name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
Set.star_mem_centralizer'
Mathlib/Algebra/Star/Center.lean
theorem Set.star_mem_centralizer' (h : ∀ a : R, a ∈ s → star a ∈ s) (ha : a ∈ Set.centralizer s) : star a ∈ Set.centralizer s := fun y hy => by simpa using congr_arg star (ha _ (h _ hy)).symm
R : Type u_1 inst✝¹ : Mul R inst✝ : StarMul R a : R s : Set R h : ∀ a ∈ s, star a ∈ s ha : a ∈ s.centralizer y : R hy : y ∈ s ⊢ y * star a = star a * y
simpa using congr_arg star (ha _ (h _ hy)).symm
no goals
8edae8b21c24f8fa
Std.DHashMap.Raw.get!_insert
Mathlib/.lake/packages/lean4/src/lean/Std/Data/DHashMap/RawLemmas.lean
theorem get!_insert [LawfulBEq α] (h : m.WF) {k a : α} [Inhabited (β a)] {v : β k} : (m.insert k v).get! a = if h : k == a then cast (congrArg β (eq_of_beq h)) v else m.get! a
α : Type u β : α → Type v m : Raw α β inst✝³ : BEq α inst✝² : Hashable α inst✝¹ : LawfulBEq α h : m.WF k a : α inst✝ : Inhabited (β a) v : β k ⊢ (m.insert k v).get! a = if h : (k == a) = true then cast ⋯ v else m.get! a
simp_to_raw using Raw₀.get!_insert
no goals
3598cf39ad211877
List.getElem_succ_scanl
Mathlib/Data/List/Scan.lean
theorem getElem_succ_scanl {i : ℕ} (h : i + 1 < (scanl f b l).length) : (scanl f b l)[i + 1] = f ((scanl f b l)[i]'(Nat.lt_of_succ_lt h)) (l[i]'(Nat.lt_of_succ_lt_succ (h.trans_eq (length_scanl b l))))
case succ.nil α : Type u_1 β : Type u_2 f : β → α → β i : ℕ hi : ∀ {b : β} {l : List α} (h : i + 1 < (scanl f b l).length), (scanl f b l)[i + 1] = f (scanl f b l)[i] l[i] b : β h : i + 1 + 1 < (scanl f b []).length ⊢ (scanl f b [])[i + 1 + 1] = f (scanl f b [])[i + 1] [][i + 1]
simp only [scanl, length] at h
case succ.nil α : Type u_1 β : Type u_2 f : β → α → β i : ℕ hi : ∀ {b : β} {l : List α} (h : i + 1 < (scanl f b l).length), (scanl f b l)[i + 1] = f (scanl f b l)[i] l[i] b : β h : i + 1 + 1 < 0 + 1 ⊢ (scanl f b [])[i + 1 + 1] = f (scanl f b [])[i + 1] [][i + 1]
376c53f19ff35d3f
SimpleGraph.Colorable.chromaticNumber_le
Mathlib/Combinatorics/SimpleGraph/Coloring.lean
theorem Colorable.chromaticNumber_le {n : ℕ} (hc : G.Colorable n) : G.chromaticNumber ≤ n
V : Type u G : SimpleGraph V n : ℕ hc : G.Colorable n ⊢ n ∈ {n | G.Colorable n}
exact hc
no goals
041236dd6b2afd6d
iter_deriv_zpow'
Mathlib/Analysis/Calculus/Deriv/ZPow.lean
theorem iter_deriv_zpow' (m : ℤ) (k : ℕ) : (deriv^[k] fun x : 𝕜 => x ^ m) = fun x => (∏ i ∈ Finset.range k, ((m : 𝕜) - i)) * x ^ (m - k)
case zero 𝕜 : Type u inst✝ : NontriviallyNormedField 𝕜 m : ℤ ⊢ (deriv^[0] fun x => x ^ m) = fun x => (∏ i ∈ Finset.range 0, (↑m - ↑i)) * x ^ (m - ↑0)
simp only [one_mul, Int.ofNat_zero, id, sub_zero, Finset.prod_range_zero, Function.iterate_zero]
no goals
95c061e275d189c2
Monotone.countable_not_continuousWithinAt_Ioi
Mathlib/Topology/Order/LeftRightLim.lean
theorem countable_not_continuousWithinAt_Ioi [SecondCountableTopology β] : Set.Countable { x | ¬ContinuousWithinAt f (Ioi x) x }
case refine_2.intro.intro α : Type u_1 β : Type u_2 inst✝⁶ : LinearOrder α inst✝⁵ : ConditionallyCompleteLinearOrder β inst✝⁴ : TopologicalSpace β inst✝³ : OrderTopology β f : α → β hf : Monotone f inst✝² : TopologicalSpace α inst✝¹ : OrderTopology α inst✝ : SecondCountableTopology β x : α hx : ∀ (z : β), f x < z → ∃ y, x < y ∧ f y < z u : β hu : u > f x v : α xv : x < v fvu : f v < u ⊢ ∀ᶠ (b : α) in 𝓝[>] x, f b < u
have : Ioo x v ∈ 𝓝[>] x := Ioo_mem_nhdsGT xv
case refine_2.intro.intro α : Type u_1 β : Type u_2 inst✝⁶ : LinearOrder α inst✝⁵ : ConditionallyCompleteLinearOrder β inst✝⁴ : TopologicalSpace β inst✝³ : OrderTopology β f : α → β hf : Monotone f inst✝² : TopologicalSpace α inst✝¹ : OrderTopology α inst✝ : SecondCountableTopology β x : α hx : ∀ (z : β), f x < z → ∃ y, x < y ∧ f y < z u : β hu : u > f x v : α xv : x < v fvu : f v < u this : Ioo x v ∈ 𝓝[>] x ⊢ ∀ᶠ (b : α) in 𝓝[>] x, f b < u
2ac3359eebee2a2f
Orientation.oangle_eq_iff_eq_norm_div_norm_smul_rotation_of_ne_zero
Mathlib/Geometry/Euclidean/Angle/Oriented/Rotation.lean
theorem oangle_eq_iff_eq_norm_div_norm_smul_rotation_of_ne_zero {x y : V} (hx : x ≠ 0) (hy : y ≠ 0) (θ : Real.Angle) : o.oangle x y = θ ↔ y = (‖y‖ / ‖x‖) • o.rotation θ x
case mpr V : Type u_1 inst✝² : NormedAddCommGroup V inst✝¹ : InnerProductSpace ℝ V inst✝ : Fact (finrank ℝ V = 2) o : Orientation ℝ V (Fin 2) x y : V hx : x ≠ 0 hy : y ≠ 0 θ : Real.Angle hp : 0 < ‖y‖ / ‖x‖ hye : y = (‖y‖ / ‖x‖) • (o.rotation θ) x ⊢ o.oangle x y = θ
rw [hye, o.oangle_smul_right_of_pos _ _ hp, o.oangle_rotation_self_right hx]
no goals
005d5b02112f49d4
Submodule.map_mul
Mathlib/Algebra/Algebra/Operations.lean
theorem map_mul {A'} [Semiring A'] [Algebra R A'] (f : A →ₐ[R] A') : map f.toLinearMap (M * N) = map f.toLinearMap M * map f.toLinearMap N := calc map f.toLinearMap (M * N) = ⨆ i : M, (N.map (LinearMap.mul R A i)).map f.toLinearMap
case h R : Type u inst✝⁴ : CommSemiring R A : Type v inst✝³ : Semiring A inst✝² : Algebra R A M N : Submodule R A A' : Type u_1 inst✝¹ : Semiring A' inst✝ : Algebra R A' f : A →ₐ[R] A' S : Submodule R A' y : ↥M hy : (fun i => map f.toLinearMap (map ((LinearMap.mul R A) ↑i) N)) y = S ⊢ (fun s => map ((LinearMap.mul R A') ↑s) (map f.toLinearMap N)) ⟨f ↑y, ⋯⟩ = (fun i => map f.toLinearMap (map ((LinearMap.mul R A) ↑i) N)) y
ext
case h.h R : Type u inst✝⁴ : CommSemiring R A : Type v inst✝³ : Semiring A inst✝² : Algebra R A M N : Submodule R A A' : Type u_1 inst✝¹ : Semiring A' inst✝ : Algebra R A' f : A →ₐ[R] A' S : Submodule R A' y : ↥M hy : (fun i => map f.toLinearMap (map ((LinearMap.mul R A) ↑i) N)) y = S x✝ : A' ⊢ x✝ ∈ (fun s => map ((LinearMap.mul R A') ↑s) (map f.toLinearMap N)) ⟨f ↑y, ⋯⟩ ↔ x✝ ∈ (fun i => map f.toLinearMap (map ((LinearMap.mul R A) ↑i) N)) y
ba1dc7e92341582b
Polynomial.div_C_mul
Mathlib/Algebra/Polynomial/FieldDivision.lean
theorem div_C_mul : p / (C a * q) = C a⁻¹ * (p / q)
case neg R : Type u a : R inst✝ : Field R p q : R[X] ha : ¬a = 0 ⊢ C a⁻¹ * (C q.leadingCoeff⁻¹ * (p /ₘ (C a * (q * (C a⁻¹ * C q.leadingCoeff⁻¹))))) = C a⁻¹ * (C q.leadingCoeff⁻¹ * (p /ₘ (q * C q.leadingCoeff⁻¹)))
congr 3
case neg.e_a.e_a.e_q R : Type u a : R inst✝ : Field R p q : R[X] ha : ¬a = 0 ⊢ C a * (q * (C a⁻¹ * C q.leadingCoeff⁻¹)) = q * C q.leadingCoeff⁻¹
7bbaa64313a1e147
Continuous.strictMonoOn_of_inj_rigidity
Mathlib/Topology/Order/IntermediateValue.lean
theorem Continuous.strictMonoOn_of_inj_rigidity {f : α → δ} (hf_c : Continuous f) (hf_i : Injective f) {a b : α} (hab : a < b) (hf_mono : StrictMonoOn f (Icc a b)) : StrictMono f
α : Type u inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : DenselyOrdered α δ : Type u_1 inst✝² : LinearOrder δ inst✝¹ : TopologicalSpace δ inst✝ : OrderClosedTopology δ f : α → δ hf_c : Continuous f hf_i : Injective f a b : α hab : a < b hf_mono : StrictMonoOn f (Icc a b) x y : α hxy : x < y s : α := a ⊓ x t : α := b ⊔ y ⊢ f x < f y
have hsa : s ≤ a := min_le_left a x
α : Type u inst✝⁶ : ConditionallyCompleteLinearOrder α inst✝⁵ : TopologicalSpace α inst✝⁴ : OrderTopology α inst✝³ : DenselyOrdered α δ : Type u_1 inst✝² : LinearOrder δ inst✝¹ : TopologicalSpace δ inst✝ : OrderClosedTopology δ f : α → δ hf_c : Continuous f hf_i : Injective f a b : α hab : a < b hf_mono : StrictMonoOn f (Icc a b) x y : α hxy : x < y s : α := a ⊓ x t : α := b ⊔ y hsa : s ≤ a ⊢ f x < f y
3b8e874111e057b3
left_mem_openSegment_iff
Mathlib/Analysis/Convex/Segment.lean
theorem left_mem_openSegment_iff [DenselyOrdered 𝕜] [NoZeroSMulDivisors 𝕜 E] : x ∈ openSegment 𝕜 x y ↔ x = y
case mp 𝕜 : Type u_1 E : Type u_2 inst✝⁴ : LinearOrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E x y : E inst✝¹ : DenselyOrdered 𝕜 inst✝ : NoZeroSMulDivisors 𝕜 E ⊢ x ∈ openSegment 𝕜 x y → x = y
rintro ⟨a, b, _, hb, hab, hx⟩
case mp.intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 inst✝⁴ : LinearOrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E x y : E inst✝¹ : DenselyOrdered 𝕜 inst✝ : NoZeroSMulDivisors 𝕜 E a b : 𝕜 left✝ : 0 < a hb : 0 < b hab : a + b = 1 hx : a • x + b • y = x ⊢ x = y
f5008e74233a27c3
Ordinal.blsub_le_of_brange_subset
Mathlib/SetTheory/Ordinal/Arithmetic.lean
theorem blsub_le_of_brange_subset {o o'} {f : ∀ a < o, Ordinal} {g : ∀ a < o', Ordinal} (h : brange o f ⊆ brange o' g) : blsub.{u, max v w} o f ≤ blsub.{v, max u w} o' g := bsup_le_of_brange_subset.{u, v, w} fun a ⟨b, hb, hb'⟩ => by obtain ⟨c, hc, hc'⟩ := h ⟨b, hb, rfl⟩ simp_rw [← hc'] at hb' exact ⟨c, hc, hb'⟩
case intro.intro o : Ordinal.{u} o' : Ordinal.{v} f : (a : Ordinal.{u}) → a < o → Ordinal.{max (max u v) w} g : (a : Ordinal.{v}) → a < o' → Ordinal.{max (max u v) w} h : o.brange f ⊆ o'.brange g a : Ordinal.{max (max u v) w} x✝ : a ∈ o.brange fun a ha => succ (f a ha) b : Ordinal.{u} hb : b < o hb' : (fun a ha => succ (f a ha)) b hb = a c : Ordinal.{v} hc : c < o' hc' : g c hc = f b hb ⊢ a ∈ o'.brange fun a ha => succ (g a ha)
simp_rw [← hc'] at hb'
case intro.intro o : Ordinal.{u} o' : Ordinal.{v} f : (a : Ordinal.{u}) → a < o → Ordinal.{max (max u v) w} g : (a : Ordinal.{v}) → a < o' → Ordinal.{max (max u v) w} h : o.brange f ⊆ o'.brange g a : Ordinal.{max (max u v) w} x✝ : a ∈ o.brange fun a ha => succ (f a ha) b : Ordinal.{u} hb : b < o c : Ordinal.{v} hc : c < o' hc' : g c hc = f b hb hb' : succ (g c hc) = a ⊢ a ∈ o'.brange fun a ha => succ (g a ha)
4b7287eb9fb78e0a
BitVec.extractLsb_ofNat
Mathlib/.lake/packages/lean4/src/lean/Init/Data/BitVec/Lemmas.lean
theorem extractLsb_ofNat (x n : Nat) (hi lo : Nat) : extractLsb hi lo (BitVec.ofNat n x) = .ofNat (hi - lo + 1) ((x % 2^n) >>> lo)
x n hi lo : Nat ⊢ extractLsb hi lo (BitVec.ofNat n x) = BitVec.ofNat (hi - lo + 1) ((x % 2 ^ n) >>> lo)
ext i
case pred x n hi lo i : Nat a✝ : i < hi - lo + 1 ⊢ (extractLsb hi lo (BitVec.ofNat n x)).getLsbD i = (BitVec.ofNat (hi - lo + 1) ((x % 2 ^ n) >>> lo)).getLsbD i
5af7ac0f3c16929a
FirstOrder.Language.distinctConstantsTheory_eq_iUnion
Mathlib/ModelTheory/Syntax.lean
theorem distinctConstantsTheory_eq_iUnion (s : Set α) : L.distinctConstantsTheory s = ⋃ t : Finset s, L.distinctConstantsTheory (t.map (Function.Embedding.subtype fun x => x ∈ s))
case h.mk.refine_3 L : Language α : Type u' s : Set α i j : α ⊢ (∃ i_1, (∃ (x : i ∈ s), ⟨i, ⋯⟩ ∈ i_1) ∧ ∃ (x : j ∈ s), ⟨j, ⋯⟩ ∈ i_1) → i ∈ s ∧ j ∈ s
rintro ⟨t, ⟨is, _⟩, ⟨js, _⟩⟩
case h.mk.refine_3.intro.intro.intro.intro L : Language α : Type u' s : Set α i j : α t : Finset ↑s is : i ∈ s h✝¹ : ⟨i, ⋯⟩ ∈ t js : j ∈ s h✝ : ⟨j, ⋯⟩ ∈ t ⊢ i ∈ s ∧ j ∈ s
15983f098b5f3c8e
tendsto_tsum_div_pow_atTop_integral
Mathlib/Analysis/BoxIntegral/UnitPartition.lean
theorem _root_.tendsto_tsum_div_pow_atTop_integral (hF : Continuous F) (hs₁ : IsBounded s) (hs₂ : MeasurableSet s) (hs₃ : volume (frontier s) = 0) : Tendsto (fun n : ℕ ↦ (∑' x : ↑(s ∩ (n : ℝ)⁻¹ • L), F x) / n ^ card ι) atTop (nhds (∫ x in s, F x))
case pos ι : Type u_1 inst✝ : Fintype ι s : Set (ι → ℝ) F : (ι → ℝ) → ℝ hF : Continuous F hs₁ : Bornology.IsBounded s hs₂ : MeasurableSet s hs₃ : volume (frontier s) = 0 B : Box ι hB : hasIntegralVertices B hs₀ : s ≤ ↑B ε : ℝ hε : ε > 0 C₀ : ℝ h₀ : ∀ x ∈ Box.Icc B, ‖F x‖ ≤ C₀ x : ι → ℝ hx : x ∈ Box.Icc B hs : x ∈ s ⊢ ‖F x‖ ≤ 0 ⊔ C₀
exact le_max_of_le_right (h₀ x hx)
no goals
e99fafdae745475e
NNRat.addSubmonoid_closure_range_pow
Mathlib/Data/Rat/Star.lean
@[simp] lemma addSubmonoid_closure_range_pow {n : ℕ} (hn₀ : n ≠ 0) : closure (range fun x : ℚ≥0 ↦ x ^ n) = ⊤
n : ℕ hn₀ : n ≠ 0 x : ℚ≥0 this : x = (x.num * x.den ^ (n - 1)) • (↑x.den)⁻¹ ^ n ⊢ x ∈ closure (range fun x => x ^ n)
rw [this]
n : ℕ hn₀ : n ≠ 0 x : ℚ≥0 this : x = (x.num * x.den ^ (n - 1)) • (↑x.den)⁻¹ ^ n ⊢ (x.num * x.den ^ (n - 1)) • (↑x.den)⁻¹ ^ n ∈ closure (range fun x => x ^ n)
7fc9ce8a3377d839
Nat.prime_def
Mathlib/Data/Nat/Prime/Defs.lean
theorem prime_def {p : ℕ} : Prime p ↔ 2 ≤ p ∧ ∀ m, m ∣ p → m = 1 ∨ m = p
p : ℕ h : 2 ≤ p ∧ ∀ (m : ℕ), m ∣ p → m = 1 ∨ m = p h1 : 1 < p a b : ℕ hab : p = a * b ⊢ a = p → b = 1
rintro rfl
a b : ℕ h : 2 ≤ a ∧ ∀ (m : ℕ), m ∣ a → m = 1 ∨ m = a h1 : 1 < a hab : a = a * b ⊢ b = 1
2723fa131234f025
jacobiTheta₂_add_left'
Mathlib/NumberTheory/ModularForms/JacobiTheta/TwoVariable.lean
/-- The two-variable Jacobi theta function is quasi-periodic in `z` with period `τ`. -/ lemma jacobiTheta₂_add_left' (z τ : ℂ) : jacobiTheta₂ (z + τ) τ = cexp (-π * I * (τ + 2 * z)) * jacobiTheta₂ z τ
z τ : ℂ ⊢ jacobiTheta₂ (z + τ) τ = ∑' (c : ℤ), cexp (-↑π * I * (τ + 2 * z)) * jacobiTheta₂_term ((Equiv.addRight 1) c) z τ
refine tsum_congr (fun n ↦ ?_)
z τ : ℂ n : ℤ ⊢ jacobiTheta₂_term n (z + τ) τ = cexp (-↑π * I * (τ + 2 * z)) * jacobiTheta₂_term ((Equiv.addRight 1) n) z τ
87d6327b328d6fd4
CategoryTheory.Arrow.finite_iff
Mathlib/CategoryTheory/Comma/CardinalArrow.lean
lemma Arrow.finite_iff (C : Type u) [SmallCategory C] : Finite (Arrow C) ↔ Nonempty (FinCategory C)
case mpr C : Type u inst✝ : SmallCategory C ⊢ Nonempty (FinCategory C) → Finite (Arrow C)
rintro ⟨_⟩
case mpr.intro C : Type u inst✝ : SmallCategory C val✝ : FinCategory C ⊢ Finite (Arrow C)
98b324129af2b9de
DoubleQuot.quotQuotEquivQuotOfLE_comp_quotQuotMk
Mathlib/RingTheory/Ideal/Quotient/Operations.lean
theorem quotQuotEquivQuotOfLE_comp_quotQuotMk (h : I ≤ J) : RingHom.comp (↑(quotQuotEquivQuotOfLE h)) (quotQuotMk I J) = (Ideal.Quotient.mk J)
case a R : Type u inst✝ : CommRing R I J : Ideal R h : I ≤ J x✝ : R ⊢ ((↑(quotQuotEquivQuotOfLE h)).comp (quotQuotMk I J)) x✝ = (Ideal.Quotient.mk J) x✝
rfl
no goals
d5928e7fe0ad4fb1
IsPrimePow.deficient
Mathlib/NumberTheory/FactorisationProperties.lean
theorem _root_.IsPrimePow.deficient (h : IsPrimePow n) : Deficient n
n : ℕ h : IsPrimePow n ⊢ n.Deficient
obtain ⟨p, k, hp, -, rfl⟩ := h
case intro.intro.intro.intro p k : ℕ hp : _root_.Prime p ⊢ (p ^ k).Deficient
1836780b272ad835
MeasureTheory.lmarginal_union
Mathlib/MeasureTheory/Integral/Marginal.lean
theorem lmarginal_union (f : (∀ i, π i) → ℝ≥0∞) (hf : Measurable f) (hst : Disjoint s t) : ∫⋯∫⁻_s ∪ t, f ∂μ = ∫⋯∫⁻_s, ∫⋯∫⁻_t, f ∂μ ∂μ
case hf.h δ : Type u_1 π : δ → Type u_3 inst✝² : (x : δ) → MeasurableSpace (π x) μ : (i : δ) → Measure (π i) inst✝¹ : DecidableEq δ s t : Finset δ inst✝ : ∀ (i : δ), SigmaFinite (μ i) f : ((i : δ) → π i) → ℝ≥0∞ hf : Measurable f hst : Disjoint s t x : (i : δ) → π i e : ((i : { x // x ∈ s }) → π ↑i) × ((i : { x // x ∈ t }) → π ↑i) ≃ᵐ ((i : { x // x ∈ s ∪ t }) → π ↑i) := MeasurableEquiv.piFinsetUnion π hst ⊢ Measurable fun z => f (updateFinset x (s ∪ t) ((MeasurableEquiv.piFinsetUnion π hst) z))
exact hf.comp <| measurable_updateFinset.comp e.measurable
no goals
10d2bec50feaf499
HallMarriageTheorem.hall_hard_inductive
Mathlib/Combinatorics/Hall/Finite.lean
theorem hall_hard_inductive (ht : ∀ s : Finset ι, #s ≤ #(s.biUnion t)) : ∃ f : ι → α, Function.Injective f ∧ ∀ x, f x ∈ t x
case intro.ind α : Type v inst✝¹ : DecidableEq α n : ℕ ih : ∀ m < n, ∀ {ι : Type u} {t : ι → Finset α} [inst : Finite ι], (∀ (s : Finset ι), #s ≤ #(s.biUnion t)) → ∀ (val : Fintype ι), Fintype.card ι = m → ∃ f, Function.Injective f ∧ ∀ (x : ι), f x ∈ t x ι : Type u t : ι → Finset α inst✝ : Finite ι ht : ∀ (s : Finset ι), #s ≤ #(s.biUnion t) val✝ : Fintype ι hn : Fintype.card ι = n ⊢ ∃ f, Function.Injective f ∧ ∀ (x : ι), f x ∈ t x
rcases n with (_ | n)
case intro.ind.zero α : Type v inst✝¹ : DecidableEq α ι : Type u t : ι → Finset α inst✝ : Finite ι ht : ∀ (s : Finset ι), #s ≤ #(s.biUnion t) val✝ : Fintype ι ih : ∀ m < 0, ∀ {ι : Type u} {t : ι → Finset α} [inst : Finite ι], (∀ (s : Finset ι), #s ≤ #(s.biUnion t)) → ∀ (val : Fintype ι), Fintype.card ι = m → ∃ f, Function.Injective f ∧ ∀ (x : ι), f x ∈ t x hn : Fintype.card ι = 0 ⊢ ∃ f, Function.Injective f ∧ ∀ (x : ι), f x ∈ t x case intro.ind.succ α : Type v inst✝¹ : DecidableEq α ι : Type u t : ι → Finset α inst✝ : Finite ι ht : ∀ (s : Finset ι), #s ≤ #(s.biUnion t) val✝ : Fintype ι n : ℕ ih : ∀ m < n + 1, ∀ {ι : Type u} {t : ι → Finset α} [inst : Finite ι], (∀ (s : Finset ι), #s ≤ #(s.biUnion t)) → ∀ (val : Fintype ι), Fintype.card ι = m → ∃ f, Function.Injective f ∧ ∀ (x : ι), f x ∈ t x hn : Fintype.card ι = n + 1 ⊢ ∃ f, Function.Injective f ∧ ∀ (x : ι), f x ∈ t x
3e81b0be12d2d845
ProbabilityTheory.sum_meas_smul_cond_fiber
Mathlib/Probability/ConditionalProbability.lean
/-- The **law of total probability** for a random variable taking finitely many values: a measure `μ` can be expressed as a linear combination of its conditional measures `μ[|X ← x]` on fibers of a random variable `X` valued in a fintype. -/ lemma sum_meas_smul_cond_fiber {X : Ω → α} (hX : Measurable X) (μ : Measure Ω) [IsFiniteMeasure μ] : ∑ x, μ (X ⁻¹' {x}) • μ[|X ← x] = μ
Ω : Type u_1 α : Type u_3 m : MeasurableSpace Ω inst✝³ : Fintype α inst✝² : MeasurableSpace α inst✝¹ : DiscreteMeasurableSpace α X : Ω → α hX : Measurable X μ : Measure Ω inst✝ : IsFiniteMeasure μ E : Set Ω hE : MeasurableSet E ⊢ ⋃ x ∈ Finset.univ, X ⁻¹' {x} ∩ E = E
ext
case h Ω : Type u_1 α : Type u_3 m : MeasurableSpace Ω inst✝³ : Fintype α inst✝² : MeasurableSpace α inst✝¹ : DiscreteMeasurableSpace α X : Ω → α hX : Measurable X μ : Measure Ω inst✝ : IsFiniteMeasure μ E : Set Ω hE : MeasurableSet E x✝ : Ω ⊢ x✝ ∈ ⋃ x ∈ Finset.univ, X ⁻¹' {x} ∩ E ↔ x✝ ∈ E
184ad315f536fdf8
CategoryTheory.GrothendieckTopology.plusMap_toPlus
Mathlib/CategoryTheory/Sites/Plus.lean
theorem plusMap_toPlus : J.plusMap (J.toPlus P) = J.toPlus (J.plusObj P)
case w.h.e_a C : Type u inst✝³ : Category.{v, u} C J : GrothendieckTopology C D : Type w inst✝² : Category.{max v u, w} D inst✝¹ : ∀ (P : Cᵒᵖ ⥤ D) (X : C) (S : J.Cover X), HasMultiequalizer (S.index P) P : Cᵒᵖ ⥤ D inst✝ : ∀ (X : C), HasColimitsOfShape (J.Cover X)ᵒᵖ D X : Cᵒᵖ S : (J.Cover (unop X))ᵒᵖ e : unop S ⟶ ⊤ := homOfLE ⋯ I : (unop S).shape.L ⊢ Multiequalizer.ι ((unop S).index P) I ≫ ⊤.toMultiequalizer P ≫ colimit.ι (J.diagram P I.Y) (op ⊤) = colimit.ι (J.diagram P (unop X)) S ≫ (J.plusObj P).map (Cover.Arrow.map I e.op.unop).f.op
let ee : (J.pullback (I.map e).f).obj S.unop ⟶ ⊤ := homOfLE (OrderTop.le_top _)
case w.h.e_a C : Type u inst✝³ : Category.{v, u} C J : GrothendieckTopology C D : Type w inst✝² : Category.{max v u, w} D inst✝¹ : ∀ (P : Cᵒᵖ ⥤ D) (X : C) (S : J.Cover X), HasMultiequalizer (S.index P) P : Cᵒᵖ ⥤ D inst✝ : ∀ (X : C), HasColimitsOfShape (J.Cover X)ᵒᵖ D X : Cᵒᵖ S : (J.Cover (unop X))ᵒᵖ e : unop S ⟶ ⊤ := homOfLE ⋯ I : (unop S).shape.L ee : (J.pullback (Cover.Arrow.map I e).f).obj (unop S) ⟶ ⊤ := homOfLE ⋯ ⊢ Multiequalizer.ι ((unop S).index P) I ≫ ⊤.toMultiequalizer P ≫ colimit.ι (J.diagram P I.Y) (op ⊤) = colimit.ι (J.diagram P (unop X)) S ≫ (J.plusObj P).map (Cover.Arrow.map I e.op.unop).f.op
d8ce6a7c6fc86c9e
Matroid.sigma_isBasis_iff
Mathlib/Data/Matroid/Sum.lean
@[simp] lemma sigma_isBasis_iff {I X} : (Matroid.sigma M).IsBasis I X ↔ ∀ i, (M i).IsBasis (Sigma.mk i ⁻¹' I) (Sigma.mk i ⁻¹' X)
ι : Type u_1 α : ι → Type u_2 M : (i : ι) → Matroid (α i) I X : Set ((i : ι) × α i) ⊢ (Matroid.sigma M).IsBasis I X ↔ ∀ (i : ι), (M i).IsBasis (Sigma.mk i ⁻¹' I) (Sigma.mk i ⁻¹' X)
simp only [IsBasis, sigma_indep_iff, maximal_subset_iff, and_imp, and_assoc, sigma_ground_eq, forall_and, and_congr_right_iff]
ι : Type u_1 α : ι → Type u_2 M : (i : ι) → Matroid (α i) I X : Set ((i : ι) × α i) ⊢ (∀ (i : ι), (M i).Indep (Sigma.mk i ⁻¹' I)) → ((I ⊆ X ∧ (∀ ⦃t : Set ((i : ι) × α i)⦄, (∀ (i : ι), (M i).Indep (Sigma.mk i ⁻¹' t)) → t ⊆ X → I ⊆ t → I = t) ∧ X ⊆ univ.sigma fun i => (M i).E) ↔ (∀ (x : ι), Sigma.mk x ⁻¹' I ⊆ Sigma.mk x ⁻¹' X) ∧ (∀ (x : ι) ⦃t : Set (α x)⦄, (M x).Indep t → t ⊆ Sigma.mk x ⁻¹' X → Sigma.mk x ⁻¹' I ⊆ t → Sigma.mk x ⁻¹' I = t) ∧ ∀ (x : ι), Sigma.mk x ⁻¹' X ⊆ (M x).E)
4e0fd1a0ca8bdf65
Trivialization.nhds_eq_inf_comap
Mathlib/Topology/FiberBundle/Trivialization.lean
theorem nhds_eq_inf_comap {z : Z} (hz : z ∈ e.source) : 𝓝 z = comap proj (𝓝 (proj z)) ⊓ comap (Prod.snd ∘ e) (𝓝 (e z).2)
B : Type u_1 F : Type u_2 Z : Type u_4 inst✝² : TopologicalSpace B inst✝¹ : TopologicalSpace F proj : Z → B inst✝ : TopologicalSpace Z e : Trivialization F proj z : Z hz : z ∈ e.source ⊢ 𝓝 z = comap proj (𝓝 (proj z)) ⊓ comap (Prod.snd ∘ ↑e) (𝓝 (↑e z).2)
refine eq_of_forall_le_iff fun l ↦ ?_
B : Type u_1 F : Type u_2 Z : Type u_4 inst✝² : TopologicalSpace B inst✝¹ : TopologicalSpace F proj : Z → B inst✝ : TopologicalSpace Z e : Trivialization F proj z : Z hz : z ∈ e.source l : Filter Z ⊢ l ≤ 𝓝 z ↔ l ≤ comap proj (𝓝 (proj z)) ⊓ comap (Prod.snd ∘ ↑e) (𝓝 (↑e z).2)
51e3c253850563a3
ONote.repr_mul
Mathlib/SetTheory/Ordinal/Notation.lean
theorem repr_mul : ∀ (o₁ o₂) [NF o₁] [NF o₂], repr (o₁ * o₂) = repr o₁ * repr o₂ | 0, o, _, h₂ => by cases o <;> exact (zero_mul _).symm | oadd _ _ _, 0, _, _ => (mul_zero _).symm | oadd e₁ n₁ a₁, oadd e₂ n₂ a₂, h₁, h₂ => by have IH : repr (mul _ _) = _ := @repr_mul _ _ h₁ h₂.snd conv => lhs simp [(· * ·)] have ao : repr a₁ + ω ^ repr e₁ * (n₁ : ℕ) = ω ^ repr e₁ * (n₁ : ℕ)
e₁ : ONote n₁ : ℕ+ a₁ e₂ : ONote n₂ : ℕ+ a₂ : ONote h₁ : (e₁.oadd n₁ a₁).NF h₂ : (e₂.oadd n₂ a₂).NF IH : ((e₁.oadd n₁ a₁).mul a₂).repr = (e₁.oadd n₁ a₁).repr * a₂.repr ⊢ ω ^ e₁.repr ≤ ω ^ e₁.repr * ↑↑n₁
simpa using (Ordinal.mul_le_mul_iff_left <| opow_pos _ omega0_pos).2 (Nat.cast_le.2 n₁.2)
no goals
44048fbeadfd4e40
MvPolynomial.msymm_one
Mathlib/RingTheory/MvPolynomial/Symmetric/Defs.lean
theorem msymm_one : msymm σ R (.indiscrete 1) = ∑ i, X i
σ : Type u_5 R : Type u_6 inst✝² : CommSemiring R inst✝¹ : Fintype σ inst✝ : DecidableEq σ ⊢ (fun x => x ∈ Set.univ) = fun x => Nat.Partition.ofSym x = Nat.Partition.indiscrete 1
simp_rw [Set.mem_univ, Nat.Partition.ofSym_one]
no goals
d6c945688db88dc3
EMetric.diam_le_iff
Mathlib/Topology/EMetricSpace/Diam.lean
theorem diam_le_iff {d : ℝ≥0∞} : diam s ≤ d ↔ ∀ x ∈ s, ∀ y ∈ s, edist x y ≤ d
α : Type u_1 s : Set α inst✝ : PseudoEMetricSpace α d : ℝ≥0∞ ⊢ diam s ≤ d ↔ ∀ x ∈ s, ∀ y ∈ s, edist x y ≤ d
simp only [diam, iSup_le_iff]
no goals
00d705ef4bb2faab
LSeries_tendsto_sub_mul_nhds_one_of_tendsto_sum_div_aux₃
Mathlib/NumberTheory/LSeries/SumCoeff.lean
theorem LSeries_tendsto_sub_mul_nhds_one_of_tendsto_sum_div_aux₃ (hlim : Tendsto (fun n : ℕ ↦ (∑ k ∈ Icc 1 n, f k) / n) atTop (𝓝 l)) (hfS : ∀ s : ℝ, 1 < s → LSeriesSummable f s) {ε : ℝ} (hε : ε > 0) : ∃ C ≥ 0, (fun s : ℝ ↦ ‖(s - 1) * LSeries f s - s * l‖) ≤ᶠ[𝓝[>] 1] fun s ↦ (s - 1) * s * C + s * ε
case e_a.e_a f : ℕ → ℂ l : ℂ hlim : Tendsto (fun n => (∑ k ∈ Icc 1 n, f k) / ↑n) atTop (𝓝 l) hfS : ∀ (s : ℝ), 1 < s → LSeriesSummable f ↑s ε : ℝ hε : ε > 0 T : ℝ hT₁ : T ≥ 1 hT : ∀ (y : ℝ), T ≤ y → ‖∑ k ∈ Icc 1 ⌊y⌋₊, f k - l * ↑y‖ < ε * y S : ℝ → ℂ := fun t => ∑ k ∈ Icc 1 ⌊t⌋₊, f k C : ℝ := ∫ (t : ℝ) in Set.Ioc 1 T, ‖S t - l * ↑t‖ * t ^ (-1 - 1) hC : 0 ≤ C s : ℝ hs : 1 < s hs' : 0 ≤ (s - 1) * s h₀ : LocallyIntegrableOn (fun t => S t - l * ↑t) (Set.Ici 1) volume h₁ : IntegrableOn (fun t => ‖S t - l * ↑t‖ * t ^ (-s - 1)) (Set.Ici 1) volume h₂ : IntegrableOn (fun t => ‖S t - l * ↑t‖ * t ^ (-1 - 1)) (Set.Ioc 1 T) volume h₃ : (↑s - 1) * ∫ (t : ℝ) in Set.Ioi 1, ↑t ^ (-↑s) = 1 Cs : ℝ := ∫ (t : ℝ) in Set.Ioc 1 T, ‖S t - l * ↑t‖ * t ^ (-s - 1) h₄ : Cs ≤ C t : ℝ ht : ↑t ≠ 0 ⊢ S t * ↑t ^ (-↑s - 1) - l * ↑t ^ (-↑s) = (S t - l * ↑t) * ↑t ^ (-↑s - 1)
rw [sub_mul, cpow_sub _ _ ht, cpow_one, mul_assoc, mul_div_cancel₀ _ ht]
no goals
bea02eb3aab4bafa
List.sorted_merge
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Sort/Lemmas.lean
theorem sorted_merge (trans : ∀ (a b c : α), le a b → le b c → le a c) (total : ∀ (a b : α), le a b || le b a) (l₁ l₂ : List α) (h₁ : l₁.Pairwise le) (h₂ : l₂.Pairwise le) : (merge l₁ l₂ le).Pairwise le
case cons.cons.isTrue.a α : Type u_1 le : α → α → Bool trans : ∀ (a b c : α), le a b = true → le b c = true → le a c = true total : ∀ (a b : α), (le a b || le b a) = true x : α l₁ : List α ih₁ : ∀ (l₂ : List α), Pairwise (fun a b => le a b = true) l₁ → Pairwise (fun a b => le a b = true) l₂ → Pairwise (fun a b => le a b = true) (l₁.merge l₂ le) h₁ : Pairwise (fun a b => le a b = true) (x :: l₁) y : α l₂ : List α ih₂ : Pairwise (fun a b => le a b = true) l₂ → Pairwise (fun a b => le a b = true) ((x :: l₁).merge l₂ le) h₂ : Pairwise (fun a b => le a b = true) (y :: l₂) h : le x y = true z : α m : z ∈ l₁.merge (y :: l₂) le ⊢ le x z = true
rw [mem_merge, mem_cons] at m
case cons.cons.isTrue.a α : Type u_1 le : α → α → Bool trans : ∀ (a b c : α), le a b = true → le b c = true → le a c = true total : ∀ (a b : α), (le a b || le b a) = true x : α l₁ : List α ih₁ : ∀ (l₂ : List α), Pairwise (fun a b => le a b = true) l₁ → Pairwise (fun a b => le a b = true) l₂ → Pairwise (fun a b => le a b = true) (l₁.merge l₂ le) h₁ : Pairwise (fun a b => le a b = true) (x :: l₁) y : α l₂ : List α ih₂ : Pairwise (fun a b => le a b = true) l₂ → Pairwise (fun a b => le a b = true) ((x :: l₁).merge l₂ le) h₂ : Pairwise (fun a b => le a b = true) (y :: l₂) h : le x y = true z : α m : z ∈ l₁ ∨ z = y ∨ z ∈ l₂ ⊢ le x z = true
8efa7192a6a8e376
MeasureTheory.OuterMeasure.mkMetric_mono_smul
Mathlib/MeasureTheory/Measure/Hausdorff.lean
theorem mkMetric_mono_smul {m₁ m₂ : ℝ≥0∞ → ℝ≥0∞} {c : ℝ≥0∞} (hc : c ≠ ∞) (h0 : c ≠ 0) (hle : m₁ ≤ᶠ[𝓝[≥] 0] c • m₂) : (mkMetric m₁ : OuterMeasure X) ≤ c • mkMetric m₂
case intro.intro X : Type u_2 inst✝ : EMetricSpace X m₁ m₂ : ℝ≥0∞ → ℝ≥0∞ c : ℝ≥0∞ hc : c ≠ ⊤ h0 : c ≠ 0 hle : m₁ ≤ᶠ[𝓝[≥] 0] c • m₂ r : ℝ≥0∞ hr0 : r ∈ Ioi 0 hr : Ico 0 r ⊆ {x | (fun x => m₁ x ≤ (c • m₂) x) x} s : Set X r' : ℝ≥0∞ hr' : r' ∈ Ioo 0 r ⊢ r' ∈ {x | (fun x => (fun r => (mkMetric'.pre (fun s => m₁ (diam s)) r) s) x ≤ (fun b => c * (mkMetric'.pre (fun s => m₂ (diam s)) b) s) x) x}
simp only [mem_setOf_eq, mkMetric'.pre, RingHom.id_apply]
case intro.intro X : Type u_2 inst✝ : EMetricSpace X m₁ m₂ : ℝ≥0∞ → ℝ≥0∞ c : ℝ≥0∞ hc : c ≠ ⊤ h0 : c ≠ 0 hle : m₁ ≤ᶠ[𝓝[≥] 0] c • m₂ r : ℝ≥0∞ hr0 : r ∈ Ioi 0 hr : Ico 0 r ⊆ {x | (fun x => m₁ x ≤ (c • m₂) x) x} s : Set X r' : ℝ≥0∞ hr' : r' ∈ Ioo 0 r ⊢ (boundedBy (extend fun s x => m₁ (diam s))) s ≤ c * (boundedBy (extend fun s x => m₂ (diam s))) s
ad17ed8b50787b10
hasDerivAt_integral_of_dominated_loc_of_lip
Mathlib/Analysis/Calculus/ParametricIntegral.lean
theorem hasDerivAt_integral_of_dominated_loc_of_lip {F' : α → E} (ε_pos : 0 < ε) (hF_meas : ∀ᶠ x in 𝓝 x₀, AEStronglyMeasurable (F x) μ) (hF_int : Integrable (F x₀) μ) (hF'_meas : AEStronglyMeasurable F' μ) (h_lipsch : ∀ᵐ a ∂μ, LipschitzOnWith (Real.nnabs <| bound a) (F · a) (ball x₀ ε)) (bound_integrable : Integrable (bound : α → ℝ) μ) (h_diff : ∀ᵐ a ∂μ, HasDerivAt (F · a) (F' a) x₀) : Integrable F' μ ∧ HasDerivAt (fun x ↦ ∫ a, F x a ∂μ) (∫ a, F' a ∂μ) x₀
α : Type u_1 inst✝⁴ : MeasurableSpace α μ : Measure α 𝕜 : Type u_2 inst✝³ : RCLike 𝕜 E : Type u_3 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : NormedSpace 𝕜 E bound : α → ℝ ε : ℝ F : 𝕜 → α → E x₀ : 𝕜 F' : α → E ε_pos : 0 < ε hF_meas : ∀ᶠ (x : 𝕜) in 𝓝 x₀, AEStronglyMeasurable (F x) μ hF_int : Integrable (F x₀) μ hF'_meas : AEStronglyMeasurable F' μ h_lipsch : ∀ᵐ (a : α) ∂μ, LipschitzOnWith (Real.nnabs (bound a)) (fun x => F x a) (ball x₀ ε) bound_integrable : Integrable bound μ L : E →L[𝕜] 𝕜 →L[𝕜] E := (ContinuousLinearMap.smulRightL 𝕜 𝕜 E) 1 h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (L (F' a)) x₀ ⊢ Integrable F' μ ∧ HasDerivAt (fun x => ∫ (a : α), F x a ∂μ) (∫ (a : α), F' a ∂μ) x₀
have hm : AEStronglyMeasurable (L ∘ F') μ := L.continuous.comp_aestronglyMeasurable hF'_meas
α : Type u_1 inst✝⁴ : MeasurableSpace α μ : Measure α 𝕜 : Type u_2 inst✝³ : RCLike 𝕜 E : Type u_3 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : NormedSpace 𝕜 E bound : α → ℝ ε : ℝ F : 𝕜 → α → E x₀ : 𝕜 F' : α → E ε_pos : 0 < ε hF_meas : ∀ᶠ (x : 𝕜) in 𝓝 x₀, AEStronglyMeasurable (F x) μ hF_int : Integrable (F x₀) μ hF'_meas : AEStronglyMeasurable F' μ h_lipsch : ∀ᵐ (a : α) ∂μ, LipschitzOnWith (Real.nnabs (bound a)) (fun x => F x a) (ball x₀ ε) bound_integrable : Integrable bound μ L : E →L[𝕜] 𝕜 →L[𝕜] E := (ContinuousLinearMap.smulRightL 𝕜 𝕜 E) 1 h_diff : ∀ᵐ (a : α) ∂μ, HasFDerivAt (fun x => F x a) (L (F' a)) x₀ hm : AEStronglyMeasurable (⇑L ∘ F') μ ⊢ Integrable F' μ ∧ HasDerivAt (fun x => ∫ (a : α), F x a ∂μ) (∫ (a : α), F' a ∂μ) x₀
40a70440e6bc4172
exteriorPower.pairingDual_apply_apply_eq_one_zero
Mathlib/LinearAlgebra/ExteriorPower/Pairing.lean
lemma pairingDual_apply_apply_eq_one_zero (a b : Fin n ↪o ι) (h : a ≠ b) : pairingDual R M n (ιMulti _ _ (f ∘ a)) (ιMulti _ _ (x ∘ b)) = 0
R : Type u_1 M : Type u_2 inst✝³ : CommRing R inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type u_3 inst✝ : LinearOrder ι x : ι → M f : ι → Module.Dual R M h₀ : ∀ ⦃i j : ι⦄, i ≠ j → (f i) (x j) = 0 n : ℕ a b : Fin n ↪o ι h : a ≠ b σ : Equiv.Perm (Fin n) x✝ : σ ∈ Finset.univ h' : ¬∏ x_1 : Fin n, (f (a x_1)) (x (b (σ x_1))) = 0 this : ⇑a = ⇑b ∘ ⇑σ ⊢ a = b
have hσ : Monotone σ := fun i j hij ↦ by have h'' := congr_fun this dsimp at h'' rw [← a.map_rel_iff] at hij simpa only [← b.map_rel_iff, ← h'']
R : Type u_1 M : Type u_2 inst✝³ : CommRing R inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type u_3 inst✝ : LinearOrder ι x : ι → M f : ι → Module.Dual R M h₀ : ∀ ⦃i j : ι⦄, i ≠ j → (f i) (x j) = 0 n : ℕ a b : Fin n ↪o ι h : a ≠ b σ : Equiv.Perm (Fin n) x✝ : σ ∈ Finset.univ h' : ¬∏ x_1 : Fin n, (f (a x_1)) (x (b (σ x_1))) = 0 this : ⇑a = ⇑b ∘ ⇑σ hσ : Monotone ⇑σ ⊢ a = b
fd3ea1bd40177425
Subspace.dualAnnihilator_inf_eq
Mathlib/LinearAlgebra/Dual.lean
theorem dualAnnihilator_inf_eq (W W' : Subspace K V₁) : (W ⊓ W').dualAnnihilator = W.dualAnnihilator ⊔ W'.dualAnnihilator
K : Type uK inst✝² : Field K V₁ : Type uV₁ inst✝¹ : AddCommGroup V₁ inst✝ : Module K V₁ W W' : Subspace K V₁ ⊢ dualAnnihilator (W ⊓ W') = dualAnnihilator W ⊔ dualAnnihilator W'
refine le_antisymm ?_ (sup_dualAnnihilator_le_inf W W')
K : Type uK inst✝² : Field K V₁ : Type uV₁ inst✝¹ : AddCommGroup V₁ inst✝ : Module K V₁ W W' : Subspace K V₁ ⊢ dualAnnihilator (W ⊓ W') ≤ dualAnnihilator W ⊔ dualAnnihilator W'
3e94dfba4a8edec6
String.utf8GetAux_add_right_cancel
Mathlib/.lake/packages/batteries/Batteries/Data/String/Lemmas.lean
theorem utf8GetAux_add_right_cancel (s : List Char) (i p n : Nat) : utf8GetAux s ⟨i + n⟩ ⟨p + n⟩ = utf8GetAux s ⟨i⟩ ⟨p⟩
case ind s : List Char i✝ p n : Nat c : Char cs : List Char i : Nat ih : utf8GetAux cs { byteIdx := { byteIdx := i }.byteIdx + c.utf8Size + n } { byteIdx := p + n } = utf8GetAux cs ({ byteIdx := i } + c) { byteIdx := p } h : ¬i = p ⊢ (if i + n = p + n then c else utf8GetAux cs { byteIdx := i + n + c.utf8Size } { byteIdx := p + n }) = if i = p then c else utf8GetAux cs { byteIdx := i + c.utf8Size } { byteIdx := p }
simp only [Nat.add_right_cancel_iff, h, ↓reduceIte]
case ind s : List Char i✝ p n : Nat c : Char cs : List Char i : Nat ih : utf8GetAux cs { byteIdx := { byteIdx := i }.byteIdx + c.utf8Size + n } { byteIdx := p + n } = utf8GetAux cs ({ byteIdx := i } + c) { byteIdx := p } h : ¬i = p ⊢ utf8GetAux cs { byteIdx := i + n + c.utf8Size } { byteIdx := p + n } = utf8GetAux cs { byteIdx := i + c.utf8Size } { byteIdx := p }
b5412c14c2cf0dbc
MixedCharZero.reduce_to_maximal_ideal
Mathlib/Algebra/CharP/MixedCharZero.lean
theorem reduce_to_maximal_ideal {p : ℕ} (hp : Nat.Prime p) : (∃ I : Ideal R, I ≠ ⊤ ∧ CharP (R ⧸ I) p) ↔ ∃ I : Ideal R, I.IsMaximal ∧ CharP (R ⧸ I) p
R : Type u_1 inst✝ : CommRing R p : ℕ hp : Nat.Prime p I : Ideal R hI_not_top : I ≠ ⊤ right✝ : CharP (R ⧸ I) p M : Ideal R hM_max : M.IsMaximal hM_ge : I ≤ M r : ℕ hr : CharP (R ⧸ M) r ⊢ ↑p = 0
convert congr_arg (Ideal.Quotient.factor hM_ge) (CharP.cast_eq_zero (R ⧸ I) p)
no goals
69a224ad99562067
IsCyclotomicExtension.finite
Mathlib/NumberTheory/Cyclotomic/Basic.lean
theorem finite [IsDomain B] [h₁ : Finite S] [h₂ : IsCyclotomicExtension S A B] : Module.Finite A B
S✝ : Set ℕ+ n : ℕ+ S : Set ℕ+ a✝ : n ∉ S hs✝ : S.Finite H : ∀ (A : Type u) (B : Type v) [inst : CommRing A] [inst_1 : CommRing B] [inst_2 : Algebra A B] [inst_3 : IsDomain B] [h₂ : IsCyclotomicExtension S A B], Module.Finite A B A : Type u B : Type v inst✝³ : CommRing A inst✝² : CommRing B inst✝¹ : Algebra A B inst✝ : IsDomain B h₂ : IsCyclotomicExtension (S ∪ {n}) A B this✝ : IsCyclotomicExtension S A ↥(adjoin A {b | ∃ n ∈ S, b ^ ↑n = 1}) this : Module.Finite A ↥(adjoin A {b | ∃ n ∈ S, b ^ ↑n = 1}) x✝ : IsCyclotomicExtension {n} (↥(adjoin A {b | ∃ a ∈ S, b ^ ↑a = 1})) B := union_right S {n} A B ⊢ Module.Finite (↥(adjoin A {b | ∃ n ∈ S, b ^ ↑n = 1})) B
exact finite_of_singleton n _ _
no goals
0050e7a1aa9fbd3d
Fin.pred_succ
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Fin/Lemmas.lean
theorem pred_succ (i : Fin n) {h : i.succ ≠ 0} : i.succ.pred h = i
n : Nat i : Fin n h : i.succ ≠ 0 ⊢ i.succ.pred h = i
cases i
case mk n val✝ : Nat isLt✝ : val✝ < n h : ⟨val✝, isLt✝⟩.succ ≠ 0 ⊢ ⟨val✝, isLt✝⟩.succ.pred h = ⟨val✝, isLt✝⟩
8cf79eefd36c5991
Polynomial.hasseDeriv_comp
Mathlib/Algebra/Polynomial/HasseDeriv.lean
theorem hasseDeriv_comp (k l : ℕ) : (@hasseDeriv R _ k).comp (hasseDeriv l) = (k + l).choose k • hasseDeriv (k + l)
case neg.a R : Type u_1 inst✝ : Semiring R k l i : ℕ hikl : k + l ≤ i h1 : l ≤ i h2 : k ≤ i - l h3 : k ≤ k + l ⊢ ↑((i - l).choose k * i.choose l) = ↑((k + l).choose k * i.choose (k + l))
push_cast
case neg.a R : Type u_1 inst✝ : Semiring R k l i : ℕ hikl : k + l ≤ i h1 : l ≤ i h2 : k ≤ i - l h3 : k ≤ k + l ⊢ ↑((i - l).choose k) * ↑(i.choose l) = ↑((k + l).choose k) * ↑(i.choose (k + l))
bf976ccfa5367d28
intervalIntegral.integral_comp_sub_mul
Mathlib/MeasureTheory/Integral/IntervalIntegral.lean
theorem integral_comp_sub_mul (hc : c ≠ 0) (d) : (∫ x in a..b, f (d - c * x)) = c⁻¹ • ∫ x in d - c * b..d - c * a, f x
E : Type u_3 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E a b c : ℝ f : ℝ → E hc : c ≠ 0 d : ℝ ⊢ (-c)⁻¹ • -∫ (x : ℝ) in d + -c * b..d + -c * a, f x = c⁻¹ • ∫ (x : ℝ) in d + -c * b..d + -c * a, f x
simp only [inv_neg, smul_neg, neg_neg, neg_smul]
no goals
29471941aea59eaa
Multiset.toFinset_eq_singleton_iff
Mathlib/Algebra/Order/Group/Finset.lean
lemma toFinset_eq_singleton_iff (s : Multiset α) (a : α) : s.toFinset = {a} ↔ card s ≠ 0 ∧ s = card s • {a}
α : Type u_1 inst✝ : DecidableEq α s : Multiset α a : α ⊢ s.toFinset = {a} ↔ s.card ≠ 0 ∧ s = s.card • {a}
refine ⟨fun H ↦ ⟨fun h ↦ ?_, ext' fun x ↦ ?_⟩, fun H ↦ ?_⟩
case refine_1 α : Type u_1 inst✝ : DecidableEq α s : Multiset α a : α H : s.toFinset = {a} h : s.card = 0 ⊢ False case refine_2 α : Type u_1 inst✝ : DecidableEq α s : Multiset α a : α H : s.toFinset = {a} x : α ⊢ count x s = count x (s.card • {a}) case refine_3 α : Type u_1 inst✝ : DecidableEq α s : Multiset α a : α H : s.card ≠ 0 ∧ s = s.card • {a} ⊢ s.toFinset = {a}
22486ce822cb5377
PrincipalIdealRing.factors_spec
Mathlib/RingTheory/PrincipalIdealDomain.lean
theorem factors_spec (a : R) (h : a ≠ 0) : (∀ b ∈ factors a, Irreducible b) ∧ Associated (factors a).prod a
R : Type u inst✝² : CommRing R inst✝¹ : IsDomain R inst✝ : IsPrincipalIdealRing R a : R h : a ≠ 0 ⊢ (∀ b ∈ factors a, Irreducible b) ∧ Associated (factors a).prod a
unfold factors
R : Type u inst✝² : CommRing R inst✝¹ : IsDomain R inst✝ : IsPrincipalIdealRing R a : R h : a ≠ 0 ⊢ (∀ b ∈ if h : a = 0 then ∅ else Classical.choose ⋯, Irreducible b) ∧ Associated (if h : a = 0 then ∅ else Classical.choose ⋯).prod a
6d62ceca800ddf89
Derivation.leibniz_of_mul_eq_one
Mathlib/RingTheory/Derivation/Basic.lean
theorem leibniz_of_mul_eq_one {a b : A} (h : a * b = 1) : D a = -a ^ 2 • D b
R : Type u_1 inst✝⁵ : CommRing R A : Type u_2 inst✝⁴ : CommRing A inst✝³ : Algebra R A M : Type u_3 inst✝² : AddCommGroup M inst✝¹ : Module A M inst✝ : Module R M D : Derivation R A M a b : A h : a * b = 1 ⊢ D a + a ^ 2 • D b = a • b • D a + a • a • D b
simp only [smul_smul, h, one_smul, sq]
no goals
43a9916ed8bb80f0
Stream'.get_even
Mathlib/Data/Stream/Init.lean
theorem get_even : ∀ (n : ℕ) (s : Stream' α), get (even s) n = get s (2 * n) | 0, _ => rfl | succ n, s => by change get (even s) (succ n) = get s (succ (succ (2 * n))) rw [get_succ, get_succ, tail_even, get_even n]; rfl
α : Type u n : ℕ s : Stream' α ⊢ s.even.get n.succ = s.get (2 * n.succ)
change get (even s) (succ n) = get s (succ (succ (2 * n)))
α : Type u n : ℕ s : Stream' α ⊢ s.even.get n.succ = s.get (2 * n).succ.succ
fa65c1f32553eb1f
BoxIntegral.HasIntegral.of_bRiemann_eq_false_of_forall_isLittleO
Mathlib/Analysis/BoxIntegral/Basic.lean
theorem HasIntegral.of_bRiemann_eq_false_of_forall_isLittleO (hl : l.bRiemann = false) (B : ι →ᵇᵃ[I] ℝ) (hB0 : ∀ J, 0 ≤ B J) (g : ι →ᵇᵃ[I] F) (s : Set ℝⁿ) (hs : s.Countable) (hlH : s.Nonempty → l.bHenstock = true) (H₁ : ∀ (c : ℝ≥0), ∀ x ∈ Box.Icc I ∩ s, ∀ ε > (0 : ℝ), ∃ δ > 0, ∀ J ≤ I, Box.Icc J ⊆ Metric.closedBall x δ → x ∈ Box.Icc J → (l.bDistortion → J.distortion ≤ c) → dist (vol J (f x)) (g J) ≤ ε) (H₂ : ∀ (c : ℝ≥0), ∀ x ∈ Box.Icc I \ s, ∀ ε > (0 : ℝ), ∃ δ > 0, ∀ J ≤ I, Box.Icc J ⊆ Metric.closedBall x δ → (l.bHenstock → x ∈ Box.Icc J) → (l.bDistortion → J.distortion ≤ c) → dist (vol J (f x)) (g J) ≤ ε * B J) : HasIntegral I l f vol (g I)
case intro.intro.intro.intro ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I : Box ι inst✝ : Fintype ι l : IntegrationParams f : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F hl : l.bRiemann = false B : ι →ᵇᵃ[↑I] ℝ hB0 : ∀ (J : Box ι), 0 ≤ B J g : ι →ᵇᵃ[↑I] F s : Set (ι → ℝ) hs : s.Countable hlH : s.Nonempty → l.bHenstock = true ε : ℝ ε0 : 0 < ε δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₁ : ∀ (c : ℝ≥0), ∀ x ∈ Box.Icc I ∩ s, ∀ (ε : ℝ), 0 < ε → ∀ J ≤ I, Box.Icc J ⊆ Metric.closedBall x ↑(δ₁ c x ε) → x ∈ Box.Icc J → (l.bDistortion = true → J.distortion ≤ c) → dist ((vol J) (f x)) (g J) ≤ ε δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₂ : ∀ (c : ℝ≥0), ∀ x ∈ Box.Icc I \ s, ∀ (ε : ℝ), 0 < ε → ∀ J ≤ I, Box.Icc J ⊆ Metric.closedBall x ↑(δ₂ c x ε) → (l.bHenstock = true → x ∈ Box.Icc J) → (l.bDistortion = true → J.distortion ≤ c) → dist ((vol J) (f x)) (g J) ≤ ε * B J ε0' : 0 < ε / 2 H0 : 0 < 2 ^ Fintype.card ι εs : (ι → ℝ) → ℝ hεs0 : ∀ (i : ι → ℝ), 0 < εs i hεs : ∀ (t : Finset (ι → ℝ)), ↑t ⊆ s → ∑ i ∈ t, 2 ^ Fintype.card ι * εs i ≤ ε / 2 ε' : ℝ ε'0 : 0 < ε' hεI : B I * ε' < ε / 2 δ : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε' ⊢ ∀ x ∈ {π | ∃ c, l.MemBaseSet I c (δ c) π ∧ π.IsPartition}, integralSum f vol x ∈ Metric.closedBall (g I) ε
simp only [Set.mem_iUnion, mem_inter_iff, mem_setOf_eq]
case intro.intro.intro.intro ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I : Box ι inst✝ : Fintype ι l : IntegrationParams f : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F hl : l.bRiemann = false B : ι →ᵇᵃ[↑I] ℝ hB0 : ∀ (J : Box ι), 0 ≤ B J g : ι →ᵇᵃ[↑I] F s : Set (ι → ℝ) hs : s.Countable hlH : s.Nonempty → l.bHenstock = true ε : ℝ ε0 : 0 < ε δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₁ : ∀ (c : ℝ≥0), ∀ x ∈ Box.Icc I ∩ s, ∀ (ε : ℝ), 0 < ε → ∀ J ≤ I, Box.Icc J ⊆ Metric.closedBall x ↑(δ₁ c x ε) → x ∈ Box.Icc J → (l.bDistortion = true → J.distortion ≤ c) → dist ((vol J) (f x)) (g J) ≤ ε δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₂ : ∀ (c : ℝ≥0), ∀ x ∈ Box.Icc I \ s, ∀ (ε : ℝ), 0 < ε → ∀ J ≤ I, Box.Icc J ⊆ Metric.closedBall x ↑(δ₂ c x ε) → (l.bHenstock = true → x ∈ Box.Icc J) → (l.bDistortion = true → J.distortion ≤ c) → dist ((vol J) (f x)) (g J) ≤ ε * B J ε0' : 0 < ε / 2 H0 : 0 < 2 ^ Fintype.card ι εs : (ι → ℝ) → ℝ hεs0 : ∀ (i : ι → ℝ), 0 < εs i hεs : ∀ (t : Finset (ι → ℝ)), ↑t ⊆ s → ∑ i ∈ t, 2 ^ Fintype.card ι * εs i ≤ ε / 2 ε' : ℝ ε'0 : 0 < ε' hεI : B I * ε' < ε / 2 δ : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε' ⊢ ∀ (x : TaggedPrepartition I), (∃ c, l.MemBaseSet I c (δ c) x ∧ x.IsPartition) → integralSum f vol x ∈ Metric.closedBall (g I) ε
f7fbe41cacd6cc55
Batteries.RBNode.lowerBound?_le'
Mathlib/.lake/packages/batteries/Batteries/Data/RBMap/Lemmas.lean
theorem lowerBound?_le' {t : RBNode α} (H : ∀ {x}, x ∈ lb → cut x ≠ .lt) : t.lowerBound? cut lb = some x → cut x ≠ .lt
α : Type u_1 lb : Option α cut : α → Ordering x : α t : RBNode α H : ∀ {x : α}, x ∈ lb → cut x ≠ Ordering.lt ⊢ upperBound? (fun x => (cut x).swap) t.reverse lb = some x → ¬(cut x).swap = Ordering.lt.swap
exact upperBound?_ge' fun h => by specialize H h; rwa [Ne, ← Ordering.swap_inj] at H
no goals
2ad89092ca809906
GenContFract.of_s_succ
Mathlib/Algebra/ContinuedFractions/Computation/Translations.lean
theorem of_s_succ (n : ℕ) : (of v).s.get? (n + 1) = (of (fract v)⁻¹).s.get? n
case inr K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n : ℕ h : fract v ≠ 0 ⊢ (of v).s.get? (n + 1) = (of (fract v)⁻¹).s.get? n
rcases eq_or_ne ((of (fract v)⁻¹).s.get? n) none with h₁ | h₁
case inr.inl K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n : ℕ h : fract v ≠ 0 h₁ : (of (fract v)⁻¹).s.get? n = none ⊢ (of v).s.get? (n + 1) = (of (fract v)⁻¹).s.get? n case inr.inr K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n : ℕ h : fract v ≠ 0 h₁ : (of (fract v)⁻¹).s.get? n ≠ none ⊢ (of v).s.get? (n + 1) = (of (fract v)⁻¹).s.get? n
3296185bcb61fc29
hasFDerivAt_integral_of_dominated_loc_of_lip_interval
Mathlib/Analysis/Calculus/ParametricIntegral.lean
theorem hasFDerivAt_integral_of_dominated_loc_of_lip_interval [NormedSpace ℝ H] {μ : Measure ℝ} {F : H → ℝ → E} {F' : ℝ → H →L[ℝ] E} {a b : ℝ} {bound : ℝ → ℝ} (ε_pos : 0 < ε) (hF_meas : ∀ᶠ x in 𝓝 x₀, AEStronglyMeasurable (F x) <| μ.restrict (Ι a b)) (hF_int : IntervalIntegrable (F x₀) μ a b) (hF'_meas : AEStronglyMeasurable F' <| μ.restrict (Ι a b)) (h_lip : ∀ᵐ t ∂μ.restrict (Ι a b), LipschitzOnWith (Real.nnabs <| bound t) (F · t) (ball x₀ ε)) (bound_integrable : IntervalIntegrable bound μ a b) (h_diff : ∀ᵐ t ∂μ.restrict (Ι a b), HasFDerivAt (F · t) (F' t) x₀) : IntervalIntegrable F' μ a b ∧ HasFDerivAt (fun x ↦ ∫ t in a..b, F x t ∂μ) (∫ t in a..b, F' t ∂μ) x₀
E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E H : Type u_4 inst✝¹ : NormedAddCommGroup H x₀ : H ε : ℝ inst✝ : NormedSpace ℝ H μ : Measure ℝ F : H → ℝ → E F' : ℝ → H →L[ℝ] E a b : ℝ bound : ℝ → ℝ ε_pos : 0 < ε hF_int : IntervalIntegrable (F x₀) μ a b h_lip : (∀ᵐ (x : ℝ) ∂μ.restrict (Set.Ioc a b), LipschitzOnWith (Real.nnabs (bound x)) (fun x_1 => F x_1 x) (ball x₀ ε)) ∧ ∀ᵐ (x : ℝ) ∂μ.restrict (Set.Ioc b a), LipschitzOnWith (Real.nnabs (bound x)) (fun x_1 => F x_1 x) (ball x₀ ε) bound_integrable : IntervalIntegrable bound μ a b h_diff : (∀ᵐ (x : ℝ) ∂μ.restrict (Set.Ioc a b), HasFDerivAt (fun x_1 => F x_1 x) (F' x) x₀) ∧ ∀ᵐ (x : ℝ) ∂μ.restrict (Set.Ioc b a), HasFDerivAt (fun x_1 => F x_1 x) (F' x) x₀ hF'_meas : AEStronglyMeasurable F' (μ.restrict (Set.Ioc a b)) ∧ AEStronglyMeasurable F' (μ.restrict (Set.Ioc b a)) hF_meas : (∀ᶠ (x : H) in 𝓝 x₀, AEStronglyMeasurable (F x) (μ.restrict (Set.Ioc a b))) ∧ ∀ᶠ (x : H) in 𝓝 x₀, AEStronglyMeasurable (F x) (μ.restrict (Set.Ioc b a)) H₁ : Integrable F' (μ.restrict (Set.Ioc a b)) ∧ HasFDerivAt (fun x => ∫ (a : ℝ) in Set.Ioc a b, F x a ∂μ) (∫ (a : ℝ) in Set.Ioc a b, F' a ∂μ) x₀ H₂ : Integrable F' (μ.restrict (Set.Ioc b a)) ∧ HasFDerivAt (fun x => ∫ (a : ℝ) in Set.Ioc b a, F x a ∂μ) (∫ (a : ℝ) in Set.Ioc b a, F' a ∂μ) x₀ ⊢ IntervalIntegrable F' μ a b ∧ HasFDerivAt (fun x => ∫ (t : ℝ) in a..b, F x t ∂μ) (∫ (t : ℝ) in a..b, F' t ∂μ) x₀
exact ⟨⟨H₁.1, H₂.1⟩, H₁.2.sub H₂.2⟩
no goals
e223456fe9a772e9
zorn_le_nonempty₀
Mathlib/Order/Zorn.lean
theorem zorn_le_nonempty₀ (s : Set α) (ih : ∀ c ⊆ s, IsChain (· ≤ ·) c → ∀ y ∈ c, ∃ ub ∈ s, ∀ z ∈ c, z ≤ ub) (x : α) (hxs : x ∈ s) : ∃ m, x ≤ m ∧ Maximal (· ∈ s) m
α : Type u_1 inst✝ : Preorder α s : Set α ih : ∀ c ⊆ s, IsChain (fun x1 x2 => x1 ≤ x2) c → ∀ y ∈ c, ∃ ub ∈ s, ∀ z ∈ c, z ≤ ub x : α hxs : x ∈ s ⊢ ∃ m, x ≤ m ∧ Maximal (fun x => x ∈ s) m
have H := zorn_le₀ ({ y ∈ s | x ≤ y }) fun c hcs hc => ?_
case refine_2 α : Type u_1 inst✝ : Preorder α s : Set α ih : ∀ c ⊆ s, IsChain (fun x1 x2 => x1 ≤ x2) c → ∀ y ∈ c, ∃ ub ∈ s, ∀ z ∈ c, z ≤ ub x : α hxs : x ∈ s H : ∃ m, Maximal (fun x_1 => x_1 ∈ {y | y ∈ s ∧ x ≤ y}) m ⊢ ∃ m, x ≤ m ∧ Maximal (fun x => x ∈ s) m case refine_1 α : Type u_1 inst✝ : Preorder α s : Set α ih : ∀ c ⊆ s, IsChain (fun x1 x2 => x1 ≤ x2) c → ∀ y ∈ c, ∃ ub ∈ s, ∀ z ∈ c, z ≤ ub x : α hxs : x ∈ s c : Set α hcs : c ⊆ {y | y ∈ s ∧ x ≤ y} hc : IsChain (fun x1 x2 => x1 ≤ x2) c ⊢ ∃ ub ∈ {y | y ∈ s ∧ x ≤ y}, ∀ z ∈ c, z ≤ ub
fad181aa3c90f03a
Descriptive.tree_eq_bot
Mathlib/SetTheory/Descriptive/Tree.lean
@[simp] lemma tree_eq_bot : T = ⊥ ↔ [] ∉ T where mp
A : Type u_1 T : ↥(tree A) h : [] ∉ T ⊢ T = ⊥
ext x
case h A : Type u_1 T : ↥(tree A) h : [] ∉ T x : List A ⊢ x ∈ T ↔ x ∈ ⊥
bebd3d9a3bdbec7f
Ideal.IsHomogeneous.isPrime_of_homogeneous_mem_or_mem
Mathlib/RingTheory/GradedAlgebra/Radical.lean
theorem Ideal.IsHomogeneous.isPrime_of_homogeneous_mem_or_mem {I : Ideal A} (hI : I.IsHomogeneous 𝒜) (I_ne_top : I ≠ ⊤) (homogeneous_mem_or_mem : ∀ {x y : A}, IsHomogeneousElem 𝒜 x → IsHomogeneousElem 𝒜 y → x * y ∈ I → x ∈ I ∨ y ∈ I) : Ideal.IsPrime I := ⟨I_ne_top, by intro x y hxy by_contra! rid obtain ⟨rid₁, rid₂⟩ := rid classical /- The idea of the proof is the following : since `x * y ∈ I` and `I` homogeneous, then `proj i (x * y) ∈ I` for any `i : ι`. Then consider two sets `{i ∈ x.support | xᵢ ∉ I}` and `{j ∈ y.support | yⱼ ∉ J}`; let `max₁, max₂` be the maximum of the two sets, then `proj (max₁ + max₂) (x * y) ∈ I`. Then, `proj max₁ x ∉ I` and `proj max₂ j ∉ I` but `proj i x ∈ I` for all `max₁ < i` and `proj j y ∈ I` for all `max₂ < j`. ` proj (max₁ + max₂) (x * y)` `= ∑ {(i, j) ∈ supports | i + j = max₁ + max₂}, xᵢ * yⱼ` `= proj max₁ x * proj max₂ y` ` + ∑ {(i, j) ∈ supports \ {(max₁, max₂)} | i + j = max₁ + max₂}, xᵢ * yⱼ`. This is a contradiction, because both `proj (max₁ + max₂) (x * y) ∈ I` and the sum on the right hand side is in `I` however `proj max₁ x * proj max₂ y` is not in `I`. -/ set set₁ := {i ∈ (decompose 𝒜 x).support | proj 𝒜 i x ∉ I} with set₁_eq set set₂ := {i ∈ (decompose 𝒜 y).support | proj 𝒜 i y ∉ I} with set₂_eq have nonempty : ∀ x : A, x ∉ I → {i ∈ (decompose 𝒜 x).support | proj 𝒜 i x ∉ I}.Nonempty
ι : Type u_1 σ : Type u_2 A : Type u_3 inst✝⁴ : CommRing A inst✝³ : LinearOrderedCancelAddCommMonoid ι inst✝² : SetLike σ A inst✝¹ : AddSubmonoidClass σ A 𝒜 : ι → σ inst✝ : GradedRing 𝒜 I : Ideal A hI : IsHomogeneous 𝒜 I I_ne_top : I ≠ ⊤ homogeneous_mem_or_mem : ∀ {x y : A}, IsHomogeneousElem 𝒜 x → IsHomogeneousElem 𝒜 y → x * y ∈ I → x ∈ I ∨ y ∈ I x y : A rid₁ : x ∉ I rid₂ : y ∉ I set₁ : Finset ι := filter (fun i => (proj 𝒜 i) x ∉ I) (DFinsupp.support ((decompose 𝒜) x)) set₁_eq : set₁ = filter (fun i => (proj 𝒜 i) x ∉ I) (DFinsupp.support ((decompose 𝒜) x)) set₂ : Finset ι := filter (fun i => (proj 𝒜 i) y ∉ I) (DFinsupp.support ((decompose 𝒜) y)) set₂_eq : set₂ = filter (fun i => (proj 𝒜 i) y ∉ I) (DFinsupp.support ((decompose 𝒜) y)) nonempty : ∀ x ∉ I, (filter (fun i => (proj 𝒜 i) x ∉ I) (DFinsupp.support ((decompose 𝒜) x))).Nonempty max₁ : ι := set₁.max' ⋯ max₂ : ι := set₂.max' ⋯ mem_max₁ : max₁ ∈ set₁ mem_max₂ : max₂ ∈ set₂ hxy : (proj 𝒜 (max₁ + max₂)) (x * y) ∈ I mem_I : (proj 𝒜 max₁) x * (proj 𝒜 max₂) y ∈ I ⊢ (proj 𝒜 max₁) x * (proj 𝒜 max₂) y ∉ I
have neither_mem : proj 𝒜 max₁ x ∉ I ∧ proj 𝒜 max₂ y ∉ I := by rw [mem_filter] at mem_max₁ mem_max₂ exact ⟨mem_max₁.2, mem_max₂.2⟩
ι : Type u_1 σ : Type u_2 A : Type u_3 inst✝⁴ : CommRing A inst✝³ : LinearOrderedCancelAddCommMonoid ι inst✝² : SetLike σ A inst✝¹ : AddSubmonoidClass σ A 𝒜 : ι → σ inst✝ : GradedRing 𝒜 I : Ideal A hI : IsHomogeneous 𝒜 I I_ne_top : I ≠ ⊤ homogeneous_mem_or_mem : ∀ {x y : A}, IsHomogeneousElem 𝒜 x → IsHomogeneousElem 𝒜 y → x * y ∈ I → x ∈ I ∨ y ∈ I x y : A rid₁ : x ∉ I rid₂ : y ∉ I set₁ : Finset ι := filter (fun i => (proj 𝒜 i) x ∉ I) (DFinsupp.support ((decompose 𝒜) x)) set₁_eq : set₁ = filter (fun i => (proj 𝒜 i) x ∉ I) (DFinsupp.support ((decompose 𝒜) x)) set₂ : Finset ι := filter (fun i => (proj 𝒜 i) y ∉ I) (DFinsupp.support ((decompose 𝒜) y)) set₂_eq : set₂ = filter (fun i => (proj 𝒜 i) y ∉ I) (DFinsupp.support ((decompose 𝒜) y)) nonempty : ∀ x ∉ I, (filter (fun i => (proj 𝒜 i) x ∉ I) (DFinsupp.support ((decompose 𝒜) x))).Nonempty max₁ : ι := set₁.max' ⋯ max₂ : ι := set₂.max' ⋯ mem_max₁ : max₁ ∈ set₁ mem_max₂ : max₂ ∈ set₂ hxy : (proj 𝒜 (max₁ + max₂)) (x * y) ∈ I mem_I : (proj 𝒜 max₁) x * (proj 𝒜 max₂) y ∈ I neither_mem : (proj 𝒜 max₁) x ∉ I ∧ (proj 𝒜 max₂) y ∉ I ⊢ (proj 𝒜 max₁) x * (proj 𝒜 max₂) y ∉ I
7b2fd2fea167fa2f
Basis.ext_multilinear
Mathlib/LinearAlgebra/Multilinear/Basis.lean
theorem Basis.ext_multilinear [Finite ι] {f g : MultilinearMap R (fun _ : ι => M₂) M₃} {ι₁ : Type*} (e : Basis ι₁ R M₂) (h : ∀ v : ι → ι₁, (f fun i => e (v i)) = g fun i => e (v i)) : f = g
R : Type u_1 ι : Type u_2 M₂ : Type u_4 M₃ : Type u_5 inst✝⁵ : CommSemiring R inst✝⁴ : AddCommMonoid M₂ inst✝³ : AddCommMonoid M₃ inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Finite ι f g : MultilinearMap R (fun x => M₂) M₃ ι₁ : Type u_6 e : Basis ι₁ R M₂ h : ∀ (v : ι → ι₁), (f fun i => e (v i)) = g fun i => e (v i) ⊢ f = g
cases nonempty_fintype ι
case intro R : Type u_1 ι : Type u_2 M₂ : Type u_4 M₃ : Type u_5 inst✝⁵ : CommSemiring R inst✝⁴ : AddCommMonoid M₂ inst✝³ : AddCommMonoid M₃ inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Finite ι f g : MultilinearMap R (fun x => M₂) M₃ ι₁ : Type u_6 e : Basis ι₁ R M₂ h : ∀ (v : ι → ι₁), (f fun i => e (v i)) = g fun i => e (v i) val✝ : Fintype ι ⊢ f = g
e8fb20dfd8be9f92
AlgebraicGeometry.stalkMap_injective_of_isOpenMap_of_injective
Mathlib/AlgebraicGeometry/Morphisms/ClosedImmersion.lean
/-- If `f : X ⟶ Y` is open, injective, `X` is quasi-compact and `Y` is affine, then `f` is stalkwise injective if it is injective on global sections. -/ lemma stalkMap_injective_of_isOpenMap_of_injective [CompactSpace X] (hfopen : IsOpenMap f.base) (hfinj₁ : Function.Injective f.base) (hfinj₂ : Function.Injective (f.appTop)) (x : X) : Function.Injective (f.stalkMap x)
X Y : Scheme inst✝¹ : IsAffine Y f : X ⟶ Y inst✝ : CompactSpace ↑↑X.toPresheafedSpace hfopen : IsOpenMap ⇑(ConcreteCategory.hom f.base) hfinj₁ : Function.Injective ⇑(ConcreteCategory.hom f.base) hfinj₂ : Function.Injective ⇑(ConcreteCategory.hom (Scheme.Hom.appTop f)) x : ↑↑X.toPresheafedSpace φ : Γ(Y, ⊤) ⟶ Γ(X, ⊤) := Scheme.Hom.appTop f 𝒰 : X.OpenCover := X.affineCover.finiteSubcover this : ∀ (i : 𝒰.J), IsAffine (𝒰.obj i) res : (i : 𝒰.J) → Γ(X, ⊤) ⟶ Γ(𝒰.obj i, ⊤) := fun i => Scheme.Hom.appTop (𝒰.map i) g : ↑Γ(Y, ⊤) h : (ConcreteCategory.hom (Scheme.Hom.stalkMap f x)) ((ConcreteCategory.hom (Y.presheaf.Γgerm ((ConcreteCategory.hom f.base) x))) g) = 0 ⊢ (ConcreteCategory.hom (Y.presheaf.Γgerm ((ConcreteCategory.hom f.base) x))) g = 0
rw [TopCat.Presheaf.Γgerm, Scheme.stalkMap_germ_apply] at h
X Y : Scheme inst✝¹ : IsAffine Y f : X ⟶ Y inst✝ : CompactSpace ↑↑X.toPresheafedSpace hfopen : IsOpenMap ⇑(ConcreteCategory.hom f.base) hfinj₁ : Function.Injective ⇑(ConcreteCategory.hom f.base) hfinj₂ : Function.Injective ⇑(ConcreteCategory.hom (Scheme.Hom.appTop f)) x : ↑↑X.toPresheafedSpace φ : Γ(Y, ⊤) ⟶ Γ(X, ⊤) := Scheme.Hom.appTop f 𝒰 : X.OpenCover := X.affineCover.finiteSubcover this : ∀ (i : 𝒰.J), IsAffine (𝒰.obj i) res : (i : 𝒰.J) → Γ(X, ⊤) ⟶ Γ(𝒰.obj i, ⊤) := fun i => Scheme.Hom.appTop (𝒰.map i) g : ↑Γ(Y, ⊤) h : (ConcreteCategory.hom (X.presheaf.germ (f ⁻¹ᵁ ⊤) x True.intro)) ((ConcreteCategory.hom (Scheme.Hom.app f ⊤)) g) = 0 ⊢ (ConcreteCategory.hom (Y.presheaf.Γgerm ((ConcreteCategory.hom f.base) x))) g = 0
b31e93c621949e44
TopCat.pullback_fst_image_snd_preimage
Mathlib/Topology/Category/TopCat/Limits/Pullbacks.lean
theorem pullback_fst_image_snd_preimage (f : X ⟶ Z) (g : Y ⟶ Z) (U : Set Y) : (pullback.fst f g) '' ((pullback.snd f g) ⁻¹' U) = f ⁻¹' (g '' U)
case h.mp X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z U : Set ↑Y x : ↑X ⊢ x ∈ ⇑(ConcreteCategory.hom (pullback.fst f g)) '' (⇑(ConcreteCategory.hom (pullback.snd f g)) ⁻¹' U) → x ∈ ⇑(ConcreteCategory.hom f) ⁻¹' (⇑(ConcreteCategory.hom g) '' U)
rintro ⟨y, hy, rfl⟩
case h.mp.intro.intro X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z U : Set ↑Y y : ↑(pullback f g) hy : y ∈ ⇑(ConcreteCategory.hom (pullback.snd f g)) ⁻¹' U ⊢ (ConcreteCategory.hom (pullback.fst f g)) y ∈ ⇑(ConcreteCategory.hom f) ⁻¹' (⇑(ConcreteCategory.hom g) '' U)
17d4c30cd8a6d32e
CategoryTheory.rightDistributor_inv
Mathlib/CategoryTheory/Monoidal/Preadditive.lean
theorem rightDistributor_inv {J : Type} [Fintype J] (f : J → C) (X : C) : (rightDistributor f X).inv = ∑ j : J, biproduct.π _ j ≫ (biproduct.ι f j ▷ X)
case w C : Type u_1 inst✝⁵ : Category.{u_2, u_1} C inst✝⁴ : Preadditive C inst✝³ : MonoidalCategory C inst✝² : MonoidalPreadditive C inst✝¹ : HasFiniteBiproducts C J : Type inst✝ : Fintype J f : J → C X : C j✝ : J ⊢ biproduct.ι (fun j => f j ⊗ X) j✝ ≫ (rightDistributor f X).inv = biproduct.ι (fun j => f j ⊗ X) j✝ ≫ ∑ j : J, biproduct.π (fun j => f j ⊗ X) j ≫ biproduct.ι f j ▷ X
dsimp [rightDistributor, Functor.mapBiproduct, Functor.mapBicone]
case w C : Type u_1 inst✝⁵ : Category.{u_2, u_1} C inst✝⁴ : Preadditive C inst✝³ : MonoidalCategory C inst✝² : MonoidalPreadditive C inst✝¹ : HasFiniteBiproducts C J : Type inst✝ : Fintype J f : J → C X : C j✝ : J ⊢ (biproduct.ι (fun j => f j ⊗ X) j✝ ≫ biproduct.desc fun j => biproduct.ι f j ▷ X) = biproduct.ι (fun j => f j ⊗ X) j✝ ≫ ∑ j : J, biproduct.π (fun j => f j ⊗ X) j ≫ biproduct.ι f j ▷ X
787fce203b0e0f35
SchwartzMap.integrable_of_le_of_pow_mul_le
Mathlib/Analysis/Distribution/SchwartzSpace.lean
/-- Given a function such that `f` and `x ^ (k + l) * f` are bounded for a suitable `l`, then `x ^ k * f` is integrable. The bounds are not relevant for the integrability conclusion, but they are relevant for bounding the integral in `integral_pow_mul_le_of_le_of_pow_mul_le`. We formulate the two lemmas with the same set of assumptions for ease of applications. -/ -- We redeclare `E` here to avoid the `NormedSpace ℝ E` typeclass available throughout this file. lemma integrable_of_le_of_pow_mul_le {E : Type*} [NormedAddCommGroup E] {μ : Measure D} [μ.HasTemperateGrowth] {f : D → E} {C₁ C₂ : ℝ} {k : ℕ} (hf : ∀ x, ‖f x‖ ≤ C₁) (h'f : ∀ x, ‖x‖ ^ (k + μ.integrablePower) * ‖f x‖ ≤ C₂) (h''f : AEStronglyMeasurable f μ) : Integrable (fun x ↦ ‖x‖ ^ k * ‖f x‖) μ
case h.h D : Type u_3 inst✝⁵ : NormedAddCommGroup D inst✝⁴ : MeasurableSpace D inst✝³ : BorelSpace D inst✝² : SecondCountableTopology D E : Type u_8 inst✝¹ : NormedAddCommGroup E μ : Measure D inst✝ : μ.HasTemperateGrowth f : D → E C₁ C₂ : ℝ k : ℕ hf : ∀ (x : D), ‖f x‖ ≤ C₁ h'f : ∀ (x : D), ‖x‖ ^ (k + μ.integrablePower) * ‖f x‖ ≤ C₂ h''f : AEStronglyMeasurable f μ v : D ⊢ ‖‖v‖ ^ k * ‖f v‖‖ ≤ 2 ^ μ.integrablePower * (C₁ + C₂) * (1 + ‖v‖) ^ (-↑μ.integrablePower)
simp only [norm_mul, norm_pow, norm_norm]
case h.h D : Type u_3 inst✝⁵ : NormedAddCommGroup D inst✝⁴ : MeasurableSpace D inst✝³ : BorelSpace D inst✝² : SecondCountableTopology D E : Type u_8 inst✝¹ : NormedAddCommGroup E μ : Measure D inst✝ : μ.HasTemperateGrowth f : D → E C₁ C₂ : ℝ k : ℕ hf : ∀ (x : D), ‖f x‖ ≤ C₁ h'f : ∀ (x : D), ‖x‖ ^ (k + μ.integrablePower) * ‖f x‖ ≤ C₂ h''f : AEStronglyMeasurable f μ v : D ⊢ ‖v‖ ^ k * ‖f v‖ ≤ 2 ^ μ.integrablePower * (C₁ + C₂) * (1 + ‖v‖) ^ (-↑μ.integrablePower)
30d7f9baab6716a7
Submodule.image2_subset_map₂
Mathlib/Algebra/Module/Submodule/Bilinear.lean
theorem image2_subset_map₂ (f : M →ₗ[R] N →ₗ[R] P) (p : Submodule R M) (q : Submodule R N) : Set.image2 (fun m n => f m n) (↑p : Set M) (↑q : Set N) ⊆ (↑(map₂ f p q) : Set P)
R : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 inst✝⁶ : CommSemiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid N inst✝³ : AddCommMonoid P inst✝² : Module R M inst✝¹ : Module R N inst✝ : Module R P f : M →ₗ[R] N →ₗ[R] P p : Submodule R M q : Submodule R N ⊢ image2 (fun m n => (f m) n) ↑p ↑q ⊆ ↑(map₂ f p q)
rintro _ ⟨i, hi, j, hj, rfl⟩
case intro.intro.intro.intro R : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 inst✝⁶ : CommSemiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid N inst✝³ : AddCommMonoid P inst✝² : Module R M inst✝¹ : Module R N inst✝ : Module R P f : M →ₗ[R] N →ₗ[R] P p : Submodule R M q : Submodule R N i : M hi : i ∈ ↑p j : N hj : j ∈ ↑q ⊢ (fun m n => (f m) n) i j ∈ ↑(map₂ f p q)
f6c0a5d024c88229
TwoSidedIdeal.mem_sup
Mathlib/RingTheory/TwoSidedIdeal/Lattice.lean
lemma mem_sup {I J : TwoSidedIdeal R} {x : R} : x ∈ I ⊔ J ↔ ∃ y ∈ I, ∃ z ∈ J, y + z = x
R : Type u_1 inst✝ : NonUnitalNonAssocRing R I J : TwoSidedIdeal R x : R ⊢ ∀ {x : R}, x ∈ {x | ∃ y ∈ I, ∃ z ∈ J, y + z = x} → -x ∈ {x | ∃ y ∈ I, ∃ z ∈ J, y + z = x}
rintro _ ⟨x, ⟨hx, ⟨y, ⟨hy, rfl⟩⟩⟩⟩
case intro.intro.intro.intro R : Type u_1 inst✝ : NonUnitalNonAssocRing R I J : TwoSidedIdeal R x✝ x : R hx : x ∈ I y : R hy : y ∈ J ⊢ -(x + y) ∈ {x | ∃ y ∈ I, ∃ z ∈ J, y + z = x}
cb59196376d3b2dd
measurableSet_bddAbove_range
Mathlib/MeasureTheory/Constructions/BorelSpace/Order.lean
lemma measurableSet_bddAbove_range {ι} [Countable ι] {f : ι → δ → α} (hf : ∀ i, Measurable (f i)) : MeasurableSet {b | BddAbove (range (fun i ↦ f i b))}
α : Type u_1 δ : Type u_4 inst✝⁵ : TopologicalSpace α mα : MeasurableSpace α inst✝⁴ : BorelSpace α mδ : MeasurableSpace δ inst✝³ : LinearOrder α inst✝² : OrderTopology α inst✝¹ : SecondCountableTopology α ι : Sort u_5 inst✝ : Countable ι f : ι → δ → α hf : ∀ (i : ι), Measurable (f i) hα : Nonempty α A : ∀ (i : ι) (c : α), MeasurableSet {x | f i x ≤ c} c : α ⊢ MeasurableSet (⋂ i, {x | f i x ≤ c})
exact MeasurableSet.iInter (fun i ↦ A i c)
no goals
2ea9408e1624118d
maximalIdeal_isPrincipal_of_isDedekindDomain
Mathlib/RingTheory/DiscreteValuationRing/TFAE.lean
theorem maximalIdeal_isPrincipal_of_isDedekindDomain [IsLocalRing R] [IsDomain R] [IsDedekindDomain R] : (maximalIdeal R).IsPrincipal
case neg.intro.intro.zero R : Type u_1 inst✝³ : CommRing R inst✝² : IsLocalRing R inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R ne_bot : ¬maximalIdeal R = ⊥ a : R ha₁ : a ∈ maximalIdeal R ha₂ : a ≠ 0 hle : Ideal.span {a} ≤ maximalIdeal R this✝ : (Ideal.span {a}).radical = maximalIdeal R this : ∃ n, maximalIdeal R ^ n ≤ Ideal.span {a} hn : Nat.find this = 0 ⊢ Submodule.IsPrincipal (maximalIdeal R)
have := Nat.find_spec this
case neg.intro.intro.zero R : Type u_1 inst✝³ : CommRing R inst✝² : IsLocalRing R inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R ne_bot : ¬maximalIdeal R = ⊥ a : R ha₁ : a ∈ maximalIdeal R ha₂ : a ≠ 0 hle : Ideal.span {a} ≤ maximalIdeal R this✝¹ : (Ideal.span {a}).radical = maximalIdeal R this✝ : ∃ n, maximalIdeal R ^ n ≤ Ideal.span {a} hn : Nat.find this✝ = 0 this : maximalIdeal R ^ Nat.find this✝ ≤ Ideal.span {a} ⊢ Submodule.IsPrincipal (maximalIdeal R)
e801db6f819d1797
edist_le_of_edist_le_geometric_of_tendsto
Mathlib/Analysis/SpecificLimits/Basic.lean
theorem edist_le_of_edist_le_geometric_of_tendsto {a : α} (ha : Tendsto f atTop (𝓝 a)) (n : ℕ) : edist (f n) a ≤ C * r ^ n / (1 - r)
α : Type u_1 inst✝ : PseudoEMetricSpace α r C : ℝ≥0∞ f : ℕ → α hu : ∀ (n : ℕ), edist (f n) (f (n + 1)) ≤ C * r ^ n a : α ha : Tendsto f atTop (𝓝 a) n : ℕ ⊢ edist (f n) a ≤ C * r ^ n / (1 - r)
convert edist_le_tsum_of_edist_le_of_tendsto _ hu ha _
case h.e'_4 α : Type u_1 inst✝ : PseudoEMetricSpace α r C : ℝ≥0∞ f : ℕ → α hu : ∀ (n : ℕ), edist (f n) (f (n + 1)) ≤ C * r ^ n a : α ha : Tendsto f atTop (𝓝 a) n : ℕ ⊢ C * r ^ n / (1 - r) = ∑' (m : ℕ), C * r ^ (n + m)
3461a6a04afc537b
IsLocalization.scaleRoots_commonDenom_mem_lifts
Mathlib/RingTheory/Localization/Integral.lean
theorem IsLocalization.scaleRoots_commonDenom_mem_lifts (p : Rₘ[X]) (hp : p.leadingCoeff ∈ (algebraMap R Rₘ).range) : p.scaleRoots (algebraMap R Rₘ <| IsLocalization.commonDenom M p.support p.coeff) ∈ Polynomial.lifts (algebraMap R Rₘ)
R : Type u_1 inst✝³ : CommRing R M : Submonoid R Rₘ : Type u_3 inst✝² : CommRing Rₘ inst✝¹ : Algebra R Rₘ inst✝ : IsLocalization M Rₘ p : Rₘ[X] hp : p.leadingCoeff ∈ (algebraMap R Rₘ).range ⊢ p.scaleRoots ((algebraMap R Rₘ) ↑(commonDenom M p.support p.coeff)) ∈ lifts (algebraMap R Rₘ)
rw [Polynomial.lifts_iff_coeff_lifts]
R : Type u_1 inst✝³ : CommRing R M : Submonoid R Rₘ : Type u_3 inst✝² : CommRing Rₘ inst✝¹ : Algebra R Rₘ inst✝ : IsLocalization M Rₘ p : Rₘ[X] hp : p.leadingCoeff ∈ (algebraMap R Rₘ).range ⊢ ∀ (n : ℕ), (p.scaleRoots ((algebraMap R Rₘ) ↑(commonDenom M p.support p.coeff))).coeff n ∈ Set.range ⇑(algebraMap R Rₘ)
2bf54bf7debabe79
Filter.HasBasis.to_hasBasis'
Mathlib/Order/Filter/Bases.lean
theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s'
α : Type u_1 ι : Sort u_4 ι' : Sort u_5 l : Filter α p : ι → Prop s : ι → Set α p' : ι' → Prop s' : ι' → Set α hl : l.HasBasis p s h : ∀ (i : ι), p i → ∃ i', p' i' ∧ s' i' ⊆ s i h' : ∀ (i' : ι'), p' i' → s' i' ∈ l ⊢ l.HasBasis p' s'
refine ⟨fun t => ⟨fun ht => ?_, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩
α : Type u_1 ι : Sort u_4 ι' : Sort u_5 l : Filter α p : ι → Prop s : ι → Set α p' : ι' → Prop s' : ι' → Set α hl : l.HasBasis p s h : ∀ (i : ι), p i → ∃ i', p' i' ∧ s' i' ⊆ s i h' : ∀ (i' : ι'), p' i' → s' i' ∈ l t : Set α ht : t ∈ l ⊢ ∃ i, p' i ∧ s' i ⊆ t
a95362fabd2747b3
Real.Angle.sin_zero
Mathlib/Analysis/SpecialFunctions/Trigonometric/Angle.lean
theorem sin_zero : sin (0 : Angle) = 0
⊢ sin 0 = 0
rw [← coe_zero, sin_coe, Real.sin_zero]
no goals
3183bb9a63a0554b
MeasureTheory.addContent_le_sum_of_subset_sUnion
Mathlib/MeasureTheory/Measure/AddContent.lean
lemma addContent_le_sum_of_subset_sUnion {m : AddContent C} (hC : IsSetSemiring C) {J : Finset (Set α)} (h_ss : ↑J ⊆ C) (ht : t ∈ C) (htJ : t ⊆ ⋃₀ ↑J) : m t ≤ ∑ u ∈ J, m u
α : Type u_1 C : Set (Set α) t : Set α m : AddContent C hC : IsSetSemiring C J : Finset (Set α) h_ss : ↑J ⊆ C ht : t ∈ C htJ : t ⊆ ⋃₀ ↑J ⊢ m t ≤ ∑ u ∈ J, m u
let Jt := J.image (fun u ↦ t ∩ u)
α : Type u_1 C : Set (Set α) t : Set α m : AddContent C hC : IsSetSemiring C J : Finset (Set α) h_ss : ↑J ⊆ C ht : t ∈ C htJ : t ⊆ ⋃₀ ↑J Jt : Finset (Set α) := Finset.image (fun u => t ∩ u) J ⊢ m t ≤ ∑ u ∈ J, m u
81e047e530496612
EReal.continuous_toENNReal
Mathlib/Topology/Instances/EReal/Lemmas.lean
lemma continuous_toENNReal : Continuous EReal.toENNReal
⊢ Continuous toENNReal
refine continuous_iff_continuousAt.mpr fun x ↦ ?_
x : EReal ⊢ ContinuousAt toENNReal x
e6b0a6cf0669f603
Finset.noncommProd_union_of_disjoint
Mathlib/Data/Finset/NoncommProd.lean
theorem noncommProd_union_of_disjoint [DecidableEq α] {s t : Finset α} (h : Disjoint s t) (f : α → β) (comm : { x | x ∈ s ∪ t }.Pairwise (Commute on f)) : noncommProd (s ∪ t) f comm = noncommProd s f (comm.mono <| coe_subset.2 subset_union_left) * noncommProd t f (comm.mono <| coe_subset.2 subset_union_right)
case h α : Type u_3 β : Type u_4 inst✝¹ : Monoid β inst✝ : DecidableEq α f : α → β sl : List α sl' : sl.Nodup tl : List α tl' : tl.Nodup h : sl.Disjoint tl comm : {x | x ∈ sl.toFinset ∪ tl.toFinset}.Pairwise (Commute on f) a✝ : α ⊢ a✝ ∈ sl.toFinset ∪ tl.toFinset ↔ a✝ ∈ { val := ↑(sl ++ tl), nodup := ⋯ }
simp
no goals
b1392de476fe3f45
HurwitzZeta.expZeta_one_sub
Mathlib/NumberTheory/LSeries/HurwitzZeta.lean
/-- Functional equation for the exponential zeta function. -/ lemma expZeta_one_sub (a : UnitAddCircle) {s : ℂ} (hs : ∀ (n : ℕ), s ≠ 1 - n) : expZeta a (1 - s) = (2 * π) ^ (-s) * Gamma s * (exp (π * I * s / 2) * hurwitzZeta a s + exp (-π * I * s / 2) * hurwitzZeta (-a) s)
a : UnitAddCircle s : ℂ hs : ∀ (n : ℕ), s ≠ 1 - ↑n hs' : ∀ (n : ℕ), s ≠ -↑n ⊢ 2 * (2 * ↑π) ^ (-s) * Complex.Gamma s * ((cexp (↑π * s / 2 * I) + cexp (-(↑π * s / 2) * I)) / 2) * hurwitzZetaEven a s + I * (2 * (2 * ↑π) ^ (-s) * Complex.Gamma s * ((cexp (-(↑π * s / 2) * I) - cexp (↑π * s / 2 * I)) * I / 2) * hurwitzZetaOdd a s) = (2 * ↑π) ^ (-s) * Complex.Gamma s * (cexp (↑π * I * s / 2) * (hurwitzZetaEven a s + hurwitzZetaOdd a s) + cexp (-↑π * I * s / 2) * (hurwitzZetaEven a s + -hurwitzZetaOdd a s))
rw [show ↑π * I * s / 2 = ↑π * s / 2 * I by ring, show -↑π * I * s / 2 = -(↑π * s / 2) * I by ring]
a : UnitAddCircle s : ℂ hs : ∀ (n : ℕ), s ≠ 1 - ↑n hs' : ∀ (n : ℕ), s ≠ -↑n ⊢ 2 * (2 * ↑π) ^ (-s) * Complex.Gamma s * ((cexp (↑π * s / 2 * I) + cexp (-(↑π * s / 2) * I)) / 2) * hurwitzZetaEven a s + I * (2 * (2 * ↑π) ^ (-s) * Complex.Gamma s * ((cexp (-(↑π * s / 2) * I) - cexp (↑π * s / 2 * I)) * I / 2) * hurwitzZetaOdd a s) = (2 * ↑π) ^ (-s) * Complex.Gamma s * (cexp (↑π * s / 2 * I) * (hurwitzZetaEven a s + hurwitzZetaOdd a s) + cexp (-(↑π * s / 2) * I) * (hurwitzZetaEven a s + -hurwitzZetaOdd a s))
e843e482da66a44f
List.erase_eq_eraseP'
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Erase.lean
theorem erase_eq_eraseP' (a : α) (l : List α) : l.erase a = l.eraseP (· == a)
α : Type u_1 inst✝ : BEq α a b : α t : List α ih : t.erase a = eraseP (fun x => x == a) t ⊢ (if (b == a) = true then t else b :: eraseP (fun x => x == a) t) = bif b == a then t else b :: eraseP (fun x => x == a) t
if h : b == a then simp [h] else simp [h]
no goals
a7d8cd443cc25e52
ArithmeticFunction.zeta_mul_pow_eq_sigma
Mathlib/NumberTheory/ArithmeticFunction.lean
theorem zeta_mul_pow_eq_sigma {k : ℕ} : ζ * pow k = σ k
case h k x✝ x : ℕ hx : x ∈ x✝.divisors ⊢ (pow k) x = x ^ k
rw [pow_apply, if_neg (not_and_of_not_right _ _)]
k x✝ x : ℕ hx : x ∈ x✝.divisors ⊢ ¬x = 0
f10614b722390e1d
List.Chain'.two_mul_count_bool_le_length_add_one
Mathlib/Data/Bool/Count.lean
theorem two_mul_count_bool_le_length_add_one (hl : Chain' (· ≠ ·) l) (b : Bool) : 2 * count b l ≤ length l + 1
l : List Bool hl : Chain' (fun x1 x2 => x1 ≠ x2) l b : Bool ⊢ 2 * count b l ≤ l.length + 1
rw [hl.two_mul_count_bool_eq_ite]
l : List Bool hl : Chain' (fun x1 x2 => x1 ≠ x2) l b : Bool ⊢ (if Even l.length then l.length else if (some b == l.head?) = true then l.length + 1 else l.length - 1) ≤ l.length + 1
1f625c7dba8a04ca
Polynomial.natDegree_mul_X
Mathlib/Algebra/Polynomial/Degree/Operations.lean
@[simp] lemma natDegree_mul_X (hp : p ≠ 0) : natDegree (p * X) = natDegree p + 1
R : Type u inst✝¹ : Semiring R inst✝ : Nontrivial R p : R[X] hp : p ≠ 0 ⊢ p.leadingCoeff * X.leadingCoeff ≠ 0
simpa
no goals
bc5b6256cfdb6c9b
MeasureTheory.exists_continuous_eLpNorm_sub_le_of_closed
Mathlib/MeasureTheory/Function/ContinuousMapDense.lean
theorem exists_continuous_eLpNorm_sub_le_of_closed [μ.OuterRegular] (hp : p ≠ ∞) {s u : Set α} (s_closed : IsClosed s) (u_open : IsOpen u) (hsu : s ⊆ u) (hs : μ s ≠ ∞) (c : E) {ε : ℝ≥0∞} (hε : ε ≠ 0) : ∃ f : α → E, Continuous f ∧ eLpNorm (fun x => f x - s.indicator (fun _y => c) x) p μ ≤ ε ∧ (∀ x, ‖f x‖ ≤ ‖c‖) ∧ Function.support f ⊆ u ∧ MemLp f p μ
case pos.inr α : Type u_1 inst✝⁶ : TopologicalSpace α inst✝⁵ : NormalSpace α inst✝⁴ : MeasurableSpace α inst✝³ : BorelSpace α E : Type u_2 inst✝² : NormedAddCommGroup E μ : Measure α p : ℝ≥0∞ inst✝¹ : NormedSpace ℝ E inst✝ : μ.OuterRegular hp : p ≠ ⊤ s u : Set α s_closed : IsClosed s u_open : IsOpen u hsu : s ⊆ u hs✝ : μ s ≠ ⊤ c : E ε : ℝ≥0∞ hε : ε ≠ 0 η : ℝ≥0 η_pos : 0 < η hη : ∀ (s : Set α), μ s ≤ ↑η → eLpNorm (s.indicator fun _x => c) p μ ≤ ε ηpos : 0 < ↑η V : Set α sV : V ⊇ s V_open : IsOpen V h'V : μ V < ⊤ hV : μ (V \ s) < ↑η v : Set α := u ∩ V hsv : s ⊆ v hμv : μ v < ⊤ g : C(α, ℝ) hgv : EqOn (⇑g) 0 (u ∩ V)ᶜ hgs : EqOn (⇑g) 1 s hg_range : ∀ (x : α), g x ∈ Icc 0 1 g_norm : ∀ (x : α), ‖g x‖ = g x gc_bd0 : ∀ (x : α), ‖g x • c‖ ≤ ‖c‖ x : α hs : x ∈ s ⊢ ‖g x • c - s.indicator (fun _x => c) x‖ ≤ ‖(v \ s).indicator (fun _x => c) x‖
simp [hgs hs, hs]
no goals
4686c200fbebc327
MvPolynomial.eval₂_cast_comp
Mathlib/Algebra/MvPolynomial/Rename.lean
theorem eval₂_cast_comp (f : σ → τ) (c : ℤ →+* R) (g : τ → R) (p : MvPolynomial σ ℤ) : eval₂ c (g ∘ f) p = eval₂ c g (rename f p)
σ : Type u_1 τ : Type u_2 R : Type u_4 inst✝ : CommSemiring R f : σ → τ c : ℤ →+* R g : τ → R p✝ p q : MvPolynomial σ ℤ hp : eval₂ c (g ∘ f) p = eval₂ c g ((rename f) p) hq : eval₂ c (g ∘ f) q = eval₂ c g ((rename f) q) ⊢ eval₂ c (g ∘ f) (p + q) = eval₂ c g ((rename f) (p + q))
simp only [hp, hq, rename, eval₂_add, map_add]
no goals
89626df0693e355f
StieltjesFunction.measure_Iic
Mathlib/MeasureTheory/Measure/Stieltjes.lean
theorem measure_Iic {l : ℝ} (hf : Tendsto f atBot (𝓝 l)) (x : ℝ) : f.measure (Iic x) = ofReal (f x - l)
f : StieltjesFunction l : ℝ hf : Tendsto (↑f) atBot (𝓝 l) x : ℝ ⊢ Tendsto (fun x_1 => f.measure (Ioc x_1 x)) atBot (𝓝 (ofReal (↑f x - l)))
simp_rw [measure_Ioc]
f : StieltjesFunction l : ℝ hf : Tendsto (↑f) atBot (𝓝 l) x : ℝ ⊢ Tendsto (fun x_1 => ofReal (↑f x - ↑f x_1)) atBot (𝓝 (ofReal (↑f x - l)))
029bdab6bc2d0628
IsGalois.card_aut_eq_finrank
Mathlib/FieldTheory/Galois/Basic.lean
theorem card_aut_eq_finrank [FiniteDimensional F E] [IsGalois F E] : Fintype.card (E ≃ₐ[F] E) = finrank F E
F : Type u_1 inst✝⁴ : Field F E : Type u_2 inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : FiniteDimensional F E inst✝ : IsGalois F E ⊢ Fintype.card (E ≃ₐ[F] E) = finrank F E
obtain ⟨α, hα⟩ := Field.exists_primitive_element F E
case intro F : Type u_1 inst✝⁴ : Field F E : Type u_2 inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : FiniteDimensional F E inst✝ : IsGalois F E α : E hα : F⟮α⟯ = ⊤ ⊢ Fintype.card (E ≃ₐ[F] E) = finrank F E
9073114732e73abf
MeasureTheory.Measure.addHaar_submodule
Mathlib/MeasureTheory/Measure/Lebesgue/EqHaar.lean
theorem addHaar_submodule {E : Type*} [NormedAddCommGroup E] [NormedSpace ℝ E] [MeasurableSpace E] [BorelSpace E] [FiniteDimensional ℝ E] (μ : Measure E) [IsAddHaarMeasure μ] (s : Submodule ℝ E) (hs : s ≠ ⊤) : μ s = 0
E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : FiniteDimensional ℝ E μ : Measure E inst✝ : μ.IsAddHaarMeasure s : Submodule ℝ E hs : s ≠ ⊤ x : E hx : x ∉ s c : ℝ cpos : 0 < c cone : c < 1 A✝ : Bornology.IsBounded (range fun n => c ^ n • x) m n : ℕ hmn : m ≠ n y : E hym : -(c ^ m • x) + y ∈ s hyn : -(c ^ n • x) + y ∈ s A : (c ^ n - c ^ m) • x ∈ s ⊢ c ^ n - c ^ m ≠ 0
simpa only [sub_eq_zero, Ne] using (pow_right_strictAnti₀ cpos cone).injective.ne hmn.symm
no goals
0c3f2ca004ff3b96
Std.Tactic.BVDecide.LRAT.Internal.limplies_unsat
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/LRAT/Internal/Entails.lean
theorem limplies_unsat {α : Type u} {σ1 : Type v} {σ2 : Type w} [Entails α σ1] [Entails α σ2] (f1 : σ1) (f2 : σ2) (h : Limplies α f2 f1) : Unsatisfiable α f1 → Unsatisfiable α f2
α : Type u σ1 : Type v σ2 : Type w inst✝¹ : Entails α σ1 inst✝ : Entails α σ2 f1 : σ1 f2 : σ2 h : Limplies α f2 f1 f1_unsat : Unsatisfiable α f1 a : α → Bool a_entails_f2 : a ⊨ f2 ⊢ False
exact f1_unsat a <| h a a_entails_f2
no goals
7bb96243a6e45cc8
LaurentPolynomial.leftInverse_trunc_toLaurent
Mathlib/Algebra/Polynomial/Laurent.lean
theorem leftInverse_trunc_toLaurent : Function.LeftInverse (trunc : R[T;T⁻¹] → R[X]) Polynomial.toLaurent
case refine_2 R : Type u_1 inst✝ : Semiring R f : R[X] ⊢ ∀ (n : ℕ) (a : R), trunc (toLaurent ((monomial n) a)) = (monomial n) a
intro n r
case refine_2 R : Type u_1 inst✝ : Semiring R f : R[X] n : ℕ r : R ⊢ trunc (toLaurent ((monomial n) r)) = (monomial n) r
b85722c5169ce13e
DedekindDomain.ProdAdicCompletions.IsFiniteAdele.zero
Mathlib/RingTheory/DedekindDomain/FiniteAdeleRing.lean
theorem zero : (0 : K_hat R K).IsFiniteAdele
R : Type u_1 K : Type u_2 inst✝⁴ : CommRing R inst✝³ : IsDedekindDomain R inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K ⊢ {v | 0 ∉ adicCompletionIntegers K v} = ∅
ext v
case h R : Type u_1 K : Type u_2 inst✝⁴ : CommRing R inst✝³ : IsDedekindDomain R inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K v : HeightOneSpectrum R ⊢ v ∈ {v | 0 ∉ adicCompletionIntegers K v} ↔ v ∈ ∅
dfa7b46906b35ef2
ProbabilityTheory.IsMeasurableRatCDF.stieltjesFunction_le_one
Mathlib/Probability/Kernel/Disintegration/MeasurableStieltjes.lean
lemma IsMeasurableRatCDF.stieltjesFunction_le_one (a : α) (x : ℝ) : hf.stieltjesFunction a x ≤ 1
case intro α : Type u_1 f : α → ℚ → ℝ inst✝ : MeasurableSpace α hf : IsMeasurableRatCDF f a : α x : ℝ r : ℚ hrx : x < ↑r ⊢ ↑(hf.stieltjesFunction a) x ≤ 1
rw [← StieltjesFunction.iInf_rat_gt_eq]
case intro α : Type u_1 f : α → ℚ → ℝ inst✝ : MeasurableSpace α hf : IsMeasurableRatCDF f a : α x : ℝ r : ℚ hrx : x < ↑r ⊢ ⨅ r, ↑(hf.stieltjesFunction a) ↑↑r ≤ 1
969ac33d4dcd9898
erase_eq_iff
Mathlib/Combinatorics/SetFamily/FourFunctions.lean
private lemma erase_eq_iff (hs : a ∉ s) : t.erase a = s ↔ t = s ∨ t = insert a s
case neg α : Type u_1 inst✝ : DecidableEq α a : α s t : Finset α hs : a ∉ s ht : a ∉ t ⊢ t.erase a = s ↔ t = s ∨ t = insert a s
simp [ne_of_mem_of_not_mem', erase_eq_iff_eq_insert, *]
case neg α : Type u_1 inst✝ : DecidableEq α a : α s t : Finset α hs : a ∉ s ht : a ∉ t ⊢ t = insert a s → t = s
a6760e58bbc205dd
HahnSeries.coeff_orderTop_ne
Mathlib/RingTheory/HahnSeries/Basic.lean
theorem coeff_orderTop_ne {x : HahnSeries Γ R} {g : Γ} (hg : x.orderTop = g) : x.coeff g ≠ 0
Γ : Type u_1 R : Type u_3 inst✝¹ : PartialOrder Γ inst✝ : Zero R x : HahnSeries Γ R g : Γ hg : x.orderTop = ↑g ⊢ x.orderTop ≠ ⊤
simp_all only [ne_eq, WithTop.coe_ne_top, not_false_eq_true]
no goals
bb1d2cdc417587d8
IsPreconnected.union'
Mathlib/Topology/Connected/Basic.lean
theorem IsPreconnected.union' {s t : Set α} (H : (s ∩ t).Nonempty) (hs : IsPreconnected s) (ht : IsPreconnected t) : IsPreconnected (s ∪ t)
case intro.intro α : Type u inst✝ : TopologicalSpace α s t : Set α hs : IsPreconnected s ht : IsPreconnected t x : α hxs : x ∈ s hxt : x ∈ t ⊢ IsPreconnected (s ∪ t)
exact hs.union x hxs hxt ht
no goals
a2c85e15ef4c078b
Ordnode.Valid'.node4L
Mathlib/Data/Ordmap/Ordset.lean
theorem Valid'.node4L {l} {x : α} {m} {y : α} {r o₁ o₂} (hl : Valid' o₁ l x) (hm : Valid' x m y) (hr : Valid' (↑y) r o₂) (Hm : 0 < size m) (H : size l = 0 ∧ size m = 1 ∧ size r ≤ 1 ∨ 0 < size l ∧ ratio * size r ≤ size m ∧ delta * size l ≤ size m + size r ∧ 3 * (size m + size r) ≤ 16 * size l + 9 ∧ size m ≤ delta * size r) : Valid' o₁ (@node4L α l x m y r) o₂
α : Type u_1 inst✝ : Preorder α l : Ordnode α x y : α r : Ordnode α o₁ : WithBot α o₂ : WithTop α hl : Valid' o₁ l ↑x hr : Valid' (↑y) r o₂ s : ℕ ml : Ordnode α z : α mr : Ordnode α hm : Valid' (↑x) (Ordnode.node s ml z mr) ↑y Hm : 0 < (Ordnode.node s ml z mr).size l0 : 0 < l.size mr₁ : ratio * r.size ≤ ml.size + mr.size + 1 lr₁ : delta * l.size ≤ ml.size + mr.size + 1 + r.size lr₂ : 3 * (ml.size + mr.size + 1 + r.size) ≤ 16 * l.size + 9 mr₂ : ml.size + mr.size + 1 ≤ delta * r.size r0 : r.size > 0 mm : ¬ml.size + mr.size ≤ 1 mm₁ : ml.size ≤ delta * mr.size mm₂ : mr.size ≤ delta * ml.size ml0 : ml.size > 0 this✝ : delta * (ratio * l.size) ≤ ratio * (ml.size + mr.size + 1) + ratio * r.size this : delta * (ratio * l.size) ≤ ratio.succ * (ml.size + mr.size + 1) ⊢ 2 * l.size ≤ ml.size + mr.size + 1
exact (mul_le_mul_left (by decide)).1 this
no goals
4d0cc9fa23e9caa2
MonoidHom.exponent_dvd
Mathlib/GroupTheory/Exponent.lean
theorem MonoidHom.exponent_dvd {F M₁ M₂ : Type*} [Monoid M₁] [Monoid M₂] [FunLike F M₁ M₂] [MonoidHomClass F M₁ M₂] {f : F} (hf : Function.Surjective f) : exponent M₂ ∣ exponent M₁
case intro F : Type u_1 M₁ : Type u_2 M₂ : Type u_3 inst✝³ : Monoid M₁ inst✝² : Monoid M₂ inst✝¹ : FunLike F M₁ M₂ inst✝ : MonoidHomClass F M₁ M₂ f : F hf : Function.Surjective ⇑f m₁ : M₁ ⊢ f m₁ ^ exponent M₁ = 1
rw [← map_pow, pow_exponent_eq_one, map_one]
no goals
1422a75d8bf15951
String.ltb_cons_addChar
Mathlib/Data/String/Basic.lean
theorem ltb_cons_addChar (c : Char) (cs₁ cs₂ : List Char) (i₁ i₂ : Pos) : ltb ⟨⟨c :: cs₁⟩, i₁ + c⟩ ⟨⟨c :: cs₂⟩, i₂ + c⟩ = ltb ⟨⟨cs₁⟩, i₁⟩ ⟨⟨cs₂⟩, i₂⟩
c : Char cs₁ cs₂ : List Char i₁ i₂ : Pos ⊢ ltb { s := { data := c :: cs₁ }, i := i₁ + c } { s := { data := c :: cs₂ }, i := i₂ + c } = ltb { s := { data := cs₁ }, i := i₁ } { s := { data := cs₂ }, i := i₂ }
apply ltb.inductionOn ⟨⟨cs₁⟩, i₁⟩ ⟨⟨cs₂⟩, i₂⟩ (motive := fun ⟨⟨cs₁⟩, i₁⟩ ⟨⟨cs₂⟩, i₂⟩ ↦ ltb ⟨⟨c :: cs₁⟩, i₁ + c⟩ ⟨⟨c :: cs₂⟩, i₂ + c⟩ = ltb ⟨⟨cs₁⟩, i₁⟩ ⟨⟨cs₂⟩, i₂⟩) <;> simp only <;> intro ⟨cs₁⟩ ⟨cs₂⟩ i₁ i₂ <;> intros <;> (conv => lhs; unfold ltb) <;> (conv => rhs; unfold ltb) <;> simp only [Iterator.hasNext_cons_addChar, ite_false, ite_true, *, reduceCtorEq]
case ind c : Char cs₁✝ cs₂✝ : List Char i₁✝ i₂✝ : Pos cs₁ cs₂ : List Char i₁ i₂ : Pos a✝³ : { s := { data := cs₂ }, i := i₂ }.hasNext = true a✝² : { s := { data := cs₁ }, i := i₁ }.hasNext = true a✝¹ : { data := cs₁ }.get i₁ = { data := cs₂ }.get i₂ a✝ : ltb { s := { data := c :: { s := { data := cs₁ }, i := i₁ }.next.1.data }, i := { s := { data := cs₁ }, i := i₁ }.next.i + c } { s := { data := c :: { s := { data := cs₂ }, i := i₂ }.next.1.data }, i := { s := { data := cs₂ }, i := i₂ }.next.i + c } = ltb { s := { data := { s := { data := cs₁ }, i := i₁ }.next.1.data }, i := { s := { data := cs₁ }, i := i₁ }.next.i } { s := { data := { s := { data := cs₂ }, i := i₂ }.next.1.data }, i := { s := { data := cs₂ }, i := i₂ }.next.i } ⊢ (if { s := { data := c :: cs₁ }, i := i₁ + c }.curr = { s := { data := c :: cs₂ }, i := i₂ + c }.curr then ltb { s := { data := c :: cs₁ }, i := i₁ + c }.next { s := { data := c :: cs₂ }, i := i₂ + c }.next else decide ({ s := { data := c :: cs₁ }, i := i₁ + c }.curr < { s := { data := c :: cs₂ }, i := i₂ + c }.curr)) = if { s := { data := cs₁ }, i := i₁ }.curr = { s := { data := cs₂ }, i := i₂ }.curr then ltb { s := { data := cs₁ }, i := i₁ }.next { s := { data := cs₂ }, i := i₂ }.next else decide ({ s := { data := cs₁ }, i := i₁ }.curr < { s := { data := cs₂ }, i := i₂ }.curr) case eq c : Char cs₁✝ cs₂✝ : List Char i₁✝ i₂✝ : Pos cs₁ cs₂ : List Char i₁ i₂ : Pos a✝² : { s := { data := cs₂ }, i := i₂ }.hasNext = true a✝¹ : { s := { data := cs₁ }, i := i₁ }.hasNext = true a✝ : ¬{ data := cs₁ }.get i₁ = { data := cs₂ }.get i₂ ⊢ (if { s := { data := c :: cs₁ }, i := i₁ + c }.curr = { s := { data := c :: cs₂ }, i := i₂ + c }.curr then ltb { s := { data := c :: cs₁ }, i := i₁ + c }.next { s := { data := c :: cs₂ }, i := i₂ + c }.next else decide ({ s := { data := c :: cs₁ }, i := i₁ + c }.curr < { s := { data := c :: cs₂ }, i := i₂ + c }.curr)) = if { s := { data := cs₁ }, i := i₁ }.curr = { s := { data := cs₂ }, i := i₂ }.curr then ltb { s := { data := cs₁ }, i := i₁ }.next { s := { data := cs₂ }, i := i₂ }.next else decide ({ s := { data := cs₁ }, i := i₁ }.curr < { s := { data := cs₂ }, i := i₂ }.curr)
335ab19a00638e55
top_le_span_of_aux
Mathlib/LinearAlgebra/Basis/Exact.lean
private lemma top_le_span_of_aux (v : κ ⊕ σ → M) (hg : Function.Surjective g) (hslzero : ∀ i, s (v (.inl i)) = 0) (hli : LinearIndependent R (s ∘ v ∘ .inr)) (hsp : ⊤ ≤ Submodule.span R (Set.range v)) : ⊤ ≤ Submodule.span R (Set.range <| g ∘ v ∘ .inl)
case intro.inr R : Type u_1 M : Type u_2 K : Type u_3 P : Type u_4 inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup K inst✝³ : AddCommGroup P inst✝² : Module R M inst✝¹ : Module R K inst✝ : Module R P f : K →ₗ[R] M g : M →ₗ[R] P s : M →ₗ[R] K hs : s ∘ₗ f = LinearMap.id hfg : Function.Exact ⇑f ⇑g κ : Type u_6 σ : Type u_7 v : κ ⊕ σ → M hg : Function.Surjective ⇑g hslzero : ∀ (i : κ), s (v (Sum.inl i)) = 0 hli : LinearIndependent R (⇑s ∘ v ∘ Sum.inr) hsp : ⊤ ≤ Submodule.span R (Set.range v) m : M this : ∀ {R : Type u_1} {M : Type u_2} {K : Type u_3} {P : Type u_4} [inst : Ring R] [inst_1 : AddCommGroup M] [inst_2 : AddCommGroup K] [inst_3 : AddCommGroup P] [inst_4 : Module R M] [inst_5 : Module R K] [inst_6 : Module R P] {f : K →ₗ[R] M} {g : M →ₗ[R] P} {s : M →ₗ[R] K}, s ∘ₗ f = LinearMap.id → Function.Exact ⇑f ⇑g → ∀ {κ : Type u_6} {σ : Type u_7} (v : κ ⊕ σ → M), Function.Surjective ⇑g → (∀ (i : κ), s (v (Sum.inl i)) = 0) → LinearIndependent R (⇑s ∘ v ∘ Sum.inr) → ⊤ ≤ Submodule.span R (Set.range v) → ∀ m ∈ LinearMap.ker s, g m ∈ Submodule.span R (Set.range (⇑g ∘ v ∘ Sum.inl)) h : m ∉ LinearMap.ker s x : M := f (s m) ⊢ g (m - f (s m)) ∈ Submodule.span R (Set.range (⇑g ∘ v ∘ Sum.inl))
apply this hs hfg v hg hslzero hli hsp
case intro.inr.h R : Type u_1 M : Type u_2 K : Type u_3 P : Type u_4 inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup K inst✝³ : AddCommGroup P inst✝² : Module R M inst✝¹ : Module R K inst✝ : Module R P f : K →ₗ[R] M g : M →ₗ[R] P s : M →ₗ[R] K hs : s ∘ₗ f = LinearMap.id hfg : Function.Exact ⇑f ⇑g κ : Type u_6 σ : Type u_7 v : κ ⊕ σ → M hg : Function.Surjective ⇑g hslzero : ∀ (i : κ), s (v (Sum.inl i)) = 0 hli : LinearIndependent R (⇑s ∘ v ∘ Sum.inr) hsp : ⊤ ≤ Submodule.span R (Set.range v) m : M this : ∀ {R : Type u_1} {M : Type u_2} {K : Type u_3} {P : Type u_4} [inst : Ring R] [inst_1 : AddCommGroup M] [inst_2 : AddCommGroup K] [inst_3 : AddCommGroup P] [inst_4 : Module R M] [inst_5 : Module R K] [inst_6 : Module R P] {f : K →ₗ[R] M} {g : M →ₗ[R] P} {s : M →ₗ[R] K}, s ∘ₗ f = LinearMap.id → Function.Exact ⇑f ⇑g → ∀ {κ : Type u_6} {σ : Type u_7} (v : κ ⊕ σ → M), Function.Surjective ⇑g → (∀ (i : κ), s (v (Sum.inl i)) = 0) → LinearIndependent R (⇑s ∘ v ∘ Sum.inr) → ⊤ ≤ Submodule.span R (Set.range v) → ∀ m ∈ LinearMap.ker s, g m ∈ Submodule.span R (Set.range (⇑g ∘ v ∘ Sum.inl)) h : m ∉ LinearMap.ker s x : M := f (s m) ⊢ m - f (s m) ∈ LinearMap.ker s
d124f5729aeaf148
WeierstrassCurve.Φ_four
Mathlib/AlgebraicGeometry/EllipticCurve/DivisionPolynomial/Basic.lean
@[simp] lemma Φ_four : W.Φ 4 = X * W.preΨ₄ ^ 2 * W.Ψ₂Sq - W.Ψ₃ * (W.preΨ₄ * W.Ψ₂Sq ^ 2 - W.Ψ₃ ^ 3)
R : Type r inst✝ : CommRing R W : WeierstrassCurve R ⊢ W.Φ 4 = X * W.preΨ₄ ^ 2 * W.Ψ₂Sq - W.Ψ₃ * (W.preΨ₄ * W.Ψ₂Sq ^ 2 - W.Ψ₃ ^ 3)
rw [show 4 = ((3 : ℕ) + 1 : ℤ) by rfl, Φ_ofNat, preΨ'_four, if_neg <| by decide, show 3 + 2 = 2 * 2 + 1 by rfl, preΨ'_odd, preΨ'_four, preΨ'_two, if_pos Even.zero, preΨ'_one, preΨ'_three, if_pos Even.zero, if_neg <| by decide]
R : Type r inst✝ : CommRing R W : WeierstrassCurve R ⊢ X * W.preΨ₄ ^ 2 * W.Ψ₂Sq - (W.preΨ₄ * 1 ^ 3 * W.Ψ₂Sq ^ 2 - 1 * W.Ψ₃ ^ 3 * 1) * W.Ψ₃ * 1 = X * W.preΨ₄ ^ 2 * W.Ψ₂Sq - W.Ψ₃ * (W.preΨ₄ * W.Ψ₂Sq ^ 2 - W.Ψ₃ ^ 3)
3f9ac080aad09b8e
ComplexShape.boundaryLE_embeddingUpIntLE_iff
Mathlib/Algebra/Homology/Embedding/Boundary.lean
lemma boundaryLE_embeddingUpIntLE_iff (p : ℤ) (n : ℕ) : (embeddingUpIntGE p).BoundaryGE n ↔ n = 0
case mpr.right p : ℤ i : ℕ hi : (up ℤ).Rel ((embeddingUpIntGE p).f i) ((embeddingUpIntGE p).f 0) ⊢ False
dsimp at hi
case mpr.right p : ℤ i : ℕ hi : p + ↑i + 1 = p + 0 ⊢ False
14489894ffc1fd9c
VitaliFamily.exists_measurable_supersets_limRatio
Mathlib/MeasureTheory/Covering/Differentiation.lean
theorem exists_measurable_supersets_limRatio {p q : ℝ≥0} (hpq : p < q) : ∃ a b, MeasurableSet a ∧ MeasurableSet b ∧ {x | v.limRatio ρ x < p} ⊆ a ∧ {x | (q : ℝ≥0∞) < v.limRatio ρ x} ⊆ b ∧ μ (a ∩ b) = 0
α : Type u_1 inst✝⁴ : PseudoMetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ρ a / μ a) (v.filterAt x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | v.limRatio ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < v.limRatio ρ x} ∩ o n m n : ℕ I✝ : (ρ + μ) (u m) ≠ ⊤ J : (ρ + μ) (w n) ≠ ⊤ x : α hx : x ∈ u m ∩ toMeasurable (ρ + μ) (w n) L : Tendsto (fun a => ρ a / μ a) (v.filterAt x) (𝓝 (v.limRatio ρ x)) I : ∀ᶠ (b : Set α) in v.filterAt x, ρ b / μ b < ↑p a : Set α ha : ρ a / μ a < ↑p ⊢ ρ a ≤ (p • μ) a
rw [coe_nnreal_smul_apply]
α : Type u_1 inst✝⁴ : PseudoMetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ρ a / μ a) (v.filterAt x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | v.limRatio ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < v.limRatio ρ x} ∩ o n m n : ℕ I✝ : (ρ + μ) (u m) ≠ ⊤ J : (ρ + μ) (w n) ≠ ⊤ x : α hx : x ∈ u m ∩ toMeasurable (ρ + μ) (w n) L : Tendsto (fun a => ρ a / μ a) (v.filterAt x) (𝓝 (v.limRatio ρ x)) I : ∀ᶠ (b : Set α) in v.filterAt x, ρ b / μ b < ↑p a : Set α ha : ρ a / μ a < ↑p ⊢ ρ a ≤ ↑p * μ a
f2acb3dc8c3a0a55
Array.findIdx?_mkArray
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/Find.lean
theorem findIdx?_mkArray : (mkArray n a).findIdx? p = if 0 < n ∧ p a then some 0 else none
n : Nat α✝ : Type u_1 a : α✝ p : α✝ → Bool ⊢ List.findIdx? p (List.replicate n a) = if 0 < n ∧ p a = true then some 0 else none
simp
no goals
751156ffdaeb598a
Convex.mem_smul_of_zero_mem
Mathlib/Analysis/Convex/Basic.lean
theorem Convex.mem_smul_of_zero_mem (h : Convex 𝕜 s) {x : E} (zero_mem : (0 : E) ∈ s) (hx : x ∈ s) {t : 𝕜} (ht : 1 ≤ t) : x ∈ t • s
𝕜 : Type u_1 E : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E h : Convex 𝕜 s x : E zero_mem : 0 ∈ s hx : x ∈ s t : 𝕜 ht : 1 ≤ t ⊢ x ∈ t • s
rw [mem_smul_set_iff_inv_smul_mem₀ (zero_lt_one.trans_le ht).ne']
𝕜 : Type u_1 E : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E h : Convex 𝕜 s x : E zero_mem : 0 ∈ s hx : x ∈ s t : 𝕜 ht : 1 ≤ t ⊢ t⁻¹ • x ∈ s
e77250cfc151c423
ProbabilityTheory.lintegral_exponentialPDF_eq_antiDeriv
Mathlib/Probability/Distributions/Exponential.lean
lemma lintegral_exponentialPDF_eq_antiDeriv {r : ℝ} (hr : 0 < r) (x : ℝ) : ∫⁻ y in Iic x, exponentialPDF r y = ENNReal.ofReal (if 0 ≤ x then 1 - exp (-(r * x)) else 0)
r : ℝ hr : 0 < r x : ℝ h : 0 ≤ x this : ∫ (a : ℝ) in Ι 0 x, r * rexp (-(r * a)) = ∫ (a : ℝ) in 0 ..x, r * rexp (-(r * a)) ⊢ ∫ (a : ℝ) in Icc 0 x, r * rexp (-(r * a)) = (ENNReal.ofReal (1 - rexp (-(r * x)))).toReal
rw [integral_Icc_eq_integral_Ioc, ← uIoc_of_le h, this]
r : ℝ hr : 0 < r x : ℝ h : 0 ≤ x this : ∫ (a : ℝ) in Ι 0 x, r * rexp (-(r * a)) = ∫ (a : ℝ) in 0 ..x, r * rexp (-(r * a)) ⊢ ∫ (a : ℝ) in 0 ..x, r * rexp (-(r * a)) = (ENNReal.ofReal (1 - rexp (-(r * x)))).toReal
8690d2dfbd86b4ca
CauSeq.mul_not_equiv_zero
Mathlib/Algebra/Order/CauSeq/Basic.lean
theorem mul_not_equiv_zero {f g : CauSeq _ abv} (hf : ¬f ≈ 0) (hg : ¬g ≈ 0) : ¬f * g ≈ 0 := fun (this : LimZero (f * g - 0)) => by have hlz : LimZero (f * g)
α : Type u_1 β : Type u_2 inst✝² : LinearOrderedField α inst✝¹ : Ring β abv : β → α inst✝ : IsAbsoluteValue abv f g : CauSeq β abv hf : ¬f ≈ 0 hg : ¬g ≈ 0 this : (f * g - 0).LimZero hlz : (f * g).LimZero ⊢ ¬f.LimZero
simpa using show ¬LimZero (f - 0) from hf
no goals
506124b1239a5e26
FirstOrder.Field.realize_genericMonicPolyHasRoot
Mathlib/ModelTheory/Algebra/Field/IsAlgClosed.lean
theorem realize_genericMonicPolyHasRoot [Field K] [CompatibleRing K] (n : ℕ) : K ⊨ genericMonicPolyHasRoot n ↔ ∀ p : { p : K[X] // p.Monic ∧ p.natDegree = n }, ∃ x, p.1.eval x = 0
K : Type u_1 inst✝¹ : Field K inst✝ : CompatibleRing K n : ℕ x✝ : DecidableEq K := Classical.decEq K ⊢ K ⊨ genericMonicPolyHasRoot n ↔ ∀ (p : { p // p.Monic ∧ p.natDegree = n }), ∃ x, eval x ↑p = 0
rw [Equiv.forall_congr_left ((monicEquivDegreeLT n).trans (degreeLTEquiv K n).toEquiv)]
K : Type u_1 inst✝¹ : Field K inst✝ : CompatibleRing K n : ℕ x✝ : DecidableEq K := Classical.decEq K ⊢ K ⊨ genericMonicPolyHasRoot n ↔ ∀ (b : Fin n → K), ∃ x, eval x ↑(((monicEquivDegreeLT n).trans (degreeLTEquiv K n).toEquiv).symm b) = 0
321775160522cd62
Std.Tactic.BVDecide.LRAT.Internal.lratCheckerSound
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/LRAT/Internal/LRATCheckerSound.lean
theorem lratCheckerSound [DecidableEq α] [Clause α β] [Entails α σ] [Formula α β σ] (f : σ) (f_readyForRupAdd : ReadyForRupAdd f) (f_readyForRatAdd : ReadyForRatAdd f) (prf : List (Action β α)) (prfWellFormed : ∀ a : Action β α, a ∈ prf → WellFormedAction a) : lratChecker f prf = success → Unsatisfiable α f
α : Type u_1 β : Type u_2 σ : Type u_3 inst✝³ : DecidableEq α inst✝² : Clause α β inst✝¹ : Entails α σ inst✝ : Formula α β σ action : Action β α restPrf : List (Action β α) ih : ∀ (f : σ), ReadyForRupAdd f → ReadyForRatAdd f → (∀ (a : Action β α), a ∈ restPrf → WellFormedAction a) → lratChecker f restPrf = success → Unsatisfiable α f f : σ f_readyForRupAdd : ReadyForRupAdd f f_readyForRatAdd : ReadyForRatAdd f actionWellFormed : WellFormedAction action restPrfWellFormed : ∀ (a : Action β α), a ∈ restPrf → WellFormedAction a prf✝ : List (Action β α) id : Nat rupHints : Array Nat restPrf' : List (Action β α) heq✝ : action :: restPrf = Action.addEmpty id rupHints :: restPrf' rupAddSuccess : (performRupAdd f empty rupHints).snd = true ⊢ Unsatisfiable α f
exact addEmptyCaseSound f f_readyForRupAdd rupHints rupAddSuccess
no goals
daa30b736e5664b3
InnerProductGeometry.sin_angle_sub_add_angle_sub_rev_eq_sin_angle
Mathlib/Geometry/Euclidean/Triangle.lean
theorem sin_angle_sub_add_angle_sub_rev_eq_sin_angle {x y : V} (hx : x ≠ 0) (hy : y ≠ 0) : Real.sin (angle x (x - y) + angle y (y - x)) = Real.sin (angle x y)
case neg V : Type u_1 inst✝¹ : NormedAddCommGroup V inst✝ : InnerProductSpace ℝ V x y : V hx : x ≠ 0 hy : y ≠ 0 hxy : ¬x = y hxn : ‖x‖ ≠ 0 ⊢ Real.sin (angle x (x - y)) * (inner y (y - x) / (‖y‖ * ‖y - x‖)) + inner x (x - y) / (‖x‖ * ‖x - y‖) * Real.sin (angle y (y - x)) = Real.sin (angle x y)
have hyn : ‖y‖ ≠ 0 := fun h => hy (norm_eq_zero.1 h)
case neg V : Type u_1 inst✝¹ : NormedAddCommGroup V inst✝ : InnerProductSpace ℝ V x y : V hx : x ≠ 0 hy : y ≠ 0 hxy : ¬x = y hxn : ‖x‖ ≠ 0 hyn : ‖y‖ ≠ 0 ⊢ Real.sin (angle x (x - y)) * (inner y (y - x) / (‖y‖ * ‖y - x‖)) + inner x (x - y) / (‖x‖ * ‖x - y‖) * Real.sin (angle y (y - x)) = Real.sin (angle x y)
cff8220b46e80476