name
stringlengths 3
112
| file
stringlengths 21
116
| statement
stringlengths 17
8.64k
| state
stringlengths 7
205k
| tactic
stringlengths 3
4.55k
| result
stringlengths 7
205k
| id
stringlengths 16
16
|
---|---|---|---|---|---|---|
Cardinal.isLimit_ord
|
Mathlib/SetTheory/Ordinal/Arithmetic.lean
|
theorem isLimit_ord {c} (co : ℵ₀ ≤ c) : (ord c).IsLimit
|
c : Cardinal.{u_1}
co : ℵ₀ ≤ c
⊢ c.ord ≠ 0 ∧ ∀ a < c.ord, succ a < c.ord
|
refine ⟨fun h => aleph0_ne_zero ?_, fun a => lt_imp_lt_of_le_imp_le fun h => ?_⟩
|
case refine_1
c : Cardinal.{u_1}
co : ℵ₀ ≤ c
h : c.ord = 0
⊢ ℵ₀ = 0
case refine_2
c : Cardinal.{u_1}
co : ℵ₀ ≤ c
a : Ordinal.{u_1}
h : c.ord ≤ succ a
⊢ c.ord ≤ a
|
773817014109415e
|
PowerSeries.coeff_order
|
Mathlib/RingTheory/PowerSeries/Order.lean
|
theorem coeff_order (h : order φ < ⊤) : coeff R (φ.order.lift h) φ ≠ 0
|
R : Type u_1
inst✝ : Semiring R
φ : R⟦X⟧
h : φ.order < ⊤
⊢ (coeff R ((↑(Nat.find ⋯)).lift ⋯)) φ ≠ 0
|
generalize_proofs h
|
R : Type u_1
inst✝ : Semiring R
φ : R⟦X⟧
h✝ : φ.order < ⊤
h : ∃ n, (coeff R n) φ ≠ 0
pf✝ : ↑(Nat.find h) < ⊤
⊢ (coeff R ((↑(Nat.find h)).lift pf✝)) φ ≠ 0
|
7fe93089d1b4594a
|
AlgebraicGeometry.SheafedSpace.ext
|
Mathlib/Geometry/RingedSpace/SheafedSpace.lean
|
theorem ext {X Y : SheafedSpace C} (α β : X ⟶ Y) (w : α.base = β.base)
(h : α.c ≫ whiskerRight (eqToHom (by rw [w])) _ = β.c) : α = β :=
PresheafedSpace.ext α β w h
|
C : Type u
inst✝ : Category.{v, u} C
X Y : SheafedSpace C
α β : X ⟶ Y
w : α.base = β.base
⊢ (Opens.map α.base).op = (Opens.map β.base).op
|
rw [w]
|
no goals
|
4c513d7a22af437f
|
List.idxOf_lt_length
|
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Find.lean
|
theorem idxOf_lt_length [BEq α] [LawfulBEq α] {l : List α} (h : a ∈ l) : l.idxOf a < l.length
|
case nil
α : Type u_1
a : α
inst✝¹ : BEq α
inst✝ : LawfulBEq α
h : a ∈ []
⊢ idxOf a [] < [].length
|
simp at h
|
no goals
|
c1e63f121277a338
|
List.all_bne'
|
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Lemmas.lean
|
theorem all_bne' [BEq α] [PartialEquivBEq α] {l : List α} :
(l.all fun x => x != a) = !l.contains a
|
α : Type u_1
a : α
inst✝¹ : BEq α
inst✝ : PartialEquivBEq α
l : List α
⊢ (l.all fun x => x != a) = !l.contains a
|
simp only [bne_comm, all_bne]
|
no goals
|
c8adabf92f1d9413
|
CategoryTheory.Limits.CompleteLattice.finite_product_eq_finset_inf
|
Mathlib/CategoryTheory/Limits/Lattice.lean
|
theorem finite_product_eq_finset_inf [SemilatticeInf α] [OrderTop α] {ι : Type u} [Fintype ι]
(f : ι → α) : ∏ᶜ f = Fintype.elems.inf f
|
α : Type u
inst✝² : SemilatticeInf α
inst✝¹ : OrderTop α
ι : Type u
inst✝ : Fintype ι
f : ι → α
⊢ ∏ᶜ f = ?m.21816
|
exact
(IsLimit.conePointUniqueUpToIso (limit.isLimit _)
(finiteLimitCone (Discrete.functor f)).isLimit).to_eq
|
no goals
|
0cf76a73db4f7d10
|
CategoryTheory.Functor.IsDenseSubsite.isIso_ranCounit_app_of_isDenseSubsite
|
Mathlib/CategoryTheory/Sites/DenseSubsite/SheafEquiv.lean
|
lemma isIso_ranCounit_app_of_isDenseSubsite (Y : Sheaf J A) (U X) :
IsIso ((yoneda.map ((G.op.ranCounit.app Y.val).app (op U))).app (op X))
|
case refine_2.mk.mk.unit.op.mk.mk.unit.op.mk.up.up.refl.refl.intro.intro.h
C : Type u_1
D : Type u_2
inst✝⁴ : Category.{u_3, u_1} C
inst✝³ : Category.{u_4, u_2} D
G : C ⥤ D
J : GrothendieckTopology C
K : GrothendieckTopology D
A : Type w
inst✝² : Category.{w', w} A
inst✝¹ : ∀ (X : Dᵒᵖ), Limits.HasLimitsOfShape (StructuredArrow X G.op) A
inst✝ : IsDenseSubsite J K G
Y : Sheaf J A
U : C
X : A
f : (yoneda.obj (((𝟭 (Cᵒᵖ ⥤ A)).obj Y.val).obj (op U))).obj (op X)
l : (X Y Z : C) → (f : X ⟶ Y) → (g : G.obj Y ⟶ G.obj Z) → (G.imageSieve g).arrows f → (X ⟶ Z)
hl :
∀ (X Y Z : C) (f : X ⟶ Y) (g : G.obj Y ⟶ G.obj Z) (hf : (G.imageSieve g).arrows f),
G.map (l X Y Z f g hf) = G.map f ≫ g
W₁ W₂ : C
g : G.obj W₁ ⟶ G.obj U
i : W₂ ⟶ W₁
hi : 𝟙 (op (G.obj U)) ≫ g.op ≫ (G.map i.op.unop).op = g.op ≫ (G.map i.op.unop).op
I : GrothendieckTopology.Cover.Arrow ⟨G.imageSieve (G.map i ≫ g), ⋯⟩
⊢ ⋯.amalgamate ⟨G.imageSieve (G.map i ≫ g), ⋯⟩ (fun I => f ≫ Y.val.map (l I.Y W₂ U I.f (G.map i ≫ g) ⋯).op) ⋯ ≫
Y.val.map I.f.op =
(⋯.amalgamate ⟨G.imageSieve g, ⋯⟩ (fun I => f ≫ Y.val.map (l I.Y W₁ U I.f g ⋯).op) ⋯ ≫ Y.val.map i.op) ≫
Y.val.map I.f.op
|
simp only [Presheaf.IsSheaf.amalgamate_map, Category.assoc, ← Functor.map_comp, ← op_comp]
|
case refine_2.mk.mk.unit.op.mk.mk.unit.op.mk.up.up.refl.refl.intro.intro.h
C : Type u_1
D : Type u_2
inst✝⁴ : Category.{u_3, u_1} C
inst✝³ : Category.{u_4, u_2} D
G : C ⥤ D
J : GrothendieckTopology C
K : GrothendieckTopology D
A : Type w
inst✝² : Category.{w', w} A
inst✝¹ : ∀ (X : Dᵒᵖ), Limits.HasLimitsOfShape (StructuredArrow X G.op) A
inst✝ : IsDenseSubsite J K G
Y : Sheaf J A
U : C
X : A
f : (yoneda.obj (((𝟭 (Cᵒᵖ ⥤ A)).obj Y.val).obj (op U))).obj (op X)
l : (X Y Z : C) → (f : X ⟶ Y) → (g : G.obj Y ⟶ G.obj Z) → (G.imageSieve g).arrows f → (X ⟶ Z)
hl :
∀ (X Y Z : C) (f : X ⟶ Y) (g : G.obj Y ⟶ G.obj Z) (hf : (G.imageSieve g).arrows f),
G.map (l X Y Z f g hf) = G.map f ≫ g
W₁ W₂ : C
g : G.obj W₁ ⟶ G.obj U
i : W₂ ⟶ W₁
hi : 𝟙 (op (G.obj U)) ≫ g.op ≫ (G.map i.op.unop).op = g.op ≫ (G.map i.op.unop).op
I : GrothendieckTopology.Cover.Arrow ⟨G.imageSieve (G.map i ≫ g), ⋯⟩
⊢ f ≫ Y.val.map (l I.Y W₂ U I.f (G.map i ≫ g) ⋯).op =
⋯.amalgamate ⟨G.imageSieve g, ⋯⟩ (fun I => f ≫ Y.val.map (l I.Y W₁ U I.f g ⋯).op) ⋯ ≫ Y.val.map (I.f ≫ i).op
|
b6d9495444a0fb1a
|
Subsemigroup.mem_corner_iff
|
Mathlib/RingTheory/Idempotents.lean
|
lemma mem_corner_iff {r : R} : r ∈ corner e ↔ e * r = r ∧ r * e = r :=
⟨by rintro ⟨r, rfl⟩; simp_rw [← mul_assoc, idem.eq, mul_assoc, idem.eq, true_and],
(⟨r, by simp_rw [·]⟩)⟩
|
R : Type u_1
e : R
inst✝ : Semigroup R
idem : IsIdempotentElem e
r : R
⊢ r ∈ corner e → e * r = r ∧ r * e = r
|
rintro ⟨r, rfl⟩
|
case intro
R : Type u_1
e : R
inst✝ : Semigroup R
idem : IsIdempotentElem e
r : R
⊢ e * (fun x => e * x * e) r = (fun x => e * x * e) r ∧ (fun x => e * x * e) r * e = (fun x => e * x * e) r
|
40d8cc8652673f6b
|
Algebra.rank_adjoin_le
|
Mathlib/LinearAlgebra/FreeAlgebra.lean
|
theorem Algebra.rank_adjoin_le {R : Type u} {S : Type v} [CommRing R] [Ring S] [Algebra R S]
(s : Set S) : Module.rank R (adjoin R s) ≤ max #s ℵ₀
|
R : Type u
S : Type v
inst✝² : CommRing R
inst✝¹ : Ring S
inst✝ : Algebra R S
s : Set S
⊢ Module.rank R ↥((FreeAlgebra.lift R) Subtype.val).range ≤ #↑s ⊔ ℵ₀
|
cases subsingleton_or_nontrivial R
|
case inl
R : Type u
S : Type v
inst✝² : CommRing R
inst✝¹ : Ring S
inst✝ : Algebra R S
s : Set S
h✝ : Subsingleton R
⊢ Module.rank R ↥((FreeAlgebra.lift R) Subtype.val).range ≤ #↑s ⊔ ℵ₀
case inr
R : Type u
S : Type v
inst✝² : CommRing R
inst✝¹ : Ring S
inst✝ : Algebra R S
s : Set S
h✝ : Nontrivial R
⊢ Module.rank R ↥((FreeAlgebra.lift R) Subtype.val).range ≤ #↑s ⊔ ℵ₀
|
066ae3e2b283e6be
|
Std.Tactic.BVDecide.BVExpr.bitblast.blastRotateRight.go_get_aux
|
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/Bitblast/BVExpr/Circuit/Lemmas/Operations/RotateRight.lean
|
theorem go_get_aux (aig : AIG α) (distance : Nat) (input : AIG.RefVec aig w)
(curr : Nat) (hcurr : curr ≤ w) (s : AIG.RefVec aig curr) :
∀ (idx : Nat) (hidx : idx < curr),
(go input distance curr hcurr s).get idx (by omega)
=
s.get idx hidx
|
case isFalse
α : Type
inst✝¹ : Hashable α
inst✝ : DecidableEq α
w : Nat
aig : AIG α
distance : Nat
input : aig.RefVec w
curr : Nat
hcurr : curr ≤ w
s : aig.RefVec curr
idx : Nat
hidx : idx < curr
h✝ : ¬curr < w
⊢ (⋯ ▸ s).refs[idx] = s.refs[idx]
|
have : curr = w := by omega
|
case isFalse
α : Type
inst✝¹ : Hashable α
inst✝ : DecidableEq α
w : Nat
aig : AIG α
distance : Nat
input : aig.RefVec w
curr : Nat
hcurr : curr ≤ w
s : aig.RefVec curr
idx : Nat
hidx : idx < curr
h✝ : ¬curr < w
this : curr = w
⊢ (⋯ ▸ s).refs[idx] = s.refs[idx]
|
0a0a2c9223c97a01
|
MeasureTheory.SignedMeasure.bddBelow_measureOfNegatives
|
Mathlib/MeasureTheory/Decomposition/SignedHahn.lean
|
theorem bddBelow_measureOfNegatives : BddBelow s.measureOfNegatives
|
α : Type u_1
inst✝ : MeasurableSpace α
s : SignedMeasure α
h : ∀ (x : ℝ), ∃ x_1 ∈ s.measureOfNegatives, x_1 < x
f : ℕ → ℝ
hf : ∀ (n : ℕ), f n ∈ s.measureOfNegatives ∧ f n < -↑n
B : ℕ → Set α
hmeas : ∀ (n : ℕ), MeasurableSet (B n)
hr : ∀ (n : ℕ), s ≤[B n] 0
h_lt : ∀ (n : ℕ), ↑s (B n) < -↑n
A : Set α := ⋃ n, B n
hA : A = ⋃ n, B n
n : ℕ
⊢ MeasurableSet ((⋃ i, B i) \ B n)
|
exact (MeasurableSet.iUnion hmeas).diff (hmeas n)
|
no goals
|
317f19e924fb7de4
|
generateFrom_pi_eq
|
Mathlib/MeasureTheory/MeasurableSpace/Pi.lean
|
theorem generateFrom_pi_eq {C : ∀ i, Set (Set (α i))} (hC : ∀ i, IsCountablySpanning (C i)) :
(@MeasurableSpace.pi _ _ fun i => generateFrom (C i)) =
generateFrom (pi univ '' pi univ C)
|
case intro.a.h.intro.intro.h.ht
ι : Type u_1
α : ι → Type u_2
inst✝ : Finite ι
C : (i : ι) → Set (Set (α i))
val✝ : Encodable ι
i : ι
s : Set (α i)
hs : s ∈ C i
t : (i : ι) → ℕ → Set (α i)
h1t : ∀ (i : ι) (n : ℕ), t i n ∈ C i
h2t : ∀ (i : ι), ⋃ n, t i n = univ
this : univ.pi (update (fun i' => iUnion (t i')) i (⋃ x, s)) = univ.pi fun k => ⋃ j, update (fun i' => t i' j) i s k
n : ι → ℕ
⊢ (univ.pi fun a => update (fun i' => t i' (n a)) i s a) ∈ univ.pi '' univ.pi C
|
apply mem_image_of_mem
|
case intro.a.h.intro.intro.h.ht.h
ι : Type u_1
α : ι → Type u_2
inst✝ : Finite ι
C : (i : ι) → Set (Set (α i))
val✝ : Encodable ι
i : ι
s : Set (α i)
hs : s ∈ C i
t : (i : ι) → ℕ → Set (α i)
h1t : ∀ (i : ι) (n : ℕ), t i n ∈ C i
h2t : ∀ (i : ι), ⋃ n, t i n = univ
this : univ.pi (update (fun i' => iUnion (t i')) i (⋃ x, s)) = univ.pi fun k => ⋃ j, update (fun i' => t i' j) i s k
n : ι → ℕ
⊢ (fun a => update (fun i' => t i' (n a)) i s a) ∈ univ.pi C
|
4de98dbd4b17079d
|
Set.surj_on_of_inj_on_of_ncard_le
|
Mathlib/Data/Set/Card.lean
|
theorem surj_on_of_inj_on_of_ncard_le {t : Set β} (f : ∀ a ∈ s, β) (hf : ∀ a ha, f a ha ∈ t)
(hinj : ∀ a₁ a₂ ha₁ ha₂, f a₁ ha₁ = f a₂ ha₂ → a₁ = a₂) (hst : t.ncard ≤ s.ncard)
(ht : t.Finite
|
α : Type u_1
β : Type u_2
s : Set α
t : Set β
f : (a : α) → a ∈ s → β
hf : ∀ (a : α) (ha : a ∈ s), f a ha ∈ t
hinj : ∀ (a₁ a₂ : α) (ha₁ : a₁ ∈ s) (ha₂ : a₂ ∈ s), f a₁ ha₁ = f a₂ ha₂ → a₁ = a₂
hst : t.ncard ≤ s.ncard
ht : autoParam t.Finite _auto✝
b : β
hb : b ∈ t
⊢ ∃ a, ∃ (ha : a ∈ s), b = f a ha
|
set f' : s → t := fun x ↦ ⟨f x.1 x.2, hf _ _⟩
|
α : Type u_1
β : Type u_2
s : Set α
t : Set β
f : (a : α) → a ∈ s → β
hf : ∀ (a : α) (ha : a ∈ s), f a ha ∈ t
hinj : ∀ (a₁ a₂ : α) (ha₁ : a₁ ∈ s) (ha₂ : a₂ ∈ s), f a₁ ha₁ = f a₂ ha₂ → a₁ = a₂
hst : t.ncard ≤ s.ncard
ht : autoParam t.Finite _auto✝
b : β
hb : b ∈ t
f' : ↑s → ↑t := fun x => ⟨f ↑x ⋯, ⋯⟩
⊢ ∃ a, ∃ (ha : a ∈ s), b = f a ha
|
76d3226011959d3f
|
MeasureTheory.AEEqFun.integrable_coeFn
|
Mathlib/MeasureTheory/Function/L1Space/AEEqFun.lean
|
theorem integrable_coeFn {f : α →ₘ[μ] β} : MeasureTheory.Integrable f μ ↔ Integrable f
|
α : Type u_1
β : Type u_2
m : MeasurableSpace α
μ : Measure α
inst✝ : NormedAddCommGroup β
f : α →ₘ[μ] β
⊢ MeasureTheory.Integrable (↑f) μ ↔ f.Integrable
|
rw [← integrable_mk, mk_coeFn]
|
no goals
|
1c69fc7ff81a6fbf
|
Finset.eraseNone_empty
|
Mathlib/Data/Finset/Option.lean
|
theorem eraseNone_empty : eraseNone (∅ : Finset (Option α)) = ∅
|
case h
α : Type u_1
a✝ : α
⊢ a✝ ∈ eraseNone ∅ ↔ a✝ ∈ ∅
|
simp
|
no goals
|
d39cca28820fed6c
|
Finset.lt_sup_iff
|
Mathlib/Data/Finset/Lattice/Fold.lean
|
theorem lt_sup_iff : a < s.sup f ↔ ∃ b ∈ s, a < f b
|
case mp.cons
α : Type u_2
ι : Type u_5
inst✝¹ : LinearOrder α
inst✝ : OrderBot α
s : Finset ι
f : ι → α
a : α
c : ι
t : Finset ι
hc : c ∉ t
ih : a < t.sup f → ∃ b ∈ t, a < f b
⊢ a < f c ∨ a < t.sup f → ∃ b ∈ cons c t hc, a < f b
|
exact fun
| Or.inl h => ⟨c, mem_cons.2 (Or.inl rfl), h⟩
| Or.inr h => let ⟨b, hb, hlt⟩ := ih h; ⟨b, mem_cons.2 (Or.inr hb), hlt⟩
|
no goals
|
3b8e91386aee8891
|
subsingleton_of_disjoint_isClopen
|
Mathlib/Topology/Connected/Clopen.lean
|
/-- In a preconnected space, any disjoint family of non-empty clopen subsets has at most one
element. -/
lemma subsingleton_of_disjoint_isClopen
(h_clopen : ∀ i, IsClopen (s i)) :
Subsingleton ι
|
α : Type u
ι : Type u_1
inst✝¹ : TopologicalSpace α
inst✝ : PreconnectedSpace α
s : ι → Set α
h_disj : Pairwise (Disjoint on s)
h_clopen : ∀ (i : ι), IsClopen (s i)
h_nonempty : ∀ (i : ι), s i ≠ ∅
i j : ι
h_ne : i ≠ j
⊢ s i ∩ s j = ∅
|
simpa only [← bot_eq_empty, eq_bot_iff, ← inf_eq_inter, ← disjoint_iff_inf_le] using h_disj h_ne
|
no goals
|
6e05e6622254f214
|
isPiSystem_Ixx_mem
|
Mathlib/MeasureTheory/PiSystem.lean
|
theorem isPiSystem_Ixx_mem {Ixx : α → α → Set α} {p : α → α → Prop}
(Hne : ∀ {a b}, (Ixx a b).Nonempty → p a b)
(Hi : ∀ {a₁ b₁ a₂ b₂}, Ixx a₁ b₁ ∩ Ixx a₂ b₂ = Ixx (max a₁ a₂) (min b₁ b₂)) (s t : Set α) :
IsPiSystem { S | ∃ᵉ (l ∈ s) (u ∈ t), p l u ∧ Ixx l u = S }
|
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
α : Type u_1
inst✝ : LinearOrder α
Ixx : α → α → Set α
p : α → α → Prop
Hne : ∀ {a b : α}, (Ixx a b).Nonempty → p a b
Hi : ∀ {a₁ b₁ a₂ b₂ : α}, Ixx a₁ b₁ ∩ Ixx a₂ b₂ = Ixx (a₁ ⊔ a₂) (b₁ ⊓ b₂)
s t : Set α
l₁ : α
hls₁ : l₁ ∈ s
u₁ : α
hut₁ : u₁ ∈ t
left✝¹ : p l₁ u₁
l₂ : α
hls₂ : l₂ ∈ s
u₂ : α
hut₂ : u₂ ∈ t
left✝ : p l₂ u₂
⊢ (Ixx (l₁ ⊔ l₂) (u₁ ⊓ u₂)).Nonempty → Ixx (l₁ ⊔ l₂) (u₁ ⊓ u₂) ∈ {S | ∃ l ∈ s, ∃ u ∈ t, p l u ∧ Ixx l u = S}
|
exact fun H => ⟨l₁ ⊔ l₂, sup_ind l₁ l₂ hls₁ hls₂, u₁ ⊓ u₂, inf_ind u₁ u₂ hut₁ hut₂, Hne H, rfl⟩
|
no goals
|
0e739901d70a41c4
|
SimpleGraph.Walk.isTrail_copy
|
Mathlib/Combinatorics/SimpleGraph/Path.lean
|
theorem isTrail_copy {u v u' v'} (p : G.Walk u v) (hu : u = u') (hv : v = v') :
(p.copy hu hv).IsTrail ↔ p.IsTrail
|
V : Type u
G : SimpleGraph V
u' v' : V
p : G.Walk u' v'
⊢ (p.copy ⋯ ⋯).IsTrail ↔ p.IsTrail
|
rfl
|
no goals
|
c149622d9f35802b
|
Profinite.NobelingProof.factors_prod_eq_basis
|
Mathlib/Topology/Category/Profinite/Nobeling.lean
|
theorem factors_prod_eq_basis (x : π C (· ∈ s)) :
(factors C s x).prod = spanFinBasis C s x
|
case h
I : Type u
C : Set (I → Bool)
inst✝ : LinearOrder I
s : Finset I
x y : ↑(π C fun x => x ∈ s)
⊢ (factors C s x).prod y = if y = x then 1 else 0
|
split_ifs with h <;> [exact factors_prod_eq_basis_of_eq _ _ h;
exact factors_prod_eq_basis_of_ne _ _ h]
|
no goals
|
65f40261e4411106
|
AlgebraicGeometry.IsLocalAtTarget.mk'
|
Mathlib/AlgebraicGeometry/Morphisms/Basic.lean
|
/--
`P` is local at the target if
1. `P` respects isomorphisms.
2. If `P` holds for `f : X ⟶ Y`, then `P` holds for `f ∣_ U` for any `U`.
3. If `P` holds for `f ∣_ U` for an open cover `U` of `Y`, then `P` holds for `f`.
-/
protected lemma mk' {P : MorphismProperty Scheme} [P.RespectsIso]
(restrict : ∀ {X Y : Scheme} (f : X ⟶ Y) (U : Y.Opens), P f → P (f ∣_ U))
(of_sSup_eq_top :
∀ {X Y : Scheme.{u}} (f : X ⟶ Y) {ι : Type u} (U : ι → Y.Opens), iSup U = ⊤ →
(∀ i, P (f ∣_ U i)) → P f) :
IsLocalAtTarget P
|
case refine_2
P : MorphismProperty Scheme
inst✝ : P.RespectsIso
restrict : ∀ {X Y : Scheme} (f : X ⟶ Y) (U : Y.Opens), P f → P (f ∣_ U)
of_sSup_eq_top :
∀ {X Y : Scheme} (f : X ⟶ Y) {ι : Type u} (U : ι → Y.Opens), iSup U = ⊤ → (∀ (i : ι), P (f ∣_ U i)) → P f
X Y : Scheme
f : X ⟶ Y
𝒰 : Y.OpenCover
H : ∀ (i : 𝒰.1), P (Scheme.Cover.pullbackHom 𝒰 f i)
⊢ ∀ (i : 𝒰.J), P (f ∣_ Scheme.Hom.opensRange (𝒰.map i))
|
exact fun i ↦ (P.arrow_mk_iso_iff (morphismRestrictOpensRange f _)).mpr (H i)
|
no goals
|
30afa796e957c3d7
|
List.takeWhile_replicate_eq_filter
|
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/TakeDrop.lean
|
theorem takeWhile_replicate_eq_filter (p : α → Bool) :
(replicate n a).takeWhile p = (replicate n a).filter p
|
case succ
α : Type u_1
a : α
p : α → Bool
n : Nat
ih : takeWhile p (replicate n a) = filter p (replicate n a)
⊢ (if p a = true then a :: takeWhile p (replicate n a) else []) = filter p (a :: replicate n a)
|
split <;> simp_all
|
no goals
|
533cedca634a7318
|
CategoryTheory.Limits.preservesCoproduct_of_preservesBiproduct
|
Mathlib/CategoryTheory/Preadditive/Biproducts.lean
|
/-- A functor between preadditive categories that preserves (zero morphisms and) finite biproducts
preserves finite coproducts. -/
lemma preservesCoproduct_of_preservesBiproduct {f : J → C} [PreservesBiproduct f F] :
PreservesColimit (Discrete.functor f) F where
preserves {c} hc :=
⟨IsColimit.ofIsoColimit
((IsColimit.precomposeHomEquiv (Discrete.compNatIsoDiscrete _ _) _).symm
(isBilimitOfPreserves F (biconeIsBilimitOfColimitCoconeOfIsColimit hc)).isColimit) <|
Cocones.ext (Iso.refl _) (by rintro ⟨⟩; simp)⟩
|
case mk
C : Type u
inst✝⁶ : Category.{v, u} C
inst✝⁵ : Preadditive C
D : Type u'
inst✝⁴ : Category.{v', u'} D
inst✝³ : Preadditive D
F : C ⥤ D
inst✝² : F.PreservesZeroMorphisms
J : Type
inst✝¹ : Fintype J
f : J → C
inst✝ : PreservesBiproduct f F
c : Cocone (Discrete.functor f)
hc : IsColimit c
as✝ : J
⊢ ((Cocones.precompose (Discrete.compNatIsoDiscrete f F).hom).obj
(F.mapBicone (Bicone.ofColimitCocone hc)).toCocone).ι.app
{ as := as✝ } ≫
(Iso.refl
((Cocones.precompose (Discrete.compNatIsoDiscrete f F).hom).obj
(F.mapBicone (Bicone.ofColimitCocone hc)).toCocone).pt).hom =
(F.mapCocone c).ι.app { as := as✝ }
|
simp
|
no goals
|
d50343e40c78ea22
|
MeasureTheory.contDiffOn_convolution_right_with_param
|
Mathlib/Analysis/Convolution.lean
|
theorem contDiffOn_convolution_right_with_param {f : G → E} {n : ℕ∞} (L : E →L[𝕜] E' →L[𝕜] F)
{g : P → G → E'} {s : Set P} {k : Set G} (hs : IsOpen s) (hk : IsCompact k)
(hgs : ∀ p, ∀ x, p ∈ s → x ∉ k → g p x = 0) (hf : LocallyIntegrable f μ)
(hg : ContDiffOn 𝕜 n (↿g) (s ×ˢ univ)) :
ContDiffOn 𝕜 n (fun q : P × G => (f ⋆[L, μ] g q.1) q.2) (s ×ˢ univ)
|
case refine_3
𝕜 : Type u𝕜
G : Type uG
E : Type uE
E' : Type uE'
F : Type uF
P : Type uP
inst✝¹³ : NormedAddCommGroup E
inst✝¹² : NormedAddCommGroup E'
inst✝¹¹ : NormedAddCommGroup F
inst✝¹⁰ : RCLike 𝕜
inst✝⁹ : NormedSpace 𝕜 E
inst✝⁸ : NormedSpace 𝕜 E'
inst✝⁷ : NormedSpace ℝ F
inst✝⁶ : NormedSpace 𝕜 F
inst✝⁵ : MeasurableSpace G
inst✝⁴ : NormedAddCommGroup G
inst✝³ : BorelSpace G
inst✝² : NormedSpace 𝕜 G
inst✝¹ : NormedAddCommGroup P
inst✝ : NormedSpace 𝕜 P
μ : Measure G
f : G → E
n : ℕ∞
L : E →L[𝕜] E' →L[𝕜] F
g : P → G → E'
s : Set P
k : Set G
hs : IsOpen s
hk : IsCompact k
hgs : ∀ (p : P) (x : G), p ∈ s → x ∉ k → g p x = 0
hf : LocallyIntegrable f μ
hg : ContDiffOn 𝕜 (↑n) (↿g) (s ×ˢ univ)
eG : Type (max uG uE' uF uP) := ULift.{max uE' uF uP, uG} G
this✝¹ : MeasurableSpace eG := borel eG
this✝ : BorelSpace eG
eE' : Type (max uE' uG uF uP) := ULift.{max uG uF uP, uE'} E'
eF : Type (max uF uG uE' uP) := ULift.{max uG uE' uP, uF} F
eP : Type (max uP uG uE' uF) := ULift.{max uG uE' uF, uP} P
isoG : eG ≃L[𝕜] G := ContinuousLinearEquiv.ulift
isoE' : eE' ≃L[𝕜] E' := ContinuousLinearEquiv.ulift
isoF : eF ≃L[𝕜] F := ContinuousLinearEquiv.ulift
isoP : eP ≃L[𝕜] P := ContinuousLinearEquiv.ulift
ef : eG → E := f ∘ ⇑isoG
eμ : Measure eG := Measure.map (⇑isoG.symm) μ
eg : eP → eG → eE' := fun ep ex => isoE'.symm (g (isoP ep) (isoG ex))
eL : E →L[𝕜] eE' →L[𝕜] eF := (↑(isoE'.arrowCongr isoF).symm).comp L
R : eP × eG → eF := fun q => (ef ⋆[eL, eμ] eg q.1) q.2
hek : IsCompact (⇑isoG ⁻¹' k)
hes : IsOpen (⇑isoP ⁻¹' s)
⊢ MapsTo (⇑(isoP.prod isoG)) ((⇑isoP ⁻¹' s) ×ˢ univ) (s ×ˢ univ)
|
rintro ⟨p, x⟩ ⟨hp, -⟩
|
case refine_3.mk.intro
𝕜 : Type u𝕜
G : Type uG
E : Type uE
E' : Type uE'
F : Type uF
P : Type uP
inst✝¹³ : NormedAddCommGroup E
inst✝¹² : NormedAddCommGroup E'
inst✝¹¹ : NormedAddCommGroup F
inst✝¹⁰ : RCLike 𝕜
inst✝⁹ : NormedSpace 𝕜 E
inst✝⁸ : NormedSpace 𝕜 E'
inst✝⁷ : NormedSpace ℝ F
inst✝⁶ : NormedSpace 𝕜 F
inst✝⁵ : MeasurableSpace G
inst✝⁴ : NormedAddCommGroup G
inst✝³ : BorelSpace G
inst✝² : NormedSpace 𝕜 G
inst✝¹ : NormedAddCommGroup P
inst✝ : NormedSpace 𝕜 P
μ : Measure G
f : G → E
n : ℕ∞
L : E →L[𝕜] E' →L[𝕜] F
g : P → G → E'
s : Set P
k : Set G
hs : IsOpen s
hk : IsCompact k
hgs : ∀ (p : P) (x : G), p ∈ s → x ∉ k → g p x = 0
hf : LocallyIntegrable f μ
hg : ContDiffOn 𝕜 (↑n) (↿g) (s ×ˢ univ)
eG : Type (max uG uE' uF uP) := ULift.{max uE' uF uP, uG} G
this✝¹ : MeasurableSpace eG := borel eG
this✝ : BorelSpace eG
eE' : Type (max uE' uG uF uP) := ULift.{max uG uF uP, uE'} E'
eF : Type (max uF uG uE' uP) := ULift.{max uG uE' uP, uF} F
eP : Type (max uP uG uE' uF) := ULift.{max uG uE' uF, uP} P
isoG : eG ≃L[𝕜] G := ContinuousLinearEquiv.ulift
isoE' : eE' ≃L[𝕜] E' := ContinuousLinearEquiv.ulift
isoF : eF ≃L[𝕜] F := ContinuousLinearEquiv.ulift
isoP : eP ≃L[𝕜] P := ContinuousLinearEquiv.ulift
ef : eG → E := f ∘ ⇑isoG
eμ : Measure eG := Measure.map (⇑isoG.symm) μ
eg : eP → eG → eE' := fun ep ex => isoE'.symm (g (isoP ep) (isoG ex))
eL : E →L[𝕜] eE' →L[𝕜] eF := (↑(isoE'.arrowCongr isoF).symm).comp L
R : eP × eG → eF := fun q => (ef ⋆[eL, eμ] eg q.1) q.2
hek : IsCompact (⇑isoG ⁻¹' k)
hes : IsOpen (⇑isoP ⁻¹' s)
p : eP
x : eG
hp : (p, x).1 ∈ ⇑isoP ⁻¹' s
⊢ (isoP.prod isoG) (p, x) ∈ s ×ˢ univ
|
36b6ddfb418542d6
|
balancedCore_mem_nhds_zero
|
Mathlib/Analysis/LocallyConvex/BalancedCoreHull.lean
|
theorem balancedCore_mem_nhds_zero (hU : U ∈ 𝓝 (0 : E)) : balancedCore 𝕜 U ∈ 𝓝 (0 : E)
|
𝕜 : Type u_1
E : Type u_2
inst✝⁵ : NormedDivisionRing 𝕜
inst✝⁴ : AddCommGroup E
inst✝³ : Module 𝕜 E
inst✝² : TopologicalSpace E
inst✝¹ : ContinuousSMul 𝕜 E
U : Set E
inst✝ : (𝓝[≠] 0).NeBot
hU : U ∈ 𝓝 0
h : Tendsto (fun x => x.1 • x.2) (𝓝 (0, 0)) (𝓝 0)
⊢ ∃ r V, 0 < r ∧ V ∈ 𝓝 0 ∧ ∀ (c : 𝕜) (y : E), ‖c‖ < r → y ∈ V → c • y ∈ U
|
simpa only [← Prod.exists', ← Prod.forall', ← and_imp, ← and_assoc, exists_prop] using
h.basis_left (NormedAddCommGroup.nhds_zero_basis_norm_lt.prod_nhds (𝓝 _).basis_sets) U hU
|
no goals
|
41fd7e8c049413fb
|
UniqueMDiffWithinAt.prod
|
Mathlib/Geometry/Manifold/MFDeriv/Basic.lean
|
theorem UniqueMDiffWithinAt.prod {x : M} {y : M'} {s t} (hs : UniqueMDiffWithinAt I s x)
(ht : UniqueMDiffWithinAt I' t y) : UniqueMDiffWithinAt (I.prod I') (s ×ˢ t) (x, y)
|
𝕜 : Type u_1
inst✝¹⁰ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁹ : NormedAddCommGroup E
inst✝⁸ : NormedSpace 𝕜 E
H : Type u_3
inst✝⁷ : TopologicalSpace H
I : ModelWithCorners 𝕜 E H
M : Type u_4
inst✝⁶ : TopologicalSpace M
inst✝⁵ : ChartedSpace H M
E' : Type u_5
inst✝⁴ : NormedAddCommGroup E'
inst✝³ : NormedSpace 𝕜 E'
H' : Type u_6
inst✝² : TopologicalSpace H'
I' : ModelWithCorners 𝕜 E' H'
M' : Type u_7
inst✝¹ : TopologicalSpace M'
inst✝ : ChartedSpace H' M'
x : M
y : M'
s : Set M
t : Set M'
hs : UniqueMDiffWithinAt I s x
ht : UniqueMDiffWithinAt I' t y
⊢ (↑(extChartAt I x).symm ⁻¹' s) ×ˢ (↑(extChartAt I' y).symm ⁻¹' t) ∩ range ↑I ×ˢ range ↑I' ⊆
↑(extChartAt (I.prod I') (x, y)).symm ⁻¹' s ×ˢ t ∩ range ↑I ×ˢ range ↑I'
|
rfl
|
no goals
|
865152dd59758c82
|
Nat.Simproc.bneEqOfEqEq
|
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Nat/Simproc.lean
|
theorem bneEqOfEqEq {a b c d : Nat} (p : (a = b) = (c = d)) : (a != b) = (c != d)
|
a b c d : Nat
p : (a = b) = (c = d)
⊢ (a != b) = (c != d)
|
simp only [bne, beqEqOfEqEq p]
|
no goals
|
21af0ea01b64ac6d
|
Matrix.equiv_block_det
|
Mathlib/LinearAlgebra/Matrix/Block.lean
|
theorem equiv_block_det (M : Matrix m m R) {p q : m → Prop} [DecidablePred p] [DecidablePred q]
(e : ∀ x, q x ↔ p x) : (toSquareBlockProp M p).det = (toSquareBlockProp M q).det
|
m : Type u_3
R : Type v
inst✝⁴ : CommRing R
inst✝³ : DecidableEq m
inst✝² : Fintype m
M : Matrix m m R
p q : m → Prop
inst✝¹ : DecidablePred p
inst✝ : DecidablePred q
e : ∀ (x : m), q x ↔ p x
⊢ (M.toSquareBlockProp p).det = (M.toSquareBlockProp q).det
|
convert Matrix.det_reindex_self (Equiv.subtypeEquivRight e) (toSquareBlockProp M q)
|
no goals
|
0e83cce1f9317c6f
|
MeasureTheory.IntegrableOn.continuousOn_smul
|
Mathlib/MeasureTheory/Function/LocallyIntegrable.lean
|
theorem IntegrableOn.continuousOn_smul [T2Space X] [SecondCountableTopologyEither X 𝕜] {g : X → E}
(hg : IntegrableOn g K μ) {f : X → 𝕜} (hf : ContinuousOn f K) (hK : IsCompact K) :
IntegrableOn (fun x => f x • g x) K μ
|
X : Type u_1
E : Type u_3
inst✝⁷ : MeasurableSpace X
inst✝⁶ : TopologicalSpace X
inst✝⁵ : NormedAddCommGroup E
μ : Measure X
inst✝⁴ : OpensMeasurableSpace X
K : Set X
𝕜 : Type u_6
inst✝³ : NormedField 𝕜
inst✝² : NormedSpace 𝕜 E
inst✝¹ : T2Space X
inst✝ : SecondCountableTopologyEither X 𝕜
g : X → E
hg : IntegrableOn g K μ
f : X → 𝕜
hf : ContinuousOn f K
hK : IsCompact K
⊢ Integrable (fun a => ‖f a‖ * ‖g a‖) (μ.restrict K)
|
refine IntegrableOn.continuousOn_mul ?_ hg.norm hK
|
X : Type u_1
E : Type u_3
inst✝⁷ : MeasurableSpace X
inst✝⁶ : TopologicalSpace X
inst✝⁵ : NormedAddCommGroup E
μ : Measure X
inst✝⁴ : OpensMeasurableSpace X
K : Set X
𝕜 : Type u_6
inst✝³ : NormedField 𝕜
inst✝² : NormedSpace 𝕜 E
inst✝¹ : T2Space X
inst✝ : SecondCountableTopologyEither X 𝕜
g : X → E
hg : IntegrableOn g K μ
f : X → 𝕜
hf : ContinuousOn f K
hK : IsCompact K
⊢ ContinuousOn (fun a => ‖f a‖) K
|
3afd5d5007094fdf
|
mulIndicator_cthickening_eventually_eq_mulIndicator_closure
|
Mathlib/Topology/MetricSpace/ThickenedIndicator.lean
|
/-- Pointwise, the multiplicative indicators of closed δ-thickenings of a set eventually coincide
with the multiplicative indicator of the set as δ tends to zero. -/
@[to_additive "Pointwise, the indicators of closed δ-thickenings of a set eventually coincide
with the indicator of the set as δ tends to zero."]
lemma mulIndicator_cthickening_eventually_eq_mulIndicator_closure (f : α → β) (E : Set α) (x : α) :
∀ᶠ δ in 𝓝 (0 : ℝ),
(Metric.cthickening δ E).mulIndicator f x = (closure E).mulIndicator f x
|
case pos
α : Type u_1
inst✝¹ : PseudoEMetricSpace α
β : Type u_2
inst✝ : One β
f : α → β
E : Set α
x : α
x_mem_closure : x ∈ closure E
⊢ ∀ᶠ (δ : ℝ) in 𝓝 0, (cthickening δ E).mulIndicator f x = (closure E).mulIndicator f x
|
filter_upwards [univ_mem] with δ _
|
case h
α : Type u_1
inst✝¹ : PseudoEMetricSpace α
β : Type u_2
inst✝ : One β
f : α → β
E : Set α
x : α
x_mem_closure : x ∈ closure E
δ : ℝ
a✝ : δ ∈ univ
⊢ (cthickening δ E).mulIndicator f x = (closure E).mulIndicator f x
|
792cf9ab75d9f8b1
|
BitVec.toInt_abs_eq_natAbs
|
Mathlib/.lake/packages/lean4/src/lean/Init/Data/BitVec/Lemmas.lean
|
theorem toInt_abs_eq_natAbs {x : BitVec w} : x.abs.toInt =
if x = intMin w then (intMin w).toInt else x.toInt.natAbs
|
w : Nat
x : BitVec w
hx : ¬x = intMin w
h : x.msb = true
⊢ 2 ^ w ≤ 2 * x.toNat
|
have := msb_eq_true_iff_two_mul_ge.mp h
|
w : Nat
x : BitVec w
hx : ¬x = intMin w
h : x.msb = true
this : 2 * x.toNat ≥ 2 ^ w
⊢ 2 ^ w ≤ 2 * x.toNat
|
49362e766b77f6e6
|
Module.finrank_eq_zero_iff_isTorsion
|
Mathlib/LinearAlgebra/Dimension/Torsion/Finite.lean
|
theorem Module.finrank_eq_zero_iff_isTorsion [StrongRankCondition R] [Module.Finite R M] :
finrank R M = 0 ↔ Module.IsTorsion R M
|
R : Type u_1
M : Type u_2
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : StrongRankCondition R
inst✝ : Module.Finite R M
⊢ finrank R M = 0 ↔ ↑(finrank R M) = 0
|
norm_cast
|
no goals
|
70058e56fa5cb2f9
|
IsCyclotomicExtension.Rat.nrComplexPlaces_eq_totient_div_two
|
Mathlib/NumberTheory/Cyclotomic/Embeddings.lean
|
theorem nrComplexPlaces_eq_totient_div_two [h : IsCyclotomicExtension {n} ℚ K] :
haveI := IsCyclotomicExtension.numberField {n} ℚ K
nrComplexPlaces K = φ n / 2
|
case pos.intro
n : ℕ+
K : Type u
inst✝¹ : Field K
inst✝ : CharZero K
h : IsCyclotomicExtension {n} ℚ K
this : NumberField K
hn : 2 < n
k : ℕ
hk : φ ↑n = k + k
key : nrRealPlaces K + 2 * nrComplexPlaces K = Module.finrank ℚ K
⊢ nrComplexPlaces K = φ ↑n / 2
|
rw [nrRealPlaces_eq_zero K hn, zero_add, IsCyclotomicExtension.finrank (n := n) K
(cyclotomic.irreducible_rat n.pos), hk, ← two_mul, Nat.mul_right_inj (by norm_num)] at key
|
case pos.intro
n : ℕ+
K : Type u
inst✝¹ : Field K
inst✝ : CharZero K
h : IsCyclotomicExtension {n} ℚ K
this : NumberField K
hn : 2 < n
k : ℕ
hk : φ ↑n = k + k
key : nrComplexPlaces K = k
⊢ nrComplexPlaces K = φ ↑n / 2
|
729816392c1bf851
|
ContinuousLinearMap.antilipschitz_of_forall_le_inner_map
|
Mathlib/Analysis/InnerProductSpace/Positive.lean
|
lemma antilipschitz_of_forall_le_inner_map {H : Type*} [NormedAddCommGroup H]
[InnerProductSpace 𝕜 H] (f : H →L[𝕜] H) {c : ℝ≥0} (hc : 0 < c)
(h : ∀ x, ‖x‖ ^ 2 * c ≤ ‖⟪f x, x⟫_𝕜‖) : AntilipschitzWith c⁻¹ f
|
case neg
𝕜 : Type u_1
inst✝² : RCLike 𝕜
H : Type u_4
inst✝¹ : NormedAddCommGroup H
inst✝ : InnerProductSpace 𝕜 H
f : H →L[𝕜] H
c : ℝ≥0
hc : 0 < c
x : H
h : ∀ (x : H), ‖x‖ * (‖x‖ * ↑c) ≤ ‖⟪f x, x⟫_𝕜‖
hx0 : ¬x = 0
⊢ (OrderIso.mulLeft₀ ‖x‖ ⋯) (‖x‖ * ↑c) ≤ (OrderIso.mulLeft₀ ‖x‖ ⋯) ‖f x‖
|
exact (h x).trans <| (norm_inner_le_norm _ _).trans <| (mul_comm _ _).le
|
no goals
|
71e62e4965774a31
|
CategoryTheory.Localization.Monoidal.triangle
|
Mathlib/CategoryTheory/Localization/Monoidal.lean
|
lemma triangle (X Y : LocalizedMonoidal L W ε) :
(α_ X (𝟙_ _) Y).hom ≫ X ◁ (λ_ Y).hom = (ρ_ X).hom ▷ Y
|
case intro.intro
C : Type u_1
D : Type u_2
inst✝⁴ : Category.{u_3, u_1} C
inst✝³ : Category.{u_4, u_2} D
L : C ⥤ D
W : MorphismProperty C
inst✝² : MonoidalCategory C
inst✝¹ : W.IsMonoidal
inst✝ : L.IsLocalization W
unit : D
ε : L.obj (𝟙_ C) ≅ unit
X Y : LocalizedMonoidal L W ε
X' : C
e₁ : L'.obj X' ≅ X
⊢ (α_ X (𝟙_ (LocalizedMonoidal L W ε)) Y).hom ≫ X ◁ (λ_ Y).hom = (ρ_ X).hom ▷ Y
|
obtain ⟨Y', ⟨e₂⟩⟩ : ∃ X₂, Nonempty ((L').obj X₂ ≅ Y) := ⟨_, ⟨(L').objObjPreimageIso Y⟩⟩
|
case intro.intro.intro.intro
C : Type u_1
D : Type u_2
inst✝⁴ : Category.{u_3, u_1} C
inst✝³ : Category.{u_4, u_2} D
L : C ⥤ D
W : MorphismProperty C
inst✝² : MonoidalCategory C
inst✝¹ : W.IsMonoidal
inst✝ : L.IsLocalization W
unit : D
ε : L.obj (𝟙_ C) ≅ unit
X Y : LocalizedMonoidal L W ε
X' : C
e₁ : L'.obj X' ≅ X
Y' : C
e₂ : L'.obj Y' ≅ Y
⊢ (α_ X (𝟙_ (LocalizedMonoidal L W ε)) Y).hom ≫ X ◁ (λ_ Y).hom = (ρ_ X).hom ▷ Y
|
6cbfa340cf91a11d
|
Polynomial.self_mul_modByMonic
|
Mathlib/Algebra/Polynomial/Div.lean
|
/-- See `Polynomial.mul_self_modByMonic` for the other multiplication order. That version, unlike
this one, requires commutativity. -/
@[simp]
lemma self_mul_modByMonic (hq : q.Monic) : (q * p) %ₘ q = 0
|
R : Type u
inst✝ : Ring R
p q : R[X]
hq : q.Monic
⊢ q ∣ q * p
|
exact dvd_mul_right q p
|
no goals
|
ad96480d0f80bfaf
|
Finset.le_truncatedSup
|
Mathlib/Combinatorics/SetFamily/AhlswedeZhang.lean
|
lemma le_truncatedSup : a ≤ truncatedSup s a
|
case pos.intro.intro
α : Type u_1
inst✝² : SemilatticeSup α
s : Finset α
a : α
inst✝¹ : DecidableRel fun x1 x2 => x1 ≤ x2
inst✝ : OrderTop α
ℬ : α
hb : ℬ ∈ ↑s
h : a ≤ ℬ
⊢ a ≤ (filter (fun b => a ≤ b) s).sup' ⋯ id
|
exact h.trans <| le_sup' id <| mem_filter.2 ⟨hb, h⟩
|
no goals
|
c8788e690d1221eb
|
binomial_sum_eq
|
Mathlib/Combinatorics/SetFamily/AhlswedeZhang.lean
|
private lemma binomial_sum_eq (h : n < m) :
∑ i ∈ range (n + 1), (n.choose i * (m - n) / ((m - i) * m.choose i) : ℚ) = 1
|
m n : ℕ
h : n < m
f : ℕ → ℚ := fun i => ↑(n.choose i) * (↑(m.choose i))⁻¹
hf : f = fun i => ↑(n.choose i) * (↑(m.choose i))⁻¹
i : ℕ
h₁✝ : i < n + 1
h₁ : i ≤ n
h₂ : i < m
h₃ : i ≤ m
hi₄ : ↑i + 1 ≠ 0
this : ↑(m.choose (i + 1)) * (↑i + 1) = ↑(m.choose i) * ↑(m - i)
⊢ ↑(n.choose i) * (↑(m.choose i))⁻¹ - ↑(n.choose (i + 1)) * (↑(m.choose (i + 1)))⁻¹ =
↑(n.choose i) * (↑m - ↑n) / ((↑m - ↑i) * ↑(m.choose i))
|
rw [(eq_mul_inv_iff_mul_eq₀ hi₄).mpr this]
|
m n : ℕ
h : n < m
f : ℕ → ℚ := fun i => ↑(n.choose i) * (↑(m.choose i))⁻¹
hf : f = fun i => ↑(n.choose i) * (↑(m.choose i))⁻¹
i : ℕ
h₁✝ : i < n + 1
h₁ : i ≤ n
h₂ : i < m
h₃ : i ≤ m
hi₄ : ↑i + 1 ≠ 0
this : ↑(m.choose (i + 1)) * (↑i + 1) = ↑(m.choose i) * ↑(m - i)
⊢ ↑(n.choose i) * (↑(m.choose i))⁻¹ - ↑(n.choose (i + 1)) * (↑(m.choose i) * ↑(m - i) * (↑i + 1)⁻¹)⁻¹ =
↑(n.choose i) * (↑m - ↑n) / ((↑m - ↑i) * ↑(m.choose i))
|
fac86174f38b637e
|
Lists'.subset_nil
|
Mathlib/SetTheory/Lists.lean
|
theorem subset_nil {l : Lists' α true} : l ⊆ Lists'.nil → l = Lists'.nil
|
α : Type u_1
l : Lists' α true
⊢ l ⊆ nil → l = nil
|
rw [← of_toList l]
|
α : Type u_1
l : Lists' α true
⊢ ofList l.toList ⊆ nil → ofList l.toList = nil
|
e126eef8141d3618
|
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.unsat_of_encounteredBoth
|
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/LRAT/Internal/Formula/RupAddSound.lean
|
theorem unsat_of_encounteredBoth {n : Nat} (c : DefaultClause n)
(assignment : Array Assignment) :
reduce c assignment = encounteredBoth → Unsatisfiable (PosFin n) assignment
|
n : Nat
c : DefaultClause n
assignment : Array Assignment
hb : reducedToEmpty = encounteredBoth → Unsatisfiable (PosFin n) assignment
res : ReduceResult (PosFin n)
ih : res = encounteredBoth → Unsatisfiable (PosFin n) assignment
l : Literal (PosFin n)
x✝ : l ∈ c.clause
h : reduce_fold_fn assignment res l = encounteredBoth
⊢ Unsatisfiable (PosFin n) assignment
|
rw [reduce_fold_fn.eq_def] at h
|
n : Nat
c : DefaultClause n
assignment : Array Assignment
hb : reducedToEmpty = encounteredBoth → Unsatisfiable (PosFin n) assignment
res : ReduceResult (PosFin n)
ih : res = encounteredBoth → Unsatisfiable (PosFin n) assignment
l : Literal (PosFin n)
x✝ : l ∈ c.clause
h :
(match res with
| encounteredBoth => encounteredBoth
| reducedToEmpty =>
match assignment[l.fst.val]! with
| pos => if l.snd = true then reducedToUnit l else reducedToEmpty
| neg => if (!l.snd) = true then reducedToUnit l else reducedToEmpty
| both => encounteredBoth
| unassigned => reducedToUnit l
| reducedToUnit l' =>
match assignment[l.fst.val]! with
| pos => if l.snd = true then reducedToNonunit else reducedToUnit l'
| neg => if (!l.snd) = true then reducedToNonunit else reducedToUnit l'
| both => encounteredBoth
| unassigned => reducedToNonunit
| reducedToNonunit => reducedToNonunit) =
encounteredBoth
⊢ Unsatisfiable (PosFin n) assignment
|
a1d564233a90b7cf
|
HurwitzZeta.oddKernel_functional_equation
|
Mathlib/NumberTheory/LSeries/HurwitzZetaOdd.lean
|
lemma oddKernel_functional_equation (a : UnitAddCircle) (x : ℝ) :
oddKernel a x = 1 / x ^ (3 / 2 : ℝ) * sinKernel a (1 / x)
|
x : ℝ
hx : 0 < x
a : ℝ
h1 : -1 / (I * ↑(1 / x)) = I * ↑x
h2 : -I * (I * ↑(1 / x)) = 1 / ↑x
h3 : ↑x ^ (3 / 2) ≠ 0
⊢ (↑x).arg ≠ π
|
rw [arg_ofReal_of_nonneg hx.le]
|
x : ℝ
hx : 0 < x
a : ℝ
h1 : -1 / (I * ↑(1 / x)) = I * ↑x
h2 : -I * (I * ↑(1 / x)) = 1 / ↑x
h3 : ↑x ^ (3 / 2) ≠ 0
⊢ 0 ≠ π
|
abcc5baeafa4b46c
|
List.dedup_map_of_injective
|
Mathlib/Data/List/Dedup.lean
|
theorem dedup_map_of_injective [DecidableEq β] {f : α → β} (hf : Function.Injective f)
(xs : List α) :
(xs.map f).dedup = xs.dedup.map f
|
case nil
α : Type u_1
β : Type u_2
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
f : α → β
hf : Function.Injective f
⊢ (map f []).dedup = map f [].dedup
|
simp
|
no goals
|
74f40e5383066b94
|
Prod.lex_def
|
Mathlib/.lake/packages/lean4/src/lean/Init/WF.lean
|
theorem lex_def {r : α → α → Prop} {s : β → β → Prop} {p q : α × β} :
Prod.Lex r s p q ↔ r p.1 q.1 ∨ p.1 = q.1 ∧ s p.2 q.2 :=
⟨fun h => by cases h <;> simp [*], fun h =>
match p, q, h with
| _, _, Or.inl h => Lex.left _ _ h
| (_, _), (_, _), Or.inr ⟨e, h⟩ => by subst e; exact Lex.right _ h⟩
|
α : Type u
β : Type v
r : α → α → Prop
s : β → β → Prop
p q : α × β
h✝ : r p.fst q.fst ∨ p.fst = q.fst ∧ s p.snd q.snd
fst✝¹ : α
snd✝¹ : β
fst✝ : α
snd✝ : β
e : { fst := fst✝¹, snd := snd✝¹ }.fst = { fst := fst✝, snd := snd✝ }.fst
h : s { fst := fst✝¹, snd := snd✝¹ }.snd { fst := fst✝, snd := snd✝ }.snd
⊢ Prod.Lex r s { fst := fst✝¹, snd := snd✝¹ } { fst := fst✝, snd := snd✝ }
|
subst e
|
α : Type u
β : Type v
r : α → α → Prop
s : β → β → Prop
p q : α × β
h✝ : r p.fst q.fst ∨ p.fst = q.fst ∧ s p.snd q.snd
fst✝ : α
snd✝¹ snd✝ : β
h : s { fst := fst✝, snd := snd✝¹ }.snd { fst := { fst := fst✝, snd := snd✝¹ }.fst, snd := snd✝ }.snd
⊢ Prod.Lex r s { fst := fst✝, snd := snd✝¹ } { fst := { fst := fst✝, snd := snd✝¹ }.fst, snd := snd✝ }
|
2e7c9bb8ce1d8ac3
|
MeasureTheory.condExp_ae_eq_condExpL1CLM
|
Mathlib/MeasureTheory/Function/ConditionalExpectation/Basic.lean
|
theorem condExp_ae_eq_condExpL1CLM (hm : m ≤ m₀) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) :
μ[f|m] =ᵐ[μ] condExpL1CLM E hm μ (hf.toL1 f)
|
α : Type u_1
E : Type u_3
m m₀ : MeasurableSpace α
μ : Measure α
f : α → E
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
hm : m ≤ m₀
inst✝ : SigmaFinite (μ.trim hm)
hf : Integrable f μ
⊢ μ[f|m] =ᶠ[ae μ] ↑↑((condExpL1CLM E hm μ) (Integrable.toL1 f hf))
|
refine (condExp_ae_eq_condExpL1 hm f).trans (Eventually.of_forall fun x => ?_)
|
α : Type u_1
E : Type u_3
m m₀ : MeasurableSpace α
μ : Measure α
f : α → E
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
hm : m ≤ m₀
inst✝ : SigmaFinite (μ.trim hm)
hf : Integrable f μ
x : α
⊢ ↑↑(condExpL1 hm μ f) x = ↑↑((condExpL1CLM E hm μ) (Integrable.toL1 f hf)) x
|
2587c1a2068ccc35
|
Equiv.Perm.IsCycle.commute_iff'
|
Mathlib/GroupTheory/Perm/Cycle/Basic.lean
|
theorem IsCycle.commute_iff' {g c : Perm α} (hc : c.IsCycle) :
Commute g c ↔
∃ hc' : ∀ x : α, x ∈ c.support ↔ g x ∈ c.support,
subtypePerm g hc' ∈ Subgroup.zpowers c.subtypePermOfSupport
|
case h.H.mk.a.intro
α : Type u_2
inst✝¹ : Fintype α
inst✝ : DecidableEq α
g c : Perm α
hc : c.IsCycle
hgc : Commute g c
hgc' : ∀ (x : α), x ∈ c.support ↔ g x ∈ c.support
a : α
ha : a ∈ c.support
i : ℤ
hi : (c ^ i) a = g a
j : ℤ
hx : (c ^ j) a ∈ c.support
⊢ (c ^ i) ((c ^ j) a) = g ((c ^ j) a)
|
simp only [← mul_apply, Commute.eq (Commute.zpow_right hgc j)]
|
case h.H.mk.a.intro
α : Type u_2
inst✝¹ : Fintype α
inst✝ : DecidableEq α
g c : Perm α
hc : c.IsCycle
hgc : Commute g c
hgc' : ∀ (x : α), x ∈ c.support ↔ g x ∈ c.support
a : α
ha : a ∈ c.support
i : ℤ
hi : (c ^ i) a = g a
j : ℤ
hx : (c ^ j) a ∈ c.support
⊢ (c ^ i * c ^ j) a = (c ^ j * g) a
|
6546f2c70e2936c9
|
Array.getElem?_size
|
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/Lemmas.lean
|
theorem getElem?_size {a : Array α} : a[a.size]? = none
|
α : Type u_1
a : Array α
⊢ a[a.size]? = none
|
simp only [getElem?_def, Nat.lt_irrefl, dite_false]
|
no goals
|
86cca0a3386197c2
|
Complex.HadamardThreeLines.diffContOnCl_invInterpStrip
|
Mathlib/Analysis/Complex/Hadamard.lean
|
/-- The function `invInterpStrip` is `diffContOnCl`. -/
lemma diffContOnCl_invInterpStrip {ε : ℝ} (hε : ε > 0) :
DiffContOnCl ℂ (fun z ↦ invInterpStrip f z ε) (verticalStrip 0 1)
|
case h.hb.h
E : Type u_1
inst✝ : NormedAddCommGroup E
f : ℂ → E
ε : ℝ
hε : ε > 0
⊢ ε + sSupNormIm f 1 ≠ 0
|
exact (ne_of_gt (sSupNormIm_eps_pos f hε 1))
|
no goals
|
9ba71e12742f43a8
|
MeasureTheory.Measure.measure_preimage_isMulLeftInvariant_eq_smul_of_hasCompactSupport
|
Mathlib/MeasureTheory/Measure/Haar/Unique.lean
|
/-- Two left invariant measures give the same mass to level sets of continuous compactly supported
functions, up to the scalar `haarScalarFactor μ' μ`.
Auxiliary lemma in the proof of the more general
`measure_isMulInvariant_eq_smul_of_isCompact_closure`, which works for any set with
compact closure. -/
@[to_additive measure_preimage_isAddLeftInvariant_eq_smul_of_hasCompactSupport
"Two left invariant measures give the same mass to level sets of continuous compactly supported
functions, up to the scalar `addHaarScalarFactor μ' μ`.
Auxiliary lemma in the proof of the more general
`measure_isAddInvariant_eq_smul_of_isCompact_closure`, which works for any set with
compact closure."]
lemma measure_preimage_isMulLeftInvariant_eq_smul_of_hasCompactSupport
(μ' μ : Measure G) [IsHaarMeasure μ] [IsFiniteMeasureOnCompacts μ'] [IsMulLeftInvariant μ']
{f : G → ℝ} (hf : Continuous f) (h'f : HasCompactSupport f) :
μ' (f ⁻¹' {1}) = haarScalarFactor μ' μ • μ (f ⁻¹' {1})
|
case h_lim.h
G : Type u_1
inst✝⁷ : TopologicalSpace G
inst✝⁶ : Group G
inst✝⁵ : IsTopologicalGroup G
inst✝⁴ : MeasurableSpace G
inst✝³ : BorelSpace G
μ' μ : Measure G
inst✝² : μ.IsHaarMeasure
inst✝¹ : IsFiniteMeasureOnCompacts μ'
inst✝ : μ'.IsMulLeftInvariant
f : G → ℝ
hf : Continuous f
h'f : HasCompactSupport f
u : ℕ → ℝ
u_mem : ∀ (n : ℕ), u n ∈ Ioo 0 1
u_lim : Tendsto u atTop (𝓝 0)
v : ℕ → ℝ → ℝ := fun n x => ↑((thickenedIndicator ⋯ {1}) x)
vf_cont : ∀ (n : ℕ), Continuous (v n ∘ f)
ν : Measure G
hν : IsFiniteMeasureOnCompacts ν
x : G
⊢ Tendsto (fun n => v n (f x)) atTop (𝓝 ({1}.indicator (fun x => 1) (f x)))
|
have T := tendsto_pi_nhds.1 (thickenedIndicator_tendsto_indicator_closure
(fun n ↦ (u_mem n).1) u_lim ({1} : Set ℝ)) (f x)
|
case h_lim.h
G : Type u_1
inst✝⁷ : TopologicalSpace G
inst✝⁶ : Group G
inst✝⁵ : IsTopologicalGroup G
inst✝⁴ : MeasurableSpace G
inst✝³ : BorelSpace G
μ' μ : Measure G
inst✝² : μ.IsHaarMeasure
inst✝¹ : IsFiniteMeasureOnCompacts μ'
inst✝ : μ'.IsMulLeftInvariant
f : G → ℝ
hf : Continuous f
h'f : HasCompactSupport f
u : ℕ → ℝ
u_mem : ∀ (n : ℕ), u n ∈ Ioo 0 1
u_lim : Tendsto u atTop (𝓝 0)
v : ℕ → ℝ → ℝ := fun n x => ↑((thickenedIndicator ⋯ {1}) x)
vf_cont : ∀ (n : ℕ), Continuous (v n ∘ f)
ν : Measure G
hν : IsFiniteMeasureOnCompacts ν
x : G
T : Tendsto (fun i => (thickenedIndicator ⋯ {1}) (f x)) atTop (𝓝 ((closure {1}).indicator (fun x => 1) (f x)))
⊢ Tendsto (fun n => v n (f x)) atTop (𝓝 ({1}.indicator (fun x => 1) (f x)))
|
16895233429fcfcd
|
Int.Matrix.exists_ne_zero_int_vec_norm_le
|
Mathlib/NumberTheory/SiegelsLemma.lean
|
theorem exists_ne_zero_int_vec_norm_le
(hn : Fintype.card α < Fintype.card β) (hm : 0 < Fintype.card α) : ∃ t : β → ℤ, t ≠ 0 ∧
A *ᵥ t = 0 ∧ ‖t‖ ≤ (n * max 1 ‖A‖) ^ ((m : ℝ) / (n - m))
|
case intro.intro.intro.intro.intro
α : Type u_1
β : Type u_2
inst✝¹ : Fintype α
inst✝ : Fintype β
A : Matrix α β ℤ
hn : m < n
hm : 0 < m
x : β → ℤ
hxT : x ∈ T
y : β → ℤ
hyT : y ∈ T
hneq : x ≠ y
hfeq : A *ᵥ x = A *ᵥ y
⊢ ‖x - y‖ ≤ (↑n * (1 ⊔ ‖A‖)) ^ e
|
have n_mul_norm_A_pow_e_nonneg : 0 ≤ (n * max 1 ‖A‖) ^ e := by positivity
|
case intro.intro.intro.intro.intro
α : Type u_1
β : Type u_2
inst✝¹ : Fintype α
inst✝ : Fintype β
A : Matrix α β ℤ
hn : m < n
hm : 0 < m
x : β → ℤ
hxT : x ∈ T
y : β → ℤ
hyT : y ∈ T
hneq : x ≠ y
hfeq : A *ᵥ x = A *ᵥ y
n_mul_norm_A_pow_e_nonneg : 0 ≤ (↑n * (1 ⊔ ‖A‖)) ^ e
⊢ ‖x - y‖ ≤ (↑n * (1 ⊔ ‖A‖)) ^ e
|
028ca7465c0ecd0f
|
Submonoid.mem_closure_range_iff
|
Mathlib/Algebra/Group/Submonoid/Finsupp.lean
|
theorem mem_closure_range_iff :
x ∈ closure (Set.range f) ↔ ∃ a : ι →₀ ℕ, x = a.prod (f · ^ ·)
|
case intro
M : Type u_1
inst✝ : CommMonoid M
ι : Type u_2
f : ι → M
a : ι →₀ ℕ
⊢ (a.prod fun x1 x2 => f x1 ^ x2) ∈ closure (Set.range f)
|
exact prod_mem _ fun i hi ↦ pow_mem (subset_closure (Set.mem_range_self i)) _
|
no goals
|
0b3c4edeef55010d
|
Rack.left_cancel
|
Mathlib/Algebra/Quandle.lean
|
theorem left_cancel (x : R) {y y' : R} : x ◃ y = x ◃ y' ↔ y = y'
|
R : Type u_1
inst✝ : Rack R
x y y' : R
⊢ x ◃ y = x ◃ y' ↔ y = y'
|
constructor
|
case mp
R : Type u_1
inst✝ : Rack R
x y y' : R
⊢ x ◃ y = x ◃ y' → y = y'
case mpr
R : Type u_1
inst✝ : Rack R
x y y' : R
⊢ y = y' → x ◃ y = x ◃ y'
|
6ca14f819936106b
|
Matrix.finite_real_spectrum
|
Mathlib/LinearAlgebra/Matrix/HermitianFunctionalCalculus.lean
|
lemma finite_real_spectrum : (spectrum ℝ A).Finite
|
n : Type u_1
𝕜 : Type u_2
inst✝² : RCLike 𝕜
inst✝¹ : Fintype n
inst✝ : DecidableEq n
A : Matrix n n 𝕜
⊢ (spectrum ℝ A).Finite
|
rw [← spectrum.preimage_algebraMap 𝕜]
|
n : Type u_1
𝕜 : Type u_2
inst✝² : RCLike 𝕜
inst✝¹ : Fintype n
inst✝ : DecidableEq n
A : Matrix n n 𝕜
⊢ (⇑(algebraMap ℝ 𝕜) ⁻¹' spectrum 𝕜 A).Finite
|
f8a964fd21b2b35e
|
Finset.image₂_insert_left
|
Mathlib/Data/Finset/NAry.lean
|
theorem image₂_insert_left [DecidableEq α] :
image₂ f (insert a s) t = (t.image fun b => f a b) ∪ image₂ f s t :=
coe_injective <| by
push_cast
exact image2_insert_left
|
α : Type u_1
β : Type u_3
γ : Type u_5
inst✝¹ : DecidableEq γ
f : α → β → γ
s : Finset α
t : Finset β
a : α
inst✝ : DecidableEq α
⊢ ↑(image₂ f (insert a s) t) = ↑(image (fun b => f a b) t ∪ image₂ f s t)
|
push_cast
|
α : Type u_1
β : Type u_3
γ : Type u_5
inst✝¹ : DecidableEq γ
f : α → β → γ
s : Finset α
t : Finset β
a : α
inst✝ : DecidableEq α
⊢ image2 f (insert a ↑s) ↑t = (fun b => f a b) '' ↑t ∪ image2 f ↑s ↑t
|
944d494b423a3279
|
Real.rpow_logb_of_neg
|
Mathlib/Analysis/SpecialFunctions/Log/Base.lean
|
theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x
|
b x : ℝ
b_pos : 0 < b
b_ne_one : b ≠ 1
hx : x < 0
⊢ |x| = -x
|
exact abs_of_neg hx
|
no goals
|
c88f07d3d4e8d065
|
zero_mem_tangentCone
|
Mathlib/Analysis/Calculus/TangentCone.lean
|
theorem zero_mem_tangentCone {s : Set E} {x : E} (hx : (𝓝[s \ {x}] x).NeBot) :
0 ∈ tangentConeAt 𝕜 s x
|
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : Set E
x : E
hx : (𝓝[s \ {x}] x).NeBot
u : ℕ → ℝ
u_pos : ∀ (n : ℕ), 0 < u n
u_lim : Tendsto u atTop (𝓝 0)
v : ℕ → E
hv : ∀ (n : ℕ), v n ∈ s \ {x} ∩ Metric.ball x (u n * u n)
d : ℕ → E := fun n => v n - x
M : ∀ (n : ℕ), x + d n ∈ s \ {x}
r : 𝕜
hr : 1 < ‖r‖
c : ℕ → 𝕜
c_ne : ∀ (n : ℕ), c n ≠ 0
c_le : ∀ (n : ℕ), ‖c n • d n‖ < u n
le_c : ∀ (n : ℕ), u n / ‖r‖ ≤ ‖c n • d n‖
hc : ∀ (n : ℕ), ‖c n‖⁻¹ ≤ (u n)⁻¹ * ‖r‖ * ‖d n‖
⊢ Tendsto (fun n => ‖c n‖⁻¹) atTop (𝓝[>] 0)
|
simp only [nhdsWithin, tendsto_inf, tendsto_principal, mem_Ioi, norm_pos_iff, ne_eq,
eventually_atTop, ge_iff_le]
|
𝕜 : Type u_1
inst✝² : NontriviallyNormedField 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
s : Set E
x : E
hx : (𝓝[s \ {x}] x).NeBot
u : ℕ → ℝ
u_pos : ∀ (n : ℕ), 0 < u n
u_lim : Tendsto u atTop (𝓝 0)
v : ℕ → E
hv : ∀ (n : ℕ), v n ∈ s \ {x} ∩ Metric.ball x (u n * u n)
d : ℕ → E := fun n => v n - x
M : ∀ (n : ℕ), x + d n ∈ s \ {x}
r : 𝕜
hr : 1 < ‖r‖
c : ℕ → 𝕜
c_ne : ∀ (n : ℕ), c n ≠ 0
c_le : ∀ (n : ℕ), ‖c n • d n‖ < u n
le_c : ∀ (n : ℕ), u n / ‖r‖ ≤ ‖c n • d n‖
hc : ∀ (n : ℕ), ‖c n‖⁻¹ ≤ (u n)⁻¹ * ‖r‖ * ‖d n‖
⊢ Tendsto (fun n => ‖c n‖⁻¹) atTop (𝓝 0) ∧ ∃ a, ∀ (b : ℕ), a ≤ b → 0 < ‖c b‖⁻¹
|
15a846dd0ca352f4
|
ContextFreeRule.Rewrites.append_left
|
Mathlib/Computability/ContextFreeGrammar.lean
|
/-- Add extra prefix to context-free rewriting. -/
lemma Rewrites.append_left (hvw : r.Rewrites u v) (p : List (Symbol T N)) :
r.Rewrites (p ++ u) (p ++ v)
|
case intro.intro
T : Type u_1
N : Type u_2
r : ContextFreeRule T N
u v p x y : List (Symbol T N)
hxy : u = x ++ [Symbol.nonterminal r.input] ++ y ∧ v = x ++ r.output ++ y
⊢ ∃ p_1 q, p ++ u = p_1 ++ [Symbol.nonterminal r.input] ++ q ∧ p ++ v = p_1 ++ r.output ++ q
|
use p ++ x, y
|
case h
T : Type u_1
N : Type u_2
r : ContextFreeRule T N
u v p x y : List (Symbol T N)
hxy : u = x ++ [Symbol.nonterminal r.input] ++ y ∧ v = x ++ r.output ++ y
⊢ p ++ u = p ++ x ++ [Symbol.nonterminal r.input] ++ y ∧ p ++ v = p ++ x ++ r.output ++ y
|
897ba01247a5d1f9
|
Submodule.top_orthogonal_eq_bot
|
Mathlib/Analysis/InnerProductSpace/Orthogonal.lean
|
theorem top_orthogonal_eq_bot : (⊤ : Submodule 𝕜 E)ᗮ = ⊥
|
𝕜 : Type u_1
E : Type u_2
inst✝² : RCLike 𝕜
inst✝¹ : NormedAddCommGroup E
inst✝ : InnerProductSpace 𝕜 E
⊢ ∀ u ∈ ⊤, inner u 0 = 0
|
simp
|
no goals
|
50e74963dd23dcc0
|
Int.lt_neg_add_of_add_lt
|
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Int/Order.lean
|
theorem lt_neg_add_of_add_lt {a b c : Int} (h : a + b < c) : b < -a + c
|
a b c : Int
h✝ : a + b < c
h : -a + (a + b) < -a + c
⊢ b < -a + c
|
rwa [Int.neg_add_cancel_left] at h
|
no goals
|
f36e4b18e6175a03
|
CompositionSeries.Equivalent.snoc
|
Mathlib/Order/JordanHolder.lean
|
theorem snoc {s₁ s₂ : CompositionSeries X} {x₁ x₂ : X} {hsat₁ : IsMaximal s₁.last x₁}
{hsat₂ : IsMaximal s₂.last x₂} (hequiv : Equivalent s₁ s₂)
(hlast : Iso (s₁.last, x₁) (s₂.last, x₂)) : Equivalent (s₁.snoc x₁ hsat₁) (s₂.snoc x₂ hsat₂) :=
let e : Fin s₁.length.succ ≃ Fin s₂.length.succ :=
calc
Fin (s₁.length + 1) ≃ Option (Fin s₁.length) := finSuccEquivLast
_ ≃ Option (Fin s₂.length) := Functor.mapEquiv Option hequiv.choose
_ ≃ Fin (s₂.length + 1) := finSuccEquivLast.symm
⟨e, fun i => by
refine Fin.lastCases ?_ ?_ i
· simpa [e, apply_last] using hlast
· intro i
simpa [e, Fin.succ_castSucc] using hequiv.choose_spec i⟩
|
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s₁ s₂ : CompositionSeries X
x₁ x₂ : X
hsat₁ : IsMaximal (last s₁) x₁
hsat₂ : IsMaximal (last s₂) x₂
hequiv : s₁.Equivalent s₂
hlast : Iso (last s₁, x₁) (last s₂, x₂)
e : Fin s₁.length.succ ≃ Fin s₂.length.succ :=
Trans.trans (Trans.trans finSuccEquivLast (Functor.mapEquiv Option (Exists.choose hequiv))) finSuccEquivLast.symm
i : Fin (snoc s₁ x₁ hsat₁).length
⊢ Iso ((snoc s₁ x₁ hsat₁).toFun i.castSucc, (snoc s₁ x₁ hsat₁).toFun i.succ)
((snoc s₂ x₂ hsat₂).toFun (e i).castSucc, (snoc s₂ x₂ hsat₂).toFun (e i).succ)
|
refine Fin.lastCases ?_ ?_ i
|
case refine_1
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s₁ s₂ : CompositionSeries X
x₁ x₂ : X
hsat₁ : IsMaximal (last s₁) x₁
hsat₂ : IsMaximal (last s₂) x₂
hequiv : s₁.Equivalent s₂
hlast : Iso (last s₁, x₁) (last s₂, x₂)
e : Fin s₁.length.succ ≃ Fin s₂.length.succ :=
Trans.trans (Trans.trans finSuccEquivLast (Functor.mapEquiv Option (Exists.choose hequiv))) finSuccEquivLast.symm
i : Fin (snoc s₁ x₁ hsat₁).length
⊢ Iso
((snoc s₁ x₁ hsat₁).toFun (Fin.last (s₁.length + (RelSeries.singleton IsMaximal x₁).length)).castSucc,
(snoc s₁ x₁ hsat₁).toFun (Fin.last (s₁.length + (RelSeries.singleton IsMaximal x₁).length)).succ)
((snoc s₂ x₂ hsat₂).toFun (e (Fin.last (s₁.length + (RelSeries.singleton IsMaximal x₁).length))).castSucc,
(snoc s₂ x₂ hsat₂).toFun (e (Fin.last (s₁.length + (RelSeries.singleton IsMaximal x₁).length))).succ)
case refine_2
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s₁ s₂ : CompositionSeries X
x₁ x₂ : X
hsat₁ : IsMaximal (last s₁) x₁
hsat₂ : IsMaximal (last s₂) x₂
hequiv : s₁.Equivalent s₂
hlast : Iso (last s₁, x₁) (last s₂, x₂)
e : Fin s₁.length.succ ≃ Fin s₂.length.succ :=
Trans.trans (Trans.trans finSuccEquivLast (Functor.mapEquiv Option (Exists.choose hequiv))) finSuccEquivLast.symm
i : Fin (snoc s₁ x₁ hsat₁).length
⊢ ∀ (i : Fin (s₁.length + (RelSeries.singleton IsMaximal x₁).length)),
Iso ((snoc s₁ x₁ hsat₁).toFun i.castSucc.castSucc, (snoc s₁ x₁ hsat₁).toFun i.castSucc.succ)
((snoc s₂ x₂ hsat₂).toFun (e i.castSucc).castSucc, (snoc s₂ x₂ hsat₂).toFun (e i.castSucc).succ)
|
5d1cf789582cbd93
|
Nat.Partrec.Code.rec_computable
|
Mathlib/Computability/PartrecCode.lean
|
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a)
|
case succ.succ.succ.succ
α : Type u_1
σ : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable σ
c : α → Code
hc : Computable c
z : α → σ
hz : Computable z
s : α → σ
hs : Computable s
l : α → σ
hl : Computable l
r : α → σ
hr : Computable r
pr : α → Code × Code × σ × σ → σ
hpr : Computable₂ pr
co : α → Code × Code × σ × σ → σ
hco : Computable₂ co
pc : α → Code × Code × σ × σ → σ
hpc : Computable₂ pc
rf : α → Code × σ → σ
hrf : Computable₂ rf
PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg)
CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg)
PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg)
RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf)
F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a)
G₁ : (α × List σ) × ℕ × ℕ → Option σ :=
fun p =>
(p.1.2.get? p.2.2).bind fun s =>
(p.1.2.get? (unpair p.2.2).1).bind fun s₁ =>
Option.map
(fun s₂ =>
bif p.2.1.bodd then
bif p.2.1.div2.bodd then rf p.1.1 (ofNat Code p.2.2, s)
else pc p.1.1 (ofNat Code (unpair p.2.2).1, ofNat Code (unpair p.2.2).2, s₁, s₂)
else
bif p.2.1.div2.bodd then co p.1.1 (ofNat Code (unpair p.2.2).1, ofNat Code (unpair p.2.2).2, s₁, s₂)
else pr p.1.1 (ofNat Code (unpair p.2.2).1, ofNat Code (unpair p.2.2).2, s₁, s₂))
(p.1.2.get? (unpair p.2.2).2)
this✝ : Computable G₁
G : α → List σ → Option σ :=
fun a IH =>
Nat.casesOn IH.length (some (z a)) fun n =>
Nat.casesOn n (some (s a)) fun n =>
Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
this : Computable₂ G
a : α
n : ℕ
⊢ Nat.rec (some (z a))
(fun n_1 n_ih =>
Nat.rec (some (s a))
(fun n_2 n_ih =>
Nat.rec (some (l a))
(fun n_3 n_ih =>
Nat.rec (some (r a))
(fun n_4 n_ih =>
G₁
((a, List.map (fun n => F a (ofNat Code n)) (List.range (n + 1 + 1 + 1 + 1))), n_4,
n_4.div2.div2))
n_3)
n_2)
n_1)
(n + 1 + 1 + 1 + 1) =
some (F a (ofNat Code (n + 1 + 1 + 1 + 1)))
|
let m := n.div2.div2
|
case succ.succ.succ.succ
α : Type u_1
σ : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable σ
c : α → Code
hc : Computable c
z : α → σ
hz : Computable z
s : α → σ
hs : Computable s
l : α → σ
hl : Computable l
r : α → σ
hr : Computable r
pr : α → Code × Code × σ × σ → σ
hpr : Computable₂ pr
co : α → Code × Code × σ × σ → σ
hco : Computable₂ co
pc : α → Code × Code × σ × σ → σ
hpc : Computable₂ pc
rf : α → Code × σ → σ
hrf : Computable₂ rf
PR✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pr a (cf, cg, hf, hg)
CO✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => co a (cf, cg, hf, hg)
PC✝ : α → Code → Code → σ → σ → σ := fun a cf cg hf hg => pc a (cf, cg, hf, hg)
RF✝ : α → Code → σ → σ := fun a cf hf => rf a (cf, hf)
F : α → Code → σ := fun a c => Code.recOn c (z a) (s a) (l a) (r a) (PR✝ a) (CO✝ a) (PC✝ a) (RF✝ a)
G₁ : (α × List σ) × ℕ × ℕ → Option σ :=
fun p =>
(p.1.2.get? p.2.2).bind fun s =>
(p.1.2.get? (unpair p.2.2).1).bind fun s₁ =>
Option.map
(fun s₂ =>
bif p.2.1.bodd then
bif p.2.1.div2.bodd then rf p.1.1 (ofNat Code p.2.2, s)
else pc p.1.1 (ofNat Code (unpair p.2.2).1, ofNat Code (unpair p.2.2).2, s₁, s₂)
else
bif p.2.1.div2.bodd then co p.1.1 (ofNat Code (unpair p.2.2).1, ofNat Code (unpair p.2.2).2, s₁, s₂)
else pr p.1.1 (ofNat Code (unpair p.2.2).1, ofNat Code (unpair p.2.2).2, s₁, s₂))
(p.1.2.get? (unpair p.2.2).2)
this✝ : Computable G₁
G : α → List σ → Option σ :=
fun a IH =>
Nat.casesOn IH.length (some (z a)) fun n =>
Nat.casesOn n (some (s a)) fun n =>
Nat.casesOn n (some (l a)) fun n => Nat.casesOn n (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
this : Computable₂ G
a : α
n : ℕ
m : ℕ := n.div2.div2
⊢ Nat.rec (some (z a))
(fun n_1 n_ih =>
Nat.rec (some (s a))
(fun n_2 n_ih =>
Nat.rec (some (l a))
(fun n_3 n_ih =>
Nat.rec (some (r a))
(fun n_4 n_ih =>
G₁
((a, List.map (fun n => F a (ofNat Code n)) (List.range (n + 1 + 1 + 1 + 1))), n_4,
n_4.div2.div2))
n_3)
n_2)
n_1)
(n + 1 + 1 + 1 + 1) =
some (F a (ofNat Code (n + 1 + 1 + 1 + 1)))
|
547d9fab085be660
|
HasFDerivAt.le_of_lip'
|
Mathlib/Analysis/Calculus/FDeriv/Basic.lean
|
theorem HasFDerivAt.le_of_lip' {f : E → F} {f' : E →L[𝕜] F} {x₀ : E} (hf : HasFDerivAt f f' x₀)
{C : ℝ} (hC₀ : 0 ≤ C) (hlip : ∀ᶠ x in 𝓝 x₀, ‖f x - f x₀‖ ≤ C * ‖x - x₀‖) : ‖f'‖ ≤ C
|
case h
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
f' : E →L[𝕜] F
x₀ : E
hf : HasFDerivAt f f' x₀
C : ℝ
hC₀ : 0 ≤ C
hlip : ∀ᶠ (a : E) in 𝓝 0, ‖f (x₀ + a) - f x₀‖ ≤ C * ‖x₀ + a - x₀‖
ε : ℝ
ε0 : 0 < ε
y : E
hy : ‖f (x₀ + y) - f x₀ - f' y‖ ≤ ε * ‖y‖
hyC : ‖f (x₀ + y) - f x₀‖ ≤ C * ‖x₀ + y - x₀‖
⊢ ‖f' y‖ ≤ (C + ε) * ‖y‖
|
rw [add_sub_cancel_left] at hyC
|
case h
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
f' : E →L[𝕜] F
x₀ : E
hf : HasFDerivAt f f' x₀
C : ℝ
hC₀ : 0 ≤ C
hlip : ∀ᶠ (a : E) in 𝓝 0, ‖f (x₀ + a) - f x₀‖ ≤ C * ‖x₀ + a - x₀‖
ε : ℝ
ε0 : 0 < ε
y : E
hy : ‖f (x₀ + y) - f x₀ - f' y‖ ≤ ε * ‖y‖
hyC : ‖f (x₀ + y) - f x₀‖ ≤ C * ‖y‖
⊢ ‖f' y‖ ≤ (C + ε) * ‖y‖
|
8c833a4fe1e5790f
|
ClusterPt.of_le_nhds
|
Mathlib/Topology/Basic.lean
|
theorem ClusterPt.of_le_nhds {f : Filter X} (H : f ≤ 𝓝 x) [NeBot f] : ClusterPt x f
|
X : Type u
x : X
inst✝¹ : TopologicalSpace X
f : Filter X
H : f ≤ 𝓝 x
inst✝ : f.NeBot
⊢ ClusterPt x f
|
rwa [ClusterPt, inf_eq_right.mpr H]
|
no goals
|
5575878643910dbe
|
Equiv.Perm.card_of_cycleType_eq_zero_iff
|
Mathlib/GroupTheory/Perm/Centralizer.lean
|
theorem card_of_cycleType_eq_zero_iff {m : Multiset ℕ} :
({g | g.cycleType = m} : Finset (Perm α)).card = 0
↔ ¬ ((m.sum ≤ Fintype.card α ∧ ∀ a ∈ m, 2 ≤ a))
|
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
m : Multiset ℕ
⊢ (∀ ⦃x : Perm α⦄, x ∈ Finset.univ → ¬x.cycleType = m) ↔ ∀ (x : Perm α), ¬x.cycleType = m
|
aesop
|
no goals
|
c191a0004a70e575
|
Matroid.Indep.exists_insert_of_not_isBasis
|
Mathlib/Data/Matroid/Restrict.lean
|
theorem Indep.exists_insert_of_not_isBasis (hI : M.Indep I) (hIX : I ⊆ X) (hI' : ¬M.IsBasis I X)
(hJ : M.IsBasis J X) : ∃ e ∈ J \ I, M.Indep (insert e I)
|
α : Type u_1
M : Matroid α
I X J : Set α
hI : M.Indep I
hIX : I ⊆ X
hI' : ¬M.IsBasis I X
hJ : M.IsBasis J X
⊢ ∃ e ∈ J \ I, M.Indep (insert e I)
|
rw [← isBase_restrict_iff] at hI'
|
α : Type u_1
M : Matroid α
I X J : Set α
hI : M.Indep I
hIX : I ⊆ X
hI' : ¬(M ↾ X).IsBase I
hJ : M.IsBasis J X
⊢ ∃ e ∈ J \ I, M.Indep (insert e I)
|
42901ff656738d31
|
MonovaryOn.sum_smul_comp_perm_eq_sum_smul_iff
|
Mathlib/Algebra/Order/Rearrangement.lean
|
theorem MonovaryOn.sum_smul_comp_perm_eq_sum_smul_iff (hfg : MonovaryOn f g s)
(hσ : {x | σ x ≠ x} ⊆ s) :
∑ i ∈ s, f i • g (σ i) = ∑ i ∈ s, f i • g i ↔ MonovaryOn f (g ∘ σ) s
|
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝⁴ : LinearOrderedSemiring α
inst✝³ : ExistsAddOfLE α
inst✝² : LinearOrderedCancelAddCommMonoid β
inst✝¹ : Module α β
inst✝ : PosSMulStrictMono α β
s : Finset ι
σ : Perm ι
f : ι → α
g : ι → β
hfg : MonovaryOn f g ↑s
hσ : {x | σ x ≠ x} ⊆ ↑s
⊢ ∑ i ∈ s, f i • g (σ i) = ∑ i ∈ s, f i • g i ↔ MonovaryOn f (g ∘ ⇑σ) ↑s
|
refine ⟨not_imp_not.1 fun h ↦ ?_, fun h ↦ (hfg.sum_smul_comp_perm_le_sum_smul hσ).antisymm ?_⟩
|
case refine_1
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝⁴ : LinearOrderedSemiring α
inst✝³ : ExistsAddOfLE α
inst✝² : LinearOrderedCancelAddCommMonoid β
inst✝¹ : Module α β
inst✝ : PosSMulStrictMono α β
s : Finset ι
σ : Perm ι
f : ι → α
g : ι → β
hfg : MonovaryOn f g ↑s
hσ : {x | σ x ≠ x} ⊆ ↑s
h : ¬MonovaryOn f (g ∘ ⇑σ) ↑s
⊢ ¬∑ i ∈ s, f i • g (σ i) = ∑ i ∈ s, f i • g i
case refine_2
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝⁴ : LinearOrderedSemiring α
inst✝³ : ExistsAddOfLE α
inst✝² : LinearOrderedCancelAddCommMonoid β
inst✝¹ : Module α β
inst✝ : PosSMulStrictMono α β
s : Finset ι
σ : Perm ι
f : ι → α
g : ι → β
hfg : MonovaryOn f g ↑s
hσ : {x | σ x ≠ x} ⊆ ↑s
h : MonovaryOn f (g ∘ ⇑σ) ↑s
⊢ ∑ i ∈ s, f i • g i ≤ ∑ i ∈ s, f i • g (σ i)
|
96d1434317a67463
|
CategoryTheory.Limits.isIndObject_colimit
|
Mathlib/CategoryTheory/Limits/Indization/FilteredColimits.lean
|
theorem isIndObject_colimit (I : Type v) [SmallCategory I] [IsFiltered I]
(F : I ⥤ Cᵒᵖ ⥤ Type v) (hF : ∀ i, IsIndObject (F.obj i)) : IsIndObject (colimit F)
|
case intro.intro.intro
C : Type u
inst✝² : Category.{v, u} C
I : Type v
inst✝¹ : SmallCategory I
inst✝ : IsFiltered I
F : I ⥤ Cᵒᵖ ⥤ Type v
hF : ∀ (i : I), IsIndObject (F.obj i)
this : IsFiltered (CostructuredArrow yoneda (colimit F))
s : (i : I) → Set (CostructuredArrow yoneda (F.obj i))
hs : ∀ (i : I), Small.{v, max u v} ↑(s i)
j : (i : I) → CostructuredArrow yoneda (F.obj i) → CostructuredArrow yoneda (F.obj i)
hjs : ∀ (i : I) (i_1 : CostructuredArrow yoneda (F.obj i)), j i i_1 ∈ s i
hj : ∀ (i : I) (i_1 : CostructuredArrow yoneda (F.obj i)), Nonempty (i_1 ⟶ j i i_1)
A : CostructuredArrow yoneda (colimit F)
i : I
y : (F.obj i).obj (Opposite.op A.left)
hy : yonedaEquiv A.hom = (colimit.ι F i).app (Opposite.op A.left) y
y' : CostructuredArrow yoneda (F.obj i) := mk (yonedaEquiv.symm y)
x : y' ⟶ j i y'
⊢ ∃ j ∈ ⋃ i, (map (colimit.ι F i)).obj '' s i, Nonempty (A ⟶ j)
|
refine ⟨(map (colimit.ι F i)).obj (j i y'), ?_, ⟨?_⟩⟩
|
case intro.intro.intro.refine_1
C : Type u
inst✝² : Category.{v, u} C
I : Type v
inst✝¹ : SmallCategory I
inst✝ : IsFiltered I
F : I ⥤ Cᵒᵖ ⥤ Type v
hF : ∀ (i : I), IsIndObject (F.obj i)
this : IsFiltered (CostructuredArrow yoneda (colimit F))
s : (i : I) → Set (CostructuredArrow yoneda (F.obj i))
hs : ∀ (i : I), Small.{v, max u v} ↑(s i)
j : (i : I) → CostructuredArrow yoneda (F.obj i) → CostructuredArrow yoneda (F.obj i)
hjs : ∀ (i : I) (i_1 : CostructuredArrow yoneda (F.obj i)), j i i_1 ∈ s i
hj : ∀ (i : I) (i_1 : CostructuredArrow yoneda (F.obj i)), Nonempty (i_1 ⟶ j i i_1)
A : CostructuredArrow yoneda (colimit F)
i : I
y : (F.obj i).obj (Opposite.op A.left)
hy : yonedaEquiv A.hom = (colimit.ι F i).app (Opposite.op A.left) y
y' : CostructuredArrow yoneda (F.obj i) := mk (yonedaEquiv.symm y)
x : y' ⟶ j i y'
⊢ (map (colimit.ι F i)).obj (j i y') ∈ ⋃ i, (map (colimit.ι F i)).obj '' s i
case intro.intro.intro.refine_2
C : Type u
inst✝² : Category.{v, u} C
I : Type v
inst✝¹ : SmallCategory I
inst✝ : IsFiltered I
F : I ⥤ Cᵒᵖ ⥤ Type v
hF : ∀ (i : I), IsIndObject (F.obj i)
this : IsFiltered (CostructuredArrow yoneda (colimit F))
s : (i : I) → Set (CostructuredArrow yoneda (F.obj i))
hs : ∀ (i : I), Small.{v, max u v} ↑(s i)
j : (i : I) → CostructuredArrow yoneda (F.obj i) → CostructuredArrow yoneda (F.obj i)
hjs : ∀ (i : I) (i_1 : CostructuredArrow yoneda (F.obj i)), j i i_1 ∈ s i
hj : ∀ (i : I) (i_1 : CostructuredArrow yoneda (F.obj i)), Nonempty (i_1 ⟶ j i i_1)
A : CostructuredArrow yoneda (colimit F)
i : I
y : (F.obj i).obj (Opposite.op A.left)
hy : yonedaEquiv A.hom = (colimit.ι F i).app (Opposite.op A.left) y
y' : CostructuredArrow yoneda (F.obj i) := mk (yonedaEquiv.symm y)
x : y' ⟶ j i y'
⊢ A ⟶ (map (colimit.ι F i)).obj (j i y')
|
85e6fbbc162d2dd5
|
AlgebraicGeometry.hasOfPostcompProperty_isOpenImmersion_of_morphismRestrict
|
Mathlib/AlgebraicGeometry/Morphisms/Basic.lean
|
lemma hasOfPostcompProperty_isOpenImmersion_of_morphismRestrict (P : MorphismProperty Scheme)
[P.RespectsIso] (H : ∀ {X Y : Scheme.{u}} (f : X ⟶ Y) (U : Y.Opens), P f → P (f ∣_ U)) :
P.HasOfPostcompProperty @IsOpenImmersion where
of_postcomp {X Y Z} f g hg hfg
|
P : MorphismProperty Scheme
inst✝ : P.RespectsIso
H : ∀ {X Y : Scheme} (f : X ⟶ Y) (U : Y.Opens), P f → P (f ∣_ U)
X Y Z : Scheme
f : X ⟶ Y
g : Y ⟶ Z
hg : IsOpenImmersion g
hfg : P (f ≫ g)
this : (f ≫ g) ⁻¹ᵁ Scheme.Hom.opensRange g = ⊤
⊢ P f
|
have : f = X.topIso.inv ≫ (X.isoOfEq this).inv ≫ (f ≫ g) ∣_ g.opensRange ≫
(IsOpenImmersion.isoOfRangeEq g.opensRange.ι g (by simp)).hom := by
simp [← cancel_mono g]
|
P : MorphismProperty Scheme
inst✝ : P.RespectsIso
H : ∀ {X Y : Scheme} (f : X ⟶ Y) (U : Y.Opens), P f → P (f ∣_ U)
X Y Z : Scheme
f : X ⟶ Y
g : Y ⟶ Z
hg : IsOpenImmersion g
hfg : P (f ≫ g)
this✝ : (f ≫ g) ⁻¹ᵁ Scheme.Hom.opensRange g = ⊤
this :
f =
X.topIso.inv ≫
(X.isoOfEq this✝).inv ≫
(f ≫ g) ∣_ Scheme.Hom.opensRange g ≫ (IsOpenImmersion.isoOfRangeEq (Scheme.Hom.opensRange g).ι g ⋯).hom
⊢ P f
|
723c11951b6c9a09
|
PrimeSpectrum.isClosed_range_comap_of_surjective
|
Mathlib/RingTheory/Spectrum/Prime/Topology.lean
|
theorem isClosed_range_comap_of_surjective (hf : Surjective f) :
IsClosed (Set.range (comap f))
|
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
f : R →+* S
hf : Surjective ⇑f
⊢ IsClosed (Set.range ⇑(comap f))
|
rw [range_comap_of_surjective _ f hf]
|
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
f : R →+* S
hf : Surjective ⇑f
⊢ IsClosed (zeroLocus ↑(ker f))
|
83f23d22d8e88fc6
|
ZMod.eq_unit_mul_divisor
|
Mathlib/Data/ZMod/Units.lean
|
/-- Any element of `ZMod N` has the form `u * d` where `u` is a unit and `d` is a divisor of `N`. -/
lemma eq_unit_mul_divisor {N : ℕ} (a : ZMod N) :
∃ d : ℕ, d ∣ N ∧ ∃ (u : ZMod N), IsUnit u ∧ a = u * d
|
case inr
N : ℕ
a : ZMod N
hN : N ≠ 0
this : NeZero N
d : ℕ := a.val.gcd N
hd : d ≠ 0
⊢ ∃ d, d ∣ N ∧ ∃ u, IsUnit u ∧ a = u * ↑d
|
obtain ⟨a₀, (ha₀ : _ = d * _)⟩ := a.val.gcd_dvd_left N
|
case inr.intro
N : ℕ
a : ZMod N
hN : N ≠ 0
this : NeZero N
d : ℕ := a.val.gcd N
hd : d ≠ 0
a₀ : ℕ
ha₀ : a.val = d * a₀
⊢ ∃ d, d ∣ N ∧ ∃ u, IsUnit u ∧ a = u * ↑d
|
07b51bbfca25d769
|
ExistsContDiffBumpBase.y_smooth
|
Mathlib/Analysis/Calculus/BumpFunction/FiniteDimension.lean
|
theorem y_smooth : ContDiffOn ℝ ∞ (uncurry y) (Ioo (0 : ℝ) 1 ×ˢ (univ : Set E))
|
case refine_3.hf.hf.h0
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : FiniteDimensional ℝ E
inst✝¹ : MeasurableSpace E
inst✝ : BorelSpace E
hs : IsOpen (Ioo 0 1)
hk : IsCompact (closedBall 0 1)
x : ℝ × E
hx : x ∈ Ioo 0 1 ×ˢ univ
⊢ x.1 ≠ 0
|
exact ne_of_gt hx.1.1
|
no goals
|
5d103a5b75b6c303
|
List.nodupKeys_flatten
|
Mathlib/Data/List/Sigma.lean
|
theorem nodupKeys_flatten {L : List (List (Sigma β))} :
NodupKeys (flatten L) ↔ (∀ l ∈ L, NodupKeys l) ∧ Pairwise Disjoint (L.map keys)
|
case a
α : Type u
β : α → Type v
L : List (List (Sigma β))
⊢ Pairwise (fun l₁ l₂ => ∀ x ∈ l₁, ∀ y ∈ l₂, x.fst ≠ y.fst) L = Pairwise (fun a b => a.keys.Disjoint b.keys) L
|
congr with (l₁ l₂)
|
case a.e_R.h.h.a
α : Type u
β : α → Type v
L : List (List (Sigma β))
l₁ l₂ : List (Sigma β)
⊢ (∀ x ∈ l₁, ∀ y ∈ l₂, x.fst ≠ y.fst) ↔ l₁.keys.Disjoint l₂.keys
|
31fb5fa0ff497931
|
AffineSubspace.direction_sup
|
Mathlib/LinearAlgebra/AffineSpace/AffineSubspace/Basic.lean
|
theorem direction_sup {s₁ s₂ : AffineSubspace k P} {p₁ p₂ : P} (hp₁ : p₁ ∈ s₁) (hp₂ : p₂ ∈ s₂) :
(s₁ ⊔ s₂).direction = s₁.direction ⊔ s₂.direction ⊔ k ∙ p₂ -ᵥ p₁
|
case refine_1
k : Type u_1
V : Type u_2
P : Type u_3
inst✝³ : Ring k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s₁ s₂ : AffineSubspace k P
p₁ p₂ : P
hp₁ : p₁ ∈ s₁
hp₂ : p₂ ∈ s₂
⊢ (affineSpan k (↑s₁ ∪ ↑s₂)).direction ≤ s₁.direction ⊔ s₂.direction ⊔ Submodule.span k {p₂ -ᵥ p₁}
|
rw [← mem_coe] at hp₁
|
case refine_1
k : Type u_1
V : Type u_2
P : Type u_3
inst✝³ : Ring k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s₁ s₂ : AffineSubspace k P
p₁ p₂ : P
hp₁ : p₁ ∈ ↑s₁
hp₂ : p₂ ∈ s₂
⊢ (affineSpan k (↑s₁ ∪ ↑s₂)).direction ≤ s₁.direction ⊔ s₂.direction ⊔ Submodule.span k {p₂ -ᵥ p₁}
|
64c047987a3af743
|
CategoryTheory.MorphismProperty.isSmall_iff_eq_ofHoms
|
Mathlib/CategoryTheory/MorphismProperty/IsSmall.lean
|
lemma isSmall_iff_eq_ofHoms :
IsSmall.{w} W ↔ ∃ (ι : Type w) (A B : ι → C) (f : ∀ i, A i ⟶ B i),
W = ofHoms f
|
case mp.h.mp
C : Type u
inst✝ : Category.{v, u} C
W : MorphismProperty C
a✝ : IsSmall.{w, v, u} W
A B : C
f : A ⟶ B
⊢ W f → ∃ i, Arrow.mk f = Arrow.mk (↑((equivShrink ↑W.toSet).symm i)).hom
|
intro hf
|
case mp.h.mp
C : Type u
inst✝ : Category.{v, u} C
W : MorphismProperty C
a✝ : IsSmall.{w, v, u} W
A B : C
f : A ⟶ B
hf : W f
⊢ ∃ i, Arrow.mk f = Arrow.mk (↑((equivShrink ↑W.toSet).symm i)).hom
|
933196d1e4981df1
|
IsPGroup.iff_card
|
Mathlib/GroupTheory/PGroup.lean
|
theorem iff_card [Fact p.Prime] [Finite G] : IsPGroup p G ↔ ∃ n : ℕ, Nat.card G = p ^ n
|
p : ℕ
G : Type u_1
inst✝² : Group G
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Finite G
hG : Nat.card G ≠ 0
h : IsPGroup p G
this : ∀ q ∈ (Nat.card G).primeFactorsList, q = p
⊢ ∃ n, Nat.card G = p ^ n
|
use (Nat.card G).primeFactorsList.length
|
case h
p : ℕ
G : Type u_1
inst✝² : Group G
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Finite G
hG : Nat.card G ≠ 0
h : IsPGroup p G
this : ∀ q ∈ (Nat.card G).primeFactorsList, q = p
⊢ Nat.card G = p ^ (Nat.card G).primeFactorsList.length
|
cdf7a3b03afadbaa
|
Equiv.Perm.Disjoint.mul_right
|
Mathlib/GroupTheory/Perm/Support.lean
|
theorem Disjoint.mul_right (H1 : Disjoint f g) (H2 : Disjoint f h) : Disjoint f (g * h)
|
α : Type u_1
f g h : Perm α
H1 : f.Disjoint g
H2 : f.Disjoint h
⊢ (g * h).Disjoint f
|
exact H1.symm.mul_left H2.symm
|
no goals
|
464a7c3f7e4f9bba
|
ack_three
|
Mathlib/Computability/Ackermann.lean
|
theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3
|
case zero
⊢ ack 3 0 = 2 ^ (0 + 3) - 3
|
simp
|
no goals
|
1f5390829330cb69
|
Finset.pairwise_cons'
|
Mathlib/Data/Finset/Insert.lean
|
theorem pairwise_cons' {a : α} (ha : a ∉ s) (r : β → β → Prop) (f : α → β) :
Pairwise (r on fun a : s.cons a ha => f a) ↔
Pairwise (r on fun a : s => f a) ∧ ∀ b ∈ s, r (f a) (f b) ∧ r (f b) (f a)
|
α : Type u_1
β : Type u_2
s : Finset α
a : α
ha : a ∉ s
r : β → β → Prop
f : α → β
x✝ : (↑s).Pairwise (r on f)
h : ∀ b ∈ s, a ≠ b → (r on f) a b ∧ (r on f) b a
b : α
hb : b ∈ s
⊢ a ≠ b
|
rintro rfl
|
α : Type u_1
β : Type u_2
s : Finset α
a : α
ha : a ∉ s
r : β → β → Prop
f : α → β
x✝ : (↑s).Pairwise (r on f)
h : ∀ b ∈ s, a ≠ b → (r on f) a b ∧ (r on f) b a
hb : a ∈ s
⊢ False
|
6d0426eabddcf9f3
|
Batteries.UnionFind.find_root_1
|
Mathlib/.lake/packages/batteries/Batteries/Data/UnionFind/Basic.lean
|
theorem find_root_1 (self : UnionFind) (x : Fin self.size) (i : Nat) :
(self.find x).1.rootD i = self.rootD i
|
self : UnionFind
x : Fin self.size
i : Nat
a✝ :
∀ (y : Nat),
(invImage (fun x_1 => (self.find x).fst.rankMax - (self.find x).fst.rank x_1) instWellFoundedRelationOfSizeOf).1 y
i →
(self.find x).fst.rootD y = self.rootD y
h : ¬(self.find x).fst.parent i = i
this :
(self.find x).fst.rankMax - (self.find x).fst.rank ((self.find x).fst.parent i) <
(self.find x).fst.rankMax - (self.find x).fst.rank i
⊢ (self.find x).fst.rankMax - (self.find x).fst.rank ((self.find x).fst.parent i) <
(self.find x).fst.rankMax - (self.find x).fst.rank i
|
exact this
|
no goals
|
918247537b8b2e79
|
Topology.IsUpperSet.isSheaf_of_isRightKanExtension
|
Mathlib/Topology/Sheaves/Alexandrov.lean
|
theorem Topology.IsUpperSet.isSheaf_of_isRightKanExtension
(P : (Opens X)ᵒᵖ ⥤ C)
(η : Alexandrov.principals X ⋙ P ⟶ F)
[P.IsRightKanExtension η] :
Presheaf.IsSheaf (Opens.grothendieckTopology X) P
|
X : Type v
inst✝⁵ : TopologicalSpace X
inst✝⁴ : Preorder X
inst✝³ : Topology.IsUpperSet X
C : Type u
inst✝² : Category.{v, u} C
inst✝¹ : HasLimits C
F : X ⥤ C
P : (Opens X)ᵒᵖ ⥤ C
η : principals X ⋙ P ⟶ F
inst✝ : P.IsRightKanExtension η
γ : principals X ⋙ principalsKanExtension F ⟶ F := (principals X).pointwiseRightKanExtensionCounit F
x✝ : (principalsKanExtension F).IsRightKanExtension γ := inferInstance
⊢ (principalsKanExtension F).IsRightKanExtension ?m.88333
|
assumption
|
no goals
|
484b46eb3ee8177c
|
CategoryTheory.Idempotents.isIdempotentComplete_iff_opposite
|
Mathlib/CategoryTheory/Idempotents/Basic.lean
|
theorem isIdempotentComplete_iff_opposite : IsIdempotentComplete Cᵒᵖ ↔ IsIdempotentComplete C
|
case mp
C : Type u_1
inst✝ : Category.{u_2, u_1} C
⊢ IsIdempotentComplete Cᵒᵖ → IsIdempotentComplete C
|
exact isIdempotentComplete_of_isIdempotentComplete_opposite
|
no goals
|
07d7dccbe5b0a4dd
|
lsum_comp_mapRange_toSpanSingleton
|
Mathlib/LinearAlgebra/DFinsupp.lean
|
theorem lsum_comp_mapRange_toSpanSingleton [∀ m : R, Decidable (m ≠ 0)] (p : ι → Submodule R N)
{v : ι → N} (hv : ∀ i : ι, v i ∈ p i) :
(lsum ℕ (M := fun i ↦ ↥(p i)) fun i => (p i).subtype : _ →ₗ[R] _).comp
((mapRange.linearMap fun i => LinearMap.toSpanSingleton R (↥(p i)) ⟨v i, hv i⟩ :
_ →ₗ[R] _).comp
(finsuppLequivDFinsupp R : (ι →₀ R) ≃ₗ[R] _).toLinearMap) =
Finsupp.linearCombination R v
|
case h.h
ι : Type u_1
R : Type u_2
N : Type u_5
inst✝⁴ : DecidableEq ι
inst✝³ : Semiring R
inst✝² : AddCommMonoid N
inst✝¹ : Module R N
inst✝ : (m : R) → Decidable (m ≠ 0)
p : ι → Submodule R N
v : ι → N
hv : ∀ (i : ι), v i ∈ p i
a✝ : ι
⊢ ((((lsum ℕ) fun i => (p i).subtype) ∘ₗ
(mapRange.linearMap fun i => LinearMap.toSpanSingleton R ↥(p i) ⟨v i, ⋯⟩) ∘ₗ ↑(finsuppLequivDFinsupp R)) ∘ₗ
Finsupp.lsingle a✝)
1 =
(Finsupp.linearCombination R v ∘ₗ Finsupp.lsingle a✝) 1
|
simp
|
no goals
|
dcbda0f830791619
|
List.mk_mem_zipIdx_iff_le_and_getElem?_sub
|
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Nat/Range.lean
|
theorem mk_mem_zipIdx_iff_le_and_getElem?_sub {k i : Nat} {x : α} {l : List α} :
(x, i) ∈ zipIdx l k ↔ k ≤ i ∧ l[i - k]? = some x
|
α : Type u_1
k i : Nat
x : α
l : List α
h : k ≤ i
⊢ (x, i) ∈ l.zipIdx k ↔ k ≤ i ∧ l[i - k]? = some x
|
rcases Nat.exists_eq_add_of_le h with ⟨i, rfl⟩
|
case intro
α : Type u_1
k : Nat
x : α
l : List α
i : Nat
h : k ≤ k + i
⊢ (x, k + i) ∈ l.zipIdx k ↔ k ≤ k + i ∧ l[k + i - k]? = some x
|
24ce2639b2cbb140
|
AlgebraicGeometry.Scheme.IdealSheafData.map_ideal
|
Mathlib/AlgebraicGeometry/IdealSheaf.lean
|
lemma map_ideal {U V : X.affineOpens} (h : U ≤ V) :
(I.ideal V).map (X.presheaf.map (homOfLE h).op).hom = I.ideal U
|
case intro.intro.intro
X : Scheme
I : X.IdealSheafData
U V : ↑X.affineOpens
h : U ≤ V
x : ↑↑X.toPresheafedSpace
hxU : x ∈ ↑U
f : ↑Γ(X, ↑U)
g : ↑Γ(X, ↑V)
hfg : X.basicOpen f = X.basicOpen g
hxf : x ∈ X.basicOpen f
this :
Ideal.map (CommRingCat.Hom.hom (X.presheaf.map (homOfLE ⋯).op)) (I.ideal U) =
Ideal.map (CommRingCat.Hom.hom (X.presheaf.map (homOfLE ⋯).op)) (I.ideal V)
⊢ Ideal.map (CommRingCat.Hom.hom (X.presheaf.germ (↑U) x hxU))
(Ideal.map (CommRingCat.Hom.hom (X.presheaf.map (homOfLE h).op)) (I.ideal V)) =
Ideal.map (CommRingCat.Hom.hom (X.presheaf.germ (↑U) x hxU)) (I.ideal U)
|
apply_fun Ideal.map (X.presheaf.germ (X.basicOpen g) x (hfg ▸ hxf)).hom at this
|
case intro.intro.intro
X : Scheme
I : X.IdealSheafData
U V : ↑X.affineOpens
h : U ≤ V
x : ↑↑X.toPresheafedSpace
hxU : x ∈ ↑U
f : ↑Γ(X, ↑U)
g : ↑Γ(X, ↑V)
hfg : X.basicOpen f = X.basicOpen g
hxf : x ∈ X.basicOpen f
this :
Ideal.map (CommRingCat.Hom.hom (X.presheaf.germ (X.basicOpen g) x ⋯))
(Ideal.map (CommRingCat.Hom.hom (X.presheaf.map (homOfLE ⋯).op)) (I.ideal U)) =
Ideal.map (CommRingCat.Hom.hom (X.presheaf.germ (X.basicOpen g) x ⋯))
(Ideal.map (CommRingCat.Hom.hom (X.presheaf.map (homOfLE ⋯).op)) (I.ideal V))
⊢ Ideal.map (CommRingCat.Hom.hom (X.presheaf.germ (↑U) x hxU))
(Ideal.map (CommRingCat.Hom.hom (X.presheaf.map (homOfLE h).op)) (I.ideal V)) =
Ideal.map (CommRingCat.Hom.hom (X.presheaf.germ (↑U) x hxU)) (I.ideal U)
|
f0a1a44e10a9d050
|
integral_comp_abs
|
Mathlib/MeasureTheory/Measure/Lebesgue/Integral.lean
|
theorem integral_comp_abs {f : ℝ → ℝ} :
∫ x, f |x| = 2 * ∫ x in Ioi (0 : ℝ), f x
|
case h.e'_5
f : ℝ → ℝ
eq : ∫ (x : ℝ) in Ioi 0, f |x| = ∫ (x : ℝ) in Ioi 0, f x
hf : IntegrableOn (fun x => f |x|) (Ioi 0) volume
int_Iic : IntegrableOn (fun x => f |x|) (Iic 0) volume
x✝ : ℝ
hx : x✝ ∈ Iic 0
⊢ f |x✝| = f (-x✝)
|
rw [abs_eq_neg_self.mpr (by exact hx)]
|
no goals
|
dd1c4d1811d64c1a
|
MeasureTheory.lintegral_pow_le_pow_lintegral_fderiv
|
Mathlib/Analysis/FunctionalSpaces/SobolevInequality.lean
|
theorem lintegral_pow_le_pow_lintegral_fderiv {u : E → F}
(hu : ContDiff ℝ 1 u) (h2u : HasCompactSupport u)
{p : ℝ} (hp : Real.IsConjExponent (finrank ℝ E) p) :
∫⁻ x, ‖u x‖ₑ ^ p ∂μ ≤
lintegralPowLePowLIntegralFDerivConst μ p * (∫⁻ x, ‖fderiv ℝ u x‖ₑ ∂μ) ^ p
|
F : Type u_3
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace ℝ F
E : Type u_4
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : FiniteDimensional ℝ E
μ : Measure E
inst✝ : μ.IsAddHaarMeasure
u : E → F
hu : ContDiff ℝ 1 u
h2u : HasCompactSupport u
p : ℝ
hp✝ : (↑(finrank ℝ E)).IsConjExponent p
C : ℝ≥0 := lintegralPowLePowLIntegralFDerivConst μ p
ι : Type := Fin (finrank ℝ E)
hιcard : #ι = finrank ℝ E
this✝ : finrank ℝ E = finrank ℝ (ι → ℝ)
e : E ≃L[ℝ] ι → ℝ := ContinuousLinearEquiv.ofFinrankEq this✝
this : (Measure.map (⇑e.symm) volume).IsAddHaarMeasure
hp : (↑#ι).IsConjExponent p
h0p : 0 ≤ p
c : ℝ≥0 := μ.addHaarScalarFactor (Measure.map (⇑e.symm) volume)
hc : 0 < c
h2c : μ = c • Measure.map (⇑e.symm) volume
h3c : ↑c ≠ 0
⊢ ∫⁻ (x : E), ‖u x‖ₑ ^ p ∂μ ≤ ↑C * (∫⁻ (x : E), ‖fderiv ℝ u x‖ₑ ∂μ) ^ p
|
have h0C : C = (c * ‖(e.symm : (ι → ℝ) →L[ℝ] E)‖₊ ^ p) * (c ^ p)⁻¹ := by
simp_rw [c, ι, C, e, lintegralPowLePowLIntegralFDerivConst]
|
F : Type u_3
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace ℝ F
E : Type u_4
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : FiniteDimensional ℝ E
μ : Measure E
inst✝ : μ.IsAddHaarMeasure
u : E → F
hu : ContDiff ℝ 1 u
h2u : HasCompactSupport u
p : ℝ
hp✝ : (↑(finrank ℝ E)).IsConjExponent p
C : ℝ≥0 := lintegralPowLePowLIntegralFDerivConst μ p
ι : Type := Fin (finrank ℝ E)
hιcard : #ι = finrank ℝ E
this✝ : finrank ℝ E = finrank ℝ (ι → ℝ)
e : E ≃L[ℝ] ι → ℝ := ContinuousLinearEquiv.ofFinrankEq this✝
this : (Measure.map (⇑e.symm) volume).IsAddHaarMeasure
hp : (↑#ι).IsConjExponent p
h0p : 0 ≤ p
c : ℝ≥0 := μ.addHaarScalarFactor (Measure.map (⇑e.symm) volume)
hc : 0 < c
h2c : μ = c • Measure.map (⇑e.symm) volume
h3c : ↑c ≠ 0
h0C : C = c * ‖↑e.symm‖₊ ^ p * (c ^ p)⁻¹
⊢ ∫⁻ (x : E), ‖u x‖ₑ ^ p ∂μ ≤ ↑C * (∫⁻ (x : E), ‖fderiv ℝ u x‖ₑ ∂μ) ^ p
|
7e7c86c82b1c72d8
|
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.ratAdd_result
|
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/LRAT/Internal/Formula/RatAddResult.lean
|
theorem ratAdd_result {n : Nat} (f : DefaultFormula n) (c : DefaultClause n) (p : Literal (PosFin n))
(rupHints : Array Nat) (ratHints : Array (Nat × Array Nat)) (f' : DefaultFormula n)
(f_readyForRatAdd : ReadyForRatAdd f) (_pc : p ∈ Clause.toList c)
(ratAddSuccess : performRatAdd f c p rupHints ratHints = (f', true)) : f' = insert f c
|
case isTrue
n : Nat
f : DefaultFormula n
c : DefaultClause n
p : Literal (PosFin n)
rupHints : Array Nat
ratHints : Array (Nat × Array Nat)
f' : DefaultFormula n
f_readyForRatAdd : f.ReadyForRatAdd
_pc : p ∈ Clause.toList c
h✝ : f.ratHintsExhaustive p ratHints = true
ratAddSuccess :
(if (f.insertRupUnits c.negate).snd = true then ((f.insertRupUnits c.negate).fst, false)
else
if ((f.insertRupUnits c.negate).fst.performRupCheck rupHints).2.2.snd = true then
(((f.insertRupUnits c.negate).fst.performRupCheck rupHints).fst, false)
else
if ((f.insertRupUnits c.negate).fst.performRupCheck rupHints).2.2.fst = true then
(((f.insertRupUnits c.negate).fst.performRupCheck rupHints).fst, false)
else
if
(Array.foldl
(fun x ratHint => if x.snd = true then x.fst.performRatCheck p.negate ratHint else (x.fst, false))
(((f.insertRupUnits c.negate).fst.performRupCheck rupHints).fst, true) ratHints).snd =
false then
((Array.foldl
(fun x ratHint => if x.snd = true then x.fst.performRatCheck p.negate ratHint else (x.fst, false))
(((f.insertRupUnits c.negate).fst.performRupCheck rupHints).fst, true) ratHints).fst,
false)
else
({
clauses :=
(Array.foldl
(fun x ratHint =>
if x.snd = true then x.fst.performRatCheck p.negate ratHint else (x.fst, false))
(((f.insertRupUnits c.negate).fst.performRupCheck rupHints).fst, true)
ratHints).1.clauses,
rupUnits :=
(Array.foldl
(fun x ratHint =>
if x.snd = true then x.fst.performRatCheck p.negate ratHint else (x.fst, false))
(((f.insertRupUnits c.negate).fst.performRupCheck rupHints).fst, true)
ratHints).1.rupUnits,
ratUnits :=
(Array.foldl
(fun x ratHint =>
if x.snd = true then x.fst.performRatCheck p.negate ratHint else (x.fst, false))
(((f.insertRupUnits c.negate).fst.performRupCheck rupHints).fst, true)
ratHints).1.ratUnits,
assignments :=
restoreAssignments
(Array.foldl
(fun x ratHint =>
if x.snd = true then x.fst.performRatCheck p.negate ratHint else (x.fst, false))
(((f.insertRupUnits c.negate).fst.performRupCheck rupHints).fst, true)
ratHints).1.assignments
((f.insertRupUnits c.negate).fst.performRupCheck rupHints).2.fst }.clearRupUnits.insert
c,
true)) =
(f', true)
⊢ f' = f.insert c
|
split at ratAddSuccess
|
case isTrue.isTrue
n : Nat
f : DefaultFormula n
c : DefaultClause n
p : Literal (PosFin n)
rupHints : Array Nat
ratHints : Array (Nat × Array Nat)
f' : DefaultFormula n
f_readyForRatAdd : f.ReadyForRatAdd
_pc : p ∈ Clause.toList c
h✝¹ : f.ratHintsExhaustive p ratHints = true
h✝ : (f.insertRupUnits c.negate).snd = true
ratAddSuccess : ((f.insertRupUnits c.negate).fst, false) = (f', true)
⊢ f' = f.insert c
case isTrue.isFalse
n : Nat
f : DefaultFormula n
c : DefaultClause n
p : Literal (PosFin n)
rupHints : Array Nat
ratHints : Array (Nat × Array Nat)
f' : DefaultFormula n
f_readyForRatAdd : f.ReadyForRatAdd
_pc : p ∈ Clause.toList c
h✝¹ : f.ratHintsExhaustive p ratHints = true
h✝ : ¬(f.insertRupUnits c.negate).snd = true
ratAddSuccess :
(if ((f.insertRupUnits c.negate).fst.performRupCheck rupHints).2.2.snd = true then
(((f.insertRupUnits c.negate).fst.performRupCheck rupHints).fst, false)
else
if ((f.insertRupUnits c.negate).fst.performRupCheck rupHints).2.2.fst = true then
(((f.insertRupUnits c.negate).fst.performRupCheck rupHints).fst, false)
else
if
(Array.foldl
(fun x ratHint => if x.snd = true then x.fst.performRatCheck p.negate ratHint else (x.fst, false))
(((f.insertRupUnits c.negate).fst.performRupCheck rupHints).fst, true) ratHints).snd =
false then
((Array.foldl
(fun x ratHint => if x.snd = true then x.fst.performRatCheck p.negate ratHint else (x.fst, false))
(((f.insertRupUnits c.negate).fst.performRupCheck rupHints).fst, true) ratHints).fst,
false)
else
({
clauses :=
(Array.foldl
(fun x ratHint =>
if x.snd = true then x.fst.performRatCheck p.negate ratHint else (x.fst, false))
(((f.insertRupUnits c.negate).fst.performRupCheck rupHints).fst, true) ratHints).1.clauses,
rupUnits :=
(Array.foldl
(fun x ratHint =>
if x.snd = true then x.fst.performRatCheck p.negate ratHint else (x.fst, false))
(((f.insertRupUnits c.negate).fst.performRupCheck rupHints).fst, true) ratHints).1.rupUnits,
ratUnits :=
(Array.foldl
(fun x ratHint =>
if x.snd = true then x.fst.performRatCheck p.negate ratHint else (x.fst, false))
(((f.insertRupUnits c.negate).fst.performRupCheck rupHints).fst, true) ratHints).1.ratUnits,
assignments :=
restoreAssignments
(Array.foldl
(fun x ratHint =>
if x.snd = true then x.fst.performRatCheck p.negate ratHint else (x.fst, false))
(((f.insertRupUnits c.negate).fst.performRupCheck rupHints).fst, true)
ratHints).1.assignments
((f.insertRupUnits c.negate).fst.performRupCheck rupHints).2.fst }.clearRupUnits.insert
c,
true)) =
(f', true)
⊢ f' = f.insert c
|
957699a29d24aa93
|
MvPolynomial.eval₂_comp_right
|
Mathlib/Algebra/MvPolynomial/Eval.lean
|
theorem eval₂_comp_right {S₂} [CommSemiring S₂] (k : S₁ →+* S₂) (f : R →+* S₁) (g : σ → S₁) (p) :
k (eval₂ f g p) = eval₂ k (k ∘ g) (map f p)
|
R : Type u
S₁ : Type v
σ : Type u_1
inst✝² : CommSemiring R
inst✝¹ : CommSemiring S₁
S₂ : Type u_2
inst✝ : CommSemiring S₂
k : S₁ →+* S₂
f : R →+* S₁
g : σ → S₁
p : MvPolynomial σ R
⊢ k (eval₂ f g p) = eval₂ k (⇑k ∘ g) ((map f) p)
|
apply MvPolynomial.induction_on p
|
case h_C
R : Type u
S₁ : Type v
σ : Type u_1
inst✝² : CommSemiring R
inst✝¹ : CommSemiring S₁
S₂ : Type u_2
inst✝ : CommSemiring S₂
k : S₁ →+* S₂
f : R →+* S₁
g : σ → S₁
p : MvPolynomial σ R
⊢ ∀ (a : R), k (eval₂ f g (C a)) = eval₂ k (⇑k ∘ g) ((map f) (C a))
case h_add
R : Type u
S₁ : Type v
σ : Type u_1
inst✝² : CommSemiring R
inst✝¹ : CommSemiring S₁
S₂ : Type u_2
inst✝ : CommSemiring S₂
k : S₁ →+* S₂
f : R →+* S₁
g : σ → S₁
p : MvPolynomial σ R
⊢ ∀ (p q : MvPolynomial σ R),
k (eval₂ f g p) = eval₂ k (⇑k ∘ g) ((map f) p) →
k (eval₂ f g q) = eval₂ k (⇑k ∘ g) ((map f) q) → k (eval₂ f g (p + q)) = eval₂ k (⇑k ∘ g) ((map f) (p + q))
case h_X
R : Type u
S₁ : Type v
σ : Type u_1
inst✝² : CommSemiring R
inst✝¹ : CommSemiring S₁
S₂ : Type u_2
inst✝ : CommSemiring S₂
k : S₁ →+* S₂
f : R →+* S₁
g : σ → S₁
p : MvPolynomial σ R
⊢ ∀ (p : MvPolynomial σ R) (n : σ),
k (eval₂ f g p) = eval₂ k (⇑k ∘ g) ((map f) p) → k (eval₂ f g (p * X n)) = eval₂ k (⇑k ∘ g) ((map f) (p * X n))
|
8cc38ece9b3c3561
|
Equiv.Perm.support_extend_domain
|
Mathlib/GroupTheory/Perm/Support.lean
|
theorem support_extend_domain (f : α ≃ Subtype p) {g : Perm α} :
support (g.extendDomain f) = g.support.map f.asEmbedding
|
case pos
α : Type u_1
inst✝⁴ : DecidableEq α
inst✝³ : Fintype α
β : Type u_2
inst✝² : DecidableEq β
inst✝¹ : Fintype β
p : β → Prop
inst✝ : DecidablePred p
f : α ≃ Subtype p
g : Perm α
b : β
pb : p b
⊢ ¬↑(f (g (f.symm ⟨b, pb⟩))) = b ↔ ∃ a, ¬g a = a ∧ f.asEmbedding a = b
|
constructor
|
case pos.mp
α : Type u_1
inst✝⁴ : DecidableEq α
inst✝³ : Fintype α
β : Type u_2
inst✝² : DecidableEq β
inst✝¹ : Fintype β
p : β → Prop
inst✝ : DecidablePred p
f : α ≃ Subtype p
g : Perm α
b : β
pb : p b
⊢ ¬↑(f (g (f.symm ⟨b, pb⟩))) = b → ∃ a, ¬g a = a ∧ f.asEmbedding a = b
case pos.mpr
α : Type u_1
inst✝⁴ : DecidableEq α
inst✝³ : Fintype α
β : Type u_2
inst✝² : DecidableEq β
inst✝¹ : Fintype β
p : β → Prop
inst✝ : DecidablePred p
f : α ≃ Subtype p
g : Perm α
b : β
pb : p b
⊢ (∃ a, ¬g a = a ∧ f.asEmbedding a = b) → ¬↑(f (g (f.symm ⟨b, pb⟩))) = b
|
18d8756ce068490b
|
CategoryTheory.MonoidalCategory.prodMonoidal_leftUnitor_inv_snd
|
Mathlib/CategoryTheory/Monoidal/Category.lean
|
theorem prodMonoidal_leftUnitor_inv_snd (X : C₁ × C₂) :
((λ_ X).inv : X ⟶ 𝟙_ _ ⊗ X).2 = (λ_ X.2).inv
|
case mk
C₁ : Type u₁
inst✝³ : Category.{v₁, u₁} C₁
inst✝² : MonoidalCategory C₁
C₂ : Type u₂
inst✝¹ : Category.{v₂, u₂} C₂
inst✝ : MonoidalCategory C₂
fst✝ : C₁
snd✝ : C₂
⊢ (λ_ (fst✝, snd✝)).inv.2 = (λ_ (fst✝, snd✝).2).inv
|
rfl
|
no goals
|
8fc8e42680da267c
|
Int.negOnePow_eq_one_iff
|
Mathlib/Algebra/Ring/NegOnePow.lean
|
lemma negOnePow_eq_one_iff (n : ℤ) : n.negOnePow = 1 ↔ Even n
|
n : ℤ
⊢ n.negOnePow = 1 ↔ Even n
|
constructor
|
case mp
n : ℤ
⊢ n.negOnePow = 1 → Even n
case mpr
n : ℤ
⊢ Even n → n.negOnePow = 1
|
d95e871e9aca7f4a
|
Nat.gcd_zero_right
|
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Nat/Gcd.lean
|
theorem gcd_zero_right (n : Nat) : gcd n 0 = n
|
case succ
n : Nat
⊢ (n + 1).gcd 0 = n + 1
|
rw [gcd_succ]
|
case succ
n : Nat
⊢ (0 % n.succ).gcd n.succ = n + 1
|
361efd80289f16ab
|
Dynamics.IsDynCoverOf.iterate_le_pow
|
Mathlib/Dynamics/TopologicalEntropy/CoverEntropy.lean
|
/-- From a dynamical cover `s` with entourage `U` and time `m`, we construct covers with entourage
`U ○ U` and any multiple `m * n` of `m` with controlled cardinality. This lemma is the first step
in a submultiplicative-like property of `coverMincard`, with consequences such as explicit bounds
for the topological entropy (`coverEntropyInfEntourage_le_card_div`) and an equality between
two notions of topological entropy (`coverEntropyInf_eq_coverEntropySup_of_inv`). -/
lemma IsDynCoverOf.iterate_le_pow {T : X → X} {F : Set X} (F_inv : MapsTo T F F) {U : Set (X × X)}
(U_symm : SymmetricRel U) {m : ℕ} (n : ℕ) {s : Finset X} (h : IsDynCoverOf T F U m s) :
∃ t : Finset X, IsDynCoverOf T F (U ○ U) (m * n) t ∧ t.card ≤ s.card ^ n
|
case h
X : Type u_1
T : X → X
F : Set X
F_inv : MapsTo T F F
U : Set (X × X)
U_symm : SymmetricRel U
n : ℕ
s : Finset X
x✝ : Nonempty X
s_nemp : (↑s).Nonempty
x : X
x_F : x ∈ F
h : IsDynCoverOf T F U 0 ↑s
⊢ IsDynCoverOf T F (U ○ U) 0 {x} ∧ 1 ≤ s.card ^ n
|
exact And.intro (isDynCoverOf_zero T F (U ○ U) (singleton_nonempty x))
<| one_le_pow_of_one_le' (Nat.one_le_of_lt (Finset.Nonempty.card_pos s_nemp)) n
|
no goals
|
de3b71772507431f
|
Finmap.ext_lookup
|
Mathlib/Data/Finmap.lean
|
theorem ext_lookup {s₁ s₂ : Finmap β} : (∀ x, s₁.lookup x = s₂.lookup x) → s₁ = s₂ :=
induction_on₂ s₁ s₂ fun s₁ s₂ h => by
simp only [AList.lookup, lookup_toFinmap] at h
rw [AList.toFinmap_eq]
apply lookup_ext s₁.nodupKeys s₂.nodupKeys
intro x y
rw [h]
|
α : Type u
β : α → Type v
inst✝ : DecidableEq α
s₁✝ s₂✝ : Finmap β
s₁ s₂ : AList β
h : ∀ (x : α), dlookup x s₁.entries = dlookup x s₂.entries
⊢ s₁.entries ~ s₂.entries
|
apply lookup_ext s₁.nodupKeys s₂.nodupKeys
|
α : Type u
β : α → Type v
inst✝ : DecidableEq α
s₁✝ s₂✝ : Finmap β
s₁ s₂ : AList β
h : ∀ (x : α), dlookup x s₁.entries = dlookup x s₂.entries
⊢ ∀ (x : α) (y : β x), y ∈ dlookup x s₁.entries ↔ y ∈ dlookup x s₂.entries
|
85e1fdcd0e824010
|
second_derivative_symmetric_of_eventually
|
Mathlib/Analysis/Calculus/FDeriv/Symmetric.lean
|
theorem second_derivative_symmetric_of_eventually [IsRCLikeNormedField 𝕜]
{f' : E → E →L[𝕜] F} {x : E}
{f'' : E →L[𝕜] E →L[𝕜] F} (hf : ∀ᶠ y in 𝓝 x, HasFDerivAt f (f' y) y)
(hx : HasFDerivAt f' f'' x) (v w : E) : f'' v w = f'' w v
|
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
F : Type u_3
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
f : E → F
inst✝ : IsRCLikeNormedField 𝕜
f' : E → E →L[𝕜] F
x : E
f'' : E →L[𝕜] E →L[𝕜] F
hf : ∀ᶠ (y : E) in 𝓝 x, HasFDerivAt f (f' y) y
hx : HasFDerivAt f' f'' x
v w : E
x✝⁴ : RCLike 𝕜 := IsRCLikeNormedField.rclike 𝕜
x✝³ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
x✝² : NormedSpace ℝ F := NormedSpace.restrictScalars ℝ 𝕜 F
x✝¹ : LinearMap.CompatibleSMul E F ℝ 𝕜 := LinearMap.IsScalarTower.compatibleSMul
x✝ : LinearMap.CompatibleSMul E (E →L[𝕜] F) ℝ 𝕜 := LinearMap.IsScalarTower.compatibleSMul
f'R : E → E →L[ℝ] F := fun x => ContinuousLinearMap.restrictScalars ℝ (f' x)
hfR : ∀ᶠ (y : E) in 𝓝 x, HasFDerivAt f (f'R y) y
f''Rl : E →ₗ[ℝ] E →ₗ[ℝ] F :=
{ toFun := fun x => { toFun := fun y => (f'' x) y, map_add' := ⋯, map_smul' := ⋯ }, map_add' := ⋯, map_smul' := ⋯ }
⊢ E →L[ℝ] E →L[ℝ] F
|
refine LinearMap.mkContinuous₂ f''Rl (‖f''‖) (fun x y ↦ ?_)
|
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u_2
F : Type u_3
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
f : E → F
inst✝ : IsRCLikeNormedField 𝕜
f' : E → E →L[𝕜] F
x✝⁵ : E
f'' : E →L[𝕜] E →L[𝕜] F
hf : ∀ᶠ (y : E) in 𝓝 x✝⁵, HasFDerivAt f (f' y) y
hx : HasFDerivAt f' f'' x✝⁵
v w : E
x✝⁴ : RCLike 𝕜 := IsRCLikeNormedField.rclike 𝕜
x✝³ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
x✝² : NormedSpace ℝ F := NormedSpace.restrictScalars ℝ 𝕜 F
x✝¹ : LinearMap.CompatibleSMul E F ℝ 𝕜 := LinearMap.IsScalarTower.compatibleSMul
x✝ : LinearMap.CompatibleSMul E (E →L[𝕜] F) ℝ 𝕜 := LinearMap.IsScalarTower.compatibleSMul
f'R : E → E →L[ℝ] F := fun x => ContinuousLinearMap.restrictScalars ℝ (f' x)
hfR : ∀ᶠ (y : E) in 𝓝 x✝⁵, HasFDerivAt f (f'R y) y
f''Rl : E →ₗ[ℝ] E →ₗ[ℝ] F :=
{ toFun := fun x => { toFun := fun y => (f'' x) y, map_add' := ⋯, map_smul' := ⋯ }, map_add' := ⋯, map_smul' := ⋯ }
x y : E
⊢ ‖(f''Rl x) y‖ ≤ ‖f''‖ * ‖x‖ * ‖y‖
|
903ee5e72da42549
|
tendsto_integral_peak_smul_of_integrable_of_tendsto
|
Mathlib/MeasureTheory/Integral/PeakFunction.lean
|
theorem tendsto_integral_peak_smul_of_integrable_of_tendsto
{t : Set α} (ht : MeasurableSet t) (h'ts : t ∈ 𝓝 x₀)
(h't : μ t ≠ ∞) (hnφ : ∀ᶠ i in l, ∀ x, 0 ≤ φ i x)
(hlφ : ∀ u : Set α, IsOpen u → x₀ ∈ u → TendstoUniformlyOn φ 0 l uᶜ)
(hiφ : Tendsto (fun i ↦ ∫ x in t, φ i x ∂μ) l (𝓝 1))
(h'iφ : ∀ᶠ i in l, AEStronglyMeasurable (φ i) μ)
(hmg : Integrable g μ) (hcg : Tendsto g (𝓝 x₀) (𝓝 a)) :
Tendsto (fun i : ι ↦ ∫ x, φ i x • g x ∂μ) l (𝓝 a)
|
α : Type u_1
E : Type u_2
ι : Type u_3
hm : MeasurableSpace α
μ : Measure α
inst✝⁴ : TopologicalSpace α
inst✝³ : BorelSpace α
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
g : α → E
l : Filter ι
x₀ : α
φ : ι → α → ℝ
a : E
inst✝ : CompleteSpace E
t : Set α
ht : MeasurableSet t
h'ts : t ∈ 𝓝 x₀
h't : μ t ≠ ⊤
hnφ : ∀ᶠ (i : ι) in l, ∀ (x : α), 0 ≤ φ i x
hlφ : ∀ (u : Set α), IsOpen u → x₀ ∈ u → TendstoUniformlyOn φ 0 l uᶜ
hiφ : Tendsto (fun i => ∫ (x : α) in t, φ i x ∂μ) l (𝓝 1)
h'iφ : ∀ᶠ (i : ι) in l, AEStronglyMeasurable (φ i) μ
hmg : Integrable g μ
hcg : Tendsto g (𝓝 x₀) (𝓝 a)
this : Tendsto (fun i => ∫ (x : α) in univ, φ i x • g x ∂μ) l (𝓝 a)
⊢ Tendsto (fun i => ∫ (x : α), φ i x • g x ∂μ) l (𝓝 a)
|
simpa
|
no goals
|
95790c5debc72743
|
MeasureTheory.Measure.exists_positive_of_not_mutuallySingular
|
Mathlib/MeasureTheory/Decomposition/Lebesgue.lean
|
theorem exists_positive_of_not_mutuallySingular (μ ν : Measure α) [IsFiniteMeasure μ]
[IsFiniteMeasure ν] (h : ¬ μ ⟂ₘ ν) :
∃ ε : ℝ≥0, 0 < ε ∧
∃ E : Set α, MeasurableSet E ∧ 0 < ν E
∧ ∀ A, MeasurableSet A → ε * ν (A ∩ E) ≤ μ (A ∩ E)
|
α : Type u_1
m : MeasurableSpace α
μ ν : Measure α
inst✝¹ : IsFiniteMeasure μ
inst✝ : IsFiniteMeasure ν
h : ¬μ ⟂ₘ ν
f : ℕ → Set α
hf₁ : ∀ (n : ℕ), MeasurableSet (f n)
hf₂ : ∀ (n : ℕ) (t : Set α), MeasurableSet t → ((1 / (↑n + 1)) • ν) (t ∩ f n) ≤ μ (t ∩ f n)
A : Set α := ⋂ n, (f n)ᶜ
hAmeas : MeasurableSet A
n : ℕ
t : Set α
ht : MeasurableSet t
hf₃ : μ (t ∩ A ∩ (f n)ᶜ) ≤ ((1 / (↑n + 1)) • ν) (t ∩ A ∩ (f n)ᶜ)
⊢ μ (t ∩ A) ≤ ((1 / (↑n + 1)) • ν) (t ∩ A)
|
have : A ∩ (f n)ᶜ = A := inter_eq_left.mpr (iInter_subset _ n)
|
α : Type u_1
m : MeasurableSpace α
μ ν : Measure α
inst✝¹ : IsFiniteMeasure μ
inst✝ : IsFiniteMeasure ν
h : ¬μ ⟂ₘ ν
f : ℕ → Set α
hf₁ : ∀ (n : ℕ), MeasurableSet (f n)
hf₂ : ∀ (n : ℕ) (t : Set α), MeasurableSet t → ((1 / (↑n + 1)) • ν) (t ∩ f n) ≤ μ (t ∩ f n)
A : Set α := ⋂ n, (f n)ᶜ
hAmeas : MeasurableSet A
n : ℕ
t : Set α
ht : MeasurableSet t
hf₃ : μ (t ∩ A ∩ (f n)ᶜ) ≤ ((1 / (↑n + 1)) • ν) (t ∩ A ∩ (f n)ᶜ)
this : A ∩ (f n)ᶜ = A
⊢ μ (t ∩ A) ≤ ((1 / (↑n + 1)) • ν) (t ∩ A)
|
48437d57402f42cd
|
Complex.HadamardThreeLines.bound_exp_eq
|
Mathlib/Analysis/Complex/Hadamard.lean
|
/-- Another technical lemma needed in the proof. -/
private lemma bound_exp_eq {l u : ℝ} (hul : l < u) (z : ℂ) :
(z / (↑u - ↑l)).re - ((l : ℂ) / (↑u - ↑l)).re = (z.re - l) / (u - l)
|
l u : ℝ
hul : l < u
z : ℂ
⊢ u - l ≠ 0
|
norm_cast
|
l u : ℝ
hul : l < u
z : ℂ
⊢ ¬u - l = 0
|
ac5fdb07ee3511d8
|
RingHom.finiteType_ofLocalizationSpan
|
Mathlib/RingTheory/RingHom/FiniteType.lean
|
theorem finiteType_ofLocalizationSpan : RingHom.OfLocalizationSpan @RingHom.FiniteType
|
R S : Type u_1
inst✝¹ : CommRing R
inst✝ : CommRing S
f : R →+* S
s : Finset R
hs : Ideal.span ↑s = ⊤
H : ∀ (r : { x // x ∈ s }), (Localization.awayMap f ↑r).FiniteType
this : Algebra R S := f.toAlgebra
⊢ f.FiniteType
|
letI := fun r : s => (Localization.awayMap f r).toAlgebra
|
R S : Type u_1
inst✝¹ : CommRing R
inst✝ : CommRing S
f : R →+* S
s : Finset R
hs : Ideal.span ↑s = ⊤
H : ∀ (r : { x // x ∈ s }), (Localization.awayMap f ↑r).FiniteType
this✝ : Algebra R S := f.toAlgebra
this : (r : { x // x ∈ s }) → Algebra (Localization.Away ↑r) (Localization.Away (f ↑r)) :=
fun r => (Localization.awayMap f ↑r).toAlgebra
⊢ f.FiniteType
|
99d09e8c0e75eabf
|
YoungDiagram.coe_bot
|
Mathlib/Combinatorics/Young/YoungDiagram.lean
|
theorem coe_bot : (⊥ : YoungDiagram) = (∅ : Set (ℕ × ℕ))
|
case h
x✝ : ℕ × ℕ
⊢ x✝ ∈ ↑⊥ ↔ x✝ ∈ ∅
|
simp
|
no goals
|
ee750cadbd158324
|
fermatLastTheoremWith'_polynomial
|
Mathlib/NumberTheory/FLT/Polynomial.lean
|
theorem fermatLastTheoremWith'_polynomial {n : ℕ} (hn : 3 ≤ n) (chn : (n : k) ≠ 0) :
FermatLastTheoremWith' k[X] n
|
k : Type u_1
inst✝ : Field k
n : ℕ
hn : 3 ≤ n
chn : ↑n ≠ 0
a b c : k[X]
ha : a ≠ 0
hb : b ≠ 0
hc : c ≠ 0
a' b' : k[X]
d : k[X] := gcd a b
heq : d ^ n * (a' ^ n + b' ^ n) = c ^ n
eq_a : a = d * a'
eq_b : b = d * b'
hd : d ≠ 0
⊢ 0 < n
|
omega
|
no goals
|
0b2f8f9d4d152b49
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.