python_code
stringlengths 0
4.04M
| repo_name
stringlengths 7
58
| file_path
stringlengths 5
147
|
---|---|---|
"""Script to plot example augmentations generated by the ImageAugmenter."""
from __future__ import print_function
# make sure that ImageAugmenter can be imported from parent directory
if __name__ == '__main__' and __package__ is None:
from os import sys, path
sys.path.append(path.dirname(path.dirname(path.abspath(__file__))))
import numpy as np
from ImageAugmenter import ImageAugmenter
from scipy import misc
from skimage import data
def main():
"""Plot example augmentations for Lena and an image loaded from a file."""
# try on a lena image
image = data.lena()
augmenter = ImageAugmenter(image.shape[0], image.shape[1],
hflip=True, vflip=True,
scale_to_percent=1.3, scale_axis_equally=False,
rotation_deg=25, shear_deg=10,
translation_x_px=5, translation_y_px=5)
augmenter.plot_image(image, 100)
# check loading of images from file and augmenting them
image = misc.imread("chameleon.png")
augmenter = ImageAugmenter(image.shape[1], image.shape[0],
hflip=True, vflip=True,
scale_to_percent=1.3, scale_axis_equally=False,
rotation_deg=25, shear_deg=10,
translation_x_px=5, translation_y_px=5)
augmenter.plot_image(image, 50)
# move the channel from index 2 (3rd position) to index 0 (1st position)
# so (y, x, rgb) becomes (rgb, y, x)
# try if it still works
image = np.rollaxis(image, 2, 0)
augmenter = ImageAugmenter(image.shape[2], image.shape[1],
hflip=True, vflip=True,
scale_to_percent=1.3, scale_axis_equally=False,
rotation_deg=25, shear_deg=10,
translation_x_px=5, translation_y_px=5,
channel_is_first_axis=True)
augmenter.plot_image(image, 50)
if __name__ == "__main__":
main()
|
imgaug-master
|
old_version/tests/CheckPlotImages.py
|
"""Rough measurements of the performance of the ImageAugmenter."""
from __future__ import print_function
# make sure that ImageAugmenter can be imported from parent directory
if __name__ == '__main__' and __package__ is None:
from os import sys, path
sys.path.append(path.dirname(path.dirname(path.abspath(__file__))))
import numpy as np
from ImageAugmenter import ImageAugmenter, create_aug_matrices
from scipy import misc
from skimage import data
from skimage import transform as tf
import time
def main():
"""Measure time required to generate augmentations matrices and to apply
them.
"""
batch_size = 64
nb_runs = 20
# Measure time required to generate 100k augmentation matrices
"""
print("Generating 100 times 1000 augmentation matrices of size 64x64...")
start = time.time()
for _ in range(100):
create_aug_matrices(1000, 64, 64,
scale_to_percent=1.5, scale_axis_equally=False,
rotation_deg=20, shear_deg=20,
translation_x_px=5, translation_y_px=5)
print("Done in %.8f" % (time.time() - start,))
"""
# Test Performance on 64 images of size 512x512 pixels
image = data.lena()
images = np.resize(image, (batch_size, image.shape[0], image.shape[1], image.shape[2]))
augmenter = ImageAugmenter(image.shape[0], image.shape[1],
hflip=True, vflip=True,
scale_to_percent=1.3, scale_axis_equally=False,
rotation_deg=25, shear_deg=10,
translation_x_px=5, translation_y_px=5)
print("Running tests on %d images of shape %s" % (batch_size, str(image.shape)))
run_tests(augmenter, images, nb_runs)
print("")
print("Running tests on %d images of shape %s" % (batch_size, str(image.shape)))
print("(With 1000 pregenerated matrices)")
augmenter.pregenerate_matrices(1000)
run_tests(augmenter, images, nb_runs)
print("")
# Test Performance on 64 images of size 64x64 pixels
image = data.lena()
image = misc.imresize(image, (64, 64))
images = np.resize(image, (batch_size, image.shape[0], image.shape[1], image.shape[2]))
augmenter = ImageAugmenter(image.shape[0], image.shape[1],
hflip=True, vflip=True,
scale_to_percent=1.3, scale_axis_equally=False,
rotation_deg=25, shear_deg=10,
translation_x_px=5, translation_y_px=5)
print("Running tests on %d images of shape %s" % (batch_size, str(image.shape)))
run_tests(augmenter, images, nb_runs)
print("Running tests on %d images of shape %s" % (batch_size, str(image.shape)))
print("(With 1000 pregenerated matrices)")
augmenter.pregenerate_matrices(1000)
run_tests(augmenter, images, nb_runs)
print("")
# Time required to augment 1,000,000 images of size 32x32
print("Augmenting 1000 batches of 1000 lena images (1 million total)" \
", each of size 32x32...")
image = data.lena()
image = misc.imresize(image, (32, 32))
batch_size = 1000
images = np.resize(image, (batch_size, image.shape[0], image.shape[1], image.shape[2]))
augmenter = ImageAugmenter(image.shape[1], image.shape[0],
hflip=True, vflip=True,
scale_to_percent=1.3, scale_axis_equally=False,
rotation_deg=25, shear_deg=10,
translation_x_px=5, translation_y_px=5)
augmenter.pregenerate_matrices(1000)
start = time.time()
for _ in range(1000):
augmenter.augment_batch(images)
print("Done in %.8fs" % (time.time() - start,))
print("")
# Time required to augment 1,000,000 images of size 32x32
# but using only one matrix without the class (no library overhead from
# ImageAugmenter)
# Notice that this does not include horizontal and vertical flipping,
# which is done via numpy in the ImageAugmenter class.
print("Augmenting 1000 batches of 1000 lena images (1 million total)" \
", each of size 32x32, using one matrix directly (no ImageAugmenter " \
"class)...")
matrices = create_aug_matrices(1, image.shape[1], image.shape[0],
scale_to_percent=1.3, scale_axis_equally=False,
rotation_deg=25, shear_deg=10,
translation_x_px=5, translation_y_px=5)
matrix = matrices[0]
start = time.time()
for _ in range(1000):
for image in images:
augmented_image = tf.warp(image, matrix)
print("Done in %.8fs" % (time.time() - start,))
def run_tests(augmenter, images, nb_runs):
"""Perform nb_runs augmentations of the provided images and measure the
required time for that.
"""
results = np.zeros((nb_runs,))
for i in range(nb_runs):
start = time.time()
augmenter.augment_batch(images)
results[i] = time.time() - start
print("Run %d: %.8fs" % (i, results[i]))
print("Mean: %.8fs" % (results.mean(),))
print("Sum: %.8fs" % (results.sum(),))
if __name__ == "__main__":
main()
|
imgaug-master
|
old_version/tests/CheckPerformance.py
|
from __future__ import absolute_import
from .imgaug import *
from . import augmenters
from . import parameters
__version__ = '0.1'
|
imgaug-master
|
imgaug/__init__.py
|
from __future__ import print_function, division, absolute_import
from abc import ABCMeta, abstractmethod
import random
import numpy as np
import copy
import numbers
import cv2
import math
from scipy import misc
import six
import six.moves as sm
"""
try:
xrange
except NameError: # python3
xrange = range
"""
ALL = "ALL"
# We instantiate a current/global random state here once.
# One can also call np.random, but that is (in contrast to np.random.RandomState)
# a module and hence cannot be copied via deepcopy. That's why we use RandomState
# here (and in all augmenters) instead of np.random.
CURRENT_RANDOM_STATE = np.random.RandomState(42)
def is_np_array(val):
return isinstance(val, (np.ndarray, np.generic))
def is_single_integer(val):
return isinstance(val, numbers.Integral)
def is_single_float(val):
return isinstance(val, numbers.Real) and not is_single_integer(val)
def is_single_number(val):
return is_single_integer(val) or is_single_float(val)
def is_iterable(val):
return isinstance(val, (tuple, list))
def is_string(val):
return isinstance(val, str) or isinstance(val, unicode)
def is_integer_array(val):
return issubclass(val.dtype.type, np.integer)
def current_random_state():
return CURRENT_RANDOM_STATE
def new_random_state(seed=None, fully_random=False):
if seed is None:
if not fully_random:
# sample manually a seed instead of just RandomState(),
# because the latter one
# is way slower.
seed = CURRENT_RANDOM_STATE.randint(0, 10**6, 1)[0]
return np.random.RandomState(seed)
def dummy_random_state():
return np.random.RandomState(1)
def copy_random_state(random_state, force_copy=False):
if random_state == np.random and not force_copy:
return random_state
else:
rs_copy = dummy_random_state()
orig_state = random_state.get_state()
rs_copy.set_state(orig_state)
return rs_copy
# TODO
# def from_json(json_str):
# pass
def imresize_many_images(images, sizes=None, interpolation=None):
s = images.shape
assert len(s) == 4, s
nb_images = s[0]
im_height, im_width = s[1], s[2]
nb_channels = s[3]
height, width = sizes[0], sizes[1]
if height == im_height and width == im_width:
return np.copy(images)
ip = interpolation
assert ip is None or ip in ["nearest", "linear", "area", "cubic", cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_AREA, cv2.INTER_CUBIC]
if ip is None:
if height > im_height or width > im_width:
ip = cv2.INTER_AREA
else:
ip = cv2.INTER_LINEAR
elif ip in ["nearest", cv2.INTER_NEAREST]:
ip = cv2.INTER_NEAREST
elif ip in ["linear", cv2.INTER_LINEAR]:
ip = cv2.INTER_LINEAR
elif ip in ["area", cv2.INTER_AREA]:
ip = cv2.INTER_AREA
elif ip in ["cubic", cv2.INTER_CUBIC]:
ip = cv2.INTER_CUBIC
else:
raise Exception("Invalid interpolation order")
result = np.zeros((nb_images, height, width, nb_channels), dtype=np.uint8)
for img_idx in sm.xrange(nb_images):
result_img = cv2.resize(images[img_idx], (width, height), interpolation=ip)
if len(result_img.shape) == 2:
result_img = result_img[:, :, np.newaxis]
result[img_idx] = result_img
return result
def imresize_single_image(image, sizes, interpolation=None):
grayscale = False
if image.shape == 2:
grayscale = True
image = image[:, :, np.newaxis]
assert len(image.shape) == 3, image.shape
rs = imresize_many_images(image[np.newaxis, :, :, :], sizes, interpolation=interpolation)
if grayscale:
return np.squeeze(rs[0, :, :, 0])
else:
return rs[0, ...]
def draw_grid(images, rows=None, cols=None):
if is_np_array(images):
assert len(images.shape) == 4
else:
assert is_iterable(images)
nb_images = len(images)
cell_height = max([image.shape[0] for image in images])
cell_width = max([image.shape[1] for image in images])
channels = set([image.shape[2] for image in images])
assert len(channels) == 1
nb_channels = list(channels)[0]
if rows is None and cols is None:
rows = cols = int(math.ceil(math.sqrt(nb_images)))
elif rows is not None:
cols = int(math.ceil(nb_images / rows))
elif cols is not None:
rows = int(math.ceil(nb_images / cols))
assert rows * cols >= nb_images
width = cell_width * cols
height = cell_height * rows
grid = np.zeros((height, width, nb_channels))
cell_idx = 0
for row_idx in sm.xrange(rows):
for col_idx in sm.xrange(cols):
if cell_idx < nb_images:
image = images[cell_idx]
cell_y1 = cell_height * row_idx
cell_y2 = cell_y1 + image.shape[0]
cell_x1 = cell_width * col_idx
cell_x2 = cell_x1 + image.shape[1]
grid[cell_y1:cell_y2, cell_x1:cell_x2, :] = image
cell_idx += 1
return grid
def show_grid(images, rows=None, cols=None):
grid = draw_grid(images, rows=rows, cols=cols)
misc.imshow(grid)
class HooksImages(object):
"""
# TODO
"""
def __init__(self, activator=None, propagator=None, preprocessor=None, postprocessor=None):
self.activator = activator
self.propagator = propagator
self.preprocessor = preprocessor
self.postprocessor = postprocessor
def is_activated(self, images, augmenter, parents, default):
if self.activator is None:
return default
else:
return self.activator(images, augmenter, parents, default)
# TODO is a propagating hook necessary? seems to be covered by activated
# hook already
def is_propagating(self, images, augmenter, parents, default):
if self.propagator is None:
return default
else:
return self.propagator(images, augmenter, parents, default)
def preprocess(self, images, augmenter, parents):
if self.preprocessor is None:
return images
else:
return self.preprocessor(images, augmenter, parents)
def postprocess(self, images, augmenter, parents):
if self.postprocessor is None:
return images
else:
return self.postprocessor(images, augmenter, parents)
class HooksKeypoints(HooksImages):
pass
class Keypoint(object):
"""
# TODO
"""
def __init__(self, x, y):
# these checks are currently removed because they are very slow for some
# reason
#assert is_single_integer(x), type(x)
#assert is_single_integer(y), type(y)
self.x = x
self.y = y
def project(self, from_shape, to_shape):
if from_shape[0:2] == to_shape[0:2]:
return Keypoint(x=self.x, y=self.y)
else:
from_height, from_width = from_shape[0:2]
to_height, to_width = to_shape[0:2]
x = int(round((self.x / from_width) * to_width))
y = int(round((self.y / from_height) * to_height))
return Keypoint(x=x, y=y)
def shift(self, x, y):
return Keypoint(self.x + x, self.y + y)
def __repr__(self):
return self.__str__()
def __str__(self):
return "Keypoint(x=%d, y=%d)" % (self.x, self.y)
class KeypointsOnImage(object):
def __init__(self, keypoints, shape):
self.keypoints = keypoints
if is_np_array(shape):
self.shape = shape.shape
else:
assert isinstance(shape, (tuple, list))
self.shape = tuple(shape)
@property
def height(self):
return self.shape[0]
@property
def width(self):
return self.shape[1]
def on(self, image):
if is_np_array(image):
shape = image.shape
else:
shape = image
if shape[0:2] == self.shape[0:2]:
return self.deepcopy()
else:
keypoints = [kp.project(self.shape, shape) for kp in self.keypoints]
return KeypointsOnImage(keypoints, shape)
def draw_on_image(self, image, color=[0, 255, 0], size=3, copy=True, raise_if_out_of_image=False):
if copy:
image = np.copy(image)
height, width = image.shape[0:2]
for keypoint in self.keypoints:
y, x = keypoint.y, keypoint.x
if 0 <= y < height and 0 <= x < width:
x1 = max(x - size//2, 0)
x2 = min(x + 1 + size//2, width - 1)
y1 = max(y - size//2, 0)
y2 = min(y + 1 + size//2, height - 1)
image[y1:y2, x1:x2] = color
else:
if raise_if_out_of_image:
raise Exception("Cannot draw keypoint x=%d, y=%d on image with shape %s." % (y, x, image.shape))
return image
def shift(self, x, y):
keypoints = [keypoint.shift(x=x, y=y) for keypoint in self.keypoints]
return KeypointsOnImage(keypoints, self.shape)
def get_coords_array(self):
result = np.zeros((len(self.keypoints), 2), np.int32)
for i, keypoint in enumerate(self.keypoints):
result[i, 0] = keypoint.x
result[i, 1] = keypoint.y
return result
@staticmethod
def from_coords_array(coords, shape):
assert is_integer_array(coords), coords.dtype
keypoints = [Keypoint(x=coords[i, 0], y=coords[i, 1]) for i in sm.xrange(coords.shape[0])]
return KeypointsOnImage(keypoints, shape)
def to_keypoint_image(self):
assert len(self.keypoints) > 0
height, width = self.shape[0:2]
image = np.zeros((height, width, len(self.keypoints)), dtype=np.uint8)
for i, keypoint in enumerate(self.keypoints):
y = keypoint.y
x = keypoint.x
if 0 <= y < height and 0 <= x < width:
image[y, x, i] = 255
return image
@staticmethod
def from_keypoint_image(image, if_not_found_coords={"x": -1, "y": -1}, threshold=1):
assert len(image.shape) == 3
height, width, nb_keypoints = image.shape
drop_if_not_found = False
if if_not_found_coords is None:
drop_if_not_found = True
if_not_found_x = -1
if_not_found_y = -1
elif isinstance(if_not_found_coords, (tuple, list)):
assert len(if_not_found_coords) == 2
if_not_found_x = if_not_found_coords[0]
if_not_found_y = if_not_found_coords[1]
elif isinstance(if_not_found_coords, dict):
if_not_found_x = if_not_found_coords["x"]
if_not_found_y = if_not_found_coords["y"]
else:
raise Exception("Expected if_not_found_coords to be None or tuple or list or dict, got %s." % (type(if_not_found_coords),))
keypoints = []
for i in sm.xrange(nb_keypoints):
maxidx_flat = np.argmax(image[..., i])
maxidx_ndim = np.unravel_index(maxidx_flat, (height, width))
found = (image[maxidx_ndim[0], maxidx_ndim[1], i] >= threshold)
if found:
keypoints.append(Keypoint(x=maxidx_ndim[1], y=maxidx_ndim[0]))
else:
if drop_if_not_found:
pass # dont add the keypoint to the result list, i.e. drop it
else:
keypoints.append(Keypoint(x=if_not_found_x, y=if_not_found_y))
return KeypointsOnImage(keypoints, shape=(height, width))
def copy(self):
return copy.copy(self)
def deepcopy(self):
# for some reason deepcopy is way slower here than manual copy
#return copy.deepcopy(self)
kps = [Keypoint(x=kp.x, y=kp.y) for kp in self.keypoints]
return KeypointsOnImage(kps, tuple(self.shape))
def __repr__(self):
return self.__str__()
def __str__(self):
#print(type(self.keypoints), type(self.shape))
return "KeypointOnImage(%s, shape=%s)" % (str(self.keypoints), self.shape)
# TODO
"""
class BackgroundAugmenter(object):
def __init__(self, image_source, augmenter, maxlen, nb_workers=1):
self.augmenter = augmenter
self.maxlen = maxlen
self.result_queue = multiprocessing.Queue(maxlen)
self.batch_workers = []
for i in range(nb_workers):
worker = multiprocessing.Process(target=self._augment, args=(image_source, augmenter, self.result_queue))
worker.daemon = True
worker.start()
self.batch_workers.append(worker)
def join(self):
for worker in self.batch_workers:
worker.join()
def get_batch(self):
return self.result_queue.get()
def _augment(self, image_source, augmenter, result_queue):
batch = next(image_source)
self.result_queue.put(augmenter.transform(batch))
"""
|
imgaug-master
|
imgaug/imgaug.py
|
from __future__ import print_function, division, absolute_import
from . import imgaug as ia
from .parameters import StochasticParameter, Deterministic, Binomial, Choice, DiscreteUniform, Normal, Uniform
from abc import ABCMeta, abstractmethod
import random
import numpy as np
import copy as copy_module
import re
import math
from scipy import misc, ndimage
from skimage import transform as tf
import itertools
import cv2
import six
import six.moves as sm
@six.add_metaclass(ABCMeta)
class Augmenter(object):
"""Base class for Augmenter objects
Parameters
----------
name : string, optional
Name given to an Augmenter object
deterministic : boolean, optional (default=False)
Whether random state will be saved before augmenting images
and then will be reset to the saved value post augmentation
use this parameter to obtain transformations in the EXACT order
everytime
random_state : int, RandomState instance or None, optional (default=None)
If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by `np.random`.
"""
def __init__(self, name=None, deterministic=False, random_state=None):
super(Augmenter, self).__init__()
if name is None:
self.name = "Unnamed%s" % (self.__class__.__name__,)
else:
self.name = name
self.deterministic = deterministic
if random_state is None:
if self.deterministic:
self.random_state = ia.new_random_state()
else:
self.random_state = ia.current_random_state()
elif isinstance(random_state, np.random.RandomState):
self.random_state = random_state
else:
self.random_state = np.random.RandomState(random_state)
self.activated = True
def augment_batches(self, batches, hooks=None):
"""Augment images, batch-wise
Parameters
----------
batches : array-like, shape = (num_samples, height, width, channels)
image batch to augment
hooks : optional(default=None)
HooksImages object to dynamically interfere with the Augmentation process
Returns
-------
augmented_batch : array-like, shape = (num_samples, height, width, channels)
corresponding batch of augmented images
"""
assert isinstance(batches, list)
return [self.augment_images(batch, hooks=hooks) for batch in batches]
def augment_image(self, image, hooks=None):
"""Augment a single image
Parameters
----------
image : array-like, shape = (height, width, channels)
The image to augment
hooks : optional(default=None)
HooksImages object to dynamically interfere with the Augmentation process
Returns
-------
img : array-like, shape = (height, width, channels)
The corresponding augmented image
"""
assert len(image.shape) == 3, "Expected image to have shape (height, width, channels), got shape %s." % (image.shape,)
return self.augment_images([image], hooks=hooks)[0]
def augment_images(self, images, parents=None, hooks=None):
"""Augment multiple images
Parameters
----------
images : array-like, shape = (num_samples, height, width, channels) or
a list of images (particularly useful for images of various
dimensions)
images to augment
parents : optional(default=None)
# TODO
hooks : optional(default=None)
HooksImages object to dynamically interfere with the Augmentation process
Returns
-------
images_result : array-like, shape = (num_samples, height, width, channels)
corresponding augmented images
"""
if self.deterministic:
state_orig = self.random_state.get_state()
if parents is None:
parents = []
if hooks is None:
hooks = ia.HooksImages()
if ia.is_np_array(images):
assert len(images.shape) == 4, "Expected 4d array of form (N, height, width, channels), got shape %s." % (str(images.shape),)
assert images.dtype == np.uint8, "Expected dtype uint8 (with value range 0 to 255), got dtype %s." % (str(images.dtype),)
images_tf = images
elif ia.is_iterable(images):
if len(images) > 0:
assert all([len(image.shape) == 3 for image in images]), "Expected list of images with each image having shape (height, width, channels), got shapes %s." % ([image.shape for image in images],)
assert all([image.dtype == np.uint8 for image in images]), "Expected dtype uint8 (with value range 0 to 255), got dtypes %s." % ([str(image.dtype) for image in images],)
images_tf = list(images)
else:
raise Exception("Expected list/tuple of numpy arrays or one numpy array, got %s." % (type(images),))
if isinstance(images_tf, list):
images_copy = [np.copy(image) for image in images]
else:
images_copy = np.copy(images)
images_copy = hooks.preprocess(images_copy, augmenter=self, parents=parents)
if hooks.is_activated(images_copy, augmenter=self, parents=parents, default=self.activated):
if len(images) > 0:
images_result = self._augment_images(
images_copy,
random_state=ia.copy_random_state(self.random_state),
parents=parents,
hooks=hooks
)
self.random_state.uniform()
else:
images_result = images_copy
else:
images_result = images_copy
images_result = hooks.postprocess(images_result, augmenter=self, parents=parents)
if self.deterministic:
self.random_state.set_state(state_orig)
if isinstance(images_result, list):
assert all([image.dtype == np.uint8 for image in images_result]), "Expected list of dtype uint8 as augmenter result, got %s." % ([image.dtype for image in images_result],)
else:
assert images_result.dtype == np.uint8, "Expected dtype uint8 as augmenter result, got %s." % (images_result.dtype,)
return images_result
@abstractmethod
def _augment_images(self, images, random_state, parents, hooks):
raise NotImplementedError()
def augment_keypoints(self, keypoints_on_images, parents=None, hooks=None):
"""Augment image keypoints
Parameters
----------
keypoints_on_images : # TODO
parents : optional(default=None)
# TODO
hooks : optional(default=None)
HooksImages object to dynamically interfere with the Augmentation process
Returns
-------
keypoints_on_images_result : # TODO
"""
if self.deterministic:
state_orig = self.random_state.get_state()
if parents is None:
parents = []
if hooks is None:
hooks = ia.HooksKeypoints()
assert ia.is_iterable(keypoints_on_images)
assert all([isinstance(keypoints_on_image, ia.KeypointsOnImage) for keypoints_on_image in keypoints_on_images])
keypoints_on_images_copy = [keypoints_on_image.deepcopy() for keypoints_on_image in keypoints_on_images]
keypoints_on_images_copy = hooks.preprocess(keypoints_on_images_copy, augmenter=self, parents=parents)
if hooks.is_activated(keypoints_on_images_copy, augmenter=self, parents=parents, default=self.activated):
if len(keypoints_on_images_copy) > 0:
keypoints_on_images_result = self._augment_keypoints(
keypoints_on_images_copy,
random_state=ia.copy_random_state(self.random_state),
parents=parents,
hooks=hooks
)
self.random_state.uniform()
else:
keypoints_on_images_result = keypoints_on_images_copy
else:
keypoints_on_images_result = keypoints_on_images_copy
keypoints_on_images_result = hooks.postprocess(keypoints_on_images_result, augmenter=self, parents=parents)
if self.deterministic:
self.random_state.set_state(state_orig)
return keypoints_on_images_result
@abstractmethod
def _augment_keypoints(self, keypoints_on_images, random_state, parents, hooks):
raise NotImplementedError()
# TODO most of the code of this function could be replaced with ia.draw_grid()
def draw_grid(self, images, rows, cols):
if ia.is_np_array(images):
if len(images.shape) == 4:
images = [images[i] for i in range(images.shape[0])]
elif len(images.shape) == 3:
images = [images]
elif len(images.shape) == 2:
images = [images[:, :, np.newaxis]]
else:
raise Exception("Unexpected images shape, expected 2-, 3- or 4-dimensional array, got shape %s." % (images.shape,))
assert isinstance(images, list)
det = self if self.deterministic else self.to_deterministic()
augs = []
for image in images:
augs.append(det.augment_images([image] * (rows * cols)))
augs_flat = list(itertools.chain(*augs))
cell_height = max([image.shape[0] for image in images] + [image.shape[0] for image in augs_flat])
cell_width = max([image.shape[1] for image in images] + [image.shape[1] for image in augs_flat])
width = cell_width * cols
height = cell_height * (rows * len(images))
grid = np.zeros((height, width, 3))
for row_idx in range(rows):
for img_idx, image in enumerate(images):
for col_idx in range(cols):
image_aug = augs[img_idx][(row_idx * cols) + col_idx]
cell_y1 = cell_height * (row_idx * len(images) + img_idx)
cell_y2 = cell_y1 + image_aug.shape[0]
cell_x1 = cell_width * col_idx
cell_x2 = cell_x1 + image_aug.shape[1]
grid[cell_y1:cell_y2, cell_x1:cell_x2, :] = image_aug
return grid
def show_grid(self, images, rows, cols):
"""Quickly show examples results of the applied augmentation
Parameters
----------
images : array-like, shape = (num_samples, height, width, channels) or
a list of images (particularly useful for images of various
dimensions)
images to augment
rows : integer.
number of rows in the grid
cols : integer
number of columns in the grid
"""
grid = self.draw_grid(images, rows, cols)
misc.imshow(grid)
def to_deterministic(self, n=None):
""" # TODO
"""
if n is None:
return self.to_deterministic(1)[0]
else:
return [self._to_deterministic() for _ in sm.xrange(n)]
def _to_deterministic(self):
""" # TODO
"""
aug = self.copy()
aug.random_state = ia.new_random_state()
aug.deterministic = True
return aug
def reseed(self, deterministic_too=False, random_state=None):
"""For reseeding the internal random_state
Parameters
----------
deterministic_too : boolean, optional(default=False)
# TODO
random_state : np.random.RandomState instance, optional(default=None)
random seed generator
"""
if random_state is None:
random_state = ia.current_random_state()
elif isinstance(random_state, np.random.RandomState):
pass # just use the provided random state without change
else:
random_state = ia.new_random_state(random_state)
if not self.deterministic or deterministic_too:
seed = random_state.randint(0, 10**6, 1)[0]
self.random_state = ia.new_random_state(seed)
for lst in self.get_children_lists():
for aug in lst:
aug.reseed(deterministic_too=deterministic_too, random_state=random_state)
@abstractmethod
def get_parameters(self):
raise NotImplementedError()
def get_children_lists(self):
return []
def find_augmenters(self, func, parents=None, flat=True):
""" # TODO
"""
if parents is None:
parents = []
result = []
if func(self, parents):
result.append(self)
subparents = parents + [self]
for lst in self.get_children_lists():
for aug in lst:
found = aug.find_augmenters(func, parents=subparents, flat=flat)
if len(found) > 0:
if flat:
result.extend(found)
else:
result.append(found)
return result
def find_augmenters_by_name(self, name, regex=False, flat=True):
"""Find augmenter(s) by name
Parameters
----------
name : string
name of the augmenter to find
regex : regular Expression, optional(default=False)
Regular Expression for searching the augmenter
flat : boolean, optional(default=True)
# TODO
Returns
-------
found augmenter instance
"""
return self.find_augmenters_by_names([name], regex=regex, flat=flat)
def find_augmenters_by_names(self, names, regex=False, flat=True):
"""Find augmenters by names
Parameters
----------
names : list of strings
names of the augmenter to find
regex : regular Expression, optional(default=False)
Regular Expression for searching the augmenter
flat : boolean, optional(default=True)
# TODO
Returns
-------
found augmenter instance(s)
"""
if regex:
def comparer(aug, parents):
for pattern in names:
if re.match(pattern, aug.name):
return True
return False
return self.find_augmenters(comparer, flat=flat)
else:
return self.find_augmenters(lambda aug, parents: aug.name in names, flat=flat)
def remove_augmenters(self, func, copy=True, noop_if_topmost=True):
"""Remove Augmenters from the list of augmenters
Parameters
----------
func : # TODO
copy : boolean, optional(default=True)
removing the augmenter or it's copy
noop_if_topmost : boolean, optional(default=True)
if func is provided and noop_if_topmost is True
an object of Noop class is returned
Returns
-------
aug : removed augmenter object
"""
if func(self, []):
if not copy:
raise Exception("Inplace removal of topmost augmenter requested, which is currently not possible.")
if noop_if_topmost:
return Noop()
else:
return None
else:
aug = self if not copy else self.deepcopy()
aug.remove_augmenters_inplace(func, parents=[])
return aug
def remove_augmenters_inplace(self, func, parents):
"""Inplace removal of augmenters
Parameters
----------
func : # TODO
parents : # TODO
"""
subparents = parents + [self]
for lst in self.get_children_lists():
to_remove = []
for i, aug in enumerate(lst):
if func(aug, subparents):
to_remove.append((i, aug))
for count_removed, (i, aug) in enumerate(to_remove):
# self._remove_augmenters_inplace_from_list(lst, aug, i, i - count_removed)
del lst[i - count_removed]
for aug in lst:
aug.remove_augmenters_inplace(func, subparents)
# TODO
# def to_json(self):
# pass
def copy(self):
"""Obtain a copy"""
return copy_module.copy(self)
def deepcopy(self):
"""Obtain a deep copy"""
return copy_module.deepcopy(self)
def __repr__(self):
return self.__str__()
def __str__(self):
params = self.get_parameters()
params_str = ", ".join([param.__str__() for param in params])
return "%s(name=%s, parameters=[%s], deterministic=%s)" % (self.__class__.__name__, self.name, params_str, self.deterministic)
class Sequential(Augmenter, list):
"""Sequential class is used to apply a number of transformations in an
ordered / random sequence
It is essentially an Augmenter comprising of multiple Augmenters
Parameters
----------
children : optional(default=None)
random_order : boolean, optional(default=False)
whether to apply the listed transformations in a random order
name : string, optional(default=None)
name of the object
deterministic : boolean, optional (default=False)
Whether random state will be saved before augmenting images
and then will be reset to the saved value post augmentation
use this parameter to obtain transformations in the EXACT order
everytime
random_state : int, RandomState instance or None, optional (default=None)
If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by `np.random`.
"""
def __init__(self, children=None, random_order=False, name=None, deterministic=False, random_state=None):
Augmenter.__init__(self, name=name, deterministic=deterministic, random_state=random_state)
list.__init__(self, children if children is not None else [])
self.random_order = random_order
def _augment_images(self, images, random_state, parents, hooks):
if hooks.is_propagating(images, augmenter=self, parents=parents, default=True):
if self.random_order:
# for augmenter in self.children:
for index in random_state.permutation(len(self)):
images = self[index].augment_images(
images=images,
parents=parents + [self],
hooks=hooks
)
else:
# for augmenter in self.children:
for augmenter in self:
images = augmenter.augment_images(
images=images,
parents=parents + [self],
hooks=hooks
)
return images
def _augment_keypoints(self, keypoints_on_images, random_state, parents, hooks):
if hooks.is_propagating(keypoints_on_images, augmenter=self, parents=parents, default=True):
if self.random_order:
for index in random_state.permutation(len(self)):
keypoints_on_images = self[index].augment_keypoints(
keypoints_on_images=keypoints_on_images,
parents=parents + [self],
hooks=hooks
)
else:
for augmenter in self:
keypoints_on_images = augmenter.augment_keypoints(
keypoints_on_images=keypoints_on_images,
parents=parents + [self],
hooks=hooks
)
return keypoints_on_images
def _to_deterministic(self):
augs = [aug.to_deterministic() for aug in self]
seq = self.copy()
seq[:] = augs
seq.random_state = ia.new_random_state()
seq.deterministic = True
return seq
def get_parameters(self):
return []
def add(self, augmenter):
"""Add an additional augmenter"""
self.append(augmenter)
def get_children_lists(self):
"""Return all the children augmenters"""
return [self]
def __str__(self):
# augs_str = ", ".join([aug.__str__() for aug in self.children])
augs_str = ", ".join([aug.__str__() for aug in self])
return "Sequential(name=%s, augmenters=[%s], deterministic=%s)" % (self.name, augs_str, self.deterministic)
class Sometimes(Augmenter):
"""Sometimes is an Augmenter that augments according to some probability
Given the probability "p", only certain number of images will be transformed
Parameters
----------
p : float, optional(default=0.5)
determines the probability with which the associated Augmentation
will be applied. eg. value of 0.5 Augments roughly 50% of the image
samples that are up for Augmentation
then_list : optional(default=None)
# TODO
else_list : optional(default=None)
# TODO
name : string, optional(default=None)
name of the instance
deterministic : boolean, optional (default=False)
Whether random state will be saved before augmenting images
and then will be reset to the saved value post augmentation
use this parameter to obtain transformations in the EXACT order
everytime
random_state : int, RandomState instance or None, optional (default=None)
If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by `np.random`.
"""
def __init__(self, p=0.5, then_list=None, else_list=None, name=None, deterministic=False, random_state=None):
super(Sometimes, self).__init__(name=name, deterministic=deterministic, random_state=random_state)
if ia.is_single_float(p) or ia.is_single_integer(p):
assert 0 <= p <= 1
self.p = Binomial(p)
elif isinstance(p, StochasticParameter):
self.p = p
else:
raise Exception("Expected float/int in range [0, 1] or StochasticParameter as p, got %s." % (type(p),))
if then_list is None:
self.then_list = Sequential([], name="%s-then" % (self.name,))
elif ia.is_iterable(then_list):
self.then_list = Sequential(then_list, name="%s-then" % (self.name,))
elif isinstance(then_list, Augmenter):
self.then_list = Sequential([then_list], name="%s-then" % (self.name,))
else:
raise Exception("Expected None, Augmenter or list/tuple as then_list, got %s." % (type(then_list),))
if else_list is None:
self.else_list = Sequential([], name="%s-else" % (self.name,))
elif ia.is_iterable(else_list):
self.else_list = Sequential(else_list, name="%s-else" % (self.name,))
elif isinstance(else_list, Augmenter):
self.else_list = Sequential([else_list], name="%s-else" % (self.name,))
else:
raise Exception("Expected None, Augmenter or list/tuple as else_list, got %s." % (type(else_list),))
def _augment_images(self, images, random_state, parents, hooks):
result = images
if hooks.is_propagating(images, augmenter=self, parents=parents, default=True):
nb_images = len(images)
samples = self.p.draw_samples((nb_images,), random_state=random_state)
# create lists/arrays of images for if and else lists (one for each)
indices_then_list = np.where(samples == 1)[0] # np.where returns tuple(array([0, 5, 9, ...])) or tuple(array([]))
indices_else_list = np.where(samples == 0)[0]
if isinstance(images, list):
images_then_list = [images[i] for i in indices_then_list]
images_else_list = [images[i] for i in indices_else_list]
else:
images_then_list = images[indices_then_list]
images_else_list = images[indices_else_list]
# augment according to if and else list
result_then_list = self.then_list.augment_images(
images=images_then_list,
parents=parents + [self],
hooks=hooks
)
result_else_list = self.else_list.augment_images(
images=images_else_list,
parents=parents + [self],
hooks=hooks
)
# map results of if/else lists back to their initial positions (in "images" variable)
result = [None] * len(images)
for idx_result_then_list, idx_images in enumerate(indices_then_list):
result[idx_images] = result_then_list[idx_result_then_list]
for idx_result_else_list, idx_images in enumerate(indices_else_list):
result[idx_images] = result_else_list[idx_result_else_list]
# if input was a list, keep the output as a list too,
# otherwise it was a numpy array, so make the output a numpy array too
if not isinstance(images, list):
result = np.array(result, dtype=np.uint8)
return result
def _augment_keypoints(self, keypoints_on_images, random_state, parents, hooks):
# TODO this is mostly copy pasted from _augment_images, make dry
result = keypoints_on_images
if hooks.is_propagating(keypoints_on_images, augmenter=self, parents=parents, default=True):
nb_images = len(keypoints_on_images)
samples = self.p.draw_samples((nb_images,), random_state=random_state)
# create lists/arrays of images for if and else lists (one for each)
indices_then_list = np.where(samples == 1)[0] # np.where returns tuple(array([0, 5, 9, ...])) or tuple(array([]))
indices_else_list = np.where(samples == 0)[0]
images_then_list = [keypoints_on_images[i] for i in indices_then_list]
images_else_list = [keypoints_on_images[i] for i in indices_else_list]
# augment according to if and else list
result_then_list = self.then_list.augment_keypoints(
keypoints_on_images=images_then_list,
parents=parents + [self],
hooks=hooks
)
result_else_list = self.else_list.augment_keypoints(
keypoints_on_images=images_else_list,
parents=parents + [self],
hooks=hooks
)
# map results of if/else lists back to their initial positions (in "images" variable)
result = [None] * len(keypoints_on_images)
for idx_result_then_list, idx_images in enumerate(indices_then_list):
result[idx_images] = result_then_list[idx_result_then_list]
for idx_result_else_list, idx_images in enumerate(indices_else_list):
result[idx_images] = result_else_list[idx_result_else_list]
return result
def _to_deterministic(self):
aug = self.copy()
aug.then_list = aug.then_list.to_deterministic()
aug.else_list = aug.else_list.to_deterministic()
aug.deterministic = True
aug.random_state = ia.new_random_state()
return aug
def get_parameters(self):
return [self.p]
def get_children_lists(self):
return [self.then_list, self.else_list]
def __str__(self):
return "Sometimes(p=%s, name=%s, then_list=[%s], else_list=[%s], deterministic=%s)" % (self.p, self.name, self.then_list, self.else_list, self.deterministic)
class Noop(Augmenter):
"""Noop is an Augmenter that does nothing
Parameters
----------
name : string, optional(default=None)
name of the instance
deterministic : boolean, optional (default=False)
Whether random state will be saved before augmenting images
and then will be reset to the saved value post augmentation
use this parameter to obtain transformations in the EXACT order
everytime
random_state : int, RandomState instance or None, optional (default=None)
If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by `np.random`.
"""
def __init__(self, name=None, deterministic=False, random_state=None):
#Augmenter.__init__(self, name=name, deterministic=deterministic, random_state=random_state)
super(Noop, self).__init__(name=name, deterministic=deterministic, random_state=random_state)
def _augment_images(self, images, random_state, parents, hooks):
return images
def _augment_keypoints(self, keypoints_on_images, random_state, parents, hooks):
return keypoints_on_images
def get_parameters(self):
return []
class Lambda(Augmenter):
""" # TODO
"""
def __init__(self, func_images, func_keypoints, name=None, deterministic=False, random_state=None):
#Augmenter.__init__(self, name=name, deterministic=deterministic, random_state=random_state)
super(Lambda, self).__init__(name=name, deterministic=deterministic, random_state=random_state)
self.func_images = func_images
self.func_keypoints = func_keypoints
def _augment_images(self, images, random_state, parents, hooks):
return self.func_images(images, random_state, parents=parents, hooks=hooks)
def _augment_keypoints(self, keypoints_on_images, random_state, parents, hooks):
result = self.func_keypoints(keypoints_on_images, random_state, parents=parents, hooks=hooks)
assert isinstance(result, list)
assert all([isinstance(el, ia.KeypointsOnImage) for el in result])
return result
def get_parameters(self):
return []
def AssertLambda(func_images, func_keypoints, name=None, deterministic=False, random_state=None):
def func_images_assert(images, random_state, parents, hooks):
assert func_images(images, random_state, parents=parents, hooks=hooks)
return images
def func_keypoints_assert(keypoints_on_images, random_state, parents, hooks):
assert func_keypoints(keypoints_on_images, random_state, parents=parents, hooks=hooks)
return keypoints_on_images
if name is None:
name = "UnnamedAssertLambda"
return Lambda(func_images_assert, func_keypoints_assert, name=name, deterministic=deterministic, random_state=random_state)
def AssertShape(shape, check_images=True, check_keypoints=True, name=None, deterministic=False, random_state=None):
assert len(shape) == 4, "Expected shape to have length 4, got %d with shape: %s." % (len(shape), str(shape))
def compare(observed, expected, dimension, image_index):
if expected is not None:
if ia.is_single_integer(expected):
assert observed == expected, "Expected dim %d (entry index: %s) to have value %d, got %d." % (dimension, image_index, expected, observed)
elif isinstance(expected, tuple):
assert len(expected) == 2
assert expected[0] <= observed < expected[1], "Expected dim %d (entry index: %s) to have value in range [%d, %d), got %d." % (dimension, image_index, expected[0], expected[1], observed)
elif isinstance(expected, list):
assert any([observed == val for val in expected]), "Expected dim %d (entry index: %s) to have any value of %s, got %d." % (dimension, image_index, str(expected), observed)
else:
raise Exception("Invalid datatype for shape entry %d, expected each entry to be an integer, a tuple (with two entries) or a list, got %s." % (dimension, type(expected),))
def func_images(images, random_state, parents, hooks):
if check_images:
#assert is_np_array(images), "AssertShape can currently only handle numpy arrays, got "
if isinstance(images, list):
if shape[0] is not None:
compare(len(images), shape[0], 0, "ALL")
for i in sm.xrange(len(images)):
image = images[i]
assert len(image.shape) == 3, "Expected image number %d to have a shape of length 3, got %d (shape: %s)." % (i, len(image.shape), str(image.shape))
for j in sm.xrange(len(shape)-1):
expected = shape[j+1]
observed = image.shape[j]
compare(observed, expected, j, i)
else:
assert len(images.shape) == 4, "Expected image's shape to have length 4, got %d (shape: %s)." % (len(images.shape), str(images.shape))
for i in range(4):
expected = shape[i]
observed = images.shape[i]
compare(observed, expected, i, "ALL")
return images
def func_keypoints(keypoints_on_images, random_state, parents, hooks):
if check_keypoints:
#assert is_np_array(images), "AssertShape can currently only handle numpy arrays, got "
if shape[0] is not None:
compare(len(keypoints_on_images), shape[0], 0, "ALL")
for i in sm.xrange(len(keypoints_on_images)):
keypoints_on_image = keypoints_on_images[i]
for j in sm.xrange(len(shape[0:2])):
expected = shape[j+1]
observed = keypoints_on_image.shape[j]
compare(observed, expected, j, i)
return keypoints_on_images
if name is None:
name = "UnnamedAssertShape"
return Lambda(func_images, func_keypoints, name=name, deterministic=deterministic, random_state=random_state)
class Crop(Augmenter):
"""Crop Augmenter object that crops input image(s)
Parameters
----------
px : # TODO
percent : tuple, optional(default=None)
percent crop on each of the axis
keep_size : boolean, optional(default=True)
# TODO
name : string, optional(default=None)
name of the instance
deterministic : boolean, optional (default=False)
Whether random state will be saved before augmenting images
and then will be reset to the saved value post augmentation
use this parameter to obtain transformations in the EXACT order
everytime
random_state : int, RandomState instance or None, optional (default=None)
If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by `np.random`.
"""
def __init__(self, px=None, percent=None, keep_size=True, name=None, deterministic=False, random_state=None):
super(Crop, self).__init__(name=name, deterministic=deterministic, random_state=random_state)
self.keep_size = keep_size
self.all_sides = None
self.top = None
self.right = None
self.bottom = None
self.left = None
if px is None and percent is None:
self.mode = "noop"
elif px is not None and percent is not None:
raise Exception("Can only crop by pixels or percent, not both.")
elif px is not None:
self.mode = "px"
if ia.is_single_integer(px):
assert px >= 0
#self.top = self.right = self.bottom = self.left = Deterministic(px)
self.all_sides = Deterministic(px)
elif isinstance(px, tuple):
assert len(px) in [2, 4]
def handle_param(p):
if ia.is_single_integer(p):
assert p >= 0
return Deterministic(p)
elif isinstance(p, tuple):
assert len(p) == 2
assert ia.is_single_integer(p[0])
assert ia.is_single_integer(p[1])
assert p[0] >= 0
assert p[1] >= 0
return DiscreteUniform(p[0], p[1])
elif isinstance(p, list):
assert len(p) > 0
assert all([ia.is_single_integer(val) for val in p])
assert all([val >= 0 for val in p])
return Choice(p)
elif isinstance(p, StochasticParameter):
return p
else:
raise Exception("Expected int, tuple of two ints, list of ints or StochasticParameter, got type %s." % (type(p),))
if len(px) == 2:
#self.top = self.right = self.bottom = self.left = handle_param(px)
self.all_sides = handle_param(px)
else: # len == 4
self.top = handle_param(px[0])
self.right = handle_param(px[1])
self.bottom = handle_param(px[2])
self.left = handle_param(px[3])
elif isinstance(px, StochasticParameter):
self.top = self.right = self.bottom = self.left = px
else:
raise Exception("Expected int, tuple of 4 ints/lists/StochasticParameters or StochasticParameter, git type %s." % (type(px),))
else: # = elif percent is not None:
self.mode = "percent"
if ia.is_single_number(percent):
assert 0 <= percent < 1.0
#self.top = self.right = self.bottom = self.left = Deterministic(percent)
self.all_sides = Deterministic(percent)
elif isinstance(percent, tuple):
assert len(percent) in [2, 4]
def handle_param(p):
if ia.is_single_number(p):
return Deterministic(p)
elif isinstance(p, tuple):
assert len(p) == 2
assert ia.is_single_number(p[0])
assert ia.is_single_number(p[1])
assert 0 <= p[0] < 1.0
assert 0 <= p[1] < 1.0
return Uniform(p[0], p[1])
elif isinstance(p, list):
assert len(p) > 0
assert all([ia.is_single_number(val) for val in p])
assert all([0 <= val < 1.0 for val in p])
return Choice(p)
elif isinstance(p, StochasticParameter):
return p
else:
raise Exception("Expected int, tuple of two ints, list of ints or StochasticParameter, got type %s." % (type(p),))
if len(percent) == 2:
#self.top = self.right = self.bottom = self.left = handle_param(percent)
self.all_sides = handle_param(percent)
else: # len == 4
self.top = handle_param(percent[0])
self.right = handle_param(percent[1])
self.bottom = handle_param(percent[2])
self.left = handle_param(percent[3])
elif isinstance(percent, StochasticParameter):
self.top = self.right = self.bottom = self.left = percent
else:
raise Exception("Expected number, tuple of 4 numbers/lists/StochasticParameters or StochasticParameter, got type %s." % (type(percent),))
def _augment_images(self, images, random_state, parents, hooks):
result = []
nb_images = len(images)
seeds = random_state.randint(0, 10**6, (nb_images,))
for i in sm.xrange(nb_images):
seed = seeds[i]
height, width = images[i].shape[0:2]
top, right, bottom, left = self._draw_samples_image(seed, height, width)
image_cropped = images[i][top:height-bottom, left:width-right, :]
if self.keep_size:
image_cropped = ia.imresize_single_image(image_cropped, (height, width))
result.append(image_cropped)
if not isinstance(images, list):
if self.keep_size:
result = np.array(result, dtype=np.uint8)
return result
def _augment_keypoints(self, keypoints_on_images, random_state, parents, hooks):
result = []
nb_images = len(keypoints_on_images)
seeds = random_state.randint(0, 10**6, (nb_images,))
for i, keypoints_on_image in enumerate(keypoints_on_images):
seed = seeds[i]
height, width = keypoints_on_image.shape[0:2]
top, right, bottom, left = self._draw_samples_image(seed, height, width)
shifted = keypoints_on_image.shift(x=-left, y=-top)
shifted.shape = (height - top - bottom, width - left - right)
if self.keep_size:
result.append(shifted.on(keypoints_on_image.shape))
else:
result.append(shifted)
return result
def _draw_samples_image(self, seed, height, width):
random_state = ia.new_random_state(seed)
if self.all_sides is not None:
samples = self.all_sides.draw_samples((4,), random_state=random_state)
top, right, bottom, left = samples
else:
rs_top = random_state
rs_right = rs_top
rs_bottom = rs_top
rs_left = rs_top
top = self.top.draw_sample(random_state=rs_top)
right = self.right.draw_sample(random_state=rs_right)
bottom = self.bottom.draw_sample(random_state=rs_bottom)
left = self.left.draw_sample(random_state=rs_left)
if self.mode == "px":
# no change necessary for pixel values
pass
elif self.mode == "percent":
# percentage values have to be transformed to pixel values
top = int(height * top)
right = int(width * right)
bottom = int(height * bottom)
left = int(width * left)
else:
raise Exception("Invalid mode")
remaining_height = height - (top + bottom)
remaining_width = width - (left + right)
if remaining_height < 1:
regain = abs(remaining_height) + 1
regain_top = regain // 2
regain_bottom = regain // 2
if regain_top + regain_bottom < regain:
regain_top += 1
if regain_top > top:
diff = regain_top - top
regain_top = top
regain_bottom += diff
elif regain_bottom > bottom:
diff = regain_bottom - bottom
regain_bottom = bottom
regain_top += diff
assert regain_top <= top
assert regain_bottom <= bottom
top = top - regain_top
bottom = bottom - regain_bottom
if remaining_width < 1:
regain = abs(remaining_width) + 1
regain_right = regain // 2
regain_left = regain // 2
if regain_right + regain_left < regain:
regain_right += 1
if regain_right > right:
diff = regain_right - right
regain_right = right
regain_left += diff
elif regain_left > left:
diff = regain_left - left
regain_left = left
regain_right += diff
assert regain_right <= right
assert regain_left <= left
right = right - regain_right
left = left - regain_left
assert top >= 0 and right >= 0 and bottom >= 0 and left >= 0
assert top + bottom < height
assert right + left < width
return top, right, bottom, left
def get_parameters(self):
return [self.top, self.right, self.bottom, self.left]
class Fliplr(Augmenter):
"""Flip the input images horizontally
Parameters
----------
p : int, float or StochasticParameter
number or percentage of samples to Flip
name : string, optional(default=None)
name of the instance
deterministic : boolean, optional (default=False)
Whether random state will be saved before augmenting images
and then will be reset to the saved value post augmentation
use this parameter to obtain transformations in the EXACT order
everytime
random_state : int, RandomState instance or None, optional (default=None)
If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by `np.random`.
"""
def __init__(self, p=0, name=None, deterministic=False, random_state=None):
super(Fliplr, self).__init__(name=name, deterministic=deterministic, random_state=random_state)
if ia.is_single_number(p):
self.p = Binomial(p)
elif isinstance(p, StochasticParameter):
self.p = p
else:
raise Exception("Expected p to be int or float or StochasticParameter, got %s." % (type(p),))
def _augment_images(self, images, random_state, parents, hooks):
nb_images = len(images)
samples = self.p.draw_samples((nb_images,), random_state=random_state)
for i in sm.xrange(nb_images):
if samples[i] == 1:
images[i] = np.fliplr(images[i])
return images
def _augment_keypoints(self, keypoints_on_images, random_state, parents, hooks):
nb_images = len(keypoints_on_images)
samples = self.p.draw_samples((nb_images,), random_state=random_state)
for i, keypoints_on_image in enumerate(keypoints_on_images):
if samples[i] == 1:
width = keypoints_on_image.shape[1]
for keypoint in keypoints_on_image.keypoints:
keypoint.x = (width - 1) - keypoint.x
return keypoints_on_images
def get_parameters(self):
return [self.p]
class Flipud(Augmenter):
"""Flip the input images vertically
Parameters
----------
p : int, float or StochasticParameter
number or percentage of samples to Flip
name : string, optional(default=None)
name of the instance
deterministic : boolean, optional (default=False)
Whether random state will be saved before augmenting images
and then will be reset to the saved value post augmentation
use this parameter to obtain transformations in the EXACT order
everytime
random_state : int, RandomState instance or None, optional (default=None)
If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by `np.random`.
"""
def __init__(self, p=0, name=None, deterministic=False, random_state=None):
super(Flipud, self).__init__(name=name, deterministic=deterministic, random_state=random_state)
if ia.is_single_number(p):
self.p = Binomial(p)
elif isinstance(p, StochasticParameter):
self.p = p
else:
raise Exception("Expected p to be int or float or StochasticParameter, got %s." % (type(p),))
def _augment_images(self, images, random_state, parents, hooks):
nb_images = len(images)
samples = self.p.draw_samples((nb_images,), random_state=random_state)
for i in sm.xrange(nb_images):
if samples[i] == 1:
images[i] = np.flipud(images[i])
return images
def _augment_keypoints(self, keypoints_on_images, random_state, parents, hooks):
nb_images = len(keypoints_on_images)
samples = self.p.draw_samples((nb_images,), random_state=random_state)
for i, keypoints_on_image in enumerate(keypoints_on_images):
if samples[i] == 1:
height = keypoints_on_image.shape[0]
for keypoint in keypoints_on_image.keypoints:
keypoint.y = (height - 1) - keypoint.y
return keypoints_on_images
def get_parameters(self):
return [self.p]
# TODO tests
# Note: Not clear whether this class will be kept (for anything aside from grayscale)
# other colorspaces dont really make sense and they also might not work correctly
# due to having no clearly limited range (like 0-255 or 0-1)
class ChangeColorspace(Augmenter):
RGB = "RGB"
BGR = "BGR"
GRAY = "GRAY"
CIE = "CIE"
YCrCb = "YCrCb"
HSV = "HSV"
HLS = "HLS"
Lab = "Lab"
Luv = "Luv"
COLORSPACES = set([
RGB,
BGR,
GRAY,
CIE,
YCrCb,
HSV,
HLS,
Lab,
Luv
])
CV_VARS = {
# RGB
#"RGB2RGB": cv2.COLOR_RGB2RGB,
"RGB2BGR": cv2.COLOR_RGB2BGR,
"RGB2GRAY": cv2.COLOR_RGB2GRAY,
"RGB2CIE": cv2.COLOR_RGB2XYZ,
"RGB2YCrCb": cv2.COLOR_RGB2YCR_CB,
"RGB2HSV": cv2.COLOR_RGB2HSV,
"RGB2HLS": cv2.COLOR_RGB2HLS,
"RGB2LAB": cv2.COLOR_RGB2LAB,
"RGB2LUV": cv2.COLOR_RGB2LUV,
# BGR
"BGR2RGB": cv2.COLOR_BGR2RGB,
#"BGR2BGR": cv2.COLOR_BGR2BGR,
"BGR2GRAY": cv2.COLOR_BGR2GRAY,
"BGR2CIE": cv2.COLOR_BGR2XYZ,
"BGR2YCrCb": cv2.COLOR_BGR2YCR_CB,
"BGR2HSV": cv2.COLOR_BGR2HSV,
"BGR2HLS": cv2.COLOR_BGR2HLS,
"BGR2LAB": cv2.COLOR_BGR2LAB,
"BGR2LUV": cv2.COLOR_BGR2LUV
}
def __init__(self, to_colorspace, alpha, from_colorspace="RGB", name=None, deterministic=False, random_state=None):
super(ChangeColorspace, self).__init__(name=name, deterministic=deterministic, random_state=random_state)
if ia.is_single_number(alpha):
self.alpha = Deterministic(alpha)
elif ia.is_iterable(alpha):
assert len(alpha) == 2, "Expected tuple/list with 2 entries, got %d entries." % (str(len(alpha)),)
self.alpha = Uniform(alpha[0], alpha[1])
elif isinstance(p, StochasticParameter):
self.alpha = alpha
else:
raise Exception("Expected alpha to be int or float or tuple/list of ints/floats or StochasticParameter, got %s." % (type(alpha),))
if ia.is_string(to_colorspace):
assert to_colorspace in ChangeColorspace.COLORSPACES
self.to_colorspace = Deterministic(to_colorspace)
elif ia.is_iterable(to_colorspace):
assert all([ia.is_string(colorspace) for colorspace in to_colorspace])
assert all([(colorspace in ChangeColorspace.COLORSPACES) for colorspace in to_colorspace])
self.to_colorspace = Choice(to_colorspace)
elif isinstance(to_colorspace, StochasticParameter):
self.to_colorspace = to_colorspace
else:
raise Exception("Expected to_colorspace to be string, list of strings or StochasticParameter, got %s." % (type(to_colorspace),))
self.from_colorspace = from_colorspace
assert self.from_colorspace in ChangeColorspace.COLORSPACES
assert from_colorspace != ChangeColorspace.GRAY
def _augment_images(self, images, random_state, parents, hooks):
result = images
nb_images = len(images)
alphas = self.alpha.draw_samples((nb_images,), random_state=ia.copy_random_state(random_state))
to_colorspaces = self.to_colorspace.draw_samples((nb_images,), random_state=ia.copy_random_state(random_state))
for i in sm.xrange(nb_images):
alpha = alphas[i]
to_colorspace = to_colorspaces[i]
image = images[i]
assert 0.0 <= alpha <= 1.0
assert to_colorspace in ChangeColorspace.COLORSPACES
if alpha == 0 or self.from_colorspace == to_colorspace:
pass # no change necessary
else:
# some colorspaces here should use image/255.0 according to the docs,
# but at least for conversion to grayscale that results in errors,
# ie uint8 is expected
if self.from_colorspace in [ChangeColorspace.RGB, ChangeColorspace.BGR]:
from_to_var_name = "%s2%s" % (self.from_colorspace, to_colorspace)
from_to_var = ChangeColorspace.CV_VARS[from_to_var_name]
img_to_cs = cv2.cvtColor(image, from_to_var)
else:
# convert to RGB
from_to_var_name = "%s2%s" % (self.from_colorspace, ChangeColorspace.RGB)
from_to_var = ChangeColorspace.CV_VARS[from_to_var_name]
img_rgb = cv2.cvtColor(image, from_to_var)
# convert from RGB to desired target colorspace
from_to_var_name = "%s2%s" % (ChangeColorspace.RGB, to_colorspace)
from_to_var = ChangeColorspace.CV_VARS[from_to_var_name]
img_to_cs = cv2.cvtColor(img_rgb, from_to_var)
# this will break colorspaces that have values outside 0-255 or 0.0-1.0
if ia.is_integer_array(img_to_cs):
img_to_cs = np.clip(img_to_cs, 0, 255).astype(np.uint8)
else:
img_to_cs = np.clip(img_to_cs * 255, 0, 255).astype(np.uint8)
if len(img_to_cs.shape) == 2:
img_to_cs = img_to_cs[:, :, np.newaxis]
img_to_cs = np.tile(img_to_cs, (1, 1, 3))
if alpha == 1:
result[i] = img_to_cs
else:
result[i] = (alpha * img_to_cs + (1 - alpha) * image).astype(np.uint8)
return images
def _augment_keypoints(self, keypoints_on_images, random_state, parents, hooks):
return keypoints_on_images
def get_parameters(self):
return [self.alpha, self.to_colorspace]
# TODO tests
def Grayscale(alpha=0, from_colorspace="RGB", name=None, deterministic=False, random_state=None):
return ChangeColorspace(to_colorspace=ChangeColorspace.GRAY, alpha=alpha, from_colorspace=from_colorspace, name=name, deterministic=deterministic, random_state=random_state)
class GaussianBlur(Augmenter):
"""Apply GaussianBlur to input images
Parameters
----------
sigma : float, list/iterable of length 2 of floats or StochasticParameter
variance parameter.
name : string, optional(default=None)
name of the instance
deterministic : boolean, optional (default=False)
Whether random state will be saved before augmenting images
and then will be reset to the saved value post augmentation
use this parameter to obtain transformations in the EXACT order
everytime
random_state : int, RandomState instance or None, optional (default=None)
If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by `np.random`.
"""
def __init__(self, sigma=0, name=None, deterministic=False, random_state=None):
super(GaussianBlur, self).__init__(name=name, deterministic=deterministic, random_state=random_state)
if ia.is_single_number(sigma):
self.sigma = Deterministic(sigma)
elif ia.is_iterable(sigma):
assert len(sigma) == 2, "Expected tuple/list with 2 entries, got %d entries." % (str(len(sigma)),)
self.sigma = Uniform(sigma[0], sigma[1])
elif isinstance(sigma, StochasticParameter):
self.sigma = sigma
else:
raise Exception("Expected float, int, tuple/list with 2 entries or StochasticParameter. Got %s." % (type(sigma),))
def _augment_images(self, images, random_state, parents, hooks):
result = images
nb_images = len(images)
samples = self.sigma.draw_samples((nb_images,), random_state=random_state)
for i in sm.xrange(nb_images):
nb_channels = images[i].shape[2]
sig = samples[i]
if sig > 0:
for channel in sm.xrange(nb_channels):
result[i][:, :, channel] = ndimage.gaussian_filter(result[i][:, :, channel], sig)
return result
def _augment_keypoints(self, keypoints_on_images, random_state, parents, hooks):
return keypoints_on_images
def get_parameters(self):
return [self.sigma]
def AdditiveGaussianNoise(loc=0, scale=0, per_channel=False, name=None, deterministic=False, random_state=None):
"""Add Random Gaussian Noise to images
Parameters
----------
loc : integer/ optional(default=0)
# TODO
scale : integer/optional(default=0)
# TODO
per_channel : boolean, optional(default=False)
Apply transformation in a per channel manner
name : string, optional(default=None)
name of the instance
deterministic : boolean, optional (default=False)
Whether random state will be saved before augmenting images
and then will be reset to the saved value post augmentation
use this parameter to obtain transformations in the EXACT order
everytime
random_state : int, RandomState instance or None, optional (default=None)
If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by `np.random`.
"""
if ia.is_single_number(loc):
loc2 = Deterministic(loc)
elif ia.is_iterable(loc):
assert len(loc) == 2, "Expected tuple/list with 2 entries for argument 'loc', got %d entries." % (str(len(scale)),)
loc2 = Uniform(loc[0], loc[1])
elif isinstance(loc, StochasticParameter):
loc2 = loc
else:
raise Exception("Expected float, int, tuple/list with 2 entries or StochasticParameter for argument 'loc'. Got %s." % (type(loc),))
if ia.is_single_number(scale):
scale2 = Deterministic(scale)
elif ia.is_iterable(scale):
assert len(scale) == 2, "Expected tuple/list with 2 entries for argument 'scale', got %d entries." % (str(len(scale)),)
scale2 = Uniform(scale[0], scale[1])
elif isinstance(scale, StochasticParameter):
scale2 = scale
else:
raise Exception("Expected float, int, tuple/list with 2 entries or StochasticParameter for argument 'scale'. Got %s." % (type(scale),))
return AddElementwise(Normal(loc=loc2, scale=scale2), per_channel=per_channel, name=name, deterministic=deterministic, random_state=random_state)
# TODO
#class MultiplicativeGaussianNoise(Augmenter):
# pass
# TODO
#class ReplacingGaussianNoise(Augmenter):
# pass
def Dropout(p=0, per_channel=False, name=None, deterministic=False,
random_state=None):
"""Dropout (Blacken) certain fraction of pixels
Parameters
----------
p : float, iterable of len 2, StochasticParameter optional(default=0)
per_channel : boolean, optional(default=False)
apply transform in a per channel manner
name : string, optional(default=None)
name of the instance
deterministic : boolean, optional (default=False)
Whether random state will be saved before augmenting images
and then will be reset to the saved value post augmentation
use this parameter to obtain transformations in the EXACT order
everytime
random_state : int, RandomState instance or None, optional (default=None)
If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by `np.random`.
Returns
-------
# TODO
"""
if ia.is_single_number(p):
p2 = Binomial(1 - p)
elif ia.is_iterable(p):
assert len(p) == 2
assert p[0] < p[1]
assert 0 <= p[0] <= 1.0
assert 0 <= p[1] <= 1.0
p2 = Binomial(Uniform(1- p[1], 1 - p[0]))
elif isinstance(p, StochasticParameter):
p2 = p
else:
raise Exception("Expected p to be float or int or StochasticParameter, got %s." % (type(p),))
return MultiplyElementwise(p2, per_channel=per_channel, name=name, deterministic=deterministic, random_state=random_state)
# TODO tests
class Add(Augmenter):
"""Augmenter that Adds a value elementwise to the pixels of the image
Parameters
----------
value : integer, iterable of len 2, StochasticParameter
value to be added to the pixels/elements
per_channel : boolean, optional(default=False)
apply transform in a per channel manner
name : string, optional(default=None)
name of the instance
deterministic : boolean, optional (default=False)
Whether random state will be saved before augmenting images
and then will be reset to the saved value post augmentation
use this parameter to obtain transformations in the EXACT order
everytime
random_state : int, RandomState instance or None, optional (default=None)
If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by `np.random`.
"""
def __init__(self, value=0, per_channel=False, name=None,
deterministic=False, random_state=None):
super(Add, self).__init__(name=name, deterministic=deterministic, random_state=random_state)
if ia.is_single_integer(value):
assert -255 <= value <= 255, "Expected value to have range [-255, 255], got value %d." % (value,)
self.value = Deterministic(value)
elif ia.is_iterable(value):
assert len(value) == 2, "Expected tuple/list with 2 entries, got %d entries." % (len(value),)
self.value = DiscreteUniform(value[0], value[1])
elif isinstance(value, StochasticParameter):
self.value = value
else:
raise Exception("Expected float or int, tuple/list with 2 entries or StochasticParameter. Got %s." % (type(value),))
if per_channel in [True, False, 0, 1, 0.0, 1.0]:
self.per_channel = Deterministic(int(per_channel))
elif ia.is_single_number(per_channel):
assert 0 <= per_channel <= 1.0
self.per_channel = Binomial(per_channel)
else:
raise Exception("Expected per_channel to be boolean or number or StochasticParameter")
def _augment_images(self, images, random_state, parents, hooks):
result = images
nb_images = len(images)
seeds = random_state.randint(0, 10**6, (nb_images,))
for i in sm.xrange(nb_images):
image = images[i].astype(np.int32)
rs_image = ia.new_random_state(seeds[i])
per_channel = self.per_channel.draw_sample(random_state=rs_image)
if per_channel == 1:
nb_channels = image.shape[2]
samples = self.value.draw_samples((nb_channels,), random_state=rs_image)
for c, sample in enumerate(samples):
assert -255 <= sample <= 255
image[..., c] += sample
np.clip(image, 0, 255, out=image)
result[i] = image.astype(np.uint8)
else:
sample = self.value.draw_sample(random_state=rs_image)
assert -255 <= sample <= 255
image += sample
np.clip(image, 0, 255, out=image)
result[i] = image.astype(np.uint8)
return result
def _augment_keypoints(self, keypoints_on_images, random_state, parents, hooks):
return keypoints_on_images
def get_parameters(self):
return [self.value]
# TODO tests
class AddElementwise(Augmenter):
# TODO
def __init__(self, value=0, per_channel=False, name=None, deterministic=False, random_state=None):
super(AddElementwise, self).__init__(name=name, deterministic=deterministic, random_state=random_state)
if ia.is_single_integer(value):
assert -255 <= value <= 255, "Expected value to have range [-255, 255], got value %d." % (value,)
self.value = Deterministic(value)
elif ia.is_iterable(value):
assert len(value) == 2, "Expected tuple/list with 2 entries, got %d entries." % (len(value),)
self.value = DiscreteUniform(value[0], value[1])
elif isinstance(value, StochasticParameter):
self.value = value
else:
raise Exception("Expected float or int, tuple/list with 2 entries or StochasticParameter. Got %s." % (type(value),))
if per_channel in [True, False, 0, 1, 0.0, 1.0]:
self.per_channel = Deterministic(int(per_channel))
elif ia.is_single_number(per_channel):
assert 0 <= per_channel <= 1.0
self.per_channel = Binomial(per_channel)
else:
raise Exception("Expected per_channel to be boolean or number or StochasticParameter")
def _augment_images(self, images, random_state, parents, hooks):
result = images
nb_images = len(images)
seeds = random_state.randint(0, 10**6, (nb_images,))
for i in sm.xrange(nb_images):
seed = seeds[i]
image = images[i].astype(np.int32)
height, width, nb_channels = image.shape
rs_image = ia.new_random_state(seed)
per_channel = self.per_channel.draw_sample(random_state=rs_image)
if per_channel == 1:
samples = self.value.draw_samples((height, width, nb_channels), random_state=rs_image)
else:
samples = self.value.draw_samples((height, width, 1), random_state=rs_image)
samples = np.tile(samples, (1, 1, nb_channels))
after_add = image + samples
np.clip(after_add, 0, 255, out=after_add)
result[i] = after_add.astype(np.uint8)
return result
def _augment_keypoints(self, keypoints_on_images, random_state, parents, hooks):
return keypoints_on_images
def get_parameters(self):
return [self.value]
class Multiply(Augmenter):
"""Augmenter that Multiplies a value elementwise to the pixels of the image
Parameters
----------
value : integer, iterable of len 2, StochasticParameter
value to be added to the pixels/elements
per_channel : boolean, optional(default=False)
apply transform in a per channel manner
name : string, optional(default=None)
name of the instance
deterministic : boolean, optional (default=False)
Whether random state will be saved before augmenting images
and then will be reset to the saved value post augmentation
use this parameter to obtain transformations in the EXACT order
everytime
random_state : int, RandomState instance or None, optional (default=None)
If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by `np.random`.
"""
def __init__(self, mul=1.0, per_channel=False, name=None,
deterministic=False, random_state=None):
super(Multiply, self).__init__(name=name, deterministic=deterministic, random_state=random_state)
if ia.is_single_number(mul):
assert mul >= 0.0, "Expected multiplier to have range [0, inf), got value %.4f." % (mul,)
self.mul = Deterministic(mul)
elif ia.is_iterable(mul):
assert len(mul) == 2, "Expected tuple/list with 2 entries, got %d entries." % (len(mul),)
self.mul = Uniform(mul[0], mul[1])
elif isinstance(mul, StochasticParameter):
self.mul = mul
else:
raise Exception("Expected float or int, tuple/list with 2 entries or StochasticParameter. Got %s." % (type(mul),))
if per_channel in [True, False, 0, 1, 0.0, 1.0]:
self.per_channel = Deterministic(int(per_channel))
elif ia.is_single_number(per_channel):
assert 0 <= per_channel <= 1.0
self.per_channel = Binomial(per_channel)
else:
raise Exception("Expected per_channel to be boolean or number or StochasticParameter")
def _augment_images(self, images, random_state, parents, hooks):
result = images
nb_images = len(images)
seeds = random_state.randint(0, 10**6, (nb_images,))
for i in sm.xrange(nb_images):
image = images[i].astype(np.float32)
rs_image = ia.new_random_state(seeds[i])
per_channel = self.per_channel.draw_sample(random_state=rs_image)
if per_channel == 1:
nb_channels = image.shape[2]
samples = self.mul.draw_samples((nb_channels,), random_state=rs_image)
for c, sample in enumerate(samples):
assert sample >= 0
image[..., c] *= sample
np.clip(image, 0, 255, out=image)
result[i] = image.astype(np.uint8)
else:
sample = self.mul.draw_sample(random_state=rs_image)
assert sample >= 0
image *= sample
np.clip(image, 0, 255, out=image)
result[i] = image.astype(np.uint8)
return result
def _augment_keypoints(self, keypoints_on_images, random_state, parents, hooks):
return keypoints_on_images
def get_parameters(self):
return [self.mul]
# TODO tests
class MultiplyElementwise(Augmenter):
# TODO
def __init__(self, mul=1.0, per_channel=False, name=None, deterministic=False, random_state=None):
super(MultiplyElementwise, self).__init__(name=name, deterministic=deterministic, random_state=random_state)
if ia.is_single_number(mul):
assert mul >= 0.0, "Expected multiplier to have range [0, inf), got value %.4f." % (mul,)
self.mul = Deterministic(mul)
elif ia.is_iterable(mul):
assert len(mul) == 2, "Expected tuple/list with 2 entries, got %d entries." % (str(len(mul)),)
self.mul = Uniform(mul[0], mul[1])
elif isinstance(mul, StochasticParameter):
self.mul = mul
else:
raise Exception("Expected float or int, tuple/list with 2 entries or StochasticParameter. Got %s." % (type(mul),))
if per_channel in [True, False, 0, 1, 0.0, 1.0]:
self.per_channel = Deterministic(int(per_channel))
elif ia.is_single_number(per_channel):
assert 0 <= per_channel <= 1.0
self.per_channel = Binomial(per_channel)
else:
raise Exception("Expected per_channel to be boolean or number or StochasticParameter")
def _augment_images(self, images, random_state, parents, hooks):
result = images
nb_images = len(images)
seeds = random_state.randint(0, 10**6, (nb_images,))
for i in sm.xrange(nb_images):
seed = seeds[i]
image = images[i].astype(np.float32)
height, width, nb_channels = image.shape
rs_image = ia.new_random_state(seed)
per_channel = self.per_channel.draw_sample(random_state=rs_image)
if per_channel == 1:
samples = self.mul.draw_samples((height, width, nb_channels), random_state=rs_image)
else:
samples = self.mul.draw_samples((height, width, 1), random_state=rs_image)
samples = np.tile(samples, (1, 1, nb_channels))
after_multiply = image * samples
np.clip(after_multiply, 0, 255, out=after_multiply)
result[i] = after_multiply.astype(np.uint8)
return result
def _augment_keypoints(self, keypoints_on_images, random_state, parents, hooks):
return keypoints_on_images
def get_parameters(self):
return [self.mul]
# TODO tests
class ContrastNormalization(Augmenter):
"""Augmenter class for ContrastNormalization
Parameters
----------
alpha : float, iterable of len 2, StochasticParameter
Normalization parameter that governs the contrast ratio
of the resulting image
per_channel : boolean, optional(default=False)
apply transform in a per channel manner
name : string, optional(default=None)
name of the instance
deterministic : boolean, optional (default=False)
Whether random state will be saved before augmenting images
and then will be reset to the saved value post augmentation
use this parameter to obtain transformations in the EXACT order
everytime
random_state : int, RandomState instance or None, optional (default=None)
If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by `np.random`.
"""
def __init__(self, alpha=1.0, per_channel=False, name=None, deterministic=False, random_state=None):
super(ContrastNormalization, self).__init__(name=name, deterministic=deterministic, random_state=random_state)
if ia.is_single_number(alpha):
assert alpha >= 0.0, "Expected alpha to have range (0, inf), got value %.4f." % (alpha,)
self.alpha = Deterministic(alpha)
elif ia.is_iterable(alpha):
assert len(alpha) == 2, "Expected tuple/list with 2 entries, got %d entries." % (str(len(alpha)),)
self.alpha = Uniform(alpha[0], alpha[1])
elif isinstance(alpha, StochasticParameter):
self.alpha = alpha
else:
raise Exception("Expected float or int, tuple/list with 2 entries or StochasticParameter. Got %s." % (type(alpha),))
if per_channel in [True, False, 0, 1, 0.0, 1.0]:
self.per_channel = Deterministic(int(per_channel))
elif ia.is_single_number(per_channel):
assert 0 <= per_channel <= 1.0
self.per_channel = Binomial(per_channel)
else:
raise Exception("Expected per_channel to be boolean or number or StochasticParameter")
def _augment_images(self, images, random_state, parents, hooks):
result = images
nb_images = len(images)
seeds = random_state.randint(0, 10**6, (nb_images,))
for i in sm.xrange(nb_images):
image = images[i].astype(np.float32)
rs_image = ia.new_random_state(seeds[i])
per_channel = self.per_channel.draw_sample(random_state=rs_image)
if per_channel:
nb_channels = images[i].shape[2]
alphas = self.alpha.draw_samples((nb_channels,), random_state=rs_image)
for c, alpha in enumerate(alphas):
image[..., c] = alpha * (image[..., c] - 128) + 128
else:
alpha = self.alpha.draw_sample(random_state=rs_image)
image = alpha * (image - 128) + 128
np.clip(image, 0, 255, out=image)
result[i] = image.astype(np.uint8)
return result
def _augment_keypoints(self, keypoints_on_images, random_state, parents, hooks):
return keypoints_on_images
def get_parameters(self):
return [self.alpha]
class Affine(Augmenter):
"""Augmenter for Affine Transformations
An Affine Transformation is a linear mapping that preserves points,
straight lines and planes
Parameters
----------
scale : # TODO
translate_percent : # TODO
translate_px : # TODO
rotate : # TODO
shear : # TODO
order : # TODO
cval : # TODO
mode : # TODO
per_channel : boolean, optional(default=False)
apply transform in a per channel manner
name : string, optional(default=None)
name of the instance
deterministic : boolean, optional (default=False)
Whether random state will be saved before augmenting images
and then will be reset to the saved value post augmentation
use this parameter to obtain transformations in the EXACT order
everytime
random_state : int, RandomState instance or None, optional (default=None)
If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by `np.random`.
"""
def __init__(self, scale=1.0, translate_percent=None, translate_px=None,
rotate=0.0, shear=0.0, order=1, cval=0.0, mode="constant",
name=None, deterministic=False, random_state=None):
super(Affine, self).__init__(name=name, deterministic=deterministic, random_state=random_state)
# Peformance:
# 1.0x order 0
# 1.5x order 1
# 3.0x order 3
# 30.0x order 4
# 60.0x order 5
# measurement based on 256x256x3 batches, difference is smaller
# on smaller images (seems to grow more like exponentially with image
# size)
if order == ia.ALL:
# self.order = DiscreteUniform(0, 5)
self.order = Choice([0, 1, 3, 4, 5]) # dont use order=2 (bi-quadratic) because that is apparently currently not recommended (and throws a warning)
elif ia.is_single_integer(order):
assert 0 <= order <= 5, "Expected order's integer value to be in range 0 <= x <= 5, got %d." % (order,)
self.order = Deterministic(order)
elif isinstance(order, list):
assert all([ia.is_single_integer(val) for val in order]), "Expected order list to only contain integers, got types %s." % (str([type(val) for val in order]),)
assert all([0 <= val <= 5 for val in order]), "Expected all of order's integer values to be in range 0 <= x <= 5, got %s." % (str(order),)
self.order = Choice(order)
elif isinstance(order, StochasticParameter):
self.order = order
else:
raise Exception("Expected order to be imgaug.ALL, int or StochasticParameter, got %s." % (type(order),))
if cval == ia.ALL:
self.cval = Uniform(0, 1.0)
elif ia.is_single_number(cval):
assert 0 <= cval <= 1.0
self.cval = Deterministic(cval)
elif ia.is_iterable(cval):
assert len(cval) == 2
assert 0 <= cval[0] <= 1.0
assert 0 <= cval[1] <= 1.0
self.cval = Uniform(cval[0], cval[1])
elif isinstance(cval, StochasticParameter):
self.cval = cval
else:
raise Exception("Expected cval to be imgaug.ALL, int, float or StochasticParameter, got %s." % (type(cval),))
# constant, edge, symmetric, reflect, wrap
if mode == ia.ALL:
self.mode = Choice(["constant", "edge", "symmetric", "reflect", "wrap"])
elif ia.is_string(mode):
self.mode = Deterministic(mode)
elif isinstance(mode, list):
assert all([ia.is_string(val) for val in mode])
self.mode = Choice(mode)
elif isinstance(mode, StochasticParameter):
self.mode = mode
else:
raise Exception("Expected mode to be imgaug.ALL, a string, a list of strings or StochasticParameter, got %s." % (type(mode),))
# scale
# float | (float, float) | [float, float] | StochasticParameter
def scale_handle_param(param, allow_dict):
if isinstance(param, StochasticParameter):
return param
elif ia.is_single_number(param):
assert param > 0.0, "Expected scale to have range (0, inf), got value %.4f. Note: The value to _not_ change the scale of images is 1.0, not 0.0." % (param,)
return Deterministic(param)
elif ia.is_iterable(param) and not isinstance(param, dict):
assert len(param) == 2, "Expected scale tuple/list with 2 entries, got %d entries." % (str(len(param)),)
assert param[0] > 0.0 and param[1] > 0.0, "Expected scale tuple/list to have values in range (0, inf), got values %.4f and %.4f. Note: The value to _not_ change the scale of images is 1.0, not 0.0." % (param[0], param[1])
return Uniform(param[0], param[1])
elif allow_dict and isinstance(param, dict):
assert "x" in param or "y" in param
x = param.get("x")
y = param.get("y")
x = x if x is not None else 1.0
y = y if y is not None else 1.0
return (scale_handle_param(x, False), scale_handle_param(y, False))
else:
raise Exception("Expected float, int, tuple/list with 2 entries or StochasticParameter. Got %s." % (type(param),))
self.scale = scale_handle_param(scale, True)
# translate
if translate_percent is None and translate_px is None:
translate_px = 0
assert translate_percent is None or translate_px is None
if translate_percent is not None:
# translate by percent
def translate_handle_param(param, allow_dict):
if ia.is_single_number(param):
return Deterministic(float(param))
elif ia.is_iterable(param) and not isinstance(param, dict):
assert len(param) == 2, "Expected translate_percent tuple/list with 2 entries, got %d entries." % (str(len(param)),)
all_numbers = all([ia.is_single_number(p) for p in param])
assert all_numbers, "Expected translate_percent tuple/list to contain only numbers, got types %s." % (str([type(p) for p in param]),)
#assert param[0] > 0.0 and param[1] > 0.0, "Expected translate_percent tuple/list to have values in range (0, inf), got values %.4f and %.4f." % (param[0], param[1])
return Uniform(param[0], param[1])
elif allow_dict and isinstance(param, dict):
assert "x" in param or "y" in param
x = param.get("x")
y = param.get("y")
x = x if x is not None else 0
y = y if y is not None else 0
return (translate_handle_param(x, False), translate_handle_param(y, False))
elif isinstance(param, StochasticParameter):
return param
else:
raise Exception("Expected float, int or tuple/list with 2 entries of both floats or ints or StochasticParameter. Got %s." % (type(param),))
self.translate = translate_handle_param(translate_percent, True)
else:
# translate by pixels
def translate_handle_param(param, allow_dict):
if ia.is_single_integer(param):
return Deterministic(param)
elif ia.is_iterable(param) and not isinstance(param, dict):
assert len(param) == 2, "Expected translate_px tuple/list with 2 entries, got %d entries." % (str(len(param)),)
all_integer = all([ia.is_single_integer(p) for p in param])
assert all_integer, "Expected translate_px tuple/list to contain only integers, got types %s." % (str([type(p) for p in param]),)
return DiscreteUniform(param[0], param[1])
elif allow_dict and isinstance(param, dict):
assert "x" in param or "y" in param
x = param.get("x")
y = param.get("y")
x = x if x is not None else 0
y = y if y is not None else 0
return (translate_handle_param(x, False), translate_handle_param(y, False))
elif isinstance(param, StochasticParameter):
return param
else:
raise Exception("Expected int or tuple/list with 2 ints or StochasticParameter. Got %s." % (type(param),))
self.translate = translate_handle_param(translate_px, True)
# rotate
# StochasticParameter | float | int | (float or int, float or int) | [float or int, float or int]
if isinstance(rotate, StochasticParameter):
self.rotate = rotate
elif ia.is_single_number(rotate):
self.rotate = Deterministic(rotate)
elif ia.is_iterable(rotate):
assert len(rotate) == 2, "Expected rotate tuple/list with 2 entries, got %d entries." % (str(len(rotate)),)
assert all([ia.is_single_number(val) for val in rotate]), "Expected floats/ints in rotate tuple/list"
self.rotate = Uniform(rotate[0], rotate[1])
else:
raise Exception("Expected float, int, tuple/list with 2 entries or StochasticParameter. Got %s." % (type(rotate),))
# shear
# StochasticParameter | float | int | (float or int, float or int) | [float or int, float or int]
if isinstance(shear, StochasticParameter):
self.shear = shear
elif ia.is_single_number(shear):
self.shear = Deterministic(shear)
elif ia.is_iterable(shear):
assert len(shear) == 2, "Expected rotate tuple/list with 2 entries, got %d entries." % (str(len(shear)),)
assert all([ia.is_single_number(val) for val in shear]), "Expected floats/ints in shear tuple/list."
self.shear = Uniform(shear[0], shear[1])
else:
raise Exception("Expected float, int, tuple/list with 2 entries or StochasticParameter. Got %s." % (type(shear),))
def _augment_images(self, images, random_state, parents, hooks):
# skimage's warp() converts to 0-1 range, so we use float here and then convert
# at the end
# float images are expected by skimage's warp() to be in range 0-1, so we divide by 255
if isinstance(images, list):
result = [image.astype(np.float32, copy=False) for image in images]
result = [image / 255.0 for image in images]
else:
result = images.astype(np.float32, copy=False)
result = result / 255.0
nb_images = len(images)
scale_samples, translate_samples, rotate_samples, shear_samples, cval_samples, mode_samples, order_samples = self._draw_samples(nb_images, random_state)
for i in sm.xrange(nb_images):
height, width = result[i].shape[0], result[i].shape[1]
shift_x = int(width / 2.0)
shift_y = int(height / 2.0)
scale_x, scale_y = scale_samples[0][i], scale_samples[1][i]
translate_x, translate_y = translate_samples[0][i], translate_samples[1][i]
#assert isinstance(translate_x, (float, int))
#assert isinstance(translate_y, (float, int))
if ia.is_single_float(translate_y):
translate_y_px = int(round(translate_y * images[i].shape[0]))
else:
translate_y_px = translate_y
if ia.is_single_float(translate_x):
translate_x_px = int(round(translate_x * images[i].shape[1]))
else:
translate_x_px = translate_x
rotate = rotate_samples[i]
shear = shear_samples[i]
cval = cval_samples[i]
mode = mode_samples[i]
order = order_samples[i]
if scale_x != 1.0 or scale_y != 1.0 or translate_x_px != 0 or translate_y_px != 0 or rotate != 0 or shear != 0:
matrix_to_topleft = tf.SimilarityTransform(translation=[-shift_x, -shift_y])
matrix_transforms = tf.AffineTransform(
scale=(scale_x, scale_y),
translation=(translate_x_px, translate_y_px),
rotation=math.radians(rotate),
shear=math.radians(shear)
)
matrix_to_center = tf.SimilarityTransform(translation=[shift_x, shift_y])
matrix = (matrix_to_topleft + matrix_transforms + matrix_to_center)
result[i] = tf.warp(
result[i],
matrix.inverse,
order=order,
mode=mode,
cval=cval
)
result[i] *= 255.0
np.clip(result[i], 0, 255, out=result[i])
if isinstance(images, list):
result = [image.astype(np.uint8, copy=False) for image in result]
else:
result = result.astype(np.uint8, copy=False)
return result
def _augment_keypoints(self, keypoints_on_images, random_state, parents, hooks):
result = []
nb_images = len(keypoints_on_images)
scale_samples, translate_samples, rotate_samples, shear_samples, cval_samples, mode_samples, order_samples = self._draw_samples(nb_images, random_state)
for i, keypoints_on_image in enumerate(keypoints_on_images):
height, width = keypoints_on_image.height, keypoints_on_image.width
shift_x = int(width / 2.0)
shift_y = int(height / 2.0)
scale_x, scale_y = scale_samples[0][i], scale_samples[1][i]
translate_x, translate_y = translate_samples[0][i], translate_samples[1][i]
#assert isinstance(translate_x, (float, int))
#assert isinstance(translate_y, (float, int))
if ia.is_single_float(translate_y):
translate_y_px = int(round(translate_y * keypoints_on_image.shape[0]))
else:
translate_y_px = translate_y
if ia.is_single_float(translate_x):
translate_x_px = int(round(translate_x * keypoints_on_image.shape[1]))
else:
translate_x_px = translate_x
rotate = rotate_samples[i]
shear = shear_samples[i]
#cval = cval_samples[i]
#mode = mode_samples[i]
#order = order_samples[i]
if scale_x != 1.0 or scale_y != 1.0 or translate_x_px != 0 or translate_y_px != 0 or rotate != 0 or shear != 0:
matrix_to_topleft = tf.SimilarityTransform(translation=[-shift_x, -shift_y])
matrix_transforms = tf.AffineTransform(
scale=(scale_x, scale_y),
translation=(translate_x_px, translate_y_px),
rotation=math.radians(rotate),
shear=math.radians(shear)
)
matrix_to_center = tf.SimilarityTransform(translation=[shift_x, shift_y])
matrix = (matrix_to_topleft + matrix_transforms + matrix_to_center)
coords = keypoints_on_image.get_coords_array()
#print("coords", coords)
#print("matrix", matrix.params)
coords_aug = tf.matrix_transform(coords, matrix.params)
#print("coords before", coords)
#print("coordsa ftre", coords_aug, np.around(coords_aug).astype(np.int32))
result.append(ia.KeypointsOnImage.from_coords_array(np.around(coords_aug).astype(np.int32), shape=keypoints_on_image.shape))
else:
result.append(keypoints_on_image)
return result
def get_parameters(self):
return [self.scale, self.translate, self.rotate, self.shear]
def _draw_samples(self, nb_samples, random_state):
seed = random_state.randint(0, 10**6, 1)[0]
if isinstance(self.scale, tuple):
scale_samples = (
self.scale[0].draw_samples((nb_samples,), random_state=ia.new_random_state(seed + 10)),
self.scale[1].draw_samples((nb_samples,), random_state=ia.new_random_state(seed + 20)),
)
else:
scale_samples = self.scale.draw_samples((nb_samples,), random_state=ia.new_random_state(seed + 30))
scale_samples = (scale_samples, scale_samples)
if isinstance(self.translate, tuple):
translate_samples = (
self.translate[0].draw_samples((nb_samples,), random_state=ia.new_random_state(seed + 40)),
self.translate[1].draw_samples((nb_samples,), random_state=ia.new_random_state(seed + 50)),
)
else:
translate_samples = self.translate.draw_samples((nb_samples,), random_state=ia.new_random_state(seed + 60))
translate_samples = (translate_samples, translate_samples)
assert translate_samples[0].dtype in [np.int32, np.int64, np.float32, np.float64]
assert translate_samples[1].dtype in [np.int32, np.int64, np.float32, np.float64]
rotate_samples = self.rotate.draw_samples((nb_samples,), random_state=ia.new_random_state(seed + 70))
shear_samples = self.shear.draw_samples((nb_samples,), random_state=ia.new_random_state(seed + 80))
cval_samples = self.cval.draw_samples((nb_samples,), random_state=ia.new_random_state(seed + 90))
mode_samples = self.mode.draw_samples((nb_samples,), random_state=ia.new_random_state(seed + 100))
order_samples = self.order.draw_samples((nb_samples,), random_state=ia.new_random_state(seed + 110))
return scale_samples, translate_samples, rotate_samples, shear_samples, cval_samples, mode_samples, order_samples
# code partially from
# https://gist.github.com/chsasank/4d8f68caf01f041a6453e67fb30f8f5a
class ElasticTransformation(Augmenter):
"""Augmenter class for ElasticTransformations
Elastic Transformations are transformations that allow non-rigid
transformations of images. In a sense, Elastic Transformations are opposite
of Affine Transforms, since Elastic Transformations can effect the lines,
planes and points of an image.
Elastic Transformations can be used to create new, unseen images from given
images, and are used extensively in Machine Learning/Pattern Recognition.
Parameters
----------
alpha : float, iterable of len 2, StochasticParameter
# TODO
sigma : float, iterable of len 2, StochasticParameter
# TODO
per_channel : boolean, optional(default=False)
apply transform in a per channel manner
name : string, optional(default=None)
name of the instance
deterministic : boolean, optional (default=False)
Whether random state will be saved before augmenting images
and then will be reset to the saved value post augmentation
use this parameter to obtain transformations in the EXACT order
everytime
random_state : int, RandomState instance or None, optional (default=None)
If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by `np.random`.
"""
def __init__(self, alpha=0, sigma=0, name=None, deterministic=False,
random_state=None):
super(ElasticTransformation, self).__init__(name=name, deterministic=deterministic, random_state=random_state)
if ia.is_single_number(alpha):
assert alpha >= 0.0, "Expected alpha to have range [0, inf), got value %.4f." % (alpha,)
self.alpha = Deterministic(alpha)
elif ia.is_iterable(alpha):
assert len(alpha) == 2, "Expected tuple/list with 2 entries, got %d entries." % (str(len(alpha)),)
self.alpha = Uniform(alpha[0], alpha[1])
elif isinstance(alpha, StochasticParameter):
self.alpha = alpha
else:
raise Exception("Expected float or int, tuple/list with 2 entries or StochasticParameter. Got %s." % (type(alpha),))
if ia.is_single_number(sigma):
assert sigma >= 0.0, "Expected sigma to have range [0, inf), got value %.4f." % (sigma,)
self.sigma = Deterministic(sigma)
elif ia.is_iterable(sigma):
assert len(sigma) == 2, "Expected tuple/list with 2 entries, got %d entries." % (str(len(sigma)),)
self.sigma = Uniform(sigma[0], sigma[1])
elif isinstance(sigma, StochasticParameter):
self.sigma = sigma
else:
raise Exception("Expected float or int, tuple/list with 2 entries or StochasticParameter. Got %s." % (type(sigma),))
def _augment_images(self, images, random_state, parents, hooks):
result = images
nb_images = len(images)
seeds = ia.copy_random_state(random_state).randint(0, 10**6, (nb_images,))
alphas = self.alpha.draw_samples((nb_images,), random_state=ia.copy_random_state(random_state))
sigmas = self.sigma.draw_samples((nb_images,), random_state=ia.copy_random_state(random_state))
for i in sm.xrange(nb_images):
image = images[i]
image_first_channel = np.squeeze(image[..., 0])
indices_x, indices_y = ElasticTransformation.generate_indices(image_first_channel.shape, alpha=alphas[i], sigma=sigmas[i], random_state=ia.new_random_state(seeds[i]))
result[i] = ElasticTransformation.map_coordinates(images[i], indices_x, indices_y)
return result
"""
def _augment_keypoints(self, keypoints_on_images, random_state, parents, hooks):
# TODO do keypoints even have to be augmented for elastic transformations?
# TODO this transforms keypoints to images, augments the images, then transforms
# back to keypoints - inefficient and keypoints that get outside of the images
# cannot be recovered
result = []
nb_images = len(keypoints_on_images)
seeds = ia.copy_random_state(random_state).randint(0, 10**6, (nb_images,))
alphas = self.alpha.draw_samples((nb_images,), random_state=ia.copy_random_state(random_state))
sigmas = self.sigma.draw_samples((nb_images,), random_state=ia.copy_random_state(random_state))
for i, keypoints_on_image in enumerate(keypoints_on_images):
indices_x, indices_y = ElasticTransformation.generate_indices(keypoints_on_image.shape[0:2], alpha=alphas[i], sigma=sigmas[i], random_state=ia.new_random_state(seeds[i]))
keypoint_image = keypoints_on_image.to_keypoint_image()
keypoint_image_aug = ElasticTransformation.map_coordinates(keypoint_image, indices_x, indices_y)
keypoints_aug = ia.KeypointsOnImage.from_keypoint_image(keypoint_image_aug)
result.append(keypoints_aug)
return result
"""
# no transformation of keypoints for this currently,
# it seems like this is the more appropiate choice overall for this augmentation
# technique
def _augment_keypoints(self, keypoints_on_images, random_state, parents, hooks):
return keypoints_on_images
def get_parameters(self):
return [self.alpha, self.sigma]
@staticmethod
def generate_indices(shape, alpha, sigma, random_state):
"""Elastic deformation of images as described in [Simard2003]_.
.. [Simard2003] Simard, Steinkraus and Platt, "Best Practices for
Convolutional Neural Networks applied to Visual Document Analysis", in
Proc. of the International Conference on Document Analysis and
Recognition, 2003.
"""
assert len(shape) == 2
dx = ndimage.gaussian_filter((random_state.rand(*shape) * 2 - 1), sigma, mode="constant", cval=0) * alpha
dy = ndimage.gaussian_filter((random_state.rand(*shape) * 2 - 1), sigma, mode="constant", cval=0) * alpha
x, y = np.meshgrid(np.arange(shape[0]), np.arange(shape[1]), indexing='ij')
return np.reshape(x+dx, (-1, 1)), np.reshape(y+dy, (-1, 1))
@staticmethod
def map_coordinates(image, indices_x, indices_y):
assert len(image.shape) == 3
result = np.copy(image)
height, width = image.shape[0:2]
for c in sm.xrange(image.shape[2]):
remapped_flat = ndimage.interpolation.map_coordinates(image[..., c], (indices_x, indices_y), order=1)
remapped = remapped_flat.reshape((height, width))
result[..., c] = remapped
return result
|
imgaug-master
|
imgaug/augmenters.py
|
from __future__ import print_function, division, absolute_import
from . import imgaug as ia
from abc import ABCMeta, abstractmethod
import numpy as np
import copy as copy_module
import six
@six.add_metaclass(ABCMeta)
class StochasticParameter(object):
def __init__(self):
super(StochasticParameter, self).__init__()
def draw_sample(self, random_state=None):
return self.draw_samples(1, random_state=random_state)[0]
def draw_samples(self, size, random_state=None):
random_state = random_state if random_state is not None else ia.current_random_state()
return self._draw_samples(size, random_state)
@abstractmethod
def _draw_samples(self, size, random_state):
raise NotImplementedError()
def copy(self):
return copy_module.copy(self)
def deepcopy(self):
return copy_module.deepcopy(self)
class Binomial(StochasticParameter):
def __init__(self, p):
super(Binomial, self).__init__()
if isinstance(p, StochasticParameter):
self.p = p
elif ia.is_single_number(p):
assert 0 <= p <= 1.0, "Expected probability p to be in range [0.0, 1.0], got %s." % (p,)
self.p = Deterministic(float(p))
else:
raise Exception("Expected StochasticParameter or float/int value, got %s." % (type(p),))
def _draw_samples(self, size, random_state):
p = self.p.draw_sample(random_state=random_state)
assert 0 <= p <= 1.0, "Expected probability p to be in range [0.0, 1.0], got %s." % (p,)
return random_state.binomial(1, p, size)
def __repr__(self):
return self.__str__()
def __str__(self):
if isinstance(self.p, float):
return "Binomial(%.4f)" % (self.p,)
else:
return "Binomial(%s)" % (self.p,)
class Choice(StochasticParameter):
def __init__(self, a, replace=True, p=None):
super(Choice, self).__init__()
self.a = a
self.replace = replace
self.p = p
def _draw_samples(self, size, random_state):
return random_state.choice(self.a, size, replace=self.replace, p=self.p)
def __repr__(self):
return self.__str__()
def __str__(self):
return "Choice(a=%s, replace=%s, p=%s)" % (str(self.a), str(self.replace), str(self.p),)
class DiscreteUniform(StochasticParameter):
def __init__(self, a, b):
StochasticParameter.__init__(self)
# for two ints the samples will be from range a <= x <= b
assert isinstance(a, (int, StochasticParameter)), "Expected a to be int or StochasticParameter, got %s" % (type(a),)
assert isinstance(b, (int, StochasticParameter)), "Expected b to be int or StochasticParameter, got %s" % (type(b),)
if ia.is_single_integer(a):
self.a = Deterministic(a)
else:
self.a = a
if ia.is_single_integer(b):
self.b = Deterministic(b)
else:
self.b = b
def _draw_samples(self, size, random_state):
a = self.a.draw_sample(random_state=random_state)
b = self.b.draw_sample(random_state=random_state)
if a > b:
a, b = b, a
elif a == b:
return np.tile(np.array([a]), size)
return random_state.randint(a, b + 1, size)
def __repr__(self):
return self.__str__()
def __str__(self):
return "DiscreteUniform(%s, %s)" % (self.a, self.b)
class Normal(StochasticParameter):
def __init__(self, loc, scale):
super(Normal, self).__init__()
if isinstance(loc, StochasticParameter):
self.loc = loc
elif ia.is_single_number(loc):
self.loc = Deterministic(loc)
else:
raise Exception("Expected float, int or StochasticParameter as loc, got %s, %s." % (type(loc),))
if isinstance(scale, StochasticParameter):
self.scale = scale
elif ia.is_single_number(scale):
assert scale >= 0, "Expected scale to be in range [0, inf) got %s (type %s)." % (scale, type(scale))
self.scale = Deterministic(scale)
else:
raise Exception("Expected float, int or StochasticParameter as scale, got %s, %s." % (type(scale),))
def _draw_samples(self, size, random_state):
loc = self.loc.draw_sample(random_state=random_state)
scale = self.scale.draw_sample(random_state=random_state)
assert scale >= 0, "Expected scale to be in rnage [0, inf), got %s." % (scale,)
if scale == 0:
return np.tile(loc, size)
else:
return random_state.normal(loc, scale, size=size)
def __repr__(self):
return self.__str__()
def __str__(self):
return "Normal(loc=%s, scale=%s)" % (self.loc, self.scale)
class Uniform(StochasticParameter):
def __init__(self, a, b):
super(Uniform, self).__init__()
assert isinstance(a, (int, float, StochasticParameter)), "Expected a to be int, float or StochasticParameter, got %s" % (type(a),)
assert isinstance(b, (int, float, StochasticParameter)), "Expected b to be int, float or StochasticParameter, got %s" % (type(b),)
if ia.is_single_number(a):
self.a = Deterministic(a)
else:
self.a = a
if ia.is_single_number(b):
self.b = Deterministic(b)
else:
self.b = b
def _draw_samples(self, size, random_state):
a = self.a.draw_sample(random_state=random_state)
b = self.b.draw_sample(random_state=random_state)
if a > b:
a, b = b, a
elif a == b:
return np.tile(np.array([a]), size)
return random_state.uniform(a, b, size)
def __repr__(self):
return self.__str__()
def __str__(self):
return "Uniform(%s, %s)" % (self.a, self.b)
class Deterministic(StochasticParameter):
def __init__(self, value):
super(Deterministic, self).__init__()
if isinstance(value, StochasticParameter):
self.value = value.draw_sample()
elif ia.is_single_number(value) or ia.is_string(value):
self.value = value
else:
raise Exception("Expected StochasticParameter object or number or string, got %s." % (type(value),))
def _draw_samples(self, size, random_state):
return np.tile(np.array([self.value]), size)
def __repr__(self):
return self.__str__()
def __str__(self):
if isinstance(self.value, int):
return "Deterministic(int %d)" % (self.value,)
else:
return "Deterministic(float %.8f)" % (self.value,)
class FromLowerResolution(StochasticParameter):
def __init__(self, other_param, size_percent=None, size_px=None, method="nearest", min_size=1):
super(StochasticParameter, self).__init__()
assert size_percent is not None or size_px is not None
if size_percent is not None:
self.size_method = "percent"
self.size_px = None
if ia.is_single_number(size_percent):
self.size_percent = Deterministic(size_percent)
elif ia.is_iterable(size_percent):
assert len(size_percent) == 2
self.size_percent = Uniform(size_percent[0], size_percent[1])
elif isinstance(size_percent, StochasticParameter):
self.size_percent = size_percent
else:
raise Exception("Expected int, float, tuple of two ints/floats or StochasticParameter for size_percent, got %s." % (type(size_percent),))
else: # = elif size_px is not None:
self.size_method = "px"
self.size_percent = None
if ia.is_single_integer(size_px):
self.size_px = Deterministic(size_px)
elif ia.is_iterable(size_px):
assert len(size_px) == 2
self.size_px = DiscreteUniform(size_px[0], size_px[1])
elif isinstance(size_px, StochasticParameter):
self.size_px = size_px
else:
raise Exception("Expected int, float, tuple of two ints/floats or StochasticParameter for size_px, got %s." % (type(size_px),))
self.other_param = other_param
if ia.is_string(method):
self.method = Deterministic(method)
elif isinstance(method, StochasticParameter):
self.method = method
else:
raise Exception("Expected string or StochasticParameter, got %s." % (type(method),))
self.min_size = min_size
def _draw_samples(self, size, random_state):
if len(size) == 3:
n = 1
h, w, c = size
elif len(size) == 4:
n, h, w, c = size
else:
raise Exception("FromLowerResolution can only generate samples of shape (H, W, C) or (N, H, W, C), requested was %s." % (str(size),))
if self.size_method == "percent":
hw_percents = self.size_percent.draw_samples((n, 2), random_state=random_state)
hw_pxs = (hw_percents * np.array([h, w])).astype(np.int32)
else:
hw_pxs = self.size_px.draw_samples((n, 2), random_state=random_state)
methods = self.method.draw_samples((n,), random_state=random_state)
result = None
#for i, (size_factor, method) in enumerate(zip(size_factors, methods)):
for i, (hw_px, method) in enumerate(zip(hw_pxs, methods)):
#h_small = max(int(h * size_factor), self.min_size)
#w_small = max(int(w * size_factor), self.min_size)
h_small = max(hw_px[0], self.min_size)
w_small = max(hw_px[1], self.min_size)
samples = self.other_param.draw_samples((1, h_small, w_small, c))
samples_upscaled = ia.imresize_many_images(samples, (h, w), interpolation=method)
if result is None:
result = np.zeros((n, h, w, c), dtype=samples.dtype)
result[i] = samples_upscaled
if len(size) == 3:
return result[0]
else:
return result
def __repr__(self):
return self.__str__()
def __str__(self):
if self.size_method == "percent":
return "FromLowerResolution(size_percent=%s, method=%s, other_param=%s)" % (self.size_percent, self.method, self.other_param)
else:
return "FromLowerResolution(size_px=%s, method=%s, other_param=%s)" % (self.size_px, self.method, self.other_param)
class Clip(StochasticParameter):
def __init__(self, other_param, minval=None, maxval=None):
super(Clip, self).__init__()
assert isinstance(other_param, StochasticParameter)
assert minval is None or ia.is_single_number(minval)
assert maxval is None or ia.is_single_number(maxval)
self.other_param = other_param
self.minval = minval
self.maxval = maxval
def _draw_samples(self, size, random_state):
samples = self.other_param.draw_samples(size, random_state=random_state)
if self.minval is not None and self.maxval is not None:
np.clip(samples, self.minval, self.maxval, out=samples)
elif self.minval is not None:
np.clip(samples, self.minval, np.max(samples), out=samples)
elif self.maxval is not None:
np.clip(samples, np.min(samples), self.maxval, out=samples)
else:
pass
return samples
def __repr__(self):
return self.__str__()
def __str__(self):
opstr = str(self.other_param)
if self.minval is not None and self.maxval is not None:
return "Clip(%s, %.6f, %.6f)" % (opstr, float(self.minval), float(self.maxval))
elif self.minval is not None:
return "Clip(%s, %.6f, None)" % (opstr, float(self.minval))
elif self.maxval is not None:
return "Clip(%s, None, %.6f)" % (opstr, float(self.maxval))
else:
return "Clip(%s, None, None)" % (opstr,)
|
imgaug-master
|
imgaug/parameters.py
|
# Copyright (c) Facebook, Inc. and its affiliates.
# Code by Samarth Brahmbhatt
import os
from scripts.download_data import ContactPoseDownloader
osp = os.path
def startup(data_dir=None, default_dir=osp.join('data', 'contactpose_data')):
# check that the provided data_dir is OK
if data_dir is not None:
assert data_dir!=default_dir, \
"If you provide --data_dir, it must not be {:s}".format(default_dir)
assert osp.isdir(data_dir), "If you provide --data_dir, it must exist"
else:
data_dir = default_dir
if not osp.isdir(data_dir):
if osp.isfile(data_dir) or osp.islink(data_dir):
os.remove(data_dir)
print('Removed file {:s}'.format(data_dir))
os.mkdir(data_dir)
# symlink for easy access
if data_dir != default_dir:
if osp.islink(default_dir):
os.remove(default_dir)
print('Removed symlink {:s}'.format(default_dir))
os.symlink(data_dir, default_dir)
print('Symlinked to {:s} for easy access'.format(default_dir))
downloader = ContactPoseDownloader()
# download 3D models and marker locations
downloader.download_3d_models()
downloader.download_markers()
# download all 3D joint, object pose, camera calibration data
downloader.download_grasps()
# download contact maps for participant 28, 'use' grasps
downloader.download_contact_maps(28, 'use')
# download RGB-D images for participant 28, bowl 'use' grasp
downloader.download_images(28, 'use', data_dir,
include_objects=('bowl',))
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--data_dir', default=None,
help='Base data dir for the ContactPose dataset')
args = parser.parse_args()
startup(args.data_dir)
|
ContactPose-main
|
startup.py
|
# Copyright (c) Facebook, Inc. and its affiliates.
# Code by Samarth Brahmbhatt
|
ContactPose-main
|
__init__.py
|
# Copyright (c) Facebook, Inc. and its affiliates.
# Code by Samarth Brahmbhatt
import numpy as np
import logging
import math
import transforms3d.euler as txe
import transforms3d.quaternions as txq
import argparse
import cv2
import matplotlib.pyplot as plt
try:
from thirdparty.mano.webuser.smpl_handpca_wrapper_HAND_only \
import load_model as load_mano_model
MANO_PRESENT = True
except ImportError:
load_mano_model = None
MANO_PRESENT = False
if MANO_PRESENT:
# hacks needed for MANO Python2 code
import os.path as osp
import _pickle as cPickle
import sys
sys.modules['cPickle'] = cPickle
sys.path.append(osp.join('thirdparty', 'mano'))
sys.path.append(osp.join('thirdparty', 'mano', 'webuser'))
def texture_proc(colors, a=0.05, invert=False):
idx = colors > 0
ci = colors[idx]
if len(ci) == 0:
return colors
if invert:
ci = 1 - ci
# fit a sigmoid
x1 = min(ci); y1 = a
x2 = max(ci); y2 = 1-a
lna = np.log((1 - y1) / y1)
lnb = np.log((1 - y2) / y2)
k = (lnb - lna) / (x1 - x2)
mu = (x2*lna - x1*lnb) / (lna - lnb)
# apply the sigmoid
ci = np.exp(k * (ci-mu)) / (1 + np.exp(k * (ci-mu)))
colors[idx] = ci
return colors
class MovingAverage:
def __init__(self):
self.count = 0
self.val = 0
def append(self, v):
self.val = self.val*self.count + v
self.count += 1
self.val /= self.count
def linesegment_from_points(p1, p2):
n = p2 - p1
return np.hstack((p1, n))
def get_hand_line_ids():
line_ids = []
for finger in range(5):
base = 4*finger + 1
line_ids.append([0, base])
for j in range(3):
line_ids.append([base+j, base+j+1])
line_ids = np.asarray(line_ids, dtype=int)
return line_ids
def rotmat_from_vecs(v1, v2=np.asarray([0, 0, 1])):
"""
Returns a rotation matrix R_1_2
:param v1: vector in frame 1
:param v2: vector in frame 2
:return:
"""
v1 = v1 / np.linalg.norm(v1)
v2 = v2 / np.linalg.norm(v2)
v = np.cross(v2, v1)
vx = np.asarray([
[0, -v[2], +v[1], 0],
[+v[2], 0, -v[0], 0],
[-v[1], +v[0], 0, 0],
[0, 0, 0, 0]])
dotp = np.dot(v1, v2)
if np.abs(dotp + 1) < 1e-3:
R = np.eye(4)
x = np.cross(v2, [1, 0, 0])
R[:3, :3] = txe.axangle2mat(x, np.pi)
else:
R = np.eye(4) + vx + np.dot(vx, vx)/(1+dotp)
return R
def p_dist_linesegment(p, ls):
"""
Distance from point p to line segment ls
p: Nx3
ls: Mx6 (2 3-dim endpoints of M line segments)
"""
# NxMx3
ap = p[:, np.newaxis, :] - ls[np.newaxis, :, :3]
# 1xMx3
u = ls[np.newaxis, :, 3:]
# 1xMx3
u_norm = u / np.linalg.norm(u, axis=2, keepdims=True)
# NxM
proj = np.sum(ap * u_norm, axis=2)
# point to line distance
# NxM
d_line = np.linalg.norm(np.cross(ap, u_norm, axis=2), axis=2)
# point to endpoint distance
# NxM
d_a = np.linalg.norm(ap, axis=2)
d_b = np.linalg.norm(ap-u, axis=2)
d_endp = np.minimum(d_a, d_b)
within_ls = (proj > 0) * (proj < np.linalg.norm(u, axis=2)) * (d_endp < 0.03)
d_ls = within_ls*d_line + (1-within_ls)*d_endp
return d_ls
def closest_linesegment_point(l0, l1, p):
"""
For each point in p, finds the closest point on the list of line segments
whose endpoints are l0 and l1
p: N x 3
l0, l1: M x 3
out: N x M x 3
"""
p = np.broadcast_to(p[:, np.newaxis, :], (len(p), len(l0), 3))
l0 = np.broadcast_to(l0[np.newaxis, :, :], (len(p), len(l0), 3))
l1 = np.broadcast_to(l1[np.newaxis, :, :], (len(p), len(l1), 3))
llen = np.linalg.norm(l1 - l0, axis=-1, keepdims=True)
lu = (l1 - l0) / llen
v = p - l0
d = np.sum(v * lu, axis=-1, keepdims=True)
d = np.clip(d, a_min=0, a_max=llen)
out = l0 + d*lu
return out
def pose_matrix(pose):
T = np.eye(4)
T[:3, 3] = pose['translation']
T[:3, :3] = txq.quat2mat(pose['rotation'])
return T
def tform_points(T, X):
"""
X: Nx3
T: 4x4 homogeneous
"""
X = np.vstack((X.T, np.ones(len(X))))
X = T @ X
X = X[:3].T
return X
def project(P, X):
"""
X: Nx3
P: 3x4 projection matrix, ContactPose.P or K @ cTo
returns Nx2 perspective projections
"""
X = np.vstack((X.T, np.ones(len(X))))
x = P @ X
x = x[:2] / x[2]
return x.T
def get_A(camera_name, W=960, H=540):
"""
Get the affine transformation matrix applied after 3D->2D projection
"""
def flipud(H):
return np.asarray([[1, 0, 0], [0, -1, H], [0, 0, 1]])
def fliplr(W):
return np.asarray([[-1, 0, W], [0, 1, 0], [0, 0, 1]])
def transpose():
return np.asarray([[0, 1, 0], [1, 0, 0], [0, 0, 1]])
if camera_name == 'kinect2_left':
return np.dot(fliplr(H), transpose())
elif camera_name == 'kinect2_right':
return np.dot(flipud(W), transpose())
elif camera_name == 'kinect2_middle':
return np.dot(fliplr(W), flipud(H))
else:
raise NotImplementedError
def setup_logging(filename=None):
logging.basicConfig(level=logging.DEBUG)
root = logging.getLogger()
if filename is not None:
root.addHandler(logging.FileHandler(filename, 'w'))
root.info('Logging to {:s}'.format(filename))
def quaternion_slerp(quat0, quat1, fraction, spin=0, shortestpath=True):
EPS = np.finfo(float).eps * 4.0
q0 = np.asarray(quat0) / np.linalg.norm(quat0)
q1 = np.asarray(quat1) / np.linalg.norm(quat1)
if fraction == 0.0:
return q0
elif fraction == 1.0:
return q1
d = np.dot(q0, q1)
if abs(abs(d) - 1.0) < EPS:
return q0
if shortestpath and d < 0.0:
# invert rotation
d = -d
q1 *= -1.0
angle = math.acos(d) + spin * math.pi
if abs(angle) < EPS:
return q0
isin = 1.0 / math.sin(angle)
q0 *= math.sin((1.0 - fraction) * angle) * isin
q1 *= math.sin(fraction * angle) * isin
q0 += q1
return q0
def average_quaternions(qs, ws=None):
"""
From https://qr.ae/TcwOci
"""
if ws is None:
ws = np.ones(len(qs)) / len(qs)
else:
assert sum(ws) == 1
for idx in range(1, len(qs)):
if np.dot(qs[0], qs[idx]) < 0:
qs[idx] *= -1
for i in range(1, len(qs)):
frac = ws[i] / (ws[i-1] + ws[i]) # weight of qs[i]
qs[i] = quaternion_slerp(qs[i-1], qs[i], fraction=frac)
ws[i] = 1 - sum(ws[i+1:])
return qs[-1]
def default_argparse(require_p_num=True, require_intent=True,
require_object_name=True):
parser = argparse.ArgumentParser()
parser.add_argument('--p_num', type=int, help='Participant number (1-50)',
required=require_p_num)
parser.add_argument('--intent', choices=('use', 'handoff'),
help='Grasp intent', required=require_intent)
parser.add_argument('--object_name', help="Name of object",
required=require_object_name)
return parser
def default_multiargparse():
parser = argparse.ArgumentParser()
parser.add_argument('--p_num',
help='Participant numbers, comma or - separated.'
'Skipping means all participants',
default=None)
parser.add_argument('--intent', choices=('use', 'handoff', 'use,handoff'),
help='Grasp intents, comma separated', default='use,handoff')
parser.add_argument('--object_name',
help="Object names, comma separated, ignore for all objects",
default=None)
return parser
def parse_multiargs(args):
"""
parses the p_num, intent, and object_name arguments from a parser created
with default_multiargparse
"""
from utilities.dataset import get_p_nums
p_nums = args.p_num
if p_nums is None:
p_nums = list(range(1, 51))
elif '-' in p_nums:
first, last = p_nums.split('-')
p_nums = list(range(int(first), int(last)+1))
else:
p_nums = [int(p) for p in p_nums.split(',')]
intents = args.intent.split(',')
object_names = args.object_name
if object_names is not None:
object_names = object_names.split(',')
all_p_nums = []
for intent in intents:
for object_name in object_names:
all_p_nums.extend([pn for pn in p_nums if pn in
get_p_nums(object_name, intent)])
p_nums = list(set(all_p_nums))
delattr(args, 'p_num')
delattr(args, 'intent')
delattr(args, 'object_name')
return p_nums, intents, object_names, args
def colorcode_depth_image(im):
assert(im.ndim == 2)
im = im.astype(float)
im /= im.max()
j, i = np.nonzero(im)
c = im[j, i]
im = np.zeros((im.shape[0], im.shape[1], 3))
im[j, i, :] = plt.cm.viridis(c)[:, :3]
im = (im * 255.0).astype(np.uint8)
return im
def draw_hands(im, joints, colors=((0, 255, 0), (0, 0, 255)), circle_radius=3,
line_thickness=2, offset=np.zeros(2, dtype=np.int)):
if im is None:
print('Invalid image')
return im
if im.ndim == 2: # depth image
im = colorcode_depth_image(im)
for hand_idx, (js, c) in enumerate(zip(joints, colors)):
if js is None:
continue
else:
js = np.round(js-offset[np.newaxis, :]).astype(np.int)
for j in js:
im = cv2.circle(im, tuple(j), circle_radius, c, -1, cv2.LINE_AA)
for finger in range(5):
base = 4*finger + 1
im = cv2.line(im, tuple(js[0]), tuple(js[base]), (0, 0, 0),
line_thickness, cv2.LINE_AA)
for j in range(3):
im = cv2.line(im, tuple(js[base+j]), tuple(js[base+j+1]),
(0, 0, 0), line_thickness, cv2.LINE_AA)
return im
def draw_object_markers(im, ms, color=(0, 255, 255), circle_radius=3,
offset=np.zeros(2, dtype=np.int)):
if im.ndim == 2: # depth image
im = colorcode_depth_image(im)
for m in np.round(ms).astype(np.int):
im = cv2.circle(im, tuple(m-offset), circle_radius, color, -1, cv2.LINE_AA)
return im
def crop_image(im, joints, crop_size, fillvalue=[0]):
"""
joints: list of 21x2 2D joint locations per each hand
crops the im into a crop_size square centered at the mean of all joint
locations
returns cropped image and top-left pixel position of the crop in the full image
"""
if im.ndim < 3:
im = im[:, :, np.newaxis]
if isinstance(fillvalue, list) or isinstance(fillvalue, np.ndarray):
fillvalue = np.asarray(fillvalue).astype(im.dtype)
else:
fillvalue = np.asarray([fillvalue for _ in im.shape[2]]).astype(im.dtype)
joints = np.vstack([j for j in joints if j is not None])
bbcenter = np.round(np.mean(joints, axis=0)).astype(np.int)
im_crop = np.zeros((crop_size, crop_size, im.shape[2]), dtype=im.dtype)
tl = bbcenter - crop_size//2
br = bbcenter + crop_size//2
tl_crop = np.asarray([0, 0], dtype=np.int)
br_crop = np.asarray([crop_size, crop_size], dtype=np.int)
tl_spill = np.minimum(0, tl)
tl -= tl_spill
tl_crop -= tl_spill
br_spill = np.maximum(0, br-np.array([im.shape[1], im.shape[0]]))
br -= br_spill
br_crop -= br_spill
im_crop[tl_crop[1]:br_crop[1], tl_crop[0]:br_crop[0], :] = \
im[tl[1]:br[1], tl[0]:br[0], :]
return im_crop.squeeze(), tl
def openpose2mano(o, n_joints_per_finger=4):
"""
convert joints from openpose format to MANO format
"""
finger_o2m = {0: 4, 1: 0, 2: 1, 3: 3, 4: 2}
m = np.zeros((5*n_joints_per_finger+1, 3))
m[0] = o[0]
for ofidx in range(5):
for jidx in range(n_joints_per_finger):
oidx = 1 + ofidx*4 + jidx
midx = 1 + finger_o2m[ofidx]*n_joints_per_finger + jidx
m[midx] = o[oidx]
return np.array(m)
# m2o
# 0->1, 1->2, 2->4, 3->3, 4->0
def mano2openpose(m, n_joints_per_finger=4):
"""
convert joints from MANO format to openpose format
"""
finger_o2m = {0: 4, 1: 0, 2: 1, 3: 3, 4: 2}
finger_m2o = {v: k for k,v in finger_o2m.items()}
o = np.zeros((5*n_joints_per_finger+1, 3))
o[0] = m[0]
for mfidx in range(5):
for jidx in range(n_joints_per_finger):
midx = 1 + mfidx*4 + jidx
oidx = 1 + finger_m2o[mfidx]*n_joints_per_finger + jidx
o[oidx] = m[midx]
return o
def mano_joints_with_fingertips(m):
"""
get joints from MANO model
MANO model does not come with fingertip joints, so we have selected vertices
that correspond to fingertips
"""
fingertip_idxs = [333, 444, 672, 555, 745]
out = [m.J_transformed[0]]
for fidx in range(5):
for jidx in range(4):
if jidx < 3:
idx = 1 + fidx*3 + jidx
out.append(m.J_transformed[idx])
else:
out.append(m[fingertip_idxs[fidx]])
return out
def load_mano_meshes(params, model_dicts, oTh=(np.eye(4), np.eye(4)),
flat_hand_mean=False):
if not MANO_PRESENT or model_dicts is None:
return (None, None)
out = []
for hand_idx, mp in enumerate(params):
if mp is None:
out.append(None)
continue
ncomps = len(mp['pose']) - 3
m = load_mano_model(model_dicts[hand_idx], ncomps=ncomps,
flat_hand_mean=flat_hand_mean)
m.betas[:] = mp['betas']
m.pose[:] = mp['pose']
oTm = oTh[hand_idx] @ mp['hTm']
vertices = np.array(m)
vertices = tform_points(oTm, vertices)
joints = mano2openpose(mano_joints_with_fingertips(m))
joints = tform_points(oTm, joints)
out.append({
'vertices': vertices,
'joints': joints,
'faces': np.asarray(m.f),
})
return out
def grabcut_mask(src, mask, n_iters=10):
"""
Refines noisy mask edges using Grabcut on image src
"""
assert(src.shape[:2] == mask.shape[:2])
y, x = np.where(mask)
gmask = np.zeros((src.shape[0], src.shape[1]), dtype=np.uint8) # GC_BGD
gmask[y.min():y.max()+1, x.min():x.max()+1] = 2 # GC_PR_BGD
gmask[y, x] = 3 # GC_PR_FGD
bgdModel = np.zeros((1,65),np.float64)
fgdModel = np.zeros((1,65),np.float64)
gmask, bgdModel, fgdModel = \
cv2.grabCut(src, gmask, (0, 0, 0, 0), bgdModel, fgdModel, n_iters,
mode=cv2.GC_INIT_WITH_MASK)
mask = np.logical_or(gmask==1, gmask==3)
return mask
|
ContactPose-main
|
utilities/misc.py
|
# Copyright (c) Facebook, Inc. and its affiliates.
# Code by Samarth Brahmbhatt
from utilities.import_open3d import *
from open3d import pipelines
import utilities.misc as mutils
assert(mutils.load_mano_model is not None)
import numpy as np
import chumpy as ch
import os
import json
import transforms3d.quaternions as txq
import pickle
osp = os.path
o3dr = pipelines.registration
def mano_param_dict(n_pose_params, n_betas=10):
out = {
'pose': [0.0 for _ in range(n_pose_params+3)],
'betas': [0.0 for _ in range(n_betas)],
'valid': False,
'mTc': {
'translation': [0.0, 0.0, 0.0],
'rotation': [1.0, 0.0, 0.0, 0.0],
}
}
return out
def get_palm_joints(p, n_joints_per_finger=4):
"""
get the 6 palm joints (root + base of all 5 fingers)
"""
idx = [0]
for fidx in range(5):
idx.append(1 + fidx*n_joints_per_finger)
return p[idx]
def register_pcs(src, tgt, verbose=True):
"""
registers two pointclouds by rigid transformation
target_x = target_T_source * source_x
"""
assert(len(src) == len(tgt))
ps = o3dg.PointCloud()
ps.points = o3du.Vector3dVector(src)
pt = o3dg.PointCloud()
pt.points = o3du.Vector3dVector(tgt)
c = [[i, i] for i in range(len(src))]
c = o3du.Vector2iVector(c)
r = o3dr.TransformationEstimationPointToPoint()
r.with_scaling = False
if verbose:
print('Rigid registration RMSE (before) = {:f}'.
format(r.compute_rmse(ps, pt, c)))
tTs = r.compute_transformation(ps, pt, c)
pst = ps.transform(tTs)
if verbose:
print('Rigid registration RMSE (after) = {:f}'.
format(r.compute_rmse(pst, pt, c)))
return tTs
class MANOFitter(object):
_mano_dicts = None
def __init__(self):
if MANOFitter._mano_dicts is None:
MANOFitter._mano_dicts = []
for hand_name in ('LEFT', 'RIGHT'):
filename = osp.join('thirdparty', 'mano', 'models',
'MANO_{:s}.pkl'.format(hand_name))
with open(filename, 'rb') as f:
MANOFitter._mano_dicts.append(pickle.load(f, encoding='latin1'))
@staticmethod
def fit_joints(both_joints, n_pose_params=15, shape_sigma=10.0,
save_filename=None):
"""
Fits the MANO model to hand joint 3D locations
both_jonts: tuple of length 2, 21 joints per hand, e.g. output of ContactPose.hand_joints()
n_pose_params: number of pose parameters (excluding 3 global rotation params)
shape_sigma: reciprocal of shape regularization strength
save_filename: file where the fitting output will be saved in JSON format
"""
mano_params = []
for hand_idx, joints in enumerate(both_joints):
if joints is None: # hand is not present
mano_params.append(mano_param_dict(n_pose_params)) # dummy
continue
cp_joints = mutils.openpose2mano(joints)
# MANO model
m = mutils.load_mano_model(MANOFitter._mano_dicts[hand_idx],
ncomps=n_pose_params, flat_hand_mean=False)
m.betas[:] = np.zeros(m.betas.size)
m.pose[:] = np.zeros(m.pose.size)
mano_joints = mutils.mano_joints_with_fingertips(m)
mano_joints_np = np.array([[float(mm) for mm in m] for m in mano_joints])
# align palm
cp_palm = get_palm_joints(np.asarray(cp_joints))
mano_palm = get_palm_joints(np.asarray(mano_joints_np))
mTc = register_pcs(cp_palm, mano_palm)
cp_joints = np.dot(mTc, np.vstack((cp_joints.T, np.ones(len(cp_joints)))))
cp_joints = cp_joints[:3].T
cp_joints = ch.array(cp_joints)
# set up objective
objective = [m-c for m,c in zip(mano_joints, cp_joints)]
mean_betas = ch.array(np.zeros(m.betas.size))
objective.append((m.betas - mean_betas) / shape_sigma)
# optimize
ch.minimize(objective, x0=(m.pose, m.betas, m.trans), method='dogleg')
p = mano_param_dict(n_pose_params)
p['pose'] = np.array(m.pose).tolist()
p['betas'] = np.array(m.betas).tolist()
p['valid'] = True
p['mTc']['translation'] = (mTc[:3, 3] - np.array(m.trans)).tolist()
p['mTc']['rotation'] = txq.mat2quat(mTc[:3, :3]).tolist()
mano_params.append(p)
# # to access hand mesh vertices and faces
# vertices = np.array(m.r)
# vertices = mutils.tform_points(np.linalg.inv(mTc), vertices)
# faces = np.array(m.f)
if save_filename is not None:
with open(save_filename, 'w') as f:
json.dump(mano_params, f, indent=4, separators=(',', ':'))
print('{:s} written'.format(save_filename))
return mano_params
|
ContactPose-main
|
utilities/mano_fitting.py
|
# Copyright (c) Facebook, Inc. and its affiliates.
# Code by Samarth Brahmbhatt
import sys
sys.path.append('.')
|
ContactPose-main
|
utilities/init_paths.py
|
# Copyright (c) Facebook, Inc. and its affiliates.
# Code by Samarth Brahmbhatt
import os
os.environ["PYOPENGL_PLATFORM"] = "osmesa"
import trimesh
import pyrender
import numpy as np
import transforms3d.euler as txe
import utilities.misc as mutils
import cv2
osp = os.path
class DepthRenderer(object):
"""
Renders object or hand mesh into a depth map
"""
def __init__(self, object_name_or_mesh, K, camera_name, mesh_scale=1.0):
"""
object_name_or_mesh: either object name string (for objects),
or {'vertices': ..., 'faces': ...} (for hand mesh)
K: 3x3 intrinsics matrix
mesh_scale: scale factor applied to the mesh (1.0 for hand, 1e-3 for object)
"""
self.K = K
self.camera_name = camera_name
if camera_name == 'kinect2_middle':
self.flip_fn = lambda x: cv2.flip(cv2.flip(x, 0), 1)
self.out_imsize = (960, 540)
elif camera_name == 'kinect2_left':
self.flip_fn = lambda x: cv2.flip(cv2.transpose(x), 1)
self.out_imsize = (540, 960)
elif camera_name == 'kinect2_right':
self.flip_fn = lambda x: cv2.flip(cv2.transpose(x), 0)
self.out_imsize = (540, 960)
else:
raise NotImplementedError
# mesh
if isinstance(object_name_or_mesh, str):
filename = osp.join('data', 'object_models',
'{:s}.ply'.format(object_name_or_mesh))
mesh_t = trimesh.load_mesh(filename)
elif isinstance(object_name_or_mesh, dict):
mesh_t = trimesh.Trimesh(vertices=object_name_or_mesh['vertices'],
faces=object_name_or_mesh['faces'])
else:
raise NotImplementedError
mesh_t.apply_transform(np.diag([mesh_scale, mesh_scale, mesh_scale, 1]))
self.oX = mesh_t.vertices
mesh = pyrender.Mesh.from_trimesh(mesh_t)
self.scene = pyrender.Scene()
self.scene.add(mesh, pose=np.eye(4))
# camera
camera = pyrender.IntrinsicsCamera(K[0, 0], K[1, 1], K[0, 2], K[1, 2],
znear=0.1, zfar=2.0)
self.camera_node = pyrender.Node(camera=camera, matrix=np.eye(4))
self.scene.add_node(self.camera_node)
self.cTopengl = np.eye(4)
self.cTopengl[:3, :3] = txe.euler2mat(np.pi, 0, 0)
# renderer object
self.renderer = pyrender.OffscreenRenderer(960, 540)
def render(self, object_pose):
"""
returns depth map produced by rendering the mesh
object_pose: 4x4 pose of object w.r.t. camera, from ContactPose.object_pose()
object_pose = cTo in the naming convention
"""
oTc = np.linalg.inv(object_pose)
oTopengl = oTc @ self.cTopengl
self.scene.set_pose(self.camera_node, oTopengl)
# TODO: figure out DEPTH_ONLY rendering mode with OSMesa backend
# DEPTH_ONLY + OSMesa does not work currently
# so we have to render color also :(
_, depth = self.renderer.render(self.scene)
return self.flip_fn(depth)
def object_visibility_and_projections(self, object_pose, depth_thresh=5e-3):
"""
returns projection locations of object mesh vertices (Nx2)
and their binary visibility from the object_pose
object_pose = cTo 4x4 pose of object w.r.t. camera
This is cheap Z-buffering. We use rendered depth maps because they are
cleaner than Kinect depth maps
"""
# render depth image
depth_im = self.render(object_pose)
# project all vertices
cX = mutils.tform_points(object_pose, self.oX)
P = mutils.get_A(self.camera_name) @ self.K @ np.eye(4)[:3]
cx = mutils.project(P, cX)
# determine visibility
visible = cX[:, 2] > 0
visible = np.logical_and(visible, cx[:, 0] >= 0)
visible = np.logical_and(visible, cx[:, 1] >= 0)
visible = np.logical_and(visible, cx[:, 0] < self.out_imsize[0]-1)
visible = np.logical_and(visible, cx[:, 1] < self.out_imsize[1]-1)
u = np.round(cx[:, 0]).astype(np.int)
v = np.round(cx[:, 1]).astype(np.int)
d_sensor = -np.ones(len(u))
d_sensor[visible] = depth_im[v[visible], u[visible]]
visible = np.logical_and(visible, np.abs(d_sensor-cX[:, 2]) < depth_thresh)
return cx, visible
|
ContactPose-main
|
utilities/rendering.py
|
# Copyright (c) Facebook, Inc. and its affiliates.
# Code by Samarth Brahmbhatt
from open3d import io as o3dio
from open3d import visualization as o3dv
from open3d import utility as o3du
from open3d import geometry as o3dg
|
ContactPose-main
|
utilities/import_open3d.py
|
# Copyright (c) Facebook, Inc. and its affiliates.
# Code by Samarth Brahmbhatt
|
ContactPose-main
|
utilities/__init__.py
|
# Copyright (c) Facebook, Inc. and its affiliates.
# Code by Samarth Brahmbhatt
"""
ContactPose dataset loading utilities
"""
import os
import json
import numpy as np
import pickle
from . import misc as mutils
osp = os.path
def get_object_names(p_num, intent, ignore_hp=True):
"""
returns list of objects grasped by this participant with this intent
"""
sess_dir = 'full{:d}_{:s}'.format(p_num, intent)
sess_dir = osp.join(osp.dirname(__file__), '..', 'data', 'contactpose_data', sess_dir)
ignored_objects = ('hands', 'palm_print') if ignore_hp else ()
return [o for o in next(os.walk(sess_dir))[1] if o not in ignored_objects]
def get_intents(p_num, object_name):
"""
returns list of intents with which this participant grasped object
"""
out = []
for ins in ('use', 'handoff'):
sess_dir = 'full{:d}_{:s}'.format(p_num, ins)
sess_dir = osp.join(osp.dirname(__file__), '..', 'data', 'contactpose_data', sess_dir, object_name)
if osp.isdir(sess_dir):
out.append(ins)
return out
def get_p_nums(object_name, intent):
"""
returns list of participants who grasped this object with this intent
"""
out = []
for p_num in range(1, 51):
sess_dir = 'full{:d}_{:s}'.format(p_num, intent)
sess_dir = osp.join(osp.dirname(__file__), '..', 'data', 'contactpose_data', sess_dir, object_name)
if osp.isdir(sess_dir):
out.append(p_num)
return out
class ContactPose(object):
"""
Base class for accessing the ContactPose dataset
"""
_mano_dicts = None # class variable so that large data is not loaded repeatedly
def __init__(self, p_num, intent, object_name, mano_pose_params=15,
load_mano=True):
"""
load_mano: Flag can be used to prevent loading MANO hand models, which is
time consuming
"""
if (object_name == 'palm_print') or (object_name == 'hands'):
print('This class is not meant to be used with palm_print or hands')
raise ValueError
self.p_num = p_num
self.intent = intent
self.object_name = object_name
self._mano_pose_params = mano_pose_params
p_id = 'full{:d}_{:s}'.format(p_num, intent)
self.data_dir = osp.join(osp.dirname(__file__), '..', 'data', 'contactpose_data', p_id, object_name)
assert(osp.isdir(self.data_dir))
# read grasp data
with open(self.annotation_filename, 'r') as f:
ann = json.load(f)
self._n_frames = len(ann['frames'])
self._valid_cameras = [cn for cn,cv in ann['cameras'].items() if cv['valid']]
self._is_object_pose_optimized = [f['object_pose_optimized'] for
f in ann['frames']]
self._valid_hands = [hand_idx for hand_idx, hand in enumerate(ann['hands'])
if hand['valid']]
im_filenames = {}
for camera_name in self.valid_cameras:
im_dir = osp.join(self.data_dir, 'images_full', camera_name, '{:s}')
im_filenames[camera_name] = [
osp.join(im_dir, 'frame{:03d}.png'.format(i)) for i in range(len(self))]
self._im_filenames = [{k: v for k,v in zip(im_filenames.keys(), vv)} for
vv in zip(*im_filenames.values())]
oX = [] # 3D joints w.r.t. object
all_oTh = []
for hand_idx, hand in enumerate(ann['hands']):
if hand['valid']:
hX = np.asarray(hand['joints']) # hand joints w.r.t. hand root
if hand['moving']:
# object pose w.r.t. hand
oThs = [np.linalg.inv(mutils.pose_matrix(f['hTo'][hand_idx])) for f
in ann['frames']]
all_oTh.append(oThs)
oX.append([mutils.tform_points(oTh, hX) for oTh in oThs])
else:
oX.append([hX for _ in range(len(self))])
all_oTh.append([np.eye(4) for _ in range(len(self))])
else:
oX.append([None for _ in range(len(self))])
all_oTh.append([np.eye(4) for _ in range(len(self))])
self._oX = list(map(tuple, zip(*oX)))
self._oTh = list(map(tuple, zip(*all_oTh)))
# world pose w.r.t. object
oTws = [mutils.pose_matrix(f['oTw']) for f in ann['frames']]
self._cTo = {} # object pose w.r.t. camera
self._K = {} # camera intrinsics
for camera_name in self.valid_cameras:
cam = ann['cameras'][camera_name]
self._K[camera_name] = np.array([[cam['K']['fx'], 0, cam['K']['cx']],
[0, cam['K']['fy'], cam['K']['cy']],
[0, 0, 1]])
# camera pose w.r.t. world
wTc = mutils.pose_matrix(cam['wTc'])
self._cTo[camera_name] = [np.linalg.inv(oTw @ wTc) for oTw in oTws]
# projections
self._ox = [] # joint projections
self._om = [] # marker projections
# 3D marker locations w.r.t. object
oM = np.loadtxt(osp.join(osp.dirname(__file__), '..', 'data',
'object_marker_locations',
'{:s}_final_marker_locations.txt'.
format(object_name)))[:, :3]
for frame_idx in range(len(self)):
this_ox = {}
this_om = {}
for camera_name in self.valid_cameras:
this_om[camera_name] = mutils.project(self.P(camera_name, frame_idx),
oM)
x = []
for hand_idx in range(2):
if hand_idx not in self._valid_hands:
x.append(None)
else:
x.append(mutils.project(self.P(camera_name, frame_idx),
self._oX[frame_idx][hand_idx]))
this_ox[camera_name] = tuple(x)
self._ox.append(this_ox)
self._om.append(this_om)
# check if MANO code and models are present
if mutils.MANO_PRESENT and load_mano:
# load MANO data for the class
if ContactPose._mano_dicts is not None:
return
ContactPose._mano_dicts = []
for hand_name in ('LEFT', 'RIGHT'):
filename = osp.join(osp.dirname(__file__), '..', 'thirdparty',
'mano', 'models',
'MANO_{:s}.pkl'.format(hand_name))
with open(filename, 'rb') as f:
ContactPose._mano_dicts.append(pickle.load(f, encoding='latin1'))
elif load_mano:
print('MANO code was not detected, please follow steps in README.md. '
'mano_meshes() will return (None, None)')
def __len__(self):
"""
Number of RGB-D time frames
"""
return self._n_frames
def __repr__(self):
hand_names = ['left', 'right']
hand_str = ' '.join([hand_names[i] for i in self._valid_hands])
return 'Participant {:d}, intent {:s}, object {:s}\n'.format(self.p_num,
self.intent,
self.object_name) +\
'{:d} frames\n'.format(len(self)) +\
'Cameras present: {:s}\n'.format(' '.join(self.valid_cameras)) +\
'Hands present: {:s}'.format(hand_str)
@property
def contactmap_filename(self):
return osp.join(self.data_dir, '{:s}.ply'.format(self.object_name))
@property
def annotation_filename(self):
return osp.join(self.data_dir, 'annotations.json')
@property
def mano_filename(self):
"""
return name of file containing MANO fit params
"""
return osp.join(self.data_dir,
'mano_fits_{:d}.json'.format(self._mano_pose_params))
@property
def valid_cameras(self):
"""
return list of cameras valid for this grasp
"""
return self._valid_cameras
@property
def mano_params(self):
"""
List of 2 [left, right]. Each element is None or a dict containing
'pose' (PCA pose space of dim self._mano_pose_params),
'betas' (PCA shape space), and root transform 'hTm'
"""
with open(self.mano_filename, 'r') as f:
params = json.load(f)
out = []
for p in params:
if not p['valid']:
out.append(None)
continue
# MANO root pose w.r.t. hand
hTm = np.linalg.inv(mutils.pose_matrix(p['mTc']))
out.append({
'pose': p['pose'],
'betas': p['betas'],
'hTm': hTm,
})
return out
def im_size(self, camera_name):
"""
(width, height) in pixels
"""
return (960, 540) if camera_name == 'kinect2_middle' else (540, 960)
def image_filenames(self, mode, frame_idx):
"""
return dict with full image filenames for all valid cameras
mode = color or depth
"""
return {k: v.format(mode) for k,v in self._im_filenames[frame_idx].items()}
def hand_joints(self, frame_idx=None):
"""
3D hand joints w.r.t. object
randomly sampled time frame if frame_idx is None
tuple of length 2, 21 joints per hand, None if hand is not present
"""
if frame_idx is None:
frame_idx = np.random.choice(len(self))
return self._oX[frame_idx]
def K(self, camera_name):
"""
Camera intrinsics 3x3
You will almost never need this. Use self.P() for projection
"""
return self._K[camera_name]
def A(self, camera_name):
"""
Affine transform to be applied to 2D points after projection
Included in self.P
"""
return mutils.get_A(camera_name, 960, 540)
def P(self, camera_name, frame_idx):
"""
3x4 3D -> 2D projection matrix
Use this for all projection operations, not self.K
"""
P = self.K(camera_name) @ self.object_pose(camera_name, frame_idx)[:3]
P = self.A(camera_name) @ P
return P
def object_pose(self, camera_name, frame_idx):
"""
Pose of object w.r.t. camera at frame frame_idx
4x4 homogeneous matrix
"""
return self._cTo[camera_name][frame_idx]
def projected_hand_joints(self, camera_name, frame_idx):
"""
hand joints projected into camera image
tuple of length 2
21x2 or None based on if hand is present in this grasp
"""
return self._ox[frame_idx][camera_name]
def projected_object_markers(self, camera_name, frame_idx):
"""
object markers projected into camera image
Nx2 where N in [5, 10]
"""
return self._om[frame_idx][camera_name]
def mano_meshes(self, frame_idx=None):
"""
return list of 2 dicts. Element is None if that hand is absent,
or contains 'vertices', 'faces', and 'joints'
"""
if frame_idx is None:
frame_idx = np.random.choice(len(self))
return mutils.load_mano_meshes(self.mano_params, ContactPose._mano_dicts,
self._oTh[frame_idx])
|
ContactPose-main
|
utilities/dataset.py
|
import datetime
try:
import dropbox
DROPBOX_FOUND = True
except ImportError:
DROPBOX_FOUND = False
import json
import math
import os
import random
import requests
from requests.exceptions import ConnectionError
import time
from tqdm.autonotebook import tqdm
osp = os.path
if DROPBOX_FOUND:
dropbox_app_key = os.environ.get('DROPBOX_APP_KEY')
with open(osp.join('data', 'proxies.json'), 'r') as f:
proxies = json.load(f)
if ('https' not in proxies) or (proxies['https'] is None):
proxies = None
def exponential_backoff(n, max_backoff=64.0):
t = math.pow(2.0, n)
t += (random.randint(0, 1000)) / 1000.0
t = min(t, max_backoff)
return t
def upload_dropbox(lfilename, dfilename, max_tries=7):
"""
Upload local file lfilename to dropbox location dfilename
Implements exponential backoff
"""
if not DROPBOX_FOUND:
print('Dropbox API not found')
return False
dbx = dropbox.Dropbox(dropbox_app_key)
ddir, _ = osp.split(dfilename)
ddir_exists = True
try:
dbx.files_get_metadata(ddir)
except dropbox.exceptions.ApiError as err:
ddir_exists = False
if not ddir_exists:
try:
dbx.files_create_folder(ddir)
except dropbox.exceptions.ApiError as err:
print('*** API error', err)
dbx.close()
return False
mtime = osp.getmtime(lfilename)
with open(lfilename, 'rb') as f:
ldata = f.read()
upload_tries = 0
while upload_tries < max_tries:
try:
res = dbx.files_upload(
ldata, dfilename,
dropbox.files.WriteMode.overwrite,
client_modified=datetime.datetime(*time.gmtime(mtime)[:6]),
mute=True)
print('uploaded as', res.name.encode('utf8'))
dbx.close()
return True
except dropbox.exceptions.ApiError as err:
print('*** API error', err)
dbx.close()
return False
except ConnectionError as err:
t = exponential_backoff(upload_tries)
print('*** Requests Connection error, sleeping for {:f} s'.format(t), err)
time.sleep(t)
upload_tries += 1
print('*** Max upload tries exceeded')
dbx.close()
return False
def download_url(url, filename, progress=True, max_tries=7):
"""
Download file from a URL to filename, optionally
displaying progress bar with tqdm
Implements exponential backoff
"""
tries = 0
while tries < max_tries:
done = download_url_once(url, filename, progress)
if done:
return True
else:
t = exponential_backoff(tries)
print('*** Sleeping for {:f} s'.format(t))
time.sleep(t)
tries += 1
print('*** Max download tries exceeded')
return False
def download_url_once(url, filename, progress=True):
"""
Download file from a URL to filename, optionally
displaying progress bar with tqdm
taken from https://stackoverflow.com/a/37573701
"""
# Streaming, so we can iterate over the response.
try:
r = requests.get(url, stream=True, proxies=proxies)
except ConnectionError as err:
print(err)
return False
# Total size in bytes.
total_size = int(r.headers.get('content-length', 0))
block_size = 1024 #1 Kibibyte
if progress:
t=tqdm(total=total_size, unit='iB', unit_scale=True)
done = True
datalen = 0
with open(filename, 'wb') as f:
itr = r.iter_content(block_size)
while True:
try:
try:
data = next(itr)
except StopIteration:
break
if progress:
t.update(len(data))
datalen += len(data)
f.write(data)
except KeyboardInterrupt:
done = False
print('Cancelled')
except ConnectionError as err:
done = False
print(err)
if progress:
t.close()
if (not done) or (total_size != 0 and datalen != total_size):
print("ERROR, something went wrong")
try:
os.remove(filename)
except OSError as e:
print(e)
return False
else:
return True
|
ContactPose-main
|
utilities/networking.py
|
# Copyright (c) Facebook, Inc. and its affiliates.
# Code by Samarth Brahmbhatt
import sys
sys.path.append('.')
|
ContactPose-main
|
scripts/init_paths.py
|
# Copyright (c) Facebook, Inc. and its affiliates.
# Code by Samarth Brahmbhatt
import matplotlib.pyplot as plt
import numpy as np
import init_paths
from utilities.import_open3d import *
from utilities.dataset import ContactPose
import utilities.misc as mutils
def apply_colormap_to_mesh(mesh, sigmoid_a=0.05, invert=False):
colors = np.asarray(mesh.vertex_colors)[:, 0]
colors = mutils.texture_proc(colors, a=sigmoid_a, invert=invert)
colors = plt.cm.inferno(colors)[:, :3]
mesh.vertex_colors = o3du.Vector3dVector(colors)
return mesh
def apply_semantic_colormap_to_mesh(mesh, semantic_idx, sigmoid_a=0.05,
invert=False):
colors = np.asarray(mesh.vertex_colors)[:, 0]
colors = mutils.texture_proc(colors, a=sigmoid_a, invert=invert)
# apply different colormaps based on finger
mesh_colors = np.zeros((len(colors), 3))
cmaps = ['Greys', 'Purples', 'Oranges', 'Greens', 'Blues', 'Reds']
cmaps = [plt.cm.get_cmap(c) for c in cmaps]
for semantic_id in np.unique(semantic_idx):
if (len(cmaps) <= semantic_id):
print('Not enough colormaps, ignoring semantic id {:d}'.format(
semantic_id))
continue
idx = semantic_idx == semantic_id
mesh_colors[idx] = cmaps[semantic_id](colors[idx])[:, :3]
mesh.vertex_colors = o3du.Vector3dVector(mesh_colors)
return mesh
def show_contactmap(p_num, intent, object_name, mode='simple',
joint_sphere_radius_mm=4.0, bone_cylinder_radius_mm=2.5,
bone_color=np.asarray([224.0, 172.0, 105.0])/255,
show_axes=False):
"""
mode =
simple: just contact map
simple_hands: skeleton + contact map
semantic_hands_fingers: skeleton + contact map colored by finger proximity
semantic_hands_phalanges: skeleton + contact map colored by phalange proximity
show_axes: visualize coordinate axes if True
"""
cp = ContactPose(p_num, intent, object_name)
# read contactmap
mesh = o3dio.read_triangle_mesh(cp.contactmap_filename)
mesh.compute_vertex_normals()
geoms = []
# apply simple colormap to the mesh
if 'simple' in mode:
mesh = apply_colormap_to_mesh(mesh)
geoms.append(mesh)
if 'hands' in mode:
# read hands
line_ids = mutils.get_hand_line_ids()
joint_locs = cp.hand_joints()
# show hands
hand_colors = [[0, 1, 0], [1, 0, 0]]
for hand_idx, hand_joints in enumerate(joint_locs):
if hand_joints is None:
continue
# joint locations
for j in hand_joints:
m = o3dg.TriangleMesh.create_sphere(radius=joint_sphere_radius_mm*1e-3,
resolution=10)
T = np.eye(4)
T[:3, 3] = j
m.transform(T)
m.paint_uniform_color(hand_colors[hand_idx])
m.compute_vertex_normals()
geoms.append(m)
# connecting lines
for line_idx, (idx0, idx1) in enumerate(line_ids):
bone = hand_joints[idx0] - hand_joints[idx1]
h = np.linalg.norm(bone)
l = o3dg.TriangleMesh.create_cylinder(radius=bone_cylinder_radius_mm*1e-3,
height=h, resolution=10)
T = np.eye(4)
T[2, 3] = -h/2.0
l.transform(T)
T = mutils.rotmat_from_vecs(bone, [0, 0, 1])
T[:3, 3] = hand_joints[idx0]
l.transform(T)
l.paint_uniform_color(bone_color)
l.compute_vertex_normals()
geoms.append(l)
if 'semantic' in mode:
n_lines_per_hand = len(line_ids)
n_parts_per_finger = 4
# find line equations for hand parts
lines = []
for hand_joints in joint_locs:
if hand_joints is None:
continue
for line_id in line_ids:
a = hand_joints[line_id[0]]
n = hand_joints[line_id[1]] - hand_joints[line_id[0]]
n /= np.linalg.norm(n)
lines.append(np.hstack((a, n)))
lines = np.asarray(lines)
ops = np.asarray(mesh.vertices)
d_lines = mutils.p_dist_linesegment(ops, lines)
line_idx = np.argmin(d_lines, axis=1) % n_lines_per_hand
finger_idx, part_idx = divmod(line_idx, n_parts_per_finger)
if 'phalanges' in mode:
mesh = apply_semantic_colormap_to_mesh(mesh, part_idx)
elif 'fingers' in mode:
mesh = apply_semantic_colormap_to_mesh(mesh, finger_idx)
geoms.append(mesh)
elif 'mano' in mode:
for hand in cp.mano_meshes():
if hand is None:
continue
mesh = o3dg.TriangleMesh()
mesh.vertices = o3du.Vector3dVector(hand['vertices'])
mesh.triangles = o3du.Vector3iVector(hand['faces'])
mesh.paint_uniform_color(bone_color)
mesh.compute_vertex_normals()
geoms.append(mesh)
if show_axes:
geoms.append(o3dg.TriangleMesh.create_coordinate_frame(size=0.2))
o3dv.draw_geometries(geoms)
if __name__ == '__main__':
import sys
parser = mutils.default_argparse()
parser.add_argument('--mode', help='Contact Map mode', default='simple_hands',
choices=('simple', 'simple_mano', 'simple_hands', 'semantic_hands_fingers',
'semantic_hands_phalanges'))
parser.add_argument('--show_axes', action='store_true',
help='Show coordinate axes')
args = parser.parse_args()
if args.object_name == 'hands':
print('hands do not have a contact map')
sys.exit(0)
elif args.object_name == 'palm_print':
print('Forcing mode to simple since palm_print does not have hand pose')
args.mode = 'simple'
show_contactmap(args.p_num, args.intent, args.object_name, args.mode,
show_axes=args.show_axes)
|
ContactPose-main
|
scripts/show_contactmap.py
|
# Copyright (c) Facebook, Inc. and its affiliates.
# Code by Samarth Brahmbhatt
"""
Preprocesses images for ML training by cropping (RGB and depth), and
randomizing background (RGB only)
NOTE: Requites rendering setup, see docs/rendering.py
"""
import init_paths
from utilities.dataset import ContactPose, get_object_names
from utilities.rendering import DepthRenderer
import utilities.misc as mutils
import numpy as np
import cv2
import os
from tqdm import tqdm
osp = os.path
def inspect_dir(dirname):
assert(osp.isdir(dirname))
print('Inspecting {:s}...'.format(dirname))
filenames = next(os.walk(dirname))[-1]
filenames = [osp.join(dirname, f) for f in filenames]
print('Found {:d} images'.format(len(filenames)))
return filenames
def preprocess(p_num, intent, object_name, rim_filenames_or_dir, crop_size,
do_rgb=True, do_depth=True, do_grabcut=True,
depth_percentile_thresh=30, mask_dilation=5):
if isinstance(rim_filenames_or_dir, list):
rim_filenames = rim_filenames_or_dir[:]
else:
rim_filenames = inspect_dir(rim_filenames_or_dir)
cp = ContactPose(p_num, intent, object_name, load_mano=False)
for camera_name in cp.valid_cameras:
K = cp.K(camera_name)
renderer = DepthRenderer(object_name, K, camera_name, 1e-3)
output_dir = osp.join(cp.data_dir, 'images', camera_name)
for d in ('color', 'depth', 'projections'):
dd = osp.join(output_dir, d)
if not osp.isdir(dd):
os.makedirs(dd)
A = mutils.get_A(camera_name)
print('{:d}:{:s}:{:s}:{:s}'.format(p_num, intent, object_name, camera_name))
print('Writing to {:s}'.format(output_dir))
for frame_idx in tqdm(range(len(cp))):
# read images
filename = cp.image_filenames('color', frame_idx)[camera_name]
rgb_im = cv2.imread(filename)
if rgb_im is None:
print('Could not read {:s}, skipping frame'.format(filename))
continue
filename = cp.image_filenames('depth', frame_idx)[camera_name]
_, out_filename = osp.split(filename)
depth_im = cv2.imread(filename, -1)
if depth_im is None:
print('Could not read {:s}, skipping frame'.format(filename))
continue
# crop images
joints = cp.projected_hand_joints(camera_name, frame_idx)
rgb_im, _ = mutils.crop_image(rgb_im, joints, crop_size)
depth_im, crop_tl = mutils.crop_image(depth_im, joints, crop_size)
this_A = np.copy(A)
A = np.asarray([[1, 0, -crop_tl[0]], [0, 1, -crop_tl[1]], [0, 0, 1]]) @ A
cTo = cp.object_pose(camera_name, frame_idx)
P = this_A @ K @ cTo[:3]
if do_depth: # save preprocessed depth image
filename = osp.join(output_dir, 'depth', out_filename)
cv2.imwrite(filename, depth_im)
# save projection matrix
filename = osp.join(output_dir, 'projections',
out_filename.replace('.png', '_P.txt'))
np.savetxt(filename, P)
# foreground mask
cxx, visible = renderer.object_visibility_and_projections(cTo)
cxx -= crop_tl
cx = np.round(cxx).astype(np.int)
visible = np.logical_and(visible, cx[:, 0]>=0)
visible = np.logical_and(visible, cx[:, 1]>=0)
visible = np.logical_and(visible, cx[:, 0] < rgb_im.shape[1])
visible = np.logical_and(visible, cx[:, 1] < rgb_im.shape[0])
cx = cx[visible]
# save projection information
filename = osp.join(output_dir, 'projections',
out_filename.replace('.png', '_verts.npy'))
idx = np.where(visible)[0]
projs = np.vstack((cxx[idx].T, idx)).T
np.save(filename, projs)
if not do_rgb:
continue
obj_depths = depth_im[cx[:, 1], cx[:, 0]]
obj_depths = obj_depths[obj_depths > 0]
all_depths = depth_im[depth_im > 0]
if (len(obj_depths) > 0) and (len(all_depths) > 0):
mthresh = np.median(obj_depths) + 150.0
pthresh = np.percentile(depth_im[depth_im>0], depth_percentile_thresh)
else:
print('Depth image {:s} all 0s, skipping frame'.format(filename))
continue
thresh = min(pthresh, mthresh)
# mask derived from depth
dmask = 255 * np.logical_and(depth_im > 0, depth_im <= thresh)
dmask = cv2.dilate(dmask.astype(np.uint8), np.ones(
(mask_dilation, mask_dilation), dtype=np.uint8))
# mask derived from color
cmask_green = np.logical_and(rgb_im[:, :, 1] > rgb_im[:, :, 0],
rgb_im[:, :, 1] > rgb_im[:, :, 2])
cmask_white = np.mean(rgb_im, axis=2) > 225
cmask = np.logical_not(np.logical_or(cmask_green, cmask_white))
mask = np.logical_and(dmask>0, cmask)
if do_grabcut:
mask = mutils.grabcut_mask(rgb_im, mask)
# randomize background
count = 0
while count < len(rim_filenames):
random_idx = np.random.choice(len(rim_filenames))
random_im = cv2.imread(rim_filenames[random_idx], cv2.IMREAD_COLOR)
if np.any(np.asarray(random_im.shape[:2]) <= np.asarray(rgb_im.shape[:2])):
count += 1
continue
x = np.random.choice(random_im.shape[1] - rgb_im.shape[1])
y = np.random.choice(random_im.shape[0] - rgb_im.shape[0])
random_im = random_im[y:y+rgb_im.shape[0], x:x+rgb_im.shape[1], :]
break
else:
print('ERROR: All random images are smaller than {:d}x{:d}!'.
format(crop_size, crop_size))
break
mask = mask[:, :, np.newaxis]
im = mask*rgb_im + (1-mask)*random_im
filename = osp.join(output_dir, 'color', out_filename)
cv2.imwrite(filename, im)
def preprocess_all(p_nums, intents, object_names, background_images_dir, *args,
**kwargs):
rim_filenames = inspect_dir(background_images_dir)
for p_num in p_nums:
for intent in intents:
if object_names is None:
object_names = get_object_names(p_num, intent)
for object_name in object_names:
preprocess(p_num, intent, object_name, rim_filenames_or_dir=rim_filenames,
*args, **kwargs)
if __name__ == '__main__':
parser = mutils.default_multiargparse()
parser.add_argument('--no_rgb', action='store_false', dest='do_rgb')
parser.add_argument('--no_depth', action='store_false', dest='do_depth')
parser.add_argument('--background_images_dir', required=True,
help='Directory containing background images e.g. COCO')
parser.add_argument('--crop_size', default=256, type=int)
parser.add_argument('--no_mask_refinement', action='store_false',
dest='do_grabcut',
help='No refinement of masks with GrabCut')
args = parser.parse_args()
p_nums, intents, object_names, args = mutils.parse_multiargs(args)
preprocess_all(p_nums, intents, object_names, **vars(args))
|
ContactPose-main
|
scripts/preprocess_images.py
|
# Copyright (c) Facebook, Inc. and its affiliates.
# Code by Samarth Brahmbhatt
|
ContactPose-main
|
scripts/__init__.py
|
# Copyright (c) Facebook, Inc. and its affiliates.
# Code by Samarth Brahmbhatt
"""
script to download ContactPose data from Dropbox
URLs in data/urls.json
"""
import init_paths
import cv2
import os
import json
import shutil
from tqdm.autonotebook import tqdm
import utilities.networking as nutils
from zipfile import ZipFile
osp = os.path
def is_nonempty_dir(dir):
if osp.isdir(dir):
return next(os.scandir(dir), None) is not None
else:
return False
class ContactPoseDownloader(object):
def __init__(self):
self.data_dir = osp.join('data', 'contactpose_data')
if not osp.isdir(self.data_dir):
os.makedirs(self.data_dir)
print('Created {:s}'.format(self.data_dir))
with open(osp.join('data', 'urls.json'), 'r') as f:
self.urls = json.load(f)
@staticmethod
def _unzip_and_del(filename, dst_dir=None, progress=True, filter_fn=None):
if dst_dir is None:
dst_dir, _ = osp.split(filename)
if len(dst_dir) == 0:
dst_dir = '.'
with ZipFile(filename) as f:
# members = None means everything
members = None if filter_fn is None else \
list(filter(filter_fn, f.namelist()))
f.extractall(dst_dir, members=members)
os.remove(filename)
def download_grasps(self):
filename = osp.join(self.data_dir, 'grasps.zip')
print('Downloading grasps...')
if not nutils.download_url(self.urls['grasps'], filename):
print('Download unsuccessful')
return
print('Extracting...')
self._unzip_and_del(filename, self.data_dir)
p_ids = next(os.walk(self.data_dir))[1]
for p_id in tqdm(p_ids):
if 'full' not in p_id:
continue
sess_dir = osp.join(self.data_dir, p_id)
for filename in next(os.walk(sess_dir))[-1]:
if '.zip' not in filename:
continue
self._unzip_and_del(osp.join(sess_dir, filename), progress=False)
def download_contact_maps(self, p_num, intent):
p_id = 'full{:d}_{:s}'.format(p_num, intent)
filename = osp.join(self.data_dir, '{:s}_contact_maps.zip'.format(p_id))
print('Downloading {:d} {:s} contact maps...'.format(p_num, intent))
if not nutils.download_url(self.urls['contact_maps'][p_id], filename):
print('Download unsuccessful')
return
print('Extracting...')
self._unzip_and_del(filename, self.data_dir)
def download_markers(self):
filename = osp.join('data', 'markers.zip')
print('Downloading 3D model marker locations...')
if not nutils.download_url(self.urls['object_marker_locations'], filename):
print('Download unsuccessful')
return
print('Extracting...')
self._unzip_and_del(filename, osp.join('data', 'object_marker_locations'))
def download_3d_models(self):
filename = osp.join('data', '3Dmodels.zip')
print('Downloading 3D models...')
if not nutils.download_url(self.urls['object_models'], filename):
print('Download unsuccessful')
return
print('Extracting...')
self._unzip_and_del(filename, osp.join('data', 'object_models'))
def download_depth_images(self, p_num, intent, dload_dir,
include_objects=None):
self.download_images(p_num, intent, dload_dir, include_objects,
download_color=False, download_depth=True)
def download_color_images(self, p_num, intent, dload_dir,
include_objects=None):
self.download_images(p_num, intent, dload_dir, include_objects,
download_color=True, download_depth=False)
def download_images(self, p_num, intent, dload_dir,
include_objects=None, download_color=True,
download_depth=True):
assert osp.isdir(dload_dir),\
'Image download dir {:s} does not exist'.format(dload_dir)
p_id = 'full{:d}_{:s}'.format(p_num, intent)
if download_color and (not download_depth):
urls = self.urls['videos']['color']
else:
urls = self.urls['images']
# check if already extracted
dirs_to_check = []
if download_color:
dirs_to_check.append('color')
if download_depth:
dirs_to_check.append('depth')
ok = True
if osp.isdir(osp.join(self.data_dir, p_id)):
sess_dir = osp.join(self.data_dir, p_id)
for object_name in next(os.walk(sess_dir))[1]:
if include_objects is not None and object_name not in include_objects:
continue
images_dir = osp.join(sess_dir, object_name, 'images_full')
if not osp.isdir(images_dir):
continue
for cam_name in next(os.walk(images_dir))[1]:
for check_name in dirs_to_check:
check_dir = osp.join(images_dir, cam_name, check_name)
if is_nonempty_dir(check_dir):
print('{:s} {:s} already has extracted images, please delete {:s}'.
format(p_id, object_name, check_dir))
ok = False
if not ok:
return
# download and extract
sess_dir = osp.join(dload_dir, p_id)
if not osp.isdir(sess_dir):
print('Creating {:s}'.format(sess_dir))
os.makedirs(sess_dir, exist_ok=True)
print('Downloading {:s} images...'.format(p_id))
object_names = list(urls[p_id].keys())
if include_objects is None:
include_objects = object_names[:]
filenames_to_extract = {}
for object_name in tqdm(include_objects):
if object_name not in object_names:
print('{:d} {:s} does not have {:s}'.format(p_num, intent, object_name))
continue
filename = osp.join(sess_dir, '{:s}_images.zip'.format(object_name))
url = urls[p_id][object_name]
print(object_name)
if nutils.download_url(url, filename):
filenames_to_extract[object_name] = filename
else:
print('{:s} {:s} Download unsuccessful'.format(p_id, object_name))
return
print('Extracting...')
for object_name, filename in tqdm(filenames_to_extract.items()):
obj_dir = osp.join(sess_dir, object_name)
os.makedirs(obj_dir, exist_ok=True)
self._unzip_and_del(filename, obj_dir)
for filename in next(os.walk(obj_dir))[-1]:
if download_color and (not download_depth):
if '.mp4' not in filename:
continue
camera_name = filename.replace('.mp4', '')
video_filename = osp.join(obj_dir, filename)
im_dir = osp.join(obj_dir, 'images_full', camera_name, 'color')
os.makedirs(im_dir, exist_ok=True)
cap = cv2.VideoCapture(video_filename)
if not cap.isOpened():
print('Could not read {:s}'.format(video_filename))
return
count = 0
while True:
ok, im = cap.read()
if not ok:
break
filename = osp.join(im_dir, 'frame{:03d}.png'.format(count))
cv2.imwrite(filename, im)
count += 1
os.remove(video_filename)
else:
if '.zip' not in filename:
continue
filter_fn = (lambda x: 'color' not in x) if (not download_color) \
else None
self._unzip_and_del(osp.join(obj_dir, filename), progress=False,
filter_fn=filter_fn)
# symlink
if osp.realpath(dload_dir) != osp.realpath(self.data_dir):
src = osp.join(obj_dir, 'images_full')
dst_dir = osp.join(self.data_dir, p_id, object_name)
if not osp.isdir(dst_dir):
os.makedirs(dst_dir)
dst = osp.join(dst_dir, 'images_full')
os.symlink(src, dst)
if __name__ == '__main__':
import argparse
import sys
from itertools import product
parser = argparse.ArgumentParser()
parser.add_argument('--type', choices=('grasps', 'markers', '3Dmodels',
'color_images', 'depth_images',
'images', 'contact_maps'),
required=True)
parser.add_argument('--p_nums', default=None,
help='Participant numbers E.g. 1, 1,2, or 1-5')
parser.add_argument('--intents', default='use,handoff',
help='use, handoff, or use,handoff')
parser.add_argument('--object_names', default=None,
help='Comma separated object names. Used only for image '+\
'download. All other types download data for all '+\
'objects in that particular p_num, intent combo')
parser.add_argument('--images_dload_dir',
default=osp.join('data', 'contactpose_data'),
help='Directory where images will be downloaded. '
'They will be symlinked to the appropriate location')
args = parser.parse_args()
downloader = ContactPoseDownloader()
if args.type == 'grasps':
downloader.download_grasps()
sys.exit(0)
elif args.type == 'markers':
downloader.download_markers()
sys.exit(0)
elif args.type == '3Dmodels':
downloader.download_3d_models()
sys.exit(0)
assert(args.p_nums is not None)
if '-' in args.p_nums:
start, finish = args.p_nums.split('-')
nums = list(range(int(start), int(finish)+1))
elif ',' in args.p_nums:
nums = [int(n) for n in args.p_nums.split(',')]
else:
nums = [int(args.p_nums)]
intents = args.intents.split(',')
include_objects = args.object_names
if include_objects is not None:
include_objects = include_objects.split(',')
include_objects = list(set(include_objects)) # remove duplicates
for p_num, intent in product(nums, intents):
p_id = 'full{:d}_{:s}'.format(p_num, intent)
print('####### {:s} #######'.format(p_id))
if args.type == 'contact_maps':
downloader.download_contact_maps(p_num, intent)
elif args.type == 'color_images':
downloader.download_color_images(p_num, intent,
osp.expanduser(args.images_dload_dir),
include_objects=include_objects)
elif args.type == 'depth_images':
downloader.download_depth_images(p_num, intent,
osp.expanduser(args.images_dload_dir),
include_objects=include_objects)
elif args.type == 'images':
downloader.download_images(p_num, intent,
osp.expanduser(args.images_dload_dir),
include_objects=include_objects)
else:
raise NotImplementedError
|
ContactPose-main
|
scripts/download_data.py
|
# Copyright (c) Facebook, Inc. and its affiliates.
# Code by Samarth Brahmbhatt
"""
Discovers 'active areas' i.e. areas on the object surface most frequently
touched by a certain part of the hand. See Figure 7 in the paper
https://arxiv.org/pdf/2007.09545.pdf.
"""
import init_paths
from utilities.import_open3d import * # need to import open3d before others
import json
from matplotlib import cm
import numpy as np
import os
from random import shuffle
from utilities.dataset import get_p_nums
import utilities.misc as mutils
osp = os.path
def discover_active_areas(finger_idx, part_idx, object_name, intent, p_nums=None,
color_thresh=0.4):
"""
finger_idx: 0->4 : thumb->little
part_idx: 0->3 : proximal to distal phalanges, 3 = finger tip
"""
p_nums = p_nums or get_p_nums(object_name, intent)
shuffle(p_nums)
data_dir = osp.join('data', 'contactpose_data')
# read object mesh
vertices = None
for p_num in p_nums:
filename = osp.join(data_dir, f'full{p_num}_{intent}', object_name,
f'{object_name}.ply')
if osp.isfile(filename):
mesh = o3dio.read_triangle_mesh(filename)
else:
print('{:s} does not exist'.format(filename))
continue
vertices = np.asarray(mesh.vertices)
break
if vertices is None:
print("no object model found")
return
line_ids = mutils.get_hand_line_ids()
n_lines_per_hand = len(line_ids)
n_parts_per_finger = 4
touched_by_part = np.zeros(len(vertices))
count = 0
for p_num in p_nums:
print(f'Processing full{p_num}_{intent} {object_name}')
# read contact from the mesh
filename = osp.join(data_dir, f'full{p_num}_{intent}', object_name,
f'{object_name}.ply')
if osp.isfile(filename):
mesh = o3dio.read_triangle_mesh(filename)
else:
print('{:s} does not exist'.format(filename))
continue
tex = np.asarray(mesh.vertex_colors)[:, 0]
tex = mutils.texture_proc(tex)
# read joints
filename = osp.join(data_dir, f'full{p_num}_{intent}', object_name,
'annotations.json')
try:
with open(filename, 'r') as f:
annotations = json.load(f)
except FileNotFoundError:
print('{:s} does not exist'.format(filename))
continue
ds = []
for hand_idx, hand in enumerate(annotations['hands']):
if hand['valid']:
joints = np.asarray(hand['joints'])
l0 = joints[line_ids[:, 0]]
l1 = joints[line_ids[:, 1]]
pl = mutils.closest_linesegment_point(l0, l1, vertices)
d = pl - vertices[:, np.newaxis, :]
d = np.linalg.norm(d, axis=2)
else:
d = np.inf * np.ones((len(vertices), n_lines_per_hand))
ds.append(d)
ds = np.hstack(ds)
hand_idxs, line_idxs = divmod(np.argmin(ds, axis=1), n_lines_per_hand)
finger_idxs, part_idxs = divmod(line_idxs, n_parts_per_finger)
this_touched_by_part = np.logical_and(
tex > color_thresh, np.logical_and(hand_idxs >= 0,
np.logical_and(finger_idxs == finger_idx, part_idxs == part_idx)))
touched_by_part += this_touched_by_part
count += 1
touched_by_part /= count
touched_by_part /= touched_by_part.max()
filename = osp.join('data',
f'{object_name}_{intent}_{finger_idx}_{part_idx}_active_areas.npy')
np.save(filename, touched_by_part)
print('{:s} saved'.format(filename))
def show_active_areas(finger_idx, part_idx, object_name, intent):
filename = osp.join('data', 'object_models', f'{object_name}.ply')
mesh = o3dio.read_triangle_mesh(filename)
mesh.compute_vertex_normals()
filename = osp.join('data',
f'{object_name}_{intent}_{finger_idx}_{part_idx}_active_areas.npy')
c = np.load(filename)
mesh.vertex_colors = o3du.Vector3dVector(cm.bwr(c)[:, :3])
o3dv.draw_geometries([mesh])
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--finger_idx', type=int, required=True,
help='0->4 : thumb->little', choices=(0, 1, 2, 3, 4))
parser.add_argument('--part_idx', type=int, required=True, choices=(0, 1, 2, 3),
help='0->3 : proximal to distal phalanges, 3 = finger tip')
parser.add_argument('--object_name', required=True)
parser.add_argument('--intent', required=True, choices=('use', 'handoff'))
parser.add_argument('--p_nums', default='1-50',
help='Participant numbers, comma or - separated.'
'Skipping means all participants')
parser.add_argument('--show', action='store_true')
args = parser.parse_args()
p_nums = args.p_nums
if '-' in p_nums:
first, last = p_nums.split('-')
p_nums = list(range(int(first), int(last)+1))
else:
p_nums = [int(p) for p in p_nums.split(',')]
if args.show:
show_active_areas(args.finger_idx, args.part_idx, args.object_name,
args.intent)
else:
discover_active_areas(args.finger_idx, args.part_idx, args.object_name,
args.intent, p_nums)
|
ContactPose-main
|
scripts/data_analysis/active_areas.py
|
# Copyright (c) Facebook, Inc. and its affiliates.
# Code by Samarth Brahmbhatt
import sys
sys.path.append('.')
|
ContactPose-main
|
scripts/data_analysis/init_paths.py
|
# Copyright (c) Facebook, Inc. and its affiliates.
# Code by Samarth Brahmbhatt
"""
Calculates and shows the contact probability for hand points
Figure 5(a) in the paper
"""
import os
import matplotlib.pyplot as plt
import numpy as np
import init_paths
from utilities.import_open3d import *
from utilities.dataset import ContactPose, get_object_names
import utilities.misc as mutils
osp = os.path
def calc_hand_contact_prob(p_nums, intents, object_names, contact_thresh=0.4,
search_r=15e-3, hand_idx=1):
"""
hand_idx: 0 for left, 1 for right
"""
contact_probs = []
for p_num in p_nums:
for intent in intents:
if object_names is None:
object_names = get_object_names(p_num, intent)
for object_name in object_names:
print('{:d} : {:s} : {:s}'.format(p_num, intent, object_name))
cp = ContactPose(p_num, intent, object_name)
object_mesh = o3dio.read_triangle_mesh(cp.contactmap_filename)
v = np.array(object_mesh.vertices)
c = np.array(object_mesh.vertex_colors)[:, 0]
c = mutils.texture_proc(c)
idx = c >= contact_thresh
v = v[idx]
# read mano
hand = cp.mano_meshes()[hand_idx]
if hand is None:
continue
h_pc = o3dg.PointCloud()
h_pc.points = o3du.Vector3dVector(hand['vertices'])
tree = o3dg.KDTreeFlann(h_pc)
contact_prob = np.zeros(len(hand['vertices']))
for vv in v:
k, idx, dist2 = tree.search_hybrid_vector_3d(vv, search_r, 10)
for i in range(k):
# contact_prob[idx[i]] += (1.0/np.sqrt(dist2[i]))
contact_prob[idx[i]] = 1
contact_probs.append(contact_prob)
contact_probs = np.mean(contact_probs, axis=0)
return contact_probs
def show_hand_contact_prob(contact_prob, hand_idx=1):
# dummy params
mp = {
'pose': np.zeros(15+3),
'betas': np.zeros(10),
'hTm': np.eye(4)
}
hand = mutils.load_mano_meshes([mp, mp], ContactPose._mano_dicts,
flat_hand_mean=True)[hand_idx]
contact_prob -= contact_prob.min()
contact_prob /= contact_prob.max()
contact_prob = plt.cm.bwr(contact_prob)[:, :3]
h = o3dg.TriangleMesh()
h.vertices = o3du.Vector3dVector(hand['vertices'])
h.triangles = o3du.Vector3iVector(hand['faces'])
h.vertex_colors = o3du.Vector3dVector(contact_prob)
h.compute_vertex_normals()
o3dv.draw_geometries([h])
if __name__ == '__main__':
parser = mutils.default_multiargparse()
args = parser.parse_args()
p_nums, intents, object_names, args = mutils.parse_multiargs(args)
hand_idx = 1
p = calc_hand_contact_prob(p_nums, intents, object_names, hand_idx=hand_idx)
show_hand_contact_prob(p, hand_idx=hand_idx)
|
ContactPose-main
|
scripts/data_analysis/hand_contact_prob.py
|
ContactPose-main
|
scripts/data_analysis/__init__.py
|
|
# Copyright (c) Facebook, Inc. and its affiliates.
# Code by Samarth Brahmbhatt
import init_paths
import dropbox
import json
from requests.exceptions import ConnectionError
import os
from utilities.dataset import get_object_names
osp = os.path
dbx = dropbox.Dropbox(os.environ['DROPBOX_APP_KEY'])
def move(p_num, intent, object_name):
p_id = 'full{:d}_{:s}'.format(p_num, intent)
opath = osp.join('/', 'contactpose', 'videos_full', p_id, object_name)
dpath = osp.join(opath, 'color')
try:
dbx.files_create_folder(dpath)
except dropbox.exceptions.ApiError as err:
print('*** API error', err)
dbx.close()
return
print('{:s} created'.format(dpath))
for camera_name in ('kinect2_left', 'kinect2_right', 'kinect2_middle'):
src = osp.join(opath, '{:s}_color.mp4'.format(camera_name))
file_exists = True
try:
dbx.files_get_metadata(src)
except dropbox.exceptions.ApiError as err:
file_exists = False
print('{:s} does not exist'.format(src))
if not file_exists:
continue
dst = osp.join(dpath, '{:s}.mp4'.format(camera_name))
try:
dbx.files_move(src, dst)
except dropbox.exceptions.ApiError as err:
print('*** API error moving {:s} -> {:s}'.format(src, dst), err)
print('Moved {:s} -> {:s}'.format(src, dst))
if __name__ == '__main__':
p_num = 5
for intent in ('use', 'handoff'):
p_id = 'full{:d}_{:s}'.format(p_num, intent)
with open(osp.join('data', 'object_names.txt'), 'r') as f:
object_names = [o.strip() for o in f]
with open(osp.join('data', 'urls.json'), 'r') as f:
urls = json.load(f)
object_names = [o for o in object_names if o in urls['images'][p_id]]
for object_name in object_names:
move(p_num, intent, object_name)
|
ContactPose-main
|
scripts/maintenance/move_videos_dropbox.py
|
# Copyright (c) Facebook, Inc. and its affiliates.
# Code by Samarth Brahmbhatt
import sys
sys.path.append('.')
|
ContactPose-main
|
scripts/maintenance/init_paths.py
|
# Copyright (c) Facebook, Inc. and its affiliates.
# Code by Samarth Brahmbhatt
import requests
import json
from copy import deepcopy
import os
osp = os.path
data_template = {
'path': '/contactpose/videos_full/{:s}/{:s}/color',
'settings': {
'requested_visibility': 'public',
'audience': 'public',
'access': 'viewer'
}
}
def get_url(p_id, object_name):
headers = {
'Authorization': 'Bearer {:s}'.format(os.environ['DROPBOX_APP_KEY']),
'Content-Type': 'application/json',
}
d = deepcopy(data_template)
d['path'] = d['path'].format(p_id, object_name)
filename = '/tmp/tmpurl.json'
with open(filename, 'w') as f:
json.dump(d, f)
r = requests.post('https://api.dropboxapi.com/2/sharing/create_shared_link_with_settings', data=open(filename), headers=headers)
if r.status_code != 200:
print('Unsuccessful, return status = {:d}'.format(r.status_code))
return
url = r.json()['url']
url = url.replace('dl=0', 'dl=1')
filename = osp.join('data', 'urls.json')
with open(filename, 'r') as f:
d = json.load(f)
if p_id not in d['videos']['color']:
d['videos']['color'][p_id] = {}
d['videos']['color'][p_id][object_name] = url
with open(filename, 'w') as f:
json.dump(d, f, indent=4, separators=(', ', ': '))
# print('{:s} updated'.format(filename))
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--p_id', required=True)
args = parser.parse_args()
with open(osp.join('data', 'urls.json'), 'r') as f:
d = json.load(f)
object_names = d['images'][args.p_id]
print('#########', args.p_id)
for object_name in object_names:
print(object_name)
get_url(args.p_id, object_name)
|
ContactPose-main
|
scripts/maintenance/get_urls.py
|
# Copyright (c) Facebook, Inc. and its affiliates.
# Code by Samarth Brahmbhatt
import os
import shutil
import sys
osp = os.path
def remove(p_num):
for ins in ('use', 'handoff'):
p_id = 'full{:s}_{:s}'.format(p_num, ins)
sess_dir = osp.join('..', '..', 'data', 'contactpose_data', p_id)
for object_name in next(os.walk(sess_dir))[1]:
obj_dir = osp.join(sess_dir, object_name)
for filename in next(os.walk(obj_dir))[-1]:
if '.zip' not in filename:
continue
filename = osp.join(obj_dir, filename)
os.remove(filename)
print(filename)
obj_dir = osp.join(obj_dir, 'images_full')
# if osp.isdir(obj_dir):
# shutil.rmtree(obj_dir)
# print(obj_dir)
for camera_name in ('kinect2_left', 'kinect2_right', 'kinect2_middle'):
cam_dir = osp.join(obj_dir, camera_name)
filename = osp.join(cam_dir, 'color.mp4')
if osp.isfile(filename):
os.remove(filename)
print(filename)
for filename in next(os.walk(sess_dir))[-1]:
filename = osp.join(sess_dir, filename)
os.remove(filename)
print(filename)
if __name__ == '__main__':
remove(sys.argv[1])
|
ContactPose-main
|
scripts/maintenance/remove_videos.py
|
# Copyright (c) Facebook, Inc. and its affiliates.
# Code by Samarth Brahmbhatt
|
ContactPose-main
|
scripts/maintenance/__init__.py
|
# Copyright (c) Facebook, Inc. and its affiliates.
# Code by Samarth Brahmbhatt
import init_paths
from scripts.download_data import ContactPoseDownloader
import ffmpeg
import os
import shutil
import json
import itertools
from multiprocessing import Pool
import argparse
from functools import partial
import utilities.networking as nutils
osp = os.path
intents = ('use', 'handoff')
with open(osp.join('data', 'object_names.txt'), 'r') as f:
object_names = [l.strip() for l in f]
# object_names = ('bowl', )
with open(osp.join('data', 'urls.json'), 'r') as f:
urls = json.load(f)
urls = urls['images']
video_params = {
'color': {
'ffmpeg_kwargs': dict(pix_fmt='yuv420p', vcodec='libx264', crf=0),
'ext': 'mp4',
'valid': True,
},
'depth': {
'ffmpeg_kwargs': dict(pix_fmt='gray16le', vcodec='ffv1'),
'ext': 'mkv',
'valid': False, # compression not working losslessly right now, so skip
},
}
def produce_worker(task, ffmpeg_path):
try:
p_num, intent, object_name = task
p_id = 'full{:d}_{:s}'.format(p_num, intent)
dload_dir=osp.join('data', 'contactpose_data')
data_dir = osp.join(dload_dir, p_id, object_name, 'images_full')
# download
downloader = ContactPoseDownloader()
if osp.isdir(data_dir):
shutil.rmtree(data_dir)
print('Deleted {:s}'.format(data_dir))
downloader.download_images(p_num, intent, dload_dir,
include_objects=(object_name,))
if not osp.isdir(data_dir):
print('Could not download {:s} {:s}'.format(p_id, object_name))
# check if the data actually exists
if object_name in urls[p_id]:
return False
else:
print('But that is OK because underlying data does not exist')
return True
# process
for camera_position in ('left', 'right', 'middle'):
camera_name = 'kinect2_{:s}'.format(camera_position)
this_data_dir = osp.join(data_dir, camera_name)
if not osp.isdir(this_data_dir):
print('{:s} does not have {:s} camera'.format(this_data_dir, camera_position))
continue
for mode, params in video_params.items():
if not params['valid']:
shutil.rmtree(osp.join(this_data_dir, mode))
continue
# video encoding
output_filename = osp.join(this_data_dir,
'{:s}.{:s}'.format(mode, params['ext']))
(
ffmpeg
.input(osp.join(this_data_dir, mode, 'frame%03d.png'), framerate=30)
.output(output_filename, **params['ffmpeg_kwargs'])
.overwrite_output()
.run(cmd=ffmpeg_path)
)
print('{:s} written'.format(output_filename), flush=True)
shutil.rmtree(osp.join(this_data_dir, mode))
# upload
dropbox_path = osp.join('/', 'contactpose',
'videos_full',
p_id, object_name, mode,
'{:s}.mp4'.format(camera_name))
if not nutils.upload_dropbox(output_filename, dropbox_path):
return False
return True
except Exception as e:
print('Error somewhere in ', task)
print(str(e))
return False
def produce(p_nums, cleanup=False, parallel=True, ffmpeg_path='ffmpeg',
tasks=None):
if tasks is not None:
pass
elif cleanup:
print('#### Cleanup mode ####')
filename = osp.join('status.json')
with open(filename, 'r') as f:
status = json.load(f)
tasks = []
for task,done in status.items():
if done:
continue
task = task.split('_')
p_num = int(task[0][4:])
intent = task[1]
object_name = '_'.join(task[2:])
tasks.append((p_num, intent, object_name))
print('Found {:d} cleanup items'.format(len(tasks)))
else:
tasks = list(itertools.product(p_nums, intents, object_names))
worker = partial(produce_worker, ffmpeg_path=ffmpeg_path)
if parallel:
p = Pool(len(object_names))
dones = p.map(worker, tasks)
p.close()
p.join()
else:
dones = map(worker, tasks)
filename = osp.join('status.json')
d = {}
if osp.isfile(filename):
with open(filename, 'r') as f:
d = json.load(f)
for task, done in zip(tasks, dones):
d['full{:d}_{:s}_{:s}'.format(*task)] = done
with open(filename, 'w') as f:
json.dump(d, f, indent=4, separators=(', ', ': '))
print('{:s} updated'.format(filename))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-p', type=int, default=-1)
parser.add_argument('--tasks', default=None, help='e.g. 1-use-pan,34-use-mug')
parser.add_argument('--cleanup', action='store_true')
parser.add_argument('--no_parallel', action='store_false', dest='parallel')
parser.add_argument('--ffmpeg_path', default='ffmpeg')
args = parser.parse_args()
if args.tasks is not None:
# parse tasks
tasks = args.tasks.split(',')
tasks = [t.split('-') for t in tasks]
tasks = [(int(t[0]), t[1], t[2]) for t in tasks]
else:
tasks = args.tasks
assert (args.p > 0)
produce((args.p, ), cleanup=args.cleanup, parallel=args.parallel, tasks=tasks)
|
ContactPose-main
|
scripts/maintenance/produce_videos.py
|
# Copyright (c) Facebook, Inc. and its affiliates.
# Code by Samarth Brahmbhatt
|
ContactPose-main
|
thirdparty/__init__.py
|
#!/usr/bin/env python3
"""
Copyright (c) Meta Platforms, Inc. and affiliates.
Calculate cumulative distribution functions for standard Brownian motions.
Running as a script tests assertions that closed-form, analytical expressions
for the means match numerical evaluations of the means for the cumulative
distribution functions, prints values of the cumulative distribution functions
at some interesting values for their arguments, saves to disk plots in pdf
of the complementary cumulative distribution functions, and saves to disk plots
in both pdf and jpg of calibration curves for synthetic data sets drawn from
perfectly calibrated distributions. The script saves plots in the current
directory, in files named "gauss.pdf", "gauss_log.pdf", "kuiper.pdf",
"kuiper_log.pdf", "kolmogorov_smirnov.pdf", and "kolmogorov_smirnov_log.pdf".
The files whose names end with "_log.pdf" use log scales for the vertical axes.
The plots for the metrics of Kuiper and of Kolmogorov and Smirnov include
vertical dotted lines at the means associated with the corresponding
distribution. The script saves twelve other plots in the current directory,
too, as detailed in the docstring for function plotnull below.
An article detailing the functions named after mathematicians and statisticians
(Kolmogorov, Smirnov, Kuiper, Gauss, and Chebyshev) is Mark Tygert's
"Calibration of P-values for calibration and for deviation of a subpopulation
from the full population."
Functions
---------
kolmogorov_smirnov
Evaluates the cumulative distribution function for the maximum
of the absolute value of the standard Brownian motion on [0, 1]
kuiper
Evaluates the cumulative distribution function for the range
(maximum minus minimum) of the standard Brownian motion on [0, 1]
gauss
Evaluates the cumulative distribution function for the distribution N(0, 1)
(the standard normal distribution, involving a Gaussian)
chebyshev
Integrates the function f(x) from x=a to x=b using n Chebyshev nodes
testmeans
Verifies that the means of the cumulative distribution functions are right
printvals
Evaluates the cumulative distribution functions at some points of interest
and prints them
saveplots
Plots and saves to disk the complementary cumulative distribution functions
plotnull
Plots the P-values for data generated from a perfectly calibrated model
This source code is licensed under the MIT license found in the LICENSE file in
the root directory of this source tree.
"""
import math
import numpy as np
from numpy.random import default_rng
import subprocess
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt
def kolmogorov_smirnov(x):
"""
Evaluates the cumulative distribution function for the maximum
of the absolute value of the standard Brownian motion on [0, 1]
Parameters
----------
x : float
argument at which to evaluate the cumulative distribution function
(must be positive)
Returns
-------
float
cumulative distribution function evaluated at x
"""
assert x > 0
# Compute the machine precision assuming binary numerical representations.
eps = 7 / 3 - 4 / 3 - 1
# Determine how many terms to use to attain accuracy eps.
fact = 4 / math.pi
kmax = math.ceil(
1 / 2 + x * math.sqrt(2) / math.pi * math.sqrt(math.log(fact / eps)))
# Sum the series.
c = 0
for k in range(kmax):
kplus = k + 1 / 2
c += (-1)**k / kplus * math.exp(-kplus**2 * math.pi**2 / (2 * x**2))
c *= 2 / math.pi
return c
def kuiper(x):
"""
Evaluates the cumulative distribution function for the range
(maximum minus minimum) of the standard Brownian motion on [0, 1]
Parameters
----------
x : float
argument at which to evaluate the cumulative distribution function
(must be positive)
Returns
-------
float
cumulative distribution function evaluated at x
"""
assert x > 0
# Compute the machine precision assuming binary numerical representations.
eps = 7 / 3 - 4 / 3 - 1
# Determine how many terms to use to attain accuracy eps.
fact = 4 / math.sqrt(2 * math.pi) * (1 / x + x / math.pi**2)
kmax = math.ceil(
1 / 2 + x / math.pi / math.sqrt(2) * math.sqrt(math.log(fact / eps)))
# Sum the series.
c = 0
for k in range(kmax):
kplus = k + 1 / 2
c += (8 / x**2 + 2 / kplus**2 / math.pi**2) * math.exp(
-2 * kplus**2 * math.pi**2 / x**2)
return c
def gauss(x):
"""
Evaluates the cumulative distribution function for the distribution N(0, 1)
(the standard normal distribution, involving a Gaussian)
Parameters
----------
x : float
argument at which to evaluate the cumulative distribution function
Returns
-------
float
cumulative distribution function evaluated at x
"""
return (1 + math.erf(x / math.sqrt(2))) / 2
def chebyshev(a, b, n, f):
"""
Integrates the function f(x) from x=a to x=b using n Chebyshev nodes
Parameters
----------
a : float
lower limit of integration
b : float
upper limit of integration
n : int
number of Chebyshev nodes in the Gauss-Chebyshev quadrature
f : callable
real-valued function of a real argument to be integrated
Returns
-------
float
integral from x=a to x=b of f(x) (dx)
"""
sum = 0
for k in range(n):
c = math.cos((2 * k + 1) * math.pi / (2 * n))
x = a + (b - a) * (1 + c) / 2
sum += f(x) * math.sqrt(1 - c**2)
sum *= (b - a) * math.pi / (2 * n)
return sum
def testmeans():
"""
Verifies that the means of the cumulative distribution functions are right
Returns
-------
float
mean of the Kolmogorov-Smirnov statistic under the null hypothesis
that the subpopulation arises from the full population's distribution
(and that the scores are dense in their domain)
float
mean of the Kuiper statistic under the null hypothesis
that the subpopulation arises from the full population's distribution
(and that the scores are dense in their domain)
References
----------
William Feller, "The asymptotic distribution of the range of sums of
independent random variables," Ann. Math. Statist., 22 (1951): 427-432.
Jaume Masoliver, "Extreme values and the level-crossing problem: an
application to the Feller process," Phys. Rev. E., 89 (2014): 042106.
"""
# Compute the means of the Kolmogorov-Smirnov and Kuiper statistics
# using closed-form analytic expressions (see Formula 1.4 of the reference
# to Feller given in the docstring, as well as Formula 46 of the reference
# to Masoliver).
ks_mean = math.sqrt(math.pi / 2)
ku_mean = 2 * math.sqrt(2 / math.pi)
# Compute the means from the associated cumulative distribution functions
# evaluated numerically.
ks_mean2 = chebyshev(1e-8, 8, 100000, lambda x: 1 - kolmogorov_smirnov(x))
ku_mean2 = chebyshev(1e-8, 8, 100000, lambda x: 1 - kuiper(x))
# Check that the calculated values agree with each other.
tolerance = 1e-8
assert (ks_mean - ks_mean2) / ks_mean < tolerance
assert (ku_mean - ku_mean2) / ku_mean < tolerance
return ks_mean, ku_mean
def printvals(ks_mean, ku_mean):
"""
Evaluates the cumulative distribution functions at some points of interest
and prints them
Parameters
----------
ks_mean : float
mean of the Kolmogorov-Smirnov statistic under the null hypothesis
that the subpopulation arises from the full population's distribution
(and that the scores are dense in their domain)
ku_mean : float
mean of the Kuiper statistic under the null hypothesis
that the subpopulation arises from the full population's distribution
(and that the scores are dense in their domain)
"""
print(f'1 - kolmogorov_smirnov(0.001) = {1 - kolmogorov_smirnov(0.001)}')
print('1 - kolmogorov_smirnov(ks_mean) = {}'
.format(1 - kolmogorov_smirnov(ks_mean)))
print('1 - kolmogorov_smirnov(7.319) = {}'
.format(1 - kolmogorov_smirnov(7.319)))
print('1 - kolmogorov_smirnov(6.818) = {}'
.format(1 - kolmogorov_smirnov(6.818)))
print('1 - kolmogorov_smirnov(4.307) = {}'
.format(1 - kolmogorov_smirnov(4.307)))
print('1 - kolmogorov_smirnov(4.624) = {}'
.format(1 - kolmogorov_smirnov(4.624)))
print('1 - kolmogorov_smirnov(2.205) = {}'
.format(1 - kolmogorov_smirnov(2.205)))
print('1 - kolmogorov_smirnov(2.043) = {}'
.format(1 - kolmogorov_smirnov(2.043)))
print(f'1 - kolmogorov_smirnov(1000) = {1 - kolmogorov_smirnov(1000)}')
print()
print(f'1 - kuiper(0.001) = {1 - kuiper(0.001)}')
print(f'1 - kuiper(ku_mean) = {1 - kuiper(ku_mean)}')
print(f'1 - kuiper(7.521) = {1 - kuiper(7.521)}')
print(f'1 - kuiper(7.213) = {1 - kuiper(7.213)}')
print(f'1 - kuiper(4.373) = {1 - kuiper(4.373)}')
print(f'1 - kuiper(4.710) = {1 - kuiper(4.710)}')
print(f'1 - kuiper(2.259) = {1 - kuiper(2.259)}')
print(f'1 - kuiper(2.110) = {1 - kuiper(2.110)}')
print(f'1 - kuiper(1000) = {1 - kuiper(1000)}')
print()
print('switch the mean values and see that the P-values deviate '
+ 'far from 0.5:')
print('1 - kolmogorov_smirnov(ku_mean) = {}'
.format(1 - kolmogorov_smirnov(ku_mean)))
print(f'1 - kuiper(ks_mean) = {1 - kuiper(ks_mean)}')
def saveplots(ks_mean, ku_mean):
"""
Plots and saves to disk the complementary cumulative distribution functions
The plots, saved in the current directory, are "gauss.pdf",
"gauss_log.pdf", "kuiper.pdf", "kuiper_log.pdf", "kolmogorov_smirnov.pdf",
and "kolmogorov_smirnov_log.pdf". The files whose names end with "_log.pdf"
use logarithmic scales for the vertical axes. The plots for Kuiper
and for Kolmogorov and Smirnov include vertical dotted lines at the means
of the corresponding distribution, assuming that the input parameters
are correct.
Parameters
----------
ks_mean : float
mean of the Kolmogorov-Smirnov statistic under the null hypothesis
that the subpopulation arises from the full population's distribution
(and that the scores are dense in their domain)
ku_mean : float
mean of the Kuiper statistic under the null hypothesis
that the subpopulation arises from the full population's distribution
(and that the scores are dense in their domain)
"""
for func in ['gauss', 'kuiper', 'kolmogorov_smirnov']:
for logscale in [True, False]:
# Create a plot.
plt.figure(figsize=[4.8, 3.6])
# Create abscissae and ordinates.
xmax = 8
x = np.arange(1e-3, xmax, 1e-3)
y = 1 - np.vectorize(globals()[func])(x)
# Plot y versus x.
plt.plot(x, y, 'k')
# Plot a vertical line at the mean.
if func == 'kuiper':
mean = ku_mean
elif func == 'kolmogorov_smirnov':
mean = ks_mean
else:
mean = 0
if mean > 0:
plt.vlines(mean, 1 - globals()[func](xmax), 1, 'k', 'dotted')
plt.text(
mean, 1 - globals()[func](xmax), 'mean ',
ha='center', va='top')
# Set the vertical axis to use a logscale if logscale is True.
if logscale:
plt.yscale('log')
# Title the axes.
plt.xlabel('$x$')
if func == 'kuiper':
plt.ylabel('$1 - F(x)$')
elif func == 'kolmogorov_smirnov':
plt.ylabel('$1 - D(x)$')
else:
plt.ylabel('$1 - \\Phi(x)$')
# Clean up the whitespace in the plot.
plt.tight_layout()
# Save the plot.
filename = func
if logscale:
filename += '_log'
filename += '.pdf'
plt.savefig(filename, bbox_inches='tight')
plt.close()
def plotnull(ns, points, transform=None, suffix=''):
"""
Plots the P-values for data generated from a perfectly calibrated model
The plots, saved in the current directory are "kuiper_ecdf[suffix].pdf",
"kuiper_ecdf[suffix].jpg", "kolmogorov_smirnov_ecdf[suffix].pdf", and
"kolmogorov_smirnov_ecdf[suffix].jpg". The JPEG versions are conversions
from the PDF at a resolution of 1200 pixels per inch. The plots display
the empirical cumulative distribution functions of the P-values associated
with the Kuiper and Kolmogorov-Smirnov statistics, for points data sets,
each with the number of scores and corresponding Bernoulli responses
given by the given entry in ns (running everything again for each entry
in ns). The Bernoulli responses are independent, and the probability
of success for each is equal to the corresponding score (ensuring perfect
calibration of the underlying data distribution). The transform gets
applied to each score, with the scores being equispaced before application
of transform (and remaining equispaced if transform is None).
Parameters
----------
ns : list of int
sample sizes for each generated data set
points : int
number of data sets to generate per calibration curve (that is,
per empirical cumulative distribution function of P-values)
transform : callable, optional
numpy function to apply to the otherwise equispaced scores
(set to None -- the default -- to use the original equispaced scores)
suffix : string, optional
suffix to append to the filename (defaults to the empty string)
"""
# Store processes for converting from pdf to jpeg in procs.
procs = []
# Store the calibration curves for both Kolmogorov-Smirnov and Kuiper
# statistics (these are empirical cumulative distribution functions),
# in ksc and kuc, respectively.
ksc = np.zeros((len(ns), points))
kuc = np.zeros((len(ns), points))
for j, n in enumerate(ns):
rng = default_rng(seed=543216789)
# Run simulations points times.
pks = np.zeros((points))
pku = np.zeros((points))
for k in range(points):
# Generate predicted probabilities (the "scores").
s = np.arange(0, 1, 1 / n)[:n]
if transform is not None:
s = transform(s)
# Generate a sample of classifications (the "responses")
# into two classes, correct (class 1) and incorrect (class 0),
# avoiding numpy's random number generators that are based
# on random bits -- they yield strange results for many seeds.
uniform = rng.uniform(size=(n))
r = (uniform <= s).astype(float)
# Calculate the cumulative differences.
c = (np.cumsum(r) - np.cumsum(s)) / n
# Calculate the estimate of sigma.
sigma = np.sqrt(np.sum(s * (1 - s))) / n
# Compute the normalized Kolmogorov-Smirnov and Kuiper statistics.
ks = np.abs(c).max() / sigma
c = np.insert(c, 0, [0])
ku = (c.max() - c.min()) / sigma
# Evaluate the P-values.
pks[k] = 1 - kolmogorov_smirnov(ks)
pku[k] = 1 - kuiper(ku)
# Calculate the empirical cumulative distributions of the P-values.
ksc[j, :] = np.sort(pks)
kuc[j, :] = np.sort(pku)
for stat in ['kolmogorov_smirnov', 'kuiper']:
# Create a plot.
plt.figure(figsize=[4.8, 3.6])
# Title the axes.
plt.xlabel('$x$')
plt.ylabel('fraction of P-values $\\leq x$')
# Plot the empirical cumulative distribution functions.
frac = np.arange(1 / points, 1 + 1 / points, 1 / points)[:points]
for j in range(len(ns)):
if stat == 'kolmogorov_smirnov':
plt.plot(ksc[j, :], frac, color='k')
elif stat == 'kuiper':
plt.plot(kuc[j, :], frac, color='k')
# Add a diagonal line from (0, 0) to (1, 1).
zeroone = np.asarray((0, 1))
plt.plot(zeroone, zeroone, 'k', linestyle='dashed')
# Save the plot.
filepdf = stat + '_ecdf' + suffix + '.pdf'
plt.savefig(filepdf, bbox_inches='tight')
plt.close()
# Convert the pdf to jpg.
filejpg = filepdf[:-4] + '.jpg'
args = ['convert', '-density', '1200', filepdf, filejpg]
procs.append(subprocess.Popen(args))
print('waiting for conversion from pdf to jpg to finish....')
for iproc, proc in enumerate(procs):
proc.wait()
print(f'{iproc + 1} of {len(procs)} conversions are done....')
if __name__ == '__main__':
# Test if the cumulative distribution functions yield the known values
# for their means.
print('testing means...')
ks_mean, ku_mean = testmeans()
# Print values of the cumulative distribution functions at some interesting
# values for their arguments.
print()
print('evaluating for particular values of the arguments...')
print()
printvals(ks_mean, ku_mean)
# Save plots of the complementary cumulative distribution functions.
print()
print('plotting the complementary cumulative distribution functions...')
saveplots(ks_mean, ku_mean)
# Plot the calibration curves ("calibration curves" are the empirical
# cumulative distribution functions of P-values under the null hypothesis
# of perfect calibration).
ns = [100, 1000, 10000]
points = 100000
print('plotting calibration with equispaced scores...')
plotnull(ns, points)
print('plotting calibration with square-rooted scores...')
plotnull(ns, points, np.sqrt, suffix='_sqrt')
print('plotting calibration with squared scores...')
plotnull(ns, points, np.square, suffix='_square')
|
cdeets-main
|
codes/dists.py
|
#!/usr/bin/env python3
"""
Copyright (c) Meta Platforms, Inc. and affiliates.
Plot the subpopulation deviations for the American Community Survey of USCB.
This script creates a directory, "weighted," in the working directory if the
directory does not already exist, then creates subdirectories there for each
of the counties in California specified by the list "exs" defined below, and
fills each subdirectory with eight files:
1. metrics.txt -- metrics about the plots
2. cumulative.pdf -- plot of cumulative differences between the county & state
3. equiscores10.pdf -- reliability diagram of the county & state with 10 bins
(equispaced in scores)
4. equiscores20.pdf -- reliability diagram of the county & state with 20 bins
(equispaced in scores)
5. equiscores100.pdf -- reliability diagram of the county & state with 100 bins
(equispaced in scores)
6. equierrs10.pdf -- reliability diagram of the county & state with 10 bins
(the error bar is about the same for every bin)
7. equierrs20.pdf -- reliability diagram of the county & state with 20 bins
(the error bar is about the same for every bin)
8. equierrs100.pdf -- reliability diagram of the county & state with 100 bins
(the error bar is about the same for every bin)
The data comes from the American Community Survey of the U.S. Census Bureau,
specifically the household data from the state of California and its counties.
The scores are log_10 of the adjusted household personal incomes.
The results/responses are given by the variates specified in the list "exs"
defined below (together with the value of the variate to be considered
"success" in the sense of Bernoulli trials, or else the nonnegative integer
count for the variate, counting people, for instance).
This source code is licensed under the MIT license found in the LICENSE file in
the root directory of this source tree.
"""
import math
import numpy as np
import os
from subpop_weighted import equiscores, equierrs, cumulative
# Specify which counties and variates to process, as well as the coded value
# of interest for each variate (or None if the values of interest are
# nonnegative integer counts).
exs = [
{'county': 'Humboldt', 'var': 'LNGI', 'val': 2},
{'county': 'Los Angeles', 'var': 'NP', 'val': None},
{'county': 'Napa', 'var': 'SATELLITE', 'val': 1},
{'county': 'Orange', 'var': 'HISPEED', 'val': 1},
{'county': 'San Joaquin', 'var': 'NRC', 'val': None},
{'county': 'Stanislaus', 'var': 'NRC', 'val': None},
]
# Specify the name of the file of comma-separated values
# for the household data in the American Community Survey.
filename = 'psam_h06.csv'
# Count the number of lines in the file for filename.
lines = 0
with open(filename, 'r') as f:
for line in f:
lines += 1
print(f'reading and filtering all {lines} lines from {filename}....')
# Determine the number of columns in the file for filename.
with open(filename, 'r') as f:
line = f.readline()
num_cols = line.count(',') + 1
# Read and store all but the first two columns in the file for filename.
raw = np.zeros((lines, num_cols - 2))
with open(filename, 'r') as f:
for line_num, line in enumerate(f):
parsed = line.split(',')[2:]
if line_num == 0:
# The initial line is a header ... save its column labels.
header = parsed.copy()
# Eliminate the newline character at the end of the line.
header[-1] = header[-1][:-1]
else:
# All but the initial line consist of data ... extract the ints.
raw[line_num - 1, :] = np.array(
[int(s if s != '' else -1) for s in parsed])
# Filter out undesirable observations -- keep only strictly positive weights,
# strictly positive household personal incomes, and strictly positive factors
# for adjusting the income.
keep = np.logical_and.reduce([
raw[:, header.index('WGTP')] > 0,
raw[:, header.index('HINCP')] > 0,
raw[:, header.index('ADJINC')] > 0])
raw = raw[keep, :]
print(f'm = raw.shape[0] = {raw.shape[0]}')
# Form a dictionary of the lower- and upper-bounds on the ranges of numbers
# of the public-use microdata areas (PUMAs) for the counties in California.
puma = {
'Alameda': (101, 110),
'Alpine, Amador, Calaveras, Inyo, Mariposa, Mono and Tuolumne': (300, 300),
'Butte': (701, 702),
'Colusa, Glenn, Tehama and Trinity': (1100, 1100),
'Contra Costa': (1301, 1309),
'Del Norte, Lassen, Modoc, Plumas and Siskiyou': (1500, 1500),
'El Dorado': (1700, 1700),
'Fresno': (1901, 1907),
'Humboldt': (2300, 2300),
'Imperial': (2500, 2500),
'Kern': (2901, 2905),
'Kings': (3100, 3100),
'Lake and Mendocino': (3300, 3300),
'Los Angeles': (3701, 3769),
'Madera': (3900, 3900),
'Marin': (4101, 4102),
'Merced': (4701, 4702),
'Monterey': (5301, 5303),
'Napa': (5500, 5500),
'Nevada and Sierra': (5700, 5700),
'Orange': (5901, 5918),
'Placer': (6101, 6103),
'Riverside': (6501, 6515),
'Sacramento': (6701, 6712),
'San Bernardino': (7101, 7115),
'San Diego': (7301, 7322),
'San Francisco': (7501, 7507),
'San Joaquin': (7701, 7704),
'San Luis Obispo': (7901, 7902),
'San Mateo': (8101, 8106),
'Santa Barbara': (8301, 8303),
'Santa Clara': (8501, 8514),
'Santa Cruz': (8701, 8702),
'Shasta': (8900, 8900),
'Solano': (9501, 9503),
'Sonoma': (9701, 9703),
'Stanislaus': (9901, 9904),
'Sutter and Yuba': (10100, 10100),
'Tulare': (10701, 10703),
'Ventura': (11101, 11106),
'Yolo': (11300, 11300),
}
# Process the examples.
for ex in exs:
for dither in [True, False]:
# Form the scores, results, and weights.
np.random.seed(seed=3820497)
# Adjust the household personal income by the relevant factor.
s = raw[:, header.index('HINCP')] * raw[:, header.index('ADJINC')]
s /= 1e6
# Convert the adjusted incomes to a log (base-10) scale.
s = np.log(s) / math.log(10)
# Dither in order to ensure the uniqueness of the scores (if dither
# is True).
if dither:
s = s * (np.ones(s.shape) + np.random.normal(size=s.shape) * 1e-8)
# Read the result (raw integer count if the specified value is None,
# Bernoulli indicator of success otherwise).
if ex['val'] is None:
r = raw[:, header.index(ex['var'])]
else:
r = raw[:, header.index(ex['var'])] == ex['val']
# Read the weight.
w = raw[:, header.index('WGTP')]
# Sort the scores.
perm = np.argsort(s)
s = s[perm]
r = r[perm]
w = w[perm]
# Set a directory for the county (creating the directory if necessary).
dir = 'weighted'
try:
os.mkdir(dir)
except FileExistsError:
pass
dir = 'weighted/County_of_'
dir += ex['county'].replace(' ', '_').replace(',', '')
dir += '-'
dir += ex['var']
dir += '-'
if dither:
dir += 'dithered'
else:
dir += 'averaged'
try:
os.mkdir(dir)
except FileExistsError:
pass
dir += '/'
print(f'./{dir} is under construction....')
# Identify the indices of the subset corresponding to the county.
slice = raw[perm, header.index('PUMA')]
inds = slice >= (puma[ex['county']][0] * np.ones(raw.shape[0]))
inds = inds & (
slice <= (puma[ex['county']][1] * np.ones(raw.shape[0])))
inds = np.nonzero(inds)[0]
inds = np.unique(inds)
# Plot reliability diagrams and the cumulative graph.
nin = [10, 20, 100]
nout = {}
for nbins in nin:
filename = dir + 'equiscores' + str(nbins) + '.pdf'
equiscores(r, s, inds, nbins, filename, weights=w, left=0)
filename = dir + 'equierrs' + str(nbins) + '.pdf'
nout[str(nbins)] = equierrs(r, s, inds, nbins, filename, weights=w)
if nbins < 100:
assert abs(nout[str(nbins)][0] - nbins) <= 3
assert abs(nout[str(nbins)][1] - nbins) <= 3
majorticks = 10
minorticks = 300
filename = dir + 'cumulative.pdf'
kuiper, kolmogorov_smirnov, lenscale = cumulative(
r, s, inds, majorticks, minorticks, ex['val'] is not None,
filename=filename, weights=w)
# Save metrics in a text file.
filename = dir + 'metrics.txt'
with open(filename, 'w') as f:
f.write('m:\n')
f.write(f'{len(s)}\n')
f.write('n:\n')
f.write(f'{len(inds)}\n')
f.write('number of unique scores in the subset:\n')
f.write(f'{len(np.unique(s[inds]))}\n')
f.write('lenscale:\n')
f.write(f'{lenscale}\n')
for nbins in nin:
f.write("nout['" + str(nbins) + "']:\n")
f.write(f'{nout[str(nbins)][0]}\n')
f.write(f'{nout[str(nbins)][1]}\n')
f.write('Kuiper:\n')
f.write(f'{kuiper:.4}\n')
f.write('Kolmogorov-Smirnov:\n')
f.write(f'{kolmogorov_smirnov:.4}\n')
f.write('Kuiper / lenscale:\n')
f.write(f'{(kuiper / lenscale):.4}\n')
f.write('Kolmogorov-Smirnov / lenscale:\n')
f.write(f'{(kolmogorov_smirnov / lenscale):.4}\n')
|
cdeets-main
|
codes/acs.py
|
#!/usr/bin/env python3
"""
Copyright (c) Meta Platforms, Inc. and affiliates.
Plots of deviation of a subpop. from the full pop., with weighted sampling
*
This implementation considers responses r that can take arbitrary values,
not necesssarily restricted to taking values 0 or 1.
*
Functions
---------
cumulative
Cumulative difference between observations from a subpop. & the full pop.
equiscores
Reliability diagram with roughly equispaced average scores over bins
equierrs
Reliability diagram with similar ratio L2-norm / L1-norm of weights by bin
exactplot
Reliability diagram with exact values plotted
This source code is licensed under the MIT license found in the LICENSE file in
the root directory of this source tree.
"""
import math
import os
import subprocess
import random
import numpy as np
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt
from matplotlib.ticker import FixedFormatter
def cumulative(r, s, inds, majorticks, minorticks, bernoulli=True,
filename='cumulative.pdf',
title='subpop. deviation is the slope as a function of $A_k$',
fraction=1, weights=None):
"""
Cumulative difference between observations from a subpop. & the full pop.
Saves a plot of the difference between the normalized cumulative weighted
sums of r for the subpopulation indices inds and the normalized cumulative
weighted sums of r from the full population interpolated to the subpop.
indices, with majorticks major ticks and minorticks minor ticks on the
lower axis, labeling the major ticks with the corresponding values from s.
Parameters
----------
r : array_like
random outcomes
s : array_like
scores (must be in non-decreasing order)
inds : array_like
indices of the subset within s that defines the subpopulation
(must be unique and in strictly increasing order)
majorticks : int
number of major ticks on each of the horizontal axes
minorticks : int
number of minor ticks on the lower axis
bernoulli : bool, optional
set to True (the default) for Bernoulli variates; set to False
to use empirical estimates of the variance rather than the formula
p(1-p) for a Bernoulli variate whose mean is p
filename : string, optional
name of the file in which to save the plot
title : string, optional
title of the plot
fraction : float, optional
proportion of the full horizontal axis to display
weights : array_like, optional
weights of the observations
(the default None results in equal weighting)
Returns
-------
float
Kuiper statistic
float
Kolmogorov-Smirnov statistic
float
quarter of the full height of the isosceles triangle
at the origin in the plot
"""
def histcounts(nbins, a):
# Counts the number of entries of a
# falling into each of nbins equispaced bins.
j = 0
nbin = np.zeros(nbins, dtype=np.int64)
for k in range(len(a)):
if a[k] > a[-1] * (j + 1) / nbins:
j += 1
if j == nbins:
break
nbin[j] += 1
return nbin
def aggregate(r, s, ss, w):
# Determines the weighted mean and variance of the entries of r
# in a bin around each entry of s corresponding to the subset ss of s.
# The bin ranges from halfway to the nearest entry of s in ss
# on the left to halfway to the nearest entry of s in ss on the right.
q = np.insert(np.append(ss, [1e20]), 0, [-1e20])
t = np.asarray([(q[k] + q[k + 1]) / 2 for k in range(len(q) - 1)])
rc = np.zeros((len(ss)))
rc2 = np.zeros((len(ss)))
sc = np.zeros((len(ss)))
sc2 = np.zeros((len(ss)))
j = 0
for k in range(len(s)):
if s[k] > t[j + 1]:
j += 1
if j == len(ss):
break
if s[k] >= t[0]:
sc[j] += w[k]
sc2[j] += w[k]**2
rc[j] += w[k] * r[k]
rc2[j] += w[k] * r[k]**2
means = rc / sc
# Calculate an adjustment factor for the estimate of the variance
# that will make the estimate unbiased.
unbias = sc**2
unbias[np.where(sc**2 == sc2)] = 0
unbias[np.where(sc**2 != sc2)] /= (sc**2 - sc2)[np.where(sc**2 != sc2)]
return means, unbias * (rc2 / sc - means**2)
assert all(s[k] <= s[k + 1] for k in range(len(s) - 1))
assert all(inds[k] < inds[k + 1] for k in range(len(inds) - 1))
# Determine the weighting scheme.
if weights is None:
w = np.ones((len(s)))
else:
w = weights.copy()
assert np.all(w > 0)
w /= w.sum()
# Create the figure.
plt.figure()
ax = plt.axes()
# Subsample s, r, and w.
ss = s[inds]
rs = r[inds]
ws = w[inds]
# Average the results and weights for repeated scores, while subsampling
# the scores and indices for the subpopulation. Also calculate factors
# for adjusting the variances of responses to account for the responses
# being averages of other responses (when the scores need not be unique).
sslist = []
rslist = []
wslist = []
fslist = []
rssum = 0
wssum = 0
wssos = 0
for k in range(len(ss)):
rssum += rs[k] * ws[k]
wssum += ws[k]
wssos += ws[k]**2
if k == len(ss) - 1 or not math.isclose(
ss[k], ss[k + 1], rel_tol=1e-14):
sslist.append(ss[k])
rslist.append(rssum / wssum)
wslist.append(wssum)
fslist.append(wssos / wssum**2)
rssum = 0
wssum = 0
wssos = 0
ss = np.asarray(sslist)
rs = np.asarray(rslist)
ws = np.asarray(wslist)
fs = np.asarray(fslist)
# Normalize the weights.
ws /= ws[:int(len(ws) * fraction)].sum()
# Aggregate r according to s, ss, and w.
rt, rtvar = aggregate(r, s, ss, w)
# Accumulate the weighted rs and rt, as well as ws.
f = np.insert(np.cumsum(ws * rs), 0, [0])
ft = np.insert(np.cumsum(ws * rt), 0, [0])
x = np.insert(np.cumsum(ws), 0, [0])
# Plot the difference.
plt.plot(
x[:int(len(x) * fraction)], (f - ft)[:int(len(f) * fraction)], 'k')
# Make sure the plot includes the origin.
plt.plot(0, 'k')
# Add an indicator of the scale of 1/sqrt(n) to the vertical axis.
rtsub = np.insert(rt, 0, [0])[:(int(len(rt) * fraction) + 1)]
if bernoulli:
lenscale = np.sqrt(np.sum(ws**2 * rtsub[1:] * (1 - rtsub[1:]) * fs))
else:
lenscale = np.sqrt(np.sum(ws**2 * rtvar * fs))
plt.plot(2 * lenscale, 'k')
plt.plot(-2 * lenscale, 'k')
kwargs = {
'head_length': 2 * lenscale, 'head_width': fraction / 20, 'width': 0,
'linewidth': 0, 'length_includes_head': True, 'color': 'k'}
plt.arrow(.1e-100, -2 * lenscale, 0, 4 * lenscale, shape='left', **kwargs)
plt.arrow(.1e-100, 2 * lenscale, 0, -4 * lenscale, shape='right', **kwargs)
plt.margins(x=0, y=.1)
# Label the major ticks of the lower axis with the values of ss.
lenxf = int(len(x) * fraction)
sl = ['{:.2f}'.format(a) for a in
np.insert(ss, 0, [0])[:lenxf:(lenxf // majorticks)].tolist()]
plt.xticks(x[:lenxf:(lenxf // majorticks)], sl)
if len(rtsub) >= 300 and minorticks >= 50:
# Indicate the distribution of s via unlabeled minor ticks.
plt.minorticks_on()
ax.tick_params(which='minor', axis='x')
ax.tick_params(which='minor', axis='y', left=False)
ax.set_xticks(x[np.cumsum(histcounts(minorticks,
ss[:int((len(x) - 1) * fraction)]))], minor=True)
# Label the axes.
plt.xlabel('$S_k$')
plt.ylabel('$B_k$')
ax2 = plt.twiny()
plt.xlabel(
'$k/n$ (together with minor ticks at equispaced values of $A_k$)')
ax2.tick_params(which='minor', axis='x', top=True, direction='in', pad=-17)
ax2.set_xticks(np.arange(0, 1 + 1 / majorticks, 1 / majorticks),
minor=True)
ks = ['{:.2f}'.format(a) for a in
np.arange(0, 1 + 1 / majorticks, 1 / majorticks).tolist()]
alist = (lenxf - 1) * np.arange(0, 1 + 1 / majorticks, 1 / majorticks)
alist = alist.tolist()
# Jitter minor ticks that overlap with major ticks lest Pyplot omit them.
alabs = []
for a in alist:
multiple = x[int(a)] * majorticks
if abs(multiple - round(multiple)) > 1e-4:
alabs.append(x[int(a)])
else:
alabs.append(x[int(a)] * (1 - 1e-4))
plt.xticks(alabs, ks)
ax2.xaxis.set_minor_formatter(FixedFormatter(
[r'$A_k\!=\!{:.2f}$'.format(1 / majorticks)]
+ [r'${:.2f}$'.format(k / majorticks) for k in range(2, majorticks)]))
# Title the plot.
plt.title(title)
# Clean up the whitespace in the plot.
plt.tight_layout()
# Save the plot.
plt.savefig(filename, bbox_inches='tight')
plt.close()
# Calculate summary statistics.
fft = (f - ft)[:int(len(f) * fraction)]
kuiper = np.max(fft) - np.min(fft)
kolmogorov_smirnov = np.max(np.abs(fft))
return kuiper, kolmogorov_smirnov, lenscale
def equiscores(r, s, inds, nbins, filename='equiscore.pdf', weights=None,
top=None, left=None, right=None):
"""
Reliability diagram with roughly equispaced average scores over bins
Plots a reliability diagram with roughly equispaced average scores
for the bins, for both the full population and the subpopulation specified
by the indices inds.
Parameters
----------
r : array_like
random outcomes
s : array_like
scores (must be in non-decreasing order)
inds : array_like
indices of the subset within s that defines the subpopulation
(must be unique and in strictly increasing order)
nbins : int
number of bins
filename : string, optional
name of the file in which to save the plot
weights : array_like, optional
weights of all observations
(the default None results in equal weighting)
top : float, optional
top of the range of the vertical axis (the default None is adaptive)
left : float, optional
leftmost value of the horizontal axis (the default None is adaptive)
right : float, optional
rightmost value of the horizontal axis (the default None is adaptive)
Returns
-------
None
"""
def bintwo(nbins, a, b, q, qmax, w):
# Determines the total weight of entries of q falling into each
# of nbins equispaced bins, and calculates the weighted average per bin
# of the arrays a and b, returning np.nan as the "average"
# for any bin that is empty.
j = 0
bina = np.zeros(nbins)
binb = np.zeros(nbins)
wbin = np.zeros(nbins)
for k in range(len(q)):
if q[k] > qmax * (j + 1) / nbins:
j += 1
if j == nbins:
break
bina[j] += w[k] * a[k]
binb[j] += w[k] * b[k]
wbin[j] += w[k]
# Normalize the sum for each bin to compute the arithmetic average.
bina = np.divide(bina, wbin, where=wbin != 0)
bina[np.where(wbin == 0)] = np.nan
binb = np.divide(binb, wbin, where=wbin != 0)
binb[np.where(wbin == 0)] = np.nan
return wbin, bina, binb
assert all(s[k] <= s[k + 1] for k in range(len(s) - 1))
assert all(inds[k] < inds[k + 1] for k in range(len(inds) - 1))
# Determine the weighting scheme.
if weights is None:
w = np.ones((len(s)))
else:
w = weights.copy()
assert np.all(w > 0)
w /= w.sum()
ws = w[inds]
ws /= ws.sum()
# Create the figure.
plt.figure()
_, binr, binst = bintwo(nbins, r, s, s, s[inds[-1]], w)
_, binrs, binss = bintwo(nbins, r[inds], s[inds], s[inds], s[inds[-1]], ws)
plt.plot(binst, binr, '*:', color='gray')
plt.plot(binss, binrs, '*:', color='black')
xmin = min(binst[0], binss[0]) if left is None else left
xmax = max(binst[-1], binss[-1]) if right is None else right
plt.xlim((xmin, xmax))
plt.ylim(bottom=0)
plt.ylim(top=top)
plt.xlabel('weighted average of $S_k$ for $k$ in the bin')
plt.ylabel('weighted average of $R_k$ for $k$ in the bin')
plt.title('reliability diagram')
plt.tight_layout()
plt.savefig(filename, bbox_inches='tight')
plt.close()
def equierrs(r, s, inds, nbins, filename='equibins.pdf', weights=None,
top=None, left=None, right=None):
"""
Reliability diagram with similar ratio L2-norm / L1-norm of weights by bin
Plots a reliability diagram with the ratio of the L2 norm of the weights
to the L1 norm of the weights being roughly the same for every bin.
The L2 norm is the square root of the sum of the squares, while the L1 norm
is the sum of the absolute values. The plot includes a graph both for the
full population and for the subpopulation specified by the indices inds.
Parameters
----------
r : array_like
random outcomes
s : array_like
scores (must be in non-decreasing order)
inds : array_like
indices of the subset within s that defines the subpopulation
(must be unique and in strictly increasing order)
nbins : int
rough number of bins to construct
filename : string, optional
name of the file in which to save the plot
weights : array_like, optional
weights of all observations
(the default None results in equal weighting)
top : float, optional
top of the range of the vertical axis (the default None is adaptive)
left : float, optional
leftmost value of the horizontal axis (the default None is adaptive)
right : float, optional
rightmost value of the horizontal axis (the default None is adaptive)
Returns
-------
int
number of bins constructed for the subpopulation
int
number of bins constructed for the full population
"""
def inbintwo(a, b, inbin, w):
# Determines the total weight falling into the bins given by inbin,
# and calculates the weighted average per bin of the arrays a and b,
# returning np.nan as the "average" for any bin that is empty.
wbin = [w[inbin[k]:inbin[k + 1]].sum() for k in range(len(inbin) - 1)]
bina = [(w[inbin[k]:inbin[k + 1]] * a[inbin[k]:inbin[k + 1]]).sum()
for k in range(len(inbin) - 1)]
binb = [(w[inbin[k]:inbin[k + 1]] * b[inbin[k]:inbin[k + 1]]).sum()
for k in range(len(inbin) - 1)]
# Normalize the sum for each bin to compute the weighted average.
bina = np.divide(bina, wbin, where=wbin != 0)
bina[np.where(wbin == 0)] = np.nan
binb = np.divide(binb, wbin, where=wbin != 0)
binb[np.where(wbin == 0)] = np.nan
return wbin, bina, binb
def binbounds(nbins, w):
# Partitions w into around nbins bins, each with roughly equal ratio
# of the L2 norm of w in the bin to the L1 norm of w in the bin,
# returning the indices defining the bins in the list inbin.
proxy = len(w) // nbins
v = w[np.sort(np.random.permutation(len(w))[:proxy])]
# t is a heuristic threshold.
t = np.square(v).sum() / v.sum()**2
inbin = []
k = 0
while k < len(w) - 1:
inbin.append(k)
k += 1
s = w[k]
ss = w[k]**2
while ss / s**2 > t and k < len(w) - 1:
k += 1
s += w[k]
ss += w[k]**2
if len(w) - inbin[-1] < (inbin[-1] - inbin[-2]) / 2:
inbin[-1] = len(w)
else:
inbin.append(len(w))
return inbin
assert all(s[k] <= s[k + 1] for k in range(len(s) - 1))
assert all(inds[k] < inds[k + 1] for k in range(len(inds) - 1))
# Determine the weighting scheme.
if weights is None:
w = np.ones((len(s)))
else:
w = weights.copy()
assert np.all(w > 0)
w /= w.sum()
inbin = binbounds(nbins, w)
ws = w[inds]
ws /= ws.sum()
inbins = binbounds(nbins, ws)
# Create the figure.
plt.figure()
_, binr, binst = inbintwo(r, s, inbin, w)
_, binrs, binss = inbintwo(r[inds], s[inds], inbins, ws)
plt.plot(binst, binr, '*:', color='gray')
plt.plot(binss, binrs, '*:', color='black')
xmin = min(binst[0], binss[0]) if left is None else left
xmax = max(binst[-1], binss[-1]) if right is None else right
plt.xlim((xmin, xmax))
plt.ylim(bottom=0)
plt.ylim(top=top)
plt.xlabel('weighted average of $S_k$ for $k$ in the bin')
plt.ylabel('weighted average of $R_k$ for $k$ in the bin')
title = r'reliability diagram'
title += r' ($\Vert W \Vert_2 / \Vert W \Vert_1$ is similar for every bin)'
plt.title(title)
plt.tight_layout()
plt.savefig(filename, bbox_inches='tight')
plt.close()
return len(inbins) - 1, len(inbin) - 1
def exactplot(r, s, inds, filename='exact.pdf', title='exact expectations',
top=None, left=None, right=None):
"""
Reliability diagram with exact values plotted
Plots a reliability diagram at full resolution with fractional numbers,
for both the full population and the subpop. specified by indices inds.
The entries of r should be the expected values of outcomes,
even if the outcomes are integer-valued counts or just 0s and 1s.
Parameters
----------
r : array_like
expected value of outcomes
s : array_like
scores (must be in non-decreasing order)
inds : array_like
indices of the subset within s that defines the subpopulation
(must be unique and in strictly increasing order)
filename : string, optional
name of the file in which to save the plot
title : string, optional
title of the plot
top : float, optional
top of the range of the vertical axis (the default None is adaptive)
left : float, optional
leftmost value of the horizontal axis (the default None is adaptive)
right : float, optional
rightmost value of the horizontal axis (the default None is adaptive)
Returns
-------
None
"""
assert all(s[k] <= s[k + 1] for k in range(len(s) - 1))
assert all(inds[k] < inds[k + 1] for k in range(len(inds) - 1))
plt.figure()
plt.plot(s, r, '*', color='gray')
rs = r[inds]
ss = s[inds]
plt.plot(ss, rs, '*', color='black')
plt.xlim((left, right))
plt.ylim(bottom=0)
plt.ylim(top=top)
plt.xlabel('score $S_k$')
plt.ylabel('expected value ($P_k$) of outcome $R_k$')
plt.title(title)
plt.tight_layout()
plt.savefig(filename, bbox_inches='tight')
plt.close()
if __name__ == '__main__':
#
# Generate directories with plots as specified via the code below,
# with each directory named m_len(inds)_nbins_iex-dithered or
# m_len(inds)_nbins_iex-averaged (where m, inds, nbins, and iex
# are defined in the code below, and "dithered" uses scores dithered
# to become distinct, while "averaged" uses responses averaged together
# at the same score).
#
# Set parameters.
# minorticks is the number of minor ticks on the lower axis.
minorticks = 100
# majorticks is the number of major ticks on the lower axis.
majorticks = 10
# m is the number of members from the full population.
m = 50000
# n determines the number of observations for the subpopulation.
n = 2500
# Store processes for converting from pdf to jpeg in procs.
procs = []
# Consider 4 examples.
for iex in range(4):
for dither in [True, False]:
# nbins is the number of bins for the reliability diagrams.
for nbins in [10, 50]:
# nbins must divide n evenly.
assert n % nbins == 0
if iex == 0:
# Define the indices of the subset for the subpopulation.
inds = np.arange(0, m, m // n) + m // n // 2
inds1 = np.arange(0, m // 4, m // n // 4) + m // 2 - m // 8
inds2 = np.arange(0, m // 2, m // n // 2) + m // 2 - m // 4
inds3 = np.arange(0, m, m // n)
inds = np.concatenate((inds1, inds1 + 1, inds2, inds3))
# Indices must be sorted and unique.
inds = np.unique(inds)
inds = inds[0:(m // (m // len(inds)))]
# Construct scores.
sl = np.arange(0, 1, 4 / m) + 2 / m
s = np.square(sl)
s = np.concatenate([s] * 4)
if dither:
ss = s.shape
s *= np.ones(ss) + np.random.normal(size=ss) * 1e-8
# The scores must be in non-decreasing order.
s = np.sort(s)
# Construct perturbations to the scores for sampling rates.
d = .25
tl = -np.arange(-d, d, 2 * d / m) - d / m
t = d - 1.1 * np.square(np.square(tl)) / d**3
e = .7
ul = -np.arange(-e, e, 2 * e / m) - e / m
u = e - np.abs(ul)
ins = np.arange(m // 2 - m // 50, m // 2 + m // 50)
u[ins] = t[ins]
u2 = 2 * t - u
t += np.sin(np.arange((m))) * (u - t)
# Construct the exact sampling probabilities.
exact = s + t
exact[inds] = s[inds] + u[inds]
exact[inds + 1] = s[inds] + u2[inds]
# Construct weights.
weights = 4 - np.cos(9 * np.arange(m) / m)
if iex == 1:
# Define the indices of the subset for the subpopulation.
np.random.seed(987654321)
inds = np.sort(np.random.permutation((m))[:n])
# Construct scores.
s = np.arange(0, 1, 2 / m) + 1 / m
s = np.sqrt(s)
s = np.concatenate((s, s))
if dither:
ss = s.shape
s *= np.ones(ss) + np.random.normal(size=ss) * 1e-8
# The scores must be in non-decreasing order.
s = np.sort(s)
# Construct perturbations to the scores for sampling rates.
d = math.sqrt(1 / 2)
tl = np.arange(-d, d, 2 * d / m) - d / m
t = (1 + np.sin(np.arange((m)))) / 2
t *= np.square(tl) - d**2
u = np.square(tl) - d**2
u *= .75 * np.round(1 + np.sin(10 * np.arange((m)) / m))
u /= 2
# Construct the exact sampling probabilities.
exact = s + t
exact[inds] = s[inds] + u[inds]
# Construct weights.
weights = 4 - np.cos(9 * np.arange(m) / m)
if iex == 2:
# Define the indices of the subset for the subpopulation.
np.random.seed(987654321)
inds = np.arange(0, m ** (3 / 4), 1)
inds = np.unique(np.round(np.power(inds, 4 / 3)))
inds = inds.astype(int)
inds = inds[0:(50 * (len(inds) // 50))]
# Construct scores.
s = np.arange(0, 1, 10 / m) + 5 / m
s = np.concatenate([s] * 10)
if dither:
ss = s.shape
s *= np.ones(ss) + np.random.normal(size=ss) * 1e-8
# The scores must be in non-decreasing order.
s = np.sort(s)
# Construct perturbations to the scores for sampling rates.
tl = np.arange(0, 1, 1 / m) + 1 / (2 * m)
t = np.power(tl, 1 / 4) - tl
t *= (1 + np.sin(np.arange((m)))) / 2
u = np.power(tl, 1 / 4) - tl
u *= .5 * (1 + np.sin(
50 * np.power(np.arange(0, m**4, m**3), 1 / 4) / m))
# Construct the exact sampling probabilities.
exact = s + t
exact[inds] = s[inds] + u[inds]
# Construct weights.
weights = 4 - np.cos(9 * np.arange(m) / m)
if iex == 3:
# Define the indices of the subset for the subpopulation.
np.random.seed(987654321)
inds = np.sort(np.random.permutation((m))[:n])
# Construct scores.
s = np.arange(0, 1, 4 / m) + 2 / m
s = np.concatenate([s] * 4)
if dither:
ss = s.shape
s *= np.ones(ss) + np.random.normal(size=ss) * 1e-8
# The scores must be in non-decreasing order.
s = np.sort(s)
# Construct the exact sampling probabilities.
exact = np.sin(np.arange(m))
exact *= np.sin(50 * np.arange(-3 * m / 4, m / 4) / m)
exact = np.square(exact)
exact /= 5
exact[inds] = 0
# Construct weights.
weights = np.ones((m))
ind = 3 * m // 4 - 1
# Identify an index near the middle that belongs
# to the subpop. for which the two adjacent indices do not.
while(
np.any(inds == (ind - 1))
or not np.any(inds == ind)
or np.any(inds == (ind + 1))):
ind += 1
weights[ind] = n / 50
weights[ind - 1] = m / 500
weights[ind + 1] = m / 500
# Alter the exact sampling probabilities for the 3 indices
# selected in the preceding "while" loop.
exact[ind] = 1
exact[ind - 1] = 1
exact[ind + 1] = 0
# Set a unique directory for each collection of experiments
# (creating the directory if necessary).
dir = 'weighted'
try:
os.mkdir(dir)
except FileExistsError:
pass
dir = 'weighted/' + str(m) + '_' + str(len(inds))
dir = dir + '_' + str(nbins)
dir = dir + '_' + str(iex)
dir += '-'
if dither:
dir += 'dithered'
else:
dir += 'averaged'
try:
os.mkdir(dir)
except FileExistsError:
pass
dir = dir + '/'
print(f'./{dir} is under construction....')
# Generate a sample of classifications into two classes,
# correct (class 1) and incorrect (class 0),
# avoiding numpy's random number generators
# that are based on random bits --
# they yield strange results for many seeds.
random.seed(987654321)
uniform = np.asarray([random.random() for _ in range(m)])
r = (uniform <= exact).astype(float)
# Generate five plots and a text file reporting metrics.
filename = dir + 'cumulative.pdf'
kuiper, kolmogorov_smirnov, lenscale = cumulative(
r, s, inds, majorticks, minorticks, True, filename,
weights=weights)
filename = dir + 'metrics.txt'
with open(filename, 'w') as f:
f.write('n:\n')
f.write(f'{len(inds)}\n')
f.write('number of unique scores in the subset:\n')
f.write(f'{len(np.unique(s[inds]))}\n')
f.write('lenscale:\n')
f.write(f'{lenscale}\n')
f.write('Kuiper:\n')
f.write(f'{kuiper:.4}\n')
f.write('Kolmogorov-Smirnov:\n')
f.write(f'{kolmogorov_smirnov:.4}\n')
f.write('Kuiper / lenscale:\n')
f.write(f'{(kuiper / lenscale):.4}\n')
f.write('Kolmogorov-Smirnov / lenscale:\n')
f.write(f'{(kolmogorov_smirnov / lenscale):.4}\n')
filename = dir + 'cumulative_exact.pdf'
_, _, _ = cumulative(
exact, s, inds, majorticks, minorticks, True, filename,
title='exact expectations', weights=weights)
filename = dir + 'equiscores.pdf'
equiscores(r, s, inds, nbins, filename, weights, top=1, left=0,
right=1)
filename = dir + 'equierrs.pdf'
equierrs(r, s, inds, nbins + 3, filename, weights, top=1,
left=0, right=1)
filepdf = dir + 'exact.pdf'
filejpg = dir + 'exact.jpg'
exactplot(exact, s, inds, filepdf, top=1, left=0, right=1)
args = ['convert', '-density', '1200', filepdf, filejpg]
procs.append(subprocess.Popen(args))
print('waiting for conversion from pdf to jpg to finish....')
for iproc, proc in enumerate(procs):
proc.wait()
print(f'{iproc + 1} of {len(procs)} conversions are done....')
|
cdeets-main
|
codes/subpop_weighted.py
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
#Common imports
import sys
import os
import argparse
import random
import copy
import torch
import torch.utils.data as data_utils
from torch import nn, optim
from torch.nn import functional as F
from torchvision import datasets, transforms
from torchvision.utils import save_image
from torch.autograd import Variable
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
from sklearn.decomposition import FastICA
from algorithms.base_auto_encoder import AE
from algorithms.poly_auto_encoder import AE_Poly
from algorithms.ioss_auto_encoder import AE_IOSS
from algorithms.image_auto_encoder import AE_Image
from utils.metrics import *
from utils.helper import *
# Input Parsing
parser = argparse.ArgumentParser()
parser.add_argument('--method_type', type=str, default='ae_poly',
help= 'ae, ae_poly')
parser.add_argument('--latent_case', type=str, default='uniform',
help='laplace; uniform')
parser.add_argument('--data_dim', type=int, default= 200,
help='')
parser.add_argument('--latent_dim', type=int, default= 6,
help='')
parser.add_argument('--poly_degree', type=int, default= 2,
help='')
parser.add_argument('--batch_size', type=int, default= 16,
help='')
parser.add_argument('--lr', type=float, default= 1e-3,
help='')
parser.add_argument('--weight_decay', type=float, default= 5e-4,
help='')
parser.add_argument('--num_seeds', type=int, default=5,
help='')
parser.add_argument('--intervention_case', type= int, default= 0,
help= '')
parser.add_argument('--eval_ioss_transformation', type=int, default=0,
help='Evaluate the IOSS transformation from the base model representation')
parser.add_argument('--eval_intervene_transformation', type=int, default=0,
help='Evaluate the Intervention transformation from the base model representation')
parser.add_argument('--eval_dgp', type=int, default= 0,
help= 'Evaluate the function from z -> x and x -> z in the true DGP')
parser.add_argument('--wandb_log', type=int, default=0,
help='')
parser.add_argument('--cuda_device', type=int, default=-1,
help='Select the cuda device by id among the avaliable devices' )
args = parser.parse_args()
method_type= args.method_type
latent_case= args.latent_case
data_dim= args.data_dim
latent_dim= args.latent_dim
poly_degree= args.poly_degree
batch_size= args.batch_size
lr= args.lr
weight_decay= args.weight_decay
num_seeds= args.num_seeds
intervention_case= args.intervention_case
eval_dgp= args.eval_dgp
eval_ioss_transformation= args.eval_ioss_transformation
eval_intervene_transformation= args.eval_intervene_transformation
wandb_log= args.wandb_log
cuda_device= args.cuda_device
if 'balls' in latent_case:
save_dir= latent_case + '/'
else:
save_dir= 'polynomial' + '_latent_' + latent_case + '_poly_degree_' + str(poly_degree) + '_data_dim_' + str(data_dim) + '_latent_dim_' + str(latent_dim) + '/'
args.save_dir= save_dir
#GPU
#GPU
if cuda_device == -1:
device= "cpu"
else:
device= torch.device("cuda:" + str(cuda_device))
if device:
kwargs = {'num_workers': 0, 'pin_memory': False}
else:
kwargs= {}
res={}
for seed in range(num_seeds):
#Seed values
random.seed(seed*10)
np.random.seed(seed*10)
torch.manual_seed(seed*10)
# Load Dataset
train_dataset, val_dataset, test_dataset= sample_base_data_loaders(save_dir, batch_size, seed= seed, observation_case=1, intervention_case= intervention_case, latent_case= latent_case, kwargs=kwargs)
#Load Algorithm
if method_type == 'ae':
method= AE(args, train_dataset, val_dataset, test_dataset, seed=seed)
elif method_type == 'ae_poly':
method= AE_Poly(args, train_dataset, val_dataset, test_dataset, seed=seed)
elif method_type == 'ae_image':
method= AE_Image(args, train_dataset, val_dataset, test_dataset, seed=seed, device= device)
# Evaluate the models learnt on true latent variables
if eval_dgp:
# X->Z prediction R2
x, z= get_predictions_check(train_dataset, test_dataset)
rmse, r2= get_indirect_prediction_error(x, z)
key= 'oracle_pred_rmse'
if key not in res.keys():
res[key]= []
res[key].append(rmse)
key= 'oracle_pred_r2'
if key not in res.keys():
res[key]= []
res[key].append(r2)
# Z->X prediction R2
x, z= get_predictions_check(train_dataset, test_dataset)
rmse, r2= get_indirect_prediction_error(z, x)
key= 'debug_pred_rmse'
if key not in res.keys():
res[key]= []
res[key].append(rmse)
key= 'debug_pred_r2'
if key not in res.keys():
res[key]= []
res[key].append(r2)
# Evaluate the base model
method.load_model()
# method.load_intermediate_model(epoch=10)
#Latent Prediction Error
rmse,r2= method.eval_identification()
key= 'latent_pred_rmse'
if key not in res.keys():
res[key]=[]
res[key].append(rmse)
key= 'latent_pred_r2'
if key not in res.keys():
res[key]=[]
res[key].append(r2)
# Evaluating MCC on the observational data with representations from Step 1
#Sample data from only the observational distribution
train_dataset, val_dataset, test_dataset= sample_base_data_loaders(save_dir, batch_size, seed= seed, observation_case=1, intervention_case= 0, latent_case= latent_case, kwargs=kwargs)
#Obtain Predictions and Reconstruction Loss
logs= get_predictions(method.encoder, method.decoder, train_dataset, val_dataset, test_dataset, device=method.device, plot= False)
#Prediction RMSE
key= 'recon_rmse'
if key not in res.keys():
res[key]= []
res[key].append(logs['recon_loss']['val'])
print('RMSE Val: ', logs['recon_loss']['val'])
#MCC
if 'balls' not in latent_case:
mcc= get_cross_correlation(copy.deepcopy(logs['pred_z']), copy.deepcopy(logs['true_z']))
key= 'mcc'
if key not in res.keys():
res[key]= []
for item in mcc:
res[key].append(item)
if eval_intervene_transformation:
#Sample only from interventional distribution
train_dataset, val_dataset, test_dataset= sample_base_data_loaders(save_dir, batch_size, seed= seed, latent_case= latent_case, observation_case=0, intervention_case= 1, kwargs=kwargs)
#Obtain Predictions and Reconstruction Loss
logs= get_predictions(method.encoder, method.decoder, train_dataset, val_dataset, test_dataset, device=method.device, plot= False)
# Intervention Specific Metric
if 'balls' not in latent_case:
reg_models= intervene_metric(copy.deepcopy(logs['pred_z']), copy.deepcopy(logs['true_z']), model_train=1)
else:
reg_models= intervene_metric_image(copy.deepcopy(logs['pred_z']), copy.deepcopy(logs['true_z']), copy.deepcopy(logs['true_y']), model_train=1, model= 'mlp')
#Sample data from only the observational distribution
train_dataset, val_dataset, test_dataset= sample_base_data_loaders(save_dir, batch_size, seed= seed, latent_case= latent_case, observation_case=1, intervention_case= 0, kwargs=kwargs)
#Obtain Predictions and Reconstruction Loss
logs= get_predictions(method.encoder, method.decoder, train_dataset, val_dataset, test_dataset, device=method.device, plot= False)
# Intervention Specific Metric
if 'balls' not in latent_case:
logs['pred_z']= intervene_metric(copy.deepcopy(logs['pred_z']), copy.deepcopy(logs['true_z']), model_train=0, list_models=reg_models)
else:
logs['pred_z'], logs['true_z']= intervene_metric_image(copy.deepcopy(logs['pred_z']), copy.deepcopy(logs['true_z']), copy.deepcopy(logs['true_y']), model_train=0, list_models= reg_models, model= 'mlp')
#Sample dataloaders for finetuning the representations
if eval_ioss_transformation:
#Sample data from only the observational distribution
train_dataset, val_dataset, test_dataset= sample_base_data_loaders(save_dir, batch_size, seed= seed, latent_case= latent_case, observation_case=1, intervention_case= 0, kwargs=kwargs)
#Obtain Predictions and Reconstruction Loss
logs= get_predictions(method.encoder, method.decoder, train_dataset, val_dataset, test_dataset, device=method.device, plot= False)
#Train with IOSS Loss
train_dataset, val_dataset, test_dataset= sample_finetune_data_loaders(logs['pred_z'], logs['true_z'], save_dir, batch_size, kwargs= kwargs)
ioss_method= AE_IOSS(args, train_dataset, val_dataset, test_dataset, seed=seed, device=device, base_algo= method_type)
ioss_method.load_model()
#Obtain Predictions and Reconstruction Loss
logs= get_predictions(ioss_method.encoder, ioss_method.decoder, ioss_method.train_dataset, ioss_method.val_dataset, ioss_method.test_dataset, device=ioss_method.device, plot= False)
#MCC
if eval_ioss_transformation or eval_intervene_transformation:
mcc= get_cross_correlation(logs['pred_z'], logs['true_z'])
print('MCC: ', mcc)
key= 'mcc_tune'
if key not in res.keys():
res[key]= []
for item in mcc:
res[key].append(item)
print('Final Results')
print(res.keys())
for key in res.keys():
res[key]= np.array(res[key])
print('Metric: ', key, np.mean(res[key]), np.std(res[key])/np.sqrt(num_seeds))
|
CausalRepID-main
|
test.py
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
#Common imports
import sys
import os
import argparse
import random
import copy
import torch
from torch import nn, optim
from torch.nn import functional as F
from torchvision import datasets, transforms
from torchvision.utils import save_image
from torch.autograd import Variable
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
from sklearn.decomposition import FastICA
from algorithms.base_auto_encoder import AE
from algorithms.poly_auto_encoder import AE_Poly
from algorithms.ioss_auto_encoder import AE_IOSS
from algorithms.image_auto_encoder import AE_Image
from utils.metrics import *
from utils.helper import *
# Input Parsing
parser = argparse.ArgumentParser()
parser.add_argument('--method_type', type=str, default='ae_poly',
help= 'ae; ae_poly; ae_image')
parser.add_argument('--latent_case', type=str, default='uniform',
help='laplace; uniform')
parser.add_argument('--data_dim', type=int, default= 200,
help='')
parser.add_argument('--latent_dim', type=int, default= 10,
help='')
parser.add_argument('--poly_degree', type=int, default= 2,
help='')
parser.add_argument('--batch_size', type=int, default= 16,
help='')
parser.add_argument('--lr', type=float, default= 1e-3,
help='')
parser.add_argument('--weight_decay', type=float, default= 5e-4,
help='')
parser.add_argument('--num_epochs', type=int, default= 200,
help='')
parser.add_argument('--seed', type=int, default=0,
help='')
parser.add_argument('--intervention_case', type= int, default= 0,
help= '')
parser.add_argument('--train_base_model', type=int, default=1,
help='Train the base auto encoder')
parser.add_argument('--train_ioss_transformation', type=int, default=0,
help='Learn the IOSS transformation from the base model representations')
parser.add_argument('--wandb_log', type=int, default=0,
help='')
parser.add_argument('--cuda_device', type=int, default=-1,
help='Select the cuda device by id among the avaliable devices' )
args = parser.parse_args()
method_type= args.method_type
latent_case= args.latent_case
data_dim= args.data_dim
latent_dim= args.latent_dim
poly_degree= args.poly_degree
batch_size= args.batch_size
lr= args.lr
weight_decay= args.weight_decay
num_epochs= args.num_epochs
seed= args.seed
intervention_case= args.intervention_case
train_base_model= args.train_base_model
train_ioss_transformation= args.train_ioss_transformation
wandb_log= args.wandb_log
cuda_device= args.cuda_device
if 'balls' in latent_case:
save_dir= latent_case + '/'
else:
save_dir= 'polynomial' + '_latent_' + latent_case + '_poly_degree_' + str(poly_degree) + '_data_dim_' + str(data_dim) + '_latent_dim_' + str(latent_dim) + '/'
args.save_dir= save_dir
#GPU
if cuda_device == -1:
device= torch.device("cpu")
else:
device= torch.device("cuda:" + str(cuda_device))
if device:
kwargs = {'num_workers': 0, 'pin_memory': False}
else:
kwargs= {}
#Seed values
random.seed(seed*10)
np.random.seed(seed*10)
torch.manual_seed(seed*10)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed*10)
# Load Dataset
train_dataset, val_dataset, test_dataset= sample_base_data_loaders(save_dir, batch_size, observation_case=1, intervention_case= intervention_case, latent_case= latent_case, seed= seed, kwargs=kwargs)
#Load Algorithm
if method_type == 'ae':
method= AE(args, train_dataset, val_dataset, test_dataset, seed=seed, device= device)
elif method_type == 'ae_poly':
method= AE_Poly(args, train_dataset, val_dataset, test_dataset, seed=seed, device= device)
elif method_type == 'ae_image':
method= AE_Image(args, train_dataset, val_dataset, test_dataset, seed=seed, device= device)
else:
print('Error: Incorrect method type')
sys.exit(-1)
# Training
if train_base_model:
method.train()
#Train with IOSS Loss
if train_ioss_transformation:
method.load_model()
#Sample data from only the observational distribution
train_dataset, val_dataset, test_dataset= sample_base_data_loaders(save_dir, batch_size, seed= seed, observation_case=1, intervention_case= 0, kwargs=kwargs)
#Obtain Predictions and Reconstruction Loss
res= get_predictions(method.encoder, method.decoder, train_dataset, val_dataset, test_dataset, device=method.device)
#Sample dataloaders for finetuning the representations
train_dataset, val_dataset, test_dataset= sample_finetune_data_loaders(res['pred_z'], res['true_z'], save_dir, batch_size, kwargs= kwargs)
ioss_method= AE_IOSS(args, train_dataset, val_dataset, test_dataset, seed=seed, device=device, base_algo= method_type)
ioss_method.train()
|
CausalRepID-main
|
train.py
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import os
import sys
import math
import torch
import torch.utils.data as data_utils
from torch import nn, optim
from torch.nn import functional as F
from torchvision import datasets, transforms
from torchvision.utils import save_image
from torch.autograd import Variable
from sklearn.decomposition import FastICA
from sklearn.decomposition import PCA
from utils.metrics import *
from models.encoder import Encoder
from models.poly_decoder import PolyDecoder
#Base Class
from algorithms.base_auto_encoder import AE
path= os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))
sys.path.append(path)
from utils.helper import ValidationHelper
from utils.metrics import *
import wandb
class AE_Poly(AE):
def __init__(self, args, train_dataset, val_dataset, test_dataset, seed=0, device= None):
super().__init__(args, train_dataset, val_dataset, test_dataset, seed, device)
self.encoder= Encoder(self.args.data_dim, self.args.latent_dim).to(self.device)
self.decoder= PolyDecoder(self.args.data_dim, self.args.latent_dim, self.args.poly_degree, self.device).to(self.device)
self.opt, self.scheduler= self.get_optimizer()
if self.args.intervention_case:
self.res_dir= 'results/ae-poly/intervention/' + str(self.args.save_dir) + 'seed_' + str(seed) + '/'
else:
self.res_dir= 'results/ae-poly/observation/' + str(self.args.save_dir) + 'seed_' + str(seed) + '/'
self.save_path= self.res_dir
if self.args.wandb_log:
wandb.init(project="polynomial-identification", reinit=True)
wandb.run.name= 'ae-poly/' + self.args.save_dir + 'seed_' + str(seed) + '/'
|
CausalRepID-main
|
algorithms/poly_auto_encoder.py
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import os
import sys
import math
import torch
import torch.utils.data as data_utils
from torch import nn, optim
from torch.nn import functional as F
from torchvision import datasets, transforms
from torchvision.utils import save_image
from torch.autograd import Variable
from sklearn.decomposition import FastICA
from sklearn.decomposition import PCA
from utils.metrics import *
from models.encoder import Encoder
from models.decoder import Decoder
path= os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))
sys.path.append(path)
from utils.helper import ValidationHelper
from utils.metrics import *
import wandb
wandb.init(project="polynomial-identification", reinit=True)
class AE():
def __init__(self, args, train_dataset, val_dataset, test_dataset, seed=0, device= None):
self.args= args
self.seed= seed
self.device= device
self.train_dataset= train_dataset
self.val_dataset= val_dataset
self.test_dataset= test_dataset
self.encoder= Encoder(self.args.data_dim, self.args.latent_dim).to(self.device)
self.decoder= Decoder(self.args.data_dim, self.args.latent_dim).to(self.device)
self.opt, self.scheduler= self.get_optimizer()
self.validation_helper= ValidationHelper()
if self.args.intervention_case:
self.res_dir= 'results/ae/intervention/' + str(self.args.save_dir) + 'seed_' + str(seed) + '/'
else:
self.res_dir= 'results/ae/observation/' + str(self.args.save_dir) + 'seed_' + str(seed) + '/'
self.save_path= self.res_dir
if self.args.wandb_log:
wandb.init(project="polynomial-identification", reinit=True)
wandb.run.name= 'ae/' + self.args.save_dir + 'seed_' + str(seed) + '/'
def get_optimizer(self):
opt= optim.Adam([
{'params': filter(lambda p: p.requires_grad, list(self.encoder.parameters()) + list(self.decoder.parameters()) )},
], lr= self.args.lr, weight_decay= self.args.weight_decay )
scheduler = optim.lr_scheduler.StepLR(opt, step_size=500, gamma=0.5)
return opt, scheduler
def save_model(self):
if not os.path.exists(self.res_dir):
os.makedirs(self.res_dir)
torch.save(self.encoder.state_dict(), self.save_path + 'lr_' + str(self.args.lr) + '_weight_decay_' + str(self.args.weight_decay) + '_batch_size_' + str(self.args.batch_size) + '_encoder.pth')
torch.save(self.decoder.state_dict(), self.save_path + 'lr_' + str(self.args.lr) + '_weight_decay_' + str(self.args.weight_decay) + '_batch_size_' + str(self.args.batch_size) + '_decoder.pth')
return
def load_model(self):
self.encoder.load_state_dict(torch.load(self.save_path + 'lr_' + str(self.args.lr) + '_weight_decay_' + str(self.args.weight_decay) + '_batch_size_' + str(self.args.batch_size) + '_encoder.pth', map_location=torch.device('cpu')))
self.encoder.eval()
self.decoder.load_state_dict(torch.load(self.save_path + 'lr_' + str(self.args.lr) + '_weight_decay_' + str(self.args.weight_decay) + '_batch_size_' + str(self.args.batch_size) + '_decoder.pth', map_location=torch.device('cpu')))
self.decoder.eval()
return
def validation(self):
self.encoder.eval()
self.decoder.eval()
val_loss=0.0
count=0
for batch_idx, (x, _, _) in enumerate(self.val_dataset):
with torch.no_grad():
x= x.to(self.device)
z_pred= self.encoder(x)
out= self.decoder(z_pred)
loss= torch.mean(((out-x)**2))
val_loss+= loss.item()
count+=1
if self.args.wandb_log:
wandb.log({'val_loss': val_loss/count})
return val_loss/count
def train(self):
for epoch in range(self.args.num_epochs):
train_loss=0.0
count=0
#LR Scheduler
self.scheduler.step()
print(self.scheduler.get_last_lr())
#Training
self.encoder.train()
self.decoder.train()
#Compute identification metrics
if epoch % 10 == 0:
self.eval_identification(epoch= epoch)
if 'balls' in self.args.latent_case and ( epoch==0 or epoch==10 ):
self.save_intermediate_model(epoch= epoch)
for batch_idx, (x, _, _) in enumerate(self.train_dataset):
self.opt.zero_grad()
#Forward Pass
x= x.to(self.device)
z_pred= self.encoder(x)
x_pred= self.decoder(z_pred)
#Compute Reconstruction Loss
loss= self.compute_loss(z_pred, x_pred, x)
#Backward Pass
loss.backward()
# grad_norm= 0.0
# for p in self.coff_matrix.parameters():
# param_norm = p.grad.detach().data.norm(2)
# grad_norm += param_norm.item() ** 2
# grad_norm = grad_norm ** 0.5
# wandb.log({'grad_norm': grad_norm})
self.opt.step()
train_loss+= loss.item()
count+=1
val_score= self.validation()
print('\n')
print('Done Training for Epoch: ', epoch)
print('Training Loss: ', train_loss/count)
print('Validation Loss: ', val_score)
print('Best Epoch: ', self.validation_helper.best_epoch)
if self.args.wandb_log:
wandb.log({'train_loss': train_loss/count})
if self.validation_helper.save_model(val_score, epoch):
print('Saving model')
self.save_model()
elif self.validation_helper.early_stop(val_score):
print('Early Stopping')
break
return
def compute_loss(self, z_pred, x_pred, x):
loss= torch.mean(((x-x_pred)**2))
return loss
def eval_identification(self, epoch= -1):
self.encoder.eval()
self.decoder.eval()
save_dir= 'results/plots/'+ self.args.save_dir + 'epoch_' + str(epoch) + '/'
if not os.path.exists(save_dir):
os.makedirs(save_dir)
#Obtain Predictions and Reconstruction Loss
if 'balls' in self.args.latent_case:
plot_case=True
else:
plot_case=False
res= get_predictions(self.encoder, self.decoder, self.train_dataset, self.val_dataset, self.test_dataset, device= self.device, save_dir= save_dir, plot=plot_case)
true_z= res['true_z']
pred_z= res['pred_z']
recon_err= res['recon_loss']
print(true_z['tr'].shape, pred_z['tr'].shape)
#Latent Prediction Error
rmse, r2= get_indirect_prediction_error(pred_z, true_z)
print('latent prediction r2: ', r2)
if 'balls' in self.args.latent_case:
_, r2_mlp= get_indirect_prediction_error(pred_z, true_z, model= 'mlp')
print('latent prediction r2 MLP: ', r2_mlp)
else:
r2_mlp= 0
# MCC Score
if 'balls' not in self.args.latent_case:
mcc= get_cross_correlation(pred_z, true_z)
print('MCC: ', mcc)
else:
mcc=0
if self.args.wandb_log:
wandb.log({'test_loss': recon_err['te']})
wandb.log({'latent_pred_rmse': rmse})
wandb.log({'latent_pred_r2': r2})
# wandb.log({'max/min singular values': np.max(sig_values)/np.min(sig_values)})
wandb.log({'mcc': mcc})
wandb.log({'latent_pred_r2_mlp': r2_mlp})
# #DCI
# imp_matrix= compute_importance_matrix(pred_z['te'], true_z['te'], case='disentanglement')
# score= disentanglement(imp_matrix)
# wandb.log({'dci-disentanglement': score})
# imp_matrix= compute_importance_matrix(pred_z['te'], true_z['te'], case='completeness')
# score= completeness(imp_matrix)
# wandb.log({'dci-completeness': score})
# #MCC
# mcc= get_cross_correlation(pred_z, true_z)
# wandb.log({'mcc': mcc})
return rmse, r2
def get_final_layer_weights(self):
self.load_model()
for p in self.model.fc_net.parameters():
print(p.data)
|
CausalRepID-main
|
algorithms/base_auto_encoder.py
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import os
import sys
import math
import torch
import torch.utils.data as data_utils
from torch import nn, optim
from torch.nn import functional as F
from torchvision import datasets, transforms
from torchvision.utils import save_image
from torch.autograd import Variable
from sklearn.decomposition import FastICA
from sklearn.decomposition import PCA
from utils.metrics import *
from models.image_encoder import ImageEncoder as Encoder
from models.image_decoder import ImageDecoder as Decoder
# from models.image_resnet_decoder import ImageDecoder as Decoder
#Base Class
from algorithms.base_auto_encoder import AE
path= os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))
sys.path.append(path)
from utils.helper import ValidationHelper
from utils.metrics import *
import wandb
class AE_Image(AE):
def __init__(self, args, train_dataset, val_dataset, test_dataset, seed=0, device= None):
super().__init__(args, train_dataset, val_dataset, test_dataset, seed, device)
self.encoder= Encoder(self.args.latent_dim).to(self.device)
self.decoder= Decoder(self.args.latent_dim).to(self.device)
self.opt, self.scheduler= self.get_optimizer()
self.validation_helper= ValidationHelper(patience=100)
if self.args.intervention_case:
self.res_dir= 'results/ae-image/intervention/' + str(self.args.save_dir) + 'seed_' + str(seed) + '/'
else:
self.res_dir= 'results/ae-image/observation/' + str(self.args.save_dir) + 'seed_' + str(seed) + '/'
self.save_path= self.res_dir
if self.args.wandb_log:
wandb.init(project="image-dataset-identification", reinit=True)
wandb.run.name= 'ae-image/' + self.args.save_dir + 'seed_' + str(seed) + '/'
def save_intermediate_model(self, epoch= -1):
if not os.path.exists(self.res_dir):
os.makedirs(self.res_dir)
torch.save(self.encoder.state_dict(), self.save_path + 'lr_' + str(self.args.lr) + '_weight_decay_' + str(self.args.weight_decay) + '_batch_size_' + str(self.args.batch_size) + '_epoch_' + str(epoch) + '_encoder.pth')
torch.save(self.decoder.state_dict(), self.save_path + 'lr_' + str(self.args.lr) + '_weight_decay_' + str(self.args.weight_decay) + '_batch_size_' + str(self.args.batch_size) + '_epoch_' + str(epoch) + '_decoder.pth')
return
def load_intermediate_model(self, epoch):
self.encoder.load_state_dict(torch.load(self.save_path + 'lr_' + str(self.args.lr) + '_weight_decay_' + str(self.args.weight_decay) + '_batch_size_' + str(self.args.batch_size) + '_epoch_' + str(epoch) + '_encoder.pth'))
self.encoder.eval()
self.decoder.load_state_dict(torch.load(self.save_path + 'lr_' + str(self.args.lr) + '_weight_decay_' + str(self.args.weight_decay) + '_batch_size_' + str(self.args.batch_size) + '_epoch_' + str(epoch) + '_decoder.pth'))
self.decoder.eval()
return
|
CausalRepID-main
|
algorithms/image_auto_encoder.py
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import os
import sys
import math
import torch
import torch.utils.data as data_utils
from torch import nn, optim
from torch.nn import functional as F
from torchvision import datasets, transforms
from torchvision.utils import save_image
from torch.autograd import Variable
from sklearn.decomposition import FastICA
from sklearn.decomposition import PCA
from utils.metrics import *
from models.linear_auto_encoder import LinearAutoEncoder
#Base Class
from algorithms.base_auto_encoder import AE
path= os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))
sys.path.append(path)
from utils.helper import ValidationHelper
from utils.metrics import *
def IOSS(mu, n_draws=10000, robust_k_prop = 0.01, device= None):
stdmu = (mu - torch.min(mu,dim=0)[0])/ (torch.max(mu,dim=0)[0]-torch.min(mu,dim=0)[0])
K = np.int(robust_k_prop * mu.shape[0]) + 1
maxs = torch.topk(stdmu, K, dim=0)[0][-1,:]
mins = -(torch.topk(-stdmu, K, dim=0)[0][-1,:])
smps = (torch.stack([torch.rand(n_draws).to(device) * (maxs[i]-mins[i]) + mins[i] for i in range(stdmu.shape[1])], dim=1))
min_dist = (torch.min(torch.cdist(smps, stdmu.to(device)), dim=1)[0])
# ortho = (torch.mean(min_dist,dim=0))
ortho = (torch.topk(min_dist, np.int(robust_k_prop*n_draws)+1, dim=0))[0][-1]
# ortho = torch.max(min_dist,dim=0)[0]
return ortho
class AE_IOSS(AE):
def __init__(self, args, train_dataset, val_dataset, test_dataset, seed=0, device= None, base_algo= 'ae_poly'):
super().__init__(args, train_dataset, val_dataset, test_dataset, seed, device)
self.encoder= LinearAutoEncoder(self.args.latent_dim, self.args.latent_dim, batch_norm= 0).to(self.device)
self.decoder= LinearAutoEncoder(self.args.latent_dim, self.args.latent_dim, batch_norm= 0).to(self.device)
self.opt, self.scheduler= self.get_optimizer()
self.base_algo = base_algo
if self.args.intervention_case:
self.res_dir= 'results/ae-ioss/intervention/' + self.base_algo + '/' + str(self.args.save_dir) + 'seed_' + str(seed) + '/'
else:
self.res_dir= 'results/ae-ioss/observation/' + self.base_algo + '/' + str(self.args.save_dir) + 'seed_' + str(seed) + '/'
self.save_path= self.res_dir
def compute_loss(self, z_pred, x_pred, x):
loss= torch.mean(((x-x_pred)**2))
total_pairs= 3
lambda_reg= 10.0
ioss_penalty= torch.tensor(0.0).to(self.device)
for idx in range(total_pairs):
perm= torch.randperm(z_pred.shape[1])
ioss_penalty+= torch.mean(IOSS( z_pred[:, perm[:2]], device= self.device))
loss+= lambda_reg * ioss_penalty
return loss
|
CausalRepID-main
|
algorithms/ioss_auto_encoder.py
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import sys
import copy
import torch
import torchvision
import numpy as np
from sklearn.metrics import r2_score
from sklearn.linear_model import LinearRegression, Lasso, Ridge, LassoCV, RidgeCV
from sklearn.linear_model import LogisticRegression
from sklearn.neural_network import MLPRegressor
from scipy.optimize import linear_sum_assignment
from sklearn.feature_selection import mutual_info_regression
import scipy
import matplotlib.pyplot as plt
from torchvision import transforms
def get_pca_sources(pred_z, pca_transform):
return { 'tr': pca_transform.transform(pred_z['tr']), 'te': pca_transform.transform(pred_z['te']) }
def get_ica_sources(pred_z, ica_transform):
return { 'tr': ica_transform.transform(pred_z['tr']), 'te': ica_transform.transform(pred_z['te']) }
def regression_approx(x, y, model, fit_intercept=False):
if model == 'lr':
reg= LinearRegression(fit_intercept= fit_intercept).fit(x, y)
elif model == 'lasso':
# reg= Lasso(alpha=0.001, fit_intercept= True).fit(x, y)
reg= LassoCV(fit_intercept=True, cv=3).fit(x, y)
elif model == 'ridge':
# reg= Ridge(alpha=0.001, fit_intercept= True).fit(x, y)
alphas_list = np.linspace(1e-2, 1e0, num=10).tolist()
alphas_list += np.linspace(1e0, 1e1, num=10).tolist()
reg= RidgeCV(fit_intercept= True, cv=3, alphas=alphas_list).fit(x, y)
elif model == 'mlp':
reg= MLPRegressor(random_state=1, max_iter= 1000).fit(x, y)
return reg
def get_predictions_check(train_dataset, test_dataset):
true_x={'tr':[], 'te':[]}
true_z= {'tr':[], 'te':[]}
data_case_list= ['train', 'test']
for data_case in data_case_list:
if data_case == 'train':
dataset= train_dataset
key='tr'
elif data_case == 'test':
dataset= test_dataset
key='te'
for batch_idx, (x, z, _) in enumerate(dataset):
with torch.no_grad():
true_x[key].append(x)
true_z[key].append(z)
true_x[key]= torch.cat(true_x[key]).detach().numpy()
true_z[key]= torch.cat(true_z[key]).detach().numpy()
return true_x, true_z
def get_predictions(encoder, decoder, train_dataset, val_dataset, test_dataset, device= None, save_dir='plots/', plot=True):
true_z= {'tr':[], 'val':[], 'te':[]}
pred_z= {'tr':[], 'val':[], 'te':[]}
true_y= {'tr':[], 'val':[], 'te':[]}
recon_loss= {'tr':0.0, 'val':0.0, 'te':0.0}
data_case_list= ['train', 'val', 'test']
for data_case in data_case_list:
if data_case == 'train':
dataset= train_dataset
key='tr'
elif data_case == 'val':
dataset= val_dataset
key='val'
elif data_case == 'test':
dataset= test_dataset
key='te'
count=0
for batch_idx, (x, z, y) in enumerate(dataset):
with torch.no_grad():
x= x.to(device)
pred= encoder(x)
x_pred= decoder(pred)
loss= torch.mean((x-x_pred)**2)
true_y[key].append(y)
true_z[key].append(z)
pred_z[key].append(pred)
recon_loss[key]+= loss.item()
count+=1
if plot and batch_idx == 0:
for idx in range(5):
transform = transforms.Compose(
[
transforms.ToPILImage(),
]
)
data= x[idx].cpu()
data= (data - data.min()) / (data.max() - data.min())
data= transform(data)
data.save( save_dir + 'real_image_' + str(idx) + '.jpg')
data= x_pred[idx].cpu()
data= (data - data.min()) / (data.max() - data.min())
data= transform(data)
data.save( save_dir + 'fake_image_' + str(idx) + '.jpg')
true_y[key]= torch.cat(true_y[key]).detach().numpy()
true_z[key]= torch.cat(true_z[key]).detach().numpy()
pred_z[key]= torch.cat(pred_z[key]).cpu().detach().numpy()
recon_loss[key]= recon_loss[key]/count
# print('Sanity Check: ')
# print( true_y['tr'].shape, pred_y['tr'].shape, true_z['tr'].shape, pred_z['tr'].shape )
# print( true_y['te'].shape, pred_y['te'].shape, true_z['te'].shape, pred_z['te'].shape )
return {'true_z': true_z, 'pred_z': pred_z, 'true_y': true_y, 'recon_loss': recon_loss}
def get_indirect_prediction_error(pred_latent, true_score, case='test', model='lr'):
if case == 'train':
key= 'tr'
elif case == 'test':
key= 'te'
reg= regression_approx(pred_latent['tr'], true_score['tr'], model, fit_intercept=True)
pred_score= reg.predict(pred_latent[key])
if len(pred_score.shape) == 1:
pred_score= np.reshape(pred_score, (pred_score.shape[0], 1))
rmse= np.sqrt(np.mean((true_score[key] - pred_score)**2))
r2= r2_score(true_score[key], pred_score)
# mat= reg.coef_
# _, sig_values ,_ = np.linalg.svd(mat)
# print(mat)
# print(np.mean(pred_latent['tr']), np.var(pred_latent['tr']))
# sys.exit()
return rmse, r2
def get_mi_score(pred_latent, true_latent, case='test'):
if case == 'train':
key= 'tr'
elif case == 'test':
key= 'te'
n= pred_latent[key].shape[0]
dim= pred_latent[key].shape[1]
mutual_info= 0.0
for i in range(dim):
for j in range(dim):
if i != j:
mutual_info+= mutual_info_regression( np.reshape( pred_latent[key][:, i], (n, 1) ), true_latent[key][:, j] )
print('Mutual Information')
print(mutual_info/(dim**2 - dim))
return
def get_independence_score(pred_latent, true_latent, case='test'):
if case == 'train':
key= 'tr'
elif case == 'test':
key= 'te'
dim= pred_latent[key].shape[1]
cross_corr= np.zeros((dim, dim))
for i in range(dim):
for j in range(dim):
cross_corr[i,j]= (np.cov( pred_latent[key][:,i], true_latent[key][:,j] )[0,1]) / ( np.std(pred_latent[key][:,i])*np.std(true_latent[key][:,j]) )
print('Independence Score')
print(cross_corr)
print(np.linalg.norm( cross_corr - np.eye(dim), ord='fro'))
return
def get_cross_correlation(pred_latent, true_latent, case='test', batch_size= 5000):
if case == 'train':
key= 'tr'
elif case == 'test':
key= 'te'
num_samples= pred_latent[key].shape[0]
dim= pred_latent[key].shape[1]
total_batches= int( num_samples / batch_size )
mcc_arr= []
for batch_idx in range(total_batches):
z_hat= copy.deepcopy( pred_latent[key][ (batch_idx)*batch_size : (batch_idx+1)*batch_size ] )
z= copy.deepcopy( true_latent[key][ (batch_idx)*batch_size : (batch_idx+1)*batch_size ] )
batch_idx += 1
cross_corr= np.zeros((dim, dim))
for i in range(dim):
for j in range(dim):
cross_corr[i,j]= (np.cov( z_hat[:,i], z[:,j] )[0,1]) / ( np.std(z_hat[:,i])*np.std(z[:,j]) )
# cross_corr= np.corrcoef(pred_latent[key], true_latent[key], rowvar=False)[dim:, :dim]
cost= -1*np.abs(cross_corr)
row_ind, col_ind= linear_sum_assignment(cost)
score= 100*( -1*cost[row_ind, col_ind].sum() )/(dim)
print(-100*cost[row_ind, col_ind])
# score= 100*np.sum( -1*cost[row_ind, col_ind] > 0.80 )/(dim)
mcc_arr.append(score)
return mcc_arr
def intervene_metric(pred_latent, true_latent, model='lr', model_train=1, list_models=None, hard_intervention_val= 2.0):
'''
pred_latent: Output representation from stage 1
true_score: intervened latent true value
'''
latent_dim= true_latent['tr'].shape[1]
if model_train:
res={}
for intervene_idx in range(latent_dim):
indices= true_latent['tr'][:, intervene_idx] == hard_intervention_val
curr_pred_latent_subset= pred_latent['tr'][indices]
intervene_targets= 10* np.ones( curr_pred_latent_subset.shape[0] )
reg= regression_approx(curr_pred_latent_subset, intervene_targets, model, fit_intercept=False)
res[intervene_idx]= reg
return res
else:
num_samples= true_latent['te'].shape[0]
res= np.zeros((num_samples, latent_dim))
for intervene_idx in range(latent_dim):
res[:, intervene_idx]= list_models[intervene_idx].predict(pred_latent['te'])
return {'te': res}
def intervene_metric_image(pred_latent, true_latent, intervention_meta_data, model='lr', model_train=1, list_models=None):
'''
pred_latent: Output representation from stage 1
true_score: intervened latent true value
'''
if model_train:
res={}
intervened_latents_set= np.unique( intervention_meta_data['tr'][:, 0] )
print(intervened_latents_set)
for intervene_idx in intervened_latents_set:
print(intervene_idx)
indices= intervention_meta_data['tr'][:, 0] == intervene_idx
curr_pred_latent_subset= pred_latent['tr'][indices]
intervene_targets= 10* intervention_meta_data['tr'][indices, 1]
print(np.unique(intervene_targets))
reg= regression_approx(curr_pred_latent_subset, intervene_targets, model, fit_intercept=False)
res[intervene_idx]= reg
return res
else:
intervened_latents_set= list(list_models.keys())
num_samples= true_latent['te'].shape[0]
eff_latent_dim= len(intervened_latents_set)
z= np.zeros((num_samples, eff_latent_dim))
z_hat= np.zeros((num_samples, eff_latent_dim))
for idx in range(eff_latent_dim):
intervene_idx= intervened_latents_set[idx]
z[:, idx]= true_latent['te'][:, int(intervene_idx)]
z_hat[:, idx]= list_models[intervene_idx].predict(pred_latent['te'])
print('Transformed Latents using Itv Dataset', z_hat.shape, z.shape)
return {'te':z_hat}, {'te': z}
# DCI Score
def compute_importance_matrix(z_pred, z, case= 'disentanglement', fit_intercept= True):
true_latent_dim= z.shape[1]
pred_latent_dim= z_pred.shape[1]
imp_matrix= np.zeros((pred_latent_dim, true_latent_dim))
for idx in range(true_latent_dim):
model= LinearRegression(fit_intercept= fit_intercept).fit(z_pred, z[:, idx])
# model= LassoCV(fit_intercept=True, cv=3).fit(z_pred, z[:, idx])
imp_matrix[:, idx]= model.coef_
# Taking the absolute value for weights to encode relative importance properly
imp_matrix= np.abs(imp_matrix)
if case == 'disetanglement':
imp_matrix= imp_matrix / np.reshape( np.sum(imp_matrix, axis=1), (pred_latent_dim, 1) )
elif case == 'completeness':
imp_matrix= imp_matrix / np.reshape( np.sum(imp_matrix, axis=0), (1, true_latent_dim) )
return imp_matrix
def disentanglement_per_code(importance_matrix):
"""Compute disentanglement score of each code."""
# importance_matrix is of shape [num_codes, num_factors].
return 1. - scipy.stats.entropy(importance_matrix.T + 1e-11,
base=importance_matrix.shape[1])
def disentanglement(importance_matrix):
"""Compute the disentanglement score of the representation."""
per_code = disentanglement_per_code(importance_matrix)
if importance_matrix.sum() == 0.:
importance_matrix = np.ones_like(importance_matrix)
code_importance = importance_matrix.sum(axis=1) / importance_matrix.sum()
return np.sum(per_code*code_importance)
def completeness_per_factor(importance_matrix):
"""Compute completeness of each factor."""
# importance_matrix is of shape [num_codes, num_factors].
return 1. - scipy.stats.entropy(importance_matrix + 1e-11,
base=importance_matrix.shape[0])
def completeness(importance_matrix):
""""Compute completeness of the representation."""
per_factor = completeness_per_factor(importance_matrix)
if importance_matrix.sum() == 0.:
importance_matrix = np.ones_like(importance_matrix)
factor_importance = importance_matrix.sum(axis=0) / importance_matrix.sum()
return np.sum(per_factor*factor_importance)
|
CausalRepID-main
|
utils/metrics.py
|
CausalRepID-main
|
utils/__init__.py
|
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import os
import sys
import numpy as np
import torch
import torch.utils.data as data_utils
path= os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))
sys.path.append(path)
from data.data_loader import BaseDataLoader
from data.fine_tune_loader import FineTuneDataLoader
from data.balls_dataset_loader import BallsDataLoader
class ValidationHelper:
def __init__(self, patience=10, min_delta=1e-4):
self.patience = patience
self.min_delta = min_delta
self.counter = 0
self.min_validation_loss = np.inf
self.best_epoch = -1
def save_model(self, validation_loss, epoch):
if validation_loss < (self.min_validation_loss + self.min_delta):
self.min_validation_loss = validation_loss
self.best_epoch = epoch
self.counter= 0
return True
return False
def early_stop(self, validation_loss):
if validation_loss > (self.min_validation_loss + self.min_delta):
self.counter += 1
if self.counter >= self.patience:
return True
return False
def sample_base_data_loaders(data_dir, batch_size, observation_case= 1, intervention_case= 0, latent_case='', seed=0, kwargs={}):
if 'balls' in latent_case:
data_obj= BallsDataLoader(data_dir= data_dir, data_case='train', observation_case = observation_case, intervention_case= intervention_case)
train_dataset= data_utils.DataLoader(data_obj, batch_size=batch_size, shuffle=True, **kwargs )
data_obj= BallsDataLoader(data_dir= data_dir, data_case='val', observation_case = observation_case, intervention_case= intervention_case)
val_dataset= data_utils.DataLoader(data_obj, batch_size=batch_size, shuffle=True, **kwargs )
data_obj= BallsDataLoader(data_dir= data_dir, data_case='test', observation_case = observation_case, intervention_case= intervention_case)
test_dataset= data_utils.DataLoader(data_obj, batch_size=batch_size, shuffle=True, **kwargs )
else:
data_obj= BaseDataLoader(data_dir= data_dir, data_case='train', seed= seed, observation_case = observation_case, intervention_case= intervention_case)
train_dataset= data_utils.DataLoader(data_obj, batch_size=batch_size, shuffle=True, **kwargs )
data_obj= BaseDataLoader(data_dir= data_dir, data_case='val', seed= seed, observation_case = observation_case, intervention_case= intervention_case)
val_dataset= data_utils.DataLoader(data_obj, batch_size=batch_size, shuffle=True, **kwargs )
data_obj= BaseDataLoader(data_dir= data_dir, data_case='test', seed= seed, observation_case = observation_case, intervention_case= intervention_case)
test_dataset= data_utils.DataLoader(data_obj, batch_size=batch_size, shuffle=True, **kwargs )
return train_dataset, val_dataset, test_dataset
def sample_finetune_data_loaders(pred_z, true_z, data_dir, batch_size, kwargs= {}):
data_obj= FineTuneDataLoader(pred_z, true_z, data_dir= data_dir, data_case='train')
train_dataset= data_utils.DataLoader(data_obj, batch_size=batch_size, shuffle=True, **kwargs )
data_obj= FineTuneDataLoader(pred_z, true_z, data_dir= data_dir, data_case='val')
val_dataset= data_utils.DataLoader(data_obj, batch_size=batch_size, shuffle=True, **kwargs )
data_obj= FineTuneDataLoader(pred_z, true_z, data_dir= data_dir, data_case='test')
test_dataset= data_utils.DataLoader(data_obj, batch_size=batch_size, shuffle=True, **kwargs )
return train_dataset, val_dataset, test_dataset
|
CausalRepID-main
|
utils/helper.py
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import torch
from torch import nn
class LinearAutoEncoder(torch.nn.Module):
def __init__(self, data_dim, latent_dim, batch_norm= False):
super(LinearAutoEncoder, self).__init__()
self.data_dim = data_dim
self.latent_dim = latent_dim
if batch_norm:
self.net= nn.Sequential(
nn.BatchNorm1d(self.data_dim),
nn.Linear(self.data_dim, self.latent_dim),
)
else:
self.net= nn.Sequential(
nn.Linear(self.data_dim, self.latent_dim),
)
def forward(self, x):
return self.net(x)
|
CausalRepID-main
|
models/linear_auto_encoder.py
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import torch
import torch.utils.data
from torch import nn, optim
from torch.nn import functional as F
from torchvision import datasets, transforms
from torchvision.utils import save_image
from torch.autograd import Variable
from torchvision.models.resnet import ResNet, BasicBlock
class Decoder(torch.nn.Module):
def __init__(self, data_dim, latent_dim):
super(Decoder, self).__init__()
self.data_dim = data_dim
self.latent_dim = latent_dim
self.hidden_dim= 200
self.net= nn.Sequential(
nn.Linear(self.latent_dim, self.hidden_dim),
nn.LeakyReLU(0.5),
nn.Linear(self.hidden_dim, self.hidden_dim),
nn.LeakyReLU(0.5),
nn.Linear(self.hidden_dim, self.data_dim),
)
def forward(self, z):
return self.net(z)
|
CausalRepID-main
|
models/decoder.py
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import torch
import torch.utils.data
from torch import nn, optim
from torch.nn import functional as F
from torchvision import datasets, transforms
from torchvision.utils import save_image
from torch.autograd import Variable
from torchvision.models.resnet import ResNet, BasicBlock
import sys
'''
Refernce for DeConv Blocks: https://github.com/julianstastny/VAE-ResNet18-PyTorch/blob/master/model.py
'''
class ResizeConv2d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, scale_factor, mode='nearest'):
super().__init__()
self.scale_factor = scale_factor
self.mode = mode
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=1)
def forward(self, x):
x = F.interpolate(x, scale_factor=self.scale_factor, mode=self.mode)
x = self.conv(x)
return x
class BasicBlockDec(nn.Module):
def __init__(self, in_planes, stride=1):
super().__init__()
planes = int(in_planes/stride)
self.conv2 = nn.Conv2d(in_planes, in_planes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(in_planes)
# self.bn1 could have been placed here, but that messes up the order of the layers when printing the class
if stride == 1:
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.shortcut = nn.Sequential()
else:
self.conv1 = ResizeConv2d(in_planes, planes, kernel_size=3, scale_factor=stride)
self.bn1 = nn.BatchNorm2d(planes)
self.shortcut = nn.Sequential(
ResizeConv2d(in_planes, planes, kernel_size=3, scale_factor=stride),
nn.BatchNorm2d(planes)
)
def forward(self, x):
out = torch.relu(self.bn2(self.conv2(x)))
out = self.bn1(self.conv1(out))
out += self.shortcut(x)
out = torch.relu(out)
return out
class ImageDecoder(torch.nn.Module):
def __init__(self, latent_dim):
super(ImageDecoder, self).__init__()
self.latent_dim = latent_dim
self.width= 128
self.num_Blocks=[2,2,2,2]
self.in_planes = 512
self.nc= 3
self.linear = [
nn.Linear(self.latent_dim, self.width),
nn.LeakyReLU(),
nn.Linear(self.width, 512),
]
self.linear= nn.Sequential(*self.linear)
self.layer4 = self._make_layer(BasicBlockDec, 256, self.num_Blocks[3], stride=2)
self.layer3 = self._make_layer(BasicBlockDec, 128, self.num_Blocks[2], stride=2)
self.layer2 = self._make_layer(BasicBlockDec, 64, self.num_Blocks[1], stride=2)
self.layer1 = self._make_layer(BasicBlockDec, 64, self.num_Blocks[0], stride=1)
self.conv1 = ResizeConv2d(64, self.nc, kernel_size=3, scale_factor=2)
def _make_layer(self, BasicBlockDec, planes, num_Blocks, stride):
strides = [stride] + [1]*(num_Blocks-1)
layers = []
for stride in reversed(strides):
layers += [BasicBlockDec(self.in_planes, stride)]
self.in_planes = planes
return nn.Sequential(*layers)
def forward(self, z):
x = self.linear(z)
x = x.view(z.size(0), 512, 1, 1)
x = F.interpolate(x, scale_factor=4)
x = self.layer4(x)
x = self.layer3(x)
x = self.layer2(x)
x = self.layer1(x)
x = self.conv1(x)
return x
|
CausalRepID-main
|
models/image_resnet_decoder.py
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import torch
import torch.utils.data
from torch import nn, optim
from torch.nn import functional as F
from torchvision import datasets, transforms
from torchvision.utils import save_image
from torch.autograd import Variable
from torchvision.models.resnet import ResNet, BasicBlock
class PolyDecoder(torch.nn.Module):
def __init__(self, data_dim, latent_dim, poly_degree, device):
super(PolyDecoder, self).__init__()
self.data_dim = data_dim
self.latent_dim = latent_dim
self.poly_degree = poly_degree
self.device = device
self.total_poly_terms= self.compute_total_polynomial_terms()
self.coff_matrix= nn.Sequential(
nn.Linear(self.total_poly_terms, self.data_dim),
)
def forward(self, z):
x=[]
for idx in range(z.shape[0]):
x.append( self.compute_decoder_polynomial(z[idx, :]))
x= torch.cat(x, dim=0)
x= self.coff_matrix(x)
return x
def compute_total_polynomial_terms(self):
count=0
for degree in range(self.poly_degree + 1):
count+= pow(self.latent_dim, degree)
return count
def compute_kronecker_product(self, degree, latent):
if degree ==0:
out= torch.tensor([1]).to(self.device)
else:
out=torch.clone(latent)
for idx in range(1, degree):
out= torch.kron(out, latent)
return out
def compute_decoder_polynomial(self, latent):
out=[]
for degree in range(self.poly_degree + 1):
# print('Computing polynomial term of degree ', degree)
out.append(self.compute_kronecker_product(degree, latent))
out= torch.cat(out)
out= out.view((1,out.shape[0]))
return out
|
CausalRepID-main
|
models/poly_decoder.py
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import torch
from torch import nn
class Encoder(torch.nn.Module):
def __init__(self, data_dim, latent_dim):
super(Encoder, self).__init__()
self.data_dim = data_dim
self.latent_dim = latent_dim
self.hidden_dim= 100
self.net= nn.Sequential(
nn.Linear(self.data_dim, self.hidden_dim),
nn.LeakyReLU(0.5),
nn.Linear(self.hidden_dim, self.hidden_dim),
nn.LeakyReLU(0.5),
nn.Linear(self.hidden_dim, self.latent_dim),
)
def forward(self, x):
return self.net(x)
|
CausalRepID-main
|
models/encoder.py
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import torch
import torch.utils.data
from torch import nn, optim
from torch.nn import functional as F
from torchvision import datasets, transforms
from torchvision.utils import save_image
from torch.autograd import Variable
from torchvision.models.resnet import ResNet, BasicBlock
class ImageDecoder(torch.nn.Module):
def __init__(self, latent_dim):
super(ImageDecoder, self).__init__()
self.latent_dim = latent_dim
self.width= 128
self.nc= 3
self.linear = [
nn.Linear(self.latent_dim, self.width),
nn.LeakyReLU(),
nn.Linear(self.width, 1024),
nn.LeakyReLU(),
]
self.linear= nn.Sequential(*self.linear)
self.conv= [
nn.ConvTranspose2d(64, 64, 4, stride=2, padding=1),
nn.LeakyReLU(),
nn.ConvTranspose2d(64, 32, 4, stride=2, padding=1),
nn.LeakyReLU(),
nn.ConvTranspose2d(32, 32, 4, stride=2, padding=1),
nn.LeakyReLU(),
nn.ConvTranspose2d(32, self.nc, 4, stride=2, padding=1),
]
self.conv= nn.Sequential(*self.conv)
def forward(self, z):
x = self.linear(z)
x = x.view(z.size(0), 64, 4, 4)
x = self.conv(x)
return x
|
CausalRepID-main
|
models/image_decoder.py
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import torch
from torch import nn
from torchvision import models as vision_models
from torchvision.models import resnet18, resnet50
from torchvision import transforms
class ImageEncoder(torch.nn.Module):
def __init__(self, latent_dim):
super(ImageEncoder, self).__init__()
self.latent_dim = latent_dim
self.base_architecture= 'resnet18'
self.width = 128
self.base_model = resnet18(pretrained=True)
self.feat_layers= list(self.base_model.children())[:-1]
self.feat_net= nn.Sequential(*self.feat_layers)
self.fc_layers= [
nn.Linear(512, self.width),
nn.LeakyReLU(),
nn.Linear(self.width, self.latent_dim),
]
self.fc_net = nn.Sequential(*self.fc_layers)
def forward(self, x):
x= self.feat_net(x)
x= x.view(x.shape[0], x.shape[1])
x= self.fc_net(x)
return x
|
CausalRepID-main
|
models/image_encoder.py
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import torch
import torch.utils.data
from torch import nn, optim
from torch.nn import functional as F
from torchvision import datasets, transforms
from torchvision.utils import save_image
from torch.autograd import Variable
from torchvision.models.resnet import ResNet, BasicBlock
def build_grid(resolution):
ranges = [np.linspace(0., 1., num=res) for res in resolution]
grid = np.meshgrid(*ranges, sparse=False, indexing="ij")
grid = np.stack(grid, axis=-1)
grid = np.reshape(grid, [resolution[0], resolution[1], -1])
grid = np.expand_dims(grid, axis=0)
grid = grid.astype(np.float32)
return torch.from_numpy(np.concatenate([grid, 1.0 - grid], axis=-1))
"""Adds soft positional embedding with learnable projection."""
class SoftPositionEmbed(nn.Module):
def __init__(self, hidden_size, resolution):
"""Builds the soft position embedding layer.
Args:
hidden_size: Size of input feature dimension.
resolution: Tuple of integers specifying width and height of grid.
"""
super().__init__()
self.embedding = nn.Linear(4, hidden_size, bias=True)
self.grid = build_grid(resolution)
def forward(self, inputs):
grid = self.embedding(self.grid)
return inputs + grid
class ImageDecoder(torch.nn.Module):
def __init__(self, latent_dim):
super(ImageDecoder, self).__init__()
self.latent_dim = latent_dim
self.width= 128
self.nc= 3
self.linear = [
nn.Linear(self.latent_dim, self.width),
nn.LeakyReLU(),
nn.Linear(self.width, 1024),
nn.LeakyReLU(),
]
self.linear= nn.Sequential(*self.linear)
self.decoder_initial_size = (8, 8)
self.decoder_pos = SoftPositionEmbed(1024, self.decoder_initial_size)
self.conv1 = nn.ConvTranspose2d(hid_dim, hid_dim, 5, stride=(2, 2), padding=2, output_padding=1).to(device)
self.conv2 = nn.ConvTranspose2d(hid_dim, hid_dim, 5, stride=(2, 2), padding=2, output_padding=1).to(device)
self.conv3 = nn.ConvTranspose2d(hid_dim, hid_dim, 5, stride=(2, 2), padding=2, output_padding=1).to(device)
self.conv4 = nn.ConvTranspose2d(hid_dim, hid_dim, 5, stride=(2, 2), padding=2, output_padding=1).to(device)
self.conv5 = nn.ConvTranspose2d(hid_dim, hid_dim, 5, stride=(1, 1), padding=2).to(device)
self.conv6 = nn.ConvTranspose2d(hid_dim, 4, 3, stride=(1, 1), padding=1)
self.resolution = resolution
def forward(self, z):
x = self.linear(z)
x = self.decoder_pos(x)
x = x.view(z.size(0), 64, 4, 4)
return x
|
CausalRepID-main
|
models/image_slot_attention_decoder.py
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import os
import sys
import numpy as np
import pandas as pd
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--case', type=str, default='log',
help= 'test; log; debug')
parser.add_argument('--target_latent', type=str, default='balls_iid_none',
help= '')
parser.add_argument('--eval_ioss_transformation', type=int, default=0,
help='Evaluate the IOSS transformation from the base model representation')
parser.add_argument('--eval_intervene_transformation', type=int, default=1,
help='Evaluate the Intervention transformation from the base model representation')
args = parser.parse_args()
case= args.case
target_latent= args.target_latent
eval_ioss_transformation= args.eval_ioss_transformation
eval_intervene_transformation= args.eval_intervene_transformation
latent_case_grid= ['balls_iid_none', 'balls_scm_linear', 'balls_scm_non_linear']
interventions_per_latent_grid= [1, 3, 5, 7, 9]
method_type= 'ae_image'
total_seeds= 5
latent_dim = 25
lr= 5e-4
intervention_case= 0
batch_size= 64
cuda_device= 0
#Test Models
if args.case == 'test':
for latent_case in latent_case_grid:
if latent_case != target_latent:
continue
for total_interventions in interventions_per_latent_grid:
latent= latent_case.split('_')[1]
mechanism= latent_case.split('_')[2]
if mechanism == 'non':
mechanism= 'non_linear'
#Data Script
script= 'python data/balls_dataset.py --distribution_case intervention ' + ' --latent_case ' + str(latent) + ' --scm_mechanism ' + str(mechanism) + ' --interventions_per_latent ' + str(total_interventions)
print('Data Case: ', script)
os.system(script)
#Eval Script
fname= 'latent_case_' + str(latent_case) + '_itv_per_latent_' + str(total_interventions) + '_latent_dim_' + str(latent_dim) + '_lr_' + str(lr) + '_method_type_' + str(method_type) + '.txt'
print(fname)
script= 'python test.py ' + ' --latent_case ' + str(latent_case) + ' --latent_dim ' + str(latent_dim) + ' --intervention_case ' + str(intervention_case) + ' --lr ' + str(lr) + ' --batch_size ' + str(batch_size) + ' --method_type ' + str(method_type) + ' --num_seeds ' + str(total_seeds) + ' --cuda_device ' + str(cuda_device) + ' --eval_ioss_transformation ' + str(eval_ioss_transformation) + ' --eval_intervene_transformation ' + str(eval_intervene_transformation) + ' > ' + 'results/final_logs/balls/' + fname
os.system(script)
#Log Results
latent_name_map= {'balls_iid_none': 'Uniform', 'balls_scm_linear': 'SCM (linear)', 'balls_scm_non_linear': 'SCM (non-linear)'}
if args.case == 'log':
meta_res={}
for lr in [0.0005]:
res={'Latent Case': [], 'Total Interventions': [], 'Recon-RMSE':[], 'R2':[], 'MCC-Tune': []}
for latent_case in latent_case_grid:
for total_interventions in interventions_per_latent_grid:
fname= 'latent_case_' + str(latent_case) + '_itv_per_latent_' + str(total_interventions) + '_latent_dim_' + str(latent_dim) + '_lr_' + str(lr) + '_method_type_' + str(method_type) + '.txt'
data= open( 'results/final_logs/balls/' + fname, 'r').readlines()
for line in data:
line= line.replace('\n','')
if 'Metric' in line:
if 'recon_rmse' in line:
key= 'Recon-RMSE'
elif 'latent_pred_r2' in line:
key= 'R2'
elif 'mcc_tune' in line:
key= 'MCC-Tune'
else:
continue
mean= round( float(line.split(" ")[-2]), 2 )
var= round( float(line.split(" ")[-1]), 2 )
val= str(mean) + ' \u00B1 ' + str(var)
# val= str(mean) + ' ( ' + str(var) + ' ) '
res[key].append(val)
res['Latent Case'].append( latent_name_map[latent_case] )
res['Total Interventions'].append(total_interventions)
meta_res[lr]= res
final_res={'Latent Case': [], 'Total Interventions': [], 'LR': [], 'Recon-RMSE':[], 'MCC-Tune': []}
final_res= meta_res[0.0005]
for key in final_res.keys():
print(key, len(final_res[key]))
df= pd.DataFrame(final_res)
# df= df.drop(columns= ['Recon-RMSE'])
print(df.to_latex(index=False))
|
CausalRepID-main
|
scripts/main_exps_images.py
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import numpy as np
import scipy
import copy
from sklearn.linear_model import LinearRegression, Lasso, Ridge, LassoCV, RidgeCV
'''
z: True Latent (dataset_size, latent_dim) (.npy file)
Pred_z: Inferred Latent (dataset_size, latent_dim) (.npy file)
'''
# DCI Score
def compute_importance_matrix(z_pred, z, case= 'disentanglement', fit_intercept= True):
true_latent_dim= z.shape[1]
pred_latent_dim= z_pred.shape[1]
imp_matrix= np.zeros((pred_latent_dim, true_latent_dim))
for idx in range(true_latent_dim):
model= LinearRegression(fit_intercept= fit_intercept).fit(z_pred, z[:, idx])
# model= LassoCV(fit_intercept=True, cv=3).fit(z_pred, z[:, idx])
imp_matrix[:, idx]= model.coef_
# Taking the absolute value for weights to encode relative importance properly
imp_matrix= np.abs(imp_matrix)
if case == 'disetanglement':
imp_matrix= imp_matrix / np.reshape( np.sum(imp_matrix, axis=1), (pred_latent_dim, 1) )
elif case == 'completeness':
imp_matrix= imp_matrix / np.reshape( np.sum(imp_matrix, axis=0), (1, true_latent_dim) )
return imp_matrix
def disentanglement_per_code(importance_matrix):
"""Compute disentanglement score of each code."""
# importance_matrix is of shape [num_codes, num_factors].
return 1. - scipy.stats.entropy(importance_matrix.T + 1e-11,
base=importance_matrix.shape[1])
def disentanglement(importance_matrix):
"""Compute the disentanglement score of the representation."""
per_code = disentanglement_per_code(importance_matrix)
if importance_matrix.sum() == 0.:
importance_matrix = np.ones_like(importance_matrix)
code_importance = importance_matrix.sum(axis=1) / importance_matrix.sum()
return np.sum(per_code*code_importance)
def completeness_per_factor(importance_matrix):
"""Compute completeness of each factor."""
# importance_matrix is of shape [num_codes, num_factors].
return 1. - scipy.stats.entropy(importance_matrix + 1e-11,
base=importance_matrix.shape[0])
def completeness(importance_matrix):
""""Compute completeness of the representation."""
per_factor = completeness_per_factor(importance_matrix)
if importance_matrix.sum() == 0.:
importance_matrix = np.ones_like(importance_matrix)
factor_importance = importance_matrix.sum(axis=0) / importance_matrix.sum()
return np.sum(per_factor*factor_importance)
# Test Cases
# Case 1: True latent same as the predicted latent
list_matrices= [ np.eye(10), np.random.random((10, 10)) ]
for matrix in list_matrices:
true_z= np.random.random((1000, 10))
pred_z= np.matmul(true_z, matrix)
imp_matrix= compute_importance_matrix(pred_z, true_z, case='disentanglement')
score= disentanglement(imp_matrix)
print('Disentanglement', score)
imp_matrix= compute_importance_matrix(pred_z, true_z, case='completeness')
score= completeness(imp_matrix)
print('Completeness', score)
# Permutation Case
pred_z= copy.deepcopy(true_z)
perm= np.random.permutation(10)
pred_z= pred_z[:, perm]
imp_matrix= compute_importance_matrix(pred_z, true_z, case='disentanglement')
score= disentanglement(imp_matrix)
print('Disentanglement', score)
imp_matrix= compute_importance_matrix(pred_z, true_z, case='completeness')
score= completeness(imp_matrix)
print('Completeness', score)
|
CausalRepID-main
|
scripts/test_metrics.py
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import os
import sys
import numpy as np
import pandas as pd
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--case', type=str, default='log',
help= 'train; test; log; debug')
parser.add_argument('--intervention_case', type=int, default=0,
help='')
parser.add_argument('--target_latent', type=str, default='uniform',
help= '')
parser.add_argument('--target_dim', type=int, default=6,
help='')
parser.add_argument('--target_degree', type=int, default=2,
help='')
parser.add_argument('--method_type', type=str, default='ae_poly',
help= 'ae, ae_poly')
parser.add_argument('--batch_size', type=int, default= 16,
help='')
parser.add_argument('--lr', type=float, default= 1e-3,
help='')
parser.add_argument('--train_base_model', type=int, default=1,
help='Train the base auto encoder')
parser.add_argument('--train_ioss_transformation', type=int, default=0,
help='Learn the IOSS transformation from the base model representations')
parser.add_argument('--eval_ioss_transformation', type=int, default=0,
help='Evaluate the IOSS transformation from the base model representation')
parser.add_argument('--eval_intervene_transformation', type=int, default=0,
help='Evaluate the Intervention transformation from the base model representation')
parser.add_argument('--eval_dgp', type=int, default= 1,
help= 'Evaluate the function from z -> x and x -> z in the true DGP')
parser.add_argument('--cuda_device', type=int, default=-1,
help='Select the cuda device by id among the avaliable devices' )
args = parser.parse_args()
intervention_case= args.intervention_case
batch_size= args.batch_size
lr= args.lr
method_type= args.method_type
target_latent= args.target_latent
target_dim= args.target_dim
target_degree= args.target_degree
train_base_model= args.train_base_model
train_ioss_transformation= args.train_ioss_transformation
eval_ioss_transformation= args.eval_ioss_transformation
eval_intervene_transformation= args.eval_intervene_transformation
eval_dgp= args.eval_dgp
cuda_device= args.cuda_device
# latent_case_grid= ['uniform', 'uniform_corr']
# latent_case_grid= ['gaussian_mixture', 'scm_sparse', 'scm_dense']
latent_case_grid= ['uniform', 'uniform_corr', 'gaussian_mixture', 'scm_sparse', 'scm_dense']
# latent_case_grid= ['scm_sparse', 'scm_dense']
poly_degree_grid= [2, 3]
latent_dim_grid=[6, 10]
total_seeds= 5
data_dim = 200
#Sanity Checks
if args.case == 'debug':
for latent_case in latent_case_grid:
for latent_dim in latent_dim_grid:
for poly_degree in poly_degree_grid:
for seed in range(total_seeds):
curr_dir= 'results/ae-ioss/ae_poly/' + 'polynomial' + '_latent_' + latent_case + '_poly_degree_' + str(poly_degree) + '_data_dim_' + str(data_dim) + '_latent_dim_' + str(latent_dim) + '/' + 'seed_' + str(seed) + '/'
# curr_dir= 'results/ae-poly/' + 'polynomial' + '_latent_' + latent_case + '_poly_degree_' + str(poly_degree) + '_data_dim_' + str(data_dim) + '_latent_dim_' + str(latent_dim) + '/' + 'seed_' + str(seed) + '/'
count=0
for _, _, f_list in os.walk(curr_dir):
for fname in f_list:
if '.pth' in fname:
count+=1
if count!=6:
print('Error: ', latent_case, latent_dim, poly_degree, seed, count)
#Generate Datasets
if args.case == 'data':
for latent_case in latent_case_grid:
if latent_case != target_latent:
continue
for latent_dim in latent_dim_grid:
for poly_degree in poly_degree_grid:
for seed in range(total_seeds):
script= 'python data/synthetic_polynomial_dgp.py ' + ' --latent_case ' + str(latent_case) + ' --latent_dim ' + str(latent_dim) + ' --poly_degree ' + str(poly_degree) + ' --seed ' + str(seed)
os.system(script)
#Train Models
if args.case == 'train':
train_ioss_transformation= 1 - intervention_case
for latent_case in latent_case_grid:
if latent_case != target_latent:
continue
for latent_dim in latent_dim_grid:
if latent_dim != target_dim:
continue
for poly_degree in poly_degree_grid:
if poly_degree != target_degree:
continue
for seed in range(total_seeds):
script= 'python train.py ' + ' --latent_case ' + str(latent_case) + ' --latent_dim ' + str(latent_dim) + ' --poly_degree ' + str(poly_degree) + ' --seed ' + str(seed) + ' --intervention_case ' + str(intervention_case) + ' --lr ' + str(lr) + ' --batch_size ' + str(batch_size) + ' --method_type ' + str(method_type) + ' --cuda_device ' + str(cuda_device) + ' --train_base_model ' + str(train_base_model) + ' --train_ioss_transformation ' + str(train_ioss_transformation)
os.system(script)
#Test Models
if args.case == 'test':
eval_ioss_transformation= 1 - intervention_case
eval_intervene_transformation= intervention_case
for latent_case in latent_case_grid:
for latent_dim in latent_dim_grid:
for poly_degree in poly_degree_grid:
fname= 'latent_case_' + str(latent_case) + '_latent_dim_' + str(latent_dim) + '_poly_degree_' + str(poly_degree) + '_intervention_' + str(intervention_case) + '_lr_' + str(lr) + '_method_type_' + str(method_type) + '.txt'
print(fname)
script= 'python test.py ' + ' --latent_case ' + str(latent_case) + ' --latent_dim ' + str(latent_dim) + ' --poly_degree ' + str(poly_degree) + ' --intervention_case ' + str(intervention_case) + ' --lr ' + str(lr) + ' --batch_size ' + str(batch_size) + ' --method_type ' + str(method_type) + ' --eval_ioss_transformation ' + str(eval_ioss_transformation) + ' --eval_intervene_transformation ' + str(eval_intervene_transformation) + ' --eval_dgp ' + str(eval_dgp) + ' > ' + 'results/final_logs/'+ fname
os.system(script)
#Log Results
latent_name_map= {'uniform': 'Uniform', 'uniform_corr': 'Uniform-C', 'gaussian_mixture': 'Gaussian-Mixture', 'scm_sparse': 'SCM-S', 'scm_dense': 'SCM-D'}
if args.case == 'log':
meta_res={}
for lr in [0.001, 0.0005, 0.0001]:
res={'Latent Case': [], 'Latent Dim': [], 'Poly Degree': [], 'Recon Error':[], 'RMSE': [], 'R2': [], 'Debug-R2' : [], 'Oracle-R2': [], 'MCC': [], 'MCC-Tune': []}
for latent_case in latent_case_grid:
for latent_dim in latent_dim_grid:
for poly_degree in poly_degree_grid:
fname= 'latent_case_' + str(latent_case) + '_latent_dim_' + str(latent_dim) + '_poly_degree_' + str(poly_degree) + '_intervention_' + str(intervention_case) + '_lr_' + str(lr) + '_method_type_' + str(method_type) + '.txt'
data= open( 'results/final_logs/' + fname, 'r').readlines()
for line in data:
line= line.replace('\n','')
if 'Metric' in line:
if 'recon_rmse' in line:
key= 'Recon Error'
elif 'latent_pred_rmse' in line:
key= 'RMSE'
elif 'latent_pred_r2' in line:
key= 'R2'
elif 'mcc ' in line:
key= 'MCC'
elif 'mcc_tune' in line:
key= 'MCC-Tune'
elif 'debug_pred_r2' in line:
key= 'Debug-R2'
elif 'oracle_pred_r2' in line:
key= 'Oracle-R2'
else:
continue
mean= round( float(line.split(" ")[-2]), 2 )
var= round( float(line.split(" ")[-1]), 2 )
# val= str(mean) + ' ( ' + str(var) + ' ) '
val= str(mean) + ' \u00B1 ' + str(var)
res[key].append(val)
res['Latent Case'].append( latent_name_map[latent_case] )
res['Latent Dim'].append(latent_dim)
res['Poly Degree'].append(poly_degree)
meta_res[lr]= res
final_res={'Latent Case': [], 'Latent Dim': [], 'Poly Degree': [], 'LR': [], 'Recon Error':[], 'RMSE': [], 'R2': [], 'Debug-R2' : [], 'Oracle-R2': [], 'MCC': [], 'MCC-Tune': []}
total_size= len(res['Recon Error'])
for idx in range(total_size):
opt_val= np.inf
opt_lr= -1
for lr in [0.001, 0.0005, 0.0001]:
curr_val= float(meta_res[lr]['Recon Error'][idx].split(' ')[0])
if opt_val > curr_val:
opt_val = curr_val
opt_lr= lr
final_res['LR'].append(opt_lr)
for key in res.keys():
final_res[key].append( meta_res[opt_lr][key][idx] )
for key in final_res.keys():
print(key, len(final_res[key]))
df= pd.DataFrame(final_res)
df= df.drop(columns= ['RMSE', 'Debug-R2', 'Oracle-R2', 'LR'])
# df= df.drop(columns= ['RMSE', 'Debug-R2', 'Oracle-R2', 'LR', 'R2', 'Recon Error'])
print(df.to_latex(index=False))
|
CausalRepID-main
|
scripts/main_exps.py
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import random
import numpy as np
import networkx as nx
import matplotlib.pyplot as plt
import os
import sys
path= os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))
sys.path.append(path)
from data.dag_generator import DagGenerator
random.seed(10)
np.random.seed(10)
dag= DagGenerator('linear', cause='gaussian', nodes=10, expected_density= 0.5, npoints= 5000)
print(dir(dag))
df1, obj1= dag.generate()
z= df1.values
print('Observational Data')
print(z)
# print(np.cov(np.transpose(z)))
# print(z.shape)
# print(df1)
# print(df1.values.shape)
nx.draw_networkx(obj1, arrows=True)
plt.savefig('a.jpg')
plt.clf()
# sys.exit()
print('Adjanceny Matrix')
print(nx.adjacency_matrix(obj1))
print('Degree Values')
print(type(obj1.degree()))
# '''
# Calling dag.generate second time does not reinitialise the DAG structure but samples new points; so simply call dag.generate() with different seed values should give the train/val/test split.
# '''
# df2, obj2= dag.generate()
# print(df2)
# # nx.draw_networkx(obj2, arrows=True)
# # plt.savefig('b.jpg')
# # plt.clf()
#Checking for intervention
df3, obj3= dag.intervene(intervention_nodes= [9], target_distribution= 'hard_intervention')
print('Interventional Matrix')
print(df3)
# nx.draw_networkx(obj3, arrows=True)
# plt.savefig('c.jpg')
# plt.clf()
|
CausalRepID-main
|
scripts/dag_gen_debug.py
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import os
import math
import argparse
import numpy as np
import time
## Imports for plotting
import matplotlib.pyplot as plt
from IPython.display import set_matplotlib_formats
set_matplotlib_formats('svg', 'pdf') # For export
from matplotlib.colors import to_rgba
import seaborn as sns
sns.set()
from tqdm.notebook import tqdm
import torch
import torch.nn as nn
import torch.nn.functional as F
from sklearn.linear_model import LogisticRegression
import torch.utils.data as data
from scipy.stats import ortho_group
from utils.metrics import get_cross_correlation
from scipy.stats import bernoulli
def get_predictions(model, train_dataset, device= None):
true_z= []
pred_z= []
count= 0
for batch_idx, (data_inputs, data_latents), in enumerate(train_dataset):
with torch.no_grad():
data_inputs = data_inputs.to(device)
preds = model(data_inputs)
true_z.append(data_latents)
pred_z.append(preds)
count+=1
true_z= torch.cat(true_z).detach().numpy()
pred_z= torch.cat(pred_z).cpu().detach().numpy()
return true_z, pred_z
class LinearEncoder(nn.Module):
def __init__(self, num_inputs, num_outputs):
super().__init__()
self.linear = nn.Linear(num_inputs, num_outputs)
def forward(self, x):
x = self.linear(x)
return x
class data_class_loader(data.Dataset):
def __init__(self, dataset):
super().__init__()
self.dataset_generate(dataset)
self.size = dataset[0].size()[0]
def dataset_generate(self, dataset):
self.data = dataset[0]
self.latent = dataset[1]
self.label = dataset[2].T[0].to(int)
def __len__(self):
return self.size
def __getitem__(self, idx):
data_point = self.data[idx]
data_latent = self.latent[idx]
data_label = self.label[idx]
return data_point, data_latent
def IOSS(mu, n_draws=10000, robust_k_prop = 0.01):
stdmu = (mu - torch.min(mu,dim=0)[0])/ (torch.max(mu,dim=0)[0]-torch.min(mu,dim=0)[0])
K = np.int(robust_k_prop * mu.shape[0]) + 1
maxs = torch.topk(stdmu, K, dim=0)[0][-1,:]
mins = -(torch.topk(-stdmu, K, dim=0)[0][-1,:])
smps = (torch.stack([torch.rand(n_draws).cuda() * (maxs[i]-mins[i]) + mins[i] for i in range(stdmu.shape[1])], dim=1))
min_dist = (torch.min(torch.cdist(smps, stdmu.cuda()), dim=1)[0])
# ortho = (torch.mean(min_dist,dim=0))
ortho = (torch.topk(min_dist, np.int(robust_k_prop*n_draws)+1, dim=0))[0][-1]
# ortho = torch.max(min_dist,dim=0)[0]
return ortho
def loss_intervention(decoder, preds, inputs, ioss_penalty=0.1, device=[]):
# constraint= torch.mean( IOSS(preds) )
constraint= torch.tensor(0.0).to(device)
total_pairs= 3
for idx in range(total_pairs):
perm= torch.randperm(preds.shape[1])
constraint+= torch.mean(IOSS( preds[:, perm[:2]] ))
#Reconstruction Loss
criterion = nn.MSELoss()
preds= decoder(preds)
loss = criterion(preds,inputs)
#Final Loss
theta = ioss_penalty
loss = loss + theta*constraint
return loss
def train_model(encoder, decoder, optimizer, data_loader, num_epochs, ioss_penalty= 0.1):
# Set model to train mode
encoder.train()
decoder.train()
# Training loop
for epoch in tqdm(range(num_epochs)):
#MCC
z, z_pred= get_predictions(encoder, data_loader, device= device)
mcc= get_cross_correlation({'te':z}, {'te':z_pred})
print('MCC: ', mcc)
print('Epoch: ', epoch)
train_loss= 0.0
batch_count= 0
for data_inputs, data_latents, in data_loader:
data_inputs = data_inputs.to(device)
preds = encoder(data_inputs)
# preds = preds.squeeze(dim=1)
# loss = loss_intervention(preds, data_inputs)
loss = loss_intervention(decoder, preds, data_inputs, ioss_penalty= ioss_penalty, device= device)
train_loss+= loss.item()
batch_count+=1
optimizer.zero_grad()
loss.backward()
optimizer.step()
print('Loss: ', train_loss/batch_count)
# Input Parsing
parser = argparse.ArgumentParser()
parser.add_argument('--total_samples', type=int, default=50000,
help='')
parser.add_argument('--latent_dim', type=int, default= 10,
help='')
parser.add_argument('--latent_case', type=str, default='uniform',
help='uniform, uniform_corr')
parser.add_argument('--ioss_penalty', type=float, default= 10.0,
help='')
parser.add_argument('--batch_size', type=int, default= 16,
help='')
parser.add_argument('--lr', type=float, default= 0.001,
help='')
parser.add_argument('--weight_decay', type=float, default= 5e-4,
help='')
parser.add_argument('--num_epochs', type=int, default= 300,
help='')
parser.add_argument('--seed', type=int, default=3,
help='')
args = parser.parse_args()
n = args.total_samples
d = args.latent_dim
latent_case= args.latent_case
ioss_penalty= args.ioss_penalty
lr= args.lr
weight_decay= args.weight_decay
# A = np.random.uniform(size=(d,d))
A = ortho_group.rvs(d)
# Observational data
if latent_case == 'uniform':
Zobs = np.random.uniform(size=(n,d))
elif latent_case == 'uniform_corr':
Zobs= np.zeros((n, d))
for d_idx in range(0 , d, 2):
print('Latent entries for the pair: ', d_idx, d_idx + 1)
p1= bernoulli.rvs(0.5, size=n)
p2= bernoulli.rvs(0.9, size=n)
z_11= np.random.uniform(low=0, high=5, size=n)
z_12= np.random.uniform(low=-5, high=0, size=n)
z_21= np.random.uniform(low=0, high=3, size=n)
z_22= np.random.uniform(low=-3, high=0, size=n)
for idx in range(n):
if p1[idx] == 1:
Zobs[idx, d_idx + 0]= z_11[idx]
if p2[idx] == 1:
Zobs[idx, d_idx + 1]= z_21[idx]
else:
Zobs[idx, d_idx + 1]= z_22[idx]
else:
Zobs[idx, d_idx + 0]= z_12[idx]
if p2[idx] == 1:
Zobs[idx, d_idx + 1]= z_22[idx]
else:
Zobs[idx, d_idx + 1]= z_21[idx]
# print(100*np.sum(Zobs[:,0]*Zobs[:,1]<0)/n)
Xobs = np.matmul(Zobs,A)
Eobs = np.zeros((n,1))
X = Xobs
Z = Zobs
E = Eobs
X = torch.tensor(X, dtype=torch.float32)
E = torch.tensor(E, dtype=torch.float32)
Data_train = (X, Z, E)
# data prep
data_train_obj = data_class_loader(Data_train)
train_data_loader = data.DataLoader(data_train_obj, batch_size=32, shuffle=True)
# device = torch.device("cuda:0")
device = torch.device("cuda:0")
# model and optimizer init
num_inputs= Data_train[0].size()[1]
encoder = LinearEncoder(num_inputs=num_inputs, num_outputs=num_inputs)
encoder.to(device)
decoder = LinearEncoder(num_inputs=num_inputs, num_outputs=num_inputs)
decoder.to(device)
optimizer= torch.optim.Adam([
{'params': filter(lambda p: p.requires_grad, list(encoder.parameters()) + list(decoder.parameters()) )},
], lr= lr, weight_decay= weight_decay )
num_epochs = 200
# train model
train_model(encoder, decoder, optimizer, train_data_loader, num_epochs, ioss_penalty= ioss_penalty)
|
CausalRepID-main
|
scripts/ioss.py
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import os
import copy
import numpy as np
import torch
import torch.utils.data as data_utils
from torchvision import datasets, transforms
from sklearn.preprocessing import StandardScaler
# Base Class
from data.data_loader import BaseDataLoader
class BallsDataLoader():
def __init__(self, data_dir='', data_case='train', observation_case= True, intervention_case=False):
self.data_case= data_case
self.observation_case= observation_case
self.intervention_case= intervention_case
self.obs_data_dir = 'data/datasets/' + data_dir + 'observation/'
self.itv_data_dir = 'data/datasets/' + data_dir + 'intervention/'
self.data, self.latents, self.intervention_indices= self.load_data(self.data_case)
def __len__(self):
return self.latents.shape[0]
def __getitem__(self, index):
x = self.data[index]
z = self.latents[index]
y= self.intervention_indices[index]
data_transform= transforms.Compose([
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
x= data_transform(x)
return x, z, y
def load_data(self, data_case):
#Note: intervention indices are being sampled as some random values for now; do not need them but for consistency with functions in metrics module
x_obs= np.load(self.obs_data_dir + data_case + '_' + 'x' + '.npy')
z_obs= np.load(self.obs_data_dir + data_case + '_' + 'z' + '.npy')
y_obs= np.load(self.obs_data_dir + data_case + '_' + 'y' + '.npy')
x_itv= np.load(self.itv_data_dir + data_case + '_' + 'x' + '.npy')
z_itv= np.load(self.itv_data_dir + data_case + '_' + 'z' + '.npy')
y_itv= np.load(self.itv_data_dir + data_case + '_' + 'y' + '.npy')
if self.observation_case and self.intervention_case:
x= np.concatenate((x_obs, x_itv), axis=0)
z= np.concatenate((z_obs, z_itv), axis=0)
y= np.concatenate((y_obs, y_itv), axis=0)
elif self.observation_case:
x= x_obs
z= z_obs
y= y_obs
elif self.intervention_case:
x= x_itv
z= z_itv
y= y_itv
x= torch.tensor(x).float()
z= torch.tensor(z).float()
y= torch.tensor(y).float()
# Change the dimension from (B, H, W, C) to (B, C, H ,W)
x= x.permute(0, 3, 1, 2)
return x, z, y
|
CausalRepID-main
|
data/balls_dataset_loader.py
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
#Common imports
import sys
import os
import argparse
import random
import copy
import math
import networkx as nx
import matplotlib.pyplot as plt
import numpy as np
from scipy import stats
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from scipy.stats import bernoulli
path= os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))
sys.path.append(path)
from data.dag_generator import DagGenerator
def sigmoid(x):
return 1 / (1 + np.exp(-x))
def compute_total_polynomial_terms(poly_degree, latent_dim):
count=0
for degree in range(poly_degree+1):
count+= pow(latent_dim, degree)
return count
def compute_kronecker_product(degree, latent):
if degree ==0:
out= np.array([1])
else:
out=copy.deepcopy(latent)
for idx in range(1, degree):
out= np.kron(out, latent)
# print(out.shape)
return out
def compute_decoder_polynomial(poly_degree, latent):
out=[]
for degree in range(poly_degree+1):
# print('Computing polynomial term of degree ', degree)
out.append(compute_kronecker_product(degree, latent))
out= np.concatenate(out)
out= np.reshape(out, (1,out.shape[0]))
return out
def generate_latent_vector(dataset_size, latent_dim, latent_case, intervention_indices= [], intervention_case= 0, dag=None, base_dir= ''):
z= np.zeros((dataset_size, latent_dim))
for i in range(latent_dim):
if latent_case == 'laplace':
z[:, i]= np.random.laplace(10, 5, dataset_size)
elif latent_case == 'uniform':
z[:, i]= np.random.uniform(low=-5, high=5, size=dataset_size)
elif latent_case == 'uniform_discrete':
z[:, i]= np.random.randint(10, size= dataset_size)
elif latent_case == 'gaussian':
z[:, i]= np.random.normal(0, 1, size= dataset_size)
elif latent_case == 'special':
support= np.array([0, 1])
p= 1
prob= np.exp( -1*support**p )
prob= prob/np.sum(prob)
idx= np.argmax( np.random.multinomial(1, prob, size=dataset_size), axis=1 )
z[:, i]= support[idx]
if latent_case == 'gaussian_corr':
rho= 0.9
noise_var= np.eye(latent_dim)
for i in range(latent_dim):
for j in range(i+1, latent_dim):
noise_var[i,j]= rho ** (np.abs(i-j))
z= np.random.multivariate_normal(np.zeros(latent_dim), noise_var, dataset_size)
if latent_case == 'uniform_corr':
for d_idx in range(0 , latent_dim, 2):
print('Latent entries for the pair: ', d_idx, d_idx + 1)
p1= bernoulli.rvs(0.5, size=dataset_size)
p2= bernoulli.rvs(0.9, size=dataset_size)
z_11= np.random.uniform(low=0, high=5, size=dataset_size)
z_12= np.random.uniform(low=-5, high=0, size=dataset_size)
z_21= np.random.uniform(low=0, high=3, size=dataset_size)
z_22= np.random.uniform(low=-3, high=0, size=dataset_size)
for idx in range(dataset_size):
if p1[idx] == 1:
z[idx, d_idx + 0]= z_11[idx]
if p2[idx] == 1:
z[idx, d_idx + 1]= z_21[idx]
else:
z[idx, d_idx + 1]= z_22[idx]
else:
z[idx, d_idx + 0]= z_12[idx]
if p2[idx] == 1:
z[idx, d_idx + 1]= z_22[idx]
else:
z[idx, d_idx + 1]= z_21[idx]
if 'mixture' in latent_case:
mix_coff= bernoulli.rvs(0.5, size=dataset_size)
mix_coff= np.reshape( mix_coff, (mix_coff.shape[0], 1) )
z1= np.zeros((dataset_size, latent_dim))
z2= np.zeros((dataset_size, latent_dim))
for i in range(latent_dim):
if args.latent_case == 'uniform_mixture':
z1[:, i]= np.random.uniform(low=-5, high=5, size=dataset_size)
z2[:, i]= np.random.uniform(low=-1, high=1, size=dataset_size)
elif args.latent_case == 'gaussian_mixture':
z1[:, i]= np.random.normal(0, 1, size=dataset_size)
z2[:, i]= np.random.normal(1, 2, size= dataset_size)
else:
print('Error: Not valid latent type for a mixture model')
sys.exit()
z= mix_coff * z1 + (1-mix_coff) * z2
if intervention_case and 'scm' not in latent_case:
for idx, intervene_idx in np.ndenumerate(intervention_indices):
z[idx, intervene_idx]= 2.0
if 'scm' in latent_case:
if intervention_case:
latent_dict = {}
for intervene_idx in range(latent_dim):
dag_copy= copy.deepcopy(dag)
df, obj= dag_copy.intervene(intervention_nodes= [intervene_idx], target_distribution= 'hard_intervention')
latent_dict[intervene_idx]= df
for idx, intervene_idx in np.ndenumerate(intervention_indices):
z[idx, :]= latent_dict[intervene_idx][idx, :]
else:
df, obj= dag.generate()
z= df.values[:dataset_size, :]
nx.draw_networkx(obj, arrows=True)
plt.savefig( base_dir + latent_case + '.jpg')
plt.clf()
return z
'''
Notations:
n: batch size
d: latent dimension
D: data dimension
p: degree of polynomial
q: number of terms in polynomial
Dimensions:
p: 2; q~ 111
z: (n, d): d= 10
x: (n, D): D= 100 -> 25
Poly(z): (n, q)
Coefficient Matrix: (D, q)
Ideal: D > q
'''
#TODO: Throw exception when the latent case if not amongst the valid ones
# Input Parsing
parser = argparse.ArgumentParser()
parser.add_argument('--seed', type=int, default=0,
help='')
parser.add_argument('--data_dim', type=int, default=200,
help='')
parser.add_argument('--latent_dim', type=int, default=10,
help='')
parser.add_argument('--latent_case', type=str, default='uniform',
help='uniform; uniform_corr; gaussian_mixture')
parser.add_argument('--poly_degree', type=int, default=2,
help='')
parser.add_argument('--train_size', type=int, default=10000,
help='')
parser.add_argument('--test_size', type=int, default=20000,
help='')
args = parser.parse_args()
seed= args.seed
data_dim= args.data_dim
latent_dim= args.latent_dim
latent_case= args.latent_case
poly_degree= args.poly_degree
train_size= args.train_size
test_size= args.test_size
poly_size= compute_total_polynomial_terms(poly_degree, latent_dim)
print('Total Polynomial Terms: ', poly_size)
#Random Seed
random.seed(seed*10)
np.random.seed(seed*10)
coff_matrix= np.random.multivariate_normal(np.zeros(poly_size), np.eye(poly_size), size=data_dim).T
print('Coeff Matrix', coff_matrix.shape)
_, sng_values, _ = np.linalg.svd(coff_matrix)
# print('Singular Values for Coeff Matrix: ', sng_values)
#DAG
#NOTE: For this configuration to work we need to have the same train and test size
if latent_case == 'scm_sparse':
dag= DagGenerator('linear', cause='gaussian', nodes=latent_dim, npoints= max( args.train_size, args.test_size), expected_density= 0.5)
elif latent_case == 'scm_dense':
dag= DagGenerator('linear', cause='gaussian', nodes=latent_dim, npoints= max( args.train_size, args.test_size), expected_density= 1.0)
else:
dag= None
for distribution_case in ['observational', 'interventional']:
for data_case in ['train', 'val', 'test']:
if distribution_case == 'observational':
base_dir= 'data/datasets/' + 'seed_' + str(seed) + '/observation/'
elif distribution_case == 'interventional':
base_dir= 'data/datasets/' + 'seed_' + str(seed) + '/intervention/'
base_dir= base_dir + 'polynomial_latent_' + latent_case + '_poly_degree_' + str(poly_degree) + '_data_dim_' + str(data_dim) + '_latent_dim_' + str(latent_dim) + '/'
if not os.path.exists(base_dir):
os.makedirs(base_dir)
print('Data Case: ', data_case)
if data_case == 'train':
dataset_size= args.train_size
if data_case == 'val':
dataset_size= int(args.train_size/4)
elif data_case == 'test':
dataset_size= args.test_size
#Generating the latent vector
if distribution_case == 'observational':
y= -1 * np.ones(dataset_size)
z= generate_latent_vector(dataset_size, latent_dim, latent_case, intervention_case= 0, intervention_indices= y, dag= dag, base_dir= base_dir)
elif distribution_case == 'interventional':
y= np.argmax(np.random.multinomial(1, [1/latent_dim]*latent_dim, dataset_size), axis=1 )
z= generate_latent_vector(dataset_size, latent_dim, latent_case, intervention_case= 1, intervention_indices= y, dag= dag, base_dir= base_dir)
print('Latent Z')
print(z.shape)
print(z[:5])
#Transforming the latent via polynomial decoder
print('Data X')
x=[]
for idx in range(z.shape[0]):
x.append( compute_decoder_polynomial(poly_degree, z[idx, :] ) )
x= np.concatenate(x, axis=0)
print(x.shape)
x1= np.matmul(x[:, :1+latent_dim], coff_matrix[:1+latent_dim, :])
print('X1')
print('Min', np.min(np.abs(x1)), 'Max', np.max(np.abs(x1)), 'Mean', np.mean(np.abs(x1)))
x2= np.matmul(x[:, 1+latent_dim:], coff_matrix[1+latent_dim:, :])
norm_factor= 0.5 * np.max(np.abs(x2)) / np.max(np.abs(x1))
x2 = x2 / norm_factor
print('X2')
print('Min', np.min(np.abs(x2)), 'Max', np.max(np.abs(x2)), 'Mean', np.mean(np.abs(x2)))
x= (x1+x2)
print(x.shape)
f= base_dir + data_case + '_' + 'x' + '.npy'
np.save(f, x)
f= base_dir + data_case + '_' + 'z' + '.npy'
np.save(f, z)
f= base_dir + data_case + '_' + 'y' + '.npy'
np.save(f, y)
|
CausalRepID-main
|
data/synthetic_polynomial_dgp.py
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
"""Defining a set of classes that represent causal functions/ mechanisms.
Author: Diviyan Kalainathan
Modified by Philippe Brouillard, July 24th 2019
Modified by Divyat Mahajan, December 30th 2022
.. MIT License
..
.. Copyright (c) 2018 Diviyan Kalainathan
..
.. Permission is hereby granted, free of charge, to any person obtaining a copy
.. of this software and associated documentation files (the "Software"), to deal
.. in the Software without restriction, including without limitation the rights
.. to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
.. copies of the Software, and to permit persons to whom the Software is
.. furnished to do so, subject to the following conditions:
..
.. The above copyright notice and this permission notice shall be included in all
.. copies or substantial portions of the Software.
..
.. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
.. IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
.. FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
.. AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
.. LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
.. OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
.. SOFTWARE.
"""
import random
import numpy as np
from scipy.stats import bernoulli
from sklearn.mixture import GaussianMixture as GMM
from sklearn.metrics.pairwise import euclidean_distances
from sklearn.gaussian_process import GaussianProcessRegressor
import torch as th
import copy
class LinearMechanism(object):
"""Linear mechanism, where Effect = alpha*Cause + Noise."""
def __init__(self, ncauses, points, noise_function, d=4, noise_coeff=.4):
"""Init the mechanism."""
super(LinearMechanism, self).__init__()
self.n_causes = ncauses
self.points = points
self.coefflist = []
self.other_coefflist = []
self.noise_coeff = noise_coeff
self.noise_function = noise_function
for i in range(ncauses):
coeff = np.random.uniform(0.25, 1)
if np.random.randint(2) == 0:
coeff *= -1
self.coefflist.append(coeff)
self.old_coefflist = self.coefflist[:]
def parametric_intervention(self):
for i,c in enumerate(self.old_coefflist):
change = np.random.uniform(0.5, 1)
if c > 0:
coeff = c + change
else:
coeff = c - change
self.coefflist[i] = coeff
def unique_parametric_intervention(self):
if len(self.other_coefflist) == 0:
for i,c in enumerate(self.old_coefflist):
change = np.random.uniform(2, 5)
if np.random.randint(2) == 0:
change *= -1
if c > 0:
coeff = c + change
else:
coeff = c - change
self.other_coefflist.append(coeff)
self.coefflist = self.other_coefflist[:]
def reinit(self):
self.coefflist = self.old_coefflist[:]
def __call__(self, causes):
"""Run the mechanism."""
# Additive only, for now
effect = np.zeros((self.points, 1))
self.noise = self.noise_coeff * self.noise_function(self.points)
# Compute each cause's contribution
for par in range(causes.shape[1]):
effect[:, 0] = effect[:, 0] + self.coefflist[par]*causes[:, par]
effect[:, 0] = effect[:, 0] + self.noise[:, 0]
return effect
class SigmoidMix_Mechanism(object):
def __init__(self, ncauses, points, noise_function, d=4, noise_coeff=.4):
"""Init the mechanism."""
super(SigmoidMix_Mechanism, self).__init__()
self.n_causes = ncauses
self.points = points
self.a = np.random.exponential(1/4) + 1
ber = bernoulli.rvs(0.5)
self.b = ber * np.random.uniform(-2, -0.5) + (1-ber)*np.random.uniform(0.5, 2)
self.c = np.random.uniform(-2, 2)
self.noise_coeff = noise_coeff
self.noise_function = noise_function
self.old_b = self.b
self.old_c = self.c
self.other_b = None
self.other_c = None
def parametric_intervention(self):
change = np.random.uniform(0.5, 1)
if self.b <= -0.5:
self.b -= change
else:
self.b += change
change = np.random.uniform(-1, 1)
self.c += change
def unique_parametric_intervention(self):
if self.other_b is None and self.other_c is None:
self.parametric_intervention()
self.other_b = self.b
self.other_c = self.c
self.b = self.other_b
self.c = self.other_c
def reinit(self):
self.b = self.old_b
self.c = self.old_c
def mechanism(self, causes):
"""Mechanism function."""
self.noise = self.noise_coeff * self.noise_function(self.points)
result = np.zeros((self.points, 1))
for i in range(self.points):
pre_add_effect = 0
for c in range(causes.shape[1]):
pre_add_effect += causes[i, c]
pre_add_effect += self.noise[i]
result[i, 0] = self.a * self.b * \
(pre_add_effect + self.c)/(1 + abs(self.b*(pre_add_effect + self.c)))
return result
def __call__(self, causes):
"""Run the mechanism."""
effect = np.zeros((self.points, 1))
# Compute each cause's contribution
effect[:, 0] = self.mechanism(causes)[:, 0]
return effect
class SigmoidAM_Mechanism(object):
def __init__(self, ncauses, points, noise_function, d=4, noise_coeff=.4):
"""Init the mechanism."""
super(SigmoidAM_Mechanism, self).__init__()
self.n_causes = ncauses
self.points = points
self.a = np.random.exponential(1/4) + 1
ber = bernoulli.rvs(0.5)
self.b = ber * np.random.uniform(-2, -0.5) + (1-ber)*np.random.uniform(0.5, 2)
self.c = np.random.uniform(-2, 2)
self.noise_coeff = noise_coeff
self.noise_function = noise_function
self.old_b = self.b
self.old_c = self.c
self.other_b = None
self.other_c = None
def mechanism(self, x):
"""Mechanism function."""
result = np.zeros((self.points, 1))
for i in range(self.points):
result[i, 0] = self.a * self.b * (x[i] + self.c) / (1 + abs(self.b * (x[i] + self.c)))
return result
def __call__(self, causes):
"""Run the mechanism."""
# Additive only
self.noise = self.noise_coeff * self.noise_function(self.points)
effect = np.zeros((self.points, 1))
# Compute each cause's contribution
for par in range(causes.shape[1]):
effect[:, 0] = effect[:, 0] + self.mechanism(causes[:, par])[:, 0]
effect[:, 0] = effect[:, 0] + self.noise[:, 0]
return effect
class ANM_Mechanism(object):
def __init__(self, ncauses, points, noise_function, noise_coeff=.4):
"""Init the mechanism."""
super(ANM_Mechanism, self).__init__()
self.n_causes = ncauses
self.points = points
self.noise_function = noise_function
self.noise_coeff = noise_coeff
self.nb_step = 0
def mechanism(self, x):
"""Mechanism function."""
self.nb_step += 1
x = np.reshape(x, (x.shape[0], x.shape[1]))
if(self.nb_step == 1):
cov = computeGaussKernel(x)
mean = np.zeros((1, self.points))[0, :]
y = np.random.multivariate_normal(mean, cov)
self.gpr = GaussianProcessRegressor()
self.gpr.fit(x, y)
else:
y = self.gpr.predict(x)
return y
def __call__(self, causes):
"""Run the mechanism."""
effect = np.zeros((self.points, 1))
self.noise = self.noise_coeff * self.noise_function(self.points)
# Compute each cause's contribution
if(causes.shape[1] > 0):
effect[:, 0] = self.mechanism(causes)
else:
effect[:, 0] = self.mechanism(self.noise)
effect[:, 0] = effect[:, 0] + self.noise[:, 0]
return effect
class NN_Mechanism_Add(object):
def __init__(self, ncauses, points, noise_function, nh=10, noise_coeff=.4):
"""Init the mechanism."""
super(NN_Mechanism_Add, self).__init__()
self.n_causes = ncauses
self.points = points
self.noise_coeff = noise_coeff
self.noise_function = noise_function
self.nb_step = 0
self.nh = nh
self.layers = self.initialize()
self.old_layers = copy.deepcopy(self.layers)
self.other_layers = None
def weight_init(self, model):
if isinstance(model, th.nn.modules.Linear):
th.nn.init.normal_(model.weight.data, mean=0., std=1)
def initialize(self):
"""Mechanism function."""
layers = []
layers.append(th.nn.modules.Linear(self.n_causes, self.nh))
layers.append(th.nn.PReLU())
layers.append(th.nn.modules.Linear(self.nh, 1))
layers = th.nn.Sequential(*layers)
layers.apply(self.weight_init)
return layers
def parametric_intervention(self):
for i,layer in enumerate(self.layers):
if isinstance(layer, th.nn.modules.Linear):
with th.no_grad():
layer.weight += th.empty_like(layer.weight).normal_(mean=0, std=.1)
def unique_parametric_intervention(self):
if self.other_layers is None:
self.other_layers = copy.deepcopy(self.layers)
for i,layer in enumerate(self.other_layers):
if isinstance(layer, th.nn.modules.Linear) and i > 0:
with th.no_grad():
layer.weight += th.empty_like(layer.weight).normal_(mean=0, std=1)
self.layers = copy.deepcopy(self.other_layers)
def reinit(self):
self.layers = copy.deepcopy(self.old_layers)
def apply_nn(self, x):
data = x.astype('float32')
data = th.from_numpy(data)
return np.reshape(self.layers(data).data, (x.shape[0],))
def __call__(self, causes):
"""Run the mechanism."""
effect = np.zeros((self.points, 1))
self.noise = self.noise_coeff * self.noise_function(self.points)
# Compute each cause's contribution
if (causes.shape[1] > 0):
effect[:, 0] = self.apply_nn(causes)
else:
print("abnormal")
effect[:, 0] = effect[:, 0] + self.noise[:, 0]
return effect
class NN_Mechanism(object):
def __init__(self, ncauses, points, noise_function, nh=20, noise_coeff=.4):
"""Init the mechanism."""
super(NN_Mechanism, self).__init__()
self.n_causes = ncauses
self.points = points
self.noise_coeff = noise_coeff
self.noise_function = noise_function
self.nb_step = 0
self.nh = nh
self.layers = self.initialize()
self.old_layers = copy.deepcopy(self.layers)
self.other_layers = None
def weight_init(self, model):
if isinstance(model, th.nn.modules.Linear):
th.nn.init.normal_(model.weight.data, mean=0., std=1)
def initialize(self):
"""Mechanism function."""
layers = []
layers.append(th.nn.modules.Linear(self.n_causes+1, self.nh))
layers.append(th.nn.Tanh())
layers.append(th.nn.modules.Linear(self.nh, 1))
layers = th.nn.Sequential(*layers)
layers.apply(self.weight_init)
return layers
def parametric_intervention(self):
for i,layer in enumerate(self.layers):
if isinstance(layer, th.nn.modules.Linear):
with th.no_grad():
layer.weight += th.empty_like(layer.weight).normal_(mean=0, std=.1)
def unique_parametric_intervention(self):
if self.other_layers is None:
self.other_layers = copy.deepcopy(self.layers)
for i,layer in enumerate(self.other_layers):
if isinstance(layer, th.nn.modules.Linear) and i > 0:
with th.no_grad():
layer.weight += th.empty_like(layer.weight).normal_(mean=0, std=1)
self.layers = copy.deepcopy(self.other_layers)
def reinit(self):
self.layers = copy.deepcopy(self.old_layers)
def apply_nn(self, x):
data = x.astype('float32')
data = th.from_numpy(data)
return np.reshape(self.layers(data).data, (x.shape[0],))
def __call__(self, causes):
"""Run the mechanism."""
effect = np.zeros((self.points, 1))
self.noise = self.noise_coeff * self.noise_function(self.points)
# Compute each cause's contribution
if (causes.shape[1] > 0):
mix = np.hstack((causes, self.noise))
effect[:, 0] = self.apply_nn(mix)
else:
effect[:, 0] = self.apply_nn(self.noise)
return effect
# === Multimodal Mechanisms ===
class Multimodal_X_Mechanism(object):
"""Mecanism with multimodal distribution: usually a combination of multiple
functions"""
def __init__(self, ncauses, points, noise_function, d=4, noise_coeff=.4):
"""Init the mechanism."""
super(Multimodal_X_Mechanism, self).__init__()
self.n_causes = ncauses
self.points = points
self.coefflist = []
self.other_coefflist = []
self.noise_coeff = noise_coeff
self.noise_function = noise_function
for i in range(ncauses):
coeff = np.random.uniform(0.5, 1)
if np.random.randint(2) == 0:
coeff *= -1
self.coefflist.append(coeff)
self.old_coefflist = self.coefflist[:]
def parametric_intervention(self):
for i,c in enumerate(self.old_coefflist):
change = np.random.uniform(0.5, 1)
if c > 0:
coeff = c + change
else:
coeff = c - change
self.coefflist[i] = coeff
def unique_parametric_intervention(self):
if len(self.other_coefflist) == 0:
for i,c in enumerate(self.old_coefflist):
change = np.random.uniform(0.5, 1)
if c > 0:
coeff = c + change
else:
coeff = c - change
self.other_coefflist.append(coeff)
self.coefflist = self.other_coefflist[:]
def reinit(self):
self.coefflist = self.old_coefflist[:]
def __call__(self, causes):
"""Run the mechanism."""
effect = np.zeros((self.points, 1))
self.noise = self.noise_coeff * self.noise_function(self.points)
selector = np.random.choice([-1,1], size=self.points)
# Compute each cause's contribution
for par in range(causes.shape[1]):
for i, sel in enumerate(selector):
effect[i, 0] = effect[i, 0] + sel*self.coefflist[par]*causes[i, par]
effect[:, 0] = effect[:, 0] + self.noise[:, 0]
return effect
class Multimodal_Circle_Mechanism(object):
def __init__(self, ncauses, points, noise_function, d=4, noise_coeff=.4):
"""Init the mechanism."""
super(Multimodal_Circle_Mechanism, self).__init__()
self.n_causes = ncauses
self.points = points
self.noise_coeff = noise_coeff
self.noise_function = noise_function
self.sin_scale = np.random.uniform(0.5, 1.5) #1
self.period = np.random.uniform(0.5, 1.5) #1
self.phase_shift = np.pi/2
# make copy of initial parameters
self.old_sin_scale = self.sin_scale
self.old_period = self.period
self.old_phase_shift = self.phase_shift
self.other_sin_scale = None
self.other_period = None
self.other_phase_shift = None
def parametric_intervention(self):
change = np.random.uniform(0.5, 1.5)
self.sin_scale = self.old_phase_shift
self.period = np.random.uniform(0.5, 1.5) #1
self.phase_shift = np.pi/2
def unique_parametric_intervention(self):
if self.other_sin_scale is None:
self.parametric_intervention()
self.other_sin_scale = self.sin_scale
self.other_period = self.period
self.other_phase_shift = self.phase_shift
self.sin_scale = self.other_sin_scale
self.period = self.other_period
self.phase_shift = self.other_phase_shift
def reinit(self):
self.sin_scale = self.old_sin_scale
self.period = self.old_period
self.phase_shift = self.old_phase_shift
def mechanism(self, sel, x):
if sel:
sin_scale = -self.sin_scale
else:
sin_scale = self.sin_scale
return sin_scale * np.sin(self.period * (x + self.phase_shift))
def __call__(self, causes):
"""Run the mechanism."""
effect = np.zeros((self.points, 1))
self.noise = self.noise_coeff * self.noise_function(self.points)
selector = np.random.choice([0,1], size=self.points)
# Compute each cause's contribution
for par in range(causes.shape[1]):
for i, sel in enumerate(selector):
effect[i, 0] = effect[i, 0] + self.mechanism(sel, causes[i, par])
effect[:, 0] = effect[:, 0] + self.noise[:, 0]
return effect
class Multimodal_ADN_Mechanism(object):
def __init__(self, ncauses, points, noise_function, d=4, noise_coeff=.4):
"""Init the mechanism."""
super(Multimodal_ADN_Mechanism, self).__init__()
self.n_causes = ncauses
self.points = points
self.noise_coeff = noise_coeff
self.noise_function = noise_function
self.sin_scale = np.random.uniform(0.5, 1.5) #1
self.period = np.random.uniform(1, 2) #1
self.phase_shift = np.pi/2
# make copy of initial parameters
self.old_sin_scale = self.sin_scale
self.old_period = self.period
self.old_phase_shift = self.phase_shift
self.other_sin_scale = None
self.other_period = None
self.other_phase_shift = None
def parametric_intervention(self):
# change = np.random.uniform(1, 2)
self.sin_scale = self.old_phase_shift
change = np.random.uniform(1, 2)
self.period = self.old_period + change
self.phase_shift = np.pi/2
def unique_parametric_intervention(self):
if self.other_sin_scale is None:
self.parametric_intervention()
self.other_sin_scale = self.sin_scale
self.other_period = self.period
self.other_phase_shift = self.phase_shift
self.sin_scale = self.other_sin_scale
self.period = self.other_period
self.phase_shift = self.other_phase_shift
def reinit(self):
self.sin_scale = self.old_sin_scale
self.period = self.old_period
self.phase_shift = self.old_phase_shift
def mechanism(self, sel, x):
if sel:
sin_scale = -self.sin_scale
else:
sin_scale = self.sin_scale
return sin_scale * np.sin(self.period * (x + self.phase_shift))
def __call__(self, causes):
"""Run the mechanism."""
effect = np.zeros((self.points, 1))
self.noise = self.noise_coeff * self.noise_function(self.points)
selector = np.random.choice([0,1], size=self.points)
# Compute each cause's contribution
for par in range(causes.shape[1]):
for i, sel in enumerate(selector):
effect[i, 0] = effect[i, 0] + self.mechanism(sel, causes[i, par])
effect[:, 0] = effect[:, 0] + self.noise[:, 0]
return effect
class Function_Template:
def __init__(self, sign, slope, intercept, sin_scale, period, phase_shift):
self.sign = sign
self.slope = slope
self.intercept = intercept
self.sin_scale = sin_scale
self.period = period
self.phase_shift = phase_shift
def __call__(self, x):
return self.sign*self.slope*x + self.intercept \
+ self.sin_scale*np.sin(self.period*(x + self.phase_shift))
# ====================================
class Polynomial_Mechanism(object):
def __init__(self, ncauses, points, noise_function, d=2, noise_coeff=.4):
"""Init the mechanism."""
super(Polynomial_Mechanism, self).__init__()
self.n_causes = ncauses
self.points = points
self.d = d
self.polycause = []
for c in range(ncauses):
self.coefflist = []
for j in range(self.d + 1):
self.coefflist.append(random.random())
self.polycause.append(self.coefflist)
self.ber = bernoulli.rvs(0.5)
self.noise = noise_coeff * noise_function(points)
def mechanism(self, x, par):
"""Mechanism function."""
list_coeff = self.polycause[par]
result = np.zeros((self.points, 1))
for i in range(self.points):
for j in range(self.d+1):
result[i, 0] += list_coeff[j]*np.power(x[i], j)
result[i, 0] = min(result[i, 0], 1)
result[i, 0] = max(result[i, 0], -1)
return result
def __call__(self, causes):
"""Run the mechanism."""
effect = np.zeros((self.points, 1))
# Compute each cause's contribution
for par in range(causes.shape[1]):
effect[:, 0] = effect[:, 0] + self.mechanism(causes[:, par], par)[:, 0]
if(self.ber > 0 and causes.shape[1] > 0):
effect[:, 0] = effect[:, 0] * self.noise[:, 0]
else:
effect[:, 0] = effect[:, 0] + self.noise[:, 0]
return effect
def computeGaussKernel(x):
"""Compute the gaussian kernel on a 1D vector."""
xnorm = np.power(euclidean_distances(x, x), 2)
return np.exp(-xnorm / (2.0))
class GaussianProcessAdd_Mechanism(object):
def __init__(self, ncauses, points, noise_function, noise_coeff=.4):
"""Init the mechanism."""
super(GaussianProcessAdd_Mechanism, self).__init__()
self.n_causes = ncauses
self.points = points
self.noise = noise_coeff * noise_function(points)
self.nb_step = 0
def mechanism(self, x):
"""Mechanism function."""
self.nb_step += 1
x = np.reshape(x, (x.shape[0], 1))
cov = computeGaussKernel(x)
mean = np.zeros((1, self.points))[0, :]
y = np.random.multivariate_normal(mean, cov)
# if(self.nb_step < 5):
# cov = computeGaussKernel(x)
# mean = np.zeros((1, self.points))[0, :]
# y = np.random.multivariate_normal(mean, cov)
# elif(self.nb_step == 5):
# cov = computeGaussKernel(x)
# mean = np.zeros((1, self.points))[0, :]
# y = np.random.multivariate_normal(mean, cov)
# self.gpr = GaussianProcessRegressor()
# self.gpr.fit(x, y)
# y = self.gpr.predict(x)
# else:
# y = self.gpr.predict(x)
return y
def __call__(self, causes):
"""Run the mechanism."""
# Additive only
effect = np.zeros((self.points, 1))
# Compute each cause's contribution
for par in range(causes.shape[1]):
effect[:, 0] = effect[:, 0] + self.mechanism(causes[:, par])
effect[:, 0] = effect[:, 0] + self.noise[:, 0]
return effect
class GaussianProcessMix_Mechanism(object):
def __init__(self, ncauses, points, noise_function, noise_coeff=.4):
"""Init the mechanism."""
super(GaussianProcessMix_Mechanism, self).__init__()
self.n_causes = ncauses
self.points = points
self.noise = noise_coeff * noise_function(points)
self.nb_step = 0
def mechanism(self, x):
"""Mechanism function."""
self.nb_step += 1
x = np.reshape(x, (x.shape[0], x.shape[1]))
if(self.nb_step < 2):
cov = computeGaussKernel(x)
mean = np.zeros((1, self.points))[0, :]
y = np.random.multivariate_normal(mean, cov)
elif(self.nb_step == 2):
cov = computeGaussKernel(x)
mean = np.zeros((1, self.points))[0, :]
y = np.random.multivariate_normal(mean, cov)
self.gpr = GaussianProcessRegressor()
self.gpr.fit(x, y)
y = self.gpr.predict(x)
else:
y = self.gpr.predict(x)
return y
def __call__(self, causes):
"""Run the mechanism."""
effect = np.zeros((self.points, 1))
# Compute each cause's contribution
if(causes.shape[1] > 0):
mix = np.hstack((causes, self.noise))
effect[:, 0] = self.mechanism(mix)
else:
effect[:, 0] = self.mechanism(self.noise)
return effect
class pnl_gp_mechanism(object):
""" Post-Nonlinear model using a GP with additive noise. The
second non-linearity is a sigmoid """
def __init__(self, ncauses, points, noise_function, noise_coeff=.4):
"""Init the mechanism."""
super(pnl_gp_mechanism, self).__init__()
self.n_causes = ncauses
self.points = points
self.noise = noise_coeff * noise_function(points)
self.nb_step = 0
self.f2 = lambda x: 1 / (1 + np.exp(-x))
def mechanism(self, x):
"""Mechanism function."""
self.nb_step += 1
x = np.reshape(x, (x.shape[0], x.shape[1]))
if(self.nb_step == 1):
cov = computeGaussKernel(x)
mean = np.zeros((1, self.points))[0, :]
y = np.random.multivariate_normal(mean, cov)
self.gpr = GaussianProcessRegressor()
self.gpr.fit(x, y)
y = self.gpr.predict(x)
else:
y = self.gpr.predict(x)
return y
def __call__(self, causes):
"""Run the mechanism."""
effect = np.zeros((self.points, 1))
# Compute each cause's contribution
if(causes.shape[1] > 0):
effect[:, 0] = self.mechanism(causes)
effect[:, 0] = effect[:, 0] + self.noise[:, 0]
else:
effect[:, 0] = self.mechanism(self.noise)
effect[:, 0] = self.f2(effect[:, 0])
return effect
class pnl_mult_mechanism(object):
""" Post-Nonlinear model using a exp and log as the non-linearities.
This results in a multiplicative model. """
def __init__(self, ncauses, points, noise_function, noise_coeff=.4):
"""Init the mechanism."""
super(pnl_mult_mechanism, self).__init__()
self.n_causes = ncauses
self.points = points
self.noise_function = noise_function
self.noise_coeff = noise_coeff
self.f1 = lambda x: np.log(np.sum(x, axis=1))
self.f2 = lambda x: np.exp(x)
def __call__(self, causes):
"""Run the mechanism."""
effect = np.zeros((self.points, 1))
self.noise = self.noise_coeff * self.noise_function(self.points)
# Compute each cause's contribution
if(causes.shape[1] > 0):
effect[:, 0] = self.f1(causes) #[:, 0]
else:
effect[:, 0] = self.f1(self.noise)
effect[:, 0] = effect[:, 0] + self.noise[:, 0]
effect[:, 0] = self.f2(effect[:, 0])
return effect
class PostNonLinear_Mechanism:
def __init__(self, ncauses, points, noise_function, f1=None, f2=None, noise_coeff=.4):
self.gp = GaussianProcessAdd_Mechanism(ncauses, points, noise_function,
noise_coeff=0)
self.points = points
self.noise = noise_coeff * noise_function(points)
self.f1 = f1
self.f2 = f2
if f1 is None and f2 is None:
raise ValueError("f1 and f2 have to de defined!")
elif f1 is None and f2 is not None:
self.f1 = self.gp
def __call__(self, causes):
"""Run the mechanism."""
effect = np.zeros((self.points, 1))
# Compute each cause's contribution
if(causes.shape[1] > 0):
effect[:, 0] = self.f1(causes)[:,0] # mult [:, 0]
else:
effect[:, 0] = self.f1(self.noise)
effect[:, 0] = effect[:, 0] + self.noise[:, 0]
effect[:, 0] = self.f2(effect[:, 0])
return effect
def gmm_cause(points, k=4, p1=2, p2=2):
"""Init a root cause with a Gaussian Mixture Model w/ a spherical covariance type."""
g = GMM(k, covariance_type="spherical")
g.fit(np.random.randn(300, 1))
g.means_ = p1 * np.random.randn(k, 1)
g.covars_ = np.power(abs(p2 * np.random.randn(k, 1) + 1), 2)
g.weights_ = abs(np.random.rand(k))
g.weights_ = g.weights_ / sum(g.weights_)
return g.sample(points)[0].reshape(-1)
def gaussian_cause(points):
"""Init a root cause with a Gaussian."""
return np.random.randn(points, 1)[:, 0]
def variable_gaussian_cause(points):
"""Init a root cause with a Gaussian. Similar to gaussian_cause
but have variable variance. Identical to J.Peters with default value (set noise_coeff=0.2)"""
# + np.random.rand(points, 1)[:, 0] - 1
return np.sqrt(np.random.rand(1) + 1) * np.random.randn(points, 1)[:, 0]
def uniform_cause(points):
"""Init a root cause with a uniform."""
return np.random.rand(points, 1)[:, 0] * 2 - 1
def uniform_cause_positive(points):
"""Init a root cause with a uniform."""
return np.random.rand(points, 1)[:, 0] * 2
def normal_noise(points):
"""Init a normal noise variable."""
return np.random.rand(1) * np.random.randn(points, 1) \
+ random.sample([2, -2], 1)
def variable_normal_noise(points):
"""Init a normal noise variable. Similar to normal_noise
but make sure to have at least a std of 1. Identical to
J.Peters with default value (set noise_coeff=0.2)"""
return np.sqrt(np.random.rand(1) + 1) * np.random.randn(points, 1)
def absolute_gaussian_noise(points):
"""Init an absolute normal noise variable."""
return np.abs(np.random.rand(points, 1) * np.random.rand(1))
def laplace_noise(points):
"""Init a Laplace noise variable."""
lambda_ = np.random.rand(1)
return np.random.laplace(0, lambda_, (points, 1))
def uniform_noise(points):
"""Init a uniform noise variable."""
return np.random.rand(1) * np.random.uniform(size=(points, 1)) \
+ random.sample([2, -2], 1)
class NormalCause(object):
def __init__(self, mean=0, std=1, std_min=None, std_max=None):
self.mean = mean
if std_min is None and std_max is None:
self.std = std
else:
self.std = np.random.uniform(std_min, std_max)
def __call__(self, points):
return np.random.normal(self.mean, self.std, \
size=(points))
class UniformCause(object):
def __init__(self, _min=-1, _max=1):
self._min = _min
self._max = _max
def __call__(self, points):
return np.random.uniform(self._min, self._max, size=(points))
class HardIntervention(object):
def __init__(self, _val):
self._val = _val
def __call__(self, points):
return self._val * np.ones(points)
class nn_noise(object):
def __init__(self, noise=variable_normal_noise, n_hidden=20):
"""Init the mechanism."""
super(nn_noise, self).__init__()
self.noise = noise
self.n_hidden = n_hidden
self.initialize_nn()
def initialize_nn(self):
layers = []
layers.append(th.nn.modules.Linear(1, self.n_hidden))
layers.append(th.nn.Tanh())
layers.append(th.nn.modules.Linear(self.n_hidden, 1))
self.layers = th.nn.Sequential(*layers)
# use a normal initialization
# self.layers.apply(self.weight_init)
def weight_init(self, model):
if isinstance(model, th.nn.modules.Linear):
th.nn.init.normal_(model.weight.data, mean=0., std=0.5)
def __call__(self, points):
x = self.noise(points)
data = x.astype('float32')
data = th.from_numpy(data)
data = self.layers(data).data.numpy()
return data
|
CausalRepID-main
|
data/causal_mechanisms.py
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import os
import sys
import copy
import numpy as np
import torch
import torch.utils.data as data_utils
from torchvision import datasets, transforms
class BaseDataLoader(data_utils.Dataset):
def __init__(self, data_dir='', data_case='train', seed= 0, observation_case= True, intervention_case=False):
self.data_case= data_case
self.seed= seed
self.obs_data_dir = 'data/datasets/' + 'seed_' + str(seed) + '/observation/' + data_dir
self.itv_data_dir = 'data/datasets/' + 'seed_' + str(seed) + '/intervention/' + data_dir
self.observation_case= observation_case
self.intervention_case= intervention_case
self.data, self.latents, self.intervention_indices= self.load_data(self.data_case)
def __len__(self):
return self.latents.shape[0]
def __getitem__(self, index):
x = self.data[index]
z = self.latents[index]
y= self.intervention_indices[index]
return x, z, y
def load_data(self, data_case):
x_obs= np.load(self.obs_data_dir + data_case + '_' + 'x' + '.npy')
z_obs= np.load(self.obs_data_dir + data_case + '_' + 'z' + '.npy')
y_obs= np.load(self.obs_data_dir + data_case + '_' + 'y' + '.npy')
x_itv= np.load(self.itv_data_dir + data_case + '_' + 'x' + '.npy')
z_itv= np.load(self.itv_data_dir + data_case + '_' + 'z' + '.npy')
y_itv= np.load(self.itv_data_dir + data_case + '_' + 'y' + '.npy')
if self.observation_case and self.intervention_case:
x= np.concatenate((x_obs, x_itv), axis=0)
z= np.concatenate((z_obs, z_itv), axis=0)
y= np.concatenate((y_obs, y_itv), axis=0)
elif self.observation_case:
x= x_obs
z= z_obs
y= y_obs
elif self.intervention_case:
x= x_itv
y= y_itv
z= z_itv
x= torch.tensor(x).float()
z= torch.tensor(z).float()
y= torch.tensor(y).float()
return x, z, y
|
CausalRepID-main
|
data/data_loader.py
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import os
import sys
import random
import argparse
import torch
import numpy as np
import pygame
from pygame import gfxdraw, init
from typing import Callable, Optional
from matplotlib import pyplot as plt
if "SDL_VIDEODRIVER" not in os.environ:
os.environ["SDL_VIDEODRIVER"] = "dummy"
COLOURS_ = [
[2, 156, 154],
[222, 100, 100],
[149, 59, 123],
[74, 114, 179],
[27, 159, 119],
[218, 95, 2],
[117, 112, 180],
[232, 41, 139],
[102, 167, 30],
[231, 172, 2],
[167, 118, 29],
[102, 102, 102],
]
SCREEN_DIM = 64
def circle(
x_,
y_,
surf,
color=(204, 204, 0),
radius=0.1,
screen_width=SCREEN_DIM,
y_shift=0.0,
offset=None,
):
if offset is None:
offset = screen_width / 2
scale = screen_width
x = scale * x_ + offset
y = scale * y_ + offset
gfxdraw.aacircle(
surf, int(x), int(y - offset * y_shift), int(radius * scale), color
)
gfxdraw.filled_circle(
surf, int(x), int(y - offset * y_shift), int(radius * scale), color
)
class Balls(torch.utils.data.Dataset):
ball_rad = 2.0*0.04
screen_dim = 64
def __init__(
self,
transform: Optional[Callable] = None,
n_balls: int = 1,
):
super(Balls, self).__init__()
if transform is None:
def transform(x):
return x
self.transform = transform
pygame.init()
self.screen = pygame.display.set_mode((self.screen_dim, self.screen_dim))
self.surf = pygame.Surface((self.screen_dim, self.screen_dim))
self.n_balls = n_balls
def __len__(self) -> int:
# arbitrary since examples are generated online.
return 20000
def draw_scene(self, z):
self.surf.fill((255, 255, 255))
if z.ndim == 1:
z = z.reshape((1, 2))
for i in range(z.shape[0]):
circle(
z[i, 0],
z[i, 1],
self.surf,
color=COLOURS_[i],
radius=self.ball_rad,
screen_width=self.screen_dim,
y_shift=0.0,
offset=0.0,
)
self.surf = pygame.transform.flip(self.surf, False, True)
self.screen.blit(self.surf, (0, 0))
return np.transpose(
np.array(pygame.surfarray.pixels3d(self.screen)), axes=(1, 0, 2)
)
def __getitem__(self, item):
raise NotImplemented()
class BlockOffset(Balls):
def __init__(
self,
transform: Optional[Callable] = None,
n_balls: int = 2,
interventions_per_latent: int = 3,
latent_case: str = 'iid',
scm_mechanism: str = None,
):
super().__init__(transform=transform, n_balls=n_balls)
self.dataset_size= 20000
self.latent_dim= self.n_balls*2
self.intervention_case= 0
self.intervene_all_latent= 1
self.interventions_per_latent= interventions_per_latent
self.latent_case= latent_case
self.scm_mechanism= scm_mechanism
def __getitem__(self, item):
if self.latent_case == 'iid':
z = self.get_observational_data_iid()
elif self.latent_case == 'scm':
z = self.get_observational_data_scm()
else:
print('Latent type not supported')
sys.exit()
y = -1*np.ones(2)
if self.intervention_case:
z= z.flatten()
if self.intervene_all_latent:
intervene_idx= np.random.randint(self.latent_dim, size=1)
else:
intervene_idx= 0
if self.interventions_per_latent > 1:
intervene_range= np.linspace(0.25, 0.75, num= self.interventions_per_latent)
intervene_val= [np.random.choice(intervene_range)]
elif self.interventions_per_latent == 1:
intervene_val= [0.5]
if self.latent_case == 'iid':
z= self.get_interventional_data_iid(z, intervene_idx, intervene_val)
elif self.latent_case == 'scm':
z= self.get_interventional_data_scm(z, intervene_idx, intervene_val)
else:
print('Latent type not supported')
sys.exit()
y[0]= intervene_idx
y[1]= intervene_val[0]
x = self.draw_scene(z)
x = self.transform(x)
return z.flatten(), y, x
def get_observational_data_iid(self):
z= np.random.uniform(0.1, 0.9, size=(self.n_balls, 2))
return z
def get_interventional_data_iid(self, z, intervene_idx, intervene_val):
z[intervene_idx]= intervene_val
z= np.reshape(z, (self.n_balls, 2))
return z
def get_observational_data_scm(self, x1=None, y1=None):
if x1 is None:
x1= np.random.uniform(0.1, 0.9, size=1)[0]
if y1 is None:
y1= np.random.uniform(0.1, 0.9, size=1)[0]
if self.scm_mechanism == 'linear':
constraint= x1+y1
elif self.scm_mechanism == 'non_linear':
constraint= 1.25 * (x1**2 + y1**2)
if constraint >= 1.0:
x2= np.random.uniform(0.1, 0.5, size=1)[0]
y2= np.random.uniform(0.5, 0.9, size=1)[0]
else:
x2= np.random.uniform(0.5, 0.9, size=1)[0]
y2= np.random.uniform(0.1, 0.5, size=1)[0]
z= np.array([[x1, y1], [x2, y2]])
return z
def get_interventional_data_scm(self, z, intervene_idx, intervene_val):
# Internvetion on the child Ball (Ball 2)
if intervene_idx in [2, 3]:
z[intervene_idx]= intervene_val
z= np.reshape(z, (self.n_balls, 2))
# Internvetion on the parent Ball (Ball 1)
elif intervene_idx == 0:
z= self.get_observational_data_scm(x1= intervene_val[0], y1= z[1])
elif intervene_idx == 1:
z= self.get_observational_data_scm(x1= z[0], y1= intervene_val[0])
return z
# Input Parsing
parser = argparse.ArgumentParser()
parser.add_argument('--seed', type=int, default=1,
help='')
parser.add_argument('--train_size', type=int, default=20000,
help='')
parser.add_argument('--test_size', type=int, default=20000,
help='')
parser.add_argument('--distribution_case', type=str, default='observation',
help='observation; intervention')
parser.add_argument('--latent_case', type=str, default='iid',
help='iid; scm')
parser.add_argument('--scm_mechanism', type=str, default='linear',
help='linear; non_linear')
parser.add_argument('--interventions_per_latent', type= int, default=3,
help='')
args = parser.parse_args()
seed= args.seed
train_size= args.train_size
test_size= args.test_size
distribution_case= args.distribution_case
latent_case= args.latent_case
scm_mechanism= args.scm_mechanism
interventions_per_latent= args.interventions_per_latent
#Random Seed
random.seed(seed*10)
np.random.seed(seed*10)
data_obj= BlockOffset(interventions_per_latent= interventions_per_latent, latent_case= latent_case, scm_mechanism= scm_mechanism)
if distribution_case == 'observation':
data_obj.intervention_case= 0
elif distribution_case == 'intervention':
data_obj.intervention_case= 1
for data_case in ['train', 'val', 'test']:
base_dir= 'data/datasets/balls_' + latent_case + '_' + scm_mechanism + '/' + str(distribution_case) + '/'
if not os.path.exists(base_dir):
os.makedirs(base_dir)
print('Distribution Case: ', distribution_case, 'Data Case: ', data_case)
if data_case == 'train':
dataset_size= args.train_size
if data_case == 'val':
dataset_size= int(args.train_size/4)
elif data_case == 'test':
dataset_size= args.test_size
count=0
final_z= []
final_y= []
final_x= []
for batch_idx, (z, y, x) in enumerate(data_obj):
z= np.expand_dims(z, axis= 0)
y= np.expand_dims(y, axis= 0)
x= np.expand_dims(x, axis= 0)
final_z.append(z)
final_y.append(y)
final_x.append(x)
count+=1
if count >= dataset_size:
break
final_z= np.concatenate(final_z, axis=0)
final_y= np.concatenate(final_y, axis=0)
final_x= np.concatenate(final_x, axis=0)
print(final_z.shape, final_y.shape, final_x.shape)
print(final_z[:5])
print(final_y[:5])
f= base_dir + data_case + '_' + 'x' + '.npy'
np.save(f, final_x)
f= base_dir + data_case + '_' + 'z' + '.npy'
np.save(f, final_z)
f= base_dir + data_case + '_' + 'y' + '.npy'
np.save(f, final_y)
|
CausalRepID-main
|
data/balls_dataset.py
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
""" DAG Generator.
Generates a dataset out of an acyclic FCM.
Author : Olivier Goudet and Diviyan Kalainathan
Modified by Philippe Brouillard, June 25th 2019
Modified by Divyat Mahajan, December 30th 2022
.. MIT License
..
.. Copyright (c) 2018 Diviyan Kalainathan
..
.. Permission is hereby granted, free of charge, to any person obtaining a copy
.. of this software and associated documentation files (the "Software"), to deal
.. in the Software without restriction, including without limitation the rights
.. to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
.. copies of the Software, and to permit persons to whom the Software is
.. furnished to do so, subject to the following conditions:
..
.. The above copyright notice and this permission notice shall be included in all
.. copies or substantial portions of the Software.
..
.. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
.. IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
.. FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
.. AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
.. LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
.. OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
.. SOFTWARE.
"""
import os
from sklearn.preprocessing import scale
import numpy as np
import pandas as pd
import networkx as nx
from cdt.metrics import get_CPDAG
from data.causal_mechanisms import (LinearMechanism,
Polynomial_Mechanism,
SigmoidAM_Mechanism,
SigmoidMix_Mechanism,
GaussianProcessAdd_Mechanism,
GaussianProcessMix_Mechanism,
ANM_Mechanism,
NN_Mechanism,
NN_Mechanism_Add,
pnl_gp_mechanism,
pnl_mult_mechanism,
PostNonLinear_Mechanism,
Multimodal_X_Mechanism,
Multimodal_Circle_Mechanism,
Multimodal_ADN_Mechanism,
gmm_cause,
gaussian_cause,
variable_gaussian_cause,
uniform_cause,
uniform_cause_positive,
laplace_noise,
normal_noise,
uniform_noise,
nn_noise,
absolute_gaussian_noise,
variable_normal_noise,
NormalCause,
UniformCause,
HardIntervention)
class DagGenerator:
"""Generate an DAG and data given a causal mechanism.
Args:
causal_mechanism (str): currently implemented mechanisms:
['linear', 'polynomial', 'sigmoid_add',
'sigmoid_mix', 'gp_add', 'gp_mix', 'nn'].
noise (str or function): type of noise to use in the generative process
('gaussian', 'uniform' or a custom noise function).
noise_coeff (float): Proportion of noise in the mechanisms.
initial_variable_generator (function): Function used to init variables
of the graph, defaults to a Gaussian Mixture model.
npoints (int): Number of data points to generate.
nodes (int): Number of nodes in the graph to generate.
expected_density (int): Expected number of edge per node.
"""
def __init__(self, causal_mechanism, noise='gaussian',
noise_coeff=.4,
cause=gaussian_cause,
npoints=500, nodes=8, expected_density=3,
dag_type='erdos', rescale=False, f1=None, f2=None):
super().__init__()
self.mechanism = {'linear': LinearMechanism,
'polynomial': Polynomial_Mechanism,
'sigmoid_add': SigmoidAM_Mechanism,
'sigmoid_mix': SigmoidMix_Mechanism,
'gp_add': GaussianProcessAdd_Mechanism,
'gp_mix': GaussianProcessMix_Mechanism,
'anm': ANM_Mechanism,
'nn': NN_Mechanism,
'nn_add': NN_Mechanism_Add,
'pnl_gp_mechanism': pnl_gp_mechanism,
'pnl_mult_mechanism': pnl_mult_mechanism,
'x': Multimodal_X_Mechanism,
'circle': Multimodal_Circle_Mechanism,
'adn': Multimodal_ADN_Mechanism,
'post_nonlinear': PostNonLinear_Mechanism }[causal_mechanism]
self.causal_mechanism = causal_mechanism
self.positive = False
self.rescale = rescale
self.data = pd.DataFrame(None, columns=["V{}".format(i) for i in range(nodes)])
self.nodes = nodes
self.npoints = npoints
try:
self.initial_generator = {'gmm_cause': gmm_cause,
'gaussian': gaussian_cause,
'variable_gaussian': variable_gaussian_cause,
'uniform': uniform_cause,
'uniform_positive': uniform_cause_positive}[cause]
except KeyError:
print('This type of cause does not exist')
self.initial_generator = cause
try:
self.noise = {'gaussian': normal_noise,
'variable_gaussian': variable_normal_noise,
'uniform': uniform_noise,
'laplace': laplace_noise,
'absolute_gaussian': absolute_gaussian_noise,
'nn': nn_noise(variable_normal_noise)}[noise]
except KeyError:
print('This type of noise does not exist')
self.noise = noise
self.noise_coeff = noise_coeff
self.adjacency_matrix = np.zeros((nodes, nodes))
self.expected_density = expected_density
self.dag_type = dag_type
self.cfunctions = None
self.g = None
self.f1 = f1
self.f2 = f2
# Constraints on PNL models to make sure they are identifiable
if self.causal_mechanism == 'pnl_gp_mechanism':
self.noise = laplace_noise
print('Forcing noise to be laplacian')
elif self.causal_mechanism == 'pnl_mult_mechanism':
self.noise = absolute_gaussian_noise
initial_variable_generator = uniform_cause_positive
self.positive = True
print('Forcing noise to be an absolute Gaussian and cause to be uniform with positive support')
def estimate_expected_density(self, n=100):
""" Estimate the expected density(number of edge per node) of a
graph generation by generating multiple graphes
Args:
n: number of graph generated to estimate the density
"""
estimated_density = 0.
for i in range(n):
self.adjacency_matrix = np.zeros((self.nodes, self.nodes))
self.generate_dag()
estimated_density += np.sum(self.adjacency_matrix)
return estimated_density/(n * self.nodes)
def generate_dag(self):
""" Create the structure of the graph """
if self.dag_type == 'erdos':
nb_edges = self.expected_density * self.nodes
self.prob_connection = 2 * nb_edges/(self.nodes**2 - self.nodes)
self.causal_order = np.random.permutation(np.arange(self.nodes))
for i in range(self.nodes - 1):
node = self.causal_order[i]
possible_parents = self.causal_order[(i+1):]
num_parents = np.random.binomial(n=self.nodes - i - 1,
p=self.prob_connection)
parents = np.random.choice(possible_parents, size=num_parents,
replace=False)
self.adjacency_matrix[parents,node] = 1
elif self.dag_type == 'default':
for j in range(1, self.nodes):
nb_parents = np.random.randint(0, min([self.parents_max, j])+1)
for i in np.random.choice(range(0, j), nb_parents, replace=False):
self.adjacency_matrix[i, j] = 1
try:
self.g = nx.DiGraph(self.adjacency_matrix)
assert not list(nx.simple_cycles(self.g))
except AssertionError:
if verbose:
print("Regenerating, graph non valid...")
self.generate_dag()
self.original_adjacency_matrix = np.copy(self.adjacency_matrix)
def change_npoints(self, npoints):
self.npoints = npoints
self.reinitialize()
for f in self.cfunctions:
f.points = npoints
self.data = pd.DataFrame(None, columns=["V{}".format(i) for i in range(self.nodes)])
def init_variables(self, verbose=False):
"""Redefine the causes, mechanisms and the structure of the graph,
called by ``self.generate()`` if never called.
Args:
verbose (bool): Verbosity
"""
self.generate_dag()
# Mechanisms
self.original_cfunctions = []
for i in range(self.nodes):
if sum(self.adjacency_matrix[:, i]):
if self.mechanism is PostNonLinear_Mechanism:
self.original_cfunctions.append(self.mechanism(int(sum(self.adjacency_matrix[:, i])), self.npoints, self.noise, f1=self.f1, f2=self.f2, noise_coeff=self.noise_coeff))
else:
self.original_cfunctions.append(self.mechanism(int(sum(self.adjacency_matrix[:, i])), self.npoints, self.noise, noise_coeff=self.noise_coeff))
else:
self.original_cfunctions.append(self.initial_generator)
# = [self.mechanism(int(sum(self.adjacency_matrix[:, i])), self.npoints, self.noise, noise_coeff=self.noise_coeff) if sum(self.adjacency_matrix[:, i]) else self.initial_generator for i in range(self.nodes)]
# increase nb_step in order to save the gaussian processes
if self.causal_mechanism == 'gp_mix':
for cfunction in self.original_cfunctions:
if isinstance(cfunction, GaussianProcessMix_Mechanism):
cfunction.nb_step += 1
self.cfunctions = self.original_cfunctions[:]
def reinitialize(self):
""" Reinitialize the adjacency matrix and the cfunctions """
self.adjacency_matrix = np.copy(self.original_adjacency_matrix)
# for parametric change:
for i,c in enumerate(self.cfunctions):
if isinstance(c, LinearMechanism) or isinstance(c, NN_Mechanism) or \
isinstance(c, NN_Mechanism_Add) or isinstance(c, Multimodal_ADN_Mechanism) or \
isinstance(c, Multimodal_X_Mechanism):
c.reinit()
self.cfunctions = self.original_cfunctions[:]
def generate(self, npoints=None):
"""Generate data from an FCM defined in ``self.init_variables()``.
Returns:
tuple: (pandas.DataFrame, networkx.DiGraph), respectively the
generated data and graph.
"""
if npoints is None:
npoints = self.npoints
if self.cfunctions is None:
print('Variables initialized')
self.init_variables()
for i in nx.topological_sort(self.g):
# Root cause
if not sum(self.adjacency_matrix[:, i]):
self.data['V{}'.format(i)] = self.cfunctions[i](npoints)
# Generating causes
else:
self.data['V{}'.format(i)] = self.cfunctions[i](self.data.iloc[:, self.adjacency_matrix[:, i].nonzero()[0]].values)
if self.rescale:
self.data['V{}'.format(i)] = scale(self.data['V{}'.format(i)].values)
if self.positive:
self.data['V{}'.format(i)] -= np.min(self.data['V{}'.format(i)].values) - 1e-8
return self.data, self.g
def choose_randomly_intervention_nodes(num_nodes=1, on_child_only=True):
""" Pick randomly nodes
Args:
num_nodes(int): number of nodes to intervene on
on_child_only(boolean): if True, exclude root nodes from the
selection
Returns:
list: contains the indices of the chosen nodes
"""
assert self.cfunctions is not None, "You first need to create a graph"
assert num_nodes <= self.nodes, "num_nodes has to been smaller or equal \
to the total number of nodes"
if on_child_only:
num_parent = np.sum(self.adjacency_matrix, axis=0)
self.avail_nodes = np.arange(self.nodes)[num_parent > 0]
else:
self.avail_nodes = np.arange(self.nodes)
intervention_nodes = np.random.choice(self.avail_nodes, num_nodes, replace=False)
return intervention_nodes
def intervene(self, intervention_type="structural", intervention_nodes=None, npoints=None, target_distribution=None):
""" change the probability distribution of the nodes in
intervention_nodes and then generate data
Args:
intervention_nodes(list of int): sets of nodes to intervene on
Returns:
tuple: (pandas.DataFrame, networkx.DiGraph), respectively the
generated data and graph.
"""
assert self.cfunctions is not None, "You first need to create a graph"
assert intervention_nodes is not None, "You must at least choose one node to do \
an intervention on"
if npoints is not None:
self.change_npoints(npoints)
if intervention_type == "structural":
if target_distribution is None or target_distribution == "normal":
target_distribution = NormalCause()
elif target_distribution == "uniform":
target_distribution = UniformCause()
elif target_distribution == "shifted_normal":
# target_distribution = NormalCause(1, 0.1)
target_distribution = NormalCause(2)
elif target_distribution == "small_uniform":
target_distribution = UniformCause(-0.25, 0.25)
elif target_distribution == "hard_intervention":
target_distribution = HardIntervention(2.0)
for node in intervention_nodes:
self.cfunctions[node] = target_distribution
self.adjacency_matrix[:, node] = 0
elif intervention_type == "parametric":
for node in intervention_nodes:
if isinstance(self.cfunctions[node], LinearMechanism) or \
isinstance(self.cfunctions[node], NN_Mechanism) or \
isinstance(self.cfunctions[node], NN_Mechanism_Add) or \
isinstance(self.cfunctions[node], Multimodal_X_Mechanism) or \
isinstance(self.cfunctions[node], Multimodal_ADN_Mechanism) :
self.cfunctions[node].unique_parametric_intervention()
else:
target_distribution = NormalCause(2)
self.cfunctions[node] = target_distribution
if npoints is not None:
self.generate(npoints)
else:
self.generate()
return self.data.values, self.g
def to_csv(self, fname_radical, **kwargs):
"""
Save the generated data to the csv format by default,
in two separate files: data, and the adjacency matrix of the
corresponding graph.
Args:
fname_radical (str): radical of the file names. Completed by
``_data.csv`` for the data file and ``_target.csv`` for the
adjacency matrix of the generated graph.
\**kwargs: Optional keyword arguments can be passed to pandas.
"""
if self.data is not None:
self.data.to_csv(fname_radical+'_data.csv', index=False, **kwargs)
pd.DataFrame(self.adjacency_matrix).to_csv(fname_radical \
+ '_target.csv',
index=False, **kwargs)
else:
raise ValueError("Graph has not yet been generated. \
Use self.generate() to do so.")
def save_dag_cpdag(self, fname_radical, i_dataset):
dag_path = os.path.join(fname_radical, f'DAG{i_dataset}.npy')
cpdag_path = os.path.join(fname_radical, f'CPDAG{i_dataset}.npy')
cpdag = get_CPDAG(self.adjacency_matrix)
np.save(dag_path, self.adjacency_matrix)
np.save(cpdag_path, cpdag)
def save_data(self, fname_radical, i_dataset):
data_path = os.path.join(fname_radical, f'data{i_dataset}.npy')
np.save(data_path, self.data)
def to_npy(self, fname_radical, i_dataset):
"""
Save the generated data to the npy format,
in two separate files: data and the adjacency matrix of the
corresponding graph.
Args:
fname_radical (str): radical of the file names.
i_dataset (int): i-th dataset
"""
if self.data is not None:
self.save_dag_cpdag(fname_radical, i_dataset)
self.save_data(fname_radical, i_dataset)
else:
raise ValueError("Graph has not yet been generated. \
Use self.generate() to do so.")
|
CausalRepID-main
|
data/dag_generator.py
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import os
import copy
import numpy as np
import torch
import torch.utils.data as data_utils
from torchvision import datasets, transforms
from sklearn.preprocessing import StandardScaler
#Base Class
from data.data_loader import BaseDataLoader
class FineTuneDataLoader(BaseDataLoader):
def __init__(self, pred_z, true_z, data_dir='', data_case='train'):
super().__init__(data_dir= data_dir, data_case= data_case)
self.data, self.latents= self.load_data_updated(pred_z, true_z, self.data_case)
def load_data_updated(self, pred_z, true_z, data_case):
if data_case == 'train':
x= pred_z['tr']
z= true_z['tr']
elif data_case == 'val':
x= pred_z['val']
z= true_z['val']
elif data_case == 'test':
x= pred_z['te']
z= true_z['te']
scaler = StandardScaler()
scaler.fit(x)
x= scaler.transform(x)
x= torch.tensor(x).float()
z= torch.tensor(z).float()
return x, z
|
CausalRepID-main
|
data/fine_tune_loader.py
|
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
import argparse
import glob
import os
import matplotlib
matplotlib.use('Agg')
from matplotlib import pyplot as plt
plt.rc('font', family='serif')
plt.rc('font', size=12)
import numpy as np
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Deep convexity')
parser.add_argument('--save_dir', type=str, default='results/')
parser.add_argument('--plot_dir', type=str, default='plots/')
parser.add_argument('--n_layers', type=int, default=2)
parser.add_argument('--n_hiddens', type=int, default=50)
parser.add_argument('--n_embeddings', type=int, default=50)
args = parser.parse_args()
functions = [
"ackley",
"michal",
"schwefel",
"sphere",
"tang",
"rastrigin",
"rosenbrock",
"levy",
"energy"
]
plt.figure(figsize=(10, 6))
for f, function in enumerate(functions):
plt.subplot(3, 3, f + 1)
shallows = glob.glob(os.path.join(args.save_dir,
"f={}_emb={}_lay=0_hid={}_*".format(function,
args.n_embeddings,
args.n_hiddens)))
deeps = glob.glob(os.path.join(args.save_dir,
"f={}_emb={}_lay={}_hid={}_*".format(function,
args.n_embeddings,
args.n_layers,
args.n_hiddens)))
print(len(shallows), len(deeps))
for shallow in shallows:
data = np.genfromtxt(shallow)
if len(data):
data = data[:, 2:]
plt.plot(data[:, 0], data[:, 1], color="C2", alpha=0.5)
for deep in deeps:
data = np.genfromtxt(deep)
if len(data):
data = data[:, 2:]
plt.plot(data[:, 0], data[:, 1], color="C1", alpha=0.5)
plt.xscale("log")
if function == "rastrigin" or function == "rosenbrock":
plt.yscale("log")
plt.margins(0.05)
plt.title(function)
plt.tight_layout(pad=0)
pdf_name = os.path.join(args.plot_dir,
'plot_{}_{}.pdf'.format(args.n_layers,
args.n_hiddens))
if not os.path.exists(args.plot_dir):
os.makedirs(args.plot_dir)
plt.savefig(pdf_name)
|
DeepConvexity-master
|
plot.py
|
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
from torch.optim.lr_scheduler import ReduceLROnPlateau
import argparse
import torch
import time
import math
import os
def rescale(x, a, b, c, d):
"""
Rescales variable from [a, b] to [c, d]
"""
return c + ((d - c) / (b - a)) * (x - a)
def ackley(x, xmin=-1, xmax=1):
"""
https://www.sfu.ca/~ssurjano/ackley.html
"""
a = 20
b = 0.2
c = 2 * math.pi
x = rescale(x, xmin, xmax, -32.768, 32.768)
term1 = x.pow(2).mean(1).sqrt().mul(-b).exp().mul(-a)
term2 = x.mul(c).cos().mean(1).exp().mul(-1)
return term1 + term2 + a + math.exp(1)
def michal(x, xmin=-1, xmax=1):
"""
https://www.sfu.ca/~ssurjano/michal.html
"""
x = rescale(x, xmin, xmax, 0, math.pi)
mask = torch.arange(1, x.size(1) + 1).view(1, -1)
return x.sin().mul((x.pow(2) * mask / math.pi).sin().pow(20)).sum(1).mul(-1)
def schwefel(x, xmin=-1, xmax=1):
"""
https://www.sfu.ca/~ssurjano/schwef.html
"""
x = rescale(x, xmin, xmax, -500, 500)
result = x.abs().sqrt().sin().mul(x).sum(1).mul(-1).add(418.9829 * x.size(1))
return result
def sphere(x, xmin=-1, xmax=1):
"""
https://www.sfu.ca/~ssurjano/spheref.html
"""
x = rescale(x, xmin, xmax, -5.12, 5.12)
return x.pow(2).mean(1)
def tang(x, xmin=-1, xmax=1):
"""
https://www.sfu.ca/~ssurjano/stybtang.html
"""
x = rescale(x, xmin, xmax, -5, 5)
result = (x.pow(4) - x.pow(2).mul(16) + x.mul(5)).sum(1).div(2)
return result
def rastrigin(x, xmin=-1, xmax=1):
"""
https://www.sfu.ca/~ssurjano/rastr.html
"""
x = rescale(x, xmin, xmax, -5.12, 5.12)
result = (x.pow(2.0) - x.mul(2.0 * math.pi).cos().mul(10)
).sum(1).add(10 * x.size(1))
return result
def rosenbrock(x, xmin=-1, xmax=1):
"""
https://www.sfu.ca/~ssurjano/rosen.html
"""
x = rescale(x, xmin, xmax, -5, 10)
term1 = (x[:, 1:] - x[:, :-1].pow(2)).pow(2).mul(100).sum(1)
term2 = x[:, :-1].add(-1).pow(2).sum(1)
return term1 + term2
def levy(x, xmin=-1, xmax=1):
"""
https://www.sfu.ca/~ssurjano/levy.html
"""
x = rescale(x, xmin, xmax, -10, 10)
w = 1 + (x - 1).div(4)
w1 = w[:, 0]
ww = w[:, :x.size(1) - 1]
wd = w[:, x.size(1) - 1]
if ww.dim() == 1:
ww = ww.view(-1, 1)
term1 = w1.mul(math.pi).sin().pow(2)
termw = ww.mul(math.pi).add(1).sin().pow(2).mul(
10).add(1).mul(ww.add(-1).pow(2)).mean(1)
termd = wd.mul(math.pi * 2).sin().pow(2).add(1).mul(wd.add(-1).pow(2))
return term1 + termw + termd
def energy(d):
"""
https://en.wikipedia.org/wiki/Spin_glass
"""
coeff = torch.randn(d, d, d)
def foo(x, xmin=-1, xmax=1):
x = rescale(x, xmin, xmax, -1, 1)
x_norm = x.norm(2, 1).view(-1, 1) + 1e-10
x = x / x_norm * math.sqrt(x.size(1))
bs = x.size(0)
tmp1 = torch.mul(x.view(bs, d, 1), x.view(bs, 1, d))
tmp2 = torch.mul(tmp1.view(bs, d * d, 1), x.view(bs, 1, d))
tmp3 = torch.mul(tmp2.view(bs, d * d * d), coeff.view(1, -1))
return tmp3.sum(1) / d
return foo
test_functions = {
"ackley": ackley,
"michal": michal,
"schwefel": schwefel,
"sphere": sphere,
"tang": tang,
"rastrigin": rastrigin,
"rosenbrock": rosenbrock,
"levy": levy
}
class ScaledTanh(torch.nn.Module):
def __init__(self, a=1):
super(ScaledTanh, self).__init__()
self.a = a
def forward(self, x):
return x.mul(self.a).tanh()
class EmbeddingPerceptron(torch.nn.Module):
"""
Multilayer ReLU perceptron with learnable inputs
"""
def __init__(self, sizes, multiplier=3):
super(EmbeddingPerceptron, self).__init__()
self.inputs = torch.arange(0, sizes[0]).long()
layers = [torch.nn.Embedding(sizes[0], sizes[1])]
for i in range(1, len(sizes) - 1):
layers.append(torch.nn.Linear(sizes[i], sizes[i + 1]))
if i < (len(sizes) - 2):
layers.append(torch.nn.ReLU())
self.net = torch.nn.Sequential(*layers)
net_min, net_max = self().min().item(), self().max().item()
a = 1.7159 / max(abs(net_min), abs(net_max))
self.net = torch.nn.Sequential(self.net, ScaledTanh(a))
def forward(self):
return self.net(self.inputs)
def run_experiment(args, lr):
if args.seed >= 0:
torch.manual_seed(args.seed)
if args.function == "energy":
the_function = energy(args.dimension)
else:
the_function = test_functions[args.function]
network = EmbeddingPerceptron([args.n_embeddings] +
[args.n_hiddens] * args.n_layers +
[args.dimension])
optimizer = torch.optim.SGD(network.parameters(), lr)
scheduler = ReduceLROnPlateau(optimizer,
patience=1,
factor=0.99,
threshold=1e-10,
min_lr=1e-10,
threshold_mode='abs')
time_start = time.time()
history = []
for i in range(args.n_iters):
errors = the_function(network())
mean_error = errors.mean()
min_error = errors.min()
optimizer.zero_grad()
mean_error.backward()
optimizer.step()
history.append([i, time.time() - time_start, min_error.item()])
if min_error.item() != min_error.item():
return None
scheduler.step(mean_error.item())
return torch.Tensor(history)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Deep convexity')
parser.add_argument('--save_dir', type=str, default='results/')
parser.add_argument('--function', type=str, default="ackley")
parser.add_argument('--dimension', type=int, default=50)
parser.add_argument('--n_iters', type=int, default=10000)
parser.add_argument('--min_lr', type=float, default=-6)
parser.add_argument('--max_lr', type=float, default=1)
parser.add_argument('--n_lr', type=int, default=20)
parser.add_argument('--n_embeddings', type=int, default=50)
parser.add_argument('--n_hiddens', type=int, default=50)
parser.add_argument('--n_layers', type=int, default=0)
parser.add_argument('--seed', type=int, default=0)
args = parser.parse_args()
torch.set_default_tensor_type(torch.DoubleTensor)
best_history = None
best_lr = None
best_err = 1e10
for lr in torch.logspace(args.min_lr, args.max_lr, args.n_lr):
history = run_experiment(args, lr)
if history is not None:
err = history[:, -1].min().item()
if err < best_err:
best_lr = lr
best_err = err
best_history = history
#print("+ Success at lr={:1.0e} with value {:.5f}".format(lr, err))
#else:
#print("- Failure at lr={:1.0e}".format(lr))
print("* Best run at lr={:1.0e} with value {:.5f}".format(best_lr, best_err))
fname = "f={}_emb={}_lay={}_hid={}_seed={}.txt".format(args.function,
args.n_embeddings,
args.n_layers,
args.n_hiddens,
args.seed)
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
with open(os.path.join(args.save_dir, fname), "w") as f:
f.write("# {}\n".format(str(vars(args))))
for line in best_history:
f.write("{:1.0e} {:.0f} {:.5f} {:.5f}\n".format(best_lr, *line))
|
DeepConvexity-master
|
main.py
|
from setuptools import setup
if __name__ == "__main__":
setup(name='epoxy',
version='0.0.0a0',
description='Interactive Model Iteration with Weak Supervision and Pre-Trained Embeddings',
url='https://github.com/HazyResearch/epoxy',
author='Dan Fu',
author_email='danfu@cs.stanford.edu',
license='Apache 2.0',
install_requires=['cytoolz'],
packages=['epoxy'])
|
epoxy-master
|
setup.py
|
from flyingsquid.label_model import LabelModel
from sklearn.metrics import precision_recall_fscore_support, accuracy_score
import numpy as np
def train_fs_model_spam(L_train):
label_model = LabelModel(L_train.shape[1])
label_model.fit(
L_train,
# These parameters tuned for spam
class_balance = np.array([0.4, 0.6]),
solve_method = 'triplet_median'
)
return label_model
def evaluate_fs_model_spam(label_model, L_mat, Y_mat):
preds = label_model.predict_proba_marginalized(L_mat)
preds = [ 1 if pred > 0.5 else -1 for pred in preds ]
pre, rec, f1, support = precision_recall_fscore_support(
Y_mat, preds
)
acc = accuracy_score(Y_mat, preds)
print('Acc: {:.4f}\tPre: {:.4f}\tRec: {:.4f}\tF1: {:.4f}'.format(
acc, pre[1], rec[1], f1[1]
))
|
epoxy-master
|
examples/helpers.py
|
from .epoxy import preprocess_lfs, extend_lfs, Epoxy
__all__ = [
'preprocess_lfs',
'extend_lfs',
'Epoxy'
]
|
epoxy-master
|
epoxy/__init__.py
|
import numpy as np
import faiss
from sklearn.metrics import pairwise
import cytoolz as tz
import torch
class Epoxy:
'''
Class wrapping the functionality to extend LF's.
Uses FAISS for nearest-neighbor search under the hood.
'''
def __init__(
self,
L_train,
train_embeddings,
gpu = False,
metric = 'cosine',
method = 'pytorch'
):
'''
Initialize an instance of Epoxy.
Args:
L_train: The training matrix to look through to find nearest neighbors
train_embeddings: embeddings of each item in L_train
gpu: if True, build the FAISS index on GPU
metric: 'cosine' or 'L2' -- prefer cosine
method: 'pytorch', 'faiss', or 'sklearn'
'''
self.L_train = L_train
self.gpu = gpu
self.metric = metric
self.method = method
self.preprocessed = False
if metric not in ['cosine', 'l2']:
raise NotImplementedError('Metric {} not supported'.format(metric))
if self.method == 'faiss':
if metric == 'cosine':
# Copy because faiss.normalize_L2() modifies the original
train_embeddings = np.copy(train_embeddings)
# Normalize the vectors before adding to the index
faiss.normalize_L2(train_embeddings)
elif metric == 'L2':
pass
else:
raise NotImplementedError('Metric {} not supported'.format(metric))
d = train_embeddings.shape[1]
m = L_train.shape[1]
self.m = m
if metric == 'cosine':
# use IndexFlatIP (inner product)
label_fn_indexes = [faiss.IndexFlatIP(d) for i in range(m)]
elif metric == 'l2': # 'L2':
label_fn_indexes = [faiss.IndexFlatL2(d) for i in range(m)]
if gpu:
res = faiss.StandardGpuResources()
label_fn_indexes = [faiss.index_cpu_to_gpu(res, 0, x) for x in label_fn_indexes]
support = []
for i in range(m):
support.append(np.argwhere(L_train[:, i] != 0).flatten())
label_fn_indexes[i].add(train_embeddings[support[i]])
self.label_fn_indexes = label_fn_indexes
self.support = support
elif self.method in ['sklearn', 'pytorch']:
self.train_embeddings = train_embeddings
else:
raise NotImplementedError('Method {} not supported'.format(self.method))
def preprocess(
self,
L_mat,
mat_embeddings,
batch_size = None
):
'''
Preprocess L_mat for extension.
Args:
L_mat: The matrix to extend
mat_embeddings: embeddings of each item in L_mat
batch_size: if not None, compute in batches of this size
(especially important for PyTorch similarity if done on GPU)
'''
self.preprocessed = True
self.L_mat = L_mat
if self.method == 'faiss':
mat_abstains = [
np.argwhere(L_mat[:, i] == 0).flatten()
for i in range(self.m)
]
self.mat_abstains = mat_abstains
dists_and_nearest = []
for i in range(self.m):
if self.metric == 'cosine':
embs_query = np.copy(mat_embeddings[mat_abstains[i]])
faiss.normalize_L2(embs_query)
else:
embs_query = mat_embeddings[mat_abstains[i]]
if batch_size is not None:
raise NotImplementedError('batch_size not supported yet for FAISS')
dists_and_nearest.append(self.label_fn_indexes[i].search(embs_query, 1))
self.dists = [
dist_and_nearest[0].flatten()
for dist_and_nearest in dists_and_nearest
]
self.nearest = [
dist_and_nearest[1].flatten()
for dist_and_nearest in dists_and_nearest
]
elif self.method in ['sklearn', 'pytorch']:
self.mat_embeddings = mat_embeddings
def comp_similarity(embs):
if self.metric == 'cosine':
if self.method == 'sklearn':
return pairwise.cosine_similarity(embs, self.train_embeddings)
else:
if self.gpu:
return pytorch_cosine_similarity(
torch.tensor(embs).type(torch.float16).cuda(),
torch.tensor(self.train_embeddings).type(torch.float16).cuda()
).cpu().numpy()
else:
return pytorch_cosine_similarity(
torch.tensor(embs).type(torch.float32),
torch.tensor(self.train_embeddings).type(torch.float32)
).numpy()
else:
if self.method == 'sklearn':
return pairwise.euclidean_distances(embs, self.train_embeddings)
else:
if self.gpu:
return pytorch_l2_distance(
torch.tensor(embs).type(torch.float16).cuda(),
torch.tensor(self.train_embeddings).type(torch.float16).cuda()
).cpu().numpy()
else:
return pytorch_l2_distance(
torch.tensor(embs).type(torch.float32),
torch.tensor(self.train_embeddings).type(torch.float32)
).numpy()
if batch_size is None:
mat_to_train_sims = comp_similarity(self.mat_embeddings)
else:
sims = []
for mat_batch in tz.partition_all(batch_size, self.mat_embeddings):
sims.append(comp_similarity(mat_batch))
mat_to_train_sims = np.concatenate(sims)
self.mat_to_train_sims = mat_to_train_sims
mat_abstains, closest_pos, closest_neg = preprocess_lfs(
self.L_train, self.L_mat, mat_to_train_sims, use_dists = self.metric == 'l2'
)
self.mat_abstains = mat_abstains
self.closest_pos = closest_pos
self.closest_neg = closest_neg
def extend(self, thresholds):
'''
Extend L_mat (which was specified during pre-processing).
'''
if self.method == 'faiss':
expanded_L_mat = np.copy(self.L_mat)
new_points = [
(self.dists[i] > thresholds[i]) if self.metric == 'cosine' else
(self.dists[i] < thresholds[i])
for i in range(self.m)
]
for i in range(self.m):
expanded_L_mat[
self.mat_abstains[i][new_points[i]], i
] = self.L_train[
self.support[i], i
][self.nearest[i][new_points[i]]]
return expanded_L_mat
elif self.method in ['sklearn', 'pytorch']:
return extend_lfs(
self.L_mat, self.mat_abstains, self.closest_pos, self.closest_neg,
thresholds, metric = self.metric
)
def get_distance_matrix(self):
if not self.preprocessed:
raise NotImplementedError('Need to run preprocessing first!')
if self.method == 'faiss':
raise NotImplementedError("FAISS doesn't compute the distance matrix!")
return self.mat_to_train_sims
def pytorch_cosine_similarity(a, b):
"""
https://stackoverflow.com/questions/50411191/how-to-compute-the-cosine-similarity-in-pytorch-for-all-rows-in-a-matrix-with-re
"""
a_norm = a / a.norm(dim=1)[:, None]
b_norm = b / b.norm(dim=1)[:, None]
return torch.mm(a_norm, b_norm.transpose(0,1))
def pytorch_l2_distance(a, b):
return torch.cdist(a, b)
def preprocess_lfs(
L_train,
L_mat,
sim_from_mat_to_train,
use_dists = False,
):
'''
Preprocessing for sklearn method.
Preprocess similarity scores and get the closest item in the support set for
each LF.
Args:
L_train: The training matrix to look through to find nearest neighbors
L_mat: The matrix to extend
sim_from_mat_to_train: Similarity scores from L_mat to L_train.
sim_from_mat_to_train[i][j] stores the similarity between element i of
L_mat to element j of L_train.
use_dists: if True, sim_from_mat_to_train actually stores distances.
Returns:
A tuple of three Numpy matrices.
The first matrix stores which elements of L_mat have abstains,
the second matrix stores, for each labeling function, the closest point in
L_train where that same labeling function voted positive, and the third
matrix stores, for each labeling function, the closest point in L_train
where the labeling function voted negative.
'''
m = L_mat.shape[1]
expanded_L_mat = np.copy(L_mat)
train_support_pos = [
np.argwhere(L_train[:, i] == 1).flatten()
for i in range(m)
]
train_support_neg = [
np.argwhere(L_train[:, i] == -1).flatten()
for i in range(m)
]
mat_abstains = [
np.argwhere(L_mat[:, i] == 0).flatten()
for i in range(m)
]
pos_dists = [
sim_from_mat_to_train[mat_abstains[i]][:, train_support_pos[i]]
for i in range(m)
]
neg_dists = [
sim_from_mat_to_train[mat_abstains[i]][:, train_support_neg[i]]
for i in range(m)
]
closest_pos = [
(np.max(pos_dists[i], axis=1) if not use_dists else np.min(pos_dists[i], axis = 1))
if pos_dists[i].shape[1] > 0 else np.full(mat_abstains[i].shape, -1)
for i in range(m)
]
closest_neg = [
(np.max(neg_dists[i], axis=1) if not use_dists else np.min(neg_dists[i], axis = 1))
if neg_dists[i].shape[1] > 0 else np.full(mat_abstains[i].shape, -1)
for i in range(m)
]
return mat_abstains, closest_pos, closest_neg
def extend_lfs(
L_mat,
mat_abstains,
closest_pos,
closest_neg,
thresholds,
metric = 'cosine'
):
'''
Preprocessing for sklearn method.
Extend LF's with fixed thresholds.
Args:
L_mat: The matrix to extend.
mat_abstains, closest_pos, closest_neg: The outputs of the preprocess_lfs
function.
thresholds: The thresholds to extend each LF. For each item that an LF
abstains on, if closest point that the LF votes on in the training
is closer to the threshold, the LF is extended with the vote on that
point. This information is encoded in mat_abstains, closest_pos, and
closest_neg.
Returns:
An extended version of L_mat.
'''
m = L_mat.shape[1]
expanded_L_mat = np.copy(L_mat)
if metric == 'cosine':
new_pos = [
(closest_pos[i] > closest_neg[i]) & (closest_pos[i] > thresholds[i])
for i in range(m)
]
new_neg = [
(closest_neg[i] > closest_pos[i]) & (closest_neg[i] > thresholds[i])
for i in range(m)
]
else:
new_pos = [
(closest_pos[i] > closest_neg[i]) & (closest_pos[i] < thresholds[i])
for i in range(m)
]
new_neg = [
(closest_neg[i] > closest_pos[i]) & (closest_neg[i] < thresholds[i])
for i in range(m)
]
for i in range(m):
expanded_L_mat[mat_abstains[i][new_pos[i]], i] = 1
expanded_L_mat[mat_abstains[i][new_neg[i]], i] = -1
return expanded_L_mat
|
epoxy-master
|
epoxy/epoxy.py
|
from pathlib import Path
import torch
from einops import rearrange
try:
from cauchy_mult import cauchy_mult_sym_fwd, cauchy_mult_sym_bwd
except ImportError:
from torch.utils.cpp_extension import load
current_dir = Path(__file__).parent.absolute()
cauchy_mult_extension = load(
name='cauchy_mult',
sources=[str(current_dir / 'cauchy.cpp'), str(current_dir / 'cauchy_cuda.cu')],
extra_cflags=['-g', '-march=native', '-funroll-loops'],
extra_cuda_cflags=['-O3', '-lineinfo', '--use_fast_math'],
extra_include_paths=str(current_dir),
build_directory=str(current_dir),
verbose=True
)
cauchy_mult_sym_fwd = cauchy_mult_extension.cauchy_mult_sym_fwd
cauchy_mult_sym_bwd = cauchy_mult_extension.cauchy_mult_sym_bwd
def cauchy_mult_torch(v: torch.Tensor, z: torch.Tensor, w: torch.Tensor,
symmetric=True) -> torch.Tensor:
"""
v: (B, N)
z: (L)
w: (B, N)
symmetric: whether to assume that v and w contain complex conjugate pairs, of the form
[v_half, v_half.conj()] and [w_half, w_half.conj()]
"""
if not symmetric:
return (rearrange(v, 'b n -> b 1 n') / (rearrange(z, 'l -> l 1') - rearrange(w, 'b n -> b 1 n'))).sum(dim=-1)
else:
N = v.shape[-1]
assert N % 2 == 0
vv = rearrange(v[:, :N // 2], 'b n -> b 1 n')
zz = rearrange(z, 'l -> l 1')
ww = rearrange(w[:, :N // 2], 'b n -> b 1 n')
# return 2 * ((zz * vv.real - vv.real * ww.real - vv.imag * ww.imag)
# / (zz * zz - 2 * zz * ww.real + ww.abs().square())).sum(dim=-1)
return (vv / (zz - ww) + vv.conj() / (zz - ww.conj())).sum(dim=-1)
def cauchy_mult_keops(v, z, w):
from pykeops.torch import LazyTensor
v_l = LazyTensor(rearrange(v, 'b N -> b 1 N 1'))
z_l = LazyTensor(rearrange(z, 'L -> 1 L 1 1'))
w_l = LazyTensor(rearrange(w, 'b N -> b 1 N 1'))
sub = z_l - w_l # (b N L 1), for some reason it doesn't display the last dimension
div = v_l / sub
s = div.sum(dim=2, backend='GPU')
return s.squeeze(-1)
def _cauchy_mult(v, z, w):
return CauchyMultiplySymmetric.apply(v, z, w)
def cauchy_mult(v, z, w):
""" Wrap the cuda method to deal with shapes """
v, w = torch.broadcast_tensors(v, w)
shape = v.shape
# z_shape = z.shape
z = z.squeeze()
assert len(z.shape) == 1
v = v.contiguous()
w = w.contiguous()
z = z.contiguous()
N = v.size(-1)
assert w.size(-1) == N
y = _cauchy_mult(v.view(-1, N), z, w.view(-1, N))
y = y.view(*shape[:-1], z.size(-1))
return y
class CauchyMultiplySymmetric(torch.autograd.Function):
@staticmethod
def forward(ctx, v, z, w):
batch, N = v.shape
supported_N_values = [1 << log_n for log_n in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]]
L = z.shape[-1]
if not N in supported_N_values:
raise NotImplementedError(f'Only support N values in {supported_N_values}')
max_L_value = 32 * 1024 * 64 * 1024
if L > max_L_value:
raise NotImplementedError(f'Only support L values <= {max_L_value}')
if not v.is_cuda and z.is_cuda and w.is_cuda:
raise NotImplementedError(f'Only support CUDA tensors')
ctx.save_for_backward(v, z, w)
return cauchy_mult_sym_fwd(v, z, w)
@staticmethod
def backward(ctx, dout):
v, z, w = ctx.saved_tensors
dv, dw = cauchy_mult_sym_bwd(v, z, w, dout)
return dv, None, dw
|
H3-main
|
csrc/cauchy/cauchy.py
|
# Adapted from https://github.com/NVIDIA/apex/blob/master/setup.py
import torch
from torch.utils.cpp_extension import BuildExtension, CppExtension, CUDAExtension, CUDA_HOME
from setuptools import setup, find_packages
import subprocess
import sys
import warnings
import os
# ninja build does not work unless include_dirs are abs path
this_dir = os.path.dirname(os.path.abspath(__file__))
def get_cuda_bare_metal_version(cuda_dir):
raw_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True)
output = raw_output.split()
release_idx = output.index("release") + 1
release = output[release_idx].split(".")
bare_metal_major = release[0]
bare_metal_minor = release[1][0]
return raw_output, bare_metal_major, bare_metal_minor
def check_cuda_torch_binary_vs_bare_metal(cuda_dir):
raw_output, bare_metal_major, bare_metal_minor = get_cuda_bare_metal_version(cuda_dir)
torch_binary_major = torch.version.cuda.split(".")[0]
torch_binary_minor = torch.version.cuda.split(".")[1]
print("\nCompiling cuda extensions with")
print(raw_output + "from " + cuda_dir + "/bin\n")
if (bare_metal_major != torch_binary_major) or (bare_metal_minor != torch_binary_minor):
raise RuntimeError(
"Cuda extensions are being compiled with a version of Cuda that does "
"not match the version used to compile Pytorch binaries. "
"Pytorch binaries were compiled with Cuda {}.\n".format(torch.version.cuda)
+ "In some cases, a minor-version mismatch will not cause later errors: "
"https://github.com/NVIDIA/apex/pull/323#discussion_r287021798. "
"You can try commenting out this check (at your own risk)."
)
def raise_if_cuda_home_none(global_option: str) -> None:
if CUDA_HOME is not None:
return
raise RuntimeError(
f"{global_option} was requested, but nvcc was not found. Are you sure your environment has nvcc available? "
"If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, "
"only images whose names contain 'devel' will provide nvcc."
)
def append_nvcc_threads(nvcc_extra_args):
_, bare_metal_major, bare_metal_minor = get_cuda_bare_metal_version(CUDA_HOME)
if int(bare_metal_major) >= 11 and int(bare_metal_minor) >= 2:
return nvcc_extra_args + ["--threads", "4"]
return nvcc_extra_args
if not torch.cuda.is_available():
# https://github.com/NVIDIA/apex/issues/486
# Extension builds after https://github.com/pytorch/pytorch/pull/23408 attempt to query torch.cuda.get_device_capability(),
# which will fail if you are compiling in an environment without visible GPUs (e.g. during an nvidia-docker build command).
print(
"\nWarning: Torch did not find available GPUs on this system.\n",
"If your intention is to cross-compile, this is not an error.\n"
"By default, Apex will cross-compile for Pascal (compute capabilities 6.0, 6.1, 6.2),\n"
"Volta (compute capability 7.0), Turing (compute capability 7.5),\n"
"and, if the CUDA version is >= 11.0, Ampere (compute capability 8.0).\n"
"If you wish to cross-compile for a single specific architecture,\n"
'export TORCH_CUDA_ARCH_LIST="compute capability" before running setup.py.\n',
)
if os.environ.get("TORCH_CUDA_ARCH_LIST", None) is None:
_, bare_metal_major, bare_metal_minor = get_cuda_bare_metal_version(CUDA_HOME)
if int(bare_metal_major) == 11:
os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0"
if int(bare_metal_minor) > 0:
os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0;8.6"
else:
os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5"
print("\n\ntorch.__version__ = {}\n\n".format(torch.__version__))
TORCH_MAJOR = int(torch.__version__.split(".")[0])
TORCH_MINOR = int(torch.__version__.split(".")[1])
cmdclass = {}
ext_modules = []
raise_if_cuda_home_none("cauchy_mult")
# Check, if CUDA11 is installed for compute capability 8.0
cc_flag = []
cc_flag.append("-arch=compute_70")
ext_modules.append(
CUDAExtension(
'cauchy_mult', [
'cauchy.cpp',
'cauchy_cuda.cu',
],
extra_compile_args={'cxx': ['-g', '-march=native', '-funroll-loops'],
'nvcc': ['-O3', '-lineinfo', '--use_fast_math']
}
)
)
setup(
name="cauchy_mult",
version="0.1",
ext_modules=ext_modules,
cmdclass={"build_ext": BuildExtension} if ext_modules else {},
)
|
H3-main
|
csrc/cauchy/setup.py
|
import math
from functools import partial
import torch
from einops import rearrange
from cauchy import cauchy_mult_torch, cauchy_mult_keops, cauchy_mult
from benchmarks.utils import benchmark_all, benchmark_combined, benchmark_forward, benchmark_backward, pytorch_profiler
def generate_data(batch_size, N, L, symmetric=True, device='cuda'):
if not symmetric:
v = torch.randn(batch_size, N, dtype=torch.complex64, device=device, requires_grad=True)
w = torch.randn(batch_size, N, dtype=torch.complex64, device=device, requires_grad=True)
z = torch.randn(L, dtype=torch.complex64, device=device)
else:
assert N % 2 == 0
v_half = torch.randn(batch_size, N // 2, dtype=torch.complex64, device=device)
v = torch.cat([v_half, v_half.conj()], dim=-1).requires_grad_(True)
w_half = torch.randn(batch_size, N // 2, dtype=torch.complex64, device=device)
w = torch.cat([w_half, w_half.conj()], dim=-1).requires_grad_(True)
z = torch.exp(1j * torch.randn(L, dtype=torch.float32, device=device))
return v, z, w
if __name__ == '__main__':
device = 'cuda'
bs = 1024
N = 64
L = 16384
v, z, w = generate_data(bs, N, L, symmetric=True)
v_half = v[:, :N // 2].clone().detach().requires_grad_(True)
w_half = w[:, :N // 2].clone().detach().requires_grad_(True)
repeats = 30
benchmark_all(cauchy_mult_keops, v, z, w, repeats=repeats, desc='Cauchy mult keops')
benchmark_all(cauchy_mult, v_half, z, w_half, repeats=repeats, desc='Cauchy mult symmetric')
pytorch_profiler(cauchy_mult, v_half, z, w_half, backward=True, verbose=True)
# out = cauchy_mult(v_half, z, w_half)
# g = torch.randn_like(out)
# out.backward(g)
|
H3-main
|
csrc/cauchy/benchmark_cauchy.py
|
import importlib
import json
import argparse
import torch
from benchmark.utils import benchmark_forward
def generate_data(batch_size, N, L, symmetric=True, device='cuda'):
if not symmetric:
v = torch.randn(batch_size, N, dtype=torch.complex64, device=device, requires_grad=True)
w = torch.randn(batch_size, N, dtype=torch.complex64, device=device, requires_grad=True)
z = torch.randn(L, dtype=torch.complex64, device=device)
else:
assert N % 2 == 0
v_half = torch.randn(batch_size, N // 2, dtype=torch.complex64, device=device)
v = torch.cat([v_half, v_half.conj()], dim=-1).requires_grad_(True)
w_half = torch.randn(batch_size, N // 2, dtype=torch.complex64, device=device)
w = torch.cat([w_half, w_half.conj()], dim=-1).requires_grad_(True)
z = torch.exp(1j * torch.randn(L, dtype=torch.float32, device=device))
return v, z, w
parser = argparse.ArgumentParser(description='Tuning Cauchy multiply')
parser.add_argument('--name', default='cauchy_mult')
parser.add_argument('--mode', default='forward', choices=['forward', 'backward'])
parser.add_argument('-bs', '--batch-size', default=1024, type=int)
parser.add_argument('-N', default=64, type=int)
parser.add_argument('-L', default=2 ** 14, type=int)
if __name__ == '__main__':
args = parser.parse_args()
device = 'cuda'
bs = args.batch_size
N = args.N
L = args.L
repeat = 30
v, z, w = generate_data(bs, N, L, symmetric=True)
v_half = v[:, :N // 2].clone().detach().requires_grad_(True)
w_half = w[:, :N // 2].clone().detach().requires_grad_(True)
tuning_extension_name = args.name
# print('Extension name:', tuning_extension_name)
module = importlib.import_module(tuning_extension_name)
if args.mode == 'forward':
_, m = benchmark_forward(repeat, module.cauchy_mult_sym_fwd, v_half, z, w_half,
verbose=False, desc='Cauchy mult symmetric fwd')
else:
out = module.cauchy_mult_sym_fwd(v_half, z, w_half)
dout = torch.randn_like(out)
_, m = benchmark_forward(repeat, module.cauchy_mult_sym_bwd, v_half, z, w_half, dout,
verbose=False, desc='Cauchy mult symmetric bwd')
result_dict = dict(time_mean = m.mean, time_iqr = m.iqr)
print(json.dumps(result_dict))
|
H3-main
|
csrc/cauchy/benchmark_cauchy_tune.py
|
import os
import shutil
import subprocess
import sys
# import tempfile
# import importlib
import random
import string
import json
from functools import partial
from multiprocessing import Pipe, Pool, Process
from pathlib import Path
from tqdm import tqdm
import numpy as np
def read_file(filename):
""" return the contents of the file named filename or None if file not found """
if os.path.isfile(filename):
with open(filename, 'r') as f:
return f.read()
def write_file(filename, string):
"""dump the contents of string to a file called filename"""
with open(filename, 'w', encoding="utf-8") as f:
f.write(string)
def prepare_kernel_string(kernel_string, params):
for k, v in params.items():
kernel_string = "#define " + k + " " + str(v) + "\n" + kernel_string
return kernel_string
def compile_extension(temp_dir, install=False, verbose=True):
# Need to copy this process's environments, otherwise it can't find the compilers
env = {**os.environ,
'TUNING_SOURCE_DIR': str(temp_dir),
'TUNING_EXTENSION_NAME': str(temp_dir.stem)}
# https://stackoverflow.com/questions/53173314/how-to-change-distutils-output-directory
# Need separate build directories for parallel compilation
output = subprocess.run(
# [sys.executable, "tuning_setup.py", 'build', f'--build-base={str(temp_dir)}',
# f'--build-lib={str(temp_dir)}'],
[sys.executable, "tuning_setup.py", 'build' if not install else 'develop'],
cwd=temp_dir,
env=env,
capture_output=True,
# check=True
)
if verbose:
print(output)
print('Done compiling' if not install else 'Done installing')
def uninstall_extensions(tuning_extension_names, verbose=True):
# Need to copy this process's environments, otherwise it can't find the compilers
env = {**os.environ}
output = subprocess.run(
[sys.executable, '-m', 'pip', 'uninstall', '-y', *tuning_extension_names],
env=env,
capture_output=True,
# check=True
)
if verbose:
print(output)
print('Done uninstalling')
def benchmark_extension(benchmark_script, *benchmark_args, verbose=True):
# Need to copy this process's environments, otherwise it can't find the compilers
env = os.environ
# https://stackoverflow.com/questions/53173314/how-to-change-distutils-output-directory
# Need separate build directories for parallel compilation
process = subprocess.run(
[sys.executable, benchmark_script, *benchmark_args],
env=os.environ,
capture_output=True,
# check=True
)
if verbose:
print(process)
print('Done benchmarking')
return json.loads(process.stdout.decode(sys.stdout.encoding))
# def benchmark(connection, temp_dir):
# import torch
# # module = importlib.import_module(tuning_extension_name)
# torch.ops.load_library(temp_dir / 'torch_butterfly_tuning.so')
# batch_size = 1024
# n = 32
# twiddle = torch.randn(1, 1, 5, n // 2, 2, 2, device='cuda')
# input = torch.randn(batch_size, 1, n, device=twiddle.device)
# output = torch.ops.torch_butterfly.butterfly_multiply_fw(twiddle, input, True)
# # https://medium.com/@auro_227/timing-your-pytorch-code-fragments-e1a556e81f2
# res = []
# for _ in range(32):
# start = torch.cuda.Event(enable_timing=True)
# end = torch.cuda.Event(enable_timing=True)
# start.record()
# output = torch.ops.torch_butterfly.butterfly_multiply_fw(twiddle, input, True)
# end.record()
# torch.cuda.synchronize()
# res.append(start.elapsed_time(end))
# print(output.shape)
# res = np.array(res)
# connection.send((np.mean(res), np.std(res)))
def set_up_tuning_temp_dir(params: dict, source_files, extension_dir, verbose=True):
if verbose:
print('params: ', params)
# TD [2021-10-22]: tempfile.mkdtemp sometimes create dir name with '_' in it, thus messing up
# the extension name.
# temp_dir = Path(tempfile.mkdtemp(prefix="temp_", dir=Path.cwd().parent)).absolute()
tuning_extension_name = 'temp_' + ''.join(random.choices(string.ascii_uppercase + string.digits, k=10))
temp_dir = (Path.cwd().parent / tuning_extension_name).absolute()
if temp_dir.exists():
shutil.rmtree(temp_dir) # shutil.copytree doesn't want directory that already exists
shutil.copytree(extension_dir, temp_dir)
sources = [temp_dir / name for name in source_files]
for kernel_source in sources:
ks = read_file(kernel_source)
ks = prepare_kernel_string(ks, params)
write_file(kernel_source, ks)
return temp_dir
class KernelTuner:
def __init__(self, extension_dir, source_files, params_list, benchmark_script,
benchmark_args, npool=8, verbose=True):
self.extension_dir = extension_dir
self.source_files = source_files
self.params_list = params_list
self.benchmark_script = benchmark_script
self.benchmark_args = benchmark_args
self.npool = npool
self.verbose = verbose
def tune(self):
temp_dirs = [set_up_tuning_temp_dir(params, self.source_files, self.extension_dir,
verbose=self.verbose)
for params in self.params_list]
# Compile in parallel (for speed), then install sequentially to ensure correctness
with Pool(self.npool) as p:
p.map(compile_extension, temp_dirs)
# with Pool(1) as p:
# p.map(partial(compile_extension, install=True), [temp_dirs])
for temp_dir in tqdm(temp_dirs):
try:
compile_extension(temp_dir, install=True)
except:
pass
# # We benchmark on a separate process so that they can import the extension that just got compiled.
# for params, temp_dir in params_tempdir:
# print('Benchmarking: ', params)
# recv_conn, send_conn = Pipe(duplex=False)
# benchmark_process = Process(target=benchmark_fwd, args=(send_conn, str(temp_dir.stem)))
# benchmark_process.start()
# result = recv_conn.recv()
# benchmark_process.join()
# print('result', result)
results = []
for params, temp_dir in tqdm(list(zip(self.params_list, temp_dirs))):
try:
results.append((params,
benchmark_extension(self.benchmark_script,
*['--name', temp_dir.stem] + self.benchmark_args)))
except:
pass
print(results)
uninstall_extensions([temp_dir.stem for temp_dir in temp_dirs])
for temp_dir in temp_dirs:
shutil.rmtree(temp_dir)
return results
|
H3-main
|
csrc/cauchy/tuner.py
|
import os
from setuptools import setup
from pathlib import Path
import torch.cuda
from torch.utils.cpp_extension import CppExtension, CUDAExtension, BuildExtension
from torch.utils.cpp_extension import CUDA_HOME
extensions_dir = Path(os.getenv('TUNING_SOURCE_DIR')).absolute()
assert extensions_dir.exists()
source_files=[
'cauchy.cpp',
'cauchy_cuda.cu',
]
sources = [str(extensions_dir / name) for name in source_files]
extension_name = os.getenv('TUNING_EXTENSION_NAME', default='cauchy_mult_tuning')
ext_modules = []
if torch.cuda.is_available() and CUDA_HOME is not None:
extension = CUDAExtension(
extension_name,
sources,
include_dirs=[extensions_dir],
extra_compile_args={'cxx': ['-g', '-march=native', '-funroll-loops'],
# 'nvcc': ['-O2', '-lineinfo']
'nvcc': ['-O2', '-lineinfo', '--use_fast_math']
}
)
ext_modules.append(extension)
setup(
name=extension_name,
ext_modules=ext_modules,
# cmdclass={'build_ext': BuildExtension.with_options(use_ninja=False)})
cmdclass={'build_ext': BuildExtension})
|
H3-main
|
csrc/cauchy/tuning_setup.py
|
import math
import json
import argparse
import itertools
from pathlib import Path
from tuner import KernelTuner
def forward_params_list(N):
blocksize_params = ('MAX_BLOCK_SIZE_VALUE', [64, 128, 256, 512, 1024])
thread_value_default = [2, 4, 8, 16, 32, 32, 32, 32, 32, 32]
thread_values_supported = [2, 4, 8, 16, 32, 64, 128]
log_N_half = int(math.log2(N)) - 1
thread_values = []
for val in thread_values_supported:
if val <= N // 2:
array = list(thread_value_default)
array[log_N_half - 1] = val
thread_values.append('{' + ', '.join(str(v) for v in array) + '}')
thread_params = ('ITEMS_PER_THREAD_SYM_FWD_VALUES', thread_values)
value_prod = itertools.product(thread_params[1], blocksize_params[1])
params_list = [{thread_params[0]: value[0], blocksize_params[0]: value[1]}
for value in value_prod]
return params_list
def backward_params_list(L):
thread_value_supported = [8, 16, 32, 64, 128]
thread_params = ('ITEMS_PER_THREAD_SYM_BWD_VALUE', [v for v in thread_value_supported
if (L + v - 1) // v <= 1024])
params_list = [{thread_params[0]: value} for value in thread_params[1]]
return params_list
parser = argparse.ArgumentParser(description='Tuning Cauchy multiply')
parser.add_argument('--mode', default='forward', choices=['forward', 'backward'])
parser.add_argument('-N', default=64, type=int)
parser.add_argument('-L', default=2 ** 14, type=int)
parser.add_argument('--filename', default='tuning_result.json')
if __name__ == '__main__':
args = parser.parse_args()
extension_dir = Path(__file__).absolute().parent
source_files = ['cauchy_cuda.cu']
if args.mode == 'forward':
params_list = forward_params_list(args.N)
tuner = KernelTuner(extension_dir, source_files, params_list,
benchmark_script='benchmark_cauchy_tune.py',
benchmark_args=['--mode', 'forward', '-N', str(args.N), '-L', '16384'],
npool=16)
else:
params_list = backward_params_list(args.L)
tuner = KernelTuner(extension_dir, source_files, params_list,
benchmark_script='benchmark_cauchy_tune.py',
benchmark_args=['--mode', 'backward', '-N', '64', '-L', str(args.L)],
npool=16)
result = tuner.tune()
with open(args.filename, 'w') as f:
json.dump(result, f)
|
H3-main
|
csrc/cauchy/tune_cauchy.py
|
import math
import torch
import pytest
from einops import rearrange
from cauchy import cauchy_mult_torch, cauchy_mult_keops, cauchy_mult
def generate_data(batch_size, N, L, symmetric=True, device='cuda'):
if not symmetric:
v = torch.randn(batch_size, N, dtype=torch.complex64, device=device, requires_grad=True)
w = torch.randn(batch_size, N, dtype=torch.complex64, device=device, requires_grad=True)
z = torch.randn(L, dtype=torch.complex64, device=device)
else:
assert N % 2 == 0
v_half = torch.randn(batch_size, N // 2, dtype=torch.complex64, device=device)
v = torch.cat([v_half, v_half.conj()], dim=-1).requires_grad_(True)
w_half = torch.randn(batch_size, N // 2, dtype=torch.complex64, device=device)
w = torch.cat([w_half, w_half.conj()], dim=-1).requires_grad_(True)
z = torch.exp(1j * torch.randn(L, dtype=torch.float32, device=device))
return v, z, w
def grad_to_half_grad(dx):
dx_half, dx_half_conj = dx.chunk(2, dim=-1)
return dx_half + dx_half_conj.conj()
@pytest.mark.parametrize('L', [3, 17, 489, 2**10, 1047, 2**11, 2**12, 2**13, 2**14, 2**18])
@pytest.mark.parametrize('N', [4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048])
def test_cauchy_mult_symmetric(N, L):
# rtol, atol = (1e-4, 1e-4) if N <= 64 and L <= 1024 else(1e-3, 1e-3)
atol = 1e-4
tol_factor = 2.0 # Our error shouldn't be this much higher than Keops' error
device = 'cuda'
batch_size = 4
torch.random.manual_seed(2357)
v, z, w = generate_data(batch_size, N, L, symmetric=True, device=device)
v_half = v[:, :N // 2].clone().detach().requires_grad_(True)
w_half = w[:, :N // 2].clone().detach().requires_grad_(True)
# out_torch = cauchy_mult_torch(v, z, w, symmetric=True)
out_torch = cauchy_mult_torch(v.cdouble(), z.cdouble(), w.cdouble(), symmetric=True).cfloat()
out_keops = cauchy_mult_keops(v, z, w)
out = cauchy_mult(v_half, z, w_half)
relerr_out_keops = (out_keops - out_torch).abs() / out_torch.abs()
relerr_out = (out - out_torch).abs() / out_torch.abs()
dout = torch.randn_like(out)
dv_torch, dw_torch = torch.autograd.grad(out_torch, (v, w), dout, retain_graph=True)
dv_torch, dw_torch = dv_torch[:, :N // 2], dw_torch[:, :N // 2]
dv_keops, dw_keops = torch.autograd.grad(out_keops, (v, w), dout, retain_graph=True)
dv_keops, dw_keops = grad_to_half_grad(dv_keops), grad_to_half_grad(dw_keops)
dv, dw = torch.autograd.grad(out, (v_half, w_half), dout, retain_graph=True)
relerr_dv_keops = (dv_keops - dv_torch).abs() / dv_torch.abs()
relerr_dv = (dv - dv_torch).abs() / dv_torch.abs()
relerr_dw_keops = (dw_keops - dw_torch).abs() / dw_torch.abs()
relerr_dw = (dw - dw_torch).abs() / dw_torch.abs()
print(f'Keops out relative error: max {relerr_out_keops.amax().item():.6f}, mean {relerr_out_keops.mean().item():6f}')
print(f'out relative error: max {relerr_out.amax().item():.6f}, mean {relerr_out.mean().item():.6f}')
print(f'Keops dv relative error: max {relerr_dv_keops.amax().item():.6f}, mean {relerr_dv_keops.mean().item():6f}')
print(f'dv relative error: max {relerr_dv.amax().item():.6f}, mean {relerr_dv.mean().item():.6f}')
print(f'Keops dw relative error: max {relerr_dw_keops.amax().item():.6f}, mean {relerr_dw_keops.mean().item():6f}')
print(f'dw relative error: max {relerr_dw.amax().item():.6f}, mean {relerr_dw.mean().item():.6f}')
assert (relerr_out.amax() <= relerr_out_keops.amax() * tol_factor + atol)
assert (relerr_out.mean() <= relerr_out_keops.mean() * tol_factor + atol)
# assert torch.allclose(out, out_torch, rtol=rtol, atol=atol)
# assert torch.allclose(out, out_keops, rtol=rtol, atol=atol)
assert (relerr_dv.amax() <= relerr_dv_keops.amax() * tol_factor + atol)
assert (relerr_dv.mean() <= relerr_dv_keops.mean() * tol_factor + atol)
assert (relerr_dw.amax() <= relerr_dw_keops.amax() * tol_factor + atol)
assert (relerr_dw.mean() <= relerr_dw_keops.mean() * tol_factor + atol)
# assert torch.allclose(dv, dv_torch, rtol=1e-4, atol=1e-4)
# assert torch.allclose(dv, dv_keops, rtol=1e-4, atol=1e-4)
# assert torch.allclose(dw, dw_torch, rtol=1e-4, atol=1e-4)
# assert torch.allclose(dw, dw_keops, rtol=1e-4, atol=1e-4)
|
H3-main
|
csrc/cauchy/test_cauchy.py
|
import torch
import torch.nn.functional as F
from einops import rearrange
from fftconv import fftconv_fwd, fftconv_bwd
def fftconv_ref(u, k, D, dropout_mask):
seqlen = u.shape[-1]
fft_size = 2 * seqlen
k_f = torch.fft.rfft(k, n=fft_size) / fft_size
u_f = torch.fft.rfft(u.to(dtype=k.dtype), n=fft_size)
y = torch.fft.irfft(u_f * k_f, n=fft_size, norm='forward')[..., :seqlen]
out = y + u * D.unsqueeze(-1)
return (F.gelu(out) * rearrange(dropout_mask, 'b H -> b H 1')).to(dtype=u.dtype)
def fftconv_fast(u, k, D, dropout_mask):
"""Fuse padding + rfft + pointwise mult + ifft + multiply with D + gelu + dropout
"""
seqlen = u.shape[-1]
fft_size = 2 * seqlen
k_f = torch.fft.rfft(k, n=fft_size)
out = fftconv_fwd(u, k_f, D, dropout_mask, fft_size)
return out
def fftconv_fast_bwd(dout, u, k, D, dropout_mask=None):
seqlen = u.shape[-1]
fft_size = 2 * seqlen
k_f = torch.fft.rfft(k, n=fft_size)
dx, dk_f, dD = fftconv_bwd(dout, u, k_f, D, dropout_mask, fft_size)
dk = torch.fft.irfft(dk_f, n=fft_size, norm='forward')[..., :seqlen]
return dx, dk, dD
device = 'cuda'
dtype = torch.float32
# dtype = torch.float16
batch_size = 64
H = 256
fft_size = 2048
seqlen = 1024
dropout_prob = 0.37
torch.manual_seed(0)
u = torch.randn(batch_size, H, seqlen, device=device, dtype=dtype, requires_grad=True)
k = torch.randn(H, seqlen, device=device, requires_grad=True)
D = torch.randn(H, device=device, requires_grad=True)
dropout_mask = F.dropout(torch.ones(batch_size, H, device=device), dropout_prob)
out = fftconv_ref(u, k, D, dropout_mask)
out = fftconv_fast(u, k, D, dropout_mask)
g = torch.randn_like(out)
fftconv_fast_bwd(g, u, k, D, dropout_mask)
|
H3-main
|
csrc/fftconv/launch_fftconv.py
|
# Adapted from https://github.com/NVIDIA/apex/blob/master/setup.py
import torch
from torch.utils.cpp_extension import BuildExtension, CppExtension, CUDAExtension, CUDA_HOME
from setuptools import setup, find_packages
import subprocess
import sys
import warnings
import os
# ninja build does not work unless include_dirs are abs path
this_dir = os.path.dirname(os.path.abspath(__file__))
def get_cuda_bare_metal_version(cuda_dir):
raw_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True)
output = raw_output.split()
release_idx = output.index("release") + 1
release = output[release_idx].split(".")
bare_metal_major = release[0]
bare_metal_minor = release[1][0]
return raw_output, bare_metal_major, bare_metal_minor
def check_cuda_torch_binary_vs_bare_metal(cuda_dir):
raw_output, bare_metal_major, bare_metal_minor = get_cuda_bare_metal_version(cuda_dir)
torch_binary_major = torch.version.cuda.split(".")[0]
torch_binary_minor = torch.version.cuda.split(".")[1]
print("\nCompiling cuda extensions with")
print(raw_output + "from " + cuda_dir + "/bin\n")
if (bare_metal_major != torch_binary_major) or (bare_metal_minor != torch_binary_minor):
raise RuntimeError(
"Cuda extensions are being compiled with a version of Cuda that does "
"not match the version used to compile Pytorch binaries. "
"Pytorch binaries were compiled with Cuda {}.\n".format(torch.version.cuda)
+ "In some cases, a minor-version mismatch will not cause later errors: "
"https://github.com/NVIDIA/apex/pull/323#discussion_r287021798. "
"You can try commenting out this check (at your own risk)."
)
def raise_if_cuda_home_none(global_option: str) -> None:
if CUDA_HOME is not None:
return
raise RuntimeError(
f"{global_option} was requested, but nvcc was not found. Are you sure your environment has nvcc available? "
"If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, "
"only images whose names contain 'devel' will provide nvcc."
)
def append_nvcc_threads(nvcc_extra_args):
_, bare_metal_major, bare_metal_minor = get_cuda_bare_metal_version(CUDA_HOME)
if int(bare_metal_major) >= 11 and int(bare_metal_minor) >= 2:
return nvcc_extra_args + ["--threads", "4"]
return nvcc_extra_args
if not torch.cuda.is_available():
# https://github.com/NVIDIA/apex/issues/486
# Extension builds after https://github.com/pytorch/pytorch/pull/23408 attempt to query torch.cuda.get_device_capability(),
# which will fail if you are compiling in an environment without visible GPUs (e.g. during an nvidia-docker build command).
print(
"\nWarning: Torch did not find available GPUs on this system.\n",
"If your intention is to cross-compile, this is not an error.\n"
"By default, Apex will cross-compile for Pascal (compute capabilities 6.0, 6.1, 6.2),\n"
"Volta (compute capability 7.0), Turing (compute capability 7.5),\n"
"and, if the CUDA version is >= 11.0, Ampere (compute capability 8.0).\n"
"If you wish to cross-compile for a single specific architecture,\n"
'export TORCH_CUDA_ARCH_LIST="compute capability" before running setup.py.\n',
)
if os.environ.get("TORCH_CUDA_ARCH_LIST", None) is None:
_, bare_metal_major, bare_metal_minor = get_cuda_bare_metal_version(CUDA_HOME)
if int(bare_metal_major) == 11:
os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0"
if int(bare_metal_minor) > 0:
os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0;8.6"
else:
os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5"
print("\n\ntorch.__version__ = {}\n\n".format(torch.__version__))
TORCH_MAJOR = int(torch.__version__.split(".")[0])
TORCH_MINOR = int(torch.__version__.split(".")[1])
cmdclass = {}
ext_modules = []
raise_if_cuda_home_none("fftconv")
# Check, if CUDA11 is installed for compute capability 8.0
cc_flag = []
# cc_flag.append("-gencode")
# cc_flag.append("arch=compute_70,code=sm_70")
cc_flag.append("-gencode")
cc_flag.append("arch=compute_80,code=sm_80")
ext_modules.append(
CUDAExtension(
'fftconv', [
'fftconv.cpp',
'fftconv_cuda.cu',
],
extra_compile_args={'cxx': ['-g', '-march=native', '-funroll-loops'],
'nvcc': ['-O3', '--threads', '4', '-lineinfo', '--use_fast_math', '-std=c++17', '-arch=compute_70']
# extra_compile_args={'cxx': ['-O3'],
# 'nvcc': append_nvcc_threads(['-O3', '-lineinfo', '--use_fast_math', '-std=c++17'] + cc_flag)
},
include_dirs=[os.path.join(this_dir, 'mathdx/22.02/include')]
)
)
torch.utils.cpp_extension.COMMON_NVCC_FLAGS.remove('-D__CUDA_NO_HALF2_OPERATORS__')
setup(
name="fftconv",
version="0.1",
description="FFTConv for state-space models",
ext_modules=ext_modules,
cmdclass={"build_ext": BuildExtension} if ext_modules else {},
)
|
H3-main
|
csrc/fftconv/setup.py
|
import math
import re
import numpy as np
# N = 8192
N = 16384
# The case of 0 / N is special, we want to simplify it to 0 / 2 instead of 0 / 1
numerator = np.arange(1, N // 8 + 1)
gcd = np.gcd(numerator, N)
num = numerator // gcd
denom = N // gcd
lut_vals = ['T_2_0'] + [f'T_{d}_{n}' for n, d in zip(num, denom)]
lut_string = f"static const __device__ float2 lut_mine_sp_8_{N}[{N // 8 + 1}] = {{\n {','.join(lut_vals)}\n}};"
print(lut_string)
# Only define new values if it's not already in the cuFFTDx lookup table
cufftdx_lut_filename = 'mathdx/22.02/include/cufftdx/include/database/lut_defines_0.hpp.inc'
matches = set()
reg = re.compile(f'^#define T_{N}_([0-9]+) ')
with open(cufftdx_lut_filename, 'r') as f:
for line in f:
if (match := reg.match(line)) is not None:
matches.add(int(match[1]))
numerator = np.arange(1, N // 8 + 1, 2)
angle = -2 * math.pi * numerator.astype(np.float64) / N
cos, sin = np.cos(angle), np.sin(angle)
defs = [f'#define T_{N}_{n} {{{c:.40f},{s:.40f}}}' for n, c, s in zip(numerator, cos, sin) if n not in matches]
def_string = '\n'.join(defs)
print(def_string)
|
H3-main
|
csrc/fftconv/lut_code_gen.py
|
import math
import torch
import torch.nn.functional as F
import pytest
from einops import rearrange
from src.ops.fftconv import fftconv_ref, fftconv_h3_ref, fftconv_func
@pytest.mark.parametrize('output_hbl_layout', [False, True])
# @pytest.mark.parametrize('output_hbl_layout', [False])
@pytest.mark.parametrize('input_hbl_layout', [False, True])
# @pytest.mark.parametrize('input_hbl_layout', [True])
@pytest.mark.parametrize('force_fp16_output', [False, True])
# @pytest.mark.parametrize('force_fp16_output', [False])
@pytest.mark.parametrize('dtype', [torch.float32, torch.float16, torch.bfloat16])
# @pytest.mark.parametrize('dtype', [torch.float32])
@pytest.mark.parametrize('dropout_prob', [None, 0.0, 0.17])
# @pytest.mark.parametrize('dropout_prob', [None])
@pytest.mark.parametrize('seqlen', [8, 16, 32, 64, 128, 256, 372, 512, 784, 1024, 1134, 2048, 4096, 8192])
# @pytest.mark.parametrize('seqlen', [2048, 4096, 8192])
# There was an issue with batch_size=1 and output_hbl_layout=True where we previously had a bug
# So I'm putting batch_size=1 here in the test to make sure we don't regress.
@pytest.mark.parametrize('batch_size', [1, 4])
# @pytest.mark.parametrize('batch_size', [4])
@pytest.mark.parametrize('gelu', [True, False])
# @pytest.mark.parametrize('gelu', [False])
def test_fftconv(gelu, batch_size, seqlen, dropout_prob, dtype, force_fp16_output,
input_hbl_layout, output_hbl_layout):
if dtype == torch.bfloat16 and force_fp16_output:
pytest.skip()
device = 'cuda'
rtol, atol = (1e-4, 5e-4) if dtype == torch.float32 and not force_fp16_output else (1e-3, 1e-3)
if dtype == torch.bfloat16:
rtol, atol = 1e-2, 1e-2
# set seed
torch.random.manual_seed(0)
H = 256
if not input_hbl_layout:
u_fp32 = torch.randn(batch_size, H, seqlen, device=device, dtype=torch.float32, requires_grad=True)
u = u_fp32.detach().clone().type(dtype).requires_grad_()
else:
u_fp32 = rearrange(torch.randn(H, batch_size, seqlen, device=device),
'h b l -> b h l').requires_grad_()
u = u_fp32.detach().clone().type(dtype).requires_grad_()
u_ref = u.detach().clone().requires_grad_()
u_fp32_ref = u_fp32.detach().clone().requires_grad_()
k = torch.randn(H, seqlen, device=device, requires_grad=True)
k_rev = torch.randn(H, seqlen, device=device, requires_grad=True)
k_ref = k.detach().clone().requires_grad_()
k_rev_ref = k_rev.detach().clone().requires_grad_()
D = torch.randn(H, device=device, requires_grad=True)
D_ref = D.detach().clone().requires_grad_()
dropout_mask = (F.dropout(torch.ones(batch_size, H, device=device), dropout_prob)
if dropout_prob is not None else None)
out_ref = fftconv_ref(u_ref, k_ref, D_ref, dropout_mask, gelu=gelu, k_rev=k_rev_ref)
if force_fp16_output:
out_ref = out_ref.to(dtype=torch.float16)
out_ref_fp32 = fftconv_ref(u_fp32_ref, k_ref, D_ref, dropout_mask, gelu=gelu, k_rev=k_rev_ref)
out = fftconv_func(u, k, D, dropout_mask, gelu, force_fp16_output, output_hbl_layout, k_rev=k_rev)
assert out.dtype == dtype if not force_fp16_output else torch.float16
if not output_hbl_layout:
assert out.is_contiguous()
else:
assert rearrange(out, 'b h l -> h b l').is_contiguous()
print(f'Output max diff: {(out - out_ref).abs().max().item()}')
print(f'Output mean diff: {(out - out_ref).abs().mean().item()}')
g = torch.randn_like(out) / 32
out_ref.backward(g)
out.backward(g)
print(f'du max diff: {(u.grad - u_ref.grad).abs().max().item()}')
print(f'dk max diff: {(k.grad - k_ref.grad).abs().max().item()}')
print(f'dk_rev max diff: {(k_rev.grad - k_rev_ref.grad).abs().max().item()}')
print(f'dD max diff: {(D.grad - D_ref.grad).abs().max().item()}')
assert u.grad.dtype == u.dtype
assert k.grad.dtype == k.dtype
assert k_rev.grad.dtype == k_rev.dtype
assert D.grad.dtype == D.dtype
if dtype == torch.float32:
assert torch.allclose(out, out_ref, rtol=rtol, atol=atol)
else:
# Check that FFTConv's numerical error is at most twice the numerical error
# of a Pytorch implementation.
assert (out - out_ref_fp32).abs().max().item() <= 2 * (out_ref - out_ref_fp32).abs().max().item()
assert torch.allclose(u.grad, u_ref.grad, rtol=rtol, atol=atol)
assert torch.allclose(k.grad, k_ref.grad, rtol=rtol, atol=atol)
assert torch.allclose(k_rev.grad, k_rev_ref.grad, rtol=rtol, atol=atol)
assert torch.allclose(D.grad, D_ref.grad, rtol=rtol, atol=atol)
@pytest.mark.parametrize('output_hbl_layout', [False, True])
# @pytest.mark.parametrize('output_hbl_layout', [True])
@pytest.mark.parametrize('input_hbl_layout', [False, True])
# @pytest.mark.parametrize('input_hbl_layout', [True])
# @pytest.mark.parametrize('force_fp16_output', [False, True])
@pytest.mark.parametrize('force_fp16_output', [False])
# @pytest.mark.parametrize('dtype', [torch.float32, torch.float16, torch.bfloat16])
@pytest.mark.parametrize('dtype', [torch.float16, torch.bfloat16])
@pytest.mark.parametrize('dropout_prob', [None])
@pytest.mark.parametrize('head_dim', [1, 8])
# @pytest.mark.parametrize('head_dim', [1])
@pytest.mark.parametrize('seqlen', [1024, 2048, 4096, 8192])
# @pytest.mark.parametrize('seqlen', [2048])
@pytest.mark.parametrize('batch_size', [1, 4])
# @pytest.mark.parametrize('batch_size', [8])
@pytest.mark.parametrize('gelu', [False])
def test_fftconv_h3(gelu, batch_size, seqlen, head_dim, dropout_prob, dtype, force_fp16_output,
input_hbl_layout, output_hbl_layout):
if dtype == torch.bfloat16 and force_fp16_output:
pytest.skip()
assert not gelu
assert dropout_prob is None
device = 'cuda'
rtol, atol = (1e-4, 1e-4) if dtype == torch.float32 and not force_fp16_output else (1e-2, 1e-1)
if dtype == torch.bfloat16:
rtol, atol = 5e-2, 5e-1
if head_dim > 1:
rtol *= head_dim
atol *= head_dim
# set seed
torch.random.manual_seed(0)
H = 256
if not input_hbl_layout:
k_fp32 = torch.randn(batch_size, H, seqlen, device=device, requires_grad=True)
q_fp32 = torch.randn(batch_size, H, seqlen, device=device, requires_grad=True)
v_fp32 = torch.randn(batch_size, H, seqlen, device=device, requires_grad=True)
k = k_fp32.detach().clone().type(dtype).requires_grad_()
q = q_fp32.detach().clone().type(dtype).requires_grad_()
v = v_fp32.detach().clone().type(dtype).requires_grad_()
else:
k_fp32 = rearrange(torch.randn(H, batch_size, seqlen, device=device),
'h b l -> b h l').requires_grad_()
q_fp32 = rearrange(torch.randn(H, batch_size, seqlen, device=device),
'h b l -> b h l').requires_grad_()
v_fp32 = rearrange(torch.randn(H, batch_size, seqlen, device=device),
'h b l -> b h l').requires_grad_()
k = k_fp32.detach().clone().type(dtype).requires_grad_()
q = q_fp32.detach().clone().type(dtype).requires_grad_()
v = v_fp32.detach().clone().type(dtype).requires_grad_()
k_ref = k.detach().clone().requires_grad_()
q_ref = q.detach().clone().requires_grad_()
v_ref = v.detach().clone().requires_grad_()
k_fp32_ref = k_fp32.detach().clone().requires_grad_()
q_fp32_ref = q_fp32.detach().clone().requires_grad_()
v_fp32_ref = v_fp32.detach().clone().requires_grad_()
ssm_kernel = torch.randn(H // head_dim, seqlen, device=device, requires_grad=True)
ssm_kernel_rev = torch.randn(H // head_dim, seqlen, device=device, requires_grad=True)
ssm_kernel_ref = ssm_kernel.detach().clone().requires_grad_()
ssm_kernel_rev_ref = ssm_kernel_rev.detach().clone().requires_grad_()
D = torch.randn(H // head_dim, device=device, requires_grad=True)
D_ref = D.detach().clone().requires_grad_()
dropout_mask = (F.dropout(torch.ones(batch_size, H, device=device), dropout_prob)
if dropout_prob is not None else None)
out_ref = fftconv_h3_ref(k_ref, ssm_kernel_ref, D_ref, q_ref, v_ref, head_dim,
ssm_kernel_rev=ssm_kernel_rev_ref)
if force_fp16_output:
out_ref = out_ref.to(dtype=torch.float16)
out_ref_fp32 = fftconv_h3_ref(k_fp32_ref, ssm_kernel_ref, D_ref, q_fp32_ref, v_fp32_ref, head_dim,
ssm_kernel_rev=ssm_kernel_rev_ref)
out = fftconv_func(k, ssm_kernel, D, dropout_mask, gelu, force_fp16_output, output_hbl_layout,
v, head_dim, q, k_rev=ssm_kernel_rev)
assert out.dtype == dtype if not force_fp16_output else torch.float16
if not output_hbl_layout:
assert out.is_contiguous()
else:
assert rearrange(out, 'b h l -> h b l').is_contiguous()
print(f'Output max diff: {(out - out_ref).abs().max().item()}')
print(f'Output max relative diff: {(out - out_ref).abs().max().item() / out_ref.abs().max().item()}')
print(f'Output mean diff: {(out - out_ref).abs().mean().item()}')
g = torch.randn_like(out) / 32
out_ref.backward(g)
out.backward(g)
print(f'dk max diff: {(k.grad - k_ref.grad).abs().max().item()}')
print(f'dq max diff: {(q.grad - q_ref.grad).abs().max().item()}')
print(f'dv max diff: {(v.grad - v_ref.grad).abs().max().item()}')
print(f'dssm_kernel max diff: {(ssm_kernel.grad - ssm_kernel_ref.grad).abs().max().item()}')
print(f'dssm_kernel_rev max diff: {(ssm_kernel_rev.grad - ssm_kernel_rev_ref.grad).abs().max().item()}')
print(f'dD max diff: {(D.grad - D_ref.grad).abs().max().item()}')
assert k.grad.dtype == k.dtype
assert ssm_kernel.grad.dtype == ssm_kernel.dtype
assert D.grad.dtype == D.dtype
# Check that FFTConv's numerical error is at most twice the numerical error
# of a Pytorch implementation.
assert (out - out_ref_fp32).abs().max().item() <= 2 * (out_ref - out_ref_fp32).abs().max().item()
assert torch.allclose(k.grad, k_ref.grad, rtol=rtol, atol=atol)
assert torch.allclose(q.grad, q_ref.grad, rtol=rtol, atol=atol)
assert torch.allclose(v.grad, v_ref.grad, rtol=rtol, atol=atol)
assert torch.allclose(ssm_kernel.grad, ssm_kernel_ref.grad, rtol=rtol, atol=atol)
assert torch.allclose(ssm_kernel_rev.grad, ssm_kernel_rev_ref.grad, rtol=rtol, atol=atol)
assert torch.allclose(D.grad, D_ref.grad, rtol=rtol, atol=atol)
|
H3-main
|
tests/ops/test_fftconv.py
|
import argparse
import torch
from transformers import GPT2Tokenizer
from src.models.ssm_seq import SSMLMHeadModel
parser = argparse.ArgumentParser(description='H3 text generation')
parser.add_argument('--dmodel', type=int, default=2048)
parser.add_argument('--nlayer', type=int, default=24)
parser.add_argument('--attn-layer-idx', nargs='+', type=int, default=[8,16])
parser.add_argument('--rotary_emb_dim', type=int, default=None, help='For rotary embeddings, set to 64. Default is None.')
parser.add_argument('--nheads', type=int, default=16)
parser.add_argument('--ckpt', type=str, default=None)
parser.add_argument('--genlen', type=int, default=128)
parser.add_argument('--top_p', type=float, default=0.9)
parser.add_argument('--top_k', type=int, default=50)
parser.add_argument('--prompt', type=str, default='Hungry Hungry Hippos: Towards Language Modeling With State Space Models is a new language model that')
args = parser.parse_args()
device = 'cuda'
dtype = torch.float16
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
# set seed
torch.random.manual_seed(0)
d_model = args.dmodel
n_layer = args.nlayer
ssm_cfg = dict(mode='diag', measure='diag-lin')
attn_layer_idx = args.attn_layer_idx
if args.rotary_emb_dim is None:
attn_cfg = dict(num_heads=args.nheads)
else:
attn_cfg = dict(num_heads=args.nheads, rotary_emb_dim=args.rotary_emb_dim)
model = SSMLMHeadModel(d_model, n_layer=n_layer, d_inner=4 * d_model, vocab_size=len(tokenizer),
ssm_cfg=ssm_cfg, attn_layer_idx=attn_layer_idx, attn_cfg=attn_cfg,
pad_vocab_size_multiple=8).to(device=device)
if args.ckpt is not None:
state_dict = torch.load(args.ckpt, map_location=device)
if 'pytorch-lightning_version' in state_dict:
state_dict = {k[len('model.'):]: v for k, v in state_dict['state_dict'].items()
if k.startswith('model.')}
model.load_state_dict(state_dict)
model.eval()
# Only cast the nn.Linear parameters to dtype, the SSM params stay in fp32
# Pytorch lacks support for complex32 (i.e. complex<float16>) and complex<bfloat16>.
for name, module in model.named_modules():
if isinstance(module, (torch.nn.Linear, torch.nn.Embedding, torch.nn.LayerNorm)):
module.to(dtype=dtype)
prompt = args.prompt
input_ids = torch.tensor(tokenizer.encode(prompt)).unsqueeze(0).to(device=device)
max_length = input_ids.shape[1] + args.genlen
output_ids = model.generate(input_ids=input_ids, max_length=max_length,
return_dict_in_generate=False, output_scores=False,
timing=False, top_p=args.top_p, top_k=args.top_k,
eos_token_id=tokenizer.eos_token_id)
print(tokenizer.batch_decode(output_ids)[0])
|
H3-main
|
examples/generate_text_h3.py
|
from typing import Optional
import argparse
import time
import torch
import torch.nn.functional as F
from einops import rearrange
from transformers import GPT2Tokenizer, GPT2Config, GPT2LMHeadModel
from src.models.ssm.h3 import H3
from src.models.ssm_seq import SSMLMHeadModel
from flash_attn.utils.generation import InferenceParams
parser = argparse.ArgumentParser(description='H3 generation benchmarking')
parser.add_argument('--dmodel', type=int, default=2048)
parser.add_argument('--nlayer', type=int, default=24)
parser.add_argument('--attn-layer-idx', type=list, default=[8, 16])
parser.add_argument('--nheads', type=int, default=16)
parser.add_argument('--ckpt', type=str, default=None)
parser.add_argument('--promptlen', type=int, default=1024)
parser.add_argument('--genlen', type=int, default=128)
args = parser.parse_args()
repeats = 3
device = 'cuda'
dtype = torch.float16
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
# set seed
torch.random.manual_seed(0)
d_model = args.dmodel
n_layer = args.nlayer
ssm_cfg = dict(mode='diag', measure='diag-lin')
attn_layer_idx = args.attn_layer_idx
attn_cfg = dict(num_heads=args.nheads)
model = SSMLMHeadModel(d_model, n_layer=n_layer, d_inner=4 * d_model, vocab_size=len(tokenizer),
ssm_cfg=ssm_cfg, attn_layer_idx=attn_layer_idx, attn_cfg=attn_cfg,
pad_vocab_size_multiple=8).to(device=device)
print(f'Number of parameters: {sum(p.numel() for p in model.parameters() if p.requires_grad)}')
if args.ckpt is not None:
state_dict = torch.load(args.ckpt, map_location=device)
if 'pytorch-lightning_version' in state_dict:
state_dict = {k[len('model.'):]: v for k, v in state_dict['state_dict'].items()
if k.startswith('model.')}
model.load_state_dict(state_dict)
model.eval()
# Only cast the nn.Linear parameters to dtype, the SSM params stay in fp32
# Pytorch lacks support for complex32 (i.e. complex<float16>) and complex<bfloat16>.
for name, module in model.named_modules():
if isinstance(module, (torch.nn.Linear, torch.nn.Embedding, torch.nn.LayerNorm)):
module.to(dtype=dtype)
input_ids = torch.randint(0, 100, (64, args.promptlen), dtype=torch.long, device='cuda')
max_length = input_ids.shape[1] + args.genlen
fn = lambda: model.generate(input_ids=input_ids, max_length=max_length,
return_dict_in_generate=True, output_scores=True, timing=False)
fn()
torch.cuda.synchronize()
start = time.time()
for _ in range(repeats):
fn()
torch.cuda.synchronize()
print(f'Prompt processing + decoding time: {(time.time() - start) / repeats * 1000:.0f}ms')
config = GPT2Config(vocab_size=len(tokenizer), n_positions=2048, n_embd=d_model, n_layer=n_layer,
activation_function='gelu', num_attention_heads=args.nheads)
model_hf = GPT2LMHeadModel(config).to(dtype=dtype, device=device)
print(f'Transformer number of parameters: {sum(p.numel() for p in model_hf.parameters() if p.requires_grad)}')
model_hf.eval()
fn = lambda: model_hf.generate(input_ids=input_ids, max_length=max_length,
return_dict_in_generate=True, output_scores=True)
fn()
torch.cuda.synchronize()
start = time.time()
for _ in range(repeats):
fn()
torch.cuda.synchronize()
print(f'Transformer prompt processing + decoding time: {(time.time() - start) / repeats * 1000:.0f}ms')
|
H3-main
|
benchmarks/benchmark_generation_h3.py
|
import logging
from pytorch_lightning.utilities import rank_zero_only
# Copied from https://docs.python.org/3/howto/logging-cookbook.html#using-a-context-manager-for-selective-logging
class LoggingContext:
def __init__(self, logger, level=None, handler=None, close=True):
self.logger = logger
self.level = level
self.handler = handler
self.close = close
def __enter__(self):
if self.level is not None:
self.old_level = self.logger.level
self.logger.setLevel(self.level)
if self.handler:
self.logger.addHandler(self.handler)
def __exit__(self, et, ev, tb):
if self.level is not None:
self.logger.setLevel(self.old_level)
if self.handler:
self.logger.removeHandler(self.handler)
if self.handler and self.close:
self.handler.close()
# implicit return of None => don't swallow exceptions
def get_logger(name=__name__) -> logging.Logger:
"""Initializes multi-GPU-friendly python logger."""
logger = logging.getLogger(name)
# this ensures all logging levels get marked with the rank zero decorator
# otherwise logs would get multiplied for each GPU process in multi-GPU setup
for level in ("debug", "info", "warning", "error", "exception", "fatal", "critical"):
setattr(logger, level, rank_zero_only(getattr(logger, level)))
return logger
|
H3-main
|
src/utils/utils.py
|
# Copyright (c) 2023, Tri Dao, Dan Fu.
import math
import re
from functools import partial
from collections import namedtuple, OrderedDict
from collections.abc import Sequence
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers.models.gpt2.configuration_gpt2 import GPT2Config
from flash_attn.modules.mha import MHA
from flash_attn.modules.mlp import Mlp, FusedMLP
from flash_attn.modules.block import Block
from flash_attn.modules.embedding import GPT2Embeddings
from flash_attn.utils.generation import GenerationMixin
try:
from flash_attn.ops.layer_norm import dropout_add_layer_norm
except ImportError:
dropout_add_layer_norm = None
from src.models.ssm.h3 import H3
def create_mixer_cls(ssm_cls=H3, ssm_cfg=None, attn_layer_idx=None, attn_cfg=None, layer_idx=None):
if attn_layer_idx is not None and layer_idx in attn_layer_idx:
causal = True if attn_cfg is None else attn_cfg.pop('causal', True)
mixer_cls = partial(MHA, layer_idx=layer_idx, causal=causal,
**(attn_cfg if attn_cfg is not None else {}))
else:
mixer_cls = partial(ssm_cls, layer_idx=layer_idx,
**(ssm_cfg if ssm_cfg is not None else {}))
return mixer_cls
def create_mlp_cls(d_model, d_inner=None, fused_mlp=False):
inner_dim = d_inner if d_inner is not None else 4 * d_model
if not fused_mlp:
mlp_cls = partial(Mlp, hidden_features=inner_dim,
activation=partial(F.gelu, approximate='tanh'))
else:
mlp_cls = partial(FusedMLP, hidden_features=inner_dim)
return mlp_cls
def create_block(d_model, d_inner=None, ssm_cls=H3, ssm_cfg=None, attn_layer_idx=None,
attn_cfg=None, layer_norm_epsilon=1e-5,
resid_dropout1=0.0, resid_dropout2=0.0, residual_in_fp32=False,
fused_mlp=False, fused_dropout_add_ln=False, layer_idx=None):
mixer_cls = create_mixer_cls(ssm_cls=ssm_cls, ssm_cfg=ssm_cfg, attn_layer_idx=attn_layer_idx,
attn_cfg=attn_cfg, layer_idx=layer_idx)
mlp_cls = create_mlp_cls(d_model, d_inner=d_inner, fused_mlp=fused_mlp)
norm_cls = partial(nn.LayerNorm, eps=layer_norm_epsilon)
block = Block(d_model, mixer_cls, mlp_cls, norm_cls=norm_cls,
prenorm=True, resid_dropout1=resid_dropout1, resid_dropout2=resid_dropout2,
fused_dropout_add_ln=fused_dropout_add_ln, residual_in_fp32=residual_in_fp32)
block.layer_idx = layer_idx
return block
# https://github.com/huggingface/transformers/blob/c28d04e9e252a1a099944e325685f14d242ecdcd/src/transformers/models/gpt2/modeling_gpt2.py#L454
def _init_weights(module, n_layer, initializer_range=0.02, rescale_prenorm_residual=True,
glu_act=False):
if isinstance(module, nn.Linear):
nn.init.normal_(module.weight, std=initializer_range)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
nn.init.normal_(module.weight, std=initializer_range)
if rescale_prenorm_residual:
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
#
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
for name, p in module.named_parameters():
if name in ["out_proj.weight", "fc2.weight"]:
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
nn.init.normal_(p, mean=0.0, std=initializer_range / math.sqrt(2 * n_layer))
# If using GLU activation for now, we scale the std by 2
elif name in ["output_linear.0.weight"]:
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
if not glu_act:
nn.init.normal_(p, mean=0.0, std=initializer_range / math.sqrt(2 * n_layer))
else:
out_features = p.shape[0]
# Multiplying the first half of the matrix by 2 since sigmoid scales it down by 0.5
# on average.
nn.init.normal_(p[:out_features // 2], mean=0.0, std=initializer_range / math.sqrt(2 * n_layer) * 2)
class SSMModel(nn.Module):
def __init__(self, d_model: int, n_layer: int, d_inner: int, vocab_size: int, ssm_cfg=None,
attn_layer_idx=None, attn_cfg=None, max_position_embeddings=0,
resid_dropout: float = 0.0, embed_dropout: float = 0.1, dropout_cls=nn.Dropout,
layer_norm_epsilon: float = 1e-5, initializer_cfg=None,
fused_mlp=False, fused_dropout_add_ln=False, residual_in_fp32=False,
**kwargs) -> None:
super().__init__()
self.embeddings = GPT2Embeddings(d_model, vocab_size, max_position_embeddings)
self.residual_in_fp32 = residual_in_fp32
# We change the order of dropout, residual and layer norm:
# Instead of LN -> Attn / MLP -> Dropout -> Add, we do:
# Dropout -> Add -> LN -> Attn / MLP, returning both the residual branch (output of Add) and
# the main branch (output of MLP). The model definition is unchanged, but the mapping of the
# nn.Dropout probabilities are changed.
# This is for performance reason: we can fuse dropout + add + layer_norm.
self.fused_dropout_add_ln = fused_dropout_add_ln
if self.fused_dropout_add_ln and dropout_add_layer_norm is None:
raise ImportError('dropout_add_layer_norm is not installed')
self.layers = nn.ModuleList([create_block(
d_model, d_inner=d_inner, ssm_cfg=ssm_cfg, attn_layer_idx=attn_layer_idx,
attn_cfg=attn_cfg, layer_norm_epsilon=layer_norm_epsilon,
resid_dropout1=embed_dropout if i == 0 else resid_dropout,
resid_dropout2=resid_dropout, residual_in_fp32=residual_in_fp32,
fused_mlp=fused_mlp, fused_dropout_add_ln=fused_dropout_add_ln, layer_idx=i
) for i in range(n_layer)])
self.drop_f = nn.Dropout(resid_dropout)
self.ln_f = nn.LayerNorm(d_model, eps=layer_norm_epsilon)
self.apply(partial(_init_weights, n_layer=n_layer,
**(initializer_cfg if initializer_cfg is not None else {})))
def forward(self, input_ids, position_ids=None, inference_params=None):
hidden_states = self.embeddings(input_ids, position_ids=position_ids)
residual = None
mixer_kwargs = None
if inference_params is not None:
mixer_kwargs = dict(inference_params=inference_params)
for layer in self.layers:
hidden_states, residual = layer(hidden_states, residual, mixer_kwargs=mixer_kwargs)
if not self.fused_dropout_add_ln:
dropped = self.drop_f(hidden_states)
residual = (dropped + residual) if residual is not None else dropped
hidden_states = self.ln_f(residual.to(dtype=self.ln_f.weight.dtype))
else:
# Set prenorm=False here since we don't need the residual
hidden_states = dropout_add_layer_norm(
hidden_states, residual, self.ln_f.weight, self.ln_f.bias,
self.drop_f.p if self.training else 0.0, self.ln_f.eps, prenorm=False,
residual_in_fp32=self.residual_in_fp32
)
return hidden_states
class SSMLMHeadModel(nn.Module, GenerationMixin):
def __init__(self, d_model: int, n_layer: int, d_inner: int, vocab_size: int, ssm_cfg=None,
attn_layer_idx=None, attn_cfg=None, max_position_embeddings=0,
resid_dropout: float = 0.0, embed_dropout: float = 0.1, dropout_cls=nn.Dropout,
layer_norm_epsilon: float = 1e-5, initializer_cfg=None,
fused_mlp=False, fused_dropout_add_ln=False, residual_in_fp32=False,
pad_vocab_size_multiple: int = 1, **kwargs) -> None:
super().__init__()
if vocab_size % pad_vocab_size_multiple != 0:
vocab_size += pad_vocab_size_multiple - (vocab_size % pad_vocab_size_multiple)
self.backbone = SSMModel(
d_model=d_model, n_layer=n_layer, d_inner=d_inner, vocab_size=vocab_size,
ssm_cfg=ssm_cfg, attn_layer_idx=attn_layer_idx, attn_cfg=attn_cfg,
max_position_embeddings=max_position_embeddings,
resid_dropout=resid_dropout, embed_dropout=embed_dropout,
dropout_cls=dropout_cls, layer_norm_epsilon=layer_norm_epsilon,
initializer_cfg=initializer_cfg, fused_mlp=fused_mlp,
fused_dropout_add_ln=fused_dropout_add_ln, residual_in_fp32=residual_in_fp32, **kwargs
)
self.lm_head = nn.Linear(d_model, vocab_size, bias=False)
# Initialize weights and apply final processing
self.apply(partial(_init_weights, n_layer=n_layer,
**(initializer_cfg if initializer_cfg is not None else {})))
self.tie_weights()
def tie_weights(self):
self.lm_head.weight = self.backbone.embeddings.word_embeddings.weight
def forward(self, input_ids, position_ids=None, inference_params=None):
hidden_states = self.backbone(input_ids, position_ids=position_ids,
inference_params=inference_params)
lm_logits = self.lm_head(hidden_states)
CausalLMOutput = namedtuple('CausalLMOutput', ['logits'])
return CausalLMOutput(logits=lm_logits)
def load_state_dict(self, state_dict, strict=True):
# Remapping from our checkpoints that used different names
def key_mapping_backbone(key):
key = re.sub(r'^s4seq.encoder.', 'backbone.', key)
key = re.sub(r'^embedding.', 'backbone.embeddings.word_embeddings.', key)
key = re.sub(r'^backbone.norm', 'backbone.ln_0', key)
return key
state_dict = OrderedDict((key_mapping_backbone(k), v) for k, v in state_dict.items())
# Remapping from our checkpoints that used a different ordering of layers in the block
# Previous: Mixer / MLP -> Dropout -> Add -> LN
# Current: Dropout -> Add -> LN -> Attn / MLP
if 'backbone.ln_0.weight' in state_dict:
n_layers = len(self.backbone.layers)
ln_weight = state_dict.pop(f'backbone.layers.{n_layers - 1}.norm2.weight')
ln_bias = state_dict.pop(f'backbone.layers.{n_layers - 1}.norm2.bias')
state_dict['backbone.ln_f.weight'] = ln_weight
state_dict['backbone.ln_f.bias'] = ln_bias
for l in reversed(range(n_layers)):
ln_weight = state_dict.pop(f'backbone.layers.{l}.norm1.weight')
ln_bias = state_dict.pop(f'backbone.layers.{l}.norm1.bias')
state_dict[f'backbone.layers.{l}.norm2.weight'] = ln_weight
state_dict[f'backbone.layers.{l}.norm2.bias'] = ln_bias
if l > 0:
ln_weight = state_dict.pop(f'backbone.layers.{l - 1}.norm2.weight')
ln_bias = state_dict.pop(f'backbone.layers.{l - 1}.norm2.bias')
state_dict[f'backbone.layers.{l}.norm1.weight'] = ln_weight
state_dict[f'backbone.layers.{l}.norm1.bias'] = ln_bias
ln_weight = state_dict.pop('backbone.ln_0.weight')
ln_bias = state_dict.pop('backbone.ln_0.bias')
state_dict[f'backbone.layers.0.norm1.weight'] = ln_weight
state_dict[f'backbone.layers.0.norm1.bias'] = ln_bias
return super().load_state_dict(state_dict, strict=strict)
|
H3-main
|
src/models/ssm_seq.py
|
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from src.models.ssm.ss_kernel import SSKernel
try:
from src.ops.fftconv import fftconv_func
except ImportError:
fftconv_func = None
@torch.jit.script
def mul_sum(q, y):
return (q * y).sum(dim=1)
class H3(nn.Module):
def __init__(
self,
d_model,
d_state=64,
l_max=None,
head_dim=1,
use_fast_fftconv=False,
dropout=0.0, # Just to absorb the kwarg
layer_idx=None,
device=None, dtype=None,
# SSM Kernel arguments
**kernel_args,
):
"""
d_state: the dimension of the state, also denoted by N
l_max: the maximum kernel length, also denoted by L. Set l_max=None to always use a global kernel
See the class .kernel.SSKernel for the kernel constructor which accepts kernel_args. Relevant options that are worth considering and tuning include "mode" + "measure", "dt_min", "dt_max", "lr"
Other options are all experimental and should not need to be configured
"""
factory_kwargs = {'device': device, 'dtype': dtype}
super().__init__()
self.d_model = d_model
self.head_dim = head_dim
assert d_model % head_dim == 0
self.H = d_model // head_dim
self.N = d_state
self.L = l_max
self.layer_idx = layer_idx
self.use_fast_fftconv = use_fast_fftconv
if self.use_fast_fftconv:
assert fftconv_func is not None, 'Need to install fftconv'
self.q_proj = nn.Linear(self.d_model, self.d_model, **factory_kwargs)
self.k_proj = nn.Linear(self.d_model, self.d_model, **factory_kwargs)
self.v_proj = nn.Linear(self.d_model, self.d_model, **factory_kwargs)
# TODO: SSKernel doesn't take device argument yet
self.ssm_k_kernel = SSKernel(self.d_model, N=d_state, L=self.L, mode='shift',
lr=kernel_args.get('lr', None))
self.ssm_k_D = nn.Parameter(torch.randn(self.d_model))
# S4D Kernel
self.kernel = SSKernel(self.H, N=self.N, L=self.L, channels=1, **kernel_args)
self.D = nn.Parameter(torch.randn(self.H, **factory_kwargs))
# Pointwise
# position-wise output transform to mix features
# Don't use FusedDense since the layout is H first
self.output_linear = nn.Linear(self.d_model, self.d_model)
def forward(self, u, inference_params=None):
"""
u: (B L H)
Returns: same shape as u
"""
L_og = u.size(-2)
if self.use_fast_fftconv and L_og % 2 != 0:
u = F.pad(u, (0, 0, 0, 1))
L = u.size(-2)
use_fast_fftconv = self.use_fast_fftconv and inference_params is None
state_k, state = None, None
if inference_params is not None:
assert self.layer_idx is not None
if self.layer_idx not in inference_params.key_value_memory_dict:
batch_shape = (u.shape[0] * self.head_dim * self.head_dim,)
state_k = self.ssm_k_kernel.default_state(*batch_shape)
state = self.kernel.default_state(*batch_shape)
inference_params.key_value_memory_dict[self.layer_idx] = (state_k, state)
else:
state_k, state = inference_params.key_value_memory_dict[self.layer_idx]
if inference_params.sequence_len_offset == 0:
self.ssm_k_kernel._setup_step()
self.kernel._setup_step()
if inference_params is not None and inference_params.sequence_len_offset > 0:
y, next_state_k, next_state = self.step(u, state_k, state)
inference_params.key_value_memory_dict[self.layer_idx][0].copy_(next_state_k)
inference_params.key_value_memory_dict[self.layer_idx][1].copy_(next_state)
return y
# Compute SS Kernel
L_kernel = L if self.L is None else min(L, self.L )
ssm_kernel, k_state = self.kernel(L=L_kernel, state=state, rate=1.0) # (C H L) (B C H L)
ssm_kernel = rearrange(ssm_kernel, '1 h l -> h l')
u = rearrange(u, 'b l h -> (b l) h')
dtype = (self.q_proj.weight.dtype if not torch.is_autocast_enabled()
else torch.get_autocast_gpu_dtype())
q = self.q_proj.weight @ u.T + self.q_proj.bias.to(dtype).unsqueeze(-1)
k = self.k_proj.weight @ u.T + self.k_proj.bias.to(dtype).unsqueeze(-1)
v = self.v_proj.weight @ u.T + self.v_proj.bias.to(dtype).unsqueeze(-1)
q, k, v = [rearrange(x, 'h (b l) -> b h l', l=L) for x in [q, k, v]]
k_og = k
ssm_k_kernel, _ = self.ssm_k_kernel(L=L_kernel, state=state_k, rate=1.0) # (C H L) (B C H L)
ssm_k_kernel = rearrange(ssm_k_kernel, '1 h l -> h l')
if not use_fast_fftconv:
fft_size = L_kernel + L
ssm_k_kernel_f = torch.fft.rfft(ssm_k_kernel, n=fft_size) # (H 2L)
k_f = torch.fft.rfft(k.to(ssm_kernel.dtype), n=fft_size) # (B H 2L)
shift_k_out = torch.fft.irfft(ssm_k_kernel_f * k_f, n=fft_size)[..., :L]
k = shift_k_out + rearrange(self.ssm_k_D, 'h -> h 1') * k
else:
dropout_mask = None
# No GeLU after the SSM
# We want output_hbl=True so that k has the same layout as q and v for the next
# fftconv
k = fftconv_func(k, ssm_k_kernel, self.ssm_k_D, dropout_mask, False, False, True)
# This line below looks like it doesn't do anything, but it gets the stride right
# for the case batch_size=1. In that case k has stride (L, L, 1), but q and v has
# stride (H * L, L, 1). The two strides are equivalent because batch_size=1, but
# the C++ code doesn't like that.
k = rearrange(rearrange(k, 'b h l -> h b l'), 'h b l -> b h l')
if not use_fast_fftconv:
fft_size = L_kernel + L
# kv = k * v
kv = (rearrange(k, 'b (h d1) l -> b d1 1 h l', d1=self.head_dim)
* rearrange(v, 'b (h d2) l -> b 1 d2 h l', d2=self.head_dim)) # b d1 d2 h l
kv_f = torch.fft.rfft(kv.to(dtype=ssm_kernel.dtype), n=fft_size) / fft_size
ssm_kernel_f = torch.fft.rfft(ssm_kernel, n=fft_size) # h L+1
y = torch.fft.irfft(kv_f * ssm_kernel_f, n=fft_size, norm='forward')[..., :L] # b d1 d2 h l
y = y + kv * self.D.unsqueeze(-1) # b d1 d2 h l
q = rearrange(q, 'b (h d1) l -> b d1 1 h l', d1=self.head_dim)
# einsum is way slower than multiply and then sum.
if self.head_dim > 1:
y = mul_sum(y, q)
y = rearrange(y, 'b d h l -> b (d h) l')
else:
y = rearrange(y * q, 'b 1 1 h l -> b h l')
else:
dropout_mask = None
# No GeLU after the SSM
# Set output_hbl_layout=True since we'll be doing a matmul right after
y = fftconv_func(k, ssm_kernel, self.D,
dropout_mask, False, torch.is_autocast_enabled(), True,
v, self.head_dim, q)
y = rearrange(y, 'b h l -> b l h')
if state is not None:
assert inference_params is not None
# TODO: This doesn't ever happen?
# if inference_params.sequence_len_offset > 0:
# y = y + k_state
inference_params.key_value_memory_dict[self.layer_idx][0].copy_(
self.ssm_k_kernel.forward_state(k_og, state_k)
)
inference_params.key_value_memory_dict[self.layer_idx][1].copy_(
self.kernel.forward_state(rearrange(kv, 'b d1 d2 h l -> (b d1 d2) h l'), state)
)
# y could be in fp32 because of the SSMs
if not torch.is_autocast_enabled():
y = y.to(dtype=self.output_linear.weight.dtype)
y = self.output_linear(y)
if L_og < L:
y = y[:, :L_og, :]
return y
def step(self, u, state_k, state):
q, k, v = self.q_proj(u), self.k_proj(u), self.v_proj(u)
shift_k, next_state_k = self.ssm_k_kernel.step(rearrange(k, 'b 1 h -> b h'), state_k)
k = shift_k + k * self.ssm_k_D
# kv = k * v
kv = (rearrange(k, 'b 1 (h d1) -> b d1 1 h', d1=self.head_dim)
* rearrange(v, 'b 1 (h d2) -> b 1 d2 h', d2=self.head_dim)) # b d1 d2 h
y, next_state = self.kernel.step(rearrange(kv, 'b d1 d2 h -> (b d1 d2) h'), state)
y = (rearrange(y, '(b d1 d2) 1 h -> b d1 d2 h', d1=self.head_dim, d2=self.head_dim)
+ kv * self.D)
q = rearrange(q, 'b 1 (h d1) -> b d1 1 h', d1=self.head_dim)
if self.head_dim > 1:
y = mul_sum(y, q)
y = rearrange(y, 'b d h l -> b (d h) l')
else:
y = rearrange(y * q, 'b 1 1 h -> b 1 h')
# y could be in fp32 because of the SSMs
if not torch.is_autocast_enabled():
y = y.to(dtype=self.output_linear.weight.dtype)
return self.output_linear(y), next_state_k, next_state
|
H3-main
|
src/models/ssm/h3.py
|
# TD: [2023-01-05]: Extracted the OptimModule class from
# https://github.com/HazyResearch/state-spaces/blob/06dbbdfd0876501a7f12bf3262121badbc7658af/src/models/sequence/ss/kernel.py
import torch.nn as nn
class OptimModule(nn.Module):
""" Interface for Module that allows registering buffers/parameters with configurable optimizer hyperparameters """
def register(self, name, tensor, lr=None):
"""Register a tensor with a configurable learning rate and 0 weight decay"""
if lr == 0.0:
self.register_buffer(name, tensor)
else:
self.register_parameter(name, nn.Parameter(tensor))
optim = {"weight_decay": 0.0}
if lr is not None: optim["lr"] = lr
setattr(getattr(self, name), "_optim", optim)
|
H3-main
|
src/models/ssm/ssm_utils.py
|
# TD: [2023-01-05]: Extracted the SSKernel class from
# https://github.com/HazyResearch/state-spaces/blob/06dbbdfd0876501a7f12bf3262121badbc7658af/src/models/sequence/ss/kernel.py
# We add option to use the shift kernel, and remove the option of SSKernelNPLR
"""SSM convolution kernels.
SSKernel wraps different kernels with common options and handles the initialization.
"""
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, repeat
from opt_einsum import contract
from src.models.ssm.ss_kernel_diag import SSKernelDiag, EMAKernel
from src.models.ssm.ss_kernel_shift import SSKernelShift
from src.models.ssm import hippo
from src.models.ssm import dplr
from src.ops.krylov import power
from src.utils.utils import get_logger
log = get_logger(__name__)
_conj = lambda x: torch.cat([x, x.conj()], dim=-1)
class SSKernel(nn.Module):
"""Wrapper around SSKernel parameterizations.
The SSKernel is expected to support the interface
forward()
default_state()
_setup_step()
step()
"""
def __init__(
self,
H,
N=64,
L=None,
measure="diag-lin",
rank=1,
channels=1,
dt_min=0.001,
dt_max=0.1,
deterministic=False,
lr=None,
mode="diag",
n_ssm=None,
verbose=False,
measure_args={},
**kernel_args,
):
"""State Space Kernel which computes the convolution kernel $\\bar{K}$
H: Number of independent SSM copies; controls the size of the model. Also called d_model in the config.
N: State size (dimensionality of parameters A, B, C). Also called d_state in the config. Generally shouldn't need to be adjusted and doens't affect speed much.
L: Maximum length of convolution kernel, if known. Should work in the majority of cases even if not known.
measure: Options for initialization of (A, B). For NPLR mode, recommendations are "legs", "fout", "hippo" (combination of both). For Diag mode, recommendations are "diag-inv", "diag-lin", "diag-legs", and "diag" (combination of diag-inv and diag-lin)
rank: Rank of low-rank correction for NPLR mode. Needs to be increased for measure "legt"
channels: C channels turns the SSM from a 1-dim to C-dim map; can think of it having C separate "heads" per SSM. This was partly a feature to make it easier to implement bidirectionality; it is recommended to set channels=1 and adjust H to control parameters instead
dt_min, dt_max: min and max values for the step size dt (\Delta)
mode: Which kernel algorithm to use. 'nplr' is the full S4 model; 'diag' is the simpler S4D; 'slow' is a dense version for testing
n_ssm: Number of independent trainable (A, B) SSMs, e.g. n_ssm=1 means all A/B parameters are tied across the H different instantiations of C. n_ssm=None means all H SSMs are completely independent. Generally, changing this option can save parameters but doesn't affect performance or speed much. This parameter must divide H
lr: Passing in a number (e.g. 0.001) sets attributes of SSM parameers (A, B, dt). A custom optimizer hook is needed to configure the optimizer to set the learning rates appropriately for these parameters.
"""
super().__init__()
self.N = N
self.H = H
dtype, cdtype = torch.float, torch.cfloat
self.channels = channels
self.n_ssm = n_ssm if n_ssm is not None else H
self.mode = mode
self.verbose = verbose
self.kernel_args = kernel_args
# Generate dt
if deterministic:
log_dt = torch.exp(torch.linspace(math.log(dt_min), math.log(dt_max), H))
else:
log_dt = torch.rand(self.H, dtype=dtype) * (
math.log(dt_max) - math.log(dt_min)
) + math.log(dt_min)
# Compute the preprocessed representation
if mode == "ema":
self.kernel = EMAKernel(H, N=N, channels=channels, **kernel_args)
else:
w, P, B, V = dplr.combination(measure, self.N, rank, self.n_ssm, **measure_args)
# Broadcast C to have H channels
if deterministic:
C = torch.zeros(channels, self.n_ssm, self.N, dtype=cdtype)
C[:, :, :1] = 1.
C = contract('hmn, chn -> chm', V.conj().transpose(-1, -2), C) # V^* C
C = repeat(C, 'c t n -> c (v t) n', v=self.n_ssm // C.size(-2)).clone().contiguous()
else:
C = torch.randn(channels, self.H, self.N//2, dtype=cdtype)
# Broadcast other parameters to have n_ssm copies
assert self.n_ssm % B.size(-2) == 0 \
and self.n_ssm % P.size(-2) == 0 \
and self.n_ssm % w.size(-2) == 0
# Broadcast tensors to n_ssm copies
# These will be the parameters, so make sure tensors are materialized and contiguous
B = repeat(B, 't n -> (v t) n', v=self.n_ssm // B.size(-2)).clone().contiguous()
P = repeat(P, 'r t n -> r (v t) n', v=self.n_ssm // P.size(-2)).clone().contiguous()
w = repeat(w, 't n -> (v t) n', v=self.n_ssm // w.size(-2)).clone().contiguous()
if mode == "diag":
if not measure.startswith("diag"):
log.warning("Diagonal kernel (S4D) activated but initialization is not intended for S4D. Set `measure` to 'diag-lin', 'diag-inv', or 'diag-legs' for the main variants, or 'diag' for a combination of S4D-Lin and S4D-Inv.")
C = C * repeat(B, 't n -> (v t) n', v=H//self.n_ssm)
self.kernel = SSKernelDiag(
w, B, C, log_dt, L=L,
lr=lr,
**kernel_args,
)
elif mode == 'shift':
# Initializing B to be e_1
B = torch.zeros(self.H, self.N)
B[..., 0] = 1.0
# Match torch.Conv1d init
C = torch.randn(self.H, self.channels, self.N)
nn.init.kaiming_uniform_(C, a=math.sqrt(5))
C = rearrange(C, 'h c n -> c h n')
self.kernel = SSKernelShift(B, C, L=L, lr=lr, **kernel_args)
else:
raise NotImplementedError(f"{mode=} is not valid")
def forward(self, state=None, L=None, rate=None):
return self.kernel(state=state, L=L, rate=rate)
@torch.no_grad()
def forward_state(self, u, state):
""" Forward the state through a sequence, i.e. computes the state after passing chunk through SSM
state: (B, H, N)
u: (B, H, L)
Returns: (B, H, N)
"""
if hasattr(self.kernel, "forward_state"):
return self.kernel.forward_state(u, state)
dA, dB = self.kernel._setup_state() # Construct dA, dB matrices
# dA, dB = self.kernel.dA, self.kernel.dB # (H N N) (H N)
conj = state.size(-1) != dA.size(-1)
if conj: state = _conj(state)
v = contract('h n, b h l -> b h n l', dB, u.flip(-1)) # dB.unsqueeze(-1) * u.flip(-1).unsqueeze(-2)
AL, v = power(u.size(-1), dA, v)
next_state = contract("h m n, b h n -> b h m", AL, state)
next_state = next_state + v
if conj: next_state = next_state[..., : next_state.size(-1) // 2]
return next_state
def _setup_step(self, **kwargs):
# This method is intended to be private so that setting up an S4 module with
# ```
# if hasattr(module, 'setup_step'): module.setup_step()
# ```
# will not trigger this method multiple times
self.kernel._setup_step(**kwargs)
def step(self, u, state, **kwargs):
y, state = self.kernel.step(u, state, **kwargs)
return y, state
def default_state(self, *args, **kwargs):
return self.kernel.default_state(*args, **kwargs)
|
H3-main
|
src/models/ssm/ss_kernel.py
|
# Copied from https://github.com/HazyResearch/state-spaces/blob/06dbbdfd0876501a7f12bf3262121badbc7658af/src/models/hippo/hippo.py
""" Definitions of A and B matrices for various HiPPO operators. """
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from scipy import special as ss
from einops import rearrange, repeat
from opt_einsum import contract
def embed_c2r(A):
A = rearrange(A, '... m n -> ... m () n ()')
A = np.pad(A, ((0, 0), (0, 1), (0, 0), (0, 1))) + \
np.pad(A, ((0, 0), (1, 0), (0, 0), (1,0)))
return rearrange(A, 'm x n y -> (m x) (n y)')
# TODO take in 'torch' option to return torch instead of numpy, and converts the shape of B from (N, 1) to (N)
def transition(measure, N, **measure_args):
""" A, B transition matrices for different measures
measure: the type of measure
legt - Legendre (translated)
legs - Legendre (scaled)
glagt - generalized Laguerre (translated)
lagt, tlagt - previous versions of (tilted) Laguerre with slightly different normalization
"""
# Laguerre (translated)
if measure == 'lagt':
b = measure_args.get('beta', 1.0)
A = np.eye(N) / 2 - np.tril(np.ones((N, N)))
B = b * np.ones((N, 1))
# Generalized Laguerre
# alpha 0, beta small is most stable (limits to the 'lagt' measure)
# alpha 0, beta 1 has transition matrix A = [lower triangular 1]
elif measure == 'glagt':
alpha = measure_args.get('alpha', 0.0)
beta = measure_args.get('beta', 0.01)
A = -np.eye(N) * (1 + beta) / 2 - np.tril(np.ones((N, N)), -1)
B = ss.binom(alpha + np.arange(N), np.arange(N))[:, None]
L = np.exp(.5 * (ss.gammaln(np.arange(N)+alpha+1) - ss.gammaln(np.arange(N)+1)))
A = (1./L[:, None]) * A * L[None, :]
B = (1./L[:, None]) * B * np.exp(-.5 * ss.gammaln(1-alpha)) * beta**((1-alpha)/2)
# Legendre (translated)
elif measure == 'legt':
Q = np.arange(N, dtype=np.float64)
R = (2*Q + 1) ** .5
j, i = np.meshgrid(Q, Q)
A = R[:, None] * np.where(i < j, (-1.)**(i-j), 1) * R[None, :]
B = R[:, None]
A = -A
# Halve again for timescale correctness
A *= 0.5
B *= 0.5
# LMU: equivalent to LegT up to normalization
elif measure == 'lmu':
Q = np.arange(N, dtype=np.float64)
R = (2*Q + 1)[:, None] # / theta
j, i = np.meshgrid(Q, Q)
A = np.where(i < j, -1, (-1.)**(i-j+1)) * R
B = (-1.)**Q[:, None] * R
# Legendre (scaled)
elif measure == 'legs':
q = np.arange(N, dtype=np.float64)
col, row = np.meshgrid(q, q)
r = 2 * q + 1
M = -(np.where(row >= col, r, 0) - np.diag(q))
T = np.sqrt(np.diag(2 * q + 1))
A = T @ M @ np.linalg.inv(T)
B = np.diag(T)[:, None]
B = B.copy() # Otherwise "UserWarning: given NumPY array is not writeable..." after torch.as_tensor(B)
elif measure == 'legsd':
q = np.arange(N, dtype=np.float64)
col, row = np.meshgrid(q, q)
r = 2 * q + 1
M = -(np.where(row >= col, r, 0) - np.diag(q))
T = np.sqrt(np.diag(2 * q + 1))
A = T @ M @ np.linalg.inv(T)
B = np.diag(T)[:, None]
B = B.copy() # Otherwise "UserWarning: given NumPY array is not writeable..." after torch.as_tensor(B)
A += .5 * B*B[None, :, 0]
B = B / 2.0
elif measure in ['fourier_diag', 'foud']:
freqs = np.arange(N//2)
d = np.stack([freqs, np.zeros(N//2)], axis=-1).reshape(-1)[:-1]
A = 2*np.pi*(-np.diag(d, 1) + np.diag(d, -1))
A = A - .5 * np.eye(N)
B = np.zeros(N)
B[0::2] = 2**.5
B[0] = 1
B = B[:, None]
elif measure in ['fourier', 'fout']:
freqs = np.arange(N//2)
d = np.stack([np.zeros(N//2), freqs], axis=-1).reshape(-1)[1:]
A = np.pi*(-np.diag(d, 1) + np.diag(d, -1))
B = np.zeros(N)
B[0::2] = 2**.5
B[0] = 1
# Subtract off rank correction - this corresponds to the other endpoint u(t-1) in this case
A = A - B[:, None] * B[None, :]
B = B[:, None]
elif measure == 'fourier_decay':
freqs = np.arange(N//2)
d = np.stack([np.zeros(N//2), freqs], axis=-1).reshape(-1)[1:]
A = np.pi*(-np.diag(d, 1) + np.diag(d, -1))
B = np.zeros(N)
B[0::2] = 2**.5
B[0] = 1
# Subtract off rank correction - this corresponds to the other endpoint u(t-1) in this case
A = A - .5 * B[:, None] * B[None, :]
B = .5 * B[:, None]
elif measure == 'fourier2': # Double everything: orthonormal on [0, 1]
freqs = 2*np.arange(N//2)
d = np.stack([np.zeros(N//2), freqs], axis=-1).reshape(-1)[1:]
A = np.pi*(-np.diag(d, 1) + np.diag(d, -1))
B = np.zeros(N)
B[0::2] = 2**.5
B[0] = 1
# Subtract off rank correction - this corresponds to the other endpoint u(t-1) in this case
A = A - B[:, None] * B[None, :] * 2
B = B[:, None] * 2
elif measure == 'random':
A = np.random.randn(N, N) / N
B = np.random.randn(N, 1)
elif measure == 'diagonal':
A = -np.diag(np.exp(np.random.randn(N)))
B = np.random.randn(N, 1)
else:
raise NotImplementedError
return A, B
def rank_correction(measure, N, rank=1, dtype=torch.float):
""" Return low-rank matrix L such that A + L is normal """
if measure == 'legs':
assert rank >= 1
P = torch.sqrt(.5+torch.arange(N, dtype=dtype)).unsqueeze(0) # (1 N)
elif measure == 'legt':
assert rank >= 2
P = torch.sqrt(1+2*torch.arange(N, dtype=dtype)) # (N)
P0 = P.clone()
P0[0::2] = 0.
P1 = P.clone()
P1[1::2] = 0.
P = torch.stack([P0, P1], dim=0) # (2 N)
P *= 2**(-0.5) # Halve the rank correct just like the original matrix was halved
elif measure == 'lagt':
assert rank >= 1
P = .5**.5 * torch.ones(1, N, dtype=dtype)
elif measure in ['fourier', 'fout']:
P = torch.zeros(N)
P[0::2] = 2**.5
P[0] = 1
P = P.unsqueeze(0)
elif measure == 'fourier_decay':
P = torch.zeros(N)
P[0::2] = 2**.5
P[0] = 1
P = P.unsqueeze(0)
P = P / 2**.5
elif measure == 'fourier2':
P = torch.zeros(N)
P[0::2] = 2**.5
P[0] = 1
P = 2**.5 * P.unsqueeze(0)
elif measure in ['fourier_diag', 'foud', 'legsd']:
P = torch.zeros(1, N, dtype=dtype)
else: raise NotImplementedError
d = P.size(0)
if rank > d:
P = torch.cat([P, torch.zeros(rank-d, N, dtype=dtype)], dim=0) # (rank N)
return P
def initial_C(measure, N, dtype=torch.float):
""" Return C that captures the other endpoint in the HiPPO approximation """
if measure == 'legt':
C = (torch.arange(N, dtype=dtype)*2+1)**.5 * (-1)**torch.arange(N)
elif measure == 'fourier':
C = torch.zeros(N)
C[0::2] = 2**.5
C[0] = 1
else:
C = torch.zeros(N, dtype=dtype) # (N)
return C
def nplr(measure, N, rank=1, dtype=torch.float, diagonalize_precision=True):
""" Return w, p, q, V, B such that
(w - p q^*, B) is unitarily equivalent to the original HiPPO A, B by the matrix V
i.e. A = V[w - p q^*]V^*, B = V B
"""
assert dtype == torch.float or dtype == torch.double
cdtype = torch.cfloat if dtype == torch.float else torch.cdouble
A, B = transition(measure, N)
A = torch.as_tensor(A, dtype=dtype) # (N, N)
B = torch.as_tensor(B, dtype=dtype)[:, 0] # (N,)
P = rank_correction(measure, N, rank=rank, dtype=dtype) # (r N)
AP = A + torch.sum(P.unsqueeze(-2)*P.unsqueeze(-1), dim=-3)
# We require AP to be nearly skew-symmetric
_A = AP + AP.transpose(-1, -2)
if (err := torch.sum((_A - _A[0,0]*torch.eye(N))**2) / N) > 1e-5: # if not torch.allclose(_A - _A[0,0]*torch.eye(N), torch.zeros(N, N), atol=1e-5):
print("WARNING: HiPPO matrix not skew symmetric", err)
# Take advantage of identity + skew-symmetric form to calculate real and imaginary parts separately
# Imaginary part can use eigh instead of eig
w_re = torch.mean(torch.diagonal(AP), -1, keepdim=True)
# Diagonalize in double precision
if diagonalize_precision: AP = AP.to(torch.double)
# w, V = torch.linalg.eig(AP) # (..., N) (..., N, N)
w_im, V = torch.linalg.eigh(AP*-1j) # (..., N) (..., N, N)
if diagonalize_precision: w_im, V = w_im.to(cdtype), V.to(cdtype)
w = w_re + 1j * w_im
# Check: V w V^{-1} = A
# print("check", V @ torch.diag_embed(w) @ V.conj().transpose(-1, -2))
# Only keep half of each conjugate pair
_, idx = torch.sort(w.imag)
w_sorted = w[idx]
V_sorted = V[:, idx]
# There is an edge case when eigenvalues can be 0, which requires some machinery to handle
# We use a huge hack here: Assume only one pair is 0, and that it is the first row/column of A (only happens in Fourier case)
V = V_sorted[:, :N//2]
w = w_sorted[:N//2]
assert w[-2].abs() > 1e-4, "Only 1 zero eigenvalue allowed in diagonal part of A"
if w[-1].abs() < 1e-4:
V[:, -1] = 0.
V[0, -1] = 2**-0.5
V[1, -1] = 2**-0.5 * 1j
_AP = V @ torch.diag_embed(w) @ V.conj().transpose(-1, -2)
if ((err := torch.sum((2*_AP.real-AP)**2)/N) > 1e-5):
print("Warning: Diagonalization of A matrix not numerically precise - error", err)
# print("check", V @ torch.diag_embed(w) @ V.conj().transpose(-1, -2))
V_inv = V.conj().transpose(-1, -2)
# C = initial_C(measure, N, dtype=dtype)
B = contract('ij, j -> i', V_inv, B.to(V)) # V^* B
# C = contract('ij, j -> i', V_inv, C.to(V)) # V^* C
P = contract('ij, ...j -> ...i', V_inv, P.to(V)) # V^* P
# return w, P, B, C, V
return w, P, B, V
|
H3-main
|
src/models/ssm/hippo.py
|
# TD: [2023-01-05]: Extracted the SSKernelDiag class from
# https://github.com/HazyResearch/state-spaces/blob/06dbbdfd0876501a7f12bf3262121badbc7658af/src/models/sequence/ss/kernel.py
# We make a small change to use the log_vandermonde CUDA code.
"""SSKernelDiag is the S4D kernel, a simpler algorithm for computing the kernel for the case of diagonal state matrices A.
"""
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, repeat
from opt_einsum import contract
from src.models.ssm.ssm_utils import OptimModule
class SSKernelShift(OptimModule):
def __init__(self, B, C, L=None, lr=None, **kwargs):
"""
B: (H, d), real
C: (channel, H, d), real
"""
super().__init__()
self.L = L
self.N = B.size(-1)
self.H = B.shape[0]
# Register parameters
if lr is None or isinstance(lr, float): lr_dict = {}
else: lr_dict, lr = lr, None
self.register("B", B, lr_dict.get('B', lr))
self.C = nn.Parameter(C)
def forward(self, state=None, rate=1.0, L=None):
if L is None:
L = self.L
# This class doesn't support variable length functionalities, since it's a discrete SSM
assert rate == 1.0 and L is not None
# Augment B with state
B = self.B
if state is not None:
B = rearrange(torch.cat([rearrange(B, 'h n -> 1 h n'), state], dim=-3),
'bp1 h n -> bp1 1 h n') # (1 + B, 1, H, N)
B_f = torch.fft.rfft(B, n=2*self.N)
C_f = torch.fft.rfft(self.C, n=2*self.N)
k = torch.fft.irfft(B_f.conj() * C_f, n=2*self.N)[..., :min(self.N, L)]
# If self.N < L, need to pad with zeros to reach length L
if self.N < L:
k = F.pad(k, (0, L - self.N))
k = k.float() # Otherwise it could be dtype half
if state is not None:
k, k_state = k[0], k[1:]
else:
k_state = None
return k, k_state
def _setup_step(self):
# Just here to conform to the interface, eventually we should refactor out
pass
def default_state(self, *batch_shape):
return torch.zeros(*batch_shape, self.H, self.N, dtype=self.C.dtype, device=self.C.device)
def step(self, u, state):
"""u: (B, H), state: (B, H, N)"""
next_state = F.pad(state, (1, -1)) + contract("h n, b h -> b h n", self.B, u)
y = contract("c h n, b h n -> b c h", self.C, next_state)
return y, next_state
def forward_state(self, u, state):
"""u: (B, H, L), state: (B, H, N)"""
L = u.shape[-1]
B_f = torch.fft.rfft(self.B, n=2 * self.N)
u_f = torch.fft.rfft(u[..., -self.N:].flip(-1).to(dtype=self.B.dtype), n=2 * self.N)
v = torch.fft.irfft(B_f * u_f, n=2 * self.N)[..., :self.N]
if L < self.N:
next_state = F.pad(state, (L, -L)) + v
else:
next_state = v
return next_state
|
H3-main
|
src/models/ssm/ss_kernel_shift.py
|
# TD: [2023-01-05]: Extracted the SSKernelDiag class from
# https://github.com/HazyResearch/state-spaces/blob/06dbbdfd0876501a7f12bf3262121badbc7658af/src/models/sequence/ss/kernel.py
# We make a small change to use the log_vandermonde CUDA code.
"""SSKernelDiag is the S4D kernel, a simpler algorithm for computing the kernel for the case of diagonal state matrices A.
"""
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, repeat
from opt_einsum import contract
from src.models.ssm.ssm_utils import OptimModule
from src.utils.utils import get_logger
log = get_logger(__name__)
# This could be None if the CUDA import fails
from src.ops.vandermonde import log_vandermonde_fast
try:
import pykeops
from src.ops.vandermonde import log_vandermonde, log_vandermonde_transpose
has_pykeops = True
log.info("Pykeops installation found.")
except ImportError:
has_pykeops = False
from src.ops.vandermonde import log_vandermonde_naive as log_vandermonde
from src.ops.vandermonde import log_vandermonde_transpose_naive as log_vandermonde_transpose
log.warning(
"Falling back on slow Vandermonde kernel. Install pykeops for improved memory efficiency."
)
_c2r = torch.view_as_real
_r2c = torch.view_as_complex
if tuple(map(int, torch.__version__.split('.')[:2])) >= (1, 10):
_resolve_conj = lambda x: x.conj().resolve_conj()
else:
_resolve_conj = lambda x: x.conj()
class SSKernelDiag(OptimModule):
"""Version using (complex) diagonal state matrix (S4D)"""
def __init__(
self,
A, B, C, log_dt,
L=None,
disc='bilinear',
real_type='exp',
lr=None,
bandlimit=None,
force_real=False,
):
super().__init__()
self.L = L
self.disc = disc
self.bandlimit = bandlimit
self.real_type = real_type
self.force_real = force_real
# Rank of low-rank correction
assert A.size(-1) == C.size(-1)
self.H = log_dt.size(-1)
self.N = A.size(-1)
assert A.size(-2) == B.size(-2) # Number of independent SSMs trained
assert self.H % A.size(-2) == 0
self.n_ssm = A.size(-2)
self.repeat = self.H // A.size(0)
self.channels = C.shape[0]
self.C = nn.Parameter(_c2r(_resolve_conj(C)))
# Register parameters
if lr is None or isinstance(lr, float): lr_dict = {}
else: lr_dict, lr = lr, None
self.register("log_dt", log_dt, lr_dict.get('dt', lr))
self.register("B", _c2r(B), lr_dict.get('B', lr))
self.register("inv_A_real", self._A_init(A.real), lr_dict.get('A', lr))
self.register("A_imag", A.imag, lr_dict.get('A', lr))
def _A_init(self, A_real):
A_real = torch.clamp(A_real, max=-1e-4)
if self.real_type == 'none':
return -A_real
elif self.real_type == 'exp':
return torch.log(-A_real) # Some of the HiPPO methods have real part 0
elif self.real_type == 'relu':
return -A_real
elif self.real_type == 'sigmoid':
return torch.logit(-A_real)
elif self.real_type == 'softplus':
return torch.log(torch.exp(-A_real)-1)
else: raise NotImplementedError
def _A(self):
# Get the internal A (diagonal) parameter
if self.real_type == 'none':
A_real = -self.inv_A_real
elif self.real_type == 'exp':
A_real = -torch.exp(self.inv_A_real)
elif self.real_type == 'relu':
# JAX version seems to NaN if you alloA 0's, although this code Aas fine Aithout it
A_real = -F.relu(self.inv_A_real)-1e-4
elif self.real_type == 'sigmoid':
A_real = -F.sigmoid(self.inv_A_real)
elif self.real_type == 'softplus':
A_real = -F.softplus(self.inv_A_real)
else: raise NotImplementedError
A = A_real + 1j * self.A_imag
return A
def forward(self, L, state=None, rate=1.0, u=None):
"""
state: (B, H, N) initial state
rate: sampling rate factor
L: target length
returns:
(C, H, L) convolution kernel (generally C=1)
(B, H, L) output from initial state
"""
dt = torch.exp(self.log_dt) * rate # (H)
C = _r2c(self.C) # (C H N)
A = self._A() # (H N)
B = _r2c(self.B)
B = repeat(B, 't n -> 1 (v t) n', v=self.repeat)
# Force A to be real valued, so the whole kernel can be interpreted as a "multi-head EMA"
if self.force_real:
A = A.real + 0j
if self.bandlimit is not None:
freqs = dt[:, None] / rate * A.imag.abs() / (2*math.pi) # (H, N)
mask = torch.where(freqs < self.bandlimit * .5, 1, 0)
C = C * mask
# Incorporate dt into A
A = repeat(A, 't n -> (v t) n', v=self.repeat)
dtA = A * dt.unsqueeze(-1) # (H N)
# Augment B with state
if state is not None:
s = state / dt.unsqueeze(-1)
if self.disc == 'bilinear':
s = s * (1. + dtA/2)
elif self.disc == 'zoh':
s = s * dtA * dtA.exp() / (dtA.exp() - 1.)
B = torch.cat([s, B], dim=-3) # (1+B H N)
C = (B[:, None, :, :] * C).view(-1, self.H, self.N)
if self.disc == 'zoh':
# Power up
C = C * (torch.exp(dtA)-1.) / A
# TODO (TD): make it work for C.shape[0] > 1
if log_vandermonde_fast is not None and C.shape[0] == 1:
K = log_vandermonde_fast(C.squeeze(0), dtA, L).unsqueeze(0) # (H L)
else:
K = log_vandermonde(C, dtA, L) # (H L)
elif self.disc == 'bilinear':
C = C * (1. - dtA/2).reciprocal() * dt.unsqueeze(-1) # or * dtA / A
dA = (1. + dtA/2) / (1. - dtA/2)
if log_vandermonde_fast is not None:
dA_log = repeat(dA.log(), 'h d -> (c h) d', c=C.shape[0])
K = rearrange(log_vandermonde_fast(rearrange(C, 'c h d -> (c h) d'), dA_log, L),
'(c h) d -> c h d', c=C.shape[0])
else:
K = log_vandermonde(C, dA.log(), L)
elif self.disc == 'dss':
# Implementation from DSS meant for case when real eigenvalues can be positive
P = dtA.unsqueeze(-1) * torch.arange(L, device=C.device) # [H N L]
A_gt_0 = A.real > 0 # [N]
if A_gt_0.any():
with torch.no_grad():
P_max = dtA * (A_gt_0 * (L-1)) # [H N]
P = P - P_max.unsqueeze(-1) # [H N L]
S = P.exp() # [H N L]
dtA_neg = dtA * (1 - 2*A_gt_0) # [H N]
num = dtA_neg.exp() - 1 # [H N]
den = (dtA_neg * L).exp() - 1 # [H N]
# Inline reciprocal function for DSS logic
x = den * A
x_conj = _resolve_conj(x)
r = x_conj / (x*x_conj + 1e-7)
C = C * num * r # [C H N]
K = contract('chn,hnl->chl', C, S).float()
else: assert False, f"{self.disc} not supported"
K = K.view(-1, self.channels, self.H, L) # (1+B C H L)
if state is not None:
K_state = K[:-1, :, :, :] # (B C H L)
else:
K_state = None
K = K[-1, :, :, :] # (C H L)
return K, K_state
def _setup_step(self):
# These methods are organized like this to be compatible with the NPLR kernel interface
dt = torch.exp(self.log_dt) # (H)
B = _r2c(self.B) # (H N)
C = _r2c(self.C) # (C H N)
self.dC = C
A = self._A() # (H N)
A = repeat(A, 't n -> (v t) n', v=self.repeat)
B = repeat(B, 't n -> (v t) n', v=self.repeat)
# Incorporate dt into A
dtA = A * dt.unsqueeze(-1) # (H N)
if self.disc == 'zoh':
self.dA = torch.exp(dtA) # (H N)
self.dB = B * (torch.exp(dtA)-1.) / A # (C H N)
elif self.disc == 'bilinear':
self.dA = (1. + dtA/2) / (1. - dtA/2)
self.dB = B * (1. - dtA/2).reciprocal() * dt.unsqueeze(-1) # or * dtA / A
def default_state(self, *batch_shape):
C = _r2c(self.C)
state = torch.zeros(*batch_shape, self.H, self.N, dtype=C.dtype, device=C.device)
return state
def step(self, u, state):
next_state = contract("h n, b h n -> b h n", self.dA, state) \
+ contract("h n, b h -> b h n", self.dB, u)
y = contract("c h n, b h n -> b c h", self.dC, next_state)
return 2*y.real, next_state
def forward_state(self, u, state):
self._setup_step()
AL = self.dA ** u.size(-1)
u = u.flip(-1).to(self.dA).contiguous() # (B H L)
v = log_vandermonde_transpose(u, self.dB, self.dA.log(), u.size(-1))
next_state = AL * state + v
return next_state
class EMAKernel(OptimModule):
"""Translation of Mega's MultiHeadEMA.
This is a minimal implementation of the convolution kernel part of the module.
This module, together with the main S4 block in src.models.sequence.ss.s4
(which is really just a fft-conv wrapper around any convolution kernel,
such as this one), should be exactly equivalent to using the original Mega
EMA module in src.models.sequence.ss.ema.
Two additional flags have been provided to resolve discrepencies in parameter
count between S4(D) and EMA
- `dt_tie` makes the shape of the step size \Delta (H, 1) instead of (H, N)
- `efficient_bidirectional` ties the A/B/dt parameters for the conv kernels
in both forwards and backwards directions. This should have exactly the same
speed, slightly more parameter efficiency, and unchanged performance.
"""
def __init__(
self,
H,
N=2,
channels=1,
l_max=None,
dt_tie=False,
efficient_bidirectional=False,
):
super().__init__()
self.H = H
self.N = N
self.channels = channels
self.l_max = l_max
self.scale = math.sqrt(1.0 / self.N)
# Exactly match the parameter count of S4(D) when bididirectional is on
self.efficient_bidirectional = efficient_bidirectional
if self.efficient_bidirectional:
H_C = H * channels
else:
H *= channels
H_C = H
self.delta = nn.Parameter(torch.Tensor(H, 1 if dt_tie else N, 1))
self.alpha = nn.Parameter(torch.Tensor(H, N, 1))
self.beta = nn.Parameter(torch.Tensor(H, N, 1))
self.gamma = nn.Parameter(torch.Tensor(H_C, N))
# self.omega = nn.Parameter(torch.Tensor(H)) # D skip connection handled by outside class
self.reset_parameters()
def reset_parameters(self):
with torch.no_grad():
nn.init.normal_(self.delta, mean=0.0, std=0.2)
nn.init.normal_(self.alpha, mean=0.0, std=0.2)
# Mega comment: beta [1, -1, 1, -1, ...] seems more stable.
val = torch.ones(self.N, 1)
if self.N > 1:
idx = torch.tensor(list(range(1, self.N, 2)))
val.index_fill_(0, idx, -1.0)
self.beta.normal_(mean=0.0, std=0.02).add_(val)
nn.init.normal_(self.gamma, mean=0.0, std=1.0)
# nn.init.normal_(self.omega, mean=0.0, std=1.0)
def coeffs(self): # Same as discretize
p = torch.sigmoid(self.delta) # (H N 1)
alpha = torch.sigmoid(self.alpha)
q = 1.0 - p * alpha
return p, q
def forward(self, L=None, state=None, rate=1.0):
L = L if self.l_max is None else min(self.l_max, L)
p, q = self.coeffs() # (H N 1)
vander = torch.arange(L).to(p).view(1, 1, L) * torch.log(q) # (H N L)
kernel = (p * self.beta) * torch.exp(vander)
if self.efficient_bidirectional:
C = rearrange(self.gamma * self.scale, '(c h) n -> c h n', c=self.channels)
kernel = torch.einsum('dnl,cdn->cdl', kernel, C)
# kernel = rearrange(kernel, 'c d l -> (c d) l')
else:
kernel = torch.einsum('dnl,dn->dl', kernel, self.gamma * self.scale)
kernel = rearrange(kernel, '(c h) l -> c h l', c=self.channels)
kernel = kernel[..., :L]
# kernel = rearrange(kernel, '(c h) l -> c h l', c=self.channels)
return kernel, None # k_state
|
H3-main
|
src/models/ssm/ss_kernel_diag.py
|
# Copied from https://github.com/HazyResearch/state-spaces/blob/06dbbdfd0876501a7f12bf3262121badbc7658af/src/models/sequence/ss/dplr.py
"""Initializations of structured state space models"""
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, repeat
from src.models.ssm import hippo
def dplr(scaling='linear', N=64, rank=1, H=1, dtype=torch.float, real_scale=1.0, imag_scale=1.0, random_real=False, random_imag=False, normalize=False, diagonal=True, random_B=False):
assert dtype == torch.float or dtype == torch.double
dtype = torch.cfloat if dtype == torch.float else torch.cdouble
pi = torch.tensor(math.pi)
if random_real:
real_part = torch.rand(H, N//2)
else:
real_part = .5 * torch.ones(H, N//2)
if random_imag:
imag_part = N//2 * torch.rand(H, N//2)
else:
imag_part = repeat(torch.arange(N//2), 'n -> h n', h=H)
real_part = real_scale * real_part
if scaling == 'random':
imag_part = torch.randn(H, N//2)
elif scaling == 'real':
imag_part = 0 * imag_part
real_part = 1 + repeat(torch.arange(N//2), 'n -> h n', h=H)
elif scaling in ['linear', 'lin']:
imag_part = pi * imag_part
elif scaling in ['inverse', 'inv']: # Based on asymptotics of the default HiPPO matrix
imag_part = 1/pi * N * (N/(1+2*imag_part)-1)
elif scaling in ['inverse2', 'inv2']:
imag_part = 1/pi * N * (N/(1+imag_part)-1)
elif scaling in ['quadratic', 'quad']:
imag_part = 1/pi * (1+2*imag_part)**2
elif scaling in ['legs', 'hippo']:
w, _, _, _ = hippo.nplr('legsd', N)
imag_part = w.imag
else: raise NotImplementedError
imag_part = imag_scale * imag_part
w = -real_part + 1j * imag_part
# Initialize B
if random_B:
B = torch.randn(H, N//2, dtype=dtype)
else:
B = torch.ones(H, N//2, dtype=dtype)
if normalize:
norm = -B/w # (H, N) # Result if you integrate the kernel with constant 1 function
zeta = 2*torch.sum(torch.abs(norm)**2, dim=-1, keepdim=True) # Variance with a random C vector
B = B / zeta**.5
P = torch.randn(rank, H, N//2, dtype=dtype)
if diagonal: P = P * 0.0
V = torch.eye(N, dtype=dtype)[:, :N//2] # Only used in testing
V = repeat(V, 'n m -> h n m', h=H)
return w, P, B, V
def ssm(measure, N, R, H, **ssm_args):
"""Dispatcher to create single SSM initialization
N: state size
R: rank (for DPLR parameterization)
H: number of independent SSM copies
"""
if measure == "dplr":
w, P, B, V = dplr(N=N, rank=R, H=H, **ssm_args)
elif measure.startswith("diag"):
args = measure.split("-")
assert args[0] == "diag" and len(args) > 1
scaling = args[1]
w, P, B, V = dplr(scaling=scaling, N=N, rank=R, H=H, diagonal=True, **ssm_args)
else:
w, P, B, V = hippo.nplr(measure, N, R, **ssm_args)
w = repeat(w, 'n -> s n', s=H)
P = repeat(P, 'r n -> r s n', s=H)
B = repeat(B, 'n -> s n', s=H)
V = repeat(V, 'n m -> s n m', s=H)
return w, P, B, V
combinations = {
'hippo': ['legs', 'fourier'],
'diag': ['diag-inv', 'diag-lin'],
'all': ['legs', 'fourier', 'diag-inv', 'diag-lin'],
}
def combination(measures, N, R, S, **ssm_args):
if isinstance(measures, str):
measures = combinations[measures] if measures in combinations else [measures]
assert S % len(measures) == 0, f"{S} independent trainable SSM copies must be multiple of {len(measures)} different measures"
w, P, B, V = zip(
*[ssm(measure, N, R, S // len(measures), **ssm_args) for measure in measures]
)
w = torch.cat(w, dim=0) # (S N)
P = torch.cat(P, dim=1) # (R S N)
B = torch.cat(B, dim=0) # (S N)
V = torch.cat(V, dim=0) # (S N N)
return w, P, B, V
|
H3-main
|
src/models/ssm/dplr.py
|
import math
import torch
import torch.nn.functional as F
from einops import rearrange
from fftconv import fftconv_fwd, fftconv_bwd
@torch.jit.script
def _mul_sum(y, q):
return (y * q).sum(dim=1)
# reference convolution with residual connection
def fftconv_ref(u, k, D, dropout_mask, gelu=True, k_rev=None):
seqlen = u.shape[-1]
fft_size = 2 * seqlen
k_f = torch.fft.rfft(k, n=fft_size) / fft_size
if k_rev is not None:
k_rev_f = torch.fft.rfft(k_rev, n=fft_size) / fft_size
k_f = k_f + k_rev_f.conj()
u_f = torch.fft.rfft(u.to(dtype=k.dtype), n=fft_size)
y = torch.fft.irfft(u_f * k_f, n=fft_size, norm='forward')[..., :seqlen]
out = y + u * D.unsqueeze(-1)
if gelu:
out = F.gelu(out)
if dropout_mask is not None:
return (out * rearrange(dropout_mask, 'b H -> b H 1')).to(dtype=u.dtype)
else:
return out.to(dtype=u.dtype)
# reference H3 forward pass
def fftconv_h3_ref(k, ssm_kernel, D, q, v, head_dim=1, ssm_kernel_rev=None):
seqlen = k.shape[-1]
fft_size = 2 * seqlen
kv = (rearrange(k, 'b (h d1) l -> b d1 1 h l', d1=head_dim)
* rearrange(v, 'b (h d2) l -> b 1 d2 h l', d2=head_dim)) # b d1 d2 h l
kv_f = torch.fft.rfft(kv.to(dtype=ssm_kernel.dtype), n=fft_size) / fft_size
ssm_kernel_f = torch.fft.rfft(ssm_kernel, n=fft_size) # h L+1
if ssm_kernel_rev is not None:
ssm_kernel_rev_f = torch.fft.rfft(ssm_kernel_rev, n=fft_size) # h L+1
ssm_kernel_f = ssm_kernel_f + ssm_kernel_rev_f.conj()
y = torch.fft.irfft(kv_f * ssm_kernel_f, n=fft_size, norm='forward')[..., :seqlen] # b d1 d2 h l
out = y + kv * D.unsqueeze(-1) # b d1 d2 h l
q = rearrange(q, 'b (h d1) l -> b d1 1 h l', d1=head_dim)
if head_dim > 1:
out = _mul_sum(out, q)
return rearrange(out, 'b d2 h l -> b (h d2) l').to(dtype=k.dtype)
else:
return rearrange(out * q, 'b 1 1 h l -> b h l').to(dtype=k.dtype)
class FFTConvFunc(torch.autograd.Function):
@staticmethod
def forward(ctx, u, k, D, dropout_mask=None, gelu=True, force_fp16_output=False,
output_hbl_layout=False, v=None, head_dim=1, q=None, fftfp16=False, k_rev=None):
seqlen = u.shape[-1]
fft_size = max(2 * 2 ** int(math.ceil(math.log2(seqlen))), 16)
k_f = torch.fft.rfft(k, n=fft_size)
if k_rev is not None:
k_f = k_f + torch.fft.rfft(k_rev, n=fft_size).conj()
if u.stride(-1) != 1:
u = u.contiguous()
k_f = k_f.contiguous()
D = D.contiguous()
if v is not None and v.stride(-1) != 1:
v = v.contiguous()
if q is not None and q.stride(-1) != 1:
q = q.contiguous()
if dropout_mask is not None:
dropout_mask = dropout_mask.contiguous()
ctx.save_for_backward(u, k_f, D, dropout_mask, v, q)
ctx.output_hbl_layout = output_hbl_layout
ctx.head_dim = head_dim
ctx.gelu = gelu
ctx.fftfp16 = fftfp16
ctx.has_k_rev = k_rev is not None
out = fftconv_fwd(u, k_f, D, v, head_dim, q, dropout_mask, gelu, False, False, fft_size, force_fp16_output, output_hbl_layout, fftfp16)
return out
@staticmethod
def backward(ctx, dout):
if ctx.output_hbl_layout:
dout = rearrange(rearrange(dout, 'b h l -> h b l').contiguous(), 'h b l -> b h l')
else:
dout = dout.contiguous()
u, k_f, D, dropout_mask, v, q = ctx.saved_tensors
seqlen = u.shape[-1]
fft_size = max(2 * 2 ** int(math.ceil(math.log2(seqlen))), 16)
du, dk_f, dD, dv, dq = fftconv_bwd(dout, u, k_f, D, v, ctx.head_dim, q, dropout_mask, ctx.gelu, False, False, fft_size,
ctx.output_hbl_layout, ctx.fftfp16)
dk = torch.fft.irfft(dk_f, n=fft_size, norm='forward')[..., :seqlen]
dk_rev = (None if not ctx.has_k_rev
else torch.fft.irfft(dk_f.conj(), n=fft_size, norm='forward')[..., :seqlen])
if v is not None:
dv = dv.to(dtype=v.dtype) # We do atomicAdd in fp32 so might need to convert to fp16
return du, dk, dD, None, None, None, None, dv if v is not None else None, None, dq if q is not None else None, None, dk_rev
def fftconv_func(u, k, D, dropout_mask=None, gelu=True, force_fp16_output=False,
output_hbl_layout=False, v=None, head_dim=1, q=None, fftfp16=False, k_rev=None):
return FFTConvFunc.apply(u, k, D, dropout_mask, gelu, force_fp16_output,
output_hbl_layout, v, head_dim, q, fftfp16, k_rev)
|
H3-main
|
src/ops/fftconv.py
|
# TD [2023-01-05]: Copied from https://github.com/HazyResearch/state-spaces/blob/06dbbdfd0876501a7f12bf3262121badbc7658af/src/models/functional/vandermonde.py
# We add the interface to the log vandermonde CUDA code
"""pykeops implementations of the Vandermonde matrix multiplication kernel used in the S4D kernel."""
import math
import torch
from einops import rearrange, repeat
from opt_einsum import contract
import os
try:
import pykeops
from pykeops.torch import LazyTensor, Genred
except:
pass
try:
from cauchy_mult import vand_log_mult_sym_fwd, vand_log_mult_sym_bwd
except:
vand_log_mult_sym_fwd, vand_log_mult_sym_bwd = None, None
_conj = lambda x: torch.cat([x, x.conj()], dim=-1)
def _broadcast_dims(*tensors):
max_dim = max([len(tensor.shape) for tensor in tensors])
tensors = [tensor.view((1,)*(max_dim-len(tensor.shape))+tensor.shape) for tensor in tensors]
return tensors
def _c2r(x): return torch.view_as_real(x)
def _r2c(x): return torch.view_as_complex(x)
def vandermonde_naive(v, x, L, conj=True):
"""
v: (..., N)
x: (..., N)
returns: (..., L) \sum v x^l
"""
if conj:
x = _conj(x)
v = _conj(v)
vandermonde_matrix = x.unsqueeze(-1) ** torch.arange(L).to(x) # (... N L)
vandermonde_prod = torch.sum(v.unsqueeze(-1) * vandermonde_matrix, dim=-2) # (... L)
return vandermonde_prod
def log_vandermonde_naive(v, x, L, conj=True):
"""
v: (..., N)
x: (..., N)
returns: (..., L) \sum v x^l
"""
vandermonde_matrix = torch.exp(x.unsqueeze(-1) * torch.arange(L).to(x)) # (... N L)
vandermonde_prod = contract('... n, ... n l -> ... l', v, vandermonde_matrix) # (... L)
if conj:
return 2*vandermonde_prod.real
else:
return vandermonde_prod
def log_vandermonde_lazy(v, x, L, conj=True):
if conj:
v = _conj(v)
x = _conj(x)
l = torch.arange(L).to(x)
v, x, l = _broadcast_dims(v, x, l)
v_l = LazyTensor(rearrange(v, '... N -> ... N 1 1'))
x_l = LazyTensor(rearrange(x, '... N -> ... N 1 1'))
l_l = LazyTensor(rearrange(l, '... L -> ... 1 L 1'))
# exp
vand = (x_l * l_l).exp()
s = (v_l*vand).sum(dim=len(v_l.shape)-2)
return s.squeeze(-1)
def log_vandermonde(v, x, L, conj=True):
expr = 'ComplexMult(v, ComplexExp(ComplexMult(x, l)))'
vandermonde_mult = Genred(
expr,
[
'v = Vj(2)',
'x = Vj(2)',
'l = Vi(2)',
],
reduction_op='Sum',
axis=1,
)
l = torch.arange(L).to(x)
v, x, l = _broadcast_dims(v, x, l)
v = _c2r(v)
x = _c2r(x)
l = _c2r(l)
r = vandermonde_mult(v, x, l, backend='GPU')
if conj:
return 2*_r2c(r).real
else:
return _r2c(r)
def log_vandermonde_transpose_naive(u, v, x, L):
vandermonde_matrix = torch.exp(x.unsqueeze(-1) * torch.arange(L).to(x)) # (... N L)
vandermonde_prod = contract('... l, ... n, ... n l -> ... n', u.to(x), v.to(x), vandermonde_matrix) # (... L)
return vandermonde_prod
def log_vandermonde_transpose(u, v, x, L):
"""
u: ... H L
v: ... H N
x: ... H N
Returns: ... H N
V = Vandermonde(a, L) : (H N L)
contract_L(V * u * v)
"""
expr = 'ComplexMult(ComplexMult(v, u), ComplexExp(ComplexMult(x, l)))'
vandermonde_mult = Genred(
expr,
[
'u = Vj(2)',
'v = Vi(2)',
'x = Vi(2)',
'l = Vj(2)',
],
reduction_op='Sum',
axis=1,
)
l = torch.arange(L).to(x)
u, v, x, l = _broadcast_dims(u, v, x, l)
u = _c2r(u)
v = _c2r(v)
x = _c2r(x)
l = _c2r(l)
r = vandermonde_mult(u, v, x, l, backend='GPU')
return _r2c(r)
def _log_vandermonde_matmul(x, L):
vandermonde_matrix = torch.exp(x.unsqueeze(-1) * torch.arange(L).to(x)) # (... N L)
return vandermonde_matrix
def log_vandermonde_matmul(v, K):
prod = contract('...n, ...nl -> ...l', v, K)
return 2*prod.real
class LogVandMultiplySymmetric(torch.autograd.Function):
@staticmethod
def forward(ctx, v, x, L):
batch, N = v.shape
supported_N_values = [1 << log_n for log_n in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]]
if not N in supported_N_values:
raise NotImplementedError(f'Only support N values in {supported_N_values}')
max_L_value = 32 * 1024 * 64 * 1024
if L > max_L_value:
raise NotImplementedError(f'Only support L values <= {max_L_value}')
if not v.is_cuda and x.is_cuda:
raise NotImplementedError(f'Only support CUDA tensors')
ctx.save_for_backward(v, x)
return vand_log_mult_sym_fwd(v, x, L)
@staticmethod
def backward(ctx, dout):
v, x = ctx.saved_tensors
dv, dx = vand_log_mult_sym_bwd(v, x, dout)
return dv, dx, None
if vand_log_mult_sym_fwd and vand_log_mult_sym_bwd is not None:
log_vandermonde_fast = LogVandMultiplySymmetric.apply
else:
log_vandermonde_fast = None
|
H3-main
|
src/ops/vandermonde.py
|
# Downloaded from https://github.com/HazyResearch/state-spaces/blob/06dbbdfd0876501a7f12bf3262121badbc7658af/src/models/functional/krylov.py
""" Compute a Krylov function efficiently. (S4 renames the Krylov function to a "state space kernel")
A : (N, N)
b : (N,)
c : (N,)
Return: [c^T A^i b for i in [L]]
"""
import torch
import torch.nn.functional as F
from einops import rearrange, repeat
from src.ops.toeplitz import causal_convolution
def krylov_sequential(L, A, b, c=None):
""" Constant matrix A
A : (..., N, N)
b : (..., N)
c : (..., N)
Returns
if c:
x : (..., L)
x[i, l] = c[i] @ A^l @ b[i]
else:
x : (..., N, L)
x[i, l] = A^l @ b[i]
"""
# Check which of dim b and c is smaller to save memory
if c is not None and c.numel() < b.numel():
return krylov_sequential(L, A.transpose(-1, -2), c, b)
b_ = b
x = []
for _ in range(L):
if c is not None:
x_ = torch.sum(c*b_, dim=-1) # (...) # could be faster with matmul or einsum?
else:
x_ = b_
x.append(x_)
b_ = (A @ b_.unsqueeze(-1)).squeeze(-1)
x = torch.stack(x, dim=-1)
return x
def krylov(L, A, b, c=None, return_power=False):
"""
Compute the Krylov matrix (b, Ab, A^2b, ...) using the squaring trick.
If return_power=True, return A^{L-1} as well
"""
# TODO There is an edge case if L=1 where output doesn't get broadcasted, which might be an issue if caller is expecting broadcasting semantics... can deal with it if it arises
x = b.unsqueeze(-1) # (..., N, 1)
A_ = A
AL = None
if return_power:
AL = torch.eye(A.shape[-1], dtype=A.dtype, device=A.device)
_L = L-1
done = L == 1
# loop invariant: _L represents how many indices left to compute
while not done:
if return_power:
if _L % 2 == 1: AL = A_ @ AL
_L //= 2
# Save memory on last iteration
l = x.shape[-1]
if L - l <= l:
done = True
_x = x[..., :L-l]
else: _x = x
_x = A_ @ _x
x = torch.cat([x, _x], dim=-1) # there might be a more efficient way of ordering axes
if not done: A_ = A_ @ A_
assert x.shape[-1] == L
if c is not None:
x = torch.einsum('...nl, ...n -> ...l', x, c)
x = x.contiguous() # WOW!!
if return_power:
return x, AL
else:
return x
@torch.no_grad()
def power(L, A, v=None):
""" Compute A^L and the scan sum_i A^i v_i
A: (..., N, N)
v: (..., N, L)
"""
I = torch.eye(A.shape[-1]).to(A) # , dtype=A.dtype, device=A.device)
powers = [A]
l = 1
while True:
if L % 2 == 1: I = powers[-1] @ I
L //= 2
if L == 0: break
l *= 2
if v is None:
powers = [powers[-1] @ powers[-1]]
else:
powers.append(powers[-1] @ powers[-1])
if v is None: return I
# Invariants:
# powers[-1] := A^l
# l := largest po2 at most L
# Note that an alternative divide and conquer to compute the reduction is possible and can be embedded into the above loop without caching intermediate powers of A
# We do this reverse divide-and-conquer for efficiency reasons:
# 1) it involves fewer padding steps for non-po2 L
# 2) it involves more contiguous arrays
# Take care of edge case for non-po2 arrays
# Note that this initial step is a no-op for the case of power of 2 (l == L)
k = v.size(-1) - l
v_ = powers.pop() @ v[..., l:]
v = v[..., :l]
v[..., :k] = v[..., :k] + v_
# Handle reduction for power of 2
while v.size(-1) > 1:
v = rearrange(v, '... (z l) -> ... z l', z=2)
v = v[..., 0, :] + powers.pop() @ v[..., 1, :]
return I, v.squeeze(-1)
def krylov_toeplitz(L, A, b, c=None):
""" Specializes to lower triangular Toeplitz matrix A represented by its diagonals
A : (..., N)
b : (..., N)
c : (..., N)
Returns
x : (..., N, L)
x[i, l] = A^l @ b[i]
"""
x = b.unsqueeze(0) # (1, ..., N)
A_ = A
while x.shape[0] < L:
xx = causal_convolution(A_, x)
x = torch.cat([x, xx], dim=0) # there might be a more efficient way of ordering axes
A_ = causal_convolution(A_, A_)
x = x[:L, ...] # (L, ..., N)
if c is not None:
x = torch.einsum('l...n, ...n -> ...l', x, c)
else:
x = rearrange(x, 'l ... n -> ... n l')
x = x.contiguous()
return x
def krylov_toeplitz_(L, A, b, c=None):
""" Padded version of krylov_toeplitz that saves some fft's
TODO currently not faster than original version, not sure why
"""
N = A.shape[-1]
x = b.unsqueeze(0) # (1, ..., N)
x = F.pad(x, (0, N))
A = F.pad(A, (0, N))
done = L == 1
while not done:
l = x.shape[0]
# Save memory on last iteration
if L - l <= l:
done = True
_x = x[:L-l]
else: _x = x
Af = torch.fft.rfft(A, n=2*N, dim=-1)
xf = torch.fft.rfft(_x, n=2*N, dim=-1)
xf_ = Af * xf
x_ = torch.fft.irfft(xf_, n=2*N, dim=-1)
x_[..., N:] = 0
x = torch.cat([x, x_], dim=0) # there might be a more efficient way of ordering axes
if not done:
A = torch.fft.irfft(Af*Af, n=2*N, dim=-1)
A[..., N:] = 0
x = x[:L, ..., :N] # (L, ..., N)
if c is not None:
x = torch.einsum('l...n, ...n -> ...l', x, c)
else:
x = rearrange(x, 'l ... n -> ... n l')
x = x.contiguous()
return x
|
H3-main
|
src/ops/krylov.py
|
# Downloaded from https://github.com/HazyResearch/state-spaces/blob/06dbbdfd0876501a7f12bf3262121badbc7658af/src/models/functional/toeplitz.py
""" Utilities for computing convolutions.
There are 3 equivalent views:
1. causal convolution
2. multiplication of (lower) triangular Toeplitz matrices
3. polynomial multiplication (mod x^N)
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
def construct_toeplitz(v, f=0.0):
"""Explicit construction of Krylov matrix [v A @ v A^2 @ v ... A^{n-1} @ v]
where A = Z_f. This uses vectorized indexing and cumprod so it's much
faster than using the Krylov function.
Parameters:
v: the starting vector of size n or (rank, n).
f: real number
Returns:
K: Krylov matrix of size (n, n) or (rank, n, n).
"""
n = v.shape[-1]
a = torch.arange(n, device=v.device)
b = -a
indices = a[:, None] + b[None]
K = v[..., indices]
K[..., indices < 0] *= f
return K
def triangular_toeplitz_multiply_(u, v, sum=None):
n = u.shape[-1]
u_expand = F.pad(u, (0, n))
v_expand = F.pad(v, (0, n))
u_f = torch.fft.rfft(u_expand, n=2*n, dim=-1)
v_f = torch.fft.rfft(v_expand, n=2*n, dim=-1)
uv_f = u_f * v_f
if sum is not None:
uv_f = uv_f.sum(dim=sum)
output = torch.fft.irfft(uv_f, n=2*n, dim=-1)[..., :n]
return output
def triangular_toeplitz_multiply_padded_(u, v):
""" Same as triangular_toeplitz_multiply but inputs and output assume to be 0-padded already. """
n = u.shape[-1]
assert n % 2 == 0
u_f = torch.fft.rfft(u, n=n, dim=-1)
v_f = torch.fft.rfft(v, n=n, dim=-1)
uv_f = u_f * v_f
output = torch.fft.irfft(uv_f, n=n, dim=-1)
output[..., n:] = 0
return output
class TriangularToeplitzMult(torch.autograd.Function):
@staticmethod
def forward(ctx, u, v):
ctx.save_for_backward(u, v)
return triangular_toeplitz_multiply_(u, v)
@staticmethod
def backward(ctx, grad):
u, v = ctx.saved_tensors
d_u = triangular_toeplitz_multiply_(grad.flip(-1), v).flip(-1)
d_v = triangular_toeplitz_multiply_(grad.flip(-1), u).flip(-1)
return d_u, d_v
class TriangularToeplitzMultFast(torch.autograd.Function):
@staticmethod
def forward(ctx, u, v):
n = u.shape[-1]
u_expand = F.pad(u, (0, n))
v_expand = F.pad(v, (0, n))
u_f = torch.fft.rfft(u_expand, n=2*n, dim=-1)
v_f = torch.fft.rfft(v_expand, n=2*n, dim=-1)
ctx.save_for_backward(u_f, v_f)
uv_f = u_f * v_f
output = torch.fft.irfft(uv_f, n=2*n, dim=-1)[..., :n]
return output
@staticmethod
def backward(ctx, grad):
u_f, v_f = ctx.saved_tensors
n = grad.shape[-1]
g_expand = F.pad(grad.flip(-1), (0, n))
g_f = torch.fft.rfft(g_expand, n=2*n, dim=-1)
gu_f = g_f * u_f
gv_f = g_f * v_f
d_u = torch.fft.irfft(gv_f, n=2*n, dim=-1)[..., :n]
d_v = torch.fft.irfft(gu_f, n=2*n, dim=-1)[..., :n]
d_u = d_u.flip(-1)
d_v = d_v.flip(-1)
return d_u, d_v
class TriangularToeplitzMultPadded(torch.autograd.Function):
@staticmethod
def forward(ctx, u, v):
ctx.save_for_backward(u, v)
output = triangular_toeplitz_multiply_(u, v)
return output
@staticmethod
def backward(ctx, grad):
u, v = ctx.saved_tensors
d_u = triangular_toeplitz_multiply_padded_(grad.flip(-1), v).flip(-1)
d_v = triangular_toeplitz_multiply_padded_(grad.flip(-1), u).flip(-1)
return d_u, d_v
class TriangularToeplitzMultPaddedFast(torch.autograd.Function):
""" Trade off speed (20-25% faster) for more memory (20-25%) """
@staticmethod
def forward(ctx, u, v):
n = u.shape[-1]
u_f = torch.fft.rfft(u, n=n, dim=-1)
v_f = torch.fft.rfft(v, n=n, dim=-1)
ctx.save_for_backward(u_f, v_f)
uv_f = u_f * v_f
output = torch.fft.irfft(uv_f, n=n, dim=-1)
output[..., n//2:].zero_()
return output
@staticmethod
def backward(ctx, grad):
u_f, v_f = ctx.saved_tensors
n = grad.shape[-1]
g_expand = F.pad(grad[..., :n//2].flip(-1), (0, n//2))
g_f = torch.fft.rfft(g_expand, n=n, dim=-1)
gu_f = g_f * u_f
gv_f = g_f * v_f
d_u = torch.fft.irfft(gv_f, n=n, dim=-1)
d_v = torch.fft.irfft(gu_f, n=n, dim=-1)
d_u[..., n//2:].zero_()
d_v[..., n//2:].zero_()
d_u[..., :n//2] = d_u[..., :n//2].flip(-1) # TODO
d_v[..., :n//2] = d_v[..., :n//2].flip(-1) # TODO
return d_u, d_v
# triangular_toeplitz_multiply = triangular_toeplitz_multiply_
triangular_toeplitz_multiply = TriangularToeplitzMult.apply
triangular_toeplitz_multiply_fast = TriangularToeplitzMultFast.apply
triangular_toeplitz_multiply_padded = TriangularToeplitzMultPadded.apply
triangular_toeplitz_multiply_padded_fast = TriangularToeplitzMultPaddedFast.apply
def causal_convolution(u, v, fast=True, pad=False):
if not pad and not fast:
return triangular_toeplitz_multiply(u, v)
if not pad and fast:
return triangular_toeplitz_multiply_fast(u, v)
if pad and not fast:
return triangular_toeplitz_multiply_padded(u, v)
if pad and fast:
return triangular_toeplitz_multiply_padded_fast(u, v)
|
H3-main
|
src/ops/toeplitz.py
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
from distutils.core import setup
ext_modules = []
cmdclass = {}
with open("requirements.txt", "r") as handle:
install_requires = handle.read().splitlines()
setup(
name="cpa",
version="1.0.0",
description="",
url="http://github.com/facebookresearch/CPA",
author="See README.md",
author_email="dlp@fb.com",
license="MIT",
packages=["cpa"],
cmdclass=cmdclass,
ext_modules=ext_modules,
install_requires=install_requires,
)
|
CPA-main
|
setup.py
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
from collections import defaultdict
import matplotlib.font_manager
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
from adjustText import adjust_text
from sklearn.decomposition import KernelPCA
from sklearn.metrics import r2_score
from sklearn.metrics.pairwise import cosine_similarity
FONT_SIZE = 10
font = {"size": FONT_SIZE}
matplotlib.rc("font", **font)
matplotlib.rc("ytick", labelsize=FONT_SIZE)
matplotlib.rc("xtick", labelsize=FONT_SIZE)
class CPAVisuals:
"""
A wrapper for automatic plotting CompPert latent embeddings and dose-response
curve. Sets up prefix for all files and default dictionaries for atomic
perturbations and cell types.
"""
def __init__(
self,
cpa,
fileprefix=None,
perts_palette=None,
covars_palette=None,
plot_params={"fontsize": None},
):
"""
Parameters
----------
cpa : CompPertAPI
Variable from API class.
fileprefix : str, optional (default: None)
Prefix (with path) to the filename to save all embeddings in a
standartized manner. If None, embeddings are not saved to file.
perts_palette : dict (default: None)
Dictionary of colors for the embeddings of perturbations. Keys
correspond to perturbations and values to their colors. If None,
default dicitonary will be set up.
covars_palette : dict (default: None)
Dictionary of colors for the embeddings of covariates. Keys
correspond to covariates and values to their colors. If None,
default dicitonary will be set up.
"""
self.fileprefix = fileprefix
self.perturbation_key = cpa.perturbation_key
self.dose_key = cpa.dose_key
self.covariate_keys = cpa.covariate_keys
self.measured_points = cpa.measured_points
self.unique_perts = cpa.unique_perts
self.unique_covars = cpa.unique_covars
if perts_palette is None:
self.perts_palette = dict(
zip(self.unique_perts, get_palette(len(self.unique_perts)))
)
else:
self.perts_palette = perts_palette
if covars_palette is None:
self.covars_palette = {}
for cov in self.unique_covars:
self.covars_palette[cov] = dict(
zip(
self.unique_covars[cov],
get_palette(len(self.unique_covars[cov]), palette_name="tab10"),
)
)
else:
self.covars_palette = covars_palette
if plot_params["fontsize"] is None:
self.fontsize = FONT_SIZE
else:
self.fontsize = plot_params["fontsize"]
def plot_latent_embeddings(
self,
emb,
titlename="Example",
kind="perturbations",
palette=None,
labels=None,
dimred="KernelPCA",
filename=None,
show_text=True,
):
"""
Parameters
----------
emb : np.array
Multi-dimensional embedding of perturbations or covariates.
titlename : str, optional (default: 'Example')
Title.
kind : int, optional, optional (default: 'perturbations')
Specify if this is embedding of perturbations, covariates or some
other. If it is perturbations or covariates, it will use default
saved dictionaries for colors.
palette : dict, optional (default: None)
If embedding of kind not perturbations or covariates, the user can
specify color dictionary for the embedding.
labels : list, optional (default: None)
Labels for the embeddings.
dimred : str, optional (default: 'KernelPCA')
Dimensionality reduction method for plotting low dimensional
representations. Options: 'KernelPCA', 'UMAPpre', 'UMAPcos', None.
If None, uses first 2 dimensions of the embedding.
filename : str (default: None)
Name of the file to save the plot. If None, will automatically
generate name from prefix file.
"""
if filename is None:
if self.fileprefix is None:
filename = None
file_name_similarity = None
else:
filename = f"{self.fileprefix}_emebdding.png"
file_name_similarity = f"{self.fileprefix}_emebdding_similarity.png"
else:
file_name_similarity = filename.split(".")[0] + "_similarity.png"
if labels is None:
if kind == "perturbations":
palette = self.perts_palette
labels = self.unique_perts
elif kind in self.unique_covars:
palette = self.covars_palette[kind]
labels = self.unique_covars[kind]
if len(emb) < 2:
print(f"Embedding contains only {len(emb)} vectors. Not enough to plot.")
else:
plot_embedding(
fast_dimred(emb, method=dimred),
labels,
show_lines=True,
show_text=show_text,
col_dict=palette,
title=titlename,
file_name=filename,
fontsize=self.fontsize,
)
plot_similarity(
emb,
labels,
col_dict=palette,
fontsize=self.fontsize,
file_name=file_name_similarity,
)
def plot_contvar_response2D(
self,
df_response2D,
df_ref=None,
levels=15,
figsize=(4, 4),
xlims=(0, 1.03),
ylims=(0, 1.03),
palette="coolwarm",
response_name="response",
title_name=None,
fontsize=None,
postfix="",
filename=None,
alpha=0.4,
sizes=(40, 160),
logdose=False,
):
"""
Parameters
----------
df_response2D : pd.DataFrame
Data frame with responses of combinations with columns=(dose1, dose2,
response).
levels: int, optional (default: 15)
Number of levels for contour plot.
response_name : str (default: 'response')
Name of column in df_response to plot as response.
alpha: float (default: 0.4)
Transparency of the background contour.
figsize: tuple (default: (4,4))
Size of the figure in inches.
palette : dict, optional (default: None)
Colors dictionary for perturbations to plot.
title_name : str, optional (default: None)
Title for the plot.
postfix : str, optional (defualt: '')
Postfix to add to the output file name to save the model.
filename : str, optional (defualt: None)
Name of the file to save the plot. If None, will automatically
generate name from prefix file.
logdose: bool (default: False)
If True, dose values will be log10. 0 values will be mapped to
minumum value -1,e.g.
if smallest non-zero dose was 0.001, 0 will be mapped to -4.
"""
sns.set_style("white")
if (filename is None) and not (self.fileprefix is None):
filename = f"{self.fileprefix}_{postfix}response2D.png"
if fontsize is None:
fontsize = self.fontsize
x_name, y_name = df_response2D.columns[:2]
x = df_response2D[x_name].values
y = df_response2D[y_name].values
if logdose:
x = log10_with0(x)
y = log10_with0(y)
z = df_response2D[response_name].values
n = int(np.sqrt(len(x)))
X = x.reshape(n, n)
Y = y.reshape(n, n)
Z = z.reshape(n, n)
fig, ax = plt.subplots(figsize=figsize)
CS = ax.contourf(X, Y, Z, cmap=palette, levels=levels, alpha=alpha)
CS = ax.contour(X, Y, Z, levels=15, cmap=palette)
ax.clabel(CS, inline=1, fontsize=fontsize)
ax.set(xlim=(0, 1), ylim=(0, 1))
ax.axis("equal")
ax.axis("square")
ax.yaxis.set_tick_params(labelsize=fontsize)
ax.xaxis.set_tick_params(labelsize=fontsize)
ax.set_xlabel(x_name, fontsize=fontsize, fontweight="bold")
ax.set_ylabel(y_name, fontsize=fontsize, fontweight="bold")
ax.set_xlim(xlims)
ax.set_ylim(ylims)
# sns.despine(left=False, bottom=False, right=True)
sns.despine()
if not (df_ref is None):
sns.scatterplot(
x=x_name,
y=y_name,
hue="split",
size="num_cells",
sizes=sizes,
alpha=1.0,
palette={"train": "#000000", "training": "#000000", "ood": "#e41a1c"},
data=df_ref,
ax=ax,
)
ax.legend_.remove()
ax.set_title(title_name, fontweight="bold", fontsize=fontsize)
plt.tight_layout()
if filename:
save_to_file(fig, filename)
def plot_contvar_response(
self,
df_response,
response_name="response",
var_name=None,
df_ref=None,
palette=None,
title_name=None,
postfix="",
xlabelname=None,
filename=None,
logdose=False,
fontsize=None,
measured_points=None,
bbox=(1.35, 1.0),
figsize=(7.0, 4.0),
):
"""
Parameters
----------
df_response : pd.DataFrame
Data frame of responses.
response_name : str (default: 'response')
Name of column in df_response to plot as response.
var_name : str, optional (default: None)
Name of conditioning variable, e.g. could correspond to covariates.
df_ref : pd.DataFrame, optional (default: None)
Reference values. Fields for plotting should correspond to
df_response.
palette : dict, optional (default: None)
Colors dictionary for perturbations to plot.
title_name : str, optional (default: None)
Title for the plot.
postfix : str, optional (defualt: '')
Postfix to add to the output file name to save the model.
filename : str, optional (defualt: None)
Name of the file to save the plot. If None, will automatically
generate name from prefix file.
logdose: bool (default: False)
If True, dose values will be log10. 0 values will be mapped to
minumum value -1,e.g.
if smallest non-zero dose was 0.001, 0 will be mapped to -4.
figsize: tuple (default: (7., 4.))
Size of output figure
"""
if (filename is None) and not (self.fileprefix is None):
filename = f"{self.fileprefix}_{postfix}response.png"
if fontsize is None:
fontsize = self.fontsize
if logdose:
dose_name = f"log10-{self.dose_key}"
df_response[dose_name] = log10_with0(df_response[self.dose_key].values)
if not (df_ref is None):
df_ref[dose_name] = log10_with0(df_ref[self.dose_key].values)
else:
dose_name = self.dose_key
if var_name is None:
if len(self.unique_covars) > 1:
var_name = self.covars_key
else:
var_name = self.perturbation_key
if palette is None:
if var_name == self.perturbation_key:
palette = self.perts_palette
elif var_name in self.covariate_keys:
palette = self.covars_palette[var_name]
plot_dose_response(
df_response,
dose_name,
var_name,
xlabelname=xlabelname,
df_ref=df_ref,
response_name=response_name,
title_name=title_name,
use_ref_response=(not (df_ref is None)),
col_dict=palette,
plot_vertical=False,
f1=figsize[0],
f2=figsize[1],
fname=filename,
logscale=measured_points,
measured_points=measured_points,
bbox=bbox,
fontsize=fontsize,
figformat="png",
)
def plot_scatter(
self,
df,
x_axis,
y_axis,
hue=None,
size=None,
style=None,
figsize=(4.5, 4.5),
title=None,
palette=None,
filename=None,
alpha=0.75,
sizes=(30, 90),
text_dict=None,
postfix="",
fontsize=14,
):
sns.set_style("white")
if (filename is None) and not (self.fileprefix is None):
filename = f"{self.fileprefix}_scatter{postfix}.png"
if fontsize is None:
fontsize = self.fontsize
fig = plt.figure(figsize=figsize)
ax = plt.gca()
sns.scatterplot(
x=x_axis,
y=y_axis,
hue=hue,
style=style,
size=size,
sizes=sizes,
alpha=alpha,
palette=palette,
data=df,
)
ax.legend_.remove()
ax.set_xlabel(x_axis, fontsize=fontsize)
ax.set_ylabel(y_axis, fontsize=fontsize)
ax.xaxis.set_tick_params(labelsize=fontsize)
ax.yaxis.set_tick_params(labelsize=fontsize)
ax.set_title(title)
if not (text_dict is None):
texts = []
for label in text_dict.keys():
texts.append(
ax.text(
text_dict[label][0],
text_dict[label][1],
label,
fontsize=fontsize,
)
)
adjust_text(
texts, arrowprops=dict(arrowstyle="-", color="black", lw=0.1), ax=ax
)
plt.tight_layout()
if filename:
save_to_file(fig, filename)
def log10_with0(x):
mx = np.min(x[x > 0])
x[x == 0] = mx / 10
return np.log10(x)
def get_palette(n_colors, palette_name="Set1"):
try:
palette = sns.color_palette(palette_name)
except:
print("Palette not found. Using default palette tab10")
palette = sns.color_palette()
while len(palette) < n_colors:
palette += palette
return palette
def fast_dimred(emb, method="KernelPCA"):
"""
Takes high dimensional embeddings and produces a 2-dimensional representation
for plotting.
emb: np.array
Embeddings matrix.
method: str (default: 'KernelPCA')
Method for dimensionality reduction: KernelPCA, UMAPpre, UMAPcos, tSNE.
If None return first 2 dimensions of the embedding vector.
"""
if method is None:
return emb[:, :2]
elif method == "KernelPCA":
similarity_matrix = cosine_similarity(emb)
np.fill_diagonal(similarity_matrix, 1.0)
X = KernelPCA(n_components=2, kernel="precomputed").fit_transform(
similarity_matrix
)
else:
raise NotImplementedError
return X
def plot_dose_response(
df,
contvar_key,
perturbation_key,
df_ref=None,
response_name="response",
use_ref_response=False,
palette=None,
col_dict=None,
fontsize=8,
measured_points=None,
interpolate=True,
f1=7,
f2=3.0,
bbox=(1.35, 1.0),
ref_name="origin",
title_name="None",
plot_vertical=True,
fname=None,
logscale=None,
xlabelname=None,
figformat="png",
):
"""Plotting decoding of the response with respect to dose.
Params
------
df : `DataFrame`
Table with columns=[perturbation_key, contvar_key, response_name].
The last column is always "response".
contvar_key : str
Name of the column in df for values to use for x axis.
perturbation_key : str
Name of the column in df for the perturbation or covariate to plot.
response_name: str (default: response)
Name of the column in df for values to use for y axis.
df_ref : `DataFrame` (default: None)
Table with the same columns as in df to plot ground_truth or another
condition for comparison. Could
also be used to just extract reference values for x-axis.
use_ref_response : bool (default: False)
A flag indicating if to use values for y axis from df_ref (True) or j
ust to extract reference values for x-axis.
col_dict : dictionary (default: None)
Dictionary with colors for each value in perturbation_key.
bbox : tuple (default: (1.35, 1.))
Coordinates to adjust the legend.
plot_vertical : boolean (default: False)
Flag if to plot reference values for x axis from df_ref dataframe.
f1 : float (default: 7.0))
Width in inches for the plot.
f2 : float (default: 3.0))
Hight in inches for the plot.
fname : str (default: None)
Name of the file to export the plot. The name comes without format
extension.
format : str (default: png)
Format for the file to export the plot.
"""
sns.set_style("white")
if use_ref_response and not (df_ref is None):
df[ref_name] = "predictions"
df_ref[ref_name] = "observations"
if interpolate:
df_plt = pd.concat([df, df_ref])
else:
df_plt = df
else:
df_plt = df
df_plt = df_plt.reset_index()
atomic_drugs = np.unique(df[perturbation_key].values)
if palette is None:
current_palette = get_palette(len(list(atomic_drugs)))
if col_dict is None:
col_dict = dict(zip(list(atomic_drugs), current_palette))
fig = plt.figure(figsize=(f1, f2))
ax = plt.gca()
if use_ref_response:
sns.lineplot(
x=contvar_key,
y=response_name,
palette=col_dict,
hue=perturbation_key,
style=ref_name,
dashes=[(1, 0), (2, 1)],
legend="full",
style_order=["predictions", "observations"],
data=df_plt,
ax=ax,
)
df_ref = df_ref.replace("training_treated", "train")
sns.scatterplot(
x=contvar_key,
y=response_name,
hue="split",
size="num_cells",
sizes=(10, 100),
alpha=1.0,
palette={"train": "#000000", "training": "#000000", "ood": "#e41a1c"},
data=df_ref,
ax=ax,
)
sns.despine()
ax.legend_.remove()
else:
sns.lineplot(
x=contvar_key,
y=response_name,
palette=col_dict,
hue=perturbation_key,
data=df_plt,
ax=ax,
)
ax.legend(loc="upper right", bbox_to_anchor=bbox, fontsize=fontsize)
sns.despine()
if not (title_name is None):
ax.set_title(title_name, fontsize=fontsize, fontweight="bold")
ax.grid("off")
if xlabelname is None:
ax.set_xlabel(contvar_key, fontsize=fontsize)
else:
ax.set_xlabel(xlabelname, fontsize=fontsize)
ax.set_ylabel(f"{response_name}", fontsize=fontsize)
ax.xaxis.set_tick_params(labelsize=fontsize)
ax.yaxis.set_tick_params(labelsize=fontsize)
if not (logscale is None):
ax.set_xticks(np.log10(logscale))
ax.set_xticklabels(logscale, rotation=90)
if not (df_ref is None):
atomic_drugs = np.unique(df_ref[perturbation_key].values)
for drug in atomic_drugs:
x = df_ref[df_ref[perturbation_key] == drug][contvar_key].values
m1 = np.min(df[df[perturbation_key] == drug][response_name].values)
m2 = np.max(df[df[perturbation_key] == drug][response_name].values)
if plot_vertical:
for x_dot in x:
ax.plot(
[x_dot, x_dot],
[m1, m2],
":",
color="black",
linewidth=0.5,
alpha=0.5,
)
fig.tight_layout()
if fname:
plt.savefig(f"{fname}.{figformat}", format=figformat, dpi=600)
return fig
def plot_uncertainty_comb_dose(
cpa_api,
cov,
pert,
N=11,
metric="cosine",
measured_points=None,
cond_key="condition",
figsize=(4, 4),
vmin=None,
vmax=None,
sizes=(40, 160),
df_ref=None,
xlims=(0, 1.03),
ylims=(0, 1.03),
fixed_drugs="",
fixed_doses="",
title="",
filename=None,
):
"""Plotting uncertainty for a single perturbation at a dose range for a
particular covariate.
Params
------
cpa_api
Api object for the model class.
cov : dict
Name of covariate.
pert : str
Name of the perturbation.
N : int
Number of dose values.
metric: str (default: 'cosine')
Metric to evaluate uncertainty.
measured_points : dict (default: None)
A dicitionary of dictionaries. Per each covariate a dictionary with
observed doses per perturbation, e.g. {'covar1': {'pert1':
[0.1, 0.5, 1.0], 'pert2': [0.3]}
cond_key : str (default: 'condition')
Name of the variable to use for plotting.
filename : str (default: None)
Full path to the file to export the plot. File extension should be
included.
Returns
-------
pd.DataFrame of uncertainty estimations.
"""
cov_name = "_".join([cov[cov_key] for cov_key in cpa_api.covariate_keys])
df_list = []
for i in np.round(np.linspace(0, 1, N), decimals=2):
for j in np.round(np.linspace(0, 1, N), decimals=2):
df_list.append(
{
"covariates": cov_name,
"condition": pert + fixed_drugs,
"dose_val": str(i) + "+" + str(j) + fixed_doses,
}
)
df_pred = pd.DataFrame(df_list)
uncert_cos = []
uncert_eucl = []
closest_cond_cos = []
closest_cond_eucl = []
for i in range(df_pred.shape[0]):
(
uncert_cos_,
uncert_eucl_,
closest_cond_cos_,
closest_cond_eucl_,
) = cpa_api.compute_uncertainty(
cov=cov, pert=df_pred.iloc[i]["condition"], dose=df_pred.iloc[i]["dose_val"]
)
uncert_cos.append(uncert_cos_)
uncert_eucl.append(uncert_eucl_)
closest_cond_cos.append(closest_cond_cos_)
closest_cond_eucl.append(closest_cond_eucl_)
df_pred["uncertainty_cosine"] = uncert_cos
df_pred["uncertainty_eucl"] = uncert_eucl
df_pred["closest_cond_cos"] = closest_cond_cos
df_pred["closest_cond_eucl"] = closest_cond_eucl
doses = df_pred.dose_val.apply(lambda x: x.split("+"))
X = np.array(doses.apply(lambda x: x[0]).astype(float)).reshape(N, N)
Y = np.array(doses.apply(lambda x: x[1]).astype(float)).reshape(N, N)
Z = np.array(df_pred[f"uncertainty_{metric}"].values.astype(float)).reshape(N, N)
fig, ax = plt.subplots(1, 1, figsize=figsize)
CS = ax.contourf(X, Y, Z, cmap="coolwarm", levels=20, alpha=1, vmin=vmin, vmax=vmax)
ax.set_xlabel(pert.split("+")[0], fontweight="bold")
ax.set_ylabel(pert.split("+")[1], fontweight="bold")
if not (df_ref is None):
sns.scatterplot(
x=pert.split("+")[0],
y=pert.split("+")[1],
hue="split",
size="num_cells",
sizes=sizes,
alpha=1.0,
palette={"train": "#000000", "training": "#000000", "ood": "#e41a1c"},
data=df_ref,
ax=ax,
)
ax.legend_.remove()
if measured_points:
ticks = measured_points[cov_name][pert]
xticks = [float(x.split("+")[0]) for x in ticks]
yticks = [float(x.split("+")[1]) for x in ticks]
ax.set_xticks(xticks)
ax.set_xticklabels(xticks, rotation=90)
ax.set_yticks(yticks)
fig.colorbar(CS)
sns.despine()
ax.axis("equal")
ax.axis("square")
ax.set_xlim(xlims)
ax.set_ylim(ylims)
ax.set_title(title, fontsize=10, fontweight='bold')
plt.tight_layout()
if filename:
plt.savefig(filename, dpi=600)
return df_pred
def plot_uncertainty_dose(
cpa_api,
cov,
pert,
N=11,
metric="cosine",
measured_points=None,
cond_key="condition",
log=False,
min_dose=None,
filename=None,
):
"""Plotting uncertainty for a single perturbation at a dose range for a
particular covariate.
Params
------
cpa_api
Api object for the model class.
cov : str
Name of covariate.
pert : str
Name of the perturbation.
N : int
Number of dose values.
metric: str (default: 'cosine')
Metric to evaluate uncertainty.
measured_points : dict (default: None)
A dicitionary of dictionaries. Per each covariate a dictionary with
observed doses per perturbation, e.g. {'covar1': {'pert1':
[0.1, 0.5, 1.0], 'pert2': [0.3]}
cond_key : str (default: 'condition')
Name of the variable to use for plotting.
log : boolean (default: False)
A flag if to plot on a log scale.
min_dose : float (default: None)
Minimum dose for the uncertainty estimate.
filename : str (default: None)
Full path to the file to export the plot. File extension should be included.
Returns
-------
pd.DataFrame of uncertainty estimations.
"""
df_list = []
if log:
if min_dose is None:
min_dose = 1e-3
N_val = np.round(np.logspace(np.log10(min_dose), np.log10(1), N), decimals=10)
else:
if min_dose is None:
min_dose = 0
N_val = np.round(np.linspace(min_dose, 1.0, N), decimals=3)
cov_name = "_".join([cov[cov_key] for cov_key in cpa_api.covariate_keys])
for i in N_val:
df_list.append({"covariates": cov_name, "condition": pert, "dose_val": repr(i)})
df_pred = pd.DataFrame(df_list)
uncert_cos = []
uncert_eucl = []
closest_cond_cos = []
closest_cond_eucl = []
for i in range(df_pred.shape[0]):
(
uncert_cos_,
uncert_eucl_,
closest_cond_cos_,
closest_cond_eucl_,
) = cpa_api.compute_uncertainty(
cov=cov, pert=df_pred.iloc[i]["condition"], dose=df_pred.iloc[i]["dose_val"]
)
uncert_cos.append(uncert_cos_)
uncert_eucl.append(uncert_eucl_)
closest_cond_cos.append(closest_cond_cos_)
closest_cond_eucl.append(closest_cond_eucl_)
df_pred["uncertainty_cosine"] = uncert_cos
df_pred["uncertainty_eucl"] = uncert_eucl
df_pred["closest_cond_cos"] = closest_cond_cos
df_pred["closest_cond_eucl"] = closest_cond_eucl
x = df_pred.dose_val.values.astype(float)
y = df_pred[f"uncertainty_{metric}"].values.astype(float)
fig, ax = plt.subplots(1, 1)
ax.plot(x, y)
ax.set_xlabel(pert)
ax.set_ylabel("Uncertainty")
ax.set_title(cov_name)
if log:
ax.set_xscale("log")
if measured_points:
ticks = measured_points[cov_name][pert]
ax.set_xticks(ticks)
ax.set_xticklabels(ticks, rotation=90)
else:
plt.draw()
ax.set_xticklabels(ax.get_xticklabels(), rotation=90)
sns.despine()
plt.tight_layout()
if filename:
plt.savefig(filename)
return df_pred
def save_to_file(fig, file_name, file_format=None):
if file_format is None:
if file_name.split(".")[-1] in ["png", "pdf"]:
file_format = file_name.split(".")[-1]
savename = file_name
else:
file_format = "pdf"
savename = f"{file_name}.{file_format}"
else:
savename = file_name
fig.savefig(savename, format=file_format, dpi=600)
print(f"Saved file to: {savename}")
def plot_embedding(
emb,
labels=None,
col_dict=None,
title=None,
show_lines=False,
show_text=False,
show_legend=True,
axis_equal=True,
circle_size=40,
circe_transparency=1.0,
line_transparency=0.8,
line_width=1.0,
fontsize=9,
fig_width=4,
fig_height=4,
file_name=None,
file_format=None,
labels_name=None,
width_ratios=[7, 1],
bbox=(1.3, 0.7),
):
sns.set_style("white")
# create data structure suitable for embedding
df = pd.DataFrame(emb, columns=["dim1", "dim2"])
if not (labels is None):
if labels_name is None:
labels_name = "labels"
df[labels_name] = labels
fig = plt.figure(figsize=(fig_width, fig_height))
ax = plt.gca()
sns.despine(left=False, bottom=False, right=True)
if (col_dict is None) and not (labels is None):
col_dict = get_colors(labels)
sns.scatterplot(
x="dim1",
y="dim2",
hue=labels_name,
palette=col_dict,
alpha=circe_transparency,
edgecolor="none",
s=circle_size,
data=df,
ax=ax,
)
try:
ax.legend_.remove()
except:
pass
if show_lines:
for i in range(len(emb)):
if col_dict is None:
ax.plot(
[0, emb[i, 0]],
[0, emb[i, 1]],
alpha=line_transparency,
linewidth=line_width,
c=None,
)
else:
ax.plot(
[0, emb[i, 0]],
[0, emb[i, 1]],
alpha=line_transparency,
linewidth=line_width,
c=col_dict[labels[i]],
)
if show_text and not (labels is None):
texts = []
labels = np.array(labels)
unique_labels = np.unique(labels)
for label in unique_labels:
idx_label = np.where(labels == label)[0]
texts.append(
ax.text(
np.mean(emb[idx_label, 0]),
np.mean(emb[idx_label, 1]),
label,
#fontsize=fontsize,
)
)
adjust_text(
texts, arrowprops=dict(arrowstyle="-", color="black", lw=0.1), ax=ax
)
if axis_equal:
ax.axis("equal")
ax.axis("square")
if title:
ax.set_title(title, fontweight="bold")
ax.set_xlabel("dim1"),# fontsize=fontsize)
ax.set_ylabel("dim2"),# fontsize=fontsize)
#ax.xaxis.set_tick_params(labelsize=fontsize)
#ax.yaxis.set_tick_params(labelsize=fontsize)
plt.tight_layout()
if file_name:
save_to_file(fig, file_name, file_format)
return plt
def get_colors(labels, palette=None, palette_name=None):
n_colors = len(labels)
if palette is None:
palette = get_palette(n_colors, palette_name)
col_dict = dict(zip(labels, palette[:n_colors]))
return col_dict
def plot_similarity(
emb,
labels=None,
col_dict=None,
fig_width=4,
fig_height=4,
cmap="coolwarm",
fmt="png",
fontsize=7,
file_format=None,
file_name=None,
):
# first we take construct similarity matrix
# add another similarity
similarity_matrix = cosine_similarity(emb)
df = pd.DataFrame(
similarity_matrix,
columns=labels,
index=labels,
)
if col_dict is None:
col_dict = get_colors(labels)
network_colors = pd.Series(df.columns, index=df.columns).map(col_dict)
sns_plot = sns.clustermap(
df,
cmap=cmap,
center=0,
row_colors=network_colors,
col_colors=network_colors,
mask=False,
metric="euclidean",
figsize=(fig_height, fig_width),
vmin=-1,
vmax=1,
fmt=file_format,
)
sns_plot.ax_heatmap.xaxis.set_tick_params(labelsize=fontsize)
sns_plot.ax_heatmap.yaxis.set_tick_params(labelsize=fontsize)
sns_plot.ax_heatmap.axis("equal")
sns_plot.cax.yaxis.set_tick_params(labelsize=fontsize)
if file_name:
save_to_file(sns_plot, file_name, file_format)
from scipy import sparse, stats
from sklearn.metrics import r2_score
def mean_plot(
adata,
pred,
condition_key,
exp_key,
path_to_save="./reg_mean.pdf",
gene_list=None,
deg_list=None,
show=False,
title=None,
verbose=False,
x_coeff=0.30,
y_coeff=0.8,
fontsize=11,
R2_type="R2",
figsize=(3.5, 3.5),
**kwargs,
):
"""
Plots mean matching.
# Parameters
adata: `~anndata.AnnData`
Contains real v
pred: `~anndata.AnnData`
Contains predicted values.
condition_key: Str
adata.obs key to look for x-axis and y-axis condition
exp_key: Str
Condition in adata.obs[condition_key] to be ploted
path_to_save: basestring
Path to save the plot.
gene_list: list
List of gene names to be plotted.
deg_list: list
List of DEGs to compute R2
show: boolean
if True plots the figure
Verbose: boolean
If true prints the value
title: Str
Title of the plot
x_coeff: float
Shifts R2 text horizontally by x_coeff
y_coeff: float
Shifts R2 text vertically by y_coeff
show: bool
if `True`: will show to the plot after saving it.
fontsize: int
Font size for R2 texts
R2_type: Str
How to compute R2 value, should be either Pearson R2 or R2 (sklearn)
Returns:
Calluated R2 values
"""
r2_types = ["R2", "Pearson R2"]
if R2_type not in r2_types:
raise ValueError("R2 caclulation should be one of" + str(r2_types))
if sparse.issparse(adata.X):
adata.X = adata.X.A
if sparse.issparse(pred.X):
pred.X = pred.X.A
diff_genes = deg_list
real = adata[adata.obs[condition_key] == exp_key]
pred = pred[pred.obs[condition_key] == exp_key]
if diff_genes is not None:
if hasattr(diff_genes, "tolist"):
diff_genes = diff_genes.tolist()
real_diff = adata[:, diff_genes][adata.obs[condition_key] == exp_key]
pred_diff = pred[:, diff_genes][pred.obs[condition_key] == exp_key]
x_diff = np.average(pred_diff.X, axis=0)
y_diff = np.average(real_diff.X, axis=0)
if R2_type == "R2":
r2_diff = r2_score(y_diff, x_diff)
if R2_type == "Pearson R2":
m, b, pearson_r_diff, p_value_diff, std_err_diff = stats.linregress(
y_diff, x_diff
)
r2_diff = pearson_r_diff ** 2
if verbose:
print(f"Top {len(diff_genes)} DEGs var: ", r2_diff)
x = np.average(pred.X, axis=0)
y = np.average(real.X, axis=0)
if R2_type == "R2":
r2 = r2_score(y, x)
if R2_type == "Pearson R2":
m, b, pearson_r, p_value, std_err = stats.linregress(y, x)
r2 = pearson_r ** 2
if verbose:
print("All genes var: ", r2)
df = pd.DataFrame({f"{exp_key}_true": x, f"{exp_key}_pred": y})
plt.figure(figsize=figsize)
ax = sns.regplot(x=f"{exp_key}_true", y=f"{exp_key}_pred", data=df)
ax.tick_params(labelsize=fontsize)
if "range" in kwargs:
start, stop, step = kwargs.get("range")
ax.set_xticks(np.arange(start, stop, step))
ax.set_yticks(np.arange(start, stop, step))
ax.set_xlabel("true", fontsize=fontsize)
ax.set_ylabel("pred", fontsize=fontsize)
if gene_list is not None:
for i in gene_list:
j = adata.var_names.tolist().index(i)
x_bar = x[j]
y_bar = y[j]
plt.text(x_bar, y_bar, i, fontsize=fontsize, color="black")
plt.plot(x_bar, y_bar, "o", color="red", markersize=5)
if title is None:
plt.title(f"", fontsize=fontsize, fontweight="bold")
else:
plt.title(title, fontsize=fontsize, fontweight="bold")
ax.text(
max(x) - max(x) * x_coeff,
max(y) - y_coeff * max(y),
r"$\mathrm{R^2_{\mathrm{\mathsf{all\ genes}}}}$= " + f"{r2:.2f}",
fontsize=fontsize,
)
if diff_genes is not None:
ax.text(
max(x) - max(x) * x_coeff,
max(y) - (y_coeff + 0.15) * max(y),
r"$\mathrm{R^2_{\mathrm{\mathsf{DEGs}}}}$= " + f"{r2_diff:.2f}",
fontsize=fontsize,
)
plt.savefig(f"{path_to_save}", bbox_inches="tight", dpi=100)
if show:
plt.show()
plt.close()
if diff_genes is not None:
return r2, r2_diff
else:
return r2
def plot_r2_matrix(pred, adata, de_genes=None, **kwds):
"""Plots a pairwise R2 heatmap between predicted and control conditions.
Params
------
pred : `AnnData`
Must have the field `cov_drug_dose_name`
adata : `AnnData`
Original gene expression data, with the field `cov_drug_dose_name`.
de_genes : `dict`
Dictionary of de_genes, where the keys
match the categories in `cov_drug_dose_name`
"""
r2s_mean = defaultdict(list)
r2s_var = defaultdict(list)
conditions = pred.obs["cov_drug_dose_name"].cat.categories
for cond in conditions:
if de_genes:
degs = de_genes[cond]
y_pred = pred[:, degs][pred.obs["cov_drug_dose_name"] == cond].X
y_true_adata = adata[:, degs]
else:
y_pred = pred[pred.obs["cov_drug_dose_name"] == cond].X
y_true_adata = adata
# calculate r2 between pairwise
for cond_real in conditions:
y_true = y_true_adata[
y_true_adata.obs["cov_drug_dose_name"] == cond_real
].X.toarray()
r2s_mean[cond_real].append(
r2_score(y_true.mean(axis=0), y_pred.mean(axis=0))
)
r2s_var[cond_real].append(r2_score(y_true.var(axis=0), y_pred.var(axis=0)))
for r2_dict in [r2s_mean, r2s_var]:
r2_df = pd.DataFrame.from_dict(r2_dict, orient="index")
r2_df.columns = conditions
plt.figure(figsize=(5, 5))
p = sns.heatmap(
data=r2_df,
vmin=max(r2_df.min(0).min(), 0),
cmap="Blues",
cbar=False,
annot=True,
fmt=".2f",
annot_kws={"fontsize": 5},
**kwds,
)
plt.xticks(fontsize=6)
plt.yticks(fontsize=6)
plt.xlabel("y_true")
plt.ylabel("y_pred")
plt.show()
def arrange_history(history):
print(history.keys())
class CPAHistory:
"""
A wrapper for automatic plotting history of CPA model..
"""
def __init__(self, cpa_api, fileprefix=None):
"""
Parameters
----------
cpa_api : dict
cpa api instance
fileprefix : str, optional (default: None)
Prefix (with path) to the filename to save all embeddings in a
standartized manner. If None, embeddings are not saved to file.
"""
self.history = cpa_api.history
self.time = self.history["elapsed_time_min"]
self.losses_list = [
"loss_reconstruction",
"loss_adv_drugs",
"loss_adv_covariates",
]
self.penalties_list = ["penalty_adv_drugs", "penalty_adv_covariates"]
subset_keys = ["epoch"] + self.losses_list + self.penalties_list
self.losses = pd.DataFrame(
dict((k, self.history[k]) for k in subset_keys if k in self.history)
)
self.header = ["mean", "mean_DE", "var", "var_DE"]
self.eval_metrics = False
if 'perturbation disentanglement' in list (self.history): #check that metrics were evaluated
self.eval_metrics = True
self.metrics = pd.DataFrame(columns=["epoch", "split"] + self.header)
for split in ["training", "test", "ood"]:
df_split = pd.DataFrame(np.array(self.history[split]), columns=self.header)
df_split["split"] = split
df_split["epoch"] = self.history["stats_epoch"]
self.metrics = pd.concat([self.metrics, df_split])
self.covariate_names = list(cpa_api.datasets["training"].covariate_names)
self.disent = pd.DataFrame(
dict(
(k, self.history[k])
for k in
['perturbation disentanglement']
+ [f'{cov} disentanglement' for cov in self.covariate_names]
if k in self.history
)
)
self.disent["epoch"] = self.history["stats_epoch"]
self.fileprefix = fileprefix
def print_time(self):
print(f"Computation time: {self.time:.0f} min")
def plot_losses(self, filename=None):
"""
Parameters
----------
filename : str (default: None)
Name of the file to save the plot. If None, will automatically
generate name from prefix file.
"""
if filename is None:
if self.fileprefix is None:
filename = None
else:
filename = f"{self.fileprefix}_history_losses.png"
fig, ax = plt.subplots(1, 4, sharex=True, sharey=False, figsize=(12, 3))
i = 0
for i in range(4):
if i < 3:
ax[i].plot(
self.losses["epoch"].values, self.losses[self.losses_list[i]].values
)
ax[i].set_title(self.losses_list[i], fontweight="bold")
else:
ax[i].plot(
self.losses["epoch"].values, self.losses[self.penalties_list].values
)
ax[i].set_title("Penalties", fontweight="bold")
sns.despine()
plt.tight_layout()
if filename:
save_to_file(fig, filename)
def plot_r2_metrics(self, epoch_min=0, filename=None):
"""
Parameters
----------
epoch_min : int (default: 0)
Epoch from which to show metrics history plot. Done for readability.
filename : str (default: None)
Name of the file to save the plot. If None, will automatically
generate name from prefix file.
"""
assert self.eval_metrics == True, 'The evaluation metrics were not computed'
if filename is None:
if self.fileprefix is None:
filename = None
else:
filename = f"{self.fileprefix}_history_metrics.png"
df = self.metrics.melt(id_vars=["epoch", "split"])
col_dict = dict(
zip(["training", "test", "ood"], ["#377eb8", "#4daf4a", "#e41a1c"])
)
fig, axs = plt.subplots(2, 2, sharex=True, sharey=False, figsize=(7, 5))
ax = plt.gca()
i = 0
for i1 in range(2):
for i2 in range(2):
sns.lineplot(
data=df[
(df["variable"] == self.header[i]) & (df["epoch"] > epoch_min)
],
x="epoch",
y="value",
palette=col_dict,
hue="split",
ax=axs[i1, i2],
)
axs[i1, i2].set_title(self.header[i], fontweight="bold")
i += 1
sns.despine()
plt.tight_layout()
if filename:
save_to_file(fig, filename)
def plot_disentanglement_metrics(self, epoch_min=0, filename=None):
"""
Parameters
----------
epoch_min : int (default: 0)
Epoch from which to show metrics history plot. Done for readability.
filename : str (default: None)
Name of the file to save the plot. If None, will automatically
generate name from prefix file.
"""
assert self.eval_metrics == True, 'The evaluation metrics were not computed'
if filename is None:
if self.fileprefix is None:
filename = None
else:
filename = f"{self.fileprefix}_history_metrics.png"
fig, axs = plt.subplots(
1,
1+len(self.covariate_names),
sharex=True,
sharey=False,
figsize=(2 + 5*(len(self.covariate_names)), 3)
)
ax = plt.gca()
sns.lineplot(
data=self.disent[self.disent["epoch"] > epoch_min],
x="epoch",
y="perturbation disentanglement",
legend=False,
ax=axs[0],
)
axs[0].set_title("perturbation disent", fontweight="bold")
for i, cov in enumerate(self.covariate_names):
sns.lineplot(
data=self.disent[self.disent['epoch'] > epoch_min],
x="epoch",
y=f"{cov} disentanglement",
legend=False,
ax=axs[1+i]
)
axs[1+i].set_title(f"{cov} disent", fontweight="bold")
fig.tight_layout()
sns.despine()
|
CPA-main
|
cpa/plotting.py
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
from cpa.api import API
from cpa.plotting import CPAVisuals
|
CPA-main
|
cpa/__init__.py
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.