title
stringlengths
12
112
published
stringlengths
19
23
url
stringlengths
28
28
video_id
stringlengths
11
11
channel_id
stringclasses
5 values
id
stringlengths
16
31
text
stringlengths
0
596
start
float64
0
37.8k
end
float64
2.18
37.8k
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t297.12
So in those cases, you probably don't want to download it all onto your machine.
297.12
309.44
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t305.04
So what you can do instead is you set streaming equal to true.
305.04
315.6
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t309.44
And when streaming is equal to true, you do need to make some changes to your code,
309.44
317.36
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t316.16
which I'll show you.
316.16
322.48
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t318.08
And there are also some things, particularly filtering, which we will cover later on,
318.08
324.32
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t322.48
which we can't do with streaming.
322.48
328.96
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t325.04
But we will just go ahead and for now we're going to use streaming.
325.04
332.32
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t328.96
We'll switch over to not streaming later on.
328.96
338.56
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t332.32
And this creates like a iteratable data set object.
332.32
344.8
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t338.56
And it means that whenever we are calling a specific record within that data set,
338.56
353.76
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t344.8
it is only going to download or store that single record or multiple records in our memory at once.
344.8
355.76
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t353.76
So we're not downloading the data set.
353.76
360.88
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t355.76
We're just processing it as we get, which is, I think, very important.
355.76
363.28
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t360.88
And it is, I think, very useful.
360.88
371.04
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t365.36
Now, you can see here we have two actual subsets within our data.
365.36
377.36
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t371.44
If we want to select a specific subset, all we have to do is rewrite data sets again.
371.44
380.08
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t377.36
So let me actually copy this.
377.36
387.28
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t380.08
So we copy that.
380.08
390.8
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t387.28
And if we just want a subset, we write split.
387.28
395.36
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t392.0
And in this case, it would be train or validation.
392
399.36
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t396.15999999999997
And if I just call execute that.
396.16
402.64
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t399.36
So I'm not going to store that in our data set variable here,
399.36
405.2
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t402.64
because I don't want to use just train.
402.64
409.28
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t405.2
We have this single iterable data set object.
405.2
414.16
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t409.28
So we're just pulling in this single part of it or single subset.
409.28
416.08
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t415.12
And we can also view.
415.12
418.64
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t416.08
So here we can see we have train and validation.
416.08
428
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t418.64
If you want to see it in a more clear way, you can use dictionary syntax.
418.64
430.16
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t428.0
So sorry, data set keys.
428
433.2
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t430.71999999999997
You can use dictionary syntax for most of this.
430.72
434.88
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t433.2
So we have train and validation.
433.2
440.88
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t435.84
Now there's also, so the moment we have our data set,
435.84
442.32
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t440.88
we don't really know anything about it.
440.88
444.24
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t442.32
So we have this train subset.
442.32
447.52
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t444.24
And let's say I want to understand what is in there.
444.24
452.96
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t448.4
So what I can do to start is I write a data set train.
448.4
456.88
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t454.0
And I can write, for example, the data set size.
454
457.68
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t456.88
So how big is it?
456.88
464
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t457.68
Right, data set size, data set, not data size, size.
457.68
465.6
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t464.0
Don't know what I was doing there.
464
472.56
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t466.08
Let me see that we get, so it's like, so 80, about 90, 90 megabytes.
466.08
476.88
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t473.28000000000003
So reasonably big, but it's not anything huge, nothing crazy.
473.28
482.8
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t479.44
We can also, so we have that.
479.44
494
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t482.8
We can also get, if I copy this, you can also get a description.
482.8
502.16
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t500.16
Let me see what the data set is.
500.16
505.36
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t502.16
So SQUAD, I didn't even mention it already,
502.16
508.8
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t505.36
but SQUAD is the Stanford Question Answering Data Set.
505.36
513.28
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t508.8
So use it generally for training Q&A models or testing Q&A models.
508.8
518.56
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t514.88
And you can pause and read that if you want to.
514.88
525.12
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t522.48
And then another thing that is pretty important is
522.48
528.96
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t525.84
what are the features that we have inside here?
525.84
533.6
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t528.96
Now we can also just print out one of the samples,
528.96
536.32
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t534.24
but it's useful to know, I think.
534.24
539.2
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t536.32
And this also gives you data types, so it's kind of useful.
536.32
542.64
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t539.2
So we have ID, title, context, question, and answers.
539.2
546.8
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t543.9200000000001
All of them are strings.
543.92
552.24
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t547.7600000000001
Answers is actually, so within answers we have, it says,
547.76
555.6
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t552.24
Sequency, we can view it as a dictionary.
552.24
560.88
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t556.96
But we have a text, a attribute, and also an answer star attribute.
556.96
563.84
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t561.6
So that's pretty useful to know, I think.
561.6
570
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t563.84
And to view one of our samples,
563.84
572.32
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t570.0
so we have all the features here,
570
575.44
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t572.32
but let's say we just want to see what it actually looks like.
572.32
579.6
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t575.84
We can write data set and we go train.
575.84
585.36
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t580.08
And when we have streaming set to false, we can write this.
580.08
588.88
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t585.36
But because we have streaming set to true, we can't do this.
585.36
592.32
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t588.88
So instead what we have to do is we
588.88
596.16
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t592.32
actually just iterate through the data set.
592.32
599.52
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t596.1600000000001
So we just go for sample in data set.
596.16
604.56
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t602.24
And we just want to print a single sample.
602.24
606.72
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t604.5600000000001
And then I don't want to print anymore,
604.56
608.96
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t606.72
so I'm going to write break after that.
606.72
611.36
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t608.96
So we just print one of those samples.
608.96
615.52
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t612.32
And then we see, okay, we have the ID, we have title.
612.32
621.12
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t615.5200000000001
So each of these samples is being pulled from a different Wikipedia,
615.52
622.64
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t621.12
pulled from a different Wikipedia page.
621.12
625.76
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t623.36
In this case, the title is a titled page.
623.36
629.76
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t625.76
So this one is from the University of Notre Dame Wikipedia page.
625.76
631.6
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t630.64
We have answers.
630.64
636.8
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t631.6
So further down, we're going to ask a question and these answers here.
631.6
640.08
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t636.8
So we have the text, which is the text answer.
636.8
642
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t640.08
And then we have the position,
640.08
646.56
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t642.0
so the character position where the answer starts within the context,
642
648.16
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t646.5600000000001
which is what you can see here.
646.56
651.84
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t648.16
Now we have a question here, which we're asking.
648.16
654.56
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t651.8399999999999
And then the model, the Q&A model is going to
651.84
659.04
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t655.28
extract the answer from our context there.
655.28
660.66
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t660.16
Okay.
660.16
666.24
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t662.4
So we're not going to be training model in this video or anything like that.
662.4
669.76
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t666.24
We're just experimenting with the data sets library.
666.24
672.4
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t670.3199999999999
We don't need to worry so much about that.
670.32
679.2
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t672.4
So the first thing I want to do is have a look at how we can modify some of the features in our data.
672.4
684.64
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t679.1999999999999
So with SQUAD, when we are training a model,
679.2
690.48
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t685.1999999999999
one of the first things we would do is we take our answer start and the text
685.2
695.76
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t691.28
and we will use that to get the answer end position as well.
691.28
699.12
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t696.64
So let's go ahead and do that.
696.64
707.36
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t699.12
So I first I want to just have a look, okay, for sample in the data set train,
699.12
711.36
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t707.36
I'm just going to print out a few of the answer features.
707.36
716.96
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t711.36
So we have sample answer or answers, sorry.
711.36
719.6
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t716.96
And I just want to print that.
716.96
721.28