name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
AlgebraicGeometry.Scheme.residueFieldCongr_trans_hom
Mathlib/AlgebraicGeometry/ResidueField.lean
@[reassoc (attr := simp)] lemma residueFieldCongr_trans_hom (X : Scheme) {x y z : X} (e : x = y) (e' : y = z) : (X.residueFieldCongr e).hom ≫ (X.residueFieldCongr e').hom = (X.residueFieldCongr (e.trans e')).hom
X : Scheme x y z : ↑↑X.toPresheafedSpace e : x = y e' : y = z ⊢ (residueFieldCongr e).hom ≫ (residueFieldCongr e').hom = (residueFieldCongr ⋯).hom
subst e e'
X : Scheme x : ↑↑X.toPresheafedSpace ⊢ (residueFieldCongr ⋯).hom ≫ (residueFieldCongr ⋯).hom = (residueFieldCongr ⋯).hom
677b1f74c913e216
MultilinearMap.dfinsuppFamily_single_left_apply
Mathlib/LinearAlgebra/Multilinear/DFinsupp.lean
theorem dfinsuppFamily_single_left_apply [∀ i, DecidableEq (κ i)] (p : Π i, κ i) (f : MultilinearMap R (fun i ↦ M i (p i)) (N p)) (x : Π i, Π₀ j, M i j) : dfinsuppFamily (Pi.single p f) x = DFinsupp.single p (f fun i => x _ (p i))
case h.inl ι : Type uι κ : ι → Type uκ R : Type uR M : (i : ι) → κ i → Type uM N : ((i : ι) → κ i) → Type uN inst✝⁷ : DecidableEq ι inst✝⁶ : Fintype ι inst✝⁵ : Semiring R inst✝⁴ : (i : ι) → (k : κ i) → AddCommMonoid (M i k) inst✝³ : (p : (i : ι) → κ i) → AddCommMonoid (N p) inst✝² : (i : ι) → (k : κ i) → Module R (M i k) inst✝¹ : (p : (i : ι) → κ i) → Module R (N p) inst✝ : (i : ι) → DecidableEq (κ i) p : (i : ι) → κ i f : MultilinearMap R (fun i => M i (p i)) (N p) x : (i : ι) → Π₀ (j : κ i), M i j ⊢ ((dfinsuppFamily (Pi.single p f)) x) p = (DFinsupp.single p (f fun i => (x i) (p i))) p
simp
no goals
a3acc84950fc829b
IsPreconnected.preperfect_of_nontrivial
Mathlib/Topology/Perfect.lean
lemma IsPreconnected.preperfect_of_nontrivial [T1Space α] {U : Set α} (hu : U.Nontrivial) (h : IsPreconnected U) : Preperfect U
α : Type u_1 inst✝¹ : TopologicalSpace α inst✝ : T1Space α U : Set α hu : U.Nontrivial h : IsPreconnected U ⊢ Preperfect U
intro x hx
α : Type u_1 inst✝¹ : TopologicalSpace α inst✝ : T1Space α U : Set α hu : U.Nontrivial h : IsPreconnected U x : α hx : x ∈ U ⊢ AccPt x (𝓟 U)
30f2e088a928e593
AlgebraicGeometry.ProjIsoSpecTopComponent.FromSpec.carrier.smul_mem
Mathlib/AlgebraicGeometry/ProjectiveSpectrum/Scheme.lean
theorem carrier.smul_mem (c x : A) (hx : x ∈ carrier f_deg q) : c • x ∈ carrier f_deg q
case refine_2.mk R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ ⊢ HomogeneousLocalization.mk { deg := m * i, num := ⟨(if n ≤ i then a * ↑(((decompose 𝒜) x) (i - n)) else 0) ^ m, ⋯⟩, den := ⟨f ^ i, ⋯⟩, den_mem := ⋯ } ∈ q.asIdeal
let product : A⁰_ f := (HomogeneousLocalization.mk ⟨_, ⟨a ^ m, pow_mem_graded m ha⟩, ⟨_, ?_⟩, ⟨n, rfl⟩⟩ : A⁰_ f) * (HomogeneousLocalization.mk ⟨_, ⟨proj 𝒜 (i - n) x ^ m, by mem_tac⟩, ⟨_, ?_⟩, ⟨i - n, rfl⟩⟩ : A⁰_ f)
case refine_2.mk.refine_3 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ product : A⁰_ f := HomogeneousLocalization.mk { deg := m • n, num := ⟨a ^ m, ⋯⟩, den := ⟨f ^ n, ?refine_2.mk.refine_1⟩, den_mem := ⋯ } * HomogeneousLocalization.mk { deg := m • (i - n), num := ⟨(proj 𝒜 (i - n)) x ^ m, ⋯⟩, den := ⟨f ^ (i - n), ?refine_2.mk.refine_2⟩, den_mem := ⋯ } ⊢ HomogeneousLocalization.mk { deg := m * i, num := ⟨(if n ≤ i then a * ↑(((decompose 𝒜) x) (i - n)) else 0) ^ m, ⋯⟩, den := ⟨f ^ i, ⋯⟩, den_mem := ⋯ } ∈ q.asIdeal case refine_2.mk.refine_1 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ ⊢ f ^ n ∈ 𝒜 (m • n) case refine_2.mk.refine_2 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ ⊢ f ^ (i - n) ∈ 𝒜 (m • (i - n))
a6e1542c5c7977fc
Real.IsConjExponent.inv_add_inv_conj_ennreal
Mathlib/Data/Real/ConjExponents.lean
theorem inv_add_inv_conj_ennreal : (ENNReal.ofReal p)⁻¹ + (ENNReal.ofReal q)⁻¹ = 1
p q : ℝ h : p.IsConjExponent q ⊢ (ENNReal.ofReal p)⁻¹ + (ENNReal.ofReal q)⁻¹ = 1
rw [← ENNReal.ofReal_one, ← ENNReal.ofReal_inv_of_pos h.pos, ← ENNReal.ofReal_inv_of_pos h.symm.pos, ← ENNReal.ofReal_add h.inv_nonneg h.symm.inv_nonneg, h.inv_add_inv_conj]
no goals
46c010c443c7a174
NormedField.completeSpace_iff_isComplete_closedBall
Mathlib/Analysis/Normed/Field/Lemmas.lean
lemma NormedField.completeSpace_iff_isComplete_closedBall {K : Type*} [NormedField K] : CompleteSpace K ↔ IsComplete (Metric.closedBall 0 1 : Set K)
K : Type u_4 inst✝ : NormedField K ⊢ CompleteSpace K ↔ IsComplete (Metric.closedBall 0 1)
constructor <;> intro h
case mp K : Type u_4 inst✝ : NormedField K h : CompleteSpace K ⊢ IsComplete (Metric.closedBall 0 1) case mpr K : Type u_4 inst✝ : NormedField K h : IsComplete (Metric.closedBall 0 1) ⊢ CompleteSpace K
a36770b11a5c8086
Turing.BlankExtends.above_of_le
Mathlib/Computability/Tape.lean
theorem BlankExtends.above_of_le {Γ} [Inhabited Γ] {l l₁ l₂ : List Γ} : BlankExtends l₁ l → BlankExtends l₂ l → l₁.length ≤ l₂.length → BlankExtends l₁ l₂
case h Γ : Type u_1 inst✝ : Inhabited Γ l₁ l₂ : List Γ i j : ℕ e : l₁ ++ List.replicate i default = l₂ ++ List.replicate j default h : l₁.length ≤ l₂.length ⊢ l₂ = l₁ ++ List.replicate (i - j) default
refine List.append_cancel_right (e.symm.trans ?_)
case h Γ : Type u_1 inst✝ : Inhabited Γ l₁ l₂ : List Γ i j : ℕ e : l₁ ++ List.replicate i default = l₂ ++ List.replicate j default h : l₁.length ≤ l₂.length ⊢ l₁ ++ List.replicate i default = l₁ ++ List.replicate (i - j) default ++ List.replicate j default
5c9b524679a1747d
Dynamics.netMaxcard_le_coverMincard
Mathlib/Dynamics/TopologicalEntropy/NetEntropy.lean
lemma netMaxcard_le_coverMincard (T : X → X) (F : Set X) {U : Set (X × X)} (U_symm : SymmetricRel U) (n : ℕ) : netMaxcard T F U n ≤ coverMincard T F U n
X : Type u_1 T : X → X F : Set X U : Set (X × X) U_symm : SymmetricRel U n : ℕ ⊢ netMaxcard T F U n ≤ coverMincard T F U n
rcases eq_top_or_lt_top (coverMincard T F U n) with h | h
case inl X : Type u_1 T : X → X F : Set X U : Set (X × X) U_symm : SymmetricRel U n : ℕ h : coverMincard T F U n = ⊤ ⊢ netMaxcard T F U n ≤ coverMincard T F U n case inr X : Type u_1 T : X → X F : Set X U : Set (X × X) U_symm : SymmetricRel U n : ℕ h : coverMincard T F U n < ⊤ ⊢ netMaxcard T F U n ≤ coverMincard T F U n
77281fcc433e4e06
VitaliFamily.withDensity_le_mul
Mathlib/MeasureTheory/Covering/Differentiation.lean
theorem withDensity_le_mul {s : Set α} (hs : MeasurableSet s) {t : ℝ≥0} (ht : 1 < t) : μ.withDensity (v.limRatioMeas hρ) s ≤ (t : ℝ≥0∞) ^ 2 * ρ s
α : Type u_1 inst✝⁴ : PseudoMetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ s : Set α hs : MeasurableSet s t : ℝ≥0 ht : 1 < t t_ne_zero' : t ≠ 0 t_ne_zero : ↑t ≠ 0 ν : Measure α := μ.withDensity (v.limRatioMeas hρ) f : α → ℝ≥0∞ := v.limRatioMeas hρ f_meas : Measurable f A : ν (s ∩ f ⁻¹' {0}) ≤ (↑t ^ 2 • ρ) (s ∩ f ⁻¹' {0}) B : ν (s ∩ f ⁻¹' {⊤}) ≤ (↑t ^ 2 • ρ) (s ∩ f ⁻¹' {⊤}) n : ℤ I : Set ℝ≥0∞ := Ico (↑t ^ n) (↑t ^ (n + 1)) M : MeasurableSet (s ∩ f ⁻¹' I) ⊢ ∫⁻ (a : α) in s ∩ f ⁻¹' Ico (↑t ^ n) (↑t ^ (n + 1)), v.limRatioMeas hρ a ∂μ ≤ (↑t ^ 2 • ρ) (s ∩ f ⁻¹' Ico (↑t ^ n) (↑t ^ (n + 1)))
calc (∫⁻ x in s ∩ f ⁻¹' I, f x ∂μ) ≤ ∫⁻ _ in s ∩ f ⁻¹' I, (t : ℝ≥0∞) ^ (n + 1) ∂μ := lintegral_mono_ae ((ae_restrict_iff' M).2 (Eventually.of_forall fun x hx => hx.2.2.le)) _ = (t : ℝ≥0∞) ^ (n + 1) * μ (s ∩ f ⁻¹' I) := by simp only [lintegral_const, MeasurableSet.univ, Measure.restrict_apply, univ_inter] _ = (t : ℝ≥0∞) ^ (2 : ℤ) * ((t : ℝ≥0∞) ^ (n - 1) * μ (s ∩ f ⁻¹' I)) := by rw [← mul_assoc, ← ENNReal.zpow_add t_ne_zero ENNReal.coe_ne_top] congr 2 abel _ ≤ (t : ℝ≥0∞) ^ (2 : ℤ) * ρ (s ∩ f ⁻¹' I) := by gcongr rw [← ENNReal.coe_zpow (zero_lt_one.trans ht).ne'] apply v.mul_measure_le_of_subset_lt_limRatioMeas hρ intro x hx apply lt_of_lt_of_le _ hx.2.1 rw [← ENNReal.coe_zpow (zero_lt_one.trans ht).ne', ENNReal.coe_lt_coe, sub_eq_add_neg, zpow_add₀ t_ne_zero'] conv_rhs => rw [← mul_one (t ^ n)] gcongr rw [zpow_neg_one] exact inv_lt_one_of_one_lt₀ ht
no goals
5a46bd1d651b9448
MeasureTheory.Measure.measure_preimage_of_map_eq_self
Mathlib/MeasureTheory/Measure/Map.lean
/-- If `map f μ = μ`, then the measure of the preimage of any null measurable set `s` is equal to the measure of `s`. Note that this lemma does not assume (a.e.) measurability of `f`. -/ lemma measure_preimage_of_map_eq_self {f : α → α} (hf : map f μ = μ) {s : Set α} (hs : NullMeasurableSet s μ) : μ (f ⁻¹' s) = μ s
α : Type u_1 mα : MeasurableSpace α μ : Measure α f : α → α hf : map f μ = μ s : Set α hs : NullMeasurableSet s μ hfm : AEMeasurable f μ ⊢ μ (f ⁻¹' s) = μ s
rw [← map_apply₀ hfm, hf]
α : Type u_1 mα : MeasurableSpace α μ : Measure α f : α → α hf : map f μ = μ s : Set α hs : NullMeasurableSet s μ hfm : AEMeasurable f μ ⊢ NullMeasurableSet s (map f μ)
1342c2772e8df2cf
AlgebraicGeometry.Scheme.Cover.fromGlued_injective
Mathlib/AlgebraicGeometry/Gluing.lean
theorem fromGlued_injective : Function.Injective 𝒰.fromGlued.base
case intro.intro.intro.intro X : Scheme 𝒰 : X.OpenCover i : (gluedCover 𝒰).J x : ↑↑((gluedCover 𝒰).U i).toPresheafedSpace j : (gluedCover 𝒰).J y : ↑↑((gluedCover 𝒰).U j).toPresheafedSpace h : (ConcreteCategory.hom (𝒰.map i).base) x = (ConcreteCategory.hom (𝒰.map j).base) y e : (TopCat.pullbackCone (forgetToTop.map (𝒰.map i)) (forgetToTop.map (𝒰.map j))).pt ≅ (PullbackCone.mk (forgetToTop.map (pullback.fst (𝒰.map i) (𝒰.map j))) (forgetToTop.map (pullback.snd (𝒰.map i) (𝒰.map j))) ⋯).pt := (TopCat.pullbackConeIsLimit (forgetToTop.map (𝒰.map i)) (forgetToTop.map (𝒰.map j))).conePointUniqueUpToIso (isLimitOfHasPullbackOfPreservesLimit forgetToTop (𝒰.map i) (𝒰.map j)) ⊢ (ConcreteCategory.hom ((gluedCover 𝒰).ι i).base) x = (ConcreteCategory.hom ((gluedCover 𝒰).ι j).base) y
rw [𝒰.gluedCover.ι_eq_iff]
case intro.intro.intro.intro X : Scheme 𝒰 : X.OpenCover i : (gluedCover 𝒰).J x : ↑↑((gluedCover 𝒰).U i).toPresheafedSpace j : (gluedCover 𝒰).J y : ↑↑((gluedCover 𝒰).U j).toPresheafedSpace h : (ConcreteCategory.hom (𝒰.map i).base) x = (ConcreteCategory.hom (𝒰.map j).base) y e : (TopCat.pullbackCone (forgetToTop.map (𝒰.map i)) (forgetToTop.map (𝒰.map j))).pt ≅ (PullbackCone.mk (forgetToTop.map (pullback.fst (𝒰.map i) (𝒰.map j))) (forgetToTop.map (pullback.snd (𝒰.map i) (𝒰.map j))) ⋯).pt := (TopCat.pullbackConeIsLimit (forgetToTop.map (𝒰.map i)) (forgetToTop.map (𝒰.map j))).conePointUniqueUpToIso (isLimitOfHasPullbackOfPreservesLimit forgetToTop (𝒰.map i) (𝒰.map j)) ⊢ (gluedCover 𝒰).Rel ⟨i, x⟩ ⟨j, y⟩
e5353fbe9b3f7ecf
Urysohns.CU.continuous_lim
Mathlib/Topology/UrysohnsLemma.lean
theorem continuous_lim (c : CU P) : Continuous c.lim
case h X : Type u_1 inst✝ : TopologicalSpace X P : Set X → Prop h0 : 0 < 2⁻¹ h1234 : 2⁻¹ < 3 / 4 h1 : 3 / 4 < 1 x : X x✝ : True n : ℕ ihn : ∀ (c : CU P), ∀ᶠ (x_1 : X) in 𝓝 x, dist (c.lim x_1) (c.lim x) ≤ (3 / 4) ^ n c : CU P hxl : x ∈ c.left.U a✝ : X hyl : a✝ ∈ c.left.U hyd : dist (c.left.lim a✝) (c.left.lim x) ≤ (3 / 4) ^ n ⊢ (dist (c.left.lim a✝) (c.left.lim x) + dist 0 0) / 2 ≤ 3 / 4 * (3 / 4) ^ n
rw [dist_self, add_zero, div_eq_inv_mul]
case h X : Type u_1 inst✝ : TopologicalSpace X P : Set X → Prop h0 : 0 < 2⁻¹ h1234 : 2⁻¹ < 3 / 4 h1 : 3 / 4 < 1 x : X x✝ : True n : ℕ ihn : ∀ (c : CU P), ∀ᶠ (x_1 : X) in 𝓝 x, dist (c.lim x_1) (c.lim x) ≤ (3 / 4) ^ n c : CU P hxl : x ∈ c.left.U a✝ : X hyl : a✝ ∈ c.left.U hyd : dist (c.left.lim a✝) (c.left.lim x) ≤ (3 / 4) ^ n ⊢ 2⁻¹ * dist (c.left.lim a✝) (c.left.lim x) ≤ 3 / 4 * (3 / 4) ^ n
680ff52981894f6e
HomologicalComplex.homotopyCofiber.descSigma_ext_iff
Mathlib/Algebra/Homology/HomotopyCofiber.lean
lemma descSigma_ext_iff {φ : F ⟶ G} {K : HomologicalComplex C c} (x y : Σ (α : G ⟶ K), Homotopy (φ ≫ α) 0) : x = y ↔ x.1 = y.1 ∧ (∀ (i j : ι) (_ : c.Rel j i), x.2.hom i j = y.2.hom i j)
case mpr C : Type u_1 inst✝² : Category.{u_3, u_1} C inst✝¹ : Preadditive C ι : Type u_2 c : ComplexShape ι F G : HomologicalComplex C c inst✝ : DecidableRel c.Rel φ : F ⟶ G K : HomologicalComplex C c x y : (α : G ⟶ K) × Homotopy (φ ≫ α) 0 ⊢ (x.fst = y.fst ∧ ∀ (i j : ι), c.Rel j i → x.snd.hom i j = y.snd.hom i j) → x = y
obtain ⟨x₁, x₂⟩ := x
case mpr.mk C : Type u_1 inst✝² : Category.{u_3, u_1} C inst✝¹ : Preadditive C ι : Type u_2 c : ComplexShape ι F G : HomologicalComplex C c inst✝ : DecidableRel c.Rel φ : F ⟶ G K : HomologicalComplex C c y : (α : G ⟶ K) × Homotopy (φ ≫ α) 0 x₁ : G ⟶ K x₂ : Homotopy (φ ≫ x₁) 0 ⊢ (⟨x₁, x₂⟩.fst = y.fst ∧ ∀ (i j : ι), c.Rel j i → ⟨x₁, x₂⟩.snd.hom i j = y.snd.hom i j) → ⟨x₁, x₂⟩ = y
515f5daed7a49791
TopCat.Sheaf.eq_of_locally_eq
Mathlib/Topology/Sheaves/SheafCondition/UniqueGluing.lean
theorem eq_of_locally_eq (s t : ToType (F.1.obj (op (iSup U)))) (h : ∀ i, F.1.map (Opens.leSupr U i).op s = F.1.map (Opens.leSupr U i).op t) : s = t
case a C : Type u inst✝⁵ : Category.{v, u} C FC : C → C → Type u_1 CC : C → Type v inst✝⁴ : (X Y : C) → FunLike (FC X Y) (CC X) (CC Y) inst✝³ : ConcreteCategory C FC inst✝² : HasLimits C inst✝¹ : HasForget.forget.ReflectsIsomorphisms inst✝ : PreservesLimits HasForget.forget X : TopCat F : Sheaf C X ι : Type v U : ι → Opens ↑X s t : ToType (F.val.obj (op (iSup U))) h : ∀ (i : ι), (ConcreteCategory.hom (F.val.map (leSupr U i).op)) s = (ConcreteCategory.hom (F.val.map (leSupr U i).op)) t sf : (i : ι) → ToType (F.val.obj (op (U i))) := fun i => (ConcreteCategory.hom (F.val.map (leSupr U i).op)) s sf_compatible : IsCompatible F.val U sf gl : ToType (F.val.obj (op (iSup U))) gl_uniq : ∀ (y : ToType (F.val.obj (op (iSup U)))), (fun s => IsGluing F.val U sf s) y → y = gl ⊢ IsGluing F.val U sf s
intro i
case a C : Type u inst✝⁵ : Category.{v, u} C FC : C → C → Type u_1 CC : C → Type v inst✝⁴ : (X Y : C) → FunLike (FC X Y) (CC X) (CC Y) inst✝³ : ConcreteCategory C FC inst✝² : HasLimits C inst✝¹ : HasForget.forget.ReflectsIsomorphisms inst✝ : PreservesLimits HasForget.forget X : TopCat F : Sheaf C X ι : Type v U : ι → Opens ↑X s t : ToType (F.val.obj (op (iSup U))) h : ∀ (i : ι), (ConcreteCategory.hom (F.val.map (leSupr U i).op)) s = (ConcreteCategory.hom (F.val.map (leSupr U i).op)) t sf : (i : ι) → ToType (F.val.obj (op (U i))) := fun i => (ConcreteCategory.hom (F.val.map (leSupr U i).op)) s sf_compatible : IsCompatible F.val U sf gl : ToType (F.val.obj (op (iSup U))) gl_uniq : ∀ (y : ToType (F.val.obj (op (iSup U)))), (fun s => IsGluing F.val U sf s) y → y = gl i : ι ⊢ (ConcreteCategory.hom (F.val.map (leSupr U i).op)) s = sf i
8510ff05c576a104
Polynomial.Monic.natDegree_mul'
Mathlib/Algebra/Polynomial/Monic.lean
theorem natDegree_mul' (hp : p.Monic) (hq : q ≠ 0) : (p * q).natDegree = p.natDegree + q.natDegree
R : Type u inst✝ : Semiring R p q : R[X] hp : p.Monic hq : q ≠ 0 ⊢ p.leadingCoeff * q.leadingCoeff ≠ 0
simpa [hp.leadingCoeff, leadingCoeff_ne_zero]
no goals
20f0617818be8c81
Metric.uniformity_edist_aux
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
theorem Metric.uniformity_edist_aux {α} (d : α → α → ℝ≥0) : ⨅ ε > (0 : ℝ), 𝓟 { p : α × α | ↑(d p.1 p.2) < ε } = ⨅ ε > (0 : ℝ≥0∞), 𝓟 { p : α × α | ↑(d p.1 p.2) < ε }
α : Type u_3 d : α → α → ℝ≥0 ⊢ ⨅ ε, ⨅ (_ : ε > 0), 𝓟 {p | ↑(d p.1 p.2) < ε} = ⨅ ε, ⨅ (_ : ε > 0), 𝓟 {p | ↑(d p.1 p.2) < ε}
simp only [le_antisymm_iff, le_iInf_iff, le_principal_iff]
α : Type u_3 d : α → α → ℝ≥0 ⊢ (∀ i > 0, {p | ↑(d p.1 p.2) < i} ∈ ⨅ ε, ⨅ (_ : ε > 0), 𝓟 {p | ↑(d p.1 p.2) < ε}) ∧ ∀ i > 0, {p | ↑(d p.1 p.2) < i} ∈ ⨅ ε, ⨅ (_ : ε > 0), 𝓟 {p | ↑(d p.1 p.2) < ε}
ab44719fcc963446
Nat.not_mem_of_lt_sInf
Mathlib/Data/Nat/Lattice.lean
theorem not_mem_of_lt_sInf {s : Set ℕ} {m : ℕ} (hm : m < sInf s) : m ∉ s
case inr s : Set ℕ m : ℕ h : s.Nonempty hm : m < Nat.find h ⊢ m ∉ s
exact Nat.find_min h hm
no goals
190805e255829153
InnerProductGeometry.angle_sub_eq_arcsin_of_inner_eq_zero
Mathlib/Geometry/Euclidean/Angle/Unoriented/RightAngle.lean
theorem angle_sub_eq_arcsin_of_inner_eq_zero {x y : V} (h : ⟪x, y⟫ = 0) (h0 : x ≠ 0 ∨ y ≠ 0) : angle x (x - y) = Real.arcsin (‖y‖ / ‖x - y‖)
V : Type u_1 inst✝¹ : NormedAddCommGroup V inst✝ : InnerProductSpace ℝ V x y : V h : inner x (-y) = 0 h0 : x ≠ 0 ∨ y ≠ 0 ⊢ angle x (x - y) = Real.arcsin (‖y‖ / ‖x - y‖)
rw [or_comm, ← neg_ne_zero, or_comm] at h0
V : Type u_1 inst✝¹ : NormedAddCommGroup V inst✝ : InnerProductSpace ℝ V x y : V h : inner x (-y) = 0 h0 : x ≠ 0 ∨ -y ≠ 0 ⊢ angle x (x - y) = Real.arcsin (‖y‖ / ‖x - y‖)
621f12afbb27704c
IsFractional.sup
Mathlib/RingTheory/FractionalIdeal/Basic.lean
theorem _root_.IsFractional.sup {I J : Submodule R P} : IsFractional S I → IsFractional S J → IsFractional S (I ⊔ J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by rcases mem_sup.mp hb with ⟨bI, hbI, bJ, hbJ, rfl⟩ rw [smul_add] apply isInteger_add · rw [mul_smul, smul_comm] exact isInteger_smul (hI bI hbI) · rw [mul_smul] exact isInteger_smul (hJ bJ hbJ)⟩
case intro.intro.intro.intro.ha R : Type u_1 inst✝² : CommRing R S : Submonoid R P : Type u_2 inst✝¹ : CommRing P inst✝ : Algebra R P I J : Submodule R P aI : R haI : aI ∈ S hI : ∀ b ∈ I, IsInteger R (aI • b) aJ : R haJ : aJ ∈ S hJ : ∀ b ∈ J, IsInteger R (aJ • b) bI : P hbI : bI ∈ I bJ : P hbJ : bJ ∈ J hb : bI + bJ ∈ I ⊔ J ⊢ IsInteger R (aJ • aI • bI)
exact isInteger_smul (hI bI hbI)
no goals
5054dda448114ea2
Multiset.mem_powersetCardAux
Mathlib/Data/Multiset/Powerset.lean
theorem mem_powersetCardAux {n} {l : List α} {s} : s ∈ powersetCardAux n l ↔ s ≤ ↑l ∧ card s = n := Quotient.inductionOn s <| by simp only [quot_mk_to_coe, powersetCardAux_eq_map_coe, List.mem_map, mem_sublistsLen, coe_eq_coe, coe_le, Subperm, exists_prop, coe_card] exact fun l₁ => ⟨fun ⟨l₂, ⟨s, e⟩, p⟩ => ⟨⟨_, p, s⟩, p.symm.length_eq.trans e⟩, fun ⟨⟨l₂, p, s⟩, e⟩ => ⟨_, ⟨s, p.length_eq.trans e⟩, p⟩⟩
α : Type u_1 n : ℕ l : List α s : Multiset α ⊢ ∀ (a : List α), (∃ a_1, (a_1 <+ l ∧ a_1.length = n) ∧ a_1 ~ a) ↔ (∃ l_1, l_1 ~ a ∧ l_1 <+ l) ∧ a.length = n
exact fun l₁ => ⟨fun ⟨l₂, ⟨s, e⟩, p⟩ => ⟨⟨_, p, s⟩, p.symm.length_eq.trans e⟩, fun ⟨⟨l₂, p, s⟩, e⟩ => ⟨_, ⟨s, p.length_eq.trans e⟩, p⟩⟩
no goals
305316f1982067af
Nat.div_eq_sub_mod_div
Mathlib/Data/Nat/Init.lean
lemma div_eq_sub_mod_div : m / n = (m - m % n) / n
m n : ℕ ⊢ m / n = (m - m % n) / n
obtain rfl | hn := n.eq_zero_or_pos
case inl m : ℕ ⊢ m / 0 = (m - m % 0) / 0 case inr m n : ℕ hn : n > 0 ⊢ m / n = (m - m % n) / n
946979a986a02452
PFunctor.M.iselect_eq_default
Mathlib/Data/PFunctor/Univariate/M.lean
theorem iselect_eq_default [DecidableEq F.A] [Inhabited (M F)] (ps : Path F) (x : M F) (h : ¬IsPath ps x) : iselect ps x = head default
case pos.h F : PFunctor.{u} inst✝¹ : DecidableEq F.A inst✝ : Inhabited F.M ps_tail : List F.Idx ps_ih : ∀ (x : F.M), ¬IsPath ps_tail x → (isubtree ps_tail x).head = default.head a : F.A i : F.B a x_f : F.B a → F.M h : ¬IsPath (⟨a, i⟩ :: ps_tail) (M.mk ⟨a, x_f⟩) ⊢ ¬IsPath ps_tail (x_f (cast ⋯ i))
intro h'
case pos.h F : PFunctor.{u} inst✝¹ : DecidableEq F.A inst✝ : Inhabited F.M ps_tail : List F.Idx ps_ih : ∀ (x : F.M), ¬IsPath ps_tail x → (isubtree ps_tail x).head = default.head a : F.A i : F.B a x_f : F.B a → F.M h : ¬IsPath (⟨a, i⟩ :: ps_tail) (M.mk ⟨a, x_f⟩) h' : IsPath ps_tail (x_f (cast ⋯ i)) ⊢ False
6bd23acfd494ff8d
ProbabilityTheory.measure_limsup_eq_one
Mathlib/Probability/BorelCantelli.lean
theorem measure_limsup_eq_one {s : ℕ → Set Ω} (hsm : ∀ n, MeasurableSet (s n)) (hs : iIndepSet s μ) (hs' : (∑' n, μ (s n)) = ∞) : μ (limsup s atTop) = 1
Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω s : ℕ → Set Ω hsm : ∀ (n : ℕ), MeasurableSet (s n) hs : iIndepSet s μ hs' : ∑' (n : ℕ), μ (s n) = ⊤ this : IsProbabilityMeasure μ ⊢ μ {ω | Tendsto (fun n => ∑ k ∈ Finset.range n, (μ[(s (k + 1)).indicator 1|↑(filtrationOfSet hsm) k]) ω) atTop atTop} = 1
suffices {ω | Tendsto (fun n => ∑ k ∈ Finset.range n, (μ[(s (k + 1)).indicator (1 : Ω → ℝ)|filtrationOfSet hsm k]) ω) atTop atTop} =ᵐ[μ] Set.univ by rw [measure_congr this, measure_univ]
Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω s : ℕ → Set Ω hsm : ∀ (n : ℕ), MeasurableSet (s n) hs : iIndepSet s μ hs' : ∑' (n : ℕ), μ (s n) = ⊤ this : IsProbabilityMeasure μ ⊢ {ω | Tendsto (fun n => ∑ k ∈ Finset.range n, (μ[(s (k + 1)).indicator 1|↑(filtrationOfSet hsm) k]) ω) atTop atTop} =ᶠ[ae μ] Set.univ
b8c76ecaf1a3d1c2
LSeries_eventually_eq_zero_iff'
Mathlib/NumberTheory/LSeries/Injectivity.lean
/-- The `LSeries` of `f` is zero for large real arguments if and only if either `f n = 0` for all `n ≠ 0` or the L-series converges nowhere. -/ lemma LSeries_eventually_eq_zero_iff' {f : ℕ → ℂ} : (fun x : ℝ ↦ LSeries f x) =ᶠ[atTop] 0 ↔ (∀ n ≠ 0, f n = 0) ∨ abscissaOfAbsConv f = ⊤
case neg.refine_2 f : ℕ → ℂ h : ¬abscissaOfAbsConv f = ⊤ H : ∀ (n : ℕ), ¬n = 0 → f n = 0 x : ℝ ⊢ (fun x => LSeries f ↑x) x = 0 x
simp [LSeries_congr x fun {n} ↦ H n, show (fun _ : ℕ ↦ (0 : ℂ)) = 0 from rfl]
no goals
7103bb783fd652c6
HasCompactSupport.contDiff_convolution_right
Mathlib/Analysis/Convolution.lean
theorem _root_.HasCompactSupport.contDiff_convolution_right {n : ℕ∞} (hcg : HasCompactSupport g) (hf : LocallyIntegrable f μ) (hg : ContDiff 𝕜 n g) : ContDiff 𝕜 n (f ⋆[L, μ] g)
𝕜 : Type u𝕜 G : Type uG E : Type uE E' : Type uE' F : Type uF inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : NormedAddCommGroup E' inst✝⁹ : NormedAddCommGroup F f : G → E g : G → E' inst✝⁸ : RCLike 𝕜 inst✝⁷ : NormedSpace 𝕜 E inst✝⁶ : NormedSpace 𝕜 E' inst✝⁵ : NormedSpace ℝ F inst✝⁴ : NormedSpace 𝕜 F inst✝³ : MeasurableSpace G inst✝² : NormedAddCommGroup G inst✝¹ : BorelSpace G inst✝ : NormedSpace 𝕜 G μ : Measure G L : E →L[𝕜] E' →L[𝕜] F n : ℕ∞ hcg : HasCompactSupport g hf : LocallyIntegrable f μ hg : ContDiff 𝕜 (↑n) g ⊢ ContDiff 𝕜 (↑n) (f ⋆[L, μ] g)
rcases exists_compact_iff_hasCompactSupport.2 hcg with ⟨k, hk, h'k⟩
case intro.intro 𝕜 : Type u𝕜 G : Type uG E : Type uE E' : Type uE' F : Type uF inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : NormedAddCommGroup E' inst✝⁹ : NormedAddCommGroup F f : G → E g : G → E' inst✝⁸ : RCLike 𝕜 inst✝⁷ : NormedSpace 𝕜 E inst✝⁶ : NormedSpace 𝕜 E' inst✝⁵ : NormedSpace ℝ F inst✝⁴ : NormedSpace 𝕜 F inst✝³ : MeasurableSpace G inst✝² : NormedAddCommGroup G inst✝¹ : BorelSpace G inst✝ : NormedSpace 𝕜 G μ : Measure G L : E →L[𝕜] E' →L[𝕜] F n : ℕ∞ hcg : HasCompactSupport g hf : LocallyIntegrable f μ hg : ContDiff 𝕜 (↑n) g k : Set G hk : IsCompact k h'k : ∀ x ∉ k, g x = 0 ⊢ ContDiff 𝕜 (↑n) (f ⋆[L, μ] g)
e4b9034bdd5be77b
AlgebraicTopology.DoldKan.HigherFacesVanish.comp_Hσ_eq
Mathlib/AlgebraicTopology/DoldKan/Faces.lean
theorem comp_Hσ_eq {Y : C} {n a q : ℕ} {φ : Y ⟶ X _⦋n + 1⦌} (v : HigherFacesVanish q φ) (hnaq : n = a + q) : φ ≫ (Hσ q).f (n + 1) = -φ ≫ X.δ ⟨a + 1, Nat.succ_lt_succ (Nat.lt_succ_iff.mpr (Nat.le.intro hnaq.symm))⟩ ≫ X.σ ⟨a, Nat.lt_succ_iff.mpr (Nat.le.intro hnaq.symm)⟩
C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X _⦋n + 1⦌ v : HigherFacesVanish q φ hnaq : n = a + q hnaq_shift : ∀ (d : ℕ), n + d = a + d + q ⊢ ∑ x : Fin (n + 2), ((-1) ^ a * (-1) ^ ↑x) • (φ ≫ X.δ x) ≫ X.σ ⟨a, ⋯⟩ + ∑ x : Fin (n + 1 + 2), ((-1) ^ ↑x * (-1) ^ (a + 1)) • (φ ≫ X.σ ⟨a + 1, ⋯⟩) ≫ X.δ x = -(φ ≫ X.δ ⟨a + 1, ⋯⟩) ≫ X.σ ⟨a, ⋯⟩
rw [← Fin.sum_congr' _ (hnaq_shift 2).symm, Fin.sum_trunc]
C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X _⦋n + 1⦌ v : HigherFacesVanish q φ hnaq : n = a + q hnaq_shift : ∀ (d : ℕ), n + d = a + d + q ⊢ ∑ i : Fin (a + 2), ((-1) ^ a * (-1) ^ ↑(Fin.cast ⋯ (Fin.castLE ⋯ i))) • (φ ≫ X.δ (Fin.cast ⋯ (Fin.castLE ⋯ i))) ≫ X.σ ⟨a, ⋯⟩ + ∑ x : Fin (n + 1 + 2), ((-1) ^ ↑x * (-1) ^ (a + 1)) • (φ ≫ X.σ ⟨a + 1, ⋯⟩) ≫ X.δ x = -(φ ≫ X.δ ⟨a + 1, ⋯⟩) ≫ X.σ ⟨a, ⋯⟩ case hf C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X _⦋n + 1⦌ v : HigherFacesVanish q φ hnaq : n = a + q hnaq_shift : ∀ (d : ℕ), n + d = a + d + q ⊢ ∀ (j : Fin q), ((-1) ^ a * (-1) ^ ↑(Fin.cast ⋯ (Fin.natAdd (a + 2) j))) • (φ ≫ X.δ (Fin.cast ⋯ (Fin.natAdd (a + 2) j))) ≫ X.σ ⟨a, ⋯⟩ = 0
964779d74b03b839
Real.exists_isGLB
Mathlib/Data/Real/Archimedean.lean
theorem exists_isGLB (hne : s.Nonempty) (hbdd : BddBelow s) : ∃ x, IsGLB s x
s : Set ℝ hne : s.Nonempty hbdd : BddBelow s hne' : (-s).Nonempty ⊢ ∃ x, IsGLB s x
have hbdd' : BddAbove (-s) := bddAbove_neg.mpr hbdd
s : Set ℝ hne : s.Nonempty hbdd : BddBelow s hne' : (-s).Nonempty hbdd' : BddAbove (-s) ⊢ ∃ x, IsGLB s x
85bc11b69c86eaa9
Matrix.det_updateCol_eq_zero
Mathlib/LinearAlgebra/Matrix/Determinant/Basic.lean
theorem det_updateCol_eq_zero (h : i ≠ j) : (M.updateCol j (fun k ↦ M k i)).det = 0 := det_zero_of_column_eq h (by simp [h])
n : Type u_2 inst✝² : DecidableEq n inst✝¹ : Fintype n R : Type v inst✝ : CommRing R M : Matrix n n R i j : n h : i ≠ j ⊢ ∀ (k : n), M.updateCol j (fun k => M k i) k i = M.updateCol j (fun k => M k i) k j
simp [h]
no goals
160cc2fe40b70d2b
AlgebraicGeometry.RingedSpace.isUnit_res_basicOpen
Mathlib/Geometry/RingedSpace/Basic.lean
theorem isUnit_res_basicOpen {U : Opens X} (f : X.presheaf.obj (op U)) : IsUnit (X.presheaf.map (@homOfLE (Opens X) _ _ _ (X.basicOpen_le f)).op f)
case h.intro X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op U)) x : ↑↑X.toPresheafedSpace hxU : x ∈ U hx : IsUnit ((ConcreteCategory.hom (X.presheaf.germ U x hxU)) f) ⊢ IsUnit ((ConcreteCategory.hom (X.presheaf.germ (X.basicOpen f) x ⋯)) ((ConcreteCategory.hom (X.presheaf.map (homOfLE ⋯).op)) f))
convert hx
case h.e'_3 X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op U)) x : ↑↑X.toPresheafedSpace hxU : x ∈ U hx : IsUnit ((ConcreteCategory.hom (X.presheaf.germ U x hxU)) f) ⊢ (ConcreteCategory.hom (X.presheaf.germ (X.basicOpen f) x ⋯)) ((ConcreteCategory.hom (X.presheaf.map (homOfLE ⋯).op)) f) = (ConcreteCategory.hom (X.presheaf.germ U x hxU)) f
3112bb2ee47e3190
Multiset.toFinset_replicate
Mathlib/Data/Finset/Basic.lean
@[simp] lemma toFinset_replicate (n : ℕ) (a : α) : (replicate n a).toFinset = if n = 0 then ∅ else {a}
α : Type u_1 inst✝ : DecidableEq α n : ℕ a : α ⊢ (replicate n a).toFinset = if n = 0 then ∅ else {a}
ext x
case h α : Type u_1 inst✝ : DecidableEq α n : ℕ a x : α ⊢ x ∈ (replicate n a).toFinset ↔ x ∈ if n = 0 then ∅ else {a}
aa7f47b181c09eaf
InnerProductGeometry.sin_angle_add_of_inner_eq_zero
Mathlib/Geometry/Euclidean/Angle/Unoriented/RightAngle.lean
theorem sin_angle_add_of_inner_eq_zero {x y : V} (h : ⟪x, y⟫ = 0) (h0 : x ≠ 0 ∨ y ≠ 0) : Real.sin (angle x (x + y)) = ‖y‖ / ‖x + y‖
V : Type u_1 inst✝¹ : NormedAddCommGroup V inst✝ : InnerProductSpace ℝ V x y : V h : inner x y = 0 h0 : x ≠ 0 ∨ y ≠ 0 ⊢ Real.sin (angle x (x + y)) = ‖y‖ / ‖x + y‖
rw [angle_add_eq_arcsin_of_inner_eq_zero h h0, Real.sin_arcsin (le_trans (by norm_num) (div_nonneg (norm_nonneg _) (norm_nonneg _))) (div_le_one_of_le₀ _ (norm_nonneg _))]
V : Type u_1 inst✝¹ : NormedAddCommGroup V inst✝ : InnerProductSpace ℝ V x y : V h : inner x y = 0 h0 : x ≠ 0 ∨ y ≠ 0 ⊢ ‖y‖ ≤ ‖x + y‖
6afea2f3ae99dcc9
MeasureTheory.SimpleFunc.setToSimpleFunc_add
Mathlib/MeasureTheory/Integral/SetToL1.lean
theorem setToSimpleFunc_add (T : Set α → E →L[ℝ] F) (h_add : FinMeasAdditive μ T) {f g : α →ₛ E} (hf : Integrable f μ) (hg : Integrable g μ) : setToSimpleFunc T (f + g) = setToSimpleFunc T f + setToSimpleFunc T g := have hp_pair : Integrable (f.pair g) μ := integrable_pair hf hg calc setToSimpleFunc T (f + g) = ∑ x ∈ (pair f g).range, T (pair f g ⁻¹' {x}) (x.fst + x.snd)
α : Type u_1 E : Type u_2 F : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace ℝ F m : MeasurableSpace α μ : Measure α T : Set α → E →L[ℝ] F h_add : FinMeasAdditive μ T f g : α →ₛ E hf : Integrable (⇑f) μ hg : Integrable (⇑g) μ hp_pair : Integrable (⇑(f.pair g)) μ ⊢ ∑ x ∈ (f.pair g).range, (T (⇑(f.pair g) ⁻¹' {x})) x.1 + ∑ x ∈ (f.pair g).range, (T (⇑(f.pair g) ⁻¹' {x})) x.2 = setToSimpleFunc T (map Prod.fst (f.pair g)) + setToSimpleFunc T (map Prod.snd (f.pair g))
rw [map_setToSimpleFunc T h_add hp_pair Prod.snd_zero, map_setToSimpleFunc T h_add hp_pair Prod.fst_zero]
no goals
0c7344c6a33364aa
Fin.card_Ioc
Mathlib/Order/Interval/Finset/Fin.lean
@[simp] lemma card_Ioc : #(Ioc a b) = b - a
n : ℕ a b : Fin n ⊢ #(Ioc a b) = ↑b - ↑a
rw [← Nat.card_Ioc, ← map_valEmbedding_Ioc, card_map]
no goals
0d1d3ab707cebe97
Ideal.mem_map_C_iff
Mathlib/RingTheory/Polynomial/Basic.lean
theorem mem_map_C_iff {I : Ideal R} {f : R[X]} : f ∈ (Ideal.map (C : R →+* R[X]) I : Ideal R[X]) ↔ ∀ n : ℕ, f.coeff n ∈ I
case mp.refine_1.intro R : Type u inst✝ : CommSemiring R I : Ideal R f✝ : R[X] hf✝ : f✝ ∈ map C I f : R[X] hf : f ∈ ⇑C '' ↑I n : ℕ x : R hx : x ∈ ↑I ∧ C x = f ⊢ (if n = 0 then x else 0) ∈ I
by_cases h : n = 0
case pos R : Type u inst✝ : CommSemiring R I : Ideal R f✝ : R[X] hf✝ : f✝ ∈ map C I f : R[X] hf : f ∈ ⇑C '' ↑I n : ℕ x : R hx : x ∈ ↑I ∧ C x = f h : n = 0 ⊢ (if n = 0 then x else 0) ∈ I case neg R : Type u inst✝ : CommSemiring R I : Ideal R f✝ : R[X] hf✝ : f✝ ∈ map C I f : R[X] hf : f ∈ ⇑C '' ↑I n : ℕ x : R hx : x ∈ ↑I ∧ C x = f h : ¬n = 0 ⊢ (if n = 0 then x else 0) ∈ I
52a63b0c6c261831
basis_finite_of_finite_spans
Mathlib/LinearAlgebra/Basis/Cardinality.lean
/-- Over any nontrivial ring, the existence of a finite spanning set implies that any basis is finite. -/ lemma basis_finite_of_finite_spans (w : Set M) (hw : w.Finite) (s : span R w = ⊤) {ι : Type w} (b : Basis ι R M) : Finite ι
R : Type u M : Type v inst✝³ : Semiring R inst✝² : AddCommMonoid M inst✝¹ : Nontrivial R inst✝ : Module R M w : Set M hw : w.Finite s : span R w = ⊤ ι : Type w b : Basis ι R M this : Finite ↑w val✝ : Fintype ↑w i : Infinite ι S : Finset ι := Finset.univ.sup fun x => (b.repr ↑x).support bS : Set M := ⇑b '' ↑S h : ∀ x ∈ w, x ∈ span R bS k : span R bS = ⊤ x : ι nm : x ∉ S ⊢ b x ∈ span R bS
rw [k]
R : Type u M : Type v inst✝³ : Semiring R inst✝² : AddCommMonoid M inst✝¹ : Nontrivial R inst✝ : Module R M w : Set M hw : w.Finite s : span R w = ⊤ ι : Type w b : Basis ι R M this : Finite ↑w val✝ : Fintype ↑w i : Infinite ι S : Finset ι := Finset.univ.sup fun x => (b.repr ↑x).support bS : Set M := ⇑b '' ↑S h : ∀ x ∈ w, x ∈ span R bS k : span R bS = ⊤ x : ι nm : x ∉ S ⊢ b x ∈ ⊤
27ec1fa4ada49c51
AddMonoidAlgebra.freeAlgebra_lift_of_surjective_of_closure
Mathlib/RingTheory/FiniteType.lean
theorem freeAlgebra_lift_of_surjective_of_closure [CommSemiring R] {S : Set M} (hS : closure S = ⊤) : Function.Surjective (FreeAlgebra.lift R fun s : S => of' R M ↑s : FreeAlgebra R S → R[M])
R : Type u_1 M : Type u_2 inst✝¹ : AddMonoid M inst✝ : CommSemiring R S : Set M hS : closure S = ⊤ f : R[M] ⊢ ∃ a, ((FreeAlgebra.lift R) fun s => of' R M ↑s) a = f
induction' f using induction_on with m f g ihf ihg r f ih
case hM R : Type u_1 M : Type u_2 inst✝¹ : AddMonoid M inst✝ : CommSemiring R S : Set M hS : closure S = ⊤ m : M ⊢ ∃ a, ((FreeAlgebra.lift R) fun s => of' R M ↑s) a = (of R M) (Multiplicative.ofAdd m) case hadd R : Type u_1 M : Type u_2 inst✝¹ : AddMonoid M inst✝ : CommSemiring R S : Set M hS : closure S = ⊤ f g : R[M] ihf : ∃ a, ((FreeAlgebra.lift R) fun s => of' R M ↑s) a = f ihg : ∃ a, ((FreeAlgebra.lift R) fun s => of' R M ↑s) a = g ⊢ ∃ a, ((FreeAlgebra.lift R) fun s => of' R M ↑s) a = f + g case hsmul R : Type u_1 M : Type u_2 inst✝¹ : AddMonoid M inst✝ : CommSemiring R S : Set M hS : closure S = ⊤ r : R f : R[M] ih : ∃ a, ((FreeAlgebra.lift R) fun s => of' R M ↑s) a = f ⊢ ∃ a, ((FreeAlgebra.lift R) fun s => of' R M ↑s) a = r • f
e03e61ce2ab85456
affineIndependent_of_ne
Mathlib/LinearAlgebra/AffineSpace/Independent.lean
theorem affineIndependent_of_ne {p₁ p₂ : P} (h : p₁ ≠ p₂) : AffineIndependent k ![p₁, p₂]
case mk k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p₁ p₂ : P h : p₁ ≠ p₂ i₁ : { x // x ≠ 0 } := ⟨1, ⋯⟩ i : Fin 2 hi : i ≠ 0 ⊢ ⟨i, hi⟩ = i₁
ext
case mk.a.h k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p₁ p₂ : P h : p₁ ≠ p₂ i₁ : { x // x ≠ 0 } := ⟨1, ⋯⟩ i : Fin 2 hi : i ≠ 0 ⊢ ↑↑⟨i, hi⟩ = ↑↑i₁
2d25c971e4436589
uniformSpace_comap_id
Mathlib/Topology/UniformSpace/Basic.lean
theorem uniformSpace_comap_id {α : Type*} : UniformSpace.comap (id : α → α) = id
α : Type u_2 ⊢ UniformSpace.comap id = id
ext : 2
case h.h α : Type u_2 x✝ : UniformSpace α ⊢ 𝓤 α = 𝓤 α
352853a94e88d606
IsPrimitiveRoot.norm_pow_sub_one_of_prime_pow_ne_two
Mathlib/NumberTheory/Cyclotomic/PrimitiveRoots.lean
theorem norm_pow_sub_one_of_prime_pow_ne_two {k s : ℕ} (hζ : IsPrimitiveRoot ζ ↑(p ^ (k + 1))) [hpri : Fact (p : ℕ).Prime] [IsCyclotomicExtension {p ^ (k + 1)} K L] (hirr : Irreducible (cyclotomic (↑(p ^ (k + 1)) : ℕ) K)) (hs : s ≤ k) (htwo : p ^ (k - s + 1) ≠ 2) : norm K (ζ ^ (p : ℕ) ^ s - 1) = (p : K) ^ (p : ℕ) ^ s
case refine_2.e_a.e_a p : ℕ+ K : Type u L : Type v inst✝³ : Field L ζ : L inst✝² : Field K inst✝¹ : Algebra K L k s : ℕ hζ : IsPrimitiveRoot ζ ↑(p ^ (k + 1)) hpri : Fact (Nat.Prime ↑p) inst✝ : IsCyclotomicExtension {p ^ (k + 1)} K L hirr : Irreducible (cyclotomic (↑(p ^ (k + 1))) K) hs : s ≤ k htwo : p ^ (k - s + 1) ≠ 2 hirr₁ : Irreducible (cyclotomic (↑(p ^ (k - s + 1))) K) η : L := ζ ^ ↑p ^ s - 1 η₁ : ↥K⟮η⟯ := IntermediateField.AdjoinSimple.gen K η this✝¹ : IsCyclotomicExtension {p ^ (k - s + 1)} K ↥K⟮η⟯ hη : IsPrimitiveRoot (η₁ + 1) ↑(p ^ (k - s + 1)) this✝ : FiniteDimensional K L this : IsGalois K L H : (Algebra.norm K) η₁ = ↑(↑(p ^ (k - s + 1))).minFac ⊢ k - s + 1 ≠ 0
exact Nat.succ_ne_zero _
no goals
460ee0dff43c909a
IsHomeomorphicTrivialFiberBundle.isOpenMap_proj
Mathlib/Topology/FiberBundle/IsHomeomorphicTrivialBundle.lean
theorem isOpenMap_proj (h : IsHomeomorphicTrivialFiberBundle F proj) : IsOpenMap proj
B : Type u_1 F : Type u_2 Z : Type u_3 inst✝² : TopologicalSpace B inst✝¹ : TopologicalSpace F inst✝ : TopologicalSpace Z proj : Z → B h : IsHomeomorphicTrivialFiberBundle F proj ⊢ IsOpenMap proj
obtain ⟨e, rfl⟩ := h.proj_eq
case intro B : Type u_1 F : Type u_2 Z : Type u_3 inst✝² : TopologicalSpace B inst✝¹ : TopologicalSpace F inst✝ : TopologicalSpace Z e : Z ≃ₜ B × F h : IsHomeomorphicTrivialFiberBundle F (Prod.fst ∘ ⇑e) ⊢ IsOpenMap (Prod.fst ∘ ⇑e)
786cf80c321a1d1e
Matrix.invOf_eq
Mathlib/LinearAlgebra/Matrix/NonsingularInverse.lean
theorem invOf_eq [Invertible A.det] [Invertible A] : ⅟ A = ⅟ A.det • A.adjugate
n : Type u' α : Type v inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : CommRing α A : Matrix n n α inst✝¹ : Invertible A.det inst✝ : Invertible A this : Invertible A := A.invertibleOfDetInvertible ⊢ ⅟A = ⅟A.det • A.adjugate
convert (rfl : ⅟ A = _)
no goals
5729748099d6e6b6
cauchy_product
Mathlib/Algebra/Order/CauSeq/BigOperators.lean
theorem _root_.cauchy_product (ha : IsCauSeq abs fun m ↦ ∑ n ∈ range m, abv (f n)) (hb : IsCauSeq abv fun m ↦ ∑ n ∈ range m, g n) (ε : α) (ε0 : 0 < ε) : ∃ i : ℕ, ∀ j ≥ i, abv ((∑ k ∈ range j, f k) * ∑ k ∈ range j, g k - ∑ n ∈ range j, ∑ m ∈ range (n + 1), f m * g (n - m)) < ε
case bc α : Type u_1 β : Type u_2 inst✝² : LinearOrderedField α inst✝¹ : Ring β abv : β → α inst✝ : IsAbsoluteValue abv f g : ℕ → β ha : IsCauSeq abs fun m => ∑ n ∈ range m, abv (f n) hb : IsCauSeq abv fun m => ∑ n ∈ range m, g n ε : α ε0 : 0 < ε P : α hP : ∀ (i : ℕ), |∑ n ∈ range i, abv (f n)| < P Q : α hQ : ∀ (i : ℕ), abv (∑ n ∈ range i, g n) < Q hP0 : 0 < P hPε0 : 0 < ε / (2 * P) N : ℕ hN : ∀ j ≥ N, ∀ k ≥ N, abv (∑ n ∈ range j, g n - ∑ n ∈ range k, g n) < ε / (2 * P) hQε0 : 0 < ε / (4 * Q) M : ℕ hM : ∀ j ≥ M, ∀ k ≥ M, |∑ n ∈ range j, abv (f n) - ∑ n ∈ range k, abv (f n)| < ε / (4 * Q) K : ℕ hK : K ≥ 2 * (N ⊔ M + 1) h₁ : ∑ m ∈ range K, ∑ k ∈ range (m + 1), f k * g (m - k) = ∑ m ∈ range K, ∑ n ∈ range (K - m), f m * g n h₂ : (fun i => ∑ k ∈ range (K - i), f i * g k) = fun i => f i * ∑ k ∈ range (K - i), g k h₃ : ∑ i ∈ range K, f i * ∑ k ∈ range (K - i), g k = ∑ i ∈ range K, f i * (∑ k ∈ range (K - i), g k - ∑ k ∈ range K, g k) + ∑ i ∈ range K, f i * ∑ k ∈ range K, g k two_mul_two : 4 = 2 * 2 hQ0 : Q ≠ 0 h2Q0 : 2 * Q ≠ 0 hε : ε / (2 * P) * P + ε / (4 * Q) * (2 * Q) = ε hNMK : N ⊔ M + 1 < K hKN : N < K hsumlesum : ∑ i ∈ range (N ⊔ M + 1), abv (f i) * abv (∑ k ∈ range (K - i), g k - ∑ k ∈ range K, g k) ≤ ∑ i ∈ range (N ⊔ M + 1), abv (f i) * (ε / (2 * P)) hsumltP : ∑ n ∈ range (N ⊔ M + 1), abv (f n) < P this : 0 < Q ⊢ ∑ k ∈ range K, abv (f k) - ∑ k ∈ range (N ⊔ M + 1), abv (f k) < ε / (4 * Q)
exact (le_abs_self _).trans_lt <| hM _ ((Nat.le_succ_of_le (le_max_right _ _)).trans hNMK.le) _ <| Nat.le_succ_of_le <| le_max_right _ _
no goals
b07014ed8fddf94c
CategoryTheory.Functor.preservesHomology_of_preservesEpis_and_kernels
Mathlib/CategoryTheory/Abelian/Exact.lean
/-- A functor preserving zero morphisms, epis, and kernels preserves homology. -/ lemma preservesHomology_of_preservesEpis_and_kernels [PreservesZeroMorphisms L] [PreservesEpimorphisms L] [∀ {X Y} (f : X ⟶ Y), PreservesLimit (parallelPair f 0) L] : PreservesHomology L
A : Type u₁ B : Type u₂ inst✝⁶ : Category.{v₁, u₁} A inst✝⁵ : Category.{v₂, u₂} B inst✝⁴ : Abelian A inst✝³ : Abelian B L : A ⥤ B inst✝² : L.PreservesZeroMorphisms inst✝¹ : L.PreservesEpimorphisms inst✝ : ∀ {X Y : A} (f : X ⟶ Y), PreservesLimit (parallelPair f 0) L S : ShortComplex A hS : S.Exact ⊢ L.map (Abelian.factorThruImage S.f) ≫ ((ShortComplex.mk (Abelian.image.ι S.f) S.g ⋯).map L).f = (S.map L).f ≫ 𝟙 (S.map L).X₂
dsimp
A : Type u₁ B : Type u₂ inst✝⁶ : Category.{v₁, u₁} A inst✝⁵ : Category.{v₂, u₂} B inst✝⁴ : Abelian A inst✝³ : Abelian B L : A ⥤ B inst✝² : L.PreservesZeroMorphisms inst✝¹ : L.PreservesEpimorphisms inst✝ : ∀ {X Y : A} (f : X ⟶ Y), PreservesLimit (parallelPair f 0) L S : ShortComplex A hS : S.Exact ⊢ L.map (Abelian.factorThruImage S.f) ≫ L.map (kernel.ι (cokernel.π S.f)) = L.map S.f ≫ 𝟙 (L.obj S.X₂)
1450f99740d491ce
tendsto_integral_comp_smul_smul_of_integrable'
Mathlib/MeasureTheory/Integral/PeakFunction.lean
theorem tendsto_integral_comp_smul_smul_of_integrable' {φ : F → ℝ} (hφ : ∀ x, 0 ≤ φ x) (h'φ : ∫ x, φ x ∂μ = 1) (h : Tendsto (fun x ↦ ‖x‖ ^ finrank ℝ F * φ x) (cobounded F) (𝓝 0)) {g : F → E} {x₀ : F} (hg : Integrable g μ) (h'g : ContinuousAt g x₀) : Tendsto (fun (c : ℝ) ↦ ∫ x, (c ^ (finrank ℝ F) * φ (c • (x₀ - x))) • g x ∂μ) atTop (𝓝 (g x₀))
E : Type u_2 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℝ E inst✝⁶ : CompleteSpace E F : Type u_4 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace ℝ F inst✝³ : FiniteDimensional ℝ F inst✝² : MeasurableSpace F inst✝¹ : BorelSpace F μ : Measure F inst✝ : μ.IsAddHaarMeasure φ : F → ℝ hφ : ∀ (x : F), 0 ≤ φ x h'φ : ∫ (x : F), φ x ∂μ = 1 h : Tendsto (fun x => ‖x‖ ^ finrank ℝ F * φ x) (cobounded F) (𝓝 0) g : F → E x₀ : F hg : Integrable g μ h'g : ContinuousAt g x₀ f : F → E := fun x => g (x₀ - x) If : Integrable f μ this : Tendsto (fun c => ∫ (x : F), (c ^ finrank ℝ F * φ (c • x)) • f x ∂μ) atTop (𝓝 (f 0)) ⊢ Tendsto (fun c => ∫ (x : F), (c ^ finrank ℝ F * φ (c • (x₀ - x))) • g x ∂μ) atTop (𝓝 (g x₀))
simp only [f, sub_zero] at this
E : Type u_2 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℝ E inst✝⁶ : CompleteSpace E F : Type u_4 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace ℝ F inst✝³ : FiniteDimensional ℝ F inst✝² : MeasurableSpace F inst✝¹ : BorelSpace F μ : Measure F inst✝ : μ.IsAddHaarMeasure φ : F → ℝ hφ : ∀ (x : F), 0 ≤ φ x h'φ : ∫ (x : F), φ x ∂μ = 1 h : Tendsto (fun x => ‖x‖ ^ finrank ℝ F * φ x) (cobounded F) (𝓝 0) g : F → E x₀ : F hg : Integrable g μ h'g : ContinuousAt g x₀ f : F → E := fun x => g (x₀ - x) If : Integrable f μ this : Tendsto (fun c => ∫ (x : F), (c ^ finrank ℝ F * φ (c • x)) • g (x₀ - x) ∂μ) atTop (𝓝 (g x₀)) ⊢ Tendsto (fun c => ∫ (x : F), (c ^ finrank ℝ F * φ (c • (x₀ - x))) • g x ∂μ) atTop (𝓝 (g x₀))
4121a55591318aa5
Matrix.mul_eq_one_comm
Mathlib/LinearAlgebra/Matrix/SemiringInverse.lean
theorem mul_eq_one_comm : A * B = 1 ↔ B * A = 1
n : Type u_1 R : Type u_3 inst✝² : Fintype n inst✝¹ : DecidableEq n inst✝ : CommSemiring R A B : Matrix n n R ⊢ ∀ (A B : Matrix n n R), A * B = 1 → B * A = 1
intro A B hAB
n : Type u_1 R : Type u_3 inst✝² : Fintype n inst✝¹ : DecidableEq n inst✝ : CommSemiring R A✝ B✝ A B : Matrix n n R hAB : A * B = 1 ⊢ B * A = 1
7b3f481849b56cef
Function.updateFinset_updateFinset
Mathlib/Data/Finset/Update.lean
theorem updateFinset_updateFinset {s t : Finset ι} (hst : Disjoint s t) {y : ∀ i : ↥s, π i} {z : ∀ i : ↥t, π i} : updateFinset (updateFinset x s y) t z = updateFinset x (s ∪ t) (Equiv.piFinsetUnion π hst ⟨y, z⟩)
case pos ι : Type u_1 π : ι → Type u_2 x : (i : ι) → π i inst✝ : DecidableEq ι s t : Finset ι hst : Disjoint s t y : (i : { x // x ∈ s }) → π ↑i z : (i : { x // x ∈ t }) → π ↑i e : { x // x ∈ s } ⊕ { x // x ∈ t } ≃ { x // x ∈ s ∪ t } := Finset.union s t hst i : ι his : i ∈ s hit : i ∈ t ⊢ z ⟨i, ⋯⟩ = if h : True ∨ True then (piFinsetUnion π hst) (y, z) ⟨i, ⋯⟩ else x i
exfalso
case pos ι : Type u_1 π : ι → Type u_2 x : (i : ι) → π i inst✝ : DecidableEq ι s t : Finset ι hst : Disjoint s t y : (i : { x // x ∈ s }) → π ↑i z : (i : { x // x ∈ t }) → π ↑i e : { x // x ∈ s } ⊕ { x // x ∈ t } ≃ { x // x ∈ s ∪ t } := Finset.union s t hst i : ι his : i ∈ s hit : i ∈ t ⊢ False
4ce6c3f1679cd67b
Polynomial.rootMultiplicity_eq_natTrailingDegree'
Mathlib/Algebra/Polynomial/Div.lean
/-- See `Polynomial.rootMultiplicity_eq_natTrailingDegree` for the general case. -/ lemma rootMultiplicity_eq_natTrailingDegree' : p.rootMultiplicity 0 = p.natTrailingDegree
case pos R : Type u inst✝ : CommRing R p : R[X] h : p = 0 ⊢ rootMultiplicity 0 p = p.natTrailingDegree
simp only [h, rootMultiplicity_zero, natTrailingDegree_zero]
no goals
fb3fe56f8f18fafe
IsPrimitiveRoot.minpoly_eq_cyclotomic_of_irreducible
Mathlib/RingTheory/Polynomial/Cyclotomic/Roots.lean
theorem _root_.IsPrimitiveRoot.minpoly_eq_cyclotomic_of_irreducible {K : Type*} [Field K] {R : Type*} [CommRing R] [IsDomain R] {μ : R} {n : ℕ} [Algebra K R] (hμ : IsPrimitiveRoot μ n) (h : Irreducible <| cyclotomic n K) [NeZero (n : K)] : cyclotomic n K = minpoly K μ
K : Type u_2 inst✝⁴ : Field K R : Type u_3 inst✝³ : CommRing R inst✝² : IsDomain R μ : R n : ℕ inst✝¹ : Algebra K R hμ : IsPrimitiveRoot μ n h : Irreducible (cyclotomic n K) inst✝ : NeZero ↑n ⊢ cyclotomic n K = minpoly K μ
haveI := NeZero.of_faithfulSMul K R n
K : Type u_2 inst✝⁴ : Field K R : Type u_3 inst✝³ : CommRing R inst✝² : IsDomain R μ : R n : ℕ inst✝¹ : Algebra K R hμ : IsPrimitiveRoot μ n h : Irreducible (cyclotomic n K) inst✝ : NeZero ↑n this : NeZero ↑n ⊢ cyclotomic n K = minpoly K μ
9b8030f5fdd645f6
Nat.testBit_two_pow
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Nat/Bitwise/Lemmas.lean
theorem testBit_two_pow {n m : Nat} : testBit (2 ^ n) m = decide (n = m)
n m : Nat h : ¬n = m h✝ : m < n ⊢ m ≤ n
omega
no goals
bbc66499b4dfb877
Finsupp.zipWith_single_single
Mathlib/Data/Finsupp/Single.lean
theorem zipWith_single_single (f : M → N → P) (hf : f 0 0 = 0) (a : α) (m : M) (n : N) : zipWith f hf (single a m) (single a n) = single a (f m n)
α : Type u_1 M : Type u_5 N : Type u_7 P : Type u_8 inst✝² : Zero M inst✝¹ : Zero N inst✝ : Zero P f : M → N → P hf : f 0 0 = 0 a : α m : M n : N ⊢ zipWith f hf (single a m) (single a n) = single a (f m n)
ext a'
case h α : Type u_1 M : Type u_5 N : Type u_7 P : Type u_8 inst✝² : Zero M inst✝¹ : Zero N inst✝ : Zero P f : M → N → P hf : f 0 0 = 0 a : α m : M n : N a' : α ⊢ (zipWith f hf (single a m) (single a n)) a' = (single a (f m n)) a'
f8f9ada305dc4b27
CategoryTheory.Limits.limit_π_isIso_of_is_strict_terminal
Mathlib/CategoryTheory/Limits/Shapes/StrictInitial.lean
theorem limit_π_isIso_of_is_strict_terminal (F : J ⥤ C) [HasLimit F] (i : J) (H : ∀ (j) (_ : j ≠ i), IsTerminal (F.obj j)) [Subsingleton (i ⟶ i)] : IsIso (limit.π F i)
case pos.refl C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : HasStrictTerminalObjects C J : Type v inst✝² : SmallCategory J F : J ⥤ C inst✝¹ : HasLimit F i : J H : (j : J) → j ≠ i → IsTerminal (F.obj j) inst✝ : Subsingleton (i ⟶ i) k : J h : ¬k = i f : i ⟶ k ⊢ ((Functor.const J).obj (F.toPrefunctor.1 i)).map f ≫ (H k h).from (((Functor.const J).obj (F.toPrefunctor.1 i)).obj k) = eqToHom ⋯ ≫ F.map f
apply (H _ h).hom_ext
no goals
464f78ec21e1a3ee
Module.reflection_mul_reflection_zpow_apply
Mathlib/LinearAlgebra/Reflection.lean
/-- A formula for $(r_1 r_2)^m z$, where $m$ is an integer and $z \in M$. -/ lemma reflection_mul_reflection_zpow_apply (m : ℤ) (z : M) (t : R := f y * g x - 2) (ht : t = f y * g x - 2
case neg R : Type u_1 M : Type u_2 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M x y : M f g : Dual R M hf : f x = 2 hg : g y = 2 z : M t : optParam R (f y * g x - 2) ht : autoParam (t = f y * g x - 2) _auto✝ a✝ : ∀ (n : ℕ), ((reflection hf * reflection hg) ^ ↑n) z = z + (Polynomial.eval t (S R ((↑n - 2) / 2)) * (Polynomial.eval t (S R ((↑n - 1) / 2)) + Polynomial.eval t (S R ((↑n - 3) / 2)))) • ((g x * f z - g z) • y - f z • x) + (Polynomial.eval t (S R ((↑n - 1) / 2)) * (Polynomial.eval t (S R (↑n / 2)) + Polynomial.eval t (S R ((↑n - 2) / 2)))) • ((f y * g z - f z) • x - g z • y) m : ℕ ht' : t = g x * f y - 2 aux : ∀ (a b : ℤ), autoParam (a + b = -3) _auto✝ → a / 2 = -(b / 2) - 2 ⊢ z + (Polynomial.eval t (S R ((↑m - 1) / 2)) * (Polynomial.eval t (S R (↑m / 2)) + Polynomial.eval t (S R ((↑m - 2) / 2)))) • ((g x * f z - g z) • y - f z • x) + (Polynomial.eval t (S R ((↑m - 2) / 2)) * (Polynomial.eval t (S R ((↑m - 1) / 2)) + Polynomial.eval t (S R ((↑m - 3) / 2)))) • ((f y * g z - f z) • x - g z • y) = z + (Polynomial.eval t (S R ((-↑m - 2) / 2)) * (Polynomial.eval t (S R ((-↑m - 1) / 2)) + Polynomial.eval t (S R ((-↑m - 3) / 2)))) • ((g x * f z - g z) • y - f z • x) + (Polynomial.eval t (S R ((-↑m - 1) / 2)) * (Polynomial.eval t (S R (-↑m / 2)) + Polynomial.eval t (S R ((-↑m - 2) / 2)))) • ((f y * g z - f z) • x - g z • y)
rw [aux (-m - 3) m, aux (-m - 2) (m - 1), aux (-m - 1) (m - 2), aux (-m) (m - 3)]
case neg R : Type u_1 M : Type u_2 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M x y : M f g : Dual R M hf : f x = 2 hg : g y = 2 z : M t : optParam R (f y * g x - 2) ht : autoParam (t = f y * g x - 2) _auto✝ a✝ : ∀ (n : ℕ), ((reflection hf * reflection hg) ^ ↑n) z = z + (Polynomial.eval t (S R ((↑n - 2) / 2)) * (Polynomial.eval t (S R ((↑n - 1) / 2)) + Polynomial.eval t (S R ((↑n - 3) / 2)))) • ((g x * f z - g z) • y - f z • x) + (Polynomial.eval t (S R ((↑n - 1) / 2)) * (Polynomial.eval t (S R (↑n / 2)) + Polynomial.eval t (S R ((↑n - 2) / 2)))) • ((f y * g z - f z) • x - g z • y) m : ℕ ht' : t = g x * f y - 2 aux : ∀ (a b : ℤ), autoParam (a + b = -3) _auto✝ → a / 2 = -(b / 2) - 2 ⊢ z + (Polynomial.eval t (S R ((↑m - 1) / 2)) * (Polynomial.eval t (S R (↑m / 2)) + Polynomial.eval t (S R ((↑m - 2) / 2)))) • ((g x * f z - g z) • y - f z • x) + (Polynomial.eval t (S R ((↑m - 2) / 2)) * (Polynomial.eval t (S R ((↑m - 1) / 2)) + Polynomial.eval t (S R ((↑m - 3) / 2)))) • ((f y * g z - f z) • x - g z • y) = z + (Polynomial.eval t (S R (-((↑m - 1) / 2) - 2)) * (Polynomial.eval t (S R (-((↑m - 2) / 2) - 2)) + Polynomial.eval t (S R (-(↑m / 2) - 2)))) • ((g x * f z - g z) • y - f z • x) + (Polynomial.eval t (S R (-((↑m - 2) / 2) - 2)) * (Polynomial.eval t (S R (-((↑m - 3) / 2) - 2)) + Polynomial.eval t (S R (-((↑m - 1) / 2) - 2)))) • ((f y * g z - f z) • x - g z • y)
ede6c0c006554b73
AlgebraicGeometry.Scheme.Pullback.range_fst
Mathlib/AlgebraicGeometry/PullbackCarrier.lean
lemma range_fst : Set.range (pullback.fst f g).base = f.base ⁻¹' Set.range g.base
case h.refine_1.intro X Y S : Scheme f : X ⟶ S g : Y ⟶ S a : ↑↑(pullback f g).toPresheafedSpace ⊢ (ConcreteCategory.hom (pullback.fst f g).base) a ∈ ⇑(ConcreteCategory.hom f.base) ⁻¹' Set.range ⇑(ConcreteCategory.hom g.base)
simp only [Set.mem_preimage, Set.mem_range, ← Scheme.comp_base_apply, pullback.condition]
case h.refine_1.intro X Y S : Scheme f : X ⟶ S g : Y ⟶ S a : ↑↑(pullback f g).toPresheafedSpace ⊢ ∃ y, (ConcreteCategory.hom g.base) y = (ConcreteCategory.hom (pullback.snd f g ≫ g).base) a
11f78a61ac29370c
ProbabilityTheory.integrable_rpow_mul_cexp_of_re_mem_interior_integrableExpSet
Mathlib/Probability/Moments/IntegrableExpMul.lean
lemma integrable_rpow_mul_cexp_of_re_mem_interior_integrableExpSet (hz : z.re ∈ interior (integrableExpSet X μ)) {p : ℝ} (hp : 0 ≤ p) : Integrable (fun ω ↦ (X ω ^ p : ℝ) * cexp (z * X ω)) μ
Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω z : ℂ hz : z.re ∈ interior (integrableExpSet X μ) p : ℝ hp : 0 ≤ p hX : AEMeasurable X μ ⊢ AEMeasurable (fun ω => ↑(X ω ^ p) * cexp (z * ↑(X ω))) μ
fun_prop
no goals
5757787a7a5feda6
SimpContFract.determinant_aux
Mathlib/Algebra/ContinuedFractions/Determinant.lean
theorem determinant_aux (hyp : n = 0 ∨ ¬(↑s : GenContFract K).TerminatedAt (n - 1)) : ((↑s : GenContFract K).contsAux n).a * ((↑s : GenContFract K).contsAux (n + 1)).b - ((↑s : GenContFract K).contsAux n).b * ((↑s : GenContFract K).contsAux (n + 1)).a = (-1) ^ n
K : Type u_1 inst✝ : Field K s : SimpContFract K n✝ n : ℕ hyp : n + 1 = 0 ∨ ¬(↑s).TerminatedAt (n + 1 - 1) g : GenContFract K := ↑s conts : Pair K := g.contsAux (n + 2) pred_conts : Pair K := g.contsAux (n + 1) pred_conts_eq : pred_conts = g.contsAux (n + 1) ppred_conts : Pair K := g.contsAux n IH : n = 0 ∨ ¬(↑s).TerminatedAt (n - 1) → ppred_conts.a * pred_conts.b - ppred_conts.b * pred_conts.a = (-1) ^ n ppred_conts_eq : ppred_conts = g.contsAux n pA : K := pred_conts.a pB : K := pred_conts.b ppA : K := ppred_conts.a ppB : K := ppred_conts.b not_terminated_at_n : ¬g.TerminatedAt n gp : Pair K s_nth_eq : g.s.get? n = some gp this : pA * ppB - pB * ppA = (-1) ^ (n + 1) ⊢ pA * (ppB + gp.b * pB) - pB * (ppA + gp.b * pA) = (-1) ^ (n + 1)
calc pA * (ppB + gp.b * pB) - pB * (ppA + gp.b * pA) = pA * ppB + pA * gp.b * pB - pB * ppA - pB * gp.b * pA := by ring _ = pA * ppB - pB * ppA := by ring _ = (-1) ^ (n + 1) := by assumption
no goals
5478ed7427a774c4
MeasureTheory.integrable_of_le_of_le
Mathlib/MeasureTheory/Function/L1Space/Integrable.lean
lemma integrable_of_le_of_le {f g₁ g₂ : α → ℝ} (hf : AEStronglyMeasurable f μ) (h_le₁ : g₁ ≤ᵐ[μ] f) (h_le₂ : f ≤ᵐ[μ] g₂) (h_int₁ : Integrable g₁ μ) (h_int₂ : Integrable g₂ μ) : Integrable f μ
α : Type u_1 m : MeasurableSpace α μ : Measure α f g₁ g₂ : α → ℝ hf : AEStronglyMeasurable f μ h_le₁ : g₁ ≤ᶠ[ae μ] f h_le₂ : f ≤ᶠ[ae μ] g₂ h_int₁ : Integrable g₁ μ h_int₂ : Integrable g₂ μ ⊢ Integrable f μ
have : ∀ᵐ x ∂μ, ‖f x‖ ≤ max ‖g₁ x‖ ‖g₂ x‖ := by filter_upwards [h_le₁, h_le₂] with x hx1 hx2 simp only [Real.norm_eq_abs] exact abs_le_max_abs_abs hx1 hx2
α : Type u_1 m : MeasurableSpace α μ : Measure α f g₁ g₂ : α → ℝ hf : AEStronglyMeasurable f μ h_le₁ : g₁ ≤ᶠ[ae μ] f h_le₂ : f ≤ᶠ[ae μ] g₂ h_int₁ : Integrable g₁ μ h_int₂ : Integrable g₂ μ this : ∀ᵐ (x : α) ∂μ, ‖f x‖ ≤ ‖g₁ x‖ ⊔ ‖g₂ x‖ ⊢ Integrable f μ
b13e99f457d8487f
closure_diff
Mathlib/Topology/Basic.lean
theorem closure_diff : closure s \ closure t ⊆ closure (s \ t) := calc closure s \ closure t = (closure t)ᶜ ∩ closure s
X : Type u s t : Set X inst✝ : TopologicalSpace X ⊢ closure ((closure t)ᶜ ∩ s) = closure (s \ closure t)
simp only [diff_eq, inter_comm]
no goals
40145cf1cb2fcf0d
CategoryTheory.kernelCokernelCompSequence.δ_fac
Mathlib/CategoryTheory/Abelian/DiagramLemmas/KernelCokernelComp.lean
lemma δ_fac : δ f g = - kernel.ι g ≫ cokernel.π f
C : Type u inst✝¹ : Category.{v, u} C inst✝ : Abelian C X Y Z : C f : X ⟶ Y g : Y ⟶ Z ⊢ (-kernel.ι g) ≫ (snakeInput f g).L₂.f = (kernel.ι g ≫ biprod.inr) ≫ (snakeInput f g).v₁₂.τ₂
aesop
no goals
74b74b8cd571ff07
Orthonormal.equiv_symm
Mathlib/Analysis/InnerProductSpace/Orthonormal.lean
theorem Orthonormal.equiv_symm {v : Basis ι 𝕜 E} (hv : Orthonormal 𝕜 v) {v' : Basis ι' 𝕜 E'} (hv' : Orthonormal 𝕜 v') (e : ι ≃ ι') : (hv.equiv hv' e).symm = hv'.equiv hv e.symm := v'.ext_linearIsometryEquiv fun i => (hv.equiv hv' e).injective <| by simp only [LinearIsometryEquiv.apply_symm_apply, Orthonormal.equiv_apply, e.apply_symm_apply]
𝕜 : Type u_1 E : Type u_2 inst✝⁴ : RCLike 𝕜 inst✝³ : SeminormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E ι : Type u_4 ι' : Type u_5 E' : Type u_6 inst✝¹ : SeminormedAddCommGroup E' inst✝ : InnerProductSpace 𝕜 E' v : Basis ι 𝕜 E hv : Orthonormal 𝕜 ⇑v v' : Basis ι' 𝕜 E' hv' : Orthonormal 𝕜 ⇑v' e : ι ≃ ι' i : ι' ⊢ (hv.equiv hv' e) ((hv.equiv hv' e).symm (v' i)) = (hv.equiv hv' e) ((hv'.equiv hv e.symm) (v' i))
simp only [LinearIsometryEquiv.apply_symm_apply, Orthonormal.equiv_apply, e.apply_symm_apply]
no goals
c4ffd895888577e5
Order.krullDim_eq_top_iff
Mathlib/Order/KrullDimension.lean
lemma krullDim_eq_top_iff : krullDim α = ⊤ ↔ InfiniteDimensionalOrder α
case inr.inr α : Type u_1 inst✝ : Preorder α h : krullDim α = ⊤ h✝¹ : Nonempty α h✝ : InfiniteDimensionalOrder α ⊢ InfiniteDimensionalOrder α
infer_instance
no goals
02707beaa1c9c181
MeasureTheory.tendsto_limUnder_of_hasDerivAt_of_integrableOn_Ioi
Mathlib/MeasureTheory/Integral/IntegralEqImproper.lean
theorem tendsto_limUnder_of_hasDerivAt_of_integrableOn_Ioi [CompleteSpace E] (hderiv : ∀ x ∈ Ioi a, HasDerivAt f (f' x) x) (f'int : IntegrableOn f' (Ioi a)) : Tendsto f atTop (𝓝 (limUnder atTop f))
E : Type u_1 f f' : ℝ → E a : ℝ inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E hderiv : ∀ x ∈ Ioi a, HasDerivAt f (f' x) x f'int : IntegrableOn f' (Ioi a) volume ε : ℝ εpos : ε > 0 L : Tendsto (fun n => ∫ (x : ℝ) in Ici ↑n, ‖f' x‖) atTop (𝓝 (∫ (x : ℝ) in ⋂ n, Ici ↑n, ‖f' x‖)) B : ⋂ n, Ici ↑n = ∅ ⊢ ∀ᶠ (n : ℕ) in atTop, ∫ (x : ℝ) in Ici ↑n, ‖f' x‖ < ε
simp only [B, Measure.restrict_empty, integral_zero_measure] at L
E : Type u_1 f f' : ℝ → E a : ℝ inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E hderiv : ∀ x ∈ Ioi a, HasDerivAt f (f' x) x f'int : IntegrableOn f' (Ioi a) volume ε : ℝ εpos : ε > 0 B : ⋂ n, Ici ↑n = ∅ L : Tendsto (fun n => ∫ (x : ℝ) in Ici ↑n, ‖f' x‖) atTop (𝓝 0) ⊢ ∀ᶠ (n : ℕ) in atTop, ∫ (x : ℝ) in Ici ↑n, ‖f' x‖ < ε
baf6f2379f5dcbf2
tsirelson_inequality
Mathlib/Algebra/Star/CHSH.lean
theorem tsirelson_inequality [OrderedRing R] [StarRing R] [StarOrderedRing R] [Algebra ℝ R] [OrderedSMul ℝ R] [StarModule ℝ R] (A₀ A₁ B₀ B₁ : R) (T : IsCHSHTuple A₀ A₁ B₀ B₁) : A₀ * B₀ + A₀ * B₁ + A₁ * B₀ - A₁ * B₁ ≤ √2 ^ 3 • (1 : R)
R : Type u inst✝⁵ : OrderedRing R inst✝⁴ : StarRing R inst✝³ : StarOrderedRing R inst✝² : Algebra ℝ R inst✝¹ : OrderedSMul ℝ R inst✝ : StarModule ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ M : ∀ (m : ℤ) (a : ℝ) (x : R), m • a • x = (↑m * a) • x P : R := (√2)⁻¹ • (A₁ + A₀) - B₀ Q : R := (√2)⁻¹ • (A₁ - A₀) + B₁ w : √2 ^ 3 • 1 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁ = (√2)⁻¹ • (P ^ 2 + Q ^ 2) ⊢ 0 ≤ (√2)⁻¹ • (P ^ 2 + Q ^ 2)
have P_sa : star P = P := by simp only [P, star_smul, star_add, star_sub, star_id_of_comm, T.A₀_sa, T.A₁_sa, T.B₀_sa, T.B₁_sa]
R : Type u inst✝⁵ : OrderedRing R inst✝⁴ : StarRing R inst✝³ : StarOrderedRing R inst✝² : Algebra ℝ R inst✝¹ : OrderedSMul ℝ R inst✝ : StarModule ℝ R A₀ A₁ B₀ B₁ : R T : IsCHSHTuple A₀ A₁ B₀ B₁ M : ∀ (m : ℤ) (a : ℝ) (x : R), m • a • x = (↑m * a) • x P : R := (√2)⁻¹ • (A₁ + A₀) - B₀ Q : R := (√2)⁻¹ • (A₁ - A₀) + B₁ w : √2 ^ 3 • 1 - A₀ * B₀ - A₀ * B₁ - A₁ * B₀ + A₁ * B₁ = (√2)⁻¹ • (P ^ 2 + Q ^ 2) P_sa : star P = P ⊢ 0 ≤ (√2)⁻¹ • (P ^ 2 + Q ^ 2)
74b38187913f9314
AddMonoidAlgebra.mem_closure_of_mem_span_closure
Mathlib/RingTheory/FiniteType.lean
theorem mem_closure_of_mem_span_closure [Nontrivial R] {m : M} {S : Set M} (h : of' R M m ∈ span R (Submonoid.closure (of' R M '' S) : Set R[M])) : m ∈ closure S
R : Type u_1 M : Type u_2 inst✝² : CommRing R inst✝¹ : AddMonoid M inst✝ : Nontrivial R m : M S : Set M S' : Submonoid (Multiplicative M) := Submonoid.closure S h : of' R M m ∈ span R ↑(Submonoid.map (of R M) S') h' : Submonoid.map (of R M) S' = Submonoid.closure ((fun x => (of R M) x) '' S) ⊢ Multiplicative.ofAdd m ∈ Submonoid.closure (⇑Multiplicative.toAdd ⁻¹' S)
simpa using of'_mem_span.1 h
no goals
70104ef5a58bb647
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.unsat_of_encounteredBoth
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/LRAT/Internal/Formula/RupAddSound.lean
theorem unsat_of_encounteredBoth {n : Nat} (c : DefaultClause n) (assignment : Array Assignment) : reduce c assignment = encounteredBoth → Unsatisfiable (PosFin n) assignment
case h_2.h_2 n : Nat c : DefaultClause n assignment : Array Assignment hb : reducedToEmpty = encounteredBoth → Unsatisfiable (PosFin n) assignment l : Literal (PosFin n) x✝¹ : l ∈ c.clause acc✝ : ReduceResult (PosFin n) ih : reducedToEmpty = encounteredBoth → Unsatisfiable (PosFin n) assignment x✝ : Assignment heq✝ : assignment[l.fst.val]! = neg h : (if (!l.snd) = true then reducedToUnit l else reducedToEmpty) = encounteredBoth ⊢ Unsatisfiable (PosFin n) assignment
split at h <;> simp at h
no goals
a1d564233a90b7cf
HomologicalComplex.acyclic_truncGE_iff_isSupportedOutside
Mathlib/Algebra/Homology/Embedding/TruncGEHomology.lean
lemma acyclic_truncGE_iff_isSupportedOutside : (K.truncGE e).Acyclic ↔ K.IsSupportedOutside e
ι : Type u_1 ι' : Type u_2 c : ComplexShape ι c' : ComplexShape ι' C : Type u_3 inst✝⁴ : Category.{u_4, u_3} C inst✝³ : HasZeroMorphisms C K : HomologicalComplex C c' e : c.Embedding c' inst✝² : e.IsTruncGE inst✝¹ : ∀ (i' : ι'), K.HasHomology i' inst✝ : HasZeroObject C ⊢ (K.truncGE e).Acyclic ↔ K.IsSupportedOutside e
constructor
case mp ι : Type u_1 ι' : Type u_2 c : ComplexShape ι c' : ComplexShape ι' C : Type u_3 inst✝⁴ : Category.{u_4, u_3} C inst✝³ : HasZeroMorphisms C K : HomologicalComplex C c' e : c.Embedding c' inst✝² : e.IsTruncGE inst✝¹ : ∀ (i' : ι'), K.HasHomology i' inst✝ : HasZeroObject C ⊢ (K.truncGE e).Acyclic → K.IsSupportedOutside e case mpr ι : Type u_1 ι' : Type u_2 c : ComplexShape ι c' : ComplexShape ι' C : Type u_3 inst✝⁴ : Category.{u_4, u_3} C inst✝³ : HasZeroMorphisms C K : HomologicalComplex C c' e : c.Embedding c' inst✝² : e.IsTruncGE inst✝¹ : ∀ (i' : ι'), K.HasHomology i' inst✝ : HasZeroObject C ⊢ K.IsSupportedOutside e → (K.truncGE e).Acyclic
c22f4f01024eb4a0
HurwitzKernelBounds.isBigO_atTop_F_nat_one
Mathlib/NumberTheory/ModularForms/JacobiTheta/Bounds.lean
lemma isBigO_atTop_F_nat_one {a : ℝ} (ha : 0 ≤ a) : ∃ p, 0 < p ∧ F_nat 1 a =O[atTop] fun t ↦ exp (-p * t)
case inl aux' : (fun t => ((1 - rexp (-π * t)) ^ 2)⁻¹) =O[atTop] fun x => 1 ha : 0 ≤ 0 ⊢ ∃ p, 0 < p ∧ (fun t => rexp (-π * (0 ^ 2 + 1) * t) / (1 - rexp (-π * t)) ^ 2 + 0 * rexp (-π * 0 ^ 2 * t) / (1 - rexp (-π * t))) =O[atTop] fun t => rexp (-p * t)
exact ⟨_, pi_pos, by simpa only [zero_pow two_ne_zero, zero_add, mul_one, zero_mul, zero_div, add_zero] using (isBigO_refl _ _).mul aux'⟩
no goals
5a5132f25c8455c4
IsSMulRegular.subsingleton
Mathlib/Algebra/Regular/SMul.lean
theorem subsingleton (h : IsSMulRegular M (0 : R)) : Subsingleton M := ⟨fun a b => h (by dsimp only [Function.comp_def]; repeat' rw [MulActionWithZero.zero_smul])⟩
R : Type u_1 M : Type u_3 inst✝² : MonoidWithZero R inst✝¹ : Zero M inst✝ : MulActionWithZero R M h : IsSMulRegular M 0 a b : M ⊢ 0 • a = 0 • b
repeat' rw [MulActionWithZero.zero_smul]
no goals
b20bfe08a69faefd
Matroid.map_dual
Mathlib/Data/Matroid/Map.lean
@[simp] lemma map_dual {hf} : (M.map f hf)✶ = M✶.map f hf
α : Type u_1 β : Type u_2 f : α → β M : Matroid α hf : InjOn f M.E ⊢ ∀ a ⊆ M.E, ((M.map f hf).IsBase (f '' M.E \ f '' a) ∧ ∃ u ⊆ M.E, f '' u = f '' a) ↔ (M✶.map f hf).IsBase (f '' a)
intro B hB
α : Type u_1 β : Type u_2 f : α → β M : Matroid α hf : InjOn f M.E B : Set α hB : B ⊆ M.E ⊢ ((M.map f hf).IsBase (f '' M.E \ f '' B) ∧ ∃ u ⊆ M.E, f '' u = f '' B) ↔ (M✶.map f hf).IsBase (f '' B)
29df05518640e03f
DirSupInacc.union
Mathlib/Topology/Order/ScottTopology.lean
lemma DirSupInacc.union (hs : DirSupInacc s) (ht : DirSupInacc t) : DirSupInacc (s ∪ t)
α : Type u_1 inst✝ : Preorder α s t : Set α hs : DirSupInacc s ht : DirSupInacc t ⊢ DirSupInacc (s ∪ t)
rw [← dirSupClosed_compl, compl_union]
α : Type u_1 inst✝ : Preorder α s t : Set α hs : DirSupInacc s ht : DirSupInacc t ⊢ DirSupClosed (sᶜ ∩ tᶜ)
7956754734308ef2
Fin.snoc_init_self
Mathlib/Data/Fin/Tuple/Basic.lean
theorem snoc_init_self : snoc (init q) (q (last n)) = q
case neg n : ℕ α : Fin (n + 1) → Sort u_1 q : (i : Fin (n + 1)) → α i j : Fin (n + 1) h : ¬↑j < n ⊢ snoc (init q) (q (last n)) (last n) = q (last n)
simp
no goals
e85188ef3c9ae2e3
Std.Tactic.BVDecide.BVExpr.bitblast.go_denote_eq
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/Bitblast/BVExpr/Circuit/Lemmas/Expr.lean
theorem go_denote_eq (aig : AIG BVBit) (expr : BVExpr w) (assign : Assignment) : ∀ (idx : Nat) (hidx : idx < w), ⟦(go aig expr).val.aig, (go aig expr).val.vec.get idx hidx, assign.toAIGAssignment⟧ = (expr.eval assign).getLsbD idx
case shiftLeft.hright w : Nat assign : Assignment m✝ n✝ : Nat lhs : BVExpr m✝ rhs : BVExpr n✝ lih : ∀ (aig : AIG BVBit) (idx : Nat) (hidx : idx < m✝), ⟦assign.toAIGAssignment, { aig := (go aig lhs).val.aig, ref := (go aig lhs).val.vec.get idx hidx }⟧ = (eval assign lhs).getLsbD idx rih : ∀ (aig : AIG BVBit) (idx : Nat) (hidx : idx < n✝), ⟦assign.toAIGAssignment, { aig := (go aig rhs).val.aig, ref := (go aig rhs).val.vec.get idx hidx }⟧ = (eval assign rhs).getLsbD idx aig : AIG BVBit idx : Nat hidx : idx < m✝ ⊢ ∀ (idx : Nat) (hidx : idx < { n := n✝, target := (go aig lhs).1.vec.cast ⋯, distance := (go (go aig lhs).1.aig rhs).1.vec }.n), ⟦assign.toAIGAssignment, { aig := (go (go aig lhs).1.aig rhs).1.aig, ref := { n := n✝, target := (go aig lhs).1.vec.cast ⋯, distance := (go (go aig lhs).1.aig rhs).1.vec }.distance.get idx hidx }⟧ = (eval assign rhs).getLsbD idx
intros
case shiftLeft.hright w : Nat assign : Assignment m✝ n✝ : Nat lhs : BVExpr m✝ rhs : BVExpr n✝ lih : ∀ (aig : AIG BVBit) (idx : Nat) (hidx : idx < m✝), ⟦assign.toAIGAssignment, { aig := (go aig lhs).val.aig, ref := (go aig lhs).val.vec.get idx hidx }⟧ = (eval assign lhs).getLsbD idx rih : ∀ (aig : AIG BVBit) (idx : Nat) (hidx : idx < n✝), ⟦assign.toAIGAssignment, { aig := (go aig rhs).val.aig, ref := (go aig rhs).val.vec.get idx hidx }⟧ = (eval assign rhs).getLsbD idx aig : AIG BVBit idx : Nat hidx : idx < m✝ idx✝ : Nat hidx✝ : idx✝ < { n := n✝, target := (go aig lhs).1.vec.cast ⋯, distance := (go (go aig lhs).1.aig rhs).1.vec }.n ⊢ ⟦assign.toAIGAssignment, { aig := (go (go aig lhs).1.aig rhs).1.aig, ref := { n := n✝, target := (go aig lhs).1.vec.cast ⋯, distance := (go (go aig lhs).1.aig rhs).1.vec }.distance.get idx✝ hidx✝ }⟧ = (eval assign rhs).getLsbD idx✝
30595031a1a8ac13
Int.subNatNat_add
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Int/Lemmas.lean
theorem subNatNat_add (m n k : Nat) : subNatNat (m + n) k = m + subNatNat n k
case inl m n k : Nat h' : n < k ⊢ subNatNat (m + n) k = ↑m + subNatNat n k
simp [subNatNat_of_lt h', sub_one_add_one_eq_of_pos (Nat.sub_pos_of_lt h')]
case inl m n k : Nat h' : n < k ⊢ subNatNat (m + n) k = subNatNat m (k - n)
9fc3dd7335f8add0
MvPolynomial.mul_X_mem_coeffsIn
Mathlib/Algebra/MvPolynomial/Basic.lean
@[simp] lemma mul_X_mem_coeffsIn : p * X s ∈ coeffsIn σ M ↔ p ∈ coeffsIn σ M
R : Type u_2 S : Type u_3 σ : Type u_4 inst✝² : CommSemiring R inst✝¹ : CommSemiring S inst✝ : Module R S M : Submodule R S p : MvPolynomial σ S s : σ ⊢ p * X s ∈ coeffsIn σ M ↔ p ∈ coeffsIn σ M
simpa [-mul_monomial_mem_coeffsIn] using mul_monomial_mem_coeffsIn (i := .single s 1)
no goals
6383bcfd7c3ed98f
Set.preimage_subset
Mathlib/Data/Set/Image.lean
lemma preimage_subset {s t} (hs : s ⊆ f '' t) (hf : Set.InjOn f (f ⁻¹' s)) : f ⁻¹' s ⊆ t
α : Type u_1 β : Type u_2 f : α → β s : Set β t : Set α hs : s ⊆ f '' t hf : InjOn f (f ⁻¹' s) ⊢ f ⁻¹' s ⊆ t
rintro a ha
α : Type u_1 β : Type u_2 f : α → β s : Set β t : Set α hs : s ⊆ f '' t hf : InjOn f (f ⁻¹' s) a : α ha : a ∈ f ⁻¹' s ⊢ a ∈ t
ee68442f946ac210
IsOpen.exists_smooth_support_eq
Mathlib/Analysis/Calculus/BumpFunction/FiniteDimension.lean
theorem IsOpen.exists_smooth_support_eq {s : Set E} (hs : IsOpen s) : ∃ f : E → ℝ, f.support = s ∧ ContDiff ℝ ∞ f ∧ Set.range f ⊆ Set.Icc 0 1
case h E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : FiniteDimensional ℝ E s : Set E hs : IsOpen s h's : s.Nonempty ι : Type (max 0 u_1) := { f // support f ⊆ s ∧ HasCompactSupport f ∧ ContDiff ℝ ∞ f ∧ range f ⊆ Icc 0 1 } T : Set ι T_count : T.Countable hT : ⋃ f ∈ T, support ↑f = s g0 : ℕ → ι hg : T = range g0 g : ℕ → E → ℝ := fun n => ↑(g0 n) g_s : ∀ (n : ℕ), support (g n) ⊆ s s_g : ∀ x ∈ s, ∃ n, x ∈ support (g n) g_smooth : ∀ (n : ℕ), ContDiff ℝ ∞ (g n) g_comp_supp : ∀ (n : ℕ), HasCompactSupport (g n) g_nonneg : ∀ (n : ℕ) (x : E), 0 ≤ g n x δ : ℕ → ℝ≥0 δpos : ∀ (i : ℕ), 0 < δ i c : ℝ≥0 δc : HasSum δ c c_lt : c < 1 n : ℕ R : ℕ → ℝ hR : ∀ (i : ℕ) (x : E), ‖iteratedFDeriv ℝ i (fun x => g n x) x‖ ≤ R i M : ℝ := (Finset.image R (Finset.range (n + 1))).max' ⋯ ⊔ 1 δnpos : 0 < δ n IR : ∀ i ≤ n, R i ≤ M i : ℕ hi : i ≤ n x : E ⊢ ‖iteratedFDeriv ℝ i (g n) x‖ ≤ M
exact (hR i x).trans (IR i hi)
no goals
415898bf3b6091fb
PosNum.lt_to_nat
Mathlib/Data/Num/Lemmas.lean
theorem lt_to_nat {m n : PosNum} : (m : ℕ) < n ↔ m < n := show (m : ℕ) < n ↔ cmp m n = Ordering.lt from match cmp m n, cmp_to_nat m n with | Ordering.lt, h => by simp only at h; simp [h] | Ordering.eq, h => by simp only at h; simp [h, lt_irrefl] | Ordering.gt, h => by simp [not_lt_of_gt h]
m n : PosNum h : Ordering.casesOn Ordering.gt (↑m < ↑n) (m = n) (↑n < ↑m) ⊢ ↑m < ↑n ↔ Ordering.gt = Ordering.lt
simp [not_lt_of_gt h]
no goals
3877950e8242553f
List.lookupAll_eq_nil
Mathlib/Data/List/Sigma.lean
theorem lookupAll_eq_nil {a : α} : ∀ {l : List (Sigma β)}, lookupAll a l = [] ↔ ∀ b : β a, Sigma.mk a b ∉ l | [] => by simp | ⟨a', b⟩ :: l => by by_cases h : a = a' · subst a' simp only [lookupAll_cons_eq, mem_cons, Sigma.mk.inj_iff, heq_eq_eq, true_and, not_or, false_iff, not_forall, not_and, not_not, reduceCtorEq] use b simp · simp [h, lookupAll_eq_nil]
case neg α : Type u β : α → Type v inst✝ : DecidableEq α a a' : α b : β a' l : List (Sigma β) h : ¬a = a' ⊢ lookupAll a (⟨a', b⟩ :: l) = [] ↔ ∀ (b_1 : β a), ⟨a, b_1⟩ ∉ ⟨a', b⟩ :: l
simp [h, lookupAll_eq_nil]
no goals
8edbefa7d6f1441c
iSupIndep_sUnion_of_directed
Mathlib/Order/CompactlyGenerated/Basic.lean
theorem iSupIndep_sUnion_of_directed {s : Set (Set α)} (hs : DirectedOn (· ⊆ ·) s) (h : ∀ a ∈ s, sSupIndep a) : sSupIndep (⋃₀ s)
α : Type u_2 inst✝¹ : CompleteLattice α inst✝ : IsCompactlyGenerated α s : Set (Set α) hs : DirectedOn (fun x1 x2 => x1 ⊆ x2) s h : ∀ a ∈ s, sSupIndep a ⊢ sSupIndep (⋃₀ s)
rw [Set.sUnion_eq_iUnion]
α : Type u_2 inst✝¹ : CompleteLattice α inst✝ : IsCompactlyGenerated α s : Set (Set α) hs : DirectedOn (fun x1 x2 => x1 ⊆ x2) s h : ∀ a ∈ s, sSupIndep a ⊢ sSupIndep (⋃ i, ↑i)
c76a851a46820f44
Fin.mem_find_iff
Mathlib/Data/Fin/Tuple/Basic.lean
theorem mem_find_iff {p : Fin n → Prop} [DecidablePred p] {i : Fin n} : i ∈ Fin.find p ↔ p i ∧ ∀ j, p j → i ≤ j := ⟨fun hi ↦ ⟨find_spec _ hi, fun _ ↦ find_min' hi⟩, by rintro ⟨hpi, hj⟩ cases hfp : Fin.find p · rw [find_eq_none_iff] at hfp exact (hfp _ hpi).elim · exact Option.some_inj.2 (Fin.le_antisymm (find_min' hfp hpi) (hj _ (find_spec _ hfp)))⟩
n : ℕ p : Fin n → Prop inst✝ : DecidablePred p i : Fin n ⊢ (p i ∧ ∀ (j : Fin n), p j → i ≤ j) → i ∈ find p
rintro ⟨hpi, hj⟩
case intro n : ℕ p : Fin n → Prop inst✝ : DecidablePred p i : Fin n hpi : p i hj : ∀ (j : Fin n), p j → i ≤ j ⊢ i ∈ find p
bd23a709faee2e49
RelSeries.append_apply_right
Mathlib/Order/RelSeries.lean
lemma append_apply_right (p q : RelSeries r) (connect : r p.last q.head) (i : Fin (q.length + 1)) : p.append q connect (i.natAdd p.length + 1) = q i
case h.e'_2.h.e'_6.h.h α : Type u_1 r : Rel α α p q : RelSeries r connect : r p.last q.head i : Fin (q.length + 1) ⊢ ↑(Fin.cast ⋯ (↑(p.length + ↑i) + 1)) = ↑(Fin.natAdd (p.length + 1) i)
simp only [Fin.coe_cast, Fin.coe_natAdd]
case h.e'_2.h.e'_6.h.h α : Type u_1 r : Rel α α p q : RelSeries r connect : r p.last q.head i : Fin (q.length + 1) ⊢ ↑(↑(p.length + ↑i) + 1) = p.length + 1 + ↑i
81a20ecaf5e7e778
Mathlib.Tactic.Bicategory.evalWhiskerRight_cons_of_of
Mathlib/Tactic/CategoryTheory/Bicategory/Normalize.lean
theorem evalWhiskerRight_cons_of_of {f g h i : a ⟶ b} {j : b ⟶ c} {α : f ≅ g} {η : g ⟶ h} {ηs : h ⟶ i} {ηs₁ : h ≫ j ⟶ i ≫ j} {η₁ : g ≫ j ⟶ h ≫ j} {η₂ : g ≫ j ⟶ i ≫ j} {η₃ : f ≫ j ⟶ i ≫ j} (e_ηs₁ : ηs ▷ j = ηs₁) (e_η₁ : η ▷ j = η₁) (e_η₂ : η₁ ≫ ηs₁ = η₂) (e_η₃ : (whiskerRightIso α j).hom ≫ η₂ = η₃) : (α.hom ≫ η ≫ ηs) ▷ j = η₃
B : Type u inst✝ : Bicategory B a b c : B f g h i : a ⟶ b j : b ⟶ c α : f ≅ g η : g ⟶ h ηs : h ⟶ i ηs₁ : h ≫ j ⟶ i ≫ j η₁ : g ≫ j ⟶ h ≫ j η₂ : g ≫ j ⟶ i ≫ j η₃ : f ≫ j ⟶ i ≫ j e_ηs₁ : ηs ▷ j = ηs₁ e_η₁ : η ▷ j = η₁ e_η₂ : η₁ ≫ ηs₁ = η₂ e_η₃ : (whiskerRightIso α j).hom ≫ η₂ = η₃ ⊢ (α.hom ≫ η ≫ ηs) ▷ j = η₃
simp_all
no goals
7631aa8acffca5fd
MeasureTheory.continuousOn_convolution_right_with_param
Mathlib/Analysis/Convolution.lean
theorem continuousOn_convolution_right_with_param {g : P → G → E'} {s : Set P} {k : Set G} (hk : IsCompact k) (hgs : ∀ p, ∀ x, p ∈ s → x ∉ k → g p x = 0) (hf : LocallyIntegrable f μ) (hg : ContinuousOn (↿g) (s ×ˢ univ)) : ContinuousOn (fun q : P × G => (f ⋆[L, μ] g q.1) q.2) (s ×ˢ univ)
𝕜 : Type u𝕜 G : Type uG E : Type uE E' : Type uE' F : Type uF P : Type uP inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedAddCommGroup E' inst✝¹¹ : NormedAddCommGroup F f : G → E inst✝¹⁰ : NontriviallyNormedField 𝕜 inst✝⁹ : NormedSpace 𝕜 E inst✝⁸ : NormedSpace 𝕜 E' inst✝⁷ : NormedSpace 𝕜 F L : E →L[𝕜] E' →L[𝕜] F inst✝⁶ : MeasurableSpace G μ : Measure G inst✝⁵ : NormedSpace ℝ F inst✝⁴ : AddGroup G inst✝³ : TopologicalSpace G inst✝² : IsTopologicalAddGroup G inst✝¹ : BorelSpace G inst✝ : TopologicalSpace P g : P → G → E' s : Set P k : Set G hk : IsCompact k hgs : ∀ (p : P) (x : G), p ∈ s → x ∉ k → g p x = 0 hf : LocallyIntegrable f μ hg : ContinuousOn (↿g) (s ×ˢ univ) H : ¬∀ p ∈ s, ∀ (x : G), g p x = 0 this : LocallyCompactSpace G q₀ : P x₀ : G hq₀ : (q₀, x₀).1 ∈ s t : Set G t_comp : IsCompact t ht : t ∈ 𝓝 x₀ k' : Set G := -k +ᵥ t k'_comp : IsCompact k' g' : P × G → G → E' := fun p x => g p.1 (p.2 - x) s' : Set (P × G) := s ×ˢ t ⊢ uncurry g' = uncurry g ∘ fun w => (w.1.1, w.1.2 - w.2)
ext y
case h 𝕜 : Type u𝕜 G : Type uG E : Type uE E' : Type uE' F : Type uF P : Type uP inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedAddCommGroup E' inst✝¹¹ : NormedAddCommGroup F f : G → E inst✝¹⁰ : NontriviallyNormedField 𝕜 inst✝⁹ : NormedSpace 𝕜 E inst✝⁸ : NormedSpace 𝕜 E' inst✝⁷ : NormedSpace 𝕜 F L : E →L[𝕜] E' →L[𝕜] F inst✝⁶ : MeasurableSpace G μ : Measure G inst✝⁵ : NormedSpace ℝ F inst✝⁴ : AddGroup G inst✝³ : TopologicalSpace G inst✝² : IsTopologicalAddGroup G inst✝¹ : BorelSpace G inst✝ : TopologicalSpace P g : P → G → E' s : Set P k : Set G hk : IsCompact k hgs : ∀ (p : P) (x : G), p ∈ s → x ∉ k → g p x = 0 hf : LocallyIntegrable f μ hg : ContinuousOn (↿g) (s ×ˢ univ) H : ¬∀ p ∈ s, ∀ (x : G), g p x = 0 this : LocallyCompactSpace G q₀ : P x₀ : G hq₀ : (q₀, x₀).1 ∈ s t : Set G t_comp : IsCompact t ht : t ∈ 𝓝 x₀ k' : Set G := -k +ᵥ t k'_comp : IsCompact k' g' : P × G → G → E' := fun p x => g p.1 (p.2 - x) s' : Set (P × G) := s ×ˢ t y : (P × G) × G ⊢ uncurry g' y = (uncurry g ∘ fun w => (w.1.1, w.1.2 - w.2)) y
a579c7593509cfe8
MeasureTheory.Measure.ext_iff_of_iUnion_eq_univ
Mathlib/MeasureTheory/Measure/Restrict.lean
theorem ext_iff_of_iUnion_eq_univ [Countable ι] {s : ι → Set α} (hs : ⋃ i, s i = univ) : μ = ν ↔ ∀ i, μ.restrict (s i) = ν.restrict (s i)
α : Type u_2 ι : Type u_6 m0 : MeasurableSpace α μ ν : Measure α inst✝ : Countable ι s : ι → Set α hs : ⋃ i, s i = univ ⊢ μ = ν ↔ ∀ (i : ι), μ.restrict (s i) = ν.restrict (s i)
rw [← restrict_iUnion_congr, hs, restrict_univ, restrict_univ]
no goals
0ef26d718a599dda
RingHom.FormallyUnramified.holdsForLocalizationAway
Mathlib/RingTheory/RingHom/Unramified.lean
lemma holdsForLocalizationAway : HoldsForLocalizationAway FormallyUnramified
R S : Type u_3 inst✝³ : CommRing R inst✝² : CommRing S inst✝¹ : Algebra R S r : R inst✝ : IsLocalization.Away r S ⊢ (algebraMap R S).FormallyUnramified
rw [formallyUnramified_algebraMap]
R S : Type u_3 inst✝³ : CommRing R inst✝² : CommRing S inst✝¹ : Algebra R S r : R inst✝ : IsLocalization.Away r S ⊢ Algebra.FormallyUnramified R S
ce99abdb1bed37fd
IsSepClosed.algebraMap_surjective
Mathlib/FieldTheory/IsSepClosed.lean
theorem algebraMap_surjective [IsSepClosed k] [Algebra k K] [Algebra.IsSeparable k K] : Function.Surjective (algebraMap k K)
k : Type u inst✝⁴ : Field k K : Type v inst✝³ : Field K inst✝² : IsSepClosed k inst✝¹ : Algebra k K inst✝ : Algebra.IsSeparable k K ⊢ Function.Surjective ⇑(algebraMap k K)
refine fun x => ⟨-(minpoly k x).coeff 0, ?_⟩
k : Type u inst✝⁴ : Field k K : Type v inst✝³ : Field K inst✝² : IsSepClosed k inst✝¹ : Algebra k K inst✝ : Algebra.IsSeparable k K x : K ⊢ (algebraMap k K) (-(minpoly k x).coeff 0) = x
c449367686c063ba
Module.exists_basis_of_basis_baseChange
Mathlib/RingTheory/LocalRing/Module.lean
/-- If `M` is of finite presentation over a local ring `(R, 𝔪, k)` such that `𝔪 ⊗ M → M` is injective, then every family of elements that is a `k`-basis of `k ⊗ M` is an `R`-basis of `M`. -/ lemma exists_basis_of_basis_baseChange [Module.FinitePresentation R M] {ι : Type u} (v : ι → M) (hli : LinearIndependent k (TensorProduct.mk R k M 1 ∘ v)) (hsp : Submodule.span k (Set.range (TensorProduct.mk R k M 1 ∘ v)) = ⊤) (H : Function.Injective ((𝔪).subtype.rTensor M)) : ∃ (b : Basis ι R M), ∀ i, b i = v i
R : Type u_1 inst✝⁴ : CommRing R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : IsLocalRing R inst✝ : FinitePresentation R M ι : Type u v : ι → M hli : LinearIndependent k (⇑((TensorProduct.mk R k M) 1) ∘ v) hsp : Submodule.span k (Set.range (⇑((TensorProduct.mk R k M) 1) ∘ v)) = ⊤ H : Function.Injective ⇑(LinearMap.rTensor M (Submodule.subtype 𝔪)) bk : Basis ι k (k ⊗[R] M) := Basis.mk hli ⋯ this✝¹ : Finite ι this✝ : Fintype ι := Fintype.ofFinite ι this : IsNoetherian k (k ⊗[R] (ι →₀ R)) := isNoetherian_of_isNoetherianRing_of_finite k (k ⊗[R] (ι →₀ R)) i : (ι →₀ R) →ₗ[R] M := Finsupp.linearCombination R v ⊢ Surjective ⇑i
rw [← LinearMap.range_eq_top, Finsupp.range_linearCombination]
R : Type u_1 inst✝⁴ : CommRing R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : IsLocalRing R inst✝ : FinitePresentation R M ι : Type u v : ι → M hli : LinearIndependent k (⇑((TensorProduct.mk R k M) 1) ∘ v) hsp : Submodule.span k (Set.range (⇑((TensorProduct.mk R k M) 1) ∘ v)) = ⊤ H : Function.Injective ⇑(LinearMap.rTensor M (Submodule.subtype 𝔪)) bk : Basis ι k (k ⊗[R] M) := Basis.mk hli ⋯ this✝¹ : Finite ι this✝ : Fintype ι := Fintype.ofFinite ι this : IsNoetherian k (k ⊗[R] (ι →₀ R)) := isNoetherian_of_isNoetherianRing_of_finite k (k ⊗[R] (ι →₀ R)) i : (ι →₀ R) →ₗ[R] M := Finsupp.linearCombination R v ⊢ Submodule.span R (Set.range v) = ⊤
59c6db943feaa269
WittVector.map_frobeniusPoly
Mathlib/RingTheory/WittVector/Frobenius.lean
theorem map_frobeniusPoly (n : ℕ) : MvPolynomial.map (Int.castRingHom ℚ) (frobeniusPoly p n) = frobeniusPolyRat p n
p : ℕ hp : Fact (Nat.Prime p) n : ℕ h1 : ↑p ^ n * ⅟↑p ^ n = 1 i : ℕ hi : i < n j : ℕ hj : j < p ^ (n - i) this : ↑((p ^ (n - i)).choose (j + 1)) * ↑p ^ (j - v p (j + 1)) * ↑p * ↑p ^ n = ↑p ^ j * ↑p * ↑((p ^ (n - i)).choose (j + 1) * p ^ i) * ↑p ^ (n - i - v p (j + 1)) aux : ∀ (k : ℕ), ↑p ^ k ≠ 0 ⊢ ↑p ^ j * ↑p * (↑((p ^ (n - i)).choose (j + 1)) * (↑p ^ i * (↑p ^ n)⁻¹)) = ↑((p ^ (n - i)).choose (j + 1)) / ↑p ^ (n - i - v p (j + 1)) * ↑p ^ (j - v p (j + 1)) * ↑p
simpa [aux, -one_div, -pow_eq_zero_iff', field_simps] using this.symm
no goals
1eb072545457e9c3
AlgebraicGeometry.stalkClosedPointIso_inv
Mathlib/AlgebraicGeometry/Stalk.lean
lemma stalkClosedPointIso_inv : (stalkClosedPointIso R).inv = StructureSheaf.toStalk R _
case hf.a R : CommRingCat inst✝ : IsLocalRing ↑R x : ↑R ⊢ (CommRingCat.Hom.hom (stalkClosedPointIso R).inv) x = (CommRingCat.Hom.hom (StructureSheaf.toStalk (↑R) (closedPoint ↑R))) x
exact StructureSheaf.localizationToStalk_of _ _ _
no goals
32651b7dea07f1c7
LaurentSeries.algebraMap_C_mem_adicCompletionIntegers
Mathlib/RingTheory/LaurentSeries.lean
lemma algebraMap_C_mem_adicCompletionIntegers (x : K) : ((LaurentSeriesRingEquiv K).toRingHom.comp HahnSeries.C) x ∈ adicCompletionIntegers (RatFunc K) (idealX K)
K : Type u_2 inst✝ : Field K x : K ⊢ HahnSeries.C x = (ofPowerSeries ℤ K) ((PowerSeries.C K) x)
simp [C_apply, ofPowerSeries_C]
no goals
8b9003a9548d41b1
HomologicalComplex.mapBifunctor₁₂.d_eq
Mathlib/Algebra/Homology/BifunctorAssociator.lean
lemma d_eq (j j' : ι₄) [HasGoodTrifunctor₁₂Obj F₁₂ G K₁ K₂ K₃ c₁₂ c₄] : (mapBifunctor (mapBifunctor K₁ K₂ F₁₂ c₁₂) K₃ G c₄).d j j' = D₁ F₁₂ G K₁ K₂ K₃ c₁₂ c₄ j j' + D₂ F₁₂ G K₁ K₂ K₃ c₁₂ c₄ j j' + D₃ F₁₂ G K₁ K₂ K₃ c₁₂ c₄ j j'
case e_a C₁ : Type u_1 C₂ : Type u_2 C₁₂ : Type u_3 C₃ : Type u_5 C₄ : Type u_6 inst✝²⁰ : Category.{u_13, u_1} C₁ inst✝¹⁹ : Category.{u_14, u_2} C₂ inst✝¹⁸ : Category.{u_15, u_5} C₃ inst✝¹⁷ : Category.{u_16, u_6} C₄ inst✝¹⁶ : Category.{u_17, u_3} C₁₂ inst✝¹⁵ : HasZeroMorphisms C₁ inst✝¹⁴ : HasZeroMorphisms C₂ inst✝¹³ : HasZeroMorphisms C₃ inst✝¹² : Preadditive C₁₂ inst✝¹¹ : Preadditive C₄ F₁₂ : C₁ ⥤ C₂ ⥤ C₁₂ G : C₁₂ ⥤ C₃ ⥤ C₄ inst✝¹⁰ : F₁₂.PreservesZeroMorphisms inst✝⁹ : ∀ (X₁ : C₁), (F₁₂.obj X₁).PreservesZeroMorphisms inst✝⁸ : G.Additive inst✝⁷ : ∀ (X₁₂ : C₁₂), (G.obj X₁₂).PreservesZeroMorphisms ι₁ : Type u_7 ι₂ : Type u_8 ι₃ : Type u_9 ι₁₂ : Type u_10 ι₄ : Type u_12 inst✝⁶ : DecidableEq ι₄ c₁ : ComplexShape ι₁ c₂ : ComplexShape ι₂ c₃ : ComplexShape ι₃ K₁ : HomologicalComplex C₁ c₁ K₂ : HomologicalComplex C₂ c₂ K₃ : HomologicalComplex C₃ c₃ c₁₂ : ComplexShape ι₁₂ c₄ : ComplexShape ι₄ inst✝⁵ : TotalComplexShape c₁ c₂ c₁₂ inst✝⁴ : TotalComplexShape c₁₂ c₃ c₄ inst✝³ : K₁.HasMapBifunctor K₂ F₁₂ c₁₂ inst✝² : DecidableEq ι₁₂ inst✝¹ : (K₁.mapBifunctor K₂ F₁₂ c₁₂).HasMapBifunctor K₃ G c₄ j j' : ι₄ inst✝ : HasGoodTrifunctor₁₂Obj F₁₂ G K₁ K₂ K₃ c₁₂ c₄ i₁ : ι₁ i₂ : ι₂ i₃ : ι₃ h : c₁.r c₂ c₃ c₁₂ c₄ (i₁, i₂, i₃) = j i₁₂ : ι₁₂ := c₁.π c₂ c₁₂ (i₁, i₂) h₁ : c₁₂.Rel i₁₂ (c₁₂.next i₁₂) h₂ : ¬c₁₂.π c₃ c₄ (c₁₂.next i₁₂, i₃) = j' ⊢ 0 = d₂ F₁₂ G K₁ K₂ K₃ c₁₂ c₄ i₁ i₂ i₃ j'
by_cases h₃ : c₂.Rel i₂ (c₂.next i₂)
case pos C₁ : Type u_1 C₂ : Type u_2 C₁₂ : Type u_3 C₃ : Type u_5 C₄ : Type u_6 inst✝²⁰ : Category.{u_13, u_1} C₁ inst✝¹⁹ : Category.{u_14, u_2} C₂ inst✝¹⁸ : Category.{u_15, u_5} C₃ inst✝¹⁷ : Category.{u_16, u_6} C₄ inst✝¹⁶ : Category.{u_17, u_3} C₁₂ inst✝¹⁵ : HasZeroMorphisms C₁ inst✝¹⁴ : HasZeroMorphisms C₂ inst✝¹³ : HasZeroMorphisms C₃ inst✝¹² : Preadditive C₁₂ inst✝¹¹ : Preadditive C₄ F₁₂ : C₁ ⥤ C₂ ⥤ C₁₂ G : C₁₂ ⥤ C₃ ⥤ C₄ inst✝¹⁰ : F₁₂.PreservesZeroMorphisms inst✝⁹ : ∀ (X₁ : C₁), (F₁₂.obj X₁).PreservesZeroMorphisms inst✝⁸ : G.Additive inst✝⁷ : ∀ (X₁₂ : C₁₂), (G.obj X₁₂).PreservesZeroMorphisms ι₁ : Type u_7 ι₂ : Type u_8 ι₃ : Type u_9 ι₁₂ : Type u_10 ι₄ : Type u_12 inst✝⁶ : DecidableEq ι₄ c₁ : ComplexShape ι₁ c₂ : ComplexShape ι₂ c₃ : ComplexShape ι₃ K₁ : HomologicalComplex C₁ c₁ K₂ : HomologicalComplex C₂ c₂ K₃ : HomologicalComplex C₃ c₃ c₁₂ : ComplexShape ι₁₂ c₄ : ComplexShape ι₄ inst✝⁵ : TotalComplexShape c₁ c₂ c₁₂ inst✝⁴ : TotalComplexShape c₁₂ c₃ c₄ inst✝³ : K₁.HasMapBifunctor K₂ F₁₂ c₁₂ inst✝² : DecidableEq ι₁₂ inst✝¹ : (K₁.mapBifunctor K₂ F₁₂ c₁₂).HasMapBifunctor K₃ G c₄ j j' : ι₄ inst✝ : HasGoodTrifunctor₁₂Obj F₁₂ G K₁ K₂ K₃ c₁₂ c₄ i₁ : ι₁ i₂ : ι₂ i₃ : ι₃ h : c₁.r c₂ c₃ c₁₂ c₄ (i₁, i₂, i₃) = j i₁₂ : ι₁₂ := c₁.π c₂ c₁₂ (i₁, i₂) h₁ : c₁₂.Rel i₁₂ (c₁₂.next i₁₂) h₂ : ¬c₁₂.π c₃ c₄ (c₁₂.next i₁₂, i₃) = j' h₃ : c₂.Rel i₂ (c₂.next i₂) ⊢ 0 = d₂ F₁₂ G K₁ K₂ K₃ c₁₂ c₄ i₁ i₂ i₃ j' case neg C₁ : Type u_1 C₂ : Type u_2 C₁₂ : Type u_3 C₃ : Type u_5 C₄ : Type u_6 inst✝²⁰ : Category.{u_13, u_1} C₁ inst✝¹⁹ : Category.{u_14, u_2} C₂ inst✝¹⁸ : Category.{u_15, u_5} C₃ inst✝¹⁷ : Category.{u_16, u_6} C₄ inst✝¹⁶ : Category.{u_17, u_3} C₁₂ inst✝¹⁵ : HasZeroMorphisms C₁ inst✝¹⁴ : HasZeroMorphisms C₂ inst✝¹³ : HasZeroMorphisms C₃ inst✝¹² : Preadditive C₁₂ inst✝¹¹ : Preadditive C₄ F₁₂ : C₁ ⥤ C₂ ⥤ C₁₂ G : C₁₂ ⥤ C₃ ⥤ C₄ inst✝¹⁰ : F₁₂.PreservesZeroMorphisms inst✝⁹ : ∀ (X₁ : C₁), (F₁₂.obj X₁).PreservesZeroMorphisms inst✝⁸ : G.Additive inst✝⁷ : ∀ (X₁₂ : C₁₂), (G.obj X₁₂).PreservesZeroMorphisms ι₁ : Type u_7 ι₂ : Type u_8 ι₃ : Type u_9 ι₁₂ : Type u_10 ι₄ : Type u_12 inst✝⁶ : DecidableEq ι₄ c₁ : ComplexShape ι₁ c₂ : ComplexShape ι₂ c₃ : ComplexShape ι₃ K₁ : HomologicalComplex C₁ c₁ K₂ : HomologicalComplex C₂ c₂ K₃ : HomologicalComplex C₃ c₃ c₁₂ : ComplexShape ι₁₂ c₄ : ComplexShape ι₄ inst✝⁵ : TotalComplexShape c₁ c₂ c₁₂ inst✝⁴ : TotalComplexShape c₁₂ c₃ c₄ inst✝³ : K₁.HasMapBifunctor K₂ F₁₂ c₁₂ inst✝² : DecidableEq ι₁₂ inst✝¹ : (K₁.mapBifunctor K₂ F₁₂ c₁₂).HasMapBifunctor K₃ G c₄ j j' : ι₄ inst✝ : HasGoodTrifunctor₁₂Obj F₁₂ G K₁ K₂ K₃ c₁₂ c₄ i₁ : ι₁ i₂ : ι₂ i₃ : ι₃ h : c₁.r c₂ c₃ c₁₂ c₄ (i₁, i₂, i₃) = j i₁₂ : ι₁₂ := c₁.π c₂ c₁₂ (i₁, i₂) h₁ : c₁₂.Rel i₁₂ (c₁₂.next i₁₂) h₂ : ¬c₁₂.π c₃ c₄ (c₁₂.next i₁₂, i₃) = j' h₃ : ¬c₂.Rel i₂ (c₂.next i₂) ⊢ 0 = d₂ F₁₂ G K₁ K₂ K₃ c₁₂ c₄ i₁ i₂ i₃ j'
bcc237c029dad5d6
EReal.add_le_of_forall_lt
Mathlib/Data/Real/EReal.lean
lemma add_le_of_forall_lt {a b c : EReal} (h : ∀ a' < a, ∀ b' < b, a' + b' ≤ c) : a + b ≤ c
a b c : EReal h : ∀ a' < a, ∀ b' < b, a' + b' ≤ c d : EReal hd : d < a + b ⊢ d ≤ c
obtain ⟨a', ha', hd⟩ := exists_lt_add_left hd
case intro.intro a b c : EReal h : ∀ a' < a, ∀ b' < b, a' + b' ≤ c d : EReal hd✝ : d < a + b a' : EReal ha' : a' < a hd : d < a' + b ⊢ d ≤ c
a698a52687e39bf3
Asymptotics.SuperpolynomialDecay.param_zpow_mul
Mathlib/Analysis/Asymptotics/SuperpolynomialDecay.lean
theorem SuperpolynomialDecay.param_zpow_mul (hk : Tendsto k l atTop) (hf : SuperpolynomialDecay l k f) (z : ℤ) : SuperpolynomialDecay l k fun a => k a ^ z * f a
α : Type u_1 β : Type u_2 l : Filter α k f : α → β inst✝² : TopologicalSpace β inst✝¹ : LinearOrderedField β inst✝ : OrderTopology β hk : Tendsto k l atTop hf : ∀ (z : ℤ), Tendsto (fun a => k a ^ z * f a) l (𝓝 0) z : ℤ ⊢ ∀ (z_1 : ℤ), Tendsto (fun a => k a ^ z_1 * (k a ^ z * f a)) l (𝓝 0)
refine fun z' => (hf <| z' + z).congr' ((hk.eventually_ne_atTop 0).mono fun x hx => ?_)
α : Type u_1 β : Type u_2 l : Filter α k f : α → β inst✝² : TopologicalSpace β inst✝¹ : LinearOrderedField β inst✝ : OrderTopology β hk : Tendsto k l atTop hf : ∀ (z : ℤ), Tendsto (fun a => k a ^ z * f a) l (𝓝 0) z z' : ℤ x : α hx : k x ≠ 0 ⊢ k x ^ (z' + z) * f x = (fun a => k a ^ z' * (k a ^ z * f a)) x
fe3d3cf9ecd4f068
MeasureTheory.Lp.simpleFunc.denseRange_coeSimpleFuncNonnegToLpNonneg
Mathlib/MeasureTheory/Function/SimpleFuncDenseLp.lean
theorem denseRange_coeSimpleFuncNonnegToLpNonneg [hp : Fact (1 ≤ p)] (hp_ne_top : p ≠ ∞) : DenseRange (coeSimpleFuncNonnegToLpNonneg p μ G) := fun g ↦ by borelize G rw [mem_closure_iff_seq_limit] have hg_memLp : MemLp (g : α → G) p μ := Lp.memLp (g : Lp G p μ) have zero_mem : (0 : G) ∈ (range (g : α → G) ∪ {0} : Set G) ∩ { y | 0 ≤ y }
α : Type u_1 inst✝¹ : MeasurableSpace α p : ℝ≥0∞ μ : Measure α G : Type u_7 inst✝ : NormedLatticeAddCommGroup G hp : Fact (1 ≤ p) hp_ne_top : p ≠ ⊤ g : { g // 0 ≤ g } this✝² : MeasurableSpace G := borel G this✝¹ : BorelSpace G hg_memLp : MemLp (↑↑↑g) p μ zero_mem : 0 ∈ (Set.range ↑↑↑g ∪ {0}) ∩ {y | 0 ≤ y} this✝ : SeparableSpace ↑((Set.range ↑↑↑g ∪ {0}) ∩ {y | 0 ≤ y}) g_meas : Measurable ↑↑↑g x : ℕ → α →ₛ G := fun n => SimpleFunc.approxOn (↑↑↑g) g_meas ((Set.range ↑↑↑g ∪ {0}) ∩ {y | 0 ≤ y}) 0 zero_mem n hx_nonneg : ∀ (n : ℕ), 0 ≤ x n hx_memLp : ∀ (n : ℕ), MemLp (⇑(x n)) p μ h_toLp : ∀ (n : ℕ), ↑↑(MemLp.toLp ⇑(x n) ⋯) =ᶠ[ae μ] ⇑(x n) hx_nonneg_Lp : ∀ (n : ℕ), 0 ≤ toLp (x n) ⋯ hx_tendsto : Tendsto (fun n => eLpNorm (⇑(x n) - ↑↑↑g) p μ) atTop (𝓝 0) this : Tendsto (fun b => dist ↑(toLp (x b) ⋯) ↑g) atTop (𝓝 0) ⊢ Tendsto (fun b => dist ↑(coeSimpleFuncNonnegToLpNonneg p μ G ⟨toLp (x b) ⋯, ⋯⟩) ↑g) atTop (𝓝 0)
exact this
no goals
1fc70ad144f2653f
Plausible.InjectiveFunction.applyId_mem_iff
Mathlib/Testing/Plausible/Functions.lean
theorem applyId_mem_iff [DecidableEq α] {xs ys : List α} (h₀ : List.Nodup xs) (h₁ : xs ~ ys) (x : α) : List.applyId.{u} (xs.zip ys) x ∈ ys ↔ x ∈ xs
case some α : Type u inst✝ : DecidableEq α xs ys : List α h₀ : xs.Nodup h₁ : xs ~ ys x val : α h₃ : dlookup x (map Prod.toSigma (xs.zip ys)) = some val h₂ : ys.Nodup ⊢ (some val).getD x ∈ ys ↔ x ∈ xs
replace h₁ : xs.length = ys.length := h₁.length_eq
case some α : Type u inst✝ : DecidableEq α xs ys : List α h₀ : xs.Nodup x val : α h₃ : dlookup x (map Prod.toSigma (xs.zip ys)) = some val h₂ : ys.Nodup h₁ : xs.length = ys.length ⊢ (some val).getD x ∈ ys ↔ x ∈ xs
93266444922c9f67
Finsupp.supported_iUnion
Mathlib/LinearAlgebra/Finsupp/Supported.lean
theorem supported_iUnion {δ : Type*} (s : δ → Set α) : supported M R (⋃ i, s i) = ⨆ i, supported M R (s i)
case intro.refine_1 α : Type u_1 M : Type u_2 R : Type u_5 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M δ : Type u_7 s : δ → Set α this : DecidablePred fun x => x ∈ ⋃ i, s i l : α →₀ M ⊢ 0 ∈ comap ((supported M R (⋃ i, s i)).subtype ∘ₗ restrictDom M R (⋃ i, s i)) (⨆ i, supported M R (s i))
exact zero_mem _
no goals
831219d09d75faa3
MeasureTheory.setLaverage_eq'
Mathlib/MeasureTheory/Integral/Average.lean
theorem setLaverage_eq' (f : α → ℝ≥0∞) (s : Set α) : ⨍⁻ x in s, f x ∂μ = ∫⁻ x, f x ∂(μ s)⁻¹ • μ.restrict s
α : Type u_1 m0 : MeasurableSpace α μ : Measure α f : α → ℝ≥0∞ s : Set α ⊢ ⨍⁻ (x : α) in s, f x ∂μ = ∫⁻ (x : α), f x ∂(μ s)⁻¹ • μ.restrict s
simp only [laverage_eq', restrict_apply_univ]
no goals
5c8b945375da63d8
ZMod.dft_smul_const
Mathlib/Analysis/Fourier/ZMod.lean
lemma dft_smul_const {R : Type*} [Ring R] [Module ℂ R] [Module R E] [IsScalarTower ℂ R E] (Φ : ZMod N → R) (e : E) : 𝓕 (fun j ↦ Φ j • e) = fun k ↦ 𝓕 Φ k • e
N : ℕ inst✝⁶ : NeZero N E : Type u_1 inst✝⁵ : AddCommGroup E inst✝⁴ : Module ℂ E R : Type u_2 inst✝³ : Ring R inst✝² : Module ℂ R inst✝¹ : Module R E inst✝ : IsScalarTower ℂ R E Φ : ZMod N → R e : E ⊢ (𝓕 fun j => Φ j • e) = fun k => 𝓕 Φ k • e
simp only [dft_def, sum_smul, smul_assoc]
no goals
5f42e264fba58c0c
List.mem_rtakeWhile_imp
Mathlib/Data/List/DropRight.lean
theorem mem_rtakeWhile_imp {x : α} (hx : x ∈ rtakeWhile p l) : p x
α : Type u_1 p : α → Bool l : List α x : α hx : x ∈ rtakeWhile p l ⊢ p x = true
rw [rtakeWhile, mem_reverse] at hx
α : Type u_1 p : α → Bool l : List α x : α hx : x ∈ takeWhile p l.reverse ⊢ p x = true
ea73bcbb2133334e
Vitali.exists_disjoint_covering_ae
Mathlib/MeasureTheory/Covering/Vitali.lean
theorem exists_disjoint_covering_ae [PseudoMetricSpace α] [MeasurableSpace α] [OpensMeasurableSpace α] [SecondCountableTopology α] (μ : Measure α) [IsLocallyFiniteMeasure μ] (s : Set α) (t : Set ι) (C : ℝ≥0) (r : ι → ℝ) (c : ι → α) (B : ι → Set α) (hB : ∀ a ∈ t, B a ⊆ closedBall (c a) (r a)) (μB : ∀ a ∈ t, μ (closedBall (c a) (3 * r a)) ≤ C * μ (B a)) (ht : ∀ a ∈ t, (interior (B a)).Nonempty) (h't : ∀ a ∈ t, IsClosed (B a)) (hf : ∀ x ∈ s, ∀ ε > (0 : ℝ), ∃ a ∈ t, r a ≤ ε ∧ c a = x) : ∃ u ⊆ t, u.Countable ∧ u.PairwiseDisjoint B ∧ μ (s \ ⋃ a ∈ u, B a) = 0
case intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 ι : Type u_2 inst✝⁴ : PseudoMetricSpace α inst✝³ : MeasurableSpace α inst✝² : OpensMeasurableSpace α inst✝¹ : SecondCountableTopology α μ : Measure α inst✝ : IsLocallyFiniteMeasure μ s : Set α t : Set ι C : ℝ≥0 r : ι → ℝ c : ι → α B : ι → Set α hB : ∀ a ∈ t, B a ⊆ closedBall (c a) (r a) μB : ∀ a ∈ t, μ (closedBall (c a) (3 * r a)) ≤ ↑C * μ (B a) ht : ∀ a ∈ t, (interior (B a)).Nonempty h't : ∀ a ∈ t, IsClosed (B a) hf : ∀ x ∈ s, ∀ ε > 0, ∃ a ∈ t, r a ≤ ε ∧ c a = x R : α → ℝ hR0 : ∀ (x : α), 0 < R x hR1 : ∀ (x : α), R x ≤ 1 hRμ : ∀ (x : α), μ (closedBall x (20 * R x)) < ⊤ t' : Set ι := {a | a ∈ t ∧ r a ≤ R (c a)} u : Set ι ut' : u ⊆ t' u_disj : u.PairwiseDisjoint B hu : ∀ a ∈ t', ∃ b ∈ u, (B a ∩ B b).Nonempty ∧ r a ≤ 2 * r b ut : u ⊆ t u_count : u.Countable x : α x✝ : x ∈ s \ ⋃ a ∈ u, B a v : Set ι := {a | a ∈ u ∧ (B a ∩ ball x (R x)).Nonempty} vu : v ⊆ u K : ℝ μK : μ (closedBall x K) < ⊤ hK : ∀ a ∈ u, (B a ∩ ball x (R x)).Nonempty → B a ⊆ closedBall x K ε : ℝ≥0∞ εpos : 0 < ε I : ∑' (a : ↑v), μ (B ↑a) < ⊤ w : Finset ↑v hw : ∑' (a : { a // a ∉ w }), μ (B ↑↑a) < ε / ↑C k : Set α := ⋃ a ∈ w, B ↑a k_closed : IsClosed k d : ℝ dpos : 0 < d a : ι hat : a ∈ t hz : c a ∈ (s \ ⋃ a ∈ u, B a) ∩ ball x (R x) z_notmem_k : c a ∉ k this : ball x (R x) \ k ∈ 𝓝 (c a) hd : closedBall (c a) d ⊆ ball x (R x) \ k ad : r a ≤ d ⊓ R (c a) ax : B a ⊆ ball x (R x) b : ι bu : b ∈ u ab : (B a ∩ B b).Nonempty bdiam : r a ≤ 2 * r b bv : b ∈ v ⊢ c a ∈ ⋃ a, closedBall (c ↑↑a) (3 * r ↑↑a)
let b' : v := ⟨b, bv⟩
case intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 ι : Type u_2 inst✝⁴ : PseudoMetricSpace α inst✝³ : MeasurableSpace α inst✝² : OpensMeasurableSpace α inst✝¹ : SecondCountableTopology α μ : Measure α inst✝ : IsLocallyFiniteMeasure μ s : Set α t : Set ι C : ℝ≥0 r : ι → ℝ c : ι → α B : ι → Set α hB : ∀ a ∈ t, B a ⊆ closedBall (c a) (r a) μB : ∀ a ∈ t, μ (closedBall (c a) (3 * r a)) ≤ ↑C * μ (B a) ht : ∀ a ∈ t, (interior (B a)).Nonempty h't : ∀ a ∈ t, IsClosed (B a) hf : ∀ x ∈ s, ∀ ε > 0, ∃ a ∈ t, r a ≤ ε ∧ c a = x R : α → ℝ hR0 : ∀ (x : α), 0 < R x hR1 : ∀ (x : α), R x ≤ 1 hRμ : ∀ (x : α), μ (closedBall x (20 * R x)) < ⊤ t' : Set ι := {a | a ∈ t ∧ r a ≤ R (c a)} u : Set ι ut' : u ⊆ t' u_disj : u.PairwiseDisjoint B hu : ∀ a ∈ t', ∃ b ∈ u, (B a ∩ B b).Nonempty ∧ r a ≤ 2 * r b ut : u ⊆ t u_count : u.Countable x : α x✝ : x ∈ s \ ⋃ a ∈ u, B a v : Set ι := {a | a ∈ u ∧ (B a ∩ ball x (R x)).Nonempty} vu : v ⊆ u K : ℝ μK : μ (closedBall x K) < ⊤ hK : ∀ a ∈ u, (B a ∩ ball x (R x)).Nonempty → B a ⊆ closedBall x K ε : ℝ≥0∞ εpos : 0 < ε I : ∑' (a : ↑v), μ (B ↑a) < ⊤ w : Finset ↑v hw : ∑' (a : { a // a ∉ w }), μ (B ↑↑a) < ε / ↑C k : Set α := ⋃ a ∈ w, B ↑a k_closed : IsClosed k d : ℝ dpos : 0 < d a : ι hat : a ∈ t hz : c a ∈ (s \ ⋃ a ∈ u, B a) ∩ ball x (R x) z_notmem_k : c a ∉ k this : ball x (R x) \ k ∈ 𝓝 (c a) hd : closedBall (c a) d ⊆ ball x (R x) \ k ad : r a ≤ d ⊓ R (c a) ax : B a ⊆ ball x (R x) b : ι bu : b ∈ u ab : (B a ∩ B b).Nonempty bdiam : r a ≤ 2 * r b bv : b ∈ v b' : ↑v := ⟨b, bv⟩ ⊢ c a ∈ ⋃ a, closedBall (c ↑↑a) (3 * r ↑↑a)
4466d2fc3e80cb3f
Vector.toList_setIfInBounds
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Vector/Lemmas.lean
theorem toList_setIfInBounds (a : Vector α n) (i x) : (a.setIfInBounds i x).toList = a.toList.set i x
α : Type u_1 n : Nat a : Vector α n i : Nat x : α ⊢ (a.setIfInBounds i x).toList = a.toList.set i x
simp [Vector.setIfInBounds]
no goals
3cc0ba914ba760b9