|
--- |
|
dataset_info: |
|
features: |
|
- name: id |
|
dtype: string |
|
- name: department_name |
|
dtype: string |
|
- name: chm |
|
dtype: |
|
array2_d: |
|
shape: |
|
- 256 |
|
- 256 |
|
dtype: float16 |
|
- name: no_data_percentage |
|
dtype: float32 |
|
- name: crs |
|
dtype: string |
|
- name: transform |
|
dtype: string |
|
- name: bounds |
|
dtype: string |
|
- name: resolution |
|
dtype: float32 |
|
- name: chm_mean_year |
|
dtype: int16 |
|
- name: rgbnir_ndvi_1 |
|
dtype: |
|
array3_d: |
|
shape: |
|
- 5 |
|
- 256 |
|
- 256 |
|
dtype: uint8 |
|
- name: rgbnir_year_1 |
|
dtype: uint16 |
|
- name: rgbnir_ndvi_2 |
|
dtype: |
|
array3_d: |
|
shape: |
|
- 5 |
|
- 256 |
|
- 256 |
|
dtype: uint8 |
|
- name: rgbnir_year_2 |
|
dtype: uint16 |
|
- name: rgbnir_ndvi_3 |
|
dtype: |
|
array3_d: |
|
shape: |
|
- 5 |
|
- 256 |
|
- 256 |
|
dtype: uint8 |
|
- name: rgbnir_year_3 |
|
dtype: uint16 |
|
splits: |
|
- name: train |
|
num_bytes: 880058054404 |
|
num_examples: 785392 |
|
download_size: 730412322573 |
|
dataset_size: 880058054404 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
license: apache-2.0 |
|
pretty_name: PrediTree |
|
tags: |
|
- remote-sensing |
|
- multi-temporal |
|
- multi-spectral |
|
- canopy-height-prediction |
|
- 3-pg |
|
- infrared |
|
- rgb |
|
- model |
|
--- |
|
|
|
# π³ PrediTree: A Multi-Temporal Multi-Spectral Sub-Meter Canopy Height Maps Dataset |
|
|
|
[](https://huggingface.co/datasets/hiyam-d/vhr_canopy_height_allier_50cm_small) |
|
[](https://arxiv.org/) |
|
[](https://www.apache.org/licenses/LICENSE-2.0) |
|
|
|
 |
|
|
|
## π Overview |
|
**PrediTree** is a large-scale **multi-temporal, multi-spectral canopy height dataset** designed for π **remote sensing, forestry monitoring, and environmental analysis**. |
|
All imagery and canopy height products are **spatially aligned** at **0.5 m resolution**, enabling fine-grained tree growth prediction and ecological studies. |
|
|
|
--- |
|
|
|
## β¨ Key Highlights |
|
- π **Multi-Temporal**: 3 yearly acquisitions (RGB + NIR + NDVI) |
|
- π **Multi-Spectral**: High-resolution optical imagery including RGB, NIR, and derived NDVI |
|
- π² **Canopy Height Models (CHM)**: LiDAR-based data |
|
- π **Resolution**: 0.5 m |
|
- π **Coverage**: France-wide dataset with departmental splits |
|
- π¦ **Scale**: 785k training patches, ~880 GB of data |
|
|
|
--- |
|
|
|
## π Dataset Structure |
|
Each sample contains: |
|
| Column | Description | |
|
|--------|-------------| |
|
| `chm` | π² Canopy Height Model (m) | |
|
| `rgbnir_ndvi_[1-3]` | πΈ RGB + NIR + NDVI imagery for three years (5 bands, 256Γ256) | |
|
| `rgbnir_year_[1-3]` | π
Acquisition year for imagery | |
|
| `chm_mean_year` | ποΈ Average canopy height across years | |
|
| `no_data_percentage` | β % missing pixels | |
|
| `crs`, `transform`, `bounds`, `resolution` | πΊοΈ Geospatial metadata | |
|
|
|
--- |
|
|
|
## π Dataset Specs |
|
```yaml |
|
splits: |
|
train: |
|
num_examples: 785,392 |
|
256_256px_subtile_examples: 3,141,568 |
|
size: 880 GB |
|
resolution: 0.5 m |
|
dataset_size: 880 GB |
|
license: apache-2.0 |
|
``` |
|
|
|
--- |
|
|
|
## π¬ Scientific Context |
|
PrediTree is the **first CHM dataset to offer multi-temporal sub-meter CHM-aligned imagery specifically designed for training and evaluating tree height prediction models**. |
|
|
|
 |
|
|
|
--- |
|
|
|
## π Citation |
|
If you use this dataset, please cite: |
|
|
|
```bibtex |
|
@inproceedings{debary2025preditree, |
|
title={PrediTree: A Multi-Temporal Sub-meter Dataset of Multi-Spectral Imagery Aligned With Canopy Height Maps}, |
|
author={Debary, Hiyam and Fiaz, Mustansar and Klein, Levente}, |
|
booktitle={GAIA}, |
|
year={2025}, |
|
url={https://huggingface.co/datasets/hiyam-d/PrediTree} |
|
} |
|
``` |
|
|
|
--- |
|
|
|
## π Tags |
|
`remote-sensing` Β· `multi-temporal` Β· `multi-spectral` Β· `canopy-height-prediction` Β· `infrared` Β· `rgb` Β· `model` |