name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
Finset.preimage_inv
Mathlib/Algebra/Group/Pointwise/Finset/Basic.lean
theorem preimage_inv (s : Finset α) : s.preimage (·⁻¹) inv_injective.injOn = s⁻¹ := coe_injective <| by rw [coe_preimage, Set.inv_preimage, coe_inv]
α : Type u_2 inst✝¹ : DecidableEq α inst✝ : InvolutiveInv α s : Finset α ⊢ ↑(s.preimage (fun x => x⁻¹) ⋯) = ↑s⁻¹
rw [coe_preimage, Set.inv_preimage, coe_inv]
no goals
08856ec67b583d0d
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib/Tactic/Ring/Basic.lean
theorem add_pf_add_gt (b₁ : R) (_ : a + b₂ = c) : a + (b₁ + b₂) = b₁ + c
R : Type u_1 inst✝ : CommSemiring R a b₂ b₁ : R ⊢ a + (b₁ + b₂) = b₁ + (a + b₂)
simp [add_left_comm]
no goals
3dce76cb2798260c
BitVec.shiftLeft_ushiftRight
Mathlib/.lake/packages/lean4/src/lean/Init/Data/BitVec/Lemmas.lean
theorem shiftLeft_ushiftRight {x : BitVec w} {n : Nat}: x >>> n <<< n = x &&& BitVec.allOnes w <<< n
w n : Nat ih : ∀ {x : BitVec w}, x >>> n <<< n = x &&& allOnes w <<< n x : BitVec w i : Nat h : i < w hw : ¬w = 0 hi₂ : ¬i = 0 ⊢ 1 + (i - 1) = i
omega
no goals
d74277fca2e60b6a
CoxeterSystem.prod_alternatingWord_eq_prod_alternatingWord_sub
Mathlib/GroupTheory/Coxeter/Basic.lean
theorem prod_alternatingWord_eq_prod_alternatingWord_sub (i i' : B) (m : ℕ) (hm : m ≤ M i i' * 2) : π (alternatingWord i i' m) = π (alternatingWord i' i (M i i' * 2 - m))
case intro.inl B : Type u_1 W : Type u_3 inst✝ : Group W M : CoxeterMatrix B cs : CoxeterSystem M W i i' : B m : ℕ k : ℤ ⊢ 1 * (cs.simple i * cs.simple i') ^ k = 1 * (1 * (cs.simple i' * cs.simple i)⁻¹ ^ k)
simp
no goals
8b276f2d43ad82bd
EReal.exists_lt_mul_left_of_nonneg
Mathlib/Data/Real/EReal.lean
private lemma exists_lt_mul_left_of_nonneg (ha : 0 ≤ a) (hc : 0 ≤ c) (h : c < a * b) : ∃ a' ∈ Ico 0 a, c < a' * b
case inl a c : EReal ha : 0 ≤ a hc : 0 ≤ c h : c < a * ⊤ ⊢ ∃ a' ∈ Ico 0 a, c < a' * ⊤
rcases eq_or_lt_of_le ha with rfl | ha
case inl.inl c : EReal hc : 0 ≤ c ha : 0 ≤ 0 h : c < 0 * ⊤ ⊢ ∃ a' ∈ Ico 0 0, c < a' * ⊤ case inl.inr a c : EReal ha✝ : 0 ≤ a hc : 0 ≤ c h : c < a * ⊤ ha : 0 < a ⊢ ∃ a' ∈ Ico 0 a, c < a' * ⊤
c6bb344d64a6ce34
WeierstrassCurve.Projective.equiv_iff_eq_of_Z_eq'
Mathlib/AlgebraicGeometry/EllipticCurve/Projective.lean
lemma equiv_iff_eq_of_Z_eq' {P Q : Fin 3 → R} (hz : P z = Q z) (mem : Q z ∈ nonZeroDivisors R) : P ≈ Q ↔ P = Q
R : Type r inst✝ : CommRing R P : Fin 3 → R hz : P z = P z mem : P z ∈ nonZeroDivisors R ⊢ P ≈ P
exact Setoid.refl _
no goals
6bc90cbf1590dd35
Matrix.det_eq_of_forall_row_eq_smul_add_pred_aux
Mathlib/LinearAlgebra/Matrix/Determinant/Basic.lean
theorem det_eq_of_forall_row_eq_smul_add_pred_aux {n : ℕ} (k : Fin (n + 1)) : ∀ (c : Fin n → R) (_hc : ∀ i : Fin n, k < i.succ → c i = 0) {M N : Matrix (Fin n.succ) (Fin n.succ) R} (_h0 : ∀ j, M 0 j = N 0 j) (_hsucc : ∀ (i : Fin n) (j), M i.succ j = N i.succ j + c i * M (Fin.castSucc i) j), det M = det N
case pos R : Type v inst✝ : CommRing R n : ℕ k✝ : Fin (n + 1) k : Fin n ih : ∀ (c : Fin n → R), (∀ (i : Fin n), k.castSucc < i.succ → c i = 0) → ∀ {M N : Matrix (Fin n.succ) (Fin n.succ) R}, (∀ (j : Fin n.succ), M 0 j = N 0 j) → (∀ (i : Fin n) (j : Fin n.succ), M i.succ j = N i.succ j + c i * M i.castSucc j) → M.det = N.det c : Fin n → R hc : ∀ (i : Fin n), k.succ < i.succ → c i = 0 M N : Matrix (Fin n.succ) (Fin n.succ) R h0 : ∀ (j : Fin n.succ), M 0 j = N 0 j hsucc : ∀ (i : Fin n) (j : Fin n.succ), M i.succ j = N i.succ j + c i * M i.castSucc j M' : Matrix (Fin n.succ) (Fin n.succ) R := M.updateRow k.succ (N k.succ) hM' : M' = M.updateRow k.succ (N k.succ) hM : M = M'.updateRow k.succ (M' k.succ + c k • M k.castSucc) k_ne_succ : k.castSucc ≠ k.succ M_k : M k.castSucc = M' k.castSucc i : Fin n hi : ↑k ≤ ↑i hik : i = k ⊢ 0 = 0
rfl
no goals
8b96005e0c0eb652
BitVec.mul_comm
Mathlib/.lake/packages/lean4/src/lean/Init/Data/BitVec/Lemmas.lean
theorem mul_comm (x y : BitVec w) : x * y = y * x
case a w : Nat x y : BitVec w ⊢ (x * y).toFin = (y * x).toFin
simpa using Fin.mul_comm ..
no goals
c258f5a99a4638fb
zpow_add₀
Mathlib/Algebra/GroupWithZero/Basic.lean
lemma zpow_add₀ (ha : a ≠ 0) (m n : ℤ) : a ^ (m + n) = a ^ m * a ^ n
case hn G₀ : Type u_2 inst✝ : GroupWithZero G₀ a : G₀ ha : a ≠ 0 m : ℤ n : ℕ ihn : a ^ (m + -↑n) = a ^ m * a ^ (-↑n) ⊢ a ^ (m + (-↑n - 1)) = a ^ m * a ^ (-↑n - 1)
rw [zpow_sub_one₀ ha, ← mul_assoc, ← ihn, ← zpow_sub_one₀ ha, Int.add_sub_assoc]
no goals
56384098f6f089c9
Matrix.Represents.mul
Mathlib/LinearAlgebra/Matrix/Charpoly/LinearMap.lean
theorem Matrix.Represents.mul {A A' : Matrix ι ι R} {f f' : Module.End R M} (h : A.Represents b f) (h' : Matrix.Represents b A' f') : (A * A').Represents b (f * f')
ι : Type u_1 inst✝⁴ : Fintype ι M : Type u_2 inst✝³ : AddCommGroup M R : Type u_3 inst✝² : CommRing R inst✝¹ : Module R M b : ι → M inst✝ : DecidableEq ι A A' : Matrix ι ι R f f' : Module.End R M h : Represents b A f h' : Represents b A' f' ⊢ ((LinearMap.llcomp R (ι → R) (ι → R) M) ((Fintype.linearCombination R R) b)) (algEquivMatrix'.symm A * algEquivMatrix'.symm A') = (PiToModule.fromEnd R b) (f * f')
ext
case h.h ι : Type u_1 inst✝⁴ : Fintype ι M : Type u_2 inst✝³ : AddCommGroup M R : Type u_3 inst✝² : CommRing R inst✝¹ : Module R M b : ι → M inst✝ : DecidableEq ι A A' : Matrix ι ι R f f' : Module.End R M h : Represents b A f h' : Represents b A' f' i✝ : ι ⊢ (((LinearMap.llcomp R (ι → R) (ι → R) M) ((Fintype.linearCombination R R) b)) (algEquivMatrix'.symm A * algEquivMatrix'.symm A') ∘ₗ LinearMap.single R (fun i => R) i✝) 1 = ((PiToModule.fromEnd R b) (f * f') ∘ₗ LinearMap.single R (fun i => R) i✝) 1
1051dbaedee97977
symmDiff_sdiff_inf
Mathlib/Order/SymmDiff.lean
theorem symmDiff_sdiff_inf : a ∆ b \ (a ⊓ b) = a ∆ b
α : Type u_2 inst✝ : GeneralizedCoheytingAlgebra α a b : α ⊢ a \ (b ⊔ a ⊓ b) ⊔ b \ (a ⊔ a ⊓ b) = a ∆ b
simp [symmDiff]
no goals
dc2a903733928f81
exists_sum_eq_one_iff_pairwise_coprime
Mathlib/RingTheory/Coprime/Lemmas.lean
theorem exists_sum_eq_one_iff_pairwise_coprime [DecidableEq I] (h : t.Nonempty) : (∃ μ : I → R, (∑ i ∈ t, μ i * ∏ j ∈ t \ {i}, s j) = 1) ↔ Pairwise (IsCoprime on fun i : t ↦ s i)
case h.e_a.e_a.e_a.e_s R : Type u I : Type v inst✝¹ : CommSemiring R s : I → R t✝ : Finset I inst✝ : DecidableEq I a : I t : Finset I hat : a ∉ t h : t.Nonempty ih : (∃ μ, ∑ i ∈ t, μ i * ∏ j ∈ t \ {i}, s j = 1) ↔ Pairwise (IsCoprime on fun i => s ↑i) mem : ∀ x ∈ t, a ∈ insert a t \ {x} hs : Pairwise (IsCoprime on fun a => s ↑a) Hb : ∀ b ∈ t, IsCoprime (s a) (s b) ∧ IsCoprime (s b) (s a) μ : I → R hμ : ∑ i ∈ t, μ i * ∏ j ∈ t \ {i}, s j = 1 u v : R huv : u * ∏ i ∈ t, s i + v * s a = 1 hμ' : ∑ i ∈ t, v * ((μ i * ∏ j ∈ t \ {i}, s j) * s a) = v * s a x : I hx : x ∈ t ⊢ (insert a t \ {x}) \ {a} = t \ {x}
rw [sdiff_sdiff_comm, sdiff_singleton_eq_erase a, erase_insert hat]
no goals
8a28cdbc75233b6c
AnalyticAt.eventually_constant_or_nhds_le_map_nhds
Mathlib/Analysis/Complex/OpenMapping.lean
theorem AnalyticAt.eventually_constant_or_nhds_le_map_nhds {z₀ : E} (hg : AnalyticAt ℂ g z₀) : (∀ᶠ z in 𝓝 z₀, g z = g z₀) ∨ 𝓝 (g z₀) ≤ map g (𝓝 z₀)
case pos.h E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E g : E → ℂ z₀ : E hg : AnalyticAt ℂ g z₀ ray : E → ℂ → E := fun z t => z₀ + t • z gray : E → ℂ → ℂ := fun z => g ∘ ray z r : ℝ hr : r > 0 hgr : ball z₀ r ⊆ {x | AnalyticAt ℂ g x} h1 : ∀ z ∈ sphere 0 1, AnalyticOnNhd ℂ (gray z) (ball 0 r) h : ∀ z ∈ sphere 0 1, ∀ᶠ (t : ℂ) in 𝓝 0, gray z t = gray z 0 z : E hz : z ∈ ball z₀ r h' : ‖z - z₀‖ ≠ 0 w : E := ‖z - z₀‖⁻¹ • (z - z₀) h3 : ∀ t ∈ ball 0 r, gray w t = g z₀ ⊢ g z = g z₀
have h4 : ‖z - z₀‖ < r := by simpa [dist_eq_norm] using mem_ball.mp hz
case pos.h E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E g : E → ℂ z₀ : E hg : AnalyticAt ℂ g z₀ ray : E → ℂ → E := fun z t => z₀ + t • z gray : E → ℂ → ℂ := fun z => g ∘ ray z r : ℝ hr : r > 0 hgr : ball z₀ r ⊆ {x | AnalyticAt ℂ g x} h1 : ∀ z ∈ sphere 0 1, AnalyticOnNhd ℂ (gray z) (ball 0 r) h : ∀ z ∈ sphere 0 1, ∀ᶠ (t : ℂ) in 𝓝 0, gray z t = gray z 0 z : E hz : z ∈ ball z₀ r h' : ‖z - z₀‖ ≠ 0 w : E := ‖z - z₀‖⁻¹ • (z - z₀) h3 : ∀ t ∈ ball 0 r, gray w t = g z₀ h4 : ‖z - z₀‖ < r ⊢ g z = g z₀
bbddb65fce2e7708
RingHom.finitePresentation_ofLocalizationSpanTarget
Mathlib/RingTheory/RingHom/FinitePresentation.lean
theorem finitePresentation_ofLocalizationSpanTarget : OfLocalizationSpanTarget @FinitePresentation
case h R S : Type u_1 inst✝¹ : CommRing R inst✝ : CommRing S f✝ : R →+* S s : Finset S hs : Ideal.span ↑s = ⊤ this : Algebra R S := f✝.toAlgebra H : ∀ (r : { x // x ∈ s }), Algebra.FinitePresentation R (Localization.Away ↑r) hfintype : Algebra.FiniteType R S n : ℕ f : MvPolynomial (Fin n) R →ₐ[R] S hf : Function.Surjective ⇑f l : ↑↑s →₀ S hl : (Finsupp.linearCombination S Subtype.val) l = 1 g' : { x // x ∈ s } → MvPolynomial (Fin n) R hg' : ∀ (g : { x // x ∈ s }), f (g' g) = ↑g h' : { x // x ∈ s } → MvPolynomial (Fin n) R hh' : ∀ (g : { x // x ∈ s }), f (h' g) = l g I : Ideal (MvPolynomial (Fin n) R) := Ideal.span {∑ g : { x // x ∈ s }, g' g * h' g - 1} A : Type u_1 := MvPolynomial (Fin n) R ⧸ I hfI : ∀ a ∈ I, f a = 0 f' : A →ₐ[R] S := Ideal.Quotient.liftₐ I f hfI hf' : Function.Surjective ⇑f' t : Finset A := Finset.image (fun g => (Ideal.Quotient.mk I) (g' g)) Finset.univ ⊢ (Ideal.Quotient.mk I) (∑ g : { x // x ∈ s }, g' g * h' g) - 1 = 0
rw [← map_one (Ideal.Quotient.mk I), ← map_sub, Ideal.Quotient.eq_zero_iff_mem]
case h R S : Type u_1 inst✝¹ : CommRing R inst✝ : CommRing S f✝ : R →+* S s : Finset S hs : Ideal.span ↑s = ⊤ this : Algebra R S := f✝.toAlgebra H : ∀ (r : { x // x ∈ s }), Algebra.FinitePresentation R (Localization.Away ↑r) hfintype : Algebra.FiniteType R S n : ℕ f : MvPolynomial (Fin n) R →ₐ[R] S hf : Function.Surjective ⇑f l : ↑↑s →₀ S hl : (Finsupp.linearCombination S Subtype.val) l = 1 g' : { x // x ∈ s } → MvPolynomial (Fin n) R hg' : ∀ (g : { x // x ∈ s }), f (g' g) = ↑g h' : { x // x ∈ s } → MvPolynomial (Fin n) R hh' : ∀ (g : { x // x ∈ s }), f (h' g) = l g I : Ideal (MvPolynomial (Fin n) R) := Ideal.span {∑ g : { x // x ∈ s }, g' g * h' g - 1} A : Type u_1 := MvPolynomial (Fin n) R ⧸ I hfI : ∀ a ∈ I, f a = 0 f' : A →ₐ[R] S := Ideal.Quotient.liftₐ I f hfI hf' : Function.Surjective ⇑f' t : Finset A := Finset.image (fun g => (Ideal.Quotient.mk I) (g' g)) Finset.univ ⊢ ∑ g : { x // x ∈ s }, g' g * h' g - 1 ∈ I
1e270402a60647b4
AkraBazziRecurrence.GrowsPolynomially.add
Mathlib/Computability/AkraBazzi/GrowsPolynomially.lean
protected lemma GrowsPolynomially.add {f g : ℝ → ℝ} (hf : GrowsPolynomially f) (hg : GrowsPolynomially g) (hf' : 0 ≤ᶠ[atTop] f) (hg' : 0 ≤ᶠ[atTop] g) : GrowsPolynomially fun x => f x + g x
case h f g : ℝ → ℝ hf✝¹ : GrowsPolynomially f hg✝¹ : GrowsPolynomially g hf'✝ : 0 ≤ᶠ[atTop] f hg'✝ : 0 ≤ᶠ[atTop] g b : ℝ hb : b ∈ Set.Ioo 0 1 c₁ : ℝ hc₁_mem : c₁ > 0 c₂ : ℝ hc₂_mem : c₂ > 0 hf✝ : ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x) c₃ : ℝ hc₃_mem : c₃ > 0 c₄ : ℝ left✝ : c₄ > 0 hg✝ : ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (b * x) x, g u ∈ Set.Icc (c₃ * g x) (c₄ * g x) x : ℝ hf : ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x) hg : ∀ u ∈ Set.Icc (b * x) x, g u ∈ Set.Icc (c₃ * g x) (c₄ * g x) hf' : ∀ (y : ℝ), b * id x ≤ y → 0 y ≤ f y hg' : ∀ (y : ℝ), b * id x ≤ y → 0 y ≤ g y hx_pos : 0 ≤ x u : ℝ hu : u ∈ Set.Icc (b * x) x ⊢ f u + g u ∈ Set.Icc ((c₁ ⊓ c₃) * (f x + g x)) ((c₂ ⊔ c₄) * (f x + g x))
have hbx : b * x ≤ x := calc b * x ≤ 1 * x := by gcongr; exact le_of_lt hb.2 _ = x := by ring
case h f g : ℝ → ℝ hf✝¹ : GrowsPolynomially f hg✝¹ : GrowsPolynomially g hf'✝ : 0 ≤ᶠ[atTop] f hg'✝ : 0 ≤ᶠ[atTop] g b : ℝ hb : b ∈ Set.Ioo 0 1 c₁ : ℝ hc₁_mem : c₁ > 0 c₂ : ℝ hc₂_mem : c₂ > 0 hf✝ : ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x) c₃ : ℝ hc₃_mem : c₃ > 0 c₄ : ℝ left✝ : c₄ > 0 hg✝ : ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (b * x) x, g u ∈ Set.Icc (c₃ * g x) (c₄ * g x) x : ℝ hf : ∀ u ∈ Set.Icc (b * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x) hg : ∀ u ∈ Set.Icc (b * x) x, g u ∈ Set.Icc (c₃ * g x) (c₄ * g x) hf' : ∀ (y : ℝ), b * id x ≤ y → 0 y ≤ f y hg' : ∀ (y : ℝ), b * id x ≤ y → 0 y ≤ g y hx_pos : 0 ≤ x u : ℝ hu : u ∈ Set.Icc (b * x) x hbx : b * x ≤ x ⊢ f u + g u ∈ Set.Icc ((c₁ ⊓ c₃) * (f x + g x)) ((c₂ ⊔ c₄) * (f x + g x))
23da4f580f793a06
MeasureTheory.L1.integral_smul
Mathlib/MeasureTheory/Integral/BochnerL1.lean
theorem integral_smul (c : 𝕜) (f : α →₁[μ] E) : integral (c • f) = c • integral f
α : Type u_1 E : Type u_2 𝕜 : Type u_4 inst✝⁵ : NormedAddCommGroup E m : MeasurableSpace α μ : Measure α inst✝⁴ : NormedSpace ℝ E inst✝³ : NontriviallyNormedField 𝕜 inst✝² : NormedSpace 𝕜 E inst✝¹ : SMulCommClass ℝ 𝕜 E inst✝ : CompleteSpace E c : 𝕜 f : ↥(Lp E 1 μ) ⊢ integral (c • f) = c • integral f
simp only [integral]
α : Type u_1 E : Type u_2 𝕜 : Type u_4 inst✝⁵ : NormedAddCommGroup E m : MeasurableSpace α μ : Measure α inst✝⁴ : NormedSpace ℝ E inst✝³ : NontriviallyNormedField 𝕜 inst✝² : NormedSpace 𝕜 E inst✝¹ : SMulCommClass ℝ 𝕜 E inst✝ : CompleteSpace E c : 𝕜 f : ↥(Lp E 1 μ) ⊢ integralCLM (c • f) = c • integralCLM f
dd57e275448d5aed
Complex.sinh_three_mul
Mathlib/Data/Complex/Trigonometric.lean
theorem sinh_three_mul : sinh (3 * x) = 4 * sinh x ^ 3 + 3 * sinh x
x : ℂ h1 : x + 2 * x = 3 * x ⊢ sinh x * cosh (2 * x) + cosh x * sinh (2 * x) = 4 * sinh x ^ 3 + 3 * sinh x
simp only [cosh_two_mul, sinh_two_mul]
x : ℂ h1 : x + 2 * x = 3 * x ⊢ sinh x * (cosh x ^ 2 + sinh x ^ 2) + cosh x * (2 * sinh x * cosh x) = 4 * sinh x ^ 3 + 3 * sinh x
737e6f979e70c403
one_le_gauge_of_not_mem
Mathlib/Analysis/Convex/Gauge.lean
theorem one_le_gauge_of_not_mem (hs₁ : StarConvex ℝ 0 s) (hs₂ : Absorbs ℝ s {x}) (hx : x ∉ s) : 1 ≤ gauge s x := le_gauge_of_not_mem hs₁ hs₂ <| by rwa [one_smul]
E : Type u_2 inst✝¹ : AddCommGroup E inst✝ : Module ℝ E s : Set E x : E hs₁ : StarConvex ℝ 0 s hs₂ : Absorbs ℝ s {x} hx : x ∉ s ⊢ x ∉ 1 • s
rwa [one_smul]
no goals
c71c0bf2f1d5db5a
AlgebraicGeometry.Scheme.Pullback.range_map
Mathlib/AlgebraicGeometry/PullbackCarrier.lean
lemma range_map {X' Y' S' : Scheme.{u}} (f' : X' ⟶ S') (g' : Y' ⟶ S') (i₁ : X ⟶ X') (i₂ : Y ⟶ Y') (i₃ : S ⟶ S') (e₁ : f ≫ i₃ = i₁ ≫ f') (e₂ : g ≫ i₃ = i₂ ≫ g') [Mono i₃] : Set.range (pullback.map f g f' g' i₁ i₂ i₃ e₁ e₂).base = (pullback.fst f' g').base ⁻¹' Set.range i₁.base ∩ (pullback.snd f' g').base ⁻¹' Set.range i₂.base
case h.mpr X Y S : Scheme f : X ⟶ S g : Y ⟶ S X' Y' S' : Scheme f' : X' ⟶ S' g' : Y' ⟶ S' i₁ : X ⟶ X' i₂ : Y ⟶ Y' i₃ : S ⟶ S' e₁ : f ≫ i₃ = i₁ ≫ f' e₂ : g ≫ i₃ = i₂ ≫ g' inst✝ : Mono i₃ z : ↑↑(pullback f' g').toPresheafedSpace x : ↑↑X.toPresheafedSpace hx : (ConcreteCategory.hom i₁.base) x = (ConcreteCategory.hom (pullback.fst f' g').base) z y : ↑↑Y.toPresheafedSpace hy : (ConcreteCategory.hom i₂.base) y = (ConcreteCategory.hom (pullback.snd f' g').base) z ⊢ z ∈ Set.range ⇑(ConcreteCategory.hom (pullback.map f g f' g' i₁ i₂ i₃ e₁ e₂).base)
let T₁ : Triplet (pullback.fst f' g') i₁ := Triplet.mk' z x hx.symm
case h.mpr X Y S : Scheme f : X ⟶ S g : Y ⟶ S X' Y' S' : Scheme f' : X' ⟶ S' g' : Y' ⟶ S' i₁ : X ⟶ X' i₂ : Y ⟶ Y' i₃ : S ⟶ S' e₁ : f ≫ i₃ = i₁ ≫ f' e₂ : g ≫ i₃ = i₂ ≫ g' inst✝ : Mono i₃ z : ↑↑(pullback f' g').toPresheafedSpace x : ↑↑X.toPresheafedSpace hx : (ConcreteCategory.hom i₁.base) x = (ConcreteCategory.hom (pullback.fst f' g').base) z y : ↑↑Y.toPresheafedSpace hy : (ConcreteCategory.hom i₂.base) y = (ConcreteCategory.hom (pullback.snd f' g').base) z T₁ : Triplet (pullback.fst f' g') i₁ := Triplet.mk' z x ⋯ ⊢ z ∈ Set.range ⇑(ConcreteCategory.hom (pullback.map f g f' g' i₁ i₂ i₃ e₁ e₂).base)
6ca8171f1040fa44
Nat.testBit_two_pow_sub_succ
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Nat/Bitwise/Lemmas.lean
theorem testBit_two_pow_sub_succ (h₂ : x < 2 ^ n) (i : Nat) : testBit (2^n - (x + 1)) i = (decide (i < n) && ! testBit x i)
i : Nat ih : ∀ {x n : Nat}, x < 2 ^ n → (2 ^ n - (x + 1)).testBit i = (decide (i < n) && !x.testBit i) x n✝ n : Nat h₂ : x < 2 ^ (n + 1) ⊢ ((2 ^ (n + 1) - (x + 1)) / 2).testBit i = (decide (i + 1 < n + 1) && !(x / 2).testBit i)
rw [Nat.two_pow_succ_sub_succ_div_two, ih]
i : Nat ih : ∀ {x n : Nat}, x < 2 ^ n → (2 ^ n - (x + 1)).testBit i = (decide (i < n) && !x.testBit i) x n✝ n : Nat h₂ : x < 2 ^ (n + 1) ⊢ (decide (i < n) && !(x / 2).testBit i) = (decide (i + 1 < n + 1) && !(x / 2).testBit i) i : Nat ih : ∀ {x n : Nat}, x < 2 ^ n → (2 ^ n - (x + 1)).testBit i = (decide (i < n) && !x.testBit i) x n✝ n : Nat h₂ : x < 2 ^ (n + 1) ⊢ x / 2 < 2 ^ n
09c576eb1a89925c
differentiableWithinAt_localInvariantProp
Mathlib/Geometry/Manifold/MFDeriv/Defs.lean
theorem differentiableWithinAt_localInvariantProp : (contDiffGroupoid 1 I).LocalInvariantProp (contDiffGroupoid 1 I') (DifferentiableWithinAtProp I I') := { is_local
𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E H : Type u_3 inst✝³ : TopologicalSpace H I : ModelWithCorners 𝕜 E H E' : Type u_5 inst✝² : NormedAddCommGroup E' inst✝¹ : NormedSpace 𝕜 E' H' : Type u_6 inst✝ : TopologicalSpace H' I' : ModelWithCorners 𝕜 E' H' s : Set H x : H f : H → H' e' : PartialHomeomorph H' H' he' : e' ∈ contDiffGroupoid 1 I' hs : s ⊆ f ⁻¹' e'.source hx : f x ∈ e'.source h : DifferentiableWithinAt 𝕜 (↑I' ∘ f ∘ ↑I.symm) (↑I.symm ⁻¹' s ∩ range ↑I) (↑I x) A : (↑I' ∘ f ∘ ↑I.symm) (↑I x) ∈ ↑I'.symm ⁻¹' e'.source ∩ range ↑I' this : ContDiffWithinAt 𝕜 1 (↑I' ∘ ↑e' ∘ ↑I'.symm) (↑I'.symm ⁻¹' e'.source ∩ range ↑I') ((↑I' ∘ f ∘ ↑I.symm) (↑I x)) ⊢ DifferentiableWithinAt 𝕜 (↑I' ∘ (↑e' ∘ f) ∘ ↑I.symm) (↑I.symm ⁻¹' s ∩ range ↑I) (↑I x)
convert (this.differentiableWithinAt le_rfl).comp _ h _
case h.e'_11 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E H : Type u_3 inst✝³ : TopologicalSpace H I : ModelWithCorners 𝕜 E H E' : Type u_5 inst✝² : NormedAddCommGroup E' inst✝¹ : NormedSpace 𝕜 E' H' : Type u_6 inst✝ : TopologicalSpace H' I' : ModelWithCorners 𝕜 E' H' s : Set H x : H f : H → H' e' : PartialHomeomorph H' H' he' : e' ∈ contDiffGroupoid 1 I' hs : s ⊆ f ⁻¹' e'.source hx : f x ∈ e'.source h : DifferentiableWithinAt 𝕜 (↑I' ∘ f ∘ ↑I.symm) (↑I.symm ⁻¹' s ∩ range ↑I) (↑I x) A : (↑I' ∘ f ∘ ↑I.symm) (↑I x) ∈ ↑I'.symm ⁻¹' e'.source ∩ range ↑I' this : ContDiffWithinAt 𝕜 1 (↑I' ∘ ↑e' ∘ ↑I'.symm) (↑I'.symm ⁻¹' e'.source ∩ range ↑I') ((↑I' ∘ f ∘ ↑I.symm) (↑I x)) ⊢ ↑I' ∘ (↑e' ∘ f) ∘ ↑I.symm = (↑I' ∘ ↑e' ∘ ↑I'.symm) ∘ ↑I' ∘ f ∘ ↑I.symm 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E H : Type u_3 inst✝³ : TopologicalSpace H I : ModelWithCorners 𝕜 E H E' : Type u_5 inst✝² : NormedAddCommGroup E' inst✝¹ : NormedSpace 𝕜 E' H' : Type u_6 inst✝ : TopologicalSpace H' I' : ModelWithCorners 𝕜 E' H' s : Set H x : H f : H → H' e' : PartialHomeomorph H' H' he' : e' ∈ contDiffGroupoid 1 I' hs : s ⊆ f ⁻¹' e'.source hx : f x ∈ e'.source h : DifferentiableWithinAt 𝕜 (↑I' ∘ f ∘ ↑I.symm) (↑I.symm ⁻¹' s ∩ range ↑I) (↑I x) A : (↑I' ∘ f ∘ ↑I.symm) (↑I x) ∈ ↑I'.symm ⁻¹' e'.source ∩ range ↑I' this : ContDiffWithinAt 𝕜 1 (↑I' ∘ ↑e' ∘ ↑I'.symm) (↑I'.symm ⁻¹' e'.source ∩ range ↑I') ((↑I' ∘ f ∘ ↑I.symm) (↑I x)) ⊢ MapsTo (↑I' ∘ f ∘ ↑I.symm) (↑I.symm ⁻¹' s ∩ range ↑I) (↑I'.symm ⁻¹' e'.source ∩ range ↑I')
3d1405d37db22f10
Subsingleton.helim
Mathlib/.lake/packages/lean4/src/lean/Init/Core.lean
theorem Subsingleton.helim {α β : Sort u} [h₁ : Subsingleton α] (h₂ : α = β) (a : α) (b : β) : HEq a b
α β : Sort u h₁ : Subsingleton α h₂ : α = β a : α b : β ⊢ HEq a b
subst h₂
α : Sort u h₁ : Subsingleton α a b : α ⊢ HEq a b
44744a880a1d9952
List.Perm.sizeOf_eq_sizeOf
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Perm.lean
theorem Perm.sizeOf_eq_sizeOf [SizeOf α] {l₁ l₂ : List α} (h : l₁ ~ l₂) : sizeOf l₁ = sizeOf l₂
case swap α : Type u_1 inst✝ : SizeOf α l₁ l₂ : List α x✝ y✝ : α l✝ : List α ⊢ sizeOf (y✝ :: x✝ :: l✝) = sizeOf (x✝ :: y✝ :: l✝)
simp [Nat.add_left_comm]
no goals
3d77188ce1f7e9a5
CStarAlgebra.span_nonneg_inter_ball
Mathlib/Analysis/CStarAlgebra/SpecialFunctions/PosPart.lean
/-- A C⋆-algebra is spanned by nonnegative elements of norm less than `r`. -/ lemma span_nonneg_inter_ball {r : ℝ} (hr : 0 < r) : span ℂ ({x : A | 0 ≤ x} ∩ Metric.ball 0 r) = ⊤
case h.H A : Type u_1 inst✝² : NonUnitalCStarAlgebra A inst✝¹ : PartialOrder A inst✝ : StarOrderedRing A r : ℝ hr : 0 < r ⊢ Metric.closedBall 0 (r / 2) ⊆ Metric.ball 0 r
exact Metric.closedBall_subset_ball <| half_lt_self hr
no goals
eed7d32d179fb6f5
Nat.ordProj_pos
Mathlib/Data/Nat/Factorization/Basic.lean
theorem ordProj_pos (n p : ℕ) : 0 < ordProj[p] n
n p : ℕ ⊢ 0 < p ^ n.factorization p
if pp : p.Prime then simp [pow_pos pp.pos] else simp [pp]
no goals
1096efa6604cd9d5
SimpleGraph.Walk.darts_dropUntil_subset
Mathlib/Combinatorics/SimpleGraph/Connectivity/WalkDecomp.lean
theorem darts_dropUntil_subset {u v w : V} (p : G.Walk v w) (h : u ∈ p.support) : (p.dropUntil u h).darts ⊆ p.darts := fun x hx => by rw [← take_spec p h, darts_append, List.mem_append] exact Or.inr hx
V : Type u G : SimpleGraph V inst✝ : DecidableEq V u v w : V p : G.Walk v w h : u ∈ p.support x : G.Dart hx : x ∈ (p.dropUntil u h).darts ⊢ x ∈ p.darts
rw [← take_spec p h, darts_append, List.mem_append]
V : Type u G : SimpleGraph V inst✝ : DecidableEq V u v w : V p : G.Walk v w h : u ∈ p.support x : G.Dart hx : x ∈ (p.dropUntil u h).darts ⊢ x ∈ (p.takeUntil u h).darts ∨ x ∈ (p.dropUntil u h).darts
b4133a6e267ddcc5
Profinite.NobelingProof.swapTrue_mem_C1
Mathlib/Topology/Category/Profinite/Nobeling.lean
theorem swapTrue_mem_C1 (f : π (C1 C ho) (ord I · < o)) : SwapTrue o f.val ∈ C1 C ho
I : Type u C : Set (I → Bool) inst✝¹ : LinearOrder I inst✝ : WellFoundedLT I o : Ordinal.{u} hsC : contained C (Order.succ o) ho : o < Ordinal.type fun x1 x2 => x1 < x2 f : ↑(π (C1 C ho) fun x => ord I x < o) ⊢ SwapTrue o ↑f ∈ C1 C ho
obtain ⟨f, g, hg, rfl⟩ := f
case mk.intro.intro I : Type u C : Set (I → Bool) inst✝¹ : LinearOrder I inst✝ : WellFoundedLT I o : Ordinal.{u} hsC : contained C (Order.succ o) ho : o < Ordinal.type fun x1 x2 => x1 < x2 g : I → Bool hg : g ∈ C1 C ho ⊢ SwapTrue o ↑⟨Proj (fun x => ord I x < o) g, ⋯⟩ ∈ C1 C ho
399ed2381c83746d
MeasureTheory.unifTight_of_tendsto_Lp
Mathlib/MeasureTheory/Function/UnifTight.lean
theorem unifTight_of_tendsto_Lp (hp' : p ≠ ∞) (hf : ∀ n, MemLp (f n) p μ) (hg : MemLp g p μ) (hfg : Tendsto (fun n => eLpNorm (f n - g) p μ) atTop (𝓝 0)) : UnifTight f p μ
α : Type u_1 β : Type u_2 m : MeasurableSpace α inst✝ : NormedAddCommGroup β μ : Measure α p : ℝ≥0∞ f : ℕ → α → β g : α → β hp' : p ≠ ⊤ hf : ∀ (n : ℕ), MemLp (f n) p μ hg : MemLp g p μ hfg : Tendsto (fun n => eLpNorm (f n - g) p μ) atTop (𝓝 0) ⊢ UnifTight f p μ
have : f = (fun _ => g) + fun n => f n - g := by ext1 n; simp
α : Type u_1 β : Type u_2 m : MeasurableSpace α inst✝ : NormedAddCommGroup β μ : Measure α p : ℝ≥0∞ f : ℕ → α → β g : α → β hp' : p ≠ ⊤ hf : ∀ (n : ℕ), MemLp (f n) p μ hg : MemLp g p μ hfg : Tendsto (fun n => eLpNorm (f n - g) p μ) atTop (𝓝 0) this : f = (fun x => g) + fun n => f n - g ⊢ UnifTight f p μ
e9a49ff753d29c27
sub_inv_antitoneOn_Icc_left
Mathlib/Algebra/Order/Field/Basic.lean
theorem sub_inv_antitoneOn_Icc_left (ha : b < c) : AntitoneOn (fun x ↦ (x-c)⁻¹) (Set.Icc a b)
case neg α : Type u_2 inst✝ : LinearOrderedField α a b c : α ha : b < c hab : ¬a ≤ b ⊢ AntitoneOn (fun x => (x - c)⁻¹) (Set.Icc a b)
simp [hab, Set.Subsingleton.antitoneOn]
no goals
4c600f8928948d7c
Submodule.quotDualCoannihilatorToDual_nondegenerate
Mathlib/LinearAlgebra/Dual.lean
theorem quotDualCoannihilatorToDual_nondegenerate (W : Submodule R (Dual R M)) : W.quotDualCoannihilatorToDual.Nondegenerate
R : Type u_1 M : Type u_2 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M W : Submodule R (Dual R M) this : AddCommGroup ↥W := inferInstance ⊢ Function.Injective ⇑W.quotDualCoannihilatorToDual ∧ Function.Injective ⇑W.quotDualCoannihilatorToDual.flip
exact ⟨W.quotDualCoannihilatorToDual_injective, W.flip_quotDualCoannihilatorToDual_injective⟩
no goals
64b0bcaa076efee4
LieAlgebra.IsKilling.cartanEquivDual_symm_apply_mem_corootSpace
Mathlib/Algebra/Lie/Weights/Killing.lean
/-- This is Proposition 4.18 from [carter2005] except that we use `LieModule.exists_forall_lie_eq_smul` instead of Lie's theorem (and so avoid assuming `K` has characteristic zero). -/ lemma cartanEquivDual_symm_apply_mem_corootSpace (α : Weight K H L) : (cartanEquivDual H).symm α ∈ corootSpace α
K : Type u_2 L : Type u_3 inst✝⁶ : LieRing L inst✝⁵ : Field K inst✝⁴ : LieAlgebra K L inst✝³ : FiniteDimensional K L H : LieSubalgebra K L inst✝² : H.IsCartanSubalgebra inst✝¹ : IsKilling K L inst✝ : IsTriangularizable K (↥H) L α : Weight K (↥H) L e : L he₀ : e ≠ 0 he : ∀ (x : ↥H), ⁅x, e⁆ = α x • e heα : e ∈ rootSpace H ⇑α f : L hfα : f ∈ rootSpace H (-⇑α) hf : ((killingForm K L) e) f ≠ 0 this : ⁅e, f⁆ = ((killingForm K L) e) f • ↑((cartanEquivDual H).symm (Weight.toLinear K (↥H) L α)) ⊢ ⁅(((killingForm K L) e) f)⁻¹ • e, f⁆ = ↑((cartanEquivDual H).symm (Weight.toLinear K (↥H) L α))
simpa [inv_smul_eq_iff₀ hf]
no goals
71b75475a1107604
UpperHalfPlane.tendsto_coe_atImInfty
Mathlib/Analysis/Complex/UpperHalfPlane/FunctionsBoundedAtInfty.lean
lemma tendsto_coe_atImInfty : Tendsto UpperHalfPlane.coe atImInfty (comap Complex.im atTop)
⊢ Tendsto UpperHalfPlane.coe atImInfty (comap Complex.im atTop)
simpa only [atImInfty, tendsto_comap_iff, Function.comp_def, funext UpperHalfPlane.coe_im] using tendsto_comap
no goals
9026dcafb42e7013
List.eraseP_filter
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Erase.lean
theorem eraseP_filter (f : α → Bool) (l : List α) : (filter f l).eraseP p = filter f (l.eraseP (fun x => p x && f x))
α : Type u_1 p f : α → Bool l : List α ⊢ eraseP p (filter f l) = filter f (eraseP (fun x => p x && f x) l)
rw [← filterMap_eq_filter, eraseP_filterMap]
α : Type u_1 p f : α → Bool l : List α ⊢ filterMap (Option.guard fun x => f x = true) (eraseP (fun x => match Option.guard (fun x => f x = true) x with | some y => p y | none => false) l) = filterMap (Option.guard fun x => f x = true) (eraseP (fun x => p x && f x) l)
4bc6b7ef8c097500
PerfectClosure.mk_eq_iff
Mathlib/FieldTheory/PerfectClosure.lean
theorem mk_eq_iff (x y : ℕ × K) : mk K p x = mk K p y ↔ ∃ z, (frobenius K p)^[y.1 + z] x.2 = (frobenius K p)^[x.1 + z] y.2
case mp.trans.intro.intro K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x✝ y✝ x y z : ℕ × K H1 : Relation.EqvGen (R K p) x y H2 : Relation.EqvGen (R K p) y z z1 : ℕ ih1 : (⇑(frobenius K p))^[y.1 + z1] x.2 = (⇑(frobenius K p))^[x.1 + z1] y.2 z2 : ℕ ih2 : (⇑(frobenius K p))^[z.1 + z2] y.2 = (⇑(frobenius K p))^[y.1 + z2] z.2 ⊢ (⇑(frobenius K p))^[x.1 + z1] ((⇑(frobenius K p))^[y.1 + z2] z.2) = (⇑(frobenius K p))^[x.1 + (z2 + (y.1 + z1))] z.2
rw [← iterate_add_apply]
case mp.trans.intro.intro K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x✝ y✝ x y z : ℕ × K H1 : Relation.EqvGen (R K p) x y H2 : Relation.EqvGen (R K p) y z z1 : ℕ ih1 : (⇑(frobenius K p))^[y.1 + z1] x.2 = (⇑(frobenius K p))^[x.1 + z1] y.2 z2 : ℕ ih2 : (⇑(frobenius K p))^[z.1 + z2] y.2 = (⇑(frobenius K p))^[y.1 + z2] z.2 ⊢ (⇑(frobenius K p))^[x.1 + z1 + (y.1 + z2)] z.2 = (⇑(frobenius K p))^[x.1 + (z2 + (y.1 + z1))] z.2
50fcb88ed45b5508
cauchySeq_shift
Mathlib/Topology/UniformSpace/Cauchy.lean
theorem cauchySeq_shift {u : ℕ → α} (k : ℕ) : CauchySeq (fun n ↦ u (n + k)) ↔ CauchySeq u
case mpr α : Type u uniformSpace : UniformSpace α u : ℕ → α k : ℕ h : CauchySeq u ⊢ CauchySeq fun n => u (n + k)
exact h.comp_tendsto (tendsto_add_atTop_nat k)
no goals
ea02bac41604f3b7
EReal.add_ne_top_iff_of_ne_bot_of_ne_top
Mathlib/Data/Real/EReal.lean
lemma add_ne_top_iff_of_ne_bot_of_ne_top {x y : EReal} (hy : y ≠ ⊥) (hy' : y ≠ ⊤) : x + y ≠ ⊤ ↔ x ≠ ⊤
x y : EReal hy : y ≠ ⊥ hy' : y ≠ ⊤ ⊢ x + y ≠ ⊤ ↔ x ≠ ⊤
induction x <;> simp [add_ne_top_iff_of_ne_bot, hy, hy']
no goals
c3c2f04cde960708
Int.clog_natCast
Mathlib/Data/Int/Log.lean
theorem clog_natCast (b : ℕ) (n : ℕ) : clog b (n : R) = Nat.clog b n
R : Type u_1 inst✝¹ : LinearOrderedSemifield R inst✝ : FloorSemiring R b n : ℕ ⊢ clog b ↑n = ↑(Nat.clog b n)
rcases n with - | n
case zero R : Type u_1 inst✝¹ : LinearOrderedSemifield R inst✝ : FloorSemiring R b : ℕ ⊢ clog b ↑0 = ↑(Nat.clog b 0) case succ R : Type u_1 inst✝¹ : LinearOrderedSemifield R inst✝ : FloorSemiring R b n : ℕ ⊢ clog b ↑(n + 1) = ↑(Nat.clog b (n + 1))
b2299eaf3f2b279a
LieSubalgebra.isCartanSubalgebra_iff_isUcsLimit
Mathlib/Algebra/Lie/CartanSubalgebra.lean
theorem isCartanSubalgebra_iff_isUcsLimit : H.IsCartanSubalgebra ↔ H.toLieSubmodule.IsUcsLimit
R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L H : LieSubalgebra R L k : ℕ hk : ∀ (l : ℕ), k ≤ l → LieSubmodule.ucs l ⊥ = H.toLieSubmodule hk' : LieSubmodule.ucs (k + 1) ⊥ = H.toLieSubmodule ⊢ H.normalizer = H
rw [LieSubmodule.ucs_succ, hk k (le_refl k)] at hk'
R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L H : LieSubalgebra R L k : ℕ hk : ∀ (l : ℕ), k ≤ l → LieSubmodule.ucs l ⊥ = H.toLieSubmodule hk' : H.toLieSubmodule.normalizer = H.toLieSubmodule ⊢ H.normalizer = H
3bb80ea66da3d89e
StarConvex.add_left
Mathlib/Analysis/Convex/Star.lean
theorem StarConvex.add_left (hs : StarConvex 𝕜 x s) (z : E) : StarConvex 𝕜 (z + x) ((fun x => z + x) '' s)
case intro.intro 𝕜 : Type u_1 E : Type u_2 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : Module 𝕜 E x : E s : Set E hs : StarConvex 𝕜 x s z : E a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 y' : E hy' : y' ∈ s ⊢ a • (z + x) + b • (fun x => z + x) y' ∈ (fun x => z + x) '' s
refine ⟨a • x + b • y', hs hy' ha hb hab, ?_⟩
case intro.intro 𝕜 : Type u_1 E : Type u_2 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : Module 𝕜 E x : E s : Set E hs : StarConvex 𝕜 x s z : E a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 y' : E hy' : y' ∈ s ⊢ (fun x => z + x) (a • x + b • y') = a • (z + x) + b • (fun x => z + x) y'
194aa148110f99fc
List.nil_union
Mathlib/.lake/packages/batteries/Batteries/Data/List/Lemmas.lean
theorem nil_union (l : List α) : nil ∪ l = l
α : Type u_1 inst✝ : BEq α l : List α ⊢ [] ∪ l = l
simp [List.union_def, foldr]
no goals
42464ed6456290b9
isQuasiregular_iff_isUnit'
Mathlib/Algebra/Algebra/Quasispectrum.lean
lemma isQuasiregular_iff_isUnit' (R : Type*) {A : Type*} [CommSemiring R] [NonUnitalSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] {x : A} : IsQuasiregular x ↔ IsUnit (1 + x : Unitization R A)
R : Type u_1 A : Type u_2 inst✝⁴ : CommSemiring R inst✝³ : NonUnitalSemiring A inst✝² : Module R A inst✝¹ : IsScalarTower R A A inst✝ : SMulCommClass R A A x : A hx : IsUnit (1 + ↑x) ⊢ PreQuasiregular.equiv.symm ↑((Unitization.unitsFstOne_mulEquiv_quasiregular R) ⟨hx.unit, ⋯⟩) = x
simp
no goals
2d0099aa35b6727f
BoundedContinuousFunction.arzela_ascoli₁
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
theorem arzela_ascoli₁ [CompactSpace β] (A : Set (α →ᵇ β)) (closed : IsClosed A) (H : Equicontinuous ((↑) : A → α → β)) : IsCompact A
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.mk.mk α : Type u β : Type v inst✝³ : TopologicalSpace α inst✝² : CompactSpace α inst✝¹ : PseudoMetricSpace β inst✝ : CompactSpace β A : Set (α →ᵇ β) closed : IsClosed A H : ∀ (x₀ : α), ∀ ε > 0, ∃ U ∈ 𝓝 x₀, ∀ x ∈ U, ∀ x' ∈ U, ∀ (i : ↑A), dist (↑i x) (↑i x') < ε ε : ℝ ε0 : ε > 0 ε₁ : ℝ ε₁0 : 0 < ε₁ εε₁ : ε₁ < ε ε₂ : ℝ := ε₁ / 2 / 2 ε₂0 : ε₂ > 0 U : α → Set α hU : ∀ (x : α), x ∈ U x ∧ IsOpen (U x) ∧ ∀ y ∈ U x, ∀ z ∈ U x, ∀ {f : α →ᵇ β}, f ∈ A → dist (f y) (f z) < ε₂ tα : Set α left✝¹ : tα ⊆ univ hfin✝ : tα.Finite htα : univ ⊆ ⋃ x ∈ tα, U x val✝¹ : Fintype ↑tα tβ : Set β left✝ : tβ ⊆ univ hfin : tβ.Finite htβ : univ ⊆ ⋃ y ∈ tβ, ball y ε₂ val✝ : Fintype ↑tβ F : β → β hF : ∀ (y : β), F y ∈ tβ ∧ dist y (F y) < ε₂ f : α →ᵇ β hf : f ∈ A g : α →ᵇ β hg : g ∈ A f_eq_g : (fun f a => ⟨F (↑f ↑a), ⋯⟩) ⟨f, hf⟩ = (fun f a => ⟨F (↑f ↑a), ⋯⟩) ⟨g, hg⟩ x : α ⊢ dist (↑⟨f, hf⟩ x) (↑⟨g, hg⟩ x) ≤ ε₁
obtain ⟨x', x'tα, hx'⟩ := mem_iUnion₂.1 (htα (mem_univ x))
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.mk.mk.intro.intro α : Type u β : Type v inst✝³ : TopologicalSpace α inst✝² : CompactSpace α inst✝¹ : PseudoMetricSpace β inst✝ : CompactSpace β A : Set (α →ᵇ β) closed : IsClosed A H : ∀ (x₀ : α), ∀ ε > 0, ∃ U ∈ 𝓝 x₀, ∀ x ∈ U, ∀ x' ∈ U, ∀ (i : ↑A), dist (↑i x) (↑i x') < ε ε : ℝ ε0 : ε > 0 ε₁ : ℝ ε₁0 : 0 < ε₁ εε₁ : ε₁ < ε ε₂ : ℝ := ε₁ / 2 / 2 ε₂0 : ε₂ > 0 U : α → Set α hU : ∀ (x : α), x ∈ U x ∧ IsOpen (U x) ∧ ∀ y ∈ U x, ∀ z ∈ U x, ∀ {f : α →ᵇ β}, f ∈ A → dist (f y) (f z) < ε₂ tα : Set α left✝¹ : tα ⊆ univ hfin✝ : tα.Finite htα : univ ⊆ ⋃ x ∈ tα, U x val✝¹ : Fintype ↑tα tβ : Set β left✝ : tβ ⊆ univ hfin : tβ.Finite htβ : univ ⊆ ⋃ y ∈ tβ, ball y ε₂ val✝ : Fintype ↑tβ F : β → β hF : ∀ (y : β), F y ∈ tβ ∧ dist y (F y) < ε₂ f : α →ᵇ β hf : f ∈ A g : α →ᵇ β hg : g ∈ A f_eq_g : (fun f a => ⟨F (↑f ↑a), ⋯⟩) ⟨f, hf⟩ = (fun f a => ⟨F (↑f ↑a), ⋯⟩) ⟨g, hg⟩ x x' : α x'tα : x' ∈ tα hx' : x ∈ U x' ⊢ dist (↑⟨f, hf⟩ x) (↑⟨g, hg⟩ x) ≤ ε₁
57af0dfb992088dd
MeasureTheory.integral_prod_symm
Mathlib/MeasureTheory/Integral/Prod.lean
theorem integral_prod_symm (f : α × β → E) (hf : Integrable f (μ.prod ν)) : ∫ z, f z ∂μ.prod ν = ∫ y, ∫ x, f (x, y) ∂μ ∂ν
α : Type u_1 β : Type u_2 E : Type u_3 inst✝⁵ : MeasurableSpace α inst✝⁴ : MeasurableSpace β μ : Measure α ν : Measure β inst✝³ : NormedAddCommGroup E inst✝² : SFinite ν inst✝¹ : NormedSpace ℝ E inst✝ : SFinite μ f : α × β → E hf : Integrable f (μ.prod ν) ⊢ ∫ (z : β × α), f z.swap ∂ν.prod μ = ∫ (y : β), ∫ (x : α), f (x, y) ∂μ ∂ν
exact integral_prod _ hf.swap
no goals
0410ab3469493d09
jacobiSum_mul_nontrivial
Mathlib/NumberTheory/JacobiSum/Basic.lean
theorem jacobiSum_mul_nontrivial {χ φ : MulChar F R} (h : χ * φ ≠ 1) (ψ : AddChar F R) : gaussSum (χ * φ) ψ * jacobiSum χ φ = gaussSum χ ψ * gaussSum φ ψ
F : Type u_1 R : Type u_2 inst✝³ : Field F inst✝² : Fintype F inst✝¹ : CommRing R inst✝ : IsDomain R χ φ : MulChar F R h : χ * φ ≠ 1 ψ : AddChar F R ⊢ ∀ t ∈ univ \ {0}, (∑ x : F, χ x * φ (t - x)) * ψ t = (∑ y : F, χ (t * y) * φ (t - t * y)) * ψ t
intro t ht
F : Type u_1 R : Type u_2 inst✝³ : Field F inst✝² : Fintype F inst✝¹ : CommRing R inst✝ : IsDomain R χ φ : MulChar F R h : χ * φ ≠ 1 ψ : AddChar F R t : F ht : t ∈ univ \ {0} ⊢ (∑ x : F, χ x * φ (t - x)) * ψ t = (∑ y : F, χ (t * y) * φ (t - t * y)) * ψ t
6cf53dcbd81a1b9e
PartialHomeomorph.subtypeRestr_symm_eqOn_of_le
Mathlib/Topology/PartialHomeomorph.lean
theorem subtypeRestr_symm_eqOn_of_le {U V : Opens X} (hU : Nonempty U) (hV : Nonempty V) (hUV : U ≤ V) : EqOn (e.subtypeRestr hV).symm (Set.inclusion hUV ∘ (e.subtypeRestr hU).symm) (e.subtypeRestr hU).target
X : Type u_1 Y : Type u_3 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y e : PartialHomeomorph X Y U V : Opens X hU : Nonempty ↥U hV : Nonempty ↥V hUV : U ≤ V i : ↑↑U → ↑↑V := inclusion hUV y : Y hy : y ∈ e.target ∩ ↑e.symm ⁻¹' (U.partialHomeomorphSubtypeCoe hU).target hyV : ↑e.symm y ∈ (V.partialHomeomorphSubtypeCoe hV).target ⊢ ↑(V.partialHomeomorphSubtypeCoe hV).symm (↑e.symm y) = i (↑(U.partialHomeomorphSubtypeCoe hU).symm (↑e.symm y))
refine (V.partialHomeomorphSubtypeCoe hV).injOn ?_ trivial ?_
case refine_1 X : Type u_1 Y : Type u_3 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y e : PartialHomeomorph X Y U V : Opens X hU : Nonempty ↥U hV : Nonempty ↥V hUV : U ≤ V i : ↑↑U → ↑↑V := inclusion hUV y : Y hy : y ∈ e.target ∩ ↑e.symm ⁻¹' (U.partialHomeomorphSubtypeCoe hU).target hyV : ↑e.symm y ∈ (V.partialHomeomorphSubtypeCoe hV).target ⊢ ↑(V.partialHomeomorphSubtypeCoe hV).symm (↑e.symm y) ∈ (V.partialHomeomorphSubtypeCoe hV).source case refine_2 X : Type u_1 Y : Type u_3 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y e : PartialHomeomorph X Y U V : Opens X hU : Nonempty ↥U hV : Nonempty ↥V hUV : U ≤ V i : ↑↑U → ↑↑V := inclusion hUV y : Y hy : y ∈ e.target ∩ ↑e.symm ⁻¹' (U.partialHomeomorphSubtypeCoe hU).target hyV : ↑e.symm y ∈ (V.partialHomeomorphSubtypeCoe hV).target ⊢ ↑(V.partialHomeomorphSubtypeCoe hV) (↑(V.partialHomeomorphSubtypeCoe hV).symm (↑e.symm y)) = ↑(V.partialHomeomorphSubtypeCoe hV) (i (↑(U.partialHomeomorphSubtypeCoe hU).symm (↑e.symm y)))
914ca04e5b54b50a
groupCohomology.H0Map_id
Mathlib/RepresentationTheory/GroupCohomology/Functoriality.lean
theorem H0Map_id : H0Map (MonoidHom.id _) (𝟙 A) = 𝟙 _
k H : Type u inst✝¹ : CommRing k inst✝ : Group H A : Rep k H ⊢ H0Map (MonoidHom.id H) (𝟙 A) = 𝟙 (H0 A)
rfl
no goals
f7fe638b41e0f450
comp_equiv_symm_dotProduct
Mathlib/Data/Matrix/Mul.lean
theorem comp_equiv_symm_dotProduct (e : m ≃ n) : u ∘ e.symm ⬝ᵥ x = u ⬝ᵥ x ∘ e := (e.sum_comp _).symm.trans <| Finset.sum_congr rfl fun _ _ => by simp only [Function.comp, Equiv.symm_apply_apply]
m : Type u_2 n : Type u_3 α : Type v inst✝² : Fintype m inst✝¹ : Fintype n inst✝ : NonUnitalNonAssocSemiring α u : m → α x : n → α e : m ≃ n x✝¹ : m x✝ : x✝¹ ∈ Finset.univ ⊢ (u ∘ ⇑e.symm) (e x✝¹) * x (e x✝¹) = u x✝¹ * (x ∘ ⇑e) x✝¹
simp only [Function.comp, Equiv.symm_apply_apply]
no goals
be7d1f6c11a84e99
Polynomial.preHilbertPoly_eq_choose_sub_add
Mathlib/RingTheory/Polynomial/HilbertPoly.lean
lemma preHilbertPoly_eq_choose_sub_add [CharZero F] (d : ℕ) {k n : ℕ} (hkn : k ≤ n): (preHilbertPoly F d k).eval (n : F) = (n - k + d).choose d
F : Type u_1 inst✝¹ : Field F inst✝ : CharZero F d k n : ℕ hkn : k ≤ n ⊢ eval (↑n) (preHilbertPoly F d k) = ↑((n - k + d).choose d)
have : (d ! : F) ≠ 0 := by norm_cast; positivity
F : Type u_1 inst✝¹ : Field F inst✝ : CharZero F d k n : ℕ hkn : k ≤ n this : ↑d ! ≠ 0 ⊢ eval (↑n) (preHilbertPoly F d k) = ↑((n - k + d).choose d)
abed0e0ae54a68db
Profinite.exists_locallyConstant_finite_nonempty
Mathlib/Topology/Category/Profinite/CofilteredLimit.lean
theorem exists_locallyConstant_finite_nonempty {α : Type*} [Finite α] [Nonempty α] (hC : IsLimit C) (f : LocallyConstant C.pt α) : ∃ (j : J) (g : LocallyConstant (F.obj j) α), f = g.comap (C.π.app _).hom
case intro.intro.h J : Type v inst✝³ : SmallCategory J inst✝² : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 inst✝¹ : Finite α inst✝ : Nonempty α hC : IsLimit C f : LocallyConstant (↑C.pt.toTop) α inhabited_h : Inhabited α j : J gg : LocallyConstant (↑(F.obj j).toTop) (α → Fin 2) h : LocallyConstant.map (fun a b => if a = b then 0 else 1) f = LocallyConstant.comap (TopCat.Hom.hom (C.π.app j)) gg ι : α → α → Fin 2 := fun a b => if a = b then 0 else 1 σ : (α → Fin 2) → α := fun f => if h : ∃ a, ι a = f then h.choose else default x : ↑C.pt.toTop h1 : ι (f x) = gg ((ConcreteCategory.hom (C.π.app j)) x) h2 : ∃ a, ι a = gg ((ConcreteCategory.hom (C.π.app j)) x) ⊢ f x = if h : ∃ a, ι a = gg ((TopCat.Hom.hom (C.π.app j)) x) then h.choose else default
erw [dif_pos h2]
case intro.intro.h J : Type v inst✝³ : SmallCategory J inst✝² : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 inst✝¹ : Finite α inst✝ : Nonempty α hC : IsLimit C f : LocallyConstant (↑C.pt.toTop) α inhabited_h : Inhabited α j : J gg : LocallyConstant (↑(F.obj j).toTop) (α → Fin 2) h : LocallyConstant.map (fun a b => if a = b then 0 else 1) f = LocallyConstant.comap (TopCat.Hom.hom (C.π.app j)) gg ι : α → α → Fin 2 := fun a b => if a = b then 0 else 1 σ : (α → Fin 2) → α := fun f => if h : ∃ a, ι a = f then h.choose else default x : ↑C.pt.toTop h1 : ι (f x) = gg ((ConcreteCategory.hom (C.π.app j)) x) h2 : ∃ a, ι a = gg ((ConcreteCategory.hom (C.π.app j)) x) ⊢ f x = h2.choose
a1c1fd2fab6330f3
MeasureTheory.exists_measurable_le_forall_setLIntegral_eq
Mathlib/MeasureTheory/Integral/Lebesgue.lean
theorem exists_measurable_le_forall_setLIntegral_eq [SFinite μ] (f : α → ℝ≥0∞) : ∃ g : α → ℝ≥0∞, Measurable g ∧ g ≤ f ∧ ∀ s, ∫⁻ a in s, f a ∂μ = ∫⁻ a in s, g a ∂μ
case intro α : Type u_1 m : MeasurableSpace α μ✝ : Measure α f : α → ℝ≥0∞ μ : Measure α inst✝ : SFinite μ h : IsFiniteMeasure μ g : ℕ → α → ℝ≥0∞ hgm : ∀ (n : ℕ), Measurable (g n) hgf : ∀ (n : ℕ), g n ≤ f hgle : ∀ (n : ℕ), g n ≤ ↑n hgint : ∀ (n : ℕ), ∫⁻ (a : α), f a ⊓ ↑n ∂μ = ∫⁻ (a : α), g n a ∂μ φ : α → ℝ≥0∞ := fun x => ⨆ n, g n x hφm : Measurable φ hφle : φ ≤ f s : Set α ψ : α →ₛ ℝ≥0 hψ : ∀ (x : α), ↑(ψ x) ≤ f x C : ℝ≥0 hC : C ∈ upperBounds ↑ψ.range ⊢ ∃ n, ∀ (x : α), ψ x ≤ ↑n
exact ⟨⌈C⌉₊, fun x ↦ (hC <| ψ.mem_range_self x).trans (Nat.le_ceil _)⟩
no goals
f381f21756fe17db
Matrix.PosDef.intCast
Mathlib/LinearAlgebra/Matrix/PosDef.lean
theorem intCast [StarOrderedRing R] [DecidableEq n] [NoZeroDivisors R] (d : ℤ) (hd : 0 < d) : PosDef (d : Matrix n n R) := ⟨isHermitian_intCast _, fun x hx => by simp only [intCast_mulVec, dotProduct_smul] rw [Int.cast_smul_eq_zsmul] exact zsmul_pos (dotProduct_star_self_pos_iff.mpr hx) hd⟩
n : Type u_2 R : Type u_3 inst✝⁶ : Fintype n inst✝⁵ : CommRing R inst✝⁴ : PartialOrder R inst✝³ : StarRing R inst✝² : StarOrderedRing R inst✝¹ : DecidableEq n inst✝ : NoZeroDivisors R d : ℤ hd : 0 < d x : n → R hx : x ≠ 0 ⊢ 0 < star x ⬝ᵥ ↑d *ᵥ x
simp only [intCast_mulVec, dotProduct_smul]
n : Type u_2 R : Type u_3 inst✝⁶ : Fintype n inst✝⁵ : CommRing R inst✝⁴ : PartialOrder R inst✝³ : StarRing R inst✝² : StarOrderedRing R inst✝¹ : DecidableEq n inst✝ : NoZeroDivisors R d : ℤ hd : 0 < d x : n → R hx : x ≠ 0 ⊢ 0 < ↑d • (star x ⬝ᵥ x)
28da97a3d0cf32ce
lowerCentralSeries.map
Mathlib/GroupTheory/Nilpotent.lean
theorem lowerCentralSeries.map {H : Type*} [Group H] (f : G →* H) (n : ℕ) : Subgroup.map f (lowerCentralSeries G n) ≤ lowerCentralSeries H n
case succ G : Type u_1 inst✝¹ : Group G H : Type u_2 inst✝ : Group H f : G →* H d : ℕ hd : Subgroup.map f (lowerCentralSeries G d) ≤ lowerCentralSeries H d ⊢ Subgroup.map f (lowerCentralSeries G (d + 1)) ≤ lowerCentralSeries H (d + 1)
rintro a ⟨x, hx : x ∈ lowerCentralSeries G d.succ, rfl⟩
case succ.intro.intro G : Type u_1 inst✝¹ : Group G H : Type u_2 inst✝ : Group H f : G →* H d : ℕ hd : Subgroup.map f (lowerCentralSeries G d) ≤ lowerCentralSeries H d x : G hx : x ∈ lowerCentralSeries G d.succ ⊢ f x ∈ lowerCentralSeries H (d + 1)
a402c9a39a4d66f9
Monoid.PushoutI.NormalWord.rcons_injective
Mathlib/GroupTheory/PushoutI.lean
theorem rcons_injective {i : ι} : Function.Injective (rcons (d := d) i)
case mk.mk.mk.mk ι : Type u_1 G : ι → Type u_2 H : Type u_3 inst✝³ : (i : ι) → Group (G i) inst✝² : Group H φ : (i : ι) → H →* G i d : Transversal φ inst✝¹ : DecidableEq ι inst✝ : (i : ι) → DecidableEq (G i) i : ι head₁ : G i tail₁ : Word G fstIdx_ne✝¹ : tail₁.fstIdx ≠ some i normalized✝¹ : ∀ (i_1 : ι) (g : G i_1), ⟨i_1, g⟩ ∈ { head := head₁, tail := tail₁, fstIdx_ne := fstIdx_ne✝¹ }.tail.toList → g ∈ d.set i_1 head₂ : G i tail₂ : Word G fstIdx_ne✝ : tail₂.fstIdx ≠ some i normalized✝ : ∀ (i_1 : ι) (g : G i_1), ⟨i_1, g⟩ ∈ { head := head₂, tail := tail₂, fstIdx_ne := fstIdx_ne✝ }.tail.toList → g ∈ d.set i_1 ⊢ rcons i { head := head₁, tail := tail₁, fstIdx_ne := fstIdx_ne✝¹, normalized := normalized✝¹ } = rcons i { head := head₂, tail := tail₂, fstIdx_ne := fstIdx_ne✝, normalized := normalized✝ } → { head := head₁, tail := tail₁, fstIdx_ne := fstIdx_ne✝¹, normalized := normalized✝¹ } = { head := head₂, tail := tail₂, fstIdx_ne := fstIdx_ne✝, normalized := normalized✝ }
simp only [rcons, NormalWord.mk.injEq, EmbeddingLike.apply_eq_iff_eq, Word.Pair.mk.injEq, Pair.mk.injEq, and_imp]
case mk.mk.mk.mk ι : Type u_1 G : ι → Type u_2 H : Type u_3 inst✝³ : (i : ι) → Group (G i) inst✝² : Group H φ : (i : ι) → H →* G i d : Transversal φ inst✝¹ : DecidableEq ι inst✝ : (i : ι) → DecidableEq (G i) i : ι head₁ : G i tail₁ : Word G fstIdx_ne✝¹ : tail₁.fstIdx ≠ some i normalized✝¹ : ∀ (i_1 : ι) (g : G i_1), ⟨i_1, g⟩ ∈ { head := head₁, tail := tail₁, fstIdx_ne := fstIdx_ne✝¹ }.tail.toList → g ∈ d.set i_1 head₂ : G i tail₂ : Word G fstIdx_ne✝ : tail₂.fstIdx ≠ some i normalized✝ : ∀ (i_1 : ι) (g : G i_1), ⟨i_1, g⟩ ∈ { head := head₂, tail := tail₂, fstIdx_ne := fstIdx_ne✝ }.tail.toList → g ∈ d.set i_1 ⊢ ↑(⋯.equiv head₁).2 = ↑(⋯.equiv head₂).2 → tail₁ = tail₂ → (⋯.equiv head₁).1 = (⋯.equiv head₂).1 → head₁ = head₂ ∧ tail₁ = tail₂
8eb9cc30ff7f40e1
Mathlib.Meta.NormNum.isInt_eq_false
Mathlib/Tactic/NormNum/Eq.lean
theorem isInt_eq_false [Ring α] [CharZero α] : {a b : α} → {a' b' : ℤ} → IsInt a a' → IsInt b b' → decide (a' = b') = false → ¬a = b | _, _, _, _, ⟨rfl⟩, ⟨rfl⟩, h => by simpa using of_decide_eq_false h
α : Type u_1 inst✝¹ : Ring α inst✝ : CharZero α n✝¹ n✝ : ℤ h : decide (n✝¹ = n✝) = false ⊢ ¬↑n✝¹ = ↑n✝
simpa using of_decide_eq_false h
no goals
3398fa8d9db915c4
directedOn_image
Mathlib/Order/Directed.lean
theorem directedOn_image {s : Set β} {f : β → α} : DirectedOn r (f '' s) ↔ DirectedOn (f ⁻¹'o r) s
α : Type u β : Type v r : α → α → Prop s : Set β f : β → α ⊢ DirectedOn r (f '' s) ↔ DirectedOn (f ⁻¹'o r) s
simp only [DirectedOn, Set.mem_image, exists_exists_and_eq_and, forall_exists_index, and_imp, forall_apply_eq_imp_iff₂, Order.Preimage]
no goals
819f3339eebcd917
Module.support_subset_of_surjective
Mathlib/RingTheory/Support.lean
lemma Module.support_subset_of_surjective (hf : Function.Surjective f) : Module.support R N ⊆ Module.support R M
case intro.intro R : Type u_1 M : Type u_2 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M N : Type u_3 inst✝¹ : AddCommGroup N inst✝ : Module R N f : M →ₗ[R] N hf : Function.Surjective ⇑f x : PrimeSpectrum R m : M hm : ∀ r ∉ x.asIdeal, r • f m ≠ 0 ⊢ ∃ m, ∀ r ∉ x.asIdeal, r • m ≠ 0
exact ⟨m, fun r hr e ↦ hm r hr (by simpa using congr(f $e))⟩
no goals
aeacf4d0367f2dda
InnerProductSpace.Core.inner_add_right
Mathlib/Analysis/InnerProductSpace/Defs.lean
theorem inner_add_right (x y z : F) : ⟪x, y + z⟫ = ⟪x, y⟫ + ⟪x, z⟫
𝕜 : Type u_1 F : Type u_3 inst✝² : RCLike 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : PreInnerProductSpace.Core 𝕜 F x y z : F ⊢ ⟪x, y + z⟫_𝕜 = ⟪x, y⟫_𝕜 + ⟪x, z⟫_𝕜
rw [← inner_conj_symm, inner_add_left, RingHom.map_add]
𝕜 : Type u_1 F : Type u_3 inst✝² : RCLike 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : PreInnerProductSpace.Core 𝕜 F x y z : F ⊢ (starRingEnd 𝕜) ⟪y, x⟫_𝕜 + (starRingEnd 𝕜) ⟪z, x⟫_𝕜 = ⟪x, y⟫_𝕜 + ⟪x, z⟫_𝕜
7df8bd68cffbf670
Real.sinh_nonpos_iff
Mathlib/Analysis/SpecialFunctions/Trigonometric/Deriv.lean
theorem sinh_nonpos_iff : sinh x ≤ 0 ↔ x ≤ 0
x : ℝ ⊢ sinh x ≤ 0 ↔ x ≤ 0
simpa only [sinh_zero] using @sinh_le_sinh x 0
no goals
37d5273f32e1482a
Multiset.lt_replicate_succ
Mathlib/Data/Multiset/Replicate.lean
theorem lt_replicate_succ {m : Multiset α} {x : α} {n : ℕ} : m < replicate (n + 1) x ↔ m ≤ replicate n x
α : Type u_1 m : Multiset α x : α n : ℕ ⊢ (∃ a, a ::ₘ m ≤ replicate (n + 1) x) ↔ m ≤ replicate n x
constructor
case mp α : Type u_1 m : Multiset α x : α n : ℕ ⊢ (∃ a, a ::ₘ m ≤ replicate (n + 1) x) → m ≤ replicate n x case mpr α : Type u_1 m : Multiset α x : α n : ℕ ⊢ m ≤ replicate n x → ∃ a, a ::ₘ m ≤ replicate (n + 1) x
c4daba5a64d21b93
Pell.eq_pow_of_pell
Mathlib/NumberTheory/PellMatiyasevic.lean
theorem eq_pow_of_pell {m n k} : n ^ k = m ↔ k = 0 ∧ m = 1 ∨0 < k ∧ (n = 0 ∧ m = 0 ∨ 0 < n ∧ ∃ (w a t z : ℕ) (a1 : 1 < a), xn a1 k ≡ yn a1 k * (a - n) + m [MOD t] ∧ 2 * a * n = t + (n * n + 1) ∧ m < t ∧ n ≤ w ∧ k ≤ w ∧ a * a - ((w + 1) * (w + 1) - 1) * (w * z) * (w * z) = 1)
case mp n k : ℕ ⊢ k = 0 ∧ n ^ k = 1 ∨ 0 < k ∧ (n = 0 ∧ n ^ k = 0 ∨ 0 < n ∧ ∃ w a t z, ∃ (a1 : 1 < a), xn a1 k ≡ yn a1 k * (a - n) + n ^ k [MOD t] ∧ 2 * a * n = t + (n * n + 1) ∧ n ^ k < t ∧ n ≤ w ∧ k ≤ w ∧ a * a - ((w + 1) * (w + 1) - 1) * (w * z) * (w * z) = 1)
refine k.eq_zero_or_pos.imp (fun k0 : k = 0 => k0.symm ▸ ⟨rfl, rfl⟩) fun hk => ⟨hk, ?_⟩
case mp n k : ℕ hk : 0 < k ⊢ n = 0 ∧ n ^ k = 0 ∨ 0 < n ∧ ∃ w a t z, ∃ (a1 : 1 < a), xn a1 k ≡ yn a1 k * (a - n) + n ^ k [MOD t] ∧ 2 * a * n = t + (n * n + 1) ∧ n ^ k < t ∧ n ≤ w ∧ k ≤ w ∧ a * a - ((w + 1) * (w + 1) - 1) * (w * z) * (w * z) = 1
a363d7dbe39afd6c
CategoryTheory.IsGrothendieckAbelian.generatingMonomorphisms.exists_transfiniteCompositionOfShape
Mathlib/CategoryTheory/Abelian/GrothendieckCategory/EnoughInjectives.lean
/-- Let `C` be a Grothendieck abelian category. Assume that `G : C` is a generator of `C`. Then, any morphism in `C` is a transfinite composition of pushouts of monomorphisms in the family `generatingMonomorphisms G` which consists of the inclusions of the subobjects of `G`. -/ lemma exists_transfiniteCompositionOfShape : ∃ (J : Type w) (_ : LinearOrder J) (_ : OrderBot J) (_ : SuccOrder J) (_ : WellFoundedLT J), Nonempty ((generatingMonomorphisms G).pushouts.TransfiniteCompositionOfShape J f)
C : Type u inst✝³ : Category.{v, u} C G : C inst✝² : Abelian C hG : IsSeparator G X : C inst✝¹ : IsGrothendieckAbelian.{w, v, u} C A : C f : A ⟶ X inst✝ : Mono f o : Ordinal.{w} j : o.toType hj : transfiniteIterate (largerSubobject hG) j (Subobject.mk f) = ⊤ ⊢ o ≠ 0
simpa only [← Ordinal.toType_nonempty_iff_ne_zero] using Nonempty.intro j
no goals
628936178606867e
CategoryTheory.Triangulated.Localization.complete_distinguished_triangle_morphism
Mathlib/CategoryTheory/Localization/Triangulated.lean
lemma complete_distinguished_triangle_morphism (T₁ T₂ : Triangle D) (hT₁ : T₁ ∈ L.essImageDistTriang) (hT₂ : T₂ ∈ L.essImageDistTriang) (a : T₁.obj₁ ⟶ T₂.obj₁) (b : T₁.obj₂ ⟶ T₂.obj₂) (fac : T₁.mor₁ ≫ b = a ≫ T₂.mor₁) : ∃ c, T₁.mor₂ ≫ c = b ≫ T₂.mor₂ ∧ T₁.mor₃ ≫ a⟦1⟧' = c ≫ T₂.mor₃
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine_2 C : Type u_1 D : Type u_2 inst✝¹¹ : Category.{u_4, u_1} C inst✝¹⁰ : Category.{u_3, u_2} D L : C ⥤ D inst✝⁹ : HasShift C ℤ inst✝⁸ : Preadditive C inst✝⁷ : HasZeroObject C inst✝⁶ : ∀ (n : ℤ), (shiftFunctor C n).Additive inst✝⁵ : Pretriangulated C inst✝⁴ : HasShift D ℤ inst✝³ : L.CommShift ℤ W : MorphismProperty C inst✝² : L.IsLocalization W inst✝¹ : W.HasLeftCalculusOfFractions inst✝ : W.IsCompatibleWithTriangulation T₁ T₂ : Triangle C hT₁ : T₁ ∈ distinguishedTriangles hT₂ : T₂ ∈ distinguishedTriangles a : L.obj T₁.obj₁ ⟶ L.obj T₂.obj₁ b : L.obj T₁.obj₂ ⟶ L.obj T₂.obj₂ fac✝ : L.map T₁.mor₁ ≫ b = a ≫ L.map T₂.mor₁ α : W.LeftFraction T₁.obj₁ T₂.obj₁ hα : a = α.map L ⋯ β : W.LeftFraction α.Y' T₂.obj₂ hβ : T₂.mor₁ ≫ β.s = α.s ≫ β.f γ : W.LeftFraction T₁.obj₂ β.Y' hγ : b ≫ L.map β.s = γ.map L ⋯ this✝¹ : IsIso (L.map β.s) this✝ : IsIso (L.map γ.s) Z₂ : C σ : γ.Y' ⟶ Z₂ hσ : W σ fac : α.f ≫ β.f ≫ γ.s ≫ σ = T₁.mor₁ ≫ γ.f ≫ σ Y₃ : C g : Z₂ ⟶ Y₃ h : Y₃ ⟶ (shiftFunctor C 1).obj α.Y' T₃ : Triangle C := Triangle.mk (β.f ≫ γ.s ≫ σ) g h hT₃ : T₃ ∈ distinguishedTriangles hβγσ : W (β.s ≫ γ.s ≫ σ) ψ₃ : T₂.obj₃ ⟶ T₃.obj₃ hψ₃ : W ψ₃ hψ₁ : T₂.mor₂ ≫ ψ₃ = (β.s ≫ γ.s ≫ σ) ≫ T₃.mor₂ hψ₂ : T₂.mor₃ ≫ (shiftFunctor C 1).map α.s = ψ₃ ≫ T₃.mor₃ ψ : T₂ ⟶ T₃ := T₂.homMk T₃ α.s (β.s ≫ γ.s ≫ σ) ψ₃ ⋯ hψ₁ hψ₂ this : IsIso (L.mapTriangle.map ψ) ⊢ (L.mapTriangle.map (completeDistinguishedTriangleMorphism T₁ T₃ hT₁ hT₃ α.f (γ.f ≫ σ) ⋯)).hom₂ = b ≫ (L.mapTriangle.map ψ).hom₂
dsimp [ψ]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine_2 C : Type u_1 D : Type u_2 inst✝¹¹ : Category.{u_4, u_1} C inst✝¹⁰ : Category.{u_3, u_2} D L : C ⥤ D inst✝⁹ : HasShift C ℤ inst✝⁸ : Preadditive C inst✝⁷ : HasZeroObject C inst✝⁶ : ∀ (n : ℤ), (shiftFunctor C n).Additive inst✝⁵ : Pretriangulated C inst✝⁴ : HasShift D ℤ inst✝³ : L.CommShift ℤ W : MorphismProperty C inst✝² : L.IsLocalization W inst✝¹ : W.HasLeftCalculusOfFractions inst✝ : W.IsCompatibleWithTriangulation T₁ T₂ : Triangle C hT₁ : T₁ ∈ distinguishedTriangles hT₂ : T₂ ∈ distinguishedTriangles a : L.obj T₁.obj₁ ⟶ L.obj T₂.obj₁ b : L.obj T₁.obj₂ ⟶ L.obj T₂.obj₂ fac✝ : L.map T₁.mor₁ ≫ b = a ≫ L.map T₂.mor₁ α : W.LeftFraction T₁.obj₁ T₂.obj₁ hα : a = α.map L ⋯ β : W.LeftFraction α.Y' T₂.obj₂ hβ : T₂.mor₁ ≫ β.s = α.s ≫ β.f γ : W.LeftFraction T₁.obj₂ β.Y' hγ : b ≫ L.map β.s = γ.map L ⋯ this✝¹ : IsIso (L.map β.s) this✝ : IsIso (L.map γ.s) Z₂ : C σ : γ.Y' ⟶ Z₂ hσ : W σ fac : α.f ≫ β.f ≫ γ.s ≫ σ = T₁.mor₁ ≫ γ.f ≫ σ Y₃ : C g : Z₂ ⟶ Y₃ h : Y₃ ⟶ (shiftFunctor C 1).obj α.Y' T₃ : Triangle C := Triangle.mk (β.f ≫ γ.s ≫ σ) g h hT₃ : T₃ ∈ distinguishedTriangles hβγσ : W (β.s ≫ γ.s ≫ σ) ψ₃ : T₂.obj₃ ⟶ T₃.obj₃ hψ₃ : W ψ₃ hψ₁ : T₂.mor₂ ≫ ψ₃ = (β.s ≫ γ.s ≫ σ) ≫ T₃.mor₂ hψ₂ : T₂.mor₃ ≫ (shiftFunctor C 1).map α.s = ψ₃ ≫ T₃.mor₃ ψ : T₂ ⟶ T₃ := T₂.homMk T₃ α.s (β.s ≫ γ.s ≫ σ) ψ₃ ⋯ hψ₁ hψ₂ this : IsIso (L.mapTriangle.map ψ) ⊢ L.map (γ.f ≫ σ) = b ≫ L.map (β.s ≫ γ.s ≫ σ)
d504ba1cf51cb937
BooleanSubalgebra.mem_closure_iff_sup_sdiff
Mathlib/Order/BooleanSubalgebra.lean
theorem mem_closure_iff_sup_sdiff {a : α} : a ∈ closure s ↔ ∃ t : Finset (s × s), a = t.sup fun x ↦ x.1.1 \ x.2.1
α : Type u_2 inst✝ : BooleanAlgebra α s : Set α isSublattice : IsSublattice s bot_mem : ⊥ ∈ s top_mem : ⊤ ∈ s a : α ⊢ a ∈ closure s ↔ ∃ t, a = t.sup fun x => ↑x.1 \ ↑x.2
refine ⟨closure_bot_sup_induction (fun x h ↦ ⟨{(⟨x, h⟩, ⟨⊥, bot_mem⟩)}, by simp⟩) ⟨∅, by simp⟩ ?_ ?_, ?_⟩
case refine_1 α : Type u_2 inst✝ : BooleanAlgebra α s : Set α isSublattice : IsSublattice s bot_mem : ⊥ ∈ s top_mem : ⊤ ∈ s a : α ⊢ (∃ t, a = t.sup fun x => ↑x.1 \ ↑x.2) → a ∈ closure s case refine_2 α : Type u_2 inst✝ : BooleanAlgebra α s : Set α isSublattice : IsSublattice s bot_mem : ⊥ ∈ s top_mem : ⊤ ∈ s a : α ⊢ ∀ x ∈ closure s, ∀ y ∈ closure s, (∃ t, x = t.sup fun x => ↑x.1 \ ↑x.2) → (∃ t, y = t.sup fun x => ↑x.1 \ ↑x.2) → ∃ t, x ⊔ y = t.sup fun x => ↑x.1 \ ↑x.2 case refine_3 α : Type u_2 inst✝ : BooleanAlgebra α s : Set α isSublattice : IsSublattice s bot_mem : ⊥ ∈ s top_mem : ⊤ ∈ s a : α ⊢ ∀ x ∈ closure s, (∃ t, x = t.sup fun x => ↑x.1 \ ↑x.2) → ∃ t, xᶜ = t.sup fun x => ↑x.1 \ ↑x.2
764585926be33cc2
Array.findIdx_lt_size
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/Find.lean
theorem findIdx_lt_size {p : α → Bool} {xs : Array α} : xs.findIdx p < xs.size ↔ ∃ x ∈ xs, p x
α : Type u_1 p : α → Bool xs : Array α ⊢ findIdx p xs < xs.size ↔ ∃ x, x ∈ xs ∧ p x = true
rcases xs with ⟨xs⟩
case mk α : Type u_1 p : α → Bool xs : List α ⊢ findIdx p { toList := xs } < { toList := xs }.size ↔ ∃ x, x ∈ { toList := xs } ∧ p x = true
4c708ef584b1a91e
MeasureTheory.eLpNorm_one_le_of_le
Mathlib/MeasureTheory/Integral/Bochner.lean
theorem eLpNorm_one_le_of_le {r : ℝ≥0} (hfint : Integrable f μ) (hfint' : 0 ≤ ∫ x, f x ∂μ) (hf : ∀ᵐ ω ∂μ, f ω ≤ r) : eLpNorm f 1 μ ≤ 2 * μ Set.univ * r
α : Type u_1 m0 : MeasurableSpace α μ : Measure α f : α → ℝ r : ℝ≥0 hfint : Integrable f μ hfint' : 0 ≤ ∫ (x : α), f x ∂μ hr : r = 0 hf : ∀ᵐ (ω : α) ∂μ, f ω ≤ 0 ⊢ ∫ (x : α), -f x ∂μ = 0
rw [integral_neg, neg_eq_zero]
α : Type u_1 m0 : MeasurableSpace α μ : Measure α f : α → ℝ r : ℝ≥0 hfint : Integrable f μ hfint' : 0 ≤ ∫ (x : α), f x ∂μ hr : r = 0 hf : ∀ᵐ (ω : α) ∂μ, f ω ≤ 0 ⊢ ∫ (a : α), f a ∂μ = 0
f01ab8867e396603
Finset.noncommProd_mul_single
Mathlib/Data/Finset/NoncommProd.lean
theorem noncommProd_mul_single [Fintype ι] [DecidableEq ι] (x : ∀ i, M i) : (univ.noncommProd (fun i => Pi.mulSingle i (x i)) fun i _ j _ _ => Pi.mulSingle_apply_commute x i j) = x
case h.convert_8 ι : Type u_2 M : ι → Type u_6 inst✝² : (i : ι) → Monoid (M i) inst✝¹ : Fintype ι inst✝ : DecidableEq ι x : (i : ι) → M i i : ι ⊢ (insert i (univ.erase i)).noncommProd (fun j => Pi.mulSingle j (x j) i) ⋯ = x i
rw [noncommProd_insert_of_not_mem _ _ _ _ (not_mem_erase _ _), noncommProd_eq_pow_card (univ.erase i), one_pow, mul_one]
case h.convert_8 ι : Type u_2 M : ι → Type u_6 inst✝² : (i : ι) → Monoid (M i) inst✝¹ : Fintype ι inst✝ : DecidableEq ι x : (i : ι) → M i i : ι ⊢ Pi.mulSingle i (x i) i = x i case h.convert_8.h ι : Type u_2 M : ι → Type u_6 inst✝² : (i : ι) → Monoid (M i) inst✝¹ : Fintype ι inst✝ : DecidableEq ι x : (i : ι) → M i i : ι ⊢ ∀ x_1 ∈ univ.erase i, Pi.mulSingle x_1 (x x_1) i = 1
0aba06cc50ea81cb
integrable_inv_one_add_sq
Mathlib/Analysis/SpecialFunctions/ImproperIntegrals.lean
theorem integrable_inv_one_add_sq : Integrable fun (x : ℝ) ↦ (1 + x ^ 2)⁻¹
this : Integrable (fun x => (1 + ‖x‖ ^ 2) ^ (-2 / 2)) volume ⊢ Integrable (fun x => (1 + x ^ 2)⁻¹) volume
simpa [rpow_neg_one]
no goals
03fc0c858722fcae
ModP.preVal_eq_zero
Mathlib/RingTheory/Perfection.lean
theorem preVal_eq_zero {x : ModP O p} : preVal K v O p x = 0 ↔ x = 0 := ⟨fun hvx => by_contradiction fun hx0 : x ≠ 0 => by rw [← v_p_lt_preVal (hv := hv), hvx] at hx0 exact not_lt_zero' hx0, fun hx => hx.symm ▸ preVal_zero⟩
K : Type u₁ inst✝² : Field K v : Valuation K ℝ≥0 O : Type u₂ inst✝¹ : CommRing O inst✝ : Algebra O K hv : v.Integers O p : ℕ x : ModP O p hvx : preVal K v O p x = 0 hx0 : x ≠ 0 ⊢ False
rw [← v_p_lt_preVal (hv := hv), hvx] at hx0
K : Type u₁ inst✝² : Field K v : Valuation K ℝ≥0 O : Type u₂ inst✝¹ : CommRing O inst✝ : Algebra O K hv : v.Integers O p : ℕ x : ModP O p hvx : preVal K v O p x = 0 hx0 : v ↑p < 0 ⊢ False
d0945b2aa54346ef
CategoryTheory.Functor.preservesFiniteColimits_tfae
Mathlib/Algebra/Homology/ShortComplex/ExactFunctor.lean
/-- For an addivite functor `F : C ⥤ D` between abelian categories, the following are equivalent: - `F` preserves short exact sequences on the right hand side, i.e. if `0 ⟶ A ⟶ B ⟶ C ⟶ 0` is exact then `F(A) ⟶ F(B) ⟶ F(C) ⟶ 0` is exact. - `F` preserves exact sequences on the right hand side, i.e. if `A ⟶ B ⟶ C` is exact where `B ⟶ C` is epi, then `F(A) ⟶ F(B) ⟶ F(C) ⟶ 0` is exact and `F(B) ⟶ F(C)` is epi as well. - `F` preserves cokernels. - `F` preserves finite colimits. -/ lemma preservesFiniteColimits_tfae : List.TFAE [ ∀ (S : ShortComplex C), S.ShortExact → (S.map F).Exact ∧ Epi (F.map S.g), ∀ (S : ShortComplex C), S.Exact ∧ Epi S.g → (S.map F).Exact ∧ Epi (F.map S.g), ∀ ⦃X Y : C⦄ (f : X ⟶ Y), PreservesColimit (parallelPair f 0) F, PreservesFiniteColimits F ]
C : Type u_1 D : Type u_2 inst✝⁴ : Category.{u_3, u_1} C inst✝³ : Category.{u_4, u_2} D inst✝² : Abelian C inst✝¹ : Abelian D F : C ⥤ D inst✝ : F.Additive tfae_1_to_2 : (∀ (S : ShortComplex C), S.ShortExact → (S.map F).Exact ∧ Epi (F.map S.g)) → ∀ (S : ShortComplex C), S.Exact ∧ Epi S.g → (S.map F).Exact ∧ Epi (F.map S.g) hF : ∀ (S : ShortComplex C), S.Exact ∧ Epi S.g → (S.map F).Exact ∧ Epi (F.map S.g) X Y : C f : X ⟶ Y S : ShortComplex C := ShortComplex.mk f (cokernel.π f) ⋯ ⊢ IsColimit (CokernelCofork.map (Cofork.ofπ (cokernel.π f) ⋯) F)
let hS := hF S ⟨exact_cokernel f, inferInstance⟩
C : Type u_1 D : Type u_2 inst✝⁴ : Category.{u_3, u_1} C inst✝³ : Category.{u_4, u_2} D inst✝² : Abelian C inst✝¹ : Abelian D F : C ⥤ D inst✝ : F.Additive tfae_1_to_2 : (∀ (S : ShortComplex C), S.ShortExact → (S.map F).Exact ∧ Epi (F.map S.g)) → ∀ (S : ShortComplex C), S.Exact ∧ Epi S.g → (S.map F).Exact ∧ Epi (F.map S.g) hF : ∀ (S : ShortComplex C), S.Exact ∧ Epi S.g → (S.map F).Exact ∧ Epi (F.map S.g) X Y : C f : X ⟶ Y S : ShortComplex C := ShortComplex.mk f (cokernel.π f) ⋯ hS : (S.map F).Exact ∧ Epi (F.map S.g) := hF S ⟨exact_cokernel f, inferInstance⟩ ⊢ IsColimit (CokernelCofork.map (Cofork.ofπ (cokernel.π f) ⋯) F)
fda2dfddec035e24
Nat.div_div_div_eq_div
Mathlib/Data/Nat/Init.lean
@[simp] lemma div_div_div_eq_div (dvd : b ∣ a) (dvd2 : a ∣ c) : c / (a / b) / b = c / a := match a, b, c with | 0, _, _ => by simp | a + 1, 0, _ => by simp at dvd | a + 1, c + 1, _ => by have a_split : a + 1 ≠ 0 := succ_ne_zero a have c_split : c + 1 ≠ 0 := succ_ne_zero c rcases dvd2 with ⟨k, rfl⟩ rcases dvd with ⟨k2, pr⟩ have k2_nonzero : k2 ≠ 0 := fun k2_zero => by simp [k2_zero] at pr rw [Nat.mul_div_cancel_left k (Nat.pos_of_ne_zero a_split), pr, Nat.mul_div_cancel_left k2 (Nat.pos_of_ne_zero c_split), Nat.mul_comm ((c + 1) * k2) k, ← Nat.mul_assoc k (c + 1) k2, Nat.mul_div_cancel _ (Nat.pos_of_ne_zero k2_nonzero), Nat.mul_div_cancel _ (Nat.pos_of_ne_zero c_split)]
case intro a✝ b c✝ a c : ℕ dvd : c + 1 ∣ a + 1 a_split : a + 1 ≠ 0 c_split : c + 1 ≠ 0 k : ℕ ⊢ (a + 1) * k / ((a + 1) / (c + 1)) / (c + 1) = (a + 1) * k / (a + 1)
rcases dvd with ⟨k2, pr⟩
case intro.intro a✝ b c✝ a c : ℕ a_split : a + 1 ≠ 0 c_split : c + 1 ≠ 0 k k2 : ℕ pr : a + 1 = (c + 1) * k2 ⊢ (a + 1) * k / ((a + 1) / (c + 1)) / (c + 1) = (a + 1) * k / (a + 1)
eab95b5d7fe19e6b
Finsupp.mem_toMultiset
Mathlib/Data/Finsupp/Multiset.lean
theorem mem_toMultiset (f : α →₀ ℕ) (i : α) : i ∈ toMultiset f ↔ i ∈ f.support
α : Type u_1 f : α →₀ ℕ i : α ⊢ i ∈ toMultiset f ↔ i ∈ f.support
classical rw [← Multiset.count_ne_zero, Finsupp.count_toMultiset, Finsupp.mem_support_iff]
no goals
3b970731ab3a9f50
toAdd_list_sum
Mathlib/Algebra/BigOperators/Group/Finset/Defs.lean
theorem toAdd_list_sum (s : List (Multiplicative α)) : s.prod.toAdd = (s.map toAdd).sum
α : Type u_3 inst✝ : AddMonoid α s : List (Multiplicative α) ⊢ s.prod = s.sum
rfl
no goals
c8980a13b1be89a2
MeasureTheory.MemLp.eLpNorm_indicator_norm_ge_le
Mathlib/MeasureTheory/Function/UniformIntegrable.lean
theorem MemLp.eLpNorm_indicator_norm_ge_le (hf : MemLp f p μ) (hmeas : StronglyMeasurable f) {ε : ℝ} (hε : 0 < ε) : ∃ M : ℝ, eLpNorm ({ x | M ≤ ‖f x‖₊ }.indicator f) p μ ≤ ENNReal.ofReal ε
case pos α : Type u_1 β : Type u_2 m : MeasurableSpace α μ : Measure α inst✝ : NormedAddCommGroup β p : ℝ≥0∞ f : α → β hf : MemLp f p μ hmeas : StronglyMeasurable f ε : ℝ hε : 0 < ε hp_ne_zero : p = 0 ⊢ ∃ M, eLpNorm ({x | M ≤ ↑‖f x‖₊}.indicator f) p μ ≤ ENNReal.ofReal ε
refine ⟨1, hp_ne_zero.symm ▸ ?_⟩
case pos α : Type u_1 β : Type u_2 m : MeasurableSpace α μ : Measure α inst✝ : NormedAddCommGroup β p : ℝ≥0∞ f : α → β hf : MemLp f p μ hmeas : StronglyMeasurable f ε : ℝ hε : 0 < ε hp_ne_zero : p = 0 ⊢ eLpNorm ({x | 1 ≤ ↑‖f x‖₊}.indicator f) 0 μ ≤ ENNReal.ofReal ε
bfa6a8839e926f05
MvPolynomial.indicator_mem_restrictDegree
Mathlib/FieldTheory/Finite/Polynomial.lean
theorem indicator_mem_restrictDegree (c : σ → K) : indicator c ∈ restrictDegree σ K (Fintype.card K - 1)
case refine_2 K : Type u_1 σ : Type u_2 inst✝² : Fintype K inst✝¹ : Fintype σ inst✝ : CommRing K c : σ → K n : σ ⊢ n ∉ Finset.univ → (Fintype.card K - 1) * Multiset.count n {n} = 0
intro h
case refine_2 K : Type u_1 σ : Type u_2 inst✝² : Fintype K inst✝¹ : Fintype σ inst✝ : CommRing K c : σ → K n : σ h : n ∉ Finset.univ ⊢ (Fintype.card K - 1) * Multiset.count n {n} = 0
fbdd72868819cd4c
CategoryTheory.IsIso.inv_comp
Mathlib/CategoryTheory/Iso.lean
theorem inv_comp [IsIso f] [IsIso h] : inv (f ≫ h) = inv h ≫ inv f
case hom_inv_id C : Type u inst✝² : Category.{v, u} C X Y Z : C f : X ⟶ Y h : Y ⟶ Z inst✝¹ : IsIso f inst✝ : IsIso h ⊢ (f ≫ h) ≫ inv h ≫ inv f = 𝟙 X
simp
no goals
4c5858ea8a1326f3
List.filterMap_eq_append_iff
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Lemmas.lean
theorem filterMap_eq_append_iff {f : α → Option β} : filterMap f l = L₁ ++ L₂ ↔ ∃ l₁ l₂, l = l₁ ++ l₂ ∧ filterMap f l₁ = L₁ ∧ filterMap f l₂ = L₂
case mp.cons.h_2.inr.intro.intro α : Type u_1 β : Type u_2 L₂ : List β f : α → Option β x : α l : List α ih : ∀ {L₁ : List β}, filterMap f l = L₁ ++ L₂ → ∃ l₁ l₂, l = l₁ ++ l₂ ∧ filterMap f l₁ = L₁ ∧ filterMap f l₂ = L₂ x✝ : Option β b : β w : f x = some b L₁ : List β h✝ : filterMap f l = L₁ ++ L₂ h : b :: filterMap f l = b :: L₁ ++ L₂ ⊢ ∃ l₁ l₂, x :: l = l₁ ++ l₂ ∧ filterMap f l₁ = b :: L₁ ∧ filterMap f l₂ = L₂
obtain ⟨l₁, l₂, rfl, rfl, rfl⟩ := ih ‹_›
case mp.cons.h_2.inr.intro.intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 f : α → Option β x : α x✝ : Option β b : β w : f x = some b l₁ l₂ : List α ih : ∀ {L₁ : List β}, filterMap f (l₁ ++ l₂) = L₁ ++ filterMap f l₂ → ∃ l₁_1 l₂_1, l₁ ++ l₂ = l₁_1 ++ l₂_1 ∧ filterMap f l₁_1 = L₁ ∧ filterMap f l₂_1 = filterMap f l₂ h✝ : filterMap f (l₁ ++ l₂) = filterMap f l₁ ++ filterMap f l₂ h : b :: filterMap f (l₁ ++ l₂) = b :: filterMap f l₁ ++ filterMap f l₂ ⊢ ∃ l₁_1 l₂_1, x :: (l₁ ++ l₂) = l₁_1 ++ l₂_1 ∧ filterMap f l₁_1 = b :: filterMap f l₁ ∧ filterMap f l₂_1 = filterMap f l₂
e698eece5419b8d8
IsUnifLocDoublingMeasure.tendsto_closedBall_filterAt
Mathlib/MeasureTheory/Covering/DensityTheorem.lean
theorem tendsto_closedBall_filterAt {K : ℝ} {x : α} {ι : Type*} {l : Filter ι} (w : ι → α) (δ : ι → ℝ) (δlim : Tendsto δ l (𝓝[>] 0)) (xmem : ∀ᶠ j in l, x ∈ closedBall (w j) (K * δ j)) : Tendsto (fun j => closedBall (w j) (δ j)) l ((vitaliFamily μ K).filterAt x)
case refine_2.inr α : Type u_1 inst✝⁵ : PseudoMetricSpace α inst✝⁴ : MeasurableSpace α μ : Measure α inst✝³ : IsUnifLocDoublingMeasure μ inst✝² : SecondCountableTopology α inst✝¹ : BorelSpace α inst✝ : IsLocallyFiniteMeasure μ K : ℝ x : α ι : Type u_2 l : Filter ι w : ι → α δ : ι → ℝ xmem : ∀ᶠ (j : ι) in l, x ∈ closedBall (w j) (K * δ j) ε : ℝ hε : ε > 0 h : l.NeBot δpos : ∀ᶠ (i : ι) in l, δ i ∈ Ioi 0 δlim : Tendsto δ l (𝓝 0) hK : 0 < K + 1 ⊢ ∀ (x_1 : ι), (dist (δ x_1) 0 < ε / (K + 1) ∧ δ x_1 ∈ Ioi 0) ∧ x ∈ closedBall (w x_1) (K * δ x_1) → closedBall (w x_1) (δ x_1) ⊆ closedBall x ε
rintro j ⟨⟨hjε, hj₀ : 0 < δ j⟩, hx⟩ y hy
case refine_2.inr.intro.intro α : Type u_1 inst✝⁵ : PseudoMetricSpace α inst✝⁴ : MeasurableSpace α μ : Measure α inst✝³ : IsUnifLocDoublingMeasure μ inst✝² : SecondCountableTopology α inst✝¹ : BorelSpace α inst✝ : IsLocallyFiniteMeasure μ K : ℝ x : α ι : Type u_2 l : Filter ι w : ι → α δ : ι → ℝ xmem : ∀ᶠ (j : ι) in l, x ∈ closedBall (w j) (K * δ j) ε : ℝ hε : ε > 0 h : l.NeBot δpos : ∀ᶠ (i : ι) in l, δ i ∈ Ioi 0 δlim : Tendsto δ l (𝓝 0) hK : 0 < K + 1 j : ι hx : x ∈ closedBall (w j) (K * δ j) hjε : dist (δ j) 0 < ε / (K + 1) hj₀ : 0 < δ j y : α hy : y ∈ closedBall (w j) (δ j) ⊢ y ∈ closedBall x ε
09e360431f9e0376
minpoly.unique'
Mathlib/FieldTheory/Minpoly/Basic.lean
theorem unique' {p : A[X]} (hm : p.Monic) (hp : Polynomial.aeval x p = 0) (hl : ∀ q : A[X], degree q < degree p → q = 0 ∨ Polynomial.aeval x q ≠ 0) : p = minpoly A x
A : Type u_1 B : Type u_2 inst✝² : CommRing A inst✝¹ : Ring B inst✝ : Algebra A B x : B p : A[X] hm : p.Monic hp : (Polynomial.aeval x) p = 0 hl : ∀ (q : A[X]), q.degree < p.degree → q = 0 ∨ (Polynomial.aeval x) q ≠ 0 ⊢ p = minpoly A x
nontriviality A
A : Type u_1 B : Type u_2 inst✝² : CommRing A inst✝¹ : Ring B inst✝ : Algebra A B x : B p : A[X] hm : p.Monic hp : (Polynomial.aeval x) p = 0 hl : ∀ (q : A[X]), q.degree < p.degree → q = 0 ∨ (Polynomial.aeval x) q ≠ 0 a✝ : Nontrivial A ⊢ p = minpoly A x
7aeb1fe2585c14a6
strictConcaveOn_log_Ioi
Mathlib/Analysis/Convex/SpecificFunctions/Basic.lean
theorem strictConcaveOn_log_Ioi : StrictConcaveOn ℝ (Ioi 0) log
x y z : ℝ hx : 0 < x hz : 0 < z hxy : x < y hyz : y < z hy : 0 < y h : 0 < z - y hyz' : 0 < z / y ⊢ z / y ≠ 1
contrapose! h
x y z : ℝ hx : 0 < x hz : 0 < z hxy : x < y hyz : y < z hy : 0 < y hyz' : 0 < z / y h : z / y = 1 ⊢ z - y ≤ 0
b669e8d780cc761c
Module.finite_of_finrank_pos
Mathlib/LinearAlgebra/Dimension/Free.lean
theorem finite_of_finrank_pos (h : 0 < finrank R M) : Module.Finite R M
R : Type u M : Type v inst✝⁴ : Semiring R inst✝³ : StrongRankCondition R inst✝² : AddCommMonoid M inst✝¹ : Module R M inst✝ : Free R M h : 0 < finrank R M ⊢ Module.Finite R M
contrapose h
R : Type u M : Type v inst✝⁴ : Semiring R inst✝³ : StrongRankCondition R inst✝² : AddCommMonoid M inst✝¹ : Module R M inst✝ : Free R M h : ¬Module.Finite R M ⊢ ¬0 < finrank R M
5b0cb550fa8d5395
NonarchimedeanGroup.cauchySeq_of_tendsto_div_nhds_one
Mathlib/Topology/Algebra/InfiniteSum/Nonarchimedean.lean
/-- Let `G` be a nonarchimedean abelian group, and let `f : ℕ → G` be a function such that the quotients `f (n + 1) / f n` tend to one. Then the function is a Cauchy sequence. -/ @[to_additive "Let `G` be a nonarchimedean additive abelian group, and let `f : ℕ → G` be a function such that the differences `f (n + 1) - f n` tend to zero. Then the function is a Cauchy sequence."] lemma cauchySeq_of_tendsto_div_nhds_one {f : ℕ → G} (hf : Tendsto (fun n ↦ f (n + 1) / f n) atTop (𝓝 1)) : CauchySeq f
case intro G : Type u_2 inst✝³ : CommGroup G inst✝² : UniformSpace G inst✝¹ : UniformGroup G inst✝ : NonarchimedeanGroup G f : ℕ → G hf : Tendsto (fun n => f (n + 1) / f n) atTop (𝓝 1) s : Set G hs : s ∈ 𝓝 1 t : OpenSubgroup G ht : ↑t ⊆ s N : ℕ hN : ∀ (b : ℕ), N ≤ b → f (b + 1) / f b ∈ t M : ℕ hMN : N ≤ M k : ℕ ⊢ f (M, M + k).2 / f (M, M + k).1 ∈ ↑t
induction k with | zero => simpa using one_mem t | succ k ih => simpa using t.mul_mem (hN _ (by omega : N ≤ M + k)) ih
no goals
95cdab31772386ea
Finsupp.mapDomain_apply'
Mathlib/Data/Finsupp/Basic.lean
theorem mapDomain_apply' (S : Set α) {f : α → β} (x : α →₀ M) (hS : (x.support : Set α) ⊆ S) (hf : Set.InjOn f S) {a : α} (ha : a ∈ S) : mapDomain f x (f a) = x a
case neg α : Type u_1 β : Type u_2 M : Type u_5 inst✝ : AddCommMonoid M S : Set α f : α → β x : α →₀ M hS : ↑x.support ⊆ S hf : Set.InjOn f S a : α ha : a ∈ S hax : a ∉ x.support i : α hi : i ∈ x.support ⊢ ¬f i = f a
exact hf.ne (hS hi) ha (ne_of_mem_of_not_mem hi hax)
no goals
7d55c7cd92e5faee
Int.natCast_pow
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Int/Pow.lean
theorem natCast_pow (b n : Nat) : ((b^n : Nat) : Int) = (b : Int) ^ n
b n : Nat ⊢ ↑(b ^ n) = ↑b ^ n
match n with | 0 => rfl | n + 1 => simp only [Nat.pow_succ, Int.pow_succ, natCast_mul, natCast_pow _ n]
no goals
22381b0d4e566b6c
Polynomial.isIntegrallyClosed_iff'
Mathlib/RingTheory/Polynomial/GaussLemma.lean
theorem isIntegrallyClosed_iff' [IsDomain R] : IsIntegrallyClosed R ↔ ∀ p : R[X], p.Monic → (Irreducible p ↔ Irreducible (p.map <| algebraMap R K))
case mpr R : Type u_1 inst✝⁴ : CommRing R K : Type u_2 inst✝³ : Field K inst✝² : Algebra R K inst✝¹ : IsFractionRing R K inst✝ : IsDomain R ⊢ (∀ (p : R[X]), p.Monic → (Irreducible p ↔ Irreducible (map (algebraMap R K) p))) → IsIntegrallyClosed R
intro H
case mpr R : Type u_1 inst✝⁴ : CommRing R K : Type u_2 inst✝³ : Field K inst✝² : Algebra R K inst✝¹ : IsFractionRing R K inst✝ : IsDomain R H : ∀ (p : R[X]), p.Monic → (Irreducible p ↔ Irreducible (map (algebraMap R K) p)) ⊢ IsIntegrallyClosed R
399cb77d787c13b1
Nat.findGreatest_eq_iff
Mathlib/Data/Nat/Find.lean
lemma findGreatest_eq_iff : Nat.findGreatest P k = m ↔ m ≤ k ∧ (m ≠ 0 → P m) ∧ ∀ ⦃n⦄, m < n → n ≤ k → ¬P n
case neg.mp.intro.intro P : ℕ → Prop inst✝ : DecidablePred P k : ℕ ihk : ∀ {m : ℕ}, findGreatest P k = m ↔ m ≤ k ∧ (m ≠ 0 → P m) ∧ ∀ ⦃n : ℕ⦄, m < n → n ≤ k → ¬P n m : ℕ hk : ¬P (k + 1) hle✝ : m ≤ k hP : m ≠ 0 → P m hm : ∀ ⦃n : ℕ⦄, m < n → n ≤ k → ¬P n n : ℕ hlt : m < n hle : n ≤ k + 1 ⊢ ¬P n
rcases Decidable.eq_or_lt_of_le hle with (rfl | hlt')
case neg.mp.intro.intro.inl P : ℕ → Prop inst✝ : DecidablePred P k : ℕ ihk : ∀ {m : ℕ}, findGreatest P k = m ↔ m ≤ k ∧ (m ≠ 0 → P m) ∧ ∀ ⦃n : ℕ⦄, m < n → n ≤ k → ¬P n m : ℕ hk : ¬P (k + 1) hle✝ : m ≤ k hP : m ≠ 0 → P m hm : ∀ ⦃n : ℕ⦄, m < n → n ≤ k → ¬P n hlt : m < k + 1 hle : k + 1 ≤ k + 1 ⊢ ¬P (k + 1) case neg.mp.intro.intro.inr P : ℕ → Prop inst✝ : DecidablePred P k : ℕ ihk : ∀ {m : ℕ}, findGreatest P k = m ↔ m ≤ k ∧ (m ≠ 0 → P m) ∧ ∀ ⦃n : ℕ⦄, m < n → n ≤ k → ¬P n m : ℕ hk : ¬P (k + 1) hle✝ : m ≤ k hP : m ≠ 0 → P m hm : ∀ ⦃n : ℕ⦄, m < n → n ≤ k → ¬P n n : ℕ hlt : m < n hle : n ≤ k + 1 hlt' : n < k + 1 ⊢ ¬P n
9905ebac396451ee
Complex.HadamardThreeLines.diffContOnCl_interpStrip
Mathlib/Analysis/Complex/Hadamard.lean
lemma diffContOnCl_interpStrip : DiffContOnCl ℂ (interpStrip f) (verticalStrip 0 1)
case h E : Type u_1 inst✝ : NormedAddCommGroup E f : ℂ → E h0 : 0 ≠ sSupNormIm f 0 h1 : 0 ≠ sSupNormIm f 1 z : ℂ ⊢ ¬sSupNormIm f 0 = 0
rwa [eq_comm]
no goals
a658f86b7165f3fe
padicNorm.int_eq_one_iff
Mathlib/NumberTheory/Padics/PadicNorm.lean
theorem int_eq_one_iff (m : ℤ) : padicNorm p m = 1 ↔ ¬(p : ℤ) ∣ m
case pos p : ℕ hp : Fact (Nat.Prime p) m : ℤ h✝ : ↑m = 0 ⊢ (↑p)⁻¹ < 0 → 0 = 1
rw [inv_lt_zero, ← Nat.cast_zero, Nat.cast_lt]
case pos p : ℕ hp : Fact (Nat.Prime p) m : ℤ h✝ : ↑m = 0 ⊢ p < 0 → ↑0 = 1
5a294b98dd015827
List.Vector.scanl_get
Mathlib/Data/Vector/Basic.lean
theorem scanl_get (i : Fin n) : (scanl f b v).get i.succ = f ((scanl f b v).get (Fin.castSucc i)) (v.get i)
case succ.zero α : Type u_1 β : Type u_6 f : β → α → β b : β v : Vector α (0 + 1) i : Fin (0 + 1) ⊢ (scanl f b v).get i.succ = f ((scanl f b v).get i.castSucc) (v.get i)
have i0 : i = 0 := Fin.eq_zero _
case succ.zero α : Type u_1 β : Type u_6 f : β → α → β b : β v : Vector α (0 + 1) i : Fin (0 + 1) i0 : i = 0 ⊢ (scanl f b v).get i.succ = f ((scanl f b v).get i.castSucc) (v.get i)
d55723b163424dfc
isApproximateSubgroup_one
Mathlib/Combinatorics/Additive/ApproximateSubgroup.lean
/-- A `1`-approximate subgroup is the same thing as a subgroup. -/ @[to_additive (attr := simp) "A `1`-approximate subgroup is the same thing as a subgroup."] lemma isApproximateSubgroup_one {A : Set G} : IsApproximateSubgroup 1 (A : Set G) ↔ ∃ H : Subgroup G, H = A where mp hA
case intro.intro G : Type u_1 inst✝ : Group G A : Set G hA : IsApproximateSubgroup 1 A K : Finset G hKA : A ^ 2 ⊆ ↑K • A hK : ∃ x, K = ∅ ∨ K = {x} ⊢ ∃ x, A * A ⊆ x • A
obtain ⟨x, rfl | rfl⟩ := hK
case intro.intro.intro.inl G : Type u_1 inst✝ : Group G A : Set G hA : IsApproximateSubgroup 1 A x : G hKA : A ^ 2 ⊆ ↑∅ • A ⊢ ∃ x, A * A ⊆ x • A case intro.intro.intro.inr G : Type u_1 inst✝ : Group G A : Set G hA : IsApproximateSubgroup 1 A x : G hKA : A ^ 2 ⊆ ↑{x} • A ⊢ ∃ x, A * A ⊆ x • A
1d755e438e264b32
pow_unbounded_of_one_lt
Mathlib/Algebra/Order/Archimedean/Basic.lean
lemma pow_unbounded_of_one_lt [ExistsAddOfLE α] (x : α) (hy1 : 1 < y) : ∃ n : ℕ, x < y ^ n
α : Type u_1 inst✝² : StrictOrderedSemiring α inst✝¹ : Archimedean α y : α inst✝ : ExistsAddOfLE α x : α hy1 : 1 < y ⊢ ∃ n, x < y ^ n
obtain ⟨z, hz, rfl⟩ := exists_pos_add_of_lt' hy1
case intro.intro α : Type u_1 inst✝² : StrictOrderedSemiring α inst✝¹ : Archimedean α inst✝ : ExistsAddOfLE α x z : α hz : 0 < z hy1 : 1 < 1 + z ⊢ ∃ n, x < (1 + z) ^ n
ea14394363994ad4
Filter.Tendsto.exists_within_forall_le
Mathlib/Order/Filter/Cofinite.lean
theorem Filter.Tendsto.exists_within_forall_le {α β : Type*} [LinearOrder β] {s : Set α} (hs : s.Nonempty) {f : α → β} (hf : Filter.Tendsto f Filter.cofinite Filter.atTop) : ∃ a₀ ∈ s, ∀ a ∈ s, f a₀ ≤ f a
case inl.intro.intro.intro α : Type u_4 β : Type u_5 inst✝ : LinearOrder β s : Set α hs : s.Nonempty f : α → β hf : Tendsto f cofinite atTop y : α hys : y ∈ s x : β hx : f y < x this : {y | ¬x ≤ f y}.Finite ⊢ ∃ a₀ ∈ s, ∀ a ∈ s, f a₀ ≤ f a
simp only [not_le] at this
case inl.intro.intro.intro α : Type u_4 β : Type u_5 inst✝ : LinearOrder β s : Set α hs : s.Nonempty f : α → β hf : Tendsto f cofinite atTop y : α hys : y ∈ s x : β hx : f y < x this : {y | f y < x}.Finite ⊢ ∃ a₀ ∈ s, ∀ a ∈ s, f a₀ ≤ f a
ca1090b0ea7bdd91
IsFractionRing.algHom_fieldRange_eq_of_comp_eq_of_range_eq
Mathlib/FieldTheory/IntermediateField/Adjoin/Algebra.lean
theorem algHom_fieldRange_eq_of_comp_eq_of_range_eq (h : RingHom.comp f (algebraMap A K) = (g : A →+* L)) {s : Set L} (hs : g.range = Algebra.adjoin F s) : f.fieldRange = IntermediateField.adjoin F s
F : Type u_1 A : Type u_2 K : Type u_3 L : Type u_4 inst✝⁸ : Field F inst✝⁷ : CommRing A inst✝⁶ : Algebra F A inst✝⁵ : Field K inst✝⁴ : Algebra F K inst✝³ : Algebra A K inst✝² : IsFractionRing A K inst✝¹ : Field L inst✝ : Algebra F L g : A →ₐ[F] L f : K →ₐ[F] L h : (↑f).comp (algebraMap A K) = ↑g s : Set L hs : g.range = Algebra.adjoin F s ⊢ f.fieldRange = IntermediateField.adjoin F s
apply IntermediateField.toSubfield_injective
case a F : Type u_1 A : Type u_2 K : Type u_3 L : Type u_4 inst✝⁸ : Field F inst✝⁷ : CommRing A inst✝⁶ : Algebra F A inst✝⁵ : Field K inst✝⁴ : Algebra F K inst✝³ : Algebra A K inst✝² : IsFractionRing A K inst✝¹ : Field L inst✝ : Algebra F L g : A →ₐ[F] L f : K →ₐ[F] L h : (↑f).comp (algebraMap A K) = ↑g s : Set L hs : g.range = Algebra.adjoin F s ⊢ f.fieldRange.toSubfield = (IntermediateField.adjoin F s).toSubfield
685c99ec804c2a47
LinearMap.IsSymmetric.hasStrictFDerivAt_reApplyInnerSelf
Mathlib/Analysis/InnerProductSpace/Rayleigh.lean
theorem _root_.LinearMap.IsSymmetric.hasStrictFDerivAt_reApplyInnerSelf {T : F →L[ℝ] F} (hT : (T : F →ₗ[ℝ] F).IsSymmetric) (x₀ : F) : HasStrictFDerivAt T.reApplyInnerSelf (2 • (innerSL ℝ (T x₀))) x₀
F : Type u_3 inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F T : F →L[ℝ] F hT : (↑T).IsSymmetric x₀ : F ⊢ HasStrictFDerivAt T.reApplyInnerSelf (2 • (innerSL ℝ) (T x₀)) x₀
convert T.hasStrictFDerivAt.inner ℝ (hasStrictFDerivAt_id x₀) using 1
case h.e'_12.h.h.h F : Type u_3 inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F T : F →L[ℝ] F hT : (↑T).IsSymmetric x₀ : F e_4✝ : NormedAddCommGroup.toAddCommGroup = SeminormedAddCommGroup.toAddCommGroup he✝¹ : NormedSpace.toModule = NormedSpace.toModule e_8✝ : Real.instAddCommGroup = SeminormedAddCommGroup.toAddCommGroup he✝ : NormedSpace.toModule = NormedSpace.toModule ⊢ 2 • (innerSL ℝ) (T x₀) = (fderivInnerCLM ℝ (T x₀, id x₀)).comp (T.prod (ContinuousLinearMap.id ℝ F))
e5f6c554ea5c2120
Nat.pos_of_mem_divisors
Mathlib/NumberTheory/Divisors.lean
theorem pos_of_mem_divisors {m : ℕ} (h : m ∈ n.divisors) : 0 < m
n m : ℕ h : m ∈ n.divisors ⊢ 0 < m
cases m
case zero n : ℕ h : 0 ∈ n.divisors ⊢ 0 < 0 case succ n n✝ : ℕ h : n✝ + 1 ∈ n.divisors ⊢ 0 < n✝ + 1
f81a5b51eb4f3d13
Array.size_extract_loop
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/Lemmas.lean
theorem size_extract_loop (as bs : Array α) (size start : Nat) : (extract.loop as size start bs).size = bs.size + min size (as.size - start)
α : Type u_1 as : Array α size : Nat ih : ∀ (bs : Array α) (start : Nat), (extract.loop as size start bs).size = bs.size + min size (as.size - start) bs : Array α start : Nat h : ¬start < as.size ⊢ (extract.loop as (size + 1) start bs).size = bs.size + min (size + 1) (as.size - start)
have h := Nat.le_of_not_gt h
α : Type u_1 as : Array α size : Nat ih : ∀ (bs : Array α) (start : Nat), (extract.loop as size start bs).size = bs.size + min size (as.size - start) bs : Array α start : Nat h✝ : ¬start < as.size h : as.size ≤ start ⊢ (extract.loop as (size + 1) start bs).size = bs.size + min (size + 1) (as.size - start)
33a6be218948d9fd
MeasureTheory.Measure.tendsto_addHaar_inter_smul_zero_of_density_zero
Mathlib/MeasureTheory/Measure/Lebesgue/EqHaar.lean
theorem tendsto_addHaar_inter_smul_zero_of_density_zero (s : Set E) (x : E) (h : Tendsto (fun r => μ (s ∩ closedBall x r) / μ (closedBall x r)) (𝓝[>] 0) (𝓝 0)) (t : Set E) (ht : MeasurableSet t) (h''t : μ t ≠ ∞) : Tendsto (fun r : ℝ => μ (s ∩ ({x} + r • t)) / μ ({x} + r • t)) (𝓝[>] 0) (𝓝 0)
E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : FiniteDimensional ℝ E μ : Measure E inst✝ : μ.IsAddHaarMeasure s : Set E x : E h : Tendsto (fun r => μ (s ∩ closedBall x r) / μ (closedBall x r)) (𝓝[>] 0) (𝓝 0) t : Set E ht : MeasurableSet t h''t : μ t ≠ ⊤ ε : ℝ≥0∞ εpos : 0 < ε h't : μ t ≠ 0 ⊢ Tendsto (fun n => μ (t \ closedBall 0 ↑n)) atTop (𝓝 (μ (⋂ n, t \ closedBall 0 ↑n)))
have N : ∃ n : ℕ, μ (t \ closedBall 0 n) ≠ ∞ := ⟨0, ((measure_mono diff_subset).trans_lt h''t.lt_top).ne⟩
E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : FiniteDimensional ℝ E μ : Measure E inst✝ : μ.IsAddHaarMeasure s : Set E x : E h : Tendsto (fun r => μ (s ∩ closedBall x r) / μ (closedBall x r)) (𝓝[>] 0) (𝓝 0) t : Set E ht : MeasurableSet t h''t : μ t ≠ ⊤ ε : ℝ≥0∞ εpos : 0 < ε h't : μ t ≠ 0 N : ∃ n, μ (t \ closedBall 0 ↑n) ≠ ⊤ ⊢ Tendsto (fun n => μ (t \ closedBall 0 ↑n)) atTop (𝓝 (μ (⋂ n, t \ closedBall 0 ↑n)))
8e4b11ebb89db50e
MeasureTheory.lintegral_comp_eq_lintegral_meas_le_mul_of_measurable_of_sigmaFinite
Mathlib/MeasureTheory/Integral/Layercake.lean
theorem lintegral_comp_eq_lintegral_meas_le_mul_of_measurable_of_sigmaFinite (μ : Measure α) [SFinite μ] (f_nn : 0 ≤ f) (f_mble : Measurable f) (g_intble : ∀ t > 0, IntervalIntegrable g volume 0 t) (g_mble : Measurable g) (g_nn : ∀ t > 0, 0 ≤ g t) : ∫⁻ ω, ENNReal.ofReal (∫ t in (0)..f ω, g t) ∂μ = ∫⁻ t in Ioi 0, μ {a : α | t ≤ f a} * ENNReal.ofReal (g t)
α : Type u_1 inst✝¹ : MeasurableSpace α f : α → ℝ g : ℝ → ℝ μ : Measure α inst✝ : SFinite μ f_nn : 0 ≤ f f_mble : Measurable f g_intble : ∀ t > 0, IntervalIntegrable g volume 0 t g_mble : Measurable g g_nn : ∀ t > 0, 0 ≤ g t g_intble' : ∀ (t : ℝ), 0 ≤ t → IntervalIntegrable g volume 0 t integrand_eq : ∀ (ω : α), ENNReal.ofReal (∫ (t : ℝ) in 0 ..f ω, g t) = ∫⁻ (t : ℝ) in Ioc 0 (f ω), ENNReal.ofReal (g t) aux₂ : (Function.uncurry fun x y => (Ioc 0 (f x)).indicator (fun t => ENNReal.ofReal (g t)) y) = {p | p.2 ∈ Ioc 0 (f p.1)}.indicator fun p => ENNReal.ofReal (g p.2) ⊢ MeasurableSet {p | p.2 ∈ Ioc 0 (f p.1)}
simpa only [mem_univ, Pi.zero_apply, true_and] using measurableSet_region_between_oc measurable_zero f_mble MeasurableSet.univ
no goals
028c71a79fc18349
Real.sin_int_mul_pi_sub
Mathlib/Analysis/SpecialFunctions/Trigonometric/Basic.lean
theorem sin_int_mul_pi_sub (x : ℝ) (n : ℤ) : sin (n * π - x) = -((-1) ^ n * sin x)
x : ℝ n : ℤ ⊢ sin (↑n * π - x) = -((-1) ^ n * sin x)
simpa only [sin_neg, mul_neg, Int.cast_negOnePow] using sin_antiperiodic.int_mul_sub_eq n
no goals
66c8a0c13694c32a
DFinsupp.single_eq_single_iff
Mathlib/Data/DFinsupp/Defs.lean
theorem single_eq_single_iff (i j : ι) (xi : β i) (xj : β j) : DFinsupp.single i xi = DFinsupp.single j xj ↔ i = j ∧ HEq xi xj ∨ xi = 0 ∧ xj = 0
case neg ι : Type u β : ι → Type v inst✝¹ : (i : ι) → Zero (β i) inst✝ : DecidableEq ι i j : ι xi : β i xj : β j h : single i xi = single j xj hij : ¬i = j ⊢ i = j ∧ HEq xi xj ∨ xi = 0 ∧ xj = 0
have h_coe : ⇑(DFinsupp.single i xi) = DFinsupp.single j xj := congr_arg (⇑) h
case neg ι : Type u β : ι → Type v inst✝¹ : (i : ι) → Zero (β i) inst✝ : DecidableEq ι i j : ι xi : β i xj : β j h : single i xi = single j xj hij : ¬i = j h_coe : ⇑(single i xi) = ⇑(single j xj) ⊢ i = j ∧ HEq xi xj ∨ xi = 0 ∧ xj = 0
1a074302bda6952c
legendreSym.eq_zero_mod_of_eq_neg_one
Mathlib/NumberTheory/LegendreSymbol/Basic.lean
theorem eq_zero_mod_of_eq_neg_one {p : ℕ} [Fact p.Prime] {a : ℤ} (h : legendreSym p a = -1) {x y : ZMod p} (hxy : x ^ 2 - a * y ^ 2 = 0) : x = 0 ∧ y = 0
p : ℕ inst✝ : Fact (Nat.Prime p) a : ℤ h : legendreSym p a = -1 x y : ZMod p hxy : x ^ 2 - ↑a * y ^ 2 = 0 hf : ↑a = 0 ⊢ False
rw [(eq_zero_iff p a).mpr hf] at h
p : ℕ inst✝ : Fact (Nat.Prime p) a : ℤ h : 0 = -1 x y : ZMod p hxy : x ^ 2 - ↑a * y ^ 2 = 0 hf : ↑a = 0 ⊢ False
627576b8706b1158