title
stringlengths
12
112
published
stringlengths
19
23
url
stringlengths
28
28
video_id
stringlengths
11
11
channel_id
stringclasses
5 values
id
stringlengths
16
31
text
stringlengths
0
596
start
float64
0
37.8k
end
float64
2.18
37.8k
Streamlit for ML #2 - ML Models and APIs
2022-01-26 16:30:36 UTC
https://youtu.be/U0EoaFFGyTg
U0EoaFFGyTg
UCv83tO5cePwHMt1952IVVHw
U0EoaFFGyTg-t652.88
So like query like context vector, similar thing to the
652.88
663.52
Streamlit for ML #2 - ML Models and APIs
2022-01-26 16:30:36 UTC
https://youtu.be/U0EoaFFGyTg
U0EoaFFGyTg
UCv83tO5cePwHMt1952IVVHw
U0EoaFFGyTg-t661.84
query vector that we used before with XQ.
661.84
669.92
Streamlit for ML #2 - ML Models and APIs
2022-01-26 16:30:36 UTC
https://youtu.be/U0EoaFFGyTg
U0EoaFFGyTg
UCv83tO5cePwHMt1952IVVHw
U0EoaFFGyTg-t665.4399999999999
But this time I'm going to write index.query.
665.44
674
Streamlit for ML #2 - ML Models and APIs
2022-01-26 16:30:36 UTC
https://youtu.be/U0EoaFFGyTg
U0EoaFFGyTg
UCv83tO5cePwHMt1952IVVHw
U0EoaFFGyTg-t670.72
And we're going to pass XQ, so our query vector.
670.72
678
Streamlit for ML #2 - ML Models and APIs
2022-01-26 16:30:36 UTC
https://youtu.be/U0EoaFFGyTg
U0EoaFFGyTg
UCv83tO5cePwHMt1952IVVHw
U0EoaFFGyTg-t674.0
And we're going to say how many results we want to return.
674
684.48
Streamlit for ML #2 - ML Models and APIs
2022-01-26 16:30:36 UTC
https://youtu.be/U0EoaFFGyTg
U0EoaFFGyTg
UCv83tO5cePwHMt1952IVVHw
U0EoaFFGyTg-t678.0
Now, later on, we're going to use Streamlit, a little like a slider bar to decide how many
678
685.28
Streamlit for ML #2 - ML Models and APIs
2022-01-26 16:30:36 UTC
https://youtu.be/U0EoaFFGyTg
U0EoaFFGyTg
UCv83tO5cePwHMt1952IVVHw
U0EoaFFGyTg-t684.48
we would like to return.
684.48
687.44
Streamlit for ML #2 - ML Models and APIs
2022-01-26 16:30:36 UTC
https://youtu.be/U0EoaFFGyTg
U0EoaFFGyTg
UCv83tO5cePwHMt1952IVVHw
U0EoaFFGyTg-t685.28
But for now, we will hard code it.
685.28
695.52
Streamlit for ML #2 - ML Models and APIs
2022-01-26 16:30:36 UTC
https://youtu.be/U0EoaFFGyTg
U0EoaFFGyTg
UCv83tO5cePwHMt1952IVVHw
U0EoaFFGyTg-t688.72
And another thing that we want to include here is we want to tell Pinecone to return
688.72
698.88
Streamlit for ML #2 - ML Models and APIs
2022-01-26 16:30:36 UTC
https://youtu.be/U0EoaFFGyTg
U0EoaFFGyTg
UCv83tO5cePwHMt1952IVVHw
U0EoaFFGyTg-t695.52
the metadata because by default, it will not return metadata.
695.52
702.56
Streamlit for ML #2 - ML Models and APIs
2022-01-26 16:30:36 UTC
https://youtu.be/U0EoaFFGyTg
U0EoaFFGyTg
UCv83tO5cePwHMt1952IVVHw
U0EoaFFGyTg-t699.68
So return metadata equals true.
699.68
705.68
Streamlit for ML #2 - ML Models and APIs
2022-01-26 16:30:36 UTC
https://youtu.be/U0EoaFFGyTg
U0EoaFFGyTg
UCv83tO5cePwHMt1952IVVHw
U0EoaFFGyTg-t702.56
So these are like the extra little bits I mentioned before.
702.56
708.64
Streamlit for ML #2 - ML Models and APIs
2022-01-26 16:30:36 UTC
https://youtu.be/U0EoaFFGyTg
U0EoaFFGyTg
UCv83tO5cePwHMt1952IVVHw
U0EoaFFGyTg-t705.68
So included the title.
705.68
715.44
Streamlit for ML #2 - ML Models and APIs
2022-01-26 16:30:36 UTC
https://youtu.be/U0EoaFFGyTg
U0EoaFFGyTg
UCv83tO5cePwHMt1952IVVHw
U0EoaFFGyTg-t708.64
So like the topic, Wikipedia topic that the context is coming from and also the text itself.
708.64
722.88
Streamlit for ML #2 - ML Models and APIs
2022-01-26 16:30:36 UTC
https://youtu.be/U0EoaFFGyTg
U0EoaFFGyTg
UCv83tO5cePwHMt1952IVVHw
U0EoaFFGyTg-t717.1999999999999
OK, so we're going to return the relevant context and then we're going to look through
717.2
723.92
Streamlit for ML #2 - ML Models and APIs
2022-01-26 16:30:36 UTC
https://youtu.be/U0EoaFFGyTg
U0EoaFFGyTg
UCv83tO5cePwHMt1952IVVHw
U0EoaFFGyTg-t722.88
each of those.
722.88
731.76
Streamlit for ML #2 - ML Models and APIs
2022-01-26 16:30:36 UTC
https://youtu.be/U0EoaFFGyTg
U0EoaFFGyTg
UCv83tO5cePwHMt1952IVVHw
U0EoaFFGyTg-t723.92
Now, when we do this, there's a particular format that we need to follow.
723.92
740.72
Streamlit for ML #2 - ML Models and APIs
2022-01-26 16:30:36 UTC
https://youtu.be/U0EoaFFGyTg
U0EoaFFGyTg
UCv83tO5cePwHMt1952IVVHw
U0EoaFFGyTg-t731.76
So our context are actually going to be stored for context in XC results.
731.76
748.4
Streamlit for ML #2 - ML Models and APIs
2022-01-26 16:30:36 UTC
https://youtu.be/U0EoaFFGyTg
U0EoaFFGyTg
UCv83tO5cePwHMt1952IVVHw
U0EoaFFGyTg-t742.56
And results is going to return a list and we just want the first item in that list.
742.56
754.48
Streamlit for ML #2 - ML Models and APIs
2022-01-26 16:30:36 UTC
https://youtu.be/U0EoaFFGyTg
U0EoaFFGyTg
UCv83tO5cePwHMt1952IVVHw
U0EoaFFGyTg-t748.4
The reason it returns a list is because if you are querying Pinecone with multiple queries,
748.4
759.04
Streamlit for ML #2 - ML Models and APIs
2022-01-26 16:30:36 UTC
https://youtu.be/U0EoaFFGyTg
U0EoaFFGyTg
UCv83tO5cePwHMt1952IVVHw
U0EoaFFGyTg-t754.48
it will return lists of your answers for each query.
754.48
764.96
Streamlit for ML #2 - ML Models and APIs
2022-01-26 16:30:36 UTC
https://youtu.be/U0EoaFFGyTg
U0EoaFFGyTg
UCv83tO5cePwHMt1952IVVHw
U0EoaFFGyTg-t759.04
But in this case, we are only ever going to query with one query vector.
759.04
774.48
Streamlit for ML #2 - ML Models and APIs
2022-01-26 16:30:36 UTC
https://youtu.be/U0EoaFFGyTg
U0EoaFFGyTg
UCv83tO5cePwHMt1952IVVHw
U0EoaFFGyTg-t765.4399999999999
So we always enter at position zero here and then in there we will have all of our returned
765.44
781.12
Streamlit for ML #2 - ML Models and APIs
2022-01-26 16:30:36 UTC
https://youtu.be/U0EoaFFGyTg
U0EoaFFGyTg
UCv83tO5cePwHMt1952IVVHw
U0EoaFFGyTg-t774.48
matches inside this matches key value value.
774.48
790.48
Streamlit for ML #2 - ML Models and APIs
2022-01-26 16:30:36 UTC
https://youtu.be/U0EoaFFGyTg
U0EoaFFGyTg
UCv83tO5cePwHMt1952IVVHw
U0EoaFFGyTg-t781.12
So for context in there, all we're going to do is write st.write context.
781.12
794.72
Streamlit for ML #2 - ML Models and APIs
2022-01-26 16:30:36 UTC
https://youtu.be/U0EoaFFGyTg
U0EoaFFGyTg
UCv83tO5cePwHMt1952IVVHw
U0EoaFFGyTg-t790.48
And then we want to go into the metadata that we were returning.
790.48
797.84
Streamlit for ML #2 - ML Models and APIs
2022-01-26 16:30:36 UTC
https://youtu.be/U0EoaFFGyTg
U0EoaFFGyTg
UCv83tO5cePwHMt1952IVVHw
U0EoaFFGyTg-t794.72
And we have title and text here.
794.72
799.68
Streamlit for ML #2 - ML Models and APIs
2022-01-26 16:30:36 UTC
https://youtu.be/U0EoaFFGyTg
U0EoaFFGyTg
UCv83tO5cePwHMt1952IVVHw
U0EoaFFGyTg-t797.84
We don't want title, we want text.
797.84
803.92
Streamlit for ML #2 - ML Models and APIs
2022-01-26 16:30:36 UTC
https://youtu.be/U0EoaFFGyTg
U0EoaFFGyTg
UCv83tO5cePwHMt1952IVVHw
U0EoaFFGyTg-t799.68
OK, so let's save that and check that actually works.
799.68
809.6
Streamlit for ML #2 - ML Models and APIs
2022-01-26 16:30:36 UTC
https://youtu.be/U0EoaFFGyTg
U0EoaFFGyTg
UCv83tO5cePwHMt1952IVVHw
U0EoaFFGyTg-t804.64
So again, this is going to take a little while to load because we're initializing like the
804.64
813.28
Streamlit for ML #2 - ML Models and APIs
2022-01-26 16:30:36 UTC
https://youtu.be/U0EoaFFGyTg
U0EoaFFGyTg
UCv83tO5cePwHMt1952IVVHw
U0EoaFFGyTg-t809.6
full pipeline of our vector database and the tree model.
809.6
818.56
Streamlit for ML #2 - ML Models and APIs
2022-01-26 16:30:36 UTC
https://youtu.be/U0EoaFFGyTg
U0EoaFFGyTg
UCv83tO5cePwHMt1952IVVHw
U0EoaFFGyTg-t813.28
Every time we run this, it's downloading the full tree model, which takes quite a bit of time.
813.28
821.92
Streamlit for ML #2 - ML Models and APIs
2022-01-26 16:30:36 UTC
https://youtu.be/U0EoaFFGyTg
U0EoaFFGyTg
UCv83tO5cePwHMt1952IVVHw
U0EoaFFGyTg-t818.5600000000001
OK, so this is just rerun our app.
818.56
825.76
Streamlit for ML #2 - ML Models and APIs
2022-01-26 16:30:36 UTC
https://youtu.be/U0EoaFFGyTg
U0EoaFFGyTg
UCv83tO5cePwHMt1952IVVHw
U0EoaFFGyTg-t821.9200000000001
Now we can say who are the Normans?
821.92
827.76
Streamlit for ML #2 - ML Models and APIs
2022-01-26 16:30:36 UTC
https://youtu.be/U0EoaFFGyTg
U0EoaFFGyTg
UCv83tO5cePwHMt1952IVVHw
U0EoaFFGyTg-t825.76
OK.
825.76
831.84
Streamlit for ML #2 - ML Models and APIs
2022-01-26 16:30:36 UTC
https://youtu.be/U0EoaFFGyTg
U0EoaFFGyTg
UCv83tO5cePwHMt1952IVVHw
U0EoaFFGyTg-t828.72
Again, it's going to reload everything, so it's going to take a while.
828.72
834.16
Streamlit for ML #2 - ML Models and APIs
2022-01-26 16:30:36 UTC
https://youtu.be/U0EoaFFGyTg
U0EoaFFGyTg
UCv83tO5cePwHMt1952IVVHw
U0EoaFFGyTg-t831.84
We're going to fix this in the next video.
831.84
840.16
Streamlit for ML #2 - ML Models and APIs
2022-01-26 16:30:36 UTC
https://youtu.be/U0EoaFFGyTg
U0EoaFFGyTg
UCv83tO5cePwHMt1952IVVHw
U0EoaFFGyTg-t834.16
So we should be returning five contexts and if we scroll down, we can see we have these
834.16
840.96
Streamlit for ML #2 - ML Models and APIs
2022-01-26 16:30:36 UTC
https://youtu.be/U0EoaFFGyTg
U0EoaFFGyTg
UCv83tO5cePwHMt1952IVVHw
U0EoaFFGyTg-t840.16
five paragraphs.
840.16
844.56
Streamlit for ML #2 - ML Models and APIs
2022-01-26 16:30:36 UTC
https://youtu.be/U0EoaFFGyTg
U0EoaFFGyTg
UCv83tO5cePwHMt1952IVVHw
U0EoaFFGyTg-t840.9599999999999
Each one of these paragraphs is a single context.
840.96
848.96
Streamlit for ML #2 - ML Models and APIs
2022-01-26 16:30:36 UTC
https://youtu.be/U0EoaFFGyTg
U0EoaFFGyTg
UCv83tO5cePwHMt1952IVVHw
U0EoaFFGyTg-t844.56
So we could maybe we can respect the element.
844.56
856.48
Streamlit for ML #2 - ML Models and APIs
2022-01-26 16:30:36 UTC
https://youtu.be/U0EoaFFGyTg
U0EoaFFGyTg
UCv83tO5cePwHMt1952IVVHw
U0EoaFFGyTg-t852.48
OK, so we can see down here.
852.48
861.68
Streamlit for ML #2 - ML Models and APIs
2022-01-26 16:30:36 UTC
https://youtu.be/U0EoaFFGyTg
U0EoaFFGyTg
UCv83tO5cePwHMt1952IVVHw
U0EoaFFGyTg-t860.0799999999999
Pretty horrific to look at.
860.08
871.44
Streamlit for ML #2 - ML Models and APIs
2022-01-26 16:30:36 UTC
https://youtu.be/U0EoaFFGyTg
U0EoaFFGyTg
UCv83tO5cePwHMt1952IVVHw
U0EoaFFGyTg-t861.68
So if I zoom up, we can see each one of these is a single one of our contexts.
861.68
873.44
Streamlit for ML #2 - ML Models and APIs
2022-01-26 16:30:36 UTC
https://youtu.be/U0EoaFFGyTg
U0EoaFFGyTg
UCv83tO5cePwHMt1952IVVHw
U0EoaFFGyTg-t871.4399999999999
Right.
871.44
876.48
Streamlit for ML #2 - ML Models and APIs
2022-01-26 16:30:36 UTC
https://youtu.be/U0EoaFFGyTg
U0EoaFFGyTg
UCv83tO5cePwHMt1952IVVHw
U0EoaFFGyTg-t874.4799999999999
These here.
874.48
878.48
Streamlit for ML #2 - ML Models and APIs
2022-01-26 16:30:36 UTC
https://youtu.be/U0EoaFFGyTg
U0EoaFFGyTg
UCv83tO5cePwHMt1952IVVHw
U0EoaFFGyTg-t876.4799999999999
Cool.
876.48
883.76
Streamlit for ML #2 - ML Models and APIs
2022-01-26 16:30:36 UTC
https://youtu.be/U0EoaFFGyTg
U0EoaFFGyTg
UCv83tO5cePwHMt1952IVVHw
U0EoaFFGyTg-t878.4799999999999
So I think that is that's it for this video.
878.48
890.08
Streamlit for ML #2 - ML Models and APIs
2022-01-26 16:30:36 UTC
https://youtu.be/U0EoaFFGyTg
U0EoaFFGyTg
UCv83tO5cePwHMt1952IVVHw
U0EoaFFGyTg-t883.76
So now we have these backend working and the next one, what we'll do is we'll do a little
883.76
895.36
Streamlit for ML #2 - ML Models and APIs
2022-01-26 16:30:36 UTC
https://youtu.be/U0EoaFFGyTg
U0EoaFFGyTg
UCv83tO5cePwHMt1952IVVHw
U0EoaFFGyTg-t890.08
bit of a fix and the next one, what we'll do is fix this issue with it taking forever
890.08
900.64
Streamlit for ML #2 - ML Models and APIs
2022-01-26 16:30:36 UTC
https://youtu.be/U0EoaFFGyTg
U0EoaFFGyTg
UCv83tO5cePwHMt1952IVVHw
U0EoaFFGyTg-t895.36
to load, reload everything every time, which is actually super easy.
895.36
904.32
Streamlit for ML #2 - ML Models and APIs
2022-01-26 16:30:36 UTC
https://youtu.be/U0EoaFFGyTg
U0EoaFFGyTg
UCv83tO5cePwHMt1952IVVHw
U0EoaFFGyTg-t900.64
But we'll make a big difference to our app.
900.64
909.6
Streamlit for ML #2 - ML Models and APIs
2022-01-26 16:30:36 UTC
https://youtu.be/U0EoaFFGyTg
U0EoaFFGyTg
UCv83tO5cePwHMt1952IVVHw
U0EoaFFGyTg-t904.32
So thank you very much for watching and I will see you in the next one.
904.32
921.76
Streamlit for ML #2 - ML Models and APIs
2022-01-26 16:30:36 UTC
https://youtu.be/U0EoaFFGyTg
U0EoaFFGyTg
UCv83tO5cePwHMt1952IVVHw
U0EoaFFGyTg-t909.6
909.6
921.76
Unicode Normalization for NLP in Python
2021-03-17 13:30:00 UTC
https://youtu.be/9Od9-DV9kd8
9Od9-DV9kd8
UCv83tO5cePwHMt1952IVVHw
9Od9-DV9kd8-t0.0
Okay, so we're going to take a look at Unicode normalization.
0
11.84
Unicode Normalization for NLP in Python
2021-03-17 13:30:00 UTC
https://youtu.be/9Od9-DV9kd8
9Od9-DV9kd8
UCv83tO5cePwHMt1952IVVHw
9Od9-DV9kd8-t4.8
Unicode normalization is something that we use when we have those weird font variants
4.8
13.8
Unicode Normalization for NLP in Python
2021-03-17 13:30:00 UTC
https://youtu.be/9Od9-DV9kd8
9Od9-DV9kd8
UCv83tO5cePwHMt1952IVVHw
9Od9-DV9kd8-t11.84
that people always use on the internet.
11.84
20.4
Unicode Normalization for NLP in Python
2021-03-17 13:30:00 UTC
https://youtu.be/9Od9-DV9kd8
9Od9-DV9kd8
UCv83tO5cePwHMt1952IVVHw
9Od9-DV9kd8-t13.8
So if you've ever seen people using those odd characters, I think they use it to express
13.8
24.94
Unicode Normalization for NLP in Python
2021-03-17 13:30:00 UTC
https://youtu.be/9Od9-DV9kd8
9Od9-DV9kd8
UCv83tO5cePwHMt1952IVVHw
9Od9-DV9kd8-t20.400000000000002
some form of individuality or to catch your attention.
20.4
31.76
Unicode Normalization for NLP in Python
2021-03-17 13:30:00 UTC
https://youtu.be/9Od9-DV9kd8
9Od9-DV9kd8
UCv83tO5cePwHMt1952IVVHw
9Od9-DV9kd8-t24.94
And then we also have another issue where we have weird glyphs in text.
24.94
35.72
Unicode Normalization for NLP in Python
2021-03-17 13:30:00 UTC
https://youtu.be/9Od9-DV9kd8
9Od9-DV9kd8
UCv83tO5cePwHMt1952IVVHw
9Od9-DV9kd8-t31.76
And this is more reasonable because it's actually a part of language.
31.76
39.44
Unicode Normalization for NLP in Python
2021-03-17 13:30:00 UTC
https://youtu.be/9Od9-DV9kd8
9Od9-DV9kd8
UCv83tO5cePwHMt1952IVVHw
9Od9-DV9kd8-t35.72
That's like little glyphs, so you have the accents above the E's and stuff in Italian
35.72
41.12
Unicode Normalization for NLP in Python
2021-03-17 13:30:00 UTC
https://youtu.be/9Od9-DV9kd8
9Od9-DV9kd8
UCv83tO5cePwHMt1952IVVHw
9Od9-DV9kd8-t39.44
or Spanish.
39.44
46
Unicode Normalization for NLP in Python
2021-03-17 13:30:00 UTC
https://youtu.be/9Od9-DV9kd8
9Od9-DV9kd8
UCv83tO5cePwHMt1952IVVHw
9Od9-DV9kd8-t41.120000000000005
And those little glyphs all together, they're called diacritics.
41.12
51.52
Unicode Normalization for NLP in Python
2021-03-17 13:30:00 UTC
https://youtu.be/9Od9-DV9kd8
9Od9-DV9kd8
UCv83tO5cePwHMt1952IVVHw
9Od9-DV9kd8-t46.0
And whenever we come across diacritics or that weird text, we can get issues when we're
46
53.48
Unicode Normalization for NLP in Python
2021-03-17 13:30:00 UTC
https://youtu.be/9Od9-DV9kd8
9Od9-DV9kd8
UCv83tO5cePwHMt1952IVVHw
9Od9-DV9kd8-t51.52
building models.
51.52
59.6
Unicode Normalization for NLP in Python
2021-03-17 13:30:00 UTC
https://youtu.be/9Od9-DV9kd8
9Od9-DV9kd8
UCv83tO5cePwHMt1952IVVHw
9Od9-DV9kd8-t53.48
The issues with the weird text is obviously if we have someone who's got hello world in
53.48
64.12
Unicode Normalization for NLP in Python
2021-03-17 13:30:00 UTC
https://youtu.be/9Od9-DV9kd8
9Od9-DV9kd8
UCv83tO5cePwHMt1952IVVHw
9Od9-DV9kd8-t59.599999999999994
normal text and we're comparing it to someone who's got hello world in some weird text with
59.6
70.56
Unicode Normalization for NLP in Python
2021-03-17 13:30:00 UTC
https://youtu.be/9Od9-DV9kd8
9Od9-DV9kd8
UCv83tO5cePwHMt1952IVVHw
9Od9-DV9kd8-t64.12
circles around every letter, we can't actually compare them like for like because our models
64.12
76.36
Unicode Normalization for NLP in Python
2021-03-17 13:30:00 UTC
https://youtu.be/9Od9-DV9kd8
9Od9-DV9kd8
UCv83tO5cePwHMt1952IVVHw
9Od9-DV9kd8-t70.56
or code in general is not going to be able to compare those two different Unicode character
70.56
77.68
Unicode Normalization for NLP in Python
2021-03-17 13:30:00 UTC
https://youtu.be/9Od9-DV9kd8
9Od9-DV9kd8
UCv83tO5cePwHMt1952IVVHw
9Od9-DV9kd8-t76.36
sets.
76.36
83.44
Unicode Normalization for NLP in Python
2021-03-17 13:30:00 UTC
https://youtu.be/9Od9-DV9kd8
9Od9-DV9kd8
UCv83tO5cePwHMt1952IVVHw
9Od9-DV9kd8-t77.68
And the issue with diacritics is that those characters always have this hidden property
77.68
89.88
Unicode Normalization for NLP in Python
2021-03-17 13:30:00 UTC
https://youtu.be/9Od9-DV9kd8
9Od9-DV9kd8
UCv83tO5cePwHMt1952IVVHw
9Od9-DV9kd8-t83.44000000000001
in that we have one Unicode character, which is the capital C with Cedilla.
83.44
97.38
Unicode Normalization for NLP in Python
2021-03-17 13:30:00 UTC
https://youtu.be/9Od9-DV9kd8
9Od9-DV9kd8
UCv83tO5cePwHMt1952IVVHw
9Od9-DV9kd8-t89.88000000000001
But then we have an identical set of characters, which is, for example, the Latin capital C
89.88
101.96
Unicode Normalization for NLP in Python
2021-03-17 13:30:00 UTC
https://youtu.be/9Od9-DV9kd8
9Od9-DV9kd8
UCv83tO5cePwHMt1952IVVHw
9Od9-DV9kd8-t97.38000000000001
immediately followed by something called the combining Cedilla character.
97.38
109.56
Unicode Normalization for NLP in Python
2021-03-17 13:30:00 UTC
https://youtu.be/9Od9-DV9kd8
9Od9-DV9kd8
UCv83tO5cePwHMt1952IVVHw
9Od9-DV9kd8-t101.96
And they together look exactly like the other Unicode character.
101.96
114.52
Unicode Normalization for NLP in Python
2021-03-17 13:30:00 UTC
https://youtu.be/9Od9-DV9kd8
9Od9-DV9kd8
UCv83tO5cePwHMt1952IVVHw
9Od9-DV9kd8-t109.55999999999999
And this is quite difficult to deal with.
109.56
120.72
Unicode Normalization for NLP in Python
2021-03-17 13:30:00 UTC
https://youtu.be/9Od9-DV9kd8
9Od9-DV9kd8
UCv83tO5cePwHMt1952IVVHw
9Od9-DV9kd8-t114.52
So we have these two problems and we use Unicode normalization to actually deal with those
114.52
123.2
Unicode Normalization for NLP in Python
2021-03-17 13:30:00 UTC
https://youtu.be/9Od9-DV9kd8
9Od9-DV9kd8
UCv83tO5cePwHMt1952IVVHw
9Od9-DV9kd8-t120.72
when we're building NLP models.
120.72
130.16
Unicode Normalization for NLP in Python
2021-03-17 13:30:00 UTC
https://youtu.be/9Od9-DV9kd8
9Od9-DV9kd8
UCv83tO5cePwHMt1952IVVHw
9Od9-DV9kd8-t123.19999999999999
So I kind of said there's two forms of equivalent characters that are not really equivalent.
123.2
132.64
Unicode Normalization for NLP in Python
2021-03-17 13:30:00 UTC
https://youtu.be/9Od9-DV9kd8
9Od9-DV9kd8
UCv83tO5cePwHMt1952IVVHw
9Od9-DV9kd8-t130.16
The first of those is the compatibility equivalence.
130.16
135.64
Unicode Normalization for NLP in Python
2021-03-17 13:30:00 UTC
https://youtu.be/9Od9-DV9kd8
9Od9-DV9kd8
UCv83tO5cePwHMt1952IVVHw
9Od9-DV9kd8-t132.64
That's where we have stuff like font variants.
132.64
141.04
Unicode Normalization for NLP in Python
2021-03-17 13:30:00 UTC
https://youtu.be/9Od9-DV9kd8
9Od9-DV9kd8
UCv83tO5cePwHMt1952IVVHw
9Od9-DV9kd8-t135.64
We have different line break sequences, circled variants, superscripts, subscripts, fractions
135.64
143.8
Unicode Normalization for NLP in Python
2021-03-17 13:30:00 UTC
https://youtu.be/9Od9-DV9kd8
9Od9-DV9kd8
UCv83tO5cePwHMt1952IVVHw
9Od9-DV9kd8-t141.04
and a few other things as well.
141.04
151.24
Unicode Normalization for NLP in Python
2021-03-17 13:30:00 UTC
https://youtu.be/9Od9-DV9kd8
9Od9-DV9kd8
UCv83tO5cePwHMt1952IVVHw
9Od9-DV9kd8-t143.8
Now we want our model to see both hello world with those weird circles and also just hello
143.8
158.04
Unicode Normalization for NLP in Python
2021-03-17 13:30:00 UTC
https://youtu.be/9Od9-DV9kd8
9Od9-DV9kd8
UCv83tO5cePwHMt1952IVVHw
9Od9-DV9kd8-t151.24
world as one because that's how we read it and that's how it's supposed to be interpreted.
151.24
163.68
Unicode Normalization for NLP in Python
2021-03-17 13:30:00 UTC
https://youtu.be/9Od9-DV9kd8
9Od9-DV9kd8
UCv83tO5cePwHMt1952IVVHw
9Od9-DV9kd8-t158.04
And that is what the compatibility equivalence is for.
158.04
168.52
Unicode Normalization for NLP in Python
2021-03-17 13:30:00 UTC
https://youtu.be/9Od9-DV9kd8
9Od9-DV9kd8
UCv83tO5cePwHMt1952IVVHw
9Od9-DV9kd8-t163.67999999999998
And we'll look at how we actually deal with that pretty soon.
163.68
174.44
Unicode Normalization for NLP in Python
2021-03-17 13:30:00 UTC
https://youtu.be/9Od9-DV9kd8
9Od9-DV9kd8
UCv83tO5cePwHMt1952IVVHw
9Od9-DV9kd8-t168.51999999999998
And then we also have the canonical equivalence, which is the thing with the accents and the
168.52
176.72
Unicode Normalization for NLP in Python
2021-03-17 13:30:00 UTC
https://youtu.be/9Od9-DV9kd8
9Od9-DV9kd8
UCv83tO5cePwHMt1952IVVHw
9Od9-DV9kd8-t174.44
glyphs I mentioned before.
174.44
179.12
Unicode Normalization for NLP in Python
2021-03-17 13:30:00 UTC
https://youtu.be/9Od9-DV9kd8
9Od9-DV9kd8
UCv83tO5cePwHMt1952IVVHw
9Od9-DV9kd8-t176.72
So you have a few different reasons for that.
176.72
185.36
Unicode Normalization for NLP in Python
2021-03-17 13:30:00 UTC
https://youtu.be/9Od9-DV9kd8
9Od9-DV9kd8
UCv83tO5cePwHMt1952IVVHw
9Od9-DV9kd8-t179.12
But two that I think are most relevant is where you have the combined characters.
179.12
192
Unicode Normalization for NLP in Python
2021-03-17 13:30:00 UTC
https://youtu.be/9Od9-DV9kd8
9Od9-DV9kd8
UCv83tO5cePwHMt1952IVVHw
9Od9-DV9kd8-t185.36
So we have that C with cedilla character and then we also have the capital C plus the combining
185.36
195.88
Unicode Normalization for NLP in Python
2021-03-17 13:30:00 UTC
https://youtu.be/9Od9-DV9kd8
9Od9-DV9kd8
UCv83tO5cePwHMt1952IVVHw
9Od9-DV9kd8-t192.0
cedilla characters merged together.
192
203
Unicode Normalization for NLP in Python
2021-03-17 13:30:00 UTC
https://youtu.be/9Od9-DV9kd8
9Od9-DV9kd8
UCv83tO5cePwHMt1952IVVHw
9Od9-DV9kd8-t195.88000000000002
And then we also have conjoined creating characters, which I think are pretty common as well.
195.88
208.08
Unicode Normalization for NLP in Python
2021-03-17 13:30:00 UTC
https://youtu.be/9Od9-DV9kd8
9Od9-DV9kd8
UCv83tO5cePwHMt1952IVVHw
9Od9-DV9kd8-t203.0
Canonical equivalence is much more to do with characters that we can't really see that they
203
211.32
Unicode Normalization for NLP in Python
2021-03-17 13:30:00 UTC
https://youtu.be/9Od9-DV9kd8
9Od9-DV9kd8
UCv83tO5cePwHMt1952IVVHw
9Od9-DV9kd8-t208.08
are different, but they are in fact different.
208.08
217.12
Unicode Normalization for NLP in Python
2021-03-17 13:30:00 UTC
https://youtu.be/9Od9-DV9kd8
9Od9-DV9kd8
UCv83tO5cePwHMt1952IVVHw
9Od9-DV9kd8-t211.32
Whereas compatibility equivalence is more to do with the purpose that made them different
211.32
221.42
Unicode Normalization for NLP in Python
2021-03-17 13:30:00 UTC
https://youtu.be/9Od9-DV9kd8
9Od9-DV9kd8
UCv83tO5cePwHMt1952IVVHw
9Od9-DV9kd8-t217.12
and in reality their meaning is the same.
217.12
228.68
Unicode Normalization for NLP in Python
2021-03-17 13:30:00 UTC
https://youtu.be/9Od9-DV9kd8
9Od9-DV9kd8
UCv83tO5cePwHMt1952IVVHw
9Od9-DV9kd8-t221.42
So we have two different directions for how we can transform our text between these two
221.42
231.32