python_code
stringlengths
0
4.04M
repo_name
stringlengths
7
58
file_path
stringlengths
5
147
# Download from https://cs.nyu.edu/~ylclab/data/norb-v1.0/ import sys import pickle as pkl # sys.path.insert(0, '../../') import numpy as np from sklearn.preprocessing import OneHotEncoder from norb import NORBDataset from scipy.misc import imresize from data_utils import normalize_data, apply_normalization MAX_VAL = 255.0 DS_SIZE = (32, 32) N_CATEGORIES = 6 """ Downsamples. """ def process_image(image): # Downsample ds = imresize(image, DS_SIZE, 'nearest') # Flatten return ds.flatten() """ Downsamples, stores only left stereo pair, converts to one-hot label. """ def process_data(data): X = [] Y = [] for ex in data: this_image = ex.image_lt this_category = ex.category X.append(process_image(this_image)) Y.append(this_category) X = np.array(X) Y = np.array(Y) Y = np.expand_dims(Y, 1) enc = OneHotEncoder(N_CATEGORIES) Y = enc.fit_transform(Y).todense() return X,Y def process_images(names, out_loc, mean=None, sd=None): print('Names: ', names) dataset = NORBDataset(dataset_root='/dfs/scratch1/thomasat/datasets/norb', names=names) Xs = [] Ys = [] print('Dataset names: ', dataset.data.keys()) for name in names: X, Y = process_data(dataset.data[name]) print('X,Y shape: ', X.shape, Y.shape) Xs.append(X) Ys.append(Y) X = np.vstack(Xs) Y = np.vstack(Ys) # Shuffle idx = np.arange(0, X.shape[0]) np.random.shuffle(idx) X = X[idx,:] Y = Y[idx,:] if mean is None and sd is None: X, mean, sd = normalize_data(X) print('X, Y: ', X.shape, Y.shape) else: X = apply_normalization(X,mean,sd) # Save data_dict = {'X': X, 'Y': Y} pkl.dump(data_dict, open(out_loc, 'wb'), protocol=2) return mean,sd train_names = ['train' + str(i+1) for i in np.arange(10)] train_out_loc = '/dfs/scratch1/thomasat/datasets/norb_full/processed_py2_train_' + str(DS_SIZE[0]) + '.pkl' test_names = ['test' + str(i+1) for i in range(2)] test_out_loc = '/dfs/scratch1/thomasat/datasets/norb_full/processed_py2_test_' + str(DS_SIZE[0]) + '.pkl' mean, sd = process_images(train_names, train_out_loc) process_images(test_names, test_out_loc, mean, sd)
structured-nets-master
scripts/data/preprocess_norb.py
# Download from http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/DeepVsShallowComparisonICML2007 import numpy as np import pickle as pkl from sklearn.preprocessing import OneHotEncoder from data_utils import normalize_data, apply_normalization def process_data(data): X = data[:, :-1] Y = np.expand_dims(data[:, -1], 1) # Y must be one-hot enc = OneHotEncoder() Y = enc.fit_transform(Y).todense() return X,Y train_loc = '/dfs/scratch1/thomasat/datasets/mnist_bg_rot/mnist_all_background_images_rotation_normalized_train_valid.amat' test_loc = '/dfs/scratch1/thomasat/datasets/mnist_bg_rot/mnist_all_background_images_rotation_normalized_test.amat' train_out = '/dfs/scratch1/thomasat/datasets/mnist_bg_rot/train_normalized' test_out = '/dfs/scratch1/thomasat/datasets/mnist_bg_rot/test_normalized' train_data = np.genfromtxt(train_loc) train_X, train_Y = process_data(train_data) test_data = np.genfromtxt(test_loc) test_X, test_Y = process_data(test_data) # Normalize train_X, mean, sd = normalize_data(train_X) test_X = apply_normalization(test_X, mean, sd) # Save print('test_X, test_Y shape: ', test_X.shape, test_Y.shape) print('train_X, train_Y shape: ', train_X.shape, train_Y.shape) train = {'X': train_X, 'Y': train_Y} test = {'X': test_X, 'Y': test_Y} pkl.dump(train, open(train_out, 'wb'), protocol=2) pkl.dump(test, open(test_out, 'wb'), protocol=2) print('Saved train to: ', train_out) print('Saved test to: ', test_out)
structured-nets-master
scripts/data/preprocess_mnist_bg_rot.py
import numpy as np import os,sys,h5py import scipy.io as sio from scipy.linalg import solve_sylvester import pickle as pkl from sklearn.preprocessing import OneHotEncoder import torch from torchvision import datasets, transforms import utils device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") def get_dataset(dataset_name, data_dir, transform): """ Get paths of datasets. """ if dataset_name == 'mnist': train_loc = os.path.join(data_dir, 'mnist/train_normalized') test_loc = os.path.join(data_dir, 'mnist/test_normalized') elif dataset_name == 'cifar10': train_loc = os.path.join(data_dir, 'cifar10_combined/train') test_loc = os.path.join(data_dir, 'cifar10_combined/test') elif dataset_name == 'cifar10mono': train_loc = os.path.join(data_dir, 'cifar10_combined/train_grayscale') test_loc = os.path.join(data_dir, 'cifar10_combined/test_grayscale') elif dataset_name.startswith('mnist_noise'): idx = dataset_name[-1] train_loc = os.path.join(data_dir,'mnist_noise/train_' + str(idx)) test_loc = os.path.join(data_dir,'mnist_noise/test_' + str(idx)) elif dataset_name == 'norb': train_loc = os.path.join(data_dir,'norb_full/processed_py2_train_32.pkl') test_loc = os.path.join(data_dir,'norb_full/processed_py2_test_32.pkl') elif dataset_name == 'rect_images': #TODO train_loc = os.path.join(data_dir, 'rect_images/rectangles_im_train.amat') test_loc = os.path.join(data_dir, 'rect_images/rectangles_im_test.amat') elif dataset_name == 'rect': train_loc = os.path.join(data_dir,'rect/train_normalized') test_loc = os.path.join(data_dir, 'rect/test_normalized') elif dataset_name == 'convex': train_loc = os.path.join(data_dir, 'convex/train_normalized') test_loc = os.path.join(data_dir, 'convex/test_normalized') elif dataset_name == 'mnist_rand_bg': #TODO train_loc = os.path.join(data_dir, 'mnist_rand_bg/mnist_background_random_train.amat') test_loc = os.path.join(data_dir, 'mnist_rand_bg/mnist_background_random_test.amat') elif dataset_name == 'mnist_bg_rot': train_loc = os.path.join(data_dir, 'mnist_bg_rot/train_normalized') test_loc = os.path.join(data_dir, 'mnist_bg_rot/test_normalized') elif dataset_name == 'mnist_bg_rot_swap': train_loc = os.path.join(data_dir, 'mnist_bg_rot/test_normalized') test_loc = os.path.join(data_dir, 'mnist_bg_rot/train_normalized') #TODO handle iwslt, copy tasks # TODO smallnorb, timit else: print('dataset.py: unknown dataset name') # TODO maybe want the .amat if that's standard and do postprocessing in a uniform way instead of having a separate script per dataset train_data = pkl.load(open(train_loc, 'rb')) train_X = train_data['X'] train_Y = train_data['Y'] test_data = pkl.load(open(test_loc, 'rb')) test_X = test_data['X'] test_Y = test_data['Y'] train_X, train_Y = postprocess(transform, train_X, train_Y) test_X, test_Y = postprocess(transform, test_X, test_Y) in_size = train_X.shape[1] out_size = train_Y.shape[1] print("Train dataset size: ", train_X.shape[0]) print("Test dataset size: ", test_X.shape[0]) print("In size: ", in_size) print("Out size: ", out_size) return torch.FloatTensor(train_X), torch.FloatTensor(train_Y), torch.FloatTensor(test_X), torch.FloatTensor(test_Y), in_size, out_size def split_train_val(train_X, train_Y, val_fraction, train_fraction=None): """ Input: training data as a torch.Tensor """ # Shuffle idx = np.arange(train_X.shape[0]) np.random.shuffle(idx) train_X = train_X[idx,:] train_Y = train_Y[idx,:] # Compute validation set size val_size = int(val_fraction*train_X.shape[0]) # Downsample for sample complexity experiments if train_fraction is not None: train_size = int(train_fraction*train_X.shape[0]) assert val_size + train_size <= train_X.shape[0] else: train_size = train_X.shape[0] - val_size # Shuffle X idx = np.arange(0, train_X.shape[0]) np.random.shuffle(idx) train_idx = idx[0:train_size] val_idx = idx[-val_size:] val_X = train_X[val_idx, :] val_Y = train_Y[val_idx, :] train_X = train_X[train_idx, :] train_Y = train_Y[train_idx, :] print('train_X: ', train_X.shape) print('train_Y: ', train_Y.shape) print('val_X: ', val_X.shape) print('val_Y: ', val_Y.shape) return train_X, train_Y, val_X, val_Y def create_data_loaders(dataset_name, data_dir, transform, train_fraction, val_fraction, batch_size): if device.type == 'cuda': loader_args = {'num_workers': 16, 'pin_memory': True} else: loader_args = {'num_workers': 4, 'pin_memory': False} train_X, train_Y, test_X, test_Y, in_size, out_size = get_dataset(dataset_name, data_dir, transform) # train/test data, input/output size # train_X, train_Y = postprocess(transform, train_X, train_Y) # test_X, test_Y = postprocess(transform, test_X, test_Y) # TODO: use torch.utils.data.random_split instead # however, this requires creating the dataset, then splitting, then applying transformations train_X, train_Y, val_X, val_Y = split_train_val(train_X, train_Y, val_fraction, train_fraction) # TODO: use pytorch transforms to postprocess train_dataset = torch.utils.data.TensorDataset(train_X, train_Y) val_dataset = torch.utils.data.TensorDataset(val_X, val_Y) test_dataset = torch.utils.data.TensorDataset(test_X, test_Y) # create dataloaders train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, **loader_args) val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=batch_size, shuffle=True, **loader_args) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=True, **loader_args) return train_loader, val_loader, test_loader, in_size, out_size class DatasetLoaders: def __init__(self, name, data_dir, val_fraction, transform=None, train_fraction=None, batch_size=50): if name.startswith('true'): # TODO: Add support for synthetic datasets back. Possibly should be split into separate class self.loss = utils.mse_loss else: self.train_loader, self.val_loader, self.test_loader, self.in_size, self.out_size = create_data_loaders(name, data_dir, transform, train_fraction, val_fraction, batch_size) self.loss = utils.cross_entropy_loss ### Utilities for processing data arrays in numpy def postprocess(transform, X, Y=None): # pad from 784 to 1024 if 'pad' in transform: assert X.shape[1] == 784 print(X.shape, type(X)) X = np.pad(X.reshape((-1,28,28)), ((0,0),(2,2),(2,2)), 'constant').reshape(-1,1024) if 'randomize' in transform: assert Y is not None np.random.shuffle(Y) return X, Y def augment(self, X, Y=None): if 'contrast' in self.transform: def scale_patch(X): patch = ((9, 19), (9, 19)) X_ = X.copy() X_[:, patch[0][0]:patch[0][1], patch[1][0]:patch[1][1]] *= 2 return X_ # subsample idx = np.arange(X.shape[0]) np.random.shuffle(idx) X = X[idx,...] Y = Y[idx,...] X1 = X.reshape((-1,28,28)) X2 = scale_patch(X1) X3 = scale_patch(X2) X4 = scale_patch(X3) # X5 = scale_patch(X4) X = np.concatenate([X1, X2, X3, X4], axis=0).reshape(-1, 28*28) Y = np.concatenate([Y, Y, Y, Y], axis=0) if 'patch' in self.transform: def add_patch(X): patch = ((0, 4), (10, 18)) X_ = X.copy() X_[:, patch[0][0]:patch[0][1], patch[1][0]:patch[1][1]] += 3.0 return X_ X1 = X.reshape((-1,28,28)) X2 = add_patch(X1) X3 = add_patch(X2) X4 = add_patch(X3) X = np.concatenate([X1, X2, X3, X4], axis=0).reshape(-1, 28*28) Y = np.concatenate([Y, Y, Y, Y], axis=0) return X, Y
structured-nets-master
pytorch/dataset.py
import torch import torch.nn as nn def mse_loss(pred, true): loss_fn = nn.MSELoss() mse = loss_fn(pred, true) accuracy = torch.FloatTensor([0]) return mse, accuracy def cross_entropy_loss(pred, true): loss_fn = nn.CrossEntropyLoss() _, true_argmax = torch.max(true, 1) cross_entropy = loss_fn(pred, true_argmax) _, pred_argmax = torch.max(pred, 1) correct_prediction = torch.eq(true_argmax, pred_argmax) accuracy = torch.mean(correct_prediction.float()) return cross_entropy, accuracy def get_commit_id(): return subprocess.check_output(['git', 'rev-parse', '--short', 'HEAD']) def descendants(cls): """ Get all subclasses (recursively) of class cls, not including itself Assumes no multiple inheritance """ desc = [] for subcls in cls.__subclasses__(): desc.append(subcls) desc.extend(descendants(subcls)) return desc
structured-nets-master
pytorch/utils.py
import sys, os, datetime, subprocess import pickle as pkl import itertools import argparse, argh import threading import logging import pprint import numpy as np import torch from torch.optim.lr_scheduler import StepLR from inspect import signature # Add PyTorch root to path pytorch_root = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) sys.path.insert(0, pytorch_root) from dataset import DatasetLoaders from models.nets import ArghModel, construct_model from learning import train, prune from utils import descendants logging.basicConfig(level=logging.DEBUG, format='%(asctime)s %(message)s', datefmt='%FT%T',) # Command line params parser = argparse.ArgumentParser() parser.add_argument("--name", default='', help='Name of run') parser.add_argument("--dataset", help='Dataset') parser.add_argument('--transform', default='none', help='Any transform of dataset, e.g. padding') parser.add_argument('--train-frac', type=float, nargs='+', default=[None]) parser.add_argument('--val-frac', type=float, default=0.15) parser.add_argument("--result-dir", help='Where to save results') parser.add_argument('--trials', type=int, default=1, help='Number of independent runs') parser.add_argument('--trial-id', type=int, nargs='+', help='Specify trial numbers; alternate to --trials') parser.add_argument('--batch-size', type=int, default=50, help='Batch size') parser.add_argument("--epochs", type=int, default=1, help='Number of passes through the training data') parser.add_argument('--optim', default='sgd', help='Optimizer') parser.add_argument('--lr', nargs='+', type=float, default=[1e-3], help='Learning rates') parser.add_argument('--mom', nargs='+', type=float, default=[0.9], help='Momentums') parser.add_argument('--lr-decay', type=float, default=1.0) parser.add_argument('--log-freq', type=int, default=100) parser.add_argument('--test', action='store_false', help='Toggle testing on test set') parser.add_argument('--prune', action='store_true', help='Whether to do pruning') parser.add_argument('--prune-lr-decay', type=float, default=0.1, help='LR decay factor in each pruning iter') parser.add_argument('--prune-factor', type=float, default=1, help='Factor by which to prune') parser.add_argument('--prune-iters', type=int, default=1, help='Number of pruning iters') parser.add_argument('--save-model', action='store_false', help='Whether to save best model') parser.add_argument('--data-dir', default='../../datasets/', help='Data directory') out_dir = os.path.dirname(pytorch_root) # Repo root # seed = 0 # np.random.seed(seed) # torch.manual_seed(seed) def save_args(args, results_dir): commit_id = subprocess.check_output(['git', 'rev-parse', '--short', 'HEAD']).strip() command = ' '.join(sys.argv) param_str = str(commit_id) + '\n' + command + '\n' + pprint.pformat(vars(args)) print(param_str) # Make new dir with timestamp if not os.path.exists(results_dir): os.makedirs(results_dir) # Save the parameters in readable form text_file = open(os.path.join(results_dir, 'params.txt'), "w") text_file.write(param_str) text_file.close() # Save the Namespace object pkl.dump(args, open(os.path.join(results_dir, 'params.p'), "wb")) def mlp(args): for train_frac in args.train_frac: dataset = DatasetLoaders(args.dataset, args.data_dir, args.val_frac, args.transform, train_frac, args.batch_size) model = construct_model(nets[args.model], dataset.in_size, dataset.out_size, args) for lr, mom in itertools.product(args.lr, args.mom): run_name = args.name + '_' + model.name() \ + '_lr' + str(lr) \ + '_lrd' + str(args.lr_decay) \ + '_mom' + str(mom) \ + '_bs' + str(args.batch_size) \ + '_ep' + str(args.epochs) \ + '_' + str(args.dataset) \ + '_vf' + str(args.val_frac) \ + '_m' + str(args.model) \ + '_hs' + str(args.hidden_size) #+ '_nl' + str(args.num_layers) if train_frac is not None: run_name += '_tf' + str(train_frac) if args.prune: run_name += '_pf' + str(args.prune_factor) results_dir = os.path.join(out_dir, 'results', args.result_dir, run_name + '_' + str(datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S"))) save_args(args, results_dir) trial_ids = args.trial_id if args.trial_id is not None else range(args.trials) for trial_iter in trial_ids: log_path = os.path.join(out_dir, 'tensorboard', args.result_dir, run_name, str(trial_iter)) checkpoint_path = os.path.join(out_dir, 'checkpoints', args.result_dir, run_name, str(trial_iter)) result_path = os.path.join(results_dir, str(trial_iter)) model.reset_parameters() if args.optim == 'sgd': optimizer = torch.optim.SGD(model.parameters(), lr=lr, momentum=mom) elif args.optim == 'adam': optimizer = torch.optim.Adam(model.parameters(), lr=lr, amsgrad=False) elif args.optim == 'ams': optimizer = torch.optim.Adam(model.parameters(), lr=lr, amsgrad=True) else: assert False, "invalid optimizer" lr_scheduler = StepLR(optimizer, step_size=1, gamma=args.lr_decay) if args.prune: # Is there a better way to enforce pruning only for unconstrained and MLP? assert model.class_type in ['unconstrained', 'u'] and args.model in ['MLP','CNN'] prune.prune(dataset, model, optimizer, lr_scheduler, args.epochs, args.log_freq, log_path, checkpoint_path, result_path, args.test, args.save_model, args.prune_lr_decay, args.prune_factor, args.prune_iters) else: train.train(dataset, model, optimizer, lr_scheduler, args.epochs, args.log_freq, log_path, checkpoint_path, result_path, args.test, args.save_model) ## Parse parser.set_defaults(task=mlp) # subparsers = parser.add_subparsers() # mlp_parser = subparsers.add_parser('MLP') # mlp_parser.set_defaults(task=mlp) # MLP models model_options = [] nets = {} for model in descendants(ArghModel): # Change the names so argh can create parsers model.args.__name__ = model.__name__ model_options.append(model.args) nets[model.__name__] = model argh.add_commands(parser, model_options, namespace='model', namespace_kwargs={'dest': 'model'}) for model in ArghModel.__subclasses__(): # Change names back model.args.__name__ = 'args' args = parser.parse_args() args.task(args)
structured-nets-master
pytorch/main.py
import numpy as np import os, time, logging import pickle as pkl import torch import torch.optim as optim from torch.optim.lr_scheduler import StepLR from tensorboardX import SummaryWriter device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") def test_split(net, dataloader, loss_fn): n = len(dataloader.dataset) total_loss = 0.0 total_acc = 0.0 for data in dataloader: batch_X, batch_Y = data batch_X, batch_Y = batch_X.to(device), batch_Y.to(device) output = net(batch_X) loss_batch, acc_batch = loss_fn(output, batch_Y) total_loss += len(batch_X)*loss_batch.data.item() total_acc += len(batch_X)*acc_batch.data.item() return total_loss/n, total_acc/n # Epoch_offset: to ensure stats are not overwritten when called during pruning def train(dataset, net, optimizer, lr_scheduler, epochs, log_freq, log_path, checkpoint_path, result_path, test, save_model, epoch_offset=0): logging.debug('Tensorboard log path: ' + log_path) logging.debug('Tensorboard checkpoint path: ' + checkpoint_path) logging.debug('Results directory: ' + result_path) os.makedirs(checkpoint_path, exist_ok=True) writer = SummaryWriter(log_path) net.to(device) logging.debug((torch.cuda.get_device_name(0))) for name, param in net.named_parameters(): if param.requires_grad: logging.debug(('Parameter name, shape: ', name, param.data.shape)) losses = {'Train': [], 'Val': [], 'DR': [], 'ratio': [], 'Test':[]} accuracies = {'Train': [], 'Val': [], 'Test':[]} best_val_acc = 0.0 best_val_save = None # If not saving models, then keep updating test accuracy of best validation model test_acc_of_best_val = 0.0 test_loss_of_best_val = 0.0 def log_stats(name, split, loss, acc, step): losses[split].append(loss) accuracies[split].append(acc) writer.add_scalar(split+'/Loss', loss, step) writer.add_scalar(split+'/Accuracy', acc, step) logging.debug(f"{name} loss, accuracy: {loss:.6f}, {acc:.6f}") # Compute initial stats t1 = time.time() init_loss, init_accuracy = test_split(net, dataset.val_loader, dataset.loss) log_stats('Initial', 'Val', init_loss, init_accuracy, epoch_offset) for epoch in range(epochs): logging.debug('Starting epoch ' + str(epoch+epoch_offset)) for step, data in enumerate(dataset.train_loader, 0): # Get the inputs batch_xs, batch_ys = data batch_xs, batch_ys = batch_xs.to(device), batch_ys.to(device) optimizer.zero_grad() # Zero the gradient buffers output = net(batch_xs) train_loss, train_accuracy = dataset.loss(output, batch_ys) train_loss += net.loss() train_loss.backward() optimizer.step() # Log training every log_freq steps total_step = (epoch + epoch_offset)*len(dataset.train_loader) + step+1 if total_step % log_freq == 0: logging.debug(('Time: ', time.time() - t1)) t1 = time.time() logging.debug(('Training step: ', total_step)) log_stats('Train', 'Train', train_loss.data.item(), train_accuracy.data.item(), total_step) # Validate and checkpoint by epoch # Test on validation set val_loss, val_accuracy = test_split(net, dataset.val_loader, dataset.loss) log_stats('Validation', 'Val', val_loss, val_accuracy, epoch+epoch_offset+1) # Update LR lr_scheduler.step() for param_group in optimizer.param_groups: logging.debug('Current LR: ' + str(param_group['lr'])) # Record best model if val_accuracy > best_val_acc: if save_model: save_path = os.path.join(checkpoint_path, 'best') with open(save_path, 'wb') as f: torch.save(net.state_dict(), f) logging.debug(("Best model saved in file: %s" % save_path)) best_val_save = save_path else: test_loss, test_accuracy = test_split(net, dataset.test_loader, dataset.loss) test_loss_of_best_val = test_loss test_acc_of_best_val = test_accuracy best_val_acc = val_accuracy # Save last checkpoint if save_model: save_path = os.path.join(checkpoint_path, 'last') with open(save_path, 'wb') as f: torch.save(net.state_dict(), f) logging.debug(("Last model saved in file: %s" % save_path)) # Test trained model if test: if save_model: # Load net from best validation if best_val_save is not None: net.load_state_dict(torch.load(best_val_save)) logging.debug(f'Loaded best validation checkpoint from: {best_val_save}') test_loss, test_accuracy = test_split(net, dataset.test_loader, dataset.loss) log_stats('Test', 'Test', test_loss, test_accuracy, 0) else: log_stats('Test', 'Test', test_loss_of_best_val, test_acc_of_best_val, 0) train_loss, train_accuracy = test_split(net, dataset.train_loader, dataset.loss) # Log best validation accuracy and training acc for that model writer.add_scalar('MaxAcc/Val', best_val_acc) writer.add_scalar('MaxAcc/Train', train_accuracy) writer.export_scalars_to_json(os.path.join(log_path, "all_scalars.json")) writer.close() pkl.dump(losses, open(result_path + '_losses.p', 'wb'), protocol=2) pkl.dump(accuracies, open(result_path + '_accuracies.p', 'wb'), protocol=2) logging.debug('Saved losses and accuracies to: ' + result_path) return losses, accuracies
structured-nets-master
pytorch/learning/train.py
import numpy as np from learning import train import torch device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") def generate_mask(W, prune_factor): weights = W.W.cpu().data.numpy() N = int(weights.size/prune_factor) # Get indices of N highest magnitude weights idx = np.abs(weights.flatten()).argsort()[-N:][::-1] Z = np.zeros(weights.size) Z[idx] = 1 Z = Z.reshape(weights.shape) return Z def set_masks(net, prune_factor, device): for layer in net.layers: mask = generate_mask(layer, prune_factor) layer.set_mask(mask, device) def prune(dataset, net, optimizer, lr_scheduler, epochs, log_freq, log_path, checkpoint_path, result_path, test, save, prune_lr_decay, prune_factor, prune_iters): # Initial training train.train(dataset, net, optimizer, lr_scheduler, epochs, log_freq, log_path, checkpoint_path, result_path, 0, save) for i in range(prune_iters): set_masks(net, prune_factor, device) # Update learning rate for param_group in optimizer.param_groups: param_group['lr'] = prune_lr_decay*param_group['lr'] # Retrain train.train(dataset, net, optimizer, lr_scheduler, epochs, log_freq, log_path, checkpoint_path, result_path, test, save, (i+1)*epochs)
structured-nets-master
pytorch/learning/prune.py
import numpy as np import os, sys sys.path.insert(0, '../../pytorch/') import torch from torch_utils import * from torch.autograd import Variable import torch.optim as optim from torchtext import data, datasets import spacy from tensorboardX import SummaryWriter sys.path.insert(0, '../../pytorch/attention/') from attention import * sys.path.insert(0, '../../') from dataset import * import pickle as pkl spacy_de = spacy.load('de') spacy_en = spacy.load('en') def tokenize_de(text): return [tok.text for tok in spacy_de.tokenizer(text)] def tokenize_en(text): return [tok.text for tok in spacy_en.tokenizer(text)] def create_src_tgt(): BOS_WORD = '<s>' EOS_WORD = '</s>' BLANK_WORD = "<blank>" SRC = data.Field(tokenize=tokenize_de, pad_token=BLANK_WORD) TGT = data.Field(tokenize=tokenize_en, init_token = BOS_WORD, eos_token = EOS_WORD, pad_token=BLANK_WORD) MAX_LEN = 100 train, val, test = datasets.IWSLT.splits( exts=('.de', '.en'), fields=(SRC, TGT), filter_pred=lambda x: len(vars(x)['src']) <= MAX_LEN and len(vars(x)['trg']) <= MAX_LEN) MIN_FREQ = 2 SRC.build_vocab(train.src, min_freq=MIN_FREQ) TGT.build_vocab(train.trg, min_freq=MIN_FREQ) return SRC, TGT, train, val, test # Duplicated def run_epoch(data_iter, model, loss_compute): "Standard Training and Logging Function" start = time.time() total_tokens = 0 total_loss = 0 tokens = 0 losses = [] for i, batch in enumerate(data_iter): batch.src, batch.trg, batch.src_mask, batch.trg_mask = batch.src.cuda(), batch.trg.cuda(), batch.src_mask.cuda(), batch.trg_mask.cuda() #print('batch.src:', batch.src) #print('batch.trg: ', batch.trg) #print('batch.src_mask: ', batch.src_mask) #print('batch.trg_mask: ', batch.trg_mask) #quit() out = model.forward(batch.src, batch.trg, batch.src_mask, batch.trg_mask) loss = loss_compute(out, batch.trg_y, batch.ntokens) total_loss += loss total_tokens += batch.ntokens tokens += batch.ntokens if i % 50 == 1: elapsed = time.time() - start print(("Epoch Step: %d Loss: %f Tokens per Sec: %f" % (i, loss / batch.ntokens, tokens / elapsed))) start = time.time() tokens = 0 losses.append(loss/batch.ntokens) return total_loss / total_tokens, losses def compute_bleu(model): for i, batch in enumerate(valid_iter): src = batch.src.transpose(0, 1)[:1] src_mask = (src != SRC.vocab.stoi["<blank>"]).unsqueeze(-2) out = greedy_decode(model, src, src_mask,max_len=60, start_symbol=TGT.vocab.stoi["<s>"]) print("Translation:", end="\t") for i in range(1, out.size(1)): sym = TGT.vocab.itos[out[0, i]] if sym == "</s>": break print(sym, end =" ") print() print("Target:", end="\t") for i in range(1, batch.trg.size(0)): sym = TGT.vocab.itos[batch.trg.data[i, 0]] if sym == "</s>": break print(sym, end =" ") print() break def optimize_iwslt(dataset, params): SRC, TGT, train, val, test = create_src_tgt() pad_idx = TGT.vocab.stoi["<blank>"] model = make_model(params, len(SRC.vocab), len(TGT.vocab), N=1) model.cuda() print((torch.cuda.get_device_name(0))) for name, param in model.named_parameters(): if param.requires_grad: print(('Parameter name, shape: ', name, param.data.shape)) writer = SummaryWriter(params.log_path) losses = {'train': [], 'val': [], 'DR': [], 'ratio': []} accuracies = {'train': [], 'val': []} criterion = LabelSmoothing(size=len(TGT.vocab), padding_idx=pad_idx, smoothing=0.1) criterion.cuda() train_iter = MyIterator(train, batch_size=params.batch_size, device=0, repeat=False, sort_key=lambda x: (len(x.src), len(x.trg)), batch_size_fn=batch_size_fn, train=True) valid_iter = MyIterator(val, batch_size=params.batch_size, device=0, repeat=False, sort_key=lambda x: (len(x.src), len(x.trg)), batch_size_fn=batch_size_fn, train=False) model_opt = NoamOpt(model.src_embed[0].d_model, 1, 2000, torch.optim.Adam(model.parameters(), lr=0, betas=(0.9, 0.98), eps=1e-9)) for epoch in range(params.steps): model.train() train_total_loss_fraction, train_losses = run_epoch((rebatch(pad_idx, b) for b in train_iter), model, SimpleLossCompute(model.generator, criterion, model_opt)) losses['train'] += train_losses print('Train, epoch: ', train_total_loss_fraction, epoch) writer.add_scalar('Train/Loss', train_total_loss_fraction, epoch) model.eval() val_total_loss_fraction, val_losses = run_epoch((rebatch(pad_idx, b) for b in valid_iter), model, SimpleLossCompute(model.generator, criterion, None)) losses['val'] += val_losses print('Val, epoch: ', val_total_loss_fraction, epoch) writer.add_scalar('Val/Loss', val_total_loss_fraction, epoch) print(loss) """ losses['train'] += train_losses print('Train, epoch: ', train_total_loss_fraction, epoch) writer.add_scalar('Train/Loss', train_total_loss_fraction, epoch) val_total_loss_fraction, val_losses = run_epoch(writer, data_gen(V, 30, 5), model, SimpleLossCompute(model.generator, criterion, None)) losses['val'] += val_losses print('Val, epoch: ', val_total_loss_fraction, epoch) writer.add_scalar('Val/Loss', val_total_loss_fraction, epoch) # Checkpoint save_path = os.path.join(params.checkpoint_path, str(epoch)) with open(save_path, 'wb') as f: torch.save(model.state_dict(), f) print(("Model saved in file: %s" % save_path)) """ writer.export_scalars_to_json(os.path.join(params.log_path, "all_scalars.json")) writer.close() return losses, accuracies
structured-nets-master
pytorch/old/misc/attention/optimize_iwslt.py
""" http://nlp.seas.harvard.edu/2018/04/03/attention.html """ import sys sys.path.insert(0, '../') from structured_layer import * import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable import copy, math import numpy as np class EncoderDecoder(nn.Module): """ A standard Encoder-Decoder architecture. Base for this and many other models. """ def __init__(self, encoder, decoder, src_embed, tgt_embed, generator): super(EncoderDecoder, self).__init__() self.encoder = encoder self.decoder = decoder self.src_embed = src_embed self.tgt_embed = tgt_embed self.generator = generator def forward(self, src, tgt, src_mask, tgt_mask): "Take in and process masked src and target sequences." return self.decode(self.encode(src, src_mask), src_mask, tgt, tgt_mask) def encode(self, src, src_mask): return self.encoder(self.src_embed(src), src_mask) def decode(self, memory, src_mask, tgt, tgt_mask): return self.decoder(self.tgt_embed(tgt), memory, src_mask, tgt_mask) class Generator(nn.Module): "Define standard linear + softmax generation step." def __init__(self, d_model, vocab): super(Generator, self).__init__() self.proj = nn.Linear(d_model, vocab) def forward(self, x): return F.log_softmax(self.proj(x), dim=-1) def clones(module, N): "Produce N identical layers." return nn.ModuleList([copy.deepcopy(module) for _ in range(N)]) class Encoder(nn.Module): "Core encoder is a stack of N layers" def __init__(self, layer, N): super(Encoder, self).__init__() self.layers = clones(layer, N) self.norm = LayerNorm(layer.size) def forward(self, x, mask): "Pass the input (and mask) through each layer in turn." for layer in self.layers: x = layer(x, mask) return self.norm(x) class LayerNorm(nn.Module): "Construct a layernorm module (See citation for details)." def __init__(self, features, eps=1e-6): super(LayerNorm, self).__init__() self.a_2 = nn.Parameter(torch.ones(features)) self.b_2 = nn.Parameter(torch.zeros(features)) self.eps = eps def forward(self, x): mean = x.mean(-1, keepdim=True) std = x.std(-1, keepdim=True) return self.a_2 * (x - mean) / (std + self.eps) + self.b_2 class SublayerConnection(nn.Module): """ A residual connection followed by a layer norm. Note for code simplicity the norm is first as opposed to last. """ def __init__(self, size, dropout): super(SublayerConnection, self).__init__() self.norm = LayerNorm(size) self.dropout = nn.Dropout(dropout) def forward(self, x, sublayer): "Apply residual connection to any sublayer with the same size." return x + self.dropout(sublayer(self.norm(x))) class EncoderLayer(nn.Module): "Encoder is made up of self-attn and feed forward (defined below)" def __init__(self, size, self_attn, feed_forward, dropout): super(EncoderLayer, self).__init__() self.self_attn = self_attn self.feed_forward = feed_forward self.sublayer = clones(SublayerConnection(size, dropout), 2) self.size = size def forward(self, x, mask): "Follow Figure 1 (left) for connections." x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, mask)) return self.sublayer[1](x, self.feed_forward) class Decoder(nn.Module): "Generic N layer decoder with masking." def __init__(self, layer, N): super(Decoder, self).__init__() self.layers = clones(layer, N) self.norm = LayerNorm(layer.size) def forward(self, x, memory, src_mask, tgt_mask): for layer in self.layers: x = layer(x, memory, src_mask, tgt_mask) return self.norm(x) class DecoderLayer(nn.Module): "Decoder is made of self-attn, src-attn, and feed forward (defined below)" def __init__(self, size, self_attn, src_attn, feed_forward, dropout): super(DecoderLayer, self).__init__() self.size = size self.self_attn = self_attn self.src_attn = src_attn print('self_atten: ', self_attn) print('src_attn:', src_attn) self.feed_forward = feed_forward self.sublayer = clones(SublayerConnection(size, dropout), 3) def forward(self, x, memory, src_mask, tgt_mask): "Follow Figure 1 (right) for connections." m = memory x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, tgt_mask)) x = self.sublayer[1](x, lambda x: self.src_attn(x, m, m, src_mask)) return self.sublayer[2](x, self.feed_forward) def subsequent_mask(size): "Mask out subsequent positions." attn_shape = (1, size, size) subsequent_mask = np.triu(np.ones(attn_shape), k=1).astype('uint8') return torch.from_numpy(subsequent_mask) == 0 def attention(query, key, value, mask=None, dropout=None): "Compute 'Scaled Dot Product Attention'" d_k = query.size(-1) scores = torch.matmul(query, key.transpose(-2, -1)) \ / math.sqrt(d_k) if mask is not None: scores = scores.masked_fill(mask == 0, -1e9) p_attn = F.softmax(scores, dim = -1) if dropout is not None: p_attn = dropout(p_attn) return torch.matmul(p_attn, value), p_attn class MultiHeadedAttention(nn.Module): def __init__(self, params, h, d_model, structured, dropout=0.1): "Take in model size and number of heads." super(MultiHeadedAttention, self).__init__() assert d_model % h == 0 # We assume d_v always equals d_k self.d_k = d_model // h self.h = h print(('d_model, h, d_k: ', d_model, h, self.d_k)) if structured: self.linears = clones(nn.Linear(d_model, d_model), 3) self.linears.append(StructuredLinear(params)) else: self.linears = clones(nn.Linear(d_model, d_model), 4) self.attn = None self.dropout = nn.Dropout(p=dropout) def forward(self, query, key, value, mask=None): "Implements Figure 2" if mask is not None: # Same mask applied to all h heads. mask = mask.unsqueeze(1) nbatches = query.size(0) # 1) Do all the linear projections in batch from d_model => h x d_k query, key, value = \ [l(x).view(nbatches, -1, self.h, self.d_k).transpose(1, 2) for l, x in zip(self.linears, (query, key, value))] # 2) Apply attention on all the projected vectors in batch. x, self.attn = attention(query, key, value, mask=mask, dropout=self.dropout) # 3) "Concat" using a view and apply a final linear. x = x.transpose(1, 2).contiguous() \ .view(nbatches, -1, self.h * self.d_k) return self.linears[-1](x) class PositionwiseFeedForward(nn.Module): "Implements FFN equation." def __init__(self, d_model, d_ff, dropout=0.1): super(PositionwiseFeedForward, self).__init__() self.w_1 = nn.Linear(d_model, d_ff) self.w_2 = nn.Linear(d_ff, d_model) self.dropout = nn.Dropout(dropout) def forward(self, x): return self.w_2(self.dropout(F.relu(self.w_1(x)))) class Embeddings(nn.Module): def __init__(self, d_model, vocab): super(Embeddings, self).__init__() self.lut = nn.Embedding(vocab, d_model) self.d_model = d_model def forward(self, x): return self.lut(x) * math.sqrt(self.d_model) class PositionalEncoding(nn.Module): "Implement the PE function." def __init__(self, d_model, dropout, max_len=5000): super(PositionalEncoding, self).__init__() self.dropout = nn.Dropout(p=dropout) # Compute the positional encodings once in log space. pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2) * -(math.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0) self.register_buffer('pe', pe) def forward(self, x): x = x + Variable(self.pe[:, :x.size(1)], requires_grad=False) return self.dropout(x) def make_model(params, src_vocab, tgt_vocab, N=6, d_model=512, d_ff=2048, h=8, dropout=0.1): "Helper: Construct a model from hyperparameters." c = copy.deepcopy attn = MultiHeadedAttention(params, h, d_model, False) structured_attn = MultiHeadedAttention(params, h, d_model, True) ff = PositionwiseFeedForward(d_model, d_ff, dropout) position = PositionalEncoding(d_model, dropout) model = EncoderDecoder( Encoder(EncoderLayer(d_model, c(structured_attn), c(ff), dropout), N), Decoder(DecoderLayer(d_model, c(attn), c(attn), c(ff), dropout), N), nn.Sequential(Embeddings(d_model, src_vocab), c(position)), nn.Sequential(Embeddings(d_model, tgt_vocab), c(position)), Generator(d_model, tgt_vocab)) # This was important from their code. # Initialize parameters with Glorot / fan_avg. for p in model.parameters(): if p.dim() > 1: nn.init.xavier_uniform(p) return model if __name__ == '__main__': tmp_model = make_model(10, 10, 2) print(tmp_model)
structured-nets-master
pytorch/old/misc/attention/attention.py
import numpy as np import os, sys sys.path.insert(0, '../../pytorch/') import torch from torch_utils import * from torch.autograd import Variable import torch.optim as optim from tensorboardX import SummaryWriter sys.path.insert(0, '../../pytorch/attention/') from attention import * sys.path.insert(0, '../../') from dataset import * def run_epoch(writer, data_iter, model, loss_compute): "Standard Training and Logging Function" start = time.time() total_tokens = 0 total_loss = 0 tokens = 0 losses = [] for i, batch in enumerate(data_iter): batch.src, batch.trg, batch.src_mask, batch.trg_mask = batch.src.cuda(), batch.trg.cuda(), batch.src_mask.cuda(), batch.trg_mask.cuda() #print('batch.src:', batch.src) #print('batch.trg: ', batch.trg) #print('batch.src_mask: ', batch.src_mask) #print('batch.trg_mask: ', batch.trg_mask) #quit() out = model.forward(batch.src, batch.trg, batch.src_mask, batch.trg_mask) loss = loss_compute(out, batch.trg_y, batch.ntokens) total_loss += loss total_tokens += batch.ntokens tokens += batch.ntokens if i % 50 == 1: elapsed = time.time() - start print(("Epoch Step: %d Loss: %f Tokens per Sec: %f" % (i, loss / batch.ntokens, tokens / elapsed))) start = time.time() tokens = 0 losses.append(loss/batch.ntokens) return total_loss / total_tokens, losses def optimize_nmt(dataset, params): V = 11 writer = SummaryWriter(params.log_path) losses = {'train': [], 'val': [], 'DR': [], 'ratio': []} accuracies = {'train': [], 'val': []} criterion = LabelSmoothing(size=V, padding_idx=0, smoothing=0.0) model = make_model(params, V, V, N=1) for name, param in model.named_parameters(): if param.requires_grad: print(('Parameter name, shape: ', name, param.data.shape)) model_opt = NoamOpt(model.src_embed[0].d_model, 1, 400, torch.optim.Adam(model.parameters(), lr=0, betas=(0.9, 0.98), eps=1e-9)) model.cuda() for epoch in range(params.steps): model.train() train_total_loss_fraction, train_losses = run_epoch(writer, data_gen(V, 30, 20), model, SimpleLossCompute(model.generator, criterion, model_opt)) losses['train'] += train_losses print('Train, epoch: ', train_total_loss_fraction, epoch) writer.add_scalar('Train/Loss', train_total_loss_fraction, epoch) model.eval() val_total_loss_fraction, val_losses = run_epoch(writer, data_gen(V, 30, 5), model, SimpleLossCompute(model.generator, criterion, None)) losses['val'] += val_losses print('Val, epoch: ', val_total_loss_fraction, epoch) writer.add_scalar('Val/Loss', val_total_loss_fraction, epoch) # Checkpoint save_path = os.path.join(params.checkpoint_path, str(epoch)) with open(save_path, 'wb') as f: torch.save(model.state_dict(), f) print(("Model saved in file: %s" % save_path)) writer.export_scalars_to_json(os.path.join(params.log_path, "all_scalars.json")) writer.close() return losses, accuracies
structured-nets-master
pytorch/old/misc/attention/optimize_nmt.py
import torch import torch.nn as nn import torch.nn.functional as F import math, copy, time from torch.autograd import Variable import matplotlib.pyplot as plt import numpy as np from attention import * from torchtext import data, datasets # Skip if not interested in multigpu. class MultiGPULossCompute: "A multi-gpu loss compute and train function." def __init__(self, generator, criterion, devices, opt=None, chunk_size=5): # Send out to different gpus. self.generator = generator self.criterion = nn.parallel.replicate(criterion, devices=devices) self.opt = opt self.devices = devices self.chunk_size = chunk_size def __call__(self, out, targets, normalize): total = 0.0 generator = nn.parallel.replicate(self.generator, devices=self.devices) out_scatter = nn.parallel.scatter(out, target_gpus=self.devices) out_grad = [[] for _ in out_scatter] targets = nn.parallel.scatter(targets, target_gpus=self.devices) # Divide generating into chunks. chunk_size = self.chunk_size for i in range(0, out_scatter[0].size(1), chunk_size): # Predict distributions out_column = [[Variable(o[:, i:i+chunk_size].data, requires_grad=self.opt is not None)] for o in out_scatter] gen = nn.parallel.parallel_apply(generator, out_column) # Compute loss. y = [(g.contiguous().view(-1, g.size(-1)), t[:, i:i+chunk_size].contiguous().view(-1)) for g, t in zip(gen, targets)] loss = nn.parallel.parallel_apply(self.criterion, y) # Sum and normalize loss l = nn.parallel.gather(loss, target_device=self.devices[0]) l = l.sum()[0] / normalize total += l.data[0] # Backprop loss to output of transformer if self.opt is not None: l.backward() for j, l in enumerate(loss): out_grad[j].append(out_column[j][0].grad.data.clone()) # Backprop all loss through transformer. if self.opt is not None: out_grad = [Variable(torch.cat(og, dim=1)) for og in out_grad] o1 = out o2 = nn.parallel.gather(out_grad, target_device=self.devices[0]) o1.backward(gradient=o2) self.opt.step() self.opt.optimizer.zero_grad() return total * normalize class MyIterator(data.Iterator): def create_batches(self): if self.train: def pool(d, random_shuffler): for p in data.batch(d, self.batch_size * 100): p_batch = data.batch( sorted(p, key=self.sort_key), self.batch_size, self.batch_size_fn) for b in random_shuffler(list(p_batch)): yield b self.batches = pool(self.data(), self.random_shuffler) else: self.batches = [] for b in data.batch(self.data(), self.batch_size, self.batch_size_fn): self.batches.append(sorted(b, key=self.sort_key)) def rebatch(pad_idx, batch): "Fix order in torchtext to match ours" src, trg = batch.src.transpose(0, 1), batch.trg.transpose(0, 1) return Batch(src, trg, pad_idx) class LabelSmoothing(nn.Module): "Implement label smoothing." def __init__(self, size, padding_idx, smoothing=0.0): super(LabelSmoothing, self).__init__() self.criterion = nn.KLDivLoss(size_average=False) self.padding_idx = padding_idx self.confidence = 1.0 - smoothing self.smoothing = smoothing self.size = size self.true_dist = None def forward(self, x, target): assert x.size(1) == self.size true_dist = x.data.clone() true_dist.fill_(self.smoothing / (self.size - 2)) true_dist.scatter_(1, target.data.unsqueeze(1), self.confidence) true_dist[:, self.padding_idx] = 0 mask = torch.nonzero(target.data == self.padding_idx) if mask.dim() > 0: true_dist.index_fill_(0, mask.squeeze(), 0.0) self.true_dist = true_dist return self.criterion(x, Variable(true_dist, requires_grad=False)) class Batch: "Object for holding a batch of data with mask during training." def __init__(self, src, trg=None, pad=0): self.src = src self.src_mask = (src != pad).unsqueeze(-2) if trg is not None: self.trg = trg[:, :-1] self.trg_y = trg[:, 1:] self.trg_mask = \ self.make_std_mask(self.trg, pad) self.ntokens = (self.trg_y != pad).data.sum() @staticmethod def make_std_mask(tgt, pad): "Create a mask to hide padding and future words." tgt_mask = (tgt != pad).unsqueeze(-2) tgt_mask = tgt_mask & Variable( subsequent_mask(tgt.size(-1)).type_as(tgt_mask.data)) return tgt_mask def run_epoch(data_iter, model, loss_compute): "Standard Training and Logging Function" start = time.time() total_tokens = 0 total_loss = 0 tokens = 0 for i, batch in enumerate(data_iter): out = model.forward(batch.src, batch.trg, batch.src_mask, batch.trg_mask) loss = loss_compute(out, batch.trg_y, batch.ntokens) total_loss += loss total_tokens += batch.ntokens tokens += batch.ntokens if i % 50 == 1: elapsed = time.time() - start print(("Epoch Step: %d Loss: %f Tokens per Sec: %f" % (i, loss / batch.ntokens, tokens / elapsed))) start = time.time() tokens = 0 return total_loss / total_tokens global max_src_in_batch, max_tgt_in_batch def batch_size_fn(new, count, sofar): "Keep augmenting batch and calculate total number of tokens + padding." global max_src_in_batch, max_tgt_in_batch if count == 1: max_src_in_batch = 0 max_tgt_in_batch = 0 max_src_in_batch = max(max_src_in_batch, len(new.src)) max_tgt_in_batch = max(max_tgt_in_batch, len(new.trg) + 2) src_elements = count * max_src_in_batch tgt_elements = count * max_tgt_in_batch return max(src_elements, tgt_elements) class NoamOpt: "Optim wrapper that implements rate." def __init__(self, model_size, factor, warmup, optimizer): self.optimizer = optimizer self._step = 0 self.warmup = warmup self.factor = factor self.model_size = model_size self._rate = 0 def step(self): "Update parameters and rate" self._step += 1 rate = self.rate() for p in self.optimizer.param_groups: p['lr'] = rate self._rate = rate self.optimizer.step() def rate(self, step = None): "Implement `lrate` above" if step is None: step = self._step return self.factor * \ (self.model_size ** (-0.5) * min(step ** (-0.5), step * self.warmup ** (-1.5))) def get_std_opt(model): return NoamOpt(model.src_embed[0].d_model, 2, 4000, torch.optim.Adam(model.parameters(), lr=0, betas=(0.9, 0.98), eps=1e-9)) def data_gen(V, batch, nbatches): "Generate random data for a src-tgt copy task." for i in range(nbatches): data = torch.from_numpy(np.random.randint(1, V, size=(batch, 10))) data[:, 0] = 1 src = Variable(data, requires_grad=False) tgt = Variable(data, requires_grad=False) yield Batch(src, tgt, 0) class SimpleLossCompute: "A simple loss compute and train function." def __init__(self, generator, criterion, opt=None): self.generator = generator self.criterion = criterion self.opt = opt def __call__(self, x, y, norm): x = self.generator(x) loss = self.criterion(x.contiguous().view(-1, x.size(-1)), y.contiguous().view(-1)) / norm loss.backward() if self.opt is not None: self.opt.step() self.opt.optimizer.zero_grad() return loss.data[0] * norm if __name__ == '__main__': """ opts = [NoamOpt(512, 1, 4000, None), NoamOpt(512, 1, 8000, None), NoamOpt(256, 1, 4000, None)] plt.plot(np.arange(1, 20000), [[opt.rate(i) for opt in opts] for i in range(1, 20000)]) plt.legend(["512:4000", "512:8000", "256:4000"]) plt.show() crit = LabelSmoothing(5, 0, 0.4) predict = torch.FloatTensor([[0, 0.2, 0.7, 0.1, 0], [0, 0.2, 0.7, 0.1, 0], [0, 0.2, 0.7, 0.1, 0]]) v = crit(Variable(predict.log()), Variable(torch.LongTensor([2, 1, 0]))) # Show the target distributions expected by the system. plt.imshow(crit.true_dist) plt.show() crit = LabelSmoothing(5, 0, 0.1) def loss(x): d = x + 3 * 1 predict = torch.FloatTensor([[0, x / d, 1 / d, 1 / d, 1 / d], ]) #print(predict) return crit(Variable(predict.log()), Variable(torch.LongTensor([1]))).data[0] plt.plot(np.arange(1, 100), [loss(x) for x in range(1, 100)]) plt.show() """ # Train the simple copy task. V = 11 criterion = LabelSmoothing(size=V, padding_idx=0, smoothing=0.0) model = make_model(V, V, N=2) for name, param in model.named_parameters(): if param.requires_grad: print(name, param.data.shape) quit() model_opt = NoamOpt(model.src_embed[0].d_model, 1, 400, torch.optim.Adam(model.parameters(), lr=0, betas=(0.9, 0.98), eps=1e-9)) for epoch in range(10): model.train() run_epoch(data_gen(V, 30, 20), model, SimpleLossCompute(model.generator, criterion, model_opt)) model.eval() print((run_epoch(data_gen(V, 30, 5), model, SimpleLossCompute(model.generator, criterion, None))))
structured-nets-master
pytorch/old/misc/attention/train.py
import copy import numpy as np import torch import torch.nn.functional as F from torchvision import transforms from torch.autograd import Variable use_cuda = torch.cuda.is_available() def get_train_valid_datasets(dataset, valid_size=0.1, random_seed=None, shuffle=True): """ Utility function for loading and returning train and validation datasets. Parameters: ------ - dataset: the dataset, need to have train_data and train_labels attributes. - valid_size: percentage split of the training set used for the validation set. Should be a float in the range [0, 1]. - random_seed: fix seed for reproducibility. - shuffle: whether to shuffle the train/validation indices. Returns: ------- - train_dataset: training set. - valid_dataset: validation set. """ error_msg = "[!] valid_size should be in the range [0, 1]." assert ((valid_size >= 0) and (valid_size <= 1)), error_msg num_train = len(dataset) indices = list(range(num_train)) if shuffle: np.random.seed(random_seed) np.random.shuffle(indices) split = int(np.floor(valid_size * num_train)) train_idx, valid_idx = indices[split:], indices[:split] train_dataset, valid_dataset = copy.copy(dataset), copy.copy(dataset) train_dataset.train_data = train_dataset.train_data[train_idx] train_dataset.train_labels = train_dataset.train_labels[train_idx] valid_dataset.train_data = valid_dataset.train_data[valid_idx] valid_dataset.train_labels = valid_dataset.train_labels[valid_idx] return train_dataset, valid_dataset def copy_with_new_transform(dataset, transform): """A copy of @dataset with its transform set to @transform. """ new_dataset = copy.copy(dataset) new_dataset.transform = transform return new_dataset def augment_transforms(augmentations, base_transform, add_id_transform=True): """Construct a new transform that stack all the augmentations. Parameters: augmentations: list of transforms (e.g. image rotations) base_transform: transform to be applied after augmentation (e.g. ToTensor) add_id_transform: whether to include the original image (i.e. identity transform) in the new transform. Return: a new transform that takes in a data point and applies all the augmentations, then stack the result. """ if add_id_transform: fn = lambda x: torch.stack([base_transform(x)] + [base_transform(aug(x)) for aug in augmentations]) else: fn = lambda x: torch.stack([base_transform(aug(x)) for aug in augmentations]) return transforms.Lambda(fn) def train(data_loader, model, optimizer): model.train() train_loss, train_acc = [], [] for data, target in data_loader: if use_cuda: data, target = Variable(data.cuda()), Variable(target.cuda()) else: data, target = Variable(data), Variable(target) optimizer.zero_grad() output = model(data) pred = model.predict(output) loss = model.loss(output, target) loss.backward() optimizer.step() acc = (pred == target.data).sum() / target.data.size(0) train_loss.append(loss.data) train_acc.append(acc) return train_loss, train_acc def train_models_compute_agreement(data_loader, models, optimizers): train_agreement = [] for model in models: model.train() for data, target in data_loader: if use_cuda: data, target = Variable(data.cuda()), Variable(target.cuda()) else: data, target = Variable(data), Variable(target) pred, loss = [], [] for model, optimizer in zip(models[:8], optimizers[:8]): optimizer.zero_grad() output = model(data) pred.append(model.predict(output)) loss_minibatch = model.loss(output, target) loss_minibatch.backward() optimizer.step() loss.append(loss_minibatch.data) loss = np.array(loss) pred = np.array([p.cpu().numpy() for p in pred]) train_agreement.append((pred == pred[0]).mean(axis=1)) return train_agreement def train_all_epochs(train_loader, valid_loader, model, optimizer, n_epochs, verbose=True): model.train() train_loss, train_acc, valid_acc = [], [], [] for epoch in range(n_epochs): if verbose: print(f'Train Epoch: {epoch}') loss, acc = train(train_loader, model, optimizer) train_loss += loss train_acc += acc correct, total = accuracy(valid_loader, model) valid_acc.append(correct / total) if verbose: print( f'Validation set: Accuracy: {correct}/{total} ({correct/total*100:.4f}%)' ) return train_loss, train_acc, valid_acc def accuracy(data_loader, model): """Accuracy over all mini-batches. """ training = model.training model.eval() correct, total = 0, 0 for data, target in data_loader: if use_cuda: data, target = Variable( data.cuda(), volatile=True), Variable(target.cuda()) else: data, target = Variable(data, volatile=True), Variable(target) output = model(data) pred = model.predict(output) correct += (pred == target.data).sum() total += target.size(0) model.train(training) return correct, total def all_losses(data_loader, model): """All losses over all mini-batches. """ training = model.training model.eval() losses = [] for data, target in data_loader: if use_cuda: data, target = Variable( data.cuda(), volatile=True), Variable(target.cuda()) else: data, target = Variable(data, volatile=True), Variable(target) losses.append([l.data[0] for l in model.all_losses(data, target)]) model.train(training) return np.array(losses) def agreement_kl_accuracy(data_loader, models): training = [model.training for model in models] for model in models: model.eval() valid_agreement, valid_acc, valid_kl = [], [], [] for data, target in data_loader: if use_cuda: data, target = Variable(data.cuda()), Variable(target.cuda()) else: data, target = Variable(data), Variable(target) pred, out = [], [] for model in models: output = model(data) out.append(output) pred.append(model.predict(output)) pred = torch.stack(pred) out = torch.stack(out) log_prob = F.log_softmax(out, dim=-1) prob = F.softmax(out[0], dim=-1).detach() valid_kl.append([F.kl_div(lp, prob, size_average=False).data.cpu() / prob.size(0) for lp in log_prob]) valid_acc.append((pred == target.data).float().mean(dim=1).cpu().numpy()) valid_agreement.append((pred == pred[0]).float().mean(dim=1).cpu().numpy()) for model, training_ in zip(models, training): model.train(training_) return valid_agreement, valid_kl, valid_acc
structured-nets-master
pytorch/old/misc/circtest/utils.py
import numpy as np import math import torch import torch.optim as optim import torch.nn as nn import torch.nn.functional as F from torch.nn.parameter import Parameter from torchvision import datasets, transforms from torch import autograd from torch.autograd import Variable from utils import get_train_valid_datasets, train, train_all_epochs, accuracy, all_losses use_cuda = torch.cuda.is_available() class TwoLayerNet(nn.Module): def __init__(self, n_features, n_classes): super().__init__() self.fc1 = nn.Linear(n_features, n_features) self.fc2 = nn.Linear(n_features, n_classes) def forward(self, x): feat = F.relu(self.fc1(x.view(x.size(0), -1))) return self.fc2(feat) @staticmethod def loss(output, target, reduce=True): return F.cross_entropy(output, target, reduce=reduce) @staticmethod def predict(output): return output.data.max(1)[1] class Circulant(nn.Module): def __init__(self, in_features, bias=True): super().__init__() self.in_features = in_features self.weight = Parameter(torch.Tensor(in_features)) if bias: self.bias = Parameter(torch.Tensor(in_features)) else: self.register_parameter('bias', None) self.reset_parameters() def reset_parameters(self): stdv = 1. / math.sqrt(self.weight.size(0)) self.weight.data.uniform_(-stdv, stdv) if self.bias is not None: self.bias.data.uniform_(-stdv, stdv) def forward(self, input): return F.linear(input, Krylov(shift, self.weight).t(), self.bias) class TwoLayerCirculant(nn.Module): def __init__(self, n_features, n_classes): super().__init__() self.fc1 = Circulant(n_features, bias=True) self.fc2 = nn.Linear(n_features, n_classes) def forward(self, x): feat = F.relu(self.fc1(x.view(x.size(0), -1))) return self.fc2(feat) @staticmethod def loss(output, target, reduce=True): return F.cross_entropy(output, target, reduce=reduce) @staticmethod def predict(output): return output.data.max(1)[1] def shift(v, f=1): return torch.cat((f * v[[v.size(0) - 1]], v[:-1])) def Krylov(linear_map, v, n=None): if n is None: n = v.size(0) cols = [v] for _ in range(n - 1): v = linear_map(v) cols.append(v) return torch.stack(cols, dim=-1) batch_size = 256 if use_cuda: loader_args = {'num_workers': 8, 'pin_memory': True} else: loader_args = {'num_workers': 1, 'pin_memory': False} def loader_from_dataset(dataset): return torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True, **loader_args) mnist_normalize = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307, ), (0.3081, )) ]) mnist_train = datasets.MNIST( '../data', train=True, download=True, transform=mnist_normalize) # Just for faster training on CPU # mnist_train.train_data = mnist_train.train_data[:5000] mnist_test = datasets.MNIST( 'data', train=False, download=True, transform=mnist_normalize) mnist_train, mnist_valid = get_train_valid_datasets(mnist_train) train_loader = loader_from_dataset(mnist_train) valid_loader = loader_from_dataset(mnist_valid) test_loader = loader_from_dataset(mnist_test) n_features = 28 * 28 n_classes = 10 gamma = 0.003 # Best gamma is around 0.001--0.003 n_components = 10000 sgd_n_epochs = 15 def sgd_opt_from_model(model, learning_rate=0.01, momentum=0.9, weight_decay=0.001): return optim.SGD((p for p in model.parameters() if p.requires_grad), lr=learning_rate, momentum=momentum, weight_decay=weight_decay) # model = TwoLayerNet(n_features, n_classes) model = TwoLayerCirculant(n_features, n_classes) optimizer = sgd_opt_from_model(model) train_loss, train_acc, valid_acc = train_all_epochs(train_loader, valid_loader, model, optimizer, sgd_n_epochs) correct, total = accuracy(test_loader, model) print(f'Test set: Accuracy: {correct}/{total} ({correct/total*100:.4f}%)\n')
structured-nets-master
pytorch/old/misc/circtest/circulant.py
# -*- coding: utf-8 -*- """ Classifying Names with a Character-Level RNN ********************************************* **Author**: `Sean Robertson <https://github.com/spro/practical-pytorch>`_ We will be building and training a basic character-level RNN to classify words. A character-level RNN reads words as a series of characters - outputting a prediction and "hidden state" at each step, feeding its previous hidden state into each next step. We take the final prediction to be the output, i.e. which class the word belongs to. Specifically, we'll train on a few thousand surnames from 18 languages of origin, and predict which language a name is from based on the spelling: :: $ python predict.py Hinton (-0.47) Scottish (-1.52) English (-3.57) Irish $ python predict.py Schmidhuber (-0.19) German (-2.48) Czech (-2.68) Dutch **Recommended Reading:** I assume you have at least installed PyTorch, know Python, and understand Tensors: - http://pytorch.org/ For installation instructions - :doc:`/beginner/deep_learning_60min_blitz` to get started with PyTorch in general - :doc:`/beginner/pytorch_with_examples` for a wide and deep overview - :doc:`/beginner/former_torchies_tutorial` if you are former Lua Torch user It would also be useful to know about RNNs and how they work: - `The Unreasonable Effectiveness of Recurrent Neural Networks <http://karpathy.github.io/2015/05/21/rnn-effectiveness/>`__ shows a bunch of real life examples - `Understanding LSTM Networks <http://colah.github.io/posts/2015-08-Understanding-LSTMs/>`__ is about LSTMs specifically but also informative about RNNs in general Preparing the Data ================== .. Note:: Download the data from `here <https://download.pytorch.org/tutorial/data.zip>`_ and extract it to the current directory. Included in the ``data/names`` directory are 18 text files named as "[Language].txt". Each file contains a bunch of names, one name per line, mostly romanized (but we still need to convert from Unicode to ASCII). We'll end up with a dictionary of lists of names per language, ``{language: [names ...]}``. The generic variables "category" and "line" (for language and name in our case) are used for later extensibility. """ from __future__ import unicode_literals, print_function, division from io import open import glob def findFiles(path): return glob.glob(path) print(findFiles('data/names/*.txt')) import unicodedata import string all_letters = string.ascii_letters + " .,;'" n_letters = len(all_letters) # Turn a Unicode string to plain ASCII, thanks to http://stackoverflow.com/a/518232/2809427 def unicodeToAscii(s): return ''.join( c for c in unicodedata.normalize('NFD', s) if unicodedata.category(c) != 'Mn' and c in all_letters ) print(unicodeToAscii('Ślusàrski')) # Build the category_lines dictionary, a list of names per language category_lines = {} all_categories = [] # Read a file and split into lines def readLines(filename): lines = open(filename, encoding='utf-8').read().strip().split('\n') return [unicodeToAscii(line) for line in lines] for filename in findFiles('data/names/*.txt'): category = filename.split('/')[-1].split('.')[0] all_categories.append(category) lines = readLines(filename) category_lines[category] = lines n_categories = len(all_categories) ###################################################################### # Now we have ``category_lines``, a dictionary mapping each category # (language) to a list of lines (names). We also kept track of # ``all_categories`` (just a list of languages) and ``n_categories`` for # later reference. # print(category_lines['Italian'][:5]) ###################################################################### # Turning Names into Tensors # -------------------------- # # Now that we have all the names organized, we need to turn them into # Tensors to make any use of them. # # To represent a single letter, we use a "one-hot vector" of size # ``<1 x n_letters>``. A one-hot vector is filled with 0s except for a 1 # at index of the current letter, e.g. ``"b" = <0 1 0 0 0 ...>``. # # To make a word we join a bunch of those into a 2D matrix # ``<line_length x 1 x n_letters>``. # # That extra 1 dimension is because PyTorch assumes everything is in # batches - we're just using a batch size of 1 here. # import torch # Find letter index from all_letters, e.g. "a" = 0 def letterToIndex(letter): return all_letters.find(letter) # Just for demonstration, turn a letter into a <1 x n_letters> Tensor def letterToTensor(letter): tensor = torch.zeros(1, n_letters) tensor[0][letterToIndex(letter)] = 1 return tensor # Turn a line into a <line_length x 1 x n_letters>, # or an array of one-hot letter vectors def lineToTensor(line): tensor = torch.zeros(len(line), 1, n_letters) for li, letter in enumerate(line): tensor[li][0][letterToIndex(letter)] = 1 return tensor print(letterToTensor('J')) print(lineToTensor('Jones').size()) ###################################################################### # Creating the Network # ==================== # # Before autograd, creating a recurrent neural network in Torch involved # cloning the parameters of a layer over several timesteps. The layers # held hidden state and gradients which are now entirely handled by the # graph itself. This means you can implement a RNN in a very "pure" way, # as regular feed-forward layers. # # This RNN module (mostly copied from `the PyTorch for Torch users # tutorial <http://pytorch.org/tutorials/beginner/former_torchies/ # nn_tutorial.html#example-2-recurrent-net>`__) # is just 2 linear layers which operate on an input and hidden state, with # a LogSoftmax layer after the output. # # .. figure:: https://i.imgur.com/Z2xbySO.png # :alt: # # import torch.nn as nn class RNN(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(RNN, self).__init__() self.hidden_size = hidden_size self.i2h = nn.Linear(input_size + hidden_size, hidden_size) self.i2o = nn.Linear(input_size + hidden_size, output_size) self.softmax = nn.LogSoftmax(dim=1) def forward(self, input, hidden): combined = torch.cat((input, hidden), 1) hidden = self.i2h(combined) output = self.i2o(combined) output = self.softmax(output) return output, hidden def initHidden(self): return torch.zeros(1, self.hidden_size) n_hidden = 128 rnn = RNN(n_letters, n_hidden, n_categories) ###################################################################### # To run a step of this network we need to pass an input (in our case, the # Tensor for the current letter) and a previous hidden state (which we # initialize as zeros at first). We'll get back the output (probability of # each language) and a next hidden state (which we keep for the next # step). # input = letterToTensor('A') hidden =torch.zeros(1, n_hidden) output, next_hidden = rnn(input, hidden) ###################################################################### # For the sake of efficiency we don't want to be creating a new Tensor for # every step, so we will use ``lineToTensor`` instead of # ``letterToTensor`` and use slices. This could be further optimized by # pre-computing batches of Tensors. # input = lineToTensor('Albert') hidden = torch.zeros(1, n_hidden) output, next_hidden = rnn(input[0], hidden) print(output) ###################################################################### # As you can see the output is a ``<1 x n_categories>`` Tensor, where # every item is the likelihood of that category (higher is more likely). # ###################################################################### # # Training # ======== # Preparing for Training # ---------------------- # # Before going into training we should make a few helper functions. The # first is to interpret the output of the network, which we know to be a # likelihood of each category. We can use ``Tensor.topk`` to get the index # of the greatest value: # def categoryFromOutput(output): top_n, top_i = output.topk(1) category_i = top_i[0].item() return all_categories[category_i], category_i print(categoryFromOutput(output)) ###################################################################### # We will also want a quick way to get a training example (a name and its # language): # import random def randomChoice(l): return l[random.randint(0, len(l) - 1)] def randomTrainingExample(): category = randomChoice(all_categories) line = randomChoice(category_lines[category]) category_tensor = torch.tensor([all_categories.index(category)], dtype=torch.long) line_tensor = lineToTensor(line) return category, line, category_tensor, line_tensor for i in range(10): category, line, category_tensor, line_tensor = randomTrainingExample() print('category =', category, '/ line =', line) ###################################################################### # Training the Network # -------------------- # # Now all it takes to train this network is show it a bunch of examples, # have it make guesses, and tell it if it's wrong. # # For the loss function ``nn.NLLLoss`` is appropriate, since the last # layer of the RNN is ``nn.LogSoftmax``. # criterion = nn.NLLLoss() ###################################################################### # Each loop of training will: # # - Create input and target tensors # - Create a zeroed initial hidden state # - Read each letter in and # # - Keep hidden state for next letter # # - Compare final output to target # - Back-propagate # - Return the output and loss # learning_rate = 0.005 # If you set this too high, it might explode. If too low, it might not learn def train(category_tensor, line_tensor): hidden = rnn.initHidden() rnn.zero_grad() for i in range(line_tensor.size()[0]): output, hidden = rnn(line_tensor[i], hidden) loss = criterion(output, category_tensor) loss.backward() # Add parameters' gradients to their values, multiplied by learning rate for p in rnn.parameters(): p.data.add_(-learning_rate, p.grad.data) return output, loss.item() ###################################################################### # Now we just have to run that with a bunch of examples. Since the # ``train`` function returns both the output and loss we can print its # guesses and also keep track of loss for plotting. Since there are 1000s # of examples we print only every ``print_every`` examples, and take an # average of the loss. # import time import math n_iters = 100000 print_every = 5000 plot_every = 1000 # Keep track of losses for plotting current_loss = 0 all_losses = [] def timeSince(since): now = time.time() s = now - since m = math.floor(s / 60) s -= m * 60 return '%dm %ds' % (m, s) start = time.time() for iter in range(1, n_iters + 1): category, line, category_tensor, line_tensor = randomTrainingExample() output, loss = train(category_tensor, line_tensor) current_loss += loss # Print iter number, loss, name and guess if iter % print_every == 0: guess, guess_i = categoryFromOutput(output) correct = '✓' if guess == category else '✗ (%s)' % category print('%d %d%% (%s) %.4f %s / %s %s' % (iter, iter / n_iters * 100, timeSince(start), loss, line, guess, correct)) # Add current loss avg to list of losses if iter % plot_every == 0: all_losses.append(current_loss / plot_every) current_loss = 0 ###################################################################### # Plotting the Results # -------------------- # # Plotting the historical loss from ``all_losses`` shows the network # learning: # import matplotlib.pyplot as plt import matplotlib.ticker as ticker plt.figure() plt.plot(all_losses) ###################################################################### # Evaluating the Results # ====================== # # To see how well the network performs on different categories, we will # create a confusion matrix, indicating for every actual language (rows) # which language the network guesses (columns). To calculate the confusion # matrix a bunch of samples are run through the network with # ``evaluate()``, which is the same as ``train()`` minus the backprop. # # Keep track of correct guesses in a confusion matrix confusion = torch.zeros(n_categories, n_categories) n_confusion = 10000 # Just return an output given a line def evaluate(line_tensor): hidden = rnn.initHidden() for i in range(line_tensor.size()[0]): output, hidden = rnn(line_tensor[i], hidden) return output # Go through a bunch of examples and record which are correctly guessed correct = 0 total = 0 for i in range(n_confusion): category, line, category_tensor, line_tensor = randomTrainingExample() output = evaluate(line_tensor) guess, guess_i = categoryFromOutput(output) category_i = all_categories.index(category) if guess_i == category_i: correct += 1 total += 1 confusion[category_i][guess_i] += 1 # Normalize by dividing every row by its sum for i in range(n_categories): confusion[i] = confusion[i] / confusion[i].sum() # Print overall accuracy print('Total accuracy: ', float(correct)/total) # Set up plot fig = plt.figure() ax = fig.add_subplot(111) cax = ax.matshow(confusion.numpy()) fig.colorbar(cax) # Set up axes ax.set_xticklabels([''] + all_categories, rotation=90) ax.set_yticklabels([''] + all_categories) # Force label at every tick ax.xaxis.set_major_locator(ticker.MultipleLocator(1)) ax.yaxis.set_major_locator(ticker.MultipleLocator(1)) # sphinx_gallery_thumbnail_number = 2 plt.show() ###################################################################### # You can pick out bright spots off the main axis that show which # languages it guesses incorrectly, e.g. Chinese for Korean, and Spanish # for Italian. It seems to do very well with Greek, and very poorly with # English (perhaps because of overlap with other languages). # ###################################################################### # Running on User Input # --------------------- # def predict(input_line, n_predictions=3): print('\n> %s' % input_line) with torch.no_grad(): output = evaluate(lineToTensor(input_line)) # Get top N categories topv, topi = output.topk(n_predictions, 1, True) predictions = [] for i in range(n_predictions): value = topv[0][i].item() category_index = topi[0][i].item() print('(%.2f) %s' % (value, all_categories[category_index])) predictions.append([value, all_categories[category_index]]) predict('Dovesky') predict('Jackson') predict('Satoshi') ###################################################################### # The final versions of the scripts `in the Practical PyTorch # repo <https://github.com/spro/practical-pytorch/tree/master/char-rnn-classification>`__ # split the above code into a few files: # # - ``data.py`` (loads files) # - ``model.py`` (defines the RNN) # - ``train.py`` (runs training) # - ``predict.py`` (runs ``predict()`` with command line arguments) # - ``server.py`` (serve prediction as a JSON API with bottle.py) # # Run ``train.py`` to train and save the network. # # Run ``predict.py`` with a name to view predictions: # # :: # # $ python predict.py Hazaki # (-0.42) Japanese # (-1.39) Polish # (-3.51) Czech # # Run ``server.py`` and visit http://localhost:5533/Yourname to get JSON # output of predictions. # ###################################################################### # Exercises # ========= # # - Try with a different dataset of line -> category, for example: # # - Any word -> language # - First name -> gender # - Character name -> writer # - Page title -> blog or subreddit # # - Get better results with a bigger and/or better shaped network # # - Add more linear layers # - Try the ``nn.LSTM`` and ``nn.GRU`` layers # - Combine multiple of these RNNs as a higher level network #
structured-nets-master
pytorch/old/misc/charRNN/char_rnn_classification_tutorial.py
import torch import functools import numpy as np from torch.autograd import Variable import time # Down shift def Z_mult_fn(f, x): return torch.cat((f * x[-1], x[:-1])) # Up shift def Z_transpose_mult_fn(f, x): #print('x[1:]: ', x[1:]) #print('f*x[0]: ', f*x[0]) #return torch.cat((x[1:], torch.FloatTensor([f * x[0]]))) return torch.cat((x[1:], f*x[0])) # Diagonal multiplication def diag_mult_fn(diag, x): return diag * x # Circulant sparsity pattern operators def circ_mult_fn(subdiag_f, x): # note: f corresponds to last element instead of first y = torch.cat((x[-1], x[:-1])) return y * subdiag_f def circ_transpose_mult_fn(subdiag_f, x): # Circular shift y = torch.cat((x[1:], x[0])) # Scale by [v f] return y * subdiag_f # Tridiagonal + corner operators # TODO NEEDS FIX def tridiag_transpose_mult_fn(subdiag_f, diag, supdiag, x): y = torch.cat((x[1:], x[0])) sub_result = y * subdiag_f z = Variable(torch.zeros(1).cuda()) sup_result = torch.cat((z, x[:-1] * supdiag)) diag_result = x*diag return sup_result + sub_result + diag_result # Assumes Stein displacement. def set_mult_fns(self, params): # assert params.disp_type == 'stein' if params.class_type in ['toeplitz_like', 'toep_corner', 'toep_nocorn']: fn_A = functools.partial(Z_mult_fn, 1) fn_B_T = functools.partial(Z_mult_fn, -1) # TODO: operators for hankel and vandermonde have not been checked for transpose consistency elif params.class_type == 'hankel_like': fn_A = functools.partial(Z_transpose_mult_fn, 1) fn_B_T = functools.partial(Z_mult_fn, 0) elif params.class_type == 'vandermonde_like': v = Parameter(torch.Tensor(params.layer_size)) torch.nn.init.normal_(v,std=params.init_stddev) self.v = v fn_A = functools.partial(diag_mult_fn, self.v) fn_B_T = functools.partial(Z_transpose_mult_fn, 0) elif params.class_type == 'circulant_sparsity': self.subdiag_f_A = Parameter(torch.Tensor(params.layer_size)) self.subdiag_f_B = Parameter(torch.Tensor(params.layer_size)) torch.nn.init.normal_(self.subdiag_f_A,std=params.init_stddev) torch.nn.init.normal_(self.subdiag_f_B,std=params.init_stddev) fn_A = functools.partial(circ_mult_fn, self.subdiag_f_A) fn_B_T = functools.partial(circ_mult_fn, self.subdiag_f_B) elif params.class_type == 'tridiagonal_corner': self.subdiag_f_A = Parameter(torch.Tensor(params.layer_size)) self.subdiag_f_B = Parameter(torch.Tensor(params.layer_size)) self.diag_A = Parameter(torch.Tensor(params.layer_size)) self.diag_B = Parameter(torch.Tensor(params.layer_size)) self.supdiag_A = Parameter(torch.Tensor(params.layer_size-1)) self.supdiag_B = Parameter(torch.Tensor(params.layer_size-1)) torch.nn.init.normal_(self.subdiag_f_A,std=params.init_stddev) torch.nn.init.normal_(self.subdiag_f_B,std=params.init_stddev) torch.nn.init.normal_(self.diag_A,std=params.init_stddev) torch.nn.init.normal_(self.diag_B,std=params.init_stddev) torch.nn.init.normal_(self.supdiag_A,std=params.init_stddev) torch.nn.init.normal_(self.supdiag_B,std=params.init_stddev) fn_A = functools.partial(tridiag_mult_fn, self.subdiag_f_A, self.diag_A, self.supdiag_A) fn_B_T = functools.partial(tridiag_mult_fn, self.subdiag_f_B, self.diag_B, self.supdiag_B) else: print(('Not supported: ', params.class_type)) assert 0 return fn_A, fn_B_T
structured-nets-master
pytorch/old/utils/torch_krylov.py
import torch from torch.autograd import Variable import time from torch_utils import * from torch_krylov import * from scipy.linalg import toeplitz import numpy as np import functools def krylov(fn, v, n): cols = [v] for _ in range(n - 1): v = fn(v) cols.append(v) return torch.stack(cols, dim=-1) def krylov_recon(r, n, G, H, fn_A, fn_B_T): "G, H: (r, n)" W1 = Variable(torch.zeros(n, n).cuda()) for i in range(r): K_A = krylov(fn_A, G[i], n) K_B = krylov(fn_B_T, H[i], n).t() prod = torch.matmul(K_A, K_B).cuda() #print('W1: ', W1) #print('prod: ', prod) W1 = torch.add(W1, prod) return W1 def recon(net): W = krylov_recon(net.params.r, net.params.layer_size, net.G, net.H, net.fn_A, net.fn_B_T) # Normalize if net.params.class_type in ['vandermonde_like', 'hankel_like']: return W if net.params.class_type == 'toeplitz_like': return 0.5*W elif net.params.class_type in ['circulant_sparsity', 'tridiagonal_corner']: # Compute a and b a = torch.prod(net.subdiag_f_A) b = torch.prod(net.subdiag_f_B) coeff = 1.0/(1 - a*b) return coeff*W else: print(('Class_type not supported: ', net.params.class_type)) assert 0 if __name__ == '__main__': # Tests # Toeplitz matrix n = 10 disp_rank = 2 c = np.random.random(n) r = np.random.random(n) T = toeplitz(c,r) A = gen_Z_f(n, 1).T B = gen_Z_f(n, -1) E = T - np.dot(A,np.dot(T,B)) print(np.linalg.matrix_rank(E)) U, S, V = np.linalg.svd(E, full_matrices=False) SV = np.dot(np.diag(S), V) G = torch.FloatTensor(U[:, 0:disp_rank]) H = torch.FloatTensor(SV[0:disp_rank, :].T) fn_A = functools.partial(Z_transpose_mult_fn, 1) fn_B_T = functools.partial(Z_transpose_mult_fn, -1) W = 0.5*krylov_recon(disp_rank, n, G, H, fn_A, fn_B_T) print('W: ', W) print('T: ', T)
structured-nets-master
pytorch/old/utils/torch_reconstruction.py
import torch import torch.nn as nn from torch.autograd import Variable import numpy as np # Circulant sparsity pattern def gen_Z_f(m, f, v=None): if v is not None: assert v.size <= m-1 I_m = np.eye(m-1, m-1) Z_f = np.hstack((I_m, np.zeros((m-1, 1)))) Z_f = np.vstack((np.zeros((1, m)), Z_f)) Z_f[0, -1] = f if v is not None: for i in range(v.size): Z_f[i+1, i] = v[i] return Z_f def subsequent_mask(size): "Mask out subsequent positions." attn_shape = (1, size, size) subsequent_mask = np.triu(np.ones(attn_shape), k=1).astype('uint8') return torch.from_numpy(subsequent_mask) == 0 class NoamOpt: "Optim wrapper that implements rate." def __init__(self, model_size, factor, warmup, optimizer): self.optimizer = optimizer self._step = 0 self.warmup = warmup self.factor = factor self.model_size = model_size self._rate = 0 def step(self): "Update parameters and rate" self._step += 1 rate = self.rate() for p in self.optimizer.param_groups: p['lr'] = rate self._rate = rate self.optimizer.step() def rate(self, step = None): "Implement `lrate` above" if step is None: step = self._step return self.factor * \ (self.model_size ** (-0.5) * min(step ** (-0.5), step * self.warmup ** (-1.5))) def get_std_opt(model): return NoamOpt(model.src_embed[0].d_model, 2, 4000, torch.optim.Adam(model.parameters(), lr=0, betas=(0.9, 0.98), eps=1e-9)) # TODO AG: are the non cross-entropy cases even used? def get_loss(params, generator=None, model_opt=None): loss_fn = None if params.dataset_name.startswith('true'): assert params.loss == 'mse' loss_fn = nn.MSELoss() elif params.dataset_name.startswith('copy'): assert params.loss == 'label_smoothing' ls = LabelSmoothing(params.ls_size, params.ls_padding_idx, params.ls_smoothing) loss_fn = SimpleLossCompute(generator, ls, model_opt) else: assert params.loss == 'cross_entropy' loss_fn = nn.CrossEntropyLoss() return params.loss, loss_fn class SimpleLossCompute: "A simple loss compute and train function." def __init__(self, generator, criterion, opt=None): self.generator = generator self.criterion = criterion self.opt = opt def __call__(self, x, y, norm): x = self.generator(x) loss = self.criterion(x.contiguous().view(-1, x.size(-1)), y.contiguous().view(-1)) / norm loss.backward() if self.opt is not None: self.opt.step() self.opt.optimizer.zero_grad() return loss.data[0] * norm class LabelSmoothing(nn.Module): "Implement label smoothing." def __init__(self, size, padding_idx, smoothing=0.0): super(LabelSmoothing, self).__init__() self.criterion = nn.KLDivLoss(size_average=False) self.padding_idx = padding_idx self.confidence = 1.0 - smoothing self.smoothing = smoothing self.size = size self.true_dist = None def forward(self, x, target): assert x.size(1) == self.size true_dist = x.data.clone() true_dist.fill_(self.smoothing / (self.size - 2)) true_dist.scatter_(1, target.data.unsqueeze(1), self.confidence) true_dist[:, self.padding_idx] = 0 mask = torch.nonzero(target.data == self.padding_idx) if mask.dim() > 0: true_dist.index_fill_(0, mask.squeeze(), 0.0) self.true_dist = true_dist return self.criterion(x, Variable(true_dist, requires_grad=False)) # y_: One hot. y: vector of predicted class probabilities. def compute_loss_and_accuracy(pred, true, loss_name): if loss_name == 'mse': loss_fn = nn.MSELoss() mse = loss_fn(pred, true) accuracy = torch.FloatTensor([0]) return mse, accuracy elif loss_name == 'cross_entropy': loss_fn = nn.CrossEntropyLoss() _, true_argmax = torch.max(true, 1) cross_entropy = loss_fn(pred, true_argmax) _, pred_argmax = torch.max(pred, 1) correct_prediction = torch.eq(true_argmax, pred_argmax) accuracy = torch.mean(correct_prediction.float()) return cross_entropy, accuracy else: print(('Not supported: ', loss_name)) assert 0
structured-nets-master
pytorch/old/utils/torch_utils.py
from inspect import signature import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.parameter import Parameter import structure.LDR as ldr import structure.layer as sl def construct_model(cls, in_size, out_size, args): args_fn = cls.args options = {param: vars(args)[param] for param in signature(args_fn).parameters} return cls(in_size=in_size, out_size=out_size, **options) class ArghModel(nn.Module): def __init__(self, in_size, out_size, **options): """" options: dictionary of options/params that args() accepts If the model if constructed with construct_model(), the options will contain defaults based on its args() function """ super().__init__() self.in_size = in_size self.out_size = out_size self.__dict__.update(**options) self.reset_parameters() def args(): """ Empty function whose signature contains parameters and defaults for the class """ pass def reset_parameters(self): pass def name(self): """ Short string summarizing the main parameters of the class Used to construct a unique identifier for an experiment """ return '' def loss(self): """ Model-specific loss function (e.g. per-parameter regularization) """ return 0 # Pytorch tutorial lenet variant class Lenet(ArghModel): def reset_parameters(self): # super().__init__() # in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True self.conv1 = nn.Conv2d(3, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = x.view(-1, 3, 32, 32) x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = x.view(-1, 16 * 5 * 5) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x class CNN(ArghModel): """ Single channel net where the dense last layer has same dimensions as input """ def name(self): return self.layers[0].name() def args(class_type='unconstrained', layer_size=-1, r=1, bias=True,hidden_size=-1): pass def reset_parameters(self): if self.layer_size == -1: self.layer_size = self.in_size if self.hidden_size == -1: self.hidden_size = self.layer_size assert self.layer_size == self.in_size self.d = int(np.sqrt(self.layer_size)) self.conv1 = nn.Conv2d(1, 6, 5, padding=2) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5, padding=2) layers = [] layers.append(sl.StructuredLinear(self.class_type, layer_size=self.layer_size, r=self.r, bias=self.bias, hidden_size=self.hidden_size)) self.layers = nn.ModuleList(layers) self.logits = nn.Linear(self.hidden_size, self.out_size) def forward(self, x): x = x.view(-1, 1, self.d, self.d) x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = x.view(-1, self.layer_size) x = F.relu(self.layers[0](x)) x = self.logits(x) return x class CNNColor(ArghModel): """ 3 channel net where the dense last layer has same dimensions as input """ def args(class_type='unconstrained', layer_size=-1, r=1, bias=True,hidden_size=-1): pass def reset_parameters(self): self.layer_size = int(self.in_size/3) if self.hidden_size == -1: self.hidden_size = self.layer_size self.d = int(np.sqrt(self.layer_size)) self.conv1 = nn.Conv2d(3, 6, 5, padding=2) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5, padding=2) self.W = sl.StructuredLinear(self.class_type, layer_size=self.layer_size, r=self.r, bias=self.bias, hidden_size=self.hidden_size) self.logits = nn.Linear(self.hidden_size, self.out_size) def name(self): return self.W.name() def forward(self, x): x = x.view(-1, 3, self.d, self.d) x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = x.view(-1, self.layer_size) x = F.relu(self.W(x)) x = self.logits(x) return x class CNNPool(ArghModel): """ Simple 3 layer CNN with pooling for cifar10 """ def name(self): return str(self.channels) + 'pool' def args(channels=3, fc_size=512): pass def reset_parameters(self): self.conv1 = nn.Conv2d(3, self.channels, 5, padding=2) self.pool = nn.MaxPool2d(2, 2) self.fc = nn.Linear(self.channels*1024//4, self.fc_size) self.logits = nn.Linear(self.fc_size,10) def forward(self, x): x = x.view(-1, 3, 32, 32) x = F.relu(self.conv1(x)) x = self.pool(x) x = x.view(-1, self.channels*1024//4) x = F.relu(self.fc(x)) x = self.logits(x) return x class TwoLayer(ArghModel): """ Simple 2 hidden layer network: convolution channels or FC, FC, softmax """ def name(self): return "3conv" def args(conv=True): pass def reset_parameters(self): if self.conv: self.conv1 = nn.Conv2d(3, 3, 5, padding=2) else: self.conv1 = nn.Linear(3*1024, 3*1024) self.fc = nn.Linear(3*1024, 512) self.logits = nn.Linear(512, 10) def forward(self, x): if self.conv: x = x.view(-1, 3, 32, 32) x = F.relu(self.conv1(x)) x = x.view(-1, 3*1024) else: x = F.relu(self.conv1(x)) x = F.relu(self.fc(x)) x = self.logits(x) return x def loss(self): return 0 class WLDRFC(ArghModel): """ LDR layer (single weight matrix), followed by FC and softmax """ def name(self): return self.W.name()+'u' def args(class_type='unconstrained', layer_size=-1, r=1, fc_size = 512): pass def reset_parameters(self): if self.layer_size == -1: self.layer_size = self.in_size self.W = sl.StructuredLinear(self.class_type, layer_size=self.layer_size, r=self.r) self.fc = nn.Linear(3*1024, self.fc_size) self.logits = nn.Linear(self.fc_size, 10) def forward(self, x): x = self.W(x) x = F.relu(self.fc(x)) x = self.logits(x) return x def loss(self): return self.W.loss() class LDRFC(ArghModel): """ LDR layer with channels, followed by FC and softmax """ def name(self): return self.W.name()+'u' def args(class_type='t', r=1, channels=3, fc_size=512): pass def reset_parameters(self): self.n = 1024 self.LDR1 = ldr.LDR(self.class_type, 3, self.channels, self.r, self.n, bias=True) self.fc = nn.Linear(self.channels*self.n, self.fc_size) self.logits = nn.Linear(self.fc_size, 10) def forward(self, x): x = x.view(-1, 3, 1024) x = x.transpose(0,1).contiguous().view(3, -1, self.n) x = F.relu(self.LDR1(x)) x = x.transpose(0,1) # swap batches and channels axis x = x.contiguous().view(-1, self.channels*self.n) x = F.relu(self.fc(x)) x = self.logits(x) return x def loss(self): return self.LDR1.loss() class LDRLDR(ArghModel): """ LDR layer (either 3 channels or one wide matrix), followed by another LDR layer, then softmax intended for 3-channel images of size 1024 (e.g. CIFAR-10) """ def name(self): # w = 'wide' if not self.channels else '' return self.LDR1.name() + self.LDR211.name() def args(class1='toeplitz', class2='toeplitz', channels=False, rank1=48, rank2=16): pass def reset_parameters(self): self.n = 1024 self.fc_size = self.n // 2 if self.channels: self.LDR1 = ldr.LDR(self.class1, 3, 3, self.rank1, self.n) else: self.LDR1 = sl.StructuredLinear(self.class1, layer_size=3*self.n, r=self.rank1) self.LDR211 = sl.StructuredLinear(self.class2, layer_size=self.fc_size, r=self.rank2) self.LDR212 = sl.StructuredLinear(self.class2, layer_size=self.fc_size, r=self.rank2) self.LDR221 = sl.StructuredLinear(self.class2, layer_size=self.fc_size, r=self.rank2) self.LDR222 = sl.StructuredLinear(self.class2, layer_size=self.fc_size, r=self.rank2) self.LDR231 = sl.StructuredLinear(self.class2, layer_size=self.fc_size, r=self.rank2) self.LDR232 = sl.StructuredLinear(self.class2, layer_size=self.fc_size, r=self.rank2) self.b = Parameter(torch.zeros(self.fc_size)) self.logits = nn.Linear(self.fc_size, 10) def forward(self, x): if self.channels: x = x.view(-1, 3, self.n) x = x.transpose(0,1).contiguous().view(3, -1, self.n) x = F.relu(self.LDR1(x)) else: x = F.relu(self.LDR1(x)) x = x.view(-1, 3, self.n) x = x.transpose(0,1).contiguous().view(3, -1, self.n) x11 = x[0][:,:self.fc_size] x12 = x[0][:,self.fc_size:] x21 = x[1][:,:self.fc_size] x22 = x[1][:,self.fc_size:] x31 = x[2][:,:self.fc_size] x32 = x[2][:,self.fc_size:] x = F.relu(self.LDR211(x11) + self.LDR212(x12) + self.LDR221(x21) + self.LDR222(x22) + self.LDR231(x31) + self.LDR232(x32) + self.b) x = self.logits(x) return x def loss(self): return self.LDR1.loss() class LDRLDR2(ArghModel): """ Same as LDRLDR but use larger matrix to represent rectangular LDR """ def name(self): return self.LDR1.name() + self.LDR2.name() def args(class1='toeplitz', class2='toeplitz', layer_size=-1, channels=3, fc_size=512, rank1=48, rank2=16): pass def reset_parameters(self): if self.layer_size == -1: self.layer_size = self.in_size self.n = self.layer_size self.LDR1 = sl.StructuredLinear(self.class1, layer_size=self.channels*self.n, r=self.rank1, bias=True) self.LDR2 = sl.StructuredLinear(self.class2,layer_size=self.channels*self.n, r=self.rank2, bias=True) self.logits = nn.Linear(self.fc_size, 10) def forward(self, x): batch_size, n = x.shape[0], x.shape[1] x = torch.cat((x, torch.zeros(batch_size, self.channels*self.n-n).cuda()), dim=-1) x = F.relu(self.LDR1(x)) x = F.relu(self.LDR2(x)) x = x[:,:self.fc_size] x = self.logits(x) return x def loss(self): return self.LDR1.loss() class SL(ArghModel): """ Single layer linear model (for synthetic regression tests) """ def name(self): return self.W.name() def args(class_type='unconstrained', layer_size=-1, r=1, bias=False, hidden_size=-1): pass def reset_parameters(self): if self.layer_size == -1: self.layer_size = self.in_size if self.hidden_size == -1: self.hidden_size = self.in_size self.W = sl.StructuredLinear(self.class_type, layer_size=self.layer_size, r=self.r, bias=self.bias, hidden_size=self.hidden_size) def forward(self, x): return self.W(x) class SHL(SL): """ Single hidden layer """ def args(class_type='unconstrained', layer_size=-1, r=1, bias=True, hidden_size=-1): pass def reset_parameters(self): super().reset_parameters() self.W2 = nn.Linear(self.hidden_size, self.out_size) def forward(self, x): return self.W2(F.relu(self.W(x))) class MLP(ArghModel): """ Multi layer fully connected net. """ def name(self): return self.layers[0].name() def args(class_type='unconstrained', layer_size=-1, r=1, bias=True, num_layers=1): pass def reset_parameters(self): if self.layer_size == -1: self.layer_size = self.in_size layers = [] for layer in range(self.num_layers): layers.append(sl.StructuredLinear(self.class_type,layer_size=self.layer_size, r=self.r, bias=self.bias)) self.layers = nn.ModuleList(layers) self.W2 = nn.Linear(self.layer_size, self.out_size) def forward(self, x): output = F.relu(self.layers[0](x)) for i in range(self.num_layers-1): output = F.relu(self.layers[i+1](output)) return self.W2(output)
structured-nets-master
pytorch/models/nets.py
""" Modified from pytorch/examples/word_language_model to demonstrate 'StructuredLinear' usage. """ ############################################################################### # Language Modeling on Penn Tree Bank # # This file generates new sentences sampled from the language model # ############################################################################### import argparse import torch from torch.autograd import Variable import data parser = argparse.ArgumentParser(description='PyTorch Wikitext-2 Language Model') # Model parameters. parser.add_argument('--data', type=str, default='./data/wikitext-2', help='location of the data corpus') parser.add_argument('--checkpoint', type=str, default='./model.pt', help='model checkpoint to use') parser.add_argument('--outf', type=str, default='generated.txt', help='output file for generated text') parser.add_argument('--words', type=int, default='1000', help='number of words to generate') parser.add_argument('--seed', type=int, default=1111, help='random seed') parser.add_argument('--cuda', action='store_true', help='use CUDA') parser.add_argument('--temperature', type=float, default=1.0, help='temperature - higher will increase diversity') parser.add_argument('--log-interval', type=int, default=100, help='reporting interval') args = parser.parse_args() # Set the random seed manually for reproducibility. torch.manual_seed(args.seed) if torch.cuda.is_available(): if not args.cuda: print("WARNING: You have a CUDA device, so you should probably run with --cuda") device = torch.device("cuda" if args.cuda else "cpu") if args.temperature < 1e-3: parser.error("--temperature has to be greater or equal 1e-3") with open(args.checkpoint, 'rb') as f: model = torch.load(f).to(device) model.eval() corpus = data.Corpus(args.data) ntokens = len(corpus.dictionary) hidden = model.init_hidden(1) input = torch.randint(ntokens, (1, 1), dtype=torch.long).to(device) with open(args.outf, 'w') as outf: with torch.no_grad(): # no tracking history for i in range(args.words): output, hidden = model(input, hidden) word_weights = output.squeeze().div(args.temperature).exp().cpu() word_idx = torch.multinomial(word_weights, 1)[0] input.fill_(word_idx) word = corpus.dictionary.idx2word[word_idx] outf.write(word + ('\n' if i % 20 == 19 else ' ')) if i % args.log_interval == 0: print('| Generated {}/{} words'.format(i, args.words))
structured-nets-master
pytorch/examples/word_language_model/generate.py
""" Modified from pytorch/examples/word_language_model to demonstrate 'StructuredLinear' usage. """ import torch.nn as nn from torch.nn import Parameter import torch import numpy as np import sys from lstm import SingleLayerLSTM, LSTMCell class RNNModel(nn.Module): """Container module with an encoder, a recurrent module, and a decoder.""" def __init__(self, class_type, r, rnn_type, ntoken, ninp, nhid, nlayers, dropout=0.5, tie_weights=False): super(RNNModel, self).__init__() self.drop = nn.Dropout(dropout) self.encoder = nn.Embedding(ntoken, ninp) if rnn_type in ['LSTM', 'GRU']: print('ninp, nhid, nlayers: ', ninp, nhid, nlayers) if rnn_type == 'LSTM': self.rnn = SingleLayerLSTM(class_type, r, input_size=ninp, hidden_size=nhid, dropout=dropout) else: self.rnn = getattr(nn, rnn_type)(ninp, nhid, nlayers, dropout=dropout) else: try: nonlinearity = {'RNN_TANH': 'tanh', 'RNN_RELU': 'relu'}[rnn_type] except KeyError: raise ValueError( """An invalid option for `--model` was supplied, options are ['LSTM', 'GRU', 'RNN_TANH' or 'RNN_RELU']""") self.rnn = nn.RNN(ninp, nhid, nlayers, nonlinearity=nonlinearity, dropout=dropout) self.decoder = nn.Linear(nhid, ntoken) # Optionally tie weights as in: # "Using the Output Embedding to Improve Language Models" (Press & Wolf 2016) # https://arxiv.org/abs/1608.05859 # and # "Tying Word Vectors and Word Classifiers: A Loss Framework for Language Modeling" (Inan et al. 2016) # https://arxiv.org/abs/1611.01462 if tie_weights: if nhid != ninp: raise ValueError('When using the tied flag, nhid must be equal to emsize') self.decoder.weight = self.encoder.weight self.init_weights() self.rnn_type = rnn_type self.nhid = nhid self.nlayers = nlayers def init_weights(self): initrange = 0.1 self.encoder.weight.data.uniform_(-initrange, initrange) self.decoder.bias.data.zero_() self.decoder.weight.data.uniform_(-initrange, initrange) def forward(self, input, hidden): emb = self.drop(self.encoder(input)) output, hidden = self.rnn(emb, hx=hidden) output = output.squeeze() hidden = (hidden[0].squeeze(0), hidden[1].squeeze(0)) output = self.drop(output) decoded = self.decoder(output.view(output.size(0)*output.size(1), output.size(2))) return decoded.view(output.size(0), output.size(1), decoded.size(1)), hidden def init_hidden(self, bsz): weight = next(self.parameters()) if self.rnn_type == 'LSTM': return (weight.new_zeros(self.nlayers, bsz, self.nhid), weight.new_zeros(self.nlayers, bsz, self.nhid)) else: return weight.new_zeros(self.nlayers, bsz, self.nhid)
structured-nets-master
pytorch/examples/word_language_model/model.py
""" Some parts modified from https://github.com/jihunchoi/recurrent-batch-normalization-pytorch/blob/master/bnlstm.py """ import torch from torch import nn from torch.nn import init from torch.autograd import Variable import sys sys.path.insert(0, '../../../pytorch/') import structure.layer as sl class LSTMCell(nn.Module): def __init__(self, class_type, r, input_size, hidden_size, use_bias=True): super(LSTMCell, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.use_bias = use_bias self.class_type = class_type self.r = r # Replace W_ih with structured matrices self.W_ih = sl.StructuredLinear(class_type, layer_size=4*hidden_size, r=r, bias=False) self.W_hh = nn.Parameter( torch.FloatTensor(hidden_size, 4 * hidden_size)) if use_bias: self.bias = nn.Parameter(torch.FloatTensor(4 * hidden_size)) else: self.bias = None self.reset_parameters() def reset_parameters(self): W_hh_data = torch.eye(self.hidden_size).repeat(1,4) self.W_hh.data.set_(W_hh_data) if self.use_bias: init.constant(self.bias.data, val=0) def forward(self, input_, hx): h_0, c_0 = hx h_0 = h_0.squeeze() c_0 = c_0.squeeze() batch_size = h_0.size(0) bias_batch = (self.bias.unsqueeze(0) .expand(batch_size, *self.bias.size())) wh_b = torch.addmm(bias_batch, h_0, self.W_hh) z = torch.zeros(input_.size(0),3*self.hidden_size).cuda() input_padded = torch.cat((input_, z), dim=1) wi = self.W_ih(input_padded) f, i, o, g = torch.split(wh_b + wi, split_size_or_sections=self.hidden_size, dim=1) c_1 = torch.sigmoid(f)*c_0 + torch.sigmoid(i)*torch.tanh(g) h_1 = torch.sigmoid(o) * torch.tanh(c_1) return h_1, c_1 class SingleLayerLSTM(nn.Module): def __init__(self, class_type, r, input_size, hidden_size,use_bias=True,dropout=0): super(SingleLayerLSTM, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.use_bias = use_bias self.dropout = dropout # Initialize LSTMCell self.cell = LSTMCell(class_type=class_type, r=r, input_size=input_size, hidden_size=hidden_size, use_bias=use_bias) self.dropout_layer = nn.Dropout(dropout) self.reset_parameters() def reset_parameters(self): self.cell.reset_parameters() @staticmethod def _forward_rnn(cell, input_, length, hx): max_time = input_.size(0) output = [] for time in range(max_time): h_next, c_next = cell(input_=input_[time], hx=hx) mask = (time < length).float().unsqueeze(1).expand_as(h_next) h_next = h_next*mask + hx[0]*(1 - mask) c_next = c_next*mask + hx[1]*(1 - mask) hx_next = (h_next, c_next) output.append(h_next) hx = hx_next output = torch.stack(output, 0) return output, hx def forward(self, input_, hx): max_time, batch_size, _ = input_.size() length = Variable(torch.LongTensor([max_time] * batch_size)) if input_.is_cuda: device = input_.get_device() length = length.cuda(device) output, (h_n, c_n) = SingleLayerLSTM._forward_rnn( cell=self.cell, input_=input_, length=length, hx=hx) input_ = self.dropout_layer(output) return output, (h_n, c_n)
structured-nets-master
pytorch/examples/word_language_model/lstm.py
""" Modified from pytorch/examples/word_language_model to demonstrate 'StructuredLinear' usage. """ # coding: utf-8 import argparse, os import time import math import torch import torch.nn as nn import pickle as pkl import data import model parser = argparse.ArgumentParser(description='PyTorch Wikitext-2 RNN/LSTM Language Model') parser.add_argument('--name', type=str, default='', help='name of the experiment') parser.add_argument('--class_type', type=str, default='unconstrained', help='structured class') parser.add_argument('--r', type=int, default=1, help='displacement rank') parser.add_argument('--data', type=str, default='./data/wikitext-2', help='location of the data corpus') parser.add_argument('--model', type=str, default='LSTM', help='type of recurrent net (RNN_TANH, RNN_RELU, LSTM, GRU)') parser.add_argument('--emsize', type=int, default=200, help='size of word embeddings') parser.add_argument('--nhid', type=int, default=200, help='number of hidden units per layer') parser.add_argument('--nlayers', type=int, default=1, help='number of layers') parser.add_argument('--lr', type=float, default=20, help='initial learning rate') parser.add_argument('--clip', type=float, default=0.25, help='gradient clipping') parser.add_argument('--epochs', type=int, default=40, help='upper epoch limit') parser.add_argument('--batch_size', type=int, default=20, metavar='N', help='batch size') parser.add_argument('--bptt', type=int, default=35, help='sequence length') parser.add_argument('--dropout', type=float, default=0.2, help='dropout applied to layers (0 = no dropout)') parser.add_argument('--tied', action='store_true', help='tie the word embedding and softmax weights') parser.add_argument('--seed', type=int, default=1111, help='random seed') parser.add_argument('--cuda', action='store_true', help='use CUDA') parser.add_argument('--log-interval', type=int, default=200, metavar='N', help='report interval') parser.add_argument('--result-dir', default='../../../results/language/') parser.add_argument('--test', type=int, default=0, help='Flag to test on test set') args = parser.parse_args() # Set the random seed manually for reproducibility. torch.manual_seed(args.seed) if torch.cuda.is_available(): if not args.cuda: print("WARNING: You have a CUDA device, so you should probably run with --cuda") device = torch.device("cuda" if args.cuda else "cpu") ############################################################################### # Load data ############################################################################### corpus = data.Corpus(args.data) # Starting from sequential data, batchify arranges the dataset into columns. # For instance, with the alphabet as the sequence and batch size 4, we'd get # ┌ a g m s ┐ # │ b h n t │ # │ c i o u │ # │ d j p v │ # │ e k q w │ # └ f l r x ┘. # These columns are treated as independent by the model, which means that the # dependence of e. g. 'g' on 'f' can not be learned, but allows more efficient # batch processing. def batchify(data, bsz): # Work out how cleanly we can divide the dataset into bsz parts. nbatch = data.size(0) // bsz # Trim off any extra elements that wouldn't cleanly fit (remainders). data = data.narrow(0, 0, nbatch * bsz) # Evenly divide the data across the bsz batches. data = data.view(bsz, -1).t().contiguous() return data.to(device) eval_batch_size = 10 train_data = batchify(corpus.train, args.batch_size) val_data = batchify(corpus.valid, eval_batch_size) test_data = batchify(corpus.test, eval_batch_size) # Make results dir out_dir = os.path.join(args.result_dir, args.name) if not os.path.exists(out_dir): os.makedirs(out_dir) ############################################################################### # Build the model ############################################################################### ntokens = len(corpus.dictionary) model = model.RNNModel(args.class_type, args.r, args.model, ntokens, args.emsize, args.nhid, args.nlayers, args.dropout, args.tied).to(device) # Print params for name, param in model.named_parameters(): if param.requires_grad: print(('Parameter name, shape: ', name, param.data.shape)) criterion = nn.CrossEntropyLoss() ############################################################################### # Training code ############################################################################### def repackage_hidden(h): """Wraps hidden states in new Tensors, to detach them from their history.""" if isinstance(h, torch.Tensor): return h.detach() else: return tuple(repackage_hidden(v) for v in h) # get_batch subdivides the source data into chunks of length args.bptt. # If source is equal to the example output of the batchify function, with # a bptt-limit of 2, we'd get the following two Variables for i = 0: # ┌ a g m s ┐ ┌ b h n t ┐ # └ b h n t ┘ └ c i o u ┘ # Note that despite the name of the function, the subdivison of data is not # done along the batch dimension (i.e. dimension 1), since that was handled # by the batchify function. The chunks are along dimension 0, corresponding # to the seq_len dimension in the LSTM. def get_batch(source, i): seq_len = min(args.bptt, len(source) - 1 - i) data = source[i:i+seq_len] target = source[i+1:i+1+seq_len].view(-1) return data, target def evaluate(data_source): # Turn on evaluation mode which disables dropout. model.eval() total_loss = 0. ntokens = len(corpus.dictionary) hidden = model.init_hidden(eval_batch_size) with torch.no_grad(): for i in range(0, data_source.size(0) - 1, args.bptt): data, targets = get_batch(data_source, i) output, hidden = model(data, hidden) output_flat = output.view(-1, ntokens) total_loss += len(data) * criterion(output_flat, targets).item() hidden = repackage_hidden(hidden) return total_loss / len(data_source) def train(): # Turn on training mode which enables dropout. model.train() total_loss = 0. start_time = time.time() ntokens = len(corpus.dictionary) hidden = model.init_hidden(args.batch_size) for batch, i in enumerate(range(0, train_data.size(0) - 1, args.bptt)): data, targets = get_batch(train_data, i) # Starting each batch, we detach the hidden state from how it was previously produced. # If we didn't, the model would try backpropagating all the way to start of the dataset. hidden = repackage_hidden(hidden) model.zero_grad() output, hidden = model(data, hidden) loss = criterion(output.view(-1, ntokens), targets) loss.backward() # `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs. torch.nn.utils.clip_grad_norm(model.parameters(), args.clip) for p in model.parameters(): if p.grad is None: continue #print(('Parameter name, shape: ', p.name, p.data.shape)) p.data.add_(-lr, p.grad.data) total_loss += loss.item() if batch % args.log_interval == 0 and batch > 0: cur_loss = total_loss / args.log_interval elapsed = time.time() - start_time print('| epoch {:3d} | {:5d}/{:5d} batches | lr {:02.2f} | ms/batch {:5.2f} | ' 'loss {:5.2f} | ppl {:8.2f}'.format( epoch, batch, len(train_data) // args.bptt, lr, elapsed * 1000 / args.log_interval, cur_loss, math.exp(cur_loss))) total_loss = 0 start_time = time.time() # Loop over epochs. lr = args.lr best_val_loss = None val_losses = [] val_perps = [] # At any point you can hit Ctrl + C to break out of training early. try: for epoch in range(1, args.epochs+1): epoch_start_time = time.time() train() val_loss = evaluate(val_data) val_losses.append(val_loss) val_perps.append(math.exp(val_loss)) print('-' * 89) print('| end of epoch {:3d} | time: {:5.2f}s | valid loss {:5.2f} | ' 'valid ppl {:8.2f}'.format(epoch, (time.time() - epoch_start_time), val_loss, math.exp(val_loss))) print('-' * 89) # Save the model if the validation loss is the best we've seen so far. if not best_val_loss or val_loss < best_val_loss: with open(os.path.join(out_dir, 'model.pt'), 'wb') as f: torch.save(model, f) best_val_loss = val_loss else: # Anneal the learning rate if no improvement has been seen in the validation dataset. lr /= 4.0 except KeyboardInterrupt: print('-' * 89) print('Exiting from training early') # Load the best saved model. with open(os.path.join(out_dir, 'model.pt'), 'rb') as f: model = torch.load(f) # after load the rnn params are not a continuous chunk of memory # this makes them a continuous chunk, and will speed up forward pass #model.rnn.flatten_parameters() results = {} results['val_losses'] = val_losses results['val_perps'] = val_perps if args.test: # Run on test data. test_loss = evaluate(test_data) print('=' * 89) print('| End of training | test loss {:5.2f} | test ppl {:8.2f}'.format( test_loss, math.exp(test_loss))) print('=' * 89) results['test_loss'] = test_loss results['test_perp'] = math.exp(test_loss) # Save out = os.path.join(out_dir, args.class_type + '_' + str(args.r) + '.p') print('Saving losses to: ', out) pkl.dump(results, open(out, 'wb'))
structured-nets-master
pytorch/examples/word_language_model/main.py
""" Modified from pytorch/examples/word_language_model to demonstrate 'StructuredLinear' usage. """ import os import torch class Dictionary(object): def __init__(self): self.word2idx = {} self.idx2word = [] def add_word(self, word): if word not in self.word2idx: self.idx2word.append(word) self.word2idx[word] = len(self.idx2word) - 1 return self.word2idx[word] def __len__(self): return len(self.idx2word) class Corpus(object): def __init__(self, path): self.dictionary = Dictionary() self.train = self.tokenize(os.path.join(path, 'train.txt')) self.valid = self.tokenize(os.path.join(path, 'valid.txt')) self.test = self.tokenize(os.path.join(path, 'test.txt')) def tokenize(self, path): """Tokenizes a text file.""" assert os.path.exists(path) # Add words to the dictionary with open(path, 'r') as f: tokens = 0 for line in f: words = line.split() + ['<eos>'] tokens += len(words) for word in words: self.dictionary.add_word(word) # Tokenize file content with open(path, 'r') as f: ids = torch.LongTensor(tokens) token = 0 for line in f: words = line.split() + ['<eos>'] for word in words: ids[token] = self.dictionary.word2idx[word] token += 1 return ids
structured-nets-master
pytorch/examples/word_language_model/data.py
""" Modified from pytorch/examples/vae to demonstrate 'StructuredLinear' usage. """ from __future__ import print_function import argparse, sys, os import torch import torch.utils.data from torch import nn, optim from torch.nn import functional as F from torchvision import datasets, transforms from torchvision.utils import save_image sys.path.insert(0, '../../../pytorch/') import structure.layer as sl import pickle as pkl parser = argparse.ArgumentParser(description='VAE MNIST Example') parser.add_argument('--batch-size', type=int, default=50, metavar='N', help='input batch size for training (default: 128)') #128 parser.add_argument('--name', default='') parser.add_argument('--result-dir', default='../../../results/vae/') parser.add_argument('--data-dir', default='../../../../datasets/mnist/') parser.add_argument('--layer-size',type=int, default=784) parser.add_argument('--class-type', default='unconstrained') parser.add_argument('--lr',type=float, default=1e-3) parser.add_argument('--r',type=int, default=1) parser.add_argument('--epochs', type=int, default=10, metavar='N', help='number of epochs to train (default: 10)') parser.add_argument('--no-cuda', action='store_true', default=False, help='enables CUDA training') parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)') parser.add_argument('--log-interval', type=int, default=10, metavar='N', help='how many batches to wait before logging training status') args = parser.parse_args() args.cuda = not args.no_cuda and torch.cuda.is_available() torch.manual_seed(args.seed) device = torch.device("cuda" if args.cuda else "cpu") # Make results dir out_dir = os.path.join(args.result_dir, args.name) if not os.path.exists(out_dir): os.makedirs(out_dir) kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {} train_loader = torch.utils.data.DataLoader( datasets.MNIST(args.data_dir, train=True, download=True, transform=transforms.ToTensor()), batch_size=args.batch_size, shuffle=True, **kwargs) test_loader = torch.utils.data.DataLoader( datasets.MNIST(args.data_dir, train=False, transform=transforms.ToTensor()), batch_size=args.batch_size, shuffle=True, **kwargs) class VAE(nn.Module): def __init__(self): super(VAE, self).__init__() self.fc1 = sl.StructuredLinear(class_type=args.class_type, layer_size=args.layer_size, r=args.r, bias=False) self.fc21 = nn.Linear(784, 20) self.fc22 = nn.Linear(784, 20) self.fc3 = nn.Linear(20, 400) self.fc4 = nn.Linear(400, 784) def encode(self, x): h1 = F.relu(self.fc1(x)) return self.fc21(h1), self.fc22(h1) def reparameterize(self, mu, logvar): if self.training: std = torch.exp(0.5*logvar) eps = torch.randn_like(std) return eps.mul(std).add_(mu) else: return mu def decode(self, z): h3 = F.relu(self.fc3(z)) return F.sigmoid(self.fc4(h3)) def forward(self, x): mu, logvar = self.encode(x.view(-1, 784)) z = self.reparameterize(mu, logvar) return self.decode(z), mu, logvar model = VAE().to(device) for name, param in model.named_parameters(): if param.requires_grad: print(('Parameter name, shape: ', name, param.data.shape)) optimizer = optim.Adam(model.parameters(), lr=args.lr) # Reconstruction + KL divergence losses summed over all elements and batch def loss_function(recon_x, x, mu, logvar): BCE = F.binary_cross_entropy(recon_x, x.view(-1, 784), size_average=False) # see Appendix B from VAE paper: # Kingma and Welling. Auto-Encoding Variational Bayes. ICLR, 2014 # https://arxiv.org/abs/1312.6114 # 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2) KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp()) return BCE + KLD def train(epoch): model.train() train_loss = 0 for batch_idx, (data, _) in enumerate(train_loader): data = data.to(device) optimizer.zero_grad() recon_batch, mu, logvar = model(data) loss = loss_function(recon_batch, data, mu, logvar) loss.backward() train_loss += loss.item() optimizer.step() if batch_idx % args.log_interval == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item() / len(data))) avg_loss = train_loss / len(train_loader.dataset) print('====> Epoch: {} Average loss: {:.4f}'.format( epoch, train_loss / len(train_loader.dataset))) return avg_loss def test(epoch): model.eval() test_loss = 0 with torch.no_grad(): for i, (data, _) in enumerate(test_loader): data = data.to(device) recon_batch, mu, logvar = model(data) test_loss += loss_function(recon_batch, data, mu, logvar).item() if i == 0: n = min(data.size(0), 8) comparison = torch.cat([data[:n], recon_batch.view(args.batch_size, 1, 28, 28)[:n]]) save_image(comparison.cpu(), args.result_dir + 'reconstruction_' + str(epoch) + '.png', nrow=n) test_loss /= len(test_loader.dataset) print('====> Test set loss: {:.4f}'.format(test_loss)) return test_loss train_losses = [] for epoch in range(1, args.epochs + 1): train_losses.append(train(epoch)) test_loss = test(epoch) with torch.no_grad(): sample = torch.randn(64, 20).to(device) sample = model.decode(sample).cpu() save_image(sample.view(64, 1, 28, 28), args.result_dir + '/sample_' + str(epoch) + '.png') results = {} results['train'] = train_losses results['test'] = test_loss out_filename = os.path.join(out_dir, args.class_type + '_r' + str(args.r) + '_e' + str(args.epochs)) print('Saving to: ', out_filename) pkl.dump(results, open(out_filename, 'wb'))
structured-nets-master
pytorch/examples/vae/main.py
''' Utility functions for handling complex tensors: conjugate and complex_mult. Pytorch (as of 0.4.0) does not support complex tensors, so we store them as float tensors where the last dimension is 2 (real and imaginary parts). ''' import torch def conjugate(X): assert X.shape[-1] == 2, 'Last dimension must be 2' return X * torch.tensor((1, -1), dtype=X.dtype, device=X.device) def complex_mult(X, Y): assert X.shape[-1] == 2 and Y.shape[-1] == 2, 'Last dimension must be 2' return torch.stack( (X[..., 0] * Y[..., 0] - X[..., 1] * Y[..., 1], X[..., 0] * Y[..., 1] + X[..., 1] * Y[..., 0]), dim=-1)
structured-nets-master
pytorch/structure/complex_utils.py
import numpy as np import scipy.fftpack as fft import itertools from scipy import signal class KT_Toeplitz(): """Multiply Krylov(A, v)^T @ u when A is zero except on the subdiagonal. """ def __init__(self, n, f=0, batch_size=1, rank=1): m = int(np.log2(n)) assert n == 1 << m, 'n must be a power of 2' self.n = n self.m = m self.batch_size = batch_size self.rank = rank self.eta = None if f == 0: pass else: mod = np.power(np.abs(f), np.arange(n)/n) if f > 0: arg = np.ones(n) else: arg = np.fft.fft(np.eye(1,2*n,2*n-1))[0,:n] self.eta = mod * arg def __call__(self, v, u): """ Multiply Krylov(Z_f, v)^T @ u v: (rank, n) u: (batch, n) out: (batch, rank, n) """ n, m, batch_size, rank = self.n, self.m, self.batch_size, self.rank if self.eta is not None: # cycle version u_ = np.fft.ifft(1/self.eta * u) v_ = np.fft.fft(self.eta * v) uv_ = u_.reshape(batch_size, 1, n) * v_.reshape(1, rank, n) ans = self.eta * np.fft.fft(uv_) return np.real(ans) else: u_ = np.fft.rfft(np.concatenate((u[...,::-1], np.zeros_like(u)), axis=-1)) v_ = np.fft.rfft(np.concatenate((v, np.zeros_like(v)), axis=-1)) uv_ = u_.reshape(batch_size, 1, -1) * v_.reshape(1, rank, -1) ans = np.fft.irfft(uv_)[..., n-1::-1] return ans class K_Toeplitz(): """Multiply Krylov(A, v) @ w when A is zero except on the subdiagonal. """ def __init__(self, n, f, batch_size=1, rank=1): m = int(np.log2(n)) assert n == 1 << m, 'n must be a power of 2' self.n = n self.m = m self.batch_size = batch_size self.rank = rank self.eta = None if f == 0: pass else: mod = np.power(np.abs(f), np.arange(n)/n) if f > 0: arg = np.ones(n) else: arg = np.fft.fft(np.eye(1,2*n,2*n-1))[0,:n] # arg = np.exp(np.arange(n) * 1j * np.pi / n) self.eta = mod * arg def __call__(self, v, w): """ v: (rank, n) w: (batch_size, rank, n) out: (batch_size, n) """ n, m, batch_size, rank = self.n, self.m, self.batch_size, self.rank if self.eta is not None: w_ = np.fft.fft(self.eta * w) v_ = np.fft.fft(self.eta * v) wv_ = w_ * v_.reshape((1, rank, n)) ans = 1/self.eta * np.fft.ifft(np.sum(wv_, axis=1)) ans = np.real(ans) else: w_ = np.fft.rfft(np.concatenate((w, np.zeros_like(w)), axis=-1)) v_ = np.fft.rfft(np.concatenate((v, np.zeros_like(v)), axis=-1)) wv_ = w_ * v_.reshape((1, rank, -1)) ans = np.fft.irfft(np.sum(wv_, axis=1))[..., :n] return ans def toeplitz_mult(G, H, x, cycle=True): rank, n = G.shape batch_size = x.shape[0] f = (1,-1) if cycle else (0,0) transpose_out = KT_Toeplitz(n, f[1], batch_size, rank)(H, x) krylov_out = K_Toeplitz(n, f[0], batch_size, rank)(G, transpose_out) return krylov_out/2 if cycle else krylov_out ##### Slow mult def krylov_construct(f, v, m): n = v.shape[0] K = np.zeros(shape=(m,n)) K[0,:] = v for i in range(1,m): K[i,1:] = K[i-1,:-1] K[i,0] = f*K[i-1,-1] return K.T def toeplitz_mult_slow(G, H, x, cycle=True): assert G.shape == H.shape rank, n = G.shape f = (1,-1) if cycle else (0,0) krylovs = [(krylov_construct(f[0], G[i], n), krylov_construct(f[1], H[i], n).T) for i in range(rank)] prods = [K[0] @ K[1] @ x.T for K in krylovs] return np.sum(np.array(prods), axis=0).T if __name__ == '__main__': v = np.array([[0,1,0,-1],[0,1,2,3]]) u = np.array([[1,1,1,1],[0,1,2,3]]) w = KT_Toeplitz(4, -1, 2, 2)(v, u) # output: # [[[ 0 2 2 0] # [ 6 0 -4 -6]] # [[ -2 2 4 2] # [ 14 8 0 -8]]] w = KT_Toeplitz(4, 0, 2, 2)(v, u) # [[[ 0 1 1 0] # [ 6 3 1 0]] # [[ -2 2 3 0] # [ 14 8 3 0]]] print(toeplitz_mult(v, v, u)) print(toeplitz_mult_slow(v, v, u)) # output: # array([[-16., -20., -4., 16.], # [ 16., -8., 12., 64.]]) print(toeplitz_mult(v, v, u, cycle=False)) print(toeplitz_mult_slow(v, v, u, cycle=False)) # output: # array([[ 0., 6., 16., 26.], # [ 0., 12., 38., 66.]])
structured-nets-master
pytorch/structure/toeplitz_cpu.py
import torch from torch.autograd import Variable import torch.nn as nn from torch.nn.parameter import Parameter from . import toeplitz as toep from . import krylov as kry # TODO: rewrite with structure.layer # TODO: subclass with each DR type class LDR(nn.Module): def name(self): return str(self.in_channels) + str(self.out_channels) + self.displacement + str(self.r) # TODO: support non-square multiplications def __init__(self, displacement, in_channels, out_channels, rank, layer_size, bias=True): super(LDR, self).__init__() self.displacement = displacement self.in_channels = in_channels self.out_channels = out_channels self.r = rank self.n = layer_size self.bias = None self.G = Parameter(torch.Tensor(self.in_channels, self.out_channels, self.r, self.n)) self.H = Parameter(torch.Tensor(self.in_channels, self.out_channels, self.r, self.n)) torch.nn.init.normal_(self.G, std=0.01) #TODO torch.nn.init.normal_(self.H, std=0.01) if bias: self.bias = Parameter(torch.zeros(self.out_channels, 1, self.n)) if self.displacement == 'toeplitz_corner' or self.displacement == 'tc': self.corner = True elif self.displacement == 'toeplitz' or self.displacement == 't': self.corner = False elif self.displacement == 'subdiagonal' or self.displacement == 'sd': self.subd_A = Parameter(torch.ones((self.in_channels, self.out_channels, self.n-1))) self.subd_B = Parameter(torch.ones((self.in_channels, self.out_channels, self.n-1))) def forward(self, x): """ x: (in_channels, batch, n) out: (out_channels, batch, n) """ _, b, n = x.shape assert n == self.n # print("shapes ", self.G[0,0].shape, self.H[0,0].shape, x[0].shape) comps = Variable(torch.Tensor(self.in_channels, self.out_channels, b, self.n)).cuda() for i in range(self.in_channels): for j in range(self.out_channels): if self.displacement in ['toeplitz_corner', 'toeplitz', 'tc', 't']: g = self.G[i,j] h = self.H[i,j] comps[i,j] = toep.toeplitz_mult(self.G[i,j], self.H[i,j], x[i], self.corner) elif self.displacement == 'subdiagonal' or self.displacement == 'sd': comps[i,j] = kry.subdiag_mult_conv(self.subd_A[i,j], self.subd_B[i,j], self.G[i,j], self.H[i,j], x[i]) out = torch.sum(comps, dim=0) if self.bias is not None: out += self.bias return out def loss(self): lamb = 0.0001 # lamb = 0 return lamb*torch.sum(torch.abs(self.G)) + lamb*torch.sum(torch.abs(self.H))
structured-nets-master
pytorch/structure/LDR.py
import numpy as np import torch use_hadamard_transform_cuda = True try: import hadamard_cuda # import torch.utils.cpp_extension # hadamard_cuda = torch.utils.cpp_extension.load( # name='hadamard_cuda', # sources=[ # 'hadamard_cuda/hadamard_cuda.cpp', # 'hadamard_cuda/hadamard_cuda_kernel.cu', # ], # extra_cuda_cflags=['-O2'], # verbose=False # ) except (ImportError, RuntimeError) as e: print("CUDA version of Hadamard transform isn't installed. Will use Pytorch's version, which is much slower.") use_hadamard_transform_cuda = False from scipy.linalg import hadamard device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") def hadamard_transform_torch(u, normalize=False): """Multiply H_n @ u where H_n is the Hadamard matrix of dimension n x n. n must be a power of 2. Parameters: u: Tensor of shape (..., n) normalize: if True, divide the result by 2^{m/2} where m = log_2(n). Returns: product: Tensor of shape (..., n) """ batch_size, n = u.shape m = int(np.log2(n)) assert n == 1 << m, 'n must be a power of 2' x = u[..., np.newaxis] for d in range(m)[::-1]: x = torch.cat((x[..., ::2, :] + x[..., 1::2, :], x[..., ::2, :] - x[..., 1::2, :]), dim=-1) return x.squeeze(-2) / 2**(m / 2) if normalize else x.squeeze(-2) class HadamardTransformCuda(torch.autograd.Function): '''The unnormalized Hadamard transform (i.e. without dividing by sqrt(2)) ''' @staticmethod def forward(ctx, u): return hadamard_cuda.hadamard_transform(u) @staticmethod def backward(ctx, grad): return HadamardTransformCuda.apply(grad) def hadamard_transform_cuda(u, normalize=False): """Multiply H_n @ u where H_n is the Hadamard matrix of dimension n x n. n must be a power of 2. Parameters: u: Tensor of shape (..., n) normalize: if True, divide the result by 2^{m/2} where m = log_2(n). Returns: product: Tensor of shape (..., n) """ _, n = u.shape m = int(np.log2(n)) assert n == 1 << m, 'n must be a power of 2' output = HadamardTransformCuda.apply(u) return output / 2**(m / 2) if normalize else output def test_hadamard_transform(): m = 15 n = 1 << m batch_size = 50 u = torch.rand((batch_size, n), requires_grad=True, device=device) result_cuda = hadamard_transform_cuda(u) grad_cuda, = torch.autograd.grad(result_cuda.sum(), u, retain_graph=True) result_torch = hadamard_transform_torch(u) grad_torch, = torch.autograd.grad(result_torch.sum(), u, retain_graph=True) # Explicit construction from scipy H = torch.tensor(hadamard(n), dtype=torch.float, device=device) result_explicit = u @ H.t() print((result_cuda - result_explicit).abs().max().item()) print((result_cuda - result_explicit).abs().mean().item()) print((result_torch - result_explicit).abs().max().item()) print((result_torch - result_explicit).abs().mean().item()) print((grad_cuda - grad_torch).abs().max().item()) print((grad_cuda - grad_torch).abs().mean().item()) hadamard_transform = hadamard_transform_cuda if use_hadamard_transform_cuda else hadamard_transform_torch if __name__ == '__main__': test_hadamard_transform()
structured-nets-master
pytorch/structure/hadamard.py
import numpy as np import torch import torch.nn as nn from torch.nn.parameter import Parameter from torch.autograd import Variable from . import toeplitz as toep from . import krylov as kry from . import circulant as circ from . import fastfood as ff from utils import descendants class Layer(nn.Module): class_type = None abbrev = None def name(self): return self.__class__.abbrev def __init__(self, layer_size=None, bias=True, **kwargs): super().__init__() self.layer_size = layer_size self.bias = bias self.__dict__.update(kwargs) self.reset_parameters() def reset_parameters(self): assert self.layer_size is not None self.b = None if self.bias: self.b = Parameter(torch.zeros(self.layer_size)) def apply_bias(self, out): if self.b is not None: return self.b + out else: return out def loss(self): return 0 class Unconstrained(Layer): class_type = 'unconstrained' abbrev = 'u' def name(self): return self.__class__.abbrev + str(self.hidden_size) def __init__(self, layer_size, hidden_size=None, **kwargs): if hidden_size is None: hidden_size = layer_size super().__init__(layer_size, hidden_size=hidden_size, **kwargs) def reset_parameters(self): super().reset_parameters() self.W = Parameter(torch.Tensor(self.layer_size, self.hidden_size)) self.init_stddev = np.sqrt(1./self.layer_size) torch.nn.init.normal_(self.W, std=self.init_stddev) self.mask = None if self.bias: self.b = Parameter(torch.zeros(self.hidden_size)) def set_mask(self, mask, device): self.mask = Variable(torch.FloatTensor(mask).to(device), requires_grad=False) self.W.data *= self.mask.data print('Num. nonzero entries after pruning: ', torch.nonzero(self.W).size(0)) def forward(self, x): if self.mask is not None: masked_W = self.W*self.mask #print('NNZ, mask: ', torch.nonzero(self.mask).size(0)) #print('NNZ, masked_W: ', torch.nonzero(masked_W).size(0)) out = torch.matmul(x, masked_W) else: out = torch.matmul(x, self.W) return self.apply_bias(out) class Circulant(Layer): class_type = 'circulant' abbrev = 'c' def reset_parameters(self): super().reset_parameters() self.c = Parameter(torch.Tensor(self.layer_size)) self.init_stddev = np.sqrt(1./self.layer_size) torch.nn.init.normal_(self.c, std=self.init_stddev) def forward(self, x): return self.apply_bias(circ.circulant_multiply(self.c, x)) class FastFood(Layer): class_type = 'fastfood' abbrev = 'f' def reset_parameters(self): super().reset_parameters() # Initialize as non adaptive Fastfood (Le et al. 2013) # TODO: check initialization of S (scaling matrix) is correct # S,G,B: diagonal, learnable parameters # P: permutation, fixed S = np.sqrt(np.random.chisquare(self.layer_size, size=self.layer_size)) G = np.random.randn(self.layer_size) S /= np.linalg.norm(G) B = np.random.choice((-1, 1), size=self.layer_size) self.S = Parameter(torch.FloatTensor(S)) self.G = Parameter(torch.FloatTensor(G)) self.B = Parameter(torch.FloatTensor(B)) self.P = torch.LongTensor(np.random.permutation(self.layer_size)) #self.init_stddev = np.sqrt(1./self.layer_size) #torch.nn.init.normal_(self.S, std=self.init_stddev) #torch.nn.init.normal_(self.G, std=self.init_stddev) #torch.nn.init.normal_(self.B, std=self.init_stddev) def forward(self, x): return self.apply_bias(ff.fastfood_multiply(self.S, self.G, self.B, self.P, x)) class LowRank(Layer): class_type = 'low_rank' abbrev = 'lr' def name(self): return self.__class__.abbrev + str(self.r) def __init__(self, layer_size, r=1, **kwargs): super().__init__(layer_size, r=r, **kwargs) def reset_parameters(self): super().reset_parameters() self.G = Parameter(torch.Tensor(self.r, self.layer_size)) self.H = Parameter(torch.Tensor(self.r, self.layer_size)) # self.init_stddev = 0.01 self.init_stddev = np.power(1. / (self.r * self.layer_size), 1/2) torch.nn.init.normal_(self.G, std=self.init_stddev) torch.nn.init.normal_(self.H, std=self.init_stddev) def forward(self, x): xH = torch.matmul(x, self.H.t()) out = torch.matmul(xH, self.G) return self.apply_bias(out) def loss(self): return 0 # lamb = 0.0001 # return lamb*torch.sum(torch.abs(self.G)) + lamb*torch.sum(torch.abs(self.H)) class ToeplitzLike(LowRank): class_type = 'toeplitz' abbrev = 't' def reset_parameters(self): super().reset_parameters() self.corner = False def forward(self, x): out = toep.toeplitz_mult(self.G, self.H, x, self.corner) return self.apply_bias(out) class ToeplitzLikeC(ToeplitzLike): class_type = 'toeplitz_corner' abbrev = 'tc' def reset_parameters(self): super().reset_parameters() self.corner = True class HankelLike(LowRank): class_type = 'hankel' abbrev = 'h' def forward(self, x): out = toep.toeplitz_mult(self.G, self.H, x, True) return self.apply_bias(out.flip(out.dim() - 1)) class VandermondeLike(LowRank): class_type = 'vandermonde' abbrev = 'v' def reset_parameters(self): super().reset_parameters() self.diag = Parameter(torch.Tensor(self.layer_size)) torch.nn.init.uniform_(self.diag, -0.7, 0.7) def forward(self, x): # want: K_A[i,j,k] = g_i[j] * d[j] ** k # K_A = kry.Krylov(lambda v: self.diag * v, self.G) n = x.size(-1) d_ = self.diag.unsqueeze(1) ** torch.arange(n, dtype=x.dtype, device=x.device) K_A = self.G.unsqueeze(-1) * d_ # K_B = kry.Krylov(lambda v: torch.cat((v[...,1:],0*v[...,:1]),dim=-1), self.H) # out = (x @ K_B) @ K_A.transpose(1,2) out = toep.toeplitz_krylov_transpose_multiply(self.H, x) out = out.transpose(0,1) @ K_A.transpose(1,2) out = torch.sum(out, dim=0) return self.apply_bias(out) # transpose Vandermonde: # K_H = kry.Krylov(lambda v: self.diag * v, self.H) # out = toep.toeplitz_krylov_multiply(self.G, torch.transpose(x @ K_H, 0,1)) class LearnedOperator(LowRank): """ Abstract class for learned displacement operators Contains parameters such as tie_operators """ class_type = None # abstract abbrev = None def __init__(self, tie_operators=False, corner=False, **kwargs): super().__init__(tie_operators=tie_operators, corner=corner, **kwargs) class LDRSubdiagonal(LearnedOperator): class_type = 'subdiagonal' abbrev = 'sd' def reset_parameters(self): super().reset_parameters() self.subd_A = Parameter(torch.ones(self.layer_size-1)) if self.tie_operators: self.subd_B = self.subd_A else: self.subd_B = Parameter(torch.ones(self.layer_size-1)) def forward(self, x): out = kry.subdiag_mult(self.subd_A, self.subd_B, self.G, self.H, x) #out = kry.subdiag_mult_conv(self.subd_A, self.subd_B, self.G, self.H, x) return self.apply_bias(out) class LDRSubdiagonalC(LDRSubdiagonal): class_type = 'subdiagonal_corner' abbrev = 'sdc' def reset_parameters(self): super().reset_parameters() self.corner_A = Parameter(torch.tensor(0.0)) self.corner_B = Parameter(torch.tensor(0.0)) def forward(self, x): out = kry.subdiag_mult_cuda(self.subd_A, self.subd_B, self.G, self.H, x, corner_A=self.corner_A, corner_B=self.corner_B) return self.apply_bias(out) class LDRTridiagonal(LearnedOperator): class_type = 'tridiagonal' abbrev = 'td' def reset_parameters(self): super().reset_parameters() self.subd_A = Parameter(torch.ones(self.layer_size-1)) self.diag_A = Parameter(torch.zeros(self.layer_size)) self.supd_A = Parameter(torch.zeros(self.layer_size-1)) if self.tie_operators: self.subd_B = self.subd_A self.diag_B = self.diag_A self.supd_B = self.supd_A else: self.subd_B = Parameter(torch.ones(self.layer_size-1)) self.diag_B = Parameter(torch.zeros(self.layer_size)) self.supd_B = Parameter(torch.zeros(self.layer_size-1)) self.corners_A = (0.0,0.0) self.corners_B = (0.0,0.0) def forward(self, x): out = kry.tridiag_mult_slow(self.subd_A, self.diag_A, self.supd_A, self.subd_B, self.diag_B, self.supd_B, self.G, self.H, x, corners_A=self.corners_A, corners_B=self.corners_B) return self.apply_bias(out) class LDRTridiagonalC(LDRTridiagonal): class_type = 'tridiagonal_corner' abbrev = 'tdc' def reset_parameters(self): super().reset_parameters() self.corners_A = (Parameter(torch.tensor(0.0)), Parameter(torch.tensor(0.0))) self.corners_B = (Parameter(torch.tensor(0.0)), Parameter(torch.tensor(0.0))) # create a map from class names to the Python class class_map = {} for cls in descendants(Layer): if cls.class_type is None: continue class_map[cls.class_type] = cls class_map[cls.abbrev] = cls def StructuredLinear(class_type, **kwargs): return class_map[class_type](**kwargs)
structured-nets-master
pytorch/structure/layer.py
'''Functions to multiply by an LDR matrix with subdiagonal and tridiagonal operator matrices. We implement the fast multiplication for the subdiagonal case. This comprises two steps: Krylov(g) @ Krylov(h)^T @ u, which are Krylov transpose multiply and Krylov multiply. For tridiagonal case, we implement the slow multiplication algorithm: construct the Krylov matrix then call regular matrix multiply. ''' import functools import numpy as np import torch from torch.nn import functional as F from .scratch.krylovslow import krylov_construct from .complex_utils import complex_mult, conjugate try: import diag_mult_cuda # import torch.utils.cpp_extension # diag_mult_cuda = torch.utils.cpp_extension.load( # name='diag_mult_cuda', # sources=[ # 'diag_mult_cuda/diag_mult_cuda.cpp', # 'diag_mult_cuda/diag_mult_cuda_kernel.cu', # ], # extra_cuda_cflags=['-O2'], # verbose=False # ) except (ImportError, RuntimeError) as e: print("CUDA version of slow Krylov multiply isn't installed.") device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") ##### Fast multiplication for the subdiagonal case def poly_mult_sum_benchmark(p, q): """Multiply and sum two sets of polynomials. Parameters: p: (batch_size, n1, n2) q: (rank, n1, n2) Output: o: (batch_size, rank, 2 * n2 - 1) """ print(p.shape[2]) import time torch.cuda.synchronize() start = time.perf_counter() for _ in range(100): y = F.conv1d(p, q.flip(q.dim() - 1), padding=p.shape[-1] -1) g = torch.autograd.grad(y.sum(), (p, q), retain_graph=True) torch.cuda.synchronize() end = time.perf_counter() print(f'Elapsed time conv1d: {end - start}s.') batch_size, rank = p.shape[0], q.shape[0] n1, n2 = p.shape[1], p.shape[2] start = time.perf_counter() for _ in range(100): S = torch.cat((torch.cat((q, p)), torch.zeros((rank + batch_size, p.shape[1], p.shape[2]), dtype=q.dtype, device=q.device)), dim=-1) S_f = torch.rfft(S, 1) S0_10_f, S1_01_f = S_f[:rank], S_f[rank:rank+batch_size] prod = (S1_01_f[:, np.newaxis, ..., np.newaxis] * S0_10_f[np.newaxis, ..., np.newaxis, :]).sum(dim=2) T_00_f_sum = torch.stack((prod[..., 0, 0] - prod[..., 1, 1], prod[..., 0, 1] + prod[..., 1, 0]), dim=-1) T_00_sum = torch.irfft(T_00_f_sum, 1, signal_sizes=(2 * n2, ))[..., :-1] g = torch.autograd.grad(T_00_sum.sum(), (p, q), retain_graph=True) torch.cuda.synchronize() end = time.perf_counter() print(f'Elapsed time FFT: {end - start}s.\n') return F.conv1d(p, q.flip(q.dim() - 1), padding=p.shape[-1] - 1) def poly_mult_sum_backward_benchmark(grad, q): """Backward pass of multiplying and summing two sets of polynomials. Parameters: grad: (batch_size, rank, 2 * n2 - 1) q: (rank, n1, n2) Output: dp: (batch_size, n1, n2) """ print(q.shape[2]) import time torch.cuda.synchronize() start = time.perf_counter() for _ in range(100): dp = F.conv_transpose1d(grad, q.flip(2), padding=q.shape[-1] - 1) g = torch.autograd.grad(dp.sum(), (grad, q), retain_graph=True) torch.cuda.synchronize() end = time.perf_counter() print(f'Elapsed time conv1d: {end - start}s.') batch_size, rank = grad.shape[0], q.shape[0] n1, n2 = q.shape[1], q.shape[2] start = time.perf_counter() for _ in range(100): dT_00_sum = torch.cat((grad, torch.zeros((batch_size, rank, 1), dtype=grad.dtype, device=grad.device)), dim=-1) dT_00_sum_f = torch.rfft(dT_00_sum, 1) S0_10_f = torch.rfft(torch.cat((q, torch.zeros_like(q)), dim=-1), 1) # dS1_01_f = complex_mult(conjugate(S0_10_f), dT_00_sum_f[:, :, np.newaxis]).sum(dim=1) # Manually doing complex multiply prod = (S0_10_f[..., np.newaxis] * dT_00_sum_f[:, :, np.newaxis, :, np.newaxis, :]).sum(dim=1) dS1_01_f = torch.stack((prod[..., 0, 0] + prod[..., 1, 1], prod[..., 0, 1] - prod[..., 1, 0]), dim=-1) dp = torch.irfft(dS1_01_f, 1, signal_sizes=(2 * n2, ))[:, :, :n2] g = torch.autograd.grad(dp.sum(), (grad, q), retain_graph=True) torch.cuda.synchronize() end = time.perf_counter() print(f'Elapsed time FFT: {end - start}s.\n') return F.conv_transpose1d(grad, q.flip(2), padding=q.shape[-1] - 1) def krylov_transpose_multiply_conv(subdiag, v, u): """Multiply Krylov(A, v_i)^T @ u when A is zero except on the subdiagonal. Use either Pytorch's conv1d or FFT for polynomial multiplication, depending on polynomial degree. This is the fastest implementation. Parameters: subdiag: Tensor of shape (n - 1, ) v: Tensor of shape (rank, n) u: Tensor of shape (batch_size, n) Returns: product: Tensor of shape (batch_size, rank, n) """ batch_size, n = u.shape rank, n_ = v.shape assert n == n_, 'u and v must have the same last dimension' m = int(np.log2(n)) assert n == 1 << m, 'n must be a power of 2' result = torch.zeros((batch_size, rank, n), dtype=u.dtype, device=u.device) T_00_sum = u @ v.t() result[:, :, 0] += T_00_sum T_01 = u[..., np.newaxis] T_10 = v[..., np.newaxis] T_11 = torch.ones(n, device=T_00_sum.device) for d in range(m)[::-1]: n1, n2 = 1 << d, 1 << (m - d - 1) S_00_sum, S_01, S_10, S_11 = T_00_sum, T_01, T_10, T_11 S0_10_mult_subdiag = S_10[:, ::2] * subdiag[(n2 - 1)::(2 * n2), np.newaxis] # polynomial multiplication # T_00_sum = poly_mult_sum_benchmark(S_01[:, 1::2], S0_10_mult_subdiag) if n2 <= 128: # Pick between 2 implementations based on polynomial degree n2 T_00_sum = F.conv1d(S_01[:, 1::2], S0_10_mult_subdiag.flip(2), padding=n2 - 1) else: S = torch.cat((torch.cat((S0_10_mult_subdiag, S_01[:, 1::2])), torch.zeros((rank + batch_size, n1, n2), dtype=S_10.dtype, device=S_10.device)), dim=-1) S_f = torch.rfft(S, 1) S0_10_f, S1_01_f = S_f[:rank], S_f[rank:rank+batch_size] # Different ways to compute the same expression, for speed vs readability # Option 1: call complex_mult, slowest # T_00_f_sum = complex_mult(S1_01_f[:, np.newaxis], S0_10_f[np.newaxis]).sum(dim=2) # Option 2: multiply and sum # prod = (S1_01_f[:, np.newaxis, ..., np.newaxis] * S0_10_f[np.newaxis, ..., np.newaxis, :]).sum(dim=2) # Option 3: einsum prod = torch.einsum('bnmo,rnmp->brmop', S1_01_f, S0_10_f) # Option 4: manually doing permute and reshape and bmm, only 3% faster than einsum. # temp1 = S1_01_f.permute(2, 0, 3, 1).reshape((-1, batch_size * 2, n1)) # temp2 = S0_10_f.permute(2, 1, 0, 3).reshape((-1, n1, rank * 2)) # prod = (temp1 @ temp2).reshape((-1, batch_size, 2, rank, 2)).permute(1, 3, 0, 2, 4) T_00_f_sum = torch.stack((prod[..., 0, 0] - prod[..., 1, 1], prod[..., 0, 1] + prod[..., 1, 0]), dim=-1) T_00_sum = torch.irfft(T_00_f_sum, 1, signal_sizes=(2 * n2, ))[..., :-1] # polynomial additions result[:, :, 1:2*n2] += T_00_sum S0_11_mult_subdiag = S_11[::2] * subdiag[(n2 - 1)::(2 * n2)] T_01 = torch.cat((S_01[:, ::2], S_01[:, 1::2] * S0_11_mult_subdiag[:, np.newaxis]), dim=-1) T_10 = torch.cat((S_10[:, 1::2], S0_10_mult_subdiag * S_11[1::2][:, np.newaxis]), dim=-1) T_11 = S0_11_mult_subdiag * S_11[1::2] return result def krylov_transpose_multiply(subdiag, v, u): """Multiply Krylov(A, v_i)^T @ u when A is zero except on the subdiagonal. Parameters: subdiag: Tensor of shape (n - 1, ) v: Tensor of shape (rank, n) u: Tensor of shape (batch_size, n) Returns: product: Tensor of shape (batch_size, rank, n) """ batch_size, n = u.shape rank, n_ = v.shape assert n == n_, 'u and v must have the same last dimension' m = int(np.log2(n)) assert n == 1 << m, 'n must be a power of 2' result = torch.zeros((batch_size, rank, n), dtype=u.dtype, device=u.device) # T_00_sum = (u[:, np.newaxis, ..., np.newaxis] * v[np.newaxis, ..., np.newaxis]).sum(dim=2) T_00_sum = u @ v.t() result[:, :, 0] = T_00_sum T_01 = u[..., np.newaxis] T_10 = v[..., np.newaxis] T_11 = torch.ones(n, device=T_00_sum.device) for d in range(m)[::-1]: n1, n2 = 1 << d, 1 << (m - d - 1) S_01, S_10, S_11 = T_01, T_10, T_11 # S0_10 = torch.cat((S_10[:, ::2], torch.zeros_like(S_10[:, ::2])), dim=-1) # S1_01 = torch.cat((S_01[:, 1::2], torch.zeros_like(S_01[:, 1::2])), dim=-1) # S = torch.cat((S0_10, S1_01)) S0_10_mult_subdiag = S_10[:, ::2] * subdiag[(n2 - 1)::(2 * n2), np.newaxis] S = torch.cat((torch.cat((S0_10_mult_subdiag, S_01[:, 1::2])), torch.zeros((rank + batch_size, n1, n2), dtype=S_10.dtype, device=S_10.device)), dim=-1) # polynomial multiplications S_f = torch.rfft(S, 1) S0_10_f, S1_01_f = S_f[:rank], S_f[rank:rank+batch_size] # Different ways to compute the same expression, for speed vs readability # Option 1: call complex_mult, slowest # T_00_f_sum = complex_mult(S1_01_f[:, np.newaxis], S0_10_f[np.newaxis]).sum(dim=2) # Option 2: multiply and sum # Manually doing complex multiply, somehow this is faster than Cupy's complex mult # prod = (S1_01_f[:, np.newaxis, ..., np.newaxis] * S0_10_f[np.newaxis, ..., np.newaxis, :]).sum(dim=2) # Option 3: einsum prod = torch.einsum('bnmo,rnmp->brmop', S1_01_f, S0_10_f) # Option 4: manually doing permute and reshape and bmm, only 3% faster than einsum. # temp1 = S1_01_f.permute(2, 0, 3, 1).reshape((-1, batch_size * 2, n1)) # temp2 = S0_10_f.permute(2, 1, 0, 3).reshape((-1, n1, rank * 2)) # prod = (temp1 @ temp2).reshape((-1, batch_size, 2, rank, 2)).permute(1, 3, 0, 2, 4) # prod = (S1_01_f[:, np.newaxis, ..., np.newaxis] * S0_10_f[np.newaxis, ..., np.newaxis, :]).sum(dim=2) T_00_f_sum = torch.stack((prod[..., 0, 0] - prod[..., 1, 1], prod[..., 0, 1] + prod[..., 1, 0]), dim=-1) T_00_sum = torch.irfft(T_00_f_sum, 1, signal_sizes=(2 * n2, ))[..., :-1] # polynomial additions result[:, :, 1:2*n2] += T_00_sum S0_11_mult_subdiag = S_11[::2] * subdiag[(n2 - 1)::(2 * n2)] T_01 = torch.cat((S_01[:, ::2], S_01[:, 1::2] * S0_11_mult_subdiag[:, np.newaxis]), dim=-1) T_10 = torch.cat((S_10[:, 1::2], S0_10_mult_subdiag * S_11[1::2][:, np.newaxis]), dim=-1) T_11 = S0_11_mult_subdiag * S_11[1::2] return result def KTu_traceable(subdiag, v, u): """Multiply Krylov(A, v_i)^T @ u when A is zero except on the subdiagonal. (WIP) Written to be traceable by Pytorch 1.0 JIT compiler. Parameters: subdiag: Tensor of shape (n - 1, ) v: Tensor of shape (rank, n) u: Tensor of shape (batch_size, n) Returns: product: Tensor of shape (batch_size, rank, n) """ batch_size, n = u.shape rank, n_ = v.shape # assert n == n_, 'u and v must have the same last dimension' m = int(np.log2(n)) # assert n == 1 << m, 'n must be a power of 2' # T_00_sum = (u[:, np.newaxis, ..., np.newaxis] * v[np.newaxis, ..., np.newaxis]).sum(dim=2) T_00_sum = u @ v.t() result = T_00_sum.unsqueeze(-1) T_01 = u[..., np.newaxis] T_10 = v[..., np.newaxis] T_11 = torch.ones(n, device=T_00_sum.device) for d in range(m)[::-1]: n1, n2 = 1 << d, 1 << (m - d - 1) S_01, S_10, S_11 = T_01, T_10, T_11 # S0_10 = torch.cat((S_10[:, ::2], torch.zeros_like(S_10[:, ::2])), dim=-1) # S1_01 = torch.cat((S_01[:, 1::2], torch.zeros_like(S_01[:, 1::2])), dim=-1) # S = torch.cat((S0_10, S1_01)) S0_10_mult_subdiag = S_10[:, ::2] * subdiag[(n2 - 1)::(2 * n2), np.newaxis] S = torch.cat((torch.cat((S0_10_mult_subdiag, S_01[:, 1::2])), torch.zeros((rank + batch_size, n1, n2), dtype=S_10.dtype, device=S_10.device)), dim=-1) # polynomial multiplications S_f = torch.rfft(S, 1) S0_10_f, S1_01_f = S_f[:rank], S_f[rank:rank+batch_size] # Different ways to compute the same expression, for speed vs readability # Option 1: call complex_mult, slowest # T_00_f_sum = complex_mult(S1_01_f[:, np.newaxis], S0_10_f[np.newaxis]).sum(dim=2) # Option 2: multiply and sum # Manually doing complex multiply, somehow this is faster than Cupy's complex mult # prod = (S1_01_f[:, np.newaxis, ..., np.newaxis] * S0_10_f[np.newaxis, ..., np.newaxis, :]).sum(dim=2) # Option 3: einsum prod = torch.einsum('bnmo,rnmp->brmop', S1_01_f, S0_10_f) # Option 4: manually doing permute and reshape and bmm, only 3% faster than einsum. # temp1 = S1_01_f.permute(2, 0, 3, 1).reshape((-1, batch_size * 2, n1)) # temp2 = S0_10_f.permute(2, 1, 0, 3).reshape((-1, n1, rank * 2)) # prod = (temp1 @ temp2).reshape((-1, batch_size, 2, rank, 2)).permute(1, 3, 0, 2, 4) # prod = (S1_01_f[:, np.newaxis, ..., np.newaxis] * S0_10_f[np.newaxis, ..., np.newaxis, :]).sum(dim=2) T_00_f_sum = torch.stack((prod[..., 0, 0] - prod[..., 1, 1], prod[..., 0, 1] + prod[..., 1, 0]), dim=-1) T_00_sum = torch.irfft(T_00_f_sum, 1, signal_sizes=(2 * n2, ))[..., :-1] # polynomial additions result = torch.cat((result[:, :, :1], result[:, :, 1:] + T_00_sum[:, :, :n2 - 1], T_00_sum[:, :, n2 - 1:]), dim=-1) S0_11_mult_subdiag = S_11[::2] * subdiag[(n2 - 1)::(2 * n2)] T_01 = torch.cat((S_01[:, ::2], S_01[:, 1::2] * S0_11_mult_subdiag[:, np.newaxis]), dim=-1) T_10 = torch.cat((S_10[:, 1::2], S0_10_mult_subdiag * S_11[1::2][:, np.newaxis]), dim=-1) T_11 = S0_11_mult_subdiag * S_11[1::2] return result def krylov_transpose_multiply_old(subdiag, v, u): """Multiply Krylov(A, v_i)^T @ u when A is zero except on the subdiagonal. Uses the old algorithm that scales worse when batching. Parameters: subdiag: Tensor of shape (n - 1, ) v: Tensor of shape (rank, n) u: Tensor of shape (batch_size, n) Returns: product: Tensor of shape (batch_size, rank, n) """ batch_size, n = u.shape rank, n_ = v.shape assert n == n_, 'u and v must have the same last dimension' m = int(np.log2(n)) assert n == 1 << m, 'n must be a power of 2' T_00 = u[:, np.newaxis, ..., np.newaxis] * v[np.newaxis, ..., np.newaxis] T_01 = u[..., np.newaxis] T_10 = v[..., np.newaxis] T_11 = torch.ones((n, 1), device=T_00.device) for d in range(m)[::-1]: n1, n2 = 1 << d, 1 << (m - d - 1) S_00, S_01, S_10, S_11 = T_00, T_01, T_10, T_11 S0_10 = torch.cat((S_10[:, ::2], torch.zeros_like(S_10[:, ::2])), dim=-1) S1_01 = torch.cat((S_01[:, 1::2], torch.zeros_like(S_01[:, 1::2])), dim=-1) S0_11 = torch.cat((S_11[::2], torch.zeros_like(S_11[::2])), dim=-1) S1_11 = torch.cat((S_11[1::2], torch.zeros_like(S_11[1::2])), dim=-1) S = torch.cat((S0_10, S0_11[np.newaxis], S1_01, S1_11[np.newaxis])) # polynomial multiplications S_f = torch.rfft(S, 1) # S0_10_f, S0_11_f, S1_01_f, S1_11_f = S_f[:rank], S_f[rank], S_f[rank+1:rank+1+batch_size], S_f[-1] # T_00_f = complex_mult(S1_01_f[:, np.newaxis], S0_10_f[np.newaxis]) # T_01_f = complex_mult(S1_01_f, S0_11_f) # T_10_f = complex_mult(S1_11_f, S0_10_f) # T_11_f = complex_mult(S1_11_f, S0_11_f) # T_f = torch.cat((torch.cat((T_00_f, T_01_f[:, np.newaxis]), dim=1), # torch.cat((T_10_f[np.newaxis], T_11_f[np.newaxis, np.newaxis]), dim=1))) # I didn't realize you could just batch all 4 multiplications like this T_f = complex_mult(S_f[rank+1:, np.newaxis], S_f[:rank+1]) T = torch.irfft(T_f, 1, signal_sizes=(2 * n2, )) * subdiag[(n2 - 1)::(2 * n2), np.newaxis] T_00, T_01, T_10, T_11 = T[:batch_size, :rank], T[:batch_size, -1], T[-1, :rank], T[-1, -1] # polynomial additions T_00 = torch.cat((T_00[:, :, :, :n2], T_00[:, :, :, n2:] + S_00[:, :, ::2] + S_00[:, :, 1::2]), dim=-1) T_01 = torch.cat((T_01[:, :, :n2], T_01[:, :, n2:] + S_01[:, ::2]), dim=-1) T_10 = torch.cat((T_10[:, :, :n2], T_10[:, :, n2:] + S_10[:, 1::2]), dim=-1) return T_00.squeeze(dim=2).flip(2) def krylov_multiply_conv(subdiag, v, w): """Multiply \sum_i Krylov(A, v_i) @ w_i when A is zero except on the subdiagonal. Since K @ w can be computed by autodiffing K^T @ u, the algorithm is just hand-differentiating the code of @krylov_transpose_multiply. Use either Pytorch's conv1d or FFT for polynomial multiplication, depending on polynomial degree. This is the fastest implementation. Parameters: subdiag: Tensor of shape (n - 1, ) v: Tensor of shape (rank, n) w: Tensor of shape (batch_size, rank, n) Returns: product: Tensor of shape (batch_size, n) """ batch_size, rank, n = w.shape rank_, n_ = v.shape assert n == n_, 'w and v must have the same last dimension' assert rank == rank_, 'w and v must have the same rank' m = int(np.log2(n)) assert n == 1 << m, 'n must be a power of 2' # Forward pass. Since K @ w can be computed by autodiffing K^T @ u, we # carry out the forward pass K^T @ u for u = 0 here to save the # intermediate values. This code is exactly the same as the function # @krylov_transpose_multiply, specialized to the case where u = 0. save_for_backward = [None] * m T_10 = v[..., np.newaxis] T_11 = torch.ones((n), device=T_10.device) for d in range(m)[::-1]: n1, n2 = 1 << d, 1 << (m - d - 1) S_10, S_11 = T_10, T_11 S0_10_mult_subdiag = S_10[:, ::2] * subdiag[(n2 - 1)::(2 * n2), np.newaxis] T_10 = torch.cat((S_10[:, 1::2], S0_10_mult_subdiag * S_11[1::2][:, np.newaxis]), dim=-1) S0_11_mult_subdiag = S_11[::2] * subdiag[(n2 - 1)::(2 * n2)] save_for_backward[d] = S0_10_mult_subdiag, S0_11_mult_subdiag T_11 = S0_11_mult_subdiag * S_11[1::2] # Backward pass dT_01 = torch.zeros((batch_size, 1, n), dtype=w.dtype, device=w.device) for d in range(m): n1, n2 = 1 << d, 1 << (m - d - 1) S0_10_mult_subdiag, S0_11_mult_subdiag = save_for_backward[d] dS_01 = torch.empty((batch_size, 2 * n1, n2), device=w.device) dS_01[:, ::2] = dT_01[:, :, :n2] # dS1_01 = poly_mult_sum_backward_benchmark(w[:, :, 1:2*n2], S0_10_mult_subdiag) if n2 <= 128: dS1_01 = F.conv_transpose1d(w[:, :, 1:2*n2], S0_10_mult_subdiag.flip(2), padding=n2 - 1) else: dT_00_sum = torch.cat((w[:, :, 1:2*n2], torch.zeros((batch_size, rank, 1), dtype=w.dtype, device=w.device)), dim=-1) dT_00_sum_f = torch.rfft(dT_00_sum, 1) S0_10_f = torch.rfft(torch.cat((S0_10_mult_subdiag, torch.zeros_like(S0_10_mult_subdiag)), dim=-1), 1) # dS1_01_f = complex_mult(conjugate(S0_10_f), dT_00_sum_f[:, :, np.newaxis]).sum(dim=1) # Manually doing complex multiply # prod = (S0_10_f[..., np.newaxis] * dT_00_sum_f[:, :, np.newaxis, :, np.newaxis, :]).sum(dim=1) prod = torch.einsum('rnmo,brmp->bnmop', S0_10_f, dT_00_sum_f) dS1_01_f = torch.stack((prod[..., 0, 0] + prod[..., 1, 1], prod[..., 0, 1] - prod[..., 1, 0]), dim=-1) dS1_01 = torch.irfft(dS1_01_f, 1, signal_sizes=(2 * n2, ))[:, :, :n2] dS_01[:, 1::2] = dT_01[:, :, n2:] * S0_11_mult_subdiag[:, np.newaxis] + dS1_01 dT_01 = dS_01 # du = ((dT_00_sum[:, :, np.newaxis] * v[np.newaxis, :, :, np.newaxis]).sum(dim=1) + dT_01).squeeze(dim=-1) du = w[:, :, 0] @ v + dT_01.squeeze(dim=-1) return du def krylov_multiply(subdiag, v, w): """Multiply \sum_i Krylov(A, v_i) @ w_i when A is zero except on the subdiagonal. Since K @ w can be computed by autodiffing K^T @ u, the algorithm is just hand-differentiating the code of @krylov_transpose_multiply. Parameters: subdiag: Tensor of shape (n - 1, ) v: Tensor of shape (rank, n) w: Tensor of shape (batch_size, rank, n) Returns: product: Tensor of shape (batch_size, n) """ batch_size, rank, n = w.shape rank_, n_ = v.shape assert n == n_, 'w and v must have the same last dimension' assert rank == rank_, 'w and v must have the same rank' m = int(np.log2(n)) assert n == 1 << m, 'n must be a power of 2' # Forward pass. Since K @ w can be computed by autodiffing K^T @ u, we # carry out the forward pass K^T @ u for u = 0 here to save the # intermediate values. This code is exactly the same as the function # @krylov_transpose_multiply, specialized to the case where u = 0. save_for_backward = [None] * m T_10 = v[..., np.newaxis] T_11 = torch.ones((n), device=T_10.device) for d in range(m)[::-1]: n1, n2 = 1 << d, 1 << (m - d - 1) S_10, S_11 = T_10, T_11 S0_10_mult_subdiag = S_10[:, ::2] * subdiag[(n2 - 1)::(2 * n2), np.newaxis] T_10 = torch.cat((S_10[:, 1::2], S0_10_mult_subdiag * S_11[1::2][:, np.newaxis]), dim=-1) S0_11_mult_subdiag = S_11[::2] * subdiag[(n2 - 1)::(2 * n2)] save_for_backward[d] = S0_10_mult_subdiag, S0_11_mult_subdiag T_11 = S0_11_mult_subdiag * S_11[1::2] # Backward pass dT_01 = torch.zeros((batch_size, 1, n), dtype=w.dtype, device=w.device) for d in range(m): n1, n2 = 1 << d, 1 << (m - d - 1) S0_10_mult_subdiag, S0_11_mult_subdiag = save_for_backward[d] dS_01 = torch.empty((batch_size, 2 * n1, n2), device=w.device) dS_01[:, ::2] = dT_01[:, :, :n2] dT_00_sum = torch.cat((w[:, :, 1:2*n2], torch.zeros((batch_size, rank, 1), dtype=w.dtype, device=w.device)), dim=-1) dT_00_sum_f = torch.rfft(dT_00_sum, 1) S0_10_f = torch.rfft(torch.cat((S0_10_mult_subdiag, torch.zeros_like(S0_10_mult_subdiag)), dim=-1), 1) # dS1_01_f = complex_mult(conjugate(S0_10_f), dT_00_sum_f[:, :, np.newaxis]).sum(dim=1) # Manually doing complex multiply # prod = (S0_10_f[..., np.newaxis] * dT_00_sum_f[:, :, np.newaxis, :, np.newaxis, :]).sum(dim=1) prod = torch.einsum('rnmo,brmp->bnmop', S0_10_f, dT_00_sum_f) dS1_01_f = torch.stack((prod[..., 0, 0] + prod[..., 1, 1], prod[..., 0, 1] - prod[..., 1, 0]), dim=-1) dS1_01 = torch.irfft(dS1_01_f, 1, signal_sizes=(2 * n2, ))[:, :, :n2] dS_01[:, 1::2] = dT_01[:, :, n2:] * S0_11_mult_subdiag[:, np.newaxis] + dS1_01 dT_01 = dS_01 # du = ((dT_00_sum[:, :, np.newaxis] * v[np.newaxis, :, :, np.newaxis]).sum(dim=1) + dT_01).squeeze(dim=-1) du = w[:, :, 0] @ v + dT_01.squeeze(dim=-1) return du def krylov_multiply_by_autodiff(subdiag, v, w): """Multiply \sum_i Krylov(A, v_i) @ w_i when A is zero except on the subdiagonal, using Pytorch's autodiff. Parameters: subdiag: Tensor of shape (n - 1, ) v: Tensor of shape (rank, n) w: Tensor of shape (batch_size, rank, n) Returns: product: Tensor of shape (batch_size, n) """ batch_size, rank, n = w.shape rank_, n_ = v.shape assert n == n_, 'w and v must have the same last dimension' assert rank == rank_, 'w and v must have the same rank' m = int(np.log2(n)) assert n == 1 << m, 'n must be a power of 2' u = torch.zeros((batch_size, n), dtype=v.dtype, device=v.device, requires_grad=True) prod = krylov_transpose_multiply(subdiag, v, u) result, = torch.autograd.grad(prod, u, grad_outputs=w, create_graph=True) return result def krylov_multiply_forward_old_(subdiag, v): """Forward pass of Krylov_multiply. Since K @ w can be computed by autodiffing K^T @ u, we carry out the forward pass K^T @ u for u = 0 here to save the intermediate values. This code is exactly the same as the function @krylov_transpose_multiply_old, specialized to the case where u = 0. Uses the old algorithm that scales worse when batching. Parameters: subdiag: Tensor of shape (n - 1, ) v: Tensor of shape (rank, n) Returns: save_for_backward: list of length log n, containing intermediate values necessary for the backward pass K @ w. """ rank, n = v.shape m = int(np.log2(n)) assert n == 1 << m, 'n must be a power of 2' save_for_backward = [None] * m T_10 = v[..., np.newaxis] T_11 = torch.ones((n, 1), device=T_10.device) for d in range(m)[::-1]: n1, n2 = 1 << d, 1 << (m - d - 1) S_10, S_11 = T_10, T_11 S0_10 = torch.cat((S_10[:, ::2], torch.zeros_like(S_10[:, ::2])), dim=-1) S0_11 = torch.cat((S_11[::2], torch.zeros_like(S_11[::2])), dim=-1) S1_11 = torch.cat((S_11[1::2], torch.zeros_like(S_11[1::2])), dim=-1) S = torch.cat((S0_10, S0_11[np.newaxis], S1_11[np.newaxis])) # polynomial multiplications S_f = torch.rfft(S, 1) # S0_10_f, S0_11_f, S1_11_f = S_f[:rank], S_f[-2], S_f[-1] # save_for_backward[d] = (S0_10_f, S0_11_f) # T_10_f = complex_mult(S1_11_f, S0_10_f) # T_11_f = complex_mult(S1_11_f, S0_11_f) # T_f = torch.cat((T_10_f, T_11_f[np.newaxis])) save_for_backward[d] = S_f[:rank+1] T_f = complex_mult(S_f[-1], S_f[:rank+1]) T = torch.irfft(T_f, 1, signal_sizes=(2 * n2, )) * subdiag[(n2 - 1)::(2 * n2), np.newaxis] T_10, T_11 = T[:rank], T[-1] # polynomial additions T_10 = torch.cat((T_10[:, :, :n2], T_10[:, :, n2:] + S_10[:, 1::2]), dim=-1) return save_for_backward def krylov_multiply_old(subdiag, v, w): """Multiply \sum_i Krylov(A, v_i) @ w_i when A is zero except on the subdiagonal. Since K @ w can be computed by autodiffing K^T @ u, the algorithm is just hand-differentiating the code of @krylov_transpose_multiply. Uses the old algorithm that scales worse when batching. Parameters: subdiag: Tensor of shape (n - 1, ) v: Tensor of shape (rank, n) w: Tensor of shape (batch_size, rank, n) Returns: product: Tensor of shape (batch_size, n) """ batch_size, rank, n = w.shape rank_, n_ = v.shape assert n == n_, 'w and v must have the same last dimension' assert rank == rank_, 'w and v must have the same rank' m = int(np.log2(n)) assert n == 1 << m, 'n must be a power of 2' save_for_backward = krylov_multiply_forward_old_(subdiag, v) w = w[:, :, np.newaxis, :] dT_00, dT_01 = w.flip(w.dim() - 1), torch.zeros((batch_size, 1, n), dtype=w.dtype, device=w.device) for d in range(m): n1, n2 = 1 << d, 1 << (m - d - 1) dS_00 = torch.empty((batch_size, rank, 2 * n1, n2), device=w.device) dS_00[:, :, ::2] = dT_00[:, :, :, n2:] dS_00[:, :, 1::2] = dT_00[:, :, :, n2:] dS_01 = torch.empty((batch_size, 2 * n1, n2), device=w.device) dS_01[:, ::2] = dT_01[:, :, n2:] dT = torch.cat((dT_00, dT_01[:, np.newaxis]), dim=1) dT = dT * subdiag[(n2 - 1)::(2 * n2), np.newaxis] dT_f = torch.rfft(dT, 1) / (2 * n2) # dT_00_f, dT_01_f = dT_f[:, :rank], dT_f[:, -1] # S0_10_f, S0_11_f = save_for_backward[d] # dS1_01_f = complex_mult(conjugate(S0_10_f)[np.newaxis], dT_00_f).sum(dim=1) + complex_mult(conjugate(S0_11_f), dT_01_f) dS1_01_f = complex_mult(conjugate(save_for_backward[d]), dT_f).sum(dim=1) dS1_01 = torch.irfft(dS1_01_f, 1, signal_sizes=(2 * n2, )) * (2 * n2) dS_01[:, 1::2] = dS1_01[:, :, :n2] dT_00, dT_01 = dS_00, dS_01 du = ((dT_00 * v[np.newaxis, :, :, np.newaxis]).sum(dim=1) + dT_01).squeeze(dim=-1) return du def subdiag_mult_conv(subdiag_A, subdiag_B, G, H, x): """Multiply \sum_i Krylov(A, G_i) @ Krylov(B, H_i) @ x when A and B are zero except on the subdiagonal. Uses the fast algorithm. Use either Pytorch's conv1d or FFT for polynomial multiplication, depending on polynomial degree. This is the fastest implementation. Parameters: subdiag_A: Tensor of shape (n - 1, ) subdiag_B: Tensor of shape (n - 1, ) G: Tensor of shape (rank, n) H: Tensor of shape (rank, n) x: Tensor of shape (batch_size, n) Returns: product: Tensor of shape (batch_size, n) """ rank, n = G.shape batch_size = x.shape[0] # if not power of 2, round everything up # TODO: this can maybe be handled better. also should benchmark how much speed non-po2 FFT loses m = int(np.ceil(np.log2(n))) n_extended = 1 << m if n != n_extended: x = torch.cat((x, torch.zeros(batch_size, n_extended - n, dtype=x.dtype, device=x.device)), dim=-1) G = torch.cat((G, torch.zeros(rank, n_extended - n, dtype=G.dtype, device=G.device)), dim=-1) H = torch.cat((H, torch.zeros(rank, n_extended - n, dtype=H.dtype, device=H.device)), dim=-1) subdiag_A = torch.cat((subdiag_A, torch.zeros(n_extended - n, dtype=subdiag_A.dtype, device=subdiag_A.device))) subdiag_B = torch.cat((subdiag_B, torch.zeros(n_extended - n, dtype=subdiag_B.dtype, device=subdiag_B.device))) KT_out = krylov_transpose_multiply_conv(subdiag_B, H, x) K_out = krylov_multiply_conv(subdiag_A, G, KT_out) return K_out[:, :n] if n != n_extended else K_out def subdiag_mult(subdiag_A, subdiag_B, G, H, x): """Multiply \sum_i Krylov(A, G_i) @ Krylov(B, H_i) @ x when A and B are zero except on the subdiagonal. Uses the fast algorithm. Parameters: subdiag_A: Tensor of shape (n - 1, ) subdiag_B: Tensor of shape (n - 1, ) G: Tensor of shape (rank, n) H: Tensor of shape (rank, n) x: Tensor of shape (batch_size, n) Returns: product: Tensor of shape (batch_size, n) """ rank, n = G.shape batch_size = x.shape[0] # if not power of 2, round everything up # TODO: this can maybe be handled better. also should benchmark how much speed non-po2 FFT loses m = int(np.ceil(np.log2(n))) n_extended = 1 << m if n != n_extended: x = torch.cat((x, torch.zeros(batch_size, n_extended - n, dtype=x.dtype, device=x.device)), dim=-1) G = torch.cat((G, torch.zeros(rank, n_extended - n, dtype=G.dtype, device=G.device)), dim=-1) H = torch.cat((H, torch.zeros(rank, n_extended - n, dtype=H.dtype, device=H.device)), dim=-1) subdiag_A = torch.cat((subdiag_A, torch.zeros(n_extended - n, dtype=subdiag_A.dtype, device=subdiag_A.device))) subdiag_B = torch.cat((subdiag_B, torch.zeros(n_extended - n, dtype=subdiag_B.dtype, device=subdiag_B.device))) KT_out = krylov_transpose_multiply(subdiag_B, H, x) K_out = krylov_multiply(subdiag_A, G, KT_out) return K_out[:, :n] if n != n_extended else K_out ##### Slow multiplication for the subdiagonal case def Krylov(linear_map, v, m=None): """Explicit construction of Krylov matrix [v A @ v A^2 @ v ... A^{m-1} @ v]. Parameters: linear_map: a function v -> A @ v that takes a vector of size m and returns a vector of size m. v: the starting vector of size m or (rank, m). m: max power of A. Returns: K: Krylov matrix of size (m, m) or (rank, m, m). """ if m is None: m = v.size(-1) cols = [v] for _ in range(m - 1): v = linear_map(v) cols.append(v) return torch.stack(cols, dim=-1) def shift_subdiag(subdiag, v, upper_right_corner=0.0): """The linear map for multiplying with a subdiagonal matrix (possibly with an upper right corner). This implementation is slow and not batched wrt rank, but easy to understand. Parameters: subdiag: (n - 1, ) v: (n, ) upper_right_corner: real number Returns: prod: (n, ) """ return torch.cat((upper_right_corner * v[[-1]], subdiag * v[:-1])) def subdiag_linear_map(subdiag, upper_right_corner=0.0): """Construct the linear map for multiplying with a subdiagonal matrix (possibly with an upper right corner). This implementation is faster. The slowness of the Krylov construction is from the kernel launch overhead in CUDA: we have n sequential steps, each step having a few CUDA calls. To make it faster, we want to reduce the number of CUDA operations. Here we reduce each step to 2 operations: indexing, and pointwise multiplication. Parameters: subdiag: (n - 1, ) upper_right_corner: real number Returns: linear_map: v -> product, with v of shape either (n, ) or (rank, n) """ n = subdiag.size(0) + 1 shift_down = torch.arange(-1, n - 1, device=subdiag.device) subdiag_extended = torch.cat((torch.tensor([upper_right_corner], dtype=subdiag.dtype, device=subdiag.device), subdiag)) # Pytorch 1.0 has torch.roll that should be much faster # return lambda v: subdiag_extended * v.roll(1, dims=-1) return lambda v: subdiag_extended * v[..., shift_down] def krylov_subdiag_fast(subdiag, v, upper_right_corner=0.0): """Explicit construction of Krylov matrix [v A @ v A^2 @ v ... A^{n-1} @ v] where A is a subdiagonal matrix (possibly with an upper right corner). This uses vectorized indexing and cumprod so it's much faster than using the Krylov function. However, the backward pass is slow because of inefficient implementation of cumprod_backward in Pytorch. This should yields similar speed (forward + backward) to the fast multiplication algorithm, but requires more memory. Parameters: subdiag: (n - 1, ) v: the starting vector of size n or (rank, n). upper_right_corner: real number Returns: K: Krylov matrix of size (n, n) or (rank, n, n). """ rank, n = v.shape a = torch.arange(n, dtype=torch.long, device=v.device) b = -a indices = a[:, np.newaxis] + b[np.newaxis] v_circulant = v[:, indices] subdiag_extended = torch.cat((torch.tensor([upper_right_corner], dtype=subdiag.dtype, device=subdiag.device), subdiag)) subdiag_circulant = subdiag_extended[indices] subdiag_cumprod = subdiag_circulant.cumprod(dim=1) K = v_circulant K[:, :, 1:] *= subdiag_cumprod[:, :-1] return K def subdiag_mult_slow_old(subdiag_A, subdiag_B, G, H, x): """Multiply \sum_i Krylov(A, G_i) @ Krylov(B, H_i) @ x when A and B are zero except on the subdiagonal. Uses the explicit Krylov construction with slow (and easy to understand) linear map. Parameters: subdiag_A: Tensor of shape (n - 1, ) subdiag_B: Tensor of shape (n - 1, ) G: Tensor of shape (rank, n) H: Tensor of shape (rank, n) x: Tensor of shape (batch_size, n) Returns: product: Tensor of shape (batch_size, n) """ rank, n = G.shape linear_map_A = functools.partial(shift_subdiag, subdiag_A) linear_map_B = functools.partial(shift_subdiag, subdiag_B) krylovs = [(Krylov(linear_map_A, G[i]), Krylov(linear_map_B, H[i]).t()) for i in range(rank)] prods = [K[0] @ (K[1] @ x.t()) for K in krylovs] return sum(prods).t() def subdiag_mult_slow(subdiag_A, subdiag_B, G, H, x, corner_A=0.0, corner_B=0.0): """Multiply \sum_i Krylov(A, G_i) @ Krylov(B, H_i) @ x when A and B are zero except on the subdiagonal. Uses the explicit Krylov construction with the more careful implementation of linear map. Parameters: subdiag_A: Tensor of shape (n - 1, ) subdiag_B: Tensor of shape (n - 1, ) G: Tensor of shape (rank, n) H: Tensor of shape (rank, n) x: Tensor of shape (batch_size, n) Returns: product: Tensor of shape (batch_size, n) """ if G.shape[0] == 1: # specialized code for rank=1, giving 2x speedup. K_G = Krylov(subdiag_linear_map(subdiag_A, corner_A), G[0]) K_H = Krylov(subdiag_linear_map(subdiag_B, corner_B), H[0]) return (x @ K_H) @ K_G.t() else: K_G = Krylov(subdiag_linear_map(subdiag_A, corner_A), G) K_H = Krylov(subdiag_linear_map(subdiag_B, corner_B), H) return ((x @ K_H) @ K_G.transpose(1, 2)).sum(dim=0) def subdiag_mult_slow_fast(subdiag_A, subdiag_B, G, H, x): """Multiply \sum_i Krylov(A, G_i) @ Krylov(B, H_i) @ x when A and B are zero except on the subdiagonal. Uses the fast construction of Krylov matrix. Parameters: subdiag_A: Tensor of shape (n - 1, ) subdiag_B: Tensor of shape (n - 1, ) G: Tensor of shape (rank, n) H: Tensor of shape (rank, n) x: Tensor of shape (batch_size, n) Returns: product: Tensor of shape (batch_size, n) """ K_G, K_H = krylov_subdiag_fast(subdiag_A, G), krylov_subdiag_fast(subdiag_B, H) return ((x @ K_H) @ K_G.transpose(1, 2)).sum(dim=0) class CycleDownMultCuda(torch.autograd.Function): '''Cycle v down and do pointwise multiplication with subdiag. ''' @staticmethod def forward(ctx, subdiag, v): ctx.save_for_backward(subdiag, v) return diag_mult_cuda.cycle_mult(subdiag, v, 0, -1) @staticmethod def backward(ctx, grad): subdiag, v = ctx.saved_tensors return diag_mult_cuda.cycle_mult(grad, v, 0, -1).sum(dim=0), diag_mult_cuda.cycle_mult(subdiag, grad, 1, 1) cycle_down_mult = CycleDownMultCuda.apply def test_cycle_down_mult(): n = 1 << 10 rank = 16 subdiag = torch.rand(n, requires_grad=True, device=device) v = torch.rand((rank, n), requires_grad=True, device=device) z = cycle_down_mult(subdiag, v) y = torch.cat((subdiag[0] * v[..., -1:], subdiag[1:] * v[..., :-1]), dim=-1) print((z - y).abs().max().item()) grad_output = torch.rand_like(y) gs, gv = torch.autograd.grad(y, (subdiag, v), grad_output, retain_graph=True) zs, zv = torch.autograd.grad(z.sum(), (subdiag, v), grad_output, retain_graph=True) print((zs - gs).abs().max().item()) print((zv - gv).abs().max().item()) def subdiag_linear_map_cuda(subdiag, upper_right_corner=0.0): """Construct the linear map for multiplying with a subdiagonal matrix (possibly with an upper right corner). Uses the construction in CUDA, so it's pretty fast. Parameters: subdiag: (n - 1, ) upper_right_corner: real number Returns: linear_map: v -> product, with v of shape either (n, ) or (rank, n) """ subdiag_extended = torch.cat((torch.tensor([upper_right_corner], dtype=subdiag.dtype, device=subdiag.device), subdiag)) return lambda v: cycle_down_mult(subdiag_extended, v) def subdiag_mult_cuda(subdiag_A, subdiag_B, G, H, x, corner_A=0.0, corner_B=0.0): """Multiply \sum_i Krylov(A, G_i) @ Krylov(B, H_i) @ x when A and B are zero except on the subdiagonal. Uses the explicit Krylov construction in CUDA. Parameters: subdiag_A: Tensor of shape (n - 1, ) subdiag_B: Tensor of shape (n - 1, ) G: Tensor of shape (rank, n) H: Tensor of shape (rank, n) x: Tensor of shape (batch_size, n) Returns: product: Tensor of shape (batch_size, n) """ K_G = Krylov(subdiag_linear_map_cuda(subdiag_A, corner_A), G) K_H = Krylov(subdiag_linear_map_cuda(subdiag_B, corner_B), H) return ((x @ K_H) @ K_G.transpose(1, 2)).sum(dim=0) ##### Slow multiplication for the tridiagonal case def tridiag_linear_map(subdiag, diag, superdiag, upper_right_corner=0.0, lower_left_corner=0.0): """Construct the linear map for multiplying with a tridiagonal matrix (possibly with upper right and lower left corners). Similar to subdiag_linear_map, we want to reduce the number of CUDA operations. Here we reduce each step to 3 operations: indexing, pointwise multiplication, and summing. Parameters: subdiag: (n - 1, ) diag: (n, ) superdiag: (n - 1, ) upper_right_corner: real number lower_left_corner: real number Returns: linear_map: v -> product, with v of shape either (n, ) or (rank, n) """ n = diag.size(0) shift_none = torch.arange(n, device=diag.device) shift_down = shift_none - 1 shift_up = (shift_none + 1) % n shifts = torch.stack((shift_down, shift_none, shift_up)) subdiag_extended = torch.cat((torch.tensor([upper_right_corner], dtype=subdiag.dtype, device=subdiag.device), subdiag)) superdiag_extended = torch.cat((superdiag, torch.tensor([lower_left_corner], dtype=superdiag.dtype, device=superdiag.device))) diags = torch.stack((subdiag_extended, diag, superdiag_extended)) return lambda v: (diags * v[..., shifts]).sum(dim=-2) def tridiag_linear_map_slow(subdiag, diag, superdiag, upper_right_corner=0.0, lower_left_corner=0.0): """The linear map for multiplying with a tridiagonal matrix (possibly with upper right and lower left corner). This implementation is slow, but easy to understand. Parameters: subdiag: (n - 1, ) diag: (n, ) superdiag: (n - 1, ) upper_right_corner: real number lower_left_corner: real number Returns: linear_map: v -> product, with v of shape either (n, ) or (rank, n) """ return lambda v: torch.cat((upper_right_corner * v[..., -1:], subdiag * v[..., :-1]), dim=-1) + diag * v + torch.cat((superdiag * v[..., 1:], lower_left_corner * v[..., :1]), dim=-1) def tridiag_mult_slow(subdiag_A, diag_A, superdiag_A, subdiag_B, diag_B, superdiag_B, G, H, x, corners_A=(0.0, 0.0), corners_B=(0.0, 0.0)): """Multiply \sum_i Krylov(A, G_i) @ Krylov(B, H_i) @ x when A and B are zero except on the subdiagonal. Uses the explicit Krylov construction with the more careful implementation of linear map. Parameters: subdiag_A: Tensor of shape (n - 1, ) diag_A: Tensor of shape (n, ) superdiag_A: Tensor of shape (n - 1, ) subdiag_B: Tensor of shape (n - 1, ) diag_B: Tensor of shape (n, ) superdiag_B: Tensor of shape (n - 1, ) G: Tensor of shape (rank, n) H: Tensor of shape (rank, n) x: Tensor of shape (batch_size, n) corners_A: two real numbers, the upper right and lower left corners of A. corners_B: two real numbers, the upper right and lower left corners of A. Returns: product: Tensor of shape (batch_size, n) """ if G.shape[0] == 1: # specialized code for rank=1, giving 2x speedup. K_G = Krylov(tridiag_linear_map(subdiag_A, diag_A, superdiag_A, *corners_A), G[0]) K_H = Krylov(tridiag_linear_map(subdiag_B, diag_B, superdiag_B, *corners_B), H[0]) return (x @ K_H) @ K_G.t() else: K_G = Krylov(tridiag_linear_map(subdiag_A, diag_A, superdiag_A, *corners_A), G) K_H = Krylov(tridiag_linear_map(subdiag_B, diag_B, superdiag_B, *corners_B), H) return ((x @ K_H) @ K_G.transpose(1, 2)).sum(dim=0) def test_krylov_transpose_multiply(): m = 10 n = 1 << m batch_size = 50 rank = 16 subdiag = torch.rand(n-1, requires_grad=True, device=device) A = np.diag(subdiag.data.cpu().numpy(), -1) u = torch.rand((batch_size, n), requires_grad=True, device=device) v = torch.rand((rank, n), requires_grad=True, device=device) # Fast algorithm on GPU # KTu_traced = torch.jit.trace(KTu_traceable, (subdiag, v, u)) result = krylov_transpose_multiply(subdiag, v, u) # result = krylov_transpose_multiply_conv(subdiag, v, u) # result = krylov_transpose_multiply_old(subdiag, v, u) grad, = torch.autograd.grad(result.sum(), subdiag, retain_graph=True) # CPU dense multiply Ks = [krylov_construct(A, v.data.cpu().numpy()[i], n) for i in range(rank)] u_cpu = u.data.cpu().numpy() result_cpu = np.stack([u_cpu @ K.T for K in Ks]) result_cpu = result_cpu.swapaxes(0, 1).squeeze() result_cpu = torch.tensor(result_cpu, dtype=torch.float, device=device) # GPU dense multiply Ks_gpu_dense = [torch.tensor(K, dtype=torch.float, device=device) for K in Ks] result_gpu_dense = torch.stack([u @ K.t() for K in Ks_gpu_dense]) result_gpu_dense = result_gpu_dense.transpose(0, 1).squeeze() # Explicit construction on GPU Ks_gpu = Krylov(subdiag_linear_map(subdiag), v) result_gpu = (u @ Ks_gpu).transpose(0, 1) grad_gpu, = torch.autograd.grad(result_gpu.sum(), subdiag, retain_graph=True) # Explicit construction on GPU, but faster Ks_gpu_fast = krylov_subdiag_fast(subdiag, v) result_gpu_fast = (u @ Ks_gpu_fast).transpose(0, 1) grad_gpu_fast, = torch.autograd.grad(result_gpu_fast.sum(), subdiag, retain_graph=True) # These max and mean differences should be small print((result - result_cpu).abs().max().item()) print((result - result_cpu).abs().mean().item()) print((result - result_gpu_dense).abs().max().item()) print((result - result_gpu_dense).abs().mean().item()) print((result - result_gpu).abs().max().item()) print((result - result_gpu).abs().mean().item()) print((grad - grad_gpu).abs().max().item()) print((grad - grad_gpu).abs().mean().item()) print((result - result_gpu_fast).abs().max().item()) print((result - result_gpu_fast).abs().mean().item()) print((grad - grad_gpu_fast).abs().max().item()) print((grad - grad_gpu_fast).abs().mean().item()) # with torch.autograd.profiler.profile(use_cuda=True) as prof: # result = krylov_transpose_multiply_conv(subdiag, v, u) # grad, = torch.autograd.grad(result.sum(), subdiag, retain_graph=True) def test_krylov_multiply(): m = 10 n = 1 << m batch_size = 50 rank = 16 subdiag = torch.rand(n-1, requires_grad=True, device=device) A = np.diag(subdiag.data.cpu().numpy(), -1) u = torch.rand((batch_size, n), requires_grad=True, device=device) v = torch.rand((rank, n), requires_grad=True, device=device) w = torch.rand((batch_size, rank, n), requires_grad=True, device=device) # Fast algorithm on GPU # result = krylov_multiply_conv(subdiag, v, w) result = krylov_multiply(subdiag, v, w) # result = krylov_multiply_old(subdiag, v, w) grad, = torch.autograd.grad(result.sum(), subdiag, retain_graph=True) # Using autodiff result_autodiff = krylov_multiply_by_autodiff(subdiag, v, w) grad_autodiff, = torch.autograd.grad(result_autodiff.sum(), subdiag, retain_graph=True) # CPU dense multiply Ks = [krylov_construct(A, v.data.cpu().numpy()[i], n) for i in range(rank)] w_cpu = w.data.cpu().numpy() result_cpu = np.stack([w_cpu[:, i] @ Ks[i] for i in range(rank)]).sum(axis=0).squeeze() result_cpu = torch.tensor(result_cpu, dtype=torch.float, device=device) # Explicit construction on GPU Ks_gpu = Krylov(subdiag_linear_map(subdiag), v) result_gpu = (w.transpose(0, 1) @ Ks_gpu.transpose(1, 2)).sum(dim=0) grad_gpu, = torch.autograd.grad(result_gpu.sum(), subdiag, retain_graph=True) # Explicit construction on GPU, but faster Ks_gpu_fast = krylov_subdiag_fast(subdiag, v) result_gpu_fast = (w.transpose(0, 1) @ Ks_gpu_fast.transpose(1, 2)).sum(dim=0) grad_gpu_fast, = torch.autograd.grad(result_gpu_fast.sum(), subdiag, retain_graph=True) # These max and mean differences should be small print((result - result_autodiff).abs().max().item()) print((result - result_autodiff).abs().mean().item()) print((grad - grad_autodiff).abs().max().item()) print((grad - grad_autodiff).abs().mean().item()) print((result - result_cpu).abs().max().item()) print((result - result_cpu).abs().mean().item()) print((result - result_gpu).abs().max().item()) print((result - result_gpu).abs().mean().item()) print((grad - grad_gpu).abs().max().item()) print((grad - grad_gpu).abs().mean().item()) print((result - result_gpu_fast).abs().max().item()) print((result - result_gpu_fast).abs().mean().item()) print((grad - grad_gpu_fast).abs().max().item()) print((grad - grad_gpu_fast).abs().mean().item()) def test_subdiag_mult(): m = 10 n = 1 << m batch_size = 50 rank = 16 subdiag = torch.rand(n-1, requires_grad=True, device=device) diag = torch.rand(n, requires_grad=True, device=device) superdiag = torch.rand(n-1, requires_grad=True, device=device) u = torch.rand((batch_size, n), requires_grad=True, device=device) v = torch.rand((rank, n), requires_grad=True, device=device) K = Krylov(subdiag_linear_map(subdiag, 1.0), v) K_fast = krylov_subdiag_fast(subdiag, v, upper_right_corner=1.0) print((K - K_fast).abs().max().item()) result = subdiag_mult_conv(subdiag, subdiag, v, v, u) # result = subdiag_mult(subdiag, subdiag, v, v, u) grad, = torch.autograd.grad(result.sum(), subdiag, retain_graph=True) result_slow_old = subdiag_mult_slow_old(subdiag, subdiag, v, v, u) grad_slow_old, = torch.autograd.grad(result_slow_old.sum(), subdiag, retain_graph=True) result_slow = subdiag_mult_slow(subdiag, subdiag, v, v, u) grad_slow, = torch.autograd.grad(result_slow.sum(), subdiag, retain_graph=True) result_slow_fast = subdiag_mult_slow_fast(subdiag, subdiag, v, v, u) grad_slow_fast, = torch.autograd.grad(result_slow_fast.sum(), subdiag, retain_graph=True) result_cuda = subdiag_mult_cuda(subdiag, subdiag, v, v, u) grad_cuda, = torch.autograd.grad(result_cuda.sum(), subdiag, retain_graph=True) # These max and mean differences should be small print((result - result_slow_old).abs().max().item()) print((result - result_slow_old).abs().mean().item()) print((grad - grad_slow_old).abs().max().item()) print((grad - grad_slow_old).abs().mean().item()) print((result - result_slow).abs().max().item()) print((result - result_slow).abs().mean().item()) print((grad - grad_slow).abs().max().item()) print((grad - grad_slow).abs().mean().item()) print((result - result_slow_fast).abs().max().item()) print((result - result_slow_fast).abs().mean().item()) print((grad - grad_slow_fast).abs().max().item()) print((grad - grad_slow_fast).abs().mean().item()) print((result - result_cuda).abs().max().item()) print((result - result_cuda).abs().mean().item()) print((grad - grad_cuda).abs().max().item()) print((grad - grad_cuda).abs().mean().item()) def test_tridiag_mult(): m = 10 n = 1 << m batch_size = 50 rank = 16 subdiag = torch.rand(n-1, requires_grad=True, device=device) / 2 diag = torch.rand(n, requires_grad=True, device=device) / 2 superdiag = torch.rand(n-1, requires_grad=True, device=device) / 2 u = torch.rand((batch_size, n), requires_grad=True, device=device) v = torch.rand((rank, n), requires_grad=True, device=device) K = Krylov(tridiag_linear_map(subdiag, diag, superdiag, 0.5, 0.5), v) K_old = Krylov(tridiag_linear_map_slow(subdiag, diag, superdiag, 0.5, 0.5), v) print((K - K_old).abs().max().item()) trid_slow = tridiag_mult_slow(subdiag, diag, superdiag, subdiag, diag, superdiag, v, v, u) # TODO: broken, move test into subpackage if __name__ == "__main__": test_krylov_transpose_multiply() test_krylov_multiply() test_subdiag_mult() test_tridiag_mult()
structured-nets-master
pytorch/structure/krylov.py
import torch from scipy.linalg import circulant from .complex_utils import complex_mult device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") def circulant_multiply(c, x): """ Multiply circulant matrix with first column c by x Parameters: c: (n, ) x: (batch_size, n) or (n, ) Return: prod: (batch_size, n) or (n, ) """ return torch.irfft(complex_mult(torch.rfft(c, 1), torch.rfft(x, 1)), 1, signal_sizes=(c.shape[-1], )) def test_circulant_multiply(n): c = torch.rand(n, device=device) x = torch.rand((3, n), device=device) C = torch.tensor(circulant(c.detach().cpu().numpy()), dtype=c.dtype, device=c.device) slow = x @ C.t() fast = circulant_multiply(c, x) print('Error compared to slow multiply: ', (slow - fast).abs().max().item()) # TODO: move test into subpackage if __name__ == '__main__': test_circulant_multiply(100)
structured-nets-master
pytorch/structure/circulant.py
from .hadamard import hadamard_transform import torch import numpy as np from scipy.linalg import hadamard device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # S,G,B: diagonal # P: permutation # x: batch_size x n_features def fastfood_multiply(S,G,B,P,x): HBx = hadamard_transform(B*x) PHBx = HBx[:, P] HGPHBx = hadamard_transform(G*PHBx) return S*HGPHBx def test_fastfood_multiply(n, batch_size): S = np.random.randn(n) G = np.random.randn(n) B = np.random.randn(n) P = np.random.permutation(n) x = np.random.randn(batch_size,n) H = hadamard(n) HBx = np.dot(H,(B*x).T).T PHBx = HBx[:,P] HGPHBx = np.dot(H,(G*PHBx).T).T output_explicit = S*HGPHBx S = torch.tensor(S, dtype=torch.float, device=device) G = torch.tensor(G, dtype=torch.float, device=device) B = torch.tensor(B, dtype=torch.float, device=device) P = torch.tensor(P, dtype=torch.long, device=device) x = torch.tensor(x, dtype=torch.float, device=device) output = fastfood_multiply(S,G,B,P,x) print(np.linalg.norm(output_explicit - output)) # TODO: move test into subpackage if __name__ == '__main__': test_fastfood_multiply(128,50)
structured-nets-master
pytorch/structure/fastfood.py
'''Functions to multiply by a Toeplitz-like matrix. ''' import numpy as np import torch from .complex_utils import complex_mult, conjugate from .krylov import Krylov device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") ##### Fast multiplication for the Toeplitz-like case def toeplitz_krylov_transpose_multiply(v, u, f=0.0): """Multiply Krylov(Z_f, v_i)^T @ u. Parameters: v: (rank, n) u: (batch_size, n) f: real number Returns: product: (batch, rank, n) """ _, n = u.shape _, n_ = v.shape assert n == n_, 'u and v must have the same last dimension' if f != 0.0: # cycle version # Computing the roots of f mod = abs(f) ** (torch.arange(n, dtype=u.dtype, device=u.device) / n) if f > 0: arg = torch.stack((torch.ones(n, dtype=u.dtype, device=u.device), torch.zeros(n, dtype=u.dtype, device=u.device)), dim=-1) else: # Find primitive roots of -1 angles = torch.arange(n, dtype=u.dtype, device=u.device) / n * np.pi arg = torch.stack((torch.cos(angles), torch.sin(angles)), dim=-1) eta = mod[:, np.newaxis] * arg eta_inverse = (1.0 / mod)[:, np.newaxis] * conjugate(arg) u_f = torch.ifft(eta_inverse * u[..., np.newaxis], 1) v_f = torch.fft(eta * v[..., np.newaxis], 1) uv_f = complex_mult(u_f[:, np.newaxis], v_f[np.newaxis]) uv = torch.fft(uv_f, 1) # We only need the real part of complex_mult(eta, uv) return eta[..., 0] * uv[..., 0] - eta[..., 1] * uv[..., 1] else: u_f = torch.rfft(torch.cat((u.flip(1), torch.zeros_like(u)), dim=-1), 1) v_f = torch.rfft(torch.cat((v, torch.zeros_like(v)), dim=-1), 1) uv_f = complex_mult(u_f[:, np.newaxis], v_f[np.newaxis]) return torch.irfft(uv_f, 1, signal_sizes=(2 * n, ))[..., :n].flip(2) def toeplitz_krylov_multiply_by_autodiff(v, w, f=0.0): """Multiply \sum_i Krylov(Z_f, v_i) @ w_i, using Pytorch's autodiff. This function is just to check the result of toeplitz_krylov_multiply. Parameters: v: (rank, n) w: (batch_size, rank, n) f: real number Returns: product: (batch, n) """ batch_size, rank, n = w.shape rank_, n_ = v.shape assert n == n_, 'w and v must have the same last dimension' assert rank == rank_, 'w and v must have the same rank' u = torch.zeros((batch_size, n), dtype=v.dtype, device=v.device, requires_grad=True) prod = toeplitz_krylov_transpose_multiply(v, u, f) result, = torch.autograd.grad(prod, u, grad_outputs=w, create_graph=True) return result def toeplitz_krylov_multiply(v, w, f=0.0): """Multiply \sum_i Krylov(Z_f, v_i) @ w_i. Parameters: v: (rank, n) w: (batch_size, rank, n) f: real number Returns: product: (batch, n) """ _, rank, n = w.shape rank_, n_ = v.shape assert n == n_, 'w and v must have the same last dimension' assert rank == rank_, 'w and v must have the same rank' if f != 0.0: # cycle version # Computing the roots of f mod = abs(f) ** (torch.arange(n, dtype=w.dtype, device=w.device) / n) if f > 0: arg = torch.stack((torch.ones(n, dtype=w.dtype, device=w.device), torch.zeros(n, dtype=w.dtype, device=w.device)), dim=-1) else: # Find primitive roots of -1 angles = torch.arange(n, dtype=w.dtype, device=w.device) / n * np.pi arg = torch.stack((torch.cos(angles), torch.sin(angles)), dim=-1) eta = mod[:, np.newaxis] * arg eta_inverse = (1.0 / mod)[:, np.newaxis] * conjugate(arg) w_f = torch.fft(eta * w[..., np.newaxis], 1) v_f = torch.fft(eta * v[..., np.newaxis], 1) wv_sum_f = complex_mult(w_f, v_f).sum(dim=1) wv_sum = torch.ifft(wv_sum_f, 1) # We only need the real part of complex_mult(eta_inverse, wv_sum) return eta_inverse[..., 0] * wv_sum[..., 0] - eta_inverse[..., 1] - wv_sum[..., 1] else: w_f = torch.rfft(torch.cat((w, torch.zeros_like(w)), dim=-1), 1) v_f = torch.rfft(torch.cat((v, torch.zeros_like(v)), dim=-1), 1) wv_sum_f = complex_mult(w_f, v_f).sum(dim=1) return torch.irfft(wv_sum_f, 1, signal_sizes=(2 * n, ))[..., :n] def toeplitz_mult(G, H, x, cycle=True): """Multiply \sum_i Krylov(Z_f, G_i) @ Krylov(Z_f, H_i) @ x. Parameters: G: Tensor of shape (rank, n) H: Tensor of shape (rank, n) x: Tensor of shape (batch_size, n) cycle: whether to use f = (1, -1) or f = (0, 0) Returns: product: Tensor of shape (batch_size, n) """ # f = (1,-1) if cycle else (1,1) f = (1, -1) if cycle else (0, 0) transpose_out = toeplitz_krylov_transpose_multiply(H, x, f[1]) return toeplitz_krylov_multiply(G, transpose_out, f[0]) ##### Slow multiplication for the Toeplitz-like case def toeplitz_Z_f_linear_map(f=0.0): """The linear map for multiplying by Z_f. This implementation is slow and not batched wrt rank, but easy to understand. Parameters: f: real number Returns: linear_map: v -> product, with v of shape (n, ) """ return lambda v: torch.cat((f * v[[-1]], v[:-1])) def krylov_toeplitz_fast(v, f=0.0): """Explicit construction of Krylov matrix [v A @ v A^2 @ v ... A^{n-1} @ v] where A = Z_f. This uses vectorized indexing and cumprod so it's much faster than using the Krylov function. Parameters: v: the starting vector of size n or (rank, n). f: real number Returns: K: Krylov matrix of size (n, n) or (rank, n, n). """ rank, n = v.shape a = torch.arange(n, device=v.device) b = -a indices = a[:, np.newaxis] + b[np.newaxis] K = v[:, indices] K[:, indices < 0] *= f return K def toeplitz_mult_slow(G, H, x, cycle=True): """Multiply \sum_i Krylov(Z_f, G_i) @ Krylov(Z_f, H_i) @ x. Uses the explicit Krylov construction with slow (and easy to understand) linear map. Parameters: G: Tensor of shape (rank, n) H: Tensor of shape (rank, n) x: Tensor of shape (batch_size, n) cycle: whether to use f = (1, -1) or f = (0, 0) Returns: product: Tensor of shape (batch_size, n) """ assert G.shape == H.shape, 'G and H must have the same shape' rank, n = G.shape f = (1, -1) if cycle else (0, 0) krylovs = [(Krylov(toeplitz_Z_f_linear_map(f[0]), G[i]), Krylov(toeplitz_Z_f_linear_map(f[1]), H[i]).t()) for i in range(rank)] prods = [K[0] @ (K[1] @ x.t()) for K in krylovs] return sum(prods).t() def toeplitz_mult_slow_fast(G, H, x, cycle=True): """Multiply \sum_i Krylov(Z_f, G_i) @ Krylov(Z_f, H_i) @ x. Uses the fast construction of Krylov matrix. Parameters: G: Tensor of shape (rank, n) H: Tensor of shape (rank, n) x: Tensor of shape (batch_size, n) cycle: whether to use f = (1, -1) or f = (0, 0) Returns: product: Tensor of shape (batch_size, n) """ assert G.shape == H.shape f_G, f_H = (1, -1) if cycle else (0, 0) K_G, K_H = krylov_toeplitz_fast(G, f_G), krylov_toeplitz_fast(H, f_H) return ((x @ K_H) @ K_G.transpose(1, 2)).sum(dim=0) def test_toeplitz_mult(): v = torch.tensor([[0,1,0,-1],[0,1,2,3]], dtype=torch.float, device=device, requires_grad=True) u = torch.tensor([[1,1,1,1],[0,1,2,3]], dtype=torch.float, device=device, requires_grad=True) w = toeplitz_krylov_transpose_multiply(v, u, f=-1) # output: # [[[ 0 2 2 0] # [ 6 0 -4 -6]] # [[ -2 2 4 2] # [ 14 8 0 -8]]] toeplitz_mult(v, v, u) toeplitz_mult_slow(v, v, u) # output: # array([[-16., -20., -4., 16.], # [ 16., -8., 12., 64.]]) toeplitz_mult(v, v, u, cycle=False) toeplitz_mult_slow(v, v, u, cycle=False) # output: # array([[ 0., 6., 16., 26.], # [ 0., 12., 38., 66.]]) m = 10 n = 1<<m batch_size = 50 rank = 16 u = torch.rand((batch_size, n), requires_grad=True, device=device) v = torch.rand((rank, n), requires_grad=True, device=device) result = toeplitz_mult(v, v, u, cycle=True) grad, = torch.autograd.grad(result.sum(), v, retain_graph=True) result_slow = toeplitz_mult_slow(v, v, u, cycle=True) grad_slow, = torch.autograd.grad(result_slow.sum(), v, retain_graph=True) result_slow_fast = toeplitz_mult_slow_fast(v, v, u, cycle=True) grad_slow_fast, = torch.autograd.grad(result_slow_fast.sum(), v, retain_graph=True) # These max and mean errors should be small print((result - result_slow).abs().max().item()) print((result - result_slow).abs().mean().item()) print((grad - grad_slow).abs().max().item()) print((grad - grad_slow).abs().mean().item()) print((result - result_slow_fast).abs().max().item()) print((result - result_slow_fast).abs().mean().item()) print((grad - grad_slow_fast).abs().max().item()) print((grad - grad_slow_fast).abs().mean().item()) def test_memory(): """Memory stress test to make sure there's no memory leak. """ for _ in range(10000): a = torch.empty((2,4096), dtype=torch.float, device=device, requires_grad=True) b = torch.empty((2,4096), dtype=torch.float, device=device, requires_grad=True) c = toeplitz_mult(a, a, b) g, = torch.autograd.grad(torch.sum(c), a, retain_graph=True) # TODO: move test into subpackage if __name__ == '__main__': test_toeplitz_mult() # test_memory()
structured-nets-master
pytorch/structure/toeplitz.py
import torch.cuda from setuptools import setup from torch.utils.cpp_extension import CppExtension, CUDAExtension, BuildExtension from torch.utils.cpp_extension import CUDA_HOME ext_modules = [] if torch.cuda.is_available() and CUDA_HOME is not None: extension = CUDAExtension( 'hadamard_cuda', [ 'hadamard_cuda.cpp', 'hadamard_cuda_kernel.cu' ], extra_compile_args={'cxx': ['-g'], 'nvcc': ['-O2']}) ext_modules.append(extension) setup( name='hadamard_cuda', ext_modules=ext_modules, cmdclass={'build_ext': BuildExtension})
structured-nets-master
pytorch/structure/hadamard_cuda/setup.py
import numpy as np import itertools import pyfftw import sys sys.path.insert(0,'../../../pytorch/') from structure.scratch.krylovslow import krylov_construct # define fft calls def _plan_ffts(in_shape, lib='numpy'): out_shape = in_shape[:-1] + (in_shape[-1]//2 + 1,) if lib == 'numpy': x_for = np.zeros(shape=in_shape) fft = lambda: np.fft.rfft(x_for) y_bak = np.empty(shape=out_shape, dtype='complex128') ifft = lambda: np.fft.irfft(y_bak) return ((x_for, fft), (y_bak, ifft)) if lib == 'scipy': pass if lib == 'fftw': out_shape = in_shape[:-1] + (in_shape[-1]//2 + 1,) x_for = pyfftw.empty_aligned(in_shape, dtype='float64') y_for = pyfftw.empty_aligned(out_shape, dtype='complex128') fft_for = pyfftw.FFTW(x_for, y_for, direction='FFTW_FORWARD', flags=['FFTW_MEASURE']) # don't destroy input so 0s are preserved x_for[:] = 0 x_bak = pyfftw.empty_aligned(in_shape, dtype='float64') y_bak = pyfftw.empty_aligned(out_shape, dtype='complex128') fft_bak = pyfftw.FFTW(y_bak, x_bak, direction='FFTW_BACKWARD', flags=['FFTW_MEASURE', 'FFTW_DESTROY_INPUT']) return ((x_for, fft_for), (y_bak, fft_bak)) def plan_ffts(m, lib='numpy'): fft_plans = [None] * m for d in range(m-1,-1,-1): n1, n2 = 1<<d, 1<<(m-d) in_shape = (4,n1,n2) fft_plans[d] = _plan_ffts(in_shape, lib) return fft_plans # TODO: put this as subfunction of main function # this is specialized to subdiagonal for now # @profile def _resolvent_bilinear_flattened(fft_plans, subd, m, d, S): # pass at depth d computes 4 arrays: # each array is length n, indexed by x_{m-1}, ..., x_{m-d}, y_{m-d-1}, ..., y_0 # for convenience, store as x_{m-d}, ..., x_{m-1}, y_{m-d-1}, ..., y_0 (index is bit-reversed) # assert d < m # assume leaf pass done in main function S_00, S_01, S_10, S_11 = S # answers to previous layer: indexed by x_{m-d-1}, x_{m-d}, ..., x_{m-1}, y_{m-d-2}, ..., y_0 # these are the same as the S0[0,0],S1[0,0] in the recursive version # assert S_00.shape == (1<<(d+1), 1<<(m-d-1)) n1, n2 = 1<<d, 1<<(m-d-1) # input shape 2n1 x n2, output shape n1 x 2n2 ((S_, fft), (T_, ifft)) = fft_plans[d] S0_10_mult_subdiag, S0_11, S1_01, S1_11 = S_ ## pass S0_10_mult_subdiag[:,:n2] = S_10[:n1,:] S1_01[:,:n2] = S_01[n1:,:] S0_11[:,:n2] = S_11[:n1,:] S1_11[:,:n2] = S_11[n1:,:] ## dS_11[...] = dS1_11[...] # polynomial multiplications S0_10_f, S0_11_f, S1_01_f, S1_11_f = fft() ## dS_ = fft(dS*_**_f) # subproblem for branch x_{m-d}, ..., x_{m-1} is A[\overline{x_{m-1}...x_{m-d}} + 2^{m-d-1}] T_[0] = S1_01_f * S0_10_f T_[1] = S1_01_f * S0_11_f T_[2] = S1_11_f * S0_10_f T_[3] = S1_11_f * S0_11_f ## dS1_01_f += dT_[0] * S0_10_f; dS0_10_f += dT_[0] * S1_01_f ## note that the S*_**_f are the only things that need to be stored in t he forward pass ## also note that there is an optimization here; should only need half T__ = ifft() ## dT_ = ifft(dT__) (because DFT matrix symmetric) T__ *= subd[n1:n1*2, np.newaxis] ## dT__ *= subd[...] ## for learning A, should get somethiign like dsubd[...] = T__ T_00, T_01, T_10, T_11 = T__ # polynomial additions T_00[:,n2:] += S_00[:n1,:] ## dS_00[:n1,:] = T_00[:,n2:] T_00[:,n2:] += S_00[n1:,:] T_01[:,n2:] += S_01[:n1,:] T_10[:,n2:] += S_10[n1:,:] ## autodiff correspondences annotated in with '##' ## this function takes in S and outputs T; ## the backwards pass calls these lines in reverse, ## taking dT and outputting dS where ## dx := \partial{L}/\partial{x}, ## (L is the final output of the entire algorithm) return (T_00, T_01, T_10, T_11) def bitreversal_slow(x, n, m): """ Compute the bit reversal permutation """ assert n == 1<<m # power of 2 for now x_ = x.reshape([2]*m) x_bf_ = np.empty(shape=[2]*m) for i in itertools.product(*([[0,1]]*m)): x_bf_[i[::-1]] = x_[i] x_bf = x_bf_.reshape(n) return x_bf # note that this can be sped up by pre-allocating memory: # %timeit np.hstack((x, np.zeros((32,32)))) : 9.16 µs ± 221 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each) # %timeit y = np.zeros((32,64)); y[:,:32] = x : 3.63 µs ± 573 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each) def bitreversal_stack(x, n, m): """ faster version in numpy """ assert n == 1<<m n1, n2 = n, 1 x_ = x.reshape((n1,n2)) for i in range(m): n1 //= 2 n2 *= 2 x_ = np.hstack((x_[:n1,:], x_[n1:,:])) return x_.squeeze() # another bit reversal algorithm that's asymptotically faster: # http://www.lite.etsii.urjc.es/manuel.rubiosanchez/papers/Bit-Reversal-Article.pdf # we don't need to implement any fast ones because we only need to calculae the permutation once and then index into it # call with: # resolvent_bilinear_flattened = create(n, m, 'numpy') def create(n, m, lib='numpy'): fft_plans = plan_ffts(m, lib) bf_perm = bitreversal_stack(np.arange(n), n, m) # Shorter versions but much slower. Maybe we don't care about speed because # this will done only once. # bf_perm_1 = np.array([int(np.binary_repr(i, width=m)[::-1], 2) for i in range(n)]) # bf_perm_2 = np.array([int(f'{x:0{m}b}'[::-1], 2) for i in range(n)]) # bf_perm_3 = np.array([int(bin(i + n)[:2:-1], 2) for i in range(n)]) bitreversal = lambda x, n, m: x[bf_perm] # @profile def resolvent_bilinear_flattened(A, v, u, n, m): assert n == 1<<m # power of 2 for now # assume A is subdiagonal for now subd = np.empty((n,)) subd[1:] = np.diagonal(A, -1) subd = bitreversal(subd, n, m) # reshape u,v to be indexed consistently with the above # i.e. bit flip their indices u_bf = bitreversal(u, n, m).reshape((n,1)) # tri says use [:,np.newaxis] v_bf = bitreversal(v, n, m).reshape((n,1)) S = (u_bf*v_bf, u_bf, v_bf, np.ones((n,1))) for d in range(m)[::-1]: S = _resolvent_bilinear_flattened(fft_plans, subd, m, d, S) # return np.flip(S[0], axis=-1) return S[0].squeeze()[::-1] return resolvent_bilinear_flattened class KrylovTransposeMultiply(): """Multiply Krylov(A, v)^T @ u when A is zero except on the subdiagonal. """ def __init__(self, n, batch_size=1, rank=1): m = int(np.log2(n)) assert n == 1 << m, 'n must be a power of 2' self.n = n self.m = m self.batch_size = batch_size self.rank = rank self.plan_ffts_forward_pass() def plan_ffts_forward_pass(self): n, m, batch_size, rank = self.n, self.m, self.batch_size, self.rank self.S_storage = [np.empty((batch_size + rank, n))] * m self.S_f_storage = [np.empty((batch_size + rank, 1 << d, (1 << (m - d - 1)) + 1), dtype='complex128') for d in range(m)] self.T_f_storage = [np.empty((batch_size, rank, (1 << (m - d - 1)) + 1), dtype='complex128') for d in range(m)] self.T_storage = [np.empty((batch_size, rank, 1 << (m - d))) for d in range(m)] self.ffts_forward_pass = [] for d, (S, S_f, T_f, T) in enumerate(zip(self.S_storage, self.S_f_storage, self.T_f_storage, self.T_storage)): S = S.reshape((batch_size + rank, 1 << d, 1 << (m - d))) fft_time2freq = pyfftw.FFTW(S, S_f, direction='FFTW_FORWARD', flags=['FFTW_MEASURE', 'FFTW_DESTROY_INPUT'], threads=1) fft_freq2time = pyfftw.FFTW(T_f, T, direction='FFTW_BACKWARD', flags=['FFTW_MEASURE', 'FFTW_DESTROY_INPUT'], threads=1) self.ffts_forward_pass.append((fft_time2freq, fft_freq2time)) def __call__(self, subdiag, v, u): """Multiply Krylov(A, v)^T @ u when A is zero except on the subdiagonal. We don't use bit reversal here. """ n, m, batch_size, rank = self.n, self.m, self.batch_size, self.rank u, v = u.reshape(batch_size, n), v.reshape(rank, n) result = np.zeros((batch_size, rank, n), dtype=u.dtype) # T_00_sum = u @ v.T T_00_sum = (u[:, np.newaxis] * v).sum(axis=-1) result[:, :, 0] += T_00_sum T_01 = u.reshape(batch_size, n, 1).copy() # Copy since we'll be changing this array directly T_10 = v.reshape(rank, n, 1) T_11 = np.ones(n) for d in range(m)[::-1]: n1, n2 = 1 << d, 1 << (m - d - 1) S = self.S_storage[d].reshape((batch_size + rank, n1, 2 * n2)) S_f = self.S_f_storage[d] T_f = self.T_f_storage[d] T = self.T_storage[d] fft_time2freq, fft_freq2time = self.ffts_forward_pass[d] S_00_sum, S_01, S_10, S_11 = T_00_sum, T_01, T_10, T_11 S[:, :, n2:] = 0.0 S0_10_mult_subdiag, S1_01 = S[:rank, :, :n2], S[rank:rank + batch_size, :, :n2] S0_10_mult_subdiag[:] = S_10[:, ::2] * subdiag[(n2 - 1)::(2 * n2), np.newaxis] S1_01[:] = S_01[:, 1::2] # polynomial multiplications S_f = fft_time2freq(S, output_array=S_f) S0_10_f, S1_01_f = S_f[:rank], S_f[rank:rank + batch_size] T_00_f_sum = T_f # T_00_f_sum[:] = (S1_01_f[:, np.newaxis] * S0_10_f[np.newaxis]).sum(axis=-2) np.einsum("bnm,rnm->brm", S1_01_f, S0_10_f, out=T_00_f_sum) T = fft_freq2time(T_f, output_array=T) T_00_sum = T # polynomial additions result[:, :, 1:2*n2] += T_00_sum[..., :-1] S0_11_mult_subdiag = S_11[::2] * subdiag[(n2 - 1)::(2 * n2)] # T_01 = np.concatenate((S_01[:, ::2], S_01[:, 1::2] * S0_11_mult_subdiag[:, np.newaxis]), axis=-1) T_01 = S_01.reshape(batch_size, n1, 2 * n2) T_01[:, :, n2:] *= S0_11_mult_subdiag[:, np.newaxis] T_10 = np.concatenate((S_10[:, 1::2], S0_10_mult_subdiag * S_11[1::2][:, np.newaxis]), axis=-1) T_11 = S0_11_mult_subdiag * S_11[1::2] return result class KrylovMultiply(): """Multiply Krylov(A, v) @ w when A is zero except on the subdiagonal. """ def __init__(self, n, batch_size=1, rank=1): m = int(np.log2(n)) assert n == 1 << m, 'n must be a power of 2' self.n = n self.m = m self.batch_size = batch_size self.rank = rank self.plan_ffts_forward_pass_u_zero() self.plan_ffts_backward_pass() def plan_ffts_forward_pass_u_zero(self): n, m, batch_size, rank = self.n, self.m, self.batch_size, self.rank self.S_storage = [np.empty((rank, n))] * m self.S_f_storage = [np.empty((rank, 1 << d, (1 << (m - d - 1)) + 1), dtype='complex128') for d in range(m)] self.ffts_forward_pass = [] for d, (S, S_f) in enumerate(zip(self.S_storage, self.S_f_storage)): S = S.reshape((rank, 1 << d, 1 << (m - d))) fft_time2freq = pyfftw.FFTW(S, S_f, direction='FFTW_FORWARD', flags=['FFTW_MEASURE', 'FFTW_DESTROY_INPUT'], threads=1) self.ffts_forward_pass.append(fft_time2freq) def plan_ffts_backward_pass(self): n, m, batch_size, rank = self.n, self.m, self.batch_size, self.rank self.dT_storage = [np.empty((batch_size, rank, 1 << (m - d))) for d in range(m)] self.dT_f_storage = [np.empty((batch_size, rank, (1 << (m - d - 1)) + 1), dtype='complex128') for d in range(m)] self.dS_f_storage = [np.empty((batch_size, 1 << d, (1 << (m - d - 1)) + 1), dtype='complex128') for d in range(m)] self.dS_storage = [np.empty((batch_size, n))] * m self.ffts_backward_pass = [] for d, (dT, dT_f, dS_f, dS) in enumerate(zip(self.dT_storage, self.dT_f_storage, self.dS_f_storage, self.dS_storage)): dS = dS.reshape((batch_size, 1 << d, 1 << (m - d))) fft_time2freq = pyfftw.FFTW(dT, dT_f, direction='FFTW_FORWARD', flags=['FFTW_MEASURE', 'FFTW_DESTROY_INPUT'], threads=1) fft_freq2time = pyfftw.FFTW(dS_f, dS, direction='FFTW_BACKWARD', flags=['FFTW_MEASURE', 'FFTW_DESTROY_INPUT'], threads=1) self.ffts_backward_pass.append((fft_time2freq, fft_freq2time)) def __call__(self, subdiag, v, w): n, m, batch_size, rank = self.n, self.m, self.batch_size, self.rank # Forward pass. Since K @ w can be computed by autodiffing K^T @ u, we # carry out the forward pass K^T @ u for u = 0 here to save the # intermediate values. This code is exactly the same as the function # @krylov_transpose_multiply, specialized to the case where u = 0. save_for_backward = [None] * m T_10 = v.reshape(rank, n, 1) T_11 = np.ones(n) for d in range(m)[::-1]: n1, n2 = 1 << d, 1 << (m - d - 1) S = self.S_storage[d].reshape((rank, n1, 2 * n2)) S_f = self.S_f_storage[d] fft_time2freq = self.ffts_forward_pass[d] S_10, S_11 = T_10, T_11 S0_10_mult_subdiag = S[:, :, :n2] S0_10_mult_subdiag[:] = S_10[:, ::2] * subdiag[(n2 - 1)::(2 * n2), np.newaxis] S[:, :, n2:] = 0.0 S0_10_mult_subdiag_f = fft_time2freq(S, output_array=S_f) T_10 = np.concatenate((S_10[:, 1::2], S0_10_mult_subdiag * S_11[1::2][:, np.newaxis]), axis=-1) S0_11_mult_subdiag = S_11[::2] * subdiag[(n2 - 1)::(2 * n2)] save_for_backward[d] = S0_10_mult_subdiag_f, S0_11_mult_subdiag T_11 = S0_11_mult_subdiag * S_11[1::2] # Backward pass w, v = w.reshape(batch_size, rank, n), v.reshape((rank, n)) dT_01 = np.zeros((batch_size, 1, n), dtype=w.dtype) for d in range(m): n1, n2 = 1 << d, 1 << (m - d - 1) dT = self.dT_storage[d] dT_f = self.dT_f_storage[d] dS_f = self.dS_f_storage[d] dS = self.dS_storage[d].reshape((batch_size, n1, 2 * n2)) fft_time2freq, fft_freq2time = self.ffts_backward_pass[d] S0_10_mult_subdiag_f, S0_11_mult_subdiag = save_for_backward[d] dS_01 = np.empty((batch_size, 2 * n1, n2), dtype=w.dtype) dS_01[:, ::2] = dT_01[:, :, :n2] dT_00_sum = dT dT_00_sum[:, :, :2*n2 - 1] = w[:, :, 1:2*n2] dT_00_sum[:, :, -1] = 0.0 dT_00_sum_f = fft_time2freq(dT, output_array=dT_f) dS1_01_f = dS_f # dS1_01_f[:] = (np.conjugate(S0_10_mult_subdiag_f, out=S0_10_mult_subdiag_f) * dT_00_sum_f[:, :, np.newaxis]).sum(axis=1) np.einsum("brm,rnm->bnm", dT_00_sum_f, np.conjugate(S0_10_mult_subdiag_f, out=S0_10_mult_subdiag_f), out=dS1_01_f) dS1_01 = fft_freq2time(dS_f, output_array=dS) dS_01[:, 1::2] = dT_01[:, :, n2:] * S0_11_mult_subdiag[:, np.newaxis] + dS1_01[:, :, :n2] dT_01 = dS_01 # du = ((dT_00_sum[:, :, np.newaxis] * v[np.newaxis, :, :, np.newaxis]).sum(dim=1) + dT_01).squeeze(axis=-1) du = w[:, :, 0] @ v + dT_01.squeeze(axis=-1) return du def test_krylov_transpose_multiply(): m = 14 n = 1<<m batch_size = 3 rank = 2 subdiag = np.random.random(n-1) A = np.diag(subdiag, -1) u = np.random.random((batch_size, n)) v = np.random.random((rank, n)) # k1 = krylov_mult_slow(A,v,u,n) # k1_allocated = krylov_mult_slow_allocated(A,v,u,n) # k11 = krylov_mult_slow_faster(A,v,u,n) # k2 = krylov_mult(A,v,u,n) resolvent_bilinear_flattened = create(n, m, lib='fftw') krylov_transpose_multiply = KrylovTransposeMultiply(n, batch_size, rank) k3 = resolvent_bilinear_flattened(A, v[0], u[0], n, m) k3_nobf = krylov_transpose_multiply(subdiag, v, u) assert np.allclose(k3, k3_nobf[0, 0]) def test_krylov_multiply(): m = 14 n = 1<<m batch_size = 3 rank = 2 subdiag = np.random.random(n-1) A = np.diag(subdiag, -1) w = np.random.random((batch_size, rank, n)) v = np.random.random((rank, n)) krylov_multiply = KrylovMultiply(n, batch_size, rank) result1 = krylov_multiply(subdiag, v, w) Ks = [krylov_construct(A, v[i], n) for i in range(rank)] result2 = np.stack([w[:, i] @ Ks[i] for i in range(rank)]).swapaxes(0, 1).sum(axis=1) assert np.allclose(result1, result2) def main(): test_krylov_transpose_multiply() test_krylov_multiply() if __name__ == '__main__': main()
structured-nets-master
pytorch/structure/scratch/krylovfast.py
import os os.environ['MKL_NUM_THREADS'] = '1' os.environ['OMP_NUM_THREADS'] = '1' os.environ['NUMEXPR_NUM_THREADS'] = '1' os.environ['VECLIB_MAXIMUM_THREADS'] = '1' import numpy as np from krylovfast import * from krylovslow import * np.random.seed(0) # n, m = 2, 1 # A = np.array([[0,0],[1,0]]) # u = np.array([1,1]) # v = np.array([1,1]) # print(resolvent_bilinear(A,v,u,n)) # ans: [2 1], [1, 1], [1 1], [0 1] # n, m = 4, 2 # A = np.diag(np.arange(1,4),-1) # u = np.ones(4) # v = np.ones(4) # print(resolvent_bilinear(A,v,u,4)) # print(krylov_mult(A,v,u,4)) # print(krylov_mult_slow(A,v,u,4)) # print(krylov_mult_slow_faster(A,v,u,4)) # print(resolvent_bilinear_flattened(A,v,u,4,2)) # ans: [4 6 8 6], [1 1 2 6], [1 3 6 6], [0 0 0 6] m = 14 n = 1<<m subdiag = np.random.random(n-1) A = np.diag(subdiag, -1) u = np.random.random(n) v = np.random.random(n) # k1 = krylov_mult_slow(A,v,u,n) # k1_allocated = krylov_mult_slow_allocated(A,v,u,n) # k11 = krylov_mult_slow_faster(A,v,u,n) # k2 = krylov_mult(A,v,u,n) resolvent_bilinear_flattened = create(n, m, lib='fftw') krylov_transpose_multiply = KrylovTransposeMultiply(n) k3 = resolvent_bilinear_flattened(A, v, u, n, m) k3_nobf = krylov_transpose_multiply(subdiag, v, u) np.allclose(k3, k3_nobf) [resolvent_bilinear_flattened(A, v, u, n, m) for i in range(100)] # print(np.linalg.norm(k1-k11)) # print(np.linalg.norm(k1-k2)) # print(np.linalg.norm(k1-k3)) # print(np.linalg.norm(k1-k3b))
structured-nets-master
pytorch/structure/scratch/tests_snippets.py
import numpy as np import itertools p=2 d=3 N=p << (d-1) f = np.arange(N) print(np.fft.fft(f)) def init(f): x = np.zeros(d*[p], dtype=np.complex_) idx = [list(range(p)) for i in range(d)] powers = np.array([p**i for i in range(d)]) for t in itertools.product(*idx): x[t] = f[np.sum(powers*np.array(t))] return x x = init(f) print(x.shape) def unshape(x): f = np.zeros(p**d, dtype=np.complex_) idx = [list(range(p)) for i in range(d)] powers = np.array([p**i for i in range(d)]) for t in itertools.product(*idx): f[np.sum(powers*np.array(t))] = x[t] return f # x = f.reshape([[p]*d]).astype(np.complex_) # At pass r the layout is # # x_0,..., x_{d-r-1}, y_{r-1}, ..., y_{0} # So at # r = 0 => x_0,..., x_{d-1} # r = 1 => x_0,..., x_{d-2}, y_0 # r = 2 => x_0,..., x_{d-3}, y_0, y_1 # r = d => y_0,..., y_{d-1} # def pass_it_(x,x_new,r, verbose=False): # The index ranges # (x_0,...,x_{d-r-2},x_{d-r-1}, y_{0}, .., y_{r-1}, y_r) idx = [list(range(p)) for i in range(d+1)] omega = -2*np.complex(0,1)*np.pi/(p**d) powers = np.array([p**i for i in range(r+1)]) # powers = np.array([p**i for i in range(r,-1,-1)]) for t in itertools.product(*idx): # The last index are the ys x_base = t[0:d-r-1] x_last = t[d-r-1] # this is xm y_base = t[d-r:d] y_last = t[d] # marginalize out over xm, but keep the ys in the same order? new_t = x_base + y_base + (y_last,) old_t = x_base + (x_last,) + y_base y_sum = np.sum(np.array(t[d-r:d+1]) * powers) * p**(d-r-1) if verbose: print(f"x={x_base},{x_last} -> y={y_base},{y_last} :: new={new_t} += old={old_t} y_sum={y_sum} {y_sum*x_last}") q = omega*x_last*y_sum x_new[new_t] += x[old_t]*np.exp(q) if verbose: print("**") return x_new def pass_it(x,r,verbose=False): x_new = np.zeros(d*[p], dtype=np.complex_) return pass_it_(x,x_new,r,verbose=verbose) def fft_pass(x): _x = np.copy(x) x_new = np.zeros(d*[p], dtype=np.complex_) for r in range(d): pass_it_(_x,x_new,r) (_x,x_new) = (x_new,_x) x_new[:] = 0 return _x def slow_fft(x): y = np.zeros(x.shape, dtype=np.complex_) idx = [list(range(p)) for i in range(d)] omega = -2*np.complex(0,1)*np.pi/(p**d) powers = np.array([p**i for i in range(d)]) # powers = np.array([p**i for i in range(d-1,-1,-1)]) for t in itertools.product(*idx): y_t = np.sum(powers*np.array(t)) for u in itertools.product(*idx): x_t = np.sum(powers*np.array(u)) y[t] += x[u]*np.exp(omega*y_t*x_t) return y
structured-nets-master
pytorch/structure/scratch/fft.py
import numpy as np import scipy.fftpack as fft from scipy import signal # should create a poly class later p1 = np.full(5, 2) p2 = np.full(10, 3) def poly_add(p1, p2, n): """p1,p2 of degree exactly n-1""" # TODO: change these to equals assert p1.shape == (n,) assert p2.shape == (n,) # n = np.maximum(p1.shape[0], p2.shape[0]) # q1 = np.pad(p1, (0,n-p1.shape[0]), 'constant') # q2 = np.pad(p2, (0,n-p2.shape[0]), 'constant') # print(q1) # print(q2) return p1+p2 def poly_mult_slow(p1, p2): d1 = p1.shape[0] - 1 d2 = p2.shape[0] - 1 n = d1 + d2 prod = np.zeros(n+1) for i in range(d1+1): for j in range(d2+1): prod[i+j] += p1[i]*p2[j] return prod def poly_mult_fft(p1, p2): d1 = p1.shape[0] - 1 d2 = p2.shape[0] - 1 # if d1 < 0: # p1 = np.array([0]) # d1 = 0 # if d2 < 0: # p2 = np.array([0]) # d2 = 0 # n = d1 + d2 # numpy fft # f1 = np.fft.rfft(p1, n+1) # f2 = np.fft.rfft(p2, n+1) # prod = np.fft.irfft(f1*f2, n+1) # scipy fft (currently has bug because it stores output of rfft differently) f1 = fft.rfft(p1, n+1) f2 = fft.rfft(p2, n+1) prod = fft.irfft(f1*f2, n+1) # prod = signal.convolve(p1, p2, method='fft') return prod # define an alias for easy testing def poly_mult(p1, p2): # return poly_mult_slow(p1, p2) d1 = p1.shape[0] - 1 d2 = p2.shape[0] - 1 n = d1 + d2 # q1 = np.pad(p1, (0,d2), 'constant') # q2 = np.pad(p2, (0,d1), 'constant') # assert q1.shape[0] == n+1 # assert q2.shape[0] == n+1 if n >= 128: prod = signal.fftconvolve(p1, p2, mode='full') else: prod = np.convolve(p1, p2) # prod = np.convolve(p1, p2) # if prod.shape[0] != n+1: # print(d1, d2, p1.shape, p2.shape, prod.shape) # assert false # assert prod.shape[0] == n+1 return prod def poly_inv(p, n): """ invert p mod x^n """ assert n >= 1 if n == 1: return np.array([1 / p[0]]) # represent p = p_low + x^k p_high, and its inverse q similarly d = p.shape[0] k = (n+1)//2 # invert the lower order terms q_low = poly_inv(p[:min(d,k)], k) # print(q_low) # since 2k >= n, p q_l + x^k p_l q_h = 1 (mod x^n) # so p_l q_h = (1 - p q_l)/x^k (mod x^{n-k}) r = poly_mult(p, q_low) r[0] -= 1 # assert np.all(r[:min(r.shape[0],k)] == 0) # but we know p_l^{-1} mod x^{n-k} since we already know it mod x^k q_high = poly_mult(-r[k:min(r.shape[0],n)], q_low) # q_low = np.pad(q_low, (0,k-q_low.shape[0]), 'constant') q = np.concatenate((q_low, q_high))[:n] # q = np.trim_zeros(q, 'b') return q def resolvent_bilinear(A, v, u, n): """ Compute [u e_n]^T * (I-Ax)^{-1} * [v e_1] (2x2 matrix of rational fractions) output: array of shape (2, 2, n), array shape (n) (numerator, denominator) invariants: numerator has degree n-1 denominator degree n """ if n == 1: # don't know how write outer product in numpy return (np.array([[[ u[0]*v[0] ], [ u[0]*1 ]], [[ 1*v[0] ], [ 1*1 ]]]), np.array([1,-A[0,0]])) k = n//2 # Let M00 = M[0:k, 0:k], M10 = M[k:n, 0:k], M11 = M[k:n,k:n] # i.e. M = [M00 0 ; M10 M11] (where M = I-Ax) # then M^{-1} = [M00^{-1} 0 ; -M11^{-1} M_10^{-1} M_00^{-1}] S0, d0 = resolvent_bilinear(A[:k,:k], v[:k], u[:k], k) S1, d1 = resolvent_bilinear(A[k:,k:], v[k:], u[k:], n-k) # the part corresponding to bottom left corner is # -A[k, k-1]x * u_1^T M_11^{-1} e_1 * e_k^T M_00^{-1} v_0 # or S1[:,1] * S0[1,:] L = np.array([[poly_mult(S1[0,1], S0[1,0]), poly_mult(S1[0,1], S0[1,1])], [poly_mult( S1[1,1], S0[1,0] ), poly_mult( S1[1,1], S0[1,1] )]]) # print(L) L = A[k,k-1] * np.pad(L, ((0,0),(0,0),(1,0)), 'constant') # multiply by X # TODO: above padding should be able to be optimized away; when we allocate memory properly can store the coefficients directly in the right place # print(L) # clear denominators # S0 = np.array([[ poly_mult(s, d1) for s in r ] for r in S0]) # S1 = np.array([[ poly_mult(s, d0) for s in r ] for r in S1]) # print(S0) # really need to define poly matrix operations # S = np.array([[poly_add(S0[i,j],S1[i,j]) for j in range(2)] for i in range(2)]) # S = np.array([[poly_add(S[i,j],L[i,j]) for j in range(2)] for i in range(2)]) # L[0,0] = poly_add(L[0,0], poly_mult(S0[0,0], d1), n) # L[0,1] = poly_add(L[0,1], poly_mult(S0[0,1], d1), n) # L[0,0] = poly_add(L[0,0], poly_mult(S1[0,0], d0), n) # L[1,0] = poly_add(L[1,0], poly_mult(S1[1,0], d0), n) L[0,0] += poly_mult(S0[0,0], d1) + poly_mult(S1[0,0], d0) L[0,1] += poly_mult(S0[0,1], d1) L[1,0] += poly_mult(S1[1,0], d0) return (L, poly_mult(d0,d1)) def krylov_mult(A, v, u, m): """ Compute the matrix-vector product Kry(A, v)^T * u A: R^{n \times n}, lower triangular and 2-banded u: R^n v: R^n m: output dimension (i.e. width of K) """ n = v.shape[0] assert A.shape == (n,n) R, d = resolvent_bilinear(A,v,u,n) ans = poly_mult(R[0,0], poly_inv(d, m)) return ans[:m] def Amult(d, subd, v): ans = d*v ans[1:] += subd*v[:-1] return ans def krylov_mult_slow(A, v, u, m): n = v.shape[0] assert A.shape == (n,n) cols = [v] d = np.diagonal(A, 0) subd = np.diagonal(A, -1) for i in range(1,m): cols.append(Amult(d, subd, cols[-1])) K = np.stack(cols, axis=1) return K.T @ u def krylov_mult_slow_allocated(A, v, u, m): n = v.shape[0] assert A.shape == (n,n) d = np.diagonal(A, 0) subd = np.diagonal(A, -1) # Allocate memory at once to K K_T = np.empty((m, n)) K_T[0] = v for i in range(1,m): K_T[i] = Amult(d, subd, K_T[i-1]) return K_T @ u def krylov_construct(A, v, m): n = v.shape[0] assert A.shape == (n,n) d = np.diagonal(A, 0) subd = np.diagonal(A, -1) K = np.zeros(shape=(m,n)) K[0,:] = v for i in range(1,m): K[i,1:] = subd*K[i-1,:-1] return K def krylov_mult_slow_faster(A, v, u, m): K = krylov_construct(A, v, m) return K @ u
structured-nets-master
pytorch/structure/scratch/krylovslow.py
import torch.cuda from setuptools import setup from torch.utils.cpp_extension import CppExtension, CUDAExtension, BuildExtension from torch.utils.cpp_extension import CUDA_HOME ext_modules = [] if torch.cuda.is_available() and CUDA_HOME is not None: extension = CUDAExtension( 'diag_mult_cuda', [ 'diag_mult_cuda.cpp', 'diag_mult_cuda_kernel.cu' ], extra_compile_args={'cxx': ['-g'], 'nvcc': ['-O2']}) ext_modules.append(extension) setup( name='diag_mult_cuda', ext_modules=ext_modules, cmdclass={'build_ext': BuildExtension})
structured-nets-master
pytorch/structure/diag_mult_cuda/setup.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from setuptools import setup with open("README.md") as f: readme = f.read() setup( name="BLINK", version="0.1.0", description="BLINK: Better entity LINKing", url="", # TODO classifiers=[ "Intended Audience :: Science/Research", "License :: OSI Approved :: MIT License", "Programming Language :: Python :: 3.6", "Topic :: Scientific/Engineering :: Artificial Intelligence", ], long_description=readme, long_description_content_type="text/markdown", setup_requires=["setuptools>=18.0",], install_requires=[ "torch>=1.2.0", "pysolr>=3.8.1", "emoji>=0.5.3", "regex>=2019.8.19", "matplotlib>=3.1.0", "tqdm>=4.32.1", "nltk>=3.4.4", "numpy>=1.17.2", "segtok>=1.5.7", "flair>=0.4.3", "pytorch-transformers>=1.2.0", "colorama>=0.4.3", "termcolor>=1.1.0", "faiss-cpu>=1.6.1", ], )
BLINK-main
setup.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import re import os import pysolr import sys import blink.candidate_retrieval.utils as utils def get_model(params): return BM45_Candidate_Generator(params) class Candidate_Generator: def __init__(self, parameters=None): pass def get_candidates(self, mention_data): """Given the mentions from the named entity recognition model, generates candidates for each mention and adds them as an additional field to the mention dictionary""" pass class BM45_Candidate_Generator(Candidate_Generator): ESCAPE_CHARS_RE = re.compile(r'(?<!\\)(?P<char>[&|+\-!(){}[\]\/^"~*?:])') def __init__(self, params): self.solr_address = params["solr_address"] self.raw_solr_fields = params["raw_solr_fields"] self.solr = pysolr.Solr(self.solr_address, always_commit=True, timeout=100) self.rows = params["rows"] self.query = params["query"] self.keys = [k.strip() for k in params["keys"].split(",")] self.c = 0 self.query_arguments = { "fl": "* score", "rows": self.rows, "defType": "edismax", } if params["boosting"] is not None: self.query_arguments["bf"] = params["boosting"] def _filter_result(self, cand, detailed=True): wikidata_id = cand.get("wikidata_id", None) res = { "wikidata_id": wikidata_id, "wikipedia_id": cand["id"], "wikipedia_title": cand["title"], } if detailed: res["aliases"] = cand.get("aliases", None) sents = [] for k in range(0, 10): key = "sent_desc_{}".format(k + 1) sents.append(cand.get(key, "")) res["sentences"] = sents return res def get_candidates(self, mention_data): solr = self.solr # Build query keys = self.keys query = self.query if not self.raw_solr_fields: query = query.format( *[ BM45_Candidate_Generator.solr_escape(mention_data[key]) if key in mention_data else utils.get_sent_context(mention_data, key) for key in keys ] ) else: query = query.format( *[ mention_data[key] if key in mention_data else utils.get_sent_context(mention_data, key) for key in keys ] ) try: results = solr.search(query, **self.query_arguments) except Exception as e: exc_type, exc_obj, exc_tb = sys.exc_info() print("\nException:", exc_type, "- line", exc_tb.tb_lineno) print(repr(e)) c = self.c if c < 10: print( "Exception with: \naddress: {} \nquery: {} \nmention_data: {} \n".format( self.solr_address, query, str(mention_data) ) ) self.c = c + 1 return [] # Filter the data in the retrieved objects, while ignoring the ones without a wikidata_id (only a very small fraction in the dataset; they are noise) filtered_results = [ self._filter_result(cand) for cand in results.docs if "wikidata_id" in cand ] return filtered_results @staticmethod def process_mentions_for_candidate_generator(sentences, mentions): for m in mentions: m["context"] = sentences[m["sent_idx"]] return mentions @staticmethod def solr_escape(string): if (string == "OR") or (string == "AND"): return string.lower() interior = r"\s+(OR|AND)\s+" start = r"^(OR|AND) " end = r" (OR|AND)$" string = re.sub(interior, lambda x: x.group(0).lower(), string) string = re.sub(start, lambda x: x.group(0).lower(), string) string = re.sub(end, lambda x: x.group(0).lower(), string) return BM45_Candidate_Generator.ESCAPE_CHARS_RE.sub(r"\\\g<char>", string)
BLINK-main
blink/candidate_generation.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import argparse import prettytable import blink.main_dense as main_dense import blink.candidate_ranking.utils as utils DATASETS = [ { "name": "AIDA-YAGO2 testa", "filename": "data/BLINK_benchmark/AIDA-YAGO2_testa.jsonl", }, { "name": "AIDA-YAGO2 testb", "filename": "data/BLINK_benchmark/AIDA-YAGO2_testb.jsonl", }, {"name": "ACE 2004", "filename": "data/BLINK_benchmark/ace2004_questions.jsonl"}, {"name": "aquaint", "filename": "data/BLINK_benchmark/aquaint_questions.jsonl"}, { "name": "clueweb - WNED-CWEB (CWEB)", "filename": "data/BLINK_benchmark/clueweb_questions.jsonl", }, {"name": "msnbc", "filename": "data/BLINK_benchmark/msnbc_questions.jsonl"}, { "name": "wikipedia - WNED-WIKI (WIKI)", "filename": "data/BLINK_benchmark/wnedwiki_questions.jsonl", }, ] PARAMETERS = { "faiss_index": None, "index_path": None, "test_entities": None, "test_mentions": None, "interactive": False, "biencoder_model": "models/biencoder_wiki_large.bin", "biencoder_config": "models/biencoder_wiki_large.json", "entity_catalogue": "models/entity.jsonl", "entity_encoding": "models/all_entities_large.t7", "crossencoder_model": "models/crossencoder_wiki_large.bin", "crossencoder_config": "models/crossencoder_wiki_large.json", "output_path": "output", "fast": False, "top_k": 100, } args = argparse.Namespace(**PARAMETERS) logger = utils.get_logger(args.output_path) models = main_dense.load_models(args, logger) table = prettytable.PrettyTable( [ "DATASET", "biencoder accuracy", "recall at 100", "crossencoder normalized accuracy", "overall unormalized accuracy", "support", ] ) for dataset in DATASETS: logger.info(dataset["name"]) PARAMETERS["test_mentions"] = dataset["filename"] args = argparse.Namespace(**PARAMETERS) ( biencoder_accuracy, recall_at, crossencoder_normalized_accuracy, overall_unormalized_accuracy, num_datapoints, predictions, scores, ) = main_dense.run(args, logger, *models) table.add_row( [ dataset["name"], round(biencoder_accuracy, 4), round(recall_at, 4), round(crossencoder_normalized_accuracy, 4), round(overall_unormalized_accuracy, 4), num_datapoints, ] ) logger.info("\n{}".format(table))
BLINK-main
blink/run_benchmark.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from blink.candidate_ranking.bert_reranking import BertReranker def get_model(params): return BertReranker(params)
BLINK-main
blink/reranker.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import pickle import emoji def get_model(parameters): return Wikimedia_Data_Fetcher(parameters["path_to_candidate_data_dict"]) class Wikimedia_Data_Fetcher: def __init__(self, path_to_data): self.data = pickle.load(open(path_to_data, "rb")) def get_data_for_entity(self, entity_data): """Given an entity data dictionary that contains some linking data (ex. title or ID), additional information (ex. description, aliases etc.) is added to the given entity dictionary""" data = self.data title = entity_data["wikipedia_title"] if "wikidata_info" in data[title]: if ("aliases" in data[title]["wikidata_info"]) and ( data[title]["wikidata_info"]["aliases"] ) is not None: aliases = [ alias for alias in data[title]["wikidata_info"]["aliases"] if alias not in emoji.UNICODE_EMOJI ] else: aliases = None else: aliases = None entity_data["aliases"] = aliases sents = [] for k in range(0, 10): key = "sent_desc_{}".format(k + 1) sents.append(data[title].get(key, "")) entity_data["sentences"] = sents return entity_data
BLINK-main
blink/candidate_data_fetcher.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import argparse import json import sys from tqdm import tqdm import logging import torch import numpy as np from colorama import init from termcolor import colored import blink.ner as NER from torch.utils.data import DataLoader, SequentialSampler, TensorDataset from blink.biencoder.biencoder import BiEncoderRanker, load_biencoder from blink.crossencoder.crossencoder import CrossEncoderRanker, load_crossencoder from blink.biencoder.data_process import ( process_mention_data, get_candidate_representation, ) import blink.candidate_ranking.utils as utils from blink.crossencoder.train_cross import modify, evaluate from blink.crossencoder.data_process import prepare_crossencoder_data from blink.indexer.faiss_indexer import DenseFlatIndexer, DenseHNSWFlatIndexer HIGHLIGHTS = [ "on_red", "on_green", "on_yellow", "on_blue", "on_magenta", "on_cyan", ] def _print_colorful_text(input_sentence, samples): init() # colorful output msg = "" if samples and (len(samples) > 0): msg += input_sentence[0 : int(samples[0]["start_pos"])] for idx, sample in enumerate(samples): msg += colored( input_sentence[int(sample["start_pos"]) : int(sample["end_pos"])], "grey", HIGHLIGHTS[idx % len(HIGHLIGHTS)], ) if idx < len(samples) - 1: msg += input_sentence[ int(sample["end_pos"]) : int(samples[idx + 1]["start_pos"]) ] else: msg += input_sentence[int(sample["end_pos"]) :] else: msg = input_sentence print("Failed to identify entity from text:") print("\n" + str(msg) + "\n") def _print_colorful_prediction( idx, sample, e_id, e_title, e_text, e_url, show_url=False ): print(colored(sample["mention"], "grey", HIGHLIGHTS[idx % len(HIGHLIGHTS)])) to_print = "id:{}\ntitle:{}\ntext:{}\n".format(e_id, e_title, e_text[:256]) if show_url: to_print += "url:{}\n".format(e_url) print(to_print) def _annotate(ner_model, input_sentences): ner_output_data = ner_model.predict(input_sentences) sentences = ner_output_data["sentences"] mentions = ner_output_data["mentions"] samples = [] for mention in mentions: record = {} record["label"] = "unknown" record["label_id"] = -1 # LOWERCASE EVERYTHING ! record["context_left"] = sentences[mention["sent_idx"]][ : mention["start_pos"] ].lower() record["context_right"] = sentences[mention["sent_idx"]][ mention["end_pos"] : ].lower() record["mention"] = mention["text"].lower() record["start_pos"] = int(mention["start_pos"]) record["end_pos"] = int(mention["end_pos"]) record["sent_idx"] = mention["sent_idx"] samples.append(record) return samples def _load_candidates( entity_catalogue, entity_encoding, faiss_index=None, index_path=None, logger=None ): # only load candidate encoding if not using faiss index if faiss_index is None: candidate_encoding = torch.load(entity_encoding) indexer = None else: if logger: logger.info("Using faiss index to retrieve entities.") candidate_encoding = None assert index_path is not None, "Error! Empty indexer path." if faiss_index == "flat": indexer = DenseFlatIndexer(1) elif faiss_index == "hnsw": indexer = DenseHNSWFlatIndexer(1) else: raise ValueError("Error! Unsupported indexer type! Choose from flat,hnsw.") indexer.deserialize_from(index_path) # load all the 5903527 entities title2id = {} id2title = {} id2text = {} wikipedia_id2local_id = {} local_idx = 0 with open(entity_catalogue, "r") as fin: lines = fin.readlines() for line in lines: entity = json.loads(line) if "idx" in entity: split = entity["idx"].split("curid=") if len(split) > 1: wikipedia_id = int(split[-1].strip()) else: wikipedia_id = entity["idx"].strip() assert wikipedia_id not in wikipedia_id2local_id wikipedia_id2local_id[wikipedia_id] = local_idx title2id[entity["title"]] = local_idx id2title[local_idx] = entity["title"] id2text[local_idx] = entity["text"] local_idx += 1 return ( candidate_encoding, title2id, id2title, id2text, wikipedia_id2local_id, indexer, ) def __map_test_entities(test_entities_path, title2id, logger): # load the 732859 tac_kbp_ref_know_base entities kb2id = {} missing_pages = 0 n = 0 with open(test_entities_path, "r") as fin: lines = fin.readlines() for line in lines: entity = json.loads(line) if entity["title"] not in title2id: missing_pages += 1 else: kb2id[entity["entity_id"]] = title2id[entity["title"]] n += 1 if logger: logger.info("missing {}/{} pages".format(missing_pages, n)) return kb2id def __load_test(test_filename, kb2id, wikipedia_id2local_id, logger): test_samples = [] with open(test_filename, "r") as fin: lines = fin.readlines() for line in lines: record = json.loads(line) record["label"] = str(record["label_id"]) # for tac kbp we should use a separate knowledge source to get the entity id (label_id) if kb2id and len(kb2id) > 0: if record["label"] in kb2id: record["label_id"] = kb2id[record["label"]] else: continue # check that each entity id (label_id) is in the entity collection elif wikipedia_id2local_id and len(wikipedia_id2local_id) > 0: try: key = int(record["label"].strip()) if key in wikipedia_id2local_id: record["label_id"] = wikipedia_id2local_id[key] else: continue except: continue # LOWERCASE EVERYTHING ! record["context_left"] = record["context_left"].lower() record["context_right"] = record["context_right"].lower() record["mention"] = record["mention"].lower() test_samples.append(record) if logger: logger.info("{}/{} samples considered".format(len(test_samples), len(lines))) return test_samples def _get_test_samples( test_filename, test_entities_path, title2id, wikipedia_id2local_id, logger ): kb2id = None if test_entities_path: kb2id = __map_test_entities(test_entities_path, title2id, logger) test_samples = __load_test(test_filename, kb2id, wikipedia_id2local_id, logger) return test_samples def _process_biencoder_dataloader(samples, tokenizer, biencoder_params): _, tensor_data = process_mention_data( samples, tokenizer, biencoder_params["max_context_length"], biencoder_params["max_cand_length"], silent=True, logger=None, debug=biencoder_params["debug"], ) sampler = SequentialSampler(tensor_data) dataloader = DataLoader( tensor_data, sampler=sampler, batch_size=biencoder_params["eval_batch_size"] ) return dataloader def _run_biencoder(biencoder, dataloader, candidate_encoding, top_k=100, indexer=None): biencoder.model.eval() labels = [] nns = [] all_scores = [] for batch in tqdm(dataloader): context_input, _, label_ids = batch with torch.no_grad(): if indexer is not None: context_encoding = biencoder.encode_context(context_input).numpy() context_encoding = np.ascontiguousarray(context_encoding) scores, indicies = indexer.search_knn(context_encoding, top_k) else: scores = biencoder.score_candidate( context_input, None, cand_encs=candidate_encoding # .to(device) ) scores, indicies = scores.topk(top_k) scores = scores.data.numpy() indicies = indicies.data.numpy() labels.extend(label_ids.data.numpy()) nns.extend(indicies) all_scores.extend(scores) return labels, nns, all_scores def _process_crossencoder_dataloader(context_input, label_input, crossencoder_params): tensor_data = TensorDataset(context_input, label_input) sampler = SequentialSampler(tensor_data) dataloader = DataLoader( tensor_data, sampler=sampler, batch_size=crossencoder_params["eval_batch_size"] ) return dataloader def _run_crossencoder(crossencoder, dataloader, logger, context_len, device="cuda"): crossencoder.model.eval() accuracy = 0.0 crossencoder.to(device) res = evaluate(crossencoder, dataloader, device, logger, context_len, zeshel=False, silent=False) accuracy = res["normalized_accuracy"] logits = res["logits"] if accuracy > -1: predictions = np.argsort(logits, axis=1) else: predictions = [] return accuracy, predictions, logits def load_models(args, logger=None): # load biencoder model if logger: logger.info("loading biencoder model") with open(args.biencoder_config) as json_file: biencoder_params = json.load(json_file) biencoder_params["path_to_model"] = args.biencoder_model biencoder = load_biencoder(biencoder_params) crossencoder = None crossencoder_params = None if not args.fast: # load crossencoder model if logger: logger.info("loading crossencoder model") with open(args.crossencoder_config) as json_file: crossencoder_params = json.load(json_file) crossencoder_params["path_to_model"] = args.crossencoder_model crossencoder = load_crossencoder(crossencoder_params) # load candidate entities if logger: logger.info("loading candidate entities") ( candidate_encoding, title2id, id2title, id2text, wikipedia_id2local_id, faiss_indexer, ) = _load_candidates( args.entity_catalogue, args.entity_encoding, faiss_index=getattr(args, 'faiss_index', None), index_path=getattr(args, 'index_path' , None), logger=logger, ) return ( biencoder, biencoder_params, crossencoder, crossencoder_params, candidate_encoding, title2id, id2title, id2text, wikipedia_id2local_id, faiss_indexer, ) def run( args, logger, biencoder, biencoder_params, crossencoder, crossencoder_params, candidate_encoding, title2id, id2title, id2text, wikipedia_id2local_id, faiss_indexer=None, test_data=None, ): if not test_data and not args.test_mentions and not args.interactive: msg = ( "ERROR: either you start BLINK with the " "interactive option (-i) or you pass in input test mentions (--test_mentions)" "and test entitied (--test_entities)" ) raise ValueError(msg) id2url = { v: "https://en.wikipedia.org/wiki?curid=%s" % k for k, v in wikipedia_id2local_id.items() } stopping_condition = False while not stopping_condition: samples = None if args.interactive: logger.info("interactive mode") # biencoder_params["eval_batch_size"] = 1 # Load NER model ner_model = NER.get_model() # Interactive text = input("insert text:") # Identify mentions samples = _annotate(ner_model, [text]) _print_colorful_text(text, samples) else: if logger: logger.info("test dataset mode") if test_data: samples = test_data else: # Load test mentions samples = _get_test_samples( args.test_mentions, args.test_entities, title2id, wikipedia_id2local_id, logger, ) stopping_condition = True # don't look at labels keep_all = ( args.interactive or samples[0]["label"] == "unknown" or samples[0]["label_id"] < 0 ) # prepare the data for biencoder if logger: logger.info("preparing data for biencoder") dataloader = _process_biencoder_dataloader( samples, biencoder.tokenizer, biencoder_params ) # run biencoder if logger: logger.info("run biencoder") top_k = args.top_k labels, nns, scores = _run_biencoder( biencoder, dataloader, candidate_encoding, top_k, faiss_indexer ) if args.interactive: print("\nfast (biencoder) predictions:") _print_colorful_text(text, samples) # print biencoder prediction idx = 0 for entity_list, sample in zip(nns, samples): e_id = entity_list[0] e_title = id2title[e_id] e_text = id2text[e_id] e_url = id2url[e_id] _print_colorful_prediction( idx, sample, e_id, e_title, e_text, e_url, args.show_url ) idx += 1 print() if args.fast: # use only biencoder continue else: biencoder_accuracy = -1 recall_at = -1 if not keep_all: # get recall values top_k = args.top_k x = [] y = [] for i in range(1, top_k): temp_y = 0.0 for label, top in zip(labels, nns): if label in top[:i]: temp_y += 1 if len(labels) > 0: temp_y /= len(labels) x.append(i) y.append(temp_y) # plt.plot(x, y) biencoder_accuracy = y[0] recall_at = y[-1] print("biencoder accuracy: %.4f" % biencoder_accuracy) print("biencoder recall@%d: %.4f" % (top_k, y[-1])) if args.fast: predictions = [] for entity_list in nns: sample_prediction = [] for e_id in entity_list: e_title = id2title[e_id] sample_prediction.append(e_title) predictions.append(sample_prediction) # use only biencoder return ( biencoder_accuracy, recall_at, -1, -1, len(samples), predictions, scores, ) # prepare crossencoder data context_input, candidate_input, label_input = prepare_crossencoder_data( crossencoder.tokenizer, samples, labels, nns, id2title, id2text, keep_all, ) context_input = modify( context_input, candidate_input, crossencoder_params["max_seq_length"] ) dataloader = _process_crossencoder_dataloader( context_input, label_input, crossencoder_params ) # run crossencoder and get accuracy accuracy, index_array, unsorted_scores = _run_crossencoder( crossencoder, dataloader, logger, context_len=biencoder_params["max_context_length"], ) if args.interactive: print("\naccurate (crossencoder) predictions:") _print_colorful_text(text, samples) # print crossencoder prediction idx = 0 for entity_list, index_list, sample in zip(nns, index_array, samples): e_id = entity_list[index_list[-1]] e_title = id2title[e_id] e_text = id2text[e_id] e_url = id2url[e_id] _print_colorful_prediction( idx, sample, e_id, e_title, e_text, e_url, args.show_url ) idx += 1 print() else: scores = [] predictions = [] for entity_list, index_list, scores_list in zip( nns, index_array, unsorted_scores ): index_list = index_list.tolist() # descending order index_list.reverse() sample_prediction = [] sample_scores = [] for index in index_list: e_id = entity_list[index] e_title = id2title[e_id] sample_prediction.append(e_title) sample_scores.append(scores_list[index]) predictions.append(sample_prediction) scores.append(sample_scores) crossencoder_normalized_accuracy = -1 overall_unormalized_accuracy = -1 if not keep_all: crossencoder_normalized_accuracy = accuracy print( "crossencoder normalized accuracy: %.4f" % crossencoder_normalized_accuracy ) if len(samples) > 0: overall_unormalized_accuracy = ( crossencoder_normalized_accuracy * len(label_input) / len(samples) ) print( "overall unnormalized accuracy: %.4f" % overall_unormalized_accuracy ) return ( biencoder_accuracy, recall_at, crossencoder_normalized_accuracy, overall_unormalized_accuracy, len(samples), predictions, scores, ) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--interactive", "-i", action="store_true", help="Interactive mode." ) # test_data parser.add_argument( "--test_mentions", dest="test_mentions", type=str, help="Test Dataset." ) parser.add_argument( "--test_entities", dest="test_entities", type=str, help="Test Entities." ) # biencoder parser.add_argument( "--biencoder_model", dest="biencoder_model", type=str, default="models/biencoder_wiki_large.bin", help="Path to the biencoder model.", ) parser.add_argument( "--biencoder_config", dest="biencoder_config", type=str, default="models/biencoder_wiki_large.json", help="Path to the biencoder configuration.", ) parser.add_argument( "--entity_catalogue", dest="entity_catalogue", type=str, # default="models/tac_entity.jsonl", # TAC-KBP default="models/entity.jsonl", # ALL WIKIPEDIA! help="Path to the entity catalogue.", ) parser.add_argument( "--entity_encoding", dest="entity_encoding", type=str, # default="models/tac_candidate_encode_large.t7", # TAC-KBP default="models/all_entities_large.t7", # ALL WIKIPEDIA! help="Path to the entity catalogue.", ) # crossencoder parser.add_argument( "--crossencoder_model", dest="crossencoder_model", type=str, default="models/crossencoder_wiki_large.bin", help="Path to the crossencoder model.", ) parser.add_argument( "--crossencoder_config", dest="crossencoder_config", type=str, default="models/crossencoder_wiki_large.json", help="Path to the crossencoder configuration.", ) parser.add_argument( "--top_k", dest="top_k", type=int, default=10, help="Number of candidates retrieved by biencoder.", ) # output folder parser.add_argument( "--output_path", dest="output_path", type=str, default="output", help="Path to the output.", ) parser.add_argument( "--fast", dest="fast", action="store_true", help="only biencoder mode" ) parser.add_argument( "--show_url", dest="show_url", action="store_true", help="whether to show entity url in interactive mode", ) parser.add_argument( "--faiss_index", type=str, default=None, help="whether to use faiss index", ) parser.add_argument( "--index_path", type=str, default=None, help="path to load indexer", ) args = parser.parse_args() logger = utils.get_logger(args.output_path) models = load_models(args, logger) run(args, logger, *models)
BLINK-main
blink/main_dense.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. #
BLINK-main
blink/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import argparse import logging import numpy import os import time import torch from blink.indexer.faiss_indexer import DenseFlatIndexer, DenseHNSWFlatIndexer import blink.candidate_ranking.utils as utils logger = utils.get_logger() def main(params): output_path = params["output_path"] output_dir, _ = os.path.split(output_path) if not os.path.exists(output_dir): os.makedirs(output_dir) logger = utils.get_logger(output_dir) logger.info("Loading candidate encoding from path: %s" % params["candidate_encoding"]) candidate_encoding = torch.load(params["candidate_encoding"]) vector_size = candidate_encoding.size(1) index_buffer = params["index_buffer"] if params["hnsw"]: logger.info("Using HNSW index in FAISS") index = DenseHNSWFlatIndexer(vector_size, index_buffer) else: logger.info("Using Flat index in FAISS") index = DenseFlatIndexer(vector_size, index_buffer) logger.info("Building index.") index.index_data(candidate_encoding.numpy()) logger.info("Done indexing data.") if params.get("save_index", None): index.serialize(output_path) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( "--output_path", required=True, type=str, help="output file path", ) parser.add_argument( "--candidate_encoding", default="models/all_entities_large.t7", type=str, help="file path for candidte encoding.", ) parser.add_argument( "--hnsw", action='store_true', help='If enabled, use inference time efficient HNSW index', ) parser.add_argument( "--save_index", action='store_true', help='If enabled, save index', ) parser.add_argument( '--index_buffer', type=int, default=50000, help="Temporal memory data buffer size (in samples) for indexer", ) params = parser.parse_args() params = params.__dict__ main(params)
BLINK-main
blink/build_faiss_index.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from flair.models import SequenceTagger from flair.data import Sentence def get_model(parameters=None): return Flair(parameters) class NER_model: def __init__(self, parameters=None): pass def predict(self, sents): """Sents: List of plain text consequtive sentences. Returns a dictionary consisting of a list of sentences and a list of mentions, where for each mention AT LEAST (it may give additional information) the following information is given: sent_idx - the index of the sentence that contains the mention text - the textual span that we hypothesise that represents an entity start_pos - the character idx at which the textual mention starts end_pos - the character idx at which the mention ends""" pass class Flair(NER_model): def __init__(self, parameters=None): self.model = SequenceTagger.load("ner") def predict(self, sentences): mentions = [] for sent_idx, sent in enumerate(sentences): sent = Sentence(sent, use_tokenizer=True) self.model.predict(sent) sent_mentions = sent.to_dict(tag_type="ner")["entities"] for mention in sent_mentions: mention["sent_idx"] = sent_idx mentions.extend(sent_mentions) return {"sentences": sentences, "mentions": mentions}
BLINK-main
blink/ner.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import io import json import os import pickle from segtok.segmenter import split_multi ##### Reading helpers ##### def read_sentences_from_file(path_to_file, one_sentence_per_line=True): lines = [] with io.open(path_to_file, mode="r", encoding="utf-8") as file: for line in file: line = line.strip() if line != "": lines.append(line.strip()) if one_sentence_per_line: sentences = lines else: text = " ".join(lines) sentences = list(split_multi(text)) sentences = [sentence for sentence in sentences if sentence != ""] return sentences ##### Printing / writing helpers ##### def get_candidate_summary(candidate): wikipedia_id = candidate["wikipedia_id"] wikidata_id = candidate["wikidata_id"] wikipedia_title = candidate["wikipedia_title"] return "{}, {}, {}".format(wikipedia_id, wikidata_id, wikipedia_title) def present_sentence_mentions(sentence, mentions, output_file): if output_file != None: f = io.open(output_file, mode="a", encoding="utf-8") output = lambda s: f.write("{}\n".format(s)) else: output = lambda s: print(s) output("Sentence: {}".format(sentence)) mention_entity_pairs = [] for mention in mentions: candidates = mention["candidates"] # prediction = mention.get('predicted_candidate_idx', 0) prediction = mention["predicted_candidate_idx"] if prediction < len(candidates): # print(type(mention['prob_assigned_to_candidate'])) # print(mention['prob_assigned_to_candidate']) mention_rep = "{} ({}, {}) - {} (conf. {:.5f})".format( mention["text"], mention["start_pos"], mention["end_pos"], get_candidate_summary(candidates[prediction]), mention["prob_assigned_to_candidate"], ) else: mention_rep = "{} ({}, {}) - {}".format( mention["text"], mention["start_pos"], mention["end_pos"], "No candidate selected", ) mention_entity_pairs.append(mention_rep) if len(mention_entity_pairs) != 0: output("Mention-Entity pairs: \n{}".format("\n".join(mention_entity_pairs))) else: output("No detected mentions") output("") def sentence_mentions_pairs(sentences, mentions): mentions_per_sent = {} for m in mentions: sent_idx = int(m["sent_idx"]) curr_ments = mentions_per_sent.get(sent_idx, []) curr_ments.append(m) mentions_per_sent[sent_idx] = curr_ments pairs = [] for idx, sent in enumerate(sentences): pairs.append((sent, mentions_per_sent.get(idx, []))) return pairs def present_annotated_sentences(sentences, mentions, output_file=None): pairs = sentence_mentions_pairs(sentences, mentions) for sent, ments in pairs: present_sentence_mentions(sent, ments, output_file) def write_dicts_as_json_per_line(list_of_dicts, txt_file_path): with io.open(txt_file_path, mode="w", encoding="utf-8") as file: for idx, mention in enumerate(list_of_dicts): json_string = json.dumps(mention) file.write(json_string) if idx != (len(list_of_dicts) - 1): file.write("\n") def get_mentions_txt_file_path(output_folder_path): os.makedirs(output_folder_path, exist_ok=True) file_name = "mentions.jsonl" path_to_file = os.path.join(output_folder_path, file_name) return path_to_file def get_sentences_txt_file_path(output_folder_path): os.makedirs(output_folder_path, exist_ok=True) file_name = "sentences.jsonl" path_to_file = os.path.join(output_folder_path, file_name) return path_to_file def get_end2end_pickle_output_file_path(output_folder_path): os.makedirs(output_folder_path, exist_ok=True) file_name = "mentions_and_sentences.pickle" path_to_file = os.path.join(output_folder_path, file_name) return path_to_file def write_end2end_pickle_output(sentences, mentions, output_file_id): obj = {"sentences": sentences, "mentions": mentions} with open(get_end2end_pickle_output_file_path(output_file_id), "wb") as file: pickle.dump(obj, file) def get_end2end_pretty_output_file_path(output_folder_path): os.makedirs(output_folder_path, exist_ok=True) file_name = "pretty.txt" path_to_file = os.path.join(output_folder_path, file_name) return path_to_file
BLINK-main
blink/utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import blink.utils as utils import blink.ner as NER import blink.candidate_generation as CG import blink.candidate_data_fetcher as CDF import blink.reranker as R import argparse import shutil def main(parameters): print("Parameters:", parameters) # Read data sentences = utils.read_sentences_from_file( parameters["path_to_input_file"], one_sentence_per_line=parameters["one_sentence_per_line"], ) # Identify mentions ner_model = NER.get_model(parameters) ner_output_data = ner_model.predict(sentences) sentences = ner_output_data["sentences"] mentions = ner_output_data["mentions"] output_folder_path = parameters["output_folder_path"] if ( (output_folder_path is not None) and os.path.exists(output_folder_path) and os.listdir(output_folder_path) ): print( "The given output directory ({}) already exists and is not empty.".format( output_folder_path ) ) answer = input("Would you like to empty the existing directory? [Y/N]\n") if answer.strip() == "Y": print("Deleting {}...".format(output_folder_path)) shutil.rmtree(output_folder_path) else: raise ValueError( "Output directory ({}) already exists and is not empty.".format( output_folder_path ) ) if output_folder_path is not None: utils.write_dicts_as_json_per_line( sentences, utils.get_sentences_txt_file_path(output_folder_path) ) utils.write_dicts_as_json_per_line( mentions, utils.get_mentions_txt_file_path(output_folder_path) ) # Generate candidates and get the data that describes the candidates candidate_generator = CG.get_model(parameters) candidate_generator.process_mentions_for_candidate_generator( sentences=sentences, mentions=mentions ) for mention in mentions: mention["candidates"] = candidate_generator.get_candidates(mention) if parameters["consider_additional_datafetcher"]: data_fetcher = CDF.get_model(parameters) for candidate in mention["candidates"]: data_fetcher.get_data_for_entity(candidate) if output_folder_path is not None: utils.write_dicts_as_json_per_line( mentions, utils.get_mentions_txt_file_path(output_folder_path) ) # Reranking reranking_model = R.get_model(parameters) reranking_model.rerank(mentions, sentences) if output_folder_path is not None: utils.write_dicts_as_json_per_line( mentions, utils.get_mentions_txt_file_path(output_folder_path) ) utils.write_end2end_pickle_output(sentences, mentions, output_folder_path) utils.present_annotated_sentences( sentences, mentions, utils.get_end2end_pretty_output_file_path(output_folder_path), ) # Showcase results utils.present_annotated_sentences(sentences, mentions) if __name__ == "__main__": parser = argparse.ArgumentParser() # Input data parser.add_argument( "--path_to_input_file", "--i", dest="path_to_input_file", type=str, required=True, ) parser.add_argument( "--one_sentence_per_line", action="store_true", help="Set if the input file has one sentence per line", ) # Candidate generation parser.add_argument( "--solr_address", default="http://localhost:8983/solr/wikipedia", type=str, help="The address to the solr index.", ) parser.add_argument( "--query", type=str, default='title:( {} ) OR aliases:" {} " OR sent_desc_1:( {} )^0.5', help="The query following the argument template of str.format", ) parser.add_argument( "--keys", type=str, default="text,text,context", help="The comma separated list of keys to be feeded to str.format with the query as the formating string.", ) parser.add_argument( "--boosting", default="log(sum(num_incoming_links,1))", type=str, help="The address to the solr index.", ) parser.add_argument( "--raw_solr_fields", action="store_true", help="Whether to escape the special characters in the solr queries.", ) # Candidate desciptions and additional data parser.add_argument( "--consider_additional_datafetcher", action="store_true", help="Whether to include some additional data to the candidates using a datafetcher.", ) parser.add_argument( "--path_to_candidate_data_dict", default="data/KB_data/title2enriched_parsed_obj_plus.p", type=str, help="The path to the data used by the data fetcher (the default path points to the wikipedia data).", ) # Reranking parser.add_argument( "--path_to_model", "--m", dest="path_to_model", type=str, required=True, help="The full path to the model.", ) parser.add_argument( "--max_seq_length", default=512, type=int, help="The maximum total input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, and sequences shorter \n" "than this will be padded.", ) parser.add_argument( "--evaluation_batch_size", default=1, type=int, help="Total batch size for evaluation.", ) parser.add_argument( "--top_k", type=int, default=80, help="The number of candidates retrieved by the candiadate generator and considered by the reranker", ) parser.add_argument( "--no_cuda", action="store_true", help="Whether to use CUDA when available" ) parser.add_argument( "--lowercase_flag", action="store_true", help="Whether to lower case the input text. True for uncased models, False for cased models.", ) parser.add_argument( "--context_key", default="tagged_context", type=str, help="The field that contains the mention context.", ) parser.add_argument( "--dataparallel_bert", action="store_true", help="Whether to distributed the candidate generation process.", ) parser.add_argument( "--silent", action="store_true", help="Whether to print progress bars." ) # Output parser.add_argument( "--output_folder_path", "--o", dest="output_folder_path", default=None, type=str, help="A path to the folder where the mentions and sentences are to be dumped. If it is not given, the results would not be saved.", ) args = parser.parse_args() args.rows = args.top_k parameters = args.__dict__ main(parameters)
BLINK-main
blink/main_solr.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from multiprocessing.pool import ThreadPool from candidate_generators import ( Simple_Candidate_Generator, Pregenerated_Candidates_Data_Fetcher, ) import multiprocessing import utils import time import argparse import pickle import os from evaluator import Evaluator from tqdm import tqdm import pysolr from tqdm import tqdm def run_thread(arguments): mentions = arguments["data"] candidate_generator = arguments["candidate_generator"] args = arguments["args"] if args.keep_pregenerated_candidates: data_fetcher = arguments["pregenereted_cands_data_fetcher"] if arguments["id"] == 0: print("Query args: ", candidate_generator.query_arguments) print_query_flag = True for mention in tqdm(mentions): mention["generated_candidates"] = candidate_generator.get_candidates( mention, print_query_flag=print_query_flag ) print_query_flag = False if args.keep_pregenerated_candidates: wikidata_ids = mention["candidates_wikidata_ids"] mention["candidates_data"] = data_fetcher.get_candidates_data( wikidata_ids ) else: for mention in mentions: mention["generated_candidates"] = candidate_generator.get_candidates( mention ) if args.keep_pregenerated_candidates: wikidata_ids = mention["candidates_wikidata_ids"] mention["candidates_data"] = data_fetcher.get_candidates_data( wikidata_ids ) return arguments["id"], mentions def split(a, n): k, m = divmod(len(a), n) return (a[i * k + min(i, m) : (i + 1) * k + min(i + 1, m)] for i in range(n)) def main(args): wall_start = time.time() parameters = get_parameters(args) print("Candidate generator parameters:", parameters) datasets = utils.get_datasets( args.include_aida_train, args.keep_pregenerated_candidates ) if args.single_dataset: datasets = [datasets[0]] mentions = utils.get_list_of_mentions(datasets) # NUM_TREADS = multiprocessing.cpu_count() NUM_THREADS = args.num_threads pool = ThreadPool(NUM_THREADS) # Split the data into approximately equal parts and give one block to each thread data_per_thread = split(mentions, NUM_THREADS) if args.keep_pregenerated_candidates: arguments = [ { "id": idx, "data": data_bloc, "args": args, "candidate_generator": Simple_Candidate_Generator(parameters), "pregenereted_cands_data_fetcher": Pregenerated_Candidates_Data_Fetcher( parameters ), } for idx, data_bloc in enumerate(data_per_thread) ] else: arguments = [ { "id": idx, "data": data_bloc, "args": args, "candidate_generator": Simple_Candidate_Generator(parameters), } for idx, data_bloc in enumerate(data_per_thread) ] results = pool.map(run_thread, arguments) # Merge the results processed_mentions = [] for _id, mentions in results: processed_mentions = processed_mentions + mentions has_gold = 0 pool.terminate() pool.join() execution_time = (time.time() - wall_start) / 60 print("The execution took:", execution_time, " minutes") # Evaluate the generation evaluator = Evaluator(processed_mentions) evaluator.candidate_generation( save_gold_pos=True, save_pregenerated_gold_pos=args.keep_pregenerated_candidates ) # Dump the data if the dump_mentions flag was set if args.dump_mentions: print("Dumping processed mentions") # Create the directory for the mention dumps if it does not exist dump_folder = args.dump_mentions_folder os.makedirs(dump_folder, exist_ok=True) dump_object = {} dump_object["mentions"] = processed_mentions dump_object["total_per_dataset"] = evaluator.total_per_dataset dump_object["has_gold_per_dataset"] = evaluator.has_gold_per_dataset dump_object["parameters"] = parameters dump_object["args"] = args dump_object["execution_time"] = execution_time pickle.dump( dump_object, open(os.path.join(dump_folder, args.dump_file_id), "wb"), protocol=4, ) # evaluator.candidate_generation(max_rank=100) return evaluator.recall def get_parameters(args): parameters = { "collection_name": args.collection_name, "rows": args.rows, "solr_address": args.solr_address, } parameters["query_data"] = {} parameters["query_data"]["string"] = args.query parameters["query_data"]["keys"] = [k.strip() for k in args.keys.split(",")] parameters["boosting"] = args.boosting return parameters if __name__ == "__main__": parser = argparse.ArgumentParser() # Debugging setting parser.add_argument("--single_dataset", dest="single_dataset", action="store_true") parser.set_defaults(single_dataset=False) # Query parameters parser.add_argument( "--query", type=str, default='title:( {} ) OR aliases:" {} " OR sent_desc_1:( {} )^0.5', help="The query following the argument template of q.format", ) parser.add_argument( "--keys", type=str, default="mention,mention,sent_context_curr", help="The comma separated list of keys to be feeded to str.format with the query as the formating string. Example fields `mention`, `query_context`, `query_truncated_10_context` or `query_truncated_25_context`", ) parser.add_argument("--rows", type=int, default=80) parser.add_argument("--collection_name", type=str, default="wikipedia") parser.add_argument("--solr_address", type=str, default="http://localhost:8983") parser.add_argument( "--boosting", type=str, default="log(sum(num_incoming_links,1))" ) # Multithreading parser.add_argument("--num_threads", type=int, required=True) # Candidates dumping parser.add_argument("--dump_mentions", dest="dump_mentions", action="store_true") parser.set_defaults(dump_mentions=False) parser.add_argument( "--dump_mentions_folder", type=str, default="data/mention_dumps" ) parser.add_argument("--dump_file_id", type=str) # Include training dataset parser.add_argument( "--include_aida_train", dest="include_aida_train", action="store_true" ) parser.set_defaults(include_aida_train=False) # Keep pregenerated candidates parser.add_argument( "--keep_pregenerated_candidates", action="store_true", help="Whether to keep the candidates given with the dataset.", ) args = parser.parse_args() print(args) main(args)
BLINK-main
blink/candidate_retrieval/perform_and_evaluate_candidate_retrieval_multithreaded.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import argparse import pysolr import pickle import emoji import time import os parser = argparse.ArgumentParser() parser.add_argument( "--processed_data_file_path", type=str, help="The full path to the data file", required=True, ) parser.add_argument( "--collection_name", type=str, help="The solr collection name, in which the ingestion should be performed", required=True, ) parser.add_argument( "--add_sentence_data", dest="add_sentence_data", action="store_true" ) parser.set_defaults(add_sentence_data=False) parser.add_argument( "--remove_disambiguation_pages", dest="remove_disambiguation_pages", action="store_true", ) parser.set_defaults(remove_disambiguation_pages=False) parser.add_argument("--min_tokens", type=int, default=0) args = parser.parse_args() processed_data_path = args.processed_data_file_path collection_name = args.collection_name # processed_data_path = "/scratch/martinjosifoski/data/en-wiki-filtered-wikidata" def remove_all_docs(): solr.delete(q="*:*") def load_data(): return pickle.load(open(processed_data_path, "rb")) def get_data_for_key(data, title): obj = {} obj["id"] = data[title]["wikipedia_id"] obj["title"] = title if ("wikidata_info" in data[title]) and ( data[title]["wikidata_info"]["wikidata_id"] is not None ): obj["wikidata_id"] = data[title]["wikidata_info"]["wikidata_id"] else: obj["wikidata_id"] = data[title]["wikidata_id_from_index"] description = data[title]["intro_concatenated"] obj["desc"] = description if "wikidata_info" in data[title]: if "description" in data[title]["wikidata_info"]: wikidata_description = data[title]["wikidata_info"]["description"] else: wikidata_description = "" if ("aliases" in data[title]["wikidata_info"]) and ( data[title]["wikidata_info"]["aliases"] ) is not None: aliases = " ".join( [ '"{}"'.format(alias) for alias in data[title]["wikidata_info"]["aliases"] if alias not in emoji.UNICODE_EMOJI ] ) else: aliases = "" else: aliases = "" wikidata_description = "" obj["aliases"] = aliases obj["wikidata_desc"] = wikidata_description obj["num_tokens"] = data[title]["num_tokens"] obj["num_incoming_links"] = data[title].get("num_incoming_links", 0) if args.add_sentence_data: for k in range(0, 10): key = "sent_desc_{}".format(k + 1) obj[key] = data[title].get(key, "") return obj print("Loading data") title2data = load_data() for key in title2data: title2data[key]["intro_concatenated"] = " ".join( [line for line in title2data[key]["intro_lines"] if line != ""] ) # Filter documents with less then `args.min_tokens` tokens if args.min_tokens != 0: print("Removing documents with less then {} tokens".format(args.min_tokens)) print("Number of docs BEFORE removal:", len(title2data)) title2data = { key: value for key, value in title2data.items() if value["num_tokens"] >= args.min_tokens } print("Number of docs AFTER removal:", len(title2data)) print("") # Remove disambiguation pages if args.remove_disambiguation_pages: print("Remove disambiguation pages") print("Number of docs BEFORE removal:", len(title2data)) titles_to_delete = [] for title in title2data: parsed_obj = title2data[title] if ("disambiguation" in title) or ("Disambiguation" in title): titles_to_delete.append(title) else: if (parsed_obj.get("wikidata_info", None) is not None) and ( parsed_obj["wikidata_info"].get("description", None) is not None ): wikidata_info = parsed_obj["wikidata_info"] if ("disambiguation page" in wikidata_info["description"]) or ( "Disambiguation page" in wikidata_info["description"] ): titles_to_delete.append(title) for title in titles_to_delete: del title2data[title] print("Number of docs AFTER removal:", len(title2data)) print("Number of removed docs:", len(titles_to_delete)) print("") ingestion_data = [get_data_for_key(title2data, key) for key in title2data] print("Starting ingestion") wall_start = time.time() l = 0 r = step = 10000 solr = pysolr.Solr( "http://localhost:8983/solr/{}".format(collection_name), always_commit=True, timeout=100, ) c = 0 for r in range(r, len(ingestion_data), step): c += 1 if (c % 10) == 0: print("Processed", c, "batches") temp_data = ingestion_data[l:r] solr.add(temp_data, commit=True) l = r solr.add(ingestion_data[l : len(ingestion_data)], commit=True) solr.commit() print("The processing took:", (time.time() - wall_start) / 60, " minutes")
BLINK-main
blink/candidate_retrieval/data_ingestion.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import pickle import os import argparse import sys parser = argparse.ArgumentParser() parser.add_argument( "--output_folder", type=str, help="The full path to the output folder", required=True, ) args = parser.parse_args() output_folder = args.output_folder output_file_path = os.path.join(output_folder, "en-wiki-filtered-wikidata") if os.path.isfile(output_file_path): print("Output file `{}` already exists!".format(output_file_path)) sys.exit() # Add wikidata_id from the download index to wikipedia articles whenever we have it wikipediaid2wikidataid_file_path = os.path.join( output_folder, "wikipediaid2wikidataid.p" ) wikipedia_data_filtered_file_path = os.path.join(output_folder, "en-wiki-filtered") wikipediaid2wikidataid = pickle.load(open(wikipediaid2wikidataid_file_path, "rb")) wikipedia_data_filtered = pickle.load(open(wikipedia_data_filtered_file_path, "rb")) for key in wikipedia_data_filtered.keys(): wikipedia_id, wikipedia_title = key wikipedia_id = int(wikipedia_id) if wikipedia_id in wikipediaid2wikidataid: wikidata_id = wikipediaid2wikidataid[wikipedia_id] wikipedia_data_filtered[key]["wikidata_id_from_index"] = wikidata_id else: wikipedia_data_filtered[key]["wikidata_id_from_index"] = None # Read the processed wikidata object and generate amenable mappings wikidataid_title2parsed_obj_file_path = os.path.join( output_folder, "wikidataid_title2parsed_obj.p" ) wikidataid_title2parsed_obj = pickle.load( open(wikidataid_title2parsed_obj_file_path, "rb") ) title2parsed_obj = {} wikidataid2parsed_obj = {} for key in wikidataid_title2parsed_obj.keys(): wikidata_id, wikipedia_title = key wikidataid_title2parsed_obj[key]["wikidata_id"] = wikidata_id wikidataid_title2parsed_obj[key]["wikipedia_title"] = wikipedia_title title2parsed_obj[wikipedia_title] = wikidataid_title2parsed_obj[key] wikidataid2parsed_obj[wikidata_id] = wikidataid_title2parsed_obj[key] matched_by_title = 0 not_matched_by_title_list = [] matched_by_id = 0 not_matched_by_anything = [] # link wikipedia with wikidata for key in wikipedia_data_filtered.keys(): wikipedia_id, wikipedia_title = key wikipedia_id = int(wikipedia_id) wikidata_id_from_index = wikipedia_data_filtered[key]["wikidata_id_from_index"] ## 1) TITLE 2) ID ## works better, linking is more accurate if wikipedia_title in title2parsed_obj: matched_by_title += 1 wikipedia_data_filtered[key]["wikidata_info"] = title2parsed_obj[ wikipedia_title ] else: not_matched_by_title_list.append( (wikipedia_id, wikipedia_title, wikidata_id_from_index) ) if (wikidata_id_from_index is not None) and ( wikidata_id_from_index in wikidataid2parsed_obj ): matched_by_id += 1 wikipedia_data_filtered[key]["wikidata_info"] = wikidataid2parsed_obj[ wikidata_id_from_index ] else: not_matched_by_anything.append( (wikipedia_id, wikipedia_title, wikidata_id_from_index) ) ## 1) ID 2) TITLE # if (wikidata_id_from_index is not None) and (wikidata_id_from_index in wikidataid2parsed_obj): # matched_by_id += 1 # wikipedia_data_filtered[key]['wikidata_info'] = wikidataid2parsed_obj[wikidata_id_from_index] # else: # not_matched_by_title_list.append((wikipedia_id, wikipedia_title, wikidata_id_from_index)) # if wikipedia_title in title2parsed_obj: # matched_by_title += 1 # wikipedia_data_filtered[key]['wikidata_info'] = title2parsed_obj[wikipedia_title] # else: # not_matched_by_anything.append((wikipedia_id, wikipedia_title, wikidata_id_from_index)) print("Matched by title:", matched_by_title) print("Matched by id:", matched_by_id) print("Not found:", len(not_matched_by_anything)) print("Dumping", output_file_path) pickle.dump(wikipedia_data_filtered, open(output_file_path, "wb"), protocol=4)
BLINK-main
blink/candidate_retrieval/link_wikipedia_and_wikidata.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import xml.etree.ElementTree as ET import io import re import argparse import os import pickle import sys import urllib.parse import regex parser = argparse.ArgumentParser() parser.add_argument( "--input", type=str, help="The full path to the file to process", required=True ) parser.add_argument( "--output", type=str, help="The full path to the output file", required=True ) args = parser.parse_args() input_file_path = args.input output_file_path = args.output if not os.path.isfile(input_file_path): print("Input file `{}` doesn't exist!".format(output_file_path)) sys.exit() if os.path.isfile(output_file_path): print("Output file `{}` already exists!".format(output_file_path)) sys.exit() xml_end_tag = "</doc>" entities_with_duplicate_titles = set() title2id = {} id_title2parsed_obj = {} num_lines = 0 with io.open(input_file_path, mode="rt", encoding="utf-8", errors="ignore") as f: for line in f: num_lines += 1 c = 0 pattern = re.compile("(<a href=([^>]+)>((?:.(?!\<\/a\>))*.)<\/a>)") docs_failed_xml = 0 with io.open(input_file_path, mode="rt", encoding="utf-8", errors="ignore") as f: for line in f: c += 1 if c % 1000000 == 0: print("Processed: {:.2f}%".format(c * 100 / num_lines)) if line.startswith("<doc id="): doc_xml = ET.fromstring("{}{}".format(line, xml_end_tag)) doc_attr = doc_xml.attrib lines = [] lines.append(line.strip()) if line.startswith("</doc>"): temp_obj = {} temp_obj["url"] = doc_attr["url"] temp_obj["lines"] = lines text = " ".join([l for l in lines if l != ""]) try: doc_xml = ET.fromstring(text) links_xml = doc_xml.getchildren() links = [] for link_xml in links_xml: link = {} link["xml_attributes"] = link_xml.attrib link["text"] = link_xml.text.strip() link["href_unquoted"] = urllib.parse.unquote( link_xml.attrib["href"] ) link_xml.tail = "" link["raw"] = ET.tostring( link_xml, encoding="unicode", method="xml" ) links.append(link) temp_obj["links_xml"] = links except Exception as e: temp_obj["links_xml"] = None docs_failed_xml += 1 text = " ".join([l for l in lines[1:-1] if l != ""]) links = [] for match in pattern.findall(text): raw, href, text = match link = {} link["raw"] = raw link["href_unquoted"] = urllib.parse.unquote(href.strip('"')) link["text"] = text links.append(link) temp_obj["links_regex"] = links id_, title = doc_attr["id"], doc_attr["title"] key = (id_, title) id_title2parsed_obj[key] = temp_obj # # check for duplicate titles # if title in title2id: # entities_with_duplicate_titles.add(id_) # entities_with_duplicate_titles.add(title2id[title]) # print("DUPLICATE TITLE:", id_, title2id[title]) # else: # title2id[title] = id_ print("Processed: {:.2f}%".format(c * 100 / num_lines)) print("Dumping", output_file_path) pickle.dump(id_title2parsed_obj, open(output_file_path, "wb"), protocol=4) # print('Portion of documents with improper xml: {:.2f}%'.format(docs_failed_xml*100/len(id_title2parsed_obj)))
BLINK-main
blink/candidate_retrieval/process_wiki_extractor_output_links.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import xml.etree.ElementTree as ET import io import re import argparse import os import pickle import sys parser = argparse.ArgumentParser() parser.add_argument( "--input", type=str, help="The full path to the file to process", required=True ) parser.add_argument( "--output", type=str, help="The full path to the output file", required=True ) args = parser.parse_args() input_file_path = args.input output_file_path = args.output if not os.path.isfile(input_file_path): print("Input file `{}` doesn't exist!".format(output_file_path)) sys.exit() if os.path.isfile(output_file_path): print("Output file `{}` already exists!".format(output_file_path)) sys.exit() xml_end_tag = "</doc>" entities_with_duplicate_titles = set() title2id = {} id_title2parsed_obj = {} num_lines = 0 with io.open(input_file_path, mode="rt", encoding="utf-8", errors="ignore") as f: for line in f: num_lines += 1 c = 0 with io.open(input_file_path, mode="rt", encoding="utf-8", errors="ignore") as f: for line in f: c += 1 if c % 1000000 == 0: print("Processed: {:.2f}%".format(c * 100 / num_lines)) if line.startswith("<doc id="): doc_xml = ET.fromstring("{}{}".format(line, xml_end_tag)) doc_attr = doc_xml.attrib first_paragraph_flag = True lines = [] continue if not first_paragraph_flag: continue if line.startswith("Section::::") or line.startswith("</doc>"): temp_obj = {} temp_obj["url"] = doc_attr["url"] temp_obj["intro_lines"] = lines id_, title = doc_attr["id"], doc_attr["title"] key = (id_, title) id_title2parsed_obj[key] = temp_obj # # check for duplicate titles # if title in title2id: # entities_with_duplicate_titles.add(id_) # entities_with_duplicate_titles.add(title2id[title]) # print("DUPLICATE TITLE:", id_, title2id[title]) # else: # title2id[title] = id_ first_paragraph_flag = False continue lines.append(line.strip()) print("Dumping", output_file_path) pickle.dump(id_title2parsed_obj, open(output_file_path, "wb"), protocol=4)
BLINK-main
blink/candidate_retrieval/process_wiki_extractor_output.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import re import pickle import os import time import numpy as np """ This script is adapted from https://github.com/lephong/mulrel-nel """ def read_csv_file(path, added_params): data = {} info = True with open(path, "r", encoding="utf8") as f: for line in f: comps = line.strip().split("\t") doc_name = comps[0] + " " + comps[1] mention = comps[2] lctx = comps[3] rctx = comps[4] if comps[6] != "EMPTYCAND": cands = [c.split(",") for c in comps[6:-2]] cands = [ (",".join(c[2:]).replace('"', "%22").replace(" ", "_"), float(c[1])) for c in cands ] else: cands = [] gold = comps[-1].split(",") if gold[0] == "-1": gold = ( ",".join(gold[2:]).replace('"', "%22").replace(" ", "_"), 1e-5, -1, ) else: gold = ( ",".join(gold[3:]).replace('"', "%22").replace(" ", "_"), 1e-5, -1, ) if added_params["generate_cands"]: if info: print("Generating candidates") info = False cands = added_params["cand_generator"].process(mention) if doc_name not in data: data[doc_name] = [] data[doc_name].append( { "mention": mention, "context": (lctx, rctx), "candidates": cands, "gold": gold, } ) return data ### Adds original textual data to pregenerated data def read_conll_file(data, path): conll = {} with open(path, "r", encoding="utf8") as f: cur_sent = None cur_doc = None for line in f: line = line.strip() if line.startswith("-DOCSTART-"): docname = line.split()[1][1:] conll[docname] = {"sentences": [], "mentions": []} cur_doc = conll[docname] cur_sent = [] else: if line == "": cur_doc["sentences"].append(cur_sent) cur_sent = [] else: comps = line.split("\t") tok = comps[0] cur_sent.append(tok) if len(comps) >= 6: bi = comps[1] wikilink = comps[4] if bi == "I": cur_doc["mentions"][-1]["end"] += 1 else: new_ment = { "sent_id": len(cur_doc["sentences"]), "start": len(cur_sent) - 1, "end": len(cur_sent), "wikilink": wikilink, } cur_doc["mentions"].append(new_ment) # merge with data rmpunc = re.compile("[\W]+") for doc_name, content in data.items(): conll_doc = conll[doc_name.split()[0]] content[0]["conll_doc"] = conll_doc cur_conll_m_id = 0 for m in content: mention = m["mention"] gold = m["gold"] while True: cur_conll_m = conll_doc["mentions"][cur_conll_m_id] cur_conll_mention = " ".join( conll_doc["sentences"][cur_conll_m["sent_id"]][ cur_conll_m["start"] : cur_conll_m["end"] ] ) if rmpunc.sub("", cur_conll_mention.lower()) == rmpunc.sub( "", mention.lower() ): m["conll_m"] = cur_conll_m cur_conll_m_id += 1 break else: cur_conll_m_id += 1 return data ##### Check whether an entity is a person and if the doc contains other references with a more descriptive name for the person ##### (ex. John vs John Snow vs John Snow Stark). Then processes the candidate lists for all of the mentions that fit this description. def load_person_names(path): data = [] with open(path, "r", encoding="utf8") as f: for line in f: data.append(line.strip().replace(" ", "_")) return set(data) def find_coref(ment, mentlist, person_names): cur_m = ment["mention"].lower() coref = [] for m in mentlist: if len(m["candidates"]) == 0 or m["candidates"][0][0] not in person_names: continue mention = m["mention"].lower() start_pos = mention.find(cur_m) if start_pos == -1 or mention == cur_m: continue end_pos = start_pos + len(cur_m) - 1 if (start_pos == 0 or mention[start_pos - 1] == " ") and ( end_pos == len(mention) - 1 or mention[end_pos + 1] == " " ): coref.append(m) return coref def with_coref(dataset, person_names): for data_name, content in dataset.items(): for cur_m in content: coref = find_coref(cur_m, content, person_names) if coref is not None and len(coref) > 0: cur_cands = {} for m in coref: for c, p in m["candidates"]: cur_cands[c] = cur_cands.get(c, 0) + p for c in cur_cands.keys(): cur_cands[c] /= len(coref) cur_m["candidates"] = sorted( list(cur_cands.items()), key=lambda x: x[1] )[::-1] ###### def eval(testset, system_pred, nel=False): gold = [] pred = [] for doc_name, content in testset.items(): gold += [c["gold"][0] for c in content] # the gold named entity pred += [ c["pred"][0] for c in system_pred[doc_name] ] # the predicted named entity true_pos = 0 for g, p in zip(gold, pred): if g == p and p != "NIL": true_pos += 1 if nel: NIL_preds = len([p for p in pred if p == "NIL"]) total_discovered_mentions = 0 for doc_name, content in testset.items(): total_discovered_mentions += np.sum( len(ment) for ment in content[0]["ments_per_sent_flair"] ) precision = true_pos / (total_discovered_mentions - NIL_preds) else: precision = true_pos / len([p for p in pred if p != "NIL"]) recall = true_pos / len(gold) f1 = 2 * precision * recall / (precision + recall) return precision, recall, f1 def get_candidate_generator(added_params): if added_params["candidate_generator_type"] == "p_e_m": if "p_e_m_data_path" in added_params: return FetchCandidateEntities(added_params["p_e_m_data_path"]) else: return FetchCandidateEntities() else: pass class CoNLLDataset: """ reading dataset from CoNLL dataset, extracted by https://github.com/dalab/deep-ed/ """ def __init__(self, path, person_path, conll_path, added_params): if added_params["generate_ments_and_cands"]: added_params["generate_cands"] = False if added_params["generate_cands"] or added_params["generate_ments_and_cands"]: added_params["cand_generator"] = get_candidate_generator(added_params) print(added_params) print("load csv") self.train = read_csv_file(path + "/aida_train.csv", added_params) self.testA = read_csv_file(path + "/aida_testA.csv", added_params) self.testB = read_csv_file(path + "/aida_testB.csv", added_params) self.ace2004 = read_csv_file(path + "/wned-ace2004.csv", added_params) self.aquaint = read_csv_file(path + "/wned-aquaint.csv", added_params) self.clueweb = read_csv_file(path + "/wned-clueweb.csv", added_params) self.msnbc = read_csv_file(path + "/wned-msnbc.csv", added_params) self.wikipedia = read_csv_file(path + "/wned-wikipedia.csv", added_params) self.wikipedia.pop("Jiří_Třanovský Jiří_Třanovský", None) print("process coref") person_names = load_person_names(person_path) with_coref(self.train, person_names) with_coref(self.testA, person_names) with_coref(self.testB, person_names) with_coref(self.ace2004, person_names) with_coref(self.aquaint, person_names) with_coref(self.clueweb, person_names) with_coref(self.msnbc, person_names) with_coref(self.wikipedia, person_names) print("load conll") read_conll_file(self.train, conll_path + "/AIDA/aida_train.txt") read_conll_file(self.testA, conll_path + "/AIDA/testa_testb_aggregate_original") read_conll_file(self.testB, conll_path + "/AIDA/testa_testb_aggregate_original") read_conll_file( self.ace2004, conll_path + "/wned-datasets/ace2004/ace2004.conll" ) read_conll_file( self.aquaint, conll_path + "/wned-datasets/aquaint/aquaint.conll" ) read_conll_file(self.msnbc, conll_path + "/wned-datasets/msnbc/msnbc.conll") read_conll_file( self.clueweb, conll_path + "/wned-datasets/clueweb/clueweb.conll" ) read_conll_file( self.wikipedia, conll_path + "/wned-datasets/wikipedia/wikipedia.conll" ) if added_params["generate_cands"]: print( "Number of candidates not present in p_e_m originally, but present when lowercased", len(added_params["cand_generator"].lower_org), ) print( "Number of candidates not present in p_e_m originally, but present in p_e_m_lower when lowercased ", len(added_params["cand_generator"].lower_lower), ) class FetchCandidateEntities(object): """takes as input a string or a list of words and checks if it is inside p_e_m if yes it returns the candidate entities otherwise it returns None. it also checks if string.lower() inside p_e_m and if string.lower() inside p_e_m_low""" def __init__(self, p_e_m_data_path="data/basic_data/p_e_m_data/"): print("Reading p_e_m dictionaries") # return wall_start = time.time() self.lower_org = [] self.lower_lower = [] self.p_e_m = pickle.load( open(os.path.join(p_e_m_data_path, "p_e_m_dict.pickle"), "rb") ) self.p_e_m_lower = pickle.load( open(os.path.join(p_e_m_data_path, "p_e_m_lower_dict.pickle"), "rb") ) self.mention_total_freq = pickle.load( open(os.path.join(p_e_m_data_path, "mention_total_freq.pickle"), "rb") ) print("The reading took:", (time.time() - wall_start) / 60, " minutes") def process(self, span): """span can be either a string or a list of words""" title = span.title() # 'obama 44th president of united states'.title() # 'Obama 44Th President Of United States' title_freq = ( self.mention_total_freq[title] if title in self.mention_total_freq else 0 ) span_freq = ( self.mention_total_freq[span] if span in self.mention_total_freq else 0 ) if title_freq == 0 and span_freq == 0: if span.lower() in self.p_e_m: self.lower_org.append(span) return self.p_e_m[span.lower()] elif span.lower() in self.p_e_m_lower: self.lower_lower.append(span) return self.p_e_m_lower[span.lower()] else: return [] else: if span_freq > title_freq: return self.p_e_m[span] else: return self.p_e_m[title]
BLINK-main
blink/candidate_retrieval/dataset.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import sqlite3 import pickle import os import io import argparse import sys parser = argparse.ArgumentParser() parser.add_argument( "--output", type=str, help="The full path to the data folder", required=True ) args = parser.parse_args() data_folder = args.output output_file_name = "title2enriched_parsed_obj.p" output_file_path = os.path.join(data_folder, output_file_name) if os.path.isfile(output_file_path): print("Output file `{}` already exists!".format(output_file_path)) sys.exit() linktitle2wikidataid_file_name = "linktitle2wikidataid.p" linktitle2wikidataid_path = os.path.join(data_folder, linktitle2wikidataid_file_name) linktitle2wikidataid = pickle.load(open(linktitle2wikidataid_path, "rb")) # Read links data links_file_name = "en-wikilinks-processed" links_file_path = os.path.join(data_folder, links_file_name) links_data = pickle.load(open(links_file_path, "rb")) print("Links data is loaded") # Read full text data full_num_tokens_file_name = "en-wiki-full-text" full_num_tokens_file_path = os.path.join(data_folder, full_num_tokens_file_name) full_num_tokens_data = pickle.load(open(full_num_tokens_file_path, "rb")) print("Full text and number of tokens data is loaded") # Read linked (wikipedia with wikidata) data filtered_and_wikidata_file_name = "en-wiki-filtered-wikidata" filtered_and_wikidata_file_path = os.path.join( data_folder, filtered_and_wikidata_file_name ) filtered_and_wikidata_data = pickle.load(open(filtered_and_wikidata_file_path, "rb")) print("Introduction text, linked with wikidata data is loaded") # Transform the linked data into a title2parsed_obj dictionary # Add the number of tokens information title2parsed_obj = {} for key in filtered_and_wikidata_data.keys(): wikipedia_id, wikipedia_title = key filtered_and_wikidata_data[key]["wikipedia_id"] = wikipedia_id filtered_and_wikidata_data[key]["wikipedia_title"] = wikipedia_title filtered_and_wikidata_data[key]["num_tokens"] = full_num_tokens_data[key][ "num_tokens" ] title2parsed_obj[wikipedia_title] = filtered_and_wikidata_data[key] total = {"xml": 0, "regex": 0} found = {"xml": 0, "regex": 0} not_found = {"xml": [], "regex": []} # Counting using the title for key in links_data.keys(): wikipedia_id, wikipedia_title = key if links_data[key]["links_xml"] != None: links = links_data[key]["links_xml"] total["xml"] = total["xml"] + len(links) for link in links: title = link["href_unquoted"] if title in title2parsed_obj: title2parsed_obj[title]["num_incoming_links"] = ( title2parsed_obj[title].get("num_incoming_links", 0) + 1 ) found["xml"] = found["xml"] + 1 else: not_found["xml"].append(link) else: links = links_data[key]["links_regex"] total["regex"] = total["regex"] + len(links) for link in links: title = link["href_unquoted"] if title in title2parsed_obj: title2parsed_obj[title]["num_incoming_links"] = ( title2parsed_obj[title].get("num_incoming_links", 0) + 1 ) found["regex"] = found["regex"] + 1 else: not_found["regex"].append(link) print( "Matched {:2f}% using only the title".format( (found["xml"] + found["regex"]) * 100 / (total["xml"] + total["regex"]) ) ) # Counting using the index wikidataid2count = {} for link in not_found["xml"] + not_found["regex"]: title = link["href_unquoted"] title = title.replace(" ", "_") if title in linktitle2wikidataid: wikidata_id = linktitle2wikidataid[title] wikidataid2count[wikidata_id] = wikidataid2count.get(wikidata_id, 0) + 1 found["xml"] = found["xml"] + 1 elif title.capitalize() in linktitle2wikidataid: wikidata_id = linktitle2wikidataid[title.capitalize()] wikidataid2count[wikidata_id] = wikidataid2count.get(wikidata_id, 0) + 1 found["xml"] = found["xml"] + 1 print( "Matched {:2f}% by additionally using the title to wikidataid index".format( (found["xml"] + found["regex"]) * 100 / (total["xml"] + total["regex"]) ) ) # Adding the counts from the index to the original dictionary updated = 0 wikdiata_info = 0 wikidata_id_from_index = 0 for key in title2parsed_obj: parsed_obj = title2parsed_obj[key] wikidata_id = None if parsed_obj.get("wikidata_info", None) is not None: wikdiata_info += 1 if parsed_obj["wikidata_info"].get("wikidata_id", None) is not None: wikidata_id = parsed_obj["wikidata_info"]["wikidata_id"] else: if parsed_obj.get("wikidata_id_from_index", None) is not None: wikidata_id_from_index += 1 wikidata_id = parsed_obj["wikidata_id_from_index"] if (wikidata_id is not None) and (wikidata_id in wikidataid2count): parsed_obj["num_incoming_links"] = ( parsed_obj.get("num_incoming_links", 0) + wikidataid2count[wikidata_id] ) updated += 1 print("Dumping", output_file_path) pickle.dump(title2parsed_obj, open(output_file_path, "wb"), protocol=4) # Include unprocessed data and dump it together with the processed data # (convenient if we want to extent the data that we use) for wikipedia_title in title2parsed_obj.keys(): wikipedia_id = title2parsed_obj[wikipedia_title]["wikipedia_id"] key = wikipedia_id, wikipedia_title title2parsed_obj[wikipedia_title]["links_data"] = { "links_xml": links_data[key]["links_xml"], "links_regex": links_data[key]["links_regex"], } title2parsed_obj[wikipedia_title]["lines_full_text"] = full_num_tokens_data[key][ "lines" ] output_file_name = "title2parsed_obj_full_data.p" output_file_path = os.path.join(data_folder, output_file_name) print("Dumping", output_file_path) pickle.dump(title2parsed_obj, open(output_file_path, "wb"), protocol=4)
BLINK-main
blink/candidate_retrieval/enrich_data.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import sys import pickle import subprocess import blink.candidate_retrieval.dataset as D import re import os ESCAPE_CHARS_RE = re.compile(r'(?<!\\)(?P<char>[&|+\-!(){}[\]\/^"~*?:])') def solr_escape(string): if (string == "OR") or (string == "AND"): return string.lower() interior = r"\s+(OR|AND)\s+" start = r"^(OR|AND) " end = r" (OR|AND)$" string = re.sub(interior, lambda x: x.group(0).lower(), string) string = re.sub(start, lambda x: x.group(0).lower(), string) string = re.sub(end, lambda x: x.group(0).lower(), string) return ESCAPE_CHARS_RE.sub(r"\\\g<char>", string) linktitle2id = None def get_wikidata_id_from_link_name(link): global linktitle2id if linktitle2id is None: path_to_file = "data/KB_data/linktitle2wikidataid.p" if os.path.isfile(path_to_file): linktitle2id = pickle.load(open(path_to_file, "rb")) else: subprocess.call( "./blink/candidate_retrieval/scripts/generate_wiki2wikidata_mapping.sh" ) linktitle2id = pickle.load(open(path_to_file, "rb")) return linktitle2id.get(link, None) def get_datasets(get_test_dataset=False, get_pregenereted_candidates_wikidata_id=False): train_and_benchmarking_data_dir = "data/train_and_benchmark_data" datadir = os.path.join( train_and_benchmarking_data_dir, "generated/test_train_data/" ) conll_path = os.path.join( train_and_benchmarking_data_dir, "basic_data/test_datasets/" ) person_path = os.path.join( train_and_benchmarking_data_dir, "basic_data/p_e_m_data/persons.txt" ) p_e_m_path = os.path.join(train_and_benchmarking_data_dir, "basic_data/p_e_m_data/") added_params = { "generate_cands": False, "generate_ments_and_cands": False, "candidate_generator_type": "p_e_m", "p_e_m_data_path": p_e_m_path, } conll = D.CoNLLDataset(datadir, person_path, conll_path, added_params) dev_datasets = [ ("aida-A", conll.testA), ("aida-B", conll.testB), ("msnbc", conll.msnbc), ("aquaint", conll.aquaint), ("ace2004", conll.ace2004), ("clueweb", conll.clueweb), ("wikipedia", conll.wikipedia), ] if get_test_dataset: dev_datasets.append(("aida-train", conll.train)) not_found = [] total = 0 for ds_name, dataset in dev_datasets: print("Processing dataset:", ds_name) for doc_name, content in dataset.items(): for m in content: total += 1 link = m["gold"][0] wikidata_id = get_wikidata_id_from_link_name(link) if wikidata_id is None: not_found.append(m) m["gold_wikidata_id"] = wikidata_id if get_pregenereted_candidates_wikidata_id: cands = [] for candidate in m["candidates"]: link, prob = candidate wikidata_id = get_wikidata_id_from_link_name(link) cands.append((wikidata_id, link, prob)) m["candidates_wikidata_ids"] = cands print("Number of entities:", total) print( "Wikidata ID not found for:", len(not_found), "({:.3f} %)".format(len(not_found) * 1.0 / total), ) return dev_datasets def get_sent_context(mention, key, solr_escaped=True): if not solr_escaped: mention_data_key = "sent_context_orig" else: mention_data_key = "sent_context" if key.endswith("next"): if key.endswith("prev_next"): res = "{} {} {}".format( "" if mention[mention_data_key][0] is None else mention[mention_data_key][0], mention[mention_data_key][1], "" if mention[mention_data_key][2] is None else mention[mention_data_key][2], ) else: res = "{} {}".format( mention[mention_data_key][1], "" if mention[mention_data_key][2] is None else mention[mention_data_key][2], ) elif key.endswith("prev"): res = "{} {}".format( "" if mention[mention_data_key][0] is None else mention[mention_data_key][0], mention[mention_data_key][1], ) else: res = mention[mention_data_key][1] return res.strip() def get_list_of_mentions(dev_datasets): mentions = [] total_invalid = 0 total_valid = 0 for ds_name, dataset in dev_datasets: invalid = 0 valid = 0 print("Processing dataset:", ds_name) for doc_name, content in dataset.items(): sentences = content[0]["conll_doc"]["sentences"] for m in content: gold_wikidata_id = m["gold_wikidata_id"] left_context, right_context = m["context"] m["mention_orig"] = m["mention"] m["mention"] = solr_escape(m["mention"]) if left_context != "EMPTYCTXT": left_context_orig = left_context left_context = solr_escape(left_context) else: left_context = "" if right_context != "EMPTYCTXT": right_context_orig = right_context right_context = solr_escape(right_context) else: right_context = "" m["left_context_orig"] = left_context_orig m["right_context_orig"] = right_context_orig m["query_context"] = "{} {} {}".format( left_context, m["mention"], right_context ).strip() m["query_context_orig"] = "{} {} {}".format( left_context_orig, m["mention_orig"], right_context_orig ).strip() truncated_left_context = " ".join(left_context.split(" ")[-25:]) truncated_right_context = " ".join(right_context.split(" ")[:25]) m["query_truncated_25_context"] = "{} {} {}".format( truncated_left_context, m["mention"], truncated_right_context ).strip() truncated_left_context = " ".join(left_context.split(" ")[-10:]) truncated_right_context = " ".join(right_context.split(" ")[:10]) m["query_truncated_10_context"] = "{} {} {}".format( truncated_left_context, m["mention"], truncated_right_context ).strip() m["dataset_name"] = ds_name m["doc_name"] = doc_name sent_id, start, end = ( m["conll_m"]["sent_id"], m["conll_m"]["start"], m["conll_m"]["end"], ) prev_sent_id = sent_id - 1 next_sent_id = sent_id + 1 sent_orig = " ".join(sentences[sent_id]).strip() m["left_query_sent_context_orig"] = " ".join(sentences[sent_id][:start]) m["right_query_sent_context_orig"] = " ".join(sentences[sent_id][end:]) sent = solr_escape(sent_orig) # try: # context_parts_lower = '{} {} {}'.format(m['left_query_sent_context_orig'], m['mention_orig'], m['right_query_sent_context_orig']).strip().lower() # context_orig_lower = sent_orig.lower() # assert(context_parts_lower == context_orig_lower) # except: # print(context_parts_lower) # print(context_orig_lower) # input("") if prev_sent_id > 0: prev_sent_orig = " ".join(sentences[prev_sent_id]) prev_sent = solr_escape(prev_sent_orig) else: prev_sent_orig = None prev_sent = None if next_sent_id < len(sentences): next_sent_orig = " ".join(sentences[next_sent_id]) next_sent = solr_escape(next_sent_orig) else: next_sent_orig = None next_sent = None m["sent_context"] = (prev_sent, sent, next_sent) m["sent_context_orig"] = (prev_sent_orig, sent_orig, next_sent_orig) # m['sent_context_prev'] = get_sent_context(m, 'sent_context_prev') # m['sent_context_next'] = get_sent_context(m, 'sent_context_next') # m['sent_context_prev_next'] = get_sent_context(m, 'sent_context_prev_next') # m['sent_context_curr'] = get_sent_context(m, 'sent_context_curr') if gold_wikidata_id is None: invalid += 1 continue mentions.append(m) valid += 1 print("Invalid: ", invalid) print("Valid: ", valid) total_invalid += invalid total_valid += valid return mentions def write_candidate_generation_results_for_a_run_to_file(run, results_dump_file_path): txt_file_path = "{}.txt".format(results_dump_file_path) with open(txt_file_path, "a+") as file: id_ = "Q: `{}` === K: `{}` === ID: `{}`".format( run[0]["query"], run[0]["keys"], run[0]["dump_file_id"] ) res = " --- ".join( ["{} - {:.2f}".format(key, run[1][key]) for key in sorted(run[1].keys())] ) file.write("{} === {}\n".format(res, id_)) def write_candidate_generation_execution_time_to_file( results_dump_file_path, execution_time ): txt_file_path = "{}.txt".format(results_dump_file_path) with open(txt_file_path, "a+") as file: file.write("The execution took: {} minutes".format(execution_time)) def write_candidate_generation_results_to_file( runs, results_dump_file_path, execution_time=None ): runs.sort(key=lambda run: -run[1]["overall"]) for run in runs: write_candidate_generation_results_for_a_run_to_file( run, results_dump_file_path ) if execution_time is not None: write_candidate_generation_execution_time_to_file( results_dump_file_path, execution_time )
BLINK-main
blink/candidate_retrieval/utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import pysolr import sys import utils def mention_data_summary(mention): return (mention["mention"], mention["query_truncated_25_context"]) class Simple_Candidate_Generator: def __init__(self, params): self.collection_name = params["collection_name"] self.solr_address = params["solr_address"] self.solr = pysolr.Solr( "{}/solr/{}".format(self.solr_address, self.collection_name), always_commit=True, timeout=100, ) self.rows = params["rows"] self.query_data = params["query_data"] self.c = 0 self.query_arguments = { "fl": "* score", "rows": self.rows, "defType": "edismax", } if params["boosting"] is not None: self.query_arguments["bf"] = params["boosting"] def _filter_result(self, cand): wikidata_id = cand.get("wikidata_id", None) res = { "wikidata_id": wikidata_id, "wikipedia_id": cand["id"], "wikipedia_title": cand["title"], } res["aliases"] = cand.get("aliases", None) sents = [] for k in range(0, 10): key = "sent_desc_{}".format(k + 1) sents.append(cand.get(key, "")) res["sentences"] = sents res["num_incoming_links"] = cand.get("num_incoming_links", 0) res["score"] = cand["score"] return res def get_candidates( self, mention_data, verbose=False, print_number_of_docs_retrieved=False, print_query_flag=False, ): solr = self.solr query_data = self.query_data # Build query keys = query_data["keys"] query = query_data["string"] query = query.format( *[ mention_data[key] if key in mention_data else utils.get_sent_context(mention_data, key) for key in keys ] ) if print_query_flag: print("Query: {}".format(query)) try: results = solr.search(query, **self.query_arguments) except Exception as e: exc_type, exc_obj, exc_tb = sys.exc_info() print("\nException:", exc_type, "- line", exc_tb.tb_lineno) print(repr(e)) c = self.c c += 1 if c < 10: print( "Exception with: \ncollection_name: {} \nquery: {} \nmention_data: {} \ndataset_name: {}\nquery_args: {}\n".format( self.collection_name, query, mention_data_summary(mention_data), mention_data["dataset_name"], str(self.query_arguments), ) ) return [] if print_number_of_docs_retrieved: print("Retrieved {0} result(s).".format(len(results))) # Return the full retrieved objects (debuging purposes) if verbose: return results # Filter the data in the retrieved objects, while ignoring the ones without a wikidata_id (only a very small fraction in the dataset; they are noise) filtered_results = [ self._filter_result(cand) for cand in results.docs if "wikidata_id" in cand ] return filtered_results class Pregenerated_Candidates_Data_Fetcher: def __init__(self, parameters): solr_address = "http://localhost:8983/solr/{}".format( parameters["collection_name"] ) query_arguments = {"fl": "* score", "rows": 1, "defType": "edismax"} query_arguments["bf"] = "log(sum(num_incoming_links,1))" self.solr = pysolr.Solr(solr_address, always_commit=True, timeout=100) self.query_arguments = query_arguments def get_candidates_data(self, candidates_wikidata_ids): candidates_rich = [] for candidate in candidates_wikidata_ids: candidate_data = self.get_candidate_data_for_wikidata_id(candidate[0]) if candidate_data != None: candidate_data["p_e_m_score"] = candidate[2] candidates_rich.append(candidate_data) return candidates_rich @staticmethod def filter_result(cand, detailed=True): wikidata_id = cand.get("wikidata_id", None) res = { "wikidata_id": wikidata_id, "wikipedia_id": cand["id"], "wikipedia_title": cand["title"], } if detailed: res["aliases"] = cand.get("aliases", None) sents = [] for k in range(0, 10): key = "sent_desc_{}".format(k + 1) sents.append(cand.get(key, "")) res["sentences"] = sents return res def get_candidate_data_for_wikidata_id(self, wikidata_id): results = self.solr.search( "wikidata_id:{}".format(wikidata_id), **self.query_arguments ) if len(results) == 0: return None filtered_results = [ Pregenerated_Candidates_Data_Fetcher.filter_result(cand) for cand in results.docs if "wikidata_id" in cand ] return filtered_results[0]
BLINK-main
blink/candidate_retrieval/candidate_generators.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import xml.etree.ElementTree as ET import io import re import argparse import os import pickle import sys parser = argparse.ArgumentParser() parser.add_argument( "--input", type=str, help="The full path to the file to process", required=True ) parser.add_argument( "--output", type=str, help="The full path to the output file", required=True ) args = parser.parse_args() input_file_path = args.input output_file_path = args.output if not os.path.isfile(input_file_path): print("Input file `{}` doesn't exist!".format(output_file_path)) sys.exit() if os.path.isfile(output_file_path): print("Output file `{}` already exists!".format(output_file_path)) sys.exit() xml_end_tag = "</doc>" entities_with_duplicate_titles = set() title2id = {} id_title2parsed_obj = {} num_lines = 0 with io.open(input_file_path, mode="rt", encoding="utf-8", errors="ignore") as f: for line in f: num_lines += 1 c = 0 with io.open(input_file_path, mode="rt", encoding="utf-8", errors="ignore") as f: for line in f: c += 1 if c % 1000000 == 0: print("Processed: {:.2f}%".format(c * 100 / num_lines)) if line.startswith("<doc id="): doc_xml = ET.fromstring("{}{}".format(line, xml_end_tag)) doc_attr = doc_xml.attrib lines = [] continue if line.startswith("</doc>"): temp_obj = {} temp_obj["url"] = doc_attr["url"] temp_obj["lines"] = lines text = " ".join([l for l in lines if l != ""]) temp_obj["num_tokens"] = len(text.split(" ")) id_, title = doc_attr["id"], doc_attr["title"] key = (id_, title) id_title2parsed_obj[key] = temp_obj # check for duplicate titles # if title in title2id: # entities_with_duplicate_titles.add(id_) # entities_with_duplicate_titles.add(title2id[title]) # print("DUPLICATE TITLE:", id_, title2id[title]) # else: # title2id[title] = id_ continue # if it is not a document start or end tag, add it to lines lines.append(line.strip()) print("Processed: {:.2f}%".format(c * 100 / num_lines)) print("Dumping", output_file_path) pickle.dump(id_title2parsed_obj, open(output_file_path, "wb"), protocol=4)
BLINK-main
blink/candidate_retrieval/process_wiki_extractor_output_full.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import bz2 import sys import pickle import os import json import argparse parser = argparse.ArgumentParser() parser.add_argument( "--input", type=str, help="The full path to the wikidata dump for processing", required=True, ) parser.add_argument( "--output", type=str, help="The full path to the output folder", required=True ) args = parser.parse_args() input_file_path = args.input output_file_path = args.output if not os.path.isfile(input_file_path): print("Input file `{}` doesn't exist!".format(output_file_path)) sys.exit() if os.path.isfile(output_file_path): print("Output file `{}` already exists!".format(output_file_path)) sys.exit() id_title2parsed_obj = {} num_lines = 0 with bz2.open(input_file_path, "rt") as f: for line in f: num_lines += 1 c = 0 with bz2.open(input_file_path, "rt") as f: for line in f: c += 1 if c % 1000000 == 0: print("Processed: {:.2f}%".format(c * 100 / num_lines)) try: json_obj = json.loads(line.strip().strip(",")) if ("sitelinks" not in json_obj) or ("enwiki" not in json_obj["sitelinks"]): continue id_, title = json_obj["id"], json_obj["sitelinks"]["enwiki"]["title"] key = id_, title parsed_obj = {} if "en" in json_obj["aliases"]: parsed_obj["aliases"] = [ alias["value"] for alias in json_obj["aliases"]["en"] ] else: parsed_obj["aliases"] = None if "en" in json_obj["labels"]: parsed_obj["wikidata_label"] = json_obj["labels"]["en"]["value"] else: parsed_obj["wikidata_label"] = None if "en" in json_obj["descriptions"]: parsed_obj["description"] = json_obj["descriptions"]["en"]["value"] else: parsed_obj["description"] = None if "enwikiquote" in json_obj["sitelinks"]: parsed_obj["enwikiquote_title"] = json_obj["sitelinks"]["enwikiquote"][ "title" ] id_title2parsed_obj[key] = parsed_obj except Exception as e: line = line.strip().strip(",") if line == "[" or line == "]": continue exc_type, exc_obj, exc_tb = sys.exc_info() print("Exception:", exc_type, "- line", exc_tb.tb_lineno) if len(line) < 30: print("Failed line:", line) print("Processed: {:.2f}%".format(c * 100 / num_lines)) print("Dumping", output_file_path) pickle.dump(id_title2parsed_obj, open(output_file_path, "wb"), protocol=4)
BLINK-main
blink/candidate_retrieval/process_wikidata.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import pickle import nltk.data import argparse import sys from tqdm import tqdm parser = argparse.ArgumentParser() parser.add_argument( "--output", type=str, help="The full path to the data folder", required=True ) args = parser.parse_args() data_folder = args.output output_file_name = "title2enriched_parsed_obj_plus.p" output_file_path = os.path.join(data_folder, output_file_name) if os.path.isfile(output_file_path): print("Output file `{}` already exists!".format(output_file_path)) sys.exit() print("Reading title2parsed_obj data") title2enriched_parsed_obj_file_name = "title2enriched_parsed_obj.p" title2enriched_parsed_obj_path = os.path.join( data_folder, title2enriched_parsed_obj_file_name ) title2parsed_obj = pickle.load(open(title2enriched_parsed_obj_path, "rb")) print("Reading title2parsed_obj_full_data") title2parsed_obj_full_data_file_name = "title2parsed_obj_full_data.p" title2parsed_obj_full_data_full_path = os.path.join( data_folder, title2parsed_obj_full_data_file_name ) title2parsed_obj_full = pickle.load(open(title2parsed_obj_full_data_full_path, "rb")) sent_detector = nltk.data.load("tokenizers/punkt/english.pickle") for title in tqdm(title2parsed_obj_full.keys()): lines = title2parsed_obj_full[title]["lines_full_text"][1:] # remove title lines = [ line for line in lines if not line.startswith("Section::") ] # remove section titles lines = [ line.strip() for line in lines if line != "" ] # remove blank lines and trailing spaces text = " ".join(lines) sentences = sent_detector.tokenize(text) sentences = [sent.strip() for sent in sentences] for k in range(0, min(10, len(sentences))): key = "sent_desc_{}".format(k + 1) value = sentences[k] title2parsed_obj[title][key] = value print("Dumping", output_file_path) pickle.dump(title2parsed_obj, open(output_file_path, "wb"), protocol=4)
BLINK-main
blink/candidate_retrieval/process_intro_sents.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import sqlite3 import pickle import os import argparse parser = argparse.ArgumentParser() parser.add_argument( "--input_file", type=str, help="The full path to the precomputed index", required=True, ) parser.add_argument( "--output_folder", type=str, help="The full path to the output folder", required=True, ) args = parser.parse_args() precomp_index_path = args.input_file output_folder_path = args.output_folder output_file = os.path.join(output_folder_path, "linktitle2wikidataid.p") if not os.path.isfile(output_file): conn = sqlite3.connect(precomp_index_path) cursorObj = conn.cursor() cursorObj.execute("SELECT wikipedia_title, wikidata_id FROM mapping") data = cursorObj.fetchall() linktitle2wikidataid = {item[0]: item[1] for item in data} pickle.dump(linktitle2wikidataid, open(output_file, "wb")) else: print("Output file `{}` already exists!".format(output_file)) output_file = os.path.join(output_folder_path, "wikipediaid2wikidataid.p") if not os.path.isfile(output_file): conn = sqlite3.connect(precomp_index_path) cursorObj = conn.cursor() cursorObj.execute("SELECT wikipedia_id, wikidata_id FROM mapping") data = cursorObj.fetchall() wikipediaid2wikidataid = {item[0]: item[1] for item in data} pickle.dump(wikipediaid2wikidataid, open(output_file, "wb")) else: print("Output file `{}` already exists!".format(output_file))
BLINK-main
blink/candidate_retrieval/generate_wiki2wikidata_mappings.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import matplotlib.pyplot as plt import numpy as np from collections import Counter class Evaluator: def __init__(self, data): self.data = data def candidate_generation( self, max_rank=None, save_gold_pos=False, save_pregenerated_gold_pos=False ): has_gold_per_dataset = {} total_per_dataset = {} recall = {} processed_mentions = self.data if max_rank is None: print("Max rank: None") else: print("Max rank", max_rank) for mention in processed_mentions: dataset_name = mention["dataset_name"] gold_wikidata_id = mention["gold_wikidata_id"] gold_pos = -1 for idx, cand in enumerate(mention["generated_candidates"]): cand_wikidata_id = cand["wikidata_id"] if gold_wikidata_id == cand_wikidata_id: gold_pos = idx + 1 # Because idx starts at 0 break if save_gold_pos: mention["gold_pos"] = gold_pos if gold_pos > 0 and ((max_rank is None) or gold_pos <= max_rank): has_gold = has_gold_per_dataset.get(dataset_name, 0) + 1 has_gold_per_dataset[dataset_name] = has_gold if save_pregenerated_gold_pos: pre_gen_gold_pos = -1 for idx, cand in enumerate(mention["candidates_data"]): cand_wikidata_id = cand["wikidata_id"] if gold_wikidata_id == cand_wikidata_id: pre_gen_gold_pos = idx + 1 # Because idx starts at 0 break mention["pre_gen_candidates_gold_pos"] = pre_gen_gold_pos total = total_per_dataset.get(dataset_name, 0) + 1 total_per_dataset[dataset_name] = total total = 0 has_gold = 0 for dataset_name in total_per_dataset: has_gold_ds = has_gold_per_dataset.get(dataset_name, 0) total_ds = total_per_dataset[dataset_name] has_gold += has_gold_ds total += total_ds recall[dataset_name] = has_gold_ds / total_ds print("Dataset:", dataset_name) print( "Recall (w.r.t candidate generation): {:.3f}".format( recall[dataset_name] ) ) recall["overall"] = has_gold / total print( "Overal recall (w.r.t candidate generation): {:.3f}".format( recall["overall"] ) ) self.has_gold_per_dataset = has_gold_per_dataset self.total_per_dataset = total_per_dataset self.total = total self.has_gold = has_gold self.recall = recall def candidate_generation_recall_at(self, ax=None, max_rank=None): processed_mentions = self.data total_num_of_docs = len(processed_mentions) gold_positions = np.array( [ mention["gold_pos"] for mention in processed_mentions if mention["gold_pos"] >= 0 ] ) if ax == None: fig = plt.figure(figsize=(7, 7)) ax = plt.subplot(111) ax.set_ylabel(str("Recall")) ax.set_xlabel(str("True entity rank")) rank_count_pairs = sorted(Counter(gold_positions).items(), key=lambda x: x[0]) # rank_count_pairs = rank_count_pairs[:k] counts = [i[1] for i in rank_count_pairs] recall = np.cumsum(counts) / total_num_of_docs * 100 rankings = [i[0] for i in rank_count_pairs] if max_rank is not None: for idx, rank in enumerate(rankings): if rank > max_rank: rankings = rankings[:idx] recall = recall[:idx] break ax.plot(rankings, recall)
BLINK-main
blink/candidate_retrieval/evaluator.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import argparse import pickle import json import emoji import sys import os import io import blink.candidate_retrieval.utils as utils from tqdm import tqdm parser = argparse.ArgumentParser() parser.add_argument( "--processed_mention_data_file_path", type=str, help="The full path to the mention data file", default="data/mention_dumps/train_and_eval_data", ) parser.add_argument( "--dump_folder_path", type=str, help="The path to the dump folder", default="data/train_and_benchmark_processed_json", ) # Keep pregenerated candidates parser.add_argument( "--keep_pregenerated_candidates", action="store_true", help="Whether to keep the candidates given with the dataset.", ) args = parser.parse_args() print(args) dump_folder = args.dump_folder_path path_to_processed_mention_data = args.processed_mention_data_file_path os.makedirs(dump_folder, exist_ok=True) print("Reading data") run_dump = pickle.load(open(path_to_processed_mention_data, "rb")) mentions = run_dump["mentions"] dataset2processed_mentions = {} for m in tqdm(mentions): mention_obj = {} mention_obj["candidates"] = m["generated_candidates"] # Gold data mention_obj["gold_pos"] = m["gold_pos"] mention_obj["gold"] = m["gold"] # Mention data mention_obj["text"] = m["mention_orig"] # mention_obj['query_context_50'] = m['query_context_orig'] # mention_obj['query_context_sent_prev_curr_next'] = utils.get_sent_context(m, 'prev_next', solr_escaped=False) # mention_obj['tagged_context_50'] = (m['left_context_orig'], m['right_context_orig']) prev_sent = m["sent_context_orig"][0] if m["sent_context_orig"][0] != None else "" next_sent = m["sent_context_orig"][2] if m["sent_context_orig"][2] != None else "" mention_obj["tagged_query_context_sent_prev_curr_next"] = ( "{} {}".format(prev_sent, m["left_query_sent_context_orig"]).strip(), "{} {}".format(m["right_query_sent_context_orig"], next_sent).strip(), ) mention_obj["tagged_query_context_sent_curr"] = ( m["left_query_sent_context_orig"].strip(), m["right_query_sent_context_orig"].strip(), ) # Keep the candidates given with the dataset (used for the purposes of comparison with baseline) if args.keep_pregenerated_candidates: mention_obj["pregenerated_candidates"] = m["candidates_data"] mention_obj["pregenerated_gold_pos"] = m["pre_gen_candidates_gold_pos"] # Add data to output dics dataset_name = m["dataset_name"] processed_mentions = dataset2processed_mentions.get(dataset_name, []) processed_mentions.append(mention_obj) dataset2processed_mentions[dataset_name] = processed_mentions for dataset_name in dataset2processed_mentions: print("Dumping dataset:", dataset_name) processed_mentions = dataset2processed_mentions[dataset_name] file_name = "{}.jsonl".format(dataset_name) txt_file_path = os.path.join(dump_folder, file_name) # with open(txt_file_path, "w+") as file: with io.open(txt_file_path, mode="w", encoding="utf-8") as file: for idx, mention in enumerate(processed_mentions): json_string = json.dumps(mention) file.write(json_string) if idx != (len(processed_mentions) - 1): file.write("\n")
BLINK-main
blink/candidate_retrieval/json_data_generation.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from collections import OrderedDict from tqdm import tqdm from pytorch_transformers.modeling_utils import CONFIG_NAME, WEIGHTS_NAME from pytorch_transformers.modeling_bert import ( BertPreTrainedModel, BertConfig, BertModel, ) from pytorch_transformers.modeling_roberta import ( RobertaConfig, RobertaModel, ) from pytorch_transformers.tokenization_bert import BertTokenizer from pytorch_transformers.tokenization_roberta import RobertaTokenizer from blink.common.ranker_base import BertEncoder, get_model_obj from blink.common.optimizer import get_bert_optimizer from blink.common.params import ENT_START_TAG, ENT_END_TAG, ENT_TITLE_TAG def load_crossencoder(params): # Init model crossencoder = CrossEncoderRanker(params) return crossencoder class CrossEncoderModule(torch.nn.Module): def __init__(self, params, tokenizer): super(CrossEncoderModule, self).__init__() model_path = params["bert_model"] if params.get("roberta"): encoder_model = RobertaModel.from_pretrained(model_path) else: encoder_model = BertModel.from_pretrained(model_path) encoder_model.resize_token_embeddings(len(tokenizer)) self.encoder = BertEncoder( encoder_model, params["out_dim"], layer_pulled=params["pull_from_layer"], add_linear=params["add_linear"], ) self.config = self.encoder.bert_model.config def forward( self, token_idx_ctxt, segment_idx_ctxt, mask_ctxt, ): embedding_ctxt = self.encoder(token_idx_ctxt, segment_idx_ctxt, mask_ctxt) return embedding_ctxt.squeeze(-1) class CrossEncoderRanker(torch.nn.Module): def __init__(self, params, shared=None): super(CrossEncoderRanker, self).__init__() self.params = params self.device = torch.device( "cuda" if torch.cuda.is_available() and not params["no_cuda"] else "cpu" ) self.n_gpu = torch.cuda.device_count() if params.get("roberta"): self.tokenizer = RobertaTokenizer.from_pretrained(params["bert_model"],) else: self.tokenizer = BertTokenizer.from_pretrained( params["bert_model"], do_lower_case=params["lowercase"] ) special_tokens_dict = { "additional_special_tokens": [ ENT_START_TAG, ENT_END_TAG, ENT_TITLE_TAG, ], } self.tokenizer.add_special_tokens(special_tokens_dict) self.NULL_IDX = self.tokenizer.pad_token_id self.START_TOKEN = self.tokenizer.cls_token self.END_TOKEN = self.tokenizer.sep_token # init model self.build_model() if params["path_to_model"] is not None: self.load_model(params["path_to_model"]) self.model = self.model.to(self.device) self.data_parallel = params.get("data_parallel") if self.data_parallel: self.model = torch.nn.DataParallel(self.model) def load_model(self, fname, cpu=False): if cpu: state_dict = torch.load(fname, map_location=lambda storage, location: "cpu") else: state_dict = torch.load(fname) self.model.load_state_dict(state_dict) def save(self, output_dir): self.save_model(output_dir) self.tokenizer.save_vocabulary(output_dir) def build_model(self): self.model = CrossEncoderModule(self.params, self.tokenizer) def save_model(self, output_dir): if not os.path.exists(output_dir): os.makedirs(output_dir) model_to_save = get_model_obj(self.model) output_model_file = os.path.join(output_dir, WEIGHTS_NAME) output_config_file = os.path.join(output_dir, CONFIG_NAME) torch.save(model_to_save.state_dict(), output_model_file) model_to_save.config.to_json_file(output_config_file) def get_optimizer(self, optim_states=None, saved_optim_type=None): return get_bert_optimizer( [self.model], self.params["type_optimization"], self.params["learning_rate"], fp16=self.params.get("fp16"), ) def score_candidate(self, text_vecs, context_len): # Encode contexts first num_cand = text_vecs.size(1) text_vecs = text_vecs.view(-1, text_vecs.size(-1)) token_idx_ctxt, segment_idx_ctxt, mask_ctxt = to_bert_input( text_vecs, self.NULL_IDX, context_len, ) embedding_ctxt = self.model(token_idx_ctxt, segment_idx_ctxt, mask_ctxt,) return embedding_ctxt.view(-1, num_cand) def forward(self, input_idx, label_input, context_len): scores = self.score_candidate(input_idx, context_len) loss = F.cross_entropy(scores, label_input, reduction="mean") return loss, scores def to_bert_input(token_idx, null_idx, segment_pos): """ token_idx is a 2D tensor int. return token_idx, segment_idx and mask """ segment_idx = token_idx * 0 if segment_pos > 0: segment_idx[:, segment_pos:] = token_idx[:, segment_pos:] > 0 mask = token_idx != null_idx # nullify elements in case self.NULL_IDX was not 0 # token_idx = token_idx * mask.long() return token_idx, segment_idx, mask
BLINK-main
blink/crossencoder/crossencoder.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch import sys import numpy as np from tqdm import tqdm import blink.biencoder.data_process as data from blink.common.params import ENT_START_TAG, ENT_END_TAG def prepare_crossencoder_mentions( tokenizer, samples, max_context_length=32, mention_key="mention", context_key="context", ent_start_token=ENT_START_TAG, ent_end_token=ENT_END_TAG, ): context_input_list = [] # samples X 128 for sample in tqdm(samples): context_tokens = data.get_context_representation( sample, tokenizer, max_context_length, mention_key, context_key, ent_start_token, ent_end_token, ) tokens_ids = context_tokens["ids"] context_input_list.append(tokens_ids) context_input_list = np.asarray(context_input_list) return context_input_list def prepare_crossencoder_candidates( tokenizer, labels, nns, id2title, id2text, max_cand_length=128, topk=100 ): START_TOKEN = tokenizer.cls_token END_TOKEN = tokenizer.sep_token candidate_input_list = [] # samples X topk=10 X 128 label_input_list = [] # samples idx = 0 for label, nn in zip(labels, nns): candidates = [] label_id = -1 for jdx, candidate_id in enumerate(nn[:topk]): if label == candidate_id: label_id = jdx rep = data.get_candidate_representation( id2text[candidate_id], tokenizer, max_cand_length, id2title[candidate_id], ) tokens_ids = rep["ids"] assert len(tokens_ids) == max_cand_length candidates.append(tokens_ids) label_input_list.append(label_id) candidate_input_list.append(candidates) idx += 1 sys.stdout.write("{}/{} \r".format(idx, len(labels))) sys.stdout.flush() label_input_list = np.asarray(label_input_list) candidate_input_list = np.asarray(candidate_input_list) return label_input_list, candidate_input_list def filter_crossencoder_tensor_input( context_input_list, label_input_list, candidate_input_list ): # remove the - 1 : examples for which gold is not among the candidates context_input_list_filtered = [ x for x, y, z in zip(context_input_list, candidate_input_list, label_input_list) if z != -1 ] label_input_list_filtered = [ z for x, y, z in zip(context_input_list, candidate_input_list, label_input_list) if z != -1 ] candidate_input_list_filtered = [ y for x, y, z in zip(context_input_list, candidate_input_list, label_input_list) if z != -1 ] return ( context_input_list_filtered, label_input_list_filtered, candidate_input_list_filtered, ) def prepare_crossencoder_data( tokenizer, samples, labels, nns, id2title, id2text, keep_all=False ): # encode mentions context_input_list = prepare_crossencoder_mentions(tokenizer, samples) # encode candidates (output of biencoder) label_input_list, candidate_input_list = prepare_crossencoder_candidates( tokenizer, labels, nns, id2title, id2text ) if not keep_all: # remove examples where the gold entity is not among the candidates ( context_input_list, label_input_list, candidate_input_list, ) = filter_crossencoder_tensor_input( context_input_list, label_input_list, candidate_input_list ) else: label_input_list = [0] * len(label_input_list) context_input = torch.LongTensor(context_input_list) label_input = torch.LongTensor(label_input_list) candidate_input = torch.LongTensor(candidate_input_list) return ( context_input, candidate_input, label_input, )
BLINK-main
blink/crossencoder/data_process.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import argparse import pickle import torch import json import sys import io import random import time import numpy as np from multiprocessing.pool import ThreadPool from tqdm import tqdm, trange from collections import OrderedDict from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from pytorch_transformers.file_utils import PYTORCH_PRETRAINED_BERT_CACHE from pytorch_transformers.optimization import WarmupLinearSchedule from pytorch_transformers.tokenization_bert import BertTokenizer import blink.candidate_retrieval.utils from blink.crossencoder.crossencoder import CrossEncoderRanker, load_crossencoder import logging import blink.candidate_ranking.utils as utils import blink.biencoder.data_process as data from blink.biencoder.zeshel_utils import DOC_PATH, WORLDS, world_to_id from blink.common.optimizer import get_bert_optimizer from blink.common.params import BlinkParser logger = None def modify(context_input, candidate_input, max_seq_length): new_input = [] context_input = context_input.tolist() candidate_input = candidate_input.tolist() for i in range(len(context_input)): cur_input = context_input[i] cur_candidate = candidate_input[i] mod_input = [] for j in range(len(cur_candidate)): # remove [CLS] token from candidate sample = cur_input + cur_candidate[j][1:] sample = sample[:max_seq_length] mod_input.append(sample) new_input.append(mod_input) return torch.LongTensor(new_input) def evaluate(reranker, eval_dataloader, device, logger, context_length, zeshel=False, silent=True): reranker.model.eval() if silent: iter_ = eval_dataloader else: iter_ = tqdm(eval_dataloader, desc="Evaluation") results = {} eval_accuracy = 0.0 nb_eval_examples = 0 nb_eval_steps = 0 acc = {} tot = {} world_size = len(WORLDS) for i in range(world_size): acc[i] = 0.0 tot[i] = 0.0 all_logits = [] cnt = 0 for step, batch in enumerate(iter_): if zeshel: src = batch[2] cnt += 1 batch = tuple(t.to(device) for t in batch) context_input = batch[0] label_input = batch[1] with torch.no_grad(): eval_loss, logits = reranker(context_input, label_input, context_length) logits = logits.detach().cpu().numpy() label_ids = label_input.cpu().numpy() tmp_eval_accuracy, eval_result = utils.accuracy(logits, label_ids) eval_accuracy += tmp_eval_accuracy all_logits.extend(logits) nb_eval_examples += context_input.size(0) if zeshel: for i in range(context_input.size(0)): src_w = src[i].item() acc[src_w] += eval_result[i] tot[src_w] += 1 nb_eval_steps += 1 normalized_eval_accuracy = -1 if nb_eval_examples > 0: normalized_eval_accuracy = eval_accuracy / nb_eval_examples if zeshel: macro = 0.0 num = 0.0 for i in range(len(WORLDS)): if acc[i] > 0: acc[i] /= tot[i] macro += acc[i] num += 1 if num > 0: logger.info("Macro accuracy: %.5f" % (macro / num)) logger.info("Micro accuracy: %.5f" % normalized_eval_accuracy) else: if logger: logger.info("Eval accuracy: %.5f" % normalized_eval_accuracy) results["normalized_accuracy"] = normalized_eval_accuracy results["logits"] = all_logits return results def get_optimizer(model, params): return get_bert_optimizer( [model], params["type_optimization"], params["learning_rate"], fp16=params.get("fp16"), ) def get_scheduler(params, optimizer, len_train_data, logger): batch_size = params["train_batch_size"] grad_acc = params["gradient_accumulation_steps"] epochs = params["num_train_epochs"] num_train_steps = int(len_train_data / batch_size / grad_acc) * epochs num_warmup_steps = int(num_train_steps * params["warmup_proportion"]) scheduler = WarmupLinearSchedule( optimizer, warmup_steps=num_warmup_steps, t_total=num_train_steps, ) logger.info(" Num optimization steps = %d" % num_train_steps) logger.info(" Num warmup steps = %d", num_warmup_steps) return scheduler def main(params): model_output_path = params["output_path"] if not os.path.exists(model_output_path): os.makedirs(model_output_path) logger = utils.get_logger(params["output_path"]) # Init model reranker = CrossEncoderRanker(params) tokenizer = reranker.tokenizer model = reranker.model # utils.save_model(model, tokenizer, model_output_path) device = reranker.device n_gpu = reranker.n_gpu if params["gradient_accumulation_steps"] < 1: raise ValueError( "Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format( params["gradient_accumulation_steps"] ) ) # An effective batch size of `x`, when we are accumulating the gradient accross `y` batches will be achieved by having a batch size of `z = x / y` # args.gradient_accumulation_steps = args.gradient_accumulation_steps // n_gpu params["train_batch_size"] = ( params["train_batch_size"] // params["gradient_accumulation_steps"] ) train_batch_size = params["train_batch_size"] eval_batch_size = params["eval_batch_size"] grad_acc_steps = params["gradient_accumulation_steps"] # Fix the random seeds seed = params["seed"] random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) if reranker.n_gpu > 0: torch.cuda.manual_seed_all(seed) max_seq_length = params["max_seq_length"] context_length = params["max_context_length"] fname = os.path.join(params["data_path"], "train.t7") train_data = torch.load(fname) context_input = train_data["context_vecs"] candidate_input = train_data["candidate_vecs"] label_input = train_data["labels"] if params["debug"]: max_n = 200 context_input = context_input[:max_n] candidate_input = candidate_input[:max_n] label_input = label_input[:max_n] context_input = modify(context_input, candidate_input, max_seq_length) if params["zeshel"]: src_input = train_data['worlds'][:len(context_input)] train_tensor_data = TensorDataset(context_input, label_input, src_input) else: train_tensor_data = TensorDataset(context_input, label_input) train_sampler = RandomSampler(train_tensor_data) train_dataloader = DataLoader( train_tensor_data, sampler=train_sampler, batch_size=params["train_batch_size"] ) fname = os.path.join(params["data_path"], "valid.t7") valid_data = torch.load(fname) context_input = valid_data["context_vecs"] candidate_input = valid_data["candidate_vecs"] label_input = valid_data["labels"] if params["debug"]: max_n = 200 context_input = context_input[:max_n] candidate_input = candidate_input[:max_n] label_input = label_input[:max_n] context_input = modify(context_input, candidate_input, max_seq_length) if params["zeshel"]: src_input = valid_data["worlds"][:len(context_input)] valid_tensor_data = TensorDataset(context_input, label_input, src_input) else: valid_tensor_data = TensorDataset(context_input, label_input) valid_sampler = SequentialSampler(valid_tensor_data) valid_dataloader = DataLoader( valid_tensor_data, sampler=valid_sampler, batch_size=params["eval_batch_size"] ) # evaluate before training results = evaluate( reranker, valid_dataloader, device=device, logger=logger, context_length=context_length, zeshel=params["zeshel"], silent=params["silent"], ) number_of_samples_per_dataset = {} time_start = time.time() utils.write_to_file( os.path.join(model_output_path, "training_params.txt"), str(params) ) logger.info("Starting training") logger.info( "device: {} n_gpu: {}, distributed training: {}".format(device, n_gpu, False) ) optimizer = get_optimizer(model, params) scheduler = get_scheduler(params, optimizer, len(train_tensor_data), logger) model.train() best_epoch_idx = -1 best_score = -1 num_train_epochs = params["num_train_epochs"] for epoch_idx in trange(int(num_train_epochs), desc="Epoch"): tr_loss = 0 results = None if params["silent"]: iter_ = train_dataloader else: iter_ = tqdm(train_dataloader, desc="Batch") part = 0 for step, batch in enumerate(iter_): batch = tuple(t.to(device) for t in batch) context_input = batch[0] label_input = batch[1] loss, _ = reranker(context_input, label_input, context_length) # if n_gpu > 1: # loss = loss.mean() # mean() to average on multi-gpu. if grad_acc_steps > 1: loss = loss / grad_acc_steps tr_loss += loss.item() if (step + 1) % (params["print_interval"] * grad_acc_steps) == 0: logger.info( "Step {} - epoch {} average loss: {}\n".format( step, epoch_idx, tr_loss / (params["print_interval"] * grad_acc_steps), ) ) tr_loss = 0 loss.backward() if (step + 1) % grad_acc_steps == 0: torch.nn.utils.clip_grad_norm_( model.parameters(), params["max_grad_norm"] ) optimizer.step() scheduler.step() optimizer.zero_grad() if (step + 1) % (params["eval_interval"] * grad_acc_steps) == 0: logger.info("Evaluation on the development dataset") evaluate( reranker, valid_dataloader, device=device, logger=logger, context_length=context_length, zeshel=params["zeshel"], silent=params["silent"], ) logger.info("***** Saving fine - tuned model *****") epoch_output_folder_path = os.path.join( model_output_path, "epoch_{}_{}".format(epoch_idx, part) ) part += 1 utils.save_model(model, tokenizer, epoch_output_folder_path) model.train() logger.info("\n") logger.info("***** Saving fine - tuned model *****") epoch_output_folder_path = os.path.join( model_output_path, "epoch_{}".format(epoch_idx) ) utils.save_model(model, tokenizer, epoch_output_folder_path) # reranker.save(epoch_output_folder_path) output_eval_file = os.path.join(epoch_output_folder_path, "eval_results.txt") results = evaluate( reranker, valid_dataloader, device=device, logger=logger, context_length=context_length, zeshel=params["zeshel"], silent=params["silent"], ) ls = [best_score, results["normalized_accuracy"]] li = [best_epoch_idx, epoch_idx] best_score = ls[np.argmax(ls)] best_epoch_idx = li[np.argmax(ls)] logger.info("\n") execution_time = (time.time() - time_start) / 60 utils.write_to_file( os.path.join(model_output_path, "training_time.txt"), "The training took {} minutes\n".format(execution_time), ) logger.info("The training took {} minutes\n".format(execution_time)) # save the best model in the parent_dir logger.info("Best performance in epoch: {}".format(best_epoch_idx)) params["path_to_model"] = os.path.join( model_output_path, "epoch_{}".format(best_epoch_idx) ) if __name__ == "__main__": parser = BlinkParser(add_model_args=True) parser.add_training_args() parser.add_eval_args() # args = argparse.Namespace(**params) args = parser.parse_args() print(args) params = args.__dict__ main(params)
BLINK-main
blink/crossencoder/train_cross.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import argparse import json import logging import os import torch from tqdm import tqdm from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from pytorch_transformers.tokenization_bert import BertTokenizer from blink.biencoder.biencoder import BiEncoderRanker import blink.biencoder.data_process as data import blink.biencoder.nn_prediction as nnquery import blink.candidate_ranking.utils as utils from blink.biencoder.zeshel_utils import WORLDS, load_entity_dict_zeshel, Stats from blink.common.params import BlinkParser def load_entity_dict(logger, params, is_zeshel): if is_zeshel: return load_entity_dict_zeshel(logger, params) path = params.get("entity_dict_path", None) assert path is not None, "Error! entity_dict_path is empty." entity_list = [] logger.info("Loading entity description from path: " + path) with open(path, 'rt') as f: for line in f: sample = json.loads(line.rstrip()) title = sample['title'] text = sample.get("text", "").strip() entity_list.append((title, text)) if params["debug"] and len(entity_list) > 200: break return entity_list # zeshel version of get candidate_pool_tensor def get_candidate_pool_tensor_zeshel( entity_dict, tokenizer, max_seq_length, logger, ): candidate_pool = {} for src in range(len(WORLDS)): if entity_dict.get(src, None) is None: continue logger.info("Get candidate desc to id for pool %s" % WORLDS[src]) candidate_pool[src] = get_candidate_pool_tensor( entity_dict[src], tokenizer, max_seq_length, logger, ) return candidate_pool def get_candidate_pool_tensor_helper( entity_desc_list, tokenizer, max_seq_length, logger, is_zeshel, ): if is_zeshel: return get_candidate_pool_tensor_zeshel( entity_desc_list, tokenizer, max_seq_length, logger, ) else: return get_candidate_pool_tensor( entity_desc_list, tokenizer, max_seq_length, logger, ) def get_candidate_pool_tensor( entity_desc_list, tokenizer, max_seq_length, logger, ): # TODO: add multiple thread process logger.info("Convert candidate text to id") cand_pool = [] for entity_desc in tqdm(entity_desc_list): if type(entity_desc) is tuple: title, entity_text = entity_desc else: title = None entity_text = entity_desc rep = data.get_candidate_representation( entity_text, tokenizer, max_seq_length, title, ) cand_pool.append(rep["ids"]) cand_pool = torch.LongTensor(cand_pool) return cand_pool def encode_candidate( reranker, candidate_pool, encode_batch_size, silent, logger, is_zeshel, ): if is_zeshel: src = 0 cand_encode_dict = {} for src, cand_pool in candidate_pool.items(): logger.info("Encoding candidate pool %s" % WORLDS[src]) cand_pool_encode = encode_candidate( reranker, cand_pool, encode_batch_size, silent, logger, is_zeshel=False, ) cand_encode_dict[src] = cand_pool_encode return cand_encode_dict reranker.model.eval() device = reranker.device sampler = SequentialSampler(candidate_pool) data_loader = DataLoader( candidate_pool, sampler=sampler, batch_size=encode_batch_size ) if silent: iter_ = data_loader else: iter_ = tqdm(data_loader) cand_encode_list = None for step, batch in enumerate(iter_): cands = batch cands = cands.to(device) cand_encode = reranker.encode_candidate(cands) if cand_encode_list is None: cand_encode_list = cand_encode else: cand_encode_list = torch.cat((cand_encode_list, cand_encode)) return cand_encode_list def load_or_generate_candidate_pool( tokenizer, params, logger, cand_pool_path, ): candidate_pool = None is_zeshel = params.get("zeshel", None) if cand_pool_path is not None: # try to load candidate pool from file try: logger.info("Loading pre-generated candidate pool from: ") logger.info(cand_pool_path) candidate_pool = torch.load(cand_pool_path) except: logger.info("Loading failed. Generating candidate pool") if candidate_pool is None: # compute candidate pool from entity list entity_desc_list = load_entity_dict(logger, params, is_zeshel) candidate_pool = get_candidate_pool_tensor_helper( entity_desc_list, tokenizer, params["max_cand_length"], logger, is_zeshel, ) if cand_pool_path is not None: logger.info("Saving candidate pool.") torch.save(candidate_pool, cand_pool_path) return candidate_pool def main(params): output_path = params["output_path"] if not os.path.exists(output_path): os.makedirs(output_path) logger = utils.get_logger(params["output_path"]) # Init model reranker = BiEncoderRanker(params) tokenizer = reranker.tokenizer model = reranker.model device = reranker.device cand_encode_path = params.get("cand_encode_path", None) # candidate encoding is not pre-computed. # load/generate candidate pool to compute candidate encoding. cand_pool_path = params.get("cand_pool_path", None) candidate_pool = load_or_generate_candidate_pool( tokenizer, params, logger, cand_pool_path, ) candidate_encoding = None if cand_encode_path is not None: # try to load candidate encoding from path # if success, avoid computing candidate encoding try: logger.info("Loading pre-generated candidate encode path.") candidate_encoding = torch.load(cand_encode_path) except: logger.info("Loading failed. Generating candidate encoding.") if candidate_encoding is None: candidate_encoding = encode_candidate( reranker, candidate_pool, params["encode_batch_size"], silent=params["silent"], logger=logger, is_zeshel=params.get("zeshel", None) ) if cand_encode_path is not None: # Save candidate encoding to avoid re-compute logger.info("Saving candidate encoding to file " + cand_encode_path) torch.save(candidate_encoding, cand_encode_path) test_samples = utils.read_dataset(params["mode"], params["data_path"]) logger.info("Read %d test samples." % len(test_samples)) test_data, test_tensor_data = data.process_mention_data( test_samples, tokenizer, params["max_context_length"], params["max_cand_length"], context_key=params['context_key'], silent=params["silent"], logger=logger, debug=params["debug"], ) test_sampler = SequentialSampler(test_tensor_data) test_dataloader = DataLoader( test_tensor_data, sampler=test_sampler, batch_size=params["eval_batch_size"] ) save_results = params.get("save_topk_result") new_data = nnquery.get_topk_predictions( reranker, test_dataloader, candidate_pool, candidate_encoding, params["silent"], logger, params["top_k"], params.get("zeshel", None), save_results, ) if save_results: save_data_dir = os.path.join( params['output_path'], "top%d_candidates" % params['top_k'], ) if not os.path.exists(save_data_dir): os.makedirs(save_data_dir) save_data_path = os.path.join(save_data_dir, "%s.t7" % params['mode']) torch.save(new_data, save_data_path) if __name__ == "__main__": parser = BlinkParser(add_model_args=True) parser.add_eval_args() args = parser.parse_args() print(args) params = args.__dict__ mode_list = params["mode"].split(',') for mode in mode_list: new_params = params new_params["mode"] = mode main(new_params)
BLINK-main
blink/biencoder/eval_biencoder.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # # Utility code for zeshel dataset import json import torch DOC_PATH = "/private/home/ledell/zeshel/data/documents/" WORLDS = [ 'american_football', 'doctor_who', 'fallout', 'final_fantasy', 'military', 'pro_wrestling', 'starwars', 'world_of_warcraft', 'coronation_street', 'muppets', 'ice_hockey', 'elder_scrolls', 'forgotten_realms', 'lego', 'star_trek', 'yugioh' ] world_to_id = {src : k for k, src in enumerate(WORLDS)} def load_entity_dict_zeshel(logger, params): entity_dict = {} # different worlds in train/valid/test if params["mode"] == "train": start_idx = 0 end_idx = 8 elif params["mode"] == "valid": start_idx = 8 end_idx = 12 else: start_idx = 12 end_idx = 16 # load data for i, src in enumerate(WORLDS[start_idx:end_idx]): fname = DOC_PATH + src + ".json" cur_dict = {} doc_list = [] src_id = world_to_id[src] with open(fname, 'rt') as f: for line in f: line = line.rstrip() item = json.loads(line) text = item["text"] doc_list.append(text[:256]) if params["debug"]: if len(doc_list) > 200: break logger.info("Load for world %s." % src) entity_dict[src_id] = doc_list return entity_dict class Stats(): def __init__(self, top_k=1000): self.cnt = 0 self.hits = [] self.top_k = top_k self.rank = [1, 4, 8, 16, 32, 64, 100, 128, 256, 512] self.LEN = len(self.rank) for i in range(self.LEN): self.hits.append(0) def add(self, idx): self.cnt += 1 if idx == -1: return for i in range(self.LEN): if idx < self.rank[i]: self.hits[i] += 1 def extend(self, stats): self.cnt += stats.cnt for i in range(self.LEN): self.hits[i] += stats.hits[i] def output(self): output_json = "Total: %d examples." % self.cnt for i in range(self.LEN): if self.top_k < self.rank[i]: break output_json += " r@%d: %.4f" % (self.rank[i], self.hits[i] / float(self.cnt)) return output_json
BLINK-main
blink/biencoder/zeshel_utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import json import logging import torch from tqdm import tqdm import blink.candidate_ranking.utils as utils from blink.biencoder.zeshel_utils import WORLDS, Stats def get_topk_predictions( reranker, train_dataloader, candidate_pool, cand_encode_list, silent, logger, top_k=10, is_zeshel=False, save_predictions=False, ): reranker.model.eval() device = reranker.device logger.info("Getting top %d predictions." % top_k) if silent: iter_ = train_dataloader else: iter_ = tqdm(train_dataloader) nn_context = [] nn_candidates = [] nn_labels = [] nn_worlds = [] stats = {} if is_zeshel: world_size = len(WORLDS) else: # only one domain world_size = 1 candidate_pool = [candidate_pool] cand_encode_list = [cand_encode_list] logger.info("World size : %d" % world_size) for i in range(world_size): stats[i] = Stats(top_k) oid = 0 for step, batch in enumerate(iter_): batch = tuple(t.to(device) for t in batch) context_input, _, srcs, label_ids = batch src = srcs[0].item() scores = reranker.score_candidate( context_input, None, cand_encs=cand_encode_list[src].to(device) ) values, indicies = scores.topk(top_k) old_src = src for i in range(context_input.size(0)): oid += 1 inds = indicies[i] if srcs[i] != old_src: src = srcs[i].item() # not the same domain, need to re-do new_scores = reranker.score_candidate( context_input[[i]], None, cand_encs=cand_encode_list[src].to(device) ) _, inds = new_scores.topk(top_k) inds = inds[0] pointer = -1 for j in range(top_k): if inds[j].item() == label_ids[i].item(): pointer = j break stats[src].add(pointer) if pointer == -1: continue if not save_predictions: continue # add examples in new_data cur_candidates = candidate_pool[src][inds] nn_context.append(context_input[i].cpu().tolist()) nn_candidates.append(cur_candidates.cpu().tolist()) nn_labels.append(pointer) nn_worlds.append(src) res = Stats(top_k) for src in range(world_size): if stats[src].cnt == 0: continue if is_zeshel: logger.info("In world " + WORLDS[src]) output = stats[src].output() logger.info(output) res.extend(stats[src]) logger.info(res.output()) nn_context = torch.LongTensor(nn_context) nn_candidates = torch.LongTensor(nn_candidates) nn_labels = torch.LongTensor(nn_labels) nn_data = { 'context_vecs': nn_context, 'candidate_vecs': nn_candidates, 'labels': nn_labels, } if is_zeshel: nn_data["worlds"] = torch.LongTensor(nn_worlds) return nn_data
BLINK-main
blink/biencoder/nn_prediction.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. #
BLINK-main
blink/biencoder/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import logging import torch from tqdm import tqdm, trange from torch.utils.data import DataLoader, TensorDataset from pytorch_transformers.tokenization_bert import BertTokenizer from blink.biencoder.zeshel_utils import world_to_id from blink.common.params import ENT_START_TAG, ENT_END_TAG, ENT_TITLE_TAG def select_field(data, key1, key2=None): if key2 is None: return [example[key1] for example in data] else: return [example[key1][key2] for example in data] def get_context_representation( sample, tokenizer, max_seq_length, mention_key="mention", context_key="context", ent_start_token=ENT_START_TAG, ent_end_token=ENT_END_TAG, ): mention_tokens = [] if sample[mention_key] and len(sample[mention_key]) > 0: mention_tokens = tokenizer.tokenize(sample[mention_key]) mention_tokens = [ent_start_token] + mention_tokens + [ent_end_token] context_left = sample[context_key + "_left"] context_right = sample[context_key + "_right"] context_left = tokenizer.tokenize(context_left) context_right = tokenizer.tokenize(context_right) left_quota = (max_seq_length - len(mention_tokens)) // 2 - 1 right_quota = max_seq_length - len(mention_tokens) - left_quota - 2 left_add = len(context_left) right_add = len(context_right) if left_add <= left_quota: if right_add > right_quota: right_quota += left_quota - left_add else: if right_add <= right_quota: left_quota += right_quota - right_add context_tokens = ( context_left[-left_quota:] + mention_tokens + context_right[:right_quota] ) context_tokens = ["[CLS]"] + context_tokens + ["[SEP]"] input_ids = tokenizer.convert_tokens_to_ids(context_tokens) padding = [0] * (max_seq_length - len(input_ids)) input_ids += padding assert len(input_ids) == max_seq_length return { "tokens": context_tokens, "ids": input_ids, } def get_candidate_representation( candidate_desc, tokenizer, max_seq_length, candidate_title=None, title_tag=ENT_TITLE_TAG, ): cls_token = tokenizer.cls_token sep_token = tokenizer.sep_token cand_tokens = tokenizer.tokenize(candidate_desc) if candidate_title is not None: title_tokens = tokenizer.tokenize(candidate_title) cand_tokens = title_tokens + [title_tag] + cand_tokens cand_tokens = cand_tokens[: max_seq_length - 2] cand_tokens = [cls_token] + cand_tokens + [sep_token] input_ids = tokenizer.convert_tokens_to_ids(cand_tokens) padding = [0] * (max_seq_length - len(input_ids)) input_ids += padding assert len(input_ids) == max_seq_length return { "tokens": cand_tokens, "ids": input_ids, } def process_mention_data( samples, tokenizer, max_context_length, max_cand_length, silent, mention_key="mention", context_key="context", label_key="label", title_key='label_title', ent_start_token=ENT_START_TAG, ent_end_token=ENT_END_TAG, title_token=ENT_TITLE_TAG, debug=False, logger=None, ): processed_samples = [] if debug: samples = samples[:200] if silent: iter_ = samples else: iter_ = tqdm(samples) use_world = True for idx, sample in enumerate(iter_): context_tokens = get_context_representation( sample, tokenizer, max_context_length, mention_key, context_key, ent_start_token, ent_end_token, ) label = sample[label_key] title = sample.get(title_key, None) label_tokens = get_candidate_representation( label, tokenizer, max_cand_length, title, ) label_idx = int(sample["label_id"]) record = { "context": context_tokens, "label": label_tokens, "label_idx": [label_idx], } if "world" in sample: src = sample["world"] src = world_to_id[src] record["src"] = [src] use_world = True else: use_world = False processed_samples.append(record) if debug and logger: logger.info("====Processed samples: ====") for sample in processed_samples[:5]: logger.info("Context tokens : " + " ".join(sample["context"]["tokens"])) logger.info( "Context ids : " + " ".join([str(v) for v in sample["context"]["ids"]]) ) logger.info("Label tokens : " + " ".join(sample["label"]["tokens"])) logger.info( "Label ids : " + " ".join([str(v) for v in sample["label"]["ids"]]) ) logger.info("Src : %d" % sample["src"][0]) logger.info("Label_id : %d" % sample["label_idx"][0]) context_vecs = torch.tensor( select_field(processed_samples, "context", "ids"), dtype=torch.long, ) cand_vecs = torch.tensor( select_field(processed_samples, "label", "ids"), dtype=torch.long, ) if use_world: src_vecs = torch.tensor( select_field(processed_samples, "src"), dtype=torch.long, ) label_idx = torch.tensor( select_field(processed_samples, "label_idx"), dtype=torch.long, ) data = { "context_vecs": context_vecs, "cand_vecs": cand_vecs, "label_idx": label_idx, } if use_world: data["src"] = src_vecs tensor_data = TensorDataset(context_vecs, cand_vecs, src_vecs, label_idx) else: tensor_data = TensorDataset(context_vecs, cand_vecs, label_idx) return data, tensor_data
BLINK-main
blink/biencoder/data_process.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import argparse import pickle import torch import json import sys import io import random import time import numpy as np from multiprocessing.pool import ThreadPool from tqdm import tqdm, trange from collections import OrderedDict from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from pytorch_transformers.file_utils import PYTORCH_PRETRAINED_BERT_CACHE from pytorch_transformers.optimization import WarmupLinearSchedule from pytorch_transformers.tokenization_bert import BertTokenizer from pytorch_transformers.modeling_utils import WEIGHTS_NAME from blink.biencoder.biencoder import BiEncoderRanker, load_biencoder import logging import blink.candidate_ranking.utils as utils import blink.biencoder.data_process as data from blink.biencoder.zeshel_utils import DOC_PATH, WORLDS, world_to_id from blink.common.optimizer import get_bert_optimizer from blink.common.params import BlinkParser logger = None # The evaluate function during training uses in-batch negatives: # for a batch of size B, the labels from the batch are used as label candidates # B is controlled by the parameter eval_batch_size def evaluate( reranker, eval_dataloader, params, device, logger, ): reranker.model.eval() if params["silent"]: iter_ = eval_dataloader else: iter_ = tqdm(eval_dataloader, desc="Evaluation") results = {} eval_accuracy = 0.0 nb_eval_examples = 0 nb_eval_steps = 0 for step, batch in enumerate(iter_): batch = tuple(t.to(device) for t in batch) context_input, candidate_input, _, _ = batch with torch.no_grad(): eval_loss, logits = reranker(context_input, candidate_input) logits = logits.detach().cpu().numpy() # Using in-batch negatives, the label ids are diagonal label_ids = torch.LongTensor( torch.arange(params["eval_batch_size"]) ).numpy() tmp_eval_accuracy, _ = utils.accuracy(logits, label_ids) eval_accuracy += tmp_eval_accuracy nb_eval_examples += context_input.size(0) nb_eval_steps += 1 normalized_eval_accuracy = eval_accuracy / nb_eval_examples logger.info("Eval accuracy: %.5f" % normalized_eval_accuracy) results["normalized_accuracy"] = normalized_eval_accuracy return results def get_optimizer(model, params): return get_bert_optimizer( [model], params["type_optimization"], params["learning_rate"], fp16=params.get("fp16"), ) def get_scheduler(params, optimizer, len_train_data, logger): batch_size = params["train_batch_size"] grad_acc = params["gradient_accumulation_steps"] epochs = params["num_train_epochs"] num_train_steps = int(len_train_data / batch_size / grad_acc) * epochs num_warmup_steps = int(num_train_steps * params["warmup_proportion"]) scheduler = WarmupLinearSchedule( optimizer, warmup_steps=num_warmup_steps, t_total=num_train_steps, ) logger.info(" Num optimization steps = %d" % num_train_steps) logger.info(" Num warmup steps = %d", num_warmup_steps) return scheduler def main(params): model_output_path = params["output_path"] if not os.path.exists(model_output_path): os.makedirs(model_output_path) logger = utils.get_logger(params["output_path"]) # Init model reranker = BiEncoderRanker(params) tokenizer = reranker.tokenizer model = reranker.model device = reranker.device n_gpu = reranker.n_gpu if params["gradient_accumulation_steps"] < 1: raise ValueError( "Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format( params["gradient_accumulation_steps"] ) ) # An effective batch size of `x`, when we are accumulating the gradient accross `y` batches will be achieved by having a batch size of `z = x / y` # args.gradient_accumulation_steps = args.gradient_accumulation_steps // n_gpu params["train_batch_size"] = ( params["train_batch_size"] // params["gradient_accumulation_steps"] ) train_batch_size = params["train_batch_size"] eval_batch_size = params["eval_batch_size"] grad_acc_steps = params["gradient_accumulation_steps"] # Fix the random seeds seed = params["seed"] random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) if reranker.n_gpu > 0: torch.cuda.manual_seed_all(seed) # Load train data train_samples = utils.read_dataset("train", params["data_path"]) logger.info("Read %d train samples." % len(train_samples)) train_data, train_tensor_data = data.process_mention_data( train_samples, tokenizer, params["max_context_length"], params["max_cand_length"], context_key=params["context_key"], silent=params["silent"], logger=logger, debug=params["debug"], ) if params["shuffle"]: train_sampler = RandomSampler(train_tensor_data) else: train_sampler = SequentialSampler(train_tensor_data) train_dataloader = DataLoader( train_tensor_data, sampler=train_sampler, batch_size=train_batch_size ) # Load eval data # TODO: reduce duplicated code here valid_samples = utils.read_dataset("valid", params["data_path"]) logger.info("Read %d valid samples." % len(valid_samples)) valid_data, valid_tensor_data = data.process_mention_data( valid_samples, tokenizer, params["max_context_length"], params["max_cand_length"], context_key=params["context_key"], silent=params["silent"], logger=logger, debug=params["debug"], ) valid_sampler = SequentialSampler(valid_tensor_data) valid_dataloader = DataLoader( valid_tensor_data, sampler=valid_sampler, batch_size=eval_batch_size ) # evaluate before training results = evaluate( reranker, valid_dataloader, params, device=device, logger=logger, ) number_of_samples_per_dataset = {} time_start = time.time() utils.write_to_file( os.path.join(model_output_path, "training_params.txt"), str(params) ) logger.info("Starting training") logger.info( "device: {} n_gpu: {}, distributed training: {}".format(device, n_gpu, False) ) optimizer = get_optimizer(model, params) scheduler = get_scheduler(params, optimizer, len(train_tensor_data), logger) model.train() best_epoch_idx = -1 best_score = -1 num_train_epochs = params["num_train_epochs"] for epoch_idx in trange(int(num_train_epochs), desc="Epoch"): tr_loss = 0 results = None if params["silent"]: iter_ = train_dataloader else: iter_ = tqdm(train_dataloader, desc="Batch") for step, batch in enumerate(iter_): batch = tuple(t.to(device) for t in batch) context_input, candidate_input, _, _ = batch loss, _ = reranker(context_input, candidate_input) # if n_gpu > 1: # loss = loss.mean() # mean() to average on multi-gpu. if grad_acc_steps > 1: loss = loss / grad_acc_steps tr_loss += loss.item() if (step + 1) % (params["print_interval"] * grad_acc_steps) == 0: logger.info( "Step {} - epoch {} average loss: {}\n".format( step, epoch_idx, tr_loss / (params["print_interval"] * grad_acc_steps), ) ) tr_loss = 0 loss.backward() if (step + 1) % grad_acc_steps == 0: torch.nn.utils.clip_grad_norm_( model.parameters(), params["max_grad_norm"] ) optimizer.step() scheduler.step() optimizer.zero_grad() if (step + 1) % (params["eval_interval"] * grad_acc_steps) == 0: logger.info("Evaluation on the development dataset") evaluate( reranker, valid_dataloader, params, device=device, logger=logger, ) model.train() logger.info("\n") logger.info("***** Saving fine - tuned model *****") epoch_output_folder_path = os.path.join( model_output_path, "epoch_{}".format(epoch_idx) ) utils.save_model(model, tokenizer, epoch_output_folder_path) output_eval_file = os.path.join(epoch_output_folder_path, "eval_results.txt") results = evaluate( reranker, valid_dataloader, params, device=device, logger=logger, ) ls = [best_score, results["normalized_accuracy"]] li = [best_epoch_idx, epoch_idx] best_score = ls[np.argmax(ls)] best_epoch_idx = li[np.argmax(ls)] logger.info("\n") execution_time = (time.time() - time_start) / 60 utils.write_to_file( os.path.join(model_output_path, "training_time.txt"), "The training took {} minutes\n".format(execution_time), ) logger.info("The training took {} minutes\n".format(execution_time)) # save the best model in the parent_dir logger.info("Best performance in epoch: {}".format(best_epoch_idx)) params["path_to_model"] = os.path.join( model_output_path, "epoch_{}".format(best_epoch_idx), WEIGHTS_NAME, ) reranker = load_biencoder(params) utils.save_model(reranker.model, tokenizer, model_output_path) if params["evaluate"]: params["path_to_model"] = model_output_path evaluate(params, logger=logger) if __name__ == "__main__": parser = BlinkParser(add_model_args=True) parser.add_training_args() parser.add_eval_args() # args = argparse.Namespace(**params) args = parser.parse_args() print(args) params = args.__dict__ main(params)
BLINK-main
blink/biencoder/train_biencoder.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from tqdm import tqdm from pytorch_transformers.modeling_bert import ( BertPreTrainedModel, BertConfig, BertModel, ) from pytorch_transformers.tokenization_bert import BertTokenizer from blink.common.ranker_base import BertEncoder, get_model_obj from blink.common.optimizer import get_bert_optimizer def load_biencoder(params): # Init model biencoder = BiEncoderRanker(params) return biencoder class BiEncoderModule(torch.nn.Module): def __init__(self, params): super(BiEncoderModule, self).__init__() ctxt_bert = BertModel.from_pretrained(params["bert_model"]) cand_bert = BertModel.from_pretrained(params['bert_model']) self.context_encoder = BertEncoder( ctxt_bert, params["out_dim"], layer_pulled=params["pull_from_layer"], add_linear=params["add_linear"], ) self.cand_encoder = BertEncoder( cand_bert, params["out_dim"], layer_pulled=params["pull_from_layer"], add_linear=params["add_linear"], ) self.config = ctxt_bert.config def forward( self, token_idx_ctxt, segment_idx_ctxt, mask_ctxt, token_idx_cands, segment_idx_cands, mask_cands, ): embedding_ctxt = None if token_idx_ctxt is not None: embedding_ctxt = self.context_encoder( token_idx_ctxt, segment_idx_ctxt, mask_ctxt ) embedding_cands = None if token_idx_cands is not None: embedding_cands = self.cand_encoder( token_idx_cands, segment_idx_cands, mask_cands ) return embedding_ctxt, embedding_cands class BiEncoderRanker(torch.nn.Module): def __init__(self, params, shared=None): super(BiEncoderRanker, self).__init__() self.params = params self.device = torch.device( "cuda" if torch.cuda.is_available() and not params["no_cuda"] else "cpu" ) self.n_gpu = torch.cuda.device_count() # init tokenizer self.NULL_IDX = 0 self.START_TOKEN = "[CLS]" self.END_TOKEN = "[SEP]" self.tokenizer = BertTokenizer.from_pretrained( params["bert_model"], do_lower_case=params["lowercase"] ) # init model self.build_model() model_path = params.get("path_to_model", None) if model_path is not None: self.load_model(model_path) self.model = self.model.to(self.device) self.data_parallel = params.get("data_parallel") if self.data_parallel: self.model = torch.nn.DataParallel(self.model) def load_model(self, fname, cpu=False): if cpu: state_dict = torch.load(fname, map_location=lambda storage, location: "cpu") else: state_dict = torch.load(fname) self.model.load_state_dict(state_dict) def build_model(self): self.model = BiEncoderModule(self.params) def save_model(self, output_dir): if not os.path.exists(output_dir): os.makedirs(output_dir) model_to_save = get_model_obj(self.model) output_model_file = os.path.join(output_dir, WEIGHTS_NAME) output_config_file = os.path.join(output_dir, CONFIG_NAME) torch.save(model_to_save.state_dict(), output_model_file) model_to_save.config.to_json_file(output_config_file) def get_optimizer(self, optim_states=None, saved_optim_type=None): return get_bert_optimizer( [self.model], self.params["type_optimization"], self.params["learning_rate"], fp16=self.params.get("fp16"), ) def encode_context(self, cands): token_idx_cands, segment_idx_cands, mask_cands = to_bert_input( cands, self.NULL_IDX ) embedding_context, _ = self.model( token_idx_cands, segment_idx_cands, mask_cands, None, None, None ) return embedding_context.cpu().detach() def encode_candidate(self, cands): token_idx_cands, segment_idx_cands, mask_cands = to_bert_input( cands, self.NULL_IDX ) _, embedding_cands = self.model( None, None, None, token_idx_cands, segment_idx_cands, mask_cands ) return embedding_cands.cpu().detach() # TODO: why do we need cpu here? # return embedding_cands # Score candidates given context input and label input # If cand_encs is provided (pre-computed), cand_ves is ignored def score_candidate( self, text_vecs, cand_vecs, random_negs=True, cand_encs=None, # pre-computed candidate encoding. ): # Encode contexts first token_idx_ctxt, segment_idx_ctxt, mask_ctxt = to_bert_input( text_vecs, self.NULL_IDX ) embedding_ctxt, _ = self.model( token_idx_ctxt, segment_idx_ctxt, mask_ctxt, None, None, None ) # Candidate encoding is given, do not need to re-compute # Directly return the score of context encoding and candidate encoding if cand_encs is not None: return embedding_ctxt.mm(cand_encs.t()) # Train time. We compare with all elements of the batch token_idx_cands, segment_idx_cands, mask_cands = to_bert_input( cand_vecs, self.NULL_IDX ) _, embedding_cands = self.model( None, None, None, token_idx_cands, segment_idx_cands, mask_cands ) if random_negs: # train on random negatives return embedding_ctxt.mm(embedding_cands.t()) else: # train on hard negatives embedding_ctxt = embedding_ctxt.unsqueeze(1) # batchsize x 1 x embed_size embedding_cands = embedding_cands.unsqueeze(2) # batchsize x embed_size x 2 scores = torch.bmm(embedding_ctxt, embedding_cands) # batchsize x 1 x 1 scores = torch.squeeze(scores) return scores # label_input -- negatives provided # If label_input is None, train on in-batch negatives def forward(self, context_input, cand_input, label_input=None): flag = label_input is None scores = self.score_candidate(context_input, cand_input, flag) bs = scores.size(0) if label_input is None: target = torch.LongTensor(torch.arange(bs)) target = target.to(self.device) loss = F.cross_entropy(scores, target, reduction="mean") else: loss_fct = nn.BCEWithLogitsLoss(reduction="mean") # TODO: add parameters? loss = loss_fct(scores, label_input) return loss, scores def to_bert_input(token_idx, null_idx): """ token_idx is a 2D tensor int. return token_idx, segment_idx and mask """ segment_idx = token_idx * 0 mask = token_idx != null_idx # nullify elements in case self.NULL_IDX was not 0 token_idx = token_idx * mask.long() return token_idx, segment_idx, mask
BLINK-main
blink/biencoder/biencoder.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch import os import numpy as np from pytorch_transformers.modeling_bert import ( BertPreTrainedModel, BertConfig, BertModel, ) from pytorch_transformers.tokenization_bert import BertTokenizer from torch.utils.data import DataLoader, SequentialSampler, TensorDataset from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from tqdm import tqdm from pytorch_transformers.optimization import AdamW, WarmupLinearSchedule from pytorch_transformers.file_utils import PYTORCH_PRETRAINED_BERT_CACHE class BertForReranking(BertPreTrainedModel): r""" Inputs: **input_ids**: ``torch.LongTensor`` of shape ``(batch_size, num_choices, sequence_length)``: Indices of input sequence tokens in the vocabulary. The second dimension of the input (`num_choices`) indicates the number of choices to score. To match pre-training, BERT input sequence should be formatted with [CLS] and [SEP] tokens as follows: (a) For sequence pairs: ``tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]`` ``token_type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1`` (b) For single sequences: ``tokens: [CLS] the dog is hairy . [SEP]`` ``token_type_ids: 0 0 0 0 0 0 0`` Indices can be obtained using :class:`pytorch_transformers.BertTokenizer`. See :func:`pytorch_transformers.PreTrainedTokenizer.encode` and :func:`pytorch_transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details. **token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, num_choices, sequence_length)``: Segment token indices to indicate first and second portions of the inputs. The second dimension of the input (`num_choices`) indicates the number of choices to score. Indices are selected in ``[0, 1]``: ``0`` corresponds to a `sentence A` token, ``1`` corresponds to a `sentence B` token (see `BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding`_ for more details). **attention_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, num_choices, sequence_length)``: Mask to avoid performing attention on padding token indices. The second dimension of the input (`num_choices`) indicates the number of choices to score. Mask values selected in ``[0, 1]``: ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens. **head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``: Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``: ``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**. **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``: Labels for computing the multiple choice classification loss. Indices should be in ``[0, ..., num_choices]`` where `num_choices` is the size of the second dimension of the input tensors. (see `input_ids` above) Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: Classification loss. **classification_scores**: ``torch.FloatTensor`` of shape ``(batch_size, num_choices)`` where `num_choices` is the size of the second dimension of the input tensors. (see `input_ids` above). Classification scores (before SoftMax). **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) of shape ``(batch_size, sequence_length, hidden_size)``: Hidden-states of the model at the output of each layer plus the initial embedding outputs. **attentions**: (`optional`, returned when ``config.output_attentions=True``) list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertForMultipleChoice.from_pretrained('bert-base-uncased') choices = ["Hello, my dog is cute", "Hello, my cat is amazing"] input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0) # Batch size 1, 2 choices labels = torch.tensor(1).unsqueeze(0) # Batch size 1 outputs = model(input_ids, labels=labels) loss, classification_scores = outputs[:2] """ def __init__(self, config): super(BertForReranking, self).__init__(config) self.bert = BertModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, 1) self.init_weights() def forward( self, input_ids, token_type_ids=None, attention_mask=None, labels=None, position_ids=None, head_mask=None, entity_mask=None, ): num_choices = input_ids.shape[1] # from batch_size x cands x tokens -> (batch_size x cands) x tokens flat_input_ids = input_ids.view(-1, input_ids.size(-1)) flat_token_type_ids = ( token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None ) flat_attention_mask = ( attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None ) flat_position_ids = ( position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None ) outputs = self.bert( flat_input_ids, position_ids=flat_position_ids, token_type_ids=flat_token_type_ids, attention_mask=flat_attention_mask, head_mask=head_mask, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, num_choices) entity_mask = (1.0 - entity_mask) * -1000.0 reshaped_logits = reshaped_logits + entity_mask outputs = (reshaped_logits,) if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) outputs = (loss,) + outputs return outputs class BertReranker: def __init__(self, parameters): if "path_to_model" not in parameters: parameters["path_to_model"] = parameters["bert_model"] self.parameters = parameters self.device = torch.device( "cuda" if torch.cuda.is_available() and not parameters["no_cuda"] else "cpu" ) self.n_gpu = torch.cuda.device_count() # Load the fine-tuned model and the tokenizer used by it self.model = BertReranker.get_model(parameters) self.model.to(self.device) self.tokenizer = BertReranker.get_tokenizer(parameters) print("The reranking model is loaded") def rerank(self, mentions, sentences): model = self.model tokenizer = self.tokenizer p = self.parameters device = self.device data, tensor_data = BertReranker._process_mentions_for_model( p["context_key"], mentions, tokenizer, p["max_seq_length"], p["top_k"], p["silent"], sentences=sentences, ) sampler = SequentialSampler(tensor_data) dataloader = DataLoader( tensor_data, sampler=sampler, batch_size=p["evaluation_batch_size"] ) softmax = torch.nn.Softmax(dim=1) for input_ids, input_mask, segment_ids, mention_ids, entity_mask in tqdm( dataloader, desc="Inferring" ): input_ids = input_ids.to(device) input_mask = input_mask.to(device) segment_ids = segment_ids.to(device) mention_ids = mention_ids.numpy() entity_mask = entity_mask.to(device) with torch.no_grad(): logits = self.model( input_ids, segment_ids, input_mask, entity_mask=entity_mask )[0] probs = softmax(logits) logits = logits.detach().cpu().numpy() probs = probs.detach().cpu().numpy() predictions = np.argmax(logits, axis=1) for idx, mention_idx in enumerate(mention_ids): pred = predictions[idx].item() mentions[mention_idx]["predicted_candidate_idx"] = pred mentions[mention_idx]["prob_assigned_to_candidate"] = probs[idx][ pred ].item() return mentions def get_scheduler_and_optimizer(self, parameters, train_tensor_data, logger): model = self.model num_train_optimization_steps = ( int( len(train_tensor_data) / parameters["train_batch_size"] / parameters["gradient_accumulation_steps"] ) * parameters["num_train_epochs"] ) num_warmup_steps = int( num_train_optimization_steps * parameters["warmup_proportion"] ) param_optimizer = list(model.named_parameters()) param_optimizer = [n for n in param_optimizer] no_decay = ["bias", "LayerNorm.bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ { "params": [ p for n, p in param_optimizer if not any(nd in n for nd in no_decay) ], "weight_decay": 0.01, }, { "params": [ p for n, p in param_optimizer if any(nd in n for nd in no_decay) ], "weight_decay": 0.0, }, ] optimizer = AdamW( optimizer_grouped_parameters, lr=parameters["learning_rate"], correct_bias=False, ) scheduler = WarmupLinearSchedule( optimizer, warmup_steps=num_warmup_steps, t_total=num_train_optimization_steps, ) logger.info(" Num optimization steps = %d", num_train_optimization_steps) logger.info(" Num warmup steps = %d", num_warmup_steps) return optimizer, scheduler @staticmethod def get_model(parameters): model = BertForReranking.from_pretrained( parameters["path_to_model"], num_labels=parameters["top_k"], cache_dir=os.path.join(str(PYTORCH_PRETRAINED_BERT_CACHE), "local"), ) if parameters["dataparallel_bert"]: model.bert = torch.nn.DataParallel(model.bert) print("Data parallel Bert") return model @staticmethod def get_tokenizer(parameters): tokenizer = BertTokenizer.from_pretrained( parameters["path_to_model"], do_lower_case=parameters["lowercase_flag"] ) return tokenizer @staticmethod def _get_candidate_representation( context_tokens, candidate_desc, tokenizer, max_seq_length, max_sub_seq_length ): """Tokenizes and truncates description; combines it with the tokenized context and generates one input sample for bert""" candidate_desc_tokens = tokenizer.tokenize(candidate_desc) candidate_desc_tokens = candidate_desc_tokens[:max_sub_seq_length] tokens = ( ["[CLS]"] + context_tokens + ["[SEP]"] + candidate_desc_tokens + ["[SEP]"] ) segment_ids = [0] * (len(context_tokens) + 2) + [1] * ( len(candidate_desc_tokens) + 1 ) input_ids = tokenizer.convert_tokens_to_ids(tokens) input_mask = [1] * len(input_ids) # Zero-pad up to the sequence length padding = [0] * (max_seq_length - len(input_ids)) input_ids += padding input_mask += padding segment_ids += padding assert len(input_ids) == max_seq_length assert len(input_mask) == max_seq_length assert len(segment_ids) == max_seq_length return { "tokens": tokens, "input_ids": input_ids, "input_mask": input_mask, "segment_ids": segment_ids, } @staticmethod def _get_mention_context_end2end(mention, sentences): """Given a mention and a list of sentences that follow the blink conventions, it returns a left and right context for the mention""" sent_idx = mention["sent_idx"] prev_sent = sentences[sent_idx - 1] if sent_idx > 0 else "" next_sent = sentences[sent_idx + 1] if sent_idx + 1 < len(sentences) else "" prev_sent = sentences[sent_idx - 1] if False else "" next_sent = sentences[sent_idx + 1] if False else "" sent = sentences[sent_idx] curr_sent_prev = sent[: mention["start_pos"]].strip() curr_sent_next = sent[mention["end_pos"] :].strip() left_context = "{} {}".format(prev_sent, curr_sent_prev).strip() right_context = "{} {}".format(curr_sent_next, next_sent).strip() return (left_context, right_context) @staticmethod def _select_field(samples, field): """Helper function that returns a list of lists, each of which contains the information for all candidates for each sample""" return [ [cand[field] for cand in sample["candidate_features"]] for sample in samples ] @staticmethod def _get_context_token_representation( context_key, sample, tokenizer, max_sub_seq_length, start_token, end_token, mention_text_key="text", tagged=True, ): """Tags the mention, trims the context and concatenates everything to form the context representation""" mention_tokens = ( [start_token] + tokenizer.tokenize(sample[mention_text_key]) + [end_token] ) max_sub_seq_length = (max_sub_seq_length - len(mention_tokens)) // 2 context_left, context_right = sample[context_key] context_left = tokenizer.tokenize(context_left) context_right = tokenizer.tokenize(context_right) if len(context_left) > max_sub_seq_length: context_left = context_left[-max_sub_seq_length:] if len(context_right) > max_sub_seq_length: context_right = context_right[:max_sub_seq_length] context_tokens = context_left + mention_tokens + context_right return context_tokens @staticmethod def _process_mentions_for_model( context_key, mentions, tokenizer, max_seq_length, top_k, silent, start_token="[unused0]", end_token="[unused1]", debug=False, tagged=True, sentences=None, candidates_key="candidates", gold_key="gold_pos", logger=None, ): processed_mentions = [] if debug: mentions = mentions[:200] max_sub_seq_length = (max_seq_length - 3) // 2 if silent: iter_ = mentions else: iter_ = tqdm(mentions) for idx, mention in enumerate(iter_): # if sentences is not none that means that we are processing end2end data for inference if sentences is not None: mention[context_key] = BertReranker._get_mention_context_end2end( mention, sentences ) context_tokens = BertReranker._get_context_token_representation( context_key, mention, tokenizer, max_sub_seq_length, start_token, end_token, ) candidates = mention[candidates_key] candidate_features = [] for candidate in candidates[:top_k]: candidate_desc = " ".join(candidate["sentences"]) candidate_obj = BertReranker._get_candidate_representation( context_tokens, candidate_desc, tokenizer, max_seq_length, max_sub_seq_length, ) candidate_features.append(candidate_obj) entity_mask = [1] * len(candidate_features) + [0] * ( top_k - len(candidate_features) ) if len(candidates) < top_k: candidate_desc = "" padding_candidate_obj = BertReranker._get_candidate_representation( context_tokens, candidate_desc, tokenizer, max_seq_length, max_sub_seq_length, ) for _ in range(top_k - len(candidates)): candidate_features.append(padding_candidate_obj) assert len(candidate_features) == top_k assert len(entity_mask) == top_k if sentences is not None: processed_mentions.append( { "candidate_features": candidate_features, "mention_idx": idx, "entity_mask": entity_mask, } ) else: label = mention[gold_key] - 1 processed_mentions.append( { "candidate_features": candidate_features, "label": label, "entity_mask": entity_mask, } ) all_input_ids = torch.tensor( BertReranker._select_field(processed_mentions, "input_ids"), dtype=torch.long, ) all_input_mask = torch.tensor( BertReranker._select_field(processed_mentions, "input_mask"), dtype=torch.long, ) all_segment_ids = torch.tensor( BertReranker._select_field(processed_mentions, "segment_ids"), dtype=torch.long, ) all_entity_masks = torch.tensor( [s["entity_mask"] for s in processed_mentions], dtype=torch.float ) data = { "all_input_ids": all_input_ids, "all_input_mask": all_input_mask, "all_segment_ids": all_segment_ids, "all_entity_masks": all_entity_masks, } if sentences is not None: all_mention_indices = torch.tensor( [s["mention_idx"] for s in processed_mentions], dtype=torch.long ) data["all_mention_indices"] = all_mention_indices tensor_data = TensorDataset( all_input_ids, all_input_mask, all_segment_ids, all_mention_indices, all_entity_masks, ) else: all_label = torch.tensor( [s["label"] for s in processed_mentions], dtype=torch.long ) data["all_label"] = all_label tensor_data = TensorDataset( all_input_ids, all_input_mask, all_segment_ids, all_label, all_entity_masks, ) if logger != None: logger.info("all_input_ids shape: {}".format(all_input_ids.shape)) logger.info("all_input_mask shape: {}".format(all_input_mask.shape)) logger.info("all_segment_ids shape: {}".format(all_segment_ids.shape)) logger.info("all_entity_masks shape: {}".format(all_entity_masks.shape)) if sentences is not None: logger.info( "all_mention_indices shape: {}".format(all_mention_indices.shape) ) else: logger.info("all_label shape: {}".format(all_label.shape)) return data, tensor_data
BLINK-main
blink/candidate_ranking/bert_reranking.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import io import sys import json import torch import logging import numpy as np from collections import OrderedDict from pytorch_transformers.modeling_utils import CONFIG_NAME, WEIGHTS_NAME from tqdm import tqdm from blink.candidate_ranking.bert_reranking import BertReranker from blink.biencoder.biencoder import BiEncoderRanker def read_dataset(dataset_name, preprocessed_json_data_parent_folder, debug=False): file_name = "{}.jsonl".format(dataset_name) txt_file_path = os.path.join(preprocessed_json_data_parent_folder, file_name) samples = [] with io.open(txt_file_path, mode="r", encoding="utf-8") as file: for line in file: samples.append(json.loads(line.strip())) if debug and len(samples) > 200: break return samples def filter_samples(samples, top_k, gold_key="gold_pos"): if top_k == None: return samples filtered_samples = [ sample for sample in samples if sample[gold_key] > 0 and sample[gold_key] <= top_k ] return filtered_samples def _truncate_seq_pair(tokens_a, tokens_b, max_length): """Truncates a sequence pair in place to the maximum length.""" while True: total_length = len(tokens_a) + len(tokens_b) if total_length <= max_length: break if len(tokens_a) > len(tokens_b): tokens_a.pop() else: tokens_b.pop() def eval_precision_bm45_dataloader(dataloader, ks=[1, 5, 10], number_of_samples=None): label_ids = torch.cat([label_ids for _, _, _, label_ids, _ in dataloader]) label_ids = label_ids + 1 p = {} for k in ks: p[k] = 0 for label in label_ids: if label > 0: for k in ks: if label <= k: p[k] += 1 for k in ks: if number_of_samples is None: p[k] /= len(label_ids) else: p[k] /= number_of_samples return p def accuracy(out, labels): outputs = np.argmax(out, axis=1) return np.sum(outputs == labels), outputs == labels def remove_module_from_state_dict(state_dict): new_state_dict = OrderedDict() for key, value in state_dict.items(): name = "".join(key.split(".module")) new_state_dict[name] = value return new_state_dict def save_model(model, tokenizer, output_dir): """Saves the model and the tokenizer used in the output directory.""" if not os.path.exists(output_dir): os.makedirs(output_dir) model_to_save = model.module if hasattr(model, "module") else model output_model_file = os.path.join(output_dir, WEIGHTS_NAME) output_config_file = os.path.join(output_dir, CONFIG_NAME) torch.save(model_to_save.state_dict(), output_model_file) model_to_save.config.to_json_file(output_config_file) tokenizer.save_vocabulary(output_dir) def get_logger(output_dir=None): if output_dir != None: os.makedirs(output_dir, exist_ok=True) logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, handlers=[ logging.FileHandler( "{}/log.txt".format(output_dir), mode="a", delay=False ), logging.StreamHandler(sys.stdout), ], ) else: logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, handlers=[logging.StreamHandler(sys.stdout)], ) logger = logging.getLogger('Blink') logger.setLevel(10) return logger def write_to_file(path, string, mode="w"): with open(path, mode) as writer: writer.write(string) def get_reranker(parameters): return BertReranker(parameters) def get_biencoder(parameters): return BiEncoderRanker(parameters)
BLINK-main
blink/candidate_ranking/utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import argparse import pickle import torch import json import sys import io import random import sys import time import numpy as np import pprint import shutil from multiprocessing.pool import ThreadPool from tqdm import tqdm, trange from collections import OrderedDict from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from torch.utils.data.distributed import DistributedSampler from pytorch_transformers.file_utils import PYTORCH_PRETRAINED_BERT_CACHE from pytorch_transformers.tokenization_bert import BertTokenizer import blink.candidate_retrieval.utils from blink.candidate_ranking.bert_reranking import BertForReranking import logging import utils from evaluate import evaluate_model_on_dataset, evaluate logger = None def main(parameters): # Read model reranker = utils.get_reranker(parameters) tokenizer = reranker.tokenizer model = reranker.model device = reranker.device n_gpu = reranker.n_gpu if parameters["gradient_accumulation_steps"] < 1: raise ValueError( "Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format( parameters["gradient_accumulation_steps"] ) ) # An effective batch size of `x`, when we are accumulating the gradient accross `y` batches will be achieved by having a batch size of `z = x / y` # args.gradient_accumulation_steps = args.gradient_accumulation_steps // n_gpu parameters["train_batch_size"] = ( parameters["train_batch_size"] // parameters["gradient_accumulation_steps"] ) train_batch_size = parameters["train_batch_size"] evaluation_batch_size = parameters["evaluation_batch_size"] gradient_accumulation_steps = parameters["gradient_accumulation_steps"] # Fix the random seeds seed = parameters["seed"] random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) logger = None number_of_samples_per_dataset = {} if reranker.n_gpu > 0: torch.cuda.manual_seed_all(seed) time_start = time.time() model_output_path = parameters["model_output_path"] # Make sure everything is in order with the output directiory if os.path.exists(model_output_path) and os.listdir(model_output_path): print( "Output directory ({}) already exists and is not empty.".format( model_output_path ) ) answer = input("Would you like to empty the existing directory? [Y/N]\n") if answer.strip() == "Y": print("Deleteing {}...".format(model_output_path)) shutil.rmtree(model_output_path) else: raise ValueError( "Output directory ({}) already exists and is not empty.".format( model_output_path ) ) if not os.path.exists(model_output_path): os.makedirs(model_output_path) utils.write_to_file( os.path.join(model_output_path, "training_parameters.txt"), str(parameters) ) logger = utils.get_logger(model_output_path) logger.info("Starting training") logger.info( "device: {} n_gpu: {}, distributed training: {}".format(device, n_gpu, False) ) ### Load training data train_dataset_name = "aida-train" train_samples = utils.read_dataset( train_dataset_name, parameters["path_to_preprocessed_json_data"] ) train_samples_filtered = utils.filter_samples(train_samples, parameters["top_k"]) logger.info( "Retained {} out of {} samples".format( len(train_samples_filtered), len(train_samples) ) ) number_of_samples_per_dataset[train_dataset_name] = len(train_samples) train_data, train_tensor_data = reranker._process_mentions_for_model( parameters["context_key"], train_samples_filtered, tokenizer, parameters["max_seq_length"], silent=parameters["silent"], logger=logger, top_k=parameters["top_k"], debug=parameters["debug"], ) train_sampler = RandomSampler(train_tensor_data) train_dataloader = DataLoader( train_tensor_data, sampler=train_sampler, batch_size=train_batch_size ) ### ### Loading dev data dev_dataset_name = "aida-A" dev_samples = utils.read_dataset( dev_dataset_name, parameters["path_to_preprocessed_json_data"] ) dev_samples_filtered = utils.filter_samples(dev_samples, parameters["top_k"]) logger.info( "Retained {} out of {} samples".format( len(dev_samples_filtered), len(dev_samples) ) ) number_of_samples_per_dataset[dev_dataset_name] = len(dev_samples) dev_data, dev_tensor_data = reranker._process_mentions_for_model( parameters["context_key"], train_samples_filtered, tokenizer, parameters["max_seq_length"], silent=parameters["silent"], logger=logger, top_k=parameters["top_k"], debug=parameters["debug"], ) dev_sampler = SequentialSampler(dev_tensor_data) dev_dataloader = DataLoader( dev_tensor_data, sampler=dev_sampler, batch_size=evaluation_batch_size ) ### logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_samples_filtered)) logger.info(" Batch size = %d", train_batch_size) logger.info(" Gradient accumulation steps = %d", gradient_accumulation_steps) optimizer, scheduler = reranker.get_scheduler_and_optimizer( parameters, train_tensor_data, logger ) best_epoch_idx = -1 best_score = -1 num_train_epochs = parameters["num_train_epochs"] model.train() for epoch_idx in trange(int(num_train_epochs), desc="Epoch"): tr_loss = 0 results = None for step, batch in enumerate(tqdm(train_dataloader, desc="Batch")): batch = tuple(t.to(device) for t in batch) input_ids, input_mask, segment_ids, label_ids, entity_mask = batch loss, _ = model( input_ids, segment_ids, input_mask, label_ids, entity_mask=entity_mask ) # if n_gpu > 1: # loss = loss.mean() # mean() to average on multi-gpu. if gradient_accumulation_steps > 1: loss = loss / gradient_accumulation_steps tr_loss += loss.item() if (step + 1) % ( parameters["print_tr_loss_opt_steps_interval"] * parameters["gradient_accumulation_steps"] ) == 0: logger.info( "Step {} - epoch {} average loss: {}\n".format( step, epoch_idx, tr_loss / ( parameters["print_tr_loss_opt_steps_interval"] * gradient_accumulation_steps ), ) ) tr_loss = 0 loss.backward() if (step + 1) % gradient_accumulation_steps == 0: torch.nn.utils.clip_grad_norm_( model.parameters(), parameters["max_grad_norm"] ) optimizer.step() scheduler.step() optimizer.zero_grad() if (step + 1) % ( parameters["dev_evaluation_interval"] * gradient_accumulation_steps * train_batch_size ) == 0: logger.info("Evaluation on the development dataset") evaluate_model_on_dataset( model, dev_dataloader, dev_dataset_name, device=device, logger=logger, number_of_samples=number_of_samples_per_dataset[dev_dataset_name], ) model.train() logger.info("\n") logger.info("***** Saving fine - tuned model *****") epoch_output_folder_path = os.path.join( model_output_path, "epoch_{}".format(epoch_idx) ) utils.save_model(model, tokenizer, epoch_output_folder_path) output_eval_file = os.path.join(epoch_output_folder_path, "eval_results.txt") results = evaluate_model_on_dataset( model, dev_dataloader, dev_dataset_name, device=device, logger=logger, path_to_file_to_write_results=output_eval_file, number_of_samples=number_of_samples_per_dataset[dev_dataset_name], ) ls = [best_score, results["normalized_accuracy"]] li = [best_epoch_idx, epoch_idx] best_score = ls[np.argmax(ls)] best_epoch_idx = li[np.argmax(ls)] logger.info("\n") execution_time = (time.time() - time_start) / 60 utils.write_to_file( os.path.join(model_output_path, "training_time.txt"), "The training took {} minutes\n".format(execution_time), ) logger.info("The training took {} minutes\n".format(execution_time)) # save the best model in the parent_dir logger.info("Best performance in epoch: {}".format(best_epoch_idx)) parameters["path_to_model"] = os.path.join( model_output_path, "epoch_{}".format(best_epoch_idx) ) reranker = utils.get_reranker(parameters) utils.save_model(reranker.model, tokenizer, model_output_path) if parameters["evaluate"]: parameters["path_to_model"] = model_output_path evaluate(parameters, logger=logger) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--path_to_preprocessed_json_data", default="data/train_and_benchmark_processed_json", type=str, help="The path to the train and benchmarking data.", ) parser.add_argument( "--bert_model", default="bert-large-cased", type=str, help="Bert pre-trained model selected in the list: bert-base-uncased, " "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.", ) parser.add_argument( "--model_output_path", default=None, type=str, required=True, help="The output directory where the trained model is to be dumped.", ) parser.add_argument( "--context_key", default="tagged_query_context_sent_prev_curr_next", type=str ) parser.add_argument( "--lowercase_flag", action="store_true", help="Whether to lower case the input text. True for uncased models, False for cased models.", ) parser.add_argument("--top_k", default=80, type=int) parser.add_argument( "--max_seq_length", default=512, type=int, help="The maximum total input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, and sequences shorter \n" "than this will be padded.", ) parser.add_argument( "--evaluate", action="store_true", help="Whether to run evaluation." ) parser.add_argument( "--full_evaluation", action="store_true", help="Whether to run the evaluation on all datasets.", ) parser.add_argument( "--evaluate_with_pregenerated_candidates", action="store_true", help="Whether to run in debug mode with only 200 samples.", ) parser.add_argument( "--output_eval_file", default=None, type=str, help="The txt file where the the evaluation results will be written.", ) parser.add_argument( "--debug", action="store_true", help="Whether to run in debug mode with only 200 samples.", ) parser.add_argument( "--silent", action="store_true", help="Whether to print progress bars." ) parser.add_argument( "--train_batch_size", default=8, type=int, help="Total batch size for training." ) parser.add_argument( "--evaluation_batch_size", default=4, type=int, help="Total batch size for evaluation.", ) parser.add_argument( "--dataparallel_bert", action="store_true", help="Whether to distributed the candidate generation process.", ) parser.add_argument("--max_grad_norm", default=1.0, type=float) parser.add_argument( "--learning_rate", default=3e-5, type=float, help="The initial learning rate for Adam.", ) parser.add_argument( "--num_train_epochs", default=3, type=int, help="Total number of training epochs to perform.", ) parser.add_argument( "--print_tr_loss_opt_steps_interval", type=int, default=20, help="Interval of loss printing", ) parser.add_argument( "--dev_evaluation_interval", type=int, default=160, help="Interval for evaluation during training", ) parser.add_argument( "--save_interval", type=int, default=1, help="Interval for model saving" ) parser.add_argument( "--warmup_proportion", default=0.1, type=float, help="Proportion of training to perform linear learning rate warmup for. " "E.g., 0.1 = 10% of training.", ) parser.add_argument( "--no_cuda", action="store_true", help="Whether not to use CUDA when available" ) parser.add_argument( "--seed", type=int, default=12345, help="random seed for initialization" ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=8, help="Number of updates steps to accumualte before performing a backward/update pass.", ) # args = argparse.Namespace(**params) args = parser.parse_args() print(args) parameters = args.__dict__ main(parameters)
BLINK-main
blink/candidate_ranking/train.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import time import utils import torch import utils import argparse import os from bert_reranking import BertReranker from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm def evaluate_model_on_dataset( model, dataloader, dataset_name, device, logger, number_of_samples, eval_bm45_acc=False, path_to_file_to_write_results=None, ): model.eval() eval_accuracy = 0 nb_eval_steps, nb_eval_examples = 0, 0 for input_ids, input_mask, segment_ids, label_ids, entity_mask in tqdm( dataloader, desc="Evaluating" ): input_ids = input_ids.to(device) input_mask = input_mask.to(device) segment_ids = segment_ids.to(device) label_ids = label_ids.to(device) entity_mask = entity_mask.to(device) with torch.no_grad(): tmp_eval_loss, logits = model( input_ids, segment_ids, input_mask, label_ids, entity_mask=entity_mask ) logits = logits.detach().cpu().numpy() label_ids = label_ids.to("cpu").numpy() tmp_eval_accuracy = utils.accuracy(logits, label_ids) eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0) nb_eval_steps += 1 logger.info("\n") normalized_eval_accuracy = eval_accuracy / nb_eval_examples result = {"normalized_accuracy": normalized_eval_accuracy} result["unnormalized_accuracy"] = eval_accuracy / number_of_samples result["candidate_generation_recall"] = nb_eval_examples / number_of_samples if eval_bm45_acc: result["normalized_bm45_recall_@"] = utils.eval_precision_bm45_dataloader( dataloader, [1, 5, 10, 20, 40, 60, 80, 100] ) result["unnormalized_bm45_recall_@"] = utils.eval_precision_bm45_dataloader( dataloader, [1, 5, 10, 20, 40, 60, 80, 100], number_of_samples ) if path_to_file_to_write_results is None: logger.info( "***** Eval results - {} ({} / {} samples) *****\n".format( dataset_name, nb_eval_examples, number_of_samples ) ) for key in sorted(result.keys()): logger.info(" %s = %s", key, str(result[key])) else: with open(path_to_file_to_write_results, "a+") as writer: logger.info( "***** Eval results - {} ({} / {} samples) *****\n".format( dataset_name, nb_eval_examples, number_of_samples ) ) writer.write( "***** Eval results - {} ({} / {} samples) *****\n".format( dataset_name, nb_eval_examples, number_of_samples ) ) for key in sorted(result.keys()): logger.info(" %s = %s", key, str(result[key])) writer.write("%s = %s\n" % (key, str(result[key]))) writer.write("\n") logger.info("\n") return result def evaluate(parameters, logger=None): reranker = utils.get_reranker(parameters) if parameters["full_evaluation"]: eval_datasets = [ "aida-A", "aida-B", "msnbc", "aquaint", "ace2004", "clueweb", "wikipedia", ] else: eval_datasets = ["aida-B"] candidates_key = ( "pregenerated_candidates" if parameters["evaluate_with_pregenerated_candidates"] else "candidates" ) gold_key = ( "pregenerated_gold_pos" if parameters["evaluate_with_pregenerated_candidates"] else "gold_pos" ) number_of_samples_per_dataset = {} total_time = 0 for eval_dataset_name in eval_datasets: time_start = time.time() logger.info("\nEvaluating on the {} dataset".format(eval_dataset_name)) eval_samples = utils.read_dataset( eval_dataset_name, parameters["path_to_preprocessed_json_data"] ) eval_samples_filtered = utils.filter_samples( eval_samples, parameters["top_k"], gold_key ) logger.info( "Retained {} out of {} samples".format( len(eval_samples_filtered), len(eval_samples) ) ) number_of_samples_per_dataset[eval_dataset_name] = len(eval_samples) # if args.num_preprocessing_threads == -1: # eval_data, eval_tensor_data = process_samples_for_model(args.context_key, eval_samples_filtered, tokenizer, args.max_seq_length, logger = logger, top_k = args.top_k, example = False, debug = args.debug, tagged = args.tag_mention, candidates_key = candidates_key, gold_key = gold_key) # else: # eval_data, eval_tensor_data = preprocessing_multithreaded(eval_samples_filtered, logger, args, output_dir=True) eval_data, eval_tensor_data = reranker._process_mentions_for_model( parameters["context_key"], eval_samples_filtered, reranker.tokenizer, parameters["max_seq_length"], parameters["top_k"], parameters["silent"], candidates_key=candidates_key, gold_key=gold_key, debug=parameters["debug"], ) eval_sampler = SequentialSampler(eval_tensor_data) eval_dataloader = DataLoader( eval_tensor_data, sampler=eval_sampler, batch_size=parameters["evaluation_batch_size"], ) if parameters["output_eval_file"] is None: output_eval_file = os.path.join( parameters["path_to_model"], "eval_results.txt" ) else: output_eval_file = parameters["output_eval_file"] result = evaluate_model_on_dataset( reranker.model, eval_dataloader, eval_dataset_name, eval_bm45_acc=True, device=reranker.device, logger=logger, path_to_file_to_write_results=output_eval_file, number_of_samples=number_of_samples_per_dataset[eval_dataset_name], ) execution_time = (time.time() - time_start) / 60 total_time += execution_time if logger != None: logger.info( "The execution for dataset {} took {} minutes".format( eval_dataset_name, execution_time ) ) else: print( "The execution for dataset {} took {} minutes".format( eval_dataset_name, execution_time ) ) if logger != None: logger.info( "The execution for dataset {} took {} minutes".format( eval_dataset_name, execution_time ) ) else: print("The evaluation took:", total_time, " minutes") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--path_to_preprocessed_json_data", default="data/train_and_benchmark_processed_json", type=str, help="The path to the train and benchmarking data.", ) parser.add_argument( "--path_to_model", default=None, type=str, required=True, help="The full path to the model to be evaluated.", ) parser.add_argument("--top_k", default=80, type=int) parser.add_argument( "--max_seq_length", default=512, type=int, help="The maximum total input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, and sequences shorter \n" "than this will be padded.", ) parser.add_argument( "--context_key", default="tagged_query_context_sent_prev_curr_next", type=str ) parser.add_argument( "--lowercase_flag", action="store_true", help="Whether to lower case the input text. True for uncased models, False for cased models.", ) parser.add_argument( "--full_evaluation", action="store_true", help="Whether to run the evaluation on all datasets.", ) parser.add_argument( "--evaluate_with_pregenerated_candidates", action="store_true", help="Whether to run in debug mode with only 200 samples.", ) parser.add_argument( "--evaluation_batch_size", default=8, type=int, help="Total batch size for evaluation.", ) parser.add_argument( "--dataparallel_bert", action="store_true", help="Whether to distributed the candidate generation process.", ) parser.add_argument( "--no_cuda", action="store_true", help="Whether not to use CUDA when available" ) parser.add_argument( "--debug", action="store_true", help="Whether to run in debug mode with only 200 samples.", ) parser.add_argument( "--silent", action="store_true", help="Whether to print progress bars." ) parser.add_argument( "--output_eval_file", default=None, type=str, help="The txt file where the the evaluation results will be written.", ) args = parser.parse_args() print(args) parameters = args.__dict__ evaluate(parameters, logger=utils.get_logger())
BLINK-main
blink/candidate_ranking/evaluate.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # # Provide an argument parser and default command line options for using BLINK. import argparse import importlib import os import sys import datetime ENT_START_TAG = "[unused0]" ENT_END_TAG = "[unused1]" ENT_TITLE_TAG = "[unused2]" class BlinkParser(argparse.ArgumentParser): """ Provide an opt-producer and CLI arguement parser. More options can be added specific by paassing this object and calling ''add_arg()'' or add_argument'' on it. :param add_blink_args: (default True) initializes the default arguments for BLINK package. :param add_model_args: (default False) initializes the default arguments for loading models, including initializing arguments from the model. """ def __init__( self, add_blink_args=True, add_model_args=False, description='BLINK parser', ): super().__init__( description=description, allow_abbrev=False, conflict_handler='resolve', formatter_class=argparse.HelpFormatter, add_help=add_blink_args, ) self.blink_home = os.path.dirname( os.path.dirname(os.path.dirname(os.path.realpath(__file__))) ) os.environ['BLINK_HOME'] = self.blink_home self.add_arg = self.add_argument self.overridable = {} if add_blink_args: self.add_blink_args() if add_model_args: self.add_model_args() def add_blink_args(self, args=None): """ Add common BLINK args across all scripts. """ parser = self.add_argument_group("Common Arguments") parser.add_argument( "--silent", action="store_true", help="Whether to print progress bars." ) parser.add_argument( "--debug", action="store_true", help="Whether to run in debug mode with only 200 samples.", ) parser.add_argument( "--data_parallel", action="store_true", help="Whether to distributed the candidate generation process.", ) parser.add_argument( "--no_cuda", action="store_true", help="Whether not to use CUDA when available", ) parser.add_argument("--top_k", default=10, type=int) parser.add_argument( "--seed", type=int, default=52313, help="random seed for initialization" ) parser.add_argument( "--zeshel", default=True, type=bool, help="Whether the dataset is from zeroshot.", ) def add_model_args(self, args=None): """ Add model args. """ parser = self.add_argument_group("Model Arguments") parser.add_argument( "--max_seq_length", default=256, type=int, help="The maximum total input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, and sequences shorter \n" "than this will be padded.", ) parser.add_argument( "--max_context_length", default=128, type=int, help="The maximum total context input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, and sequences shorter \n" "than this will be padded.", ) parser.add_argument( "--max_cand_length", default=128, type=int, help="The maximum total label input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, and sequences shorter \n" "than this will be padded.", ) parser.add_argument( "--path_to_model", default=None, type=str, required=False, help="The full path to the model to load.", ) parser.add_argument( "--bert_model", default="bert-base-uncased", type=str, help="Bert pre-trained model selected in the list: bert-base-uncased, " "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.", ) parser.add_argument( "--pull_from_layer", type=int, default=-1, help="Layers to pull from BERT", ) parser.add_argument( "--lowercase", action="store_false", help="Whether to lower case the input text. True for uncased models, False for cased models.", ) parser.add_argument("--context_key", default="context", type=str) parser.add_argument( "--out_dim", type=int, default=1, help="Output dimention of bi-encoders.", ) parser.add_argument( "--add_linear", action="store_true", help="Whether to add an additonal linear projection on top of BERT.", ) parser.add_argument( "--data_path", default="data/zeshel", type=str, help="The path to the train data.", ) parser.add_argument( "--output_path", default=None, type=str, required=True, help="The output directory where generated output file (model, etc.) is to be dumped.", ) def add_training_args(self, args=None): """ Add model training args. """ parser = self.add_argument_group("Model Training Arguments") parser.add_argument( "--evaluate", action="store_true", help="Whether to run evaluation." ) parser.add_argument( "--output_eval_file", default=None, type=str, help="The txt file where the the evaluation results will be written.", ) parser.add_argument( "--train_batch_size", default=8, type=int, help="Total batch size for training." ) parser.add_argument("--max_grad_norm", default=1.0, type=float) parser.add_argument( "--learning_rate", default=3e-5, type=float, help="The initial learning rate for Adam.", ) parser.add_argument( "--num_train_epochs", default=1, type=int, help="Number of training epochs.", ) parser.add_argument( "--print_interval", type=int, default=10, help="Interval of loss printing", ) parser.add_argument( "--eval_interval", type=int, default=100, help="Interval for evaluation during training", ) parser.add_argument( "--save_interval", type=int, default=1, help="Interval for model saving" ) parser.add_argument( "--warmup_proportion", default=0.1, type=float, help="Proportion of training to perform linear learning rate warmup for. " "E.g., 0.1 = 10% of training.", ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumualte before performing a backward/update pass.", ) parser.add_argument( "--type_optimization", type=str, default="all_encoder_layers", help="Which type of layers to optimize in BERT", ) parser.add_argument( "--shuffle", type=bool, default=False, help="Whether to shuffle train data", ) def add_eval_args(self, args=None): """ Add model evaluation args. """ parser = self.add_argument_group("Model Evaluation Arguments") parser.add_argument( "--eval_batch_size", default=8, type=int, help="Total batch size for evaluation.", ) parser.add_argument( "--mode", default="valid", type=str, help="Train / validation / test", ) parser.add_argument( "--save_topk_result", action="store_true", help="Whether to save prediction results.", ) parser.add_argument( "--encode_batch_size", default=8, type=int, help="Batch size for encoding." ) parser.add_argument( "--cand_pool_path", default=None, type=str, help="Path for cached candidate pool (id tokenization of candidates)", ) parser.add_argument( "--cand_encode_path", default=None, type=str, help="Path for cached candidate encoding", )
BLINK-main
blink/common/params.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from torch import nn def get_model_obj(model): model = model.module if hasattr(model, "module") else model return model class BertEncoder(nn.Module): def __init__( self, bert_model, output_dim, layer_pulled=-1, add_linear=None): super(BertEncoder, self).__init__() self.layer_pulled = layer_pulled bert_output_dim = bert_model.embeddings.word_embeddings.weight.size(1) self.bert_model = bert_model if add_linear: self.additional_linear = nn.Linear(bert_output_dim, output_dim) self.dropout = nn.Dropout(0.1) else: self.additional_linear = None def forward(self, token_ids, segment_ids, attention_mask): output_bert, output_pooler = self.bert_model( token_ids, segment_ids, attention_mask ) # get embedding of [CLS] token if self.additional_linear is not None: embeddings = output_pooler else: embeddings = output_bert[:, 0, :] # in case of dimensionality reduction if self.additional_linear is not None: result = self.additional_linear(self.dropout(embeddings)) else: result = embeddings return result
BLINK-main
blink/common/ranker_base.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch import os import numpy as np from pytorch_transformers.modeling_bert import ( BertPreTrainedModel, BertConfig, BertModel, ) from pytorch_transformers.tokenization_bert import BertTokenizer from torch import nn from pytorch_transformers.file_utils import PYTORCH_PRETRAINED_BERT_CACHE from pytorch_transformers.optimization import AdamW patterns_optimizer = { 'additional_layers': ['additional'], 'top_layer': ['additional', 'bert_model.encoder.layer.11.'], 'top4_layers': [ 'additional', 'bert_model.encoder.layer.11.', 'encoder.layer.10.', 'encoder.layer.9.', 'encoder.layer.8', ], 'all_encoder_layers': ['additional', 'bert_model.encoder.layer'], 'all': ['additional', 'bert_model.encoder.layer', 'bert_model.embeddings'], } def get_bert_optimizer(models, type_optimization, learning_rate, fp16=False): """ Optimizes the network with AdamWithDecay """ if type_optimization not in patterns_optimizer: print( 'Error. Type optimizer must be one of %s' % (str(patterns_optimizer.keys())) ) parameters_with_decay = [] parameters_with_decay_names = [] parameters_without_decay = [] parameters_without_decay_names = [] no_decay = ['bias', 'gamma', 'beta'] patterns = patterns_optimizer[type_optimization] for model in models: for n, p in model.named_parameters(): if any(t in n for t in patterns): if any(t in n for t in no_decay): parameters_without_decay.append(p) parameters_without_decay_names.append(n) else: parameters_with_decay.append(p) parameters_with_decay_names.append(n) print('The following parameters will be optimized WITH decay:') print(ellipse(parameters_with_decay_names, 5, ' , ')) print('The following parameters will be optimized WITHOUT decay:') print(ellipse(parameters_without_decay_names, 5, ' , ')) optimizer_grouped_parameters = [ {'params': parameters_with_decay, 'weight_decay': 0.01}, {'params': parameters_without_decay, 'weight_decay': 0.0}, ] optimizer = AdamW( optimizer_grouped_parameters, lr=learning_rate, correct_bias=False ) if fp16: optimizer = fp16_optimizer_wrapper(optimizer) return optimizer def ellipse(lst, max_display=5, sep='|'): """ Like join, but possibly inserts an ellipsis. :param lst: The list to join on :param int max_display: the number of items to display for ellipsing. If -1, shows all items :param string sep: the delimiter to join on """ # copy the list (or force it to a list if it's a set) choices = list(lst) # insert the ellipsis if necessary if max_display > 0 and len(choices) > max_display: ellipsis = '...and {} more'.format(len(choices) - max_display) choices = choices[:max_display] + [ellipsis] return sep.join(str(c) for c in choices)
BLINK-main
blink/common/optimizer.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # """ FAISS-based index components. Original from https://github.com/facebookresearch/DPR/blob/master/dpr/indexer/faiss_indexers.py """ import os import logging import pickle import faiss import numpy as np logger = logging.getLogger() class DenseIndexer(object): def __init__(self, buffer_size: int = 50000): self.buffer_size = buffer_size self.index_id_to_db_id = [] self.index = None def index_data(self, data: np.array): raise NotImplementedError def search_knn(self, query_vectors: np.array, top_docs: int): raise NotImplementedError def serialize(self, index_file: str): logger.info("Serializing index to %s", index_file) faiss.write_index(self.index, index_file) def deserialize_from(self, index_file: str): logger.info("Loading index from %s", index_file) self.index = faiss.read_index(index_file) logger.info( "Loaded index of type %s and size %d", type(self.index), self.index.ntotal ) # DenseFlatIndexer does exact search class DenseFlatIndexer(DenseIndexer): def __init__(self, vector_sz: int = 1, buffer_size: int = 50000): super(DenseFlatIndexer, self).__init__(buffer_size=buffer_size) self.index = faiss.IndexFlatIP(vector_sz) def index_data(self, data: np.array): n = len(data) # indexing in batches is beneficial for many faiss index types logger.info("Indexing data, this may take a while.") cnt = 0 for i in range(0, n, self.buffer_size): vectors = [np.reshape(t, (1, -1)) for t in data[i : i + self.buffer_size]] vectors = np.concatenate(vectors, axis=0) self.index.add(vectors) cnt += self.buffer_size logger.info("Total data indexed %d", n) def search_knn(self, query_vectors, top_k): scores, indexes = self.index.search(query_vectors, top_k) return scores, indexes # DenseHNSWFlatIndexer does approximate search class DenseHNSWFlatIndexer(DenseIndexer): """ Efficient index for retrieval. Note: default settings are for hugh accuracy but also high RAM usage """ def __init__( self, vector_sz: int, buffer_size: int = 50000, store_n: int = 128, ef_search: int = 256, ef_construction: int = 200, ): super(DenseHNSWFlatIndexer, self).__init__(buffer_size=buffer_size) # IndexHNSWFlat supports L2 similarity only # so we have to apply DOT -> L2 similairy space conversion with the help of an extra dimension index = faiss.IndexHNSWFlat(vector_sz + 1, store_n) index.hnsw.efSearch = ef_search index.hnsw.efConstruction = ef_construction self.index = index self.phi = 0 def index_data(self, data: np.array): n = len(data) # max norm is required before putting all vectors in the index to convert inner product similarity to L2 if self.phi > 0: raise RuntimeError( "DPR HNSWF index needs to index all data at once," "results will be unpredictable otherwise." ) phi = 0 for i, item in enumerate(data): doc_vector = item norms = (doc_vector ** 2).sum() phi = max(phi, norms) logger.info("HNSWF DotProduct -> L2 space phi={}".format(phi)) self.phi = 0 # indexing in batches is beneficial for many faiss index types logger.info("Indexing data, this may take a while.") cnt = 0 for i in range(0, n, self.buffer_size): vectors = [np.reshape(t, (1, -1)) for t in data[i : i + self.buffer_size]] norms = [(doc_vector ** 2).sum() for doc_vector in vectors] aux_dims = [np.sqrt(phi - norm) for norm in norms] hnsw_vectors = [ np.hstack((doc_vector, aux_dims[i].reshape(-1, 1))) for i, doc_vector in enumerate(vectors) ] hnsw_vectors = np.concatenate(hnsw_vectors, axis=0) self.index.add(hnsw_vectors) cnt += self.buffer_size logger.info("Indexed data %d" % cnt) logger.info("Total data indexed %d" % n) def search_knn(self, query_vectors, top_k): aux_dim = np.zeros(len(query_vectors), dtype="float32") query_nhsw_vectors = np.hstack((query_vectors, aux_dim.reshape(-1, 1))) logger.info("query_hnsw_vectors %s", query_nhsw_vectors.shape) scores, indexes = self.index.search(query_nhsw_vectors, top_k) return scores, indexes def deserialize_from(self, file: str): super(DenseHNSWFlatIndexer, self).deserialize_from(file) # to trigger warning on subsequent indexing self.phi = 1
BLINK-main
blink/indexer/faiss_indexer.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import argparse import json import sys from elq.index.faiss_indexer import DenseFlatIndexer, DenseHNSWFlatIndexer, DenseIVFFlatIndexer import logging import torch import numpy as np from colorama import init from termcolor import colored import torch.nn.functional as F import blink.ner as NER from torch.utils.data import DataLoader, SequentialSampler, TensorDataset from elq.biencoder.biencoder import BiEncoderRanker, load_biencoder, to_bert_input from elq.biencoder.data_process import ( process_mention_data, get_context_representation_single_mention, get_candidate_representation, ) import elq.candidate_ranking.utils as utils import math from elq.vcg_utils.measures import entity_linking_tp_with_overlap from elq.biencoder.utils import batch_reshape_mask_left import os import sys from tqdm import tqdm import pdb import time HIGHLIGHTS = [ "on_red", "on_green", "on_yellow", "on_blue", "on_magenta", "on_cyan", ] from transformers import BertTokenizer tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") def _print_colorful_text(input_tokens, tokenizer, pred_triples): """ pred_triples: Assumes no overlapping triples """ sort_idxs = sorted(range(len(pred_triples)), key=lambda idx: pred_triples[idx][1]) init() # colorful output msg = "" if pred_triples and (len(pred_triples) > 0): msg += tokenizer.decode(input_tokens[0 : int(pred_triples[sort_idxs[0]][1])]) for i, idx in enumerate(sort_idxs): triple = pred_triples[idx] msg += " " + colored( tokenizer.decode(input_tokens[int(triple[1]) : int(triple[2])]), "grey", HIGHLIGHTS[idx % len(HIGHLIGHTS)], ) if i < len(sort_idxs) - 1: msg += " " + tokenizer.decode(input_tokens[ int(triple[2]) : int(pred_triples[sort_idxs[i + 1]][1]) ]) else: msg += " " + tokenizer.decode(input_tokens[int(triple[2]) : ]) else: msg = tokenizer.decode(input_tokens) print("\n" + str(msg) + "\n") def _print_colorful_prediction(all_entity_preds, pred_triples, id2text, id2wikidata): sort_idxs = sorted(range(len(pred_triples)), key=lambda idx: pred_triples[idx][1]) for idx in sort_idxs: print(colored(all_entity_preds[0]['pred_tuples_string'][idx][1], "grey", HIGHLIGHTS[idx % len(HIGHLIGHTS)])) if pred_triples[idx][0] in id2wikidata: print(" Wikidata ID: {}".format(id2wikidata[pred_triples[idx][0]])) print(" Title: {}".format(all_entity_preds[0]['pred_tuples_string'][idx][0])) print(" Score: {}".format(str(all_entity_preds[0]['scores'][idx]))) print(" Triple: {}".format(str(pred_triples[idx]))) print(" Text: {}".format(id2text[pred_triples[idx][0]])) def _load_candidates( entity_catalogue, entity_encoding, faiss_index="none", index_path=None, logger=None, ): if faiss_index == "none": candidate_encoding = torch.load(entity_encoding) indexer = None else: candidate_encoding = None assert index_path is not None, "Error! Empty indexer path." if faiss_index == "flat": indexer = DenseFlatIndexer(1) elif faiss_index == "hnsw": indexer = DenseHNSWFlatIndexer(1) elif faiss_index == "ivfflat": indexer = DenseIVFFlatIndexer(1) else: raise ValueError("Error! Unsupported indexer type! Choose from flat,hnsw,ivfflat.") indexer.deserialize_from(index_path) candidate_encoding = torch.load(entity_encoding) if not os.path.exists("models/id2title.json"): id2title = {} id2text = {} id2wikidata = {} local_idx = 0 with open(entity_catalogue, "r") as fin: lines = fin.readlines() for line in lines: entity = json.loads(line) id2title[str(local_idx)] = entity["title"] id2text[str(local_idx)] = entity["text"] if "kb_idx" in entity: id2wikidata[str(local_idx)] = entity["kb_idx"] local_idx += 1 json.dump(id2title, open("models/id2title.json", "w")) json.dump(id2text, open("models/id2text.json", "w")) json.dump(id2wikidata, open("models/id2wikidata.json", "w")) else: if logger: logger.info("Loading id2title") id2title = json.load(open("models/id2title.json")) if logger: logger.info("Loading id2text") id2text = json.load(open("models/id2text.json")) if logger: logger.info("Loading id2wikidata") id2wikidata = json.load(open("models/id2wikidata.json")) return ( candidate_encoding, indexer, id2title, id2text, id2wikidata, ) def _get_test_samples( test_filename, test_entities_path, logger, ): """ Parses jsonl format with one example per line Each line of the following form IF HAVE LABELS { "id": "WebQTest-12", "text": "who is governor of ohio 2011?", "mentions": [[19, 23], [7, 15]], "tokenized_text_ids": [2040, 2003, 3099, 1997, 4058, 2249, 1029], "tokenized_mention_idxs": [[4, 5], [2, 3]], "label_id": [10902, 28422], "wikidata_id": ["Q1397", "Q132050"], "entity": ["Ohio", "Governor"], "label": [list of wikipedia descriptions] } IF NO LABELS (JUST PREDICTION) { "id": "WebQTest-12", "text": "who is governor of ohio 2011?", } """ if logger: logger.info("Loading test samples") test_samples = [] unknown_entity_samples = [] num_unknown_entity_samples = 0 num_no_gold_entity = 0 ner_errors = 0 with open(test_filename, "r") as fin: lines = fin.readlines() sample_idx = 0 do_setup_samples = True for i, line in enumerate(lines): record = json.loads(line) test_samples.append(record) return test_samples, num_unknown_entity_samples def _process_biencoder_dataloader(samples, tokenizer, biencoder_params, logger): """ Samples: list of examples, each of the form-- IF HAVE LABELS { "id": "WebQTest-12", "text": "who is governor of ohio 2011?", "mentions": [[19, 23], [7, 15]], "tokenized_text_ids": [2040, 2003, 3099, 1997, 4058, 2249, 1029], "tokenized_mention_idxs": [[4, 5], [2, 3]], "label_id": [10902, 28422], "wikidata_id": ["Q1397", "Q132050"], "entity": ["Ohio", "Governor"], "label": [list of wikipedia descriptions] } IF NO LABELS (JUST PREDICTION) { "id": "WebQTest-12", "text": "who is governor of ohio 2011?", } """ if 'label_id' in samples[0]: # have labels tokens_data, tensor_data_tuple, _ = process_mention_data( samples=samples, tokenizer=tokenizer, max_context_length=biencoder_params["max_context_length"], max_cand_length=biencoder_params["max_cand_length"], silent=False, logger=logger, debug=biencoder_params["debug"], add_mention_bounds=(not biencoder_params.get("no_mention_bounds", False)), params=biencoder_params, ) else: samples_text_tuple = [] max_seq_len = 0 for sample in samples: samples_text_tuple # truncate the end if the sequence is too long... encoded_sample = [101] + tokenizer.encode(sample['text'])[:biencoder_params["max_context_length"]-2] + [102] max_seq_len = max(len(encoded_sample), max_seq_len) samples_text_tuple.append(encoded_sample + [0 for _ in range(biencoder_params["max_context_length"] - len(encoded_sample))]) # print(samples_text_tuple) tensor_data_tuple = [torch.tensor(samples_text_tuple)] tensor_data = TensorDataset(*tensor_data_tuple) sampler = SequentialSampler(tensor_data) dataloader = DataLoader( tensor_data, sampler=sampler, batch_size=biencoder_params["eval_batch_size"] ) return dataloader def _run_biencoder( args, biencoder, dataloader, candidate_encoding, samples, num_cand_mentions=50, num_cand_entities=10, device="cpu", sample_to_all_context_inputs=None, threshold=0.0, indexer=None, ): """ Returns: tuple labels (List[int]) [(max_num_mentions_gold) x exs]: gold labels -- returns None if no labels nns (List[Array[int]]) [(# of pred mentions, cands_per_mention) x exs]: predicted entity IDs in each example dists (List[Array[float]]) [(# of pred mentions, cands_per_mention) x exs]: scores of each entity in nns pred_mention_bounds (List[Array[int]]) [(# of pred mentions, 2) x exs]: predicted mention boundaries in each examples mention_scores (List[Array[float]]) [(# of pred mentions,) x exs]: mention score logit cand_scores (List[Array[float]]) [(# of pred mentions, cands_per_mention) x exs]: candidate score logit """ biencoder.model.eval() biencoder_model = biencoder.model if hasattr(biencoder.model, "module"): biencoder_model = biencoder.model.module context_inputs = [] nns = [] dists = [] mention_dists = [] pred_mention_bounds = [] mention_scores = [] cand_scores = [] sample_idx = 0 ctxt_idx = 0 label_ids = None for step, batch in enumerate(tqdm(dataloader)): context_input = batch[0].to(device) mask_ctxt = context_input != biencoder.NULL_IDX with torch.no_grad(): context_outs = biencoder.encode_context( context_input, num_cand_mentions=num_cand_mentions, topK_threshold=threshold, ) embedding_ctxt = context_outs['mention_reps'] left_align_mask = context_outs['mention_masks'] chosen_mention_logits = context_outs['mention_logits'] chosen_mention_bounds = context_outs['mention_bounds'] ''' GET TOP CANDIDATES PER MENTION ''' # (all_pred_mentions_batch, embed_dim) embedding_ctxt = embedding_ctxt[left_align_mask] if indexer is None: try: cand_logits, _, _ = biencoder.score_candidate( context_input, None, text_encs=embedding_ctxt, cand_encs=candidate_encoding.to(device), ) # DIM (all_pred_mentions_batch, num_cand_entities); (all_pred_mentions_batch, num_cand_entities) top_cand_logits_shape, top_cand_indices_shape = cand_logits.topk(num_cand_entities, dim=-1, sorted=True) except: # for memory savings, go through one chunk of candidates at a time SPLIT_SIZE=1000000 done=False while not done: top_cand_logits_list = [] top_cand_indices_list = [] max_chunk = int(len(candidate_encoding) / SPLIT_SIZE) for chunk_idx in range(max_chunk): try: # DIM (num_total_mentions, num_cand_entities); (num_total_mention, num_cand_entities) top_cand_logits, top_cand_indices = embedding_ctxt.mm(candidate_encoding[chunk_idx*SPLIT_SIZE:(chunk_idx+1)*SPLIT_SIZE].to(device).t().contiguous()).topk(10, dim=-1, sorted=True) top_cand_logits_list.append(top_cand_logits) top_cand_indices_list.append(top_cand_indices + chunk_idx*SPLIT_SIZE) if len((top_cand_indices_list[chunk_idx] < 0).nonzero()) > 0: import pdb pdb.set_trace() except: SPLIT_SIZE = int(SPLIT_SIZE/2) break if len(top_cand_indices_list) == max_chunk: # DIM (num_total_mentions, num_cand_entities); (num_total_mentions, num_cand_entities) --> # top_top_cand_indices_shape indexes into top_cand_indices top_cand_logits_shape, top_top_cand_indices_shape = torch.cat( top_cand_logits_list, dim=-1).topk(num_cand_entities, dim=-1, sorted=True) # make indices index into candidate_encoding # DIM (num_total_mentions, max_chunk*num_cand_entities) all_top_cand_indices = torch.cat(top_cand_indices_list, dim=-1) # DIM (num_total_mentions, num_cand_entities) top_cand_indices_shape = all_top_cand_indices.gather(-1, top_top_cand_indices_shape) done = True else: # DIM (all_pred_mentions_batch, num_cand_entities); (all_pred_mentions_batch, num_cand_entities) top_cand_logits_shape, top_cand_indices_shape = indexer.search_knn(embedding_ctxt.cpu().numpy(), num_cand_entities) top_cand_logits_shape = torch.tensor(top_cand_logits_shape).to(embedding_ctxt.device) top_cand_indices_shape = torch.tensor(top_cand_indices_shape).to(embedding_ctxt.device) # DIM (bs, max_num_pred_mentions, num_cand_entities) top_cand_logits = torch.zeros(chosen_mention_logits.size(0), chosen_mention_logits.size(1), top_cand_logits_shape.size(-1)).to( top_cand_logits_shape.device, top_cand_logits_shape.dtype) top_cand_logits[left_align_mask] = top_cand_logits_shape top_cand_indices = torch.zeros(chosen_mention_logits.size(0), chosen_mention_logits.size(1), top_cand_indices_shape.size(-1)).to( top_cand_indices_shape.device, top_cand_indices_shape.dtype) top_cand_indices[left_align_mask] = top_cand_indices_shape ''' COMPUTE FINAL SCORES FOR EACH CAND-MENTION PAIR + PRUNE USING IT ''' # Has NAN for impossible mentions... # log p(entity && mb) = log [p(entity|mention bounds) * p(mention bounds)] = log p(e|mb) + log p(mb) # DIM (bs, max_num_pred_mentions, num_cand_entities) scores = torch.log_softmax(top_cand_logits, -1) + torch.sigmoid(chosen_mention_logits.unsqueeze(-1)).log() ''' DON'T NEED TO RESORT BY NEW SCORE -- DISTANCE PRESERVING (largest entity score still be largest entity score) ''' for idx in range(len(batch[0])): # [(seqlen) x exs] <= (bsz, seqlen) context_inputs.append(context_input[idx][mask_ctxt[idx]].data.cpu().numpy()) # [(max_num_mentions, cands_per_mention) x exs] <= (bsz, max_num_mentions=num_cand_mentions, cands_per_mention) nns.append(top_cand_indices[idx][left_align_mask[idx]].data.cpu().numpy()) # [(max_num_mentions, cands_per_mention) x exs] <= (bsz, max_num_mentions=num_cand_mentions, cands_per_mention) dists.append(scores[idx][left_align_mask[idx]].data.cpu().numpy()) # [(max_num_mentions, 2) x exs] <= (bsz, max_num_mentions=num_cand_mentions, 2) pred_mention_bounds.append(chosen_mention_bounds[idx][left_align_mask[idx]].data.cpu().numpy()) # [(max_num_mentions,) x exs] <= (bsz, max_num_mentions=num_cand_mentions) mention_scores.append(chosen_mention_logits[idx][left_align_mask[idx]].data.cpu().numpy()) # [(max_num_mentions, cands_per_mention) x exs] <= (bsz, max_num_mentions=num_cand_mentions, cands_per_mention) cand_scores.append(top_cand_logits[idx][left_align_mask[idx]].data.cpu().numpy()) return nns, dists, pred_mention_bounds, mention_scores, cand_scores def get_predictions( args, dataloader, biencoder_params, samples, nns, dists, mention_scores, cand_scores, pred_mention_bounds, id2title, threshold=-2.9, mention_threshold=-0.6931, ): """ Arguments: args, dataloader, biencoder_params, samples, nns, dists, pred_mention_bounds Returns: all_entity_preds, num_correct_weak, num_correct_strong, num_predicted, num_gold, num_correct_weak_from_input_window, num_correct_strong_from_input_window, num_gold_from_input_window """ # save biencoder predictions and print precision/recalls num_correct_weak = 0 num_correct_strong = 0 num_predicted = 0 num_gold = 0 num_correct_weak_from_input_window = 0 num_correct_strong_from_input_window = 0 num_gold_from_input_window = 0 all_entity_preds = [] f = errors_f = None if getattr(args, 'save_preds_dir', None) is not None: save_biencoder_file = os.path.join(args.save_preds_dir, 'biencoder_outs.jsonl') f = open(save_biencoder_file, 'w') errors_f = open(os.path.join(args.save_preds_dir, 'biencoder_errors.jsonl'), 'w') # nns (List[Array[int]]) [(num_pred_mentions, cands_per_mention) x exs]) # dists (List[Array[float]]) [(num_pred_mentions, cands_per_mention) x exs]) # pred_mention_bounds (List[Array[int]]) [(num_pred_mentions, 2) x exs] # cand_scores (List[Array[float]]) [(num_pred_mentions, cands_per_mention) x exs]) # mention_scores (List[Array[float]]) [(num_pred_mentions,) x exs]) for batch_num, batch_data in enumerate(dataloader): batch_context = batch_data[0] if len(batch_data) > 1: _, batch_cands, batch_label_ids, batch_mention_idxs, batch_mention_idx_masks = batch_data for b in range(len(batch_context)): i = batch_num * biencoder_params['eval_batch_size'] + b sample = samples[i] input_context = batch_context[b][batch_context[b] != 0].tolist() # filter out padding # (num_pred_mentions, cands_per_mention) scores = dists[i] if args.threshold_type == "joint" else cand_scores[i] cands_mask = (scores[:,0] == scores[:,0]) pred_entity_list = nns[i][cands_mask] if len(pred_entity_list) > 0: e_id = pred_entity_list[0] distances = scores[cands_mask] # (num_pred_mentions, 2) entity_mention_bounds_idx = pred_mention_bounds[i][cands_mask] utterance = sample['text'] if args.threshold_type == "joint": # THRESHOLDING assert utterance is not None top_mentions_mask = (distances[:,0] > threshold) elif args.threshold_type == "top_entity_by_mention": top_mentions_mask = (mention_scores[i] > mention_threshold) elif args.threshold_type == "thresholded_entity_by_mention": top_mentions_mask = (distances[:,0] > threshold) & (mention_scores[i] > mention_threshold) _, sort_idxs = torch.tensor(distances[:,0][top_mentions_mask]).sort(descending=True) # cands already sorted by score all_pred_entities = pred_entity_list[:,0][top_mentions_mask] e_mention_bounds = entity_mention_bounds_idx[top_mentions_mask] chosen_distances = distances[:,0][top_mentions_mask] if len(all_pred_entities) >= 2: all_pred_entities = all_pred_entities[sort_idxs] e_mention_bounds = e_mention_bounds[sort_idxs] chosen_distances = chosen_distances[sort_idxs] # prune mention overlaps e_mention_bounds_pruned = [] all_pred_entities_pruned = [] chosen_distances_pruned = [] mention_masked_utterance = np.zeros(len(input_context)) # ensure well-formed-ness, prune overlaps # greedily pick highest scoring, then prune all overlapping for idx, mb in enumerate(e_mention_bounds): mb[1] += 1 # prediction was inclusive, now make exclusive # check if in existing mentions if args.threshold_type != "top_entity_by_mention" and mention_masked_utterance[mb[0]:mb[1]].sum() >= 1: continue e_mention_bounds_pruned.append(mb) all_pred_entities_pruned.append(all_pred_entities[idx]) chosen_distances_pruned.append(float(chosen_distances[idx])) mention_masked_utterance[mb[0]:mb[1]] = 1 input_context = input_context[1:-1] # remove BOS and sep pred_triples = [( str(all_pred_entities_pruned[j]), int(e_mention_bounds_pruned[j][0]) - 1, # -1 for BOS int(e_mention_bounds_pruned[j][1]) - 1, ) for j in range(len(all_pred_entities_pruned))] entity_results = { "id": sample["id"], "text": sample["text"], "scores": chosen_distances_pruned, } if 'label_id' in sample: # Get LABELS input_mention_idxs = batch_mention_idxs[b][batch_mention_idx_masks[b]].tolist() input_label_ids = batch_label_ids[b][batch_label_ids[b] != -1].tolist() assert len(input_label_ids) == len(input_mention_idxs) gold_mention_bounds = [ sample['text'][ment[0]-10:ment[0]] + "[" + sample['text'][ment[0]:ment[1]] + "]" + sample['text'][ment[1]:ment[1]+10] for ment in sample['mentions'] ] # GET ALIGNED MENTION_IDXS (input is slightly different to model) between ours and gold labels -- also have to account for BOS gold_input = sample['tokenized_text_ids'] # return first instance of my_input in gold_input for my_input_start in range(len(gold_input)): if ( gold_input[my_input_start] == input_context[0] and gold_input[my_input_start:my_input_start+len(input_context)] == input_context ): break # add alignment factor (my_input_start) to predicted mention triples pred_triples = [( triple[0], triple[1] + my_input_start, triple[2] + my_input_start, ) for triple in pred_triples] gold_triples = [( str(sample['label_id'][j]), sample['tokenized_mention_idxs'][j][0], sample['tokenized_mention_idxs'][j][1], ) for j in range(len(sample['label_id']))] num_overlap_weak, num_overlap_strong = entity_linking_tp_with_overlap(gold_triples, pred_triples) num_correct_weak += num_overlap_weak num_correct_strong += num_overlap_strong num_predicted += len(all_pred_entities_pruned) num_gold += len(sample["label_id"]) # compute number correct given the input window pred_input_window_triples = [( str(all_pred_entities_pruned[j]), int(e_mention_bounds_pruned[j][0]), int(e_mention_bounds_pruned[j][1]), ) for j in range(len(all_pred_entities_pruned))] gold_input_window_triples = [( str(input_label_ids[j]), input_mention_idxs[j][0], input_mention_idxs[j][1] + 1, ) for j in range(len(input_label_ids))] num_overlap_weak_window, num_overlap_strong_window = entity_linking_tp_with_overlap(gold_input_window_triples, pred_input_window_triples) num_correct_weak_from_input_window += num_overlap_weak_window num_correct_strong_from_input_window += num_overlap_strong_window num_gold_from_input_window += len(input_mention_idxs) entity_results.update({ "pred_tuples_string": [ [id2title[triple[0]], tokenizer.decode(sample['tokenized_text_ids'][triple[1]:triple[2]])] for triple in pred_triples ], "gold_tuples_string": [ [id2title[triple[0]], tokenizer.decode(sample['tokenized_text_ids'][triple[1]:triple[2]])] for triple in gold_triples ], "pred_triples": pred_triples, "gold_triples": gold_triples, "tokens": input_context, }) if errors_f is not None and (num_overlap_weak != len(gold_triples) or num_overlap_weak != len(pred_triples)): errors_f.write(json.dumps(entity_results) + "\n") else: entity_results.update({ "pred_tuples_string": [ [id2title[triple[0]], tokenizer.decode(input_context[triple[1]:triple[2]])] for triple in pred_triples ], "pred_triples": pred_triples, "tokens": input_context, }) all_entity_preds.append(entity_results) if f is not None: f.write( json.dumps(entity_results) + "\n" ) if f is not None: f.close() errors_f.close() return ( all_entity_preds, num_correct_weak, num_correct_strong, num_predicted, num_gold, num_correct_weak_from_input_window, num_correct_strong_from_input_window, num_gold_from_input_window ) def _save_biencoder_outs(save_preds_dir, nns, dists, pred_mention_bounds, cand_scores, mention_scores, runtime): np.save(os.path.join(save_preds_dir, "biencoder_nns.npy"), nns) np.save(os.path.join(save_preds_dir, "biencoder_dists.npy"), dists) np.save(os.path.join(save_preds_dir, "biencoder_mention_bounds.npy"), pred_mention_bounds) np.save(os.path.join(save_preds_dir, "biencoder_cand_scores.npy"), cand_scores) np.save(os.path.join(save_preds_dir, "biencoder_mention_scores.npy"), mention_scores) with open(os.path.join(save_preds_dir, "runtime.txt"), "w") as wf: wf.write(str(runtime)) def _load_biencoder_outs(save_preds_dir): nns = np.load(os.path.join(save_preds_dir, "biencoder_nns.npy"), allow_pickle=True) dists = np.load(os.path.join(save_preds_dir, "biencoder_dists.npy"), allow_pickle=True) pred_mention_bounds = np.load(os.path.join(save_preds_dir, "biencoder_mention_bounds.npy"), allow_pickle=True) cand_scores = np.load(os.path.join(save_preds_dir, "biencoder_cand_scores.npy"), allow_pickle=True) mention_scores = np.load(os.path.join(save_preds_dir, "biencoder_mention_scores.npy"), allow_pickle=True) runtime = float(open(os.path.join(args.save_preds_dir, "runtime.txt")).read()) return nns, dists, pred_mention_bounds, cand_scores, mention_scores, runtime def display_metrics( num_correct, num_predicted, num_gold, prefix="", ): p = 0 if num_predicted == 0 else float(num_correct) / float(num_predicted) r = 0 if num_gold == 0 else float(num_correct) / float(num_gold) if p + r > 0: f1 = 2 * p * r / (p + r) else: f1 = 0 print("{0}precision = {1} / {2} = {3}".format(prefix, num_correct, num_predicted, p)) print("{0}recall = {1} / {2} = {3}".format(prefix, num_correct, num_gold, r)) print("{0}f1 = {1}".format(prefix, f1)) def load_models(args, logger): # load biencoder model if logger: logger.info("Loading biencoder model") try: with open(args.biencoder_config) as json_file: biencoder_params = json.load(json_file) except json.decoder.JSONDecodeError: with open(args.biencoder_config) as json_file: for line in json_file: line = line.replace("'", "\"") line = line.replace("True", "true") line = line.replace("False", "false") line = line.replace("None", "null") biencoder_params = json.loads(line) break biencoder_params["path_to_model"] = args.biencoder_model biencoder_params["cand_token_ids_path"] = args.cand_token_ids_path biencoder_params["eval_batch_size"] = getattr(args, 'eval_batch_size', 8) biencoder_params["no_cuda"] = (not getattr(args, 'use_cuda', False) or not torch.cuda.is_available()) if biencoder_params["no_cuda"]: biencoder_params["data_parallel"] = False biencoder_params["load_cand_enc_only"] = False if getattr(args, 'max_context_length', None) is not None: biencoder_params["max_context_length"] = args.max_context_length biencoder = load_biencoder(biencoder_params) if biencoder_params["no_cuda"] and type(biencoder.model).__name__ == 'DataParallel': biencoder.model = biencoder.model.module elif not biencoder_params["no_cuda"] and type(biencoder.model).__name__ != 'DataParallel': biencoder.model = torch.nn.DataParallel(biencoder.model) # load candidate entities if logger: logger.info("Loading candidate entities") ( candidate_encoding, indexer, id2title, id2text, id2wikidata, ) = _load_candidates( args.entity_catalogue, args.entity_encoding, args.faiss_index, args.index_path, logger=logger, ) return ( biencoder, biencoder_params, candidate_encoding, indexer, id2title, id2text, id2wikidata, ) def run( args, logger, biencoder, biencoder_params, candidate_encoding, indexer, id2title, id2text, id2wikidata, test_data=None, ): if not test_data and not getattr(args, 'test_mentions', None) and not getattr(args, 'interactive', None): msg = ( "ERROR: either you start BLINK with the " "interactive option (-i) or you pass in input test mentions (--test_mentions)" "and test entities (--test_entities) or manually pass in test data" ) raise ValueError(msg) if getattr(args, 'save_preds_dir', None) is not None and not os.path.exists(args.save_preds_dir): os.makedirs(args.save_preds_dir) print("Saving preds in {}".format(args.save_preds_dir)) stopping_condition = False threshold = float(args.threshold) if args.threshold_type == "top_entity_by_mention": assert args.mention_threshold is not None mention_threshold = float(args.mention_threshold) else: mention_threshold = threshold if args.interactive: while not stopping_condition: if logger: logger.info("interactive mode") # Interactive text = input("insert text: ") # Prepare data samples = [{"id": "-1", "text": text}] dataloader = _process_biencoder_dataloader( samples, biencoder.tokenizer, biencoder_params, logger, ) # Run inference nns, dists, pred_mention_bounds, mention_scores, cand_scores = _run_biencoder( args, biencoder, dataloader, candidate_encoding, samples=samples, num_cand_mentions=args.num_cand_mentions, num_cand_entities=args.num_cand_entities, device="cpu" if biencoder_params["no_cuda"] else "cuda", threshold=mention_threshold, indexer=indexer, ) action = "c" while action == "c": all_entity_preds = get_predictions( args, dataloader, biencoder_params, samples, nns, dists, mention_scores, cand_scores, pred_mention_bounds, id2title, threshold=threshold, mention_threshold=mention_threshold, )[0] pred_triples = all_entity_preds[0]['pred_triples'] _print_colorful_text(all_entity_preds[0]['tokens'], tokenizer, pred_triples) _print_colorful_prediction(all_entity_preds, pred_triples, id2text, id2wikidata) action = input("Next question [n] / change threshold [c]: ") while action != "n" and action != "c": action = input("Next question [n] / change threshold [c]: ") if action == "c": print("Current threshold {}".format(threshold)) while True: threshold = input("New threshold (increase for less cands, decrease for more cands): ") try: threshold = float(threshold) break except: print("Error! Expected float, got {}. Try again.".format(threshold)) else: if not test_data: samples, num_unk = _get_test_samples( args.test_mentions, args.test_entities, logger, ) else: samples = test_data if logger: logger.info("Preparing data for biencoder") dataloader = _process_biencoder_dataloader( samples, biencoder.tokenizer, biencoder_params, None, ) stopping_condition = True # prepare the data for biencoder # run biencoder if predictions not saved if not getattr(args, 'save_preds_dir', None) or not os.path.exists( os.path.join(args.save_preds_dir, 'biencoder_mention_bounds.npy')): # run biencoder if logger: logger.info("Running biencoder...") start_time = time.time() nns, dists, pred_mention_bounds, mention_scores, cand_scores = _run_biencoder( args, biencoder, dataloader, candidate_encoding, samples=samples, num_cand_mentions=args.num_cand_mentions, num_cand_entities=args.num_cand_entities, device="cpu" if biencoder_params["no_cuda"] else "cuda", threshold=mention_threshold, indexer=indexer, ) end_time = time.time() if logger: logger.info("Finished running biencoder") runtime = end_time - start_time if getattr(args, 'save_preds_dir', None): _save_biencoder_outs( args.save_preds_dir, nns, dists, pred_mention_bounds, cand_scores, mention_scores, runtime, ) else: nns, dists, pred_mention_bounds, cand_scores, mention_scores, runtime = _load_biencoder_outs(args.save_preds_dir) assert len(samples) == len(nns) == len(dists) == len(pred_mention_bounds) == len(cand_scores) == len(mention_scores) ( all_entity_preds, num_correct_weak, num_correct_strong, num_predicted, num_gold, num_correct_weak_from_input_window, num_correct_strong_from_input_window, num_gold_from_input_window, ) = get_predictions( args, dataloader, biencoder_params, samples, nns, dists, mention_scores, cand_scores, pred_mention_bounds, id2title, threshold=threshold, mention_threshold=mention_threshold, ) print("*--------*") if num_gold > 0: print("WEAK MATCHING") display_metrics(num_correct_weak, num_predicted, num_gold) print("Just entities within input window...") display_metrics(num_correct_weak_from_input_window, num_predicted, num_gold_from_input_window) print("*--------*") print("STRONG MATCHING") display_metrics(num_correct_strong, num_predicted, num_gold) print("Just entities within input window...") display_metrics(num_correct_strong_from_input_window, num_predicted, num_gold_from_input_window) print("*--------*") print("biencoder runtime = {}".format(runtime)) print("*--------*") return all_entity_preds if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--debug_biencoder", "-db", action="store_true", default=False, help="Debug biencoder" ) # evaluation mode parser.add_argument( "--get_predictions", "-p", action="store_true", default=False, help="Getting predictions mode. Does not filter at crossencoder step." ) parser.add_argument( "--interactive", "-i", action="store_true", help="Interactive mode." ) # test_data parser.add_argument( "--test_mentions", dest="test_mentions", type=str, help="Test Dataset." ) parser.add_argument( "--test_entities", dest="test_entities", type=str, help="Test Entities.", default="models/entity.jsonl", # ALL WIKIPEDIA! ) parser.add_argument( "--save_preds_dir", type=str, help="Directory to save model predictions to." ) parser.add_argument( "--mention_threshold", type=str, default=None, dest="mention_threshold", help="Used if threshold type is `top_entity_by_mention`. " "Threshold for mention score, for which mentions will be pruned if they fall under that threshold. " "Set to '-inf' to get all mentions." ) parser.add_argument( "--threshold", type=str, default="-4.5", dest="threshold", help="Threshold for final joint score, for which examples will be pruned if they fall under that threshold. " "Set to `-inf` to get all entities." ) parser.add_argument( "--num_cand_mentions", type=int, default=50, help="Number of mention candidates to consider per example (at most)" ) parser.add_argument( "--num_cand_entities", type=int, default=10, help="Number of entity candidates to consider per mention (at most)" ) parser.add_argument( "--threshold_type", type=str, default="joint", choices=["joint", "top_entity_by_mention"], help="How to threshold the final candidates. " "`top_entity_by_mention`: get top candidate (with entity score) for each predicted mention bound. " "`joint`: by thresholding joint score." ) # biencoder parser.add_argument( "--biencoder_model", dest="biencoder_model", type=str, default="models/elq_wiki_large.bin", help="Path to the biencoder model.", ) parser.add_argument( "--biencoder_config", dest="biencoder_config", type=str, default="models/elq_large_params.txt", help="Path to the biencoder configuration.", ) parser.add_argument( "--cand_token_ids_path", dest="cand_token_ids_path", type=str, default="models/entity_token_ids_128.t7", # ALL WIKIPEDIA! help="Path to tokenized entity catalogue", ) parser.add_argument( "--entity_catalogue", dest="entity_catalogue", type=str, default="models/entity.jsonl", # ALL WIKIPEDIA! help="Path to the entity catalogue.", ) parser.add_argument( "--entity_encoding", dest="entity_encoding", type=str, default="models/all_entities_large.t7", # ALL WIKIPEDIA! help="Path to the entity catalogue.", ) parser.add_argument( "--eval_batch_size", dest="eval_batch_size", type=int, default=8, help="Crossencoder's batch size for evaluation", ) parser.add_argument( "--faiss_index", dest="faiss_index", type=str, default="hnsw", choices=["hnsw", "flat", "ivfflat", "none"], help="whether to use faiss index", ) parser.add_argument( "--index_path", dest="index_path", type=str, default="models/faiss_hnsw_index.pkl", help="path to load indexer", ) parser.add_argument( "--max_context_length", dest="max_context_length", type=int, help="Maximum length of context. (Don't set to inherit from training config)", ) # output folder parser.add_argument( "--output_path", dest="output_path", type=str, default="output", help="Path to the output.", ) parser.add_argument( "--use_cuda", dest="use_cuda", action="store_true", default=False, help="run on gpu" ) parser.add_argument( "--no_logger", dest="no_logger", action="store_true", default=False, help="don't log progress" ) args = parser.parse_args() logger = None if not args.no_logger: logger = utils.get_logger(args.output_path) logger.setLevel(10) models = load_models(args, logger) run(args, logger, *models)
BLINK-main
elq/main_dense.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import argparse import logging import numpy import os import time import torch from elq.index.faiss_indexer import DenseFlatIndexer, DenseIVFFlatIndexer, DenseHNSWFlatIndexer import elq.candidate_ranking.utils as utils logger = utils.get_logger() def main(params): output_path = params["output_path"] logger.info("Loading candidate encoding from path: %s" % params["candidate_encoding"]) candidate_encoding = torch.load(params["candidate_encoding"]) vector_size = candidate_encoding.size(1) index_buffer = params["index_buffer"] if params["faiss_index"] == "hnsw": logger.info("Using HNSW index in FAISS") index = DenseHNSWFlatIndexer(vector_size, index_buffer) elif params["faiss_index"] == "ivfflat": logger.info("Using IVF Flat index in FAISS") index = DenseIVFFlatIndexer(vector_size, 75, 100) else: logger.info("Using Flat index in FAISS") index = DenseFlatIndexer(vector_size, index_buffer) logger.info("Building index.") index.index_data(candidate_encoding.numpy()) logger.info("Done indexing data.") if params.get("save_index", None): index.serialize(output_path) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( "--output_path", required=True, type=str, help="output file path", ) parser.add_argument( "--candidate_encoding", default="models/all_entities_large.t7", type=str, help="file path for candidte encoding.", ) parser.add_argument( "--faiss_index", type=str, choices=["hnsw", "flat", "ivfflat"], help='Which faiss index to use', ) parser.add_argument( "--save_index", action='store_true', help='If enabled, save index', ) parser.add_argument( '--index_buffer', type=int, default=50000, help="Temporal memory data buffer size (in samples) for indexer", ) params = parser.parse_args() params = params.__dict__ main(params)
BLINK-main
elq/build_faiss_index.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # # Code partially adopted from https://github.com/allenai/allennlp # from typing import Any, Dict, List, Optional, Sequence, Tuple, TypeVar, Union import torch def get_device_of(tensor: torch.Tensor) -> int: """ Returns the device of the tensor. """ if not tensor.is_cuda: return -1 else: return tensor.get_device() def get_range_vector(size: int, device: int) -> torch.Tensor: """ Returns a range vector with the desired size, starting at 0. The CUDA implementation is meant to avoid copy data from CPU to GPU. """ if device > -1: return torch.cuda.LongTensor(size, device=device).fill_(1).cumsum(0) - 1 else: return torch.arange(0, size, dtype=torch.long) def flatten_and_batch_shift_indices(indices: torch.Tensor, sequence_length: int) -> torch.Tensor: """ This is a subroutine for [`batched_index_select`](./util.md#batched_index_select). The given `indices` of size `(batch_size, d_1, ..., d_n)` indexes into dimension 2 of a target tensor, which has size `(batch_size, sequence_length, embedding_size)`. This function returns a vector that correctly indexes into the flattened target. The sequence length of the target must be provided to compute the appropriate offsets. ```python indices = torch.ones([2,3], dtype=torch.long) # Sequence length of the target tensor. sequence_length = 10 shifted_indices = flatten_and_batch_shift_indices(indices, sequence_length) # Indices into the second element in the batch are correctly shifted # to take into account that the target tensor will be flattened before # the indices are applied. assert shifted_indices == [1, 1, 1, 11, 11, 11] ``` # Parameters indices : `torch.LongTensor`, required. sequence_length : `int`, required. The length of the sequence the indices index into. This must be the second dimension of the tensor. # Returns offset_indices : `torch.LongTensor` """ # Shape: (batch_size) if torch.max(indices) >= sequence_length or torch.min(indices) < 0: raise IndexError( f"All elements in indices should be in range (0, {sequence_length - 1})" ) offsets = get_range_vector(indices.size(0), get_device_of(indices)) * sequence_length for _ in range(len(indices.size()) - 1): offsets = offsets.unsqueeze(1) # Shape: (batch_size, d_1, ..., d_n) offset_indices = indices + offsets # Shape: (batch_size * d_1 * ... * d_n) offset_indices = offset_indices.view(-1) return offset_indices def batched_index_select( target: torch.Tensor, indices: torch.LongTensor, flattened_indices: Optional[torch.LongTensor] = None, ) -> torch.Tensor: """ The given `indices` of size `(batch_size, d_1, ..., d_n)` indexes into the sequence dimension (dimension 2) of the target, which has size `(batch_size, sequence_length, embedding_size)`. This function returns selected values in the target with respect to the provided indices, which have size `(batch_size, d_1, ..., d_n, embedding_size)`. This can use the optionally precomputed `flattened_indices` with size `(batch_size * d_1 * ... * d_n)` if given. An example use case of this function is looking up the start and end indices of spans in a sequence tensor. This is used in the [CoreferenceResolver](../models/coreference_resolution/coref.md). Model to select contextual word representations corresponding to the start and end indices of mentions. The key reason this can't be done with basic torch functions is that we want to be able to use look-up tensors with an arbitrary number of dimensions (for example, in the coref model, we don't know a-priori how many spans we are looking up). # Parameters target : `torch.Tensor`, required. A 3 dimensional tensor of shape (batch_size, sequence_length, embedding_size). This is the tensor to be indexed. indices : `torch.LongTensor` A tensor of shape (batch_size, ...), where each element is an index into the `sequence_length` dimension of the `target` tensor. flattened_indices : Optional[torch.Tensor], optional (default = None) An optional tensor representing the result of calling `flatten_and_batch_shift_indices` on `indices`. This is helpful in the case that the indices can be flattened once and cached for many batch lookups. # Returns selected_targets : `torch.Tensor` A tensor with shape [indices.size(), target.size(-1)] representing the embedded indices extracted from the batch flattened target tensor. """ if flattened_indices is None: # Shape: (batch_size * d_1 * ... * d_n) try: flattened_indices = flatten_and_batch_shift_indices(indices, target.size(1)) except: print("indices: {}".format(indices)) print("target: {}".format(target)) flattened_indices = flatten_and_batch_shift_indices(indices, target.size(1)) # Shape: (batch_size * sequence_length, embedding_size) flattened_target = target.view(-1, target.size(-1)) # Shape: (batch_size * d_1 * ... * d_n, embedding_size) flattened_selected = flattened_target.index_select(0, flattened_indices) selected_shape = list(indices.size()) + [target.size(-1)] # Shape: (batch_size, d_1, ..., d_n, embedding_size) selected_targets = flattened_selected.view(*selected_shape) return selected_targets def batched_span_select(target: torch.Tensor, spans: torch.LongTensor) -> torch.Tensor: """ The given `spans` of size `(batch_size, num_spans, 2)` indexes into the sequence dimension (dimension 2) of the target, which has size `(batch_size, sequence_length, embedding_size)`. This function returns segmented spans in the target with respect to the provided span indices. It does not guarantee element order within each span. # Parameters target : `torch.Tensor`, required. A 3 dimensional tensor of shape (batch_size, sequence_length, embedding_size). This is the tensor to be indexed. indices : `torch.LongTensor` A 3 dimensional tensor of shape (batch_size, num_spans, 2) representing start and end indices (both inclusive) into the `sequence_length` dimension of the `target` tensor. # Returns span_embeddings : `torch.Tensor` A tensor with shape (batch_size, num_spans, max_batch_span_width, embedding_size] representing the embedded spans extracted from the batch flattened target tensor. span_mask: `torch.BoolTensor` A tensor with shape (batch_size, num_spans, max_batch_span_width) representing the mask on the returned span embeddings. """ # both of shape (batch_size, num_spans, 1) span_starts, span_ends = spans.split(1, dim=-1) # shape (batch_size, num_spans, 1) # These span widths are off by 1, because the span ends are `inclusive`. span_widths = span_ends - span_starts # We need to know the maximum span width so we can # generate indices to extract the spans from the sequence tensor. # These indices will then get masked below, such that if the length # of a given span is smaller than the max, the rest of the values # are masked. max_batch_span_width = span_widths.max().item() + 1 # Shape: (1, 1, max_batch_span_width) max_span_range_indices = get_range_vector(max_batch_span_width, get_device_of(target)).view( 1, 1, -1 ) # Shape: (batch_size, num_spans, max_batch_span_width) # This is a broadcasted comparison - for each span we are considering, # we are creating a range vector of size max_span_width, but masking values # which are greater than the actual length of the span. # # We're using <= here (and for the mask below) because the span ends are # inclusive, so we want to include indices which are equal to span_widths rather # than using it as a non-inclusive upper bound. span_mask = max_span_range_indices <= span_widths raw_span_indices = span_ends - max_span_range_indices # We also don't want to include span indices which are less than zero, # which happens because some spans near the beginning of the sequence # have an end index < max_batch_span_width, so we add this to the mask here. span_mask = span_mask & (raw_span_indices >= 0) span_indices = torch.nn.functional.relu(raw_span_indices.float()).long() # Shape: (batch_size, num_spans, max_batch_span_width, embedding_dim) span_embeddings = batched_index_select(target, span_indices) return span_embeddings, span_mask
BLINK-main
elq/biencoder/allennlp_span_utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import json import logging import torch from tqdm import tqdm, trange from torch.utils.data import DataLoader, TensorDataset from pytorch_transformers.tokenization_bert import BertTokenizer from blink.biencoder.zeshel_utils import world_to_id from elq.common.params import ENT_START_TAG, ENT_END_TAG, ENT_TITLE_TAG def select_field_with_padding(data, key1, key2=None, pad_idx=-1): max_len = 0 selected_list = [] padding_mask = [] for example in data: if key2 is None: selected_list.append(example[key1]) max_len = max(max_len, len(example[key1])) else: selected_list.append(example[key1][key2]) max_len = max(max_len, len(example[key1][key2])) for i, entry in enumerate(selected_list): # pad to max len pad_list = [1 for _ in range(len(entry))] + [0 for _ in range(max_len - len(entry))] selected_list[i] += [pad_idx for _ in range(max_len - len(entry))] assert len(pad_list) == max_len assert len(selected_list[i]) == max_len padding_mask.append(pad_list) return selected_list, padding_mask def select_field(data, key1, key2=None): if key2 is None: return [example[key1] for example in data] else: return [example[key1][key2] for example in data] def get_context_representation_single_mention( sample, tokenizer, max_seq_length, mention_key="mention", context_key="context", ent_start_token=ENT_START_TAG, ent_end_token=ENT_END_TAG, add_mention_bounds=True, ): mention_tokens = [] if sample[mention_key] and len(sample[mention_key]) > 0: mention_tokens = tokenizer.tokenize(sample[mention_key]) to_subtract = 4 if add_mention_bounds else 2 if len(mention_tokens) > max_seq_length - to_subtract: # -4 as 2 for ent_start and ent_end, 2 for [CLS] and [SEP] mention_tokens = mention_tokens[:max_seq_length - to_subtract] if add_mention_bounds: mention_tokens = [ent_start_token] + mention_tokens + [ent_end_token] context_left = sample[context_key + "_left"] context_right = sample[context_key + "_right"] context_left = tokenizer.tokenize(context_left) context_right = tokenizer.tokenize(context_right) left_quota = (max_seq_length - len(mention_tokens)) // 2 - 1 right_quota = max_seq_length - len(mention_tokens) - left_quota - 2 left_add = len(context_left) right_add = len(context_right) if left_add <= left_quota: if right_add > right_quota: right_quota += left_quota - left_add else: if right_add <= right_quota: left_quota += right_quota - right_add if left_quota <= 0: context_left = [] if right_quota <= 0: context_right = [] context_tokens = ( context_left[-left_quota:] + mention_tokens + context_right[:right_quota] ) context_tokens = ["[CLS]"] + context_tokens + ["[SEP]"] mention_idxs = [ len(context_left[-left_quota:]) + 1, len(context_left[-left_quota:]) + len(mention_tokens) + 1, ] input_ids = tokenizer.convert_tokens_to_ids(context_tokens) padding = [0] * (max_seq_length - len(input_ids)) input_ids += padding assert len(input_ids) == max_seq_length return { "tokens": context_tokens, "ids": input_ids, "mention_idxs": mention_idxs, } def get_context_representation_multiple_mentions_left_right( sample, tokenizer, max_seq_length, mention_key="mention", context_key="context", ent_start_token=ENT_START_TAG, ent_end_token=ENT_END_TAG, ): all_mentions = sample[mention_key] all_context_lefts = sample[context_key + "_left"] all_context_rights = sample[context_key + "_right"] if len(all_mentions[0]) == 0 and len(all_context_lefts[0]) == 0 and len(all_context_rights[0]) == 0: # passed in empty string context_tokens = ["[CLS]", "[SEP]"] input_ids = tokenizer.convert_tokens_to_ids(context_tokens) padding = [0] * (max_seq_length - len(input_ids)) input_ids += padding assert len(input_ids) == max_seq_length return { "tokens": context_tokens, "ids": input_ids, "mention_idxs": [], } mention_tokens = [] for mention in all_mentions: if mention and len(mention) > 0: mention_token = tokenizer.tokenize(mention) if len(mention_token) > max_seq_length - 2: # -2 for [CLS] and [SEP] mention_token = mention_token[:max_seq_length - 2] mention_tokens.append(mention_token) mention_idxs = [] assert len(all_context_lefts) == len(all_context_rights) assert len(all_context_rights) == len(all_mentions) context_tokens = None for c in range(len(all_context_lefts)): context_left = all_context_lefts[c] context_right = all_context_rights[c] context_left = tokenizer.tokenize(context_left) context_right = tokenizer.tokenize(context_right) left_quota = (max_seq_length - len(mention_tokens[c])) // 2 - 1 right_quota = max_seq_length - len(mention_tokens[c]) - left_quota - 2 left_add = len(context_left) right_add = len(context_right) if left_add <= left_quota: if right_add > right_quota: right_quota += left_quota - left_add else: if right_add <= right_quota: left_quota += right_quota - right_add if left_quota <= 0: context_left = [] if right_quota <= 0: context_right = [] context_tokens_itr = ( context_left[-left_quota:] + mention_tokens[c] + context_right[:right_quota] ) context_tokens_itr = ["[CLS]"] + context_tokens_itr + ["[SEP]"] if context_tokens is None: context_tokens = context_tokens_itr else: try: assert context_tokens == context_tokens_itr except: import pdb pdb.set_trace() mention_idxs.append([ len(context_left[-left_quota:]) + 1, len(context_left[-left_quota:]) + len(mention_tokens[c]) + 1, ]) input_ids = tokenizer.convert_tokens_to_ids(context_tokens) padding = [0] * (max_seq_length - len(input_ids)) input_ids += padding assert len(input_ids) == max_seq_length return { "tokens": context_tokens, "ids": input_ids, "mention_idxs": mention_idxs, } def sort_mentions( lst, sort_map=None, ): """ sort_map: {orig_idx: idx in new "sorted" array} """ new_lst = [0 for _ in range(len(lst))] for i in range(len(lst)): new_lst[sort_map[i]] = lst[i] return new_lst def do_sort( sample, orig_idx_to_sort_idx, ): sample['mentions'] = sort_mentions(sample['mentions'], orig_idx_to_sort_idx) sample['label_id'] = sort_mentions(sample['label_id'], orig_idx_to_sort_idx) sample['wikidata_id'] = sort_mentions(sample['wikidata_id'], orig_idx_to_sort_idx) sample['entity'] = sort_mentions(sample['entity'], orig_idx_to_sort_idx) sample['label'] = sort_mentions(sample['label'], orig_idx_to_sort_idx) def get_context_representation_multiple_mentions_idxs( sample, tokenizer, max_seq_length, mention_key, context_key, ent_start_token, ent_end_token, ): ''' Also cuts out mentions beyond that context window ASSUMES MENTION_IDXS ARE SORTED!!!! Returns: List of mention bounds that are [inclusive, exclusive) (make both inclusive later) NOTE: 2nd index of mention bound may be outside of max_seq_length-range (must deal with later) ''' mention_idxs = sample["tokenized_mention_idxs"] input_ids = sample["tokenized_text_ids"] # sort mentions / entities / everything associated # [[orig_index, [start, end]], ....] --> sort by start, then end sort_tuples = [[i[0], i[1]] for i in sorted(enumerate(mention_idxs), key=lambda x:(x[1][0], x[1][1]))] if [tup[1] for tup in sort_tuples] != mention_idxs: orig_idx_to_sort_idx = {itm[0]: i for i, itm in enumerate(sort_tuples)} assert [tup[1] for tup in sort_tuples] == sort_mentions(mention_idxs, orig_idx_to_sort_idx) mention_idxs = [tup[1] for tup in sort_tuples] sample['tokenized_mention_idxs'] = mention_idxs do_sort(sample, orig_idx_to_sort_idx) # TODO SORT EVERYTHING # fit leftmost mention, then all of the others that can reasonably fit... all_mention_spans_range = [mention_idxs[0][0], mention_idxs[-1][1]] while all_mention_spans_range[1] - all_mention_spans_range[0] + 2 > max_seq_length: if len(mention_idxs) == 1: # don't cut further assert mention_idxs[0][1] - mention_idxs[0][0] + 2 > max_seq_length # truncate mention mention_idxs[0][1] = max_seq_length + mention_idxs[0][0] - 2 else: # cut last mention mention_idxs = mention_idxs[:len(mention_idxs) - 1] all_mention_spans_range = [mention_idxs[0][0], mention_idxs[-1][1]] context_left = input_ids[:all_mention_spans_range[0]] all_mention_tokens = input_ids[all_mention_spans_range[0]:all_mention_spans_range[1]] context_right = input_ids[all_mention_spans_range[1]:] left_quota = (max_seq_length - len(all_mention_tokens)) // 2 - 1 right_quota = max_seq_length - len(all_mention_tokens) - left_quota - 2 left_add = len(context_left) right_add = len(context_right) if left_add <= left_quota: # tokens left to add <= quota ON THE LEFT if right_add > right_quota: # add remaining quota to right quota right_quota += left_quota - left_add else: if right_add <= right_quota: # tokens left to add <= quota ON THE RIGHT left_quota += right_quota - right_add # add remaining quota to left quota if left_quota <= 0: left_quota = -len(context_left) # cut entire list (context_left = []) if right_quota <= 0: right_quota = 0 # cut entire list (context_right = []) input_ids_window = context_left[-left_quota:] + all_mention_tokens + context_right[:right_quota] # shift mention_idxs if len(input_ids) <= max_seq_length - 2: try: assert input_ids == input_ids_window except: import pdb pdb.set_trace() else: assert input_ids != input_ids_window cut_from_left = len(context_left) - len(context_left[-left_quota:]) if cut_from_left > 0: # must shift mention_idxs for c in range(len(mention_idxs)): mention_idxs[c] = [ mention_idxs[c][0] - cut_from_left, mention_idxs[c][1] - cut_from_left, ] input_ids_window = [101] + input_ids_window + [102] tokens = tokenizer.convert_ids_to_tokens(input_ids_window) # +1 for CLS token mention_idxs = [[mention[0]+1, mention[1]+1] for mention in mention_idxs] # input_ids = tokenizer.convert_tokens_to_ids(input_ids_window) padding = [0] * (max_seq_length - len(input_ids_window)) input_ids_window += padding assert len(input_ids_window) == max_seq_length return { "tokens": tokens, "ids": input_ids_window, "mention_idxs": mention_idxs, # "pruned_ents": [1 for i in range(len(all_mentions)) if i < len(mention_idxs) else 0], # pruned last N entities, TODO change if changed } def get_candidate_representation( candidate_desc, tokenizer, max_seq_length, candidate_title=None, title_tag=ENT_TITLE_TAG, ): cls_token = tokenizer.cls_token sep_token = tokenizer.sep_token cand_tokens = tokenizer.tokenize(candidate_desc) if candidate_title is not None: title_tokens = tokenizer.tokenize(candidate_title) cand_tokens = title_tokens + [title_tag] + cand_tokens cand_tokens = cand_tokens[: max_seq_length - 2] cand_tokens = [cls_token] + cand_tokens + [sep_token] input_ids = tokenizer.convert_tokens_to_ids(cand_tokens) padding = [0] * (max_seq_length - len(input_ids)) input_ids += padding assert len(input_ids) == max_seq_length return { "tokens": cand_tokens, "ids": [input_ids], } def process_mention_data( samples, tokenizer, max_context_length, max_cand_length, silent, mention_key="mention", context_key="context", label_key="label", title_key='label_title', ent_start_token=ENT_START_TAG, ent_end_token=ENT_END_TAG, title_token=ENT_TITLE_TAG, debug=False, logger=None, add_mention_bounds=True, saved_context_dir=None, candidate_token_ids=None, params=None, ): ''' Returns /inclusive/ bounds ''' extra_ret_values = {} if saved_context_dir is not None and os.path.exists(os.path.join(saved_context_dir, "tensor_tuple.pt")): data = torch.load(os.path.join(saved_context_dir, "data.pt")) tensor_data_tuple = torch.load(os.path.join(saved_context_dir, "tensor_tuple.pt")) return data, tensor_data_tuple, extra_ret_values if candidate_token_ids is None and not debug: candidate_token_ids = torch.load(params["cand_token_ids_path"]) if logger: logger.info("Loaded saved entities info") extra_ret_values["candidate_token_ids"] = candidate_token_ids processed_samples = [] if debug: samples = samples[:200] if silent: iter_ = samples else: iter_ = tqdm(samples) use_world = True ent_start_id = tokenizer.convert_tokens_to_ids(ent_start_token) ent_end_id = tokenizer.convert_tokens_to_ids(ent_end_token) cls_token_id = tokenizer.convert_tokens_to_ids("[CLS]") sep_token_id = tokenizer.convert_tokens_to_ids("[SEP]") for idx, sample in enumerate(iter_): assert not add_mention_bounds, "Adding mention bounds, but we have multiple entities per example" if context_key + "_left" in sample: context_tokens = get_context_representation_multiple_mentions_left_right( sample, tokenizer, max_context_length, mention_key, context_key, ent_start_token, ent_end_token, ) else: context_tokens = get_context_representation_multiple_mentions_idxs( sample, tokenizer, max_context_length, mention_key, context_key, ent_start_token, ent_end_token, ) for i in range(len(context_tokens["mention_idxs"])): context_tokens["mention_idxs"][i][1] -= 1 # make bounds inclusive label = sample[label_key] title = sample.get(title_key) label_ids = sample.get("label_id") if label is None: label = [None] label_ids = [label_ids] # remove those that got pruned off if len(label) > len(context_tokens['mention_idxs']): label = label[:len(context_tokens['mention_idxs'])] label_ids = sample["label_id"][:len(context_tokens['mention_idxs'])] if candidate_token_ids is not None: token_ids = [[candidate_token_ids[label_id].tolist()] for label_id in label_ids] label_tokens = { "tokens": "", "ids": token_ids, } elif not params["freeze_cand_enc"]: label_tokens = [get_candidate_representation( l, tokenizer, max_cand_length, title[i], ) for i, l in enumerate(label)] label_tokens = { k: [label_tokens[l][k] for l in range(len(label_tokens))] for k in label_tokens[0]} else: label_tokens = None if isinstance(sample["label_id"], list): # multiple candidates if len(sample["label_id"]) > len(context_tokens['mention_idxs']): sample["label_id"] = sample["label_id"][:len(context_tokens['mention_idxs'])] label_idx = [int(id) for id in sample["label_id"]] else: assert isinstance(sample["label_id"], int) or isinstance(sample["label_id"], str) label_idx = int(sample["label_id"]) record = { "context": context_tokens, } if not params["freeze_cand_enc"]: record["label"] = label_tokens record["label_idx"] = label_idx if "world" in sample: src = sample["world"] src = world_to_id[src] record["src"] = [src] use_world = True else: use_world = False processed_samples.append(record) if debug and logger: logger.info("====Processed samples: ====") for sample in processed_samples[:5]: logger.info("Context tokens : " + " ".join(sample["context"]["tokens"])) logger.info( "Context ids : " + " ".join([str(v) for v in sample["context"]["ids"]]) ) if not params["freeze_cand_encs"]: logger.info("Label tokens : " + " ".join(sample["label"]["tokens"])) logger.info( "Label ids : " + " ".join([str(v) for v in sample["label"]["ids"]]) ) logger.info("Label_id : %d" % sample["label_idx"]) if use_world: logger.info("Src : %d" % sample["src"][0]) context_vecs = torch.tensor( select_field(processed_samples, "context", "ids"), dtype=torch.long, ) if logger: logger.info("Created context IDs vector") if isinstance(processed_samples[0]["context"]["mention_idxs"][0], int): mention_idx_vecs = torch.tensor( select_field(processed_samples, "context", "mention_idxs"), dtype=torch.long, ).unsqueeze(1) mention_idx_mask = torch.ones(mention_idx_vecs.size(0), dtype=torch.bool).unsqueeze(-1) if logger: logger.info("Created mention positions vector") if not params["freeze_cand_enc"]: cand_vecs = torch.tensor( select_field(processed_samples, "label", "ids"), dtype=torch.long, ) if logger: logger.info("Created candidate IDs vector") label_idx = torch.tensor( select_field(processed_samples, "label_idx"), dtype=torch.long, ).unsqueeze(-1) if logger: logger.info("Created label IDXs vector") else: mention_idx_vecs, mention_idx_mask = select_field_with_padding( processed_samples, "context", "mention_idxs", pad_idx=[0,1], #ensure is a well-formed span ) # (bs, max_num_spans, 2) mention_idx_vecs = torch.tensor(mention_idx_vecs, dtype=torch.long) # (bs, max_num_spans) mention_idx_mask = torch.tensor(mention_idx_mask, dtype=torch.bool) if not params["freeze_cand_enc"]: cand_vecs, cand_mask = select_field_with_padding( processed_samples, "label", "ids", pad_idx=[[0 for _ in range(max_cand_length)]], ) # (bs, max_num_spans, 1, max_cand_length) cand_vecs = torch.tensor(cand_vecs, dtype=torch.long) cand_mask = torch.tensor(cand_mask, dtype=torch.bool) assert (cand_mask == mention_idx_mask).all() or cand_mask.all() if logger: logger.info("Created candidate IDs vector") else: cand_vecs = torch.Tensor(context_vecs.size()) label_idx_vecs, label_idx_mask = select_field_with_padding(processed_samples, "label_idx", pad_idx=-1) # (bs, max_num_spans) label_idx = torch.tensor(label_idx_vecs, dtype=torch.long) label_idx_mask = torch.tensor(label_idx_mask, dtype=torch.bool) assert (label_idx_mask == mention_idx_mask).all() or label_idx_mask.all() if logger: logger.info("Created label IDXs vector") # mention_idx_vecs: (bs, max_num_spans, 2), mention_idx_mask: (bs, max_num_spans) assert len(mention_idx_vecs.size()) == 3 # prune mention_idx_vecs to max_context_length mention_idx_vecs[mention_idx_vecs >= max_context_length] = (max_context_length - 1) if use_world: src_vecs = torch.tensor( select_field(processed_samples, "src"), dtype=torch.long, ) if logger: logger.info("Created source vector") data = { "context_vecs": context_vecs, "mention_idx_vecs": mention_idx_vecs, "cand_vecs": cand_vecs, "label_idx": label_idx, } if use_world: data["src"] = src_vecs tensor_data_tuple = (context_vecs, cand_vecs, src_vecs, label_idx, mention_idx_vecs, mention_idx_mask) else: tensor_data_tuple = (context_vecs, cand_vecs, label_idx, mention_idx_vecs, mention_idx_mask) # save data if saved_context_dir is not None and not os.path.exists(os.path.join(saved_context_dir, "tensor_tuple.pt")): os.makedirs(saved_context_dir, exist_ok=True) torch.save(data, os.path.join(saved_context_dir, "data.pt")) torch.save(tensor_data_tuple, os.path.join(saved_context_dir, "tensor_tuple.pt")) return data, tensor_data_tuple, extra_ret_values
BLINK-main
elq/biencoder/data_process.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch import numpy as np def batch_reshape_mask_left( input_t, selected, pad_idx=0, left_align_mask=None ): """ Left-aligns all ``selected" values in input_t, which is a batch of examples. - input_t: >=2D tensor (N, M, *) - selected: 2D torch.Bool tensor, 2 dims same size as first 2 dims of `input_t` (N, M) - pad_idx represents the padding to be used in the output - left_align_mask: if already precomputed, pass the alignment mask in (mask on the output, corresponding to `selected` on the input) Example: input_t = [[1,2,3,4],[5,6,7,8]] selected = [[0,1,0,1],[1,1,0,1]] output = [[2,4,0],[5,6,8]] """ batch_num_selected = selected.sum(1) max_num_selected = batch_num_selected.max() # (bsz, 2) repeat_freqs = torch.stack([batch_num_selected, max_num_selected - batch_num_selected], dim=-1) # (bsz x 2,) repeat_freqs = repeat_freqs.view(-1) if left_align_mask is None: # (bsz, 2) left_align_mask = torch.zeros(input_t.size(0), 2).to(input_t.device).bool() left_align_mask[:,0] = 1 # (bsz x 2,): [1,0,1,0,...] left_align_mask = left_align_mask.view(-1) # (bsz x max_num_selected,): [1 xrepeat_freqs[0],0 x(M-repeat_freqs[0]),1 xrepeat_freqs[1],0 x(M-repeat_freqs[1]),...] left_align_mask = left_align_mask.repeat_interleave(repeat_freqs) # (bsz, max_num_selected) left_align_mask = left_align_mask.view(-1, max_num_selected) # reshape to (bsz, max_num_selected, *) input_reshape = torch.Tensor(left_align_mask.size() + input_t.size()[2:]).to(input_t.device, input_t.dtype).fill_(pad_idx) input_reshape[left_align_mask] = input_t[selected] # (bsz, max_num_selected, *); (bsz, max_num_selected) return input_reshape, left_align_mask
BLINK-main
elq/biencoder/utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import argparse import faiss import pickle import torch import json import sys import io import random import time import traceback import numpy as np from scipy.special import softmax, expit import torch.nn.functional as F from multiprocessing.pool import ThreadPool from tqdm import tqdm, trange from collections import OrderedDict from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from pytorch_transformers.file_utils import PYTORCH_PRETRAINED_BERT_CACHE from pytorch_transformers.optimization import WarmupLinearSchedule from pytorch_transformers.tokenization_bert import BertTokenizer from elq.biencoder.biencoder import BiEncoderRanker from elq.vcg_utils.measures import entity_linking_tp_with_overlap import logging import elq.candidate_ranking.utils as utils from elq.biencoder.data_process import process_mention_data from blink.biencoder.zeshel_utils import DOC_PATH, WORLDS, world_to_id from blink.common.optimizer import get_bert_optimizer from elq.common.params import ElqParser from elq.index.faiss_indexer import DenseFlatIndexer, DenseHNSWFlatIndexer, DenseIVFFlatIndexer logger = None np.random.seed(1234) # reproducible for FAISS indexer def evaluate( reranker, eval_dataloader, params, device, logger, cand_encs=None, faiss_index=None, get_losses=False, ): reranker.model.eval() if params["silent"]: iter_ = eval_dataloader else: iter_ = tqdm(eval_dataloader, desc="Evaluation") results = {} eval_num_correct = 0.0 eval_num_p = 0.0 eval_num_g = 0.0 nb_eval_examples = 0 nb_eval_steps = 0 overall_loss = 0.0 if cand_encs is not None and not params["freeze_cand_enc"]: torch.cuda.empty_cache() cand_encs = cand_encs.to(device) for step, batch in enumerate(iter_): batch = tuple(t.to(device) for t in batch) context_input = batch[0] candidate_input = batch[1] # (bs, num_actual_spans) label_ids = batch[2].cpu().numpy() if params["freeze_cand_enc"] else None if params["debug"] and label_ids is not None: label_ids[label_ids > 199] = 199 mention_idx = batch[-2].cpu().numpy() mention_idx_mask = batch[-1].cpu().numpy() with torch.no_grad(): # evaluate with joint mention detection if params["freeze_cand_enc"]: context_outs = reranker.encode_context( context_input, num_cand_mentions=50, topK_threshold=-3.5, ) embedding_context = context_outs['mention_reps'].cpu().numpy() pred_mention_mask = context_outs['mention_masks'].cpu().numpy() chosen_mention_bounds = context_outs['mention_bounds'].cpu().numpy() embedding_ctxt = embedding_context[pred_mention_mask] # do faiss search for closest entity # DIM (all_pred_mentions_batch, num_cand_entities); (all_pred_mentions_batch, num_cand_entities) top_cand_logits_shape, top_cand_indices_shape = faiss_index.search_knn(embedding_ctxt, 10) top_cand_logits = np.zeros((pred_mention_mask.shape[0], pred_mention_mask.shape[1], 10), dtype=np.float) top_cand_indices = np.zeros_like(pred_mention_mask, dtype=np.int) top_cand_logits[pred_mention_mask] = top_cand_logits_shape top_cand_indices[pred_mention_mask] = top_cand_indices_shape[:,0] scores = (np.log(softmax(top_cand_logits, -1)) + torch.sigmoid(context_outs['mention_logits'].unsqueeze(-1)).log().cpu().numpy())[:,:,0] tmp_num_correct = 0.0 tmp_num_p = 0.0 tmp_num_g = 0.0 for i, ex in enumerate(top_cand_indices): gold_mb = mention_idx[i][mention_idx_mask[i]] gold_label_ids = label_ids[i][mention_idx_mask[i]] overall_score_mask = scores[i][pred_mention_mask[i]] > -2.5 pred_mb = chosen_mention_bounds[i][pred_mention_mask[i]][overall_score_mask] pred_label_ids = ex[pred_mention_mask[i]][overall_score_mask] gold_triples = [(str(gold_label_ids[j]), gold_mb[j][0], gold_mb[j][1]) for j in range(len(gold_mb))] pred_triples = [(str(pred_label_ids[j]), pred_mb[j][0], pred_mb[j][1]) for j in range(len(pred_mb))] num_overlap_weak, _ = entity_linking_tp_with_overlap(gold_triples, pred_triples) tmp_num_correct += num_overlap_weak tmp_num_p += float(len(pred_triples)) tmp_num_g += float(len(gold_triples)) text_encs = embedding_context else: loss, logits, mention_logits, mention_bounds = reranker( context_input, candidate_input, cand_encs=cand_encs, gold_mention_bounds=batch[-2], gold_mention_bounds_mask=batch[-1], return_loss=True, ) logits = logits.cpu().numpy() # Using in-batch negatives, the label ids are diagonal label_ids = torch.LongTensor(torch.arange(logits.shape[0])) label_ids = label_ids.cpu().numpy() tmp_num_correct = utils.accuracy(logits, label_ids) tmp_num_p = len(batch[-2][batch[-1]]) tmp_num_g = len(batch[-2][batch[-1]]) overall_loss += loss eval_num_correct += tmp_num_correct eval_num_p += tmp_num_p eval_num_g += tmp_num_g nb_eval_steps += 1 if cand_encs is not None: cand_encs = cand_encs.to("cpu") torch.cuda.empty_cache() if nb_eval_steps > 0 and overall_loss > 0: normalized_overall_loss = overall_loss / nb_eval_steps logger.info("Overall loss: %.5f" % normalized_overall_loss) if eval_num_p > 0: normalized_eval_p = eval_num_correct / eval_num_p else: normalized_eval_p = 0.0 if eval_num_g > 0: normalized_eval_r = eval_num_correct / eval_num_g else: normalized_eval_r = 0.0 logger.info("Precision: %.5f" % normalized_eval_p) logger.info("Recall: %.5f" % normalized_eval_r) if normalized_eval_p + normalized_eval_r == 0: f1 = 0 else: f1 = 2 * normalized_eval_p * normalized_eval_r / (normalized_eval_p + normalized_eval_r) logger.info("F1: %.5f" % f1) results["normalized_f1"] = f1 return results def get_optimizer(model, params): return get_bert_optimizer( [model], params["type_optimization"], params["learning_rate"], fp16=params.get("fp16"), ) def get_scheduler(params, optimizer, len_train_data, logger): batch_size = params["train_batch_size"] grad_acc = params["gradient_accumulation_steps"] epochs = params["num_train_epochs"] num_train_steps = int(len_train_data / batch_size / grad_acc) * epochs num_warmup_steps = int(num_train_steps * params["warmup_proportion"]) scheduler = WarmupLinearSchedule( optimizer, warmup_steps=num_warmup_steps, t_total=num_train_steps, ) logger.info(" Num optimization steps = %d" % num_train_steps) logger.info(" Num warmup steps = %d", num_warmup_steps) return scheduler def main(params): model_output_path = params["output_path"] if not os.path.exists(model_output_path): os.makedirs(model_output_path) logger = utils.get_logger(params["output_path"]) # Init model reranker = BiEncoderRanker(params) tokenizer = reranker.tokenizer model = reranker.model device = reranker.device n_gpu = reranker.n_gpu if params["gradient_accumulation_steps"] < 1: raise ValueError( "Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format( params["gradient_accumulation_steps"] ) ) # An effective batch size of `x`, when we are accumulating the gradient accross `y` batches will be achieved by having a batch size of `z = x / y` params["train_batch_size"] = ( params["train_batch_size"] // params["gradient_accumulation_steps"] ) train_batch_size = params["train_batch_size"] eval_batch_size = params["eval_batch_size"] grad_acc_steps = params["gradient_accumulation_steps"] # Fix the random seeds seed = params["seed"] random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) if reranker.n_gpu > 0: torch.cuda.manual_seed_all(seed) # Load train data train_samples = utils.read_dataset("train", params["data_path"]) logger.info("Read %d train samples." % len(train_samples)) logger.info("Finished reading all train samples") # Load eval data try: valid_samples = utils.read_dataset("valid", params["data_path"]) except FileNotFoundError: valid_samples = utils.read_dataset("dev", params["data_path"]) # MUST BE DIVISBLE BY n_gpus if len(valid_samples) > 1024: valid_subset = 1024 else: valid_subset = len(valid_samples) - len(valid_samples) % torch.cuda.device_count() logger.info("Read %d valid samples, choosing %d subset" % (len(valid_samples), valid_subset)) valid_data, valid_tensor_data, extra_ret_values = process_mention_data( samples=valid_samples[:valid_subset], # use subset of valid data tokenizer=tokenizer, max_context_length=params["max_context_length"], max_cand_length=params["max_cand_length"], context_key=params["context_key"], title_key=params["title_key"], silent=params["silent"], logger=logger, debug=params["debug"], add_mention_bounds=(not args.no_mention_bounds), candidate_token_ids=None, params=params, ) candidate_token_ids = extra_ret_values["candidate_token_ids"] valid_tensor_data = TensorDataset(*valid_tensor_data) valid_sampler = SequentialSampler(valid_tensor_data) valid_dataloader = DataLoader( valid_tensor_data, sampler=valid_sampler, batch_size=eval_batch_size ) # load candidate encodings cand_encs = None cand_encs_index = None if params["freeze_cand_enc"]: cand_encs = torch.load(params['cand_enc_path']) logger.info("Loaded saved entity encodings") if params["debug"]: cand_encs = cand_encs[:200] # build FAISS index cand_encs_index = DenseHNSWFlatIndexer(1) cand_encs_index.deserialize_from(params['index_path']) logger.info("Loaded FAISS index on entity encodings") num_neighbors = 10 # evaluate before training results = evaluate( reranker, valid_dataloader, params, cand_encs=cand_encs, device=device, logger=logger, faiss_index=cand_encs_index, ) number_of_samples_per_dataset = {} time_start = time.time() utils.write_to_file( os.path.join(model_output_path, "training_params.txt"), str(params) ) logger.info("Starting training") logger.info( "device: {} n_gpu: {}, distributed training: {}".format(device, n_gpu, False) ) num_train_epochs = params["num_train_epochs"] if params["dont_distribute_train_samples"]: num_samples_per_batch = len(train_samples) train_data, train_tensor_data_tuple, extra_ret_values = process_mention_data( samples=train_samples, tokenizer=tokenizer, max_context_length=params["max_context_length"], max_cand_length=params["max_cand_length"], context_key=params["context_key"], title_key=params["title_key"], silent=params["silent"], logger=logger, debug=params["debug"], add_mention_bounds=(not args.no_mention_bounds), candidate_token_ids=candidate_token_ids, params=params, ) logger.info("Finished preparing training data") else: num_samples_per_batch = len(train_samples) // num_train_epochs trainer_path = params.get("path_to_trainer_state", None) optimizer = get_optimizer(model, params) scheduler = get_scheduler( params, optimizer, num_samples_per_batch, logger ) if trainer_path is not None and os.path.exists(trainer_path): training_state = torch.load(trainer_path) optimizer.load_state_dict(training_state["optimizer"]) scheduler.load_state_dict(training_state["scheduler"]) logger.info("Loaded saved training state") model.train() best_epoch_idx = -1 best_score = -1 logger.info("Num samples per batch : %d" % num_samples_per_batch) for epoch_idx in trange(params["last_epoch"] + 1, int(num_train_epochs), desc="Epoch"): tr_loss = 0 results = None if not params["dont_distribute_train_samples"]: start_idx = epoch_idx * num_samples_per_batch end_idx = (epoch_idx + 1) * num_samples_per_batch train_data, train_tensor_data_tuple, extra_ret_values = process_mention_data( samples=train_samples[start_idx:end_idx], tokenizer=tokenizer, max_context_length=params["max_context_length"], max_cand_length=params["max_cand_length"], context_key=params["context_key"], title_key=params["title_key"], silent=params["silent"], logger=logger, debug=params["debug"], add_mention_bounds=(not args.no_mention_bounds), candidate_token_ids=candidate_token_ids, params=params, ) logger.info("Finished preparing training data for epoch {}: {} samples".format(epoch_idx, len(train_tensor_data_tuple[0]))) batch_train_tensor_data = TensorDataset( *list(train_tensor_data_tuple) ) if params["shuffle"]: train_sampler = RandomSampler(batch_train_tensor_data) else: train_sampler = SequentialSampler(batch_train_tensor_data) train_dataloader = DataLoader( batch_train_tensor_data, sampler=train_sampler, batch_size=train_batch_size ) if params["silent"]: iter_ = train_dataloader else: iter_ = tqdm(train_dataloader, desc="Batch") for step, batch in enumerate(iter_): batch = tuple(t.to(device) for t in batch) context_input = batch[0] candidate_input = batch[1] label_ids = batch[2] if params["freeze_cand_enc"] else None mention_idxs = batch[-2] mention_idx_mask = batch[-1] if params["debug"] and label_ids is not None: label_ids[label_ids > 199] = 199 cand_encs_input = None label_input = None mention_reps_input = None mention_logits = None mention_bounds = None hard_negs_mask = None if params["adversarial_training"]: assert cand_encs is not None and label_ids is not None # due to params["freeze_cand_enc"] being set ''' GET CLOSEST N CANDIDATES (AND APPROPRIATE LABELS) ''' # (bs, num_spans, embed_size) pos_cand_encs_input = cand_encs[label_ids.to("cpu")] pos_cand_encs_input[~mention_idx_mask] = 0 context_outs = reranker.encode_context( context_input, gold_mention_bounds=mention_idxs, gold_mention_bounds_mask=mention_idx_mask, get_mention_scores=True, ) mention_logits = context_outs['all_mention_logits'] mention_bounds = context_outs['all_mention_bounds'] mention_reps = context_outs['mention_reps'] # mention_reps: (bs, max_num_spans, embed_size) -> masked_mention_reps: (all_pred_mentions_batch, embed_size) masked_mention_reps = mention_reps[context_outs['mention_masks']] # neg_cand_encs_input_idxs: (all_pred_mentions_batch, num_negatives) _, neg_cand_encs_input_idxs = cand_encs_index.search_knn(masked_mention_reps.detach().cpu().numpy(), num_neighbors) neg_cand_encs_input_idxs = torch.from_numpy(neg_cand_encs_input_idxs) # set "correct" closest entities to -1 # masked_label_ids: (all_pred_mentions_batch) masked_label_ids = label_ids[mention_idx_mask] # neg_cand_encs_input_idxs: (max_spans_in_batch, num_negatives) neg_cand_encs_input_idxs[neg_cand_encs_input_idxs - masked_label_ids.to("cpu").unsqueeze(-1) == 0] = -1 # reshape back tensor (extract num_spans dimension) # (bs, num_spans, num_negatives) neg_cand_encs_input_idxs_reconstruct = torch.zeros(label_ids.size(0), label_ids.size(1), neg_cand_encs_input_idxs.size(-1), dtype=neg_cand_encs_input_idxs.dtype) neg_cand_encs_input_idxs_reconstruct[mention_idx_mask] = neg_cand_encs_input_idxs neg_cand_encs_input_idxs = neg_cand_encs_input_idxs_reconstruct # create neg_example_idx (corresponding example (in batch) for each negative) # neg_example_idx: (bs * num_negatives) neg_example_idx = torch.arange(neg_cand_encs_input_idxs.size(0)).unsqueeze(-1) neg_example_idx = neg_example_idx.expand(neg_cand_encs_input_idxs.size(0), neg_cand_encs_input_idxs.size(2)) neg_example_idx = neg_example_idx.flatten() # flatten and filter -1 (i.e. any correct/positive entities) # neg_cand_encs_input_idxs: (bs * num_negatives, num_spans) neg_cand_encs_input_idxs = neg_cand_encs_input_idxs.permute(0,2,1) neg_cand_encs_input_idxs = neg_cand_encs_input_idxs.reshape(-1, neg_cand_encs_input_idxs.size(-1)) # mask invalid negatives (actually the positive example) # (bs * num_negatives) mask = ~((neg_cand_encs_input_idxs == -1).sum(1).bool()) # rows without any -1 entry # deletes corresponding negative for *all* spans in that example (deletes at most 3 of 10 negatives / example) # neg_cand_encs_input_idxs: (bs * num_negatives - invalid_negs, num_spans) neg_cand_encs_input_idxs = neg_cand_encs_input_idxs[mask] # neg_cand_encs_input_idxs: (bs * num_negatives - invalid_negs) neg_example_idx = neg_example_idx[mask] # (bs * num_negatives - invalid_negs, num_spans, embed_size) neg_cand_encs_input = cand_encs[neg_cand_encs_input_idxs] # (bs * num_negatives - invalid_negs, num_spans, embed_size) neg_mention_idx_mask = mention_idx_mask[neg_example_idx] neg_cand_encs_input[~neg_mention_idx_mask] = 0 # create input tensors (concat [pos examples, neg examples]) # (bs + bs * num_negatives, num_spans, embed_size) mention_reps_input = torch.cat([ mention_reps, mention_reps[neg_example_idx.to(device)], ]) assert mention_reps.size(0) == pos_cand_encs_input.size(0) # (bs + bs * num_negatives, num_spans) label_input = torch.cat([ torch.ones(pos_cand_encs_input.size(0), pos_cand_encs_input.size(1), dtype=label_ids.dtype), torch.zeros(neg_cand_encs_input.size(0), neg_cand_encs_input.size(1), dtype=label_ids.dtype), ]).to(device) # (bs + bs * num_negatives, num_spans, embed_size) cand_encs_input = torch.cat([ pos_cand_encs_input, neg_cand_encs_input, ]).to(device) hard_negs_mask = torch.cat([mention_idx_mask, neg_mention_idx_mask]) loss, _, _, _ = reranker( context_input, candidate_input, cand_encs=cand_encs_input, text_encs=mention_reps_input, mention_logits=mention_logits, mention_bounds=mention_bounds, label_input=label_input, gold_mention_bounds=mention_idxs, gold_mention_bounds_mask=mention_idx_mask, hard_negs_mask=hard_negs_mask, return_loss=True, ) if grad_acc_steps > 1: loss = loss / grad_acc_steps tr_loss += loss.item() if (step + 1) % (params["print_interval"] * grad_acc_steps) == 0: logger.info( "Step {} - epoch {} average loss: {}\n".format( step, epoch_idx, tr_loss / (params["print_interval"] * grad_acc_steps), ) ) tr_loss = 0 loss.backward() if (step + 1) % grad_acc_steps == 0: torch.nn.utils.clip_grad_norm_( model.parameters(), params["max_grad_norm"] ) optimizer.step() scheduler.step() optimizer.zero_grad() if (step + 1) % (params["eval_interval"] * grad_acc_steps) == 0: logger.info("Evaluation on the development dataset") loss = None # for GPU mem management mention_reps = None mention_reps_input = None label_input = None cand_encs_input = None evaluate( reranker, valid_dataloader, params, cand_encs=cand_encs, device=device, logger=logger, faiss_index=cand_encs_index, get_losses=params["get_losses"], ) model.train() logger.info("\n") logger.info("***** Saving fine - tuned model *****") epoch_output_folder_path = os.path.join( model_output_path, "epoch_{}".format(epoch_idx) ) utils.save_model(model, tokenizer, epoch_output_folder_path) torch.save({ "optimizer": optimizer.state_dict(), "scheduler": scheduler.state_dict(), }, os.path.join(epoch_output_folder_path, "training_state.th")) output_eval_file = os.path.join(epoch_output_folder_path, "eval_results.txt") logger.info("Valid data evaluation") results = evaluate( reranker, valid_dataloader, params, cand_encs=cand_encs, device=device, logger=logger, faiss_index=cand_encs_index, get_losses=params["get_losses"], ) logger.info("Train data evaluation") results = evaluate( reranker, train_dataloader, params, cand_encs=cand_encs, device=device, logger=logger, faiss_index=cand_encs_index, get_losses=params["get_losses"], ) ls = [best_score, results["normalized_f1"]] li = [best_epoch_idx, epoch_idx] best_score = ls[np.argmax(ls)] best_epoch_idx = li[np.argmax(ls)] logger.info("\n") execution_time = (time.time() - time_start) / 60 utils.write_to_file( os.path.join(model_output_path, "training_time.txt"), "The training took {} minutes\n".format(execution_time), ) logger.info("The training took {} minutes\n".format(execution_time)) # save the best model in the parent_dir logger.info("Best performance in epoch: {}".format(best_epoch_idx)) params["path_to_model"] = os.path.join( model_output_path, "epoch_{}".format(best_epoch_idx) ) utils.save_model(reranker.model, tokenizer, model_output_path) if params["evaluate"]: params["path_to_model"] = model_output_path evaluate(params, cand_encs=cand_encs, logger=logger, faiss_index=cand_encs_index) if __name__ == "__main__": parser = ElqParser(add_model_args=True) parser.add_training_args() args = parser.parse_args() print(args) params = args.__dict__ main(params)
BLINK-main
elq/biencoder/train_biencoder.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from tqdm import tqdm from collections import OrderedDict from pytorch_transformers.modeling_bert import ( BertPreTrainedModel, BertConfig, BertModel, ) from pytorch_transformers.tokenization_bert import BertTokenizer from elq.common.ranker_base import BertEncoder, get_model_obj from blink.common.optimizer import get_bert_optimizer from elq.biencoder.allennlp_span_utils import batched_span_select, batched_index_select from elq.biencoder.utils import batch_reshape_mask_left def load_biencoder(params): # Init model biencoder = BiEncoderRanker(params) return biencoder def get_submodel_from_state_dict(state_dict, prefix): # get only submodel specified with prefix 'prefix' from the state_dict new_state_dict = OrderedDict() for key, value in state_dict.items(): if key.startswith(prefix): key = key[len(prefix)+1:] # +1 for '.' new_state_dict[key] = value return new_state_dict class MentionScoresHead(nn.Module): def __init__( self, bert_output_dim, scoring_method="qa_linear", max_mention_length=10, ): super(MentionScoresHead, self).__init__() self.scoring_method = scoring_method self.max_mention_length = max_mention_length if self.scoring_method == "qa_linear": self.bound_classifier = nn.Linear(bert_output_dim, 3) elif self.scoring_method == "qa_mlp" or self.scoring_method == "qa": # for back-compatibility self.bound_classifier = nn.Sequential( nn.Linear(bert_output_dim, bert_output_dim), nn.ReLU(), nn.Dropout(0.1), nn.Linear(bert_output_dim, 3), ) else: raise NotImplementedError() def forward(self, bert_output, mask_ctxt): ''' Retuns scores for *inclusive* mention boundaries ''' # (bs, seqlen, 3) logits = self.bound_classifier(bert_output) if self.scoring_method[:2] == "qa": # (bs, seqlen, 1); (bs, seqlen, 1); (bs, seqlen, 1) start_logprobs, end_logprobs, mention_logprobs = logits.split(1, dim=-1) # (bs, seqlen) start_logprobs = start_logprobs.squeeze(-1) end_logprobs = end_logprobs.squeeze(-1) mention_logprobs = mention_logprobs.squeeze(-1) # impossible to choose masked tokens as starts/ends of spans start_logprobs[~mask_ctxt] = -float("Inf") end_logprobs[~mask_ctxt] = -float("Inf") mention_logprobs[~mask_ctxt] = -float("Inf") # take sum of log softmaxes: # log p(mention) = log p(start_pos && end_pos) = log p(start_pos) + log p(end_pos) # DIM: (bs, starts, ends) mention_scores = start_logprobs.unsqueeze(2) + end_logprobs.unsqueeze(1) # (bs, starts, ends) mention_cum_scores = torch.zeros(mention_scores.size(), dtype=mention_scores.dtype).to(mention_scores.device) # add ends mention_logprobs_end_cumsum = torch.zeros(mask_ctxt.size(0), dtype=mention_scores.dtype).to(mention_scores.device) for i in range(mask_ctxt.size(1)): mention_logprobs_end_cumsum += mention_logprobs[:,i] mention_cum_scores[:,:,i] += mention_logprobs_end_cumsum.unsqueeze(-1) # subtract starts mention_logprobs_start_cumsum = torch.zeros(mask_ctxt.size(0), dtype=mention_scores.dtype).to(mention_scores.device) for i in range(mask_ctxt.size(1)-1): mention_logprobs_start_cumsum += mention_logprobs[:,i] mention_cum_scores[:,(i+1),:] -= mention_logprobs_start_cumsum.unsqueeze(-1) # DIM: (bs, starts, ends) mention_scores += mention_cum_scores # DIM: (starts, ends, 2) -- tuples of [start_idx, end_idx] mention_bounds = torch.stack([ torch.arange(mention_scores.size(1)).unsqueeze(-1).expand(mention_scores.size(1), mention_scores.size(2)), # start idxs torch.arange(mention_scores.size(1)).unsqueeze(0).expand(mention_scores.size(1), mention_scores.size(2)), # end idxs ], dim=-1).to(mask_ctxt.device) # DIM: (starts, ends) mention_sizes = mention_bounds[:,:,1] - mention_bounds[:,:,0] + 1 # (+1 as ends are inclusive) # Remove invalids (startpos > endpos, endpos > seqlen) and renormalize # DIM: (bs, starts, ends) valid_mask = (mention_sizes.unsqueeze(0) > 0) & mask_ctxt.unsqueeze(1) # DIM: (bs, starts, ends) mention_scores[~valid_mask] = -float("inf") # invalids have logprob=-inf (p=0) # DIM: (bs, starts * ends) mention_scores = mention_scores.view(mention_scores.size(0), -1) # DIM: (bs, starts * ends, 2) mention_bounds = mention_bounds.view(-1, 2) mention_bounds = mention_bounds.unsqueeze(0).expand(mention_scores.size(0), mention_scores.size(1), 2) if self.max_mention_length is not None: mention_scores, mention_bounds = self.filter_by_mention_size( mention_scores, mention_bounds, self.max_mention_length, ) return mention_scores, mention_bounds def filter_by_mention_size(self, mention_scores, mention_bounds, max_mention_length): ''' Filter all mentions > maximum mention length mention_scores: torch.FloatTensor (bsz, num_mentions) mention_bounds: torch.LongTensor (bsz, num_mentions, 2) ''' # (bsz, num_mentions) mention_bounds_mask = (mention_bounds[:,:,1] - mention_bounds[:,:,0] <= max_mention_length) # (bsz, num_filtered_mentions) mention_scores = mention_scores[mention_bounds_mask] mention_scores = mention_scores.view(mention_bounds_mask.size(0),-1) # (bsz, num_filtered_mentions, 2) mention_bounds = mention_bounds[mention_bounds_mask] mention_bounds = mention_bounds.view(mention_bounds_mask.size(0),-1,2) return mention_scores, mention_bounds class GetContextEmbedsHead(nn.Module): def __init__(self, mention_aggregation_type, ctxt_output_dim, cand_output_dim, dropout=0.1): """ mention_aggregation_type `all_avg`: average across tokens in mention `fl_avg`: to average across first/last tokens in mention `{all/fl}_linear`: for linear layer over mention `{all/fl}_mlp` to MLP over mention """ super(GetContextEmbedsHead, self).__init__() # for aggregating mention outputs of context encoder self.mention_aggregation_type = mention_aggregation_type.split('_') self.tokens_to_aggregate = self.mention_aggregation_type[0] self.aggregate_method = "_".join(self.mention_aggregation_type[1:]) self.dropout = nn.Dropout(dropout) if self.mention_aggregation_type == 'all_avg' or self.mention_aggregation_type == 'none': assert ctxt_output_dim == cand_output_dim if self.aggregate_method == 'linear': self.mention_agg_linear = nn.Linear(ctxt_output_dim * 2, cand_output_dim) elif self.aggregate_method == 'avg_linear': self.mention_agg_linear = nn.Linear(ctxt_output_dim, cand_output_dim) elif self.aggregate_method == 'mlp': self.mention_agg_mlp = nn.Sequential( nn.Linear(bert_output_dim, bert_output_dim), nn.ReLU(), nn.Dropout(0.1), nn.Linear(bert_output_dim, output_dim), ) else: self.mention_agg_mlp = None def forward(self, bert_output, mention_bounds): ''' bert_output (bs, seqlen, embed_dim) mention_bounds: both bounds are inclusive [start, end] (bs, num_spans, 2) ''' # get embedding of [CLS] token if mention_bounds.size(0) == 0: return mention_bounds if self.tokens_to_aggregate == 'all': ( embedding_ctxt, # (batch_size, num_spans, max_batch_span_width, embedding_size) mask, # (batch_size, num_spans, max_batch_span_width) ) = batched_span_select( bert_output, # (batch_size, sequence_length, embedding_size) mention_bounds, # (batch_size, num_spans, 2) ) embedding_ctxt[~mask] = 0 # 0 out masked elements # embedding_ctxt = (batch_size, num_spans, max_batch_span_width, embedding_size) if self.aggregate_method.startswith('avg'): embedding_ctxt = embedding_ctxt.sum(2) / mask.sum(2).float().unsqueeze(-1) # embedding_ctxt = (batch_size, num_spans, embedding_size) if self.aggregate_method == 'avg_linear': embedding_ctxt = self.mention_agg_linear(embedding_ctxt) # embedding_ctxt = (batch_size, num_spans, output_dim) elif self.tokens_to_aggregate == 'fl': start_embeddings = batched_index_select(bert_output, mention_bounds[:,:,0]) end_embeddings = batched_index_select(bert_output, mention_bounds[:,:,1]) embedding_ctxt = torch.cat([start_embeddings.unsqueeze(2), end_embeddings.unsqueeze(2)], dim=2) # embedding_ctxt = (batch_size, num_spans, 2, embedding_size) if self.aggregate_method == 'avg': embedding_ctxt = embedding_ctxt.mean(2) # embedding_ctxt = (batch_size, num_spans, embedding_size) elif self.aggregate_method == 'linear': embedding_ctxt = embedding_ctxt.view(embedding_ctxt.size(0), embedding_ctxt.size(1), -1) # embedding_ctxt = (batch_size, num_spans, 2 * embedding_size) embedding_ctxt = self.mention_agg_linear(embedding_ctxt) # embedding_ctxt = (batch_size, num_spans, output_dim) else: raise NotImplementedError() return embedding_ctxt class BiEncoderModule(torch.nn.Module): def __init__(self, params): super(BiEncoderModule, self).__init__() ctxt_bert = BertModel.from_pretrained(params["bert_model"], output_hidden_states=True) if params["load_cand_enc_only"]: bert_model = "bert-large-uncased" else: bert_model = params['bert_model'] cand_bert = BertModel.from_pretrained( bert_model, output_hidden_states=True, ) self.context_encoder = BertEncoder( ctxt_bert, params["out_dim"], layer_pulled=params["pull_from_layer"], add_linear=params["add_linear"], ) self.cand_encoder = BertEncoder( cand_bert, params["out_dim"], layer_pulled=params["pull_from_layer"], add_linear=params["add_linear"], ) if params.get("freeze_cand_enc", False): for param in self.cand_encoder.parameters(): param.requires_grad = False self.config = ctxt_bert.config ctxt_bert_output_dim = ctxt_bert.embeddings.word_embeddings.weight.size(1) self.mention_aggregation_type = params.get('mention_aggregation_type', None) self.classification_heads = nn.ModuleDict({}) self.linear_compression = None if self.mention_aggregation_type is not None: classification_heads_dict = {'get_context_embeds': GetContextEmbedsHead( self.mention_aggregation_type, ctxt_bert_output_dim, cand_bert.embeddings.word_embeddings.weight.size(1), )} classification_heads_dict['mention_scores'] = MentionScoresHead( ctxt_bert_output_dim, params["mention_scoring_method"], params.get("max_mention_length", 10), ) self.classification_heads = nn.ModuleDict(classification_heads_dict) elif ctxt_bert_output_dim != cand_bert.embeddings.word_embeddings.weight.size(1): # mapping to make the output dimensions match for dot-product similarity self.linear_compression = nn.Linear(ctxt_bert_output_dim, cand_bert.embeddings.word_embeddings.weight.size(1)) def get_raw_ctxt_encoding( self, token_idx_ctxt, segment_idx_ctxt, mask_ctxt, ): """ Gets raw, shared context embeddings from BERT, to be used by both mention detector and entity linker Returns: torch.FloatTensor (bsz, seqlen, embed_dim) """ raw_ctxt_encoding, _, _ = self.context_encoder.bert_model( token_idx_ctxt, segment_idx_ctxt, mask_ctxt, ) return raw_ctxt_encoding def get_ctxt_mention_scores( self, token_idx_ctxt, segment_idx_ctxt, mask_ctxt, raw_ctxt_encoding = None, ): """ Gets mention scores using raw context encodings Inputs: raw_ctxt_encoding: torch.FloatTensor (bsz, seqlen, embed_dim) Returns: torch.FloatTensor (bsz, num_total_mentions): mention scores/logits torch.IntTensor (bsz, num_total_mentions): mention boundaries """ # (bsz, seqlen, embed_dim) if raw_ctxt_encoding is None: raw_ctxt_encoding = self.get_raw_ctxt_encoding( token_idx_ctxt, segment_idx_ctxt, mask_ctxt, ) # (num_total_mentions,); (num_total_mentions,) return self.classification_heads['mention_scores']( raw_ctxt_encoding, mask_ctxt, ) def prune_ctxt_mentions( self, mention_logits, mention_bounds, num_cand_mentions, threshold, ): ''' Prunes mentions based on mention scores/logits (by either `threshold` or `num_cand_mentions`, whichever yields less candidates) Inputs: mention_logits: torch.FloatTensor (bsz, num_total_mentions) mention_bounds: torch.IntTensor (bsz, num_total_mentions) num_cand_mentions: int threshold: float Returns: torch.FloatTensor(bsz, max_num_pred_mentions): top mention scores/logits torch.IntTensor(bsz, max_num_pred_mentions, 2): top mention boundaries torch.BoolTensor(bsz, max_num_pred_mentions): mask on top mentions torch.BoolTensor(bsz, total_possible_mentions): mask for reshaping from total possible mentions -> max # pred mentions ''' # (bsz, num_cand_mentions); (bsz, num_cand_mentions) top_mention_logits, mention_pos = mention_logits.topk(num_cand_mentions, sorted=True) # (bsz, num_cand_mentions, 2) # [:,:,0]: index of batch # [:,:,1]: index into top mention in mention_bounds mention_pos = torch.stack([torch.arange(mention_pos.size(0)).to(mention_pos.device).unsqueeze(-1).expand_as(mention_pos), mention_pos], dim=-1) # (bsz, num_cand_mentions) top_mention_pos_mask = torch.sigmoid(top_mention_logits).log() > threshold # (total_possible_mentions, 2) # tuples of [index of batch, index into mention_bounds] of what mentions to include mention_pos = mention_pos[top_mention_pos_mask | ( # 2nd part of OR: if nothing is > threshold, use topK that are > -inf ((top_mention_pos_mask.sum(1) == 0).unsqueeze(-1)) & (top_mention_logits > -float("inf")) )] mention_pos = mention_pos.view(-1, 2) # (bsz, total_possible_mentions) # mask of possible logits mention_pos_mask = torch.zeros(mention_logits.size(), dtype=torch.bool).to(mention_pos.device) mention_pos_mask[mention_pos[:,0], mention_pos[:,1]] = 1 # (bsz, max_num_pred_mentions, 2) chosen_mention_bounds, chosen_mention_mask = batch_reshape_mask_left(mention_bounds, mention_pos_mask, pad_idx=0) # (bsz, max_num_pred_mentions) chosen_mention_logits, _ = batch_reshape_mask_left(mention_logits, mention_pos_mask, pad_idx=-float("inf"), left_align_mask=chosen_mention_mask) return chosen_mention_logits, chosen_mention_bounds, chosen_mention_mask, mention_pos_mask def get_ctxt_embeds( self, raw_ctxt_encoding, mention_bounds, ): """ Get candidate scores + embeddings associated with passed-in mention_bounds Input raw_ctxt_encoding: torch.FloatTensor (bsz, seqlen, embed_dim) shared embeddings straight from BERT mention_bounds: torch.IntTensor (bsz, max_num_pred_mentions, 2) top mention boundaries Returns torch.FloatTensor (bsz, max_num_pred_mentions, embed_dim) """ # (bs, max_num_pred_mentions, embed_dim) embedding_ctxt = self.classification_heads['get_context_embeds'](raw_ctxt_encoding, mention_bounds) if self.linear_compression is not None: embedding_ctxt = self.linear_compression(embedding_ctxt) return embedding_ctxt def forward_ctxt( self, token_idx_ctxt, segment_idx_ctxt, mask_ctxt, gold_mention_bounds=None, gold_mention_bounds_mask=None, num_cand_mentions=50, topK_threshold=-4.5, get_mention_scores=True, ): """ If gold_mention_bounds is set, returns mention embeddings of passed-in mention bounds Otherwise, uses top-scoring mentions """ if self.mention_aggregation_type is None: ''' OLD system: don't do mention aggregation (use tokens around mention) ''' embedding_ctxt = self.context_encoder( token_idx_ctxt, segment_idx_ctxt, mask_ctxt, ) # linear mapping to correct context length if self.linear_compression is not None: embedding_ctxt = self.linear_compression(embedding_ctxt) return embedding_ctxt, None, None, None else: ''' NEW system: aggregate mention tokens ''' # (bs, seqlen, embed_size) raw_ctxt_encoding = self.get_raw_ctxt_encoding( token_idx_ctxt, segment_idx_ctxt, mask_ctxt, ) top_mention_bounds = None top_mention_logits = None extra_rets = {} if get_mention_scores: mention_logits, mention_bounds = self.get_ctxt_mention_scores( token_idx_ctxt, segment_idx_ctxt, mask_ctxt, raw_ctxt_encoding, ) extra_rets['all_mention_logits'] = mention_logits extra_rets['all_mention_bounds'] = mention_bounds if gold_mention_bounds is None: ( top_mention_logits, top_mention_bounds, top_mention_mask, all_mention_mask, ) = self.prune_ctxt_mentions( mention_logits, mention_bounds, num_cand_mentions, topK_threshold, ) extra_rets['mention_logits'] = top_mention_logits.view(-1) extra_rets['all_mention_mask'] = all_mention_mask if top_mention_bounds is None: # use gold mention top_mention_bounds = gold_mention_bounds top_mention_mask = gold_mention_bounds_mask assert top_mention_bounds is not None assert top_mention_mask is not None # (bs, num_pred_mentions OR num_gold_mentions, embed_size) embedding_ctxt = self.get_ctxt_embeds( raw_ctxt_encoding, top_mention_bounds, ) # for merging dataparallel, only 1st dimension can differ... return { "mention_reps": embedding_ctxt.view(-1, embedding_ctxt.size(-1)), "mention_bounds": top_mention_bounds.view(-1, top_mention_bounds.size(-1)), "mention_masks": top_mention_mask.view(-1), "mention_dims": torch.tensor(top_mention_mask.size()).unsqueeze(0).to(embedding_ctxt.device), **extra_rets } def forward_candidate( self, token_idx_cands, segment_idx_cands, mask_cands, ): try: return self.cand_encoder( token_idx_cands, segment_idx_cands, mask_cands ) except: print(token_idx_cands.size()) print(segment_idx_cands.size()) print(mask_cands.size()) return torch.rand(token_idx_cands.size()).to(token_idx_cands.device) def forward( self, token_idx_ctxt, segment_idx_ctxt, mask_ctxt, token_idx_cands, segment_idx_cands, mask_cands, gold_mention_bounds=None, gold_mention_bounds_mask=None, num_cand_mentions=50, topK_threshold=-4.5, get_mention_scores=True, ): """ If gold_mention_bounds is set, returns mention embeddings of passed-in mention bounds Otherwise, uses top-scoring mentions """ embedding_ctxt = embedding_cands = top_mention_mask = \ top_mention_logits = top_mention_bounds = all_mention_mask = \ all_mention_logits = all_mention_bounds = max_num_pred_mentions = None context_outs = None cand_outs = None if token_idx_ctxt is not None: context_outs = self.forward_ctxt( token_idx_ctxt, segment_idx_ctxt, mask_ctxt, gold_mention_bounds=gold_mention_bounds, gold_mention_bounds_mask=gold_mention_bounds_mask, num_cand_mentions=num_cand_mentions, topK_threshold=topK_threshold, get_mention_scores=get_mention_scores, ) if token_idx_cands is not None: cand_outs = self.forward_candidate( token_idx_cands, segment_idx_cands, mask_cands ) return context_outs, cand_outs def upgrade_state_dict_named(self, state_dict): prefix = '' current_head_names = [] if not hasattr(self, 'classification_heads') else \ self.classification_heads.keys() # Handle new classification heads present in the state dict. keys_to_delete = [] for k in state_dict.keys(): if not k.startswith(prefix + 'classification_heads.'): continue head_name = k[len(prefix + 'classification_heads.'):].split('.')[0] if head_name not in current_head_names: print( 'WARNING: deleting classification head ({}) from checkpoint ' 'not present in current model: {}'.format(head_name, k) ) keys_to_delete.append(k) for k in keys_to_delete: del state_dict[k] # Copy any newly-added classification heads into the state dict # with their current weights. if hasattr(self, 'classification_heads'): cur_state = self.classification_heads.state_dict() for k, v in cur_state.items(): if prefix + 'classification_heads.' + k not in state_dict: print('Overwriting', prefix + 'classification_heads.' + k) state_dict[prefix + 'classification_heads.' + k] = v class BiEncoderRanker(torch.nn.Module): def __init__(self, params, shared=None): super(BiEncoderRanker, self).__init__() self.params = params self.device = torch.device( "cuda" if torch.cuda.is_available() and not params["no_cuda"] else "cpu" ) self.n_gpu = torch.cuda.device_count() # init tokenizer self.NULL_IDX = 0 self.START_TOKEN = "[CLS]" self.END_TOKEN = "[SEP]" self.tokenizer = BertTokenizer.from_pretrained( params["bert_model"], do_lower_case=params["lowercase"] ) # init model self.build_model() model_path = params.get("path_to_model", None) if model_path is not None: self.load_model( model_path, cand_enc_only=params.get("load_cand_enc_only", False), ) self.model = self.model.to(self.device) self.data_parallel = params.get("data_parallel") if self.data_parallel: self.model = torch.nn.DataParallel(self.model) def load_model(self, fname, cpu=False, cand_enc_only=False): if cpu or not torch.cuda.is_available(): state_dict = torch.load(fname, map_location=torch.device("cpu")) else: state_dict = torch.load(fname) if cand_enc_only: cand_state_dict = get_submodel_from_state_dict(state_dict, 'cand_encoder') self.model.cand_encoder.load_state_dict(cand_state_dict) else: self.model.upgrade_state_dict_named(state_dict) self.model.load_state_dict(state_dict) def build_model(self): self.model = BiEncoderModule(self.params) def save_model(self, output_dir): if not os.path.exists(output_dir): os.makedirs(output_dir) model_to_save = get_model_obj(self.model) output_model_file = os.path.join(output_dir, WEIGHTS_NAME) output_config_file = os.path.join(output_dir, CONFIG_NAME) torch.save(model_to_save.state_dict(), output_model_file) model_to_save.config.to_json_file(output_config_file) def get_optimizer(self, optim_states=None, saved_optim_type=None): return get_bert_optimizer( [self.model], self.params["type_optimization"], self.params["learning_rate"], fp16=self.params.get("fp16"), ) def encode_context( self, cands, gold_mention_bounds=None, gold_mention_bounds_mask=None, num_cand_mentions=50, topK_threshold=-4.5, get_mention_scores=True, ): """ if gold_mention_bounds specified, selects according to gold_mention_bounds, otherwise selects according to top-scoring mentions Returns: Dictionary mention_reps: torch.FloatTensor (bsz, max_num_pred_mentions, embed_dim): mention embeddings mention_masks: torch.BoolTensor (bsz, max_num_pred_mentions): mention padding mask mention_bounds: torch.LongTensor (bsz, max_num_pred_mentions, 2) ( mention_logits: torch.FloatTensor (bsz, max_num_pred_mentions): mention scores/logits all_mention_mask: torch.BoolTensor ((bsz, all_cand_mentions) all_mention_logits: torch.FloatTensor (bsz, all_cand_mentions): all mention scores/logits all_mention_bounds: torch.LongTensor (bsz, all_cand_mentions, 2): all mention bounds ) """ token_idx_cands, segment_idx_cands, mask_cands = to_bert_input( cands, self.NULL_IDX ) context_outs, _ = self.model( token_idx_cands, segment_idx_cands, mask_cands, None, None, None, gold_mention_bounds=gold_mention_bounds, gold_mention_bounds_mask=gold_mention_bounds_mask, num_cand_mentions=num_cand_mentions, topK_threshold=topK_threshold, get_mention_scores=get_mention_scores ) if context_outs['mention_dims'].size(0) <= 1: for key in context_outs: if 'all' in key or key == 'mention_dims': continue context_outs[key] = context_outs[key].view([context_outs['mention_dims'][0,0], -1] + list(context_outs[key].size()[1:])) return context_outs ''' Reshape to (bs, num_mentions, *), iterating across GPUs ''' def init_tensor(shape, dtype, init_value): return init_value * torch.ones( shape ).to(dtype=dtype, device=context_outs['mention_dims'].device) bs = cands.size(0) n_pred_mentions = context_outs['mention_dims'][:,1].max() context_outs_reshape = {} for key in context_outs: if 'all' in key or key == 'mention_dims': context_outs_reshape[key] = context_outs[key] continue # (bsz, max_num_pred_mentions, *) context_outs_reshape[key] = init_tensor( [bs, n_pred_mentions] + list(context_outs[key].size()[1:]), context_outs[key].dtype, -float("inf") if 'logit' in key else 0, ) for idx in range(len(context_outs['mention_dims'])): # reshape gpu_bs = context_outs['mention_dims'][idx, 0] b_width = context_outs['mention_dims'][idx, 1] start_idx = (context_outs['mention_dims'][:idx, 0] * context_outs['mention_dims'][:idx, 1]).sum() end_idx = start_idx + b_width * gpu_bs s_reshape = context_outs['mention_dims'][:idx, 0].sum() e_reshape = s_reshape + gpu_bs for key in context_outs_reshape: if 'all' in key or key == 'mention_dims': continue if len(context_outs[key].size()) == 1: target_tensor = context_outs[key][start_idx:end_idx].view(gpu_bs, b_width) else: target_tensor = context_outs[key][start_idx:end_idx].view(gpu_bs, b_width, -1) context_outs_reshape[key][s_reshape:e_reshape, :b_width] = target_tensor return context_outs_reshape def encode_candidate(self, cands): token_idx_cands, segment_idx_cands, mask_cands = to_bert_input( cands, self.NULL_IDX ) _, embedding_cands = self.model( None, None, None, token_idx_cands, segment_idx_cands, mask_cands ) return embedding_cands # Score candidates given context input and label input # If text_encs/cand_encs is provided (pre-computed), text_vecs/cand_vecs is ignored def score_candidate( self, text_vecs, cand_vecs, text_encs=None, # pre-computed mention encoding cand_encs=None, # pre-computed candidate encoding. gold_mention_bounds=None, gold_mention_bounds_mask=None, num_cand_mentions=50, mention_threshold=-4.5, get_mention_scores=True, hard_negs=False, # (if training) passed in a subset of hard negatives hard_negs_mask=None, # (if hard negs training) mask for gold candidate mentions on all inputs (pos + negs) ): """ text_vecs (bs, max_ctxt_size): cand_vecs (bs, max_num_gold_mentions, 1, max_cand_size): text_encs (batch_num_mentions, embed_size): Pre-encoded mention vectors, masked before input cand_encs (num_ents_to_match [batch_num_total_ents/all_ents], embed_size): Pre-encoded candidate vectors, masked before input """ ''' Compute context representations and/or get mention scores ''' if text_encs is None or get_mention_scores: # embedding_ctxt: (bs, num_gold_mentions/num_pred_mentions, embed_size) context_outs = self.encode_context( text_vecs, gold_mention_bounds=gold_mention_bounds, gold_mention_bounds_mask=gold_mention_bounds_mask, num_cand_mentions=num_cand_mentions, topK_threshold=mention_threshold, get_mention_scores=get_mention_scores, ) mention_logits = None mention_bounds = None if get_mention_scores: mention_logits = context_outs['all_mention_logits'] mention_bounds = context_outs['all_mention_bounds'] if text_encs is None: if gold_mention_bounds is None: # (all_batch_pred_mentions, embed_size) embedding_ctxt = context_outs['mention_reps'][context_outs['mention_masks']] else: # (all_batch_pred_mentions, embed_size) embedding_ctxt = context_outs['mention_reps'][gold_mention_bounds_mask] else: # Context encoding is given, do not need to re-compute embedding_ctxt = text_encs ''' Compute candidate representations ''' if cand_encs is None: # Train time: Compute candidates in batch and compare in-batch negatives # cand_vecs: (bs, num_gold_mentions, 1, cand_width) -> (batch_num_gold_mentions, cand_width) cand_vecs = cand_vecs[gold_mention_bounds_mask].squeeze(1) # (batch_num_gold_mentions, embed_dim) embedding_cands = self.encode_candidate(cand_vecs) else: # (batch_num_gold_mentions, embed_dim) embedding_cands = cand_encs ''' Do inner-product search, or obtain scores on hard-negative entities ''' if hard_negs: assert hard_negs_mask is not None # (num_mention_in_batch, embed_dim) embedding_ctxt = embedding_ctxt[hard_negs_mask] embedding_cands = embedding_cands[hard_negs_mask] embedding_ctxt = embedding_ctxt.unsqueeze(1) # num_mention_in_batch x 1 x embed_size embedding_cands = embedding_cands.unsqueeze(2) # num_mention_in_batch x embed_size x 1 scores = torch.bmm(embedding_ctxt, embedding_cands) # num_mention_in_batch x 1 x 1 scores = torch.squeeze(scores) # (num_mention_in_batch,) return scores, mention_logits, mention_bounds else: # matmul across all cand_encs (in-batch, if cand_encs is None, or across all cand_encs) # (all_batch_pred_mentions, num_cands) # similarity score between ctxt i and cand j all_scores = embedding_ctxt.mm(embedding_cands.t()) return all_scores, mention_logits, mention_bounds # label_input -- negatives provided # If label_input is None, train on in-batch negatives def forward( self, context_input, cand_input, text_encs=None, # pre-computed mention encoding. cand_encs=None, # pre-computed candidate embeddings mention_logits=None, # pre-computed mention logits mention_bounds=None, # pre-computed mention bounds label_input=None, # labels for passed-in (if hard negatives training) gold_mention_bounds=None, gold_mention_bounds_mask=None, hard_negs_mask=None, # should be non-none if we are using negs return_loss=True, ): """ text_encs/cand_encs/label_inputs masked before training In-batch negs training: cand_encs None, label_inputs None, return_loss True Hard negs training: cand_encs non-None, label_inputs non-None, return_loss True cand_encs = all entities in batch + additional hard negatives Inference: cand_encs non-None, label_inputs None, return_loss False cand_encs = all entities in DB cand_encs non-None: set of candidate encodings to search in None: compute in-batch candidate vectors (used as negatives if train mode) label_inputs non-None: labels to use for hard negatives training None: random negatives training and/or inference """ hard_negs = label_input is not None ''' GET CANDIDATE SCORES ''' scores, out_mention_logits, out_mention_bounds = self.score_candidate( context_input, cand_input, hard_negs=hard_negs, cand_encs=cand_encs, text_encs=text_encs, gold_mention_bounds=gold_mention_bounds, gold_mention_bounds_mask=gold_mention_bounds_mask, hard_negs_mask=hard_negs_mask, get_mention_scores=(return_loss and (mention_logits is None or mention_bounds is None)), ) if mention_logits is None: mention_logits = out_mention_logits if mention_bounds is None: mention_bounds = out_mention_bounds if not return_loss: return None, scores, mention_logits, mention_bounds ''' COMPUTE MENTION LOSS (TRAINING MODE) ''' span_loss = 0 if mention_logits is not None and mention_bounds is not None: N = context_input.size(0) # batch size M = gold_mention_bounds.size(1) # num_mentions per instance (just 1, so far) # 1 value span_loss = self.get_span_loss( gold_mention_bounds=gold_mention_bounds, gold_mention_bounds_mask=gold_mention_bounds_mask, mention_logits=mention_logits, mention_bounds=mention_bounds, ) ''' COMPUTE EL LOSS (TRAINING MODE) ''' if hard_negs: ''' Hard negatives (negatives passed in) ''' loss_fct = nn.BCEWithLogitsLoss(reduction="mean") label_input = label_input[hard_negs_mask] # scores: (num_mentions_in_batch,); label_input: (num_mentions_in_batch,) loss = loss_fct(scores, label_input.float()) + span_loss else: ''' Random negatives (use in-batch negatives) ''' # scores: (bs*num_mentions [filtered], bs*num_mentions [filtered]) target = torch.LongTensor(torch.arange(scores.size(1))) target = target.to(self.device) # log P(entity|mention) + log P(mention) = log [P(entity|mention)P(mention)] loss = F.cross_entropy(scores, target, reduction="mean") + span_loss return loss, scores, mention_logits, mention_bounds def get_span_loss( self, gold_mention_bounds, gold_mention_bounds_mask, mention_logits, mention_bounds, ): """ gold_mention_bounds (bs, num_mentions, 2) gold_mention_bounds_mask (bs, num_mentions): mention_logits (bs, all_mentions) menion_bounds (bs, all_mentions, 2) """ loss_fct = nn.BCEWithLogitsLoss(reduction="mean") gold_mention_bounds[~gold_mention_bounds_mask] = -1 # ensure don't select masked to score # triples of [ex in batch, mention_idx in gold_mention_bounds, idx in mention_bounds] # use 1st, 2nd to index into gold_mention_bounds, 1st, 3rd to index into mention_bounds gold_mention_pos_idx = (( mention_bounds.unsqueeze(1) - gold_mention_bounds.unsqueeze(2) # (bs, num_mentions, start_pos * end_pos, 2) ).abs().sum(-1) == 0).nonzero() # gold_mention_pos_idx should have 1 entry per masked element # (num_gold_mentions [~gold_mention_bounds_mask]) gold_mention_pos = gold_mention_pos_idx[:,2] # (bs, total_possible_spans) gold_mention_binary = torch.zeros(mention_logits.size(), dtype=mention_logits.dtype).to(gold_mention_bounds.device) gold_mention_binary[gold_mention_pos_idx[:,0], gold_mention_pos_idx[:,2]] = 1 # prune masked spans mask = mention_logits != -float("inf") masked_mention_logits = mention_logits[mask] masked_gold_mention_binary = gold_mention_binary[mask] # (bs, total_possible_spans) span_loss = loss_fct(masked_mention_logits, masked_gold_mention_binary) return span_loss def to_bert_input(token_idx, null_idx): """ token_idx is a 2D tensor int. """ segment_idx = token_idx * 0 mask = token_idx != null_idx # nullify elements in case self.NULL_IDX was not 0 token_idx = token_idx * mask.long() return token_idx, segment_idx, mask
BLINK-main
elq/biencoder/biencoder.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import io import sys import json import torch import logging import numpy as np from collections import OrderedDict from pytorch_transformers.modeling_utils import CONFIG_NAME, WEIGHTS_NAME from tqdm import tqdm from elq.biencoder.biencoder import BiEncoderRanker def read_dataset(dataset_name, preprocessed_json_data_parent_folder, debug=False): file_name = "{}.jsonl".format(dataset_name) txt_file_path = os.path.join(preprocessed_json_data_parent_folder, file_name) samples = [] with io.open(txt_file_path, mode="r", encoding="utf-8") as file: for line in file: samples.append(json.loads(line.strip())) if debug and len(samples) > 200: break return samples def accuracy(out, labels): outputs = np.argmax(out, axis=1) return np.sum(outputs == labels) def remove_module_from_state_dict(state_dict): new_state_dict = OrderedDict() for key, value in state_dict.items(): name = "".join(key.split(".module")) new_state_dict[name] = value return new_state_dict def save_model(model, tokenizer, output_dir): """Saves the model and the tokenizer used in the output directory.""" if not os.path.exists(output_dir): os.makedirs(output_dir) model_to_save = model.module if hasattr(model, "module") else model output_model_file = os.path.join(output_dir, WEIGHTS_NAME) output_config_file = os.path.join(output_dir, CONFIG_NAME) torch.save(model_to_save.state_dict(), output_model_file) model_to_save.config.to_json_file(output_config_file) tokenizer.save_vocabulary(output_dir) def get_logger(output_dir=None): if output_dir != None: os.makedirs(output_dir, exist_ok=True) logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, handlers=[ logging.FileHandler( "{}/log.txt".format(output_dir), mode="a", delay=False ), logging.StreamHandler(sys.stdout), ], ) else: logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, handlers=[logging.StreamHandler(sys.stdout)], ) logger = logging.getLogger('Blink') logger.setLevel(10) return logger def write_to_file(path, string, mode="w"): with open(path, mode) as writer: writer.write(string) def get_biencoder(parameters): return BiEncoderRanker(parameters)
BLINK-main
elq/candidate_ranking/utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # # Provide an argument parser and default command line options for using ELQ. import argparse import importlib import os import sys import datetime ENT_START_TAG = "[unused0]" ENT_END_TAG = "[unused1]" ENT_TITLE_TAG = "[unused2]" class ElqParser(argparse.ArgumentParser): """ Provide an opt-producer and CLI arguement parser. More options can be added specific by paassing this object and calling ''add_arg()'' or add_argument'' on it. :param add_elq_args: (default True) initializes the default arguments for ELQ package. :param add_model_args: (default False) initializes the default arguments for loading models, including initializing arguments from the model. """ def __init__( self, add_elq_args=True, add_model_args=False, description='ELQ parser', ): super().__init__( description=description, allow_abbrev=False, conflict_handler='resolve', formatter_class=argparse.HelpFormatter, add_help=add_elq_args, ) self.elq_home = os.path.dirname( os.path.dirname(os.path.dirname(os.path.realpath(__file__))) ) os.environ['ELQ_HOME'] = self.elq_home self.add_arg = self.add_argument self.overridable = {} if add_elq_args: self.add_elq_args() if add_model_args: self.add_model_args() def add_elq_args(self, args=None): """ Add common ELQ args across all scripts. """ parser = self.add_argument_group("Common Arguments") parser.add_argument( "--silent", action="store_true", help="Whether to print progress bars." ) parser.add_argument( "--debug", action="store_true", help="Whether to run in debug mode with only 200 samples.", ) parser.add_argument( "--data_parallel", action="store_true", help="Whether to distributed the candidate generation process.", ) parser.add_argument( "--no_cuda", action="store_true", help="Whether not to use CUDA when available", ) parser.add_argument("--top_k", default=10, type=int) parser.add_argument( "--seed", type=int, default=52313, help="random seed for initialization" ) parser.add_argument( "--zeshel", default=True, type=bool, help="Whether the dataset is from zeroshot.", ) def add_model_args(self, args=None): """ Add model args. """ parser = self.add_argument_group("Model Arguments") parser.add_argument( "--max_seq_length", default=256, type=int, help="The maximum total input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, and sequences shorter \n" "than this will be padded.", ) parser.add_argument( "--max_context_length", default=128, type=int, help="The maximum total context input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, and sequences shorter \n" "than this will be padded.", ) parser.add_argument( "--max_cand_length", default=128, type=int, help="The maximum total label input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, and sequences shorter \n" "than this will be padded.", ) parser.add_argument( "--path_to_model", default=None, type=str, required=False, help="The full path to the model to load.", ) parser.add_argument( "--bert_model", default="bert-base-uncased", type=str, help="Bert pre-trained model selected in the list: bert-base-uncased, " "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.", ) parser.add_argument( "--pull_from_layer", type=int, default=-1, help="Layers to pull from BERT", ) parser.add_argument( "--lowercase", action="store_false", help="Whether to lower case the input text. True for uncased models, False for cased models.", ) parser.add_argument("--context_key", default="context", type=str) parser.add_argument("--title_key", default="entity", type=str) parser.add_argument( "--out_dim", type=int, default=1, help="Output dimention of bi-encoders.", ) parser.add_argument( "--add_linear", action="store_true", help="Whether to add an additonal linear projection on top of BERT.", ) parser.add_argument( "--data_path", default="data/zeshel", type=str, help="The path to the train data.", ) parser.add_argument( "--output_path", default=None, type=str, required=True, help="The output directory where generated output file (model, etc.) is to be dumped.", ) parser.add_argument( "--mention_aggregation_type", default=None, type=str, help="Type of mention aggregation (None to just use [CLS] token, " "'all_avg' to average across tokens in mention, 'fl_avg' to average across first/last tokens in mention, " "'{all/fl}_linear' for linear layer over mention, '{all/fl}_mlp' to MLP over mention)", ) parser.add_argument( "--no_mention_bounds", dest="no_mention_bounds", action="store_true", default=False, help="Don't add tokens around target mention. MUST BE FALSE IF 'mention_aggregation_type' is NONE", ) parser.add_argument( "--mention_scoring_method", dest="mention_scoring_method", default="qa_linear", type=str, help="Method for generating/scoring mentions boundaries (options: 'qa_mlp', 'qa_linear', 'BIO')", ) parser.add_argument( "--max_mention_length", dest="max_mention_length", default=10, type=int, help="Maximum length of span to consider as candidate mention", ) def add_training_args(self, args=None): """ Add model training args. """ parser = self.add_argument_group("Model Training Arguments") parser.add_argument( "--evaluate", action="store_true", help="Whether to run evaluation." ) parser.add_argument( "--output_eval_file", default=None, type=str, help="The txt file where the the evaluation results will be written.", ) parser.add_argument( "--train_batch_size", default=8, type=int, help="Total batch size for training." ) parser.add_argument( "--eval_batch_size", default=8, type=int, help="Total batch size for evaluation.", ) parser.add_argument("--max_grad_norm", default=1.0, type=float) parser.add_argument( "--learning_rate", default=3e-5, type=float, help="The initial learning rate for Adam.", ) parser.add_argument( "--num_train_epochs", default=1, type=int, help="Number of training epochs.", ) parser.add_argument( "--print_interval", type=int, default=5, help="Interval of loss printing", ) parser.add_argument( "--eval_interval", type=int, default=40, help="Interval for evaluation during training", ) parser.add_argument( "--save_interval", type=int, default=1, help="Interval for model saving" ) parser.add_argument( "--warmup_proportion", default=0.1, type=float, help="Proportion of training to perform linear learning rate warmup for. " "E.g., 0.1 = 10% of training.", ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumualte before performing a backward/update pass.", ) parser.add_argument( "--type_optimization", type=str, default="all_encoder_layers", help="Which type of layers to optimize in BERT", ) parser.add_argument( "--shuffle", type=bool, default=False, help="Whether to shuffle train data", ) # TODO DELETE LATER!!! parser.add_argument( "--start_idx", default=None, type=int, ) parser.add_argument( "--end_idx", default=None, type=int, ) parser.add_argument( "--last_epoch", default=0, type=int, help="Epoch to restore from when pretraining", ) parser.add_argument( "--path_to_trainer_state", default=None, type=str, required=False, help="The full path to the last checkpoint's training state to load.", ) parser.add_argument( '--dont_distribute_train_samples', default=False, action="store_true", help="Don't distribute all training samples across the epochs (go through all samples every epoch)", ) parser.add_argument( "--freeze_cand_enc", default=False, action="store_true", help="Freeze the candidate encoder", ) parser.add_argument( "--load_cand_enc_only", default=False, action="store_true", help="Only load the candidate encoder from saved model path", ) parser.add_argument( "--cand_enc_path", default="models/all_entities_large.t7", type=str, required=False, help="Filepath to the saved entity encodings.", ) parser.add_argument( "--cand_token_ids_path", default="models/entity_token_ids_128.t7", type=str, required=False, help="Filepath to the saved tokenized entity descriptions.", ) parser.add_argument( "--index_path", default="models/faiss_hnsw_index.pkl", type=str, required=False, help="Filepath to the HNSW index for adversarial training.", ) parser.add_argument( "--adversarial_training", default=False, action="store_true", help="Do adversarial training (only takes effect if `freeze_cand_enc` is set)", ) parser.add_argument( "--get_losses", default=False, action="store_true", help="Get losses during evaluation", ) def add_eval_args(self, args=None): """ Add model evaluation args. """ parser = self.add_argument_group("Model Evaluation Arguments") parser.add_argument( "--mode", default="valid", type=str, help="Train / validation / test", ) parser.add_argument( "--save_topk_result", action="store_true", help="Whether to save prediction results.", ) parser.add_argument( "--encode_batch_size", default=8, type=int, help="Batch size for encoding." ) parser.add_argument( "--cand_pool_path", default=None, type=str, help="Path for candidate pool", ) parser.add_argument( "--cand_encode_path", default=None, type=str, help="Path for candidate encoding", )
BLINK-main
elq/common/params.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from torch import nn import torch def get_model_obj(model): model = model.module if hasattr(model, "module") else model return model class BertEncoder(nn.Module): def __init__( self, bert_model, output_dim, layer_pulled=-1, add_linear=None, ): super(BertEncoder, self).__init__() self.layer_pulled = layer_pulled bert_output_dim = bert_model.embeddings.word_embeddings.weight.size(1) self.bert_model = bert_model self.dropout = nn.Dropout(0.1) if add_linear: self.additional_linear = nn.Linear(bert_output_dim, output_dim) else: self.additional_linear = None def forward(self, token_ids, segment_ids, attention_mask, DEBUG=False): if DEBUG: import pdb pdb.set_trace() try: output_bert, output_pooler, _ = self.bert_model( token_ids, segment_ids, attention_mask ) except RuntimeError as e: print(token_ids.size()) print(segment_ids.size()) print(attention_mask.size()) print(e) import pdb pdb.set_trace() output_bert, output_pooler, _ = self.bert_model( token_ids, segment_ids, attention_mask ) if self.additional_linear is not None: # embeddings = (batch_size, embedding_size) embeddings = output_pooler else: # embeddings = (batch_size, embedding_size) embeddings = output_bert[:, 0, :] # in case of dimensionality reduction if self.additional_linear is not None: result = self.additional_linear(self.dropout(embeddings)) else: result = embeddings return result
BLINK-main
elq/common/ranker_base.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # """ FAISS-based index components. Original from https://github.com/facebookresearch/DPR/blob/master/dpr/indexer/faiss_indexers.py """ import os import logging import pickle import faiss import numpy as np logger = logging.getLogger() class DenseIndexer(object): def __init__(self, buffer_size: int = 50000): self.buffer_size = buffer_size self.index_id_to_db_id = [] self.index = None def index_data(self, data: np.array): raise NotImplementedError def search_knn(self, query_vectors: np.array, top_docs: int): raise NotImplementedError def serialize(self, index_file: str): logger.info("Serializing index to %s", index_file) faiss.write_index(self.index, index_file) def deserialize_from(self, index_file: str): logger.info("Loading index from %s", index_file) self.index = faiss.read_index(index_file) logger.info( "Loaded index of type %s and size %d", type(self.index), self.index.ntotal ) # DenseFlatIndexer does exact search class DenseFlatIndexer(DenseIndexer): def __init__(self, vector_sz: int = 1, buffer_size: int = 50000): super(DenseFlatIndexer, self).__init__(buffer_size=buffer_size) self.index = faiss.IndexFlatIP(vector_sz) def index_data(self, data: np.array): n = len(data) # indexing in batches is beneficial for many faiss index types logger.info("Indexing data, this may take a while.") cnt = 0 for i in range(0, n, self.buffer_size): vectors = [np.reshape(t, (1, -1)) for t in data[i : i + self.buffer_size]] vectors = np.concatenate(vectors, axis=0) self.index.add(vectors) cnt += self.buffer_size logger.info("Total data indexed %d", n) def search_knn(self, query_vectors, top_k): scores, indexes = self.index.search(query_vectors, top_k) return scores, indexes # DenseIVFFlatIndexer does bucketed exact search class DenseIVFFlatIndexer(DenseIndexer): def __init__(self, vector_sz: int = 1, nprobe: int = 10, nlist: int = 100): super(DenseIVFFlatIndexer, self).__init__() self.nprobe = nprobe self.nlist = nlist quantizer = faiss.IndexFlatL2(vector_sz) # the other index self.index = faiss.IndexIVFFlat(quantizer, vector_sz, self.nlist, faiss.METRIC_INNER_PRODUCT) self.index.nprobe = nprobe def index_data(self, data: np.array): n = len(data) # indexing in batches is beneficial for many faiss index types logger.info("Indexing data, this may take a while.") self.index.train(data) self.index.add(data) logger.info("Total data indexed %d", n) def search_knn(self, query_vectors, top_k): scores, indexes = self.index.search(query_vectors, top_k) return scores, indexes # DenseHNSWFlatIndexer does approximate search class DenseHNSWFlatIndexer(DenseIndexer): """ Efficient index for retrieval. Note: default settings are for hugh accuracy but also high RAM usage """ def __init__( self, vector_sz: int, buffer_size: int = 50000, store_n: int = 128, ef_search: int = 256, ef_construction: int = 200, ): super(DenseHNSWFlatIndexer, self).__init__(buffer_size=buffer_size) index = faiss.IndexHNSWFlat(vector_sz, store_n, faiss.METRIC_INNER_PRODUCT) index.hnsw.efSearch = ef_search index.hnsw.efConstruction = ef_construction self.index = index def index_data(self, data: np.array): n = len(data) # indexing in batches is beneficial for many faiss index types logger.info("Indexing data, this may take a while.") self.index.add(data) logger.info("Total data indexed %d" % n) def search_knn(self, query_vectors, top_k): scores, indexes = self.index.search(query_vectors, top_k) return scores, indexes def deserialize_from(self, file: str): super(DenseHNSWFlatIndexer, self).deserialize_from(file) # to trigger warning on subsequent indexing self.phi = 1
BLINK-main
elq/index/faiss_indexer.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import numpy as np def entity_linking_tp_with_overlap(gold, predicted): """ Partially adopted from: https://github.com/UKPLab/starsem2018-entity-linking Counts weak and strong matches :param gold: :param predicted: :return: >>> entity_linking_tp_with_overlap([('Q7366', 14, 18), ('Q780394', 19, 35)], [('Q7366', 14, 16), ('Q780394', 19, 35)]) 2, 1 >>> entity_linking_tp_with_overlap([('Q7366', 14, 18), ('Q780394', 19, 35)], [('Q7366', 14, 16)]) 1, 0 >>> entity_linking_tp_with_overlap([(None, 14, 18), ('Q780394', 19, 35)], [('Q7366', 14, 16)]) 0, 0 >>> entity_linking_tp_with_overlap([(None, 14, 18), (None, )], [(None,)]) 1, 0 >>> entity_linking_tp_with_overlap([('Q7366', ), ('Q780394', )], [('Q7366', 14, 16)]) 1, 0 >>> entity_linking_tp_with_overlap([], [('Q7366', 14, 16)]) 0, 0 """ if not gold or not predicted: return 0, 0 # Add dummy spans, if no spans are given, everything is overlapping per default if any(len(e) != 3 for e in gold): gold = [(e[0], 0, 1) for e in gold] predicted = [(e[0], 0, 1) for e in predicted] # Replace None KB ids with empty strings gold = [("",) + e[1:] if e[0] is None else e for e in gold] predicted = [("",) + e[1:] if e[0] is None else e for e in predicted] gold = sorted(gold, key=lambda x: x[2]) predicted = sorted(predicted, key=lambda x: x[2]) # tracks weak matches lcs_matrix_weak = np.zeros((len(gold), len(predicted)), dtype=np.int16) # tracks strong matches lcs_matrix_strong = np.zeros((len(gold), len(predicted)), dtype=np.int16) for g_i in range(len(gold)): for p_i in range(len(predicted)): gm = gold[g_i] pm = predicted[p_i] # increment lcs_matrix_weak if not (gm[1] >= pm[2] or pm[1] >= gm[2]) and (gm[0].lower() == pm[0].lower()): if g_i == 0 or p_i == 0: lcs_matrix_weak[g_i, p_i] = 1 else: lcs_matrix_weak[g_i, p_i] = 1 + lcs_matrix_weak[g_i - 1, p_i - 1] else: if g_i == 0 and p_i == 0: lcs_matrix_weak[g_i, p_i] = 0 elif g_i == 0 and p_i != 0: lcs_matrix_weak[g_i, p_i] = max(0, lcs_matrix_weak[g_i, p_i - 1]) elif g_i != 0 and p_i == 0: lcs_matrix_weak[g_i, p_i] = max(lcs_matrix_weak[g_i - 1, p_i], 0) elif g_i != 0 and p_i != 0: lcs_matrix_weak[g_i, p_i] = max(lcs_matrix_weak[g_i - 1, p_i], lcs_matrix_weak[g_i, p_i - 1]) # increment lcs_matrix_strong if (gm[1] == pm[1] and pm[2] == gm[2]) and (gm[0].lower() == pm[0].lower()): if g_i == 0 or p_i == 0: lcs_matrix_strong[g_i, p_i] = 1 else: lcs_matrix_strong[g_i, p_i] = 1 + lcs_matrix_strong[g_i - 1, p_i - 1] else: if g_i == 0 and p_i == 0: lcs_matrix_strong[g_i, p_i] = 0 elif g_i == 0 and p_i != 0: lcs_matrix_strong[g_i, p_i] = max(0, lcs_matrix_strong[g_i, p_i - 1]) elif g_i != 0 and p_i == 0: lcs_matrix_strong[g_i, p_i] = max(lcs_matrix_strong[g_i - 1, p_i], 0) elif g_i != 0 and p_i != 0: lcs_matrix_strong[g_i, p_i] = max(lcs_matrix_strong[g_i - 1, p_i], lcs_matrix_strong[g_i, p_i - 1]) weak_match_count = lcs_matrix_weak[len(gold) - 1, len(predicted) - 1] strong_match_count = lcs_matrix_strong[len(gold) - 1, len(predicted) - 1] return weak_match_count, strong_match_count
BLINK-main
elq/vcg_utils/measures.py
import argparse import json import logging import os import random import time import torch from datetime import timedelta WORLDS = { 'american_football', 'doctor_who', 'fallout', 'final_fantasy', 'military', 'pro_wrestling', 'starwars', 'world_of_warcraft', 'coronation_street', 'muppets', 'ice_hockey', 'elder_scrolls', 'forgotten_realms', 'lego', 'star_trek', 'yugioh' } domain_set = {} domain_set['val'] = set(['coronation_street', 'muppets', 'ice_hockey', 'elder_scrolls']) domain_set['test'] = set(['forgotten_realms', 'lego', 'star_trek', 'yugioh']) domain_set['train'] = set(['american_football', 'doctor_who', 'fallout', 'final_fantasy', 'military', 'pro_wrestling', 'starwars', 'world_of_warcraft']) class LogFormatter(): def __init__(self): self.start_time = time.time() def format(self, record): elapsed_seconds = round(record.created - self.start_time) prefix = "%s - %s - %s" % ( record.levelname, time.strftime("%x %X"), timedelta(seconds=elapsed_seconds) ) message = record.getMessage() message = message.replace('\n', '\n' + ' ' * (len(prefix) + 3)) return "%s - %s" % (prefix, message) if message else '' log_formatter = LogFormatter() console_handler = logging.StreamHandler() console_handler.setLevel(logging.INFO) console_handler.setFormatter(log_formatter) logger = logging.getLogger() logger.handlers = [] logger.setLevel(logging.INFO) logger.propagate = False logger.addHandler(console_handler) def load_entity_dict(params): entity_dict = {} entity_map = {} for src in WORLDS: fname = os.path.join(params.document_path, src + ".json") assert os.path.isfile(fname), "File not found! %s" % fname cur_dict = {} doc_map = {} doc_list = [] with open(fname, 'rt') as f: for line in f: line = line.rstrip() item = json.loads(line) doc_id = item["document_id"] title = item["title"] text = item["text"] doc_map[doc_id] = len(doc_list) doc_list.append(item) logger.info("Load for world %s." % src) entity_dict[src] = doc_list entity_map[src] = doc_map return entity_dict, entity_map def convert_data(params, entity_dict, entity_map, mode): if mode == "valid": fname = os.path.join(params.mention_path, "val.json") else: fname = os.path.join(params.mention_path, mode + ".json") fout = open(os.path.join(params.output_path, mode + ".jsonl"), 'wt') cnt = 0 max_tok = 128 with open(fname, 'rt') as f: for line in f: cnt += 1 line = line.rstrip() item = json.loads(line) mention = item["text"].lower() src = item["corpus"] label_doc_id = item["label_document_id"] orig_doc_id = item["context_document_id"] start = item["start_index"] end = item["end_index"] # add context around the mention as well orig_id = entity_map[src][orig_doc_id] text = entity_dict[src][orig_id]["text"].lower() tokens = text.split(" ") assert mention == ' '.join(tokens[start:end + 1]) tokenized_query = mention mention_context_left = tokens[max(0, start - max_tok):start] mention_context_right = tokens[end + 1:min(len(tokens), end + max_tok + 1)] # entity info k = entity_map[src][label_doc_id] ent_title = entity_dict[src][k]['title'] ent_text = entity_dict[src][k]["text"] example = {} example["context_left"] = ' '.join(mention_context_left) example['context_right'] = ' '.join(mention_context_right) example["mention"] = mention example["label"] = ent_text example["label_id"] = k example['label_title'] = ent_title example['world'] = src fout.write(json.dumps(example)) fout.write('\n') fout.close() if __name__ == '__main__': parser = argparse.ArgumentParser(description='Zero-shot Entity Linking Dataset') parser.add_argument( '--document_path', default='data/zeshel/documents', type=str, ) parser.add_argument( '--mention_path', default='data/zeshel/mentions', type=str, ) parser.add_argument( '--output_path', default='data/zeshel/blink_format', type=str, ) params = parser.parse_args() os.makedirs(params.output_path, exist_ok=True) entity_dict, entity_map = load_entity_dict(params) convert_data(params, entity_dict, entity_map, 'train') convert_data(params, entity_dict, entity_map, 'valid') convert_data(params, entity_dict, entity_map, 'test')
BLINK-main
examples/zeshel/create_BLINK_zeshel_data.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from elq.biencoder.biencoder import load_biencoder import elq.candidate_ranking.utils as utils import json import sys import os from tqdm import tqdm import argparse def encode_candidate( reranker, candidate_pool, encode_batch_size, silent, logger, ): reranker.model.eval() device = reranker.device #for cand_pool in candidate_pool: #logger.info("Encoding candidate pool %s" % src) sampler = SequentialSampler(candidate_pool) data_loader = DataLoader( candidate_pool, sampler=sampler, batch_size=encode_batch_size ) if silent: iter_ = data_loader else: iter_ = tqdm(data_loader) cand_encode_list = None for step, batch in enumerate(iter_): cands = batch cands = cands.to(device) cand_encode = reranker.encode_candidate(cands) if cand_encode_list is None: cand_encode_list = cand_encode else: cand_encode_list = torch.cat((cand_encode_list, cand_encode)) return cand_encode_list def load_candidate_pool( tokenizer, params, logger, cand_pool_path, ): candidate_pool = None # try to load candidate pool from file try: logger.info("Loading pre-generated candidate pool from: ") logger.info(cand_pool_path) candidate_pool = torch.load(cand_pool_path) except: logger.info("Loading failed.") assert candidate_pool is not None return candidate_pool parser = argparse.ArgumentParser() parser.add_argument('--path_to_model_config', type=str, required=True, help='filepath to saved model config') parser.add_argument('--path_to_model', type=str, required=True, help='filepath to saved model') parser.add_argument('--entity_dict_path', type=str, required=True, help='filepath to entities to encode (.jsonl file)') parser.add_argument('--saved_cand_ids', type=str, help='filepath to entities pre-parsed into IDs') parser.add_argument('--encoding_save_file_dir', type=str, help='directory of file to save generated encodings', default=None) parser.add_argument('--test', action='store_true', default=False, help='whether to just test encoding subsample of entities') parser.add_argument('--compare_saved_embeds', type=str, help='compare against these saved embeddings') parser.add_argument('--batch_size', type=int, default=512, help='batch size for encoding candidate vectors (default 512)') parser.add_argument('--chunk_start', type=int, default=0, help='example idx to start encoding at (for parallelizing encoding process)') parser.add_argument('--chunk_end', type=int, default=-1, help='example idx to stop encoding at (for parallelizing encoding process)') args = parser.parse_args() try: with open(args.path_to_model_config) as json_file: biencoder_params = json.load(json_file) except json.decoder.JSONDecodeError: with open(args.path_to_model_config) as json_file: for line in json_file: line = line.replace("'", "\"") line = line.replace("True", "true") line = line.replace("False", "false") line = line.replace("None", "null") biencoder_params = json.loads(line) break # model to use biencoder_params["path_to_model"] = args.path_to_model # entities to use biencoder_params["entity_dict_path"] = args.entity_dict_path biencoder_params["degug"] = False biencoder_params["data_parallel"] = True biencoder_params["no_cuda"] = False biencoder_params["max_context_length"] = 32 biencoder_params["encode_batch_size"] = args.batch_size saved_cand_ids = getattr(args, 'saved_cand_ids', None) encoding_save_file_dir = args.encoding_save_file_dir if encoding_save_file_dir is not None and not os.path.exists(encoding_save_file_dir): os.makedirs(encoding_save_file_dir, exist_ok=True) logger = utils.get_logger(biencoder_params.get("model_output_path", None)) biencoder = load_biencoder(biencoder_params) baseline_candidate_encoding = None if getattr(args, 'compare_saved_embeds', None) is not None: baseline_candidate_encoding = torch.load(getattr(args, 'compare_saved_embeds')) candidate_pool = load_candidate_pool( biencoder.tokenizer, biencoder_params, logger, getattr(args, 'saved_cand_ids', None), ) if args.test: candidate_pool = candidate_pool[:10] # encode in chunks to parallelize save_file = None if getattr(args, 'encoding_save_file_dir', None) is not None: save_file = os.path.join( args.encoding_save_file_dir, "{}_{}.t7".format(args.chunk_start, args.chunk_end), ) print("Saving in: {}".format(save_file)) if save_file is not None: f = open(save_file, "w").close() # mark as existing candidate_encoding = encode_candidate( biencoder, candidate_pool[args.chunk_start:args.chunk_end], biencoder_params["encode_batch_size"], biencoder_params["silent"], logger, ) if save_file is not None: torch.save(candidate_encoding, save_file) print(candidate_encoding[0,:10]) if baseline_candidate_encoding is not None: print(baseline_candidate_encoding[0,:10])
BLINK-main
scripts/generate_candidates.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import json import os import requests from bs4 import BeautifulSoup from tqdm import tqdm BEGIN_ENT_TOKEN = "[START_ENT]" END_ENT_TOKEN = "[END_ENT]" url2id_cache = {} def _read_url(url): with urllib.request.urlopen(url) as response: html = response.read() soup = BeautifulSoup(html, features="html.parser") title = soup.title.string.replace(" - Wikipedia", "").strip() return title def _get_pageid_from_api(title, client=None): pageid = None title_html = title.strip().replace(" ", "%20") url = "https://en.wikipedia.org/w/api.php?action=query&titles={}&format=json".format( title_html ) try: # Package the request, send the request and catch the response: r r = requests.get(url) # Decode the JSON data into a dictionary: json_data json_data = r.json() if len(json_data["query"]["pages"]) > 1: print("WARNING: more than one result returned from wikipedia api") for _, v in json_data["query"]["pages"].items(): pageid = v["pageid"] except: pass return pageid def extract_questions(filename): # all the datapoints global_questions = [] # left context so far in the document left_context = [] # working datapoints for the document document_questions = [] # is the entity open open_entity = False # question id in the document question_i = 0 with open(filename) as fin: lines = fin.readlines() for line in tqdm(lines): if "-DOCSTART-" in line: # new document is starting doc_id = line.split("(")[-1][:-2] # END DOCUMENT # check end of entity if open_entity: document_questions[-1]["input"].append(END_ENT_TOKEN) open_entity = False """ #DEBUG for q in document_questions: pp.pprint(q) input("...") """ # add sentence_questions to global_questions global_questions.extend(document_questions) # reset left_context = [] document_questions = [] question_i = 0 else: split = line.split("\t") token = split[0].strip() if len(split) >= 5: B_I = split[1] mention = split[2] #  YAGO2_entity = split[3] Wikipedia_URL = split[4] Wikipedia_ID = split[5] # Freee_base_id = split[6] if B_I == "I": pass elif B_I == "B": title = Wikipedia_URL.split("/")[-1].replace("_", " ") if Wikipedia_ID == "000": if Wikipedia_URL in url2id_cache: pageid = url2id_cache[Wikipedia_URL] else: pageid = _get_pageid_from_api(title) url2id_cache[Wikipedia_URL] = pageid Wikipedia_ID = pageid q = { "id": "{}:{}".format(doc_id, question_i), "input": left_context.copy() + [BEGIN_ENT_TOKEN], "mention": mention, "Wikipedia_title": title, "Wikipedia_URL": Wikipedia_URL, "Wikipedia_ID": Wikipedia_ID, "left_context": left_context.copy(), "right_context": [], } document_questions.append(q) open_entity = True question_i += 1 else: print("Invalid B_I {}", format(B_I)) sys.exit(-1) # print(token,B_I,mention,Wikipedia_URL,Wikipedia_ID) else: if open_entity: document_questions[-1]["input"].append(END_ENT_TOKEN) open_entity = False left_context.append(token) for q in document_questions: q["input"].append(token) for q in document_questions[:-1]: q["right_context"].append(token) if len(document_questions) > 0 and not open_entity: document_questions[-1]["right_context"].append(token) # FINAL SENTENCE if open_entity: document_questions[-1]["input"].append(END_ENT_TOKEN) open_entity = False # add sentence_questions to global_questions global_questions.extend(document_questions) return global_questions # store on file def store_questions(questions, OUT_FILENAME): if not os.path.exists(os.path.dirname(OUT_FILENAME)): try: os.makedirs(os.path.dirname(OUT_FILENAME)) except OSError as exc: # Guard against race condition if exc.errno != errno.EEXIST: raise with open(OUT_FILENAME, "w+") as fout: for q in questions: json.dump(q, fout) fout.write("\n") def convert_to_BLINK_format(questions): data = [] for q in questions: datapoint = { "context_left": " ".join(q["left_context"]).strip(), "mention": q["mention"], "context_right": " ".join(q["right_context"]).strip(), "query_id": q["id"], "label_id": q["Wikipedia_ID"], "Wikipedia_ID": q["Wikipedia_ID"], "Wikipedia_URL": q["Wikipedia_URL"], "Wikipedia_title": q["Wikipedia_title"], } data.append(datapoint) return data # AIDA-YAGO2 print("AIDA-YAGO2") in_aida_filename = ( "data/train_and_benchmark_data/basic_data/test_datasets/AIDA/AIDA-YAGO2-dataset.tsv" ) aida_questions = extract_questions(in_aida_filename) train = [] testa = [] testb = [] for element in aida_questions: if "testa" in element["id"]: testa.append(element) elif "testb" in element["id"]: testb.append(element) else: train.append(element) print("train: {}".format(len(train))) print("testa: {}".format(len(testa))) print("testb: {}".format(len(testb))) train_blink = convert_to_BLINK_format(train) testa_blink = convert_to_BLINK_format(testa) testb_blink = convert_to_BLINK_format(testb) out_train_aida_filename = "data/BLINK_benchmark/AIDA-YAGO2_train.jsonl" store_questions(train_blink, out_train_aida_filename) out_testa_aida_filename = "data/BLINK_benchmark/AIDA-YAGO2_testa.jsonl" store_questions(testa_blink, out_testa_aida_filename) out_testb_aida_filename = "data/BLINK_benchmark/AIDA-YAGO2_testb.jsonl" store_questions(testb_blink, out_testb_aida_filename) # ACE 2004 print("ACE 2004") in_ace_filename = "data/train_and_benchmark_data/basic_data/test_datasets/wned-datasets/ace2004/ace2004.conll" ace_questions = convert_to_BLINK_format(extract_questions(in_ace_filename)) out_ace_filename = "data/BLINK_benchmark/ace2004_questions.jsonl" store_questions(ace_questions, out_ace_filename) print(len(ace_questions)) # aquaint print("aquaint") in_aquaint_filename = "data/train_and_benchmark_data/basic_data/test_datasets/wned-datasets/aquaint/aquaint.conll" aquaint_questions = convert_to_BLINK_format(extract_questions(in_aquaint_filename)) out_aquaint_filename = "data/BLINK_benchmark/aquaint_questions.jsonl" store_questions(aquaint_questions, out_aquaint_filename) print(len(aquaint_questions)) #  clueweb - WNED-CWEB (CWEB) print("clueweb - WNED-CWEB (CWEB)") in_clueweb_filename = "data/train_and_benchmark_data/basic_data/test_datasets/wned-datasets/clueweb/clueweb.conll" clueweb_questions = convert_to_BLINK_format(extract_questions(in_clueweb_filename)) out_clueweb_filename = "data/BLINK_benchmark/clueweb_questions.jsonl" store_questions(clueweb_questions, out_clueweb_filename) print(len(clueweb_questions)) # msnbc print("msnbc") in_msnbc_filename = "data/train_and_benchmark_data/basic_data/test_datasets/wned-datasets/msnbc/msnbc.conll" msnbc_questions = convert_to_BLINK_format(extract_questions(in_msnbc_filename)) out_msnbc_filename = "data/BLINK_benchmark/msnbc_questions.jsonl" store_questions(msnbc_questions, out_msnbc_filename) print(len(msnbc_questions)) # wikipedia - WNED-WIKI (WIKI) print("wikipedia - WNED-WIKI (WIKI)") in_wnedwiki_filename = "data/train_and_benchmark_data/basic_data/test_datasets/wned-datasets/wikipedia/wikipedia.conll" wnedwiki_questions = convert_to_BLINK_format(extract_questions(in_wnedwiki_filename)) out_wnedwiki_filename = "data/BLINK_benchmark/wnedwiki_questions.jsonl" store_questions(wnedwiki_questions, out_wnedwiki_filename) print(len(wnedwiki_questions))
BLINK-main
scripts/create_BLINK_benchmark_data.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch import json import os import argparse parser = argparse.ArgumentParser() parser.add_argument('--path_to_saved_chunks', type=str, required=True, help='filepath to directory containing saved chunks') parser.add_argument('--chunk_size', type=int, default=1000000, help='size of each chunk') args = parser.parse_args() CHUNK_SIZES = args.chunk_size all_chunks = [] for fn in range(0, 5903526, CHUNK_SIZES): f_chunk = os.path.join( args.path_to_saved_chunks, '{}_{}.t7'.format(fn, fn+CHUNK_SIZES), ) if not os.path.exists(f_chunk) or os.path.getsize(f_chunk) == 0: continue loaded_chunk = torch.load(f_chunk) all_chunks.append(loaded_chunk[:CHUNK_SIZES]) all_chunks = torch.cat(all_chunks, dim=0) torch.save(all_chunks, os.path.join( args.path_to_saved_chunks, 'all.t7'.format(fn, fn+CHUNK_SIZES), ))
BLINK-main
scripts/merge_candidates.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import json import os import numpy as np import torch from elq.vcg_utils.measures import entity_linking_tp_with_overlap from tqdm import tqdm from transformers import BertTokenizer tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") id2title = json.load(open("models/id2title.json")) def load_dists(all_save_dir, data, split, model, joint_threshold): save_dir = "{}/{}_{}_{}_joint{}_top50cands_final_joint".format(all_save_dir, data, split, model, joint_threshold) if not os.path.exists(save_dir): save_dir += "_0" with open(os.path.join(save_dir, "biencoder_outs.jsonl")) as f: examples = f.readlines() examples = [json.loads(line) for line in examples] biencoder_indices = np.load(os.path.join(save_dir, "biencoder_nns.npy"), allow_pickle=True) # corresponds to biencoder_dists biencoder_dists = np.load(os.path.join(save_dir, "biencoder_dists.npy"), allow_pickle=True) if os.path.exists(os.path.join(save_dir, "biencoder_cand_scores.npy")): cand_dists = np.load(os.path.join(save_dir, "biencoder_cand_scores.npy"), allow_pickle=True) else: cand_dists = np.load(os.path.join(save_dir, "biencoder_cand_dists.npy"), allow_pickle=True) pred_mention_bounds = np.load(os.path.join(save_dir, "biencoder_mention_bounds.npy"), allow_pickle=True) if os.path.exists(os.path.join(save_dir, "biencoder_mention_scores.npy")): mention_dists = np.load(os.path.join(save_dir, "biencoder_mention_scores.npy"), allow_pickle=True) else: mention_dists = [biencoder_dists[i] - torch.log_softmax(torch.tensor(cand_dists[i]), 1).numpy() for i in range(len(biencoder_dists))] # inverse sigmoid mention_dists = [np.log(md / (1 - md)) for md in mention_dists] return examples, biencoder_indices, biencoder_dists, cand_dists, pred_mention_bounds, mention_dists def filter_repeats(pred_triples, pred_scores): # sort pred_triples and pred_scores by pred_scores score_sort_ids = sorted(enumerate(pred_scores), key=lambda x: x[1], reverse=True) pred_triples = [pred_triples[si[0]] for si in score_sort_ids] pred_scores = [score_sort_id[1] for score_sort_id in score_sort_ids] all_pred_entities = {} all_pred_entities_pruned = [] all_pred_scores_pruned = [] for idx, ent in enumerate(pred_triples): if ent[0] in all_pred_entities: continue all_pred_entities_pruned.append(ent) all_pred_scores_pruned.append(pred_scores[idx]) all_pred_entities[ent[0]] = 0 return all_pred_entities_pruned, all_pred_scores_pruned def filter_overlaps(tokens, pred_triples, pred_scores): all_pred_entities_pruned = [] all_pred_scores_pruned = [] mention_masked_utterance = np.zeros(len(tokens)) # ensure well-formed-ness, prune overlaps # greedily pick highest scoring, then prune all overlapping for idx, mb in enumerate(pred_triples): if sum(mention_masked_utterance[mb[1]:mb[2]]) > 0: continue all_pred_entities_pruned.append(mb) all_pred_scores_pruned.append(pred_scores[idx]) mention_masked_utterance[mb[1]:mb[2]] = 1 return all_pred_entities_pruned, all_pred_scores_pruned def filter_repeat_overlaps(tokens, pred_triples, pred_scores): all_pred_entities_pruned = [] all_pred_scores_pruned = [] mention_masked_utterance = {triple[0]: np.zeros(len(tokens)) for triple in pred_triples} # ensure well-formed-ness, prune overlaps # greedily pick highest scoring, then prune all overlapping for idx, mb in enumerate(pred_triples): if sum(mention_masked_utterance[mb[0]][mb[1]:mb[2]]) > 0: continue all_pred_entities_pruned.append(mb) all_pred_scores_pruned.append(pred_scores[idx]) mention_masked_utterance[mb[0]][mb[1]:mb[2]] = 1 return all_pred_entities_pruned, all_pred_scores_pruned # threshold and sort by score def get_threshold_mask_and_sort(mention_dists, cand_dists, biencoder_dists, valid_cands_mask, threshold, top_mention_sort=True): """ top_mention_sort: True: sort top candidates per mention only scores_mask and sorted_idxs has dim (#_valid_examples,) False: sort ALL candidates (assumes multiple candidates per mention) scores_mask and sorted_idxs has dim (#_valid_examples, #_cands) """ mention_scores = mention_dists[valid_cands_mask] if len(mention_scores.shape) > 1: mention_scores = mention_scores[:,0] scores = torch.log_softmax(torch.tensor(cand_dists[valid_cands_mask]), 1) + torch.sigmoid(torch.tensor(mention_scores)).log().unsqueeze(-1) if top_mention_sort: scores_mask = (scores[:,0] > threshold) # sort... _, sorted_idxs = scores[:,0][scores_mask].sort(descending=True) sorted_filtered_scores = scores[scores_mask][sorted_idxs] else: scores_mask = (scores > threshold) # GRAPHQUESTIONS BEST sorted_filtered_scores, sorted_idxs = scores[scores_mask].sort(descending=True) return scores_mask.numpy(), sorted_idxs.numpy(), sorted_filtered_scores.numpy() all_save_dir = "saved_preds" model_type = "finetuned_webqsp" # wiki if model_type == "wiki": model = '{0}_all_ents;all_mention_biencoder_all_avg_true_128_true_true_bert_large_qa_linear;15'.format(model_type) elif model_type == "finetuned_webqsp": model= '{0}_all_ents;all_mention_biencoder_all_avg_true_128_true_true_bert_large_qa_linear;18'.format(model_type) get_topk_cands = True topk = 100 if get_topk_cands: threshold=-float("inf") else: threshold=-5 for data in ["nq", "WebQuestions", "triviaqa"]: if data == "nq": splits = ["train0", "train1", "train2", "dev", "test"] else: splits = ["train", "dev", "test"] for split in splits: ( examples, biencoder_indices, biencoder_dists, cand_dists, pred_mention_bounds, mention_dists ) = load_dists(all_save_dir, data, split, model, "0.0" if model_type == "wiki" else "-inf") new_examples = [] num_correct=0 num_predicted=0 num_gold=0 for i, example in enumerate(tqdm(examples)): # select valid candidates valid_cands_mask = (biencoder_dists[i][:,0] != -1) & (biencoder_dists[i][:,0] == biencoder_dists[i][:,0]) # get scores and masking/sorting by score scores_mask, sorted_idxs, sorted_filtered_scores = get_threshold_mask_and_sort( mention_dists[i], cand_dists[i], biencoder_dists[i], valid_cands_mask, threshold, top_mention_sort=(not get_topk_cands) ) if get_topk_cands: # (filtered_examples, #cands, 2) ex_pred_mention_bounds = np.repeat(np.expand_dims(pred_mention_bounds[i], axis=1), biencoder_indices[i].shape[1], axis=1) # (filtered_examples, #cands,) ex_mention_dists = np.repeat(np.expand_dims(mention_dists[i], axis=1), biencoder_indices[i].shape[1], axis=1) ex_biencoder_indices = biencoder_indices[i] ex_cand_dists = cand_dists[i] else: ex_pred_mention_bounds = pred_mention_bounds[i] ex_mention_dists = mention_dists[i] ex_biencoder_indices = biencoder_indices[i] #[:,0] ex_cand_dists = cand_dists[i] #[:,0] # output threshold_entities_translate, pred_triples, pred_scores threshold_entities = ex_biencoder_indices[valid_cands_mask][scores_mask][sorted_idxs] # (filtered_exs, #cands) / (filtered_cands,) threshold_mention_bounds = ex_pred_mention_bounds[valid_cands_mask][scores_mask][sorted_idxs] # (filtered_exs, 2) / (filtered_cands, 2) threshold_cand_scores = ex_cand_dists[valid_cands_mask][scores_mask][sorted_idxs] # (filtered_exs, #cands) / (filtered_cands,) threshold_mention_scores = ex_mention_dists[valid_cands_mask][scores_mask][sorted_idxs] # (filtered_exs,) / (filtered_cands,) threshold_scores = sorted_filtered_scores # (filtered_exs, #cands) / (filtered_cands,) threshold_entities_translate = {} pred_triples = [] pred_scores = [] example['tokens'] = [101] + example['tokens'] + [102] for m in range(len(threshold_scores)): mb = threshold_mention_bounds[m].tolist() mention_text = tokenizer.decode(example['tokens'][mb[0]:mb[1]+1]) threshold_entities_translate[mention_text] = { "mention_idx": m, "mention_score": float(threshold_mention_scores[m]) } if len(threshold_entities[m].shape) > 0: pred_triples.append([str(threshold_entities[m][0]), mb[0], mb[1]+1]) pred_scores.append(float(threshold_scores[m][0])) threshold_entities_translate[mention_text]["candidate_entities"] = [] threshold_entities_translate[mention_text]["cand_scores"] = threshold_cand_scores[m].tolist() for id in threshold_entities[m]: threshold_entities_translate[mention_text]["candidate_entities"].append(id2title[str(id)]) else: pred_triples.append([str(threshold_entities[m]), mb[0], mb[1]+1]) pred_scores.append(float(threshold_scores[m])) threshold_entities_translate[mention_text]["candidate_entities"] = id2title[str(threshold_entities[m])] threshold_entities_translate[mention_text]["cand_scores"] = float(threshold_cand_scores[m]) new_ex = { "id": example["id"], "text": example["text"], "tokens": example["tokens"], } if "gold_triples" in example: all_pred_entities_pruned = pred_triples all_pred_scores_pruned = pred_scores if get_topk_cands: all_pred_entities_pruned, all_pred_scores_pruned = filter_repeats(pred_triples, pred_scores) all_pred_entities_pruned = all_pred_entities_pruned[:topk] all_pred_scores_pruned = all_pred_scores_pruned[:topk] else: all_pred_entities_pruned, all_pred_scores_pruned = filter_overlaps(example["tokens"], pred_triples, pred_scores) else: all_pred_entities_pruned = pred_triples all_pred_scores_pruned = pred_scores if get_topk_cands: all_pred_entities_pruned, all_pred_scores_pruned = filter_repeats(pred_triples, pred_scores) all_pred_entities_pruned = all_pred_entities_pruned[:topk] all_pred_scores_pruned = all_pred_scores_pruned[:topk] else: all_pred_entities_pruned, all_pred_scores_pruned = filter_overlaps(example["tokens"], pred_triples, pred_scores) new_ex['pred_mentions'] = threshold_entities_translate new_ex['pred_triples'] = [[triple[0], triple[1]-1, triple[2]-1] for triple in all_pred_entities_pruned] new_ex['pred_triples_score'] = all_pred_scores_pruned new_ex['pred_triples_string'] = [ [id2title[triple[0]], tokenizer.decode(example['tokens'][triple[1]:triple[2]])] for triple in all_pred_entities_pruned ] # get scores if "gold_triples" in example: gold_triples = example["gold_triples"] new_ex["gold_triples"] = gold_triples num_overlap_weak, num_overlap_strong = entity_linking_tp_with_overlap(gold_triples, new_ex['pred_triples']) num_correct += num_overlap_weak num_predicted += len(all_pred_entities_pruned) num_gold += len(gold_triples) new_examples.append(new_ex) # compute metrics if num_predicted > 0 and num_gold > 0: p = num_correct / num_predicted r = num_correct / num_gold f1 = 2*p*r / (p+r) print(f1) f1s.append(f1) if get_topk_cands: print("Saving {} {} {}".format(data, split, str(topk))) save_file = "{}_{}_top{}.jsonl".format(split, model_type, str(topk)) else: print("Saving {} {} {}".format(data, split, str(threshold))) save_file = "{}_{}_{}.jsonl".format(split, model_type, str(threshold)) # save with open(os.path.join("/checkpoint/belindali/entity_link/data/{}/saved_preds".format(data), save_file), 'w') as wf: for new_ex in new_examples: b=wf.write(json.dumps(new_ex) + "\n")
BLINK-main
scripts/tune_hyperparams_new.py