title
stringlengths
12
112
published
stringlengths
19
23
url
stringlengths
28
28
video_id
stringlengths
11
11
channel_id
stringclasses
5 values
id
stringlengths
16
31
text
stringlengths
0
596
start
float64
0
37.8k
end
float64
2.18
37.8k
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t720.4
So print it.
720.4
726.24
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t722.08
And I want to say, okay, I want to enumerate this.
722.08
729.84
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t726.24
So I can count how many times we're going through it.
726.24
735.6
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t730.72
So here I'm just viewing the data so we can actually see what we have in there.
730.72
748.24
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t737.52
So I want to say, if i is greater than four, just break, just stop printing answers for us.
737.52
749.68
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t748.24
So and then we have a few of these.
748.24
751.52
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t749.6800000000001
So we have text and we have answer start.
749.68
753.84
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t751.52
We want to add answer end.
751.52
756
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t753.84
And the way that we do that is pretty straightforward.
753.84
762
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t756.0
We just need to take the answer start and we add the length of our text to that to get the answer end.
756
765.44
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t762.8
Nothing, nothing complicated there.
762.8
770.24
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t765.44
So what we're going to do here is modify the answers feature.
765.44
778.48
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t770.88
And the best way or I think the least the most common way of modifying features
770.88
782.48
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t778.48
or adding new features as well is to use the map method.
778.48
785.36
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t782.48
So we go data set.
782.48
790.48
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t785.36
So it's going to output a new data set.
785.36
795.44
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t790.48
So we write data set train equals data set train.
790.48
799.76
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t797.92
And we're going to use the map method.
797.92
805.44
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t802.5600000000001
And with map we use lambda.
802.56
808.48
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t805.44
So we write lambda x.
805.44
811.92
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t809.9200000000001
So in here we're building a lambda function.
809.92
814.8
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t811.92
And what we need to do.
811.92
820.72
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t814.8
So this is one of the things that changes depending on whether you're using streaming or not.
814.8
826.96
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t820.7199999999999
So with streaming equals true in here we need to specify every single feature.
820.72
835.52
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t826.9599999999999
So what I mean by that is let me do it for streaming faults initially.
826.96
839.28
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t835.52
So when streaming is false we would just write answers.
835.52
845.04
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t839.28
And we would write the modification to that feature.
839.28
849.36
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t845.04
So in this case we are taking the current answers.
845.04
853.6
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t849.36
So it would be x answers.
849.36
864.08
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t854.9599999999999
And we would be merging that with a new dictionary item which is going to be answers end.
854.96
870.16
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t864.08
So answer start.
864.08
876.24
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t870.88
So answer end is equal to.
870.88
882.8
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t879.5200000000001
And here what we have to do is we go x answers.
879.52
884.8
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t882.8000000000001
So this is a little bit messy now.
882.8
887.44
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t885.84
But it's just how it is.
885.84
892.48
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t887.44
So we're within answers and we want to take the answer start position.
887.44
895.52
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t892.48
So answer start.
892.48
900.4
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t898.96
And we want to add.
898.96
902.88
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t901.28
Let me start a new line here.
901.28
912.56
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t904.32
And we want to add the length of answers text.
904.32
921.36
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t915.36
OK so all we're doing there is we're taking answer start and we're adding answer text.
915.36
924.72
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t921.36
Or the length of answer text to that to get our answer end.
921.36
930.96
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t924.72
Now this is all we would have to write if we were using streaming equals false.
924.72
931.6
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t930.96
But we're not.
930.96
937.68
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t932.5600000000001
With streaming equals true we need to add every other feature in there as well.
932.56
942.32
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t938.24
I'm not sure why this is the case.
938.24
944.24
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t943.6
But it is.
943.6
947.36
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t944.24
So we need to just add those in as well.
944.24
954.16
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t947.36
So all they are is a direct mapping from the old version to the new data set.
947.36
955.76
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t954.16
So we don't need to really do anything there.
954.16
957.2
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t955.76
We just need to add ID.
955.76
961.84
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t957.2
We want to map that to ID and do that for the other features as well.
957.2
964.32
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t961.84
So we have also have context.
961.84
967.52
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t965.92
Which is exit context.
965.92
972.8
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t969.76
We have answer already done of course.
969.76
977.52
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t972.8
A question which is going to be exit question.
972.8
982.24
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t980.0
So ID context question answers.
980
985.52
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t983.5999999999999
Is there anything else I'm missing?
983.6
990.08
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t988.0
ID oh title of course.
988
992.88
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t990.0799999999999
Title just title.
990.08
997.44
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t994.24
Yeah so also add title in there as well.
994.24
1,006.16
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t997.44
Okay and with that we should be ready to go.
997.44
1,008.24
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1006.1600000000001
So let's map that.
1,006.16
1,013.76
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1008.24
And what we'll find is when we're using streaming keywords equals true.
1,008.24
1,021.84
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1016.48
The actual process is or the transformation that we just built is lazily loaded.
1,016.48
1,024.48
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1021.84
So we haven't actually just done anything there.
1,021.84
1,030
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1024.48
All we've said is we've passed this instruction to transform the data set in this way.
1,024.48
1,033.36
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1030.56
But it hasn't actually transformed anything yet.
1,030.56
1,036.64
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1033.3600000000001
It only performs this transformation when we call the data set.
1,033.36
1,040.8
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1037.6
So if we did this again.
1,037.6
1,049.2
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1041.92
This would call the data set and it would force the code to run this instruction or this transformation.
1,041.92
1,052.24
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1051.28
So let's run that.
1,051.28
1,056.8
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1052.24
And you see we actually do get an error here.
1,052.24
1,058.08
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1056.8
And why is that?
1,056.8
1,059.92
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1058.08
So let me come down.
1,058.08
1,065.92
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1062.88
We have so what am I doing?
1,062.88
1,071.6
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1068.0
And start plus delete those answers.
1,068
1,072.48
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1071.6
What's wrong with that?
1,071.6
1,076.08
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1073.52
Ah okay so if we look up here.
1,073.52
1,081.76
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1077.28
We have these items here that are within the list.
1,077.28
1,086.88
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1081.76
So we actually need to access that first item.
1,081.76
1,093.68
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1087.68
But that's good because we saw that when we first execute this code nothing happened.
1,087.68
1,098.16
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1093.68
And it only actually came across that error when we called a data set.
1,093.68
1,101.76
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1098.16
Because that's when this transformation is actually performed.
1,098.16
1,108
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1102.64
And now what we have to do is because we've already added this instruction to our data set
1,102.64
1,112.08
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1108.0
you know transformation or building process.
1,108
1,114.88
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1112.08
We actually need to reinitialize our data set.
1,112.08
1,116.64
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1114.88
So we will come back up here.
1,114.88
1,120.56
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1118.64
So where are you here?
1,118.64
1,122.64
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1120.56
So date no not that one this one.
1,120.56
1,129.92
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1123.36
So we need to load that again to reinitialize the all of the instructions that we've added in there.
1,123.36
1,134.24
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1131.12
And then we can go ahead rerun this.
1,131.12
1,137.2
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1134.24
And now it should work hopefully let's see.
1,134.24
1,138.48
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1137.2
There we go.
1,137.2
1,141.2
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1139.1200000000001
So now if we have a look at this.
1,139.12
1,145.44
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1141.2
And this is something I probably should have done but I completely forgot to.
1,141.2
1,150.24
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1145.44
So I should have added this as maybe a list rather than just the number.
1,145.44
1,154.48
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1150.24
But it's fine because you know if you come across and you need to do this.
1,150.24
1,155.52
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1154.48
You may want to add that in.
1,154.48
1,162.32
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1156.64
But we're not doing anything other than playing around with the data sets library.
1,156.64
1,164.08