title
stringlengths 12
112
| published
stringlengths 19
23
| url
stringlengths 28
28
| video_id
stringlengths 11
11
| channel_id
stringclasses 5
values | id
stringlengths 16
31
| text
stringlengths 0
596
| start
float64 0
37.8k
| end
float64 2.18
37.8k
|
---|---|---|---|---|---|---|---|---|
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t228.68
|
different forms.
| 228.68 | 237.08 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t231.32
|
So we have decomposition, which is breaking down Unicode characters into smaller parts
| 231.32 | 239.02 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t237.07999999999998
|
or more normal parts.
| 237.08 | 245.52 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t239.02
|
And then we have composition, which is taking multiple Unicode characters and merging them
| 239.02 | 250.68 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t245.52
|
into a single accepted Unicode character.
| 245.52 | 253.52 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t250.68
|
So I've got this example here.
| 250.68 | 264.84 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t253.52
|
So this U00C7, if we take a look here, this is our C with cedilla.
| 253.52 | 266.48 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t264.84000000000003
|
And we can see here this is what it looks like.
| 264.84 | 270.8 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t266.48
|
It has this C and it's got a little cedilla at the bottom.
| 266.48 | 274.52 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t270.8
|
And then the other side, we have these two characters here.
| 270.8 | 279.76 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t274.52000000000004
|
And if we just take a look here, we can see, okay, this is the C plus cedilla.
| 274.52 | 281.84 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t279.76
|
So these are two separate Unicode characters.
| 279.76 | 285.08 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t281.84000000000003
|
And then we see, okay, they actually look exactly the same again.
| 281.84 | 288.96 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t285.08000000000004
|
And obviously that's where our problem is.
| 285.08 | 293.84 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t288.96000000000004
|
So what we can do is we can decompose them into their different parts.
| 288.96 | 295.26 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t293.84000000000003
|
Now these are already separated.
| 293.84 | 298.52 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t295.26
|
So when we decompose them, we just get the same thing again.
| 295.26 | 305.52 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t298.52
|
Whereas for our C with cedilla character, we decompose that and we basically get these
| 298.52 | 311.72 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t305.52
|
two different parts, which is the Latin capital C and the combining cedilla character.
| 305.52 | 317.84 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t311.71999999999997
|
And then we can perform canonical composition to put those both together and merge them
| 311.72 | 321.36 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t317.84
|
back into the capital C with cedilla.
| 317.84 | 325.64 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t321.36
|
And that's essentially how decomposition and composition works.
| 321.36 | 331.16 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t325.64
|
Obviously it's slightly different for the compatibility decomposition, but we'll talk
| 325.64 | 333.42 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t331.16
|
about that quite soon.
| 331.16 | 339.56 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t333.42
|
When we take the fact that we have these two different directions, composition, decomposition,
| 333.42 | 349.1 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t339.56
|
and we have our two types of transformations, which is compatibility and canonical equivalence,
| 339.56 | 352.64 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t349.1
|
we get these four forms.
| 349.1 | 360.08 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t352.64000000000004
|
So we have form D, which is canonical decomposition, which is what I showed you here, where we're
| 352.64 | 365.08 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t360.08000000000004
|
decomposing those characters into its individual parts.
| 360.08 | 370.46 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t365.08000000000004
|
And if we just take a look at how to actually do this in Python.
| 365.08 | 382.52 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t370.46
|
So we'll take this Unicode here and we'll just place it here.
| 370.46 | 395.28 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t382.52
|
This is our C with cedilla character.
| 382.52 | 397.28 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t395.28
|
So we just print that out.
| 395.28 | 399.34 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t397.28
|
We see we have that character.
| 397.28 | 403.6 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t399.34
|
Now the other one is where it's kind of both together.
| 399.34 | 408.72 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t403.59999999999997
|
So I'm just going to call that C plus cedilla.
| 403.6 | 418.6 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t408.71999999999997
|
And that is the Latin capital C, which is 0043, which if I just print this out so we
| 408.72 | 422.96 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t418.59999999999997
|
can just see it before we put the cedilla on the end, we just have a C.
| 418.6 | 431.96 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t422.96
|
And then for the cedilla, we just put 0327 and we get that.
| 422.96 | 439.56 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t431.96
|
And obviously these look the same, but if we compare them, we'll see that they are not
| 431.96 | 440.56 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t439.56
|
the same.
| 439.56 | 445.26 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t440.56
|
We get faults.
| 440.56 | 452.92 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t445.26
|
So to deal with that, this is where we need to use our canonical decomposition or NFD,
| 445.26 | 455.24 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t452.92
|
that we can see here.
| 452.92 | 463.52 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t455.24
|
So to do all this, we're going to need to import the Unicode data library.
| 455.24 | 470.08 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t463.52000000000004
|
And then we use Unicode data normalization.
| 463.52 | 477.08 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t470.08000000000004
|
In this case, we're using NFD, which is canonical decomposition.
| 470.08 | 482.52 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t477.08000000000004
|
And then what we want to do is pass in our C with cedilla, because we're going to want
| 477.08 | 486.04 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t482.52
|
to break this down into the two different parts.
| 482.52 | 490.64 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t486.03999999999996
|
So that's the one that we need to transform.
| 486.04 | 495.92 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t490.64
|
And then the other side, we're going to have our C plus cedilla, which is our two characters.
| 490.64 | 503.2 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t495.91999999999996
|
And we'll see, if we just change this to normalize, now we have true.
| 495.92 | 508.32 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t503.2
|
So now what we've done is converted the single character into the two separate characters
| 503.2 | 509.32 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t508.32
|
here.
| 508.32 | 515.84 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t509.32
|
And that is because we've used normal form decompositions, we've decomposed those, we've
| 509.32 | 516.84 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t515.84
|
wrote them apart.
| 515.84 | 521.08 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t516.84
|
Now, on the other side of that, we have the canonical composition, where we build them
| 516.84 | 523.6 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t521.08
|
back up into one.
| 521.08 | 527.56 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t523.6
|
And to do that, we use NFC.
| 523.6 | 531.32 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t527.56
|
And obviously, if we try it with this, we're not going to get the right answer, because
| 527.56 | 536.8 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t531.3199999999999
|
we're not going to find that they match, because we're compositioning this back into itself.
| 531.32 | 542.08 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t536.8
|
So it's just going to be this again, against this, which are separate.
| 536.8 | 548.52 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t542.0799999999999
|
So we actually need to switch which side we have this function on.
| 542.08 | 558.72 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t548.52
|
So if I just remove this, and copy this across, and we'll see that now we get true, because
| 548.52 | 563.44 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t558.7199999999999
|
what we've done is converted these into this.
| 558.72 | 568.44 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t563.44
|
And that's how we normalize for canonical equivalence, which is essentially where we
| 563.44 | 571.24 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t568.44
|
can't actually see the difference.
| 568.44 | 575.6 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t571.24
|
On the other side, we have where people are using the weird text.
| 571.24 | 580.72 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t575.6
|
So in our abbreviations, we have these two with the K.
| 575.6 | 582.64 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t580.72
|
And that K means compatibility.
| 580.72 | 585.92 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t582.6400000000001
|
Where there isn't a K, that means we're using the canonical equivalence.
| 582.64 | 589.4 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t585.9200000000001
|
Where there is a K, we're using the compatibility equivalence.
| 585.92 | 595.56 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t589.4
|
Now the first of those is normal form KD, which is compatibility decomposition.
| 589.4 | 602.76 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t595.56
|
Now this breaks down the fancy or alternative characters into their smaller parts, if they
| 595.56 | 603.76 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t602.76
|
do have smaller parts.
| 602.76 | 609.08 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t603.76
|
So for example, fractions, if we have the one over two fraction, that will get broken
| 603.76 | 616.48 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t609.0799999999999
|
down into the numbers one and two, and also a fraction slash character, which you can
| 609.08 | 618.76 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t616.48
|
actually see down here.
| 616.48 | 621.32 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t618.76
|
And we also have our fancy characters.
| 618.76 | 627.2 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t621.3199999999999
|
So where we have this fancy capital H, and we decompose it into just a normal Latin capital
| 621.32 | 629.2 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t627.2
|
letter H.
| 627.2 | 633.24 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t629.2
|
And that's how the compatibility decomposition works.
| 629.2 | 640.4 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t633.24
|
And to apply that, we want to use NFKD.
| 633.24 | 645.56 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t640.4
|
So if we just take what we have here, and we're just going to switch what we're actually
| 640.4 | 646.56 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t645.56
|
using.
| 645.56 | 652.64 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t646.56
|
So I'm going to switch out the su siddilla for this fancy H.
| 646.56 | 654.64 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t652.64
|
So your fancy H.
| 652.64 | 659.84 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t654.64
|
In fact, we can just leave it like that because we can at least see what we're doing now.
| 654.64 | 662.2 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t659.8399999999999
|
So we're going to put that here.
| 659.84 | 666.6 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t662.1999999999999
|
And we want to compare that to just a normal letter H.
| 662.2 | 669.88 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t666.5999999999999
|
Obviously it's false, doesn't match.
| 666.6 | 676.96 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t669.88
|
What we need to do is normalize this and decompose it into the capital H character.
| 669.88 | 677.96 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t676.96
|
So let's take this.
| 676.96 | 686.24 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t677.96
|
And we're going to use our normalize function again.
| 677.96 | 692.52 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t686.24
|
But this time, we want to use compatibility equivalence, which is the K, and we're decomposing
| 686.24 | 693.92 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t692.52
|
it using D.
| 692.52 | 696.2 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t693.92
|
And now we can see that we are getting true.
| 693.92 | 700.08 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t696.2
|
So we just print out the results of this function.
| 696.2 | 703.72 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t700.08
|
You can see, okay, great.
| 700.08 | 709.36 |
Unicode Normalization for NLP in Python
|
2021-03-17 13:30:00 UTC
|
https://youtu.be/9Od9-DV9kd8
|
9Od9-DV9kd8
|
UCv83tO5cePwHMt1952IVVHw
|
9Od9-DV9kd8-t703.72
|
It's just taking that H and converting it into something normal.
| 703.72 | 715.42 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.