title
stringlengths
12
112
published
stringlengths
19
23
url
stringlengths
28
28
video_id
stringlengths
11
11
channel_id
stringclasses
5 values
id
stringlengths
16
31
text
stringlengths
0
596
start
float64
0
37.8k
end
float64
2.18
37.8k
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t1894.0
And we also
1,894
1,898
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t1896.0
want to write leave
1,896
1,900
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t1898.0
equals true.
1,898
1,902
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t1900.0
So this is so that we can see
1,900
1,904
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t1902.0
the
1,902
1,906
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t1904.0
progress bar.
1,904
1,908
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t1906.0
And then we
1,906
1,910
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t1908.0
loop through each batch
1,908
1,912
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t1910.0
that will be generated
1,910
1,914
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t1912.0
by that loop generator.
1,912
1,916
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t1914.0
So for batch in loop.
1,914
1,920
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t1918.0
So now we're in our training loop.
1,918
1,922
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t1920.0
What we want to do here.
1,920
1,924
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t1922.0
Very first thing
1,922
1,926
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t1924.0
is set our
1,924
1,928
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t1926.0
optimizer's gradients to 0.
1,926
1,930
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t1928.0
So obviously in the
1,928
1,932
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t1930.0
very first
1,930
1,934
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t1932.0
loop that it's fine.
1,932
1,936
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t1934.0
It doesn't matter. But every loop after
1,934
1,938
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t1936.0
that our optimizer
1,936
1,940
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t1938.0
will have a set of gradients that have been
1,938
1,942
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t1940.0
calculated from the previous loop. And we need to
1,940
1,944
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t1942.0
reset those.
1,942
1,946
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t1944.0
So we write optim
1,944
1,948
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t1946.0
0grad
1,946
1,950
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t1948.0
and
1,948
1,952
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t1950.0
after that
1,950
1,954
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t1952.0
we can load
1,952
1,956
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t1954.0
in our
1,954
1,958
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t1956.0
batches or our tensors from
1,956
1,960
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t1958.0
our
1,958
1,962
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t1960.0
batch here.
1,960
1,964
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t1962.0
So we want input
1,962
1,966
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t1964.0
IDs equals
1,964
1,968
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t1966.0
a batch.
1,966
1,970
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t1968.0
And we access it like a dictionary.
1,968
1,972
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t1970.0
So we have input IDs.
1,970
1,974
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t1972.0
So input IDs.
1,972
1,976
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t1974.0
And
1,974
1,978
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t1976.0
one other thing that we need to do is our model
1,976
1,980
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t1978.0
is on our GPU. So we need to move
1,978
1,982
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t1980.0
the data that
1,980
1,984
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t1982.0
we're training on to our GPU
1,982
1,986
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t1984.0
as well.
1,984
1,988
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t1986.0
So we just write that.
1,986
1,990
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t1988.0
OK.
1,988
1,992
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t1990.0
And copy
1,990
1,994
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t1992.0
this. So we have
1,992
1,996
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t1994.0
one more.
1,994
1,998
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t1996.0
So we have all
1,996
2,000
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t1998.0
these that we create
1,998
2,002
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t2000.0
up here. So input ID, setting type ID
2,000
2,004
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t2002.0
attention mask and labels. We want
2,002
2,006
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t2004.0
all of those.
2,004
2,008
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t2006.0
So token type IDs
2,006
2,010
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t2008.0
attention
2,008
2,012
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t2010.0
mask
2,010
2,014
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t2012.0
and
2,012
2,016
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t2014.0
labels.
2,014
2,026
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t2024.0
OK. So
2,024
2,028
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t2026.0
initialize our gradients.
2,026
2,030
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t2028.0
We have
2,028
2,032
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t2030.0
pulled in
2,030
2,034
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t2032.0
our tensors and now we can
2,032
2,036
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t2034.0
process them
2,034
2,038
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t2036.0
through our model. So we do model
2,036
2,040
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t2038.0
input IDs.
2,038
2,042
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t2040.0
We have token type
2,040
2,044
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t2042.0
IDs.
2,042
2,050
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t2048.0
We also have the
2,048
2,052
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t2050.0
attention mask.
2,050
2,054
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t2052.0
And we
2,052
2,056
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t2054.0
also have our labels.
2,054
2,058
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t2056.0
OK.
2,056
2,060
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t2058.0
So that
2,058
2,062
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t2060.0
will create
2,060
2,064
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t2062.0
two tensors for us in the outputs.
2,062
2,066
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t2064.0
It will create a logits
2,064
2,068
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t2066.0
tensor which is our prediction.
2,066
2,070
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t2068.0
And it will create a
2,068
2,072
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t2070.0
loss tensor which is the
2,070
2,074
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t2072.0
difference between
2,072
2,076
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t2074.0
our prediction and our labels.
2,074
2,080
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t2078.0
So let's extract that
2,078
2,082
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t2080.0
loss. So we do outputs.loss.
2,080
2,086
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t2084.0
And then we also
2,084
2,088
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t2086.0
after extracting that loss we need to calculate
2,086
2,090
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t2088.0
that this is the overall loss. We need
2,088
2,092
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t2090.0
to calculate the loss for every parameter within
2,090
2,094
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t2092.0
our model so we can optimize on that.
2,092
2,098
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t2096.0
So we just write loss
2,096
2,100
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t2098.0
backward.
2,098
2,102
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t2100.0
Yeah backward.
2,100
2,104
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t2102.0
And then
2,102
2,108
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t2106.0
we do optim step.
2,106
2,110
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t2108.0
And this will
2,108
2,112
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t2110.0
use our optimizer
2,110
2,114
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t2112.0
and take a step to
2,112
2,116
Training BERT #4 - Train With Next Sentence Prediction (NSP)
2021-05-27 16:15:39 UTC
https://youtu.be/x1lAcT3xl5M
x1lAcT3xl5M
UCv83tO5cePwHMt1952IVVHw
x1lAcT3xl5M-t2114.0
optimize based on the loss
2,114
2,118