python_code
stringlengths 0
4.04M
| repo_name
stringlengths 7
58
| file_path
stringlengths 5
147
|
---|---|---|
import matplotlib.pyplot as plt
import numpy as np
import scipy.sparse as sparse
from metal.utils import convert_labels
############################################################
# Label Matrix Plotting
############################################################
def view_label_matrix(L, colorbar=True):
"""Display an [n, m] matrix of labels"""
L = L.todense() if sparse.issparse(L) else L
plt.imshow(L, aspect="auto")
plt.title("Label Matrix")
if colorbar:
labels = sorted(np.unique(np.asarray(L).reshape(-1, 1).squeeze()))
boundaries = np.array(labels + [max(labels) + 1]) - 0.5
plt.colorbar(boundaries=boundaries, ticks=labels)
plt.show()
def view_overlaps(L, self_overlaps=False, normalize=True, colorbar=True):
"""Display an [m, m] matrix of overlaps"""
L = L.todense() if sparse.issparse(L) else L
G = _get_overlaps_matrix(L, normalize=normalize)
if not self_overlaps:
np.fill_diagonal(G, 0) # Zero out self-overlaps
plt.imshow(G, aspect="auto")
plt.title("Overlaps")
if colorbar:
plt.colorbar()
plt.show()
def view_conflicts(L, normalize=True, colorbar=True):
"""Display an [m, m] matrix of conflicts"""
L = L.todense() if sparse.issparse(L) else L
C = _get_conflicts_matrix(L, normalize=normalize)
plt.imshow(C, aspect="auto")
plt.title("Conflicts")
if colorbar:
plt.colorbar()
plt.show()
def _get_overlaps_matrix(L, normalize=True):
n, m = L.shape
X = np.where(L != 0, 1, 0).T
G = X @ X.T
if normalize:
G = G / n
return G
def _get_conflicts_matrix(L, normalize=True):
n, m = L.shape
C = np.zeros((m, m))
# Iterate over the pairs of LFs
for i in range(m):
for j in range(m):
# Get the overlapping non-zero indices
overlaps = list(
set(np.where(L[:, i] != 0)[0]).intersection(np.where(L[:, j] != 0)[0])
)
C[i, j] = np.where(L[overlaps, i] != L[overlaps, j], 1, 0).sum()
if normalize:
C = C / n
return C
############################################################
# Classifier Diagnostics
############################################################
def plot_probabilities_histogram(Y_probs, title=None):
"""Plot a histogram from a numpy array of probabilities
Args:
Y_probs: An [n] or [n, 1] np.ndarray of probabilities (floats in [0,1])
"""
if Y_probs.ndim > 1:
print("Plotting probabilities from the first column of Y_probs")
Y_probs = Y_probs[:, 0]
plt.hist(Y_probs, bins=20)
plt.xlim((0, 1.025))
plt.xlabel("Probability")
plt.ylabel("# Predictions")
if isinstance(title, str):
plt.title(title)
plt.show()
def plot_predictions_histogram(Y_preds, Y_gold, title=None):
"""Plot a histogram comparing int predictions vs true labels by class
Args:
Y_gold: An [n] or [n, 1] np.ndarray of gold labels
Y_preds: An [n] or [n, 1] np.ndarray of predicted int labels
"""
labels = list(set(Y_gold).union(set(Y_preds)))
edges = [x - 0.5 for x in range(min(labels), max(labels) + 2)]
plt.hist([Y_preds, Y_gold], bins=edges, label=["Predicted", "Gold"])
ax = plt.gca()
ax.set_xticks(labels)
plt.xlabel("Label")
plt.ylabel("# Predictions")
plt.legend(loc="upper right")
if isinstance(title, str):
plt.title(title)
plt.show()
def plot_calibration_plot(Y_probs, Y_gold, bins=20, title=None):
"""Plot a histogram of the accuracy for predictions with varying confidences
Args:
Y_probs: An [n] or [n, 1] np.ndarray of probabilities (floats in [0,1])
Y_gold: An [n] or [n, 1] np.ndarray of gold labels
For a well-behaved classifier, the plot should be a U-shape.
"""
# For now, we only tackle binary classification with categorical labels
assert all(Y_gold > 0)
assert all(Y_gold <= 2)
if Y_probs.ndim > 1:
print("Plotting probabilities from the first column of Y_probs")
Y_probs = Y_probs[:, 0]
Y_preds = convert_labels((Y_probs > 0.5).astype(np.int64), "onezero", "categorical")
correct_idxs = Y_preds == Y_gold
centers = []
accuracies = []
interval = 1 / bins
for i in range(bins + 1):
if i == bins:
bin_idxs = (interval * i <= Y_probs) * (Y_probs <= 1)
else:
bin_idxs = (interval * i <= Y_probs) * (Y_probs < interval * (i + 1))
bin_accuracy = sum(bin_idxs * correct_idxs) / sum(bin_idxs)
centers.append(interval * (i + 0.5))
accuracies.append(bin_accuracy)
# print("Accuracy: ", len(correct_idx) / (1.0 * len(Y_probs)))
# Y_p_correct = Y_probs[correct_idx]
plt.plot(centers, accuracies)
plt.xlim((0, 1.025))
plt.xlabel("Probability")
plt.ylabel("Accuracy")
if isinstance(title, str):
plt.title(title)
|
metal-master
|
metal/contrib/visualization/analysis.py
|
metal-master
|
metal/contrib/visualization/__init__.py
|
|
class Featurizer(object):
def fit(self, input):
"""
Args:
input: An iterable of raw data of the appropriate type to be
featurized, where input[i] corresponds to item i.
"""
raise NotImplementedError
def transform(self, input):
"""
Args:
input: An iterable of raw data of the appropriate type to be
featurized, where input[i] corresponds to item i.
Returns:
X: A Tensor of features of shape (num_items, ...)
"""
raise NotImplementedError
def fit_transform(self, input, **fit_kwargs):
"""Execute fit and transform in sequence."""
self.fit(input, **fit_kwargs)
X = self.transform(input)
return X
|
metal-master
|
metal/contrib/featurizers/featurizer.py
|
metal-master
|
metal/contrib/featurizers/__init__.py
|
|
import itertools
from collections import Counter
import torch
from torch.nn.utils.rnn import pad_sequence
from torchtext.vocab import Vocab
from metal.contrib.featurizers.featurizer import Featurizer
class EmbeddingFeaturizer(Featurizer):
"""Converts lists of tokens into a padded Tensor of embedding indices."""
def __init__(self, markers=[]):
self.specials = markers + ["<pad>"]
self.vocab = None
def build_vocab(self, counter):
raise NotImplementedError
def fit(self, sents, **kwargs):
"""Builds a vocabulary object based on the tokens in the input.
Args:
sents: A list of lists of tokens (representing sentences)
Vocab kwargs include:
max_size
min_freq
specials
unk_init
"""
tokens = list(itertools.chain.from_iterable(sents))
counter = Counter(tokens)
self.vocab = self.build_vocab(counter, **kwargs)
def transform(self, sents):
"""Converts lists of tokens into a Tensor of embedding indices.
Args:
sents: A list of lists of tokens (representing sentences)
NOTE: These sentences should already be marked using the
mark_entities() helper.
Returns:
X: A Tensor of shape (num_items, max_seq_len)
"""
def convert(tokens):
return torch.tensor([self.vocab.stoi[t] for t in tokens], dtype=torch.long)
if self.vocab is None:
raise Exception(
"Must run .fit() for .fit_transform() before " "calling .transform()."
)
seqs = sorted([convert(s) for s in sents], key=lambda x: -len(x))
X = torch.LongTensor(pad_sequence(seqs, batch_first=True))
return X
class TrainableEmbeddingFeaturizer(EmbeddingFeaturizer):
def build_vocab(self, counter, **kwargs):
return Vocab(counter, specials=self.specials, **kwargs)
|
metal-master
|
metal/contrib/featurizers/embedding_featurizer.py
|
import nltk
from sklearn.feature_extraction.text import CountVectorizer
from metal.contrib.featurizers.featurizer import Featurizer
class RelationNgramFeaturizer(Featurizer):
"""A featurizer for relations that preprocesses and extracts ngrams
This featurizer operates on RelationMention objects
Args:
anonymize: if True, replace each entity with a single token: "EntityX"
where X is the index of the entity in the relation (0 or 1)
trim_window: if non-zero, the sentence will be trimmed to this many
words before the first entity in the sentence to this many words
after the last entity in the sentence.
lowercase: if True, convert all tokens to lowercase
drop_stopwords: if True, drop all tokens that are stopwords
stem: if True, stem all tokens
ngram_range: a tuple corresponding to the smallest sized ngrams and
largest sized ngrams to be included in the feature set
kwargs: keyword arguments to pass on to the CountVectorizer.
(See http://scikit-learn.org/stable/modules/generated/sklearn.
feature_extraction.text.CountVectorizer.html for full details)
Options include max_features, min_df, max_df, etc.
"""
def __init__(
self,
anonymize=True,
trim_window=5,
lowercase=True,
drop_stopwords=True,
stem=True,
ngram_range=(1, 3),
**vectorizer_kwargs,
):
self.anonymize = anonymize
self.lowercase = lowercase
self.drop_stopwords = drop_stopwords
if drop_stopwords:
nltk.download("stopwords")
self.stopwords = set(nltk.corpus.stopwords.words("english"))
self.trim_window = trim_window
self.stem = stem
if stem:
self.porter = nltk.PorterStemmer()
self.vectorizer = CountVectorizer(
ngram_range=ngram_range, binary=True, **vectorizer_kwargs
)
def preprocess(self, mentions):
return [" ".join(self._preprocess(mention)) for mention in mentions]
def _preprocess(self, mention):
tokens = mention.tokens
word_positions = mention.word_positions
if self.anonymize:
tokens, word_positions = self._anonymize(tokens, word_positions)
if self.trim_window:
tokens, word_positions = self._trim(tokens, word_positions)
if self.lowercase:
tokens = self._lowercase(tokens)
if self.drop_stopwords:
# TODO: update word_positions after stopword removal
tokens = self._drop_stopwords(tokens)
if self.stem:
tokens = self._stem(tokens)
return tokens
def _anonymize(self, tokens, word_positions):
offset = 0
for i, (word_start, word_end) in enumerate(word_positions):
word_start -= offset
word_end -= offset
tokens = tokens[:word_start] + [f"ENTITY_{i}"] + tokens[(word_end + 1) :]
word_positions[i] = (word_start, word_start)
offset += word_end - word_start
return tokens, word_positions
def _trim(self, tokens, word_positions):
word_starts, word_ends = list(zip(*word_positions))
lb = max(0, min(word_starts) - self.trim_window)
ub = min(len(tokens), max(word_ends) + self.trim_window + 1)
word_positions = [(wp[0] - lb, wp[1] - lb) for wp in word_positions]
return tokens[lb:ub], word_positions
def _lowercase(self, tokens):
return [t.lower() for t in tokens]
def _drop_stopwords(self, tokens):
return [t for t in tokens if t not in self.stopwords]
def _stem(self, tokens):
return [self.porter.stem(t) for t in tokens]
def get_feature_names(self):
return self.vectorizer.get_feature_names()
def fit(self, input):
preprocessed = self.preprocess(input)
self.vectorizer.fit(preprocessed)
def transform(self, input):
preprocessed = self.preprocess(input)
return self.vectorizer.transform(preprocessed)
def fit_transform(self, input):
preprocessed = self.preprocess(input)
return self.vectorizer.fit_transform(preprocessed)
|
metal-master
|
metal/contrib/featurizers/ngram_featurizer.py
|
import os
from collections import Counter
import numpy as np
import torch
from torch.utils.data import Dataset
from metal.contrib.info_extraction.utils import mark_entities
class SnorkelDataset(Dataset):
"""
Self-contained wrapper class for Snorkel 0.7 database instance.
Suitable for datasets that fit entirely in memory.
"""
session = None
def __init__(
self,
conn_str,
candidate_def,
split=0,
use_lfs=False,
word_dict=None,
pretrained_word_dict=None,
max_seq_len=125,
):
"""
Assumes a Snorkel database that is fully instantiated with:
- Candidates generated and assigned to train/dev/test splits
- Labeling functions are applied and probabilistic labels are generated for train split(s)
- Gold labels are stored in the database under 'annotator_name = gold'
:param conn_str:
:param candidate_def:
:param split:
:param use_lfs:
:param word_dict:
:param pretrained_word_dict:
:param max_seq_len:
"""
if os.path.exists(conn_str):
os.environ["SNORKELDB"] = "sqlite:///{}".format(conn_str)
else:
os.environ["SNORKELDB"] = "postgresql:///{}".format(conn_str)
print("Connected to {}".format(os.environ["SNORKELDB"]))
# defer imports until SNORKELDB is defined to prevent initalizing an empty sqlite instance
from snorkel import SnorkelSession
from snorkel.models import candidate_subclass, Candidate
from snorkel.annotations import load_gold_labels, load_marginals
# sqlite3 doesn't support multiple connections, so use a singleton-style connection object
if not SnorkelDataset.session:
SnorkelDataset.session = SnorkelSession()
self.session = SnorkelDataset.session
self.class_type = candidate_subclass(*candidate_def)
self.cardinality = len(candidate_def[-1])
self.split = split
self.max_seq_len = max_seq_len
# create markup sequences and labels
markers = [
m.format(i) for i in range(self.cardinality) for m in ["~~[[{}", "{}]]~~"]
]
self.X = (
self.session.query(Candidate)
.filter(Candidate.split == split)
.order_by(Candidate.id)
.all()
)
self.X = [self._mark_entities(x, markers) for x in self.X]
# initalize vocabulary
self.word_dict = (
self._build_vocab(self.X, markers) if not word_dict else word_dict
)
if pretrained_word_dict:
# include pretrained embedding terms
self._include_pretrained_vocab(
pretrained_word_dict, self.session.query(Candidate).all()
)
# initalize labels (from either LFs or gold labels)
if use_lfs:
self.Y = torch.tensor(load_marginals(self.session, split=split).todense())
else:
self.Y = load_gold_labels(self.session, annotator_name="gold", split=split)
self.Y = [int(y) for y in np.nditer(self.Y.todense())]
# remap class labels to not include 0 (reserved by MeTaL)
labels = {
y: i + 1 for i, y in enumerate(sorted(np.unique(self.Y), reverse=1))
}
self.Y = torch.tensor([labels[y] for y in self.Y])
@classmethod
def splits(
cls,
conn_str,
candidate_def,
word_dict=None,
train=0,
dev=1,
test=2,
use_lfs=(0, 0, 0),
pretrained_word_dict=None,
max_seq_len=125,
):
"""
Create train/dev/test splits (mapped to split numbers)
:param conn_str:
:param candidate_def:
:param word_dict:
:param train:
:param dev:
:param test:
:param use_lfs:
:param pretrained_word_dict:
:param max_seq_len:
:return:
"""
# initialize word_dict if needed
train_set = cls(
conn_str,
candidate_def,
word_dict=word_dict,
split=train,
use_lfs=use_lfs[train],
pretrained_word_dict=pretrained_word_dict,
max_seq_len=max_seq_len,
)
return (
train_set,
cls(
conn_str,
candidate_def,
word_dict=train_set.word_dict,
split=dev,
use_lfs=use_lfs[dev],
max_seq_len=max_seq_len,
),
cls(
conn_str,
candidate_def,
word_dict=train_set.word_dict,
split=test,
use_lfs=use_lfs[test],
max_seq_len=max_seq_len,
),
)
def _mark_entities(self, c, markers):
"""
Convert Snorkel candidates to marked up sequences
:param c:
:param markers:
:return:
"""
sent = c.get_parent().words
positions = [
[c[i].get_word_start(), c[i].get_word_end()]
for i in range(self.cardinality)
]
seq = mark_entities(sent, positions, markers=markers, style="insert")
return [w for w in seq if w.strip()]
def _include_pretrained_vocab(self, pretrained_word_dict, candidates):
"""
Include terms available via pretrained embeddings
:param pretrained_word_dict:
:param candidates:
:return:
"""
terms = Counter()
for c in candidates:
for w in c.get_parent().words:
if w in pretrained_word_dict:
terms[w] += 1
list(map(self.word_dict.get, terms))
def _build_vocab(self, sentences, markers=[]):
"""
Initalize symbol table dictionary
:param sentences:
:param markers:
:return:
"""
from snorkel.learning.pytorch.rnn.utils import SymbolTable
vocab = Counter()
for sent in sentences:
for w in sent:
vocab[w] += 1
word_dict = SymbolTable()
list(map(word_dict.get, vocab))
list(map(word_dict.get, markers))
return word_dict
def __len__(self):
return len(self.X)
def __getitem__(self, idx):
"""
Assume fixed length sequences. Pad or clip all sequences to be max_seq_len.
:param idx:
:return:
"""
x = torch.tensor([self.word_dict.lookup(w) for w in self.X[idx]])
if x.size(0) > self.max_seq_len:
x = x[..., 0 : min(x.size(0), self.max_seq_len)]
else:
k = self.max_seq_len - x.size(0)
x = torch.cat((x, torch.zeros(k, dtype=torch.long)))
return x, self.Y[idx]
if __name__ == "__main__":
db_conn_str = "cdr.db"
candidate_def = ["ChemicalDisease", ["chemical", "disease"]]
train, dev, test = SnorkelDataset.splits(db_conn_str, candidate_def)
print("[TRAIN] {}".format(len(train)))
print("[DEV] {}".format(len(dev)))
print("[TEST] {}".format(len(test)))
|
metal-master
|
metal/contrib/backends/wrapper.py
|
metal-master
|
metal/contrib/backends/__init__.py
|
|
metal-master
|
metal/contrib/info_extraction/__init__.py
|
|
def mark_entities(tokens, positions, markers=[], style="insert"):
"""Adds special markers around tokens at specific positions (e.g., entities)
Args:
tokens: A list of tokens (the sentence)
positions:
1) A list of inclusive ranges (tuples) corresponding to the
token ranges of the entities in order. (Assumes each entity
has only one corresponding mention.)
OR
2) A dict of lists with keys corresponding to mention indices and
values corresponding to one or more inclusive ranges corresponding
to that mention. (Allows entities to potentially have multiple
mentions)
markers: A list of strings (length of 2 * the number of entities) to
use as markers of the entities.
style: Where to apply the markers:
'insert': Insert the markers as new tokens before/after each entity
'concatenate': Prepend/append the markers to the first/last token
of each entity
If the tokens are going to be input to an LSTM, then it is usually
best to use the 'insert' option; 'concatenate' may be better for
viewing.
Returns:
toks: An extended list of tokens with markers around the mentions
WARNING: if the marked token set will be used with pretrained embeddings,
provide markers that will not result in UNK embeddings!
Example:
Input: (['The', 'cat', 'sat'], [(1,1)])
Output: ['The', '[[BEGIN0]]', 'cat', '[[END0]]', 'sat']
"""
if markers and len(markers) != 2 * len(positions):
msg = (
f"Expected len(markers) == 2 * len(positions), "
f"but {len(markers)} != {2 * len(positions)}."
)
raise ValueError(msg)
toks = list(tokens)
# markings will be of the form:
# [(position, entity_idx), (position, entity_idx), ...]
if isinstance(positions, list):
markings = [(position, idx) for idx, position in enumerate(positions)]
elif isinstance(positions, dict):
markings = []
for idx, v in positions.items():
for position in v:
markings.append((position, idx))
else:
msg = (
f"Argument _positions_ must be a list or dict. "
f"Instead, got {type(positions)}"
)
raise ValueError(msg)
markings = sorted(markings)
for i, ((si, ei), idx) in enumerate(markings):
if markers:
start_marker = markers[2 * idx]
end_marker = markers[2 * idx + 1]
else:
start_marker = f"[[BEGIN{idx}]]"
end_marker = f"[[END{idx}]]"
if style == "insert":
toks.insert(si + 2 * i, start_marker)
toks.insert(ei + 2 * (i + 1), end_marker)
elif style == "concatenate":
toks[si] = start_marker + toks[si]
toks[ei] = toks[ei] + end_marker
else:
raise NotImplementedError
return toks
|
metal-master
|
metal/contrib/info_extraction/utils.py
|
import numpy as np
class EntityMention(object):
"""A mention of an entity (span of text) in a document
Args:
doc_id: a unique identifier for the document
text: a single string of text corresponding to the document
char_start: the integer offset of the first character in the entity
mention
char_end: the integer offset of the last character in the entity
mention, plus one (so that text[char_start:char_end] returns the
full entity).
tokens: (optional) a list of tokens corresponding to the text.
If None, tokenization on whitespace is the default.
char_offsets: (optional) a list of character offsets corresponding
to the tokens in tokens.
If None, we assume all tokens are separated by a single space.
attributes: (optional) additional lists of attributes corresponding to
the provided tokens (e.g., pos tags, ner tags, types, etc.)
"""
def __init__(
self,
doc_id,
text,
char_start,
char_end,
tokens=None,
char_offsets=None,
mention_id=None,
**attributes,
):
self.doc_id = doc_id
self.text = text
self.char_start = int(char_start)
self.char_end = int(char_end)
self.mention_id = mention_id if mention_id else hash(self)
self.entity = text[self.char_start : self.char_end]
self.tokens = tokens if tokens is not None else text.split()
self.char_offsets = self._get_char_offsets(char_offsets)
# Convert exclusive character offsets to inclusive token indices
self.word_start = self.char_to_word_idx(self.char_start)
self.word_end = self.char_to_word_idx(self.char_end - 1)
# Store extra attributes
for attr, values in attributes.items():
setattr(self, attr, values)
def _get_char_offsets(self, char_offsets):
"""Store or calculate char_offsets, adding the offset of the doc end"""
if char_offsets:
char_offsets = char_offsets
char_offsets.append(len(self.text))
else:
char_offsets = np.zeros(len(self.tokens) + 1)
for i, tok in enumerate(self.tokens):
# Add 1 to account for the spaces between tokens
char_offsets[i + 1] = char_offsets[i] + len(tok) + 1
char_offsets[-1] = len(self.text)
return np.array(char_offsets)
def word_to_char_idx(self, word_idx):
"""Converts a word index to a character offset
Returns the offset of the first character of the token with the given
index.
"""
return self.char_offsets[word_idx]
def char_to_word_idx(self, char_offset):
"""Converts a character offset to a token index
Finds the first index of a True (i.e., the index of the first token that
is past the desired token) and subtracts one.
"""
return np.argmax(self.char_offsets > char_offset) - 1
def get_entity_attrib(self, attrib):
attrib_tokens = self.get(attrib, None)
return attrib_tokens[self.word_start : self.word_end + 1]
@property
def words(self):
return self.tokens
def __repr__(self):
return (
f"EntityMention(doc_id={self.doc_id}: '{self.entity}'"
f"({self.char_start}:{self.char_end})"
)
def __hash__(self):
return hash((self.doc_id, self.char_start, self.char_end))
class RelationMention(object):
"""A mention of a relation between two spans of text (entities) in a doc
Args:
doc_id: a unique identifier for the document
text: a single string of text corresponding to the document
entity_positions: a list with two elements, each a tuple of the integer
offsets (in characters) of the corresponding entity in the text so
that text[char_start:char_end] returns the full entity
tokens: (optional) a list of tokens corresponding to the text.
If None, tokenization on whitespace is the default.
char_offsets: (optional) a list of character offsets corresponding
to the tokens in tokens.
If None, we assume all tokens are separated by a single space.
attributes: (optional) additional lists of attributes corresponding to
the provided tokens (e.g., pos tags, ner tags, types, etc.)
TODO: There is currently inefficiency in the way each EntityMention in a
RelationMention stores all properties of a sentence. Instead, create a
Sentence object that each EntityMention points to and store the properties
with the sentence.
"""
def __init__(
self,
doc_id,
text,
entity_positions,
tokens=None,
char_offsets=None,
mention_id=None,
**attributes,
):
self.doc_id = doc_id
self.entity_positions = entity_positions
self.entities = [
EntityMention(doc_id, text, *cp, tokens, char_offsets, **attributes)
for cp in entity_positions
]
self.mention_id = mention_id if mention_id else hash(self)
@property
def text(self):
return self.entities[0].text
@property
def tokens(self):
return self.entities[0].tokens
@property
def words(self):
return self.entities[0].tokens
@property
def word_starts(self):
return [e.word_start for e in self.entities]
@property
def word_ends(self):
return [e.word_end for e in self.entities]
@property
def word_positions(self):
return [(e.word_start, e.word_end) for e in self.entities]
def get_attr(self, attr):
return self.entities[0].get(attr, None)
def __getitem__(self, key):
return self.entities[key]
def __repr__(self):
entities = ", ".join(
[f'"{e.entity}"({e.char_start}:{e.char_end})' for e in self.entities]
)
return f"""RelationMention(doc_id={self.doc_id}: entities=({entities})"""
def __hash__(self):
return hash((self.doc_id, tuple(self.entity_positions)))
|
metal-master
|
metal/contrib/info_extraction/mentions.py
|
from metal.contrib.modules.sparse_linear_module import SparseLinearModule
from metal.end_model import EndModel
from metal.utils import recursive_merge_dicts
class SparseLogisticRegression(EndModel):
"""A _sparse_ logistic regression classifier for a single-task problem
Args:
input_dim: The maximum length of each input (a tensor of integer
indices corresponding to one-hot features)
output_dim: The cardinality of the classifier
padding_idx: If not None, the embedding initialized to 0 so no gradient
will pass through it.
"""
def __init__(self, input_dim, output_dim=2, padding_idx=0, **kwargs):
layer_out_dims = [input_dim, output_dim]
sparse_linear = SparseLinearModule(
vocab_size=input_dim, embed_size=output_dim, padding_idx=padding_idx
)
overrides = {"input_batchnorm": False, "input_dropout": 0.0}
kwargs = recursive_merge_dicts(
kwargs, overrides, misses="insert", verbose=False
)
super().__init__(layer_out_dims, head_module=sparse_linear, **kwargs)
|
metal-master
|
metal/contrib/baselines/sparse_logreg.py
|
from .lstm_module import EmbeddingsEncoder, Encoder, LSTMModule
from .resnet_cifar10 import ResNetModule
from .sparse_linear_module import SparseLinearModule
__all__ = [
"LSTMModule",
"Encoder",
"EmbeddingsEncoder",
"ResNetModule",
"SparseLinearModule",
]
|
metal-master
|
metal/contrib/modules/__init__.py
|
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.utils.rnn as rnn_utils
from metal.utils import set_seed
class Encoder(nn.Module):
"""The Encoder implements the encode() method, which maps a batch of data to
encoded output of dimension [batch_size, max_seq_len, encoded_size]
The first argument must be the encoded size of the Encoder output.
Args:
encoded_size: (int) Output feature dimension of the Encoder
"""
def __init__(self, encoded_size, verbose=True):
super().__init__()
self.encoded_size = encoded_size
def encode(self, X):
"""
Args:
X: (torch.LongTensor) of shape [batch_size, max_seq_length,
encoded_size], with all-0s vectors as padding.
"""
assert X.shape[-1] == self.encoded_size
return X.float()
class EmbeddingsEncoder(Encoder):
def __init__(
self,
encoded_size,
vocab_size=None,
embeddings=None,
freeze=False,
verbose=True,
seed=None,
**kwargs,
):
"""
Args:
encoded_size: (in) Output feature dimension of the Encoder, and
input feature dimension of the LSTM
vocab_size: The size of the vocabulary of the embeddings
If embeddings=None, this helps to set the size of the randomly
initialized embeddings
If embeddings != None, this is used to double check that the
provided embeddings have the intended size
embeddings: An optional embedding Tensor
freeze: If False, allow the embeddings to be updated
"""
super().__init__(encoded_size)
self.verbose = verbose
# Load provided embeddings or randomly initialize new ones
if embeddings is None:
# Note: Need to set seed here for deterministic init
if seed is not None:
set_seed(seed)
self.embeddings = nn.Embedding(vocab_size, encoded_size)
if self.verbose:
print(f"Using randomly initialized embeddings.")
else:
self.embeddings = self._load_pretrained(embeddings)
if self.verbose:
print(f"Using pretrained embeddings.")
# Freeze or not
self.embeddings.weight.requires_grad = not freeze
if self.verbose:
print(
f"Embeddings shape = ({self.embeddings.num_embeddings}, "
f"{self.embeddings.embedding_dim})"
)
print(f"The embeddings are {'' if freeze else 'NOT '}FROZEN")
def _load_pretrained(self, pretrained):
if not pretrained.dim() == 2:
msg = (
f"Provided embeddings have shape {pretrained.shape}. "
"Expected a 2-dimensional tensor."
)
raise ValueError(msg)
rows, cols = pretrained.shape
embedding = nn.Embedding(num_embeddings=rows, embedding_dim=cols)
embedding.weight.data.copy_(pretrained)
return embedding
def encode(self, X):
"""
Args:
X: (torch.LongTensor) of shape [batch_size, max_seq_length],
containing the indices of the embeddings to look up for each item in
the batch, or 0 for padding.
"""
return self.embeddings(X.long())
class CNNEncoder(nn.Module):
def encode(self, X):
"""
Args:
X: (torch.LongTensor) of shape [batch_size, max_seq_length,
encoded_size], with all-0s vectors as padding.
"""
raise NotImplementedError()
class LSTMModule(nn.Module):
"""An LSTM-based input module"""
def __init__(
self,
encoded_size,
hidden_size,
lstm_reduction="max",
bidirectional=True,
verbose=True,
seed=None,
lstm_num_layers=1,
encoder_class=Encoder,
encoder_kwargs={},
**kwargs,
):
"""
Args:
encoder: An Encoder object with encode() method that maps from
input sequences to [batch_size, max_seq_len, feature_dim]
hidden_size: (int) The size of the hidden layer in the LSTM
lstm_reduction: One of ['mean', 'max', 'last', 'attention']
denoting what to return as the output of the LSTMLayer
freeze: If False, allow the embeddings to be updated
skip_embeddings: If True, directly accept X without using embeddings
"""
super().__init__()
self.output_dim = hidden_size * 2 if bidirectional else hidden_size
self.verbose = verbose
if seed is not None:
set_seed(seed)
# Initialize Encoder
# Note constructing the Encoder here is helpful for e.g. Tuner, as then
# all model params initialized here
encoder_kwargs["verbose"] = self.verbose
self.encoder = encoder_class(encoded_size, **encoder_kwargs)
self.lstm_reduction = lstm_reduction
if self.verbose:
print(f"Using lstm_reduction = '{lstm_reduction}'")
# Create lstm core
# NOTE: We only pass explicitly-named kwargs here; can always add more!
self.lstm = nn.LSTM(
self.encoder.encoded_size,
hidden_size,
num_layers=lstm_num_layers,
batch_first=True,
bidirectional=bidirectional,
)
if lstm_reduction == "attention":
att_size = hidden_size * (self.lstm.bidirectional + 1)
att_param = nn.Parameter(torch.FloatTensor(att_size, 1))
nn.init.xavier_normal_(att_param)
self.attention_param = att_param
def _attention(self, output):
# output is of shape (seq_length, hidden_size)
score = torch.matmul(output, self.attention_param).squeeze()
score = F.softmax(score, dim=0).view(output.size(0), 1)
scored_output = output * score
condensed_output = torch.sum(scored_output, dim=0)
return condensed_output
def reset_parameters(self):
# Note: Classifier.reset() calls reset_parameters() recursively on all
# children, so this method need not reset children modules such as
# nn.lstm or nn.Embedding
pass
def _reduce_output(self, outputs, seq_lengths):
"""Reduces the output of an LSTM step
Args:
outputs: (torch.FloatTensor) the hidden state outputs from the
lstm, with shape [batch_size, max_seq_length, hidden_size]
"""
batch_size = outputs.shape[0]
reduced = []
# Necessary to iterate over batch because of different sequence lengths
for i in range(batch_size):
if self.lstm_reduction == "mean":
# Average over all non-padding reduced
# Use dim=0 because first dimension disappears after indexing
reduced.append(outputs[i, : seq_lengths[i], :].mean(dim=0))
elif self.lstm_reduction == "max":
# Max-pool over all non-padding reduced
# Use dim=0 because first dimension disappears after indexing
reduced.append(outputs[i, : seq_lengths[i], :].max(dim=0)[0])
elif self.lstm_reduction == "last":
# Take the last output of the sequence (before padding starts)
# NOTE: maybe better to take first and last?
reduced.append(outputs[i, seq_lengths[i] - 1, :])
elif self.lstm_reduction == "attention":
reduced.append(self._attention(outputs[i, : seq_lengths[i], :]))
else:
msg = (
f"Did not recognize lstm kwarg 'lstm_reduction' == "
f"{self.lstm_reduction}"
)
raise ValueError(msg)
return torch.stack(reduced, dim=0)
def forward(self, X):
"""Applies one step of an lstm (plus reduction) to the input X, which
is handled by self.encoder"""
# Identify the first non-zero integer from the right (i.e., the length
# of the sequence before padding starts).
batch_size, max_seq = X.shape[0], X.shape[1]
seq_lengths = torch.zeros(batch_size, dtype=torch.long)
for i in range(batch_size):
for j in range(max_seq - 1, -1, -1):
if not torch.all(X[i, j] == 0):
seq_lengths[i] = j + 1
break
# Sort by length because pack_padded_sequence requires it
# Save original order to restore before returning
seq_lengths, perm_idx = seq_lengths.sort(0, descending=True)
X = X[perm_idx]
inv_perm_idx = torch.tensor(
[i for i, _ in sorted(enumerate(perm_idx), key=lambda idx: idx[1])],
dtype=torch.long,
)
# Encode and pack input sequence
X_packed = rnn_utils.pack_padded_sequence(
self.encoder.encode(X), seq_lengths, batch_first=True
)
# Run LSTM
outputs, (h_t, c_t) = self.lstm(X_packed)
# Unpack and reduce outputs
outputs_unpacked, _ = rnn_utils.pad_packed_sequence(outputs, batch_first=True)
reduced = self._reduce_output(outputs_unpacked, seq_lengths)
return reduced[inv_perm_idx, :]
|
metal-master
|
metal/contrib/modules/lstm_module.py
|
import math
import torch
import torch.nn as nn
class SparseLinearModule(nn.Module):
def __init__(self, embed_size, vocab_size, padding_idx=0):
super().__init__()
self.vocab_size = vocab_size
self.padding_idx = padding_idx
self.W = nn.Embedding(
vocab_size, embed_size, sparse=True, padding_idx=padding_idx
)
self.b = nn.Parameter(torch.Tensor(embed_size))
self.reset_parameters()
def reset_parameters(self):
stdv = 1.0 / math.sqrt(self.vocab_size)
self.W.weight.data.uniform_(-stdv, stdv)
self.b.data.uniform_(-stdv, stdv)
if self.padding_idx is not None:
self.W.weight.data[self.padding_idx].fill_(0)
def forward(self, X):
"""Execute sparse linear layer
Args:
X: an [n, h] torch.LongTensor containing up to h indices of features
whose weights should be looked up and used in a sparse linear
multiplication.
"""
return self.W(X).sum(dim=1) + self.b
|
metal-master
|
metal/contrib/modules/sparse_linear_module.py
|
"""ResNet in PyTorch.
For Pre-activation ResNet, see 'preact_resnet.py'.
Reference:
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
Deep Residual Learning for Image Recognition. arXiv:1512.03385
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, in_planes, planes, stride=1):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(
in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False
)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(
planes, planes, kernel_size=3, stride=1, padding=1, bias=False
)
self.bn2 = nn.BatchNorm2d(planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion * planes:
self.shortcut = nn.Sequential(
nn.Conv2d(
in_planes,
self.expansion * planes,
kernel_size=1,
stride=stride,
bias=False,
),
nn.BatchNorm2d(self.expansion * planes),
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x)
out = F.relu(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, in_planes, planes, stride=1):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(
planes, planes, kernel_size=3, stride=stride, padding=1, bias=False
)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(
planes, self.expansion * planes, kernel_size=1, bias=False
)
self.bn3 = nn.BatchNorm2d(self.expansion * planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion * planes:
self.shortcut = nn.Sequential(
nn.Conv2d(
in_planes,
self.expansion * planes,
kernel_size=1,
stride=stride,
bias=False,
),
nn.BatchNorm2d(self.expansion * planes),
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = F.relu(self.bn2(self.conv2(out)))
out = self.bn3(self.conv3(out))
out += self.shortcut(x)
out = F.relu(out)
return out
class ResNetModule(nn.Module):
def __init__(self, block, num_blocks, num_classes=10):
super(ResNetModule, self).__init__()
self.in_planes = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
self.linear = nn.Linear(512 * block.expansion, num_classes)
def _make_layer(self, block, planes, num_blocks, stride):
strides = [stride] + [1] * (num_blocks - 1)
layers = []
for stride in strides:
layers.append(block(self.in_planes, planes, stride))
self.in_planes = planes * block.expansion
return nn.Sequential(*layers)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = F.avg_pool2d(out, 4)
out = out.view(out.size(0), -1)
out = self.linear(out)
return out
def ResNet18():
return ResNetModule(BasicBlock, [2, 2, 2, 2])
def ResNet34():
return ResNetModule(BasicBlock, [3, 4, 6, 3])
def ResNet50():
return ResNetModule(Bottleneck, [3, 4, 6, 3])
def ResNet101():
return ResNetModule(Bottleneck, [3, 4, 23, 3])
def ResNet152():
return ResNetModule(Bottleneck, [3, 8, 36, 3])
def test():
net = ResNet18()
y = net(torch.randn(1, 3, 32, 32))
print(y.size())
|
metal-master
|
metal/contrib/modules/resnet_cifar10.py
|
from collections import Counter
from functools import partial
from itertools import chain, product
import numpy as np
import torch
import torch.nn as nn
from scipy.sparse import issparse
from torch.utils.data import DataLoader
from metal.classifier import Classifier
from metal.label_model.graph_utils import get_clique_tree
from metal.label_model.lm_defaults import lm_default_config
from metal.utils import MetalDataset, recursive_merge_dicts
class LabelModel(Classifier):
"""A LabelModel...TBD
Args:
k: (int) the cardinality of the classifier
"""
# This class variable is explained in the Classifier class
implements_l2 = True
def __init__(self, k=2, **kwargs):
config = recursive_merge_dicts(lm_default_config, kwargs)
super().__init__(k, config)
def _check_L(self, L):
"""Run some basic checks on L."""
# TODO: Take this out?
if issparse(L):
L = L.todense()
# Check for correct values, e.g. warning if in {-1,0,1}
if np.any(L < 0):
raise ValueError("L must have values in {0,1,...,k}.")
def _create_L_ind(self, L):
"""Convert a label matrix with labels in 0...k to a one-hot format
Args:
L: An [n,m] scipy.sparse label matrix with values in {0,1,...,k}
Returns:
L_ind: An [n,m*k] dense np.ndarray with values in {0,1}
Note that no column is required for 0 (abstain) labels.
"""
# TODO: Update LabelModel to keep L variants as sparse matrices
# throughout and remove this line.
if issparse(L):
L = L.todense()
L_ind = np.zeros((self.n, self.m * self.k))
for y in range(1, self.k + 1):
# A[x::y] slices A starting at x at intervals of y
# e.g., np.arange(9)[0::3] == np.array([0,3,6])
L_ind[:, (y - 1) :: self.k] = np.where(L == y, 1, 0)
return L_ind
def _get_augmented_label_matrix(self, L, higher_order=False):
"""Returns an augmented version of L where each column is an indicator
for whether a certain source or clique of sources voted in a certain
pattern.
Args:
L: An [n,m] scipy.sparse label matrix with values in {0,1,...,k}
"""
# Create a helper data structure which maps cliques (as tuples of member
# sources) --> {start_index, end_index, maximal_cliques}, where
# the last value is a set of indices in this data structure
self.c_data = {}
for i in range(self.m):
self.c_data[i] = {
"start_index": i * self.k,
"end_index": (i + 1) * self.k,
"max_cliques": set(
[
j
for j in self.c_tree.nodes()
if i in self.c_tree.node[j]["members"]
]
),
}
L_ind = self._create_L_ind(L)
# Get the higher-order clique statistics based on the clique tree
# First, iterate over the maximal cliques (nodes of c_tree) and
# separator sets (edges of c_tree)
if higher_order:
L_aug = np.copy(L_ind)
for item in chain(self.c_tree.nodes(), self.c_tree.edges()):
if isinstance(item, int):
C = self.c_tree.node[item]
C_type = "node"
elif isinstance(item, tuple):
C = self.c_tree[item[0]][item[1]]
C_type = "edge"
else:
raise ValueError(item)
members = list(C["members"])
nc = len(members)
# If a unary maximal clique, just store its existing index
if nc == 1:
C["start_index"] = members[0] * self.k
C["end_index"] = (members[0] + 1) * self.k
# Else add one column for each possible value
else:
L_C = np.ones((self.n, self.k ** nc))
for i, vals in enumerate(product(range(self.k), repeat=nc)):
for j, v in enumerate(vals):
L_C[:, i] *= L_ind[:, members[j] * self.k + v]
# Add to L_aug and store the indices
if L_aug is not None:
C["start_index"] = L_aug.shape[1]
C["end_index"] = L_aug.shape[1] + L_C.shape[1]
L_aug = np.hstack([L_aug, L_C])
else:
C["start_index"] = 0
C["end_index"] = L_C.shape[1]
L_aug = L_C
# Add to self.c_data as well
id = tuple(members) if len(members) > 1 else members[0]
self.c_data[id] = {
"start_index": C["start_index"],
"end_index": C["end_index"],
"max_cliques": set([item]) if C_type == "node" else set(item),
}
return L_aug
else:
return L_ind
def _build_mask(self):
"""Build mask applied to O^{-1}, O for the matrix approx constraint"""
self.mask = torch.ones(self.d, self.d).byte()
for ci in self.c_data.values():
si, ei = ci["start_index"], ci["end_index"]
for cj in self.c_data.values():
sj, ej = cj["start_index"], cj["end_index"]
# Check if ci and cj are part of the same maximal clique
# If so, mask out their corresponding blocks in O^{-1}
if len(ci["max_cliques"].intersection(cj["max_cliques"])) > 0:
self.mask[si:ei, sj:ej] = 0
self.mask[sj:ej, si:ei] = 0
def _generate_O(self, L):
"""Form the overlaps matrix, which is just all the different observed
combinations of values of pairs of sources
Note that we only include the k non-abstain values of each source,
otherwise the model not minimal --> leads to singular matrix
"""
L_aug = self._get_augmented_label_matrix(L)
self.d = L_aug.shape[1]
self.O = torch.from_numpy(L_aug.T @ L_aug / self.n).float()
def _generate_O_inv(self, L):
"""Form the *inverse* overlaps matrix"""
self._generate_O(L)
self.O_inv = torch.from_numpy(np.linalg.inv(self.O.numpy())).float()
def _init_params(self):
"""Initialize the learned params
- \mu is the primary learned parameter, where each row corresponds to
the probability of a clique C emitting a specific combination of labels,
conditioned on different values of Y (for each column); that is:
self.mu[i*self.k + j, y] = P(\lambda_i = j | Y = y)
and similarly for higher-order cliques.
- Z is the inverse form version of \mu.
"""
train_config = self.config["train_config"]
# Initialize mu so as to break basic reflective symmetry
# Note that we are given either a single or per-LF initial precision
# value, prec_i = P(Y=y|\lf=y), and use:
# mu_init = P(\lf=y|Y=y) = P(\lf=y) * prec_i / P(Y=y)
# Handle single or per-LF values
if isinstance(train_config["prec_init"], (int, float)):
prec_init = train_config["prec_init"] * torch.ones(self.m)
else:
prec_init = torch.from_numpy(train_config["prec_init"])
if prec_init.shape[0] != self.m:
raise ValueError(f"prec_init must have shape {self.m}.")
# Get the per-value labeling propensities
# Note that self.O must have been computed already!
lps = torch.diag(self.O).numpy()
# TODO: Update for higher-order cliques!
self.mu_init = torch.zeros(self.d, self.k)
for i in range(self.m):
for y in range(self.k):
idx = i * self.k + y
mu_init = torch.clamp(lps[idx] * prec_init[i] / self.p[y], 0, 1)
self.mu_init[idx, y] += mu_init
# Initialize randomly based on self.mu_init
self.mu = nn.Parameter(self.mu_init.clone() * np.random.random()).float()
if self.inv_form:
self.Z = nn.Parameter(torch.randn(self.d, self.k)).float()
# Build the mask over O^{-1}
# TODO: Put this elsewhere?
self._build_mask()
def get_conditional_probs(self, source=None):
"""Returns the full conditional probabilities table as a numpy array,
where row i*(k+1) + ly is the conditional probabilities of source i
emmiting label ly (including abstains 0), conditioned on different
values of Y, i.e.:
c_probs[i*(k+1) + ly, y] = P(\lambda_i = ly | Y = y)
Note that this simply involves inferring the kth row by law of total
probability and adding in to mu.
If `source` is not None, returns only the corresponding block.
"""
c_probs = np.zeros((self.m * (self.k + 1), self.k))
mu = self.mu.detach().clone().numpy()
for i in range(self.m):
# si = self.c_data[(i,)]['start_index']
# ei = self.c_data[(i,)]['end_index']
# mu_i = mu[si:ei, :]
mu_i = mu[i * self.k : (i + 1) * self.k, :]
c_probs[i * (self.k + 1) + 1 : (i + 1) * (self.k + 1), :] = mu_i
# The 0th row (corresponding to abstains) is the difference between
# the sums of the other rows and one, by law of total prob
c_probs[i * (self.k + 1), :] = 1 - mu_i.sum(axis=0)
c_probs = np.clip(c_probs, 0.01, 0.99)
if source is not None:
return c_probs[source * (self.k + 1) : (source + 1) * (self.k + 1)]
else:
return c_probs
def predict_proba(self, L):
"""Returns the [n,k] matrix of label probabilities P(Y | \lambda)
Args:
L: An [n,m] scipy.sparse label matrix with values in {0,1,...,k}
"""
self._set_constants(L)
L_aug = self._get_augmented_label_matrix(L)
mu = np.clip(self.mu.detach().clone().numpy(), 0.01, 0.99)
# Create a "junction tree mask" over the columns of L_aug / mu
if len(self.deps) > 0:
jtm = np.zeros(L_aug.shape[1])
# All maximal cliques are +1
for i in self.c_tree.nodes():
node = self.c_tree.node[i]
jtm[node["start_index"] : node["end_index"]] = 1
# All separator sets are -1
for i, j in self.c_tree.edges():
edge = self.c_tree[i][j]
jtm[edge["start_index"] : edge["end_index"]] = 1
else:
jtm = np.ones(L_aug.shape[1])
# Note: We omit abstains, effectively assuming uniform distribution here
X = np.exp(L_aug @ np.diag(jtm) @ np.log(mu) + np.log(self.p))
Z = np.tile(X.sum(axis=1).reshape(-1, 1), self.k)
return X / Z
def get_Q(self):
"""Get the model's estimate of Q = \mu P \mu^T
We can then separately extract \mu subject to additional constraints,
e.g. \mu P 1 = diag(O).
"""
Z = self.Z.detach().clone().numpy()
O = self.O.numpy()
I_k = np.eye(self.k)
return O @ Z @ np.linalg.inv(I_k + Z.T @ O @ Z) @ Z.T @ O
# These loss functions get all their data directly from the LabelModel
# (for better or worse). The unused *args make these compatible with the
# Classifer._train() method which expect loss functions to accept an input.
def loss_l2(self, l2=0):
"""L2 loss centered around mu_init, scaled optionally per-source.
In other words, diagonal Tikhonov regularization,
||D(\mu-\mu_{init})||_2^2
where D is diagonal.
Args:
- l2: A float or np.array representing the per-source regularization
strengths to use
"""
if isinstance(l2, (int, float)):
D = l2 * torch.eye(self.d)
else:
D = torch.diag(torch.from_numpy(l2))
# Note that mu is a matrix and this is the *Frobenius norm*
return torch.norm(D @ (self.mu - self.mu_init)) ** 2
def loss_inv_Z(self, *args):
return torch.norm((self.O_inv + self.Z @ self.Z.t())[self.mask]) ** 2
def loss_inv_mu(self, *args, l2=0):
loss_1 = torch.norm(self.Q - self.mu @ self.P @ self.mu.t()) ** 2
loss_2 = torch.norm(torch.sum(self.mu @ self.P, 1) - torch.diag(self.O)) ** 2
return loss_1 + loss_2 + self.loss_l2(l2=l2)
def loss_mu(self, *args, l2=0):
loss_1 = torch.norm((self.O - self.mu @ self.P @ self.mu.t())[self.mask]) ** 2
loss_2 = torch.norm(torch.sum(self.mu @ self.P, 1) - torch.diag(self.O)) ** 2
return loss_1 + loss_2 + self.loss_l2(l2=l2)
def _set_class_balance(self, class_balance, Y_dev):
"""Set a prior for the class balance
In order of preference:
1) Use user-provided class_balance
2) Estimate balance from Y_dev
3) Assume uniform class distribution
"""
if class_balance is not None:
self.p = np.array(class_balance)
elif Y_dev is not None:
class_counts = Counter(Y_dev)
sorted_counts = np.array([v for k, v in sorted(class_counts.items())])
self.p = sorted_counts / sum(sorted_counts)
else:
self.p = (1 / self.k) * np.ones(self.k)
self.P = torch.diag(torch.from_numpy(self.p)).float()
def _set_constants(self, L):
self.n, self.m = L.shape
self.t = 1
def _set_dependencies(self, deps):
nodes = range(self.m)
self.deps = deps
self.c_tree = get_clique_tree(nodes, deps)
def train_model(
self,
L_train,
Y_dev=None,
deps=[],
class_balance=None,
log_writer=None,
**kwargs,
):
"""Train the model (i.e. estimate mu) in one of two ways, depending on
whether source dependencies are provided or not:
Args:
L_train: An [n,m] scipy.sparse matrix with values in {0,1,...,k}
corresponding to labels from supervision sources on the
training set
Y_dev: Target labels for the dev set, for estimating class_balance
deps: (list of tuples) known dependencies between supervision
sources. If not provided, sources are assumed to be independent.
TODO: add automatic dependency-learning code
class_balance: (np.array) each class's percentage of the population
(1) No dependencies (conditionally independent sources): Estimate mu
subject to constraints:
(1a) O_{B(i,j)} - (mu P mu.T)_{B(i,j)} = 0, for i != j, where B(i,j)
is the block of entries corresponding to sources i,j
(1b) np.sum( mu P, 1 ) = diag(O)
(2) Source dependencies:
- First, estimate Z subject to the inverse form
constraint:
(2a) O_\Omega + (ZZ.T)_\Omega = 0, \Omega is the deps mask
- Then, compute Q = mu P mu.T
- Finally, estimate mu subject to mu P mu.T = Q and (1b)
"""
self.config = recursive_merge_dicts(self.config, kwargs, misses="ignore")
train_config = self.config["train_config"]
# TODO: Implement logging for label model?
if log_writer is not None:
raise NotImplementedError("Logging for LabelModel.")
# Note that the LabelModel class implements its own (centered) L2 reg.
l2 = train_config.get("l2", 0)
self._set_class_balance(class_balance, Y_dev)
self._set_constants(L_train)
self._set_dependencies(deps)
self._check_L(L_train)
# Whether to take the simple conditionally independent approach, or the
# "inverse form" approach for handling dependencies
# This flag allows us to eg test the latter even with no deps present
self.inv_form = len(self.deps) > 0
# Creating this faux dataset is necessary for now because the LabelModel
# loss functions do not accept inputs, but Classifer._train_model()
# expects training data to feed to the loss functions.
dataset = MetalDataset([0], [0])
train_loader = DataLoader(dataset)
if self.inv_form:
# Compute O, O^{-1}, and initialize params
if self.config["verbose"]:
print("Computing O^{-1}...")
self._generate_O_inv(L_train)
self._init_params()
# Estimate Z, compute Q = \mu P \mu^T
if self.config["verbose"]:
print("Estimating Z...")
self._train_model(train_loader, self.loss_inv_Z)
self.Q = torch.from_numpy(self.get_Q()).float()
# Estimate \mu
if self.config["verbose"]:
print("Estimating \mu...")
self._train_model(train_loader, partial(self.loss_inv_mu, l2=l2))
else:
# Compute O and initialize params
if self.config["verbose"]:
print("Computing O...")
self._generate_O(L_train)
self._init_params()
# Estimate \mu
if self.config["verbose"]:
print("Estimating \mu...")
self._train_model(train_loader, partial(self.loss_mu, l2=l2))
|
metal-master
|
metal/label_model/label_model.py
|
import numpy as np
from metal.label_model.label_model import LabelModel
class RandomVoter(LabelModel):
"""
A class that votes randomly among the available labels
"""
def train_model(self, *args, **kwargs):
pass
def predict_proba(self, L):
"""
Args:
L: An [n, m] scipy.sparse matrix of labels
Returns:
output: A [n, k] np.ndarray of probabilistic labels
"""
n = L.shape[0]
Y_p = np.random.rand(n, self.k)
Y_p /= Y_p.sum(axis=1).reshape(-1, 1)
return Y_p
class MajorityClassVoter(RandomVoter):
"""
A class that places all probability on the majority class based on class
balance (and ignoring the label matrix).
Note that in the case of ties, non-integer probabilities are possible.
"""
def train_model(self, balance, *args, **kwargs):
"""
Args:
balance: A 1d arraylike that sums to 1, corresponding to the
(possibly estimated) class balance.
"""
self.balance = np.array(balance)
def predict_proba(self, L):
n = L.shape[0]
Y_p = np.zeros((n, self.k))
max_classes = np.where(self.balance == max(self.balance))
for c in max_classes:
Y_p[:, c] = 1.0
Y_p /= Y_p.sum(axis=1).reshape(-1, 1)
return Y_p
class MajorityLabelVoter(RandomVoter):
"""
A class that places all probability on the majority label from all
non-abstaining LFs for that task.
Note that in the case of ties, non-integer probabilities are possible.
"""
def train_model(self, *args, **kwargs):
pass
def predict_proba(self, L):
L = self._to_numpy(L).astype(int)
n, m = L.shape
Y_p = np.zeros((n, self.k))
for i in range(n):
counts = np.zeros(self.k)
for j in range(m):
if L[i, j]:
counts[L[i, j] - 1] += 1
Y_p[i, :] = np.where(counts == max(counts), 1, 0)
Y_p /= Y_p.sum(axis=1).reshape(-1, 1)
return Y_p
|
metal-master
|
metal/label_model/baselines.py
|
from itertools import product
import numpy as np
import torch
from torch import nn, optim
class ClassBalanceModel(nn.Module):
"""A model for learning the class balance, P(Y=y), given a subset of LFs
which are *conditionally independent*, i.e. \lambda_i \perp \lambda_j | Y,
for i != j.
Learns the model using a tensor factorization approach.
Note: This approach can also be used for estimation of the LabelModel, may
want to later refactor and expand this class.
"""
def __init__(self, k, abstains=True, config=None):
super().__init__()
self.config = config
self.k = k # The cardinality of the true label, Y \in {1,...,k}
# Labeling functions output labels in range {k_0,...,k}, and have
# cardinality k_lf
# If abstains=False, k_0 = 1 ==> k_lf = k
# If abstains=True, k_0 = 0 ==> k_lf = k + 1
self.abstains = abstains
self.k_0 = 0 if self.abstains else 1
self.k_lf = k + 1 if self.abstains else k
# Estimated quantities (np.array)
self.cond_probs = None
self.class_balance = None
def _get_overlaps_tensor(self, L):
"""Transforms the input label matrix to a three-way overlaps tensor.
Args:
L: (np.array) An n x m array of LF output labels, in {0,...,k} if
self.abstains, else in {1,...,k}, generated by m conditionally
independent LFs on n data points
Outputs:
O: (torch.Tensor) A (m, m, m, k, k, k) tensor of the label-specific
empirical overlap rates; that is,
O[i,j,k,y1,y2,y3] = P(\lf_i = y1, \lf_j = y2, \lf_k = y3)
where this quantity is computed empirically by this function, based
on the label matrix L.
"""
n, m = L.shape
# Convert from a (n,m) matrix of ints to a (k_lf, n, m) indicator tensor
LY = np.array([np.where(L == y, 1, 0) for y in range(self.k_0, self.k + 1)])
# Form the three-way overlaps matrix
O = np.einsum("abc,dbe,fbg->cegadf", LY, LY, LY) / n
return torch.from_numpy(O).float()
def get_mask(self, m):
"""Get the mask for the three-way overlaps matrix O, which is 0 when
indices i,j,k are not unique"""
mask = torch.ones((m, m, m, self.k_lf, self.k_lf, self.k_lf)).byte()
for i, j, k in product(range(m), repeat=3):
if len(set((i, j, k))) < 3:
mask[i, j, k, :, :, :] = 0
return mask
@staticmethod
def get_loss(O, Q, mask):
# Main constraint: match empirical three-way overlaps matrix
# (entries O_{ijk} for i != j != k)
diffs = (O - torch.einsum("aby,cdy,efy->acebdf", [Q, Q, Q]))[mask]
return torch.norm(diffs) ** 2
def train_model(self, L=None, O=None, lr=1, max_iter=1000, verbose=False):
# Get overlaps tensor if L provided else use O directly (e.g. for tests)
if O is not None:
pass
elif L is not None:
O = self._get_overlaps_tensor(L)
else:
raise ValueError("L or O required as input.")
self.m = O.shape[0]
# Compute mask
self.mask = self.get_mask(self.m)
# Initialize parameters
self.Q = nn.Parameter(torch.rand(self.m, self.k_lf, self.k)).float()
# Use L-BFGS here
# Seems to be a tricky problem for simple 1st order approaches, and
# small enough for quasi-Newton... L-BFGS seems to work well here
optimizer = optim.LBFGS([self.Q], lr=lr, max_iter=max_iter)
# The closure computes the loss
def closure():
optimizer.zero_grad()
loss = self.get_loss(O, self.Q, self.mask)
loss.backward()
if verbose:
print(f"Loss: {loss.detach():.8f}")
return loss
# Perform optimizer step
optimizer.step(closure)
# Recover the class balance
# Note that the columns are not necessarily ordered correctly at this
# point, since there's a column-wise symmetry remaining
q = self.Q.detach().numpy()
p_y = np.mean(q.sum(axis=1) ** 3, axis=0)
# Resolve remaining col-wise symmetry
# We do this by first estimating the conditional probabilities (accs.)
# P(\lambda_i = y' | Y = y) of the labeling functions, *then leveraging
# the assumption that they are better than random* to resolve col-wise
# symmetries here
# Note we then store both the estimated conditional probs, and the class
# balance
# Recover the estimated cond probs: Q = C(P^{1/3}) --> C = Q(P^{-1/3})
cps = q @ np.diag(1 / p_y ** (1 / 3))
# Note: For assessing the order, we only care about the non-abstains
if self.k_lf > self.k:
cps_na = cps[:, 1:, :]
else:
cps_na = cps
# Re-order cps and p_y using assumption and store np.array values
# Note: We take the *most common* ordering
vals, counts = np.unique(cps_na.argmax(axis=2), axis=0, return_counts=True)
col_order = vals[counts.argmax()]
self.class_balance = p_y[col_order]
self.cond_probs = cps[:, :, col_order]
|
metal-master
|
metal/label_model/class_balance.py
|
import networkx as nx
def get_clique_tree(nodes, edges):
"""Given a set of int nodes i and edges (i,j), returns an nx.Graph object G
which is a clique tree, where:
- G.node[i]['members'] contains the set of original nodes in the ith
maximal clique
- G[i][j]['members'] contains the set of original nodes in the seperator
set between maximal cliques i and j
Note: This method is currently only implemented for chordal graphs; TODO:
add a step to triangulate non-chordal graphs.
"""
# Form the original graph G1
G1 = nx.Graph()
G1.add_nodes_from(nodes)
G1.add_edges_from(edges)
# Check if graph is chordal
# TODO: Add step to triangulate graph if not
if not nx.is_chordal(G1):
raise NotImplementedError("Graph triangulation not implemented.")
# Create maximal clique graph G2
# Each node is a maximal clique C_i
# Let w = |C_i \cap C_j|; C_i, C_j have an edge with weight w if w > 0
G2 = nx.Graph()
for i, c in enumerate(nx.chordal_graph_cliques(G1)):
G2.add_node(i, members=c)
for i in G2.nodes:
for j in G2.nodes:
S = G2.node[i]["members"].intersection(G2.node[j]["members"])
w = len(S)
if w > 0:
G2.add_edge(i, j, weight=w, members=S)
# Return a minimum spanning tree of G2
return nx.minimum_spanning_tree(G2)
|
metal-master
|
metal/label_model/graph_utils.py
|
lm_default_config = {
# GENERAL
"seed": None,
"verbose": True,
"show_plots": True,
# Device (default GPU)
"device": "cpu",
# TRAIN
"train_config": {
# Dataloader
"data_loader_config": {"batch_size": 1000, "num_workers": 1},
# Classifier
# Class balance (if learn_class_balance=False, fix to class_balance)
"learn_class_balance": False,
# LF precision initializations / priors (float or np.array)
"prec_init": 0.7,
# Centered L2 regularization strength (int, float, or np.array)
"l2": 0.0,
# Optimizer
"optimizer_config": {
"optimizer": "sgd",
"optimizer_common": {"lr": 0.01},
# Optimizer - SGD
"sgd_config": {"momentum": 0.9},
},
# Scheduler
"lr_scheduler": None,
# Train loop
"n_epochs": 100,
"progress_bar": False,
# Logger (see metal/logging/writer.py for descriptions)
"logger": True,
"logger_config": {
"log_unit": "epochs", # ['seconds', 'examples', 'batches', 'epochs']
"log_train_every": 1, # How often train loss is reported
"log_train_metrics": ["train/loss"],
"log_train_metrics_func": None,
"log_valid_every": 0,
"log_valid_metrics": [],
"log_valid_metrics_func": None,
},
# Writer
"writer": None,
# Checkpointer
"checkpoint": False,
},
}
|
metal-master
|
metal/label_model/lm_defaults.py
|
from .baselines import MajorityClassVoter, MajorityLabelVoter, RandomVoter
from .label_model import LabelModel
__all__ = ["MajorityClassVoter", "MajorityLabelVoter", "RandomVoter", "LabelModel"]
|
metal-master
|
metal/label_model/__init__.py
|
import numpy as np
def compute_mu(L_aug, Y, k, p):
"""Given label matrix L_aug and labels Y, compute the true mu params.
Args:
L: (np.array {0,1}) [n, d] The augmented (indicator) label matrix
Y: (np.array int) [n] The true labels in {1,...,k}
k: (int) Cardinality
p: (np.array float) [k] The class balance
"""
n, d = L_aug.shape
assert Y.shape[0] == n
# Compute mu
mu = np.zeros((d, k))
for y in range(1, k + 1):
L_y = L_aug[Y == y]
mu[:, y - 1] = L_y.sum(axis=0) / L_y.shape[0]
return mu
def compute_covariance(L_aug, Y, k, p):
"""Given label matrix L_aug and labels Y, compute the covariance.
Args:
L: (np.array {0,1}) [n, d] The augmented (indicator) label matrix
Y: (np.array int) [n] The true labels in {1,...,k}
k: (int) Cardinality
p: (np.array float) [k] The class balance
"""
n, d = L_aug.shape
assert Y.shape[0] == n
mu = compute_mu(L_aug, Y, k, p)
return (L_aug.T @ L_aug) / n - mu @ np.diag(p) @ mu.T
def compute_inv_covariance(L_aug, Y, k, p):
"""Given label matrix L and labels Y, compute the covariance.
Args:
L: (np.array) [n, d] The augmented (indicator) label matrix
Y: (np.array int) [n] The true labels in {1,...,k}
"""
return np.linalg.inv(compute_covariance(L_aug, Y, k, p))
def print_matrix(X, decimals=1):
"""Pretty printing for numpy matrix X"""
for row in np.round(X, decimals=decimals):
print(row)
|
metal-master
|
metal/label_model/utils.py
|
import numpy as np
from scipy.sparse import issparse
from metal.label_model import LabelModel
from metal.label_model.lm_defaults import lm_default_config
from metal.multitask import MTClassifier
from metal.multitask.task_graph import TaskGraph
from metal.utils import recursive_merge_dicts
class MTLabelModel(MTClassifier, LabelModel):
def __init__(self, K=None, task_graph=None, **kwargs):
"""
Args:
K: A t-length list of task cardinalities (overrided by task_graph
if task_graph is not None)
task_graph: TaskGraph: A TaskGraph which defines a feasible set of
task label vectors; overrides K if provided
"""
config = recursive_merge_dicts(lm_default_config, kwargs)
MTClassifier.__init__(self, K, config)
if task_graph is None:
task_graph = TaskGraph(K)
self.task_graph = task_graph
# Note: While K is a list of the cardinalities of the tasks, k is the
# cardinality of the feasible set. These are always the same for a
# single-task model, but rarely the same for a multi-task model.
self.k = self.task_graph.k
def _set_constants(self, L):
self.n, self.m = L[0].shape
self.t = len(L)
def _check_L(self, L):
"""Run some basic checks on L."""
# TODO: Take this out?
if issparse(L[0]):
L = [L_t.todense() for L_t in L]
# Check for correct values, e.g. warning if in {-1,0,1}
for L_t in L:
if np.any(L_t < 0):
raise ValueError("L must have values in {0,1,...,k}.")
def _create_L_ind(self, L):
"""Convert T label matrices with labels in 0...K_t to a one-hot format
Here we can view e.g. the $(i,j)$ entries of the $T$ label matrices as
a _label vector_ emitted by LF j for data point i.
Args:
L: a T-length list of [n,m] scipy.sparse label matrices with values
in {0,1,...,k}
Returns:
L_ind: An [n,m*k] dense np.ndarray with values in {0,1}
Note that no column is required for 0 (abstain) labels.
"""
# TODO: Update LabelModel to keep L, L_ind, L_aug as sparse matrices
# throughout and remove this line.
if issparse(L[0]):
L = [L_t.todense() for L_t in L]
# Make sure converted to numpy here
L = self._to_numpy(L)
L_ind = np.ones((self.n, self.m * self.k))
for yi, y in enumerate(self.task_graph.feasible_set()):
for t in range(self.t):
# A[x::y] slices A starting at x at intervals of y
# e.g., np.arange(9)[0::3] == np.array([0,3,6])
L_ind[:, yi :: self.k] *= np.where(
np.logical_or(L[t] == y[t], L[t] == 0), 1, 0
)
# Set LFs that abstained on all feasible label vectors to all 0s
L_ind[:, yi :: self.k] *= np.where(sum(L) != 0, 1, 0)
return L_ind
def predict_proba(self, L):
"""Returns the task marginals estimated by the model: a t-length list of
[n,k_t] matrices where the (i,j) entry of the sth matrix represents the
estimated P((Y_i)_s | \lambda_j(x_i))
Args:
L: A t-length list of [n,m] scipy.sparse label matrices with values
in {0,1,...,k}
"""
# First, get the estimated probability distribution over the feasible
# set defined by the TaskGraph
# This is an [n,k] array, where k = |(feasible set)|
Y_pf = LabelModel.predict_proba(self, L)
n, k = Y_pf.shape
# Now get the per-task marginals
# TODO: Make this optional, versus just returning the above
Y_p = [np.zeros((n, k_t)) for k_t in self.task_graph.K]
for yi, y in enumerate(self.task_graph.feasible_set()):
for t in range(self.t):
k_t = int(y[t])
Y_p[t][:, k_t - 1] += Y_pf[:, yi]
return Y_p
|
metal-master
|
metal/multitask/mt_label_model.py
|
import numpy as np
from metal.classifier import Classifier
from metal.metrics import metric_score
from metal.multitask.utils import MultiXYDataset, MultiYDataset
class MTClassifier(Classifier):
"""Simple abstract base class for a *multi-class* probabilistic classifier.
The main contribution of children classes will be an implementation of the
predict_proba() method. The relationships between the six predict/score
functions are as follows:
score score_task
| |
predict predict_task
| (default) |
*predict_proba <- predict_task_proba
Methods on the left return a list of results for all tasks (including
a singleton list if there is only one task).
Methods on the right return what would be a single element in the list
returned by their counterpart on the left.
The method predict_proba() method calculates the probabilistic labels,
the predict() method handles tie-breaking, and the score() method
calculates metrics based on predictions.
Children classes must implement predict_proba so that interactions between
tasks are handled correctly in applicable multi-task settings.
If it is possible to calculate task probabilities independently, they may
also override predict_task_proba for efficiency.
Otherwise, predict_task_proba() will default to calling predict_proba and
accessing element t.
Args:
K: (list) A t-length list of cardinalities (ints) for each task
"""
def __init__(self, K, config):
Classifier.__init__(self, None, config)
self.multitask = True
self.K = K
def predict_proba(self, X, **kwargs):
"""Predicts probabilistic labels for an input X on all tasks
Args:
X: An appropriate input for the child class of Classifier
Returns:
A t-length list of [n, K_t] np.ndarrays of probabilistic labels
"""
raise NotImplementedError
def predict(self, X, break_ties="random", return_probs=False, **kwargs):
"""Predicts int labels for an input X on all tasks
Args:
X: The input for the predict_proba method
break_ties: A tie-breaking policy
return_probs: Return the predicted probabilities as well
Returns:
Y_p: A t-length list of n-dim np.ndarrays of predictions in [1, K_t]
[Optionally: Y_s: A t-length list of [n, K_t] np.ndarrays of
predicted probabilities]
"""
Y_s = self.predict_proba(X, **kwargs)
self._check(Y_s, typ=list)
self._check(Y_s[0], typ=np.ndarray)
Y_p = []
for Y_ts in Y_s:
Y_tp = self._break_ties(Y_ts, break_ties)
Y_p.append(Y_tp.astype(np.int))
if return_probs:
return Y_p, Y_s
else:
return Y_p
def score(
self,
data,
metric="accuracy",
validation_task=None,
reduce="mean",
break_ties="random",
verbose=True,
print_confusion_matrix=False,
**kwargs,
):
"""Scores the predictive performance of the Classifier on all tasks
Args:
data: either a Pytorch Dataset, DataLoader or tuple supplying (X,Y):
X: The input for the predict method
Y: A t-length list of [n] or [n, 1] np.ndarrays or
torch.Tensors of gold labels in {1,...,K_t}
metric: The metric with which to score performance on each task
validation_task:
int: returns score for specific task number.
reduce: How to reduce the scores of multiple tasks:
None : return a t-length list of scores
'mean': return the mean score across tasks
break_ties: How to break ties when making predictions
Returns:
scores: A (float) score or a t-length list of such scores if
reduce=None
"""
Y_p, Y, Y_s = self._get_predictions(
data, break_ties=break_ties, return_probs=True, **kwargs
)
# TODO: Handle multiple metrics...
metric_list = metric if isinstance(metric, list) else [metric]
if len(metric_list) > 1:
raise NotImplementedError(
"Multiple metrics for multi-task score() not yet supported."
)
metric = metric_list[0]
# Return score for task t only.
if validation_task is not None:
score = metric_score(
Y[validation_task],
Y_p[validation_task],
metric,
probs=Y_s[validation_task],
ignore_in_gold=[0],
)
if verbose:
print(f"{metric.capitalize()}: {score:.3f}")
return score
task_scores = []
for t, Y_tp in enumerate(Y_p):
score = metric_score(Y[t], Y_tp, metric, probs=Y_s[t], ignore_in_gold=[0])
task_scores.append(score)
# TODO: Other options for reduce, including scoring only certain
# primary tasks, and converting to end labels using TaskGraph...
if reduce is None:
score = task_scores
elif reduce == "mean":
score = np.mean(task_scores)
else:
raise Exception(f"Keyword reduce='{reduce}' not recognized.")
if verbose:
if reduce is None:
for t, score_t in enumerate(score):
print(f"{metric.capitalize()} (t={t}): {score_t:0.3f}")
else:
print(f"{metric.capitalize()}: {score:.3f}")
return score
def score_task(self, X, Y, t=0, metric="accuracy", verbose=True, **kwargs):
"""Scores the predictive performance of the Classifier on task t
Args:
X: The input for the predict_task method
Y: A [n] or [n, 1] np.ndarray or torch.Tensor of gold labels in
{1,...,K_t}
t: The task index to score
metric: The metric with which to score performance on this task
Returns:
The (float) score of the Classifier for the specified task and
metric
"""
Y = self._to_numpy(Y)
Y_tp = self.predict_task(X, t=t, **kwargs)
probs = self.predict_proba(X)[t]
score = metric_score(
Y[t], Y_tp, metric, ignore_in_gold=[0], probs=probs, **kwargs
)
if verbose:
print(f"[t={t}] {metric.capitalize()}: {score:.3f}")
return score
def predict_task(self, X, t=0, break_ties="random", **kwargs):
"""Predicts int labels for an input X on task t
Args:
X: The input for the predict_task_proba method
t: The task index to predict
Returns:
An n-dim tensor of int predictions for the specified task
"""
Y_tp = self.predict_task_proba(X, t=t, **kwargs)
Y_tph = self._break_ties(Y_tp, break_ties)
return Y_tph
def predict_task_proba(self, X, t=0, **kwargs):
"""Predicts probabilistic labels for an input X on task t
Args:
X: The input for the predict_proba method
t: The task index to predict for which to predict probabilities
Returns:
An [n, K_t] tensor of predictions for task t
NOTE: By default, this method calls predict_proba and extracts element
t. If it is possible to predict individual tasks in isolation, however,
this method may be overriden for efficiency's sake.
"""
return self.predict_proba(X, **kwargs)[t]
def _create_dataset(self, *data):
X, Y = data
if isinstance(X, list):
return MultiXYDataset(X, Y)
else:
return MultiYDataset(X, Y)
@staticmethod
def _to_torch(Z, dtype=None):
"""Converts a None, list, np.ndarray, or torch.Tensor to torch.Tensor"""
if isinstance(Z, list):
return [Classifier._to_torch(z, dtype=dtype) for z in Z]
else:
return Classifier._to_torch(Z)
@staticmethod
def _to_numpy(Z):
"""Converts a None, list, np.ndarray, or torch.Tensor to np.ndarray"""
if isinstance(Z, list):
return [Classifier._to_numpy(z) for z in Z]
else:
return Classifier._to_numpy(Z)
@staticmethod
def _stack_batches(X):
"""Given a list of batches, each consisting of a T-len list of
np.ndarrays, stack along the first (batch) axis, returning a T-len list
of np.ndarrays."""
return [Classifier._stack_batches(Xt) for Xt in zip(*X)]
|
metal-master
|
metal/multitask/mt_classifier.py
|
import copy
from collections import defaultdict
import torch
import torch.nn as nn
import torch.nn.functional as F
from metal.end_model import EndModel
from metal.end_model.em_defaults import em_default_config
from metal.end_model.identity_module import IdentityModule
from metal.end_model.loss import SoftCrossEntropyLoss
from metal.multitask import MTClassifier
from metal.multitask.mt_em_defaults import mt_em_default_config
from metal.multitask.task_graph import TaskGraph
from metal.utils import recursive_merge_dicts
class MTEndModel(MTClassifier, EndModel):
"""A multi-task discriminative model.
Note that when looking up methods, MTEndModel will first search in
MTClassifier, followed by EndModel.
Args:
layer_out_dims: a list of integers corresponding to the output sizes
of the layers of your network. The first element is the
dimensionality of the input layer, and all other elements dictate
the sizes of middle layers. The number of middle layers will be
inferred from this list. The output dimensions of the task heads
will be inferred from the cardinalities pulled from K or the
task_graph.
input_modules: (nn.Module) a list of modules that converts the
user-provided model inputs to torch.Tensors.
Defaults to IdentityModule.
middle_modules: (nn.Module) a list of modules to execute between the
input_module and task head. Defaults to nn.Linear.
head_module: (nn.Module) a module to execute right before the final
softmax that outputs a prediction for the task.
K: A t-length list of task cardinalities (overrided by task_graph
if task_graph is not None)
task_graph: TaskGraph: A TaskGraph which defines a feasible set of
task label vectors; overrides K
"""
def __init__(
self,
layer_out_dims,
input_modules=None,
middle_modules=None,
head_modules=None,
K=[],
task_graph=None,
**kwargs,
):
kwargs["layer_out_dims"] = layer_out_dims
# kwargs["input_modules"] = input_modules
# kwargs["middle_modules"] = middle_modules
# kwargs["head_modules"] = head_modules
config = recursive_merge_dicts(
em_default_config, mt_em_default_config, misses="insert"
)
config = recursive_merge_dicts(config, kwargs)
MTClassifier.__init__(self, K, config)
if task_graph is None:
if len(K) == 0:
raise ValueError(
"You must supply either a list of "
"cardinalities (K) or a TaskGraph."
)
task_graph = TaskGraph(K)
self.task_graph = task_graph
self.K = self.task_graph.K # Cardinalities by task
self.t = self.task_graph.t # Total number of tasks
assert len(self.K) == self.t
self._build(input_modules, middle_modules, head_modules)
# Show network
if self.config["verbose"]:
print("\nNetwork architecture:")
self._print()
print()
def _build(self, input_modules, middle_modules, head_modules):
"""
TBD
"""
self.input_layer = self._build_input_layer(input_modules)
self.middle_layers = self._build_middle_layers(middle_modules)
self.heads = self._build_task_heads(head_modules)
# Construct loss module
reduction = self.config["train_config"]["loss_fn_reduction"]
self.criteria = SoftCrossEntropyLoss(reduction=reduction)
def _build_input_layer(self, input_modules):
if input_modules is None:
input_modules = IdentityModule()
if isinstance(input_modules, list):
input_layer = [
self._make_layer(mod, "input", self.config["input_layer_config"])
for mod in input_modules
]
else:
output_dim = self.config["layer_out_dims"][0]
input_layer = self._make_layer(
input_modules,
"input",
self.config["input_layer_config"],
output_dim=output_dim,
)
return input_layer
def _build_middle_layers(self, middle_modules):
layer_out_dims = self.config["layer_out_dims"]
num_mid_layers = len(layer_out_dims) - 1
if num_mid_layers == 0:
return None
middle_layers = nn.ModuleList()
for i in range(num_mid_layers):
if middle_modules is None:
module = nn.Linear(*layer_out_dims[i : i + 2])
layer = self._make_layer(
module,
"middle",
self.config["middle_layer_config"],
output_dim=layer_out_dims[i + 1],
)
else:
module = middle_modules[i]
layer = self._make_layer(
module, "middle", self.config["middle_layer_config"]
)
middle_layers.add_module(f"layer{i+1}", layer)
return middle_layers
def _build_task_heads(self, head_modules):
"""Creates and attaches task_heads to the appropriate network layers"""
# Make task head layer assignments
num_layers = len(self.config["layer_out_dims"])
task_head_layers = self._set_task_head_layers(num_layers)
# task_head_layers stores the layer whose output is input to task head t
# task_map stores the task heads that appear at each layer
self.task_map = defaultdict(list)
for t, l in enumerate(task_head_layers):
self.task_map[l].append(t)
if any(l == 0 for l in task_head_layers) and head_modules is None:
raise Exception(
"If any task head is being attached to layer 0 "
"(the input modules), then you must provide a t-length list of "
"head_modules, since the output dimension of each input_module "
"cannot be inferred."
)
# Construct heads
head_dims = [self.K[t] for t in range(self.t)]
heads = nn.ModuleList()
for t in range(self.t):
input_dim = self.config["layer_out_dims"][task_head_layers[t]]
if self.config["pass_predictions"]:
for p in self.task_graph.parents[t]:
input_dim += head_dims[p]
output_dim = head_dims[t]
if head_modules is None:
head = nn.Linear(input_dim, output_dim)
elif isinstance(head_modules, list):
head = head_modules[t]
else:
head = copy.deepcopy(head_modules)
heads.append(head)
return heads
def _set_task_head_layers(self, num_layers):
head_layers = self.config["task_head_layers"]
if isinstance(head_layers, list):
task_head_layers = head_layers
elif head_layers == "top":
task_head_layers = [num_layers - 1] * self.t
else:
msg = f"Invalid option to 'head_layers' parameter: '{head_layers}'"
raise ValueError(msg)
# Confirm that the network does not extend beyond the latest task head
if max(task_head_layers) < num_layers - 1:
unused = num_layers - 1 - max(task_head_layers)
msg = (
f"The last {unused} layer(s) of your network have no task "
"heads attached to them"
)
raise ValueError(msg)
# Confirm that parents come b/f children if predictions are passed
# between tasks
if self.config["pass_predictions"]:
for t, l in enumerate(task_head_layers):
for p in self.task_graph.parents[t]:
if task_head_layers[p] >= l:
p_layer = task_head_layers[p]
msg = (
f"Task {t}'s layer ({l}) must be larger than its "
f"parent task {p}'s layer ({p_layer})"
)
raise ValueError(msg)
return task_head_layers
def _print(self):
print("\n--Input Layer--")
if isinstance(self.input_layer, list):
for mod in self.input_layer:
print(mod)
else:
print(self.input_layer)
for t in self.task_map[0]:
print(f"(head{t})")
print(self.heads[t])
print("\n--Middle Layers--")
for i, layer in enumerate(self.middle_layers, start=1):
print(f"(layer{i}):")
print(layer)
for t in self.task_map[i]:
print(f"(head{t})")
print(self.heads[t])
print()
def forward(self, x):
"""Returns a list of outputs for tasks 0,...t-1
Args:
x: a [batch_size, ...] batch from X
"""
head_outputs = [None] * self.t
# Execute input layer
if isinstance(self.input_layer, list): # One input_module per task
input_outputs = [mod(x) for mod, x in zip(self.input_layer, x)]
x = torch.stack(input_outputs, dim=1)
# Execute level-0 task heads from their respective input modules
for t in self.task_map[0]:
head = self.heads[t]
head_outputs[t] = head(input_outputs[t])
else: # One input_module for all tasks
x = self.input_layer(x)
# Execute level-0 task heads from the single input module
for t in self.task_map[0]:
head = self.heads[t]
head_outputs[t] = head(x)
# Execute middle layers
for i, layer in enumerate(self.middle_layers, start=1):
x = layer(x)
# Attach level-i task heads from the ith middle module
for t in self.task_map[i]:
head = self.heads[t]
# Optionally include as input the predictions of parent tasks
if self.config["pass_predictions"] and bool(self.task_graph.parents[t]):
task_input = [x]
for p in self.task_graph.parents[t]:
task_input.append(head_outputs[p])
task_input = torch.stack(task_input, dim=1)
else:
task_input = x
head_outputs[t] = head(task_input)
return head_outputs
def _preprocess_Y(self, Y, k=None):
"""Convert Y to t-length list of probabilistic labels if necessary"""
# If not a list, convert to a singleton list
if not isinstance(Y, list):
if self.t != 1:
msg = "For t > 1, Y must be a list of n-dim or [n, K_t] tensors"
raise ValueError(msg)
Y = [Y]
if not len(Y) == self.t:
msg = f"Expected Y to be a t-length list (t={self.t}), not {len(Y)}"
raise ValueError(msg)
return [EndModel._preprocess_Y(self, Y_t, self.K[t]) for t, Y_t in enumerate(Y)]
def _get_loss_fn(self):
"""Returns the loss function to use in the train_model routine"""
criteria = self.criteria.to(self.config["device"])
loss_fn = lambda X, Y: sum(
criteria(Y_tp, Y_t) for Y_tp, Y_t in zip(self.forward(X), Y)
)
return loss_fn
def predict_proba(self, X):
"""Returns a list of t [n, K_t] tensors of probabilistic (float) predictions."""
return [
F.softmax(output, dim=1).data.cpu().numpy() for output in self.forward(X)
]
def predict_task_proba(self, X, t):
"""Returns an n x k matrix of probabilities for each label of task t"""
return self.predict_proba(X)[t]
|
metal-master
|
metal/multitask/mt_end_model.py
|
from .mt_classifier import MTClassifier
from .mt_end_model import MTEndModel
from .mt_label_model import MTLabelModel
from .task_graph import TaskGraph, TaskHierarchy
from .utils import MultiXYDataset, MultiYDataset
__all__ = [
"MultiXYDataset",
"MultiYDataset",
"TaskGraph",
"TaskHierarchy",
"MTClassifier",
"MTEndModel",
"MTLabelModel",
]
|
metal-master
|
metal/multitask/__init__.py
|
import itertools
import networkx as nx
import numpy as np
class TaskGraph(object):
"""A directed graph defining dependencies between tasks
In the MTLabelModel, the TaskGraph is used to define a feasible subset of
all t-dimensional label vectors Y = [Y_1,...,Y_t]; for example, in a
mutually exclusive hierarchy, an example cannot have multiple non-zero leaf
labels.
In the MTEndModel, the TaskGraph is optionally used for auto-compilation of
an MTL network that attaches task heads at appropriate levels and passes
relevant information between tasks.
Args:
edges: A list of (a,b) tuples meaning a is a parent of b in a tree.
cardinalities: A t-length list of integers corresponding to the
cardinalities of each task.
Defaults to a single binary task.
"""
def __init__(self, cardinalities=[2], edges=[]):
self.K = cardinalities # Cardinalities for each task
self.t = len(cardinalities) # Total number of tasks
self.edges = edges
# Create the graph of tasks
self.G = nx.DiGraph()
self.G.add_nodes_from(range(self.t))
self.G.add_edges_from(edges)
# Pre-compute parents, children, and leaf nodes
self.leaf_nodes = [i for i in self.G.nodes() if self.G.out_degree(i) == 0]
self.parents = {t: self.get_parent(t) for t in range(self.t)}
self.children = {t: self.get_children(t) for t in range(self.t)}
# Save the cardinality of the feasible set
self.k = len(list(self.feasible_set()))
def __eq__(self, other):
return self.edges == other.edges and self.K == other.K
def get_parent(self, node):
return sorted(list(self.G.predecessors(node)))
def get_children(self, node):
return sorted(list(self.G.successors(node)))
def is_feasible(self, y):
"""Boolean indicator if the given y vector is valid (default: True)"""
return True
def feasible_set(self):
"""Iterator over values in feasible set"""
for y in itertools.product(*[range(1, k + 1) for k in self.K]):
yield np.array(y)
class TaskHierarchy(TaskGraph):
"""A mutually-exclusive task hierarchy (a tree)"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# Check that G is a tree
if not nx.is_tree(self.G):
raise ValueError(
f"G is not a tree with edges {self.edges}. "
"If a tree is not required, use the generic TaskGraph class."
)
def is_feasible(self, y):
return y in list(self.feasible_set())
def feasible_set(self):
# Every feasible vector corresponds to a leaf node value in
# {1, ..., K[t]-1}, with the K[t] value reserved for special "N/A" val
if self.t > 1:
for t in self.leaf_nodes:
for yt in range(1, self.K[t]):
# By default set all task labels to "N/A" value to start
# The default "N/A" value for each task is the last value
y = np.array(self.K)
# Traverse up the tree
y[t] = yt
pt = t
while pt > 0:
ct = pt
pt = list(self.G.predecessors(pt))[0]
y[pt] = list(self.G.successors(pt)).index(ct) + 1
yield y
# Handle the trivial single-node setting, since technically this is a
# hierarchy still...
else:
for yt in range(self.K[0]):
yield np.array([yt + 1])
|
metal-master
|
metal/multitask/task_graph.py
|
import numpy as np
from scipy.sparse import issparse
from torch.utils.data import Dataset
class MultiYDataset(Dataset):
"""A dataset that group each item in X with its labels for t tasks from Y
Args:
X: an n-dim iterable of inputs
Y: a t-length list of n-dim iterables corresponding to labels for t
tasks
"""
def __init__(self, X, Y):
self.X = X
self.Y = Y
self.t = len(Y)
n = len(X)
assert np.all([len(Y_t) == n for Y_t in Y])
def __getitem__(self, index):
return tuple([self.X[index], [self.Y[t][index] for t in range(self.t)]])
def __len__(self):
return len(self.X)
class MultiXYDataset(Dataset):
"""A dataset that groups each item's t inputs from X and t labels from Y
Args:
X: a t-length list of n-dim iterables corresponding to inputs for t
tasks
Y: a t-length list of n-dim iterables corresponding to labels for t
tasks
"""
def __init__(self, X, Y):
# Need to convert sparse matrices to dense here
# TODO: Need to handle sparse matrices better overall; maybe not use
# Datasets for them...?
if issparse(X[0]):
X = [Xt.toarray() for Xt in X]
# Check and set data objects
self.X = X
self.Y = Y
self.t = len(Y)
self.n = len(X[0])
assert np.all([len(X_t) == self.n for X_t in X])
assert np.all([len(Y_t) == self.n for Y_t in Y])
def __getitem__(self, index):
return tuple(
[
[self.X[t][index] for t in range(self.t)],
[self.Y[t][index] for t in range(self.t)],
]
)
def __len__(self):
return self.n
|
metal-master
|
metal/multitask/utils.py
|
mt_em_default_config = {
"task_head_layers": "top",
# Optionally specify the layers that each head should attach to
# For single-task settings, this is always 'top'
# 'top': connect all heads to the final (top) layer
# [list]: specify explicitly the layer for each head
"pass_predictions": False,
# If True, pass output of parent tasks as additional input to children tasks
"train_config": {"validation_scoring_kwargs": {"validation_task": None}},
}
|
metal-master
|
metal/multitask/mt_em_defaults.py
|
import os
import torch
class Checkpointer(object):
def __init__(self, config, verbose=True):
"""Saves checkpoints as applicable based on a reported metric.
Args:
checkpoint_runway (int): don't save any checkpoints for the first
this many iterations
checkpoint_dir (str): the directory for saving checkpoints
"""
self.best_model_found = None
self.best_iteration = None
self.best_score = None
self.verbose = verbose
self.checkpoint_best = config["checkpoint_best"]
self.checkpoint_every = config["checkpoint_every"]
self.checkpoint_metric = config["checkpoint_metric"]
self.checkpoint_metric_mode = config["checkpoint_metric_mode"]
self.checkpoint_dir = config["checkpoint_dir"]
self.checkpoint_runway = config["checkpoint_runway"]
# Create checkpoint directory if necessary
if not os.path.exists(self.checkpoint_dir):
os.makedirs(self.checkpoint_dir)
# Remind about checkpoint runway
if self.checkpoint_runway and verbose:
print(
f"No checkpoints will be saved in the first "
f"checkpoint_runway={self.checkpoint_runway} iterations."
)
def checkpoint(self, metrics_dict, iteration, model, optimizer, lr_scheduler):
# Return early if checkpoint_runway has not been met
if self.checkpoint_runway:
if iteration < self.checkpoint_runway:
return
elif iteration == self.checkpoint_runway:
print("Checkpoint runway has been met. Checkpointing will now occur.")
if (
self.checkpoint_every
and iteration > 0
and iteration % self.checkpoint_every == 0
):
# Save the checkpoint regardless of performance
score = None
state = self.bundle_state(iteration, score, model, optimizer, lr_scheduler)
checkpoint_path = f"{self.checkpoint_dir}/model_checkpoint_{iteration}.pth"
torch.save(state, checkpoint_path)
if self.checkpoint_best and self.checkpoint_metric in metrics_dict:
score = metrics_dict[self.checkpoint_metric]
if self.is_best(score):
if self.verbose:
print(
f"Saving model at iteration {iteration:.2f} with best "
f"({self.checkpoint_metric_mode}) score "
f"{self.checkpoint_metric}={score:.3f}"
)
self.best_model_found = True
self.best_iteration = iteration
self.best_score = score
# Save the checkpoint, overriding previous best if it exists
state = self.bundle_state(
iteration, score, model, optimizer, lr_scheduler
)
checkpoint_path = f"{self.checkpoint_dir}/best_model.pth"
torch.save(state, checkpoint_path)
def is_best(self, score):
if self.best_score is None:
return True
elif self.checkpoint_metric_mode == "max":
return score > self.best_score
elif self.checkpoint_metric_mode == "min":
return score < self.best_score
else:
msg = (
f"Did not recognize checkpoint_metric_mode: "
+ f"{self.checkpoint_metric_mode}"
)
raise ValueError(msg)
def bundle_state(self, iteration, score, model, optimizer, lr_scheduler):
# Save the state of the best model
state = {
"iteration": iteration,
"model": model.state_dict(),
"optimizer": optimizer.state_dict(),
"lr_scheduler": lr_scheduler.state_dict() if lr_scheduler else None,
"score": score,
}
if self.best_model_found:
state["best_model_found"] = True
state["best_iteration"] = self.best_iteration
state["best_score"] = self.best_score
return state
def load_best_model(self, model):
if self.best_model_found is None:
msg = (
f"Best model was never found. Confirm that your checkpoint_metric "
f"({self.checkpoint_metric}) is of the form "
f"'[model or task]/[split]/loss' or produced by one of your tasks' "
f"Scorers and that checkpoint_metric_mode "
f"({self.checkpoint_metric_mode}) is appropriate for the given "
f"checkpoint_metric."
)
raise Exception(msg)
if self.verbose:
print(
f"Restoring best model from iteration {self.best_iteration:0.2f} "
f"with score {self.best_score:.3f}"
)
state = torch.load(
f"{self.checkpoint_dir}/best_model.pth",
map_location=torch.device("cpu"),
)
self.best_iteration = state["best_iteration"]
self.best_score = state["best_score"]
model.load_state_dict(state["model"])
return model
def restore(self, destination):
state = torch.load(f"{destination}")
return state
def clean_up(self):
if os.path.exists(self.checkpoint_dir):
os.system(f"rm -r {self.checkpoint_dir}")
|
metal-master
|
metal/logging/checkpointer.py
|
from .checkpointer import Checkpointer
from .logger import Logger, Timer
from .tensorboard import TensorBoardWriter
from .writer import LogWriter
__all__ = ["Checkpointer", "Logger", "LogWriter", "TensorBoardWriter", "Timer"]
|
metal-master
|
metal/logging/__init__.py
|
import time
from collections import defaultdict
from metal.metrics import METRICS as standard_metric_names, metric_score
class Logger(object):
"""Tracks when it is time to calculate train/valid metrics and logs them"""
def __init__(self, config, writer={}, epoch_size=None, verbose=True):
# Strip split name from config keys
self.config = config
self.writer = writer
self.verbose = verbose
self.log_unit = self.config["log_unit"]
self.epoch_size = epoch_size
self.example_count = 0
self.example_total = 0
self.unit_count = 0
self.unit_total = 0
self.log_count = 0 # Count how many times logging has occurred
# Specific to log_unit == "seconds"
self.timer = Timer() if self.log_unit == "seconds" else None
# Normalize all target metric names to include split prefix
self.log_train_metrics = [
self.add_split_prefix(m, "train") for m in self.config["log_train_metrics"]
]
self.log_valid_metrics = [
self.add_split_prefix(m, "valid") for m in self.config["log_valid_metrics"]
]
# Calculate how many log_train steps to take per log_valid steps
self.valid_every_X = self._calculate_valid_frequency()
def check(self, batch_size):
"""Returns True if the logging frequency has been met."""
self.increment(batch_size)
return self.unit_count >= self.config["log_train_every"]
def increment(self, batch_size):
"""Update the total and relative unit counts"""
self.example_count += batch_size
self.example_total += batch_size
if self.log_unit == "seconds":
self.unit_count = int(self.timer.elapsed())
self.unit_total = int(self.timer.total_elapsed())
elif self.log_unit == "examples":
self.unit_count = self.example_count
self.unit_total = self.example_total
elif self.log_unit == "batches":
self.unit_count += 1
self.unit_total += 1
elif self.log_unit == "epochs":
# Track epoch by example count because otherwise we only know when
# a new epoch starts, not when an epoch ends
if self.example_count >= self.epoch_size:
self.unit_count += 1
self.unit_total += 1
else:
raise Exception(f"Unrecognized log_unit: {self.log_unit}")
def calculate_metrics(self, model, train_loader, valid_loader, metrics_dict):
"""Add standard and custom metrics to metrics_dict"""
# Check whether or not it's time for validation as well
self.log_count += 1
log_valid = (
valid_loader is not None
and self.valid_every_X
and not (self.log_count % self.valid_every_X)
)
metrics_dict = {}
# Calculate custom metrics
if self.config["log_train_metrics_func"] is not None:
func = self.config["log_train_metrics_func"]
func_list = func if isinstance(func, list) else [func]
for func in func_list:
metrics_dict = self._calculate_custom_metrics(
model, train_loader, func, metrics_dict, split="train"
)
if self.config["log_valid_metrics_func"] is not None and log_valid:
func = self.config["log_valid_metrics_func"]
func_list = func if isinstance(func, list) else [func]
for func in func_list:
metrics_dict = self._calculate_custom_metrics(
model, valid_loader, func, metrics_dict, split="valid"
)
# Calculate standard metrics
metrics_dict = self._calculate_standard_metrics(
model, train_loader, self.log_train_metrics, metrics_dict, "train"
)
if log_valid:
metrics_dict = self._calculate_standard_metrics(
model, valid_loader, self.log_valid_metrics, metrics_dict, "valid"
)
return metrics_dict
def _calculate_custom_metrics(self, model, data_loader, func, metrics_dict, split):
custom_metrics = func(model, data_loader)
# Normalize all custom metrics to include split prefix
for metric, value in custom_metrics.items():
metric = self.add_split_prefix(metric, split)
metrics_dict[metric] = value
return metrics_dict
def _calculate_standard_metrics(
self, model, data_loader, target_metrics, metrics_dict, split
):
target_standard_metrics = []
for split_metric in target_metrics:
metric = self.remove_split_prefix(split_metric)
if metric in standard_metric_names:
target_standard_metrics.append(metric)
# Only calculate predictions if at least one standard metric requires it
if target_standard_metrics:
if model.multitask:
# For multitask models, use score method for aggregation
# This may cause inefficiency if there are multiple desired metrics
# and we re-predict for each one.
for metric in target_standard_metrics:
score = model.score(data_loader, metric, verbose=False)
metrics_dict[self.add_split_prefix(metric, split)] = score
else:
# For singletask models, predict once and use Y_probs/Y_preds
# for all metrics calculations
Y_preds, Y, Y_probs = model._get_predictions(
data_loader, return_probs=True
)
for metric in target_standard_metrics:
score = metric_score(Y, Y_preds, metric, probs=Y_probs)
metrics_dict[self.add_split_prefix(metric, split)] = score
return metrics_dict
@staticmethod
def add_split_prefix(metric, split):
"""Add split name to metric name if it is not already present
The order of metric name components should either be:
- task/split/metric in the multitask setting (expand to this from task/metric)
- split/metric in the singletask setting (expand to this from metric)
"""
if f"{split}/" in metric:
full_metric = metric
else:
if "/" in metric:
# It has two parts but not split, so must be task/metric
task, metric = metric.split("/")
full_metric = f"{task}/{split}/{metric}"
else:
# It has one part but not split, so must be metric
full_metric = f"{split}/{metric}"
return full_metric
@staticmethod
def remove_split_prefix(metric):
"""Remove prefixes from begininng of metric name (e.g., task/split/metric)"""
return metric.split("/")[-1]
def _calculate_valid_frequency(self):
assert isinstance(self.config["log_train_every"], int)
if self.config["log_valid_every"]:
assert isinstance(self.config["log_valid_every"], int)
if (
self.config["log_valid_every"] < self.config["log_train_every"]
or self.config["log_valid_every"] % self.config["log_train_every"]
):
raise Exception(
f"Parameter `log_valid_every` ({self.config['log_valid_every']}) "
f"must be a multiple of `log_train_every` "
f"({self.config['log_train_every']})."
)
return int(self.config["log_valid_every"] / self.config["log_train_every"])
else:
return 0
def log(self, metrics_dict):
"""Print calculated metrics and optionally write to file (json/tb)"""
if self.writer:
self.write_to_file(metrics_dict)
if self.verbose:
self.print_to_screen(metrics_dict)
self.reset()
def print_to_screen(self, metrics_dict):
"""Print all metrics in metrics_dict to screen"""
score_strings = defaultdict(list)
for full_name, value in metrics_dict.items():
if full_name.count("/") == 2:
task, split, metric = full_name.split("/")
elif full_name.count("/") == 1:
task = None
split, metric = full_name.split("/")
else:
msg = f"Metric should have form task/split/metric or split/metric, not: {full_name}"
raise Exception(msg)
if task:
metric_name = f"{task}/{metric}"
else:
metric_name = metric
if isinstance(value, float):
score_strings[split].append(f"{metric_name}={value:0.3f}")
else:
score_strings[split].append(f"{metric_name}={value}")
header = f"{self.unit_total} {self.log_unit[:3]}"
if self.log_unit != "epochs":
epochs = self.example_total / self.epoch_size
header += f" ({epochs:0.2f} epo)"
string = f"[{header}]:"
if score_strings["train"]:
train_scores = f"{', '.join(score_strings['train'])}"
string += f" TRAIN:[{train_scores}]"
if score_strings["valid"]:
valid_scores = f"{', '.join(score_strings['valid'])}"
string += f" VALID:[{valid_scores}]"
print(string)
def write_to_file(self, metrics_dict):
for metric, value in metrics_dict.items():
self.writer.add_scalar(metric, value, self.unit_total)
def reset(self):
self.unit_count = 0
self.example_count = 0
if self.timer is not None:
self.timer.update()
class Timer(object):
"""Computes elapsed time."""
def __init__(self):
"""Initialize timer"""
self.reset()
def reset(self):
"""Reset timer, completely obliterating history"""
self.start = time.time()
self.update()
def update(self):
"""Update timer with most recent click point"""
self.click = time.time()
def elapsed(self):
"""Get time elapsed since last recorded click"""
elapsed = time.time() - self.click
return elapsed
def total_elapsed(self):
return time.time() - self.start
|
metal-master
|
metal/logging/logger.py
|
def split_full_metric(full_metric):
"""Splits a full metric name (split/name or task/split/label/name) into pieces"""
pieces = full_metric.split("/")
if len(pieces) == 2: # Single-task metric
split, name = pieces
return split, name
elif len(pieces) == 4: # Mmtl metric
task, payload, label, name = pieces
return task, payload, label, name
else:
msg = (
f"Required a full metric name (split/name or task/payload/label/name) but "
f"instead received: {full_metric}"
)
raise Exception(msg)
|
metal-master
|
metal/logging/utils.py
|
import copy
import json
import os
from collections import defaultdict
from subprocess import check_output
from time import strftime
from metal.utils import recursive_transform
class LogWriter(object):
"""Class for writing simple JSON logs at end of runs, with interface for
storing per-iter data as well.
Config contains:
log_dir: (str) The path to the base log directory, or defaults to
current working directory.
run_dir: (str) The name of the sub-directory, or defaults to the date,
strftime("%Y_%m_%d").
run_name: (str) The name of the run + the time, or defaults to the time,
strftime("%H_%M_%S).
writer_metrics: (list) An optional whitelist of metrics to write,
ignoring all others. (If None, write all available metrics).
Log is saved to 'log_dir/run_dir/{run_name}_H_M_S.json'
"""
def __init__(
self,
log_dir=None,
run_dir=None,
run_name=None,
writer_metrics=[],
verbose=True,
**kwargs,
):
start_date = strftime("%Y_%m_%d")
start_time = strftime("%H_%M_%S")
# Set logging subdirectory + make sure exists
log_dir = log_dir or os.getcwd()
run_dir = run_dir or start_date
if run_name is not None:
run_name = f"{run_name}_{start_time}"
else:
run_name = start_time
self.log_subdir = os.path.join(log_dir, run_dir, run_name)
if not os.path.exists(self.log_subdir):
os.makedirs(self.log_subdir)
# Save other settings
self.writer_metrics = writer_metrics
self.verbose = verbose
# Initialize log
# Note we have a separate section for during-run metrics
commit = check_output(["git", "rev-parse", "--short", "HEAD"]).strip()
self.log_dict = {
"start_date": start_date,
"start_time": start_time,
"commit": str(commit),
"config": None,
"run_log": defaultdict(list),
}
def add_scalar(self, name, val, i):
# Note: Does not handle deduplication of (name, val) entries w same i
if not self.writer_metrics or name in self.write_metrics:
if val is not None:
val = float(val)
self.log_dict["run_log"][name].append((i, val))
return True
else:
return False
def write(self, config=None, metrics=None):
self.write_run_log()
if config is not None:
self.write_config(config)
if metrics is not None:
self.write_metrics(metrics)
def write_log(self):
"""Dump log output to file"""
log_path = os.path.join(self.log_subdir, "log.json")
if self.verbose:
print(f"Writing log to {log_path}")
with open(log_path, "w") as f:
json.dump(self.log_dict, f, indent=1)
def write_config(self, config, config_name="config"):
"""Dump config dict to file"""
config_path = os.path.join(self.log_subdir, f"{config_name}.json")
if self.verbose:
print(f"Writing config to {config_path}")
with open(config_path, "w") as f:
config = self._sanitize_config(config)
json.dump(config, f, indent=1)
def write_metrics(self, metrics):
metrics_path = os.path.join(self.log_subdir, "metrics.json")
if self.verbose:
print(f"Writing metrics to {metrics_path}")
with open(metrics_path, "w") as f:
json.dump(metrics, f, indent=1)
def close(self):
pass
def _sanitize_config(self, config):
config = copy.deepcopy(config)
# Replace individual functions
is_func = lambda x: callable(x)
replace_with_name = lambda f: str(f)
config = recursive_transform(config, is_func, replace_with_name)
# Replace lists of functions
is_func_list = lambda x: isinstance(x, list) and all(is_func(f) for f in x)
replace_with_names = lambda x: [replace_with_name(f) for f in x]
config = recursive_transform(config, is_func_list, replace_with_names)
return config
|
metal-master
|
metal/logging/writer.py
|
import json
import warnings
import numpy as np
from tensorboardX import SummaryWriter
from metal.logging.writer import LogWriter
class TensorBoardWriter(LogWriter):
"""Class for logging to Tensorboard during runs, as well as writing simple
JSON logs at end of runs.
Stores logs in log_dir/{YYYY}_{MM}_{DD}/{H}_{M}_{S}_run_name.json by default.
"""
def __init__(self, log_dir=None, run_dir=None, run_name=None, **kwargs):
super().__init__(log_dir=log_dir, run_dir=run_dir, run_name=run_name, **kwargs)
# Set up TensorBoard summary writer
self.tb_writer = SummaryWriter(self.log_subdir, filename_suffix=f".{run_name}")
def add_scalar(self, name, val, i):
if super().add_scalar(name, val, i):
self.tb_writer.add_scalar(name, val, i)
def write_config(self, config, *args, **kwargs):
config_txt = json.dumps(self._sanitize_config(config), indent=1)
self.tb_writer.add_text(tag="config", text_string=config_txt, global_step=0)
super().write_config(config, *args, **kwargs)
def close(self):
self.tb_writer.close()
|
metal-master
|
metal/logging/tensorboard.py
|
metal-master
|
tests/__init__.py
|
|
import os
import pickle
import unittest
import GPUtil
from metal.end_model import EndModel
from metal.label_model import LabelModel
from metal.utils import split_data
# Making sure we're using GPU 0
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
class GPUTest(unittest.TestCase):
@unittest.skipIf(
"TRAVIS" in os.environ and os.environ["TRAVIS"] == "true",
"Skipping this test on Travis CI.",
)
def test_gpustorage(self):
# Running basics tutorial problem
with open("tutorials/data/basics_tutorial.pkl", "rb") as f:
X, Y, L, D = pickle.load(f)
Xs, Ys, Ls, Ds = split_data(
X, Y, L, D, splits=[0.8, 0.1, 0.1], stratify_by=Y, seed=123
)
label_model = LabelModel(k=2, seed=123)
label_model.train_model(Ls[0], Y_dev=Ys[1], n_epochs=500, log_train_every=25)
Y_train_ps = label_model.predict_proba(Ls[0])
# Creating a really large end model to use lots of memory
end_model = EndModel([1000, 100000, 2], seed=123, device="cuda")
# Getting initial GPU storage use
initial_gpu_mem = GPUtil.getGPUs()[0].memoryUsed
# Training model
end_model.train_model(
(Xs[0], Y_train_ps),
valid_data=(Xs[1], Ys[1]),
l2=0.1,
batch_size=256,
n_epochs=3,
log_train_every=1,
validation_metric="f1",
)
# Final GPU storage use
final_gpu_mem = GPUtil.getGPUs()[0].memoryUsed
# On a Titan X, this model uses ~ 3 GB of memory
gpu_mem_difference = final_gpu_mem - initial_gpu_mem
self.assertGreater(gpu_mem_difference, 1000)
if __name__ == "__main__":
unittest.main()
|
metal-master
|
tests/gpu/test_gpu.py
|
import unittest
from collections import Counter
import numpy as np
import scipy.sparse as sparse
import torch
from metal.utils import pred_to_prob, rargmax, recursive_merge_dicts, split_data
class UtilsTest(unittest.TestCase):
def test_rargmax(self):
x = np.array([2, 1, 2])
np.random.seed(1)
self.assertEqual(sorted(list(set(rargmax(x) for _ in range(10)))), [0, 2])
def test_pred_to_prob(self):
x = torch.tensor([1, 2, 2, 1])
target = torch.tensor([[1, 0], [0, 1], [0, 1], [1, 0]])
self.assertTrue(
(pred_to_prob(x, 2).float() == target.float()).sum()
== torch.prod(torch.tensor(target.shape))
)
def test_recursive_merge_dicts(self):
x = {"foo": {"Foo": {"FOO": 1}}, "bar": 2, "baz": 3}
y = {"FOO": 4, "bar": 5}
z = {"foo": 6}
w = recursive_merge_dicts(x, y, verbose=False)
self.assertEqual(w["bar"], 5)
self.assertEqual(w["foo"]["Foo"]["FOO"], 4)
with self.assertRaises(ValueError):
recursive_merge_dicts(x, z, verbose=False)
def test_split_data(self):
N = 1000
K = 4
X = np.arange(0, N)
Y = np.random.randint(0, K, size=N).astype(int)
# Creates splits of correct size
splits = [800, 100, 100]
Xs_1 = split_data(X, splits=splits, shuffle=False)
for i, count in enumerate(splits):
self.assertEqual(len(Xs_1[i]), count)
# Accepts floats or ints
splits = [0.8, 0.1, 0.1]
Xs_2 = split_data(X, splits=splits, shuffle=False)
for split in range(len(splits)):
self.assertTrue(np.array_equal(Xs_2[split], Xs_1[split]))
# Shuffles correctly
Xs_3 = split_data(X, splits=splits, shuffle=True, seed=123)
self.assertNotEqual(Xs_3[0][0], Xs_2[0][0])
# Indices only
splits = [0.8, 0.1, 0.1]
Ys = split_data(Y, splits=splits, shuffle=False, index_only=True)
self.assertGreater(max(Ys[0]), K)
# Handles multiple inputs
Xs, Ys = split_data(X, Y, splits=splits, shuffle=True, seed=123)
self.assertEqual(Ys[0][0], Y[Xs[0][0]])
# Confirm statification (correct proportion of labels in each split)
Ys = split_data(Y, splits=splits, stratify_by=Y, seed=123)
counts = [Counter(Y) for Y in Ys]
for y in np.unique(Y):
ratio0 = counts[0][y] / len(Ys[0])
ratio1 = counts[1][y] / len(Ys[1])
ratio2 = counts[2][y] / len(Ys[2])
self.assertLess(abs(ratio0 - ratio1), 0.05)
self.assertLess(abs(ratio0 - ratio2), 0.05)
# Handles scipy.sparse matrices
Z = sparse.csr_matrix([[1, 0, 1, 2], [0, 3, 0, 3], [1, 2, 3, 4], [5, 4, 3, 2]])
splits = [0.75, 0.25]
Zs = split_data(Z, splits=splits, shuffle=True, seed=123)
self.assertEqual(Zs[0].shape, (3, 4))
# Handles torch.Tensors
W = torch.Tensor([[1, 0, 1, 2], [0, 3, 0, 3], [1, 2, 3, 4], [5, 4, 3, 2]])
splits = [0.75, 0.25]
Ws = split_data(W, splits=splits, shuffle=True, seed=123)
self.assertEqual(Ws[0].shape, (3, 4))
if __name__ == "__main__":
unittest.main()
|
metal-master
|
tests/metal/test_utils.py
|
import unittest
import numpy as np
import torch
from metal.metrics import (
accuracy_score,
coverage_score,
f1_score,
fbeta_score,
metric_score,
precision_score,
recall_score,
roc_auc_score,
)
class MetricsTest(unittest.TestCase):
def test_accuracy_basic(self):
gold = [1, 1, 1, 2, 2]
pred = [1, 1, 1, 2, 1]
score = accuracy_score(gold, pred)
self.assertAlmostEqual(score, 0.8)
def test_metric_score(self):
gold = [1, 1, 1, 2, 2]
pred = [1, 1, 1, 2, 1]
acc = accuracy_score(gold, pred)
met = metric_score(gold, pred, metric="accuracy")
self.assertAlmostEqual(acc, met)
def test_bad_inputs(self):
gold = [1, 1, 1, 2, 2]
pred1 = [1, 1, 1, 2, 0.5]
pred2 = "1 1 1 2 2"
pred3 = np.array([[1, 1, 1, 1, 1], [2, 2, 2, 2, 2]])
self.assertRaises(ValueError, accuracy_score, gold, pred1)
self.assertRaises(ValueError, accuracy_score, gold, pred2)
self.assertRaises(ValueError, accuracy_score, gold, pred3)
def test_array_conversion(self):
gold = torch.Tensor([1, 1, 1, 2, 2])
pred = np.array([1.0, 1.0, 1.0, 2.0, 1.0])
score = accuracy_score(gold, pred)
self.assertAlmostEqual(score, 0.8)
def test_ignores(self):
gold = [1, 1, 1, 2, 2]
pred = [1, 0, 1, 2, 1]
score = accuracy_score(gold, pred)
self.assertAlmostEqual(score, 0.6)
score = accuracy_score(gold, pred, ignore_in_pred=[0])
self.assertAlmostEqual(score, 0.75)
score = accuracy_score(gold, pred, ignore_in_gold=[1])
self.assertAlmostEqual(score, 0.5)
score = accuracy_score(gold, pred, ignore_in_gold=[2], ignore_in_pred=[0])
self.assertAlmostEqual(score, 1.0)
def test_coverage(self):
gold = [1, 1, 1, 1, 2]
pred = [0, 0, 1, 1, 1]
score = coverage_score(gold, pred)
self.assertAlmostEqual(score, 0.6)
score = coverage_score(gold, pred, ignore_in_gold=[2])
self.assertAlmostEqual(score, 0.5)
def test_precision(self):
gold = [1, 1, 1, 2, 2]
pred = [0, 0, 1, 1, 2]
score = precision_score(gold, pred)
self.assertAlmostEqual(score, 0.5)
score = precision_score(gold, pred, pos_label=2)
self.assertAlmostEqual(score, 1.0)
def test_recall(self):
gold = [1, 1, 1, 1, 2]
pred = [0, 2, 1, 1, 2]
score = recall_score(gold, pred)
self.assertAlmostEqual(score, 0.5)
score = recall_score(gold, pred, pos_label=2)
self.assertAlmostEqual(score, 1.0)
def test_f1(self):
gold = [1, 1, 1, 1, 2]
pred = [0, 2, 1, 1, 2]
score = f1_score(gold, pred)
self.assertAlmostEqual(score, 0.666, places=2)
score = f1_score(gold, pred, pos_label=2)
self.assertAlmostEqual(score, 0.666, places=2)
def test_fbeta(self):
gold = [1, 1, 1, 1, 2]
pred = [0, 2, 1, 1, 2]
pre = precision_score(gold, pred)
rec = recall_score(gold, pred)
self.assertEqual(pre, fbeta_score(gold, pred, beta=0))
self.assertAlmostEqual(rec, fbeta_score(gold, pred, beta=1000), places=4)
def test_roc_auc(self):
gold = [1, 1, 2, 2]
probs = np.array([[0.9, 0.1], [0.6, 0.4], [0.65, 0.35], [0.2, 0.8]])
score = roc_auc_score(gold, probs)
self.assertEqual(score, 0.75)
if __name__ == "__main__":
unittest.main()
|
metal-master
|
tests/metal/test_metrics.py
|
import unittest
import numpy as np
import scipy.sparse as sparse
from metal.analysis import (
error_buckets,
label_conflict,
label_coverage,
label_overlap,
lf_conflicts,
lf_coverages,
lf_empirical_accuracies,
lf_overlaps,
)
class AnalysisTest(unittest.TestCase):
@classmethod
def setUpClass(cls):
L = np.array([[1, 0, 1], [1, 3, 2], [0, 0, 0], [0, 0, 2], [0, 1, 2]])
cls.L = sparse.csr_matrix(L)
cls.Y = np.array([1, 2, 1, 2, 2])
def test_label_coverage(self):
self.assertEqual(label_coverage(self.L), 0.8)
def test_label_overlap(self):
self.assertEqual(label_overlap(self.L), 0.6)
def test_label_conflict(self):
self.assertEqual(label_conflict(self.L), 0.4)
def test_lf_empirical_accuracies(self):
self.assertTrue(
np.all(lf_empirical_accuracies(self.L, self.Y) == np.array([0.5, 0, 1]))
)
def test_lf_coverages(self):
self.assertTrue((lf_coverages(self.L) == np.array([0.4, 0.4, 0.8])).all())
def test_lf_overlaps(self):
self.assertTrue((lf_overlaps(self.L) == np.array([0.4, 0.4, 0.6])).all())
def test_lf_conflicts(self):
self.assertTrue((lf_conflicts(self.L) == np.array([0.2, 0.4, 0.4])).all())
def test_error_buckets(self):
gold = [1, 1, 2, 1, 2]
pred = [1, 2, 1, 1, 2]
e_buckets = error_buckets(gold, pred)
self.assertEqual(e_buckets[1, 1], [0, 3])
self.assertEqual(e_buckets[1, 2], [2])
self.assertEqual(e_buckets[2, 2], [4])
self.assertEqual(e_buckets[2, 1], [1])
if __name__ == "__main__":
unittest.main()
|
metal-master
|
tests/metal/test_analysis.py
|
metal-master
|
tests/metal/__init__.py
|
|
metal-master
|
tests/metal/end_model/__init__.py
|
|
import os
import unittest
import numpy as np
import torch
import torch.nn as nn
from metal.end_model import EndModel, LogisticRegression
from metal.end_model.identity_module import IdentityModule
from metal.metrics import METRICS
class EndModelTest(unittest.TestCase):
@classmethod
def setUpClass(cls):
# Set seed
np.random.seed(1)
n = 2000
X = np.random.random((n, 2)) * 2 - 1
Y = (X[:, 0] > X[:, 1] + 0.25).astype(int) + 1
X = torch.tensor(X, dtype=torch.float)
Y = torch.tensor(Y, dtype=torch.long)
Xs = [X[:1000], X[1000:1500], X[1500:]]
Ys = [Y[:1000], Y[1000:1500], Y[1500:]]
cls.single_problem = (Xs, Ys)
def test_logreg(self):
em = LogisticRegression(seed=1, input_dim=2, verbose=False)
Xs, Ys = self.single_problem
em.train_model(
(Xs[0], Ys[0]), valid_data=(Xs[1], Ys[1]), n_epochs=5, checkpoint=False
)
score = em.score((Xs[2], Ys[2]), verbose=False)
self.assertGreater(score, 0.95)
def test_softmax(self):
em = LogisticRegression(seed=1, input_dim=2, output_dim=3, verbose=False)
Xs, _ = self.single_problem
Ys = []
for X in Xs:
class1 = X[:, 0] < X[:, 1]
class2 = X[:, 0] > X[:, 1] + 0.5
class3 = X[:, 0] > X[:, 1]
Y = torch.argmax(torch.stack([class1, class2, class3], dim=1), dim=1) + 1
Ys.append(Y)
em.train_model(
(Xs[0], Ys[0]),
valid_data=(Xs[1], Ys[1]),
lr=0.1,
n_epochs=10,
checkpoint=False,
)
score = em.score((Xs[2], Ys[2]), verbose=False)
self.assertGreater(score, 0.95)
def test_singletask(self):
"""Test basic single-task end model"""
em = EndModel(
seed=1,
input_batchnorm=False,
middle_batchnorm=False,
input_dropout=0.0,
middle_dropout=0.0,
layer_out_dims=[2, 10, 2],
verbose=False,
)
Xs, Ys = self.single_problem
em.train_model(
(Xs[0], Ys[0]), valid_data=(Xs[1], Ys[1]), n_epochs=5, checkpoint=False
)
score = em.score((Xs[2], Ys[2]), verbose=False)
self.assertGreater(score, 0.95)
def test_singletask_extras(self):
"""Test batchnorm and dropout"""
em = EndModel(
seed=1,
input_batchnorm=True,
middle_batchnorm=True,
input_dropout=0.01,
middle_dropout=0.01,
layer_out_dims=[2, 10, 2],
verbose=False,
)
Xs, Ys = self.single_problem
em.train_model(
(Xs[0], Ys[0]), valid_data=(Xs[1], Ys[1]), n_epochs=5, checkpoint=False
)
score = em.score((Xs[2], Ys[2]), verbose=False)
self.assertGreater(score, 0.95)
def test_custom_modules(self):
"""Test custom input/head modules"""
input_module = nn.Sequential(IdentityModule(), nn.Linear(2, 10))
middle_modules = [nn.Linear(10, 8), IdentityModule()]
head_module = nn.Sequential(nn.Linear(8, 2), IdentityModule())
em = EndModel(
seed=1,
input_module=input_module,
middle_modules=middle_modules,
head_module=head_module,
layer_out_dims=[10, 8, 8],
verbose=False,
)
Xs, Ys = self.single_problem
em.train_model(
(Xs[0], Ys[0]),
valid_data=(Xs[1], Ys[1]),
n_epochs=5,
verbose=False,
checkpoint=False,
show_plots=False,
)
score = em.score((Xs[2], Ys[2]), verbose=False)
self.assertGreater(score, 0.95)
def test_scoring(self):
"""Test the metrics whole way through"""
em = EndModel(
seed=1,
batchnorm=False,
dropout=0.0,
layer_out_dims=[2, 10, 2],
verbose=False,
)
Xs, Ys = self.single_problem
em.train_model(
(Xs[0], Ys[0]), valid_data=(Xs[1], Ys[1]), n_epochs=5, checkpoint=False
)
metrics = list(METRICS.keys())
scores = em.score((Xs[2], Ys[2]), metric=metrics, verbose=False)
for i, metric in enumerate(metrics):
self.assertGreater(scores[i], 0.95)
def test_determinism(self):
"""Test whether training and scoring is deterministic given seed"""
em = EndModel(
seed=123,
batchnorm=True,
dropout=0.1,
layer_out_dims=[2, 10, 2],
verbose=False,
)
Xs, Ys = self.single_problem
em.train_model(
(Xs[0], Ys[0]), valid_data=(Xs[1], Ys[1]), n_epochs=1, checkpoint=False
)
score_1 = em.score((Xs[2], Ys[2]), verbose=False)
# Test scoring determinism
score_2 = em.score((Xs[2], Ys[2]), verbose=False)
self.assertEqual(score_1, score_2)
# Test training determinism
em_2 = EndModel(
seed=123,
batchnorm=True,
dropout=0.1,
layer_out_dims=[2, 10, 2],
verbose=False,
)
em_2.train_model(
(Xs[0], Ys[0]), valid_data=(Xs[1], Ys[1]), n_epochs=1, checkpoint=False
)
score_3 = em_2.score((Xs[2], Ys[2]), verbose=False)
self.assertEqual(score_1, score_3)
def test_save_and_load(self):
"""Test basic saving and loading"""
em = EndModel(
seed=1337,
input_batchnorm=False,
middle_batchnorm=False,
input_dropout=0.0,
middle_dropout=0.0,
layer_out_dims=[2, 10, 2],
verbose=False,
)
Xs, Ys = self.single_problem
em.train_model(
(Xs[0], Ys[0]), valid_data=(Xs[1], Ys[1]), n_epochs=3, checkpoint=False
)
score = em.score((Xs[2], Ys[2]), verbose=False)
# Save model
SAVE_PATH = "test_save_model.pkl"
em.save(SAVE_PATH)
# Reload and make sure (a) score and (b) non-buffer, non-Parameter
# attributes are the same
em_2 = EndModel.load(SAVE_PATH)
self.assertEqual(em.seed, em_2.seed)
score_2 = em_2.score((Xs[2], Ys[2]), verbose=False)
self.assertEqual(score, score_2)
# Clean up
os.remove(SAVE_PATH)
if __name__ == "__main__":
unittest.main()
|
metal-master
|
tests/metal/end_model/test_end_model.py
|
import unittest
import torch
import torch.nn as nn
from metal.end_model.loss import SoftCrossEntropyLoss
from metal.utils import pred_to_prob
class LossTest(unittest.TestCase):
@classmethod
def setUpClass(cls):
torch.manual_seed(1)
def test_sce_equals_ce(self):
# All correct predictions
Y = torch.tensor([1, 2, 3], dtype=torch.long)
Y_s = pred_to_prob(Y, k=4).float()
sce = SoftCrossEntropyLoss(reduction="none")
ce = nn.CrossEntropyLoss(reduction="none")
for _ in range(10):
Y_ps = torch.rand_like(Y_s)
Y_ps = Y_ps / Y_ps.sum(dim=1).reshape(-1, 1)
self.assertTrue((sce(Y_ps, Y_s) == ce(Y_ps, Y - 1)).all())
sce = SoftCrossEntropyLoss(reduction="sum")
ce = nn.CrossEntropyLoss(reduction="sum")
for _ in range(10):
Y_ps = torch.rand_like(Y_s)
Y_ps = Y_ps / Y_ps.sum(dim=1).reshape(-1, 1)
self.assertAlmostEqual(
sce(Y_ps, Y_s).numpy(), ce(Y_ps, Y - 1).numpy(), places=5
)
sce = SoftCrossEntropyLoss(reduction="mean")
ce = nn.CrossEntropyLoss(reduction="mean")
for _ in range(10):
Y_ps = torch.rand_like(Y_s)
Y_ps = Y_ps / Y_ps.sum(dim=1).reshape(-1, 1)
self.assertAlmostEqual(
sce(Y_ps, Y_s).numpy(), ce(Y_ps, Y - 1).numpy(), places=5
)
def test_perfect_predictions(self):
Y = torch.tensor([1, 2, 3], dtype=torch.long)
Y_s = pred_to_prob(Y, k=4)
sce = SoftCrossEntropyLoss()
# Guess nearly perfectly
Y_ps = Y_s.clone().float()
Y_ps[Y_ps == 1] = 100
Y_ps[Y_ps == 0] = -100
self.assertAlmostEqual(sce(Y_ps, Y_s).numpy(), 0)
def test_prob_labels(self):
Y_s = torch.tensor([[0.1, 0.9], [0.5, 0.5]])
Y_ps1 = torch.tensor([[0.1, 0.2], [1.0, 0.0]])
Y_ps2 = torch.tensor([[0.1, 0.3], [1.0, 0.0]])
Y_ps3 = torch.tensor([[0.1, 0.3], [0.0, 1.0]])
sce = SoftCrossEntropyLoss()
self.assertLess(sce(Y_ps2, Y_s), sce(Y_ps1, Y_s))
self.assertEqual(sce(Y_ps2, Y_s), sce(Y_ps3, Y_s))
def test_loss_weights(self):
# All incorrect predictions
Y = torch.tensor([1, 1, 2], dtype=torch.long)
Y_s = pred_to_prob(Y, k=3)
Y_ps = torch.tensor(
[[-100.0, 100.0, -100.0], [-100.0, 100.0, -100.0], [-100.0, 100.0, -100.0]]
)
weight1 = torch.tensor([1, 2, 1], dtype=torch.float)
weight2 = torch.tensor([10, 20, 10], dtype=torch.float)
ce1 = nn.CrossEntropyLoss(weight=weight1, reduction="none")
sce1 = SoftCrossEntropyLoss(weight=weight1)
sce2 = SoftCrossEntropyLoss(weight=weight2)
self.assertAlmostEqual(
float(ce1(Y_ps, Y - 1).mean()), float(sce1(Y_ps, Y_s)), places=3
)
self.assertAlmostEqual(
float(sce1(Y_ps, Y_s)) * 10, float(sce2(Y_ps, Y_s)), places=3
)
if __name__ == "__main__":
unittest.main()
|
metal-master
|
tests/metal/end_model/test_loss.py
|
import unittest
from collections import defaultdict
import numpy as np
import torch
import torch.nn as nn
from metal.mmtl.data import MmtlDataLoader, MmtlDataset
from metal.mmtl.metal_model import MetalModel
from metal.mmtl.payload import Payload
from metal.mmtl.task import ClassificationTask
from metal.mmtl.trainer import MultitaskTrainer
from metal.utils import split_data
SPLITS = ["train", "valid", "test"]
def create_tasks(T):
tasks = []
for t in range(T):
task_name = f"task{t}"
input_module = nn.Sequential(nn.Linear(2, 8), nn.ReLU())
head_module = nn.Linear(8, 2)
task = ClassificationTask(
name=task_name, input_module=input_module, head_module=head_module
)
tasks.append(task)
return tasks
def create_payloads(N, T, batch_size=1):
# Create two instance sets from the same (uniform) distribution, each of which
# have labels for the same tasks (classification with respect to parallel
# linear boundaries).
labels_to_tasks = {f"labelset{t}": f"task{t}" for t in range(T)}
payloads = []
for t in range(T):
X = np.random.random((N, 2)) * 2 - 1
Y = np.zeros((N, 2))
Y[:, 0] = (X[:, 0] > X[:, 1] + 0.5).astype(int) + 1
Y[:, 1] = (X[:, 0] > X[:, 1] + 0.25).astype(int) + 1
uids = list(range(t * N, (t + 1) * N))
X = torch.tensor(X, dtype=torch.float)
Y = torch.tensor(Y, dtype=torch.long)
uid_lists, Xs, Ys = split_data(uids, X, Y, splits=[0.8, 0.1, 0.1], shuffle=True)
for i, split in enumerate(SPLITS):
payload_name = f"payload{t}_{split}"
X_dict = {"data": Xs[i], "uids": uid_lists[i]}
Y_dict = {f"labelset{t}": Ys[i][:, t] for t in range(T)}
dataset = MmtlDataset(X_dict, Y_dict)
data_loader = MmtlDataLoader(dataset, batch_size=batch_size)
payload = Payload(payload_name, data_loader, labels_to_tasks, split)
payloads.append(payload)
return payloads
class MmtlTest(unittest.TestCase):
@classmethod
def setUpClass(cls):
np.random.seed(1)
cls.trainer = MultitaskTrainer(verbose=False, lr=0.005)
def test_mmtl_singletask(self):
"""One task with one train payload and one labelset"""
N = 600
T = 1
tasks = create_tasks(T)
model = MetalModel(tasks, verbose=False)
payloads = create_payloads(N, T, batch_size=2)
metrics_dict = self.trainer.train_model(model, payloads)
self.assertEqual(len(metrics_dict), len(SPLITS) * T)
for metric, score in metrics_dict.items():
self.assertGreater(score, 0.9)
def test_mmtl_multitask(self):
"""Two tasks with two train payloads and two labelsets each"""
N = 600
T = 2
tasks = create_tasks(T)
model = MetalModel(tasks, verbose=False)
payloads = create_payloads(N, T, batch_size=2)
metrics_dict = self.trainer.train_model(model, payloads, verbose=False)
# For 3 payloads, each of 2 tasks each has 2 label sets
self.assertEqual(len(metrics_dict), len(SPLITS) * T ** 2)
for metric, score in metrics_dict.items():
self.assertGreater(score, 0.9)
if __name__ == "__main__":
unittest.main()
|
metal-master
|
tests/metal/mmtl/test_mmtl.py
|
import json
import unittest
from shutil import rmtree
import numpy as np
import torch
from metal.end_model import EndModel
from metal.logging import LogWriter
from metal.tuners.random_tuner import RandomSearchTuner
class RandomSearchModelTunerTest(unittest.TestCase):
@classmethod
def setUpClass(cls):
# Set seed
np.random.seed(1)
n = 2000
X = np.random.random((n, 2)) * 2 - 1
Y = (X[:, 0] > X[:, 1] + 0.25).astype(int) + 1
X = torch.tensor(X, dtype=torch.float)
Y = torch.tensor(Y, dtype=torch.long)
Xs = [X[:1000], X[1000:1500], X[1500:]]
Ys = [Y[:1000], Y[1000:1500], Y[1500:]]
cls.single_problem = (Xs, Ys)
def test_config_constant(self):
search_space = {"a": 1}
tuner = RandomSearchTuner(None, None, seed=123)
configs = list(
tuner.config_generator(search_space, rng=tuner.rng, max_search=10)
)
self.assertEqual(len(configs), 1)
def test_config_list(self):
search_space = {"a": [1, 2]}
tuner = RandomSearchTuner(None, None, seed=123)
configs = list(
tuner.config_generator(search_space, rng=tuner.rng, max_search=10)
)
self.assertEqual(len(configs), 2)
def test_config_two_values(self):
search_space = {"a": [1], "b": [1, 2, 3]}
tuner = RandomSearchTuner(None, None, seed=123)
configs = list(
tuner.config_generator(search_space, rng=tuner.rng, max_search=10)
)
self.assertEqual(len(configs), 3)
def test_config_range(self):
search_space = {"a": [1], "b": [1, 2, 3], "c": {"range": [1, 10]}}
tuner = RandomSearchTuner(None, None, seed=123)
configs = list(
tuner.config_generator(search_space, rng=tuner.rng, max_search=10)
)
self.assertEqual(len(configs), 10)
def test_config_unbounded_max_search(self):
search_space = {"a": [1], "b": [1, 2, 3], "c": {"range": [1, 10]}}
tuner = RandomSearchTuner(None, None, seed=123)
configs = list(
tuner.config_generator(search_space, rng=tuner.rng, max_search=0)
)
self.assertEqual(len(configs), 3)
def test_config_log_range(self):
search_space = {
"a": [1],
"b": [1, 2, 3],
"c": {"range": [1, 10]},
"d": {"range": [1, 10], "scale": "log"},
}
tuner = RandomSearchTuner(None, None, seed=123)
configs = list(
tuner.config_generator(search_space, rng=tuner.rng, max_search=20)
)
self.assertEqual(len(configs), 20)
self.assertGreater(
np.mean([c["c"] for c in configs]), np.mean([c["d"] for c in configs])
)
def test_tuner_and_logging(self):
Xs, Ys = self.single_problem
# Set up RandomSearchTuner
tuner = RandomSearchTuner(EndModel, log_writer_class=LogWriter)
# Run the search
init_kwargs = {
"seed": 1,
"input_batchnorm": False,
"middle_batchnorm": False,
"layer_out_dims": [2, 10, 2],
"verbose": False,
"checkpoint": False,
}
search_space = {"middle_dropout": [0.0, 1.0]}
tuner.search(
search_space,
(Xs[1], Ys[1]),
init_kwargs=init_kwargs,
train_args=[(Xs[0], Ys[0])],
train_kwargs={"n_epochs": 10},
verbose=False,
)
# Load the log
with open(tuner.report_path, "r") as f:
tuner_report = json.load(f)
# Confirm that when input dropout = 1.0, score tanks, o/w does well
# - Tuner statistics at index 1 has dropout = 1, and 0 at index 0
self.assertLess(tuner_report[1]["score"], 0.65)
self.assertGreater(tuner_report[0]["score"], 0.95)
# Clean up
rmtree(tuner.log_rootdir)
if __name__ == "__main__":
unittest.main()
|
metal-master
|
tests/metal/tuners/test_random_search_tuner.py
|
metal-master
|
tests/metal/tuners/__init__.py
|
|
import unittest
from metal.tuners.hyperband_tuner import HyperbandTuner
class HyperbandTunerModelTunerTest(unittest.TestCase):
def test_hyperband_schedule_correctness(self):
# Test the default schedule that is generated by the hyperband tuner
# (which at the moment is budget=200, eta=3)
hyperband_tuner = HyperbandTuner(
None, hyperband_epochs_budget=200, hyperband_proportion_discard=3, seed=123
)
expected_schedule = [[(9, 2), (3, 8), (1, 26)], [(3, 8), (1, 26)], [(3, 26)]]
self.assertEqual(hyperband_tuner.hyperband_schedule, expected_schedule)
def test_hyperband_paper_schedule_correctness(self):
# Generate the schedule in the hyperband paper
# (https://arxiv.org/pdf/1603.06560.pdf)
hyperband_tuner = HyperbandTuner(
None, hyperband_epochs_budget=1701, hyperband_proportion_discard=3, seed=123
)
# This should generate the exact schedule in the paper.
expected_schedule = [
[(81, 1), (27, 3), (9, 9), (3, 27), (1, 81)],
[(27, 3), (9, 9), (3, 27), (1, 81)],
[(9, 9), (3, 27), (1, 81)],
[(6, 27), (2, 81)],
[(5, 81)],
]
self.assertEqual(hyperband_tuner.hyperband_schedule, expected_schedule)
if __name__ == "__main__":
unittest.main()
|
metal-master
|
tests/metal/tuners/test_hyperband_tuner.py
|
import numpy as np
import torch
from metal.end_model import SparseLogisticRegression
def test_sparselogreg(self):
"""Confirm sparse logreg can overfit, works on padded data"""
F = 1000 # total number of possible features
N = 50 # number of data points
S = [10, 100] # range of features per data point
X = np.zeros((N, S[1]))
for i in range(N):
Si = np.random.randint(S[0], S[1])
X[i, :Si] = np.random.randint(F, size=(1, Si))
X = torch.from_numpy(X).long()
Y = torch.from_numpy(np.random.randint(1, 3, size=(N,)))
em = SparseLogisticRegression(seed=1, input_dim=F, padding_idx=0, verbose=False)
em.train_model((X, Y), n_epochs=5, optimizer="sgd", lr=0.0005)
self.assertEqual(float(em.network[-1].W.weight.data[0, :].sum()), 0.0)
score = em.score((X, Y), verbose=False)
self.assertGreater(score, 0.95)
|
metal-master
|
tests/metal/contrib/test_baselines.py
|
import json
import unittest
from shutil import rmtree
import numpy as np
import torch
from metal.contrib.modules import EmbeddingsEncoder, LSTMModule
from metal.end_model import EndModel
from metal.logging import LogWriter
from metal.tuners.random_tuner import RandomSearchTuner
n = 1000
SEQ_LEN = 5
MAX_INT = 8
class LSTMTest(unittest.TestCase):
@classmethod
def setUpClass(cls):
# Set seed
torch.manual_seed(1)
np.random.seed(1)
def _split_dataset(self, X):
return [X[:800], X[800:900], X[900:]]
def test_lstm_memorize_first(self):
"""Confirm that lstm can memorize the first token in a long sequence"""
X = torch.randint(1, MAX_INT + 1, (n, SEQ_LEN)).long()
Y = X[:, 0]
Xs = self._split_dataset(X)
Ys = self._split_dataset(Y)
embed_size = 4
hidden_size = 10
lstm_module = LSTMModule(
embed_size,
hidden_size,
bidirectional=False,
verbose=False,
lstm_reduction="attention",
encoder_class=EmbeddingsEncoder,
encoder_kwargs={"vocab_size": MAX_INT + 1},
)
em = EndModel(
k=MAX_INT,
input_module=lstm_module,
layer_out_dims=[hidden_size, MAX_INT],
optimizer="adam",
batchnorm=True,
seed=1,
verbose=False,
)
em.train_model((Xs[0], Ys[0]), valid_data=(Xs[1], Ys[1]), n_epochs=10)
score = em.score((Xs[2], Ys[2]), verbose=False)
self.assertGreater(score, 0.95)
def test_lstm_memorize_marker(self):
"""Confirm that lstm can return the token that comes after a special marker"""
X = torch.randint(1, MAX_INT + 1, (n, SEQ_LEN)).long()
Y = torch.zeros(n).long()
needles = np.random.randint(1, SEQ_LEN - 1, n)
for i in range(n):
X[i, needles[i]] = MAX_INT + 1
Y[i] = X[i, needles[i] + 1]
Xs = self._split_dataset(X)
Ys = self._split_dataset(Y)
embed_size = 4
hidden_size = 10
lstm_module = LSTMModule(
embed_size,
hidden_size,
bidirectional=True,
verbose=False,
lstm_reduction="attention",
encoder_class=EmbeddingsEncoder,
encoder_kwargs={"vocab_size": MAX_INT + 2},
)
em = EndModel(
k=MAX_INT,
input_module=lstm_module,
layer_out_dims=[hidden_size * 2, MAX_INT],
batchnorm=True,
seed=1,
verbose=False,
)
em.train_model(
(Xs[0], Ys[0]), valid_data=(Xs[1], Ys[1]), n_epochs=15, verbose=False
)
score = em.score((Xs[2], Ys[2]), verbose=False)
self.assertGreater(score, 0.95)
def test_lstm_embeddings_freeze(self):
"""Confirm that if embeddings are frozen, they do not change during training"""
X = torch.randint(1, MAX_INT + 1, (n, SEQ_LEN)).long()
Y = torch.zeros(n).long()
needles = np.random.randint(1, SEQ_LEN - 1, n)
for i in range(n):
X[i, needles[i]] = MAX_INT + 1
Y[i] = X[i, needles[i] + 1]
Xs = self._split_dataset(X)
Ys = self._split_dataset(Y)
embed_size = 4
hidden_size = 10
for freeze_embs in [True, False]:
lstm_module = LSTMModule(
embed_size,
hidden_size,
verbose=False,
encoder_class=EmbeddingsEncoder,
encoder_kwargs={"vocab_size": MAX_INT + 2, "freeze": freeze_embs},
)
em = EndModel(
k=MAX_INT,
input_module=lstm_module,
layer_out_dims=[hidden_size * 2, MAX_INT],
verbose=False,
)
before = lstm_module.encoder.embeddings.weight.clone()
em.train_model(
(Xs[0], Ys[0]), valid_data=(Xs[1], Ys[1]), n_epochs=15, verbose=False
)
after = lstm_module.encoder.embeddings.weight.clone()
if freeze_embs:
self.assertEqual(torch.abs(before - after).sum().item(), 0.0)
else:
self.assertNotEqual(torch.abs(before - after).sum().item(), 0.0)
def test_lstm_direct_features(self):
"""Confirm that lstm can work over features passed in directly (rather
than embedded)."""
X = torch.randint(1, MAX_INT + 1, (n, SEQ_LEN)).long()
Y = X[:, 0]
# Convert X to one-hot features
Xf = torch.zeros((n, SEQ_LEN, MAX_INT)).long()
for i in range(n):
for j in range(SEQ_LEN):
Xf[i, j, X[i, j] - 1] = 1
X = Xf
Xs = self._split_dataset(X)
Ys = self._split_dataset(Y)
encoded_size = MAX_INT
hidden_size = 10
lstm_module = LSTMModule(
encoded_size,
hidden_size,
bidirectional=False,
verbose=False,
lstm_reduction="attention",
)
em = EndModel(
k=MAX_INT,
input_module=lstm_module,
layer_out_dims=[hidden_size, MAX_INT],
optimizer="adam",
batchnorm=True,
seed=1,
verbose=False,
)
em.train_model((Xs[0], Ys[0]), valid_data=(Xs[1], Ys[1]), n_epochs=15)
score = em.score((Xs[2], Ys[2]), verbose=False)
self.assertGreater(score, 0.95)
def test_lstm_determinism(self):
"""Test whether training and scoring is deterministic given seed"""
X = torch.randint(1, MAX_INT + 1, (n, SEQ_LEN)).long()
Y = torch.zeros(n).long()
needles = np.random.randint(1, SEQ_LEN - 1, n)
for i in range(n):
X[i, needles[i]] = MAX_INT + 1
Y[i] = X[i, needles[i] + 1]
Xs = self._split_dataset(X)
Ys = self._split_dataset(Y)
embed_size = 4
hidden_size = 10
lstm_module = LSTMModule(
embed_size,
hidden_size,
seed=123,
bidirectional=True,
verbose=False,
lstm_reduction="attention",
encoder_class=EmbeddingsEncoder,
encoder_kwargs={"vocab_size": MAX_INT + 2},
)
em = EndModel(
k=MAX_INT,
input_module=lstm_module,
layer_out_dims=[hidden_size * 2, MAX_INT],
batchnorm=True,
seed=123,
verbose=False,
)
em.train_model(
(Xs[0], Ys[0]), valid_data=(Xs[1], Ys[1]), n_epochs=2, verbose=False
)
score_1 = em.score((Xs[2], Ys[2]), verbose=False)
# Test scoring determinism
score_2 = em.score((Xs[2], Ys[2]), verbose=False)
self.assertEqual(score_1, score_2)
# Test training determinism
lstm_module_2 = LSTMModule(
embed_size,
hidden_size,
seed=123,
bidirectional=True,
verbose=False,
lstm_reduction="attention",
encoder_class=EmbeddingsEncoder,
encoder_kwargs={"vocab_size": MAX_INT + 2},
)
em_2 = EndModel(
k=MAX_INT,
input_module=lstm_module_2,
layer_out_dims=[hidden_size * 2, MAX_INT],
batchnorm=True,
seed=123,
verbose=False,
)
em_2.train_model(
(Xs[0], Ys[0]), valid_data=(Xs[1], Ys[1]), n_epochs=2, verbose=False
)
score_3 = em_2.score((Xs[2], Ys[2]), verbose=False)
self.assertEqual(score_1, score_3)
def test_tuner_with_lstm(self):
"""Test basic functionality *and* determinism/seeding of the tuner
with a more complex EndModel having an input module"""
# From tests/metal/modules/test_lstm.py; TODO: Refactor this
n = 1000
SEQ_LEN = 5
MAX_INT = 8
X = torch.randint(1, MAX_INT + 1, (n, SEQ_LEN)).long()
Y = torch.zeros(n).long()
needles = np.random.randint(1, SEQ_LEN - 1, n)
for i in range(n):
X[i, needles[i]] = MAX_INT + 1
Y[i] = X[i, needles[i] + 1]
Xs = [X[:800], X[800:900], X[900:]]
Ys = [Y[:800], Y[800:900], Y[900:]]
embed_size = 4
hidden_size = 10
# Set up RandomSearchTuner
tuner = RandomSearchTuner(
EndModel,
module_classes={"input_module": LSTMModule},
log_writer_class=LogWriter,
seed=123,
)
# EndModel init kwargs
init_kwargs = {
"seed": 123,
"batchnorm": True,
"k": MAX_INT,
"layer_out_dims": [hidden_size * 2, MAX_INT],
"input_batchnorm": True,
"verbose": False,
}
# LSTMModule args & kwargs
module_args = {}
module_args["input_module"] = (embed_size, hidden_size)
module_kwargs = {}
module_kwargs["input_module"] = {
"seed": 123,
"bidirectional": True,
"verbose": False,
"lstm_reduction": "attention",
"encoder_class": EmbeddingsEncoder,
"encoder_kwargs": {"vocab_size": MAX_INT + 2},
}
# Set up search space
# NOTE: No middle layers here, so these should return the same scores!
search_space = {"middle_dropout": [0.0, 1.0]}
# Run random grid search
tuner.search(
search_space,
(Xs[1], Ys[1]),
init_kwargs=init_kwargs,
train_args=[(Xs[0], Ys[0])],
train_kwargs={"n_epochs": 2},
module_args=module_args,
module_kwargs=module_kwargs,
verbose=False,
)
# Load the log
with open(tuner.report_path, "r") as f:
tuner_report = json.load(f)
# Confirm determinism
self.assertEqual(tuner_report[0]["score"], tuner_report[1]["score"])
# Clean up
rmtree(tuner.log_rootdir)
if __name__ == "__main__":
unittest.main()
|
metal-master
|
tests/metal/contrib/test_lstm.py
|
import sys
import unittest
from itertools import product
import numpy as np
import torch
from metal.label_model.class_balance import ClassBalanceModel
sys.path.append("../synthetic")
class ClassBalanceModelTest(unittest.TestCase):
def _set_seed(self, seed):
torch.manual_seed(seed)
np.random.seed(seed)
def _generate_class_balance(self, k):
"""Generate class balance"""
p_Y = np.random.random(k)
p_Y /= p_Y.sum()
return p_Y
def _generate_cond_probs(self, k, m, bias_diag=True, abstains=False):
"""Generate conditional probability tables for the m conditionally ind.
LFs, such that:
cpts[i, y1, y2] = P(\lambda_i = y1 | Y = y2)
Args:
k: (int) Number of classes
m: (int) Number of LFs
bias_diag: (bool) If True, adds a bias (proportional to (k-1)) to
the diagonal of the randomly generated conditional probability
tables, to enforce assumption that LFs are better than random
abstains: (bool) Incorporate abstains
Outputs:
C: (np.array) An (m, k, k) tensor, if abstains=False; or, if
abstains=True, (m, k+1, k)
"""
cpts = []
k_lf = k + 1 if abstains else k
for i in range(m):
a = np.random.random((k_lf, k))
if bias_diag:
if abstains:
a[1:, :] += (k - 1) * np.eye(k)
else:
a += (k - 1) * np.eye(k)
cpts.append(a @ np.diag(1 / a.sum(axis=0)))
return np.array(cpts)
def _generate_L(self, p_Y, C, n, abstains=False):
"""Generate a label matrix L, with entries in {0,1,...,k} if
abstains=True, else in {1,...,k}, given the true class balance, p_Y, and
a conditional probabilities table C of m cond. ind. LFs"""
k = len(p_Y)
m = C.shape[0]
# Generate true data labels for n data points
Y = np.random.choice(range(1, k + 1), n, p=p_Y)
# Generate label matrix L with entries in {0,1,...,k} if abstains=True,
# else in {1,...,k}
lf_0 = 0 if abstains else 1
L = np.zeros((n, m))
for i, y in enumerate(Y):
for j in range(m):
L[i, j] = np.random.choice(range(lf_0, k + 1), p=C[j, :, y - 1])
return L
def _test_model(self, model, p_Y, C, O=None, L=None, tol=1e-3, verbose=True):
model.train_model(O=O, L=L)
if verbose:
print(f"True class balance: {p_Y}")
print(f"Estimated class balance: {model.class_balance}")
self.assertLess(np.mean(np.abs(p_Y - model.class_balance)), tol)
self.assertLess(np.mean(np.abs(C - model.cond_probs)), tol)
def _test_class_balance_estimation(self, k, m, abstains=False, verbose=True):
model = ClassBalanceModel(k, abstains=abstains)
p_Y = self._generate_class_balance(k)
C = self._generate_cond_probs(k, m, bias_diag=True, abstains=abstains)
# Compute O; mask out diagonal entries
mask = model.get_mask(m)
O = np.einsum("aby,cdy,efy,y->acebdf", C, C, C, p_Y)
O = torch.from_numpy(O).float()
O[1 - mask] = 0
# Test recovery of the class balance
self._test_model(model, p_Y, C, O=O)
def _test_class_balance_estimation_noisy(
self, k, m, n, abstains=False, verbose=True
):
model = ClassBalanceModel(k, abstains=abstains)
p_Y = self._generate_class_balance(k)
C = self._generate_cond_probs(k, m, bias_diag=True, abstains=abstains)
# Generate label matrix L
L = self._generate_L(p_Y, C, n, abstains=abstains)
# Test recovery of the class balance
self._test_model(model, p_Y, C, L=L, tol=1e-2)
def test_class_balance_estimation_2(self):
self._set_seed(123)
self._test_class_balance_estimation(2, 25)
def test_class_balance_estimation_3(self):
self._set_seed(123)
self._test_class_balance_estimation(3, 25)
# Note: This should pass! However, commented out because too slow...
# def test_class_balance_estimation_5(self):
# self._set_seed(123)
# self._test_class_balance_estimation(5, 25)
def test_class_balance_estimation_2_abstains(self):
self._set_seed(123)
self._test_class_balance_estimation(2, 25, abstains=True)
def test_class_balance_estimation_2_noisy(self):
self._set_seed(123)
self._test_class_balance_estimation_noisy(2, 25, 10000, abstains=True)
if __name__ == "__main__":
unittest.main()
|
metal-master
|
tests/metal/label_model/test_class_balance.py
|
import sys
import unittest
import numpy as np
from metal.label_model.baselines import MajorityLabelVoter
from metal.label_model.label_model import LabelModel
from synthetic.generate import SingleTaskTreeDepsGenerator
sys.path.append("../synthetic")
# TODO: Put in tests for LabelModel baselines again!
class LabelModelTest(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls.n_iters = 1
cls.n = 10000
cls.m = 10
cls.k = 2
def _test_label_model(self, data, test_acc=True):
label_model = LabelModel(k=data.k, verbose=False)
label_model.train_model(
data.L,
deps=data.E,
class_balance=data.p,
n_epochs=1000,
log_train_every=200,
)
# Test parameter estimation error
c_probs_est = label_model.get_conditional_probs()
err = np.mean(np.abs(data.c_probs - c_probs_est))
self.assertLess(err, 0.025)
# Test label prediction accuracy
if test_acc:
score = label_model.score((data.L, data.Y), verbose=False)
self.assertGreater(score, 0.95)
# Test against baseline
mv = MajorityLabelVoter()
mv_score = mv.score((data.L, data.Y), verbose=False)
self.assertGreater(score, mv_score)
def test_no_deps(self):
for seed in range(self.n_iters):
np.random.seed(seed)
data = SingleTaskTreeDepsGenerator(self.n, self.m, k=self.k, edge_prob=0.0)
self._test_label_model(data)
def test_augmented_L_construction(self):
# 5 LFs: a triangle, a connected edge to it, and a singleton source
n = 3
m = 5
k = 2
E = [(0, 1), (1, 2), (2, 0), (0, 3)]
L = np.array([[1, 1, 1, 2, 1], [1, 2, 2, 1, 0], [1, 1, 1, 1, 0]])
lm = LabelModel(k=k, verbose=False)
lm._set_constants(L)
lm._set_dependencies(E)
L_aug = lm._get_augmented_label_matrix(L, higher_order=True)
# Should have 22 columns:
# - 5 * 2 = 10 for the sources
# - 8 + 4 for the 3- and 2-clique resp. --> = 22
self.assertEqual(L_aug.shape, (3, 22))
# Same as above but minus 2 abstains = 19 total nonzero entries
self.assertEqual(L_aug.sum(), 19)
# Next, check the singleton entries
for i in range(n):
for j in range(m):
if L[i, j] > 0:
self.assertEqual(L_aug[i, j * k + L[i, j] - 1], 1)
# Finally, check the clique entries
# Triangle clique
self.assertEqual(len(lm.c_tree.node[1]["members"]), 3)
j = lm.c_tree.node[1]["start_index"]
self.assertEqual(L_aug[0, j], 1)
self.assertEqual(L_aug[1, j + 3], 1)
self.assertEqual(L_aug[2, j], 1)
# Binary clique
self.assertEqual(len(lm.c_tree.node[2]["members"]), 2)
j = lm.c_tree.node[2]["start_index"]
self.assertEqual(L_aug[0, j + 1], 1)
self.assertEqual(L_aug[1, j], 1)
self.assertEqual(L_aug[2, j], 1)
def test_with_deps(self):
for seed in range(self.n_iters):
np.random.seed(seed)
data = SingleTaskTreeDepsGenerator(self.n, self.m, k=self.k, edge_prob=1.0)
self._test_label_model(data, test_acc=False)
if __name__ == "__main__":
unittest.main()
|
metal-master
|
tests/metal/label_model/test_label_model.py
|
metal-master
|
tests/metal/label_model/__init__.py
|
|
metal-master
|
tests/metal/multitask/__init__.py
|
|
import unittest
from metal.multitask.task_graph import TaskGraph
class TaskGraphTest(unittest.TestCase):
def test_binary_tree(self):
cardinalities = [2, 2, 2]
edges = [(0, 1), (0, 2)]
tg = TaskGraph(cardinalities, edges)
self.assertTrue(tg.parents[0] == [])
self.assertTrue(tg.parents[1] == [0])
self.assertTrue(tg.parents[2] == [0])
self.assertTrue(tg.children[0] == [1, 2])
self.assertTrue(tg.children[1] == [])
self.assertTrue(tg.children[2] == [])
def test_nonbinary_tree(self):
cardinalities = [3, 2, 2, 2]
edges = [(0, 1), (0, 2), (0, 3)]
tg = TaskGraph(cardinalities, edges)
self.assertTrue(tg.parents[1] == [0])
self.assertTrue(tg.children[0] == [1, 2, 3])
def test_binary_tree_depth3(self):
cardinalities = [2, 2, 2, 2, 2, 2, 2]
edges = [(0, 1), (0, 2), (1, 3), (1, 4), (2, 5), (2, 6)]
tg = TaskGraph(cardinalities, edges)
self.assertTrue(tg.parents[1] == [0])
self.assertTrue(tg.children[1] == [3, 4])
def test_unbalanced_tree(self):
cardinalities = [2, 2, 2]
edges = [(0, 1), (1, 2)]
tg = TaskGraph(cardinalities, edges)
self.assertTrue(tg.parents[1] == [0])
self.assertTrue(tg.children[1] == [2])
if __name__ == "__main__":
unittest.main()
|
metal-master
|
tests/metal/multitask/test_task_graph.py
|
import sys
import unittest
import numpy as np
from metal.multitask import MTLabelModel
from synthetic.generate import HierarchicalMultiTaskTreeDepsGenerator
sys.path.append("../synthetic")
class MTLabelModelTest(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls.n_iters = 1
cls.n = 10000
cls.m = 10
def _test_label_model(self, data, test_acc=True):
label_model = MTLabelModel(task_graph=data.task_graph, verbose=False)
label_model.train_model(
data.L, deps=data.E, class_balance=data.p, n_epochs=1000
)
# Test parameter estimation error
c_probs_est = label_model.get_conditional_probs()
err = np.mean(np.abs(data.c_probs - c_probs_est))
self.assertLess(err, 0.025)
# Test label prediction accuracy
if test_acc:
acc = label_model.score((data.L, data.Y))
self.assertGreater(acc, 0.95)
def test_multitask(self):
for seed in range(self.n_iters):
np.random.seed(seed)
data = HierarchicalMultiTaskTreeDepsGenerator(self.n, self.m, edge_prob=0.0)
self._test_label_model(data, test_acc=True)
if __name__ == "__main__":
unittest.main()
|
metal-master
|
tests/metal/multitask/test_mt_label_model.py
|
import unittest
import numpy as np
import torch
import torch.nn as nn
from metal.end_model.identity_module import IdentityModule
from metal.metrics import METRICS
from metal.multitask import MTEndModel
from metal.multitask.task_graph import TaskGraph, TaskHierarchy
class MTEndModelTest(unittest.TestCase):
@classmethod
def setUpClass(cls):
# Set seed
np.random.seed(1)
n = 1200
X = np.random.random((n, 2)) * 2 - 1
Y = np.zeros((n, 2))
Y[:, 0] = (X[:, 0] > X[:, 1] + 0.5).astype(int) + 1
Y[:, 1] = (X[:, 0] > X[:, 1] + 0.25).astype(int) + 1
X = torch.tensor(X, dtype=torch.float)
Xs = [X[:1000], X[1000:1100], X[1100:]]
Ys = [
[Y[:1000, 0], Y[:1000, 1]],
[Y[1000:1100, 0], Y[1000:1100, 1]],
[Y[1100:, 0], Y[1100:, 1]],
]
cls.Xs = Xs
cls.Ys = Ys
def test_multitask_top(self):
"""Attach all task heads to the top layer"""
edges = []
cards = [2, 2]
tg = TaskGraph(cards, edges)
em = MTEndModel(
layer_out_dims=[2, 8, 4],
task_graph=tg,
seed=1,
verbose=False,
task_head_layers="top",
)
top_layer = len(em.config["layer_out_dims"]) - 1
self.assertEqual(len(em.task_map[top_layer]), em.t)
em.train_model(
(self.Xs[0], self.Ys[0]),
valid_data=(self.Xs[1], self.Ys[1]),
verbose=False,
n_epochs=10,
checkpoint=False,
)
score = em.score((self.Xs[2], self.Ys[2]), reduce="mean", verbose=False)
self.assertGreater(score, 0.95)
def test_multitask_custom_attachments(self):
"""Attach the task heads at user-specified layers"""
edges = [(0, 1)]
cards = [2, 2]
tg = TaskHierarchy(cards, edges)
em = MTEndModel(
layer_out_dims=[2, 8, 4],
task_graph=tg,
seed=1,
verbose=False,
task_head_layers=[1, 2],
)
self.assertEqual(em.task_map[1][0], 0)
self.assertEqual(em.task_map[2][0], 1)
em.train_model(
(self.Xs[0], self.Ys[0]),
valid_data=(self.Xs[1], self.Ys[1]),
verbose=False,
n_epochs=10,
checkpoint=False,
)
score = em.score((self.Xs[2], self.Ys[2]), reduce="mean", verbose=False)
self.assertGreater(score, 0.95)
def test_multitask_two_modules(self):
"""Accept a different representation for each task"""
edges = []
cards = [2, 2]
tg = TaskGraph(cards, edges)
em = MTEndModel(
layer_out_dims=[2, 8, 4],
task_graph=tg,
seed=1,
verbose=False,
input_modules=[IdentityModule(), IdentityModule()],
task_head_layers="top",
)
Xs = []
for i, X in enumerate(self.Xs):
Xs.append([X[:, 0], X[:, 1]])
em.train_model(
(Xs[0], self.Ys[0]),
valid_data=(Xs[1], self.Ys[1]),
verbose=False,
n_epochs=10,
checkpoint=False,
)
score = em.score((Xs[2], self.Ys[2]), reduce="mean", verbose=False)
self.assertGreater(score, 0.95)
def test_multitask_custom_heads(self):
"""Accept a different representation for each task"""
edges = []
cards = [2, 2]
tg = TaskGraph(cards, edges)
em = MTEndModel(
layer_out_dims=[2, 8, 4],
task_graph=tg,
seed=1,
verbose=False,
head_modules=[nn.Linear(8, 2), nn.Linear(4, 2)],
task_head_layers=[1, 2],
)
em.train_model(
(self.Xs[0], self.Ys[0]),
valid_data=(self.Xs[1], self.Ys[1]),
verbose=False,
n_epochs=10,
checkpoint=False,
)
score = em.score((self.Xs[2], self.Ys[2]), reduce="mean", verbose=False)
self.assertGreater(score, 0.95)
def test_scoring(self):
edges = [(0, 1)]
cards = [2, 2]
tg = TaskHierarchy(cards, edges)
em = MTEndModel(layer_out_dims=[2, 8, 4], task_graph=tg, seed=1, verbose=False)
em.train_model(
(self.Xs[0], self.Ys[0]),
valid_data=(self.Xs[1], self.Ys[1]),
verbose=False,
n_epochs=3,
checkpoint=False,
validation_task=0,
)
tasks = [0, 1]
for metric in METRICS:
all_scores = em.score(
(self.Xs[2], self.Ys[2]), metric=metric, reduce=None, verbose=False
)
task_specific_scores_score_method = [
em.score(
(self.Xs[2], self.Ys[2]),
metric=metric,
validation_task=task,
verbose=False,
)
for task in tasks
]
task_specific_scores_score_task_method = [
em.score_task(
self.Xs[2], self.Ys[2], t=task, metric=metric, verbose=False
)
for task in tasks
]
for i in range(len(tasks)):
self.assertEqual(
all_scores[i],
task_specific_scores_score_method[i],
task_specific_scores_score_task_method[i],
)
if __name__ == "__main__":
unittest.main()
|
metal-master
|
tests/metal/multitask/test_mt_end_model.py
|
import json
import os
import unittest
from shutil import rmtree
import numpy as np
import torch
from metal.end_model import EndModel
class LogWriterTest(unittest.TestCase):
@classmethod
def setUpClass(cls):
# Set seed
np.random.seed(1)
n = 2000
X = np.random.random((n, 2)) * 2 - 1
Y = (X[:, 0] > X[:, 1] + 0.25).astype(int) + 1
X = torch.tensor(X, dtype=torch.float)
Y = torch.tensor(Y, dtype=torch.long)
Xs = [X[:1000], X[1000:1500], X[1500:]]
Ys = [Y[:1000], Y[1000:1500], Y[1500:]]
cls.single_problem = (Xs, Ys)
cls.log_dir = "tests/logs/"
@classmethod
def tearDownClass(cls):
print("TODO: Confirm that this is deleting logs directory")
# Clean up
rmtree(cls.log_dir)
def test_logwriter(self):
"""Test the basic LogWriter class"""
writer_kwargs = {
"log_dir": self.log_dir,
"run_dir": "test_dir",
"run_name": "test",
}
em = EndModel(
seed=1,
input_batchnorm=False,
middle_batchnorm=False,
input_dropout=0.0,
middle_dropout=0.0,
layer_out_dims=[2, 10, 2],
verbose=False,
)
Xs, Ys = self.single_problem
em.train_model(
(Xs[0], Ys[0]),
valid_data=(Xs[1], Ys[1]),
n_epochs=7,
checkpoint=False,
writer="json",
**writer_kwargs,
)
# Load the log
with open(em.writer.log_path, "r") as f:
log_dict = json.load(f)
self.assertEqual(log_dict["config"]["train_config"]["n_epochs"], 7)
self.assertEqual(len(log_dict["run_log"]["train/loss"]), 7)
def test_tensorboard(self):
"""Test the TensorBoardWriter class"""
pass
# log_dir = os.path.join(self.log_dir, "tensorboard")
# writer_kwargs = {"log_dir": log_dir, "run_dir": "test_dir", "run_name": "test"}
# em = EndModel(
# seed=1,
# input_batchnorm=False,
# middle_batchnorm=False,
# input_dropout=0.0,
# middle_dropout=0.0,
# layer_out_dims=[2, 10, 2],
# verbose=False,
# )
# Xs, Ys = self.single_problem
# em.train_model(
# (Xs[0], Ys[0]),
# valid_data=(Xs[1], Ys[1]),
# n_epochs=2,
# checkpoint=False,
# writer="tensorboard",
# **writer_kwargs,
# )
# # Load the log
# with open(em.writer.log_path, "r") as f:
# pass
# # Confirm that the event file was written
# self.assertTrue(False)
|
metal-master
|
tests/metal/logging/test_writer.py
|
import copy
import os
import unittest
from shutil import rmtree
import numpy as np
import torch
from metal.end_model import EndModel
class CheckpointerTest(unittest.TestCase):
@classmethod
def setUpClass(cls):
# Set seed
np.random.seed(1)
n = 2000
X = np.random.random((n, 2)) * 2 - 1
Y = (X[:, 0] > X[:, 1] + 0.25).astype(int) + 1
X = torch.tensor(X, dtype=torch.float)
Y = torch.tensor(Y, dtype=torch.long)
Xs = [X[:1000], X[1000:1500], X[1500:]]
Ys = [Y[:1000], Y[1000:1500], Y[1500:]]
cls.single_problem = (Xs, Ys)
cls.checkpoint_dir = "tests/checkpoints/"
@classmethod
def tearDownClass(cls):
print("TODO: Confirm this is deleting checkpoint directory")
rmtree(cls.checkpoint_dir)
def test_checkpointing(self):
"""Confirm that different checkpoints are being saved with checkpoint_every on"""
em = EndModel(
seed=1,
batchnorm=False,
dropout=0.0,
layer_out_dims=[2, 10, 2],
verbose=False,
)
Xs, Ys = self.single_problem
em.train_model(
(Xs[0], Ys[0]),
valid_data=(Xs[1], Ys[1]),
n_epochs=5,
checkpoint=True,
checkpoint_every=1,
)
test_model = copy.deepcopy(em.state_dict())
new_model = torch.load("checkpoints/model_checkpoint_4.pth")
self.assertFalse(
torch.all(
torch.eq(
test_model["network.1.0.weight"],
new_model["model"]["network.1.0.weight"],
)
)
)
new_model = torch.load("checkpoints/model_checkpoint_5.pth")
self.assertTrue(
torch.all(
torch.eq(
test_model["network.1.0.weight"],
new_model["model"]["network.1.0.weight"],
)
)
)
def test_resume_training(self):
"""Confirm that a checkpoint can be saved and reloaded without throwing error"""
em = EndModel(
seed=1,
batchnorm=False,
dropout=0.0,
layer_out_dims=[2, 10, 2],
verbose=False,
)
Xs, Ys = self.single_problem
em.train_model(
(Xs[0], Ys[0]),
valid_data=(Xs[1], Ys[1]),
n_epochs=5,
checkpoint=True,
checkpoint_every=1,
)
em.resume_training(
(Xs[0], Ys[0]),
valid_data=(Xs[1], Ys[1]),
model_path="checkpoints/model_checkpoint_2.pth",
)
def test_checkpoint_metric(self):
"""Confirm that a non-standard checkpoint_metric can be used"""
pass
def test_checkpoint_metric_mode(self):
"""Confirm that metric_mode is used properly"""
pass
def test_checkpoint_runway(self):
"""Confirm that no checkpoints are saved the first checkpoint_runway iters"""
pass
|
metal-master
|
tests/metal/logging/test_checkpointer.py
|
import unittest
import numpy as np
import torch
class LoggerTest(unittest.TestCase):
@classmethod
def setUpClass(cls):
# Set seed
np.random.seed(1)
n = 2000
X = np.random.random((n, 2)) * 2 - 1
Y = (X[:, 0] > X[:, 1] + 0.25).astype(int) + 1
X = torch.tensor(X, dtype=torch.float)
Y = torch.tensor(Y, dtype=torch.long)
Xs = [X[:1000], X[1000:1500], X[1500:]]
Ys = [Y[:1000], Y[1000:1500], Y[1500:]]
cls.single_problem = (Xs, Ys)
def test_seconds(self):
pass
def test_examples(self):
pass
def test_batches(self):
pass
def test_epochs(self):
pass
def test_tqdm(self):
"""Confirm that nothing breaks with tqdm on or off"""
pass
def test_train_metrics(self):
"""Confirm non-default train metrics can be passed"""
pass
def test_valid_metrics(self):
"""Confirm non-default valid metrics can be passed"""
pass
def test_custom_metrics(self):
"""Confirm custom metrics can be passed"""
pass
def test_label_model_logger(self):
"""Confirm that logger works at a basic level with LabelModel"""
|
metal-master
|
tests/metal/logging/test_logger.py
|
metal-master
|
tests/synthetic/__init__.py
|
|
metal-master
|
tests/travis/__init__.py
|
|
import unittest
import numpy as np
class TravisTest(unittest.TestCase):
def test_sanity(self):
self.assertTrue(1 + 1 == 2)
# Confirm import of third-party package also works
self.assertTrue(int(np.array([1]) + np.array([1])) == 2)
if __name__ == "__main__":
unittest.main()
|
metal-master
|
tests/travis/test_travis.py
|
from collections import defaultdict
import numpy as np
import torch
from numpy.random import choice, random
from scipy.sparse import csr_matrix
from metal.multitask.task_graph import TaskHierarchy
from synthetic.words1k import vocab1k
def singletask_synthetic(n, m, k, **kwargs):
data = SingleTaskTreeDepsGenerator(n, m, k, **kwargs)
L = data.L
Y = data.Y
deps = data.E
bags, D = gaussian_bags_of_words(Y, vocab1k, **kwargs)
X = bags_to_counts(bags, len(vocab1k))
return D, L, X, Y, deps
################################################################################
# Helpers
################################################################################
def logistic_fn(x):
return 1 / (1 + np.exp(-x))
def choose_other_label(k, y):
"""Given a cardinality k and true label y, return random value in
{1,...,k} \ {y}."""
return choice(list(set(range(1, k + 1)) - set([y])))
def indpm(x, y):
"""Plus-minus indicator function"""
return 1 if x == y else -1
################################################################################
# Single-task (Ls and Ys)
################################################################################
class SingleTaskTreeDepsGenerator(object):
"""Generates a synthetic single-task L and Y matrix with dependencies
Args:
n: (int) The number of data points
m: (int) The number of labeling sources
k: (int) The cardinality of the classification task
class_balance: (np.array) each class's percentage of the population
theta_range: (tuple) The min and max possible values for theta, the
class conditional accuracy for each labeling source
edge_prob: edge density in the graph of correlations between sources
theta_edge_range: The min and max possible values for theta_edge, the
strength of correlation between correlated sources
The labeling functions have class-conditional accuracies, and
class-unconditional pairwise correlations forming a tree-structured graph.
Note that k = the # of true classes; thus source labels are in {0,1,...,k}
because they include abstains.
"""
def __init__(
self,
n,
m,
k=2,
class_balance=None,
theta_range=(0, 1.5),
edge_prob=0.0,
theta_edge_range=(-1, 1),
**kwargs
):
self.n = n
self.m = m
self.k = k
# Generate correlation structure: edges self.E, parents dict self.parent
self._generate_edges(edge_prob)
# Generate class-conditional LF & edge parameters, stored in self.theta
self._generate_params(theta_range, theta_edge_range)
# Generate class balance self.p
if class_balance is None:
self.p = np.full(k, 1 / k)
else:
self.p = class_balance
# Generate the true labels self.Y and label matrix self.L
self._generate_label_matrix()
# Compute the conditional clique probabilities
self._get_conditional_probs()
# Correct output type
self.L = csr_matrix(self.L, dtype=np.int)
def _generate_edges(self, edge_prob):
"""Generate a random tree-structured dependency graph based on a
specified edge probability.
Also create helper data struct mapping child -> parent.
"""
self.E, self.parent = [], {}
for i in range(self.m):
if random() < edge_prob and i > 0:
p_i = choice(i)
self.E.append((p_i, i))
self.parent[i] = p_i
def _generate_params(self, theta_range, theta_edge_range):
self.theta = defaultdict(float)
for i in range(self.m):
t_min, t_max = min(theta_range), max(theta_range)
self.theta[i] = (t_max - t_min) * random(self.k + 1) + t_min
# Choose random weights for the edges
te_min, te_max = min(theta_edge_range), max(theta_edge_range)
for (i, j) in self.E:
w_ij = (te_max - te_min) * random() + te_min
self.theta[(i, j)] = w_ij
self.theta[(j, i)] = w_ij
def _P(self, i, li, j, lj, y):
return np.exp(
self.theta[i][y] * indpm(li, y) + self.theta[(i, j)] * indpm(li, lj)
)
def P_conditional(self, i, li, j, lj, y):
"""Compute the conditional probability
P_\theta(li | lj, y)
=
Z^{-1} exp(
theta_{i|y} \indpm{ \lambda_i = Y }
+ \theta_{i,j} \indpm{ \lambda_i = \lambda_j }
)
In other words, compute the conditional probability that LF i outputs
li given that LF j output lj, and Y = y, parameterized by
- a class-conditional LF accuracy parameter \theta_{i|y}
- a symmetric LF correlation paramter \theta_{i,j}
"""
Z = np.sum([self._P(i, _li, j, lj, y) for _li in range(self.k + 1)])
return self._P(i, li, j, lj, y) / Z
def _generate_label_matrix(self):
"""Generate an [n,m] label matrix with entries in {0,...,k}"""
self.L = np.zeros((self.n, self.m))
self.Y = np.zeros(self.n, dtype=np.int64)
for i in range(self.n):
y = choice(self.k, p=self.p) + 1 # Note that y \in {1,...,k}
self.Y[i] = y
for j in range(self.m):
p_j = self.parent.get(j, 0)
prob_y = self.P_conditional(j, y, p_j, self.L[i, p_j], y)
prob_0 = self.P_conditional(j, 0, p_j, self.L[i, p_j], y)
p = np.ones(self.k + 1) * (1 - prob_y - prob_0) / (self.k - 1)
p[0] = prob_0
p[y] = prob_y
self.L[i, j] = choice(self.k + 1, p=p)
def _get_conditional_probs(self):
"""Compute the true clique conditional probabilities P(\lC | Y) by
counting given L, Y; we'll use this as ground truth to compare to.
Note that this generates an attribute, self.c_probs, that has the same
definition as returned by `LabelModel.get_conditional_probs`.
TODO: Can compute these exactly if we want to implement that.
"""
# TODO: Extend to higher-order cliques again
self.c_probs = np.zeros((self.m * (self.k + 1), self.k))
for y in range(1, self.k + 1):
Ly = self.L[self.Y == y]
for ly in range(self.k + 1):
self.c_probs[ly :: (self.k + 1), y - 1] = (
np.where(Ly == ly, 1, 0).sum(axis=0) / Ly.shape[0]
)
class HierarchicalMultiTaskTreeDepsGenerator(SingleTaskTreeDepsGenerator):
def __init__(
self,
n,
m,
theta_range=(0, 1.5),
edge_prob=0.0,
theta_edge_range=(-1, 1),
cardinalities=[2, 3, 3],
edges=[(0, 1), (0, 2)],
):
self.task_graph = TaskHierarchy(cardinalities, edges)
fs = list(self.task_graph.feasible_set())
super().__init__(
n,
m,
k=len(fs),
theta_range=theta_range,
edge_prob=edge_prob,
theta_edge_range=theta_edge_range,
)
L_mt = [np.zeros((self.n, self.m)) for _ in range(self.task_graph.t)]
for i in range(self.n):
for j in range(self.m):
if self.L[i, j] > 0:
y = fs[int(self.L[i, j]) - 1]
for s in range(self.task_graph.t):
L_mt[s][i, j] = y[s]
self.L = list(map(csr_matrix, L_mt))
# Convert Y to a t-length list of n-length vectors
self.Y = [
np.array([fs[y - 1] for y in self.Y]).T[t] for t in range(self.task_graph.t)
]
################################################################################
# Generating Xs and Ds
################################################################################
def gaussian_bags_of_words(Y, vocab=vocab1k, sigma=1, bag_size=[25, 50], **kwargs):
"""
Generate Gaussian bags of words based on label assignments
Args:
Y: np.array of true labels
sigma: (float) the standard deviation of the Gaussian distributions
bag_size: (list) the min and max length of bags of words
Returns:
X: (Tensor) a tensor of indices representing tokens
D: (list) a list of sentences (strings)
The sentences are conditionally independent, given a label.
Note that technically we use a half-normal distribution here because we
take the absolute value of the normal distribution.
Example:
TBD
"""
def make_distribution(sigma, num_words):
p = abs(np.random.normal(0, sigma, num_words))
return p / sum(p)
num_words = len(vocab)
word_dists = {y: make_distribution(sigma, num_words) for y in set(Y)}
bag_sizes = np.random.choice(range(min(bag_size), max(bag_size)), len(Y))
X = []
items = []
for i, (y, length) in enumerate(zip(Y, bag_sizes)):
x = torch.from_numpy(np.random.choice(num_words, length, p=word_dists[y]))
X.append(x)
items.append(" ".join(vocab[j] for j in x))
return X, items
def bags_to_counts(bags, vocab_size):
X = torch.zeros(len(bags), vocab_size, dtype=torch.float)
for i, bag in enumerate(bags):
for word in bag:
X[i, word] += 1
return X
|
metal-master
|
synthetic/generate.py
|
metal-master
|
synthetic/__init__.py
|
|
vocab1k = [
"a",
"ability",
"able",
"about",
"above",
"accept",
"according",
"account",
"across",
"act",
"action",
"activity",
"actually",
"add",
"address",
"administration",
"admit",
"adult",
"affect",
"after",
"again",
"against",
"age",
"agency",
"agent",
"ago",
"agree",
"agreement",
"ahead",
"air",
"all",
"allow",
"almost",
"alone",
"along",
"already",
"also",
"although",
"always",
"american",
"among",
"amount",
"analysis",
"and",
"animal",
"another",
"answer",
"any",
"anyone",
"anything",
"appear",
"apply",
"approach",
"area",
"argue",
"arm",
"around",
"arrive",
"art",
"article",
"artist",
"as",
"ask",
"assume",
"at",
"attack",
"attention",
"attorney",
"audience",
"author",
"authority",
"available",
"avoid",
"away",
"baby",
"back",
"bad",
"bag",
"ball",
"bank",
"bar",
"base",
"be",
"beat",
"beautiful",
"because",
"become",
"bed",
"before",
"begin",
"behavior",
"behind",
"believe",
"benefit",
"best",
"better",
"between",
"beyond",
"big",
"bill",
"billion",
"bit",
"black",
"blood",
"blue",
"board",
"body",
"book",
"born",
"both",
"box",
"boy",
"break",
"bring",
"brother",
"budget",
"build",
"building",
"business",
"but",
"buy",
"by",
"call",
"camera",
"campaign",
"can",
"cancer",
"candidate",
"capital",
"car",
"card",
"care",
"career",
"carry",
"case",
"catch",
"cause",
"cell",
"center",
"central",
"century",
"certain",
"certainly",
"chair",
"challenge",
"chance",
"change",
"character",
"charge",
"check",
"child",
"choice",
"choose",
"church",
"citizen",
"city",
"civil",
"claim",
"class",
"clear",
"clearly",
"close",
"coach",
"cold",
"collection",
"college",
"color",
"come",
"commercial",
"common",
"community",
"company",
"compare",
"computer",
"concern",
"condition",
"conference",
"congress",
"consider",
"consumer",
"contain",
"continue",
"control",
"cost",
"could",
"country",
"couple",
"course",
"court",
"cover",
"create",
"crime",
"cultural",
"culture",
"cup",
"current",
"customer",
"cut",
"dark",
"data",
"daughter",
"day",
"dead",
"deal",
"death",
"debate",
"decade",
"decide",
"decision",
"deep",
"defense",
"degree",
"democrat",
"democratic",
"describe",
"design",
"despite",
"detail",
"determine",
"develop",
"development",
"die",
"difference",
"different",
"difficult",
"dinner",
"direction",
"director",
"discover",
"discuss",
"discussion",
"disease",
"do",
"doctor",
"dog",
"door",
"down",
"draw",
"dream",
"drive",
"drop",
"drug",
"during",
"each",
"early",
"east",
"easy",
"eat",
"economic",
"economy",
"edge",
"education",
"effect",
"effort",
"eight",
"either",
"election",
"else",
"employee",
"end",
"energy",
"enjoy",
"enough",
"enter",
"entire",
"environment",
"environmental",
"especially",
"establish",
"even",
"evening",
"event",
"ever",
"every",
"everybody",
"everyone",
"everything",
"evidence",
"exactly",
"example",
"executive",
"exist",
"expect",
"experience",
"expert",
"explain",
"eye",
"face",
"fact",
"factor",
"fail",
"fall",
"family",
"far",
"fast",
"father",
"fear",
"federal",
"feel",
"feeling",
"few",
"field",
"fight",
"figure",
"fill",
"film",
"final",
"finally",
"financial",
"find",
"fine",
"finger",
"finish",
"fire",
"firm",
"first",
"fish",
"five",
"floor",
"fly",
"focus",
"follow",
"food",
"foot",
"for",
"force",
"foreign",
"forget",
"form",
"former",
"forward",
"four",
"free",
"friend",
"from",
"front",
"full",
"fund",
"future",
"game",
"garden",
"gas",
"general",
"generation",
"get",
"girl",
"give",
"glass",
"go",
"goal",
"good",
"government",
"great",
"green",
"ground",
"group",
"grow",
"growth",
"guess",
"gun",
"guy",
"hair",
"half",
"hand",
"hang",
"happen",
"happy",
"hard",
"have",
"he",
"head",
"health",
"hear",
"heart",
"heat",
"heavy",
"help",
"her",
"here",
"herself",
"high",
"him",
"himself",
"his",
"history",
"hit",
"hold",
"home",
"hope",
"hospital",
"hot",
"hotel",
"hour",
"house",
"how",
"however",
"huge",
"human",
"hundred",
"husband",
"i",
"idea",
"identify",
"if",
"image",
"imagine",
"impact",
"important",
"improve",
"in",
"include",
"including",
"increase",
"indeed",
"indicate",
"individual",
"industry",
"information",
"inside",
"instead",
"institution",
"interest",
"interesting",
"international",
"interview",
"into",
"investment",
"involve",
"issue",
"it",
"item",
"its",
"itself",
"job",
"join",
"just",
"keep",
"key",
"kid",
"kill",
"kind",
"kitchen",
"know",
"knowledge",
"land",
"language",
"large",
"last",
"late",
"later",
"laugh",
"law",
"lawyer",
"lay",
"lead",
"leader",
"learn",
"least",
"leave",
"left",
"leg",
"legal",
"less",
"let",
"letter",
"level",
"lie",
"life",
"light",
"like",
"likely",
"line",
"list",
"listen",
"little",
"live",
"local",
"long",
"look",
"lose",
"loss",
"lot",
"love",
"low",
"machine",
"magazine",
"main",
"maintain",
"major",
"majority",
"make",
"man",
"manage",
"management",
"manager",
"many",
"market",
"marriage",
"material",
"matter",
"may",
"maybe",
"me",
"mean",
"measure",
"media",
"medical",
"meet",
"meeting",
"member",
"memory",
"mention",
"message",
"method",
"middle",
"might",
"military",
"million",
"mind",
"minute",
"miss",
"mission",
"model",
"modern",
"moment",
"money",
"month",
"more",
"morning",
"most",
"mother",
"mouth",
"move",
"movement",
"movie",
"mr",
"mrs",
"much",
"music",
"must",
"my",
"myself",
"name",
"nation",
"national",
"natural",
"nature",
"near",
"nearly",
"necessary",
"need",
"network",
"never",
"new",
"news",
"newspaper",
"next",
"nice",
"night",
"no",
"none",
"nor",
"north",
"not",
"note",
"nothing",
"notice",
"now",
"n't",
"number",
"occur",
"of",
"off",
"offer",
"office",
"officer",
"official",
"often",
"oh",
"oil",
"ok",
"old",
"on",
"once",
"one",
"only",
"onto",
"open",
"operation",
"opportunity",
"option",
"or",
"order",
"organization",
"other",
"others",
"our",
"out",
"outside",
"over",
"own",
"owner",
"page",
"pain",
"painting",
"paper",
"parent",
"part",
"participant",
"particular",
"particularly",
"partner",
"party",
"pass",
"past",
"patient",
"pattern",
"pay",
"peace",
"people",
"per",
"perform",
"performance",
"perhaps",
"period",
"person",
"personal",
"phone",
"physical",
"pick",
"picture",
"piece",
"place",
"plan",
"plant",
"play",
"player",
"pm",
"point",
"police",
"policy",
"political",
"politics",
"poor",
"popular",
"population",
"position",
"positive",
"possible",
"power",
"practice",
"prepare",
"present",
"president",
"pressure",
"pretty",
"prevent",
"price",
"private",
"probably",
"problem",
"process",
"produce",
"product",
"production",
"professional",
"professor",
"program",
"project",
"property",
"protect",
"prove",
"provide",
"public",
"pull",
"purpose",
"push",
"put",
"quality",
"question",
"quickly",
"quite",
"race",
"radio",
"raise",
"range",
"rate",
"rather",
"reach",
"read",
"ready",
"real",
"reality",
"realize",
"really",
"reason",
"receive",
"recent",
"recently",
"recognize",
"record",
"red",
"reduce",
"reflect",
"region",
"relate",
"relationship",
"religious",
"remain",
"remember",
"remove",
"report",
"represent",
"republican",
"require",
"research",
"resource",
"respond",
"response",
"responsibility",
"rest",
"result",
"return",
"reveal",
"rich",
"right",
"rise",
"risk",
"road",
"rock",
"role",
"room",
"rule",
"run",
"safe",
"same",
"save",
"say",
"scene",
"school",
"science",
"scientist",
"score",
"sea",
"season",
"seat",
"second",
"section",
"security",
"see",
"seek",
"seem",
"sell",
"send",
"senior",
"sense",
"series",
"serious",
"serve",
"service",
"set",
"seven",
"several",
"sex",
"sexual",
"shake",
"share",
"she",
"shoot",
"short",
"shot",
"should",
"shoulder",
"show",
"side",
"sign",
"significant",
"similar",
"simple",
"simply",
"since",
"sing",
"single",
"sister",
"sit",
"site",
"situation",
"six",
"size",
"skill",
"skin",
"small",
"smile",
"so",
"social",
"society",
"soldier",
"some",
"somebody",
"someone",
"something",
"sometimes",
"son",
"song",
"soon",
"sort",
"sound",
"source",
"south",
"southern",
"space",
"speak",
"special",
"specific",
"speech",
"spend",
"sport",
"spring",
"staff",
"stage",
"stand",
"standard",
"star",
"start",
"state",
"statement",
"station",
"stay",
"step",
"still",
"stock",
"stop",
"store",
"story",
"strategy",
"street",
"strong",
"structure",
"student",
"study",
"stuff",
"style",
"subject",
"success",
"successful",
"such",
"suddenly",
"suffer",
"suggest",
"summer",
"support",
"sure",
"surface",
"system",
"table",
"take",
"talk",
"task",
"tax",
"teach",
"teacher",
"team",
"technology",
"television",
"tell",
"ten",
"tend",
"term",
"test",
"than",
"thank",
"that",
"the",
"their",
"them",
"themselves",
"then",
"theory",
"there",
"these",
"they",
"thing",
"think",
"third",
"this",
"those",
"though",
"thought",
"thousand",
"threat",
"three",
"through",
"throughout",
"throw",
"thus",
"time",
"to",
"today",
"together",
"tonight",
"too",
"top",
"total",
"tough",
"toward",
"town",
"trade",
"traditional",
"training",
"travel",
"treat",
"treatment",
"tree",
"trial",
"trip",
"trouble",
"true",
"truth",
"try",
"turn",
"tv",
"two",
"type",
"under",
"understand",
"unit",
"until",
"up",
"upon",
"us",
"use",
"usually",
"value",
"various",
"very",
"victim",
"view",
"violence",
"visit",
"voice",
"vote",
"wait",
"walk",
"wall",
"want",
"war",
"watch",
"water",
"way",
"we",
"weapon",
"wear",
"week",
"weight",
"well",
"west",
"western",
"what",
"whatever",
"when",
"where",
"whether",
"which",
"while",
"white",
"who",
"whole",
"whom",
"whose",
"why",
"wide",
"wife",
"will",
"win",
"wind",
"window",
"wish",
"with",
"within",
"without",
"woman",
"wonder",
"word",
"work",
"worker",
"world",
"worry",
"would",
"write",
"writer",
"wrong",
"yard",
"yeah",
"year",
"yes",
"yet",
"you",
"young",
"your",
"yourself",
]
|
metal-master
|
synthetic/words1k.py
|
"""
This tutorial script runs a simple ResNet to classify the CIFAR-10 dataset using MeTaL.
The purpose of this particular tutorial is to demonstrate how a standard machine learning
task can be run using MeTaL utilities.
Running this script with settings in run_CIFAR_Tutorial.sh should give performance on the
order of 92-93% dev set accuracy, which is comparable to the performance numbers presented in
the pytorch-cifar repo (https://github.com/kuangliu/pytorch-cifar). Note that as in the
pytorch-cifar repo, the dev and test set are the same. This is not generally the case!
Running this script with default parameters should recover ~88% accuracy after 10 epochs.
"""
import argparse
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.utils.data.dataloader as dataloader
from torch.autograd import Variable
from torch.utils.data import Dataset
from torchvision import transforms
from torchvision.datasets import CIFAR10
# from torchvision.models import resnet
import metal.contrib.modules.resnet_cifar10 as resnet
from metal import EndModel
from metal.utils import convert_labels
# Checking to see if cuda is available for GPU use
cuda = torch.cuda.is_available()
# Parsing command line arguments
parser = argparse.ArgumentParser(description="Training CIFAR 10")
parser.add_argument(
"--epochs", default=10, type=int, help="number of total epochs to run"
)
parser.add_argument(
"-b", "--batch-size", default=128, type=int, help="mini-batch size (default: 10)"
)
parser.add_argument(
"--lr", "--learning-rate", default=0.001, type=float, help="initial learning rate"
)
parser.add_argument("--momentum", default=0.9, type=float, help="momentum")
parser.add_argument(
"--weight-decay",
"--wd",
default=1e-4,
type=float,
help="weight decay (default: 1e-4)",
)
# Setting up dataset to adjust CIFAR indices to one-index,
# per MeTaL convention
class MetalCIFARDataset(Dataset):
"""A dataset that group each item in X with it label from Y
Args:
X: an n-dim iterable of items
Y: a torch.Tensor of labels
This may be predicted (int) labels [n] or probabilistic (float) labels [n, k]
"""
def __init__(self, dataset):
self.dataset = dataset
def __getitem__(self, index):
x, y = self.dataset[index]
# convert to metal form
y += 1
return tuple([x, y])
def __len__(self):
return len(self.dataset)
def train_model():
global args
args = parser.parse_args()
# Set up transformations for incoming data
transform_train = transforms.Compose(
[
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
]
)
transform_test = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
]
)
# Create datasets and data loaders
trainset = CIFAR10(
root="./data", train=True, download=True, transform=transform_train
)
train_loader = dataloader.DataLoader(
MetalCIFARDataset(trainset),
batch_size=args.batch_size,
shuffle=True,
num_workers=2,
)
testset = CIFAR10(
root="./data", train=False, download=True, transform=transform_test
)
test_loader = dataloader.DataLoader(
MetalCIFARDataset(testset),
batch_size=args.batch_size,
shuffle=False,
num_workers=2,
)
# Defining classes in CIFAR-10 in order
classes = (
"plane",
"car",
"bird",
"cat",
"deer",
"dog",
"frog",
"horse",
"ship",
"truck",
)
# Define input encoder
model = resnet.ResNet18()
encode_dim = 512
# Define end model. Note that in MeTaL we supply the encoding dimension
# to enable auto-compilation of a multi-task end model. This abstraction
# is required here, even in the single task case. See the default end
# model config file for all possible options.
end_model = EndModel(
[encode_dim, len(classes)],
input_module=model,
seed=123,
device="cuda" if cuda else "cpu",
skip_head=True,
input_relu=False,
input_batchnorm=False,
middle_relu=False,
middle_batchnorm=False,
)
# Train end model
end_model.train_model(
train_data=train_loader,
valid_data=test_loader,
l2=args.weight_decay,
lr=args.lr,
n_epochs=args.epochs,
log_train_every=1,
validation_metric="accuracy",
)
# Test end model
end_model.score(test_loader, metric=["accuracy", "precision", "recall", "f1"])
if __name__ == "__main__":
train_model()
|
metal-master
|
tutorials/CIFAR_Tutorial.py
|
mongoose-master
|
mongoose_reformer/__init__.py
|
|
import random
import math
import numpy as np
import torch
import argparse
import time
import os
from reformer_lib.reformer_pytorch import ReformerLM,ReformerLM_tune
from reformer_lib.generative_tools import TrainingWrapper
from torch.utils.tensorboard import SummaryWriter
from torch.nn.parallel import DistributedDataParallel as DDP
try:
# from apex.parallel import DistributedDataParallel as DDP
from apex.fp16_utils import *
from apex import optimizers
from apex.multi_tensor_apply import multi_tensor_applier
except ImportError:
raise ImportError("This code requires APEX")
seed=17
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed) # if you are using multi-GPU.
np.random.seed(seed) # Numpy module.
random.seed(seed) # Python random module.
torch.manual_seed(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, default="synthetic")
parser.add_argument('--seq_len', type=int, default=1024)
parser.add_argument('--min_seq_len', type=int, default=4)
parser.add_argument('--ntokens', type=int, default=16)
parser.add_argument('--emsize', type=int, default=256)
parser.add_argument('--nhid', type=int, default=256)
parser.add_argument('--nlayers', type=int, default=2)
parser.add_argument('--nhead', type=int, default=4)
parser.add_argument('--bucket_size_list', nargs='+', type=int, default=[64, 64])
parser.add_argument('--n_hashes_list', nargs='+', type=int, default=[1, 1])
parser.add_argument('--attn_type_list', nargs='+', default=['triplet', 'triplet'])
parser.add_argument('--dropout', type=float, default=0.05)
parser.add_argument('--batch_size', type=int, default=16)
parser.add_argument('--full_attn_thres', type=int, default=0)
parser.add_argument('--lr_main', type=float, default=1e-3)
parser.add_argument('--lr_tri', type=float, default=1e-3)
parser.add_argument('--tri_alpha', type=float, default=1.0)
parser.add_argument('--use_full_attn', action='store_true')
parser.add_argument('--log', action='store_false')
parser.add_argument('--epochs', type=int, default=30)
parser.add_argument('--train_batches', type=int, default=5000)
parser.add_argument('--eval_batches', type=int, default=500)
parser.add_argument('--print_loss', type=int, default=500)
parser.add_argument('--note', type=str, default='')
parser.add_argument('--scheduler_hashes', type=int, default=10)
parser.add_argument('--thresh', type=float, default=0.01)
parser.add_argument('--local_rank', type=int, default=0)
GRADIENT_ACCUMULATE_EVERY = 1
args = parser.parse_args()
args.distributed = False
if 'WORLD_SIZE' in os.environ:
args.distributed = int(os.environ['WORLD_SIZE']) > 1
args.gpu = 0
args.world_size = 1
if args.distributed:
rank = int(os.environ['RANK'])
num_gpus = torch.cuda.device_count()
gpu_id = rank % num_gpus
torch.cuda.set_device(gpu_id)
# args.gpu = args.local_rank
# torch.cuda.set_device(args.gpu)
torch.distributed.init_process_group(backend='nccl')
args.world_size = torch.distributed.get_world_size()
# generating Tensorboard writer
if args.log and args.local_rank==0:
log_dir = "./log_paper/{}".format(args.dataset)
log_file = log_dir + "/{}_bucket{}_hash{}_seq{}_bz{}_token{}_lr{}_alpha{}_layer{}_note{}.txt".format(
'_'.join(args.attn_type_list), '_'.join(str(x) for x in args.bucket_size_list), '_'.join(str(x) for x in args.n_hashes_list),
args.seq_len, args.batch_size, args.ntokens, args.lr_tri, args.tri_alpha, args.nlayers, args.note)
os.makedirs(log_dir, exist_ok=True)
print("args: ", args, file=open(log_file, "a"))
print("args: ", args)
run_file = "./run_paper/{}/{}_bucket{}_hash{}_seq{}_bz{}_token{}_lr{}_alpha{}_layer{}_note{}".format(args.dataset,
'_'.join(args.attn_type_list),'_'.join(str(x) for x in args.bucket_size_list),'_'.join(str(x) for x in args.n_hashes_list),
args.seq_len, args.batch_size,
args.ntokens, args.lr_tri, args.tri_alpha,
args.nlayers, args.note)
writer = SummaryWriter(run_file)
def save_model(model, optimizer, name, iteration):
with open(os.path.join('synthetic', 'model_' + name + '_' + str(iteration) + '.pt'), 'wb') as f:
torch.save(model.state_dict(), f)
with open(os.path.join('synthetic', 'optimizer_' + name + '_' + str(iteration) + '.pt'), 'wb') as f:
torch.save(optimizer.state_dict(), f)
def _pad_to_multiple_of(x, y, axis):
"""Pads x to multiple of y on the given axis."""
pad_len = np.ceil(x.shape[axis] / float(y)) * y
pad_widths = [(0, 0)] * len(x.shape)
pad_widths[axis] = (0, int(pad_len - x.shape[axis]))
return np.pad(x, pad_widths, mode='constant',
constant_values=x.dtype.type(0))
def sequence_copy_inputs(
vocab_size, batch_size, train_length,
eval_min_length, eval_max_length, reverse=False,
pad_to_multiple=32):
"""Inputs for the sequence copy problem: 0w0w for w in [1..vocab_size-1]*.
Args:
vocab_size: how many symbols to use.
batch_size: how large are the batches.
train_length: maximum length of w for training.
eval_min_length: minimum length of w for eval.
eval_max_length : maximum length of w for eval.
reverse: bool (optional, false by default): reverse the second sequence.
pad_to_multiple: int, pad length to be multiple of this number.
Returns:
trax.inputs.Inputs
"""
def random_minibatches(length_list):
"""Generate a stream of random mini-batches."""
while True:
length = random.choice(length_list)
assert length % 2 == 0
w_length = (length // 2) - 1
w = np.random.randint(low=1, high=vocab_size - 1,
size=(batch_size, w_length))
zero = np.zeros([batch_size, 1], np.int32)
loss_weights = np.concatenate([np.zeros((batch_size, w_length + 2)),
np.ones((batch_size, w_length))], axis=1)
if reverse:
x = np.concatenate([zero, w, zero, np.flip(w, axis=1)], axis=1)
else:
x = np.concatenate([zero, w, zero, w], axis=1)
x = torch.Tensor(_pad_to_multiple_of(x, pad_to_multiple, 1)).cuda().long()
loss_weights = torch.Tensor(_pad_to_multiple_of(loss_weights, pad_to_multiple, 1)).cuda().long()
yield (x,x,loss_weights) # Here inputs and targets are the same.
train_lengths = [2 * (i + 2) for i in range(train_length - 1)]
eval_lengths = [2 * (i + 1) for i in range(eval_min_length, eval_max_length)]
train_stream = lambda _: random_minibatches(train_lengths)
eval_stream = lambda _: random_minibatches(eval_lengths)
return train_stream(None), eval_stream(None)
def train(model, train_loader, epoch):
model.train() # Turn on the train mode
total_loss = 0.
start_time = time.time()
for batch in range(args.train_batches):
for __ in range(GRADIENT_ACCUMULATE_EVERY):
data, target, loss_mask = next(train_loader)
if 'triplet' in args.attn_type_list:
loss = model(data, loss_weight=loss_mask, return_loss=True, calc_triplet=True)
tri_loss = model.net.net.get_triplet_loss()
if tri_loss != 0.0:
tri_loss.backward()
model.net.net.clear_triplet_loss()
else:
loss = model(data, loss_weight=loss_mask, return_loss=True, calc_triplet=False)
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5)
optimizer_main.step()
optimizer_main.zero_grad()
if 'triplet' in args.attn_type_list:
optimizer_tri.step()
optimizer_tri.zero_grad()
total_loss += loss.item()
log_interval = args.print_loss
if batch % log_interval == 0 and batch > 0:
cur_loss = total_loss / log_interval
elapsed = time.time() - start_time
if args.local_rank==0:
print('| epoch {:3d} | {:5d}/{:5d} batches | '
'lr {:02.5f} | ms/batch {:5.2f} | '
'loss {:5.2f} | ppl {:8.2f}'.format(
epoch, batch, args.train_batches , args.lr_main,
elapsed * 1000 / log_interval,
cur_loss, math.exp(cur_loss)))
if args.log and args.local_rank==0:
print('| epoch {:3d} | {:5d}/{:5d} batches | '
'lr {:02.5f} | ms/batch {:5.2f} | '
'loss {:5.2f} | ppl {:8.2f}'.format(
epoch, batch, args.train_batches , args.lr_main,
elapsed * 1000 / log_interval,
cur_loss, math.exp(cur_loss)), file = open(log_file, "a"))
total_loss = 0
if args.log and args.local_rank==0:
writer.add_scalar('Loss/train', cur_loss, epoch*args.train_batches+batch)
writer.add_scalar('Loss/train_pp', math.exp(cur_loss), epoch*args.train_batches+batch)
start_time = time.time()
def evaluate(eval_model, data_source, data_batches, epoch):
eval_model.eval() # Turn on the evaluation mode
total_loss = 0.
counter = 0
with torch.no_grad():
for i in range(data_batches):
data, target, loss_mask = next(data_source)
loss = eval_model(data, loss_weight=loss_mask, return_loss=True,
calc_triplet=False)
valid_token = torch.sum(loss_mask)
total_loss += valid_token*loss.item()
counter += valid_token
return total_loss / counter
if __name__ == "__main__":
train_loader, eval_loader = sequence_copy_inputs(args.ntokens, args.batch_size,
args.seq_len//2, args.min_seq_len,
args.seq_len//2)
model = ReformerLM_tune(
dim=args.nhid,
emb_dim=args.emsize,
depth=args.nlayers,
max_seq_len=args.seq_len,
num_tokens=args.ntokens,
heads=args.nhead,
bucket_size_list=args.bucket_size_list,
fixed_position_emb=True,
n_hashes_list=args.n_hashes_list,
ff_chunks=1,
ff_mult=1,
attn_chunks=1,
layer_dropout=0.,
ff_dropout=args.dropout,
post_attn_dropout=args.dropout,
lsh_dropout=args.dropout,
weight_tie=False,
causal=True,
n_local_attn_heads=0,
use_full_attn=args.use_full_attn, # set this to true for comparison with full attention
reverse_thres=9999999999,
full_attn_thres=args.full_attn_thres,
num_mem_kv=0,
attn_type_list=args.attn_type_list,
store_stats=args.log,
pkm_num_keys=0,
)
model = TrainingWrapper(model)
model.cuda()
params_1 = []
params_2 = []
for name, p in model.named_parameters():
if 'rotation' in name:
params_2.append(p)
else:
params_1.append(p)
if 'triplet' in args.attn_type_list:
optimizer_main = torch.optim.Adam(params_1, lr=args.lr_main)
optimizer_tri = torch.optim.Adam(params_2, lr=args.lr_tri)
else:
optimizer_main = torch.optim.Adam(model.parameters(), lr=args.lr_main)
if args.distributed:
global ddp_model
model = DDP(model, device_ids=[args.local_rank], output_device=args.local_rank)
ddp_model = model
for epoch in range(0, args.epochs):
epoch_start_time = time.time()
train(model, train_loader, epoch)
val_loss = evaluate(model, eval_loader, args.print_loss, epoch)
if args.log and args.local_rank==0:
writer.add_scalar('Loss/val', val_loss, epoch)
writer.add_scalar('Loss/val_pp', math.exp(val_loss), epoch)
print('-' * 89)
print('| end of epoch {:3d} | time: {:5.2f}s | valid loss {:5.2f} | '
'valid ppl {:8.2f}'.format(epoch, (time.time() - epoch_start_time),
val_loss, math.exp(val_loss)))
print('-' * 89)
if args.log and args.local_rank==0:
print('| end of epoch {:3d} | time: {:5.2f}s | valid loss {:5.2f} | '
'valid ppl {:8.2f}'.format(epoch, (time.time() - epoch_start_time),
val_loss, math.exp(val_loss)), file=open(log_file, "a"))
if args.log:
writer.close()
|
mongoose-master
|
mongoose_reformer/train_reformer.py
|
from functools import partial
import torch
from torch import nn
import torch.nn.functional as F
from torch.nn.utils.rnn import pad_sequence
from reformer_lib.reformer_pytorch import ReformerLM,ReformerLM_tune
from reformer_lib.autopadder import Autopadder
def top_p(logits, thres = 0.9):
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cum_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
sorted_indices_to_remove = cum_probs > (1 - thres)
sorted_indices_to_remove[:, 1:] = sorted_indices_to_remove[:, :-1].clone()
sorted_indices_to_remove[:, 0] = 0
sorted_logits[sorted_indices_to_remove] = float('-inf')
return sorted_logits.scatter(1, sorted_indices, sorted_logits)
def top_k(logits, thres = 0.9):
k = int((1 - thres) * logits.shape[-1])
val, ind = torch.topk(logits, k)
probs = torch.full_like(logits, float('-inf'))
probs.scatter_(1, ind, val)
return probs
class TrainingWrapper(nn.Module):
def __init__(self, net, ignore_index = -100, pad_value = 0):
super().__init__()
assert isinstance(net, ReformerLM) or isinstance(net, ReformerLM_tune), 'generative trainer wrapper can only accept ReformerLM class'
self.pad_value = pad_value
self.ignore_index = ignore_index
self.net = Autopadder(net)
self.max_seq_len = net.max_seq_len
@torch.no_grad()
def generate(self, start_tokens, seq_len, eos_token = None, temperature = 1., filter_logits_fn = top_k, filter_thres = 0.9, **kwargs):
was_training = self.net.training
num_dims = len(start_tokens.shape)
if num_dims == 1:
start_tokens = start_tokens[None, :]
b, t = start_tokens.shape
self.net.eval()
out = start_tokens
input_mask = kwargs.pop('input_mask', None)
if input_mask is None:
input_mask = torch.full_like(out, True, dtype=torch.bool, device=out.device)
for _ in range(seq_len):
x = out[:, -self.max_seq_len:]
input_mask = input_mask[:, -self.max_seq_len:]
logits = self.net(x, input_mask=input_mask, **kwargs)[:, -1, :]
filtered_logits = filter_logits_fn(logits, thres = filter_thres)
probs = F.softmax(filtered_logits / temperature, dim=-1)
sample = torch.multinomial(probs, 1)
out = torch.cat((out, sample), dim=-1)
input_mask = F.pad(input_mask, (0, 1), value=True)
if eos_token is not None and (sample == eos_token).all():
break
out = out[:, t:]
if num_dims == 1:
out = out.squeeze(0)
self.net.train(was_training)
return out
def forward(self, x, loss_weight=None, return_loss=False, **kwargs):
pad = partial(pad_sequence, batch_first = True, padding_value = self.pad_value)
if not return_loss:
if not isinstance(x, torch.Tensor):
x = pad(x)
return self.net(x, **kwargs)
if isinstance(x, torch.Tensor):
xi = x[:, :-1]
xo = x[:, 1:]
else:
xi = pad(list(map(lambda t: t[:-1], x)))
xo = pad(list(map(lambda t: t[1:], x)))
out = self.net(xi, **kwargs)
if loss_weight != None:
num_token = torch.sum(loss_weight)
masked_loss = loss_weight[:, 1:] * F.cross_entropy(out.transpose(1, 2), xo, reduction='none', ignore_index = self.ignore_index)
loss = torch.sum(masked_loss) / num_token
else:
loss = F.cross_entropy(out.transpose(1, 2), xo, ignore_index = self.ignore_index)
return loss
|
mongoose-master
|
mongoose_reformer/reformer_lib/generative_tools.py
|
import math
import torch
from torch import nn
import torch.nn.functional as F
from reformer_lib.reformer_pytorch import Reformer, ReformerLM, LSHSelfAttention,ReformerLM_tune,Reformer_tune
def pad_to_multiple(tensor, seqlen, multiple, dim=-1):
m = seqlen / multiple
if m.is_integer():
return tensor
remainder = math.ceil(m) * multiple - seqlen
pad_offset = (0,) * (-1 - dim) * 2
return F.pad(tensor, (*pad_offset, 0, remainder), value=0)
class Autopadder(nn.Module):
def __init__(self, net):
super().__init__()
assert isinstance(net, (Reformer, ReformerLM, LSHSelfAttention,ReformerLM_tune,Reformer_tune)), 'only modules LSHSelfAttention, Reformer, ReformerLM accepted'
self.net = net
reformer = net.reformer if isinstance(net, (ReformerLM,ReformerLM_tune)) else net
self.pad_dim = -1 if isinstance(net, (ReformerLM,ReformerLM_tune)) else -2
if isinstance(net, (ReformerLM_tune,Reformer_tune)):
self.bucket_size = reformer.bucket_size_list[0]
else:
self.bucket_size = reformer.bucket_size
self.num_mem_kv = reformer.num_mem_kv
self.full_attn_thres = reformer.full_attn_thres
def forward(self, x, **kwargs):
b, t, m, device = *x.shape[:2], self.num_mem_kv, x.device
keys = kwargs.get('keys')
input_mask = kwargs.get('input_mask')
input_attn_mask = kwargs.get('input_attn_mask')
k_len = 0 if keys is None else keys.shape[1]
seqlen = t + m + k_len
if seqlen > self.full_attn_thres:
if input_mask is None:
input_mask = torch.full_like(x, True, device=x.device, dtype=torch.bool)
x = pad_to_multiple(x, seqlen, self.bucket_size * 2, dim=self.pad_dim)
if input_mask is not None:
new_mask = F.pad(input_mask, (0, x.shape[1] - input_mask.shape[1]), value=False)
kwargs.update(input_mask=new_mask)
if input_attn_mask is not None:
offset = x.shape[1] - input_attn_mask.shape[1]
new_mask = F.pad(input_attn_mask, (0, offset, 0, offset), value=False)
kwargs.update(input_attn_mask=new_mask)
out = self.net(x, **kwargs)
return out[:, 0:t]
|
mongoose-master
|
mongoose_reformer/reformer_lib/autopadder.py
|
import re
from torch import nn
from reformer_lib.reformer_pytorch import ReformerLM
from reformer_lib.generative_tools import TrainingWrapper
ENC_PREFIX = 'enc_'
DEC_PREFIX = 'dec_'
def group_dict_by_key(cond, d):
return_val = [dict(),dict()]
for key in d.keys():
match = bool(cond(key))
ind = int(not match)
return_val[ind][key] = d[key]
return (*return_val,)
def string_begins_with(prefix, str):
return bool(re.match(f'^{prefix}', str))
def group_by_key_prefix(prefix, d):
return group_dict_by_key(lambda x: string_begins_with(prefix, x), d)
def group_by_key_prefix_and_remove_prefix(prefix, d):
kwargs_with_prefix, kwargs = group_dict_by_key(lambda x: string_begins_with(prefix, x), d)
kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix):], x[1]), tuple(kwargs_with_prefix.items())))
return kwargs_without_prefix, kwargs
def extract_enc_dec_kwargs(kwargs):
enc_kwargs, kwargs = group_by_key_prefix_and_remove_prefix(ENC_PREFIX, kwargs)
dec_kwargs, kwargs = group_by_key_prefix_and_remove_prefix(DEC_PREFIX, kwargs)
return enc_kwargs, dec_kwargs, kwargs
def extract_and_set_enc_dec_kwargs(kwargs):
enc_kwargs, dec_kwargs, kwargs = extract_enc_dec_kwargs(kwargs)
if 'input_mask' in enc_kwargs:
dec_kwargs.setdefault('context_mask', enc_kwargs['input_mask'])
return enc_kwargs, dec_kwargs, kwargs
class ReformerEncDec(nn.Module):
def __init__(self, dim, ignore_index = -100, pad_value = 0, **kwargs):
super().__init__()
enc_kwargs, dec_kwargs, _ = extract_enc_dec_kwargs(kwargs)
assert 'return_embedding' not in enc_kwargs, 'you cannot manually set the return embeddings flag for the encoder'
assert 'dim' not in dec_kwargs and 'dim' not in enc_kwargs, 'you must set the dim for both encoder and decoder'
enc_kwargs['dim'] = dec_kwargs['dim'] = dim
enc_kwargs['return_embeddings'] = True
dec_kwargs['causal'] = True
enc_kwargs.setdefault('bucket_size', 64)
dec_kwargs.setdefault('bucket_size', enc_kwargs['bucket_size'] * 2)
enc = ReformerLM(**enc_kwargs)
dec = ReformerLM(**dec_kwargs)
self.enc = TrainingWrapper(enc, ignore_index = ignore_index, pad_value = pad_value)
self.dec = TrainingWrapper(dec, ignore_index = ignore_index, pad_value = pad_value)
def generate(self, seq_in, seq_out_start, seq_len, **kwargs):
enc_kwargs, dec_kwargs, kwargs = extract_and_set_enc_dec_kwargs(kwargs)
enc_keys = self.enc(seq_in, **enc_kwargs)
return self.dec.generate(seq_out_start, seq_len, keys = enc_keys, **{**dec_kwargs, **kwargs})
def forward(self, seq_in, seq_out, return_loss = False, **kwargs):
enc_kwargs, dec_kwargs, kwargs = extract_and_set_enc_dec_kwargs(kwargs)
enc_keys = self.enc(seq_in, **enc_kwargs)
return self.dec(seq_out, return_loss = return_loss, keys = enc_keys, **dec_kwargs)
|
mongoose-master
|
mongoose_reformer/reformer_lib/reformer_enc_dec.py
|
import torch
import torch.nn as nn
from torch.autograd.function import Function
from torch.utils.checkpoint import get_device_states, set_device_states
# following example for saving and setting rng here https://pytorch.org/docs/stable/_modules/torch/utils/checkpoint.html
class Deterministic(nn.Module):
def __init__(self, net):
super().__init__()
self.net = net
self.cpu_state = None
self.cuda_in_fwd = None
self.gpu_devices = None
self.gpu_states = None
def record_rng(self, *args):
self.cpu_state = torch.get_rng_state()
if torch.cuda._initialized:
self.cuda_in_fwd = True
self.gpu_devices, self.gpu_states = get_device_states(*args)
def forward(self, *args, record_rng = False, set_rng = False, **kwargs):
if record_rng:
self.record_rng(*args)
if not set_rng:
return self.net(*args, **kwargs)
rng_devices = []
if self.cuda_in_fwd:
rng_devices = self.gpu_devices
with torch.random.fork_rng(devices=rng_devices, enabled=True):
torch.set_rng_state(self.cpu_state)
if self.cuda_in_fwd:
set_device_states(self.gpu_devices, self.gpu_states)
return self.net(*args, **kwargs)
# heavily inspired by https://github.com/RobinBruegger/RevTorch/blob/master/revtorch/revtorch.py
# once multi-GPU is confirmed working, refactor and send PR back to source
class ReversibleBlock(nn.Module):
def __init__(self, f, g, depth=None, send_signal = False):
super().__init__()
self.f = Deterministic(f)
self.g = Deterministic(g)
self.depth = depth
self.send_signal = send_signal
def forward(self, x, f_args = {}, g_args = {}):
x1, x2 = torch.chunk(x, 2, dim=2)
y1, y2 = None, None
if self.send_signal:
f_args['_reverse'] = g_args['_reverse'] = False
f_args['_depth'] = g_args['_depth'] = self.depth
with torch.no_grad():
y1 = x1 + self.f(x2, record_rng=self.training, **f_args)
y2 = x2 + self.g(y1, record_rng=self.training, **g_args)
return torch.cat([y1, y2], dim=2)
def backward_pass(self, y, dy, f_args = {}, g_args = {}):
y1, y2 = torch.chunk(y, 2, dim=2)
del y
dy1, dy2 = torch.chunk(dy, 2, dim=2)
del dy
if self.send_signal:
f_args['_reverse'] = g_args['_reverse'] = True
f_args['_depth'] = g_args['_depth'] = self.depth
with torch.enable_grad():
y1.requires_grad = True
gy1 = self.g(y1, set_rng=True, **g_args)
torch.autograd.backward(gy1, dy2)
with torch.no_grad():
x2 = y2 - gy1
del y2, gy1
dx1 = dy1 + y1.grad
del dy1
y1.grad = None
with torch.enable_grad():
x2.requires_grad = True
fx2 = self.f(x2, set_rng=True, **f_args)
torch.autograd.backward(fx2, dx1, retain_graph=True)
with torch.no_grad():
x1 = y1 - fx2
del y1, fx2
dx2 = dy2 + x2.grad
del dy2
x2.grad = None
x = torch.cat([x1, x2.detach()], dim=2)
dx = torch.cat([dx1, dx2], dim=2)
return x, dx
class IrreversibleBlock(nn.Module):
def __init__(self, f, g):
super().__init__()
self.f = f
self.g = g
def forward(self, x, f_args, g_args):
x1, x2 = torch.chunk(x, 2, dim=2)
y1 = x1 + self.f(x2, **f_args)
y2 = x2 + self.g(y1, **g_args)
return torch.cat([y1, y2], dim=2)
class _ReversibleFunction(Function):
@staticmethod
def forward(ctx, x, blocks, kwargs):
ctx.kwargs = kwargs
for block in blocks:
x = block(x, **kwargs)
ctx.y = x.detach()
ctx.blocks = blocks
return x
@staticmethod
def backward(ctx, dy):
y = ctx.y
kwargs = ctx.kwargs
for block in ctx.blocks[::-1]:
y, dy = block.backward_pass(y, dy, **kwargs)
return dy, None, None
class ReversibleSequence(nn.Module):
def __init__(self, blocks, layer_dropout = 0., reverse_thres = 0, send_signal = False):
super().__init__()
self.layer_dropout = layer_dropout
self.reverse_thres = reverse_thres
self.blocks = nn.ModuleList([ReversibleBlock(f, g, depth, send_signal) for depth, (f, g) in enumerate(blocks)])
self.irrev_blocks = nn.ModuleList([IrreversibleBlock(f=f, g=g) for f, g in blocks])
def forward(self, x, arg_route = (True, True), **kwargs):
reverse = x.shape[1] > self.reverse_thres
blocks = self.blocks if reverse else self.irrev_blocks
if self.training and self.layer_dropout > 0:
to_drop = torch.empty(len(self.blocks)).uniform_(0, 1) < self.layer_dropout
blocks = [block for block, drop in zip(self.blocks, to_drop) if not drop]
blocks = self.blocks[:1] if len(blocks) == 0 else blocks
f_args, g_args = map(lambda route: kwargs if route else {}, arg_route)
block_kwargs = {'f_args': f_args, 'g_args': g_args}
if not reverse:
for block in blocks:
x = block(x, **block_kwargs)
return x
return _ReversibleFunction.apply(x, blocks, block_kwargs)
|
mongoose-master
|
mongoose_reformer/reformer_lib/reversible.py
|
from torch import nn
from reformer_lib import LSHAttention, LSHSelfAttention
from collections import defaultdict
class Recorder(nn.Module):
def __init__(self, net):
super().__init__()
self.iter = 0
self.recordings = defaultdict(list)
self.net = net
self.on = True
self.ejected = False
def eject(self):
self.ejected = True
self.clear()
self.unwire()
return self.net
def wire(self):
for module in self.net.modules():
if isinstance(module, LSHAttention):
module._return_attn = True
if isinstance(module, LSHSelfAttention):
module.callback = self.record
def unwire(self):
for module in self.net.modules():
if isinstance(module, LSHAttention):
module._return_attn = False
if isinstance(module, LSHSelfAttention):
module.callback = None
def turn_on(self):
self.on = True
def turn_off(self):
self.on = False
def clear(self):
del self.recordings
self.recordings = defaultdict(list)
self.iter = 0
def record(self, attn, buckets):
if not self.on: return
data = {'attn': attn.detach().cpu(), 'buckets': buckets.detach().cpu()}
self.recordings[self.iter].append(data)
def forward(self, x, **kwargs):
assert not self.ejected, 'Recorder has already been ejected and disposed'
if self.on:
self.wire()
out = self.net(x, **kwargs)
self.iter += 1
self.unwire()
return out
|
mongoose-master
|
mongoose_reformer/reformer_lib/recorder.py
|
from reformer_lib.reformer_pytorch import LSHAttention, LSHSelfAttention, Reformer, ReformerLM
from reformer_lib.reformer_enc_dec import ReformerEncDec
from reformer_lib.recorder import Recorder
from reformer_lib.autopadder import Autopadder
|
mongoose-master
|
mongoose_reformer/reformer_lib/__init__.py
|
import torch
from mongoose_slide.slide_lib.simHash import SimHash
class Scheduler:
def __init__(self, data, D, k=1, l=10, thresh=0.01):
self.thresh_hash = SimHash(D, k, l)
self.hash_codes = self.thresh_hash.hash(data)
self.thresh = thresh
def detect_change(self, updated_data):
check = self.thresh_hash.hash(updated_data)
distance = check - self.hash_codes
if torch.sum(torch.abs(distance)) > self.thresh*distance.numel():
self.hash_codes = check
return True
else:
return False
|
mongoose-master
|
mongoose_reformer/reformer_lib/scheduler.py
|
import math
import torch
import torch.nn as nn
from torch.nn import Identity
import torch.nn.functional as F
from torch.autograd import Function
from functools import partial, reduce, wraps
from itertools import chain
from operator import mul
from local_attention import LocalAttention
from axial_positional_embedding import AxialPositionalEmbedding
from product_key_memory import PKM
from reformer_lib.reversible import ReversibleSequence
from reformer_lib.scheduler import Scheduler
from torch.nn.init import xavier_uniform_
from torch.nn.init import constant_
from torch.nn.init import xavier_normal_
# constants
TOKEN_SELF_ATTN_VALUE = -5e4 # carefully set for half precision to work
# helper fns
def sort_key_val(t1, t2, dim=-1):
values, indices = t1.sort(dim=dim)
t2 = t2.expand_as(t1)
return values, t2.gather(dim, indices), indices
def batched_index_select(values, indices):
last_dim = values.shape[-1]
return values.gather(1, indices[:, :, None].expand(-1, -1, last_dim))
def process_inputs_chunk(fn, chunks=1, dim=0):
def inner_fn(*args, **kwargs):
keys, values, len_args = kwargs.keys(), kwargs.values(), len(args)
chunked_args = list(zip(*map(lambda x: x.chunk(chunks, dim=dim), list(args) + list(values))))
all_args = map(lambda x: (x[:len_args], dict(zip(keys, x[len_args:]))), chunked_args)
outputs = [fn(*c_args, **c_kwargs) for c_args, c_kwargs in all_args]
# return tuple(map(lambda x: torch.cat(x, dim=dim), zip(*outputs)))
def cat_fn(x):
if x[0] is not None:
return torch.cat(x, dim=dim)
else:
return None
return tuple(map(cat_fn, zip(*outputs)))
return inner_fn
def chunked_sum(tensor, chunks=1):
*orig_size, last_dim = tensor.shape
tensor = tensor.reshape(-1, last_dim)
summed_tensors = [c.sum(dim=-1) for c in tensor.chunk(chunks, dim=0)]
return torch.cat(summed_tensors, dim=0).reshape(orig_size)
def default(val, default_val):
return default_val if val is None else val
def cast_tuple(x):
return x if isinstance(x, tuple) else (x,)
def max_neg_value(tensor):
return -torch.finfo(tensor.dtype).max
def cache_fn(f):
cache = None
@wraps(f)
def cached_fn(*args, **kwargs):
nonlocal cache
if cache is not None:
return cache
cache = f(*args, **kwargs)
return cache
return cached_fn
def cosine_similarity(x1, x2, dim=1, eps=1e-6):
r"""Returns cosine similarity between x1 and x2, computed along dim.
Args:
x1 (Variable): First input.
x2 (Variable): Second input (of size matching x1).
dim (int, optional): Dimension of vectors. Default: 1
eps (float, optional): Small value to avoid division by zero. Default: 1e-8
Shape:
- Input: :math:`(\ast_1, D, \ast_2)` where D is at position `dim`.
- Output: :math:`(\ast_1, \ast_2)` where 1 is at position `dim`.
"""
w1 = torch.norm(x1 + eps, 2, dim, keepdim=True)
w2 = torch.norm(x2 + eps, 2, dim, keepdim=True)
x1 /= w1.clamp(min=eps)
x2 /= w2.clamp(min=eps)
w12 = torch.sum(x1 * x2, dim)
return w12.squeeze()
def cache_method_decorator(cache_attr, cache_namespace, reexecute=False):
def inner_fn(fn):
@wraps(fn)
def wrapper(self, *args, key_namespace=None, fetch=False, set_cache=True, **kwargs):
namespace_str = str(default(key_namespace, ''))
_cache = getattr(self, cache_attr)
_keyname = f'{cache_namespace}:{namespace_str}'
if fetch:
val = _cache[_keyname]
if reexecute:
fn(self, *args, **kwargs)
else:
val = fn(self, *args, **kwargs)
if set_cache:
setattr(self, cache_attr, {**_cache, **{_keyname: val}})
return val
return wrapper
return inner_fn
def expand_dim(dim, k, t):
t = t.unsqueeze(dim)
expand_shape = [-1] * len(t.shape)
expand_shape[dim] = k
return t.expand(*expand_shape)
def merge_dims(ind_from, ind_to, tensor):
shape = list(tensor.shape)
arr_slice = slice(ind_from, ind_to + 1)
shape[arr_slice] = [reduce(mul, shape[arr_slice])]
return tensor.reshape(*shape)
def split_at_index(dim, index, t):
pre_slices = (slice(None),) * dim
l = (*pre_slices, slice(None, index))
r = (*pre_slices, slice(index, None))
return t[l], t[r]
# helper classes
class MatrixMultiply(nn.Module):
def __init__(self, tensor, transpose=False, normalize=False):
super().__init__()
self.tensor = tensor
self.transpose = transpose
self.normalize = normalize
def forward(self, x):
tensor = self.tensor
if self.normalize:
tensor = F.normalize(tensor, dim=-1)
if self.transpose:
tensor = tensor.t()
return x @ tensor
class ReZero(nn.Module):
def __init__(self, fn):
super().__init__()
self.g = nn.Parameter(torch.zeros(1))
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(x, **kwargs) * self.g
class ScaleNorm(nn.Module):
def __init__(self, dim, eps=1e-5):
super().__init__()
self.g = nn.Parameter(torch.ones(1))
self.eps = eps
def forward(self, x):
n = torch.norm(x, dim=-1, keepdim=True).clamp(min=self.eps)
return x / n * self.g
class PreNorm(nn.Module):
def __init__(self, norm_class, dim, fn):
super().__init__()
self.norm = norm_class(dim)
self.fn = fn
def forward(self, x, **kwargs):
x = self.norm(x)
return self.fn(x, **kwargs)
class Chunk(nn.Module):
def __init__(self, chunks, fn, along_dim=-1):
super().__init__()
self.dim = along_dim
self.chunks = chunks
self.fn = fn
def forward(self, x, **kwargs):
if self.chunks == 1:
return self.fn(x, **kwargs)
chunks = x.chunk(self.chunks, dim=self.dim)
return torch.cat([self.fn(c, **kwargs) for c in chunks], dim=self.dim)
# LSH attention as described in https://openreview.net/pdf?id=rkgNKkHtvB
# adapted from trax, stripped to what paper said needed to work
# namely that buckets need to be at least 64 with 8 rounds of hashing
# https://github.com/google/trax/blob/master/trax/layers/research/efficient_attention.py#L442
# +
class LSHAttention(nn.Module):
def __init__(self,
dropout=0.,
bucket_size=64,
n_hashes=8,
causal=False,
allow_duplicate_attention=True,
attend_across_buckets=True,
rehash_each_round=True,
drop_for_hash_rate=0.0,
random_rotations_per_head=False,
return_attn=False,
store_stats=False):
super().__init__()
if dropout >= 1.0:
raise ValueError('Dropout rates must be lower than 1.')
self.dropout = nn.Dropout(dropout)
self.dropout_for_hash = nn.Dropout(drop_for_hash_rate)
# self.rotations = nn.Linear(64, 128, bias=False)
assert rehash_each_round or allow_duplicate_attention, (
'The setting {allow_duplicate_attention=False, rehash_each_round=False}'
' is not implemented.')
self.causal = causal
self.bucket_size = bucket_size
self.n_hashes = n_hashes
self._allow_duplicate_attention = allow_duplicate_attention
self._attend_across_buckets = attend_across_buckets
self._rehash_each_round = rehash_each_round
self._random_rotations_per_head = random_rotations_per_head
# will expend extra computation to return attention matrix
self._return_attn = return_attn
# cache buckets for reversible network, reported by authors to make Reformer work at depth
self._cache = {}
self.store_stats = store_stats
self.mean_dp = 0.0
self.stat_count = 0
# @cache_method_decorator('_cache', 'buckets', reexecute=True)
def hash_vectors(self, n_buckets, vecs, rotations=None):
batch_size = vecs.shape[0]
device = vecs.device
# See https://arxiv.org/pdf/1509.02897.pdf
# We sample a different random rotation for each round of hashing to
# decrease the probability of hash misses.
assert n_buckets % 2 == 0
rot_size = n_buckets
rotations_shape = (
batch_size if self._random_rotations_per_head else 1,
vecs.shape[-1],
self.n_hashes if self._rehash_each_round else 1,
rot_size // 2)
# add rotations
# random_rotations = torch.randn(rotations_shape, dtype=vecs.dtype, device=device).expand(batch_size, -1, -1, -1)
if rotations is None:
random_rotations = torch.randn(rotations_shape, dtype=vecs.dtype, device=device).expand(batch_size, -1, -1,
-1)
else:
if rotations.size(-1) == rotations_shape[-1]:
random_rotations = rotations
elif rotations.size(-1) < rotations_shape[-1]:
complement_shape = (
batch_size if self._random_rotations_per_head else 1,
vecs.shape[-1],
self.n_hashes if self._rehash_each_round else 1,
rot_size // 2 - rotations.size(-1))
tmp = torch.randn(complement_shape, dtype=vecs.dtype, device=device).expand(batch_size, -1, -1, -1)
random_rotations = torch.cat([rotations, tmp], dim=-1)
else:
random_rotations = rotations[:, :, :, torch.randperm(rotations.size(-1))[:rotations_shape[-1]]]
dropped_vecs = self.dropout_for_hash(vecs)
rotated_vecs = torch.einsum('btf,bfhi->bhti', dropped_vecs, random_rotations)
if self._rehash_each_round:
rotated_vecs = torch.cat([rotated_vecs, -rotated_vecs], dim=-1)
buckets = torch.argmax(rotated_vecs, dim=-1)
# buckets is now (self.n_hashes, seqlen). Next we add offsets so that
# bucket numbers from different hashing rounds don't overlap.
offsets = torch.arange(self.n_hashes, device=device)
offsets = torch.reshape(offsets * n_buckets, (1, -1, 1))
buckets = torch.reshape(buckets + offsets, (batch_size, -1,))
else:
rotated_vecs = torch.cat([rotated_vecs, -rotated_vecs], dim=-1)
# In this configuration, we map each item to the top self.n_hashes buckets
rotated_vecs = torch.squeeze(rotated_vecs, 0)
bucket_range = torch.arange(rotated_vecs.shape[-1], device=device)
bucket_range = torch.reshape(bucket_range, (1, -1))
bucket_range = bucket_range.expand_as(rotated_vecs.shape)
_, buckets = sort_key_val(rotated_vecs, bucket_range, dim=-1)
buckets = buckets[:, -self.n_hashes:]
h, *_ = buckets.shape
buckets = torch.reshape(buckets.permute((*_, h)), (-1,))
return buckets
def forward(self, qk, v, query_len=None, input_mask=None, input_attn_mask=None, rotations=None,
triplet_examples=False, **kwargs):
batch_size, seqlen, dim, device = *qk.shape, qk.device
query_len = default(query_len, seqlen)
is_reverse = kwargs.pop('_reverse', False)
depth = kwargs.pop('_depth', None)
assert seqlen % (
self.bucket_size * 2) == 0, f'Sequence length ({seqlen}) needs to be divisible by target bucket size x 2 - {self.bucket_size * 2}'
n_buckets = seqlen // self.bucket_size
# buckets = self.hash_vectors(n_buckets, qk, key_namespace=depth, fetch=is_reverse, set_cache=self.training)
# add customized rotations
# buckets = self.hash_vectors(n_buckets, qk, key_namespace=depth, fetch=is_reverse, set_cache=self.training, rotations=rotations)
buckets = self.hash_vectors(n_buckets, qk, rotations=rotations)
max_idxs = buckets.reshape(batch_size, -1, seqlen)
# We use the same vector as both a query and a key.
assert int(buckets.shape[1]) == self.n_hashes * seqlen
total_hashes = self.n_hashes
ticker = torch.arange(total_hashes * seqlen, device=device).unsqueeze(0).expand_as(buckets)
buckets_and_t = seqlen * buckets + (ticker % seqlen)
buckets_and_t = buckets_and_t.detach()
# Hash-based sort ("s" at the start of variable names means "sorted")
sbuckets_and_t, sticker, indices = sort_key_val(buckets_and_t, ticker, dim=-1)
_, undo_sort = sticker.sort(dim=-1)
del ticker
sbuckets_and_t = sbuckets_and_t.detach()
sticker = sticker.detach()
undo_sort = undo_sort.detach()
st = (sticker % seqlen)
sqk = batched_index_select(qk, st)
sv = batched_index_select(v, st)
# Split off a "bin" axis so that attention only occurs within chunks.
chunk_size = total_hashes * n_buckets
bq_t = bkv_t = torch.reshape(st, (batch_size, chunk_size, -1))
bqk = torch.reshape(sqk, (batch_size, chunk_size, -1, dim))
bv = torch.reshape(sv, (batch_size, chunk_size, -1, dim))
# Hashing operates on unit-length vectors. Unnormalized query vectors are
# fine because they effectively provide a learnable temperature for the
# attention softmax, but normalizing keys is needed so that similarity for
# the purposes of attention correctly corresponds to hash locality.
bq = bqk
bk = F.normalize(bqk, p=2, dim=-1).type_as(bq)
# Allow each chunk to attend within itself, and also one chunk back. Chunk
# boundaries might occur in the middle of a sequence of items from the
# same bucket, so this increases the chances of attending to relevant items.
def look_one_back(x):
x_extra = torch.cat([x[:, -1:, ...], x[:, :-1, ...]], dim=1)
return torch.cat([x, x_extra], dim=2)
bk = look_one_back(bk)
bv = look_one_back(bv)
bkv_t = look_one_back(bkv_t)
# Dot-product attention.
dots = torch.einsum('bhie,bhje->bhij', bq, bk) * (dim ** -0.5)
if triplet_examples:
min_samples = dots.argmin(dim=-1).detach()
masked_value = max_neg_value(dots)
# Mask for post qk attention logits of the input sequence
if input_attn_mask is not None:
input_attn_mask = F.pad(input_attn_mask,
(0, seqlen - input_attn_mask.shape[-1], 0, seqlen - input_attn_mask.shape[-2]),
value=True)
dot_attn_indices = ((bq_t * seqlen)[:, :, :, None] + bkv_t[:, :, None, :])
input_attn_mask = input_attn_mask.reshape(batch_size, -1)
dot_attn_indices = dot_attn_indices.reshape(batch_size, -1)
mask = input_attn_mask.gather(1, dot_attn_indices).reshape_as(dots)
dots.masked_fill_(~mask, masked_value)
del mask
# Input mask for padding in variable lengthed sequences
if input_mask is not None:
input_mask = F.pad(input_mask, (0, seqlen - input_mask.shape[1]), value=True)
mq = input_mask.gather(1, st).reshape((batch_size, chunk_size, -1))
mkv = look_one_back(mq)
mask = mq[:, :, :, None] * mkv[:, :, None, :]
dots.masked_fill_(~mask, masked_value)
del mask
# Causal masking
if self.causal:
mask = bq_t[:, :, :, None] < bkv_t[:, :, None, :]
if seqlen > query_len:
mask = mask & (bkv_t[:, :, None, :] < query_len)
dots.masked_fill_(mask, masked_value)
del mask
# Mask out attention to self except when no other targets are available.
self_mask = bq_t[:, :, :, None] == bkv_t[:, :, None, :]
dots.masked_fill_(self_mask, TOKEN_SELF_ATTN_VALUE)
del self_mask
# Mask out attention to other hash buckets.
if not self._attend_across_buckets:
bq_buckets = bkv_buckets = torch.reshape(sbuckets_and_t // seqlen, (batch_size, chunk_size, -1))
bkv_buckets = look_one_back(bkv_buckets)
bucket_mask = bq_buckets[:, :, :, None] != bkv_buckets[:, :, None, :]
dots.masked_fill_(bucket_mask, masked_value)
del bucket_mask
# Don't double-count query-key pairs across multiple rounds of hashing.
# There are two possible strategies here. (1) The default is to count how
# many times a query-key pair is repeated, and to lower its log-prob
# correspondingly at each repetition. (2) When hard_k is set, the code
# instead masks all but the first occurence of each query-key pair.
if not self._allow_duplicate_attention:
locs1 = undo_sort // bq_t.shape[-1]
locs2 = (locs1 + 1) % chunk_size
if not self._attend_across_buckets:
locs1 = buckets * chunk_size + locs1
locs2 = buckets * chunk_size + locs2
locs = torch.cat([
torch.reshape(locs1, (batch_size, total_hashes, seqlen)),
torch.reshape(locs2, (batch_size, total_hashes, seqlen)),
], 1).permute((0, 2, 1))
slocs = batched_index_select(locs, st)
b_locs = torch.reshape(slocs, (batch_size, chunk_size, -1, 2 * total_hashes))
b_locs1 = b_locs[:, :, :, None, :total_hashes]
bq_locs = b_locs1.expand(b_locs.shape[:3] + (2, total_hashes))
bq_locs = torch.reshape(bq_locs, b_locs.shape)
bkv_locs = look_one_back(b_locs)
dup_counts = (bq_locs[:, :, :, None, :] == bkv_locs[:, :, None, :, :])
# for memory considerations, chunk summation of last dimension for counting duplicates
dup_counts = chunked_sum(dup_counts, chunks=(total_hashes * batch_size))
dup_counts = dup_counts.detach()
assert dup_counts.shape == dots.shape
dots = dots - torch.log(dup_counts + 1e-9)
del dup_counts
with torch.no_grad():
if self.store_stats:
computed_mean = dots.detach()
mean = torch.mean(computed_mean[computed_mean > TOKEN_SELF_ATTN_VALUE + 1])
self.mean_dp = mean.item()
self.stat_count += 1
# Softmax.
dots_logsumexp = torch.logsumexp(dots, dim=-1, keepdim=True)
dots = torch.exp(dots - dots_logsumexp).type_as(dots)
dropped_dots = self.dropout(dots)
bo = torch.einsum('buij,buje->buie', dropped_dots, bv)
so = torch.reshape(bo, (batch_size, -1, dim))
slogits = torch.reshape(dots_logsumexp, (batch_size, -1,))
# compute pos/neg examples
if triplet_examples:
with torch.no_grad():
max_samples = dots.argmax(dim=-1)
max_ind = torch.gather(bkv_t, -1, max_samples).view_as(st)
min_ind = torch.gather(bkv_t, -1, min_samples).view_as(st)
pos_vectors = batched_index_select(qk, max_ind).detach()
neg_vectors = batched_index_select(qk, min_ind).detach()
else:
pos_vectors = None
neg_vectors = None
# unsort logits
o = batched_index_select(so, undo_sort)
logits = slogits.gather(1, undo_sort)
o = torch.reshape(o, (batch_size, total_hashes, seqlen, dim))
logits = torch.reshape(logits, (batch_size, total_hashes, seqlen, 1))
if query_len != seqlen:
query_slice = (slice(None), slice(None), slice(0, query_len))
o, logits = o[query_slice], logits[query_slice]
probs = torch.exp(logits - torch.logsumexp(logits, dim=1, keepdim=True))
out = torch.sum(o * probs, dim=1)
attn = torch.empty(0, device=device)
# return unsorted attention weights
if self._return_attn:
attn_unsort = ((bq_t * seqlen)[:, :, :, None] + bkv_t[:, :, None, :])
attn_unsort = attn_unsort.view(batch_size * total_hashes, -1).long()
unsorted_dots = torch.zeros(batch_size * total_hashes, seqlen * seqlen, device=device)
unsorted_dots.scatter_add_(1, attn_unsort, dots.view_as(attn_unsort))
del attn_unsort
unsorted_dots = unsorted_dots.reshape(batch_size, total_hashes, seqlen, seqlen)
attn = torch.sum(unsorted_dots[:, :, 0:query_len, :] * probs, dim=1)
# return output, attention matrix, and bucket distribution
return out, attn, buckets, sqk.detach(), pos_vectors, neg_vectors
# customized training for hash functions
class TripletLSHAttention(LSHAttention):
def __init__(self,
alpha=1.0, # triplet loss margin
dim=512, # embedding dimension
seq_len=1024,
heads=8, # attention heads
dropout=0.,
bucket_size=64,
n_hashes=8,
causal=False,
allow_duplicate_attention=True,
attend_across_buckets=True,
rehash_each_round=True,
drop_for_hash_rate=0.0,
random_rotations_per_head=False,
return_attn=False,
triplet_chunks=None,
store_stats=False
):
super().__init__(dropout=dropout,
bucket_size=bucket_size,
n_hashes=n_hashes,
causal=causal,
allow_duplicate_attention=allow_duplicate_attention,
attend_across_buckets=attend_across_buckets,
rehash_each_round=rehash_each_round,
drop_for_hash_rate=drop_for_hash_rate,
random_rotations_per_head=random_rotations_per_head,
return_attn=return_attn,
store_stats=store_stats)
self.alpha = alpha
self.seq_len = seq_len
self.heads = heads
n_buckets = self.seq_len // bucket_size
# buckets_dim = n_buckets // 2
buckets_dim = n_buckets
if self._rehash_each_round:
buckets_dim *= n_hashes
self.rotations = nn.Linear(dim // self.heads, buckets_dim, bias=False)
# number of chunks to split up computation of pos/neg examples for triplet loss
self.triplet_chunks = default(triplet_chunks, dim)
def reset_rotations(self):
self.rotations.reset_parameters()
def extract_rotations(self, batch_size):
n_buckets = self.seq_len // self.bucket_size
rotations = self.rotations.weight.t().detach() # dim x (buckets * n_hashes / 2)
# rotations = rotations[:, torch.randperm(rotations.size(-1))[:rotations.size(-1) // 2]]
rotations = torch.reshape(rotations, (-1, self.n_hashes, n_buckets))
rotations = rotations.unsqueeze(0).expand(batch_size, -1, -1, -1)
return rotations
def triplet_forward(self,
x, # input
p, # positive example
n, # negative example
):
'''
Given inputs, positive and negative examples, compute the
triplet loss given by cosine similarity
'''
x = x.detach()
p = p.detach()
n = n.detach()
emb_x = self.rotations(x)
emb_p = self.rotations(p)
emb_n = self.rotations(n)
# cosine similarity
sim_xp = F.cosine_similarity(emb_x, emb_p, dim=-1, eps=1e-6)
sim_xn = F.cosine_similarity(emb_x, emb_n, dim=-1, eps=1e-6)
# distance in radians
# dis_xp = 1 - torch.acos(sim_xp)/pi
# dis_xn = 1 - torch.acos(sim_xn)/pi
dis_xp = 1 - sim_xp
dis_xn = 1 - sim_xn
triplet_loss = dis_xp - dis_xn + self.alpha
triplet_loss = torch.mean(torch.max(triplet_loss,
torch.zeros(triplet_loss.size()).to(x.device)))
if torch.isnan(triplet_loss):
print("nan!")
return triplet_loss
def forward(self, qk, v, query_len=None, input_mask=None, printgrad=False,
triplet_examples=False, **kwargs):
batch_size, seqlen, dim = qk.shape
n_buckets = self.seq_len // self.bucket_size
rotations = self.extract_rotations(batch_size)
# self.rotations.reset_parameters()
out, attn, buckets, emb_x, pos, neg = super().forward(qk, v,
query_len=query_len,
input_mask=input_mask,
rotations=rotations,
printgrad=printgrad,
triplet_examples=triplet_examples)
return out, attn, buckets, emb_x, pos, neg
# simple full attention
class FullQKAttention(nn.Module):
def __init__(self, causal=False, dropout=0.):
super().__init__()
self.causal = causal
self.dropout = nn.Dropout(dropout)
self.attn = None
def forward(self, qk, v, query_len=None, input_mask=None, input_attn_mask=None, **kwargs):
b, seq_len, dim = qk.shape
query_len = default(query_len, seq_len)
t = query_len
q = qk[:, 0:query_len]
qk = F.normalize(qk, 2, dim=-1).type_as(q)
dot = torch.einsum('bie,bje->bij', q, qk) * (dim ** -0.5)
# qk attention requires tokens not attend to self
i = torch.arange(t)
dot[:, i, i] = TOKEN_SELF_ATTN_VALUE
masked_value = max_neg_value(dot)
# Input mask for padding in variable lengthed sequences
if input_mask is not None:
mask = input_mask[:, 0:query_len, None] * input_mask[:, None, :]
mask = F.pad(mask, (0, seq_len - mask.shape[-1]), value=True)
dot.masked_fill_(~mask, masked_value)
# Mask for post qk attention logits of the input sequence
if input_attn_mask is not None:
input_attn_mask = F.pad(input_attn_mask, (0, seq_len - input_attn_mask.shape[-1]), value=True)
dot.masked_fill_(~input_attn_mask, masked_value)
if self.causal:
i, j = torch.triu_indices(t, t, 1)
dot[:, i, j] = masked_value
dot = dot.softmax(dim=-1)
self.attn = dot.detach()
dot = self.dropout(dot)
out = torch.einsum('bij,bje->bie', dot, v)
return out, dot, torch.empty(0), None, None, None
class LSHSelfAttention(nn.Module):
def __init__(self, dim, heads=8, bucket_size=64, n_hashes=8, causal=False, dim_head=None, attn_chunks=1,
random_rotations_per_head=False, attend_across_buckets=True, allow_duplicate_attention=True,
num_mem_kv=0, one_value_head=False, use_full_attn=False, full_attn_thres=None, return_attn=False,
post_attn_dropout=0., dropout=0., n_local_attn_heads=0, attn_type='lsh', max_seq_len=None,
alpha=1.0, triplet_chunks=None, scheduler_hashes=10, thresh=0.01, **kwargs):
super().__init__()
assert dim_head or (dim % heads) == 0, 'dimensions must be divisible by number of heads'
assert n_local_attn_heads < heads, 'local attention heads must be less than number of heads'
dim_head = default(dim_head, dim // heads)
dim_heads = dim_head * heads
self.dim = dim
self.heads = heads
self.dim_head = dim_head
self.attn_chunks = default(attn_chunks, 1)
self.v_head_repeats = (heads if one_value_head else 1)
v_dim = dim_heads // self.v_head_repeats
self.toqk = nn.Linear(dim, dim_heads, bias=False)
self.tov = nn.Linear(dim, v_dim, bias=False)
self.to_out = nn.Linear(dim_heads, dim)
self.bucket_size = bucket_size
self.attn_type = attn_type
if self.attn_type == 'triplet':
self.lsh_attn = TripletLSHAttention(alpha=alpha, dim=self.dim, seq_len=max_seq_len, heads=self.heads,
bucket_size=bucket_size, n_hashes=n_hashes, causal=causal,
random_rotations_per_head=random_rotations_per_head,
attend_across_buckets=attend_across_buckets,
allow_duplicate_attention=allow_duplicate_attention,
return_attn=return_attn, triplet_chunks=triplet_chunks, **kwargs)
# init scheduler
self.scheduler = Scheduler(self.toqk.weight, dim, scheduler_hashes, 1, thresh)
else:
self.lsh_attn = LSHAttention(bucket_size=bucket_size, n_hashes=n_hashes, causal=causal,
random_rotations_per_head=random_rotations_per_head,
attend_across_buckets=attend_across_buckets,
allow_duplicate_attention=allow_duplicate_attention, return_attn=return_attn,
dropout=dropout, **kwargs)
self.full_attn = FullQKAttention(causal=causal, dropout=dropout)
self.post_attn_dropout = nn.Dropout(post_attn_dropout)
self.use_full_attn = use_full_attn
self.full_attn_thres = default(full_attn_thres, bucket_size)
self.num_mem_kv = num_mem_kv
self.mem_kv = nn.Parameter(torch.randn(1, num_mem_kv, dim, requires_grad=True)) if num_mem_kv > 0 else None
self.n_local_attn_heads = n_local_attn_heads
self.local_attn = LocalAttention(window_size=bucket_size * 2, causal=causal, dropout=dropout, shared_qk=True,
look_forward=(1 if not causal else 0))
self.callback = None
self.attn = None
self.triplet_loss = 0.0
self._reset_parameters()
def _reset_parameters(self):
# if self._qkv_same_embed_dim:
xavier_uniform_(self.toqk.weight)
xavier_uniform_(self.tov.weight)
xavier_uniform_(self.to_out.weight)
def forward(self, x, keys=None, input_mask=None, input_attn_mask=None, context_mask=None, calc_triplet=False,
**kwargs):
device, dtype = x.device, x.dtype
b, t, e, h, dh, m, l_h = *x.shape, self.heads, self.dim_head, self.num_mem_kv, self.n_local_attn_heads
mem_kv = default(self.mem_kv, torch.empty(b, 0, e, dtype=dtype, device=device))
mem = mem_kv.expand(-1, m, -1)
keys = default(keys, torch.empty(b, 0, e, dtype=dtype, device=device))
c = keys.shape[1]
kv_len = t + m + c
use_full_attn = self.use_full_attn or kv_len <= self.full_attn_thres
x = torch.cat((x, mem, keys), dim=1)
qk = self.toqk(x)
v = self.tov(x)
v = v.repeat(1, 1, self.v_head_repeats)
def merge_heads(v):
return v.view(b, kv_len, h, -1).transpose(1, 2)
def split_heads(v):
return v.view(b, h, t, -1).transpose(1, 2).contiguous()
merge_batch_and_heads = partial(merge_dims, 0, 1)
qk, v = map(merge_heads, (qk, v))
has_local = l_h > 0
lsh_h = h - l_h
split_index_fn = partial(split_at_index, 1, l_h)
(lqk, qk), (lv, v) = map(split_index_fn, (qk, v))
lqk, qk, lv, v = map(merge_batch_and_heads, (lqk, qk, lv, v))
masks = {}
if input_mask is not None or context_mask is not None:
default_mask = torch.tensor([True], device=device)
i_mask = default(input_mask, default_mask.expand(b, t))
m_mask = default_mask.expand(b, m)
c_mask = default(context_mask, default_mask.expand(b, c))
mask = torch.cat((i_mask, m_mask, c_mask), dim=1)
mask = merge_batch_and_heads(expand_dim(1, lsh_h, mask))
masks['input_mask'] = mask
if input_attn_mask is not None:
input_attn_mask = merge_batch_and_heads(expand_dim(1, lsh_h, input_attn_mask))
masks['input_attn_mask'] = input_attn_mask
attn_fn = self.lsh_attn if not use_full_attn else self.full_attn
# update rotations
if calc_triplet:
if not self.scheduler.detect_change(self.toqk.weight):
calc_triplet = False
return_triplet_examples = (self.attn_type in ['triplet', 'simhash']) and calc_triplet and not use_full_attn
partial_attn_fn = partial(attn_fn, query_len=t, input_mask=input_mask,
triplet_examples=return_triplet_examples)
attn_fn_in_chunks = process_inputs_chunk(partial_attn_fn, chunks=self.attn_chunks)
out, attn, buckets, emb_x, pos, neg = attn_fn_in_chunks(qk, v, **masks)
if self.callback is not None:
self.callback(attn.reshape(b, lsh_h, t, -1), buckets.reshape(b, lsh_h, -1))
if return_triplet_examples:
def chunked_loss(fn, *args, chunks=1, dim=0):
chunked_inputs = list(map(lambda x: x.chunk(chunks, dim=dim), args))
outputs = [fn(*inputs) for inputs in zip(*chunked_inputs)]
return sum(outputs)
triplet_loss = chunked_loss(self.lsh_attn.triplet_forward,
emb_x, pos, neg,
chunks=self.attn_chunks, dim=1)
if self.triplet_loss is None:
self.triplet_loss = triplet_loss
else:
self.triplet_loss += triplet_loss
if has_local:
lqk, lv = lqk[:, :t], lv[:, :t]
local_out = self.local_attn(lqk, lqk, lv, input_mask=input_mask)
local_out = local_out.reshape(b, l_h, t, -1)
out = out.reshape(b, lsh_h, t, -1)
out = torch.cat((local_out, out), dim=1)
out = split_heads(out).view(b, t, -1)
self.attn = out.detach()
out = self.to_out(out)
return self.post_attn_dropout(out)
# feed forward
class GELU_(nn.Module):
def forward(self, x):
return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
GELU = nn.GELU if hasattr(nn, 'GELU') else GELU_
class FeedForward(nn.Module):
def __init__(self, dim, mult=4, dropout=0., activation=None, glu=False):
super().__init__()
activation = default(activation, GELU)
self.glu = glu
self.w1 = nn.Linear(dim, dim * mult * (2 if glu else 1))
self.act = activation()
self.dropout = nn.Dropout(dropout)
self.w2 = nn.Linear(dim * mult, dim)
def forward(self, x, **kwargs):
if not self.glu:
x = self.w1(x)
x = self.act(x)
else:
x, v = self.w1(x).chunk(2, dim=-1)
x = self.act(x) * v
x = self.dropout(x)
x = self.w2(x)
return x
# positional embeddings
class AbsolutePositionalEmbedding(nn.Module):
def __init__(self, dim, max_seq_len):
super().__init__()
self.emb = nn.Embedding(max_seq_len, dim)
def forward(self, x):
t = torch.arange(x.shape[1], device=x.device)
return self.emb(t)
class FixedPositionalEmbedding(nn.Module):
def __init__(self, dim):
super().__init__()
inv_freq = 1. / (10000 ** (torch.arange(0, dim, 2).float() / dim))
self.register_buffer('inv_freq', inv_freq)
def forward(self, x):
t = torch.arange(x.shape[1], device=x.device).type_as(self.inv_freq)
sinusoid_inp = torch.einsum("i,j->ij", t, self.inv_freq)
emb = torch.cat((sinusoid_inp.sin(), sinusoid_inp.cos()), dim=-1)
return emb[None, :, :]
class PositionalEncoding(nn.Module):
def __init__(self, d_model, dropout=0.1, max_len=5000):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0).transpose(0, 1)
self.register_buffer('pe', pe)
def forward(self, x):
x = x + self.pe[:x.size(0), :]
return self.dropout(x)
# reformer lm
class Reformer_tune(nn.Module):
def __init__(self, dim, depth, max_seq_len, heads=8, dim_head=None, bucket_size_list=[], n_hashes_list=[],
ff_chunks=100,
attn_chunks=None, causal=False, weight_tie=False, lsh_dropout=0., ff_dropout=0., ff_activation=None,
ff_mult=4, ff_glu=False, post_attn_dropout=0., layer_dropout=0., lsh_attend_across_buckets=True,
lsh_allow_duplicate_attention=True, random_rotations_per_head=False, twin_attention=False,
use_scale_norm=False, use_rezero=False, use_full_attn=False, full_attn_thres=0, reverse_thres=0,
num_mem_kv=0, one_value_head=False, n_local_attn_heads=0, pkm_layers=tuple(), pkm_num_keys=128,
attn_type_list=[], store_stats=False, scheduler_hashes=10, thresh=0.01):
super().__init__()
self.dim = dim
self.depth = depth
assert len(bucket_size_list) == depth
assert len(n_hashes_list) == depth
assert len(attn_type_list) == depth
self.bucket_size_list = bucket_size_list
self.num_mem_kv = num_mem_kv
self.twin_attention = twin_attention
self.full_attn_thres = full_attn_thres
get_ff = lambda: Chunk(ff_chunks,
FeedForward(dim, dropout=ff_dropout, activation=ff_activation, mult=ff_mult, glu=ff_glu),
along_dim=-2)
get_pkm = lambda: PKM(dim, num_keys=pkm_num_keys)
if weight_tie:
get_attn = lambda: LSHSelfAttention(dim, heads, bucket_size_list[0], n_hashes_list[0], causal=causal,
dim_head=dim_head,
dropout=lsh_dropout, post_attn_dropout=post_attn_dropout,
attn_chunks=attn_chunks,
allow_duplicate_attention=lsh_allow_duplicate_attention,
attend_across_buckets=lsh_attend_across_buckets,
random_rotations_per_head=random_rotations_per_head,
num_mem_kv=num_mem_kv,
use_full_attn=use_full_attn, full_attn_thres=full_attn_thres,
one_value_head=one_value_head, n_local_attn_heads=n_local_attn_heads,
max_seq_len=max_seq_len, attn_type=attn_type_list[0],
store_stats=store_stats, scheduler_hashes=scheduler_hashes, thresh=thresh)
get_attn, get_ff, get_pkm = map(cache_fn, (get_attn, get_ff, get_pkm))
blocks = []
norm_type = ScaleNorm if use_scale_norm else nn.LayerNorm
residual_fn_wrapper = ReZero if use_rezero else partial(PreNorm, norm_type, dim)
for ind in range(depth):
layer_num = ind + 1
use_pkm = layer_num in cast_tuple(pkm_layers)
parallel_net = None
attn = LSHSelfAttention(dim, heads, bucket_size_list[ind], n_hashes_list[ind], causal=causal,
dim_head=dim_head,
dropout=lsh_dropout, post_attn_dropout=post_attn_dropout,
attn_chunks=attn_chunks,
allow_duplicate_attention=lsh_allow_duplicate_attention,
attend_across_buckets=lsh_attend_across_buckets,
random_rotations_per_head=random_rotations_per_head, num_mem_kv=num_mem_kv,
use_full_attn=use_full_attn, full_attn_thres=full_attn_thres,
one_value_head=one_value_head, n_local_attn_heads=n_local_attn_heads,
max_seq_len=max_seq_len, attn_type=attn_type_list[ind], store_stats=store_stats
, scheduler_hashes=scheduler_hashes, thresh=thresh)
if use_pkm:
parallel_net = get_pkm()
elif twin_attention:
parallel_net = get_attn()
else:
parallel_net = get_ff()
f = residual_fn_wrapper(attn)
g = residual_fn_wrapper(parallel_net)
blocks.append(nn.ModuleList([f, g]))
self.layers = ReversibleSequence(nn.ModuleList(blocks), layer_dropout=layer_dropout,
reverse_thres=reverse_thres, send_signal=True)
self.layer_modules = list(chain(*[[m[0], m[1]] for m in blocks]))
def forward(self, x, **kwargs):
x = torch.cat([x, x], dim=-1)
arg_route = (True, self.twin_attention)
x = self.layers(x, arg_route=arg_route, **kwargs)
return torch.stack(x.chunk(2, dim=-1)).mean(dim=0)
# reformer lm
class Reformer(nn.Module):
def __init__(self, dim, depth, max_seq_len, heads=8, dim_head=None, bucket_size=64, n_hashes=8, ff_chunks=100,
attn_chunks=None, causal=False, weight_tie=False, lsh_dropout=0., ff_dropout=0., ff_activation=None,
ff_mult=4, ff_glu=False, post_attn_dropout=0., layer_dropout=0., lsh_attend_across_buckets=True,
lsh_allow_duplicate_attention=True, random_rotations_per_head=False, twin_attention=False,
use_scale_norm=False, use_rezero=False, use_full_attn=False, full_attn_thres=0, reverse_thres=0,
num_mem_kv=0, one_value_head=False, n_local_attn_heads=0, pkm_layers=tuple(), pkm_num_keys=128,
attn_type='lsh', store_stats=False):
super().__init__()
self.dim = dim
self.depth = depth
self.bucket_size = bucket_size
self.num_mem_kv = num_mem_kv
self.twin_attention = twin_attention
self.full_attn_thres = full_attn_thres
get_attn = lambda: LSHSelfAttention(dim, heads, bucket_size, n_hashes, causal=causal, dim_head=dim_head,
dropout=lsh_dropout, post_attn_dropout=post_attn_dropout,
attn_chunks=attn_chunks,
allow_duplicate_attention=lsh_allow_duplicate_attention,
attend_across_buckets=lsh_attend_across_buckets,
random_rotations_per_head=random_rotations_per_head, num_mem_kv=num_mem_kv,
use_full_attn=use_full_attn, full_attn_thres=full_attn_thres,
one_value_head=one_value_head, n_local_attn_heads=n_local_attn_heads,
max_seq_len=max_seq_len, attn_type=attn_type, store_stats=store_stats)
get_ff = lambda: Chunk(ff_chunks,
FeedForward(dim, dropout=ff_dropout, activation=ff_activation, mult=ff_mult, glu=ff_glu),
along_dim=-2)
get_pkm = lambda: PKM(dim, num_keys=pkm_num_keys)
if weight_tie:
get_attn, get_ff, get_pkm = map(cache_fn, (get_attn, get_ff, get_pkm))
blocks = []
norm_type = ScaleNorm if use_scale_norm else nn.LayerNorm
residual_fn_wrapper = ReZero if use_rezero else partial(PreNorm, norm_type, dim)
for ind in range(depth):
layer_num = ind + 1
use_pkm = layer_num in cast_tuple(pkm_layers)
parallel_net = None
attn = get_attn()
if use_pkm:
parallel_net = get_pkm()
elif twin_attention:
parallel_net = get_attn()
else:
parallel_net = get_ff()
f = residual_fn_wrapper(attn)
g = residual_fn_wrapper(parallel_net)
blocks.append(nn.ModuleList([f, g]))
self.layers = ReversibleSequence(nn.ModuleList(blocks), layer_dropout=layer_dropout,
reverse_thres=reverse_thres, send_signal=True)
self.layer_modules = list(chain(*[[m[0], m[1]] for m in blocks]))
def forward(self, x, **kwargs):
x = torch.cat([x, x], dim=-1)
arg_route = (True, self.twin_attention)
x = self.layers(x, arg_route=arg_route, **kwargs)
return torch.stack(x.chunk(2, dim=-1)).mean(dim=0)
class ReformerLM_tune(nn.Module):
def __init__(self, num_tokens, dim, depth, max_seq_len, heads=8, dim_head=None, bucket_size_list=[],
n_hashes_list=[],
ff_chunks=100, attn_chunks=1, causal=False, weight_tie=False, lsh_dropout=0., ff_dropout=0., ff_mult=4,
ff_activation=None, ff_glu=False, post_attn_dropout=0., layer_dropout=0.,
random_rotations_per_head=False, twin_attention=False, use_scale_norm=False, use_rezero=False,
use_full_attn=False, full_attn_thres=0, reverse_thres=0, num_mem_kv=0, one_value_head=False,
emb_dim=None, return_embeddings=False, weight_tie_embedding=False, fixed_position_emb=False,
absolute_position_emb=False, axial_position_shape=None, n_local_attn_heads=0, pkm_layers=tuple(),
pkm_num_keys=128, attn_type_list=[], store_stats=False, scheduler_hashes=10, thresh=0.01):
super().__init__()
emb_dim = default(emb_dim, dim)
self.max_seq_len = max_seq_len
self.token_emb = nn.Embedding(num_tokens, emb_dim)
self.to_model_dim = Identity() if emb_dim == dim else nn.Linear(emb_dim, dim)
if absolute_position_emb:
# self.pos_emb = PositionalEncoding(emb_dim, layer_dropout, max_seq_len)
self.pos_emb = AbsolutePositionalEmbedding(emb_dim, max_seq_len)
elif fixed_position_emb:
self.pos_emb = FixedPositionalEmbedding(emb_dim)
else:
axial_position_shape = default(axial_position_shape,
(max_seq_len // bucket_size_list[0], bucket_size_list[0]))
self.pos_emb = AxialPositionalEmbedding(emb_dim, axial_position_shape)
self.reformer = Reformer_tune(dim, depth, max_seq_len, heads=heads, dim_head=dim_head,
bucket_size_list=bucket_size_list,
n_hashes_list=n_hashes_list, ff_chunks=ff_chunks, attn_chunks=attn_chunks,
causal=causal,
weight_tie=weight_tie, lsh_dropout=lsh_dropout, ff_mult=ff_mult,
ff_activation=ff_activation, ff_glu=ff_glu, ff_dropout=ff_dropout,
post_attn_dropout=0., layer_dropout=layer_dropout,
random_rotations_per_head=random_rotations_per_head,
twin_attention=twin_attention,
use_scale_norm=use_scale_norm, use_rezero=use_rezero, use_full_attn=use_full_attn,
full_attn_thres=full_attn_thres, reverse_thres=reverse_thres,
num_mem_kv=num_mem_kv,
one_value_head=one_value_head, n_local_attn_heads=n_local_attn_heads,
pkm_layers=pkm_layers, pkm_num_keys=pkm_num_keys, attn_type_list=attn_type_list,
store_stats=store_stats, scheduler_hashes=scheduler_hashes, thresh=thresh)
if return_embeddings:
self.out = Identity()
return
self.out = nn.Sequential(
nn.Linear(dim, emb_dim) if emb_dim != dim else Identity(),
nn.Linear(emb_dim, num_tokens) if not weight_tie_embedding else MatrixMultiply(self.token_emb.weight,
transpose=True,
normalize=True)
)
self.init_weights()
def init_weights(self):
initrange = 0.1
self.token_emb.weight.data.uniform_(-initrange, initrange)
self.out[1].bias.data.zero_()
self.out[1].weight.data.uniform_(-initrange, initrange)
def forward(self, x, **kwargs):
x = self.token_emb(x)
x = x + self.pos_emb(x).type_as(x)
# x = self.pos_emb(x)
x = self.to_model_dim(x)
x = self.reformer(x, **kwargs)
return self.out(x)
def clear_non_rotation_gradients(self):
# clear gradients from triplet loss
for i in range(len(self.reformer.layer_modules) // 2):
f = self.reformer.layer_modules[2 * i].fn
g = self.reformer.layer_modules[(2 * i) + 1].fn
# only zero out toqk, tov, and to_out
# leave gradients of rotations
f.toqk.zero_grad()
f.tov.zero_grad()
f.to_out.zero_grad()
g.zero_grad()
def get_triplet_loss(self):
total = 0
for i in range(len(self.reformer.layer_modules) // 2):
f = self.reformer.layer_modules[2 * i].fn
if f.triplet_loss is not None:
total += f.triplet_loss
return total
def update_simhash(self):
for i in range(len(self.reformer.layer_modules) // 2):
f = self.reformer.layer_modules[2 * i].fn
attn_fn = f.lsh_attn
if hasattr(attn_fn, 'simhash'):
attn_fn.update_simhash()
def reset_triplet(self):
for i in range(len(self.reformer.layer_modules) // 2):
f = self.reformer.layer_modules[2 * i].fn
attn_fn = f.lsh_attn
if hasattr(attn_fn, 'rotations'):
attn_fn.reset_rotations()
def get_statistics(self, batch_size):
means = []
for i in range(len(self.reformer.layer_modules) // 2):
f = self.reformer.layer_modules[2 * i].fn
attn_fn = f.lsh_attn
means.append(attn_fn.mean_dp / attn_fn.stat_count)
attn_fn.mean_dp = 0.0
attn_fn.stat_count = 0
return means
def set_alpha(self, alpha):
for i in range(len(self.reformer.layer_modules) // 2):
f = self.reformer.layer_modules[2 * i].fn
attn_fn = f.lsh_attn
if hasattr(attn_fn, 'alpha'):
attn_fn.alpha = alpha
def clear_triplet_loss(self):
for i in range(len(self.reformer.layer_modules) // 2):
f = self.reformer.layer_modules[2 * i].fn
if f.triplet_loss is not None:
f.triplet_loss = None
def save_triplet_params(self, prefix):
for i in range(len(self.reformer.layer_modules) // 2):
f = self.reformer.layer_modules[2 * i].fn
weight = f.lsh_attn.rotations.weight
torch.save(weight, prefix + '%d.pt' % i)
class ReformerLM(nn.Module):
def __init__(self, num_tokens, dim, depth, max_seq_len, heads=8, dim_head=None, bucket_size=64, n_hashes=4,
ff_chunks=100, attn_chunks=1, causal=False, weight_tie=False, lsh_dropout=0., ff_dropout=0., ff_mult=4,
ff_activation=None, ff_glu=False, post_attn_dropout=0., layer_dropout=0.,
random_rotations_per_head=False, twin_attention=False, use_scale_norm=False, use_rezero=False,
use_full_attn=False, full_attn_thres=0, reverse_thres=0, num_mem_kv=0, one_value_head=False,
emb_dim=None, return_embeddings=False, weight_tie_embedding=False, fixed_position_emb=False,
absolute_position_emb=False, axial_position_shape=None, n_local_attn_heads=0, pkm_layers=tuple(),
pkm_num_keys=128, attn_type='lsh', store_stats=False):
super().__init__()
emb_dim = default(emb_dim, dim)
self.max_seq_len = max_seq_len
self.token_emb = nn.Embedding(num_tokens, emb_dim)
self.to_model_dim = Identity() if emb_dim == dim else nn.Linear(emb_dim, dim)
if absolute_position_emb:
# self.pos_emb = PositionalEncoding(emb_dim, layer_dropout, max_seq_len)
self.pos_emb = AbsolutePositionalEmbedding(emb_dim, max_seq_len)
elif fixed_position_emb:
self.pos_emb = FixedPositionalEmbedding(emb_dim)
else:
axial_position_shape = default(axial_position_shape, (max_seq_len // bucket_size, bucket_size))
self.pos_emb = AxialPositionalEmbedding(emb_dim, axial_position_shape)
self.reformer = Reformer(dim, depth, max_seq_len, heads=heads, dim_head=dim_head, bucket_size=bucket_size,
n_hashes=n_hashes, ff_chunks=ff_chunks, attn_chunks=attn_chunks, causal=causal,
weight_tie=weight_tie, lsh_dropout=lsh_dropout, ff_mult=ff_mult,
ff_activation=ff_activation, ff_glu=ff_glu, ff_dropout=ff_dropout,
post_attn_dropout=0., layer_dropout=layer_dropout,
random_rotations_per_head=random_rotations_per_head, twin_attention=twin_attention,
use_scale_norm=use_scale_norm, use_rezero=use_rezero, use_full_attn=use_full_attn,
full_attn_thres=full_attn_thres, reverse_thres=reverse_thres, num_mem_kv=num_mem_kv,
one_value_head=one_value_head, n_local_attn_heads=n_local_attn_heads,
pkm_layers=pkm_layers, pkm_num_keys=pkm_num_keys, attn_type=attn_type,
store_stats=store_stats)
if return_embeddings:
self.out = Identity()
return
self.out = nn.Sequential(
nn.Linear(dim, emb_dim) if emb_dim != dim else Identity(),
nn.Linear(emb_dim, num_tokens) if not weight_tie_embedding else MatrixMultiply(self.token_emb.weight,
transpose=True,
normalize=True)
)
self.init_weights()
def init_weights(self):
initrange = 0.1
self.token_emb.weight.data.uniform_(-initrange, initrange)
self.out[1].bias.data.zero_()
self.out[1].weight.data.uniform_(-initrange, initrange)
def forward(self, x, **kwargs):
x = self.token_emb(x)
x = x + self.pos_emb(x).type_as(x)
# x = self.pos_emb(x)
x = self.to_model_dim(x)
x = self.reformer(x, **kwargs)
return self.out(x)
def clear_non_rotation_gradients(self):
# clear gradients from triplet loss
for i in range(len(self.reformer.layer_modules) // 2):
f = self.reformer.layer_modules[2 * i].fn
g = self.reformer.layer_modules[(2 * i) + 1].fn
# only zero out toqk, tov, and to_out
# leave gradients of rotations
f.toqk.zero_grad()
f.tov.zero_grad()
f.to_out.zero_grad()
g.zero_grad()
def get_triplet_loss(self):
total = 0
for i in range(len(self.reformer.layer_modules) // 2):
f = self.reformer.layer_modules[2 * i].fn
if f.triplet_loss is not None:
total += f.triplet_loss
return total
def update_simhash(self):
for i in range(len(self.reformer.layer_modules) // 2):
f = self.reformer.layer_modules[2 * i].fn
attn_fn = f.lsh_attn
if hasattr(attn_fn, 'simhash'):
attn_fn.update_simhash()
def reset_triplet(self):
for i in range(len(self.reformer.layer_modules) // 2):
f = self.reformer.layer_modules[2 * i].fn
attn_fn = f.lsh_attn
if hasattr(attn_fn, 'rotations'):
attn_fn.reset_rotations()
def set_alpha(self, alpha):
for i in range(len(self.reformer.layer_modules) // 2):
f = self.reformer.layer_modules[2 * i].fn
attn_fn = f.lsh_attn
if hasattr(attn_fn, 'alpha'):
attn_fn.alpha = alpha
def get_statistics(self, batch_size):
means = []
for i in range(len(self.reformer.layer_modules) // 2):
f = self.reformer.layer_modules[2 * i].fn
attn_fn = f.lsh_attn
means.append(attn_fn.mean_dp / attn_fn.stat_count)
attn_fn.mean_dp = 0.0
attn_fn.stat_count = 0
return means
def clear_triplet_loss(self):
for i in range(len(self.reformer.layer_modules) // 2):
f = self.reformer.layer_modules[2 * i].fn
if f.triplet_loss is not None:
f.triplet_loss = None
def save_triplet_params(self, prefix):
for i in range(len(self.reformer.layer_modules) // 2):
f = self.reformer.layer_modules[2 * i].fn
weight = f.lsh_attn.rotations.weight
torch.save(weight, prefix + '%d.pt' % i)
|
mongoose-master
|
mongoose_reformer/reformer_lib/reformer_pytorch.py
|
mongoose-master
|
mongoose_slide/__init__.py
|
|
import os
import sys
import numpy as np
import torch
from torch.utils.data import Dataset, DataLoader
class MultiLabelDataset(Dataset):
def __init__(self, filename):
self.build(filename)
def build(self, filename):
with open(filename) as f:
metadata = f.readline().split()
self.N = int(metadata[0])
self.D = int(metadata[1])
self.L = int(metadata[2])
self.max_L = 0
self.max_D = 0
self.data = list()
for idx in range(self.N):
items = f.readline().split()
labels = [int(x) for x in items[0].split(",")]
self.max_L = max(self.max_L, len(labels))
ids = list()
for fdx in range(1, len(items), 1):
fid, fv = items[fdx].split(":")
ids.append( int(fid) )
self.max_D = max(self.max_D, len(ids))
self.data.append( [torch.from_numpy(np.asarray(x)) for x in [labels, ids]] )
if idx % 100000 == 0:
print(idx)
def pad(self, item, width, value):
result = torch.zeros(width).long()
result.fill_(value)
result[:len(item)] = item
return result
def __len__(self):
return self.N
def __getitem__(self, idx):
labels, data = self.data[idx]
return self.pad(labels, self.max_L, -1), self.pad(data, self.max_D, self.D)
class ValidDataset(Dataset):
def __init__(self, filename):
self.build(filename)
def build(self, filename):
with open(filename) as f:
metadata = f.readline().split()
self.N = int(int(metadata[0]) * 0.025)
#self.N = int(metadata[0])
self.D = int(metadata[1])
self.L = int(metadata[2])
self.max_L = 0
self.max_D = 0
self.data = list()
for idx in range(self.N):
items = f.readline().split()
labels = [int(x) for x in items[0].split(",")]
self.max_L = max(self.max_L, len(labels))
ids = list()
for fdx in range(1, len(items), 1):
fid, fv = items[fdx].split(":")
ids.append( int(fid) )
self.max_D = max(self.max_D, len(ids))
self.data.append( [torch.from_numpy(np.asarray(x)) for x in [labels, ids]] )
if idx % 100000 == 0:
print(idx)
def pad(self, item, width, value):
result = torch.zeros(width).long()
result.fill_(value)
result[:len(item)] = item
return result
def __len__(self):
return self.N
def __getitem__(self, idx):
labels, data = self.data[idx]
return self.pad(labels, self.max_L, -1), self.pad(data, self.max_D, self.D)
|
mongoose-master
|
mongoose_slide/slide_lib/lazy_parser.py
|
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import numpy as np
from mongoose_slide.slide_lib.simHash import SimHash
from mongoose_slide.slide_lib.lsh import LSH
import time
use_cuda = torch.cuda.is_available()
device = torch.device("cuda:0" if use_cuda else "cpu")
class LSHSoftmax(nn.Module):
def __init__(self, N, D, K, L, freq):
super(LSHSoftmax, self).__init__()
self.D = D
self.N = N
self.K = K
self.L = L
# Rebuild Settings
self.freq = freq
self.count = 0
self.sample_size = 0
self.lsh = LSH(SimHash(D, K, L), K, L)
self.params = nn.Linear(D, N)
self.init_weights(self.params.weight, self.params.bias)
def init_weights(self, weight, bias):
initrange = 0.05
weight.data.uniform_(-initrange, initrange)
bias.data.fill_(0)
def build(self, lsh):
# lsh.stats()
lsh.clear()
lsh.insert_multi(self.params.weight.to(device).data, self.N)
def sampled(self, inputs, labels, debug=False):
if self.lsh.count % self.freq == 0:
print("RESET HASH!!!")
self.build(self.lsh)
# self.lsh.stats()
# Query LSH Database
t1 = time.time()
N, D = inputs.size()
# sid = self.lsh.query_multi(inputs.data, N)
sid, hashcode = self.lsh.query_multi(inputs.data, N)
# print("sid length",len(sid))
# print("sid",sid)
sampled_ip = 0
sampled_cos = 0
if debug:
product_list = []
dif_list = []
cos_list = []
for idex, h in enumerate(hashcode):
d = inputs[idex]
sid_debug = self.lsh.query_fp(h)
if len(sid_debug) > 0:
retrieved = Variable(torch.from_numpy(np.asarray(list(sid_debug))), requires_grad=False).to(
device).long()
random_sample_ids = torch.randint(0, self.N, (int(len(sid_debug)),)).to(device)
random_weights = F.embedding(random_sample_ids, self.params.weight, sparse=True)
random_product = random_weights.matmul(d.t()).t()
random_cos = (1 - torch.acos(
F.cosine_similarity(d.repeat(1, random_weights.size()[0]).view(random_weights.size()[0], -1),
random_weights)) / 3.141592653)
weights = F.embedding(retrieved, self.params.weight, sparse=True)
product = weights.matmul(d.t()).t()
cos = (1 - torch.acos(
F.cosine_similarity(d.repeat(1, weights.size()[0]).view(weights.size()[0], -1),
weights)) / 3.141592653)
cos_list += [torch.mean(cos).item() - torch.mean(random_cos).item()]
product_list += [torch.mean(product).item()]
dif_list += [torch.mean(product).item() - torch.mean(random_product).item()]
# print("mean of product_list", torch.mean( torch.from_numpy( np.asarray( product_list))))
print("mean of sampe - random ", torch.mean(torch.from_numpy(np.asarray(dif_list))))
print("mean of sampe - random cos", torch.mean(torch.from_numpy(np.asarray(cos_list))))
# print("retrieved size: ", len(sid))
sampled_ip = torch.mean(torch.from_numpy(np.asarray(dif_list)))
sampled_cos = torch.mean(torch.from_numpy(np.asarray(cos_list)))
sid_list, target_matrix = self.lsh.multi_label(labels.data.cpu().numpy(), sid)
new_targets = Variable(torch.from_numpy(target_matrix)).to(device)
sample_ids = Variable(torch.from_numpy(np.asarray(sid_list, dtype=np.int64)), requires_grad=False).to(device)
sample_size = sample_ids.size(0)
self.lsh.sample_size += sample_size
self.lsh.count += 1
# print(sample_size)
# gather sample ids - weights and frequencies
t1 = time.time()
sample_weights = F.embedding(sample_ids, self.params.weight, sparse=True)
sample_bias = self.params.bias[sample_ids]
sample_logits = sample_weights.matmul(inputs.t()).t() + sample_bias
# self.lsh.stats()
return sample_logits, new_targets, sample_size, sampled_ip, sampled_cos
def forward(self, inputs, labels, debug=False):
if self.training:
return self.sampled(inputs, labels, debug)
else:
logits = torch.matmul(inputs, self.params.weight.t()) + self.params.bias
return logits
|
mongoose-master
|
mongoose_slide/slide_lib/lsh_softmax.py
|
import torch
from mongoose_slide.slide_lib.cupy_kernel import cupyKernel
import numpy as np
use_cuda = torch.cuda.is_available()
device = torch.device("cuda:0" if use_cuda else "cpu")
kernel = '''
extern "C"
__global__ void fingerprint(const float* src, const int k, const int L, long* fp)
{
// product (N x kL bits) -> Column-Major Order
// const int L = gridDim.y;
// const int k = blockDim.x;
int offset = (k * L * blockIdx.x) + (k * blockIdx.y + threadIdx.x);
long value = (threadIdx.x >= k || src[offset] <= 0) ? 0 : 1;
value <<= threadIdx.x;
for (int offset = warpSize/2; offset > 0; offset /= 2)
{
value |= __shfl_down_sync(0xFFFFFFFF, value, offset, 32);
}
if(!threadIdx.x)
{
int fp_offset = L * blockIdx.x + blockIdx.y;
fp[fp_offset] = value;
}
}
'''
class SimHash:
def __init__(self, d_, k_, L_, weights=None,seed_=8191):
self.d = d_
self.k = k_
self.L = L_
self.fp = cupyKernel(kernel, "fingerprint")
if weights is None:
self.rp = SimHash.generate(d_, k_, L_, seed_)
else:
self.rp = SimHash.generate_from_weight(weights)
# def generate_from_weight(weights):
# #print("generated from triplet weight")
# return weights.to(device)
# def generate(d, k, L, seed):
# return torch.randn(d, k*L).to(device)
def generate_from_weight(weights):
#print("generated from triplet weight")
matrix = weights
positive = torch.gt(matrix, 0).int()
negative = (matrix < 0.0).int()
result = (positive - negative).float()
#return result.cpu()
return result.to(device)
def generate(d, k, L, seed):
print("random generate hash table weight")
rand_gen = np.random.RandomState(seed)
matrix = rand_gen.randn(d, k*L)
positive = np.greater_equal(matrix, 0.0)
negative = np.less(matrix, 0.0)
result = positive.astype(np.float32) - negative.astype(np.float32)
return torch.from_numpy(result).to(device)
# def generate_from_list(srp_list):
# matrices = [item.rp for item in srp_list]
# return torch.cat(matrices, dim=1)
def hash(self, data, transpose=False):
N, D = data.size()
srp = torch.matmul(data.to(device), self.rp)
#print("srp", srp)
result = self.fingerprint(srp, N)
#print("result", result)
if transpose:
result = torch.t(result)
return result
# def hash(self, data, transpose=False):
# N, D = data.size()
# srp = torch.matmul(data, self.rp)
# positive = torch.gt(srp, 0).int()
# negative = (srp < 0.0).int()
# srp = (positive - negative).float()
# result = self.fingerprint(srp, N)
# if transpose:
# result = torch.t(result)
# return result
def fingerprint(self, srp, N):
result = torch.zeros(N, self.L).long().to(device)
self.fp(grid=(N,self.L,1),
block=(32,1,1),
args=[srp.data_ptr(), self.k, self.L, result.data_ptr()],
strm=torch.cuda.current_stream().cuda_stream)
return result.int()
|
mongoose-master
|
mongoose_slide/slide_lib/simHash.py
|
mongoose-master
|
mongoose_slide/slide_lib/__init__.py
|
|
import collections
import os
import sys
import math
import random
import numpy as np
import numpy.random
import scipy as sp
import scipy.stats
import torch
import os
from clsh import pyLSH
# os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" # see issue #152
# os.environ["CUDA_VISIBLE_DEVICES"]=config.gpu
use_cuda = torch.cuda.is_available()
device = torch.device("cuda:0" if use_cuda else "cpu")
class LSH:
def __init__(self, func_, K_, L_, threads_= 8):
self.func = func_
self.K = K_
self.L = L_
self.lsh_ = pyLSH(self.K, self.L, threads_)
self.sample_size = 0
self.count = 0
def setSimHash(self, func_):
self.func = func_
def resetLSH(self, func_):
self.func = func_
self.clear()
def stats(self):
avg_size = self.sample_size // max(self.count, 1)
print("hashtable avg_size", avg_size)
self.sample_size = 0
self.count = 0
return avg_size
def remove_insert(self, item_id, old_item, new_fp):
old_fp = self.func.hash(old_item).int().cpu().numpy()
self.lsh_.remove(np.squeeze(old_fp), item_id)
self.lsh_.insert(new_fp, item_id)
def insert(self, item_id, item):
fp = self.func.hash(item).int().cpu().numpy()
self.lsh_.insert(np.squeeze(fp), item_id)
def insert_fp(self, item_id, fp):
self.lsh_.insert(np.squeeze(fp), item_id)
def insert_multi(self, items, N):
fp = self.func.hash(items).int().cpu().numpy()
# print("lsh new: fp", fp)
self.lsh_.insert_multi(fp, N)
def query(self, item):
fp = np.ascontiguousarray(self.func.hash(item).int().cpu())
return self.lsh_.query(np.squeeze(fp))
def query_fp(self, fp):
fp = np.ascontiguousarray(fp)
return self.lsh_.query(fp)
def query_multi(self, items, N):
#fp = np.ascontiguousarray(self.func.hash(items, transpose=True).int().cpu())
fp = np.ascontiguousarray(self.func.hash(items, transpose=False).int().cpu())
return self.lsh_.query_multi(fp, N), fp
def query_multi_mask(self, item, M, N):
fp = self.func.hash(item).int().cpu().numpy()
#print("query_multi_mask", fp)
mask = torch.zeros(M, N, dtype=torch.float32)
# mask_L = torch.zeros(M, self.L, N,dtype=torch.float32)
self.lsh_.query_multi_mask(fp, mask.numpy(), M, N)
# self.lsh_.query_multi_mask_L(fp, mask.numpy(), mask_L.numpy(), M, N)
return mask.to(device), fp
def accidental_match(self, labels, samples, N):
self.lsh_.accidental_match(labels, samples, N)
def multi_label(self, labels, samples):
return self.lsh_.multi_label(labels, samples)
def multi_label_nonunion(self, labels, mask):
return self.lsh_.multi_label_nonunion(labels, mask)
# def query_remove_matrix(self, items, labels, total_size):
# # for each data sample, query lsh data structure, remove accidental hit
# # find maximum number of samples
# # create matrix and pad appropriately
# batch_size, D = items.size()
# fp = self.func.hash(items).int().cpu().numpy()
# result, total_count = self.lsh_.query_matrix(fp, labels.cpu().numpy(), batch_size, total_size)
# batch_size, ssize = result.shape
# self.sample_size += total_count
# self.count += batch_size
# return result
def query_remove_matrix(self, items, labels, total_size):
# for each data sample, query lsh data structure, remove accidental hit
# find maximum number of samples
# create matrix and pad appropriately
batch_size, D = items.size()
fp = self.func.hash(items).int().cpu().numpy()
result, total_count = self.lsh_.query_matrix(fp, labels, batch_size, total_size)
batch_size, ssize = result.shape
self.sample_size += total_count
self.count += batch_size
return result,fp
def query_remove(self, item, label):
fp = self.func.hash(item).int().cpu().numpy()
result = self.lsh_.query(np.squeeze(fp))
if label in result:
result.remove(label)
self.sample_size += len(result)
self.count += 1
return list(result)
def print_stats(self):
print("in lsh new")
return self.lsh_.print_stats()
def clear(self):
self.lsh_.clear()
|
mongoose-master
|
mongoose_slide/slide_lib/lsh.py
|
import cupy as cp
from cupy.cuda import function
from cupy.cuda import device
from pynvrtc.compiler import Program
from collections import namedtuple
# CUDA Stream
Stream = namedtuple('Stream', ['ptr'])
class cupyKernel:
def __init__(self, kernel, func_name):
self.kernel = kernel
self.title = func_name + ".cu"
self.func_name = func_name
self.compiled = False
def get_compute_arch():
return "compute_{0}".format(device.Device().compute_capability)
def compile(self):
# Create program
program = Program(self.kernel, self.title)
# Compile program
arch = "-arch={0}".format(cupyKernel.get_compute_arch())
ptx = program.compile([arch])
# Load Program
m = function.Module()
m.load(bytes(ptx.encode()))
# Get Function Pointer
self.func = m.get_function(self.func_name)
self.compiled = True
def __call__(self, grid, block, args, strm):
if not self.compiled:
self.compile()
# Run Function
self.func(grid,
block,
args,
stream=Stream(ptr=strm))
|
mongoose-master
|
mongoose_slide/slide_lib/cupy_kernel.py
|
import numpy as np
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from torch.utils.data import Dataset
from mongoose_slide.slide_lib.simHash import SimHash
from mongoose_slide.slide_lib.lsh import LSH
use_cuda = torch.cuda.is_available()
device = torch.device("cuda:0" if use_cuda else "cpu")
np.random.seed(1234)
torch.manual_seed(1234)
class LSHSampledLayer(nn.Module):
def __init__(self, hash_weight, layer_size, K, L, num_class):
super(LSHSampledLayer, self).__init__()
self.D = layer_size
self.K = K
self.L = L
self.num_class = num_class
self.hash_weight = hash_weight
self.store_query = True
# last layer
self.params = nn.Linear(layer_size, num_class)
self.params.bias = nn.Parameter(torch.Tensor(num_class, 1))
self.init_weights(self.params.weight, self.params.bias)
# construct lsh using triplet weight
self.lsh = None
self.initializeLSH()
self.count = 0
self.sample_size = 0
self.thresh_hash = SimHash(self.D+1, 1, self.L)
self.thresh = 0.3
self.hashcodes = self.thresh_hash.hash(torch.cat((self.params.weight, self.params.bias), dim = 1))
for name in self.backward_timer_names:
self.backward_timer[name] = []
for name in self.forward_timer_names:
self.forward_timer[name] = []
def initializeLSH(self):
self.lsh = LSH( SimHash(self.D+1, self.K, self.L, self.hash_weight), self.K, self.L )
weight_tolsh = torch.cat( (self.params.weight, self.params.bias), dim = 1)
self.lsh.insert_multi(weight_tolsh.to(device).data, self.num_class )
def setSimHash(self, seed, hashweight = None):
print("update simhash")
if(hashweight!=None):
self.lsh.setSimHash( SimHash(self.D+1, self.K, self.L, hashweight ) )
def rebuild(self):
weight_tolsh = torch.cat((self.params.weight, self.params.bias), dim=1)
check = self.thresh_hash.hash(weight_tolsh)
distance = check - self.hashcodes
if torch.sum(torch.abs(distance))>self.thresh*distance.numel():
print("Rebuild LSH")
self.lsh.clear()
#include bias
self.lsh.insert_multi(weight_tolsh.to(device).data, self.num_class )
self.hashcodes = check
else:
print("No need")
def init_weights(self, weight, bias):
initrange = 0.05
weight.data.uniform_(-initrange, initrange)
bias.data.fill_(0)
# bias.require_gradient = False
def train_forward(self, x, y, triplet_flag, debug=False):
'''weight normalization'''
N, D = x.size()
# sid, hashcode = self.lsh.query_multi(x.data, N)
query_tolsh = torch.cat( (x, torch.ones(N).unsqueeze(dim = 1).to(device)), dim = 1 )
sid, hashcode = self.lsh.query_multi(query_tolsh.data, N)
sampled_ip = 0
sampled_cos = 0
sizes = 0
retrieved_size = sizes * 1.0 / N
# add y
sid_list, target_matrix = self.lsh.multi_label(y.data.cpu().numpy(), sid)
new_targets = Variable(torch.from_numpy(target_matrix)).to(device)
sample_ids = Variable(torch.from_numpy(np.asarray(sid_list, dtype=np.int64)), requires_grad=False).to(device)
sample_size = sample_ids.size(0)
# print("sample size", sample_size)
sample_weights = F.embedding(sample_ids, self.params.weight, sparse=True)
sample_bias = self.params.bias.squeeze()[sample_ids]
sample_product = sample_weights.matmul(x.t()).t()
sample_logits = sample_product + sample_bias
self.lsh.sample_size += sample_size
weight_pair = {}
return sample_logits, new_targets, sample_size, retrieved_size, weight_pair, hashcode, sampled_ip, sampled_cos
def forward(self, x, y, triplet_flag, debug):
if self.training:
# self.speed_test(x, y)
return self.train_forward(x, y, triplet_flag, debug)
else:
return torch.matmul(x, self.params.weight.t()) + self.params.bias.squeeze()
class Net(nn.Module):
def __init__(self, input_size, output_size, layer_size, hash_weight, K, L):
super(Net, self).__init__()
stdv = 1. / math.sqrt(input_size)
self.input_size = input_size
self.output_size = output_size
self.layer_size = layer_size
self.fc = nn.Embedding(self.input_size + 1, 128, padding_idx=input_size, sparse=True)
self.bias = nn.Parameter(torch.Tensor(layer_size))
self.bias.data.uniform_(-stdv, stdv)
self.lshLayer = LSHSampledLayer(hash_weight, layer_size, K, L, output_size)
def forward(self, x, y, triplet_flag, debug):
emb = torch.sum(self.fc(x), dim=1)
emb = emb / torch.norm(emb, dim=1, keepdim=True)
query = F.relu(emb + self.bias)
return self.lshLayer.forward(query, y, triplet_flag, debug)
def forward_full(self, x, y, t1, t2):
with torch.no_grad():
N,d = x.size()
emb = torch.sum(self.fc(x), dim=1)
emb = emb / torch.norm(emb, dim=1, keepdim=True)
query = F.relu(emb + self.bias)
product = torch.matmul(query, self.lshLayer.params.weight.t())
t1 = 0.001
t2 = 0.5
t1_th = int(self.output_size * (1 - t1) ) # positive inner product rank
t2_th = int(self.output_size * (1 - t2) ) # negative inner product rank
t1_ip = torch.mean( torch.kthvalue(product, t1_th )[0]).item()
t1_ip = max(0.0, t1_ip)
t2_ip = torch.mean( torch.kthvalue(product, t2_th )[0]).item()
#ip threshold mask
ip_t1_mask = product > t1_ip
ip_t2_mask = product < t2_ip
query = torch.cat( (query.data, torch.ones(N).unsqueeze(dim = 1).to(device)), dim = 1 )
retrieved, _ = self.lshLayer.lsh.query_multi_mask(query, N, self.output_size)
retrieved = retrieved.bool()
positive_mask = ip_t1_mask & (~retrieved)
negative_mask = ip_t2_mask & retrieved
num_negative = torch.sum(negative_mask).item()
num_positive = torch.sum(positive_mask).item()
row, column = torch.where(positive_mask == 1)
p_arc = query[row].detach()
p_pos = torch.cat( (self.lshLayer.params.weight[column], self.lshLayer.params.bias[column]), dim = 1).detach()
assert p_arc.size()[0]==p_pos.size()[0]
assert p_arc.size()[1]==p_pos.size()[1]
row, column = torch.where(negative_mask == 1)
n_arc = query[row].detach()
n_neg = torch.cat( (self.lshLayer.params.weight[column], self.lshLayer.params.bias[column]), dim = 1).detach()
assert n_arc.size()[0]==n_neg.size()[0]
assert n_arc.size()[1]==n_neg.size()[1]
#down sample
size = min(num_negative, num_positive)
if(num_positive < num_negative):
random_perm = torch.randperm(num_negative)
permute_id=random_perm[: int(num_positive)]
n_arc = n_arc[permute_id]
n_neg = n_neg[permute_id]
num_negative = n_arc.size()[0]
else:
random_perm = torch.randperm(num_positive)
permute_id=random_perm[:int(num_negative)]
p_arc = p_arc[permute_id]
p_pos = p_pos[permute_id]
num_positive = p_arc.size()[0]
return p_arc,p_pos,n_arc,n_neg,num_negative
class MultiLabelDataset(Dataset):
def __init__(self, filename):
self.build(filename)
def build(self, filename):
with open(filename) as f:
metadata = f.readline().split()
self.N = int(metadata[0])
self.D = int(metadata[1])
self.L = int(metadata[2])
self.max_L = 0
self.max_D = 0
self.data = list()
for idx in range(self.N):
items = f.readline().split()
labels = [int(x) for x in items[0].split(",")]
self.max_L = max(self.max_L, len(labels))
ids = list()
# fvs = list()
for fdx in range(1, len(items), 1):
fid, fv = items[fdx].split(":")
ids.append(int(fid))
# fvs.append( float(fv) )
self.max_D = max(self.max_D, len(ids))
self.data.append([torch.from_numpy(np.asarray(x)) for x in [labels, ids]])
# if idx % 100000 == 0:
# print(idx)
def pad(self, item, width, value):
result = torch.zeros(width).long()
result.fill_(value)
result[:len(item)] = item
return result
def __len__(self):
return self.N
def __getitem__(self, idx):
labels, idxs = self.data[idx]
return self.pad(labels, self.max_L, -1), self.pad(idxs, self.max_D, self.D)
|
mongoose-master
|
mongoose_slide/slide_lib/network.py
|
import torch
import torch.nn as nn
import torch.nn.functional as F
use_cuda = torch.cuda.is_available()
device = torch.device("cuda:0" if use_cuda else "cpu")
class TripletNet(nn.Module):
def __init__(self, margin, K, L, layer_size):
super(TripletNet, self).__init__()
self.K = K
self.L = L
self.dense1 = nn.Linear(layer_size, K*L)
self.init_weights(self.dense1.weight, self.dense1.bias)
self.dense1.bias.requires_grad = False
self.margin = margin
self.device = device
def init_weights(self, weight, bias):
weight.data.normal_(0,1)
bias.data.fill_(0)
def forward(self, arc, pair, label):
emb_arc = self.dense1(arc)
emb_pair = self.dense1(pair)
# embedding chunk - L1
emb_arc_chunk = torch.cat(torch.chunk(emb_arc, self.L, dim = 1 ))
emb_pair_chunk = torch.cat(torch.chunk(emb_pair, self.L, dim = 1 ))
label_chunk = label.repeat(self.L)
assert emb_arc_chunk.size()==emb_pair_chunk.size()
assert emb_arc_chunk.size()[0]==label_chunk.size()[0]
beta = 1
alpha = 0.5
emb_arc_chunk = torch.tanh( beta * emb_arc_chunk)
emb_pair_chunk = torch.tanh( beta * emb_pair_chunk)
# agree_x_p = torch.mean( ((emb_arc_chunk > 0) == (emb_pair_chunk > 0 ))[label_chunk==1].float() )
# agree_x_n = torch.mean( ((emb_arc_chunk > 0) == (emb_pair_chunk > 0 ))[label_chunk==0].float() )
#
# print("\nagree_x_p", agree_x_p)
# print("agree_x_n", agree_x_n)
output = torch.sum(emb_arc_chunk * emb_pair_chunk, dim= 1)
assert output.size()==label_chunk.size()
output_loss = F.binary_cross_entropy(F.sigmoid(output), label_chunk)
# reg_loss=torch.mean(torch.norm(self.dense1.weight,dim=1))
# loss = output_loss+0.05*reg_loss
loss = output_loss
return loss
|
mongoose-master
|
mongoose_slide/slide_lib/triplet_network.py
|
import math
import torch
from torch.optim import Optimizer
class Adam(Optimizer):
"""Implements Adam algorithm.
It has been proposed in `Adam: A Method for Stochastic Optimization`_.
Arguments:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups
lr (float, optional): learning rate (default: 1e-3)
betas (Tuple[float, float], optional): coefficients used for computing
running averages of gradient and its square (default: (0.9, 0.999))
eps (float, optional): term added to the denominator to improve
numerical stability (default: 1e-8)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
amsgrad (boolean, optional): whether to use the AMSGrad variant of this
algorithm from the paper `On the Convergence of Adam and Beyond`_
.. _Adam\: A Method for Stochastic Optimization:
https://arxiv.org/abs/1412.6980
.. _On the Convergence of Adam and Beyond:
https://openreview.net/forum?id=ryQu7f-RZ
"""
def __init__(self, params, lr=1e-5, betas=(0.9, 0.999), eps=1e-8,
weight_decay=0, amsgrad=False):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
if not 0.0 <= betas[0] < 1.0:
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
if not 0.0 <= betas[1] < 1.0:
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
defaults = dict(lr=lr, betas=betas, eps=eps,
weight_decay=weight_decay, amsgrad=amsgrad)
super(Adam, self).__init__(params, defaults)
def __setstate__(self, state):
super(Adam, self).__setstate__(state)
for group in self.param_groups:
group.setdefault('amsgrad', False)
def dense(self, p, grad, group):
amsgrad = group['amsgrad']
state = self.state[p]
# State initialization
if len(state) == 0:
state['step'] = 0
# Exponential moving average of gradient values
state['exp_avg'] = torch.zeros_like(p.data)
# Exponential moving average of squared gradient values
state['exp_avg_sq'] = torch.zeros_like(p.data)
if amsgrad:
# Maintains max of all exp. moving avg. of sq. grad. values
state['max_exp_avg_sq'] = torch.zeros_like(p.data)
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
beta1, beta2 = group['betas']
if amsgrad:
max_exp_avg_sq = state['max_exp_avg_sq']
state['step'] += 1
if group['weight_decay'] != 0:
grad = grad.add(group['weight_decay'], p.data)
# Decay the first and second moment running average coefficient
exp_avg.mul_(beta1).add_(1 - beta1, grad)
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
if amsgrad:
# Maintains the maximum of all 2nd moment running avg. till now
torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq)
# Use the max. for normalizing running avg. of gradient
denom = max_exp_avg_sq.sqrt().add_(group['eps'])
else:
denom = exp_avg_sq.sqrt().add_(group['eps'])
bias_correction1 = 1 - beta1 ** state['step']
bias_correction2 = 1 - beta2 ** state['step']
step_size = group['lr'] * math.sqrt(bias_correction2) / bias_correction1
p.data.addcdiv_(-step_size, exp_avg, denom)
def sparse(self, p, grad, group):
state = self.state[p]
# State initialization
if len(state) == 0:
state['step'] = 0
# Exponential moving average of gradient values
state['exp_avg'] = torch.zeros_like(p.data)
# Exponential moving average of squared gradient values
state['exp_avg_sq'] = torch.zeros_like(p.data)
state['step'] += 1
grad = grad.coalesce() # the update is non-linear so indices must be unique
grad_indices = grad._indices()
grad_values = grad._values()
size = grad.size()
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
beta1, beta2 = group['betas']
def make_sparse(values):
constructor = grad.new
if grad_indices.dim() == 0 or values.dim() == 0:
return constructor().resize_as_(grad)
return constructor(grad_indices, values, size)
# Decay the first and second moment running average coefficient
# old <- b * old + (1 - b) * new <==> old += (1 - b) * (new - old)
old_exp_avg_values = exp_avg.sparse_mask(grad)._values()
exp_avg_update_values = grad_values.sub(old_exp_avg_values).mul_(1 - beta1)
exp_avg.add_(make_sparse(exp_avg_update_values))
old_exp_avg_sq_values = exp_avg_sq.sparse_mask(grad)._values()
exp_avg_sq_update_values = grad_values.pow(2).sub_(old_exp_avg_sq_values).mul_(1 - beta2)
exp_avg_sq.add_(make_sparse(exp_avg_sq_update_values))
# Dense addition again is intended, avoiding another sparse_mask
numer = exp_avg_update_values.add_(old_exp_avg_values)
exp_avg_sq_update_values.add_(old_exp_avg_sq_values)
denom = exp_avg_sq_update_values.sqrt_().add_(group['eps'])
del exp_avg_update_values, exp_avg_sq_update_values
bias_correction1 = 1 - beta1 ** state['step']
bias_correction2 = 1 - beta2 ** state['step']
step_size = group['lr'] * math.sqrt(bias_correction2) / bias_correction1
p.data.add_(make_sparse(-step_size * numer.div_(denom)))
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data
if grad.is_sparse:
self.sparse(p, grad, group)
else:
self.dense(p, grad, group)
return loss
|
mongoose-master
|
mongoose_slide/slide_lib/adam_base.py
|
from setuptools import setup
from setuptools.extension import Extension
from Cython.Build import cythonize
import numpy
setup(name="clsh",
ext_modules=cythonize(Extension(
"clsh", # the extension name
sources=["clsh.pyx", "LSH.cpp"], # the Cython source and additional C++ source files
language="c++", # generate and compile C++ code
include_dirs=[numpy.get_include()],
extra_compile_args=["-std=c++11"]
)))
|
mongoose-master
|
lsh_lib/setup.py
|
import torch
from cupy_kernel import cupyKernel
import numpy as np
kernel = '''
extern "C"
__global__ void fingerprint(const float* src, const int k, const int L, long* fp)
{
// product (N x kL bits) -> Column-Major Order
// const int L = gridDim.y;
// const int k = blockDim.x;
int offset = (k * L * blockIdx.x) + (k * blockIdx.y + threadIdx.x);
long value = (threadIdx.x >= k || src[offset] <= 0) ? 0 : 1;
value <<= threadIdx.x;
for (int offset = warpSize/2; offset > 0; offset /= 2)
{
value |= __shfl_down(value, offset);
}
if(!threadIdx.x)
{
int fp_offset = L * blockIdx.x + blockIdx.y;
fp[fp_offset] = value;
}
}
'''
class SimHash:
def __init__(self, d_, k_, L_, seed_=8191, srp_list=None):
self.d = d_
self.k = k_
self.L = L_
self.fp = cupyKernel(kernel, "fingerprint")
if srp_list is None:
self.rp = SimHash.generate(d_, k_, L_, seed_)
else:
self.rp = SimHash.generate_from_list(srp_list)
def generate_from_list(srp_list):
matrices = [item.rp for item in srp_list]
return torch.cat(matrices, dim=1)
def generate(d, k, L, seed):
rand_gen = np.random.RandomState(seed)
matrix = rand_gen.randn(d, k*L)
positive = np.greater_equal(matrix, 0.0)
negative = np.less(matrix, 0.0)
result = positive.astype(np.float32) - negative.astype(np.float32)
return torch.from_numpy(result).cuda()
def hash(self, data, transpose=False):
N, D = data.size()
srp = torch.matmul(data, self.rp)
result = self.fingerprint(srp, N)
if transpose:
result = torch.t(result)
return result
def fingerprint(self, srp, N):
result = torch.zeros(N, self.L).long().cuda()
self.fp(grid=(N,self.L,1),
block=(32,1,1),
args=[srp.data_ptr(), self.k, self.L, result.data_ptr()],
strm=torch.cuda.current_stream().cuda_stream)
return result
|
mongoose-master
|
lsh_lib/matrix_simhash.py
|
import torch
import query_mul
class QueryMulFn(torch.autograd.Function):
"""C = A @ B where A and B are dense matrices, but the output C is sparse, specified by CSR format
"""
@staticmethod
def forward(ctx, A, B, rowPtrC, colIdxC):
# Ensure that A and B are contiguous in the column-major format, to avoid copying twice in backward
A_cont = A.detach().t().contiguous().t() # Have to detach otherwise torch.autograd complains
B_cont = B.detach().t().contiguous().t()
ctx.save_for_backward(A_cont, B_cont, rowPtrC, colIdxC)
valC = query_mul.constrained_gemm(A_cont, B_cont, rowPtrC, colIdxC)
return valC
@staticmethod
def backward(ctx, grad):
A_cont, B_cont, rowPtrC, colIdxC = ctx.saved_tensors
grad_A, grad_B = None, None
if ctx.needs_input_grad[0]:
grad_A = query_mul.csrmm(grad, rowPtrC, colIdxC, B_cont, A_cont.shape[0], False, True)
if ctx.needs_input_grad[1]:
grad_B = query_mul.csrmm(grad, rowPtrC, colIdxC, A_cont, B_cont.shape[1], True, False).t()
return grad_A, grad_B, None, None
query_mul_fn = QueryMulFn.apply
|
mongoose-master
|
lsh_lib/query_mul_interface.py
|
import io
import os
import sys
from distutils.util import convert_path
from shutil import rmtree
from setuptools import Command, find_packages, setup
main_ns = {}
ver_path = convert_path("domino/version.py")
with open(ver_path) as ver_file:
exec(ver_file.read(), main_ns)
# Package meta-data.
NAME = "domino"
DESCRIPTION = ""
URL = ""
EMAIL = "eyuboglu@stanford.edu"
AUTHOR = "https://github.com/HazyResearch/domino"
REQUIRES_PYTHON = ">=3.7.0"
VERSION = main_ns["__version__"]
with open("README.md", "r") as fh:
long_description = fh.read()
REQUIRED = [
"meerkat-ml",
"pandas",
"numpy>=1.18.0",
"tqdm>=4.49.0",
# TODO: support scikit-learn 1.0.0
"scikit-learn==0.24.2",
"ipywidgets",
"seaborn",
"torch",
]
EXTRAS = {
"dev": [
"black==21.5b0",
"isort>=5.7.0",
"autoflake",
"flake8>=3.8.4",
"mypy>=0.9",
"docformatter>=1.4",
"pytest-cov>=2.10.1",
"sphinx-rtd-theme>=0.5.1",
"nbsphinx>=0.8.0",
"recommonmark>=0.7.1",
"parameterized",
"pre-commit>=2.9.3",
"sphinx-autobuild",
"sphinx-panels",
"jupyter-sphinx",
"pydata-sphinx-theme",
],
"text": ["transformers", "nltk"],
"eval": ["pytorch-lightning", "dcbench"],
"bit": ["torchvision"],
"clip": ["ftfy", "regex"],
}
# The rest you shouldn't have to touch too much :)
# ------------------------------------------------
# Except, perhaps the License and Trove Classifiers!
# If you do change the License, remember to change the Trove Classifier for that!
here = os.path.abspath(os.path.dirname(__file__))
# Import the README and use it as the long-description.
# Note: this will only work if 'README.md' is present in your MANIFEST.in file!
try:
with io.open(os.path.join(here, "README.md"), encoding="utf-8") as f:
long_description = "\n" + f.read()
except FileNotFoundError:
long_description = DESCRIPTION
# Load the package's __version__.py module as a dictionary.
about = {}
if not VERSION:
project_slug = NAME.lower().replace("-", "_").replace(" ", "_")
with open(os.path.join(here, project_slug, "__version__.py")) as f:
exec(f.read(), about)
else:
about["__version__"] = VERSION
class UploadCommand(Command):
"""Support setup.py upload."""
description = "Build and publish the package."
user_options = []
@staticmethod
def status(s):
"""Prints things in bold."""
print("\033[1m{0}\033[0m".format(s))
def initialize_options(self):
pass
def finalize_options(self):
pass
def run(self):
try:
self.status("Removing previous builds…")
rmtree(os.path.join(here, "dist"))
except OSError:
pass
self.status("Building Source and Wheel (universal) distribution…")
os.system("{0} setup.py sdist bdist_wheel --universal".format(sys.executable))
self.status("Uploading the package to PyPI via Twine…")
os.system("twine upload dist/*")
self.status("Pushing git tags…")
os.system("git tag v{0}".format(about["__version__"]))
os.system("git push --tags")
sys.exit()
# Where the magic happens:
setup(
name=NAME,
version=about["__version__"],
description=DESCRIPTION,
long_description=long_description,
long_description_content_type="text/markdown",
author=AUTHOR,
author_email=EMAIL,
python_requires=REQUIRES_PYTHON,
url=URL,
packages=find_packages(exclude=["tests", "*.tests", "*.tests.*", "tests.*"]),
# If your package is a single module, use this instead of 'packages':
# py_modules=['mypackage'],
# entry_points={
# 'console_scripts': ['mycli=mymodule:cli'],
# },
install_requires=REQUIRED,
extras_require=EXTRAS,
include_package_data=True,
license="Apache 2.0",
classifiers=[
# Trove classifiers
# Full list: https://pypi.python.org/pypi?%3Aaction=list_classifiers
"Programming Language :: Python",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3.7",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
],
# $ setup.py publish support.
cmdclass={
"upload": UploadCommand,
},
)
|
domino-main
|
setup.py
|
__version__ = "0.1.5"
|
domino-main
|
domino/version.py
|
import functools
from typing import Any, List, Optional, Sequence
from fvcore.common.registry import Registry as _Registry
from tabulate import tabulate
class Registry(_Registry):
"""Extension of fvcore's registry that supports aliases."""
_ALIAS_KEYWORDS = ("_aliases", "_ALIASES")
def __init__(self, name: str):
super().__init__(name=name)
self._metadata_map = {}
@functools.lru_cache(maxsize=128)
def get(self, name: str, *args, **kwargs) -> Any:
ret = self._obj_map.get(name)
if ret is None:
raise KeyError(
"No object named '{}' found in '{}' registry!".format(name, self._name)
)
return ret(*args, **kwargs)
def _get_aliases(self, obj_func_or_class):
for kw in self._ALIAS_KEYWORDS:
if hasattr(obj_func_or_class, kw):
return getattr(obj_func_or_class, kw)
return []
def register(
self, obj: object = None, aliases: Sequence[str] = None
) -> Optional[object]:
if obj is None:
# used as a decorator
def deco(func_or_class: object, aliases=None) -> object:
name = func_or_class.__name__ # pyre-ignore
self._do_register(name, func_or_class)
if aliases is None:
aliases = self._get_aliases(func_or_class)
if not isinstance(aliases, (list, tuple, set)):
aliases = [aliases]
for alias in aliases:
self._do_register(alias, func_or_class)
return func_or_class
kwargs = {"aliases": aliases}
if any(v is not None for v in kwargs.values()):
return functools.partial(deco, **kwargs)
else:
return deco
name = obj.__name__ # pyre-ignore
self._do_register(name, obj)
if aliases is None:
aliases = self._get_aliases(obj)
for alias in aliases:
self._do_register(alias, obj)
def _do_register(self, name: str, obj: Any, **kwargs) -> None:
self._metadata_map[name] = {"name": name, "description": obj.__doc__, **kwargs}
return super()._do_register(name, obj)
@property
def names(self) -> List[str]:
return list(self._obj_map.keys())
def __repr__(self) -> str:
table = tabulate(self._metadata_map.values(), tablefmt="fancy_grid")
return "Registry of {}:\n".format(self._name) + table
def __str__(self) -> str:
return self.__repr__()
|
domino-main
|
domino/registry.py
|
from ._embed import embed, encoders
from ._slice.abstract import Slicer
from ._slice.mixture import MixtureSlicer, DominoSlicer
from ._slice.spotlight import SpotlightSlicer
from ._slice.barlow import BarlowSlicer
from ._slice.multiaccuracy import MultiaccuracySlicer
from ._slice.mlp import MLPSlicer
from ._slice.fused import FusedSlicer
from ._slice.abstract import Slicer
from ._describe.generate import generate_candidate_descriptions
from ._describe.abstract import Describer
from ._describe.mean import MeanDescriber
from ._describe.corr import CorrDescriber
from ._describe import describe
from .main import discover
from .gui import explore
__all__ = [
"DominoSlicer",
"MixtureSlicer",
"MLPSlicer",
"SpotlightSlicer",
"BarlowSlicer",
"MultiaccuracySlicer",
"FusedSlicer",
"Slicer",
"Describer",
"MeanDescriber",
"CorrDescriber",
"embed",
"encoders",
"explore",
"describe",
"discover",
"generate_candidate_descriptions",
]
|
domino-main
|
domino/__init__.py
|
from dataclasses import dataclass
from functools import reduce, wraps
from inspect import getcallargs
from typing import Collection, Mapping
import pandas as pd
import torch
import numpy as np
from typing import List
import meerkat as mk
def unpack_args(data: mk.DataPanel, *args):
if any(map(lambda x: isinstance(x, str), args)) and data is None:
raise ValueError("If args are strings, `data` must be provided.")
new_args = []
for arg in args:
if isinstance(arg, str):
arg = data[arg]
if isinstance(arg, mk.AbstractColumn):
# this is necessary because torch.tensor() of a NumpyArrayColumn is very
# slow and I don't want implementers to have to deal with casing on this
arg = arg.data
new_args.append(arg)
return new_args
def convert_to_numpy(*args):
"""Convert Torch tensors and Pandas Series to numpy arrays."""
new_args = []
for arg in args:
if torch.is_tensor(arg):
new_args.append(arg.numpy())
elif isinstance(arg, pd.Series):
new_args.append(arg.values)
elif isinstance(arg, List):
new_args.append(np.array(arg))
else:
new_args.append(arg)
return tuple(new_args)
def convert_to_torch(*args):
new_args = []
for arg in args:
if isinstance(arg, (np.ndarray, pd.Series, List)):
new_args.append(torch.tensor(arg))
else:
new_args.append(arg)
return tuple(new_args)
def nested_getattr(obj, attr, *args):
"""Get a nested property from an object.
# noqa: E501
Source: https://stackoverflow.com/questions/31174295/getattr-and-setattr-on-nested-subobjects-chained-properties
"""
return reduce(lambda o, a: getattr(o, a, *args), [obj] + attr.split("."))
@dataclass
class VariableColumn:
variable_name: str
def resolve(self, args_dict: dict):
path = self.variable_name.split(".")
obj = args_dict[path[0]]
if len(path) > 1:
return nested_getattr(obj, ".".join(path[1:]))
return obj
def requires_columns(dp_arg: str, columns: Collection[str]):
def _requires(fn: callable):
@wraps(fn)
def _wrapper(*args, aliases: Mapping[str, str] = None, **kwargs):
args_dict = getcallargs(fn, *args, **kwargs)
if "kwargs" in args_dict:
args_dict.update(args_dict.pop("kwargs"))
dp = args_dict[dp_arg]
if aliases is not None:
dp = dp.view()
for column, alias in aliases.items():
dp[column] = dp[alias]
# resolve variable columns
resolved_cols = [
(col.resolve(args_dict) if isinstance(col, VariableColumn) else col)
for col in columns
]
missing_cols = [col for col in resolved_cols if col not in dp]
if len(missing_cols) > 0:
raise ValueError(
f"DataPanel passed to `{fn.__qualname__}` at argument `{dp_arg}` "
f"is missing required columns `{missing_cols}`."
)
args_dict[dp_arg] = dp
return fn(**args_dict)
return _wrapper
return _requires
|
domino-main
|
domino/utils.py
|
from typing import Dict, Union, Tuple, List
from domino._describe.abstract import Describer
from domino.utils import unpack_args
import meerkat as mk
import numpy as np
from ._slice.abstract import Slicer
from ._slice.mixture import MixtureSlicer
from ._embed import embed
from ._describe.abstract import Describer
from ._describe.mean import MeanDescriber
def discover(
data: Union[dict, mk.DataPanel] = None,
embeddings: Union[str, np.ndarray] = "embedding",
targets: Union[str, np.ndarray] = "target",
pred_probs: Union[str, np.ndarray] = "pred_probs",
losses: Union[str, np.ndarray] = "loss",
split: Union[str, np.ndarray] = "split",
slicer: Slicer = None,
describer: Describer = None,
) -> Tuple[np.ndarray, List[Dict]]:
embeddings, targets, pred_probs, losses, split = unpack_args(
data, embeddings, targets, pred_probs, losses, split
)
if embeddings is None:
raise NotImplementedError
if slicer is None:
# provide a simple default slicer if none is provided
slicer = MixtureSlicer(
n_slices=5,
y_log_likelihood_weight=10,
y_hat_log_likelihood_weight=10,
)
train_mask = (split != "test")
slicer.fit(
targets=targets[train_mask] if targets is not None else None,
pred_probs=pred_probs[train_mask] if pred_probs is not None else None,
losses=losses[train_mask] if losses is not None else None,
embeddings=embeddings[train_mask] if embeddings is not None else None,
)
test_mask = ~train_mask
slices = slicer.predict_proba(
targets=None,
pred_probs=None,
#losses=losses[test_mask],
embeddings=embeddings[test_mask] if embeddings is not None else None,
)
if describer is None:
raise NotImplementedError
descriptions = describer.describe(
embeddings=embeddings[test_mask], targets=None, slices=slices
)
return slices, descriptions
|
domino-main
|
domino/main.py
|
from typing import List, Union
import ipywidgets as widgets
import matplotlib.pyplot as plt
import meerkat as mk
import numpy as np
import pandas as pd
import seaborn as sns
from IPython.display import display
from domino.utils import unpack_args
from ._describe import describe
def explore(
data: mk.DataPanel = None,
embeddings: Union[str, np.ndarray] = "embedding",
targets: Union[str, np.ndarray] = "target",
pred_probs: Union[str, np.ndarray] = "pred_prob",
slices: Union[str, np.ndarray] = "slices",
text: mk.DataPanel = None,
text_embeddings: Union[str, np.ndarray] = "embedding",
phrase: Union[str, np.ndarray] = "output_phrase",
) -> None:
"""Creates a IPyWidget GUI for exploring discovered slices. The GUI includes two
sections: (1) The first section displays data visualizations summarizing the
model predictions and accuracy stratified by slice. (2) The second section displays
a table (i.e. Meerkat DataPanel) of the data examples most representative of each
slice. The DataPanel passed to ``data`` should include columns for embeddings,
targets, pred_probs and slices. Any additional columns will be included in the
visualization in section (2).
.. caution::
This GUI works best in the original Jupyter Notebook, and may not work properly
in a Jupyter Lab or VSCode environment.
Args:
data (mk.DataPanel, optional): A `Meerkat DataPanel` with columns for
embeddings, targets, and prediction probabilities. The names of the
columns can be specified with the ``embeddings``, ``targets``, and
``pred_probs`` arguments. Defaults to None.
embeddings (Union[str, np.ndarray], optional): The name of a column in
``data`` holding embeddings. If ``data`` is ``None``, then an np.ndarray
of shape (n_samples, dimension of embedding). Defaults to
"embedding".
targets (Union[str, np.ndarray], optional): The name of a column in
``data`` holding class labels. If ``data`` is ``None``, then an
np.ndarray of shape (n_samples,). Defaults to "target".
pred_probs (Union[str, np.ndarray], optional): The name of
a column in ``data`` holding model predictions (can either be "soft"
probability scores or "hard" 1-hot encoded predictions). If
``data`` is ``None``, then an np.ndarray of shape (n_samples, n_classes)
or (n_samples,) in the binary case. Defaults to "pred_probs".
slices (str, optional): The name of The name of a column in ``data``
holding discovered slices. If ``data`` is ``None``, then an
np.ndarray of shape (num_examples, num_slices). Defaults to "slices".
text (str, optional): A `Meerkat DataPanel` with columns for text phrases and
their embeddings. The names of the columns can be specified with the
``text_embeddings`` and ``phrase`` arguments. Defaults to None.
text_embeddings (Union[str, np.ndarray], optional): The name of a colum in
``text`` holding embeddings. If ``text`` is ``None``, then an np.ndarray
of shape (n_phrases, dimension of embedding). Defaults to "embedding".
phrase (Union[str, np.ndarray], optional): The name of a column in ``text``
holding text phrases. If ``text`` is ``None``, then an np.ndarray of
shape (n_phrases,). Defaults to "output_phrase".
Examples
--------
.. code-block:: python
:name: Example:
from domino import explore, DominoSDM
dp = ... # prepare the dataset as a Meerkat DataPanel
# split dataset
valid_dp = dp.lz[dp["split"] == "valid"]
test_dp = dp.lz[dp["split"] == "test"]
domino = DominoSDM()
domino.fit(data=valid_dp)
test_dp["slices"] = domino.transform(
data=test_dp, embeddings="emb", targets="target", pred_probs="probs"
)
explore(data=test_dp)
"""
embeddings, targets, pred_probs, slices = unpack_args(
data, embeddings, targets, pred_probs, slices
)
if data is None:
dp = mk.DataPanel(
{
"embeddings": embeddings,
"targets": targets,
"pred_probs": pred_probs,
"domino_slices": slices,
}
)
else:
dp = data if isinstance(data, mk.DataPanel) else mk.DataPanel(data)
plot_output = widgets.Output()
# define functions for generating visualizations
def plot_slice(slice_idx, slice_threshold: float):
# TODO (Sabri): Support a confusion matrix for the multiclass case.
with plot_output:
plot_df = pd.DataFrame(
{
"in-slice": slices[:, slice_idx] > slice_threshold,
"pred_probs": pred_probs[:, 1].numpy()
if len(pred_probs.shape) == 2
else pred_probs,
"target": targets,
}
)
g = sns.displot(
data=plot_df,
hue="in-slice",
x="pred_probs",
col="target",
aspect=1.7,
height=2,
facet_kws={"sharey": False},
hue_order=[False, True],
palette=["#bdbdbd", "#2396f3"],
stat="percent",
common_norm=False,
bins=20,
)
g.set_axis_labels("Model's output probability", "% of examples")
for target in np.unique(targets):
in_slice = np.sum(
(slices[:, slice_idx] > slice_threshold) & (targets == target)
)
g.axes[0, int(target)].set_title(
f"target={target} \n (# of examples in-slice={in_slice})"
)
plot_output.clear_output(wait=True)
plt.show()
description_output = widgets.Output()
def show_descriptions(slice_idx: int, slice_threshold: float):
description_output.clear_output(wait=False)
if text is not None:
description_dp = describe(
data=dp,
embeddings=embeddings,
targets=targets,
slices=slices,
slice_idx=slice_idx,
text=text,
text_embeddings=text_embeddings,
phrases=phrase,
slice_threshold=slice_threshold,
)
with description_output:
display(description_dp[(-description_dp["score"]).argsort()[:5]])
dp_output = widgets.Output()
def show_dp(
slice_idx,
page_idx: int,
page_size: int,
columns: List[str],
slice_threshold: float,
):
mk.config.display.max_rows = page_size
dp_output.clear_output(wait=False)
num_examples_in_slice = np.sum(slices[:, slice_idx] > slice_threshold)
with dp_output:
display(
dp.lz[
(-slices[:, slice_idx]).argsort()[
page_size
* page_idx : min(
page_size * (page_idx + 1), num_examples_in_slice
)
]
][list(columns)]
)
# Create widgets
slice_idx_widget = widgets.Dropdown(
value=1,
options=list(range(slices.shape[-1])),
description="Slice",
layout=widgets.Layout(width="150px"),
)
slice_threshold_widget = widgets.FloatSlider(
value=0.5,
min=0,
max=1.0,
step=0.025,
description="Slice Inclusion Threshold",
disabled=False,
continuous_update=False,
orientation="horizontal",
readout=True,
readout_format=".3f",
style={"description_width": "initial"},
)
# TODO(Sabri): Add a widget for the # of examples in the slice at the current
# threshold. It will have to be linked with the threshold widget above.
column_selector = widgets.SelectMultiple(
options=dp.columns, value=dp.columns, description="Columns", disabled=False
)
page_size_widget = widgets.RadioButtons(
options=[10, 25, 50], description="Page size"
)
page_idx_widget = widgets.BoundedIntText(
value=0,
min=0,
max=10,
step=1,
description="Page",
disabled=False,
readout=True,
readout_format="d",
layout=widgets.Layout(width="150px"),
)
# Establish interactions between widgets and the visualization functions
widgets.interactive(
show_descriptions,
slice_idx=slice_idx_widget,
slice_threshold=slice_threshold_widget,
)
widgets.interactive(
show_dp,
slice_idx=slice_idx_widget,
columns=column_selector,
page_idx=page_idx_widget,
page_size=page_size_widget,
slice_threshold=slice_threshold_widget,
)
widgets.interactive(
plot_slice,
slice_idx=slice_idx_widget,
slice_threshold=slice_threshold_widget,
)
# Layout and display the widgets
display(
widgets.HBox(
[
widgets.HTML(value="<p><strong> Domino Slice Explorer </strong></p>"),
slice_idx_widget,
]
)
)
display(slice_threshold_widget)
display(plot_output)
display(
widgets.VBox(
[
widgets.HTML(
value=(
"<p> <strong> Natural language descriptions of the slice: "
"</strong> </p>"
)
),
description_output,
]
)
)
display(
widgets.HBox(
[
widgets.VBox(
[
widgets.HTML(
value=(
"<style>p{word-wrap: break-word}</style> <p>"
+ "Select multiple columns with <em>cmd-click</em>."
+ " </p>"
)
),
column_selector,
]
),
widgets.VBox([page_idx_widget, page_size_widget]),
],
)
)
display(
widgets.VBox(
[
widgets.HTML(
value=(
"<p> <strong> Examples in the slice, ranked by likelihood: "
"</strong> </p>"
)
),
dp_output,
]
)
)
# To actually run the functions `plot_slice` and `show_dp` we need update the value
# of one of the widgets.
slice_idx_widget.value = 0
|
domino-main
|
domino/gui.py
|
from __future__ import annotations
from abc import ABC, abstractmethod
from dataclasses import dataclass
from typing import Any, Dict, Union
import meerkat as mk
import numpy as np
import torch.nn as nn
from sklearn.base import BaseEstimator
@dataclass
class Config:
pass
class Describer(ABC, BaseEstimator):
def __init__(self):
super().__init__()
self.config = Config()
@abstractmethod
def describe(
embeddings: Union[str, np.ndarray] = "embedding",
targets: Union[str, np.ndarray] = "target",
slices: Union[str, np.ndarray] = "slices",
):
raise NotImplementedError
def get_params(self) -> Dict[str, Any]:
"""
Get the parameters of this slicer. Returns a dictionary mapping from the names
of the parameters (as they are defined in the ``__init__``) to their values.
Returns:
Dict[str, Any]: A dictionary of parameters.
"""
return self.config.__dict__
def set_params(self, **params):
raise ValueError(
f"Slicer of type {self.__class__.__name__} does not support `set_params`."
)
def to(self, device: Union[str, int]):
if device != "cpu":
raise ValueError(f"Slicer of type {type(self)} does not support GPU.")
# by default this is a no-op, but subclasses can override
|
domino-main
|
domino/_describe/abstract.py
|
from typing import Union
import meerkat as mk
import numpy as np
import torch
from scipy.stats import mode, pearsonr
from .abstract import Describer
from ..utils import convert_to_torch, unpack_args
class CorrDescriber(Describer):
"""
Args:
text (str, optional): A `Meerkat DataPanel` with columns for text phrases and
their embeddings. The names of the columns can be specified with the
``text_embeddings`` and ``phrase`` arguments. Defaults to None.
text_embeddings (Union[str, np.ndarray], optional): The name of a colum in
``text`` holding embeddings. If ``text`` is ``None``, then an np.ndarray
of shape (n_phrases, dimension of embedding). Defaults to "embedding".
phrase (Union[str, np.ndarray], optional): The name of a column in ``text``
holding text phrases. If ``text`` is ``None``, then an np.ndarray of
shape (n_phrases,). Defaults to "output_phrase".
slice_idx (int, optional): The index of the slice to describe. Defaults to 0.
slice_threshold (float, optional): The probability threshold for inclusion in
the slice. Defaults to 0.5.
"""
def __init__(
self,
data: mk.DataPanel = None,
embeddings: Union[str, np.ndarray] = "embedding",
candidates: Union[str, np.ndarray] = "candidates",
slice_threshold: float = 0.5,
n_descriptions: int = 10,
):
super().__init__()
embeddings, candidates = unpack_args(data, embeddings, candidates)
self.candidates = candidates
self.candidate_embeddings = embeddings
self.config.slice_threshold = slice_threshold
self.config.n_descriptions = n_descriptions
def describe(
self,
data: mk.DataPanel = None,
embeddings: Union[str, np.ndarray] = "embedding",
targets: Union[str, np.ndarray] = "target",
slices: Union[str, np.ndarray] = "slices",
):
embeddings, targets, slices = unpack_args(data, embeddings, targets, slices)
img_embs, slices, text_embs = convert_to_torch(
embeddings, slices, self.candidate_embeddings
)
with torch.no_grad():
text_scores = torch.matmul(img_embs.to(0), text_embs.to(0).T)
r = batched_pearsonr(
x=text_scores.to(torch.float).T, y=slices.to(torch.float).to(0).T
)
result = []
for pred_slice_idx in range(r.shape[-1]):
slice_scores = r[:, pred_slice_idx].cpu().detach().numpy()
idxs = np.argsort(-slice_scores)[:10]
result.append(
[
{
"pred_slice_idx": pred_slice_idx,
"scores": slice_scores[idx],
"corr": slice_scores[idx],
"text": self.candidates[idx],
}
for idx in idxs
]
)
return result
@torch.no_grad()
def batched_pearsonr(x, y, batch_first=True):
if len(x.shape) - len(y.shape) == 1:
y = y.unsqueeze(-1)
centered_x = x - x.mean(dim=1, keepdim=True)
centered_y = y - y.mean(dim=1, keepdim=True)
covariance = centered_x @ centered_y.T # x_batch x y_batch
bessel_corrected_covariance = covariance / (x.shape[1] - 1)
x_std = x.std(dim=1, keepdim=True)
y_std = y.std(dim=1, keepdim=True)
std = x_std @ y_std.T
corr = bessel_corrected_covariance / std
return corr
|
domino-main
|
domino/_describe/corr.py
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.