIndependent R ![P.root i, P.root j] → P.root i = -P.root j i j : ι hLin : ¬LinearIndependent R ![P.root i, P.root j] ⊢ P.root i = P.root j ∨ P.root i = -P.root j
rcases eq_or_ne i j with rfl | h'
case refine_2.inl ι : Type u_1 R : Type u_2 M : Type u_3 N : Type u_4 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : AddCommGroup N inst✝ : Module R N P : RootPairing ι R M N h : ∀ (i j : ι), i ≠ j → ¬LinearIndependent R ![P.root i, P.root j] → P.root i = -P.root j i : ι hLin : ¬LinearIndependent R ![P.root i, P.root i] ⊢ P.root i = P.root i ∨ P.root i = -P.root i case refine_2.inr ι : Type u_1 R : Type u_2 M : Type u_3 N : Type u_4 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : AddCommGroup N inst✝ : Module R N P : RootPairing ι R M N h : ∀ (i j : ι), i ≠ j → ¬LinearIndependent R ![P.root i, P.root j] → P.root i = -P.root j i j : ι hLin : ¬LinearIndependent R ![P.root i, P.root j] h' : i ≠ j ⊢ P.root i = P.root j ∨ P.root i = -P.root j
5f51830d5df7e580
List.eq_replicate_or_eq_replicate_append_cons
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Lemmas.lean
theorem eq_replicate_or_eq_replicate_append_cons {α : Type _} (l : List α) : (l = []) ∨ (∃ n a, l = replicate n a ∧ 0 < n) ∨ (∃ n a b l', l = replicate n a ++ b :: l' ∧ 0 < n ∧ a ≠ b)
case nil α : Type u_1 ⊢ [] = [] ∨ (∃ n a, [] = replicate n a ∧ 0 < n) ∨ ∃ n a b l', [] = replicate n a ++ b :: l' ∧ 0 < n ∧ a ≠ b
simp
no goals
1321b019df9b3ed1
List.prod_erase_of_comm
Mathlib/Algebra/BigOperators/Group/List/Basic.lean
@[to_additive] lemma prod_erase_of_comm [DecidableEq M] (ha : a ∈ l) (comm : ∀ x ∈ l, ∀ y ∈ l, x * y = y * x) : a * (l.erase a).prod = l.prod
case cons.inr.intro M : Type u_4 inst✝¹ : Monoid M l✝ : List M a : M inst✝ : DecidableEq M b : M l : List M ih : a ∈ l → (∀ (x : M), x ∈ l → ∀ (y : M), y ∈ l → x * y = y * x) → a * (l.erase a).prod = l.prod ha : a ∈ b :: l comm : ∀ (x : M), x ∈ b :: l → ∀ (y : M), y ∈ b :: l → x * y = y * x ne : a ≠ b h : a ∈ l ⊢ a * ((b :: l).erase a).prod = (b :: l).prod
rw [List.erase, beq_false_of_ne ne.symm, List.prod_cons, List.prod_cons, ← mul_assoc, comm a ha b (l.mem_cons_self b), mul_assoc, ih h fun x hx y hy ↦ comm _ (List.mem_cons_of_mem b hx) _ (List.mem_cons_of_mem b hy)]
no goals
8f450a4084d77ffa
Std.Tactic.BVDecide.BVExpr.bitblast.blastShiftRight.twoPowShift_eq
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/Bitblast/BVExpr/Circuit/Lemmas/Operations/ShiftRight.lean
theorem twoPowShift_eq (aig : AIG α) (target : TwoPowShiftTarget aig w) (lhs : BitVec w) (rhs : BitVec target.n) (assign : α → Bool) (hleft : ∀ (idx : Nat) (hidx : idx < w), ⟦aig, target.lhs.get idx hidx, assign⟧ = lhs.getLsbD idx) (hright : ∀ (idx : Nat) (hidx : idx < target.n), ⟦aig, target.rhs.get idx hidx, assign⟧ = rhs.getLsbD idx) : ∀ (idx : Nat) (hidx : idx < w), ⟦ (twoPowShift aig target).aig, (twoPowShift aig target).vec.get idx hidx, assign ⟧ = (lhs >>> (rhs &&& BitVec.twoPow target.n target.pow)).getLsbD idx
α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α w : Nat aig : AIG α lhs : BitVec w assign : α → Bool idx : Nat hidx : idx < w res : RefVecEntry α w n : Nat lvec : aig.RefVec w rvec : aig.RefVec n pow : Nat rhs : BitVec { n := n, lhs := lvec, rhs := rvec, pow := pow }.n hleft : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := { n := n, lhs := lvec, rhs := rvec, pow := pow }.lhs.get idx hidx }⟧ = lhs.getLsbD idx hright : ∀ (idx : Nat) (hidx : idx < { n := n, lhs := lvec, rhs := rvec, pow := pow }.n), ⟦assign, { aig := aig, ref := { n := n, lhs := lvec, rhs := rvec, pow := pow }.rhs.get idx hidx }⟧ = rhs.getLsbD idx h✝ : pow < n hg : RefVec.ite (blastShiftRightConst aig { vec := lvec, distance := 2 ^ pow }).aig { discr := (rvec.cast ⋯).get pow h✝, lhs := (blastShiftRightConst aig { vec := lvec, distance := 2 ^ pow }).vec, rhs := lvec.cast ⋯ } = res hif1 : rhs.getLsbD pow = true ⊢ 2 ^ pow % 2 ^ n = 2 ^ pow
apply Nat.mod_eq_of_lt
case h α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α w : Nat aig : AIG α lhs : BitVec w assign : α → Bool idx : Nat hidx : idx < w res : RefVecEntry α w n : Nat lvec : aig.RefVec w rvec : aig.RefVec n pow : Nat rhs : BitVec { n := n, lhs := lvec, rhs := rvec, pow := pow }.n hleft : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := { n := n, lhs := lvec, rhs := rvec, pow := pow }.lhs.get idx hidx }⟧ = lhs.getLsbD idx hright : ∀ (idx : Nat) (hidx : idx < { n := n, lhs := lvec, rhs := rvec, pow := pow }.n), ⟦assign, { aig := aig, ref := { n := n, lhs := lvec, rhs := rvec, pow := pow }.rhs.get idx hidx }⟧ = rhs.getLsbD idx h✝ : pow < n hg : RefVec.ite (blastShiftRightConst aig { vec := lvec, distance := 2 ^ pow }).aig { discr := (rvec.cast ⋯).get pow h✝, lhs := (blastShiftRightConst aig { vec := lvec, distance := 2 ^ pow }).vec, rhs := lvec.cast ⋯ } = res hif1 : rhs.getLsbD pow = true ⊢ 2 ^ pow < 2 ^ n
a2117c7fa85ff087
Vector.zipWith_append
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Vector/Zip.lean
theorem zipWith_append (f : α → β → γ) (l : Vector α n) (la : Vector α m) (l' : Vector β n) (lb : Vector β m) : zipWith f (l ++ la) (l' ++ lb) = zipWith f l l' ++ zipWith f la lb
case mk α : Type u_1 β : Type u_2 γ : Type u_3 m : Nat f : α → β → γ la : Vector α m lb : Vector β m l : Array α l' : Vector β l.size ⊢ zipWith f ({ toArray := l, size_toArray := ⋯ } ++ la) (l' ++ lb) = zipWith f { toArray := l, size_toArray := ⋯ } l' ++ zipWith f la lb
rcases l' with ⟨l', h⟩
case mk.mk α : Type u_1 β : Type u_2 γ : Type u_3 m : Nat f : α → β → γ la : Vector α m lb : Vector β m l : Array α l' : Array β h : l'.size = l.size ⊢ zipWith f ({ toArray := l, size_toArray := ⋯ } ++ la) ({ toArray := l', size_toArray := h } ++ lb) = zipWith f { toArray := l, size_toArray := ⋯ } { toArray := l', size_toArray := h } ++ zipWith f la lb
4f97035c25aaaf53
Complex.Gamma_mul_Gamma_eq_betaIntegral
Mathlib/Analysis/SpecialFunctions/Gamma/Beta.lean
theorem Gamma_mul_Gamma_eq_betaIntegral {s t : ℂ} (hs : 0 < re s) (ht : 0 < re t) : Gamma s * Gamma t = Gamma (s + t) * betaIntegral s t
case e_f.h s t : ℂ hs : 0 < s.re ht : 0 < t.re conv_int : ∫ (x : ℝ) in Ioi 0, ∫ (t_1 : ℝ) in 0 ..x, ↑(rexp (-t_1)) * ↑t_1 ^ (s - 1) * (↑(rexp (-(x - t_1))) * ↑(x - t_1) ^ (t - 1)) ∂volume = (∫ (x : ℝ) in Ioi 0, ↑(rexp (-x)) * ↑x ^ (s - 1) ∂volume) * ∫ (x : ℝ) in Ioi 0, ↑(rexp (-x)) * ↑x ^ (t - 1) ∂volume hst : 0 < (s + t).re x : ℝ hx : x ∈ Ioi 0 y : ℝ ⊢ ↑(rexp (-y)) * ↑y ^ (s - 1) * (↑(rexp (-(x - y))) * ↑(x - y) ^ (t - 1)) = ↑(rexp (-x)) * (↑y ^ (s - 1) * (↑x - ↑y) ^ (t - 1))
push_cast
case e_f.h s t : ℂ hs : 0 < s.re ht : 0 < t.re conv_int : ∫ (x : ℝ) in Ioi 0, ∫ (t_1 : ℝ) in 0 ..x, ↑(rexp (-t_1)) * ↑t_1 ^ (s - 1) * (↑(rexp (-(x - t_1))) * ↑(x - t_1) ^ (t - 1)) ∂volume = (∫ (x : ℝ) in Ioi 0, ↑(rexp (-x)) * ↑x ^ (s - 1) ∂volume) * ∫ (x : ℝ) in Ioi 0, ↑(rexp (-x)) * ↑x ^ (t - 1) ∂volume hst : 0 < (s + t).re x : ℝ hx : x ∈ Ioi 0 y : ℝ ⊢ cexp (-↑y) * ↑y ^ (s - 1) * (cexp (-(↑x - ↑y)) * (↑x - ↑y) ^ (t - 1)) = cexp (-↑x) * (↑y ^ (s - 1) * (↑x - ↑y) ^ (t - 1))
18eb59fc7415b248
TendstoLocallyUniformlyOn.differentiableOn
Mathlib/Analysis/Complex/LocallyUniformLimit.lean
theorem _root_.TendstoLocallyUniformlyOn.differentiableOn [φ.NeBot] (hf : TendstoLocallyUniformlyOn F f φ U) (hF : ∀ᶠ n in φ, DifferentiableOn ℂ (F n) U) (hU : IsOpen U) : DifferentiableOn ℂ f U
E : Type u_1 ι : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℂ E U : Set ℂ φ : Filter ι F : ι → ℂ → E f : ℂ → E inst✝¹ : CompleteSpace E inst✝ : φ.NeBot hf : TendstoLocallyUniformlyOn F f φ U hF : ∀ᶠ (n : ι) in φ, DifferentiableOn ℂ (F n) U hU : IsOpen U x : ℂ hx : x ∈ U ⊢ DifferentiableWithinAt ℂ f U x
obtain ⟨K, ⟨hKx, hK⟩, hKU⟩ := (compact_basis_nhds x).mem_iff.mp (hU.mem_nhds hx)
case intro.intro.intro E : Type u_1 ι : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℂ E U : Set ℂ φ : Filter ι F : ι → ℂ → E f : ℂ → E inst✝¹ : CompleteSpace E inst✝ : φ.NeBot hf : TendstoLocallyUniformlyOn F f φ U hF : ∀ᶠ (n : ι) in φ, DifferentiableOn ℂ (F n) U hU : IsOpen U x : ℂ hx : x ∈ U K : Set ℂ hKU : K ⊆ U hKx : K ∈ 𝓝 x hK : IsCompact K ⊢ DifferentiableWithinAt ℂ f U x
4179b164980029db
List.take_eq_take
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Nat/TakeDrop.lean
theorem take_eq_take : ∀ {l : List α} {m n : Nat}, l.take m = l.take n ↔ min m l.length = min n l.length | [], m, n => by simp [Nat.min_zero] | _ :: xs, 0, 0 => by simp | x :: xs, m + 1, 0 => by simp [Nat.zero_min, succ_min_succ] | x :: xs, 0, n + 1 => by simp [Nat.zero_min, succ_min_succ] | x :: xs, m + 1, n + 1 => by simp [succ_min_succ, take_eq_take]
α : Type u_1 x : α xs : List α n : Nat ⊢ take 0 (x :: xs) = take (n + 1) (x :: xs) ↔ min 0 (x :: xs).length = min (n + 1) (x :: xs).length
simp [Nat.zero_min, succ_min_succ]
no goals
0c82902b146db8e8
ProbabilityTheory.measure_limsup_eq_one
Mathlib/Probability/BorelCantelli.lean
theorem measure_limsup_eq_one {s : ℕ → Set Ω} (hsm : ∀ n, MeasurableSet (s n)) (hs : iIndepSet s μ) (hs' : (∑' n, μ (s n)) = ∞) : μ (limsup s atTop) = 1
Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω s : ℕ → Set Ω hsm : ∀ (n : ℕ), MeasurableSet (s n) hs : iIndepSet s μ hs' : ∑' (n : ℕ), μ (s n) = ⊤ ⊢ μ (limsup s atTop) = 1
have : IsProbabilityMeasure μ := hs.isProbabilityMeasure
Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω s : ℕ → Set Ω hsm : ∀ (n : ℕ), MeasurableSet (s n) hs : iIndepSet s μ hs' : ∑' (n : ℕ), μ (s n) = ⊤ this : IsProbabilityMeasure μ ⊢ μ (limsup s atTop) = 1
b8c76ecaf1a3d1c2
MvPowerSeries.coeff_eq_zero_of_constantCoeff_nilpotent
Mathlib/RingTheory/MvPowerSeries/Basic.lean
theorem coeff_eq_zero_of_constantCoeff_nilpotent {f : MvPowerSeries σ R} {m : ℕ} (hf : constantCoeff σ R f ^ m = 0) {d : σ →₀ ℕ} {n : ℕ} (hn : m + degree d ≤ n) : coeff R d (f ^ n) = 0
σ : Type u_1 R : Type u_3 inst✝ : CommSemiring R f : MvPowerSeries σ R m : ℕ hf : (constantCoeff σ R) f ^ m = 0 d : σ →₀ ℕ n : ℕ hn : m + d.degree ≤ n k : ℕ →₀ σ →₀ ℕ hk : (range n).sum ⇑k = d ∧ k.support ⊆ range n s : Finset ℕ := Finset.filter (fun i => k i = 0) (range n) hs_def : s = Finset.filter (fun i => k i = 0) (range n) hs : s ⊆ range n hs' : ∀ i ∈ s, (coeff R (k i)) f = (constantCoeff σ R) f hs'' : ∀ i ∈ s, k i = 0 ⊢ m + #(range n \ Finset.filter (fun i => k i = 0) (range n)) ≤ m + d.degree
simp only [add_comm m, Nat.add_le_add_iff_right, ← hk.1, ← sum_sdiff (hs), sum_eq_zero (s := s) hs'', add_zero]
σ : Type u_1 R : Type u_3 inst✝ : CommSemiring R f : MvPowerSeries σ R m : ℕ hf : (constantCoeff σ R) f ^ m = 0 d : σ →₀ ℕ n : ℕ hn : m + d.degree ≤ n k : ℕ →₀ σ →₀ ℕ hk : (range n).sum ⇑k = d ∧ k.support ⊆ range n s : Finset ℕ := Finset.filter (fun i => k i = 0) (range n) hs_def : s = Finset.filter (fun i => k i = 0) (range n) hs : s ⊆ range n hs' : ∀ i ∈ s, (coeff R (k i)) f = (constantCoeff σ R) f hs'' : ∀ i ∈ s, k i = 0 ⊢ #(range n \ Finset.filter (fun i => k i = 0) (range n)) ≤ (∑ x ∈ range n \ s, k x).degree
cf9ab574f0bd652b
Finsupp.range_linearCombination
Mathlib/LinearAlgebra/Finsupp/LinearCombination.lean
theorem range_linearCombination : LinearMap.range (linearCombination R v) = span R (range v)
α : Type u_1 M : Type u_2 R : Type u_5 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M v : α → M ⊢ LinearMap.range (linearCombination R v) = span R (Set.range v)
ext x
case h α : Type u_1 M : Type u_2 R : Type u_5 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M v : α → M x : M ⊢ x ∈ LinearMap.range (linearCombination R v) ↔ x ∈ span R (Set.range v)
28c3b4ab3746ce9c
MeasureTheory.Lp.ae_tendsto_of_cauchy_eLpNorm
Mathlib/MeasureTheory/Function/LpSpace/Basic.lean
theorem ae_tendsto_of_cauchy_eLpNorm [CompleteSpace E] {f : ℕ → α → E} (hf : ∀ n, AEStronglyMeasurable (f n) μ) (hp : 1 ≤ p) {B : ℕ → ℝ≥0∞} (hB : ∑' i, B i ≠ ∞) (h_cau : ∀ N n m : ℕ, N ≤ n → N ≤ m → eLpNorm (f n - f m) p μ < B N) : ∀ᵐ x ∂μ, ∃ l : E, atTop.Tendsto (fun n => f n x) (𝓝 l)
case pos α : Type u_1 E : Type u_4 m0 : MeasurableSpace α p : ℝ≥0∞ μ : Measure α inst✝¹ : NormedAddCommGroup E inst✝ : CompleteSpace E f : ℕ → α → E hf : ∀ (n : ℕ), AEStronglyMeasurable (f n) μ B : ℕ → ℝ≥0∞ hB : ∑' (i : ℕ), B i ≠ ⊤ hp : 1 ≤ ⊤ hp_top : True h_cau_ae : ∀ᵐ (x : α) ∂μ, ∀ (N n m : ℕ), N ≤ n → N ≤ m → ‖(f n - f m) x‖ₑ < B N h_cau : ∀ (N n m : ℕ), N ≤ n → N ≤ m → essSup (fun x => ‖(f n - f m) x‖ₑ) μ < B N x : α hx : ∀ (N n m : ℕ), N ≤ n → N ≤ m → ‖(f n - f m) x‖ₑ < B N ⊢ CauchySeq fun n => f n x
refine cauchySeq_of_le_tendsto_0 (fun n => (B n).toReal) ?_ ?_
case pos.refine_1 α : Type u_1 E : Type u_4 m0 : MeasurableSpace α p : ℝ≥0∞ μ : Measure α inst✝¹ : NormedAddCommGroup E inst✝ : CompleteSpace E f : ℕ → α → E hf : ∀ (n : ℕ), AEStronglyMeasurable (f n) μ B : ℕ → ℝ≥0∞ hB : ∑' (i : ℕ), B i ≠ ⊤ hp : 1 ≤ ⊤ hp_top : True h_cau_ae : ∀ᵐ (x : α) ∂μ, ∀ (N n m : ℕ), N ≤ n → N ≤ m → ‖(f n - f m) x‖ₑ < B N h_cau : ∀ (N n m : ℕ), N ≤ n → N ≤ m → essSup (fun x => ‖(f n - f m) x‖ₑ) μ < B N x : α hx : ∀ (N n m : ℕ), N ≤ n → N ≤ m → ‖(f n - f m) x‖ₑ < B N ⊢ ∀ (n m N : ℕ), N ≤ n → N ≤ m → dist (f n x) (f m x) ≤ (fun n => (B n).toReal) N case pos.refine_2 α : Type u_1 E : Type u_4 m0 : MeasurableSpace α p : ℝ≥0∞ μ : Measure α inst✝¹ : NormedAddCommGroup E inst✝ : CompleteSpace E f : ℕ → α → E hf : ∀ (n : ℕ), AEStronglyMeasurable (f n) μ B : ℕ → ℝ≥0∞ hB : ∑' (i : ℕ), B i ≠ ⊤ hp : 1 ≤ ⊤ hp_top : True h_cau_ae : ∀ᵐ (x : α) ∂μ, ∀ (N n m : ℕ), N ≤ n → N ≤ m → ‖(f n - f m) x‖ₑ < B N h_cau : ∀ (N n m : ℕ), N ≤ n → N ≤ m → essSup (fun x => ‖(f n - f m) x‖ₑ) μ < B N x : α hx : ∀ (N n m : ℕ), N ≤ n → N ≤ m → ‖(f n - f m) x‖ₑ < B N ⊢ Tendsto (fun n => (B n).toReal) atTop (𝓝 0)
5f2619b40c9c366d
FormalMultilinearSeries.ofScalars_radius_eq_top_of_tendsto
Mathlib/Analysis/Analytic/OfScalars.lean
theorem ofScalars_radius_eq_top_of_tendsto (hc : ∀ᶠ n in atTop, c n ≠ 0) (hc' : Tendsto (fun n ↦ ‖c n.succ‖ / ‖c n‖) atTop (𝓝 0)) : (ofScalars E c).radius = ⊤
case neg.refine_1 𝕜 : Type u_1 E : Type u_2 inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedRing E inst✝ : NormedAlgebra 𝕜 E c : ℕ → 𝕜 hc : ∀ᶠ (n : ℕ) in atTop, c n ≠ 0 hc' : Tendsto (fun n => ‖c n.succ‖ / ‖c n‖) atTop (𝓝 0) r' : ℝ≥0 hrz : ¬r' = 0 ⊢ Summable fun n => ‖‖c n‖ * ↑r' ^ n‖
apply summable_of_ratio_test_tendsto_lt_one zero_lt_one (hc.mp (Eventually.of_forall ?_))
case neg.refine_1 𝕜 : Type u_1 E : Type u_2 inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedRing E inst✝ : NormedAlgebra 𝕜 E c : ℕ → 𝕜 hc : ∀ᶠ (n : ℕ) in atTop, c n ≠ 0 hc' : Tendsto (fun n => ‖c n.succ‖ / ‖c n‖) atTop (𝓝 0) r' : ℝ≥0 hrz : ¬r' = 0 ⊢ Tendsto (fun n => ‖‖‖c (n + 1)‖ * ↑r' ^ (n + 1)‖‖ / ‖‖‖c n‖ * ↑r' ^ n‖‖) atTop (𝓝 0) 𝕜 : Type u_1 E : Type u_2 inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedRing E inst✝ : NormedAlgebra 𝕜 E c : ℕ → 𝕜 hc : ∀ᶠ (n : ℕ) in atTop, c n ≠ 0 hc' : Tendsto (fun n => ‖c n.succ‖ / ‖c n‖) atTop (𝓝 0) r' : ℝ≥0 hrz : ¬r' = 0 ⊢ ∀ (x : ℕ), c x ≠ 0 → ‖‖c x‖ * ↑r' ^ x‖ ≠ 0
fed995db04eea233
Finset.exists_subsuperset_card_eq
Mathlib/Data/Finset/Card.lean
/-- Given a subset `s` of a set `t`, of sizes at most and at least `n` respectively, there exists a set `u` of size `n` which is both a superset of `s` and a subset of `t`. -/ lemma exists_subsuperset_card_eq (hst : s ⊆ t) (hsn : #s ≤ n) (hnt : n ≤ #t) : ∃ u, s ⊆ u ∧ u ⊆ t ∧ #u = n
α : Type u_1 s t : Finset α n : ℕ hst : s ⊆ t hsn : #s ≤ n hnt : n ≤ #t k : ℕ a✝ : k < #t hnk : n ≤ k u : Finset α hu₁ : s ⊆ u hu₂ : u ⊆ t hu₃ : #u = k + 1 ⊢ (u \ s).Nonempty
rw [← card_pos, card_sdiff hu₁]
α : Type u_1 s t : Finset α n : ℕ hst : s ⊆ t hsn : #s ≤ n hnt : n ≤ #t k : ℕ a✝ : k < #t hnk : n ≤ k u : Finset α hu₁ : s ⊆ u hu₂ : u ⊆ t hu₃ : #u = k + 1 ⊢ 0 < #u - #s
ea6bc578b42c3acb
List.findIdx_subtype
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Find.lean
theorem findIdx_subtype {p : α → Prop} {l : List { x // p x }} {f : { x // p x } → Bool} {g : α → Bool} (hf : ∀ x h, f ⟨x, h⟩ = g x) : l.findIdx f = l.unattach.findIdx g
α : Type u_1 p : α → Prop l : List { x // p x } f : { x // p x } → Bool g : α → Bool hf : ∀ (x : α) (h : p x), f ⟨x, h⟩ = g x ⊢ findIdx f l = findIdx g (map (fun x => x.val) l)
induction l with | nil => simp | cons a l ih => simp [ih, hf, findIdx_cons]
no goals
3d0a173f80838bde
MeasureTheory.SignedMeasure.exists_subset_restrict_nonpos
Mathlib/MeasureTheory/Decomposition/SignedHahn.lean
theorem exists_subset_restrict_nonpos (hi : s i < 0) : ∃ j : Set α, MeasurableSet j ∧ j ⊆ i ∧ s ≤[j] 0 ∧ s j < 0
α : Type u_1 inst✝ : MeasurableSpace α s : SignedMeasure α i : Set α hi : ↑s i < 0 hi₁ : MeasurableSet i h : ¬s ≤[i] 0 hn : ∀ (n : ℕ), ¬s ≤[i \ ⋃ l, ⋃ (_ : l < n), MeasureTheory.SignedMeasure.restrictNonposSeq s i l] 0 A : Set α := i \ ⋃ l, MeasureTheory.SignedMeasure.restrictNonposSeq s i l hA : A = i \ ⋃ l, MeasureTheory.SignedMeasure.restrictNonposSeq s i l bdd : ℕ → ℕ := fun n => MeasureTheory.SignedMeasure.findExistsOneDivLT s (i \ ⋃ k, ⋃ (_ : k ≤ n), MeasureTheory.SignedMeasure.restrictNonposSeq s i k) hn' : ∀ (n : ℕ), ¬s ≤[i \ ⋃ l, ⋃ (_ : l ≤ n), MeasureTheory.SignedMeasure.restrictNonposSeq s i l] 0 h₁ : ↑s i = ↑s A + ∑' (l : ℕ), ↑s (MeasureTheory.SignedMeasure.restrictNonposSeq s i l) h₂ : ↑s A ≤ ↑s i h₃' : Summable fun n => 1 / (↑(bdd n) + 1) h₃ : Tendsto (fun n => ↑(bdd n) + 1) atTop atTop h₄ : Tendsto (fun n => ↑(bdd n)) atTop atTop A_meas : MeasurableSet A E : Set α hE₁ : MeasurableSet E hE₂ : E ⊆ A hE₃ : ↑0 E < ↑s E ⊢ ∃ k, 1 ≤ bdd k ∧ 1 / ↑(bdd k) < ↑s E
rw [tendsto_atTop_atTop] at h₄
α : Type u_1 inst✝ : MeasurableSpace α s : SignedMeasure α i : Set α hi : ↑s i < 0 hi₁ : MeasurableSet i h : ¬s ≤[i] 0 hn : ∀ (n : ℕ), ¬s ≤[i \ ⋃ l, ⋃ (_ : l < n), MeasureTheory.SignedMeasure.restrictNonposSeq s i l] 0 A : Set α := i \ ⋃ l, MeasureTheory.SignedMeasure.restrictNonposSeq s i l hA : A = i \ ⋃ l, MeasureTheory.SignedMeasure.restrictNonposSeq s i l bdd : ℕ → ℕ := fun n => MeasureTheory.SignedMeasure.findExistsOneDivLT s (i \ ⋃ k, ⋃ (_ : k ≤ n), MeasureTheory.SignedMeasure.restrictNonposSeq s i k) hn' : ∀ (n : ℕ), ¬s ≤[i \ ⋃ l, ⋃ (_ : l ≤ n), MeasureTheory.SignedMeasure.restrictNonposSeq s i l] 0 h₁ : ↑s i = ↑s A + ∑' (l : ℕ), ↑s (MeasureTheory.SignedMeasure.restrictNonposSeq s i l) h₂ : ↑s A ≤ ↑s i h₃' : Summable fun n => 1 / (↑(bdd n) + 1) h₃ : Tendsto (fun n => ↑(bdd n) + 1) atTop atTop h₄ : ∀ (b : ℝ), ∃ i, ∀ (a : ℕ), i ≤ a → b ≤ ↑(bdd a) A_meas : MeasurableSet A E : Set α hE₁ : MeasurableSet E hE₂ : E ⊆ A hE₃ : ↑0 E < ↑s E ⊢ ∃ k, 1 ≤ bdd k ∧ 1 / ↑(bdd k) < ↑s E
37ee21864bec50c9
List.pairwise_replicate
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Pairwise.lean
theorem pairwise_replicate {n : Nat} {a : α} : (replicate n a).Pairwise R ↔ n ≤ 1 ∨ R a a
case zero α : Type u_1 R : α → α → Prop a : α ⊢ Pairwise R (replicate 0 a) ↔ 0 ≤ 1 ∨ R a a
simp
no goals
2d4c357c8a7b913e
weightedVSub_mem_vectorSpan_pair
Mathlib/LinearAlgebra/AffineSpace/Independent.lean
theorem weightedVSub_mem_vectorSpan_pair {p : ι → P} (h : AffineIndependent k p) {w w₁ w₂ : ι → k} {s : Finset ι} (hw : ∑ i ∈ s, w i = 0) (hw₁ : ∑ i ∈ s, w₁ i = 1) (hw₂ : ∑ i ∈ s, w₂ i = 1) : s.weightedVSub p w ∈ vectorSpan k ({s.affineCombination k p w₁, s.affineCombination k p w₂} : Set P) ↔ ∃ r : k, ∀ i ∈ s, w i = r * (w₁ i - w₂ i)
case refine_1.intro k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P h : AffineIndependent k p w w₁ w₂ : ι → k s : Finset ι hw : ∑ i ∈ s, w i = 0 hw₁ : ∑ i ∈ s, w₁ i = 1 hw₂ : ∑ i ∈ s, w₂ i = 1 r : k hr : (s.weightedVSub p) (r • (w₁ - w₂) - w) = 0 i : ι hi : i ∈ s hw' : ∑ j ∈ s, (r • (w₁ - w₂) - w) j = 0 hr' : (r • (w₁ - w₂) - w) i = 0 ⊢ r • (w₁ i - w₂ i) - w i = 0
exact hr'
no goals
6e1484c0d97194ef
Std.DHashMap.Internal.List.isEmpty_replaceEntry
Mathlib/.lake/packages/lean4/src/lean/Std/Data/DHashMap/Internal/List/Associative.lean
theorem isEmpty_replaceEntry [BEq α] {l : List ((a : α) × β a)} {k : α} {v : β k} : (replaceEntry k v l).isEmpty = l.isEmpty
case nil α : Type u β : α → Type v inst✝ : BEq α k : α v : β k ⊢ (replaceEntry k v []).isEmpty = [].isEmpty
simp
no goals
f9d09d9271745f83
Real.cos_nat_mul_two_pi_add_pi
Mathlib/Analysis/SpecialFunctions/Trigonometric/Basic.lean
theorem cos_nat_mul_two_pi_add_pi (n : ℕ) : cos (n * (2 * π) + π) = -1
n : ℕ ⊢ cos (↑n * (2 * π) + π) = -1
simpa only [cos_zero] using (cos_periodic.nat_mul n).add_antiperiod_eq cos_antiperiodic
no goals
2d62e007bd9e70e9
List.Ico.trichotomy
Mathlib/Data/List/Intervals.lean
theorem trichotomy (n a b : ℕ) : n < a ∨ b ≤ n ∨ n ∈ Ico a b
case pos n a b : ℕ h₁ : ¬n < a h₂ : n ∈ Ico a b ⊢ b ≤ n ∨ n ∈ Ico a b
right
case pos.h n a b : ℕ h₁ : ¬n < a h₂ : n ∈ Ico a b ⊢ n ∈ Ico a b
1ef8cb21636fcea9
Mathlib.Meta.NormNum.isRat_lt_true
Mathlib/Tactic/NormNum/Ineq.lean
theorem isRat_lt_true [LinearOrderedRing α] [Nontrivial α] : {a b : α} → {na nb : ℤ} → {da db : ℕ} → IsRat a na da → IsRat b nb db → decide (na * db < nb * da) → a < b | _, _, _, _, da, db, ⟨_, rfl⟩, ⟨_, rfl⟩, h => by have h := Int.cast_strictMono (R := α) <| of_decide_eq_true h have ha : 0 < ⅟(da : α) := pos_invOf_of_invertible_cast da have hb : 0 < ⅟(db : α) := pos_invOf_of_invertible_cast db have h := (mul_lt_mul_of_pos_left · hb) <| mul_lt_mul_of_pos_right h ha rw [← mul_assoc, Int.commute_cast] at h simp? at h says simp only [Int.cast_mul, Int.cast_natCast, mul_invOf_cancel_right'] at h rwa [Int.commute_cast] at h
α : Type u_1 inst✝¹ : LinearOrderedRing α inst✝ : Nontrivial α num✝¹ num✝ : ℤ da db : ℕ inv✝¹ : Invertible ↑da inv✝ : Invertible ↑db h✝¹ : decide (num✝¹ * ↑db < num✝ * ↑da) = true h✝ : (fun x => ↑x) (num✝¹ * ↑db) < (fun x => ↑x) (num✝ * ↑da) ha : 0 < ⅟↑da hb : 0 < ⅟↑db h : ↑(num✝¹ * ↑db) * ⅟↑db * ⅟↑da < ⅟↑db * ((fun x => ↑x) (num✝ * ↑da) * ⅟↑da) ⊢ ↑num✝¹ * ⅟↑da < ↑num✝ * ⅟↑db
simp? at h says simp only [Int.cast_mul, Int.cast_natCast, mul_invOf_cancel_right'] at h
α : Type u_1 inst✝¹ : LinearOrderedRing α inst✝ : Nontrivial α num✝¹ num✝ : ℤ da db : ℕ inv✝¹ : Invertible ↑da inv✝ : Invertible ↑db h✝¹ : decide (num✝¹ * ↑db < num✝ * ↑da) = true h✝ : (fun x => ↑x) (num✝¹ * ↑db) < (fun x => ↑x) (num✝ * ↑da) ha : 0 < ⅟↑da hb : 0 < ⅟↑db h : ↑num✝¹ * ⅟↑da < ⅟↑db * ↑num✝ ⊢ ↑num✝¹ * ⅟↑da < ↑num✝ * ⅟↑db
97c6649e3f6d6fbe
exists_sum_eq_one_iff_pairwise_coprime
Mathlib/RingTheory/Coprime/Lemmas.lean
theorem exists_sum_eq_one_iff_pairwise_coprime [DecidableEq I] (h : t.Nonempty) : (∃ μ : I → R, (∑ i ∈ t, μ i * ∏ j ∈ t \ {i}, s j) = 1) ↔ Pairwise (IsCoprime on fun i : t ↦ s i)
case cons.mp.intro.refine_2.refine_1.e_a.e_a.e_s R : Type u I : Type v inst✝¹ : CommSemiring R s : I → R t✝ : Finset I inst✝ : DecidableEq I a : I t : Finset I hat : a ∉ t h : t.Nonempty ih : (∃ μ, ∑ i ∈ t, μ i * ∏ j ∈ t \ {i}, s j = 1) ↔ Pairwise (IsCoprime on fun i => s ↑i) mem : ∀ x ∈ t, a ∈ insert a t \ {x} μ : I → R hμ : μ a * ∏ j ∈ t, s j + ∑ x ∈ t, μ x * ∏ j ∈ insert a t \ {x}, s j = 1 b : I hb : b ∈ t x : I hx : x ∈ t ⊢ t \ {x} = (insert a t \ {x}) \ {a}
rw [sdiff_sdiff_comm, sdiff_singleton_eq_erase a, erase_insert hat]
no goals
8a28cdbc75233b6c
MeasureTheory.Measure.MeasureDense.indicatorConstLp_subset_closure
Mathlib/MeasureTheory/Measure/SeparableMeasure.lean
theorem Measure.MeasureDense.indicatorConstLp_subset_closure (h𝒜 : μ.MeasureDense 𝒜) (c : E) : {indicatorConstLp p hs hμs c | (s : Set X) (hs : MeasurableSet s) (hμs : μ s ≠ ∞)} ⊆ closure {indicatorConstLp p (h𝒜.measurable s hs) hμs c | (s : Set X) (hs : s ∈ 𝒜) (hμs : μ s ≠ ∞)}
case inl.intro.intro.intro.intro.intro X : Type u_1 E : Type u_2 m : MeasurableSpace X inst✝ : NormedAddCommGroup E μ : Measure X p : ℝ≥0∞ one_le_p : Fact (1 ≤ p) p_ne_top : Fact (p ≠ ⊤) 𝒜 : Set (Set X) h𝒜 : μ.MeasureDense 𝒜 s : Set X ms : MeasurableSet s hμs : μ s ≠ ⊤ t : Set X ht : t ∈ 𝒜 hμt : μ t ≠ ⊤ ⊢ indicatorConstLp p ⋯ hμt 0 = indicatorConstLp p ms hμs 0
simp_rw [indicatorConstLp]
case inl.intro.intro.intro.intro.intro X : Type u_1 E : Type u_2 m : MeasurableSpace X inst✝ : NormedAddCommGroup E μ : Measure X p : ℝ≥0∞ one_le_p : Fact (1 ≤ p) p_ne_top : Fact (p ≠ ⊤) 𝒜 : Set (Set X) h𝒜 : μ.MeasureDense 𝒜 s : Set X ms : MeasurableSet s hμs : μ s ≠ ⊤ t : Set X ht : t ∈ 𝒜 hμt : μ t ≠ ⊤ ⊢ MemLp.toLp (t.indicator fun x => 0) ⋯ = MemLp.toLp (s.indicator fun x => 0) ⋯
3507838922f74cb4
IsLocallyConstant.of_germ_isConstant
Mathlib/Topology/Germ.lean
/-- If the germ of `f` w.r.t. each `𝓝 x` is constant, `f` is locally constant. -/ lemma IsLocallyConstant.of_germ_isConstant (h : ∀ x : X, (f : Germ (𝓝 x) Y).IsConstant) : IsLocallyConstant f
X : Type u_1 Y : Type u_2 inst✝ : TopologicalSpace X f : X → Y h : ∀ (x : X), (↑f).IsConstant s : Set Y ⊢ IsOpen (f ⁻¹' s)
rw [isOpen_iff_mem_nhds]
X : Type u_1 Y : Type u_2 inst✝ : TopologicalSpace X f : X → Y h : ∀ (x : X), (↑f).IsConstant s : Set Y ⊢ ∀ x ∈ f ⁻¹' s, f ⁻¹' s ∈ 𝓝 x
cda63f65afa76d70
mem_parallelepiped_iff
Mathlib/MeasureTheory/Measure/Haar/OfBasis.lean
theorem mem_parallelepiped_iff (v : ι → E) (x : E) : x ∈ parallelepiped v ↔ ∃ t ∈ Icc (0 : ι → ℝ) 1, x = ∑ i, t i • v i
ι : Type u_1 E : Type u_3 inst✝² : Fintype ι inst✝¹ : AddCommGroup E inst✝ : Module ℝ E v : ι → E x : E ⊢ x ∈ parallelepiped v ↔ ∃ t ∈ Icc 0 1, x = ∑ i : ι, t i • v i
simp [parallelepiped, eq_comm]
no goals
39b1e0a4954ba12e
IntermediateField.AdjoinSimple.trace_gen_eq_zero
Mathlib/RingTheory/Trace/Basic.lean
theorem trace_gen_eq_zero {x : L} (hx : ¬IsIntegral K x) : Algebra.trace K K⟮x⟯ (AdjoinSimple.gen K x) = 0
case h K : Type u_4 L : Type u_5 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L x : L hx : ¬IsIntegral K x ⊢ ¬∃ s, Nonempty (Basis { x_1 // x_1 ∈ s } K ↥K⟮x⟯)
contrapose! hx
case h K : Type u_4 L : Type u_5 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L x : L hx : ∃ s, Nonempty (Basis { x_1 // x_1 ∈ s } K ↥K⟮x⟯) ⊢ IsIntegral K x
e3d62924677daba0
Matrix.nonsing_inv_nonsing_inv
Mathlib/LinearAlgebra/Matrix/NonsingularInverse.lean
theorem nonsing_inv_nonsing_inv (h : IsUnit A.det) : A⁻¹⁻¹ = A := calc A⁻¹⁻¹ = 1 * A⁻¹⁻¹
n : Type u' α : Type v inst✝² : Fintype n inst✝¹ : DecidableEq n inst✝ : CommRing α A : Matrix n n α h : IsUnit A.det ⊢ 1 * A⁻¹⁻¹ = A * A⁻¹ * A⁻¹⁻¹
rw [A.mul_nonsing_inv h]
no goals
2a08da7f87c7ce96
cardinal_eq_of_mem_nhds_zero
Mathlib/Topology/Algebra/Module/Cardinality.lean
/-- In a topological vector space over a nontrivially normed field, any neighborhood of zero has the same cardinality as the whole space. See also `cardinal_eq_of_mem_nhds`. -/ lemma cardinal_eq_of_mem_nhds_zero {E : Type*} (𝕜 : Type*) [NontriviallyNormedField 𝕜] [AddCommGroup E] [Module 𝕜 E] [TopologicalSpace E] [ContinuousSMul 𝕜 E] {s : Set E} (hs : s ∈ 𝓝 (0 : E)) : #s = #E
E : Type u_1 𝕜 : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul 𝕜 E s : Set E hs : s ∈ 𝓝 0 c : 𝕜 hc : 1 < ‖c‖ cn_ne : ∀ (n : ℕ), c ^ n ≠ 0 x : E this : Tendsto (fun n => (c ^ n)⁻¹) atTop (𝓝 0) ⊢ Tendsto (fun n => (c ^ n)⁻¹ • x) atTop (𝓝 (0 • x))
exact Tendsto.smul_const this x
no goals
892055d13be3c7d1
linearIndependent_sum
Mathlib/LinearAlgebra/LinearIndependent/Basic.lean
theorem linearIndependent_sum {v : ι ⊕ ι' → M} : LinearIndependent R v ↔ LinearIndependent R (v ∘ Sum.inl) ∧ LinearIndependent R (v ∘ Sum.inr) ∧ Disjoint (Submodule.span R (range (v ∘ Sum.inl))) (Submodule.span R (range (v ∘ Sum.inr)))
ι : Type u' ι' : Type u_1 R : Type u_2 M : Type u_4 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M v : ι ⊕ ι' → M hl : ∀ (s : Finset ι) (g : ι → R), ∑ i ∈ s, g i • (v ∘ Sum.inl) i = 0 → ∀ i ∈ s, g i = 0 hr : ∀ (s : Finset ι') (g : ι' → R), ∑ i ∈ s, g i • (v ∘ Sum.inr) i = 0 → ∀ i ∈ s, g i = 0 hlr : Disjoint (span R (v '' range Sum.inl)) (span R (v '' range Sum.inr)) s : Finset (ι ⊕ ι') g : ι ⊕ ι' → R hg : ∑ i ∈ s, g i • v i = 0 i : ι ⊕ ι' hi : i ∈ s ⊢ ∑ i ∈ s.preimage Sum.inl ⋯, (fun x => g x • v x) (Sum.inl i) + ∑ i ∈ s.preimage Sum.inr ⋯, (fun x => g x • v x) (Sum.inr i) = 0
rw [Finset.sum_preimage' (g := fun x => g x • v x), Finset.sum_preimage' (g := fun x => g x • v x), ← Finset.sum_union, ← Finset.filter_or]
ι : Type u' ι' : Type u_1 R : Type u_2 M : Type u_4 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M v : ι ⊕ ι' → M hl : ∀ (s : Finset ι) (g : ι → R), ∑ i ∈ s, g i • (v ∘ Sum.inl) i = 0 → ∀ i ∈ s, g i = 0 hr : ∀ (s : Finset ι') (g : ι' → R), ∑ i ∈ s, g i • (v ∘ Sum.inr) i = 0 → ∀ i ∈ s, g i = 0 hlr : Disjoint (span R (v '' range Sum.inl)) (span R (v '' range Sum.inr)) s : Finset (ι ⊕ ι') g : ι ⊕ ι' → R hg : ∑ i ∈ s, g i • v i = 0 i : ι ⊕ ι' hi : i ∈ s ⊢ ∑ x ∈ Finset.filter (fun a => a ∈ range Sum.inl ∨ a ∈ range Sum.inr) s, g x • v x = 0 ι : Type u' ι' : Type u_1 R : Type u_2 M : Type u_4 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M v : ι ⊕ ι' → M hl : ∀ (s : Finset ι) (g : ι → R), ∑ i ∈ s, g i • (v ∘ Sum.inl) i = 0 → ∀ i ∈ s, g i = 0 hr : ∀ (s : Finset ι') (g : ι' → R), ∑ i ∈ s, g i • (v ∘ Sum.inr) i = 0 → ∀ i ∈ s, g i = 0 hlr : Disjoint (span R (v '' range Sum.inl)) (span R (v '' range Sum.inr)) s : Finset (ι ⊕ ι') g : ι ⊕ ι' → R hg : ∑ i ∈ s, g i • v i = 0 i : ι ⊕ ι' hi : i ∈ s ⊢ Disjoint (Finset.filter (fun x => x ∈ range Sum.inl) s) (Finset.filter (fun x => x ∈ range Sum.inr) s)
2518c65a54e13190
WeierstrassCurve.b₈_of_isCharThreeJNeZeroNF
Mathlib/AlgebraicGeometry/EllipticCurve/NormalForms.lean
theorem b₈_of_isCharThreeJNeZeroNF : W.b₈ = 4 * W.a₂ * W.a₆
R : Type u_1 inst✝¹ : CommRing R W : WeierstrassCurve R inst✝ : W.IsCharThreeJNeZeroNF ⊢ W.b₈ = 4 * W.a₂ * W.a₆
simp
no goals
25031e2af685ec8b
refinement_of_locallyCompact_sigmaCompact_of_nhds_basis_set
Mathlib/Topology/Compactness/Paracompact.lean
theorem refinement_of_locallyCompact_sigmaCompact_of_nhds_basis_set [WeaklyLocallyCompactSpace X] [SigmaCompactSpace X] [T2Space X] {ι : X → Type u} {p : ∀ x, ι x → Prop} {B : ∀ x, ι x → Set X} {s : Set X} (hs : IsClosed s) (hB : ∀ x ∈ s, (𝓝 x).HasBasis (p x) (B x)) : ∃ (α : Type v) (c : α → X) (r : ∀ a, ι (c a)), (∀ a, c a ∈ s ∧ p (c a) (r a)) ∧ (s ⊆ ⋃ a, B (c a) (r a)) ∧ LocallyFinite fun a ↦ B (c a) (r a)
case refine_3.mk.mk.intro.intro X : Type v inst✝³ : TopologicalSpace X inst✝² : WeaklyLocallyCompactSpace X inst✝¹ : SigmaCompactSpace X inst✝ : T2Space X ι : X → Type u p : (x : X) → ι x → Prop B : (x : X) → ι x → Set X s : Set X hs : IsClosed s hB : ∀ x ∈ s, (𝓝 x).HasBasis (p x) (B x) K' : CompactExhaustion X := CompactExhaustion.choice X K : CompactExhaustion X := K'.shiftr.shiftr Kdiff : ℕ → Set X := fun n => K (n + 1) \ interior (K n) hKcov : ∀ (x : X), x ∈ Kdiff (K'.find x + 1) Kdiffc : ∀ (n : ℕ), IsCompact (Kdiff n ∩ s) this✝¹ : ∀ (n : ℕ) (x : ↑(Kdiff (n + 1) ∩ s)), (K n)ᶜ ∈ 𝓝 ↑x r : (n : ℕ) → (x : ↑(Kdiff (n + 1) ∩ s)) → ι ↑x hrp : ∀ (n : ℕ) (x : ↑(Kdiff (n + 1) ∩ s)), p (↑x) (r n x) hr : ∀ (n : ℕ) (x : ↑(Kdiff (n + 1) ∩ s)), B (↑x) (r n x) ⊆ (K n)ᶜ hxr : ∀ (n : ℕ) (x : X) (hx : x ∈ Kdiff (n + 1) ∩ s), B x (r n ⟨x, hx⟩) ∈ 𝓝 x T : (n : ℕ) → Finset ↑(Kdiff (n + 1) ∩ s) hT : ∀ (n : ℕ), Kdiff (n + 1) ∩ s ⊆ ⋃ x ∈ T n, B (↑x) (r n ⟨↑x, ⋯⟩) T' : (n : ℕ) → Set ↑(Kdiff (n + 1) ∩ s) := fun n => ↑(T n) x✝ : X this✝ : (⋃ k, ⋃ (_ : k ≤ K'.find x✝ + 2), range (Sigma.mk k)).Finite k : ℕ c : ↑(Kdiff (k + 1) ∩ s) hc : c ∈ T' k x : X hxB : x ∈ B (↑c) (r k c) hxK : x ∈ interior (K (K'.find x✝ + 3)) this : x ∉ K k ⊢ k ≤ K'.find x✝ + 2
contrapose! this with hnk
case refine_3.mk.mk.intro.intro X : Type v inst✝³ : TopologicalSpace X inst✝² : WeaklyLocallyCompactSpace X inst✝¹ : SigmaCompactSpace X inst✝ : T2Space X ι : X → Type u p : (x : X) → ι x → Prop B : (x : X) → ι x → Set X s : Set X hs : IsClosed s hB : ∀ x ∈ s, (𝓝 x).HasBasis (p x) (B x) K' : CompactExhaustion X := CompactExhaustion.choice X K : CompactExhaustion X := K'.shiftr.shiftr Kdiff : ℕ → Set X := fun n => K (n + 1) \ interior (K n) hKcov : ∀ (x : X), x ∈ Kdiff (K'.find x + 1) Kdiffc : ∀ (n : ℕ), IsCompact (Kdiff n ∩ s) this✝ : ∀ (n : ℕ) (x : ↑(Kdiff (n + 1) ∩ s)), (K n)ᶜ ∈ 𝓝 ↑x r : (n : ℕ) → (x : ↑(Kdiff (n + 1) ∩ s)) → ι ↑x hrp : ∀ (n : ℕ) (x : ↑(Kdiff (n + 1) ∩ s)), p (↑x) (r n x) hr : ∀ (n : ℕ) (x : ↑(Kdiff (n + 1) ∩ s)), B (↑x) (r n x) ⊆ (K n)ᶜ hxr : ∀ (n : ℕ) (x : X) (hx : x ∈ Kdiff (n + 1) ∩ s), B x (r n ⟨x, hx⟩) ∈ 𝓝 x T : (n : ℕ) → Finset ↑(Kdiff (n + 1) ∩ s) hT : ∀ (n : ℕ), Kdiff (n + 1) ∩ s ⊆ ⋃ x ∈ T n, B (↑x) (r n ⟨↑x, ⋯⟩) T' : (n : ℕ) → Set ↑(Kdiff (n + 1) ∩ s) := fun n => ↑(T n) x✝ : X this : (⋃ k, ⋃ (_ : k ≤ K'.find x✝ + 2), range (Sigma.mk k)).Finite k : ℕ c : ↑(Kdiff (k + 1) ∩ s) hc : c ∈ T' k x : X hxB : x ∈ B (↑c) (r k c) hxK : x ∈ interior (K (K'.find x✝ + 3)) hnk : K'.find x✝ + 2 < k ⊢ x ∈ K k
d7d8360667f4b953
IsSeparable.of_algebra_isSeparable_of_isSeparable
Mathlib/FieldTheory/SeparableDegree.lean
theorem IsSeparable.of_algebra_isSeparable_of_isSeparable [Algebra E K] [IsScalarTower F E K] [Algebra.IsSeparable F E] {x : K} (hsep : IsSeparable E x) : IsSeparable F x
F : Type u E : Type v inst✝⁷ : Field F inst✝⁶ : Field E inst✝⁵ : Algebra F E K : Type w inst✝⁴ : Field K inst✝³ : Algebra F K inst✝² : Algebra E K inst✝¹ : IsScalarTower F E K inst✝ : Algebra.IsSeparable F E x : K hsep : IsSeparable E x f : E[X] := minpoly E x hf : f = minpoly E x ⊢ IsSeparable F x
let E' : IntermediateField F E := adjoin F f.coeffs
F : Type u E : Type v inst✝⁷ : Field F inst✝⁶ : Field E inst✝⁵ : Algebra F E K : Type w inst✝⁴ : Field K inst✝³ : Algebra F K inst✝² : Algebra E K inst✝¹ : IsScalarTower F E K inst✝ : Algebra.IsSeparable F E x : K hsep : IsSeparable E x f : E[X] := minpoly E x hf : f = minpoly E x E' : IntermediateField F E := adjoin F ↑f.coeffs ⊢ IsSeparable F x
6901ddfd7b743413
List.nodup_permutations
Mathlib/Data/List/Permutation.lean
theorem nodup_permutations (s : List α) (hs : Nodup s) : Nodup s.permutations
case cons.right.intro.mk.intro.mk.inr.inl α : Type u_1 s : List α x : α l : List α h : ∀ a' ∈ l, x ≠ a' h' : Pairwise (fun x1 x2 => x1 ≠ x2) l IH : l.permutations'.Nodup as : List α ha : as ~ l bs : List α hb : bs ~ l H : as ≠ bs a : List α ha' : a ∈ permutations'Aux x as hb' : a ∈ permutations'Aux x bs n : ℕ hn✝ : n < (permutations'Aux x as).length m : ℕ hm✝ : m < (permutations'Aux x bs).length hm' : insertIdx m x bs = a hl : as.length = bs.length hn : n ≤ as.length hm : m ≤ bs.length hx : (insertIdx n x as)[m] = x hx' : (insertIdx m x bs)[n] = x ht : n = m hn' : insertIdx m x as = a ⊢ False
rw [← hm'] at hn'
case cons.right.intro.mk.intro.mk.inr.inl α : Type u_1 s : List α x : α l : List α h : ∀ a' ∈ l, x ≠ a' h' : Pairwise (fun x1 x2 => x1 ≠ x2) l IH : l.permutations'.Nodup as : List α ha : as ~ l bs : List α hb : bs ~ l H : as ≠ bs a : List α ha' : a ∈ permutations'Aux x as hb' : a ∈ permutations'Aux x bs n : ℕ hn✝ : n < (permutations'Aux x as).length m : ℕ hm✝ : m < (permutations'Aux x bs).length hm' : insertIdx m x bs = a hl : as.length = bs.length hn : n ≤ as.length hm : m ≤ bs.length hx : (insertIdx n x as)[m] = x hx' : (insertIdx m x bs)[n] = x ht : n = m hn' : insertIdx m x as = insertIdx m x bs ⊢ False
25ee05be5844251a
IsPrimePow.factorization_minFac_ne_zero
Mathlib/Data/Nat/Factorization/PrimePow.lean
lemma IsPrimePow.factorization_minFac_ne_zero {n : ℕ} (hn : IsPrimePow n) : n.factorization n.minFac ≠ 0
n : ℕ hn : IsPrimePow n ⊢ Nat.Prime n.minFac ∧ n.minFac ∣ n ∧ n ≠ 0
exact ⟨n.minFac_prime hn.ne_one, n.minFac_dvd, hn.ne_zero⟩
no goals
f87a3b63f3edf769
Finset.shatters_univ
Mathlib/Combinatorics/SetFamily/Shatter.lean
@[simp] lemma shatters_univ [Fintype α] : 𝒜.Shatters univ ↔ 𝒜 = univ
α : Type u_1 inst✝¹ : DecidableEq α 𝒜 : Finset (Finset α) inst✝ : Fintype α ⊢ image (fun t => univ ∩ t) 𝒜 = univ ↔ 𝒜 = univ
simp_rw [univ_inter, image_id']
no goals
d7004e2093b0cbc2
Polynomial.roots_expand_pow_map_iterateFrobenius
Mathlib/FieldTheory/Perfect.lean
theorem roots_expand_pow_map_iterateFrobenius : (expand R (p ^ n) f).roots.map (iterateFrobenius R p n) = p ^ n • f.roots
R : Type u_1 inst✝³ : CommRing R inst✝² : IsDomain R p n : ℕ inst✝¹ : ExpChar R p f : R[X] inst✝ : PerfectRing R p ⊢ Multiset.map (⇑(iterateFrobenius R p n)) ((expand R (p ^ n)) f).roots = p ^ n • f.roots
simp_rw [← coe_iterateFrobeniusEquiv, roots_expand_pow, Multiset.map_nsmul, Multiset.map_map, comp_apply, RingEquiv.apply_symm_apply, map_id']
no goals
28317504e6e10568
MeasureTheory.Measure.haarScalarFactor_smul
Mathlib/MeasureTheory/Measure/Haar/Unique.lean
@[to_additive (attr := simp) addHaarScalarFactor_smul] lemma haarScalarFactor_smul [LocallyCompactSpace G] (μ' μ : Measure G) [IsHaarMeasure μ] [IsFiniteMeasureOnCompacts μ'] [IsMulLeftInvariant μ'] {c : ℝ≥0} : haarScalarFactor (c • μ') μ = c • haarScalarFactor μ' μ
case intro.mk.intro.intro G : Type u_1 inst✝⁸ : TopologicalSpace G inst✝⁷ : Group G inst✝⁶ : IsTopologicalGroup G inst✝⁵ : MeasurableSpace G inst✝⁴ : BorelSpace G inst✝³ : LocallyCompactSpace G μ' μ : Measure G inst✝² : μ.IsHaarMeasure inst✝¹ : IsFiniteMeasureOnCompacts μ' inst✝ : μ'.IsMulLeftInvariant c : ℝ≥0 g : G → ℝ g_cont : Continuous g g_comp : HasCompactSupport ⇑{ toFun := g, continuous_toFun := g_cont } g_nonneg : 0 ≤ { toFun := g, continuous_toFun := g_cont } g_one : { toFun := g, continuous_toFun := g_cont } 1 ≠ 0 int_g_ne_zero : ∫ (x : G), g x ∂μ ≠ 0 ⊢ (c • μ').haarScalarFactor μ = c • μ'.haarScalarFactor μ
apply NNReal.coe_injective
case intro.mk.intro.intro.a G : Type u_1 inst✝⁸ : TopologicalSpace G inst✝⁷ : Group G inst✝⁶ : IsTopologicalGroup G inst✝⁵ : MeasurableSpace G inst✝⁴ : BorelSpace G inst✝³ : LocallyCompactSpace G μ' μ : Measure G inst✝² : μ.IsHaarMeasure inst✝¹ : IsFiniteMeasureOnCompacts μ' inst✝ : μ'.IsMulLeftInvariant c : ℝ≥0 g : G → ℝ g_cont : Continuous g g_comp : HasCompactSupport ⇑{ toFun := g, continuous_toFun := g_cont } g_nonneg : 0 ≤ { toFun := g, continuous_toFun := g_cont } g_one : { toFun := g, continuous_toFun := g_cont } 1 ≠ 0 int_g_ne_zero : ∫ (x : G), g x ∂μ ≠ 0 ⊢ ↑((c • μ').haarScalarFactor μ) = ↑(c • μ'.haarScalarFactor μ)
25416b28ad97352c
Filter.frequently_lt_of_lt_limsSup
Mathlib/Order/LiminfLimsup.lean
theorem frequently_lt_of_lt_limsSup {f : Filter α} [ConditionallyCompleteLinearOrder α] {a : α} (hf : f.IsCobounded (· ≤ ·)
α : Type u_1 f : Filter α inst✝ : ConditionallyCompleteLinearOrder α a : α hf : autoParam (IsCobounded (fun x1 x2 => x1 ≤ x2) f) _auto✝ h : ¬∃ᶠ (n : α) in f, a < n ⊢ f.limsSup ≤ a
simp only [not_frequently, not_lt] at h
α : Type u_1 f : Filter α inst✝ : ConditionallyCompleteLinearOrder α a : α hf : autoParam (IsCobounded (fun x1 x2 => x1 ≤ x2) f) _auto✝ h : ∀ᶠ (x : α) in f, x ≤ a ⊢ f.limsSup ≤ a
d8988798e121de64
MeasureTheory.FiniteMeasure.continuous_mass
Mathlib/MeasureTheory/Measure/FiniteMeasure.lean
theorem continuous_mass : Continuous fun μ : FiniteMeasure Ω ↦ μ.mass
Ω : Type u_1 inst✝² : MeasurableSpace Ω inst✝¹ : TopologicalSpace Ω inst✝ : OpensMeasurableSpace Ω ⊢ Continuous fun μ => μ.testAgainstNN 1
exact continuous_testAgainstNN_eval 1
no goals
42bdd81967bc02f9
HomologicalComplex₂.D₁_totalShift₂XIso_hom
Mathlib/Algebra/Homology/TotalComplexShift.lean
@[reassoc] lemma D₁_totalShift₂XIso_hom (n₀ n₁ n₀' n₁' : ℤ) (h₀ : n₀ + y = n₀') (h₁ : n₁ + y = n₁') : ((shiftFunctor₂ C y).obj K).D₁ (up ℤ) n₀ n₁ ≫ (K.totalShift₂XIso y n₁ n₁' h₁).hom = y.negOnePow • ((K.totalShift₂XIso y n₀ n₀' h₀).hom ≫ K.D₁ (up ℤ) n₀' n₁')
case neg.h₁₂ C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C K : HomologicalComplex₂ C (up ℤ) (up ℤ) y : ℤ inst✝ : K.HasTotal (up ℤ) n₀ n₁ n₀' n₁' : ℤ h₀ : n₀ + y = n₀' h₁ : n₁ + y = n₁' h : ¬(up ℤ).Rel n₀ n₁ h' : n₀' + 1 = n₁' ⊢ n₀ + 1 = n₁
omega
no goals
95c2874255c2e5ba
CategoryTheory.Sheaf.isLocallySurjective_iff_epi
Mathlib/CategoryTheory/Sites/LocallySurjective.lean
lemma isLocallySurjective_iff_epi {F G : Sheaf J (Type w)} (φ : F ⟶ G) [HasSheafify J (Type w)] : IsLocallySurjective φ ↔ Epi φ
case mpr C : Type u inst✝¹ : Category.{v, u} C J : GrothendieckTopology C F G : Sheaf J (Type w) φ : F ⟶ G inst✝ : HasSheafify J (Type w) a✝ : Epi φ ⊢ IsLocallySurjective φ
have := epi_of_epi_fac (Sheaf.toImage_ι φ)
case mpr C : Type u inst✝¹ : Category.{v, u} C J : GrothendieckTopology C F G : Sheaf J (Type w) φ : F ⟶ G inst✝ : HasSheafify J (Type w) a✝ : Epi φ this : Epi (imageι φ) ⊢ IsLocallySurjective φ
1d3f917e21094b8e
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.confirmRupHint_preserves_invariant_helper
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/LRAT/Internal/Formula/RupAddResult.lean
theorem confirmRupHint_preserves_invariant_helper {n : Nat} (f : DefaultFormula n) (f_assignments_size : f.assignments.size = n) (acc : Array Assignment × CNF.Clause (PosFin n) × Bool × Bool) (hsize : acc.1.size = n) (l : Literal (PosFin n)) (ih : DerivedLitsInvariant f f_assignments_size acc.1 hsize acc.2.1) (h : ¬hasAssignment l.snd acc.fst[l.fst.val]! = true) : have hsize' : (Array.modify acc.1 l.1.1 (addAssignment l.snd)).size = n
case inr.inr.intro.intro.intro.intro.intro.intro.intro.intro n : Nat f : DefaultFormula n f_assignments_size : f.assignments.size = n acc : Array Assignment × CNF.Clause (PosFin n) × Bool × Bool hsize : acc.fst.size = n l : Literal (PosFin n) ih : f.DerivedLitsInvariant f_assignments_size acc.fst hsize acc.snd.fst h : ¬hasAssignment l.snd acc.fst[l.fst.val]! = true hsize'✝ : (acc.fst.modify l.fst.val (addAssignment l.snd)).size = n := Eq.mpr (id (congrArg (fun _a => _a = n) (Array.size_modify acc.fst l.fst.val (addAssignment l.snd)))) hsize i : Fin n i_in_bounds : ↑i < acc.fst.size l_in_bounds : l.fst.val < acc.fst.size j1 j2 : Fin (List.length acc.snd.fst) j1_eq_i : (List.get acc.snd.fst j1).fst.val = ↑i j2_eq_i : (List.get acc.snd.fst j2).fst.val = ↑i j1_eq_true : (List.get acc.snd.fst j1).snd = true j2_eq_false : (List.get acc.snd.fst j2).snd = false h1 : acc.fst[↑i] = both h2 : f.assignments[↑i] = unassigned h3 : ∀ (k : Fin (List.length acc.snd.fst)), k ≠ j1 → k ≠ j2 → (List.get acc.snd.fst k).fst.val ≠ ↑i j1_succ_in_bounds : ↑j1 + 1 < (l :: acc.snd.fst).length j2_succ_in_bounds : ↑j2 + 1 < (l :: acc.snd.fst).length j1_succ : Fin (l :: acc.snd.fst).length := ⟨↑j1 + 1, j1_succ_in_bounds⟩ j2_succ : Fin (l :: acc.snd.fst).length := ⟨↑j2 + 1, j2_succ_in_bounds⟩ ⊢ let_fun i_lt_assignments_size := ⋯; let_fun i_lt_f_assignments_size := ⋯; let assignments_i := (acc.fst.modify l.fst.val (addAssignment l.snd))[↑i]; let fassignments_i := f.assignments[↑i]; (assignments_i = fassignments_i ∧ ∀ (l_1 : Literal (PosFin n)), l_1 ∈ l :: acc.snd.fst → l_1.fst.val ≠ ↑i) ∨ (∃ j, ((l :: acc.snd.fst).get j).fst.val = ↑i ∧ assignments_i = addAssignment ((l :: acc.snd.fst).get j).snd fassignments_i ∧ ¬hasAssignment ((l :: acc.snd.fst).get j).snd fassignments_i = true ∧ ∀ (k : Fin (l :: acc.snd.fst).length), k ≠ j → ((l :: acc.snd.fst).get k).fst.val ≠ ↑i) ∨ ∃ j1 j2, ((l :: acc.snd.fst).get j1).fst.val = ↑i ∧ ((l :: acc.snd.fst).get j2).fst.val = ↑i ∧ ((l :: acc.snd.fst).get j1).snd = true ∧ ((l :: acc.snd.fst).get j2).snd = false ∧ assignments_i = both ∧ fassignments_i = unassigned ∧ ∀ (k : Fin (l :: acc.snd.fst).length), k ≠ j1 → k ≠ j2 → ((l :: acc.snd.fst).get k).fst.val ≠ ↑i
apply Or.inr ∘ Or.inr ∘ Exists.intro j1_succ ∘ Exists.intro j2_succ
case inr.inr.intro.intro.intro.intro.intro.intro.intro.intro n : Nat f : DefaultFormula n f_assignments_size : f.assignments.size = n acc : Array Assignment × CNF.Clause (PosFin n) × Bool × Bool hsize : acc.fst.size = n l : Literal (PosFin n) ih : f.DerivedLitsInvariant f_assignments_size acc.fst hsize acc.snd.fst h : ¬hasAssignment l.snd acc.fst[l.fst.val]! = true hsize'✝ : (acc.fst.modify l.fst.val (addAssignment l.snd)).size = n := Eq.mpr (id (congrArg (fun _a => _a = n) (Array.size_modify acc.fst l.fst.val (addAssignment l.snd)))) hsize i : Fin n i_in_bounds : ↑i < acc.fst.size l_in_bounds : l.fst.val < acc.fst.size j1 j2 : Fin (List.length acc.snd.fst) j1_eq_i : (List.get acc.snd.fst j1).fst.val = ↑i j2_eq_i : (List.get acc.snd.fst j2).fst.val = ↑i j1_eq_true : (List.get acc.snd.fst j1).snd = true j2_eq_false : (List.get acc.snd.fst j2).snd = false h1 : acc.fst[↑i] = both h2 : f.assignments[↑i] = unassigned h3 : ∀ (k : Fin (List.length acc.snd.fst)), k ≠ j1 → k ≠ j2 → (List.get acc.snd.fst k).fst.val ≠ ↑i j1_succ_in_bounds : ↑j1 + 1 < (l :: acc.snd.fst).length j2_succ_in_bounds : ↑j2 + 1 < (l :: acc.snd.fst).length j1_succ : Fin (l :: acc.snd.fst).length := ⟨↑j1 + 1, j1_succ_in_bounds⟩ j2_succ : Fin (l :: acc.snd.fst).length := ⟨↑j2 + 1, j2_succ_in_bounds⟩ ⊢ ((l :: acc.snd.fst).get j1_succ).fst.val = ↑i ∧ ((l :: acc.snd.fst).get j2_succ).fst.val = ↑i ∧ ((l :: acc.snd.fst).get j1_succ).snd = true ∧ ((l :: acc.snd.fst).get j2_succ).snd = false ∧ (acc.fst.modify l.fst.val (addAssignment l.snd))[↑i] = both ∧ f.assignments[↑i] = unassigned ∧ ∀ (k : Fin (l :: acc.snd.fst).length), k ≠ j1_succ → k ≠ j2_succ → ((l :: acc.snd.fst).get k).fst.val ≠ ↑i
02ca1706b397b254
Array.flatMap_eq_foldl
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/Lemmas.lean
theorem flatMap_eq_foldl (f : α → Array β) (l : Array α) : l.flatMap f = l.foldl (fun acc a => acc ++ f a) #[]
α : Type u_1 β : Type u_2 f : α → Array β l : List α this : ∀ (l' : List β), (List.foldl (fun acc a => acc ++ (f a).toList) l' l).toArray = List.foldl (fun acc a => acc ++ f a) l'.toArray l ⊢ (List.foldl (fun acc a => acc ++ (f a).toList) [] l).toArray = List.foldl (fun acc a => acc ++ f a) #[] l
simpa using this []
no goals
f50a943587d55d11
MeasureTheory.lintegral_tsum
Mathlib/MeasureTheory/Integral/Lebesgue.lean
theorem lintegral_tsum [Countable β] {f : β → α → ℝ≥0∞} (hf : ∀ i, AEMeasurable (f i) μ) : ∫⁻ a, ∑' i, f i a ∂μ = ∑' i, ∫⁻ a, f i a ∂μ
case hf α : Type u_1 β : Type u_2 m : MeasurableSpace α μ : Measure α inst✝ : Countable β f : β → α → ℝ≥0∞ hf : ∀ (i : β), AEMeasurable (f i) μ b : Finset β ⊢ AEMeasurable (fun a => ∑ i ∈ b, f i a) μ
exact Finset.aemeasurable_sum _ fun i _ => hf i
no goals
a9b7b8322de28144
Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge
Mathlib/RingTheory/Filtration.lean
theorem Stable.exists_pow_smul_eq_of_ge (h : F.Stable) : ∃ n₀, ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀
case h R : Type u_1 M : Type u_2 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F : I.Filtration M h : F.Stable n₀ : ℕ hn₀ : ∀ (k : ℕ), F.N (n₀ + k) = I ^ k • F.N n₀ ⊢ ∀ n ≥ n₀, F.N n = I ^ (n - n₀) • F.N n₀
intro n hn
case h R : Type u_1 M : Type u_2 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F : I.Filtration M h : F.Stable n₀ : ℕ hn₀ : ∀ (k : ℕ), F.N (n₀ + k) = I ^ k • F.N n₀ n : ℕ hn : n ≥ n₀ ⊢ F.N n = I ^ (n - n₀) • F.N n₀
c03dafbfc1423a4d
Cardinal.mk_finsupp_lift_of_infinite
Mathlib/SetTheory/Cardinal/Finsupp.lean
theorem mk_finsupp_lift_of_infinite (α : Type u) (β : Type v) [Infinite α] [Zero β] [Nontrivial β] : #(α →₀ β) = max (lift.{v} #α) (lift.{u} #β)
case a.h₂ α : Type u β : Type v inst✝² : Infinite α inst✝¹ : Zero β inst✝ : Nontrivial β inhabited_h : Inhabited α ⊢ lift.{max v u, v} #β ≤ lift.{max v u, max v u} #(α →₀ β)
exact lift_mk_le.{u}.2 ⟨⟨_, Finsupp.single_injective default⟩⟩
no goals
cbf4d08f0ffb8987
FormalMultilinearSeries.ofScalarsSum_op
Mathlib/Analysis/Analytic/OfScalars.lean
theorem ofScalarsSum_op [T2Space E] (x : E) : ofScalarsSum c (MulOpposite.op x) = MulOpposite.op (ofScalarsSum c x)
𝕜 : Type u_1 E : Type u_2 inst✝⁵ : Field 𝕜 inst✝⁴ : Ring E inst✝³ : Algebra 𝕜 E inst✝² : TopologicalSpace E inst✝¹ : IsTopologicalRing E c : ℕ → 𝕜 inst✝ : T2Space E x : E ⊢ ofScalarsSum c (MulOpposite.op x) = MulOpposite.op (ofScalarsSum c x)
simp [ofScalars, ofScalars_sum_eq, ← MulOpposite.op_pow, ← MulOpposite.op_smul, tsum_op]
no goals
179ea3d1c4be08b4
LinearMap.polar_weak_closed
Mathlib/Analysis/LocallyConvex/Polar.lean
theorem polar_weak_closed (s : Set E) : IsClosed[WeakBilin.instTopologicalSpace B.flip] (B.polar s)
𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : NormedCommRing 𝕜 inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F B : E →ₗ[𝕜] F →ₗ[𝕜] 𝕜 s : Set E x : E x✝ : x ∈ s ⊢ IsClosed {y | ‖(B x) y‖ ≤ 1}
exact isClosed_le (WeakBilin.eval_continuous B.flip x).norm continuous_const
no goals
db8d40f8cb36d3e1
Array.mapM_eq_foldlM_push
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/Monadic.lean
theorem mapM_eq_foldlM_push [Monad m] [LawfulMonad m] (f : α → m β) (l : Array α) : mapM f l = l.foldlM (fun acc a => return (acc.push (← f a))) #[]
case mk m : Type u_1 → Type u_2 α : Type u_3 β : Type u_1 inst✝¹ : Monad m inst✝ : LawfulMonad m f : α → m β l : List α k : List β ⊢ (fun a => a.reverse.toArray) <$> List.foldlM (fun acc a => (fun a => a :: acc) <$> f a) k l = List.foldlM (fun acc a => acc.push <$> f a) k.reverse.toArray l
induction l generalizing k with | nil => simp | cons a as ih => simp [ih, List.foldlM_cons]
no goals
d0bfdbb80f558ce1
SimplexCategoryGenRel.isSplitMono_P_δ
Mathlib/AlgebraicTopology/SimplexCategory/GeneratorsRelations/EpiMono.lean
/-- All `P_δ` are split monos as composition of such. -/ lemma isSplitMono_P_δ {x y : SimplexCategoryGenRel} {m : x ⟶ y} (hm : P_δ m) : IsSplitMono m
case of.δ x y : SimplexCategoryGenRel m : x ⟶ y n✝ : ℕ i✝ : Fin (n✝ + 2) ⊢ IsSplitMono (δ i✝)
infer_instance
no goals
dcc88895a7959856
Homeomorph.residual_map_eq
Mathlib/Topology/Baire/BaireMeasurable.lean
theorem Homeomorph.residual_map_eq (h : α ≃ₜ β) : (residual α).map h = residual β
α : Type u_1 β : Type u_2 inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace β h : α ≃ₜ β ⊢ ∀ s ∈ residual α, ⇑h '' s ∈ residual β
simp_rw [← preimage_symm]
α : Type u_1 β : Type u_2 inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace β h : α ≃ₜ β ⊢ ∀ s ∈ residual α, ⇑h.symm ⁻¹' s ∈ residual β
49fe750364f191b5
Matrix.cons_mul
Mathlib/Data/Matrix/Notation.lean
theorem cons_mul [Fintype n'] (v : n' → α) (A : Fin m → n' → α) (B : Matrix n' o' α) : of (vecCons v A) * B = of (vecCons (v ᵥ* B) (of.symm (of A * B)))
case a.refine_1 α : Type u m : ℕ n' : Type uₙ o' : Type uₒ inst✝¹ : NonUnitalNonAssocSemiring α inst✝ : Fintype n' v : n' → α A : Fin m → n' → α B : Matrix n' o' α i : Fin m.succ j : o' ⊢ (of (vecCons v A) * B) 0 j = of (vecCons (v ᵥ* B) (of.symm (of A * B))) 0 j
rfl
no goals
b404ae237eacf4e2
Associates.le_of_count_ne_zero
Mathlib/RingTheory/UniqueFactorizationDomain/FactorSet.lean
theorem le_of_count_ne_zero {m p : Associates α} (h0 : m ≠ 0) (hp : Irreducible p) : count p m.factors ≠ 0 → p ≤ m
α : Type u_1 inst✝³ : CancelCommMonoidWithZero α inst✝² : UniqueFactorizationMonoid α inst✝¹ : DecidableEq (Associates α) inst✝ : (p : Associates α) → Decidable (Irreducible p) m p : Associates α h0 : m ≠ 0 hp : Irreducible p a✝ : Nontrivial α ⊢ 0 < p.count m.factors → p ≤ m
intro h
α : Type u_1 inst✝³ : CancelCommMonoidWithZero α inst✝² : UniqueFactorizationMonoid α inst✝¹ : DecidableEq (Associates α) inst✝ : (p : Associates α) → Decidable (Irreducible p) m p : Associates α h0 : m ≠ 0 hp : Irreducible p a✝ : Nontrivial α h : 0 < p.count m.factors ⊢ p ≤ m
5a1b8803456126b4
AnalyticAt.eventually_constant_or_nhds_le_map_nhds_aux
Mathlib/Analysis/Complex/OpenMapping.lean
theorem AnalyticAt.eventually_constant_or_nhds_le_map_nhds_aux (hf : AnalyticAt ℂ f z₀) : (∀ᶠ z in 𝓝 z₀, f z = f z₀) ∨ 𝓝 (f z₀) ≤ map f (𝓝 z₀)
case intro.intro.intro f : ℂ → ℂ z₀ : ℂ hf : AnalyticAt ℂ f z₀ h : ¬∀ᶠ (z : ℂ) in 𝓝 z₀, f z = f z₀ R : ℝ hR : 0 < R h1 : ∀ᶠ (z : ℂ) in 𝓝[≠] z₀, f z ≠ f z₀ h2 : ∀ᶠ (z : ℂ) in 𝓝 z₀, AnalyticAt ℂ f z ρ : ℝ hρ : ρ > 0 h4 : ∀ z ∈ closedBall z₀ ρ, z ≠ z₀ → f z ≠ f z₀ h3 : DiffContOnCl ℂ f (ball z₀ ρ) r : ℝ := ρ ⊓ R hr : 0 < r h5 : closedBall z₀ r ⊆ closedBall z₀ ρ h6 : DiffContOnCl ℂ f (ball z₀ r) h7 : ∀ z ∈ sphere z₀ r, f z ≠ f z₀ h8 : (sphere z₀ r).Nonempty h9 : ContinuousOn (fun x => ‖f x - f z₀‖) (sphere z₀ r) ⊢ ∃ i, 0 < i ∧ ball (f z₀) i ⊆ f '' closedBall z₀ R
obtain ⟨x, hx, hfx⟩ := (isCompact_sphere z₀ r).exists_isMinOn h8 h9
case intro.intro.intro.intro.intro f : ℂ → ℂ z₀ : ℂ hf : AnalyticAt ℂ f z₀ h : ¬∀ᶠ (z : ℂ) in 𝓝 z₀, f z = f z₀ R : ℝ hR : 0 < R h1 : ∀ᶠ (z : ℂ) in 𝓝[≠] z₀, f z ≠ f z₀ h2 : ∀ᶠ (z : ℂ) in 𝓝 z₀, AnalyticAt ℂ f z ρ : ℝ hρ : ρ > 0 h4 : ∀ z ∈ closedBall z₀ ρ, z ≠ z₀ → f z ≠ f z₀ h3 : DiffContOnCl ℂ f (ball z₀ ρ) r : ℝ := ρ ⊓ R hr : 0 < r h5 : closedBall z₀ r ⊆ closedBall z₀ ρ h6 : DiffContOnCl ℂ f (ball z₀ r) h7 : ∀ z ∈ sphere z₀ r, f z ≠ f z₀ h8 : (sphere z₀ r).Nonempty h9 : ContinuousOn (fun x => ‖f x - f z₀‖) (sphere z₀ r) x : ℂ hx : x ∈ sphere z₀ r hfx : IsMinOn (fun x => ‖f x - f z₀‖) (sphere z₀ r) x ⊢ ∃ i, 0 < i ∧ ball (f z₀) i ⊆ f '' closedBall z₀ R
3b877a39b266ab74
TopCat.range_pullback_to_prod
Mathlib/Topology/Category/TopCat/Limits/Pullbacks.lean
theorem range_pullback_to_prod {X Y Z : TopCat} (f : X ⟶ Z) (g : Y ⟶ Z) : Set.range (prod.lift (pullback.fst f g) (pullback.snd f g)) = { x | (Limits.prod.fst ≫ f) x = (Limits.prod.snd ≫ g) x }
case h.mp.intro X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z y : ↑(pullback f g) ⊢ (ConcreteCategory.hom (prod.lift (pullback.fst f g) (pullback.snd f g))) y ∈ {x | (ConcreteCategory.hom (prod.fst ≫ f)) x = (ConcreteCategory.hom (prod.snd ≫ g)) x}
simp only [← ConcreteCategory.comp_apply, Set.mem_setOf_eq]
case h.mp.intro X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z y : ↑(pullback f g) ⊢ (ConcreteCategory.hom (prod.lift (pullback.fst f g) (pullback.snd f g) ≫ prod.fst ≫ f)) y = (ConcreteCategory.hom (prod.lift (pullback.fst f g) (pullback.snd f g) ≫ prod.snd ≫ g)) y
4b3b4b2af80f752f
CategoryTheory.Triangulated.Subcategory.mem_W_iff_of_distinguished
Mathlib/CategoryTheory/Triangulated/Subcategory.lean
lemma mem_W_iff_of_distinguished [S.P.IsClosedUnderIsomorphisms] (T : Triangle C) (hT : T ∈ distTriang C) : S.W T.mor₁ ↔ S.P T.obj₃
C : Type u_1 inst✝⁶ : Category.{u_2, u_1} C inst✝⁵ : HasZeroObject C inst✝⁴ : HasShift C ℤ inst✝³ : Preadditive C inst✝² : ∀ (n : ℤ), (shiftFunctor C n).Additive inst✝¹ : Pretriangulated C S : Subcategory C inst✝ : S.P.IsClosedUnderIsomorphisms T : Triangle C hT : T ∈ distinguishedTriangles ⊢ S.W T.mor₁ ↔ S.P T.obj₃
constructor
case mp C : Type u_1 inst✝⁶ : Category.{u_2, u_1} C inst✝⁵ : HasZeroObject C inst✝⁴ : HasShift C ℤ inst✝³ : Preadditive C inst✝² : ∀ (n : ℤ), (shiftFunctor C n).Additive inst✝¹ : Pretriangulated C S : Subcategory C inst✝ : S.P.IsClosedUnderIsomorphisms T : Triangle C hT : T ∈ distinguishedTriangles ⊢ S.W T.mor₁ → S.P T.obj₃ case mpr C : Type u_1 inst✝⁶ : Category.{u_2, u_1} C inst✝⁵ : HasZeroObject C inst✝⁴ : HasShift C ℤ inst✝³ : Preadditive C inst✝² : ∀ (n : ℤ), (shiftFunctor C n).Additive inst✝¹ : Pretriangulated C S : Subcategory C inst✝ : S.P.IsClosedUnderIsomorphisms T : Triangle C hT : T ∈ distinguishedTriangles ⊢ S.P T.obj₃ → S.W T.mor₁
6c0736afeb5017c5
Vector.not_mem_of_not_mem_push
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Vector/Lemmas.lean
theorem not_mem_of_not_mem_push {a b : α} {l : Vector α n} (h : a ∉ l.push b) : a ∉ l
α : Type u_1 n : Nat a b : α l : Vector α n h : ¬a ∈ l ∧ ¬a = b ⊢ ¬a ∈ l
exact h.1
no goals
498aeb995c711f10
AddCircle.addWellApproximable_ae_empty_or_univ
Mathlib/NumberTheory/WellApproximable.lean
theorem addWellApproximable_ae_empty_or_univ (δ : ℕ → ℝ) (hδ : Tendsto δ atTop (𝓝 0)) : (∀ᵐ x, ¬addWellApproximable 𝕊 δ x) ∨ ∀ᵐ x, addWellApproximable 𝕊 δ x
T : ℝ hT : Fact (0 < T) δ : ℕ → ℝ hδ : Tendsto δ atTop (𝓝 0) this : SemilatticeSup Nat.Primes := Nat.Subtype.semilatticeSup Irreducible μ : Measure 𝕊 := volume u : Nat.Primes → 𝕊 := fun p => ↑(↑1 / ↑↑p * T) hu₀ : ∀ (p : Nat.Primes), addOrderOf (u p) = ↑p hu : Tendsto (addOrderOf ∘ u) atTop atTop E : Set 𝕊 := addWellApproximable 𝕊 δ X : ℕ → Set 𝕊 := fun n => approxAddOrderOf 𝕊 n (δ n) A : ℕ → Set 𝕊 := fun p => blimsup X atTop fun n => 0 < n ∧ ¬p ∣ n B : ℕ → Set 𝕊 := fun p => blimsup X atTop fun n => 0 < n ∧ p ∣ n ∧ ¬p * p ∣ n C : ℕ → Set 𝕊 := fun p => blimsup X atTop fun n => 0 < n ∧ p ^ 2 ∣ n hA₀ : ∀ (p : ℕ), MeasurableSet (A p) hB₀ : ∀ (p : ℕ), MeasurableSet (B p) hE₀ : NullMeasurableSet E μ hE₁ : ∀ (p : ℕ), E = A p ∪ B p ∪ C p hE₂ : ∀ (p : Nat.Primes), A ↑p =ᶠ[ae μ] ∅ ∧ B ↑p =ᶠ[ae μ] ∅ → E =ᶠ[ae μ] C ↑p hA : ∀ (p : Nat.Primes), A ↑p =ᶠ[ae μ] ∅ ∨ A ↑p =ᶠ[ae μ] univ hB : ∀ (p : Nat.Primes), B ↑p =ᶠ[ae μ] ∅ ∨ B ↑p =ᶠ[ae μ] univ p : Nat.Primes e : Set 𝕊 ≃o Set 𝕊 := Equiv.toOrderIsoSet (AddAction.toPerm (u p)) ⊢ (blimsup (⇑e ∘ X) atTop fun n => 0 < n ∧ addOrderOf (u p) ^ 2 ∣ n) = C (addOrderOf (u p))
exact blimsup_congr (Eventually.of_forall fun n hn => approxAddOrderOf.vadd_eq_of_mul_dvd (δ n) hn.1 hn.2)
no goals
aeca070d334a419e
exists_gt_t2space
Mathlib/Topology/ShrinkingLemma.lean
theorem exists_gt_t2space (v : PartialRefinement u s (fun w => IsCompact (closure w))) (hs : IsCompact s) (i : ι) (hi : i ∉ v.carrier) : ∃ v' : PartialRefinement u s (fun w => IsCompact (closure w)), v < v' ∧ IsCompact (closure (v' i))
ι : Type u_1 X : Type u_2 inst✝² : TopologicalSpace X u : ι → Set X s : Set X inst✝¹ : T2Space X inst✝ : LocallyCompactSpace X v : PartialRefinement u s fun w => IsCompact (closure w) hs : IsCompact s i : ι hi : i ∉ v.carrier si : Set X := s ∩ (⋃ j, ⋃ (_ : j ≠ i), v.toFun j)ᶜ hsi : si = s ∩ ⋂ i_1, ⋂ (_ : ¬i_1 = i), (v.toFun i_1)ᶜ ⊢ IsOpen (⋃ j, ⋃ (_ : j ≠ i), v.toFun j)
apply isOpen_biUnion
case h ι : Type u_1 X : Type u_2 inst✝² : TopologicalSpace X u : ι → Set X s : Set X inst✝¹ : T2Space X inst✝ : LocallyCompactSpace X v : PartialRefinement u s fun w => IsCompact (closure w) hs : IsCompact s i : ι hi : i ∉ v.carrier si : Set X := s ∩ (⋃ j, ⋃ (_ : j ≠ i), v.toFun j)ᶜ hsi : si = s ∩ ⋂ i_1, ⋂ (_ : ¬i_1 = i), (v.toFun i_1)ᶜ ⊢ ∀ i_1 ∈ fun i_2 => i_2 = i → False, IsOpen (v.toFun i_1)
b61f3fede2ad34cb
List.intercalate_eq_intercalateTR
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Impl.lean
theorem intercalate_eq_intercalateTR : @intercalate = @intercalateTR
⊢ @intercalate = @intercalateTR
funext α sep l
case h.h.h α : Type u_1 sep : List α l : List (List α) ⊢ sep.intercalate l = sep.intercalateTR l
5b334d25ddf61cb1
Filter.map_neBot_iff
Mathlib/Order/Filter/Map.lean
theorem map_neBot_iff (f : α → β) {F : Filter α} : NeBot (map f F) ↔ NeBot F
α : Type u_1 β : Type u_2 f : α → β F : Filter α ⊢ (map f F).NeBot ↔ F.NeBot
simp only [neBot_iff, Ne, map_eq_bot_iff]
no goals
f049c14c81044e2e
Bornology.IsVonNBounded.image_multilinear'
Mathlib/Topology/Algebra/Module/Multilinear/Bounded.lean
theorem image_multilinear' [Nonempty ι] {s : Set (∀ i, E i)} (hs : IsVonNBounded 𝕜 s) (f : ContinuousMultilinearMap 𝕜 E F) : IsVonNBounded 𝕜 (f '' s) := fun V hV ↦ by classical if h₁ : ∀ c : 𝕜, ‖c‖ ≤ 1 then exact absorbs_iff_norm.2 ⟨2, fun c hc ↦ by linarith [h₁ c]⟩ else let _ : NontriviallyNormedField 𝕜 := ⟨by simpa using h₁⟩ obtain ⟨I, t, ht₀, hft⟩ : ∃ (I : Finset ι) (t : ∀ i, Set (E i)), (∀ i, t i ∈ 𝓝 0) ∧ Set.pi I t ⊆ f ⁻¹' V
case intro.intro ι : Type u_1 𝕜 : Type u_2 F : Type u_3 E : ι → Type u_4 inst✝⁷ : NormedField 𝕜 inst✝⁶ : (i : ι) → AddCommGroup (E i) inst✝⁵ : (i : ι) → Module 𝕜 (E i) inst✝⁴ : (i : ι) → TopologicalSpace (E i) inst✝³ : AddCommGroup F inst✝² : Module 𝕜 F inst✝¹ : TopologicalSpace F inst✝ : Nonempty ι s : Set ((i : ι) → E i) hs : ∀ (i : ι), IsVonNBounded 𝕜 (eval i '' s) f : ContinuousMultilinearMap 𝕜 E F V : Set F hV : V ∈ 𝓝 0 h₁ : ¬∀ (c : 𝕜), ‖c‖ ≤ 1 x✝ : NontriviallyNormedField 𝕜 := NontriviallyNormedField.mk ⋯ I : Finset ι t : (i : ι) → Set (E i) ht₀ : ∀ (i : ι), t i ∈ 𝓝 0 hft : (↑I).pi t ⊆ ⇑f ⁻¹' V i : ι this : ∀ᶠ (x : 𝕜) in 𝓝 0, x • eval i '' s ⊆ t i r : ℝ hr₀ : 0 < r hr : ∀ ⦃x : 𝕜⦄, x ∈ {y | ‖y‖ < r} → x • eval i '' s ⊆ t i ⊢ ∃ c, c ≠ 0 ∧ ∀ (c' : 𝕜), ‖c'‖ ≤ ‖c‖ → ∀ x ∈ s, c' • x i ∈ t i
rcases NormedField.exists_norm_lt 𝕜 hr₀ with ⟨c, hc₀, hc⟩
case intro.intro.intro.intro ι : Type u_1 𝕜 : Type u_2 F : Type u_3 E : ι → Type u_4 inst✝⁷ : NormedField 𝕜 inst✝⁶ : (i : ι) → AddCommGroup (E i) inst✝⁵ : (i : ι) → Module 𝕜 (E i) inst✝⁴ : (i : ι) → TopologicalSpace (E i) inst✝³ : AddCommGroup F inst✝² : Module 𝕜 F inst✝¹ : TopologicalSpace F inst✝ : Nonempty ι s : Set ((i : ι) → E i) hs : ∀ (i : ι), IsVonNBounded 𝕜 (eval i '' s) f : ContinuousMultilinearMap 𝕜 E F V : Set F hV : V ∈ 𝓝 0 h₁ : ¬∀ (c : 𝕜), ‖c‖ ≤ 1 x✝ : NontriviallyNormedField 𝕜 := NontriviallyNormedField.mk ⋯ I : Finset ι t : (i : ι) → Set (E i) ht₀ : ∀ (i : ι), t i ∈ 𝓝 0 hft : (↑I).pi t ⊆ ⇑f ⁻¹' V i : ι this : ∀ᶠ (x : 𝕜) in 𝓝 0, x • eval i '' s ⊆ t i r : ℝ hr₀ : 0 < r hr : ∀ ⦃x : 𝕜⦄, x ∈ {y | ‖y‖ < r} → x • eval i '' s ⊆ t i c : 𝕜 hc₀ : 0 < ‖c‖ hc : ‖c‖ < r ⊢ ∃ c, c ≠ 0 ∧ ∀ (c' : 𝕜), ‖c'‖ ≤ ‖c‖ → ∀ x ∈ s, c' • x i ∈ t i
b4505873b047f890
Turing.ToPartrec.Code.exists_code
Mathlib/Computability/TMConfig.lean
theorem exists_code {n} {f : List.Vector ℕ n →. ℕ} (hf : Nat.Partrec' f) : ∃ c : Code, ∀ v : List.Vector ℕ n, c.eval v.1 = pure <$> f v
case pos n✝¹ : ℕ f✝ : List.Vector ℕ n✝¹ →. ℕ n✝ : ℕ f : List.Vector ℕ (n✝ + 1) → ℕ a✝ : Nat.Partrec' ↑f cf : Code v : List.Vector ℕ n✝ hf : ∀ (a : ℕ), cf.eval (a :: ↑v) = Part.some [f (a ::ᵥ v)] v₀ : List ℕ n : ℕ hm : ∀ m < n, ¬f (m ::ᵥ v) = 0 h : [f (n ::ᵥ v)].headI = 0 h2 : n.succ :: ↑v ∈ PFun.fix (fun v => (cf.eval v).bind fun y => Part.some (if y.headI = 0 then Sum.inl (v.headI.succ :: v.tail) else Sum.inr (v.headI.succ :: v.tail))) (n :: ↑v) IH : ∀ (a'' : List ℕ), (Sum.inr a'' ∈ (cf.eval (n :: ↑v)).bind fun y => Part.some (if y.headI = 0 then Sum.inl ((n :: ↑v).headI.succ :: (n :: ↑v).tail) else Sum.inr ((n :: ↑v).headI.succ :: (n :: ↑v).tail))) → ∀ (n_1 : ℕ), a'' = n_1 :: ↑v → (∀ m < n_1, ¬f (m ::ᵥ v) = 0) → ∃ a, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ [a] = [(n.succ :: ↑v).headI.pred] ⊢ ∃ a, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ [a] = [(n.succ :: ↑v).headI.pred]
exact ⟨_, ⟨h, @(hm)⟩, rfl⟩
no goals
01823c87e1740c3b
List.lookupAll_eq_nil
Mathlib/Data/List/Sigma.lean
theorem lookupAll_eq_nil {a : α} : ∀ {l : List (Sigma β)}, lookupAll a l = [] ↔ ∀ b : β a, Sigma.mk a b ∉ l | [] => by simp | ⟨a', b⟩ :: l => by by_cases h : a = a' · subst a' simp only [lookupAll_cons_eq, mem_cons, Sigma.mk.inj_iff, heq_eq_eq, true_and, not_or, false_iff, not_forall, not_and, not_not, reduceCtorEq] use b simp · simp [h, lookupAll_eq_nil]
case pos α : Type u β : α → Type v inst✝ : DecidableEq α a : α l : List (Sigma β) b : β a ⊢ lookupAll a (⟨a, b⟩ :: l) = [] ↔ ∀ (b_1 : β a), ⟨a, b_1⟩ ∉ ⟨a, b⟩ :: l
simp only [lookupAll_cons_eq, mem_cons, Sigma.mk.inj_iff, heq_eq_eq, true_and, not_or, false_iff, not_forall, not_and, not_not, reduceCtorEq]
case pos α : Type u β : α → Type v inst✝ : DecidableEq α a : α l : List (Sigma β) b : β a ⊢ ∃ x, ¬x = b → ⟨a, x⟩ ∈ l
8edbefa7d6f1441c
MeasureTheory.L1.setToL1_zero_left
Mathlib/MeasureTheory/Integral/SetToL1.lean
theorem setToL1_zero_left (hT : DominatedFinMeasAdditive μ (0 : Set α → E →L[ℝ] F) C) (f : α →₁[μ] E) : setToL1 hT f = 0
α : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F m : MeasurableSpace α μ : Measure α inst✝ : CompleteSpace F C : ℝ hT : DominatedFinMeasAdditive μ 0 C f : ↥(Lp E 1 μ) ⊢ ContinuousLinearMap.comp 0 (coeToLp α E ℝ) = setToL1SCLM α E μ hT
ext1 f
case h α : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F m : MeasurableSpace α μ : Measure α inst✝ : CompleteSpace F C : ℝ hT : DominatedFinMeasAdditive μ 0 C f✝ : ↥(Lp E 1 μ) f : ↥(simpleFunc E 1 μ) ⊢ (ContinuousLinearMap.comp 0 (coeToLp α E ℝ)) f = (setToL1SCLM α E μ hT) f
cc8f5a6f789f4fe2
mul_eq_zero_add_eq_one_ext_right
Mathlib/Algebra/Order/Ring/Idempotent.lean
lemma mul_eq_zero_add_eq_one_ext_right (eq : a.1.2 = b.1.2) : a = b
case refine_3 α : Type u_1 inst✝ : CommSemiring α a b : { a // a.1 * a.2 = 0 ∧ a.1 + a.2 = 1 } eq : (↑a).2 = (↑b).2 ⊢ (↑a).2 + (↑b).1 = 1
rw [add_comm, eq, b.2.2]
no goals
2eb8ae992e68b504
AlgebraicGeometry.IsAffineOpen.basicOpen_union_eq_self_iff
Mathlib/AlgebraicGeometry/AffineScheme.lean
theorem basicOpen_union_eq_self_iff (s : Set Γ(X, U)) : ⨆ f : s, X.basicOpen (f : Γ(X, U)) = U ↔ Ideal.span s = ⊤
X : Scheme U : X.Opens hU : IsAffineOpen U s : Set ↑Γ(X, U) ⊢ PrimeSpectrum.zeroLocus (⋃ i, {↑i}) = ∅ ↔ PrimeSpectrum.zeroLocus s = ∅
simp only [Set.iUnion_singleton_eq_range, Subtype.range_val_subtype, Set.setOf_mem_eq]
no goals
e342cbef83e9eeeb
AkraBazziRecurrence.dist_r_b'
Mathlib/Computability/AkraBazzi/AkraBazzi.lean
lemma dist_r_b' : ∀ᶠ n in atTop, ∀ i, ‖(r i n : ℝ) - b i * n‖ ≤ n / log n ^ 2
α : Type u_1 inst✝¹ : Fintype α T : ℕ → ℝ g : ℝ → ℝ a b : α → ℝ r : α → ℕ → ℕ inst✝ : Nonempty α R : AkraBazziRecurrence T g a b r ⊢ ∀ (i : α), ∀ᶠ (x : ℕ) in atTop, ‖↑(r i x) - b i * ↑x‖ ≤ ↑x / log ↑x ^ 2
intro i
α : Type u_1 inst✝¹ : Fintype α T : ℕ → ℝ g : ℝ → ℝ a b : α → ℝ r : α → ℕ → ℕ inst✝ : Nonempty α R : AkraBazziRecurrence T g a b r i : α ⊢ ∀ᶠ (x : ℕ) in atTop, ‖↑(r i x) - b i * ↑x‖ ≤ ↑x / log ↑x ^ 2
9b15e28bb0f75398
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.confirmRupHint_preserves_invariant_helper
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/LRAT/Internal/Formula/RupAddResult.lean
theorem confirmRupHint_preserves_invariant_helper {n : Nat} (f : DefaultFormula n) (f_assignments_size : f.assignments.size = n) (acc : Array Assignment × CNF.Clause (PosFin n) × Bool × Bool) (hsize : acc.1.size = n) (l : Literal (PosFin n)) (ih : DerivedLitsInvariant f f_assignments_size acc.1 hsize acc.2.1) (h : ¬hasAssignment l.snd acc.fst[l.fst.val]! = true) : have hsize' : (Array.modify acc.1 l.1.1 (addAssignment l.snd)).size = n
case intro.intro n : Nat f : DefaultFormula n f_assignments_size : f.assignments.size = n acc : Array Assignment × CNF.Clause (PosFin n) × Bool × Bool hsize : acc.fst.size = n l : Literal (PosFin n) ih : f.DerivedLitsInvariant f_assignments_size acc.fst hsize acc.snd.fst h : ¬hasAssignment l.snd acc.fst[l.fst.val]! = true hsize'✝ : (acc.fst.modify l.fst.val (addAssignment l.snd)).size = n := Eq.mpr (id (congrArg (fun _a => _a = n) (Array.size_modify acc.fst l.fst.val (addAssignment l.snd)))) hsize i : Fin n i_in_bounds : ↑i < acc.fst.size l_in_bounds : l.fst.val < acc.fst.size j1 j2 : Fin (List.length acc.snd.fst) j1_eq_i : (List.get acc.snd.fst j1).fst.val = ↑i j2_eq_i : (List.get acc.snd.fst j2).fst.val = ↑i j1_eq_true : (List.get acc.snd.fst j1).snd = true j2_eq_false : (List.get acc.snd.fst j2).snd = false h1 : acc.fst[↑i] = both h2 : f.assignments[↑i] = unassigned h3 : ∀ (k : Fin (List.length acc.snd.fst)), k ≠ j1 → k ≠ j2 → (List.get acc.snd.fst k).fst.val ≠ ↑i j1_succ_in_bounds : ↑j1 + 1 < (l :: acc.snd.fst).length j2_succ_in_bounds : ↑j2 + 1 < (l :: acc.snd.fst).length j1_succ : Fin (l :: acc.snd.fst).length := ⟨↑j1 + 1, j1_succ_in_bounds⟩ j2_succ : Fin (l :: acc.snd.fst).length := ⟨↑j2 + 1, j2_succ_in_bounds⟩ l_ne_i : l.fst.val ≠ ↑i k : Fin (List.length acc.snd.fst + 1) k_ne_j1_succ : ¬k = j1_succ k_ne_j2_succ : ¬k = j2_succ zero_in_bounds : 0 < (l :: acc.snd.fst).length k_ne_zero : ¬k = ⟨0, zero_in_bounds⟩ k' : Nat k'_succ_in_bounds : k' + 1 < (l :: acc.snd.fst).length k_eq_succ : k = ⟨k' + 1, k'_succ_in_bounds⟩ ⊢ ¬((l :: acc.snd.fst).get k).fst.val = ↑i
rw [k_eq_succ]
case intro.intro n : Nat f : DefaultFormula n f_assignments_size : f.assignments.size = n acc : Array Assignment × CNF.Clause (PosFin n) × Bool × Bool hsize : acc.fst.size = n l : Literal (PosFin n) ih : f.DerivedLitsInvariant f_assignments_size acc.fst hsize acc.snd.fst h : ¬hasAssignment l.snd acc.fst[l.fst.val]! = true hsize'✝ : (acc.fst.modify l.fst.val (addAssignment l.snd)).size = n := Eq.mpr (id (congrArg (fun _a => _a = n) (Array.size_modify acc.fst l.fst.val (addAssignment l.snd)))) hsize i : Fin n i_in_bounds : ↑i < acc.fst.size l_in_bounds : l.fst.val < acc.fst.size j1 j2 : Fin (List.length acc.snd.fst) j1_eq_i : (List.get acc.snd.fst j1).fst.val = ↑i j2_eq_i : (List.get acc.snd.fst j2).fst.val = ↑i j1_eq_true : (List.get acc.snd.fst j1).snd = true j2_eq_false : (List.get acc.snd.fst j2).snd = false h1 : acc.fst[↑i] = both h2 : f.assignments[↑i] = unassigned h3 : ∀ (k : Fin (List.length acc.snd.fst)), k ≠ j1 → k ≠ j2 → (List.get acc.snd.fst k).fst.val ≠ ↑i j1_succ_in_bounds : ↑j1 + 1 < (l :: acc.snd.fst).length j2_succ_in_bounds : ↑j2 + 1 < (l :: acc.snd.fst).length j1_succ : Fin (l :: acc.snd.fst).length := ⟨↑j1 + 1, j1_succ_in_bounds⟩ j2_succ : Fin (l :: acc.snd.fst).length := ⟨↑j2 + 1, j2_succ_in_bounds⟩ l_ne_i : l.fst.val ≠ ↑i k : Fin (List.length acc.snd.fst + 1) k_ne_j1_succ : ¬k = j1_succ k_ne_j2_succ : ¬k = j2_succ zero_in_bounds : 0 < (l :: acc.snd.fst).length k_ne_zero : ¬k = ⟨0, zero_in_bounds⟩ k' : Nat k'_succ_in_bounds : k' + 1 < (l :: acc.snd.fst).length k_eq_succ : k = ⟨k' + 1, k'_succ_in_bounds⟩ ⊢ ¬((l :: acc.snd.fst).get ⟨k' + 1, k'_succ_in_bounds⟩).fst.val = ↑i
02ca1706b397b254
CategoryTheory.IsFiltered.bowtie
Mathlib/CategoryTheory/Filtered/Basic.lean
theorem bowtie {j₁ j₂ k₁ k₂ : C} (f₁ : j₁ ⟶ k₁) (g₁ : j₁ ⟶ k₂) (f₂ : j₂ ⟶ k₁) (g₂ : j₂ ⟶ k₂) : ∃ (s : C) (α : k₁ ⟶ s) (β : k₂ ⟶ s), f₁ ≫ α = g₁ ≫ β ∧ f₂ ≫ α = g₂ ≫ β
case intro.intro.intro.intro.intro C : Type u inst✝¹ : Category.{v, u} C inst✝ : IsFilteredOrEmpty C j₁ j₂ k₁ k₂ : C f₁ : j₁ ⟶ k₁ g₁ : j₁ ⟶ k₂ f₂ : j₂ ⟶ k₁ g₂ : j₂ ⟶ k₂ t : C k₁t : k₁ ⟶ t k₂t : k₂ ⟶ t ht : f₁ ≫ k₁t = g₁ ≫ k₂t s : C ts : t ⟶ s hs : (f₂ ≫ k₁t) ≫ ts = (g₂ ≫ k₂t) ≫ ts ⊢ ∃ s α β, f₁ ≫ α = g₁ ≫ β ∧ f₂ ≫ α = g₂ ≫ β
simp_rw [Category.assoc] at hs
case intro.intro.intro.intro.intro C : Type u inst✝¹ : Category.{v, u} C inst✝ : IsFilteredOrEmpty C j₁ j₂ k₁ k₂ : C f₁ : j₁ ⟶ k₁ g₁ : j₁ ⟶ k₂ f₂ : j₂ ⟶ k₁ g₂ : j₂ ⟶ k₂ t : C k₁t : k₁ ⟶ t k₂t : k₂ ⟶ t ht : f₁ ≫ k₁t = g₁ ≫ k₂t s : C ts : t ⟶ s hs : f₂ ≫ k₁t ≫ ts = g₂ ≫ k₂t ≫ ts ⊢ ∃ s α β, f₁ ≫ α = g₁ ≫ β ∧ f₂ ≫ α = g₂ ≫ β
9fbfd17cd6a1fcb5
RingHom.locally_localizationAwayPreserves
Mathlib/RingTheory/RingHom/Locally.lean
/-- If `P` is preserved by localization away, then so is `Locally P`. -/ lemma locally_localizationAwayPreserves (hPl : LocalizationAwayPreserves P) : LocalizationAwayPreserves (Locally P)
P : {R S : Type u} → [inst : CommRing R] → [inst_1 : CommRing S] → (R →+* S) → Prop hPl : LocalizationAwayPreserves fun {R S} [CommRing R] [CommRing S] => P ⊢ LocalizationAwayPreserves fun {R S} [CommRing R] [CommRing S] => Locally fun {R S} [CommRing R] [CommRing S] => P
introv R hf
P : {R S : Type u} → [inst : CommRing R] → [inst_1 : CommRing S] → (R →+* S) → Prop hPl : LocalizationAwayPreserves fun {R S} [CommRing R] [CommRing S] => P R S : Type u inst✝⁷ : CommRing R inst✝⁶ : CommRing S f : R →+* S r : R R' S' : Type u inst✝⁵ : CommRing R' inst✝⁴ : CommRing S' inst✝³ : Algebra R R' inst✝² : Algebra S S' inst✝¹ : IsLocalization.Away r R' inst✝ : IsLocalization.Away (f r) S' hf : Locally (fun {R S} [CommRing R] [CommRing S] => P) f ⊢ Locally (fun {R S} [CommRing R] [CommRing S] => P) (IsLocalization.Away.map R' S' f r)
2508d7210fe7161f
PiTensorProduct.bddBelow_projectiveSemiNormAux
Mathlib/Analysis/NormedSpace/PiTensorProduct/ProjectiveSeminorm.lean
theorem bddBelow_projectiveSemiNormAux (x : ⨂[𝕜] i, E i) : BddBelow (Set.range (fun (p : lifts x) ↦ projectiveSeminormAux p.1))
ι : Type uι inst✝³ : Fintype ι 𝕜 : Type u𝕜 inst✝² : NontriviallyNormedField 𝕜 E : ι → Type uE inst✝¹ : (i : ι) → SeminormedAddCommGroup (E i) inst✝ : (i : ι) → NormedSpace 𝕜 (E i) x : ⨂[𝕜] (i : ι), E i ⊢ BddBelow (Set.range fun p => projectiveSeminormAux ↑p)
existsi 0
ι : Type uι inst✝³ : Fintype ι 𝕜 : Type u𝕜 inst✝² : NontriviallyNormedField 𝕜 E : ι → Type uE inst✝¹ : (i : ι) → SeminormedAddCommGroup (E i) inst✝ : (i : ι) → NormedSpace 𝕜 (E i) x : ⨂[𝕜] (i : ι), E i ⊢ 0 ∈ lowerBounds (Set.range fun p => projectiveSeminormAux ↑p)
1114b06691be3409
ENNReal.lintegral_Lp_add_le
Mathlib/MeasureTheory/Integral/MeanInequalities.lean
theorem lintegral_Lp_add_le {p : ℝ} {f g : α → ℝ≥0∞} (hf : AEMeasurable f μ) (hg : AEMeasurable g μ) (hp1 : 1 ≤ p) : (∫⁻ a, (f + g) a ^ p ∂μ) ^ (1 / p) ≤ (∫⁻ a, f a ^ p ∂μ) ^ (1 / p) + (∫⁻ a, g a ^ p ∂μ) ^ (1 / p)
α : Type u_1 inst✝ : MeasurableSpace α μ : Measure α p : ℝ f g : α → ℝ≥0∞ hf : AEMeasurable f μ hg : AEMeasurable g μ hp1 : 1 ≤ p ⊢ (∫⁻ (a : α), (f + g) a ^ p ∂μ) ^ (1 / p) ≤ (∫⁻ (a : α), f a ^ p ∂μ) ^ (1 / p) + (∫⁻ (a : α), g a ^ p ∂μ) ^ (1 / p)
have hp_pos : 0 < p := lt_of_lt_of_le zero_lt_one hp1
α : Type u_1 inst✝ : MeasurableSpace α μ : Measure α p : ℝ f g : α → ℝ≥0∞ hf : AEMeasurable f μ hg : AEMeasurable g μ hp1 : 1 ≤ p hp_pos : 0 < p ⊢ (∫⁻ (a : α), (f + g) a ^ p ∂μ) ^ (1 / p) ≤ (∫⁻ (a : α), f a ^ p ∂μ) ^ (1 / p) + (∫⁻ (a : α), g a ^ p ∂μ) ^ (1 / p)
917d466c6455bcc8
Surreal.Multiplication.mul_right_le_of_equiv
Mathlib/SetTheory/Surreal/Multiplication.lean
theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric) (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y
x₁ x₂ y : PGame h₁ : x₁.Numeric h₂ : x₂.Numeric h₁₂ : IH24 x₁ x₂ y h₂₁ : IH24 x₂ x₁ y he : x₁ ≈ x₂ ⊢ x₁ * y ≤ x₂ * y
have he' := neg_equiv_neg_iff.2 he
x₁ x₂ y : PGame h₁ : x₁.Numeric h₂ : x₂.Numeric h₁₂ : IH24 x₁ x₂ y h₂₁ : IH24 x₂ x₁ y he : x₁ ≈ x₂ he' : -x₁ ≈ -x₂ ⊢ x₁ * y ≤ x₂ * y
e1812a149e6bada9
ZMod.val_cast_eq_val_of_lt
Mathlib/Data/ZMod/Basic.lean
theorem val_cast_eq_val_of_lt {m n : ℕ} [nzm : NeZero m] {a : ZMod m} (h : a.val < n) : (a.cast : ZMod n).val = a.val
m n : ℕ nzm : NeZero m a : ZMod m h : a.val < n ⊢ NeZero n
constructor
case out m n : ℕ nzm : NeZero m a : ZMod m h : a.val < n ⊢ n ≠ 0
4f9773579b5fa7c2
QuasispectrumRestricts.cfc
Mathlib/Analysis/CStarAlgebra/ContinuousFunctionalCalculus/Restrict.lean
theorem cfc (f : C(S, R)) (halg : IsUniformEmbedding (algebraMap R S)) (h0 : p 0) (h : ∀ a, p a ↔ q a ∧ QuasispectrumRestricts a f) : NonUnitalContinuousFunctionalCalculus R p where predicate_zero := h0 compactSpace_quasispectrum a
R : Type u_1 S : Type u_2 A : Type u_3 p q : A → Prop inst✝²⁴ : Semifield R inst✝²³ : StarRing R inst✝²² : MetricSpace R inst✝²¹ : IsTopologicalSemiring R inst✝²⁰ : ContinuousStar R inst✝¹⁹ : Field S inst✝¹⁸ : StarRing S inst✝¹⁷ : MetricSpace S inst✝¹⁶ : IsTopologicalRing S inst✝¹⁵ : ContinuousStar S inst✝¹⁴ : NonUnitalRing A inst✝¹³ : StarRing A inst✝¹² : Module S A inst✝¹¹ : IsScalarTower S A A inst✝¹⁰ : SMulCommClass S A A inst✝⁹ : Algebra R S inst✝⁸ : Module R A inst✝⁷ : IsScalarTower R S A inst✝⁶ : StarModule R S inst✝⁵ : ContinuousSMul R S inst✝⁴ : TopologicalSpace A inst✝³ : NonUnitalContinuousFunctionalCalculus S q inst✝² : CompleteSpace R inst✝¹ : IsScalarTower R A A inst✝ : SMulCommClass R A A f : C(S, R) halg : IsUniformEmbedding ⇑(algebraMap R S) h0 : p 0 h : ∀ (a : A), p a ↔ q a ∧ QuasispectrumRestricts a ⇑f a : A ha : p a g : C(↑(σₙ R a), R)₀ ⊢ σₙ R ((nonUnitalStarAlgHom (cfcₙHom ⋯) ⋯) g) = range ⇑g
rw [nonUnitalStarAlgHom_apply]
R : Type u_1 S : Type u_2 A : Type u_3 p q : A → Prop inst✝²⁴ : Semifield R inst✝²³ : StarRing R inst✝²² : MetricSpace R inst✝²¹ : IsTopologicalSemiring R inst✝²⁰ : ContinuousStar R inst✝¹⁹ : Field S inst✝¹⁸ : StarRing S inst✝¹⁷ : MetricSpace S inst✝¹⁶ : IsTopologicalRing S inst✝¹⁵ : ContinuousStar S inst✝¹⁴ : NonUnitalRing A inst✝¹³ : StarRing A inst✝¹² : Module S A inst✝¹¹ : IsScalarTower S A A inst✝¹⁰ : SMulCommClass S A A inst✝⁹ : Algebra R S inst✝⁸ : Module R A inst✝⁷ : IsScalarTower R S A inst✝⁶ : StarModule R S inst✝⁵ : ContinuousSMul R S inst✝⁴ : TopologicalSpace A inst✝³ : NonUnitalContinuousFunctionalCalculus S q inst✝² : CompleteSpace R inst✝¹ : IsScalarTower R A A inst✝ : SMulCommClass R A A f : C(S, R) halg : IsUniformEmbedding ⇑(algebraMap R S) h0 : p 0 h : ∀ (a : A), p a ↔ q a ∧ QuasispectrumRestricts a ⇑f a : A ha : p a g : C(↑(σₙ R a), R)₀ ⊢ σₙ R ((cfcₙHom ⋯) ({ toFun := ⇑(StarAlgHom.ofId R S), continuous_toFun := ⋯, map_zero' := ⋯ }.comp (g.comp { toFun := Subtype.map ⇑f ⋯, continuous_toFun := ⋯, map_zero' := ⋯ }))) = range ⇑g
3af5d542f22c6b37
LipschitzOnWith.extend_real
Mathlib/Topology/MetricSpace/Lipschitz.lean
theorem LipschitzOnWith.extend_real {f : α → ℝ} {s : Set α} {K : ℝ≥0} (hf : LipschitzOnWith K f s) : ∃ g : α → ℝ, LipschitzWith K g ∧ EqOn f g s
case inr α : Type u inst✝ : PseudoMetricSpace α f : α → ℝ s : Set α K : ℝ≥0 hf : LipschitzOnWith K f s hs : s.Nonempty this : Nonempty ↑s g : α → ℝ := fun y => ⨅ x, f ↑x + ↑K * dist y ↑x B : ∀ (y : α), BddBelow (range fun x => f ↑x + ↑K * dist y ↑x) E : EqOn f g s x y : α z : ↑s ⊢ g x ≤ f ↑z + ↑K * dist y ↑z + ↑K * dist x y
calc g x ≤ f z + K * dist x z := ciInf_le (B x) _ _ ≤ f z + K * dist y z + K * dist x y := by rw [add_assoc, ← mul_add, add_comm (dist y z)] gcongr apply dist_triangle
no goals
509beb34bd5ad882
Besicovitch.card_le_multiplicity
Mathlib/MeasureTheory/Covering/BesicovitchVectorSpace.lean
theorem card_le_multiplicity {s : Finset E} (hs : ∀ c ∈ s, ‖c‖ ≤ 2) (h's : ∀ c ∈ s, ∀ d ∈ s, c ≠ d → 1 ≤ ‖c - d‖) : s.card ≤ multiplicity E
case h₂ E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : FiniteDimensional ℝ E s : Finset E hs : ∀ c ∈ s, ‖c‖ ≤ 2 h's : ∀ c ∈ s, ∀ d ∈ s, c ≠ d → 1 ≤ ‖c - d‖ ⊢ s.card ∈ {N | ∃ s, s.card = N ∧ (∀ c ∈ s, ‖c‖ ≤ 2) ∧ ∀ c ∈ s, ∀ d ∈ s, c ≠ d → 1 ≤ ‖c - d‖}
simp only [mem_setOf_eq, Ne]
case h₂ E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : FiniteDimensional ℝ E s : Finset E hs : ∀ c ∈ s, ‖c‖ ≤ 2 h's : ∀ c ∈ s, ∀ d ∈ s, c ≠ d → 1 ≤ ‖c - d‖ ⊢ ∃ s_1, s_1.card = s.card ∧ (∀ c ∈ s_1, ‖c‖ ≤ 2) ∧ ∀ c ∈ s_1, ∀ d ∈ s_1, ¬c = d → 1 ≤ ‖c - d‖
48761ca441d21fc8
Nat.eq_mul_of_div_eq_left
Mathlib/Data/Nat/Init.lean
protected lemma eq_mul_of_div_eq_left (H1 : b ∣ a) (H2 : a / b = c) : a = c * b
a b c : ℕ H1 : b ∣ a H2 : a / b = c ⊢ a = c * b
rw [Nat.mul_comm, Nat.eq_mul_of_div_eq_right H1 H2]
no goals
4802a3e7fa74afdc
not_differentiableAt_norm_zero
Mathlib/Analysis/Calculus/FDeriv/Norm.lean
theorem not_differentiableAt_norm_zero [Nontrivial E] : ¬DifferentiableAt ℝ (‖·‖) (0 : E)
case intro E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : Nontrivial E x : E hx : 0 < ‖x‖ h : DifferentiableAt ℝ (fun x => ‖x‖) 0 ⊢ False
have : DifferentiableAt ℝ (fun t : ℝ ↦ ‖t • x‖) 0 := DifferentiableAt.comp _ (by simpa) (by simp)
case intro E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : Nontrivial E x : E hx : 0 < ‖x‖ h : DifferentiableAt ℝ (fun x => ‖x‖) 0 this : DifferentiableAt ℝ (fun t => ‖t • x‖) 0 ⊢ False
0274b6a9eb508011
sphere_prod
Mathlib/Topology/MetricSpace/Pseudo/Constructions.lean
lemma sphere_prod (x : α × β) (r : ℝ) : sphere x r = sphere x.1 r ×ˢ closedBall x.2 r ∪ closedBall x.1 r ×ˢ sphere x.2 r
case inr.inr.h.mk.refine_1 α : Type u_1 β : Type u_2 inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β x : α × β r : ℝ hr : 0 < r x' : α y' : β ⊢ dist x' x.1 = r → (dist y' x.2 ≤ dist x' x.1 ↔ dist y' x.2 ≤ r) case inr.inr.h.mk.refine_2 α : Type u_1 β : Type u_2 inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β x : α × β r : ℝ hr : 0 < r x' : α y' : β ⊢ dist y' x.2 = r → (dist x' x.1 ≤ dist y' x.2 ↔ dist x' x.1 ≤ r)
all_goals rintro rfl; rfl
no goals
949a8c74f6143514
Module.Baer.extensionOfMax_le
Mathlib/Algebra/Module/Injective.lean
theorem extensionOfMax_le (h : Module.Baer R Q) {y : N} : extensionOfMax i f ≤ extensionOfMaxAdjoin i f h y := ⟨le_sup_left, fun x x' EQ => by symm change ExtensionOfMaxAdjoin.extensionToFun i f h _ = _ rw [ExtensionOfMaxAdjoin.extensionToFun_wd i f h x' x 0 (by simp [EQ]), map_zero, add_zero]⟩
R : Type u inst✝⁷ : Ring R Q : Type v inst✝⁶ : AddCommGroup Q inst✝⁵ : Module R Q M : Type u_1 N : Type u_2 inst✝⁴ : AddCommGroup M inst✝³ : AddCommGroup N inst✝² : Module R M inst✝¹ : Module R N i : M →ₗ[R] N f : M →ₗ[R] Q inst✝ : Fact (Function.Injective ⇑i) h : Baer R Q y : N x : ↥(extensionOfMax i f).domain x' : ↥(extensionOfMaxAdjoin i f h y).domain EQ : ↑x = ↑x' ⊢ ↑(extensionOfMaxAdjoin i f h y).toLinearPMap x' = ↑(extensionOfMax i f).toLinearPMap x
change ExtensionOfMaxAdjoin.extensionToFun i f h _ = _
R : Type u inst✝⁷ : Ring R Q : Type v inst✝⁶ : AddCommGroup Q inst✝⁵ : Module R Q M : Type u_1 N : Type u_2 inst✝⁴ : AddCommGroup M inst✝³ : AddCommGroup N inst✝² : Module R M inst✝¹ : Module R N i : M →ₗ[R] N f : M →ₗ[R] Q inst✝ : Fact (Function.Injective ⇑i) h : Baer R Q y : N x : ↥(extensionOfMax i f).domain x' : ↥(extensionOfMaxAdjoin i f h y).domain EQ : ↑x = ↑x' ⊢ ExtensionOfMaxAdjoin.extensionToFun i f h x' = ↑(extensionOfMax i f).toLinearPMap x
907d63c4d7960ae0