python_code
stringlengths
0
4.04M
repo_name
stringlengths
7
58
file_path
stringlengths
5
147
import os import glob import codecs class Document(object): ''' ''' def __init__(self, doc_id, text, sentences=[], attributes={}): self.doc_id = doc_id self.text = text self.sentences = sentences self.attributes = attributes def __repr__(self): return "<Document(id={} text={}...)>".format(self.doc_id,self.text[0:50]) class DocParser(object): ''' ''' def __init__(self, inputpath, encoding="utf-8"): self.inputpath = inputpath self.encoding=encoding def __iter__(self): for fpath in self._get_files(self.inputpath): for doc in self._load(fpath): yield doc def __getitem__(self,key): raise NotImplementedError def _load(self, source): raise NotImplementedError def _get_files(self, file_input): if type(file_input) is list: return file_input elif os.path.isfile(file_input): return [file_input] else: return glob.glob(file_input) def _filename2uid(self, s): return os.path.basename(s).split(".")[0] class TextFileParser(DocParser): '''Parse plain text documents, assuming one document per file''' def __init__(self, inputpath, doc_id_func=None, encoding="utf-8"): super(TextFileParser, self).__init__(inputpath, encoding) self.doc_id_func = self._filename2uid if not doc_id_func else doc_id_func def _load(self, source): uid = self.doc_id_func(source) text = u''.join(codecs.open(source,"rU",self.encoding).readlines()) yield Document(doc_id=uid, text=text) class RowParser(DocParser): '''One document per tab delimited row''' def __init__(self, inputpath, doc_id_func=None, delimiter="\t", header=False, text_columns=['text'], encoding="utf-8"): super(RowParser, self).__init__(inputpath, encoding) self.header = header self.doc_id_func = (lambda row:row[0]) if not doc_id_func else doc_id_func self.delimiter = delimiter self.text_columns = text_columns def _load(self, source): with codecs.open(source,"rU",self.encoding) as f: for i,line in enumerate(f): row = line.split(self.delimiter) if i == 0 and self.header: colnames = row continue uid = self.doc_id_func(row) text = u' '.join([row[col if not self.header else colnames.index(col)] \ for col in self.text_columns]) attributes = dict(zip(colnames if self.header else range(len(row)),row)) yield Document(doc_id=uid, text=text, attributes=attributes) class BioCParser(DocParser): ''' "BioC is a simple format to share text data and annotations. It allows a large number of different annotations to be represented. We provide simple code to hold this data, read it and write it back to XML, and perform some sample processing." http://bioc.sourceforge.net/ ''' pass
ddbiolib-master
ddbiolib/corpora/doc_parsers.py
import itertools class Corpus(object): '''Simple iterator class for loading and parsing documents''' def __init__(self, doc_parser, text_parser=None, attributes={}): self.doc_parser = doc_parser self.text_parser = text_parser self.attributes = attributes def __getitem__(self,key): doc = self.doc_parser.__getitem__(key) doc.sentences = self.text_parser.parse(doc.text,doc.doc_id) if self.text_parser else [] return doc def __iter__(self): for doc in self.doc_parser: doc.sentences = self.text_parser.parse(doc.text,doc.doc_id) if self.text_parser else [] yield doc def get_sentences(self,doc_ids=None): sentences = [doc.sentences for doc in self if not doc_ids or doc.doc_id in doc_ids] return list(itertools.chain.from_iterable(sentences))
ddbiolib-master
ddbiolib/corpora/base.py
# -*- coding: utf-8 -*- import bz2 import sys import codecs import itertools from ddlite import * from datasets import CdrCorpus def build_hypenated_dict(labels,stopwords={}): hypenated = {} for label in labels: pmid,sent_id,idxs,span,text = label mention = [corpus[pmid]["sentences"][sent_id].words[i] for i in idxs] m = re.search("\w+[-]([A-Za-z]{3,})"," ".join(mention)) if m: t = m.group(1).lower() if t in stopwords: continue hypenated[t] = hypenated.get(t,0) + 1 return [phrase for phrase,n in sorted(hypenated.items(),key=lambda x:x[1],reverse=1)] def load_dictionary(filename, col_idx=0, delimiter="\t", stopwords={}): '''Load dictionary file (optionally compressed with bzip2)''' if filename.split("/")[-1].split(".")[-1] == "bz2": d = {line.strip().split(delimiter)[col_idx]:1 for line in bz2.BZ2File(filename, 'rb').readlines()} else: d = {line.strip().split(delimiter)[col_idx]:1 for line in codecs.open(filename, 'rb',"utf-8", errors="ignore").readlines()} d = {word:1 for word in d if not word.isupper() and word.lower() not in stopwords} return d #################################################################### # Load/Parse Corpus #################################################################### SET = "training" corpus = CdrCorpus(path="corpus/", cache_path="corpus/cache/") sentences = [corpus[doc_id]["sentences"] for doc_id in corpus.cv[SET]] sentences = list(itertools.chain.from_iterable(sentences)) ''' terms = [] for doc_id in corpus.cv[SET]: terms += [t.text for t in corpus.annotations[doc_id]] oracle = dict.fromkeys(terms) ''' #################################################################### # Match Candidates #################################################################### stopwords = load_dictionary("dicts/stopwords.txt") stopwords.update(dict.fromkeys(["V","IV","III","II","I","cm","mg","pH"])) #ChEBI chemical ontology and UMLS substances dictionary = load_dictionary("dicts/chemicals/names.tsv", col_idx=5, stopwords=stopwords) dictionary.update(load_dictionary("dicts/chemicals/umls.all.substances.bz2", stopwords=stopwords)) dictionary.update(load_dictionary("dicts/chemicals/umls.all.substances.penn-treebank.txt", stopwords=stopwords)) # filter out some noisy dictionary matches for phrase in dictionary.keys(): if re.search("(^[A-Za-z0-9][.-]*$)",phrase): del dictionary[phrase] matcher = DictionaryMatch(label='Ch', dictionary=dictionary, ignore_case=True) candidates = Entities(sentences, matcher) num_cands = candidates.num_candidates() num_sents = len(sentences) outfname = "candidates/chemicals/chemical-candidates.s{}.c{}.pkl".format(num_sents,num_cands) candidates.dump_candidates(outfname) print("Wrote {}".format(outfname)) #################################################################### # Candidate Recall #################################################################### holdout_ids = corpus.cv[SET].keys() prediction = [1] * len(candidates) scores = corpus.score(candidates, prediction, "chemicals", holdout_ids ) print "Candidate Recall: {:.3f}".format(scores["recall"]) tp,fp,fn = corpus.classification_errors(candidates, prediction, "chemicals", holdout_ids) print "TP: {} FP: {} FN: {}".format(len(tp),len(fp),len(fn)) # print out some missed entities for label in fn: pmid,sent_id,idxs,span,text = label mention = [corpus[pmid]["sentences"][sent_id].words[i] for i in idxs] #print text, mention
ddbiolib-master
demos/relations/cdr/cdr_chemical_extraction.py
''' Created on Jun 17, 2016 @author: fries ''' import bz2 import sys import csv import re import os import numpy as np import itertools import cPickle import ddlite from ddlite import SentenceParser,Entities from ddlite import Union, DictionaryMatch, RegexNgramMatch from utils import unescape_penn_treebank from datasets import CdrCorpus def parse_record(r): d = {} for line in r: if re.search("^\w+\s+=\s+",line): m = re.split("(^\w+)\s+=\s+",line.strip())[1:] key,value = m value = value.split("|") if key in d: d[key] += value else: d[key] = value return d def load_mesh_defs(filename="d2015.bin"): mesh = {} record = [] for line in open(filename,"rU"): line = line.strip() if not line: r = parse_record(record) mesh[r["UI"][0]] = r record = [] continue record += [line] return mesh mesh = load_mesh_defs("/Users/fries/Dropbox/Datasets/mesh_headings/2015/d2015.bin") mesh_ids = {uid:mesh[uid]["MH"][0] for uid in mesh} mesh_names = {name.lower():uid for uid,name in mesh_ids.items()} # -------------------------------------------- # Load/Parse Corpus # -------------------------------------------- cache = "/Users/fries/Desktop/CDR_cache/" infile = "/Users/fries/Desktop/CDR_Data/CDR.Corpus.v010516/" parser = SentenceParser() corpus = CdrCorpus(infile, parser, cache_path=cache) n,N = [],[] print corpus for pmid in corpus.annotations: for mention in corpus.annotations[pmid]: if len(mention.mesh_ids) > 1: t = mention.text.lower() N += [t] if "and" in t or "or" in t or "and/or" in t: n += [t] # multi-ids print len(n),len(N) print len(set(N).difference(n)) print "DONE" n = 0 N = 0 for pmid in corpus.annotations: for mention in corpus.annotations[pmid]: N += 1 if mention.text.lower() in mesh_names: n += 1.0 print n,N, n/N * 100
ddbiolib-master
demos/relations/cdr/cdr_disease_extraction.py
''' This demo requires access to the "BioCreative V Chemical-Disease Relation (CDR) Task Corpus" (http://www.biocreative.org/resources/corpora/biocreative-v-cdr-corpus/) available after signing up for an account at http://www.biocreative.org This script extracts candidate relations from sentences. It assumes we already have an input candidate set of entities for diseases and chemicals. This can either be an: 1) Oracle set (all gold/true mentions) 2) Pretagged set using PubTator, DNorm, tmChem, etc. @author: jason-fries [at] stanford [dot] edu ''' import sys import itertools from ddlite import * from datasets import CdrCorpus class AnnotationMatcher(CandidateExtractor): '''Use a set of pre-tagged named entities to create candidate matches.''' def init(self): # Load opts- this is from the kwargs dict self.label = self.opts['label'] self.annotations = self.opts['annotations'] # create label index def _(self,doc): '''Ground truth annotation index''' entity_idx = {} for doc_id in self.annotations: entity_idx[doc_id] = {} doc = self.__getitem__(pmid) for sentence,tags in zip(doc["sentences"],doc["tags"]): if sentence.sent_id not in label_idx[pmid]: label_idx[pmid][sentence.sent_id] = {} for text,offset in tags: label_idx[pmid][sentence.sent_id][offset] = text return label_idx def _apply(self, s, idxs=None): ''' ''' if doc_id not in self.annotations: return SET = "training" ORACLE = False corpus = CdrCorpus(path="corpus/", cache_path="corpus/cache/") for doc_id in corpus.cv[SET]: print corpus[doc_id]["tags"] print corpus[doc_id]["relations"] for s in corpus[doc_id]["sentences"]: print s #for label in corpus.annotations[doc_id]: # print label sys.exit() sentences = [corpus[doc_id]["sentences"] for doc_id in corpus.cv[SET]] sentences = sentences = list(itertools.chain.from_iterable(sentences)) for s in sentences: print s.doc_id, s.sent_id, s.words break #if ORACLE:
ddbiolib-master
demos/relations/cdr/cdr_extraction.py
import bz2 import sys import csv import codecs import numpy as np import itertools import cPickle from ddlite import SentenceParser,DictionaryMatch,Entities,Union from utils import unescape_penn_treebank from datasets import PubMedCentralCorpus def load_stopwords(): dictfile = "dicts/stopwords.txt" return [line.strip().split("\t")[0] for line in open(dictfile).readlines()] def load_dictionary(filename, stopwords=[]): if filename.split("/")[-1].split(".")[-1] == "bz2": d = {line.strip().split("\t")[0]:1 for line in bz2.BZ2File(filename, 'rb').readlines()} else: d = {line.strip().split("\t")[0]:1 for line in codecs.open(filename, 'rb',"utf-8", errors="ignore").readlines()} d = {word:1 for word in d if not word.isupper() and word.lower() not in stopwords} return d def load_acronym_dictionary(filename): if filename.split("/")[-1].split(".")[-1] == "bz2": d = {line.strip().split("\t")[0]:1 for line in bz2.BZ2File(filename, 'rb').readlines()} else: d = {line.strip().split("\t")[0]:1 for line in codecs.open(filename, 'rb',"utf-8", errors="ignore").readlines()} # filter by char length and stopwords d = {word:1 for word in d if len(word) > 1 and word.isupper()} return d # -------------------------------------------- # Load/Parse Corpus # -------------------------------------------- cache = "/Users/fries/Desktop/pmc_cache/" inputdir = "/Users/fries/Desktop/articles.I-N/" # orthopedics subset cache = "/Users/fries/workspace/dd-bio-examples/data/documents/pmc-ortho-cache/" inputdir = "/Users/fries/workspace/dd-bio-examples/data/documents/pmc-ortho/" parser = SentenceParser() corpus = PubMedCentralCorpus(inputdir,parser,cache_path=cache) sentences = [corpus[uid]["sentences"] for uid in corpus.documents.keys()[0:1000]] # sentences = list(itertools.chain.from_iterable(sentences)) # -------------------------------------------- # Match Candidates # -------------------------------------------- stopwords = load_stopwords() entities = load_dictionary("dicts/fma_human_anatomy.bz2",stopwords) acronyms = load_acronym_dictionary("dicts/umls_human_anatomy.bz2") matcher_d = DictionaryMatch(label='A', dictionary=entities, ignore_case=True) matcher_a = DictionaryMatch(label='A', dictionary=acronyms, ignore_case=False) matcher = Union(matcher_a, matcher_d) candidates = Entities(sentences, matcher) candidates.dump_candidates("candidates/ortho-candidates.{}.pkl".format(len(sentences)))
ddbiolib-master
demos/taggers/anatomy/anatomy_extraction.py
# -*- coding: utf-8 -*- import sys import cPickle from ddlite import * from datasets import * # --------------------------------------------------------------------- # # I. Load Candidates # # --------------------------------------------------------------------- candidates = Entities("cache/pmc-ortho-candidates.pkl") model = CandidateModel(candidates) msg = "Extracted {} features for each of {} mentions" print msg.format(model.num_feats(), model.num_candidates())
ddbiolib-master
demos/taggers/chemicals/chemical_learning.py
# -*- coding: utf-8 -*- import sys import codecs import operator import itertools from ddlite import * from datasets import * import ontologies.umls from ddlite.ddbiolib.utils import unescape_penn_treebank from lexicons import RuleTokenizedDictionaryMatch def rule_tokenizer(s): s = re.sub("([,?!:;] )",r" \1",s) s = re.sub("([.]$)",r" .",s) return s.split() # --------------------------------------------------------------------- # # I. Load and Parse Corpus # # --------------------------------------------------------------------- DICT_ROOT = "../../datasets/dictionaries/" CORPUS_ROOT = "../../datasets/chemdner_corpus/" parser = SentenceParser() corpus = ChemdnerCorpus(CORPUS_ROOT, parser=parser, cache_path="/tmp/") # ChemNDER has pre-defined cross-validation folds dev_set = corpus.cv["development"].keys() # load training documents and collapse all sentences into a single list documents = {doc_id:(corpus[doc_id]["sentences"],corpus[doc_id]["tags"]) for doc_id in dev_set} sentences, gold_entities = zip(*documents.values()) sentences = list(itertools.chain.from_iterable(sentences)) gold_entities = list(itertools.chain.from_iterable(gold_entities)) # summary statistics gold_entity_n = len(list(itertools.chain.from_iterable(gold_entities))) word_n = sum([len(sent.words) for sent in sentences]) print("%d PubMed abstracts" % len(documents)) print("%d ChemNDER gold entities" % gold_entity_n) print("%d tokens" % word_n) # --------------------------------------------------------------------- # # II. Build Matchers # # --------------------------------------------------------------------- # dictionaries from tmChem & the UMLS dict_fnames = ["%s/chemdner/mention_chemical.txt", "%s/chemdner/chebi.txt", "%s/chemdner/addition.txt", "%s/umls/substance-sab-all.txt", "%s/chemdner/train.chemdner.vocab.txt"] dict_fnames = [s % DICT_ROOT for s in dict_fnames] chemicals = [] for fname in dict_fnames: chemicals += [line.strip().split("\t")[0] for line in open(fname,"rU").readlines()] chemicals = {term:1 for term in chemicals} # create matchers and extract candidates extr1 = DictionaryMatch('C', chemicals, ignore_case=True) extr2 = RuleTokenizedDictionaryMatch('C', chemicals, ignore_case=True, tokenizer=rule_tokenizer) extr3 = RegexMatch('C', "[αβΓγΔδεϝζηΘθικΛλμνΞξοΠπρΣστυΦφχΨψΩω]+[-]+[A-Za-z]+", ignore_case=True) extr4 = RegexMatch('C', "([-]*(\d[,]*)+[-])", ignore_case=True) extr5 = RegexMatch('C', "([-]*(\d[,]*)+[-])", ignore_case=True) matcher = MultiMatcher(extr1,extr2,extr3,extr4,extr5) # --------------------------------------------------------------------- # # III. Extract Candidates # # --------------------------------------------------------------------- candidates = Entities(sentences, matcher) # Crude recall estimate (ignores actual span match and tokenization problems) mentions = [" ".join(unescape_penn_treebank([e.words[i] for i in e.idxs])) for e in candidates] gold_mentions = list(zip(*itertools.chain.from_iterable(gold_entities))[0]) for m in mentions: if m in gold_mentions: gold_mentions.remove(m) tp = gold_entity_n - len(gold_mentions) print("Found %d candidate entities" % len(candidates)) print("Candidates: %.2f%% of all tokens" % (len(candidates)/float(word_n) * 100) ) print("Annotations %.2f%% of all tokens" % (gold_entity_n/float(word_n) * 100) ) print("~recall: %.2f (%d/%d)" % (float(tp) / gold_entity_n, tp, gold_entity_n)) candidates.dump_candidates("cache/candidates.pkl") # --------------------------------------------------------------------- # # IV. Error Analysis # # --------------------------------------------------------------------- # What are we missing due to tokenization errors? regexes = [re.compile("[αβΓγΔδεϝζηΘθικΛλμνΞξοΠπρΣστυΦφχΨψΩω]+[-]+[A-Za-z]+")] regexes += [re.compile("([-]*(\d[,]*)+[-])")] def regex_match(t): for regex in regexes: if regex.search(t): return True return False tokenization_errors = [term for term in gold_mentions if term in chemicals or regex_match(term)] tokenization_errors = {term:tokenization_errors.count(term) for term in tokenization_errors} oov_errors = [term for term in gold_mentions if term not in tokenization_errors] oov_errors = {term:oov_errors.count(term) for term in oov_errors} print("Tokenization Errors: %d" % (sum(tokenization_errors.values()))) print("Out-of-vocabulary Errors: %d" % (sum(oov_errors.values()))) for term in sorted(oov_errors.items(),key=operator.itemgetter(1),reverse=1): print("%s: %d" % (term[0], oov_errors[term[0]]))
ddbiolib-master
demos/taggers/chemicals/chemical_extraction.py
from __future__ import print_function import os import sys sys.path.insert(1, os.path.join(sys.path[0], '..')) import itertools import numpy as np #from ddlite import * from ddlite_candidates import Candidates from ddlite_candidates import Ngrams,Ngram from ddlite_matchers import DictionaryMatch,Union,Concat,RegexMatchSpan from ddbiolib.datasets import ncbi_disease from versioning import CandidateVersioner from ontologies.umls import UmlsNoiseAwareDict from ontologies.ctd import load_ctd_dictionary from ontologies.bioportal import load_bioportal_csv_dictionary def clean_dictionary(dictionary ,stopwords, ignore_case=True): '''Remove stopwords''' rm = [] for term in dictionary: t = term.lower() if ignore_case else term if t in stopwords: rm += [term] for t in rm: del dictionary[t] def get_stopwords(): dictfiles = ["../data/dicts/diseases/cell_molecular_dysfunction.txt", "../data/dicts/diseases/umls_geographic_areas.txt", "../data/dicts/diseases/stopwords.txt"] stopwords = {} for fname in dictfiles: d = [line.strip().split("\t")[0].lower() for line in open(fname).readlines()] d = [t for t in d if len(t) > 1 and t] stopwords.update(dict.fromkeys(d)) return stopwords common_disease_acronyms = ["AAPC", "AAS", "ABCD syndrome", "ACC", "ACS", "ACTH deficiency", "AD", "AD", "ADD", "ADD-RT", "ADEM", "ADHD", "AF", "AGS", "AHC", "AIDS", "AIP", "ALA DD", "ALI", "ALS", "AMD", "AOS", "APA", "APS", "ARBD", "ARD", "ARDS", "Acute respiratory distress syndrome", "ARND", "AS", "ASD", "ASDs", "A-T", "AVMs", "B-NHL", "BBS", "BEB", "BD", "BEH", "BFIC", "BH", "BMD", "BPD", "BPH", "BS", "BSE", "BSS", "BV", "CACH", "CAD", "CADSIL", "CAPD", "CCD", "CCHF", "CCHS", "CCM", "CDG", "CDGS", "CEP", "CES", "CESD", "CF", "CFIDS", "CFS", "CGBD", "CHD", "CHF", "CHS" "CIDP", "CIPA", "CJD", "CLD", "COFS", "COPD", "CP", "CP/CPPS", "CPDD", "CPM", "CPPS", "CRF", "CRKP", "CRPS", "CSA", "CSD", "CVD", "DAS", "DBA", "DBMD", "DD", "DEF", "DF", "DH", "DHF", "DiG", "DLB", "DM", "DMD", "DP", "DRSP disease", "DS", "DSPS", "DTs", "DVD", "DVT", "ED", "EDS", "EEE", "EHK", "EMH", "EMR", "ENS", "EPM", "EPP", "ESRD", "ESS", "EVA" "FAE", "FASDs", "FFI", "FMA", "FMD", "FMF", "FMS", "FNDI", "FSP", "FTD", "FVS", "FXS", "GAD", "GAN", "GAS disease", "GBS", "GBS disease", "GCE", "GERD", "GI", "GIB", "GN", "GRMD", "GSS disease", "GT/LD", "GVHD", "GWD", "HAS", "HBL", "HCP", "HD", "HDL2", "HEELP syndrome", "HFA", "HFMD", "HFRS", "HI", "HiB disease", "HMSN Type III", "HMS", "HOH", "HTN", "HPRT deficiency", "HPS", "HPV Infection", "HSP", "IBD", "IBIDS syndrome", "IBM", "IBS", "IBS", "IC/PBS", "ICF syndrome", "IDMS", "IHA", "IED", "IFAP syndrome", "INAD", "IP", "IRD", "IS", "ITP", "JAS", "JE", "JHD", "JRA", "JT", "KS", "KSS", "KTW Syndrome", "LCM", "LEMS", "LFA", "LGV", "LKS", "LNS", "LP", "MAC", "MBD", "MCS", "MD", "MDD", "MDR TB", "MEF", "MHP", "MID", "MJD", "ML", "MLD", "MMA", "MMR", "MMRV", "MND", "MOH", "MPD", "MPS I", "MPS II", "MPS III", "MPS IV", "MPS VI", "MPS VII", "MR/DD", "MS", "MSA", "MSDD", "NAS", "NBIA", "NCL", "NF1", "NF2", "NKH", "NLD", "NMDs", "NMO", "NMS", "NP", "NPC1", "NPH", "NTD", "NTDs", "OA", "OCD", "ODD", "OMA", "ON", "OPC", "OPCA", "OSA", "PBC", "PBD", "PCOS", "PCT", "PDD", "PDD-NOS", "PDD/NOS", "PKAN", "PLMD", "PLS", "PMD", "PML", "PMS", "POTS", "PPMA", "PPS", "PSC", "PSP", "PVL", "PW", "Q fever", "RA", "RAD", "RIND", "RLF", "RLS", "RMDs", "ROP", "RS", "RSD", "RTI", "SARS", "SB", "SBS", "SC", "SIDS", "SIS", "SLE", "SM", "SMA", "SMEI", "SMS", "SOD", "SPS", "SSPE", "STEMI", "STD", "SUNCT", "SWS", "TAC", "TB", "TBI", "TCD", "TCS", "TEF", "TIA", "TMH", "TMJ/TMD", "TMR", "TN", "TOS", "TS", "TS", "TSC", "TSEs", "TSP", "TTH", "TTP", "UCPPS", "UDA", "UTIs", "UC", "URI", "VCFS", "vCJD", "VD", "VHF", "VP", "VSD", "VVC", "VWM disease", "WAGR syndrome", "WD", "WEE", "WFS", "WS", "XLT", "XDR TB", "XLDCM", "XLSA", "XP", "YSS", "YVS", "ZBLS", "SCA1", "SCA2", "C1D", "C3D", "C4D", "C5D", "C6D", "C7D", "CCALD", "CL/P", "SJS type 2"] def clean_dictionary(d,stopwords,ignore_case=True): '''Remove some stopwords''' rm = [] for term in d: t = term.lower() if ignore_case else term if t in stopwords: rm += [term] for t in rm: del d[t] def get_stopwords(): dictfile = "dicts/cell_molecular_dysfunction.txt" stopwords = dict.fromkeys([line.strip().split("\t")[0].lower() for line in open(dictfile).readlines()]) #stopwords = {} dictfile = "dicts/umls_geographic_areas.txt" terms = [line.strip().split("\t")[0].lower() for line in open(dictfile).readlines()] stopwords.update(dict.fromkeys(terms)) dictfile = "dicts/stopwords.txt" terms = [line.strip().split("\t")[0].lower() for line in open(dictfile).readlines()] stopwords.update(dict.fromkeys(terms)) stopwords[""] = 1 stopwords["a"] = 1 return stopwords def get_gold_labels(corpus,doc_ids=None): '''Generate gold labels for the provided corpus. Note: requires an "annotations" attribute''' labels = [] for doc in corpus: if not doc_ids or doc.doc_id not in doc_ids: continue sent_offsets = [s._asdict()["char_offsets"][0] for s in doc.sentences] for label in doc.attributes["annotations"]: sidx = -1 for i in range(len(sent_offsets) - 1): if label.start >= sent_offsets[i] and label.end - 1 < sent_offsets[i+1]: sidx = i break if label.start >= sent_offsets[-1]: sidx = len(sent_offsets) - 1 # label crosses multiple sentence boundaries if sidx == -1: print("WARNING sentence boundary error",file=sys.stderr) metadata = {"mention_type":label.mention_type} labels += [Ngram(label.start, label.end - 1, doc.sentences[sidx], metadata=metadata)] if labels[-1].get_span() == "": print(labels[-1]) print(label) print(doc.sentences[sidx]) print("--------") return labels # -------------------------------------------- # Load/Parse Corpus # -------------------------------------------- corpus = ncbi_disease.load_corpus() # -------------------------------------------- # Load Dictionaries / Ontologies # -------------------------------------------- # UMLS semantic types that map to diseases or disorders positive = ["Acquired Abnormality", "Anatomical Abnormality", "Congenital Abnormality", "Disease or Syndrome", "Experimental Model of Disease", "Finding", "Injury or Poisoning", "Mental or Behavioral Dysfunction", "Neoplastic Process", "Pathologic Function", "Sign or Symptom"] negative = ["Physiologic Function","Molecular Function","Genetic Function", "Cell Function","Organ or Tissue Function","Organism Function", "Food", "Mental Process","Molecular Sequence","Nucleotide Sequence", "Animal", "Carbohydrate Sequence","Amino Acid Sequence","Body Substance", "Cell","Gene or Genome","Cell Component","Functional Concept", "Spatial Concept","Molecular Biology Research Technique", "Laboratory or Test Result","Laboratory or Test Result", "Animal","Therapeutic or Preventive Procedure","Bacterium","Phenomenon or Process", "Quantitative Concept","Temporal Concept","Natural Phenomenon or Process", "Body Part, Organ, or Organ Component","Body Location or Region", "Body Space or Junction", "Pathologic Function"] umls_terms = UmlsNoiseAwareDict(positive=positive, name="terms", ignore_case=False) umls_abbrv = UmlsNoiseAwareDict(positive=positive, name="abbrvs", ignore_case=False) #umls_stopwords = UmlsNoiseAwareDict(negative=negative, name="terms", ignore_case=True) diseases = umls_terms.dictionary() # create stand alone dictionaries #abbrvs = umls_abbrv.dictionary() #stopwords = umls_stopwords.dictionary() #diseases = load_disease_dictionary() abbrvs = load_acronym_dictionary() abbrvs.update(dict.fromkeys(common_disease_acronyms)) # Load various other disease ontologies ordo = load_bioportal_csv_dictionary("dicts/ordo.csv") doid = load_bioportal_csv_dictionary("dicts/DOID.csv") ctd = load_ctd_dictionary("dicts/CTD_diseases.tsv") # CTD's MEDIC disease vocabulary diseases.update(ordo) diseases.update(doid) diseases.update(ctd) clean_dictionary(diseases,get_stopwords()) print("DICTIONARY Disease Terms: {}".format(len(diseases))) print("DICTIONARY Abbreviation/Acronym Terms: {}".format(len(abbrvs))) # -------------------------------------------- # Match Candidates # -------------------------------------------- # Define a candidate space ngrams = Ngrams(n_max=8) longest_match = True dict_diseases = DictionaryMatch(label='disease', d=diseases, ignore_case=True, longest_match=longest_match) dict_abbrvs = DictionaryMatch(label='disease_acronyms', d=abbrvs, ignore_case=False, longest_match=longest_match) stem_forms = DictionaryMatch(label='disease_stems', d=dict.fromkeys(diseases.keys() + abbrvs.keys()), ignore_case=False, longest_match=longest_match) # prefix concatenatior matchers suffixes = DictionaryMatch(label="prefixes", d=['deficiency', 'deficient', 'deficienty', 'syndrome'], ignore_case=True, longest_match=longest_match) disease_deficiency = Concat(stem_forms, suffixes) # disease types digits = map(unicode,range(1,10)) types = DictionaryMatch(label="prefixes", d=['type', 'class', 'stage', 'factor'], ignore_case=True, longest_match=longest_match) type_nums = DictionaryMatch(label="prefixes", d=['i', 'ii', 'iii', 'vi', 'v', 'vi', '1a', 'iid', 'a', 'b', 'c', 'd'] + digits, ignore_case=True, longest_match=longest_match) disease_types_right = Concat(stem_forms, Concat(types,type_nums)) disease_types_left = Concat(Concat(types,type_nums),stem_forms) # deficiency of prefixes = DictionaryMatch(label="prefixes",d=['deficiency of',"inherited"], ignore_case=True, longest_match=longest_match) deficiency_of = Concat(prefixes,stem_forms) # sex_linked gene_linked = DictionaryMatch(label="x-linked", d=["x-linked","x linked","x linked recessive","semidominant", "hereditary", "recessive","x-linked recessive", "x-linked dominant", "dominant",'autosomal recessive',"autosomal dominant", "autossomal recessive"], ignore_case=True, longest_match=longest_match) gene_linked = Concat(gene_linked,stem_forms) cancers = RegexMatchSpan(label="cancers",rgx="(^[A-Za-z]+ (and|and/or|or) [A-Za-z]+ cancer[s]*$)|(^[A-Za-z]+[\/-][A-Za-z]+ cancer[s]*$)") deficient = RegexMatchSpan(label="deficient",rgx="^[A-Za-z0-9]+[-]deficient$") matcher = Union(dict_diseases, dict_abbrvs, disease_deficiency, deficient, cancers, disease_types_left, disease_types_right, deficiency_of, gene_linked) holdouts = ["training","development"]#,"testing"] for setname in holdouts: doc_ids = corpus.attributes["sets"][setname] cs = Candidates(ngrams, matcher, corpus.get_sentences(doc_ids)) candidates = cs.get_candidates() gold = frozenset(get_gold_labels(corpus,doc_ids)) print("----------------------------------") print(setname) print("----------------------------------") print("%d PubMed abstracts" % len(doc_ids)) print("%d Disease gold entities" % len(gold)) print("%d Candidates" % len(candidates)) cs.gold_stats(gold) fn = [] for c in gold: if c not in candidates: fn += [c.get_span()] fn = {term:fn.count(term) for term in set(fn)} for item in sorted(fn.items(),key=lambda x:x[1],reverse=0): print(item) #for c in candidates: # print(c) ''' for label in gold: if label not in candidates: print(label.get_span(), label.get_span().lower() in diseases) ''' sys.exit()
ddbiolib-master
demos/taggers/diseases/disease_extraction.py
import bz2 from ontologies.bioportal import load_bioportal_csv_dictionary def load_disease_dictionary(): # UMLS SemGroup Disorders #dictfile = "dicts/umls_disorders.bz2" #dictfile = "dicts/umls_disorders_snomed_msh_mth.bz2" dictfile = "dicts/umls_disorders_v2.bz2" diseases = {line.strip().split("\t")[0]:1 for line in bz2.BZ2File(dictfile, 'rb').readlines()} diseases = {word:1 for word in diseases if not word.isupper()} # Orphanet Rare Disease Ontology ordo = load_bioportal_csv_dictionary("dicts/ordo.csv") ordo = {word:1 for word in ordo if not word.isupper()} diseases.update(ordo) # Human Disease Ontology doid = load_bioportal_csv_dictionary("dicts/DOID.csv") doid = {word:1 for word in doid if not word.isupper()} diseases.update(doid) # ------------------------------------------------------------ # remove cell dysfunction terms dictfile = "dicts/cell_molecular_dysfunction.txt" terms = [line.strip().split("\t")[0] for line in open(dictfile).readlines()] diseases = {word:1 for word in diseases if word not in terms} dictfile = "dicts/umls_geographic_areas.txt" terms = [line.strip().split("\t")[0] for line in open(dictfile).readlines()] diseases = {word:1 for word in diseases if word not in terms} # ------------------------------------------------------------ # remove stopwords dictfile = "dicts/stopwords.txt" stopwords = [line.strip().split("\t")[0] for line in open(dictfile).readlines()] diseases = {word:1 for word in diseases if word.lower() not in stopwords} return diseases def load_acronym_dictionary(): dictfile = "dicts/umls_disorders_v2.bz2" diseases = {line.strip().split("\t")[0]:1 for line in bz2.BZ2File(dictfile, 'rb').readlines()} diseases = {word:1 for word in diseases if word.isupper()} # Orphanet Rare Disease Ontology ordo = load_bioportal_csv_dictionary("dicts/ordo.csv") ordo = {word:1 for word in ordo if word.isupper()} diseases.update(ordo) # Human Disease Ontology doid = load_bioportal_csv_dictionary("dicts/DOID.csv") doid = {word:1 for word in doid if word.isupper()} diseases.update(doid) # filter by char length diseases = {word:1 for word in diseases if len(word) > 1} return diseases
ddbiolib-master
demos/taggers/diseases/tools.py
import bz2 from ontologies.umls import UmlsNoiseAwareDict from ontologies.ctd import load_ctd_dictionary from ontologies.bioportal import load_bioportal_csv_dictionary #from tools import load_disease_dictionary,load_acronym_dictionary def search(term,dictionary): m = {} for sty in dictionary: for sab in dictionary[sty]: if term in dictionary[sty][sab]: m[sty] = 1 return m.keys() # UMLS semantic types that map to diseases or disorders positive = ["Acquired Abnormality", "Anatomical Abnormality", "Congenital Abnormality", "Disease or Syndrome", "Experimental Model of Disease", "Finding", "Injury or Poisoning", "Mental or Behavioral Dysfunction", "Neoplastic Process", "Pathologic Function", "Sign or Symptom"] umls_terms = UmlsNoiseAwareDict(positive=positive, prefix="terms") umls_abbrv = UmlsNoiseAwareDict(positive=positive, prefix="abbrvs", ignore_case=False) diseases = umls_terms.dictionary() # create stand alone dictionaries abbrvs = umls_abbrv.dictionary() print len(diseases) dictfile = "dicts/umls_disorders_v2.bz2" disorders = {line.strip().split("\t")[0]:1 for line in bz2.BZ2File(dictfile, 'rb').readlines()} #disorders = {word:1 for word in disorders if word.isupper()} disorders = {word.lower():1 for word in disorders if not word.isupper()} print len(disorders) for term in diseases: if term not in disorders: print term, search(term,umls_terms._dictionary)
ddbiolib-master
demos/taggers/diseases/dictionary_tests.py
import bisect, re from ddlite_matchers import * from collections import defaultdict class NcbiDiseaseDictionaryMatch(NgramMatcher): """Selects according to ngram-matching against a dictionary i.e. list of words""" def init(self): # Load opts- this is from the kwargs dict self.label = self.opts['label'] self.dictionary = self.opts['d'] self.match_attrib = self.opts.get('match_attrib', 'words') self.ignore_case = self.opts.get('ignore_case', True) self.longest_match = self.opts.get('longest_match', True) # Split the dictionary up by phrase length (i.e. # of tokens) self.dl = defaultdict(lambda : set()) for phrase in self.dictionary: self.dl[len(phrase.split())].add(phrase.lower() if self.ignore_case else phrase) self.dl.update((k, frozenset(v)) for k,v in self.dl.iteritems()) # Get the *DESC order* ngram range for this dictionary self.ngr = range(max(1, min(self.dl.keys())), max(self.dl.keys())+1)[::-1] def _apply(self, s, idxs=None): """ Take in an object or dictionary which contains match_attrib and get the index lists of matching phrases If idxs=None, consider all indices, otherwise constrain to subset of idxs """ seq = self._get_attrib_seq(s) # If idxs=None, consider the full index range, otherwise only subseqs of idxs start = 0 if idxs is None else min(idxs) end = len(seq) if idxs is None else max(idxs)+1 L = len(seq) if idxs is None else len(idxs) # NOTE: We assume that idxs is a range of consecutive indices! if L != end - start: raise ValueError("Candidates must be over consecutive spans of indices") # Keep track of indexes we've already matched so that we can e.g. keep longest match only matched_seqs = [] # Loop over all ngrams for l in filter(lambda n : n <= L, self.ngr): for i in range(start, end-l+1): ssidx = range(i, i+l) # If we are only taking the longest match, skip if a subset of already-tagged idxs if self.longest_match and any(set(ssidx) <= ms for ms in matched_seqs): continue phrase = ' '.join(seq[i:i+l]) if phrase.lower() == 'deficiency' and i+l<L and seq[i+l].lower() in ['in', 'of']: continue phrase = phrase.lower() if self.ignore_case else phrase if phrase in self.dl[l]: min_idx = min(ssidx) max_idx = max(ssidx) if (max_idx+1<L and seq[max_idx+1].lower() in ['deficiency', 'deficient', 'deficienty', 'syndrome']): ssidx = range(min_idx, max_idx+2) min_idx = min(ssidx) max_idx = max(ssidx) if (max_idx+2<L and seq[max_idx+1].lower() in ['type', 'class', 'stage', 'factor'] and (seq[max_idx+2].lower() in ['i', 'ii', 'iii', 'vi', 'v', 'vi', '1a', 'iid', 'a', 'b', 'c', 'd'] or seq[max_idx+2].isdigit())): ssidx = range(min_idx, max_idx+3) min_idx = min(ssidx) max_idx = max(ssidx) if (min_idx-2>=0 and seq[min_idx-2].lower() in ['type', 'class', 'stage', 'factor'] and (seq[min_idx-1].lower() in ['i', 'ii', 'iii', 'iv', 'v', 'vi', '1a', 'iid', 'a', 'b', 'c', 'd'] or seq[min_idx-1].isdigit())): ssidx = range(min_idx-2, max_idx+1) min_idx = min(ssidx) max_idx = max(ssidx) if (min_idx-2>=0 and seq[min_idx-2].lower() in ['deficiency'] and seq[min_idx-1].lower() in ['of']): ssidx = range(min_idx-2, max_idx+1) min_idx = min(ssidx) max_idx = max(ssidx) if (min_idx-1>=0 and seq[min_idx-1].lower() in ['inherited']): ssidx = range(min_idx-1, max_idx+1) if any(set(ssidx) <= ms for ms in matched_seqs): continue matched_seqs.append(frozenset(ssidx)) yield list(ssidx), self.label checkbox = [] matched_seqs = sorted(matched_seqs, key=lambda x:min(x)) for i in range(len(matched_seqs)): if i in checkbox: continue min_idx = min(list(matched_seqs[i])) max_idx = max(list(matched_seqs[i])) haveone = True checked = False checkbox.append(i) while haveone: haveone = False for j in range(len(matched_seqs)): if j not in checkbox and (max_idx + 1 == min(list(matched_seqs[j])) or (max_idx + 2 == min(list(matched_seqs[j])) and seq[max_idx + 1].lower() in ['and/or', 'of', 'and', 'or'])): checkbox.append(j) max_idx = max(list(matched_seqs[j])) haveone = True checked = True break if checked: pass #yield list(range(min_idx, max_idx + 1)), self.label
ddbiolib-master
demos/taggers/diseases/matchers.py
import bz2 import sys import csv import re import codecs import numpy as np import itertools import cPickle import ddlite from ddlite import SentenceParser,Entities from ddlite import Union, DictionaryMatch, RegexNgramMatch, CandidateExtractor from utils import unescape_penn_treebank from datasets import NcbiDiseaseCorpus class NounPhraseMatcher(CandidateExtractor): def init(self): self.pattern = re.compile("(NN[SP]*|JJ[S]*|DT|CC)") self.label = self.opts['label'] self.match_attrib = self.opts.get('match_attrib', 'words') self.ignore_case = self.opts.get('ignore_case', True) self.longest_match = self.opts.get('longest_match', True) def _apply(self, s, idxs=None): noun_phrases = [] np = [] for i,tag in enumerate(s.poses): if self.pattern.search(tag): np += [(i,tag)] elif np: noun_phrases += [np] np = [] for np in noun_phrases: while np and re.search("(CC|[PW]*DT)",np[0][1]): np.pop(0) while np and re.search("(CC|[PW]*DT)",np[-1][1]): np.pop() if not np or re.search("JJ[RS]*",np[0][1]): continue idxs,poses = zip(*np) #print np, s.words[min(idxs):max(idxs)+1] #print "----" yield list(idxs), 'x' np_regex = re.compile("^((NN[SP]*|JJ[S]*|DT|CC)\s*)+$") pos_regex = re.compile("(NN[SP]*|JJ[S]*|DT|CC)") np_regex = re.compile("^((NN[SP]*|JJ[S]*|DT)\s*)+$") pos_regex = re.compile("(NN[SP]*|JJ[S]*|DT)") np_regex = re.compile("^((NN[SP]*|JJ[S]*|DT)\s*)+$") pos_regex = re.compile("(NN[SP]*|JJ[S]*|DT)") def is_noun_phrase(t): seq = " ".join(t) return np_regex.search(seq) is not None def multiset_intersection(a,b): a = [t for t in a] b = [t for t in b] c = [] while len(a) > 0 and len(b) > 0: i = a.pop(0) if i in b: c += [i] b.remove(i) return c def noun_phrases(s): noun_phrases = [] np = [] for i,tag in enumerate(s.poses): if pos_regex.search(tag): np += [(i,tag)] elif np: noun_phrases += [np] np = [] for np in noun_phrases: while np and re.search("(CC|[PW]*DT)",np[0][1]): np.pop(0) while np and re.search("(CC|[PW]*DT)",np[-1][1]): np.pop() if not np: continue idxs,_ = zip(*np) # remove stopwords idxs = list(idxs) while idxs and s.lemmas[idxs[0]] in left_args: idxs.pop(0) while idxs and s.lemmas[idxs[-1]] in right_args: idxs.pop() if not idxs: continue yield [s.words[i] for i in idxs] ROOT = "/Users/fries/dd-bio-examples/" INDIR = "/Users/fries/Desktop/ncbi/" OUTDIR = "/Users/fries/Desktop/ncbi/candidates/" pubterms = ["background","methods","introduction"] left_args = ["novel","symptomatic","common","severe","major","primary", "distinct","gross","progressive","late-onset","classical", "recurrent","significant","moderate","mild","subsequent"] left_args += ["dog","mouse","human"] left_args += pubterms right_args = ["gene","mutation","locus","allele","cell","line", "heterozygotes","pairs", "type","protein","phenotype","deletion", "region","codon", "inhibition","inhibitor", "chromosome", "gene", "expression","suppressor","wild-type"] right_args += ["individual","patient","carrier","parent",'offspring',"cases"] right_args += ["dog","mouse","human","female","male","model"] right_args += pubterms #consistent, associated, caused,characterized # <Qualitative Concept> # -------------------------------------------- # Load/Parse Corpus # -------------------------------------------- cache = "{}/cache/".format(INDIR) infile = "{}/corpora/".format(INDIR) holdouts = ["training"] corpus = NcbiDiseaseCorpus(infile, parser=None, cache_path=cache) dev_set = list(itertools.chain.from_iterable([corpus.cv[setdef].keys() for setdef in holdouts])) tagged = [(corpus[doc_id]["sentences"],corpus[doc_id]["tags"]) for doc_id in dev_set] n,p,N = 0.0,0.0,0.0 num_noun_phrases = 0 for doc,labels in tagged: sentences = zip(doc,labels) for s,tags in zip(doc,labels): np_ners,ners = [],[] for text,span in tags: seq = s.poses[min(span):max(span)] if is_noun_phrase(seq): phrase = s.words[min(span):max(span)] np_ners += [phrase] n += 1 ners += [s.words[min(span):max(span)]] N += 1 # extract sentence noun phrases np = [np for np in noun_phrases(s)] np = map(tuple,np) num_noun_phrases += len(np) # NERs vs. NP NERs np_ners = map(tuple,np_ners) ners = map(tuple,ners) # exact NER / NP sequence match intersection = multiset_intersection(np,np_ners) p += len(intersection) # missed noun phrases mismatched = [x for x in np_ners if x not in intersection] difference = [x for x in np if x not in intersection] if mismatched: print "MISSED", mismatched print "FP NP ", difference print zip(s.words, s.poses) print "----------" #Population Group #Family Group print n/N, n, N print p/N, p, N print num_noun_phrases # -------------------------------------------- # Match Candidates # -------------------------------------------- longest_match = True matcher = NounPhraseMatcher(label='NP') gold_labels = [] scores = {"num_candidates":0, "num_cand_tokens":0,"class_balance":{}} for cv_set in ["training"]: sentences = [corpus[doc_id]["sentences"] for doc_id in corpus.cv[cv_set]] sentences = list(itertools.chain.from_iterable(sentences))
ddbiolib-master
demos/taggers/diseases/old/candidate_generation.py
import bz2 import sys import csv import re import codecs import numpy as np import itertools import cPickle import ddlite from ddlite import SentenceParser,Entities from ddlite import Union, DictionaryMatch, RegexNgramMatch, CandidateExtractor from utils import unescape_penn_treebank from datasets import NcbiDiseaseCorpus class PrefixDictionaryMatcher(RegexNgramMatch): def init(self): super(PrefixDictionaryMatcher, self).init() self.dictionary = self.opts['dictionary'] self.ignore_case = self.opts.get('ignore_case', True) def _apply(self, s, idxs=None): candidates = [c for c in super(PrefixDictionaryMatcher, self)._apply(s,idxs)] for idxs,label in candidates: matched = False words = unescape_penn_treebank([s.words[i] for i in idxs]) matched = reduce(lambda x,y:x or y,[t in self.dictionary for t in words]) ''' for i in range(len(idxs)): for j in range(i+1,len(idxs)): phrase = " ".join(unescape_penn_treebank(s.words[idxs[i]:idxs[j]+1])) phrase = phrase.lower() if self.ignore_case else phrase print phrase if phrase in self.dictionary: matched = True #break ''' if matched: yield idxs, label class HackDictionaryMatcher(RegexNgramMatch): def init(self): super(HackDictionaryMatcher, self).init() self.dictionary = self.opts['dictionary'] self.ignore_case = self.opts.get('ignore_case', True) def _apply(self, s, idxs=None): candidates = [c for c in super(PrefixDictionaryMatcher, self)._apply(s,idxs)] for idxs,label in candidates: matched = False words = unescape_penn_treebank([s.words[i] for i in idxs]) matched = reduce(lambda x,y:x or y,[t in self.dictionary for t in words]) s = " ".join(words) if matched and (" in the " in s or " of the " in s): yield idxs, label ''' def _apply(self, s, idxs=None): candidates = [c for c in super(HackDictionaryMatcher, self)._apply(s,idxs)] for idxs,label in candidates: matched = False yield idxs, label words = unescape_penn_treebank([s.words[i] for i in idxs]) matched = reduce(lambda x,y:x or y,[t in self.dictionary for t in words]) s = " ".join(words) if re.search(" (of|in) the ", s) != None and matched: yield idxs, label ''' class NounPhraseMatcher(CandidateExtractor): """ Match Noun Phrases, L/R stripped of DTs and CCs""" def init(self): self.pattern = re.compile("(NN[SP]*|JJ[S]*|DT|CC)") self.label = self.opts['label'] self.match_attrib = self.opts.get('match_attrib', 'words') self.ignore_case = self.opts.get('ignore_case', True) self.longest_match = self.opts.get('longest_match', True) def _apply(self, s, idxs=None): noun_phrases = [] np = [] for i,tag in enumerate(s.poses): if self.pattern.search(tag): np += [(i,tag)] elif np: noun_phrases += [np] np = [] for np in noun_phrases: while np and re.search("(CC|[PW]*DT)",np[0][1]): np.pop(0) while np and re.search("(CC|[PW]*DT)",np[-1][1]): np.pop() if not np or re.search("JJ[RS]*",np[0][1]): continue idxs,poses = zip(*np) yield list(idxs), 'x' def load_bioportal_csv_dictionary(filename): '''BioPortal Ontologies http://bioportal.bioontology.org/''' reader = csv.reader(open(filename,"rU"),delimiter=',', quotechar='"') d = [line for line in reader] dictionary = {} for line in d[1:]: row = dict(zip(d[0],line)) dictionary[row["Preferred Label"]] = 1 dictionary.update({t:1 for t in row["Synonyms"].split("|")}) return dictionary def load_disease_dictionary(rootdir): # UMLS SemGroup Disorders #dictfile = "dicts/umls_disorders.bz2" #dictfile = "dicts/umls_disorders_snomed_msh_mth.bz2" dictfile = "dicts/umls_disorders_v2.bz2" diseases = {line.strip().split("\t")[0]:1 for line in bz2.BZ2File(dictfile, 'rb').readlines()} diseases = {word:1 for word in diseases if not word.isupper()} # Orphanet Rare Disease Ontology ordo = load_bioportal_csv_dictionary("dicts/ordo.csv") ordo = {word:1 for word in ordo if not word.isupper()} diseases.update(ordo) # Human Disease Ontology doid = load_bioportal_csv_dictionary("dicts/DOID.csv") doid = {word:1 for word in doid if not word.isupper()} diseases.update(doid) # ------------------------------------------------------------ # remove cell dysfunction terms dictfile = "dicts/cell_molecular_dysfunction.txt" terms = [line.strip().split("\t")[0] for line in open(dictfile).readlines()] diseases = {word:1 for word in diseases if word not in terms} dictfile = "dicts/umls_geographic_areas.txt" terms = [line.strip().split("\t")[0] for line in open(dictfile).readlines()] diseases = {word:1 for word in diseases if word not in terms} # ------------------------------------------------------------ # NCBI training set vocabulary dictfile = "dicts/ncbi_training_diseases.txt" terms = [line.strip().split("\t")[0] for line in open(dictfile).readlines()] terms = {word:1 for word in terms if not word.isupper()} diseases.update(terms) # remove stopwords dictfile = "dicts/stopwords.txt".format(rootdir) stopwords = [line.strip().split("\t")[0] for line in open(dictfile).readlines()] diseases = {word:1 for word in diseases if word.lower() not in stopwords} return diseases def load_acronym_dictionary(rootdir): #dictfile = "dicts/umls_disorders.bz2" #dictfile = "dicts/umls_disorders_snomed_msh_mth.bz2" # candidate recall: 74.59% (587/787) dictfile = "dicts/umls_disorders_v2.bz2" diseases = {line.strip().split("\t")[0]:1 for line in bz2.BZ2File(dictfile, 'rb').readlines()} diseases = {word:1 for word in diseases if word.isupper()} # Orphanet Rare Disease Ontology ordo = load_bioportal_csv_dictionary("dicts/ordo.csv") ordo = {word:1 for word in ordo if word.isupper()} diseases.update(ordo) # Human Disease Ontology doid = load_bioportal_csv_dictionary("dicts/DOID.csv") doid = {word:1 for word in doid if word.isupper()} diseases.update(doid) dictfile = "dicts/ncbi_training_diseases.txt".format(rootdir) terms = [line.strip().split("\t")[0] for line in open(dictfile).readlines()] terms = {word:1 for word in terms if word.isupper()} diseases.update(terms) # filter by char length diseases = {word:1 for word in diseases if len(word) > 1} return diseases def create_corpus_dict(corpus, setdef="training"): '''Create dictionary using annotated corpus data''' dev_set = list(itertools.chain.from_iterable([corpus.cv[setdef].keys() for setdef in [setdef]])) documents = [(doc_id,corpus[doc_id]["sentences"],corpus[doc_id]["tags"]) for doc_id in dev_set] print len(dev_set),len(corpus.documents) d = {} for pmid,doc,labels in documents: for i in range(0,len(doc)): for tag in labels[i]: mention = doc[i].words[tag[-1][0]:tag[-1][1]] v1 = "".join(unescape_penn_treebank(mention)) v2 = tag[0].replace(" ","") if v1 != v2: # problem with tokenization #print " ".join(unescape_penn_treebank(mention)), tag pass else: d[" ".join(mention)] = 1 return d ROOT = "/Users/fries/dd-bio-examples/" INDIR = "/Users/fries/Desktop/ncbi/" OUTDIR = "/Users/fries/Desktop/ncbi/candidates/" # -------------------------------------------- # Load/Parse Corpus # -------------------------------------------- cache = "{}/cache/".format(INDIR) infile = "{}/corpora/".format(INDIR) holdouts = ["training","development","testing"] #parser = SentenceParser() corpus = NcbiDiseaseCorpus(infile, parser=None, cache_path=cache) ''' for doc_id in ['10923035']:# corpus.cv["training"]: doc = corpus[doc_id] print doc_id for sentence in doc["sentences"]: print sentence.parse print "--------" sys.exit() ''' #oracle = create_corpus_dict(corpus,"development") #oracle.update(create_corpus_dict(corpus,"testing")) #dev_set = list(itertools.chain.from_iterable([corpus.cv[setdef].keys() for setdef in holdouts])) #documents, gold_entities = zip(*[(corpus[doc_id]["sentences"],corpus[doc_id]["tags"]) for doc_id in dev_set]) dev_set = list(itertools.chain.from_iterable([corpus.cv[setdef].keys() for setdef in holdouts])) documents, gold_entities = zip(*[(corpus[doc_id]["sentences"],corpus[doc_id]["tags"]) for doc_id in dev_set]) ''' # summary statistics num_gold_entities = sum([len(s) for s in list(itertools.chain.from_iterable(gold_entities))]) num_tokens = sum([len(sent.words) for sent in list(itertools.chain.from_iterable(documents))]) print("%d PubMed abstracts" % len(documents)) print("%d Disease gold entities" % num_gold_entities) print("%d tokens" % num_tokens) ''' # -------------------------------------------- # Match Candidates # -------------------------------------------- longest_match = True ''' diseases = load_disease_dictionary(ROOT) acronyms = load_acronym_dictionary(ROOT) matcher_d = DictionaryMatch(label='disease', dictionary=diseases, ignore_case=True, longest_match=longest_match) matcher_a = DictionaryMatch(label='disease_acronyms', dictionary=acronyms, ignore_case=False, longest_match=longest_match) #matcher_oracle = DictionaryMatch(label='disease_oracle', dictionary=oracle, ignore_case=False, longest_match=longest_match) pattern = re.compile("((NN[SP]*|JJ)\s*){2,}") disease_terms = diseases.keys() disease_terms = {t:1 for t in disease_terms if len(t.split()) == 1} matcher_jj = PrefixDictionaryMatcher(label="D",match_attrib="poses", dictionary=disease_terms, longest_match=longest_match, regex_pattern=pattern,ignore_case=False) ''' ''' pattern = re.compile("((NN[SP]*|JJ)\s*){2,}") matcher_np = RegexNgramMatch(label="D",match_attrib="poses", longest_match=longest_match, regex_pattern=pattern,ignore_case=False) ''' ''' pattern = re.compile("((NN[SP]*|JJ[S]*|DT|CC)\s*){2,}") matcher_np = RegexNgramMatch(label="D",match_attrib="poses", longest_match=longest_match, regex_pattern=pattern,ignore_case=False) ''' matcher_np = NounPhraseMatcher(label='NP') #matcher_np #Union(matcher_a, matcher_d, matcher_oracle) print "matcher" matcher = matcher_np #matcher = Union(matcher_a,matcher_d,matcher_np) gold_labels = [] scores = {"num_candidates":0, "num_cand_tokens":0,"class_balance":{}} for cv_set in ["training"]:# holdouts: scores["class_balance"][cv_set] = {} sentences = [corpus[doc_id]["sentences"] for doc_id in corpus.cv[cv_set]] sentences = list(itertools.chain.from_iterable(sentences)) candidates = Entities(sentences, matcher) gold_labels = corpus.gold_labels(candidates) pred = [1] * len(candidates) scores[cv_set] = corpus.score(candidates, pred) scores["num_candidates"] += len(candidates) scores["num_cand_tokens"] += sum([len(c.idxs) for c in candidates]) tp,fp,fn = corpus.classification_errors(candidates, pred) scores["class_balance"][cv_set]["T"] = len(tp) scores["class_balance"][cv_set]["F"] = len(candidates) - len(tp) # training (1650+1351)/4993 60 % # dev (231+328)/773 72 % # testing (286+237)/943 55 % ''' for item in fn: doc_id,sent_id,idxs,char_span,txt = item print "FN" print [corpus[doc_id]['sentences'][sent_id].words[i] for i in idxs] print [corpus[doc_id]['sentences'][sent_id].poses[i] for i in idxs] print ''' np.save("{}/{}-ncbi-diseases-gold.npy".format(OUTDIR,cv_set), gold_labels) candidates.dump_candidates("{}/{}-ncbi-candidates.pkl".format(OUTDIR,cv_set)) partial,complete = corpus.error_analysis(candidates, pred, doc_ids=corpus.cv[cv_set]) print cv_set, len(tp),len(fp),len(fn) print len(partial) print len(complete) for item in complete: uid,sent_id,idxs,char_span,text = item s = corpus[uid]["sentences"][sent_id] print text print s.text print s.poses print print "--------------------" num_tokens = 1 # candidate recall print("Found %d candidate entities (%.2f%% of all tokens)" % (scores["num_candidates"], scores["num_cand_tokens"]/float(num_tokens)*100)) for cv_set in ["training","development","testing"]: print "Positives:{} Negatives:{}".format(scores["class_balance"][cv_set]["T"],scores["class_balance"][cv_set]["F"]) print("[{0}] candidate recall: {1:0.2f}% ({2}/{3})".format(cv_set.upper(),scores[cv_set]["recall"]*100, scores[cv_set]["tp"], scores[cv_set]["tp"]+ scores[cv_set]["fn"]))
ddbiolib-master
demos/taggers/diseases/old/disease_extraction_trees.py
import bz2 import sys import csv import re import os import numpy as np import itertools import cPickle import ddlite from ddlite import SentenceParser,Entities from ddlite import Union, DictionaryMatch, RegexNgramMatch from utils import unescape_penn_treebank from datasets import PubMedAbstractCorpus def load_bioportal_csv_dictionary(filename): '''BioPortal Ontologies http://bioportal.bioontology.org/''' reader = csv.reader(open(filename,"rU"),delimiter=',', quotechar='"') d = [line for line in reader] dictionary = {} for line in d[1:]: row = dict(zip(d[0],line)) dictionary[row["Preferred Label"]] = 1 dictionary.update({t:1 for t in row["Synonyms"].split("|")}) return dictionary def load_disease_dictionary(): # UMLS SemGroup Disorders #dictfile = "dicts/umls_disorders.bz2" #dictfile = "dicts/umls_disorders_snomed_msh_mth.bz2" dictfile = "dicts/umls_disorders_v2.bz2" diseases = {line.strip().split("\t")[0]:1 for line in bz2.BZ2File(dictfile, 'rb').readlines()} diseases = {word:1 for word in diseases if not word.isupper()} # Orphanet Rare Disease Ontology ordo = load_bioportal_csv_dictionary("dicts/ordo.csv") ordo = {word:1 for word in ordo if not word.isupper()} diseases.update(ordo) # Human Disease Ontology doid = load_bioportal_csv_dictionary("dicts/DOID.csv") doid = {word:1 for word in doid if not word.isupper()} diseases.update(doid) # ------------------------------------------------------------ # remove cell dysfunction terms dictfile = "dicts/cell_molecular_dysfunction.txt" terms = [line.strip().split("\t")[0] for line in open(dictfile).readlines()] diseases = {word:1 for word in diseases if word not in terms} dictfile = "dicts/umls_geographic_areas.txt" terms = [line.strip().split("\t")[0] for line in open(dictfile).readlines()] diseases = {word:1 for word in diseases if word not in terms} # ------------------------------------------------------------ # NCBI training set vocabulary dictfile = "dicts/ncbi_training_diseases.txt" terms = [line.strip().split("\t")[0] for line in open(dictfile).readlines()] terms = {word:1 for word in terms if not word.isupper()} diseases.update(terms) # remove stopwords dictfile = "dicts/stopwords.txt" stopwords = [line.strip().split("\t")[0] for line in open(dictfile).readlines()] diseases = {word:1 for word in diseases if word.lower() not in stopwords} return diseases def load_acronym_dictionary(): #dictfile = "dicts/umls_disorders.bz2" #dictfile = "dicts/umls_disorders_snomed_msh_mth.bz2" # candidate recall: 74.59% (587/787) dictfile = "dicts/umls_disorders_v2.bz2" diseases = {line.strip().split("\t")[0]:1 for line in bz2.BZ2File(dictfile, 'rb').readlines()} diseases = {word:1 for word in diseases if word.isupper()} # Orphanet Rare Disease Ontology ordo = load_bioportal_csv_dictionary("dicts/ordo.csv") ordo = {word:1 for word in ordo if word.isupper()} diseases.update(ordo) # Human Disease Ontology doid = load_bioportal_csv_dictionary("dicts/DOID.csv") doid = {word:1 for word in doid if word.isupper()} diseases.update(doid) dictfile = "dicts/ncbi_training_diseases.txt" terms = [line.strip().split("\t")[0] for line in open(dictfile).readlines()] terms = {word:1 for word in terms if word.isupper()} diseases.update(terms) # filter by char length diseases = {word:1 for word in diseases if len(word) > 1} return diseases def create_corpus_dict(corpus, setdef="training"): '''Create dictionary using annotated corpus data''' dev_set = list(itertools.chain.from_iterable([corpus.cv[setdef].keys() for setdef in [setdef]])) documents = [(doc_id,corpus[doc_id]["sentences"],corpus[doc_id]["tags"]) for doc_id in dev_set] print len(dev_set),len(corpus.documents) d = {} for pmid,doc,labels in documents: for i in range(0,len(doc)): for tag in labels[i]: mention = doc[i].words[tag[-1][0]:tag[-1][1]] v1 = "".join(unescape_penn_treebank(mention)) v2 = tag[0].replace(" ","") if v1 != v2: # problem with tokenization #print " ".join(unescape_penn_treebank(mention)), tag pass else: d[" ".join(mention)] = 1 return d # -------------------------------------------- # Load/Parse Corpus # -------------------------------------------- OUTDIR = "/Users/fries/Desktop/pubmed_abstracts/" cache = "/Users/fries/Desktop/pubmed_abstract_cache/" infile = "../../../datasets/chemdner_corpus/silver.abstracts.txt" parser = SentenceParser() corpus = PubMedAbstractCorpus(infile, parser, cache_path=cache) # -------------------------------------------- # Match Candidates # -------------------------------------------- diseases = load_disease_dictionary() acronyms = load_acronym_dictionary() matcher_d = DictionaryMatch(label='D', dictionary=diseases, ignore_case=True) matcher_a = DictionaryMatch(label='D', dictionary=acronyms, ignore_case=False) matcher = Union(matcher_a, matcher_d) #pattern = re.compile("((JJ|VBN)\s)+(NN[SP]*\s*)+") #pattern = re.compile("((NN[SP]*|JJ)\s*){2,}") #matcher_tags = RegexNgramMatch(label="D",match_attrib="poses",regex_pattern=pattern,ignore_case=False) matcher = Union(matcher_a, matcher_d)#, matcher_tags) N = 1000 sentences = [doc["sentences"] for i,doc in enumerate(corpus) if i < N] sentences = list(itertools.chain.from_iterable(sentences)) candidates = Entities(sentences, matcher) candidates.dump_candidates("{}/v4/pubmed-candidates-sample-{}.pkl".format(OUTDIR,N)) # candidate recall print("Found {} candidate entities".format(len(candidates)))
ddbiolib-master
demos/taggers/diseases/old/disease_extraction_pmc.py
import bz2 import sys import csv import re import codecs import numpy as np import itertools import cPickle import ddlite from ddlite import SentenceParser,Entities from ddlite import Union, DictionaryMatch, RegexNgramMatch, CandidateExtractor from utils import unescape_penn_treebank from datasets import NcbiDiseaseCorpus class PrefixDictionaryMatcher(RegexNgramMatch): def init(self): super(PrefixDictionaryMatcher, self).init() self.dictionary = self.opts['dictionary'] self.ignore_case = self.opts.get('ignore_case', True) def _apply(self, s, idxs=None): candidates = [c for c in super(PrefixDictionaryMatcher, self)._apply(s,idxs)] for idxs,label in candidates: matched = False words = unescape_penn_treebank([s.words[i] for i in idxs]) matched = reduce(lambda x,y:x or y,[t in self.dictionary for t in words]) ''' for i in range(len(idxs)): for j in range(i+1,len(idxs)): phrase = " ".join(unescape_penn_treebank(s.words[idxs[i]:idxs[j]+1])) phrase = phrase.lower() if self.ignore_case else phrase print phrase if phrase in self.dictionary: matched = True #break ''' if matched: yield idxs, label class HackDictionaryMatcher(RegexNgramMatch): def init(self): super(HackDictionaryMatcher, self).init() self.dictionary = self.opts['dictionary'] self.ignore_case = self.opts.get('ignore_case', True) def _apply(self, s, idxs=None): candidates = [c for c in super(PrefixDictionaryMatcher, self)._apply(s,idxs)] for idxs,label in candidates: matched = False words = unescape_penn_treebank([s.words[i] for i in idxs]) matched = reduce(lambda x,y:x or y,[t in self.dictionary for t in words]) s = " ".join(words) if matched and (" in the " in s or " of the " in s): yield idxs, label ''' def _apply(self, s, idxs=None): candidates = [c for c in super(HackDictionaryMatcher, self)._apply(s,idxs)] for idxs,label in candidates: matched = False yield idxs, label words = unescape_penn_treebank([s.words[i] for i in idxs]) matched = reduce(lambda x,y:x or y,[t in self.dictionary for t in words]) s = " ".join(words) if re.search(" (of|in) the ", s) != None and matched: yield idxs, label ''' def load_bioportal_csv_dictionary(filename): '''BioPortal Ontologies http://bioportal.bioontology.org/''' reader = csv.reader(open(filename,"rU"),delimiter=',', quotechar='"') d = [line for line in reader] dictionary = {} for line in d[1:]: row = dict(zip(d[0],line)) dictionary[row["Preferred Label"]] = 1 dictionary.update({t:1 for t in row["Synonyms"].split("|")}) return dictionary def load_disease_dictionary(rootdir): # UMLS SemGroup Disorders #dictfile = "dicts/umls_disorders.bz2" #dictfile = "dicts/umls_disorders_snomed_msh_mth.bz2" dictfile = "dicts/umls_disorders_v2.bz2" diseases = {line.strip().split("\t")[0]:1 for line in bz2.BZ2File(dictfile, 'rb').readlines()} diseases = {word:1 for word in diseases if not word.isupper()} # Orphanet Rare Disease Ontology ordo = load_bioportal_csv_dictionary("dicts/ordo.csv") ordo = {word:1 for word in ordo if not word.isupper()} diseases.update(ordo) # Human Disease Ontology doid = load_bioportal_csv_dictionary("dicts/DOID.csv") doid = {word:1 for word in doid if not word.isupper()} diseases.update(doid) # ------------------------------------------------------------ # remove cell dysfunction terms dictfile = "dicts/cell_molecular_dysfunction.txt" terms = [line.strip().split("\t")[0] for line in open(dictfile).readlines()] diseases = {word:1 for word in diseases if word not in terms} dictfile = "dicts/umls_geographic_areas.txt" terms = [line.strip().split("\t")[0] for line in open(dictfile).readlines()] diseases = {word:1 for word in diseases if word not in terms} # ------------------------------------------------------------ # NCBI training set vocabulary dictfile = "dicts/ncbi_training_diseases.txt" terms = [line.strip().split("\t")[0] for line in open(dictfile).readlines()] terms = {word:1 for word in terms if not word.isupper()} diseases.update(terms) # remove stopwords dictfile = "dicts/stopwords.txt".format(rootdir) stopwords = [line.strip().split("\t")[0] for line in open(dictfile).readlines()] diseases = {word:1 for word in diseases if word.lower() not in stopwords} return diseases def load_acronym_dictionary(rootdir): #dictfile = "dicts/umls_disorders.bz2" #dictfile = "dicts/umls_disorders_snomed_msh_mth.bz2" # candidate recall: 74.59% (587/787) dictfile = "dicts/umls_disorders_v2.bz2" diseases = {line.strip().split("\t")[0]:1 for line in bz2.BZ2File(dictfile, 'rb').readlines()} diseases = {word:1 for word in diseases if word.isupper()} # Orphanet Rare Disease Ontology ordo = load_bioportal_csv_dictionary("dicts/ordo.csv") ordo = {word:1 for word in ordo if word.isupper()} diseases.update(ordo) # Human Disease Ontology doid = load_bioportal_csv_dictionary("dicts/DOID.csv") doid = {word:1 for word in doid if word.isupper()} diseases.update(doid) dictfile = "dicts/ncbi_training_diseases.txt".format(rootdir) terms = [line.strip().split("\t")[0] for line in open(dictfile).readlines()] terms = {word:1 for word in terms if word.isupper()} diseases.update(terms) # filter by char length diseases = {word:1 for word in diseases if len(word) > 1} return diseases def create_corpus_dict(corpus, setdef="training"): '''Create dictionary using annotated corpus data''' dev_set = list(itertools.chain.from_iterable([corpus.cv[setdef].keys() for setdef in [setdef]])) documents = [(doc_id,corpus[doc_id]["sentences"],corpus[doc_id]["tags"]) for doc_id in dev_set] print len(dev_set),len(corpus.documents) d = {} for pmid,doc,labels in documents: for i in range(0,len(doc)): for tag in labels[i]: mention = doc[i].words[tag[-1][0]:tag[-1][1]] v1 = "".join(unescape_penn_treebank(mention)) v2 = tag[0].replace(" ","") if v1 != v2: # problem with tokenization #print " ".join(unescape_penn_treebank(mention)), tag pass else: d[" ".join(mention)] = 1 return d ROOT = "/Users/fries/dd-bio-examples/" INDIR = "/Users/fries/Desktop/dnorm/" #OUTDIR = "/users/fries/desktop/dnorm/" OUTDIR = "/Users/fries/Desktop/dnorm/candidates/v4-oracle/" # -------------------------------------------- # Load/Parse Corpus # -------------------------------------------- cache = "{}/cache3/".format(INDIR) infile = "{}/disease_names/".format(INDIR) holdouts = ["training","development","testing"] parser = SentenceParser() corpus = NcbiDiseaseCorpus(infile, parser, cache_path=cache) ''' d = create_corpus_dict(corpus,"development") fname = "dicts/ncbi_development_diseases.txt" with codecs.open(fname,"w",'utf-8') as f: f.write("\n".join(d.keys())) d = create_corpus_dict(corpus,"testing") fname = "dicts/ncbi_testing_diseases.txt" with codecs.open(fname,"w",'utf-8') as f: f.write("\n".join(d.keys())) sys.exit() ''' oracle = create_corpus_dict(corpus,"development") oracle.update(create_corpus_dict(corpus,"testing")) #dev_set = list(itertools.chain.from_iterable([corpus.cv[setdef].keys() for setdef in holdouts])) #documents, gold_entities = zip(*[(corpus[doc_id]["sentences"],corpus[doc_id]["tags"]) for doc_id in dev_set]) dev_set = list(itertools.chain.from_iterable([corpus.cv[setdef].keys() for setdef in holdouts])) documents, gold_entities = zip(*[(corpus[doc_id]["sentences"],corpus[doc_id]["tags"]) for doc_id in dev_set]) # summary statistics num_gold_entities = sum([len(s) for s in list(itertools.chain.from_iterable(gold_entities))]) num_tokens = sum([len(sent.words) for sent in list(itertools.chain.from_iterable(documents))]) print("%d PubMed abstracts" % len(documents)) print("%d Disease gold entities" % num_gold_entities) print("%d tokens" % num_tokens) # -------------------------------------------- # Match Candidates # -------------------------------------------- diseases = load_disease_dictionary(ROOT) acronyms = load_acronym_dictionary(ROOT) longest_match = True matcher_d = DictionaryMatch(label='disease', dictionary=diseases, ignore_case=True, longest_match=longest_match) matcher_a = DictionaryMatch(label='disease_acronyms', dictionary=acronyms, ignore_case=False, longest_match=longest_match) matcher_oracle = DictionaryMatch(label='disease_oracle', dictionary=oracle, ignore_case=False, longest_match=longest_match) pattern = re.compile("((NN[SP]*|JJ)\s*){2,}") disease_terms = diseases.keys() disease_terms = {t:1 for t in disease_terms if len(t.split()) == 1} matcher_jj = PrefixDictionaryMatcher(label="D",match_attrib="poses", dictionary=disease_terms, longest_match=longest_match, regex_pattern=pattern,ignore_case=False) pattern = re.compile("((NN[SP]*|JJ)\s*){2,}") matcher_np = RegexNgramMatch(label="D",match_attrib="poses", longest_match=longest_match, regex_pattern=pattern,ignore_case=False) matcher = Union(matcher_a, matcher_d, matcher_oracle) gold_labels = [] scores = {"num_candidates":0, "num_cand_tokens":0,"class_balance":{}} for cv_set in holdouts: scores["class_balance"][cv_set] = {} sentences = [corpus[doc_id]["sentences"] for doc_id in corpus.cv[cv_set]] sentences = list(itertools.chain.from_iterable(sentences)) candidates = Entities(sentences, matcher) gold_labels = corpus.gold_labels(candidates) pred = [1] * len(candidates) scores[cv_set] = corpus.score(candidates, pred) scores["num_candidates"] += len(candidates) scores["num_cand_tokens"] += sum([len(c.idxs) for c in candidates]) tp,fp,fn = corpus.classification_errors(candidates, pred) scores["class_balance"][cv_set]["T"] = len(tp) scores["class_balance"][cv_set]["F"] = len(candidates) - len(tp) for item in fn: doc_id,sent_id,idxs,char_span,txt = item print "FN" print [corpus[doc_id]['sentences'][sent_id].words[i] for i in idxs] print [corpus[doc_id]['sentences'][sent_id].poses[i] for i in idxs] print np.save("{}/{}-ncbi-diseases-gold.npy".format(OUTDIR,cv_set), gold_labels) candidates.dump_candidates("{}/{}-ncbi-candidates.pkl".format(OUTDIR,cv_set)) # candidate recall print("Found %d candidate entities (%.2f%% of all tokens)" % (scores["num_candidates"], scores["num_cand_tokens"]/float(num_tokens)*100)) for cv_set in ["training","development","testing"]: print "Positives:{} Negatives:{}".format(scores["class_balance"][cv_set]["T"],scores["class_balance"][cv_set]["F"]) print("[{0}] candidate recall: {1:0.2f}% ({2}/{3})".format(cv_set.upper(),scores[cv_set]["recall"]*100, scores[cv_set]["tp"], scores[cv_set]["tp"]+ scores[cv_set]["fn"]))
ddbiolib-master
demos/taggers/diseases/old/disease_extraction.py
import bz2 import sys import cPickle import numpy as np import itertools from ddlite import SentenceParser,DictionaryMatch,Entities,CandidateModel from utils import unescape_penn_treebank from datasets import NcbiDiseaseCorpus from sklearn.metrics import precision_score,recall_score def find_duplicates(candidates): for i in range(0,len(candidates)): for j in range(i+1,len(candidates)): a = candidates[i] b = candidates[j] if a.idxs==b.idxs and a.doc_id==b.doc_id and a.sent_id==b.sent_id: print a.doc_id, a.sent_id, a.mention() print b.doc_id, b.sent_id, b.mention() print def corpus_mention_summary(corpus): '''The raw corpus doesn't match the statistics provided at http://www.ncbi.nlm.nih.gov/CBBresearch/Dogan/DISEASE/corpus.html they report: 5148/791/961 we get 5145/787/960. The original stats are either from a different version of the corpus or wrong. Note errors: 1) duplicate document in training data: PMID 8528200 (11 labels) ''' # verify number of annotations for holdout in corpus.cv: doc_ids = corpus.cv[holdout] num_mentions = sum([len(corpus.annotations[doc_id]) for doc_id in doc_ids]) print holdout,num_mentions, len(doc_ids) ROOT = "../../../" OUTDIR = "/users/fries/desktop/dnorm/" #CANDIDATE_DIR = "/Users/fries/debug/dd-bio-examples/candidates/jason/diseases/v4-oracle/" CANDIDATE_DIR = "/Users/fries/debug/dd-bio-examples/candidates/jason/diseases/v4-subsequences/" cache = "/Users/fries/Desktop/dnorm/cache3/" infile = "/Users/fries/Desktop/dnorm/disease_names/" parser = None# SentenceParser() corpus = NcbiDiseaseCorpus(infile, parser, cache_path=cache) num_training = len(Entities("{}{}-ncbi-candidates.pkl".format(CANDIDATE_DIR,"training"))) num_developent = len(Entities("{}{}-ncbi-candidates.pkl".format(CANDIDATE_DIR,"development"))) num_testing = len(Entities("{}{}-ncbi-candidates.pkl".format(CANDIDATE_DIR,"testing"))) print num_training, num_developent #candidates/jason/diseases/{}/training-ncbi-candidates.pkl ''' # ------------------------------------------------------- # candidate recall print "CANDIDATE RECALL" prediction = len(candidates) * [1] scores = corpus.score(candidates,prediction,holdout) print scores # ------------------------------------------------------- ''' cv = "development" candidates = Entities("{}{}-ncbi-candidates.pkl".format(CANDIDATE_DIR,cv)) holdout = corpus.cv[cv].keys() prediction = np.load("/users/fries/desktop/ncbi-dev-predictions.npy") probability = np.load("/users/fries/desktop/ncbi-dev-probability.npy") #prediction = np.load("/users/fries/desktop/ncbi-test-predictions.npy") prediction = prediction[num_training:] #prediction = prediction[num_training+num_developent:] gold_labels = corpus.gold_labels(candidates) #prediction = [1] * len(candidates) #print len(candidates._candidates), len(prediction), len(gold_labels) ''' # sklearn santity check (should match ddlite scores) # ------------------------------------------------------- gold_labels = [1 if x==1 else 0 for x in gold_labels] prediction = [1 if x==1 else 0 for x in prediction] print "ddlite precision:", precision_score(gold_labels, prediction) print "ddlite recall: ", recall_score(gold_labels, prediction) # ------------------------------------------------------- ''' scores = corpus.score(candidates,prediction,holdout) print scores #corpus.error_analysis(candidates,prediction,holdout) corpus.force_longest_match(candidates,probability,holdout) scores = corpus.score(candidates,probability,holdout) print scores #774 #TP:637 FP:137 FN:150 True_N:787
ddbiolib-master
demos/taggers/diseases/old/disease_learning.py
import re import os import sys import bz2 import csv import codecs import cPickle import itertools from operator import itemgetter from itertools import groupby sys.path.insert(1, "/users/fries/code/") #import ddlite from ddlite import * rootdir = "/Users/fries/Code/HILDA-2016/candidates/" # # With training vocabulary # fname = "{}sen_v4/training-ncbi-candidates.pkl".format(rootdir) #candidates = cPickle.load(open(fname,"rb")) candidates = Entities(fname) train_vocab = {} for c in candidates: term = " ".join(c.mention()).lower() train_vocab[term] = train_vocab.get(term,0) + 1 # # Without training vocabulary # fname = "{}sen_sans_training_v4/training-ncbi-candidates.pkl".format(rootdir) #candidates = cPickle.load(open(fname,"rb")) candidates = Entities(fname) no_train_vocab = {} for c in candidates: term = " ".join(c.mention()).lower() no_train_vocab[term] = train_vocab.get(term,0) + 1 missing = set(train_vocab.keys()).difference(set(no_train_vocab.keys())) for item in missing: print item
ddbiolib-master
demos/taggers/diseases/old/debug_dictionaries.py
''' Given a parse and aligned gold annotations, export CoNLL format files ''' import sys import codecs import numpy as np import cPickle from ddlite import SentenceParser from datasets import NcbiDiseaseCorpus INDIR = "/Users/fries/Desktop/dnorm/" cache = "{}/cache3/".format(INDIR) infile = "{}/disease_names/".format(INDIR) holdouts = ["training","development","testing"] parser = None#SentenceParser() corpus = NcbiDiseaseCorpus(infile, parser, cache_path=cache) for cvset in holdouts: doc_ids = corpus.cv[cvset].keys() print len(doc_ids) conll = corpus.conll(doc_ids) outfile = "data/{}.conll.txt".format(cvset) with codecs.open(outfile,"w","utf-8") as f: f.write(conll)
ddbiolib-master
demos/taggers/diseases/old/export_conll.py
from nltk.tree import Tree import re s = ''' (ROOT (S (S (NP (PRP It)) (VP (VBD was) (UCP (ADJP (JJ rare)) (, ,) (CONJP (IN as) (RB not)) (VP (VBN observed) (PP (IN in) (NP (NNS controls))))))) (, ,) (CC but) (S (RB not) (VP (VBG segregating) (PP (IN with) (NP (DT the) (NN BFIC) (NN phenotype))))) (. .))) ''' def parse_tree(t): #if t[0]=="(" and t[-1]==")": m = re.search("(^\(.+)\s+(.+\)$)",t.strip(),re.DOTALL) if m: print t.replace(m.group(1),"") #parse_tree(m.group(0)) #print "" #print s #parse_tree(s) m = re.search("(^\(.+)\s+(.+\)$)",s.strip(),re.DOTALL) print m.group(1) #m = re.search("^\((.+)\)$",t,re.DOTALL)
ddbiolib-master
demos/taggers/diseases/old/tree_parse.py
''' Created on Jun 17, 2016 @author: fries ''' import bz2 import sys import csv import re import os import numpy as np import itertools import cPickle import ddlite from ddlite import SentenceParser,Entities from ddlite import Union, DictionaryMatch, RegexNgramMatch from utils import unescape_penn_treebank from datasets import CdrCorpus # -------------------------------------------- # Load/Parse Corpus # -------------------------------------------- cache = "/Users/fries/Desktop/CDR_cache/" infile = "/Users/fries/Desktop/CDR_Data/CDR.Corpus.v010516/" parser = SentenceParser() corpus = CdrCorpus(infile, parser, cache_path=cache) for doc in corpus: print doc["annotations"] print "DONE"
ddbiolib-master
demos/taggers/diseases/old/naive_entity_linking.py
#!/usr/bin/env python ''' <SAB>.<ACRONYMS>.<STY>.txt snomedct.terms.enzyme.txt snomedct.abbrv.enzyme.txt ''' from __future__ import print_function import os import re import sys import codecs import argparse import ddbiolib.ontologies.umls as umls def create_dictionaries(term_types,outdir,dict_type="",min_size=250): metathesaurus = umls.Metathesaurus() semantic_network = metathesaurus.semantic_network.graph("isa") source_vocabs = metathesaurus.get_source_vocabulary_defs() for sty in semantic_network.nodes(): for sab in source_vocabs: sty_str = sty.lower().replace(" ","_") dict_type_str = ".{}".format(dict_type) if dict_type else "" outfname = "{}{}.{}{}.txt".format(args.outdir,sty_str,sab,dict_type_str) if os.path.exists(outfname): print("{} exists, skipping".format(outfname)) continue d = metathesaurus.dictionary(sty, source_vocab=[sab], term_types=term_types, include_children=False) if len(d) < min_size: print("SKIPPING",sty,sab,len(d)) continue with codecs.open(outfname,"w","utf-8",errors="ignore") as f: f.write("\n".join(d)) print(outfname) def main(args): # UMLS metathesaurus #meta = umls.Metathesaurus() #norm = umls.MetaNorm(function=lambda x:x.lower()) if args.normalize else umls.MetaNorm(function=lambda x:x) #semantic_network = meta.semantic_network.graph("isa") #source_vocabs = meta.get_source_vocabulary_defs() min_size = 100 # acronyms, abbreviations term_types = ['AA','AB','ACR'] create_dictionaries(term_types,args.outdir,dict_type="abbrv",min_size=min_size) # all terms #term_types = [tty for tty in umls.Metathesaurus().get_tty_list() if tty not in ['AA','AB','ACR']] #create_dictionaries(term_types,args.outdir,min_size=min_size) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("-t","--target", type=str, help="Target entity types, delimit list by |", default=None) parser.add_argument("-s","--source_vocab", type=str, help="limit to source vocabularies, delimit list by |", default=None) parser.add_argument("-n","--normalize", type=bool, help="make lowercase", default=False) parser.add_argument("-o","--outdir", type=bool, help="output directory", default=False) parser.add_argument("-r","--exclude_subtrees", type=str, help="List of subtree root nodes to remove from the target ontology, delimit list by |", default=None) parser.add_argument("-e","--embeddings", type=str, help="word embeddings (default: none)", default=None) parser.add_argument("-k","--knn", type=int, help="expand dictionary with k nearest neighbors (default: none)", default=None) args = parser.parse_args() main(args)
ddbiolib-master
demos/umls/noise_aware_dict.py
''' UMLS Metathesaurus Current Functionality + Simple Concept object (interface for definitions, term sets, etc.) + Build dictionaries of UMLS semantic types + Build positive examples of UMLS relations There are many other tools that do similar things, though none have a distant supervision focus (and there is a bias towards Perl-based tools) UMLS::Interface http://search.cpan.org/~btmcinnes/UMLS-Interface-1.47/ UMLS::Similarity http://search.cpan.org/~btmcinnes/UMLS-Similarity-1.45/ This functionality should be eventually incorporated into bio-ddlib, esp. the graph and path-based similarity measures. TODO + implement similarity and relatedness measures from UMLS::Similarity + path-based feature generator + keyword expansion/similarity using word embeddings @author Jason Alan Fries ''' from __future__ import print_function import sys import ontologies.umls as umls from ontologies.umls.graph import pprint_tree meta = umls.Metathesaurus() norm = umls.MetaNorm(function=lambda x:x.lower()) # # UMLS Concepts and Relations # # UMLS Semantic Network taxonomy = meta.semantic_network.graph(relation="isa") root_nodes = ([node for node in taxonomy if not taxonomy.predecessors(node)]) for node in root_nodes: pprint_tree(taxonomy,node) # UMLS semantic groups print( meta.semantic_network.groups["Anatomy"] ) # UMLS normalizes concepts with a CUI (Concept Unique Identifier) # e.g., C0002645 is 'Amoxycillin' concept = meta.concept(cui='C3539739') concept.print_summary() # List all relations on a specific concept relations = meta.relations_on_cui("C0002645",source_vocab=["SNOMEDCT_US"]) rel = list(set([rela[2] for rela in relations])) print(rel) # Search for concepts (CUIs) by string. This is a noisy match. We don't perform # any disambiguation so CUIs are not guaranteed to actually be related. matches = meta.match_concepts("Cu", match_substring=False) print("Found %d string->concept matches" % len(matches)) for cui in matches: concept = meta.concept(cui=cui) concept.print_summary() # # Building Dictionaries and Relation Tuples # ''' # List all semantic types, relations, and source vocabularies print(meta.get_source_vocabulary_defs()) print(sorted(meta.get_semtypes_list())) print(sorted(meta.get_relations_list())) ''' ''' # Build dictionaries for a given semantic type (i.e., entity) d = meta.dictionary("Disease or Syndrome") d = map(norm.normalize,d) for term in sorted(d,key=lambda x:len(x.split()),reverse=1): print(term) ''' # Generate relation examples from given semantic types. This is # highly dependent on the choice of source vocabulary. attribute ="may_prevent" relations = meta.relations("Substance","Biologic Function",attribute) print("Found %d distinct relation pairs" % len(relations)) # Print concept terms (this can be expanded by using concept.all_terms() # rather than just the preferred term). for cui1,cui2 in relations: terms_cui1 = map(norm.normalize, meta.concept(cui1).all_terms()) terms_cui2 = map(norm.normalize, meta.concept(cui2).all_terms()) terms_cui1 = "|".join(terms_cui1) terms_cui2 = "|".join(terms_cui2) row= [cui1, terms_cui1, attribute, cui2, terms_cui2 ] print("\t".join(row).encode("utf-8",errors="ignore"))
ddbiolib-master
demos/umls/umls_demo.py
''' Simple demonstration of instantiating a concept graph and computing some concept similarity measures ''' from __future__ import print_function import networkx as nx from ddbiolib.ontologies.umls import Metathesaurus from ddbiolib.ontologies.umls.config import DatabaseConfig def pprint_path(path, ontology): """Print UMLS CUI paths using preferred terms""" terms = [] for cui in path: terms += [ "%s (%s)" % (cui, ontology.concept(cui).preferred_term()[0]) ] print("=>".join(terms)) # local database connection configuration config = DatabaseConfig(host="127.0.0.1",username="umls", dbname="2014AB", password="") meta = Metathesaurus(config) # some example unique identifiers for UMLS concepts cui1 = "C0016129" # finger cui2 = "C0446516" # arm cui1 = "C0028643" # numbness cui2 = "C0030193" # pain cui2 = "C0085624" # burning c1 = meta.concept(cui="C0016129") # Finger c1.print_summary() c2 = meta.concept(cui="C0446516") # Arm c2.print_summary() # build CUI-level concept graph using MeSH (Medical Subject Headings) cui_graph = meta.concept_graph(level="CUI",source_vocab=["MSH","RXNORM","SNOMEDCT-US"]) # shortest path connecting concepts # Finger and Arm path = nx.shortest_path(nx.Graph(cui_graph), c1.cui, c2.cui) pprint_path(path,meta)
ddbiolib-master
demos/umls/kb_demo.py
#!/usr/bin/env python ''' Simple UMLS Metathesaurus Dictionary Builder Build dictionaries of UMLS semantic types. See umls/docs for list of UMLS Semantic Types Example usage: python create_dictionary.py -t "Disease or Syndrome" -s "SNOMEDCT_US" > outfile.txt ''' from __future__ import print_function import re import sys import ontologies.umls as umls import argparse from sklearn.neighbors import * from gensim.models.word2vec import Word2Vec def term_expansion(fpath, terms, knn): '''Expand term list by creating list of nearest neighbors in provided embeddings representation. This is usually very noisy and there is a fuzzy distinction between semantic similarity and "relatedness". Bacteria names, for example, often neighbor diseases caused by those organisms. ''' model = Word2Vec.load(fpath) model.init_sims() nbrs = NearestNeighbors(n_neighbors=knn+1, algorithm='ball_tree', metric='l2') nbrs.fit(model.syn0norm) expansion = [] for phrase in terms: # space replaced with underscore in PMC/PubMed embeddings phrase = phrase.replace(" ","_") if phrase not in model.vocab: continue idx = model.vocab[phrase].index vec = model.syn0norm[idx] _,indices = nbrs.kneighbors(vec) neighbors = [model.index2word[j] for j in indices.flatten()] neighbors.remove(phrase) expansion += neighbors # transform words back to whitespace separators return map(lambda x:x.replace("_"," "), expansion) def main(args): meta = umls.Metathesaurus() norm = umls.MetaNorm(function=lambda x:x.lower()) if args.normalize else umls.MetaNorm(function=lambda x:x) # Build dictionaries for a given a set of semantic types (i.e., entities) dictionary = [] for sty in args.target: d = meta.dictionary(sty, source_vocab=args.source_vocab, exclude_subtrees=args.exclude_subtrees) dictionary += map(norm.normalize,d) dictionary = {t:1 for t in dictionary} print(len(dictionary), file=sys.stderr) # Use expanded if args.embeddings: terms = term_expansion(args.embeddings, dictionary, args.knn) dictionary = {t:1 for t in terms if t not in dictionary and t.lower() not in dictionary}.keys() # remove terms that are just digits dictionary = [term for term in dictionary if not re.match("^(\d+[.]*\d*)|([;:\.!?\-\+]+)$",term)] for term in sorted(dictionary,key=lambda x:len(x.split()),reverse=1): print(term.encode("utf-8")) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("-t","--target", type=str, help="Target entity types, delimit list by |", default=None) parser.add_argument("-s","--source_vocab", type=str, help="limit to source vocabularies, delimit list by |", default=None) parser.add_argument("-n","--normalize", type=bool, help="make lowercase", default=False) parser.add_argument("-r","--exclude_subtrees", type=str, help="List of subtree root nodes to remove from the target ontology, delimit list by |", default=None) parser.add_argument("-e","--embeddings", type=str, help="word embeddings (default: none)", default=None) parser.add_argument("-k","--knn", type=int, help="expand dictionary with k nearest neighbors (default: none)", default=None) args = parser.parse_args() if not args.target: parser.print_help() else: args.target = args.target.split("|") args.source_vocab = args.source_vocab.split("|") if args.source_vocab else [] args.exclude_subtrees = args.exclude_subtrees.split("|") if args.exclude_subtrees else [] main(args)
ddbiolib-master
demos/umls/create_dictionary.py
# Copyright (c) Meta Platforms, Inc. and affiliates # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import sys, os import time import re mode="analyze" m=3 pre_k=1 main_k=5 def run_infer(infer_out, k, model, quiet): total_time, total_alarms = 0, 0 try: if not os.path.isdir(infer_out): print(f' * Error: infer-out does not exist for {infer_out}') exit(1) else: start_t = time.time() use_model = f'--pulse-join-select {model}' threads = "-j 1" threads = "" verbose_opt = "" if quiet: verbose_opt = " -q 2>&1 > /dev/null" cmd = f'infer analyze {threads} --pulse-only --pulse-max-disjuncts {str(k)} -o {infer_out} {use_model} {verbose_opt}' print(f" - cmd: {cmd}", file=sys.stderr) os.system(cmd) end_t = time.time() elapsed_time = end_t - start_t report = os.path.join(infer_out, "report.txt") f = open (report, "r") text = f.read().replace('\n', '') issues = re.findall('Found ([0-9]+) issue', text) if len(issues) == 0: issues_count = 0 else: issues_count = int(issues[0]) total_time = total_time + elapsed_time total_alarms = total_alarms + issues_count return total_time, total_alarms except: print(f"Skipping {p} due to unknown exceptions") return 0, 0 def run_infer_pre(path, k, model, quiet): return run_infer(path, k, model, quiet) def run_infer_main(path, k, model, quiet): return run_infer(path, k, model, quiet) def pre_analysis(pgm, pre_k, models): opt_model = None opt_alarms = -1 pt = 0 if len(models) == 1: return models[0], 0, 0 for model in models: print(f" * Pre-analysis with model {model}") t, a = run_infer_pre(pgm, pre_k, model, True) print(f" # time(sec): {t}") print(f" # alarms(#): {a}") if opt_alarms < a: opt_alarms = a opt_model = model pt = pt + t return opt_model, opt_alarms, pt def run_dd_infer(path, pre_k, main_k, models): print("* Pre-analysis") model, alarms, pretime = pre_analysis(path, pre_k, models) print(f"# total pre-time(sec): {pretime}") print("* Main analysis") maintime, mainalarms = run_infer_main(path, main_k, model, False) print(f"# Main analysis time(sec): {maintime}") print(f"# alarms(#): {mainalarms}") def main(target_path, model_path): files = os.listdir(f'{model_path}/{m}') pattern = ".*\.model" models = [f'{model_path}/{m}/{s}' for s in files if re.match(pattern, s)] print(f"prek = {pre_k}, maink = {main_k}, models = {models}", flush=True) run_dd_infer(target_path, pre_k, main_k, models) def usage(): print("usage:") print("python DDInfer.py ~/best_models ~/infer-outs/gawk-5.1.0") if len(sys.argv) < 2: usage() exit(1) model_path = sys.argv[1] target_path = sys.argv[2] if not os.path.isdir(model_path): print(f'Cannot find a model in {model_path}') usage() exit(1) if not os.path.isdir(target_path): print(f'Cannot find a captured target in {target_path}') usage() exit(1) main(target_path, model_path)
data_driven_infer-main
bin/DDInfer.py
# Copyright (c) Meta Platforms, Inc. and affiliates # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import sys, os import time import re def run(path, p, k, model): total_time, total_alarms = 0, 0 try: infer_out = path + p if not os.path.isdir(infer_out): print(" * Error: infer-out does not exist for " + p) exit(1) else: start_t = time.time() use_model = "" if model != None: use_model = "--pulse-join-select " + model os.system("infer analyze -q -j 1 --pulse-only --pulse-max-disjuncts " + str(k) + " -o " + infer_out + " " + use_model) end_t = time.time() elapsed_time = end_t - start_t report = path + p + "/report.txt" f = open (report, "r") text = f.read().replace('\n', '') issues = re.findall('Found ([0-9]+) issue', text) if len(issues) == 0: issues_count = 0 else: issues_count = int(issues[0]) os.system(f"cp {infer_out}/report.json ./data/{p}_1_{k}.json") total_time = total_time + elapsed_time total_alarms = total_alarms + issues_count return total_time, total_alarms except: print(f"Skipping {p} due to unkonwn exceptions") return 0, 0 pgm = None k = 10 model = None filename = None if len(sys.argv) < 4: print("Insufficient arguments") exit(1) elif len(sys.argv) == 4: filename = sys.argv[1] model = sys.argv[2] k = sys.argv[3] else: print("Invalid arguments") exit(1) path = "/home/vagrant/infer-outs/" f = open(filename, "r") pgms_str = f.read().replace('\n', ' ') pgms = pgms_str.split()[:] for pgm in pgms: t0, a0 = run(path, pgm, k, model) print(f'** {pgm}\t{a0}\t{t0}')
data_driven_infer-main
Table2/bin/eval_ml_infer.py
# Copyright (c) Meta Platforms, Inc. and affiliates # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import numpy as np import sklearn from sklearn.ensemble import GradientBoostingClassifier import pickle import itertools import sys, os import time import random ## usage) python3 collect.py programs_training.txt 20 1 training_data (use the pgms in 'pgms.txt', with k=10, trials=1) training_data_folder = "" if len(sys.argv) < 4: print("Insufficient arguments") exit(1) elif len(sys.argv) == 4: filename = str(sys.argv[1]) trials = 1 training_data_folder = str(sys.argv[2]) k = str(sys.argv[3]) else: print("Invalid arguments") exit(1) if not os.path.isdir(f'./{training_data_folder}'): os.system(f'mkdir ./{training_data_folder}') f = open(filename, "r") pgms_str = f.read().replace('\n', ' ') pgms = pgms_str.split()[:] print(pgms) random.seed() pre_classifier = GradientBoostingClassifier(n_estimators=100, learning_rate=0.1, max_depth=2) def read_file(data_file): X, y = [], [] with open(data_file, "r") as f: for line in f: data = list(map(lambda x: int(x), line.split())) fv = data[:len(data)-1] label = data[len(data)-1] X.append(fv) y.append(label) return X, y def make_balance(X, y): lst = list(zip(X, y)) pos = [(x,y) for (x,y) in lst if y == 1] neg = [(x,y) for (x,y) in lst if y == 0] #print(f'Original: #pos = {len(pos)}, #neg = {len(neg)}') assert (len(neg) >= len(pos)) random.shuffle(neg) neg = neg[:len(pos)] #print(f'Balanced: #pos = {len(pos)}, #neg = {len(neg)}') pos.extend(neg) return zip(*pos) def unique_sorted(values): "Return a sorted list of the given values, without duplicates." values = sorted(values) if not values: return [] consecutive_pairs = zip(values, itertools.islice(values, 1, len(values))) result = [a for (a, b) in consecutive_pairs if a != b] result.append(values[-1]) return result def uniq(X, y): lst = list(zip(X, y)) lst_uniq = unique_sorted(lst) print(f'before: {len(lst)}, uniq: {len(lst_uniq)}') return zip(*lst_uniq) def preprocess(X, y): X, y = make_balance(X, y) return X, y def trim_data(X, y, r): lst = list(zip(X, y)) res = [] for e in lst: if random.random() <= r: res.append(e) return zip(*res) def train_clf (clf, X, y): X = np.array(X) y = np.array(y) clf.fit(X, y) return clf def train_run(X, y, model_name): trained_clf = train_clf (pre_classifier, X, y) pickle.dump(trained_clf, open(model_name, "wb")) def model(accum, model_path): train_X, train_y = read_file(accum) if (train_X == []): return train_X, train_y = preprocess(train_X, train_y) train_X, train_y = trim_data(train_X, train_y, 0.7) train_run(train_X, train_y, model_path) mode = " --pulse-random-mode" if os.path.isfile(f"./{training_data_folder}/acc.model"): #mode = f' --pulse-random-mode --pulse-cover-load history.txt' #mode = f' --pulse-join-train ./{training_data_folder}/acc.model --pulse-cover-load history.txt' mode = f' --pulse-join-train ./{training_data_folder}/acc.model --pulse-cover-load history.txt --pulse-repeat-mode' def train(path, pgms, k): total_time = 0 os.system(f'touch ./{training_data_folder}/accum.txt') for p in pgms: print(f"Training for {p}") infer_out = path + p if not os.path.isdir(infer_out): print("Error: infer-out does not exist for " + p) continue else: if os.path.isfile(f'./{training_data_folder}/{p}/history.dat'): os.system(f'mv ./{training_data_folder}/{p}/history.dat ./history.txt') start_t = time.time() cmd = ("infer analyze -j 1 --pulse-train-mode --pulse-only --pulse-max-disjuncts " + str(k) + " -o " + infer_out + " --pulse-cover-mode" + mode) print(cmd) os.system(cmd) end_t = time.time() elapsed_time = end_t - start_t if not os.path.isfile("./train.txt"): print("Error: train.txt does not exist for " + p) continue os.system(f'sort -u -r ./{training_data_folder}/accum.txt train.txt -o temp.txt') os.system(f'mv temp.txt ./{training_data_folder}/accum.txt') r = random.randint(1,100000) if not os.path.isdir(f'./{training_data_folder}/{p}'): os.system(f'mkdir ./{training_data_folder}/{p}') os.system(f'mv train.txt ./{training_data_folder}/{p}/{r}.txt') os.system(f'mv history.txt ./{training_data_folder}/{p}/history.dat') path = "/home/vagrant/infer-outs/" train(path, pgms, k) model(f'./{training_data_folder}/accum.txt', f'./{training_data_folder}/acc.model')
data_driven_infer-main
Table2/bin/collect.py
# Copyright (c) Meta Platforms, Inc. and affiliates # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import numpy as np from multiprocessing import Process import sklearn from sklearn.ensemble import GradientBoostingClassifier import sys import random import time import pickle import os import itertools from os.path import exists from infer import * random.seed() #m0 |-> GradientBoostingClassifier(learning_rate=0.01, max_depth=1) #m1 |-> GradientBoostingClassifier(learning_rate=0.01, max_depth=2) #m2 |-> GradientBoostingClassifier(learning_rate=0.01, max_depth=4) #m3 |-> GradientBoostingClassifier(max_depth=1) #m4 |-> GradientBoostingClassifier(max_depth=2) #m5 |-> GradientBoostingClassifier(max_depth=4) #m6 |-> GradientBoostingClassifier(learning_rate=1.0, max_depth=1) #m7 |-> GradientBoostingClassifier(learning_rate=1.0, max_depth=2) #m8 |-> GradientBoostingClassifier(learning_rate=1.0, max_depth=4) #m9 |-> GradientBoostingClassifier(learning_rate=0.01, max_depth=1, n_estimators=200) #m10 |-> GradientBoostingClassifier(learning_rate=0.01, max_depth=2, n_estimators=200) #m11 |-> GradientBoostingClassifier(learning_rate=0.01, max_depth=4, n_estimators=200) #m12 |-> GradientBoostingClassifier(max_depth=1, n_estimators=200) #m13 |-> GradientBoostingClassifier(max_depth=2, n_estimators=200) #m14 |-> GradientBoostingClassifier(max_depth=4, n_estimators=200) #m15 |-> GradientBoostingClassifier(learning_rate=1.0, max_depth=1, n_estimators=200) #m16 |-> GradientBoostingClassifier(learning_rate=1.0, max_depth=2, n_estimators=200) #m17 |-> GradientBoostingClassifier(learning_rate=1.0, max_depth=4, n_estimators=200) classifiers = [GradientBoostingClassifier(n_estimators=ns, learning_rate=lr, max_depth=md) for ns in [100, 200] for lr in [0.01, 0.1, 1.0] for md in [1, 2, 4]] classifiers = list(zip (range(len(classifiers)), classifiers)) for idx, clf in classifiers: print(f'm{idx} |-> {clf}') def get_model_filename (folder, model_id): filename = folder + "/" + str(model_id) + ".model" return filename def train_and_save (model_id, clf, X, y, folder): filename = get_model_filename (folder, model_id) if exists(filename): print(f'Skip training {model_id} {clf}: model already exists in {filename}') else: start_t = time.time() trained_clf = train_clf (clf, X, y) end_t = time.time() print(f'Training {model_id} {clf} finishes in {end_t-start_t} seconds', flush=True) pickle.dump(trained_clf, open(filename, "wb")) return def split_list(a, n): k, m = divmod(len(a), n) return list(a[i*k+min(i, m):(i+1)*k+min(i+1, m)] for i in range(n)) def train_and_save_models (classifiers, X, y, folder): for model_id, clf in classifiers: train_and_save (model_id, clf, X, y, folder) def train_parallel (classifiers, X, y, folder, cpus): clfs = classifiers[:] random.shuffle(clfs) splits = split_list(clfs, cpus) i = 0 for split in splits: i = i + 1 print(f'CPU {i} : {split}') jobs = [] for i in range(cpus): th = Process(target=train_and_save_models, args=(splits[i], X, y, folder)) jobs.append(th) for i in range(cpus): jobs[i].start() for i in range(cpus): jobs[i].join() def get_pgm_name(fullpath): basename = os.path.basename(fullpath) assert (basename.endswith(".merged.txt")) return basename[:-11] def unique_sorted(values): "Return a sorted list of the given values, without duplicates." values = sorted(values) if not values: return [] consecutive_pairs = zip(values, itertools.islice(values, 1, len(values))) result = [a for (a, b) in consecutive_pairs if a != b] result.append(values[-1]) return result def train_clf (clf, X, y): X = np.array(X) y = np.array(y) clf.fit(X, y) return clf def read_file(data_file): X, y = [], [] with open(data_file, "r") as f: for line in f: data = list(map(lambda x: int(x), line.split())) fv = data[:len(data)-1] label = data[len(data)-1] X.append(fv) y.append(label) return X, y def read_files(data_files): X, y = [], [] for data_file in data_files: _X, _y = read_file(data_file) X.extend(_X) y.extend(_y) return X, y def get_pos_neg(X, y): lst = list(zip(X, y)) pos = [(x,y) for (x,y) in lst if y == 1] neg = [(x,y) for (x,y) in lst if y == 0] return pos, neg def make_balance(X, y): lst = list(zip(X, y)) pos = [(x,y) for (x,y) in lst if y == 1] neg = [(x,y) for (x,y) in lst if y == 0] assert (len(neg) >= len(pos)) random.shuffle(neg) neg = neg[:len(pos)] pos.extend(neg) return zip(*pos) def uniq(X, y): lst = list(zip(X, y)) lst_uniq = unique_sorted(lst) print(f'before: {len(lst)}, uniq: {len(lst_uniq)}') return zip(*lst_uniq) def preprocess(X, y): X, y = uniq(X, y) X, y = make_balance(X, y) return X, y def trim_data(X, y, r): lst = list(zip(X, y)) res = [] for e in lst: if random.random() <= r: res.append(e) return zip(*res) def get_train_data(train_files, ratio): train_X, train_y = read_files(train_files) assert (train_X != []) train_X, train_y = preprocess(train_X, train_y) pos, neg = get_pos_neg (train_X, train_y) print(f'#pos : {len(pos)}, #neg : {len(neg)}') train_X, train_y = trim_data(train_X, train_y, ratio) pos, neg = get_pos_neg (train_X, train_y) print(f'#pos : {len(pos)}, #neg : {len(neg)}') return train_X, train_y def evaluate_clf_for_parallel(clf, valid_files, return_dict): for valid_file in valid_files: valid_X, valid_y = read_file(valid_file) try: valid_X, valid_y = make_balance(valid_X, valid_y) except: return_dict[valid_file] = (0, 0, 0, 0, 0) return predict_y = clf.predict(valid_X) pgm = get_pgm_name(valid_file) path = "/home/vagrant/infer-outs/" model = f"/tmp/model_tmp_{pgm}.model" if exists(model): os.system(f"rm {model}") pickle.dump(clf, open(model, "wb")) infer_time, infer_alarms = run_infer_main(path, pgm, 5, model, True) TP, FN, FP, TN = 0, 0, 0, 0 for (gt, predict) in zip(valid_y, predict_y): if gt == 1: if predict == 1: TP = TP + 1 else: FN = FN + 1 else: if predict == 1: FP = FP + 1 else: TN = TN + 1 n_pos = sum(predict_y) n_neg = len(predict_y) - n_pos if TP + FN == 0: recall = -1 else: recall = int(TP / (TP + FN) * 100) f1score = 0 if TP + FP == 0: precision = -1 f1score = 0 else: precision = int(TP / (TP + FP) * 100) if precision + recall > 0: f1score = int(2 * recall * precision / (precision + recall)) else: f1score = 0 print(f' - validation on {valid_file}', flush=True) print(f' - predict: #pos={n_pos}, #neg={n_neg}') print(f' - TP={TP}, FN={FN}, FP={FP}, TN={TN}') print(f' - Recall={recall}, Precision={precision}, f1score={f1score}') print(f' - Infer alarms={infer_alarms}, Infer time={infer_time}') return_dict[valid_file] = (TP, FN, FP, TN, infer_alarms) def evaluate_clf_parallel(clf, valid_files, cpus): files = valid_files[:] random.shuffle(files) splits = split_list(files, cpus) print(splits) i = 0 for split in splits: i = i + 1 print(f'CPU {i} : {split}') jobs = [] manager = Manager() return_dict = manager.dict() for i in range(cpus): th = Process(target=evaluate_clf_for_parallel, args=(clf, splits[i], return_dict)) jobs.append(th) for i in range(cpus): jobs[i].start() for i in range(cpus): jobs[i].join() return return_dict def report(header, TP, FN, FP, TN, IA): sensitivity = 0 if TP + FN != 0: sensitivity = TP / (TP + FN) recall = sensitivity specitivity = 0 if TN + FP != 0: specitivity = TN / (TN + FP) precision = 0 if TP + FP != 0: precision = TP / (TP + FP) accuracy = 0 if TP + FP + FN + TN != 0: accuracy = (TP + TN) / (TP + FP + FN + TN) f1score = 0 if recall + precision != 0: f1score = 2 * (recall * precision) / (recall + precision) print() print("**********************************") print(header) print("**********************************") print(f'TP={TP}, FP={FP}, FN={FN}, TN={TN}') print("Sensitivity/Recall = TP / (TP + FN) = %.2f" % sensitivity) print("Specificity = TN / (TN + FP) = %.2f" % specitivity) print("Precision = TP / (TP + FP) = %.2f" % precision) print("Accuracy = (TP + TN) / (TP+FP+FN+TN) = %.2f" % accuracy) print("F1-score = %.2f" % f1score) print("Infer alarms = %d" % IA) print("**********************************") def load_clf(clf_id, folder): model_file = get_model_filename (folder, clf_id) clf = pickle.load(open(model_file, 'rb')) return clf def run_cv(data_files, folder_to_save_models, cpus, ratio_data, b_eval): train_files = data_files[:int(len(data_files)*0.7)] valid_files = [f for f in data_files if not f in train_files] print(f'training programs ({len(train_files)}) = {train_files}') print(f'validation programs ({len(valid_files)}) = {valid_files}') print(f'Processing training data', flush=True) start = time.time() train_X, train_y = get_train_data(train_files, ratio_data) end = time.time() print(f'Processing training data finishes in {end-start}s', flush=True) print(f'Training begins', flush=True) start = time.time() train_parallel(classifiers, train_X, train_y, folder_to_save_models, cpus) end = time.time() print(f'Training finished in {end-start} seconds', flush=True) result = [] i = 0 if b_eval == False: return result for clf_idx, clf in classifiers: i = i + 1 TP, FN, FP, TN, IA = 0, 0, 0, 0, 0 print() print(f'Evaluating {clf_idx} {clf}', flush=True) clf = load_clf(clf_idx, folder_to_save_models) log = {} log = evaluate_clf_parallel(clf, valid_files, cpus) result.append(((clf_idx, clf), log)) return result ### use the result of Infer as metric def clf_metric(TP, FN, FP, TN, IA): return IA def alarms_of_model (pgms, m, M): s = 0 for p in pgms: s = s + M[m][p] return s def max_alarms (p, models, M): max = 0 for m in models: if M[m][p] > max: max = M[m][p] return max def sum_of_max_alarms (pgms, models, M): sum = 0 for p in pgms: sum = sum + max_alarms (p, models, M) return sum def best_model (pgms, models, M): max_alarms = 0 max_model = None for m in models: alarms = alarms_of_model (pgms, m, M) if max_alarms < alarms: max_alarms = alarms max_model = m return max_model, max_alarms def opt_model_comb (k, pgms, models, M): combs = list(itertools.combinations (models, k)) opt_comb = None opt_alarms = 0 for comb in combs: alarms = sum_of_max_alarms (pgms, comb, M) if opt_alarms < alarms: opt_alarms = alarms opt_comb = comb return opt_comb, opt_alarms def select_models(result, folder_to_save_models): print() best_clf = None best_clf_metric = -1 dic = {} for (clf_idx, clf),log in result: print(f'{clf_idx}. {clf}') TP, FN, FP, TN, IA = 0, 0, 0, 0, 0 for pgm,(tp,fn,fp,tn,ia) in log.items(): print(f' - {pgm}: TP={tp}, FN={fn}, FP={fp}, TN={tn}, IA={ia}') TP, FN, FP, TN, IA = TP + tp, FN + fn, FP + fp, TN + tn, IA + ia subdic = dic.get(pgm, {}) subdic[(clf_idx, clf)] = (tp, fn, fp, tn, ia) dic[pgm] = subdic if clf_metric(TP, FN, FP, TN, IA) > best_clf_metric: best_clf_metric = clf_metric(TP, FN, FP, TN, IA) best_clf = ((clf_idx, clf), TP, FN, FP, TN, IA) print() print("----------------------------------------------------") print(" Best model") print("----------------------------------------------------") (clf_idx, clf), TP, FN, FP, TN, IA = best_clf report(f"best clf : {clf_idx}. {clf}", TP, FN, FP, TN, IA) os.system("mkdir best_models") pickle.dump(clf, open("./best_models/best.model", "wb")) print("----------------------------------------------------") print(" Best models per program") print("----------------------------------------------------") best_alarms_sum = 0 alarms = {} for pgm, subdic in dic.items(): print(pgm) best_clf = None best_clf_metric = -1 alarms[pgm] = {} for (clf_idx, clf), (TP, FN, FP, TN, IA) in subdic.items(): alarms[pgm][clf_idx] = IA if clf_metric(TP, FN, FP, TN, IA) > best_clf_metric: best_clf_metric = clf_metric(TP, FN, FP, TN, IA) best_clf = ((clf_idx, clf), TP, FN, FP, TN, IA) (clf_idx, clf), TP, FN, FP, TN, IA = best_clf basename = os.path.basename(pgm) report(f'best clf for {basename} : {clf_idx} {clf}', TP, FN, FP, TN, IA) pickle.dump(clf, open(f"./best_models/{basename}.model", "wb")) best_alarms_sum = best_alarms_sum + IA print() print("----------------------------------------------------") print(f'#Alarms of optimal Infer: {best_alarms_sum}') print("----------------------------------------------------") M = {} pgms = [] models = [] for pgm in alarms: pgms.append(pgm) for (clf_id, _) in classifiers: models.append(clf_id) print(f'pgms : {pgms}') print(f'models: {models}') for m in models: M[m] = {} for p in pgms: if p in alarms and m in alarms[p]: M[m][p] = alarms[p][m] else: M[m][p] = 0 bm, ba = best_model (pgms, models, M) print("-----------------------------------") print(f'best model: {bm}, #alarms: {ba}') print("-----------------------------------") for k in range(1, 4): opt_comb, opt_alarms = opt_model_comb(k, pgms, models, M) print(f'comb size: {k}, optimal combination: {opt_comb}, #alarms: {opt_alarms}') folder = folder_to_save_models + "/" + str(k) os.system("mkdir " + folder) for m in opt_comb: mfile = get_model_filename (folder_to_save_models, m) os.system("cp " + mfile + " " + folder) for pgm in alarms: for clf_idx in alarms[pgm]: basename = get_pgm_name(pgm) print(f'{basename} # m{clf_idx} # {alarms[pgm][clf_idx]}') for p in pgms: for m in models: print(f'M[{m}][{p}] : {M[m][p]}') if len(sys.argv) < 3: print("Error: insufficient arguments") exit(1) folder_to_save_models = sys.argv[1] ratio_of_data_to_use = float(sys.argv[2]) num_of_cpus = int(sys.argv[3]) filename = sys.argv[4] f = open(filename, "r") pgms_str = f.read().replace('\n', ' ') pgms = pgms_str.split()[:] print(pgms) data_files = [] for p in pgms: name="./merged_training_data/" + p + ".merged.txt" if exists(name): data_files.append(name) if not exists(folder_to_save_models): os.system(f"mkdir {folder_to_save_models}") b_eval = True print(f'save models in {folder_to_save_models}, using {num_of_cpus} cpus') result = run_cv(data_files, folder_to_save_models, num_of_cpus, ratio_of_data_to_use, b_eval) if b_eval: select_models(result, folder_to_save_models)
data_driven_infer-main
Table2/bin/learn_classifier.py
# Copyright (c) Meta Platforms, Inc. and affiliates # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import sys, os import infer if len(sys.argv) < 6: print("usage:") print("python run_ml_infer.py bin/programs_test.txt 1 5 1 models") exit(1) filename = sys.argv[1] pre_k = int(sys.argv[2]) main_k = int(sys.argv[3]) ncpus = int(sys.argv[4]) models = [] for model in sys.argv[5:]: models.append(model) path = "/home/vagrant/infer-outs/" if os.path.exists(filename): txtfile = open(filename, "r") pgms = txtfile.read().splitlines() else: pgms = [filename] print(f"prek = {pre_k}, maink = {main_k}, models = {models}", flush=True) t, pret, a = infer.run_dd_infer_parallel(path, pgms, pre_k, main_k, models, ncpus, True) print(f"k: {pre_k} {main_k}, alarms: {a}, pre_time: {pret}, main_time: {t}, total_time: {t+pret}, with model: {models}", flush=True)
data_driven_infer-main
Table2/bin/run_ml_infer.py
# Copyright (c) Meta Platforms, Inc. and affiliates # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import sys, os import time import re import random from multiprocessing import Process, Queue, Manager def split_list(a, n): k, m = divmod(len(a), n) return list(a[i*k+min(i, m):(i+1)*k+min(i+1, m)] for i in range(n)) def run_random_infer(path, p, k, quiet): total_time, total_alarms = 0, 0 try: infer_out = path + p if not os.path.isdir(infer_out): print(" * Error: infer-out does not exist for " + p) exit(1) else: start_t = time.time() if quiet: verbose_opt = " 2>&1 > /dev/null" os.system("infer analyze -q -j 1 --pulse-random-mode --pulse-only --pulse-max-disjuncts " + str(k) + " -o " + infer_out + " --pulse-cg-load " + "/vagrant/cgs/" + p + " " + verbose_opt) end_t = time.time() elapsed_time = end_t - start_t report = path + p + "/report.txt" f = open (report, "r") text = f.read().replace('\n', '') issues = re.findall('Found ([0-9]+) issue', text) if len(issues) == 0: issues_count = 0 else: issues_count = int(issues[0]) total_time = total_time + elapsed_time total_alarms = total_alarms + issues_count return total_time, total_alarms except: print(f"Skipping {p} due to unkonwn exceptions") return 0, 0 def run_infer(path, p, k, model, quiet, limit_fn, threads=1): total_time, total_alarms = 0, 0 try: infer_out = os.path.join(path, p) if not os.path.isdir(infer_out): print(" * Error: infer-out does not exist for " + infer_out) exit(1) else: start_t = time.time() use_model = "" if model != None: use_model = "--pulse-join-select " + model limit_functions = "" if limit_fn != 0: limit_functions = " --pulse-limit-fn " + str(limit_fn) + " " verbose_opt = "" if quiet: verbose_opt = " 2>&1 > /dev/null" print(p, model) cmd = f"infer analyze -q -j {threads} --pulse-only --pulse-max-disjuncts " + str(k) + " -o " + infer_out + " " + use_model + limit_functions + verbose_opt print(cmd, file=sys.stderr) os.system(cmd) end_t = time.time() elapsed_time = end_t - start_t report = path + p + "/report.txt" f = open (report, "r") text = f.read().replace('\n', '') issues = re.findall('Found ([0-9]+) issue', text) if len(issues) == 0: issues_count = 0 else: issues_count = int(issues[0]) total_time = total_time + elapsed_time total_alarms = total_alarms + issues_count return total_time, total_alarms except: print(f"Skipping {p} due to unkonwn exceptions") return 0, 0 def run_infer_main(path, p, k, model, quiet, threads=1): return run_infer(path, p, k, model, quiet, 0, threads=threads) def run_infer_pre(path, p, k, model, quiet, limit_fn, threads=1): return run_infer(path, p, k, model, quiet, limit_fn, threads=threads) def work(path, pgms, k, model, quiet, return_dict): for pgm in pgms: t, a = run_infer_main(path, pgm, k, model, quiet) return_dict[pgm] = (a, t) def run_infer_parallel(path, pgms, k, model, ncpus, quiet): pgms_orig = pgms[:] random.shuffle(pgms) splits = split_list(pgms, ncpus) for i in range(ncpus): print(f'cpu {i}: {splits[i]}', flush=True) manager = Manager() return_dict = manager.dict() jobs = [] for i in range(ncpus): th = Process(target=work, args=(path, splits[i], k, model, quiet, return_dict)) jobs.append(th) th.start() for job in jobs: job.join() t_sum, a_sum = 0, 0 for pgm in return_dict: a, t = return_dict[pgm] t_sum = t_sum + t a_sum = a_sum + a for pgm in pgms_orig: a, t = return_dict[pgm] print(f'** {pgm}\t\t{a}\t\t{t}', flush=True) return t_sum, a_sum def pre_analysis(path, pgm, pre_k, models, threads=1): opt_model = None opt_alarms = -1 pt = 0 if len(models) == 1: return models[0], 0, 0 for model in models: t, a = run_infer_pre(path, pgm, pre_k, model, True, 0, threads=threads) if opt_alarms < a: opt_alarms = a opt_model = model pt = pt + t return opt_model, opt_alarms, pt def work_dd(path, pgms, pre_k, main_k, models, quiet, threads, return_dict): for pgm in pgms: model, alarms, pretime = pre_analysis(path, pgm, pre_k, models, threads=threads) t, a = run_infer_main(path, pgm, main_k, model, quiet, threads=threads) infer_out = os.path.join(path, pgm) os.system(f"cp {infer_out}/report.json ./data/{pgm}_3_{pre_k}_{main_k}.json") return_dict[pgm] = (a, t, pretime) def run_dd_infer_parallel(path, pgms, pre_k, main_k, models, ncpus, quiet, threads=1): pgms_orig = pgms[:] random.shuffle(pgms) splits = split_list(pgms, ncpus) for i in range(ncpus): print(f'cpu {i}: {splits[i]}', flush=True) manager = Manager() return_dict = manager.dict() jobs = [] for i in range(ncpus): th = Process(target=work_dd, args=(path, splits[i], pre_k, main_k, models, quiet, threads, return_dict)) jobs.append(th) th.start() for job in jobs: job.join() t_sum, pret_sum, a_sum = 0, 0, 0 for pgm in return_dict: a, t, pret = return_dict[pgm] t_sum = t_sum + t a_sum = a_sum + a pret_sum = pret_sum + pret for pgm in pgms_orig: a, t, pret = return_dict[pgm] print(f'** {pgm}\t{a}\t{t}\t{pret}\t{pret+t}', flush=True) return t_sum, pret_sum, a_sum def work_random(path, pgms, k, quiet, return_dict): for pgm in pgms: t, a = run_random_infer(path, pgm, k, quiet) return_dict[pgm] = (a, t) def run_random_infer_parallel(path, pgms, k, ncpus, quiet): pgms_orig = pgms[:] random.shuffle(pgms) splits = split_list(pgms, ncpus) for i in range(ncpus): print(f'cpu {i}: {splits[i]}', flush=True) manager = Manager() return_dict = manager.dict() jobs = [] for i in range(ncpus): th = Process(target=work_random, args=(path, splits[i], k, quiet, return_dict)) jobs.append(th) th.start() for job in jobs: job.join() t_sum, a_sum = 0, 0 for pgm in return_dict: a, t = return_dict[pgm] t_sum = t_sum + t a_sum = a_sum + a for pgm in pgms_orig: a, t = return_dict[pgm] print(f'** {pgm}\t\t{a}\t\t{t}', flush=True) return t_sum, a_sum
data_driven_infer-main
Table2/bin/infer.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # Modified from github.com/openai/CLIP from collections import OrderedDict import numpy as np import timm import torch from torch import nn import torch.nn.functional as F import torch.distributed as dist import losses import utils import vit def drop_path(x, drop_prob: float = 0., training: bool = False, scale_by_keep: bool = True): if drop_prob == 0. or not training: return x keep_prob = 1 - drop_prob shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor = x.new_empty(shape).bernoulli_(keep_prob) if keep_prob > 0.0 and scale_by_keep: random_tensor.div_(keep_prob) return x * random_tensor class DropPath(nn.Module): def __init__(self, drop_prob: float = 0., scale_by_keep: bool = True): super(DropPath, self).__init__() self.drop_prob = drop_prob self.scale_by_keep = scale_by_keep def forward(self, x): return drop_path(x, self.drop_prob, self.training, self.scale_by_keep) def extra_repr(self): return f'drop_prob={round(self.drop_prob,3):0.3f}' class LayerNorm(nn.LayerNorm): """Subclass torch's LayerNorm to handle fp16.""" def forward(self, x: torch.Tensor): orig_type = x.dtype ret = super().forward(x.type(torch.float32)) return ret.type(orig_type) class QuickGELU(nn.Module): def forward(self, x: torch.Tensor): return x * torch.sigmoid(1.702 * x) class ResidualAttentionBlock(nn.Module): def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None, dropout_prob=0.0, drop_path_prob=0.0): super().__init__() self.attn = nn.MultiheadAttention(d_model, n_head) self.ln_1 = LayerNorm(d_model) self.mlp = nn.Sequential(OrderedDict([ ("c_fc", nn.Linear(d_model, d_model * 4)), ("gelu", QuickGELU()), ("c_proj", nn.Linear(d_model * 4, d_model)) ])) self.ln_2 = LayerNorm(d_model) self.attn_mask = attn_mask self.dropout = nn.Dropout(p=dropout_prob, inplace=True) self.drop_path = DropPath(drop_prob=drop_path_prob) def attention(self, x: torch.Tensor): self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0] def forward(self, inp): x, mode = inp if mode == 'local': self.dropout(x) x = x + self.drop_path(self.attention(self.ln_1(x))) x = x + self.drop_path(self.mlp(self.ln_2(x))) else: x = x + self.attention(self.ln_1(x)) x = x + self.mlp(self.ln_2(x)) return (x, mode) class Transformer(nn.Module): def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None, dropout_prob=0.0, drop_path_prob=0.0): super().__init__() self.width = width self.layers = layers self.resblocks = nn.Sequential(*[ ResidualAttentionBlock( width, heads, attn_mask, dropout_prob, drop_path_prob ) for _ in range(layers) ]) def forward(self, x: torch.Tensor, mode='global'): return self.resblocks((x, mode))[0] class CLIP(nn.Module): def __init__( self, embed_dim: int, # vision vision_width: int, vision_model: nn.Module, # text context_length: int, vocab_size: int, transformer_width: int, transformer_heads: int, transformer_layers: int = 12, detach_proj: bool = False, no_share_token=False, clip_proj_type='linear', clip_hidden_dim=4096, global_text_mask_prob=1.0, local_text_mask_prob=0.5, text_dropout_prob=0.0, text_drop_path_prob=0.0, **kwargs, ): super().__init__() self.context_length = context_length self.vision_width = vision_width self.transformer_width = transformer_width self.embed_dim = embed_dim self.detach_proj = detach_proj self.clip_proj_type = clip_proj_type self.visual = vision_model self.no_share_token = no_share_token self.transformer = Transformer( width=transformer_width, layers=transformer_layers, heads=transformer_heads, attn_mask=self.build_attention_mask(), dropout_prob=text_dropout_prob, drop_path_prob=text_drop_path_prob, ) self.vocab_size = vocab_size self.local_text_mask_prob = local_text_mask_prob self.global_text_mask_prob = global_text_mask_prob self.token_embedding = nn.Embedding(vocab_size, transformer_width) self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width)) self.ln_final = LayerNorm(transformer_width) if clip_proj_type == 'mlp': self.image_projector = self._build_mlp( in_dim=self.vision_width, mlp_dim=clip_hidden_dim, out_dim=embed_dim ) self.text_projector = self._build_mlp( in_dim=self.transformer_width, mlp_dim=clip_hidden_dim, out_dim=embed_dim ) else: self.image_projector = nn.Linear(self.vision_width, embed_dim, bias=False) self.text_projector = nn.Linear(self.transformer_width, embed_dim, bias=False) self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) self.initialize_parameters() def _build_mlp(self, in_dim, mlp_dim, out_dim, num_layers=3): mlp = [ ("layer1", nn.Linear(in_dim, mlp_dim)), ("bn1", utils.infer_batchnorm_class()(mlp_dim)), ("relu1", nn.ReLU(inplace=True)) ] i = 1 for i in range(2, num_layers): mlp.extend([ (f"layer{i}", nn.Linear(mlp_dim, mlp_dim)), (f"bn{i}", utils.infer_batchnorm_class()(mlp_dim)), (f"relu{i}", nn.ReLU(inplace=True)) ]) mlp.append((f"layer{i+1}", nn.Linear(mlp_dim, out_dim))) return nn.Sequential(OrderedDict(mlp)) @torch.no_grad() def initialize_parameters(self): nn.init.normal_(self.token_embedding.weight, std=0.02) nn.init.normal_(self.positional_embedding, std=0.01) proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5) attn_std = self.transformer.width ** -0.5 fc_std = (2 * self.transformer.width) ** -0.5 for block in self.transformer.resblocks: nn.init.normal_(block.attn.in_proj_weight, std=attn_std) nn.init.normal_(block.attn.out_proj.weight, std=proj_std) nn.init.normal_(block.mlp.c_fc.weight, std=fc_std) nn.init.normal_(block.mlp.c_proj.weight, std=proj_std) if self.clip_proj_type == 'linear': nn.init.normal_(self.image_projector.weight, std=self.vision_width ** -0.5) nn.init.normal_(self.text_projector.weight, std=self.transformer.width ** -0.5) def build_attention_mask(self): # lazily create causal attention mask, with full attention between the vision tokens # pytorch uses additive attention mask; fill with -inf mask = torch.empty(self.context_length, self.context_length) mask.fill_(float("-inf")) mask.triu_(1) # zero out the lower diagonal return mask def encode_image(self, image): feats = self.visual(image) z = self.image_projector(feats) return {'feats_image': feats, 'z_image': z} def encode_text(self, text, mode='global', forward_proj=True): range_index = torch.arange(text.size(0)) eot_index = text.argmax(dim=-1) x = self.token_embedding(text) # [batch_size, n_ctx, d_model] x = x + self.positional_embedding x = x.permute(1, 0, 2) # NLD -> LND x = self.transformer(x, mode=mode) x = x.permute(1, 0, 2) # LND -> NLD x = self.ln_final(x) # x.shape = [batch_size, n_ctx, transformer.width] # take features from the eot embedding (eot_token is the highest number in each sequence) feats = x[range_index, eot_index] out = {'feats_text': feats} if forward_proj: out['z_text'] = self.text_projector(feats.detach() if self.detach_proj else feats) return out def forward(self, image, text): out_image = self.encode_image(image) out_text = self.encode_text(text) return {**out_image, **out_text, 'logit_scale': self.logit_scale.exp()} @torch.no_grad() def predict_zeroshot(self, image_feats, text_feats): z_image = image_feats['z_image'] z_text = text_feats['z_text'] z_image = z_image / z_image.norm(dim=-1, keepdim=True) z_text = z_text / z_text.norm(dim=-1, keepdim=True) similarity = z_image @ z_text.t() return {'z_sim': similarity} def encode_image_val(self, image): out = self.encode_image(image) return out def encode_text_val(self, text): out = self.encode_text(text) return out class CL2L(CLIP): def __init__(self, separate_proj=False, cl2l_txt_proj_type='mlp', cl2l_img_proj_type='mlp', **kwargs): super().__init__(separate_proj=False, **kwargs) self.separate_proj = separate_proj if separate_proj: self.l2l_logit_scale = nn.Parameter( torch.ones([]) * np.log(1 / 0.1)) if cl2l_img_proj_type == 'mlp': self.l2l_image_projector = self._build_mlp( in_dim=self.vision_width, mlp_dim=4096, out_dim=self.embed_dim ) else: self.l2l_image_projector = nn.Linear(self.vision_width, self.embed_dim, bias=False) if cl2l_txt_proj_type == 'mlp': self.l2l_text_projector = self._build_mlp( in_dim=self.transformer_width, mlp_dim=4096, out_dim=self.embed_dim ) else: self.l2l_text_projector = nn.Linear(self.transformer_width, self.embed_dim, bias=False) else: self.l2l_image_projector = self.image_projector self.l2l_text_projector = self.text_projector def encode_image_val(self, image): out = self.encode_image(image) out['h_image'] = self.l2l_image_projector(out['feats_image']) return out def encode_text_val(self, text): out = super().encode_text(text) out['h_text'] = self.l2l_text_projector(out['feats_text']) return out def forward(self, image_global, text, *image_local): text_global, *text_local = text.unbind(1) out = super().forward(image_global, text_global) # forward backbone out['feats_image_local'] = [self.visual(l) for l in image_local] out['feats_text_local'] = [ self.encode_text(t, mode='local', forward_proj=False)['feats_text'] for t in text_local ] # forward projector out['h_image_local'] = [self.l2l_image_projector(l) for l in out['feats_image_local']] out['h_text_local'] = [self.l2l_text_projector(l) for l in out['feats_text_local']] # fix names out['z_image_global'] = out.pop('z_image') out['z_text_global'] = out.pop('z_text') out['h_logit_scale'] = self.l2l_logit_scale.exp() if self.separate_proj else out['logit_scale'] return out @torch.no_grad() def predict_zeroshot(self, image_feats, text_feats): outs = super().predict_zeroshot(image_feats, text_feats) z_image = image_feats['h_image'] z_text = text_feats['h_text'] z_image = z_image / z_image.norm(dim=-1, keepdim=True) z_text = z_text / z_text.norm(dim=-1, keepdim=True) similarity = z_image @ z_text.t() return {**outs, 'h_sim': similarity} class BARLIP(CL2L): def __init__(self, barlip_proj_dim, barlip_hidden_dim, **kwargs): super().__init__(**kwargs) self.barlip_image_projector_global = nn.Sequential( nn.Linear(kwargs['vision_width'], barlip_hidden_dim), utils.infer_batchnorm_class()(barlip_hidden_dim), nn.ReLU(inplace=True), nn.Linear(barlip_hidden_dim, barlip_hidden_dim), utils.infer_batchnorm_class()(barlip_hidden_dim), nn.ReLU(inplace=True), nn.Linear(barlip_hidden_dim, barlip_proj_dim), utils.infer_batchnorm_class()(barlip_proj_dim) ) self.barlip_text_projector_global = nn.Sequential( nn.Linear(kwargs['transformer_width'], barlip_hidden_dim), utils.infer_batchnorm_class()(barlip_hidden_dim), nn.ReLU(inplace=True), nn.Linear(barlip_hidden_dim, barlip_hidden_dim), utils.infer_batchnorm_class()(barlip_hidden_dim), nn.ReLU(inplace=True), nn.Linear(barlip_hidden_dim, barlip_proj_dim), utils.infer_batchnorm_class()(barlip_proj_dim) ) if 'separate_proj_child' in kwargs and kwargs['separate_proj_child']: self.barlip_image_projector_local = nn.Sequential( nn.Linear(kwargs['vision_width'], barlip_hidden_dim), utils.infer_batchnorm_class()(barlip_hidden_dim), nn.ReLU(inplace=True), nn.Linear(barlip_hidden_dim, barlip_hidden_dim), utils.infer_batchnorm_class()(barlip_hidden_dim), nn.ReLU(inplace=True), nn.Linear(barlip_hidden_dim, barlip_proj_dim), utils.infer_batchnorm_class()(barlip_proj_dim) ) self.barlip_text_projector_local = nn.Sequential( nn.Linear(kwargs['transformer_width'], barlip_hidden_dim), utils.infer_batchnorm_class()(barlip_hidden_dim), nn.ReLU(inplace=True), nn.Linear(barlip_hidden_dim, barlip_hidden_dim), utils.infer_batchnorm_class()(barlip_hidden_dim), nn.ReLU(inplace=True), nn.Linear(barlip_hidden_dim, barlip_proj_dim), utils.infer_batchnorm_class()(barlip_proj_dim) ) else: self.barlip_image_projector_local = self.barlip_image_projector_global self.barlip_text_projector_local = self.barlip_text_projector_global def forward(self, image, text, *image_local): out = super().forward(image, text, *image_local) out['v_image'] = self.barlip_image_projector_global(out['feats_image']) out['v_text'] = self.barlip_text_projector_global(out['feats_text']) out['v_image_local'] = [self.barlip_image_projector_local(l) for l in out['feats_image_local']] out['v_text_local'] = [self.barlip_text_projector_local(l) for l in out['feats_text_local']] return out class SIAMLIP(CL2L): def __init__(self, siamlip_proj_dim, siamlip_hidden_dim, siamlip_no_last_bn, **kwargs): super().__init__(**kwargs) self.siamlip_image_projector_global = nn.Sequential( nn.Linear(kwargs['vision_width'], siamlip_hidden_dim, bias=False), utils.infer_batchnorm_class()(siamlip_hidden_dim), nn.ReLU(inplace=True), # nn.Linear(siamlip_hidden_dim, siamlip_hidden_dim, bias=False), # utils.infer_batchnorm_class()(siamlip_hidden_dim), # nn.ReLU(inplace=True), nn.Linear(siamlip_hidden_dim, siamlip_proj_dim, bias=False), ) self.siamlip_text_projector_global = nn.Sequential( nn.Linear(kwargs['transformer_width'], siamlip_hidden_dim, bias=False), utils.infer_batchnorm_class()(siamlip_hidden_dim), nn.ReLU(inplace=True), # nn.Linear(siamlip_hidden_dim, siamlip_hidden_dim, bias=False), # utils.infer_batchnorm_class()(siamlip_hidden_dim), # nn.ReLU(inplace=True), nn.Linear(siamlip_hidden_dim, siamlip_proj_dim, bias=False), ) if 'separate_proj_child' in kwargs and kwargs['separate_proj_child']: self.siamlip_image_projector_local = nn.Sequential( nn.Linear(kwargs['vision_width'], siamlip_hidden_dim, bias=False), utils.infer_batchnorm_class()(siamlip_hidden_dim), nn.ReLU(inplace=True), # nn.Linear(siamlip_hidden_dim, siamlip_hidden_dim, bias=False), # utils.infer_batchnorm_class()(siamlip_hidden_dim), # nn.ReLU(inplace=True), nn.Linear(siamlip_hidden_dim, siamlip_proj_dim, bias=False), ) self.siamlip_text_projector_local = nn.Sequential( nn.Linear(kwargs['transformer_width'], siamlip_hidden_dim, bias=False), utils.infer_batchnorm_class()(siamlip_hidden_dim), nn.ReLU(inplace=True), # nn.Linear(siamlip_hidden_dim, siamlip_hidden_dim, bias=False), # utils.infer_batchnorm_class()(siamlip_hidden_dim), # nn.ReLU(inplace=True), nn.Linear(siamlip_hidden_dim, siamlip_proj_dim, bias=False), ) else: self.siamlip_image_projector_local = self.siamlip_image_projector_global self.siamlip_text_projector_local = self.siamlip_text_projector_global if not siamlip_no_last_bn: self.siamlip_image_projector_global = nn.Sequential( self.siamlip_image_projector_global, utils.infer_batchnorm_class()(siamlip_proj_dim, affine=False) ) self.siamlip_text_projector_global = nn.Sequential( self.siamlip_text_projector_global, utils.infer_batchnorm_class()(siamlip_proj_dim, affine=False) ) self.siamlip_image_projector_local = nn.Sequential( self.siamlip_image_projector_local, utils.infer_batchnorm_class()(siamlip_proj_dim, affine=False) ) self.siamlip_text_projector_local = nn.Sequential( self.siamlip_text_projector_local, utils.infer_batchnorm_class()(siamlip_proj_dim, affine=False) ) # predictors self.image_text_predictor_global = nn.Sequential( nn.Linear(siamlip_proj_dim, siamlip_hidden_dim, bias=False), utils.infer_batchnorm_class()(siamlip_hidden_dim), nn.ReLU(inplace=True), nn.Linear(siamlip_hidden_dim, siamlip_proj_dim), ) self.text_image_predictor_global = nn.Sequential( nn.Linear(siamlip_proj_dim, siamlip_hidden_dim, bias=False), utils.infer_batchnorm_class()(siamlip_hidden_dim), nn.ReLU(inplace=True), nn.Linear(siamlip_hidden_dim, siamlip_proj_dim), ) if 'separate_proj_child' in kwargs and kwargs['separate_proj_child']: self.image_text_predictor_local = nn.Sequential( nn.Linear(siamlip_proj_dim, siamlip_hidden_dim, bias=False), utils.infer_batchnorm_class()(siamlip_hidden_dim), nn.ReLU(inplace=True), nn.Linear(siamlip_hidden_dim, siamlip_proj_dim), ) self.text_image_predictor_local = nn.Sequential( nn.Linear(siamlip_proj_dim, siamlip_hidden_dim, bias=False), utils.infer_batchnorm_class()(siamlip_hidden_dim), nn.ReLU(inplace=True), nn.Linear(siamlip_hidden_dim, siamlip_proj_dim), ) else: self.image_text_predictor_local = self.image_text_predictor_global self.text_image_predictor_local = self.text_image_predictor_global def forward(self, image, text, *image_local): out = super().forward(image, text, *image_local) out['v_image'] = self.siamlip_image_projector_global(out['feats_image']) out['p_image'] = self.image_text_predictor_global(out['v_image']) out['v_text'] = self.siamlip_text_projector_global(out['feats_text']) out['p_text'] = self.text_image_predictor_global(out['v_text']) out['v_image_local'] = [self.siamlip_image_projector_local(l) for l in out['feats_image_local']] out['p_image_local'] = [self.image_text_predictor_local(l) for l in out['v_image_local']] out['v_text_local'] = [self.siamlip_text_projector_local(l) for l in out['feats_text_local']] out['p_text_local'] = [self.text_image_predictor_local(l) for l in out['v_text_local']] return out class SWALIPV1(CLIP): def __init__( self, swalip_proj_dim, swalip_hidden_dim, swalip_num_proto, swalip_no_shared_proto, swalip_temperature, swalip_learn_temperature, **kwargs ): super().__init__(**kwargs) self.swalip_image_projector = nn.Sequential( nn.Linear(kwargs['vision_width'], swalip_hidden_dim), utils.infer_batchnorm_class()(swalip_hidden_dim), nn.ReLU(inplace=True), nn.Linear(swalip_hidden_dim, swalip_proj_dim) ) self.swalip_text_projector = nn.Sequential( nn.Linear(kwargs['transformer_width'], swalip_hidden_dim), utils.infer_batchnorm_class()(swalip_hidden_dim), nn.ReLU(inplace=True), nn.Linear(swalip_hidden_dim, swalip_proj_dim) ) # prototypes if swalip_no_shared_proto: self.image_prototypes = self.create_prototypes(swalip_proj_dim, swalip_num_proto) self.text_prototypes = self.create_prototypes(swalip_proj_dim, swalip_num_proto) else: self.image_prototypes = self.create_prototypes(swalip_proj_dim, swalip_num_proto) self.text_prototypes = self.image_prototypes self.swalip_logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / swalip_temperature)) self.swalip_logit_scale.requires_grad = swalip_learn_temperature def create_prototypes(self, swalip_proj_dim, swalip_num_proto): prototypes = nn.utils.weight_norm(nn.Linear(swalip_proj_dim, swalip_num_proto, bias=False)) prototypes.weight_g.data.fill_(1) prototypes.weight_g.requires_grad = False return prototypes def encode_image(self, image): out = super().encode_image(image) h_image = self.swalip_image_projector(out['feats_image']) p_image = self.image_prototypes(F.normalize(h_image)) return {**out, 'h_image': h_image, 'p_image': p_image} def encode_text(self, text): out = super().encode_text(text) h_text = self.swalip_text_projector(out['feats_text']) p_text = self.text_prototypes(F.normalize(h_text)) return {**out, 'h_text': h_text, 'p_text': p_text} def forward(self, image, text): return { **super().forward(image, text), 'swalip_logit_scale': self.swalip_logit_scale.exp(), } def get_model(args, **kwargs): arch, model_name = args.model.rsplit('_', 1) model_class = { 'BARLIP': BARLIP, 'SWALIP': CL2L, 'SWALIPV1': SWALIPV1, 'SIAMLIP': SIAMLIP, 'CLIP': CLIP, 'CL2L': CL2L, }[model_name] model = globals()[arch](model_class, **vars(args), **kwargs) return model def get_loss(args): if args.model.startswith('CLIP'): if args.model.endswith('SWALIPV1'): return losses.SwALIPV1Loss( sk_iters=args.sk_iters, target_epsilon=args.target_epsilon, swalip_weight=args.swalip_weight, temperature=args.swalip_temperature, ) else: return losses.CLIPLoss() if args.model.startswith('CL2L'): if args.model.endswith('BARLIP'): return losses.BarLIPLoss( loss_avg_or_sum=args.loss_avg_or_sum, label_smoothing=args.label_smoothing, lamb=args.barlip_lamb, scale_loss=args.barlip_scale_loss, ) elif args.model.endswith('SIAMLIP'): return losses.SiamLIPLoss( loss_avg_or_sum=args.loss_avg_or_sum, label_smoothing=args.label_smoothing, ) elif args.model.endswith('SWALIP'): return losses.SwALIPLoss( loss_avg_or_sum=args.loss_avg_or_sum, label_smoothing=args.label_smoothing, sk_iters=args.sk_iters, target_epsilon=args.target_epsilon, swalip_weight=args.swalip_weight, ) else: return losses.CL2LLoss( loss_avg_or_sum=args.loss_avg_or_sum, label_smoothing=args.label_smoothing ) def get_metric_names(model): parent_model, _, child_model = model.split('_') parent_metric_names = { 'CL2L': ['loss', 'clip_loss', 'clip_loss_image', 'clip_loss_text', 'clip_loss_image_global', 'clip_loss_text_global', 'clip_loss_image_local', 'clip_loss_text_local', 'clip_acc', 'clip_acc_image_local', 'clip_acc_text_local', 'clip_acc_image_global', 'clip_acc_text_global', 'h_logit_scale'], 'CLIP': ['loss', 'clip_loss', 'clip_acc'], }[parent_model] child_metric_names = { 'BARLIP': ['barlip_loss'], 'SWALIP': ['swalip_loss'], 'SIAMLIP': ['siamlip_loss'], 'CLIP': ['clip_loss', 'clip_acc'], 'CL2L': ['clip_loss', 'clip_acc'], }[child_model] return sorted(set(parent_metric_names + child_metric_names)) @timm.models.registry.register_model def vit_small_mocov3_patch16_224(**kwargs): model_kwargs = dict(patch_size=16, embed_dim=384, depth=12, num_heads=12, **kwargs) model = vit._create_vision_transformer('vit_small_patch16_224', **model_kwargs) return model @timm.models.registry.register_model def vit_tiny_patch16_224(pretrained=False, **kwargs): """ ViT-Tiny (Vit-Ti/16) """ model_kwargs = dict(patch_size=16, embed_dim=192, depth=12, num_heads=3, **kwargs) model = vit._create_vision_transformer('vit_tiny_patch16_224', pretrained=pretrained, **model_kwargs) return model @timm.models.registry.register_model def vit_tiny_patch16_384(pretrained=False, **kwargs): """ ViT-Tiny (Vit-Ti/16) @ 384x384. """ model_kwargs = dict(patch_size=16, embed_dim=192, depth=12, num_heads=3, **kwargs) model = vit._create_vision_transformer('vit_tiny_patch16_384', pretrained=pretrained, **model_kwargs) return model @timm.models.registry.register_model def vit_small_patch32_224(pretrained=False, **kwargs): """ ViT-Small (ViT-S/32) """ model_kwargs = dict(patch_size=32, embed_dim=384, depth=12, num_heads=6, **kwargs) model = vit._create_vision_transformer('vit_small_patch32_224', pretrained=pretrained, **model_kwargs) return model @timm.models.registry.register_model def vit_small_patch32_384(pretrained=False, **kwargs): """ ViT-Small (ViT-S/32) at 384x384. """ model_kwargs = dict(patch_size=32, embed_dim=384, depth=12, num_heads=6, **kwargs) model = vit._create_vision_transformer('vit_small_patch32_384', pretrained=pretrained, **model_kwargs) return model @timm.models.registry.register_model def vit_small_patch16_224(pretrained=False, **kwargs): """ ViT-Small (ViT-S/16) NOTE I've replaced my previous 'small' model definition and weights with the small variant from the DeiT paper """ model_kwargs = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6, **kwargs) model = vit._create_vision_transformer('vit_small_patch16_224', pretrained=pretrained, **model_kwargs) return model @timm.models.registry.register_model def vit_small_patch16_384(pretrained=False, **kwargs): """ ViT-Small (ViT-S/16) NOTE I've replaced my previous 'small' model definition and weights with the small variant from the DeiT paper """ model_kwargs = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6, **kwargs) model = vit._create_vision_transformer('vit_small_patch16_384', pretrained=pretrained, **model_kwargs) return model @timm.models.registry.register_model def vit_base_patch32_224(pretrained=False, **kwargs): """ ViT-Base (ViT-B/32) from original paper (https://arxiv.org/abs/2010.11929). ImageNet-1k weights fine-tuned from in21k, source https://github.com/google-research/vision_transformer. """ model_kwargs = dict(patch_size=32, embed_dim=768, depth=12, num_heads=12, **kwargs) model = vit._create_vision_transformer('vit_base_patch32_224', pretrained=pretrained, **model_kwargs) return model @timm.models.registry.register_model def vit_base_patch32_384(pretrained=False, **kwargs): """ ViT-Base model (ViT-B/32) from original paper (https://arxiv.org/abs/2010.11929). ImageNet-1k weights fine-tuned from in21k @ 384x384, source https://github.com/google-research/vision_transformer. """ model_kwargs = dict(patch_size=32, embed_dim=768, depth=12, num_heads=12, **kwargs) model = vit._create_vision_transformer('vit_base_patch32_384', pretrained=pretrained, **model_kwargs) return model @timm.models.registry.register_model def vit_base_patch16_224(pretrained=False, **kwargs): """ ViT-Base (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929). ImageNet-1k weights fine-tuned from in21k @ 224x224, source https://github.com/google-research/vision_transformer. """ model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs) model = vit._create_vision_transformer('vit_base_patch16_224', pretrained=pretrained, **model_kwargs) return model @timm.models.registry.register_model def vit_base_patch16_384(pretrained=False, **kwargs): """ ViT-Base model (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929). ImageNet-1k weights fine-tuned from in21k @ 384x384, source https://github.com/google-research/vision_transformer. """ model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs) model = vit._create_vision_transformer('vit_base_patch16_384', pretrained=pretrained, **model_kwargs) return model @timm.models.registry.register_model def vit_base_patch8_224(pretrained=False, **kwargs): """ ViT-Base (ViT-B/8) from original paper (https://arxiv.org/abs/2010.11929). ImageNet-1k weights fine-tuned from in21k @ 224x224, source https://github.com/google-research/vision_transformer. """ model_kwargs = dict(patch_size=8, embed_dim=768, depth=12, num_heads=12, **kwargs) model = vit._create_vision_transformer('vit_base_patch8_224', pretrained=pretrained, **model_kwargs) return model @timm.models.registry.register_model def vit_large_patch32_224(pretrained=False, **kwargs): """ ViT-Large model (ViT-L/32) from original paper (https://arxiv.org/abs/2010.11929). No pretrained weights. """ model_kwargs = dict(patch_size=32, embed_dim=1024, depth=24, num_heads=16, **kwargs) model = vit._create_vision_transformer('vit_large_patch32_224', pretrained=pretrained, **model_kwargs) return model @timm.models.registry.register_model def vit_large_patch32_384(pretrained=False, **kwargs): """ ViT-Large model (ViT-L/32) from original paper (https://arxiv.org/abs/2010.11929). ImageNet-1k weights fine-tuned from in21k @ 384x384, source https://github.com/google-research/vision_transformer. """ model_kwargs = dict(patch_size=32, embed_dim=1024, depth=24, num_heads=16, **kwargs) model = vit._create_vision_transformer('vit_large_patch32_384', pretrained=pretrained, **model_kwargs) return model @timm.models.registry.register_model def vit_large_patch16_224(pretrained=False, **kwargs): """ ViT-Large model (ViT-L/16) from original paper (https://arxiv.org/abs/2010.11929). ImageNet-1k weights fine-tuned from in21k @ 224x224, source https://github.com/google-research/vision_transformer. """ model_kwargs = dict(patch_size=16, embed_dim=1024, depth=24, num_heads=16, **kwargs) model = vit._create_vision_transformer('vit_large_patch16_224', pretrained=pretrained, **model_kwargs) return model @timm.models.registry.register_model def vit_large_patch16_384(pretrained=False, **kwargs): """ ViT-Large model (ViT-L/16) from original paper (https://arxiv.org/abs/2010.11929). ImageNet-1k weights fine-tuned from in21k @ 384x384, source https://github.com/google-research/vision_transformer. """ model_kwargs = dict(patch_size=16, embed_dim=1024, depth=24, num_heads=16, **kwargs) model = vit._create_vision_transformer('vit_large_patch16_384', pretrained=pretrained, **model_kwargs) return model @timm.models.registry.register_model def vit_large_patch14_224(pretrained=False, **kwargs): """ ViT-Large model (ViT-L/14) """ model_kwargs = dict(patch_size=14, embed_dim=1024, depth=24, num_heads=16, **kwargs) model = vit._create_vision_transformer('vit_large_patch14_224', pretrained=pretrained, **model_kwargs) return model @timm.models.registry.register_model def vit_huge_patch14_224(pretrained=False, **kwargs): """ ViT-Huge model (ViT-H/14) from original paper (https://arxiv.org/abs/2010.11929). """ model_kwargs = dict(patch_size=14, embed_dim=1280, depth=32, num_heads=16, **kwargs) model = vit._create_vision_transformer('vit_huge_patch14_224', pretrained=pretrained, **model_kwargs) return model @timm.models.registry.register_model def vit_giant_patch14_224(pretrained=False, **kwargs): """ ViT-Giant (little-g) model (ViT-g/14) from `Scaling Vision Transformers` - https://arxiv.org/abs/2106.04560 """ model_kwargs = dict(patch_size=14, embed_dim=1408, mlp_ratio=48/11, depth=40, num_heads=16, **kwargs) model = vit._create_vision_transformer('vit_giant_patch14_224', pretrained=pretrained, **model_kwargs) return model @timm.models.registry.register_model def vit_gigantic_patch14_224(pretrained=False, **kwargs): """ ViT-Gigantic (big-G) model (ViT-G/14) from `Scaling Vision Transformers` - https://arxiv.org/abs/2106.04560 """ model_kwargs = dict(patch_size=14, embed_dim=1664, mlp_ratio=64/13, depth=48, num_heads=16, **kwargs) model = vit.vit._create_vision_transformer('vit_gigantic_patch14_224', pretrained=pretrained, **model_kwargs) return model def CL2L_CNEXTT(model_class, **kwargs): vision_model = timm.create_model('convnext_tiny', num_classes=0) if dist.is_available() and dist.is_initialized(): vision_model = nn.SyncBatchNorm.convert_sync_batchnorm(vision_model) model = model_class(vision_width=vision_model.num_features, vision_model=vision_model, context_length=77, vocab_size=49408, transformer_width=512, transformer_heads=8, **kwargs) return model def CL2L_VITS16MOCO(model_class, attn_layer, **kwargs): vision_model = timm.create_model('vit_small_mocov3_patch16_224', num_classes=0, attn_layer=attn_layer) model = model_class(vision_width=384, vision_model=vision_model, context_length=77, vocab_size=49408, transformer_width=512, transformer_heads=8, **kwargs) return model def CL2L_VITS16(model_class, attn_layer, **kwargs): vision_model = timm.create_model('vit_small_patch16_224', num_classes=0, attn_layer=attn_layer) model = model_class(vision_width=384, vision_model=vision_model, context_length=77, vocab_size=49408, transformer_width=512, transformer_heads=8, **kwargs) return model def CL2L_VITS32(model_class, attn_layer, **kwargs): vision_model = timm.create_model('vit_small_patch32_224', num_classes=0, attn_layer=attn_layer) model = model_class(vision_width=384, vision_model=vision_model, context_length=77, vocab_size=49408, transformer_width=512, transformer_heads=8, **kwargs) return model def CL2L_R50(model_class, **kwargs): vision_model = timm.create_model('resnet50', num_classes=0) if dist.is_available() and dist.is_initialized(): vision_model = nn.SyncBatchNorm.convert_sync_batchnorm(vision_model) model = model_class(vision_width=2048, vision_model=vision_model, context_length=77, vocab_size=49408, transformer_width=512, transformer_heads=8, **kwargs) return model def CLIP_R50(model_class, **kwargs): vision_model = timm.create_model('resnet50', num_classes=0) if dist.is_available() and dist.is_initialized(): vision_model = nn.SyncBatchNorm.convert_sync_batchnorm(vision_model) model = model_class(vision_width=2048, vision_model=vision_model, context_length=77, vocab_size=49408, transformer_width=512, transformer_heads=8, **kwargs) return model def CL2L_CNEXTS(model_class, **kwargs): vision_model = timm.create_model('convnext_small', num_classes=0) if dist.is_available() and dist.is_initialized(): vision_model = nn.SyncBatchNorm.convert_sync_batchnorm(vision_model) model = model_class(vision_width=vision_model.num_features, vision_model=vision_model, context_length=77, vocab_size=49408, transformer_width=512, transformer_heads=8, **kwargs) return model def CLIP_VITB16(model_class, attn_layer, **kwargs): vision_model = timm.create_model('vit_base_patch16_224', num_classes=0, attn_layer=attn_layer) model = model_class(vision_width=768, vision_model=vision_model, context_length=77, vocab_size=49408, transformer_width=512, transformer_heads=8, **kwargs) return model def CL2L_VITB32(model_class, attn_layer, embed_dim=512, **kwargs): vision_model = timm.create_model('vit_base_patch32_224', num_classes=0, attn_layer=attn_layer) model = model_class(embed_dim=embed_dim, vision_width=768, vision_model=vision_model, context_length=77, vocab_size=49408, transformer_width=512, transformer_heads=8, **kwargs) return model def CL2L_VITB16(model_class, attn_layer, embed_dim=512, **kwargs): vision_model = timm.create_model('vit_base_patch16_224', num_classes=0, attn_layer=attn_layer) model = model_class(embed_dim=embed_dim, vision_width=768, vision_model=vision_model, context_length=77, vocab_size=49408, transformer_width=512, transformer_heads=8, **kwargs) return model def CLIP_VITL16(model_class, attn_layer, embed_dim=512, **kwargs): vision_model = timm.create_model('vit_large_patch16_224', num_classes=0, attn_layer=attn_layer) model = model_class(embed_dim=embed_dim, vision_width=1024, vision_model=vision_model, context_length=77, vocab_size=49408, transformer_width=512, transformer_heads=8, **kwargs) return model def CL2L_VITL16(model_class, attn_layer, embed_dim=512, **kwargs): vision_model = timm.create_model('vit_large_patch16_224', num_classes=0, attn_layer=attn_layer) model = model_class(embed_dim=embed_dim, vision_width=1024, vision_model=vision_model, context_length=77, vocab_size=49408, transformer_width=512, transformer_heads=8, **kwargs) return model
clip-rocket-main
models.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. """ A script to run multinode training with submitit. """ import argparse import os import uuid from pathlib import Path import main as main_slip import submitit def parse_args(): parser = main_slip.get_args_parser() parser = argparse.ArgumentParser("Submitit for CL2L pre-training", parents=[parser]) parser.add_argument("--ngpus", default=8, type=int, help="Number of gpus to request on each node") parser.add_argument("--nodes", default=8, type=int, help="Number of nodes to request") parser.add_argument("--timeout", default=2800, type=int, help="Duration of the job") parser.add_argument("--job_dir", default="", type=str, help="Job dir. Leave empty for automatic.") parser.add_argument("--partition", default="", type=str, help="Partition where to submit") parser.add_argument("--use_volta32", action='store_true', help="Big models? Use this") parser.add_argument('--comment', default="", type=str, help='Comment to pass to scheduler, e.g. priority message') return parser.parse_args() def get_shared_folder() -> Path: user = os.getenv("USER") if Path("/checkpoint/").is_dir(): p = Path(f"/checkpoint/{user}/experiments/cl2l") p.mkdir(exist_ok=True) return p raise RuntimeError("No shared folder available") def get_init_file(): # Init file must not exist, but it's parent dir must exist. os.makedirs(str(get_shared_folder()), exist_ok=True) init_file = get_shared_folder() / f"{uuid.uuid4().hex}_init" if init_file.exists(): os.remove(str(init_file)) return init_file class Trainer(object): def __init__(self, args): self.args = args def __call__(self): import main as main_slip self._setup_gpu_args() main_slip.main(self.args) def checkpoint(self): import os import submitit self.args.dist_url = get_init_file().as_uri() print("Requeuing ", self.args) empty_trainer = type(self)(self.args) return submitit.helpers.DelayedSubmission(empty_trainer) def _setup_gpu_args(self): import submitit from pathlib import Path job_env = submitit.JobEnvironment() self.args.output_dir = Path(str(self.args.output_dir).replace("%j", str(job_env.job_id))) self.args.gpu = job_env.local_rank self.args.rank = job_env.global_rank self.args.world_size = job_env.num_tasks print(f"Process group: {job_env.num_tasks} tasks, rank: {job_env.global_rank}") def main(): args = parse_args() if args.job_dir == "": args.job_dir = get_shared_folder() / "%j" # Note that the folder will depend on the job_id, to easily track experiments executor = submitit.AutoExecutor(folder=args.job_dir, slurm_max_num_timeout=30) num_gpus_per_node = args.ngpus nodes = args.nodes timeout_min = args.timeout partition = args.partition kwargs = {} if args.use_volta32: kwargs['slurm_constraint'] = 'volta32gb' if args.comment: kwargs['slurm_comment'] = args.comment executor.update_parameters( mem_gb=40 * num_gpus_per_node, gpus_per_node=num_gpus_per_node, tasks_per_node=num_gpus_per_node, # one task per GPU cpus_per_task=10, nodes=nodes, timeout_min=timeout_min, # max is 60 * 72 # Below are cluster dependent parameters slurm_partition=partition, slurm_signal_delay_s=120, **kwargs ) executor.update_parameters(name="slip") args.dist_url = get_init_file().as_uri() args.output_dir = args.job_dir trainer = Trainer(args) job = executor.submit(trainer) print("Submitted job_id:", job.job_id) if __name__ == "__main__": main()
clip-rocket-main
run_with_submitit.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from collections import defaultdict import json import os import pickle import zipfile import numpy as np from PIL import Image, ImageFile import torch from torchvision import transforms from torchvision import datasets as t_datasets from torchvision.datasets import ImageFolder import utils ImageFile.LOAD_TRUNCATED_IMAGES = True def pil_loader(path): # open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835) with open(path, 'rb') as f: img = Image.open(f) return img.convert('RGB') def yfcc_loader(root, index): index = format(index, "0>8d") repo = index[:2] z = index[2: 5] file_img = index[5:] + '.jpg' path_zip = os.path.join(root, 'images', repo, z) + '.zip' with zipfile.ZipFile(path_zip, 'r') as myzip: img = Image.open(myzip.open(file_img)) return img.convert('RGB') class ImageCaptionDatasetBase(torch.utils.data.Dataset): def __init__(self, dataset, root, metadata, caption_sampling='single'): self.dataset = dataset self.root = root self.caption_sampling = caption_sampling if self.dataset == 'yfcc15m': with open(metadata, 'rb') as f: self.samples = pickle.load(f) elif self.dataset == 'coco': samples = defaultdict(list) with open(metadata) as f: annotations = json.load(f)['annotations'] for ann in annotations: samples[ann['image_id']].append(ann['caption']) self.samples = [(k, v) for k, v in samples.items()] elif self.dataset == 'cc12m' or self.dataset == 'cc3m': self.samples = np.load(metadata, allow_pickle=True) elif self.dataset == 'merged_opendata': self.samples = [] self.roots = [] for md, r in zip(metadata.split("---"), root.split("---")): self.samples.append(np.load(md, allow_pickle=True)) self.roots.append(r) elif self.dataset == 'redcaps': with open(metadata) as f: annotations = json.load(f) self.samples = [(ann['image_id'], ann['subreddit'], ann['caption']) for ann in annotations] def get_raw_item(self, i): if self.dataset == 'yfcc15m': index, title, desc = self.samples[i] caption = [c for c in [title, desc] if c != ''] caption = [''] if len(caption) == 0 else caption caption = tuple(caption if self.caption_sampling == 'multi' else [np.random.choice(caption)]) img = yfcc_loader(self.root, index) elif self.dataset == 'coco': index, captions = self.samples[i] path = os.path.join(self.root, 'train2017', '{:012d}.jpg'.format(index)) img = pil_loader(path) caption = tuple(captions if self.caption_sampling == 'multi' else [np.random.choice(captions)]) elif self.dataset == 'cc3m': ann = self.samples[i] filename, captions = ann['image_id'], ann['captions'] path = os.path.join(self.root, str(filename)) img = pil_loader(path) caption = tuple(captions if self.caption_sampling == 'multi' else [np.random.choice(captions)]) elif self.dataset == 'cc12m': ann = self.samples[i] filename, captions = ann['image_name'], ann['captions'] path = os.path.join(self.root, filename) img = pil_loader(path) caption = tuple(captions if self.caption_sampling == 'multi' else [np.random.choice(captions)]) elif self.dataset == 'merged_opendata': datasets = ['cc3m', 'cc12m', 'yfcc15m'] cum_lens = np.array([len(s) for s in self.samples]).cumsum() d_idx = [idx for idx, l in enumerate(cum_lens) if i < l][0] offset = cum_lens[d_idx - 1] if d_idx > 0 else 0 samples_list = self.samples self.samples = self.samples[d_idx] self.dataset = datasets[d_idx] self.root = self.roots[d_idx] img, caption = self.get_raw_item(i - offset) self.dataset = 'merged_opendata' self.samples = samples_list elif self.dataset == 'redcaps': image_id, subreddit, caption = self.samples[i] path = os.path.join(self.root, subreddit, f"{image_id}.jpg") img = pil_loader(path) elif 'pmd' in self.dataset: img, captions = self.pmd[i] # if isinstance(captions, str): # caption = captions assert isinstance(captions, list) caption = tuple(captions if self.caption_sampling == 'multi' else [np.random.choice(captions)]) return img, caption def __getitem__(self, i): raise NotImplementedError def __len__(self): if 'pmd' in self.dataset: return len(self.pmd) elif 'merged_opendata' in self.dataset: return sum([len(s) for s in self.samples]) else: return len(self.samples) class ImageCaptionDatasetCLIP(ImageCaptionDatasetBase): def __init__(self, dataset, root, metadata, transform=None, tokenizer=None): super().__init__(dataset, root, metadata) self.transform = transform self.tokenizer = tokenizer def __getitem__(self, i): img, caption = self.get_raw_item(i) # apply transformation if self.transform is not None: image = self.transform(img) # tokenize caption if self.tokenizer is not None: caption = self.tokenizer(caption) return image, caption class ImageCaptionDatasetCL2L(ImageCaptionDatasetBase): def __init__( self, dataset, root, metadata, transform, augment, num_augs=2, tokenizer=None, augs_only=False, caption_sampling='single' ): super().__init__(dataset, root, metadata, caption_sampling=caption_sampling) self.transform = transform self.num_augs = num_augs self.augment = augment if isinstance(augment, list) else [augment] * num_augs self.tokenizer = tokenizer self.augs_only = augs_only def __getitem__(self, i): img, caption = self.get_raw_item(i) augs = [self.augment[i](img) for i in range(self.num_augs)] if self.augs_only: return augs image = self.transform(img) # tokenize caption if self.tokenizer is not None: caption = self.tokenizer(caption) return image, caption, *augs class FileListDataset(torch.utils.data.Dataset): def __init__(self, images, labels, transform=None, target_transform=None): self.transform = transform self.target_transform = target_transform self.images = np.load(images) self.labels = np.load(labels) def __getitem__(self, index): img = pil_loader(self.images[index]) target = self.labels[index] if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) return img, target def __len__(self): return len(self.images) def get_downstream_dataset(catalog, name, is_train, transform): entry = catalog[name] root = entry['path'] if entry['type'] == 'imagefolder': dataset = t_datasets.ImageFolder(os.path.join(root, entry['train'] if is_train else entry['test']), transform=transform) elif entry['type'] == 'special': if name == 'cifar10': dataset = t_datasets.CIFAR10(root, train=is_train, transform=transform, download=True) elif name == 'cifar100': dataset = t_datasets.CIFAR100(root, train=is_train, transform=transform, download=True) elif name == 'stl10': dataset = t_datasets.STL10(root, split='train' if is_train else 'test', transform=transform, download=True) elif name == 'mnist': dataset = t_datasets.MNIST(root, train=is_train, transform=transform, download=True) elif entry['type'] == 'filelist': path = entry['train'] if is_train else entry['test'] val_images = os.path.join(root, path + '_images.npy') val_labels = os.path.join(root, path + '_labels.npy') if name == 'clevr_counts': target_transform = lambda x: ['count_10', 'count_3', 'count_4', 'count_5', 'count_6', 'count_7', 'count_8', 'count_9'].index(x) else: target_transform = None dataset = FileListDataset(val_images, val_labels, transform, target_transform) else: raise Exception('Unknown dataset') return dataset def get_train_dataset(args, tokenizer, metadata, augs_only=False): normalize = transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ) train_transform = transforms.Compose([ transforms.RandomResizedCrop( 224, scale=(args.weak_min_scale, 1.0), interpolation=transforms.InterpolationMode.BICUBIC ), transforms.ToTensor(), normalize ]) augment = transforms.Compose([ transforms.RandomResizedCrop( args.multicrop_resize, scale=(0.08, args.multicrop_max_scale), interpolation=transforms.InterpolationMode.BICUBIC ), transforms.RandomApply([ transforms.ColorJitter(0.4, 0.4, 0.4, 0.1) # not strengthened ], p=0.8), transforms.RandomGrayscale(p=args.grayscale_prob), transforms.RandomApply([utils.GaussianBlur([.1, 2.])], p=args.blur_prob), transforms.RandomApply([utils.Solarization()], p=args.solarize_prob), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize, ]) if args.byol_augment: assert args.num_augs == 2 augment = [] asym_blur_prob = [1.0, 0.1] asym_solarize_prob = [0.0, 0.2] for blur_prob, solarize_prob in zip(asym_blur_prob, asym_solarize_prob): augment.append(transforms.Compose([ transforms.RandomResizedCrop( args.multicrop_resize, scale=(0.08, args.multicrop_max_scale), interpolation=transforms.InterpolationMode.BICUBIC ), transforms.RandomApply([ transforms.ColorJitter(0.4, 0.4, 0.2, 0.1) ], p=0.8), transforms.RandomGrayscale(p=0.2), transforms.RandomApply([utils.GaussianBlur([.1, 2.])], p=blur_prob), transforms.RandomApply([utils.Solarization()], p=solarize_prob), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize, ])) assert not (args.weak_augment and args.strong_augment) if args.weak_augment: augment = train_transform if args.strong_augment: train_transform = augment if args.randaugment: train_transform = transforms.RandomChoice([train_transform, augment]) if args.model.startswith('CLIP'): return ImageCaptionDatasetCLIP(args.dataset, args.root, metadata, train_transform, tokenizer) elif args.model.startswith('CL2L'): return ImageCaptionDatasetCL2L( args.dataset, args.root, metadata, train_transform, augment, args.num_augs, tokenizer=tokenizer, augs_only=augs_only, caption_sampling=args.caption_sampling ) def get_val_dataset(): val_transform = transforms.Compose([ transforms.Resize(224), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) cwd = os.path.dirname(os.path.realpath(__file__)) with open(os.path.join(cwd, 'dataset_catalog.json')) as f: root = json.load(f)['imagenet']['path'] return ImageFolder(os.path.join(root, 'val'), val_transform)
clip-rocket-main
datasets.py
# Taken from https://github.com/rwightman/timm """ Vision Transformer (ViT) in PyTorch A PyTorch implement of Vision Transformers as described in: 'An Image Is Worth 16 x 16 Words: Transformers for Image Recognition at Scale' - https://arxiv.org/abs/2010.11929 `How to train your ViT? Data, Augmentation, and Regularization in Vision Transformers` - https://arxiv.org/abs/2106.10270 The official jax code is released and available at https://github.com/google-research/vision_transformer Acknowledgments: * The paper authors for releasing code and weights, thanks! * I fixed my class token impl based on Phil Wang's https://github.com/lucidrains/vit-pytorch ... check it out for some einops/einsum fun * Simple transformer style inspired by Andrej Karpathy's https://github.com/karpathy/minGPT * Bert reference code checks against Huggingface Transformers and Tensorflow Bert Hacked together by / Copyright 2020, Ross Wightman """ import math from functools import partial from collections import OrderedDict import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint from timm.models.helpers import build_model_with_cfg, resolve_pretrained_cfg, named_apply, adapt_input_conv, checkpoint_seq from timm.models.layers import PatchEmbed, Mlp, DropPath, trunc_normal_, lecun_normal_ from xformers.ops import memory_efficient_attention, unbind class Attention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.): super().__init__() assert dim % num_heads == 0, 'dim should be divisible by num_heads' self.num_heads = num_heads head_dim = dim // num_heads self.scale = head_dim ** -0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x): B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv.unbind(0) attn = (q @ k.transpose(-2, -1)) * self.scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x class MemEffAttention(nn.Module): def __init__( self, dim: int, num_heads: int = 8, qkv_bias: bool = False, attn_drop: float = 0.0, proj_drop: float = 0.0, ) -> None: super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.scale = head_dim**-0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x): B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads) q, k, v = unbind(qkv, 2) x = memory_efficient_attention(q, k, v) x = x.reshape([B, N, C]) x = self.proj(x) x = self.proj_drop(x) return x class LayerScale(nn.Module): def __init__(self, dim, init_values=1e-5, inplace=False): super().__init__() self.inplace = inplace self.gamma = nn.Parameter(init_values * torch.ones(dim)) def forward(self, x): return x.mul_(self.gamma) if self.inplace else x * self.gamma class Block(nn.Module): def __init__( self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., init_values=None, drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, attn_layer=Attention ): super().__init__() self.norm1 = norm_layer(dim) self.attn = attn_layer(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop) self.ls1 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity() # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=drop) self.ls2 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity() self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() def forward(self, x): x = x + self.drop_path1(self.ls1(self.attn(self.norm1(x)))) x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x)))) return x class ResPostBlock(nn.Module): def __init__( self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., init_values=None, drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm ): super().__init__() self.init_values = init_values self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop) self.norm1 = norm_layer(dim) self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=drop) self.norm2 = norm_layer(dim) self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.init_weights() def init_weights(self): # NOTE this init overrides that base model init with specific changes for the block type if self.init_values is not None: nn.init.constant_(self.norm1.weight, self.init_values) nn.init.constant_(self.norm2.weight, self.init_values) def forward(self, x): x = x + self.drop_path1(self.norm1(self.attn(x))) x = x + self.drop_path2(self.norm2(self.mlp(x))) return x class ParallelBlock(nn.Module): def __init__( self, dim, num_heads, num_parallel=2, mlp_ratio=4., qkv_bias=False, init_values=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm ): super().__init__() self.num_parallel = num_parallel self.attns = nn.ModuleList() self.ffns = nn.ModuleList() for _ in range(num_parallel): self.attns.append(nn.Sequential(OrderedDict([ ('norm', norm_layer(dim)), ('attn', Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop)), ('ls', LayerScale(dim, init_values=init_values) if init_values else nn.Identity()), ('drop_path', DropPath(drop_path) if drop_path > 0. else nn.Identity()) ]))) self.ffns.append(nn.Sequential(OrderedDict([ ('norm', norm_layer(dim)), ('mlp', Mlp(dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=drop)), ('ls', LayerScale(dim, init_values=init_values) if init_values else nn.Identity()), ('drop_path', DropPath(drop_path) if drop_path > 0. else nn.Identity()) ]))) def _forward_jit(self, x): x = x + torch.stack([attn(x) for attn in self.attns]).sum(dim=0) x = x + torch.stack([ffn(x) for ffn in self.ffns]).sum(dim=0) return x @torch.jit.ignore def _forward(self, x): x = x + sum(attn(x) for attn in self.attns) x = x + sum(ffn(x) for ffn in self.ffns) return x def forward(self, x): if torch.jit.is_scripting() or torch.jit.is_tracing(): return self._forward_jit(x) else: return self._forward(x) class VisionTransformer(nn.Module): """ Vision Transformer A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` - https://arxiv.org/abs/2010.11929 """ def __init__( self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, global_pool='token', embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=True, init_values=None, class_token=True, no_embed_class=False, pre_norm=False, fc_norm=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., weight_init='', embed_layer=PatchEmbed, norm_layer=None, act_layer=None, block_fn=Block, attn_layer=Attention ): """ Args: img_size (int, tuple): input image size patch_size (int, tuple): patch size in_chans (int): number of input channels num_classes (int): number of classes for classification head global_pool (str): type of global pooling for final sequence (default: 'token') embed_dim (int): embedding dimension depth (int): depth of transformer num_heads (int): number of attention heads mlp_ratio (int): ratio of mlp hidden dim to embedding dim qkv_bias (bool): enable bias for qkv if True init_values: (float): layer-scale init values class_token (bool): use class token fc_norm (Optional[bool]): pre-fc norm after pool, set if global_pool == 'avg' if None (default: None) drop_rate (float): dropout rate attn_drop_rate (float): attention dropout rate drop_path_rate (float): stochastic depth rate weight_init (str): weight init scheme embed_layer (nn.Module): patch embedding layer norm_layer: (nn.Module): normalization layer act_layer: (nn.Module): MLP activation layer """ super().__init__() assert global_pool in ('', 'avg', 'token') assert class_token or global_pool != 'token' use_fc_norm = global_pool == 'avg' if fc_norm is None else fc_norm norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) act_layer = act_layer or nn.GELU self.num_classes = num_classes self.global_pool = global_pool self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models self.num_prefix_tokens = 1 if class_token else 0 self.no_embed_class = no_embed_class self.grad_checkpointing = False self.patch_embed = embed_layer( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, bias=not pre_norm, # disable bias if pre-norm is used (e.g. CLIP) ) num_patches = self.patch_embed.num_patches self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if class_token else None embed_len = num_patches if no_embed_class else num_patches + self.num_prefix_tokens self.pos_embed = nn.Parameter(torch.randn(1, embed_len, embed_dim) * .02) self.pos_drop = nn.Dropout(p=drop_rate) self.norm_pre = norm_layer(embed_dim) if pre_norm else nn.Identity() dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule self.blocks = nn.Sequential(*[ block_fn( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, init_values=init_values, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, act_layer=act_layer, attn_layer=attn_layer ) for i in range(depth)]) self.norm = norm_layer(embed_dim) if not use_fc_norm else nn.Identity() # Classifier Head self.fc_norm = norm_layer(embed_dim) if use_fc_norm else nn.Identity() self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() if weight_init != 'skip': self.init_weights(weight_init) def init_weights(self, mode=''): assert mode in ('jax', 'jax_nlhb', 'moco', '') head_bias = -math.log(self.num_classes) if 'nlhb' in mode else 0. trunc_normal_(self.pos_embed, std=.02) if self.cls_token is not None: nn.init.normal_(self.cls_token, std=1e-6) named_apply(get_init_weights_vit(mode, head_bias), self) def _init_weights(self, m): # this fn left here for compat with downstream users init_weights_vit_timm(m) @torch.jit.ignore() def load_pretrained(self, checkpoint_path, prefix=''): _load_weights(self, checkpoint_path, prefix) @torch.jit.ignore def no_weight_decay(self): return {'pos_embed', 'cls_token', 'dist_token'} @torch.jit.ignore def group_matcher(self, coarse=False): return dict( stem=r'^cls_token|pos_embed|patch_embed', # stem and embed blocks=[(r'^blocks\.(\d+)', None), (r'^norm', (99999,))] ) @torch.jit.ignore def set_grad_checkpointing(self, enable=True): self.grad_checkpointing = enable @torch.jit.ignore def get_classifier(self): return self.head def reset_classifier(self, num_classes: int, global_pool=None): self.num_classes = num_classes if global_pool is not None: assert global_pool in ('', 'avg', 'token') self.global_pool = global_pool self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() def _pos_embed(self, x): if self.no_embed_class: # deit-3, updated JAX (big vision) # position embedding does not overlap with class token, add then concat x = x + self.pos_embed if self.cls_token is not None: x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1) else: # original timm, JAX, and deit vit impl # pos_embed has entry for class token, concat then add if self.cls_token is not None: x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1) x = x + self.pos_embed return self.pos_drop(x) def forward_features(self, x): x = self.patch_embed(x) x = self._pos_embed(x) x = self.norm_pre(x) if self.grad_checkpointing and not torch.jit.is_scripting(): x = checkpoint_seq(self.blocks, x) else: x = self.blocks(x) x = self.norm(x) return x def forward_head(self, x, pre_logits: bool = False): if self.global_pool: x = x[:, self.num_prefix_tokens:].mean(dim=1) if self.global_pool == 'avg' else x[:, 0] x = self.fc_norm(x) return x if pre_logits else self.head(x) def forward(self, x): x = self.forward_features(x) x = self.forward_head(x) return x def init_weights_vit_timm(module: nn.Module, name: str = ''): """ ViT weight initialization, original timm impl (for reproducibility) """ if isinstance(module, nn.Linear): trunc_normal_(module.weight, std=.02) if module.bias is not None: nn.init.zeros_(module.bias) elif hasattr(module, 'init_weights'): module.init_weights() def init_weights_vit_jax(module: nn.Module, name: str = '', head_bias: float = 0.): """ ViT weight initialization, matching JAX (Flax) impl """ if isinstance(module, nn.Linear): if name.startswith('head'): nn.init.zeros_(module.weight) nn.init.constant_(module.bias, head_bias) else: nn.init.xavier_uniform_(module.weight) if module.bias is not None: nn.init.normal_(module.bias, std=1e-6) if 'mlp' in name else nn.init.zeros_(module.bias) elif isinstance(module, nn.Conv2d): lecun_normal_(module.weight) if module.bias is not None: nn.init.zeros_(module.bias) elif hasattr(module, 'init_weights'): module.init_weights() def init_weights_vit_moco(module: nn.Module, name: str = ''): """ ViT weight initialization, matching moco-v3 impl minus fixed PatchEmbed """ if isinstance(module, nn.Linear): if 'qkv' in name: # treat the weights of Q, K, V separately val = math.sqrt(6. / float(module.weight.shape[0] // 3 + module.weight.shape[1])) nn.init.uniform_(module.weight, -val, val) else: nn.init.xavier_uniform_(module.weight) if module.bias is not None: nn.init.zeros_(module.bias) elif hasattr(module, 'init_weights'): module.init_weights() def get_init_weights_vit(mode='jax', head_bias: float = 0.): if 'jax' in mode: return partial(init_weights_vit_jax, head_bias=head_bias) elif 'moco' in mode: return init_weights_vit_moco else: return init_weights_vit_timm @torch.no_grad() def _load_weights(model: VisionTransformer, checkpoint_path: str, prefix: str = ''): """ Load weights from .npz checkpoints for official Google Brain Flax implementation """ import numpy as np def _n2p(w, t=True): if w.ndim == 4 and w.shape[0] == w.shape[1] == w.shape[2] == 1: w = w.flatten() if t: if w.ndim == 4: w = w.transpose([3, 2, 0, 1]) elif w.ndim == 3: w = w.transpose([2, 0, 1]) elif w.ndim == 2: w = w.transpose([1, 0]) return torch.from_numpy(w) w = np.load(checkpoint_path) if not prefix and 'opt/target/embedding/kernel' in w: prefix = 'opt/target/' if hasattr(model.patch_embed, 'backbone'): # hybrid backbone = model.patch_embed.backbone stem_only = not hasattr(backbone, 'stem') stem = backbone if stem_only else backbone.stem stem.conv.weight.copy_(adapt_input_conv(stem.conv.weight.shape[1], _n2p(w[f'{prefix}conv_root/kernel']))) stem.norm.weight.copy_(_n2p(w[f'{prefix}gn_root/scale'])) stem.norm.bias.copy_(_n2p(w[f'{prefix}gn_root/bias'])) if not stem_only: for i, stage in enumerate(backbone.stages): for j, block in enumerate(stage.blocks): bp = f'{prefix}block{i + 1}/unit{j + 1}/' for r in range(3): getattr(block, f'conv{r + 1}').weight.copy_(_n2p(w[f'{bp}conv{r + 1}/kernel'])) getattr(block, f'norm{r + 1}').weight.copy_(_n2p(w[f'{bp}gn{r + 1}/scale'])) getattr(block, f'norm{r + 1}').bias.copy_(_n2p(w[f'{bp}gn{r + 1}/bias'])) if block.downsample is not None: block.downsample.conv.weight.copy_(_n2p(w[f'{bp}conv_proj/kernel'])) block.downsample.norm.weight.copy_(_n2p(w[f'{bp}gn_proj/scale'])) block.downsample.norm.bias.copy_(_n2p(w[f'{bp}gn_proj/bias'])) embed_conv_w = _n2p(w[f'{prefix}embedding/kernel']) else: embed_conv_w = adapt_input_conv( model.patch_embed.proj.weight.shape[1], _n2p(w[f'{prefix}embedding/kernel'])) model.patch_embed.proj.weight.copy_(embed_conv_w) model.patch_embed.proj.bias.copy_(_n2p(w[f'{prefix}embedding/bias'])) model.cls_token.copy_(_n2p(w[f'{prefix}cls'], t=False)) pos_embed_w = _n2p(w[f'{prefix}Transformer/posembed_input/pos_embedding'], t=False) if pos_embed_w.shape != model.pos_embed.shape: pos_embed_w = resize_pos_embed( # resize pos embedding when different size from pretrained weights pos_embed_w, model.pos_embed, getattr(model, 'num_prefix_tokens', 1), model.patch_embed.grid_size ) model.pos_embed.copy_(pos_embed_w) model.norm.weight.copy_(_n2p(w[f'{prefix}Transformer/encoder_norm/scale'])) model.norm.bias.copy_(_n2p(w[f'{prefix}Transformer/encoder_norm/bias'])) if isinstance(model.head, nn.Linear) and model.head.bias.shape[0] == w[f'{prefix}head/bias'].shape[-1]: model.head.weight.copy_(_n2p(w[f'{prefix}head/kernel'])) model.head.bias.copy_(_n2p(w[f'{prefix}head/bias'])) # NOTE representation layer has been removed, not used in latest 21k/1k pretrained weights # if isinstance(getattr(model.pre_logits, 'fc', None), nn.Linear) and f'{prefix}pre_logits/bias' in w: # model.pre_logits.fc.weight.copy_(_n2p(w[f'{prefix}pre_logits/kernel'])) # model.pre_logits.fc.bias.copy_(_n2p(w[f'{prefix}pre_logits/bias'])) for i, block in enumerate(model.blocks.children()): block_prefix = f'{prefix}Transformer/encoderblock_{i}/' mha_prefix = block_prefix + 'MultiHeadDotProductAttention_1/' block.norm1.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/scale'])) block.norm1.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/bias'])) block.attn.qkv.weight.copy_(torch.cat([ _n2p(w[f'{mha_prefix}{n}/kernel'], t=False).flatten(1).T for n in ('query', 'key', 'value')])) block.attn.qkv.bias.copy_(torch.cat([ _n2p(w[f'{mha_prefix}{n}/bias'], t=False).reshape(-1) for n in ('query', 'key', 'value')])) block.attn.proj.weight.copy_(_n2p(w[f'{mha_prefix}out/kernel']).flatten(1)) block.attn.proj.bias.copy_(_n2p(w[f'{mha_prefix}out/bias'])) for r in range(2): getattr(block.mlp, f'fc{r + 1}').weight.copy_(_n2p(w[f'{block_prefix}MlpBlock_3/Dense_{r}/kernel'])) getattr(block.mlp, f'fc{r + 1}').bias.copy_(_n2p(w[f'{block_prefix}MlpBlock_3/Dense_{r}/bias'])) block.norm2.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_2/scale'])) block.norm2.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_2/bias'])) def resize_pos_embed(posemb, posemb_new, num_prefix_tokens=1, gs_new=()): # Rescale the grid of position embeddings when loading from state_dict. Adapted from # https://github.com/google-research/vision_transformer/blob/00883dd691c63a6830751563748663526e811cee/vit_jax/checkpoint.py#L224 ntok_new = posemb_new.shape[1] if num_prefix_tokens: posemb_prefix, posemb_grid = posemb[:, :num_prefix_tokens], posemb[0, num_prefix_tokens:] ntok_new -= num_prefix_tokens else: posemb_prefix, posemb_grid = posemb[:, :0], posemb[0] gs_old = int(math.sqrt(len(posemb_grid))) if not len(gs_new): # backwards compatibility gs_new = [int(math.sqrt(ntok_new))] * 2 assert len(gs_new) >= 2 posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2) posemb_grid = F.interpolate(posemb_grid, size=gs_new, mode='bicubic', align_corners=False) posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_new[0] * gs_new[1], -1) posemb = torch.cat([posemb_prefix, posemb_grid], dim=1) return posemb def _convert_openai_clip(state_dict, model): out_dict = {} swaps = [ ('visual.', ''), ('conv1', 'patch_embed.proj'), ('positional_embedding', 'pos_embed'), ('transformer.resblocks.', 'blocks.'), ('ln_pre', 'norm_pre'), ('ln_post', 'norm'), ('ln_', 'norm'), ('in_proj_', 'qkv.'), ('out_proj', 'proj'), ('mlp.c_fc', 'mlp.fc1'), ('mlp.c_proj', 'mlp.fc2'), ] for k, v in state_dict.items(): if not k.startswith('visual.'): continue for sp in swaps: k = k.replace(sp[0], sp[1]) if k == 'proj': k = 'head.weight' v = v.transpose(0, 1) out_dict['head.bias'] = torch.zeros(v.shape[0]) elif k == 'class_embedding': k = 'cls_token' v = v.unsqueeze(0).unsqueeze(1) elif k == 'pos_embed': v = v.unsqueeze(0) if v.shape[1] != model.pos_embed.shape[1]: # To resize pos embedding when using model at different size from pretrained weights v = resize_pos_embed( v, model.pos_embed, 0 if getattr(model, 'no_embed_class') else getattr(model, 'num_prefix_tokens', 1), model.patch_embed.grid_size ) out_dict[k] = v return out_dict def checkpoint_filter_fn(state_dict, model, adapt_layer_scale=False): """ convert patch embedding weight from manual patchify + linear proj to conv""" import re out_dict = {} if 'model' in state_dict: # For deit models state_dict = state_dict['model'] if 'visual.class_embedding' in state_dict: return _convert_openai_clip(state_dict, model) for k, v in state_dict.items(): if 'patch_embed.proj.weight' in k and len(v.shape) < 4: # For old models that I trained prior to conv based patchification O, I, H, W = model.patch_embed.proj.weight.shape v = v.reshape(O, -1, H, W) elif k == 'pos_embed' and v.shape[1] != model.pos_embed.shape[1]: # To resize pos embedding when using model at different size from pretrained weights v = resize_pos_embed( v, model.pos_embed, 0 if getattr(model, 'no_embed_class') else getattr(model, 'num_prefix_tokens', 1), model.patch_embed.grid_size ) elif adapt_layer_scale and 'gamma_' in k: # remap layer-scale gamma into sub-module (deit3 models) k = re.sub(r'gamma_([0-9])', r'ls\1.gamma', k) elif 'pre_logits' in k: # NOTE representation layer removed as not used in latest 21k/1k pretrained weights continue out_dict[k] = v return out_dict def _create_vision_transformer(variant, pretrained=False, **kwargs): if kwargs.get('features_only', None): raise RuntimeError('features_only not implemented for Vision Transformer models.') kwargs['attn_layer'] = MemEffAttention if kwargs['attn_layer'] == "flash" else Attention pretrained_cfg = resolve_pretrained_cfg(variant, pretrained_cfg=kwargs.pop('pretrained_cfg', None)) model = build_model_with_cfg( VisionTransformer, variant, pretrained, pretrained_cfg=pretrained_cfg, pretrained_filter_fn=checkpoint_filter_fn, pretrained_custom_load='npz' in pretrained_cfg['url'], **kwargs) return model
clip-rocket-main
vit.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # Modified from github.com/openai/CLIP import gzip import html import os from functools import lru_cache import ftfy import regex as re import torch from textaugment import EDA import random from nltk.tokenize import word_tokenize import nltk @lru_cache() def default_bpe(): return os.path.join(os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz") @lru_cache() def bytes_to_unicode(): """ Returns list of utf-8 byte and a corresponding list of unicode strings. The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a signficant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. And avoids mapping to whitespace/control characters the bpe code barfs on. """ bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1)) cs = bs[:] n = 0 for b in range(2**8): if b not in bs: bs.append(b) cs.append(2**8+n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) def get_pairs(word): """Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length strings). """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs def basic_clean(text): text = ftfy.fix_text(text) text = html.unescape(html.unescape(text)) return text.strip() def whitespace_clean(text): text = re.sub(r'\s+', ' ', text) text = text.strip() return text class SimpleTokenizer(object): def __init__( self, bpe_path: str = default_bpe(), text_augment=False, no_text_augment_prob=0.0, remove_stopwords_prob=0.5, synonym_replacement_prob=0.2, random_swap_prob=0.2, random_deletion_prob=0.1, clean_before_augment=False, num_augs=2, ): self.byte_encoder = bytes_to_unicode() self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} merges = gzip.open(bpe_path).read().decode("utf-8").split('\n') merges = merges[1:49152-256-2+1] merges = [tuple(merge.split()) for merge in merges] vocab = list(bytes_to_unicode().values()) vocab = vocab + [v+'</w>' for v in vocab] for merge in merges: vocab.append(''.join(merge)) vocab.extend(['<|startoftext|>', '<|endoftext|>']) self.encoder = dict(zip(vocab, range(len(vocab)))) self.decoder = {v: k for k, v in self.encoder.items()} self.bpe_ranks = dict(zip(merges, range(len(merges)))) self.cache = {'<|startoftext|>': '<|startoftext|>', '<|endoftext|>': '<|endoftext|>'} self.pat = re.compile(r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE) self.clean_before_augment = clean_before_augment self.remove_stopwords_prob = remove_stopwords_prob self.stopwords = set(nltk.corpus.stopwords.words('english')) self.remove_stopwords = lambda x: " ".join([w for w in word_tokenize(x) if w.lower() not in self.stopwords]) if text_augment: eda = EDA() identity = lambda x: x self.text_augment = lambda x: random.choices( [ identity, eda.synonym_replacement, eda.random_swap, eda.random_deletion ], weights=[ no_text_augment_prob, synonym_replacement_prob, random_swap_prob, random_deletion_prob ], k=1 )[0](x) else: self.text_augment = None self.num_augs = num_augs def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token[:-1]) + ( token[-1] + '</w>',) pairs = get_pairs(word) if not pairs: return token+'</w>' while True: bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf'))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) new_word.extend(word[i:j]) i = j except: new_word.extend(word[i:]) break if word[i] == first and i < len(word)-1 and word[i+1] == second: new_word.append(first+second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = ' '.join(word) self.cache[token] = word return word def encode(self, text): bpe_tokens = [] text = whitespace_clean(basic_clean(text)).lower() for token in re.findall(self.pat, text): token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8')) bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' ')) return bpe_tokens def decode(self, tokens): text = ''.join([self.decoder[token] for token in tokens]) text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('</w>', ' ') return text def weak_augment(self, text): if len(text) == 0: return text if random.random() < self.remove_stopwords_prob: stripped_texts = self.remove_stopwords(text) text = stripped_texts if len(stripped_texts) > 0 else text return text def strong_augment(self, text): if len(text) == 0: return text if random.random() < self.remove_stopwords_prob: stripped_texts = self.remove_stopwords(text) text = stripped_texts if len(stripped_texts) > 0 else text if self.text_augment is not None: augmented_texts = self.text_augment(text) augmented_texts = augmented_texts[0] if isinstance(augmented_texts, list) else augmented_texts text = augmented_texts if len(augmented_texts) > 0 else text return text def __call__(self, texts, context_length=77): if isinstance(texts, tuple): # training time texts = list(texts) if self.clean_before_augment: for i, txt in enumerate(texts): texts[i] = whitespace_clean(basic_clean(txt)).lower() texts = [ self.weak_augment(random.choice(texts)), *[self.strong_augment(random.choice(texts)) for _ in range(self.num_augs)], ] sot_token = self.encoder["<|startoftext|>"] eot_token = self.encoder["<|endoftext|>"] all_tokens = [[sot_token] + self.encode(text) + [eot_token] for text in texts] result = torch.zeros(len(all_tokens), context_length, dtype=torch.long) for i, tokens in enumerate(all_tokens): tokens = tokens[:context_length] if tokens[-1] != eot_token: tokens[-1] = eot_token result[i, :len(tokens)] = torch.tensor(tokens) if len(result) == 1: return result[0] return result
clip-rocket-main
tokenizer.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import numpy as np import os import random import shutil import torch import torch.distributed as dist import torch.autograd as autograd from PIL import ImageFilter, ImageOps def get_model_parallel(model): if isinstance(model, torch.nn.DataParallel) \ or isinstance(model, torch.nn.parallel.DistributedDataParallel): return model.module else: return model def setup_for_distributed(is_master): """ This function disables printing when not in master process """ import builtins as __builtin__ builtin_print = __builtin__.print def print(*args, **kwargs): force = kwargs.pop('force', False) if is_master or force: builtin_print(*args, **kwargs) __builtin__.print = print def is_dist_avail_and_initialized(): if not dist.is_available(): return False if not dist.is_initialized(): return False return True def get_world_size(): if not is_dist_avail_and_initialized(): return 1 return dist.get_world_size() def get_rank(): if not is_dist_avail_and_initialized(): return 0 return dist.get_rank() def is_main_process(): return get_rank() == 0 def save_on_master(state, is_best, output_dir): if is_main_process(): ckpt_path = f'{output_dir}/checkpoint.pt' best_path = f'{output_dir}/checkpoint_best.pt' torch.save(state, ckpt_path) if is_best: shutil.copyfile(ckpt_path, best_path) def init_distributed_mode(args): if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ: args.rank = int(os.environ["RANK"]) args.world_size = int(os.environ['WORLD_SIZE']) args.gpu = int(os.environ['LOCAL_RANK']) elif 'SLURM_PROCID' in os.environ: args.rank = int(os.environ['SLURM_PROCID']) args.gpu = args.rank % torch.cuda.device_count() else: print('Not using distributed mode') args.distributed = False return args.distributed = True torch.cuda.set_device(args.gpu) args.dist_backend = 'nccl' print('| distributed init (rank {}): {}'.format( args.rank, args.dist_url), flush=True) torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank) torch.distributed.barrier() setup_for_distributed(args.rank == 0) def scaled_all_reduce(tensors, is_scale=True): """Performs the scaled all_reduce operation on the provided tensors. The input tensors are modified in-place. Currently supports only the sum reduction operator. The reduced values are scaled by the inverse size of the world size. """ world_size = get_world_size() # There is no need for reduction in the single-proc case if world_size == 1: return tensors # Queue the reductions reductions = [] for tensor in tensors: reduction = dist.all_reduce(tensor, async_op=True) reductions.append(reduction) # Wait for reductions to finish for reduction in reductions: reduction.wait() # Scale the results if is_scale: for tensor in tensors: tensor.mul_(1.0 / world_size) return tensors def all_gather_batch(tensors): """ Performs all_gather operation on the provided tensors. """ # Queue the gathered tensors world_size = get_world_size() # There is no need for reduction in the single-proc case if world_size == 1: return tensors tensor_list = [] output_tensor = [] for tensor in tensors: tensor_all = [torch.ones_like(tensor) for _ in range(world_size)] dist.all_gather( tensor_all, tensor, async_op=False # performance opt ) tensor_list.append(tensor_all) for tensor_all in tensor_list: output_tensor.append(torch.cat(tensor_all, dim=0)) return output_tensor class GatherLayer(autograd.Function): """ Gather tensors from all workers with support for backward propagation: This implementation does not cut the gradients as torch.distributed.all_gather does. """ @staticmethod def forward(ctx, x): output = [torch.zeros_like(x) for _ in range(dist.get_world_size())] dist.all_gather(output, x) return tuple(output) @staticmethod def backward(ctx, *grads): all_gradients = torch.stack(grads) dist.all_reduce(all_gradients) return all_gradients[dist.get_rank()] def all_gather_batch_with_grad(tensors): """ Performs all_gather operation on the provided tensors. Graph remains connected for backward grad computation. """ # Queue the gathered tensors world_size = get_world_size() # There is no need for reduction in the single-proc case if world_size == 1: return tensors tensor_list = [] output_tensor = [] for tensor in tensors: tensor_all = GatherLayer.apply(tensor) tensor_list.append(tensor_all) for tensor_all in tensor_list: output_tensor.append(torch.cat(tensor_all, dim=0)) return output_tensor def cosine_scheduler(base_value, final_value, epochs, niter_per_ep, warmup_epochs=0, start_warmup_value=0): warmup_schedule = np.array([]) warmup_iters = warmup_epochs * niter_per_ep if warmup_epochs > 0: warmup_schedule = np.linspace(start_warmup_value, base_value, warmup_iters) iters = np.arange(epochs * niter_per_ep - warmup_iters) schedule = final_value + 0.5 * (base_value - final_value) * (1 + np.cos(np.pi * iters / len(iters))) schedule = np.concatenate((warmup_schedule, schedule)) assert len(schedule) == epochs * niter_per_ep return schedule class GaussianBlur(object): """Gaussian blur augmentation in SimCLR https://arxiv.org/abs/2002.05709""" def __init__(self, sigma=[.1, 2.]): self.sigma = sigma def __call__(self, x): sigma = random.uniform(self.sigma[0], self.sigma[1]) x = x.filter(ImageFilter.GaussianBlur(radius=sigma)) return x class Solarization: """Solarization as a callable object.""" def __call__(self, img): return ImageOps.solarize(img) @torch.no_grad() def accuracy(output, target, topk=(1,)): """Computes the accuracy over the k top predictions for the specified values of k""" maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.reshape(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True) res.append(correct_k.mul_(100.0 / batch_size)) return res def infer_batchnorm_class(): if dist.is_available() and dist.is_initialized(): return torch.nn.SyncBatchNorm else: return torch.nn.BatchNorm1d def cycle(iterable, sampler=None): epoch = 0 while True: if sampler is not None: sampler.set_epoch(epoch) for x in iterable: yield x epoch += 1
clip-rocket-main
utils.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import argparse from collections import OrderedDict, defaultdict import json import os from sklearn import metrics import numpy as np from tqdm import tqdm import torch import torch.backends.cudnn as cudnn import torch.utils.data import torchvision.transforms as transforms import datasets import models from tokenizer import SimpleTokenizer import utils def get_args_parser(): parser = argparse.ArgumentParser(description='SLIP 0-shot evaluations', add_help=False) parser.add_argument('--output-dir', default='./', type=str, help='output dir') parser.add_argument('--batch-size', default=256, type=int, help='batch_size') parser.add_argument('-j', '--workers', default=10, type=int, metavar='N', help='number of data loading workers per process') parser.add_argument('--resume', default='', type=str, help='path to latest checkpoint') parser.add_argument('--local_rank', type=int, default=0) parser.add_argument('--model-name', type=str, default='') return parser def main(args): # optionally resume from a checkpoint (takes precedence over autoresume) if args.resume: ckpt_path = args.resume elif os.path.isfile(os.path.join(args.output_dir, 'checkpoint_best.pt')): ckpt_path = os.path.join(args.output_dir, 'checkpoint_best.pt') else: raise Exception('no checkpoint found') ckpt = torch.load(ckpt_path, map_location='cpu') state_dict = OrderedDict() for k, v in ckpt['state_dict'].items(): state_dict[k.replace('module.', '')] = v # create model old_args = ckpt['args'] print("=> creating model: {}".format(old_args.model)) model = models.get_model(old_args, rand_embed=False) model.cuda() msg = model.load_state_dict(state_dict, strict=False) print(msg) print("=> loaded resume checkpoint '{}' (epoch {})".format(args.resume, ckpt['epoch'])) cudnn.benchmark = True cwd = os.path.dirname(os.path.realpath(__file__)) with open(os.path.join(cwd, 'dataset_catalog.json')) as f: catalog = json.load(f) with open(os.path.join(cwd, 'templates.json')) as f: all_templates = json.load(f) with open(os.path.join(cwd, 'labels.json')) as f: all_labels = json.load(f) # Data loading code print("=> creating dataset") tokenizer = SimpleTokenizer(bpe_path=old_args.bpe_path) val_transform = transforms.Compose([ transforms.Resize(224), transforms.CenterCrop(224), lambda x: x.convert('RGB'), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) results = {} for d in catalog: if d == 'kinetics700_frames': continue print('Evaluating {}'.format(d)) val_dataset = datasets.get_downstream_dataset(catalog, name=d, is_train=False, transform=val_transform) val_loader = torch.utils.data.DataLoader( val_dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=True, drop_last=False) templates = all_templates[d] labels = all_labels[d] accs = validate_zeroshot(val_loader, templates, labels, model, tokenizer, d, old_args) results[d] = accs print('metric:', accs) print('All results:') for d, x in results.items(): print('{}:\n{}'.format(d, x)) res_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'zeroshot_results') os.makedirs(res_dir, exist_ok=True) exp_id = os.path.basename(args.output_dir) ckpt_name = os.path.basename(ckpt_path).rsplit('.', 1)[0] with open('{}/{}_{}_{}.txt'.format(res_dir, args.model_name, exp_id, ckpt_name), 'w') as f: f.write(json.dumps(results)) def validate_zeroshot(val_loader, templates, labels, model, tokenizer, dataset_name, args): # switch to evaluate mode model.eval() is_acc = dataset_name not in ['aircraft', 'pets', 'caltech101', 'flowers', 'kinetics700_frames', 'hateful_memes'] print('is_acc:', is_acc) ensemble_weights = np.linspace(0.1, 0.9, 9).round(decimals=1) results = defaultdict(lambda: defaultdict(int if is_acc else list)) with torch.no_grad(): print('=> encoding captions') text_features = defaultdict(list) for label in tqdm(labels): if isinstance(label, list): texts = [t.format(l) for t in templates for l in label] else: texts = [t.format(label) for t in templates] texts = tokenizer(texts).cuda(non_blocking=True) texts = texts.view(-1, 77).contiguous() class_embeddings = utils.get_model_parallel(model).encode_text_val(texts) embed_names = {'z_text', 'h_text'}.intersection(class_embeddings.keys()) for embed_name in embed_names: cls_embed = class_embeddings[embed_name] cls_embed = cls_embed / cls_embed.norm(dim=-1, keepdim=True) cls_embed = cls_embed.mean(dim=0) cls_embed = cls_embed / cls_embed.norm(dim=-1, keepdim=True) text_features[embed_name].append(cls_embed) text_features = {k: torch.stack(v, dim=0) for k, v in text_features.items()} print('=> encoding images') for images, target in tqdm(val_loader): images = images.cuda(non_blocking=True) target = target.cuda(non_blocking=True) # encode images image_features = utils.get_model_parallel(model).encode_image_val(images) # cosine similarity as logits similarities = utils.get_model_parallel(model).predict_zeroshot(image_features, text_features) # measure accuracy for name, similarity in similarities.items(): if is_acc: # measure accuracy and record loss pred = similarity.argmax(dim=1) correct = pred.eq(target).sum() results[f'acc1_{name[0]}']['correct'] += correct.item() results[f'acc1_{name[0]}']['total'] += images.size(0) else: results[name[0]]['outputs'].append(similarity.cpu()) results[name[0]]['targets'].append(target.cpu()) if is_acc and not args.model.startswith('CLIP'): # ensemble accuracy for w in ensemble_weights: similarity = w * similarities['z_sim'] + (1-w) * similarities['h_sim'] # measure accuracy and record loss pred = similarity.argmax(dim=1) correct = pred.eq(target).sum() results[f'acc1_zh_{w}']['correct'] += correct.item() results[f'acc1_zh_{w}']['total'] += images.size(0) if is_acc: return {k: 100 * d['correct'] / d['total'] for k, d in results.items()} else: results = { k: (torch.cat(d['outputs']), torch.cat(d['targets'])) for k, d in results.items() } results = {**results, **{ f'zh_{w}': (w * results['z'][0] + (1-w) * results['h'][0], results['z'][1]) for w in ensemble_weights }} if dataset_name in ['aircraft', 'pets', 'caltech101', 'flowers']: return {k: mean_per_class(*r) for k, r in results.items()} elif dataset_name == 'kinetics700_frames': return {k: (sum(accuracy(*r, topk=(1, 5))) / 2).item() for k, r in results.items()} elif dataset_name == 'hateful_memes': return {k: roc_auc(*r) for k, r in results.items()} def accuracy(output, target, topk=(1,)): """Computes the accuracy over the k top predictions for the specified values of k""" with torch.no_grad(): maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.reshape(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True) res.append(correct_k.mul_(100.0 / batch_size)) return res def mean_per_class(outputs, targets): pred = outputs.argmax(1) confusion_matrix = metrics.confusion_matrix(targets, pred) per_classes = confusion_matrix.diagonal() / confusion_matrix.sum(axis=1) return 100 * per_classes.mean() def roc_auc(outputs, targets): pos_score = outputs[:, 1] - outputs[:, 0] metric = metrics.roc_auc_score(targets, pos_score) return 100 * metric if __name__ == '__main__': parser = argparse.ArgumentParser('SLIP 0-shot evaluations', parents=[get_args_parser()]) args = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) main(args)
clip-rocket-main
eval_zeroshot.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn as nn import torch.nn.functional as F import torch.distributed as dist import utils class CLIPLoss(nn.Module): def __init__(self): super().__init__() self.labels = None self.last_local_batch_size = None def forward(self, outputs): image_embed = outputs['z_image'] text_embed = outputs['z_text'] logit_scale = outputs['logit_scale'] local_batch_size = image_embed.size(0) if local_batch_size != self.last_local_batch_size: self.labels = local_batch_size * utils.get_rank() + torch.arange( local_batch_size, device=image_embed.device ) self.last_local_batch_size = local_batch_size # normalized features image_embed = F.normalize(image_embed, dim=-1, p=2) text_embed = F.normalize(text_embed, dim=-1, p=2) # gather features from all GPUs image_embed_all, text_embed_all = \ utils.all_gather_batch([image_embed, text_embed]) # cosine similarity as logits logits_per_image = logit_scale * image_embed @ text_embed_all.t() logits_per_text = logit_scale * text_embed @ image_embed_all.t() loss = (F.cross_entropy(logits_per_image, self.labels) + \ F.cross_entropy(logits_per_text, self.labels)) / 2 # compute accuracy with torch.no_grad(): pred = torch.argmax(logits_per_image, dim=-1) correct = pred.eq(self.labels).sum() acc = 100 * correct / local_batch_size return {'loss': loss, 'clip_loss': loss, 'clip_acc': acc} class CL2LLoss(nn.Module): def __init__(self, loss_avg_or_sum, label_smoothing): super().__init__() self.labels = None self.last_local_batch_size = None self.loss_avg_or_sum = loss_avg_or_sum self.label_smoothing = label_smoothing def forward(self, outputs): z_image_global = outputs['z_image_global'] z_text_global = outputs['z_text_global'] h_image_local = outputs['h_image_local'] h_text_local = outputs['h_text_local'] logit_scale = outputs['logit_scale'] h_logit_scale = outputs['h_logit_scale'] local_batch_size = z_image_global.size(0) assert len(h_image_local) == len(h_text_local) num_augs = len(h_image_local) if local_batch_size != self.last_local_batch_size: self.labels = local_batch_size * utils.get_rank() + torch.arange( local_batch_size, device=z_image_global.device ) self.last_local_batch_size = local_batch_size # normalized features z_image_global = F.normalize(z_image_global) z_text_global = F.normalize(z_text_global) h_image_local = [F.normalize(z) for z in h_image_local] h_text_local = [F.normalize(z) for z in h_text_local] # gather features from all GPUs z_image_global_all, z_text_global_all = utils.all_gather_batch([z_image_global, z_text_global]) h_image_local_all = utils.all_gather_batch(h_image_local) h_text_local_all = utils.all_gather_batch(h_text_local) # compute global loss image_global_logits = logit_scale * z_image_global @ z_text_global_all.t() text_global_logits = logit_scale * z_text_global @ z_image_global_all.t() clip_loss_image_global = F.cross_entropy(image_global_logits, self.labels) clip_loss_text_global = F.cross_entropy(text_global_logits, self.labels) # compute local loss clip_loss_image_local, clip_loss_text_local = 0, 0 if num_augs > 0: image_local_logits = [] text_local_logits = [] for i in range(num_augs): image_local_logits += [h_logit_scale * h @ h_text_local_all[i].t() for h in h_image_local] text_local_logits += [h_logit_scale * h @ h_image_local_all[i].t() for h in h_text_local] clip_loss_image_local = sum([F.cross_entropy(l, self.labels, label_smoothing=self.label_smoothing) for l in image_local_logits]) / len(image_local_logits) clip_loss_text_local = sum([F.cross_entropy(l, self.labels, label_smoothing=self.label_smoothing) for l in text_local_logits]) / len(text_local_logits) # compute total losses clip_loss_image = (clip_loss_image_global + clip_loss_image_local * num_augs) / (1 + num_augs) clip_loss_text = (clip_loss_text_global + clip_loss_text_local * num_augs) / (1 + num_augs) clip_loss = (clip_loss_image + clip_loss_text) / 2 # compute accuracy with torch.no_grad(): pred = torch.argmax(image_global_logits, dim=-1) correct = pred.eq(self.labels).sum() clip_acc_image_global = 100 * correct / local_batch_size pred = torch.argmax(text_global_logits, dim=-1) correct = pred.eq(self.labels).sum() clip_acc_text_global = 100 * correct / local_batch_size clip_acc_image_local, clip_acc_text_local = 0, 0 if num_augs > 0: for aug_logits in image_local_logits: pred = torch.argmax(aug_logits, dim=-1) correct = pred.eq(self.labels).sum() clip_acc_image_local += 100 * correct / local_batch_size clip_acc_image_local /= len(image_local_logits) for aug_logits in text_local_logits: pred = torch.argmax(aug_logits, dim=-1) correct = pred.eq(self.labels).sum() clip_acc_text_local += 100 * correct / local_batch_size clip_acc_text_local /= len(image_local_logits) loss = clip_loss * (2 if self.loss_avg_or_sum == 'sum' else 1) clip_local_dict = { 'clip_loss_image_local': clip_loss_image_local, 'clip_loss_text_local': clip_loss_text_local, 'clip_acc_image_local': clip_acc_image_local, 'clip_acc_text_local': clip_acc_text_local, } if num_augs > 0 else {} return { 'loss': loss, 'clip_loss_image': clip_loss_image, 'clip_loss_text': clip_loss_text, 'clip_loss_image_global': clip_loss_image_global, 'clip_loss_text_global': clip_loss_text_global, 'clip_loss_image': clip_loss_image, 'clip_loss': clip_loss, 'clip_acc': clip_acc_image_global, 'clip_acc_image_global': clip_acc_image_global, 'clip_acc_text_global': clip_acc_text_global, 'h_logit_scale': h_logit_scale, **clip_local_dict, } class BarLIPLoss(CL2LLoss): def __init__(self, loss_avg_or_sum, label_smoothing, lamb=5e-3, scale_loss=0.025): super().__init__(loss_avg_or_sum, label_smoothing) self.lamb = lamb self.scale_loss = scale_loss def barlip_loss(self, z1, z2): N, D = z1.size() corr = torch.einsum("bi, bj -> ij", z1, z2) / N if dist.is_available() and dist.is_initialized(): dist.all_reduce(corr) world_size = dist.get_world_size() corr /= world_size diag = torch.eye(D, device=corr.device) cdif = (corr - diag).pow(2) cdif[~diag.bool()] *= self.lamb loss = self.scale_loss * cdif.sum() return loss def forward(self, outputs): # global to global num_losses = 1 barlip_loss = self.barlip_loss(outputs['v_image'], outputs['v_text']) # local to local for v_image in outputs['v_image_local']: for v_text in outputs['v_text_local']: barlip_loss += self.barlip_loss(v_image, v_text) num_losses += 1 barlip_loss /= num_losses # online eval with clip loss clip_loss_out = super().forward(outputs) loss = barlip_loss + clip_loss_out.pop('loss') return { 'loss': loss, 'barlip_loss': barlip_loss, **clip_loss_out } class SiamLIPLoss(CL2LLoss): def __init__(self, loss_avg_or_sum, label_smoothing): super().__init__(loss_avg_or_sum, label_smoothing) def negative_cosine_similarity(self, p, v): p = F.normalize(p, dim=-1) v = F.normalize(v, dim=-1) return 2 - 2 * (p * v.detach()).sum(dim=1).mean() def forward(self, outputs): p_image_global = outputs['p_image'] p_text_global = outputs['p_text'] p_image_local = outputs['p_image_local'] p_text_local = outputs['p_text_local'] if any('momentum' in k for k in outputs): v_image_global = outputs['v_image_momentum'] v_text_global = outputs['v_text_momentum'] v_image_local = outputs['v_image_local_momentum'] v_text_local = outputs['v_text_local_momentum'] else: v_image_global = outputs['v_image'] v_text_global = outputs['v_text'] v_image_local = outputs['v_image_local'] v_text_local = outputs['v_text_local'] # global to global num_losses = 2 siamlip_loss = ( self.negative_cosine_similarity(p_image_global, v_text_global.detach()) + \ self.negative_cosine_similarity(p_text_global, v_image_global.detach()) ) # local to local for p in p_image_local: for v in v_text_local: siamlip_loss += self.negative_cosine_similarity(p, v.detach()) num_losses += 1 for p in p_text_local: for v in v_image_local: siamlip_loss += self.negative_cosine_similarity(p, v.detach()) num_losses += 1 siamlip_loss /= num_losses # online eval with clip loss clip_loss_out = super().forward(outputs) loss = siamlip_loss + clip_loss_out.pop('loss') return { 'loss': loss, 'siamlip_loss': siamlip_loss, **clip_loss_out } class SwALIPLoss(CL2LLoss): def __init__( self, loss_avg_or_sum, label_smoothing, sk_iters=3, target_epsilon=0.05, swalip_weight=0.2, ): assert label_smoothing == 0.0 super().__init__(loss_avg_or_sum, label_smoothing) self.sk_iters = sk_iters self.target_epsilon = target_epsilon self.swalip_weight = swalip_weight self.labels = None self.last_local_batch_size = None self.set_world_size() def set_world_size(self): if dist.is_available() and dist.is_initialized(): self.world_size = dist.get_world_size() else: self.world_size = 1 @torch.no_grad() def sinkhorn_knopp(self, Q: torch.Tensor) -> torch.Tensor: """Produces assignments using Sinkhorn-Knopp algorithm. Applies the entropy regularization, normalizes the Q matrix and then normalizes rows and columns in an alternating fashion for num_iter times. Before returning it normalizes again the columns in order for the output to be an assignment of samples to prototypes. Args: Q (torch.Tensor): cosine similarities between the features of the samples and the prototypes. Returns: torch.Tensor: assignment of samples to prototypes according to optimal transport. """ Q = torch.exp(Q / self.target_epsilon).t() B = Q.shape[1] * self.world_size K = Q.shape[0] # num prototypes # make the matrix sum to 1 sum_Q = torch.sum(Q) if dist.is_available() and dist.is_initialized(): dist.all_reduce(sum_Q) Q /= sum_Q for _ in range(self.sk_iters): # normalize each row: total weight per prototype must be 1/K sum_of_rows = torch.sum(Q, dim=1, keepdim=True) if dist.is_available() and dist.is_initialized(): dist.all_reduce(sum_of_rows) Q /= sum_of_rows Q /= K # normalize each column: total weight per sample must be 1/B Q /= torch.sum(Q, dim=0, keepdim=True) Q /= B Q *= B # the colomns must sum to 1 so that Q is an assignment return Q.t() def cross_entropy(self, logits, targets): return -torch.mean(torch.sum(targets * torch.log_softmax(logits, dim=1), dim=1)) def forward(self, outputs): # online eval with clip loss clip_loss_out = super().forward(outputs) # cl2l h_image_local = [F.normalize(h) for h in outputs['h_image_local']] h_text_local = [F.normalize(h) for h in outputs['h_text_local']] h_logit_scale = outputs['h_logit_scale'] num_augs = len(h_image_local) h_image_local_all = utils.all_gather_batch(h_image_local) h_text_local_all = utils.all_gather_batch(h_text_local) logits_per_image_local = [[h @ h_all.t() for h_all in h_text_local_all] for h in h_image_local] logits_per_text_local = [[h @ h_all.t() for h_all in h_image_local_all] for h in h_text_local] # generate pseudo-label with torch.no_grad(): targets_per_image_local = [[self.sinkhorn_knopp(t.detach()) for t in i] for i in logits_per_image_local] targets_per_text_local = [[self.sinkhorn_knopp(i.detach()) for i in t] for t in logits_per_text_local] # compute the loss between all views swalip_loss = 0 for l1 in range(2): for l2 in range(2): t1, t2 = abs(l1 - 1), abs(l2 - 1) swalip_loss += ( self.cross_entropy(logits_per_image_local[l1][l2] * h_logit_scale, targets_per_image_local[t1][t2]) + \ self.cross_entropy(logits_per_text_local[l1][l2] * h_logit_scale, targets_per_text_local[t1][t2]) ) / 2 swalip_loss /= num_augs ** 2 loss = self.swalip_weight * swalip_loss + clip_loss_out.pop('loss') return {**clip_loss_out, 'loss': loss, 'swalip_loss': swalip_loss} class SwALIPV1Loss(nn.Module): def __init__(self, sk_iters, target_epsilon, temperature, swalip_weight=1.0): super().__init__() self.sk_iters = sk_iters self.target_epsilon = target_epsilon self.temperature = temperature self.swalip_weight = swalip_weight self.clip_loss = CLIPLoss() self.set_world_size() def set_world_size(self): if dist.is_available() and dist.is_initialized(): self.world_size = dist.get_world_size() else: self.world_size = 1 @torch.no_grad() def sinkhorn_knopp(self, Q: torch.Tensor) -> torch.Tensor: """Produces assignments using Sinkhorn-Knopp algorithm. Applies the entropy regularization, normalizes the Q matrix and then normalizes rows and columns in an alternating fashion for num_iter times. Before returning it normalizes again the columns in order for the output to be an assignment of samples to prototypes. Args: Q (torch.Tensor): cosine similarities between the features of the samples and the prototypes. Returns: torch.Tensor: assignment of samples to prototypes according to optimal transport. """ Q = torch.exp(Q / self.target_epsilon).t() B = Q.shape[1] * self.world_size K = Q.shape[0] # num prototypes # make the matrix sums to 1 sum_Q = torch.sum(Q) if dist.is_available() and dist.is_initialized(): dist.all_reduce(sum_Q) Q /= sum_Q for _ in range(self.sk_iters): # normalize each row: total weight per prototype must be 1/K sum_of_rows = torch.sum(Q, dim=1, keepdim=True) if dist.is_available() and dist.is_initialized(): dist.all_reduce(sum_of_rows) Q /= sum_of_rows Q /= K # normalize each column: total weight per sample must be 1/B Q /= torch.sum(Q, dim=0, keepdim=True) Q /= B Q *= B # the colomns must sum to 1 so that Q is an assignment return Q.t() def cross_entropy(self, logits, assign): return -torch.mean(torch.sum(assign * torch.log_softmax(logits, dim=1), dim=1)) def forward(self, outputs): image_logits = outputs['p_image'] text_logits = outputs['p_text'] logit_scale = outputs['swalip_logit_scale'] if any('momentum' in k for k in outputs): image_targets = outputs['p_image_momentum'] text_targets = outputs['p_text_momentum'] else: image_targets = outputs['p_image'].detach() text_targets = outputs['p_text'].detach() image_assign = self.sinkhorn_knopp(image_targets.detach()) text_assign = self.sinkhorn_knopp(text_targets.detach()) image_logits *= logit_scale text_logits *= logit_scale swalip_loss = ( self.cross_entropy(image_logits, text_assign) + \ self.cross_entropy(text_logits, image_assign) ) / 2 # online eval with clip loss clip_loss_out = self.clip_loss(outputs) loss = self.swalip_weight * swalip_loss + clip_loss_out.pop('loss') return { 'loss': loss, 'swalip_loss': swalip_loss, 'swalip_logit_scale': logit_scale, **clip_loss_out }
clip-rocket-main
losses.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import argparse from collections import OrderedDict, defaultdict import json import math import os import sys import time from tkinter import E try: import wandb except ImportError: print("wandb not found") import numpy as np import torch import torch.cuda.amp as amp import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.distributed as dist import torch.optim from torch.utils.data import DataLoader from torch.utils.data.distributed import DistributedSampler import datasets import models import utils from tokenizer import SimpleTokenizer def get_args_parser(): parser = argparse.ArgumentParser(description='CL2L training and evaluation', add_help=False) # Data parser.add_argument('--dataset', default='yfcc15m', type=str, choices=['yfcc15m', 'cc3m', 'cc12m', 'merged_opendata']) parser.add_argument('--root', default='datasets/yfcc100m', type=str, help='path to dataset root') parser.add_argument('--metadata', default='datasets/yfcc15m_v1/yfcc15m.pkl', type=str, help='path to metadata file (see README for details)') parser.add_argument('--metadata-unpaired', default='datasets/yfcc15m_v1/yfcc85m.pkl', type=str, help='path to metadata file (see README for details)') parser.add_argument('--bpe-path', default='datasets/yfcc15m_v1/bpe_simple_vocab_16e6.txt.gz', type=str, help='path to the bpe file (see README for details)') parser.add_argument('--output-dir', default='./', type=str, help='output dir') # Model parser.add_argument('--model', default='CL2L_VITB16', type=str) parser.add_argument('--attn-layer', default='flash', type=str, choices=["flash", "standard"]) parser.add_argument('--no-share-token', action='store_true') parser.add_argument('--semi-paired', action='store_true') parser.add_argument('--unpaired-ratio', default=4, type=int) parser.add_argument('--embed-dim', default=256, type=int, help='output dim for the language-image projector') parser.add_argument('--clip-hidden-dim', default=4096, type=int, help='hidden dim of CLIP mlp projection head') parser.add_argument('--ssl-scale', default=1.0, type=float, help='loss scale for SimCLR objective') parser.add_argument('--ssl-temp', default=0.1, type=float, help='softmax temperature for SimCLR objective') parser.add_argument('--resume', default='', type=str, help='path to resume from') parser.add_argument('--init-text-encoder', default=None, type=str, help='path to init from') parser.add_argument('--detach-proj', action='store_true', help='whether or not to detach the clip projector') parser.add_argument('--momentum', action='store_true', help='whether or not to use the momentum encoder') parser.add_argument('--momentum-tau', type=float, default=0.99, help='whether or not to use the momentum encoder') parser.add_argument('--transformer-layers', default=12, type=int, help='number of layers for the text transformer') parser.add_argument('--clip-proj-type', default='linear', type=str, choices=['mlp', 'linear'], help='type of projector for clip') parser.add_argument('--cl2l-txt-proj-type', default='mlp', type=str, choices=['mlp', 'linear'], help='type of text projector for cl2l') parser.add_argument('--cl2l-img-proj-type', default='mlp', type=str, choices=['mlp', 'linear'], help='type of vision projector for cl2l') parser.add_argument('--separate-proj', default=False, action='store_true', help='different heads') parser.add_argument('--separate-proj-child', default=False, action='store_true', help='different heads in non-contrastive stream') # BarLIP parser.add_argument('--barlip-proj-dim', default=8192, type=int, help='output dim for the barlip projector') parser.add_argument('--barlip-hidden-dim', default=3000, type=int, help='hidden dim for the barlip projector') parser.add_argument('--barlip-lamb', default=5e-3, type=float, help='lambda for BarLIP loss') parser.add_argument('--barlip-scale-loss', default=0.025, type=float, help='loss scaling factor for BarLIP') # SwALIP parser.add_argument('--swalip-proj-dim', default=128, type=int, help='output dim for the swalip projector') parser.add_argument('--swalip-hidden-dim', default=2048, type=int, help='output dim for the swalip projector') parser.add_argument('--swalip-num-proto', default=3000, type=int, help='number of prototypes for swalip') parser.add_argument('--swalip-temperature', default=0.1, type=float, help='softmax temperature for swalip') parser.add_argument('--swalip-learn-temperature', action='store_true', help='whether to learn softmax temperature for swalip') parser.add_argument('--sk-iters', default=3, type=int, help='output dim for the swalip projector') parser.add_argument('--target-epsilon', default=0.05, type=float, help='output dim for the swalip projector') parser.add_argument('--swalip-freeze-proto-iters', default=100, type=int, help='number of iters to freeze swalip prototypes') parser.add_argument('--swalip-no-shared-proto', action='store_true', help='whether or not to share prototypes between modalities') parser.add_argument('--swalip-weight', default=0.2, type=float, help='weight for the swalip loss') # SiamLIP parser.add_argument('--siamlip-proj-dim', default=128, type=int, help='output dim for the siamlip projector') parser.add_argument('--siamlip-hidden-dim', default=2048, type=int, help='output dim for the siamlip projector') parser.add_argument('--siamlip-no-last-bn', action='store_true', help='whether to use batchnorm at the end of the proj') # Image Augmentations parser.add_argument('--num-augs', default=2, type=int, help='number of augmentations in cl2l') parser.add_argument('--multicrop-resize', default=224, type=int) parser.add_argument('--multicrop-max-scale', default=1.0, type=float) parser.add_argument('--weak-min-scale', default=0.5, type=float) parser.add_argument('--blur-prob', default=0.5, type=float) parser.add_argument('--solarize-prob', default=0.0, type=float) parser.add_argument('--grayscale-prob', default=0.2, type=float) parser.add_argument('--byol-augment', default=False, action='store_true', help='byol-like asymmetric augment. It overrides other augment probs') parser.add_argument('--weak-augment', default=False, action='store_true', help='make all augmentations weak, including the ones of cl2l') parser.add_argument('--strong-augment', default=False, action='store_true', help='make all augmentations strong, including the one of baseline clip') parser.add_argument('--randaugment', default=False, action='store_true', help='add randaugment to base augmentations') # Text Augmentations parser.add_argument('--caption-sampling', default='single', type=str, choices=['single', 'multi'], help='how to sample captions') parser.add_argument('--text-dropout-prob', default=0.0, type=float, help='dropout probability') parser.add_argument('--text-drop-path-prob', default=0.0, type=float, help='dropout probability') parser.add_argument('--label-smoothing', default=0.0, type=float, help='label smoothing') parser.add_argument('--text-augment', default=False, action='store_true', help='text augmentations') parser.add_argument('--clean-before-augment', default=False, action='store_true', help='clean before text augmentations') parser.add_argument('--no-text-augment-prob', default=0.0, type=float, help='prob not to augment text') parser.add_argument('--remove-stopwords-prob', default=0.8, type=float, help='prob to remove stopwords from text') parser.add_argument('--synonym-replacement-prob', default=0.4, type=float, help='prob to replace synonym in text') parser.add_argument('--random-swap-prob', default=0.4, type=float, help='prob to randomly swap in text') parser.add_argument('--random-deletion-prob', default=0.2, type=float, help='prob to randomly delete text') # Training parser.add_argument('--epochs', default=25, type=int) parser.add_argument('--warmup-epochs', default=1, type=int) parser.add_argument('--start-epoch', default=0, type=int) parser.add_argument('--batch-size', default=64, type=int, help='number of samples per-device/per-gpu') parser.add_argument('--lr', default=3e-3, type=float) parser.add_argument('--lr-start', default=1e-6, type=float, help='initial warmup lr') parser.add_argument('--lr-end', default=1e-5, type=float, help='minimum final lr') parser.add_argument('--update-freq', default=1, type=int, help='optimizer update frequency (i.e. gradient accumulation steps)') parser.add_argument('--wd', default=0.1, type=float) parser.add_argument('--betas', default=(0.9, 0.98), nargs=2, type=float) parser.add_argument('--eps', default=1e-8, type=float) parser.add_argument('--eval-freq', default=1, type=int) parser.add_argument('--disable-amp', action='store_true', help='disable mixed-precision training (requires more memory and compute)') parser.add_argument('--loss-avg-or-sum', default='avg', type=str) parser.add_argument('--checkpoint-grad', action='store_true', help='enable gradient checkpointing') # System parser.add_argument('--print-freq', default=25, type=int, help='print frequency') parser.add_argument('-j', '--workers', default=10, type=int, metavar='N', help='number of data loading workers per process') parser.add_argument('--workers-unpaired', default=5, type=int, metavar='N', help='number of data loading workers per process') parser.add_argument('--evaluate', action='store_true', help='eval only') parser.add_argument('--world-size', default=1, type=int, help='number of nodes for distributed training') parser.add_argument('--rank', default=0, type=int, help='node rank for distributed training') parser.add_argument("--local_rank", type=int, default=0) parser.add_argument('--dist-url', default='env://', type=str, help='url used to set up distributed training') parser.add_argument('--dist-backend', default='nccl', type=str) parser.add_argument('--seed', default=0, type=int) parser.add_argument('--gpu', default=None, type=int, help='GPU id to use.') parser.add_argument('--wandb', action='store_true', help='Enable WandB logging') parser.add_argument('--offline', action='store_true', help='WandB will not log online') parser.add_argument('--name', default='CLIP_ROCKET', type=str) return parser best_acc1 = 0 def main(args): utils.init_distributed_mode(args) global best_acc1 # fix the seed for reproducibility seed = args.seed + utils.get_rank() torch.manual_seed(seed) np.random.seed(seed) # create model print("=> creating model: {}".format(args.model)) model = models.get_model(args) model.visual.set_grad_checkpointing(enable=args.checkpoint_grad) model.cuda(args.gpu) print(model) if args.distributed: model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[args.gpu], bucket_cap_mb=200, static_graph=True) if args.momentum: momentum_model = models.get_model(args, is_momentum=True) momentum_model.cuda(args.gpu) if args.distributed: momentum_model = torch.nn.parallel.DistributedDataParallel( momentum_model, device_ids=[args.gpu], bucket_cap_mb=200, static_graph=True) msg = utils.get_model_parallel(momentum_model).load_state_dict( utils.get_model_parallel(model).state_dict(), strict=False) print(msg) for p in momentum_model.parameters(): p.requires_grad = False # define loss function (criterion) and optimizer criterion = models.get_loss(args).cuda(args.gpu) p_wd, p_non_wd = [], [] for n, p in model.named_parameters(): if not p.requires_grad: continue # frozen weights if p.ndim < 2 or 'bias' in n or 'ln' in n or 'bn' in n: p_non_wd.append(p) else: p_wd.append(p) optim_params = [{"params": p_wd, "weight_decay": args.wd}, {"params": p_non_wd, "weight_decay": 0}] optimizer = torch.optim.AdamW(optim_params, lr=args.lr, betas=args.betas, eps=args.eps, weight_decay=args.wd) scaler = amp.GradScaler(enabled=not args.disable_amp) # optionally load pre-trained text encoder if args.init_text_encoder is not None: cp_text_encoder = torch.load(args.init_text_encoder)['state_dict'] cp_text_encoder = {k.replace('module.', ''): v for k, v in cp_text_encoder.items() if 'transformer' in k} result = utils.get_model_parallel(model).load_state_dict(cp_text_encoder, strict=False) print(result) del cp_text_encoder # optionally resume from a checkpoint (takes precedence over autoresume) if args.resume: if os.path.isfile(args.resume): print("=> loading resume checkpoint '{}'".format(args.resume)) checkpoint = torch.load(args.resume, map_location='cpu') epoch = checkpoint['epoch'] if 'epoch' in checkpoint else 0 args.start_epoch = epoch result = model.load_state_dict( checkpoint['state_dict'], strict=False) print(result) if args.momentum: print("=> loading momentum encoder from '{}'".format(args.resume)) result = momentum_model.load_state_dict( checkpoint['momentum_state_dict'], strict=False) print(result) optimizer.load_state_dict(checkpoint['optimizer']) if 'optimizer' in checkpoint else () scaler.load_state_dict(checkpoint['scaler']) if 'scaler' in checkpoint else () best_acc1 = checkpoint['best_acc1'] print("=> loaded resume checkpoint '{}' (epoch {})" .format(args.resume, epoch)) del checkpoint else: print("=> no checkpoint found at '{}'".format(args.resume)) else: # auto-resume from latest checkpoint in output directory latest = os.path.join(args.output_dir, 'checkpoint.pt') if os.path.isfile(latest): print("=> loading latest checkpoint '{}'".format(latest)) latest_checkpoint = torch.load(latest, map_location='cpu') args.start_epoch = latest_checkpoint['epoch'] model.load_state_dict(latest_checkpoint['state_dict']) if args.momentum: momentum_model.load_state_dict(latest_checkpoint['momentum_state_dict']) optimizer.load_state_dict(latest_checkpoint['optimizer']) scaler.load_state_dict(latest_checkpoint['scaler']) best_acc1 = latest_checkpoint['best_acc1'] print("=> loaded latest checkpoint '{}' (epoch {})" .format(latest, latest_checkpoint['epoch'])) del latest_checkpoint cudnn.benchmark = True # build tokenizer tokenizer = SimpleTokenizer( bpe_path=args.bpe_path, text_augment=args.text_augment, no_text_augment_prob=args.no_text_augment_prob, remove_stopwords_prob=args.remove_stopwords_prob, synonym_replacement_prob=args.synonym_replacement_prob, random_swap_prob=args.random_swap_prob, random_deletion_prob=args.random_deletion_prob, clean_before_augment=args.clean_before_augment, num_augs=args.num_augs, ) # build datasets print("=> creating paired datasets") train_dataset = datasets.get_train_dataset(args, tokenizer, metadata=args.metadata) val_dataset = datasets.get_val_dataset() # dist eval resamples data to pad uneven batch sizes # make sure num_samples = 0 mod num_gpus for exact acc train_sampler = DistributedSampler(train_dataset) if args.distributed else None val_sampler = DistributedSampler(val_dataset) if args.distributed else None train_loader = DataLoader( train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None), num_workers=args.workers, pin_memory=True, sampler=train_sampler, drop_last=True ) val_loader = DataLoader( val_dataset, batch_size=args.batch_size, shuffle=(val_sampler is None), num_workers=args.workers, pin_memory=True, sampler=val_sampler, drop_last=False ) # optionally also load unpaired data if args.semi_paired: print("=> creating unpaired dataset") unpaired_dataset = datasets.get_train_dataset( args, tokenizer, metadata=args.metadata_unpaired, augs_only=False ) unpaired_sampler = DistributedSampler(unpaired_dataset) if args.distributed else None unpaired_loader = DataLoader( unpaired_dataset, batch_size=args.batch_size // args.unpaired_ratio, shuffle=(unpaired_sampler is None), num_workers=args.workers_unpaired, pin_memory=True, sampler=unpaired_sampler, drop_last=True ) unpaired_iterable = utils.cycle(unpaired_loader, unpaired_sampler) if args.evaluate: zero_stats = validate_zeroshot(val_loader, model, tokenizer, args) if utils.is_main_process(): with open(os.path.join(args.output_dir, 'eval_log.txt'), 'a') as f: f.write(json.dumps(zero_stats) + '\n') return lr_schedule = utils.cosine_scheduler(args.lr, args.lr_end, args.epochs, len(train_loader) // args.update_freq, warmup_epochs=args.warmup_epochs, start_warmup_value=args.lr_start) if utils.is_main_process() and args.output_dir != './': with open(os.path.join(args.output_dir, 'command.txt'), 'w') as f: f.write(' '.join(sys.argv)) json.dump( vars(args), open(os.path.join(args.output_dir, 'args.json'), 'w'), default=lambda o: "<not serializable>", indent=4 ) if args.wandb: wandb_id = os.path.split(args.output_dir)[-1] wandb.init( project='clip-rocket', id=wandb_id, config=args, resume='allow', name=args.name, save_code=True, notes=' '.join(sys.argv), mode='offline' if args.offline else 'online', dir=args.output_dir ) wandb.watch(model) print(args) print("=> beginning training") for epoch in range(args.start_epoch, args.epochs): if args.distributed: train_sampler.set_epoch(epoch) # train for one epoch train_stats = train( train_loader, model, criterion, optimizer, scaler, epoch, lr_schedule, args, momentum_model if args.momentum else None, unpaired_iterable if args.semi_paired else None ) if (epoch + 1) % args.eval_freq != 0: continue val_stats = validate_zeroshot(val_loader, model, tokenizer, args) acc1 = val_stats['acc1_z'] is_best = acc1 > best_acc1 best_acc1 = max(acc1, best_acc1) print("=> saving checkpoint") checkpoint_dict = { 'epoch': epoch + 1, 'state_dict': model.state_dict(), 'optimizer' : optimizer.state_dict(), 'scaler': scaler.state_dict(), 'best_acc1': best_acc1, 'args': args, } if args.momentum: checkpoint_dict['momentum_state_dict'] = momentum_model.state_dict() utils.save_on_master(checkpoint_dict, is_best, args.output_dir) log_stats = {**{f'train_{k}': v for k, v in train_stats.items()}, **{f'test_{k}': v for k, v in val_stats.items()}, 'epoch': epoch} if utils.is_main_process(): if args.wandb: wandb.log(log_stats) with open(os.path.join(args.output_dir, 'log.txt'), 'a') as f: f.write(json.dumps(log_stats) + '\n') if utils.is_main_process(): wandb.finish() def train( train_loader, model, criterion, optimizer, scaler, epoch, lr_schedule, args, momentum_model=None, unpaired_iterable=None, ): batch_time = AverageMeter('Time', ':6.2f') data_time = AverageMeter('Data', ':6.2f') mem = AverageMeter('Mem (GB)', ':6.1f') metric_names = models.get_metric_names(args.model) iters_per_epoch = len(train_loader) // args.update_freq metrics = OrderedDict([(name, AverageMeter(name, ':.2e')) for name in metric_names]) progress = ProgressMeter( iters_per_epoch, [batch_time, data_time, mem, *metrics.values()], prefix="Epoch: [{}]".format(epoch)) assert (momentum_model is not None) == args.momentum # switch to train mode model.train() if args.momentum: momentum_model.train() end = time.time() for data_iter, inputs in enumerate(train_loader): optim_iter = data_iter // args.update_freq # optionally load unpaired data if args.semi_paired: inputs_unpaired = next(unpaired_iterable) inputs = [ torch.cat([inputs[0], inputs_unpaired[0]]), inputs[1], *[torch.cat([inputs[a+2], inputs_unpaired[a+2]]) for a in range(args.num_augs)] ] # measure data loading time data_time.update(time.time() - end) # update weight decay and learning rate according to their schedule it = iters_per_epoch * epoch + optim_iter # global training iteration for k, param_group in enumerate(optimizer.param_groups): param_group['lr'] = lr_schedule[it] inputs = [t.cuda(args.gpu, non_blocking=True) for t in inputs] # compute output with amp.autocast(enabled=not args.disable_amp): outputs = model(*inputs) if args.momentum: with torch.no_grad(): momentum_outputs = momentum_model(*inputs) momentum_outputs = {k + '_momentum' : v for k, v in momentum_outputs.items()} outputs = {**outputs, **momentum_outputs} loss_dict = criterion(outputs) loss = loss_dict['loss'] loss /= args.update_freq if not math.isfinite(loss.item()): torch.save( {"inputs": utils.all_gather_batch(inputs), "outputs": utils.all_gather_batch(outputs), "losses": loss_dict, "state_dict": model.state_dict()}, os.path.join(args.output_dir, "dump_loss_nan.pgz") ) print("Loss is {}, stopping training".format(loss.item())) time.sleep(5) sys.exit(1) scaler.scale(loss).backward() if (data_iter + 1) % args.update_freq != 0: continue if args.model.endswith('SWALIPV1') and it < args.swalip_freeze_proto_iters: for name, p in model.named_parameters(): if "prototypes" in name: p.grad = None # compute gradient and do SGD step scaler.step(optimizer) scaler.update() model.zero_grad(set_to_none=True) # momentum update if args.momentum: with torch.no_grad(): m = args.momentum_tau for p, p_mom in zip( utils.get_model_parallel(model).parameters(), utils.get_model_parallel(momentum_model).parameters() ): p_mom.data.mul_(m).add_((1 - m) * p.detach().data) # clamp logit scale to [0, 100] utils.get_model_parallel(model).logit_scale.data.clamp_(0, 4.6052) logit_scale = utils.get_model_parallel(model).logit_scale.exp().item() utils.get_model_parallel(model).l2l_logit_scale.data.clamp_(0, 4.6052) for k in loss_dict: metrics[k].update(loss_dict[k].item(), args.batch_size) # measure elapsed time batch_time.update(time.time() - end) end = time.time() mem.update(torch.cuda.max_memory_allocated() // 1e9) if optim_iter % args.print_freq == 0: if utils.is_main_process() and args.wandb: wandb.log({**{k: v.item() for k, v in loss_dict.items()}, 'scaler': scaler.get_scale(), 'logit': logit_scale}) progress.display(optim_iter) progress.synchronize() return {**{k: v.avg for k, v in metrics.items()}, 'lr': optimizer.param_groups[0]['lr'], 'logit_scale': logit_scale} def validate_zeroshot(val_loader, model, tokenizer, args): batch_time = AverageMeter('Time', ':6.3f') if args.model.startswith('SLIP') or args.model.startswith('CLIP'): metrics = { 'acc1_z': AverageMeter('Acc@1_z', ':6.2f'), 'acc5_z': AverageMeter('Acc@5_z', ':6.2f') } else: ensemble_weights = np.linspace(0.1, 0.9, 9).round(decimals=1) metric_suffixes = ['z', 'h'] + [f'zh_{w}' for w in ensemble_weights] metrics = { f'acc{k}_{s}': AverageMeter(f'Acc@{k}_{s}', ':6.2f') for s in metric_suffixes for k in [1, 5] } progress = ProgressMeter( len(val_loader), [batch_time, *metrics.values()], prefix='Test: ' ) # switch to evaluate mode model.eval() print('=> encoding captions') cwd = os.path.dirname(os.path.realpath(__file__)) with open(os.path.join(cwd, 'templates.json')) as f: templates = json.load(f)['imagenet'] with open(os.path.join(cwd, 'labels.json')) as f: labels = json.load(f)['imagenet'] with torch.no_grad(): text_features = defaultdict(list) for l in labels: texts = [t.format(l) for t in templates] texts = tokenizer(texts).cuda(args.gpu, non_blocking=True) class_embeddings = utils.get_model_parallel(model).encode_text_val(texts) embed_names = {'z_text', 'h_text', 'p_text'}.intersection(class_embeddings.keys()) for embed_name in embed_names: cls_embed = class_embeddings[embed_name] cls_embed = cls_embed / cls_embed.norm(dim=-1, keepdim=True) cls_embed = cls_embed.mean(dim=0) cls_embed = cls_embed / cls_embed.norm(dim=-1, keepdim=True) text_features[embed_name].append(cls_embed) text_features = {k: torch.stack(v, dim=0) for k, v in text_features.items()} end = time.time() for i, (images, target) in enumerate(val_loader): images = images.cuda(args.gpu, non_blocking=True) target = target.cuda(args.gpu, non_blocking=True) # encode images image_features = utils.get_model_parallel(model).encode_image_val(images) # compute similarities similarities = utils.get_model_parallel(model).predict_zeroshot(image_features, text_features) # measure accuracy for name, similarity in similarities.items(): acc1, acc5 = utils.accuracy(similarity, target, topk=(1, 5)) acc1, acc5 = utils.scaled_all_reduce([acc1, acc5]) metrics[f'acc1_{name[0]}'].update(acc1.item(), images.size(0)) metrics[f'acc5_{name[0]}'].update(acc5.item(), images.size(0)) if not (args.model.startswith('SLIP')) and not (args.model.startswith('CLIP')): # ensemble accuracy for w in ensemble_weights: similarity = w * similarities['z_sim'] + (1-w) * similarities['h_sim'] acc1, acc5 = utils.accuracy(similarity, target, topk=(1, 5)) acc1, acc5 = utils.scaled_all_reduce([acc1, acc5]) metrics[f'acc1_zh_{w}'].update(acc1.item(), images.size(0)) metrics[f'acc5_zh_{w}'].update(acc5.item(), images.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % args.print_freq == 0: progress.display(i) progress.synchronize() print(f'0-shot * Acc@1 {metrics["acc1_z"].avg:.3f} Acc@5 {metrics["acc5_z"].avg:.3f}') return {k: v.avg for k, v in metrics.items()} class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self, name, fmt=':f'): self.name = name self.fmt = fmt self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def synchronize(self): if not utils.is_dist_avail_and_initialized(): return t = torch.tensor([self.sum, self.count], dtype=torch.float64, device='cuda') dist.barrier() dist.all_reduce(t) t = t.tolist() self.sum = int(t[0]) self.count = t[1] self.avg = self.sum / self.count def __str__(self): fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})' return fmtstr.format(**self.__dict__) class ProgressMeter(object): def __init__(self, num_batches, meters=None, prefix=""): self.batch_fmtstr = self._get_batch_fmtstr(num_batches) self.meters = meters self.prefix = prefix def display(self, batch): entries = [self.prefix + self.batch_fmtstr.format(batch)] entries += [str(meter) for meter in self.meters] print('\t'.join(entries)) def synchronize(self): for meter in self.meters: if meter.count == 0: continue meter.synchronize() def _get_batch_fmtstr(self, num_batches): num_digits = len(str(num_batches // 1)) fmt = '{:' + str(num_digits) + 'd}' return '[' + fmt + '/' + fmt.format(num_batches) + ']' if __name__ == '__main__': parser = argparse.ArgumentParser('SLIP training and evaluation', parents=[get_args_parser()]) args = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) main(args)
clip-rocket-main
main.py
import math import numpy as np def subsampled_dense_grid(d, D, gamma, deg=8): """Points and weights for the kernel feature map for the RBF kernel exp(-gamma ||x - y||^2) using subsampled dense grid. Parameters: d: input dimension D: number of features gamma: parameter of the RBF kernel deg: degree of Gaussian quadrature used Return: points: shape (D x d) weights: shape (D, ) """ points, weights = np.polynomial.hermite.hermgauss(deg) points *= 2 * math.sqrt(gamma) weights /= math.sqrt(math.pi) # Now @weights must sum to 1.0, as the kernel value at 0 is 1.0 subsampled_points = np.random.choice(points, size=(D, d), replace=True, p=weights) subsampled_weights = np.ones(D) / math.sqrt(D) return subsampled_points, subsampled_weights def rbf_feature_map(x, points, weights): """RBF kernel feature map, given points and weights Parameters: x: input of shape (batch_size x d) points: shape (D x d) weights: shape (D, ) Return: x_transformed: shape (batch_size x 2D) """ prod = x @ points.T return np.hstack((weights * np.cos(prod), weights * np.sin(prod))) def main(): batch_size = 64 d = 40 D = 100 x = np.random.rand(batch_size, d) points, weights = subsampled_dense_grid(d, D, gamma=0.01) x_transformed = rbf_feature_map(x, points, weights) assert x_transformed.shape == (batch_size, 2 * D) if __name__ == '__main__': main()
quadrature-features-master
dense_grid.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. from absl import app from absl import flags import cv2 import os.path as osp import sys sys.path.insert(0,'third_party') import pdb import time import numpy as np import torch import torch.backends.cudnn as cudnn cudnn.benchmark = True from nnutils.train_utils import v2s_trainer opts = flags.FLAGS def main(_): torch.cuda.set_device(opts.local_rank) world_size = opts.ngpu torch.distributed.init_process_group( 'nccl', init_method='env://', world_size=world_size, rank=opts.local_rank, ) print('%d/%d'%(world_size,opts.local_rank)) torch.manual_seed(0) torch.cuda.manual_seed(1) torch.manual_seed(0) trainer = v2s_trainer(opts) data_info = trainer.init_dataset() trainer.define_model(data_info) trainer.init_training() trainer.train() if __name__ == '__main__': app.run(main)
banmo-main
main.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. from absl import flags, app import sys sys.path.insert(0,'third_party') import numpy as np import torch import os import glob import pdb import cv2 import trimesh from scipy.spatial.transform import Rotation as R import imageio from utils.io import save_vid, str_to_frame, save_bones from utils.colors import label_colormap from nnutils.train_utils import v2s_trainer from nnutils.geom_utils import obj_to_cam, tensor2array, vec_to_sim3, obj_to_cam from ext_utils.util_flow import write_pfm from ext_utils.flowlib import cat_imgflo opts = flags.FLAGS def save_output(rendered_seq, aux_seq, seqname, save_flo): save_dir = '%s/'%(opts.model_path.rsplit('/',1)[0]) length = len(aux_seq['mesh']) mesh_rest = aux_seq['mesh_rest'] len_max = (mesh_rest.vertices.max(0) - mesh_rest.vertices.min(0)).max() mesh_rest.export('%s/mesh-rest.obj'%save_dir) if 'mesh_rest_skin' in aux_seq.keys(): aux_seq['mesh_rest_skin'].export('%s/mesh-rest-skin.obj'%save_dir) if 'bone_rest' in aux_seq.keys(): bone_rest = aux_seq['bone_rest'] save_bones(bone_rest, len_max, '%s/bone-rest.obj'%save_dir) flo_gt_vid = [] flo_p_vid = [] for i in range(length): impath = aux_seq['impath'][i] seqname = impath.split('/')[-2] save_prefix = '%s/%s'%(save_dir,seqname) idx = int(impath.split('/')[-1].split('.')[-2]) mesh = aux_seq['mesh'][i] rtk = aux_seq['rtk'][i] # convert bones to meshes TODO: warp with a function if 'bone' in aux_seq.keys() and len(aux_seq['bone'])>0: bones = aux_seq['bone'][i] bone_path = '%s-bone-%05d.obj'%(save_prefix, idx) save_bones(bones, len_max, bone_path) mesh.export('%s-mesh-%05d.obj'%(save_prefix, idx)) np.savetxt('%s-cam-%05d.txt' %(save_prefix, idx), rtk) img_gt = rendered_seq['img'][i] flo_gt = rendered_seq['flo'][i] mask_gt = rendered_seq['sil'][i][...,0] flo_gt[mask_gt<=0] = 0 img_gt[mask_gt<=0] = 1 if save_flo: img_gt = cat_imgflo(img_gt, flo_gt) else: img_gt*=255 cv2.imwrite('%s-img-gt-%05d.jpg'%(save_prefix, idx), img_gt[...,::-1]) flo_gt_vid.append(img_gt) img_p = rendered_seq['img_coarse'][i] flo_p = rendered_seq['flo_coarse'][i] mask_gt = cv2.resize(mask_gt, flo_p.shape[:2][::-1]).astype(bool) flo_p[mask_gt<=0] = 0 img_p[mask_gt<=0] = 1 if save_flo: img_p = cat_imgflo(img_p, flo_p) else: img_p*=255 cv2.imwrite('%s-img-p-%05d.jpg'%(save_prefix, idx), img_p[...,::-1]) flo_p_vid.append(img_p) flo_gt = cv2.resize(flo_gt, flo_p.shape[:2]) flo_err = np.linalg.norm( flo_p - flo_gt ,2,-1) flo_err_med = np.median(flo_err[mask_gt]) flo_err[~mask_gt] = 0. cv2.imwrite('%s-flo-err-%05d.jpg'%(save_prefix, idx), 128*flo_err/flo_err_med) img_gt = rendered_seq['img'][i] img_p = rendered_seq['img_coarse'][i] img_gt = cv2.resize(img_gt, img_p.shape[:2][::-1]) img_err = np.power(img_gt - img_p,2).sum(-1) img_err_med = np.median(img_err[mask_gt]) img_err[~mask_gt] = 0. cv2.imwrite('%s-img-err-%05d.jpg'%(save_prefix, idx), 128*img_err/img_err_med) # fps = 1./(5./len(flo_p_vid)) upsample_frame = min(30, len(flo_p_vid)) save_vid('%s-img-p' %(save_prefix), flo_p_vid, upsample_frame=upsample_frame) save_vid('%s-img-gt' %(save_prefix),flo_gt_vid,upsample_frame=upsample_frame) def transform_shape(mesh,rtk): """ (deprecated): absorb rt into mesh vertices, """ vertices = torch.Tensor(mesh.vertices) Rmat = torch.Tensor(rtk[:3,:3]) Tmat = torch.Tensor(rtk[:3,3]) vertices = obj_to_cam(vertices, Rmat, Tmat) rtk[:3,:3] = np.eye(3) rtk[:3,3] = 0. mesh = trimesh.Trimesh(vertices.numpy(), mesh.faces) return mesh, rtk def main(_): trainer = v2s_trainer(opts, is_eval=True) data_info = trainer.init_dataset() trainer.define_model(data_info) seqname=opts.seqname dynamic_mesh = opts.flowbw or opts.lbs idx_render = str_to_frame(opts.test_frames, data_info) # idx_render[0] += 50 # idx_render[0] += 374 # idx_render[0] += 292 # idx_render[0] += 10 # idx_render[0] += 340 # idx_render[0] += 440 # idx_render[0] += 540 # idx_render[0] += 640 # idx_render[0] += trainer.model.data_offset[4]-4 + 37 # idx_render[0] += 36 trainer.model.img_size = opts.render_size chunk = opts.frame_chunk for i in range(0, len(idx_render), chunk): rendered_seq, aux_seq = trainer.eval(idx_render=idx_render[i:i+chunk], dynamic_mesh=dynamic_mesh) rendered_seq = tensor2array(rendered_seq) save_output(rendered_seq, aux_seq, seqname, save_flo=opts.use_corresp) #TODO merge the outputs if __name__ == '__main__': app.run(main)
banmo-main
extract.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. import cv2 import glob import numpy as np import pdb import os import shutil import detectron2 from detectron2.config import get_cfg from detectron2.engine import DefaultPredictor from detectron2.utils.visualizer import Visualizer, ColorMode from detectron2.data import MetadataCatalog coco_metadata = MetadataCatalog.get("coco_2017_val") import torch import torch.nn.functional as F import torchvision import sys curr_dir = os.path.abspath(os.getcwd()) sys.path.insert(0,curr_dir) try: detbase='./third_party/detectron2/' sys.path.insert(0,'%s/projects/PointRend/'%detbase) import point_rend except: detbase='./third_party/detectron2_old/' sys.path.insert(0,'%s/projects/PointRend/'%detbase) import point_rend sys.path.insert(0,'third_party/ext_utils') from utils.io import save_vid from util_flow import write_pfm seqname=sys.argv[1] ishuman=sys.argv[2] # 'y/n' datadir='tmp/%s/images/'%seqname odir='database/DAVIS/' imgdir= '%s/JPEGImages/Full-Resolution/%s'%(odir,seqname) maskdir='%s/Annotations/Full-Resolution/%s'%(odir,seqname) #if os.path.exists(imgdir): shutil.rmtree(imgdir) #if os.path.exists(maskdir): shutil.rmtree(maskdir) #os.mkdir(imgdir) #os.mkdir(maskdir) cfg = get_cfg() point_rend.add_pointrend_config(cfg) cfg.merge_from_file('%s/projects/PointRend/configs/InstanceSegmentation/pointrend_rcnn_X_101_32x8d_FPN_3x_coco.yaml'%(detbase)) cfg.MODEL.WEIGHTS ='https://dl.fbaipublicfiles.com/detectron2/PointRend/InstanceSegmentation/pointrend_rcnn_X_101_32x8d_FPN_3x_coco/28119989/model_final_ba17b9.pkl' cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST=0.9 predictor = DefaultPredictor(cfg) counter=0 frames = [] for i,path in enumerate(sorted(glob.glob('%s/*'%datadir))): print(path) img = cv2.imread(path) h,w = img.shape[:2] # store at most 1080p videos scale = np.sqrt(1920*1080/(h*w)) if scale<1: img = cv2.resize(img, (int(w*scale), int(h*scale)) ) h,w = img.shape[:2] # resize to some empirical size if h>w: h_rszd,w_rszd = 1333, 1333*w//h else: h_rszd,w_rszd = 1333*h//w, 1333 img_rszd = cv2.resize(img,(w_rszd,h_rszd)) # pad borders to make sure detection works when obj is out-of-frame pad=100 img_rszd = cv2.copyMakeBorder(img_rszd,pad,pad,pad,pad,cv2.BORDER_REPLICATE) # pointrend outputs = predictor(img_rszd) outputs = outputs['instances'].to('cpu') mask_rszd = np.zeros((h_rszd+pad*2,w_rszd+pad*2)) for it,ins_cls in enumerate(outputs.pred_classes): print(ins_cls) #if ins_cls ==15: # cat #if ins_cls==0 or (ins_cls >= 14 and ins_cls <= 23): if ishuman=='y': if ins_cls ==0: mask_rszd += np.asarray(outputs.pred_masks[it]) else: if ins_cls >= 14 and ins_cls <= 23: mask_rszd += np.asarray(outputs.pred_masks[it]) nb_components, output, stats, centroids = \ cv2.connectedComponentsWithStats(mask_rszd.astype(np.uint8), connectivity=8) if nb_components>1: max_label, max_size = max([(i, stats[i, cv2.CC_STAT_AREA]) for i in range(1, nb_components)], key=lambda x: x[1]) mask_rszd = output == max_label mask_rszd = mask_rszd.astype(bool).astype(int) if (mask_rszd.sum())<1000: continue mask_rszd = mask_rszd [pad:-pad,pad:-pad] img_rszd = img_rszd [pad:-pad,pad:-pad] outputs.pred_masks=outputs.pred_masks[:,pad:-pad,pad:-pad] outputs.pred_boxes.tensor[:,0:2] -= pad outputs.pred_boxes.tensor[:,2:4] -= 2*pad mask_rszd = np.concatenate([mask_rszd[:,:,np.newaxis]* 128, np.zeros((h_rszd, w_rszd, 1)), np.zeros((h_rszd, w_rszd, 1))],-1) mask = cv2.resize(mask_rszd,(w,h)) cv2.imwrite('%s/%05d.jpg'%(imgdir,counter), img) cv2.imwrite('%s/%05d.png'%(maskdir,counter), mask) # vis v = Visualizer(img_rszd, coco_metadata, scale=1, instance_mode=ColorMode.IMAGE_BW) #outputs.remove('pred_masks') vis = v.draw_instance_predictions(outputs) vis = vis.get_image() cv2.imwrite('%s/vis-%05d.jpg'%(maskdir,counter), vis) counter+=1 frames.append(vis[:,:,::-1]) save_vid('%s/vis'%maskdir, frames, suffix='.mp4') save_vid('%s/vis'%maskdir, frames, suffix='.gif')
banmo-main
preprocess/mask.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. """ python img2lines.py --seqname xx """ from absl import flags, app import sys sys.path.insert(0,'third_party') sys.path.insert(0,'./') import numpy as np import torch import os import glob import pdb import cv2 import trimesh from scipy.spatial.transform import Rotation as R import imageio from utils.io import save_vid, str_to_frame, save_bones from utils.colors import label_colormap from nnutils.train_utils import v2s_trainer from nnutils.geom_utils import obj_to_cam, tensor2array, vec_to_sim3, obj_to_cam from utils.io import mkdir_p from ext_utils.util_flow import write_pfm from ext_utils.flowlib import cat_imgflo from utils.io import config_to_dataloader from torch.utils.data import DataLoader from nnutils.geom_utils import tensor2array opts = flags.FLAGS def dict2pix(dict_array, idy): dict_px = {} dict_px['img'] = dict_array['img'][...,idy,:] dict_px['mask'] = dict_array['mask'][...,idy,:] dict_px['vis2d'] = dict_array['vis2d'][...,idy,:] dict_px['flow'] = dict_array['flow'][...,idy,:] dict_px['occ'] = dict_array['occ'][...,idy,:] dict_px['dp'] = dict_array['dp'][...,idy,:] dict_px['dp_feat_rsmp'] = dict_array['dp_feat_rsmp'][...,idy,:] return dict_px def dict2rtk(dict_array): dict_out = {} dict_out['rtk'] = dict_array['rtk'] dict_out['kaug'] = dict_array['kaug'] return dict_out def main(_): seqname=opts.seqname trainer = v2s_trainer(opts, is_eval=True) data_info = trainer.init_dataset() impaths = data_info['impath'] data_offset = data_info['offset'] opts_dict = {} opts_dict['seqname'] = opts.seqname opts_dict['img_size'] = opts.img_size opts_dict['rtk_path'] = opts.rtk_path opts_dict['batch_size'] = 1 opts_dict['ngpu'] = 1 opts_dict['preload'] = False opts_dict['dframe'] = [1,2,4,8,16,32] dataset = config_to_dataloader(opts_dict,is_eval=True) #dataset = config_to_dataloader(opts_dict,is_eval=False) dataset = DataLoader(dataset, batch_size= 1, num_workers=0, drop_last=False, pin_memory=True, shuffle=False) for dat in dataset.dataset.datasets: dat.spec_dt = 1 #TODO #overwrite=False overwrite=True # hardcoded path base_path = 'database/DAVIS/Pixels/Full-Resolution/' for i, batch in enumerate(dataset): frameid = batch['frameid'] dataid = batch['dataid'] dt = frameid[0,1] - frameid[0,0] frameid = frameid + data_offset[dataid[0,0].long()] if dt<0: continue # only save forward pair (bachward pair is equivalent) impath = impaths[frameid.long()[0,0]] seqname_sub = impath.split('/')[-2] frameid_sub = impath.split('/')[-1].split('.')[0] save_dir = '%s/%s'%(base_path, seqname_sub) save_dir_t = '%s/%d_%s'%(save_dir, dt, frameid_sub) print(save_dir_t) if (not overwrite) and os.path.exists(save_dir_t): continue mkdir_p(save_dir_t) dict_array = tensor2array(batch) # save each pixel: 00_00000/0000.npy # t,h dict_rtk = dict2rtk(dict_array) save_path_rtk = '%s/rtk.npy'%(save_dir_t) np.save(save_path_rtk, dict_rtk) for idy in range(opts.img_size): save_path = '%s/%04d.npy'%(save_dir_t, idy) dict_px = dict2pix(dict_array, idy) np.save(save_path, dict_px) if __name__ == '__main__': app.run(main)
banmo-main
preprocess/img2lines.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. import configparser import cv2 import glob import pdb import sys seqname_pre=sys.argv[1] ishuman=sys.argv[2] # 'y/n' silroot='database/DAVIS/Annotations/Full-Resolution/' config = configparser.ConfigParser() config['data'] = { 'dframe': '1', 'init_frame': '0', 'end_frame': '-1', 'can_frame': '-1'} seqname_all = sorted(glob.glob('%s/%s[0-9][0-9][0-9]'%(silroot, seqname_pre))) total_vid = 0 for i,seqname in enumerate(seqname_all): seqname = seqname.split('/')[-1] img = cv2.imread('%s/%s/00000.png'%(silroot,seqname),0) if img is None:continue num_fr = len(glob.glob('%s/%s/*.png'%(silroot,seqname))) if num_fr < 16:continue fl = max(img.shape) px = img.shape[1]//2 py = img.shape[0]//2 camtxt = [fl,fl,px,py] config['data_%d'%total_vid] = { 'ishuman': ishuman, 'ks': ' '.join( [str(i) for i in camtxt] ), 'datapath': 'database/DAVIS/JPEGImages/Full-Resolution/%s/'%seqname, } total_vid += 1 with open('configs/%s.config'%(seqname_pre), 'w') as configfile: config.write(configfile)
banmo-main
preprocess/write_config.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. import cv2 import glob import numpy as np import pdb import os import shutil import detectron2 from detectron2.config import get_cfg from detectron2.engine import DefaultPredictor from detectron2.utils.visualizer import Visualizer, ColorMode from detectron2.data import MetadataCatalog coco_metadata = MetadataCatalog.get("coco_2017_val") import torch import torch.nn.functional as F import torchvision import sys curr_dir = os.path.abspath(os.getcwd()) sys.path.insert(0,curr_dir) try: detbase='./third_party/detectron2/' sys.path.insert(0,'%s/projects/DensePose/'%detbase) from utils.cselib import create_cse, run_cse except: detbase='./third_party/detectron2_old/' sys.path.insert(0,'%s/projects/DensePose/'%detbase) from utils.cselib import create_cse, run_cse sys.path.insert(0,'third_party/ext_utils') from utils.io import save_vid, visObj from util_flow import write_pfm seqname=sys.argv[1] ishuman=sys.argv[2] # 'y/n' odir='database/DAVIS/' imgdir= '%s/JPEGImages/Full-Resolution/%s'%(odir,seqname) maskdir='%s/Annotations/Full-Resolution/%s'%(odir,seqname) dpdir='%s/Densepose/Full-Resolution/%s'%(odir,seqname) if os.path.exists(dpdir): shutil.rmtree(dpdir) os.mkdir(dpdir) if ishuman=='y': #human config_path = '%s/projects/DensePose/configs/cse/densepose_rcnn_R_101_FPN_DL_soft_s1x.yaml'%(detbase) weight_path = 'https://dl.fbaipublicfiles.com/densepose/cse/densepose_rcnn_R_101_FPN_DL_soft_s1x/250713061/model_final_1d3314.pkl' mesh_name = 'smpl_27554' elif ishuman=='n': #quadrupeds config_path = '%s/projects/DensePose/configs/cse/densepose_rcnn_R_50_FPN_soft_animals_CA_finetune_4k.yaml'%(detbase) weight_path = 'https://dl.fbaipublicfiles.com/densepose/cse/densepose_rcnn_R_50_FPN_soft_animals_CA_finetune_4k/253498611/model_final_6d69b7.pkl' mesh_name = 'sheep_5004' else: print('y/n, exiting') exit() predictor_dp, embedder, mesh_vertex_embeddings = create_cse(config_path, weight_path) counter=0 frames = [] for i,path in enumerate(sorted(glob.glob('%s/*'%imgdir))): print(path) img = cv2.imread(path) msk = cv2.imread(path.replace('JPEGImages', 'Annotations').replace('.jpg', '.png'),0) h,w = img.shape[:2] # recompte mask msk = msk/np.sort(np.unique(msk))[1] occluder = msk==255 msk[occluder] = 0 # resize to some empirical size if h>w: h_rszd,w_rszd = 1333, 1333*w//h else: h_rszd,w_rszd = 1333*h//w, 1333 img_rszd = cv2.resize(img,(w_rszd,h_rszd)) msk_rszd = cv2.resize(msk,(w_rszd,h_rszd)) # densepose clst_verts, image_bgr1, embedding, embedding_norm, bbox = run_cse( predictor_dp, embedder, mesh_vertex_embeddings, img_rszd, msk_rszd, mesh_name=mesh_name) # resize to original size bbox[0] *= w / clst_verts.shape[1] bbox[2] *= w / clst_verts.shape[1] bbox[1] *= h / clst_verts.shape[0] bbox[3] *= h / clst_verts.shape[0] np.savetxt( '%s/bbox-%05d.txt'%(dpdir,counter) , bbox) clst_verts = cv2.resize(clst_verts, (w,h), interpolation=cv2.INTER_NEAREST) # assume max 10k/200 max clst_verts = (clst_verts/50.).astype(np.float32) write_pfm( '%s/%05d.pfm'%(dpdir,counter), clst_verts) embedding_norm = cv2.resize(embedding_norm, (w,h)) write_pfm( '%s/norm-%05d.pfm'%(dpdir,counter), embedding_norm) embedding = embedding.reshape((-1,embedding.shape[-1])) write_pfm( '%s/feat-%05d.pfm'%(dpdir,counter), embedding) # vis #v = Visualizer(img_rszd, coco_metadata, scale=1, instance_mode=ColorMode.IMAGE_BW) #outvis = visObj() #outvis.image_height = h #outvis.image_width = w #outvis._fields = {} #outvis._fields["pred_boxes"] = np.asarray([[0,0,h,w,1.]]) #vis = v.draw_instance_predictions(outvis) #vis = vis.get_image() vis=img_rszd alpha_mask = 0.8*(msk_rszd>0)[...,None] mask_result = vis*(1-alpha_mask) + image_bgr1 * alpha_mask cv2.imwrite('%s/vis-%05d.jpg'%(dpdir,counter), mask_result) counter+=1 frames.append(mask_result[:,:,::-1]) save_vid('%s/vis'%dpdir, frames, suffix='.mp4') save_vid('%s/vis'%dpdir, frames, suffix='.gif')
banmo-main
preprocess/compute_dp.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. import os import errno from typing import Any, Dict, List, Tuple, Union import cv2 import pdb import configparser import torch import numpy as np import imageio import trimesh import glob import matplotlib.cm import torch.nn.functional as F from scipy.spatial.transform import Rotation as R from torch.utils.data import Dataset import sys sys.path.insert(0,'third_party') import dataloader.vidbase as base_data from ext_utils.flowlib import flow_to_image from utils.colors import label_colormap def draw_lines(img, xy1s, xy2s): device = img.device colormap = label_colormap() len_colormap = colormap.shape[0] img = img.permute(1,2,0).cpu().numpy()*255 img = img.astype(np.uint8)[:,:,::-1].copy() for i in range(len(xy1s)): color = tuple([int(x) for x in colormap[i%len_colormap]]) p1 = tuple(xy1s[i].detach().cpu().numpy()) p2 = tuple(xy2s[i].detach().cpu().numpy()) cv2.circle(img,p1,3, color) cv2.circle(img,p2,3, color) cv2.line(img, p1, p2, color, thickness=1) #pdb.set_trace() #cv2.imwrite('tmp/0.png', img) #img = torch.Tensor(img).to(device).permute(2,0,1)[None] return img def draw_pts(img, xys): device = img.device img = img.permute(1,2,0).cpu().numpy()*255 img = img.astype(np.uint8)[:,:,::-1].copy() for point in xys: point = point.detach().cpu().numpy() cv2.circle(img,tuple(point),1,(0,0,255)) #pdb.set_trace() #cv2.imwrite('tmp/0.png', img) #img = torch.Tensor(img).to(device).permute(2,0,1)[None] return img def save_bones(bones, len_max, path): B = len(bones) elips_list = [] elips = trimesh.creation.uv_sphere(radius=len_max/20,count=[16, 16]) # remove identical vertices elips = trimesh.Trimesh(vertices=elips.vertices, faces=elips.faces) N_elips = len(elips.vertices) for bone in bones: center = bone[None,:3] orient = bone[3:7] # real first orient = orient / np.linalg.norm(orient, 2,-1) orient = orient[[1,2,3,0]] orient = R.from_quat(orient).as_matrix() # real first orient = orient.T # transpose R scale = np.exp(bone[None, 7:10]) elips_verts = elips.vertices elips_verts = elips_verts / scale elips_verts = elips_verts.dot(orient) elips_verts = elips_verts+center elips_list.append( trimesh.Trimesh(vertices = elips_verts, faces=elips.faces) ) elips = trimesh.util.concatenate(elips_list) colormap = label_colormap()[:B] colormap= np.tile(colormap[:,None], (1,N_elips,1)).reshape((-1,3)) elips.visual.vertex_colors[:len(colormap),:3] = colormap elips.export(path) def vis_match(results, masks, imgs, bs,img_size,ndepth): # show error images bs = imgs.shape[0] for i in range(bs): mask_rszd = F.interpolate(masks[None],(img_size,img_size))[0,i].bool() img_rszd = F.interpolate(imgs ,(img_size,img_size))[i].permute(1,2,0) img_mskd = img_rszd[mask_rszd].cpu().numpy() if 'feat_err' in results.keys(): feat_errs = results['feat_err'] feat_err = feat_errs[i].view(img_size,img_size) feat_err[~mask_rszd] = 0. med = feat_err[mask_rszd].median() print('%d-median:%f' %(i,med)) cv2.imwrite('tmp/match_err-%d.png'%i, (feat_err/med).cpu().numpy()*128) # draw lines if 'xyz_camera_vis' in results.keys() and 'pts_exp_vis' in results.keys(): mask_rszd = F.interpolate(masks[None],(img_size,img_size))[0,0].bool() img_rszd = F.interpolate(imgs ,(img_size,img_size))[0].permute(1,2,0) xyz_coarse_frame = results['xyz_camera_vis'] color_plane = torch.stack([img_rszd, torch.ones_like(img_rszd)],0).view(-1,3) color_plane = color_plane.cpu().numpy() near_plane= xyz_coarse_frame.view(bs,-1,ndepth,3)[0,:,0] d_near = near_plane[:,2].mean() near_plane[...,-1] -= d_near*0.01 far_plane = xyz_coarse_frame.view(bs,-1,ndepth,3)[0,:,-1] nf_plane = torch.cat([near_plane, far_plane],0) #trimesh.Trimesh(nf_plane.cpu().numpy(), vertex_colors=color_plane).\ trimesh.Trimesh(near_plane.cpu().numpy(), vertex_colors=img_rszd.view(-1,3).cpu().numpy()).\ export('tmp/match_plane.obj') near_plane_mskd = near_plane[mask_rszd.view(-1)].cpu() pts_pred = results['pts_pred_vis'] pts_pred = pts_pred[0].view(img_size,img_size,3)[mask_rszd].cpu().numpy() draw_lines_ray_canonical(near_plane_mskd, pts_pred,img_mskd, 'tmp/match_line_pred.obj') pts_exp = results['pts_exp_vis'] pts_exp = pts_exp[0].view(img_size,img_size,3)[mask_rszd].cpu().numpy() draw_lines_ray_canonical(pts_pred, pts_exp,img_mskd, 'tmp/match_line_exp.obj') #pts_pred_col=results['pts_pred'][0][mask_rszd].cpu().numpy() #pts_exp_col = results['pts_exp'][0][mask_rszd].cpu().numpy() #trimesh.Trimesh(pts_pred, vertex_colors=img_mskd).export('tmp/viser_pred.obj') #trimesh.Trimesh(pts_exp ,vertex_colors=img_mskd).export('tmp/viser_exp.obj') def draw_lines_ray_canonical(near_plane_mskd, pts_exp, img_mskd, path): colormap = label_colormap() len_color = len(colormap) meshes = [] idx=0 num_pts = len(near_plane_mskd) for i in range(0,num_pts, num_pts//50): # display 50 points ## only plot idx=5 #if idx!=5: # idx+=1 # continue segment = np.stack([near_plane_mskd[i], pts_exp[i]]) line = trimesh.creation.cylinder(0.0001, segment=segment,sections=5, vertex_colors=colormap[idx%len_color]) meshes.append(line) idx+=1 meshes = trimesh.util.concatenate(meshes) meshes.export(path) def merge_dict(dict_list): out_dict = {} for k in dict_list[0].keys(): out_dict[k] = [] for i in range(len(dict_list)): for k in out_dict.keys(): out_dict[k] += dict_list[i][k] return out_dict def render_root_txt(cam_dir, cap_frame): # read all the data camlist = load_root(cam_dir, cap_frame) # construct camera mesh mesh = draw_cams(camlist) save_dir,seqname=cam_dir.rsplit('/',1) mesh.export('%s/mesh-%s.obj'%(save_dir, seqname)) def load_sils(root_dir, cap_frame): """ load all the imgs with input is ...-(00000.png) """ imglist = [] img_path = '%s*.png'%(root_dir) #img_path = '%s0*.png'%(root_dir) all_path = sorted(glob.glob(img_path)) if cap_frame>0: all_path = all_path[:cap_frame] for idx,path in enumerate(all_path): img = cv2.imread(path,0) imglist.append(img) imglist = np.asarray(imglist) return imglist def load_root(root_dir, cap_frame): """ load all the root se(3) input is ...-(00000.txt) """ camlist = [] #cam_path = '%s0*.txt'%(root_dir) cam_path = '%s*.txt'%(root_dir) all_path = sorted(glob.glob(cam_path)) if cap_frame>0: all_path = all_path[:cap_frame] for idx,path in enumerate(all_path): rtk = np.loadtxt(path) camlist.append(rtk) camlist = np.asarray(camlist) return camlist def draw_cams(all_cam, color='cool', axis=True, color_list = None): """ all_cam: a list of 4x4 cameras """ # scale: the scene bound cmap = matplotlib.cm.get_cmap(color) all_cam = np.asarray(all_cam) trans_norm = np.linalg.norm(all_cam[:,:3,3],2,-1) valid_cams = trans_norm>0 trans_max = np.median(trans_norm[valid_cams]) scale=trans_max traj_len = len(all_cam) cam_list = [] if color_list is None: color_list = np.asarray(range(traj_len))/float(traj_len) for j in range(traj_len): cam_rot = all_cam[j][:3,:3].T cam_tran = -cam_rot.dot(all_cam[j][:3,3:])[:,0] radius = 0.02*scale cam = trimesh.creation.uv_sphere(radius=radius,count=[2, 2]) if axis: #TODO draw axis extents = np.asarray([radius*20, radius*10, radius*0.1]) axis = trimesh.creation.axis(origin_size = radius, origin_color = cmap(color_list[j]), axis_radius = radius* 0.1, axis_length = radius*5) #extents=extents) #axis.vertices[:,2] += radius * 5 #cam = trimesh.util.concatenate([elips, axis]) cam = axis #cam.vertices = cam.vertices + cam_tran cam.vertices = cam.vertices.dot(cam_rot.T) + cam_tran #cam.visual.vertex_colors = cmap(float(j)/traj_len) cam_list.append(cam) mesh_cam = trimesh.util.concatenate(cam_list) return mesh_cam def draw_cams_pair(cam1,cam2, color='cool', axis=True, color_list = None): frame_num = cam1.shape[0] cam_mesh1 = draw_cams(cam1, color=color,axis=axis,color_list=color_list) cam_mesh2 = draw_cams(cam2, color=color,axis=axis,color_list=color_list) # draw line lines = [] for i in range(frame_num): cam1_c = -cam1[i,:3,:3].T.dot(cam1[i,:3,3:])[:,0] cam2_c = -cam2[i,:3,:3].T.dot(cam2[i,:3,3:])[:,0] segment = np.stack([cam1_c, cam2_c]) line = trimesh.creation.cylinder(0.001,segment=segment,sections=5) lines.append(line) lines = trimesh.util.concatenate(lines) return cam_mesh1, cam_mesh2, lines def save_vid(outpath, frames, suffix='.gif',upsample_frame=150., fps=10, is_flow=False): """ save frames to video frames: n,h,w,1 or n. """ # convert to 150 frames if upsample_frame<1: upsample_frame = len(frames) frame_150=[] for i in range(int(upsample_frame)): fid = int(i/upsample_frame*len(frames)) frame = frames[fid] if is_flow: frame = flow_to_image(frame) if frame.max()<=1: frame=frame*255 frame = frame.astype(np.uint8) if suffix=='.gif': h,w=frame.shape[:2] fxy = np.sqrt(4e5/(h*w)) frame = cv2.resize(frame,None,fx=fxy, fy=fxy) frame_150.append(frame) imageio.mimsave('%s%s'%(outpath,suffix), frame_150, fps=fps) class visObj(object): """ a class for detectron2 vis """ def has(self, name: str) -> bool: return name in self._fields def __getattr__(self, name: str) -> Any: if name == "_fields" or name not in self._fields: raise AttributeError("Cannot find field '{}' in the given Instances!".format(name)) return self._fields[name] def config_to_dataloader(opts, is_eval=False): """ from a dict of options {seqname, batch_size, ngpu} to a pytorch dataloader """ config = configparser.RawConfigParser() config.read('configs/%s.config'%opts['seqname']) numvid = len(config.sections())-1 datalist = [] for i in range(numvid): dataset = get_config_info(opts, config, 'data_%d'%i, i, is_eval=is_eval) datalist = datalist + dataset dataset = torch.utils.data.ConcatDataset(datalist) return dataset def get_config_info(opts, config, name, dataid, is_eval=False): def load_attr(attrs, config, dataname): try:attrs['datapath'] = '%s'%(str(config.get(dataname, 'datapath'))) except:pass try:attrs['dframe'] = [int(i) for i in config.get(dataname, 'dframe').split(',')] except:pass try:attrs['can_frame']= int(config.get(dataname, 'can_frame')) except:pass try:attrs['init_frame']=int(config.get(dataname, 'init_frame')) except:pass try:attrs['end_frame'] =int(config.get(dataname, 'end_frame')) except:pass try:attrs['rtk_path'] =config.get(dataname, 'rtk_path') except:pass return attrs={} attrs['rtk_path'] = None load_attr(attrs, config, 'data') load_attr(attrs, config, name) datapath = attrs['datapath'] if 'dframe' in opts.keys(): dframe = opts['dframe'] # only in preload else: dframe = attrs['dframe'] can_frame =attrs['can_frame'] init_frame=attrs['init_frame'] end_frame= attrs['end_frame'] rtk_path=opts['rtk_path'] numvid = len(config.sections())-1 if numvid==1 and not config.has_option(name, 'datapath'): datapath='%s/%s'%(datapath, opts['seqname']) # opts rtk_path if rtk_path =='': # rtk path from config rtk_path= attrs['rtk_path'] elif not os.path.isfile('%s-00000.txt'%rtk_path): print('loading cameras from init-cam') rtk_path = '%s/%s'%(rtk_path, datapath.strip('/').split('/')[-1]) imglist = sorted(glob.glob('%s/*'%datapath)) try: flip=int(config.get(name, 'flip')) except: flip=0 if end_frame >0: imglist = imglist[:end_frame] print('init:%d, end:%d'%(init_frame, end_frame)) # load dataset datasets = [] for df in dframe: if 'lineload' in opts.keys() and opts['lineload']: # per-line loader #TODO dataset= LineDataset(opts, imglist = imglist, can_frame = can_frame, dframe=df, init_frame=init_frame, dataid=dataid, numvid=numvid, flip=flip, is_eval=is_eval, rtk_path=rtk_path) else: # per-image loader try: dataset = VidDataset(opts, imglist = imglist, can_frame = can_frame, dframe=df, init_frame=init_frame, dataid=dataid, numvid=numvid, flip=flip, is_eval=is_eval, rtk_path=rtk_path) except: continue if rtk_path is None: dataset.has_prior_cam = False else: dataset.has_prior_cam = True # whether to use preloaded data if 'preload' in opts.keys(): dataset.preload = opts['preload'] else: dataset.preload = False if 'multiply' in opts.keys(): # duplicate such that it goes more than 200 iters dup_num = 200/(len(dataset)/opts['ngpu']/opts['batch_size']) if 'accu_steps' in opts.keys(): dup_num = dup_num*opts['accu_steps'] dup_num = int(dup_num)+1 for i in range(dup_num): datasets.append(dataset) else: datasets.append(dataset) return datasets class LineDataset(Dataset): ''' ''' def __init__(self, opts, filter_key=None, imglist=None, can_frame=0, dframe=1,init_frame=0, dataid=0, numvid=1, flip=0, is_eval=False, rtk_path=None): super(LineDataset, self).__init__() self.crop_factor = 1.2 self.imglist = imglist self.img_size = opts['img_size'] self.num_lines = (len(imglist)-1) * self.img_size # last img not saved seqname = imglist[0].split('/')[-2] if rtk_path is not None: self.rtklist =['%s-%05d.txt'%(rtk_path, i) for i in range(len(self.imglist))] else: self.rtklist =[i.replace('JPEGImages', 'Cameras').replace('.jpg', '.txt') for i in self.imglist] # Load the annotation file. self.dataid = dataid print('%d lines' % self.num_lines) def __len__(self): return self.num_lines def __getitem__(self, index): try:dataid = self.dataid except: dataid=0 #TODO lolalize file idt = index // self.img_size# idt, idy idy = index % self.img_size# idt, idy save_dir = self.imglist[0].replace('JPEGImages', 'Pixels').rsplit('/',1)[0] dframe_list = [2,4,8,16,32] max_id = len(self.imglist)-1 dframe_list = [1] + [i for i in dframe_list if (idt%i==0) and \ int(idt+i) <= max_id] dframe = np.random.choice(dframe_list) data_path = '%s/%d_%05d/%04d.npy'%(save_dir, dframe, idt, idy) elem = np.load(data_path,allow_pickle=True).item() # modify dataid according to training time ones # reload rtk based on rtk predictions # add RTK: [R_3x3|T_3x1] # [fx,fy,px,py], to the ndc space # always forward flow idtn = idt + dframe try: rtk_path = self.rtklist[idt] rtk = np.loadtxt(rtk_path) rtkn_path = self.rtklist[idtn] rtkn = np.loadtxt(rtkn_path) rtk = np.stack([rtk, rtkn]) except: print('warning: loading empty camera') print(rtk_path) rtk = np.zeros((4,4)) rtk[:3,:3] = np.eye(3) rtk[:3, 3] = np.asarray([0,0,10]) rtk[3, :] = np.asarray([512,512,256,256]) rtkn = rtk.copy() rtk = np.stack([rtk, rtkn]) kaug_path = '%s/%d_%05d/rtk.npy'%(save_dir, dframe, idt) kaug = np.load(kaug_path,allow_pickle=True).item()['kaug'] #TODO fill elems elem['rtk'] = rtk[None] # 1,2,x elem['kaug'] = kaug elem['dataid'] = np.stack([dataid, dataid])[None] elem['frameid'] = np.stack([idt, idtn])[None] elem['lineid'] = np.stack([idy, idy])[None] return elem class VidDataset(base_data.BaseDataset): ''' ''' def __init__(self, opts, filter_key=None, imglist=None, can_frame=0, dframe=1,init_frame=0, dataid=0, numvid=1, flip=0, is_eval=False, rtk_path=None): super(VidDataset, self).__init__(opts, filter_key=filter_key) self.flip=flip self.imglist = imglist self.can_frame = can_frame self.dframe = dframe seqname = imglist[0].split('/')[-2] self.masklist = [i.replace('JPEGImages', 'Annotations').replace('.jpg', '.png') for i in self.imglist] self.camlist = [i.replace('JPEGImages', 'Camera').replace('.jpg', '.txt') for i in self.imglist] if dframe==1: self.flowfwlist = [i.replace('JPEGImages', 'FlowFW').replace('.jpg', '.pfm').replace('.png', '.pfm').replace('%s/'%seqname, '%s/flo-'%seqname) for i in self.imglist] self.flowbwlist = [i.replace('JPEGImages', 'FlowBW').replace('.jpg', '.pfm').replace('.png', '.pfm').replace('%s/'%seqname, '%s/flo-'%seqname) for i in self.imglist] else: self.flowfwlist = [i.replace('JPEGImages', 'FlowFW').replace('.jpg', '.pfm').replace('.png', '.pfm').replace('%s/'%seqname, '%s/flo-'%(seqname)) for i in self.imglist] self.flowbwlist = [i.replace('JPEGImages', 'FlowBW').replace('.jpg', '.pfm').replace('.png', '.pfm').replace('%s/'%seqname, '%s/flo-'%(seqname)) for i in self.imglist] self.featlist = [i.replace('JPEGImages', 'Densepose').replace('.jpg', '.pfm').replace('.png', '.pfm').replace('%s/'%seqname, '%s/feat-'%seqname) for i in self.imglist] self.featlist = ['%s/feat-%05d.pfm'%(i.rsplit('/',1)[0], int(i.split('feat-')[-1].split('.pfm')[0])) for i in self.featlist] self.bboxlist = ['%s/bbox-%05d.txt'%(i.rsplit('/',1)[0], int(i.split('feat-')[-1].split('.pfm')[0])) for i in self.featlist] self.kplist = [i.replace('JPEGImages', 'KP').replace('.jpg', '_keypoints.json').replace('.png', '_keypoints.json') for i in self.imglist] self.dplist = [i.replace('JPEGImages', 'Densepose').replace('.jpg', '.pfm').replace('.png', '.pfm') for i in self.imglist] if rtk_path is not None: self.rtklist =['%s-%05d.txt'%(rtk_path, i) for i in range(len(self.imglist))] else: self.rtklist =[i.replace('JPEGImages', 'Cameras').replace('.jpg', '.txt') for i in self.imglist] self.baselist = [i for i in range(len(self.imglist)-self.dframe)] + [i+self.dframe for i in range(len(self.imglist)-self.dframe)] self.directlist = [1] * (len(self.imglist)-self.dframe) + [0]* (len(self.imglist)-self.dframe) # to skip frames self.odirectlist = self.directlist.copy() len_list = len(self.baselist)//2 self.fw_list = self.baselist[:len_list][init_frame::self.dframe] self.bw_list = self.baselist[len_list:][init_frame::self.dframe] self.dir_fwlist = self.directlist[:len_list][init_frame::self.dframe] self.dir_bwlist = self.directlist[len_list:][init_frame::self.dframe] if is_eval: self.baselist = self.fw_list self.directlist = self.dir_fwlist else: self.baselist = self.fw_list + self.bw_list self.directlist = self.dir_fwlist + self.dir_bwlist self.baselist = [self.baselist[0]] + self.baselist + [self.baselist[-1]] self.directlist = [self.directlist[0]] + self.directlist + [self.directlist[-1]] fac = (opts['batch_size']*opts['ngpu']*200)//len(self.directlist) // numvid if fac==0: fac=1 self.directlist = self.directlist*fac self.baselist = self.baselist*fac # Load the annotation file. self.num_imgs = len(self.directlist) self.dataid = dataid print('%d pairs of images' % self.num_imgs) def str_to_frame(test_frames, data_info): if test_frames[0]=='{': # render a list of videos idx_render = [] for i in test_frames[1:-1].split(','): vid_idx = int(i) idx_render += range(data_info['offset'][vid_idx]-vid_idx, data_info['offset'][vid_idx+1]-vid_idx-1) else: test_frames = int(test_frames) if test_frames==0: test_frames = data_info['len_evalloader']-1 # render specific number of frames idx_render = np.linspace(0,data_info['len_evalloader']-1, test_frames, dtype=int) return idx_render def extract_data_info(loader): data_info = {} dataset_list = loader.dataset.datasets data_offset = [0] impath = [] for dataset in dataset_list: impath += dataset.imglist data_offset.append(len(dataset.imglist)) data_info['offset'] = np.asarray(data_offset).cumsum() data_info['impath'] = impath data_info['len_evalloader'] = len(loader) return data_info def mkdir_p(path): try: os.makedirs(path) except OSError as exc: # Python >2.5 if exc.errno == errno.EEXIST and os.path.isdir(path): pass else: raise def get_vertex_colors(model, mesh, frame_idx=0, view_dir=None): # assign color to mesh verts according to current frame xyz_query = torch.cuda.FloatTensor(mesh.vertices, device=model.device) xyz_embedded = model.embedding_xyz(xyz_query) # (N, embed_xyz_channels) # use env code of the first frame env_code = model.env_code(torch.Tensor([frame_idx]).long().to(model.device)) env_code = env_code.expand(xyz_query.shape[0],-1) if view_dir is None: # use view direction of (0,0,-1) dir_query = torch.zeros_like(xyz_query) dir_query[:,2] = -1 else: dir_query = F.normalize(view_dir, 2,-1) dir_embedded = model.embedding_dir(dir_query) # (N, embed_xyz_channels) xyz_embedded = torch.cat([xyz_embedded, dir_embedded, env_code],-1) #xyz_embedded = torch.cat([xyz_embedded, env_code],-1) vis = model.nerf_coarse(xyz_embedded)[:,:3].cpu().numpy() vis = np.clip(vis, 0, 1) return vis
banmo-main
utils/io.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. import pickle import cv2 import numpy as np import os import torch import torch.nn.functional as F import pdb import trimesh from detectron2.config import get_cfg from detectron2.modeling import build_model from detectron2.checkpoint import DetectionCheckpointer from detectron2.structures import Boxes as create_boxes import sys try: sys.path.insert(0,'./third_party/detectron2//projects/DensePose/') from densepose import add_densepose_config from densepose.modeling.cse.utils import squared_euclidean_distance_matrix from densepose.data.build import get_class_to_mesh_name_mapping from densepose.modeling import build_densepose_embedder from densepose.vis.densepose_outputs_vertex import get_xyz_vertex_embedding from densepose.vis.base import Boxes, Image, MatrixVisualizer except: sys.path.insert(0,'./third_party/detectron2_old//projects/DensePose/') from densepose import add_densepose_config from densepose.modeling.cse.utils import squared_euclidean_distance_matrix from densepose.data.build import get_class_to_mesh_name_mapping from densepose.modeling import build_densepose_embedder from densepose.vis.densepose_outputs_vertex import get_xyz_vertex_embedding from densepose.vis.base import Boxes, Image, MatrixVisualizer # load model def create_cse(config_fpath, weights_fpath): cfg = get_cfg() add_densepose_config(cfg) cfg.merge_from_file(config_fpath) cfg.MODEL.WEIGHTS = weights_fpath model = build_model(cfg) # returns a torch.nn.Module DetectionCheckpointer(model).load(cfg.MODEL.WEIGHTS) # load a file, usually from cfg.MODEL.WEIGHTS embedder = build_densepose_embedder(cfg) class_to_mesh_name = get_class_to_mesh_name_mapping(cfg) mesh_vertex_embeddings = { mesh_name: embedder(mesh_name).cuda() for mesh_name in class_to_mesh_name.values() if embedder.has_embeddings(mesh_name) } return model, embedder, mesh_vertex_embeddings def run_cse(model, embedder, mesh_vertex_embeddings, image, mask, mesh_name='smpl_27554'): h,w,_=image.shape # resize max_size=1333 if h>w: h_rszd, w_rszd = max_size, max_size*w//h else: h_rszd, w_rszd = max_size*h//w, max_size image = cv2.resize(image, (w_rszd, h_rszd)) mask = cv2.resize(mask.astype(float), (w_rszd, h_rszd)).astype(np.uint8) # pad h_pad = (1+h_rszd//32)*32 w_pad = (1+w_rszd//32)*32 image_tmp = np.zeros((h_pad,w_pad,3)).astype(np.uint8) mask_tmp = np.zeros((h_pad,w_pad)).astype(np.uint8) image_tmp[:h_rszd,:w_rszd] = image mask_tmp[:h_rszd,:w_rszd] = mask image = image_tmp mask = mask_tmp image_raw = image.copy() # preprocess image and box indices = np.where(mask>0); xid = indices[1]; yid = indices[0] center = ( (xid.max()+xid.min())//2, (yid.max()+yid.min())//2) length = ( int((xid.max()-xid.min())*1.//2), int((yid.max()-yid.min())*1.//2)) bbox = [center[0]-length[0], center[1]-length[1],length[0]*2, length[1]*2] bboxw = bbox[2] bboxh = bbox[3] bbox = [max(0,bbox[0]), max(0,bbox[1]), min(w_pad, bbox[0]+bbox[2]), min(h_pad, bbox[1]+bbox[3])] image=torch.Tensor(image).cuda().permute(2,0,1)[None] image = torch.stack([(x - model.pixel_mean) / model.pixel_std for x in image]) pred_boxes = torch.Tensor([bbox]).cuda() pred_boxes = create_boxes(pred_boxes) # inference model.eval() with torch.no_grad(): features = model.backbone(image) features = [features[f] for f in model.roi_heads.in_features] features = [model.roi_heads.decoder(features)] features_dp = model.roi_heads.densepose_pooler(features, [pred_boxes]) densepose_head_outputs = model.roi_heads.densepose_head(features_dp) densepose_predictor_outputs = model.roi_heads.densepose_predictor(densepose_head_outputs) coarse_segm_resized = densepose_predictor_outputs.coarse_segm[0] embedding_resized = densepose_predictor_outputs.embedding[0] # use input mask x, y, xx, yy= bbox mask_box = mask[y:yy, x:xx] mask_box = torch.Tensor(mask_box).cuda()[None,None] mask_box = F.interpolate(mask_box, coarse_segm_resized.shape[1:3], mode='bilinear')[0,0]>0 # find closest match (in the cropped/resized coordinate) clst_verts_pad = torch.zeros(h_pad, w_pad).long().cuda() clst_verts_box = torch.zeros(mask_box.shape, dtype=torch.long).cuda() all_embeddings = embedding_resized[:, mask_box].t() assign_mat = squared_euclidean_distance_matrix(all_embeddings, mesh_vertex_embeddings[mesh_name]) clst_verts_box[mask_box] = assign_mat.argmin(dim=1) clst_verts_box = F.interpolate(clst_verts_box[None,None].float(), (yy-y,xx-x),mode='nearest')[0,0].long() clst_verts_pad[y:yy,x:xx] = clst_verts_box # output embedding embedding = embedding_resized # size does not matter for a image code embedding = embedding * mask_box.float()[None] # embedding norm embedding_norm = embedding.norm(2,0) embedding_norm_pad = torch.zeros(h_rszd, w_rszd).cuda() embedding_norm_box = F.interpolate(embedding_norm[None,None], (yy-y,xx-x),mode='bilinear')[0,0] embedding_norm_pad[y:yy,x:xx] = embedding_norm_box embedding_norm = embedding_norm_pad[:h_rszd, :w_rszd] embedding_norm = F.interpolate(embedding_norm[None,None], (h,w),mode='bilinear')[0][0] embedding = embedding.cpu().numpy() embedding_norm = embedding_norm.cpu().numpy() # visualization embed_map = get_xyz_vertex_embedding(mesh_name, 'cuda') vis = (embed_map[clst_verts_pad].clip(0, 1) * 255.0).cpu().numpy() mask_visualizer = MatrixVisualizer( inplace=False, cmap=cv2.COLORMAP_JET, val_scale=1.0, alpha=0.7 ) image_bgr = mask_visualizer.visualize(image_raw, mask, vis, [0,0,w_pad,h_pad]) image_bgr = image_bgr[:h_rszd,:w_rszd] image_bgr = cv2.resize(image_bgr, (w,h)) clst_verts =clst_verts_pad[:h_rszd, :w_rszd] clst_verts = F.interpolate(clst_verts[None,None].float(), (h,w),mode='nearest')[0,0].long() clst_verts =clst_verts.cpu().numpy() return clst_verts, image_bgr, embedding, embedding_norm, bbox
banmo-main
utils/cselib.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. import numpy as np def label_colormap(): """ colormap for visualizing bones """ return np.asarray( [[155, 122, 157], [ 45, 245, 50], [ 71, 25, 64], [231, 176, 35], [125, 249, 245], [ 32, 75, 253], [241, 31, 111], [218, 71, 252], [248, 220, 197], [ 34, 194, 198], [108, 178, 96], [ 33, 101, 119], [125, 100, 26], [209, 235, 102], [116, 105, 241], [100, 50, 147], [193, 159, 222], [ 95, 254, 138], [197, 130, 75], [144, 31, 211], [ 46, 150, 26], [242, 90, 174], [179, 41, 38], [118, 204, 174], [145, 209, 38], [188, 74, 125], [ 95, 158, 210], [237, 152, 130], [ 53, 151, 157], [ 69, 86, 193], [ 60, 204, 122], [251, 77, 58], [174, 248, 170], [ 28, 81, 36], [252, 134, 243], [ 62, 254, 193], [ 68, 209, 254], [ 44, 25, 184], [131, 58, 80], [188, 251, 27], [156, 25, 132], [248, 36, 225], [ 95, 130, 63], [222, 204, 244], [185, 186, 134], [160, 146, 44], [244, 196, 89], [ 39, 60, 87], [134, 239, 87], [ 25, 166, 97], [ 79, 36, 229], [ 45, 130, 216], [177, 90, 200], [ 86, 218, 30], [ 97, 115, 165], [159, 104, 99], [168, 220, 219], [134, 76, 180], [ 31, 238, 157], [ 79, 140, 253], [124, 23, 27], [245, 234, 46], [188, 30, 174], [253, 246, 148], [228, 94, 92],] )
banmo-main
utils/colors.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. from __future__ import absolute_import from __future__ import division from __future__ import print_function import torch import torch.nn as nn import os import os.path as osp import sys sys.path.insert(0,'third_party') import time import pdb import numpy as np from absl import flags import cv2 import time import mcubes from nnutils import banmo import subprocess from torch.utils.tensorboard import SummaryWriter from kmeans_pytorch import kmeans import torch.distributed as dist import torch.nn.functional as F import trimesh import torchvision from torch.autograd import Variable from collections import defaultdict from pytorch3d import transforms from torch.nn.utils import clip_grad_norm_ from matplotlib.pyplot import cm from nnutils.geom_utils import lbs, reinit_bones, warp_bw, warp_fw, vec_to_sim3,\ obj_to_cam, get_near_far, near_far_to_bound, \ compute_point_visibility, process_so3_seq, \ ood_check_cse, align_sfm_sim3, gauss_mlp_skinning, \ correct_bones from nnutils.nerf import grab_xyz_weights from ext_utils.flowlib import flow_to_image from utils.io import mkdir_p from nnutils.vis_utils import image_grid from dataloader import frameloader from utils.io import save_vid, draw_cams, extract_data_info, merge_dict,\ render_root_txt, save_bones, draw_cams_pair, get_vertex_colors from utils.colors import label_colormap class DataParallelPassthrough(torch.nn.parallel.DistributedDataParallel): """ for multi-gpu access """ def __getattr__(self, name): try: return super().__getattr__(name) except AttributeError: return getattr(self.module, name) def __delattr__(self, name): try: return super().__delattr__(name) except AttributeError: return delattr(self.module, name) class v2s_trainer(): def __init__(self, opts, is_eval=False): self.opts = opts self.is_eval=is_eval self.local_rank = opts.local_rank self.save_dir = os.path.join(opts.checkpoint_dir, opts.logname) self.accu_steps = opts.accu_steps # write logs if opts.local_rank==0: if not os.path.exists(self.save_dir): os.makedirs(self.save_dir) log_file = os.path.join(self.save_dir, 'opts.log') if not self.is_eval: if os.path.exists(log_file): os.remove(log_file) opts.append_flags_into_file(log_file) def define_model(self, data_info): opts = self.opts self.device = torch.device('cuda:{}'.format(opts.local_rank)) self.model = banmo.banmo(opts, data_info) self.model.forward = self.model.forward_default self.num_epochs = opts.num_epochs # load model if opts.model_path!='': self.load_network(opts.model_path, is_eval=self.is_eval) if self.is_eval: self.model = self.model.to(self.device) else: # ddp self.model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(self.model) self.model = self.model.to(self.device) self.model = DataParallelPassthrough( self.model, device_ids=[opts.local_rank], output_device=opts.local_rank, find_unused_parameters=True, ) return def init_dataset(self): opts = self.opts opts_dict = {} opts_dict['n_data_workers'] = opts.n_data_workers opts_dict['batch_size'] = opts.batch_size opts_dict['seqname'] = opts.seqname opts_dict['img_size'] = opts.img_size opts_dict['ngpu'] = opts.ngpu opts_dict['local_rank'] = opts.local_rank opts_dict['rtk_path'] = opts.rtk_path opts_dict['preload']= False opts_dict['accu_steps'] = opts.accu_steps if self.is_eval and opts.rtk_path=='' and opts.model_path!='': # automatically load cameras in the logdir model_dir = opts.model_path.rsplit('/',1)[0] cam_dir = '%s/init-cam/'%model_dir if os.path.isdir(cam_dir): opts_dict['rtk_path'] = cam_dir self.dataloader = frameloader.data_loader(opts_dict) if opts.lineload: opts_dict['lineload'] = True opts_dict['multiply'] = True # multiple samples in dataset self.trainloader = frameloader.data_loader(opts_dict) opts_dict['lineload'] = False del opts_dict['multiply'] else: opts_dict['multiply'] = True self.trainloader = frameloader.data_loader(opts_dict) del opts_dict['multiply'] opts_dict['img_size'] = opts.render_size self.evalloader = frameloader.eval_loader(opts_dict) # compute data offset data_info = extract_data_info(self.evalloader) return data_info def init_training(self): opts = self.opts # set as module attributes since they do not change across gpus self.model.module.final_steps = self.num_epochs * \ min(200,len(self.trainloader)) * opts.accu_steps # ideally should be greater than 200 batches params_nerf_coarse=[] params_nerf_beta=[] params_nerf_feat=[] params_nerf_beta_feat=[] params_nerf_fine=[] params_nerf_unc=[] params_nerf_flowbw=[] params_nerf_skin=[] params_nerf_vis=[] params_nerf_root_rts=[] params_nerf_body_rts=[] params_root_code=[] params_pose_code=[] params_env_code=[] params_vid_code=[] params_bones=[] params_skin_aux=[] params_ks=[] params_nerf_dp=[] params_csenet=[] for name,p in self.model.named_parameters(): if 'nerf_coarse' in name and 'beta' not in name: params_nerf_coarse.append(p) elif 'nerf_coarse' in name and 'beta' in name: params_nerf_beta.append(p) elif 'nerf_feat' in name and 'beta' not in name: params_nerf_feat.append(p) elif 'nerf_feat' in name and 'beta' in name: params_nerf_beta_feat.append(p) elif 'nerf_fine' in name: params_nerf_fine.append(p) elif 'nerf_unc' in name: params_nerf_unc.append(p) elif 'nerf_flowbw' in name or 'nerf_flowfw' in name: params_nerf_flowbw.append(p) elif 'nerf_skin' in name: params_nerf_skin.append(p) elif 'nerf_vis' in name: params_nerf_vis.append(p) elif 'nerf_root_rts' in name: params_nerf_root_rts.append(p) elif 'nerf_body_rts' in name: params_nerf_body_rts.append(p) elif 'root_code' in name: params_root_code.append(p) elif 'pose_code' in name or 'rest_pose_code' in name: params_pose_code.append(p) elif 'env_code' in name: params_env_code.append(p) elif 'vid_code' in name: params_vid_code.append(p) elif 'module.bones' == name: params_bones.append(p) elif 'module.skin_aux' == name: params_skin_aux.append(p) elif 'module.ks_param' == name: params_ks.append(p) elif 'nerf_dp' in name: params_nerf_dp.append(p) elif 'csenet' in name: params_csenet.append(p) else: continue if opts.local_rank==0: print('optimized params: %s'%name) self.optimizer = torch.optim.AdamW( [{'params': params_nerf_coarse}, {'params': params_nerf_beta}, {'params': params_nerf_feat}, {'params': params_nerf_beta_feat}, {'params': params_nerf_fine}, {'params': params_nerf_unc}, {'params': params_nerf_flowbw}, {'params': params_nerf_skin}, {'params': params_nerf_vis}, {'params': params_nerf_root_rts}, {'params': params_nerf_body_rts}, {'params': params_root_code}, {'params': params_pose_code}, {'params': params_env_code}, {'params': params_vid_code}, {'params': params_bones}, {'params': params_skin_aux}, {'params': params_ks}, {'params': params_nerf_dp}, {'params': params_csenet}, ], lr=opts.learning_rate,betas=(0.9, 0.999),weight_decay=1e-4) if self.model.root_basis=='exp': lr_nerf_root_rts = 10 elif self.model.root_basis=='cnn': lr_nerf_root_rts = 0.2 elif self.model.root_basis=='mlp': lr_nerf_root_rts = 1 elif self.model.root_basis=='expmlp': lr_nerf_root_rts = 1 else: print('error'); exit() self.scheduler = torch.optim.lr_scheduler.OneCycleLR(self.optimizer,\ [opts.learning_rate, # params_nerf_coarse opts.learning_rate, # params_nerf_beta opts.learning_rate, # params_nerf_feat 10*opts.learning_rate, # params_nerf_beta_feat opts.learning_rate, # params_nerf_fine opts.learning_rate, # params_nerf_unc opts.learning_rate, # params_nerf_flowbw opts.learning_rate, # params_nerf_skin opts.learning_rate, # params_nerf_vis lr_nerf_root_rts*opts.learning_rate, # params_nerf_root_rts opts.learning_rate, # params_nerf_body_rts lr_nerf_root_rts*opts.learning_rate, # params_root_code opts.learning_rate, # params_pose_code opts.learning_rate, # params_env_code opts.learning_rate, # params_vid_code opts.learning_rate, # params_bones 10*opts.learning_rate, # params_skin_aux 10*opts.learning_rate, # params_ks opts.learning_rate, # params_nerf_dp opts.learning_rate, # params_csenet ], int(self.model.module.final_steps/self.accu_steps), pct_start=2./self.num_epochs, # use 2 epochs to warm up cycle_momentum=False, anneal_strategy='linear', final_div_factor=1./5, div_factor = 25, ) def save_network(self, epoch_label, prefix=''): if self.opts.local_rank==0: param_path = '%s/%sparams_%s.pth'%(self.save_dir,prefix,epoch_label) save_dict = self.model.state_dict() torch.save(save_dict, param_path) var_path = '%s/%svars_%s.npy'%(self.save_dir,prefix,epoch_label) latest_vars = self.model.latest_vars.copy() del latest_vars['fp_err'] del latest_vars['flo_err'] del latest_vars['sil_err'] del latest_vars['flo_err_hist'] np.save(var_path, latest_vars) return @staticmethod def rm_module_prefix(states, prefix='module'): new_dict = {} for i in states.keys(): v = states[i] if i[:len(prefix)] == prefix: i = i[len(prefix)+1:] new_dict[i] = v return new_dict def load_network(self,model_path=None, is_eval=True, rm_prefix=True): opts = self.opts states = torch.load(model_path,map_location='cpu') if rm_prefix: states = self.rm_module_prefix(states) var_path = model_path.replace('params', 'vars').replace('.pth', '.npy') latest_vars = np.load(var_path,allow_pickle=True)[()] if is_eval: # load variables self.model.latest_vars = latest_vars # if size mismatch, delete all related variables if rm_prefix and states['near_far'].shape[0] != self.model.near_far.shape[0]: print('!!!deleting video specific dicts due to size mismatch!!!') self.del_key( states, 'near_far') self.del_key( states, 'root_code.weight') # only applies to root_basis=mlp self.del_key( states, 'pose_code.weight') self.del_key( states, 'pose_code.basis_mlp.weight') self.del_key( states, 'nerf_body_rts.0.weight') self.del_key( states, 'nerf_body_rts.0.basis_mlp.weight') self.del_key( states, 'nerf_root_rts.0.weight') self.del_key( states, 'nerf_root_rts.root_code.weight') self.del_key( states, 'nerf_root_rts.root_code.basis_mlp.weight') self.del_key( states, 'nerf_root_rts.delta_rt.0.basis_mlp.weight') self.del_key( states, 'nerf_root_rts.base_rt.se3') self.del_key( states, 'nerf_root_rts.delta_rt.0.weight') self.del_key( states, 'env_code.weight') self.del_key( states, 'env_code.basis_mlp.weight') if 'vid_code.weight' in states.keys(): self.del_key( states, 'vid_code.weight') if 'ks_param' in states.keys(): self.del_key( states, 'ks_param') # delete pose basis(backbones) if not opts.keep_pose_basis: del_key_list = [] for k in states.keys(): if 'nerf_body_rts' in k or 'nerf_root_rts' in k: del_key_list.append(k) for k in del_key_list: print(k) self.del_key( states, k) if rm_prefix and opts.lbs and states['bones'].shape[0] != self.model.bones.shape[0]: self.del_key(states, 'bones') states = self.rm_module_prefix(states, prefix='nerf_skin') states = self.rm_module_prefix(states, prefix='nerf_body_rts') # load some variables # this is important for volume matching if latest_vars['obj_bound'].size==1: latest_vars['obj_bound'] = latest_vars['obj_bound'] * np.ones(3) self.model.latest_vars['obj_bound'] = latest_vars['obj_bound'] # load nerf_coarse, nerf_bone/root (not code), nerf_vis, nerf_feat, nerf_unc #TODO somehow, this will reset the batch stats for # a pretrained cse model, to keep those, we want to manually copy to states if opts.ft_cse and \ 'csenet.net.backbone.fpn_lateral2.weight' not in states.keys(): self.add_cse_to_states(self.model, states) self.model.load_state_dict(states, strict=False) return @staticmethod def add_cse_to_states(model, states): states_init = model.state_dict() for k in states_init.keys(): v = states_init[k] if 'csenet' in k: states[k] = v def eval_cam(self, idx_render=None): """ idx_render: list of frame index to render """ opts = self.opts with torch.no_grad(): self.model.eval() # load data for dataset in self.evalloader.dataset.datasets: dataset.load_pair = False batch = [] for i in idx_render: batch.append( self.evalloader.dataset[i] ) batch = self.evalloader.collate_fn(batch) for dataset in self.evalloader.dataset.datasets: dataset.load_pair = True #TODO can be further accelerated self.model.convert_batch_input(batch) if opts.unc_filter: # process densepoe feature valid_list, error_list = ood_check_cse(self.model.dp_feats, self.model.dp_embed, self.model.dps.long()) valid_list = valid_list.cpu().numpy() error_list = error_list.cpu().numpy() else: valid_list = np.ones( len(idx_render)) error_list = np.zeros(len(idx_render)) self.model.convert_root_pose() rtk = self.model.rtk kaug = self.model.kaug #TODO may need to recompute after removing the invalid predictions # need to keep this to compute near-far planes self.model.save_latest_vars() # extract mesh sequences aux_seq = { 'is_valid':[], 'err_valid':[], 'rtk':[], 'kaug':[], 'impath':[], 'masks':[], } for idx,_ in enumerate(idx_render): frameid=self.model.frameid[idx] if opts.local_rank==0: print('extracting frame %d'%(frameid.cpu().numpy())) aux_seq['rtk'].append(rtk[idx].cpu().numpy()) aux_seq['kaug'].append(kaug[idx].cpu().numpy()) aux_seq['masks'].append(self.model.masks[idx].cpu().numpy()) aux_seq['is_valid'].append(valid_list[idx]) aux_seq['err_valid'].append(error_list[idx]) impath = self.model.impath[frameid.long()] aux_seq['impath'].append(impath) return aux_seq def eval(self, idx_render=None, dynamic_mesh=False): """ idx_render: list of frame index to render dynamic_mesh: whether to extract canonical shape, or dynamic shape """ opts = self.opts with torch.no_grad(): self.model.eval() # run marching cubes on canonical shape mesh_dict_rest = self.extract_mesh(self.model, opts.chunk, \ opts.sample_grid3d, opts.mc_threshold) # choose a grid image or the whold video if idx_render is None: # render 9 frames idx_render = np.linspace(0,len(self.evalloader)-1, 9, dtype=int) # render chunk=opts.rnd_frame_chunk rendered_seq = defaultdict(list) aux_seq = {'mesh_rest': mesh_dict_rest['mesh'], 'mesh':[], 'rtk':[], 'impath':[], 'bone':[],} for j in range(0, len(idx_render), chunk): batch = [] idx_chunk = idx_render[j:j+chunk] for i in idx_chunk: batch.append( self.evalloader.dataset[i] ) batch = self.evalloader.collate_fn(batch) rendered = self.render_vid(self.model, batch) for k, v in rendered.items(): rendered_seq[k] += [v] hbs=len(idx_chunk) sil_rszd = F.interpolate(self.model.masks[:hbs,None], (opts.render_size, opts.render_size))[:,0,...,None] rendered_seq['img'] += [self.model.imgs.permute(0,2,3,1)[:hbs]] rendered_seq['sil'] += [self.model.masks[...,None] [:hbs]] rendered_seq['flo'] += [self.model.flow.permute(0,2,3,1)[:hbs]] rendered_seq['dpc'] += [self.model.dp_vis[self.model.dps.long()][:hbs]] rendered_seq['occ'] += [self.model.occ[...,None] [:hbs]] rendered_seq['feat']+= [self.model.dp_feats.std(1)[...,None][:hbs]] rendered_seq['flo_coarse'][-1] *= sil_rszd rendered_seq['img_loss_samp'][-1] *= sil_rszd if 'frame_cyc_dis' in rendered_seq.keys() and \ len(rendered_seq['frame_cyc_dis'])>0: rendered_seq['frame_cyc_dis'][-1] *= 255/rendered_seq['frame_cyc_dis'][-1].max() rendered_seq['frame_rigloss'][-1] *= 255/rendered_seq['frame_rigloss'][-1].max() if opts.use_embed: rendered_seq['pts_pred'][-1] *= sil_rszd rendered_seq['pts_exp'] [-1] *= rendered_seq['sil_coarse'][-1] rendered_seq['feat_err'][-1] *= sil_rszd rendered_seq['feat_err'][-1] *= 255/rendered_seq['feat_err'][-1].max() if opts.use_proj: rendered_seq['proj_err'][-1] *= sil_rszd rendered_seq['proj_err'][-1] *= 255/rendered_seq['proj_err'][-1].max() if opts.use_unc: rendered_seq['unc_pred'][-1] -= rendered_seq['unc_pred'][-1].min() rendered_seq['unc_pred'][-1] *= 255/rendered_seq['unc_pred'][-1].max() # extract mesh sequences for idx in range(len(idx_chunk)): frameid=self.model.frameid[idx].long() embedid=self.model.embedid[idx].long() print('extracting frame %d'%(frameid.cpu().numpy())) # run marching cubes if dynamic_mesh: if not opts.queryfw: mesh_dict_rest=None mesh_dict = self.extract_mesh(self.model,opts.chunk, opts.sample_grid3d, opts.mc_threshold, embedid=embedid, mesh_dict_in=mesh_dict_rest) mesh=mesh_dict['mesh'] if mesh_dict_rest is not None and opts.ce_color: mesh.visual.vertex_colors = mesh_dict_rest['mesh'].\ visual.vertex_colors # assign rest surface color else: # get view direction obj_center = self.model.rtk[idx][:3,3:4] cam_center = -self.model.rtk[idx][:3,:3].T.matmul(obj_center)[:,0] view_dir = torch.cuda.FloatTensor(mesh.vertices, device=self.device) \ - cam_center[None] vis = get_vertex_colors(self.model, mesh_dict_rest['mesh'], frame_idx=idx, view_dir=view_dir) mesh.visual.vertex_colors[:,:3] = vis*255 # save bones if 'bones' in mesh_dict.keys(): bone = mesh_dict['bones'][0].cpu().numpy() aux_seq['bone'].append(bone) else: mesh=mesh_dict_rest['mesh'] aux_seq['mesh'].append(mesh) # save cams aux_seq['rtk'].append(self.model.rtk[idx].cpu().numpy()) # save image list impath = self.model.impath[frameid] aux_seq['impath'].append(impath) # save canonical mesh and extract skinning weights mesh_rest = aux_seq['mesh_rest'] if len(mesh_rest.vertices)>100: self.model.latest_vars['mesh_rest'] = mesh_rest if opts.lbs: bones_rst = self.model.bones bones_rst,_ = correct_bones(self.model, bones_rst) # compute skinning color if mesh_rest.vertices.shape[0]>100: rest_verts = torch.Tensor(mesh_rest.vertices).to(self.device) nerf_skin = self.model.nerf_skin if opts.nerf_skin else None rest_pose_code = self.model.rest_pose_code(torch.Tensor([0])\ .long().to(self.device)) skins = gauss_mlp_skinning(rest_verts[None], self.model.embedding_xyz, bones_rst, rest_pose_code, nerf_skin, skin_aux=self.model.skin_aux)[0] skins = skins.cpu().numpy() num_bones = skins.shape[-1] colormap = label_colormap() # TODO use a larger color map colormap = np.repeat(colormap[None],4,axis=0).reshape(-1,3) colormap = colormap[:num_bones] colormap = (colormap[None] * skins[...,None]).sum(1) mesh_rest_skin = mesh_rest.copy() mesh_rest_skin.visual.vertex_colors = colormap aux_seq['mesh_rest_skin'] = mesh_rest_skin aux_seq['bone_rest'] = bones_rst.cpu().numpy() # draw camera trajectory suffix_id=0 if hasattr(self.model, 'epoch'): suffix_id = self.model.epoch if opts.local_rank==0: mesh_cam = draw_cams(aux_seq['rtk']) mesh_cam.export('%s/mesh_cam-%02d.obj'%(self.save_dir,suffix_id)) mesh_path = '%s/mesh_rest-%02d.obj'%(self.save_dir,suffix_id) mesh_rest.export(mesh_path) if opts.lbs: bone_rest = aux_seq['bone_rest'] bone_path = '%s/bone_rest-%02d.obj'%(self.save_dir,suffix_id) save_bones(bone_rest, 0.1, bone_path) # save images for k,v in rendered_seq.items(): rendered_seq[k] = torch.cat(rendered_seq[k],0) ##TODO #if opts.local_rank==0: # print('saving %s to gif'%k) # is_flow = self.isflow(k) # upsample_frame = min(30,len(rendered_seq[k])) # save_vid('%s/%s'%(self.save_dir,k), # rendered_seq[k].cpu().numpy(), # suffix='.gif', upsample_frame=upsample_frame, # is_flow=is_flow) return rendered_seq, aux_seq def train(self): opts = self.opts if opts.local_rank==0: log = SummaryWriter('%s/%s'%(opts.checkpoint_dir,opts.logname), comment=opts.logname) else: log=None self.model.module.total_steps = 0 self.model.module.progress = 0 torch.manual_seed(8) # do it again torch.cuda.manual_seed(1) # disable bones before warmup epochs are finished if opts.lbs: self.model.num_bone_used = 0 del self.model.module.nerf_models['bones'] if opts.lbs and opts.nerf_skin: del self.model.module.nerf_models['nerf_skin'] # warmup shape if opts.warmup_shape_ep>0: self.warmup_shape(log) # CNN pose warmup or load CNN if opts.warmup_pose_ep>0 or opts.pose_cnn_path!='': self.warmup_pose(log, pose_cnn_path=opts.pose_cnn_path) else: # save cameras to latest vars and file if opts.use_rtk_file: self.model.module.use_cam=True self.extract_cams(self.dataloader) self.model.module.use_cam=opts.use_cam else: self.extract_cams(self.dataloader) #TODO train mlp if opts.warmup_rootmlp: # set se3 directly rmat = torch.Tensor(self.model.latest_vars['rtk'][:,:3,:3]) quat = transforms.matrix_to_quaternion(rmat).to(self.device) self.model.module.nerf_root_rts.base_rt.se3.data[:,3:] = quat # clear buffers for pytorch1.10+ try: self.model._assign_modules_buffers() except: pass # set near-far plane if opts.model_path=='': self.reset_nf() # reset idk in latest_vars self.model.module.latest_vars['idk'][:] = 0. #TODO save loaded wts of posecs if opts.freeze_coarse: self.model.module.shape_xyz_wt = \ grab_xyz_weights(self.model.module.nerf_coarse, clone=True) self.model.module.skin_xyz_wt = \ grab_xyz_weights(self.model.module.nerf_skin, clone=True) self.model.module.feat_xyz_wt = \ grab_xyz_weights(self.model.module.nerf_feat, clone=True) #TODO reset beta if opts.reset_beta: self.model.module.nerf_coarse.beta.data[:] = 0.1 # start training for epoch in range(0, self.num_epochs): self.model.epoch = epoch # evaluation torch.cuda.empty_cache() self.model.module.img_size = opts.render_size rendered_seq, aux_seq = self.eval() self.model.module.img_size = opts.img_size if epoch==0: self.save_network('0') # to save some cameras if opts.local_rank==0: self.add_image_grid(rendered_seq, log, epoch) self.reset_hparams(epoch) torch.cuda.empty_cache() ## TODO harded coded #if opts.freeze_proj: # if self.model.module.progress<0.8: # #opts.nsample=64 # opts.ndepth=2 # else: # #opts.nsample = nsample # opts.ndepth = self.model.module.ndepth_bk self.train_one_epoch(epoch, log) print('saving the model at the end of epoch {:d}, iters {:d}'.\ format(epoch, self.model.module.total_steps)) self.save_network('latest') self.save_network(str(epoch+1)) @staticmethod def save_cams(opts,aux_seq, save_prefix, latest_vars,datasets, evalsets, obj_scale, trainloader=None, unc_filter=True): """ save cameras to dir and modify dataset """ mkdir_p(save_prefix) dataset_dict={dataset.imglist[0].split('/')[-2]:dataset for dataset in datasets} evalset_dict={dataset.imglist[0].split('/')[-2]:dataset for dataset in evalsets} if trainloader is not None: line_dict={dataset.imglist[0].split('/')[-2]:dataset for dataset in trainloader} length = len(aux_seq['impath']) valid_ids = aux_seq['is_valid'] idx_combine = 0 for i in range(length): impath = aux_seq['impath'][i] seqname = impath.split('/')[-2] rtk = aux_seq['rtk'][i] if unc_filter: # in the same sequance find the closest valid frame and replace it seq_idx = np.asarray([seqname == i.split('/')[-2] \ for i in aux_seq['impath']]) valid_ids_seq = np.where(valid_ids * seq_idx)[0] if opts.local_rank==0 and i==0: print('%s: %d frames are valid'%(seqname, len(valid_ids_seq))) if len(valid_ids_seq)>0 and not aux_seq['is_valid'][i]: closest_valid_idx = valid_ids_seq[np.abs(i-valid_ids_seq).argmin()] rtk[:3,:3] = aux_seq['rtk'][closest_valid_idx][:3,:3] # rescale translation according to input near-far plane rtk[:3,3] = rtk[:3,3]*obj_scale rtklist = dataset_dict[seqname].rtklist idx = int(impath.split('/')[-1].split('.')[-2]) save_path = '%s/%s-%05d.txt'%(save_prefix, seqname, idx) np.savetxt(save_path, rtk) rtklist[idx] = save_path evalset_dict[seqname].rtklist[idx] = save_path if trainloader is not None: line_dict[seqname].rtklist[idx] = save_path #save to rtraw latest_vars['rt_raw'][idx_combine] = rtk[:3,:4] latest_vars['rtk'][idx_combine,:3,:3] = rtk[:3,:3] if idx==len(rtklist)-2: # to cover the last save_path = '%s/%s-%05d.txt'%(save_prefix, seqname, idx+1) if opts.local_rank==0: print('writing cam %s'%save_path) np.savetxt(save_path, rtk) rtklist[idx+1] = save_path evalset_dict[seqname].rtklist[idx+1] = save_path if trainloader is not None: line_dict[seqname].rtklist[idx+1] = save_path idx_combine += 1 latest_vars['rt_raw'][idx_combine] = rtk[:3,:4] latest_vars['rtk'][idx_combine,:3,:3] = rtk[:3,:3] idx_combine += 1 def extract_cams(self, full_loader): # store cameras opts = self.opts idx_render = range(len(self.evalloader)) chunk = 50 aux_seq = [] for i in range(0, len(idx_render), chunk): aux_seq.append(self.eval_cam(idx_render=idx_render[i:i+chunk])) aux_seq = merge_dict(aux_seq) aux_seq['rtk'] = np.asarray(aux_seq['rtk']) aux_seq['kaug'] = np.asarray(aux_seq['kaug']) aux_seq['masks'] = np.asarray(aux_seq['masks']) aux_seq['is_valid'] = np.asarray(aux_seq['is_valid']) aux_seq['err_valid'] = np.asarray(aux_seq['err_valid']) save_prefix = '%s/init-cam'%(self.save_dir) trainloader=self.trainloader.dataset.datasets self.save_cams(opts,aux_seq, save_prefix, self.model.module.latest_vars, full_loader.dataset.datasets, self.evalloader.dataset.datasets, self.model.obj_scale, trainloader=trainloader, unc_filter=opts.unc_filter) dist.barrier() # wait untail all have finished if opts.local_rank==0: # draw camera trajectory for dataset in full_loader.dataset.datasets: seqname = dataset.imglist[0].split('/')[-2] render_root_txt('%s/%s-'%(save_prefix,seqname), 0) def reset_nf(self): opts = self.opts # save near-far plane shape_verts = self.model.dp_verts_unit / 3 * self.model.near_far.mean() shape_verts = shape_verts * 1.2 # save object bound if first stage if opts.model_path=='' and opts.bound_factor>0: shape_verts = shape_verts*opts.bound_factor self.model.module.latest_vars['obj_bound'] = \ shape_verts.abs().max(0)[0].detach().cpu().numpy() if self.model.near_far[:,0].sum()==0: # if no valid nf plane loaded self.model.near_far.data = get_near_far(self.model.near_far.data, self.model.latest_vars, pts=shape_verts.detach().cpu().numpy()) save_path = '%s/init-nf.txt'%(self.save_dir) save_nf = self.model.near_far.data.cpu().numpy() * self.model.obj_scale np.savetxt(save_path, save_nf) def warmup_shape(self, log): opts = self.opts # force using warmup forward, dataloader, cnn root self.model.module.forward = self.model.module.forward_warmup_shape full_loader = self.trainloader # store original loader self.trainloader = range(200) self.num_epochs = opts.warmup_shape_ep # training self.init_training() for epoch in range(0, opts.warmup_shape_ep): self.model.epoch = epoch self.train_one_epoch(epoch, log, warmup=True) self.save_network(str(epoch+1), 'mlp-') # restore dataloader, rts, forward function self.model.module.forward = self.model.module.forward_default self.trainloader = full_loader self.num_epochs = opts.num_epochs # start from low learning rate again self.init_training() self.model.module.total_steps = 0 self.model.module.progress = 0. def warmup_pose(self, log, pose_cnn_path): opts = self.opts # force using warmup forward, dataloader, cnn root self.model.module.root_basis = 'cnn' self.model.module.use_cam = False self.model.module.forward = self.model.module.forward_warmup full_loader = self.dataloader # store original loader self.dataloader = range(200) original_rp = self.model.module.nerf_root_rts self.model.module.nerf_root_rts = self.model.module.dp_root_rts del self.model.module.dp_root_rts self.num_epochs = opts.warmup_pose_ep self.model.module.is_warmup_pose=True if pose_cnn_path=='': # training self.init_training() for epoch in range(0, opts.warmup_pose_ep): self.model.epoch = epoch self.train_one_epoch(epoch, log, warmup=True) self.save_network(str(epoch+1), 'cnn-') # eval #_,_ = self.model.forward_warmup(None) # rendered_seq = self.model.warmup_rendered # if opts.local_rank==0: self.add_image_grid(rendered_seq, log, epoch) else: pose_states = torch.load(opts.pose_cnn_path, map_location='cpu') pose_states = self.rm_module_prefix(pose_states, prefix='module.nerf_root_rts') self.model.module.nerf_root_rts.load_state_dict(pose_states, strict=False) # extract camera and near far planes self.extract_cams(full_loader) # restore dataloader, rts, forward function self.model.module.root_basis=opts.root_basis self.model.module.use_cam = opts.use_cam self.model.module.forward = self.model.module.forward_default self.dataloader = full_loader del self.model.module.nerf_root_rts self.model.module.nerf_root_rts = original_rp self.num_epochs = opts.num_epochs self.model.module.is_warmup_pose=False # start from low learning rate again self.init_training() self.model.module.total_steps = 0 self.model.module.progress = 0. def train_one_epoch(self, epoch, log, warmup=False): """ training loop in a epoch """ opts = self.opts self.model.train() dataloader = self.trainloader if not warmup: dataloader.sampler.set_epoch(epoch) # necessary for shuffling for i, batch in enumerate(dataloader): if i==200*opts.accu_steps: break if opts.debug: if 'start_time' in locals().keys(): torch.cuda.synchronize() print('load time:%.2f'%(time.time()-start_time)) if not warmup: self.model.module.progress = float(self.model.total_steps) /\ self.model.final_steps self.select_loss_indicator(i) self.update_root_indicator(i) self.update_body_indicator(i) self.update_shape_indicator(i) self.update_cvf_indicator(i) # rtk_all = self.model.module.compute_rts() # self.model.module.rtk_all = rtk_all.clone() # # # change near-far plane for all views # if self.model.module.progress>=opts.nf_reset: # rtk_all = rtk_all.detach().cpu().numpy() # valid_rts = self.model.module.latest_vars['idk'].astype(bool) # self.model.module.latest_vars['rtk'][valid_rts,:3] = rtk_all[valid_rts] # self.model.module.near_far.data = get_near_far( # self.model.module.near_far.data, # self.model.module.latest_vars) # # self.optimizer.zero_grad() total_loss,aux_out = self.model(batch) total_loss = total_loss/self.accu_steps if opts.debug: if 'start_time' in locals().keys(): torch.cuda.synchronize() print('forward time:%.2f'%(time.time()-start_time)) total_loss.mean().backward() if opts.debug: if 'start_time' in locals().keys(): torch.cuda.synchronize() print('forward back time:%.2f'%(time.time()-start_time)) if (i+1)%self.accu_steps == 0: self.clip_grad(aux_out) self.optimizer.step() self.scheduler.step() self.optimizer.zero_grad() if aux_out['nerf_root_rts_g']>1*opts.clip_scale and \ self.model.total_steps>200*self.accu_steps: latest_path = '%s/params_latest.pth'%(self.save_dir) self.load_network(latest_path, is_eval=False, rm_prefix=False) for i,param_group in enumerate(self.optimizer.param_groups): aux_out['lr_%02d'%i] = param_group['lr'] self.model.module.total_steps += 1 self.model.module.counter_frz_rebone -= 1./self.model.final_steps aux_out['counter_frz_rebone'] = self.model.module.counter_frz_rebone if opts.local_rank==0: self.save_logs(log, aux_out, self.model.module.total_steps, epoch) if opts.debug: if 'start_time' in locals().keys(): torch.cuda.synchronize() print('total step time:%.2f'%(time.time()-start_time)) torch.cuda.synchronize() start_time = time.time() def update_cvf_indicator(self, i): """ whether to update canoical volume features 0: update all 1: freeze """ opts = self.opts # during kp reprojection optimization if (opts.freeze_proj and self.model.module.progress >= opts.proj_start and \ self.model.module.progress < (opts.proj_start+opts.proj_end)): self.model.module.cvf_update = 1 else: self.model.module.cvf_update = 0 # freeze shape after rebone if self.model.module.counter_frz_rebone > 0: self.model.module.cvf_update = 1 if opts.freeze_cvf: self.model.module.cvf_update = 1 def update_shape_indicator(self, i): """ whether to update shape 0: update all 1: freeze shape """ opts = self.opts # incremental optimization # or during kp reprojection optimization if (opts.model_path!='' and \ self.model.module.progress < opts.warmup_steps)\ or (opts.freeze_proj and self.model.module.progress >= opts.proj_start and \ self.model.module.progress <(opts.proj_start + opts.proj_end)): self.model.module.shape_update = 1 else: self.model.module.shape_update = 0 # freeze shape after rebone if self.model.module.counter_frz_rebone > 0: self.model.module.shape_update = 1 if opts.freeze_shape: self.model.module.shape_update = 1 def update_root_indicator(self, i): """ whether to update root pose 1: update 0: freeze """ opts = self.opts if (opts.freeze_proj and \ opts.root_stab and \ self.model.module.progress >=(opts.frzroot_start) and \ self.model.module.progress <=(opts.proj_start + opts.proj_end+0.01))\ : # to stablize self.model.module.root_update = 0 else: self.model.module.root_update = 1 # freeze shape after rebone if self.model.module.counter_frz_rebone > 0: self.model.module.root_update = 0 if opts.freeze_root: # to stablize self.model.module.root_update = 0 def update_body_indicator(self, i): """ whether to update root pose 1: update 0: freeze """ opts = self.opts if opts.freeze_proj and \ self.model.module.progress <=opts.frzbody_end: self.model.module.body_update = 0 else: self.model.module.body_update = 1 def select_loss_indicator(self, i): """ 0: flo 1: flo/sil/rgb """ opts = self.opts if not opts.root_opt or \ self.model.module.progress > (opts.warmup_steps): self.model.module.loss_select = 1 elif i%2 == 0: self.model.module.loss_select = 0 else: self.model.module.loss_select = 1 #self.model.module.loss_select=1 def reset_hparams(self, epoch): """ reset hyper-parameters based on current geometry / cameras """ opts = self.opts mesh_rest = self.model.latest_vars['mesh_rest'] # reset object bound, for feature matching if epoch>int(self.num_epochs*(opts.bound_reset)): if mesh_rest.vertices.shape[0]>100: self.model.latest_vars['obj_bound'] = 1.2*np.abs(mesh_rest.vertices).max(0) # reinit bones based on extracted surface # only reinit for the initialization phase if opts.lbs and opts.model_path=='' and \ (epoch==int(self.num_epochs*opts.reinit_bone_steps) or\ epoch==0 or\ epoch==int(self.num_epochs*opts.warmup_steps)//2): reinit_bones(self.model.module, mesh_rest, opts.num_bones) self.init_training() # add new params to optimizer if epoch>0: # freeze weights of root pose in the following 1% iters self.model.module.counter_frz_rebone = 0.01 #reset error stats self.model.module.latest_vars['fp_err'] [:]=0 self.model.module.latest_vars['flo_err'] [:]=0 self.model.module.latest_vars['sil_err'] [:]=0 self.model.module.latest_vars['flo_err_hist'][:]=0 # need to add bones back at 2nd opt if opts.model_path!='': self.model.module.nerf_models['bones'] = self.model.module.bones # add nerf-skin when the shape is good if opts.lbs and opts.nerf_skin and \ epoch==int(self.num_epochs*opts.dskin_steps): self.model.module.nerf_models['nerf_skin'] = self.model.module.nerf_skin self.broadcast() def broadcast(self): """ broadcast variables to other models """ dist.barrier() if self.opts.lbs: dist.broadcast_object_list( [self.model.module.num_bones, self.model.module.num_bone_used,], 0) dist.broadcast(self.model.module.bones,0) dist.broadcast(self.model.module.nerf_body_rts[1].rgb[0].weight, 0) dist.broadcast(self.model.module.nerf_body_rts[1].rgb[0].bias, 0) dist.broadcast(self.model.module.near_far,0) def clip_grad(self, aux_out): """ gradient clipping """ is_invalid_grad=False grad_nerf_coarse=[] grad_nerf_beta=[] grad_nerf_feat=[] grad_nerf_beta_feat=[] grad_nerf_fine=[] grad_nerf_unc=[] grad_nerf_flowbw=[] grad_nerf_skin=[] grad_nerf_vis=[] grad_nerf_root_rts=[] grad_nerf_body_rts=[] grad_root_code=[] grad_pose_code=[] grad_env_code=[] grad_vid_code=[] grad_bones=[] grad_skin_aux=[] grad_ks=[] grad_nerf_dp=[] grad_csenet=[] for name,p in self.model.named_parameters(): try: pgrad_nan = p.grad.isnan() if pgrad_nan.sum()>0: print(name) is_invalid_grad=True except: pass if 'nerf_coarse' in name and 'beta' not in name: grad_nerf_coarse.append(p) elif 'nerf_coarse' in name and 'beta' in name: grad_nerf_beta.append(p) elif 'nerf_feat' in name and 'beta' not in name: grad_nerf_feat.append(p) elif 'nerf_feat' in name and 'beta' in name: grad_nerf_beta_feat.append(p) elif 'nerf_fine' in name: grad_nerf_fine.append(p) elif 'nerf_unc' in name: grad_nerf_unc.append(p) elif 'nerf_flowbw' in name or 'nerf_flowfw' in name: grad_nerf_flowbw.append(p) elif 'nerf_skin' in name: grad_nerf_skin.append(p) elif 'nerf_vis' in name: grad_nerf_vis.append(p) elif 'nerf_root_rts' in name: grad_nerf_root_rts.append(p) elif 'nerf_body_rts' in name: grad_nerf_body_rts.append(p) elif 'root_code' in name: grad_root_code.append(p) elif 'pose_code' in name or 'rest_pose_code' in name: grad_pose_code.append(p) elif 'env_code' in name: grad_env_code.append(p) elif 'vid_code' in name: grad_vid_code.append(p) elif 'module.bones' == name: grad_bones.append(p) elif 'module.skin_aux' == name: grad_skin_aux.append(p) elif 'module.ks_param' == name: grad_ks.append(p) elif 'nerf_dp' in name: grad_nerf_dp.append(p) elif 'csenet' in name: grad_csenet.append(p) else: continue # freeze root pose when using re-projection loss only if self.model.module.root_update == 0: self.zero_grad_list(grad_root_code) self.zero_grad_list(grad_nerf_root_rts) if self.model.module.body_update == 0: self.zero_grad_list(grad_pose_code) self.zero_grad_list(grad_nerf_body_rts) if self.opts.freeze_body_mlp: self.zero_grad_list(grad_nerf_body_rts) if self.model.module.shape_update == 1: self.zero_grad_list(grad_nerf_coarse) self.zero_grad_list(grad_nerf_beta) self.zero_grad_list(grad_nerf_vis) #TODO add skinning self.zero_grad_list(grad_bones) self.zero_grad_list(grad_nerf_skin) self.zero_grad_list(grad_skin_aux) if self.model.module.cvf_update == 1: self.zero_grad_list(grad_nerf_feat) self.zero_grad_list(grad_nerf_beta_feat) self.zero_grad_list(grad_csenet) if self.opts.freeze_coarse: # freeze shape # this include nerf_coarse, nerf_skin (optional) grad_coarse_mlp = [] grad_coarse_mlp += self.find_nerf_coarse(\ self.model.module.nerf_coarse) grad_coarse_mlp += self.find_nerf_coarse(\ self.model.module.nerf_skin) grad_coarse_mlp += self.find_nerf_coarse(\ self.model.module.nerf_feat) self.zero_grad_list(grad_coarse_mlp) #self.zero_grad_list(grad_nerf_coarse) # freeze shape # freeze skinning self.zero_grad_list(grad_bones) self.zero_grad_list(grad_skin_aux) #self.zero_grad_list(grad_nerf_skin) # freeze fine shape ## freeze pose mlp #self.zero_grad_list(grad_nerf_body_rts) # add vis self.zero_grad_list(grad_nerf_vis) #print(self.model.module.nerf_coarse.xyz_encoding_1[0].weight[0,:]) clip_scale=self.opts.clip_scale #TODO don't clip root pose aux_out['nerf_coarse_g'] = clip_grad_norm_(grad_nerf_coarse, 1*clip_scale) aux_out['nerf_beta_g'] = clip_grad_norm_(grad_nerf_beta, 1*clip_scale) aux_out['nerf_feat_g'] = clip_grad_norm_(grad_nerf_feat, .1*clip_scale) aux_out['nerf_beta_feat_g']= clip_grad_norm_(grad_nerf_beta_feat,.1*clip_scale) aux_out['nerf_fine_g'] = clip_grad_norm_(grad_nerf_fine, .1*clip_scale) aux_out['nerf_unc_g'] = clip_grad_norm_(grad_nerf_unc, .1*clip_scale) aux_out['nerf_flowbw_g'] = clip_grad_norm_(grad_nerf_flowbw, .1*clip_scale) aux_out['nerf_skin_g'] = clip_grad_norm_(grad_nerf_skin, .1*clip_scale) aux_out['nerf_vis_g'] = clip_grad_norm_(grad_nerf_vis, .1*clip_scale) aux_out['nerf_root_rts_g'] = clip_grad_norm_(grad_nerf_root_rts,100*clip_scale) aux_out['nerf_body_rts_g'] = clip_grad_norm_(grad_nerf_body_rts,100*clip_scale) aux_out['root_code_g']= clip_grad_norm_(grad_root_code, .1*clip_scale) aux_out['pose_code_g']= clip_grad_norm_(grad_pose_code, 100*clip_scale) aux_out['env_code_g'] = clip_grad_norm_(grad_env_code, .1*clip_scale) aux_out['vid_code_g'] = clip_grad_norm_(grad_vid_code, .1*clip_scale) aux_out['bones_g'] = clip_grad_norm_(grad_bones, 1*clip_scale) aux_out['skin_aux_g'] = clip_grad_norm_(grad_skin_aux, .1*clip_scale) aux_out['ks_g'] = clip_grad_norm_(grad_ks, .1*clip_scale) aux_out['nerf_dp_g'] = clip_grad_norm_(grad_nerf_dp, .1*clip_scale) aux_out['csenet_g'] = clip_grad_norm_(grad_csenet, .1*clip_scale) #if aux_out['nerf_root_rts_g']>10: # is_invalid_grad = True if is_invalid_grad: self.zero_grad_list(self.model.parameters()) @staticmethod def find_nerf_coarse(nerf_model): """ zero grad for coarse component connected to inputs, and return intermediate params """ param_list = [] input_layers=[0]+nerf_model.skips input_wt_names = [] for layer in input_layers: input_wt_names.append(f"xyz_encoding_{layer+1}.0.weight") for name,p in nerf_model.named_parameters(): if name in input_wt_names: # get the weights according to coarse posec # 63 = 3 + 60 # 60 = (num_freqs, 2, 3) out_dim = p.shape[0] pos_dim = nerf_model.in_channels_xyz-nerf_model.in_channels_code # TODO num_coarse = 8 # out of 10 #num_coarse = 10 # out of 10 #num_coarse = 1 # out of 10 # p.grad[:,:3] = 0 # xyz # p.grad[:,3:pos_dim].view(out_dim,-1,6)[:,:num_coarse] = 0 # xyz-coarse p.grad[:,pos_dim:] = 0 # others else: param_list.append(p) return param_list @staticmethod def render_vid(model, batch): opts=model.opts model.set_input(batch) rtk = model.rtk kaug=model.kaug.clone() embedid=model.embedid rendered, _ = model.nerf_render(rtk, kaug, embedid, ndepth=opts.ndepth) if 'xyz_camera_vis' in rendered.keys(): del rendered['xyz_camera_vis'] if 'xyz_canonical_vis' in rendered.keys(): del rendered['xyz_canonical_vis'] if 'pts_exp_vis' in rendered.keys(): del rendered['pts_exp_vis'] if 'pts_pred_vis' in rendered.keys(): del rendered['pts_pred_vis'] rendered_first = {} for k,v in rendered.items(): if v.dim()>0: bs=v.shape[0] rendered_first[k] = v[:bs//2] # remove loss term return rendered_first @staticmethod def extract_mesh(model,chunk,grid_size, #threshold = -0.005, threshold = -0.002, #threshold = 0., embedid=None, mesh_dict_in=None): opts = model.opts mesh_dict = {} if model.near_far is not None: bound = model.latest_vars['obj_bound'] else: bound=1.5*np.asarray([1,1,1]) if mesh_dict_in is None: ptx = np.linspace(-bound[0], bound[0], grid_size).astype(np.float32) pty = np.linspace(-bound[1], bound[1], grid_size).astype(np.float32) ptz = np.linspace(-bound[2], bound[2], grid_size).astype(np.float32) query_yxz = np.stack(np.meshgrid(pty, ptx, ptz), -1) # (y,x,z) #pts = np.linspace(-bound, bound, grid_size).astype(np.float32) #query_yxz = np.stack(np.meshgrid(pts, pts, pts), -1) # (y,x,z) query_yxz = torch.Tensor(query_yxz).to(model.device).view(-1, 3) query_xyz = torch.cat([query_yxz[:,1:2], query_yxz[:,0:1], query_yxz[:,2:3]],-1) query_dir = torch.zeros_like(query_xyz) bs_pts = query_xyz.shape[0] out_chunks = [] for i in range(0, bs_pts, chunk): query_xyz_chunk = query_xyz[i:i+chunk] query_dir_chunk = query_dir[i:i+chunk] # backward warping if embedid is not None and not opts.queryfw: query_xyz_chunk, mesh_dict = warp_bw(opts, model, mesh_dict, query_xyz_chunk, embedid) if opts.symm_shape: #TODO set to x-symmetric query_xyz_chunk[...,0] = query_xyz_chunk[...,0].abs() xyz_embedded = model.embedding_xyz(query_xyz_chunk) # (N, embed_xyz_channels) out_chunks += [model.nerf_coarse(xyz_embedded, sigma_only=True)] vol_o = torch.cat(out_chunks, 0) vol_o = vol_o.view(grid_size, grid_size, grid_size) #vol_o = F.softplus(vol_o) if not opts.full_mesh: #TODO set density of non-observable points to small value if model.latest_vars['idk'].sum()>0: vis_chunks = [] for i in range(0, bs_pts, chunk): query_xyz_chunk = query_xyz[i:i+chunk] if opts.nerf_vis: # this leave no room for halucination and is not what we want xyz_embedded = model.embedding_xyz(query_xyz_chunk) # (N, embed_xyz_channels) vis_chunk_nerf = model.nerf_vis(xyz_embedded) vis_chunk = vis_chunk_nerf[...,0].sigmoid() else: #TODO deprecated! vis_chunk = compute_point_visibility(query_xyz_chunk.cpu(), model.latest_vars, model.device)[None] vis_chunks += [vis_chunk] vol_visi = torch.cat(vis_chunks, 0) vol_visi = vol_visi.view(grid_size, grid_size, grid_size) vol_o[vol_visi<0.5] = -1 ## save color of sampled points #cmap = cm.get_cmap('cool') ##pts_col = cmap(vol_visi.float().view(-1).cpu()) #pts_col = cmap(vol_o.sigmoid().view(-1).cpu()) #mesh = trimesh.Trimesh(query_xyz.view(-1,3).cpu(), vertex_colors=pts_col) #mesh.export('0.obj') #pdb.set_trace() print('fraction occupied:', (vol_o > threshold).float().mean()) vertices, triangles = mcubes.marching_cubes(vol_o.cpu().numpy(), threshold) vertices = (vertices - grid_size/2)/grid_size*2*bound[None, :] mesh = trimesh.Trimesh(vertices, triangles) # mesh post-processing if len(mesh.vertices)>0: if opts.use_cc: # keep the largest mesh mesh = [i for i in mesh.split(only_watertight=False)] mesh = sorted(mesh, key=lambda x:x.vertices.shape[0]) mesh = mesh[-1] # assign color based on canonical location vis = mesh.vertices try: model.module.vis_min = vis.min(0)[None] model.module.vis_len = vis.max(0)[None] - vis.min(0)[None] except: # test time model.vis_min = vis.min(0)[None] model.vis_len = vis.max(0)[None] - vis.min(0)[None] vis = vis - model.vis_min vis = vis / model.vis_len if not opts.ce_color: vis = get_vertex_colors(model, mesh, frame_idx=0) mesh.visual.vertex_colors[:,:3] = vis*255 # forward warping if embedid is not None and opts.queryfw: mesh = mesh_dict_in['mesh'].copy() vertices = mesh.vertices vertices, mesh_dict = warp_fw(opts, model, mesh_dict, vertices, embedid) mesh.vertices = vertices mesh_dict['mesh'] = mesh return mesh_dict def save_logs(self, log, aux_output, total_steps, epoch): for k,v in aux_output.items(): self.add_scalar(log, k, aux_output,total_steps) def add_image_grid(self, rendered_seq, log, epoch): for k,v in rendered_seq.items(): grid_img = image_grid(rendered_seq[k],3,3) if k=='depth_rnd':scale=True elif k=='occ':scale=True elif k=='unc_pred':scale=True elif k=='proj_err':scale=True elif k=='feat_err':scale=True else: scale=False self.add_image(log, k, grid_img, epoch, scale=scale) def add_image(self, log,tag,timg,step,scale=True): """ timg, h,w,x """ if self.isflow(tag): timg = timg.detach().cpu().numpy() timg = flow_to_image(timg) elif scale: timg = (timg-timg.min())/(timg.max()-timg.min()) else: timg = torch.clamp(timg, 0,1) if len(timg.shape)==2: formats='HW' elif timg.shape[0]==3: formats='CHW' print('error'); pdb.set_trace() else: formats='HWC' log.add_image(tag,timg,step,dataformats=formats) @staticmethod def add_scalar(log,tag,data,step): if tag in data.keys(): log.add_scalar(tag, data[tag], step) @staticmethod def del_key(states, key): if key in states.keys(): del states[key] @staticmethod def isflow(tag): flolist = ['flo_coarse', 'fdp_coarse', 'flo', 'fdp', 'flo_at_samp'] if tag in flolist: return True else: return False @staticmethod def zero_grad_list(paramlist): """ Clears the gradients of all optimized :class:`torch.Tensor` """ for p in paramlist: if p.grad is not None: p.grad.detach_() p.grad.zero_()
banmo-main
nnutils/train_utils.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # adopted from nerf-pl import numpy as np import pdb import torch import torch.nn.functional as F from pytorch3d import transforms from nnutils.geom_utils import lbs, Kmatinv, mat2K, pinhole_cam, obj_to_cam,\ vec_to_sim3, rtmat_invert, rot_angle, mlp_skinning,\ bone_transform, skinning, vrender_flo, \ gauss_mlp_skinning, diff_flo from nnutils.loss_utils import elastic_loss, visibility_loss, feat_match_loss,\ kp_reproj_loss, compute_pts_exp, kp_reproj, evaluate_mlp def render_rays(models, embeddings, rays, N_samples=64, use_disp=False, perturb=0, noise_std=1, chunk=1024*32, obj_bound=None, use_fine=False, img_size=None, progress=None, opts=None, render_vis=False, ): """ Render rays by computing the output of @model applied on @rays Inputs: models: list of NeRF models (coarse and fine) defined in nerf.py embeddings: list of embedding models of origin and direction defined in nerf.py rays: (N_rays, 3+3+2), ray origins, directions and near, far depth bounds N_samples: number of coarse samples per ray use_disp: whether to sample in disparity space (inverse depth) perturb: factor to perturb the sampling position on the ray (for coarse model only) noise_std: factor to perturb the model's prediction of sigma chunk: the chunk size in batched inference Outputs: result: dictionary containing final rgb and depth maps for coarse and fine models """ if use_fine: N_samples = N_samples//2 # use half samples to importance sample # Extract models from lists embedding_xyz = embeddings['xyz'] embedding_dir = embeddings['dir'] # Decompose the inputs rays_o = rays['rays_o'] rays_d = rays['rays_d'] # both (N_rays, 3) near = rays['near'] far = rays['far'] # both (N_rays, 1) N_rays = rays_d.shape[0] # Embed direction rays_d_norm = rays_d / rays_d.norm(2,-1)[:,None] dir_embedded = embedding_dir(rays_d_norm) # (N_rays, embed_dir_channels) # Sample depth points z_steps = torch.linspace(0, 1, N_samples, device=rays_d.device) # (N_samples) if not use_disp: # use linear sampling in depth space z_vals = near * (1-z_steps) + far * z_steps else: # use linear sampling in disparity space z_vals = 1/(1/near * (1-z_steps) + 1/far * z_steps) z_vals = z_vals.expand(N_rays, N_samples) if perturb > 0: # perturb sampling depths (z_vals) z_vals_mid = 0.5 * (z_vals[: ,:-1] + z_vals[: ,1:]) # (N_rays, N_samples-1) interval mid points # get intervals between samples upper = torch.cat([z_vals_mid, z_vals[: ,-1:]], -1) lower = torch.cat([z_vals[: ,:1], z_vals_mid], -1) perturb_rand = perturb * torch.rand(z_vals.shape, device=rays_d.device) z_vals = lower + (upper - lower) * perturb_rand # zvals are not optimized # produce points in the root body space xyz_sampled = rays_o.unsqueeze(1) + \ rays_d.unsqueeze(1) * z_vals.unsqueeze(2) # (N_rays, N_samples, 3) if use_fine: # sample points for fine model # output: # loss: 'img_coarse', 'sil_coarse', 'feat_err', 'proj_err' # 'vis_loss', 'flo/fdp_coarse', 'flo/fdp_valid', # not loss: 'depth_rnd', 'pts_pred', 'pts_exp' with torch.no_grad(): _, weights_coarse = inference_deform(xyz_sampled, rays, models, chunk, N_samples, N_rays, embedding_xyz, rays_d, noise_std, obj_bound, dir_embedded, z_vals, img_size, progress,opts,fine_iter=False) # reset N_importance N_importance = N_samples z_vals_mid = 0.5 * (z_vals[: ,:-1] + z_vals[: ,1:]) z_vals_ = sample_pdf(z_vals_mid, weights_coarse[:, 1:-1], N_importance, det=(perturb==0)).detach() # detach so that grad doesn't propogate to weights_coarse from here z_vals, _ = torch.sort(torch.cat([z_vals, z_vals_], -1), -1) xyz_sampled = rays_o.unsqueeze(1) + \ rays_d.unsqueeze(1) * z_vals.unsqueeze(2) N_samples = N_samples + N_importance # get back to original # of samples result, _ = inference_deform(xyz_sampled, rays, models, chunk, N_samples, N_rays, embedding_xyz, rays_d, noise_std, obj_bound, dir_embedded, z_vals, img_size, progress,opts,render_vis=render_vis) return result def inference(models, embedding_xyz, xyz_, dir_, dir_embedded, z_vals, N_rays, N_samples,chunk, noise_std, env_code=None, weights_only=False, clip_bound = None, vis_pred=None): """ Helper function that performs model inference. Inputs: model: NeRF model (coarse or fine) embedding_xyz: embedding module for xyz xyz_: (N_rays, N_samples_, 3) sampled positions N_samples_ is the number of sampled points in each ray; = N_samples for coarse model = N_samples+N_importance for fine model dir_: (N_rays, 3) ray directions dir_embedded: (N_rays, embed_dir_channels) embedded directions z_vals: (N_rays, N_samples_) depths of the sampled positions weights_only: do inference on sigma only or not Outputs: rgb_final: (N_rays, 3) the final rgb image depth_final: (N_rays) depth map weights: (N_rays, N_samples_): weights of each sample """ nerf_sdf = models['coarse'] N_samples_ = xyz_.shape[1] # Embed directions xyz_ = xyz_.view(-1, 3) # (N_rays*N_samples_, 3) if not weights_only: dir_embedded = torch.repeat_interleave(dir_embedded, repeats=N_samples_, dim=0) # (N_rays*N_samples_, embed_dir_channels) # Perform model inference to get rgb and raw sigma chunk_size=4096 B = xyz_.shape[0] xyz_input = xyz_.view(N_rays,N_samples,3) out = evaluate_mlp(nerf_sdf, xyz_input, embed_xyz = embedding_xyz, dir_embedded = dir_embedded.view(N_rays,N_samples,-1), code=env_code, chunk=chunk_size, sigma_only=weights_only).view(B,-1) rgbsigma = out.view(N_rays, N_samples_, 4) rgbs = rgbsigma[..., :3] # (N_rays, N_samples_, 3) sigmas = rgbsigma[..., 3] # (N_rays, N_samples_) if 'nerf_feat' in models.keys(): nerf_feat = models['nerf_feat'] feat = evaluate_mlp(nerf_feat, xyz_input, embed_xyz = embedding_xyz, chunk=chunk_size).view(N_rays,N_samples_,-1) else: feat = torch.zeros_like(rgbs) # Convert these values using volume rendering (Section 4) deltas = z_vals[:, 1:] - z_vals[:, :-1] # (N_rays, N_samples_-1) # a hacky way to ensures prob. sum up to 1 # while the prob. of last bin does not correspond with the values delta_inf = 1e10 * torch.ones_like(deltas[:, :1]) # (N_rays, 1) the last delta is infinity deltas = torch.cat([deltas, delta_inf], -1) # (N_rays, N_samples_) # Multiply each distance by the norm of its corresponding direction ray # to convert to real world distance (accounts for non-unit directions). deltas = deltas * torch.norm(dir_.unsqueeze(1), dim=-1) noise = torch.randn(sigmas.shape, device=sigmas.device) * noise_std # compute alpha by the formula (3) sigmas = sigmas+noise #sigmas = F.softplus(sigmas) #sigmas = torch.relu(sigmas) ibetas = 1/(nerf_sdf.beta.abs()+1e-9) #ibetas = 100 sdf = -sigmas sigmas = (0.5 + 0.5 * sdf.sign() * torch.expm1(-sdf.abs() * ibetas)) # 0-1 # alternative: #sigmas = F.sigmoid(-sdf*ibetas) sigmas = sigmas * ibetas alphas = 1-torch.exp(-deltas*sigmas) # (N_rays, N_samples_), p_i #set out-of-bound and nonvisible alphas to zero if clip_bound is not None: clip_bound = torch.Tensor(clip_bound).to(xyz_.device)[None,None] oob = (xyz_.abs()>clip_bound).sum(-1).view(N_rays,N_samples)>0 alphas[oob]=0 if vis_pred is not None: alphas[vis_pred<0.5] = 0 alphas_shifted = \ torch.cat([torch.ones_like(alphas[:, :1]), 1-alphas+1e-10], -1) # [1, a1, a2, ...] alpha_prod = torch.cumprod(alphas_shifted, -1)[:, :-1] weights = alphas * alpha_prod # (N_rays, N_samples_) weights_sum = weights.sum(1) # (N_rays), the accumulated opacity along the rays # equals "1 - (1-a1)(1-a2)...(1-an)" mathematically visibility = alpha_prod.detach() # 1 q_0 q_j-1 # compute final weighted outputs rgb_final = torch.sum(weights.unsqueeze(-1)*rgbs, -2) # (N_rays, 3) feat_final = torch.sum(weights.unsqueeze(-1)*feat, -2) # (N_rays, 3) depth_final = torch.sum(weights*z_vals, -1) # (N_rays) return rgb_final, feat_final, depth_final, weights, visibility def inference_deform(xyz_coarse_sampled, rays, models, chunk, N_samples, N_rays, embedding_xyz, rays_d, noise_std, obj_bound, dir_embedded, z_vals, img_size, progress,opts, fine_iter=True, render_vis=False): """ fine_iter: whether to render loss-related terms render_vis: used for novel view synthesis """ is_training = models['coarse'].training xys = rays['xys'] # root space point correspondence in t2 if opts.dist_corresp: xyz_coarse_target = xyz_coarse_sampled.clone() xyz_coarse_dentrg = xyz_coarse_sampled.clone() xyz_coarse_frame = xyz_coarse_sampled.clone() # free deform if 'flowbw' in models.keys(): model_flowbw = models['flowbw'] model_flowfw = models['flowfw'] time_embedded = rays['time_embedded'][:,None] xyz_coarse_embedded = embedding_xyz(xyz_coarse_sampled) flow_bw = evaluate_mlp(model_flowbw, xyz_coarse_embedded, chunk=chunk//N_samples, xyz=xyz_coarse_sampled, code=time_embedded) xyz_coarse_sampled=xyz_coarse_sampled + flow_bw if fine_iter: # cycle loss (in the joint canonical space) xyz_coarse_embedded = embedding_xyz(xyz_coarse_sampled) flow_fw = evaluate_mlp(model_flowfw, xyz_coarse_embedded, chunk=chunk//N_samples, xyz=xyz_coarse_sampled,code=time_embedded) frame_cyc_dis = (flow_bw+flow_fw).norm(2,-1) # rigidity loss frame_disp3d = flow_fw.norm(2,-1) if "time_embedded_target" in rays.keys(): time_embedded_target = rays['time_embedded_target'][:,None] flow_fw = evaluate_mlp(model_flowfw, xyz_coarse_embedded, chunk=chunk//N_samples, xyz=xyz_coarse_sampled,code=time_embedded_target) xyz_coarse_target=xyz_coarse_sampled + flow_fw if "time_embedded_dentrg" in rays.keys(): time_embedded_dentrg = rays['time_embedded_dentrg'][:,None] flow_fw = evaluate_mlp(model_flowfw, xyz_coarse_embedded, chunk=chunk//N_samples, xyz=xyz_coarse_sampled,code=time_embedded_dentrg) xyz_coarse_dentrg=xyz_coarse_sampled + flow_fw elif 'bones' in models.keys(): bones_rst = models['bones_rst'] bone_rts_fw = rays['bone_rts'] skin_aux = models['skin_aux'] rest_pose_code = models['rest_pose_code'] rest_pose_code = rest_pose_code(torch.Tensor([0]).long().to(bones_rst.device)) if 'nerf_skin' in models.keys(): # compute delta skinning weights of bs, N, B nerf_skin = models['nerf_skin'] else: nerf_skin = None time_embedded = rays['time_embedded'][:,None] # coords after deform bones_dfm = bone_transform(bones_rst, bone_rts_fw, is_vec=True) skin_backward = gauss_mlp_skinning(xyz_coarse_sampled, embedding_xyz, bones_dfm, time_embedded, nerf_skin, skin_aux=skin_aux) # backward skinning xyz_coarse_sampled, bones_dfm = lbs(bones_rst, bone_rts_fw, skin_backward, xyz_coarse_sampled, ) if fine_iter: #if opts.dist_corresp: skin_forward = gauss_mlp_skinning(xyz_coarse_sampled, embedding_xyz, bones_rst,rest_pose_code, nerf_skin, skin_aux=skin_aux) # cycle loss (in the joint canonical space) xyz_coarse_frame_cyc,_ = lbs(bones_rst, bone_rts_fw, skin_forward, xyz_coarse_sampled, backward=False) frame_cyc_dis = (xyz_coarse_frame - xyz_coarse_frame_cyc).norm(2,-1) # rigidity loss (not used as optimization objective) num_bone = bones_rst.shape[0] bone_fw_reshape = bone_rts_fw.view(-1,num_bone,12) bone_trn = bone_fw_reshape[:,:,9:12] bone_rot = bone_fw_reshape[:,:,0:9].view(-1,num_bone,3,3) frame_rigloss = bone_trn.pow(2).sum(-1)+rot_angle(bone_rot) if opts.dist_corresp and 'bone_rts_target' in rays.keys(): bone_rts_target = rays['bone_rts_target'] xyz_coarse_target,_ = lbs(bones_rst, bone_rts_target, skin_forward, xyz_coarse_sampled,backward=False) if opts.dist_corresp and 'bone_rts_dentrg' in rays.keys(): bone_rts_dentrg = rays['bone_rts_dentrg'] xyz_coarse_dentrg,_ = lbs(bones_rst, bone_rts_dentrg, skin_forward, xyz_coarse_sampled,backward=False) # nerf shape/rgb model_coarse = models['coarse'] if 'env_code' in rays.keys(): env_code = rays['env_code'] else: env_code = None # set out of bounds weights to zero if render_vis: clip_bound = obj_bound xyz_embedded = embedding_xyz(xyz_coarse_sampled) vis_pred = evaluate_mlp(models['nerf_vis'], xyz_embedded, chunk=chunk)[...,0].sigmoid() else: clip_bound = None vis_pred = None if opts.symm_shape: ##TODO set to x-symmetric here symm_ratio = 0.5 xyz_x = xyz_coarse_sampled[...,:1].clone() symm_mask = torch.rand_like(xyz_x) < symm_ratio xyz_x[symm_mask] = -xyz_x[symm_mask] xyz_input = torch.cat([xyz_x, xyz_coarse_sampled[...,1:3]],-1) else: xyz_input = xyz_coarse_sampled rgb_coarse, feat_rnd, depth_rnd, weights_coarse, vis_coarse = \ inference(models, embedding_xyz, xyz_input, rays_d, dir_embedded, z_vals, N_rays, N_samples, chunk, noise_std, weights_only=False, env_code=env_code, clip_bound=clip_bound, vis_pred=vis_pred) sil_coarse = weights_coarse[:,:-1].sum(1) result = {'img_coarse': rgb_coarse, 'depth_rnd': depth_rnd, 'sil_coarse': sil_coarse, } # render visibility scores if render_vis: result['vis_pred'] = (vis_pred * weights_coarse).sum(-1) if fine_iter: if opts.use_corresp: # for flow rendering pts_exp = compute_pts_exp(weights_coarse, xyz_coarse_sampled) pts_target = kp_reproj(pts_exp, models, embedding_xyz, rays, to_target=True) # N,1,2 # viser feature matching if 'feats_at_samp' in rays.keys(): feats_at_samp = rays['feats_at_samp'] nerf_feat = models['nerf_feat'] xyz_coarse_sampled_feat = xyz_coarse_sampled weights_coarse_feat = weights_coarse pts_pred, pts_exp, feat_err = feat_match_loss(nerf_feat, embedding_xyz, feats_at_samp, xyz_coarse_sampled_feat, weights_coarse_feat, obj_bound, is_training=is_training) # 3d-2d projection proj_err = kp_reproj_loss(pts_pred, xys, models, embedding_xyz, rays) proj_err = proj_err/img_size * 2 result['pts_pred'] = pts_pred result['pts_exp'] = pts_exp result['feat_err'] = feat_err # will be used as loss result['proj_err'] = proj_err # will be used as loss if opts.dist_corresp and 'rtk_vec_target' in rays.keys(): # compute correspondence: root space to target view space # RT: root space to camera space rtk_vec_target = rays['rtk_vec_target'] Rmat = rtk_vec_target[:,0:9].view(N_rays,1,3,3) Tmat = rtk_vec_target[:,9:12].view(N_rays,1,3) Kinv = rtk_vec_target[:,12:21].view(N_rays,1,3,3) K = mat2K(Kmatinv(Kinv)) xyz_coarse_target = obj_to_cam(xyz_coarse_target, Rmat, Tmat) xyz_coarse_target = pinhole_cam(xyz_coarse_target,K) if opts.dist_corresp and 'rtk_vec_dentrg' in rays.keys(): # compute correspondence: root space to dentrg view space # RT: root space to camera space rtk_vec_dentrg = rays['rtk_vec_dentrg'] Rmat = rtk_vec_dentrg[:,0:9].view(N_rays,1,3,3) Tmat = rtk_vec_dentrg[:,9:12].view(N_rays,1,3) Kinv = rtk_vec_dentrg[:,12:21].view(N_rays,1,3,3) K = mat2K(Kmatinv(Kinv)) xyz_coarse_dentrg = obj_to_cam(xyz_coarse_dentrg, Rmat, Tmat) xyz_coarse_dentrg = pinhole_cam(xyz_coarse_dentrg,K) # raw 3d points for visualization result['xyz_camera_vis'] = xyz_coarse_frame if 'flowbw' in models.keys() or 'bones' in models.keys(): result['xyz_canonical_vis'] = xyz_coarse_sampled if 'feats_at_samp' in rays.keys(): result['pts_exp_vis'] = pts_exp result['pts_pred_vis'] = pts_pred if 'flowbw' in models.keys() or 'bones' in models.keys(): # cycle loss (in the joint canonical space) #if opts.dist_corresp: result['frame_cyc_dis'] = (frame_cyc_dis * weights_coarse.detach()).sum(-1) #else: # pts_exp_reg = pts_exp[:,None].detach() # skin_forward = gauss_mlp_skinning(pts_exp_reg, embedding_xyz, # bones_rst,rest_pose_code, nerf_skin, skin_aux=skin_aux) # pts_exp_fw,_ = lbs(bones_rst, bone_rts_fw, # skin_forward, pts_exp_reg, backward=False) # skin_backward = gauss_mlp_skinning(pts_exp_fw, embedding_xyz, # bones_dfm, time_embedded, nerf_skin, skin_aux=skin_aux) # pts_exp_fwbw,_ = lbs(bones_rst, bone_rts_fw, # skin_backward,pts_exp_fw) # frame_cyc_dis = (pts_exp_fwbw - pts_exp_reg).norm(2,-1) # result['frame_cyc_dis'] = sil_coarse.detach() * frame_cyc_dis[...,-1] if 'flowbw' in models.keys(): result['frame_rigloss'] = (frame_disp3d * weights_coarse.detach()).sum(-1) # only evaluate at with_grad mode if xyz_coarse_frame.requires_grad: # elastic energy result['elastic_loss'] = elastic_loss(model_flowbw, embedding_xyz, xyz_coarse_frame, time_embedded) else: result['frame_rigloss'] = (frame_rigloss).mean(-1) ### script to plot sigmas/weights #from matplotlib import pyplot as plt #plt.ioff() #sil_rays = weights_coarse[rays['sil_at_samp'][:,0]>0] #plt.plot(sil_rays[::1000].T.cpu().numpy(),'*-') #plt.savefig('tmp/probs.png') #plt.cla() if is_training and 'nerf_vis' in models.keys(): result['vis_loss'] = visibility_loss(models['nerf_vis'], embedding_xyz, xyz_coarse_sampled, vis_coarse, obj_bound, chunk) # render flow if 'rtk_vec_target' in rays.keys(): if opts.dist_corresp: flo_coarse, flo_valid = vrender_flo(weights_coarse, xyz_coarse_target, xys, img_size) else: flo_coarse = diff_flo(pts_target, xys, img_size) flo_valid = torch.ones_like(flo_coarse[...,:1]) result['flo_coarse'] = flo_coarse result['flo_valid'] = flo_valid if 'rtk_vec_dentrg' in rays.keys(): if opts.dist_corresp: fdp_coarse, fdp_valid = vrender_flo(weights_coarse, xyz_coarse_dentrg, xys, img_size) else: fdp_coarse = diff_flo(pts_dentrg, xys, img_size) fdp_valid = torch.ones_like(fdp_coarse[...,:1]) result['fdp_coarse'] = fdp_coarse result['fdp_valid'] = fdp_valid if 'nerf_unc' in models.keys(): # xys: bs,nsample,2 # t: bs nerf_unc = models['nerf_unc'] ts = rays['ts'] vid_code = rays['vid_code'] # change according to K xysn = rays['xysn'] xyt = torch.cat([xysn, ts],-1) xyt_embedded = embedding_xyz(xyt) xyt_code = torch.cat([xyt_embedded, vid_code],-1) unc_pred = nerf_unc(xyt_code) #TODO add activation function #unc_pred = F.softplus(unc_pred) result['unc_pred'] = unc_pred if 'img_at_samp' in rays.keys(): # compute other losses img_at_samp = rays['img_at_samp'] sil_at_samp = rays['sil_at_samp'] vis_at_samp = rays['vis_at_samp'] flo_at_samp = rays['flo_at_samp'] cfd_at_samp = rays['cfd_at_samp'] # img loss img_loss_samp = (rgb_coarse - img_at_samp).pow(2).mean(-1)[...,None] # sil loss, weight sil loss based on # points if is_training and sil_at_samp.sum()>0 and (1-sil_at_samp).sum()>0: pos_wt = vis_at_samp.sum()/ sil_at_samp[vis_at_samp>0].sum() neg_wt = vis_at_samp.sum()/(1-sil_at_samp[vis_at_samp>0]).sum() sil_balance_wt = 0.5*pos_wt*sil_at_samp + 0.5*neg_wt*(1-sil_at_samp) else: sil_balance_wt = 1 sil_loss_samp = (sil_coarse[...,None] - sil_at_samp).pow(2) * sil_balance_wt sil_loss_samp = sil_loss_samp * vis_at_samp # flo loss, confidence weighting: 30x normalized distance - 0.1x pixel error flo_loss_samp = (flo_coarse - flo_at_samp).pow(2).sum(-1) # hard-threshold cycle error sil_at_samp_flo = (sil_at_samp>0)\ & (flo_valid==1) sil_at_samp_flo[cfd_at_samp==0] = False if sil_at_samp_flo.sum()>0: cfd_at_samp = cfd_at_samp / cfd_at_samp[sil_at_samp_flo].mean() flo_loss_samp = flo_loss_samp[...,None] * cfd_at_samp result['img_at_samp'] = img_at_samp result['sil_at_samp'] = sil_at_samp result['vis_at_samp'] = vis_at_samp result['sil_at_samp_flo'] = sil_at_samp_flo result['flo_at_samp'] = flo_at_samp result['img_loss_samp'] = img_loss_samp result['sil_loss_samp'] = sil_loss_samp result['flo_loss_samp'] = flo_loss_samp # exclude error outside mask result['img_loss_samp']*=sil_at_samp result['flo_loss_samp']*=sil_at_samp if 'feats_at_samp' in rays.keys(): # feat loss feats_at_samp=rays['feats_at_samp'] feat_rnd = F.normalize(feat_rnd, 2,-1) frnd_loss_samp = (feat_rnd - feats_at_samp).pow(2).mean(-1) result['frnd_loss_samp'] = frnd_loss_samp * sil_at_samp[...,0] return result, weights_coarse def sample_pdf(bins, weights, N_importance, det=False, eps=1e-5): """ Sample @N_importance samples from @bins with distribution defined by @weights. Inputs: bins: (N_rays, N_samples_+1) where N_samples_ is "the number of coarse samples per ray - 2" weights: (N_rays, N_samples_) N_importance: the number of samples to draw from the distribution det: deterministic or not eps: a small number to prevent division by zero Outputs: samples: the sampled samples """ N_rays, N_samples_ = weights.shape weights = weights + eps # prevent division by zero (don't do inplace op!) pdf = weights / torch.sum(weights, -1, keepdim=True) # (N_rays, N_samples_) cdf = torch.cumsum(pdf, -1) # (N_rays, N_samples), cumulative distribution function cdf = torch.cat([torch.zeros_like(cdf[: ,:1]), cdf], -1) # (N_rays, N_samples_+1) # padded to 0~1 inclusive if det: u = torch.linspace(0, 1, N_importance, device=bins.device) u = u.expand(N_rays, N_importance) else: u = torch.rand(N_rays, N_importance, device=bins.device) u = u.contiguous() inds = torch.searchsorted(cdf, u, right=True) below = torch.clamp_min(inds-1, 0) above = torch.clamp_max(inds, N_samples_) inds_sampled = torch.stack([below, above], -1).view(N_rays, 2*N_importance) cdf_g = torch.gather(cdf, 1, inds_sampled).view(N_rays, N_importance, 2) bins_g = torch.gather(bins, 1, inds_sampled).view(N_rays, N_importance, 2) denom = cdf_g[...,1]-cdf_g[...,0] denom[denom<eps] = 1 # denom equals 0 means a bin has weight 0, in which case it will not be sampled # anyway, therefore any value for it is fine (set to 1 here) samples = bins_g[...,0] + (u-cdf_g[...,0])/denom * (bins_g[...,1]-bins_g[...,0]) return samples
banmo-main
nnutils/rendering.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. import numpy as np import pdb import torch from torch import nn import torch.nn.functional as F import torchvision from pytorch3d import transforms import trimesh from nnutils.geom_utils import fid_reindex class Embedding(nn.Module): def __init__(self, in_channels, N_freqs, logscale=True, alpha=None): """ adapted from https://github.com/kwea123/nerf_pl/blob/master/models/nerf.py Defines a function that embeds x to (x, sin(2^k x), cos(2^k x), ...) in_channels: number of input channels (3 for both xyz and direction) """ super(Embedding, self).__init__() self.N_freqs = N_freqs self.in_channels = in_channels self.funcs = [torch.sin, torch.cos] self.nfuncs = len(self.funcs) self.out_channels = in_channels*(len(self.funcs)*N_freqs+1) if alpha is None: self.alpha = self.N_freqs else: self.alpha = alpha if logscale: self.freq_bands = 2**torch.linspace(0, N_freqs-1, N_freqs) else: self.freq_bands = torch.linspace(1, 2**(N_freqs-1), N_freqs) def forward(self, x): """ Embeds x to (x, sin(2^k x), cos(2^k x), ...) Different from the paper, "x" is also in the output See https://github.com/bmild/nerf/issues/12 Inputs: x: (B, self.in_channels) Outputs: out: (B, self.out_channels) """ # consine features if self.N_freqs>0: shape = x.shape bs = shape[0] input_dim = shape[-1] output_dim = input_dim*(1+self.N_freqs*self.nfuncs) out_shape = shape[:-1] + ((output_dim),) device = x.device x = x.view(-1,input_dim) out = [] for freq in self.freq_bands: for func in self.funcs: out += [func(freq*x)] out = torch.cat(out, -1) ## Apply the window w = 0.5*( 1+cos(pi + pi clip(alpha-j)) ) out = out.view(-1, self.N_freqs, self.nfuncs, input_dim) window = self.alpha - torch.arange(self.N_freqs).to(device) window = torch.clamp(window, 0.0, 1.0) window = 0.5 * (1 + torch.cos(np.pi * window + np.pi)) window = window.view(1,-1, 1, 1) out = window * out out = out.view(-1,self.N_freqs*self.nfuncs*input_dim) out = torch.cat([x, out],-1) out = out.view(out_shape) else: out = x return out class NeRF(nn.Module): def __init__(self, D=8, W=256, in_channels_xyz=63, in_channels_dir=27, out_channels=3, skips=[4], raw_feat=False, init_beta=1./100, activation=nn.ReLU(True), in_channels_code=0): """ adapted from https://github.com/kwea123/nerf_pl/blob/master/models/nerf.py D: number of layers for density (sigma) encoder W: number of hidden units in each layer in_channels_xyz: number of input channels for xyz (3+3*10*2=63 by default) in_channels_dir: number of input channels for direction (3+3*4*2=27 by default) skips: add skip connection in the Dth layer in_channels_code: only used for nerf_skin, """ super(NeRF, self).__init__() self.D = D self.W = W self.in_channels_xyz = in_channels_xyz self.in_channels_dir = in_channels_dir self.in_channels_code = in_channels_code self.skips = skips self.use_xyz = False # xyz encoding layers self.weights_reg = [] for i in range(D): if i == 0: layer = nn.Linear(in_channels_xyz, W) self.weights_reg.append(f"xyz_encoding_{i+1}") elif i in skips: layer = nn.Linear(W+in_channels_xyz, W) self.weights_reg.append(f"xyz_encoding_{i+1}") else: layer = nn.Linear(W, W) layer = nn.Sequential(layer, activation) setattr(self, f"xyz_encoding_{i+1}", layer) self.xyz_encoding_final = nn.Linear(W, W) # direction encoding layers self.dir_encoding = nn.Sequential( nn.Linear(W+in_channels_dir, W//2), activation) # output layers self.sigma = nn.Linear(W, 1) self.rgb = nn.Sequential( nn.Linear(W//2, out_channels), ) self.raw_feat = raw_feat self.beta = torch.Tensor([init_beta]) # logbeta self.beta = nn.Parameter(self.beta) # for m in self.modules(): # if isinstance(m, nn.Linear): # if hasattr(m.weight,'data'): # nn.init.xavier_uniform_(m.weight) def forward(self, x ,xyz=None, sigma_only=False): """ Encodes input (xyz+dir) to rgb+sigma (not ready to render yet). For rendering this ray, please see rendering.py Inputs: x: (B, self.in_channels_xyz(+self.in_channels_dir)) the embedded vector of position and direction sigma_only: whether to infer sigma only. If True, x is of shape (B, self.in_channels_xyz) raw_feat: does not apply sigmoid Outputs: if sigma_ony: sigma: (B, 1) sigma else: out: (B, 4), rgb and sigma """ if not sigma_only: input_xyz, input_dir = \ torch.split(x, [self.in_channels_xyz, self.in_channels_dir], dim=-1) else: input_xyz, input_dir = \ torch.split(x, [self.in_channels_xyz, 0], dim=-1) xyz_ = input_xyz for i in range(self.D): if i in self.skips: xyz_ = torch.cat([input_xyz, xyz_], -1) xyz_ = getattr(self, f"xyz_encoding_{i+1}")(xyz_) sigma = self.sigma(xyz_) if sigma_only: return sigma xyz_encoding_final = self.xyz_encoding_final(xyz_) dir_encoding_input = torch.cat([xyz_encoding_final, input_dir], -1) dir_encoding = self.dir_encoding(dir_encoding_input) rgb = self.rgb(dir_encoding) if self.raw_feat: out = rgb else: rgb = rgb.sigmoid() out = torch.cat([rgb, sigma], -1) return out class Transhead(NeRF): """ translation head """ def __init__(self, **kwargs): super(Transhead, self).__init__(**kwargs) def forward(self, x, xyz=None,sigma_only=False): flow = super(Transhead, self).forward(x, sigma_only=sigma_only) flow = flow*0.1 return flow class SE3head(NeRF): """ modify the output to be rigid transforms per point modified from Nerfies """ def __init__(self, **kwargs): super(SE3head, self).__init__(**kwargs) self.use_xyz=True def forward(self, x, xyz=None,sigma_only=False): x = super(SE3head, self).forward(x, sigma_only=sigma_only) x = x.view(-1,9) rotation, pivot, translation = x.split([3,3,3],-1) pivot = pivot*0.1 translation = translation*0.1 shape = xyz.shape warped_points = xyz.view(-1,3).clone() warped_points = warped_points + pivot rotmat = transforms.so3_exponential_map(rotation) warped_points = rotmat.matmul(warped_points[...,None])[...,0] warped_points = warped_points - pivot warped_points = warped_points + translation flow = warped_points.view(shape) - xyz return flow class RTHead(NeRF): """ modify the output to be rigid transforms """ def __init__(self, use_quat, **kwargs): super(RTHead, self).__init__(**kwargs) # use quaternion when estimating full rotation # use exponential map when estimating delta rotation self.use_quat=use_quat if self.use_quat: self.num_output=7 else: self.num_output=6 for m in self.modules(): if isinstance(m, nn.Linear): if hasattr(m.bias,'data'): m.bias.data.zero_() def forward(self, x): # output: NxBx(9 rotation + 3 translation) x = super(RTHead, self).forward(x) bs = x.shape[0] rts = x.view(-1,self.num_output) # bs B,x B = rts.shape[0]//bs tmat= rts[:,0:3] *0.1 if self.use_quat: rquat=rts[:,3:7] rquat=F.normalize(rquat,2,-1) rmat=transforms.quaternion_to_matrix(rquat) else: rot=rts[:,3:6] rmat = transforms.so3_exponential_map(rot) rmat = rmat.view(-1,9) rts = torch.cat([rmat,tmat],-1) rts = rts.view(bs,1,-1) return rts class FrameCode(nn.Module): """ frame index and video index to code """ def __init__(self, num_freq, embedding_dim, vid_offset, scale=1): super(FrameCode, self).__init__() self.vid_offset = vid_offset self.num_vids = len(vid_offset)-1 # compute maximum frequency:64-127 frame=>10 max_ts = (self.vid_offset[1:] - self.vid_offset[:-1]).max() self.num_freq = 2*int(np.log2(max_ts))-2 # self.num_freq = num_freq self.fourier_embed = Embedding(1,num_freq,alpha=num_freq) self.basis_mlp = nn.Linear(self.num_vids*self.fourier_embed.out_channels, embedding_dim) self.scale = scale # input scale factor def forward(self, fid): """ fid->code: N->N,embedding_dim """ bs = fid.shape[0] vid, tid = fid_reindex(fid, self.num_vids, self.vid_offset) tid = tid*self.scale tid = tid.view(bs,1) vid = vid.view(bs,1) coeff = self.fourier_embed(tid) # N, n_channels vid = F.one_hot(vid, num_classes=self.num_vids) # N, 1, num_vids # pad zeros for each coeff = coeff[...,None] * vid # N, n_channels, num_vids coeff = coeff.view(bs, -1) code = self.basis_mlp(coeff) return code class RTExplicit(nn.Module): """ index rigid transforms from a dictionary """ def __init__(self, max_t, delta=False, rand=True): super(RTExplicit, self).__init__() self.max_t = max_t self.delta = delta # initialize rotation trans = torch.zeros(max_t, 3) if delta: rot = torch.zeros(max_t, 3) else: if rand: rot = torch.rand(max_t, 4) * 2 - 1 else: rot = torch.zeros(max_t, 4) rot[:,0] = 1 se3 = torch.cat([trans, rot],-1) self.se3 = nn.Parameter(se3) self.num_output = se3.shape[-1] def forward(self, x): # output: NxBx(9 rotation + 3 translation) bs = x.shape[0] x = self.se3[x] # bs B,x rts = x.view(-1,self.num_output) B = rts.shape[0]//bs tmat= rts[:,0:3] *0.1 if self.delta: rot=rts[:,3:6] rmat = transforms.so3_exponential_map(rot) else: rquat=rts[:,3:7] rquat=F.normalize(rquat,2,-1) rmat=transforms.quaternion_to_matrix(rquat) rmat = rmat.view(-1,9) rts = torch.cat([rmat,tmat],-1) rts = rts.view(bs,1,-1) return rts class RTExpMLP(nn.Module): """ index rigid transforms from a dictionary """ def __init__(self, max_t, num_freqs, t_embed_dim, data_offset, delta=False): super(RTExpMLP, self).__init__() #self.root_code = nn.Embedding(max_t, t_embed_dim) self.root_code = FrameCode(num_freqs, t_embed_dim, data_offset, scale=0.1) self.base_rt = RTExplicit(max_t, delta=delta,rand=False) #self.base_rt = RTHead(use_quat=True, # D=2, W=64, # in_channels_xyz=t_embed_dim,in_channels_dir=0, # out_channels=7, raw_feat=True) #self.base_rt = nn.Sequential(self.root_code, self.base_rt) self.mlp_rt = RTHead(use_quat=False, in_channels_xyz=t_embed_dim,in_channels_dir=0, out_channels=6, raw_feat=True) self.delta_rt = nn.Sequential(self.root_code, self.mlp_rt) def forward(self, x): # output: NxBx(9 rotation + 3 translation) base_rts = self.base_rt(x) delt_rts = self.delta_rt(x) # magnify gradient by 10x base_rts = base_rts * 10 - (base_rts*9).detach() rmat = base_rts[:,0,:9].view(-1,3,3) tmat = base_rts[:,0,9:12] delt_rmat = delt_rts[:,0,:9].view(-1,3,3) delt_tmat = delt_rts[:,0,9:12] tmat = tmat + rmat.matmul(delt_tmat[...,None])[...,0] rmat = rmat.matmul(delt_rmat) rmat = rmat.view(-1,9) rts = torch.cat([rmat,tmat],-1) rts = rts.view(-1,1,12) return rts class ScoreHead(NeRF): """ modify the output to be rigid transforms """ def __init__(self, recursion_level, **kwargs): super(ScoreHead, self).__init__(**kwargs) grid= generate_healpix_grid(recursion_level=recursion_level) self.register_buffer('grid', grid) self.num_scores = self.grid.shape[0] def forward(self, x): # output: NxBx(9 rotation + 3 translation) x = super(ScoreHead, self).forward(x) bs = x.shape[0] x = x.view(-1,self.num_scores+3) # bs B,x # do not use tmat since it is not trained tmat = x[:,0:3]*0. scores=x[:,3:] if self.training: return scores, self.grid else: scores = scores.view(bs,-1,1) rmat = self.grid[None].repeat(bs,1,1,1) tmat = tmat[:,None].repeat(1,self.num_scores,1) rmat = rmat.view(bs,-1,9) rts = torch.cat([scores,rmat, tmat],-1) rts = rts.view(bs,self.num_scores,-1) return rts class NeRFUnc(NeRF): """ nerf uncertainty """ def __init__(self, **kwargs): super(NeRFUnc, self).__init__(**kwargs) def forward(self, x, xyz=None,sigma_only=False): unc = super(NeRFUnc, self).forward(x, sigma_only=sigma_only) return unc class ResNetConv(nn.Module): """ adapted from https://github.com/shubhtuls/factored3d/blob/master/nnutils/net_blocks.py """ def __init__(self, in_channels): super(ResNetConv, self).__init__() self.resnet = torchvision.models.resnet18(pretrained=True) if in_channels!=3: self.resnet.conv1 = nn.Conv2d(in_channels, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False) self.resnet.fc=None def forward(self, x): x = self.resnet.conv1(x) x = self.resnet.bn1(x) x = self.resnet.relu(x) x = self.resnet.maxpool(x) x = self.resnet.layer1(x) x = self.resnet.layer2(x) x = self.resnet.layer3(x) x = self.resnet.layer4(x) return x class Encoder(nn.Module): """ adapted from https://github.com/shubhtuls/factored3d/blob/master/nnutils/net_blocks.py Current: Resnet with 4 blocks (x32 spatial dim reduction) Another conv with stride 2 (x64) This is sent to 2 fc layers with final output nz_feat. """ def __init__(self, input_shape, in_channels=3,out_channels=128, batch_norm=True): super(Encoder, self).__init__() self.resnet_conv = ResNetConv(in_channels=in_channels) self.conv1 = conv2d(batch_norm, 512, 128, stride=1, kernel_size=3) #net_init(self.conv1) def forward(self, img): feat = self.resnet_conv.forward(img) # 512,4,4 feat = self.conv1(feat) # 128,4,4 feat = F.max_pool2d(feat, 4, 4) feat = feat.view(img.size(0), -1) return feat ## 2D convolution layers def conv2d(batch_norm, in_planes, out_planes, kernel_size=3, stride=1): """ adapted from https://github.com/shubhtuls/factored3d/blob/master/nnutils/net_blocks.py """ if batch_norm: return nn.Sequential( nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=(kernel_size-1)//2, bias=True), nn.BatchNorm2d(out_planes), nn.LeakyReLU(0.2,inplace=True) ) else: return nn.Sequential( nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=(kernel_size-1)//2, bias=True), nn.LeakyReLU(0.2,inplace=True) ) def grab_xyz_weights(nerf_model, clone=False): """ zero grad for coarse component connected to inputs, and return intermediate params """ param_list = [] input_layers=[0]+nerf_model.skips input_wt_names = [] for layer in input_layers: input_wt_names.append(f"xyz_encoding_{layer+1}.0.weight") for name,p in nerf_model.named_parameters(): if name in input_wt_names: # equiv since the wt after pos_dim does not change if clone: param_list.append(p.detach().clone()) else: param_list.append(p) ## get the weights according to coarse posec ## 63 = 3 + 60 ## 60 = (num_freqs, 2, 3) #out_dim = p.shape[0] #pos_dim = nerf_model.in_channels_xyz-nerf_model.in_channels_code #param_list.append(p[:,:pos_dim]) # return param_list
banmo-main
nnutils/nerf.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl import app from absl import flags from collections import defaultdict import os import os.path as osp import pickle import sys sys.path.insert(0, 'third_party') import cv2, numpy as np, time, torch, torchvision import torch.nn as nn from torch.autograd import Variable import torch.nn.functional as F import trimesh, pytorch3d, pytorch3d.loss, pdb from pytorch3d import transforms import configparser from nnutils.nerf import Embedding, NeRF, RTHead, SE3head, RTExplicit, Encoder,\ ScoreHead, Transhead, NeRFUnc, \ grab_xyz_weights, FrameCode, RTExpMLP from nnutils.geom_utils import K2mat, mat2K, Kmatinv, K2inv, raycast, sample_xy,\ chunk_rays, generate_bones,\ canonical2ndc, obj_to_cam, vec_to_sim3, \ near_far_to_bound, compute_flow_geodist, \ compute_flow_cse, fb_flow_check, pinhole_cam, \ render_color, mask_aug, bbox_dp2rnd, resample_dp, \ vrender_flo, get_near_far, array2tensor, rot_angle, \ rtk_invert, rtk_compose, bone_transform, correct_bones,\ correct_rest_pose, fid_reindex from nnutils.rendering import render_rays from nnutils.loss_utils import eikonal_loss, rtk_loss, \ feat_match_loss, kp_reproj_loss, grad_update_bone, \ loss_filter, loss_filter_line, compute_xyz_wt_loss,\ compute_root_sm_2nd_loss, shape_init_loss from utils.io import draw_pts # distributed data parallel flags.DEFINE_integer('local_rank', 0, 'for distributed training') flags.DEFINE_integer('ngpu', 1, 'number of gpus to use') # data io flags.DEFINE_integer('accu_steps', 1, 'how many steps to do gradient accumulation') flags.DEFINE_string('seqname', 'syn-spot-40', 'name of the sequence') flags.DEFINE_string('logname', 'exp_name', 'Experiment Name') flags.DEFINE_string('checkpoint_dir', 'logdir/', 'Root directory for output files') flags.DEFINE_string('model_path', '', 'load model path') flags.DEFINE_string('pose_cnn_path', '', 'path to pre-trained pose cnn') flags.DEFINE_string('rtk_path', '', 'path to rtk files') flags.DEFINE_bool('lineload',False,'whether to use pre-computed data per line') flags.DEFINE_integer('n_data_workers', 1, 'Number of data loading workers') flags.DEFINE_boolean('use_rtk_file', False, 'whether to use input rtk files') flags.DEFINE_boolean('debug', False, 'deubg') # model: shape, appearance, and feature flags.DEFINE_bool('use_human', False, 'whether to use human cse model') flags.DEFINE_bool('symm_shape', False, 'whether to set geometry to x-symmetry') flags.DEFINE_bool('env_code', True, 'whether to use environment code for each video') flags.DEFINE_bool('env_fourier', True, 'whether to use fourier basis for env') flags.DEFINE_bool('use_unc',False, 'whether to use uncertainty sampling') flags.DEFINE_bool('nerf_vis', True, 'use visibility volume') flags.DEFINE_bool('anneal_freq', False, 'whether to use frequency annealing') flags.DEFINE_integer('alpha', 10, 'maximum frequency for fourier features') flags.DEFINE_bool('use_cc', True, 'whether to use connected component for mesh') # model: motion flags.DEFINE_bool('lbs', True, 'use lbs for backward warping 3d flow') flags.DEFINE_integer('num_bones', 25, 'maximum number of bones') flags.DEFINE_bool('nerf_skin', True, 'use mlp skinning function') flags.DEFINE_integer('t_embed_dim', 128, 'dimension of the pose code') flags.DEFINE_bool('frame_code', True, 'whether to use frame code') flags.DEFINE_bool('flowbw', False, 'use backward warping 3d flow') flags.DEFINE_bool('se3_flow', False, 'whether to use se3 field for 3d flow') # model: cameras flags.DEFINE_bool('use_cam', False, 'whether to use pre-defined camera pose') flags.DEFINE_string('root_basis', 'expmlp', 'which root pose basis to use {mlp, cnn, exp}') flags.DEFINE_bool('root_opt', True, 'whether to optimize root body poses') flags.DEFINE_bool('ks_opt', True, 'whether to optimize camera intrinsics') # optimization: hyperparams flags.DEFINE_integer('num_epochs', 1000, 'Number of epochs to train') flags.DEFINE_float('learning_rate', 5e-4, 'learning rate') flags.DEFINE_integer('batch_size', 2, 'size of minibatches') flags.DEFINE_integer('img_size', 512, 'image size for optimization') flags.DEFINE_integer('nsample', 6, 'num of samples per image at optimization time') flags.DEFINE_float('perturb', 1.0, 'factor to perturb depth sampling points') flags.DEFINE_float('noise_std', 0., 'std dev of noise added to regularize sigma') flags.DEFINE_float('nactive', 0.5, 'num of samples per image at optimization time') flags.DEFINE_integer('ndepth', 128, 'num of depth samples per px at optimization time') flags.DEFINE_float('clip_scale', 100, 'grad clip scale') flags.DEFINE_float('warmup_steps', 0.4, 'steps used to increase sil loss') flags.DEFINE_float('reinit_bone_steps', 0.667, 'steps to initialize bones') flags.DEFINE_float('dskin_steps', 0.8, 'steps to add delta skinning weights') flags.DEFINE_float('init_beta', 0.1, 'initial value for transparency beta') flags.DEFINE_bool('reset_beta', False, 'reset volsdf beta to 0.1') flags.DEFINE_float('fine_steps', 1.1, 'by default, not using fine samples') flags.DEFINE_float('nf_reset', 0.5, 'by default, start reseting near-far plane at 50%') flags.DEFINE_float('bound_reset', 0.5, 'by default, start reseting bound from 50%') flags.DEFINE_float('bound_factor', 2, 'by default, use a loose bound') # optimization: initialization flags.DEFINE_bool('init_ellips', False, 'whether to init shape as ellips') flags.DEFINE_integer('warmup_pose_ep', 0, 'epochs to pre-train cnn pose predictor') flags.DEFINE_integer('warmup_shape_ep', 0, 'epochs to pre-train nerf') flags.DEFINE_bool('warmup_rootmlp', False, 'whether to preset base root pose (compatible with expmlp root basis only)') flags.DEFINE_bool('unc_filter', True, 'whether to filter root poses init with low uncertainty') # optimization: fine-tuning flags.DEFINE_bool('keep_pose_basis', True, 'keep pose basis when loading models at train time') flags.DEFINE_bool('freeze_coarse', False, 'whether to freeze coarse posec of MLP') flags.DEFINE_bool('freeze_root', False, 'whether to freeze root body pose') flags.DEFINE_bool('root_stab', True, 'whether to stablize root at ft') flags.DEFINE_bool('freeze_cvf', False, 'whether to freeze canonical features') flags.DEFINE_bool('freeze_shape',False, 'whether to freeze canonical shape') flags.DEFINE_bool('freeze_proj', False, 'whether to freeze some params w/ proj loss') flags.DEFINE_bool('freeze_body_mlp', False, 'whether to freeze body pose mlp') flags.DEFINE_float('proj_start', 0.0, 'steps to strat projection opt') flags.DEFINE_float('frzroot_start', 0.0, 'steps to strat fixing root pose') flags.DEFINE_float('frzbody_end', 0.0, 'steps to end fixing body pose') flags.DEFINE_float('proj_end', 0.2, 'steps to end projection opt') # CSE fine-tuning (turned off by default) flags.DEFINE_bool('ft_cse', False, 'whether to fine-tune cse features') flags.DEFINE_bool('mt_cse', True, 'whether to maintain cse features') flags.DEFINE_float('mtcse_steps', 0.0, 'only distill cse before several epochs') flags.DEFINE_float('ftcse_steps', 0.0, 'finetune cse after several epochs') # render / eval flags.DEFINE_integer('render_size', 64, 'size used for eval visualizations') flags.DEFINE_integer('frame_chunk', 20, 'chunk size to split the input frames') flags.DEFINE_integer('chunk', 32*1024, 'chunk size to split the input to avoid OOM') flags.DEFINE_integer('rnd_frame_chunk', 3, 'chunk size to render eval images') flags.DEFINE_bool('queryfw', True, 'use forward warping to query deformed shape') flags.DEFINE_float('mc_threshold', -0.002, 'marching cubes threshold') flags.DEFINE_bool('full_mesh', False, 'extract surface without visibility check') flags.DEFINE_bool('ce_color', True, 'assign mesh color as canonical surface mapping or radiance') flags.DEFINE_integer('sample_grid3d', 64, 'resolution for mesh extraction from nerf') flags.DEFINE_string('test_frames', '9', 'a list of video index or num of frames, {0,1,2}, 30') # losses flags.DEFINE_bool('use_embed', True, 'whether to use feature consistency losses') flags.DEFINE_bool('use_proj', True, 'whether to use reprojection loss') flags.DEFINE_bool('use_corresp', True, 'whether to render and compare correspondence') flags.DEFINE_bool('dist_corresp', True, 'whether to render distributed corresp') flags.DEFINE_float('total_wt', 1, 'by default, multiple total loss by 1') flags.DEFINE_float('sil_wt', 0.1, 'weight for silhouette loss') flags.DEFINE_float('img_wt', 0.1, 'weight for silhouette loss') flags.DEFINE_float('feat_wt', 0., 'by default, multiple feat loss by 1') flags.DEFINE_float('frnd_wt', 1., 'by default, multiple feat loss by 1') flags.DEFINE_float('proj_wt', 0.02, 'by default, multiple proj loss by 1') flags.DEFINE_float('flow_wt', 1, 'by default, multiple flow loss by 1') flags.DEFINE_float('cyc_wt', 1, 'by default, multiple cyc loss by 1') flags.DEFINE_bool('rig_loss', False,'whether to use globally rigid loss') flags.DEFINE_bool('root_sm', True, 'whether to use smooth loss for root pose') flags.DEFINE_float('eikonal_wt', 0., 'weight of eikonal loss') flags.DEFINE_float('bone_loc_reg', 0.1, 'use bone location regularization') flags.DEFINE_bool('loss_flt', True, 'whether to use loss filter') flags.DEFINE_bool('rm_novp', True,'whether to remove loss on non-overlapping pxs') # for scripts/visualize/match.py flags.DEFINE_string('match_frames', '0 1', 'a list of frame index') class banmo(nn.Module): def __init__(self, opts, data_info): super(banmo, self).__init__() self.opts = opts self.device = torch.device("cuda:%d"%opts.local_rank) self.config = configparser.RawConfigParser() self.config.read('configs/%s.config'%opts.seqname) self.alpha=torch.Tensor([opts.alpha]) self.alpha=nn.Parameter(self.alpha) self.loss_select = 1 # by default, use all losses self.root_update = 1 # by default, update root pose self.body_update = 1 # by default, update body pose self.shape_update = 0 # by default, update all self.cvf_update = 0 # by default, update all self.progress = 0. # also reseted in optimizer self.counter_frz_rebone = 0. # counter to freeze params for reinit bones self.use_fine = False # by default not using fine samples #self.ndepth_bk = opts.ndepth # original ndepth self.root_basis = opts.root_basis self.use_cam = opts.use_cam self.is_warmup_pose = False # by default not warming up self.img_size = opts.img_size # current rendering size, # have to be consistent with dataloader, # eval/train has different size embed_net = nn.Embedding # multi-video mode self.num_vid = len(self.config.sections())-1 self.data_offset = data_info['offset'] self.num_fr=self.data_offset[-1] self.max_ts = (self.data_offset[1:] - self.data_offset[:-1]).max() self.impath = data_info['impath'] self.latest_vars = {} # only used in get_near_far: rtk, idk # only used in visibility: rtk, vis, idx (deprecated) # raw rot/trans estimated by pose net self.latest_vars['rt_raw'] = np.zeros((self.data_offset[-1], 3,4)) # from data # rtk raw scaled and refined self.latest_vars['rtk'] = np.zeros((self.data_offset[-1], 4,4)) self.latest_vars['idk'] = np.zeros((self.data_offset[-1],)) self.latest_vars['mesh_rest'] = trimesh.Trimesh() if opts.lineload: #TODO todo, this should be idx512,-1 self.latest_vars['fp_err'] = np.zeros((self.data_offset[-1]*opts.img_size,2)) # feat, proj self.latest_vars['flo_err'] = np.zeros((self.data_offset[-1]*opts.img_size,6)) self.latest_vars['sil_err'] = np.zeros((self.data_offset[-1]*opts.img_size,)) self.latest_vars['flo_err_hist'] = np.zeros((self.data_offset[-1]*opts.img_size,6,10)) else: self.latest_vars['fp_err'] = np.zeros((self.data_offset[-1],2)) # feat, proj self.latest_vars['flo_err'] = np.zeros((self.data_offset[-1],6)) self.latest_vars['sil_err'] = np.zeros((self.data_offset[-1],)) self.latest_vars['flo_err_hist'] = np.zeros((self.data_offset[-1],6,10)) # get near-far plane self.near_far = np.zeros((self.data_offset[-1],2)) self.near_far[...,1] = 6. self.near_far = self.near_far.astype(np.float32) self.near_far = torch.Tensor(self.near_far).to(self.device) self.obj_scale = float(near_far_to_bound(self.near_far)) / 0.3 # to 0.3 self.near_far = self.near_far / self.obj_scale self.near_far_base = self.near_far.clone() # used for create_base_se3() self.near_far = nn.Parameter(self.near_far) # object bound self.latest_vars['obj_bound'] = np.asarray([1.,1.,1.]) self.latest_vars['obj_bound'] *= near_far_to_bound(self.near_far) self.vis_min=np.asarray([[0,0,0]]) self.vis_len=self.latest_vars['obj_bound']/2 # set shape/appearancce model self.num_freqs = 10 in_channels_xyz=3+3*self.num_freqs*2 in_channels_dir=27 if opts.env_code: # add video-speficit environment lighting embedding env_code_dim = 64 if opts.env_fourier: self.env_code = FrameCode(self.num_freqs, env_code_dim, self.data_offset, scale=1) else: self.env_code = embed_net(self.num_fr, env_code_dim) else: env_code_dim = 0 self.nerf_coarse = NeRF(in_channels_xyz=in_channels_xyz, in_channels_dir=in_channels_dir+env_code_dim, init_beta=opts.init_beta) self.embedding_xyz = Embedding(3,self.num_freqs,alpha=self.alpha.data[0]) self.embedding_dir = Embedding(3,4, alpha=self.alpha.data[0]) self.embeddings = {'xyz':self.embedding_xyz, 'dir':self.embedding_dir} self.nerf_models= {'coarse':self.nerf_coarse} # set motion model t_embed_dim = opts.t_embed_dim if opts.frame_code: self.pose_code = FrameCode(self.num_freqs, t_embed_dim, self.data_offset) else: self.pose_code = embed_net(self.num_fr, t_embed_dim) if opts.flowbw: if opts.se3_flow: flow3d_arch = SE3head out_channels=9 else: flow3d_arch = Transhead out_channels=3 self.nerf_flowbw = flow3d_arch(in_channels_xyz=in_channels_xyz+t_embed_dim, D=5, W=128, out_channels=out_channels,in_channels_dir=0, raw_feat=True) self.nerf_flowfw = flow3d_arch(in_channels_xyz=in_channels_xyz+t_embed_dim, D=5, W=128, out_channels=out_channels,in_channels_dir=0, raw_feat=True) self.nerf_models['flowbw'] = self.nerf_flowbw self.nerf_models['flowfw'] = self.nerf_flowfw elif opts.lbs: self.num_bones = opts.num_bones bones= generate_bones(self.num_bones, self.num_bones, 0, self.device) self.bones = nn.Parameter(bones) self.nerf_models['bones'] = self.bones self.num_bone_used = self.num_bones # bones used in the model self.nerf_body_rts = nn.Sequential(self.pose_code, RTHead(use_quat=False, #D=5,W=128, in_channels_xyz=t_embed_dim,in_channels_dir=0, out_channels=6*self.num_bones, raw_feat=True)) #TODO scale+constant parameters skin_aux = torch.Tensor([0,self.obj_scale]) self.skin_aux = nn.Parameter(skin_aux) self.nerf_models['skin_aux'] = self.skin_aux if opts.nerf_skin: self.nerf_skin = NeRF(in_channels_xyz=in_channels_xyz+t_embed_dim, # D=5,W=128, D=5,W=64, in_channels_dir=0, out_channels=self.num_bones, raw_feat=True, in_channels_code=t_embed_dim) self.rest_pose_code = embed_net(1, t_embed_dim) self.nerf_models['nerf_skin'] = self.nerf_skin self.nerf_models['rest_pose_code'] = self.rest_pose_code # set visibility nerf if opts.nerf_vis: self.nerf_vis = NeRF(in_channels_xyz=in_channels_xyz, D=5, W=64, out_channels=1, in_channels_dir=0, raw_feat=True) self.nerf_models['nerf_vis'] = self.nerf_vis # optimize camera if opts.root_opt: if self.use_cam: use_quat=False out_channels=6 else: use_quat=True out_channels=7 # train a cnn pose predictor for warmup cnn_in_channels = 16 cnn_head = RTHead(use_quat=True, D=1, in_channels_xyz=128,in_channels_dir=0, out_channels=7, raw_feat=True) self.dp_root_rts = nn.Sequential( Encoder((112,112), in_channels=cnn_in_channels, out_channels=128), cnn_head) if self.root_basis == 'cnn': self.nerf_root_rts = nn.Sequential( Encoder((112,112), in_channels=cnn_in_channels, out_channels=128), RTHead(use_quat=use_quat, D=1, in_channels_xyz=128,in_channels_dir=0, out_channels=out_channels, raw_feat=True)) elif self.root_basis == 'exp': self.nerf_root_rts = RTExplicit(self.num_fr, delta=self.use_cam) elif self.root_basis == 'expmlp': self.nerf_root_rts = RTExpMLP(self.num_fr, self.num_freqs,t_embed_dim,self.data_offset, delta=self.use_cam) elif self.root_basis == 'mlp': self.root_code = embed_net(self.num_fr, t_embed_dim) output_head = RTHead(use_quat=use_quat, in_channels_xyz=t_embed_dim,in_channels_dir=0, out_channels=out_channels, raw_feat=True) self.nerf_root_rts = nn.Sequential(self.root_code, output_head) else: print('error'); exit() # intrinsics ks_list = [] for i in range(self.num_vid): fx,fy,px,py=[float(i) for i in \ self.config.get('data_%d'%i, 'ks').split(' ')] ks_list.append([fx,fy,px,py]) self.ks_param = torch.Tensor(ks_list).to(self.device) if opts.ks_opt: self.ks_param = nn.Parameter(self.ks_param) # densepose detbase='./third_party/detectron2/' if opts.use_human: canonical_mesh_name = 'smpl_27554' config_path = '%s/projects/DensePose/configs/cse/densepose_rcnn_R_101_FPN_DL_soft_s1x.yaml'%(detbase) weight_path = 'https://dl.fbaipublicfiles.com/densepose/cse/densepose_rcnn_R_101_FPN_DL_soft_s1x/250713061/model_final_1d3314.pkl' else: canonical_mesh_name = 'sheep_5004' config_path = '%s/projects/DensePose/configs/cse/densepose_rcnn_R_50_FPN_soft_animals_CA_finetune_4k.yaml'%(detbase) weight_path = 'https://dl.fbaipublicfiles.com/densepose/cse/densepose_rcnn_R_50_FPN_soft_animals_CA_finetune_4k/253498611/model_final_6d69b7.pkl' canonical_mesh_path = 'mesh_material/%s_sph.pkl'%canonical_mesh_name with open(canonical_mesh_path, 'rb') as f: dp = pickle.load(f) self.dp_verts = dp['vertices'] self.dp_faces = dp['faces'].astype(int) self.dp_verts = torch.Tensor(self.dp_verts).cuda(self.device) self.dp_faces = torch.Tensor(self.dp_faces).cuda(self.device).long() self.dp_verts -= self.dp_verts.mean(0)[None] self.dp_verts /= self.dp_verts.abs().max() self.dp_verts_unit = self.dp_verts.clone() self.dp_verts *= (self.near_far[:,1] - self.near_far[:,0]).mean()/2 # visualize self.dp_vis = self.dp_verts.detach() self.dp_vmin = self.dp_vis.min(0)[0][None] self.dp_vis = self.dp_vis - self.dp_vmin self.dp_vmax = self.dp_vis.max(0)[0][None] self.dp_vis = self.dp_vis / self.dp_vmax # save colorvis if not os.path.isdir('tmp'): os.mkdir('tmp') trimesh.Trimesh(self.dp_verts_unit.cpu().numpy(), dp['faces'], vertex_colors = self.dp_vis.cpu().numpy())\ .export('tmp/%s.obj'%canonical_mesh_name) if opts.unc_filter: from utils.cselib import create_cse # load surface embedding _, _, mesh_vertex_embeddings = create_cse(config_path, weight_path) self.dp_embed = mesh_vertex_embeddings[canonical_mesh_name] # add densepose mlp if opts.use_embed: self.num_feat = 16 # TODO change this to D-8 self.nerf_feat = NeRF(in_channels_xyz=in_channels_xyz, D=5, W=128, out_channels=self.num_feat,in_channels_dir=0, raw_feat=True, init_beta=1.) self.nerf_models['nerf_feat'] = self.nerf_feat if opts.ft_cse: from nnutils.cse import CSENet self.csenet = CSENet(ishuman=opts.use_human) # add uncertainty MLP if opts.use_unc: # input, (x,y,t)+code, output, (1) vid_code_dim=32 # add video-specific code self.vid_code = embed_net(self.num_vid, vid_code_dim) #self.nerf_unc = NeRFUnc(in_channels_xyz=in_channels_xyz, D=5, W=128, self.nerf_unc = NeRFUnc(in_channels_xyz=in_channels_xyz, D=8, W=256, out_channels=1,in_channels_dir=vid_code_dim, raw_feat=True, init_beta=1.) self.nerf_models['nerf_unc'] = self.nerf_unc if opts.warmup_pose_ep>0: # soft renderer import soft_renderer as sr self.mesh_renderer = sr.SoftRenderer(image_size=256, sigma_val=1e-12, camera_mode='look_at',perspective=False, aggr_func_rgb='hard', light_mode='vertex', light_intensity_ambient=1.,light_intensity_directionals=0.) self.resnet_transform = torchvision.transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) def forward_default(self, batch): opts = self.opts # get root poses rtk_all = self.compute_rts() # change near-far plane for all views if self.progress>=opts.nf_reset: rtk_np = rtk_all.clone().detach().cpu().numpy() valid_rts = self.latest_vars['idk'].astype(bool) self.latest_vars['rtk'][valid_rts,:3] = rtk_np[valid_rts] self.near_far.data = get_near_far( self.near_far.data, self.latest_vars) if opts.debug: torch.cuda.synchronize() start_time = time.time() if opts.lineload: bs = self.set_input(batch, load_line=True) else: bs = self.set_input(batch) if opts.debug: torch.cuda.synchronize() print('set input time:%.2f'%(time.time()-start_time)) rtk = self.rtk kaug= self.kaug embedid=self.embedid aux_out={} # Render rendered, rand_inds = self.nerf_render(rtk, kaug, embedid, nsample=opts.nsample, ndepth=opts.ndepth) if opts.debug: torch.cuda.synchronize() print('set input + render time:%.2f'%(time.time()-start_time)) # image and silhouette loss sil_at_samp = rendered['sil_at_samp'] sil_at_samp_flo = rendered['sil_at_samp_flo'] vis_at_samp = rendered['vis_at_samp'] if opts.loss_flt: # frame-level rejection of bad segmentations if opts.lineload: invalid_idx = loss_filter_line(self.latest_vars['sil_err'], self.errid.long(),self.frameid.long(), rendered['sil_loss_samp']*opts.sil_wt, opts.img_size) else: sil_err, invalid_idx = loss_filter(self.latest_vars['sil_err'], rendered['sil_loss_samp']*opts.sil_wt, sil_at_samp>-1, scale_factor=10) self.latest_vars['sil_err'][self.errid.long()] = sil_err if self.progress > (opts.warmup_steps): rendered['sil_loss_samp'][invalid_idx] *= 0. if invalid_idx.sum()>0: print('%d removed from sil'%(invalid_idx.sum())) img_loss_samp = opts.img_wt*rendered['img_loss_samp'] if opts.loss_flt: img_loss_samp[invalid_idx] *= 0 img_loss = img_loss_samp if opts.rm_novp: img_loss = img_loss * rendered['sil_coarse'].detach() img_loss = img_loss[sil_at_samp[...,0]>0].mean() # eval on valid pts sil_loss_samp = opts.sil_wt*rendered['sil_loss_samp'] sil_loss = sil_loss_samp[vis_at_samp>0].mean() aux_out['sil_loss'] = sil_loss aux_out['img_loss'] = img_loss total_loss = img_loss total_loss = total_loss + sil_loss # feat rnd loss frnd_loss_samp = opts.frnd_wt*rendered['frnd_loss_samp'] if opts.loss_flt: frnd_loss_samp[invalid_idx] *= 0 if opts.rm_novp: frnd_loss_samp = frnd_loss_samp * rendered['sil_coarse'].detach() feat_rnd_loss = frnd_loss_samp[sil_at_samp[...,0]>0].mean() # eval on valid pts aux_out['feat_rnd_loss'] = feat_rnd_loss total_loss = total_loss + feat_rnd_loss # flow loss if opts.use_corresp: flo_loss_samp = rendered['flo_loss_samp'] if opts.loss_flt: flo_loss_samp[invalid_idx] *= 0 if opts.rm_novp: flo_loss_samp = flo_loss_samp * rendered['sil_coarse'].detach() # eval on valid pts flo_loss = flo_loss_samp[sil_at_samp_flo[...,0]].mean() * 2 #flo_loss = flo_loss_samp[sil_at_samp_flo[...,0]].mean() flo_loss = flo_loss * opts.flow_wt # warm up by only using flow loss to optimize root pose if self.loss_select == 0: total_loss = total_loss*0. + flo_loss else: total_loss = total_loss + flo_loss aux_out['flo_loss'] = flo_loss # viser loss if opts.use_embed: feat_err_samp = rendered['feat_err']* opts.feat_wt if opts.loss_flt: feat_err_samp[invalid_idx] *= 0 feat_loss = feat_err_samp if opts.rm_novp: feat_loss = feat_loss * rendered['sil_coarse'].detach() feat_loss = feat_loss[sil_at_samp>0].mean() total_loss = total_loss + feat_loss aux_out['feat_loss'] = feat_loss aux_out['beta_feat'] = self.nerf_feat.beta.clone().detach()[0] if opts.use_proj: proj_err_samp = rendered['proj_err']* opts.proj_wt if opts.loss_flt: proj_err_samp[invalid_idx] *= 0 proj_loss = proj_err_samp[sil_at_samp>0].mean() aux_out['proj_loss'] = proj_loss if opts.freeze_proj: total_loss = total_loss + proj_loss ## warm up by only using projection loss to optimize bones warmup_weight = (self.progress - opts.proj_start)/(opts.proj_end-opts.proj_start) warmup_weight = (warmup_weight - 0.8) * 5 # [-4,1] warmup_weight = np.clip(warmup_weight, 0,1) if (self.progress > opts.proj_start and \ self.progress < opts.proj_end): total_loss = total_loss*warmup_weight + \ 10*proj_loss*(1-warmup_weight) else: # only add it after feature volume is trained well total_loss = total_loss + proj_loss # regularization if 'frame_cyc_dis' in rendered.keys(): # cycle loss cyc_loss = rendered['frame_cyc_dis'].mean() total_loss = total_loss + cyc_loss * opts.cyc_wt #total_loss = total_loss + cyc_loss*0 aux_out['cyc_loss'] = cyc_loss # globally rigid prior rig_loss = 0.0001*rendered['frame_rigloss'].mean() if opts.rig_loss: total_loss = total_loss + rig_loss else: total_loss = total_loss + rig_loss*0 aux_out['rig_loss'] = rig_loss # elastic energy for se3 field / translation field if 'elastic_loss' in rendered.keys(): elastic_loss = rendered['elastic_loss'].mean() * 1e-3 total_loss = total_loss + elastic_loss aux_out['elastic_loss'] = elastic_loss # regularization of root poses if opts.root_sm: root_sm_loss = compute_root_sm_2nd_loss(rtk_all, self.data_offset) aux_out['root_sm_loss'] = root_sm_loss total_loss = total_loss + root_sm_loss if opts.eikonal_wt > 0: ekl_loss = opts.eikonal_wt * eikonal_loss(self.nerf_coarse, self.embedding_xyz, rendered['xyz_canonical_vis'], self.latest_vars['obj_bound']) aux_out['ekl_loss'] = ekl_loss total_loss = total_loss + ekl_loss # bone location regularization: pull bones away from empth space (low sdf) if opts.lbs and opts.bone_loc_reg>0: bones_rst = self.bones bones_rst,_ = correct_bones(self, bones_rst) mesh_rest = self.latest_vars['mesh_rest'] if len(mesh_rest.vertices)>100: # not a degenerate mesh # issue #4 the following causes error on certain archs for torch110+cu113 # seems to be a conflict between geomloss and pytorch3d # mesh_rest = pytorch3d.structures.meshes.Meshes( # verts=torch.Tensor(mesh_rest.vertices[None]), # faces=torch.Tensor(mesh_rest.faces[None])) # a ugly workaround mesh_verts = [torch.Tensor(mesh_rest.vertices)] mesh_faces = [torch.Tensor(mesh_rest.faces).long()] try: mesh_rest = pytorch3d.structures.meshes.Meshes(verts=mesh_verts, faces=mesh_faces) except: mesh_rest = pytorch3d.structures.meshes.Meshes(verts=mesh_verts, faces=mesh_faces) shape_samp = pytorch3d.ops.sample_points_from_meshes(mesh_rest, 1000, return_normals=False) shape_samp = shape_samp[0].to(self.device) from geomloss import SamplesLoss samploss = SamplesLoss(loss="sinkhorn", p=2, blur=.05) bone_loc_loss = samploss(bones_rst[:,:3]*10, shape_samp*10) bone_loc_loss = opts.bone_loc_reg*bone_loc_loss total_loss = total_loss + bone_loc_loss aux_out['bone_loc_loss'] = bone_loc_loss # visibility loss if 'vis_loss' in rendered.keys(): vis_loss = 0.01*rendered['vis_loss'].mean() total_loss = total_loss + vis_loss aux_out['visibility_loss'] = vis_loss # uncertainty MLP inference if opts.use_unc: # add uncertainty MLP loss, loss = | |img-img_r|*sil - unc_pred | unc_pred = rendered['unc_pred'] unc_rgb = sil_at_samp[...,0]*img_loss_samp.mean(-1) unc_feat= (sil_at_samp*feat_err_samp)[...,0] unc_proj= (sil_at_samp*proj_err_samp)[...,0] unc_sil = sil_loss_samp[...,0] #unc_accumulated = unc_feat + unc_proj #unc_accumulated = unc_feat + unc_proj + unc_rgb*0.1 # unc_accumulated = unc_feat + unc_proj + unc_rgb unc_accumulated = unc_rgb # unc_accumulated = unc_rgb + unc_sil unc_loss = (unc_accumulated.detach() - unc_pred[...,0]).pow(2) unc_loss = unc_loss.mean() aux_out['unc_loss'] = unc_loss total_loss = total_loss + unc_loss # cse feature tuning if opts.ft_cse and opts.mt_cse: csenet_loss = (self.csenet_feats - self.csepre_feats).pow(2).sum(1) csenet_loss = csenet_loss[self.dp_feats_mask].mean()* 1e-5 if self.progress < opts.mtcse_steps: total_loss = total_loss*0 + csenet_loss else: total_loss = total_loss + csenet_loss aux_out['csenet_loss'] = csenet_loss if opts.freeze_coarse: # compute nerf xyz wt loss shape_xyz_wt_curr = grab_xyz_weights(self.nerf_coarse) shape_xyz_wt_loss = 100*compute_xyz_wt_loss(self.shape_xyz_wt, shape_xyz_wt_curr) skin_xyz_wt_curr = grab_xyz_weights(self.nerf_skin) skin_xyz_wt_loss = 100*compute_xyz_wt_loss(self.skin_xyz_wt, skin_xyz_wt_curr) feat_xyz_wt_curr = grab_xyz_weights(self.nerf_feat) feat_xyz_wt_loss = 100*compute_xyz_wt_loss(self.feat_xyz_wt, feat_xyz_wt_curr) aux_out['shape_xyz_wt_loss'] = shape_xyz_wt_loss aux_out['skin_xyz_wt_loss'] = skin_xyz_wt_loss aux_out['feat_xyz_wt_loss'] = feat_xyz_wt_loss total_loss = total_loss + shape_xyz_wt_loss + skin_xyz_wt_loss\ + feat_xyz_wt_loss # save some variables if opts.lbs: aux_out['skin_scale'] = self.skin_aux[0].clone().detach() aux_out['skin_const'] = self.skin_aux[1].clone().detach() total_loss = total_loss * opts.total_wt aux_out['total_loss'] = total_loss aux_out['beta'] = self.nerf_coarse.beta.clone().detach()[0] if opts.debug: torch.cuda.synchronize() print('set input + render + loss time:%.2f'%(time.time()-start_time)) return total_loss, aux_out def forward_warmup_rootmlp(self, batch): """ batch variable is not never being used here """ # render ground-truth data opts = self.opts device = self.device # loss aux_out={} self.rtk = torch.zeros(self.num_fr,4,4).to(device) self.frameid = torch.Tensor(range(self.num_fr)).to(device) self.dataid,_ = fid_reindex(self.frameid, self.num_vid, self.data_offset) self.convert_root_pose() rtk_gt = torch.Tensor(self.latest_vars['rtk']).to(device) _ = rtk_loss(self.rtk, rtk_gt, aux_out) root_sm_loss = compute_root_sm_2nd_loss(self.rtk, self.data_offset) total_loss = 0.1*aux_out['rot_loss'] + 0.01*root_sm_loss aux_out['warmup_root_sm_loss'] = root_sm_loss del aux_out['trn_loss'] return total_loss, aux_out def forward_warmup_shape(self, batch): """ batch variable is not never being used here """ # render ground-truth data opts = self.opts # loss shape_factor = 0.1 aux_out={} total_loss = shape_init_loss(self.dp_verts_unit*shape_factor,self.dp_faces, \ self.nerf_coarse, self.embedding_xyz, bound_factor=opts.bound_factor * 1.2, use_ellips=opts.init_ellips) aux_out['shape_init_loss'] = total_loss return total_loss, aux_out def forward_warmup(self, batch): """ batch variable is not never being used here """ # render ground-truth data opts = self.opts bs_rd = 16 with torch.no_grad(): vertex_color = self.dp_embed dp_feats_rd, rtk_raw = self.render_dp(self.dp_verts_unit, self.dp_faces, vertex_color, self.near_far, self.device, self.mesh_renderer, bs_rd) aux_out={} # predict delta se3 root_rts = self.nerf_root_rts(dp_feats_rd) root_rmat = root_rts[:,0,:9].view(-1,3,3) root_tmat = root_rts[:,0,9:12] # construct base se3 rtk = torch.zeros(bs_rd, 4,4).to(self.device) rtk[:,:3] = self.create_base_se3(bs_rd, self.device) # compose se3 rmat = rtk[:,:3,:3] tmat = rtk[:,:3,3] tmat = tmat + rmat.matmul(root_tmat[...,None])[...,0] rmat = rmat.matmul(root_rmat) rtk[:,:3,:3] = rmat rtk[:,:3,3] = tmat.detach() # do not train translation # loss total_loss = rtk_loss(rtk, rtk_raw, aux_out) aux_out['total_loss'] = total_loss return total_loss, aux_out def nerf_render(self, rtk, kaug, embedid, nsample=256, ndepth=128): opts=self.opts # render rays if opts.debug: torch.cuda.synchronize() start_time = time.time() # 2bs,... Rmat, Tmat, Kinv = self.prepare_ray_cams(rtk, kaug) bs = Kinv.shape[0] # for batch:2bs, nsample+x # for line: 2bs*(nsample+x),1 rand_inds, rays, frameid, errid = self.sample_pxs(bs, nsample, Rmat, Tmat, Kinv, self.dataid, self.frameid, self.frameid_sub, self.embedid,self.lineid,self.errid, self.imgs, self.masks, self.vis2d, self.flow, self.occ, self.dp_feats) self.frameid = frameid # only used in loss filter self.errid = errid if opts.debug: torch.cuda.synchronize() print('prepare rays time: %.2f'%(time.time()-start_time)) bs_rays = rays['bs'] * rays['nsample'] # over pixels results=defaultdict(list) for i in range(0, bs_rays, opts.chunk): rays_chunk = chunk_rays(rays,i,opts.chunk) # decide whether to use fine samples if self.progress > opts.fine_steps: self.use_fine = True else: self.use_fine = False rendered_chunks = render_rays(self.nerf_models, self.embeddings, rays_chunk, N_samples = ndepth, use_disp=False, perturb=opts.perturb, noise_std=opts.noise_std, chunk=opts.chunk, # chunk size is effective in val mode obj_bound=self.latest_vars['obj_bound'], use_fine=self.use_fine, img_size=self.img_size, progress=self.progress, opts=opts, ) for k, v in rendered_chunks.items(): results[k] += [v] for k, v in results.items(): if v[0].dim()==0: # loss v = torch.stack(v).mean() else: v = torch.cat(v, 0) if self.training: v = v.view(rays['bs'],rays['nsample'],-1) else: v = v.view(bs,self.img_size, self.img_size, -1) results[k] = v if opts.debug: torch.cuda.synchronize() print('rendering time: %.2f'%(time.time()-start_time)) # viser feature matching if opts.use_embed: results['pts_pred'] = (results['pts_pred'] - torch.Tensor(self.vis_min[None]).\ to(self.device)) / torch.Tensor(self.vis_len[None]).to(self.device) results['pts_exp'] = (results['pts_exp'] - torch.Tensor(self.vis_min[None]).\ to(self.device)) / torch.Tensor(self.vis_len[None]).to(self.device) results['pts_pred'] = results['pts_pred'].clamp(0,1) results['pts_exp'] = results['pts_exp'].clamp(0,1) if opts.debug: torch.cuda.synchronize() print('compute flow time: %.2f'%(time.time()-start_time)) return results, rand_inds @staticmethod def render_dp(dp_verts_unit, dp_faces, dp_embed, near_far, device, mesh_renderer, bs): """ render a pair of (densepose feature bsx16x112x112, se3) input is densepose surface model and near-far plane """ verts = dp_verts_unit faces = dp_faces dp_embed = dp_embed num_verts, embed_dim = dp_embed.shape img_size = 256 crop_size = 112 focal = 2 std_rot = 6.28 # rotation std std_dep = 0.5 # depth std # scale geometry and translation based on near-far plane d_mean = near_far.mean() verts = verts / 3 * d_mean # scale based on mean depth dep_rand = 1 + np.random.normal(0,std_dep,bs) dep_rand = torch.Tensor(dep_rand).to(device) d_obj = d_mean * dep_rand d_obj = torch.max(d_obj, 1.2*1/3 * d_mean) # set cameras rot_rand = np.random.normal(0,std_rot,(bs,3)) rot_rand = torch.Tensor(rot_rand).to(device) Rmat = transforms.axis_angle_to_matrix(rot_rand) Tmat = torch.cat([torch.zeros(bs, 2).to(device), d_obj[:,None]],-1) K = torch.Tensor([[focal,focal,0,0]]).to(device).repeat(bs,1) # add RTK: [R_3x3|T_3x1] # [fx,fy,px,py], to the ndc space Kimg = torch.Tensor([[focal*img_size/2.,focal*img_size/2.,img_size/2., img_size/2.]]).to(device).repeat(bs,1) rtk = torch.zeros(bs,4,4).to(device) rtk[:,:3,:3] = Rmat rtk[:,:3, 3] = Tmat rtk[:,3, :] = Kimg # repeat mesh verts = verts[None].repeat(bs,1,1) faces = faces[None].repeat(bs,1,1) dp_embed = dp_embed[None].repeat(bs,1,1) # obj-cam transform verts = obj_to_cam(verts, Rmat, Tmat) # pespective projection verts = pinhole_cam(verts, K) # render sil+rgb rendered = [] for i in range(0,embed_dim,3): dp_chunk = dp_embed[...,i:i+3] dp_chunk_size = dp_chunk.shape[-1] if dp_chunk_size<3: dp_chunk = torch.cat([dp_chunk, dp_embed[...,:(3-dp_chunk_size)]],-1) rendered_chunk = render_color(mesh_renderer, verts, faces, dp_chunk, texture_type='vertex') rendered_chunk = rendered_chunk[:,:3] rendered.append(rendered_chunk) rendered = torch.cat(rendered, 1) rendered = rendered[:,:embed_dim] # resize to bounding box rendered_crops = [] for i in range(bs): mask = rendered[i].max(0)[0]>0 mask = mask.cpu().numpy() indices = np.where(mask>0); xid = indices[1]; yid = indices[0] center = ( (xid.max()+xid.min())//2, (yid.max()+yid.min())//2) length = ( int((xid.max()-xid.min())*1.//2 ), int((yid.max()-yid.min())*1.//2 )) left,top,w,h = [center[0]-length[0], center[1]-length[1], length[0]*2, length[1]*2] rendered_crop = torchvision.transforms.functional.resized_crop(\ rendered[i], top,left,h,w,(50,50)) # mask augmentation rendered_crop = mask_aug(rendered_crop) rendered_crops.append( rendered_crop) #cv2.imwrite('%d.png'%i, rendered_crop.std(0).cpu().numpy()*1000) rendered_crops = torch.stack(rendered_crops,0) rendered_crops = F.interpolate(rendered_crops, (crop_size, crop_size), mode='bilinear') rendered_crops = F.normalize(rendered_crops, 2,1) return rendered_crops, rtk @staticmethod def create_base_se3(bs, device): """ create a base se3 based on near-far plane """ rt = torch.zeros(bs,3,4).to(device) rt[:,:3,:3] = torch.eye(3)[None].repeat(bs,1,1).to(device) rt[:,:2,3] = 0. rt[:,2,3] = 0.3 return rt @staticmethod def prepare_ray_cams(rtk, kaug): """ in: rtk, kaug out: Rmat, Tmat, Kinv """ Rmat = rtk[:,:3,:3] Tmat = rtk[:,:3,3] Kmat = K2mat(rtk[:,3,:]) Kaug = K2inv(kaug) # p = Kaug Kmat P Kinv = Kmatinv(Kaug.matmul(Kmat)) return Rmat, Tmat, Kinv def sample_pxs(self, bs, nsample, Rmat, Tmat, Kinv, dataid, frameid, frameid_sub, embedid, lineid,errid, imgs, masks, vis2d, flow, occ, dp_feats): """ make sure self. is not modified xys: bs, nsample, 2 rand_inds: bs, nsample """ opts = self.opts Kinv_in=Kinv.clone() dataid_in=dataid.clone() frameid_sub_in = frameid_sub.clone() # sample 1x points, sample 4x points for further selection nsample_a = 4*nsample rand_inds, xys = sample_xy(self.img_size, bs, nsample+nsample_a, self.device, return_all= not(self.training), lineid=lineid) if self.training and opts.use_unc and \ self.progress >= (opts.warmup_steps): is_active=True nsample_s = int(opts.nactive * nsample) # active nsample = int(nsample*(1-opts.nactive)) # uniform else: is_active=False if self.training: rand_inds_a, xys_a = rand_inds[:,-nsample_a:].clone(), xys[:,-nsample_a:].clone() rand_inds, xys = rand_inds[:,:nsample].clone(), xys[:,:nsample].clone() if opts.lineload: # expand frameid, Rmat,Tmat, Kinv frameid_a= frameid[:,None].repeat(1,nsample_a) frameid_sub_a=frameid_sub[:,None].repeat(1,nsample_a) dataid_a= dataid[:,None].repeat(1,nsample_a) errid_a= errid[:,None].repeat(1,nsample_a) Rmat_a = Rmat[:,None].repeat(1,nsample_a,1,1) Tmat_a = Tmat[:,None].repeat(1,nsample_a,1) Kinv_a = Kinv[:,None].repeat(1,nsample_a,1,1) # expand frameid = frameid[:,None].repeat(1,nsample) frameid_sub = frameid_sub[:,None].repeat(1,nsample) dataid = dataid[:,None].repeat(1,nsample) errid = errid[:,None].repeat(1,nsample) Rmat = Rmat[:,None].repeat(1,nsample,1,1) Tmat = Tmat[:,None].repeat(1,nsample,1) Kinv = Kinv[:,None].repeat(1,nsample,1,1) batch_map = torch.Tensor(range(bs)).to(self.device)[:,None].long() batch_map_a = batch_map.repeat(1,nsample_a) batch_map = batch_map.repeat(1,nsample) # importance sampling if is_active: with torch.no_grad(): # run uncertainty estimation ts = frameid_sub_in.to(self.device) / self.max_ts * 2 -1 ts = ts[:,None,None].repeat(1,nsample_a,1) dataid_in = dataid_in.long().to(self.device) vid_code = self.vid_code(dataid_in)[:,None].repeat(1,nsample_a,1) # convert to normalized coords xysn = torch.cat([xys_a, torch.ones_like(xys_a[...,:1])],2) xysn = xysn.matmul(Kinv_in.permute(0,2,1))[...,:2] xyt = torch.cat([xysn, ts],-1) xyt_embedded = self.embedding_xyz(xyt) xyt_code = torch.cat([xyt_embedded, vid_code],-1) unc_pred = self.nerf_unc(xyt_code)[...,0] # preprocess to format 2,bs,w if opts.lineload: unc_pred = unc_pred.view(2,-1) xys = xys.view(2,-1,2) xys_a = xys_a.view(2,-1,2) rand_inds = rand_inds.view(2,-1) rand_inds_a = rand_inds_a.view(2,-1) frameid = frameid.view(2,-1) frameid_a = frameid_a.view(2,-1) frameid_sub = frameid_sub.view(2,-1) frameid_sub_a = frameid_sub_a.view(2,-1) dataid = dataid.view(2,-1) dataid_a = dataid_a.view(2,-1) errid = errid.view(2,-1) errid_a = errid_a.view(2,-1) batch_map = batch_map.view(2,-1) batch_map_a = batch_map_a.view(2,-1) Rmat = Rmat.view(2,-1,3,3) Rmat_a = Rmat_a.view(2,-1,3,3) Tmat = Tmat.view(2,-1,3) Tmat_a = Tmat_a.view(2,-1,3) Kinv = Kinv.view(2,-1,3,3) Kinv_a = Kinv_a.view(2,-1,3,3) nsample_s = nsample_s * bs//2 bs=2 # merge top nsamples topk_samp = unc_pred.topk(nsample_s,dim=-1)[1] # bs,nsamp # use the first imgs (in a pair) sampled index xys_a = torch.stack( [xys_a[i][topk_samp[0]] for i in range(bs)],0) rand_inds_a = torch.stack( [rand_inds_a[i][topk_samp[0]] for i in range(bs)],0) frameid_a = torch.stack( [frameid_a[i][topk_samp[0]] for i in range(bs)],0) frameid_sub_a=torch.stack( [frameid_sub_a[i][topk_samp[0]] for i in range(bs)],0) dataid_a = torch.stack( [dataid_a[i][topk_samp[0]] for i in range(bs)],0) errid_a = torch.stack( [errid_a[i][topk_samp[0]] for i in range(bs)],0) batch_map_a = torch.stack( [batch_map_a[i][topk_samp[0]] for i in range(bs)],0) Rmat_a = torch.stack( [Rmat_a[i][topk_samp[0]] for i in range(bs)],0) Tmat_a = torch.stack( [Tmat_a[i][topk_samp[0]] for i in range(bs)],0) Kinv_a = torch.stack( [Kinv_a[i][topk_samp[0]] for i in range(bs)],0) xys = torch.cat([xys,xys_a],1) rand_inds = torch.cat([rand_inds,rand_inds_a],1) frameid = torch.cat([frameid,frameid_a],1) frameid_sub=torch.cat([frameid_sub,frameid_sub_a],1) dataid = torch.cat([dataid,dataid_a],1) errid = torch.cat([errid,errid_a],1) batch_map = torch.cat([batch_map,batch_map_a],1) Rmat = torch.cat([Rmat,Rmat_a],1) Tmat = torch.cat([Tmat,Tmat_a],1) Kinv = torch.cat([Kinv,Kinv_a],1) else: topk_samp = unc_pred.topk(nsample_s,dim=-1)[1] # bs,nsamp xys_a = torch.stack( [xys_a[i][topk_samp[i]] for i in range(bs)],0) rand_inds_a = torch.stack([rand_inds_a[i][topk_samp[i]] for i in range(bs)],0) xys = torch.cat([xys,xys_a],1) rand_inds = torch.cat([rand_inds,rand_inds_a],1) # for line: reshape to 2*bs, 1,... if self.training and opts.lineload: frameid = frameid.view(-1) frameid_sub = frameid_sub.view(-1) dataid = dataid.view(-1) errid = errid.view(-1) batch_map = batch_map.view(-1) xys = xys.view(-1,1,2) rand_inds = rand_inds.view(-1,1) Rmat = Rmat.view(-1,3,3) Tmat = Tmat.view(-1,3) Kinv = Kinv.view(-1,3,3) near_far = self.near_far[frameid.long()] rays = raycast(xys, Rmat, Tmat, Kinv, near_far) # need to reshape dataid, frameid_sub, embedid #TODO embedid equiv to frameid self.update_rays(rays, bs>1, dataid, frameid_sub, frameid, xys, Kinv) if 'bones' in self.nerf_models.keys(): # update delta rts fw self.update_delta_rts(rays) # for line: 2bs*nsamp,1 # for batch:2bs,nsamp #TODO reshape imgs, masks, etc. if self.training and opts.lineload: self.obs_to_rays_line(rays, rand_inds, imgs, masks, vis2d, flow, occ, dp_feats, batch_map) else: self.obs_to_rays(rays, rand_inds, imgs, masks, vis2d, flow, occ, dp_feats) # TODO visualize samples #pdb.set_trace() #self.imgs_samp = [] #for i in range(bs): # self.imgs_samp.append(draw_pts(self.imgs[i], xys_a[i])) #self.imgs_samp = torch.stack(self.imgs_samp,0) return rand_inds, rays, frameid, errid def obs_to_rays_line(self, rays, rand_inds, imgs, masks, vis2d, flow, occ, dp_feats,batch_map): """ convert imgs, masks, flow, occ, dp_feats to rays rand_map: map pixel index to original batch index rand_inds: bs, """ opts = self.opts rays['img_at_samp']=torch.gather(imgs[batch_map][...,0], 2, rand_inds[:,None].repeat(1,3,1))[:,None][...,0] rays['sil_at_samp']=torch.gather(masks[batch_map][...,0], 2, rand_inds[:,None].repeat(1,1,1))[:,None][...,0] rays['vis_at_samp']=torch.gather(vis2d[batch_map][...,0], 2, rand_inds[:,None].repeat(1,1,1))[:,None][...,0] rays['flo_at_samp']=torch.gather(flow[batch_map][...,0], 2, rand_inds[:,None].repeat(1,2,1))[:,None][...,0] rays['cfd_at_samp']=torch.gather(occ[batch_map][...,0], 2, rand_inds[:,None].repeat(1,1,1))[:,None][...,0] if opts.use_embed: rays['feats_at_samp']=torch.gather(dp_feats[batch_map][...,0], 2, rand_inds[:,None].repeat(1,16,1))[:,None][...,0] def obs_to_rays(self, rays, rand_inds, imgs, masks, vis2d, flow, occ, dp_feats): """ convert imgs, masks, flow, occ, dp_feats to rays """ opts = self.opts bs = imgs.shape[0] rays['img_at_samp'] = torch.stack([imgs[i].view(3,-1).T[rand_inds[i]]\ for i in range(bs)],0) # bs,ns,3 rays['sil_at_samp'] = torch.stack([masks[i].view(-1,1)[rand_inds[i]]\ for i in range(bs)],0) # bs,ns,1 rays['vis_at_samp'] = torch.stack([vis2d[i].view(-1,1)[rand_inds[i]]\ for i in range(bs)],0) # bs,ns,1 rays['flo_at_samp'] = torch.stack([flow[i].view(2,-1).T[rand_inds[i]]\ for i in range(bs)],0) # bs,ns,2 rays['cfd_at_samp'] = torch.stack([occ[i].view(-1,1)[rand_inds[i]]\ for i in range(bs)],0) # bs,ns,1 if opts.use_embed: feats_at_samp = [dp_feats[i].view(16,-1).T\ [rand_inds[i].long()] for i in range(bs)] feats_at_samp = torch.stack(feats_at_samp,0) # bs,ns,num_feat rays['feats_at_samp'] = feats_at_samp def update_delta_rts(self, rays): """ change bone_rts_fw to delta fw """ opts = self.opts bones_rst, bone_rts_rst = correct_bones(self, self.nerf_models['bones']) self.nerf_models['bones_rst']=bones_rst # delta rts rays['bone_rts'] = correct_rest_pose(opts, rays['bone_rts'], bone_rts_rst) if 'bone_rts_target' in rays.keys(): rays['bone_rts_target'] = correct_rest_pose(opts, rays['bone_rts_target'], bone_rts_rst) if 'bone_rts_dentrg' in rays.keys(): rays['bone_rts_dentrg'] = correct_rest_pose(opts, rays['bone_rts_dentrg'], bone_rts_rst) def update_rays(self, rays, is_pair, dataid, frameid_sub, embedid, xys, Kinv): """ """ opts = self.opts # append target frame rtk embedid = embedid.long().to(self.device) if is_pair: rtk_vec = rays['rtk_vec'] # bs, N, 21 rtk_vec_target = rtk_vec.view(2,-1).flip(0) rays['rtk_vec_target'] = rtk_vec_target.reshape(rays['rtk_vec'].shape) embedid_target = embedid.view(2,-1).flip(0).reshape(-1) if opts.flowbw: time_embedded_target = self.pose_code(embedid_target)[:,None] rays['time_embedded_target'] = time_embedded_target.repeat(1, rays['nsample'],1) elif opts.lbs and self.num_bone_used>0: bone_rts_target = self.nerf_body_rts(embedid_target) rays['bone_rts_target'] = bone_rts_target.repeat(1,rays['nsample'],1) # pass time-dependent inputs time_embedded = self.pose_code(embedid)[:,None] rays['time_embedded'] = time_embedded.repeat(1,rays['nsample'],1) if opts.lbs and self.num_bone_used>0: bone_rts = self.nerf_body_rts(embedid) rays['bone_rts'] = bone_rts.repeat(1,rays['nsample'],1) if opts.env_code: rays['env_code'] = self.env_code(embedid)[:,None] rays['env_code'] = rays['env_code'].repeat(1,rays['nsample'],1) #rays['env_code'] = self.env_code(dataid.long().to(self.device)) #rays['env_code'] = rays['env_code'][:,None].repeat(1,rays['nsample'],1) if opts.use_unc: ts = frameid_sub.to(self.device) / self.max_ts * 2 -1 ts = ts[:,None,None].repeat(1,rays['nsample'],1) rays['ts'] = ts dataid = dataid.long().to(self.device) vid_code = self.vid_code(dataid)[:,None].repeat(1,rays['nsample'],1) rays['vid_code'] = vid_code xysn = torch.cat([xys, torch.ones_like(xys[...,:1])],2) xysn = xysn.matmul(Kinv.permute(0,2,1))[...,:2] rays['xysn'] = xysn def convert_line_input(self, batch): device = self.device opts = self.opts # convert to float for k,v in batch.items(): batch[k] = batch[k].float() bs=batch['dataid'].shape[0] self.imgs = batch['img'] .view(bs,2,3, -1).permute(1,0,2,3).reshape(bs*2,3, -1,1).to(device) self.masks = batch['mask'] .view(bs,2,1, -1).permute(1,0,2,3).reshape(bs*2,1, -1,1).to(device) self.vis2d = batch['vis2d'] .view(bs,2,1, -1).permute(1,0,2,3).reshape(bs*2,1, -1,1).to(device) self.flow = batch['flow'] .view(bs,2,2, -1).permute(1,0,2,3).reshape(bs*2,2, -1,1).to(device) self.occ = batch['occ'] .view(bs,2,1, -1).permute(1,0,2,3).reshape(bs*2,1, -1,1).to(device) self.dps = batch['dp'] .view(bs,2,1, -1).permute(1,0,2,3).reshape(bs*2,1, -1,1).to(device) self.dp_feats = batch['dp_feat_rsmp'].view(bs,2,16,-1).permute(1,0,2,3).reshape(bs*2,16,-1,1).to(device) self.dp_feats = F.normalize(self.dp_feats, 2,1) self.rtk = batch['rtk'] .view(bs,-1,4,4).permute(1,0,2,3).reshape(-1,4,4) .to(device) self.kaug = batch['kaug'] .view(bs,-1,4).permute(1,0,2).reshape(-1,4) .to(device) self.frameid = batch['frameid'] .view(bs,-1).permute(1,0).reshape(-1).cpu() self.dataid = batch['dataid'] .view(bs,-1).permute(1,0).reshape(-1).cpu() self.lineid = batch['lineid'] .view(bs,-1).permute(1,0).reshape(-1).to(device) self.frameid_sub = self.frameid.clone() # id within a video self.embedid = self.frameid + self.data_offset[self.dataid.long()] self.frameid = self.frameid + self.data_offset[self.dataid.long()] self.errid = self.frameid*opts.img_size + self.lineid.cpu() # for err filter self.rt_raw = self.rtk.clone()[:,:3] # process silhouette self.masks = (self.masks*self.vis2d)>0 self.masks = self.masks.float() def convert_batch_input(self, batch): device = self.device opts = self.opts if batch['img'].dim()==4: bs,_,h,w = batch['img'].shape else: bs,_,_,h,w = batch['img'].shape # convert to float for k,v in batch.items(): batch[k] = batch[k].float() img_tensor = batch['img'].view(bs,-1,3,h,w).permute(1,0,2,3,4).reshape(-1,3,h,w) input_img_tensor = img_tensor.clone() for b in range(input_img_tensor.size(0)): input_img_tensor[b] = self.resnet_transform(input_img_tensor[b]) self.input_imgs = input_img_tensor.to(device) self.imgs = img_tensor.to(device) self.masks = batch['mask'] .view(bs,-1,h,w).permute(1,0,2,3).reshape(-1,h,w) .to(device) self.vis2d = batch['vis2d'] .view(bs,-1,h,w).permute(1,0,2,3).reshape(-1,h,w) .to(device) self.dps = batch['dp'] .view(bs,-1,h,w).permute(1,0,2,3).reshape(-1,h,w) .to(device) dpfd = 16 dpfs = 112 self.dp_feats = batch['dp_feat'] .view(bs,-1,dpfd,dpfs,dpfs).permute(1,0,2,3,4).reshape(-1,dpfd,dpfs,dpfs).to(device) self.dp_bbox = batch['dp_bbox'] .view(bs,-1,4).permute(1,0,2).reshape(-1,4) .to(device) if opts.use_embed and opts.ft_cse and (not self.is_warmup_pose): self.dp_feats_mask = self.dp_feats.abs().sum(1)>0 self.csepre_feats = self.dp_feats.clone() # unnormalized features self.csenet_feats, self.dps = self.csenet(self.imgs, self.masks) # for visualization self.dps = self.dps * self.dp_feats_mask.float() if self.progress > opts.ftcse_steps: self.dp_feats = self.csenet_feats else: self.dp_feats = self.csenet_feats.detach() self.dp_feats = F.normalize(self.dp_feats, 2,1) self.rtk = batch['rtk'] .view(bs,-1,4,4).permute(1,0,2,3).reshape(-1,4,4) .to(device) self.kaug = batch['kaug'] .view(bs,-1,4).permute(1,0,2).reshape(-1,4) .to(device) self.frameid = batch['frameid'] .view(bs,-1).permute(1,0).reshape(-1).cpu() self.dataid = batch['dataid'] .view(bs,-1).permute(1,0).reshape(-1).cpu() self.frameid_sub = self.frameid.clone() # id within a video self.embedid = self.frameid + self.data_offset[self.dataid.long()] self.frameid = self.frameid + self.data_offset[self.dataid.long()] self.errid = self.frameid # for err filter self.rt_raw = self.rtk.clone()[:,:3] # process silhouette self.masks = (self.masks*self.vis2d)>0 self.masks = self.masks.float() self.flow = batch['flow'].view(bs,-1,2,h,w).permute(1,0,2,3,4).reshape(-1,2,h,w).to(device) self.occ = batch['occ'].view(bs,-1,h,w).permute(1,0,2,3).reshape(-1,h,w) .to(device) self.lineid = None def convert_root_pose(self): """ assumes has self. {rtk, frameid, dp_feats, dps, masks, kaug } produces self. """ opts = self.opts bs = self.rtk.shape[0] device = self.device # scale initial poses if self.use_cam: self.rtk[:,:3,3] = self.rtk[:,:3,3] / self.obj_scale else: self.rtk[:,:3] = self.create_base_se3(bs, device) # compute delta pose if self.opts.root_opt: if self.root_basis == 'cnn': frame_code = self.dp_feats elif self.root_basis == 'mlp' or self.root_basis == 'exp'\ or self.root_basis == 'expmlp': frame_code = self.frameid.long().to(device) else: print('error'); exit() root_rts = self.nerf_root_rts(frame_code) self.rtk = self.refine_rt(self.rtk, root_rts) self.rtk[:,3,:] = self.ks_param[self.dataid.long()] #TODO kmat @staticmethod def refine_rt(rt_raw, root_rts): """ input: rt_raw representing the initial root poses (after scaling) input: root_rts representing delta se3 output: current estimate of rtks for all frames """ rt_raw = rt_raw.clone() root_rmat = root_rts[:,0,:9].view(-1,3,3) root_tmat = root_rts[:,0,9:12] rmat = rt_raw[:,:3,:3].clone() tmat = rt_raw[:,:3,3].clone() tmat = tmat + rmat.matmul(root_tmat[...,None])[...,0] rmat = rmat.matmul(root_rmat) rt_raw[:,:3,:3] = rmat rt_raw[:,:3,3] = tmat return rt_raw def compute_rts(self): """ Assumpions - use_cam - use mlp or exp root pose input: rt_raw representing the initial root poses output: current estimate of rtks for all frames """ device = self.device opts = self.opts frameid = torch.Tensor(range(self.num_fr)).to(device).long() if self.use_cam: # scale initial poses rt_raw = torch.Tensor(self.latest_vars['rt_raw']).to(device) rt_raw[:,:3,3] = rt_raw[:,:3,3] / self.obj_scale else: rt_raw = self.create_base_se3(self.num_fr, device) # compute mlp rts if opts.root_opt: if self.root_basis == 'mlp' or self.root_basis == 'exp'\ or self.root_basis == 'expmlp': root_rts = self.nerf_root_rts(frameid) else: print('error'); exit() rt_raw = self.refine_rt(rt_raw, root_rts) return rt_raw def save_latest_vars(self): """ in: self. {rtk, kaug, frameid, vis2d} out: self. {latest_vars} these are only used in get_near_far_plane and compute_visibility """ rtk = self.rtk.clone().detach() Kmat = K2mat(rtk[:,3]) Kaug = K2inv(self.kaug) # p = Kaug Kmat P rtk[:,3] = mat2K(Kaug.matmul(Kmat)) # TODO don't want to save k at eval time (due to different intrinsics) self.latest_vars['rtk'][self.frameid.long()] = rtk.cpu().numpy() self.latest_vars['rt_raw'][self.frameid.long()] = self.rt_raw.cpu().numpy() self.latest_vars['idk'][self.frameid.long()] = 1 def set_input(self, batch, load_line=False): device = self.device opts = self.opts if load_line: self.convert_line_input(batch) else: self.convert_batch_input(batch) bs = self.imgs.shape[0] self.convert_root_pose() self.save_latest_vars() if opts.lineload and self.training: self.dp_feats = self.dp_feats else: self.dp_feats = resample_dp(self.dp_feats, self.dp_bbox, self.kaug, self.img_size) if self.training and self.opts.anneal_freq: alpha = self.num_freqs * \ self.progress / (opts.warmup_steps) #if alpha>self.alpha.data[0]: self.alpha.data[0] = min(max(6, alpha),self.num_freqs) # alpha from 6 to 10 self.embedding_xyz.alpha = self.alpha.data[0] self.embedding_dir.alpha = self.alpha.data[0] return bs
banmo-main
nnutils/banmo.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. import cv2, pdb, os, sys, numpy as np, torch import torch.nn as nn import torch.nn.functional as F import torchvision curr_dir = os.path.abspath(os.getcwd()) sys.path.insert(0, curr_dir) detbase = './third_party/detectron2/' sys.path.insert(0, '%s/projects/DensePose/' % detbase) from detectron2.structures import Boxes from detectron2.config import get_cfg from detectron2.modeling import build_model from detectron2.checkpoint import DetectionCheckpointer from detectron2.structures import Boxes from densepose import add_densepose_config from densepose.modeling.cse.utils import squared_euclidean_distance_matrix from utils.cselib import create_cse, run_cse class CSENet(nn.Module): def __init__(self, ishuman): super(CSENet, self).__init__() if ishuman: config_path = '%s/projects/DensePose/configs/cse/densepose_rcnn_R_101_FPN_DL_soft_s1x.yaml' % detbase weight_path = 'https://dl.fbaipublicfiles.com/densepose/cse/densepose_rcnn_R_101_FPN_DL_soft_s1x/250713061/model_final_1d3314.pkl' self.mesh_name = 'smpl_27554' else: config_path = '%s/projects/DensePose/configs/cse/densepose_rcnn_R_50_FPN_soft_animals_CA_finetune_4k.yaml' % detbase weight_path = 'https://dl.fbaipublicfiles.com/densepose/cse/densepose_rcnn_R_50_FPN_soft_animals_CA_finetune_4k/253498611/model_final_6d69b7.pkl' self.mesh_name = 'sheep_5004' self.net, self.embedder, self.mesh_vertex_embeddings = create_cse(config_path, weight_path) def forward(self, img, msk): bs = img.shape[0] h = img.shape[2] device = img.device img = img * 255 img = torch.flip(img, [1]) pad = h img = F.pad(img, (pad, pad, pad, pad)) msk = F.pad(msk, (pad, pad, pad, pad)) img = F.interpolate(img, (384, 384),mode='bilinear') msk = F.interpolate(msk[:,None], (384, 384),mode='nearest')[:,0] bboxes = [] for i in range(bs): indices = torch.where(msk[i]>0); xid = indices[1]; yid = indices[0] bbox = [xid.min(), yid.min(), xid.max(), yid.max()] bbox = torch.Tensor([bbox]).to(device) bbox = Boxes(bbox) bboxes.append(bbox) #dps = [] #feats = [] #for i in range(bs): # img_sub = img[i].permute(1, 2, 0).cpu().numpy() # msk_sub = msk[i].cpu().numpy() # # put into a bigger image: out size 112/512 # dp, img_bgr, feat, feat_norm, bbox = run_cse((self.net), (self.embedder), (self.mesh_vertex_embeddings), # img_sub, # msk_sub, # mesh_name=(self.mesh_name)) # pdb.set_trace() # dp = torch.Tensor(dp).to(device) # feat = torch.Tensor(feat).to(device) # dps.append(dp) # feats.append(feat) #dps = torch.stack(dps, 0) #feats = torch.stack(feats, 0) #pdb.set_trace() self.net.eval() with torch.no_grad(): img = torch.stack([(x - self.net.pixel_mean) / self.net.pixel_std\ for x in img]) features = self.net.backbone(img) features = [features[f] for f in self.net.roi_heads.in_features] features = [self.net.roi_heads.decoder(features)] features_dp = self.net.roi_heads.densepose_pooler(features, bboxes).detach() densepose_head_outputs = self.net.roi_heads.densepose_head(features_dp) densepose_predictor_outputs = self.net.roi_heads.densepose_predictor(densepose_head_outputs) feats = densepose_predictor_outputs.embedding # (xxx,112,112) with torch.no_grad(): dps = [] for i in range(bs): assign_mat = squared_euclidean_distance_matrix(feats[i].view(16,-1).T, self.mesh_vertex_embeddings[self.mesh_name]) dp = assign_mat.argmin(dim=1).view(112,112) dps.append(dp) dps = torch.stack(dps,0) return feats, dps
banmo-main
nnutils/cse.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. import torch def image_grid(img, row, col): """ img: N,h,w,x collage: 1,.., x """ bs,h,w,c=img.shape device = img.device collage = torch.zeros(h*row, w*col, c).to(device) for i in range(row): for j in range(col): collage[i*h:(i+1)*h,j*w:(j+1)*w] = img[i*col+j] return collage
banmo-main
nnutils/vis_utils.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. import pdb import time import cv2 import numpy as np import trimesh from pytorch3d import transforms import torch import torch.nn as nn import torch.nn.functional as F from scipy.spatial.transform import Rotation as R import sys sys.path.insert(0, 'third_party') from ext_utils.flowlib import warp_flow, cat_imgflo def evaluate_mlp(model, xyz_embedded, embed_xyz=None, dir_embedded=None, chunk=32*1024, xyz=None, code=None, sigma_only=False): """ embed_xyz: embedding function chunk is the point-level chunk divided by number of bins """ B,nbins,_ = xyz_embedded.shape out_chunks = [] for i in range(0, B, chunk): embedded = xyz_embedded[i:i+chunk] if embed_xyz is not None: embedded = embed_xyz(embedded) if dir_embedded is not None: embedded = torch.cat([embedded, dir_embedded[i:i+chunk]], -1) if code is not None: code_chunk = code[i:i+chunk] if code_chunk.dim() == 2: code_chunk = code_chunk[:,None] code_chunk = code_chunk.repeat(1,nbins,1) embedded = torch.cat([embedded,code_chunk], -1) if xyz is not None: xyz_chunk = xyz[i:i+chunk] else: xyz_chunk = None out_chunks += [model(embedded, sigma_only=sigma_only, xyz=xyz_chunk)] out = torch.cat(out_chunks, 0) return out def bone_transform(bones_in, rts, is_vec=False): """ bones_in: 1,B,10 - B gaussian ellipsoids of bone coordinates rts: ...,B,3,4 - B ririd transforms rts are applied to bone coordinate transforms (left multiply) is_vec: whether rts are stored as r1...9,t1...3 vector form """ B = bones_in.shape[-2] bones = bones_in.view(-1,B,10).clone() if is_vec: rts = rts.view(-1,B,12) else: rts = rts.view(-1,B,3,4) bs = rts.shape[0] center = bones[:,:,:3] orient = bones[:,:,3:7] # real first scale = bones[:,:,7:10] if is_vec: Rmat = rts[:,:,:9].view(-1,B,3,3) Tmat = rts[:,:,9:12].view(-1,B,3,1) else: Rmat = rts[:,:,:3,:3] Tmat = rts[:,:,:3,3:4] # move bone coordinates (left multiply) center = Rmat.matmul(center[...,None])[...,0]+Tmat[...,0] Rquat = transforms.matrix_to_quaternion(Rmat) orient = transforms.quaternion_multiply(Rquat, orient) scale = scale.repeat(bs,1,1) bones = torch.cat([center,orient,scale],-1) return bones def rtmat_invert(Rmat, Tmat): """ Rmat: ...,3,3 - rotations Tmat: ...,3 - translations """ rts = torch.cat([Rmat, Tmat[...,None]],-1) rts_i = rts_invert(rts) Rmat_i = rts_i[...,:3,:3] # bs, B, 3,3 Tmat_i = rts_i[...,:3,3] return Rmat_i, Tmat_i def rtk_invert(rtk_in, B): """ rtk_in: ... (rot 1...9, trans 1...3) """ rtk_shape = rtk_in.shape rtk_in = rtk_in.view(-1,B,12)# B,12 rmat=rtk_in[:,:,:9] rmat=rmat.view(-1,B,3,3) tmat= rtk_in[:,:,9:12] rts_fw = torch.cat([rmat,tmat[...,None]],-1) rts_fw = rts_fw.view(-1,B,3,4) rts_bw = rts_invert(rts_fw) rvec = rts_bw[...,:3,:3].reshape(-1,9) tvec = rts_bw[...,:3,3] .reshape(-1,3) rtk = torch.cat([rvec,tvec],-1).view(rtk_shape) return rtk def rts_invert(rts_in): """ rts: ...,3,4 - B ririd transforms """ rts = rts_in.view(-1,3,4).clone() Rmat = rts[:,:3,:3] # bs, B, 3,3 Tmat = rts[:,:3,3:] Rmat_i=Rmat.permute(0,2,1) Tmat_i=-Rmat_i.matmul(Tmat) rts_i = torch.cat([Rmat_i, Tmat_i],-1) rts_i = rts_i.view(rts_in.shape) return rts_i def rtk_to_4x4(rtk): """ rtk: ...,12 """ device = rtk.device bs = rtk.shape[0] zero_one = torch.Tensor([[0,0,0,1]]).to(device).repeat(bs,1) rmat=rtk[:,:9] rmat=rmat.view(-1,3,3) tmat=rtk[:,9:12] rts = torch.cat([rmat,tmat[...,None]],-1) rts = torch.cat([rts,zero_one[:,None]],1) return rts def rtk_compose(rtk1, rtk2): """ rtk ... """ rtk_shape = rtk1.shape rtk1 = rtk1.view(-1,12)# ...,12 rtk2 = rtk2.view(-1,12)# ...,12 rts1 = rtk_to_4x4(rtk1) rts2 = rtk_to_4x4(rtk2) rts = rts1.matmul(rts2) rvec = rts[...,:3,:3].reshape(-1,9) tvec = rts[...,:3,3].reshape(-1,3) rtk = torch.cat([rvec,tvec],-1).view(rtk_shape) return rtk def vec_to_sim3(vec): """ vec: ...,10 center: ...,3 orient: ...,3,3 scale: ...,3 """ center = vec[...,:3] orient = vec[...,3:7] # real first orient = F.normalize(orient, 2,-1) orient = transforms.quaternion_to_matrix(orient) # real first scale = vec[...,7:10].exp() return center, orient, scale def gauss_mlp_skinning(xyz, embedding_xyz, bones, pose_code, nerf_skin, skin_aux=None): """ xyz: N_rays, ndepth, 3 bones: ... nbones, 10 pose_code: ...,1, nchannel """ N_rays = xyz.shape[0] #TODO hacky way to make code compaitible with noqueryfw if pose_code.dim() == 2 and pose_code.shape[0]!=N_rays: pose_code = pose_code[None].repeat(N_rays, 1,1) xyz_embedded = embedding_xyz(xyz) dskin = mlp_skinning(nerf_skin, pose_code, xyz_embedded) skin = skinning(bones, xyz, dskin, skin_aux=skin_aux) # bs, N, B return skin def mlp_skinning(mlp, code, pts_embed): """ code: bs, D - N D-dimensional pose code pts_embed: bs,N,x - N point positional embeddings dskin: bs,N,B - delta skinning matrix """ if mlp is None: dskin = None else: dskin = evaluate_mlp(mlp, pts_embed, code=code, chunk=8*1024) return dskin def axis_rotate(orient, mdis): bs,N,B,_,_ = mdis.shape mdis = (orient * mdis.view(bs,N,B,1,3)).sum(4)[...,None] # faster #mdis = orient.matmul(mdis) # bs,N,B,3,1 # slower return mdis def skinning_chunk(bones, pts, dskin=None, skin_aux=None): #def skinning(bones, pts, dskin=None, skin_aux=None): """ bone: bs,B,10 - B gaussian ellipsoids pts: bs,N,3 - N 3d points, usually N=num points per ray, b~=2034 skin: bs,N,B - skinning matrix """ device = pts.device log_scale= skin_aux[0] w_const = skin_aux[1] bs,N,_ = pts.shape B = bones.shape[-2] if bones.dim()==2: bones = bones[None].repeat(bs,1,1) bones = bones.view(-1,B,10) center, orient, scale = vec_to_sim3(bones) orient = orient.permute(0,1,3,2) # transpose R # mahalanobis distance [(p-v)^TR^T]S[R(p-v)] # transform a vector to the local coordinate mdis = center.view(bs,1,B,3) - pts.view(bs,N,1,3) # bs,N,B,3 mdis = axis_rotate(orient.view(bs,1,B,3,3), mdis[...,None]) mdis = mdis[...,0] mdis = scale.view(bs,1,B,3) * mdis.pow(2) # log_scale (being optimized) controls temporature of the skinning weight softmax # multiply 1000 to make the weights more concentrated initially inv_temperature = 1000 * log_scale.exp() mdis = (-inv_temperature * mdis.sum(3)) # bs,N,B if dskin is not None: mdis = mdis+dskin skin = mdis.softmax(2) return skin def skinning(bones, pts, dskin=None, skin_aux=None): """ bone: ...,B,10 - B gaussian ellipsoids pts: bs,N,3 - N 3d points skin: bs,N,B - skinning matrix """ chunk=4096 bs,N,_ = pts.shape B = bones.shape[-2] if bones.dim()==2: bones = bones[None].repeat(bs,1,1) bones = bones.view(-1,B,10) skin = [] for i in range(0,bs,chunk): if dskin is None: dskin_chunk = None else: dskin_chunk = dskin[i:i+chunk] skin_chunk = skinning_chunk(bones[i:i+chunk], pts[i:i+chunk], \ dskin=dskin_chunk, skin_aux=skin_aux) skin.append( skin_chunk ) skin = torch.cat(skin,0) return skin def blend_skinning_chunk(bones, rts, skin, pts): #def blend_skinning(bones, rts, skin, pts): """ bone: bs,B,10 - B gaussian ellipsoids rts: bs,B,3,4 - B ririd transforms, applied to bone coordinates (points attached to bones in world coords) pts: bs,N,3 - N 3d points skin: bs,N,B - skinning matrix apply rts to bone coordinates, while computing blending globally """ B = rts.shape[-3] N = pts.shape[-2] pts = pts.view(-1,N,3) rts = rts.view(-1,B,3,4) Rmat = rts[:,:,:3,:3] # bs, B, 3,3 Tmat = rts[:,:,:3,3] device = Tmat.device ## convert from bone to root transforms #bones = bones.view(-1,B,10) #bs = Rmat.shape[0] #center = bones[:,:,:3] #orient = bones[:,:,3:7] # real first #orient = F.normalize(orient, 2,-1) #orient = transforms.quaternion_to_matrix(orient) # real first #gmat = torch.eye(4)[None,None].repeat(bs, B, 1, 1).to(device) # ## root to bone #gmat_r2b = gmat.clone() #gmat_r2b[:,:,:3,:3] = orient.permute(0,1,3,2) #gmat_r2b[:,:,:3,3] = -orient.permute(0,1,3,2).matmul(center[...,None])[...,0] ## bone to root #gmat_b2r = gmat.clone() #gmat_b2r[:,:,:3,:3] = orient #gmat_b2r[:,:,:3,3] = center ## bone to bone #gmat_b = gmat.clone() #gmat_b[:,:,:3,:3] = Rmat #gmat_b[:,:,:3,3] = Tmat #gmat = gmat_b2r.matmul(gmat_b.matmul(gmat_r2b)) #Rmat = gmat[:,:,:3,:3] #Tmat = gmat[:,:,:3,3] # Gi=sum(wbGb), V=RV+T Rmat_w = (skin[...,None,None] * Rmat[:,None]).sum(2) # bs,N,B,3 Tmat_w = (skin[...,None] * Tmat[:,None]).sum(2) # bs,N,B,3 pts = Rmat_w.matmul(pts[...,None]) + Tmat_w[...,None] pts = pts[...,0] return pts def blend_skinning(bones, rts, skin, pts): """ bone: bs,B,10 - B gaussian ellipsoids rts: bs,B,3,4 - B ririd transforms, applied to bone coordinates pts: bs,N,3 - N 3d points skin: bs,N,B - skinning matrix apply rts to bone coordinates, while computing blending globally """ chunk=4096 B = rts.shape[-3] N = pts.shape[-2] bones = bones.view(-1,B,10) pts = pts.view(-1,N,3) rts = rts.view(-1,B,3,4) bs = pts.shape[0] pts_out = [] for i in range(0,bs,chunk): pts_chunk = blend_skinning_chunk(bones[i:i+chunk], rts[i:i+chunk], skin[i:i+chunk], pts[i:i+chunk]) pts_out.append(pts_chunk) pts = torch.cat(pts_out,0) return pts def lbs(bones, rts_fw, skin, xyz_in, backward=True): """ bones: bs,B,10 - B gaussian ellipsoids indicating rest bone coordinates rts_fw: bs,B,12 - B rigid transforms, applied to the rest bones xyz_in: bs,N,3 - N 3d points after transforms in the root coordinates """ B = bones.shape[-2] N = xyz_in.shape[-2] bs = rts_fw.shape[0] bones = bones.view(-1,B,10) xyz_in = xyz_in.view(-1,N,3) rts_fw = rts_fw.view(-1,B,12)# B,12 rmat=rts_fw[:,:,:9] rmat=rmat.view(bs,B,3,3) tmat= rts_fw[:,:,9:12] rts_fw = torch.cat([rmat,tmat[...,None]],-1) rts_fw = rts_fw.view(-1,B,3,4) if backward: bones_dfm = bone_transform(bones, rts_fw) # bone coordinates after deform rts_bw = rts_invert(rts_fw) xyz = blend_skinning(bones_dfm, rts_bw, skin, xyz_in) else: xyz = blend_skinning(bones.repeat(bs,1,1), rts_fw, skin, xyz_in) bones_dfm = bone_transform(bones, rts_fw) # bone coordinates after deform return xyz, bones_dfm def obj_to_cam(in_verts, Rmat, Tmat): """ verts: ...,N,3 Rmat: ...,3,3 Tmat: ...,3 """ verts = in_verts.clone() if verts.dim()==2: verts=verts[None] verts = verts.view(-1,verts.shape[1],3) Rmat = Rmat.view(-1,3,3).permute(0,2,1) # left multiply Tmat = Tmat.view(-1,1,3) verts = verts.matmul(Rmat) + Tmat verts = verts.reshape(in_verts.shape) return verts def obj2cam_np(pts, Rmat, Tmat): """ a wrapper for numpy array pts: ..., 3 Rmat: 1,3,3 Tmat: 1,3,3 """ pts_shape = pts.shape pts = torch.Tensor(pts).cuda().reshape(1,-1,3) pts = obj_to_cam(pts, Rmat,Tmat) return pts.view(pts_shape).cpu().numpy() def K2mat(K): """ K: ...,4 """ K = K.view(-1,4) device = K.device bs = K.shape[0] Kmat = torch.zeros(bs, 3, 3, device=device) Kmat[:,0,0] = K[:,0] Kmat[:,1,1] = K[:,1] Kmat[:,0,2] = K[:,2] Kmat[:,1,2] = K[:,3] Kmat[:,2,2] = 1 return Kmat def mat2K(Kmat): """ Kmat: ...,3,3 """ shape=Kmat.shape[:-2] Kmat = Kmat.view(-1,3,3) device = Kmat.device bs = Kmat.shape[0] K = torch.zeros(bs, 4, device=device) K[:,0] = Kmat[:,0,0] K[:,1] = Kmat[:,1,1] K[:,2] = Kmat[:,0,2] K[:,3] = Kmat[:,1,2] K = K.view(shape+(4,)) return K def Kmatinv(Kmat): """ Kmat: ...,3,3 """ K = mat2K(Kmat) Kmatinv = K2inv(K) Kmatinv = Kmatinv.view(Kmat.shape) return Kmatinv def K2inv(K): """ K: ...,4 """ K = K.view(-1,4) device = K.device bs = K.shape[0] Kmat = torch.zeros(bs, 3, 3, device=device) Kmat[:,0,0] = 1./K[:,0] Kmat[:,1,1] = 1./K[:,1] Kmat[:,0,2] = -K[:,2]/K[:,0] Kmat[:,1,2] = -K[:,3]/K[:,1] Kmat[:,2,2] = 1 return Kmat def pinhole_cam(in_verts, K): """ in_verts: ...,N,3 K: ...,4 verts: ...,N,3 in (x,y,Z) """ verts = in_verts.clone() verts = verts.view(-1,verts.shape[1],3) K = K.view(-1,4) Kmat = K2mat(K) Kmat = Kmat.permute(0,2,1) verts = verts.matmul(Kmat) verts_z = verts[:,:,2:3] verts_xy = verts[:,:,:2] / (1e-6+verts_z) # deal with neg z verts = torch.cat([verts_xy,verts_z],-1) verts = verts.reshape(in_verts.shape) return verts def render_color(renderer, in_verts, faces, colors, texture_type='vertex'): """ verts in ndc in_verts: ...,N,3/4 faces: ...,N,3 rendered: ...,4,... """ import soft_renderer as sr verts = in_verts.clone() verts = verts.view(-1,verts.shape[-2],3) faces = faces.view(-1,faces.shape[-2],3) if texture_type=='vertex': colors = colors.view(-1,colors.shape[-2],3) elif texture_type=='surface': colors = colors.view(-1,colors.shape[1],colors.shape[2],3) device=verts.device offset = torch.Tensor( renderer.transform.transformer._eye).to(device)[np.newaxis,np.newaxis] verts_pre = verts[:,:,:3]-offset verts_pre[:,:,1] = -1*verts_pre[:,:,1] # pre-flip rendered = renderer.render_mesh(sr.Mesh(verts_pre,faces,textures=colors,texture_type=texture_type)) return rendered def render_flow(renderer, verts, faces, verts_n): """ rasterization verts in ndc verts: ...,N,3/4 verts_n: ...,N,3/4 faces: ...,N,3 """ verts = verts.view(-1,verts.shape[1],3) verts_n = verts_n.view(-1,verts_n.shape[1],3) faces = faces.view(-1,faces.shape[1],3) device=verts.device rendered_ndc_n = render_color(renderer, verts, faces, verts_n) _,_,h,w = rendered_ndc_n.shape rendered_sil = rendered_ndc_n[:,-1] ndc = np.meshgrid(range(w), range(h)) ndc = torch.Tensor(ndc).to(device)[None] ndc[:,0] = ndc[:,0]*2 / (w-1) - 1 ndc[:,1] = ndc[:,1]*2 / (h-1) - 1 flow = rendered_ndc_n[:,:2] - ndc flow = flow.permute(0,2,3,1) # x,h,w,2 flow = torch.cat([flow, rendered_sil[...,None]],-1) flow[rendered_sil<1]=0. flow[...,-1]=0. # discard the last channel return flow def force_type(varlist): for i in range(len(varlist)): varlist[i] = varlist[i].type(varlist[0].dtype) return varlist def tensor2array(tdict): adict={} for k,v in tdict.items(): adict[k] = v.detach().cpu().numpy() return adict def array2tensor(adict, device='cpu'): tdict={} for k,v in adict.items(): try: tdict[k] = torch.Tensor(v) if device != 'cpu': tdict[k] = tdict[k].to(device) except: pass # trimesh object return tdict def raycast(xys, Rmat, Tmat, Kinv, near_far): """ assuming xys and Rmat have same num of bs xys: bs, N, 3 Rmat:bs, ...,3,3 Tmat:bs, ...,3, camera to root coord transform Kinv:bs, ...,3,3 near_far:bs,2 """ Rmat, Tmat, Kinv, xys = force_type([Rmat, Tmat, Kinv, xys]) Rmat = Rmat.view(-1,3,3) Tmat = Tmat.view(-1,1,3) Kinv = Kinv.view(-1,3,3) bs,nsample,_ = xys.shape device = Rmat.device xy1s = torch.cat([xys, torch.ones_like(xys[:,:,:1])],2) xyz3d = xy1s.matmul(Kinv.permute(0,2,1)) ray_directions = xyz3d.matmul(Rmat) # transpose -> right multiply ray_origins = -Tmat.matmul(Rmat) # transpose -> right multiply if near_far is not None: znear= (torch.ones(bs,nsample,1).to(device) * near_far[:,0,None,None]) zfar = (torch.ones(bs,nsample,1).to(device) * near_far[:,1,None,None]) else: lbound, ubound=[-1.5,1.5] znear= Tmat[:,:,-1:].repeat(1,nsample,1)+lbound zfar = Tmat[:,:,-1:].repeat(1,nsample,1)+ubound znear[znear<1e-5]=1e-5 ray_origins = ray_origins.repeat(1,nsample,1) rmat_vec = Rmat.reshape(-1,1,9) tmat_vec = Tmat.reshape(-1,1,3) kinv_vec = Kinv.reshape(-1,1,9) rtk_vec = torch.cat([rmat_vec, tmat_vec, kinv_vec],-1) # x,21 rtk_vec = rtk_vec.repeat(1,nsample,1) rays={'rays_o': ray_origins, 'rays_d': ray_directions, 'near': znear, 'far': zfar, 'rtk_vec': rtk_vec, 'xys': xys, 'nsample': nsample, 'bs': bs, } return rays def sample_xy(img_size, bs, nsample, device, return_all=False, lineid=None): """ rand_inds: bs, ns xys: bs, ns, 2 """ xygrid = np.meshgrid(range(img_size), range(img_size)) # w,h->hxw xygrid = torch.Tensor(xygrid).to(device) # (x,y) xygrid = xygrid.permute(1,2,0).reshape(1,-1,2) # 1,..., 2 if return_all: xygrid = xygrid.repeat(bs,1,1) # bs,..., 2 nsample = xygrid.shape[1] rand_inds=torch.Tensor(range(nsample)) rand_inds=rand_inds[None].repeat(bs,1) xys = xygrid else: if lineid is None: probs = torch.ones(img_size**2).to(device) # 512*512 vs 128*64 rand_inds = torch.multinomial(probs, bs*nsample, replacement=False) rand_inds = rand_inds.view(bs,nsample) xys = torch.stack([xygrid[0][rand_inds[i]] for i in range(bs)],0) # bs,ns,2 else: probs = torch.ones(img_size).to(device) # 512*512 vs 128*64 rand_inds = torch.multinomial(probs, bs*nsample, replacement=True) rand_inds = rand_inds.view(bs,nsample) xys = torch.stack([xygrid[0][rand_inds[i]] for i in range(bs)],0) # bs,ns,2 xys[...,1] = xys[...,1] + lineid[:,None] rand_inds = rand_inds.long() return rand_inds, xys def chunk_rays(rays,start,delta): """ rays: a dictionary """ rays_chunk = {} for k,v in rays.items(): if torch.is_tensor(v): v = v.view(-1, v.shape[-1]) rays_chunk[k] = v[start:start+delta] return rays_chunk def generate_bones(num_bones_x, num_bones, bound, device): """ num_bones_x: bones along one direction bones: x**3,9 """ center = torch.linspace(-bound, bound, num_bones_x).to(device) center =torch.meshgrid(center, center, center) center = torch.stack(center,0).permute(1,2,3,0).reshape(-1,3) center = center[:num_bones] orient = torch.Tensor([[1,0,0,0]]).to(device) orient = orient.repeat(num_bones,1) scale = torch.zeros(num_bones,3).to(device) bones = torch.cat([center, orient, scale],-1) return bones def reinit_bones(model, mesh, num_bones): """ update the data of bones and nerf_body_rts[1].rgb without add new parameters num_bones: number of bones on the surface mesh: trimesh warning: ddp does not support adding/deleting parameters after construction """ #TODO find another way to add/delete bones from kmeans_pytorch import kmeans device = model.device points = torch.Tensor(mesh.vertices).to(device) rthead = model.nerf_body_rts[1].rgb # reinit num_in = rthead[0].weight.shape[1] rthead = nn.Sequential(nn.Linear(num_in, 6*num_bones)).to(device) torch.nn.init.xavier_uniform_(rthead[0].weight, gain=0.5) torch.nn.init.zeros_(rthead[0].bias) if points.shape[0]<100: bound = model.latest_vars['obj_bound'] bound = torch.Tensor(bound)[None] center = torch.rand(num_bones, 3) * bound*2 - bound else: _, center = kmeans(X=points, num_clusters=num_bones, iter_limit=100, tqdm_flag=False, distance='euclidean', device=device) center=center.to(device) orient = torch.Tensor([[1,0,0,0]]).to(device) orient = orient.repeat(num_bones,1) scale = torch.zeros(num_bones,3).to(device) bones = torch.cat([center, orient, scale],-1) model.num_bones = num_bones num_output = model.nerf_body_rts[1].num_output bias_reinit = rthead[0].bias.data weight_reinit=rthead[0].weight.data model.nerf_body_rts[1].rgb[0].bias.data[:num_bones*num_output] = bias_reinit model.nerf_body_rts[1].rgb[0].weight.data[:num_bones*num_output] = weight_reinit bones,_ = correct_bones(model, bones, inverse=True) model.bones.data[:num_bones] = bones model.nerf_models['bones'] = model.bones return def correct_bones(model, bones_rst, inverse=False): # bones=>bones_rst bones_rst = bones_rst.clone() rest_pose_code = model.rest_pose_code rest_pose_code = rest_pose_code(torch.Tensor([0]).long().to(model.device)) rts_head = model.nerf_body_rts[1] bone_rts_rst = rts_head(rest_pose_code)[0] # 1,B*12 if inverse: bone_rts_rst = rtk_invert(bone_rts_rst, model.opts.num_bones) bones_rst = bone_transform(bones_rst, bone_rts_rst, is_vec=True)[0] return bones_rst, bone_rts_rst def correct_rest_pose(opts, bone_rts_fw, bone_rts_rst): # delta rts bone_rts_fw = bone_rts_fw.clone() rts_shape = bone_rts_fw.shape bone_rts_rst_inv = rtk_invert(bone_rts_rst, opts.num_bones) bone_rts_rst_inv = bone_rts_rst_inv.repeat(rts_shape[0],rts_shape[1],1) bone_rts_fw = rtk_compose(bone_rts_rst_inv, bone_rts_fw) return bone_rts_fw def warp_bw(opts, model, rt_dict, query_xyz_chunk, embedid): """ only used in mesh extraction embedid: embedding id """ chunk = query_xyz_chunk.shape[0] query_time = torch.ones(chunk,1).to(model.device)*embedid query_time = query_time.long() if opts.flowbw: # flowbw xyz_embedded = model.embedding_xyz(query_xyz_chunk) time_embedded = model.pose_code(query_time)[:,0] xyztime_embedded = torch.cat([xyz_embedded, time_embedded],1) flowbw_chunk = model.nerf_flowbw(xyztime_embedded, xyz=query_xyz_chunk) query_xyz_chunk += flowbw_chunk elif opts.lbs: # backward skinning bones_rst = model.bones bone_rts_fw = model.nerf_body_rts(query_time) # update bones bones_rst, bone_rts_rst = correct_bones(model, bones_rst) bone_rts_fw = correct_rest_pose(opts, bone_rts_fw, bone_rts_rst) query_xyz_chunk = query_xyz_chunk[:,None] if opts.nerf_skin: nerf_skin = model.nerf_skin else: nerf_skin = None time_embedded = model.pose_code(query_time) bones_dfm = bone_transform(bones_rst, bone_rts_fw, is_vec=True) skin_backward = gauss_mlp_skinning(query_xyz_chunk, model.embedding_xyz, bones_dfm, time_embedded, nerf_skin, skin_aux=model.skin_aux ) query_xyz_chunk,bones_dfm = lbs(bones_rst, bone_rts_fw, skin_backward, query_xyz_chunk) query_xyz_chunk = query_xyz_chunk[:,0] rt_dict['bones'] = bones_dfm return query_xyz_chunk, rt_dict def warp_fw(opts, model, rt_dict, vertices, embedid): """ only used in mesh extraction """ num_pts = vertices.shape[0] query_time = torch.ones(num_pts,1).long().to(model.device)*embedid pts_can=torch.Tensor(vertices).to(model.device) if opts.flowbw: # forward flow pts_can_embedded = model.embedding_xyz(pts_can) time_embedded = model.pose_code(query_time)[:,0] ptstime_embedded = torch.cat([pts_can_embedded, time_embedded],1) pts_dfm = pts_can + model.nerf_flowfw(ptstime_embedded, xyz=pts_can) elif opts.lbs: # forward skinning pts_can = pts_can[:,None] bones_rst = model.bones bone_rts_fw = model.nerf_body_rts(query_time) bones_rst, bone_rts_rst = correct_bones(model, bones_rst) bone_rts_fw = correct_rest_pose(opts, bone_rts_fw, bone_rts_rst) if opts.nerf_skin: nerf_skin = model.nerf_skin else: nerf_skin = None rest_pose_code = model.rest_pose_code rest_pose_code = rest_pose_code(torch.Tensor([0]).long().to(bones_rst.device)) skin_forward = gauss_mlp_skinning(pts_can, model.embedding_xyz, bones_rst, rest_pose_code, nerf_skin, skin_aux=model.skin_aux) pts_dfm,bones_dfm = lbs(bones_rst, bone_rts_fw, skin_forward, pts_can,backward=False) pts_dfm = pts_dfm[:,0] rt_dict['bones'] = bones_dfm vertices = pts_dfm.cpu().numpy() return vertices, rt_dict def canonical2ndc(model, dp_canonical_pts, rtk, kaug, embedid): """ dp_canonical_pts: 5004,3, pts in the canonical space of each video dp_px: bs, 5004, 3 """ Rmat = rtk[:,:3,:3] Tmat = rtk[:,:3,3] Kmat = K2mat(rtk[:,3,:]) Kaug = K2inv(kaug) # p = Kaug Kmat P Kinv = Kmatinv(Kaug.matmul(Kmat)) K = mat2K(Kmatinv(Kinv)) bs = Kinv.shape[0] npts = dp_canonical_pts.shape[0] # projection dp_canonical_pts = dp_canonical_pts[None] if model.opts.flowbw: time_embedded = model.pose_code(embedid) time_embedded = time_embedded.repeat(1,npts, 1) dp_canonical_embedded = model.embedding_xyz(dp_canonical_pts)[None] dp_canonical_embedded = dp_canonical_embedded.repeat(bs,1,1) dp_canonical_embedded = torch.cat([dp_canonical_embedded, time_embedded], -1) dp_deformed_flo = model.nerf_flowfw(dp_canonical_embedded, xyz=dp_canonical_pts) dp_deformed_pts = dp_canonical_pts + dp_deformed_flo else: dp_deformed_pts = dp_canonical_pts.repeat(bs,1,1) dp_cam_pts = obj_to_cam(dp_deformed_pts, Rmat, Tmat) dp_px = pinhole_cam(dp_cam_pts,K) return dp_px def get_near_far(near_far, vars_np, tol_fac=1.2, pts=None): """ pts: point coordinate N,3 near_far: near and far plane M,2 rtk: object to camera transform, M,4,4 idk: indicator of obsered or not M tol_fac tolerance factor """ if pts is None: #pts = vars_np['mesh_rest'].vertices # turn points to bounding box pts = trimesh.bounds.corners(vars_np['mesh_rest'].bounds) device = near_far.device rtk = torch.Tensor(vars_np['rtk']).to(device) idk = torch.Tensor(vars_np['idk']).to(device) pts = pts_to_view(pts, rtk, device) pmax = pts[...,-1].max(-1)[0] pmin = pts[...,-1].min(-1)[0] delta = (pmax - pmin)*(tol_fac-1) near= pmin-delta far = pmax+delta near_far[idk==1,0] = torch.clamp(near[idk==1], min=1e-3) near_far[idk==1,1] = torch.clamp( far[idk==1], min=1e-3) return near_far def pts_to_view(pts, rtk, device): """ object to camera coordinates pts: point coordinate N,3 rtk: object to camera transform, M,4,4 idk: indicator of obsered or not M """ M = rtk.shape[0] out_pts = [] chunk=100 for i in range(0,M,chunk): rtk_sub = rtk[i:i+chunk] pts_sub = torch.Tensor(np.tile(pts[None], (len(rtk_sub),1,1))).to(device) # M,N,3 pts_sub = obj_to_cam(pts_sub, rtk_sub[:,:3,:3], rtk_sub[:,:3,3]) pts_sub = pinhole_cam(pts_sub, rtk_sub[:,3]) out_pts.append(pts_sub) out_pts = torch.cat(out_pts, 0) return out_pts def compute_point_visibility(pts, vars_np, device): """ pts: point coordinate N,3 rtk: object to camera transform, M,4,4 idk: indicator of obsered or not M **deprecated** due to K vars_tensor['rtk'] may not be consistent """ vars_tensor = array2tensor(vars_np, device=device) rtk = vars_tensor['rtk'] idk = vars_tensor['idk'] vis = vars_tensor['vis'] pts = pts_to_view(pts, rtk, device) # T, N, 3 h,w = vis.shape[1:] vis = vis[:,None] xy = pts[:,None,:,:2] xy[...,0] = xy[...,0]/w*2 - 1 xy[...,1] = xy[...,1]/h*2 - 1 # grab the visibility value in the mask and sum over frames vis = F.grid_sample(vis, xy)[:,0,0] vis = (idk[:,None]*vis).sum(0) vis = (vis>0).float() # at least seen in one view return vis def near_far_to_bound(near_far): """ near_far: T, 2 on cuda bound: float this can only be used for a single video (and for approximation) """ bound=(near_far[:,1]-near_far[:,0]).mean() / 2 bound = bound.detach().cpu().numpy() return bound def rot_angle(mat): """ rotation angle of rotation matrix rmat: ..., 3,3 """ eps=1e-4 cos = ( mat[...,0,0] + mat[...,1,1] + mat[...,2,2] - 1 )/2 cos = cos.clamp(-1+eps,1-eps) angle = torch.acos(cos) return angle def match2coords(match, w_rszd): tar_coord = torch.cat([match[:,None]%w_rszd, match[:,None]//w_rszd],-1) tar_coord = tar_coord.float() return tar_coord def match2flo(match, w_rszd, img_size, warp_r, warp_t, device): ref_coord = sample_xy(w_rszd, 1, 0, device, return_all=True)[1].view(-1,2) ref_coord = ref_coord.matmul(warp_r[:2,:2]) + warp_r[None,:2,2] tar_coord = match2coords(match, w_rszd) tar_coord = tar_coord.matmul(warp_t[:2,:2]) + warp_t[None,:2,2] flo_dp = (tar_coord - ref_coord) / img_size * 2 # [-2,2] flo_dp = flo_dp.view(w_rszd, w_rszd, 2) flo_dp = flo_dp.permute(2,0,1) xygrid = sample_xy(w_rszd, 1, 0, device, return_all=True)[1] # scale to img_size xygrid = xygrid * float(img_size/w_rszd) warp_r_inv = Kmatinv(warp_r) xygrid = xygrid.matmul(warp_r_inv[:2,:2]) + warp_r_inv[None,:2,2] xygrid = xygrid / w_rszd * 2 - 1 flo_dp = F.grid_sample(flo_dp[None], xygrid.view(1,w_rszd,w_rszd,2))[0] return flo_dp def compute_flow_cse(cse_a,cse_b, warp_a, warp_b, img_size): """ compute the flow between two frames under cse feature matching assuming two feature images have the same dimension (also rectangular) cse: 16,h,w, feature image flo_dp: 2,h,w """ _,_,w_rszd = cse_a.shape hw_rszd = w_rszd*w_rszd device = cse_a.device cost = (cse_b[:,None,None] * cse_a[...,None,None]).sum(0) _,match_a = cost.view(hw_rszd, hw_rszd).max(1) _,match_b = cost.view(hw_rszd, hw_rszd).max(0) flo_a = match2flo(match_a, w_rszd, img_size, warp_a, warp_b, device) flo_b = match2flo(match_b, w_rszd, img_size, warp_b, warp_a, device) return flo_a, flo_b def compute_flow_geodist(dp_refr,dp_targ, geodists): """ compute the flow between two frames under geodesic distance matching dps: h,w, canonical surface mapping index geodists N,N, distance matrix flo_dp: 2,h,w """ h_rszd,w_rszd = dp_refr.shape hw_rszd = h_rszd*w_rszd device = dp_refr.device chunk = 1024 # match: hw**2 match = torch.zeros(hw_rszd).to(device) for i in range(0,hw_rszd,chunk): chunk_size = len(dp_refr.view(-1,1)[i:i+chunk] ) dp_refr_sub = dp_refr.view(-1,1)[i:i+chunk].repeat(1,hw_rszd).view(-1,1) dp_targ_sub = dp_targ.view(1,-1) .repeat(chunk_size,1).view(-1,1) match_sub = geodists[dp_refr_sub, dp_targ_sub] dis_geo_sub,match_sub = match_sub.view(-1, hw_rszd).min(1) #match_sub[dis_geo_sub>0.1] = 0 match[i:i+chunk] = match_sub # cx,cy tar_coord = match2coords(match, w_rszd) ref_coord = sample_xy(w_rszd, 1, 0, device, return_all=True)[1].view(-1,2) ref_coord = ref_coord.view(h_rszd, w_rszd, 2) tar_coord = tar_coord.view(h_rszd, w_rszd, 2) flo_dp = (tar_coord - ref_coord) / w_rszd * 2 # [-2,2] match = match.view(h_rszd, w_rszd) flo_dp[match==0] = 0 flo_dp = flo_dp.permute(2,0,1) return flo_dp def compute_flow_geodist_old(dp_refr,dp_targ, geodists): """ compute the flow between two frames under geodesic distance matching dps: h,w, canonical surface mapping index geodists N,N, distance matrix flo_dp: 2,h,w """ h_rszd,w_rszd = dp_refr.shape hw_rszd = h_rszd*w_rszd device = dp_refr.device dp_refr = dp_refr.view(-1,1).repeat(1,hw_rszd).view(-1,1) dp_targ = dp_targ.view(1,-1).repeat(hw_rszd,1).view(-1,1) match = geodists[dp_refr, dp_targ] dis_geo,match = match.view(hw_rszd, hw_rszd).min(1) #match[dis_geo>0.1] = 0 # cx,cy tar_coord = match2coords(match, w_rszd) ref_coord = sample_xy(w_rszd, 1, 0, device, return_all=True)[1].view(-1,2) ref_coord = ref_coord.view(h_rszd, w_rszd, 2) tar_coord = tar_coord.view(h_rszd, w_rszd, 2) flo_dp = (tar_coord - ref_coord) / w_rszd * 2 # [-2,2] match = match.view(h_rszd, w_rszd) flo_dp[match==0] = 0 flo_dp = flo_dp.permute(2,0,1) return flo_dp def fb_flow_check(flo_refr, flo_targ, img_refr, img_targ, dp_thrd, save_path=None): """ apply forward backward consistency check on flow fields flo_refr: 2,h,w forward flow flo_targ: 2,h,w backward flow fberr: h,w forward backward error """ h_rszd, w_rszd = flo_refr.shape[1:] # clean up flow flo_refr = flo_refr.permute(1,2,0).cpu().numpy() flo_targ = flo_targ.permute(1,2,0).cpu().numpy() flo_refr_mask = np.linalg.norm(flo_refr,2,-1)>0 # this also removes 0 flows flo_targ_mask = np.linalg.norm(flo_targ,2,-1)>0 flo_refr_px = flo_refr * w_rszd / 2 flo_targ_px = flo_targ * w_rszd / 2 #fb check x0,y0 =np.meshgrid(range(w_rszd),range(h_rszd)) hp0 = np.stack([x0,y0],-1) # screen coord flo_fb = warp_flow(hp0 + flo_targ_px, flo_refr_px) - hp0 flo_fb = 2*flo_fb/w_rszd fberr_fw = np.linalg.norm(flo_fb, 2,-1) fberr_fw[~flo_refr_mask] = 0 flo_bf = warp_flow(hp0 + flo_refr_px, flo_targ_px) - hp0 flo_bf = 2*flo_bf/w_rszd fberr_bw = np.linalg.norm(flo_bf, 2,-1) fberr_bw[~flo_targ_mask] = 0 if save_path is not None: # vis thrd_vis = 0.01 img_refr = F.interpolate(img_refr, (h_rszd, w_rszd), mode='bilinear')[0] img_refr = img_refr.permute(1,2,0).cpu().numpy()[:,:,::-1] img_targ = F.interpolate(img_targ, (h_rszd, w_rszd), mode='bilinear')[0] img_targ = img_targ.permute(1,2,0).cpu().numpy()[:,:,::-1] flo_refr[:,:,0] = (flo_refr[:,:,0] + 2)/2 flo_targ[:,:,0] = (flo_targ[:,:,0] - 2)/2 flo_refr[fberr_fw>thrd_vis]=0. flo_targ[fberr_bw>thrd_vis]=0. flo_refr[~flo_refr_mask]=0. flo_targ[~flo_targ_mask]=0. img = np.concatenate([img_refr, img_targ], 1) flo = np.concatenate([flo_refr, flo_targ], 1) imgflo = cat_imgflo(img, flo) imgcnf = np.concatenate([fberr_fw, fberr_bw],1) imgcnf = np.clip(imgcnf, 0, dp_thrd)*(255/dp_thrd) imgcnf = np.repeat(imgcnf[...,None],3,-1) imgcnf = cv2.resize(imgcnf, imgflo.shape[::-1][1:]) imgflo_cnf = np.concatenate([imgflo, imgcnf],0) cv2.imwrite(save_path, imgflo_cnf) return fberr_fw, fberr_bw def mask_aug(rendered): lb = 0.1; ub = 0.3 _,h,w=rendered.shape if np.random.binomial(1,0.5): sx = int(np.random.uniform(lb*w,ub*w)) sy = int(np.random.uniform(lb*h,ub*h)) cx = int(np.random.uniform(sx,w-sx)) cy = int(np.random.uniform(sy,h-sy)) feat_mean = rendered.mean(-1).mean(-1)[:,None,None] rendered[:,cx-sx:cx+sx,cy-sy:cy+sy] = feat_mean return rendered def process_so3_seq(rtk_seq, vis=False, smooth=True): """ rtk_seq, bs, N, 13 including {scoresx1, rotationsx9, translationsx3} """ from utils.io import draw_cams scores =rtk_seq[...,0] bs,N = scores.shape rmat = rtk_seq[...,1:10] tmat = rtk_seq[:,0,10:13] rtk_raw = rtk_seq[:,0,13:29].reshape((-1,4,4)) distribution = torch.Tensor(scores).softmax(1) entropy = (-distribution.log() * distribution).sum(1) if vis: # draw distribution obj_scale = 3 cam_space = obj_scale * 0.2 tmat_raw = np.tile(rtk_raw[:,None,:3,3], (1,N,1)) scale_factor = obj_scale/tmat_raw[...,-1].mean() tmat_raw *= scale_factor tmat_raw = tmat_raw.reshape((bs,12,-1,3)) tmat_raw[...,-1] += np.linspace(-cam_space, cam_space,12)[None,:,None] tmat_raw = tmat_raw.reshape((bs,-1,3)) # bs, tiltxae all_rts = np.concatenate([rmat, tmat_raw],-1) all_rts = np.transpose(all_rts.reshape(bs,N,4,3), [0,1,3,2]) for i in range(bs): top_idx = scores[i].argsort()[-30:] top_rt = all_rts[i][top_idx] top_score = scores[i][top_idx] top_score = (top_score - top_score.min())/(top_score.max()-top_score.min()) mesh = draw_cams(top_rt, color_list = top_score) mesh.export('tmp/%d.obj'%(i)) if smooth: # graph cut scores, bsxN import pydensecrf.densecrf as dcrf from pydensecrf.utils import unary_from_softmax graph = dcrf.DenseCRF2D(bs, 1, N) # width, height, nlabels unary = unary_from_softmax(distribution.numpy().T.copy()) graph.setUnaryEnergy(unary) grid = rmat[0].reshape((N,3,3)) drot = np.matmul(grid[None], np.transpose(grid[:,None], (0,1,3,2))) drot = rot_angle(torch.Tensor(drot)) compat = (-2*(drot).pow(2)).exp()*10 compat = compat.numpy() graph.addPairwiseGaussian(sxy=10, compat=compat) Q = graph.inference(100) scores = np.asarray(Q).T # argmax idx_max = scores.argmax(-1) rmat = rmat[0][idx_max] rmat = rmat.reshape((-1,9)) rts = np.concatenate([rmat, tmat],-1) rts = rts.reshape((bs,1,-1)) # post-process se3 root_rmat = rts[:,0,:9].reshape((-1,3,3)) root_tmat = rts[:,0,9:12] rmat = rtk_raw[:,:3,:3] tmat = rtk_raw[:,:3,3] tmat = tmat + np.matmul(rmat, root_tmat[...,None])[...,0] rmat = np.matmul(rmat, root_rmat) rtk_raw[:,:3,:3] = rmat rtk_raw[:,:3,3] = tmat if vis: # draw again pdb.set_trace() rtk_vis = rtk_raw.copy() rtk_vis[:,:3,3] *= scale_factor mesh = draw_cams(rtk_vis) mesh.export('tmp/final.obj') return rtk_raw def align_sim3(rootlist_a, rootlist_b, is_inlier=None, err_valid=None): """ nx4x4 matrices is_inlier: n """ # ta = np.matmul(-np.transpose(rootlist_a[:,:3,:3],[0,2,1]), # rootlist_a[:,:3,3:4]) # ta = ta[...,0].T # tb = np.matmul(-np.transpose(rootlist_b[:,:3,:3],[0,2,1]), # rootlist_b[:,:3,3:4]) # tb = tb[...,0].T # dso3,dtrn,dscale=umeyama_alignment(tb, ta,with_scale=False) # # dscale = np.linalg.norm(rootlist_a[0,:3,3],2,-1) /\ # np.linalg.norm(rootlist_b[0,:3,3],2,-1) # rootlist_b[:,:3,:3] = np.matmul(rootlist_b[:,:3,:3], dso3.T[None]) # rootlist_b[:,:3,3:4] = rootlist_b[:,:3,3:4] - \ # np.matmul(rootlist_b[:,:3,:3], dtrn[None,:,None]) dso3 = np.matmul(np.transpose(rootlist_b[:,:3,:3],(0,2,1)), rootlist_a[:,:3,:3]) dscale = np.linalg.norm(rootlist_a[:,:3,3],2,-1)/\ np.linalg.norm(rootlist_b[:,:3,3],2,-1) # select inliers to fit if is_inlier is not None: if is_inlier.sum() == 0: is_inlier[np.argmin(err_valid)] = True dso3 = dso3[is_inlier] dscale = dscale[is_inlier] dso3 = R.from_matrix(dso3).mean().as_matrix() rootlist_b[:,:3,:3] = np.matmul(rootlist_b[:,:3,:3], dso3[None]) dscale = dscale.mean() rootlist_b[:,:3,3] = rootlist_b[:,:3,3] * dscale so3_err = np.matmul(rootlist_a[:,:3,:3], np.transpose(rootlist_b[:,:3,:3],[0,2,1])) so3_err = rot_angle(torch.Tensor(so3_err)) so3_err = so3_err / np.pi*180 so3_err_max = so3_err.max() so3_err_mean = so3_err.mean() so3_err_med = np.median(so3_err) so3_err_std = np.asarray(so3_err.std()) print(so3_err) print('max so3 error (deg): %.1f'%(so3_err_max)) print('med so3 error (deg): %.1f'%(so3_err_med)) print('mean so3 error (deg): %.1f'%(so3_err_mean)) print('std so3 error (deg): %.1f'%(so3_err_std)) return rootlist_b def align_sfm_sim3(aux_seq, datasets): from utils.io import draw_cams, load_root for dataset in datasets: seqname = dataset.imglist[0].split('/')[-2] # only process dataset with rtk_path input if dataset.has_prior_cam: root_dir = dataset.rtklist[0][:-9] root_sfm = load_root(root_dir, 0)[:-1] # excluding the last # split predicted root into multiple sequences seq_idx = [seqname == i.split('/')[-2] for i in aux_seq['impath']] root_pred = aux_seq['rtk'][seq_idx] is_inlier = aux_seq['is_valid'][seq_idx] err_valid = aux_seq['err_valid'][seq_idx] # only use certain ones to match #pdb.set_trace() #mesh = draw_cams(root_sfm, color='gray') #mesh.export('0.obj') # pre-align the center according to cat mask root_sfm = visual_hull_align(root_sfm, aux_seq['kaug'][seq_idx], aux_seq['masks'][seq_idx]) root_sfm = align_sim3(root_pred, root_sfm, is_inlier=is_inlier, err_valid=err_valid) # only modify rotation #root_pred[:,:3,:3] = root_sfm[:,:3,:3] root_pred = root_sfm aux_seq['rtk'][seq_idx] = root_pred aux_seq['is_valid'][seq_idx] = True else: print('not aligning %s, no rtk path in config file'%seqname) def visual_hull_align(rtk, kaug, masks): """ input: array output: array """ rtk = torch.Tensor(rtk) kaug = torch.Tensor(kaug) masks = torch.Tensor(masks) num_view,h,w = masks.shape grid_size = 64 if rtk.shape[0]!=num_view: print('rtk size mismtach: %d vs %d'%(rtk.shape[0], num_view)) rtk = rtk[:num_view] rmat = rtk[:,:3,:3] tmat = rtk[:,:3,3:] Kmat = K2mat(rtk[:,3]) Kaug = K2inv(kaug) # p = Kaug Kmat P kmat = mat2K(Kaug.matmul(Kmat)) rmatc = rmat.permute((0,2,1)) tmatc = -rmatc.matmul(tmat) bound = tmatc.norm(2,-1).mean() pts = np.linspace(-bound, bound, grid_size).astype(np.float32) query_yxz = np.stack(np.meshgrid(pts, pts, pts), -1) # (y,x,z) query_yxz = torch.Tensor(query_yxz).view(-1, 3) query_xyz = torch.cat([query_yxz[:,1:2], query_yxz[:,0:1], query_yxz[:,2:3]],-1) score_xyz = [] chunk = 1000 for i in range(0,len(query_xyz),chunk): query_xyz_chunk = query_xyz[None, i:i+chunk].repeat(num_view, 1,1) query_xyz_chunk = obj_to_cam(query_xyz_chunk, rmat, tmat) query_xyz_chunk = pinhole_cam(query_xyz_chunk, kmat) query_xy = query_xyz_chunk[...,:2] query_xy[...,0] = query_xy[...,0]/w*2-1 query_xy[...,1] = query_xy[...,1]/h*2-1 # sum over time score = F.grid_sample(masks[:,None], query_xy[:,None])[:,0,0] score = score.sum(0) score_xyz.append(score) # align the center score_xyz = torch.cat(score_xyz) center = query_xyz[score_xyz>0.8*num_view] print('%d points used to align center'% (len(center)) ) center = center.mean(0) tmatc = tmatc - center[None,:,None] tmat = np.matmul(-rmat, tmatc) rtk[:,:3,3:] = tmat return rtk def ood_check_cse(dp_feats, dp_embed, dp_idx): """ dp_feats: bs,16,h,w dp_idx: bs, h,w dp_embed: N,16 valid_list bs """ bs,_,h,w = dp_feats.shape N,_ = dp_embed.shape device = dp_feats.device dp_idx = F.interpolate(dp_idx.float()[None], (h,w), mode='nearest').long()[0] ## dot product #pdb.set_trace() #err_list = [] #err_threshold = 0.05 #for i in range(bs): # err = 1- (dp_embed[dp_idx[i]]*dp_feats[i].permute(1,2,0)).sum(-1) # err_list.append(err) # fb check err_list = [] err_threshold = 12 # TODO no fb check #err_threshold = 100 for i in range(bs): # use chunk chunk = 5000 max_idx = torch.zeros(N).to(device) for j in range(0,N,chunk): costmap = (dp_embed.view(N,16,1)[j:j+chunk]*\ dp_feats[i].view(1,16,h*w)).sum(-2) max_idx[j:j+chunk] = costmap.argmax(-1) # N rpj_idx = max_idx[dp_idx[i]] rpj_coord = torch.stack([rpj_idx % w, rpj_idx//w],-1) ref_coord = sample_xy(w, 1, 0, device, return_all=True)[1].view(h,w,2) err = (rpj_coord - ref_coord).norm(2,-1) err_list.append(err) valid_list = [] error_list = [] for i in range(bs): err = err_list[i] mean_error = err[dp_idx[i]!=0].mean() is_valid = mean_error < err_threshold error_list.append( mean_error) valid_list.append( is_valid ) #cv2.imwrite('tmp/%05d.png'%i, (err/mean_error).cpu().numpy()*100) #print(i); print(mean_error) error_list = torch.stack(error_list,0) valid_list = torch.stack(valid_list,0) return valid_list, error_list def bbox_dp2rnd(bbox, kaug): """ bbox: bs, 4 kaug: bs, 4 cropab2: bs, 3,3, transformation from dp bbox to rendered bbox coords """ cropa2im = torch.cat([(bbox[:,2:] - bbox[:,:2]) / 112., bbox[:,:2]],-1) cropa2im = K2mat(cropa2im) im2cropb = K2inv(kaug) cropa2b = im2cropb.matmul(cropa2im) return cropa2b def resample_dp(dp_feats, dp_bbox, kaug, target_size): """ dp_feats: bs, 16, h,w dp_bbox: bs, 4 kaug: bs, 4 """ # if dp_bbox are all zeros, just do the resizing if dp_bbox.abs().sum()==0: dp_feats_rsmp = F.interpolate(dp_feats, (target_size, target_size), mode='bilinear') else: dp_size = dp_feats.shape[-1] device = dp_feats.device dp2rnd = bbox_dp2rnd(dp_bbox, kaug) rnd2dp = Kmatinv(dp2rnd) xygrid = sample_xy(target_size, 1, 0, device, return_all=True)[1] xygrid = xygrid.matmul(rnd2dp[:,:2,:2]) + rnd2dp[:,None,:2,2] xygrid = xygrid / dp_size * 2 - 1 dp_feats_rsmp = F.grid_sample(dp_feats, xygrid.view(-1,target_size,target_size,2)) return dp_feats_rsmp def vrender_flo(weights_coarse, xyz_coarse_target, xys, img_size): """ weights_coarse: ..., ndepth xyz_coarse_target: ..., ndepth, 3 flo_coarse: ..., 2 flo_valid: ..., 1 """ # render flow weights_coarse = weights_coarse.clone() xyz_coarse_target = xyz_coarse_target.clone() # bs, nsamp, -1, x weights_shape = weights_coarse.shape xyz_coarse_target = xyz_coarse_target.view(weights_shape+(3,)) xy_coarse_target = xyz_coarse_target[...,:2] # deal with negative z invalid_ind = torch.logical_or(xyz_coarse_target[...,-1]<1e-5, xy_coarse_target.norm(2,-1).abs()>2*img_size) weights_coarse[invalid_ind] = 0. xy_coarse_target[invalid_ind] = 0. # renormalize weights_coarse = weights_coarse/(1e-9+weights_coarse.sum(-1)[...,None]) # candidate motion vector xys_unsq = xys.view(weights_shape[:-1]+(1,2)) flo_coarse = xy_coarse_target - xys_unsq flo_coarse = weights_coarse[...,None] * flo_coarse flo_coarse = flo_coarse.sum(-2) ## candidate target point #xys_unsq = xys.view(weights_shape[:-1]+(2,)) #xy_coarse_target = weights_coarse[...,None] * xy_coarse_target #xy_coarse_target = xy_coarse_target.sum(-2) #flo_coarse = xy_coarse_target - xys_unsq flo_coarse = flo_coarse/img_size * 2 flo_valid = (invalid_ind.sum(-1)==0).float()[...,None] return flo_coarse, flo_valid def diff_flo(pts_target, xys, img_size): """ pts_target: ..., 1, 2 xys: ..., 2 flo_coarse: ..., 2 flo_valid: ..., 1 """ # candidate motion vector pts_target = pts_target.view(xys.shape) flo_coarse = pts_target - xys flo_coarse = flo_coarse/img_size * 2 return flo_coarse def fid_reindex(fid, num_vids, vid_offset): """ re-index absolute frameid {0,....N} to subsets of video id and relative frameid fid: N absolution id vid: N video id tid: N relative id """ tid = torch.zeros_like(fid).float() vid = torch.zeros_like(fid) max_ts = (vid_offset[1:] - vid_offset[:-1]).max() for i in range(num_vids): assign = torch.logical_and(fid>=vid_offset[i], fid<vid_offset[i+1]) vid[assign] = i tid[assign] = fid[assign].float() - vid_offset[i] doffset = vid_offset[i+1] - vid_offset[i] tid[assign] = (tid[assign] - doffset/2)/max_ts*2 #tid[assign] = 2*(tid[assign] / doffset)-1 #tid[assign] = (tid[assign] - doffset/2)/1000. return vid, tid
banmo-main
nnutils/geom_utils.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. import pdb import trimesh import cv2 import numpy as np import torch from nnutils.geom_utils import rot_angle, mat2K, Kmatinv, obj_to_cam, \ pinhole_cam, lbs, gauss_mlp_skinning, evaluate_mlp import torch.nn.functional as F def nerf_gradient(mlp, embed, pts, use_xyz=False,code=None, sigma_only=False): """ gradient of mlp params wrt pts """ pts.requires_grad_(True) pts_embedded = embed(pts) if use_xyz: xyz=pts else: xyz=None y = evaluate_mlp(mlp, pts_embedded, chunk=pts.shape[0], xyz=xyz,code=code,sigma_only=sigma_only) sdf = -y ibetas = 1/(mlp.beta.abs()+1e-9) sigmas = (0.5 + 0.5 * sdf.sign() * torch.expm1(-sdf.abs() * ibetas)) # get gradient for each size-1 output gradients = [] for i in range(y.shape[-1]): y_sub = y [...,i:i+1] d_output = torch.ones_like(y_sub, requires_grad=False, device=y.device) gradient = torch.autograd.grad( outputs=y_sub, inputs=pts, grad_outputs=d_output, create_graph=True, retain_graph=True, only_inputs=True)[0] gradients.append( gradient[...,None] ) gradients = torch.cat(gradients,-1) # ...,input-dim, output-dim return gradients, sigmas def eikonal_loss(mlp, embed, pts, bound): """ pts: X* backward warped points """ # make it more efficient bs = pts.shape[0] sample_size = 1000 if bs>sample_size: probs = torch.ones(bs) rand_inds = torch.multinomial(probs, sample_size, replacement=False) pts = pts[rand_inds] pts = pts.view(-1,3).detach() nsample = pts.shape[0] device = next(mlp.parameters()).device bound = torch.Tensor(bound)[None].to(device) inbound_idx = ((bound - pts.abs()) > 0).sum(-1) == 3 pts = pts[inbound_idx] pts = pts[None] g,sigmas_unit = nerf_gradient(mlp, embed, pts, sigma_only=True) g = g[...,0] grad_norm = g.norm(2, dim=-1) eikonal_loss = (grad_norm - 1) ** 2 eikonal_loss = eikonal_loss.mean() return eikonal_loss def elastic_loss(mlp, embed, xyz, time_embedded): xyz = xyz.detach().clone() time_embedded = time_embedded.detach().clone() g,_ = nerf_gradient(mlp, embed, xyz, use_xyz=mlp.use_xyz,code=time_embedded) jacobian = g+torch.eye(3)[None,None].to(g.device) sign, log_svals = jacobian.slogdet() log_svals = log_svals.clone() log_svals[sign<=0] = 0. elastic_loss = log_svals**2 return elastic_loss def bone_density_loss(mlp, embed, bones): pts = bones[:,:3] pts_embedded = embed(pts) y = evaluate_mlp(mlp, pts_embedded, pts.shape[0], sigma_only=True) return bone_density_loss def visibility_loss(mlp, embed, xyz_pos, w_pos, bound, chunk): """ w_pos: num_points x num_samples, visibility returns from nerf bound: scalar, used to sample negative samples """ device = next(mlp.parameters()).device xyz_pos = xyz_pos.detach().clone() w_pos = w_pos.detach().clone() # negative examples nsample = w_pos.shape[0]*w_pos.shape[1] bound = torch.Tensor(bound)[None,None] xyz_neg = torch.rand(1,nsample,3)*2*bound-bound xyz_neg = xyz_neg.to(device) xyz_neg_embedded = embed(xyz_neg) vis_neg_pred = evaluate_mlp(mlp, xyz_neg_embedded, chunk=chunk)[...,0] vis_loss_neg = -F.logsigmoid(-vis_neg_pred).sum()*0.1/nsample # positive examples xyz_pos_embedded = embed(xyz_pos) vis_pos_pred = evaluate_mlp(mlp, xyz_pos_embedded, chunk=chunk)[...,0] vis_loss_pos = -(F.logsigmoid(vis_pos_pred) * w_pos).sum()/nsample vis_loss = vis_loss_pos + vis_loss_neg return vis_loss def rtk_loss(rtk, rtk_raw, aux_out): rot_pred = rtk[:,:3,:3] rot_gt = rtk_raw[:,:3,:3] rot_loss = rot_angle(rot_pred.matmul(rot_gt.permute(0,2,1))).mean() rot_loss = 0.01*rot_loss trn_pred = rtk[:,:3,3] trn_gt = rtk_raw[:,:3,3] trn_loss = (trn_pred - trn_gt).pow(2).sum(-1).mean() total_loss = rot_loss + trn_loss aux_out['rot_loss'] = rot_loss aux_out['trn_loss'] = trn_loss return total_loss def compute_pts_exp(pts_prob, pts): """ pts: ..., ndepth, 3 pts_prob: ..., ndepth """ ndepth = pts_prob.shape[-1] pts_prob = pts_prob.clone() pts_prob = pts_prob.view(-1, ndepth,1) pts_prob = pts_prob/(1e-9+pts_prob.sum(1)[:,None]) pts_exp = (pts * pts_prob).sum(1) return pts_exp def feat_match_loss(nerf_feat, embedding_xyz, feats, pts, pts_prob, bound, is_training=True): """ feats: ..., num_feat pts: ..., ndepth, 3 pts_prob: ..., ndepth loss: ..., 1 """ pts = pts.clone() base_shape = feats.shape[:-1] # bs, ns nfeat = feats.shape[-1] ndepth = pts_prob.shape[-1] feats= feats.view(-1, nfeat) pts = pts.view(-1, ndepth,3) # part1: compute expected pts pts_exp = compute_pts_exp(pts_prob, pts) ## part2: matching pts_pred = feat_match(nerf_feat, embedding_xyz, feats, bound,grid_size=20,is_training=is_training) # part3: compute loss feat_err = (pts_pred - pts_exp).norm(2,-1) # n,ndepth # rearrange outputs pts_pred = pts_pred.view(base_shape+(3,)) pts_exp = pts_exp .view(base_shape+(3,)) feat_err = feat_err .view(base_shape+(1,)) return pts_pred, pts_exp, feat_err def kp_reproj_loss(pts_pred, xys, models, embedding_xyz, rays): """ pts_pred, ...,3 xys, ...,2 out, ...,1 same as pts_pred gcc loss is only used to update root/body pose and skinning weights """ xys = xys.view(-1,1,2) xy_reproj = kp_reproj(pts_pred, models, embedding_xyz, rays) proj_err = (xys - xy_reproj[...,:2]).norm(2,-1) proj_err = proj_err.view(pts_pred.shape[:-1]+(1,)) return proj_err def kp_reproj(pts_pred, models, embedding_xyz, rays, to_target=False): """ pts_pred, ...,3 out, ...,1,3 same as pts_pred to_target whether reproject to target frame """ N = pts_pred.view(-1,3).shape[0] xyz_coarse_sampled = pts_pred.view(-1,1,3) # detach grad since reproj-loss would not benefit feature learning # (due to ambiguity) #xyz_coarse_sampled = xyz_coarse_sampled.detach() # TODO wrap flowbw and lbs into the same module # TODO include loss for flowbw if to_target: rtk_vec = rays['rtk_vec_target'] else: rtk_vec = rays['rtk_vec'] rtk_vec = rtk_vec.view(N,-1) # bs, ns, 21 if 'bones' in models.keys(): if to_target: bone_rts_fw = rays['bone_rts_target'] else: bone_rts_fw = rays['bone_rts'] bone_rts_fw = bone_rts_fw.view(N,-1) # bs, ns,-1 if 'nerf_skin' in models.keys(): nerf_skin = models['nerf_skin'] else: nerf_skin = None bones = models['bones_rst'] skin_aux = models['skin_aux'] rest_pose_code = models['rest_pose_code'] rest_pose_code = rest_pose_code(torch.Tensor([0]).long().to(bones.device)) skin_forward = gauss_mlp_skinning(xyz_coarse_sampled, embedding_xyz, bones, rest_pose_code, nerf_skin, skin_aux=skin_aux) xyz_coarse_sampled,_ = lbs(bones, bone_rts_fw, skin_forward, xyz_coarse_sampled, backward=False) Rmat = rtk_vec[:,0:9] .view(N,1,3,3) Tmat = rtk_vec[:,9:12] .view(N,1,3) Kinv = rtk_vec[:,12:21].view(N,1,3,3) K = mat2K(Kmatinv(Kinv)) xyz_coarse_sampled = obj_to_cam( xyz_coarse_sampled, Rmat, Tmat) xyz_coarse_sampled = pinhole_cam(xyz_coarse_sampled,K) xy_coarse_sampled = xyz_coarse_sampled[...,:2] return xy_coarse_sampled def feat_match(nerf_feat, embedding_xyz, feats, bound, grid_size=20,is_training=True, init_pts=None, rt_entropy=False): """ feats: -1, num_feat """ if is_training: chunk_pts = 8*1024 else: chunk_pts = 1024 chunk_pix = 4096 nsample,_ = feats.shape device = feats.device feats = F.normalize(feats,2,-1) # sample model on a regular 3d grid, and correlate with feature, nkxkxk #p1d = np.linspace(-bound, bound, grid_size).astype(np.float32) #query_yxz = np.stack(np.meshgrid(p1d, p1d, p1d), -1) # (y,x,z) pxd = np.linspace(-bound[0], bound[0], grid_size).astype(np.float32) pyd = np.linspace(-bound[1], bound[1], grid_size).astype(np.float32) pzd = np.linspace(-bound[2], bound[2], grid_size).astype(np.float32) query_yxz = np.stack(np.meshgrid(pyd, pxd, pzd), -1) # (y,x,z) query_yxz = torch.Tensor(query_yxz).to(device).view(-1, 3) query_xyz = torch.cat([query_yxz[:,1:2], query_yxz[:,0:1], query_yxz[:,2:3]],-1) if init_pts is not None: query_xyz = query_xyz[None] + init_pts[:,None] else: # N x Ns x 3 query_xyz = query_xyz[None] # inject some noise at training time if is_training and init_pts is None: bound = torch.Tensor(bound)[None,None].to(device) query_xyz = query_xyz + torch.randn_like(query_xyz) * bound * 0.05 cost_vol = [] for i in range(0,grid_size**3,chunk_pts): if init_pts is None: query_xyz_chunk = query_xyz[0,i:i+chunk_pts] xyz_embedded = embedding_xyz(query_xyz_chunk)[:,None] # (N,1,...) vol_feat_subchunk = evaluate_mlp(nerf_feat, xyz_embedded)[:,0] # (chunk, num_feat) # normalize vol feat vol_feat_subchunk = F.normalize(vol_feat_subchunk,2,-1)[None] cost_chunk = [] for j in range(0,nsample,chunk_pix): feats_chunk = feats[j:j+chunk_pix] # (chunk pix, num_feat) if init_pts is not None: # only query 3d grid according to each px when they are diff # vol feature query_xyz_chunk = query_xyz[j:j+chunk_pix,i:i+chunk_pts].clone() xyz_embedded = embedding_xyz(query_xyz_chunk) vol_feat_subchunk = evaluate_mlp(nerf_feat, xyz_embedded) # normalize vol feat vol_feat_subchunk = F.normalize(vol_feat_subchunk,2,-1) # cpix, cpts # distance metric cost_subchunk = (vol_feat_subchunk * \ feats_chunk[:,None]).sum(-1) * (nerf_feat.beta.abs()+1e-9) cost_chunk.append(cost_subchunk) cost_chunk = torch.cat(cost_chunk,0) # (nsample, cpts) cost_vol.append(cost_chunk) cost_vol = torch.cat(cost_vol,-1) # (nsample, k**3) prob_vol = cost_vol.softmax(-1) # regress to the true location, n,3 if not is_training: torch.cuda.empty_cache() # n, ns, 1 * n, ns, 3 pts_pred = (prob_vol[...,None] * query_xyz).sum(1) if rt_entropy: # compute normalized entropy match_unc = (-prob_vol * prob_vol.clamp(1e-9,1-1e-9).log()).sum(1)[:,None] match_unc = match_unc/np.log(grid_size**3) return pts_pred, match_unc else: return pts_pred def grad_update_bone(bones,embedding_xyz, nerf_vis, learning_rate): """ #TODO need to update bones locally """ device = bones.device bones_data = bones.data.detach() bones_data.requires_grad_(True) bone_xyz_embed = embedding_xyz(bones_data[:,None,:3]) sdf_at_bone = evaluate_mlp(nerf_vis, bone_xyz_embed) bone_loc_loss = F.relu(-sdf_at_bone).mean() # compute gradient wrt bones d_output = torch.ones_like(bone_loc_loss, requires_grad=False, device=device) gradient = torch.autograd.grad( outputs=bone_loc_loss, inputs=bones_data, grad_outputs=d_output, create_graph=True, retain_graph=True, only_inputs=True)[0] bones.data = bones.data-gradient*learning_rate return bone_loc_loss def loss_filter_line(sil_err, errid, frameid, sil_loss_samp, img_size, scale_factor=10): """ sil_err: Tx512 errid: N """ sil_loss_samp = sil_loss_samp.detach().cpu().numpy().reshape(-1) sil_err[errid] = sil_loss_samp sil_err = sil_err.reshape(-1,img_size) sil_err = sil_err.sum(-1) / (1e-9+(sil_err>0).astype(float).sum(-1)) sil_err_med = np.median(sil_err[sil_err>0]) invalid_frame = sil_err > sil_err_med*scale_factor invalid_idx = invalid_frame[frameid] sil_err[:] = 0 return invalid_idx def loss_filter(g_floerr, flo_loss_samp, sil_at_samp_flo, scale_factor=10): """ g_floerr: T, flo_loss_samp: bs,N,1 sil_at_samp_flo:bs,N,1 """ bs = sil_at_samp_flo.shape[0] # find history meidan g_floerr = g_floerr[g_floerr>0] # tb updated as history value #flo_err = [] #for i in range(bs): # flo_err_sub =flo_loss_samp[i][sil_at_samp_flo[i]] # if len(flo_err_sub) >0: # #flo_err_sub = flo_err_sub.median().detach().cpu().numpy() # flo_err_sub = flo_err_sub.mean().detach().cpu().numpy() # else: # flo_err_sub = 0 # flo_err.append(flo_err_sub) #flo_err = np.stack(flo_err) # vectorized version but uses mean to update flo_err = (flo_loss_samp * sil_at_samp_flo).sum(1) /\ (1e-9+sil_at_samp_flo.sum(1)) # bs, N, 1 flo_err = flo_err.detach().cpu().numpy()[...,0] # find invalid idx invalid_idx = flo_err > np.median(g_floerr)*scale_factor return flo_err, invalid_idx def compute_xyz_wt_loss(gt_list, curr_list): loss = [] for i in range(len(gt_list)): loss.append( (gt_list[i].detach() - curr_list[i]).pow(2).mean() ) loss = torch.stack(loss).mean() return loss def compute_root_sm_2nd_loss(rtk_all, data_offset): """ 2nd order loss """ rot_sm_loss = [] trn_sm_loss = [] for didx in range(len(data_offset)-1): stt_idx = data_offset[didx] end_idx = data_offset[didx+1] stt_rtk = rtk_all[stt_idx:end_idx-2] mid_rtk = rtk_all[stt_idx+1:end_idx-1] end_rtk = rtk_all[stt_idx+2:end_idx] rot_sub1 = stt_rtk[:,:3,:3].matmul(mid_rtk[:,:3,:3].permute(0,2,1)) rot_sub2 = mid_rtk[:,:3,:3].matmul(end_rtk[:,:3,:3].permute(0,2,1)) trn_sub1 = stt_rtk[:,:3,3] - mid_rtk[:,:3,3] trn_sub2 = mid_rtk[:,:3,3] - end_rtk[:,:3,3] rot_sm_sub = rot_sub1.matmul(rot_sub2.permute(0,2,1)) trn_sm_sub = trn_sub1 - trn_sub2 rot_sm_loss.append(rot_sm_sub) trn_sm_loss.append(trn_sm_sub) rot_sm_loss = torch.cat(rot_sm_loss,0) rot_sm_loss = rot_angle(rot_sm_loss).mean()*1e-1 trn_sm_loss = torch.cat(trn_sm_loss,0) trn_sm_loss = trn_sm_loss.norm(2,-1).mean() root_sm_loss = rot_sm_loss + trn_sm_loss root_sm_loss = root_sm_loss * 0.1 return root_sm_loss def compute_root_sm_loss(rtk_all, data_offset): rot_sm_loss = [] trans_sm_loss = [] for didx in range(len(data_offset)-1): stt_idx = data_offset[didx] end_idx = data_offset[didx+1] rot_sm_sub = rtk_all[stt_idx:end_idx-1,:3,:3].matmul( rtk_all[stt_idx+1:end_idx,:3,:3].permute(0,2,1)) trans_sm_sub = rtk_all[stt_idx:end_idx-1,:3,3] - \ rtk_all[stt_idx+1:end_idx,:3,3] rot_sm_loss.append(rot_sm_sub) trans_sm_loss.append(trans_sm_sub) rot_sm_loss = torch.cat(rot_sm_loss,0) rot_sm_loss = rot_angle(rot_sm_loss).mean()*1e-3 trans_sm_loss = torch.cat(trans_sm_loss,0) trans_sm_loss = trans_sm_loss.norm(2,-1).mean()*0.1 root_sm_loss = rot_sm_loss + trans_sm_loss return root_sm_loss def shape_init_loss(pts, faces, mlp, embed, bound_factor, use_ellips=True): # compute sdf loss wrt to a mesh # construct mesh mesh = trimesh.Trimesh(pts.cpu(), faces=faces.cpu()) device = next(mlp.parameters()).device # Sample points nsample =10000 obj_bound = pts.abs().max(0)[0][None,None] bound = obj_bound * bound_factor pts_samp = torch.rand(1,nsample,3).to(device)*2*bound-bound # outside: positive if use_ellips: # signed distance to a ellipsoid dis = (pts_samp/obj_bound).pow(2).sum(2).view(-1) dis = torch.sqrt(dis) dis = dis - 1 dis = dis * obj_bound.mean() else: # signed distance to a sphere dis = (pts_samp).pow(2).sum(2).view(-1) dis = torch.sqrt(dis) dis = dis - obj_bound.min() # compute sdf pts_embedded = embed(pts_samp) y = evaluate_mlp(mlp, pts_embedded, chunk=pts_samp.shape[0], xyz=None,code=None,sigma_only=True) sdf = -y.view(-1) # positive: outside shape_loss = (sdf - dis).pow(2).mean() return shape_loss
banmo-main
nnutils/loss_utils.py
""" MIT License Copyright (c) 2019 ThibaultGROUEIX Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import torch def fscore(dist1, dist2, threshold=0.001): """ Calculates the F-score between two point clouds with the corresponding threshold value. :param dist1: Batch, N-Points :param dist2: Batch, N-Points :param th: float :return: fscore, precision, recall """ # NB : In this depo, dist1 and dist2 are squared pointcloud euclidean distances, so you should adapt the threshold accordingly. precision_1 = torch.mean((dist1 < threshold).float(), dim=1) precision_2 = torch.mean((dist2 < threshold).float(), dim=1) fscore = 2 * precision_1 * precision_2 / (precision_1 + precision_2) fscore[torch.isnan(fscore)] = 0 return fscore, precision_1, precision_2
banmo-main
third_party/fscore.py
# MIT license # Copyright (c) 2019 LI RUOTENG # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # modified from https://github.com/liruoteng/OpticalFlowToolkit import png import numpy as np import matplotlib.colors as cl import matplotlib.pyplot as plt from PIL import Image import cv2 import pdb UNKNOWN_FLOW_THRESH = 1e7 SMALLFLOW = 0.0 LARGEFLOW = 1e8 def warp_flow(img, flow, normed=False): h, w = flow.shape[:2] flow = flow.copy().astype(np.float32) if normed: flow[:,:,0] = flow[:,:,0] * w / 2. flow[:,:,1] = flow[:,:,1] * h / 2. flow[:,:,0] += np.arange(w) flow[:,:,1] += np.arange(h)[:,np.newaxis] res = cv2.remap(img, flow, None, cv2.INTER_LINEAR) return res def cat_imgflo(img, flo): """ img in (0,1) flo in normalized coordinate """ img = img.copy() * 255 h,w = img.shape[:2] flo = flo.copy() flo[:,:,0] = flo[:,:,0] * 0.5 * w flo[:,:,1] = flo[:,:,1] * 0.5 * h imgflo = point_vec(img, flo) return imgflo def point_vec(img,flow,skip=10): skip=10 maxsize=500. extendfac=1. #resize_factor = 2 resize_factor = max(1,max(maxsize/img.shape[0], maxsize/img.shape[1])) dispimg = cv2.resize(img.copy(), None,fx=resize_factor,fy=resize_factor) flow = cv2.resize(flow.copy(), None, fx=resize_factor, fy=resize_factor,interpolation=cv2.INTER_NEAREST) * resize_factor meshgrid = np.meshgrid(range(dispimg.shape[1]),range(dispimg.shape[0])) colorflow = flow_to_image(flow).astype(int) for i in range(dispimg.shape[1]): # x for j in range(dispimg.shape[0]): # y if flow.shape[-1]==3 and flow[j,i,2] != 1: continue if j%skip!=0 or i%skip!=0: continue xend = int((meshgrid[0][j,i]+extendfac*flow[j,i,0])) yend = int((meshgrid[1][j,i]+extendfac*flow[j,i,1])) leng = np.linalg.norm(flow[j,i,:2]*extendfac) if leng<1:continue dispimg = cv2.arrowedLine(dispimg, (meshgrid[0][j,i],meshgrid[1][j,i]),\ (xend,yend), (int(colorflow[j,i,2]),int(colorflow[j,i,1]),int(colorflow[j,i,0])),1,tipLength=4/leng,line_type=cv2.LINE_AA) return dispimg def flow_to_image(flow): """ Convert flow into middlebury color code image :param flow: optical flow map :return: optical flow image in middlebury color """ u = flow[:, :, 0] v = flow[:, :, 1] maxu = -999. maxv = -999. minu = 999. minv = 999. idxUnknow = (abs(u) > UNKNOWN_FLOW_THRESH) | (abs(v) > UNKNOWN_FLOW_THRESH) u[idxUnknow] = 0 v[idxUnknow] = 0 maxu = max(maxu, np.max(u)) minu = min(minu, np.min(u)) maxv = max(maxv, np.max(v)) minv = min(minv, np.min(v)) rad = np.sqrt(u ** 2 + v ** 2) maxrad = max(-1, np.max(rad)) u = u/(maxrad + np.finfo(float).eps) v = v/(maxrad + np.finfo(float).eps) img = compute_color(u, v) idx = np.repeat(idxUnknow[:, :, np.newaxis], 3, axis=2) img[idx] = 0 return np.uint8(img) def compute_color(u, v): """ compute optical flow color map :param u: optical flow horizontal map :param v: optical flow vertical map :return: optical flow in color code """ [h, w] = u.shape img = np.zeros([h, w, 3]) nanIdx = np.isnan(u) | np.isnan(v) u[nanIdx] = 0 v[nanIdx] = 0 colorwheel = make_color_wheel() ncols = np.size(colorwheel, 0) rad = np.sqrt(u**2+v**2) a = np.arctan2(-v, -u) / np.pi fk = (a+1) / 2 * (ncols - 1) + 1 k0 = np.floor(fk).astype(int) k1 = k0 + 1 k1[k1 == ncols+1] = 1 f = fk - k0 for i in range(0, np.size(colorwheel,1)): tmp = colorwheel[:, i] col0 = tmp[k0-1] / 255 col1 = tmp[k1-1] / 255 col = (1-f) * col0 + f * col1 idx = rad <= 1 col[idx] = 1-rad[idx]*(1-col[idx]) notidx = np.logical_not(idx) col[notidx] *= 0.75 img[:, :, i] = np.uint8(np.floor(255 * col*(1-nanIdx))) return img def make_color_wheel(): """ Generate color wheel according Middlebury color code :return: Color wheel """ RY = 15 YG = 6 GC = 4 CB = 11 BM = 13 MR = 6 ncols = RY + YG + GC + CB + BM + MR colorwheel = np.zeros([ncols, 3]) col = 0 # RY colorwheel[0:RY, 0] = 255 colorwheel[0:RY, 1] = np.transpose(np.floor(255*np.arange(0, RY) / RY)) col += RY # YG colorwheel[col:col+YG, 0] = 255 - np.transpose(np.floor(255*np.arange(0, YG) / YG)) colorwheel[col:col+YG, 1] = 255 col += YG # GC colorwheel[col:col+GC, 1] = 255 colorwheel[col:col+GC, 2] = np.transpose(np.floor(255*np.arange(0, GC) / GC)) col += GC # CB colorwheel[col:col+CB, 1] = 255 - np.transpose(np.floor(255*np.arange(0, CB) / CB)) colorwheel[col:col+CB, 2] = 255 col += CB # BM colorwheel[col:col+BM, 2] = 255 colorwheel[col:col+BM, 0] = np.transpose(np.floor(255*np.arange(0, BM) / BM)) col += + BM # MR colorwheel[col:col+MR, 2] = 255 - np.transpose(np.floor(255 * np.arange(0, MR) / MR)) colorwheel[col:col+MR, 0] = 255 return colorwheel
banmo-main
third_party/ext_utils/flowlib.py
# MIT License # # Copyright (c) 2019 Carnegie Mellon University # Copyright (c) 2021 Google LLC # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import math import png import struct import array import numpy as np import cv2 import pdb import sys import re from io import * def readPFM(file): file = open(file, 'rb') color = None width = None height = None scale = None endian = None header = file.readline().rstrip() if (sys.version[0]) == '3': header = header.decode('utf-8') if header == 'PF': color = True elif header == 'Pf': color = False else: raise Exception('Not a PFM file.') if (sys.version[0]) == '3': dim_match = re.match(r'^(\d+)\s(\d+)\s$', file.readline().decode('utf-8')) else: dim_match = re.match(r'^(\d+)\s(\d+)\s$', file.readline()) if dim_match: width, height = map(int, dim_match.groups()) else: raise Exception('Malformed PFM header.') if (sys.version[0]) == '3': scale = float(file.readline().rstrip().decode('utf-8')) else: scale = float(file.readline().rstrip()) if scale < 0: # little-endian endian = '<' scale = -scale else: endian = '>' # big-endian data = np.fromfile(file, endian + 'f') shape = (height, width, 3) if color else (height, width) data = np.reshape(data, shape) data = np.flipud(data) return data, scale def write_pfm(path, image, scale=1): """Write pfm file. Args: path (str): pathto file image (array): data scale (int, optional): Scale. Defaults to 1. """ # case to hw3 if image.ndim == 3 and image.shape[-1]==2: image = np.concatenate([image, np.zeros(image.shape[:2] + (1,))],-1) image = image.astype(np.float32) with open(path, "wb") as file: color = None if image.dtype.name != "float32": raise Exception("Image dtype must be float32.") image = np.flipud(image) if len(image.shape) == 3 and image.shape[2] == 3: # color image color = True elif ( len(image.shape) == 2 or len(image.shape) == 3 and image.shape[2] == 1 ): # greyscale color = False else: raise Exception("Image must have H x W x 3, H x W x 1 or H x W dimensions.") file.write("PF\n".encode() if color else "Pf\n".encode()) file.write("%d %d\n".encode() % (image.shape[1], image.shape[0])) endian = image.dtype.byteorder if endian == "<" or endian == "=" and sys.byteorder == "little": scale = -scale file.write("%f\n".encode() % scale) image.tofile(file)
banmo-main
third_party/ext_utils/util_flow.py
from setuptools import setup, find_packages from torch.utils.cpp_extension import BuildExtension, CUDAExtension CUDA_FLAGS = [] gencodes = [ '-gencode', 'arch=compute_52,code=sm_52', '-gencode', 'arch=compute_60,code=sm_60', '-gencode', 'arch=compute_61,code=sm_61', '-gencode', 'arch=compute_70,code=sm_70', '-gencode', 'arch=compute_75,code=sm_75', '-gencode', 'arch=compute_75,code=compute_75',] extra_compile_flags = {'cxx': [], 'nvcc': []} extra_compile_flags['nvcc'] += gencodes ext_modules=[ CUDAExtension('soft_renderer.cuda.load_textures', [ 'soft_renderer/cuda/load_textures_cuda.cpp', 'soft_renderer/cuda/load_textures_cuda_kernel.cu', ],extra_compile_args=extra_compile_flags,), CUDAExtension('soft_renderer.cuda.create_texture_image', [ 'soft_renderer/cuda/create_texture_image_cuda.cpp', 'soft_renderer/cuda/create_texture_image_cuda_kernel.cu', ],extra_compile_args=extra_compile_flags,), CUDAExtension('soft_renderer.cuda.soft_rasterize', [ 'soft_renderer/cuda/soft_rasterize_cuda.cpp', 'soft_renderer/cuda/soft_rasterize_cuda_kernel.cu', ],extra_compile_args=extra_compile_flags,), CUDAExtension('soft_renderer.cuda.voxelization', [ 'soft_renderer/cuda/voxelization_cuda.cpp', 'soft_renderer/cuda/voxelization_cuda_kernel.cu', ],extra_compile_args=extra_compile_flags,), ] INSTALL_REQUIREMENTS = ['numpy', 'torch', 'torchvision', 'scikit-image', 'tqdm', 'imageio'] setup( description='PyTorch implementation of "Soft Rasterizer"', author='Shichen Liu', author_email='liushichen95@gmail.com', license='MIT License', version='1.0.0', name='soft_renderer', packages=['soft_renderer', 'soft_renderer.cuda', 'soft_renderer.functional'], install_requires=INSTALL_REQUIREMENTS, ext_modules=ext_modules, cmdclass = {'build_ext': BuildExtension} )
banmo-main
third_party/softras/setup.py
import math import torch import torch.nn as nn import torch.nn.functional as F import numpy import soft_renderer as sr class Renderer(nn.Module): def __init__(self, image_size=256, background_color=[0,0,0], near=1, far=100, anti_aliasing=True, fill_back=True, eps=1e-6, camera_mode='projection', P=None, dist_coeffs=None, orig_size=512, perspective=True, viewing_angle=30, viewing_scale=1.0, eye=None, camera_direction=[0,0,1], light_mode='surface', light_intensity_ambient=0.5, light_color_ambient=[1,1,1], light_intensity_directionals=0.5, light_color_directionals=[1,1,1], light_directions=[0,1,0]): super(Renderer, self).__init__() # light self.lighting = sr.Lighting(light_mode, light_intensity_ambient, light_color_ambient, light_intensity_directionals, light_color_directionals, light_directions) # camera self.transform = sr.Transform(camera_mode, P, dist_coeffs, orig_size, perspective, viewing_angle, viewing_scale, eye, camera_direction) # rasterization self.rasterizer = sr.Rasterizer(image_size, background_color, near, far, anti_aliasing, fill_back, eps) def forward(self, mesh, mode=None): mesh = self.lighting(mesh) mesh = self.transform(mesh) return self.rasterizer(mesh, mode) class SoftRenderer(nn.Module): def __init__(self, image_size=256, background_color=[0,0,0], near=1, far=100, anti_aliasing=False, fill_back=True, eps=1e-3, sigma_val=1e-5, dist_func='euclidean', dist_eps=1e-4, gamma_val=1e-4, aggr_func_rgb='softmax', aggr_func_alpha='prod', texture_type='surface', camera_mode='projection', P=None, dist_coeffs=None, orig_size=512, perspective=True, viewing_angle=30, viewing_scale=1.0, eye=None, camera_direction=[0,0,1], light_mode='surface', light_intensity_ambient=0.5, light_color_ambient=[1,1,1], light_intensity_directionals=0.5, light_color_directionals=[1,1,1], light_directions=[0,1,0]): super(SoftRenderer, self).__init__() # light self.lighting = sr.Lighting(light_mode, light_intensity_ambient, light_color_ambient, light_intensity_directionals, light_color_directionals, light_directions) # camera self.transform = sr.Transform(camera_mode, P, dist_coeffs, orig_size, perspective, viewing_angle, viewing_scale, eye, camera_direction) # rasterization self.rasterizer = sr.SoftRasterizer(image_size, background_color, near, far, anti_aliasing, fill_back, eps, sigma_val, dist_func, dist_eps, gamma_val, aggr_func_rgb, aggr_func_alpha, texture_type) def set_sigma(self, sigma): self.rasterizer.sigma_val = sigma def set_gamma(self, gamma): self.rasterizer.gamma_val = gamma def set_texture_mode(self, mode): assert mode in ['vertex', 'surface'], 'Mode only support surface and vertex' self.lighting.light_mode = mode self.rasterizer.texture_type = mode def render_mesh(self, mesh, mode=None): self.set_texture_mode(mesh.texture_type) mesh = self.lighting(mesh) mesh = self.transform(mesh) return self.rasterizer(mesh, mode) def forward(self, vertices, faces, textures=None, mode=None, texture_type='surface'): mesh = sr.Mesh(vertices, faces, textures=textures, texture_type=texture_type) return self.render_mesh(mesh, mode)
banmo-main
third_party/softras/soft_renderer/renderer.py
from . import functional from .mesh import Mesh from .renderer import Renderer, SoftRenderer from .transform import Projection, LookAt, Look, Transform from .lighting import AmbientLighting, DirectionalLighting, Lighting from .rasterizer import SoftRasterizer from .losses import LaplacianLoss, FlattenLoss __version__ = '1.0.0'
banmo-main
third_party/softras/soft_renderer/__init__.py
import torch import torch.nn as nn import torch.nn.functional as F import numpy as np import soft_renderer.functional as srf class Mesh(object): ''' A simple class for creating and manipulating trimesh objects ''' def __init__(self, vertices, faces, textures=None, texture_res=1, texture_type='surface'): ''' vertices, faces and textures(if not None) are expected to be Tensor objects ''' self._vertices = vertices self._faces = faces if isinstance(self._vertices, np.ndarray): self._vertices = torch.from_numpy(self._vertices).float().cuda() if isinstance(self._faces, np.ndarray): self._faces = torch.from_numpy(self._faces).int().cuda() if self._vertices.ndimension() == 2: self._vertices = self._vertices[None, :, :] if self._faces.ndimension() == 2: self._faces = self._faces[None, :, :] self.device = self._vertices.device self.texture_type = texture_type self.batch_size = self._vertices.shape[0] self.num_vertices = self._vertices.shape[1] self.num_faces = self._faces.shape[1] self._face_vertices = None self._face_vertices_update = True self._surface_normals = None self._surface_normals_update = True self._vertex_normals = None self._vertex_normals_update = True self._fill_back = False # create textures if textures is None: if texture_type == 'surface': self._textures = torch.ones(self.batch_size, self.num_faces, texture_res**2, 3, dtype=torch.float32).to(self.device) self.texture_res = texture_res elif texture_type == 'vertex': self._textures = torch.ones(self.batch_size, self.num_vertices, 3, dtype=torch.float32).to(self.device) self.texture_res = 1 else: if isinstance(textures, np.ndarray): textures = torch.from_numpy(textures).float().cuda() if textures.ndimension() == 3 and texture_type == 'surface': textures = textures[None, :, :, :] if textures.ndimension() == 2 and texture_type == 'vertex': textures = textures[None, :, :] self._textures = textures self.texture_res = int(np.sqrt(self._textures.shape[2])) self._origin_vertices = self._vertices self._origin_faces = self._faces self._origin_textures = self._textures @property def faces(self): return self._faces @faces.setter def faces(self, faces): # need check tensor self._faces = faces self.num_faces = self._faces.shape[1] self._face_vertices_update = True self._surface_normals_update = True self._vertex_normals_update = True @property def vertices(self): return self._vertices @vertices.setter def vertices(self, vertices): # need check tensor self._vertices = vertices self.num_vertices = self._vertices.shape[1] self._face_vertices_update = True self._surface_normals_update = True self._vertex_normals_update = True @property def textures(self): return self._textures @textures.setter def textures(self, textures): # need check tensor self._textures = textures @property def face_vertices(self): if self._face_vertices_update: self._face_vertices = srf.face_vertices(self.vertices, self.faces) self._face_vertices_update = False return self._face_vertices @property def surface_normals(self): if self._surface_normals_update: v10 = self.face_vertices[:, :, 0] - self.face_vertices[:, :, 1] v12 = self.face_vertices[:, :, 2] - self.face_vertices[:, :, 1] self._surface_normals = F.normalize(torch.cross(v12, v10), p=2, dim=2, eps=1e-6) self._surface_normals_update = False return self._surface_normals @property def vertex_normals(self): if self._vertex_normals_update: self._vertex_normals = srf.vertex_normals(self.vertices, self.faces) self._vertex_normals_update = False return self._vertex_normals @property def face_textures(self): if self.texture_type in ['surface']: return self.textures elif self.texture_type in ['vertex']: return srf.face_vertices(self.textures, self.faces) else: raise ValueError('texture type not applicable') def fill_back_(self): if not self._fill_back: self.faces = torch.cat((self.faces, self.faces[:, :, [2, 1, 0]]), dim=1) self.textures = torch.cat((self.textures, self.textures), dim=1) self._fill_back = True def reset_(self): self.vertices = self._origin_vertices self.faces = self._origin_faces self.textures = self._origin_textures self._fill_back = False @classmethod def from_obj(cls, filename_obj, normalization=False, load_texture=False, texture_res=1, texture_type='surface'): ''' Create a Mesh object from a .obj file ''' if load_texture: vertices, faces, textures = srf.load_obj(filename_obj, normalization=normalization, texture_res=texture_res, load_texture=True, texture_type=texture_type) else: vertices, faces = srf.load_obj(filename_obj, normalization=normalization, texture_res=texture_res, load_texture=False) textures = None return cls(vertices, faces, textures, texture_res, texture_type) def save_obj(self, filename_obj, save_texture=False, texture_res_out=16): if self.batch_size != 1: raise ValueError('Could not save when batch size >= 1') if save_texture: srf.save_obj(filename_obj, self.vertices[0], self.faces[0], textures=self.textures[0], texture_res=texture_res_out, texture_type=self.texture_type) else: srf.save_obj(filename_obj, self.vertices[0], self.faces[0], textures=None) def voxelize(self, voxel_size=32): face_vertices_norm = self.face_vertices * voxel_size / (voxel_size - 1) + 0.5 return srf.voxelization(face_vertices_norm, voxel_size, False)
banmo-main
third_party/softras/soft_renderer/mesh.py
import torch import torch.nn as nn import torch.nn.functional as F import numpy as np import soft_renderer.functional as srf class AmbientLighting(nn.Module): def __init__(self, light_intensity=0.5, light_color=(1,1,1)): super(AmbientLighting, self).__init__() self.light_intensity = light_intensity self.light_color = light_color def forward(self, light): return srf.ambient_lighting(light, self.light_intensity, self.light_color) class DirectionalLighting(nn.Module): def __init__(self, light_intensity=0.5, light_color=(1,1,1), light_direction=(0,1,0)): super(DirectionalLighting, self).__init__() self.light_intensity = light_intensity self.light_color = light_color self.light_direction = light_direction def forward(self, light, normals): return srf.directional_lighting(light, normals, self.light_intensity, self.light_color, self.light_direction) class Lighting(nn.Module): def __init__(self, light_mode='surface', intensity_ambient=0.5, color_ambient=[1,1,1], intensity_directionals=0.5, color_directionals=[1,1,1], directions=[0,1,0]): super(Lighting, self).__init__() if light_mode not in ['surface', 'vertex']: raise ValueError('Lighting mode only support surface and vertex') self.light_mode = light_mode self.ambient = AmbientLighting(intensity_ambient, color_ambient) self.directionals = nn.ModuleList([DirectionalLighting(intensity_directionals, color_directionals, directions)]) def forward(self, mesh): if self.light_mode == 'surface': light = torch.zeros_like(mesh.faces, dtype=torch.float32).to(mesh.device) light = light.contiguous() light = self.ambient(light) for directional in self.directionals: light = directional(light, mesh.surface_normals) mesh.textures = mesh.textures * light[:, :, None, :] elif self.light_mode == 'vertex': light = torch.zeros_like(mesh.vertices, dtype=torch.float32).to(mesh.device) light = light.contiguous() light = self.ambient(light) for directional in self.directionals: light = directional(light, mesh.vertex_normals) mesh.textures = mesh.textures * light return mesh
banmo-main
third_party/softras/soft_renderer/lighting.py
import math import numpy as np import torch import torch.nn as nn import soft_renderer.functional as srf class Projection(nn.Module): def __init__(self, P, dist_coeffs=None, orig_size=512): super(Projection, self).__init__() self.P = P self.dist_coeffs = dist_coeffs self.orig_size = orig_size if isinstance(self.P, np.ndarray): self.P = torch.from_numpy(self.P).cuda() if self.P is None or self.P.ndimension() != 3 or self.P.shape[1] != 3 or self.P.shape[2] != 4: raise ValueError('You need to provide a valid (batch_size)x3x4 projection matrix') if dist_coeffs is None: self.dist_coeffs = torch.cuda.FloatTensor([[0., 0., 0., 0., 0.]]).repeat(self.P.shape[0], 1) def forward(self, vertices): vertices = srf.projection(vertices, self.P, self.dist_coeffs, self.orig_size) return vertices class LookAt(nn.Module): def __init__(self, perspective=True, viewing_angle=30, viewing_scale=1.0, eye=None): super(LookAt, self).__init__() self.perspective = perspective self.viewing_angle = viewing_angle self.viewing_scale = viewing_scale self._eye = eye if self._eye is None: self._eye = [0, 0, -(1. / math.tan(math.radians(self.viewing_angle)) + 1)] def forward(self, vertices): vertices = srf.look_at(vertices, self._eye) # perspective transformation if self.perspective: vertices = srf.perspective(vertices, angle=self.viewing_angle) else: vertices = srf.orthogonal(vertices, scale=self.viewing_scale) return vertices class Look(nn.Module): def __init__(self, camera_direction=[0,0,1], perspective=True, viewing_angle=30, viewing_scale=1.0, eye=None): super(Look, self).__init__() self.perspective = perspective self.viewing_angle = viewing_angle self.viewing_scale = viewing_scale self._eye = eye self.camera_direction = camera_direction if self._eye is None: self._eye = [0, 0, -(1. / math.tan(math.radians(self.viewing_angle)) + 1)] def forward(self, vertices): vertices = srf.look(vertices, self._eye, self.camera_direction) # perspective transformation if self.perspective: vertices = srf.perspective(vertices, angle=self.viewing_angle) else: vertices = srf.orthogonal(vertices, scale=self.viewing_scale) return vertices class Transform(nn.Module): def __init__(self, camera_mode='projection', P=None, dist_coeffs=None, orig_size=512, perspective=True, viewing_angle=30, viewing_scale=1.0, eye=None, camera_direction=[0,0,1]): super(Transform, self).__init__() self.camera_mode = camera_mode if self.camera_mode == 'projection': self.transformer = Projection(P, dist_coeffs, orig_size) elif self.camera_mode == 'look': self.transformer = Look(perspective, viewing_angle, viewing_scale, eye, camera_direction) elif self.camera_mode == 'look_at': self.transformer = LookAt(perspective, viewing_angle, viewing_scale, eye) else: raise ValueError('Camera mode has to be one of projection, look or look_at') def forward(self, mesh): mesh.vertices = self.transformer(mesh.vertices) return mesh def set_eyes_from_angles(self, distances, elevations, azimuths): if self.camera_mode not in ['look', 'look_at']: raise ValueError('Projection does not need to set eyes') self.transformer._eye = srf.get_points_from_angles(distances, elevations, azimuths) def set_eyes(self, eyes): if self.camera_mode not in ['look', 'look_at']: raise ValueError('Projection does not need to set eyes') self.transformer._eye = eyes @property def eyes(self): return self.transformer._eyes
banmo-main
third_party/softras/soft_renderer/transform.py
import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import soft_renderer.functional as srf class SoftRasterizer(nn.Module): def __init__(self, image_size=256, background_color=[0, 0, 0], near=1, far=100, anti_aliasing=False, fill_back=False, eps=1e-3, sigma_val=1e-5, dist_func='euclidean', dist_eps=1e-4, gamma_val=1e-4, aggr_func_rgb='softmax', aggr_func_alpha='prod', texture_type='surface'): super(SoftRasterizer, self).__init__() if dist_func not in ['hard', 'euclidean', 'barycentric']: raise ValueError('Distance function only support hard, euclidean and barycentric') if aggr_func_rgb not in ['hard', 'softmax']: raise ValueError('Aggregate function(rgb) only support hard and softmax') if aggr_func_alpha not in ['hard', 'prod', 'sum']: raise ValueError('Aggregate function(a) only support hard, prod and sum') if texture_type not in ['surface', 'vertex']: raise ValueError('Texture type only support surface and vertex') self.image_size = image_size self.background_color = background_color self.near = near self.far = far self.anti_aliasing = anti_aliasing self.eps = eps self.fill_back = fill_back self.sigma_val = sigma_val self.dist_func = dist_func self.dist_eps = dist_eps self.gamma_val = gamma_val self.aggr_func_rgb = aggr_func_rgb self.aggr_func_alpha = aggr_func_alpha self.texture_type = texture_type def forward(self, mesh, mode=None): image_size = self.image_size * (2 if self.anti_aliasing else 1) images = srf.soft_rasterize(mesh.face_vertices, mesh.face_textures, image_size, self.background_color, self.near, self.far, self.fill_back, self.eps, self.sigma_val, self.dist_func, self.dist_eps, self.gamma_val, self.aggr_func_rgb, self.aggr_func_alpha, self.texture_type) if self.anti_aliasing: images = F.avg_pool2d(images, kernel_size=2, stride=2) return images
banmo-main
third_party/softras/soft_renderer/rasterizer.py
import torch import torch.nn as nn import numpy as np class LaplacianLoss(nn.Module): def __init__(self, vertex, faces, average=False): super(LaplacianLoss, self).__init__() self.nv = vertex.size(0) self.nf = faces.size(0) self.average = average laplacian = np.zeros([self.nv, self.nv]).astype(np.float32) laplacian[faces[:, 0], faces[:, 1]] = -1 laplacian[faces[:, 1], faces[:, 0]] = -1 laplacian[faces[:, 1], faces[:, 2]] = -1 laplacian[faces[:, 2], faces[:, 1]] = -1 laplacian[faces[:, 2], faces[:, 0]] = -1 laplacian[faces[:, 0], faces[:, 2]] = -1 r, c = np.diag_indices(laplacian.shape[0]) laplacian[r, c] = -laplacian.sum(1) for i in range(self.nv): laplacian[i, :] /= laplacian[i, i] self.register_buffer('laplacian', torch.from_numpy(laplacian)) def forward(self, x): batch_size = x.size(0) x = torch.matmul(self.laplacian, x) dims = tuple(range(x.ndimension())[1:]) x = x.pow(2).sum(dims) if self.average: return x.sum() / batch_size else: return x class FlattenLoss(nn.Module): def __init__(self, faces, average=False): super(FlattenLoss, self).__init__() self.nf = faces.size(0) self.average = average faces = faces.detach().cpu().numpy() vertices = list(set([tuple(v) for v in np.sort(np.concatenate((faces[:, 0:2], faces[:, 1:3]), axis=0))])) v0s = np.array([v[0] for v in vertices], 'int32') v1s = np.array([v[1] for v in vertices], 'int32') v2s = [] v3s = [] for v0, v1 in zip(v0s, v1s): count = 0 for face in faces: if v0 in face and v1 in face: v = np.copy(face) v = v[v != v0] v = v[v != v1] if count == 0: v2s.append(int(v[0])) count += 1 else: v3s.append(int(v[0])) v2s = np.array(v2s, 'int32') v3s = np.array(v3s, 'int32') self.register_buffer('v0s', torch.from_numpy(v0s).long()) self.register_buffer('v1s', torch.from_numpy(v1s).long()) self.register_buffer('v2s', torch.from_numpy(v2s).long()) self.register_buffer('v3s', torch.from_numpy(v3s).long()) def forward(self, vertices, eps=1e-6): # make v0s, v1s, v2s, v3s batch_size = vertices.size(0) v0s = vertices[:, self.v0s, :] v1s = vertices[:, self.v1s, :] v2s = vertices[:, self.v2s, :] v3s = vertices[:, self.v3s, :] a1 = v1s - v0s b1 = v2s - v0s a1l2 = a1.pow(2).sum(-1) b1l2 = b1.pow(2).sum(-1) a1l1 = (a1l2 + eps).sqrt() b1l1 = (b1l2 + eps).sqrt() ab1 = (a1 * b1).sum(-1) cos1 = ab1 / (a1l1 * b1l1 + eps) sin1 = (1 - cos1.pow(2) + eps).sqrt() c1 = a1 * (ab1 / (a1l2 + eps))[:, :, None] cb1 = b1 - c1 cb1l1 = b1l1 * sin1 a2 = v1s - v0s b2 = v3s - v0s a2l2 = a2.pow(2).sum(-1) b2l2 = b2.pow(2).sum(-1) a2l1 = (a2l2 + eps).sqrt() b2l1 = (b2l2 + eps).sqrt() ab2 = (a2 * b2).sum(-1) cos2 = ab2 / (a2l1 * b2l1 + eps) sin2 = (1 - cos2.pow(2) + eps).sqrt() c2 = a2 * (ab2 / (a2l2 + eps))[:, :, None] cb2 = b2 - c2 cb2l1 = b2l1 * sin2 cos = (cb1 * cb2).sum(-1) / (cb1l1 * cb2l1 + eps) dims = tuple(range(cos.ndimension())[1:]) loss = (cos + 1).pow(2).sum(dims) if self.average: return loss.sum() / batch_size else: return loss
banmo-main
third_party/softras/soft_renderer/losses.py
banmo-main
third_party/softras/soft_renderer/cuda/__init__.py
import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Function import soft_renderer.cuda.voxelization as voxelization_cuda def voxelize_sub1(faces, size, dim): bs = faces.size(0) nf = faces.size(1) if dim == 0: faces = faces[:, :, :, [2, 1, 0]].contiguous() elif dim == 1: faces = faces[:, :, :, [0, 2, 1]].contiguous() voxels = torch.zeros(bs, size, size, size).int().cuda() return voxelization_cuda.voxelize_sub1(faces, voxels)[0].transpose(dim + 1, -1) def voxelize_sub2(faces, size): bs = faces.size(0) nf = faces.size(1) voxels = torch.zeros(bs, size, size, size).int().cuda() return voxelization_cuda.voxelize_sub2(faces, voxels)[0] def voxelize_sub3(faces, voxels): bs = voxels.size(0) vs = voxels.size(1) visible = torch.zeros_like(voxels, dtype=torch.int32).cuda() voxels, visible = voxelization_cuda.voxelize_sub3(faces, voxels, visible) sum_visible = visible.sum() while True: voxels, visible = voxelization_cuda.voxelize_sub4(faces, voxels, visible) if visible.sum() == sum_visible: break else: sum_visible = visible.sum() return 1 - visible def voxelization(faces, size, normalize=False): faces = faces.clone() if normalize: pass else: faces *= size voxels0 = voxelize_sub1(faces, size, 0) voxels1 = voxelize_sub1(faces, size, 1) voxels2 = voxelize_sub1(faces, size, 2) voxels3 = voxelize_sub2(faces, size) voxels = voxels0 + voxels1 + voxels2 + voxels3 voxels = (voxels > 0).int() voxels = voxelize_sub3(faces, voxels) return voxels
banmo-main
third_party/softras/soft_renderer/functional/voxelization.py
import numpy as np import torch import torch.nn.functional as F def look_at(vertices, eye, at=[0, 0, 0], up=[0, 1, 0]): """ "Look at" transformation of vertices. """ if (vertices.ndimension() != 3): raise ValueError('vertices Tensor should have 3 dimensions') device = vertices.device # if list or tuple convert to numpy array if isinstance(at, list) or isinstance(at, tuple): at = torch.tensor(at, dtype=torch.float32, device=device) # if numpy array convert to tensor elif isinstance(at, np.ndarray): at = torch.from_numpy(at).to(device) elif torch.is_tensor(at): at.to(device) if isinstance(up, list) or isinstance(up, tuple): up = torch.tensor(up, dtype=torch.float32, device=device) elif isinstance(up, np.ndarray): up = torch.from_numpy(up).to(device) elif torch.is_tensor(up): up.to(device) if isinstance(eye, list) or isinstance(eye, tuple): eye = torch.tensor(eye, dtype=torch.float32, device=device) elif isinstance(eye, np.ndarray): eye = torch.from_numpy(eye).to(device) elif torch.is_tensor(eye): eye = eye.to(device) batch_size = vertices.shape[0] if eye.ndimension() == 1: eye = eye[None, :].repeat(batch_size, 1) if at.ndimension() == 1: at = at[None, :].repeat(batch_size, 1) if up.ndimension() == 1: up = up[None, :].repeat(batch_size, 1) # create new axes # eps is chosen as 1e-5 to match the chainer version z_axis = F.normalize(at - eye, eps=1e-5) x_axis = F.normalize(torch.cross(up, z_axis), eps=1e-5) y_axis = F.normalize(torch.cross(z_axis, x_axis), eps=1e-5) # create rotation matrix: [bs, 3, 3] r = torch.cat((x_axis[:, None, :], y_axis[:, None, :], z_axis[:, None, :]), dim=1) # apply # [bs, nv, 3] -> [bs, nv, 3] -> [bs, nv, 3] if vertices.shape != eye.shape: eye = eye[:, None, :] vertices = vertices - eye vertices = torch.matmul(vertices, r.transpose(1,2)) return vertices
banmo-main
third_party/softras/soft_renderer/functional/look_at.py
import torch import torch.nn as nn import torch.nn.functional as F import numpy as np def directional_lighting(light, normals, light_intensity=0.5, light_color=(1,1,1), light_direction=(0,1,0)): # normals: [nb, :, 3] device = light.device if isinstance(light_color, tuple) or isinstance(light_color, list): light_color = torch.tensor(light_color, dtype=torch.float32, device=device) elif isinstance(light_color, np.ndarray): light_color = torch.from_numpy(light_color).float().to(device) if isinstance(light_direction, tuple) or isinstance(light_direction, list): light_direction = torch.tensor(light_direction, dtype=torch.float32, device=device) elif isinstance(light_direction, np.ndarray): light_direction = torch.from_numpy(light_direction).float().to(device) if light_color.ndimension() == 1: light_color = light_color[None, :] if light_direction.ndimension() == 1: light_direction = light_direction[None, :] #[nb, 3] cosine = F.relu(torch.sum(normals * light_direction, dim=2)) #[] light += light_intensity * (light_color[:, None, :] * cosine[:, :, None]) return light #[nb, :, 3]
banmo-main
third_party/softras/soft_renderer/functional/directional_lighting.py
import torch import torch.nn as nn import torch.nn.functional as F import numpy as np def ambient_lighting(light, light_intensity=0.5, light_color=(1,1,1)): device = light.device if isinstance(light_color, tuple) or isinstance(light_color, list): light_color = torch.tensor(light_color, dtype=torch.float32, device=device) elif isinstance(light_color, np.ndarray): light_color = torch.from_numpy(light_color).float().to(device) if light_color.ndimension() == 1: light_color = light_color[None, :] light += light_intensity * light_color[:, None, :] return light #[nb, :, 3]
banmo-main
third_party/softras/soft_renderer/functional/ambient_lighting.py
import math import torch def perspective(vertices, angle=30.): ''' Compute perspective distortion from a given angle ''' if (vertices.ndimension() != 3): raise ValueError('vertices Tensor should have 3 dimensions') device = vertices.device angle = torch.tensor(angle / 180 * math.pi, dtype=torch.float32, device=device) angle = angle[None] width = torch.tan(angle) width = width[:, None] z = vertices[:, :, 2] x = vertices[:, :, 0] / z / width y = vertices[:, :, 1] / z / width vertices = torch.stack((x,y,z), dim=2) return vertices
banmo-main
third_party/softras/soft_renderer/functional/perspective.py
import os import torch import numpy as np from skimage.io import imread import soft_renderer.cuda.load_textures as load_textures_cuda def load_mtl(filename_mtl): ''' load color (Kd) and filename of textures from *.mtl ''' texture_filenames = {} colors = {} material_name = '' with open(filename_mtl) as f: for line in f.readlines(): if len(line.split()) != 0: if line.split()[0] == 'newmtl': material_name = line.split()[1] if line.split()[0] == 'map_Kd': texture_filenames[material_name] = line.split()[1] if line.split()[0] == 'Kd': colors[material_name] = np.array(list(map(float, line.split()[1:4]))) return colors, texture_filenames def load_textures(filename_obj, filename_mtl, texture_res): # load vertices vertices = [] with open(filename_obj) as f: lines = f.readlines() for line in lines: if len(line.split()) == 0: continue if line.split()[0] == 'vt': vertices.append([float(v) for v in line.split()[1:3]]) vertices = np.vstack(vertices).astype(np.float32) # load faces for textures faces = [] material_names = [] material_name = '' for line in lines: if len(line.split()) == 0: continue if line.split()[0] == 'f': vs = line.split()[1:] nv = len(vs) if '/' in vs[0] and '//' not in vs[0]: v0 = int(vs[0].split('/')[1]) else: v0 = 0 for i in range(nv - 2): if '/' in vs[i + 1] and '//' not in vs[i + 1]: v1 = int(vs[i + 1].split('/')[1]) else: v1 = 0 if '/' in vs[i + 2] and '//' not in vs[i + 2]: v2 = int(vs[i + 2].split('/')[1]) else: v2 = 0 faces.append((v0, v1, v2)) material_names.append(material_name) if line.split()[0] == 'usemtl': material_name = line.split()[1] faces = np.vstack(faces).astype(np.int32) - 1 faces = vertices[faces] faces = torch.from_numpy(faces).cuda() faces[1 < faces] = faces[1 < faces] % 1 colors, texture_filenames = load_mtl(filename_mtl) textures = torch.ones(faces.shape[0], texture_res**2, 3, dtype=torch.float32) textures = textures.cuda() # for material_name, color in list(colors.items()): color = torch.from_numpy(color).cuda() for i, material_name_f in enumerate(material_names): if material_name == material_name_f: textures[i, :, :] = color[None, :] for material_name, filename_texture in list(texture_filenames.items()): filename_texture = os.path.join(os.path.dirname(filename_obj), filename_texture) image = imread(filename_texture).astype(np.float32) / 255. # texture image may have one channel (grey color) if len(image.shape) == 2: image = np.stack((image,)*3, -1) # or has extral alpha channel shoule ignore for now if image.shape[2] == 4: image = image[:, :, :3] # pytorch does not support negative slicing for the moment image = image[::-1, :, :] image = torch.from_numpy(image.copy()).cuda() is_update = (np.array(material_names) == material_name).astype(np.int32) is_update = torch.from_numpy(is_update).cuda() textures = load_textures_cuda.load_textures(image, faces, textures, is_update) return textures def load_obj(filename_obj, normalization=False, load_texture=False, texture_res=4, texture_type='surface'): """ Load Wavefront .obj file. This function only supports vertices (v x x x) and faces (f x x x). """ assert texture_type in ['surface', 'vertex'] # load vertices vertices = [] with open(filename_obj) as f: lines = f.readlines() for line in lines: if len(line.split()) == 0: continue if line.split()[0] == 'v': vertices.append([float(v) for v in line.split()[1:4]]) vertices = torch.from_numpy(np.vstack(vertices).astype(np.float32)).cuda() # load faces faces = [] for line in lines: if len(line.split()) == 0: continue if line.split()[0] == 'f': vs = line.split()[1:] nv = len(vs) v0 = int(vs[0].split('/')[0]) for i in range(nv - 2): v1 = int(vs[i + 1].split('/')[0]) v2 = int(vs[i + 2].split('/')[0]) faces.append((v0, v1, v2)) faces = torch.from_numpy(np.vstack(faces).astype(np.int32)).cuda() - 1 # load textures if load_texture and texture_type == 'surface': textures = None for line in lines: if line.startswith('mtllib'): filename_mtl = os.path.join(os.path.dirname(filename_obj), line.split()[1]) textures = load_textures(filename_obj, filename_mtl, texture_res) if textures is None: raise Exception('Failed to load textures.') elif load_texture and texture_type == 'vertex': textures = [] for line in lines: if len(line.split()) == 0: continue if line.split()[0] == 'v': textures.append([float(v) for v in line.split()[4:7]]) textures = torch.from_numpy(np.vstack(textures).astype(np.float32)).cuda() # normalize into a unit cube centered zero if normalization: vertices -= vertices.min(0)[0][None, :] vertices /= torch.abs(vertices).max() vertices *= 2 vertices -= vertices.max(0)[0][None, :] / 2 if load_texture: return vertices, faces, textures else: return vertices, faces
banmo-main
third_party/softras/soft_renderer/functional/load_obj.py
import torch def face_vertices(vertices, faces): """ :param vertices: [batch size, number of vertices, 3] :param faces: [batch size, number of faces, 3] :return: [batch size, number of faces, 3, 3] """ assert (vertices.ndimension() == 3) assert (faces.ndimension() == 3) assert (vertices.shape[0] == faces.shape[0]) assert (vertices.shape[2] == 3) assert (faces.shape[2] == 3) bs, nv = vertices.shape[:2] bs, nf = faces.shape[:2] device = vertices.device faces = faces + (torch.arange(bs, dtype=torch.int32).to(device) * nv)[:, None, None] vertices = vertices.reshape((bs * nv, 3)) # pytorch only supports long and byte tensors for indexing return vertices[faces.long()]
banmo-main
third_party/softras/soft_renderer/functional/face_vertices.py
import numpy as np import torch import torch.nn.functional as F def look(vertices, eye, direction=[0, 1, 0], up=None): """ "Look" transformation of vertices. """ if (vertices.ndimension() != 3): raise ValueError('vertices Tensor should have 3 dimensions') device = vertices.device if isinstance(direction, list) or isinstance(direction, tuple): direction = torch.tensor(direction, dtype=torch.float32, device=device) elif isinstance(direction, np.ndarray): direction = torch.from_numpy(direction).to(device) elif torch.is_tensor(direction): direction.to(device) if isinstance(eye, list) or isinstance(eye, tuple): eye = torch.tensor(eye, dtype=torch.float32, device=device) elif isinstance(eye, np.ndarray): eye = torch.from_numpy(eye).to(device) elif torch.is_tensor(eye): eye = eye.to(device) if eye.ndimension() == 1: eye = eye[None, :] if direction.ndimension() == 1: direction = direction[None, :] if up.ndimension() == 1: up = up[None, :] # create new axes z_axis = F.normalize(direction, eps=1e-5) x_axis = F.normalize(torch.cross(up, z_axis), eps=1e-5) y_axis = F.normalize(torch.cross(z_axis, x_axis), eps=1e-5) # create rotation matrix: [bs, 3, 3] r = torch.cat((x_axis[:, None, :], y_axis[:, None, :], z_axis[:, None, :]), dim=1) # apply # [bs, nv, 3] -> [bs, nv, 3] -> [bs, nv, 3] if vertices.shape != eye.shape: eye = eye[:, None, :] vertices = vertices - eye vertices = torch.matmul(vertices, r.transpose(1,2)) return vertices
banmo-main
third_party/softras/soft_renderer/functional/look.py
from .get_points_from_angles import get_points_from_angles from .ambient_lighting import ambient_lighting from .directional_lighting import directional_lighting from .load_obj import load_obj from .look import look from .look_at import look_at from .perspective import perspective from .orthogonal import orthogonal from .projection import projection from .soft_rasterize import soft_rasterize from .save_obj import (save_obj, save_voxel) from .face_vertices import face_vertices from .vertex_normals import vertex_normals from .voxelization import voxelization
banmo-main
third_party/softras/soft_renderer/functional/__init__.py
import os import torch from skimage.io import imsave import soft_renderer.cuda.create_texture_image as create_texture_image_cuda def create_texture_image(textures, texture_res=16): num_faces = textures.shape[0] tile_width = int((num_faces - 1.) ** 0.5) + 1 tile_height = int((num_faces - 1.) / tile_width) + 1 image = torch.ones(tile_height * texture_res, tile_width * texture_res, 3, dtype=torch.float32) vertices = torch.zeros((num_faces, 3, 2), dtype=torch.float32) # [:, :, UV] face_nums = torch.arange(num_faces) column = face_nums % tile_width row = face_nums // tile_width vertices[:, 0, 0] = column * texture_res + texture_res / 2 vertices[:, 0, 1] = row * texture_res + 1 vertices[:, 1, 0] = column * texture_res + 1 vertices[:, 1, 1] = (row + 1) * texture_res - 1 - 1 vertices[:, 2, 0] = (column + 1) * texture_res - 1 - 1 vertices[:, 2, 1] = (row + 1) * texture_res - 1 - 1 image = image.cuda() vertices = vertices.cuda() textures = textures.cuda() image = create_texture_image_cuda.create_texture_image(vertices, textures, image, 1e-5) vertices[:, :, 0] /= (image.shape[1] - 1) vertices[:, :, 1] /= (image.shape[0] - 1) image = image.detach().cpu().numpy() vertices = vertices.detach().cpu().numpy() image = image[::-1, ::1] return image, vertices def save_obj(filename, vertices, faces, textures=None, texture_res=16, texture_type='surface'): assert vertices.ndimension() == 2 assert faces.ndimension() == 2 assert texture_type in ['surface', 'vertex'] assert texture_res >= 2 if textures is not None and texture_type == 'surface': filename_mtl = filename[:-4] + '.mtl' filename_texture = filename[:-4] + '.png' material_name = 'material_1' texture_image, vertices_textures = create_texture_image(textures, texture_res) texture_image = texture_image.clip(0, 1) texture_image = (texture_image * 255).astype('uint8') imsave(filename_texture, texture_image) faces = faces.detach().cpu().numpy() with open(filename, 'w') as f: f.write('# %s\n' % os.path.basename(filename)) f.write('#\n') f.write('\n') if textures is not None and texture_type == 'surface': f.write('mtllib %s\n\n' % os.path.basename(filename_mtl)) if textures is not None and texture_type == 'vertex': for vertex, color in zip(vertices, textures): f.write('v %.8f %.8f %.8f %.8f %.8f %.8f\n' % (vertex[0], vertex[1], vertex[2], color[0], color[1], color[2])) f.write('\n') else: for vertex in vertices: f.write('v %.8f %.8f %.8f\n' % (vertex[0], vertex[1], vertex[2])) f.write('\n') if textures is not None and texture_type == 'surface': for vertex in vertices_textures.reshape((-1, 2)): f.write('vt %.8f %.8f\n' % (vertex[0], vertex[1])) f.write('\n') f.write('usemtl %s\n' % material_name) for i, face in enumerate(faces): f.write('f %d/%d %d/%d %d/%d\n' % ( face[0] + 1, 3 * i + 1, face[1] + 1, 3 * i + 2, face[2] + 1, 3 * i + 3)) f.write('\n') else: for face in faces: f.write('f %d %d %d\n' % (face[0] + 1, face[1] + 1, face[2] + 1)) if textures is not None and texture_type == 'surface': with open(filename_mtl, 'w') as f: f.write('newmtl %s\n' % material_name) f.write('map_Kd %s\n' % os.path.basename(filename_texture)) def save_voxel(filename, voxel): vertices = [] for i in range(voxel.shape[0]): for j in range(voxel.shape[1]): for k in range(voxel.shape[2]): if voxel[i, j, k] == 1: vertices.append([i / voxel.shape[0], j / voxel.shape[1], k / voxel.shape[2]]) vertices = torch.autograd.Variable(torch.tensor(vertices)) return save_obj(filename, vertices, torch.autograd.Variable(torch.tensor([])))
banmo-main
third_party/softras/soft_renderer/functional/save_obj.py
import math import torch def get_points_from_angles(distance, elevation, azimuth, degrees=True): if isinstance(distance, float) or isinstance(distance, int): if degrees: elevation = math.radians(elevation) azimuth = math.radians(azimuth) return ( distance * math.cos(elevation) * math.sin(azimuth), distance * math.sin(elevation), -distance * math.cos(elevation) * math.cos(azimuth)) else: if degrees: elevation = math.pi / 180. * elevation azimuth = math.pi / 180. * azimuth # return torch.stack([ distance * torch.cos(elevation) * torch.sin(azimuth), distance * torch.sin(elevation), -distance * torch.cos(elevation) * torch.cos(azimuth) ]).transpose(1,0)
banmo-main
third_party/softras/soft_renderer/functional/get_points_from_angles.py
import torch def orthogonal(vertices, scale): ''' Compute orthogonal projection from a given angle To find equivalent scale to perspective projection set scale = focal_pixel / object_depth -- to 0~H/W pixel range = 1 / ( object_depth * tan(half_fov_angle) ) -- to -1~1 pixel range ''' if (vertices.ndimension() != 3): raise ValueError('vertices Tensor should have 3 dimensions') z = vertices[:, :, 2] x = vertices[:, :, 0] * scale y = vertices[:, :, 1] * scale vertices = torch.stack((x,y,z), dim=2) return vertices
banmo-main
third_party/softras/soft_renderer/functional/orthogonal.py
import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Function import numpy as np import soft_renderer.cuda.soft_rasterize as soft_rasterize_cuda class SoftRasterizeFunction(Function): @staticmethod def forward(ctx, face_vertices, textures, image_size=256, background_color=[0, 0, 0], near=1, far=100, fill_back=True, eps=1e-3, sigma_val=1e-5, dist_func='euclidean', dist_eps=1e-4, gamma_val=1e-4, aggr_func_rgb='softmax', aggr_func_alpha='prod', texture_type='surface'): # face_vertices: [nb, nf, 9] # textures: [nb, nf, 9] func_dist_map = {'hard': 0, 'barycentric': 1, 'euclidean': 2} func_rgb_map = {'hard': 0, 'softmax': 1} func_alpha_map = {'hard': 0, 'sum': 1, 'prod': 2} func_map_sample = {'surface': 0, 'vertex': 1} ctx.image_size = image_size ctx.background_color = background_color ctx.near = near ctx.far = far ctx.eps = eps ctx.sigma_val = sigma_val ctx.gamma_val = gamma_val ctx.func_dist_type = func_dist_map[dist_func] ctx.dist_eps = np.log(1. / dist_eps - 1.) ctx.func_rgb_type = func_rgb_map[aggr_func_rgb] ctx.func_alpha_type = func_alpha_map[aggr_func_alpha] ctx.texture_type = func_map_sample[texture_type] ctx.fill_back = fill_back face_vertices = face_vertices.clone() textures = textures.clone() ctx.device = face_vertices.device ctx.batch_size, ctx.num_faces = face_vertices.shape[:2] faces_info = torch.FloatTensor(ctx.batch_size, ctx.num_faces, 9*3).fill_(0.0).to(device=ctx.device) # [inv*9, sym*9, obt*3, 0*6] aggrs_info = torch.FloatTensor(ctx.batch_size, 2, ctx.image_size, ctx.image_size).fill_(0.0).to(device=ctx.device) soft_colors = torch.FloatTensor(ctx.batch_size, 4, ctx.image_size, ctx.image_size).fill_(1.0).to(device=ctx.device) soft_colors[:, 0, :, :] *= background_color[0] soft_colors[:, 1, :, :] *= background_color[1] soft_colors[:, 2, :, :] *= background_color[2] faces_info, aggrs_info, soft_colors = \ soft_rasterize_cuda.forward_soft_rasterize(face_vertices, textures, faces_info, aggrs_info, soft_colors, image_size, near, far, eps, sigma_val, ctx.func_dist_type, ctx.dist_eps, gamma_val, ctx.func_rgb_type, ctx.func_alpha_type, ctx.texture_type, fill_back) ctx.save_for_backward(face_vertices, textures, soft_colors, faces_info, aggrs_info) return soft_colors @staticmethod def backward(ctx, grad_soft_colors): #print(grad_soft_colors.dtype) face_vertices, textures, soft_colors, faces_info, aggrs_info = ctx.saved_tensors image_size = ctx.image_size background_color = ctx.background_color near = ctx.near far = ctx.far eps = ctx.eps sigma_val = ctx.sigma_val dist_eps = ctx.dist_eps gamma_val = ctx.gamma_val func_dist_type = ctx.func_dist_type func_rgb_type = ctx.func_rgb_type func_alpha_type = ctx.func_alpha_type texture_type = ctx.texture_type fill_back = ctx.fill_back # grad_faces = torch.zeros_like(face_vertices, dtype=torch.float32).to(ctx.device).contiguous() # grad_textures = torch.zeros_like(textures, dtype=torch.float32).to(ctx.device).contiguous() grad_faces = torch.zeros_like(face_vertices,dtype=torch.float32,device=ctx.device) grad_textures = torch.zeros_like(textures,dtype=torch.float32,device=ctx.device) grad_soft_colors = grad_soft_colors.contiguous() grad_faces, grad_textures = \ soft_rasterize_cuda.backward_soft_rasterize(face_vertices, textures, soft_colors, faces_info, aggrs_info, grad_faces, grad_textures, grad_soft_colors, image_size, near, far, eps, sigma_val, func_dist_type, dist_eps, gamma_val, func_rgb_type, func_alpha_type, texture_type, fill_back) return grad_faces, grad_textures, None, None, None, None, None, None, None, None, None, None, None, None, None def soft_rasterize(face_vertices, textures, image_size=256, background_color=[0, 0, 0], near=1, far=100, fill_back=True, eps=1e-3, sigma_val=1e-5, dist_func='euclidean', dist_eps=1e-4, gamma_val=1e-4, aggr_func_rgb='softmax', aggr_func_alpha='prod', texture_type='surface'): if face_vertices.device == "cpu": raise TypeError('Rasterize module supports only cuda Tensors') return SoftRasterizeFunction.apply(face_vertices, textures, image_size, background_color, near, far, fill_back, eps, sigma_val, dist_func, dist_eps, gamma_val, aggr_func_rgb, aggr_func_alpha, texture_type)
banmo-main
third_party/softras/soft_renderer/functional/soft_rasterize.py
import torch def projection(vertices, P, dist_coeffs, orig_size): ''' Calculate projective transformation of vertices given a projection matrix P: 3x4 projection matrix dist_coeffs: vector of distortion coefficients orig_size: original size of image captured by the camera ''' vertices = torch.cat([vertices, torch.ones_like(vertices[:, :, None, 0])], dim=-1) vertices = torch.bmm(vertices, P.transpose(2,1)) x, y, z = vertices[:, :, 0], vertices[:, :, 1], vertices[:, :, 2] x_ = x / (z + 1e-5) y_ = y / (z + 1e-5) # Get distortion coefficients from vector k1 = dist_coeffs[:, None, 0] k2 = dist_coeffs[:, None, 1] p1 = dist_coeffs[:, None, 2] p2 = dist_coeffs[:, None, 3] k3 = dist_coeffs[:, None, 4] # we use x_ for x' and x__ for x'' etc. r = torch.sqrt(x_ ** 2 + y_ ** 2) x__ = x_*(1 + k1*(r**2) + k2*(r**4) + k3*(r**6)) + 2*p1*x_*y_ + p2*(r**2 + 2*x_**2) y__ = y_*(1 + k1*(r**2) + k2*(r**4) + k3 *(r**6)) + p1*(r**2 + 2*y_**2) + 2*p2*x_*y_ x__ = 2 * (x__ - orig_size / 2.) / orig_size y__ = 2 * (y__ - orig_size / 2.) / orig_size vertices = torch.stack([x__,y__,z], dim=-1) return vertices
banmo-main
third_party/softras/soft_renderer/functional/projection.py
import torch import torch.nn.functional as F def vertex_normals(vertices, faces): """ :param vertices: [batch size, number of vertices, 3] :param faces: [batch size, number of faces, 3] :return: [batch size, number of vertices, 3] """ assert (vertices.ndimension() == 3) assert (faces.ndimension() == 3) assert (vertices.shape[0] == faces.shape[0]) assert (vertices.shape[2] == 3) assert (faces.shape[2] == 3) bs, nv = vertices.shape[:2] bs, nf = faces.shape[:2] device = vertices.device normals = torch.zeros(bs * nv, 3).to(device) faces = faces + (torch.arange(bs, dtype=torch.int32).to(device) * nv)[:, None, None] # expanded faces vertices_faces = vertices.reshape((bs * nv, 3))[faces.long()] faces = faces.view(-1, 3) vertices_faces = vertices_faces.view(-1, 3, 3) normals.index_add_(0, faces[:, 1].long(), torch.cross(vertices_faces[:, 2] - vertices_faces[:, 1], vertices_faces[:, 0] - vertices_faces[:, 1])) normals.index_add_(0, faces[:, 2].long(), torch.cross(vertices_faces[:, 0] - vertices_faces[:, 2], vertices_faces[:, 1] - vertices_faces[:, 2])) normals.index_add_(0, faces[:, 0].long(), torch.cross(vertices_faces[:, 1] - vertices_faces[:, 0], vertices_faces[:, 2] - vertices_faces[:, 0])) normals = F.normalize(normals, eps=1e-6, dim=1) normals = normals.reshape((bs, nv, 3)) # pytorch only supports long and byte tensors for indexing return normals
banmo-main
third_party/softras/soft_renderer/functional/vertex_normals.py
from torch import nn from torch.autograd import Function import torch import importlib import os chamfer_found = importlib.find_loader("chamfer_3D") is not None if not chamfer_found: ## Cool trick from https://github.com/chrdiller print("Jitting Chamfer 3D") from torch.utils.cpp_extension import load chamfer_3D = load(name="chamfer_3D", sources=[ "/".join(os.path.abspath(__file__).split('/')[:-1] + ["chamfer_cuda.cpp"]), "/".join(os.path.abspath(__file__).split('/')[:-1] + ["chamfer3D.cu"]), ]) print("Loaded JIT 3D CUDA chamfer distance") else: import chamfer_3D print("Loaded compiled 3D CUDA chamfer distance") # Chamfer's distance module @thibaultgroueix # GPU tensors only class chamfer_3DFunction(Function): @staticmethod def forward(ctx, xyz1, xyz2): batchsize, n, _ = xyz1.size() _, m, _ = xyz2.size() device = xyz1.device dist1 = torch.zeros(batchsize, n) dist2 = torch.zeros(batchsize, m) idx1 = torch.zeros(batchsize, n).type(torch.IntTensor) idx2 = torch.zeros(batchsize, m).type(torch.IntTensor) dist1 = dist1.to(device) dist2 = dist2.to(device) idx1 = idx1.to(device) idx2 = idx2.to(device) torch.cuda.set_device(device) chamfer_3D.forward(xyz1, xyz2, dist1, dist2, idx1, idx2) ctx.save_for_backward(xyz1, xyz2, idx1, idx2) return dist1, dist2, idx1, idx2 @staticmethod def backward(ctx, graddist1, graddist2, gradidx1, gradidx2): xyz1, xyz2, idx1, idx2 = ctx.saved_tensors graddist1 = graddist1.contiguous() graddist2 = graddist2.contiguous() device = graddist1.device gradxyz1 = torch.zeros(xyz1.size()) gradxyz2 = torch.zeros(xyz2.size()) gradxyz1 = gradxyz1.to(device) gradxyz2 = gradxyz2.to(device) chamfer_3D.backward( xyz1, xyz2, gradxyz1, gradxyz2, graddist1, graddist2, idx1, idx2 ) return gradxyz1, gradxyz2 class chamfer_3DDist(nn.Module): def __init__(self): super(chamfer_3DDist, self).__init__() def forward(self, input1, input2): input1 = input1.contiguous() input2 = input2.contiguous() return chamfer_3DFunction.apply(input1, input2)
banmo-main
third_party/chamfer3D/dist_chamfer_3D.py
from setuptools import setup from torch.utils.cpp_extension import BuildExtension, CUDAExtension setup( name='chamfer_3D', ext_modules=[ CUDAExtension('chamfer_3D', [ "/".join(__file__.split('/')[:-1] + ['chamfer_cuda.cpp']), "/".join(__file__.split('/')[:-1] + ['chamfer3D.cu']), ]), ], cmdclass={ 'build_ext': BuildExtension })
banmo-main
third_party/chamfer3D/setup.py
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. import glob import os import shutil from os import path from setuptools import find_packages, setup from typing import List import torch from torch.utils.cpp_extension import CUDA_HOME, CppExtension, CUDAExtension from torch.utils.hipify import hipify_python torch_ver = [int(x) for x in torch.__version__.split(".")[:2]] assert torch_ver >= [1, 6], "Requires PyTorch >= 1.6" def get_version(): init_py_path = path.join(path.abspath(path.dirname(__file__)), "detectron2", "__init__.py") init_py = open(init_py_path, "r").readlines() version_line = [l.strip() for l in init_py if l.startswith("__version__")][0] version = version_line.split("=")[-1].strip().strip("'\"") # The following is used to build release packages. # Users should never use it. suffix = os.getenv("D2_VERSION_SUFFIX", "") version = version + suffix if os.getenv("BUILD_NIGHTLY", "0") == "1": from datetime import datetime date_str = datetime.today().strftime("%y%m%d") version = version + ".dev" + date_str new_init_py = [l for l in init_py if not l.startswith("__version__")] new_init_py.append('__version__ = "{}"\n'.format(version)) with open(init_py_path, "w") as f: f.write("".join(new_init_py)) return version def get_extensions(): this_dir = path.dirname(path.abspath(__file__)) extensions_dir = path.join(this_dir, "detectron2", "layers", "csrc") main_source = path.join(extensions_dir, "vision.cpp") sources = glob.glob(path.join(extensions_dir, "**", "*.cpp")) from torch.utils.cpp_extension import ROCM_HOME is_rocm_pytorch = ( True if ((torch.version.hip is not None) and (ROCM_HOME is not None)) else False ) hipify_ver = ( [int(x) for x in torch.utils.hipify.__version__.split(".")] if hasattr(torch.utils.hipify, "__version__") else [0, 0, 0] ) if is_rocm_pytorch and hipify_ver < [1, 0, 0]: # TODO not needed since pt1.8 # Earlier versions of hipification and extension modules were not # transparent, i.e. would require an explicit call to hipify, and the # hipification would introduce "hip" subdirectories, possibly changing # the relationship between source and header files. # This path is maintained for backwards compatibility. hipify_python.hipify( project_directory=this_dir, output_directory=this_dir, includes="/detectron2/layers/csrc/*", show_detailed=True, is_pytorch_extension=True, ) source_cuda = glob.glob(path.join(extensions_dir, "**", "hip", "*.hip")) + glob.glob( path.join(extensions_dir, "hip", "*.hip") ) shutil.copy( "detectron2/layers/csrc/box_iou_rotated/box_iou_rotated_utils.h", "detectron2/layers/csrc/box_iou_rotated/hip/box_iou_rotated_utils.h", ) shutil.copy( "detectron2/layers/csrc/deformable/deform_conv.h", "detectron2/layers/csrc/deformable/hip/deform_conv.h", ) sources = [main_source] + sources sources = [ s for s in sources if not is_rocm_pytorch or torch_ver < [1, 7] or not s.endswith("hip/vision.cpp") ] else: # common code between cuda and rocm platforms, # for hipify version [1,0,0] and later. source_cuda = glob.glob(path.join(extensions_dir, "**", "*.cu")) + glob.glob( path.join(extensions_dir, "*.cu") ) sources = [main_source] + sources extension = CppExtension extra_compile_args = {"cxx": []} define_macros = [] if (torch.cuda.is_available() and ((CUDA_HOME is not None) or is_rocm_pytorch)) or os.getenv( "FORCE_CUDA", "0" ) == "1": extension = CUDAExtension sources += source_cuda if not is_rocm_pytorch: define_macros += [("WITH_CUDA", None)] extra_compile_args["nvcc"] = [ "-O3", "-DCUDA_HAS_FP16=1", "-D__CUDA_NO_HALF_OPERATORS__", "-D__CUDA_NO_HALF_CONVERSIONS__", "-D__CUDA_NO_HALF2_OPERATORS__", ] else: define_macros += [("WITH_HIP", None)] extra_compile_args["nvcc"] = [] if torch_ver < [1, 7]: # supported by https://github.com/pytorch/pytorch/pull/43931 CC = os.environ.get("CC", None) if CC is not None: extra_compile_args["nvcc"].append("-ccbin={}".format(CC)) include_dirs = [extensions_dir] ext_modules = [ extension( "detectron2._C", sources, include_dirs=include_dirs, define_macros=define_macros, extra_compile_args=extra_compile_args, ) ] return ext_modules def get_model_zoo_configs() -> List[str]: """ Return a list of configs to include in package for model zoo. Copy over these configs inside detectron2/model_zoo. """ # Use absolute paths while symlinking. source_configs_dir = path.join(path.dirname(path.realpath(__file__)), "configs") destination = path.join( path.dirname(path.realpath(__file__)), "detectron2", "model_zoo", "configs" ) # Symlink the config directory inside package to have a cleaner pip install. # Remove stale symlink/directory from a previous build. if path.exists(source_configs_dir): if path.islink(destination): os.unlink(destination) elif path.isdir(destination): shutil.rmtree(destination) if not path.exists(destination): try: os.symlink(source_configs_dir, destination) except OSError: # Fall back to copying if symlink fails: ex. on Windows. shutil.copytree(source_configs_dir, destination) config_paths = glob.glob("configs/**/*.yaml", recursive=True) + glob.glob( "configs/**/*.py", recursive=True ) return config_paths # For projects that are relative small and provide features that are very close # to detectron2's core functionalities, we install them under detectron2.projects PROJECTS = { "detectron2.projects.point_rend": "projects/PointRend/point_rend", "detectron2.projects.deeplab": "projects/DeepLab/deeplab", "detectron2.projects.panoptic_deeplab": "projects/Panoptic-DeepLab/panoptic_deeplab", } setup( name="detectron2", version=get_version(), author="FAIR", url="https://github.com/facebookresearch/detectron2", description="Detectron2 is FAIR's next-generation research " "platform for object detection and segmentation.", packages=find_packages(exclude=("configs", "tests*")) + list(PROJECTS.keys()), package_dir=PROJECTS, package_data={"detectron2.model_zoo": get_model_zoo_configs()}, python_requires=">=3.6", install_requires=[ # Do not add opencv here. Just like pytorch, user should install # opencv themselves, preferrably by OS's package manager, or by # choosing the proper pypi package name at https://github.com/skvark/opencv-python "termcolor>=1.1", "Pillow>=7.1", # or use pillow-simd for better performance "yacs>=0.1.6", "tabulate", "cloudpickle", "matplotlib", "tqdm>4.29.0", "tensorboard", # Lock version of fvcore/iopath because they may have breaking changes # NOTE: when updating fvcore/iopath version, make sure fvcore depends # on compatible version of iopath. "fvcore>=0.1.5,<0.1.6", # required like this to make it pip installable "iopath>=0.1.7,<0.1.9", "pycocotools>=2.0.2", # corresponds to https://github.com/ppwwyyxx/cocoapi "future", # used by caffe2 "pydot", # used to save caffe2 SVGs "dataclasses; python_version<'3.7'", "omegaconf>=2.1.0rc1", "hydra-core>=1.1.0rc1", "black==21.4b2", # When adding to the list, may need to update docs/requirements.txt # or add mock in docs/conf.py ], extras_require={ "all": [ "shapely", "pygments>=2.2", "psutil", "panopticapi @ https://github.com/cocodataset/panopticapi/archive/master.zip", ], "dev": [ "flake8==3.8.1", "isort==4.3.21", "flake8-bugbear", "flake8-comprehensions", ], }, ext_modules=get_extensions(), cmdclass={"build_ext": torch.utils.cpp_extension.BuildExtension}, )
banmo-main
third_party/detectron2_old/setup.py
# Copyright (c) Facebook, Inc. and its affiliates. import atexit import bisect import multiprocessing as mp from collections import deque import cv2 import torch from detectron2.data import MetadataCatalog from detectron2.engine.defaults import DefaultPredictor from detectron2.utils.video_visualizer import VideoVisualizer from detectron2.utils.visualizer import ColorMode, Visualizer class VisualizationDemo(object): def __init__(self, cfg, instance_mode=ColorMode.IMAGE, parallel=False): """ Args: cfg (CfgNode): instance_mode (ColorMode): parallel (bool): whether to run the model in different processes from visualization. Useful since the visualization logic can be slow. """ self.metadata = MetadataCatalog.get( cfg.DATASETS.TEST[0] if len(cfg.DATASETS.TEST) else "__unused" ) self.cpu_device = torch.device("cpu") self.instance_mode = instance_mode self.parallel = parallel if parallel: num_gpu = torch.cuda.device_count() self.predictor = AsyncPredictor(cfg, num_gpus=num_gpu) else: self.predictor = DefaultPredictor(cfg) def run_on_image(self, image): """ Args: image (np.ndarray): an image of shape (H, W, C) (in BGR order). This is the format used by OpenCV. Returns: predictions (dict): the output of the model. vis_output (VisImage): the visualized image output. """ vis_output = None predictions = self.predictor(image) # Convert image from OpenCV BGR format to Matplotlib RGB format. image = image[:, :, ::-1] visualizer = Visualizer(image, self.metadata, instance_mode=self.instance_mode) if "panoptic_seg" in predictions: panoptic_seg, segments_info = predictions["panoptic_seg"] vis_output = visualizer.draw_panoptic_seg_predictions( panoptic_seg.to(self.cpu_device), segments_info ) else: if "sem_seg" in predictions: vis_output = visualizer.draw_sem_seg( predictions["sem_seg"].argmax(dim=0).to(self.cpu_device) ) if "instances" in predictions: instances = predictions["instances"].to(self.cpu_device) vis_output = visualizer.draw_instance_predictions(predictions=instances) return predictions, vis_output def _frame_from_video(self, video): while video.isOpened(): success, frame = video.read() if success: yield frame else: break def run_on_video(self, video): """ Visualizes predictions on frames of the input video. Args: video (cv2.VideoCapture): a :class:`VideoCapture` object, whose source can be either a webcam or a video file. Yields: ndarray: BGR visualizations of each video frame. """ video_visualizer = VideoVisualizer(self.metadata, self.instance_mode) def process_predictions(frame, predictions): frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) if "panoptic_seg" in predictions: panoptic_seg, segments_info = predictions["panoptic_seg"] vis_frame = video_visualizer.draw_panoptic_seg_predictions( frame, panoptic_seg.to(self.cpu_device), segments_info ) elif "instances" in predictions: predictions = predictions["instances"].to(self.cpu_device) vis_frame = video_visualizer.draw_instance_predictions(frame, predictions) elif "sem_seg" in predictions: vis_frame = video_visualizer.draw_sem_seg( frame, predictions["sem_seg"].argmax(dim=0).to(self.cpu_device) ) # Converts Matplotlib RGB format to OpenCV BGR format vis_frame = cv2.cvtColor(vis_frame.get_image(), cv2.COLOR_RGB2BGR) return vis_frame frame_gen = self._frame_from_video(video) if self.parallel: buffer_size = self.predictor.default_buffer_size frame_data = deque() for cnt, frame in enumerate(frame_gen): frame_data.append(frame) self.predictor.put(frame) if cnt >= buffer_size: frame = frame_data.popleft() predictions = self.predictor.get() yield process_predictions(frame, predictions) while len(frame_data): frame = frame_data.popleft() predictions = self.predictor.get() yield process_predictions(frame, predictions) else: for frame in frame_gen: yield process_predictions(frame, self.predictor(frame)) class AsyncPredictor: """ A predictor that runs the model asynchronously, possibly on >1 GPUs. Because rendering the visualization takes considerably amount of time, this helps improve throughput a little bit when rendering videos. """ class _StopToken: pass class _PredictWorker(mp.Process): def __init__(self, cfg, task_queue, result_queue): self.cfg = cfg self.task_queue = task_queue self.result_queue = result_queue super().__init__() def run(self): predictor = DefaultPredictor(self.cfg) while True: task = self.task_queue.get() if isinstance(task, AsyncPredictor._StopToken): break idx, data = task result = predictor(data) self.result_queue.put((idx, result)) def __init__(self, cfg, num_gpus: int = 1): """ Args: cfg (CfgNode): num_gpus (int): if 0, will run on CPU """ num_workers = max(num_gpus, 1) self.task_queue = mp.Queue(maxsize=num_workers * 3) self.result_queue = mp.Queue(maxsize=num_workers * 3) self.procs = [] for gpuid in range(max(num_gpus, 1)): cfg = cfg.clone() cfg.defrost() cfg.MODEL.DEVICE = "cuda:{}".format(gpuid) if num_gpus > 0 else "cpu" self.procs.append( AsyncPredictor._PredictWorker(cfg, self.task_queue, self.result_queue) ) self.put_idx = 0 self.get_idx = 0 self.result_rank = [] self.result_data = [] for p in self.procs: p.start() atexit.register(self.shutdown) def put(self, image): self.put_idx += 1 self.task_queue.put((self.put_idx, image)) def get(self): self.get_idx += 1 # the index needed for this request if len(self.result_rank) and self.result_rank[0] == self.get_idx: res = self.result_data[0] del self.result_data[0], self.result_rank[0] return res while True: # make sure the results are returned in the correct order idx, res = self.result_queue.get() if idx == self.get_idx: return res insert = bisect.bisect(self.result_rank, idx) self.result_rank.insert(insert, idx) self.result_data.insert(insert, res) def __len__(self): return self.put_idx - self.get_idx def __call__(self, image): self.put(image) return self.get() def shutdown(self): for _ in self.procs: self.task_queue.put(AsyncPredictor._StopToken()) @property def default_buffer_size(self): return len(self.procs) * 5
banmo-main
third_party/detectron2_old/demo/predictor.py
# Copyright (c) Facebook, Inc. and its affiliates. import argparse import glob import multiprocessing as mp import numpy as np import os import tempfile import time import warnings import cv2 import tqdm from detectron2.config import get_cfg from detectron2.data.detection_utils import read_image from detectron2.utils.logger import setup_logger from predictor import VisualizationDemo # constants WINDOW_NAME = "COCO detections" def setup_cfg(args): # load config from file and command-line arguments cfg = get_cfg() # To use demo for Panoptic-DeepLab, please uncomment the following two lines. # from detectron2.projects.panoptic_deeplab import add_panoptic_deeplab_config # noqa # add_panoptic_deeplab_config(cfg) cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) # Set score_threshold for builtin models cfg.MODEL.RETINANET.SCORE_THRESH_TEST = args.confidence_threshold cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = args.confidence_threshold cfg.MODEL.PANOPTIC_FPN.COMBINE.INSTANCES_CONFIDENCE_THRESH = args.confidence_threshold cfg.freeze() return cfg def get_parser(): parser = argparse.ArgumentParser(description="Detectron2 demo for builtin configs") parser.add_argument( "--config-file", default="configs/quick_schedules/mask_rcnn_R_50_FPN_inference_acc_test.yaml", metavar="FILE", help="path to config file", ) parser.add_argument("--webcam", action="store_true", help="Take inputs from webcam.") parser.add_argument("--video-input", help="Path to video file.") parser.add_argument( "--input", nargs="+", help="A list of space separated input images; " "or a single glob pattern such as 'directory/*.jpg'", ) parser.add_argument( "--output", help="A file or directory to save output visualizations. " "If not given, will show output in an OpenCV window.", ) parser.add_argument( "--confidence-threshold", type=float, default=0.5, help="Minimum score for instance predictions to be shown", ) parser.add_argument( "--opts", help="Modify config options using the command-line 'KEY VALUE' pairs", default=[], nargs=argparse.REMAINDER, ) return parser def test_opencv_video_format(codec, file_ext): with tempfile.TemporaryDirectory(prefix="video_format_test") as dir: filename = os.path.join(dir, "test_file" + file_ext) writer = cv2.VideoWriter( filename=filename, fourcc=cv2.VideoWriter_fourcc(*codec), fps=float(30), frameSize=(10, 10), isColor=True, ) [writer.write(np.zeros((10, 10, 3), np.uint8)) for _ in range(30)] writer.release() if os.path.isfile(filename): return True return False if __name__ == "__main__": mp.set_start_method("spawn", force=True) args = get_parser().parse_args() setup_logger(name="fvcore") logger = setup_logger() logger.info("Arguments: " + str(args)) cfg = setup_cfg(args) demo = VisualizationDemo(cfg) if args.input: if len(args.input) == 1: args.input = glob.glob(os.path.expanduser(args.input[0])) assert args.input, "The input path(s) was not found" for path in tqdm.tqdm(args.input, disable=not args.output): # use PIL, to be consistent with evaluation img = read_image(path, format="BGR") start_time = time.time() predictions, visualized_output = demo.run_on_image(img) logger.info( "{}: {} in {:.2f}s".format( path, "detected {} instances".format(len(predictions["instances"])) if "instances" in predictions else "finished", time.time() - start_time, ) ) if args.output: if os.path.isdir(args.output): assert os.path.isdir(args.output), args.output out_filename = os.path.join(args.output, os.path.basename(path)) else: assert len(args.input) == 1, "Please specify a directory with args.output" out_filename = args.output visualized_output.save(out_filename) else: cv2.namedWindow(WINDOW_NAME, cv2.WINDOW_NORMAL) cv2.imshow(WINDOW_NAME, visualized_output.get_image()[:, :, ::-1]) if cv2.waitKey(0) == 27: break # esc to quit elif args.webcam: assert args.input is None, "Cannot have both --input and --webcam!" assert args.output is None, "output not yet supported with --webcam!" cam = cv2.VideoCapture(0) for vis in tqdm.tqdm(demo.run_on_video(cam)): cv2.namedWindow(WINDOW_NAME, cv2.WINDOW_NORMAL) cv2.imshow(WINDOW_NAME, vis) if cv2.waitKey(1) == 27: break # esc to quit cam.release() cv2.destroyAllWindows() elif args.video_input: video = cv2.VideoCapture(args.video_input) width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT)) frames_per_second = video.get(cv2.CAP_PROP_FPS) num_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT)) basename = os.path.basename(args.video_input) codec, file_ext = ( ("x264", ".mkv") if test_opencv_video_format("x264", ".mkv") else ("mp4v", ".mp4") ) if codec == ".mp4v": warnings.warn("x264 codec not available, switching to mp4v") if args.output: if os.path.isdir(args.output): output_fname = os.path.join(args.output, basename) output_fname = os.path.splitext(output_fname)[0] + file_ext else: output_fname = args.output assert not os.path.isfile(output_fname), output_fname output_file = cv2.VideoWriter( filename=output_fname, # some installation of opencv may not support x264 (due to its license), # you can try other format (e.g. MPEG) fourcc=cv2.VideoWriter_fourcc(*codec), fps=float(frames_per_second), frameSize=(width, height), isColor=True, ) assert os.path.isfile(args.video_input) for vis_frame in tqdm.tqdm(demo.run_on_video(video), total=num_frames): if args.output: output_file.write(vis_frame) else: cv2.namedWindow(basename, cv2.WINDOW_NORMAL) cv2.imshow(basename, vis_frame) if cv2.waitKey(1) == 27: break # esc to quit video.release() if args.output: output_file.release() else: cv2.destroyAllWindows()
banmo-main
third_party/detectron2_old/demo/demo.py
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. import pickle as pkl import sys import torch """ Usage: # download one of the ResNet{18,34,50,101,152} models from torchvision: wget https://download.pytorch.org/models/resnet50-19c8e357.pth -O r50.pth # run the conversion ./convert-torchvision-to-d2.py r50.pth r50.pkl # Then, use r50.pkl with the following changes in config: MODEL: WEIGHTS: "/path/to/r50.pkl" PIXEL_MEAN: [123.675, 116.280, 103.530] PIXEL_STD: [58.395, 57.120, 57.375] RESNETS: DEPTH: 50 STRIDE_IN_1X1: False INPUT: FORMAT: "RGB" These models typically produce slightly worse results than the pre-trained ResNets we use in official configs, which are the original ResNet models released by MSRA. """ if __name__ == "__main__": input = sys.argv[1] obj = torch.load(input, map_location="cpu") newmodel = {} for k in list(obj.keys()): old_k = k if "layer" not in k: k = "stem." + k for t in [1, 2, 3, 4]: k = k.replace("layer{}".format(t), "res{}".format(t + 1)) for t in [1, 2, 3]: k = k.replace("bn{}".format(t), "conv{}.norm".format(t)) k = k.replace("downsample.0", "shortcut") k = k.replace("downsample.1", "shortcut.norm") print(old_k, "->", k) newmodel[k] = obj.pop(old_k).detach().numpy() res = {"model": newmodel, "__author__": "torchvision", "matching_heuristics": True} with open(sys.argv[2], "wb") as f: pkl.dump(res, f) if obj: print("Unconverted keys:", obj.keys())
banmo-main
third_party/detectron2_old/tools/convert-torchvision-to-d2.py
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. """ A script to benchmark builtin models. Note: this script has an extra dependency of psutil. """ import itertools import logging import psutil import torch import tqdm from fvcore.common.timer import Timer from torch.nn.parallel import DistributedDataParallel from detectron2.checkpoint import DetectionCheckpointer from detectron2.config import get_cfg from detectron2.data import ( DatasetFromList, build_detection_test_loader, build_detection_train_loader, ) from detectron2.engine import AMPTrainer, SimpleTrainer, default_argument_parser, hooks, launch from detectron2.modeling import build_model from detectron2.solver import build_optimizer from detectron2.utils import comm from detectron2.utils.collect_env import collect_env_info from detectron2.utils.events import CommonMetricPrinter from detectron2.utils.logger import setup_logger logger = logging.getLogger("detectron2") def setup(args): cfg = get_cfg() cfg.merge_from_file(args.config_file) cfg.SOLVER.BASE_LR = 0.001 # Avoid NaNs. Not useful in this script anyway. cfg.merge_from_list(args.opts) cfg.freeze() setup_logger(distributed_rank=comm.get_rank()) return cfg def RAM_msg(): vram = psutil.virtual_memory() return "RAM Usage: {:.2f}/{:.2f} GB".format( (vram.total - vram.available) / 1024 ** 3, vram.total / 1024 ** 3 ) def benchmark_data(args): cfg = setup(args) logger.info("After spawning " + RAM_msg()) timer = Timer() dataloader = build_detection_train_loader(cfg) logger.info("Initialize loader using {} seconds.".format(timer.seconds())) timer.reset() itr = iter(dataloader) for i in range(10): # warmup next(itr) if i == 0: startup_time = timer.seconds() logger.info("Startup time: {} seconds".format(startup_time)) timer = Timer() max_iter = 1000 for _ in tqdm.trange(max_iter): next(itr) logger.info( "{} iters ({} images) in {} seconds.".format( max_iter, max_iter * cfg.SOLVER.IMS_PER_BATCH, timer.seconds() ) ) # test for a few more rounds for k in range(10): logger.info(f"Iteration {k} " + RAM_msg()) timer = Timer() max_iter = 1000 for _ in tqdm.trange(max_iter): next(itr) logger.info( "{} iters ({} images) in {} seconds.".format( max_iter, max_iter * cfg.SOLVER.IMS_PER_BATCH, timer.seconds() ) ) def benchmark_train(args): cfg = setup(args) model = build_model(cfg) logger.info("Model:\n{}".format(model)) if comm.get_world_size() > 1: model = DistributedDataParallel( model, device_ids=[comm.get_local_rank()], broadcast_buffers=False ) optimizer = build_optimizer(cfg, model) checkpointer = DetectionCheckpointer(model, optimizer=optimizer) checkpointer.load(cfg.MODEL.WEIGHTS) cfg.defrost() cfg.DATALOADER.NUM_WORKERS = 2 data_loader = build_detection_train_loader(cfg) dummy_data = list(itertools.islice(data_loader, 100)) def f(): data = DatasetFromList(dummy_data, copy=False, serialize=False) while True: yield from data max_iter = 400 trainer = (AMPTrainer if cfg.SOLVER.AMP.ENABLED else SimpleTrainer)(model, f(), optimizer) trainer.register_hooks( [hooks.IterationTimer(), hooks.PeriodicWriter([CommonMetricPrinter(max_iter)])] ) trainer.train(1, max_iter) @torch.no_grad() def benchmark_eval(args): cfg = setup(args) model = build_model(cfg) model.eval() logger.info("Model:\n{}".format(model)) DetectionCheckpointer(model).load(cfg.MODEL.WEIGHTS) cfg.defrost() cfg.DATALOADER.NUM_WORKERS = 0 data_loader = build_detection_test_loader(cfg, cfg.DATASETS.TEST[0]) dummy_data = DatasetFromList(list(itertools.islice(data_loader, 100)), copy=False) def f(): while True: yield from dummy_data for k in range(5): # warmup model(dummy_data[k]) max_iter = 300 timer = Timer() with tqdm.tqdm(total=max_iter) as pbar: for idx, d in enumerate(f()): if idx == max_iter: break model(d) pbar.update() logger.info("{} iters in {} seconds.".format(max_iter, timer.seconds())) if __name__ == "__main__": parser = default_argument_parser() parser.add_argument("--task", choices=["train", "eval", "data"], required=True) args = parser.parse_args() assert not args.eval_only logger.info("Environment info:\n" + collect_env_info()) if args.task == "data": f = benchmark_data print("Initial " + RAM_msg()) elif args.task == "train": """ Note: training speed may not be representative. The training cost of a R-CNN model varies with the content of the data and the quality of the model. """ f = benchmark_train elif args.task == "eval": f = benchmark_eval # only benchmark single-GPU inference. assert args.num_gpus == 1 and args.num_machines == 1 launch(f, args.num_gpus, args.num_machines, args.machine_rank, args.dist_url, args=(args,))
banmo-main
third_party/detectron2_old/tools/benchmark.py
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. import argparse import os from itertools import chain import cv2 import tqdm from detectron2.config import get_cfg from detectron2.data import DatasetCatalog, MetadataCatalog, build_detection_train_loader from detectron2.data import detection_utils as utils from detectron2.data.build import filter_images_with_few_keypoints from detectron2.utils.logger import setup_logger from detectron2.utils.visualizer import Visualizer def setup(args): cfg = get_cfg() if args.config_file: cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) cfg.DATALOADER.NUM_WORKERS = 0 cfg.freeze() return cfg def parse_args(in_args=None): parser = argparse.ArgumentParser(description="Visualize ground-truth data") parser.add_argument( "--source", choices=["annotation", "dataloader"], required=True, help="visualize the annotations or the data loader (with pre-processing)", ) parser.add_argument("--config-file", metavar="FILE", help="path to config file") parser.add_argument("--output-dir", default="./", help="path to output directory") parser.add_argument("--show", action="store_true", help="show output in a window") parser.add_argument( "opts", help="Modify config options using the command-line", default=None, nargs=argparse.REMAINDER, ) return parser.parse_args(in_args) if __name__ == "__main__": args = parse_args() logger = setup_logger() logger.info("Arguments: " + str(args)) cfg = setup(args) dirname = args.output_dir os.makedirs(dirname, exist_ok=True) metadata = MetadataCatalog.get(cfg.DATASETS.TRAIN[0]) def output(vis, fname): if args.show: print(fname) cv2.imshow("window", vis.get_image()[:, :, ::-1]) cv2.waitKey() else: filepath = os.path.join(dirname, fname) print("Saving to {} ...".format(filepath)) vis.save(filepath) scale = 1.0 if args.source == "dataloader": train_data_loader = build_detection_train_loader(cfg) for batch in train_data_loader: for per_image in batch: # Pytorch tensor is in (C, H, W) format img = per_image["image"].permute(1, 2, 0).cpu().detach().numpy() img = utils.convert_image_to_rgb(img, cfg.INPUT.FORMAT) visualizer = Visualizer(img, metadata=metadata, scale=scale) target_fields = per_image["instances"].get_fields() labels = [metadata.thing_classes[i] for i in target_fields["gt_classes"]] vis = visualizer.overlay_instances( labels=labels, boxes=target_fields.get("gt_boxes", None), masks=target_fields.get("gt_masks", None), keypoints=target_fields.get("gt_keypoints", None), ) output(vis, str(per_image["image_id"]) + ".jpg") else: dicts = list(chain.from_iterable([DatasetCatalog.get(k) for k in cfg.DATASETS.TRAIN])) if cfg.MODEL.KEYPOINT_ON: dicts = filter_images_with_few_keypoints(dicts, 1) for dic in tqdm.tqdm(dicts): img = utils.read_image(dic["file_name"], "RGB") visualizer = Visualizer(img, metadata=metadata, scale=scale) vis = visualizer.draw_dataset_dict(dic) output(vis, os.path.basename(dic["file_name"]))
banmo-main
third_party/detectron2_old/tools/visualize_data.py
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. """ Detectron2 training script with a plain training loop. This script reads a given config file and runs the training or evaluation. It is an entry point that is able to train standard models in detectron2. In order to let one script support training of many models, this script contains logic that are specific to these built-in models and therefore may not be suitable for your own project. For example, your research project perhaps only needs a single "evaluator". Therefore, we recommend you to use detectron2 as a library and take this file as an example of how to use the library. You may want to write your own script with your datasets and other customizations. Compared to "train_net.py", this script supports fewer default features. It also includes fewer abstraction, therefore is easier to add custom logic. """ import logging import os from collections import OrderedDict import torch from torch.nn.parallel import DistributedDataParallel import detectron2.utils.comm as comm from detectron2.checkpoint import DetectionCheckpointer, PeriodicCheckpointer from detectron2.config import get_cfg from detectron2.data import ( MetadataCatalog, build_detection_test_loader, build_detection_train_loader, ) from detectron2.engine import default_argument_parser, default_setup, default_writers, launch from detectron2.evaluation import ( CityscapesInstanceEvaluator, CityscapesSemSegEvaluator, COCOEvaluator, COCOPanopticEvaluator, DatasetEvaluators, LVISEvaluator, PascalVOCDetectionEvaluator, SemSegEvaluator, inference_on_dataset, print_csv_format, ) from detectron2.modeling import build_model from detectron2.solver import build_lr_scheduler, build_optimizer from detectron2.utils.events import EventStorage logger = logging.getLogger("detectron2") def get_evaluator(cfg, dataset_name, output_folder=None): """ Create evaluator(s) for a given dataset. This uses the special metadata "evaluator_type" associated with each builtin dataset. For your own dataset, you can simply create an evaluator manually in your script and do not have to worry about the hacky if-else logic here. """ if output_folder is None: output_folder = os.path.join(cfg.OUTPUT_DIR, "inference") evaluator_list = [] evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type if evaluator_type in ["sem_seg", "coco_panoptic_seg"]: evaluator_list.append( SemSegEvaluator( dataset_name, distributed=True, output_dir=output_folder, ) ) if evaluator_type in ["coco", "coco_panoptic_seg"]: evaluator_list.append(COCOEvaluator(dataset_name, output_dir=output_folder)) if evaluator_type == "coco_panoptic_seg": evaluator_list.append(COCOPanopticEvaluator(dataset_name, output_folder)) if evaluator_type == "cityscapes_instance": assert ( torch.cuda.device_count() >= comm.get_rank() ), "CityscapesEvaluator currently do not work with multiple machines." return CityscapesInstanceEvaluator(dataset_name) if evaluator_type == "cityscapes_sem_seg": assert ( torch.cuda.device_count() >= comm.get_rank() ), "CityscapesEvaluator currently do not work with multiple machines." return CityscapesSemSegEvaluator(dataset_name) if evaluator_type == "pascal_voc": return PascalVOCDetectionEvaluator(dataset_name) if evaluator_type == "lvis": return LVISEvaluator(dataset_name, cfg, True, output_folder) if len(evaluator_list) == 0: raise NotImplementedError( "no Evaluator for the dataset {} with the type {}".format(dataset_name, evaluator_type) ) if len(evaluator_list) == 1: return evaluator_list[0] return DatasetEvaluators(evaluator_list) def do_test(cfg, model): results = OrderedDict() for dataset_name in cfg.DATASETS.TEST: data_loader = build_detection_test_loader(cfg, dataset_name) evaluator = get_evaluator( cfg, dataset_name, os.path.join(cfg.OUTPUT_DIR, "inference", dataset_name) ) results_i = inference_on_dataset(model, data_loader, evaluator) results[dataset_name] = results_i if comm.is_main_process(): logger.info("Evaluation results for {} in csv format:".format(dataset_name)) print_csv_format(results_i) if len(results) == 1: results = list(results.values())[0] return results def do_train(cfg, model, resume=False): model.train() optimizer = build_optimizer(cfg, model) scheduler = build_lr_scheduler(cfg, optimizer) checkpointer = DetectionCheckpointer( model, cfg.OUTPUT_DIR, optimizer=optimizer, scheduler=scheduler ) start_iter = ( checkpointer.resume_or_load(cfg.MODEL.WEIGHTS, resume=resume).get("iteration", -1) + 1 ) max_iter = cfg.SOLVER.MAX_ITER periodic_checkpointer = PeriodicCheckpointer( checkpointer, cfg.SOLVER.CHECKPOINT_PERIOD, max_iter=max_iter ) writers = default_writers(cfg.OUTPUT_DIR, max_iter) if comm.is_main_process() else [] # compared to "train_net.py", we do not support accurate timing and # precise BN here, because they are not trivial to implement in a small training loop data_loader = build_detection_train_loader(cfg) logger.info("Starting training from iteration {}".format(start_iter)) with EventStorage(start_iter) as storage: for data, iteration in zip(data_loader, range(start_iter, max_iter)): storage.iter = iteration loss_dict = model(data) losses = sum(loss_dict.values()) assert torch.isfinite(losses).all(), loss_dict loss_dict_reduced = {k: v.item() for k, v in comm.reduce_dict(loss_dict).items()} losses_reduced = sum(loss for loss in loss_dict_reduced.values()) if comm.is_main_process(): storage.put_scalars(total_loss=losses_reduced, **loss_dict_reduced) optimizer.zero_grad() losses.backward() optimizer.step() storage.put_scalar("lr", optimizer.param_groups[0]["lr"], smoothing_hint=False) scheduler.step() if ( cfg.TEST.EVAL_PERIOD > 0 and (iteration + 1) % cfg.TEST.EVAL_PERIOD == 0 and iteration != max_iter - 1 ): do_test(cfg, model) # Compared to "train_net.py", the test results are not dumped to EventStorage comm.synchronize() if iteration - start_iter > 5 and ( (iteration + 1) % 20 == 0 or iteration == max_iter - 1 ): for writer in writers: writer.write() periodic_checkpointer.step(iteration) def setup(args): """ Create configs and perform basic setups. """ cfg = get_cfg() cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) cfg.freeze() default_setup( cfg, args ) # if you don't like any of the default setup, write your own setup code return cfg def main(args): cfg = setup(args) model = build_model(cfg) logger.info("Model:\n{}".format(model)) if args.eval_only: DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load( cfg.MODEL.WEIGHTS, resume=args.resume ) return do_test(cfg, model) distributed = comm.get_world_size() > 1 if distributed: model = DistributedDataParallel( model, device_ids=[comm.get_local_rank()], broadcast_buffers=False ) do_train(cfg, model, resume=args.resume) return do_test(cfg, model) if __name__ == "__main__": args = default_argument_parser().parse_args() print("Command Line Args:", args) launch( main, args.num_gpus, num_machines=args.num_machines, machine_rank=args.machine_rank, dist_url=args.dist_url, args=(args,), )
banmo-main
third_party/detectron2_old/tools/plain_train_net.py
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. import argparse import json import numpy as np import os from collections import defaultdict import cv2 import tqdm from detectron2.data import DatasetCatalog, MetadataCatalog from detectron2.structures import Boxes, BoxMode, Instances from detectron2.utils.file_io import PathManager from detectron2.utils.logger import setup_logger from detectron2.utils.visualizer import Visualizer def create_instances(predictions, image_size): ret = Instances(image_size) score = np.asarray([x["score"] for x in predictions]) chosen = (score > args.conf_threshold).nonzero()[0] score = score[chosen] bbox = np.asarray([predictions[i]["bbox"] for i in chosen]).reshape(-1, 4) bbox = BoxMode.convert(bbox, BoxMode.XYWH_ABS, BoxMode.XYXY_ABS) labels = np.asarray([dataset_id_map(predictions[i]["category_id"]) for i in chosen]) ret.scores = score ret.pred_boxes = Boxes(bbox) ret.pred_classes = labels try: ret.pred_masks = [predictions[i]["segmentation"] for i in chosen] except KeyError: pass return ret if __name__ == "__main__": parser = argparse.ArgumentParser( description="A script that visualizes the json predictions from COCO or LVIS dataset." ) parser.add_argument("--input", required=True, help="JSON file produced by the model") parser.add_argument("--output", required=True, help="output directory") parser.add_argument("--dataset", help="name of the dataset", default="coco_2017_val") parser.add_argument("--conf-threshold", default=0.5, type=float, help="confidence threshold") args = parser.parse_args() logger = setup_logger() with PathManager.open(args.input, "r") as f: predictions = json.load(f) pred_by_image = defaultdict(list) for p in predictions: pred_by_image[p["image_id"]].append(p) dicts = list(DatasetCatalog.get(args.dataset)) metadata = MetadataCatalog.get(args.dataset) if hasattr(metadata, "thing_dataset_id_to_contiguous_id"): def dataset_id_map(ds_id): return metadata.thing_dataset_id_to_contiguous_id[ds_id] elif "lvis" in args.dataset: # LVIS results are in the same format as COCO results, but have a different # mapping from dataset category id to contiguous category id in [0, #categories - 1] def dataset_id_map(ds_id): return ds_id - 1 else: raise ValueError("Unsupported dataset: {}".format(args.dataset)) os.makedirs(args.output, exist_ok=True) for dic in tqdm.tqdm(dicts): img = cv2.imread(dic["file_name"], cv2.IMREAD_COLOR)[:, :, ::-1] basename = os.path.basename(dic["file_name"]) predictions = create_instances(pred_by_image[dic["image_id"]], img.shape[:2]) vis = Visualizer(img, metadata) vis_pred = vis.draw_instance_predictions(predictions).get_image() vis = Visualizer(img, metadata) vis_gt = vis.draw_dataset_dict(dic).get_image() concat = np.concatenate((vis_pred, vis_gt), axis=1) cv2.imwrite(os.path.join(args.output, basename), concat[:, :, ::-1])
banmo-main
third_party/detectron2_old/tools/visualize_json_results.py
# -*- coding: utf-8 -*- # Copyright (c) Facebook, Inc. and its affiliates. import logging import numpy as np from collections import Counter import tqdm from fvcore.nn import flop_count_table # can also try flop_count_str from detectron2.checkpoint import DetectionCheckpointer from detectron2.config import get_cfg from detectron2.data import build_detection_test_loader from detectron2.engine import default_argument_parser from detectron2.modeling import build_model from detectron2.utils.analysis import ( FlopCountAnalysis, activation_count_operators, parameter_count_table, ) from detectron2.utils.logger import setup_logger logger = logging.getLogger("detectron2") def setup(args): cfg = get_cfg() cfg.merge_from_file(args.config_file) cfg.DATALOADER.NUM_WORKERS = 0 cfg.merge_from_list(args.opts) cfg.freeze() setup_logger(name="fvcore") setup_logger() return cfg def do_flop(cfg): data_loader = build_detection_test_loader(cfg, cfg.DATASETS.TEST[0]) model = build_model(cfg) DetectionCheckpointer(model).load(cfg.MODEL.WEIGHTS) model.eval() counts = Counter() total_flops = [] for idx, data in zip(tqdm.trange(args.num_inputs), data_loader): # noqa flops = FlopCountAnalysis(model, data) if idx > 0: flops.unsupported_ops_warnings(False).uncalled_modules_warnings(False) counts += flops.by_operator() total_flops.append(flops.total()) logger.info("Flops table computed from only one input sample:\n" + flop_count_table(flops)) logger.info( "Average GFlops for each type of operators:\n" + str([(k, v / (idx + 1) / 1e9) for k, v in counts.items()]) ) logger.info( "Total GFlops: {:.1f}±{:.1f}".format(np.mean(total_flops) / 1e9, np.std(total_flops) / 1e9) ) def do_activation(cfg): data_loader = build_detection_test_loader(cfg, cfg.DATASETS.TEST[0]) model = build_model(cfg) DetectionCheckpointer(model).load(cfg.MODEL.WEIGHTS) model.eval() counts = Counter() total_activations = [] for idx, data in zip(tqdm.trange(args.num_inputs), data_loader): # noqa count = activation_count_operators(model, data) counts += count total_activations.append(sum(count.values())) logger.info( "(Million) Activations for Each Type of Operators:\n" + str([(k, v / idx) for k, v in counts.items()]) ) logger.info( "Total (Million) Activations: {}±{}".format( np.mean(total_activations), np.std(total_activations) ) ) def do_parameter(cfg): model = build_model(cfg) logger.info("Parameter Count:\n" + parameter_count_table(model, max_depth=5)) def do_structure(cfg): model = build_model(cfg) logger.info("Model Structure:\n" + str(model)) if __name__ == "__main__": parser = default_argument_parser( epilog=""" Examples: To show parameters of a model: $ ./analyze_model.py --tasks parameter \\ --config-file ../configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml Flops and activations are data-dependent, therefore inputs and model weights are needed to count them: $ ./analyze_model.py --num-inputs 100 --tasks flop \\ --config-file ../configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml \\ MODEL.WEIGHTS /path/to/model.pkl """ ) parser.add_argument( "--tasks", choices=["flop", "activation", "parameter", "structure"], required=True, nargs="+", ) parser.add_argument( "-n", "--num-inputs", default=100, type=int, help="number of inputs used to compute statistics for flops/activations, " "both are data dependent.", ) args = parser.parse_args() assert not args.eval_only assert args.num_gpus == 1 cfg = setup(args) for task in args.tasks: { "flop": do_flop, "activation": do_activation, "parameter": do_parameter, "structure": do_structure, }[task](cfg)
banmo-main
third_party/detectron2_old/tools/analyze_model.py
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. """ Training script using the new "LazyConfig" python config files. This scripts reads a given python config file and runs the training or evaluation. It can be used to train any models or dataset as long as they can be instantiated by the recursive construction defined in the given config file. Besides lazy construction of models, dataloader, etc., this scripts expects a few common configuration parameters currently defined in "configs/common/train.py". To add more complicated training logic, you can easily add other configs in the config file and implement a new train_net.py to handle them. """ import logging from detectron2.checkpoint import DetectionCheckpointer from detectron2.config import LazyConfig, instantiate from detectron2.engine import ( AMPTrainer, SimpleTrainer, default_argument_parser, default_setup, default_writers, hooks, launch, ) from detectron2.engine.defaults import create_ddp_model from detectron2.evaluation import inference_on_dataset, print_csv_format from detectron2.utils import comm logger = logging.getLogger("detectron2") def do_test(cfg, model): if "evaluator" in cfg.dataloader: ret = inference_on_dataset( model, instantiate(cfg.dataloader.test), instantiate(cfg.dataloader.evaluator) ) print_csv_format(ret) return ret def do_train(args, cfg): """ Args: cfg: an object with the following attributes: model: instantiate to a module dataloader.{train,test}: instantiate to dataloaders dataloader.evaluator: instantiate to evaluator for test set optimizer: instantaite to an optimizer lr_multiplier: instantiate to a fvcore scheduler train: other misc config defined in `common_train.py`, including: output_dir (str) init_checkpoint (str) amp.enabled (bool) max_iter (int) eval_period, log_period (int) device (str) checkpointer (dict) ddp (dict) """ model = instantiate(cfg.model) logger = logging.getLogger("detectron2") logger.info("Model:\n{}".format(model)) model.to(cfg.train.device) cfg.optimizer.params.model = model optim = instantiate(cfg.optimizer) train_loader = instantiate(cfg.dataloader.train) model = create_ddp_model(model, **cfg.train.ddp) trainer = (AMPTrainer if cfg.train.amp.enabled else SimpleTrainer)(model, train_loader, optim) checkpointer = DetectionCheckpointer( model, cfg.train.output_dir, optimizer=optim, trainer=trainer, ) trainer.register_hooks( [ hooks.IterationTimer(), hooks.LRScheduler(scheduler=instantiate(cfg.lr_multiplier)), hooks.PeriodicCheckpointer(checkpointer, **cfg.train.checkpointer) if comm.is_main_process() else None, hooks.EvalHook(cfg.train.eval_period, lambda: do_test(cfg, model)), hooks.PeriodicWriter( default_writers(cfg.train.output_dir, cfg.train.max_iter), period=cfg.train.log_period, ) if comm.is_main_process() else None, ] ) checkpointer.resume_or_load(cfg.train.init_checkpoint, resume=args.resume) if args.resume and checkpointer.has_checkpoint(): # The checkpoint stores the training iteration that just finished, thus we start # at the next iteration start_iter = trainer.iter + 1 else: start_iter = 0 trainer.train(start_iter, cfg.train.max_iter) def main(args): cfg = LazyConfig.load(args.config_file) cfg = LazyConfig.apply_overrides(cfg, args.opts) default_setup(cfg, args) if args.eval_only: model = instantiate(cfg.model) model.to(cfg.train.device) model = create_ddp_model(model) DetectionCheckpointer(model).load(cfg.train.init_checkpoint) print(do_test(cfg, model)) else: do_train(args, cfg) if __name__ == "__main__": args = default_argument_parser().parse_args() launch( main, args.num_gpus, num_machines=args.num_machines, machine_rank=args.machine_rank, dist_url=args.dist_url, args=(args,), )
banmo-main
third_party/detectron2_old/tools/lazyconfig_train_net.py
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. """ A main training script. This scripts reads a given config file and runs the training or evaluation. It is an entry point that is made to train standard models in detectron2. In order to let one script support training of many models, this script contains logic that are specific to these built-in models and therefore may not be suitable for your own project. For example, your research project perhaps only needs a single "evaluator". Therefore, we recommend you to use detectron2 as an library and take this file as an example of how to use the library. You may want to write your own script with your datasets and other customizations. """ import logging import os from collections import OrderedDict import torch import detectron2.utils.comm as comm from detectron2.checkpoint import DetectionCheckpointer from detectron2.config import get_cfg from detectron2.data import MetadataCatalog from detectron2.engine import DefaultTrainer, default_argument_parser, default_setup, hooks, launch from detectron2.evaluation import ( CityscapesInstanceEvaluator, CityscapesSemSegEvaluator, COCOEvaluator, COCOPanopticEvaluator, DatasetEvaluators, LVISEvaluator, PascalVOCDetectionEvaluator, SemSegEvaluator, verify_results, ) from detectron2.modeling import GeneralizedRCNNWithTTA class Trainer(DefaultTrainer): """ We use the "DefaultTrainer" which contains pre-defined default logic for standard training workflow. They may not work for you, especially if you are working on a new research project. In that case you can write your own training loop. You can use "tools/plain_train_net.py" as an example. """ @classmethod def build_evaluator(cls, cfg, dataset_name, output_folder=None): """ Create evaluator(s) for a given dataset. This uses the special metadata "evaluator_type" associated with each builtin dataset. For your own dataset, you can simply create an evaluator manually in your script and do not have to worry about the hacky if-else logic here. """ if output_folder is None: output_folder = os.path.join(cfg.OUTPUT_DIR, "inference") evaluator_list = [] evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type if evaluator_type in ["sem_seg", "coco_panoptic_seg"]: evaluator_list.append( SemSegEvaluator( dataset_name, distributed=True, output_dir=output_folder, ) ) if evaluator_type in ["coco", "coco_panoptic_seg"]: evaluator_list.append(COCOEvaluator(dataset_name, output_dir=output_folder)) if evaluator_type == "coco_panoptic_seg": evaluator_list.append(COCOPanopticEvaluator(dataset_name, output_folder)) if evaluator_type == "cityscapes_instance": assert ( torch.cuda.device_count() >= comm.get_rank() ), "CityscapesEvaluator currently do not work with multiple machines." return CityscapesInstanceEvaluator(dataset_name) if evaluator_type == "cityscapes_sem_seg": assert ( torch.cuda.device_count() >= comm.get_rank() ), "CityscapesEvaluator currently do not work with multiple machines." return CityscapesSemSegEvaluator(dataset_name) elif evaluator_type == "pascal_voc": return PascalVOCDetectionEvaluator(dataset_name) elif evaluator_type == "lvis": return LVISEvaluator(dataset_name, output_dir=output_folder) if len(evaluator_list) == 0: raise NotImplementedError( "no Evaluator for the dataset {} with the type {}".format( dataset_name, evaluator_type ) ) elif len(evaluator_list) == 1: return evaluator_list[0] return DatasetEvaluators(evaluator_list) @classmethod def test_with_TTA(cls, cfg, model): logger = logging.getLogger("detectron2.trainer") # In the end of training, run an evaluation with TTA # Only support some R-CNN models. logger.info("Running inference with test-time augmentation ...") model = GeneralizedRCNNWithTTA(cfg, model) evaluators = [ cls.build_evaluator( cfg, name, output_folder=os.path.join(cfg.OUTPUT_DIR, "inference_TTA") ) for name in cfg.DATASETS.TEST ] res = cls.test(cfg, model, evaluators) res = OrderedDict({k + "_TTA": v for k, v in res.items()}) return res def setup(args): """ Create configs and perform basic setups. """ cfg = get_cfg() cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) cfg.freeze() default_setup(cfg, args) return cfg def main(args): cfg = setup(args) if args.eval_only: model = Trainer.build_model(cfg) DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load( cfg.MODEL.WEIGHTS, resume=args.resume ) res = Trainer.test(cfg, model) if cfg.TEST.AUG.ENABLED: res.update(Trainer.test_with_TTA(cfg, model)) if comm.is_main_process(): verify_results(cfg, res) return res """ If you'd like to do anything fancier than the standard training logic, consider writing your own training loop (see plain_train_net.py) or subclassing the trainer. """ trainer = Trainer(cfg) trainer.resume_or_load(resume=args.resume) if cfg.TEST.AUG.ENABLED: trainer.register_hooks( [hooks.EvalHook(0, lambda: trainer.test_with_TTA(cfg, trainer.model))] ) return trainer.train() if __name__ == "__main__": args = default_argument_parser().parse_args() print("Command Line Args:", args) launch( main, args.num_gpus, num_machines=args.num_machines, machine_rank=args.machine_rank, dist_url=args.dist_url, args=(args,), )
banmo-main
third_party/detectron2_old/tools/train_net.py
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. import argparse import os from typing import Dict, List, Tuple import torch from torch import Tensor, nn import detectron2.data.transforms as T from detectron2.checkpoint import DetectionCheckpointer from detectron2.config import get_cfg from detectron2.data import build_detection_test_loader, detection_utils from detectron2.evaluation import COCOEvaluator, inference_on_dataset, print_csv_format from detectron2.export import ( Caffe2Tracer, TracingAdapter, add_export_config, dump_torchscript_IR, scripting_with_instances, ) from detectron2.modeling import GeneralizedRCNN, RetinaNet, build_model from detectron2.modeling.postprocessing import detector_postprocess from detectron2.projects.point_rend import add_pointrend_config from detectron2.structures import Boxes from detectron2.utils.env import TORCH_VERSION from detectron2.utils.file_io import PathManager from detectron2.utils.logger import setup_logger def setup_cfg(args): cfg = get_cfg() # cuda context is initialized before creating dataloader, so we don't fork anymore cfg.DATALOADER.NUM_WORKERS = 0 cfg = add_export_config(cfg) add_pointrend_config(cfg) cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) cfg.freeze() return cfg def export_caffe2_tracing(cfg, torch_model, inputs): tracer = Caffe2Tracer(cfg, torch_model, inputs) if args.format == "caffe2": caffe2_model = tracer.export_caffe2() caffe2_model.save_protobuf(args.output) # draw the caffe2 graph caffe2_model.save_graph(os.path.join(args.output, "model.svg"), inputs=inputs) return caffe2_model elif args.format == "onnx": import onnx onnx_model = tracer.export_onnx() onnx.save(onnx_model, os.path.join(args.output, "model.onnx")) elif args.format == "torchscript": ts_model = tracer.export_torchscript() with PathManager.open(os.path.join(args.output, "model.ts"), "wb") as f: torch.jit.save(ts_model, f) dump_torchscript_IR(ts_model, args.output) # experimental. API not yet final def export_scripting(torch_model): assert TORCH_VERSION >= (1, 8) fields = { "proposal_boxes": Boxes, "objectness_logits": Tensor, "pred_boxes": Boxes, "scores": Tensor, "pred_classes": Tensor, "pred_masks": Tensor, "pred_keypoints": torch.Tensor, "pred_keypoint_heatmaps": torch.Tensor, } assert args.format == "torchscript", "Scripting only supports torchscript format." class ScriptableAdapterBase(nn.Module): # Use this adapter to workaround https://github.com/pytorch/pytorch/issues/46944 # by not retuning instances but dicts. Otherwise the exported model is not deployable def __init__(self): super().__init__() self.model = torch_model self.eval() if isinstance(torch_model, GeneralizedRCNN): class ScriptableAdapter(ScriptableAdapterBase): def forward(self, inputs: Tuple[Dict[str, torch.Tensor]]) -> List[Dict[str, Tensor]]: instances = self.model.inference(inputs, do_postprocess=False) return [i.get_fields() for i in instances] else: class ScriptableAdapter(ScriptableAdapterBase): def forward(self, inputs: Tuple[Dict[str, torch.Tensor]]) -> List[Dict[str, Tensor]]: instances = self.model(inputs) return [i.get_fields() for i in instances] ts_model = scripting_with_instances(ScriptableAdapter(), fields) with PathManager.open(os.path.join(args.output, "model.ts"), "wb") as f: torch.jit.save(ts_model, f) dump_torchscript_IR(ts_model, args.output) # TODO inference in Python now missing postprocessing glue code return None # experimental. API not yet final def export_tracing(torch_model, inputs): assert TORCH_VERSION >= (1, 8) image = inputs[0]["image"] inputs = [{"image": image}] # remove other unused keys if isinstance(torch_model, GeneralizedRCNN): def inference(model, inputs): # use do_postprocess=False so it returns ROI mask inst = model.inference(inputs, do_postprocess=False)[0] return [{"instances": inst}] else: inference = None # assume that we just call the model directly traceable_model = TracingAdapter(torch_model, inputs, inference) if args.format == "torchscript": ts_model = torch.jit.trace(traceable_model, (image,)) with PathManager.open(os.path.join(args.output, "model.ts"), "wb") as f: torch.jit.save(ts_model, f) dump_torchscript_IR(ts_model, args.output) elif args.format == "onnx": # NOTE onnx export currently failing in pytorch with PathManager.open(os.path.join(args.output, "model.onnx"), "wb") as f: torch.onnx.export(traceable_model, (image,), f) logger.info("Inputs schema: " + str(traceable_model.inputs_schema)) logger.info("Outputs schema: " + str(traceable_model.outputs_schema)) if args.format != "torchscript": return None if not isinstance(torch_model, (GeneralizedRCNN, RetinaNet)): return None def eval_wrapper(inputs): """ The exported model does not contain the final resize step, which is typically unused in deployment but needed for evaluation. We add it manually here. """ input = inputs[0] instances = traceable_model.outputs_schema(ts_model(input["image"]))[0]["instances"] postprocessed = detector_postprocess(instances, input["height"], input["width"]) return [{"instances": postprocessed}] return eval_wrapper def get_sample_inputs(args): if args.sample_image is None: # get a first batch from dataset data_loader = build_detection_test_loader(cfg, cfg.DATASETS.TEST[0]) first_batch = next(iter(data_loader)) return first_batch else: # get a sample data original_image = detection_utils.read_image(args.sample_image, format=cfg.INPUT.FORMAT) # Do same preprocessing as DefaultPredictor aug = T.ResizeShortestEdge( [cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST], cfg.INPUT.MAX_SIZE_TEST ) height, width = original_image.shape[:2] image = aug.get_transform(original_image).apply_image(original_image) image = torch.as_tensor(image.astype("float32").transpose(2, 0, 1)) inputs = {"image": image, "height": height, "width": width} # Sample ready sample_inputs = [inputs] return sample_inputs if __name__ == "__main__": parser = argparse.ArgumentParser(description="Export a model for deployment.") parser.add_argument( "--format", choices=["caffe2", "onnx", "torchscript"], help="output format", default="caffe2", ) parser.add_argument( "--export-method", choices=["caffe2_tracing", "tracing", "scripting"], help="Method to export models", default="caffe2_tracing", ) parser.add_argument("--config-file", default="", metavar="FILE", help="path to config file") parser.add_argument("--sample-image", default=None, type=str, help="sample image for input") parser.add_argument("--run-eval", action="store_true") parser.add_argument("--output", help="output directory for the converted model") parser.add_argument( "opts", help="Modify config options using the command-line", default=None, nargs=argparse.REMAINDER, ) args = parser.parse_args() logger = setup_logger() logger.info("Command line arguments: " + str(args)) PathManager.mkdirs(args.output) # Disable respecialization on new shapes. Otherwise --run-eval will be slow torch._C._jit_set_bailout_depth(1) cfg = setup_cfg(args) # create a torch model torch_model = build_model(cfg) DetectionCheckpointer(torch_model).resume_or_load(cfg.MODEL.WEIGHTS) torch_model.eval() # get sample data sample_inputs = get_sample_inputs(args) # convert and save model if args.export_method == "caffe2_tracing": exported_model = export_caffe2_tracing(cfg, torch_model, sample_inputs) elif args.export_method == "scripting": exported_model = export_scripting(torch_model) elif args.export_method == "tracing": exported_model = export_tracing(torch_model, sample_inputs) # run evaluation with the converted model if args.run_eval: assert exported_model is not None, ( "Python inference is not yet implemented for " f"export_method={args.export_method}, format={args.format}." ) logger.info("Running evaluation ... this takes a long time if you export to CPU.") dataset = cfg.DATASETS.TEST[0] data_loader = build_detection_test_loader(cfg, dataset) # NOTE: hard-coded evaluator. change to the evaluator for your dataset evaluator = COCOEvaluator(dataset, output_dir=args.output) metrics = inference_on_dataset(exported_model, data_loader, evaluator) print_csv_format(metrics)
banmo-main
third_party/detectron2_old/tools/deploy/export_model.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. """ TridentNet Training Script. This script is a simplified version of the training script in detectron2/tools. """ import os from detectron2.checkpoint import DetectionCheckpointer from detectron2.config import get_cfg from detectron2.engine import DefaultTrainer, default_argument_parser, default_setup, launch from detectron2.evaluation import COCOEvaluator from tridentnet import add_tridentnet_config class Trainer(DefaultTrainer): @classmethod def build_evaluator(cls, cfg, dataset_name, output_folder=None): if output_folder is None: output_folder = os.path.join(cfg.OUTPUT_DIR, "inference") return COCOEvaluator(dataset_name, output_dir=output_folder) def setup(args): """ Create configs and perform basic setups. """ cfg = get_cfg() add_tridentnet_config(cfg) cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) cfg.freeze() default_setup(cfg, args) return cfg def main(args): cfg = setup(args) if args.eval_only: model = Trainer.build_model(cfg) DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load( cfg.MODEL.WEIGHTS, resume=args.resume ) res = Trainer.test(cfg, model) return res trainer = Trainer(cfg) trainer.resume_or_load(resume=args.resume) return trainer.train() if __name__ == "__main__": args = default_argument_parser().parse_args() print("Command Line Args:", args) launch( main, args.num_gpus, num_machines=args.num_machines, machine_rank=args.machine_rank, dist_url=args.dist_url, args=(args,), )
banmo-main
third_party/detectron2_old/projects/TridentNet/train_net.py