title
stringlengths
12
112
published
stringlengths
19
23
url
stringlengths
28
28
video_id
stringlengths
11
11
channel_id
stringclasses
5 values
id
stringlengths
16
31
text
stringlengths
0
596
start
float64
0
37.8k
end
float64
2.18
37.8k
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1162.32
So it's not really a problem.
1,162.32
1,169.12
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1164.08
But you can see that we have added answers and into there now which is what we wanted to do.
1,164.08
1,177.2
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1170.72
And also importantly is if I let me copy this bring down here.
1,170.72
1,182.88
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1178.48
We'll notice that we do still have all of our data sets.
1,178.48
1,186.56
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1182.8799999999999
So if I go here.
1,182.88
1,189.2
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1187.6799999999998
I don't really need to remove that's fine.
1,187.68
1,191.44
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1190.0
I'll just break straight away.
1,190
1,192.4
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1191.44
That's fine.
1,191.44
1,198.24
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1196.64
So sample sorry here.
1,196.64
1,200.32
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1199.28
So you see the whole thing.
1,199.28
1,204.24
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1201.52
And we see that we still have the ID.
1,201.52
1,205.44
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1204.24
We have the text.
1,204.24
1,206.56
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1205.44
We have the context.
1,205.44
1,207.92
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1206.56
We have everything in there.
1,206.56
1,213.44
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1207.92
Now I'm just going to show you you know why this breaks.
1,207.92
1,216.64
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1213.44
Or what happens if I remove these.
1,213.44
1,222.8
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1216.64
Okay so let me rerun that and this as well.
1,216.64
1,226.24
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1222.8000000000002
So yeah so this should look the same.
1,222.8
1,228.64
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1227.0400000000002
Do we have yet that's fine.
1,227.04
1,230.4
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1229.1200000000001
But then if I run this.
1,229.12
1,238.32
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1231.2
So before this had all the all the features but now we only have the single feature that we specified in this formula.
1,231.2
1,239.36
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1238.3200000000002
So the answers.
1,238.32
1,243.76
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1239.3600000000001
So that's why you need to when shuffle is set to true.
1,239.36
1,247.6
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1243.76
That's why you need to add every single feature in there.
1,243.76
1,250.96
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1247.6
Otherwise it's just going to remove them when you perform the map operation.
1,247.6
1,257.52
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1251.52
But that's only the case when shuffle is actually set to true.
1,251.52
1,260.24
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1257.52
Shuffle? Why am I saying shuffle? Streaming is set to true.
1,257.52
1,262.8
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1260.96
So let me bring this down here.
1,260.96
1,268.56
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1264.16
And let me also copy our initial loading code.
1,264.16
1,269.84
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1268.56
So here.
1,268.56
1,272.88
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1269.84
Because we're going to need to reload our data set now anyway.
1,269.84
1,275.36
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1272.8799999999999
Because we just removed all the features from it.
1,272.88
1,285.44
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1279.4399999999998
Okay and what I'm going to do now is just set streaming to false.
1,279.44
1,291.6
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1285.4399999999998
And I'm going to run this same code where we still don't have our ids or anything like that in there.
1,285.44
1,293.84
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1292.3999999999999
And we'll see what happens.
1,292.4
1,296.48
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1293.84
As well we'll also notice we'll get a loading bar here.
1,293.84
1,298.96
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1296.48
And it's going to take a little bit of time to process this.
1,296.48
1,302
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1298.96
Although actually with this it's probably going to be super fast.
1,298.96
1,304.16
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1302.0
So probably ignore that.
1,302
1,308.64
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1304.8
But it will you see okay it's taking a little bit of time.
1,304.8
1,310.4
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1308.64
So now it's going through a whole data set.
1,308.64
1,312.4
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1310.4
We haven't called the date set.
1,310.4
1,315.52
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1313.1200000000001
But we have used this map function.
1,313.12
1,320.8
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1315.52
When streaming is set to false the data set isn't lazily loaded.
1,315.52
1,324.8
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1320.8
And so the operation is going to be a bit more complicated.
1,320.8
1,329.2
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1324.8
So the operation the map operation is performed as soon as you call it.
1,324.8
1,332.72
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1329.84
So it's a slightly different behavior.
1,329.84
1,335.76
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1332.72
And the other behavior which is different is the fact that
1,332.72
1,338.88
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1335.76
we only need to specify the answers feature here.
1,335.76
1,341.68
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1338.8799999999999
So we only when we have streaming set to false.
1,338.88
1,346.24
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1342.24
We don't need to include every feature within the map operation.
1,342.24
1,350.88
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1346.24
We only need to include the feature that we are modifying or creating.
1,346.24
1,355.36
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1350.88
Which you know it's weird I don't know why there's a behavior difference
1,350.88
1,357.36
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1355.3600000000001
when streaming is true or false.
1,355.36
1,358.96
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1357.7600000000002
But it is there.
1,357.76
1,362.32
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1358.96
So if I now take this again.
1,358.96
1,366.48
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1363.3600000000001
Come down here and run that.
1,363.36
1,369.92
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1366.48
We see now that we have all of our features again.
1,366.48
1,374.16
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1370.96
Right so before when streaming was true.
1,370.96
1,378.48
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1374.5600000000002
If I run this code it would have only included our answers.
1,374.56
1,383.2
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1378.48
The id, title, context, question they all would have been removed.
1,378.48
1,388.8
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1383.84
But now with streaming equal to false they're still there.
1,383.84
1,392
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1389.92
So weird a weird.
1,389.92
1,396.64
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1393.92
So it's a weird feature or a weird behavior.
1,393.92
1,401.04
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1396.64
But it's how it is and we obviously just need to deal with it.
1,396.64
1,406.96
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1402.0
Now the next thing I want to show you is how we can also add batching
1,402
1,409.52
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1406.96
to our mapping process.
1,406.96
1,417.76
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1409.52
So typically with well pretty much every or any as far as I can think of any
1,409.52
1,423.12
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1417.76
NLP tasks we're going to want to tokenize our text.
1,417.76
1,426.72
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1424.0
So we're going to go ahead and do that for Q&A.
1,424
1,433.28
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1427.44
So we would import transformers or from transformers import a BERT tokenizer.
1,427.44
1,438
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1433.28
Let's say and I would initialize that.
1,433.28
1,440.08
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1438.0
So this is you know what we typically do.
1,438
1,445.6
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1440.08
We do tokenizer equals BERT tokenizer from pre-trained.
1,440.08
1,451.44
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1448.0
And let's say BERT base un-gased.
1,448
1,458.4
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1456.3999999999999
Okay I'll initialize that.
1,456.4
1,464.4
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1458.4
And then what I want to do is I'm going to tokenize my context or question and context.
1,458.4
1,471.52
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1465.2800000000002
In the format that SQUAD would usually expect when you're doing Q&A or building a Q&A model.
1,465.28
1,475.52
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1472.3200000000002
And I want to do that using the map function.
1,472.32
1,480.8
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1475.52
So you can do this in both streaming and non-streaming by the way.
1,475.52
1,484.48
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1481.6000000000001
So we just write date set.
1,481.6
1,488.48
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1484.48
It was train so same as before.
1,484.48
1,492.48
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1488.48
Date set it was train or date set train dot map.
1,488.48
1,499.04
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1493.04
We are using a lambda function so lambda x.
1,493.04
1,503.04
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1500.48
And in here we just want to say tokenizer.
1,500.48
1,510.24
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1504.24
So I'm not doing the usually when you write this you would include a dictionary here.
1,504.24
1,516
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1510.24
But the tokenizer the output from the tokenizer is already in dictionary format.
1,510.24
1,518.96
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1516.0
So we don't need to I don't need to do it in this case.
1,516
1,523.04
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1519.52
But basically what we have here is is still a dictionary.
1,519.52
1,530.96
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1524.0
And what I want to do is so with Q&A in your tokenizer you pass two text inputs.
1,524
1,536.16
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1530.96
You pass your question and you would also pass your question.
1,530.96
1,540.72
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1536.16
And you would also then pass your context.
1,536.16
1,546.72
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1542.72
And as usual we would we set our max length.
1,542.72
1,550.24
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1547.76
So usually 512.
1,547.76
1,554.16
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1551.2
I would set padding equal to the max length.
1,551.2
1,559.04
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1556.3200000000002
And also do truncation as well.
1,556.32
1,563.12
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1559.76
Okay so very typical tokenization process.
1,559.76
1,565.92
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1563.12
Nothing there's nothing different going on here.
1,563.12
1,572.88
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1565.9199999999998
This is what we normally do when we tokenize our text going into a transform model.
1,565.92
1,577.04
Build NLP Pipelines with HuggingFace Datasets
2021-09-23 13:30:07 UTC
https://youtu.be/r-zQQ16wTCA
r-zQQ16wTCA
UCv83tO5cePwHMt1952IVVHw
r-zQQ16wTCA-t1573.6799999999998
And then we want to say okay batched equals true.
1,573.68
1,581.12