File size: 6,394 Bytes
a15f109 c35da9d 2dd48e3 c35da9d 2dd48e3 c35da9d a15f109 2dd48e3 a15f109 2dd48e3 a15f109 c35da9d a15f109 2dd48e3 8f0c721 feadf4e 8f0c721 0657344 8f0c721 0657344 8f0c721 da8c0f0 8f0c721 feadf4e 8f0c721 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
---
dataset_info:
- config_name: full
features:
- name: image
dtype: image
- name: actuated_angle
struct:
- name: '0'
dtype: int32
- name: '1'
dtype: int32
- name: '2'
dtype: int32
- name: '3'
dtype: int32
- name: '4'
dtype: int32
- name: '5'
dtype: int32
- name: '6'
dtype: int32
- name: '7'
dtype: int32
- name: '8'
dtype: int32
- name: '9'
dtype: int32
- name: '10'
dtype: int32
- name: '11'
dtype: int32
- name: '12'
dtype: int32
- name: '13'
dtype: int32
- name: '14'
dtype: int32
- name: '15'
dtype: int32
splits:
- name: train
num_bytes: 153291676475
num_examples: 135236
download_size: 153306274200
dataset_size: 153291676475
- config_name: small
features:
- name: image
dtype: image
- name: actuated_angle
struct:
- name: '0'
dtype: int32
- name: '1'
dtype: int32
- name: '2'
dtype: int32
- name: '3'
dtype: int32
- name: '4'
dtype: int32
- name: '5'
dtype: int32
- name: '6'
dtype: int32
- name: '7'
dtype: int32
- name: '8'
dtype: int32
- name: '9'
dtype: int32
- name: '10'
dtype: int32
- name: '11'
dtype: int32
- name: '12'
dtype: int32
- name: '13'
dtype: int32
- name: '14'
dtype: int32
- name: '15'
dtype: int32
splits:
- name: train
num_bytes: 22669945934
num_examples: 20000
download_size: 22672135072
dataset_size: 22669945934
configs:
- config_name: full
data_files:
- split: train
path: full/train-*
- config_name: small
data_files:
- split: train
path: small/train-*
default: true
license: mit
task_categories:
- robotics
- reinforcement-learning
tags:
- robotics
- humanoid
- reinforcement
- learning
size_categories:
- 100K<n<1M
---
# 🤖 Open Humanoid Actuated Face Dataset
<p align="center">
<img src="https://huggingface.co/datasets/iamirulofficial/Test2/resolve/main/imgesFace.png" alt="Sample Face Image" width="400"/>
</p>
## Dataset Summary
The **Open Humanoid Actuated Face Dataset** is designed for researchers working on
facial‑actuation control, robotics, reinforcement learning, and human–computer interaction.
* **Origin** – collected during a reinforcement‑learning (RL) training loop whose objective was to reproduce human facial expressions.
* **Platform** – a modified **i2Head InMoov** humanoid head with a silicone skin.
* **Control** – **16 actuators** driving facial features and eyeballs.
* **Pairing** – each example contains the raw RGB image **and** the exact actuator angles that produced it.
---
## Dataset Structure
| Field | Type | Description |
|-----------------|---------------|---------------------------------------------------------------|
| `image` | `Image` | RGB capture of the humanoid face (resolution **1280x720**). |
| `actuated_angle`| `struct` | 16 integer key - values (`"0"`, `"1"` .. so on) |
### Actuator Index Reference
| Idx | Actuator | Idx | Actuator |
|:---:|--------------------------------|:---:|-------------------------|
| 00 | Cheek – Left | 08 | Eyelid Upper – Right |
| 01 | Cheek – Right | 09 | Eyelid Lower – Right |
| 02 | Eyeball Sideways – Left | 10 | Forehead – Right |
| 03 | Eyeball Up/Down – Left | 11 | Forehead – Left |
| 04 | Eyelid Upper – Left | 12 | Upper Nose |
| 05 | Eyelid Lower – Left | 13 | Eyebrow – Right |
| 06 | Eyeball Up/Down – Right | 14 | Jaw |
| 07 | Eyeball Sideways – Right | 15 | Eyebrow – Left |
---
### Actuator Mapping Images
| Full‑Face Map | Eye‑Only Map |
|:-------------:|:-----------:|
| <br><img src="https://huggingface.co/datasets/iamirulofficial/Test2/resolve/main/Screenshot%202025-05-02%20at%204.04.28%E2%80%AFPM.png" width="50%"/> | <br><img src="https://huggingface.co/datasets/iamirulofficial/Test2/resolve/main/Screenshot%202025-05-02%20at%204.03.56%E2%80%AFPM.png" width="50%"/> |
---
## Dataset Statistics
| Split | Samples | Size |
|-------|---------|------|
| **Train (full)** | **[135k]** | ≈ 153 GB |
| **Train (small)** | 20k | ≈ 22 GB |
---
## Usage Example
```python
from datasets import load_dataset, Image
# load the small subset
ds = load_dataset("infosys/OpenHumnoidActuatedFaceData", name="small", split="train")
ds = ds.cast_column("image", Image()) # decode image bytes ➜ PIL.Image
img = ds[0]["image"]
angles = ds[0]["actuated_angle"] # {'0': 90, '1': 20, ...}
img.show()
print(angles)
````
> **Tip**
> For the full corpus use `name="full"` (may require `streaming=True` once the dataset grows).
---
## Data Collection & RL Setup
A detailed description of the RL pipeline, reward design, and actuator hardware will appear in our upcoming paper (in preparation, 2025). Briefly:
1. **Vision module** extracts target expression keypoints from live human video.
2. **Policy network** predicts 16 actuator set‑points.
3. **Real‑time reward** computes expression similarity + smoothness penalties.
4. Images & angle vectors are logged every *N* steps, forming this dataset.
---
## License
Released under the **MIT License** – free for commercial and non‑commercial use.
---
## Citation
```bibtex
@misc{amirul2025openhumanoidface,
title = {Open Humanoid Actuated Face Dataset},
author = {Amirul et al.},
year = {2025},
url = {https://huggingface.co/datasets/infosys/OpenHumnoidActuatedFaceData}
}
```
---
## Contribution
1. Amirul Islam (amirul.islam@infosys.com)
2. Anant Pande (anant.pande@infosys.com)
3. Allahbaksh Asadullah (allabaksh_asadullah@infosys.com) - Mentor
## Acknowledgements
Big thanks to the Infosys and Mohammed Rafee Tarafdar (CTO, Infosys) for providing us resources to work on this research project and thanks to all the community and everyone who helped us making this possible.
|