name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
Filter.limsup_top_eq_iSup
Mathlib/Order/LiminfLimsup.lean
@[simp] lemma limsup_top_eq_iSup (u : β → α) : limsup u ⊤ = ⨆ i, u i
α : Type u_1 β : Type u_2 inst✝ : CompleteLattice α u : β → α ⊢ limsup u ⊤ = ⨆ i, u i
rw [limsup, map_top, limsSup_principal_eq_sSup, sSup_range]
no goals
6caebe39043690ac
MeasureTheory.IntegrableOn.smul_continuousOn
Mathlib/MeasureTheory/Function/LocallyIntegrable.lean
theorem IntegrableOn.smul_continuousOn [T2Space X] [SecondCountableTopologyEither X E] {f : X → 𝕜} (hf : IntegrableOn f K μ) {g : X → E} (hg : ContinuousOn g K) (hK : IsCompact K) : IntegrableOn (fun x => f x • g x) K μ
X : Type u_1 E : Type u_3 inst✝⁷ : MeasurableSpace X inst✝⁶ : TopologicalSpace X inst✝⁵ : NormedAddCommGroup E μ : Measure X inst✝⁴ : OpensMeasurableSpace X K : Set X 𝕜 : Type u_6 inst✝³ : NormedField 𝕜 inst✝² : NormedSpace 𝕜 E inst✝¹ : T2Space X inst✝ : SecondCountableTopologyEither X E f : X → 𝕜 hf : IntegrableOn f K μ g : X → E hg : ContinuousOn g K hK : IsCompact K ⊢ IntegrableOn (fun x => f x • g x) K μ
rw [IntegrableOn, ← integrable_norm_iff]
X : Type u_1 E : Type u_3 inst✝⁷ : MeasurableSpace X inst✝⁶ : TopologicalSpace X inst✝⁵ : NormedAddCommGroup E μ : Measure X inst✝⁴ : OpensMeasurableSpace X K : Set X 𝕜 : Type u_6 inst✝³ : NormedField 𝕜 inst✝² : NormedSpace 𝕜 E inst✝¹ : T2Space X inst✝ : SecondCountableTopologyEither X E f : X → 𝕜 hf : IntegrableOn f K μ g : X → E hg : ContinuousOn g K hK : IsCompact K ⊢ Integrable (fun a => ‖f a • g a‖) (μ.restrict K) X : Type u_1 E : Type u_3 inst✝⁷ : MeasurableSpace X inst✝⁶ : TopologicalSpace X inst✝⁵ : NormedAddCommGroup E μ : Measure X inst✝⁴ : OpensMeasurableSpace X K : Set X 𝕜 : Type u_6 inst✝³ : NormedField 𝕜 inst✝² : NormedSpace 𝕜 E inst✝¹ : T2Space X inst✝ : SecondCountableTopologyEither X E f : X → 𝕜 hf : IntegrableOn f K μ g : X → E hg : ContinuousOn g K hK : IsCompact K ⊢ AEStronglyMeasurable (fun x => f x • g x) (μ.restrict K)
f776dc909af1d266
ContinuousMultilinearMap.norm_map_snoc_le
Mathlib/Analysis/NormedSpace/Multilinear/Curry.lean
theorem ContinuousMultilinearMap.norm_map_snoc_le (f : ContinuousMultilinearMap 𝕜 Ei G) (m : ∀ i : Fin n, Ei <| castSucc i) (x : Ei (last n)) : ‖f (snoc m x)‖ ≤ (‖f‖ * ∏ i, ‖m i‖) * ‖x‖ := calc ‖f (snoc m x)‖ ≤ ‖f‖ * ∏ i, ‖snoc m x i‖ := f.le_opNorm _ _ = (‖f‖ * ∏ i, ‖m i‖) * ‖x‖
𝕜 : Type u n : ℕ Ei : Fin n.succ → Type wEi G : Type wG inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : (i : Fin n.succ) → NormedAddCommGroup (Ei i) inst✝² : (i : Fin n.succ) → NormedSpace 𝕜 (Ei i) inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace 𝕜 G f : ContinuousMultilinearMap 𝕜 Ei G m : (i : Fin n) → Ei i.castSucc x : Ei (last n) ⊢ ‖f‖ * ((∏ i : Fin n, ‖snoc m x i.castSucc‖) * ‖snoc m x (last n)‖) = (‖f‖ * ∏ i : Fin n, ‖m i‖) * ‖x‖
simp [mul_assoc]
no goals
4ce129524315d14f
BitVec.slt_eq_not_carry
Mathlib/.lake/packages/lean4/src/lean/Init/Data/BitVec/Bitblast.lean
theorem slt_eq_not_carry (x y : BitVec w) : x.slt y = (x.msb == y.msb).xor (carry w x (~~~y) true)
w : Nat x y : BitVec w ⊢ x.slt y = (x.msb == y.msb ^^ carry w x (~~~y) true)
simp only [slt_eq_ult, bne, ult_eq_not_carry]
w : Nat x y : BitVec w ⊢ (!(!x.msb == y.msb) == !carry w x (~~~y) true) = !(x.msb == y.msb) == carry w x (~~~y) true
6fcae454a0b69725
Compactum.cl_cl
Mathlib/Topology/Category/Compactum.lean
theorem cl_cl {X : Compactum} (A : Set X) : cl (cl A) ⊆ cl A
case intro.intro X : Compactum A : Set X.A F : Ultrafilter X.A hF : F ∈ Compactum.basic (Compactum.cl A) fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x C0 : ssu := {Z | ∃ B ∈ F, X.str ⁻¹' B = Z} AA : Set (Ultrafilter X.A) := {G | A ∈ G} C1 : ssu := insert AA C0 C2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure C1 claim1 : ∀ B ∈ C0, ∀ C ∈ C0, B ∩ C ∈ C0 claim2 : ∀ B ∈ C0, B.Nonempty claim3 : ∀ B ∈ C0, (AA ∩ B).Nonempty ⊢ X.str F ∈ Compactum.cl A
suffices ∀ T : fsu, ι T ⊆ C1 → (⋂₀ ι T).Nonempty by obtain ⟨G, h1⟩ := exists_ultrafilter_of_finite_inter_nonempty _ this use X.join G have : G.map X.str = F := Ultrafilter.coe_le_coe.1 fun S hS => h1 (Or.inr ⟨S, hS, rfl⟩) rw [join_distrib, this] exact ⟨h1 (Or.inl rfl), rfl⟩
case intro.intro X : Compactum A : Set X.A F : Ultrafilter X.A hF : F ∈ Compactum.basic (Compactum.cl A) fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x C0 : ssu := {Z | ∃ B ∈ F, X.str ⁻¹' B = Z} AA : Set (Ultrafilter X.A) := {G | A ∈ G} C1 : ssu := insert AA C0 C2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure C1 claim1 : ∀ B ∈ C0, ∀ C ∈ C0, B ∩ C ∈ C0 claim2 : ∀ B ∈ C0, B.Nonempty claim3 : ∀ B ∈ C0, (AA ∩ B).Nonempty ⊢ ∀ (T : fsu), ι T ⊆ C1 → (⋂₀ ι T).Nonempty
1c30fb7238f2120d
List.sorted_merge
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Sort/Lemmas.lean
theorem sorted_merge (trans : ∀ (a b c : α), le a b → le b c → le a c) (total : ∀ (a b : α), le a b || le b a) (l₁ l₂ : List α) (h₁ : l₁.Pairwise le) (h₂ : l₂.Pairwise le) : (merge l₁ l₂ le).Pairwise le
case cons.cons.isTrue α : Type u_1 le : α → α → Bool trans : ∀ (a b c : α), le a b = true → le b c = true → le a c = true total : ∀ (a b : α), (le a b || le b a) = true x : α l₁ : List α ih₁ : ∀ (l₂ : List α), Pairwise (fun a b => le a b = true) l₁ → Pairwise (fun a b => le a b = true) l₂ → Pairwise (fun a b => le a b = true) (l₁.merge l₂ le) h₁ : Pairwise (fun a b => le a b = true) (x :: l₁) y : α l₂ : List α ih₂ : Pairwise (fun a b => le a b = true) l₂ → Pairwise (fun a b => le a b = true) ((x :: l₁).merge l₂ le) h₂ : Pairwise (fun a b => le a b = true) (y :: l₂) h : le x y = true ⊢ Pairwise (fun a b => le a b = true) (x :: l₁.merge (y :: l₂) le)
apply Pairwise.cons
case cons.cons.isTrue.a α : Type u_1 le : α → α → Bool trans : ∀ (a b c : α), le a b = true → le b c = true → le a c = true total : ∀ (a b : α), (le a b || le b a) = true x : α l₁ : List α ih₁ : ∀ (l₂ : List α), Pairwise (fun a b => le a b = true) l₁ → Pairwise (fun a b => le a b = true) l₂ → Pairwise (fun a b => le a b = true) (l₁.merge l₂ le) h₁ : Pairwise (fun a b => le a b = true) (x :: l₁) y : α l₂ : List α ih₂ : Pairwise (fun a b => le a b = true) l₂ → Pairwise (fun a b => le a b = true) ((x :: l₁).merge l₂ le) h₂ : Pairwise (fun a b => le a b = true) (y :: l₂) h : le x y = true ⊢ ∀ (a' : α), a' ∈ l₁.merge (y :: l₂) le → le x a' = true case cons.cons.isTrue.a α : Type u_1 le : α → α → Bool trans : ∀ (a b c : α), le a b = true → le b c = true → le a c = true total : ∀ (a b : α), (le a b || le b a) = true x : α l₁ : List α ih₁ : ∀ (l₂ : List α), Pairwise (fun a b => le a b = true) l₁ → Pairwise (fun a b => le a b = true) l₂ → Pairwise (fun a b => le a b = true) (l₁.merge l₂ le) h₁ : Pairwise (fun a b => le a b = true) (x :: l₁) y : α l₂ : List α ih₂ : Pairwise (fun a b => le a b = true) l₂ → Pairwise (fun a b => le a b = true) ((x :: l₁).merge l₂ le) h₂ : Pairwise (fun a b => le a b = true) (y :: l₂) h : le x y = true ⊢ Pairwise (fun a b => le a b = true) (l₁.merge (y :: l₂) le)
8efa7192a6a8e376
Vector.getElem_unattach
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Vector/Attach.lean
theorem getElem_unattach {p : α → Prop} {l : Vector { x // p x } n} (i : Nat) (h : i < n) : l.unattach[i] = (l[i]'(by simpa using h)).1
α : Type u_1 n : Nat p : α → Prop l : Vector { x // p x } n i : Nat h : i < n ⊢ l.unattach[i] = l[i].val
simp [unattach]
no goals
e32f050b9313d981
CategoryTheory.Localization.essSurj_mapArrow
Mathlib/CategoryTheory/Localization/CalculusOfFractions.lean
lemma Localization.essSurj_mapArrow : L.mapArrow.EssSurj where mem_essImage f
case intro.intro.intro.intro.intro C : Type u_1 D : Type u_2 inst✝³ : Category.{u_3, u_1} C inst✝² : Category.{u_4, u_2} D L : C ⥤ D W : MorphismProperty C inst✝¹ : L.IsLocalization W inst✝ : W.HasLeftCalculusOfFractions f : Arrow D this : L.EssSurj X : C eX : L.obj X ≅ f.left Y : C eY : L.obj Y ≅ f.right φ : W.LeftFraction X Y hφ : eX.hom ≫ f.hom ≫ eY.inv = φ.map L ⋯ ⊢ eX.inv ≫ L.map φ.f = f.hom ≫ eY.inv ≫ L.map φ.s
simp only [← cancel_epi eX.hom, Iso.hom_inv_id_assoc, reassoc_of% hφ, MorphismProperty.LeftFraction.map_comp_map_s]
no goals
164023e816364abf
sum_Ico_pow
Mathlib/NumberTheory/Bernoulli.lean
theorem sum_Ico_pow (n p : ℕ) : (∑ k ∈ Ico 1 (n + 1), (k : ℚ) ^ p) = ∑ i ∈ range (p + 1), bernoulli' i * (p + 1).choose i * (n : ℚ) ^ (p + 1 - i) / (p + 1)
n p : ℕ f : ℕ → ℚ := fun i => bernoulli i * ↑(p.succ.succ.choose i) * ↑n ^ (p.succ.succ - i) / ↑p.succ.succ f' : ℕ → ℚ := fun i => bernoulli' i * ↑(p.succ.succ.choose i) * ↑n ^ (p.succ.succ - i) / ↑p.succ.succ hle : 1 ≤ n + 1 hne : ↑p + 1 + 1 ≠ 0 h1 : ∀ (r : ℚ), r * (↑p + 1 + 1) * ↑n ^ p.succ / (↑p + 1 + 1) = r * ↑n ^ p.succ h2 : f 1 + ↑n ^ p.succ = 1 / 2 * ↑n ^ p.succ this : ∑ i ∈ range p, bernoulli (i + 2) * ↑((p + 2).choose (i + 2)) * ↑n ^ (p - i) / ↑(p + 2) = ∑ i ∈ range p, bernoulli' (i + 2) * ↑((p + 2).choose (i + 2)) * ↑n ^ (p - i) / ↑(p + 2) ⊢ ∑ k ∈ Ico 1 n.succ, ↑k ^ p.succ = ∑ k ∈ range n.succ, ↑k ^ p.succ
simp [sum_Ico_eq_sub _ hle, succ_ne_zero]
no goals
0112bf36c164f141
CategoryTheory.IsCofiltered.of_exists_of_isCofiltered_of_fullyFaithful
Mathlib/CategoryTheory/Filtered/Final.lean
theorem IsCofiltered.of_exists_of_isCofiltered_of_fullyFaithful [IsCofiltered D] [F.Full] [F.Faithful] (h : ∀ d, ∃ c, Nonempty (F.obj c ⟶ d)) : IsCofiltered C := { IsCofilteredOrEmpty.of_exists_of_isCofiltered_of_fullyFaithful F h with nonempty
C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C D : Type u₂ inst✝³ : Category.{v₂, u₂} D F : C ⥤ D inst✝² : IsCofiltered D inst✝¹ : F.Full inst✝ : F.Faithful h : ∀ (d : D), ∃ c, Nonempty (F.obj c ⟶ d) this : Nonempty D ⊢ Nonempty C
obtain ⟨c, -⟩ := h (Classical.arbitrary D)
case intro C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C D : Type u₂ inst✝³ : Category.{v₂, u₂} D F : C ⥤ D inst✝² : IsCofiltered D inst✝¹ : F.Full inst✝ : F.Faithful h : ∀ (d : D), ∃ c, Nonempty (F.obj c ⟶ d) this : Nonempty D c : C ⊢ Nonempty C
7e79f8bc2912c77e
FaithfulSMul.ker_algebraMap_eq_bot
Mathlib/RingTheory/Ideal/Maps.lean
theorem FaithfulSMul.ker_algebraMap_eq_bot (R A : Type*) [CommSemiring R] [Semiring A] [Algebra R A] [FaithfulSMul R A] : RingHom.ker (algebraMap R A) = ⊥
R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : Semiring A inst✝¹ : Algebra R A inst✝ : FaithfulSMul R A ⊢ RingHom.ker (algebraMap R A) = ⊥
ext
case h R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : Semiring A inst✝¹ : Algebra R A inst✝ : FaithfulSMul R A x✝ : R ⊢ x✝ ∈ RingHom.ker (algebraMap R A) ↔ x✝ ∈ ⊥
64629293753ef70e
AddCircle.addWellApproximable_ae_empty_or_univ
Mathlib/NumberTheory/WellApproximable.lean
theorem addWellApproximable_ae_empty_or_univ (δ : ℕ → ℝ) (hδ : Tendsto δ atTop (𝓝 0)) : (∀ᵐ x, ¬addWellApproximable 𝕊 δ x) ∨ ∀ᵐ x, addWellApproximable 𝕊 δ x
case neg.h T : ℝ hT : Fact (0 < T) δ : ℕ → ℝ hδ : Tendsto δ atTop (𝓝 0) this : SemilatticeSup Nat.Primes := Nat.Subtype.semilatticeSup Irreducible μ : Measure 𝕊 := volume u : Nat.Primes → 𝕊 := fun p => ↑(↑1 / ↑↑p * T) hu₀ : ∀ (p : Nat.Primes), addOrderOf (u p) = ↑p hu : Tendsto (addOrderOf ∘ u) atTop atTop E : Set 𝕊 := addWellApproximable 𝕊 δ X : ℕ → Set 𝕊 := fun n => approxAddOrderOf 𝕊 n (δ n) A : ℕ → Set 𝕊 := fun p => blimsup X atTop fun n => 0 < n ∧ ¬p ∣ n B : ℕ → Set 𝕊 := fun p => blimsup X atTop fun n => 0 < n ∧ p ∣ n ∧ ¬p * p ∣ n C : ℕ → Set 𝕊 := fun p => blimsup X atTop fun n => 0 < n ∧ p ^ 2 ∣ n hA₀ : ∀ (p : ℕ), MeasurableSet (A p) hB₀ : ∀ (p : ℕ), MeasurableSet (B p) hE₀ : NullMeasurableSet E μ hE₁ : ∀ (p : ℕ), E = A p ∪ B p ∪ C p hE₂ : ∀ (p : Nat.Primes), A ↑p =ᶠ[ae μ] ∅ ∧ B ↑p =ᶠ[ae μ] ∅ → E =ᶠ[ae μ] C ↑p hA : ∀ (p : Nat.Primes), A ↑p =ᶠ[ae μ] ∅ ∨ A ↑p =ᶠ[ae μ] univ hB : ∀ (p : Nat.Primes), B ↑p =ᶠ[ae μ] ∅ ∨ B ↑p =ᶠ[ae μ] univ hC : ∀ (p : Nat.Primes), u p +ᵥ C ↑p = C ↑p h : ∃ x, ¬A ↑x =ᶠ[ae μ] ∅ ∨ ¬B ↑x =ᶠ[ae μ] ∅ ⊢ E =ᶠ[ae volume] univ
obtain ⟨p, hp⟩ := h
case neg.h.intro T : ℝ hT : Fact (0 < T) δ : ℕ → ℝ hδ : Tendsto δ atTop (𝓝 0) this : SemilatticeSup Nat.Primes := Nat.Subtype.semilatticeSup Irreducible μ : Measure 𝕊 := volume u : Nat.Primes → 𝕊 := fun p => ↑(↑1 / ↑↑p * T) hu₀ : ∀ (p : Nat.Primes), addOrderOf (u p) = ↑p hu : Tendsto (addOrderOf ∘ u) atTop atTop E : Set 𝕊 := addWellApproximable 𝕊 δ X : ℕ → Set 𝕊 := fun n => approxAddOrderOf 𝕊 n (δ n) A : ℕ → Set 𝕊 := fun p => blimsup X atTop fun n => 0 < n ∧ ¬p ∣ n B : ℕ → Set 𝕊 := fun p => blimsup X atTop fun n => 0 < n ∧ p ∣ n ∧ ¬p * p ∣ n C : ℕ → Set 𝕊 := fun p => blimsup X atTop fun n => 0 < n ∧ p ^ 2 ∣ n hA₀ : ∀ (p : ℕ), MeasurableSet (A p) hB₀ : ∀ (p : ℕ), MeasurableSet (B p) hE₀ : NullMeasurableSet E μ hE₁ : ∀ (p : ℕ), E = A p ∪ B p ∪ C p hE₂ : ∀ (p : Nat.Primes), A ↑p =ᶠ[ae μ] ∅ ∧ B ↑p =ᶠ[ae μ] ∅ → E =ᶠ[ae μ] C ↑p hA : ∀ (p : Nat.Primes), A ↑p =ᶠ[ae μ] ∅ ∨ A ↑p =ᶠ[ae μ] univ hB : ∀ (p : Nat.Primes), B ↑p =ᶠ[ae μ] ∅ ∨ B ↑p =ᶠ[ae μ] univ hC : ∀ (p : Nat.Primes), u p +ᵥ C ↑p = C ↑p p : Nat.Primes hp : ¬A ↑p =ᶠ[ae μ] ∅ ∨ ¬B ↑p =ᶠ[ae μ] ∅ ⊢ E =ᶠ[ae volume] univ
aeca070d334a419e
MeasureTheory.ae_const_le_iff_forall_lt_measure_zero
Mathlib/MeasureTheory/Function/AEEqOfLIntegral.lean
theorem ae_const_le_iff_forall_lt_measure_zero {β} [LinearOrder β] [TopologicalSpace β] [OrderTopology β] [FirstCountableTopology β] (f : α → β) (c : β) : (∀ᵐ x ∂μ, c ≤ f x) ↔ ∀ b < c, μ {x | f x ≤ b} = 0
case neg α : Type u_1 m0 : MeasurableSpace α μ : Measure α β : Type u_2 inst✝³ : LinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : FirstCountableTopology β f : α → β c : β hc : ∀ b < c, μ {x | f x ≤ b} = 0 h : ¬∀ (b : β), c ≤ b H : ¬¬IsLUB (Set.Iio c) c ⊢ μ {a | f a < c} = 0
push_neg at H h
case neg α : Type u_1 m0 : MeasurableSpace α μ : Measure α β : Type u_2 inst✝³ : LinearOrder β inst✝² : TopologicalSpace β inst✝¹ : OrderTopology β inst✝ : FirstCountableTopology β f : α → β c : β hc : ∀ b < c, μ {x | f x ≤ b} = 0 H : IsLUB (Set.Iio c) c h : ∃ b, b < c ⊢ μ {a | f a < c} = 0
094f21f52e958ba5
roth_3ap_theorem_nat
Mathlib/Combinatorics/Additive/Corner/Roth.lean
theorem roth_3ap_theorem_nat (ε : ℝ) (hε : 0 < ε) (hG : cornersTheoremBound (ε / 3) ≤ n) (A : Finset ℕ) (hAn : A ⊆ range n) (hAε : ε * n ≤ #A) : ¬ ThreeAPFree (A : Set ℕ)
n : ℕ ε : ℝ hε : 0 < ε hG : cornersTheoremBound (ε / 3) ≤ n A : Finset ℕ hAn : ↑A ⊆ Set.Iio n hAε : ε * ↑n ≤ ↑(#A) hA : ThreeAPFree (Fin.val '' (Nat.cast '' ↑A)) this✝¹ : ↑A = Fin.val '' (Nat.cast '' ↑A) this✝ : IsAddFreimanIso 2 (Set.Iio ↑n) (Set.Iio n) Fin.val this : ThreeAPFree ↑(image (fun x => ↑x) A) ⊢ False
refine roth_3ap_theorem (ε / 3) (by positivity) (by simp; omega) _ ?_ this
n : ℕ ε : ℝ hε : 0 < ε hG : cornersTheoremBound (ε / 3) ≤ n A : Finset ℕ hAn : ↑A ⊆ Set.Iio n hAε : ε * ↑n ≤ ↑(#A) hA : ThreeAPFree (Fin.val '' (Nat.cast '' ↑A)) this✝¹ : ↑A = Fin.val '' (Nat.cast '' ↑A) this✝ : IsAddFreimanIso 2 (Set.Iio ↑n) (Set.Iio n) Fin.val this : ThreeAPFree ↑(image (fun x => ↑x) A) ⊢ ε / 3 * ↑(Fintype.card (Fin (2 * n + 1))) ≤ ↑(#(image (fun x => ↑x) A))
c707b5b13a459d8d
LieAlgebra.isEngelian_of_isNoetherian
Mathlib/Algebra/Lie/Engel.lean
theorem LieAlgebra.isEngelian_of_isNoetherian [IsNoetherian R L] : LieAlgebra.IsEngelian R L
R : Type u₁ L : Type u₂ inst✝³ : CommRing R inst✝² : LieRing L inst✝¹ : LieAlgebra R L inst✝ : IsNoetherian R L M : Type u_1 _i1 : AddCommGroup M _i2 : Module R M _i3 : LieRingModule L M _i4 : LieModule R L M L' : LieSubalgebra R (Module.End R M) := (toEnd R L M).range h : ∀ (y : ↥L'), IsNilpotent ↑y s : Set (LieSubalgebra R ↥L') := {K | IsEngelian R ↥K} hs : s.Nonempty this : ∀ K ∈ s, K ≠ ⊤ → ∃ K' ∈ s, K < K' _i5 : IsNoetherian R ↥L' ⊢ ⊤ ∈ s
obtain ⟨K, hK₁, hK₂⟩ := (LieSubalgebra.wellFoundedGT_of_noetherian R L').wf.has_min s hs
case intro.intro R : Type u₁ L : Type u₂ inst✝³ : CommRing R inst✝² : LieRing L inst✝¹ : LieAlgebra R L inst✝ : IsNoetherian R L M : Type u_1 _i1 : AddCommGroup M _i2 : Module R M _i3 : LieRingModule L M _i4 : LieModule R L M L' : LieSubalgebra R (Module.End R M) := (toEnd R L M).range h : ∀ (y : ↥L'), IsNilpotent ↑y s : Set (LieSubalgebra R ↥L') := {K | IsEngelian R ↥K} hs : s.Nonempty this : ∀ K ∈ s, K ≠ ⊤ → ∃ K' ∈ s, K < K' _i5 : IsNoetherian R ↥L' K : LieSubalgebra R ↥L' hK₁ : K ∈ s hK₂ : ∀ x ∈ s, ¬x > K ⊢ ⊤ ∈ s
12098dbf4ba9f91c
IntermediateField.induction_on_adjoin_finset
Mathlib/FieldTheory/IntermediateField/Adjoin/Defs.lean
theorem induction_on_adjoin_finset (S : Finset E) (P : IntermediateField F E → Prop) (base : P ⊥) (ih : ∀ (K : IntermediateField F E), ∀ x ∈ S, P K → P (K⟮x⟯.restrictScalars F)) : P (adjoin F S)
case refine_2 F : Type u_1 inst✝² : Field F E : Type u_2 inst✝¹ : Field E inst✝ : Algebra F E S : Finset E P : IntermediateField F E → Prop base : P ⊥ ih : ∀ (K : IntermediateField F E), ∀ x ∈ S, P K → P (restrictScalars F (↥K)⟮x⟯) a✝ : E s✝ : Finset E ha : a✝ ∈ S x✝¹ : s✝ ⊆ S x✝ : a✝ ∉ s✝ h : P (adjoin F ↑s✝) ⊢ P (restrictScalars F (↥(adjoin F ↑s✝))⟮a✝⟯)
exact ih (adjoin F _) _ ha h
no goals
d2a5f16bfb45070f
Batteries.HashMap.Imp.mem_replaceF
Mathlib/.lake/packages/batteries/Batteries/Data/HashMap/WF.lean
theorem mem_replaceF {l : List (α × β)} {x : α × β} {p : α × β → Bool} {f : α × β → β} : x ∈ (l.replaceF fun a => bif p a then some (k, f a) else none) → x.1 = k ∨ x ∈ l
case cons α : Type u_1 β : Type u_2 k : α x : α × β p : α × β → Bool f : α × β → β a : α × β l : List (α × β) ih : x ∈ List.replaceF (fun a => bif p a then some (k, f a) else none) l → x.fst = k ∨ x ∈ l z : Option (α × β) ⊢ (match p a with | true => some (k, f a) | false => none) = z → (x ∈ match z with | none => a :: List.replaceF (fun a => match p a with | true => some (k, f a) | false => none) l | some a => a :: l) → x.fst = k ∨ x = a ∨ x ∈ l
split <;> (intro h; subst h; simp)
case cons.h_1 α : Type u_1 β : Type u_2 k : α x : α × β p : α × β → Bool f : α × β → β a : α × β l : List (α × β) ih : x ∈ List.replaceF (fun a => bif p a then some (k, f a) else none) l → x.fst = k ∨ x ∈ l c✝ : Bool heq✝ : p a = true ⊢ x = (k, f a) ∨ x ∈ l → x.fst = k ∨ x = a ∨ x ∈ l case cons.h_2 α : Type u_1 β : Type u_2 k : α x : α × β p : α × β → Bool f : α × β → β a : α × β l : List (α × β) ih : x ∈ List.replaceF (fun a => bif p a then some (k, f a) else none) l → x.fst = k ∨ x ∈ l c✝ : Bool heq✝ : p a = false ⊢ x = a ∨ x ∈ List.replaceF (fun a => match p a with | true => some (k, f a) | false => none) l → x.fst = k ∨ x = a ∨ x ∈ l
9d1c6914f67596a9
Polynomial.isRoot_cyclotomic_prime_pow_mul_iff_of_charP
Mathlib/RingTheory/Polynomial/Cyclotomic/Expand.lean
theorem isRoot_cyclotomic_prime_pow_mul_iff_of_charP {m k p : ℕ} {R : Type*} [CommRing R] [IsDomain R] [hp : Fact (Nat.Prime p)] [hchar : CharP R p] {μ : R} [NeZero (m : R)] : (Polynomial.cyclotomic (p ^ k * m) R).IsRoot μ ↔ IsPrimitiveRoot μ m
case inr.refine_2 m k p : ℕ R : Type u_1 inst✝² : CommRing R inst✝¹ : IsDomain R hp : Fact (Nat.Prime p) hchar : CharP R p μ : R inst✝ : NeZero ↑m hk : k > 0 h : IsPrimitiveRoot μ m ⊢ (cyclotomic (p ^ k * m) R).IsRoot μ
rw [← isRoot_cyclotomic_iff, IsRoot.def] at h
case inr.refine_2 m k p : ℕ R : Type u_1 inst✝² : CommRing R inst✝¹ : IsDomain R hp : Fact (Nat.Prime p) hchar : CharP R p μ : R inst✝ : NeZero ↑m hk : k > 0 h : eval μ (cyclotomic m R) = 0 ⊢ (cyclotomic (p ^ k * m) R).IsRoot μ
27af3270e81a0c49
SzemerediRegularity.a_add_one_le_four_pow_parts_card
Mathlib/Combinatorics/SimpleGraph/Regularity/Bound.lean
theorem a_add_one_le_four_pow_parts_card : a + 1 ≤ 4 ^ #P.parts
α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α P : Finpartition univ h : 1 ≤ 4 ^ #P.parts ⊢ Fintype.card α / #P.parts ≤ Fintype.card α / #P.parts / 4 ^ #P.parts * 4 ^ #P.parts + 4 ^ #P.parts - 1
exact Nat.le_sub_one_of_lt (Nat.lt_div_mul_add h)
no goals
f1ed2fd6d3c75a66
List.min?_replicate
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/MinMax.lean
theorem min?_replicate [Min α] {n : Nat} {a : α} (w : min a a = a) : (replicate n a).min? = if n = 0 then none else some a
α : Type u_1 inst✝ : Min α n : Nat a : α w : min a a = a ⊢ (replicate n a).min? = if n = 0 then none else some a
induction n with | zero => rfl | succ n ih => cases n <;> simp_all [replicate_succ, min?_cons']
no goals
d350d5e15666a16d
Complex.IsExpCmpFilter.isLittleO_cpow_exp
Mathlib/Analysis/SpecialFunctions/CompareExp.lean
theorem isLittleO_cpow_exp (hl : IsExpCmpFilter l) (a : ℂ) {b : ℝ} (hb : 0 < b) : (fun z => z ^ a) =o[l] fun z => exp (b * z) := calc (fun z => z ^ a) =Θ[l] fun z => Real.exp (re a * Real.log ‖z‖) := hl.isTheta_cpow_exp_re_mul_log a _ =o[l] fun z => exp (b * z) := IsLittleO.of_norm_right <| by simp only [norm_exp, re_ofReal_mul, Real.isLittleO_exp_comp_exp_comp] refine (IsEquivalent.refl.sub_isLittleO ?_).symm.tendsto_atTop (hl.tendsto_re.const_mul_atTop hb) exact (hl.isLittleO_log_norm_re.const_mul_left _).const_mul_right hb.ne'
l : Filter ℂ hl : IsExpCmpFilter l a : ℂ b : ℝ hb : 0 < b ⊢ (fun x => a.re * Real.log ‖x‖) =o[l] fun x => b * x.re
exact (hl.isLittleO_log_norm_re.const_mul_left _).const_mul_right hb.ne'
no goals
08b0face6825c488
CompositionAsSet.toComposition_boundaries
Mathlib/Combinatorics/Enumerative/Composition.lean
theorem CompositionAsSet.toComposition_boundaries (c : CompositionAsSet n) : c.toComposition.boundaries = c.boundaries
n : ℕ c : CompositionAsSet n j : Fin (n + 1) i : ℕ i_lt : i < c.boundaries.card hi : (take i c.blocks).sum = ↑j ⊢ ↑i ∈ Finset.univ
simp
no goals
8036986d8b3b60a7
AlgebraicGeometry.pointsPi_surjective
Mathlib/AlgebraicGeometry/PointsPi.lean
lemma pointsPi_surjective [CompactSpace X] [∀ i, IsLocalRing (R i)] : Function.Surjective (pointsPi R X)
ι : Type u R : ι → CommRingCat X : Scheme inst✝¹ : CompactSpace ↑↑X.toPresheafedSpace inst✝ : ∀ (i : ι), IsLocalRing ↑(R i) f : (i : ι) → Spec (R i) ⟶ X 𝒰 : X.OpenCover := X.affineCover.finiteSubcover this✝ : ∀ (i : 𝒰.J), IsAffine (𝒰.obj i) this : ∀ (i : ι), ∃ j, Set.range ⇑(ConcreteCategory.hom (f i).base) ⊆ ↑(Scheme.Hom.opensRange (𝒰.map j)) ⊢ ∃ a, pointsPi R X a = f
choose j hj using this
ι : Type u R : ι → CommRingCat X : Scheme inst✝¹ : CompactSpace ↑↑X.toPresheafedSpace inst✝ : ∀ (i : ι), IsLocalRing ↑(R i) f : (i : ι) → Spec (R i) ⟶ X 𝒰 : X.OpenCover := X.affineCover.finiteSubcover this : ∀ (i : 𝒰.J), IsAffine (𝒰.obj i) j : ι → 𝒰.J hj : ∀ (i : ι), Set.range ⇑(ConcreteCategory.hom (f i).base) ⊆ ↑(Scheme.Hom.opensRange (𝒰.map (j i))) ⊢ ∃ a, pointsPi R X a = f
35d67c613e419cbd
ExteriorAlgebra.ι_ne_one
Mathlib/LinearAlgebra/ExteriorAlgebra/Basic.lean
theorem ι_ne_one [Nontrivial R] (x : M) : ι R x ≠ 1
R : Type u1 inst✝³ : CommRing R M : Type u2 inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : Nontrivial R x : M ⊢ ¬(x = 0 ∧ 1 = 0)
exact one_ne_zero ∘ And.right
no goals
4e5df1de1d0d0c4e
IsLocalization.Away.sec_spec
Mathlib/RingTheory/Localization/Away/Basic.lean
lemma sec_spec (s : S) : s * (algebraMap R S) (x ^ (IsLocalization.Away.sec x s).2) = algebraMap R S (IsLocalization.Away.sec x s).1
R : Type u_1 inst✝³ : CommSemiring R S : Type u_2 inst✝² : CommSemiring S inst✝¹ : Algebra R S x : R inst✝ : Away x S s : S ⊢ s * (algebraMap R S) (x ^ (sec x s).2) = (algebraMap R S) (sec x s).1
simp only [IsLocalization.Away.sec, ← IsLocalization.sec_spec]
R : Type u_1 inst✝³ : CommSemiring R S : Type u_2 inst✝² : CommSemiring S inst✝¹ : Algebra R S x : R inst✝ : Away x S s : S ⊢ s * (algebraMap R S) (x ^ Exists.choose ⋯) = s * (algebraMap R S) ↑(IsLocalization.sec (Submonoid.powers x) s).2
ca7b7b572824d46a
Ordinal.bmex_lt_ord_succ_card
Mathlib/SetTheory/Ordinal/Arithmetic.lean
theorem bmex_lt_ord_succ_card {o : Ordinal.{u}} (f : ∀ a < o, Ordinal.{u}) : bmex.{_, u} o f < (succ o.card).ord
o : Ordinal.{u} f : (a : Ordinal.{u}) → a < o → Ordinal.{u} ⊢ o.bmex f < (succ #o.toType).ord
exact mex_lt_ord_succ_mk (familyOfBFamily o f)
no goals
af4b42b286bbd3a5
HasDerivAt.rpow_const
Mathlib/Analysis/SpecialFunctions/Pow/Deriv.lean
theorem HasDerivAt.rpow_const (hf : HasDerivAt f f' x) (hx : f x ≠ 0 ∨ 1 ≤ p) : HasDerivAt (fun y => f y ^ p) (f' * p * f x ^ (p - 1)) x
f : ℝ → ℝ f' x p : ℝ hf : HasDerivAt f f' x hx : f x ≠ 0 ∨ 1 ≤ p ⊢ HasDerivAt (fun y => f y ^ p) (f' * p * f x ^ (p - 1)) x
rw [← hasDerivWithinAt_univ] at *
f : ℝ → ℝ f' x p : ℝ hf : HasDerivWithinAt f f' Set.univ x hx : f x ≠ 0 ∨ 1 ≤ p ⊢ HasDerivWithinAt (fun y => f y ^ p) (f' * p * f x ^ (p - 1)) Set.univ x
1a2dcf95dedfff6e
Equiv.Perm.support_noncommProd
Mathlib/GroupTheory/Perm/Support.lean
theorem support_noncommProd {ι : Type*} {k : ι → Perm α} {s : Finset ι} (hs : Set.Pairwise s fun i j ↦ Disjoint (k i) (k j)) : (s.noncommProd k (hs.imp (fun _ _ ↦ Perm.Disjoint.commute))).support = s.biUnion fun i ↦ (k i).support
case insert.hg α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α ι : Type u_2 k : ι → Perm α i : ι s : Finset ι hi : i ∉ s hrec : ∀ (hs : (↑s).Pairwise fun i j => (k i).Disjoint (k j)), (s.noncommProd k ⋯).support = s.biUnion fun i => (k i).support hs : (↑(insert i s)).Pairwise fun i j => (k i).Disjoint (k j) hs' : (↑s).Pairwise fun i j => (k i).Disjoint (k j) j : ι hj : j ∈ s ⊢ (k i).Disjoint (k j)
apply hs _ _ (ne_of_mem_of_not_mem hj hi).symm <;> simp only [Finset.coe_insert, Set.mem_insert_iff, Finset.mem_coe, hj, or_true, true_or]
no goals
219e81871813f296
hasDerivAt_update
Mathlib/Analysis/Calculus/Deriv/Pi.lean
theorem hasDerivAt_update (x : ι → 𝕜) (i : ι) (y : 𝕜) : HasDerivAt (Function.update x i) (Pi.single i (1 : 𝕜)) y
case h.e'_9.h.e.h.h 𝕜 : Type u_1 ι : Type u_2 inst✝² : DecidableEq ι inst✝¹ : Fintype ι inst✝ : NontriviallyNormedField 𝕜 x : ι → 𝕜 i : ι y z : 𝕜 j : ι ⊢ Pi.single i z j = (ContinuousLinearMap.pi (Pi.single i (ContinuousLinearMap.id 𝕜 𝕜))) z j
rw [Pi.single, Function.update_apply]
case h.e'_9.h.e.h.h 𝕜 : Type u_1 ι : Type u_2 inst✝² : DecidableEq ι inst✝¹ : Fintype ι inst✝ : NontriviallyNormedField 𝕜 x : ι → 𝕜 i : ι y z : 𝕜 j : ι ⊢ (if j = i then z else 0 j) = (ContinuousLinearMap.pi (Pi.single i (ContinuousLinearMap.id 𝕜 𝕜))) z j
ceec33df69319b6c
CoxeterSystem.prod_leftInvSeq
Mathlib/GroupTheory/Coxeter/Inversion.lean
theorem prod_leftInvSeq (ω : List B) : prod (lis ω) = (π ω)⁻¹
B : Type u_1 W : Type u_2 inst✝ : Group W M : CoxeterMatrix B cs : CoxeterSystem M W ω : List B ⊢ (List.map (fun x => x⁻¹) (cs.rightInvSeq ω.reverse)).prod = cs.wordProd ω
have : List.map (fun x ↦ x⁻¹) (ris ω.reverse) = ris ω.reverse := calc List.map (fun x ↦ x⁻¹) (ris ω.reverse) _ = List.map id (ris ω.reverse) := by apply List.map_congr_left intro t ht exact (cs.isReflection_of_mem_rightInvSeq _ ht).inv _ = ris ω.reverse := map_id _
B : Type u_1 W : Type u_2 inst✝ : Group W M : CoxeterMatrix B cs : CoxeterSystem M W ω : List B this : List.map (fun x => x⁻¹) (cs.rightInvSeq ω.reverse) = cs.rightInvSeq ω.reverse ⊢ (List.map (fun x => x⁻¹) (cs.rightInvSeq ω.reverse)).prod = cs.wordProd ω
761854a10de60b7d
Real.doublingGamma_log_convex_Ioi
Mathlib/Analysis/SpecialFunctions/Gamma/BohrMollerup.lean
theorem doublingGamma_log_convex_Ioi : ConvexOn ℝ (Ioi (0 : ℝ)) (log ∘ doublingGamma)
case h.e'_10.h x : ℝ ⊢ log (Gamma (x / 2 + 1 / 2)) = ((log ∘ Gamma) ∘ ⇑((DistribMulAction.toLinearMap ℝ ℝ (1 / 2)).toAffineMap + AffineMap.const ℝ ℝ (1 / 2))) x
change log (Gamma (x / 2 + 1 / 2)) = log (Gamma ((1 / 2 : ℝ) • x + 1 / 2))
case h.e'_10.h x : ℝ ⊢ log (Gamma (x / 2 + 1 / 2)) = log (Gamma ((1 / 2) • x + 1 / 2))
ddad181789e3d6af
integral_log_from_zero
Mathlib/Analysis/SpecialFunctions/Integrals.lean
/-- Helper lemma for `integral_log`: case where `a = 0`. -/ lemma integral_log_from_zero {b : ℝ} : ∫ s in (0)..b, log s = b * log b - b
case inr.inr b : ℝ h : 0 < b ⊢ ∫ (s : ℝ) in 0 ..b, log s = b * log b - b
exact integral_log_from_zero_of_pos h
no goals
9782902149e09d34
OreLocalization.add_smul
Mathlib/RingTheory/OreLocalization/Ring.lean
theorem add_smul (y z : R[S⁻¹]) (x : X[S⁻¹]) : (y + z) • x = y • x + z • x
case c.c.c.mk.mk.intro.mk.mk.intro R : Type u_1 inst✝³ : Semiring R S : Submonoid R inst✝² : OreSet S X : Type u_2 inst✝¹ : AddCommMonoid X inst✝ : Module R X r₁ : X s₁ : ↥S r₂ : R s₂ : ↥S r₃ : R s₃ : ↥S ra : R sa : ↥S ha : ↑sa * ↑s₂ = ra * ↑s₃ rb : R sb : ↥S hb : ↑sb * sa • r₂ = rb * ↑s₁ hs₃rasb : ↑sb * ra * ↑s₃ ∈ S ⊢ ((sa • r₂ + ra • r₃) /ₒ (sa * s₂)) • (r₁ /ₒ s₁) = rb • r₁ /ₒ (sb * (sa * s₂)) + ((↑sb * ra) • r₃ /ₒ ⟨↑sb * ra * ↑s₃, hs₃rasb⟩) • (r₁ /ₒ s₁)
have ha' : ↑((sb * sa) * s₂) = sb * ra * s₃ := by simp [ha, mul_assoc]
case c.c.c.mk.mk.intro.mk.mk.intro R : Type u_1 inst✝³ : Semiring R S : Submonoid R inst✝² : OreSet S X : Type u_2 inst✝¹ : AddCommMonoid X inst✝ : Module R X r₁ : X s₁ : ↥S r₂ : R s₂ : ↥S r₃ : R s₃ : ↥S ra : R sa : ↥S ha : ↑sa * ↑s₂ = ra * ↑s₃ rb : R sb : ↥S hb : ↑sb * sa • r₂ = rb * ↑s₁ hs₃rasb : ↑sb * ra * ↑s₃ ∈ S ha' : ↑(sb * sa * s₂) = ↑sb * ra * ↑s₃ ⊢ ((sa • r₂ + ra • r₃) /ₒ (sa * s₂)) • (r₁ /ₒ s₁) = rb • r₁ /ₒ (sb * (sa * s₂)) + ((↑sb * ra) • r₃ /ₒ ⟨↑sb * ra * ↑s₃, hs₃rasb⟩) • (r₁ /ₒ s₁)
79dc4eb2119c8abc
ZMod.ringHom_eq_of_ker_eq
Mathlib/RingTheory/ZMod.lean
theorem ZMod.ringHom_eq_of_ker_eq {n : ℕ} {R : Type*} [CommRing R] (f g : R →+* ZMod n) (h : RingHom.ker f = RingHom.ker g) : f = g
n : ℕ R : Type u_1 inst✝ : CommRing R f g : R →+* ZMod n h : RingHom.ker f = RingHom.ker g this : ((f.liftOfRightInverse cast ⋯) ⟨g, ⋯⟩).comp f = ↑⟨g, ⋯⟩ ⊢ f = g
rw [Subtype.coe_mk] at this
n : ℕ R : Type u_1 inst✝ : CommRing R f g : R →+* ZMod n h : RingHom.ker f = RingHom.ker g this : ((f.liftOfRightInverse cast ⋯) ⟨g, ⋯⟩).comp f = g ⊢ f = g
f630274845f4ad52
LinearMap.BilinForm.apply_smul_sub_smul_sub_eq
Mathlib/LinearAlgebra/SesquilinearForm.lean
lemma apply_smul_sub_smul_sub_eq [CommRing R] [AddCommGroup M] [Module R M] (B : LinearMap.BilinForm R M) (x y : M) : B ((B x y) • x - (B x x) • y) ((B x y) • x - (B x x) • y) = (B x x) * ((B x x) * (B y y) - (B x y) * (B y x))
R : Type u_1 M : Type u_5 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M B : LinearMap.BilinForm R M x y : M ⊢ (B ((B x) y • x - (B x) x • y)) ((B x) y • x - (B x) x • y) = (B x) x * ((B x) x * (B y) y - (B x) y * (B y) x)
simp only [map_sub, map_smul, sub_apply, smul_apply, smul_eq_mul, mul_sub, mul_comm (B x y) (B x x), mul_left_comm (B x y) (B x x)]
R : Type u_1 M : Type u_5 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M B : LinearMap.BilinForm R M x y : M ⊢ (B x) x * ((B x) y * (B x) y) - (B x) x * ((B x) y * (B y) x) - ((B x) x * ((B x) y * (B x) y) - (B x) x * ((B x) x * (B y) y)) = (B x) x * ((B x) x * (B y) y) - (B x) x * ((B x) y * (B y) x)
eecf1a97014a5559
Vector.mk_lex_mk
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Vector/Lex.lean
theorem mk_lex_mk [BEq α] (lt : α → α → Bool) {l₁ l₂ : Array α} {n₁ : l₁.size = n} {n₂ : l₂.size = n} : (Vector.mk l₁ n₁).lex (Vector.mk l₂ n₂) lt = l₁.lex l₂ lt
α : Type u_1 n : Nat inst✝ : BEq α lt : α → α → Bool l₁ l₂ : Array α n₁ : l₁.size = n n₂ : l₂.size = n ⊢ { toArray := l₁, size_toArray := n₁ }.lex { toArray := l₂, size_toArray := n₂ } lt = l₁.lex l₂ lt
simp [Vector.lex, Array.lex, n₁, n₂]
α : Type u_1 n : Nat inst✝ : BEq α lt : α → α → Bool l₁ l₂ : Array α n₁ : l₁.size = n n₂ : l₂.size = n ⊢ (match (forIn' (List.range' 0 n 1) ⟨none, PUnit.unit⟩ fun a m b => if lt l₁[a] l₂[a] = true then ForInStep.done ⟨some true, PUnit.unit⟩ else if (l₁[a] != l₂[a]) = true then ForInStep.done ⟨some false, PUnit.unit⟩ else ForInStep.yield ⟨none, PUnit.unit⟩).fst with | none => false | some a => a).run = (match (forIn' (List.range' 0 n 1) ⟨none, PUnit.unit⟩ fun a m b => if lt l₁[a] l₂[a] = true then ForInStep.done ⟨some true, PUnit.unit⟩ else if (l₁[a] != l₂[a]) = true then ForInStep.done ⟨some false, PUnit.unit⟩ else ForInStep.yield ⟨none, PUnit.unit⟩).fst with | none => false | some a => a).run
4bf189d34ce1841c
Matrix.adjugate_conjTranspose
Mathlib/LinearAlgebra/Matrix/Adjugate.lean
theorem adjugate_conjTranspose [StarRing α] (A : Matrix n n α) : A.adjugateᴴ = adjugate Aᴴ
n : Type v α : Type w inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : CommRing α inst✝ : StarRing α A : Matrix n n α ⊢ A.adjugateᴴ = Aᴴ.adjugate
dsimp only [conjTranspose]
n : Type v α : Type w inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : CommRing α inst✝ : StarRing α A : Matrix n n α ⊢ A.adjugateᵀ.map star = (Aᵀ.map star).adjugate
e4c2626f38a168f5
GenContFract.IntFractPair.stream_nth_fr_num_le_fr_num_sub_n_rat
Mathlib/Algebra/ContinuedFractions/Computation/TerminatesIffRat.lean
theorem stream_nth_fr_num_le_fr_num_sub_n_rat : ∀ {ifp_n : IntFractPair ℚ}, IntFractPair.stream q n = some ifp_n → ifp_n.fr.num ≤ (IntFractPair.of q).fr.num - n
q : ℚ n : ℕ ifp_zero : IntFractPair ℚ stream_zero_eq : IntFractPair.stream q 0 = some ifp_zero ⊢ IntFractPair.of q = ifp_zero
injection stream_zero_eq
no goals
9def6df4c64f53d0
Submodule.basis_of_pid_aux
Mathlib/LinearAlgebra/FreeModule/PID.lean
theorem Submodule.basis_of_pid_aux [Finite ι] {O : Type*} [AddCommGroup O] [Module R O] (M N : Submodule R O) (b'M : Basis ι R M) (N_bot : N ≠ ⊥) (N_le_M : N ≤ M) : ∃ y ∈ M, ∃ a : R, a • y ∈ N ∧ ∃ M' ≤ M, ∃ N' ≤ N, N' ≤ M' ∧ (∀ (c : R) (z : O), z ∈ M' → c • y + z = 0 → c = 0) ∧ (∀ (c : R) (z : O), z ∈ N' → c • a • y + z = 0 → c = 0) ∧ ∀ (n') (bN' : Basis (Fin n') R N'), ∃ bN : Basis (Fin (n' + 1)) R N, ∀ (m') (hn'm' : n' ≤ m') (bM' : Basis (Fin m') R M'), ∃ (hnm : n' + 1 ≤ m' + 1) (bM : Basis (Fin (m' + 1)) R M), ∀ as : Fin n' → R, (∀ i : Fin n', (bN' i : O) = as i • (bM' (Fin.castLE hn'm' i) : O)) → ∃ as' : Fin (n' + 1) → R, ∀ i : Fin (n' + 1), (bN i : O) = as' i • (bM (Fin.castLE hnm i) : O)
case neg.intro.intro.intro.refine_1.refine_1 ι : Type u_1 R : Type u_2 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsPrincipalIdealRing R inst✝² : Finite ι O : Type u_4 inst✝¹ : AddCommGroup O inst✝ : Module R O M N : Submodule R O b'M : Basis ι R ↥M N_bot : N ≠ ⊥ N_le_M : N ≤ M this : ∃ ϕ, ∀ (ψ : ↥M →ₗ[R] R), ¬ϕ.submoduleImage N < ψ.submoduleImage N ϕ : ↥M →ₗ[R] R := this.choose ϕ_max : ∀ (ψ : ↥M →ₗ[R] R), ¬this.choose.submoduleImage N < ψ.submoduleImage N a : R := generator (ϕ.submoduleImage N) a_mem : a ∈ ϕ.submoduleImage N a_zero : ¬a = 0 y : O yN : y ∈ N ϕy_eq : ϕ ⟨y, ⋯⟩ = a _ϕy_ne_zero : ϕ ⟨y, ⋯⟩ ≠ 0 c✝ : ι → R hc✝ : ∀ (i : ι), (b'M.coord i) ⟨y, ⋯⟩ = a * c✝ i val✝ : Fintype ι y' : O := ∑ i : ι, c✝ i • ↑(b'M i) y'M : y' ∈ M mk_y' : ⟨y', y'M⟩ = ∑ i : ι, c✝ i • b'M i a_smul_y' : a • y' = y ϕy'_eq : ϕ ⟨y', y'M⟩ = 1 ϕy'_ne_zero : ϕ ⟨y', y'M⟩ ≠ 0 M' : Submodule R O := map M.subtype (LinearMap.ker ϕ) N' : Submodule R O := map N.subtype (LinearMap.ker (ϕ ∘ₗ inclusion N_le_M)) M'_le_M : M' ≤ M N'_le_M' : N' ≤ M' N'_le_N : N' ≤ N y'_ortho_M' : ∀ (c : R), ∀ z ∈ M', c • y' + z = 0 → c = 0 ay'_ortho_N' : ∀ (c : R), ∀ z ∈ N', c • a • y' + z = 0 → c = 0 n' : ℕ bN' : Basis (Fin n') R ↥N' c : R z : O zN' : z ∈ N' hc : c • y + z = 0 ⊢ c = 0
refine ay'_ortho_N' c z zN' ?_
case neg.intro.intro.intro.refine_1.refine_1 ι : Type u_1 R : Type u_2 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsPrincipalIdealRing R inst✝² : Finite ι O : Type u_4 inst✝¹ : AddCommGroup O inst✝ : Module R O M N : Submodule R O b'M : Basis ι R ↥M N_bot : N ≠ ⊥ N_le_M : N ≤ M this : ∃ ϕ, ∀ (ψ : ↥M →ₗ[R] R), ¬ϕ.submoduleImage N < ψ.submoduleImage N ϕ : ↥M →ₗ[R] R := this.choose ϕ_max : ∀ (ψ : ↥M →ₗ[R] R), ¬this.choose.submoduleImage N < ψ.submoduleImage N a : R := generator (ϕ.submoduleImage N) a_mem : a ∈ ϕ.submoduleImage N a_zero : ¬a = 0 y : O yN : y ∈ N ϕy_eq : ϕ ⟨y, ⋯⟩ = a _ϕy_ne_zero : ϕ ⟨y, ⋯⟩ ≠ 0 c✝ : ι → R hc✝ : ∀ (i : ι), (b'M.coord i) ⟨y, ⋯⟩ = a * c✝ i val✝ : Fintype ι y' : O := ∑ i : ι, c✝ i • ↑(b'M i) y'M : y' ∈ M mk_y' : ⟨y', y'M⟩ = ∑ i : ι, c✝ i • b'M i a_smul_y' : a • y' = y ϕy'_eq : ϕ ⟨y', y'M⟩ = 1 ϕy'_ne_zero : ϕ ⟨y', y'M⟩ ≠ 0 M' : Submodule R O := map M.subtype (LinearMap.ker ϕ) N' : Submodule R O := map N.subtype (LinearMap.ker (ϕ ∘ₗ inclusion N_le_M)) M'_le_M : M' ≤ M N'_le_M' : N' ≤ M' N'_le_N : N' ≤ N y'_ortho_M' : ∀ (c : R), ∀ z ∈ M', c • y' + z = 0 → c = 0 ay'_ortho_N' : ∀ (c : R), ∀ z ∈ N', c • a • y' + z = 0 → c = 0 n' : ℕ bN' : Basis (Fin n') R ↥N' c : R z : O zN' : z ∈ N' hc : c • y + z = 0 ⊢ c • a • y' + z = 0
48ee91e21f4317c3
Pell.matiyasevic
Mathlib/NumberTheory/PellMatiyasevic.lean
theorem matiyasevic {a k x y} : (∃ a1 : 1 < a, xn a1 k = x ∧ yn a1 k = y) ↔ 1 < a ∧ k ≤ y ∧ (x = 1 ∧ y = 0 ∨ ∃ u v s t b : ℕ, x * x - (a * a - 1) * y * y = 1 ∧ u * u - (a * a - 1) * v * v = 1 ∧ s * s - (b * b - 1) * t * t = 1 ∧ 1 < b ∧ b ≡ 1 [MOD 4 * y] ∧ b ≡ a [MOD u] ∧ 0 < v ∧ y * y ∣ v ∧ s ≡ x [MOD u] ∧ t ≡ k [MOD 4 * y]) := ⟨fun ⟨a1, hx, hy⟩ => by rw [← hx, ← hy] refine ⟨a1, (Nat.eq_zero_or_pos k).elim (fun k0 => by rw [k0]; exact ⟨le_rfl, Or.inl ⟨rfl, rfl⟩⟩) fun kpos => ?_⟩ exact let x := xn a1 k let y := yn a1 k let m := 2 * (k * y) let u := xn a1 m let v := yn a1 m have ky : k ≤ y := yn_ge_n a1 k have yv : y * y ∣ v := (ysq_dvd_yy a1 k).trans <| (y_dvd_iff _ _ _).2 <| dvd_mul_left _ _ have uco : Nat.Coprime u (4 * y) := have : 2 ∣ v := modEq_zero_iff_dvd.1 <| (yn_modEq_two _ _).trans (dvd_mul_right _ _).modEq_zero_nat have : Nat.Coprime u 2 := (xy_coprime a1 m).coprime_dvd_right this (this.mul_right this).mul_right <| (xy_coprime _ _).coprime_dvd_right (dvd_of_mul_left_dvd yv) let ⟨b, ba, bm1⟩ := chineseRemainder uco a 1 have m1 : 1 < m := have : 0 < k * y := mul_pos kpos (strictMono_y a1 kpos) Nat.mul_le_mul_left 2 this have vp : 0 < v := strictMono_y a1 (lt_trans zero_lt_one m1) have b1 : 1 < b := have : xn a1 1 < u := strictMono_x a1 m1 have : a < u
a k x✝¹ y✝ : ℕ x✝ : ∃ (a1 : 1 < a), xn a1 k = x✝¹ ∧ yn a1 k = y✝ a1 : 1 < a hx : xn a1 k = x✝¹ hy : yn a1 k = y✝ kpos : k > 0 x : ℕ := xn a1 k y : ℕ := yn a1 k m : ℕ := 2 * (k * y) u : ℕ := xn a1 m v : ℕ := yn a1 m ky : k ≤ y yv : y * y ∣ v uco : u.Coprime (4 * y) b : ℕ ba : b % u = a bm1 : b ≡ 1 [MOD 4 * y] m1 : 1 < m vp : 0 < v this✝ : xn a1 1 < u this : a < u ⊢ b % u ≤ b
apply Nat.mod_le
no goals
86da2519f71702c3
Fin.eq_none_of_findSome?_eq_none
Mathlib/.lake/packages/batteries/Batteries/Data/Fin/Lemmas.lean
theorem eq_none_of_findSome?_eq_none {f : Fin n → Option α} (h : findSome? f = none) (i) : f i = none
α : Type u_1 n : Nat ih : ∀ {f : Fin n → Option α}, findSome? f = none → ∀ (i : Fin n), f i = none f : Fin (n + 1) → Option α h : (f 0 <|> findSome? fun i => f i.succ) = none i : Fin (n + 1) heq : f 0 = none ⊢ f i = none
rw [heq, Option.none_orElse] at h
α : Type u_1 n : Nat ih : ∀ {f : Fin n → Option α}, findSome? f = none → ∀ (i : Fin n), f i = none f : Fin (n + 1) → Option α h : (findSome? fun i => f i.succ) = none i : Fin (n + 1) heq : f 0 = none ⊢ f i = none
a08d3d7f0b0c00f6
SetTheory.PGame.inv_one
Mathlib/SetTheory/Game/Basic.lean
/-- `1⁻¹` has exactly the same moves as `1`. -/ lemma inv_one : 1⁻¹ ≡ 1
⊢ inv' 1 ≡ 1
exact inv'_one
no goals
60a3d871b690ff8b
LinearMap.IsSymmetric.hasEigenvalue_iSup_of_finiteDimensional
Mathlib/Analysis/InnerProductSpace/Rayleigh.lean
theorem hasEigenvalue_iSup_of_finiteDimensional [Nontrivial E] (hT : T.IsSymmetric) : HasEigenvalue T ↑(⨆ x : { x : E // x ≠ 0 }, RCLike.re ⟪T x, x⟫ / ‖(x : E)‖ ^ 2 : ℝ)
𝕜 : Type u_1 inst✝⁴ : RCLike 𝕜 E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : FiniteDimensional 𝕜 E T : E →ₗ[𝕜] E inst✝ : Nontrivial E hT : T.IsSymmetric this✝¹ : ProperSpace E T' : ↥(selfAdjoint (E →L[𝕜] E)) := hT.toSelfAdjoint x : E hx : x ≠ 0 H₁ : IsCompact (sphere 0 ‖x‖) H₂ : (sphere 0 ‖x‖).Nonempty x₀ : E hx₀' : x₀ ∈ sphere 0 ‖x‖ hTx₀ : IsMaxOn (↑T').reApplyInnerSelf (sphere 0 ‖x‖) x₀ hx₀ : ‖x₀‖ = ‖x‖ this✝ : IsMaxOn (↑T').reApplyInnerSelf (sphere 0 ‖x₀‖) x₀ this : ‖x₀‖ ≠ 0 ⊢ x₀ ≠ 0
simpa [← norm_eq_zero, Ne]
no goals
313e798d747e5e61
MeasureTheory.norm_stoppedValue_leastGE_le
Mathlib/Probability/Martingale/BorelCantelli.lean
theorem norm_stoppedValue_leastGE_le (hr : 0 ≤ r) (hf0 : f 0 = 0) (hbdd : ∀ᵐ ω ∂μ, ∀ i, |f (i + 1) ω - f i ω| ≤ R) (i : ℕ) : ∀ᵐ ω ∂μ, stoppedValue f (leastGE f r i) ω ≤ r + R
case neg.intro Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω f : ℕ → Ω → ℝ r : ℝ R : ℝ≥0 hr : 0 ≤ r hf0 : f 0 = 0 hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R i : ℕ ω : Ω hbddω : ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R heq : ¬leastGE f r i ω = 0 k : ℕ hk : leastGE f r i ω = k.succ ⊢ f (leastGE f r i ω) ω ≤ r + ↑R
rw [hk, add_comm, ← sub_le_iff_le_add]
case neg.intro Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω f : ℕ → Ω → ℝ r : ℝ R : ℝ≥0 hr : 0 ≤ r hf0 : f 0 = 0 hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R i : ℕ ω : Ω hbddω : ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R heq : ¬leastGE f r i ω = 0 k : ℕ hk : leastGE f r i ω = k.succ ⊢ f k.succ ω - r ≤ ↑R
464e9208e86698f5
Real.sqrt_eq_iff_mul_self_eq_of_pos
Mathlib/Data/Real/Sqrt.lean
theorem sqrt_eq_iff_mul_self_eq_of_pos (h : 0 < y) : √x = y ↔ y * y = x
x y : ℝ h : 0 < y ⊢ √x = y ↔ y * y = x
simp [sqrt_eq_cases, h.ne', h.le]
no goals
8df00457bd88bba7
List.Vector.zipWith_get
Mathlib/Data/Vector/Zip.lean
theorem zipWith_get (x : Vector α n) (y : Vector β n) (i) : (Vector.zipWith f x y).get i = f (x.get i) (y.get i)
α : Type u_1 β : Type u_2 γ : Type u_3 n : ℕ f : α → β → γ x : Vector α n y : Vector β n i : Fin n ⊢ (zipWith f x y).get i = f (x.get i) (y.get i)
dsimp only [Vector.zipWith, Vector.get]
α : Type u_1 β : Type u_2 γ : Type u_3 n : ℕ f : α → β → γ x : Vector α n y : Vector β n i : Fin n ⊢ (List.zipWith f ↑x ↑y).get (Fin.cast ⋯ i) = f ((↑x).get (Fin.cast ⋯ i)) ((↑y).get (Fin.cast ⋯ i))
6572de3857333d1c
Matrix.fromRows_row0_isTotallyUnimodular_iff
Mathlib/LinearAlgebra/Matrix/Determinant/TotallyUnimodular.lean
lemma fromRows_row0_isTotallyUnimodular_iff (A : Matrix m n R) : (fromRows A (row m' 0)).IsTotallyUnimodular ↔ A.IsTotallyUnimodular
case h m : Type u_1 m' : Type u_2 n : Type u_3 R : Type u_5 inst✝ : CommRing R A : Matrix m n R x✝¹ : Nonempty n x✝ : m' inhabited_h : Inhabited n x : n ⊢ row m' 0 x✝ x = Pi.single default (↑0) x
simp [Pi.single_apply]
no goals
3fd2b268cdb07152
Finset.weightedVSubOfPoint_eq_of_weights_eq
Mathlib/LinearAlgebra/AffineSpace/Combination.lean
theorem weightedVSubOfPoint_eq_of_weights_eq (p : ι → P) (j : ι) (w₁ w₂ : ι → k) (hw : ∀ i, i ≠ j → w₁ i = w₂ i) : s.weightedVSubOfPoint p (p j) w₁ = s.weightedVSubOfPoint p (p j) w₂
k : Type u_1 V : Type u_2 P : Type u_3 inst✝² : Ring k inst✝¹ : AddCommGroup V inst✝ : Module k V S : AffineSpace V P ι : Type u_4 s : Finset ι p : ι → P j : ι w₁ w₂ : ι → k hw : ∀ (i : ι), i ≠ j → w₁ i = w₂ i ⊢ (s.weightedVSubOfPoint p (p j)) w₁ = (s.weightedVSubOfPoint p (p j)) w₂
simp only [Finset.weightedVSubOfPoint_apply]
k : Type u_1 V : Type u_2 P : Type u_3 inst✝² : Ring k inst✝¹ : AddCommGroup V inst✝ : Module k V S : AffineSpace V P ι : Type u_4 s : Finset ι p : ι → P j : ι w₁ w₂ : ι → k hw : ∀ (i : ι), i ≠ j → w₁ i = w₂ i ⊢ ∑ i ∈ s, w₁ i • (p i -ᵥ p j) = ∑ i ∈ s, w₂ i • (p i -ᵥ p j)
8a064655adca0142
MulAction.IsBlock.of_subset
Mathlib/GroupTheory/GroupAction/Blocks.lean
theorem of_subset (a : X) (hfB : B.Finite) : IsBlock G (⋂ (k : G) (_ : a ∈ k • B), k • B)
case inr G : Type u_1 inst✝² : Group G X : Type u_2 inst✝¹ : MulAction G X inst✝ : IsPretransitive G X B : Set X a : X hfB : B.Finite B' : Set X := ⋂ k, ⋂ (_ : a ∈ k • B), k • B hfB_ne : B.Nonempty ⊢ IsBlock G (⋂ k, ⋂ (_ : a ∈ k • B), k • B)
have hB'₀ : ∀ (k : G) (_ : a ∈ k • B), B' ≤ k • B := by intro k hk exact Set.biInter_subset_of_mem hk
case inr G : Type u_1 inst✝² : Group G X : Type u_2 inst✝¹ : MulAction G X inst✝ : IsPretransitive G X B : Set X a : X hfB : B.Finite B' : Set X := ⋂ k, ⋂ (_ : a ∈ k • B), k • B hfB_ne : B.Nonempty hB'₀ : ∀ (k : G), a ∈ k • B → B' ≤ k • B ⊢ IsBlock G (⋂ k, ⋂ (_ : a ∈ k • B), k • B)
9d1f232c7990ecc0
CategoryTheory.ShortComplex.epi_τ₂_of_exact_of_epi
Mathlib/Algebra/Homology/ShortComplex/Exact.lean
lemma epi_τ₂_of_exact_of_epi {S₁ S₂ : ShortComplex C} (φ : S₁ ⟶ S₂) (h₂ : S₂.Exact) [Epi S₁.g] [Epi S₂.g] [Epi φ.τ₁] [Epi φ.τ₃] : Epi φ.τ₂
C : Type u_1 inst✝⁶ : Category.{u_3, u_1} C inst✝⁵ : Preadditive C inst✝⁴ : Balanced C S₁ S₂ : ShortComplex C φ : S₁ ⟶ S₂ h₂ : S₂.Exact inst✝³ : Epi S₁.g inst✝² : Epi S₂.g inst✝¹ : Epi φ.τ₁ inst✝ : Epi φ.τ₃ this✝³ : Mono S₁.op.f this✝² : Mono S₂.op.f this✝¹ : Mono (opMap φ).τ₁ this✝ : Mono (opMap φ).τ₃ this : Mono (opMap φ).τ₂ ⊢ Epi φ.τ₂
exact unop_epi_of_mono (opMap φ).τ₂
no goals
73523644f772ac25
FormalMultilinearSeries.changeOrigin_eval
Mathlib/Analysis/Analytic/ChangeOrigin.lean
theorem changeOrigin_eval (h : (‖x‖₊ + ‖y‖₊ : ℝ≥0∞) < p.radius) : (p.changeOrigin x).sum y = p.sum (x + y)
𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁵ : NontriviallyNormedField 𝕜 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace 𝕜 E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : CompleteSpace F p : FormalMultilinearSeries 𝕜 E F x y : E h : ↑‖x‖₊ + ↑‖y‖₊ < p.radius radius_pos : 0 < p.radius x_mem_ball : x ∈ EMetric.ball 0 p.radius ⊢ ‖y‖ₑ < p.radius - ↑‖x‖₊
rwa [lt_tsub_iff_right, add_comm]
no goals
ccc324cf6a7a6ae5
Equiv.Perm.sign_surjective
Mathlib/GroupTheory/Perm/Sign.lean
theorem sign_surjective [Nontrivial α] : Function.Surjective (sign : Perm α → ℤˣ) := fun a => (Int.units_eq_one_or a).elim (fun h => ⟨1, by simp [h]⟩) fun h => let ⟨x, y, hxy⟩ := exists_pair_ne α ⟨swap x y, by rw [sign_swap hxy, h]⟩
α : Type u inst✝² : DecidableEq α inst✝¹ : Fintype α inst✝ : Nontrivial α a : ℤˣ h : a = -1 x y : α hxy : x ≠ y ⊢ sign (swap x y) = a
rw [sign_swap hxy, h]
no goals
06d44a68218be9ca
FreeGroup.Red.cons_nil_iff_singleton
Mathlib/GroupTheory/FreeGroup/Basic.lean
theorem cons_nil_iff_singleton {x b} : Red ((x, b) :: L) [] ↔ Red L [(x, not b)] := Iff.intro (fun h => by have h₁ : Red ((x, not b) :: (x, b) :: L) [(x, not b)] := cons_cons h have h₂ : Red ((x, not b) :: (x, b) :: L) L := ReflTransGen.single Step.cons_not_rev let ⟨L', h₁, h₂⟩ := church_rosser h₁ h₂ rw [singleton_iff] at h₁ subst L' assumption) fun h => (cons_cons h).tail Step.cons_not
α : Type u L : List (α × Bool) x : α b : Bool h : Red ((x, b) :: L) [] ⊢ Red L [(x, !b)]
have h₁ : Red ((x, not b) :: (x, b) :: L) [(x, not b)] := cons_cons h
α : Type u L : List (α × Bool) x : α b : Bool h : Red ((x, b) :: L) [] h₁ : Red ((x, !b) :: (x, b) :: L) [(x, !b)] ⊢ Red L [(x, !b)]
76d3bdec0b2e0f0e
MeasurableSet.exists_isOpen_symmDiff_lt
Mathlib/MeasureTheory/Measure/Regular.lean
theorem _root_.MeasurableSet.exists_isOpen_symmDiff_lt [InnerRegularCompactLTTop μ] [IsLocallyFiniteMeasure μ] [R1Space α] [BorelSpace α] {s : Set α} (hs : MeasurableSet s) (hμs : μ s ≠ ∞) {ε : ℝ≥0∞} (hε : ε ≠ 0) : ∃ U, IsOpen U ∧ μ U < ∞ ∧ μ (U ∆ s) < ε
α : Type u_1 inst✝⁵ : MeasurableSpace α μ : Measure α inst✝⁴ : TopologicalSpace α inst✝³ : μ.InnerRegularCompactLTTop inst✝² : IsLocallyFiniteMeasure μ inst✝¹ : R1Space α inst✝ : BorelSpace α s : Set α hs : MeasurableSet s hμs : μ s ≠ ⊤ ε : ℝ≥0∞ hε : ε ≠ 0 this : ε / 2 ≠ 0 K : Set α hKs : K ⊆ s hKco : IsCompact K hKcl : IsClosed K hμK : μ (s \ K) < ε / 2 U : Set α hKU : K ⊆ U hUo : IsOpen U hμU : μ U < μ K + ε / 2 ⊢ μ K ≤ μ s
gcongr
no goals
498e42d44efdd46a
Zlattice.FG
Mathlib/Algebra/Module/ZLattice/Basic.lean
theorem Zlattice.FG [hs : IsZLattice K L] : L.FG
case intro.intro.intro.refine_1 K : Type u_1 inst✝⁷ : NormedLinearOrderedField K inst✝⁶ : HasSolidNorm K inst✝⁵ : FloorRing K E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace K E inst✝² : FiniteDimensional K E inst✝¹ : ProperSpace E L : Submodule ℤ E inst✝ : DiscreteTopology ↥L hs : IsZLattice K L s : Set E h_incl : s ⊆ ↑L h_span : span K s = span K ↑L h_lind : LinearIndependent K Subtype.val b : Basis { x // x ∈ s } K E := Basis.mk h_lind ⋯ this✝ : Fintype ↑s this : (fundamentalDomain b ∩ ↑L).Finite ⊢ (Subtype.val ∘ ⇑(quotientEquiv b) '' ↑(Submodule.map (span ℤ (Set.range ⇑b)).mkQ L)).Finite
refine Set.Finite.subset this ?_
case intro.intro.intro.refine_1 K : Type u_1 inst✝⁷ : NormedLinearOrderedField K inst✝⁶ : HasSolidNorm K inst✝⁵ : FloorRing K E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace K E inst✝² : FiniteDimensional K E inst✝¹ : ProperSpace E L : Submodule ℤ E inst✝ : DiscreteTopology ↥L hs : IsZLattice K L s : Set E h_incl : s ⊆ ↑L h_span : span K s = span K ↑L h_lind : LinearIndependent K Subtype.val b : Basis { x // x ∈ s } K E := Basis.mk h_lind ⋯ this✝ : Fintype ↑s this : (fundamentalDomain b ∩ ↑L).Finite ⊢ Subtype.val ∘ ⇑(quotientEquiv b) '' ↑(Submodule.map (span ℤ (Set.range ⇑b)).mkQ L) ⊆ fundamentalDomain b ∩ ↑L
68cb8b310e25c5ae
ContinuousMap.isUnit_iff_forall_isUnit
Mathlib/Topology/ContinuousMap/Units.lean
theorem isUnit_iff_forall_isUnit (f : C(X, R)) : IsUnit f ↔ ∀ x, IsUnit (f x) := Iff.intro (fun h => fun x => ⟨unitsLift.symm h.unit x, rfl⟩) fun h => ⟨ContinuousMap.unitsLift (unitsOfForallIsUnit h), by ext; rfl⟩
case h X : Type u_1 R : Type u_3 inst✝² : TopologicalSpace X inst✝¹ : NormedRing R inst✝ : CompleteSpace R f : C(X, R) h : ∀ (x : X), IsUnit (f x) a✝ : X ⊢ ↑(unitsLift (unitsOfForallIsUnit h)) a✝ = f a✝
rfl
no goals
31684b75ee155730
RingOfIntegers.isUnit_norm
Mathlib/NumberTheory/NumberField/Norm.lean
theorem isUnit_norm [CharZero K] {x : 𝓞 F} : IsUnit (norm K x) ↔ IsUnit x
K : Type u_2 inst✝⁵ : Field K F : Type u_3 inst✝⁴ : Field F inst✝³ : Algebra K F inst✝² : Algebra.IsSeparable K F inst✝¹ : FiniteDimensional K F inst✝ : CharZero K x : 𝓞 F this : Algebra K (AlgebraicClosure K) := AlgebraicClosure.instAlgebra K ⊢ IsUnit ((norm K) x) ↔ IsUnit x
let L := normalClosure K F (AlgebraicClosure F)
K : Type u_2 inst✝⁵ : Field K F : Type u_3 inst✝⁴ : Field F inst✝³ : Algebra K F inst✝² : Algebra.IsSeparable K F inst✝¹ : FiniteDimensional K F inst✝ : CharZero K x : 𝓞 F this : Algebra K (AlgebraicClosure K) := AlgebraicClosure.instAlgebra K L : IntermediateField K (AlgebraicClosure F) := normalClosure K F (AlgebraicClosure F) ⊢ IsUnit ((norm K) x) ↔ IsUnit x
81c4016c5a7e9693
List.nodup_permutations
Mathlib/Data/List/Permutation.lean
theorem nodup_permutations (s : List α) (hs : Nodup s) : Nodup s.permutations
α : Type u_1 s : List α x : α l : List α h : ∀ a' ∈ l, x ≠ a' h' : Pairwise (fun x1 x2 => x1 ≠ x2) l IH : l.permutations'.Nodup as : List α ha : as ~ l bs : List α hb : bs ~ l H : as ≠ bs a : List α ha' : a ∈ permutations'Aux x as hb' : a ∈ permutations'Aux x bs n : ℕ hn✝ : n < (permutations'Aux x as).length hn' : insertIdx n x as = a m : ℕ hm✝ : m < (permutations'Aux x bs).length hm' : insertIdx m x bs = a hl : as.length = bs.length hn : n ≤ as.length hm : m ≤ bs.length hx : (insertIdx n x as)[m] = x hx' : (insertIdx m x bs)[n] = x ht : m < n this : x ∈ as ⊢ False
exact h x (ha.subset this) rfl
no goals
25ee05be5844251a
Set.chainHeight_insert_of_forall_gt
Mathlib/Order/Height.lean
theorem chainHeight_insert_of_forall_gt (a : α) (hx : ∀ b ∈ s, a < b) : (insert a s).chainHeight = s.chainHeight + 1
case a.cons α : Type u_1 s : Set α inst✝ : Preorder α a : α hx : ∀ b ∈ s, a < b y : α ys : List α h : y :: ys ∈ (insert a s).subchain ⊢ ∃ l' ∈ s.subchain, (y :: ys).length + 0 ≤ l'.length + 1
have h' := cons_mem_subchain_iff.mp h
case a.cons α : Type u_1 s : Set α inst✝ : Preorder α a : α hx : ∀ b ∈ s, a < b y : α ys : List α h : y :: ys ∈ (insert a s).subchain h' : y ∈ insert a s ∧ ys ∈ (insert a s).subchain ∧ ∀ b ∈ ys.head?, y < b ⊢ ∃ l' ∈ s.subchain, (y :: ys).length + 0 ≤ l'.length + 1
abd1373dde588775
KuratowskiEmbedding.embeddingOfSubset_isometry
Mathlib/Topology/MetricSpace/Kuratowski.lean
theorem embeddingOfSubset_isometry (H : DenseRange x) : Isometry (embeddingOfSubset x)
case intro α : Type u inst✝ : MetricSpace α x : ℕ → α H : DenseRange x a b : α e : ℝ epos : 0 < e n : ℕ hn : dist a (x n) < e / 2 C : dist b (x n) - dist a (x n) = ↑(embeddingOfSubset x b) n - ↑(embeddingOfSubset x a) n ⊢ dist a b ≤ dist (embeddingOfSubset x a) (embeddingOfSubset x b) + e
have := calc dist a b ≤ dist a (x n) + dist (x n) b := dist_triangle _ _ _ _ = 2 * dist a (x n) + (dist b (x n) - dist a (x n)) := by simp [dist_comm]; ring _ ≤ 2 * dist a (x n) + |dist b (x n) - dist a (x n)| := by apply_rules [add_le_add_left, le_abs_self] _ ≤ 2 * (e / 2) + |embeddingOfSubset x b n - embeddingOfSubset x a n| := by rw [C] gcongr _ ≤ 2 * (e / 2) + dist (embeddingOfSubset x b) (embeddingOfSubset x a) := by gcongr simp only [dist_eq_norm] exact lp.norm_apply_le_norm ENNReal.top_ne_zero (embeddingOfSubset x b - embeddingOfSubset x a) n _ = dist (embeddingOfSubset x b) (embeddingOfSubset x a) + e := by ring
case intro α : Type u inst✝ : MetricSpace α x : ℕ → α H : DenseRange x a b : α e : ℝ epos : 0 < e n : ℕ hn : dist a (x n) < e / 2 C : dist b (x n) - dist a (x n) = ↑(embeddingOfSubset x b) n - ↑(embeddingOfSubset x a) n this : dist a b ≤ dist (embeddingOfSubset x b) (embeddingOfSubset x a) + e ⊢ dist a b ≤ dist (embeddingOfSubset x a) (embeddingOfSubset x b) + e
a61e80bcf82ba877
RelSeries.length_eq_zero
Mathlib/Order/RelSeries.lean
lemma length_eq_zero (irrefl : Irreflexive r) : s.length = 0 ↔ {x | x ∈ s}.Subsingleton
α : Type u_1 r : Rel α α s : RelSeries r irrefl : Irreflexive r ⊢ s.length = 0 ↔ {x | x ∈ s}.Subsingleton
rw [← not_ne_iff, length_ne_zero irrefl, Set.not_nontrivial_iff]
no goals
860153b78e780aba
EuclideanGeometry.dist_eq_iff_dist_orthogonalProjection_eq
Mathlib/Geometry/Euclidean/Circumcenter.lean
theorem dist_eq_iff_dist_orthogonalProjection_eq {s : AffineSubspace ℝ P} [Nonempty s] [HasOrthogonalProjection s.direction] {p₁ p₂ : P} (p₃ : P) (hp₁ : p₁ ∈ s) (hp₂ : p₂ ∈ s) : dist p₁ p₃ = dist p₂ p₃ ↔ dist p₁ (orthogonalProjection s p₃) = dist p₂ (orthogonalProjection s p₃)
V : Type u_1 P : Type u_2 inst✝⁵ : NormedAddCommGroup V inst✝⁴ : InnerProductSpace ℝ V inst✝³ : MetricSpace P inst✝² : NormedAddTorsor V P s : AffineSubspace ℝ P inst✝¹ : Nonempty ↥s inst✝ : HasOrthogonalProjection s.direction p₁ p₂ p₃ : P hp₁ : p₁ ∈ s hp₂ : p₂ ∈ s ⊢ dist p₁ ↑((orthogonalProjection s) p₃) * dist p₁ ↑((orthogonalProjection s) p₃) + dist p₃ ↑((orthogonalProjection s) p₃) * dist p₃ ↑((orthogonalProjection s) p₃) = dist p₂ ↑((orthogonalProjection s) p₃) * dist p₂ ↑((orthogonalProjection s) p₃) + dist p₃ ↑((orthogonalProjection s) p₃) * dist p₃ ↑((orthogonalProjection s) p₃) ↔ dist p₁ ↑((orthogonalProjection s) p₃) * dist p₁ ↑((orthogonalProjection s) p₃) = dist p₂ ↑((orthogonalProjection s) p₃) * dist p₂ ↑((orthogonalProjection s) p₃)
simp
no goals
5ba325a87b66032f
Array.eq_or_ne_mem_of_mem
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/Lemmas.lean
theorem eq_or_ne_mem_of_mem {a b : α} {l : Array α} (h' : a ∈ l.push b) : a = b ∨ (a ≠ b ∧ a ∈ l)
α : Type u_1 a b : α l : Array α h' : a ∈ l.push b h : a = b ⊢ a = b ∨ a ≠ b ∧ a ∈ l
exact .inl h
no goals
e9078e8e28b0d7b0
SimpleGraph.Walk.takeUntil_cons
Mathlib/Combinatorics/SimpleGraph/Connectivity/WalkDecomp.lean
lemma takeUntil_cons {v' : V} {p : G.Walk v' v} (hwp : w ∈ p.support) (h : u ≠ w) (hadj : G.Adj u v') : (p.cons hadj).takeUntil w (List.mem_of_mem_tail hwp) = (p.takeUntil w hwp).cons hadj
V : Type u G : SimpleGraph V v w u : V inst✝ : DecidableEq V v' : V p : G.Walk v' v hwp : w ∈ p.support h : u ≠ w hadj : G.Adj u v' ⊢ (cons hadj p).takeUntil w ⋯ = cons hadj (p.takeUntil w hwp)
simp [Walk.takeUntil, h]
no goals
1c50405372a9780c
Set.ncard_eq_one
Mathlib/Data/Set/Card.lean
theorem ncard_eq_one : s.ncard = 1 ↔ ∃ a, s = {a}
α : Type u_1 s : Set α hft : Fintype ↑s h : ∃ a, s.toFinset = {a} a : α ha : ∀ (a_1 : α), a_1 ∈ s ↔ a_1 = a ⊢ ∀ (x : α), x ∈ s ↔ x = a
exact ha
no goals
6b099bb5edde6c64
Polynomial.not_isUnit_X_pow_sub_one
Mathlib/Algebra/Polynomial/Monic.lean
theorem not_isUnit_X_pow_sub_one (R : Type*) [CommRing R] [Nontrivial R] (n : ℕ) : ¬IsUnit (X ^ n - 1 : R[X])
R : Type u_1 inst✝¹ : CommRing R inst✝ : Nontrivial R n : ℕ ⊢ ¬IsUnit (X ^ n - 1)
intro h
R : Type u_1 inst✝¹ : CommRing R inst✝ : Nontrivial R n : ℕ h : IsUnit (X ^ n - 1) ⊢ False
f9d4950f92455e15
CFC.nnrpow_zero
Mathlib/Analysis/SpecialFunctions/ContinuousFunctionalCalculus/Rpow/Basic.lean
@[simp] lemma nnrpow_zero {a : A} : a ^ (0 : ℝ≥0) = 0
A : Type u_1 inst✝⁷ : PartialOrder A inst✝⁶ : NonUnitalRing A inst✝⁵ : TopologicalSpace A inst✝⁴ : StarRing A inst✝³ : Module ℝ A inst✝² : SMulCommClass ℝ A A inst✝¹ : IsScalarTower ℝ A A inst✝ : NonUnitalContinuousFunctionalCalculus ℝ≥0 fun a => 0 ≤ a a : A ⊢ a ^ 0 = 0
simp [nnrpow_def, cfcₙ_apply_of_not_map_zero]
no goals
c8debcd2cafb6ab1
SemidirectProduct.map_comp_inr
Mathlib/GroupTheory/SemidirectProduct.lean
theorem map_comp_inr : (map fn fg h).comp inr = inr.comp fg
N₁ : Type u_4 G₁ : Type u_5 N₂ : Type u_6 G₂ : Type u_7 inst✝³ : Group N₁ inst✝² : Group G₁ inst✝¹ : Group N₂ inst✝ : Group G₂ φ₁ : G₁ →* MulAut N₁ φ₂ : G₂ →* MulAut N₂ fn : N₁ →* N₂ fg : G₁ →* G₂ h : ∀ (g : G₁), fn.comp (MulEquiv.toMonoidHom (φ₁ g)) = (MulEquiv.toMonoidHom (φ₂ (fg g))).comp fn ⊢ (map fn fg h).comp inr = inr.comp fg
ext <;> simp [map]
no goals
14e7a054c227ee16
List.Perm.inter_append
Mathlib/Data/List/Perm/Lattice.lean
theorem Perm.inter_append {l t₁ t₂ : List α} (h : Disjoint t₁ t₂) : l ∩ (t₁ ++ t₂) ~ l ∩ t₁ ++ l ∩ t₂
case pos α : Type u_1 inst✝ : DecidableEq α t₁ t₂ : List α h : t₁.Disjoint t₂ x : α xs : List α l_ih : xs ∩ (t₁ ++ t₂) ~ xs ∩ t₁ ++ xs ∩ t₂ h₁ : x ∉ t₁ h₂ : x ∈ t₂ ⊢ (x :: xs) ∩ (t₁ ++ t₂) ~ (x :: xs) ∩ t₁ ++ (x :: xs) ∩ t₂
simp only [*, inter_cons_of_not_mem, false_or, mem_append, inter_cons_of_mem, not_false_iff]
case pos α : Type u_1 inst✝ : DecidableEq α t₁ t₂ : List α h : t₁.Disjoint t₂ x : α xs : List α l_ih : xs ∩ (t₁ ++ t₂) ~ xs ∩ t₁ ++ xs ∩ t₂ h₁ : x ∉ t₁ h₂ : x ∈ t₂ ⊢ x :: xs ∩ (t₁ ++ t₂) ~ xs ∩ t₁ ++ x :: xs ∩ t₂
e668c0ceba98db61
Std.Tactic.BVDecide.BVExpr.bitblast.blastMul.denote_blast
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/Bitblast/BVExpr/Circuit/Lemmas/Operations/Mul.lean
theorem denote_blast (aig : AIG BVBit) (lhs rhs : BitVec w) (assign : Assignment) (input : BinaryRefVec aig w) (hleft : ∀ (idx : Nat) (hidx : idx < w), ⟦aig, input.lhs.get idx hidx, assign.toAIGAssignment⟧ = lhs.getLsbD idx) (hright : ∀ (idx : Nat) (hidx : idx < w), ⟦aig, input.rhs.get idx hidx, assign.toAIGAssignment⟧ = rhs.getLsbD idx) : ∀ (idx : Nat) (hidx : idx < w), ⟦(blast aig input).aig, (blast aig input).vec.get idx hidx, assign.toAIGAssignment⟧ = (lhs * rhs).getLsbD idx
case intro.hacc aig : AIG BVBit assign : Assignment idx w : Nat lhs rhs : BitVec w.succ input : aig.BinaryRefVec w.succ hleft : ∀ (idx : Nat) (hidx : idx < w.succ), ⟦assign.toAIGAssignment, { aig := aig, ref := input.lhs.get idx hidx }⟧ = lhs.getLsbD idx hright : ∀ (idx : Nat) (hidx : idx < w.succ), ⟦assign.toAIGAssignment, { aig := aig, ref := input.rhs.get idx hidx }⟧ = rhs.getLsbD idx hidx : idx < w.succ res : RefVecEntry BVBit w.succ hne : ¬w.succ = 0 hb : go (RefVec.ite (blastConst aig 0).aig { discr := (input.cast ⋯).rhs.get 0 ⋯, lhs := (input.cast ⋯).lhs, rhs := (blastConst aig 0).vec }).aig ((input.cast ⋯).lhs.cast ⋯) ((input.cast ⋯).rhs.cast ⋯) 1 (RefVec.ite (blastConst aig 0).aig { discr := (input.cast ⋯).rhs.get 0 ⋯, lhs := (input.cast ⋯).lhs, rhs := (blastConst aig 0).vec }).vec = res ⊢ ∀ (idx : Nat) (hidx : idx < w.succ), ⟦assign.toAIGAssignment, { aig := (RefVec.ite (blastConst aig 0).aig { discr := (input.cast ⋯).rhs.get 0 ⋯, lhs := (input.cast ⋯).lhs, rhs := (blastConst aig 0).vec }).aig, ref := (RefVec.ite (blastConst aig 0).aig { discr := (input.cast ⋯).rhs.get 0 ⋯, lhs := (input.cast ⋯).lhs, rhs := (blastConst aig 0).vec }).vec.get idx hidx }⟧ = (lhs.mulRec rhs 0).getLsbD idx
intro idx hidx
case intro.hacc aig : AIG BVBit assign : Assignment idx✝ w : Nat lhs rhs : BitVec w.succ input : aig.BinaryRefVec w.succ hleft : ∀ (idx : Nat) (hidx : idx < w.succ), ⟦assign.toAIGAssignment, { aig := aig, ref := input.lhs.get idx hidx }⟧ = lhs.getLsbD idx hright : ∀ (idx : Nat) (hidx : idx < w.succ), ⟦assign.toAIGAssignment, { aig := aig, ref := input.rhs.get idx hidx }⟧ = rhs.getLsbD idx hidx✝ : idx✝ < w.succ res : RefVecEntry BVBit w.succ hne : ¬w.succ = 0 hb : go (RefVec.ite (blastConst aig 0).aig { discr := (input.cast ⋯).rhs.get 0 ⋯, lhs := (input.cast ⋯).lhs, rhs := (blastConst aig 0).vec }).aig ((input.cast ⋯).lhs.cast ⋯) ((input.cast ⋯).rhs.cast ⋯) 1 (RefVec.ite (blastConst aig 0).aig { discr := (input.cast ⋯).rhs.get 0 ⋯, lhs := (input.cast ⋯).lhs, rhs := (blastConst aig 0).vec }).vec = res idx : Nat hidx : idx < w.succ ⊢ ⟦assign.toAIGAssignment, { aig := (RefVec.ite (blastConst aig 0).aig { discr := (input.cast ⋯).rhs.get 0 ⋯, lhs := (input.cast ⋯).lhs, rhs := (blastConst aig 0).vec }).aig, ref := (RefVec.ite (blastConst aig 0).aig { discr := (input.cast ⋯).rhs.get 0 ⋯, lhs := (input.cast ⋯).lhs, rhs := (blastConst aig 0).vec }).vec.get idx hidx }⟧ = (lhs.mulRec rhs 0).getLsbD idx
8c44f256f3a4efbd
MeasureTheory.SeparableSpace.exists_measurable_partition_diam_le
Mathlib/MeasureTheory/Measure/LevyProkhorovMetric.lean
/-- In a separable pseudometric space, for any ε > 0 there exists a countable collection of disjoint Borel measurable subsets of diameter at most ε that cover the whole space. -/ lemma SeparableSpace.exists_measurable_partition_diam_le {ε : ℝ} (ε_pos : 0 < ε) : ∃ (As : ℕ → Set Ω), (∀ n, MeasurableSet (As n)) ∧ (∀ n, Bornology.IsBounded (As n)) ∧ (∀ n, diam (As n) ≤ ε) ∧ (⋃ n, As n = univ) ∧ (Pairwise (fun (n m : ℕ) ↦ Disjoint (As n) (As m)))
Ω : Type u_1 inst✝³ : PseudoMetricSpace Ω inst✝² : MeasurableSpace Ω inst✝¹ : OpensMeasurableSpace Ω inst✝ : SeparableSpace Ω ε : ℝ ε_pos : 0 < ε ⊢ ∃ As, (∀ (n : ℕ), MeasurableSet (As n)) ∧ (∀ (n : ℕ), Bornology.IsBounded (As n)) ∧ (∀ (n : ℕ), diam (As n) ≤ ε) ∧ ⋃ n, As n = univ ∧ Pairwise fun n m => Disjoint (As n) (As m)
by_cases X_emp : IsEmpty Ω
case pos Ω : Type u_1 inst✝³ : PseudoMetricSpace Ω inst✝² : MeasurableSpace Ω inst✝¹ : OpensMeasurableSpace Ω inst✝ : SeparableSpace Ω ε : ℝ ε_pos : 0 < ε X_emp : IsEmpty Ω ⊢ ∃ As, (∀ (n : ℕ), MeasurableSet (As n)) ∧ (∀ (n : ℕ), Bornology.IsBounded (As n)) ∧ (∀ (n : ℕ), diam (As n) ≤ ε) ∧ ⋃ n, As n = univ ∧ Pairwise fun n m => Disjoint (As n) (As m) case neg Ω : Type u_1 inst✝³ : PseudoMetricSpace Ω inst✝² : MeasurableSpace Ω inst✝¹ : OpensMeasurableSpace Ω inst✝ : SeparableSpace Ω ε : ℝ ε_pos : 0 < ε X_emp : ¬IsEmpty Ω ⊢ ∃ As, (∀ (n : ℕ), MeasurableSet (As n)) ∧ (∀ (n : ℕ), Bornology.IsBounded (As n)) ∧ (∀ (n : ℕ), diam (As n) ≤ ε) ∧ ⋃ n, As n = univ ∧ Pairwise fun n m => Disjoint (As n) (As m)
237abb1cee85e7bf
LinearMap.charpoly_toMatrix
Mathlib/LinearAlgebra/Charpoly/ToMatrix.lean
theorem charpoly_toMatrix {ι : Type w} [DecidableEq ι] [Fintype ι] (b : Basis ι R M) : (toMatrix b b f).charpoly = f.charpoly
R : Type u_1 M : Type u_2 inst✝⁷ : CommRing R inst✝⁶ : Nontrivial R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : Module.Free R M inst✝² : Module.Finite R M f : M →ₗ[R] M ι : Type w inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M A : Matrix ι ι R := (toMatrix b b) f ⊢ ((toMatrix b b) f).charpoly = f.charpoly
let b' := chooseBasis R M
R : Type u_1 M : Type u_2 inst✝⁷ : CommRing R inst✝⁶ : Nontrivial R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : Module.Free R M inst✝² : Module.Finite R M f : M →ₗ[R] M ι : Type w inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M A : Matrix ι ι R := (toMatrix b b) f b' : Basis (ChooseBasisIndex R M) R M := chooseBasis R M ⊢ ((toMatrix b b) f).charpoly = f.charpoly
ff9c8772a8b3d3c4
AddCircle.coe_eq_zero_iff_of_mem_Ico
Mathlib/Topology/Instances/AddCircle.lean
lemma coe_eq_zero_iff_of_mem_Ico (ha : a ∈ Ico 0 p) : (a : AddCircle p) = 0 ↔ a = 0
𝕜 : Type u_1 inst✝¹ : LinearOrderedAddCommGroup 𝕜 p : 𝕜 hp : Fact (0 < p) a : 𝕜 inst✝ : Archimedean 𝕜 ha : a ∈ Ico 0 p h0 : 0 ∈ Ico 0 (0 + p) ha' : a ∈ Ico 0 (0 + p) ⊢ ↑a = 0 ↔ a = 0
rw [← AddCircle.coe_eq_coe_iff_of_mem_Ico ha' h0, QuotientAddGroup.mk_zero]
no goals
4faacd3d488ea321
CategoryTheory.ChosenFiniteProducts.prodComparison_inv_natural
Mathlib/CategoryTheory/ChosenFiniteProducts.lean
theorem prodComparison_inv_natural (f : A ⟶ A') (g : B ⟶ B') [IsIso (prodComparison F A' B')] : inv (prodComparison F A B) ≫ F.map (f ⊗ g) = (F.map f ⊗ F.map g) ≫ inv (prodComparison F A' B')
C : Type u inst✝⁵ : Category.{v, u} C inst✝⁴ : ChosenFiniteProducts C D : Type u₁ inst✝³ : Category.{v₁, u₁} D inst✝² : ChosenFiniteProducts D F : C ⥤ D A B A' B' : C inst✝¹ : IsIso (prodComparison F A B) f : A ⟶ A' g : B ⟶ B' inst✝ : IsIso (prodComparison F A' B') ⊢ inv (prodComparison F A B) ≫ F.map (f ⊗ g) = (F.map f ⊗ F.map g) ≫ inv (prodComparison F A' B')
rw [IsIso.eq_comp_inv, Category.assoc, IsIso.inv_comp_eq, prodComparison_natural]
no goals
4528d89595aa8c0e
CategoryTheory.Comma.inv_right
Mathlib/CategoryTheory/Comma/Basic.lean
@[simp] lemma inv_right [IsIso e] : (inv e).right = inv e.right
case hom_inv_id A : Type u₁ inst✝³ : Category.{v₁, u₁} A B : Type u₂ inst✝² : Category.{v₂, u₂} B T : Type u₃ inst✝¹ : Category.{v₃, u₃} T L : A ⥤ T R : B ⥤ T X Y : Comma L R e : X ⟶ Y inst✝ : IsIso e ⊢ e.right ≫ (inv e).right = 𝟙 X.right
rw [← Comma.comp_right, IsIso.hom_inv_id, id_right]
no goals
c0e969a93d7f9594
MeasureTheory.LpAddConst_lt_top
Mathlib/MeasureTheory/Function/LpSeminorm/TriangleInequality.lean
theorem LpAddConst_lt_top (p : ℝ≥0∞) : LpAddConst p < ∞
p : ℝ≥0∞ h : p ∈ Set.Ioo 0 1 ⊢ p⁻¹ ≠ ⊤
simpa using h.1.ne'
no goals
792486120083fd0f
HurwitzZeta.hasSum_int_completedHurwitzZetaEven
Mathlib/NumberTheory/LSeries/HurwitzZetaEven.lean
/-- Formula for `completedHurwitzZetaEven` as a Dirichlet series in the convergence range. -/ lemma hasSum_int_completedHurwitzZetaEven (a : ℝ) {s : ℂ} (hs : 1 < re s) : HasSum (fun n : ℤ ↦ Gammaℝ s / (↑|n + a| : ℂ) ^ s / 2) (completedHurwitzZetaEven a s)
case pos a : ℝ s : ℂ hs : 1 < s.re t : ℝ ht : 0 < t n : ℤ h✝ : ↑n + a = 0 ⊢ 0 = ↑0 / 2
rw [ofReal_zero, zero_div]
no goals
0299a5c4a49e4f15
convexOn_of_hasDerivWithinAt2_nonneg
Mathlib/Analysis/Convex/Deriv.lean
/-- If a function `f` is continuous on a convex set `D ⊆ ℝ`, is twice differentiable on its interior, and `f''` is nonnegative on the interior, then `f` is convex on `D`. -/ lemma convexOn_of_hasDerivWithinAt2_nonneg {D : Set ℝ} (hD : Convex ℝ D) {f f' f'' : ℝ → ℝ} (hf : ContinuousOn f D) (hf' : ∀ x ∈ interior D, HasDerivWithinAt f (f' x) (interior D) x) (hf'' : ∀ x ∈ interior D, HasDerivWithinAt f' (f'' x) (interior D) x) (hf''₀ : ∀ x ∈ interior D, 0 ≤ f'' x) : ConvexOn ℝ D f
case refine_2 D : Set ℝ hD : Convex ℝ D f f' f'' : ℝ → ℝ hf : ContinuousOn f D hf' : ∀ x ∈ interior D, HasDerivWithinAt f (f' x) (interior D) x hf'' : ∀ x ∈ interior D, HasDerivWithinAt f' (f'' x) (interior D) x hf''₀ : ∀ x ∈ interior D, 0 ≤ f'' x this : EqOn (deriv f) f' (interior D) x : ℝ hx : x ∈ interior D ⊢ 0 ≤ deriv^[2] f x
convert hf''₀ _ hx using 1
case h.e'_4 D : Set ℝ hD : Convex ℝ D f f' f'' : ℝ → ℝ hf : ContinuousOn f D hf' : ∀ x ∈ interior D, HasDerivWithinAt f (f' x) (interior D) x hf'' : ∀ x ∈ interior D, HasDerivWithinAt f' (f'' x) (interior D) x hf''₀ : ∀ x ∈ interior D, 0 ≤ f'' x this : EqOn (deriv f) f' (interior D) x : ℝ hx : x ∈ interior D ⊢ deriv^[2] f x = f'' x
a62663d4b3c4bbdb
Std.DHashMap.Internal.Raw₀.Const.insertManyIfNewUnit_empty_list_nil
Mathlib/.lake/packages/lean4/src/lean/Std/Data/DHashMap/Internal/RawLemmas.lean
theorem insertManyIfNewUnit_empty_list_nil : insertManyIfNewUnit (empty : Raw₀ α (fun _ => Unit)) ([] : List α) = (empty : Raw₀ α (fun _ => Unit))
α : Type u inst✝¹ : BEq α inst✝ : Hashable α ⊢ (insertManyIfNewUnit empty []).val = empty
simp
no goals
456a19fa6b2defe4
Turing.TM1to1.tr_respects
Mathlib/Computability/PostTuringMachine.lean
theorem tr_respects : Respects (step M) (step (tr enc dec M)) fun c₁ c₂ ↦ trCfg enc enc0 c₁ = c₂ := fun_respects.2 fun ⟨l₁, v, T⟩ ↦ by obtain ⟨L, R, rfl⟩ := T.exists_mk' rcases l₁ with - | l₁ · exact rfl suffices ∀ q R, Reaches (step (tr enc dec M)) (stepAux (trNormal dec q) v (trTape' enc0 L R)) (trCfg enc enc0 (stepAux q v (Tape.mk' L R))) by refine TransGen.head' rfl ?_ rw [trTape_mk'] exact this _ R clear R l₁ intro q R induction q generalizing v L R with | move d q IH => cases d <;> simp only [trNormal, iterate, stepAux_move, stepAux, ListBlank.head_cons, Tape.move_left_mk', ListBlank.cons_head_tail, ListBlank.tail_cons, trTape'_move_left enc0, trTape'_move_right enc0] <;> apply IH | write f q IH => simp only [trNormal, stepAux_read dec enc0 encdec, stepAux] refine ReflTransGen.head rfl ?_ obtain ⟨a, R, rfl⟩ := R.exists_cons rw [tr, Tape.mk'_head, stepAux_write, ListBlank.head_cons, stepAux_move, trTape'_move_left enc0, ListBlank.head_cons, ListBlank.tail_cons, Tape.write_mk'] apply IH | load a q IH => simp only [trNormal, stepAux_read dec enc0 encdec] apply IH | branch p q₁ q₂ IH₁ IH₂ => simp only [trNormal, stepAux_read dec enc0 encdec, stepAux, Tape.mk'_head] cases p R.head v <;> [apply IH₂; apply IH₁] | goto l => simp only [trNormal, stepAux_read dec enc0 encdec, stepAux, trCfg, trTape_mk'] apply ReflTransGen.refl | halt => simp only [trNormal, stepAux, trCfg, stepAux_move, trTape'_move_left enc0, trTape'_move_right enc0, trTape_mk'] apply ReflTransGen.refl
case intro.intro.some.goto Γ : Type u_1 Λ : Type u_2 σ : Type u_3 n : ℕ enc : Γ → List.Vector Bool n dec : List.Vector Bool n → Γ M : Λ → Stmt Γ Λ σ inst✝ : Inhabited Γ enc0 : enc default = Vector.replicate n false encdec : ∀ (a : Γ), dec (enc a) = a x✝ : Cfg Γ Λ σ l : Γ → σ → Λ v : σ L R : ListBlank Γ ⊢ Reaches (step (tr enc dec M)) { l := some (Λ'.normal (l R.head v)), var := v, Tape := trTape' enc0 L R } { l := Option.map Λ'.normal (some (l (Tape.mk' L R).head v)), var := v, Tape := trTape' enc0 L R }
apply ReflTransGen.refl
no goals
e86c623541388a9d
Basis.orientation_neg_single
Mathlib/LinearAlgebra/Orientation.lean
theorem orientation_neg_single (e : Basis ι R M) (i : ι) : (e.unitsSMul (Function.update 1 i (-1))).orientation = -e.orientation
R : Type u_1 inst✝⁴ : LinearOrderedCommRing R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M ι : Type u_3 inst✝¹ : Fintype ι inst✝ : DecidableEq ι e : Basis ι R M i : ι ⊢ (-1 * ∏ x ∈ Finset.univ \ {i}, 1 x)⁻¹ • e.orientation = -e.orientation
simp
no goals
f65e024ec01068e5
NNRat.cast_div_of_ne_zero
Mathlib/Data/Rat/Cast/Defs.lean
@[norm_cast] lemma cast_div_of_ne_zero (hq : (q.den : α) ≠ 0) (hr : (r.num : α) ≠ 0) : ↑(q / r) = (q / r : α)
α : Type u_3 inst✝ : DivisionSemiring α q r : ℚ≥0 hq : ↑q.den ≠ 0 hr : ↑r.num ≠ 0 ⊢ ↑q.num * ↑r.den / (↑q.den * ↑r.num) = ↑q.num * ↑r.den / (↑q.den * ↑r.num)
rfl
no goals
3456e21c9d9c01c8
CategoryTheory.HasShift.Induced.add_hom_app_obj
Mathlib/CategoryTheory/Shift/Induced.lean
@[simp] lemma add_hom_app_obj (a b : A) (X : C) : (add F s i a b).hom.app (F.obj X) = (i (a + b)).hom.app X ≫ F.map ((shiftFunctorAdd C a b).hom.app X) ≫ (i b).inv.app ((shiftFunctor C a).obj X) ≫ (s b).map ((i a).inv.app X)
C : Type u_5 D : Type u_2 inst✝⁵ : Category.{u_4, u_5} C inst✝⁴ : Category.{u_1, u_2} D F : C ⥤ D A : Type u_3 inst✝³ : AddMonoid A inst✝² : HasShift C A s : A → D ⥤ D i : (a : A) → F ⋙ s a ≅ shiftFunctor C a ⋙ F inst✝¹ : ((whiskeringLeft C D D).obj F).Full inst✝ : ((whiskeringLeft C D D).obj F).Faithful a b : A X : C h : whiskerLeft F (add F s i a b).hom = (i (a + b) ≪≫ isoWhiskerRight (shiftFunctorAdd C a b) F ≪≫ (shiftFunctor C a).associator (shiftFunctor C b) F ≪≫ isoWhiskerLeft (shiftFunctor C a) (i b).symm ≪≫ ((shiftFunctor C a).associator F (s b)).symm ≪≫ isoWhiskerRight (i a).symm (s b) ≪≫ F.associator (s a) (s b)).hom ⊢ (add F s i a b).hom.app (F.obj X) = (i (a + b)).hom.app X ≫ F.map ((shiftFunctorAdd C a b).hom.app X) ≫ (i b).inv.app ((shiftFunctor C a).obj X) ≫ (s b).map ((i a).inv.app X)
exact (NatTrans.congr_app h X).trans (by simp)
no goals
3c48812c93cc085b
Array.lawfulBEq_iff
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/Lemmas.lean
theorem lawfulBEq_iff [BEq α] : LawfulBEq (Array α) ↔ LawfulBEq α
case mp.rfl α : Type u_1 inst✝ : BEq α h : LawfulBEq (Array α) a : α ⊢ (a == a) = true
apply beq_of_beq_singleton
case mp.rfl.a α : Type u_1 inst✝ : BEq α h : LawfulBEq (Array α) a : α ⊢ (#[a] == #[a]) = true
2e5ca1ebe152af97
PhragmenLindelof.quadrant_I
Mathlib/Analysis/Complex/PhragmenLindelof.lean
theorem quadrant_I (hd : DiffContOnCl ℂ f (Ioi 0 ×ℂ Ioi 0)) (hB : ∃ c < (2 : ℝ), ∃ B, f =O[cobounded ℂ ⊓ 𝓟 (Ioi 0 ×ℂ Ioi 0)] fun z => expR (B * ‖z‖ ^ c)) (hre : ∀ x : ℝ, 0 ≤ x → ‖f x‖ ≤ C) (him : ∀ x : ℝ, 0 ≤ x → ‖f (x * I)‖ ≤ C) (hz_re : 0 ≤ z.re) (hz_im : 0 ≤ z.im) : ‖f z‖ ≤ C
E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E C : ℝ f : ℂ → E z : ℂ hd : DiffContOnCl ℂ f (Ioi 0 ×ℂ Ioi 0) hB : ∃ c < 2, ∃ B, f =O[cobounded ℂ ⊓ 𝓟 (Ioi 0 ×ℂ Ioi 0)] fun z => expR (B * ‖z‖ ^ c) hre : ∀ (x : ℝ), 0 ≤ x → ‖f ↑x‖ ≤ C him : ∀ (x : ℝ), 0 ≤ x → ‖f (↑x * I)‖ ≤ C hz_re : 0 ≤ z.re hz_im : 0 ≤ z.im hzne : z ≠ 0 ⊢ (log z).im ∈ Icc 0 (π / 2)
rw [log_im]
E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E C : ℝ f : ℂ → E z : ℂ hd : DiffContOnCl ℂ f (Ioi 0 ×ℂ Ioi 0) hB : ∃ c < 2, ∃ B, f =O[cobounded ℂ ⊓ 𝓟 (Ioi 0 ×ℂ Ioi 0)] fun z => expR (B * ‖z‖ ^ c) hre : ∀ (x : ℝ), 0 ≤ x → ‖f ↑x‖ ≤ C him : ∀ (x : ℝ), 0 ≤ x → ‖f (↑x * I)‖ ≤ C hz_re : 0 ≤ z.re hz_im : 0 ≤ z.im hzne : z ≠ 0 ⊢ z.arg ∈ Icc 0 (π / 2)
a9f7cc9a241d3219
MvPowerSeries.map_X
Mathlib/RingTheory/MvPowerSeries/Basic.lean
theorem map_X (s : σ) : map σ f (X s) = X s
σ : Type u_1 R : Type u_2 S : Type u_3 inst✝¹ : Semiring R inst✝ : Semiring S f : R →+* S s : σ ⊢ (map σ f) (X s) = X s
simp [MvPowerSeries.X]
no goals
b1f131d8b00f775b
MeasureTheory.AddContent.isCaratheodory_ofFunction_of_mem
Mathlib/MeasureTheory/OuterMeasure/OfAddContent.lean
theorem isCaratheodory_ofFunction_of_mem (hC : IsSetSemiring C) (m : AddContent C) (m_top : ∀ s ∉ C, m s = ∞) (hs : s ∈ C) : (OuterMeasure.ofFunction m addContent_empty).IsCaratheodory s
α : Type u_1 C : Set (Set α) s : Set α hC : IsSetSemiring C m : AddContent C m_top : ∀ s ∉ C, m s = ⊤ hs : s ∈ C t : Set α f : ℕ → Set α hf : ∀ (i : ℕ), f i ∈ C hf_subset : t ⊆ ⋃ i, f i A : ℕ → Finset (Set α) := fun i => hC.disjointOfDiff ⋯ ⋯ h_diff_eq_sUnion : ∀ (i : ℕ), f i \ s = ⋃₀ ↑(A i) ⊢ (OuterMeasure.ofFunction ⇑m ⋯) (t ∩ s) + (OuterMeasure.ofFunction ⇑m ⋯) (t \ s) ≤ ∑' (i : ℕ), m (f i)
have h_m_eq i : m (f i) = m (f i ∩ s) + ∑ u ∈ A i, m u := eq_add_disjointOfDiff_of_subset hC (hC.inter_mem (f i) (hf i) s hs) (hf i) inter_subset_left
α : Type u_1 C : Set (Set α) s : Set α hC : IsSetSemiring C m : AddContent C m_top : ∀ s ∉ C, m s = ⊤ hs : s ∈ C t : Set α f : ℕ → Set α hf : ∀ (i : ℕ), f i ∈ C hf_subset : t ⊆ ⋃ i, f i A : ℕ → Finset (Set α) := fun i => hC.disjointOfDiff ⋯ ⋯ h_diff_eq_sUnion : ∀ (i : ℕ), f i \ s = ⋃₀ ↑(A i) h_m_eq : ∀ (i : ℕ), m (f i) = m (f i ∩ s) + ∑ u ∈ A i, m u ⊢ (OuterMeasure.ofFunction ⇑m ⋯) (t ∩ s) + (OuterMeasure.ofFunction ⇑m ⋯) (t \ s) ≤ ∑' (i : ℕ), m (f i)
150b27f94c399a97
MeasureTheory.integral_condExpL2_eq
Mathlib/MeasureTheory/Function/ConditionalExpectation/CondexpL2.lean
theorem integral_condExpL2_eq (hm : m ≤ m0) (f : Lp E' 2 μ) (hs : MeasurableSet[m] s) (hμs : μ s ≠ ∞) : ∫ x in s, (condExpL2 E' 𝕜 hm f : α → E') x ∂μ = ∫ x in s, f x ∂μ
case refine_1 α : Type u_1 E' : Type u_3 𝕜 : Type u_7 inst✝⁴ : RCLike 𝕜 inst✝³ : NormedAddCommGroup E' inst✝² : InnerProductSpace 𝕜 E' inst✝¹ : CompleteSpace E' inst✝ : NormedSpace ℝ E' m m0 : MeasurableSpace α μ : Measure α s : Set α hm : m ≤ m0 f : ↥(Lp E' 2 μ) hs : MeasurableSet s hμs : μ s ≠ ⊤ ⊢ Integrable (↑↑(↑((condExpL2 E' 𝕜 hm) f) - f)) (μ.restrict s)
exact integrableOn_Lp_of_measure_ne_top _ fact_one_le_two_ennreal.elim hμs
no goals
f34acd4f2cd16da9
ProbabilityTheory.strong_law_aux1
Mathlib/Probability/StrongLaw.lean
theorem strong_law_aux1 {c : ℝ} (c_one : 1 < c) {ε : ℝ} (εpos : 0 < ε) : ∀ᵐ ω, ∀ᶠ n : ℕ in atTop, |∑ i ∈ range ⌊c ^ n⌋₊, truncation (X i) i ω - 𝔼[∑ i ∈ range ⌊c ^ n⌋₊, truncation (X i) i]| < ε * ⌊c ^ n⌋₊
case inl Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) ℙ hindep : Pairwise ((fun f g => IndepFun f g ℙ) on X) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) ℙ ℙ hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable ((Set.Ioc (-i) i).indicator id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i ∈ range n, Y i hS : S = fun n => ∑ i ∈ range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u I1 : ∀ (K : ℕ), ∑ j ∈ range K, (↑j ^ 2)⁻¹ * Var[Y j; ℙ] ≤ 2 * ∫ (a : Ω), X 0 a C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a) N : ℕ hj : 0 ∈ range (u (N - 1)) ⊢ (∑ i ∈ filter (fun i => 0 < u i) (range N), (↑(u i) ^ 2)⁻¹) * Var[Y 0; ℙ] ≤ c ^ 5 * (c - 1)⁻¹ ^ 3 / ↑0 ^ 2 * Var[Y 0; ℙ]
simp only [Nat.cast_zero, zero_pow, Ne, Nat.one_ne_zero, not_false_iff, div_zero, zero_mul]
case inl Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) ℙ hindep : Pairwise ((fun f g => IndepFun f g ℙ) on X) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) ℙ ℙ hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable ((Set.Ioc (-i) i).indicator id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i ∈ range n, Y i hS : S = fun n => ∑ i ∈ range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u I1 : ∀ (K : ℕ), ∑ j ∈ range K, (↑j ^ 2)⁻¹ * Var[Y j; ℙ] ≤ 2 * ∫ (a : Ω), X 0 a C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a) N : ℕ hj : 0 ∈ range (u (N - 1)) ⊢ (∑ i ∈ filter (fun i => 0 < u i) (range N), (↑(u i) ^ 2)⁻¹) * Var[Y 0; ℙ] ≤ c ^ 5 * (c - 1)⁻¹ ^ 3 / 0 ^ 2 * Var[Y 0; ℙ]
e1bd35d16fc7ec49
Complex.uniformContinuous_ringHom_eq_id_or_conj
Mathlib/Topology/Instances/Complex.lean
theorem Complex.uniformContinuous_ringHom_eq_id_or_conj (K : Subfield ℂ) {ψ : K →+* ℂ} (hc : UniformContinuous ψ) : ψ.toFun = K.subtype ∨ ψ.toFun = conj ∘ K.subtype
K : Subfield ℂ ψ : ↥K →+* ℂ hc : UniformContinuous ⇑ψ ⊢ (↑↑ψ).toFun = ⇑K.subtype ∨ (↑↑ψ).toFun = ⇑(starRingEnd ℂ) ∘ ⇑K.subtype
letI : TopologicalDivisionRing ℂ := TopologicalDivisionRing.mk
K : Subfield ℂ ψ : ↥K →+* ℂ hc : UniformContinuous ⇑ψ this : TopologicalDivisionRing ℂ := TopologicalDivisionRing.mk ⊢ (↑↑ψ).toFun = ⇑K.subtype ∨ (↑↑ψ).toFun = ⇑(starRingEnd ℂ) ∘ ⇑K.subtype
f78bcdf9d891573b
LinearMap.BilinForm.exists_orthogonal_basis
Mathlib/LinearAlgebra/QuadraticForm/Basic.lean
theorem exists_orthogonal_basis [hK : Invertible (2 : K)] {B : LinearMap.BilinForm K V} (hB₂ : B.IsSymm) : ∃ v : Basis (Fin (finrank K V)) K V, B.IsOrthoᵢ v
K : Type v inst✝³ : Field K hK : Invertible 2 d : ℕ ih : ∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V}, IsSymm B → finrank K V = d → ∃ v, IsOrthoᵢ B ⇑v V : Type u inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V B : BilinForm K V hB₂ : IsSymm B this✝ : Nontrivial V hB₁ : B ≠ 0 x : V hd : finrank K ↥((Submodule.span K {x}).orthogonalBilin B) + 1 = d + 1 hx : ¬IsOrtho B x x B' : ↥((Submodule.span K {x}).orthogonalBilin B) →ₗ[K] ↥((Submodule.span K {x}).orthogonalBilin B) →ₗ[K] K := domRestrict₁₂ B ((Submodule.span K {x}).orthogonalBilin B) ((Submodule.span K {x}).orthogonalBilin B) v' : Basis (Fin d) K ↥((Submodule.span K {x}).orthogonalBilin B) hv₁ : (domRestrict₁₂ B ((Submodule.span K {x}).orthogonalBilin B) ((Submodule.span K {x}).orthogonalBilin B)).IsOrthoᵢ ⇑v' c : K y : V hy : c • x ∈ (Submodule.span K {x}).orthogonalBilin B hc : -(c • x) = y this : Disjoint (Submodule.span K {x}) ((Submodule.span K {x}).orthogonalBilin B) ⊢ c = 0
rw [Submodule.disjoint_def] at this
K : Type v inst✝³ : Field K hK : Invertible 2 d : ℕ ih : ∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V}, IsSymm B → finrank K V = d → ∃ v, IsOrthoᵢ B ⇑v V : Type u inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V B : BilinForm K V hB₂ : IsSymm B this✝ : Nontrivial V hB₁ : B ≠ 0 x : V hd : finrank K ↥((Submodule.span K {x}).orthogonalBilin B) + 1 = d + 1 hx : ¬IsOrtho B x x B' : ↥((Submodule.span K {x}).orthogonalBilin B) →ₗ[K] ↥((Submodule.span K {x}).orthogonalBilin B) →ₗ[K] K := domRestrict₁₂ B ((Submodule.span K {x}).orthogonalBilin B) ((Submodule.span K {x}).orthogonalBilin B) v' : Basis (Fin d) K ↥((Submodule.span K {x}).orthogonalBilin B) hv₁ : (domRestrict₁₂ B ((Submodule.span K {x}).orthogonalBilin B) ((Submodule.span K {x}).orthogonalBilin B)).IsOrthoᵢ ⇑v' c : K y : V hy : c • x ∈ (Submodule.span K {x}).orthogonalBilin B hc : -(c • x) = y this : ∀ x_1 ∈ Submodule.span K {x}, x_1 ∈ (Submodule.span K {x}).orthogonalBilin B → x_1 = 0 ⊢ c = 0
f15d20b415f151ca
RingQuot.lift_mkRingHom_apply
Mathlib/Algebra/RingQuot.lean
theorem lift_mkRingHom_apply (f : R →+* T) {r : R → R → Prop} (w : ∀ ⦃x y⦄, r x y → f x = f y) (x) : lift ⟨f, w⟩ (mkRingHom r x) = f x
R : Type uR inst✝¹ : Semiring R T : Type uT inst✝ : Semiring T f : R →+* T r : R → R → Prop w : ∀ ⦃x y : R⦄, r x y → f x = f y x : R ⊢ ({ toFun := fun f => { toFun := fun x => Quot.lift ⇑↑f ⋯ x.toQuot, map_one' := ⋯, map_mul' := ⋯, map_zero' := ⋯, map_add' := ⋯ }, invFun := fun F => ⟨F.comp { toFun := fun x => { toQuot := Quot.mk (Rel r) x }, map_one' := ⋯, map_mul' := ⋯, map_zero' := ⋯, map_add' := ⋯ }, ⋯⟩, left_inv := ⋯, right_inv := ⋯ } ⟨f, w⟩) ({ toFun := fun x => { toQuot := Quot.mk (Rel r) x }, map_one' := ⋯, map_mul' := ⋯, map_zero' := ⋯, map_add' := ⋯ } x) = f x
rfl
no goals
a9e31936f2bb55cf
AlgebraicGeometry.AffineSpace.reindex_id
Mathlib/AlgebraicGeometry/AffineSpace.lean
@[simp] lemma reindex_id : reindex id S = 𝟙 𝔸(n; S)
n : Type v S : Scheme ⊢ reindex id S = 𝟙 𝔸(n; S)
ext1 <;> simp
no goals
77f8196d90b13ea8
ENNReal.le_of_forall_nnreal_lt
Mathlib/Data/ENNReal/Inv.lean
theorem le_of_forall_nnreal_lt {x y : ℝ≥0∞} (h : ∀ r : ℝ≥0, ↑r < x → ↑r ≤ y) : x ≤ y
x y : ℝ≥0∞ h : ∀ (r : ℝ≥0), ↑r < x → ↑r ≤ y ⊢ x ≤ y
refine le_of_forall_lt_imp_le_of_dense fun r hr => ?_
x y : ℝ≥0∞ h : ∀ (r : ℝ≥0), ↑r < x → ↑r ≤ y r : ℝ≥0∞ hr : r < x ⊢ r ≤ y
841714a7f2825562
ContinuousAffineMap.to_continuousMap_injective
Mathlib/Topology/Algebra/ContinuousAffineMap.lean
theorem to_continuousMap_injective {f g : P →ᴬ[R] Q} (h : (f : C(P, Q)) = (g : C(P, Q))) : f = g
case h R : Type u_1 V : Type u_2 W : Type u_3 P : Type u_4 Q : Type u_5 inst✝⁸ : Ring R inst✝⁷ : AddCommGroup V inst✝⁶ : Module R V inst✝⁵ : TopologicalSpace P inst✝⁴ : AddTorsor V P inst✝³ : AddCommGroup W inst✝² : Module R W inst✝¹ : TopologicalSpace Q inst✝ : AddTorsor W Q f g : P →ᴬ[R] Q h : ↑f = ↑g a : P ⊢ f a = g a
exact ContinuousMap.congr_fun h a
no goals
71afe41dac370e91
MeromorphicOn.eventually_codiscreteWithin_analyticAt
Mathlib/Analysis/Meromorphic/Basic.lean
theorem eventually_codiscreteWithin_analyticAt [CompleteSpace E] (f : 𝕜 → E) (h : MeromorphicOn f U) : ∀ᶠ (y : 𝕜) in codiscreteWithin U, AnalyticAt 𝕜 f y
𝕜 : Type u_1 inst✝³ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E U : Set 𝕜 inst✝ : CompleteSpace E f : 𝕜 → E h : MeromorphicOn f U x : 𝕜 hx : x ∈ U ⊢ {x | (fun y => AnalyticAt 𝕜 f y) x} ⊆ (U \ {x | AnalyticAt 𝕜 f x})ᶜ
intro x hx
𝕜 : Type u_1 inst✝³ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E U : Set 𝕜 inst✝ : CompleteSpace E f : 𝕜 → E h : MeromorphicOn f U x✝ : 𝕜 hx✝ : x✝ ∈ U x : 𝕜 hx : x ∈ {x | (fun y => AnalyticAt 𝕜 f y) x} ⊢ x ∈ (U \ {x | AnalyticAt 𝕜 f x})ᶜ
a35b18b98ec6aed2
WittVector.poly_eq_of_wittPolynomial_bind_eq'
Mathlib/RingTheory/WittVector/IsPoly.lean
theorem poly_eq_of_wittPolynomial_bind_eq' [Fact p.Prime] (f g : ℕ → MvPolynomial (idx × ℕ) ℤ) (h : ∀ n, bind₁ f (wittPolynomial p _ n) = bind₁ g (wittPolynomial p _ n)) : f = g
case h p : ℕ idx : Type u_1 inst✝ : Fact (Nat.Prime p) f g : ℕ → MvPolynomial (idx × ℕ) ℤ h : ∀ (n : ℕ), (bind₁ f) (wittPolynomial p ℤ n) = (bind₁ g) (wittPolynomial p ℤ n) n : ℕ ⊢ f n = g n
apply MvPolynomial.map_injective (Int.castRingHom ℚ) Int.cast_injective
case h.a p : ℕ idx : Type u_1 inst✝ : Fact (Nat.Prime p) f g : ℕ → MvPolynomial (idx × ℕ) ℤ h : ∀ (n : ℕ), (bind₁ f) (wittPolynomial p ℤ n) = (bind₁ g) (wittPolynomial p ℤ n) n : ℕ ⊢ (MvPolynomial.map (Int.castRingHom ℚ)) (f n) = (MvPolynomial.map (Int.castRingHom ℚ)) (g n)
d7abeb200abb0ee9
Std.Tactic.BVDecide.BVExpr.bitblast.blastUmod.denote_go_eq_divRec_r
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/Bitblast/BVExpr/Circuit/Lemmas/Operations/Umod.lean
theorem denote_go_eq_divRec_r (aig : AIG α) (assign : α → Bool) (curr : Nat) (lhs rhs rbv qbv : BitVec w) (falseRef trueRef : AIG.Ref aig) (n d q r : AIG.RefVec aig w) (wn wr : Nat) (hleft : ∀ (idx : Nat) (hidx : idx < w), ⟦aig, n.get idx hidx, assign⟧ = lhs.getLsbD idx) (hright : ∀ (idx : Nat) (hidx : idx < w), ⟦aig, d.get idx hidx, assign⟧ = rhs.getLsbD idx) (hq : ∀ (idx : Nat) (hidx : idx < w), ⟦aig, q.get idx hidx, assign⟧ = qbv.getLsbD idx) (hr : ∀ (idx : Nat) (hidx : idx < w), ⟦aig, r.get idx hidx, assign⟧ = rbv.getLsbD idx) (hfalse : ⟦aig, falseRef, assign⟧ = false) (htrue : ⟦aig, trueRef, assign⟧ = true) : ∀ (idx : Nat) (hidx : idx < w), ⟦ (go aig curr falseRef trueRef n d wn wr q r).aig, (go aig curr falseRef trueRef n d wn wr q r).r.get idx hidx, assign ⟧ = (BitVec.divRec curr { n := lhs, d := rhs} { wn, wr, q := qbv, r := rbv }).r.getLsbD idx
α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α w : Nat assign : α → Bool lhs rhs : BitVec w curr : Nat ih : ∀ (aig : AIG α) (rbv qbv : BitVec w) (falseRef trueRef : aig.Ref) (n d q r : aig.RefVec w) (wn wr : Nat), (∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := n.get idx hidx }⟧ = lhs.getLsbD idx) → (∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := d.get idx hidx }⟧ = rhs.getLsbD idx) → (∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := q.get idx hidx }⟧ = qbv.getLsbD idx) → (∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := r.get idx hidx }⟧ = rbv.getLsbD idx) → ⟦assign, { aig := aig, ref := falseRef }⟧ = false → ⟦assign, { aig := aig, ref := trueRef }⟧ = true → ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := (go aig curr falseRef trueRef n d wn wr q r).aig, ref := (go aig curr falseRef trueRef n d wn wr q r).r.get idx hidx }⟧ = (BitVec.divRec curr { n := lhs, d := rhs } { wn := wn, wr := wr, q := qbv, r := rbv }).r.getLsbD idx aig : AIG α rbv qbv : BitVec w falseRef trueRef : aig.Ref n d q r : aig.RefVec w wn wr : Nat hleft : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := n.get idx hidx }⟧ = lhs.getLsbD idx hright : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := d.get idx hidx }⟧ = rhs.getLsbD idx hq : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := q.get idx hidx }⟧ = qbv.getLsbD idx hr : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := r.get idx hidx }⟧ = rbv.getLsbD idx hfalse : ⟦assign, { aig := aig, ref := falseRef }⟧ = false htrue : ⟦assign, { aig := aig, ref := trueRef }⟧ = true idx : Nat hidx : idx < w hdiscr : { wn := wn, wr := wr, q := qbv, r := rbv }.r.shiftConcat (lhs.getLsbD ({ wn := wn, wr := wr, q := qbv, r := rbv }.wn - 1)) < rhs ⊢ ⟦assign, { aig := { aig := (go (blastDivSubtractShift aig falseRef trueRef n d wn wr q r).aig curr (falseRef.cast ⋯) (trueRef.cast ⋯) (n.cast ⋯) (d.cast ⋯) (blastDivSubtractShift aig falseRef trueRef n d wn wr q r).wn (blastDivSubtractShift aig falseRef trueRef n d wn wr q r).wr (blastDivSubtractShift aig falseRef trueRef n d wn wr q r).q (blastDivSubtractShift aig falseRef trueRef n d wn wr q r).r).aig, q := (go (blastDivSubtractShift aig falseRef trueRef n d wn wr q r).aig curr (falseRef.cast ⋯) (trueRef.cast ⋯) (n.cast ⋯) (d.cast ⋯) (blastDivSubtractShift aig falseRef trueRef n d wn wr q r).wn (blastDivSubtractShift aig falseRef trueRef n d wn wr q r).wr (blastDivSubtractShift aig falseRef trueRef n d wn wr q r).q (blastDivSubtractShift aig falseRef trueRef n d wn wr q r).r).q, r := (go (blastDivSubtractShift aig falseRef trueRef n d wn wr q r).aig curr (falseRef.cast ⋯) (trueRef.cast ⋯) (n.cast ⋯) (d.cast ⋯) (blastDivSubtractShift aig falseRef trueRef n d wn wr q r).wn (blastDivSubtractShift aig falseRef trueRef n d wn wr q r).wr (blastDivSubtractShift aig falseRef trueRef n d wn wr q r).q (blastDivSubtractShift aig falseRef trueRef n d wn wr q r).r).r, hle := ⋯ }.aig, ref := { aig := (go (blastDivSubtractShift aig falseRef trueRef n d wn wr q r).aig curr (falseRef.cast ⋯) (trueRef.cast ⋯) (n.cast ⋯) (d.cast ⋯) (blastDivSubtractShift aig falseRef trueRef n d wn wr q r).wn (blastDivSubtractShift aig falseRef trueRef n d wn wr q r).wr (blastDivSubtractShift aig falseRef trueRef n d wn wr q r).q (blastDivSubtractShift aig falseRef trueRef n d wn wr q r).r).aig, q := (go (blastDivSubtractShift aig falseRef trueRef n d wn wr q r).aig curr (falseRef.cast ⋯) (trueRef.cast ⋯) (n.cast ⋯) (d.cast ⋯) (blastDivSubtractShift aig falseRef trueRef n d wn wr q r).wn (blastDivSubtractShift aig falseRef trueRef n d wn wr q r).wr (blastDivSubtractShift aig falseRef trueRef n d wn wr q r).q (blastDivSubtractShift aig falseRef trueRef n d wn wr q r).r).q, r := (go (blastDivSubtractShift aig falseRef trueRef n d wn wr q r).aig curr (falseRef.cast ⋯) (trueRef.cast ⋯) (n.cast ⋯) (d.cast ⋯) (blastDivSubtractShift aig falseRef trueRef n d wn wr q r).wn (blastDivSubtractShift aig falseRef trueRef n d wn wr q r).wr (blastDivSubtractShift aig falseRef trueRef n d wn wr q r).q (blastDivSubtractShift aig falseRef trueRef n d wn wr q r).r).r, hle := ⋯ }.r.get idx hidx }⟧ = (BitVec.divRec curr { n := lhs, d := rhs } { wn := { wn := wn, wr := wr, q := qbv, r := rbv }.wn - 1, wr := { wn := wn, wr := wr, q := qbv, r := rbv }.wr + 1, q := { wn := wn, wr := wr, q := qbv, r := rbv }.q.shiftConcat false, r := { wn := wn, wr := wr, q := qbv, r := rbv }.r.shiftConcat (lhs.getLsbD ({ wn := wn, wr := wr, q := qbv, r := rbv }.wn - 1)) }).r.getLsbD idx
rw [ih]
α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α w : Nat assign : α → Bool lhs rhs : BitVec w curr : Nat ih : ∀ (aig : AIG α) (rbv qbv : BitVec w) (falseRef trueRef : aig.Ref) (n d q r : aig.RefVec w) (wn wr : Nat), (∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := n.get idx hidx }⟧ = lhs.getLsbD idx) → (∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := d.get idx hidx }⟧ = rhs.getLsbD idx) → (∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := q.get idx hidx }⟧ = qbv.getLsbD idx) → (∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := r.get idx hidx }⟧ = rbv.getLsbD idx) → ⟦assign, { aig := aig, ref := falseRef }⟧ = false → ⟦assign, { aig := aig, ref := trueRef }⟧ = true → ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := (go aig curr falseRef trueRef n d wn wr q r).aig, ref := (go aig curr falseRef trueRef n d wn wr q r).r.get idx hidx }⟧ = (BitVec.divRec curr { n := lhs, d := rhs } { wn := wn, wr := wr, q := qbv, r := rbv }).r.getLsbD idx aig : AIG α rbv qbv : BitVec w falseRef trueRef : aig.Ref n d q r : aig.RefVec w wn wr : Nat hleft : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := n.get idx hidx }⟧ = lhs.getLsbD idx hright : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := d.get idx hidx }⟧ = rhs.getLsbD idx hq : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := q.get idx hidx }⟧ = qbv.getLsbD idx hr : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := r.get idx hidx }⟧ = rbv.getLsbD idx hfalse : ⟦assign, { aig := aig, ref := falseRef }⟧ = false htrue : ⟦assign, { aig := aig, ref := trueRef }⟧ = true idx : Nat hidx : idx < w hdiscr : { wn := wn, wr := wr, q := qbv, r := rbv }.r.shiftConcat (lhs.getLsbD ({ wn := wn, wr := wr, q := qbv, r := rbv }.wn - 1)) < rhs ⊢ (BitVec.divRec curr { n := lhs, d := rhs } { wn := (blastDivSubtractShift aig falseRef trueRef n d wn wr q r).wn, wr := (blastDivSubtractShift aig falseRef trueRef n d wn wr q r).wr, q := ?qbv, r := ?rbv }).r.getLsbD idx = (BitVec.divRec curr { n := lhs, d := rhs } { wn := { wn := wn, wr := wr, q := qbv, r := rbv }.wn - 1, wr := { wn := wn, wr := wr, q := qbv, r := rbv }.wr + 1, q := { wn := wn, wr := wr, q := qbv, r := rbv }.q.shiftConcat false, r := { wn := wn, wr := wr, q := qbv, r := rbv }.r.shiftConcat (lhs.getLsbD ({ wn := wn, wr := wr, q := qbv, r := rbv }.wn - 1)) }).r.getLsbD idx case rbv α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α w : Nat assign : α → Bool lhs rhs : BitVec w curr : Nat ih : ∀ (aig : AIG α) (rbv qbv : BitVec w) (falseRef trueRef : aig.Ref) (n d q r : aig.RefVec w) (wn wr : Nat), (∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := n.get idx hidx }⟧ = lhs.getLsbD idx) → (∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := d.get idx hidx }⟧ = rhs.getLsbD idx) → (∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := q.get idx hidx }⟧ = qbv.getLsbD idx) → (∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := r.get idx hidx }⟧ = rbv.getLsbD idx) → ⟦assign, { aig := aig, ref := falseRef }⟧ = false → ⟦assign, { aig := aig, ref := trueRef }⟧ = true → ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := (go aig curr falseRef trueRef n d wn wr q r).aig, ref := (go aig curr falseRef trueRef n d wn wr q r).r.get idx hidx }⟧ = (BitVec.divRec curr { n := lhs, d := rhs } { wn := wn, wr := wr, q := qbv, r := rbv }).r.getLsbD idx aig : AIG α rbv qbv : BitVec w falseRef trueRef : aig.Ref n d q r : aig.RefVec w wn wr : Nat hleft : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := n.get idx hidx }⟧ = lhs.getLsbD idx hright : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := d.get idx hidx }⟧ = rhs.getLsbD idx hq : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := q.get idx hidx }⟧ = qbv.getLsbD idx hr : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := r.get idx hidx }⟧ = rbv.getLsbD idx hfalse : ⟦assign, { aig := aig, ref := falseRef }⟧ = false htrue : ⟦assign, { aig := aig, ref := trueRef }⟧ = true idx : Nat hidx : idx < w hdiscr : { wn := wn, wr := wr, q := qbv, r := rbv }.r.shiftConcat (lhs.getLsbD ({ wn := wn, wr := wr, q := qbv, r := rbv }.wn - 1)) < rhs ⊢ BitVec w case qbv α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α w : Nat assign : α → Bool lhs rhs : BitVec w curr : Nat ih : ∀ (aig : AIG α) (rbv qbv : BitVec w) (falseRef trueRef : aig.Ref) (n d q r : aig.RefVec w) (wn wr : Nat), (∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := n.get idx hidx }⟧ = lhs.getLsbD idx) → (∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := d.get idx hidx }⟧ = rhs.getLsbD idx) → (∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := q.get idx hidx }⟧ = qbv.getLsbD idx) → (∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := r.get idx hidx }⟧ = rbv.getLsbD idx) → ⟦assign, { aig := aig, ref := falseRef }⟧ = false → ⟦assign, { aig := aig, ref := trueRef }⟧ = true → ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := (go aig curr falseRef trueRef n d wn wr q r).aig, ref := (go aig curr falseRef trueRef n d wn wr q r).r.get idx hidx }⟧ = (BitVec.divRec curr { n := lhs, d := rhs } { wn := wn, wr := wr, q := qbv, r := rbv }).r.getLsbD idx aig : AIG α rbv qbv : BitVec w falseRef trueRef : aig.Ref n d q r : aig.RefVec w wn wr : Nat hleft : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := n.get idx hidx }⟧ = lhs.getLsbD idx hright : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := d.get idx hidx }⟧ = rhs.getLsbD idx hq : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := q.get idx hidx }⟧ = qbv.getLsbD idx hr : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := r.get idx hidx }⟧ = rbv.getLsbD idx hfalse : ⟦assign, { aig := aig, ref := falseRef }⟧ = false htrue : ⟦assign, { aig := aig, ref := trueRef }⟧ = true idx : Nat hidx : idx < w hdiscr : { wn := wn, wr := wr, q := qbv, r := rbv }.r.shiftConcat (lhs.getLsbD ({ wn := wn, wr := wr, q := qbv, r := rbv }.wn - 1)) < rhs ⊢ BitVec w case hleft α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α w : Nat assign : α → Bool lhs rhs : BitVec w curr : Nat ih : ∀ (aig : AIG α) (rbv qbv : BitVec w) (falseRef trueRef : aig.Ref) (n d q r : aig.RefVec w) (wn wr : Nat), (∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := n.get idx hidx }⟧ = lhs.getLsbD idx) → (∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := d.get idx hidx }⟧ = rhs.getLsbD idx) → (∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := q.get idx hidx }⟧ = qbv.getLsbD idx) → (∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := r.get idx hidx }⟧ = rbv.getLsbD idx) → ⟦assign, { aig := aig, ref := falseRef }⟧ = false → ⟦assign, { aig := aig, ref := trueRef }⟧ = true → ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := (go aig curr falseRef trueRef n d wn wr q r).aig, ref := (go aig curr falseRef trueRef n d wn wr q r).r.get idx hidx }⟧ = (BitVec.divRec curr { n := lhs, d := rhs } { wn := wn, wr := wr, q := qbv, r := rbv }).r.getLsbD idx aig : AIG α rbv qbv : BitVec w falseRef trueRef : aig.Ref n d q r : aig.RefVec w wn wr : Nat hleft : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := n.get idx hidx }⟧ = lhs.getLsbD idx hright : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := d.get idx hidx }⟧ = rhs.getLsbD idx hq : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := q.get idx hidx }⟧ = qbv.getLsbD idx hr : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := r.get idx hidx }⟧ = rbv.getLsbD idx hfalse : ⟦assign, { aig := aig, ref := falseRef }⟧ = false htrue : ⟦assign, { aig := aig, ref := trueRef }⟧ = true idx : Nat hidx : idx < w hdiscr : { wn := wn, wr := wr, q := qbv, r := rbv }.r.shiftConcat (lhs.getLsbD ({ wn := wn, wr := wr, q := qbv, r := rbv }.wn - 1)) < rhs ⊢ ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := (blastDivSubtractShift aig falseRef trueRef n d wn wr q r).aig, ref := (n.cast ⋯).get idx hidx }⟧ = lhs.getLsbD idx case hright α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α w : Nat assign : α → Bool lhs rhs : BitVec w curr : Nat ih : ∀ (aig : AIG α) (rbv qbv : BitVec w) (falseRef trueRef : aig.Ref) (n d q r : aig.RefVec w) (wn wr : Nat), (∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := n.get idx hidx }⟧ = lhs.getLsbD idx) → (∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := d.get idx hidx }⟧ = rhs.getLsbD idx) → (∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := q.get idx hidx }⟧ = qbv.getLsbD idx) → (∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := r.get idx hidx }⟧ = rbv.getLsbD idx) → ⟦assign, { aig := aig, ref := falseRef }⟧ = false → ⟦assign, { aig := aig, ref := trueRef }⟧ = true → ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := (go aig curr falseRef trueRef n d wn wr q r).aig, ref := (go aig curr falseRef trueRef n d wn wr q r).r.get idx hidx }⟧ = (BitVec.divRec curr { n := lhs, d := rhs } { wn := wn, wr := wr, q := qbv, r := rbv }).r.getLsbD idx aig : AIG α rbv qbv : BitVec w falseRef trueRef : aig.Ref n d q r : aig.RefVec w wn wr : Nat hleft : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := n.get idx hidx }⟧ = lhs.getLsbD idx hright : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := d.get idx hidx }⟧ = rhs.getLsbD idx hq : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := q.get idx hidx }⟧ = qbv.getLsbD idx hr : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := r.get idx hidx }⟧ = rbv.getLsbD idx hfalse : ⟦assign, { aig := aig, ref := falseRef }⟧ = false htrue : ⟦assign, { aig := aig, ref := trueRef }⟧ = true idx : Nat hidx : idx < w hdiscr : { wn := wn, wr := wr, q := qbv, r := rbv }.r.shiftConcat (lhs.getLsbD ({ wn := wn, wr := wr, q := qbv, r := rbv }.wn - 1)) < rhs ⊢ ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := (blastDivSubtractShift aig falseRef trueRef n d wn wr q r).aig, ref := (d.cast ⋯).get idx hidx }⟧ = rhs.getLsbD idx case hq α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α w : Nat assign : α → Bool lhs rhs : BitVec w curr : Nat ih : ∀ (aig : AIG α) (rbv qbv : BitVec w) (falseRef trueRef : aig.Ref) (n d q r : aig.RefVec w) (wn wr : Nat), (∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := n.get idx hidx }⟧ = lhs.getLsbD idx) → (∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := d.get idx hidx }⟧ = rhs.getLsbD idx) → (∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := q.get idx hidx }⟧ = qbv.getLsbD idx) → (∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := r.get idx hidx }⟧ = rbv.getLsbD idx) → ⟦assign, { aig := aig, ref := falseRef }⟧ = false → ⟦assign, { aig := aig, ref := trueRef }⟧ = true → ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := (go aig curr falseRef trueRef n d wn wr q r).aig, ref := (go aig curr falseRef trueRef n d wn wr q r).r.get idx hidx }⟧ = (BitVec.divRec curr { n := lhs, d := rhs } { wn := wn, wr := wr, q := qbv, r := rbv }).r.getLsbD idx aig : AIG α rbv qbv : BitVec w falseRef trueRef : aig.Ref n d q r : aig.RefVec w wn wr : Nat hleft : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := n.get idx hidx }⟧ = lhs.getLsbD idx hright : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := d.get idx hidx }⟧ = rhs.getLsbD idx hq : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := q.get idx hidx }⟧ = qbv.getLsbD idx hr : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := r.get idx hidx }⟧ = rbv.getLsbD idx hfalse : ⟦assign, { aig := aig, ref := falseRef }⟧ = false htrue : ⟦assign, { aig := aig, ref := trueRef }⟧ = true idx : Nat hidx : idx < w hdiscr : { wn := wn, wr := wr, q := qbv, r := rbv }.r.shiftConcat (lhs.getLsbD ({ wn := wn, wr := wr, q := qbv, r := rbv }.wn - 1)) < rhs ⊢ ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := (blastDivSubtractShift aig falseRef trueRef n d wn wr q r).aig, ref := (blastDivSubtractShift aig falseRef trueRef n d wn wr q r).q.get idx hidx }⟧ = BitVec.getLsbD ?qbv idx case hr α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α w : Nat assign : α → Bool lhs rhs : BitVec w curr : Nat ih : ∀ (aig : AIG α) (rbv qbv : BitVec w) (falseRef trueRef : aig.Ref) (n d q r : aig.RefVec w) (wn wr : Nat), (∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := n.get idx hidx }⟧ = lhs.getLsbD idx) → (∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := d.get idx hidx }⟧ = rhs.getLsbD idx) → (∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := q.get idx hidx }⟧ = qbv.getLsbD idx) → (∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := r.get idx hidx }⟧ = rbv.getLsbD idx) → ⟦assign, { aig := aig, ref := falseRef }⟧ = false → ⟦assign, { aig := aig, ref := trueRef }⟧ = true → ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := (go aig curr falseRef trueRef n d wn wr q r).aig, ref := (go aig curr falseRef trueRef n d wn wr q r).r.get idx hidx }⟧ = (BitVec.divRec curr { n := lhs, d := rhs } { wn := wn, wr := wr, q := qbv, r := rbv }).r.getLsbD idx aig : AIG α rbv qbv : BitVec w falseRef trueRef : aig.Ref n d q r : aig.RefVec w wn wr : Nat hleft : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := n.get idx hidx }⟧ = lhs.getLsbD idx hright : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := d.get idx hidx }⟧ = rhs.getLsbD idx hq : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := q.get idx hidx }⟧ = qbv.getLsbD idx hr : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := r.get idx hidx }⟧ = rbv.getLsbD idx hfalse : ⟦assign, { aig := aig, ref := falseRef }⟧ = false htrue : ⟦assign, { aig := aig, ref := trueRef }⟧ = true idx : Nat hidx : idx < w hdiscr : { wn := wn, wr := wr, q := qbv, r := rbv }.r.shiftConcat (lhs.getLsbD ({ wn := wn, wr := wr, q := qbv, r := rbv }.wn - 1)) < rhs ⊢ ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := (blastDivSubtractShift aig falseRef trueRef n d wn wr q r).aig, ref := (blastDivSubtractShift aig falseRef trueRef n d wn wr q r).r.get idx hidx }⟧ = BitVec.getLsbD ?rbv idx case hfalse α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α w : Nat assign : α → Bool lhs rhs : BitVec w curr : Nat ih : ∀ (aig : AIG α) (rbv qbv : BitVec w) (falseRef trueRef : aig.Ref) (n d q r : aig.RefVec w) (wn wr : Nat), (∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := n.get idx hidx }⟧ = lhs.getLsbD idx) → (∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := d.get idx hidx }⟧ = rhs.getLsbD idx) → (∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := q.get idx hidx }⟧ = qbv.getLsbD idx) → (∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := r.get idx hidx }⟧ = rbv.getLsbD idx) → ⟦assign, { aig := aig, ref := falseRef }⟧ = false → ⟦assign, { aig := aig, ref := trueRef }⟧ = true → ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := (go aig curr falseRef trueRef n d wn wr q r).aig, ref := (go aig curr falseRef trueRef n d wn wr q r).r.get idx hidx }⟧ = (BitVec.divRec curr { n := lhs, d := rhs } { wn := wn, wr := wr, q := qbv, r := rbv }).r.getLsbD idx aig : AIG α rbv qbv : BitVec w falseRef trueRef : aig.Ref n d q r : aig.RefVec w wn wr : Nat hleft : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := n.get idx hidx }⟧ = lhs.getLsbD idx hright : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := d.get idx hidx }⟧ = rhs.getLsbD idx hq : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := q.get idx hidx }⟧ = qbv.getLsbD idx hr : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := r.get idx hidx }⟧ = rbv.getLsbD idx hfalse : ⟦assign, { aig := aig, ref := falseRef }⟧ = false htrue : ⟦assign, { aig := aig, ref := trueRef }⟧ = true idx : Nat hidx : idx < w hdiscr : { wn := wn, wr := wr, q := qbv, r := rbv }.r.shiftConcat (lhs.getLsbD ({ wn := wn, wr := wr, q := qbv, r := rbv }.wn - 1)) < rhs ⊢ ⟦assign, { aig := (blastDivSubtractShift aig falseRef trueRef n d wn wr q r).aig, ref := falseRef.cast ⋯ }⟧ = false case htrue α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α w : Nat assign : α → Bool lhs rhs : BitVec w curr : Nat ih : ∀ (aig : AIG α) (rbv qbv : BitVec w) (falseRef trueRef : aig.Ref) (n d q r : aig.RefVec w) (wn wr : Nat), (∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := n.get idx hidx }⟧ = lhs.getLsbD idx) → (∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := d.get idx hidx }⟧ = rhs.getLsbD idx) → (∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := q.get idx hidx }⟧ = qbv.getLsbD idx) → (∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := r.get idx hidx }⟧ = rbv.getLsbD idx) → ⟦assign, { aig := aig, ref := falseRef }⟧ = false → ⟦assign, { aig := aig, ref := trueRef }⟧ = true → ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := (go aig curr falseRef trueRef n d wn wr q r).aig, ref := (go aig curr falseRef trueRef n d wn wr q r).r.get idx hidx }⟧ = (BitVec.divRec curr { n := lhs, d := rhs } { wn := wn, wr := wr, q := qbv, r := rbv }).r.getLsbD idx aig : AIG α rbv qbv : BitVec w falseRef trueRef : aig.Ref n d q r : aig.RefVec w wn wr : Nat hleft : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := n.get idx hidx }⟧ = lhs.getLsbD idx hright : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := d.get idx hidx }⟧ = rhs.getLsbD idx hq : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := q.get idx hidx }⟧ = qbv.getLsbD idx hr : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := r.get idx hidx }⟧ = rbv.getLsbD idx hfalse : ⟦assign, { aig := aig, ref := falseRef }⟧ = false htrue : ⟦assign, { aig := aig, ref := trueRef }⟧ = true idx : Nat hidx : idx < w hdiscr : { wn := wn, wr := wr, q := qbv, r := rbv }.r.shiftConcat (lhs.getLsbD ({ wn := wn, wr := wr, q := qbv, r := rbv }.wn - 1)) < rhs ⊢ ⟦assign, { aig := (blastDivSubtractShift aig falseRef trueRef n d wn wr q r).aig, ref := trueRef.cast ⋯ }⟧ = true
123e2e165ae62131
Nat.ordProj_dvd
Mathlib/Data/Nat/Factorization/Defs.lean
theorem ordProj_dvd (n p : ℕ) : ordProj[p] n ∣ n
n p : ℕ hp : Prime p ⊢ (p ^ count p n.primeFactorsList).primeFactorsList <+~ n.primeFactorsList
rw [hp.primeFactorsList_pow, List.subperm_ext_iff]
n p : ℕ hp : Prime p ⊢ ∀ x ∈ replicate (count p n.primeFactorsList) p, count x (replicate (count p n.primeFactorsList) p) ≤ count x n.primeFactorsList
bd7926bf85841618
IsCoprime.wronskian_eq_zero_iff
Mathlib/RingTheory/Polynomial/Wronskian.lean
theorem _root_.IsCoprime.wronskian_eq_zero_iff [NoZeroDivisors R] {a b : R[X]} (hc : IsCoprime a b) : wronskian a b = 0 ↔ derivative a = 0 ∧ derivative b = 0 where mp hw
case intro R : Type u_1 inst✝¹ : CommRing R inst✝ : NoZeroDivisors R a b : R[X] hc : IsCoprime a b hda : derivative a = 0 hdb : derivative b = 0 ⊢ a * 0 - 0 * b = 0
simp only [MulZeroClass.mul_zero, MulZeroClass.zero_mul, sub_self]
no goals
f3fde22d9abb12de