name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
PrimeSpectrum.zeroLocus_eq_top_iff
Mathlib/RingTheory/Spectrum/Prime/Basic.lean
theorem zeroLocus_eq_top_iff (s : Set R) : zeroLocus s = ⊤ ↔ s ⊆ nilradical R
R : Type u inst✝ : CommSemiring R s : Set R ⊢ zeroLocus s = ⊤ ↔ s ⊆ ↑(nilradical R)
constructor
case mp R : Type u inst✝ : CommSemiring R s : Set R ⊢ zeroLocus s = ⊤ → s ⊆ ↑(nilradical R) case mpr R : Type u inst✝ : CommSemiring R s : Set R ⊢ s ⊆ ↑(nilradical R) → zeroLocus s = ⊤
71fbfa23dbaec95e
MeasureTheory.SimpleFunc.lintegral_mono_fun
Mathlib/MeasureTheory/Function/SimpleFunc.lean
theorem lintegral_mono_fun {f g : α →ₛ ℝ≥0∞} (h : f ≤ g) : f.lintegral μ ≤ g.lintegral μ
α : Type u_1 m : MeasurableSpace α μ : Measure α f✝ g✝ : α →ₛ ℝ≥0∞ h : f✝ ≤ g✝ f g : α →ₛ ℝ≥0∞ ⊢ f.lintegral μ = (map Prod.fst (f.pair g)).lintegral μ
rw [map_fst_pair]
no goals
786bccc4e6df0904
List.lookupAll_nodup
Mathlib/Data/List/Sigma.lean
theorem lookupAll_nodup (a : α) {l : List (Sigma β)} (h : l.NodupKeys) : (lookupAll a l).Nodup
α : Type u β : α → Type v inst✝ : DecidableEq α a : α l : List (Sigma β) h : l.NodupKeys ⊢ (dlookup a l).toList.Nodup
apply Option.toList_nodup
no goals
dbaf0df3dc76943f
NNReal.inner_le_Lp_mul_Lq_tsum
Mathlib/Analysis/MeanInequalities.lean
theorem inner_le_Lp_mul_Lq_tsum {f g : ι → ℝ≥0} {p q : ℝ} (hpq : p.IsConjExponent q) (hf : Summable fun i => f i ^ p) (hg : Summable fun i => g i ^ q) : (Summable fun i => f i * g i) ∧ ∑' i, f i * g i ≤ (∑' i, f i ^ p) ^ (1 / p) * (∑' i, g i ^ q) ^ (1 / q)
ι : Type u f g : ι → ℝ≥0 p q : ℝ hpq : p.IsConjExponent q hf : Summable fun i => f i ^ p hg : Summable fun i => g i ^ q H₁ : ∀ (s : Finset ι), ∑ i ∈ s, f i * g i ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) * (∑' (i : ι), g i ^ q) ^ (1 / q) ⊢ (∑' (i : ι), f i ^ p) ^ (1 / p) * (∑' (i : ι), g i ^ q) ^ (1 / q) ∈ upperBounds (Set.range fun s => ∑ i ∈ s, f i * g i)
rintro a ⟨s, rfl⟩
case intro ι : Type u f g : ι → ℝ≥0 p q : ℝ hpq : p.IsConjExponent q hf : Summable fun i => f i ^ p hg : Summable fun i => g i ^ q H₁ : ∀ (s : Finset ι), ∑ i ∈ s, f i * g i ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) * (∑' (i : ι), g i ^ q) ^ (1 / q) s : Finset ι ⊢ (fun s => ∑ i ∈ s, f i * g i) s ≤ (∑' (i : ι), f i ^ p) ^ (1 / p) * (∑' (i : ι), g i ^ q) ^ (1 / q)
a6de81c9fde72ed0
CategoryTheory.SingleFunctors.shiftIso_add_inv_app
Mathlib/CategoryTheory/Shift/SingleFunctors.lean
lemma shiftIso_add_inv_app (n m a a' a'' : A) (ha' : n + a = a') (ha'' : m + a' = a'') (X : C) : (F.shiftIso (m + n) a a'' (by rw [add_assoc, ha', ha''])).inv.app X = (F.shiftIso n a a' ha').inv.app X ≫ ((F.shiftIso m a' a'' ha'').inv.app X)⟦n⟧' ≫ (shiftFunctorAdd D m n).inv.app ((F.functor a'').obj X)
C : Type u_1 D : Type u_2 E : Type u_3 E' : Type u_4 inst✝⁷ : Category.{?u.9398, u_1} C inst✝⁶ : Category.{?u.9402, u_2} D inst✝⁵ : Category.{?u.9406, u_3} E inst✝⁴ : Category.{?u.9410, u_4} E' A : Type u_5 inst✝³ : AddMonoid A inst✝² : HasShift D A inst✝¹ : HasShift E A inst✝ : HasShift E' A F G H : SingleFunctors C D A n m a a' a'' : A ha' : n + a = a' ha'' : m + a' = a'' X : C ⊢ m + n + a = a''
rw [add_assoc, ha', ha'']
no goals
c6553c8cd9b3b20c
unitInterval.qRight_one_left
Mathlib/Topology/Homotopy/HSpaces.lean
theorem qRight_one_left (θ : I) : qRight (1, θ) = 1 := Set.projIcc_of_right_le _ <| (le_div_iff₀ <| add_pos zero_lt_one).2 <| by dsimp only rw [coe_one, one_mul, mul_one, add_comm, ← one_add_one_eq_two] simp only [add_le_add_iff_right] exact le_one _
θ : ↑I ⊢ ↑θ + 1 ≤ 1 + 1
simp only [add_le_add_iff_right]
θ : ↑I ⊢ ↑θ ≤ 1
650383202ad70a0b
DirichletCharacter.not_even_and_odd
Mathlib/NumberTheory/DirichletCharacter/Basic.lean
lemma not_even_and_odd [NeZero (2 : S)] : ¬(ψ.Even ∧ ψ.Odd)
case intro S : Type u_2 inst✝¹ : CommRing S m : ℕ ψ : DirichletCharacter S m inst✝ : NeZero 2 h : ψ (-1) = 1 h' : ψ (-1) = -1 ⊢ False
simp only [h', neg_eq_iff_add_eq_zero, one_add_one_eq_two, two_ne_zero] at h
no goals
e0b452f759aa02bc
AkraBazziRecurrence.GrowsPolynomially.eventually_zero_of_frequently_zero
Mathlib/Computability/AkraBazzi/GrowsPolynomially.lean
lemma eventually_zero_of_frequently_zero (hf : GrowsPolynomially f) (hf' : ∃ᶠ x in atTop, f x = 0) : ∀ᶠ x in atTop, f x = 0
f : ℝ → ℝ hf✝ : GrowsPolynomially f hf' : ∀ (a : ℝ), ∃ b ≥ a, f b = 0 c₁ : ℝ hc₁_mem : c₁ > 0 c₂ : ℝ hc₂_mem : c₂ > 0 hf : ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (1 / 2 * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x) x : ℝ hx : ∀ (y : ℝ), x ≤ y → ∀ u ∈ Set.Icc (1 / 2 * y) y, f u ∈ Set.Icc (c₁ * f y) (c₂ * f y) hx_pos : 0 < x x₀ : ℝ hx₀_ge : x₀ ≥ x ⊔ 1 hx₀ : f x₀ = 0 x₀_pos : 0 < x₀ hmain : ∀ (m : ℕ) (z : ℝ), x ≤ z → z ∈ Set.Icc (2 ^ (-↑m - 1) * x₀) (2 ^ (-↑m) * x₀) → f z = 0 ⊢ 2 ^ (-↑⌊-logb 2 (x / x₀)⌋₊ - 1) ≤ x / x₀
refine (logb_le_logb (b := 2) (by norm_num) (zpow_pos (by norm_num) _) (by positivity)).mp ?_
f : ℝ → ℝ hf✝ : GrowsPolynomially f hf' : ∀ (a : ℝ), ∃ b ≥ a, f b = 0 c₁ : ℝ hc₁_mem : c₁ > 0 c₂ : ℝ hc₂_mem : c₂ > 0 hf : ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (1 / 2 * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x) x : ℝ hx : ∀ (y : ℝ), x ≤ y → ∀ u ∈ Set.Icc (1 / 2 * y) y, f u ∈ Set.Icc (c₁ * f y) (c₂ * f y) hx_pos : 0 < x x₀ : ℝ hx₀_ge : x₀ ≥ x ⊔ 1 hx₀ : f x₀ = 0 x₀_pos : 0 < x₀ hmain : ∀ (m : ℕ) (z : ℝ), x ≤ z → z ∈ Set.Icc (2 ^ (-↑m - 1) * x₀) (2 ^ (-↑m) * x₀) → f z = 0 ⊢ logb 2 (2 ^ (-↑⌊-logb 2 (x / x₀)⌋₊ - 1)) ≤ logb 2 (x / x₀)
b2c5c4c5d5df705a
AkraBazziRecurrence.smoothingFn_mul_asympBound_isBigO_T
Mathlib/Computability/AkraBazzi/AkraBazzi.lean
/-- The main proof of the lower bound part of the Akra-Bazzi theorem. The factor `1 + ε n` does not change the asymptotic order, but is needed for the induction step to go through. -/ lemma smoothingFn_mul_asympBound_isBigO_T : (fun (n : ℕ) => (1 + ε n) * asympBound g a b n) =O[atTop] T
case bc.h.h α : Type u_1 inst✝¹ : Fintype α T : ℕ → ℝ g : ℝ → ℝ a b : α → ℝ r : α → ℕ → ℕ inst✝ : Nonempty α R : AkraBazziRecurrence T g a b r b' : ℝ := b (min_bi b) / 2 hb_pos : 0 < b' c₁ : ℝ hc₁ : c₁ > 0 h_sumTransform_aux : ∀ᶠ (n : ℕ) in atTop, ∀ (i : α), sumTransform (p a b) g (r i n) n ≤ c₁ * g ↑n n₀ : ℕ n₀_ge_Rn₀ : R.n₀ ≤ n₀ h_b_floor : 0 < ⌊b' * ↑n₀⌋₊ h_smoothing_pos : ∀ (y : ℕ), n₀ ≤ y → 0 < 1 + ε ↑y h_smoothing_pos' : ∀ (y : ℕ), ⌊b' * ↑n₀⌋₊ ≤ y → 0 < 1 + ε ↑y h_asympBound_pos : ∀ (y : ℕ), n₀ ≤ y → 0 < asympBound g a b y h_asympBound_r_pos : ∀ (y : ℕ), n₀ ≤ y → ∀ (i : α), 0 < asympBound g a b (r i y) h_asympBound_floor : ∀ (y : ℕ), ⌊b' * ↑n₀⌋₊ ≤ y → 0 < asympBound g a b y n₀_pos : 0 < n₀ h_smoothing_r_pos : ∀ (y : ℕ), n₀ ≤ y → ∀ (i : α), 0 < 1 + ε ↑(r i y) bound2 : ∀ (y : ℕ), n₀ ≤ y → ∀ (i : α), b i ^ p a b * ↑y ^ p a b * (1 + ε ↑y) ≤ ↑(r i y) ^ p a b * (1 + ε ↑(r i y)) h_smoothingFn_floor : ∀ (y : ℕ), ⌊b' * ↑n₀⌋₊ ≤ y → 0 < 1 + ε ↑y h_sumTransform : ∀ (y : ℕ), n₀ ≤ y → ∀ (i : α), sumTransform (p a b) g (r i y) y ≤ c₁ * g ↑y h_bi_le_r : ∀ (y : ℕ), n₀ ≤ y → ∀ (i : α), b (min_bi b) / 2 * ↑y ≤ ↑(r i y) h_exp : ∀ (y : ℕ), n₀ ≤ y → ⌈rexp 1⌉₊ ≤ y h_base_nonempty : (Ico ⌊b (min_bi b) / 2 * ↑n₀⌋₊ n₀).Nonempty base_min : ℝ := (Ico ⌊b' * ↑n₀⌋₊ n₀).inf' h_base_nonempty fun n => T n / ((1 + ε ↑n) * asympBound g a b n) base_min_def : base_min = (Ico ⌊b' * ↑n₀⌋₊ n₀).inf' h_base_nonempty fun n => T n / ((1 + ε ↑n) * asympBound g a b n) C : ℝ := (2 * c₁)⁻¹ ⊓ base_min hC_pos : 0 < C h_base : ∀ n ∈ Ico ⌊b' * ↑n₀⌋₊ n₀, C * ((1 + ε ↑n) * asympBound g a b n) ≤ T n n : ℕ h_ind : ∀ m < n, m ≥ n₀ → 0 < asympBound g a b m → 0 < 1 + ε ↑m → C * ((1 + ε ↑m) * asympBound g a b m) ≤ T m hn : n ≥ n₀ h_asympBound_pos' : 0 < asympBound g a b n h_one_sub_smoothingFn_pos' : 0 < 1 + ε ↑n b_mul_n₀_le_ri : ∀ (i : α), ⌊b' * ↑n₀⌋₊ ≤ r i n g_pos : 0 ≤ g ↑n i : α a✝ : i ∈ univ ⊢ C * ((1 + ε ↑(r i n)) * asympBound g a b (r i n)) ≤ T (r i n)
cases lt_or_le (r i n) n₀ with | inl ri_lt_n₀ => exact h_base _ <| Finset.mem_Ico.mpr ⟨b_mul_n₀_le_ri i, ri_lt_n₀⟩ | inr n₀_le_ri => exact h_ind (r i n) (R.r_lt_n _ _ (n₀_ge_Rn₀.trans hn)) n₀_le_ri (h_asympBound_r_pos _ hn _) (h_smoothing_r_pos n hn i)
no goals
82bb51116c3f899e
MeasureTheory.QuotientMeasureEqMeasurePreimage.haarMeasure_quotient
Mathlib/MeasureTheory/Measure/Haar/Quotient.lean
theorem MeasureTheory.QuotientMeasureEqMeasurePreimage.haarMeasure_quotient [LocallyCompactSpace G] [QuotientMeasureEqMeasurePreimage ν μ] [i : HasFundamentalDomain Γ.op G ν] [IsFiniteMeasure μ] : IsHaarMeasure μ
case intro.mk.intro.ctop G : Type u_1 inst✝¹⁴ : Group G inst✝¹³ : MeasurableSpace G inst✝¹² : TopologicalSpace G inst✝¹¹ : IsTopologicalGroup G inst✝¹⁰ : BorelSpace G inst✝⁹ : PolishSpace G Γ : Subgroup G inst✝⁸ : Γ.Normal inst✝⁷ : T2Space (G ⧸ Γ) inst✝⁶ : SecondCountableTopology (G ⧸ Γ) μ : Measure (G ⧸ Γ) inst✝⁵ : Countable ↥Γ ν : Measure G inst✝⁴ : ν.IsHaarMeasure inst✝³ : ν.IsMulRightInvariant inst✝² : LocallyCompactSpace G inst✝¹ : QuotientMeasureEqMeasurePreimage ν μ inst✝ : IsFiniteMeasure μ K : PositiveCompacts G K' : PositiveCompacts (G ⧸ Γ) := PositiveCompacts.map QuotientGroup.mk ⋯ ⋯ K this : μ.IsMulLeftInvariant s : Set G finiteCovol : ν s ≠ ⊤ fund_dom_s : IsFundamentalDomain (↥Γ.op) s ν ⊢ ν (Quotient.mk (MulAction.orbitRel (↥Γ.op) G) ⁻¹' ↑K' ∩ s) ≠ ⊤
show ν (π ⁻¹' (π '' K) ∩ s) ≠ ⊤
case intro.mk.intro.ctop G : Type u_1 inst✝¹⁴ : Group G inst✝¹³ : MeasurableSpace G inst✝¹² : TopologicalSpace G inst✝¹¹ : IsTopologicalGroup G inst✝¹⁰ : BorelSpace G inst✝⁹ : PolishSpace G Γ : Subgroup G inst✝⁸ : Γ.Normal inst✝⁷ : T2Space (G ⧸ Γ) inst✝⁶ : SecondCountableTopology (G ⧸ Γ) μ : Measure (G ⧸ Γ) inst✝⁵ : Countable ↥Γ ν : Measure G inst✝⁴ : ν.IsHaarMeasure inst✝³ : ν.IsMulRightInvariant inst✝² : LocallyCompactSpace G inst✝¹ : QuotientMeasureEqMeasurePreimage ν μ inst✝ : IsFiniteMeasure μ K : PositiveCompacts G K' : PositiveCompacts (G ⧸ Γ) := PositiveCompacts.map QuotientGroup.mk ⋯ ⋯ K this : μ.IsMulLeftInvariant s : Set G finiteCovol : ν s ≠ ⊤ fund_dom_s : IsFundamentalDomain (↥Γ.op) s ν ⊢ ν (QuotientGroup.mk ⁻¹' (QuotientGroup.mk '' ↑K) ∩ s) ≠ ⊤
d4b9c01a9d05b936
NumberField.Embeddings.finite_of_norm_le
Mathlib/NumberTheory/NumberField/Embeddings.lean
theorem finite_of_norm_le (B : ℝ) : {x : K | IsIntegral ℤ x ∧ ∀ φ : K →+* A, ‖φ x‖ ≤ B}.Finite
case refine_2 K : Type u_1 inst✝⁴ : Field K inst✝³ : NumberField K A : Type u_2 inst✝² : NormedField A inst✝¹ : IsAlgClosed A inst✝ : NormedAlgebra ℚ A B : ℝ C : ℕ := ⌈(B ⊔ 1) ^ finrank ℚ K * ↑((finrank ℚ K).choose (finrank ℚ K / 2))⌉₊ this : (⋃ f, ⋃ (_ : f.natDegree ≤ finrank ℚ K ∧ ∀ (i : ℕ), f.coeff i ∈ Icc (-↑C) ↑C), ↑(map (algebraMap ℤ K) f).roots.toFinset).Finite x : K hx : x ∈ {x | IsIntegral ℤ x ∧ ∀ (φ : K →+* A), ‖φ x‖ ≤ B} h_map_ℚ_minpoly : minpoly ℚ x = map (algebraMap ℤ ℚ) (minpoly ℤ x) i : ℕ ⊢ ↑|(minpoly ℤ x).coeff i| ≤ ↑↑C
refine (Eq.trans_le ?_ <| coeff_bdd_of_norm_le hx.2 i).trans (Nat.le_ceil _)
case refine_2 K : Type u_1 inst✝⁴ : Field K inst✝³ : NumberField K A : Type u_2 inst✝² : NormedField A inst✝¹ : IsAlgClosed A inst✝ : NormedAlgebra ℚ A B : ℝ C : ℕ := ⌈(B ⊔ 1) ^ finrank ℚ K * ↑((finrank ℚ K).choose (finrank ℚ K / 2))⌉₊ this : (⋃ f, ⋃ (_ : f.natDegree ≤ finrank ℚ K ∧ ∀ (i : ℕ), f.coeff i ∈ Icc (-↑C) ↑C), ↑(map (algebraMap ℤ K) f).roots.toFinset).Finite x : K hx : x ∈ {x | IsIntegral ℤ x ∧ ∀ (φ : K →+* A), ‖φ x‖ ≤ B} h_map_ℚ_minpoly : minpoly ℚ x = map (algebraMap ℤ ℚ) (minpoly ℤ x) i : ℕ ⊢ ↑|(minpoly ℤ x).coeff i| = ‖(minpoly ℚ x).coeff i‖
48ab9bf766b69c4b
Polynomial.irreducible_of_mirror
Mathlib/Algebra/Polynomial/Mirror.lean
theorem irreducible_of_mirror (h1 : ¬IsUnit f) (h2 : ∀ k, f * f.mirror = k * k.mirror → k = f ∨ k = -f ∨ k = f.mirror ∨ k = -f.mirror) (h3 : IsRelPrime f f.mirror) : Irreducible f
case isUnit_or_isUnit'.inr.inr.inl R : Type u_1 inst✝¹ : CommRing R inst✝ : NoZeroDivisors R f : R[X] h1 : ¬IsUnit f h2 : ∀ (k : R[X]), f * f.mirror = k * k.mirror → k = f ∨ k = -f ∨ k = f.mirror ∨ k = -f.mirror h3 : IsRelPrime f f.mirror g h : R[X] fgh : f = g * h k : R[X] := g * h.mirror key : f * f.mirror = k * k.mirror g_dvd_f : g ∣ f h_dvd_f : h ∣ f g_dvd_k : g ∣ k h_dvd_k_rev : h ∣ k.mirror hk : k = f.mirror ⊢ IsUnit g ∨ IsUnit h
exact Or.inl (h3 g_dvd_f (by rwa [← hk]))
no goals
a3689552bdbf2ce5
spectrum.hasDerivAt_resolvent
Mathlib/Analysis/Normed/Algebra/Spectrum.lean
theorem hasDerivAt_resolvent {a : A} {k : 𝕜} (hk : k ∈ ρ a) : HasDerivAt (resolvent a) (-resolvent a k ^ 2) k
𝕜 : Type u_1 A : Type u_2 inst✝³ : NontriviallyNormedField 𝕜 inst✝² : NormedRing A inst✝¹ : NormedAlgebra 𝕜 A inst✝ : CompleteSpace A a : A k : 𝕜 hk : k ∈ ρ a H₁ : HasFDerivAt Ring.inverse (-((ContinuousLinearMap.mulLeftRight 𝕜 A) ↑(IsUnit.unit hk)⁻¹) ↑(IsUnit.unit hk)⁻¹) (↑ₐ k - a) ⊢ HasDerivAt (resolvent a) (-resolvent a k ^ 2) k
have H₂ : HasDerivAt (fun k => ↑ₐ k - a) 1 k := by simpa using (Algebra.linearMap 𝕜 A).hasDerivAt.sub_const a
𝕜 : Type u_1 A : Type u_2 inst✝³ : NontriviallyNormedField 𝕜 inst✝² : NormedRing A inst✝¹ : NormedAlgebra 𝕜 A inst✝ : CompleteSpace A a : A k : 𝕜 hk : k ∈ ρ a H₁ : HasFDerivAt Ring.inverse (-((ContinuousLinearMap.mulLeftRight 𝕜 A) ↑(IsUnit.unit hk)⁻¹) ↑(IsUnit.unit hk)⁻¹) (↑ₐ k - a) H₂ : HasDerivAt (fun k => ↑ₐ k - a) 1 k ⊢ HasDerivAt (resolvent a) (-resolvent a k ^ 2) k
5377dbdfd1b8eacf
IsFractionRing.isFractionRing_iff_of_base_ringEquiv
Mathlib/RingTheory/Localization/FractionRing.lean
theorem isFractionRing_iff_of_base_ringEquiv (h : R ≃+* P) : IsFractionRing R S ↔ @IsFractionRing P _ S _ ((algebraMap R S).comp h.symm.toRingHom).toAlgebra
case h.e'_2.h.e'_3.h.mp R : Type u_1 inst✝³ : CommRing R S : Type u_2 inst✝² : CommRing S inst✝¹ : Algebra R S P : Type u_3 inst✝ : CommRing P h : R ≃+* P x : P hx : x ∈ nonZeroDivisors P z : R hz : z * h.symm x = 0 ⊢ h z = 0
apply hx
case h.e'_2.h.e'_3.h.mp.a R : Type u_1 inst✝³ : CommRing R S : Type u_2 inst✝² : CommRing S inst✝¹ : Algebra R S P : Type u_3 inst✝ : CommRing P h : R ≃+* P x : P hx : x ∈ nonZeroDivisors P z : R hz : z * h.symm x = 0 ⊢ h z * x = 0
0e985e670472cae2
ProbabilityTheory.Kernel.withDensity_rnDeriv_mutuallySingularSetSlice
Mathlib/Probability/Kernel/RadonNikodym.lean
lemma withDensity_rnDeriv_mutuallySingularSetSlice (κ η : Kernel α γ) [IsFiniteKernel κ] [IsFiniteKernel η] (a : α) : withDensity η (rnDeriv κ η) a (mutuallySingularSetSlice κ η a) = 0
case hf α : Type u_1 γ : Type u_2 mα : MeasurableSpace α mγ : MeasurableSpace γ hαγ : MeasurableSpace.CountableOrCountablyGenerated α γ κ η : Kernel α γ inst✝¹ : IsFiniteKernel κ inst✝ : IsFiniteKernel η a : α ⊢ Measurable (Function.uncurry (κ.rnDeriv η))
exact measurable_rnDeriv κ η
no goals
9159674b5f98d2a8
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.nodup_derivedLits
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/LRAT/Internal/Formula/RupAddResult.lean
theorem nodup_derivedLits {n : Nat} (f : DefaultFormula n) (f_assignments_size : f.assignments.size = n) (rupHints : Array Nat) (f'_assignments_size : (performRupCheck f rupHints).1.assignments.size = n) (derivedLits : CNF.Clause (PosFin n)) (derivedLits_satisfies_invariant: DerivedLitsInvariant f f_assignments_size (performRupCheck f rupHints).fst.assignments f'_assignments_size derivedLits) (derivedLits_arr : Array (Literal (PosFin n))) (derivedLits_arr_def : derivedLits_arr = { toList := derivedLits }) (i j : Fin (Array.size derivedLits_arr)) (i_ne_j : i ≠ j) : derivedLits_arr[i] ≠ derivedLits_arr[j]
n : Nat f : DefaultFormula n f_assignments_size : f.assignments.size = n rupHints : Array Nat f'_assignments_size : (f.performRupCheck rupHints).fst.assignments.size = n derivedLits : CNF.Clause (PosFin n) derivedLits_satisfies_invariant : f.DerivedLitsInvariant f_assignments_size (f.performRupCheck rupHints).fst.assignments f'_assignments_size derivedLits derivedLits_arr : Array (Literal (PosFin n)) derivedLits_arr_def : derivedLits_arr = { toList := derivedLits } i j : Fin derivedLits_arr.size i_ne_j : i ≠ j li_eq_lj : derivedLits_arr[i] = derivedLits_arr[j] li : Literal (PosFin n) := derivedLits_arr[i] li_in_derivedLits : li ∈ derivedLits ⊢ ↑i < List.length derivedLits
have i_property := i.2
n : Nat f : DefaultFormula n f_assignments_size : f.assignments.size = n rupHints : Array Nat f'_assignments_size : (f.performRupCheck rupHints).fst.assignments.size = n derivedLits : CNF.Clause (PosFin n) derivedLits_satisfies_invariant : f.DerivedLitsInvariant f_assignments_size (f.performRupCheck rupHints).fst.assignments f'_assignments_size derivedLits derivedLits_arr : Array (Literal (PosFin n)) derivedLits_arr_def : derivedLits_arr = { toList := derivedLits } i j : Fin derivedLits_arr.size i_ne_j : i ≠ j li_eq_lj : derivedLits_arr[i] = derivedLits_arr[j] li : Literal (PosFin n) := derivedLits_arr[i] li_in_derivedLits : li ∈ derivedLits i_property : ↑i < derivedLits_arr.size ⊢ ↑i < List.length derivedLits
b565b2925b517fa0
CategoryTheory.Functor.Final.colimit_cocone_comp_aux
Mathlib/CategoryTheory/Limits/Final.lean
theorem colimit_cocone_comp_aux (s : Cocone (F ⋙ G)) (j : C) : G.map (homToLift F (F.obj j)) ≫ s.ι.app (lift F (F.obj j)) = s.ι.app j
case h₁ C : Type u₁ inst✝³ : Category.{v₁, u₁} C D : Type u₂ inst✝² : Category.{v₂, u₂} D F : C ⥤ D inst✝¹ : F.Final E : Type u₃ inst✝ : Category.{v₃, u₃} E G : D ⥤ E s : Cocone (F ⋙ G) j j₁ j₂ : C k₁ : F.obj j ⟶ F.obj j₁ k₂ : F.obj j ⟶ F.obj j₂ f : j₁ ⟶ j₂ w : k₁ ≫ F.map f = k₂ h : G.map k₁ ≫ (F ⋙ G).map f ≫ s.ι.app j₂ = s.ι.app j ⊢ G.map (k₁ ≫ F.map f) ≫ s.ι.app j₂ = s.ι.app j
simpa using h
no goals
532ac5abfe61921e
Vector.back_ofFn
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Vector/OfFn.lean
theorem back_ofFn {n} [NeZero n](f : Fin n → α) : (ofFn f).back = f ⟨n - 1, by have := NeZero.ne n; omega⟩
α : Type ?u.2100 n : Nat inst✝ : NeZero n f : Fin n → α ⊢ n - 1 < n
have := NeZero.ne n
α : Type ?u.2100 n : Nat inst✝ : NeZero n f : Fin n → α this : n ≠ 0 ⊢ n - 1 < n
ff20e9dfbe02ef4f
PFun.preimage_univ
Mathlib/Data/PFun.lean
theorem preimage_univ : f.preimage Set.univ = f.Dom
case h α : Type u_1 β : Type u_2 f : α →. β x✝ : α ⊢ x✝ ∈ f.preimage Set.univ ↔ x✝ ∈ f.Dom
simp [mem_preimage, mem_dom]
no goals
56e7c59c781a4d5d
List.pmap_eq_self
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Attach.lean
theorem pmap_eq_self {l : List α} {p : α → Prop} {hp : ∀ (a : α), a ∈ l → p a} {f : (a : α) → p a → α} : l.pmap f hp = l ↔ ∀ a (h : a ∈ l), f a (hp a h) = a
α : Type u_1 l : List α p : α → Prop hp : ∀ (a : α), a ∈ l → p a f : (a : α) → p a → α ⊢ pmap f l hp = l ↔ ∀ (a : α) (h : a ∈ l), f a ⋯ = a
rw [pmap_eq_map_attach]
α : Type u_1 l : List α p : α → Prop hp : ∀ (a : α), a ∈ l → p a f : (a : α) → p a → α ⊢ map (fun x => f x.val ⋯) l.attach = l ↔ ∀ (a : α) (h : a ∈ l), f a ⋯ = a
01327717807452b8
List.reverse_zipWith
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Nat/TakeDrop.lean
theorem reverse_zipWith (h : l.length = l'.length) : (zipWith f l l').reverse = zipWith f l.reverse l'.reverse
case cons.nil α✝² : Type u_1 α✝¹ : Type u_2 α✝ : Type u_3 f : α✝² → α✝¹ → α✝ hd : α✝² tl : List α✝² hl : ∀ {l' : List α✝¹}, tl.length = l'.length → (zipWith f tl l').reverse = zipWith f tl.reverse l'.reverse h : (hd :: tl).length = [].length ⊢ (zipWith f (hd :: tl) []).reverse = zipWith f (hd :: tl).reverse [].reverse
simp
no goals
b395689bbe06d7b0
not_integrableOn_Ioi_cpow
Mathlib/Analysis/SpecialFunctions/ImproperIntegrals.lean
theorem not_integrableOn_Ioi_cpow (s : ℂ) : ¬ IntegrableOn (fun x : ℝ ↦ (x : ℂ) ^ s) (Ioi (0 : ℝ))
case inr s : ℂ h : IntegrableOn (fun x => ↑x ^ s) (Ioi 0) volume hs : -1 < s.re ⊢ False
have : IntegrableOn (fun x : ℝ ↦ (x : ℂ) ^ s) (Ioi 1) := h.mono (Ioi_subset_Ioi zero_le_one) le_rfl
case inr s : ℂ h : IntegrableOn (fun x => ↑x ^ s) (Ioi 0) volume hs : -1 < s.re this : IntegrableOn (fun x => ↑x ^ s) (Ioi 1) volume ⊢ False
443b379bbb811a88
Filter.HasBasis.uniformity_of_nhds_one_inv_mul_swapped
Mathlib/Topology/Algebra/UniformGroup/Defs.lean
theorem Filter.HasBasis.uniformity_of_nhds_one_inv_mul_swapped {ι} {p : ι → Prop} {U : ι → Set α} (h : (𝓝 (1 : α)).HasBasis p U) : (𝓤 α).HasBasis p fun i => { x : α × α | x.2⁻¹ * x.1 ∈ U i }
α : Type u_1 inst✝² : UniformSpace α inst✝¹ : Group α inst✝ : UniformGroup α ι : Sort u_3 p : ι → Prop U : ι → Set α h : (𝓝 1).HasBasis p U ⊢ (𝓤 α).HasBasis p fun i => {x | x.2⁻¹ * x.1 ∈ U i}
rw [uniformity_eq_comap_inv_mul_nhds_one_swapped]
α : Type u_1 inst✝² : UniformSpace α inst✝¹ : Group α inst✝ : UniformGroup α ι : Sort u_3 p : ι → Prop U : ι → Set α h : (𝓝 1).HasBasis p U ⊢ (Filter.comap (fun x => x.2⁻¹ * x.1) (𝓝 1)).HasBasis p fun i => {x | x.2⁻¹ * x.1 ∈ U i}
c8de413340aceb87
Fin.accumulate_rec
Mathlib/RingTheory/MvPolynomial/Symmetric/FundamentalTheorem.lean
lemma accumulate_rec {i n m : ℕ} (hin : i < n) (him : i + 1 < m) (t : Fin n → ℕ) : accumulate n m t ⟨i, Nat.lt_of_succ_lt him⟩ = t ⟨i, hin⟩ + accumulate n m t ⟨i + 1, him⟩
i n m : ℕ hin : i < n him : i + 1 < m t : Fin n → ℕ ⊢ ∑ i ∈ filter (fun i_1 => i ≤ ↑i_1) univ, t i = t ⟨i, hin⟩ + ∑ i ∈ filter (fun i_1 => i + 1 ≤ ↑i_1) univ, t i
convert (add_sum_erase _ _ _).symm
case h.e'_3.h.e'_6.h i n m : ℕ hin : i < n him : i + 1 < m t : Fin n → ℕ ⊢ filter (fun i_1 => i + 1 ≤ ↑i_1) univ = (filter (fun i_1 => i ≤ ↑i_1) univ).erase ⟨i, hin⟩ case convert_3 i n m : ℕ hin : i < n him : i + 1 < m t : Fin n → ℕ ⊢ DecidableEq (Fin n) case convert_7 i n m : ℕ hin : i < n him : i + 1 < m t : Fin n → ℕ ⊢ ⟨i, hin⟩ ∈ filter (fun i_1 => i ≤ ↑i_1) univ
3bde688e16503a13
Localization.existsUnique_algebraMap_eq_of_span_eq_top
Mathlib/RingTheory/Localization/Away/Basic.lean
theorem existsUnique_algebraMap_eq_of_span_eq_top (s : Set R) (span_eq : Ideal.span s = ⊤) (f : Π a : s, Away a.1) (h : ∀ a b : s, Away.awayToAwayRight (P := Away (a * b : R)) a.1 b (f a) = Away.awayToAwayLeft b.1 a (f b)) : ∃! r : R, ∀ a : s, algebraMap R _ r = f a
case inr R : Type u_1 inst✝ : CommSemiring R s : Set R f : (a : ↑s) → Away ↑a h : ∀ (a b : ↑s), (Away.awayToAwayRight ↑a ↑b) (f a) = (Away.awayToAwayLeft ↑b ↑a) (f b) mem✝ : 1 ∈ Ideal.span s this : ∀ (s : Set R) (f : (a : ↑s) → Away ↑a), (∀ (a b : ↑s), (Away.awayToAwayRight ↑a ↑b) (f a) = (Away.awayToAwayLeft ↑b ↑a) (f b)) → 1 ∈ Ideal.span s → (∃ t, ↑t = s) → ∃! r, ∀ (a : ↑s), (algebraMap R (Away ↑a)) r = f a finset_eq : ¬∃ t, ↑t = s t : Finset R hts : ↑t ⊆ s mem : 1 ∈ Submodule.span R ↑t ⊢ ∃! r, ∀ (a : ↑s), (algebraMap R (Away ↑a)) r = f a
have ⟨r, eq, uniq⟩ := this t (fun a ↦ f ⟨a, hts a.2⟩) (fun a b ↦ h ⟨a, hts a.2⟩ ⟨b, hts b.2⟩) mem ⟨_, rfl⟩
case inr R : Type u_1 inst✝ : CommSemiring R s : Set R f : (a : ↑s) → Away ↑a h : ∀ (a b : ↑s), (Away.awayToAwayRight ↑a ↑b) (f a) = (Away.awayToAwayLeft ↑b ↑a) (f b) mem✝ : 1 ∈ Ideal.span s this : ∀ (s : Set R) (f : (a : ↑s) → Away ↑a), (∀ (a b : ↑s), (Away.awayToAwayRight ↑a ↑b) (f a) = (Away.awayToAwayLeft ↑b ↑a) (f b)) → 1 ∈ Ideal.span s → (∃ t, ↑t = s) → ∃! r, ∀ (a : ↑s), (algebraMap R (Away ↑a)) r = f a finset_eq : ¬∃ t, ↑t = s t : Finset R hts : ↑t ⊆ s mem : 1 ∈ Submodule.span R ↑t r : R eq : (fun r => ∀ (a : ↑↑t), (algebraMap R (Away ↑a)) r = f ⟨↑a, ⋯⟩) r uniq : ∀ (y : R), (fun r => ∀ (a : ↑↑t), (algebraMap R (Away ↑a)) r = f ⟨↑a, ⋯⟩) y → y = r ⊢ ∃! r, ∀ (a : ↑s), (algebraMap R (Away ↑a)) r = f a
451126b322cfd0c5
MeasureTheory.eLpNorm'_le_eLpNorm'_mul_rpow_measure_univ
Mathlib/MeasureTheory/Function/LpSeminorm/CompareExp.lean
theorem eLpNorm'_le_eLpNorm'_mul_rpow_measure_univ {p q : ℝ} (hp0_lt : 0 < p) (hpq : p ≤ q) (hf : AEStronglyMeasurable f μ) : eLpNorm' f p μ ≤ eLpNorm' f q μ * μ Set.univ ^ (1 / p - 1 / q)
α : Type u_1 E : Type u_2 m : MeasurableSpace α inst✝ : NormedAddCommGroup E μ : Measure α f : α → E p q : ℝ hp0_lt : 0 < p hpq : p ≤ q hf : AEStronglyMeasurable f μ ⊢ eLpNorm' f p μ ≤ eLpNorm' f q μ * μ Set.univ ^ (1 / p - 1 / q)
have hq0_lt : 0 < q := lt_of_lt_of_le hp0_lt hpq
α : Type u_1 E : Type u_2 m : MeasurableSpace α inst✝ : NormedAddCommGroup E μ : Measure α f : α → E p q : ℝ hp0_lt : 0 < p hpq : p ≤ q hf : AEStronglyMeasurable f μ hq0_lt : 0 < q ⊢ eLpNorm' f p μ ≤ eLpNorm' f q μ * μ Set.univ ^ (1 / p - 1 / q)
78215b1c74b9f3ae
Language.accepts_toDFA
Mathlib/Computability/MyhillNerode.lean
theorem accepts_toDFA : L.toDFA.accepts = L
α : Type u L : Language α ⊢ L.toDFA.accepts = L
ext x
case h α : Type u L : Language α x : List α ⊢ x ∈ L.toDFA.accepts ↔ x ∈ L
33eacd9417dfbf8c
Fin.cycleRange_of_le
Mathlib/GroupTheory/Perm/Fin.lean
theorem cycleRange_of_le {n : ℕ} [NeZero n] {i j : Fin n} (h : j ≤ i) : cycleRange i j = if j = i then 0 else j + 1
case neg n✝ : ℕ inst✝ : NeZero (n✝ + 1) i j : Fin (n✝ + 1) h : j ≤ i this : j = castLE ⋯ ⟨↑j, ⋯⟩ heq : ¬↑j = ↑i ⊢ ↑j + 1 = ↑(j + 1)
rw [Fin.val_add_one_of_lt]
case neg n✝ : ℕ inst✝ : NeZero (n✝ + 1) i j : Fin (n✝ + 1) h : j ≤ i this : j = castLE ⋯ ⟨↑j, ⋯⟩ heq : ¬↑j = ↑i ⊢ j < last n✝
243d07b9e65f3293
Equiv.Perm.prod_prodExtendRight
Mathlib/GroupTheory/Perm/Sign.lean
theorem prod_prodExtendRight {α : Type*} [DecidableEq α] (σ : α → Perm β) {l : List α} (hl : l.Nodup) (mem_l : ∀ a, a ∈ l) : (l.map fun a => prodExtendRight a (σ a)).prod = prodCongrRight σ
case neg β : Type v α : Type u_1 inst✝ : DecidableEq α σ : α → Perm β a : α b : β a' : α l : List α ih : l.Nodup → a ∈ l ∧ (List.map (fun a => prodExtendRight a (σ a)) l).prod (a, b) = (a, (σ a) b) ∨ a ∉ l ∧ (List.map (fun a => prodExtendRight a (σ a)) l).prod (a, b) = (a, b) hl : (a' :: l).Nodup not_mem_l : a ∉ l prod_eq : (List.map (fun a => prodExtendRight a (σ a)) l).prod (a, b) = (a, b) ha' : ¬a = a' ⊢ (prodExtendRight a' (σ a')) (a, b) = (a, b)
rw [prodExtendRight_apply_ne _ ha']
no goals
a0e8aaef4d058ac5
Complex.norm_deriv_le_of_forall_mem_sphere_norm_le
Mathlib/Analysis/Complex/Liouville.lean
theorem norm_deriv_le_of_forall_mem_sphere_norm_le {c : ℂ} {R C : ℝ} {f : ℂ → F} (hR : 0 < R) (hd : DiffContOnCl ℂ f (ball c R)) (hC : ∀ z ∈ sphere c R, ‖f z‖ ≤ C) : ‖deriv f c‖ ≤ C / R
F : Type v inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace ℂ F c : ℂ R C : ℝ f : ℂ → F hR : 0 < R hd : DiffContOnCl ℂ f (ball c R) hC : ∀ z ∈ sphere c R, ‖f z‖ ≤ C e : F →L[ℂ] F̂ := UniformSpace.Completion.toComplL this : HasDerivAt (⇑e ∘ f) (e (deriv f c)) c ⊢ ‖deriv f c‖ ≤ C / R
calc ‖deriv f c‖ = ‖deriv (e ∘ f) c‖ := by rw [this.deriv] exact (UniformSpace.Completion.norm_coe _).symm _ ≤ C / R := norm_deriv_le_aux hR (e.differentiable.comp_diffContOnCl hd) fun z hz => (UniformSpace.Completion.norm_coe _).trans_le (hC z hz)
no goals
e74ce06586753507
AList.insertRec_insert
Mathlib/Data/List/AList.lean
theorem insertRec_insert {C : AList β → Sort*} (H0 : C ∅) (IH : ∀ (a : α) (b : β a) (l : AList β), a ∉ l → C l → C (l.insert a b)) {c : Sigma β} {l : AList β} (h : c.1 ∉ l) : @insertRec α β _ C H0 IH (l.insert c.1 c.2) = IH c.1 c.2 l h (@insertRec α β _ C H0 IH l)
α : Type u β : α → Type v inst✝ : DecidableEq α C : AList β → Sort u_1 H0 : C ∅ IH : (a : α) → (b : β a) → (l : AList β) → a ∉ l → C l → C (insert a b l) c : Sigma β l : List (Sigma β) hl : l.NodupKeys h : c.fst ∉ { entries := l, nodupKeys := hl } this : HEq (insertRec H0 IH { entries := c :: l, nodupKeys := ⋯ }) (IH c.fst c.snd { entries := l, nodupKeys := hl } h (insertRec H0 IH { entries := l, nodupKeys := hl })) ⊢ insertRec H0 IH (insert c.fst c.snd { entries := l, nodupKeys := hl }) = IH c.fst c.snd { entries := l, nodupKeys := hl } h (insertRec H0 IH { entries := l, nodupKeys := hl })
cases c
case mk α : Type u β : α → Type v inst✝ : DecidableEq α C : AList β → Sort u_1 H0 : C ∅ IH : (a : α) → (b : β a) → (l : AList β) → a ∉ l → C l → C (insert a b l) l : List (Sigma β) hl : l.NodupKeys fst✝ : α snd✝ : β fst✝ h : ⟨fst✝, snd✝⟩.fst ∉ { entries := l, nodupKeys := hl } this : HEq (insertRec H0 IH { entries := ⟨fst✝, snd✝⟩ :: l, nodupKeys := ⋯ }) (IH ⟨fst✝, snd✝⟩.fst ⟨fst✝, snd✝⟩.snd { entries := l, nodupKeys := hl } h (insertRec H0 IH { entries := l, nodupKeys := hl })) ⊢ insertRec H0 IH (insert ⟨fst✝, snd✝⟩.fst ⟨fst✝, snd✝⟩.snd { entries := l, nodupKeys := hl }) = IH ⟨fst✝, snd✝⟩.fst ⟨fst✝, snd✝⟩.snd { entries := l, nodupKeys := hl } h (insertRec H0 IH { entries := l, nodupKeys := hl })
ac5fbba4f95f506f
totallyBounded_convexHull
Mathlib/Analysis/Convex/TotallyBounded.lean
theorem totallyBounded_convexHull (hs : TotallyBounded s) : TotallyBounded (convexHull ℝ s)
E : Type u_1 s : Set E inst✝⁴ : AddCommGroup E inst✝³ : Module ℝ E inst✝² : UniformSpace E inst✝¹ : UniformAddGroup E lcs : LocallyConvexSpace ℝ E inst✝ : ContinuousSMul ℝ E hs : TotallyBounded s U : Set E hU : U ∈ nhds 0 W : Set E hW₁ : W ∈ nhds 0 hW₂ : ∀ v ∈ W, ∀ w ∈ W, v + w ∈ U V : Set E hV₁ : V ∈ nhds 0 hV₂ : Convex ℝ V hV₃ : V ⊆ W t : Set E htf : t.Finite t' : Set E htf' : t'.Finite hts : s ⊆ t + V hts' : (convexHull ℝ) t ⊆ t' + V ⊢ (convexHull ℝ) t + (convexHull ℝ) V = (convexHull ℝ) t + V
rw [hV₂.convexHull_eq]
no goals
64dc48938af50583
Multiset.bind_map_comm
Mathlib/Data/Multiset/Bind.lean
theorem bind_map_comm (m : Multiset α) (n : Multiset β) {f : α → β → γ} : ((bind m) fun a => n.map fun b => f a b) = (bind n) fun b => m.map fun a => f a b := Multiset.induction_on m (by simp) (by simp +contextual)
α : Type u_1 β : Type v γ : Type u_2 m : Multiset α n : Multiset β f : α → β → γ ⊢ (bind 0 fun a => map (fun b => f a b) n) = n.bind fun b => map (fun a => f a b) 0
simp
no goals
211ef29718eb9be1
Bimod.LeftUnitorBimod.hom_inv_id
Mathlib/CategoryTheory/Monoidal/Bimod.lean
theorem hom_inv_id : hom P ≫ inv P = 𝟙 _
case h C : Type u₁ inst✝² : Category.{v₁, u₁} C inst✝¹ : MonoidalCategory C inst✝ : HasCoequalizers C R S : Mon_ C P : Bimod R S ⊢ (λ_ (R.X ⊗ P.X)).inv ≫ (R.one ▷ (R.X ⊗ P.X) ≫ R.X ◁ P.actLeft) ≫ coequalizer.π (R.mul ▷ P.X) ((α_ R.X R.X P.X).hom ≫ R.X ◁ P.actLeft) = coequalizer.π (R.mul ▷ P.X) ((α_ R.X R.X P.X).hom ≫ R.X ◁ P.actLeft) ≫ 𝟙 (coequalizer (R.mul ▷ P.X) ((α_ R.X R.X P.X).hom ≫ R.X ◁ P.actLeft))
slice_lhs 3 3 => rw [← Iso.inv_hom_id_assoc (α_ R.X R.X P.X) (R.X ◁ P.actLeft)]
case h C : Type u₁ inst✝² : Category.{v₁, u₁} C inst✝¹ : MonoidalCategory C inst✝ : HasCoequalizers C R S : Mon_ C P : Bimod R S ⊢ (λ_ (R.X ⊗ P.X)).inv ≫ R.one ▷ (R.X ⊗ P.X) ≫ ((α_ R.X R.X P.X).inv ≫ (α_ R.X R.X P.X).hom ≫ R.X ◁ P.actLeft) ≫ coequalizer.π (R.mul ▷ P.X) ((α_ R.X R.X P.X).hom ≫ R.X ◁ P.actLeft) = coequalizer.π (R.mul ▷ P.X) ((α_ R.X R.X P.X).hom ≫ R.X ◁ P.actLeft) ≫ 𝟙 (coequalizer (R.mul ▷ P.X) ((α_ R.X R.X P.X).hom ≫ R.X ◁ P.actLeft))
2c899ab3fade475b
ProbabilityTheory.integrable_rpow_mul_exp_of_integrable_exp_mul
Mathlib/Probability/Moments/IntegrableExpMul.lean
/-- If `exp ((v + t) * X)` and `exp ((v - t) * X)` are integrable, then for all nonnegative `p : ℝ`, `X ^ p * exp (v * X)` is integrable. -/ lemma integrable_rpow_mul_exp_of_integrable_exp_mul (ht : t ≠ 0) (ht_int_pos : Integrable (fun ω ↦ exp ((v + t) * X ω)) μ) (ht_int_neg : Integrable (fun ω ↦ exp ((v - t) * X ω)) μ) {p : ℝ} (hp : 0 ≤ p) : Integrable (fun ω ↦ X ω ^ p * exp (v * X ω)) μ
case refine_1 Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω t v : ℝ ht : t ≠ 0 ht_int_pos : Integrable (fun ω => rexp ((v + t) * X ω)) μ ht_int_neg : Integrable (fun ω => rexp ((v - t) * X ω)) μ p : ℝ hp : 0 ≤ p ⊢ v + t ≠ v - t
rw [← sub_ne_zero]
case refine_1 Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω t v : ℝ ht : t ≠ 0 ht_int_pos : Integrable (fun ω => rexp ((v + t) * X ω)) μ ht_int_neg : Integrable (fun ω => rexp ((v - t) * X ω)) μ p : ℝ hp : 0 ≤ p ⊢ v + t - (v - t) ≠ 0
40d272ffe1018378
monovaryOn_iff_exists_monotoneOn
Mathlib/Order/Monotone/MonovaryOrder.lean
lemma monovaryOn_iff_exists_monotoneOn : MonovaryOn f g s ↔ ∃ (_ : LinearOrder ι), MonotoneOn f s ∧ MonotoneOn g s
case refine_2.inl ι : Type u_1 α : Type u_3 β : Type u_4 inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : ι → α g : ι → β s : Set ι this : LinearOrder ι := linearOrderOfSTO (MonovaryOrder f g) hfg : MonovaryOn f g s i : ι hi : i ∈ s j : ι hj : j ∈ s hij : i < j h : (f i, g i, i).1 < (f j, g j, j).1 ⊢ g i ≤ g j
exact hfg.symm hi hj h
no goals
8de36b7f99549771
Ordering.isEq_swap
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Ord.lean
theorem isEq_swap {o : Ordering} : o.swap.isEq = o.isEq
o : Ordering ⊢ o.swap.isEq = o.isEq
cases o <;> simp
no goals
f7ccfb6f8f43570c
AlgebraicGeometry.ValuativeCriterion.Existence.specializingMap
Mathlib/AlgebraicGeometry/ValuativeCriterion.lean
@[stacks 01KE] lemma specializingMap (H : ValuativeCriterion.Existence f) : SpecializingMap f.base
X Y : Scheme f : X ⟶ Y H : Existence f x' : ↑↑X.toPresheafedSpace y : ↑↑Y.toPresheafedSpace h : flip (fun x1 x2 => x1 ⤳ x2) y ((ConcreteCategory.hom f.base) x') stalk_y_to_residue_x' : Y.presheaf.stalk y ⟶ X.residueField x' := Y.presheaf.stalkSpecializes h ≫ Scheme.Hom.stalkMap f x' ≫ X.residue x' A : ValuationSubring ↑(X.residueField x') hA : ∀ (x : ↑(Y.presheaf.stalk y)), (CommRingCat.Hom.hom stalk_y_to_residue_x') x ∈ A.toSubring hA_local : IsLocalHom ((CommRingCat.Hom.hom stalk_y_to_residue_x').codRestrict A.toSubring hA) stalk_y_to_A : Y.presheaf.stalk y ⟶ CommRingCat.of ↥A := CommRingCat.ofHom ((CommRingCat.Hom.hom stalk_y_to_residue_x').codRestrict A hA) ⊢ Spec.map ((Y.presheaf.stalkSpecializes h ≫ Scheme.Hom.stalkMap f x') ≫ X.residue x') ≫ Y.fromSpecStalk y = Spec.map (stalk_y_to_A ≫ CommRingCat.ofHom (algebraMap ↥A ↑(X.residueField x'))) ≫ Y.fromSpecStalk y
rfl
no goals
d2b14c6180e5b843
eq_mul_inv_of_mul_eq
Mathlib/Algebra/Group/Basic.lean
theorem eq_mul_inv_of_mul_eq (h : a * c = b) : a = b * c⁻¹
G : Type u_3 inst✝ : Group G a b c : G h : a * c = b ⊢ a = b * c⁻¹
simp [h.symm]
no goals
aacf7c3bd2c6f8c3
Part.some_mod_some
Mathlib/Data/Part.lean
theorem some_mod_some [Mod α] (a b : α) : some a % some b = some (a % b)
α : Type u_1 inst✝ : Mod α a b : α ⊢ some a % some b = some (a % b)
simp [mod_def]
no goals
5fc8ef77538a6ebc
AlgebraicGeometry.ProjIsoSpecTopComponent.FromSpec.carrier.smul_mem
Mathlib/AlgebraicGeometry/ProjectiveSpectrum/Scheme.lean
theorem carrier.smul_mem (c x : A) (hx : x ∈ carrier f_deg q) : c • x ∈ carrier f_deg q
case refine_3 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toPresheafedSpace x : A hx : x ∈ carrier f_deg q ⊢ ∀ (m_1 m' : A), m_1 • x ∈ carrier f_deg q → m' • x ∈ carrier f_deg q → m_1 • x + m' • x ∈ carrier f_deg q
exact fun _ _ => carrier.add_mem f_deg q
no goals
a6e1542c5c7977fc
CategoryTheory.essentiallySmall_iff
Mathlib/CategoryTheory/EssentiallySmall.lean
theorem essentiallySmall_iff (C : Type u) [Category.{v} C] : EssentiallySmall.{w} C ↔ Small.{w} (Skeleton C) ∧ LocallySmall.{w} C
case mp.left.mk.intro.intro.intro C : Type u inst✝ : Category.{v, u} C S : Type w 𝒮 : SmallCategory S e : C ≌ S ⊢ Skeleton C ≃ Skeleton S
exact e.skeletonEquiv
no goals
94dd7fa13a1cc5e2
List.reverse_subset
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Sublist.lean
theorem reverse_subset {l₁ l₂ : List α} : reverse l₁ ⊆ l₂ ↔ l₁ ⊆ l₂
α : Type u_1 l₁ l₂ : List α ⊢ l₁.reverse ⊆ l₂ ↔ l₁ ⊆ l₂
simp [subset_def]
no goals
20a1f3ad673fb07c
Int.Cooper.resolve_left_dvd₁
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Int/Cooper.lean
theorem resolve_left_dvd₁ (a c d p x : Int) (h₁ : p ≤ a * x) : a ∣ resolve_left a c d p x + p
a c d p x : Int h₁ : p ≤ a * x ⊢ a ∣ ↑((add_of_le h₁).val % a.lcm (a * d / ↑((a * d).gcd c))) + p
obtain ⟨k', w⟩ := add_of_le h₁
case mk a c d p x : Int h₁ : p ≤ a * x k' : Nat w : a * x = p + ↑k' ⊢ a ∣ ↑(⟨k', w⟩.val % a.lcm (a * d / ↑((a * d).gcd c))) + p
4717869eaf119b13
SimplexCategory.eq_of_one_to_two
Mathlib/AlgebraicTopology/SimplexCategory/Basic.lean
theorem eq_of_one_to_two (f : ⦋1⦌ ⟶ ⦋2⦌) : (∃ i, f = (δ (n := 1) i)) ∨ ∃ a, f = SimplexCategory.const _ _ a
f : ⦋1⦌ ⟶ ⦋2⦌ this : (Hom.toOrderHom f) 0 ≤ (Hom.toOrderHom f) 1 e0 : (Hom.toOrderHom f) 0 = 0 e1 : (Hom.toOrderHom f) 1 = 1 ⊢ (∃ i, f = δ i) ∨ ∃ a, f = ⦋1⦌.const ⦋2⦌ a
refine .inl ⟨2, ?_⟩
f : ⦋1⦌ ⟶ ⦋2⦌ this : (Hom.toOrderHom f) 0 ≤ (Hom.toOrderHom f) 1 e0 : (Hom.toOrderHom f) 0 = 0 e1 : (Hom.toOrderHom f) 1 = 1 ⊢ f = δ 2
5e795d7949346773
List.mem_permutationsAux_of_perm
Mathlib/Data/List/Permutation.lean
theorem mem_permutationsAux_of_perm : ∀ {ts is l : List α}, l ~ is ++ ts → (∃ (is' : _) (_ : is' ~ is), l = is' ++ ts) ∨ l ∈ permutationsAux ts is
α : Type u_1 ⊢ ∀ (t : α) (ts is : List α), (∀ (l : List α), l ~ t :: is ++ ts → (∃ is', ∃ (_ : is' ~ t :: is), l = is' ++ ts) ∨ l ∈ ts.permutationsAux (t :: is)) → (∀ (l : List α), l ~ [] ++ is → (∃ is', ∃ (_ : is' ~ []), l = is' ++ is) ∨ l ∈ is.permutationsAux []) → ∀ (l : List α), l ~ is ++ t :: ts → (∃ is', ∃ (_ : is' ~ is), l = is' ++ t :: ts) ∨ l ∈ (t :: ts).permutationsAux is
intro t ts is IH1 IH2 l p
α : Type u_1 t : α ts is : List α IH1 : ∀ (l : List α), l ~ t :: is ++ ts → (∃ is', ∃ (_ : is' ~ t :: is), l = is' ++ ts) ∨ l ∈ ts.permutationsAux (t :: is) IH2 : ∀ (l : List α), l ~ [] ++ is → (∃ is', ∃ (_ : is' ~ []), l = is' ++ is) ∨ l ∈ is.permutationsAux [] l : List α p : l ~ is ++ t :: ts ⊢ (∃ is', ∃ (_ : is' ~ is), l = is' ++ t :: ts) ∨ l ∈ (t :: ts).permutationsAux is
c51a06076c0dbbc1
CauSeq.le_inf
Mathlib/Algebra/Order/CauSeq/Basic.lean
theorem le_inf {a b c : CauSeq α abs} (hb : a ≤ b) (hc : a ≤ c) : a ≤ b ⊓ c
case inl α : Type u_1 inst✝ : LinearOrderedField α a b c : CauSeq α abs hc : a ≤ c hb : a < b ⊢ a ≤ b ⊓ c
obtain hc | hc := hc
case inl.inl α : Type u_1 inst✝ : LinearOrderedField α a b c : CauSeq α abs hb : a < b hc : a < c ⊢ a ≤ b ⊓ c case inl.inr α : Type u_1 inst✝ : LinearOrderedField α a b c : CauSeq α abs hb : a < b hc : a ≈ c ⊢ a ≤ b ⊓ c
ca14703e1c3d3eed
List.permutationsAux_append
Mathlib/Data/List/Permutation.lean
theorem permutationsAux_append (is is' ts : List α) : permutationsAux (is ++ ts) is' = (permutationsAux is is').map (· ++ ts) ++ permutationsAux ts (is.reverse ++ is')
α : Type u_1 is is' ts : List α ⊢ (is ++ ts).permutationsAux is' = map (fun x => x ++ ts) (is.permutationsAux is') ++ ts.permutationsAux (is.reverse ++ is')
induction' is with t is ih generalizing is'
case nil α : Type u_1 ts is' : List α ⊢ ([] ++ ts).permutationsAux is' = map (fun x => x ++ ts) ([].permutationsAux is') ++ ts.permutationsAux ([].reverse ++ is') case cons α : Type u_1 ts : List α t : α is : List α ih : ∀ (is' : List α), (is ++ ts).permutationsAux is' = map (fun x => x ++ ts) (is.permutationsAux is') ++ ts.permutationsAux (is.reverse ++ is') is' : List α ⊢ (t :: is ++ ts).permutationsAux is' = map (fun x => x ++ ts) ((t :: is).permutationsAux is') ++ ts.permutationsAux ((t :: is).reverse ++ is')
15800e154effb70e
OreLocalization.mul_smul
Mathlib/GroupTheory/OreLocalization/Basic.lean
theorem mul_smul (x y : R[S⁻¹]) (z : X[S⁻¹]) : (x * y) • z = x • y • z
case c.c R : Type u_1 inst✝² : Monoid R S : Submonoid R inst✝¹ : OreSet S X : Type u_2 inst✝ : MulAction R X z : OreLocalization S X r₁ : R s₁ : ↥S r₂ : R s₂ : ↥S ⊢ (r₁ /ₒ s₁ * (r₂ /ₒ s₂)) • z = (r₁ /ₒ s₁) • (r₂ /ₒ s₂) • z
induction' z with r₃ s₃
case c.c.c R : Type u_1 inst✝² : Monoid R S : Submonoid R inst✝¹ : OreSet S X : Type u_2 inst✝ : MulAction R X r₁ : R s₁ : ↥S r₂ : R s₂ : ↥S r₃ : X s₃ : ↥S ⊢ (r₁ /ₒ s₁ * (r₂ /ₒ s₂)) • (r₃ /ₒ s₃) = (r₁ /ₒ s₁) • (r₂ /ₒ s₂) • (r₃ /ₒ s₃)
13727f39039b5941
ENNReal.ofReal_pow
Mathlib/Data/ENNReal/Real.lean
theorem ofReal_pow {p : ℝ} (hp : 0 ≤ p) (n : ℕ) : ENNReal.ofReal (p ^ n) = ENNReal.ofReal p ^ n
p : ℝ hp : 0 ≤ p n : ℕ ⊢ ENNReal.ofReal (p ^ n) = ENNReal.ofReal p ^ n
rw [ofReal_eq_coe_nnreal hp, ← coe_pow, ← ofReal_coe_nnreal, NNReal.coe_pow, NNReal.coe_mk]
no goals
1b0d0c077725c8b4
MeasureTheory.Measure.restrict_map_of_aemeasurable
Mathlib/MeasureTheory/Measure/AEMeasurable.lean
theorem MeasureTheory.Measure.restrict_map_of_aemeasurable {f : α → δ} (hf : AEMeasurable f μ) {s : Set δ} (hs : MeasurableSet s) : (μ.map f).restrict s = (μ.restrict <| f ⁻¹' s).map f := calc (μ.map f).restrict s = (μ.map (hf.mk f)).restrict s
case h.h α : Type u_2 δ : Type u_5 m0 : MeasurableSpace α inst✝ : MeasurableSpace δ μ : Measure α f : α → δ hf : AEMeasurable f μ s : Set δ hs : MeasurableSet s t : Set α ht : MeasurableSet t ⊢ μ (t ∩ AEMeasurable.mk f hf ⁻¹' s) = μ (t ∩ f ⁻¹' s)
apply measure_congr
case h.h.H α : Type u_2 δ : Type u_5 m0 : MeasurableSpace α inst✝ : MeasurableSpace δ μ : Measure α f : α → δ hf : AEMeasurable f μ s : Set δ hs : MeasurableSet s t : Set α ht : MeasurableSet t ⊢ t ∩ AEMeasurable.mk f hf ⁻¹' s =ᶠ[ae μ] t ∩ f ⁻¹' s
14bc87ba1a5d7f2e
Finset.expect_boole_mul
Mathlib/Algebra/BigOperators/Expect.lean
lemma expect_boole_mul [Fintype ι] [Nonempty ι] [DecidableEq ι] (f : ι → M) (i : ι) : 𝔼 j, ite (i = j) (Fintype.card ι : M) 0 * f j = f i
ι : Type u_1 M : Type u_3 inst✝⁴ : Semifield M inst✝³ : CharZero M inst✝² : Fintype ι inst✝¹ : Nonempty ι inst✝ : DecidableEq ι f : ι → M i : ι ⊢ (↑(Fintype.card ι))⁻¹ • (↑(Fintype.card ι) * f i) = f i
rw [← @NNRat.cast_natCast M, ← NNRat.smul_def, inv_smul_smul₀]
case ha ι : Type u_1 M : Type u_3 inst✝⁴ : Semifield M inst✝³ : CharZero M inst✝² : Fintype ι inst✝¹ : Nonempty ι inst✝ : DecidableEq ι f : ι → M i : ι ⊢ ↑(Fintype.card ι) ≠ 0
4131b6636b87564d
dvdNotUnit_of_dvdNotUnit_associated
Mathlib/Algebra/GroupWithZero/Associated.lean
theorem dvdNotUnit_of_dvdNotUnit_associated [CommMonoidWithZero M] [Nontrivial M] {p q r : M} (h : DvdNotUnit p q) (h' : Associated q r) : DvdNotUnit p r
case intro.intro.intro M : Type u_1 inst✝¹ : CommMonoidWithZero M inst✝ : Nontrivial M p r : M u : Mˣ h' : r * ↑u ~ᵤ r hp : p ≠ 0 x : M hx : ¬IsUnit x ∧ r * ↑u = p * x ⊢ DvdNotUnit p r
refine ⟨hp, x * ↑u⁻¹, DvdNotUnit.not_unit ⟨u⁻¹.ne_zero, x, hx.left, mul_comm _ _⟩, ?_⟩
case intro.intro.intro M : Type u_1 inst✝¹ : CommMonoidWithZero M inst✝ : Nontrivial M p r : M u : Mˣ h' : r * ↑u ~ᵤ r hp : p ≠ 0 x : M hx : ¬IsUnit x ∧ r * ↑u = p * x ⊢ r = p * (x * ↑u⁻¹)
64a5842690a61119
contentRegular_rieszContent
Mathlib/MeasureTheory/Integral/RieszMarkovKakutani/Basic.lean
lemma contentRegular_rieszContent : (rieszContent Λ).ContentRegular
case intro.intro.intro X : Type u_1 inst✝² : TopologicalSpace X Λ : (X →C_c ℝ≥0) →ₗ[ℝ≥0] ℝ≥0 inst✝¹ : T2Space X inst✝ : LocallyCompactSpace X K : Compacts X b : ℝ≥0∞ hb : ∀ (i : Compacts X), b ≤ ⨅ (_ : ↑K ⊆ interior ↑i), ↑(rieszContentAux Λ i) this : b < ⊤ ε : ℝ≥0 hε : 0 < ↑ε f : X →C_c ℝ≥0 hfleoneonK : ∀ x ∈ K, 1 ≤ f x hfle : ↑(Λ f) < ↑(sInf (⇑Λ '' {f | ∀ x ∈ K, 1 ≤ f x}) + ⟨↑ε, ⋯⟩) α : ℝ≥0 hα : 1 < α K' : Set X := ⇑f ⁻¹' Ici α⁻¹ hKK' : ↑K ⊆ interior K' hK'cp : IsCompact K' hb' : b ≤ ⨅ (_ : ↑K ⊆ interior ↑{ carrier := K', isCompact' := hK'cp }), ↑(rieszContentAux Λ { carrier := K', isCompact' := hK'cp }) := hb { carrier := K', isCompact' := hK'cp } ⊢ b.toNNReal ≤ Λ (α • f)
simp only [Compacts.coe_mk, le_iInf_iff] at hb'
case intro.intro.intro X : Type u_1 inst✝² : TopologicalSpace X Λ : (X →C_c ℝ≥0) →ₗ[ℝ≥0] ℝ≥0 inst✝¹ : T2Space X inst✝ : LocallyCompactSpace X K : Compacts X b : ℝ≥0∞ hb : ∀ (i : Compacts X), b ≤ ⨅ (_ : ↑K ⊆ interior ↑i), ↑(rieszContentAux Λ i) this : b < ⊤ ε : ℝ≥0 hε : 0 < ↑ε f : X →C_c ℝ≥0 hfleoneonK : ∀ x ∈ K, 1 ≤ f x hfle : ↑(Λ f) < ↑(sInf (⇑Λ '' {f | ∀ x ∈ K, 1 ≤ f x}) + ⟨↑ε, ⋯⟩) α : ℝ≥0 hα : 1 < α K' : Set X := ⇑f ⁻¹' Ici α⁻¹ hKK' : ↑K ⊆ interior K' hK'cp : IsCompact K' hb' : ↑K ⊆ interior K' → b ≤ ↑(rieszContentAux Λ { carrier := K', isCompact' := hK'cp }) ⊢ b.toNNReal ≤ Λ (α • f)
ee74d0aaa3cba565
List.nodup_iff_getElem?_ne_getElem?
Mathlib/Data/List/Nodup.lean
theorem nodup_iff_getElem?_ne_getElem? {l : List α} : l.Nodup ↔ ∀ i j : ℕ, i < j → j < l.length → l[i]? ≠ l[j]?
α : Type u l : List α h : ∀ (i j : ℕ) (_hi : i < l.length) (_hj : j < l.length), i < j → l[i] ≠ l[j] i j : ℕ hij : i < j hj : j < l.length ⊢ i < l.length
omega
no goals
8e656bef319224ab
Equiv.Perm.cycleFactorsFinset_mul_inv_mem_eq_sdiff
Mathlib/GroupTheory/Perm/Cycle/Factors.lean
theorem cycleFactorsFinset_mul_inv_mem_eq_sdiff [DecidableEq α] [Fintype α] {f g : Perm α} (h : f ∈ cycleFactorsFinset g) : cycleFactorsFinset (g * f⁻¹) = cycleFactorsFinset g \ {f}
case refine_2 α : Type u_2 inst✝¹ : DecidableEq α inst✝ : Fintype α g f✝ : Perm α ⊢ ∀ (σ : Perm α), σ.IsCycle → fun {g} => ∀ {f : Perm α}, f ∈ g.cycleFactorsFinset → (g * f⁻¹).cycleFactorsFinset = g.cycleFactorsFinset \ {f}
intro σ hσ f hf
case refine_2 α : Type u_2 inst✝¹ : DecidableEq α inst✝ : Fintype α g f✝ σ : Perm α hσ : σ.IsCycle f : Perm α hf : f ∈ σ.cycleFactorsFinset ⊢ (σ * f⁻¹).cycleFactorsFinset = σ.cycleFactorsFinset \ {f}
3d77fd0de031f082
IsCompact.nhdsSet_basis_uniformity
Mathlib/Topology/UniformSpace/Compact.lean
theorem IsCompact.nhdsSet_basis_uniformity {p : ι → Prop} {V : ι → Set (α × α)} (hbasis : (𝓤 α).HasBasis p V) (hK : IsCompact K) : (𝓝ˢ K).HasBasis p fun i => ⋃ x ∈ K, ball x (V i) where mem_iff' U
α : Type ua ι : Sort u_1 inst✝ : UniformSpace α K : Set α p : ι → Prop V : ι → Set (α × α) hbasis : (𝓤 α).HasBasis p V hK : IsCompact K U : Set α H : U ∈ 𝓝ˢ K HKU : K ⊆ ⋃ x, interior U ⊢ ∃ i, p i ∧ ⋃ x ∈ K, ball x (V i) ⊆ interior U
simpa using hbasis.lebesgue_number_lemma hK (fun _ ↦ isOpen_interior) HKU
no goals
3372e9cb2aa231ed
Hopf_.antipode_comul
Mathlib/CategoryTheory/Monoidal/Hopf_.lean
theorem antipode_comul (A : Hopf_ C) : A.antipode ≫ A.X.comul.hom = A.X.comul.hom ≫ (β_ _ _).hom ≫ (A.antipode ⊗ A.antipode)
case hba C : Type u₁ inst✝² : Category.{v₁, u₁} C inst✝¹ : MonoidalCategory C inst✝ : BraidedCategory C A : Hopf_ C ⊢ A.X.comul.hom ≫ A.antipode ▷ A.X.X.X ≫ A.X.comul.hom ▷ A.X.X.X ≫ (α_ A.X.X.X A.X.X.X A.X.X.X).hom ≫ A.X.X.X ◁ A.X.X.X ◁ A.X.comul.hom ≫ (α_ A.X.X.X A.X.X.X (A.X.X.X ⊗ A.X.X.X)).inv ≫ tensorμ A.X.X.X A.X.X.X A.X.X.X A.X.X.X ≫ (A.X.X.mul ⊗ A.X.X.mul) = A.X.counit.hom ≫ (λ_ (𝟙_ C)).inv ≫ (A.X.X.one ⊗ A.X.X.one)
simp only [tensorμ]
case hba C : Type u₁ inst✝² : Category.{v₁, u₁} C inst✝¹ : MonoidalCategory C inst✝ : BraidedCategory C A : Hopf_ C ⊢ A.X.comul.hom ≫ A.antipode ▷ A.X.X.X ≫ A.X.comul.hom ▷ A.X.X.X ≫ (α_ A.X.X.X A.X.X.X A.X.X.X).hom ≫ A.X.X.X ◁ A.X.X.X ◁ A.X.comul.hom ≫ (α_ A.X.X.X A.X.X.X (A.X.X.X ⊗ A.X.X.X)).inv ≫ ((α_ A.X.X.X A.X.X.X (A.X.X.X ⊗ A.X.X.X)).hom ≫ A.X.X.X ◁ (α_ A.X.X.X A.X.X.X A.X.X.X).inv ≫ A.X.X.X ◁ (β_ A.X.X.X A.X.X.X).hom ▷ A.X.X.X ≫ A.X.X.X ◁ (α_ A.X.X.X A.X.X.X A.X.X.X).hom ≫ (α_ A.X.X.X A.X.X.X (A.X.X.X ⊗ A.X.X.X)).inv) ≫ (A.X.X.mul ⊗ A.X.X.mul) = A.X.counit.hom ≫ (λ_ (𝟙_ C)).inv ≫ (A.X.X.one ⊗ A.X.X.one)
95837a9afe92aa55
MvQPF.Cofix.dest_corec'
Mathlib/Data/QPF/Multivariate/Constructions/Cofix.lean
theorem Cofix.dest_corec' {α : TypeVec.{u} n} {β : Type u} (g : β → F (α.append1 (Cofix F α ⊕ β))) (x : β) : Cofix.dest (Cofix.corec' g x) = appendFun id (Sum.elim _root_.id (Cofix.corec' g)) <$$> g x
case h.e'_6.h.e'_7.h.inl.intro.intro n : ℕ F : TypeVec.{u} (n + 1) → Type u q : MvQPF F α : TypeVec.{u} n β : Type u g : β → F (α ::: (Cofix F α ⊕ β)) x✝ : β i : Cofix F α R : Cofix F α → Cofix F α → Prop := fun a b => ∃ x, a = corec (MvFunctor.map (TypeVec.id ::: fun x => x) ∘ Sum.rec (fun val => (TypeVec.id ::: Sum.inl) <$$> val.dest) fun val => g val) (Sum.inl x) ∧ b = x a b x : Cofix F α Ha : a = corec (MvFunctor.map (TypeVec.id ::: fun x => x) ∘ Sum.rec (fun val => (TypeVec.id ::: Sum.inl) <$$> val.dest) fun val => g val) (Sum.inl x) Hb : b = x ⊢ LiftR' (α.RelLast' R) ((TypeVec.id ::: corec fun x => (TypeVec.id ::: fun x => x) <$$> Sum.rec (fun val => (TypeVec.id ::: Sum.inl) <$$> val.dest) (fun val => g val) x) <$$> (TypeVec.id ::: fun x => x) <$$> (TypeVec.id ::: Sum.inl) <$$> x.dest) x.dest
repeat rw [MvFunctor.map_map, ← appendFun_comp_id]
case h.e'_6.h.e'_7.h.inl.intro.intro n : ℕ F : TypeVec.{u} (n + 1) → Type u q : MvQPF F α : TypeVec.{u} n β : Type u g : β → F (α ::: (Cofix F α ⊕ β)) x✝ : β i : Cofix F α R : Cofix F α → Cofix F α → Prop := fun a b => ∃ x, a = corec (MvFunctor.map (TypeVec.id ::: fun x => x) ∘ Sum.rec (fun val => (TypeVec.id ::: Sum.inl) <$$> val.dest) fun val => g val) (Sum.inl x) ∧ b = x a b x : Cofix F α Ha : a = corec (MvFunctor.map (TypeVec.id ::: fun x => x) ∘ Sum.rec (fun val => (TypeVec.id ::: Sum.inl) <$$> val.dest) fun val => g val) (Sum.inl x) Hb : b = x ⊢ LiftR' (α.RelLast' R) ((TypeVec.id ::: ((corec fun x => (TypeVec.id ::: fun x => x) <$$> Sum.rec (fun val => (TypeVec.id ::: Sum.inl) <$$> val.dest) (fun val => g val) x) ∘ fun x => x) ∘ Sum.inl) <$$> x.dest) x.dest
be80bc82f7ec558d
Polynomial.eval₂_X_pow
Mathlib/Algebra/Polynomial/Eval/Defs.lean
theorem eval₂_X_pow {n : ℕ} : (X ^ n).eval₂ f x = x ^ n
R : Type u S : Type v inst✝¹ : Semiring R inst✝ : Semiring S f : R →+* S x : S n : ℕ ⊢ eval₂ f x ((monomial n) 1) = x ^ n
convert eval₂_monomial f x (n := n) (r := 1)
case h.e'_3 R : Type u S : Type v inst✝¹ : Semiring R inst✝ : Semiring S f : R →+* S x : S n : ℕ ⊢ x ^ n = f 1 * x ^ n
bc410754bb487e9c
RootPairing.range_weylGroup_weightHom
Mathlib/LinearAlgebra/RootSystem/WeylGroup.lean
lemma range_weylGroup_weightHom : MonoidHom.range ((Equiv.weightHom P).restrict P.weylGroup) = Subgroup.closure (range P.reflection)
case refine_1.intro ι : Type u_1 R : Type u_2 M : Type u_3 N : Type u_4 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : AddCommGroup N inst✝ : Module R N P : RootPairing ι R M N i : ι ⊢ P.reflection i ∈ ↑((Equiv.weightHom P).restrict P.weylGroup).range
simp only [MonoidHom.restrict_range, Subgroup.coe_map, Equiv.weightHom_apply, mem_image, SetLike.mem_coe]
case refine_1.intro ι : Type u_1 R : Type u_2 M : Type u_3 N : Type u_4 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : AddCommGroup N inst✝ : Module R N P : RootPairing ι R M N i : ι ⊢ ∃ x ∈ P.weylGroup, Equiv.weightEquiv P P x = P.reflection i
c05e89b06d1c9590
Sum.lex_inl_inl
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Sum/Basic.lean
theorem lex_inl_inl : Lex r s (inl a₁) (inl a₂) ↔ r a₁ a₂ := ⟨fun h => by cases h; assumption, Lex.inl⟩
case inl α✝ : Type u_1 r : α✝ → α✝ → Prop β✝ : Type u_2 s : β✝ → β✝ → Prop a₁ a₂ : α✝ h✝ : r a₁ a₂ ⊢ r a₁ a₂
assumption
no goals
d3aae9eca3e3cd38
OrderedFinpartition.partSize_eq_one_of_range_emb_eq_singleton
Mathlib/Analysis/Calculus/ContDiff/FaaDiBruno.lean
lemma partSize_eq_one_of_range_emb_eq_singleton (c : OrderedFinpartition n) {i : Fin c.length} {j : Fin n} (hc : range (c.emb i) = {j}) : c.partSize i = 1
n : ℕ c : OrderedFinpartition n i : Fin c.length j : Fin n hc : range (c.emb i) = {j} ⊢ c.partSize i = 1
have : Fintype.card (range (c.emb i)) = Fintype.card (Fin (c.partSize i)) := card_range_of_injective (c.emb_strictMono i).injective
n : ℕ c : OrderedFinpartition n i : Fin c.length j : Fin n hc : range (c.emb i) = {j} this : Fintype.card ↑(range (c.emb i)) = Fintype.card (Fin (c.partSize i)) ⊢ c.partSize i = 1
3696ccf36eca0b0e
MultilinearMap.map_sum_finset_aux
Mathlib/LinearAlgebra/Multilinear/Basic.lean
theorem map_sum_finset_aux [DecidableEq ι] [Fintype ι] {n : ℕ} (h : (∑ i, #(A i)) = n) : (f fun i => ∑ j ∈ A i, g i j) = ∑ r ∈ piFinset A, f fun i => g i (r i)
case e_a R : Type uR ι : Type uι M₁ : ι → Type v₁ M₂ : Type v₂ inst✝⁶ : Semiring R inst✝⁵ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁴ : AddCommMonoid M₂ inst✝³ : (i : ι) → Module R (M₁ i) inst✝² : Module R M₂ f : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i inst✝¹ : DecidableEq ι inst✝ : Fintype ι this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ m < n, ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, #(A i) = m → (f fun i => ∑ j ∈ A i, g i j) = ∑ r ∈ piFinset A, f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, #(A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ Ai_singleton : ∀ (i : ι), #(A i) ≤ 1 Ai_card : ∀ (i : ι), #(A i) = 1 r : (i : ι) → α i hr : r ∈ piFinset A i : ι j : α i hj : j ∈ A i ⊢ j = r i
apply Finset.card_le_one_iff.1 (Ai_singleton i) hj
case e_a R : Type uR ι : Type uι M₁ : ι → Type v₁ M₂ : Type v₂ inst✝⁶ : Semiring R inst✝⁵ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁴ : AddCommMonoid M₂ inst✝³ : (i : ι) → Module R (M₁ i) inst✝² : Module R M₂ f : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i inst✝¹ : DecidableEq ι inst✝ : Fintype ι this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ m < n, ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, #(A i) = m → (f fun i => ∑ j ∈ A i, g i j) = ∑ r ∈ piFinset A, f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, #(A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ Ai_singleton : ∀ (i : ι), #(A i) ≤ 1 Ai_card : ∀ (i : ι), #(A i) = 1 r : (i : ι) → α i hr : r ∈ piFinset A i : ι j : α i hj : j ∈ A i ⊢ r i ∈ A i
981a316f387f732a
IsAdjoinRoot.aequiv_map
Mathlib/RingTheory/IsAdjoinRoot.lean
theorem aequiv_map (h : IsAdjoinRoot S f) (h' : IsAdjoinRoot T f) (z : R[X]) : h.aequiv h' (h.map z) = h'.map z
R : Type u S : Type v inst✝⁴ : CommRing R inst✝³ : CommRing S inst✝² : Algebra R S f : R[X] T : Type u_1 inst✝¹ : CommRing T inst✝ : Algebra R T h : IsAdjoinRoot S f h' : IsAdjoinRoot T f z : R[X] ⊢ (h.aequiv h') (h.map z) = h'.map z
rw [aequiv, AlgEquiv.coe_mk, Equiv.coe_fn_mk, liftHom_map, aeval_eq]
no goals
497385a3e1316c2d
MeasureTheory.SimpleFunc.measurableSet_cut
Mathlib/MeasureTheory/Function/SimpleFunc.lean
theorem measurableSet_cut (r : α → β → Prop) (f : α →ₛ β) (h : ∀ b, MeasurableSet { a | r a b }) : MeasurableSet { a | r a (f a) }
α : Type u_1 β : Type u_2 inst✝ : MeasurableSpace α r : α → β → Prop f : α →ₛ β h : ∀ (b : β), MeasurableSet {a | r a b} ⊢ MeasurableSet {a | r a (f a)}
have : { a | r a (f a) } = ⋃ b ∈ range f, { a | r a b } ∩ f ⁻¹' {b} := by ext a suffices r a (f a) ↔ ∃ i, r a (f i) ∧ f a = f i by simpa exact ⟨fun h => ⟨a, ⟨h, rfl⟩⟩, fun ⟨a', ⟨h', e⟩⟩ => e.symm ▸ h'⟩
α : Type u_1 β : Type u_2 inst✝ : MeasurableSpace α r : α → β → Prop f : α →ₛ β h : ∀ (b : β), MeasurableSet {a | r a b} this : {a | r a (f a)} = ⋃ b ∈ range ⇑f, {a | r a b} ∩ ⇑f ⁻¹' {b} ⊢ MeasurableSet {a | r a (f a)}
5a97b308e7974c2c
LinearMap.continuous_of_seq_closed_graph
Mathlib/Analysis/Normed/Operator/Banach.lean
theorem LinearMap.continuous_of_seq_closed_graph (hg : ∀ (u : ℕ → E) (x y), Tendsto u atTop (𝓝 x) → Tendsto (g ∘ u) atTop (𝓝 y) → y = g x) : Continuous g
case mk 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_3 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : CompleteSpace E F : Type u_5 inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : CompleteSpace F g : E →ₗ[𝕜] F hg : ∀ (u : ℕ → E) (x : E) (y : F), Tendsto u atTop (𝓝 x) → Tendsto (⇑g ∘ u) atTop (𝓝 y) → y = g x φ : ℕ → E × F x : E y : F hφg : ∀ (n : ℕ), φ n ∈ ↑g.graph hφ : Tendsto φ atTop (𝓝 (x, y)) this : ⇑g ∘ Prod.fst ∘ φ = Prod.snd ∘ φ ⊢ Tendsto (Prod.snd ∘ φ) atTop (𝓝 y)
exact (continuous_snd.tendsto _).comp hφ
no goals
2673a9b6b5f9f074
TensorProduct.exists_finsupp_left
Mathlib/LinearAlgebra/TensorProduct/Finiteness.lean
theorem exists_finsupp_left (x : M ⊗[R] N) : ∃ S : M →₀ N, x = S.sum fun m n ↦ m ⊗ₜ[R] n
R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : CommSemiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid N inst✝¹ : Module R M inst✝ : Module R N x : M y : N ⊢ x ⊗ₜ[R] y = (Finsupp.single x y).sum fun m n => m ⊗ₜ[R] n
simp
no goals
60177b288117e180
Polynomial.reverse_natDegree_le
Mathlib/Algebra/Polynomial/Reverse.lean
theorem reverse_natDegree_le (f : R[X]) : f.reverse.natDegree ≤ f.natDegree
R : Type u_1 inst✝ : Semiring R f : R[X] n : ℕ hn : ↑f.natDegree < ↑n ⊢ f.reverse.coeff n = 0
rw [Nat.cast_lt] at hn
R : Type u_1 inst✝ : Semiring R f : R[X] n : ℕ hn : f.natDegree < n ⊢ f.reverse.coeff n = 0
8e53e10aac3451f2
Sigma.uncurry_mulSingle_mulSingle
Mathlib/Algebra/Group/Pi/Lemmas.lean
theorem uncurry_mulSingle_mulSingle [DecidableEq α] [∀ a, DecidableEq (β a)] [∀ a b, One (γ a b)] (a : α) (b : β a) (x : γ a b) : Sigma.uncurry (Pi.mulSingle a (Pi.mulSingle b x)) = Pi.mulSingle (Sigma.mk a b) x
α : Type u_3 β : α → Type u_4 γ : (a : α) → β a → Type u_5 inst✝² : DecidableEq α inst✝¹ : (a : α) → DecidableEq (β a) inst✝ : (a : α) → (b : β a) → One (γ a b) a : α b : β a x : γ a b ⊢ uncurry (Pi.mulSingle a (Pi.mulSingle b x)) = Pi.mulSingle ⟨a, b⟩ x
rw [← curry_mulSingle ⟨a, b⟩, uncurry_curry]
no goals
3ee2b9c65813aef6
closure_residualEq
Mathlib/Topology/Baire/BaireMeasurable.lean
theorem closure_residualEq {s : Set α} (hs : IsLocallyClosed s) : closure s =ᵇ s
α : Type u_1 inst✝ : TopologicalSpace α s : Set α hs : IsLocallyClosed s ⊢ ∀ᵇ (x : α), x ∈ closure s ↔ x ∈ s
filter_upwards [coborder_mem_residual hs] with x hx
case h α : Type u_1 inst✝ : TopologicalSpace α s : Set α hs : IsLocallyClosed s x : α hx : x ∈ coborder s ⊢ x ∈ closure s ↔ x ∈ s
eb5283df85eaa4a7
CategoryTheory.MorphismProperty.LeftFractionRel.symm
Mathlib/CategoryTheory/Localization/CalculusOfFractions.lean
lemma symm {X Y : C} {z₁ z₂ : W.LeftFraction X Y} (h : LeftFractionRel z₁ z₂) : LeftFractionRel z₂ z₁
C : Type u_1 inst✝ : Category.{u_3, u_1} C W : MorphismProperty C X Y : C z₁ z₂ : W.LeftFraction X Y h : LeftFractionRel z₁ z₂ ⊢ LeftFractionRel z₂ z₁
obtain ⟨Z, t₁, t₂, hst, hft, ht⟩ := h
case intro.intro.intro.intro.intro C : Type u_1 inst✝ : Category.{u_3, u_1} C W : MorphismProperty C X Y : C z₁ z₂ : W.LeftFraction X Y Z : C t₁ : z₁.Y' ⟶ Z t₂ : z₂.Y' ⟶ Z hst : z₁.s ≫ t₁ = z₂.s ≫ t₂ hft : z₁.f ≫ t₁ = z₂.f ≫ t₂ ht : W (z₁.s ≫ t₁) ⊢ LeftFractionRel z₂ z₁
8e8b91861665f29a
IsCoprime.ne_zero_or_ne_zero
Mathlib/RingTheory/Coprime/Basic.lean
theorem IsCoprime.ne_zero_or_ne_zero [Nontrivial R] (h : IsCoprime x y) : x ≠ 0 ∨ y ≠ 0
R : Type u inst✝¹ : CommSemiring R x y : R inst✝ : Nontrivial R h : IsCoprime x y ⊢ x ≠ 0 ∨ y ≠ 0
apply not_or_of_imp
case a R : Type u inst✝¹ : CommSemiring R x y : R inst✝ : Nontrivial R h : IsCoprime x y ⊢ x = 0 → y ≠ 0
10b7192cc54ac7d2
Module.End.map_smul_of_iInf_iSup_genEigenspace_ne_bot
Mathlib/LinearAlgebra/Eigenspace/Basic.lean
@[deprecated map_smul_of_iInf_genEigenspace_ne_bot (since := "2024-10-23")] lemma map_smul_of_iInf_iSup_genEigenspace_ne_bot [NoZeroSMulDivisors R M] {L F : Type*} [SMul R L] [FunLike F L (End R M)] [MulActionHomClass F R L (End R M)] (f : F) (μ : L → R) (h_ne : ⨅ x, ⨆ k : ℕ, (f x).genEigenspace (μ x) k ≠ ⊥) (t : R) (x : L) : μ (t • x) = t • μ x
R : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : NoZeroSMulDivisors R M L : Type u_1 F : Type u_2 inst✝² : SMul R L inst✝¹ : FunLike F L (End R M) inst✝ : MulActionHomClass F R L (End R M) f : F μ : L → R h_ne : ⨅ x, ⨆ k, ((f x).genEigenspace (μ x)) ↑k ≠ ⊥ t : R x : L ⊢ μ (t • x) = t • μ x
simp_rw [iSup_genEigenspace_eq] at h_ne
R : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : NoZeroSMulDivisors R M L : Type u_1 F : Type u_2 inst✝² : SMul R L inst✝¹ : FunLike F L (End R M) inst✝ : MulActionHomClass F R L (End R M) f : F μ : L → R t : R x : L h_ne : ⨅ x, (f x).maxGenEigenspace (μ x) ≠ ⊥ ⊢ μ (t • x) = t • μ x
ccb37027875f6905
ClassGroup.exists_mem_finsetApprox
Mathlib/NumberTheory/ClassNumber/Finite.lean
theorem exists_mem_finsetApprox (a : S) {b} (hb : b ≠ (0 : R)) : ∃ q : S, ∃ r ∈ finsetApprox bS adm, abv (Algebra.norm R (r • a - b • q)) < abv (Algebra.norm R (algebraMap R S b))
case intro.intro.intro R : Type u_1 S : Type u_2 inst✝⁷ : EuclideanDomain R inst✝⁶ : CommRing S inst✝⁵ : IsDomain S inst✝⁴ : Algebra R S abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : abv.IsAdmissible inst✝¹ : Infinite R inst✝ : DecidableEq R a : S b : R hb : b ≠ 0 dim_pos : 0 < Fintype.card ι ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) hε : 0 < ε ε_le : ↑(normBound abv bS) * (abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(abv b) ^ ↑(Fintype.card ι) μ : Fin (cardM bS adm).succ ↪ R := distinctElems bS adm hμ : μ = distinctElems bS adm s : ι →₀ R := bS.repr a s_eq : ∀ (i : ι), s i = (bS.repr a) i qs : Fin (cardM bS adm).succ → ι → R := fun j i => μ j * s i / b rs : Fin (cardM bS adm).succ → ι → R := fun j i => μ j * s i % b r_eq : ∀ (j : Fin (cardM bS adm).succ) (i : ι), rs j i = μ j * s i % b μ_eq : ∀ (i : ι) (j : Fin (cardM bS adm).succ), μ j * s i = b * qs j i + rs j i μ_mul_a_eq : ∀ (j : Fin (cardM bS adm).succ), μ j • a = b • ∑ i : ι, qs j i • bS i + ∑ i : ι, rs j i • bS i j k : Fin (adm.card ε ^ Fintype.card ι).succ j_ne_k : j ≠ k hjk : ∀ (k_1 : ι), ↑(abv (μ k * s k_1 % b - μ j * s k_1 % b)) < abv b • ε ⊢ ∃ q, ∃ r ∈ finsetApprox bS adm, abv ((Algebra.norm R) (r • a - b • q)) < abv ((Algebra.norm R) ((algebraMap R S) b))
have hjk' : ∀ i, (abv (rs k i - rs j i) : ℝ) < abv b • ε := by simpa only [r_eq] using hjk
case intro.intro.intro R : Type u_1 S : Type u_2 inst✝⁷ : EuclideanDomain R inst✝⁶ : CommRing S inst✝⁵ : IsDomain S inst✝⁴ : Algebra R S abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : abv.IsAdmissible inst✝¹ : Infinite R inst✝ : DecidableEq R a : S b : R hb : b ≠ 0 dim_pos : 0 < Fintype.card ι ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) hε : 0 < ε ε_le : ↑(normBound abv bS) * (abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(abv b) ^ ↑(Fintype.card ι) μ : Fin (cardM bS adm).succ ↪ R := distinctElems bS adm hμ : μ = distinctElems bS adm s : ι →₀ R := bS.repr a s_eq : ∀ (i : ι), s i = (bS.repr a) i qs : Fin (cardM bS adm).succ → ι → R := fun j i => μ j * s i / b rs : Fin (cardM bS adm).succ → ι → R := fun j i => μ j * s i % b r_eq : ∀ (j : Fin (cardM bS adm).succ) (i : ι), rs j i = μ j * s i % b μ_eq : ∀ (i : ι) (j : Fin (cardM bS adm).succ), μ j * s i = b * qs j i + rs j i μ_mul_a_eq : ∀ (j : Fin (cardM bS adm).succ), μ j • a = b • ∑ i : ι, qs j i • bS i + ∑ i : ι, rs j i • bS i j k : Fin (adm.card ε ^ Fintype.card ι).succ j_ne_k : j ≠ k hjk : ∀ (k_1 : ι), ↑(abv (μ k * s k_1 % b - μ j * s k_1 % b)) < abv b • ε hjk' : ∀ (i : ι), ↑(abv (rs k i - rs j i)) < abv b • ε ⊢ ∃ q, ∃ r ∈ finsetApprox bS adm, abv ((Algebra.norm R) (r • a - b • q)) < abv ((Algebra.norm R) ((algebraMap R S) b))
57a52f480b46c47f
Mathlib.Meta.NormNum.isRat_mul
Mathlib/Tactic/NormNum/Basic.lean
theorem isRat_mul {α} [Ring α] {f : α → α → α} {a b : α} {na nb nc : ℤ} {da db dc k : ℕ} : f = HMul.hMul → IsRat a na da → IsRat b nb db → Int.mul na nb = Int.mul k nc → Nat.mul da db = Nat.mul k dc → IsRat (f a b) nc dc
case mk.mk α : Type u_1 inst✝ : Ring α na nb nc : ℤ da db dc k : ℕ inv✝¹ : Invertible ↑da inv✝ : Invertible ↑db h₁ : na * nb = ↑k * nc h₂ : da * db = k * dc ⊢ IsRat (↑na * ⅟↑da * (↑nb * ⅟↑db)) nc dc
have : Invertible (↑(da * db) : α) := by simpa using invertibleMul (da:α) db
case mk.mk α : Type u_1 inst✝ : Ring α na nb nc : ℤ da db dc k : ℕ inv✝¹ : Invertible ↑da inv✝ : Invertible ↑db h₁ : na * nb = ↑k * nc h₂ : da * db = k * dc this : Invertible ↑(da * db) ⊢ IsRat (↑na * ⅟↑da * (↑nb * ⅟↑db)) nc dc
9b529ea192c16dfe
Finset.prod_diag
Mathlib/Algebra/BigOperators/Group/Finset/Basic.lean
@[to_additive (attr := simp)] lemma prod_diag [DecidableEq α] (s : Finset α) (f : α × α → β) : ∏ i ∈ s.diag, f i = ∏ i ∈ s, f (i, i)
α : Type u_3 β : Type u_4 inst✝¹ : CommMonoid β inst✝ : DecidableEq α s : Finset α f : α × α → β ⊢ ∏ i ∈ s.diag, f i = ∏ i ∈ s, f (i, i)
apply prod_nbij' Prod.fst (fun i ↦ (i, i)) <;> simp
no goals
f7b97ff981814e1c
continuousOn_boolIndicator_iff_isClopen
Mathlib/Topology/Clopen.lean
theorem continuousOn_boolIndicator_iff_isClopen (s U : Set X) : ContinuousOn U.boolIndicator s ↔ IsClopen (((↑) : s → X) ⁻¹' U)
X : Type u inst✝ : TopologicalSpace X s U : Set X ⊢ Continuous (s.restrict U.boolIndicator) ↔ Continuous (Subtype.val ⁻¹' U).boolIndicator
rfl
no goals
86662e5cedab6fa9
ZMod.sum_Ico_eq_card_lt
Mathlib/NumberTheory/LegendreSymbol/GaussEisensteinLemmas.lean
theorem sum_Ico_eq_card_lt {p q : ℕ} : ∑ a ∈ Ico 1 (p / 2).succ, a * q / p = #{x ∈ Ico 1 (p / 2).succ ×ˢ Ico 1 (q / 2).succ | x.2 * p ≤ x.1 * q} := if hp0 : p = 0 then by simp [hp0, Finset.ext_iff] else calc ∑ a ∈ Ico 1 (p / 2).succ, a * q / p = ∑ a ∈ Ico 1 (p / 2).succ, #{x ∈ Ico 1 (q / 2).succ | x * p ≤ a * q} := Finset.sum_congr rfl fun x hx => div_eq_filter_card (Nat.pos_of_ne_zero hp0) <| calc x * q / p ≤ p / 2 * q / p
p q : ℕ hp0 : ¬p = 0 ⊢ ∑ a ∈ Ico 1 (p / 2).succ, #(filter (fun x => x * p ≤ a * q) (Ico 1 (q / 2).succ)) = #(filter (fun x => x.2 * p ≤ x.1 * q) (Ico 1 (p / 2).succ ×ˢ Ico 1 (q / 2).succ))
rw [← card_sigma]
p q : ℕ hp0 : ¬p = 0 ⊢ #((Ico 1 (p / 2).succ).sigma fun a => filter (fun x => x * p ≤ a * q) (Ico 1 (q / 2).succ)) = #(filter (fun x => x.2 * p ≤ x.1 * q) (Ico 1 (p / 2).succ ×ˢ Ico 1 (q / 2).succ))
f481f56c219ea2f8
CFC.spectrum_nonempty
Mathlib/Analysis/CStarAlgebra/ContinuousFunctionalCalculus/Unital.lean
/-- In an `R`-algebra with a continuous functional calculus, every element satisfying the predicate has nonempty `R`-spectrum. -/ lemma CFC.spectrum_nonempty [Nontrivial A] (a : A) (ha : p a
R : Type u_1 A : Type u_2 p : A → Prop inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : MetricSpace R inst✝⁶ : IsTopologicalSemiring R inst✝⁵ : ContinuousStar R inst✝⁴ : TopologicalSpace A inst✝³ : Ring A inst✝² : StarRing A inst✝¹ : Algebra R A instCFC : ContinuousFunctionalCalculus R p inst✝ : Nontrivial A a : A ha : autoParam (p a) _auto✝ h : spectrum R a = ∅ ⊢ 1 = 0
rw [← cfc_one R a, ← cfc_zero R a]
R : Type u_1 A : Type u_2 p : A → Prop inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : MetricSpace R inst✝⁶ : IsTopologicalSemiring R inst✝⁵ : ContinuousStar R inst✝⁴ : TopologicalSpace A inst✝³ : Ring A inst✝² : StarRing A inst✝¹ : Algebra R A instCFC : ContinuousFunctionalCalculus R p inst✝ : Nontrivial A a : A ha : autoParam (p a) _auto✝ h : spectrum R a = ∅ ⊢ cfc 1 a = cfc 0 a
b77b52135f225a17
MeasureTheory.integral_mul_upcrossingsBefore_le_integral
Mathlib/Probability/Martingale/Upcrossing.lean
theorem integral_mul_upcrossingsBefore_le_integral [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (hfN : ∀ ω, a ≤ f N ω) (hfzero : 0 ≤ f 0) (hab : a < b) : (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[f N] := calc (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[∑ k ∈ Finset.range N, upcrossingStrat a b f N k * (f (k + 1) - f k)]
case refine_2 Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N : ℕ ℱ : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hfN : ∀ (ω : Ω), a ≤ f N ω hfzero : 0 ≤ f 0 hab : a < b ⊢ (fun a_1 => (b - a) * ↑(upcrossingsBefore a b f N a_1)) ≤ᶠ[ae μ] ∑ k ∈ Finset.range N, upcrossingStrat a b f N k * (f (k + 1) - f k)
filter_upwards with ω
case refine_2.h Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N : ℕ ℱ : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hfN : ∀ (ω : Ω), a ≤ f N ω hfzero : 0 ≤ f 0 hab : a < b ω : Ω ⊢ (b - a) * ↑(upcrossingsBefore a b f N ω) ≤ (∑ k ∈ Finset.range N, upcrossingStrat a b f N k * (f (k + 1) - f k)) ω
0afa9533cf5ecfc3
gcd_pow_right_dvd_pow_gcd
Mathlib/Algebra/GCDMonoid/Basic.lean
theorem gcd_pow_right_dvd_pow_gcd [GCDMonoid α] {a b : α} {k : ℕ} : gcd a (b ^ k) ∣ gcd a b ^ k
case pos α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b : α k : ℕ hg : a = 0 ∧ b = 0 ⊢ gcd a (b ^ k) ∣ gcd a b ^ k
rcases hg with ⟨rfl, rfl⟩
case pos.intro α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α k : ℕ ⊢ gcd 0 (0 ^ k) ∣ gcd 0 0 ^ k
15a2a158e00914e2
Std.DHashMap.Internal.List.mem_eraseKey_of_key_beq_eq_false
Mathlib/.lake/packages/lean4/src/lean/Std/Data/DHashMap/Internal/List/Associative.lean
theorem mem_eraseKey_of_key_beq_eq_false [BEq α] {a : α} {l : List ((a : α) × β a)} (p : (a : α) × β a) (hne : (p.1 == a) = false) : p ∈ eraseKey a l ↔ p ∈ l
α : Type u β : α → Type v inst✝ : BEq α a : α p : (a : α) × β a hne : (p.fst == a) = false head✝ : (a : α) × β a tail✝ : List ((a : α) × β a) ih : p ∈ eraseKey a tail✝ ↔ p ∈ tail✝ h : ¬(head✝.fst == a) = true ⊢ p ∈ ⟨head✝.fst, head✝.snd⟩ :: eraseKey a tail✝ ↔ p = head✝ ∨ p ∈ tail✝
simp only [List.mem_cons, ih]
no goals
997dbbc69c0b9544
WittVector.frobeniusRotation_nonzero
Mathlib/RingTheory/WittVector/FrobeniusFractionField.lean
theorem frobeniusRotation_nonzero {a₁ a₂ : 𝕎 k} (ha₁ : a₁.coeff 0 ≠ 0) (ha₂ : a₂.coeff 0 ≠ 0) : frobeniusRotation p ha₁ ha₂ ≠ 0
p : ℕ hp : Fact (Nat.Prime p) k : Type u_1 inst✝² : Field k inst✝¹ : CharP k p inst✝ : IsAlgClosed k a₁ a₂ : 𝕎 k ha₁ : a₁.coeff 0 ≠ 0 ha₂ : a₂.coeff 0 ≠ 0 h : frobeniusRotation p ha₁ ha₂ = 0 ⊢ False
apply solution_nonzero p ha₁ ha₂
p : ℕ hp : Fact (Nat.Prime p) k : Type u_1 inst✝² : Field k inst✝¹ : CharP k p inst✝ : IsAlgClosed k a₁ a₂ : 𝕎 k ha₁ : a₁.coeff 0 ≠ 0 ha₂ : a₂.coeff 0 ≠ 0 h : frobeniusRotation p ha₁ ha₂ = 0 ⊢ solution p a₁ a₂ = 0
cd34513eeff41152
List.kerase_comm
Mathlib/Data/List/Sigma.lean
theorem kerase_comm (a₁ a₂) (l : List (Sigma β)) : kerase a₂ (kerase a₁ l) = kerase a₁ (kerase a₂ l) := if h : a₁ = a₂ then by simp [h] else if ha₁ : a₁ ∈ l.keys then if ha₂ : a₂ ∈ l.keys then match l, kerase a₁ l, exists_of_kerase ha₁, ha₂ with | _, _, ⟨b₁, l₁, l₂, a₁_nin_l₁, rfl, rfl⟩, _ => if h' : a₂ ∈ l₁.keys then by simp [kerase_append_left h', kerase_append_right (mt (mem_keys_kerase_of_ne h).mp a₁_nin_l₁)] else by simp [kerase_append_right h', kerase_append_right a₁_nin_l₁, @kerase_cons_ne _ _ _ a₂ ⟨a₁, b₁⟩ _ (Ne.symm h)] else by simp [ha₂, mt mem_keys_of_mem_keys_kerase ha₂] else by simp [ha₁, mt mem_keys_of_mem_keys_kerase ha₁]
α : Type u β : α → Type v inst✝ : DecidableEq α a₁ a₂ : α l : List (Sigma β) h : a₁ = a₂ ⊢ kerase a₂ (kerase a₁ l) = kerase a₁ (kerase a₂ l)
simp [h]
no goals
ed896846edee459a
UniqueFactorizationMonoid.induction_on_prime
Mathlib/RingTheory/UniqueFactorizationDomain/Defs.lean
theorem induction_on_prime {P : α → Prop} (a : α) (h₁ : P 0) (h₂ : ∀ x : α, IsUnit x → P x) (h₃ : ∀ a p : α, a ≠ 0 → Prime p → P a → P (p * a)) : P a
α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : UniqueFactorizationMonoid α P : α → Prop a : α h₁ : P 0 h₂ : ∀ (x : α), IsUnit x → P x h₃ : ∀ (a p : α), a ≠ 0 → Irreducible p → P a → P (p * a) ⊢ P a
exact WfDvdMonoid.induction_on_irreducible a h₁ h₂ h₃
no goals
0be901e5bcf8cebe
mem_span_C_coeff
Mathlib/RingTheory/Polynomial/Basic.lean
theorem mem_span_C_coeff : f ∈ Ideal.span { g : R[X] | ∃ i : ℕ, g = C (coeff f i) }
case h.e'_5 R : Type u inst✝ : Semiring R f : R[X] p : Ideal R[X] := Ideal.span {g | ∃ i, g = C (f.coeff i)} n : ℕ _hn : n ∈ f.support this✝ : C (f.coeff n) ∈ p this : (monomial n) 1 • C (f.coeff n) ∈ p ⊢ C (f.coeff n) * X ^ n = (monomial n) 1 • C (f.coeff n)
simp only [monomial_mul_C, one_mul, smul_eq_mul]
case h.e'_5 R : Type u inst✝ : Semiring R f : R[X] p : Ideal R[X] := Ideal.span {g | ∃ i, g = C (f.coeff i)} n : ℕ _hn : n ∈ f.support this✝ : C (f.coeff n) ∈ p this : (monomial n) 1 • C (f.coeff n) ∈ p ⊢ C (f.coeff n) * X ^ n = (monomial n) (f.coeff n)
99c6c17abeda5d8d
CStarModule.inner_sub_right
Mathlib/Analysis/CStarAlgebra/Module/Defs.lean
@[simp] lemma inner_sub_right {x y z : E} : ⟪x, y - z⟫ = ⟪x, y⟫ - ⟪x, z⟫
A : Type u_1 E : Type u_2 inst✝¹⁰ : NonUnitalRing A inst✝⁹ : StarRing A inst✝⁸ : AddCommGroup E inst✝⁷ : Module ℂ A inst✝⁶ : Module ℂ E inst✝⁵ : PartialOrder A inst✝⁴ : SMul Aᵐᵒᵖ E inst✝³ : Norm A inst✝² : Norm E inst✝¹ : CStarModule A E inst✝ : StarModule ℂ A x y z : E ⊢ inner x (y - z) = inner x y - inner x z
simp [← innerₛₗ_apply]
no goals
a6b0d1fc66ded6d2
WeierstrassCurve.Projective.nonsingularLift_negMap
Mathlib/AlgebraicGeometry/EllipticCurve/Projective.lean
lemma nonsingularLift_negMap {P : PointClass F} (hP : W.NonsingularLift P) : W.NonsingularLift <| W.negMap P
case mk F : Type u inst✝ : Field F W : Projective F P : PointClass F a✝ : Fin 3 → F hP : W.NonsingularLift (Quot.mk (⇑(MulAction.orbitRel Fˣ (Fin 3 → F))) a✝) ⊢ W.NonsingularLift (W.negMap (Quot.mk (⇑(MulAction.orbitRel Fˣ (Fin 3 → F))) a✝))
exact nonsingular_neg hP
no goals
6968edc5ae947f66
AntilipschitzWith.isBounded_of_image2_left
Mathlib/Topology/MetricSpace/Antilipschitz.lean
theorem isBounded_of_image2_left (f : α → β → γ) {K₁ : ℝ≥0} (hf : ∀ b, AntilipschitzWith K₁ fun a => f a b) {s : Set α} {t : Set β} (hst : IsBounded (Set.image2 f s t)) : IsBounded s ∨ IsBounded t
case intro α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : PseudoMetricSpace α inst✝¹ : PseudoMetricSpace β inst✝ : PseudoMetricSpace γ f : α → β → γ K₁ : ℝ≥0 hf : ∀ (b : β), AntilipschitzWith K₁ fun a => f a b s : Set α t : Set β hst : ¬Bornology.IsBounded s ∧ ¬Bornology.IsBounded t b : β hb : b ∈ t ⊢ ¬Bornology.IsBounded (image2 f s t)
have : ¬IsBounded (Set.image2 f s {b}) := by intro h apply hst.1 rw [Set.image2_singleton_right] at h replace h := (hf b).isBounded_preimage h exact h.subset (subset_preimage_image _ _)
case intro α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : PseudoMetricSpace α inst✝¹ : PseudoMetricSpace β inst✝ : PseudoMetricSpace γ f : α → β → γ K₁ : ℝ≥0 hf : ∀ (b : β), AntilipschitzWith K₁ fun a => f a b s : Set α t : Set β hst : ¬Bornology.IsBounded s ∧ ¬Bornology.IsBounded t b : β hb : b ∈ t this : ¬Bornology.IsBounded (image2 f s {b}) ⊢ ¬Bornology.IsBounded (image2 f s t)
b07e0f4f99225630
Multiset.bind_powerset_len
Mathlib/Data/Multiset/Powerset.lean
theorem bind_powerset_len {α : Type*} (S : Multiset α) : (bind (Multiset.range (card S + 1)) fun k => S.powersetCard k) = S.powerset
α : Type u_2 S : Multiset α ⊢ ((range (S.card + 1)).bind fun k => powersetCard k S) = S.powerset
induction S using Quotient.inductionOn
case h α : Type u_2 a✝ : List α ⊢ ((range (card ⟦a✝⟧ + 1)).bind fun k => powersetCard k ⟦a✝⟧) = powerset ⟦a✝⟧
a9e87c78cc183e21
ExpGrowth.expGrowthSup_inv
Mathlib/Analysis/Asymptotics/ExpGrowth.lean
lemma expGrowthSup_inv {u : ℕ → ℝ≥0∞} : expGrowthSup u⁻¹ = - expGrowthInf u
u : ℕ → ℝ≥0∞ ⊢ expGrowthSup u⁻¹ = -expGrowthInf u
rw [expGrowthInf, ← limsup_neg]
u : ℕ → ℝ≥0∞ ⊢ expGrowthSup u⁻¹ = limsup (-fun n => (u n).log / ↑n) atTop
ca4c1b2bc2a0d2ca
Polynomial.HasSeparableContraction.eq_degree
Mathlib/RingTheory/Polynomial/SeparableDegree.lean
theorem HasSeparableContraction.eq_degree {f : F[X]} (hf : HasSeparableContraction 1 f) : hf.degree = f.natDegree
F : Type u_1 inst✝ : CommSemiring F f : F[X] hf : HasSeparableContraction 1 f ⊢ hf.degree = f.natDegree
let ⟨a, ha⟩ := hf.dvd_degree'
F : Type u_1 inst✝ : CommSemiring F f : F[X] hf : HasSeparableContraction 1 f a : ℕ ha : hf.degree * 1 ^ a = f.natDegree ⊢ hf.degree = f.natDegree
b7d299362a82ef7a
Equiv.Perm.count_le_one_of_centralizer_le_alternating
Mathlib/GroupTheory/SpecificGroups/Alternating/Centralizer.lean
theorem count_le_one_of_centralizer_le_alternating (h : Subgroup.centralizer {g} ≤ alternatingGroup α) : ∀ i, g.cycleType.count i ≤ 1
case neg α : Type u_1 inst✝¹ : Fintype α inst✝ : DecidableEq α g : Perm α h : Subgroup.centralizer {g} ≤ alternatingGroup α c : Perm α hc : c ∈ g.cycleFactorsFinset d : Perm α hd : d ∈ g.cycleFactorsFinset hm : #c.support = #d.support hm' : c ≠ d τ : Perm { x // x ∈ g.cycleFactorsFinset } := swap ⟨c, hc⟩ ⟨d, hd⟩ a : g.Basis x : { x // x ∈ g.cycleFactorsFinset } hx : ¬x = ⟨c, hc⟩ hx' : ¬x = ⟨d, hd⟩ ⊢ #(↑(τ x)).support = #(↑x).support
rw [Equiv.swap_apply_of_ne_of_ne hx hx']
no goals
1a7e68d832b229d5
Subgroup.index_le_of_leftCoset_cover_const
Mathlib/GroupTheory/CosetCover.lean
theorem index_le_of_leftCoset_cover_const : H.index ≤ s.card
case inr G : Type u_1 inst✝ : Group G ι : Type u_2 s : Finset ι H : Subgroup G g : ι → G hcovers : ⋃ i ∈ s, g i • ↑H = Set.univ h : H.index > 0 ⊢ H.index ≤ s.card
rw [leftCoset_cover_const_iff_surjOn, Set.surjOn_iff_surjective] at hcovers
case inr G : Type u_1 inst✝ : Group G ι : Type u_2 s : Finset ι H : Subgroup G g : ι → G hcovers : Function.Surjective ((↑s).restrict fun x => ↑(g x)) h : H.index > 0 ⊢ H.index ≤ s.card
de9bbc984b56e937
AlgebraicGeometry.StructureSheaf.toBasicOpen_injective
Mathlib/AlgebraicGeometry/StructureSheaf.lean
theorem toBasicOpen_injective (f : R) : Function.Injective (toBasicOpen R f)
case intro.intro.mk.intro.intro.mk R : Type u inst✝ : CommRing R f a b : R hb : b ∈ Submonoid.powers f c d : R hd : d ∈ Submonoid.powers f h_eq : const R a b (PrimeSpectrum.basicOpen f) ⋯ = const R c d (PrimeSpectrum.basicOpen f) ⋯ ⊢ IsLocalization.mk' (Localization.Away f) a ⟨b, hb⟩ = IsLocalization.mk' (Localization.Away f) c ⟨d, hd⟩
rw [IsLocalization.eq]
case intro.intro.mk.intro.intro.mk R : Type u inst✝ : CommRing R f a b : R hb : b ∈ Submonoid.powers f c d : R hd : d ∈ Submonoid.powers f h_eq : const R a b (PrimeSpectrum.basicOpen f) ⋯ = const R c d (PrimeSpectrum.basicOpen f) ⋯ ⊢ ∃ c_1, ↑c_1 * (↑⟨d, hd⟩ * a) = ↑c_1 * (↑⟨b, hb⟩ * c)
99cd46dea5cb621c
AlgHom.IsArithFrobAt.mk_apply
Mathlib/RingTheory/Frobenius.lean
lemma mk_apply (x) : Ideal.Quotient.mk Q (φ x) = x ^ Nat.card (R ⧸ Q.under R)
R : Type u_1 S : Type u_2 inst✝² : CommRing R inst✝¹ : CommRing S inst✝ : Algebra R S φ : S →ₐ[R] S Q : Ideal S H : φ.IsArithFrobAt Q x : S ⊢ φ x - x ^ Nat.card (R ⧸ Ideal.under R Q) ∈ Q
exact H x
no goals
bc6ddec39ff0b2f0
Turing.ToPartrec.Code.exists_code
Mathlib/Computability/TMConfig.lean
theorem exists_code {n} {f : List.Vector ℕ n →. ℕ} (hf : Nat.Partrec' f) : ∃ c : Code, ∀ v : List.Vector ℕ n, c.eval v.1 = pure <$> f v
case rfind.intro.mp.intro.intro n✝ : ℕ f✝ : List.Vector ℕ n✝ →. ℕ n : ℕ f : List.Vector ℕ (n + 1) → ℕ a✝ : Nat.Partrec' ↑f cf : Code v : List.Vector ℕ n hf : ∀ (a : ℕ), cf.eval (a :: ↑v) = Part.some [f (a ::ᵥ v)] v' : List ℕ h1 : v' ∈ PFun.fix (fun v => (cf.eval v).bind fun y => Part.some (if y.headI = 0 then Sum.inl (v.headI.succ :: v.tail) else Sum.inr (v.headI.succ :: v.tail))) (0 :: ↑v) ⊢ ∃ a, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ pure a = [v'.headI.pred]
suffices ∀ v₁ : List ℕ, v' ∈ PFun.fix (fun v => (cf.eval v).bind fun y => Part.some <| if y.headI = 0 then Sum.inl (v.headI.succ :: v.tail) else Sum.inr (v.headI.succ :: v.tail)) v₁ → ∀ n, (v₁ = n :: v.val) → (∀ m < n, ¬f (m ::ᵥ v) = 0) → ∃ a : ℕ, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ [a] = [v'.headI.pred] by exact this _ h1 0 rfl (by rintro _ ⟨⟩)
case rfind.intro.mp.intro.intro n✝ : ℕ f✝ : List.Vector ℕ n✝ →. ℕ n : ℕ f : List.Vector ℕ (n + 1) → ℕ a✝ : Nat.Partrec' ↑f cf : Code v : List.Vector ℕ n hf : ∀ (a : ℕ), cf.eval (a :: ↑v) = Part.some [f (a ::ᵥ v)] v' : List ℕ h1 : v' ∈ PFun.fix (fun v => (cf.eval v).bind fun y => Part.some (if y.headI = 0 then Sum.inl (v.headI.succ :: v.tail) else Sum.inr (v.headI.succ :: v.tail))) (0 :: ↑v) ⊢ ∀ (v₁ : List ℕ), v' ∈ PFun.fix (fun v => (cf.eval v).bind fun y => Part.some (if y.headI = 0 then Sum.inl (v.headI.succ :: v.tail) else Sum.inr (v.headI.succ :: v.tail))) v₁ → ∀ (n_1 : ℕ), v₁ = n_1 :: ↑v → (∀ m < n_1, ¬f (m ::ᵥ v) = 0) → ∃ a, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ [a] = [v'.headI.pred]
01823c87e1740c3b
torusIntegral_dim1
Mathlib/MeasureTheory/Integral/TorusIntegral.lean
theorem torusIntegral_dim1 (f : ℂ¹ → E) (c : ℂ¹) (R : ℝ¹) : (∯ x in T(c, R), f x) = ∮ z in C(c 0, R 0), f fun _ => z
E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E f : (Fin 1 → ℂ) → E c : Fin 1 → ℂ R : Fin 1 → ℝ H₁ : (⇑(MeasurableEquiv.funUnique (Fin 1) ℝ).symm ⁻¹' Icc 0 fun x => 2 * π) = Icc 0 (2 * π) H₂ : torusMap c R = fun θ x => circleMap (c 0) (R 0) (θ 0) ⊢ ∫ (x : ℝ) in Icc 0 (2 * π), (∏ i : Fin 1, ↑(R i) * cexp (↑((MeasurableEquiv.funUnique (Fin 1) ℝ).symm x i) * I) * I) • f ((fun θ x => circleMap (c 0) (R 0) (θ 0)) ((MeasurableEquiv.funUnique (Fin 1) ℝ).symm x)) = ∫ (x : ℝ) in Icc 0 (2 * π), deriv (circleMap (c 0) (R 0)) x • f fun x_1 => circleMap (c 0) (R 0) x ∂volume
simp [circleMap_zero]
no goals
34148b6ecc6aa62c
isSemisimpleModule_biSup_of_isSemisimpleModule_submodule
Mathlib/RingTheory/SimpleModule/Basic.lean
lemma isSemisimpleModule_biSup_of_isSemisimpleModule_submodule {s : Set ι} {p : ι → Submodule R M} (hp : ∀ i ∈ s, IsSemisimpleModule R (p i)) : IsSemisimpleModule R ↥(⨆ i ∈ s, p i)
ι : Type u_1 R : Type u_2 inst✝² : Ring R M : Type u_4 inst✝¹ : AddCommGroup M inst✝ : Module R M s : Set ι p : ι → Submodule R M hp : ∀ i ∈ s, IsSemisimpleModule R ↥(p i) q : Submodule R M := ⨆ i ∈ s, p i p' : ι → Submodule R ↥q := fun i => Submodule.comap q.subtype (p i) ⊢ IsSemisimpleModule R ↥(⨆ i ∈ s, p i)
have hp₀ : ∀ i ∈ s, p i ≤ LinearMap.range q.subtype := fun i hi ↦ by simpa only [Submodule.range_subtype] using le_biSup _ hi
ι : Type u_1 R : Type u_2 inst✝² : Ring R M : Type u_4 inst✝¹ : AddCommGroup M inst✝ : Module R M s : Set ι p : ι → Submodule R M hp : ∀ i ∈ s, IsSemisimpleModule R ↥(p i) q : Submodule R M := ⨆ i ∈ s, p i p' : ι → Submodule R ↥q := fun i => Submodule.comap q.subtype (p i) hp₀ : ∀ i ∈ s, p i ≤ LinearMap.range q.subtype ⊢ IsSemisimpleModule R ↥(⨆ i ∈ s, p i)
eaf87fd728503096