name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
Set.SMulAntidiagonal.finite_of_isPWO
Mathlib/Data/Set/SMulAntidiagonal.lean
theorem finite_of_isPWO (hs : s.IsPWO) (ht : t.IsPWO) (a) : (smulAntidiagonal s t a).Finite
G : Type u_1 P : Type u_2 s : Set G t : Set P inst✝³ : PartialOrder G inst✝² : PartialOrder P inst✝¹ : SMul G P inst✝ : IsOrderedCancelSMul G P hs : s.IsPWO ht : t.IsPWO a : P h : (s.smulAntidiagonal t a).Infinite h1 : (s.smulAntidiagonal t a).PartiallyWellOrderedOn (Prod.fst ⁻¹'o fun x1 x2 => x1 ≤ x2) h2 : (s.smulAntidiagonal t a).PartiallyWellOrderedOn (Prod.snd ⁻¹'o fun x1 x2 => x1 ≤ x2) ⊢ False
have isrfl : IsRefl (G × P) (Prod.fst ⁻¹'o fun x x_1 ↦ x ≤ x_1) := by refine { refl := ?refl } simp_all only [Order.Preimage, le_refl, Prod.forall, implies_true]
G : Type u_1 P : Type u_2 s : Set G t : Set P inst✝³ : PartialOrder G inst✝² : PartialOrder P inst✝¹ : SMul G P inst✝ : IsOrderedCancelSMul G P hs : s.IsPWO ht : t.IsPWO a : P h : (s.smulAntidiagonal t a).Infinite h1 : (s.smulAntidiagonal t a).PartiallyWellOrderedOn (Prod.fst ⁻¹'o fun x1 x2 => x1 ≤ x2) h2 : (s.smulAntidiagonal t a).PartiallyWellOrderedOn (Prod.snd ⁻¹'o fun x1 x2 => x1 ≤ x2) isrfl : IsRefl (G × P) (Prod.fst ⁻¹'o fun x x_1 => x ≤ x_1) ⊢ False
7f1573a75cfc8a75
ConvexOn.continuousOn_tfae
Mathlib/Analysis/Convex/Continuous.lean
lemma ConvexOn.continuousOn_tfae (hC : IsOpen C) (hC' : C.Nonempty) (hf : ConvexOn ℝ C f) : TFAE [ LocallyLipschitzOn C f, ContinuousOn f C, ∃ x₀ ∈ C, ContinuousAt f x₀, ∃ x₀ ∈ C, (𝓝 x₀).IsBoundedUnder (· ≤ ·) f, ∀ ⦃x₀⦄, x₀ ∈ C → (𝓝 x₀).IsBoundedUnder (· ≤ ·) f, ∀ ⦃x₀⦄, x₀ ∈ C → (𝓝 x₀).IsBoundedUnder (· ≤ ·) |f|]
E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E C : Set E f : E → ℝ hC : IsOpen C hC' : C.Nonempty hf : ConvexOn ℝ C f tfae_1_to_2 : LocallyLipschitzOn C f → ContinuousOn f C tfae_2_to_3 : ContinuousOn f C → ∃ x₀ ∈ C, ContinuousAt f x₀ tfae_3_to_4 : (∃ x₀ ∈ C, ContinuousAt f x₀) → ∃ x₀ ∈ C, Filter.IsBoundedUnder (fun x1 x2 => x1 ≤ x2) (𝓝 x₀) f x₀ : E hx₀ : x₀ ∈ C r : ℝ hr : ∀ᶠ (x : ℝ) in Filter.map f (𝓝 x₀), (fun x1 x2 => x1 ≤ x2) x r x : E hx : x ∈ C ⊢ ContinuousAt (fun δ => (1 - δ)⁻¹ • x - (δ / (1 - δ)) • x₀) 0
fun_prop (disch := norm_num)
no goals
d7a82928a7cc2bf5
SigmaCompactSpace_iff_exists_compact_covering
Mathlib/Topology/Compactness/SigmaCompact.lean
/-- A topological space is σ-compact iff there exists a countable collection of compact subspaces that cover the entire space. -/ lemma SigmaCompactSpace_iff_exists_compact_covering : SigmaCompactSpace X ↔ ∃ K : ℕ → Set X, (∀ n, IsCompact (K n)) ∧ ⋃ n, K n = univ
X : Type u_1 inst✝ : TopologicalSpace X ⊢ SigmaCompactSpace X ↔ ∃ K, (∀ (n : ℕ), IsCompact (K n)) ∧ ⋃ n, K n = univ
rw [← isSigmaCompact_univ_iff, IsSigmaCompact]
no goals
a990befcd7cbd3b8
Rat.AbsoluteValue.one_lt_of_not_bounded
Mathlib/NumberTheory/Ostrowski.lean
/-- If `f n > 1` for some `n` then `f n > 1` for all `n ≥ 2` -/ lemma one_lt_of_not_bounded (notbdd : ¬ ∀ n : ℕ, f n ≤ 1) {n₀ : ℕ} (hn₀ : 1 < n₀) : 1 < f n₀
f : AbsoluteValue ℚ ℝ n₀ : ℕ hn₀ : 1 < n₀ h : f ↑n₀ ≤ 1 n m : ℕ hm : 1 ≤ m L : List ℕ := n₀.digits m ⊢ ↑n₀ * (↑(Nat.log n₀ m) + 1) ≤ ↑n₀ * (logb ↑n₀ ↑m + 1)
gcongr
case h.bc f : AbsoluteValue ℚ ℝ n₀ : ℕ hn₀ : 1 < n₀ h : f ↑n₀ ≤ 1 n m : ℕ hm : 1 ≤ m L : List ℕ := n₀.digits m ⊢ ↑(Nat.log n₀ m) ≤ logb ↑n₀ ↑m
2244dd101a1df19f
exists_isIntegralCurveAt_of_contMDiffAt
Mathlib/Geometry/Manifold/IntegralCurve/ExistUnique.lean
theorem exists_isIntegralCurveAt_of_contMDiffAt [CompleteSpace E] (hv : ContMDiffAt I I.tangent 1 (fun x ↦ (⟨x, v x⟩ : TangentBundle I M)) x₀) (hx : I.IsInteriorPoint x₀) : ∃ γ : ℝ → M, γ t₀ = x₀ ∧ IsIntegralCurveAt γ v t₀
case intro.intro.intro.intro.intro E : Type u_1 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E H : Type u_2 inst✝⁴ : TopologicalSpace H I : ModelWithCorners ℝ E H M : Type u_3 inst✝³ : TopologicalSpace M inst✝² : ChartedSpace H M inst✝¹ : IsManifold I 1 M v : (x : M) → TangentSpace I x t₀ : ℝ x₀ : M inst✝ : CompleteSpace E hx : I.IsInteriorPoint x₀ left✝ : ContinuousAt (fun x => { proj := x, snd := v x }) x₀ hv : ContDiffWithinAt ℝ 1 (↑(extChartAt I.tangent { proj := x₀, snd := v x₀ }) ∘ (fun x => { proj := x, snd := v x }) ∘ ↑(extChartAt I x₀).symm) (range ↑I) (↑(extChartAt I x₀) x₀) f : ℝ → E hf1 : f t₀ = ↑(extChartAt I x₀) x₀ hf2 : ∀ᶠ (y : ℝ) in 𝓝 t₀, HasDerivAt f ((↑(extChartAt I.tangent { proj := x₀, snd := v x₀ }) ∘ (fun x => { proj := x, snd := v x }) ∘ ↑(extChartAt I x₀).symm) (f y)).2 y a : ℝ ha : a > 0 hf2' : ∀ y ∈ Metric.ball t₀ a, HasDerivAt f ((↑(extChartAt I.tangent { proj := x₀, snd := v x₀ }) ∘ (fun x => { proj := x, snd := v x }) ∘ ↑(extChartAt I x₀).symm) (f y)).2 y hcont : ∀ A ∈ 𝓝 (↑(extChartAt I x₀) x₀), f ⁻¹' A ∈ 𝓝 t₀ hnhds : ∀ᶠ (x' : ℝ) in 𝓝 t₀, f ⁻¹' interior (extChartAt I x₀).target ∈ 𝓝 x' s : Set ℝ hs : s ∈ 𝓝 t₀ haux : ∀ y ∈ s, HasDerivAt f ((↑(extChartAt I.tangent { proj := x₀, snd := v x₀ }) ∘ (fun x => { proj := x, snd := v x }) ∘ ↑(extChartAt I x₀).symm) (f y)).2 y ∧ f ⁻¹' interior (extChartAt I x₀).target ∈ 𝓝 y t : ℝ ht : t ∈ s xₜ : M := ↑(extChartAt I x₀).symm (f t) ⊢ HasMFDerivAt (modelWithCornersSelf ℝ ℝ) I (↑(extChartAt I x₀).symm ∘ f) t (ContinuousLinearMap.smulRight 1 (v ((↑(extChartAt I x₀).symm ∘ f) t)))
have h : HasDerivAt f (x := t) <| fderivWithin ℝ (extChartAt I x₀ ∘ (extChartAt I xₜ).symm) (range I) (extChartAt I xₜ xₜ) (v xₜ) := (haux t ht).1
case intro.intro.intro.intro.intro E : Type u_1 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E H : Type u_2 inst✝⁴ : TopologicalSpace H I : ModelWithCorners ℝ E H M : Type u_3 inst✝³ : TopologicalSpace M inst✝² : ChartedSpace H M inst✝¹ : IsManifold I 1 M v : (x : M) → TangentSpace I x t₀ : ℝ x₀ : M inst✝ : CompleteSpace E hx : I.IsInteriorPoint x₀ left✝ : ContinuousAt (fun x => { proj := x, snd := v x }) x₀ hv : ContDiffWithinAt ℝ 1 (↑(extChartAt I.tangent { proj := x₀, snd := v x₀ }) ∘ (fun x => { proj := x, snd := v x }) ∘ ↑(extChartAt I x₀).symm) (range ↑I) (↑(extChartAt I x₀) x₀) f : ℝ → E hf1 : f t₀ = ↑(extChartAt I x₀) x₀ hf2 : ∀ᶠ (y : ℝ) in 𝓝 t₀, HasDerivAt f ((↑(extChartAt I.tangent { proj := x₀, snd := v x₀ }) ∘ (fun x => { proj := x, snd := v x }) ∘ ↑(extChartAt I x₀).symm) (f y)).2 y a : ℝ ha : a > 0 hf2' : ∀ y ∈ Metric.ball t₀ a, HasDerivAt f ((↑(extChartAt I.tangent { proj := x₀, snd := v x₀ }) ∘ (fun x => { proj := x, snd := v x }) ∘ ↑(extChartAt I x₀).symm) (f y)).2 y hcont : ∀ A ∈ 𝓝 (↑(extChartAt I x₀) x₀), f ⁻¹' A ∈ 𝓝 t₀ hnhds : ∀ᶠ (x' : ℝ) in 𝓝 t₀, f ⁻¹' interior (extChartAt I x₀).target ∈ 𝓝 x' s : Set ℝ hs : s ∈ 𝓝 t₀ haux : ∀ y ∈ s, HasDerivAt f ((↑(extChartAt I.tangent { proj := x₀, snd := v x₀ }) ∘ (fun x => { proj := x, snd := v x }) ∘ ↑(extChartAt I x₀).symm) (f y)).2 y ∧ f ⁻¹' interior (extChartAt I x₀).target ∈ 𝓝 y t : ℝ ht : t ∈ s xₜ : M := ↑(extChartAt I x₀).symm (f t) h : HasDerivAt f ((fderivWithin ℝ (↑(extChartAt I x₀) ∘ ↑(extChartAt I xₜ).symm) (range ↑I) (↑(extChartAt I xₜ) xₜ)) (v xₜ)) t ⊢ HasMFDerivAt (modelWithCornersSelf ℝ ℝ) I (↑(extChartAt I x₀).symm ∘ f) t (ContinuousLinearMap.smulRight 1 (v ((↑(extChartAt I x₀).symm ∘ f) t)))
b2c5f907bce00300
AddChar.exists_divisor_of_not_isPrimitive
Mathlib/NumberTheory/LegendreSymbol/AddCharacter.lean
/-- If `e` is not primitive, then `e.mulShift d = 1` for some proper divisor `d` of `N`. -/ lemma exists_divisor_of_not_isPrimitive (he : ¬e.IsPrimitive) : ∃ d : ℕ, d ∣ N ∧ d < N ∧ e.mulShift d = 1
case intro.intro.intro.intro.intro.intro.refine_2 N : ℕ inst✝¹ : NeZero N R : Type u_1 inst✝ : CommRing R e : AddChar (ZMod N) R d : ℕ hd : d ∣ N u : ZMod N hu : IsUnit u hb_ne : u * ↑d ≠ 0 hb : e.mulShift (u * ↑d) = 1 ⊢ (e.mulShift ↑d).mulShift u = e.mulShift (↑d * u)
ext1 y
case intro.intro.intro.intro.intro.intro.refine_2.h N : ℕ inst✝¹ : NeZero N R : Type u_1 inst✝ : CommRing R e : AddChar (ZMod N) R d : ℕ hd : d ∣ N u : ZMod N hu : IsUnit u hb_ne : u * ↑d ≠ 0 hb : e.mulShift (u * ↑d) = 1 y : ZMod N ⊢ ((e.mulShift ↑d).mulShift u) y = (e.mulShift (↑d * u)) y
88a547542522f0dd
MeasureTheory.exists_lt_lowerSemicontinuous_lintegral_ge_of_aemeasurable
Mathlib/MeasureTheory/Integral/VitaliCaratheodory.lean
theorem exists_lt_lowerSemicontinuous_lintegral_ge_of_aemeasurable [SigmaFinite μ] (f : α → ℝ≥0) (fmeas : AEMeasurable f μ) {ε : ℝ≥0∞} (ε0 : ε ≠ 0) : ∃ g : α → ℝ≥0∞, (∀ x, (f x : ℝ≥0∞) < g x) ∧ LowerSemicontinuous g ∧ (∫⁻ x, g x ∂μ) ≤ (∫⁻ x, f x ∂μ) + ε
case neg α : Type u_1 inst✝⁴ : TopologicalSpace α inst✝³ : MeasurableSpace α inst✝² : BorelSpace α μ : Measure α inst✝¹ : μ.WeaklyRegular inst✝ : SigmaFinite μ f : α → ℝ≥0 fmeas : AEMeasurable f μ ε : ℝ≥0∞ ε0 : ε ≠ 0 this : ε / 2 ≠ 0 g0 : α → ℝ≥0∞ f_lt_g0 : ∀ (x : α), ↑(AEMeasurable.mk f fmeas x) < g0 x g0_cont : LowerSemicontinuous g0 g0_int : ∫⁻ (x : α), g0 x ∂μ ≤ ∫⁻ (x : α), ↑(AEMeasurable.mk f fmeas x) ∂μ + ε / 2 s : Set α hs : {x | (fun x => f x = AEMeasurable.mk f fmeas x) x}ᶜ ⊆ s smeas : MeasurableSet s μs : μ s = 0 g1 : α → ℝ≥0∞ le_g1 : ∀ (x : α), s.indicator (fun _x => ⊤) x ≤ g1 x g1_cont : LowerSemicontinuous g1 g1_int : ∫⁻ (x : α), g1 x ∂μ ≤ ∫⁻ (x : α), s.indicator (fun _x => ⊤) x ∂μ + ε / 2 x : α h : x ∉ s ⊢ ↑(f x) < (fun x => g0 x + g1 x) x
have : f x = fmeas.mk f x := by rw [Set.compl_subset_comm] at hs; exact hs h
case neg α : Type u_1 inst✝⁴ : TopologicalSpace α inst✝³ : MeasurableSpace α inst✝² : BorelSpace α μ : Measure α inst✝¹ : μ.WeaklyRegular inst✝ : SigmaFinite μ f : α → ℝ≥0 fmeas : AEMeasurable f μ ε : ℝ≥0∞ ε0 : ε ≠ 0 this✝ : ε / 2 ≠ 0 g0 : α → ℝ≥0∞ f_lt_g0 : ∀ (x : α), ↑(AEMeasurable.mk f fmeas x) < g0 x g0_cont : LowerSemicontinuous g0 g0_int : ∫⁻ (x : α), g0 x ∂μ ≤ ∫⁻ (x : α), ↑(AEMeasurable.mk f fmeas x) ∂μ + ε / 2 s : Set α hs : {x | (fun x => f x = AEMeasurable.mk f fmeas x) x}ᶜ ⊆ s smeas : MeasurableSet s μs : μ s = 0 g1 : α → ℝ≥0∞ le_g1 : ∀ (x : α), s.indicator (fun _x => ⊤) x ≤ g1 x g1_cont : LowerSemicontinuous g1 g1_int : ∫⁻ (x : α), g1 x ∂μ ≤ ∫⁻ (x : α), s.indicator (fun _x => ⊤) x ∂μ + ε / 2 x : α h : x ∉ s this : f x = AEMeasurable.mk f fmeas x ⊢ ↑(f x) < (fun x => g0 x + g1 x) x
2b831a0739b26da1
Ideal.span_singleton_mul_le_iff
Mathlib/RingTheory/Ideal/Operations.lean
theorem span_singleton_mul_le_iff {x : R} {I J : Ideal R} : span {x} * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J
case mp R : Type u inst✝ : CommSemiring R x : R I J : Ideal R h : ∀ (r : R), x ∣ r → ∀ s ∈ I, r * s ∈ J zI : R hzI : zI ∈ I ⊢ x * zI ∈ J
exact h x (dvd_refl x) zI hzI
no goals
4fbba6b14ba98442
CauchySeq.mem_entourage
Mathlib/Topology/UniformSpace/Cauchy.lean
theorem CauchySeq.mem_entourage {β : Type*} [SemilatticeSup β] {u : β → α} (h : CauchySeq u) {V : Set (α × α)} (hV : V ∈ 𝓤 α) : ∃ k₀, ∀ i j, k₀ ≤ i → k₀ ≤ j → (u i, u j) ∈ V
α : Type u uniformSpace : UniformSpace α β : Type u_1 inst✝ : SemilatticeSup β u : β → α h : CauchySeq u V : Set (α × α) hV : V ∈ 𝓤 α this✝ : Nonempty β this : Tendsto (Prod.map u u) atTop (𝓤 α) ⊢ ∃ k₀, ∀ (i j : β), k₀ ≤ i → k₀ ≤ j → (u i, u j) ∈ V
rw [← prod_atTop_atTop_eq] at this
α : Type u uniformSpace : UniformSpace α β : Type u_1 inst✝ : SemilatticeSup β u : β → α h : CauchySeq u V : Set (α × α) hV : V ∈ 𝓤 α this✝ : Nonempty β this : Tendsto (Prod.map u u) (atTop ×ˢ atTop) (𝓤 α) ⊢ ∃ k₀, ∀ (i j : β), k₀ ≤ i → k₀ ≤ j → (u i, u j) ∈ V
b15586cef43f8804
MeromorphicOn.isClopen_setOf_order_eq_top
Mathlib/Analysis/Meromorphic/Order.lean
theorem isClopen_setOf_order_eq_top : IsClopen { u : U | (hf u.1 u.2).order = ⊤ }
case right 𝕜 : Type u_1 inst✝² : NontriviallyNormedField 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E f : 𝕜 → E U : Set 𝕜 hf : MeromorphicOn f U ⊢ IsOpen {u | ⋯.order = ⊤}
apply isOpen_iff_forall_mem_open.mpr
case right 𝕜 : Type u_1 inst✝² : NontriviallyNormedField 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E f : 𝕜 → E U : Set 𝕜 hf : MeromorphicOn f U ⊢ ∀ x ∈ {u | ⋯.order = ⊤}, ∃ t ⊆ {u | ⋯.order = ⊤}, IsOpen t ∧ x ∈ t
7349d8844a909f0d
CategoryTheory.Presheaf.isSheaf_iff_multiequalizer
Mathlib/CategoryTheory/Sites/Sheaf.lean
theorem isSheaf_iff_multiequalizer [∀ (X : C) (S : J.Cover X), HasMultiequalizer (S.index P)] : IsSheaf J P ↔ ∀ (X : C) (S : J.Cover X), IsIso (S.toMultiequalizer P)
C : Type u₁ inst✝² : Category.{v₁, u₁} C A : Type u₂ inst✝¹ : Category.{v₂, u₂} A J : GrothendieckTopology C P : Cᵒᵖ ⥤ A inst✝ : ∀ (X : C) (S : J.Cover X), HasMultiequalizer (S.index P) ⊢ (∀ (X : C) (S : J.Cover X), Nonempty (IsLimit (S.multifork P))) ↔ ∀ (X : C) (S : J.Cover X), IsIso (S.toMultiequalizer P)
refine forall₂_congr fun X S => ⟨?_, ?_⟩
case refine_1 C : Type u₁ inst✝² : Category.{v₁, u₁} C A : Type u₂ inst✝¹ : Category.{v₂, u₂} A J : GrothendieckTopology C P : Cᵒᵖ ⥤ A inst✝ : ∀ (X : C) (S : J.Cover X), HasMultiequalizer (S.index P) X : C S : J.Cover X ⊢ Nonempty (IsLimit (S.multifork P)) → IsIso (S.toMultiequalizer P) case refine_2 C : Type u₁ inst✝² : Category.{v₁, u₁} C A : Type u₂ inst✝¹ : Category.{v₂, u₂} A J : GrothendieckTopology C P : Cᵒᵖ ⥤ A inst✝ : ∀ (X : C) (S : J.Cover X), HasMultiequalizer (S.index P) X : C S : J.Cover X ⊢ IsIso (S.toMultiequalizer P) → Nonempty (IsLimit (S.multifork P))
32f315e61f5eaf0d
Ordinal.cof_eq_cof_toType
Mathlib/SetTheory/Cardinal/Cofinality.lean
theorem cof_eq_cof_toType (o : Ordinal) : o.cof = @Order.cof o.toType (· ≤ ·)
o : Ordinal.{u_1} ⊢ o.cof = Order.cof fun x1 x2 => x1 ≤ x2
conv_lhs => rw [← type_toType o, cof_type_lt]
no goals
8163d29eb5b73544
Polynomial.splits_of_degree_le_one
Mathlib/Algebra/Polynomial/Splits.lean
theorem splits_of_degree_le_one {f : K[X]} (hf : degree f ≤ 1) : Splits i f := if hif : degree (f.map i) ≤ 0 then splits_of_map_eq_C i (degree_le_zero_iff.mp hif) else by push_neg at hif rw [← Order.succ_le_iff, ← WithBot.coe_zero, WithBot.orderSucc_coe, Nat.succ_eq_succ] at hif exact splits_of_map_degree_eq_one i ((degree_map_le.trans hf).antisymm hif)
K : Type v L : Type w inst✝¹ : CommRing K inst✝ : Field L i : K →+* L f : K[X] hf : f.degree ≤ 1 hif : ↑(Nat.succ 0) ≤ (map i f).degree ⊢ Splits i f
exact splits_of_map_degree_eq_one i ((degree_map_le.trans hf).antisymm hif)
no goals
f333d26a19f7b9ea
associated_norm_prod_smith
Mathlib/LinearAlgebra/FreeModule/Norm.lean
theorem associated_norm_prod_smith [Fintype ι] (b : Basis ι R S) {f : S} (hf : f ≠ 0) : Associated (Algebra.norm R f) (∏ i, smithCoeffs b _ (span_singleton_eq_bot.not.2 hf) i)
R : Type u_1 S : Type u_2 ι : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : IsDomain R inst✝⁴ : IsPrincipalIdealRing R inst✝³ : CommRing S inst✝² : IsDomain S inst✝¹ : Algebra R S inst✝ : Fintype ι b : Basis ι R S f : S hf : f ≠ 0 hI : ¬span {f} = ⊥ b' : Basis ι R S := ringBasis b (span {f}) hI e : S ≃ₗ[R] S := b'.equiv (selfBasis b (span {f}) hI) (Equiv.refl ι) ≪≫ₗ LinearEquiv.restrictScalars R (LinearEquiv.coord S S f hf) i : ι ⊢ (↑(Matrix.toLin b' b') (Matrix.diagonal (smithCoeffs b (span {f}) ⋯))) (b' i) = (↑(Algebra.lmul R S).toRingHom f ∘ₗ ↑(LinearEquiv.restrictScalars R (LinearEquiv.coord S S f hf)) ∘ₗ ↑(b'.equiv (selfBasis b (span {f}) hI) (Equiv.refl ι))) (b' i)
simp_rw [LinearMap.comp_apply, LinearEquiv.coe_toLinearMap, Matrix.toLin_apply, Basis.repr_self, Finsupp.single_eq_pi_single, Matrix.diagonal_mulVec_single, Pi.single_apply, ite_smul, zero_smul, Finset.sum_ite_eq', mul_one, if_pos (Finset.mem_univ _), b'.equiv_apply]
R : Type u_1 S : Type u_2 ι : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : IsDomain R inst✝⁴ : IsPrincipalIdealRing R inst✝³ : CommRing S inst✝² : IsDomain S inst✝¹ : Algebra R S inst✝ : Fintype ι b : Basis ι R S f : S hf : f ≠ 0 hI : ¬span {f} = ⊥ b' : Basis ι R S := ringBasis b (span {f}) hI e : S ≃ₗ[R] S := b'.equiv (selfBasis b (span {f}) hI) (Equiv.refl ι) ≪≫ₗ LinearEquiv.restrictScalars R (LinearEquiv.coord S S f hf) i : ι ⊢ smithCoeffs b (span {f}) ⋯ i • b' i = (↑(Algebra.lmul R S).toRingHom f) ((LinearEquiv.restrictScalars R (LinearEquiv.coord S S f hf)) ((selfBasis b (span {f}) hI) ((Equiv.refl ι) i)))
e517c670dc65b094
PresheafOfModules.Sheafify.smul_add
Mathlib/Algebra/Category/ModuleCat/Presheaf/Sheafify.lean
protected lemma smul_add : smul α φ r (m + m') = smul α φ r m + smul α φ r m'
C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C J : GrothendieckTopology C R₀ : Cᵒᵖ ⥤ RingCat R : Sheaf J RingCat α : R₀ ⟶ R.val inst✝³ : Presheaf.IsLocallyInjective J α inst✝² : Presheaf.IsLocallySurjective J α M₀ : PresheafOfModules R₀ A : Sheaf J AddCommGrp φ : M₀.presheaf ⟶ A.val inst✝¹ : Presheaf.IsLocallyInjective J φ inst✝ : Presheaf.IsLocallySurjective J φ X : Cᵒᵖ r : ↑(R.val.obj X) m m' : ↑(A.val.obj X) S : Sieve (Opposite.unop X) := Presheaf.imageSieve α r ⊓ Presheaf.imageSieve φ m ⊓ Presheaf.imageSieve φ m' ⊢ S ∈ J (Opposite.unop X)
refine J.intersection_covering (J.intersection_covering ?_ ?_) ?_
case refine_1 C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C J : GrothendieckTopology C R₀ : Cᵒᵖ ⥤ RingCat R : Sheaf J RingCat α : R₀ ⟶ R.val inst✝³ : Presheaf.IsLocallyInjective J α inst✝² : Presheaf.IsLocallySurjective J α M₀ : PresheafOfModules R₀ A : Sheaf J AddCommGrp φ : M₀.presheaf ⟶ A.val inst✝¹ : Presheaf.IsLocallyInjective J φ inst✝ : Presheaf.IsLocallySurjective J φ X : Cᵒᵖ r : ↑(R.val.obj X) m m' : ↑(A.val.obj X) S : Sieve (Opposite.unop X) := Presheaf.imageSieve α r ⊓ Presheaf.imageSieve φ m ⊓ Presheaf.imageSieve φ m' ⊢ Presheaf.imageSieve α r ∈ J (Opposite.unop X) case refine_2 C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C J : GrothendieckTopology C R₀ : Cᵒᵖ ⥤ RingCat R : Sheaf J RingCat α : R₀ ⟶ R.val inst✝³ : Presheaf.IsLocallyInjective J α inst✝² : Presheaf.IsLocallySurjective J α M₀ : PresheafOfModules R₀ A : Sheaf J AddCommGrp φ : M₀.presheaf ⟶ A.val inst✝¹ : Presheaf.IsLocallyInjective J φ inst✝ : Presheaf.IsLocallySurjective J φ X : Cᵒᵖ r : ↑(R.val.obj X) m m' : ↑(A.val.obj X) S : Sieve (Opposite.unop X) := Presheaf.imageSieve α r ⊓ Presheaf.imageSieve φ m ⊓ Presheaf.imageSieve φ m' ⊢ Presheaf.imageSieve φ m ∈ J (Opposite.unop X) case refine_3 C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C J : GrothendieckTopology C R₀ : Cᵒᵖ ⥤ RingCat R : Sheaf J RingCat α : R₀ ⟶ R.val inst✝³ : Presheaf.IsLocallyInjective J α inst✝² : Presheaf.IsLocallySurjective J α M₀ : PresheafOfModules R₀ A : Sheaf J AddCommGrp φ : M₀.presheaf ⟶ A.val inst✝¹ : Presheaf.IsLocallyInjective J φ inst✝ : Presheaf.IsLocallySurjective J φ X : Cᵒᵖ r : ↑(R.val.obj X) m m' : ↑(A.val.obj X) S : Sieve (Opposite.unop X) := Presheaf.imageSieve α r ⊓ Presheaf.imageSieve φ m ⊓ Presheaf.imageSieve φ m' ⊢ Presheaf.imageSieve φ m' ∈ J (Opposite.unop X)
e45a9bac6c91f436
isCofinal_empty_iff
Mathlib/Order/Cofinal.lean
theorem isCofinal_empty_iff : IsCofinal (∅ : Set α) ↔ IsEmpty α
α : Type u_1 inst✝ : LE α ⊢ IsCofinal ∅ ↔ IsEmpty α
refine ⟨fun h ↦ ⟨fun a ↦ ?_⟩, fun h ↦ .of_isEmpty _⟩
α : Type u_1 inst✝ : LE α h : IsCofinal ∅ a : α ⊢ False
a2c35bd64ff9843c
CategoryTheory.Presieve.ofArrows_pullback
Mathlib/CategoryTheory/Sites/Sieves.lean
theorem ofArrows_pullback [HasPullbacks C] {ι : Type*} (Z : ι → C) (g : ∀ i : ι, Z i ⟶ X) : (ofArrows (fun i => pullback (g i) f) fun _ => pullback.snd _ _) = pullbackArrows f (ofArrows Z g)
C : Type u₁ inst✝¹ : Category.{v₁, u₁} C X Y : C f : Y ⟶ X inst✝ : HasPullbacks C ι : Type u_1 Z : ι → C g : (i : ι) → Z i ⟶ X ⊢ (ofArrows (fun i => pullback (g i) f) fun x => pullback.snd (g x) f) = pullbackArrows f (ofArrows Z g)
funext T
case h C : Type u₁ inst✝¹ : Category.{v₁, u₁} C X Y : C f : Y ⟶ X inst✝ : HasPullbacks C ι : Type u_1 Z : ι → C g : (i : ι) → Z i ⟶ X T : C ⊢ (ofArrows (fun i => pullback (g i) f) fun x => pullback.snd (g x) f) = pullbackArrows f (ofArrows Z g)
c1ab51a7f74dc585
MeasureTheory.eLpNorm_const_lt_top_iff
Mathlib/MeasureTheory/Function/LpSeminorm/Basic.lean
theorem eLpNorm_const_lt_top_iff {p : ℝ≥0∞} {c : F} (hp_ne_zero : p ≠ 0) (hp_ne_top : p ≠ ∞) : eLpNorm (fun _ : α => c) p μ < ∞ ↔ c = 0 ∨ μ Set.univ < ∞
case neg.inl α : Type u_1 F : Type u_4 m0 : MeasurableSpace α μ : Measure α inst✝ : NormedAddCommGroup F p : ℝ≥0∞ c : F hp_ne_zero : p ≠ 0 hp_ne_top : p ≠ ⊤ hp : 0 < p.toReal hμ : ¬μ = 0 hc : ¬c = 0 hμ_top : μ Set.univ = ⊤ ⊢ ‖c‖ₑ * μ Set.univ ^ (1 / p.toReal) < ⊤ ↔ c = 0 ∨ μ Set.univ < ⊤
simp [hc, hμ_top, hp]
no goals
3659c685f6a51069
Algebra.TensorProduct.map_range
Mathlib/RingTheory/TensorProduct/Basic.lean
theorem map_range (f : A →ₐ[R] C) (g : B →ₐ[R] D) : (map f g).range = (includeLeft.comp f).range ⊔ (includeRight.comp g).range
case a.intro.intro.intro.intro R : Type uR A : Type uA B : Type uB C : Type uC D : Type uD inst✝⁸ : CommSemiring R inst✝⁷ : Semiring A inst✝⁶ : Algebra R A inst✝⁵ : Semiring B inst✝⁴ : Algebra R B inst✝³ : Semiring C inst✝² : Algebra R C inst✝¹ : Semiring D inst✝ : Algebra R D f : A →ₐ[R] C g : B →ₐ[R] D a : A b : B ⊢ f a ⊗ₜ[R] 1 * 1 ⊗ₜ[R] g b ∈ ↑((includeLeft.comp f).range ⊔ (includeRight.comp g).range)
exact mul_mem_sup (AlgHom.mem_range_self _ a) (AlgHom.mem_range_self _ b)
no goals
778b8efd2725c05c
EuclideanGeometry.dist_mul_of_eq_angle_of_dist_mul
Mathlib/Geometry/Euclidean/Triangle.lean
theorem dist_mul_of_eq_angle_of_dist_mul (a b c a' b' c' : P) (r : ℝ) (h : ∠ a' b' c' = ∠ a b c) (hab : dist a' b' = r * dist a b) (hcb : dist c' b' = r * dist c b) : dist a' c' = r * dist a c
V : Type u_1 P : Type u_2 inst✝³ : NormedAddCommGroup V inst✝² : InnerProductSpace ℝ V inst✝¹ : MetricSpace P inst✝ : NormedAddTorsor V P a b c a' b' c' : P r : ℝ h : ∠ a' b' c' = ∠ a b c hab : dist a' b' = r * dist a b hcb : dist c' b' = r * dist c b h' : dist a' c' ^ 2 = (r * dist a c) ^ 2 ⊢ dist a' c' = r * dist a c
by_cases hab₁ : a = b
case pos V : Type u_1 P : Type u_2 inst✝³ : NormedAddCommGroup V inst✝² : InnerProductSpace ℝ V inst✝¹ : MetricSpace P inst✝ : NormedAddTorsor V P a b c a' b' c' : P r : ℝ h : ∠ a' b' c' = ∠ a b c hab : dist a' b' = r * dist a b hcb : dist c' b' = r * dist c b h' : dist a' c' ^ 2 = (r * dist a c) ^ 2 hab₁ : a = b ⊢ dist a' c' = r * dist a c case neg V : Type u_1 P : Type u_2 inst✝³ : NormedAddCommGroup V inst✝² : InnerProductSpace ℝ V inst✝¹ : MetricSpace P inst✝ : NormedAddTorsor V P a b c a' b' c' : P r : ℝ h : ∠ a' b' c' = ∠ a b c hab : dist a' b' = r * dist a b hcb : dist c' b' = r * dist c b h' : dist a' c' ^ 2 = (r * dist a c) ^ 2 hab₁ : ¬a = b ⊢ dist a' c' = r * dist a c
21e37fd5b54d5f31
LinearMap.polyCharpolyAux_map_eq_charpoly
Mathlib/Algebra/Module/LinearMap/Polynomial.lean
@[simp] lemma polyCharpolyAux_map_eq_charpoly [Module.Finite R M] [Module.Free R M] (x : L) : (polyCharpolyAux φ b bₘ).map (MvPolynomial.eval (b.repr x)) = (φ x).charpoly
R : Type u_1 L : Type u_2 M : Type u_3 ι : Type u_5 ιM : Type u_7 inst✝¹⁰ : CommRing R inst✝⁹ : AddCommGroup L inst✝⁸ : Module R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M φ : L →ₗ[R] Module.End R M inst✝⁵ : Fintype ι inst✝⁴ : Fintype ιM inst✝³ : DecidableEq ι inst✝² : DecidableEq ιM b : Basis ι R L bₘ : Basis ιM R M inst✝¹ : Module.Finite R M inst✝ : Module.Free R M x : L ⊢ Polynomial.map (MvPolynomial.eval ⇑(b.repr x)) (φ.polyCharpolyAux b bₘ) = charpoly (φ x)
nontriviality R
R : Type u_1 L : Type u_2 M : Type u_3 ι : Type u_5 ιM : Type u_7 inst✝¹⁰ : CommRing R inst✝⁹ : AddCommGroup L inst✝⁸ : Module R L inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M φ : L →ₗ[R] Module.End R M inst✝⁵ : Fintype ι inst✝⁴ : Fintype ιM inst✝³ : DecidableEq ι inst✝² : DecidableEq ιM b : Basis ι R L bₘ : Basis ιM R M inst✝¹ : Module.Finite R M inst✝ : Module.Free R M x : L a✝ : Nontrivial R ⊢ Polynomial.map (MvPolynomial.eval ⇑(b.repr x)) (φ.polyCharpolyAux b bₘ) = charpoly (φ x)
d79cc8664c1c3ad2
measurableSet_bddAbove_range
Mathlib/MeasureTheory/Constructions/BorelSpace/Order.lean
lemma measurableSet_bddAbove_range {ι} [Countable ι] {f : ι → δ → α} (hf : ∀ i, Measurable (f i)) : MeasurableSet {b | BddAbove (range (fun i ↦ f i b))}
case inr.intro α : Type u_1 δ : Type u_4 inst✝⁵ : TopologicalSpace α mα : MeasurableSpace α inst✝⁴ : BorelSpace α mδ : MeasurableSpace δ inst✝³ : LinearOrder α inst✝² : OrderTopology α inst✝¹ : SecondCountableTopology α ι : Sort u_5 inst✝ : Countable ι f : ι → δ → α hf : ∀ (i : ι), Measurable (f i) hα : Nonempty α A : ∀ (i : ι) (c : α), MeasurableSet {x | f i x ≤ c} B : ∀ (c : α), MeasurableSet {x | ∀ (i : ι), f i x ≤ c} u : ℕ → α hu : Tendsto u atTop atTop this : {b | BddAbove (range fun i => f i b)} = {x | ∃ n, ∀ (i : ι), f i x ≤ u n} ⊢ MeasurableSet (⋃ i, {x | ∀ (i_1 : ι), f i_1 x ≤ u i})
exact MeasurableSet.iUnion (fun n ↦ B (u n))
no goals
2ea9408e1624118d
Vector.attachWith_map_coe
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Vector/Attach.lean
theorem attachWith_map_coe {p : α → Prop} (f : α → β) (l : Vector α n) (H : ∀ a ∈ l, p a) : ((l.attachWith p H).map fun (i : { i // p i}) => f i) = l.map f
case mk α : Type u_1 β : Type u_2 n : Nat p : α → Prop f : α → β toArray✝ : Array α size_toArray✝ : toArray✝.size = n H : ∀ (a : α), a ∈ { toArray := toArray✝, size_toArray := size_toArray✝ } → p a ⊢ map (fun i => f i.val) ({ toArray := toArray✝, size_toArray := size_toArray✝ }.attachWith p H) = map f { toArray := toArray✝, size_toArray := size_toArray✝ }
simp
no goals
bbc9845a1e972924
maximal_orthonormal_iff_orthogonalComplement_eq_bot
Mathlib/Analysis/InnerProductSpace/Projection.lean
theorem maximal_orthonormal_iff_orthogonalComplement_eq_bot (hv : Orthonormal 𝕜 ((↑) : v → E)) : (∀ u ⊇ v, Orthonormal 𝕜 ((↑) : u → E) → u = v) ↔ (span 𝕜 v)ᗮ = ⊥
case mpr 𝕜 : Type u_1 E : Type u_2 inst✝² : RCLike 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace 𝕜 E v : Set E hv : Orthonormal 𝕜 Subtype.val h : ∀ x ∈ (span 𝕜 v)ᗮ, x = 0 u : Set E huv : v ⊆ u hu : Orthonormal 𝕜 Subtype.val ⊢ u ⊆ v
intro x hxu
case mpr 𝕜 : Type u_1 E : Type u_2 inst✝² : RCLike 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace 𝕜 E v : Set E hv : Orthonormal 𝕜 Subtype.val h : ∀ x ∈ (span 𝕜 v)ᗮ, x = 0 u : Set E huv : v ⊆ u hu : Orthonormal 𝕜 Subtype.val x : E hxu : x ∈ u ⊢ x ∈ v
ce0a185108c33220
exists_pos_lt_subset_ball
Mathlib/Topology/MetricSpace/ProperSpace/Lemmas.lean
theorem exists_pos_lt_subset_ball (hr : 0 < r) (hs : IsClosed s) (h : s ⊆ ball x r) : ∃ r' ∈ Ioo 0 r, s ⊆ ball x r'
case inr.intro.intro α : Type u_1 inst✝¹ : PseudoMetricSpace α inst✝ : ProperSpace α x : α r : ℝ s : Set α hr : 0 < r hs : IsClosed s h : s ⊆ ball x r hne : s.Nonempty this : IsCompact s y : α hys : y ∈ s hy : s ⊆ closedBall x (dist y x) ⊢ ∃ r' ∈ Ioo 0 r, s ⊆ ball x r'
have hyr : dist y x < r := h hys
case inr.intro.intro α : Type u_1 inst✝¹ : PseudoMetricSpace α inst✝ : ProperSpace α x : α r : ℝ s : Set α hr : 0 < r hs : IsClosed s h : s ⊆ ball x r hne : s.Nonempty this : IsCompact s y : α hys : y ∈ s hy : s ⊆ closedBall x (dist y x) hyr : dist y x < r ⊢ ∃ r' ∈ Ioo 0 r, s ⊆ ball x r'
b60dc94a9e85c422
IsExtreme.inter
Mathlib/Analysis/Convex/Extreme.lean
theorem IsExtreme.inter (hAB : IsExtreme 𝕜 A B) (hAC : IsExtreme 𝕜 A C) : IsExtreme 𝕜 A (B ∩ C)
case right.intro.intro 𝕜 : Type u_1 E : Type u_2 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : SMul 𝕜 E A B C : Set E hAB : IsExtreme 𝕜 A B hAC : IsExtreme 𝕜 A C x₁ : E hx₁A : x₁ ∈ A x₂ : E hx₂A : x₂ ∈ A x : E hxB : x ∈ B hxC : x ∈ C hx : x ∈ openSegment 𝕜 x₁ x₂ hx₁B : x₁ ∈ B hx₂B : x₂ ∈ B ⊢ x₁ ∈ B ∩ C ∧ x₂ ∈ B ∩ C
obtain ⟨hx₁C, hx₂C⟩ := hAC.2 hx₁A hx₂A hxC hx
case right.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : SMul 𝕜 E A B C : Set E hAB : IsExtreme 𝕜 A B hAC : IsExtreme 𝕜 A C x₁ : E hx₁A : x₁ ∈ A x₂ : E hx₂A : x₂ ∈ A x : E hxB : x ∈ B hxC : x ∈ C hx : x ∈ openSegment 𝕜 x₁ x₂ hx₁B : x₁ ∈ B hx₂B : x₂ ∈ B hx₁C : x₁ ∈ C hx₂C : x₂ ∈ C ⊢ x₁ ∈ B ∩ C ∧ x₂ ∈ B ∩ C
c3a399dad622271d
CategoryTheory.Sheaf.isSeparating
Mathlib/CategoryTheory/Generator/Sheaf.lean
lemma isSeparating {ι : Type w} {S : ι → A} (hS : IsSeparating (Set.range S)) : IsSeparating (Set.range (fun (⟨X, i⟩ : C × ι) ↦ freeYoneda J X (S i)))
C : Type u inst✝³ : Category.{v, u} C J : GrothendieckTopology C A : Type u' inst✝² : Category.{v', u'} A inst✝¹ : HasCoproducts A inst✝ : HasWeakSheafify J A ι : Type w S : ι → A hS : IsSeparating (Set.range S) F G : Sheaf J A f g : F ⟶ G hfg : ∀ G_1 ∈ Set.range fun x => match x with | (X, i) => freeYoneda J X (S i), ∀ (h : G_1 ⟶ F), h ≫ f = h ≫ g ⊢ ∀ G_1 ∈ Set.range fun x => match x with | (X, i) => Presheaf.freeYoneda X (S i), ∀ (h : G_1 ⟶ (sheafToPresheaf J A).obj F), h ≫ (sheafToPresheaf J A).map f = h ≫ (sheafToPresheaf J A).map g
rintro _ ⟨⟨X, i⟩, rfl⟩ a
case intro.mk C : Type u inst✝³ : Category.{v, u} C J : GrothendieckTopology C A : Type u' inst✝² : Category.{v', u'} A inst✝¹ : HasCoproducts A inst✝ : HasWeakSheafify J A ι : Type w S : ι → A hS : IsSeparating (Set.range S) F G : Sheaf J A f g : F ⟶ G hfg : ∀ G_1 ∈ Set.range fun x => match x with | (X, i) => freeYoneda J X (S i), ∀ (h : G_1 ⟶ F), h ≫ f = h ≫ g X : C i : ι a : (fun x => match x with | (X, i) => Presheaf.freeYoneda X (S i)) (X, i) ⟶ (sheafToPresheaf J A).obj F ⊢ a ≫ (sheafToPresheaf J A).map f = a ≫ (sheafToPresheaf J A).map g
57771cac286cd7c3
Nat.succ_dvd_centralBinom
Mathlib/Data/Nat/Choose/Central.lean
theorem succ_dvd_centralBinom (n : ℕ) : n + 1 ∣ n.centralBinom
n : ℕ h_s : (n + 1).Coprime (2 * n + 1) ⊢ n + 1 ∣ n.centralBinom
apply h_s.dvd_of_dvd_mul_left
n : ℕ h_s : (n + 1).Coprime (2 * n + 1) ⊢ n + 1 ∣ (2 * n + 1) * n.centralBinom
fb1b90bbcc5f1bf9
Finset.prod_dite_eq
Mathlib/Algebra/BigOperators/Group/Finset/Basic.lean
theorem prod_dite_eq [DecidableEq α] (s : Finset α) (a : α) (b : ∀ x : α, a = x → β) : ∏ x ∈ s, (if h : a = x then b x h else 1) = ite (a ∈ s) (b a rfl) 1
case neg α : Type u_3 β : Type u_4 inst✝¹ : CommMonoid β inst✝ : DecidableEq α s : Finset α a : α b : (x : α) → a = x → β h : a ∉ s ⊢ (∏ x ∈ s, if h : a = x then b x h else 1) = 1
rw [Finset.prod_eq_one]
case neg α : Type u_3 β : Type u_4 inst✝¹ : CommMonoid β inst✝ : DecidableEq α s : Finset α a : α b : (x : α) → a = x → β h : a ∉ s ⊢ ∀ x ∈ s, (if h : a = x then b x h else 1) = 1
7166f35cfa045e98
Fin.predAbove_last_of_ne_last
Mathlib/Data/Fin/Basic.lean
@[simp] lemma predAbove_last_of_ne_last {i : Fin (n + 2)} (hi : i ≠ last (n + 1)) : predAbove (last n) i = castPred i hi
n : ℕ i : Fin (n + 2) hi✝ : i ≠ last (n + 1) hi : ∃ j, j.castSucc = i ⊢ (last n).predAbove i = i.castPred hi✝
rcases hi with ⟨y, rfl⟩
case intro n : ℕ y : Fin (n + 1) hi : y.castSucc ≠ last (n + 1) ⊢ (last n).predAbove y.castSucc = y.castSucc.castPred hi
ff637eb3a44a0cf5
Acc.cutExpand
Mathlib/Logic/Hydra.lean
theorem _root_.Acc.cutExpand [IsIrrefl α r] {a : α} (hacc : Acc r a) : Acc (CutExpand r) {a}
case intro.intro.intro.intro.intro α : Type u_1 r : α → α → Prop inst✝ : IsIrrefl α r a✝ : α t : Multiset α a : α hr : ∀ a' ∈ t, r a' a h : ∀ (y : α), r y a → Acc r y ih : ∀ (y : α), r y a → Acc (CutExpand r) {y} a' : α ⊢ a' ∈ {a}.erase a + t → Acc (CutExpand r) {a'}
rw [erase_singleton, zero_add]
case intro.intro.intro.intro.intro α : Type u_1 r : α → α → Prop inst✝ : IsIrrefl α r a✝ : α t : Multiset α a : α hr : ∀ a' ∈ t, r a' a h : ∀ (y : α), r y a → Acc r y ih : ∀ (y : α), r y a → Acc (CutExpand r) {y} a' : α ⊢ a' ∈ t → Acc (CutExpand r) {a'}
cfe6e29617386e0f
Polynomial.X_sub_C_mul_removeFactor
Mathlib/FieldTheory/SplittingField/Construction.lean
theorem X_sub_C_mul_removeFactor (f : K[X]) (hf : f.natDegree ≠ 0) : (X - C (AdjoinRoot.root f.factor)) * f.removeFactor = map (AdjoinRoot.of f.factor) f
K : Type v inst✝ : Field K f : K[X] hf : f.natDegree ≠ 0 g : K[X] hg : f = f.factor * g ⊢ (map (AdjoinRoot.of f.factor) f).IsRoot (AdjoinRoot.root f.factor)
rw [IsRoot.def, eval_map, hg, eval₂_mul, ← hg, AdjoinRoot.eval₂_root, zero_mul]
no goals
63fc58033fe1fb68
List.dropSlice_eq_dropSliceTR
Mathlib/.lake/packages/batteries/Batteries/Data/List/Basic.lean
theorem dropSlice_eq_dropSliceTR : @dropSlice = @dropSliceTR
α : Type u_1 n✝ : Nat l : List α m✝ m : Nat acc : Array α x : α xs : List α n : Nat h : l = acc.toList ++ x :: xs ⊢ (acc.push x).toList ++ dropSlice n (m + 1) xs = acc.toList ++ x :: dropSlice n (m + 1) xs case a α : Type u_1 n✝ : Nat l : List α m✝ m : Nat acc : Array α x : α xs : List α n : Nat h : l = acc.toList ++ x :: xs ⊢ l = (acc.push x).toList ++ xs
{simp}
case a α : Type u_1 n✝ : Nat l : List α m✝ m : Nat acc : Array α x : α xs : List α n : Nat h : l = acc.toList ++ x :: xs ⊢ l = (acc.push x).toList ++ xs
f858ea09a79c5819
Nat.descFactorial_mul_descFactorial
Mathlib/Data/Nat/Factorial/Basic.lean
theorem descFactorial_mul_descFactorial {k m n : ℕ} (hkm : k ≤ m) : (n - k).descFactorial (m - k) * n.descFactorial k = n.descFactorial m
k m n : ℕ hkm : k ≤ m hmn : ¬m ≤ n hkn : k ≤ n ⊢ n - k < m - k
omega
no goals
e320856096df3a95
List.count_filter
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Count.lean
theorem count_filter {l : List α} (h : p a) : count a (filter p l) = count a l
α : Type u_1 inst✝¹ : BEq α inst✝ : LawfulBEq α p : α → Bool a : α l : List α h : p a = true ⊢ countP (fun a_1 => a_1 == a && p a_1) l = countP (fun x => x == a) l
congr
case e_p α : Type u_1 inst✝¹ : BEq α inst✝ : LawfulBEq α p : α → Bool a : α l : List α h : p a = true ⊢ (fun a_1 => a_1 == a && p a_1) = fun x => x == a
a19453790c8f5ea1
HallMarriageTheorem.hall_cond_of_compl
Mathlib/Combinatorics/Hall/Finite.lean
theorem hall_cond_of_compl {ι : Type u} {t : ι → Finset α} {s : Finset ι} (hus : #s = #(s.biUnion t)) (ht : ∀ s : Finset ι, #s ≤ #(s.biUnion t)) (s' : Finset (sᶜ : Set ι)) : #s' ≤ #(s'.biUnion fun x' => t x' \ s.biUnion t)
case inr.intro.intro α : Type v inst✝ : DecidableEq α ι : Type u t✝ : ι → Finset α s : Finset ι hus : #s = #(s.biUnion t✝) ht : ∀ (s : Finset ι), #s ≤ #(s.biUnion t✝) s' : Finset ↑(↑s)ᶜ this✝ : DecidableEq ι disj : Disjoint s (image (fun z => ↑z) s') this : #s' = #(s ∪ image (fun z => ↑z) s') - #s t : α x' : ↑(↑s)ᶜ hx' : x' ∈ s' rat : t ∈ t✝ ↑x' hs : ∀ (x : ι), ¬(x ∈ s ∧ t ∈ t✝ x) ⊢ ∃ a ∈ s', t ∈ t✝ ↑a ∧ ∀ (x : ι), ¬(x ∈ s ∧ t ∈ t✝ x)
use x', hx', rat, hs
no goals
633ed149d2eeb7d3
isIntegral_quotientMap_iff
Mathlib/RingTheory/IntegralClosure/IsIntegralClosure/Basic.lean
theorem isIntegral_quotientMap_iff {I : Ideal S} : (Ideal.quotientMap I f le_rfl).IsIntegral ↔ ((Ideal.Quotient.mk I).comp f : R →+* S ⧸ I).IsIntegral
R : Type u_1 S : Type u_4 inst✝¹ : CommRing R inst✝ : CommRing S f : R →+* S I : Ideal S g : R →+* R ⧸ Ideal.comap f I := Ideal.Quotient.mk (Ideal.comap f I) this : (Ideal.quotientMap I f ⋯).comp g = (Ideal.Quotient.mk I).comp f ⊢ (Ideal.quotientMap I f ⋯).IsIntegral ↔ ((Ideal.Quotient.mk I).comp f).IsIntegral
refine ⟨fun h => ?_, fun h => RingHom.IsIntegral.tower_top g _ (this ▸ h)⟩
R : Type u_1 S : Type u_4 inst✝¹ : CommRing R inst✝ : CommRing S f : R →+* S I : Ideal S g : R →+* R ⧸ Ideal.comap f I := Ideal.Quotient.mk (Ideal.comap f I) this : (Ideal.quotientMap I f ⋯).comp g = (Ideal.Quotient.mk I).comp f h : (Ideal.quotientMap I f ⋯).IsIntegral ⊢ ((Ideal.Quotient.mk I).comp f).IsIntegral
29162be1ec047379
ContinuousLinearMap.integral_comp_comm
Mathlib/MeasureTheory/Integral/SetIntegral.lean
theorem integral_comp_comm [CompleteSpace E] (L : E →L[𝕜] F) {φ : X → E} (φ_int : Integrable φ μ) : ∫ x, L (φ x) ∂μ = L (∫ x, φ x ∂μ)
case h_ind X : Type u_1 E : Type u_3 F : Type u_4 inst✝⁹ : MeasurableSpace X μ : Measure X 𝕜 : Type u_5 inst✝⁸ : RCLike 𝕜 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace 𝕜 E inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F inst✝³ : NormedSpace ℝ F inst✝² : CompleteSpace F inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E L : E →L[𝕜] F φ : X → E φ_int : Integrable φ μ ⊢ ∀ (c : E) ⦃s : Set X⦄, MeasurableSet s → μ s < ⊤ → (fun φ => ∫ (x : X), L (φ x) ∂μ = L (∫ (x : X), φ x ∂μ)) (s.indicator fun x => c)
intro e s s_meas _
case h_ind X : Type u_1 E : Type u_3 F : Type u_4 inst✝⁹ : MeasurableSpace X μ : Measure X 𝕜 : Type u_5 inst✝⁸ : RCLike 𝕜 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace 𝕜 E inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F inst✝³ : NormedSpace ℝ F inst✝² : CompleteSpace F inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E L : E →L[𝕜] F φ : X → E φ_int : Integrable φ μ e : E s : Set X s_meas : MeasurableSet s a✝ : μ s < ⊤ ⊢ ∫ (x : X), L (s.indicator (fun x => e) x) ∂μ = L (∫ (x : X), s.indicator (fun x => e) x ∂μ)
a849e0b0325a5e6f
Affine.Simplex.Regular.equilateral
Mathlib/Analysis/Normed/Affine/Simplex.lean
lemma Regular.equilateral {s : Simplex R P n} (hr : s.Regular) : s.Equilateral
case pos R : Type u_1 V : Type u_2 P : Type u_3 inst✝⁴ : Ring R inst✝³ : SeminormedAddCommGroup V inst✝² : PseudoMetricSpace P inst✝¹ : Module R V inst✝ : NormedAddTorsor V P n : ℕ s : Simplex R P n hr : s.Regular i j : Fin (n + 1) hij : i ≠ j hn : n ≠ 0 hi : i = 1 ⊢ dist (s.points i) (s.points j) = dist (s.points 0) (s.points 1)
rw [hi, dist_comm]
case pos R : Type u_1 V : Type u_2 P : Type u_3 inst✝⁴ : Ring R inst✝³ : SeminormedAddCommGroup V inst✝² : PseudoMetricSpace P inst✝¹ : Module R V inst✝ : NormedAddTorsor V P n : ℕ s : Simplex R P n hr : s.Regular i j : Fin (n + 1) hij : i ≠ j hn : n ≠ 0 hi : i = 1 ⊢ dist (s.points j) (s.points 1) = dist (s.points 0) (s.points 1)
1804910b0c1433ab
Polynomial.IsSeparableContraction.degree_eq
Mathlib/RingTheory/Polynomial/SeparableDegree.lean
theorem IsSeparableContraction.degree_eq [hF : ExpChar F q] (g : F[X]) (hg : IsSeparableContraction q f g) : g.natDegree = hf.degree
case prime F : Type u_1 inst✝ : Field F q : ℕ f : F[X] hf : HasSeparableContraction q f g : F[X] hg : IsSeparableContraction q f g hprime✝ : Nat.Prime q hchar✝ : CharP F q ⊢ g.natDegree = hf.degree
rcases hg with ⟨hg, m, hm⟩
case prime.intro.intro F : Type u_1 inst✝ : Field F q : ℕ f : F[X] hf : HasSeparableContraction q f g : F[X] hprime✝ : Nat.Prime q hchar✝ : CharP F q hg : g.Separable m : ℕ hm : (expand F (q ^ m)) g = f ⊢ g.natDegree = hf.degree
e8a084ffc5e2adb4
MeasureTheory.FiniteMeasure.prod_zero
Mathlib/MeasureTheory/Measure/FiniteMeasureProd.lean
@[simp] lemma prod_zero : μ.prod (0 : FiniteMeasure β) = 0
α : Type u_1 inst✝¹ : MeasurableSpace α β : Type u_2 inst✝ : MeasurableSpace β μ : FiniteMeasure α ⊢ μ.prod 0 = 0
rw [← mass_zero_iff, mass_prod, zero_mass, mul_zero]
no goals
dfab91dc2fd62368
intervalIntegral.intervalIntegrable_rpow'
Mathlib/Analysis/SpecialFunctions/Integrals.lean
theorem intervalIntegrable_rpow' {r : ℝ} (h : -1 < r) : IntervalIntegrable (fun x => x ^ r) volume a b
case inl a b r : ℝ h : -1 < r this : ∀ (c : ℝ), 0 ≤ c → IntervalIntegrable (fun x => x ^ r) volume 0 c c : ℝ hc : 0 ≤ c ⊢ IntervalIntegrable (fun x => x ^ r) volume 0 c
exact this c hc
no goals
03dcc4f722838526
ConformalAt.comp
Mathlib/Analysis/Calculus/Conformal/NormedSpace.lean
theorem comp {f : X → Y} {g : Y → Z} (x : X) (hg : ConformalAt g (f x)) (hf : ConformalAt f x) : ConformalAt (g ∘ f) x
X : Type u_1 Y : Type u_2 Z : Type u_3 inst✝⁵ : NormedAddCommGroup X inst✝⁴ : NormedAddCommGroup Y inst✝³ : NormedAddCommGroup Z inst✝² : NormedSpace ℝ X inst✝¹ : NormedSpace ℝ Y inst✝ : NormedSpace ℝ Z f : X → Y g : Y → Z x : X hg : ConformalAt g (f x) hf : ConformalAt f x ⊢ ConformalAt (g ∘ f) x
rcases hf with ⟨f', hf₁, cf⟩
case intro.intro X : Type u_1 Y : Type u_2 Z : Type u_3 inst✝⁵ : NormedAddCommGroup X inst✝⁴ : NormedAddCommGroup Y inst✝³ : NormedAddCommGroup Z inst✝² : NormedSpace ℝ X inst✝¹ : NormedSpace ℝ Y inst✝ : NormedSpace ℝ Z f : X → Y g : Y → Z x : X hg : ConformalAt g (f x) f' : X →L[ℝ] Y hf₁ : HasFDerivAt f f' x cf : IsConformalMap f' ⊢ ConformalAt (g ∘ f) x
92f1e4627d87ad06
summable_jacobiTheta₂_term_fderiv_iff
Mathlib/NumberTheory/ModularForms/JacobiTheta/TwoVariable.lean
lemma summable_jacobiTheta₂_term_fderiv_iff (z τ : ℂ) : Summable (jacobiTheta₂_term_fderiv · z τ) ↔ 0 < im τ
case h z τ : ℂ h : Summable fun x => jacobiTheta₂_term_fderiv x z τ this✝ : Summable fun x => ‖jacobiTheta₂_term_fderiv x z τ‖ this : ∀ᶠ (n : ℤ) in cofinite, n ≠ 0 n : ℤ hn : n ≠ 0 ⊢ 1 ≤ π * ↑|n| ^ 2
refine one_le_pi_div_two.trans (mul_le_mul_of_nonneg_left ?_ pi_pos.le)
case h z τ : ℂ h : Summable fun x => jacobiTheta₂_term_fderiv x z τ this✝ : Summable fun x => ‖jacobiTheta₂_term_fderiv x z τ‖ this : ∀ᶠ (n : ℤ) in cofinite, n ≠ 0 n : ℤ hn : n ≠ 0 ⊢ 2⁻¹ ≤ ↑|n| ^ 2
d5a065cb2c1034b1
List.perm_ext_iff_of_nodup
Mathlib/.lake/packages/batteries/Batteries/Data/List/Perm.lean
theorem perm_ext_iff_of_nodup {l₁ l₂ : List α} (d₁ : Nodup l₁) (d₂ : Nodup l₂) : l₁ ~ l₂ ↔ ∀ a, a ∈ l₁ ↔ a ∈ l₂
α : Type u_1 l₁ l₂ : List α d₁ : l₁.Nodup d₂ : l₂.Nodup H : ∀ (a : α), a ∈ l₁ ↔ a ∈ l₂ ⊢ l₁ ~ l₂
exact (subperm_of_subset d₁ fun a => (H a).1).antisymm <| subperm_of_subset d₂ fun a => (H a).2
no goals
60da269297319e2e
Nat.zero_ascFactorial
Mathlib/Data/Nat/Factorial/Basic.lean
theorem zero_ascFactorial : ∀ (k : ℕ), (0 : ℕ).ascFactorial k.succ = 0 | 0 => by rw [ascFactorial_succ, ascFactorial_zero, Nat.zero_add, Nat.zero_mul] | (k+1) => by rw [ascFactorial_succ, zero_ascFactorial k, Nat.mul_zero]
⊢ ascFactorial 0 (succ 0) = 0
rw [ascFactorial_succ, ascFactorial_zero, Nat.zero_add, Nat.zero_mul]
no goals
7b66734ced605115
StructureGroupoid.LocalInvariantProp.liftPropAt_chart_symm
Mathlib/Geometry/Manifold/LocalInvariantProperties.lean
theorem liftPropAt_chart_symm [HasGroupoid M G] (hG : G.LocalInvariantProp G Q) (hQ : ∀ y, Q id univ y) : LiftPropAt Q (chartAt (H := H) x).symm ((chartAt H x) x) := hG.liftPropAt_symm_of_mem_maximalAtlas hQ (chart_mem_maximalAtlas G x) (by simp)
H : Type u_1 M : Type u_2 inst✝³ : TopologicalSpace H inst✝² : TopologicalSpace M inst✝¹ : ChartedSpace H M G : StructureGroupoid H x : M Q : (H → H) → Set H → H → Prop inst✝ : HasGroupoid M G hG : G.LocalInvariantProp G Q hQ : ∀ (y : H), Q id univ y ⊢ ↑(chartAt H x) x ∈ (chartAt H x).target
simp
no goals
ee361fe68864f72c
Matrix.conjTranspose_eq_one
Mathlib/Data/Matrix/ConjTranspose.lean
theorem conjTranspose_eq_one [DecidableEq n] [Semiring α] [StarRing α] {M : Matrix n n α} : Mᴴ = 1 ↔ M = 1 := (Function.Involutive.eq_iff conjTranspose_conjTranspose).trans <| by rw [conjTranspose_one]
n : Type u_3 α : Type v inst✝² : DecidableEq n inst✝¹ : Semiring α inst✝ : StarRing α M : Matrix n n α ⊢ M = 1ᴴ ↔ M = 1
rw [conjTranspose_one]
no goals
8d2c796611605995
DFinsupp.lex_lt_of_lt_of_preorder
Mathlib/Data/DFinsupp/Lex.lean
theorem lex_lt_of_lt_of_preorder [∀ i, Preorder (α i)] (r) [IsStrictOrder ι r] {x y : Π₀ i, α i} (hlt : x < y) : ∃ i, (∀ j, r j i → x j ≤ y j ∧ y j ≤ x j) ∧ x i < y i
case intro.intro ι : Type u_1 α : ι → Type u_2 inst✝² : (i : ι) → Zero (α i) inst✝¹ : (i : ι) → Preorder (α i) r : ι → ι → Prop inst✝ : IsStrictOrder ι r x y : Π₀ (i : ι), α i hlt✝ : x < y hle : ⇑x ≤ ⇑y j : ι hlt : x j < y j ⊢ ∃ i, (∀ (j : ι), r j i → x j ≤ y j ∧ y j ≤ x j) ∧ x i < y i
classical have : (x.neLocus y : Set ι).WellFoundedOn r := (x.neLocus y).finite_toSet.wellFoundedOn obtain ⟨i, hi, hl⟩ := this.has_min { i | x i < y i } ⟨⟨j, mem_neLocus.2 hlt.ne⟩, hlt⟩ refine ⟨i, fun k hk ↦ ⟨hle k, ?_⟩, hi⟩ exact of_not_not fun h ↦ hl ⟨k, mem_neLocus.2 (ne_of_not_le h).symm⟩ ((hle k).lt_of_not_le h) hk
no goals
b2be9adf1bae9d88
CategoryTheory.isIso_of_yoneda_map_bijective
Mathlib/CategoryTheory/Yoneda.lean
lemma isIso_of_yoneda_map_bijective {X Y : C} (f : X ⟶ Y) (hf : ∀ (T : C), Function.Bijective (fun (x : T ⟶ X) => x ≫ f)) : IsIso f
case intro C : Type u₁ inst✝ : Category.{v₁, u₁} C X Y : C f : X ⟶ Y hf : ∀ (T : C), Function.Bijective fun x => x ≫ f g : Y ⟶ X hg : g ≫ f = 𝟙 Y ⊢ IsIso f
exact ⟨g, (hf _).1 (by aesop_cat), hg⟩
no goals
3517b85a3fbd1c2e
HasFTaylorSeriesUpToOn.compContinuousLinearMap
Mathlib/Analysis/Calculus/ContDiff/Basic.lean
theorem HasFTaylorSeriesUpToOn.compContinuousLinearMap (hf : HasFTaylorSeriesUpToOn n f p s) (g : G →L[𝕜] E) : HasFTaylorSeriesUpToOn n (f ∘ g) (fun x k => (p (g x) k).compContinuousLinearMap fun _ => g) (g ⁻¹' s)
𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type uE inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type uF inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type uG inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace 𝕜 G s : Set E f : E → F n : WithTop ℕ∞ p : E → FormalMultilinearSeries 𝕜 E F hf : HasFTaylorSeriesUpToOn n f p s g : G →L[𝕜] E ⊢ HasFTaylorSeriesUpToOn n (f ∘ ⇑g) (fun x k => (p (g x) k).compContinuousLinearMap fun x => g) (⇑g ⁻¹' s)
let A : ∀ m : ℕ, (E[×m]→L[𝕜] F) → G[×m]→L[𝕜] F := fun m h => h.compContinuousLinearMap fun _ => g
𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type uE inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type uF inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type uG inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace 𝕜 G s : Set E f : E → F n : WithTop ℕ∞ p : E → FormalMultilinearSeries 𝕜 E F hf : HasFTaylorSeriesUpToOn n f p s g : G →L[𝕜] E A : (m : ℕ) → ContinuousMultilinearMap 𝕜 (fun i => E) F → ContinuousMultilinearMap 𝕜 (fun i => G) F := fun m h => h.compContinuousLinearMap fun x => g ⊢ HasFTaylorSeriesUpToOn n (f ∘ ⇑g) (fun x k => (p (g x) k).compContinuousLinearMap fun x => g) (⇑g ⁻¹' s)
827bfe05b18c9500
ManyOneDegree.le_trans
Mathlib/Computability/Reduce.lean
theorem le_trans {d₁ d₂ d₃ : ManyOneDegree} : d₁ ≤ d₂ → d₂ ≤ d₃ → d₁ ≤ d₃
d₁ d₂ d₃ : ManyOneDegree ⊢ d₁ ≤ d₂ → d₂ ≤ d₃ → d₁ ≤ d₃
induction d₁ using ManyOneDegree.ind_on
case h d₂ d₃ : ManyOneDegree p✝ : Set ℕ ⊢ of p✝ ≤ d₂ → d₂ ≤ d₃ → of p✝ ≤ d₃
68814163b8da16d6
Polynomial.dickson_one_one_zmod_p
Mathlib/RingTheory/Polynomial/Dickson.lean
theorem dickson_one_one_zmod_p (p : ℕ) [Fact p.Prime] : dickson 1 (1 : ZMod p) p = X ^ p
p : ℕ inst✝ : Fact (Nat.Prime p) K : Type w✝¹ : Field K w✝ : CharP K p H : Set.univ.Infinite h : {x | ∃ y, x = y + y⁻¹ ∧ y ≠ 0}.Finite x : K x✝ : x ∈ {x | ∃ y, x = y + y⁻¹ ∧ y ≠ 0} φ : K[X] := X ^ 2 - C x * X + 1 ⊢ {y | x = y + y⁻¹ ∨ y = 0}.Finite
have hφ : φ ≠ 0 := by intro H have : φ.eval 0 = 0 := by rw [H, eval_zero] simpa [φ, eval_X, eval_one, eval_pow, eval_sub, sub_zero, eval_add, eval_mul, mul_zero, sq, zero_add, one_ne_zero]
p : ℕ inst✝ : Fact (Nat.Prime p) K : Type w✝¹ : Field K w✝ : CharP K p H : Set.univ.Infinite h : {x | ∃ y, x = y + y⁻¹ ∧ y ≠ 0}.Finite x : K x✝ : x ∈ {x | ∃ y, x = y + y⁻¹ ∧ y ≠ 0} φ : K[X] := X ^ 2 - C x * X + 1 hφ : φ ≠ 0 ⊢ {y | x = y + y⁻¹ ∨ y = 0}.Finite
84ee1673e653698a
BoxIntegral.Box.mk'_eq_coe
Mathlib/Analysis/BoxIntegral/Box/Basic.lean
theorem mk'_eq_coe {l u : ι → ℝ} : mk' l u = I ↔ l = I.lower ∧ u = I.upper
case mk ι : Type u_1 l u lI uI : ι → ℝ hI : ∀ (i : ι), lI i < uI i ⊢ (if h : ∀ (i : ι), l i < u i then ↑{ lower := l, upper := u, lower_lt_upper := h } else ⊥) = ↑{ lower := lI, upper := uI, lower_lt_upper := hI } ↔ l = { lower := lI, upper := uI, lower_lt_upper := hI }.lower ∧ u = { lower := lI, upper := uI, lower_lt_upper := hI }.upper
split_ifs with h
case pos ι : Type u_1 l u lI uI : ι → ℝ hI : ∀ (i : ι), lI i < uI i h : ∀ (i : ι), l i < u i ⊢ ↑{ lower := l, upper := u, lower_lt_upper := h } = ↑{ lower := lI, upper := uI, lower_lt_upper := hI } ↔ l = { lower := lI, upper := uI, lower_lt_upper := hI }.lower ∧ u = { lower := lI, upper := uI, lower_lt_upper := hI }.upper case neg ι : Type u_1 l u lI uI : ι → ℝ hI : ∀ (i : ι), lI i < uI i h : ¬∀ (i : ι), l i < u i ⊢ ⊥ = ↑{ lower := lI, upper := uI, lower_lt_upper := hI } ↔ l = { lower := lI, upper := uI, lower_lt_upper := hI }.lower ∧ u = { lower := lI, upper := uI, lower_lt_upper := hI }.upper
5a138799670a8b97
LieModule.Weight.ext
Mathlib/Algebra/Lie/Weights/Basic.lean
@[ext] lemma ext {χ₁ χ₂ : Weight R L M} (h : ∀ x, χ₁ x = χ₂ x) : χ₁ = χ₂
case mk.mk R : Type u_2 L : Type u_3 M : Type u_4 inst✝⁷ : CommRing R inst✝⁶ : LieRing L inst✝⁵ : LieAlgebra R L inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : LieRingModule L M inst✝¹ : LieModule R L M inst✝ : LieRing.IsNilpotent L f₁ : L → R genWeightSpace_ne_bot'✝¹ : genWeightSpace M f₁ ≠ ⊥ f₂ : L → R genWeightSpace_ne_bot'✝ : genWeightSpace M f₂ ≠ ⊥ h : ∀ (x : L), { toFun := f₁, genWeightSpace_ne_bot' := genWeightSpace_ne_bot'✝¹ } x = { toFun := f₂, genWeightSpace_ne_bot' := genWeightSpace_ne_bot'✝ } x ⊢ { toFun := f₁, genWeightSpace_ne_bot' := genWeightSpace_ne_bot'✝¹ } = { toFun := f₂, genWeightSpace_ne_bot' := genWeightSpace_ne_bot'✝ }
aesop
no goals
b878d4f6634b8d02
EReal.toENNReal_of_nonpos
Mathlib/Data/Real/EReal.lean
@[simp] lemma toENNReal_of_nonpos {x : EReal} (hx : x ≤ 0) : x.toENNReal = 0
x : EReal hx : x ≤ 0 ⊢ x.toENNReal = 0
rw [toENNReal, if_neg (fun h ↦ ?_)]
x : EReal hx : x ≤ 0 ⊢ ENNReal.ofReal x.toReal = 0 x : EReal hx : x ≤ 0 h : x = ⊤ ⊢ False
766efdc9ce84b5ce
Behrend.le_sqrt_log
Mathlib/Combinatorics/Additive/AP/Three/Behrend.lean
theorem le_sqrt_log (hN : 4096 ≤ N) : log (2 / (1 - 2 / exp 1)) * (69 / 50) ≤ √(log ↑N)
N : ℕ hN : 4096 ≤ N this : ↑12 * log 2 ≤ log ↑N ⊢ 2 ≤ 2.7182818283
norm_num1
no goals
5c4f54751ae43d03
IsAntichain.finite_of_wellQuasiOrdered
Mathlib/Order/WellQuasiOrder.lean
theorem IsAntichain.finite_of_wellQuasiOrdered {s : Set α} (hs : IsAntichain r s) (hr : WellQuasiOrdered r) : s.Finite
case intro.intro.intro α : Type u_1 r : α → α → Prop s : Set α hs : IsAntichain r s hr : WellQuasiOrdered r hi : s.Infinite m n : ℕ hmn : m < n h : r ↑((Set.Infinite.natEmbedding s hi) m) ↑((Set.Infinite.natEmbedding s hi) n) ⊢ False
exact hmn.ne ((hi.natEmbedding _).injective <| Subtype.val_injective <| hs.eq (hi.natEmbedding _ m).2 (hi.natEmbedding _ n).2 h)
no goals
0a1ebf254e4abc46
IsPrimitiveRoot.neZero'
Mathlib/RingTheory/RootsOfUnity/PrimitiveRoots.lean
theorem neZero' {n : ℕ} [NeZero n] (hζ : IsPrimitiveRoot ζ n) : NeZero ((n : ℕ) : R)
case pos.intro R : Type u_4 ζ : R inst✝² : CommRing R inst✝¹ : IsDomain R n : ℕ inst✝ : NeZero n hζ : IsPrimitiveRoot ζ n p : ℕ := ringChar R hfin : FiniteMultiplicity p n m : ℕ hm : n = p ^ multiplicity p n * m ∧ ¬p ∣ m hp : p ∣ n k : ℕ hk : multiplicity p n = k.succ this✝ : NeZero p hpri : Fact (Nat.Prime p) this : (frobenius R p) (ζ ^ (p ^ k * m)) = (frobenius R p) 1 ⊢ NeZero ↑n
exfalso
case pos.intro R : Type u_4 ζ : R inst✝² : CommRing R inst✝¹ : IsDomain R n : ℕ inst✝ : NeZero n hζ : IsPrimitiveRoot ζ n p : ℕ := ringChar R hfin : FiniteMultiplicity p n m : ℕ hm : n = p ^ multiplicity p n * m ∧ ¬p ∣ m hp : p ∣ n k : ℕ hk : multiplicity p n = k.succ this✝ : NeZero p hpri : Fact (Nat.Prime p) this : (frobenius R p) (ζ ^ (p ^ k * m)) = (frobenius R p) 1 ⊢ False
9b1d4db2d0e199c4
Filter.map_comap
Mathlib/Order/Filter/Map.lean
theorem map_comap (f : Filter β) (m : α → β) : (f.comap m).map m = f ⊓ 𝓟 (range m)
α : Type u_1 β : Type u_2 f : Filter β m : α → β ⊢ map m (comap m f) = f ⊓ 𝓟 (range m)
refine le_antisymm (le_inf map_comap_le <| le_principal_iff.2 range_mem_map) ?_
α : Type u_1 β : Type u_2 f : Filter β m : α → β ⊢ f ⊓ 𝓟 (range m) ≤ map m (comap m f)
6d44131d149f58b8
Algebra.FormallyEtale.iff_exists_algEquiv_prod
Mathlib/RingTheory/Etale/Field.lean
theorem iff_exists_algEquiv_prod [EssFiniteType K A] : FormallyEtale K A ↔ ∃ (I : Type u) (_ : Finite I) (Ai : I → Type u) (_ : ∀ i, Field (Ai i)) (_ : ∀ i, Algebra K (Ai i)) (_ : A ≃ₐ[K] Π i, Ai i), ∀ i, Algebra.IsSeparable K (Ai i)
case mpr K A : Type u inst✝³ : Field K inst✝² : CommRing A inst✝¹ : Algebra K A inst✝ : EssFiniteType K A ⊢ (∃ I, ∃ (_ : Finite I), ∃ Ai x x_1 x_2, ∀ (i : I), Algebra.IsSeparable K (Ai i)) → FormallyEtale K A
intro ⟨I, _, Ai, _, _, e, _⟩
case mpr K A : Type u inst✝³ : Field K inst✝² : CommRing A inst✝¹ : Algebra K A inst✝ : EssFiniteType K A I : Type u w✝² : Finite I Ai : I → Type u w✝¹ : (i : I) → Field (Ai i) w✝ : (i : I) → Algebra K (Ai i) e : A ≃ₐ[K] (i : I) → Ai i h✝ : ∀ (i : I), Algebra.IsSeparable K (Ai i) ⊢ FormallyEtale K A
bed71e21534c428f
Std.DHashMap.Raw.Const.getKey_insertMany_list_of_contains_eq_false
Mathlib/.lake/packages/lean4/src/lean/Std/Data/DHashMap/RawLemmas.lean
theorem getKey_insertMany_list_of_contains_eq_false [EquivBEq α] [LawfulHashable α] (h : m.WF) {l : List (α × β)} {k : α} (contains_eq_false : (l.map Prod.fst).contains k = false) {h'} : (insertMany m l).getKey k h' = m.getKey k (mem_of_mem_insertMany_list h h' contains_eq_false)
α : Type u inst✝³ : BEq α inst✝² : Hashable α β : Type v m : Raw α fun x => β inst✝¹ : EquivBEq α inst✝ : LawfulHashable α h : m.WF l : List (α × β) k : α contains_eq_false : (List.map Prod.fst l).contains k = false h' : k ∈ insertMany m l ⊢ (insertMany m l).getKey k h' = m.getKey k ⋯
simp_to_raw using Raw₀.Const.getKey_insertMany_list_of_contains_eq_false
no goals
a4903e874350d005
MeasureTheory.Integrable.bdd_mul
Mathlib/MeasureTheory/Function/L1Space/Integrable.lean
theorem Integrable.bdd_mul {F : Type*} [NormedDivisionRing F] {f g : α → F} (hint : Integrable g μ) (hm : AEStronglyMeasurable f μ) (hfbdd : ∃ C, ∀ x, ‖f x‖ ≤ C) : Integrable (fun x => f x * g x) μ
α : Type u_1 m : MeasurableSpace α μ : Measure α F : Type u_6 inst✝ : NormedDivisionRing F f g : α → F hint : Integrable g μ hm : AEStronglyMeasurable f μ hα : Nonempty α C : ℝ hC : ∀ (x : α), ‖f x‖ ≤ C hCnonneg : 0 ≤ C ⊢ (fun x => ‖f x * g x‖₊) ≤ fun x => ⟨C, hCnonneg⟩ * ‖g x‖₊
intro x
α : Type u_1 m : MeasurableSpace α μ : Measure α F : Type u_6 inst✝ : NormedDivisionRing F f g : α → F hint : Integrable g μ hm : AEStronglyMeasurable f μ hα : Nonempty α C : ℝ hC : ∀ (x : α), ‖f x‖ ≤ C hCnonneg : 0 ≤ C x : α ⊢ (fun x => ‖f x * g x‖₊) x ≤ (fun x => ⟨C, hCnonneg⟩ * ‖g x‖₊) x
1c8516ef04187086
Subgroup.pi_le_iff
Mathlib/Algebra/Group/Subgroup/Finite.lean
theorem pi_le_iff [DecidableEq η] [Finite η] {H : ∀ i, Subgroup (f i)} {J : Subgroup (∀ i, f i)} : pi univ H ≤ J ↔ ∀ i : η, map (MonoidHom.mulSingle f i) (H i) ≤ J
case mp.intro.intro η : Type u_3 f : η → Type u_4 inst✝² : (i : η) → Group (f i) inst✝¹ : DecidableEq η inst✝ : Finite η H : (i : η) → Subgroup (f i) J : Subgroup ((i : η) → f i) h : pi univ H ≤ J i : η x : f i hx : x ∈ ↑(H i) ⊢ (MonoidHom.mulSingle f i) x ∈ J
apply h
case mp.intro.intro.a η : Type u_3 f : η → Type u_4 inst✝² : (i : η) → Group (f i) inst✝¹ : DecidableEq η inst✝ : Finite η H : (i : η) → Subgroup (f i) J : Subgroup ((i : η) → f i) h : pi univ H ≤ J i : η x : f i hx : x ∈ ↑(H i) ⊢ (MonoidHom.mulSingle f i) x ∈ pi univ H
13d3a4bf3766cc30
Batteries.RBNode.lowerBound?_eq_find?
Mathlib/.lake/packages/batteries/Batteries/Data/RBMap/Lemmas.lean
theorem lowerBound?_eq_find? {t : RBNode α} {cut} (lb) (H : t.find? cut = some x) : t.lowerBound? cut lb = some x
α : Type u_1 x : α t : RBNode α cut : α → Ordering lb : Option α H : find? cut t = some x ⊢ lowerBound? cut t lb = some x
rw [← reverse_reverse t] at H ⊢
α : Type u_1 x : α t : RBNode α cut : α → Ordering lb : Option α H : find? cut t.reverse.reverse = some x ⊢ lowerBound? cut t.reverse.reverse lb = some x
6d75f266b35cca6f
Complex.norm_sub_mem_Icc_angle
Mathlib/Analysis/Complex/Angle.lean
/-- Chord-length is a multiple of arc-length up to constants. -/ lemma norm_sub_mem_Icc_angle (hx : ‖x‖ = 1) (hy : ‖y‖ = 1) : ‖x - y‖ ∈ Icc (2 / π * angle x y) (angle x y)
case intro.intro.refine_2 x y : ℂ hy : ‖1‖ = 1 θ : ℝ hθ : θ ∈ Ioc (-π) π ⊢ (Real.cos θ - 1) ^ 2 + Real.sin θ ^ 2 ≤ θ ^ 2
calc _ = 2 * (1 - θ.cos) := by linear_combination θ.cos_sq_add_sin_sq _ ≤ 2 * (1 - (1 - θ ^ 2 / 2)) := by gcongr; exact Real.one_sub_sq_div_two_le_cos _ = _ := by ring
no goals
5f1a2d709d27832f
LinearMap.det_restrictScalars
Mathlib/RingTheory/Norm/Transitivity.lean
theorem LinearMap.det_restrictScalars [AddCommGroup A] [Module R A] [Module S A] [IsScalarTower R S A] [Module.Free S A] {f : A →ₗ[S] A} : (f.restrictScalars R).det = Algebra.norm R f.det
case inr.inl.inl R : Type u_1 S : Type u_2 A : Type u_3 inst✝⁸ : CommRing R inst✝⁷ : CommRing S inst✝⁶ : Algebra R S inst✝⁵ : Module.Free R S inst✝⁴ : AddCommGroup A inst✝³ : Module R A inst✝² : Module S A inst✝¹ : IsScalarTower R S A inst✝ : Module.Free S A f : A →ₗ[S] A a✝ : Nontrivial R h✝ : Nontrivial A this✝¹ : Nontrivial S ιS : Type u_2 bS : Basis ιS R S ιA : Type u_3 bA : Basis ιA S A this✝ : Nonempty ιS this : Nonempty ιA val✝¹ : Fintype ιS val✝ : Fintype ιA ⊢ LinearMap.det (↑R f) = (Algebra.norm R) (LinearMap.det f) case inr.inl.inr R : Type u_1 S : Type u_2 A : Type u_3 inst✝⁸ : CommRing R inst✝⁷ : CommRing S inst✝⁶ : Algebra R S inst✝⁵ : Module.Free R S inst✝⁴ : AddCommGroup A inst✝³ : Module R A inst✝² : Module S A inst✝¹ : IsScalarTower R S A inst✝ : Module.Free S A f : A →ₗ[S] A a✝ : Nontrivial R h✝ : Nontrivial A this✝¹ : Nontrivial S ιS : Type u_2 bS : Basis ιS R S ιA : Type u_3 bA : Basis ιA S A this✝ : Nonempty ιS this : Nonempty ιA val✝¹ : Fintype ιS val✝ : Infinite ιA ⊢ LinearMap.det (↑R f) = (Algebra.norm R) (LinearMap.det f)
swap
case inr.inl.inr R : Type u_1 S : Type u_2 A : Type u_3 inst✝⁸ : CommRing R inst✝⁷ : CommRing S inst✝⁶ : Algebra R S inst✝⁵ : Module.Free R S inst✝⁴ : AddCommGroup A inst✝³ : Module R A inst✝² : Module S A inst✝¹ : IsScalarTower R S A inst✝ : Module.Free S A f : A →ₗ[S] A a✝ : Nontrivial R h✝ : Nontrivial A this✝¹ : Nontrivial S ιS : Type u_2 bS : Basis ιS R S ιA : Type u_3 bA : Basis ιA S A this✝ : Nonempty ιS this : Nonempty ιA val✝¹ : Fintype ιS val✝ : Infinite ιA ⊢ LinearMap.det (↑R f) = (Algebra.norm R) (LinearMap.det f) case inr.inl.inl R : Type u_1 S : Type u_2 A : Type u_3 inst✝⁸ : CommRing R inst✝⁷ : CommRing S inst✝⁶ : Algebra R S inst✝⁵ : Module.Free R S inst✝⁴ : AddCommGroup A inst✝³ : Module R A inst✝² : Module S A inst✝¹ : IsScalarTower R S A inst✝ : Module.Free S A f : A →ₗ[S] A a✝ : Nontrivial R h✝ : Nontrivial A this✝¹ : Nontrivial S ιS : Type u_2 bS : Basis ιS R S ιA : Type u_3 bA : Basis ιA S A this✝ : Nonempty ιS this : Nonempty ιA val✝¹ : Fintype ιS val✝ : Fintype ιA ⊢ LinearMap.det (↑R f) = (Algebra.norm R) (LinearMap.det f)
e61a35e4b25ff2ca
Order.height_coe_withBot
Mathlib/Order/KrullDimension.lean
@[simp] lemma height_coe_withBot (x : α) : height (x : WithBot α) = height x + 1
α✝ : Type u_1 inst✝¹ : Preorder α✝ α : Type u_1 inst✝ : Preorder α x : α p : LTSeries (WithBot α) hlast : RelSeries.last p = ↑x hlenpos : p.length ≠ 0 p' : LTSeries α := { length := p.length - 1, toFun := fun x => match x with | ⟨i, hi⟩ => (p.toFun ⟨i + 1, ⋯⟩).unbot ⋯, step := ⋯ } hlast' : RelSeries.last p' = x ⊢ ↑p.length ≤ height x + 1
suffices p'.length ≤ height p'.last by simpa [p', hlast'] using this
α✝ : Type u_1 inst✝¹ : Preorder α✝ α : Type u_1 inst✝ : Preorder α x : α p : LTSeries (WithBot α) hlast : RelSeries.last p = ↑x hlenpos : p.length ≠ 0 p' : LTSeries α := { length := p.length - 1, toFun := fun x => match x with | ⟨i, hi⟩ => (p.toFun ⟨i + 1, ⋯⟩).unbot ⋯, step := ⋯ } hlast' : RelSeries.last p' = x ⊢ ↑p'.length ≤ height (RelSeries.last p')
16287c0e56f7b584
Int.bmod_zero
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Int/DivModLemmas.lean
theorem bmod_zero : Int.bmod 0 m = 0
m✝ m : Nat h : ¬0 ≤ ↑(m / 2) ⊢ False m✝ m : Nat h : ↑m / 2 + 2 / 2 ≤ 0 ⊢ 2 ≠ 0 m✝ m : Nat h : (↑m + (1 + 1)) / 2 ≤ 0 ⊢ 2 ∣ 1 + 1
exact h (ofNat_nonneg _)
m✝ m : Nat h : ↑m / 2 + 2 / 2 ≤ 0 ⊢ 2 ≠ 0 m✝ m : Nat h : (↑m + (1 + 1)) / 2 ≤ 0 ⊢ 2 ∣ 1 + 1
aafdd0ab2162fca6
Nat.zero_pow
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Nat/Lemmas.lean
theorem zero_pow {n : Nat} (H : 0 < n) : 0 ^ n = 0
n✝ n : Nat H : 0 < n + 1 ⊢ 0 ^ (n + 1) = 0
rw [Nat.pow_succ, Nat.mul_zero]
no goals
7b218e9a4a4d43d8
Behrend.sphere_zero_right
Mathlib/Combinatorics/Additive/AP/Three/Behrend.lean
theorem sphere_zero_right (n k : ℕ) : sphere (n + 1) 0 k = ∅
n k : ℕ ⊢ sphere (n + 1) 0 k = ∅
simp [sphere]
no goals
f70f7de7732573a0
CategoryTheory.Subobject.finset_inf_arrow_factors
Mathlib/CategoryTheory/Subobject/Lattice.lean
theorem finset_inf_arrow_factors {I : Type*} {B : C} (s : Finset I) (P : I → Subobject B) (i : I) (m : i ∈ s) : (P i).Factors (s.inf P).arrow
case insert C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : HasPullbacks C I : Type u_1 B : C P : I → Subobject B a✝¹ : I s✝ : Finset I a✝ : a✝¹ ∉ s✝ ih : ∀ i ∈ s✝, (P i).Factors (s✝.inf P).arrow i✝ : I m : i✝ = a✝¹ ∨ i✝ ∈ s✝ ⊢ (P i✝).Factors (P a✝¹ ⊓ s✝.inf P).arrow
rcases m with (rfl | m)
case insert.inl C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : HasPullbacks C I : Type u_1 B : C P : I → Subobject B s✝ : Finset I ih : ∀ i ∈ s✝, (P i).Factors (s✝.inf P).arrow i✝ : I a✝ : i✝ ∉ s✝ ⊢ (P i✝).Factors (P i✝ ⊓ s✝.inf P).arrow case insert.inr C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : HasPullbacks C I : Type u_1 B : C P : I → Subobject B a✝¹ : I s✝ : Finset I a✝ : a✝¹ ∉ s✝ ih : ∀ i ∈ s✝, (P i).Factors (s✝.inf P).arrow i✝ : I m : i✝ ∈ s✝ ⊢ (P i✝).Factors (P a✝¹ ⊓ s✝.inf P).arrow
2e69cd1837536d26
Complex.uniformContinuous_ringHom_eq_id_or_conj
Mathlib/Topology/Instances/Complex.lean
theorem Complex.uniformContinuous_ringHom_eq_id_or_conj (K : Subfield ℂ) {ψ : K →+* ℂ} (hc : UniformContinuous ψ) : ψ.toFun = K.subtype ∨ ψ.toFun = conj ∘ K.subtype
case refine_2.inl.h.h.intro K : Subfield ℂ ψ : ↥K →+* ℂ hc : UniformContinuous ⇑ψ this✝ : TopologicalDivisionRing ℂ := TopologicalDivisionRing.mk this : IsTopologicalRing ↥K.topologicalClosure := Subring.instIsTopologicalRing K.topologicalClosure.toSubring ι : ↥K → ↥K.topologicalClosure := ⇑(Subfield.inclusion ⋯) ui : IsUniformInducing ι di : IsDenseInducing ι := IsUniformInducing.isDenseInducing ui ?refine_1 extψ : ↥K.topologicalClosure →+* ℂ := IsDenseInducing.extendRingHom ui ⋯ hc hψ : Continuous (⋯.extend ⇑ψ) h : K.topologicalClosure = ofRealHom.fieldRange j : ↥K.topologicalClosure ≃+* ↥ofRealHom.fieldRange := RingEquiv.subfieldCongr h ψ₁ : ℝ →+* ℂ := extψ.comp (j.symm.toRingHom.comp ofRealHom.rangeRestrict) hψ₁ : Continuous ⇑ψ₁ x : ↥K r : ℝ hr : ofRealHom.rangeRestrict r = j (ι x) ⊢ (↑↑ψ).toFun x = K.subtype x
have := RingHom.congr_fun (ringHom_eq_ofReal_of_continuous hψ₁) r
case refine_2.inl.h.h.intro K : Subfield ℂ ψ : ↥K →+* ℂ hc : UniformContinuous ⇑ψ this✝¹ : TopologicalDivisionRing ℂ := TopologicalDivisionRing.mk this✝ : IsTopologicalRing ↥K.topologicalClosure := Subring.instIsTopologicalRing K.topologicalClosure.toSubring ι : ↥K → ↥K.topologicalClosure := ⇑(Subfield.inclusion ⋯) ui : IsUniformInducing ι di : IsDenseInducing ι := IsUniformInducing.isDenseInducing ui ?refine_1 extψ : ↥K.topologicalClosure →+* ℂ := IsDenseInducing.extendRingHom ui ⋯ hc hψ : Continuous (⋯.extend ⇑ψ) h : K.topologicalClosure = ofRealHom.fieldRange j : ↥K.topologicalClosure ≃+* ↥ofRealHom.fieldRange := RingEquiv.subfieldCongr h ψ₁ : ℝ →+* ℂ := extψ.comp (j.symm.toRingHom.comp ofRealHom.rangeRestrict) hψ₁ : Continuous ⇑ψ₁ x : ↥K r : ℝ hr : ofRealHom.rangeRestrict r = j (ι x) this : ψ₁ r = ofRealHom r ⊢ (↑↑ψ).toFun x = K.subtype x
f78bcdf9d891573b
exists_lt_mul_right_of_nonneg
Mathlib/Algebra/Order/Field/Basic.lean
private lemma exists_lt_mul_right_of_nonneg {a b c : α} (ha : 0 ≤ a) (hc : 0 ≤ c) (h : c < a * b) : ∃ b' ∈ Set.Ico 0 b, c < a * b'
α : Type u_2 inst✝ : LinearOrderedField α a b c : α ha : 0 ≤ a hc : 0 ≤ c hb : 0 < b h : c < b * a ⊢ ∃ b' ∈ Set.Ico 0 b, c < b' * a
exact exists_lt_mul_left_of_nonneg hb.le hc h
no goals
1c69017d4ad8f569
CommGroup.exists_apply_ne_one_aux
Mathlib/GroupTheory/FiniteAbelian/Duality.lean
private lemma exists_apply_ne_one_aux (H : ∀ n : ℕ, n ∣ Monoid.exponent G → ∀ a : ZMod n, a ≠ 0 → ∃ φ : Multiplicative (ZMod n) →* M, φ (.ofAdd a) ≠ 1) {a : G} (ha : a ≠ 1) : ∃ φ : G →* M, φ a ≠ 1
G : Type u_1 M : Type u_2 inst✝² : CommGroup G inst✝¹ : Finite G inst✝ : CommMonoid M H : ∀ (n : ℕ), n ∣ Monoid.exponent G → ∀ (a : ZMod n), a ≠ 0 → ∃ φ, φ (Multiplicative.ofAdd a) ≠ 1 a : G ι : Type w✝ : Fintype ι n : ι → ℕ left✝ : ∀ (i : ι), 1 < n i h : Nonempty (G ≃* ((i : ι) → Multiplicative (ZMod (n i)))) e : G ≃* ((i : ι) → Multiplicative (ZMod (n i))) := h.some ha : ∀ (i : ι), e a i = 1 ⊢ a = 1
exact (MulEquiv.map_eq_one_iff e).mp <| funext ha
no goals
ca48e086b93104fd
PythagoreanTriple.isPrimitiveClassified_of_coprime_of_pos
Mathlib/NumberTheory/PythagoreanTriples.lean
theorem isPrimitiveClassified_of_coprime_of_pos (hc : Int.gcd x y = 1) (hzpos : 0 < z) : h.IsPrimitiveClassified
case inr.intro.intro x y z : ℤ h : PythagoreanTriple x y z hc : y.gcd x = 1 hzpos : 0 < z h2 : x % 2 = 1 ∧ y % 2 = 0 m n : ℤ H : (y = m ^ 2 - n ^ 2 ∧ x = 2 * m * n ∨ y = 2 * m * n ∧ x = m ^ 2 - n ^ 2) ∧ m.gcd n = 1 ∧ (m % 2 = 0 ∧ n % 2 = 1 ∨ m % 2 = 1 ∧ n % 2 = 0) ⊢ h.IsPrimitiveClassified
use m, n
case h x y z : ℤ h : PythagoreanTriple x y z hc : y.gcd x = 1 hzpos : 0 < z h2 : x % 2 = 1 ∧ y % 2 = 0 m n : ℤ H : (y = m ^ 2 - n ^ 2 ∧ x = 2 * m * n ∨ y = 2 * m * n ∧ x = m ^ 2 - n ^ 2) ∧ m.gcd n = 1 ∧ (m % 2 = 0 ∧ n % 2 = 1 ∨ m % 2 = 1 ∧ n % 2 = 0) ⊢ (x = m ^ 2 - n ^ 2 ∧ y = 2 * m * n ∨ x = 2 * m * n ∧ y = m ^ 2 - n ^ 2) ∧ m.gcd n = 1 ∧ (m % 2 = 0 ∧ n % 2 = 1 ∨ m % 2 = 1 ∧ n % 2 = 0)
d8eb1778fac552d9
List.lex_eq_false_iff_exists
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Lex.lean
theorem lex_eq_false_iff_exists [BEq α] [PartialEquivBEq α] (lt : α → α → Bool) (lt_irrefl : ∀ x y, x == y → lt x y = false) (lt_asymm : ∀ x y, lt x y = true → lt y x = false) (lt_antisymm : ∀ x y, lt x y = false → lt y x = false → x == y) : lex l₁ l₂ lt = false ↔ (l₂.isEqv (l₁.take l₂.length) (· == ·)) ∨ (∃ (i : Nat) (h₁ : i < l₁.length) (h₂ : i < l₂.length), (∀ j, (hj : j < i) → l₁[j]'(Nat.lt_trans hj h₁) == l₂[j]'(Nat.lt_trans hj h₂)) ∧ lt l₂[i] l₁[i])
case cons.cons.mpr.inr.intro.intro.intro.intro.succ.refine_1 α : Type u_1 inst✝¹ : BEq α inst✝ : PartialEquivBEq α lt : α → α → Bool lt_irrefl : ∀ (x y : α), (x == y) = true → lt x y = false lt_asymm : ∀ (x y : α), lt x y = true → lt y x = false lt_antisymm : ∀ (x y : α), lt x y = false → lt y x = false → (x == y) = true a : α l₁ : List α ih : ∀ {l₂ : List α}, l₁.lex l₂ lt = false ↔ (l₂.isEqv (take l₂.length l₁) fun x1 x2 => x1 == x2) = true ∨ ∃ i h₁ h₂, (∀ (j : Nat) (hj : j < i), (l₁[j] == l₂[j]) = true) ∧ lt l₂[i] l₁[i] = true b : α l₂ : List α i : Nat h₁ : i + 1 < l₁.length + 1 h₂ : i + 1 < l₂.length + 1 w₁ : ∀ (j : Nat) (hj : j < i + 1), ((a :: l₁)[j] == (b :: l₂)[j]) = true w₂ : lt (b :: l₂)[i + 1] (a :: l₁)[i + 1] = true x✝ : (a == b) = true ⊢ ∀ (j : Nat) (hj : j < i), (l₁[j] == l₂[j]) = true
intro j hj
case cons.cons.mpr.inr.intro.intro.intro.intro.succ.refine_1 α : Type u_1 inst✝¹ : BEq α inst✝ : PartialEquivBEq α lt : α → α → Bool lt_irrefl : ∀ (x y : α), (x == y) = true → lt x y = false lt_asymm : ∀ (x y : α), lt x y = true → lt y x = false lt_antisymm : ∀ (x y : α), lt x y = false → lt y x = false → (x == y) = true a : α l₁ : List α ih : ∀ {l₂ : List α}, l₁.lex l₂ lt = false ↔ (l₂.isEqv (take l₂.length l₁) fun x1 x2 => x1 == x2) = true ∨ ∃ i h₁ h₂, (∀ (j : Nat) (hj : j < i), (l₁[j] == l₂[j]) = true) ∧ lt l₂[i] l₁[i] = true b : α l₂ : List α i : Nat h₁ : i + 1 < l₁.length + 1 h₂ : i + 1 < l₂.length + 1 w₁ : ∀ (j : Nat) (hj : j < i + 1), ((a :: l₁)[j] == (b :: l₂)[j]) = true w₂ : lt (b :: l₂)[i + 1] (a :: l₁)[i + 1] = true x✝ : (a == b) = true j : Nat hj : j < i ⊢ (l₁[j] == l₂[j]) = true
0c9240a9b47ee0a9
Polynomial.jacobson_bot_of_integral_localization
Mathlib/RingTheory/Jacobson/Ring.lean
theorem jacobson_bot_of_integral_localization {R : Type*} [CommRing R] [IsDomain R] [IsJacobsonRing R] (Rₘ Sₘ : Type*) [CommRing Rₘ] [CommRing Sₘ] (φ : R →+* S) (hφ : Function.Injective ↑φ) (x : R) (hx : x ≠ 0) [Algebra R Rₘ] [IsLocalization.Away x Rₘ] [Algebra S Sₘ] [IsLocalization ((Submonoid.powers x).map φ : Submonoid S) Sₘ] (hφ' : RingHom.IsIntegral (IsLocalization.map Sₘ φ (Submonoid.powers x).le_comap_map : Rₘ →+* Sₘ)) : (⊥ : Ideal S).jacobson = (⊥ : Ideal S)
S : Type u_2 inst✝¹⁰ : CommRing S inst✝⁹ : IsDomain S R : Type u_5 inst✝⁸ : CommRing R inst✝⁷ : IsDomain R inst✝⁶ : IsJacobsonRing R Rₘ : Type u_6 Sₘ : Type u_7 inst✝⁵ : CommRing Rₘ inst✝⁴ : CommRing Sₘ φ : R →+* S hφ : Function.Injective ⇑φ x : R hx : x ≠ 0 inst✝³ : Algebra R Rₘ inst✝² : IsLocalization.Away x Rₘ inst✝¹ : Algebra S Sₘ inst✝ : IsLocalization (Submonoid.map φ (Submonoid.powers x)) Sₘ hφ' : (IsLocalization.map Sₘ φ ⋯).IsIntegral hM : Submonoid.map φ (Submonoid.powers x) ≤ nonZeroDivisors S this✝⁴ : IsDomain Sₘ := IsLocalization.isDomain_of_le_nonZeroDivisors S hM φ' : Rₘ →+* Sₘ := IsLocalization.map Sₘ φ ⋯ I : Ideal Sₘ hI : I.IsMaximal this✝³ : (comap (algebraMap S Sₘ) I).IsPrime this✝² : (comap φ' I).IsPrime this✝¹ : ⊥.IsPrime hcomm : φ'.comp (algebraMap R Rₘ) = (algebraMap S Sₘ).comp φ f : R ⧸ comap φ (comap (algebraMap S Sₘ) I) →+* S ⧸ comap (algebraMap S Sₘ) I := quotientMap (comap (algebraMap S Sₘ) I) φ ⋯ g : S ⧸ comap (algebraMap S Sₘ) I →+* Sₘ ⧸ I := quotientMap I (algebraMap S Sₘ) ⋯ this✝ : (comap φ' I).IsMaximal this : (comap (algebraMap R Rₘ) (comap φ' I)).IsMaximal ⊢ (comap (algebraMap S Sₘ) I).IsMaximal
have : ((I.comap (algebraMap S Sₘ)).comap φ).IsMaximal := by rwa [comap_comap, hcomm, ← comap_comap] at this
S : Type u_2 inst✝¹⁰ : CommRing S inst✝⁹ : IsDomain S R : Type u_5 inst✝⁸ : CommRing R inst✝⁷ : IsDomain R inst✝⁶ : IsJacobsonRing R Rₘ : Type u_6 Sₘ : Type u_7 inst✝⁵ : CommRing Rₘ inst✝⁴ : CommRing Sₘ φ : R →+* S hφ : Function.Injective ⇑φ x : R hx : x ≠ 0 inst✝³ : Algebra R Rₘ inst✝² : IsLocalization.Away x Rₘ inst✝¹ : Algebra S Sₘ inst✝ : IsLocalization (Submonoid.map φ (Submonoid.powers x)) Sₘ hφ' : (IsLocalization.map Sₘ φ ⋯).IsIntegral hM : Submonoid.map φ (Submonoid.powers x) ≤ nonZeroDivisors S this✝⁵ : IsDomain Sₘ := IsLocalization.isDomain_of_le_nonZeroDivisors S hM φ' : Rₘ →+* Sₘ := IsLocalization.map Sₘ φ ⋯ I : Ideal Sₘ hI : I.IsMaximal this✝⁴ : (comap (algebraMap S Sₘ) I).IsPrime this✝³ : (comap φ' I).IsPrime this✝² : ⊥.IsPrime hcomm : φ'.comp (algebraMap R Rₘ) = (algebraMap S Sₘ).comp φ f : R ⧸ comap φ (comap (algebraMap S Sₘ) I) →+* S ⧸ comap (algebraMap S Sₘ) I := quotientMap (comap (algebraMap S Sₘ) I) φ ⋯ g : S ⧸ comap (algebraMap S Sₘ) I →+* Sₘ ⧸ I := quotientMap I (algebraMap S Sₘ) ⋯ this✝¹ : (comap φ' I).IsMaximal this✝ : (comap (algebraMap R Rₘ) (comap φ' I)).IsMaximal this : (comap φ (comap (algebraMap S Sₘ) I)).IsMaximal ⊢ (comap (algebraMap S Sₘ) I).IsMaximal
b75924b89ba7dfc0
ContMDiffWithinAt.mdifferentiableWithinAt
Mathlib/Geometry/Manifold/MFDeriv/Basic.lean
theorem ContMDiffWithinAt.mdifferentiableWithinAt (hf : ContMDiffWithinAt I I' n f s x) (hn : 1 ≤ n) : MDifferentiableWithinAt I I' f s x
𝕜 : Type u_1 inst✝¹⁰ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁹ : NormedAddCommGroup E inst✝⁸ : NormedSpace 𝕜 E H : Type u_3 inst✝⁷ : TopologicalSpace H I : ModelWithCorners 𝕜 E H M : Type u_4 inst✝⁶ : TopologicalSpace M inst✝⁵ : ChartedSpace H M E' : Type u_5 inst✝⁴ : NormedAddCommGroup E' inst✝³ : NormedSpace 𝕜 E' H' : Type u_6 inst✝² : TopologicalSpace H' I' : ModelWithCorners 𝕜 E' H' M' : Type u_7 inst✝¹ : TopologicalSpace M' inst✝ : ChartedSpace H' M' f : M → M' x : M s : Set M n : WithTop ℕ∞ hf : ContMDiffWithinAt I I' n f s x hn : 1 ≤ n h : MDifferentiableWithinAt I I' f (s ∩ f ⁻¹' (extChartAt I' (f x)).source) x ⊢ (extChartAt I' (f x)).source ∈ 𝓝 (f x)
exact extChartAt_source_mem_nhds (f x)
no goals
d6329dd89b798ab7
Ordinal.principal_mul_iff_mul_left_eq
Mathlib/SetTheory/Ordinal/Principal.lean
theorem principal_mul_iff_mul_left_eq : Principal (· * ·) o ↔ ∀ a, 0 < a → a < o → a * o = o
case refine_1.inl o : Ordinal.{u} h : Principal (fun x1 x2 => x1 * x2) o a : Ordinal.{u} ha₀ : 0 < a hao : a < o ho : o ≤ 2 ⊢ a * o = o
convert one_mul o
case h.e'_2.h.e'_5 o : Ordinal.{u} h : Principal (fun x1 x2 => x1 * x2) o a : Ordinal.{u} ha₀ : 0 < a hao : a < o ho : o ≤ 2 ⊢ a = 1
5ae376ccba37fa39
DenseRange.comp
Mathlib/Topology/Basic.lean
theorem DenseRange.comp {g : Y → Z} {f : α → Y} (hg : DenseRange g) (hf : DenseRange f) (cg : Continuous g) : DenseRange (g ∘ f)
Y : Type u_2 Z : Type u_3 inst✝¹ : TopologicalSpace Y inst✝ : TopologicalSpace Z α : Type u_4 g : Y → Z f : α → Y hg : DenseRange g hf : DenseRange f cg : Continuous g ⊢ DenseRange (g ∘ f)
rw [DenseRange, range_comp]
Y : Type u_2 Z : Type u_3 inst✝¹ : TopologicalSpace Y inst✝ : TopologicalSpace Z α : Type u_4 g : Y → Z f : α → Y hg : DenseRange g hf : DenseRange f cg : Continuous g ⊢ Dense (g '' range f)
c91accec9eddfc92
PowerSeries.order_monomial_of_ne_zero
Mathlib/RingTheory/PowerSeries/Order.lean
theorem order_monomial_of_ne_zero (n : ℕ) (a : R) (h : a ≠ 0) : order (monomial R n a) = n
R : Type u_1 inst✝ : Semiring R n : ℕ a : R h : a ≠ 0 ⊢ ((monomial R n) a).order = ↑n
classical rw [order_monomial, if_neg h]
no goals
6e33ccdbc1551010
Array.getElem_zipWith
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/Lemmas.lean
theorem getElem_zipWith (as : Array α) (bs : Array β) (f : α → β → γ) (i : Nat) (hi : i < (zipWith f as bs).size) : (zipWith f as bs)[i] = f (as[i]'(by simp at hi; omega)) (bs[i]'(by simp at hi; omega))
α : Type ?u.533946 β : Type ?u.533949 γ : Type ?u.533961 as : Array α bs : Array β f : α → β → γ i : Nat hi : i < min as.size bs.size ⊢ i < bs.size
omega
no goals
8ad9913a0188b980
MeasureTheory.lintegral_rpow_enorm_eq_rpow_eLpNorm'
Mathlib/MeasureTheory/Function/LpSeminorm/Basic.lean
theorem lintegral_rpow_enorm_eq_rpow_eLpNorm' {f : α → ε} (hq0_lt : 0 < q) : ∫⁻ a, ‖f a‖ₑ ^ q ∂μ = eLpNorm' f q μ ^ q
α : Type u_1 ε : Type u_2 m0 : MeasurableSpace α q : ℝ μ : Measure α inst✝ : ENorm ε f : α → ε hq0_lt : 0 < q ⊢ ∫⁻ (a : α), ‖f a‖ₑ ^ q ∂μ = eLpNorm' f q μ ^ q
rw [eLpNorm'_eq_lintegral_enorm, ← ENNReal.rpow_mul, one_div, inv_mul_cancel₀, ENNReal.rpow_one]
α : Type u_1 ε : Type u_2 m0 : MeasurableSpace α q : ℝ μ : Measure α inst✝ : ENorm ε f : α → ε hq0_lt : 0 < q ⊢ q ≠ 0
ba3d8f7541fcdfdc
BitVec.msb_neg
Mathlib/.lake/packages/lean4/src/lean/Init/Data/BitVec/Bitblast.lean
theorem msb_neg {w : Nat} {x : BitVec w} : (-x).msb = ((x != 0#w && x != intMin w) ^^ x.msb)
w : Nat x : BitVec w hmin : x = intMin w ⊢ (x.getMsbD 0 ^^ decide (∃ j, j < w ∧ 0 < j ∧ x.getMsbD j = true)) = (x != 0#w && x != intMin w ^^ x.getMsbD 0)
have : (∃ j, j < w ∧ 0 < j ∧ 0 < w ∧ j = 0) ↔ False := by simp; omega
w : Nat x : BitVec w hmin : x = intMin w this : (∃ j, j < w ∧ 0 < j ∧ 0 < w ∧ j = 0) ↔ False ⊢ (x.getMsbD 0 ^^ decide (∃ j, j < w ∧ 0 < j ∧ x.getMsbD j = true)) = (x != 0#w && x != intMin w ^^ x.getMsbD 0)
a0abc44cd1acd615
CategoryTheory.bijection_natural
Mathlib/CategoryTheory/Closed/Ideal.lean
theorem bijection_natural (A B : C) (X X' : D) (f : (reflector i).obj (A ⊗ B) ⟶ X) (g : X ⟶ X') : bijection i _ _ _ (f ≫ g) = bijection i _ _ _ f ≫ g
C : Type u₁ D : Type u₂ inst✝⁶ : Category.{v₁, u₁} C inst✝⁵ : Category.{v₁, u₂} D i : D ⥤ C inst✝⁴ : ChosenFiniteProducts C inst✝³ : Reflective i inst✝² : CartesianClosed C inst✝¹ : ChosenFiniteProducts D inst✝ : ExponentialIdeal i A B : C X X' : D f : (reflector i).obj (A ⊗ B) ⟶ X g : X ⟶ X' ⊢ i.fullyFaithfulOfReflective.preimage (prodComparison i ((reflector i).obj A) ((reflector i).obj B) ≫ uncurry ((unitCompPartialBijective B ⋯) (curry ((β_ B (i.obj ((reflector i).obj A))).inv ≫ uncurry ((unitCompPartialBijective A ⋯) (curry ((β_ A B).inv ≫ ((reflectorAdjunction i).homEquiv (A ⊗ B) X') (f ≫ g) ≫ 𝟙 (i.obj X')))) ≫ 𝟙 (i.obj X')))) ≫ 𝟙 (i.obj X')) = i.fullyFaithfulOfReflective.preimage (prodComparison i ((reflector i).obj A) ((reflector i).obj B) ≫ uncurry ((unitCompPartialBijective B ⋯) (curry ((β_ B (i.obj ((reflector i).obj A))).inv ≫ uncurry ((unitCompPartialBijective A ⋯) (curry ((β_ A B).inv ≫ ((reflectorAdjunction i).homEquiv (A ⊗ B) X) f ≫ 𝟙 (i.obj X)))) ≫ 𝟙 (i.obj X)))) ≫ 𝟙 (i.obj X)) ≫ g
apply i.map_injective
case a C : Type u₁ D : Type u₂ inst✝⁶ : Category.{v₁, u₁} C inst✝⁵ : Category.{v₁, u₂} D i : D ⥤ C inst✝⁴ : ChosenFiniteProducts C inst✝³ : Reflective i inst✝² : CartesianClosed C inst✝¹ : ChosenFiniteProducts D inst✝ : ExponentialIdeal i A B : C X X' : D f : (reflector i).obj (A ⊗ B) ⟶ X g : X ⟶ X' ⊢ i.map (i.fullyFaithfulOfReflective.preimage (prodComparison i ((reflector i).obj A) ((reflector i).obj B) ≫ uncurry ((unitCompPartialBijective B ⋯) (curry ((β_ B (i.obj ((reflector i).obj A))).inv ≫ uncurry ((unitCompPartialBijective A ⋯) (curry ((β_ A B).inv ≫ ((reflectorAdjunction i).homEquiv (A ⊗ B) X') (f ≫ g) ≫ 𝟙 (i.obj X')))) ≫ 𝟙 (i.obj X')))) ≫ 𝟙 (i.obj X'))) = i.map (i.fullyFaithfulOfReflective.preimage (prodComparison i ((reflector i).obj A) ((reflector i).obj B) ≫ uncurry ((unitCompPartialBijective B ⋯) (curry ((β_ B (i.obj ((reflector i).obj A))).inv ≫ uncurry ((unitCompPartialBijective A ⋯) (curry ((β_ A B).inv ≫ ((reflectorAdjunction i).homEquiv (A ⊗ B) X) f ≫ 𝟙 (i.obj X)))) ≫ 𝟙 (i.obj X)))) ≫ 𝟙 (i.obj X)) ≫ g)
5120d0f0b0ffc665
CategoryTheory.Sieve.effectiveEpimorphic_singleton
Mathlib/CategoryTheory/Sites/EffectiveEpimorphic.lean
theorem Sieve.effectiveEpimorphic_singleton {X Y : C} (f : Y ⟶ X) : (Presieve.singleton f).EffectiveEpimorphic ↔ (EffectiveEpi f)
case mp C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y : C f : Y ⟶ X h : Nonempty (IsColimit (generateSingleton f).arrows.cocone) ⊢ EffectiveEpi f
constructor
case mp.effectiveEpi C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y : C f : Y ⟶ X h : Nonempty (IsColimit (generateSingleton f).arrows.cocone) ⊢ Nonempty (EffectiveEpiStruct f)
c9c9a1eadcf45899
Set.OrdConnected.image_hasDerivWithinAt
Mathlib/Analysis/Calculus/Darboux.lean
theorem Set.OrdConnected.image_hasDerivWithinAt {s : Set ℝ} (hs : OrdConnected s) (hf : ∀ x ∈ s, HasDerivWithinAt f (f' x) s x) : OrdConnected (f' '' s)
case hs.intro.intro.intro.intro.intro.inr.intro.intro f f' : ℝ → ℝ s : Set ℝ hs : s.OrdConnected hf : ∀ x ∈ s, HasDerivWithinAt f (f' x) s x a : ℝ ha : a ∈ s b : ℝ hb : b ∈ s m : ℝ hma : f' a < m hmb : m < f' b hab : b ≤ a this : Icc b a ⊆ s c : ℝ cmem : c ∈ Ioo b a hc : f' c = m ⊢ m ∈ f' '' s
exact ⟨c, this <| Ioo_subset_Icc_self cmem, hc⟩
no goals
2ad4e8c6a69413a7
SimpleGraph.edgeDisjointTriangles_iff_mem_sym2_subsingleton
Mathlib/Combinatorics/SimpleGraph/Triangle/Basic.lean
lemma edgeDisjointTriangles_iff_mem_sym2_subsingleton : G.EdgeDisjointTriangles ↔ ∀ ⦃e : Sym2 α⦄, ¬ e.IsDiag → {s ∈ G.cliqueSet 3 | e ∈ (s : Finset α).sym2}.Subsingleton
case h.mpr.intro.intro.intro.intro α : Type u_1 G : SimpleGraph α a b : α hab✝ : a ≠ b hab : G.Adj a b c : α hac : G.Adj a c hbc : G.Adj b c ⊢ (∃ a_1 b_1 c_1, G.Adj a_1 b_1 ∧ G.Adj a_1 c_1 ∧ G.Adj b_1 c_1 ∧ {a, b, c} = {a_1, b_1, c_1}) ∧ a ∈ {a, b, c} ∧ b ∈ {a, b, c}
refine ⟨⟨a, b, c, ?_⟩, ?_⟩ <;> simp [*]
no goals
dd5ab32164f7deff
IsMulFreimanHom.mono
Mathlib/Combinatorics/Additive/FreimanHom.lean
@[to_additive] lemma IsMulFreimanHom.mono (hmn : m ≤ n) (hf : IsMulFreimanHom n A B f) : IsMulFreimanHom m A B f where mapsTo := hf.mapsTo map_prod_eq_map_prod s t hsA htA hs ht h
case inr.intro.refine_5 α : Type u_2 β : Type u_3 inst✝¹ : CommMonoid α inst✝ : CancelCommMonoid β A : Set α B : Set β f : α → β m n : ℕ hmn : m ≤ n hf : IsMulFreimanHom n A B f s t : Multiset α hsA : ∀ ⦃x : α⦄, x ∈ s → x ∈ A htA : ∀ ⦃x : α⦄, x ∈ t → x ∈ A hs : s.card = m ht : t.card = m h : s.prod = t.prod a : α ha : a ∈ A ⊢ (s + replicate (n - m) a).prod = (t + replicate (n - m) a).prod
rw [prod_add, prod_add, h]
no goals
b2311f9c87a69848
Profinite.NobelingProof.CC_exact
Mathlib/Topology/Category/Profinite/Nobeling.lean
theorem CC_exact {f : LocallyConstant C ℤ} (hf : Linear_CC' C hsC ho f = 0) : ∃ y, πs C o y = f
case refine_2 I : Type u C : Set (I → Bool) inst✝¹ : LinearOrder I inst✝ : WellFoundedLT I o : Ordinal.{u} hC : IsClosed C hsC : contained C (Order.succ o) ho : o < Ordinal.type fun x1 x2 => x1 < x2 f : LocallyConstant ↑C ℤ hf : ⇑((LocallyConstant.comapₗ ℤ { toFun := CC'₁ C hsC ho, continuous_toFun := ⋯ }) f) = ⇑((LocallyConstant.comapₗ ℤ { toFun := CC'₀ C ho, continuous_toFun := ⋯ }) f) C₀C : ↑(C0 C ho) → ↑C := fun x => ⟨↑x, ⋯⟩ h₀ : Continuous C₀C C₁C : ↑(π (C1 C ho) fun x => ord I x < o) → ↑C := fun x => ⟨SwapTrue o ↑x, ⋯⟩ h₁ : Continuous C₁C ⊢ ∀ (x : I → Bool) (hx : x ∈ C0 C ho ∩ π (C1 C ho) fun x => ord I x < o), (LocallyConstant.comap { toFun := C₀C, continuous_toFun := h₀ } f) ⟨x, ⋯⟩ = (LocallyConstant.comap { toFun := C₁C, continuous_toFun := h₁ } f) ⟨x, ⋯⟩
intro x hx
case refine_2 I : Type u C : Set (I → Bool) inst✝¹ : LinearOrder I inst✝ : WellFoundedLT I o : Ordinal.{u} hC : IsClosed C hsC : contained C (Order.succ o) ho : o < Ordinal.type fun x1 x2 => x1 < x2 f : LocallyConstant ↑C ℤ hf : ⇑((LocallyConstant.comapₗ ℤ { toFun := CC'₁ C hsC ho, continuous_toFun := ⋯ }) f) = ⇑((LocallyConstant.comapₗ ℤ { toFun := CC'₀ C ho, continuous_toFun := ⋯ }) f) C₀C : ↑(C0 C ho) → ↑C := fun x => ⟨↑x, ⋯⟩ h₀ : Continuous C₀C C₁C : ↑(π (C1 C ho) fun x => ord I x < o) → ↑C := fun x => ⟨SwapTrue o ↑x, ⋯⟩ h₁ : Continuous C₁C x : I → Bool hx : x ∈ C0 C ho ∩ π (C1 C ho) fun x => ord I x < o ⊢ (LocallyConstant.comap { toFun := C₀C, continuous_toFun := h₀ } f) ⟨x, ⋯⟩ = (LocallyConstant.comap { toFun := C₁C, continuous_toFun := h₁ } f) ⟨x, ⋯⟩
c7ebbbfd480d7eed
Ordinal.cof_eq_one_iff_is_succ
Mathlib/SetTheory/Cardinal/Cofinality.lean
theorem cof_eq_one_iff_is_succ {o} : cof.{u} o = 1 ↔ ∃ a, o = succ a := ⟨inductionOn o fun α r _ z => by rcases cof_eq r with ⟨S, hl, e⟩; rw [z] at e obtain ⟨a⟩ := mk_ne_zero_iff.1 (by rw [e]; exact one_ne_zero) refine ⟨typein r a, Eq.symm <| Quotient.sound ⟨RelIso.ofSurjective (RelEmbedding.ofMonotone ?_ fun x y => ?_) fun x => ?_⟩⟩ · apply Sum.rec <;> [exact Subtype.val; exact fun _ => a] · rcases x with (x | ⟨⟨⟨⟩⟩⟩) <;> rcases y with (y | ⟨⟨⟨⟩⟩⟩) <;> simp [Subrel, Order.Preimage, EmptyRelation] exact x.2 · suffices r x a ∨ ∃ _ : PUnit.{u}, ↑a = x by convert this dsimp [RelEmbedding.ofMonotone]; simp rcases trichotomous_of r x a with (h | h | h) · exact Or.inl h · exact Or.inr ⟨PUnit.unit, h.symm⟩ · rcases hl x with ⟨a', aS, hn⟩ refine absurd h ?_ convert hn change (a : α) = ↑(⟨a', aS⟩ : S) have := le_one_iff_subsingleton.1 (le_of_eq e) congr!, fun ⟨a, e⟩ => by simp [e]⟩
case intro.intro.intro.refine_2.inl.inr.unit o : Ordinal.{u} α : Type u r : α → α → Prop x✝ : IsWellOrder α r z : (type r).cof = 1 S : Set α hl : Unbounded r S e : #↑S = 1 a : ↑S x : { x // r x ↑a } ⊢ r ↑x ↑a
exact x.2
no goals
7afdd5212ddba93b
CategoryTheory.Limits.Multicofork.condition
Mathlib/CategoryTheory/Limits/Shapes/Multiequalizer.lean
theorem condition (a) : I.fst a ≫ K.π (J.fst a) = I.snd a ≫ K.π (J.snd a)
C : Type u inst✝ : Category.{v, u} C J : MultispanShape I : MultispanIndex J C K : Multicofork I a : J.L ⊢ I.fst a ≫ K.π (J.fst a) = I.snd a ≫ K.π (J.snd a)
rw [← K.snd_app_right, ← K.fst_app_right]
no goals
b4fbf300c1fb170b
sum_range_pow
Mathlib/NumberTheory/Bernoulli.lean
theorem sum_range_pow (n p : ℕ) : (∑ k ∈ range n, (k : ℚ) ^ p) = ∑ i ∈ range (p + 1), bernoulli i * ((p + 1).choose i) * (n : ℚ) ^ (p + 1 - i) / (p + 1)
n p : ℕ hne : ∀ (m : ℕ), ↑m ! ≠ 0 h_cauchy : ((PowerSeries.mk fun p => bernoulli p / ↑p !) * PowerSeries.mk fun q => (coeff ℚ (q + 1)) (exp ℚ ^ n)) = PowerSeries.mk fun p => ∑ i ∈ range (p + 1), bernoulli i * ↑((p + 1).choose i) * ↑n ^ (p + 1 - i) / ↑(p + 1)! hps : ∑ k ∈ range n, ↑k ^ p = (∑ i ∈ range (p + 1), bernoulli i * ↑((p + 1).choose i) * ↑n ^ (p + 1 - i) / ↑(p + 1)!) * ↑p ! x : ℕ x✝ : x ∈ range (p + 1) ⊢ bernoulli x * ↑((p + 1).choose x) * ↑n ^ (p + 1 - x) * ↑p ! * (↑p + 1) = bernoulli x * ↑((p + 1).choose x) * ↑n ^ (p + 1 - x) * ((↑p + 1) * ↑p !)
ring
no goals
fc82cef36f6524aa
isPreconnected_closed_iff
Mathlib/Topology/Connected/Basic.lean
theorem isPreconnected_closed_iff {s : Set α} : IsPreconnected s ↔ ∀ t t', IsClosed t → IsClosed t' → s ⊆ t ∪ t' → (s ∩ t).Nonempty → (s ∩ t').Nonempty → (s ∩ (t ∩ t')).Nonempty := ⟨by rintro h t t' ht ht' htt' ⟨x, xs, xt⟩ ⟨y, ys, yt'⟩ rw [← not_disjoint_iff_nonempty_inter, ← subset_compl_iff_disjoint_right, compl_inter] intro h' have xt' : x ∉ t' := (h' xs).resolve_left (absurd xt) have yt : y ∉ t := (h' ys).resolve_right (absurd yt') have := h _ _ ht.isOpen_compl ht'.isOpen_compl h' ⟨y, ys, yt⟩ ⟨x, xs, xt'⟩ rw [← compl_union] at this exact this.ne_empty htt'.disjoint_compl_right.inter_eq, by rintro h u v hu hv huv ⟨x, xs, xu⟩ ⟨y, ys, yv⟩ rw [← not_disjoint_iff_nonempty_inter, ← subset_compl_iff_disjoint_right, compl_inter] intro h' have xv : x ∉ v := (h' xs).elim (absurd xu) id have yu : y ∉ u := (h' ys).elim id (absurd yv) have := h _ _ hu.isClosed_compl hv.isClosed_compl h' ⟨y, ys, yu⟩ ⟨x, xs, xv⟩ rw [← compl_union] at this exact this.ne_empty huv.disjoint_compl_right.inter_eq⟩
case intro.intro.intro.intro α : Type u inst✝ : TopologicalSpace α s : Set α h : ∀ (t t' : Set α), IsClosed t → IsClosed t' → s ⊆ t ∪ t' → (s ∩ t).Nonempty → (s ∩ t').Nonempty → (s ∩ (t ∩ t')).Nonempty u v : Set α hu : IsOpen u hv : IsOpen v huv : s ⊆ u ∪ v x : α xs : x ∈ s xu : x ∈ u y : α ys : y ∈ s yv : y ∈ v h' : s ⊆ uᶜ ∪ vᶜ xv : x ∉ v yu : y ∉ u this : (s ∩ (u ∪ v)ᶜ).Nonempty ⊢ False
exact this.ne_empty huv.disjoint_compl_right.inter_eq
no goals
20f33475245c9747
FDerivMeasurableAux.isOpen_A_with_param
Mathlib/Analysis/Calculus/FDeriv/Measurable.lean
lemma isOpen_A_with_param {r s : ℝ} (hf : Continuous f.uncurry) (L : E →L[𝕜] F) : IsOpen {p : α × E | p.2 ∈ A (f p.1) L r s}
𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : LocallyCompactSpace E F : Type u_3 inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F α : Type u_4 inst✝ : TopologicalSpace α f : α → E → F r s : ℝ hf : Continuous (Function.uncurry f) L : E →L[𝕜] F this : ProperSpace E a : α x : E r' : ℝ hr : ∀ (y : E), dist y (a, x).2 < r' → ∀ (z : E), dist z (a, x).2 < r' → ‖f (a, x).1 z - f (a, x).1 y - (L z - L y)‖ < s * r Irr' : r / 2 < r' Ir'r : r' ≤ r ha : Continuous (f a) t : ℝ hrt : r / 2 < t htr' : t < r' t' : ℝ hrt' : r / 2 < t' ht't : t' < t ⊢ Continuous fun p => ‖f a p.2 - f a p.1 - (L p.2 - L p.1)‖
fun_prop
no goals
e0d09b738019f2bb
mem_codiscreteWithin
Mathlib/Topology/DiscreteSubset.lean
lemma mem_codiscreteWithin {S T : Set X} : S ∈ codiscreteWithin T ↔ ∀ x ∈ T, Disjoint (𝓝[≠] x) (𝓟 (T \ S))
X : Type u_1 inst✝ : TopologicalSpace X S T : Set X ⊢ (∀ i ∈ T, ∃ u, IsOpen u ∧ i ∈ u ∧ ∀ (x : X), x ∈ u ∧ x ∈ T ∧ x ∉ {i} → x ∈ S) ↔ ∀ x ∈ T, ∃ u, IsOpen u ∧ x ∈ u ∧ ∀ (x_1 : X), x_1 ∈ u ∧ x_1 ∉ {x} → ¬(x_1 ∈ T ∧ x_1 ∉ S)
congr! 7 with x - u y
case a.h.h'.h.e'_2.h.h.e'_2.h.e'_2.h.a X : Type u_1 inst✝ : TopologicalSpace X S T : Set X x : X u : Set X y : X ⊢ y ∈ u ∧ y ∈ T ∧ y ∉ {x} → y ∈ S ↔ y ∈ u ∧ y ∉ {x} → ¬(y ∈ T ∧ y ∉ S)
4d99fdc431c6318a
MeasureTheory.extend_iUnion_le_tsum_nat
Mathlib/MeasureTheory/OuterMeasure/Induced.lean
theorem extend_iUnion_le_tsum_nat : ∀ s : ℕ → Set α, extend m (⋃ i, s i) ≤ ∑' i, extend m (s i)
α : Type u_1 inst✝ : MeasurableSpace α m : (s : Set α) → MeasurableSet s → ℝ≥0∞ m0 : m ∅ ⋯ = 0 mU : ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), MeasurableSet (f i)), Pairwise (Disjoint on f) → m (⋃ i, f i) ⋯ = ∑' (i : ℕ), m (f i) ⋯ f : ℕ → Set α h : ∀ (i : ℕ), MeasurableSet (f i) ⊢ m (⋃ i, f i) ⋯ ≤ ∑' (i : ℕ), m (f i) ⋯
simp (config := { singlePass := true }) only [iUnion_disjointed.symm]
α : Type u_1 inst✝ : MeasurableSpace α m : (s : Set α) → MeasurableSet s → ℝ≥0∞ m0 : m ∅ ⋯ = 0 mU : ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), MeasurableSet (f i)), Pairwise (Disjoint on f) → m (⋃ i, f i) ⋯ = ∑' (i : ℕ), m (f i) ⋯ f : ℕ → Set α h : ∀ (i : ℕ), MeasurableSet (f i) ⊢ m (⋃ i, disjointed f i) ⋯ ≤ ∑' (i : ℕ), m (f i) ⋯
8e7b78a07d78bb51
Subsemiring.coe_pow
Mathlib/Algebra/Ring/Subsemiring/Defs.lean
theorem coe_pow {R} [Semiring R] (s : Subsemiring R) (x : s) (n : ℕ) : ((x ^ n : s) : R) = (x : R) ^ n
R : Type u_1 inst✝ : Semiring R s : Subsemiring R x : ↥s n : ℕ ⊢ ↑(x ^ n) = ↑x ^ n
induction n with | zero => simp | succ n ih => simp [pow_succ, ih]
no goals
70e3ce2f427b52a7
MeasureTheory.Submartingale.zero_le_of_predictable
Mathlib/Probability/Martingale/Basic.lean
theorem Submartingale.zero_le_of_predictable [Preorder E] [SigmaFiniteFiltration μ 𝒢] {f : ℕ → Ω → E} (hfmgle : Submartingale f 𝒢 μ) (hfadp : Adapted 𝒢 fun n => f (n + 1)) (n : ℕ) : f 0 ≤ᵐ[μ] f n
case succ Ω : Type u_1 E : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E 𝒢 : Filtration ℕ m0 inst✝¹ : Preorder E inst✝ : SigmaFiniteFiltration μ 𝒢 f : ℕ → Ω → E hfmgle : Submartingale f 𝒢 μ hfadp : Adapted 𝒢 fun n => f (n + 1) k : ℕ ih : f 0 ≤ᶠ[ae μ] f k ⊢ f 0 ≤ᶠ[ae μ] f (k + 1)
exact ih.trans ((hfmgle.2.1 k (k + 1) k.le_succ).trans_eq <| Germ.coe_eq.mp <| congr_arg Germ.ofFun <| condExp_of_stronglyMeasurable (𝒢.le _) (hfadp _) <| hfmgle.integrable _)
no goals
cca69cb54a86659f