python_code
stringlengths
0
992k
repo_name
stringlengths
8
46
file_path
stringlengths
5
162
# Copyright (c) Shanghai AI Lab. All rights reserved. _base_ = [ '../_base_/models/mask_rcnn_r50_fpn.py', '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] # pretrained = 'https://dl.fbaipublicfiles.com/mae/pretrain/mae_pretrain_vit_base.pth' pretrained = 'pretrained/mae_pretrain_vit_base.pth' model = dict( backbone=dict( _delete_=True, type='ViTAdapter', patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, drop_path_rate=0.2, conv_inplane=64, n_points=4, deform_num_heads=12, cffn_ratio=0.25, deform_ratio=0.5, use_extra_extractor=False, layer_scale=False, interaction_indexes=[[0, 2], [3, 5], [6, 8], [9, 11]], window_attn=[True, True, False, True, True, False, True, True, False, True, True, False], window_size=[14, 14, None, 14, 14, None, 14, 14, None, 14, 14, None], pretrained=pretrained), neck=dict( type='FPN', in_channels=[768, 768, 768, 768], out_channels=256, num_outs=5, norm_cfg=dict(type='MMSyncBN', requires_grad=True)), rpn_head=dict(num_convs=2), roi_head=dict( bbox_head=dict(type='Shared4Conv1FCBBoxHead', norm_cfg=dict(type='MMSyncBN', requires_grad=True)), mask_head=dict(norm_cfg=dict(type='MMSyncBN', requires_grad=True)), )) # optimizer img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) # augmentation strategy originates from DETR / Sparse RCNN train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='Resize', img_scale=(1024, 1024), ratio_range=(0.1, 2.0), multiscale_mode='range', keep_ratio=True), dict( type='RandomCrop', crop_type='absolute_range', crop_size=(1024, 1024), recompute_bbox=True, allow_negative_crop=True), dict(type='FilterAnnotations', min_gt_bbox_wh=(1e-2, 1e-2)), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=(1024, 1024)), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']), ] data = dict(train=dict(pipeline=train_pipeline)) lr_config = dict( _delete_=True, policy='CosineAnnealing', min_lr_ratio=0.01, warmup='linear', warmup_iters=2000, warmup_ratio=0.001) runner = dict(type='EpochBasedRunner', max_epochs=50) optimizer = dict( _delete_=True, type='AdamW', lr=0.0001, weight_decay=0.05, paramwise_cfg=dict( custom_keys={ 'level_embed': dict(decay_mult=0.), 'pos_embed': dict(decay_mult=0.), 'norm': dict(decay_mult=0.), 'bias': dict(decay_mult=0.) })) optimizer_config = dict(grad_clip=None) fp16 = dict(loss_scale=dict(init_scale=512)) checkpoint_config = dict( interval=1, max_keep_ckpts=3, save_last=True, )
ViT-Adapter-main
detection/configs/upgraded_mask_rcnn/mask_rcnn_mae_adapter_base_lsj_fpn_50ep_coco.py
# Copyright (c) Shanghai AI Lab. All rights reserved. _base_ = [ '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_3x.py', '../_base_/default_runtime.py' ] drop_path_rate = 0.4 model = dict( type='HybridTaskCascadeAug', backbone=dict( type='ViTAdapter', img_size=384, pretrain_size=384, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, drop_path_rate=drop_path_rate, conv_inplane=64, n_points=4, deform_num_heads=16, cffn_ratio=0.25, deform_ratio=0.5, with_cp=True, interaction_indexes=[[0, 5], [6, 11], [12, 17], [18, 23]], window_attn=[True, True, True, True, True, False, True, True, True, True, True, False, True, True, True, True, True, False, True, True, True, True, True, False], window_size=[14, 14, 14, 14, 14, None, 14, 14, 14, 14, 14, None, 14, 14, 14, 14, 14, None, 14, 14, 14, 14, 14, None], pretrained=None), neck=[ dict( type='ExtraAttention', in_channels=[1024, 1024, 1024, 1024], num_head=32, with_ffn=True, ffn_ratio=4.0, drop_path=drop_path_rate, ), dict( type='FPN', in_channels=[1024, 1024, 1024, 1024], out_channels=256, num_outs=5)], rpn_head=dict( type='RPNHead', in_channels=256, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', scales=[8], ratios=[0.5, 1.0, 2.0], strides=[4, 8, 16, 32, 64]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0]), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)), roi_head=dict( type='HybridTaskCascadeRoIHead', interleaved=True, mask_info_flow=True, num_stages=3, stage_loss_weights=[1, 0.5, 0.25], bbox_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0), out_channels=256, featmap_strides=[4, 8, 16, 32]), bbox_head=[ dict( type='Shared4Conv1FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), dict( type='Shared4Conv1FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.05, 0.05, 0.1, 0.1]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), dict( type='Shared4Conv1FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.033, 0.033, 0.067, 0.067]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), ], mask_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0), out_channels=256, featmap_strides=[4, 8, 16, 32]), mask_head=[ dict( type='HTCMaskHead', with_conv_res=False, num_convs=4, in_channels=256, conv_out_channels=256, num_classes=80, loss_mask=dict( type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)), dict( type='HTCMaskHead', num_convs=4, in_channels=256, conv_out_channels=256, num_classes=80, loss_mask=dict( type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)), dict( type='HTCMaskHead', num_convs=4, in_channels=256, conv_out_channels=256, num_classes=80, loss_mask=dict( type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)) ], semantic_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0), out_channels=256, featmap_strides=[8]), semantic_head=dict( type='FusedSemanticHead', num_ins=5, fusion_level=1, num_convs=4, in_channels=256, conv_out_channels=256, num_classes=183, loss_seg=dict( type='CrossEntropyLoss', ignore_index=255, loss_weight=0.2))), # model training and testing settings train_cfg=dict( rpn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), allowed_border=0, pos_weight=-1, debug=False), rpn_proposal=dict( nms_pre=2000, max_per_img=2000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=[ dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0.5, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), mask_size=28, pos_weight=-1, debug=False), dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.6, neg_iou_thr=0.6, min_pos_iou=0.6, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), mask_size=28, pos_weight=-1, debug=False), dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.7, min_pos_iou=0.7, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), mask_size=28, pos_weight=-1, debug=False) ]), test_cfg=dict( rpn=dict( nms_pre=1000, max_per_img=1000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=dict( score_thr=0.001, nms=dict(type='soft_nms', iou_threshold=0.5), max_per_img=100, mask_thr_binary=0.5), aug=dict( score_thr=0.001, nms=dict(type='soft_nms', iou_threshold=0.5), max_per_img=1000, scale_ranges=[['l'], ['l'], ['m', 'l'], ['s', 'm'], ['s', 'm'], ['s', 'm']], ) )) # optimizer img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) # augmentation strategy originates from DETR / Sparse RCNN # file_client_args = dict(backend='petrel') file_client_args = dict(backend='disk') train_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='InstaBoost', action_candidate=('normal', 'horizontal', 'skip'), action_prob=(1, 0, 0), scale=(0.8, 1.2), dx=15, dy=15, theta=(-1, 1), color_prob=0.5, hflag=False, aug_ratio=0.5), dict(type='LoadAnnotations', with_bbox=True, with_mask=True, with_seg=True), dict(type='Resize', img_scale=[(1600, 400), (1600, 1400)], multiscale_mode='range', keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='SegRescale', scale_factor=1 / 8), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks', 'gt_semantic_seg']), ] test_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict( type='MultiScaleFlipAug', img_scale=[(1600, 600), (1600, 800), (1600, 1000), (1600, 1200), (1600, 1400), (1600, 1600)], flip=True, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict(samples_per_gpu=1, train=dict(seg_prefix='data/coco/stuffthingmaps/train2017/', pipeline=train_pipeline), test=dict(pipeline=test_pipeline), val=dict(pipeline=test_pipeline)) optimizer = dict(_delete_=True, type='AdamW', lr=0.0001, betas=(0.9, 0.999), weight_decay=0.05, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=24, layer_decay_rate=0.90)) optimizer_config = dict(grad_clip=None) checkpoint_config = dict( interval=1, max_keep_ckpts=2, save_last=True, ) # fp16 = dict(loss_scale=dict(init_scale=512))
ViT-Adapter-main
detection/configs/htc++/htc++_augreg_adapter_large_fpn_3x_coco_ms.py
# Copyright (c) Shanghai AI Lab. All rights reserved. _base_ = [ '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_3x.py', '../_base_/default_runtime.py' ] # pretrained = 'https://conversationhub.blob.core.windows.net/beit-share-public/beitv2/beitv2_large_patch16_224_pt1k_ft21k.pth' pretrained = 'pretrained/beitv2_large_patch16_224_pt1k_ft21k.pth' model = dict( type='HybridTaskCascade', backbone=dict( type='BEiTAdapter', img_size=224, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-6, drop_path_rate=0.4, conv_inplane=64, n_points=4, deform_num_heads=16, cffn_ratio=0.25, deform_ratio=0.5, window_attn=[True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True], window_size=[14, 14, 14, 14, 14, 56, 14, 14, 14, 14, 14, 56, 14, 14, 14, 14, 14, 56, 14, 14, 14, 14, 14, 56], interaction_indexes=[[0, 5], [6, 11], [12, 17], [18, 23]], pretrained=pretrained), neck=[ dict( type='ExtraAttention', in_channels=[1024, 1024, 1024, 1024], num_head=32, with_ffn=True, ffn_ratio=4.0, drop_path=0.3, ), dict( type='FPN', in_channels=[1024, 1024, 1024, 1024], out_channels=256, num_outs=5)], rpn_head=dict( type='RPNHead', in_channels=256, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', scales=[8], ratios=[0.5, 1.0, 2.0], strides=[4, 8, 16, 32, 64]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0]), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)), roi_head=dict( type='HybridTaskCascadeRoIHead', interleaved=True, mask_info_flow=True, num_stages=3, stage_loss_weights=[1, 0.5, 0.25], bbox_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0), out_channels=256, featmap_strides=[4, 8, 16, 32]), bbox_head=[ dict( type='Shared4Conv1FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), dict( type='Shared4Conv1FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.05, 0.05, 0.1, 0.1]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), dict( type='Shared4Conv1FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.033, 0.033, 0.067, 0.067]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), ], mask_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0), out_channels=256, featmap_strides=[4, 8, 16, 32]), mask_head=[ dict( type='HTCMaskHead', with_conv_res=False, num_convs=4, in_channels=256, conv_out_channels=256, num_classes=80, loss_mask=dict( type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)), dict( type='HTCMaskHead', num_convs=4, in_channels=256, conv_out_channels=256, num_classes=80, loss_mask=dict( type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)), dict( type='HTCMaskHead', num_convs=4, in_channels=256, conv_out_channels=256, num_classes=80, loss_mask=dict( type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)) ], semantic_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0), out_channels=256, featmap_strides=[8]), semantic_head=dict( type='FusedSemanticHead', num_ins=5, fusion_level=1, num_convs=4, in_channels=256, conv_out_channels=256, num_classes=183, loss_seg=dict( type='CrossEntropyLoss', ignore_index=255, loss_weight=0.2))), # model training and testing settings train_cfg=dict( rpn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), allowed_border=0, pos_weight=-1, debug=False), rpn_proposal=dict( nms_pre=2000, max_per_img=2000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=[ dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0.5, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), mask_size=28, pos_weight=-1, debug=False), dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.6, neg_iou_thr=0.6, min_pos_iou=0.6, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), mask_size=28, pos_weight=-1, debug=False), dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.7, min_pos_iou=0.7, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), mask_size=28, pos_weight=-1, debug=False) ]), test_cfg=dict( rpn=dict( nms_pre=1000, max_per_img=1000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=dict( score_thr=0.001, nms=dict(type='soft_nms', iou_threshold=0.5), max_per_img=100, mask_thr_binary=0.5))) # optimizer img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) # augmentation strategy originates from DETR / Sparse RCNN # file_client_args = dict(backend='petrel') file_client_args = dict(backend='disk') train_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='InstaBoost', action_candidate=('normal', 'horizontal', 'skip'), action_prob=(1, 0, 0), scale=(0.8, 1.2), dx=15, dy=15, theta=(-1, 1), color_prob=0.5, hflag=False, aug_ratio=0.5), dict(type='LoadAnnotations', with_bbox=True, with_mask=True, with_seg=True), dict(type='Resize', img_scale=[(1600, 400), (1600, 1400)], multiscale_mode='range', keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='SegRescale', scale_factor=1 / 8), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks', 'gt_semantic_seg']), ] test_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='MultiScaleFlipAug', img_scale=(1600, 1400), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict(samples_per_gpu=1, train=dict(seg_prefix='data/coco/stuffthingmaps/train2017/', pipeline=train_pipeline), test=dict(pipeline=test_pipeline), val=dict(pipeline=test_pipeline)) optimizer = dict(_delete_=True, type='AdamW', lr=0.0001, betas=(0.9, 0.999), weight_decay=0.05, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=24, layer_decay_rate=0.90)) optimizer_config = dict(grad_clip=None) checkpoint_config = dict( interval=1, max_keep_ckpts=2, save_last=True, ) # fp16 = dict(loss_scale=dict(init_scale=512)) # find_unused_parameters=True
ViT-Adapter-main
detection/configs/htc++/htc++_beitv2_adapter_large_fpn_3x_coco.py
_base_ = [ '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] NUM_CLASSES = 80 drop_path_rate = 0.3 # 0.4 (pre-train) -> 0.3 (fine-tune) # https://github.com/czczup/ViT-Adapter/releases/download/v0.3.1/htc++_beitv2_adapter_large_fpn_o365.pth load_from = 'pretrained/htc++_beitv2_adapter_large_fpn_o365.pth' model = dict( type='HybridTaskCascade', backbone=dict( type='BEiTAdapter', img_size=224, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-6, drop_path_rate=drop_path_rate, conv_inplane=64, n_points=4, deform_num_heads=16, cffn_ratio=0.25, deform_ratio=0.5, with_cp=True, window_attn=[True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True], window_size=[14, 14, 14, 14, 14, 56, 14, 14, 14, 14, 14, 56, 14, 14, 14, 14, 14, 56, 14, 14, 14, 14, 14, 56], interaction_indexes=[[0, 5], [6, 11], [12, 17], [18, 23]], pretrained=None), neck=[ dict( type='ExtraAttention', in_channels=[1024, 1024, 1024, 1024], num_head=32, with_ffn=True, with_cp=True, ffn_ratio=4.0, drop_path=drop_path_rate, ), dict( type='FPN', in_channels=[1024, 1024, 1024, 1024], norm_cfg=dict(type='GN', num_groups=32), out_channels=256, num_outs=5)], rpn_head=dict( type='RPNHead', in_channels=256, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', scales=[8], ratios=[0.5, 1.0, 2.0], strides=[4, 8, 16, 32, 64]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0]), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)), roi_head=dict( type='HybridTaskCascadeRoIHead', interleaved=True, mask_info_flow=True, num_stages=3, stage_loss_weights=[1, 0.5, 0.25], bbox_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0), out_channels=256, featmap_strides=[4, 8, 16, 32]), bbox_head=[ dict( type='Shared4Conv1FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=NUM_CLASSES, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=True, reg_decoded_bbox=True, norm_cfg=dict(type='SyncBN', requires_grad=True), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=10.0)), # use GIoU loss dict( type='Shared4Conv1FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=NUM_CLASSES, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.05, 0.05, 0.1, 0.1]), reg_class_agnostic=True, reg_decoded_bbox=True, norm_cfg=dict(type='SyncBN', requires_grad=True), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=10.0)), # use GIoU loss dict( type='Shared4Conv1FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=NUM_CLASSES, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.033, 0.033, 0.067, 0.067]), reg_class_agnostic=True, reg_decoded_bbox=True, norm_cfg=dict(type='SyncBN', requires_grad=True), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=10.0)), # use GIoU loss ], mask_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0), out_channels=256, featmap_strides=[4, 8, 16, 32]), mask_head=[ dict( type='HTCMaskHead', with_conv_res=False, num_convs=4, in_channels=256, conv_out_channels=256, num_classes=80, loss_mask=dict( type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)), dict( type='HTCMaskHead', num_convs=4, in_channels=256, conv_out_channels=256, num_classes=80, loss_mask=dict( type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)), dict( type='HTCMaskHead', num_convs=4, in_channels=256, conv_out_channels=256, num_classes=80, loss_mask=dict( type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)) ], semantic_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0), out_channels=256, featmap_strides=[8]), semantic_head=dict( type='FusedSemanticHead', num_ins=5, fusion_level=1, num_convs=4, in_channels=256, conv_out_channels=256, num_classes=183, loss_seg=dict( type='CrossEntropyLoss', ignore_index=255, loss_weight=0.2)) ), # model training and testing settings train_cfg=dict( rpn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), allowed_border=0, pos_weight=-1, debug=False), rpn_proposal=dict( nms_pre=2000, max_per_img=2000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=[ dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0.5, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), mask_size=28, pos_weight=-1, debug=False), dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.6, neg_iou_thr=0.6, min_pos_iou=0.6, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), mask_size=28, pos_weight=-1, debug=False), dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.7, min_pos_iou=0.7, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), mask_size=28, pos_weight=-1, debug=False) ]), test_cfg=dict( rpn=dict( nms_pre=1000, max_per_img=1000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=dict( score_thr=0.001, nms=dict(type='soft_nms', iou_threshold=0.5), max_per_img=100, mask_thr_binary=0.5))) img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) # train_pipeline, NOTE the img_scale and the Pad's size_divisor is different # from the default setting in mmdet. file_client_args = dict(backend='disk') train_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='LoadAnnotations', with_bbox=True, with_mask=True, with_seg=True), dict(type='Resize', img_scale=[(2000, 600), (2000, 1600)], multiscale_mode='range', keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='SegRescale', scale_factor=1 / 8), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks', 'gt_semantic_seg']), ] test_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict( type='MultiScaleFlipAug', img_scale=(2000, 1000), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] # 4 nodes, total batch size=2*32=64 data = dict(samples_per_gpu=2, train=dict(seg_prefix='data/coco/stuffthingmaps/train2017/', pipeline=train_pipeline), test=dict(pipeline=test_pipeline), val=dict(pipeline=test_pipeline)) # optimizer optimizer = dict(_delete_=True, type='AdamW', lr=0.0001, betas=(0.9, 0.999), weight_decay=0.05, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=24, layer_decay_rate=0.80)) optimizer_config = dict(_delete_=True, grad_clip=dict(max_norm=0.1, norm_type=2)) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=0.001, step=[]) runner = dict(_delete_=True, type='IterBasedRunner', max_iters=20000) checkpoint_config = dict(interval=500, max_keep_ckpts=3) evaluation = dict(interval=500, save_best='auto') custom_hooks = [ dict( type='ExpMomentumEMAHook', resume_from=None, momentum=0.0001, priority=49) ]
ViT-Adapter-main
detection/configs/htc++/htc++_beitv2_adapter_large_fpn_o365_coco.py
_base_ = [ '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] NUM_CLASSES = 80 drop_path_rate = 0.3 # 0.4 (pre-train) -> 0.3 (fine-tune) model = dict( type='HybridTaskCascadeAug', backbone=dict( type='BEiTAdapter', img_size=224, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-6, drop_path_rate=drop_path_rate, conv_inplane=64, n_points=4, deform_num_heads=16, cffn_ratio=0.25, deform_ratio=0.5, with_cp=True, window_attn=[True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True], window_size=[14, 14, 14, 14, 14, 56, 14, 14, 14, 14, 14, 56, 14, 14, 14, 14, 14, 56, 14, 14, 14, 14, 14, 56], interaction_indexes=[[0, 5], [6, 11], [12, 17], [18, 23]], pretrained=None), neck=[ dict( type='ExtraAttention', in_channels=[1024, 1024, 1024, 1024], num_head=32, with_ffn=True, with_cp=True, ffn_ratio=4.0, drop_path=drop_path_rate, ), dict( type='FPN', in_channels=[1024, 1024, 1024, 1024], norm_cfg=dict(type='GN', num_groups=32), out_channels=256, num_outs=5)], rpn_head=dict( type='RPNHead', in_channels=256, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', scales=[8], ratios=[0.5, 1.0, 2.0], strides=[4, 8, 16, 32, 64]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0]), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)), roi_head=dict( type='HybridTaskCascadeRoIHead', interleaved=True, mask_info_flow=True, num_stages=3, stage_loss_weights=[1, 0.5, 0.25], bbox_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0), out_channels=256, featmap_strides=[4, 8, 16, 32]), bbox_head=[ dict( type='Shared4Conv1FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=NUM_CLASSES, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=True, reg_decoded_bbox=True, norm_cfg=dict(type='SyncBN', requires_grad=True), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=10.0)), # use GIoU loss dict( type='Shared4Conv1FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=NUM_CLASSES, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.05, 0.05, 0.1, 0.1]), reg_class_agnostic=True, reg_decoded_bbox=True, norm_cfg=dict(type='SyncBN', requires_grad=True), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=10.0)), # use GIoU loss dict( type='Shared4Conv1FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=NUM_CLASSES, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.033, 0.033, 0.067, 0.067]), reg_class_agnostic=True, reg_decoded_bbox=True, norm_cfg=dict(type='SyncBN', requires_grad=True), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=10.0)), # use GIoU loss ], mask_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0), out_channels=256, featmap_strides=[4, 8, 16, 32]), mask_head=[ dict( type='HTCMaskHead', with_conv_res=False, num_convs=4, in_channels=256, conv_out_channels=256, num_classes=80, loss_mask=dict( type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)), dict( type='HTCMaskHead', num_convs=4, in_channels=256, conv_out_channels=256, num_classes=80, loss_mask=dict( type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)), dict( type='HTCMaskHead', num_convs=4, in_channels=256, conv_out_channels=256, num_classes=80, loss_mask=dict( type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)) ], semantic_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0), out_channels=256, featmap_strides=[8]), semantic_head=dict( type='FusedSemanticHead', num_ins=5, fusion_level=1, num_convs=4, in_channels=256, conv_out_channels=256, num_classes=183, loss_seg=dict( type='CrossEntropyLoss', ignore_index=255, loss_weight=0.2)) ), # model training and testing settings train_cfg=dict( rpn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), allowed_border=0, pos_weight=-1, debug=False), rpn_proposal=dict( nms_pre=2000, max_per_img=2000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=[ dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0.5, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), mask_size=28, pos_weight=-1, debug=False), dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.6, neg_iou_thr=0.6, min_pos_iou=0.6, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), mask_size=28, pos_weight=-1, debug=False), dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.7, min_pos_iou=0.7, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), mask_size=28, pos_weight=-1, debug=False) ]), test_cfg=dict( rpn=dict( nms_pre=1000, max_per_img=1000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=dict( score_thr=0.001, nms=dict(type='soft_nms', iou_threshold=0.5), max_per_img=100, mask_thr_binary=0.5), aug=dict( score_thr=0.001, nms=dict(type='soft_nms', iou_threshold=0.5), max_per_img=1000, scale_ranges=[['l'], ['l'], ['m', 'l'], ['s', 'm'], ['s', 'm'], ['s', 'm']], ))) img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) # train_pipeline, NOTE the img_scale and the Pad's size_divisor is different # from the default setting in mmdet. file_client_args = dict(backend='disk') train_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='LoadAnnotations', with_bbox=True, with_mask=True, with_seg=True), dict(type='Resize', img_scale=[(2000, 600), (2000, 1600)], multiscale_mode='range', keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='SegRescale', scale_factor=1 / 8), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks', 'gt_semantic_seg']), ] test_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict( type='MultiScaleFlipAug', img_scale=[(3000, 600), (3000, 800), (3000, 1000), (3000, 1200), (3000, 1400), (3000, 1600)], flip=True, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] # 4 nodes, total batch size=2*32=64 data = dict(samples_per_gpu=2, train=dict(seg_prefix='data/coco/stuffthingmaps/train2017/', pipeline=train_pipeline), test=dict(pipeline=test_pipeline), val=dict(pipeline=test_pipeline)) # optimizer optimizer = dict(_delete_=True, type='AdamW', lr=0.0001, betas=(0.9, 0.999), weight_decay=0.05, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=24, layer_decay_rate=0.80)) optimizer_config = dict(_delete_=True, grad_clip=dict(max_norm=0.1, norm_type=2)) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=0.001, step=[]) runner = dict(_delete_=True, type='IterBasedRunner', max_iters=20000) checkpoint_config = dict(interval=500, max_keep_ckpts=3) evaluation = dict(interval=500, save_best='auto') custom_hooks = [ dict( type='ExpMomentumEMAHook', resume_from=None, momentum=0.0001, priority=49) ]
ViT-Adapter-main
detection/configs/htc++/htc++_beitv2_adapter_large_fpn_o365_coco_ms.py
# Copyright (c) Shanghai AI Lab. All rights reserved. _base_ = [ '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_3x.py', '../_base_/default_runtime.py' ] model = dict( type='HybridTaskCascadeAug', backbone=dict( type='BEiTAdapter', img_size=224, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-6, drop_path_rate=0.4, conv_inplane=64, n_points=4, deform_num_heads=16, cffn_ratio=0.25, deform_ratio=0.5, window_attn=[True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True], window_size=[14, 14, 14, 14, 14, 56, 14, 14, 14, 14, 14, 56, 14, 14, 14, 14, 14, 56, 14, 14, 14, 14, 14, 56], interaction_indexes=[[0, 5], [6, 11], [12, 17], [18, 23]], pretrained=None), neck=[ dict( type='ExtraAttention', in_channels=[1024, 1024, 1024, 1024], num_head=32, with_ffn=True, ffn_ratio=4.0, drop_path=0.3, ), dict( type='FPN', in_channels=[1024, 1024, 1024, 1024], out_channels=256, num_outs=5)], rpn_head=dict( type='RPNHead', in_channels=256, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', scales=[8], ratios=[0.5, 1.0, 2.0], strides=[4, 8, 16, 32, 64]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0]), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)), roi_head=dict( type='HybridTaskCascadeRoIHead', interleaved=True, mask_info_flow=True, num_stages=3, stage_loss_weights=[1, 0.5, 0.25], bbox_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0), out_channels=256, featmap_strides=[4, 8, 16, 32]), bbox_head=[ dict( type='Shared4Conv1FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), dict( type='Shared4Conv1FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.05, 0.05, 0.1, 0.1]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), dict( type='Shared4Conv1FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.033, 0.033, 0.067, 0.067]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), ], mask_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0), out_channels=256, featmap_strides=[4, 8, 16, 32]), mask_head=[ dict( type='HTCMaskHead', with_conv_res=False, num_convs=4, in_channels=256, conv_out_channels=256, num_classes=80, loss_mask=dict( type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)), dict( type='HTCMaskHead', num_convs=4, in_channels=256, conv_out_channels=256, num_classes=80, loss_mask=dict( type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)), dict( type='HTCMaskHead', num_convs=4, in_channels=256, conv_out_channels=256, num_classes=80, loss_mask=dict( type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)) ], semantic_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0), out_channels=256, featmap_strides=[8]), semantic_head=dict( type='FusedSemanticHead', num_ins=5, fusion_level=1, num_convs=4, in_channels=256, conv_out_channels=256, num_classes=183, loss_seg=dict( type='CrossEntropyLoss', ignore_index=255, loss_weight=0.2))), # model training and testing settings train_cfg=dict( rpn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), allowed_border=0, pos_weight=-1, debug=False), rpn_proposal=dict( nms_pre=2000, max_per_img=2000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=[ dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0.5, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), mask_size=28, pos_weight=-1, debug=False), dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.6, neg_iou_thr=0.6, min_pos_iou=0.6, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), mask_size=28, pos_weight=-1, debug=False), dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.7, min_pos_iou=0.7, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), mask_size=28, pos_weight=-1, debug=False) ]), test_cfg=dict( rpn=dict( nms_pre=1000, max_per_img=1000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=dict( score_thr=0.001, nms=dict(type='soft_nms', iou_threshold=0.5), max_per_img=100, mask_thr_binary=0.5), aug=dict( score_thr=0.001, nms=dict(type='soft_nms', iou_threshold=0.5), max_per_img=1000, scale_ranges=[['l'], ['l'], ['m', 'l'], ['s', 'm'], ['s', 'm'], ['s', 'm']], ) )) # optimizer img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) # augmentation strategy originates from DETR / Sparse RCNN # file_client_args = dict(backend='petrel') file_client_args = dict(backend='disk') train_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='InstaBoost', action_candidate=('normal', 'horizontal', 'skip'), action_prob=(1, 0, 0), scale=(0.8, 1.2), dx=15, dy=15, theta=(-1, 1), color_prob=0.5, hflag=False, aug_ratio=0.5), dict(type='LoadAnnotations', with_bbox=True, with_mask=True, with_seg=True), dict(type='Resize', img_scale=[(1600, 400), (1600, 1400)], multiscale_mode='range', keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='SegRescale', scale_factor=1 / 8), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks', 'gt_semantic_seg']), ] test_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict( type='MultiScaleFlipAug', img_scale=[(3000, 600), (3000, 800), (3000, 1000), (3000, 1200), (3000, 1400), (3000, 1600)], flip=True, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict(samples_per_gpu=1, train=dict(seg_prefix='data/coco/stuffthingmaps/train2017/', pipeline=train_pipeline), test=dict(pipeline=test_pipeline), val=dict(pipeline=test_pipeline)) optimizer = dict(_delete_=True, type='AdamW', lr=0.0001, betas=(0.9, 0.999), weight_decay=0.05, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=24, layer_decay_rate=0.90)) optimizer_config = dict(grad_clip=None) checkpoint_config = dict( interval=1, max_keep_ckpts=2, save_last=True, ) # fp16 = dict(loss_scale=dict(init_scale=512))
ViT-Adapter-main
detection/configs/htc++/htc++_beit_adapter_large_fpn_3x_coco_ms.py
# Copyright (c) Shanghai AI Lab. All rights reserved. _base_ = [ '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_3x.py', '../_base_/default_runtime.py' ] # pretrained = 'https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_large_patch16_224_pt22k_ft22k.pth' pretrained = 'pretrained/beit_large_patch16_224_pt22k_ft22k.pth' model = dict( type='HybridTaskCascade', backbone=dict( type='BEiTAdapter', img_size=224, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-6, drop_path_rate=0.3, # maybe 0.4 is better conv_inplane=64, n_points=4, deform_num_heads=16, cffn_ratio=0.25, deform_ratio=0.5, window_attn=[True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True], window_size=[14, 14, 14, 14, 14, 56, 14, 14, 14, 14, 14, 56, 14, 14, 14, 14, 14, 56, 14, 14, 14, 14, 14, 56], interaction_indexes=[[0, 5], [6, 11], [12, 17], [18, 23]], pretrained=pretrained, version='old'), neck=[ dict( type='ExtraAttention', in_channels=[1024, 1024, 1024, 1024], num_head=32, with_ffn=True, ffn_ratio=4.0, drop_path=0.3, ), dict( type='FPN', in_channels=[1024, 1024, 1024, 1024], out_channels=256, num_outs=5)], rpn_head=dict( type='RPNHead', in_channels=256, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', scales=[8], ratios=[0.5, 1.0, 2.0], strides=[4, 8, 16, 32, 64]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0]), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)), roi_head=dict( type='HybridTaskCascadeRoIHead', interleaved=True, mask_info_flow=True, num_stages=3, stage_loss_weights=[1, 0.5, 0.25], bbox_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0), out_channels=256, featmap_strides=[4, 8, 16, 32]), bbox_head=[ dict( type='Shared4Conv1FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), dict( type='Shared4Conv1FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.05, 0.05, 0.1, 0.1]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), dict( type='Shared4Conv1FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.033, 0.033, 0.067, 0.067]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), ], mask_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0), out_channels=256, featmap_strides=[4, 8, 16, 32]), mask_head=[ dict( type='HTCMaskHead', with_conv_res=False, num_convs=4, in_channels=256, conv_out_channels=256, num_classes=80, loss_mask=dict( type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)), dict( type='HTCMaskHead', num_convs=4, in_channels=256, conv_out_channels=256, num_classes=80, loss_mask=dict( type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)), dict( type='HTCMaskHead', num_convs=4, in_channels=256, conv_out_channels=256, num_classes=80, loss_mask=dict( type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)) ], semantic_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0), out_channels=256, featmap_strides=[8]), semantic_head=dict( type='FusedSemanticHead', num_ins=5, fusion_level=1, num_convs=4, in_channels=256, conv_out_channels=256, num_classes=183, loss_seg=dict( type='CrossEntropyLoss', ignore_index=255, loss_weight=0.2))), # model training and testing settings train_cfg=dict( rpn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), allowed_border=0, pos_weight=-1, debug=False), rpn_proposal=dict( nms_pre=2000, max_per_img=2000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=[ dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0.5, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), mask_size=28, pos_weight=-1, debug=False), dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.6, neg_iou_thr=0.6, min_pos_iou=0.6, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), mask_size=28, pos_weight=-1, debug=False), dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.7, min_pos_iou=0.7, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), mask_size=28, pos_weight=-1, debug=False) ]), test_cfg=dict( rpn=dict( nms_pre=1000, max_per_img=1000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=dict( score_thr=0.001, nms=dict(type='soft_nms', iou_threshold=0.5), max_per_img=100, mask_thr_binary=0.5))) # optimizer img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) # augmentation strategy originates from DETR / Sparse RCNN # file_client_args = dict(backend='petrel') file_client_args = dict(backend='disk') train_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='InstaBoost', action_candidate=('normal', 'horizontal', 'skip'), action_prob=(1, 0, 0), scale=(0.8, 1.2), dx=15, dy=15, theta=(-1, 1), color_prob=0.5, hflag=False, aug_ratio=0.5), dict(type='LoadAnnotations', with_bbox=True, with_mask=True, with_seg=True), dict(type='Resize', img_scale=[(1600, 400), (1600, 1400)], multiscale_mode='range', keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='SegRescale', scale_factor=1 / 8), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks', 'gt_semantic_seg']), ] test_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='MultiScaleFlipAug', img_scale=(1600, 1400), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict(samples_per_gpu=1, train=dict(seg_prefix='data/coco/stuffthingmaps/train2017/', pipeline=train_pipeline), test=dict(pipeline=test_pipeline), val=dict(pipeline=test_pipeline)) optimizer = dict(_delete_=True, type='AdamW', lr=0.0001, betas=(0.9, 0.999), weight_decay=0.05, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=24, layer_decay_rate=0.90)) optimizer_config = dict(grad_clip=None) checkpoint_config = dict( interval=1, max_keep_ckpts=2, save_last=True, ) # fp16 = dict(loss_scale=dict(init_scale=512)) # find_unused_parameters=True
ViT-Adapter-main
detection/configs/htc++/htc++_beit_adapter_large_fpn_3x_coco_old.py
# Copyright (c) Shanghai AI Lab. All rights reserved. _base_ = [ '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_3x.py', '../_base_/default_runtime.py' ] # pretrained = 'https://storage.googleapis.com/vit_models/augreg/L_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.1-sd_0.1--imagenet2012-steps_20k-lr_0.01-res_384.npz' # pretrained = 'https://github.com/czczup/ViT-Adapter/releases/download/v0.1.6/L_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.1-sd_0.1--imagenet2012-steps_20k-lr_0.01-res_384.pth' pretrained = 'pretrained/L_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.1-sd_0.1--imagenet2012-steps_20k-lr_0.01-res_384.pth' drop_path_rate = 0.4 model = dict( type='HybridTaskCascade', backbone=dict( type='ViTAdapter', img_size=384, pretrain_size=384, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, drop_path_rate=drop_path_rate, conv_inplane=64, n_points=4, deform_num_heads=16, cffn_ratio=0.25, deform_ratio=0.5, with_cp=True, interaction_indexes=[[0, 5], [6, 11], [12, 17], [18, 23]], window_attn=[True, True, True, True, True, False, True, True, True, True, True, False, True, True, True, True, True, False, True, True, True, True, True, False], window_size=[14, 14, 14, 14, 14, None, 14, 14, 14, 14, 14, None, 14, 14, 14, 14, 14, None, 14, 14, 14, 14, 14, None], pretrained=pretrained), neck=[ dict( type='ExtraAttention', in_channels=[1024, 1024, 1024, 1024], num_head=32, with_ffn=True, ffn_ratio=4.0, drop_path=drop_path_rate, ), dict( type='FPN', in_channels=[1024, 1024, 1024, 1024], out_channels=256, num_outs=5)], rpn_head=dict( type='RPNHead', in_channels=256, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', scales=[8], ratios=[0.5, 1.0, 2.0], strides=[4, 8, 16, 32, 64]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0]), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)), roi_head=dict( type='HybridTaskCascadeRoIHead', interleaved=True, mask_info_flow=True, num_stages=3, stage_loss_weights=[1, 0.5, 0.25], bbox_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0), out_channels=256, featmap_strides=[4, 8, 16, 32]), bbox_head=[ dict( type='Shared4Conv1FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), dict( type='Shared4Conv1FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.05, 0.05, 0.1, 0.1]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), dict( type='Shared4Conv1FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.033, 0.033, 0.067, 0.067]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), ], mask_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0), out_channels=256, featmap_strides=[4, 8, 16, 32]), mask_head=[ dict( type='HTCMaskHead', with_conv_res=False, num_convs=4, in_channels=256, conv_out_channels=256, num_classes=80, loss_mask=dict( type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)), dict( type='HTCMaskHead', num_convs=4, in_channels=256, conv_out_channels=256, num_classes=80, loss_mask=dict( type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)), dict( type='HTCMaskHead', num_convs=4, in_channels=256, conv_out_channels=256, num_classes=80, loss_mask=dict( type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)) ], semantic_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0), out_channels=256, featmap_strides=[8]), semantic_head=dict( type='FusedSemanticHead', num_ins=5, fusion_level=1, num_convs=4, in_channels=256, conv_out_channels=256, num_classes=183, loss_seg=dict( type='CrossEntropyLoss', ignore_index=255, loss_weight=0.2))), # model training and testing settings train_cfg=dict( rpn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), allowed_border=0, pos_weight=-1, debug=False), rpn_proposal=dict( nms_pre=2000, max_per_img=2000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=[ dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0.5, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), mask_size=28, pos_weight=-1, debug=False), dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.6, neg_iou_thr=0.6, min_pos_iou=0.6, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), mask_size=28, pos_weight=-1, debug=False), dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.7, min_pos_iou=0.7, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), mask_size=28, pos_weight=-1, debug=False) ]), test_cfg=dict( rpn=dict( nms_pre=1000, max_per_img=1000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=dict( score_thr=0.001, nms=dict(type='soft_nms', iou_threshold=0.5), max_per_img=300, mask_thr_binary=0.5))) # optimizer img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) # augmentation strategy originates from DETR / Sparse RCNN # file_client_args = dict(backend='petrel') file_client_args = dict(backend='disk') train_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='InstaBoost', action_candidate=('normal', 'horizontal', 'skip'), action_prob=(1, 0, 0), scale=(0.8, 1.2), dx=15, dy=15, theta=(-1, 1), color_prob=0.5, hflag=False, aug_ratio=0.5), dict(type='LoadAnnotations', with_bbox=True, with_mask=True, with_seg=True), dict(type='Resize', img_scale=[(1600, 400), (1600, 1400)], multiscale_mode='range', keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='SegRescale', scale_factor=1 / 8), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks', 'gt_semantic_seg']), ] test_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='MultiScaleFlipAug', img_scale=(1600, 1400), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict(samples_per_gpu=1, train=dict(seg_prefix='data/coco/stuffthingmaps/train2017/', pipeline=train_pipeline), test=dict(pipeline=test_pipeline), val=dict(pipeline=test_pipeline)) optimizer = dict(_delete_=True, type='AdamW', lr=0.0001, betas=(0.9, 0.999), weight_decay=0.05, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=24, layer_decay_rate=0.90)) optimizer_config = dict(grad_clip=None) checkpoint_config = dict( interval=1, max_keep_ckpts=2, save_last=True, ) # fp16 = dict(loss_scale=dict(init_scale=512)) # find_unused_parameters=True
ViT-Adapter-main
detection/configs/htc++/htc++_augreg_adapter_large_fpn_3x_coco.py
# Copyright (c) Shanghai AI Lab. All rights reserved. _base_ = [ '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_3x.py', '../_base_/default_runtime.py' ] model = dict( type='HybridTaskCascadeAug', backbone=dict( type='BEiTAdapter', img_size=224, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-6, drop_path_rate=0.4, conv_inplane=64, n_points=4, deform_num_heads=16, cffn_ratio=0.25, deform_ratio=0.5, window_attn=[True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True], window_size=[14, 14, 14, 14, 14, 56, 14, 14, 14, 14, 14, 56, 14, 14, 14, 14, 14, 56, 14, 14, 14, 14, 14, 56], interaction_indexes=[[0, 5], [6, 11], [12, 17], [18, 23]], pretrained=None), neck=[ dict( type='ExtraAttention', in_channels=[1024, 1024, 1024, 1024], num_head=32, with_ffn=True, ffn_ratio=4.0, drop_path=0.3, ), dict( type='FPN', in_channels=[1024, 1024, 1024, 1024], out_channels=256, num_outs=5)], rpn_head=dict( type='RPNHead', in_channels=256, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', scales=[8], ratios=[0.5, 1.0, 2.0], strides=[4, 8, 16, 32, 64]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0]), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)), roi_head=dict( type='HybridTaskCascadeRoIHead', interleaved=True, mask_info_flow=True, num_stages=3, stage_loss_weights=[1, 0.5, 0.25], bbox_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0), out_channels=256, featmap_strides=[4, 8, 16, 32]), bbox_head=[ dict( type='Shared4Conv1FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), dict( type='Shared4Conv1FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.05, 0.05, 0.1, 0.1]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), dict( type='Shared4Conv1FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.033, 0.033, 0.067, 0.067]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), ], mask_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0), out_channels=256, featmap_strides=[4, 8, 16, 32]), mask_head=[ dict( type='HTCMaskHead', with_conv_res=False, num_convs=4, in_channels=256, conv_out_channels=256, num_classes=80, loss_mask=dict( type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)), dict( type='HTCMaskHead', num_convs=4, in_channels=256, conv_out_channels=256, num_classes=80, loss_mask=dict( type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)), dict( type='HTCMaskHead', num_convs=4, in_channels=256, conv_out_channels=256, num_classes=80, loss_mask=dict( type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)) ], semantic_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0), out_channels=256, featmap_strides=[8]), semantic_head=dict( type='FusedSemanticHead', num_ins=5, fusion_level=1, num_convs=4, in_channels=256, conv_out_channels=256, num_classes=183, loss_seg=dict( type='CrossEntropyLoss', ignore_index=255, loss_weight=0.2))), # model training and testing settings train_cfg=dict( rpn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), allowed_border=0, pos_weight=-1, debug=False), rpn_proposal=dict( nms_pre=2000, max_per_img=2000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=[ dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0.5, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), mask_size=28, pos_weight=-1, debug=False), dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.6, neg_iou_thr=0.6, min_pos_iou=0.6, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), mask_size=28, pos_weight=-1, debug=False), dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.7, min_pos_iou=0.7, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), mask_size=28, pos_weight=-1, debug=False) ]), test_cfg=dict( rpn=dict( nms_pre=1000, max_per_img=1000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=dict( score_thr=0.001, nms=dict(type='soft_nms', iou_threshold=0.5), max_per_img=100, mask_thr_binary=0.5), aug=dict( score_thr=0.001, nms=dict(type='soft_nms', iou_threshold=0.5), max_per_img=1000, scale_ranges=[['l'], ['l'], ['m', 'l'], ['s', 'm'], ['s', 'm'], ['s', 'm']], ) )) # optimizer img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) # augmentation strategy originates from DETR / Sparse RCNN # file_client_args = dict(backend='petrel') file_client_args = dict(backend='disk') train_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='InstaBoost', action_candidate=('normal', 'horizontal', 'skip'), action_prob=(1, 0, 0), scale=(0.8, 1.2), dx=15, dy=15, theta=(-1, 1), color_prob=0.5, hflag=False, aug_ratio=0.5), dict(type='LoadAnnotations', with_bbox=True, with_mask=True, with_seg=True), dict(type='Resize', img_scale=[(1600, 400), (1600, 1400)], multiscale_mode='range', keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='SegRescale', scale_factor=1 / 8), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks', 'gt_semantic_seg']), ] test_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict( type='MultiScaleFlipAug', img_scale=[(3000, 600), (3000, 800), (3000, 1000), (3000, 1200), (3000, 1400), (3000, 1600)], flip=True, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict(samples_per_gpu=1, train=dict(seg_prefix='data/coco/stuffthingmaps/train2017/', pipeline=train_pipeline), test=dict(pipeline=test_pipeline), val=dict(pipeline=test_pipeline)) optimizer = dict(_delete_=True, type='AdamW', lr=0.0001, betas=(0.9, 0.999), weight_decay=0.05, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=24, layer_decay_rate=0.90)) optimizer_config = dict(grad_clip=None) checkpoint_config = dict( interval=1, max_keep_ckpts=2, save_last=True, ) # fp16 = dict(loss_scale=dict(init_scale=512))
ViT-Adapter-main
detection/configs/htc++/htc++_beitv2_adapter_large_fpn_3x_coco_ms.py
# Copyright (c) Shanghai AI Lab. All rights reserved. _base_ = [ '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_3x.py', '../_base_/default_runtime.py' ] # pretrained = 'https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_large_patch16_224_pt22k_ft22k.pth' pretrained = 'pretrained/beit_large_patch16_224_pt22k_ft22k.pth' model = dict( type='HybridTaskCascade', backbone=dict( type='BEiTAdapter', img_size=224, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-6, drop_path_rate=0.4, conv_inplane=64, n_points=4, deform_num_heads=16, cffn_ratio=0.25, deform_ratio=0.5, window_attn=[True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True], window_size=[14, 14, 14, 14, 14, 56, 14, 14, 14, 14, 14, 56, 14, 14, 14, 14, 14, 56, 14, 14, 14, 14, 14, 56], interaction_indexes=[[0, 5], [6, 11], [12, 17], [18, 23]], pretrained=pretrained), neck=[ dict( type='ExtraAttention', in_channels=[1024, 1024, 1024, 1024], num_head=32, with_ffn=True, ffn_ratio=4.0, drop_path=0.3, ), dict( type='FPN', in_channels=[1024, 1024, 1024, 1024], out_channels=256, num_outs=5)], rpn_head=dict( type='RPNHead', in_channels=256, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', scales=[8], ratios=[0.5, 1.0, 2.0], strides=[4, 8, 16, 32, 64]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0]), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)), roi_head=dict( type='HybridTaskCascadeRoIHead', interleaved=True, mask_info_flow=True, num_stages=3, stage_loss_weights=[1, 0.5, 0.25], bbox_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0), out_channels=256, featmap_strides=[4, 8, 16, 32]), bbox_head=[ dict( type='Shared4Conv1FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), dict( type='Shared4Conv1FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.05, 0.05, 0.1, 0.1]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), dict( type='Shared4Conv1FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.033, 0.033, 0.067, 0.067]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), ], mask_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0), out_channels=256, featmap_strides=[4, 8, 16, 32]), mask_head=[ dict( type='HTCMaskHead', with_conv_res=False, num_convs=4, in_channels=256, conv_out_channels=256, num_classes=80, loss_mask=dict( type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)), dict( type='HTCMaskHead', num_convs=4, in_channels=256, conv_out_channels=256, num_classes=80, loss_mask=dict( type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)), dict( type='HTCMaskHead', num_convs=4, in_channels=256, conv_out_channels=256, num_classes=80, loss_mask=dict( type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)) ], semantic_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0), out_channels=256, featmap_strides=[8]), semantic_head=dict( type='FusedSemanticHead', num_ins=5, fusion_level=1, num_convs=4, in_channels=256, conv_out_channels=256, num_classes=183, loss_seg=dict( type='CrossEntropyLoss', ignore_index=255, loss_weight=0.2))), # model training and testing settings train_cfg=dict( rpn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), allowed_border=0, pos_weight=-1, debug=False), rpn_proposal=dict( nms_pre=2000, max_per_img=2000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=[ dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0.5, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), mask_size=28, pos_weight=-1, debug=False), dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.6, neg_iou_thr=0.6, min_pos_iou=0.6, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), mask_size=28, pos_weight=-1, debug=False), dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.7, min_pos_iou=0.7, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), mask_size=28, pos_weight=-1, debug=False) ]), test_cfg=dict( rpn=dict( nms_pre=1000, max_per_img=1000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=dict( score_thr=0.001, nms=dict(type='soft_nms', iou_threshold=0.5), max_per_img=100, mask_thr_binary=0.5))) # optimizer img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) # augmentation strategy originates from DETR / Sparse RCNN # file_client_args = dict(backend='petrel') file_client_args = dict(backend='disk') train_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='InstaBoost', action_candidate=('normal', 'horizontal', 'skip'), action_prob=(1, 0, 0), scale=(0.8, 1.2), dx=15, dy=15, theta=(-1, 1), color_prob=0.5, hflag=False, aug_ratio=0.5), dict(type='LoadAnnotations', with_bbox=True, with_mask=True, with_seg=True), dict(type='Resize', img_scale=[(1600, 400), (1600, 1400)], multiscale_mode='range', keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='SegRescale', scale_factor=1 / 8), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks', 'gt_semantic_seg']), ] test_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='MultiScaleFlipAug', img_scale=(1600, 1400), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict(samples_per_gpu=1, train=dict(seg_prefix='data/coco/stuffthingmaps/train2017/', pipeline=train_pipeline), test=dict(pipeline=test_pipeline), val=dict(pipeline=test_pipeline)) optimizer = dict(_delete_=True, type='AdamW', lr=0.0001, betas=(0.9, 0.999), weight_decay=0.05, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=24, layer_decay_rate=0.90)) optimizer_config = dict(grad_clip=None) checkpoint_config = dict( interval=1, max_keep_ckpts=2, save_last=True, ) # fp16 = dict(loss_scale=dict(init_scale=512)) # find_unused_parameters=True
ViT-Adapter-main
detection/configs/htc++/htc++_beit_adapter_large_fpn_3x_coco.py
# Copyright (c) Shanghai AI Lab. All rights reserved. _base_ = [ '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_3x.py', '../_base_/default_runtime.py' ] pretrained = 'pretrained/uni-perceiver-large-L24-H1024-224size-pretrained_converted.pth' drop_path_rate = 0.4 model = dict( type='HybridTaskCascade', backbone=dict( type='UniPerceiverAdapter', patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, drop_path_rate=drop_path_rate, conv_inplane=64, n_points=4, deform_num_heads=16, cffn_ratio=0.25, deform_ratio=0.5, with_cp=False, interaction_indexes=[[0, 5], [6, 11], [12, 17], [18, 23]], window_attn=[True, True, True, True, True, False, True, True, True, True, True, False, True, True, True, True, True, False, True, True, True, True, True, False], window_size=[14, 14, 14, 14, 14, None, 14, 14, 14, 14, 14, None, 14, 14, 14, 14, 14, None, 14, 14, 14, 14, 14, None], pretrained=pretrained), neck=[ dict( type='ExtraAttention', in_channels=[1024, 1024, 1024, 1024], num_head=32, with_ffn=True, ffn_ratio=4.0, drop_path=drop_path_rate, ), dict( type='FPN', in_channels=[1024, 1024, 1024, 1024], out_channels=256, num_outs=5)], rpn_head=dict( type='RPNHead', in_channels=256, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', scales=[8], ratios=[0.5, 1.0, 2.0], strides=[4, 8, 16, 32, 64]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0]), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)), roi_head=dict( type='HybridTaskCascadeRoIHead', interleaved=True, mask_info_flow=True, num_stages=3, stage_loss_weights=[1, 0.5, 0.25], bbox_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0), out_channels=256, featmap_strides=[4, 8, 16, 32]), bbox_head=[ dict( type='Shared4Conv1FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), dict( type='Shared4Conv1FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.05, 0.05, 0.1, 0.1]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), dict( type='Shared4Conv1FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.033, 0.033, 0.067, 0.067]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), ], mask_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0), out_channels=256, featmap_strides=[4, 8, 16, 32]), mask_head=[ dict( type='HTCMaskHead', with_conv_res=False, num_convs=4, in_channels=256, conv_out_channels=256, num_classes=80, loss_mask=dict( type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)), dict( type='HTCMaskHead', num_convs=4, in_channels=256, conv_out_channels=256, num_classes=80, loss_mask=dict( type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)), dict( type='HTCMaskHead', num_convs=4, in_channels=256, conv_out_channels=256, num_classes=80, loss_mask=dict( type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)) ], semantic_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0), out_channels=256, featmap_strides=[8]), semantic_head=dict( type='FusedSemanticHead', num_ins=5, fusion_level=1, num_convs=4, in_channels=256, conv_out_channels=256, num_classes=183, loss_seg=dict( type='CrossEntropyLoss', ignore_index=255, loss_weight=0.2))), # model training and testing settings train_cfg=dict( rpn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), allowed_border=0, pos_weight=-1, debug=False), rpn_proposal=dict( nms_pre=2000, max_per_img=2000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=[ dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0.5, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), mask_size=28, pos_weight=-1, debug=False), dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.6, neg_iou_thr=0.6, min_pos_iou=0.6, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), mask_size=28, pos_weight=-1, debug=False), dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.7, min_pos_iou=0.7, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), mask_size=28, pos_weight=-1, debug=False) ]), test_cfg=dict( rpn=dict( nms_pre=1000, max_per_img=1000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=dict( score_thr=0.001, nms=dict(type='soft_nms', iou_threshold=0.5), max_per_img=100, mask_thr_binary=0.5))) # optimizer img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) # augmentation strategy originates from DETR / Sparse RCNN # file_client_args = dict(backend='petrel') file_client_args = dict(backend='disk') train_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='InstaBoost', action_candidate=('normal', 'horizontal', 'skip'), action_prob=(1, 0, 0), scale=(0.8, 1.2), dx=15, dy=15, theta=(-1, 1), color_prob=0.5, hflag=False, aug_ratio=0.5), dict(type='LoadAnnotations', with_bbox=True, with_mask=True, with_seg=True), dict(type='Resize', img_scale=[(1600, 400), (1600, 1400)], multiscale_mode='range', keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='SegRescale', scale_factor=1 / 8), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks', 'gt_semantic_seg']), ] test_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='MultiScaleFlipAug', img_scale=(1600, 1400), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict(samples_per_gpu=1, train=dict(seg_prefix='data/coco/stuffthingmaps/train2017/', pipeline=train_pipeline), test=dict(pipeline=test_pipeline), val=dict(pipeline=test_pipeline)) optimizer = dict(_delete_=True, type='AdamW', lr=0.0001, betas=(0.9, 0.999), weight_decay=0.05, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=24, layer_decay_rate=0.90)) optimizer_config = dict(grad_clip=None) checkpoint_config = dict( interval=1, max_keep_ckpts=2, save_last=True, ) evaluation = dict(save_best='auto') # fp16 = dict(loss_scale=dict(init_scale=512))
ViT-Adapter-main
detection/configs/htc++/htc++_uniperceiver_adapter_large_fpn_3x_coco.py
# Copyright (c) Shanghai AI Lab. All rights reserved. _base_ = [ '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_3x.py', '../_base_/default_runtime.py' ] # pretrained = 'https://dl.fbaipublicfiles.com/deit/deit_small_patch16_224-cd65a155.pth' pretrained = 'pretrained/deit_small_patch16_224-cd65a155.pth' model = dict( type='ATSS', backbone=dict( type='ViTAdapter', patch_size=16, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4, drop_path_rate=0.2, conv_inplane=64, n_points=4, deform_num_heads=6, cffn_ratio=0.25, deform_ratio=1.0, interaction_indexes=[[0, 2], [3, 5], [6, 8], [9, 11]], window_attn=[True, True, False, True, True, False, True, True, False, True, True, False], window_size=[14, 14, None, 14, 14, None, 14, 14, None, 14, 14, None], pretrained=pretrained), neck=dict( type='FPN', in_channels=[384, 384, 384, 384], out_channels=256, start_level=1, add_extra_convs='on_output', num_outs=5), bbox_head=dict( type='ATSSHead', num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], octave_base_scale=8, scales_per_octave=1, strides=[8, 16, 32, 64, 128]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[0.1, 0.1, 0.2, 0.2]), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=2.0), loss_centerness=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)), # training and testing settings train_cfg=dict( assigner=dict(type='ATSSAssigner', topk=9), allowed_border=-1, pos_weight=-1, debug=False), test_cfg=dict( nms_pre=1000, min_bbox_size=0, score_thr=0.05, nms=dict(type='nms', iou_threshold=0.6), max_per_img=100)) # optimizer img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) # augmentation strategy originates from DETR / Sparse RCNN train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='AutoAugment', policies=[ [ dict(type='Resize', img_scale=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], multiscale_mode='value', keep_ratio=True) ], [ dict(type='Resize', img_scale=[(400, 1333), (500, 1333), (600, 1333)], multiscale_mode='value', keep_ratio=True), dict(type='RandomCrop', crop_type='absolute_range', crop_size=(384, 600), allow_negative_crop=True), dict(type='Resize', img_scale=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], multiscale_mode='value', override=True, keep_ratio=True) ] ]), dict(type='RandomCrop', crop_type='absolute_range', crop_size=(1024, 1024), allow_negative_crop=True), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] data = dict(train=dict(pipeline=train_pipeline)) optimizer = dict( _delete_=True, type='AdamW', lr=0.0001, weight_decay=0.05, paramwise_cfg=dict( custom_keys={ 'level_embed': dict(decay_mult=0.), 'pos_embed': dict(decay_mult=0.), 'norm': dict(decay_mult=0.), 'bias': dict(decay_mult=0.) })) optimizer_config = dict(grad_clip=None) fp16 = dict(loss_scale=dict(init_scale=512)) find_unused_parameters = True checkpoint_config = dict( interval=1, max_keep_ckpts=3, save_last=True, )
ViT-Adapter-main
detection/configs/atss/atss_deit_adapter_small_fpn_3x_coco.py
# Copyright (c) Shanghai AI Lab. All rights reserved. _base_ = [ '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_3x.py', '../_base_/default_runtime.py' ] # pretrained = 'https://dl.fbaipublicfiles.com/deit/deit_small_patch16_224-cd65a155.pth' pretrained = 'pretrained/deit_small_patch16_224-cd65a155.pth' model = dict( type='GFL', backbone=dict( type='ViTAdapter', patch_size=16, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4, drop_path_rate=0.2, conv_inplane=64, n_points=4, deform_num_heads=6, cffn_ratio=0.25, deform_ratio=1.0, interaction_indexes=[[0, 2], [3, 5], [6, 8], [9, 11]], window_attn=[True, True, False, True, True, False, True, True, False, True, True, False], window_size=[14, 14, None, 14, 14, None, 14, 14, None, 14, 14, None], pretrained=pretrained), neck=dict( type='FPN', in_channels=[384, 384, 384, 384], out_channels=256, start_level=1, add_extra_convs='on_output', num_outs=5), bbox_head=dict( type='GFLHead', num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], octave_base_scale=8, scales_per_octave=1, strides=[8, 16, 32, 64, 128]), loss_cls=dict( type='QualityFocalLoss', use_sigmoid=True, beta=2.0, loss_weight=1.0), loss_dfl=dict(type='DistributionFocalLoss', loss_weight=0.25), reg_max=16, loss_bbox=dict(type='GIoULoss', loss_weight=2.0)), # training and testing settings train_cfg=dict( assigner=dict(type='ATSSAssigner', topk=9), allowed_border=-1, pos_weight=-1, debug=False), test_cfg=dict( nms_pre=1000, min_bbox_size=0, score_thr=0.05, nms=dict(type='nms', iou_threshold=0.6), max_per_img=100)) # optimizer img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) # augmentation strategy originates from DETR / Sparse RCNN train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='AutoAugment', policies=[ [ dict(type='Resize', img_scale=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], multiscale_mode='value', keep_ratio=True) ], [ dict(type='Resize', img_scale=[(400, 1333), (500, 1333), (600, 1333)], multiscale_mode='value', keep_ratio=True), dict(type='RandomCrop', crop_type='absolute_range', crop_size=(384, 600), allow_negative_crop=True), dict(type='Resize', img_scale=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], multiscale_mode='value', override=True, keep_ratio=True) ] ]), dict(type='RandomCrop', crop_type='absolute_range', crop_size=(1024, 1024), allow_negative_crop=True), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] data = dict(train=dict(pipeline=train_pipeline)) optimizer = dict( _delete_=True, type='AdamW', lr=0.0001, weight_decay=0.05, paramwise_cfg=dict( custom_keys={ 'level_embed': dict(decay_mult=0.), 'pos_embed': dict(decay_mult=0.), 'norm': dict(decay_mult=0.), 'bias': dict(decay_mult=0.) })) optimizer_config = dict(grad_clip=None) fp16 = dict(loss_scale=dict(init_scale=512)) find_unused_parameters = True checkpoint_config = dict( interval=1, max_keep_ckpts=3, save_last=True, )
ViT-Adapter-main
detection/configs/gfl/gfl_deit_adapter_small_fpn_3x_coco.py
# ------------------------------------------------------------------------------------------------ # Deformable DETR # Copyright (c) 2020 SenseTime. All Rights Reserved. # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # ------------------------------------------------------------------------------------------------ # Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0 # ------------------------------------------------------------------------------------------------ from __future__ import absolute_import, division, print_function import torch from functions.ms_deform_attn_func import (MSDeformAttnFunction, ms_deform_attn_core_pytorch) from torch.autograd import gradcheck N, M, D = 1, 2, 2 Lq, L, P = 2, 2, 2 shapes = torch.as_tensor([(6, 4), (3, 2)], dtype=torch.long).cuda() level_start_index = torch.cat((shapes.new_zeros( (1, )), shapes.prod(1).cumsum(0)[:-1])) S = sum([(H * W).item() for H, W in shapes]) torch.manual_seed(3) @torch.no_grad() def check_forward_equal_with_pytorch_double(): value = torch.rand(N, S, M, D).cuda() * 0.01 sampling_locations = torch.rand(N, Lq, M, L, P, 2).cuda() attention_weights = torch.rand(N, Lq, M, L, P).cuda() + 1e-5 attention_weights /= attention_weights.sum(-1, keepdim=True).sum(-2, keepdim=True) im2col_step = 2 output_pytorch = ms_deform_attn_core_pytorch( value.double(), shapes, sampling_locations.double(), attention_weights.double()).detach().cpu() output_cuda = MSDeformAttnFunction.apply(value.double(), shapes, level_start_index, sampling_locations.double(), attention_weights.double(), im2col_step).detach().cpu() fwdok = torch.allclose(output_cuda, output_pytorch) max_abs_err = (output_cuda - output_pytorch).abs().max() max_rel_err = ((output_cuda - output_pytorch).abs() / output_pytorch.abs()).max() print( f'* {fwdok} check_forward_equal_with_pytorch_double: max_abs_err {max_abs_err:.2e} max_rel_err {max_rel_err:.2e}' ) @torch.no_grad() def check_forward_equal_with_pytorch_float(): value = torch.rand(N, S, M, D).cuda() * 0.01 sampling_locations = torch.rand(N, Lq, M, L, P, 2).cuda() attention_weights = torch.rand(N, Lq, M, L, P).cuda() + 1e-5 attention_weights /= attention_weights.sum(-1, keepdim=True).sum(-2, keepdim=True) im2col_step = 2 output_pytorch = ms_deform_attn_core_pytorch( value, shapes, sampling_locations, attention_weights).detach().cpu() output_cuda = MSDeformAttnFunction.apply(value, shapes, level_start_index, sampling_locations, attention_weights, im2col_step).detach().cpu() fwdok = torch.allclose(output_cuda, output_pytorch, rtol=1e-2, atol=1e-3) max_abs_err = (output_cuda - output_pytorch).abs().max() max_rel_err = ((output_cuda - output_pytorch).abs() / output_pytorch.abs()).max() print( f'* {fwdok} check_forward_equal_with_pytorch_float: max_abs_err {max_abs_err:.2e} max_rel_err {max_rel_err:.2e}' ) def check_gradient_numerical(channels=4, grad_value=True, grad_sampling_loc=True, grad_attn_weight=True): value = torch.rand(N, S, M, channels).cuda() * 0.01 sampling_locations = torch.rand(N, Lq, M, L, P, 2).cuda() attention_weights = torch.rand(N, Lq, M, L, P).cuda() + 1e-5 attention_weights /= attention_weights.sum(-1, keepdim=True).sum(-2, keepdim=True) im2col_step = 2 func = MSDeformAttnFunction.apply value.requires_grad = grad_value sampling_locations.requires_grad = grad_sampling_loc attention_weights.requires_grad = grad_attn_weight gradok = gradcheck( func, (value.double(), shapes, level_start_index, sampling_locations.double(), attention_weights.double(), im2col_step)) print(f'* {gradok} check_gradient_numerical(D={channels})') if __name__ == '__main__': check_forward_equal_with_pytorch_double() check_forward_equal_with_pytorch_float() for channels in [30, 32, 64, 71, 1025, 2048, 3096]: check_gradient_numerical(channels, True, True, True)
ViT-Adapter-main
detection/ops/test.py
# ------------------------------------------------------------------------------------------------ # Deformable DETR # Copyright (c) 2020 SenseTime. All Rights Reserved. # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # ------------------------------------------------------------------------------------------------ # Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0 # ------------------------------------------------------------------------------------------------ import glob import os import torch from setuptools import find_packages, setup from torch.utils.cpp_extension import CUDA_HOME, CppExtension, CUDAExtension requirements = ['torch', 'torchvision'] def get_extensions(): this_dir = os.path.dirname(os.path.abspath(__file__)) extensions_dir = os.path.join(this_dir, 'src') main_file = glob.glob(os.path.join(extensions_dir, '*.cpp')) source_cpu = glob.glob(os.path.join(extensions_dir, 'cpu', '*.cpp')) source_cuda = glob.glob(os.path.join(extensions_dir, 'cuda', '*.cu')) sources = main_file + source_cpu extension = CppExtension extra_compile_args = {'cxx': []} define_macros = [] if torch.cuda.is_available() and CUDA_HOME is not None: extension = CUDAExtension sources += source_cuda define_macros += [('WITH_CUDA', None)] extra_compile_args['nvcc'] = [ '-DCUDA_HAS_FP16=1', '-D__CUDA_NO_HALF_OPERATORS__', '-D__CUDA_NO_HALF_CONVERSIONS__', '-D__CUDA_NO_HALF2_OPERATORS__', ] else: raise NotImplementedError('Cuda is not availabel') sources = [os.path.join(extensions_dir, s) for s in sources] include_dirs = [extensions_dir] ext_modules = [ extension( 'MultiScaleDeformableAttention', sources, include_dirs=include_dirs, define_macros=define_macros, extra_compile_args=extra_compile_args, ) ] return ext_modules setup( name='MultiScaleDeformableAttention', version='1.0', author='Weijie Su', url='https://github.com/fundamentalvision/Deformable-DETR', description= 'PyTorch Wrapper for CUDA Functions of Multi-Scale Deformable Attention', packages=find_packages(exclude=( 'configs', 'tests', )), ext_modules=get_extensions(), cmdclass={'build_ext': torch.utils.cpp_extension.BuildExtension}, )
ViT-Adapter-main
detection/ops/setup.py
# ------------------------------------------------------------------------------------------------ # Deformable DETR # Copyright (c) 2020 SenseTime. All Rights Reserved. # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # ------------------------------------------------------------------------------------------------ # Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0 # ------------------------------------------------------------------------------------------------ from __future__ import absolute_import, division, print_function import MultiScaleDeformableAttention as MSDA import torch import torch.nn.functional as F from torch.autograd import Function from torch.autograd.function import once_differentiable from torch.cuda.amp import custom_bwd, custom_fwd class MSDeformAttnFunction(Function): @staticmethod @custom_fwd(cast_inputs=torch.float32) def forward(ctx, value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights, im2col_step): ctx.im2col_step = im2col_step output = MSDA.ms_deform_attn_forward(value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights, ctx.im2col_step) ctx.save_for_backward(value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights) return output @staticmethod @once_differentiable @custom_bwd def backward(ctx, grad_output): value, value_spatial_shapes, value_level_start_index, \ sampling_locations, attention_weights = ctx.saved_tensors grad_value, grad_sampling_loc, grad_attn_weight = \ MSDA.ms_deform_attn_backward( value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights, grad_output, ctx.im2col_step) return grad_value, None, None, grad_sampling_loc, grad_attn_weight, None def ms_deform_attn_core_pytorch(value, value_spatial_shapes, sampling_locations, attention_weights): # for debug and test only, # need to use cuda version instead N_, S_, M_, D_ = value.shape _, Lq_, M_, L_, P_, _ = sampling_locations.shape value_list = value.split([H_ * W_ for H_, W_ in value_spatial_shapes], dim=1) sampling_grids = 2 * sampling_locations - 1 sampling_value_list = [] for lid_, (H_, W_) in enumerate(value_spatial_shapes): # N_, H_*W_, M_, D_ -> N_, H_*W_, M_*D_ -> N_, M_*D_, H_*W_ -> N_*M_, D_, H_, W_ value_l_ = value_list[lid_].flatten(2).transpose(1, 2).reshape(N_ * M_, D_, H_, W_) # N_, Lq_, M_, P_, 2 -> N_, M_, Lq_, P_, 2 -> N_*M_, Lq_, P_, 2 sampling_grid_l_ = sampling_grids[:, :, :, lid_].transpose(1, 2).flatten(0, 1) # N_*M_, D_, Lq_, P_ sampling_value_l_ = F.grid_sample(value_l_, sampling_grid_l_, mode='bilinear', padding_mode='zeros', align_corners=False) sampling_value_list.append(sampling_value_l_) # (N_, Lq_, M_, L_, P_) -> (N_, M_, Lq_, L_, P_) -> (N_, M_, 1, Lq_, L_*P_) attention_weights = attention_weights.transpose(1, 2).reshape(N_ * M_, 1, Lq_, L_ * P_) output = (torch.stack(sampling_value_list, dim=-2).flatten(-2) * attention_weights).sum(-1).view(N_, M_ * D_, Lq_) return output.transpose(1, 2).contiguous()
ViT-Adapter-main
detection/ops/functions/ms_deform_attn_func.py
# ------------------------------------------------------------------------------------------------ # Deformable DETR # Copyright (c) 2020 SenseTime. All Rights Reserved. # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # ------------------------------------------------------------------------------------------------ # Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0 # ------------------------------------------------------------------------------------------------ from .ms_deform_attn_func import MSDeformAttnFunction __all__ = ['MSDeformAttnFunction']
ViT-Adapter-main
detection/ops/functions/__init__.py
# ------------------------------------------------------------------------------------------------ # Deformable DETR # Copyright (c) 2020 SenseTime. All Rights Reserved. # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # ------------------------------------------------------------------------------------------------ # Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0 # ------------------------------------------------------------------------------------------------ from __future__ import absolute_import, division, print_function import math import warnings import torch import torch.nn.functional as F from torch import nn from torch.nn.init import constant_, xavier_uniform_ from ..functions import MSDeformAttnFunction def _is_power_of_2(n): if (not isinstance(n, int)) or (n < 0): raise ValueError('invalid input for _is_power_of_2: {} (type: {})'.format(n, type(n))) return (n & (n - 1) == 0) and n != 0 class MSDeformAttn(nn.Module): def __init__(self, d_model=256, n_levels=4, n_heads=8, n_points=4, ratio=1.0): """Multi-Scale Deformable Attention Module. :param d_model hidden dimension :param n_levels number of feature levels :param n_heads number of attention heads :param n_points number of sampling points per attention head per feature level """ super().__init__() if d_model % n_heads != 0: raise ValueError('d_model must be divisible by n_heads, ' 'but got {} and {}'.format(d_model, n_heads)) _d_per_head = d_model // n_heads # you'd better set _d_per_head to a power of 2 # which is more efficient in our CUDA implementation if not _is_power_of_2(_d_per_head): warnings.warn( "You'd better set d_model in MSDeformAttn to make " 'the dimension of each attention head a power of 2 ' 'which is more efficient in our CUDA implementation.') self.im2col_step = 64 self.d_model = d_model self.n_levels = n_levels self.n_heads = n_heads self.n_points = n_points self.ratio = ratio self.sampling_offsets = nn.Linear(d_model, n_heads * n_levels * n_points * 2) self.attention_weights = nn.Linear(d_model, n_heads * n_levels * n_points) self.value_proj = nn.Linear(d_model, int(d_model * ratio)) self.output_proj = nn.Linear(int(d_model * ratio), d_model) self._reset_parameters() def _reset_parameters(self): constant_(self.sampling_offsets.weight.data, 0.) thetas = torch.arange( self.n_heads, dtype=torch.float32) * (2.0 * math.pi / self.n_heads) grid_init = torch.stack([thetas.cos(), thetas.sin()], -1) grid_init = (grid_init / grid_init.abs().max(-1, keepdim=True)[0]).view( self.n_heads, 1, 1, 2).repeat(1, self.n_levels, self.n_points, 1) for i in range(self.n_points): grid_init[:, :, i, :] *= i + 1 with torch.no_grad(): self.sampling_offsets.bias = nn.Parameter(grid_init.view(-1)) constant_(self.attention_weights.weight.data, 0.) constant_(self.attention_weights.bias.data, 0.) xavier_uniform_(self.value_proj.weight.data) constant_(self.value_proj.bias.data, 0.) xavier_uniform_(self.output_proj.weight.data) constant_(self.output_proj.bias.data, 0.) def forward(self, query, reference_points, input_flatten, input_spatial_shapes, input_level_start_index, input_padding_mask=None): """ :param query (N, Length_{query}, C) :param reference_points (N, Length_{query}, n_levels, 2), range in [0, 1], top-left (0,0), bottom-right (1, 1), including padding area or (N, Length_{query}, n_levels, 4), add additional (w, h) to form reference boxes :param input_flatten (N, \sum_{l=0}^{L-1} H_l \cdot W_l, C) :param input_spatial_shapes (n_levels, 2), [(H_0, W_0), (H_1, W_1), ..., (H_{L-1}, W_{L-1})] :param input_level_start_index (n_levels, ), [0, H_0*W_0, H_0*W_0+H_1*W_1, H_0*W_0+H_1*W_1+H_2*W_2, ..., H_0*W_0+H_1*W_1+...+H_{L-1}*W_{L-1}] :param input_padding_mask (N, \sum_{l=0}^{L-1} H_l \cdot W_l), True for padding elements, False for non-padding elements :return output (N, Length_{query}, C) """ N, Len_q, _ = query.shape N, Len_in, _ = input_flatten.shape assert (input_spatial_shapes[:, 0] * input_spatial_shapes[:, 1]).sum() == Len_in value = self.value_proj(input_flatten) if input_padding_mask is not None: value = value.masked_fill(input_padding_mask[..., None], float(0)) value = value.view(N, Len_in, self.n_heads, int(self.ratio * self.d_model) // self.n_heads) sampling_offsets = self.sampling_offsets(query).view( N, Len_q, self.n_heads, self.n_levels, self.n_points, 2) attention_weights = self.attention_weights(query).view( N, Len_q, self.n_heads, self.n_levels * self.n_points) attention_weights = F.softmax(attention_weights, -1).\ view(N, Len_q, self.n_heads, self.n_levels, self.n_points) if reference_points.shape[-1] == 2: offset_normalizer = torch.stack( [input_spatial_shapes[..., 1], input_spatial_shapes[..., 0]], -1) sampling_locations = reference_points[:, :, None, :, None, :] \ + sampling_offsets / offset_normalizer[None, None, None, :, None, :] elif reference_points.shape[-1] == 4: sampling_locations = reference_points[:, :, None, :, None, :2] \ + sampling_offsets / self.n_points * reference_points[:, :, None, :, None, 2:] * 0.5 else: raise ValueError( 'Last dim of reference_points must be 2 or 4, but get {} instead.' .format(reference_points.shape[-1])) output = MSDeformAttnFunction.apply(value, input_spatial_shapes, input_level_start_index, sampling_locations, attention_weights, self.im2col_step) output = self.output_proj(output) return output
ViT-Adapter-main
detection/ops/modules/ms_deform_attn.py
# ------------------------------------------------------------------------------------------------ # Deformable DETR # Copyright (c) 2020 SenseTime. All Rights Reserved. # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # ------------------------------------------------------------------------------------------------ # Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0 # ------------------------------------------------------------------------------------------------ from .ms_deform_attn import MSDeformAttn __all__ = ['MSDeformAttn']
ViT-Adapter-main
detection/ops/modules/__init__.py
import torch from qwen.model import QwenVL #usage img = torch.randn(1, 3, 256, 256) caption = torch.randint(0, 20000, (1, 1024)) model = QwenVL() output = model(img, caption) print(output.shape)
Qwen-VL-main
example.py
from qwen.inference import QwenVLChat qwen_chat = QwenVLChat(model_name="Qwen/Qwen-VL-Chat", device_map="cuda") response = qwen_chat.chat([ {"image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg"}, {"text": "这是什么?"} ]) print(response) response = qwen_chat.chat("框出图中击掌的位置") print(response) image = qwen_chat.draw_bbox_on_latest_picture(response) if image: image.save("1.jpg") else: print("no box") # For Qwen-VL qwen_vl = QwenVLChat(model_name="Qwen/Qwen-VL", device_map="cuda") response = qwen_vl.chat([ {"image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg"}, {"text": "Generate the caption in English with grounding:"} ]) print(response) image = qwen_vl.draw_bbox_on_latest_picture(response) if image: image.save("2.jpg") else: print("no box")
Qwen-VL-main
inference.py
from qwen.model import QwenVL, QwenVLTokenizer from qwen.train import CFG, Train from qwen.inference import QwenVLChat
Qwen-VL-main
qwen/__init__.py
import torch import torch.nn as nn from transformers import AutoTokenizer, CLIPProcessor from qwen.transformer import ( Decoder, Encoder, Transformer, ViTransformerWrapper, AutoregressiveWrapper ) class QwenVLTokenizer: def __init__(self): try: self.processor = CLIPProcessor.from_pretrained("laion/CLIP-ViT-L-14-laion2B-s32B-b82K") self.tokenizer = AutoTokenizer.from_pretrained( "EleutherAI/gpt-neox-20b", additional_special_tokens=["<img>", "</img>"], eos_token ="<eos>", pad_token="<pad>", extra_ids=0, model_max_length=8192 ) self.im_idx, self.im_end_idx = self.tokenizer.convert_tokens_to_ids(["<img>", "</img>"]) except Exception as e: print(f"Error init tokenizer: {e}") def tokenize_texts(self, texts): try: texts = self.tokenizer(texts, return_tensors="pt", padding=True, truncation=True).input_ids image_tokens = torch.tensor([[self.im_idx, self.im_end_idx]] * texts.shape[0]) return torch.cat([texts[:, 0:1], image_tokens, texts[:, 1:]], dim=1), texts except Exception as e: print(f"Error tokenizing texts: {e}") def tokenize_images(self, images): try: tokenized_images = self.processor(images=images, return_tensors="pt").pixel_values print(f"Tokenized image: {tokenized_images.shape}") return tokenized_images except Exception as e: print(f"Error tokenizing texts: {e}") def tokenize(self, sample): try: text_tokens, only_text_tokens = self.tokenize_texts(sample["target_text"]) attention_mask = text_tokens != self.tokenizer.pad_token_id dummy_image_features = torch.ones((text_tokens.shape[0], 64)) attention_mask = torch.cat([dummy_image_features, attention_mask], dim=1) return { "text_tokens": text_tokens, "images": self.tokenize_images(sample["img"]), "labels": only_text_tokens, "attention_mask": attention_mask, } except Exception as e: print(f"Error during tokenization {e}") class QwenVL(torch.nn.Module): def __init__(self, image_size=256, patch_size=32, encoder_dim=512, encoder_depth=6, encoder_heads=8, num_tokens=20000, max_seq_len=1024, decoder_dim=512, decoder_depth=6, decoder_heads=8, alibi_num_heads=4, use_abs_pos_emb=False, cross_attend=True, alibi_pos_bias=True, rotary_xpos=True, attn_flash=True, qk_norm=True): super(QwenVL, self).__init__() self.encoder = ViTransformerWrapper( image_size=image_size, patch_size=patch_size, attn_layers=Encoder( dim=encoder_dim, depth=encoder_depth, heads=encoder_heads ) ) self.decoder = Transformer( num_tokens=num_tokens, max_seq_len=max_seq_len, use_abs_pos_emb=use_abs_pos_emb, attn_layers=Decoder( dim=decoder_dim, depth=decoder_depth, heads=decoder_heads, cross_attend=cross_attend, alibi_pos_bias=alibi_pos_bias, alibi_num_heads=alibi_num_heads, rotary_xpos=rotary_xpos, attn_flash=attn_flash, qk_norm=qk_norm, ) ) self.decoder = AutoregressiveWrapper(self.decoder) def forward(self, img, text): try: encoded = self.encoder(img, return_embeddings=True) return self.decoder(text, context=encoded) except Exception as error: print(f"Failed in forward method: {error}") raise
Qwen-VL-main
qwen/model.py
from functools import partial from typing import Optional import torch from torch import nn, einsum, Tensor import torch.nn.functional as F from collections import namedtuple from functools import wraps from packaging import version from dataclasses import dataclass from einops import rearrange # constants EfficientAttentionConfig = namedtuple('EfficientAttentionConfig', ['enable_flash', 'enable_math', 'enable_mem_efficient']) @dataclass class Intermediates: qk_similarities: Optional[Tensor] = None pre_softmax_attn: Optional[Tensor] = None post_softmax_attn: Optional[Tensor] = None def to_tuple(self): return (self.qk_similarities, self.pre_softmax_attn, self.post_softmax_attn) # helpers def exists(val): return val is not None def default(val, d): return val if exists(val) else d def compact(arr): return [*filter(exists, arr)] def once(fn): called = False @wraps(fn) def inner(x): nonlocal called if called: return called = True return fn(x) return inner print_once = once(print) # functions for creating causal mask # need a special one for onnx cpu (no support for .triu) def create_causal_mask(i, j, device): return torch.ones((i, j), device = device, dtype = torch.bool).triu(j - i + 1) def onnx_create_causal_mask(i, j, device): r = torch.arange(i, device = device) causal_mask = rearrange(r, 'i -> i 1') < rearrange(r, 'j -> 1 j') causal_mask = F.pad(causal_mask, (j - i, 0), value = False) return causal_mask # main class class Attend(nn.Module): def __init__( self, *, dropout = 0., causal = False, heads = None, talking_heads = False, sparse_topk = None, scale = None, qk_norm = False, flash = False, add_zero_kv = False, onnxable = False ): super().__init__() self.scale = scale self.qk_norm = qk_norm self.causal = causal self.create_causal_mask = onnx_create_causal_mask if onnxable else create_causal_mask self.attn_fn = partial(F.softmax, dtype = torch.float32) if not qk_norm else F.softmax self.dropout = dropout self.attn_dropout = nn.Dropout(dropout) # talking heads assert not (flash and talking_heads), 'talking heads not compatible with flash attention' self.talking_heads = talking_heads if talking_heads: self.pre_softmax_talking_heads = nn.Conv2d(heads, heads, 1, bias = False) self.post_softmax_talking_heads = nn.Conv2d(heads, heads, 1, bias = False) # sparse topk assert not (flash and sparse_topk), 'sparse topk not compatible with flash attention' self.sparse_topk = sparse_topk # add a key / value token composed of zeros # in case this helps controlling outliers, proposed by https://www.evanmiller.org/attention-is-off-by-one.html self.add_zero_kv = add_zero_kv # flash attention self.flash = flash assert not (flash and version.parse(torch.__version__) < version.parse('2.0.0')), 'in order to use flash attention, you must be using pytorch 2.0 or above' # determine efficient attention configs for cuda and cpu self.cpu_config = EfficientAttentionConfig(True, True, True) self.cuda_config = None if not torch.cuda.is_available() or not flash: return device_properties = torch.cuda.get_device_properties(torch.device('cuda')) if device_properties.major == 8 and device_properties.minor == 0: print_once('A100 GPU detected, using flash attention if input tensor is on cuda') self.cuda_config = EfficientAttentionConfig(True, False, False) else: print_once('Non-A100 GPU detected, using math or mem efficient attention if input tensor is on cuda') self.cuda_config = EfficientAttentionConfig(False, True, True) def flash_attn( self, q, k, v, mask = None, attn_bias = None ): batch, heads, q_len, _, k_len, is_cuda, device = *q.shape, k.shape[-2], q.is_cuda, q.device # Recommended for multi-query single-key-value attention by Tri Dao # kv shape torch.Size([1, 512, 64]) -> torch.Size([1, 8, 512, 64]) if k.ndim == 3: k = rearrange(k, 'b ... -> b 1 ...').expand_as(q) if v.ndim == 3: v = rearrange(v, 'b ... -> b 1 ...').expand_as(q) # handle scale - by default they scale by dim_head ** -0.5, but need to take care if using cosine sim attention if self.qk_norm: default_scale = q.shape[-1] ** -0.5 q = q * (default_scale / self.scale) # Check if mask exists and expand to compatible shape # The mask is B L, so it would have to be expanded to B H N L causal = self.causal if exists(mask): assert mask.ndim == 4 mask = mask.expand(batch, heads, q_len, k_len) # manually handle causal mask, if another mask was given if causal: causal_mask = self.create_causal_mask(q_len, k_len, device = device) mask = mask & ~causal_mask causal = False # handle alibi positional bias # convert from bool to float if exists(attn_bias): attn_bias = rearrange(attn_bias, 'h i j -> 1 h i j').expand(batch, heads, -1, -1) # if mask given, the mask would already contain the causal mask from above logic # otherwise, if no mask given but still causal, mask out alibi positional bias to a large negative number mask_value = -torch.finfo(q.dtype).max if exists(mask): attn_bias = attn_bias.masked_fill(~mask, mask_value // 2) elif causal: causal_mask = self.create_causal_mask(q_len, k_len, device = device) attn_bias = attn_bias.masked_fill(causal_mask, mask_value // 2) causal = False # scaled_dot_product_attention handles attn_mask either as bool or additive bias # make it an additive bias here mask = attn_bias # Check if there is a compatible device for flash attention config = self.cuda_config if is_cuda else self.cpu_config # pytorch 2.0 flash attn: q, k, v, mask, dropout, causal, softmax_scale with torch.backends.cuda.sdp_kernel(**config._asdict()): out = F.scaled_dot_product_attention( q, k, v, attn_mask = mask, dropout_p = self.dropout if self.training else 0., is_causal = causal ) return out, Intermediates() def forward( self, q, k, v, mask = None, attn_bias = None, prev_attn = None ): """ einstein notation b - batch h - heads n, i, j - sequence length (base sequence length, source, target) d - feature dimension """ n, device = q.shape[-2], q.device scale = default(self.scale, q.shape[-1] ** -0.5) if self.add_zero_kv: k, v = map(lambda t: F.pad(t, (0, 0, 1, 0), value = 0.), (k, v)) if exists(mask): mask = F.pad(mask, (1, 0), value = True) if exists(attn_bias): attn_bias = F.pad(attn_bias, (1, 0), value = 0.) if self.flash: assert not exists(prev_attn), 'residual attention not compatible with flash attention' return self.flash_attn(q, k, v, mask = mask, attn_bias = attn_bias) kv_einsum_eq = 'b j d' if k.ndim == 3 else 'b h j d' dots = einsum(f'b h i d, {kv_einsum_eq} -> b h i j', q, k) * scale if exists(prev_attn): dots = dots + prev_attn qk_similarities = dots.clone() if self.talking_heads: dots = self.pre_softmax_talking_heads(dots) if exists(attn_bias): dots = dots + attn_bias i, j, dtype = *dots.shape[-2:], dots.dtype mask_value = -torch.finfo(dots.dtype).max if exists(self.sparse_topk) and self.sparse_topk < j: top_values, _ = dots.topk(self.sparse_topk, dim = -1) sparse_topk_mask = dots < top_values[..., -1:] mask = (mask & sparse_topk_mask) if exists(mask) else sparse_topk_mask if exists(mask): dots = dots.masked_fill(~mask, mask_value) if self.causal: causal_mask = self.create_causal_mask(i, j, device = device) dots = dots.masked_fill(causal_mask, mask_value) pre_softmax_attn = dots.clone() attn = self.attn_fn(dots, dim = -1) attn = attn.type(dtype) post_softmax_attn = attn.clone() attn = self.attn_dropout(attn) if self.talking_heads: attn = self.post_softmax_talking_heads(attn) out = einsum(f'b h i j, {kv_einsum_eq} -> b h i d', attn, v) intermediates = Intermediates( qk_similarities = qk_similarities, pre_softmax_attn = pre_softmax_attn, post_softmax_attn = post_softmax_attn ) return out, intermediates # cascading heads logic def to_single_heads(t, dim = 1): heads = t.unbind(dim = dim) return tuple(head.unsqueeze(dim) for head in heads) class CascadingHeads(nn.Module): def __init__(self, attend: Attend): super().__init__() self.attend = attend def forward( self, q, k, v, mask = None, attn_bias = None, prev_attn = None ): assert q.shape[-1] == v.shape[-1], 'cascading heads can only be done if query / key and value head dimensions are the same' # split inputs into per-head inputs heads = q.shape[1] queries = to_single_heads(q) keys = to_single_heads(k) if k.ndim == 4 else ((k,) * heads) values = to_single_heads(v) if v.ndim == 4 else ((v,) * heads) mask = (mask,) * heads attn_bias = to_single_heads(attn_bias, dim = 0) if exists(attn_bias) else ((None,) * heads) prev_attn = to_single_heads(prev_attn) if exists(prev_attn) else ((None,) * heads) # now loop through each head, without output of previous head summed with the next head # thus cascading all_outs = [] all_intermediates = [] prev_head_out = None for h_q, h_k, h_v, h_mask, h_attn_bias, h_prev_attn in zip(queries, keys, values, mask, attn_bias, prev_attn): if exists(prev_head_out): h_q = h_q + prev_head_out out, intermediates = self.attend( h_q, h_k, h_v, mask = h_mask, attn_bias = h_attn_bias, prev_attn = h_prev_attn ) prev_head_out = out all_outs.append(out) all_intermediates.append(intermediates) # cat all output heads all_outs = torch.cat(all_outs, dim = 1) # cat all intermediates, if they exist qk_similarities, pre_softmax_attn, post_softmax_attn = zip(*map(lambda i: i.to_tuple(), all_intermediates)) qk_similarities, pre_softmax_attn, post_softmax_attn = map(compact, (qk_similarities, pre_softmax_attn, post_softmax_attn)) aggregated_intermediates = Intermediates( qk_similarities = torch.cat(qk_similarities, dim = 1) if len(qk_similarities) > 0 else None, pre_softmax_attn = torch.cat(pre_softmax_attn, dim = 1) if len(pre_softmax_attn) > 0 else None, post_softmax_attn = torch.cat(post_softmax_attn, dim = 1) if len(post_softmax_attn) > 0 else None ) return all_outs, aggregated_intermediates
Qwen-VL-main
qwen/attend.py
import torch # This is the unfused version of StableAdamW. It is slower than the fused version (coming). class StableAdamWUnfused(torch.optim.Optimizer): def __init__( self, params, lr=0.002, weight_decay=0.2, betas=(0.9, 0.99), eps=1e-8, clip_thresh=1.0, precision="amp_bfloat16", custom_scalar=65536, ): beta1, beta2 = betas[0], betas[1] defaults = dict(lr=lr, weight_decay=weight_decay, beta1=beta1, beta2=beta2) super(StableAdamWUnfused, self).__init__(params, defaults) self.eps = eps self.d = clip_thresh # Set precision to "custom_fp16" if you want to use a fixed loss scalar, custom_scalar, which is divided out in the update step. # If you do this, call (custom_scalar * loss).backward() instead of loss.backward(). self.precision = precision self.custom_scaler = custom_scalar for group in self.param_groups: group["step"] = 1.0 print("Using StableAdamWUnfused-v1") def __setstate__(self, state): super(StableAdamWUnfused, self).__setstate__(state) def step(self, closure=None): if closure is not None: closure() for group in self.param_groups: lr = group["lr"] weight_decay = group["weight_decay"] beta1 = group["beta1"] beta2 = group["beta2"] step = group["step"] for p in group["params"]: if p.grad is None: continue theta = p.data param_state = self.state[p] if self.precision == "custom_fp16": g = p.grad.data / self.custom_scaler if torch.any(torch.isnan(g) | torch.isinf(g)): continue else: g = p.grad.data if "exp_avg" not in param_state: v = param_state["exp_avg"] = torch.zeros_like(theta) u = param_state["exp_avg_sq"] = torch.zeros_like(theta) else: v = param_state["exp_avg"] u = param_state["exp_avg_sq"] beta1hat = beta1 * (1 - beta1 ** (step - 1)) / (1 - beta1**step) beta2hat = beta2 * (1 - beta2 ** (step - 1)) / (1 - beta2**step) v = v.mul_(beta1hat).add_(g, alpha=1.0 - beta1hat) u = u.mul_(beta2hat).addcmul_(g, g, value=1.0 - beta2hat) denominator = u.sqrt().add_(self.eps) # StableAdamW = AdamW + update clipping (https://arxiv.org/abs/1804.04235) applied tensor-wise. rms = ( torch.div( g.pow(2), torch.maximum(u, (self.eps**2) * torch.ones_like(u)) ) .mean() .sqrt() .item() ) theta = theta.mul_(1.0 - lr * weight_decay).addcdiv_( v, denominator, value=-lr * (1.0 / max(1.0, rms / self.d)) ) # save current params param_state["exp_avg"] = v param_state["exp_avg_sq"] = u group["step"] = step + 1
Qwen-VL-main
qwen/utils.py
import math from dataclasses import dataclass from functools import partial, wraps from inspect import isfunction # constants from math import ceil from random import random from typing import Callable, List, Optional import torch import torch.nn.functional as F from einops import pack, rearrange, reduce, repeat, unpack from torch import Tensor, einsum, nn from qwen.attend import Attend, Intermediates def exists(val): return val is not None def eval_decorator(fn): def inner(self, *args, **kwargs): was_training = self.training self.eval() out = fn(self, *args, **kwargs) self.train(was_training) return out return inner # nucleus def top_p(logits, thres = 0.9): sorted_logits, sorted_indices = torch.sort(logits, descending=True) cum_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) sorted_indices_to_remove = cum_probs > (1 - thres) sorted_indices_to_remove[:, 1:] = sorted_indices_to_remove[:, :-1].clone() sorted_indices_to_remove[:, 0] = 0 sorted_logits[sorted_indices_to_remove] = float('-inf') return sorted_logits.scatter(1, sorted_indices, sorted_logits) # topk def top_k(logits, thres = 0.9): k = ceil((1 - thres) * logits.shape[-1]) val, ind = torch.topk(logits, k) probs = torch.full_like(logits, float('-inf')) probs.scatter_(1, ind, val) return probs # top_a def top_a(logits, min_p_pow=2.0, min_p_ratio=0.02): probs = F.softmax(logits, dim=-1) limit = torch.pow(torch.max(probs), min_p_pow) * min_p_ratio logits[probs < limit] = float('-inf') logits[probs >= limit] = 1 return logits # autoregressive wrapper class class AutoregressiveWrapper(nn.Module): def __init__( self, net, ignore_index = -100, pad_value = 0, mask_prob = 0. ): super().__init__() self.pad_value = pad_value self.ignore_index = ignore_index self.net = net self.max_seq_len = net.max_seq_len # paper shows masking (MLM) in conjunction with autoregressive decoder-only training leads to big improvements https://arxiv.org/abs/2210.13432 assert mask_prob < 1. self.mask_prob = mask_prob @torch.no_grad() @eval_decorator def generate( self, start_tokens, seq_len, eos_token = None, temperature = 1., filter_logits_fn = top_k, filter_thres = 0.9, min_p_pow = 2.0, min_p_ratio = 0.02, **kwargs ): start_tokens, ps = pack([start_tokens], '* n') b, t = start_tokens.shape out = start_tokens for _ in range(seq_len): x = out[:, -self.max_seq_len:] logits = self.net(x, **kwargs)[:, -1] if filter_logits_fn in {top_k, top_p}: filtered_logits = filter_logits_fn(logits, thres = filter_thres) probs = F.softmax(filtered_logits / temperature, dim=-1) elif filter_logits_fn is top_a: filtered_logits = filter_logits_fn(logits, min_p_pow = min_p_pow, min_p_ratio= min_p_ratio) probs = F.softmax(filtered_logits / temperature, dim=-1) sample = torch.multinomial(probs, 1) out = torch.cat((out, sample), dim=-1) if exists(eos_token): is_eos_tokens = (out == eos_token) if is_eos_tokens.any(dim = -1).all(): # mask out everything after the eos tokens shifted_is_eos_tokens = F.pad(is_eos_tokens, (1, -1)) mask = shifted_is_eos_tokens.float().cumsum(dim = -1) >= 1 out = out.masked_fill(mask, self.pad_value) break out = out[:, t:] out, = unpack(out, ps, '* n') return out def forward(self, x, return_loss=True, **kwargs): seq, ignore_index = x.shape[1], self.ignore_index inp, target = x[:, :-1], x[:, 1:] if self.mask_prob > 0.: rand = torch.randn(inp.shape, device = x.device) rand[:, 0] = -torch.finfo(rand.dtype).max # first token should not be masked out num_mask = min(int(seq * self.mask_prob), seq - 1) indices = rand.topk(num_mask, dim = -1).indices mask = ~torch.zeros_like(inp).scatter(1, indices, 1.).bool() kwargs.update(self_attn_context_mask = mask) logits = self.net(inp, **kwargs) loss = F.cross_entropy( rearrange(logits, 'b n c -> b c n'), target, ignore_index = ignore_index ) if return_loss: return logits, loss return logits DEFAULT_DIM_HEAD = 64 @dataclass class LayerIntermediates: hiddens: Optional[List[Tensor]] = None attn_intermediates: Optional[List[Intermediates]] = None layer_hiddens: Optional[List[Tensor]] = None attn_z_loss: Optional[Tensor] = None # helpers def exists(val): return val is not None def default(val, d): if exists(val): return val return d() if isfunction(d) else d def cast_tuple(val, depth): return val if isinstance(val, tuple) else (val,) * depth def maybe(fn): @wraps(fn) def inner(x, *args, **kwargs): if not exists(x): return x return fn(x, *args, **kwargs) return inner class always(): def __init__(self, val): self.val = val def __call__(self, *args, **kwargs): return self.val class not_equals(): def __init__(self, val): self.val = val def __call__(self, x, *args, **kwargs): return x != self.val class equals(): def __init__(self, val): self.val = val def __call__(self, x, *args, **kwargs): return x == self.val def Sequential(*modules): return nn.Sequential(*filter(exists, modules)) # tensor helpers def max_neg_value(tensor): return -torch.finfo(tensor.dtype).max def l2norm(t, groups = 1): t = rearrange(t, '... (g d) -> ... g d', g = groups) t = F.normalize(t, p = 2, dim = -1) return rearrange(t, '... g d -> ... (g d)') def pad_at_dim(t, pad, dim = -1, value = 0.): dims_from_right = (- dim - 1) if dim < 0 else (t.ndim - dim - 1) zeros = ((0, 0) * dims_from_right) return F.pad(t, (*zeros, *pad), value = value) def or_reduce(masks): head, *body = masks for rest in body: head = head | rest return head # auxiliary loss helpers def calc_z_loss( pre_softmax_attns: List[Tensor], mask = None, weight = 1. ): # the same loss applied to the mixture of experts router logits in https://arxiv.org/abs/2202.08906 # in the paper, in a tiny footnote, they mention using it on attention logits with stabilizing effects # also used in PaLM as one of the measures lse = 0. for attn in pre_softmax_attns: lse = lse + attn.logsumexp(dim = -1) loss = torch.square(lse) loss = reduce(loss, 'b h n -> b n', 'sum') if not exists(mask): return loss.mean() * weight loss = loss[mask].sum() / mask.sum().clamp(min = 1e-5) return loss * weight # init helpers def init_zero_(layer): nn.init.constant_(layer.weight, 0.) if exists(layer.bias): nn.init.constant_(layer.bias, 0.) # keyword argument helpers def pick_and_pop(keys, d): values = list(map(lambda key: d.pop(key), keys)) return dict(zip(keys, values)) def group_dict_by_key(cond, d): return_val = [dict(),dict()] for key in d.keys(): match = bool(cond(key)) ind = int(not match) return_val[ind][key] = d[key] return (*return_val,) def string_begins_with(prefix, str): return str.startswith(prefix) def group_by_key_prefix(prefix, d): return group_dict_by_key(partial(string_begins_with, prefix), d) def groupby_prefix_and_trim(prefix, d): kwargs_with_prefix, kwargs = group_dict_by_key(partial(string_begins_with, prefix), d) kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix):], x[1]), tuple(kwargs_with_prefix.items()))) return kwargs_without_prefix, kwargs # initializations def deepnorm_init( transformer, beta, module_name_match_list = ['.ff.', '.to_v', '.to_out'] ): for name, module in transformer.named_modules(): if type(module) != nn.Linear: continue needs_beta_gain = any(map(lambda substr: substr in name, module_name_match_list)) gain = beta if needs_beta_gain else 1 nn.init.xavier_normal_(module.weight.data, gain = gain) if exists(module.bias): nn.init.constant_(module.bias.data, 0) # structured dropout, more effective than traditional attention dropouts def dropout_seq(seq, mask, dropout): b, n, *_, device = *seq.shape, seq.device logits = torch.randn(b, n, device = device) if exists(mask): mask_value = max_neg_value(logits) logits = logits.masked_fill(~mask, mask_value) keep_prob = 1. - dropout num_keep = max(1, int(keep_prob * n)) keep_indices = logits.topk(num_keep, dim = 1).indices batch_indices = torch.arange(b, device = device) batch_indices = rearrange(batch_indices, 'b -> b 1') seq = seq[batch_indices, keep_indices] if exists(mask): seq_counts = mask.sum(dim = -1) seq_keep_counts = torch.ceil(seq_counts * keep_prob).int() keep_mask = torch.arange(num_keep, device = device) < rearrange(seq_keep_counts, 'b -> b 1') mask = mask[batch_indices, keep_indices] & keep_mask return seq, mask # activations class ReluSquared(nn.Module): def forward(self, x): return F.relu(x) ** 2 # embedding class TokenEmbedding(nn.Module): def __init__(self, dim, num_tokens, l2norm_embed = False): super().__init__() self.l2norm_embed = l2norm_embed self.emb = nn.Embedding(num_tokens, dim) def forward(self, x): token_emb = self.emb(x) return l2norm(token_emb) if self.l2norm_embed else token_emb # positional embeddings class AbsolutePositionalEmbedding(nn.Module): def __init__(self, dim, max_seq_len, l2norm_embed = False): super().__init__() self.scale = dim ** -0.5 if not l2norm_embed else 1. self.max_seq_len = max_seq_len self.l2norm_embed = l2norm_embed self.emb = nn.Embedding(max_seq_len, dim) def forward(self, x, pos = None): seq_len, device = x.shape[1], x.device assert seq_len <= self.max_seq_len, f'you are passing in a sequence length of {seq_len} but your absolute positional embedding has a max sequence length of {self.max_seq_len}' if not exists(pos): pos = torch.arange(seq_len, device = device) pos_emb = self.emb(pos) pos_emb = pos_emb * self.scale return l2norm(pos_emb) if self.l2norm_embed else pos_emb class ScaledSinusoidalEmbedding(nn.Module): def __init__(self, dim, theta = 10000): super().__init__() assert (dim % 2) == 0 self.scale = nn.Parameter(torch.ones(1) * dim ** -0.5) half_dim = dim // 2 freq_seq = torch.arange(half_dim).float() / half_dim inv_freq = theta ** -freq_seq self.register_buffer('inv_freq', inv_freq, persistent = False) def forward(self, x, pos = None): seq_len, device = x.shape[1], x.device if not exists(pos): pos = torch.arange(seq_len, device = device) emb = einsum('i, j -> i j', pos, self.inv_freq) emb = torch.cat((emb.sin(), emb.cos()), dim = -1) return emb * self.scale class RelativePositionBias(nn.Module): def __init__(self, scale, causal = False, num_buckets = 32, max_distance = 128, heads = 8): super().__init__() self.scale = scale self.causal = causal self.num_buckets = num_buckets self.max_distance = max_distance self.relative_attention_bias = nn.Embedding(num_buckets, heads) @staticmethod def _relative_position_bucket(relative_position, causal = True, num_buckets = 32, max_distance = 128): ret = 0 n = -relative_position if not causal: num_buckets //= 2 ret += (n < 0).long() * num_buckets n = torch.abs(n) else: n = torch.max(n, torch.zeros_like(n)) max_exact = num_buckets // 2 is_small = n < max_exact val_if_large = max_exact + ( torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact) ).long() val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1)) ret += torch.where(is_small, n, val_if_large) return ret @property def device(self): return next(self.parameters()).device def forward(self, i, j): device = self.device q_pos = torch.arange(j - i, j, dtype = torch.long, device = device) k_pos = torch.arange(j, dtype = torch.long, device = device) rel_pos = k_pos[None, :] - q_pos[:, None] rp_bucket = self._relative_position_bucket(rel_pos, causal = self.causal, num_buckets = self.num_buckets, max_distance = self.max_distance) values = self.relative_attention_bias(rp_bucket) bias = rearrange(values, 'i j h -> h i j') return bias * self.scale class DynamicPositionBias(nn.Module): def __init__(self, dim, *, heads, depth, log_distance = False, norm = False): super().__init__() assert depth >= 1, 'depth for dynamic position bias MLP must be greater or equal to 1' self.log_distance = log_distance self.mlp = nn.ModuleList([]) self.mlp.append(Sequential( nn.Linear(1, dim), nn.LayerNorm(dim) if norm else None, nn.SiLU() )) for _ in range(depth - 1): self.mlp.append(Sequential( nn.Linear(dim, dim), nn.LayerNorm(dim) if norm else None, nn.SiLU() )) self.mlp.append(nn.Linear(dim, heads)) @property def device(self): return next(self.parameters()).device def forward(self, i, j): assert i == j n, device = j, self.device # get the (n x n) matrix of distances seq_arange = torch.arange(n, device = device) context_arange = torch.arange(n, device = device) indices = rearrange(seq_arange, 'i -> i 1') - rearrange(context_arange, 'j -> 1 j') indices += (n - 1) # input to continuous positions MLP pos = torch.arange(-n + 1, n, device = device).float() pos = rearrange(pos, '... -> ... 1') if self.log_distance: pos = torch.sign(pos) * torch.log(pos.abs() + 1) # log of distance is sign(rel_pos) * log(abs(rel_pos) + 1) for layer in self.mlp: pos = layer(pos) # get position biases bias = pos[indices] bias = rearrange(bias, 'i j h -> h i j') return bias class AlibiPositionalBias(nn.Module): def __init__(self, heads, total_heads, **kwargs): super().__init__() self.heads = heads self.total_heads = total_heads slopes = Tensor(self._get_slopes(heads)) slopes = rearrange(slopes, 'h -> h 1 1') self.register_buffer('slopes', slopes, persistent = False) self.register_buffer('bias', None, persistent = False) def get_bias(self, i, j, device): i_arange = torch.arange(j - i, j, device = device) j_arange = torch.arange(j, device = device) bias = -torch.abs(rearrange(j_arange, 'j -> 1 1 j') - rearrange(i_arange, 'i -> 1 i 1')) return bias @staticmethod def _get_slopes(heads): def get_slopes_power_of_2(n): start = (2**(-2**-(math.log2(n)-3))) ratio = start return [start*ratio**i for i in range(n)] if math.log2(heads).is_integer(): return get_slopes_power_of_2(heads) closest_power_of_2 = 2 ** math.floor(math.log2(heads)) return get_slopes_power_of_2(closest_power_of_2) + get_slopes_power_of_2(2 * closest_power_of_2)[0::2][:heads-closest_power_of_2] @property def device(self): return next(self.buffers()).device def forward(self, i, j): h, device = self.total_heads, self.device if exists(self.bias) and self.bias.shape[-1] >= j and self.bias.shape[-2] >= i: return self.bias[..., :i, :j] bias = self.get_bias(i, j, device) bias = bias * self.slopes num_heads_unalibied = h - bias.shape[0] bias = pad_at_dim(bias, (0, num_heads_unalibied), dim = 0) self.register_buffer('bias', bias, persistent = False) return self.bias class RotaryEmbedding(nn.Module): def __init__( self, dim, use_xpos = False, scale_base = 512, interpolation_factor = 1., base = 10000, base_rescale_factor = 1. ): super().__init__() # proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning # has some connection to NTK literature # https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/ base *= base_rescale_factor ** (dim / (dim - 2)) inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim)) self.register_buffer('inv_freq', inv_freq) assert interpolation_factor >= 1. self.interpolation_factor = interpolation_factor if not use_xpos: self.register_buffer('scale', None) return scale = (torch.arange(0, dim, 2) + 0.4 * dim) / (1.4 * dim) self.scale_base = scale_base self.register_buffer('scale', scale) def forward(self, seq_len, device): t = torch.arange(seq_len, device = device).type_as(self.inv_freq) t = t / self.interpolation_factor freqs = torch.einsum('i , j -> i j', t, self.inv_freq) freqs = torch.cat((freqs, freqs), dim = -1) if not exists(self.scale): return freqs, 1. power = (torch.arange(seq_len, device = device) - (seq_len // 2)) / self.scale_base scale = self.scale ** rearrange(power, 'n -> n 1') scale = torch.cat((scale, scale), dim = -1) return freqs, scale def rotate_half(x): x = rearrange(x, '... (j d) -> ... j d', j = 2) x1, x2 = x.unbind(dim = -2) return torch.cat((-x2, x1), dim = -1) def apply_rotary_pos_emb(t, freqs, scale = 1): seq_len = t.shape[-2] freqs = freqs[-seq_len:, :] return (t * freqs.cos() * scale) + (rotate_half(t) * freqs.sin() * scale) # norms class Scale(nn.Module): def __init__(self, value, fn): super().__init__() self.value = value self.fn = fn def forward(self, x, **kwargs): out = self.fn(x, **kwargs) scale_fn = lambda t: t * self.value if not isinstance(out, tuple): return scale_fn(out) return (scale_fn(out[0]), *out[1:]) class ScaleNorm(nn.Module): def __init__(self, dim, eps = 1e-5): super().__init__() self.eps = eps self.g = nn.Parameter(torch.ones(1) * (dim ** -0.5)) def forward(self, x): norm = torch.norm(x, dim = -1, keepdim = True) return x / norm.clamp(min = self.eps) * self.g class RMSNorm(nn.Module): def __init__(self, dim): super().__init__() self.scale = dim ** 0.5 self.g = nn.Parameter(torch.ones(dim)) def forward(self, x): return F.normalize(x, dim = -1) * self.scale * self.g class SimpleRMSNorm(nn.Module): def __init__(self, dim): super().__init__() self.scale = dim ** 0.5 def forward(self, x): return F.normalize(x, dim = -1) * self.scale # residual and residual gates class Residual(nn.Module): def __init__(self, dim, scale_residual = False, scale_residual_constant = 1.): super().__init__() self.residual_scale = nn.Parameter(torch.ones(dim)) if scale_residual else None self.scale_residual_constant = scale_residual_constant def forward(self, x, residual): if exists(self.residual_scale): residual = residual * self.residual_scale if self.scale_residual_constant != 1: residual = residual * self.scale_residual_constant return x + residual class GRUGating(nn.Module): def __init__(self, dim, scale_residual = False, **kwargs): super().__init__() self.gru = nn.GRUCell(dim, dim) self.residual_scale = nn.Parameter(torch.ones(dim)) if scale_residual else None def forward(self, x, residual): if exists(self.residual_scale): residual = residual * self.residual_scale gated_output = self.gru( rearrange(x, 'b n d -> (b n) d'), rearrange(residual, 'b n d -> (b n) d') ) return gated_output.reshape_as(x) # token shifting def shift(t, amount, mask = None): if amount == 0: return t else: amount = min(amount, t.shape[1]) if exists(mask): t = t.masked_fill(~mask[..., None], 0.) return pad_at_dim(t, (amount, -amount), dim = - 2, value = 0.) class ShiftTokens(nn.Module): def __init__(self, shifts, fn): super().__init__() self.fn = fn self.shifts = tuple(shifts) def forward(self, x, **kwargs): mask = kwargs.get('mask', None) shifts = self.shifts segments = len(shifts) feats_per_shift = x.shape[-1] // segments splitted = x.split(feats_per_shift, dim = -1) segments_to_shift, rest = splitted[:segments], splitted[segments:] segments_to_shift = list(map(lambda args: shift(*args, mask = mask), zip(segments_to_shift, shifts))) x = torch.cat((*segments_to_shift, *rest), dim = -1) return self.fn(x, **kwargs) # feedforward class GLU(nn.Module): def __init__( self, dim_in, dim_out, activation: Callable, mult_bias = False ): super().__init__() self.act = activation self.proj = nn.Linear(dim_in, dim_out * 2) self.mult_bias = nn.Parameter(torch.ones(dim_out)) if mult_bias else 1. def forward(self, x): x, gate = self.proj(x).chunk(2, dim = -1) return x * self.act(gate) * self.mult_bias class FeedForward(nn.Module): def __init__( self, dim, dim_out = None, mult = 4, glu = False, glu_mult_bias = False, swish = False, relu_squared = False, post_act_ln = False, dropout = 0., no_bias = False, zero_init_output = False ): super().__init__() inner_dim = int(dim * mult) dim_out = default(dim_out, dim) if relu_squared: activation = ReluSquared() elif swish: activation = nn.SiLU() else: activation = nn.GELU() if glu: project_in = GLU(dim, inner_dim, activation, mult_bias = glu_mult_bias) else: project_in = nn.Sequential( nn.Linear(dim, inner_dim, bias = not no_bias), activation ) self.ff = Sequential( project_in, nn.LayerNorm(inner_dim) if post_act_ln else None, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out, bias = not no_bias) ) # init last linear layer to 0 if zero_init_output: init_zero_(self.ff[-1]) def forward(self, x): return self.ff(x) # attention. it is all we need class Attention(nn.Module): def __init__( self, dim, dim_head = DEFAULT_DIM_HEAD, heads = 8, causal = False, flash = False, talking_heads = False, head_scale = False, sparse_topk = None, num_mem_kv = 0, dropout = 0., on_attn = False, gate_values = False, zero_init_output = False, max_attend_past = None, qk_norm = False, qk_norm_groups = 1, qk_norm_scale = 10, qk_norm_dim_scale = False, one_kv_head = False, shared_kv = False, value_dim_head = None, tensor_product = False, # https://arxiv.org/abs/2208.06061 cascading_heads = False, add_zero_kv = False, # same as add_zero_attn in pytorch onnxable = False ): super().__init__() self.scale = dim_head ** -0.5 self.heads = heads self.causal = causal self.max_attend_past = max_attend_past value_dim_head = default(value_dim_head, dim_head) q_dim = k_dim = dim_head * heads v_dim = out_dim = value_dim_head * heads self.one_kv_head = one_kv_head if one_kv_head: k_dim = dim_head v_dim = value_dim_head out_dim = v_dim * heads self.to_q = nn.Linear(dim, q_dim, bias = False) self.to_k = nn.Linear(dim, k_dim, bias = False) # shared key / values, for further memory savings during inference assert not (shared_kv and value_dim_head != dim_head), 'key and value head dimensions must be equal for shared key / values' self.to_v = nn.Linear(dim, v_dim, bias = False) if not shared_kv else None # relations projection from tp-attention self.to_r = nn.Linear(dim, v_dim, bias = False) if tensor_product else None # add GLU gating for aggregated values, from alphafold2 self.to_v_gate = None if gate_values: self.to_v_gate = nn.Linear(dim, out_dim) nn.init.constant_(self.to_v_gate.weight, 0) nn.init.constant_(self.to_v_gate.bias, 1) # cosine sim attention self.qk_norm = qk_norm self.qk_norm_groups = qk_norm_groups self.qk_norm_scale = qk_norm_scale # whether to use the rmsnorm (equivalent to cosine sim attention when scale is equal to 1) - https://arxiv.org/abs/2302.05442 self.qk_norm_dim_scale = qk_norm_dim_scale self.qk_norm_q_scale = self.qk_norm_k_scale = 1 if qk_norm and qk_norm_dim_scale: self.qk_norm_q_scale = nn.Parameter(torch.ones(dim_head)) self.qk_norm_k_scale = nn.Parameter(torch.ones(dim_head)) assert (not qk_norm) or (dim_head % qk_norm_groups) == 0, 'dimension per attention head must be divisible by the qk norm groups' assert not (qk_norm and (dim_head // qk_norm_groups) <= 2), 'the group dimension may be too small (2 was too small in my tests, but 4 still works, surprisingly)' # attend class - includes core attention algorithm + talking heads self.attend = Attend( heads = heads, causal = causal, talking_heads = talking_heads, dropout = dropout, sparse_topk = sparse_topk, qk_norm = qk_norm, scale = qk_norm_scale if qk_norm else self.scale, add_zero_kv = add_zero_kv, flash = flash, onnxable = onnxable ) # head scaling self.head_scale = head_scale if head_scale: self.head_scale_params = nn.Parameter(torch.ones(1, heads, 1, 1)) # explicit topk sparse attention self.sparse_topk = sparse_topk # add memory key / values self.num_mem_kv = num_mem_kv if num_mem_kv > 0: self.mem_k = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head)) self.mem_v = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head)) # attention on attention self.attn_on_attn = on_attn self.to_out = nn.Sequential(nn.Linear(out_dim, dim * 2, bias = False), nn.GLU()) if on_attn else nn.Linear(out_dim, dim, bias = False) # init output projection 0 if zero_init_output: init_zero_(self.to_out) def forward( self, x, context = None, mask = None, context_mask = None, attn_mask = None, rel_pos = None, rotary_pos_emb = None, prev_attn = None, mem = None ): b, n, _, h, head_scale, device, has_context = *x.shape, self.heads, self.head_scale, x.device, exists(context) kv_input = default(context, x) q_input = x k_input = kv_input v_input = kv_input r_input = x if exists(mem): k_input = torch.cat((mem, k_input), dim = -2) v_input = torch.cat((mem, v_input), dim = -2) q = self.to_q(q_input) k = self.to_k(k_input) v = self.to_v(v_input) if exists(self.to_v) else k r = self.to_r(r_input) if exists(self.to_r) else None q = rearrange(q, 'b n (h d) -> b h n d', h = h) if not self.one_kv_head: k, v, r = map(lambda t: maybe(rearrange)(t, 'b n (h d) -> b h n d', h = h), (k, v, r)) if self.qk_norm: qk_l2norm = partial(l2norm, groups = self.qk_norm_groups) q, k = map(qk_l2norm, (q, k)) scale = self.qk_norm_scale q = q * self.qk_norm_q_scale k = k * self.qk_norm_k_scale if exists(rotary_pos_emb) and not has_context: freqs, xpos_scale = rotary_pos_emb l = freqs.shape[-1] q_xpos_scale, k_xpos_scale = (xpos_scale, xpos_scale ** -1.) if exists(xpos_scale) else (1., 1.) (ql, qr), (kl, kr), (vl, vr) = map(lambda t: (t[..., :l], t[..., l:]), (q, k, v)) ql, kl, vl = map(lambda arg: apply_rotary_pos_emb(arg[0], freqs, arg[1]), ((ql, q_xpos_scale), (kl, k_xpos_scale), (vl, k_xpos_scale))) q, k, v = map(lambda t: torch.cat(t, dim = -1), ((ql, qr), (kl, kr), (vl, vr))) input_mask = context_mask if has_context else mask if self.num_mem_kv > 0: mem_k, mem_v = map(lambda t: repeat(t, 'h n d -> b h n d', b = b), (self.mem_k, self.mem_v)) if self.qk_norm: mem_k = l2norm(mem_k) mem_k = mem_k * self.qk_norm_k_scale k = torch.cat((mem_k, k), dim = -2) v = torch.cat((mem_v, v), dim = -2) if exists(input_mask): input_mask = pad_at_dim(input_mask, (self.num_mem_kv, 0), dim = -1, value = True) i, j = map(lambda t: t.shape[-2], (q, k)) # determine masking mask_value = max_neg_value(q) masks = [] final_attn_mask = None if exists(input_mask): input_mask = rearrange(input_mask, 'b j -> b 1 1 j') masks.append(~input_mask) if exists(attn_mask): assert 2 <= attn_mask.ndim <= 4, 'attention mask must have greater than 2 dimensions but less than or equal to 4' if attn_mask.ndim == 2: attn_mask = rearrange(attn_mask, 'i j -> 1 1 i j') elif attn_mask.ndim == 3: attn_mask = rearrange(attn_mask, 'h i j -> 1 h i j') masks.append(~attn_mask) if exists(self.max_attend_past): range_q = torch.arange(j - i, j, device = device) range_k = torch.arange(j, device = device) dist = rearrange(range_q, 'i -> 1 1 i 1') - rearrange(range_k, 'j -> 1 1 1 j') max_attend_past_mask = dist > self.max_attend_past masks.append(max_attend_past_mask) if len(masks) > 0: final_attn_mask = ~or_reduce(masks) # prepare relative positional bias, if needed attn_bias = None if exists(rel_pos): attn_bias = rel_pos(i, j) # attention is all we need out, intermediates = self.attend( q, k, v, mask = final_attn_mask, attn_bias = attn_bias, prev_attn = prev_attn ) # https://arxiv.org/abs/2208.06061 proposes to add a residual for better gradients if exists(r): out = out * r + out # normformer scaling of heads if head_scale: out = out * self.head_scale_params # merge heads out = rearrange(out, 'b h n d -> b n (h d)') # alphafold2 styled gating of the values if exists(self.to_v_gate): gates = self.to_v_gate(x) out = out * gates.sigmoid() # combine the heads out = self.to_out(out) if exists(mask): mask = rearrange(mask, 'b n -> b n 1') out = out.masked_fill(~mask, 0.) return out, intermediates class AttentionLayers(nn.Module): def __init__( self, dim, depth, heads = 8, causal = False, cross_attend = False, only_cross = False, use_scalenorm = False, use_rmsnorm = False, use_simple_rmsnorm = False, alibi_pos_bias = False, alibi_num_heads = None, rel_pos_bias = False, rel_pos_num_buckets = 32, rel_pos_max_distance = 128, dynamic_pos_bias = False, dynamic_pos_bias_log_distance = False, dynamic_pos_bias_mlp_depth = 2, dynamic_pos_bias_norm = False, rotary_pos_emb = False, rotary_emb_dim = None, rotary_xpos = False, rotary_interpolation_factor = 1., rotary_xpos_scale_base = 512, rotary_base_rescale_factor = 1., custom_layers = None, sandwich_coef = None, par_ratio = None, residual_attn = False, cross_residual_attn = False, macaron = False, pre_norm = True, pre_norm_has_final_norm = True, gate_residual = False, scale_residual = False, scale_residual_constant = 1., deepnorm = False, shift_tokens = 0, sandwich_norm = False, resi_dual = False, resi_dual_scale = 1., zero_init_branch_output = False, layer_dropout = 0., cross_attn_tokens_dropout = 0., **kwargs ): super().__init__() rotary_pos_emb = rotary_pos_emb or rotary_xpos ff_kwargs, kwargs = groupby_prefix_and_trim('ff_', kwargs) attn_kwargs, kwargs = groupby_prefix_and_trim('attn_', kwargs) dim_head = attn_kwargs.get('dim_head', DEFAULT_DIM_HEAD) self.dim = dim self.depth = depth self.layers = nn.ModuleList([]) self.has_pos_emb = rel_pos_bias or rotary_pos_emb rotary_emb_dim = max(default(rotary_emb_dim, dim_head // 2), 32) assert not (rotary_xpos and not causal), 'rotary xpos is not compatible with bidirectional attention' self.rotary_pos_emb = RotaryEmbedding(rotary_emb_dim, use_xpos = rotary_xpos, scale_base = rotary_xpos_scale_base, interpolation_factor = rotary_interpolation_factor, base_rescale_factor = rotary_base_rescale_factor) if rotary_pos_emb else None assert not (alibi_pos_bias and rel_pos_bias), 'you can only choose Alibi positional bias or T5 relative positional bias, not both' assert rel_pos_num_buckets <= rel_pos_max_distance, 'number of relative position buckets must be less than the relative position max distance' # relative positional bias flash_attn = attn_kwargs.get('flash', False) assert (int(rel_pos_bias) + int(dynamic_pos_bias) + int(alibi_pos_bias)) <= 1, 'you can only choose up to one of t5, alibi, or dynamic positional bias' self.rel_pos = None if rel_pos_bias: assert not flash_attn, 'flash attention not compatible with t5 relative positional bias' self.rel_pos = RelativePositionBias(scale = dim_head ** 0.5, causal = causal, heads = heads, num_buckets = rel_pos_num_buckets, max_distance = rel_pos_max_distance) elif dynamic_pos_bias: assert not flash_attn, 'flash attention not compatible with dynamic positional bias' self.rel_pos = DynamicPositionBias(dim = dim // 4, heads = heads, log_distance = dynamic_pos_bias_log_distance, depth = dynamic_pos_bias_mlp_depth, norm = dynamic_pos_bias_norm) elif alibi_pos_bias: alibi_num_heads = default(alibi_num_heads, heads) assert alibi_num_heads <= heads, 'number of ALiBi heads must be less than the total number of heads' self.rel_pos = AlibiPositionalBias(heads = alibi_num_heads, total_heads = heads) # determine deepnorm and residual scale if deepnorm: assert scale_residual_constant == 1, 'scale residual constant is being overridden by deep norm settings' pre_norm = sandwich_norm = resi_dual = False scale_residual = True scale_residual_constant = (2 * depth) ** 0.25 assert (int(sandwich_norm) + int(resi_dual)) <= 1, 'either sandwich norm or resiDual is selected, but not both' assert not (not pre_norm and sandwich_norm), 'sandwich norm cannot be used when not using prenorm' if resi_dual: pre_norm = False self.pre_norm = pre_norm self.sandwich_norm = sandwich_norm self.resi_dual = resi_dual assert 0 < resi_dual_scale <= 1., 'resiDual prenorm residual must be scaled by a factor greater than 0 and less than or equal to 1.' self.resi_dual_scale = resi_dual_scale self.residual_attn = residual_attn self.cross_residual_attn = cross_residual_attn assert not (flash_attn and (residual_attn or cross_residual_attn)), 'flash attention is not compatible with residual attention' self.cross_attend = cross_attend assert (int(use_scalenorm) + int(use_rmsnorm) + int(use_simple_rmsnorm)) <= 1, 'you can only use either scalenorm, rmsnorm, or simple rmsnorm' if use_scalenorm: norm_class = ScaleNorm elif use_rmsnorm: norm_class = RMSNorm elif use_simple_rmsnorm: norm_class = SimpleRMSNorm else: norm_class = nn.LayerNorm norm_fn = partial(norm_class, dim) if cross_attend and not only_cross: default_block = ('a', 'c', 'f') elif cross_attend and only_cross: default_block = ('c', 'f') else: default_block = ('a', 'f') if macaron: default_block = ('f',) + default_block # zero init if zero_init_branch_output: attn_kwargs = {**attn_kwargs, 'zero_init_output': True} ff_kwargs = {**ff_kwargs, 'zero_init_output': True} # calculate layer block order if exists(custom_layers): layer_types = custom_layers elif exists(par_ratio): par_depth = depth * len(default_block) assert 1 < par_ratio <= par_depth, 'par ratio out of range' default_block = tuple(filter(not_equals('f'), default_block)) par_attn = par_depth // par_ratio depth_cut = par_depth * 2 // 3 # 2 / 3 attention layer cutoff suggested by PAR paper par_width = (depth_cut + depth_cut // par_attn) // par_attn assert len(default_block) <= par_width, 'default block is too large for par_ratio' par_block = default_block + ('f',) * (par_width - len(default_block)) par_head = par_block * par_attn layer_types = par_head + ('f',) * (par_depth - len(par_head)) elif exists(sandwich_coef): assert sandwich_coef > 0 and sandwich_coef <= depth, 'sandwich coefficient should be less than the depth' layer_types = ('a',) * sandwich_coef + default_block * (depth - sandwich_coef) + ('f',) * sandwich_coef else: layer_types = default_block * depth self.layer_types = layer_types self.num_attn_layers = len(list(filter(equals('a'), layer_types))) # stochastic depth self.layer_dropouts = cast_tuple(layer_dropout, len(layer_types)) # structured dropout for cross attending self.cross_attn_tokens_dropout = cross_attn_tokens_dropout # calculate token shifting shift_tokens = cast_tuple(shift_tokens, len(layer_types)) # whether it has post norm self.final_norm = norm_fn() if pre_norm or resi_dual else nn.Identity() # iterate and construct layers for ind, (layer_type, layer_shift_tokens) in enumerate(zip(self.layer_types, shift_tokens)): is_last_layer = ind == (len(self.layer_types) - 1) if layer_type == 'a': layer = Attention(dim, heads = heads, causal = causal, **attn_kwargs) elif layer_type == 'c': layer = Attention(dim, heads = heads, **attn_kwargs) elif layer_type == 'f': layer = FeedForward(dim, **ff_kwargs) layer = layer if not macaron else Scale(0.5, layer) else: raise Exception(f'invalid layer type {layer_type}') if layer_shift_tokens > 0: shift_range_upper = layer_shift_tokens + 1 shift_range_lower = -layer_shift_tokens if not causal else 0 layer = ShiftTokens(range(shift_range_lower, shift_range_upper), layer) residual_fn = GRUGating if gate_residual else Residual residual = residual_fn(dim, scale_residual = scale_residual, scale_residual_constant = scale_residual_constant) pre_branch_norm = norm_fn() if pre_norm else None post_branch_norm = norm_fn() if sandwich_norm else None post_main_norm = norm_fn() if not pre_norm else None norms = nn.ModuleList([ pre_branch_norm, post_branch_norm, post_main_norm ]) self.layers.append(nn.ModuleList([ norms, layer, residual ])) if deepnorm: init_gain = (8 * depth) ** -0.25 deepnorm_init(self, init_gain) def forward( self, x, context = None, mask = None, context_mask = None, attn_mask = None, self_attn_context_mask = None, mems = None, return_hiddens = False ): assert not (self.cross_attend ^ exists(context)), 'context must be passed in if cross_attend is set to True' hiddens = [] layer_hiddens = [] intermediates = [] prev_attn = None prev_cross_attn = None mems = mems.copy() if exists(mems) else [None] * self.num_attn_layers rotary_pos_emb = None if exists(self.rotary_pos_emb): max_rotary_emb_length = max(list(map(lambda m: (m.shape[1] if exists(m) else 0) + x.shape[1], mems))) rotary_pos_emb = self.rotary_pos_emb(max_rotary_emb_length, x.device) outer_residual = x * self.resi_dual_scale for ind, (layer_type, (norm, block, residual_fn), layer_dropout) in enumerate(zip(self.layer_types, self.layers, self.layer_dropouts)): is_last = ind == (len(self.layers) - 1) if self.training and layer_dropout > 0. and random() < layer_dropout: continue if layer_type == 'a': if return_hiddens: hiddens.append(x) layer_mem = mems.pop(0) if mems else None if layer_type == 'c': if self.training and self.cross_attn_tokens_dropout > 0.: context, context_mask = dropout_seq(context, context_mask, self.cross_attn_tokens_dropout) inner_residual = x if return_hiddens: layer_hiddens.append(x) pre_norm, post_branch_norm, post_main_norm = norm if exists(pre_norm): x = pre_norm(x) if layer_type == 'a': out, inter = block(x, mask = mask, context_mask = self_attn_context_mask, attn_mask = attn_mask, rel_pos = self.rel_pos, rotary_pos_emb = rotary_pos_emb, prev_attn = prev_attn, mem = layer_mem) elif layer_type == 'c': out, inter = block(x, context = context, mask = mask, context_mask = context_mask, prev_attn = prev_cross_attn) elif layer_type == 'f': out = block(x) if self.resi_dual: outer_residual = outer_residual + out * self.resi_dual_scale if exists(post_branch_norm): out = post_branch_norm(out) x = residual_fn(out, inner_residual) if layer_type in ('a', 'c') and return_hiddens: intermediates.append(inter) if layer_type == 'a' and self.residual_attn: prev_attn = inter.pre_softmax_attn elif layer_type == 'c' and self.cross_residual_attn: prev_cross_attn = inter.pre_softmax_attn if exists(post_main_norm): x = post_main_norm(x) if return_hiddens: layer_hiddens.append(x) if self.resi_dual: x = x + self.final_norm(outer_residual) else: x = self.final_norm(x) if return_hiddens: intermediates = LayerIntermediates( hiddens = hiddens, attn_intermediates = intermediates, layer_hiddens = layer_hiddens ) return x, intermediates return x class Encoder(AttentionLayers): def __init__(self, **kwargs): assert 'causal' not in kwargs, 'cannot set causality on encoder' super().__init__(causal = False, **kwargs) class Decoder(AttentionLayers): def __init__(self, **kwargs): assert 'causal' not in kwargs, 'cannot set causality on decoder' super().__init__(causal = True, **kwargs) class CrossAttender(AttentionLayers): def __init__(self, **kwargs): super().__init__(cross_attend = True, only_cross = True, **kwargs) class ViTransformerWrapper(nn.Module): def __init__( self, *, image_size, patch_size, attn_layers, channels = 3, num_classes = None, post_emb_norm = False, emb_dropout = 0. ): super().__init__() assert isinstance(attn_layers, Encoder), 'attention layers must be an Encoder' assert image_size % patch_size == 0, 'image dimensions must be divisible by the patch size' dim = attn_layers.dim num_patches = (image_size // patch_size) ** 2 patch_dim = channels * patch_size ** 2 self.patch_size = patch_size self.pos_embedding = nn.Parameter(torch.randn(1, num_patches, dim)) self.patch_to_embedding = nn.Sequential( nn.LayerNorm(patch_dim), nn.Linear(patch_dim, dim), nn.LayerNorm(dim) ) self.post_emb_norm = nn.LayerNorm(dim) if post_emb_norm else nn.Identity() self.dropout = nn.Dropout(emb_dropout) self.attn_layers = attn_layers self.mlp_head = nn.Linear(dim, num_classes) if exists(num_classes) else nn.Identity() def forward( self, img, return_embeddings = False ): p = self.patch_size x = rearrange(img, 'b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = p, p2 = p) x = self.patch_to_embedding(x) n = x.shape[1] x = x + self.pos_embedding[:, :n] x = self.post_emb_norm(x) x = self.dropout(x) x = self.attn_layers(x) if not exists(self.mlp_head) or return_embeddings: return x x = x.mean(dim = -2) return self.mlp_head(x) class Transformer(nn.Module): def __init__( self, *, num_tokens, max_seq_len, attn_layers, emb_dim = None, max_mem_len = 0, shift_mem_down = 0, emb_dropout = 0., post_emb_norm = False, num_memory_tokens = None, tie_embedding = False, logits_dim = None, use_abs_pos_emb = True, scaled_sinu_pos_emb = False, l2norm_embed = False, emb_frac_gradient = 1., # GLM-130B and Cogview successfully used this, set at 0.1 attn_z_loss_weight = 1e-4 ): super().__init__() assert isinstance(attn_layers, AttentionLayers), 'attention layers must be one of Encoder or Decoder' dim = attn_layers.dim emb_dim = default(emb_dim, dim) self.emb_dim = emb_dim self.num_tokens = num_tokens self.max_seq_len = max_seq_len self.max_mem_len = max_mem_len self.shift_mem_down = shift_mem_down self.l2norm_embed = l2norm_embed self.token_emb = TokenEmbedding(emb_dim, num_tokens, l2norm_embed = l2norm_embed) if not (use_abs_pos_emb and not attn_layers.has_pos_emb): self.pos_emb = always(0) elif scaled_sinu_pos_emb: self.pos_emb = ScaledSinusoidalEmbedding(emb_dim) else: self.pos_emb = AbsolutePositionalEmbedding(emb_dim, max_seq_len, l2norm_embed = l2norm_embed) self.emb_frac_gradient = emb_frac_gradient # fraction of the gradient that should go to the embedding, https://arxiv.org/abs/2105.13290 self.post_emb_norm = nn.LayerNorm(emb_dim) if post_emb_norm else nn.Identity() self.emb_dropout = nn.Dropout(emb_dropout) self.project_emb = nn.Linear(emb_dim, dim) if emb_dim != dim else nn.Identity() self.attn_layers = attn_layers self.init_() logits_dim = default(logits_dim, num_tokens) self.to_logits = nn.Linear(dim, logits_dim) if not tie_embedding else lambda t: t @ self.token_emb.emb.weight.t() # memory tokens (like [cls]) from Memory Transformers paper num_memory_tokens = default(num_memory_tokens, 0) self.num_memory_tokens = num_memory_tokens if num_memory_tokens > 0: self.memory_tokens = nn.Parameter(torch.randn(num_memory_tokens, dim)) def init_(self): if self.l2norm_embed: nn.init.normal_(self.token_emb.emb.weight, std = 1e-5) if not isinstance(self.pos_emb, always): nn.init.normal_(self.pos_emb.emb.weight, std = 1e-5) return nn.init.kaiming_normal_(self.token_emb.emb.weight) def forward( self, x, return_embeddings = False, return_logits_and_embeddings = False, return_intermediates = False, mask = None, return_mems = False, return_attn = False, mems = None, pos = None, prepend_embeds = None, sum_embeds = None, return_attn_z_loss = False, attn_z_loss_weight = 1e-4, **kwargs ): b, n, device, num_mem, emb_frac_gradient = *x.shape, x.device, self.num_memory_tokens, self.emb_frac_gradient return_hiddens = return_mems | return_attn | return_intermediates | return_attn_z_loss # absolute positional embedding external_pos_emb = exists(pos) and pos.dtype != torch.long pos_emb = self.pos_emb(x, pos = pos) if not external_pos_emb else pos x = self.token_emb(x) + pos_emb # for summing embeddings passed externally - needs this for self-conditioning in non-autoregressive training if exists(sum_embeds): x = x + sum_embeds # post embedding norm, purportedly leads to greater stabilization x = self.post_emb_norm(x) # whether to append embeds, as in PaLI, for image embeddings if exists(prepend_embeds): prepend_seq, prepend_dim = prepend_embeds.shape[1:] assert prepend_dim == x.shape[-1], 'prepended embeddings need to have same dimensions as text model dimensions' x = torch.cat((prepend_embeds, x), dim = -2) # whether to reduce the gradient going to the embedding, from cogview paper, corroborated by GLM-130B model if emb_frac_gradient < 1: assert emb_frac_gradient > 0 x = x * emb_frac_gradient + x.detach() * (1 - emb_frac_gradient) # embedding dropout x = self.emb_dropout(x) x = self.project_emb(x) if num_mem > 0: mem = repeat(self.memory_tokens, 'n d -> b n d', b = b) x = torch.cat((mem, x), dim = 1) # auto-handle masking after appending memory tokens if exists(mask): mask = pad_at_dim(mask, (num_mem, 0), dim = -1, value = True) if self.shift_mem_down and exists(mems): mems_l, mems_r = mems[:self.shift_mem_down], mems[self.shift_mem_down:] mems = [*mems_r, *mems_l] if return_hiddens: x, intermediates = self.attn_layers(x, mask = mask, mems = mems, return_hiddens = True, **kwargs) else: x = self.attn_layers(x, mask = mask, mems = mems, **kwargs) mem, x = x[:, :num_mem], x[:, num_mem:] if return_logits_and_embeddings: out = (self.to_logits(x), x) elif return_embeddings: out = x else: out = self.to_logits(x) if return_attn_z_loss: pre_softmax_attns = list(map(lambda t: t.pre_softmax_attn, intermediates.attn_intermediates)) intermediates.attn_z_loss = calc_z_loss(pre_softmax_attns, weight = attn_z_loss_weight) return_intermediates = True if return_intermediates: return out, intermediates if return_mems: hiddens = intermediates.hiddens new_mems = list(map(lambda pair: torch.cat(pair, dim = -2), zip(mems, hiddens))) if exists(mems) else hiddens new_mems = list(map(lambda t: t[..., -self.max_mem_len:, :].detach(), new_mems)) return out, new_mems if return_attn: attn_maps = list(map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates)) return out, attn_maps return out
Qwen-VL-main
qwen/transformer.py
import math import multiprocessing import os from datetime import timedelta from functools import partial from itertools import chain import torch ########### SETUP CONFIG import torch.distributed as dist from accelerate import Accelerator from accelerate.logging import get_logger from accelerate.state import AcceleratorState from accelerate.utils import DummyOptim, InitProcessGroupKwargs from datasets import load_dataset from lion_pytorch import Lion from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import ( CheckpointImpl, apply_activation_checkpointing, checkpoint_wrapper, ) # import bitsandbytes as bnb from torch.distributed.fsdp import ( BackwardPrefetch, FullyShardedDataParallel, MixedPrecision, ShardingStrategy, ) from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy from torch.nn import LayerNorm from torch.optim import AdamW from torch.utils.data import DataLoader from tqdm import tqdm from transformers import ( AutoTokenizer, default_data_collator, get_cosine_schedule_with_warmup, get_linear_schedule_with_warmup, set_seed, ) from qwen.model import QwenVL from qwen.transformer import Transformer from qwen.utils import StableAdamWUnfused # state = AcceleratorState() logger = get_logger(__name__, log_level="INFO") class CFG: BATCH_SIZE = 1 GRADIENT_ACCUMULATE_EVERY: int = 1 SEED: int = 42 LEARNING_RATE: float = 1e-4 #3e-4 # 1e-4 for lion WEIGHT_DECAY: float = 0.1 SEQ_LEN: int = 8192 NUM_CPU: int = multiprocessing.cpu_count() USE_DEEPSPEED: bool = True USE_FSDP: bool = True USE_PRETOKENIZED: bool = True USE_ACTIVATION_CHECKPOINTING: bool = True RESUME_FROM_CHECKPOINT: str = False CHECKPOINTING_STEPS: int = 1000 OUTPUT_DIR: str = 'checkpoints/' # Folder ENTITY_NAME: str = "Andromeda" LOGGING_STEPS: int = 100 # helpers def print_num_params(model, accelerator: Accelerator): # n_params = sum(p.numel() for p in model.parameters() if p.requires_grad) n_params = sum(p.numel() for p in model.parameters() if p.requires_grad) accelerator.print(f"Number of parameters in model: {n_params}") # activation checkpointing def activation_checkpointing( model: torch.nn.Module, offload_to_cpu: bool = False, accelerator: Accelerator = None, ): """ Apply activation checkpointing to a model. Args: model (Module): The model to which to apply activation checkpointing. offload_to_cpu (bool, optional): Whether to offload the activations to CPU. Defaults to False. accelerator (Accelerator, optional): The Accelerate library accelerator. Defaults to None. """ if accelerator is not None: accelerator.print("Using activation checkpointing") def check_fn(submodule): return isinstance(submodule, Transformer) non_reentrant_wrapper = partial( checkpoint_wrapper, offload_to_cpu=offload_to_cpu, checkpoint_impl=CheckpointImpl.NO_REENTRANT, ) apply_activation_checkpointing( model, checkpoint_wrapper_fn=non_reentrant_wrapper, check_fn=check_fn ) # FSDP def fsdp( model: torch.nn.Module, auto_wrap: bool = False, mp: str = "fp32", shard_strat: str = "NO_SHARD", ): """ This function wraps a given PyTorch model with the FullyShardedDataParallel (FSDP) wrapper to enable efficient data parallelism and model sharding. Args: model (torch.nn.Module): The original PyTorch model to be wrapped with FSDP. auto_wrap (bool, optional): If True, it enables automatic wrapping of the model's layers according to the transformer_auto_wrap_policy. Default is False. mp (str, optional): The mixed precision mode to be used. Can be 'bf16' for BFloat16, 'fp16' for Float16 or 'fp32' for Float32 precision. Default is 'fp32'. shard_strat (str, optional): The sharding strategy to be used. Can be 'SHARD_GRAD' for sharding at gradient computation, 'FULL_SHARD' for full model sharding or 'NO_SHARD' for no sharding. Default is 'NO_SHARD'. Raises: ValueError: If the provided mp (mixed precision mode) is not 'bf16', 'fp16' or 'fp32'. ValueError: If the provided shard_strat (sharding strategy) is not 'SHARD_GRAD', 'FULL_SHARD' or 'NO_SHARD'. Returns: torch.nn.Module: The input model wrapped with FSDP. """ if auto_wrap: Andromeda_auto_wrap_policy = partial( transformer_auto_wrap_policy, transformer_layer_cls={ Transformer, }, ) else: Andromeda_auto_wrap_policy = None if mp == "bf16": mp_fsdp = MixedPrecision( param_dtype=torch.bfloat16, # Gradient communication precision. reduce_dtype=torch.bfloat16, # Buffer precision. buffer_dtype=torch.bfloat16, ) elif mp == "fp16": mp_fsdp = MixedPrecision( param_dtype=torch.float16, # Gradient communication precision. reduce_dtype=torch.float16, # Buffer precision. buffer_dtype=torch.float16, ) elif mp == "fp32": mp_fsdp = MixedPrecision( param_dtype=torch.float32, # Gradient communication precision. reduce_dtype=torch.float32, # Buffer precision. buffer_dtype=torch.float32, ) else: raise ValueError( "Invalid scheduler_type. Expected 'bf16', 'fp16' or 'fp32', got: {}".format( mp ) ) if shard_strat == "SHARD_GRAD": sharding_strat_fsdp = ShardingStrategy.SHARD_GRAD_OP elif shard_strat == "FULL_SHARD": sharding_strat_fsdp = ShardingStrategy.FULL_SHARD elif shard_strat == "NO_SHARD": sharding_strat_fsdp = ShardingStrategy.NO_SHARD else: raise ValueError( "Invalid scheduler_type. Expected 'SHARD_GRAD', 'FULL_SHARD' or 'NO_SHARD', got: {}".format( shard_strat ) ) model = FullyShardedDataParallel( model, auto_wrap_policy=Andromeda_auto_wrap_policy, mixed_precision=mp_fsdp, backward_prefetch=BackwardPrefetch.BACKWARD_PRE, sharding_strategy=sharding_strat_fsdp, forward_prefetch=True, use_orig_params=True, ) return model # learning rate scheduler def get_lr_scheduler_with_warmup( optimizer: torch.optim.Optimizer, scheduler_type: str, num_warmup_steps: int, max_train_steps: int, grad_accumulate_every: int = 1, accelerator: Accelerator = None, ): """ Get a learning rate scheduler with warmup. Args: optimizer (Optimizer): The optimizer for which to create the learning rate scheduler. scheduler_type (str): The type of learning rate scheduler to create, either "linear" or "cosine". num_warmup_steps (int): The number of warmup steps for the learning rate scheduler. max_train_steps (int): The maximum number of training steps. grad_accumulate_every (int, optional): The gradient accumulation factor. Defaults to 1. accelerator (Accelerator, optional): The Accelerate library accelerator. Defaults to None. Returns: The learning rate scheduler with warmup. Raises: ValueError: If scheduler_type is not "linear" or "cosine". """ NUM_WARMUP_STEPS = num_warmup_steps GRADIENT_ACCUMULATE_EVERY = grad_accumulate_every if accelerator is not None: accelerator.print(f"Using {scheduler_type} lr scheduler") if scheduler_type == "linear": return get_linear_schedule_with_warmup( optimizer=optimizer, num_warmup_steps=NUM_WARMUP_STEPS * GRADIENT_ACCUMULATE_EVERY, num_training_steps=max_train_steps * GRADIENT_ACCUMULATE_EVERY, ) elif scheduler_type == "cosine": return get_cosine_schedule_with_warmup( optimizer=optimizer, num_warmup_steps=NUM_WARMUP_STEPS * GRADIENT_ACCUMULATE_EVERY, num_training_steps=max_train_steps * GRADIENT_ACCUMULATE_EVERY, ) else: raise ValueError( "Invalid scheduler_type. Expected 'linear' or 'cosine', got: {}".format( scheduler_type ) ) # optimizers def decoupled_optimizer( model: torch.nn.Module, learning_rate: float, weight_decay: float, beta_1: float, beta_2: float, optimizer_type: str, use_fsdp: bool = True, accelerator: Accelerator = None, ): """ Decouples the optimizer from the training process. This function sets up the optimizer for the model by creating two groups of parameters: one for weight decay and one without weight decay. Then, it initializes the optimizer with these two groups of parameters. Args: model (Module): The model whose parameters are optimized. learning_rate (float): The learning rate for the optimizer. weight_decay (float): The weight decay for the optimizer. beta_1 (float): The exponential decay rate for the 1st moment estimates. beta_2 (float): The exponential decay rate for the 2nd moment estimates. optimizer_type (str): The type of the optimizer. Can be 'lion', 'adamw', or 'stable_adamw'. use_fsdp (bool, optional): If True, the optimizer will work with fully sharded data parallelism. Defaults to True. accelerator (Accelerator, optional): The accelerator from HuggingFace's Accelerate library. Defaults to None. Returns: Optimizer: The initialized optimizer. Raises: ValueError: If the optimizer type is not 'lion', 'adamw' or 'stable_adamw'. """ accelerator.print(f"Using {optimizer_type} optimizer") # Create an empty dictionary called param_dict to store the model's named parameters. param_dict = {} # Iterate over the model's named parameters and populate the param_dict with key-value pairs. for param_name, param in model.named_parameters(): param_dict[param_name] = param # Separate the model's named modules into two groups: decay and no_decay. # Create an empty list to store the names of the LayerNorm and Embedding layer weights with no weight decay. no_decay = [] if use_fsdp: exclude_module = "_fsdp_wrapped_module.token_emb" else: exclude_module = "token_emb" # Iterate through the named modules of the model. for module_name, module in model.named_modules(): # Check if the current module is an instance of any of the desired types (LayerNorm or torch.nn.Embedding). for ndim in [LayerNorm, torch.nn.Embedding]: if isinstance(module, ndim): # If torch.nn.Embedding, append its name with a ".weight" suffix to the no_decay list. if module_name == exclude_module: no_decay.append(f"{module_name}.weight") else: # If the module is an instance of LayerNorm no_decay.append(f"{module_name}.gamma") # Exit the inner loop since the desired module has been found. break # Create an empty list to store the names of the Linear layer weights with weight decay. decay = [] # Iterate through the named modules of the model. for module_name, module in model.named_modules(): # Check if the current module is an instance of the desired type (torch.nn.Linear). for ndim in [torch.nn.Linear]: if isinstance(module, ndim): # If the module is an instance of torch.nn.Linear, append its name with a ".weight" suffix to the decay list. decay.append(f"{module_name}.weight") # Exit the inner loop since the desired module has been found. break # Create two separate lists of model parameters: decay_param and no_decay_param. # The decay_param list contains the parameters that should have weight decay applied. # The no_decay_param list contains the parameters that should not have weight decay applied, excluding the 'to_logits.weight' parameter. # Create an empty list called decay_param to store the parameters with weight decay. decay_param = [] if use_fsdp: exclude_param = "_fsdp_wrapped_module.to_logits.weight" else: exclude_param = "to_logits.weight" # Iterate over the decay list, which contains the names of the parameters with weight decay. for param in decay: # Check if the current parameter is not 'to_logits.weight'. # Append the corresponding parameter from param_dict to the decay_param list. if param != exclude_param: decay_param.append(param_dict[param]) # Create an empty list called no_decay_param to store the parameters without weight decay. no_decay_param = [] # Iterate over the no_decay list, which contains the names of the parameters without weight decay. for param in no_decay: try: # Append the corresponding parameter from param_dict to the no_decay_param list. no_decay_param.append(param_dict[param]) except KeyError: # print(f"Parameter {param_name} does not exist in the model") pass # Create a list called grouped_params that contains two dictionaries. # The first dictionary has the decay_param list and the corresponding weight_decay value. # The second dictionary has the no_decay_param list and a weight_decay value of 0.0. grouped_params = [ {"params": decay_param, "weight_decay": weight_decay}, {"params": no_decay_param, "weight_decay": 0.0}, ] # Create a variable called optimizer that stores an instance of the optimizer. if optimizer_type == "lion": optimizer = Lion(grouped_params, lr=learning_rate, betas=(beta_1, beta_2),) elif optimizer_type == "adamw": optimizer = AdamW(grouped_params, lr=learning_rate, betas=(beta_1, beta_2),) elif optimizer_type == "deepspeed": optimizer = DummyOptim(grouped_params, lr=learning_rate, betas=(beta_1, beta_2),) elif optimizer_type == "stable_adamw": optimizer = StableAdamWUnfused( grouped_params, lr=learning_rate, betas=(beta_1, beta_2), ) # elif optimizer_type=="Adam8bit": # optimizer = bnb.optim.Adam8bit(grouped_params, lr=learning_rate, betas=(beta_1, beta_2)) # elif optimizer_type=="Lion8Bit": # optimizer = bnb.optim.Lion8bit(grouped_params, lr=learning_rate, betas=(beta_1, beta_2)) else: raise ValueError( "Invalid optimizer_type. Expected 'lion', 'adamw', 'deepspeed' or 'stable_adamw', got: {}".format( optimizer_type ) ) # Return the optimizer. return optimizer # dataloaders def build_dataloaders(): """ Build data loaders for training. This function performs the following steps: 1. Load the tokenizer from the pretrained "EleutherAI/gpt-neox-20b" model. 2. Load the "openwebtext" dataset. 3. Tokenize the dataset, adding the end-of-sentence token to each text. 4. Process the tokenized dataset into chunks of a specified block size. Returns: Dataset: The processed dataset ready for training. """ tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b") dataset = load_dataset("openwebtext", split="train") tokenized_dataset = dataset.map( lambda example: tokenizer([t + tokenizer.eos_token for t in example["text"]]), batched=True, num_proc=CFG.NUM_CPU, remove_columns=["text"], ) block_size = CFG.SEQ_LEN # Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size. def group_texts(examples): # Concatenate all texts. concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()} total_length = len(concatenated_examples[list(examples.keys())[0]]) # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can # customize this part to your needs. if total_length >= block_size: total_length = (total_length // block_size) * block_size # Split by chunks of max_len. result = { k: [t[i : i + block_size] for i in range(0, total_length, block_size)] for k, t in concatenated_examples.items() } return result train_dataset = tokenized_dataset.map( group_texts, batched=True, num_proc=CFG.NUM_CPU, ) return train_dataset #switch to falconwebdataset def build_pre_tokenized(): d0 = load_dataset("conceptofmind/c4_0-to-20_neox_with_eos_8k", split="train[:10]") # d1 = load_dataset("conceptofmind/c4_21-to-40_neox_with_eos_8k", split="train") # d2 = load_dataset("conceptofmind/c4_41-to-60_neox_with_eos_8k", split="train") # d3 = load_dataset("conceptofmind/c4_61-to-80_neox_with_eos_8k", split="train") # d4 = load_dataset("conceptofmind/c4_81-to-100_neox_with_eos_8k", split="train") # train_dataset = concatenate_datasets([d0, d1, d2, d3, d4]) return d0 def Train(): # accelerator timeout = InitProcessGroupKwargs(timeout=timedelta(seconds=1_000_000)) accelerator = Accelerator( gradient_accumulation_steps=CFG.GRADIENT_ACCUMULATE_EVERY, mixed_precision="fp16", log_with="wandb", kwargs_handlers=[timeout], ) state = AcceleratorState() state.deepspeed_plugin.deepspeed_config['train_micro_batch_size_per_gpu'] = CFG.BATCH_SIZE #?????? accelerator.init_trackers( project_name="Andromeda", config={ "batch_size": CFG.BATCH_SIZE, "gradient_accumulate_every": CFG.GRADIENT_ACCUMULATE_EVERY, "learning_rate": CFG.LEARNING_RATE, "seq_len": CFG.SEQ_LEN, }, # init_kwargs={"wandb": {"entity": CFG.ENTITY_NAME}}, ) accelerator.print(f"Total GPUS: {accelerator.num_processes}") # set seed set_seed(CFG.SEED) model = QwenVL() print_num_params(model, accelerator) if CFG.USE_FSDP: model = fsdp( model, mp="fp16", shard_strat="SHARD_GRAD" ) if CFG.USE_ACTIVATION_CHECKPOINTING: activation_checkpointing(model, accelerator) model = accelerator.prepare(model) # dataloaders if CFG.USE_PRETOKENIZED: train_dataset = build_pre_tokenized() else: train_dataset = build_dataloaders() train_loader = DataLoader( train_dataset, batch_size=CFG.BATCH_SIZE, collate_fn=default_data_collator, ) # optimizer optim = decoupled_optimizer( model=model, learning_rate=CFG.LEARNING_RATE, weight_decay=CFG.WEIGHT_DECAY, beta_1=0.90, beta_2=0.95, optimizer_type='lion', use_fsdp=True, accelerator=accelerator ) # Determine number of training steps max_train_steps = math.ceil(len(train_loader) / CFG.GRADIENT_ACCUMULATE_EVERY) accelerator.print(f"Max train steps: {max_train_steps}") # lr scheduler NUM_WARMUP_STEPS = int(max_train_steps * 0.01) accelerator.print(f"Num warmup steps: {NUM_WARMUP_STEPS}") # if False: # if CFG.USE_DEEPSPEED: # lr_scheduler = DummyScheduler( # optim, # total_num_steps=max_train_steps * accelerator.num_processes, # warmup_num_steps=NUM_WARMUP_STEPS # ) # else: lr_scheduler = get_lr_scheduler_with_warmup( optimizer=optim, scheduler_type="cosine", num_warmup_steps=NUM_WARMUP_STEPS, max_train_steps=max_train_steps, grad_accumulate_every=CFG.GRADIENT_ACCUMULATE_EVERY, ) # prepare optim, train_loader, lr_scheduler = accelerator.prepare( optim, train_loader, lr_scheduler ) # checkpoint scheduler accelerator.register_for_checkpointing(lr_scheduler) # I do not know why Huggingface recommends recalculation of max_train_steps max_train_steps = math.ceil(len(train_loader) / CFG.GRADIENT_ACCUMULATE_EVERY) accelerator.print(f"Max train steps recalculated: {max_train_steps}") # Total batch size for logging total_batch_size = ( CFG.BATCH_SIZE * accelerator.num_processes * CFG.GRADIENT_ACCUMULATE_EVERY ) accelerator.print(f"Total batch size: {total_batch_size}") # resume training progress_bar = tqdm( range(max_train_steps), disable=not accelerator.is_local_main_process ) completed_steps = 0 if CFG.RESUME_FROM_CHECKPOINT: if CFG.RESUME_FROM_CHECKPOINT is not None or CFG.RESUME_FROM_CHECKPOINT != "": accelerator.print(f"Resuming from checkpoint {CFG.RESUME_FROM_CHECKPOINT}") accelerator.load_state(CFG.RESUME_FROM_CHECKPOINT) path = os.path.basename(CFG.RESUME_FROM_CHECKPOINT) training_difference = os.path.splitext(path)[0] # need to multiply `gradient_accumulation_steps` to reflect real steps resume_step = ( int(training_difference.replace("step_", "")) * CFG.GRADIENT_ACCUMULATE_EVERY ) if CFG.RESUME_FROM_CHECKPOINT and resume_step is not None: train_loader = accelerator.skip_first_batches(train_loader, resume_step) completed_steps += resume_step progress_bar.update(resume_step) # training model.train() for step, batch in enumerate(train_loader): with accelerator.accumulate(model): inputs = batch["input_ids"].to(accelerator.device) loss = model(inputs, return_loss=True) accelerator.backward(loss) accelerator.log({"loss": loss.item()}, step=step) if accelerator.sync_gradients: accelerator.clip_grad_norm_(model.parameters(), 1.0) optim.step() lr_scheduler.step() optim.zero_grad() if accelerator.sync_gradients: progress_bar.update(1) completed_steps += 1 if isinstance(CFG.CHECKPOINTING_STEPS, int): if completed_steps % CFG.CHECKPOINTING_STEPS == 0: output_dir = f"step_{completed_steps }" if CFG.OUTPUT_DIR is not None: output_dir = os.path.join(CFG.OUTPUT_DIR, output_dir) accelerator.save_state(output_dir) if completed_steps >= max_train_steps: break #logging every CFG.LOGGING STEPS if CFG.LOGGING_STEPS > 0 and step % CFG.LOGGING_STEPS == 0: logger.info( f"Step: {completed_steps}/{max_train_steps}, Loss: {loss.item():.5f}" ) # end training # accelerator.print(f"Training Finished") accelerator.end_training() # save final model # accelerator.print(f"Saving model to {CFG.OUTPUT_DIR}") if CFG.OUTPUT_DIR is not None: accelerator.wait_for_everyone() unwrapped_model = accelerator.unwrap_model(model) with accelerator.main_process_first(): accelerator.save( unwrapped_model.state_dict(), f"{CFG.OUTPUT_DIR}/final/final_model.pt" ) def train(): os.environ['MASTER_ADDR'] #'localhost' os.environ['MASTER_PORT'] #= '9994' # # [CRITICAL] Pay attention to this when scaling to multiple GPUs and clusters # # Pay attention to this, use "accelerate config" os.environ['RANK'] #= str(0) # Number of nodes (servers) os.environ['WORLD_SIZE'] # = str(torch.cuda.device_count()) dist.init_process_group(backend='nccl') #init_method="env://") Train() if __name__ == '__main__': train()
Qwen-VL-main
qwen/train.py
from transformers import AutoModelForCausalLM, AutoTokenizer from transformers.generation import GenerationConfig import torch class QwenVLChat: def __init__(self, model_name, device_map="cuda", trust_remote_code=True, bf16=False, fp16=False, cpu=False, seed=1234): torch.manual_seed(seed) self.tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=trust_remote_code) if bf16: self.model = AutoModelForCausalLM.from_pretrained(model_name, device_map=device_map, trust_remote_code=trust_remote_code, bf16=True).eval() elif fp16: self.model = AutoModelForCausalLM.from_pretrained(model_name, device_map=device_map, trust_remote_code=trust_remote_code, fp16=True).eval() elif cpu: self.model = AutoModelForCausalLM.from_pretrained(model_name, device_map="cpu", trust_remote_code=trust_remote_code).eval() else: self.model = AutoModelForCausalLM.from_pretrained(model_name, device_map=device_map, trust_remote_code=trust_remote_code).eval() self.model.generation_config = GenerationConfig.from_pretrained(model_name, trust_remote_code=trust_remote_code) self.history = None def chat(self, text): query = self.tokenizer.from_list_format(text) response, self.history = self.model.chat(self.tokenizer, query=query, history=self.history) return response def draw_box(self, response): image = self.tokenizer.draw_bbox_on_latest_picture(response, self.history) return image
Qwen-VL-main
qwen/inference.py
import torch from cm3.model import CM3 #usage img = torch.randn(1, 3, 256, 256) caption = torch.randint(0, 20000, (1, 1024)) model = CM3() output = model(img, caption) print(output.shape) # (1, 1024, 20000)
CM3Leon-main
example.py
from cm3.model import CM3Tokenizer, CM3
CM3Leon-main
cm3/__init__.py
import logging import torch from torch import nn from torch.nn import Module from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import AutoTokenizer, CLIPProcessor from zeta.nn.architecture.transformer import Decoder, Encoder, Transformer, ViTransformerWrapper from zeta.nn.architecture.auto_regressive_wrapper import AutoregressiveWrapper logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s') # Implement classes with type hints and error handling class CM3Tokenizer: """ A tokenizer class for the CM3LEON model Attributes: processor(CLIPProcessor): The processor to tokenize images tokenizer: (AutoTokenizer): The tokenizer to tokenize text im_idx: (int): The Index of the "<image>" token. im_end_idx (int): The index of the "</image>" token. break_idx (int): The index of the "<break>" token. """ def __init__(self): try: self.processor = CLIPProcessor.from_pretrained("laion/CLIP-ViT-L-14-laion2B-s32B-b82K") self.tokenizer = AutoTokenizer.from_pretrained( "EleutherAI/gpt-neox-20b", additional_special_tokens=["<image>", "</image>", "<break>"], eos_token="<eos>", pad_token="<pad>", extra_ids=0, model_max_length=8192 ) self.image_tokenizer = Compose([ Resize((256, 256)), ToTensor(), Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) except Exception as e: logging.error(f"Failed to initialize AndromedaTokenizer: {e}") raise self.im_idx, self.im_end_idx, self.break_idx = self.tokenizer.convert_tokens_to_ids(["<image>", "</image>", "<break>"]) def tokenize_texts(self, texts: str): """ Tokenize given texts. Args: Texts (str): The Text to be tokenized Returns: A tuple containing the tokenized texts and only the text tokens. """ try: texts = self.tokenizer(texts, return_tensors="pt", padding=True, truncation=True).input_ids # Add image tokens to text as "<s> <image> </image> <break> text </s>" special_tokens = torch.tensor([[self.im_idx, self.im_end_idx, self.break_idx]] * texts.shape[0]) return torch.cat([texts[:, 0:1], special_tokens, texts[:, 1:]], dim=1), texts except Exception as e: logging.error(f"Failed to tokenize texts: {e}") raise def tokenize_images(self, images): """ Tokenizes given images. Args: images: The images to be tokenized Returns: The tokenized images. """ try: return self.processor(images=images, return_tensors="pt").pixel_values except Exception as e: logging.error(f"Failed to tokenize images: {e}") raise def tokenize(self, sample): """ Tokenizes given sample. Args: Sample: The sample to be tokenized Returns: A dictionary containing the tokenized text tokens, images, labels, and attention mask. """ try: text_tokens, only_text_tokens = self.tokenize_texts(sample["target_text"]) attention_mask = text_tokens != self.tokenizer.pad_token_id dummy_image_features = torch.ones((text_tokens.shape[0], 64)) attention_mask = torch.cat([dummy_image_features, attention_mask], dim=1) return { "text_tokens": text_tokens, "images": self.tokenize_images(sample["image"]), "labels": only_text_tokens, "attention_mask": attention_mask, } except Exception as e: logging.error(f"Failed to tokenize sample: {e}") raise class CM3(Module): """ Andromeda is a transformer-based model architecture. It initializes with a Transformer and AutoregressiveWrapper with default or user-specified parameters. Initialize the model with specified or default parameters. Args: - num_tokens: Number of tokens in the vocabulary - max_seq_len: Maximum sequence length - dim: Dimension of the model - depth: Depth of the model - dim_head: Dimension of the model head - heads: Number of heads - use_abs_pos_emb: Whether to use absolute position embedding - alibi_pos_bias: Alibi position bias - alibi_num_heads: Number of alibi heads - rotary_xpos: Rotary position - attn_flash: Attention flash - deepnorm: Deep normalization - shift_tokens: Number of tokens to shift - attn_one_kv_head: Attention one key/value head - qk_norm: Query-key normalization - attn_qk_norm: Attention query-key normalization - attn_qk_norm_dim_scale: Attention query-key normalization dimension scale """ def __init__( self, num_tokens=50432, max_seq_len=8192, dim=2560, depth=32, dim_head=128, heads=24, use_abs_pos_emb=False, alibi_pos_bias=True, alibi_num_heads=12, rotary_xpos=True, attn_flash=True, image_size=256, patch_size=32, attn_one_kv_head=True, # multiquery attention qk_norm=True, attn_qk_norm=True, attn_qk_norm_dim_scale=True, ): super().__init__() self.encoder = ViTransformerWrapper( image_size=image_size, patch_size=patch_size, attn_layers=Encoder( dim=dim, depth=depth, dim_head=dim_head, heads=heads ) ) self.transformer = Transformer( num_tokens=num_tokens, max_seq_len=max_seq_len, use_abs_pos_emb=use_abs_pos_emb, attn_layers=Decoder( dim=dim, depth=depth, dim_head=dim_head, heads=heads, alibi_pos_bias=alibi_pos_bias, alibi_num_heads=alibi_num_heads, rotary_xpos=rotary_xpos, attn_flash=attn_flash, # attn_one_kv_head=attn_one_kv_head, # qk_norm=qk_norm, # attn_qk_norm=attn_qk_norm, # attn_qk_norm_dim_scale=attn_qk_norm_dim_scale, cross_attend=True ) ) self.decoder = AutoregressiveWrapper(self.transformer) def mask_and_relocate(self, text_tokens): #mask image span text_tokens = text_tokens.masked_fill(text_tokens==self.im_idx, self.mask_token) #relocate to end image_span = text_tokens[text_tokens==self.im_end_idx].unsqueeze(1) text_tokens = torch.cat([text_tokens, image_span], dim=1) return text_tokens def cm3_loss(self, log_probs, labels): #cm3 loss prediction loss = nn.NLLLoss()(log_probs, labels) return loss # def forward(self, text_tokens, img, **kwargs): # try: # encoded_img = self.encoder(img, return_embeddings=True) # #mask and relocate image span in text tokens # text_tokens = self.mask_and_relocate(text_tokens) # #concat # context = torch.cat([encoded_img, text_tokens], dim=1) # #get log probs # log_probs = self.decoder(context, **kwargs) # #calculate cm3 loss # loss = self.cm3_loss(log_probs, text_tokens) # return loss # # return self.decoder(text_tokens, context=encoded_img) # except Exception as error: # print(f"Failed in forward method: {error}") # raise def forward(self, img, text): try: encoded = self.encoder(img, return_embeddings=True) return self.decoder(text, context=encoded) except Exception as error: print(f"Failed in forward method: {error}") raise
CM3Leon-main
cm3/model.py
CM3Leon-main
cm3/transformer.py
import math import multiprocessing import os from datetime import timedelta from functools import partial from itertools import chain import torch from torch.distributed.fsdp import ( FullyShardedDataParallel, MixedPrecision, BackwardPrefetch, ShardingStrategy, ) from accelerate import Accelerator from accelerate.utils import (DummyOptim, DummyScheduler, InitProcessGroupKwargs) from datasets import load_dataset from lion_pytorch import Lion from torch.nn import LayerNorm from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import ( CheckpointImpl, apply_activation_checkpointing, checkpoint_wrapper) from torch.distributed.fsdp.wrap import ( transformer_auto_wrap_policy ) from torch.optim import AdamW from torch.utils.data import DataLoader from tqdm import tqdm from transformers import (AutoTokenizer, default_data_collator, get_cosine_schedule_with_warmup, get_linear_schedule_with_warmup, set_seed) from cm3.utils.stable_adamw import StableAdamWUnfused # import bitsandbytes as bnb from cm3.model import CM3LEON ########### SETUP CONFIG import torch.distributed as dist # dist.init_process_group(backend='nccl') #init_method="env://") ############### class CFG: BATCH_SIZE = 3 GRADIENT_ACCUMULATE_EVERY: int = 1 SEED: int = 42 LEARNING_RATE: float = 3e-4 WEIGHT_DECAY: float = 0.1 SEQ_LEN: int = 8192 NUM_CPU: int = multiprocessing.cpu_count() USE_DEEPSPEED: bool = True USE_FSDP: bool = True USE_PRETOKENIZED: bool = True USE_ACTIVATION_CHECKPOINTING: bool = True RESUME_FROM_CHECKPOINT: str = False CHECKPOINTING_STEPS: int = 1000 OUTPUT_DIR: str = 'checkpoints/' # Folder ENTITY_NAME: str = "CM3LEON" # helpers def print_num_params(model, accelerator: Accelerator): # n_params = sum(p.numel() for p in model.parameters() if p.requires_grad) n_params = sum(p.numel() for p in model.parameters() if p.requires_grad) accelerator.print(f"Number of parameters in model: {n_params}") # activation checkpointing def activation_checkpointing( model: torch.nn.Module, offload_to_cpu: bool = False, accelerator: Accelerator = None, ): """ Apply activation checkpointing to a model. Args: model (Module): The model to which to apply activation checkpointing. offload_to_cpu (bool, optional): Whether to offload the activations to CPU. Defaults to False. accelerator (Accelerator, optional): The Accelerate library accelerator. Defaults to None. """ if accelerator is not None: accelerator.print("Using activation checkpointing") def check_fn(submodule): return isinstance(submodule, CM3LEON) non_reentrant_wrapper = partial( checkpoint_wrapper, offload_to_cpu=offload_to_cpu, checkpoint_impl=CheckpointImpl.NO_REENTRANT, ) apply_activation_checkpointing( model, checkpoint_wrapper_fn=non_reentrant_wrapper, check_fn=check_fn ) # FSDP def fsdp( model: torch.nn.Module, auto_wrap: bool = False, mp: str = "fp32", shard_strat: str = "NO_SHARD", ): """ This function wraps a given PyTorch model with the FullyShardedDataParallel (FSDP) wrapper to enable efficient data parallelism and model sharding. Args: model (torch.nn.Module): The original PyTorch model to be wrapped with FSDP. auto_wrap (bool, optional): If True, it enables automatic wrapping of the model's layers according to the transformer_auto_wrap_policy. Default is False. mp (str, optional): The mixed precision mode to be used. Can be 'bf16' for BFloat16, 'fp16' for Float16 or 'fp32' for Float32 precision. Default is 'fp32'. shard_strat (str, optional): The sharding strategy to be used. Can be 'SHARD_GRAD' for sharding at gradient computation, 'FULL_SHARD' for full model sharding or 'NO_SHARD' for no sharding. Default is 'NO_SHARD'. Raises: ValueError: If the provided mp (mixed precision mode) is not 'bf16', 'fp16' or 'fp32'. ValueError: If the provided shard_strat (sharding strategy) is not 'SHARD_GRAD', 'FULL_SHARD' or 'NO_SHARD'. Returns: torch.nn.Module: The input model wrapped with FSDP. """ if auto_wrap: CM3LEON_auto_wrap_policy = partial( transformer_auto_wrap_policy, transformer_layer_cls={ CM3LEON, }, ) else: CM3LEON_auto_wrap_policy = None if mp == "bf16": mp_fsdp = MixedPrecision( param_dtype=torch.bfloat16, # Gradient communication precision. reduce_dtype=torch.bfloat16, # Buffer precision. buffer_dtype=torch.bfloat16, ) elif mp == "fp16": mp_fsdp = MixedPrecision( param_dtype=torch.float16, # Gradient communication precision. reduce_dtype=torch.float16, # Buffer precision. buffer_dtype=torch.float16, ) elif mp == "fp32": mp_fsdp = MixedPrecision( param_dtype=torch.float32, # Gradient communication precision. reduce_dtype=torch.float32, # Buffer precision. buffer_dtype=torch.float32, ) else: raise ValueError( "Invalid scheduler_type. Expected 'bf16', 'fp16' or 'fp32', got: {}".format( mp ) ) if shard_strat == "SHARD_GRAD": sharding_strat_fsdp = ShardingStrategy.SHARD_GRAD_OP elif shard_strat == "FULL_SHARD": sharding_strat_fsdp = ShardingStrategy.FULL_SHARD elif shard_strat == "NO_SHARD": sharding_strat_fsdp = ShardingStrategy.NO_SHARD else: raise ValueError( "Invalid scheduler_type. Expected 'SHARD_GRAD', 'FULL_SHARD' or 'NO_SHARD', got: {}".format( shard_strat ) ) model = FullyShardedDataParallel( model, auto_wrap_policy=CM3LEON_auto_wrap_policy, mixed_precision=mp_fsdp, backward_prefetch=BackwardPrefetch.BACKWARD_PRE, sharding_strategy=sharding_strat_fsdp, forward_prefetch=True, use_orig_params=True, ) return model # learning rate scheduler def get_lr_scheduler_with_warmup( optimizer: torch.optim.Optimizer, scheduler_type: str, num_warmup_steps: int, max_train_steps: int, grad_accumulate_every: int = 1, accelerator: Accelerator = None, ): """ Get a learning rate scheduler with warmup. Args: optimizer (Optimizer): The optimizer for which to create the learning rate scheduler. scheduler_type (str): The type of learning rate scheduler to create, either "linear" or "cosine". num_warmup_steps (int): The number of warmup steps for the learning rate scheduler. max_train_steps (int): The maximum number of training steps. grad_accumulate_every (int, optional): The gradient accumulation factor. Defaults to 1. accelerator (Accelerator, optional): The Accelerate library accelerator. Defaults to None. Returns: The learning rate scheduler with warmup. Raises: ValueError: If scheduler_type is not "linear" or "cosine". """ NUM_WARMUP_STEPS = num_warmup_steps GRADIENT_ACCUMULATE_EVERY = grad_accumulate_every if accelerator is not None: accelerator.print(f"Using {scheduler_type} lr scheduler") if scheduler_type == "linear": return get_linear_schedule_with_warmup( optimizer=optimizer, num_warmup_steps=NUM_WARMUP_STEPS * GRADIENT_ACCUMULATE_EVERY, num_training_steps=max_train_steps * GRADIENT_ACCUMULATE_EVERY, ) elif scheduler_type == "cosine": return get_cosine_schedule_with_warmup( optimizer=optimizer, num_warmup_steps=NUM_WARMUP_STEPS * GRADIENT_ACCUMULATE_EVERY, num_training_steps=max_train_steps * GRADIENT_ACCUMULATE_EVERY, ) else: raise ValueError( "Invalid scheduler_type. Expected 'linear' or 'cosine', got: {}".format( scheduler_type ) ) # optimizers def decoupled_optimizer( model: torch.nn.Module, learning_rate: float, weight_decay: float, beta_1: float, beta_2: float, optimizer_type: str, use_fsdp: bool = True, accelerator: Accelerator = None, ): """ Decouples the optimizer from the training process. This function sets up the optimizer for the model by creating two groups of parameters: one for weight decay and one without weight decay. Then, it initializes the optimizer with these two groups of parameters. Args: model (Module): The model whose parameters are optimized. learning_rate (float): The learning rate for the optimizer. weight_decay (float): The weight decay for the optimizer. beta_1 (float): The exponential decay rate for the 1st moment estimates. beta_2 (float): The exponential decay rate for the 2nd moment estimates. optimizer_type (str): The type of the optimizer. Can be 'lion', 'adamw', or 'stable_adamw'. use_fsdp (bool, optional): If True, the optimizer will work with fully sharded data parallelism. Defaults to True. accelerator (Accelerator, optional): The accelerator from HuggingFace's Accelerate library. Defaults to None. Returns: Optimizer: The initialized optimizer. Raises: ValueError: If the optimizer type is not 'lion', 'adamw' or 'stable_adamw'. """ accelerator.print(f"Using {optimizer_type} optimizer") # Create an empty dictionary called param_dict to store the model's named parameters. param_dict = {} # Iterate over the model's named parameters and populate the param_dict with key-value pairs. for param_name, param in model.named_parameters(): param_dict[param_name] = param # Separate the model's named modules into two groups: decay and no_decay. # Create an empty list to store the names of the LayerNorm and Embedding layer weights with no weight decay. no_decay = [] if use_fsdp: exclude_module = "_fsdp_wrapped_module.token_emb" else: exclude_module = "token_emb" # Iterate through the named modules of the model. for module_name, module in model.named_modules(): # Check if the current module is an instance of any of the desired types (LayerNorm or torch.nn.Embedding). for ndim in [LayerNorm, torch.nn.Embedding]: if isinstance(module, ndim): # If torch.nn.Embedding, append its name with a ".weight" suffix to the no_decay list. if module_name == exclude_module: no_decay.append(f"{module_name}.weight") else: # If the module is an instance of LayerNorm no_decay.append(f"{module_name}.gamma") # Exit the inner loop since the desired module has been found. break # Create an empty list to store the names of the Linear layer weights with weight decay. decay = [] # Iterate through the named modules of the model. for module_name, module in model.named_modules(): # Check if the current module is an instance of the desired type (torch.nn.Linear). for ndim in [torch.nn.Linear]: if isinstance(module, ndim): # If the module is an instance of torch.nn.Linear, append its name with a ".weight" suffix to the decay list. decay.append(f"{module_name}.weight") # Exit the inner loop since the desired module has been found. break # Create two separate lists of model parameters: decay_param and no_decay_param. # The decay_param list contains the parameters that should have weight decay applied. # The no_decay_param list contains the parameters that should not have weight decay applied, excluding the 'to_logits.weight' parameter. # Create an empty list called decay_param to store the parameters with weight decay. decay_param = [] if use_fsdp: exclude_param = "_fsdp_wrapped_module.to_logits.weight" else: exclude_param = "to_logits.weight" # Iterate over the decay list, which contains the names of the parameters with weight decay. for param in decay: # Check if the current parameter is not 'to_logits.weight'. # Append the corresponding parameter from param_dict to the decay_param list. if param != exclude_param: decay_param.append(param_dict[param]) # Create an empty list called no_decay_param to store the parameters without weight decay. no_decay_param = [] # Iterate over the no_decay list, which contains the names of the parameters without weight decay. for param in no_decay: # Append the corresponding parameter from param_dict to the no_decay_param list. no_decay_param.append(param_dict[param]) # Create a list called grouped_params that contains two dictionaries. # The first dictionary has the decay_param list and the corresponding weight_decay value. # The second dictionary has the no_decay_param list and a weight_decay value of 0.0. grouped_params = [ {"params": decay_param, "weight_decay": weight_decay}, {"params": no_decay_param, "weight_decay": 0.0}, ] # Create a variable called optimizer that stores an instance of the optimizer. if optimizer_type == "lion": optimizer = Lion(grouped_params, lr=learning_rate, betas=(beta_1, beta_2),) elif optimizer_type == "adamw": optimizer = AdamW(grouped_params, lr=learning_rate, betas=(beta_1, beta_2),) elif optimizer_type == "deepspeed": optimizer = DummyOptim(grouped_params, lr=learning_rate, betas=(beta_1, beta_2),) elif optimizer_type == "stable_adamw": optimizer = StableAdamWUnfused( grouped_params, lr=learning_rate, betas=(beta_1, beta_2), ) # elif optimizer_type=="Adam8bit": # optimizer = bnb.optim.Adam8bit(grouped_params, lr=learning_rate, betas=(beta_1, beta_2)) # elif optimizer_type=="Lion8Bit": # optimizer = bnb.optim.Lion8bit(grouped_params, lr=learning_rate, betas=(beta_1, beta_2)) else: raise ValueError( "Invalid optimizer_type. Expected 'lion', 'adamw', 'deepspeed' or 'stable_adamw', got: {}".format( optimizer_type ) ) # Return the optimizer. return optimizer # dataloaders def build_dataloaders(): """ Build data loaders for training. This function performs the following steps: 1. Load the tokenizer from the pretrained "EleutherAI/gpt-neox-20b" model. 2. Load the "openwebtext" dataset. 3. Tokenize the dataset, adding the end-of-sentence token to each text. 4. Process the tokenized dataset into chunks of a specified block size. Returns: Dataset: The processed dataset ready for training. """ tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b") dataset = load_dataset("openwebtext", split="train") tokenized_dataset = dataset.map( lambda example: tokenizer([t + tokenizer.eos_token for t in example["text"]]), batched=True, num_proc=CFG.NUM_CPU, remove_columns=["text"], ) block_size = CFG.SEQ_LEN # Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size. def group_texts(examples): # Concatenate all texts. concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()} total_length = len(concatenated_examples[list(examples.keys())[0]]) # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can # customize this part to your needs. if total_length >= block_size: total_length = (total_length // block_size) * block_size # Split by chunks of max_len. result = { k: [t[i : i + block_size] for i in range(0, total_length, block_size)] for k, t in concatenated_examples.items() } return result train_dataset = tokenized_dataset.map( group_texts, batched=True, num_proc=CFG.NUM_CPU, ) return train_dataset #switch to falconwebdataset def build_pre_tokenized(): d0 = load_dataset("conceptofmind/c4_0-to-20_neox_with_eos_8k", split="train[:10]") # d1 = load_dataset("conceptofmind/c4_21-to-40_neox_with_eos_8k", split="train") # d2 = load_dataset("conceptofmind/c4_41-to-60_neox_with_eos_8k", split="train") # d3 = load_dataset("conceptofmind/c4_61-to-80_neox_with_eos_8k", split="train") # d4 = load_dataset("conceptofmind/c4_81-to-100_neox_with_eos_8k", split="train") # train_dataset = concatenate_datasets([d0, d1, d2, d3, d4]) return d0 def Train(): # accelerator timeout = InitProcessGroupKwargs(timeout=timedelta(seconds=1_000_000)) accelerator = Accelerator( gradient_accumulation_steps=CFG.GRADIENT_ACCUMULATE_EVERY, mixed_precision="fp16", log_with="wandb", kwargs_handlers=[timeout], ) # AcceleratorState().deepspeed_plugin.deepspeed_config['train_micro_batch_size_per_gpu'] = 4 #?????? accelerator.init_trackers( project_name="CM3LEON", config={ "batch_size": CFG.BATCH_SIZE, "gradient_accumulate_every": CFG.GRADIENT_ACCUMULATE_EVERY, "learning_rate": CFG.LEARNING_RATE, "seq_len": CFG.SEQ_LEN, }, init_kwargs={"wandb": {"entity": CFG.ENTITY_NAME}}, ) accelerator.print(f"Total GPUS: {accelerator.num_processes}") # set seed set_seed(CFG.SEED) model = CM3LEON().to(accelerator.device) print_num_params(model, accelerator) if CFG.USE_FSDP: model = fsdp( model, mp="fp16", shard_strat="SHARD_GRAD" ) if CFG.USE_ACTIVATION_CHECKPOINTING: activation_checkpointing(model, accelerator) # model = accelerator.prepare(model, train_dataloader) # dataloaders if CFG.USE_PRETOKENIZED: train_dataset = build_pre_tokenized() else: train_dataset = build_dataloaders() train_loader = DataLoader( train_dataset, batch_size=CFG.BATCH_SIZE, collate_fn=default_data_collator, ) model = accelerator.prepare(model, train_loader) # optimizer optim = decoupled_optimizer( model=model, learning_rate=CFG.LEARNING_RATE, weight_decay=CFG.WEIGHT_DECAY, beta_1=0.90, beta_2=0.95, optimizer_type='stable_adamw', use_fsdp=True, accelerator=accelerator ) # Determine number of training steps max_train_steps = math.ceil(len(train_loader) / CFG.GRADIENT_ACCUMULATE_EVERY) accelerator.print(f"Max train steps: {max_train_steps}") # lr scheduler NUM_WARMUP_STEPS = int(max_train_steps * 0.01) accelerator.print(f"Num warmup steps: {NUM_WARMUP_STEPS}") if CFG.USE_DEEPSPEED: lr_scheduler = DummyScheduler( optim, total_num_steps=max_train_steps * accelerator.num_processes, warmup_num_steps=NUM_WARMUP_STEPS ) else: lr_scheduler = get_lr_scheduler_with_warmup( optimizer=optim, scheduler_type="cosine", num_warmup_steps=NUM_WARMUP_STEPS, max_train_steps=max_train_steps, grad_accumulate_every=CFG.GRADIENT_ACCUMULATE_EVERY, ) # prepare optim, train_loader, lr_scheduler = accelerator.prepare( optim, train_loader, lr_scheduler ) # checkpoint scheduler accelerator.register_for_checkpointing(lr_scheduler) # I do not know why Huggingface recommends recalculation of max_train_steps max_train_steps = math.ceil(len(train_loader) / CFG.GRADIENT_ACCUMULATE_EVERY) accelerator.print(f"Max train steps recalculated: {max_train_steps}") # Total batch size for logging total_batch_size = ( CFG.BATCH_SIZE * accelerator.num_processes * CFG.GRADIENT_ACCUMULATE_EVERY ) accelerator.print(f"Total batch size: {total_batch_size}") # resume training progress_bar = tqdm( range(max_train_steps), disable=not accelerator.is_local_main_process ) completed_steps = 0 if CFG.RESUME_FROM_CHECKPOINT: if CFG.RESUME_FROM_CHECKPOINT is not None or CFG.RESUME_FROM_CHECKPOINT != "": accelerator.print(f"Resuming from checkpoint {CFG.RESUME_FROM_CHECKPOINT}") accelerator.load_state(CFG.RESUME_FROM_CHECKPOINT) path = os.path.basename(CFG.RESUME_FROM_CHECKPOINT) training_difference = os.path.splitext(path)[0] # need to multiply `gradient_accumulation_steps` to reflect real steps resume_step = ( int(training_difference.replace("step_", "")) * CFG.GRADIENT_ACCUMULATE_EVERY ) if CFG.RESUME_FROM_CHECKPOINT and resume_step is not None: train_loader = accelerator.skip_first_batches(train_loader, resume_step) completed_steps += resume_step progress_bar.update(resume_step) # training model.train() for step, batch in enumerate(train_loader): with accelerator.accumulate(model): inputs = batch["input_ids"].to(accelerator.device) loss = model(inputs, return_loss=True) accelerator.backward(loss) accelerator.log({"loss": loss.item()}, step=step) if accelerator.sync_gradients: accelerator.clip_grad_norm_(model.parameters(), 1.0) optim.step() lr_scheduler.step() optim.zero_grad() if accelerator.sync_gradients: progress_bar.update(1) completed_steps += 1 if isinstance(CFG.CHECKPOINTING_STEPS, int): if completed_steps % CFG.CHECKPOINTING_STEPS == 0: output_dir = f"step_{completed_steps }" if CFG.OUTPUT_DIR is not None: output_dir = os.path.join(CFG.OUTPUT_DIR, output_dir) accelerator.save_state(output_dir) if completed_steps >= max_train_steps: break # end training # accelerator.print(f"Training Finished") accelerator.end_training() # save final model # accelerator.print(f"Saving model to {CFG.OUTPUT_DIR}") if CFG.OUTPUT_DIR is not None: accelerator.wait_for_everyone() unwrapped_model = accelerator.unwrap_model(model) with accelerator.main_process_first(): accelerator.save( unwrapped_model.state_dict(), f"{CFG.OUTPUT_DIR}/final/final_model.pt" ) def main(): os.environ['MASTER_ADDR'] #'localhost' os.environ['MASTER_PORT'] #= '9994' # # [CRITICAL] Pay attention to this when scaling to multiple GPUs and clusters # # Pay attention to this, use "accelerate config" os.environ['RANK'] #= str(0) # Number of nodes (servers) os.environ['WORLD_SIZE'] # = str(torch.cuda.device_count()) dist.init_process_group(backend='nccl') #init_method="env://") Train() # if __name__ == '__main__': main()
CM3Leon-main
cm3/train.py
import multiprocessing import argparse from itertools import chain from datasets import load_dataset from cm3.model import CM3LEONTokenizer class CFG: SEED: int = 42 SEQ_LEN: int = 8192 NUM_CPU: int = multiprocessing.cpu_count() HF_ACCOUNT_REPO: str = "YOUR HUGGINGFACE API KEY" DATASET_NAME: str = "HuggingFaceM4/VQAv2" #perhaps will need finetuning def built_dataset(args): # tokenizer = AutoTokenizer.from_pretrained(CFG.TOKENIZER) tokenizer = CM3LEONTokenizer.tokenize train_dataset = load_dataset(CFG.DATASET_NAME, split="train", streaming=True) def tokenize_function(example): return tokenizer([t + tokenizer.eos_token for t in example["text"]]) tokenized_dataset = train_dataset.map( tokenize_function, batched=True, num_proc=CFG.NUM_CPU, remove_columns=["text"], ) block_size = CFG.SEQ_LEN #main data processing functin that will concatenate all texts from our dataset def group_texts(examples): #concatenate all texts concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()} total_length = len(concatenated_examples[list(examples.keys())[0]]) #drop the small remainder we could add padding if the model supported it instead of this drop customize if total_length >= block_size: total_length = (total_length // block_size) * block_size #split by chunks of max length result = { k: [t[i : i + block_size] for i in range(0, total_length, block_size)] for k, t in concatenated_examples.items() } return result train_tokenized_dataset = tokenized_dataset.map( group_texts, batched=True, num_proc=CFG.NUM_PROC, ) train_tokenized_dataset.push_to_hub(CFG.HF_ACCOUNT_REPO) if __name__ == '__main__': parser = argparse.ArgumentParser(description="Process and push dataset to Hugging Face Hub") parser.add_argument("--seed", type=int, default=CFG.SEED, help="Random seed") parser.add_argument("--seq_len", type=int, default=CFG.SEQ_LEN, help="Sequence length for processing") parser.add_argument("--hf_account", type=str, default=CFG.HF_ACCOUNT_REPO, help="Hugging Face account name and repo") parser.add_argument("--tokenizer", type=str, default=CFG.TOKENIZER, help="Tokenizer model to use") parser.add_argument("--dataset_name", type=str, default=CFG.DATASET_NAME, help="Name of the dataset to process") args = parser.parse_args() built_dataset(args)
CM3Leon-main
cm3/tokenize.py
import torch # This is the unfused version of StableAdamW. It is slower than the fused version (coming). class StableAdamWUnfused(torch.optim.Optimizer): def __init__( self, params, lr=0.002, weight_decay=0.2, betas=(0.9, 0.99), eps=1e-8, clip_thresh=1.0, precision="amp_bfloat16", custom_scalar=65536, ): beta1, beta2 = betas[0], betas[1] defaults = dict(lr=lr, weight_decay=weight_decay, beta1=beta1, beta2=beta2) super(StableAdamWUnfused, self).__init__(params, defaults) self.eps = eps self.d = clip_thresh # Set precision to "custom_fp16" if you want to use a fixed loss scalar, custom_scalar, which is divided out in the update step. # If you do this, call (custom_scalar * loss).backward() instead of loss.backward(). self.precision = precision self.custom_scaler = custom_scalar for group in self.param_groups: group["step"] = 1.0 print("Using StableAdamWUnfused-v1") def __setstate__(self, state): super(StableAdamWUnfused, self).__setstate__(state) def step(self, closure=None): if closure is not None: closure() for group in self.param_groups: lr = group["lr"] weight_decay = group["weight_decay"] beta1 = group["beta1"] beta2 = group["beta2"] step = group["step"] for p in group["params"]: if p.grad is None: continue theta = p.data param_state = self.state[p] if self.precision == "custom_fp16": g = p.grad.data / self.custom_scaler if torch.any(torch.isnan(g) | torch.isinf(g)): continue else: g = p.grad.data if "exp_avg" not in param_state: v = param_state["exp_avg"] = torch.zeros_like(theta) u = param_state["exp_avg_sq"] = torch.zeros_like(theta) else: v = param_state["exp_avg"] u = param_state["exp_avg_sq"] beta1hat = beta1 * (1 - beta1 ** (step - 1)) / (1 - beta1**step) beta2hat = beta2 * (1 - beta2 ** (step - 1)) / (1 - beta2**step) v = v.mul_(beta1hat).add_(g, alpha=1.0 - beta1hat) u = u.mul_(beta2hat).addcmul_(g, g, value=1.0 - beta2hat) denominator = u.sqrt().add_(self.eps) # StableAdamW = AdamW + update clipping (https://arxiv.org/abs/1804.04235) applied tensor-wise. rms = ( torch.div( g.pow(2), torch.maximum(u, (self.eps**2) * torch.ones_like(u)) ) .mean() .sqrt() .item() ) theta = theta.mul_(1.0 - lr * weight_decay).addcdiv_( v, denominator, value=-lr * (1.0 / max(1.0, rms / self.d)) ) # save current params param_state["exp_avg"] = v param_state["exp_avg_sq"] = u group["step"] = step + 1
CM3Leon-main
cm3/utils/stable_adamw.py
CM3Leon-main
cm3/utils/__init__.py
import unittest import torch from softmax_one.softmax_one import ScaledDotProductAttention class TestScaledDotProductAttention(unittest.TestCase): def setUp(self): self.module = ScaledDotProductAttention(dropout=0.1) self.q = torch.rand(16, 10, 64) #16 batches 10 queries of size 64 self.k = torch.rand(16, 10, 64) #16 batches of 10 keys of size 64 self.v = torch.rand(16, 10, 64) #16 batches of 10 values each of size 64 def test_output_shape(self): output, _ = self.module(self.q, self.k, self.v) self.assertEqual(output.shape, (16, 10, 64)) if __name__ == '__main__': unittest.main()
AttentionIsOFFByOne-main
test.py
import torch from softmax_one.softmax_one import softmax_one x = torch.randn(5) y = softmax_one(x, dim=0) print(y) print(y.shape)
AttentionIsOFFByOne-main
example.py
import time import torch import argparse import torch.nn.functional as F import matplotlib.pyplot as plt # from softmax_one.softmax_one_cupy import softmax_one_cupy as softmax_one from softmax_one.softmax_one import softmax_one import numpy as np import logging def benchmark(func, x, dim): start = time.time() for _ in range(1000): func(x, dim) end = time.time() return end - start if __name__ == "__main__": # Set up logging logging.basicConfig(level=logging.INFO) parser = argparse.ArgumentParser(description='Benchmarking Softmax1.') parser.add_argument('--no-chart', action='store_true', help='Do not display chart') args = parser.parse_args() # Define the sizes to test sizes = [(10, 10), (100, 100), (1000, 1000), (10000, 10000)] # Arrays to store results times_softmax = [] times_softmax_one = [] # Run the benchmark for size in sizes: logging.info(f'Running benchmark for tensor size {size}...') x = torch.rand(size) time_softmax = benchmark(F.softmax, x, dim=-1) time_softmax_one = benchmark(softmax_one, x, dim=-1) times_softmax.append(time_softmax) times_softmax_one.append(time_softmax_one) logging.info(f'F.softmax time: {time_softmax} s') logging.info(f'softmax_one time: {time_softmax_one} s') # Plot the results if not args.no_chart: plt.figure(figsize=(10, 6)) plt.plot([np.prod(s) for s in sizes], times_softmax, label='F.softmax') plt.plot([np.prod(s) for s in sizes], times_softmax_one, label='softmax_one') plt.legend() plt.xlabel('Tensor Size') plt.ylabel('Time (s)') plt.title('Benchmarking Results') plt.show() else: logging.info('Chart display is off.')
AttentionIsOFFByOne-main
tests/benchmark.py
from setuptools import setup, Extension from torch.utils import cpp_extension softmax_one_cpp = Extension( name="softmax_one_cpp", sources=["softmax_one/optimized/softmax_one.cpp", "softmax_one/optimized/binding.cpp"], include_dirs=["sotmax_one/include"], extra_compile_args=["-std=c++14"] ) setup( name='softmax_one_cpp', version='0.1', ext_modules=[softmax_one_cpp], cmdclass={'build_ext': cpp_extension.BuildExtension}, ) # # python setup.py install # import softmax_one_cpp # def test_softmax_one_cpp(): # x = torch.randn(10, 5) # y = softmax_one_cpp.forward(x, dim=1) # assert torch.allclose(y.sum(dim=1), torch.ones(10))
AttentionIsOFFByOne-main
tests/setup.py
import math import torch import torch.nn as nn import torch.nn.functional as F from softmax_one.softmax_one import softmax_one # QuietAttention class QuietAttention(nn.Module): def __init__(self, dropout=0.0): super().__init__() self.dropout = nn.Droput(dropout) def forward(self, q, k, v, mask=None): #Get the dimension of key vectors (needed for scaling the dot product of Q and k) d_k = k.size(-1) #create a 0 vector with same size as one quer vector in Q zero_vector = torch.zeros(1, q.size(1), d_k).to(q.device) #prepend the zero vector to queries, keys, and values q = torch.cat((zero_vector, q), dim=0) k = torch.cat((zero_vector, k), dim=0) v = torch.cat((zero_vector, v), dim=0) #compute the dot product of Q and K and scale by sqrt(d_k) for more stable gradientws scores = torch.matmul(q, k.tranpose(-2, -1)) / math.sqrt(d_k) #if a mask is provided, apply it to scores, (after extending the mask to account for the added zero vector) if mask is not None: mask = F.pad(mask, (1, 0)) scores = scores.masked_fill(mask == 0, -1e9) #compute attention distribution using the modified softmax function p_attn = softmax_one(scores, dim=-1) #apply dropout to the attention distribution p_attn = self.dropout(p_attn) #compute the final output by multiplying the attention distribution with the value matrix v return torch.matmul(p_attn, v), p_attn
AttentionIsOFFByOne-main
softmax_one/attention.py
import math import torch import torch.nn.functional as F # Define the softmax_one function with added one in the denominator , which helps to reduce #the negative impact impact of tiny values in the softmax function and improves numerical stability def softmax_one(x, dim=None, _stacklevel=3, dtype=None): #subtract the max for stability x = x - x.max(dim=dim, keepdim=True).values #compute exponentials exp_x = torch.exp(x) #compute softmax values and add on in the denominator return exp_x / (1 + exp_x.sum(dim=dim, keepdim=True)) # Implement the scaled dot product attention with GhostSoftmax class ScaledDotProductAttention(torch.nn.Module): def __init__(self, dropout=0.0): super().__init__() self.dropout = torch.nn.Dropout(dropout) def forward(self, q, k, v, mask=None): d_k = k.size(-1) scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(d_k) if mask is not None: scores = scores.masked_fill(mask == 0, -1e9) p_attn = softmax_one(scores, dim=-1) p_attn = self.dropout(p_attn) return torch.matmul(p_attn, v), p_attn
AttentionIsOFFByOne-main
softmax_one/softmax_one.py
from softmax_one.softmax_one import softmax_one, ScaledDotProductAttention
AttentionIsOFFByOne-main
softmax_one/__init__.py
#cupy allows you to compile raw python code into cuda, this a test import cupy as cp #softmax def softmax_one_cupy(x, axis=None): #substract the max for stability x = x - cp.max(x, axis=axis, keepdims=True) #compute exponentials exp_x = cp.exp(x) #compute the softmax values and add one in the denominator return exp_x / (1 + cp.sum(exp_x, axis=axis, keepdims=True))
AttentionIsOFFByOne-main
optimized/softmax_one_cupy.py
import json from datetime import datetime import re def dmy_to_ymd(d): return datetime.strptime(d, '%d %b %Y').strftime('%Y-%m-%d') with open('../README.md', 'r') as f: lines = f.readlines() # remove empty line lines = [line.strip() for line in lines if line.strip()] st = lines.index('# Resources') end = lines.index('# Papers') lines = lines[st:end] print(lines) # find index of line that start with # indexs = [i for i, line in enumerate(lines) if line.startswith('#') and not line.startswith('##')] db = {"resources": []} # split lines by index indexs += [len(lines)] for i, idx in enumerate(indexs[:-1]): field = lines[idx].strip('##').strip() print(field) content = lines[idx + 1:indexs[i + 1]] second_indexs = [i for i, line in enumerate(content) if line.startswith('##')] second_indexs += [len(content)] for i, idx in enumerate(second_indexs[:-1]): task = content[idx].strip('###').strip() second_content = content[idx + 1:second_indexs[i + 1]] print(task, len(second_content)) block_len = 4 if task == 'Tutorial and Jupyter Notebook': block_len = 3 for l in range(0, len(second_content), block_len): try: item = second_content[l:l + block_len] obj = {} obj['title'] = item[0][2:-4] obj['authors'] = item[1][1:-3] linkstr = item[2].strip() links = re.findall("\[\[([^\]]*)\]\(([^\)]+)\)\]", linkstr) links2 = {} for name, href in links: links2[name] = href obj['links'] = links2 if len(item) == 4: obj['date'] = dmy_to_ymd(item[3].strip()) obj['field'] = field obj['task'] = task db['resources'].append(obj) except Exception as e: print(item) import ipdb; ipdb.set_trace() raise e with open('resource.json', 'w') as fout: json.dump(db, fout)
EXA-1-master
exa/papers/Awesome-Diffusion-Models/website/convert_resource.py
import json from datetime import datetime def dmy_to_ymd(d): return datetime.strptime(d, '%d %b %Y').strftime('%Y-%m-%d') with open('../README.md', 'r') as f: lines = f.readlines() # remove empty line lines = [line.strip() for line in lines if line.strip()] idx = lines.index('# Papers') lines = lines[idx:] # find index of line that start with # indexs = [i for i, line in enumerate(lines) if line.startswith('##') and not line.startswith('###')] db = {"papers": []} # split lines by index indexs += [len(lines)] for i, idx in enumerate(indexs[:-1]): field = lines[idx].strip('##').strip() print(field) content = lines[idx + 1:indexs[i + 1]] second_indexs = [i for i, line in enumerate(content) if line.startswith('###')] second_indexs += [len(content)] for i, idx in enumerate(second_indexs[:-1]): task = content[idx].strip('###').strip() second_content = content[idx + 1:second_indexs[i + 1]] print(task, len(second_content)) for l in range(0, len(second_content), 4): try: item = second_content[l:l + 4] obj = {} obj['title'] = item[0][2:-4] obj['authors'] = item[1][1:-3] source, links = item[2][:-1].strip().split('.', maxsplit=1) obj['source'] = source links = links.strip().split(' ') links = [link[1:-1] for link in links] links2 = {} for link in links: if not link.strip(): continue name, url = link.split(']') name = name[1:].strip() url = url[1:-1].strip() links2[name] = url obj['links'] = links2 obj['date'] = dmy_to_ymd(item[3].strip()) obj['field'] = field obj['task'] = task db['papers'].append(obj) except Exception as e: print(item) # import ipdb; ipdb.set_trace() raise e with open('db.json', 'w') as fout: json.dump(db, fout)
EXA-1-master
exa/papers/Awesome-Diffusion-Models/website/convert.py
import itertools from jinja2 import Template import json DOC_DIR = '../docs' class Link: def __init__(self, name, href): self.name = name self.href = href class Paper: def __init__(self, data): self.title = data['title'] self.authors = data['authors'] self.source = data.get('source', None) self.date = data.get('date', None) self.links = [Link(k, v) for k, v in data['links'].items()] self.field = data['field'] self.task = data['task'] class Field: def __init__(self, name, tasks): self.name = name self.tasks = [Task(k, v, self) for k, v in tasks.items()] @property def total(self): return sum([len(task.papers) for task in self.tasks]) @property def url_name(self): return self.name.lower().replace(' ', '_') @property def papers(self): papers = list(itertools.chain(*[task.papers for task in self.tasks])) papers = sorted(papers, key=lambda x: x.date) papers.reverse() return papers class Task: def __init__(self, name, papers, field): self.name = name self._papers = papers self.field = field @property def url_name(self): return self.field.url_name + '_' + self.name.lower().replace(' ', '_') @property def papers(self): papers = self._papers try: papers = sorted(papers, key=lambda x: x.date) papers.reverse() except: pass return papers def find_all_fields(papers): fields = {} for paper in papers: if paper.field not in fields: fields[paper.field] = {} if paper.task not in fields[paper.field]: fields[paper.field][paper.task] = set() fields[paper.field][paper.task].add(paper) field_objs = [] for k, v in fields.items(): obj = Field(k, v) field_objs.append(obj) return field_objs def build_paper(): with open('db.json', 'r') as f: db = json.load(f) papers = [Paper(paper) for paper in db['papers']] fields = find_all_fields(papers) with open(f'{DOC_DIR}/template.html', 'r') as fin: template = Template(fin.read(), lstrip_blocks=True, trim_blocks=True) first = True for field in fields: for task in field.tasks: out = template.render(fields=fields, papers=task.papers, highlight_task=task, section='paper') with open(f'{DOC_DIR}/{task.url_name}.html', 'w', encoding='utf-8') as fout: fout.write(out) def build_field(): with open('db.json', 'r') as f: db = json.load(f) papers = [Paper(paper) for paper in db['papers']] fields = find_all_fields(papers) with open(f'{DOC_DIR}/template.html', 'r') as fin: template = Template(fin.read(), lstrip_blocks=True, trim_blocks=True) first = True for field in fields: out = template.render(fields=fields, papers=field.papers, section='paper') with open(f'{DOC_DIR}/{field.url_name}.html', 'w', encoding='utf-8') as fout: fout.write(out) if first: with open(f'{DOC_DIR}/index.html', 'w', encoding='utf-8') as fout: fout.write(out) first = False def build_resource(): with open('resource.json', 'r') as f: db = json.load(f) papers = [Paper(paper) for paper in db['resources']] fields = find_all_fields(papers) with open(f'{DOC_DIR}/template.html', 'r') as fin: template = Template(fin.read(), lstrip_blocks=True, trim_blocks=True) first = True for field in fields: for task in field.tasks: out = template.render(fields=fields, papers=task.papers, highlight_task=task, section='resource') with open(f'{DOC_DIR}/{task.url_name}.html', 'w') as fout: fout.write(out) if first: with open(f'{DOC_DIR}/resource.html', 'w') as fout: fout.write(out) first = False if __name__ == '__main__': build_paper() build_resource() build_field()
EXA-1-master
exa/papers/Awesome-Diffusion-Models/website/main.py
# -*- coding: utf-8 -*- import argparse import logging import pprint from gensim.models import word2vec logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO) parser = argparse.ArgumentParser(description='gensim skip-gram with negative sampling') parser.add_argument('--is_train', type=bool, default=False, help='specify train or evaluation') args = parser.parse_args() if __name__ == '__main__': model_name = 'vectors.model' if args.is_train: # load up unzipped corpus from http://mattmahoney.net/dc/text8.zip sentences = word2vec.Text8Corpus('text8') # train the skip-gram model model = word2vec.Word2Vec(sentences, sg=1, size=300, min_count=20, window=5, negative=25, workers=4) # save trained model model.save(model_name) else: # load trained model model = word2vec.Word2Vec.load(model_name) # analogy task evaluation with corpus from https://goo.gl/okpDj5 model.accuracy('questions-words.txt') # execute analogy task like king - man + woman = queen pprint.pprint(model.most_similar(positive=['woman', 'king'], negative=['man']))
EXA-1-master
exa/papers/awesome-embedding-models/examples/baseline.py
# -*- coding: utf-8 -*- import os import zipfile from keras.utils.data_utils import get_file def maybe_download(url): """ Download a file if not present. """ filename = url.split('/')[-1] path = get_file(filename, url) return path def read_data(filename): """ Extract the first file enclosed in a zip file as a list of words. """ with zipfile.ZipFile(filename) as f: data = f.read(f.namelist()[0]).split() return data def unzip(zip_filename): """ Extract a file from the zipfile """ with zipfile.ZipFile(zip_filename) as f: for filename in f.namelist(): dirname = os.path.dirname(filename) f.extract(filename, dirname) return os.path.abspath(filename) def read_analogies(filename, word2id): """ Reads through the analogy question file. Returns: questions: a [n, 4] numpy array containing the analogy question's word ids. questions_skipped: questions skipped due to unknown words. """ questions = [] questions_skipped = 0 with open(filename, 'r') as analogy_f: for line in analogy_f: if line.startswith(':'): # Skip comments. continue words = line.strip().lower().split() ids = [w in word2id for w in words] if False in ids or len(ids) != 4: questions_skipped += 1 else: questions.append(words) print('Eval analogy file: {}'.format(filename)) print('Questions: {}'.format(len(questions))) print('Skipped: {}'.format(questions_skipped)) return questions if __name__ == '__main__': url = 'http://mattmahoney.net/dc/text8.zip' filename = maybe_download(url) unzip(filename) words = read_data(filename) print('Data size', len(words)) url = 'http://download.tensorflow.org/data/questions-words.txt' filename = maybe_download(url)
EXA-1-master
exa/papers/awesome-embedding-models/examples/utils.py
# -*- coding: utf-8 -*- import pprint from keras.utils.data_utils import get_file from keras.utils import np_utils from keras.preprocessing.text import Tokenizer, base_filter from keras.preprocessing.sequence import skipgrams from keras.models import Sequential from keras.layers import Dense from gensim.models.doc2vec import Word2Vec path = get_file('alice.txt', origin='http://www.gutenberg.org/cache/epub/11/pg11.txt') sentences = [line.strip() for line in open(path) if line != '\n'] tokenizer = Tokenizer(filters=base_filter() + "'") tokenizer.fit_on_texts(sentences) corpus = tokenizer.texts_to_sequences(sentences) V = len(tokenizer.word_index) + 1 dim = 200 window_size = 5 model = Sequential() model.add(Dense(input_dim=V, output_dim=dim)) model.add(Dense(input_dim=dim, output_dim=V, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='rmsprop') model.summary() def generate_data(corpus, window_size, V): for words in corpus: couples, labels = skipgrams(words, V, window_size, negative_samples=0, shuffle=True) if couples: X, y = zip(*couples) X = np_utils.to_categorical(X, V) y = np_utils.to_categorical(y, V) yield X, y for epoch in range(10): loss = 0. for x, y in generate_data(corpus, window_size, V): loss += model.train_on_batch(x, y) print(epoch, loss) with open('vectors.txt', 'w') as f: f.write(' '.join([str(V-1), str(dim)])) f.write('\n') vectors = model.get_weights()[0] for word, i in tokenizer.word_index.items(): f.write(word) f.write(' ') f.write(' '.join(map(str, list(vectors[i, :])))) f.write('\n') w2v = Word2Vec.load_word2vec_format('./vectors.txt', binary=False) pprint.pprint(w2v.most_similar(positive=['king'])) pprint.pprint(w2v.most_similar(positive=['place'])) pprint.pprint(w2v.most_similar(positive=['woman', 'king'], negative=['man']))
EXA-1-master
exa/papers/awesome-embedding-models/examples/skip-gram.py
# -*- coding: utf-8 -*- import argparse import sys import numpy as np from gensim.models import word2vec from gensim.models.doc2vec import Word2Vec from keras.layers import Activation, Embedding, Merge, Reshape from keras.models import Sequential from keras.preprocessing.sequence import skipgrams, make_sampling_table from keras.preprocessing.text import Tokenizer, base_filter from utils import maybe_download, unzip, read_analogies parser = argparse.ArgumentParser(description='Keras skip-gram with negative sampling') parser.add_argument('--save_path', type=str, default='vectors.txt', help='Directory to write the model.') parser.add_argument('--eval_data', type=str, default=None, help='Analogy questions. ' 'See README.md for how to get questions-words.txt.') parser.add_argument('--embedding_size', type=int, default=200, help='The embedding dimension size.') parser.add_argument('--epochs_to_train', type=int, default=5, help='Number of epochs to train.' 'Each epoch processes the training data once completely.') parser.add_argument('--num_neg_samples', type=int, default=5, help='Negative samples per training example.') parser.add_argument('--window_size', type=int, default=4, help='The number of words to predict to the left and right ' 'of the target word.') parser.add_argument('--min_count', type=int, default=5, help='The minimum number of word occurrences for it to be ' 'included in the vocabulary.') parser.add_argument('--sampling_factor', type=float, default=1e-3, help='Subsample threshold for word occurrence. Words that appear ' 'with higher frequency will be randomly down-sampled. Set ' 'to 0 to disable.') args = parser.parse_args() zip_filename = maybe_download('http://mattmahoney.net/dc/text8.zip') text_file = unzip(zip_filename) sentences = word2vec.Text8Corpus(text_file) sentences = [' '.join(sent) for sent in sentences] tokenizer = Tokenizer(filters=base_filter() + "'") tokenizer.fit_on_texts(sentences) sentences = tokenizer.texts_to_sequences(sentences) V = len(tokenizer.word_index) + 1 def build_model(): target_word = Sequential() target_word.add(Embedding(V, args.embedding_size, input_length=1)) context = Sequential() context.add(Embedding(V, args.embedding_size, input_length=1)) model = Sequential() model.add(Merge([target_word, context], mode='dot', dot_axes=2)) model.add(Reshape((1,), input_shape=(1, 1))) model.add(Activation('sigmoid')) model.compile(loss='binary_crossentropy', optimizer='rmsprop') return model def train_model(model): sampling_table = make_sampling_table(V, sampling_factor=args.sampling_factor) for epoch in range(args.epochs_to_train): loss = 0. for i, sent in enumerate(sentences): print('{}/{}'.format(i, len(sentences))) couples, labels = skipgrams(sequence=sent, vocabulary_size=V, window_size=args.window_size, negative_samples=args.num_neg_samples, sampling_table=sampling_table) if couples: words, contexts = zip(*couples) words = np.array(words, dtype=np.int32) contexts = np.array(contexts, dtype=np.int32) y = np.array(labels, dtype=np.int32) loss += model.train_on_batch([words, contexts], y) print('num epoch: {} loss: {}'.format(epoch, loss)) return model def save_model(model): with open(args.save_path, 'w') as f: f.write(' '.join([str(V - 1), str(args.embedding_size)])) f.write('\n') vectors = model.get_weights()[0] for word, i in tokenizer.word_index.items(): f.write(word) f.write(' ') f.write(' '.join(map(str, list(vectors[i, :])))) f.write('\n') def eval_model(): w2v = Word2Vec.load_word2vec_format(args.save_path, binary=False) word2id = dict([(w, i) for i, w in enumerate(w2v.index2word)]) analogy_questions = read_analogies(args.eval_data, word2id) correct = 0 total = len(analogy_questions) for question in analogy_questions: a, b, c, d = question # E.g. [Athens, Greece, Baghdad, Iraq] analogies = w2v.most_similar(positive=[b, c], negative=[a], topn=4) for analogy in analogies: word, _ = analogy if d == word: # Predicted Correctly! correct += 1 break print('Eval %4d/%d accuracy = %4.1f%%' % (correct, total, correct * 100.0 / total)) def main(): """ Train a word2vec model. """ #if not args.train_data or not args.eval_data or not args.save_path: if not args.save_path: print('--train_data --eval_data and --save_path must be specified.') sys.exit(1) model = build_model() model = train_model(model) save_model(model) eval_model() if __name__ == '__main__': main()
EXA-1-master
exa/papers/awesome-embedding-models/examples/skip-gram_with_ns.py
# -*- coding:utf-8 -*- import re from pprint import pprint import requests from bs4 import BeautifulSoup def get_html(url): try: html = requests.get(url).text except Exception as e: print('web requests url error: {}\nlink: {}'.format(e, url)) return html class WebDownloader(object): def __init__(self, base_url): self.url = base_url self.links = set() def parse_html(self, verbose=False): html = get_html(self.url) soup = BeautifulSoup(html, parser='lxml') for link in soup.findAll('a'): if link.has_attr('href'): href = str(link.get('href')) if href.startswith('http'): self.links.add(href) if verbose: print(link.get('href')) def download(self): for link in self.links: link = str(link) if link.endswith('.pdf'): # handle direct pdf url link file_name = link.split('/')[-1] try: r = requests.get(link) # with open(os.path.join(path, file_name), 'wb+') as f: with open(file_name, 'wb+') as f: f.write(r.content) except Exception as e: print('Downloading error:{}\nlink:{}'.format(e, link)) url = 'https://chenfeiyang.top/Awesome-Multimodal-Research/' wd = WebDownloader(url) wd.parse_html() pprint(wd.links) wd.download()
EXA-1-master
exa/papers/Awesome-Multimodal-Research-master/scripts/WebDownloader.py
# -*- coding:utf-8 -*- import re import requests import urllib.request import os import argparse parser = argparse.ArgumentParser(description="pull_paper") parser.add_argument('--keyword', type=str, default='Multimodal') # Match the keywords we want to find the paper args = parser.parse_args() # get web context r = requests.get('http://openaccess.thecvf.com/CVPR2019.py') data = r.text # find all pdf links link_list = re.findall(r"(?<=href=\").+?pdf(?=\">pdf)|(?<=href=\').+?pdf(?=\">pdf)", data) name_list = re.findall(r"(?<=href=\").+?2019_paper.html\">.+?</a>", data) cnt = 1 num = len(link_list) # your local path to download pdf files localDir = './CVPR2019/{}/'.format(args.keyword) if not os.path.exists(localDir): os.makedirs(localDir) while cnt < num: url = link_list[cnt] # seperate file name from url links file_name = name_list[cnt].split('<')[0].split('>')[1] # to avoid some illegal punctuation in file name file_name = file_name.replace(':', '_') file_name = file_name.replace('\"', '_') file_name = file_name.replace('?', '_') file_name = file_name.replace('/', '_') file_name = file_name.replace(' ', '_') search_list = file_name.split('_') search_pattern = re.compile(r'{}'.format(args.keyword), re.IGNORECASE) download_next_paper = True # print([True for i in search_list if search_pattern.findall(i)]) if ([True for i in search_list if search_pattern.findall(i)]): download_next_paper = False if download_next_paper: cnt = cnt + 1 continue file_path = localDir + file_name + '.pdf' if os.path.exists(file_path): print('File [{}.pdf] exists,skip downloading.'.format(file_name)) cnt = cnt + 1 continue else: # download pdf files print('[' + str(cnt) + '/' + str(num) + "] Downloading -> " + file_path) try: urllib.request.urlretrieve('http://openaccess.thecvf.com/' + url, file_path) except: cnt = cnt + 1 continue cnt = cnt + 1 print("all download finished")
EXA-1-master
exa/papers/Awesome-Multimodal-Research-master/scripts/pull_paper.py
import os import pandas as pd from tqdm import tqdm BASE_URL="https://archive.org/download/stackexchange/" table = pd.read_html(BASE_URL)[0] sources = [x.replace(" (View Contents)", "") for x in table['Name'].tolist()] sources = [x for x in sources if x.endswith(".7z")] for source in tqdm(sources): # if ".meta." not in source: print(f"source: {source}") os.system("wget "+BASE_URL+source+" -O "+"./data/"+source) os.system("7z x ./data/"+source+" -o./data/"+source[:-3]) os.system(f"mv ./data/{source[:-3]}/Posts.xml ./data/{source[:-3]}.xml") os.system(f"rm -rf ./data/{source[:-3]}") os.system(f"rm ./data/{source}")
EXA-1-master
exa/datasets/RedPajama-Data-main/data_prep/stack_exchange/download.py
EXA-1-master
exa/datasets/RedPajama-Data-main/data_prep/stack_exchange/__init__.py
import os import json LEMMA_DATA_DIR_SE_OUT = os.environ.get("LEMMA_DATA_DIR_SE_OUT", "./data/") if __name__ == "__main__": with open(os.path.join(LEMMA_DATA_DIR_SE_OUT,"token_counts", "tokens.json"), "r") as f: counts = json.load(f) ''' print a table of the counts ''' print("|Idx|Site|Token Count|") print("|---|---|---|") for idx, (site, count) in enumerate(counts.items()): print(f"|{idx}|{site}|{count}|") print(f"|{len(counts.values())}|Total|{sum(counts.values())}|")
EXA-1-master
exa/datasets/RedPajama-Data-main/data_prep/stack_exchange/print_stats.py
import os import json import tiktoken from multiprocessing import Pool from transformers import AutoTokenizer # enc = tiktoken.get_encoding("r50k_base") enc = AutoTokenizer.from_pretrained( "EleutherAI/pythia-6.9b-deduped", # "gpt2" ) def get_token_count(qa_pair): # return len(enc.encode(qa_pair['text'])) return len(enc.tokenize(qa_pair['text'])) LEMMA_DATA_DIR_SE_OUT = os.environ.get("LEMMA_DATA_DIR_SE_OUT", "./stackexchange/") # if x is a file, not a dir sites = [x for x in os.listdir(os.path.join(LEMMA_DATA_DIR_SE_OUT)) if os.path.isfile(os.path.join(LEMMA_DATA_DIR_SE_OUT, x))] os.makedirs(os.path.join(LEMMA_DATA_DIR_SE_OUT, "token_counts"), exist_ok=True) token_counts = {} for site in sites: print(f"[INFO] Processing {site}...") with open(os.path.join(LEMMA_DATA_DIR_SE_OUT, site), "r") as f: qa_pairs = [json.loads(x) for x in f.readlines()] print(f"[INFO] Got {len(qa_pairs)} QA pairs for {site}.") # token count token_count = 0 with Pool(24) as p: token_count = sum(p.map(get_token_count, qa_pairs)) token_counts[site] = token_count print(f"[INFO] Got {token_count} tokens for {site}.") # write to file with open(os.path.join(LEMMA_DATA_DIR_SE_OUT, "token_counts", "tokens.json"), "w") as f: json.dump(token_counts, f)
EXA-1-master
exa/datasets/RedPajama-Data-main/data_prep/stack_exchange/token_count.py
import os import json import sys import xml.etree.ElementTree as ET from tqdm import tqdm sys.path.append("./") from src.stack_exchange.count import get_sites_count LEMMA_DATA_DIR_SE = os.environ.get("LEMMA_DATA_DIR_SE", "./data/") if os.path.exists(os.path.join(LEMMA_DATA_DIR_SE, "counts.json")): with open(os.path.join(LEMMA_DATA_DIR_SE, "counts.json"), "r") as fp: counts = json.load(fp) else: print("[INFO] Getting counts for sites...") counts = get_sites_count(LEMMA_DATA_DIR_SE) # write this to a file with open(os.path.join(LEMMA_DATA_DIR_SE, "counts.json"), "w") as f: json.dump(counts, f) # take first 28 sites = list(counts.keys())[:28] os.makedirs(os.path.join(LEMMA_DATA_DIR_SE, "parents"), exist_ok=True) def process_site(site): parents = {} qa_pairs = [] print(f"[INFO] Processing {site}...") # first get the parents dump if os.path.exists(os.path.join(LEMMA_DATA_DIR_SE, "parents", site)): with open(os.path.join(LEMMA_DATA_DIR_SE, "parents", site), "r") as f: parents = json.load(f) else: with open(os.path.join(LEMMA_DATA_DIR_SE, site), "r") as f: for i, line in enumerate(tqdm(f, total=counts[site])): # first 2 lines are header # e.g., counts = 2: total=5 lines, 2,3 are data # last line is footer if i>1 and i<=counts[site]+1: root = ET.fromstring(line) if "ParentId" in root.attrib: # this is an answer if root.attrib["ParentId"] not in parents: parents[root.attrib["ParentId"]] = [] parents[root.attrib["ParentId"]].append({ "id": root.attrib["Id"], "text": root.attrib["Body"], "score": root.attrib["Score"] }) # write parents to file with open(os.path.join(LEMMA_DATA_DIR_SE, "parents", site), "w") as f: json.dump(parents, f) print(f"[INFO] Got {len(parents)} questions for {site}.") # now we have the Q-A pairs # now we need to get the texts with open(os.path.join(LEMMA_DATA_DIR_SE, site), "r") as f: for i, line in enumerate(tqdm(f, total=counts[site])): if i>1 and i<=counts[site]+1: root = ET.fromstring(line) if "ParentId" not in root.attrib: post_id = root.attrib["Id"] if post_id in parents: # this is a question qa_pairs.append({ "question": { "id": post_id, "text": f"{root.attrib['Title']} {root.attrib['Body']}", "score": root.attrib["Score"] }, "answers": parents[post_id] }) else: if "Title" in root.attrib: # if there's a title => then a valid question body = root.attrib["Body"] if "Body" in root.attrib else "" score = root.attrib["Score"] if "Score" in root.attrib else 0 qa_pairs.append({ "question": { "id": post_id, "text": f"{root.attrib['Title']} {body}", "score": score }, }) # write qa_pairs to file print(f"[INFO] Writing {site} to file...") os.makedirs(os.path.join(LEMMA_DATA_DIR_SE, "qa_pairs"), exist_ok=True) with open(os.path.join(LEMMA_DATA_DIR_SE, "qa_pairs", site.removesuffix(".xml")+".jsonl"), "w") as f: for qa_pair in qa_pairs: f.write(json.dumps(qa_pair)+"\n") for each in sites: process_site(each)
EXA-1-master
exa/datasets/RedPajama-Data-main/data_prep/stack_exchange/filter.py
import re import os import sys import json import fasttext from bs4 import BeautifulSoup from multiprocessing import Pool sys.path.append("./") site_name = "" CLEANR = re.compile('<.*?>|&([a-z0-9]+|#[0-9]{1,6}|#x[0-9a-f]{1,6});') def cleanhtml(raw_html): raw_html = raw_html.replace("<li>", "\n*") raw_html = raw_html.replace("</li>", "") raw_html = raw_html.replace("<ol>", "\n*") raw_html = raw_html.replace("</ol>", "") soup = BeautifulSoup(raw_html, "lxml") return soup.get_text() class LanguageIdentification: def __init__(self): pretrained_lang_model = "data/lid.176.bin" self.model = fasttext.load_model(pretrained_lang_model) def predict_lang(self, text): text = text.replace("\n", " ") predictions = self.model.predict(text, k=1) # returns top 2 matching languages return predictions[0][0].replace("__label__", "") lang_id = LanguageIdentification() LEMMA_DATA_DIR_SE = os.environ.get("LEMMA_DATA_DIR_SE", "./data/") LEMMA_DATA_DIR_SE_OUT = os.environ.get("LEMMA_DATA_DIR_SE_OUT", "./data/") os.makedirs(os.path.join(LEMMA_DATA_DIR_SE_OUT), exist_ok=True) def process_qa_pair(pair): # sort answers by score if "answers" in pair: pair["answers"] = sorted(pair["answers"], key=lambda x: x["score"], reverse=True) answers = "\nA: ".join([ cleanhtml(x["text"]) for x in pair["answers"]]) text = f"Q: { cleanhtml(pair['question']['text'])}\nA: {answers}" else: text = f"Q: { cleanhtml(pair['question']['text'])}" return { "text": text, "meta": { "language": lang_id.predict_lang(text), "url": f"https://{site_name}/questions/{pair['question']['id']}", "timestamp": "2023-03-29", "source": "stackexchange", "question_score": pair["question"]["score"], } } # load qa_pairs sites = [x for x in os.listdir(os.path.join(LEMMA_DATA_DIR_SE, "qa_pairs"))] # if needed: # sort sites such that stackoverflow is processed first - to understand the memory pressure # if OOM -> split stackoverflow into multiple files # this won't hurt the completeness of the data, as each line is self-contained for site in sites: print(f"Processing {site}") results = [] site_name = site.removesuffix(".jsonl") if "stackoverflow_part" in site_name: site_name = "stackoverflow.com" # load qa_pairs with open(os.path.join(LEMMA_DATA_DIR_SE, "qa_pairs", site), "r") as f: qa_pairs = [json.loads(x) for x in f.readlines()] # process html to text with Pool(24) as p: results = p.map(process_qa_pair, qa_pairs) print(f"Writing {len(results)} results to {os.path.join(LEMMA_DATA_DIR_SE_OUT, site)}") with open(os.path.join(LEMMA_DATA_DIR_SE_OUT, site), "w") as f: for result in results: f.write(json.dumps(result) + "\n")
EXA-1-master
exa/datasets/RedPajama-Data-main/data_prep/stack_exchange/post_processing.py
import os import json from tqdm import tqdm import xml.etree.ElementTree as ET LEMMA_DATA_DIR_SE = os.environ.get("LEMMA_DATA_DIR_SE", "./data/stack_exchange/") def get_sites_count(path=LEMMA_DATA_DIR_SE): sites = os.listdir(path) sites = [x for x in sites if x.endswith(".xml")] counts = {} for site in tqdm(sites): if site == ".DS_Store": continue # read the file with open(os.path.join(path, site), "r") as f: # read # lines count = sum(1 for line in f) counts[site] = count-3 # subtract the header # sort the counts counts = {k: v for k, v in sorted(counts.items(), key=lambda item: item[1], reverse=True)} return counts if __name__ == "__main__": counts = get_sites_count() ''' print a table of the counts ''' print("|Idx|Site|Count|") print("|---|---|---|") # take the first 28 sites for idx, (site, count) in enumerate(counts.items()): if idx < 28: print(f"|{idx}|{site}|{count}|") # write to file with open(os.path.join(LEMMA_DATA_DIR_SE, "counts.json"), "w") as f: json.dump(counts, f)
EXA-1-master
exa/datasets/RedPajama-Data-main/data_prep/stack_exchange/count.py
import argparse from datasets import load_dataset import pathlib parser = argparse.ArgumentParser() parser.add_argument("--data_dir", type=str, default=None, help="Path to the wikipedia data directory.") args = parser.parse_args() LANGUAGES = [ "bg", "ca", "cs", "da", "de", "en", "es", "fr", "hr", "hu", "it", "nl", "pl", "pt", "ro", "ru", "sl", "sr", "sv", "uk" ] DUMP_DATE = "20230320" def get_data(lan, date, data_dir: pathlib.Path): wiki_dataset = load_dataset( "wikipedia", language=lan, date=date, beam_runner="DirectRunner" ) for split, dataset in wiki_dataset.items(): tgt_fp = data_dir / f"wiki_{lan}_{date}_{split}.jsonl" dataset.to_json(tgt_fp) print("Finished Downloading %s %s. There are total %d pages." % ( lan, date, len(dataset["id"]))) if __name__ == "__main__": if args.data_dir is None: raise ValueError("missing arg --data_dir.") for lang in LANGUAGES: get_data(lang, DUMP_DATE, data_dir=pathlib.Path(args.data_dir))
EXA-1-master
exa/datasets/RedPajama-Data-main/data_prep/wiki/download.py
EXA-1-master
exa/datasets/RedPajama-Data-main/data_prep/wiki/__init__.py
import os import json from multiprocessing import Pool from transformers import AutoTokenizer print("start loading!") enc = AutoTokenizer.from_pretrained( "EleutherAI/pythia-6.9b-deduped", ) print("end loading!") def get_token_count(qa_pair): return len(enc.tokenize(qa_pair['text'])) LEMMA_DATA_DIR_SE_OUT = "./data/wikipedia/" sites = [x for x in os.listdir(os.path.join(LEMMA_DATA_DIR_SE_OUT)) if os.path.isfile(os.path.join(LEMMA_DATA_DIR_SE_OUT, x))] os.makedirs(os.path.join(LEMMA_DATA_DIR_SE_OUT, "token_counts"), exist_ok=True) token_counts = {} for site in sites: print(f"[INFO] Processing {site}...") with open(os.path.join(LEMMA_DATA_DIR_SE_OUT, site), "r") as f: qa_pairs = [json.loads(x) for x in f.readlines()] print(f"[INFO] Got {len(qa_pairs)} wikipedia pages for {site}.") token_count = 0 with Pool(100) as p: token_count = sum(p.map(get_token_count, qa_pairs)) token_counts[site] = token_count print(f"[INFO] Got {token_count} tokens for {site}.") with open(os.path.join(LEMMA_DATA_DIR_SE_OUT, "token_counts", site), "w") as f: json.dump(token_counts, f)
EXA-1-master
exa/datasets/RedPajama-Data-main/data_prep/wiki/token_count.py
import os import json LEMMA_DATA_DIR_SE_OUT = "./data/wikipedia/" LEMMA_DATA_SAVE_DIR = "./data/wikipedia/wiki-full.jsonl" files = [x for x in os.listdir(os.path.join(LEMMA_DATA_DIR_SE_OUT)) if os.path.isfile(os.path.join(LEMMA_DATA_DIR_SE_OUT, x))] files.sort() with open(LEMMA_DATA_SAVE_DIR, "w") as fw: for file in files: lan = file.split("_")[1] date = file.split("_")[2] print("Now proceeding %s"%file, lan, date) with open(os.path.join(LEMMA_DATA_DIR_SE_OUT, file), "r") as f: lines = f.readlines() for line in lines: now = json.loads(line) new = {"text": now["text"], "meta": {"title": now["title"], "url": now["url"], "language": lan, "timestamp": date}} fw.write(json.dumps(new) + "\n")
EXA-1-master
exa/datasets/RedPajama-Data-main/data_prep/wiki/convert_format.py
import argparse import hashlib import gzip import json import re import uuid from datetime import datetime from typing import Dict, Union import pathlib parser = argparse.ArgumentParser() parser.add_argument('--input', type=str, default=None) parser.add_argument('--target_dir', type=str, default="./data/github/processed") args = parser.parse_args() # Regex to strip repated copyright comment blocks CPAT = re.compile("copyright", re.IGNORECASE) PAT = re.compile("/\\*[^*]*\\*+(?:[^/*][^*]*\\*+)*/") def get_timestamp() -> str: return datetime.now().isoformat() def clean_copyright_comments(content: str): r = PAT.search(content) if r: # found one, now see if it contains "copyright", if so strip it span = r.span() sub = content[span[0]:span[1]] if CPAT.search(sub): # cut it content = content[: span[0]] + content[span[1]:] return content lines = content.split('\n') skip = 0 # Greedy replace any file that begins with comment block, most # are copyright headers for k in range(len(lines)): if ( lines[k].startswith("//") or lines[k].startswith("#") or lines[k].startswith("--") or not lines[k] ): skip = skip + 1 else: break if skip: # we skipped, consume it content = "\n".join(lines[skip:]) return content def get_filecontent_stats(content: str) -> Dict[str, Union[int, str]]: # split content into lines and get line lengths line_lengths = list(map(len, content.splitlines())) if len(line_lengths) == 0: return { "line_count": 0, "max_line_length": 0, "avg_line_length": 0, "alnum_prop": 0, } # get max line length max_length = max(line_lengths) # get average line length avg_length = len(content) / len(line_lengths) # get proportion of alphanumeric characters alnum_count = sum(map(lambda char: 1 if char.isalnum() else 0, content)) alnum_prop = alnum_count / len(content) return { "line_count": len(line_lengths), "max_line_length": max_length, "avg_line_length": avg_length, "alnum_prop": alnum_prop, } def preprocess_source(source_fp: pathlib.Path, hash_table: dict): chunk_stats = [] cleaned_records = [] with gzip.open(source_fp, mode="rt", encoding="utf-8") as in_file: while True: jstr = in_file.readline() if not jstr: break result = json.loads(jstr) # skip pub/key certfiicates if result['path'].endswith(".crt"): continue if result['path'] == "LICENSE": continue # comptue hash of content digest = hashlib.md5(result['content'].encode('utf8')).hexdigest() # skip if we've seen this before if digest in hash_table: continue # add to hash table hash_table[digest] = 1 # look for C style multi line comment blocks try: content = clean_copyright_comments(result['content']) except Exception as e: print(f"[{get_timestamp()}][ERROR] " f"fp={source_fp}; " f"Error cleaning copyright comments: {e}") continue # get file content stats (line count, max line length, avg line # length) try: file_stats = get_filecontent_stats(content) except Exception as e: print(f"[{get_timestamp()}][ERROR] " f"fp={source_fp}; " f"Error getting file stats: {e}") continue # add hash to file stats for later deduplication file_stats["content_hash"] = digest file_stats["path"] = result.get('path', "") chunk_stats.append(file_stats) # bring result into the right format record = { "text": content, "meta": { "content_hash": digest, "timestamp": "", "source": "github", "line_count": file_stats["line_count"], "max_line_length": file_stats["max_line_length"], "avg_line_length": file_stats["avg_line_length"], "alnum_prop": file_stats["alnum_prop"], **{ k: v for k, v in result.items() if k != "content" } } } cleaned_records.append(record) return chunk_stats, cleaned_records def main(): flush_every = 20 run_id = uuid.uuid4().hex run_fp = pathlib.Path(args.target_dir) / f"run_{run_id}.jsonl" stats_fp = pathlib.Path(args.target_dir) / f"stats_{run_id}.jsonl" print(f"[{get_timestamp()}][INFO] Writing records to {run_fp}") print(f"[{get_timestamp()}][INFO] Writing stats to {stats_fp}") stats_file = open(stats_fp, "w") records_file = open(run_fp, "w") # process list of *.gz files in input_file with open(args.input, "r") as input_file: files_to_process = input_file.readlines() total_files_to_process = len(files_to_process) hash_table = {} for file_num, fp in enumerate(files_to_process, start=1): fp = fp.strip() if not fp: print(f"[{get_timestamp()}][WARNING]" f"[{file_num}/{total_files_to_process}] " f"Skipping empty line {fp}") continue if not fp.endswith(".gz"): print(f"[{get_timestamp()}][WARNING]" f"[{file_num}/{total_files_to_process}] " f"Skipping {fp}") continue source_fp = pathlib.Path(fp) print(f"[{get_timestamp()}][INFO]" f"[{file_num}/{total_files_to_process}] " f"Processing {fp}") # get file stats and clean records chunk_stats, cleaned_records = preprocess_source( source_fp, hash_table ) # write out stats for stats in chunk_stats: stats_file.write(json.dumps(stats) + "\n") # write out cleaned records for record in cleaned_records: records_file.write(json.dumps(record) + "\n") if file_num % flush_every == 0: # make sure data is written to disk print(f"[{get_timestamp()}][INFO] Flushing ...") stats_file.flush() records_file.flush() stats_file.close() records_file.close() if __name__ == '__main__': main()
EXA-1-master
exa/datasets/RedPajama-Data-main/data_prep/github/github_clean_dedup_local.py
EXA-1-master
exa/datasets/RedPajama-Data-main/data_prep/github/__init__.py
import argparse from datetime import datetime import json import multiprocessing as mp import os import gzip from transformers import AutoTokenizer import pathlib parser = argparse.ArgumentParser() parser.add_argument('--data_file', type=str, default=None) parser.add_argument('--target_dir', type=str, default=None) args = parser.parse_args() tokenizer = AutoTokenizer.from_pretrained("EleutherAI/pythia-6.9b-deduped") extensions_whitelist = (".asm", ".bat", ".cmd", ".c", ".h", ".cs", ".cpp", ".hpp", ".c++", ".h++", ".cc", ".hh", ".C", ".H", ".cmake", ".css", ".dockerfile", ".f90", ".f", ".f03", ".f08", ".f77", ".f95", ".for", ".fpp", ".go", ".hs", ".html", ".java", ".js", ".jl", ".lua", ".md", ".markdown", ".php", ".php3", ".php4", ".php5", ".phps", ".phpt", ".pl", ".pm", ".pod", ".perl", ".ps1", ".psd1", ".psm1", ".py", ".rb", ".rs", ".sql", ".scala", ".sh", ".bash", ".command", ".zsh", ".ts", ".tsx", ".tex", ".vb", "Dockerfile", "Makefile", ".xml", ".rst", ".m", ".smali") def get_token_count(text): token_count = len(tokenizer.tokenize(text)) return token_count def get_timestamp() -> str: return datetime.now().isoformat() def discard_record(record): """ return True if we discard the record """ text = record["text"] metadata = record["meta"] # discard empty records if len(text) == 0: return True # discard all records that are not whitelisted if not metadata["path"].endswith(extensions_whitelist): return True # discard files whose maximum line length is greater than 1000 if metadata["max_line_length"] > 1000: return True # discard files whose average line length is greater than 100 if metadata["avg_line_length"] > 100: return True # discard files whose proportion of alphanumeric characters is less than # 0.25 if metadata["alnum_prop"] < 0.25: return True num_tokens = get_token_count(text) num_alpha = len([c for c in text if c.isalpha()]) if num_alpha / num_tokens < 1.5: return True return False def filter_line(line): try: record = json.loads(line) except json.decoder.JSONDecodeError: return None if discard_record(record): return None return line def process_lines_batch(lines_batch, out_file, num_cpus): if len(lines_batch) == 0: return with mp.Pool(processes=num_cpus - 1) as pool: filtered_lines = pool.map(filter_line, lines_batch) for line in filtered_lines: if line is not None: out_file.write(line) out_file.flush() def main(): num_cpus = int(os.getenv("SLURM_CPUS_PER_TASK", mp.cpu_count())) batch_size = num_cpus * 5_000 input_fp = pathlib.Path(args.data_file) target_dir = pathlib.Path(args.target_dir) output_fp = target_dir / input_fp.name.replace("deduped_", "filtered_") output_fp = output_fp.with_suffix(".jsonl.gz") print(f"[{get_timestamp()}][INFO] Processing {input_fp}") print(f"[{get_timestamp()}][INFO] Writing to {output_fp}") out_file = gzip.open(output_fp, "wt", encoding="utf-8") try: with open(input_fp, "r") as in_file: while True: lines_batch = [] # accumulate batch while True: line = in_file.readline() if not line: raise StopIteration lines_batch.append(line) if len(lines_batch) == batch_size: break process_lines_batch(lines_batch, out_file, num_cpus) except StopIteration: process_lines_batch(lines_batch, out_file, num_cpus) out_file.close() if __name__ == "__main__": main()
EXA-1-master
exa/datasets/RedPajama-Data-main/data_prep/github/github_run_filter.py
import argparse import os from transformers import AutoTokenizer import json import multiprocessing as mp import pathlib from datetime import datetime parser = argparse.ArgumentParser() parser.add_argument('--data_file', type=str, default=None) args = parser.parse_args() tokenizer = AutoTokenizer.from_pretrained("EleutherAI/pythia-6.9b-deduped") FRACTION = 0.1 def get_timestamp() -> str: return datetime.now().isoformat() def get_token_count(text): return len(tokenizer.tokenize(text)) def main(): num_cpus = int(os.getenv("SLURM_CPUS_PER_TASK", mp.cpu_count())) data_fp = pathlib.Path(args.data_file) # get total number of records in file print(f"[{get_timestamp()}][INFO] Counting records in {data_fp} ...") with open(data_fp, "r") as f: num_records = sum(1 for _ in f) print(f"[{get_timestamp()}][INFO] Found {num_records} records.") print(f"[{get_timestamp()}][INFO] Loading data...") with open(data_fp, "r") as f: # get a batch of records records = [] for _ in range(int(num_records * FRACTION)): line = f.readline() if not line: break try: record = json.loads(line) except json.decoder.JSONDecodeError: continue records.append(record["text"]) print(f"[{get_timestamp()}][INFO] Start token count...") # count tokens in records with mp.Pool(num_cpus) as pool: token_counts = pool.map(get_token_count, records) total_token_count = sum(token_counts) result = { "total_token_count": total_token_count, "sampling_fraction": FRACTION, "total_count_estimate": total_token_count / FRACTION } out_fp = data_fp.parent / \ f"{data_fp.stem.replace('deduped', 'token_count')}.json" with open(out_fp, mode="w") as out: out.write(json.dumps(result)) print(json.dumps(result, indent=4)) print(f"[{get_timestamp()}][INFO] Result written to {out_fp}.") print(f"[{get_timestamp()}][INFO] Done.") if __name__ == '__main__': main()
EXA-1-master
exa/datasets/RedPajama-Data-main/data_prep/github/github_token_count.py
import argparse import json from datetime import datetime from typing import Dict import pathlib parser = argparse.ArgumentParser() parser.add_argument('--first_step_dir', type=str, default=None) parser.add_argument('--target_dir', type=str, default=None) args = parser.parse_args() def get_timestamp() -> str: return datetime.now().isoformat() def process_stats_file(source_fp: pathlib.Path, hash_table: Dict[str, str]): deduped_stats = [] deduped_hashes = [] with open(source_fp, mode="r") as in_file: while True: jstr = in_file.readline() if not jstr: break record_stats = json.loads(jstr) content_hash = record_stats["content_hash"] if content_hash in hash_table: # skip this record since it's a duplicate continue hash_table[content_hash] = content_hash deduped_stats.append(record_stats) deduped_hashes.append(content_hash) return hash_table, deduped_stats, deduped_hashes def main(): first_step_dir = pathlib.Path(args.first_step_dir) deduped_stats_fp = pathlib.Path(args.target_dir) / "stats_deduped.jsonl" print(f"[{get_timestamp()}][INFO] Deduplicating " f"records from {first_step_dir}") # get list of stats files stats_filepaths = list(first_step_dir.glob("stats_*.jsonl")) total_files_to_process = len(stats_filepaths) deduped_stats_file = open(deduped_stats_fp, "w") hash_set = {} for file_num, fp in enumerate(stats_filepaths, start=1): print(f"[{get_timestamp()}][INFO]" f"[{file_num}/{total_files_to_process}] " f"Processing {fp}") hash_set, deduped_stats, deduped_hashes = process_stats_file( fp, hash_set ) # write out stats for stats in deduped_stats: deduped_stats_file.write(json.dumps(stats) + "\n") # write out jsonl to hashes out_fn = fp.name.replace("stats_", "hashes_") with open(pathlib.Path(args.target_dir) / out_fn, "w") as f: f.write(json.dumps({"hashes": deduped_hashes}) + "\n") print(f"[{get_timestamp()}][INFO] Flushing ...") deduped_stats_file.flush() deduped_stats_file.close() print(f"[{get_timestamp()}][INFO] " f"Total number of unique records: {len(hash_set)}") if __name__ == '__main__': main()
EXA-1-master
exa/datasets/RedPajama-Data-main/data_prep/github/github_global_dedup.py
import argparse import json from datetime import datetime import pathlib parser = argparse.ArgumentParser() parser.add_argument( '--first_step_dir', type=str, default="./data/github/processed_v3" ) parser.add_argument( '--input', type=str, default="data/github/processed_v3/run_ce60fbbc14684ed8b659054801e419c8.jsonl" ) parser.add_argument( '--target_dir', type=str, default="./data/github/processed_v3_deduped" ) args = parser.parse_args() def get_timestamp() -> str: return datetime.now().isoformat() def main(): input_fp = pathlib.Path(args.input) target_dir = pathlib.Path(args.target_dir) output_fp = target_dir / input_fp.name.replace("run_", "deduped_") # load hashes into memory hashes_fp = target_dir / input_fp.name.replace("run_", "hashes_") with open(hashes_fp) as hf: globally_unique_hashes = hf.readlines()[0] globally_unique_hashes = set(json.loads(globally_unique_hashes)["hashes"]) output_file = open(output_fp, "w") print(f"[{get_timestamp()}][INFO]" f" Processing {input_fp}") print(f"[{get_timestamp()}][INFO]" f" Writing to {output_fp}") print(f"[{get_timestamp()}][INFO]" f" Using hashes from {hashes_fp}") nrecs = 0 with open(input_fp, "r") as in_file: while True: jstr = in_file.readline() if not jstr: break record = json.loads(jstr) content_hash = record["meta"]["content_hash"] if content_hash not in globally_unique_hashes: continue # write to output file output_file.write(json.dumps(record) + "\n") nrecs += 1 output_file.close() print(f"[{get_timestamp()}][INFO]" f" Processed {nrecs} records") if __name__ == "__main__": main()
EXA-1-master
exa/datasets/RedPajama-Data-main/data_prep/github/github_merge_dedup.py
from datasets import load_dataset book_dataset = load_dataset("the_pile_books3") for split, dataset in book_dataset.items(): dataset.to_json(f"./data/book/books3-{split}.jsonl") pg19_dataset = load_dataset("pg19") for split, dataset in pg19_dataset.items(): dataset.to_json(f"./data/book/pg19-{split}.jsonl")
EXA-1-master
exa/datasets/RedPajama-Data-main/data_prep/book/download.py
EXA-1-master
exa/datasets/RedPajama-Data-main/data_prep/book/__init__.py
# Copyright 2023 Ontocord.ai, Together Computer, ETH Zürich, Stanford University # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from multiprocessing import Process, Queue import pickle import tarfile import os import re from multiprocessing import Pool from simhash import Simhash import json from datetime import datetime width = 6 hash_k = 5 max_hash_len = 0 def get_features(s): s = s.lower() s = re.sub(r'[^\w]+', '', s) return [s[i:i + width] for i in range(max(len(s) - width + 1, 1))] def pg19_index(num): hashes = [] members = [] print("Starting pg19_%0.3d"%(num), len(hashes)) with open("./data/book/split/pg19_%0.3d"%(num), "r") as f: lines = f.readlines() for idx, i in enumerate(lines): if idx % 200 == 0: print("This is pg19_%0.3d"%(num), idx) member = json.loads(i) try: if max_hash_len == 0: hashes.append((str(idx + num * 2000), Simhash(get_features(member['text'])))) else: hashes.append((str(idx + num * 2000), Simhash(get_features(member['text'][:max_hash_len])))) members.append(member) except: continue print("Finishing pg19_%0.3d"%(num), len(hashes), len(members)) return (hashes, members) def book_index(num): hashes = [] members = [] print("Starting book_%0.3d"%(num), len(hashes)) with open("./data/book/split/books3_%0.3d"%(num), "r") as f: lines = f.readlines() for idx, i in enumerate(lines): if idx % 200 == 0: print("This is book_%0.3d"%(num), idx) member = json.loads(i) try: if max_hash_len == 0: hashes.append((str(idx + num * 2000), Simhash(get_features(member['text'])))) else: hashes.append((str(idx + num * 2000), Simhash(get_features(member['text'][:max_hash_len])))) members.append(member) except: continue print("Finishing book_%0.3d"%(num), len(hashes), len(members)) return (hashes, members) def get_pg19(njobs): with Pool(n_jobs) as p: hashes_members = p.map(pg19_index, [i for i in range(15)]) return hashes_members def get_book(njobs): with Pool(n_jobs) as p: hashes_members = p.map(book_index, [i for i in range(99)]) return hashes_members def split_list(list, n): length = len(list) return [list[i*length // n: (i+1)*length // n] for i in range(n)] def find_match(args): i, index = args value_dict = {} for item in i: flag = 1 try: now_list = index.get_near_dups(item[1]) for x in now_list: if int(x) >= int(item[0]): continue flag = 0 break value_dict[item[0]] = flag except: value_dict[item[0]] = flag return value_dict if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument('-w', type=int, default=6, help='the window size') parser.add_argument('-k', type=int, default=5, help='find K nearest region') parser.add_argument('-l', type=int, default=0, help='the max length of the text for hashing, 0 means no limit') parser.add_argument('-n', type=int, default=100, help='the number of processes to run') args = parser.parse_args() width = args.w hash_k = args.k max_hash_len = args.l n_jobs = args.n outfile = "./data/book/book.jsonl" hashes_members = get_pg19(n_jobs) hashes_members.extend(get_book(n_jobs)) print("Finish getting hashes and members!") import itertools hashes = list(itertools.chain(*[item[0] for item in hashes_members])) import itertools members = list(itertools.chain(*[item[1] for item in hashes_members])) import re from simhash import Simhash, SimhashIndex index = SimhashIndex(hashes, k=hash_k) print("Finish building index!") from multiprocessing import Pool n_hashes = split_list(hashes, n_jobs) with Pool(n_jobs) as p: temp_dict = p.map(find_match, [(i, index) for i in n_hashes]) value_dict = {} for dict in temp_dict: for i in dict: value_dict[i] = dict[i] print("Finish finding matches!") mem_hashes = list(zip(members, hashes)) with open(outfile, 'w') as f: for mem, a_hash in mem_hashes: if value_dict[a_hash[0]] == 1: meta = {} for feature in mem: if feature != "text": meta[feature] = mem[feature] new = {"meta": meta, "text": mem["text"]} f.write(json.dumps(new) + '\n')
EXA-1-master
exa/datasets/RedPajama-Data-main/data_prep/book/dedup.py
import os import json from multiprocessing import Pool from transformers import AutoTokenizer enc = AutoTokenizer.from_pretrained( "EleutherAI/pythia-6.9b-deduped", ) def get_token_count(qa_pair): return len(enc.tokenize(qa_pair['text'])) LEMMA_DATA_DIR_SE_OUT = "./data/book/" sites = [x for x in os.listdir(os.path.join(LEMMA_DATA_DIR_SE_OUT)) if os.path.isfile(os.path.join(LEMMA_DATA_DIR_SE_OUT, x))] sites.sort() os.makedirs(os.path.join(LEMMA_DATA_DIR_SE_OUT, "token_counts"), exist_ok=True) token_counts = {} for site in sites: print(f"[INFO] Processing {site}...") with open(os.path.join(LEMMA_DATA_DIR_SE_OUT, site), "r") as f: qa_pairs = [json.loads(x) for x in f.readlines()] print(f"[INFO] Got {len(qa_pairs)} books for {site}.") token_count = 0 with Pool(100) as p: token_count = sum(p.map(get_token_count, qa_pairs)) token_counts[site] = token_count print(f"[INFO] Got {token_count} tokens for {site}.") summ = 0 for i in token_counts: print(f"{i}: {token_counts[i]}") summ += token_counts[i] print("Total: ", summ) with open(os.path.join(LEMMA_DATA_DIR_SE_OUT, "token_counts", site), "w") as f: json.dump(token_counts, f)
EXA-1-master
exa/datasets/RedPajama-Data-main/data_prep/book/token_count.py
import argparse from datetime import datetime import json import gzip import os import pathlib import joblib from joblib import Parallel, delayed parser = argparse.ArgumentParser() parser.add_argument('--data_dir', type=str, default="./data/c4/en") parser.add_argument('--output_dir', type=str, default="./data/c4/processed_en") parser.add_argument('--max_files', type=int, default=-1) args = parser.parse_args() def get_timestamp() -> str: return datetime.now().isoformat() def process_record(record): return { "text": record["text"], "meta": { "timestamp": record["timestamp"], "url": record["url"], "language": "en", "source": "c4" } } def process_file(fp): print(f"[{get_timestamp()}][INFO] start processing {fp}...") out_dir = pathlib.Path(args.output_dir) out_fp = out_dir / fp.with_suffix("").name.replace("json", "jsonl") with gzip.open(fp, "r") as in_f: records = [json.loads(line) for line in in_f.readlines()] with open(out_fp, "w") as out_f: for record in records: record = process_record(record) if record is not None: out_f.write(json.dumps(record) + "\n") print(f"[{get_timestamp()}][INFO] done processing {fp}...") def main(): num_cpus = int(os.getenv("SLURM_CPUS_PER_TASK", joblib.cpu_count())) print(f"Using {num_cpus} processes") out_dir = pathlib.Path(args.output_dir) if not out_dir.exists(): out_dir.mkdir(parents=True) records_files = list(pathlib.Path(args.data_dir).glob("*.json.gz")) if args.max_files > 0: records_files = records_files[:args.max_files] Parallel(n_jobs=num_cpus)( delayed(process_file)(fp) for fp in records_files ) if __name__ == '__main__': main()
EXA-1-master
exa/datasets/RedPajama-Data-main/data_prep/c4/c4_reformat.py
EXA-1-master
exa/datasets/RedPajama-Data-main/data_prep/c4/__init__.py
import argparse import boto3 from botocore.exceptions import ClientError import configparser import itertools import numpy as np import pathlib parser = argparse.ArgumentParser() parser.add_argument('--aws_config', type=str, help='aws config file') parser.add_argument('--target_dir', type=str, default="./data/arxiv") parser.add_argument('--workers', type=int, default=1) parser.add_argument('--input', type=str, help='input file from which to read keys. ' 'This is only used when running on slurm.') parser.add_argument('--local', action='store_true') parser.add_argument('--setup', action='store_true', help='if set, we partition the keys into chunks.') parser.add_argument('--max_files', type=int, default=-1, help='max files to download, useful for testing') args = parser.parse_args() class ArxivDownloader: def __init__(self, config_file: str): # import configs from config file configs = configparser.SafeConfigParser() configs.read(config_file) # Create S3 resource & set configs self.s3resource = boto3.resource( 's3', # the AWS resource we want to use aws_access_key_id=configs['DEFAULT']['ACCESS_KEY'], aws_secret_access_key=configs['DEFAULT']['SECRET_KEY'], region_name='us-east-1' # same region arxiv bucket is in ) def run(self, input_file: str, tgt_dir: pathlib.Path, max_files=-1): (tgt_dir / 'src').mkdir(exist_ok=True, parents=True) with open(input_file, 'r') as f: file_keys = f.readlines() files_downloaded = 0 for key in file_keys: self.__download_file(tgt_dir=tgt_dir, key=key.strip()) files_downloaded += 1 if files_downloaded >= max_files > 0: break def __download_file(self, key, tgt_dir: pathlib.Path): print('\nDownloading s3://arxiv/{} t' 'o {}...'.format(key, pathlib.Path(tgt_dir, key))) try: self.s3resource.meta.client.download_file( Bucket='arxiv', Key=key, Filename=pathlib.Path(tgt_dir, key), ExtraArgs={'RequestPayer': 'requester'}) except ClientError as e: if e.response['Error']['Code'] == "404": print('ERROR: ' + key + " does not exist in arxiv bucket") else: try: code = e.response['Error']['Code'] msg = e.response['Error']['Message'] print(f"UNKNOWN ERROR: code={code}; msg={msg}") except Exception as e: print("UNKNOWN ERROR for key ", key, e) def partition_keys( partitions_dir: pathlib.Path, config_file: str, workers: int ): r"""Partitions the keys of the arxiv bucket into chunks for parallel download. @param partitions_dir: the directory to save the partition files to (will be created if it doesn't exist) @param config_file: the path to the config file containing the aws credentials @param workers: the number of workers to partition the keys into """ partitions_dir = pathlib.Path(partitions_dir).absolute() partitions_dir.mkdir(parents=True, exist_ok=True) # Securely import configs from private config file configs = configparser.SafeConfigParser() configs.read(config_file) # Create S3 resource & set configs print('Connecting to Amazon S3...') s3resource = boto3.resource( 's3', # the AWS resource we want to use aws_access_key_id=configs['DEFAULT']['ACCESS_KEY'], aws_secret_access_key=configs['DEFAULT']['SECRET_KEY'], region_name='us-east-1' # same region arxiv bucket is in ) # Create a reusable Paginator paginator = s3resource.meta.client.get_paginator('list_objects_v2') # Create a PageIterator from the Paginator page_iterator = paginator.paginate( Bucket='arxiv', RequestPayer='requester', Prefix='src/' ) # partition keys into chunks file_parts = np.array_split(list( itertools.chain( *[ [ file['Key'] for file in page['Contents'] if file['Key'].endswith(".tar") ] for page in page_iterator ] )), indices_or_sections=workers ) # save chunks to disk as text files for i, part in enumerate(file_parts): part_fp = partitions_dir / f"part_{i}.txt" with open(part_fp, "w") as f: f.write("\n".join(part)) print(f"Created partition {part_fp}.") def run_download( input_file: str, target_dir: pathlib.Path, max_files: int, aws_config: str ): # create downloader arxiv_downloader = ArxivDownloader(config_file=aws_config) # run download arxiv_downloader.run( input_file=input_file, tgt_dir=target_dir, max_files=max_files ) def main(): if not args.local and not args.setup: # here we only download the files; this requires that setup has already # been run run_download(input_file=args.input, target_dir=pathlib.Path(args.target_dir), max_files=args.max_files, aws_config=args.aws_config) return # create directories target_dir = pathlib.Path(args.target_dir) partitions_dir = target_dir / 'partitions' if args.setup: # here we only partition the keys into chunks; no download yet partition_keys(partitions_dir=partitions_dir, config_file=args.aws_config, workers=args.workers) return if args.local: partition_keys(partitions_dir=partitions_dir, config_file=args.aws_config, workers=args.workers) run_download(input_file=str(partitions_dir / 'part_0.txt'), target_dir=pathlib.Path(args.target_dir), max_files=args.max_files, aws_config=args.aws_config) if __name__ == '__main__': main()
EXA-1-master
exa/datasets/RedPajama-Data-main/data_prep/arxiv/run_download.py
import concurrent.futures from datetime import datetime import fasttext import json import pathlib import tarfile from typing import List, Tuple, Dict, Union import gzip import tempfile import uuid import re from utils import predict_lang, get_timestamp, format_arxiv_id # suppress fasttext warning fasttext.FastText.eprint = lambda x: None # constants ARXIV_URL = "https://arxiv.org/abs/" FT_MODEL_PATH = "models/lid.176.bin" class ArxivCleaner: r""" Class for cleaning raw arxiv data. """ def __init__( self, data_dir: pathlib.Path, work_dir: pathlib.Path, target_dir: pathlib.Path, worker_id: str = None ): self._data_dir = data_dir self._work_dir = work_dir self._target_dir = target_dir self._worker_id = worker_id if worker_id else str(uuid.uuid4()) # make sure dirs exist for d in [self._work_dir, self._target_dir]: if not d.exists(): d.mkdir(parents=True) def run_parallel( self, max_files: int = None, workers: int = None, tar_fp_list: List[str] = None ): r""" function to run the cleaning process in parallel. This function will iterate over all arxiv projects and clean the tex files. The cleaned tex files are then written to a jsonl file. @param max_files: maximum number of files to process, defaults to -1 which means all files are processed. This is useful for testing. @param workers: number of workers to use, defaults to None which means that all cores are used. @param tar_fp_list: list of tars to process. Defaults to None which means that all files in data_dir are processed. """ out_file = self._target_dir / f"arxiv_{self._worker_id}.jsonl" with open(out_file, "w") as f: with concurrent.futures.ProcessPoolExecutor(workers) as executor: for record, arxiv_id in executor.map( create_record_single_arg, self.arxiv_iterator( max_files=max_files, tar_fp_list=tar_fp_list ) ): if record is None: print(f"[{get_timestamp()}][ERROR] " f"failed to process {arxiv_id}") continue if len(record["text"]) == 0: print(f"[{get_timestamp()}][WARNING] " f"empty text for {arxiv_id}") continue f.write(json.dumps(record) + "\n") print(f"[{get_timestamp()}][INFO] " f"processed {arxiv_id}") executor.shutdown(wait=True) def run(self, max_files: int = -1, out_fname: str = "arxiv.jsonl"): r""" function to run the cleaning process. This function will iterate over all arxiv projects and clean the tex files. The cleaned tex files are then written to a jsonl file. @param max_files: maximum number of files to process, defaults to -1 which means all files are processed. This is useful for testing. @param out_fname: name of the output file, defaults to "arxiv.jsonl" """ with open(self._target_dir / out_fname, "w") as f: for tex_files, yymm, arxiv_id, timestamp in self.arxiv_iterator( max_files=max_files ): record, arxiv_id = create_record( tex_files=tex_files, yymm=yymm, arxiv_id=arxiv_id, timestamp=timestamp ) if record is None: print(f"[{get_timestamp()}][ERROR] " f"failed to process {arxiv_id}") continue if len(record["text"]) == 0: print(f"[{get_timestamp()}][WARNING] " f"empty text for {arxiv_id}") continue f.write(json.dumps(record) + "\n") print(f"[{get_timestamp()}][INFO] " f"processed {arxiv_id}") def arxiv_iterator( self, max_files: int = -1, tar_fp_list: List[str] = None ): r""" iterator over arxiv shards. Each shard contains tex projects or files that are compressed using gzip. This function will extract the tex files and yield them together with yymm, the raw arxiv id and the timestamp of the project. @param max_files: maximum number of files to process, defaults to -1 which means all files are processed. @param tar_fp_list: optional list of tar files to process, defaults to None. In this case all tar files in data_dir are processed. @return: iterator over tex files, yymm, arxiv id and timestamp. """ if tar_fp_list is None: def _tar_fp_iterator(): for _tar_fp in self._data_dir.glob("*.tar"): yield _tar_fp else: def _tar_fp_iterator(): for _tar_fp in tar_fp_list: yield _tar_fp failed = 0 processed = 0 for tar_fp in _tar_fp_iterator(): print(f"[{get_timestamp()}][INFO] start processing {tar_fp}") with tempfile.TemporaryDirectory(dir=self._work_dir) as tmpdir: with tarfile.open(tar_fp) as tf: tf.extractall(members=tf.getmembers(), path=tmpdir) for proj_dir_or_file in pathlib.Path(tmpdir).rglob("*.gz"): # get arxiv id and month from the filename yymm = proj_dir_or_file.parent.stem arxiv_id = proj_dir_or_file.stem # load the tex source files (we also get the timestamp # here) data = _tex_proj_loader(proj_dir_or_file) if data is None: failed += 1 continue tex_files, timestamp = data processed += 1 if processed > max_files > 0: break yield tex_files, yymm, arxiv_id, timestamp else: continue break print(f"[{get_timestamp()}][INFO] # Failed loading : {failed}") print(f"[{get_timestamp()}][INFO] done.") def create_record_single_arg(args): r""" convenience function to create a record from a single argument. """ return create_record(*args) def create_record( tex_files: List[str], yymm: str, arxiv_id: str, timestamp: float ) -> Tuple[Union[Dict[str, Union[str, Dict[str, str]]], str, None], str]: r""" function to create a record from the tex files, yymm, arxiv id and timestamp. The function also detects the language of the tex files using a fasttext model. @param tex_files: list of tex file contents as strings @param yymm: yymm of the arxiv project @param arxiv_id: raw arxiv id @param timestamp: timestamp of the arxiv project @return: dictionary containing the cleaned tex text and metadata """ # clean tex files try: cleaned_str = clean_tex_files(tex_files) except Exception as e: return None, arxiv_id if len(cleaned_str) == 0: return {"text": "", "meta": {}}, arxiv_id # get the arxiv id in the correct format try: clean_arxiv_id = format_arxiv_id(arxiv_id) except Exception as e: print(f"[WARNING] failed to format arxiv id {arxiv_id}; excpetion={e}") clean_arxiv_id = arxiv_id # detect language ft_model = fasttext.load_model(path=str(FT_MODEL_PATH)) lang, _ = predict_lang(text=cleaned_str, lang_model=ft_model, k=1) try: lang = lang[0] except IndexError: lang = "unknown" if timestamp is not None: timestamp = datetime.fromtimestamp(timestamp).isoformat() return ( { "text": cleaned_str, "meta": { "timestamp": timestamp, "yymm": yymm, "arxiv_id": clean_arxiv_id, "language": lang, "url": f"{ARXIV_URL}{clean_arxiv_id}", "source": "arxiv" } }, clean_arxiv_id ) def _tex_proj_loader( file_or_dir_path: pathlib.Path ) -> Union[Tuple[List[str], float], None]: r""" function to load the tex files from a tar file or a gzip file. The function will return a tuple containing a list of tex files and the timestamp of the project. @param file_or_dir_path: path to the tar file or the gzip file @return: tuple containing a list of tex files and the timestamp of the project """ files_and_content = [] timestamp = file_or_dir_path.lstat().st_mtime try: # if it is a directory, open it as a tarfile with tarfile.open(file_or_dir_path) as sub_tf: for member in sub_tf.getmembers(): if member.name.endswith(".tex"): file_content = sub_tf.extractfile(member).read() try: file_content = file_content.decode("utf-8") except UnicodeDecodeError: print(f"[{get_timestamp()}][ERROR] " f"UnicodeDecodeError: {file_or_dir_path}") return None files_and_content.append(file_content) except tarfile.ReadError: # otherwise we try opening it as a gzip file try: with gzip.open(file_or_dir_path, "rb") as gz: file_content = gz.read() except Exception as e: # all fails, we skip this file print(f"[ERROR] {e}: {file_or_dir_path}") return None try: file_content = file_content.decode("utf-8") except UnicodeDecodeError: print(f"[{get_timestamp()}][ERROR] " f"UnicodeDecodeError: {file_or_dir_path}") return None files_and_content.append(file_content) except Exception as e: print(f"[ERROR] {e}: {file_or_dir_path}") return None return files_and_content, timestamp def clean_tex_files(tex_files: List[str]) -> str: r""" function takes a list of tex files and returns a cleaned version of the tex project. The cleaned version is a concatenation of the tex files with the following modifications: - if multiple latex files, then concatenate them - remove all comments (i.e. all lines starting with %) - remove everything before the first \section header - remove everything after the first occurrence of either \appendix or \bibliography - inline-expand definitions and macros @param tex_files: list of file_content strings @return: cleaned tex project as a string, empty string if no tex files are provided """ if len(tex_files) == 0: return "" # build dictionaries that contain the definitions of all macros in all tex # files. This is later used to expand all macros used in the text with # their definitions, so that consistency among different authors is # ensured. non_arg_macros = {} for file_content in tex_files: non_arg_macros.update(_build_non_arg_macros_dict(file_content)) # TODO: macros that take arguments are not supported yet arg_macros = {} # join multiple latex files with a newline character cleaned_latex_file_str = "\n".join( _clean_tex_file( file_content=file_content, arg_macros=arg_macros, non_arg_macros=non_arg_macros ) for file_content in tex_files ) return cleaned_latex_file_str def _clean_tex_file( file_content: str, arg_macros: Dict, non_arg_macros: Dict ) -> str: r""" function takes a tex file as input and returns a cleaned version. The cleaned version is a concatenation of the tex files with the following modifications: - remove all comments (i.e. all lines starting with %) - remove everything before the first section-like header - remove everything after the first occurrence of either \appendix or \bibliography - inline-expand definitions and macros @param file_content: the content of the tex file as a string. @return: cleaned tex file as a string """ # find the first occurence of a \section-like header and replace everything # before it with an empty string. This matches the following pattern: # \<section-type>[optional-args]{name} pattern = r"^(.*?)(" pattern += r"\\\bchapter\b\*?(?:\[(.*?)\])?\{(.*?)\}|" pattern += r"\\\bpart\b\*?(?:\[(.*?)\])?\{(.*?)\}|" pattern += r"\\\bsection\b\*?(?:\[(.*?)\])?\{(.*?)\}|" pattern += r"\\\bsubsection\b\*?(?:\[(.*?)\])?\{(.*?)\}|" pattern += r"\\\bsubsubsection\b\*?(?:\[(.*?)\])?\{(.*?)\}|" pattern += r"\\\bparagraph\b\*?(?:\[(.*?)\])?\{(.*?)\}" pattern += r"\\\bsubparagraph\b\*?(?:\[(.*?)\])?\{(.*?)\}" pattern += r")" # if no section like header is found, then we return an empty string if not re.search(pattern, file_content, flags=re.DOTALL): return "" # replace everything with the second group of the match (i.e. everything # after and including the section header) file_content = re.sub( pattern=pattern, repl=r"\2", string=file_content, flags=re.DOTALL # make sure that the dot matches also newlines ) # remove all line comments file_content = re.sub( pattern=r"(?m)^%.*\n?", repl=r"", string=file_content, flags=re.MULTILINE ) # remove all in comments within a line file_content = re.sub( # pattern matches a "%" that is not preceded by a backslash (=comment) pattern=r"[^\\]%.+$", repl=r"", string=file_content, flags=re.MULTILINE ) # find the first occurence of either \appendix or \bibliography and # replace everything after it with an empty string pattern = r"(" pattern += r"\\appendix|" pattern += r"\\begin\{references\}|" pattern += r"\\begin\{REFERENCES\}|" pattern += r"\\begin\{thebibliography\}|" pattern += r"\\bibliography\{.*\}" pattern += r").*$" file_content = re.sub( pattern=pattern, repl=r'', string=file_content, flags=re.DOTALL # make sure that the dot matches also newlines ) # inline-expand all non-arg macros for macro_name, macro_value in non_arg_macros.items(): file_content = re.sub( # make pattern grouped to make sure that the macro is not part # of a longer alphanumeric word pattern=r"(" + macro_name + r")" + r"([^a-zA-Z0-9])", # replace the macro with its value and add back the character that # was matched after the macro repl=macro_value + r"\2", string=file_content ) # inline-expand all macros that use args # TODO: inline-expand macros with args for macro_name, macro_value in arg_macros.items(): pass return file_content def _build_non_arg_macros_dict(file_content: str) -> Dict[str, str]: r""" function takes the content of a tex file and returns a dictionary that contains the definitions of all macros that do not use arguments. The dictionary is of the form {macro_name: macro_value}. @param file_content: the content of the tex file as a string. @return: dict """ # regex for extracting \newcommand macros without arguments non_arg_nc_reg = re.compile( # this regex matches the following: # \newcommand{\macro_name}{macro_value} # \newcommand*{\macro_name}{macro_value} # where macro_name is only allowed to contain letters and numbers; # macro_value can contain any character. pattern=r'\\\bnewcommand\b\*?\{(\\[a-zA-Z0-9]+?)\}\{(.*?)\}$', flags=re.MULTILINE ) # regex for extracting \def macros without arguments non_arg_def_reg = re.compile( # this regex matches the following: # \def\macro_name{macro_value} # where macro_name is only allowed to contain letters and numbers; # macro_value can contain any character. pattern=r'\\def\s*(\\[a-zA-Z0-9]+?)\s*\{(.*?)\}$', flags=re.MULTILINE ) # Extract all user-defined LaTeX macros from the preamble macros = {} for reg in [non_arg_nc_reg, non_arg_def_reg]: for match in reg.finditer(file_content): # convert the macro name and value to a raw string that can be # used in re.sub macro_name = match \ .group(1).encode("unicode-escape").decode("utf-8") macro_val = match \ .group(2).encode("unicode-escape").decode("utf-8") macros[macro_name] = macro_val return macros
EXA-1-master
exa/datasets/RedPajama-Data-main/data_prep/arxiv/arxiv_cleaner.py
from datetime import datetime import fasttext import re from typing import List, Tuple def get_timestamp() -> str: return datetime.now().isoformat() def predict_lang( text: str, lang_model: fasttext.FastText._FastText, k=5 ) -> Tuple[List[str], List[float]]: r""" Predict top-k languages of text. @param text: text to predict language of @param lang_model: language model @param k: number of predictions to return, defaults to 5 @return: list of predicted languages and list of corresponding confidence scores """ # preprocess text text = text.lower().replace("\n", " ").replace("\t", " ") tags, confs = lang_model.predict(text, k=k) # convert confs to float confs = [float(conf) for conf in confs] # convert lang codes to names tags = [tag.replace("__label__", "") for tag in tags] return tags, confs def format_arxiv_id(arxiv_id: str) -> str: r""" this function brings the raw arxiv-id into a format compliant with the specification from arxiv. This is used to create the url to the arxiv abstract page. - Format prior to March 2007: <archive>/YYMMNNN where N is a 3-digit number - Format after March 2007: <archive>/YYMM.NNNNN where N is a 5 (or 6)-digit number References: https://info.arxiv.org/help/arxiv_identifier.html @param arxiv_id: raw arxiv id which can be in one of the following formats: - <archive><YY><MM><NNN> - <YY><MM><NNNNN|NNNNNN> @return: formatted arxiv id """ match = re.search(r'^([a-zA-Z-]*)([\d\.]+)$', arxiv_id) if match is None: raise ValueError(f"Invalid arxiv id: {arxiv_id}") if match.group(1) == "": return match.group(2) return f"{match.group(1)}/{match.group(2)}"
EXA-1-master
exa/datasets/RedPajama-Data-main/data_prep/arxiv/utils.py
import argparse import os from collections import defaultdict from datetime import datetime from transformers import AutoTokenizer import json import multiprocessing as mp import pathlib import pandas as pd from tabulate import tabulate parser = argparse.ArgumentParser() parser.add_argument('--data_dir', type=str, default="./data/arxiv/processed") parser.add_argument('--max_files', type=int, default=-1, help="max lines to process; this is useful for testing") args = parser.parse_args() tokenizer = AutoTokenizer.from_pretrained( "EleutherAI/pythia-6.9b-deduped", ) def get_token_count(text): return len(tokenizer.tokenize(text)) def process_record(record): token_count = get_token_count(text=record["text"]) year = record["meta"]["yymm"][:2] return token_count, year def get_timestamp() -> str: return datetime.now().isoformat() def print_stats(token_count_data): df = pd.DataFrame.from_dict( token_count_data, orient="index" ) df = df.reset_index() df.columns = ["year", "count"] df = df.set_index("year") df["count"] = df["count"].astype(int) df["count"] = df["count"] / 1e12 df = df.sort_values(by="count", ascending=False) df.loc['Total'] = df.sum(numeric_only=True) print(tabulate( df, headers=["year", "count (T)"], tablefmt="github", floatfmt=".4f" )) def main(): num_cpus = int(os.getenv("SLURM_CPUS_PER_TASK", mp.cpu_count())) print(f"Using {num_cpus} workers") files_processed = 0 token_count_data = defaultdict(int) for filenum, fp in enumerate(pathlib.Path(args.data_dir).glob("*.jsonl")): with open(fp, "r") as f: records = [json.loads(rec) for rec in f.readlines()] with mp.Pool(processes=num_cpus - 2) as pool: results = pool.map(process_record, records) for counts, year in results: token_count_data[year] += int(counts) total_tokens = sum(token_count_data.values()) print(f"[{get_timestamp()}][INFO] " f"processed {filenum} files; " f"total tokens: {total_tokens}") if files_processed > args.max_files > 0: print(f"[{get_timestamp()}][INFO] " f"reached max lines") break print(json.dumps(token_count_data, indent=4)) print(f"Total tokens: {sum(token_count_data.values())}") print("\n" + "=" * 80 + "\n") print_stats(token_count_data) if __name__ == '__main__': main()
EXA-1-master
exa/datasets/RedPajama-Data-main/data_prep/arxiv/token_count.py
import argparse import os import uuid import numpy as np import pathlib import tempfile from typing import List import joblib from arxiv_cleaner import ArxivCleaner parser = argparse.ArgumentParser() parser.add_argument('--data_dir', type=str, default="./data/arxiv/src") parser.add_argument('--target_dir', type=str, default="./data/arxiv/processed") parser.add_argument('--workers', type=int, default=1) parser.add_argument('--input', type=str, default=None, help='input file from which to read keys. ' 'This is only used when running on slurm.') parser.add_argument('--local', action='store_true') parser.add_argument('--setup', action='store_true', help='if set, we partition the keys and into chunks.') parser.add_argument('--max_files', type=int, default=-1, help='max files to download, useful for testing') args = parser.parse_args() WORK_DIR = os.getenv('WORK_DIR', pathlib.Path(__file__).parent / "work") WORK_DIR = pathlib.Path(WORK_DIR) if not WORK_DIR.exists(): WORK_DIR.mkdir() print(f"Created work directory {WORK_DIR}") def run_clean( data_dir: pathlib.Path, target_dir: pathlib.Path, input_file: pathlib.Path = None, max_files: int = -1, ): num_cpus = int(os.getenv("SLURM_CPUS_PER_TASK", joblib.cpu_count())) print(f"Using {num_cpus} processes") worker_id = os.getenv('SLURM_ARRAY_TASK_ID', None) if worker_id is None: worker_id = str(uuid.uuid4()) # create temporary work directory work_dir = pathlib.Path( tempfile.mkdtemp(dir=WORK_DIR, prefix=worker_id + "_") ) if input_file is not None: # we are running on slurm assert input_file.exists() with open(input_file, 'r') as f: tar_fp_list = f.read().splitlines() else: tar_fp_list = None # create cleaner arxiv_cleaner = ArxivCleaner( data_dir=data_dir, work_dir=work_dir, target_dir=target_dir, worker_id=worker_id ) arxiv_cleaner.run_parallel( max_files=max_files, tar_fp_list=tar_fp_list ) def partition_tar_files( data_dir: pathlib.Path, workers: int ) -> List[List[str]]: return np.array_split( list(str(fp) for fp in data_dir.glob('*.tar')), indices_or_sections=workers ) def main(): # create target directory where we store the processed data target_dir = pathlib.Path(args.target_dir) if not target_dir.exists(): target_dir.mkdir() data_dir = pathlib.Path(args.data_dir) assert data_dir.exists() if not args.local and not args.setup: # here we only download the files; this requires that setup has already # been run run_clean( data_dir=data_dir, target_dir=target_dir, input_file=pathlib.Path(args.input), max_files=args.max_files ) return if args.setup: parts = partition_tar_files(data_dir=data_dir, workers=args.workers) if not (target_dir / "partitions").exists(): (target_dir / "partitions").mkdir() for i, part in enumerate(parts): with open( target_dir / "partitions" / f'tars_part_{i}.txt', 'w' ) as f: f.write('\n'.join(part)) return # run locally; here we don't partition the tar files as slurm is not used if args.local: run_clean( data_dir=pathlib.Path(args.data_dir), target_dir=pathlib.Path(args.target_dir), input_file=None, max_files=args.max_files ) if __name__ == '__main__': main()
EXA-1-master
exa/datasets/RedPajama-Data-main/data_prep/arxiv/run_clean.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from pathlib import Path from setuptools import setup # type: ignore setup( name="cc_net", version="1.0.0", packages=["cc_net"], # metadata to display on PyPI author="Guillaume Wenzek", author_email="guw@fb.com", description="Tools to download and clean Common Crawl", keywords="common crawl dataset", url="https://github.com/facebookresearch/cc_net", license="CC-BY-NC-4.0", long_description=Path("README.md").read_text(), long_description_content_type="text/markdown", project_urls={ "Bug Tracker": "https://github.com/facebookresearch/cc_net/issues", "Source Code": "https://github.com/facebookresearch/cc_net", }, classifiers=[ "Development Status :: 4 - Beta", "Programming Language :: Python :: 3.7", ], python_requires=">=3.7", install_requires=[ "beautifulsoup4>=4.7.1", "pandas>=0.23.4", "requests>=2.22.0", "fasttext>=0.9.1", "sentencepiece>=0.1.82", "kenlm @ git+https://github.com/kpu/kenlm.git@master", "func_argparse>=1.1.1", "psutil>=5.6.3", "sacremoses", "submitit>=1.0.0", "typing_extensions", ], extras_require={ "dev": ["mypy==0.790", "pytest", "black==19.3b0", "isort==5.6.4"], # To use scripts inside cc_net/tools "tools": ["lxml", "sentence_splitter"], # Memory-efficient hashset. # This fork only compiles the kind of dict used by cc_net. # Full version is at https://github.com/atom-moyer/getpy "getpy": ["getpy @ git+https://github.com/gwenzek/getpy.git@v0.9.10-subset"], }, package_data={"cc_net": ["data/*"]}, )
EXA-1-master
exa/datasets/RedPajama-Data-main/data_prep/cc/cc_net/setup.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # """ Main script to download a CC dump, remove duplicates, split by language and filter the documents. The pipeline parameters are described in the `Config` class. """ import hashlib import json import time import warnings from argparse import ArgumentParser from collections import defaultdict from itertools import repeat from pathlib import Path from typing import Any, Dict, Iterable, List, NamedTuple, Optional, Sequence, Tuple import func_argparse # Local scripts from cc_net import dedup, execution, jsonql, minify, perplexity, process_wet_file from cc_net import regroup as regroup_module from cc_net import split_by_lang from cc_net.execution import Executor # Constant FILE_DIR = Path(__file__).parent CUTOFF_CSV = FILE_DIR / "data" / "cutoff.csv" DEFAULT_PIPELINE = [ "dedup", "lid", "keep_lang", "sp", "lm", "pp_bucket", "drop", "split_by_lang", ] class Config(NamedTuple): """ Mine Common Crawl with the given settings. config_name dump: CC dump id output_dir: working directory mined_dir: name of the destination folder, full path will be {ouput_dir}/{mined_dir}/{dump_id} execution: chose how to parallelize the execution num_shards: number of shards to split the dump min_shard: start at shard `min_shard` if specified num_segments_per_shard: allow to download a small portion of CC (eg for tests) min_len: remove documents shorter than this (in chars) hashes_in_mem: number of shards hashes to use for dedup lang_whitelist: only treat those languages lang_blacklist: ignore those languages lang_threshold: remove docs whose top language score is lower than this keep_bucket: keep only those perplexity bucket chose from (head, middle, tail, all) lm_dir: folder containing LMs lm_languages: only use LMs for the following languages cutoff: cutoff file to use for split in head/middle/tail mine_num_processes: number of processes to use for mining target_size: size of finals files produce during `regroup` stage cleanup_after_regroup: delete intermediary files after regroup task_parallelism: max number of task to run in parallel pipeline: restricts the mining pipeline to the given steps. Order is important ! experiments: (HACK) enable specific experiments in the code """ config_name: str = "base" dump: str = "2017-51" output_dir: Path = Path("data") mined_dir: str = "mined" execution: str = "auto" num_shards: int = 1600 min_shard: int = -1 num_segments_per_shard: int = -1 metadata: Optional[str] = None min_len: int = 300 hash_in_mem: int = 50 lang_whitelist: Sequence[str] = [] lang_blacklist: Sequence[str] = [] lang_threshold: float = 0.5 keep_bucket: Sequence[str] = [] lm_dir: Path = Path("data/lm_sp") cutoff: Path = CUTOFF_CSV lm_languages: Optional[Sequence[str]] = None mine_num_processes: int = 16 target_size: str = "4G" cleanup_after_regroup: bool = False task_parallelism: int = -1 pipeline: Sequence[str] = DEFAULT_PIPELINE experiments: Sequence[str] = [] cache_dir: Optional[Path] = None def get_executor( self, name: str, timeout_hour: int = 1, mem_gb: int = 1, cpus: int = 1 ) -> Executor: name = "_".join((name, self.config_name, *self.experiments)) return execution.get_executor( name, self.output_dir / "logs", self.execution, timeout_hour=timeout_hour, mem_gb=mem_gb, cpus=cpus, task_parallelism=self.task_parallelism, ) def get_cc_shard(self, shard: int) -> process_wet_file.CCShardReader: dump_cache: Optional[Path] = None if self.cache_dir: self.cache_dir.mkdir(exist_ok=True) dump_cache = self.cache_dir / self.dump dump_cache.mkdir(exist_ok=True) return process_wet_file.CCShardReader( self.dump, shard=shard, num_shards=self.num_shards, num_segments_per_shard=self.num_segments_per_shard, min_len=self.min_len, cache_dir=dump_cache, ) @classmethod def from_json(cls, json_file: Path) -> "Config": raw_lines = json_file.read_text().splitlines() raw_lines = [l for l in raw_lines if not l.strip().startswith("//")] json_config = json.loads("".join(raw_lines)) path_keys = ["cache_dir", "lm_dir", "output_dir"] for key in path_keys: if key in json_config: json_config[key] = Path(json_config[key]) return Config(**json_config) @property def will_split(self) -> bool: return "split_by_lang" in self.pipeline or "split_by_segment" in self.pipeline def get_lm_languages(self) -> Sequence[str]: if self.lm_languages is not None: return self.lm_languages if self.lang_whitelist: return self.lang_whitelist languages = [m.name.split(".")[0] for m in self.lm_dir.glob("*.arpa.bin")] if self.lang_blacklist: languages = [l for l in languages if l not in self.lang_blacklist] return languages def get_mined_dir(self, regroup: bool = False) -> Path: if self.will_split and not regroup: return self.output_dir / f"{self.mined_dir}_split" / self.dump return self.output_dir / self.mined_dir / self.dump BASE_CONFIG = Config() BYLANG_CONFIG = Config( config_name="by_lang", mined_dir="mined_by_lang", pipeline=list(BASE_CONFIG.pipeline[:-1]) + ["split_by_lang"], ) REPRODUCE_CONFIG = Config( config_name="reproduce", dump="2019-09", mined_dir="reproduce", pipeline=["fetch_metadata", "keep_lang", "keep_bucket", "split_by_lang"], metadata="https://dl.fbaipublicfiles.com/cc_net/1.0.0", # Optional filtering: # It won't change much the execution speed, but decreases the disk requirement. # Restrict languages lang_whitelist=["fr"], # Restrict perplexity buckets # Top languages have been split in perplexity buckets according # to a Wikipedia trained LM. # The buckets from low perplexity (good) to high (bad) are: # ["head", "middle", "tail"] # Languages without a LM have only one bucket "all". # It won't change much the execution speed, but decreases the disk requirement. keep_bucket=["head", "all"], mine_num_processes=1, ) TEST_CONFIG = BASE_CONFIG._replace( config_name="test", dump="2019-09", output_dir=Path("test_data"), execution="local", num_shards=4, num_segments_per_shard=1, hash_in_mem=2, mine_num_processes=2, lang_whitelist=["de", "it", "fr"], target_size="32M", cleanup_after_regroup=False, cache_dir=Path("test_data/wet_cache"), ) PREDEF_CONFIGS = { "base": BASE_CONFIG, "by_lang": BYLANG_CONFIG, "test": TEST_CONFIG, "test_slurm": TEST_CONFIG._replace(execution="slurm,partition=dev"), "debug": TEST_CONFIG._replace(config_name="debug", mine_num_processes=0), "reproduce": REPRODUCE_CONFIG, "augment": BASE_CONFIG._replace( config_name="augment", dump="2019-13", lang_blacklist=["en"] ), } def tmp(output: Path) -> Path: return output.parent / (output.stem + ".tmp" + output.suffix) def finalize(tmp_output: Path, output: Path) -> None: if not tmp_output.exists(): warnings.warn(f"Targeted tmp output {tmp_output} doesn't exists.") return tmp_index = tmp_output.parent / (tmp_output.name + ".index") tmp_output.rename(output) if tmp_index.exists(): tmp_index.rename(output.parent / (output.name + ".index")) def _transpose(iterable: Sequence[Tuple[Any, ...]], n=-1) -> Tuple[List, ...]: if n < 0: n = len(iterable[0]) columns: tuple = tuple([] for _ in range(n)) for row in iterable: assert len(row) == n, f"Found tuple of len({len(row)}, expected {n}: {row}" for i in range(n): columns[i].append(row[i]) return columns def hashes(conf: Config) -> List[Path]: """Computes hashes for each shard.""" hashes_dir = conf.output_dir / "hashes" / conf.dump outputs = [hashes_dir / f"{shard:04d}.bin" for shard in range(conf.num_shards)] missing_outputs = [(shard, o) for shard, o in enumerate(outputs) if not o.exists()] if not missing_outputs: return outputs hashes_dir.mkdir(parents=True, exist_ok=True) # With FlatHashSet we need ~2Gb of RAM / shard, but we need to account for # overhead due to how the dynamic allocation works. ex = conf.get_executor(f"hashes_{conf.dump}", mem_gb=4, timeout_hour=6, cpus=2) ex(_hashes_shard, repeat(conf), *_transpose(missing_outputs)) # Wait a bit so that files appears on the disk. time.sleep(20) assert all(o.exists() for o in outputs) return outputs def _hashes_shard(conf: Config, shard: int, output: Path): tmp_output = tmp(output) jsonql.run_pipes( dedup.HashesCollector(field="raw_content", output=tmp_output), inputs=conf.get_cc_shard(shard), ) finalize(tmp_output, output) return f"Hashed {output}" HASHES_IN_MEM = [0, 1, 2, 5, 10, 20, 50, 100, 200, 400] def mine(conf: Config) -> List[Path]: """Remove dups, run LID and LMs, and split by lang and quality.""" mined_dir = conf.get_mined_dir() if conf.min_shard == -1: shard_range = list(range(conf.num_shards)) else: shard_range = list(range(conf.min_shard, conf.num_shards)) if conf.will_split: # Give a directories when splitting outputs = [mined_dir / f"{shard:04d}" for shard in shard_range] else: # Files otherwise outputs = [ mined_dir / f"{shard:04d}.json.gz" for shard in shard_range ] if "mini_again" in conf.experiments: mined_dir = conf.output_dir / "mini_again" / conf.dump outputs = [mined_dir / f"{shard:04d}" for shard in shard_range] # TODO: try to reduce this / make it a function of "hash_in_mem" / num_langs mem_gb = 60 + 1 * conf.hash_in_mem timeout_hour = 5 if "hashes" in conf.experiments: # HACK: used for generating paper figures outputs = [ conf.output_dir / f"hashes_exp/{conf.dump}_0000_dedup{h:03d}.json.gz" for h in HASHES_IN_MEM ] mem_gb = int(max(HASHES_IN_MEM) * 1.2) timeout_hour = 8 missing_outputs = [(shard, o) for shard, o in enumerate(outputs) if not o.exists()] if "mini_again" in conf.experiments: missing_outputs = [ (shard, o) for shard, o in enumerate(outputs) if shard in [5, 139] and not o.exists() ] if not missing_outputs: return outputs mined_dir.mkdir(parents=True, exist_ok=True) ex = conf.get_executor( f"mine_{conf.dump}", mem_gb=mem_gb, timeout_hour=timeout_hour, cpus=conf.mine_num_processes + 1, ) # Compute hashes firsts. if "dedup" in conf.pipeline: hashes_groups = list(jsonql.grouper(hashes(conf), conf.hash_in_mem)) hashes_files: Iterable[List[Path]] = [ hashes_groups[shard // conf.hash_in_mem] for shard, o in missing_outputs ] else: hashes_files = repeat([]) ex(_mine_shard, repeat(conf), hashes_files, *_transpose(missing_outputs)) assert all(o.exists() for o in outputs) return outputs def _get_segment(tmp_output: Path, doc: dict) -> str: segment: str = doc["cc_segment"].split("/")[-1] return str(tmp_output / segment.replace(".warc.wet.gz", ".json.gz")) def _mine_shard(conf: Config, hashes: List[Path], shard: int, output: Path) -> str: print(conf.pipeline) assert conf.pipeline tmp_output = tmp(output) if "hashes" in conf.experiments: # HACK: used for generating paper figures hashes_in_mem = shard hashes = hashes[: HASHES_IN_MEM[hashes_in_mem]] shard = 0 cc_shard = conf.get_cc_shard(shard) steps: Dict[str, Optional[jsonql.Transformer]] = {} lang_id = Path("bin") / "lid.bin" steps["lid_before_dedup"] = split_by_lang.Classifier( model=lang_id, field="raw_content", out_field="lid_before_dedup", top=5 ) steps["dedup"] = dedup.DuplicatesRemover(field="raw_content", hashes_files=hashes) steps["lid"] = split_by_lang.Classifier( model=lang_id, field="raw_content", out_field="language", top=1, threshold=conf.lang_threshold, ) steps["lid_after_dedup"] = split_by_lang.Classifier( model=lang_id, field="raw_content", out_field="lid_after_dedup", top=5 ) if conf.lang_blacklist: steps["keep_lang"] = jsonql.where( [lambda doc: doc.get("language") not in set(conf.lang_blacklist)] ) elif conf.lang_whitelist: steps["keep_lang"] = jsonql.where( [lambda doc: doc.get("language") in set(conf.lang_whitelist)] ) else: steps["keep_lang"] = None tok_field = "tokenized" steps["sp"] = perplexity.MultiSentencePiece( {l: conf.lm_dir / f"{l}.sp.model" for l in conf.get_lm_languages()}, field="raw_content", output_field=tok_field, normalize=True, ) steps["lm"] = perplexity.DocLM( {l: conf.lm_dir / f"{l}.arpa.bin" for l in conf.get_lm_languages()}, field=tok_field, output_field="perplexity", normalize=False, # Normalization is done before SentencePiece # load_method=kenlm.LoadMethod.PARALLEL_READ, ) steps["pp_bucket"] = perplexity.PerplexityBucket(CUTOFF_CSV) steps["drop"] = perplexity.DropKeys(tok_field) steps["keep_bucket"] = None if conf.keep_bucket: steps["keep_bucket"] = jsonql.where( [lambda doc: doc.get("bucket", "all") in conf.keep_bucket] ) if "fetch_metadata" in conf.pipeline: # TODO: better default assert conf.metadata is not None steps["fetch_metadata"] = minify.MetadataFetcher( f"{conf.metadata}/{conf.dump}/" ) steps["minify"] = minify.Minifier() pattern = str(tmp_output / "{language}_{bucket}.json.gz") steps["split_by_lang"] = jsonql.split(pattern=str(pattern), mkdir=True) steps["split_by_segment"] = jsonql.split( split_fn=lambda doc: _get_segment(tmp_output, doc), mkdir=True ) pipeline = filter(None, (steps[s] for s in conf.pipeline)) jsonql.run_pipes( *pipeline, inputs=cc_shard, processes=conf.mine_num_processes, chunksize=100, # The splitter takes care of writing to files. output=tmp_output if not conf.will_split else None, ) finalize(tmp_output, output) return f"Mined {output}" def regroup(conf: Config, all_dirs: List[Path]) -> Path: """Reshards each language/quality after 'mine'.""" regroup_dir = conf.get_mined_dir(regroup=True) assert all_dirs all_files = [f for d in all_dirs for f in d.glob("*.json.gz")] if not all_files: print(f"No .json.gz file found in {all_dirs[0]}") splits: Dict[str, List[Path]] = defaultdict(list) for f in all_files: split = f.name.split(".")[0] splits[split].append(f) print(f"Identified {len(all_files)} files to regroup from {len(splits)} splits.") inputs: List[List[Path]] = [] outputs: List[Path] = [] target_size = jsonql.parse_size(conf.target_size) for split, files in splits.items(): cuts = list(regroup_module.determine_groups(files, target_size=target_size)) if not cuts: continue pattern = f"{split}_????.json.gz" existing_outputs = sorted(regroup_dir.glob(pattern)) if not conf.cleanup_after_regroup: # We still have all the inputs so it is safe to overwrite existing outputs. assert len(existing_outputs) <= len(cuts) existing_outputs = [] if len(existing_outputs) > 0 and len(cuts) == 1: # append to existing file if size allows it. new_size = ( sum(f.stat().st_size for f in cuts[0]) + existing_outputs[-1].stat().st_size ) if new_size < target_size: print(f"Will append {cuts[0]} to {existing_outputs[-1]}") cuts[0].insert(0, existing_outputs.pop(-1)) n_existing = len(existing_outputs) for i, cut in enumerate(cuts): # avoid overwriting existing files. j = i + n_existing output = regroup_dir / f"{split}_{j:04}.json.gz" inputs.append(cut) outputs.append(output) print( str(regroup_dir / pattern), "->", len(cuts), f"shards ({n_existing} already there).", ) ex = conf.get_executor(f"regroup_{conf.dump}", mem_gb=1, timeout_hour=12, cpus=2) ex(_regroup, repeat(conf), inputs, outputs) return regroup_dir def _regroup(conf: Config, inputs: List[Path], output: Path) -> str: output.parent.mkdir(parents=True, exist_ok=True) regroup_module.fast_reshard( inputs, output, tmp=tmp(output), rm_original=conf.cleanup_after_regroup ) return f"Regrouped {output}" def move_segments(conf: Config, all_dirs: Sequence[Path]) -> Path: """Reshards each language/quality after 'mine'.""" # check that mining is over. regroup_dir = conf.get_mined_dir(regroup=True) assert all_dirs, "Received no dirs to move" assert all( d.is_dir() for d in all_dirs ), f"move_segments was expecting dirs received files: {all_dirs[:10]}..." regroup_dir.parent.mkdir(exist_ok=True) regroup_dir.mkdir(exist_ok=True) ex = conf.get_executor(f"moveseg_{conf.dump}", mem_gb=1, timeout_hour=1, cpus=2) def _move_segments(subdir: Path, regroup_dir: Path) -> str: n = 0 for f in subdir.iterdir(): if not f.is_file() or f.is_symlink(): continue n += f.name.endswith(".json.gz") new_name = regroup_dir / f.name target = new_name.resolve() assert f.resolve() != target # this make the job idempotent. f.rename(new_name) f.symlink_to(target) if n == 0: return "" return f"Moved {n} .json.gz files from {subdir} to {regroup_dir}" ex(_move_segments, all_dirs, repeat(regroup_dir)) print(f"Results are in {regroup_dir}") return regroup_dir def _validate_test(conf: Config, output_dir: Path, generate: bool = False): stats: Dict[str, dict] = {} for file in sorted(output_dir.glob("*.json.gz")): fname = "/".join((file.parent.name, file.name)) # The order of documents is not guaranteed inside a shard, lines = sorted(jsonql.open_read(file)) content = "\n".join(lines) size = len(content) checksum = hashlib.sha1(bytes(content, encoding="utf-8")).hexdigest() # first_document = json.loads(lines[0]) stats[fname] = {"size": size, "checksum": checksum} def dump(x): return json.dumps(x, indent=2, ensure_ascii=False) print("*** Stats ***") stats_raw = dump(stats) stats_file = FILE_DIR / "data" / "test_stats.json" if generate: print("Saving stats to", stats_file) stats_file.write_text(stats_raw) return expected_stats: Dict[str, dict] = {} if stats_file.exists(): expected_stats = json.loads(stats_file.read_text()) if expected_stats == stats: print("Everything looks good !") return stats_file.with_suffix(".actual.json").write_text(stats_raw) print("*** Expected Stats ***") print(dump(expected_stats)) print("*** Diff ***") for fname in sorted(expected_stats.keys()): print(fname) assert fname in expected_stats, "missing file " + fname if expected_stats[fname]["size"] != stats[fname]["size"]: print( " - Expected size", expected_stats[fname]["size"], ", size", stats[fname]["size"], ) if expected_stats[fname]["checksum"] != stats[fname]["checksum"]: print( " - Expected checksum", expected_stats[fname]["checksum"], ", checksum", stats[fname]["checksum"], ) def get_main_parser() -> ArgumentParser: # Generates the 'main' parser by patching a 'Config' parser p = func_argparse.func_argparser(Config) # Override defaults value to None, so we know what was set by the user. # Note that it will keep the original default values in the help message. p.set_defaults(**{f: None for f in Config._fields}) p.add_argument("--config", type=str, default="base") p.set_defaults(__command=main) return p def main(config: str = "base", **config_as_dict: Any) -> None: # Use the given 'config' as default value. config_base = config if config_base in PREDEF_CONFIGS: conf = PREDEF_CONFIGS[config_base] elif Path(config_base).exists(): conf = Config.from_json(Path(config_base)) else: raise ValueError( f"Invalid value {config_base} for --config. " f"Choose from ({', '.join(PREDEF_CONFIGS)}) or give an existing .json file." ) conf = conf._replace(**{k: v for (k, v) in config_as_dict.items() if v is not None}) print(f"Will run cc_net.mine.main with the following config:", conf) all_files = mine(conf) if conf.will_split: assert all_files assert all(d.is_dir() for d in all_files) all_dirs = all_files if "split_by_lang" in conf.pipeline: # Only try regrouping if we split the shards. regroup(conf, all_dirs) elif "split_by_segment" in conf.pipeline: # If we split by segment then regrouping is trivial, since segments appear in only one shard. move_segments(conf, all_dirs) if conf.config_name == "test": _validate_test(conf, conf.get_mined_dir(regroup=True)) if __name__ == "__main__": func_argparse.parse_and_call(get_main_parser())
EXA-1-master
exa/datasets/RedPajama-Data-main/data_prep/cc/cc_net/cc_net/mine.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # """ Creates mono-lingual corpus from Wikipedia. """ import functools import re import subprocess import urllib.request from pathlib import Path from typing import Dict import func_argparse from bs4 import BeautifulSoup # type: ignore from cc_net import jsonql, text_normalizer CIRRUS_URL = "https://dumps.wikimedia.org/other/cirrussearch" CIRRUS_DUMP_RE = re.compile(r"^(.*)wiki-\d+-cirrussearch-content\.json\.gz") def tmp(file: Path) -> Path: return file.parent / ("tmp." + file.name) def opening(file: Path, output: Path = None, n_docs: int = 1_000_000): """Will dump the tokenized opening text of the given Wikipedia. Args: - file: File containing the Wikipedia dump. - output: Output file. - n_docs: How many docs to parse - tokenize: whether to tokenize the text - lang: Language code used to chose the tokenizer """ assert file.exists() return jsonql.run_pipes( functools.partial(extract_opening_text, n_docs=n_docs), file=file, output=tmp(output) if output else None, ) if output: tmp(output).replace(output) def extract_opening_text(source, n_docs: int = 10_000): i = 0 for doc in jsonql.read_jsons(source): if not doc: continue text = doc.get("opening_text") if not text: continue yield text_normalizer.normalize(text) i += 1 if i >= n_docs: break def dl(lang: str, output_dir: Path, date: str = None): """Download the cirrus extract for the given lang. See https://dumps.wikimedia.org/other/cirrussearch for the full list of files. Args: - lang: The Wikipedia code for the language. - output_dir: Output directory. File will be `{lang}.json.gz` - date: Date of a specific Cirrus dump. """ urls = get_cirrus_urls(date) assert ( lang in urls ), f"--lang {lang} not found. Available languages are: {urls.keys()}" assert output_dir, "--output_dir folder needed." output_dir.mkdir(exist_ok=True) output = output_dir / (lang + ".json.gz") print(f"Downloading {lang} wiki from {urls[lang]} to {output}") wget(urls[lang], output) def get_cirrus_urls(date: str = None) -> Dict[str, str]: if date is None: cirrus_page = BeautifulSoup( urllib.request.urlopen(CIRRUS_URL), features="html.parser" ) dumps = [a.get("href").strip("/") for a in cirrus_page.findAll("a")] dumps.remove("..") dumps.remove("current") # We take the oldest dump since the most recent might be incomplete. # The page only link to the N latest dumps so the dump won't be too old. date = min(dumps) cirrus_url = "/".join((CIRRUS_URL, date)) print("Will use the Wikipedia dump from:", date, cirrus_url) cirrus_page = BeautifulSoup( urllib.request.urlopen(cirrus_url), features="html.parser" ) urls = {} for link in cirrus_page.findAll("a"): match = CIRRUS_DUMP_RE.match(link.get("href")) if not match: continue urls[match.group(1)] = "/".join([cirrus_url, link.get("href")]) assert urls, f"No valid download urls found at {cirrus_url}" return urls def wget(url: str, output: Path): subprocess.run(["wget", url, "-O", tmp(output), "-q"], check=True) tmp(output).replace(output) assert ( output.stat().st_size > 10_000 ), f"File {output} downloaded from {url} looks too small" if __name__ == "__main__": func_argparse.main(dl, opening)
EXA-1-master
exa/datasets/RedPajama-Data-main/data_prep/cc/cc_net/cc_net/get_wiki_cirrus.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # """ Manipulate files containing one json per line. """ import argparse import collections import contextlib import functools import glob import gzip import importlib import inspect import io import itertools import json import logging import multiprocessing import os import re import sys import tempfile import time import typing as tp import warnings import zlib from pathlib import Path from typing import ( Callable, Dict, Iterable, Iterator, List, Optional, Sequence, TextIO, Tuple, Union, ) import numpy as np import psutil # type: ignore import requests from typing_extensions import Protocol logging.basicConfig( level=logging.INFO, format="%(asctime)s %(levelname)s %(process)d:%(name)s - %(message)s", datefmt="%Y-%m-%d %H:%M", ) NEWLINE = " N3WL1N3 " FilterFn = Callable[[dict], bool] FileDescriptor = Union[Path, List[Path], str] WritableFileLike = Union[FileDescriptor, TextIO, "SimpleIO", None] ReadableFileLike = Union[Iterable[str], FileDescriptor, None] def io_parser(): """Parser shared by all commands to get input/output files.""" parser = argparse.ArgumentParser(add_help=False) file_help = """File to read from. Can be specified several times for several files. Be careful that bash will expand glob patterns **before** sending the args to python. To use globs put it inside single quotes: jsonql where --file 'data/perplexity/*.json' '{length} > 100' | head -1 jsonql --file 'data/perplexity/*.json' where '{length} > 100' | head -1 [Invalid] jsonql where '{length} > 100' --file data/perplexity/*.json | head -1 [Invalid] jsonql where --file data/perplexity/*.json '{length} > 100' | head -1 """ parser.add_argument("-f", "--file", type=Path, action="append", help=file_help) parser.add_argument("-o", "--output", type=Path, default="-") parser.add_argument("--processes", type=int, default=1) return parser def get_parser(): parser = argparse.ArgumentParser( description="Read a set of json files and allow to query them" ) subparsers = parser.add_subparsers() def add_subparser(function, arguments): doc = function.__doc__.split("\n")[0] p = subparsers.add_parser(function.__name__, help=doc, parents=[io_parser()]) p.set_defaults(command=function) for k, v in arguments.items(): p.add_argument(k, **v) add_subparser( select, { "columns": dict(nargs="+", help="Extract the value of the given fields"), "--skip_empty": dict( action="store_true", help="Skip lines without the requested fields" ), "--separator": dict( default="\t", help="Separator to use between the different columns" ), "--newline": dict( default=NEWLINE, help="Replace newlines found in the text by the given string", ), }, ) add_subparser( where, { "clauses": dict(nargs="+", help=""), "--requires": dict( action="append", help="Python module required by the clauses code." ), }, ) add_subparser( merge, { "columns": dict(nargs="+", help=""), "--separator": dict( default="\t", help="Separator to use between the different columns" ), "--newline": dict( default=NEWLINE, help="Replace the given string by actual newlines" ), }, ) add_subparser( describe, { "columns": dict(nargs="*", help=""), "--bins": dict( default="auto", help="Number of bins for computing the histograms" ), "--cumulative": dict( action="store_true", help="Compute cumulative histograms" ), "--weights": dict(type=str, help="Column used to weight histograms"), }, ) add_subparser(split, {"--pattern": dict(type=str)}) add_subparser(shard, {}) return parser def _split_array(array, sep): last = 0 for i, x in enumerate(array): if x != sep: continue yield array[last:i] last = i + 1 if last != len(array): yield array[last:] def main(raw_args): parser = get_parser() pipeline = [] file = "-" output = "-" processes = 1 for args_group in _split_array(raw_args, "--"): args = vars(parser.parse_args(args_group)) command = args.pop("command") file = args.pop("file") or file output = args.pop("output") or output processes = args.pop("processes") or processes pipeline.append(as_pipe(command, args)) if not pipeline: parser.print_help() return run_pipes(*pipeline, file=Path(file), output=Path(output), processes=processes) class Transformer: """ Wrapper around functions transforming documents. This allows `run_pipes` to automatically parallelize the pipeline. Provides: * Automatic logging. Logging can be changed with the `summary` method. Loggin frequency with _log_freq (in second) or $JSONQL_LOG_FREQ env variable. * Automatic parallelization without pickling. The transformers are shared across processes, and the object is usually not pickled. * Basic pickling / unpickling in case it's still needed. By default will only pickle the arguments passed to the constructor. * Delayed initialization. Internal state which is not pickable should be set inside the `_prepare` function. """ parallelisable: bool = True expect_json: bool = False warn_when_pickling: bool = False ready: bool = False def __init_subclass__(cls, expect_json: bool = None): """Detects if the subclass expects json as input.""" spec = inspect.getfullargspec(cls.do) if expect_json is None: expect_json = spec.annotations.get(spec.args[1], None) == dict cls.expect_json = expect_json def __new__(cls, *args, **kwargs): """Creates the transformer and save the arguments passed to the constructor.""" t = super().__new__(cls) Transformer.__init__(t, args, kwargs) return t def __init__(self, state_args: tuple = None, state_kwargs: dict = None): """ Init the transformer counters. If state_args/state_kwargs are set they will override whatever was originally passed to the subclass constructor. """ if state_args is not None: self.__args = state_args if state_kwargs is not None: self.__kwargs = state_kwargs self.start_time = time.time() self.__last_log = self.start_time self.processed = 0 # Log every 5 min unless specified other wise. self._log_freq = int(os.environ.get("JSONQL_LOG_FREQ", 5 * 60)) self.__cls = type(self) self._logger = logging.getLogger(self.__cls.__name__) def __call__(self, x): assert self.ready, f"{self} is not ready." if x is None: return y = self.do(x) self.processed += 1 if time.time() - self.__last_log > self._log_freq: self.log_summary() return y def do(self, x): raise NotImplementedError(f"'do' not implemented in {type(self)}") def summary(self) -> List[str]: return [self.speed_summary()] def speed_summary(self) -> str: delay = time.time() - self.start_time h = delay / 3600 s = self.processed / delay return f"Processed {self.processed:_} documents in {h:.2}h ({s:5.1f} doc/s)." def log(self, message): self._logger.info(message) def log_summary(self) -> None: if not self.ready: self.log("Not ready.") return summ = self.summary() or [] for line in summ: self.log(line) self.__last_log = time.time() def map(self, source: Iterable) -> Iterator: if self.ready: for x in source: yield self(x) # since we have been prepared by caller, # caller is also responsible for calling `close`. return else: with self: for x in source: yield self(x) def __getstate__(self) -> Tuple[tuple, dict, bool]: return (self.__args, self.__kwargs, self.expect_json) def __setstate__(self, state: Tuple[tuple, dict, bool]): if self.warn_when_pickling: warnings.warn(f"Unpickling transformer: {type(self)}. This can be slow.") (args, kwargs, expect_json) = state # When unpickling `__new__` isn't called so we have to doit ourselves. Transformer.__init__(self, state_args=args, state_kwargs=kwargs) type(self).__init__(self, *args, **kwargs) assert self.expect_json == expect_json # __setstate__ is called by multiprocessing right before calling # the object so we need to initialize everything. self.__enter__() def _prepare(self) -> None: pass def __enter__(self) -> "Transformer": # In multiprocessing __enter__ is always called twice, so we are idempotent. # Because we call __enter__ when deserializing this transformer and # also when the parent transformer is deserialized. self.start_time = time.time() if self.ready: return self self._prepare() self.ready = True return self def __exit__(self, *args) -> None: self.close() self.log_summary() def close(self) -> None: pass def as_pipe(transformer, kwargs): if isinstance(transformer, type): return transformer(**kwargs) return lambda source: transformer(source, **kwargs) def compose(fns: List[Transformer]) -> Transformer: if len(fns) == 1: return fns[0] return MultiTransformer(fns) class MultiTransformer(Transformer): def __init__(self, transformers: List[Transformer]): super().__init__() self.transformers = transformers def __repr__(self) -> str: pipeline = " | ".join(type(t).__name__ for t in self.transformers) return f"<{pipeline}>" def do(self, x): for t in self.transformers: x = t(x) return x def _prepare(self): for t in self.transformers: t.__enter__() return self def __exit__(self, *args): for t in self.transformers: t.__exit__(*args) def summary(self): return itertools.chain(*(t.summary() for t in self.transformers)) class Mapper(Transformer): def __init__(self, fn): super().__init__() self.fn = fn def do(self, x): return self.fn(x) def run_pipe( command, kwargs: dict = None, file: ReadableFileLike = None, output: WritableFileLike = None, ): kwargs = kwargs or {} if isinstance(kwargs, argparse.ArgumentParser): kwargs = vars(kwargs.parse_args()) file = file or Path(kwargs.pop("file", "-")) output = output or Path(kwargs.pop("output", "-")) return run_pipes(as_pipe(command, kwargs), file=file, output=output) def run_pipes( *fns: Union[Transformer, Callable[[Iterable], Iterable]], inputs: Iterable[dict] = None, file: ReadableFileLike = None, output: WritableFileLike = None, processes: int = 1, chunksize: int = 10_000, ): """ Run full document processing pipeline. - fns: list of functions to run over the documents. Can be: * `Iterable -> Iterable` function * jsonql.Transformer instance Using transformers allow the pipeline to process documents in parallel. - inputs: iterable to read the documents from - file: if inputs is not given, will read documents from this file. - output: writable file like. - processes: number of processes to use. -1 means all CPU available. - chunksize: chunksize for multiprocessing.Pool.imap_unordered """ expect_json = len(fns) and isinstance(fns[0], Transformer) and fns[0].expect_json if expect_json and inputs is None: fns = (JsonReader(),) + fns transformers = [] for t in fns: if not isinstance(t, Transformer): break if not t.parallelisable: break transformers.append(t) pipes = fns[len(transformers) :] log = logging.getLogger(__name__).info if inputs is None: data: Iterable = open_read(file) else: data = inputs if processes == -1: processes = os.cpu_count() or 0 with contextlib.suppress(BrokenPipeError), contextlib.ExitStack() as stack: if transformers: log(f"preparing {transformers}") transform = stack.enter_context(compose(transformers)) if processes <= 1: data = transform.map(data) else: p = multiprocessing.current_process() log(f"Will start {processes} processes from {p.name}, Pid: {p.pid}") pool = stack.enter_context( multiprocessing.Pool( processes=processes, initializer=_set_global_transformer, initargs=(transform,), ) ) data = pool.imap_unordered( _global_transformer, data, chunksize=chunksize ) for fn in pipes: if isinstance(fn, Transformer): data = fn.map(data) else: data = fn(data) write_jsons(data, output) # Allows to share transformer acroos subprocess. # Used by `run_pipes` _GLOBAL_TRANSFORMER: Optional[Transformer] = None def _set_global_transformer(transformer: Transformer): global _GLOBAL_TRANSFORMER p = multiprocessing.current_process() logging.info( f"Started subprocess {p.name}:{p.pid} from {os.getppid()} for {transformer}" ) assert transformer.ready, f"{transformer} isn't ready" _GLOBAL_TRANSFORMER = transformer def _global_transformer(document: str) -> Optional[dict]: assert _GLOBAL_TRANSFORMER is not None return _GLOBAL_TRANSFORMER(document) def lines(file: ReadableFileLike) -> Iterator[str]: return (line.strip("\n") for line in open_read(file)) def read_jsons(file: ReadableFileLike, strict=False) -> Iterator[dict]: reader = JsonReader(strict=strict) lines = open_read(file) for line in lines: if line is None: continue yield reader(line) reader.log_summary() def write_jsons(source: Iterable[dict], file: WritableFileLike) -> None: eol = os.linesep with open_write(file) as o: for res in source: if res is None: continue if isinstance(res, dict): json.dump(res, o, ensure_ascii=False) o.write(eol) continue if isinstance(res, str): res = res.rstrip("\n") print(res, file=o) class JsonReader(Transformer): def __init__(self, strict: bool = False): super().__init__() self.ready = True self.strict = strict self.num_errors = 0 def do(self, line: str) -> Optional[dict]: if line is None: return None if isinstance(line, dict): return line line = line.rstrip("\n") if not line: return None try: return json.loads(line) except json.decoder.JSONDecodeError as e: self.log_error(e) if self.strict: raise return None def log_error(self, e: json.decoder.JSONDecodeError): self.num_errors += 1 if self.num_errors > 10: return MAX_LEN = 80 snippet, snippet_len = e.doc, len(e.doc) col = e.pos if snippet_len > MAX_LEN: if col < MAX_LEN: start = 0 elif snippet_len - col < MAX_LEN: start = snippet_len - MAX_LEN else: start = col - MAX_LEN // 2 snippet = e.doc[start : start + MAX_LEN] col = col - start logging.warning( "\n".join( [ f"Invalid json (length={len(e.doc)}) {e}", snippet, " " * (col - 1) + "^", ] ) ) def summary(self): summ = super().summary() if self.num_errors > 0: summ.append(f"Skipped {self.num_errors} invalid json.") return summ def compile_column(column, newline): if callable(column): return column if column == "*": return json.dumps if re.match(r"[_a-z][_a-z0-9]*", column): def extract_col(doc): v = doc.get(column, "") if isinstance(v, str) and newline != "\n": v = v.rstrip("\n").replace("\n", newline) return v return extract_col return compile_expr(column) def select(lines, columns, skip_empty=False, separator="\t", newline="\n"): """Yields the content of the requested columns.""" column_parsers = [compile_column(c, newline) for c in columns] for doc in read_jsons(lines): values = [] empty = True for parse_col in column_parsers: v = parse_col(doc) values.append(str(v) or "") empty = empty and v is None if skip_empty and empty: continue yield separator.join(values) def compile_expr(clause: Union[str, FilterFn], requires: List[str] = None): if not isinstance(clause, str): return clause args_re = r"(?i:\{([_a-z][_a-z0-9]*)\})" args_list = list(re.findall(args_re, clause)) if not args_list: # This is only a warning because you may want to have eg random sampling # that doesn't depend on the document. logging.warn( f"Warning: No variable found in expression: <{clause}>\n" "Variables should be written inside braces, eg: {language}=='en'" ) python_like = re.sub(args_re, r"doc.get('\1', None)", clause) requires = requires or [] modules = {r: importlib.import_module(r) for r in requires} return eval(f"lambda doc: {python_like}", modules) class where(Transformer): """Filters the data using python code. Ex: `jsonql where 'len({text}) > 100'` """ def __init__( self, clauses: Sequence[Union[str, FilterFn]], requires: List[str] = [] ): super().__init__() self.raw_clauses = clauses self.requires = requires self.n_selected = 0 self.clauses: List[FilterFn] = [] def _prepare(self): self.clauses = [compile_expr(c, self.requires) for c in self.raw_clauses] def do(self, doc: dict) -> Optional[dict]: assert self.clauses if not doc or not all((c(doc) for c in self.clauses)): return None self.n_selected += 1 return doc def summary(self): n_selected, n_docs = self.n_selected, self.processed selectivity = n_selected / n_docs if n_docs else 0 return [f"Selected {n_selected} documents out of {n_docs} ({selectivity:5.1%})"] def merge(lines, columns, separator="\t", newline=NEWLINE): """Reads tab separated columns and output a json using the given headers. Headers are of form {key}[%{type}] {type} can be one of {"f": float, "i": int, "b": bool, "s": string}. Default type is string. A special header "_" means interpret this column as json, and append all other columns to it. Must appear only once and on last position. Ex: `echo '1\thello' | jsonql merge n t` --> `{"n": "1", "t": "hello"}` `echo '1\thello" | jsonql merge n%i t` --> `{"n": 1, "t": "hello"}` `echo '1\thello\t{"f": "bar"}' | jsonql merge n%i t _` --> `{"n": 1, "t": "hello", "f": "bar"}` """ handle_newlines = lambda s: s.replace(newline, "\n") type_mapping: Dict[str, Callable] = { "f": float, "i": int, "b": bool, "s": handle_newlines, } type_parsing = [ type_mapping.get(f.split("%")[-1], handle_newlines) for f in columns ] columns = [f.split("%")[0] for f in columns] doc_index = columns.index("_") if "_" in columns else -1 read_json = JsonReader() def parse(line): parts = line.split(separator, len(columns) - 1) doc: Dict[str, tp.Any] = {} for i, value in enumerate(parts): if columns[i] == "_": doc.update(read_json(parts[doc_index])) else: try: doc[columns[i]] = type_parsing[i](value) except ValueError: logging.error( f"Error when parsing column {i} of line: {line[:100]}..." ) return doc for line in lines: yield json.dumps(parse(line)) class split(Transformer): """Split a files in several smaller files based on the value of a field.""" # Not parallelisable since we are writing to files. parallelisable = False def __init__( self, pattern: Union[Path, str] = None, split_fn: Callable[[dict], str] = None, mkdir: bool = False, ): super().__init__() assert not ( pattern and split_fn ), "split can't have both a pattern and a split_fn" if split_fn is not None: self.split_fn = split_fn else: assert pattern, "split need either a pattern or a split_fn" self.split_fn = self.make_split_fn(str(pattern)) self.mkdir = mkdir self.o: dict = {} def make_split_fn(self, pattern: str) -> Callable[[dict], str]: candidates = list(re.findall(r"(?i:\{([_a-z][_a-z0-9]*)\})", pattern)) return lambda doc: pattern.format(**{c: doc[c] for c in candidates}) def do(self, doc): filename = self.split_fn(doc) if not filename: return o = self.o.get(filename, None) if o is None: if self.mkdir: Path(filename).parent.mkdir(parents=True, exist_ok=True) self.o[filename] = open_write(filename) print(json.dumps(doc, ensure_ascii=False), file=self.o[filename], flush=True) def summary(self): summ = super().summary() summ.append(f"Found {len(self.o)} splits.") return summ def close(self): for file in self.o.values(): file.close() def histogram(values, bins, weights): hist, bins = np.histogram(values, bins=bins) # n_bins = len(hist) if weights is not None: # Bins can't be auto-determined if weights is supplied. # So we first compute the bins without the weights then recompute # the histogram with the weights. hist, bins = np.histogram(values, bins=bins, weights=weights) # cumsum = np.cumsum(hist) # total = cumsum[-1] # for i in range(n_bins - 1): # if cumsum[i] / total > 0.9: # useful_range = np.linspace(bins[0], bins[i + 1], n_bins) # new_bins = np.append(useful_range, [bins[-1]]) # return np.histogram(values, bins=new_bins, weights=weights) return hist, bins def _parse_bins(bins): try: if isinstance(bins, str): if "," in bins: bins = [int(b) for b in bins.split(",")] else: bins = int(bins) except ValueError: pass return bins ALL_DOCUMENTS = "<ALL_DOCUMENTS>" MAX_LABEL_LEN = 100 def bar_chart(hist, bins): n = sum(hist) max_h = max(hist) out = [] for i, h in enumerate(hist): h_size = 80 * h // max_h dh_size = 80 * (h - hist[i - 1]) // max_h if h_size == 0 or dh_size == 0: continue bar = "█" * h_size out.append(f"{bins[i]:8.3f} {bar:80} ({h:5d}, {h / n:5.1%}) {bins[i+1]:8.3f}") out.append(f"{bins[-1]:8.3f}") return out def display_stats(stats, key, weights=None, bins="auto", cumulative=False): out = [] documents = stats[ALL_DOCUMENTS] count = stats.get(key, 0) r = count / documents if documents else 0 out.append(f"Field {key} saw {count} times ({r:5.1%})") length = stats.get(key + ".length", None) avg_length = length // count if length else 0 if length is not None: out[-1] += f", average length is {length // count}" values = stats.get(key + ".val", None) if values: out[-1] += f", histogram is: (bins={bins})" if weights: if weights not in stats: logging.warn(f"Warning: weights column {weights} not found.") if weights + ".val" not in stats: logging.warn( f"Warning: weights column {weights} is not a numeric column." ) weights = stats.get(weights + ".val") hist, bins = histogram(values, _parse_bins(bins), weights) if cumulative: hist = np.cumsum(hist) out += bar_chart(hist, bins) cnt = stats.get(key + ".cnt", None) if avg_length < MAX_LABEL_LEN and cnt and max(cnt.values()) > 1: cnt = sorted(cnt.items(), key=lambda kv: kv[1], reverse=True) out[-1] += ", top 100 labels:" for label, n in cnt[:100]: if n < 5: continue out.append(f"{label:25}: {n:6} ({n / count:5.1%})") return out def describe(source, columns=None, weights=None, **kwargs): """Compute some statistics about a dataset. Stats can be restricted to a subset of columns.""" MAX_HIST_SIZE = 100_000_000 MAX_CNT_SIZE = 1000 stats = {ALL_DOCUMENTS: 0} needed = columns + [weights] if columns else None for doc in read_jsons(source): stats[ALL_DOCUMENTS] += 1 for k, v in doc.items(): if needed and k not in needed: continue stats[k] = get_or_set(stats, k, 0) + 1 if isinstance(v, str): stats[k + ".length"] = get_or_set(stats, k + ".length", 0) + len(v) if len(v) > MAX_LABEL_LEN: # Don't treat too long string as labels continue cnt = get_or_set(stats, k + ".cnt", collections.defaultdict(int)) if v in cnt or len(cnt) < MAX_CNT_SIZE: cnt[v] += 1 elif type(v) in (int, float): values = get_or_set(stats, k + ".val", []) if len(values) < MAX_HIST_SIZE: values.append(v) elif type(v) is list and len(v) and type(v[0]) in (int, float): values = get_or_set(stats, k + ".val", []) if len(values) < MAX_HIST_SIZE: values += v elif type(v) is dict: cnt = get_or_set(stats, k + ".cnt", collections.defaultdict(int)) for label in v: if label in cnt or len(cnt) < MAX_CNT_SIZE: cnt[label] += 1 documents = stats[ALL_DOCUMENTS] yield f"Stats computed on {documents} documents:" for k in stats: if columns and k not in columns: continue if "." in k or k == ALL_DOCUMENTS: continue for line in display_stats(stats, k, weights=weights, **kwargs): yield line def shard(lines): """Shard a file in several smaller ones.""" # The creation of the shard is handle in a generic way. Do we need this ? return lines # *** Utils *** def get_or_set(dictionary, key, default): if key not in dictionary: dictionary[key] = default return dictionary[key] class SimpleIO(Protocol): """A subset of methods from TextIO.""" def close(self) -> None: ... def write(self, line: str) -> int: ... def __enter__(self) -> "SimpleIO": ... def __exit__(self, exc_type, exc_value, traceback): ... def open_read(filename: ReadableFileLike) -> Iterable[str]: """Open the given file, list of files or files matching the given glob and read lines. `filename` is None or "-" -> reads from stdin `filename` is a Path / str -> interprets filename as a glob and open files matching it `filename` is a list -> opens sequentially all files from the list using `open_read` `filename` is something else -> returns the object wrapped in a `nullcontext` This allows to pass already openened files or iterables. `open_read` will decompress gzip files, given they have ".gz" suffix. """ if filename is None: return sys.stdin if isinstance(filename, list): assert isinstance(filename[0], Path) if len(filename) == 0: return [] if len(filename) > 1: return _yield_from(filename) filename = tp.cast(Path, filename[0]) if isinstance(filename, str): if filename.startswith("http://") or filename.startswith("https://"): return open_remote_file(filename) filename = Path(filename) if not isinstance(filename, Path): # we might have received an iterable, return it unmodified. return filename # type: ignore # Expand glob patterns only when reading files = [Path(f) for f in sorted(glob.glob(str(filename)))] if len(files) > 1: return _yield_from(files) if len(files) == 1: filename = files[0] assert isinstance(filename, Path) if filename.name.endswith("]"): return block_reader(filename) logging.getLogger(__name__).info(f"Opening {filename} with mode 'rt'") if filename.suffix == ".gz": file: TextIO = gzip.open(filename, "rt") # type: ignore else: file = open(filename, "rt") return _close_when_exhausted(file) def _close_when_exhausted(file: TextIO) -> Iterable[str]: with file: yield from file def _yield_from(files: list) -> Iterable[str]: for file in files: yield from open_read(file) def open_write( filename: WritableFileLike, max_size: str = "4G" ) -> tp.ContextManager[TextIO]: """Open the given file, list of files or files matching the given glob. The return value is a ContextManager meant to be used inside a `with` block: ``` with open_write("foo.txt") as o: ... Write mode: replaces "?" from filename by numbers ranging from 0 to 9, generatings files of size `max_size`. If filename ends with ".gz", creates a blocked gzip file with random access. """ if filename is None: return contextlib.nullcontext(sys.stdout) if isinstance(filename, list): if len(filename) > 1: return MultiFile(filename, "w", max_size) else: filename = tp.cast(Path, filename[0]) if isinstance(filename, str): filename = Path(filename) if not isinstance(filename, Path): assert hasattr(filename, "write"), f"{filename} doesn't have a .write method." # We return a 'TextIO' even though we only check for `.write` method, # this works better with eg `print`. return contextlib.nullcontext(tp.cast(TextIO, filename)) mode = "wt" if "?" in filename.name: return sharded_file(filename, mode, max_size) logging.getLogger(__name__).info(f"Opening {filename} with mode {mode}") # TODO: should we use another format ? if filename.suffix == ".gz": return BlockedGzipWriter(Path(filename), mode, block_size="64M") return open(filename, "wt") def parse_size(size): unit_map = {"B": 1, "K": 1024, "M": 1024 ** 2, "G": 1024 ** 3} unit = size[-1].upper() assert ( unit in unit_map ), f"Unsupported size unit for {size}. Use one of: {unit_map.keys()}." return int(size[:-1]) * unit_map[unit] class MultiFile(SimpleIO): def __init__(self, files: Iterable[Path], mode="w", max_size="4G"): self.name = str(files) self.mode = mode self.files = iter(files) self.max_size = parse_size(max_size) self.current_handle: Optional[TextIO] = None self.current_block_size = 0 self._open_next_handle() # Opening 1st handle allows to write directly. def write(self, content) -> int: # Avoid splitting newlines to a new file. # use current_block_size since it's faster than `tell()` if content != "\n" and self.current_block_size >= self.max_size: self._open_next_handle() if self.current_handle is None: raise Exception("No more files to write to...") written = self.current_handle.write(content) self.current_block_size += written return written def _open_next_handle(self) -> bool: self.close() file = next(self.files, None) if file is None: return False self.current_handle = open_write(file).__enter__() self.current_block_size = 0 return True def __enter__(self): return self def __exit__(self, *exc_info): self.close() @property def closed(self): return self.current_handle is None def close(self): if self.current_handle is None: return # log("Closing", self.current_handle.name, "with mode", self.current_handle.mode) self.current_handle.__exit__(None, None, None) self.current_handle = None # not sure it helps since connections are reseted anyway. _session = functools.lru_cache()(requests.Session) def request_get_content(url: str, n_retry: int = 3) -> bytes: """Retrieve the binary content at url. Retry on connection errors. """ t0 = time.time() logging.info(f"Starting download of {url}") for i in range(1, n_retry + 1): try: r = _session().get(url) r.raise_for_status() break except requests.exceptions.RequestException as e: # Sleep and try again on error, unless it's a 404. message = e.args[0] if isinstance(e.args[0], str) else "" if i == n_retry or "Client Error" in message: raise e warnings.warn( f"Swallowed error {e} while downloading {url} ({i} out of {n_retry})" ) time.sleep(10 * 2 ** i) dl_time = time.time() - t0 dl_speed = len(r.content) / dl_time / 1024 logging.info( f"Downloaded {url} [{r.status_code}] took {dl_time:.0f}s ({dl_speed:.1f}kB/s)" ) return r.content def open_remote_file(url: str, cache: Path = None) -> Iterable[str]: """Download the files at the given url to memory and opens it as a file. Assumes that the file is small, and fetch it when this function is called. """ if cache and cache.exists(): return open_read(cache) # TODO: open the remote file in streaming mode. # The hard part is that we need to write the content on disk at the same time, # to implement disk caching. raw_bytes = request_get_content(url) content = io.BytesIO(raw_bytes) if url.endswith(".gz"): f: TextIO = gzip.open(content, mode="rt") # type: ignore else: f = io.TextIOWrapper(content) if cache and not cache.exists(): # The file might have been created while downloading/writing. tmp_cache = _tmp(cache) tmp_cache.write_bytes(raw_bytes) if not cache.exists(): tmp_cache.replace(cache) else: tmp_cache.unlink() return _close_when_exhausted(f) def sharded_file(file_pattern: Path, mode: str, max_size: str = "4G") -> MultiFile: folder, name = file_pattern.parent, file_pattern.name assert "?" in name, f"Can't expand give file_pattern: {file_pattern}" n = name.count("?") assert 0 < n < 8 assert "?" * n in name, f"The '?' need to be adjacents in {file_pattern}" assert "r" not in mode files = (folder / name.replace("?" * n, f"%0{n}d" % i) for i in range(10 ** n)) return MultiFile(files, mode, max_size) class SplitFile: def __init__(self, filename: Path, chunk: int, n_chunks: int, mode: str = "r"): assert mode == "r" size = os.path.getsize(filename) self.handle = open(filename, mode) start = chunk * size // n_chunks self.end: int = (chunk + 1) * size // n_chunks if start > 0: self.handle.seek(start - 1) # Skip incomplete line. This avoid crashing when reading eg the middle # of a unicode char. `self.handle.buffer` is a binary file reader. self.handle.buffer.readline() # type: ignore def __enter__(self): return self def __iter__(self): while True: line = self.handle.readline() if not line: return yield line if self.handle.tell() >= self.end: return def readlines(self): return list(self.__iter__()) def close(self): self.handle.close() def __exit__(self, *args): self.close() def get_block_readers(filename: Path, n_readers, mode="t"): index_filename = filename.parent / (filename.name + ".index") if not index_filename.exists(): return [gzip.open(filename, "r" + mode)] index: List[int] = np.load(index_filename) n_chunks = len(index) chunk_per_reader = int(np.ceil(n_chunks / n_readers)) n_readers = int(np.ceil(n_chunks / chunk_per_reader)) start = 0 readers = [] for i in range(n_readers): end = index[min((i + 1) * chunk_per_reader - 1, n_chunks - 1)] r = _blocked_gzip_reader(filename, start, end, mode) readers.append(r) start = end return readers def block_reader(filename: Path) -> Iterable[str]: root, pattern = str(filename)[:-1].split("[", 1) assert root.endswith(".gz"), "Can only read block of a .gz file for now." ii, nn = pattern.strip().split("/") i, n_readers = int(ii), int(nn) index_filename = root + ".index" assert os.path.exists( index_filename ), f"Index {index_filename} not found for {filename}" index: List[int] = np.load(index_filename) n_chunks = len(index) chunk_per_reader = int(np.ceil(n_chunks / n_readers)) n_readers = int(np.ceil(n_chunks / chunk_per_reader)) # I'm not sure how to handle the case where there is less reader than expected. # Currently we return empty readers. start = 0 if i > 0: start = index[min((i - 1) * chunk_per_reader, n_chunks - 1)] end = index[min(i * chunk_per_reader, n_chunks - 1)] return _blocked_gzip_reader(root, start, end, mode="t") def _blocked_gzip_reader(filename, start, end, mode="t") -> Iterable[str]: handle = gzip.open(filename, "r" + mode) handle.seek(start) try: while handle.tell() < end: line = handle.readline() if not line: break yield line finally: handle.close() class BlockedGzipWriter(MultiFile): """Writes a Gzip files which can be read by block. Decreasing the block size may hurt compression, but provides more split points. """ def __init__(self, filename: Path, mode: str, block_size: str = "256M"): assert "w" in mode self.filename = Path(filename) self.index: List[int] = [] self.zipfile: Optional[gzip.GzipFile] = None super().__init__([], mode, block_size) def _open_next_handle(self) -> bool: """Here we never actually close/open handles, we just write the end of block sequence.""" if not self.current_handle: mode = self.mode + "t" self.current_handle = tp.cast(TextIO, gzip.open(self.filename, mode)) assert isinstance(self.current_handle.buffer, gzip.GzipFile) self.zipfile = self.current_handle.buffer return True # Use Z_FULL_FLUSH to allow random access: # https://github.com/madler/zlib/blob/cacf7f1d4e3d44d871b605da3b647f07d718623f/zlib.h#L313 self.current_handle.buffer.flush(zlib_mode=zlib.Z_FULL_FLUSH) # type: ignore self.index.append(self.current_handle.tell()) self.current_block_size = 0 return True def flush(self): assert self.current_handle is not None self.current_handle.flush() def close(self): if self.current_handle is None: return self.current_handle.flush() self.index.append(self.current_handle.tell()) self.current_handle.close() self.current_handle = None index = np.array(self.index, dtype=np.uint64) with open(str(self.filename) + ".index", "wb") as o: np.save(o, index) def grouper(iterable, n): group = [] for x in iterable: group.append(x) if len(group) == n: yield group group = [] if group: yield group PROCESS = psutil.Process() def mem_footprint_gb(pid=None): rss = PROCESS.memory_info().rss return rss / 1_000_000_000 def _tmp(output: Path) -> Path: suffix = "".join(output.suffixes) suffix = ".tmp" + suffix prefix = output.name[: -len(suffix)] _, tmp_path = tempfile.mkstemp(dir=output.parent, prefix=prefix, suffix=suffix) return Path(tmp_path) @functools.lru_cache() def _tmp_dir() -> Path: job_id = os.environ.get("SLURM_JOB_ID") if job_id: return Path("/scratch/slurm_tmpdir") / job_id checkpoint = Path("/checkpoint") / os.environ.get("USER", "") if checkpoint.exists(): tmp = checkpoint / "tmp" tmp.mkdir(exist_ok=True) return tmp return Path("/tmp") if __name__ == "__main__": multiprocessing.set_start_method("fork") main(sys.argv[1:])
EXA-1-master
exa/datasets/RedPajama-Data-main/data_prep/cc/cc_net/cc_net/jsonql.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import functools import itertools import logging import os import sys import time import warnings from pathlib import Path from typing import Callable, Dict, Iterable, List, Optional, Sequence, Sized import submitit from typing_extensions import Protocol class Executor(Protocol): def __call__(self, function: Callable[..., str], *args: Iterable) -> None: ... class SubmititRetryOnTimeout(submitit.helpers.Checkpointable): def __init__(self, fn: Callable): self.fn = fn self.__name__ = fn.__name__ def __call__(self, *args, **kwargs): return self.fn(*args, **kwargs) def get_executor( name: str, log_dir: Path, execution: str, timeout_hour: float = 1.0, mem_gb: int = 1, cpus: int = 1, task_parallelism: int = -1, options: dict = {}, ) -> Executor: execution_mode = execution.split(",")[0] options.update( {kv.split("=", 1)[0]: kv.split("=", 1)[1] for kv in execution.split(",")[1:]} ) if execution_mode == "mp": warnings.warn("Execution mode 'mp' is deprecated, use 'local'.") execution_mode = "local" cluster = None if execution_mode == "auto" else execution_mode # use submitit to detect which executor is available ex = submitit.AutoExecutor(log_dir, cluster=cluster) if task_parallelism == -1: # we are on slurm ex.parameters['slurm_time'] = int(timeout_hour * 60) else: ex.parameters['timeout_min'] = int(timeout_hour * 60) if ex.cluster == "local": ex.parameters['timeout_min'] = int(timeout_hour * 60) # LocalExecutor doesn't respect task_parallelism return functools.partial(custom_map_array, ex, task_parallelism) if ex.cluster == "debug": ex.parameters['timeout_min'] = int(timeout_hour * 60) return debug_executor # We are on slurm if task_parallelism == -1: task_parallelism = 500 ex.update_parameters( name=name, slurm_time=int(timeout_hour * 60), slurm_mem_per_cpu=mem_gb, cpus_per_task=cpus, slurm_array_parallelism=task_parallelism, **options, ) else: ex.update_parameters( name=name, timeout_min=int(timeout_hour * 60), mem_gb=mem_gb, cpus_per_task=cpus, slurm_array_parallelism=task_parallelism, **options, ) return functools.partial(map_array_and_wait, ex) def map_array_and_wait( ex: submitit.AutoExecutor, function: Callable[..., str], *args: Iterable ): f_name = function.__name__ assert len(args) > 0, f"No arguments passed to {f_name}" approx_length = _approx_length(*args) print(f"Submitting {f_name} in a job array ({approx_length} jobs)") jobs = ex.map_array(function, *args) if not jobs: return failed_jobs = [] done = 0 total = len(jobs) job_array_id = jobs[0].job_id.split("_")[0] print(f"Started {f_name} in job array {job_array_id} ({len(jobs)} jobs).") for job in submitit.helpers.as_completed(jobs): done += 1 e = job.exception() if not e: print(f"Finished job {job.job_id} ({done} / {total}).", job.result()) continue print(f"Failed job {job.job_id} ({done} / {total}):", e) failed_jobs.append(job) if failed_jobs: n_failures = 10 message = f"{len(failed_jobs)} / {done} jobs failed while running {f_name}" print(message) for job in failed_jobs[:n_failures]: print(f"Failed {job.job_id} -> {job.paths.stderr}") if len(failed_jobs) > n_failures: print(f"... ({len(failed_jobs) - n_failures} failed job skipped)") raise Exception(message) def debug_executor(function: Callable[..., Optional[str]], *args: Iterable) -> None: logging.getLogger().setLevel(logging.DEBUG) approx_length = _approx_length(*args) for i, x in enumerate(zip(*args)): try: message = function(*x) except Exception: try: import ipdb as pdb # type: ignore except ImportError: import pdb # type: ignore import traceback traceback.print_exc() print("") pdb.post_mortem() sys.exit(1) if message is not None: print(message, f"({i + 1} / {approx_length})") def _approx_length(*args: Iterable): for a in args: if isinstance(a, Sized): return len(a) return -1 def custom_map_array( ex: submitit.AutoExecutor, parallelism: int, function: Callable[..., Optional[str]], *args: Iterable, ) -> None: f_name = function.__name__ assert len(args) > 0, f"No arguments passed to {f_name}" jobs_args = list(zip(*args)) total = len(jobs_args) if parallelism < 0: parallelism = os.cpu_count() or 0 assert parallelism >= 0, f"Can't run any jobs with task_parallelism={parallelism}" print( f"Submitting {total} jobs for {f_name}, with task_parallelism={parallelism}") enqueued = 0 done = 0 running_jobs: List[submitit.Job] = [] failed_jobs: List[submitit.Job] = [] while done < len(jobs_args): # Try to queue more job if we have some bandwidth. if enqueued < total and len(running_jobs) < parallelism: running_jobs.append(ex.submit(function, *jobs_args[enqueued])) enqueued += 1 continue # Else wait for some job to finish if not running_jobs: warnings.warn( f"No more running jobs, yet we submitted only {enqueued} / {total} and finished {done} / {total}" ) break job = get_next_job(running_jobs) running_jobs.remove(job) done += 1 e = job.exception() if not e: print(f"Finished job {job.job_id} ({done} / {total}).", job.result()) continue print(f"Failed job {job.job_id} ({done} / {total}):", e) failed_jobs.append(job) if failed_jobs: n_failures = 10 message = f"{len(failed_jobs)} / {done} jobs failed while running {f_name}" print(message) for job in failed_jobs[:n_failures]: print(f"Failed {job.job_id} -> {job.paths.stderr}") if len(failed_jobs) > n_failures: print(f"... ({len(failed_jobs) - n_failures} failed job skipped)") raise Exception(message) def get_next_job( jobs: Sequence[submitit.Job], poll_frequency: float = 10 ) -> submitit.Job: """ Waits for any of the job to finish and returns it. jobs: list of jobs poll_frequency: frequency in second at which we check job status """ start = time.time() waiting = False while True: for job in jobs: if job.done(): return job if not waiting: job_ids = [j.job_id for j in jobs[:4]] suffix = "..." if len(jobs) > 4 else "" print( f"Waiting on {len(jobs)} running jobs. Job ids: {','.join(job_ids)}{suffix}" ) waiting = True time.sleep(poll_frequency)
EXA-1-master
exa/datasets/RedPajama-Data-main/data_prep/cc/cc_net/cc_net/execution.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import sys import time import warnings from typing import Iterable, Iterator, Sequence, Sized, Tuple, Type import numpy as np HASH_TYPE: Type[np.uint64] = np.uint64 GETPY_WARNING = False class AbstractDedupHashSet(Sized, Iterable[np.uint64]): """A dict-like that returns `True` for keys that have been added more than once. The API is batched and expect np.array as input. This batching grants better perf when using the C++ implementation. """ dtype: Type[np.uint64] = HASH_TYPE def __repr__(self): implementation = type(self).__name__ return f"[{implementation}, len: {len(self)}" def __len__(self) -> int: ... def __contains__(self, values: Sequence[np.uint64]) -> np.ndarray: ... def __getitem__(self, values) -> np.ndarray: ... def __setitem__(self, keys, values) -> None: ... def items(self) -> Iterable[Tuple[np.uint64, np.uint8]]: ... def keys(self) -> Iterable[np.uint64]: ... def __iter__(self) -> Iterator[np.uint64]: return iter(self.keys()) def add(self, h, contains=None): """Add the given keys. First time a key is added the value is set to 0, then it's set to one.""" if not isinstance(h, np.ndarray): h = np.array(h, dtype=HASH_TYPE) if contains is None: contains = self.__contains__(h) self.__setitem__(h, contains) return contains def merge(self, keys, values): contains = self.__contains__(keys) self.__setitem__(keys, contains | values) def dump(self, filename): return self.dump_np(filename) def load(self, filename): return self.load_np(filename) def dump_np(self, filename): kv_type = np.dtype([("k", HASH_TYPE), ("v", np.uint8)]) items = np.fromiter(self.items(), dtype=kv_type, count=len(self)) with open(filename, "wb") as f: np.save(f, items) def load_np(self, filename): items = np.load(str(filename)) keys = items["k"].copy() values = items["v"].copy() self.merge(keys, values) def dump_np2(self, filename): keys = np.fromiter( (k for (k, v) in self.items()), dtype=HASH_TYPE, count=len(self) ) with open(filename, "wb") as f: np.save(f, keys) values = np.fromiter( (v for (k, v) in self.items()), dtype=np.uint8, count=len(self) ) with open(str(filename) + ".val", "wb") as f: np.save(f, values) def load_np2(self, filename): keys = np.load(filename) values = np.load(str(filename) + ".val") self.merge(keys, values) class NaiveHashSet(dict, AbstractDedupHashSet): """Pure python implementation of AbstractDedupHashSet. This implementation is quite fast, since Python dict are heavily optimized. """ def __init__(self, iterable=None): super().__init__() global GETPY_WARNING if GETPY_WARNING: warnings.warn( "Module 'getpy' not found. Deduplication will take more RAM." " Try `pip install cc_net[getpy]" ) GETPY_WARNING = False def __contains__(self, values): """Returns `True` if the object has been added at list once.""" contains_point = super().__contains__ return np.fromiter( map(contains_point, values), count=len(values), dtype=np.uint8 ) def __getitem__(self, values): """Returns `True` if the object has been added at list twice.""" get_point = super().get return np.fromiter( map(lambda x: get_point(x, False), values), count=len(values), dtype=np.uint8, ) def __setitem__(self, keys, values): assert len(keys) == len(values) for k, v in zip(keys, values): dict.__setitem__(self, k, v) try: import getpy as gp # type: ignore class _FlatHashSet(gp.Dict, AbstractDedupHashSet): """C++ backed implementation of AbstractDedupHashSet. This implementation is slightly slower than the Python one but uses 3x less RAM. See https://github.com/atom-moyer/getpy. """ def __init__(self): super().__init__(HASH_TYPE, np.uint8, default_value=False) def __contains__(self, h): """Returns `True` if the object has been added at list once.""" if not isinstance(h, np.ndarray): h = np.array(h, dtype=HASH_TYPE) c = gp.Dict.__contains__(self, h) c.dtype = np.uint8 return c def dump(self, filename): return self.dump_gp(filename) def load(self, filename): return self.load_gp(filename) def dump_gp(self, filename): return gp.Dict.dump(self, str(filename)) def load_gp(self, filename): """Override gp.Dict.load, to correctly merge values instead of overwriting.""" other = gp.Dict(HASH_TYPE, np.uint8, default_value=False) other.load(str(filename)) n = len(other) keys = np.fromiter( (k for (k, v) in other.items()), dtype=HASH_TYPE, count=n ) values = np.fromiter( (v for (k, v) in other.items()), dtype=np.uint8, count=n ) self.merge(keys, values) FlatHashSet: Type[AbstractDedupHashSet] = _FlatHashSet except ImportError: GETPY_WARNING = True FlatHashSet = NaiveHashSet def timeit(message, function, *args): start = time.time() function(*args) end = time.time() print(message, f"took {end - start:.0f}s") def compare_load(*filenames): assert filenames, "No file given" def load_list(): hashes = [] for f in filenames: h = FlatHashSet() h.load(f) print(f"Loaded {h} from {f}.") hashes.append(h) return hashes def load_all(load, ext): hashes = FlatHashSet() for f in filenames: load(hashes, f + ext) def dump_all(hashes, dump, ext): for h, f in zip(hashes, filenames): dump(h, f + ext) hashes = load_list() dump_gp = getattr(FlatHashSet, "dump_gp") if dump_gp is not None: timeit("Dumping using gp.dump", dump_all, hashes, dump_gp, ".gp.test") timeit("Dumping using dump_np", dump_all, hashes, FlatHashSet.dump_np, ".npy.test") timeit( "Dumping using dump_np2", dump_all, hashes, FlatHashSet.dump_np2, ".npy2.test" ) load_gp = getattr(FlatHashSet, "load_gp") if load_gp is not None: timeit("Loading using gp.load", load_all, load_gp, ".gp.test") timeit("Loading using load_np", load_all, FlatHashSet.load_np, ".npy.test") timeit("Loading using load_np2", load_all, FlatHashSet.load_np2, ".npy2.test") # Loading 10 shards: # [dedup] Dumping using gp.dump took 52s # [dedup] Dumping using dump_np took 270s # [dedup] Dumping using dump_np2 took 483s # # [dedup] Loading using gp.load took 654s # [dedup] Loading using load_np took 82s # [dedup] Loading using load_np2 took 76s if __name__ == "__main__": compare_load(*sys.argv[1:])
EXA-1-master
exa/datasets/RedPajama-Data-main/data_prep/cc/cc_net/cc_net/flat_hash_set.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import base64 import hashlib import itertools import urllib.parse from pathlib import Path from typing import Dict, Iterable, List, Optional, Sequence, Set, Union import numpy as np from cc_net import jsonql from cc_net.execution import get_executor from cc_net.jsonql import mem_footprint_gb HASH_SIZE = 4 HASH_TYPE = np.uint32 PUBLIC_FIELDS = ["url", "digest"] COMPUTED_FIELDS = ["cc_segment", "language", "language_score", "bucket", "perplexity"] DATA = Path(__file__).parent.parent / "data" # This is similar to dedup methods but with use 32 bits hashes. def _b2i(b: bytes) -> int: return np.frombuffer(b[:HASH_SIZE], dtype=HASH_TYPE, count=1, offset=0).item(0) def _str_hash(s: str) -> int: h = hashlib.sha1(bytes(s, encoding="utf-8")) return _b2i(h.digest()) def get_hashes(lines: Iterable[str]) -> List[bytes]: h = HASH_SIZE return [hashlib.sha1(bytes(l, encoding="utf-8")).digest()[:h] for l in lines] def encode_hashes(hashes: Iterable[bytes]) -> str: return base64.b64encode(b"".join(hashes)).decode("ascii") def encode_as_hashes(lines: Iterable[str]) -> str: return encode_hashes(get_hashes(lines)) def decode_hashes(compact: str) -> List[bytes]: all_hashes = base64.b64decode(compact) res = [] assert len(all_hashes) % HASH_SIZE == 0 for i in range(len(all_hashes) // HASH_SIZE): chunk = all_hashes[i * HASH_SIZE : (i + 1) * HASH_SIZE] res.append(chunk) return res def encode_line_ids(line_ids: Sequence[int]) -> str: arr = np.array(line_ids, dtype="<u2") return base64.b64encode(arr.tobytes()).decode("ascii") def decode_line_ids(compact: str) -> List[int]: ids_bytes = bytearray(base64.b64decode(compact)) return np.ndarray(len(ids_bytes) // 2, dtype="<i2", buffer=ids_bytes) def get_doc_key(digest: str) -> int: assert digest.startswith("sha1:") h = base64.b32decode(digest[5:]) return _b2i(h[:HASH_SIZE]) class Minifier(jsonql.Transformer): ready = True def __init__(self): self.fields = frozenset(COMPUTED_FIELDS + PUBLIC_FIELDS) def do(self, doc: dict) -> Optional[dict]: line_ids: List[int] = doc.pop("line_ids") fields = self.fields keys = list(doc.keys()) for k in keys: if k not in fields: doc.pop(k, None) p = doc.get("perplexity", 0) doc["line_ids"] = encode_line_ids(line_ids) if p: doc["perplexity"] = round(p, 1) s = doc.get("language_score", 0) if s: doc["language_score"] = round(s, 2) return doc class MetadataFetcher(jsonql.Transformer): """Reads documents from CC snapshot and join precomputed metadata. CC snapshots are split in segments. Each segment is 64Mb long. The metadata must also be stored in segments of the same size and names. """ def __init__(self, folder: Union[Path, str]): self.ready = True self.metadata: Dict[int, dict] = {} self._segments: Set[str] = set() self.read_doc = 0 self.missed_doc = 0 self.missed_par = 0 self.processed_par = 0 if isinstance(folder, str): # detect path passed as string if urllib.parse.urlparse(folder).scheme == "": folder = Path(folder) assert folder.exists(), f"Metadata folder not found: {folder}" self.folder = folder self.segment: str = "" self.segments_read_twice = 0 def meta_file(self, segment: str) -> str: file_name = segment.split("/")[-1] assert file_name.endswith(".warc.wet.gz") or file_name.endswith(".warc.wet") if isinstance(self.folder, str): return urllib.parse.urljoin( self.folder, file_name.replace(".warc.wet", ".json") ) meta_file = self.folder / file_name.replace(".warc.wet", ".json") assert ( meta_file.exists() ), f"Couldn't find metadata file for segment {segment} at {meta_file}" return str(meta_file) def fetch_metadata(self, segment: str) -> None: meta_file = self.meta_file(segment) k = get_doc_key self.metadata = {} collision = 0 for m in jsonql.read_jsons(meta_file): key = k(m["digest"]) if key in self.metadata: collision += 1 self.metadata[key] = m self.log(f"Loaded {len(self.metadata)} metadatas from {meta_file}") if collision > 0: self._logger.warning(f"Found {collision} collisions !") self.segment = segment if segment in self._segments: self.log("Cache miss") self.segments_read_twice += 1 self._segments.add(segment) def do(self, doc: dict) -> Optional[dict]: if self.segment != doc["cc_segment"]: self.fetch_metadata(doc["cc_segment"]) digest = doc["digest"] key = get_doc_key(digest) if key not in self.metadata: return None metadata = self.metadata.pop(key) return self.clean(metadata, doc) def clean(self, metadata: dict, full_doc: dict) -> Optional[dict]: line_ids = decode_line_ids(metadata.pop("line_ids")) lines = full_doc["raw_content"].split("\n") cleaned = [] for l in line_ids: if l >= len(lines) or l < 0: self.missed_par += 1 continue cleaned.append(lines[l]) self.processed_par += len(line_ids) if not cleaned: self.missed_doc += 1 return None full_doc["raw_content"] = "\n".join(cleaned) full_doc["original_nlines"] = full_doc["nlines"] full_doc["original_length"] = full_doc["length"] full_doc["nlines"] = len(cleaned) full_doc["length"] = len(full_doc["raw_content"]) for key, value in metadata.items(): full_doc[key] = value return full_doc def summary(self) -> List[str]: summ = super().summary() mem = mem_footprint_gb() len_cache = len(self.metadata) summ.append( f"Read {self.read_doc:_}, stocking {len_cache:_} doc in {mem:.1f}g." ) if self.missed_doc: r = self.missed_doc / self.processed summ.append(f"! Missed {self.missed_doc} documents ({r:.1%}) !") if self.missed_par: r = self.missed_par / self.processed summ.append(f"! Missed {self.missed_par} paragraphs ({r:.1%}) !") return summ def _expand_files(files: List[Path]) -> List[Path]: if len(files) == 1 and files[0].is_dir(): folder = files[0] files = sorted(folder.glob("*.json.gz")) print(f"Found {len(files)} files under {folder}/*.json.gz") assert files, "No files found" return files def minify_file(file: Path, output: Path) -> str: """Minify the given file.""" jsonql.run_pipes(Minifier(), file=file, output=output) return f"Minified {output}" def minify( files: List[Path], output_dir: Path, execution: str = "mp", parallelism: int = -1 ): """Minify all the files in the given folder.""" files = _expand_files(files) output_dir.mkdir(exist_ok=True) with open(output_dir / "files.txt", "w") as o: for f in files: print(f.name, file=o) outputs = [output_dir / f.name for f in files] ex = get_executor( "minify", output_dir / "logs", execution, timeout_hour=2, cpus=1, task_parallelism=parallelism, ) ex(minify_file, files, outputs) def fetch_metadata_file( file: Union[Path, str], metadata_dir: Union[Path, str], output: Path, cache_dir: Path = None, ): unminifier = MetadataFetcher(metadata_dir) tmp = output.with_name("tmp." + output.name) jsonql.run_pipes(unminifier, file=file, output=tmp) tmp.rename(output) return f"Fetched metadata for {file}. Results at {output}." def fetch_metadata( files: List[str], metadata_dir: Union[Path, str], output_dir: Path, execution: str = "mp", parallelism: int = -1, cache_dir: Path = None, ): if len(files) == 1 and Path(files[0]).is_dir(): folder = Path(files[0]) files = [str(f) for f in sorted(folder.glob("*.json.gz"))] print(f"Found {len(files)} files under {folder}/*.json.gz") assert len(files) > 0, "No files given." output_dir.mkdir(exist_ok=True) outputs = [output_dir / str(f).split("/")[-1] for f in files] if cache_dir is None: cache_dir = output_dir / "wet_cache" cache_dir.mkdir(exist_ok=True) if str(cache_dir) == "none": cache_dir = None files = [f for f, o in zip(files, outputs) if not o.exists()] outputs = [o for o in outputs if not o.exists()] if not files: return ex = get_executor( "unminify", output_dir / "logs", execution, timeout_hour=8, cpus=1, task_parallelism=parallelism, mem_gb=32, ) ex(fetch_metadata_file, files, outputs, itertools.repeat(cache_dir)) if __name__ == "__main__": import func_argparse func_argparse.main(minify_file, minify, fetch_metadata, fetch_metadata_file)
EXA-1-master
exa/datasets/RedPajama-Data-main/data_prep/cc/cc_net/cc_net/minify.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import re import unicodedata UNICODE_PUNCT = { ",": ",", "。": ".", "、": ",", "„": '"', "”": '"', "“": '"', "«": '"', "»": '"', "1": '"', "」": '"', "「": '"', "《": '"', "》": '"', "´": "'", "∶": ":", ":": ":", "?": "?", "!": "!", "(": "(", ")": ")", ";": ";", "–": "-", "—": " - ", ".": ". ", "~": "~", "’": "'", "…": "...", "━": "-", "〈": "<", "〉": ">", "【": "[", "】": "]", "%": "%", "►": "-", } UNICODE_PUNCT_RE = re.compile(f"[{''.join(UNICODE_PUNCT.keys())}]") def replace_unicode_punct(text: str) -> str: return "".join((UNICODE_PUNCT.get(c, c) for c in text)) def remove_unicode_punct(text: str) -> str: """More aggressive version of replace_unicode_punct but also faster.""" return UNICODE_PUNCT_RE.sub("", text) def strip_accents(line: str) -> str: """Strips accents from a piece of text.""" nfd = unicodedata.normalize("NFD", line) output = [c for c in nfd if unicodedata.category(c) != "Mn"] if len(output) == line: return line return "".join(output) # Build a regex matching all control characters. NON_PRINTING_CHARS_RE = re.compile( f"[{''.join(map(chr, list(range(0,32)) + list(range(127,160))))}]" ) DIGIT_RE = re.compile(r"\d") PUNCT_OR_NON_PRINTING_CHARS_RE = re.compile( (UNICODE_PUNCT_RE.pattern + NON_PRINTING_CHARS_RE.pattern).replace("][", "") ) def remove_non_printing_char(text: str) -> str: return NON_PRINTING_CHARS_RE.sub("", text) def normalize_spacing_for_tok(text: str, language: str = "en") -> str: res = ( text.replace("\r", "") # remove extra spaces .replace("(", " (") .replace(")", ") ") .replace(" +", " ") ) res = re.sub(r"\) ([\.\!\:\?\;\,])", r"\)\1", res) res = res.replace("( ", "(").replace(" )", ")") res = re.sub(r"(\d) \%", r"\1\%", res) res = res.replace(" :", ":").replace(" ;", ";") res = res.replace("`", "'").replace("''", ' " ') res = ( res.replace("„", '"') .replace("“", '"') .replace("”", '"') .replace("–", "-") .replace("—", " - ") .replace(" +", " ") .replace("´", "'") .replace("([a-z])‘([a-z])", r"\1'\2/") .replace("([a-z])’([a-z])", r"\1'\2/") .replace("‘", '"') .replace("‚", '"') .replace("’", '"') .replace("''", '"') .replace("´´", '"') .replace("…", "...") # French quotes .replace(" « ", ' "') .replace("« ", '"') .replace("«", '"') .replace(" » ", '" ') .replace(" »", '"') .replace("»", '"') # handle pseudo-spaces .replace(" %", "%") .replace("nº ", "nº ") .replace(" :", ":") .replace(" ºC", " ºC") .replace(" cm", " cm") .replace(" ?", "?") .replace(" !", "!") .replace(" ;", ";") .replace(", ", ", ") .replace(" +", " ") .replace(".", ". ") ) # English "quotation," followed by comma, style if language == "en": res = re.sub(r"\"([,\.]+)", r"\1\"", res) # Czech is confused elif language == "cs" or language == "cz": pass # German/Spanish/French "quotation", followed by comma, style else: res = res.replace(',"', '",') res = re.sub( r"(\.+)\"(\s*[^<])", r"\"\1\2", res ) # don't fix period at end of sentence if ( language == "de" or language == "es" or language == "cz" or language == "cs" or language == "fr" ): res = re.sub(r"(\d) (\d)", r"\1,\2", res) else: res = re.sub(r"(\d) (\d)", r"\1.\2", res) return res def normalize(line: str, accent=True, case=True, numbers=True, punct=1) -> str: line = line.strip() if not line: return line if case: line = line.lower() if accent: line = strip_accents(line) if numbers: line = DIGIT_RE.sub("0", line) if punct == 1: line = replace_unicode_punct(line) elif punct == 2: line = remove_unicode_punct(line) line = remove_non_printing_char(line) return line def slow_normalize_for_dedup(line: str) -> str: return normalize(line, accent=False, case=True, numbers=True, punct=2) def normalize_for_dedup(line: str) -> str: line = line.strip() if not line: return line # case line = line.lower() # numbers line = DIGIT_RE.sub("0", line) line = PUNCT_OR_NON_PRINTING_CHARS_RE.sub("", line) return line
EXA-1-master
exa/datasets/RedPajama-Data-main/data_prep/cc/cc_net/cc_net/text_normalizer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import logging import subprocess from pathlib import Path from typing import List import func_argparse import numpy as np from cc_net import jsonql def get_index(file: Path) -> Path: return file.parent / (file.name + ".index") def _get_tmp(output: Path) -> Path: return output.parent / (output.stem + ".tmp" + output.suffix) def reshard( inputs: List[Path], output: Path, tmp: Path = None, free_original: bool = False, rm_original: bool = False, ) -> Path: """Read the given files and concatenate them to the output file. Can remove original files on completion, or just write dummy content into them to free disk. """ if tmp is None: tmp = _get_tmp(output) logging.info(f"Resharding {inputs} to {tmp}, will move later to {output}") jsonql.run_pipes(file=inputs, output=tmp) tmp.replace(output) tmp_index = get_index(tmp) if tmp_index.exists(): tmp_index.replace(get_index(output)) if not (free_original or rm_original): return output for _input in inputs: if rm_original: _input.unlink() elif free_original: # Overwrite the previous file. # This frees up disk space and allows doit to properly track the success. _input.write_text(f"Resharded into {output}") if get_index(_input).is_file(): get_index(_input).unlink() return output def fast_reshard( inputs: List[Path], output: Path, tmp: Path = None, free_original: bool = False, rm_original: bool = False, ) -> Path: """Same as reshard but don't re-compress the output. This will lead to a bigger output file, especially if the shards are very small. """ if tmp is None: tmp = _get_tmp(output) with open(tmp, "wb") as o: subprocess.run(["cat"] + [str(f) for f in inputs], stdout=o) tmp.replace(output) indexes_files = [get_index(i) for i in inputs] existing_indexes = sum(i.exists() for i in indexes_files) assert ( existing_indexes == len(indexes_files) or existing_indexes == 0 ), "some indexes don't exist." if existing_indexes > 0: indexes = [np.load(idx) for idx in indexes_files] for i in range(len(indexes) - 1): indexes[i + 1] += indexes[i][-1] with open(str(output) + ".index", "wb") as o: np.save(o, np.concatenate(indexes)) if not (free_original or rm_original): return output for _input in inputs: if rm_original: _input.unlink() elif free_original: # Overwrite the previous file. # This frees up disk space and allows doit to properly track the success. _input.write_text(f"Resharded into {output}") if get_index(_input).is_file(): get_index(_input).unlink() return output def determine_groups( inputs: List[Path], target_size: int = 4 * 1024 ** 3 ) -> List[List[Path]]: if len(inputs) == 0: return [] sample = inputs[:10] typical_size = sum(s.stat().st_size for s in sample) / len(sample) group_size = min(target_size // typical_size, len(inputs)) group_size = max(group_size, 1) return jsonql.grouper(inputs, group_size) if __name__ == "__main__": func_argparse.single_main(reshard)
EXA-1-master
exa/datasets/RedPajama-Data-main/data_prep/cc/cc_net/cc_net/regroup.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import argparse import time from pathlib import Path from typing import Dict, List, Optional, Sequence, Tuple, Union import kenlm # type: ignore import numpy as np # type: ignore import pandas as pd # type: ignore import sentencepiece # type: ignore from cc_net import jsonql, text_normalizer LMDescriptor = Union[Dict[str, Path], Union[Path, str]] def get_args(): parser = argparse.ArgumentParser( description="Compute the score of each sentences of a document", parents=[jsonql.io_parser()], ) parser.add_argument("--models", type=str) parser.add_argument("--sentences", action="store_true", default=False) parser.add_argument( "--languages", type=str, help="Ignore doc with another language" ) parser.add_argument("--field", type=str, default=None) parser.add_argument("--newline", type=str, default="\n") return vars(parser.parse_args()) def pp(log_score, length): return 10.0 ** (-log_score / length) class SentencePiece(jsonql.Transformer): # Sentence Pieces model have to be read back from disk. warning_when_pickling = True def __init__( self, model: Path, field: str, output_field: str = "tokenized", normalize: bool = False, ): super().__init__() self.model = model self.field = field self.output_field = output_field self.normalize = normalize self.sp: sentencepiece.SentencePieceProcessor = None def _prepare(self): if self.sp is not None: return self.sp = sentencepiece.SentencePieceProcessor() self.sp.load(str(self.model)) return self def do(self, document: dict) -> dict: text = document[self.field] if self.normalize: text = text_normalizer.normalize(text) tokenized = self.sp.encode_as_pieces(text) document[self.output_field] = " ".join(tokenized) return document class MultiSentencePiece(jsonql.Transformer): warning_when_pickling = True def __init__( self, models: Union[Path, Dict[str, Path]], field: str, output_field: str = "tokenized", normalize: bool = False, ): super().__init__() self.field = field self.output_field = output_field self.normalize = normalize self._prefetch: Sequence[str] = [] if isinstance(models, Path): self.models = { m.name.split(".")[0]: m for m in models.parent.glob(models.name) } else: self.models = models self._prefetch = list(models.keys()) self.sp: Dict[str, sentencepiece.SentencePieceProcessor] = {} def _prepare(self) -> None: for lang in self._prefetch: assert ( self.get_sp(lang) is not None ), f"No model found for {lang} at {self.models.get(lang)}." def get_sp(self, lang) -> Optional[sentencepiece.SentencePieceProcessor]: sp = self.sp.get(lang) if sp is not None: return sp if lang not in self.models: return None start_load = time.time() self.log(f"Loading {self.models[lang]}...") sp = sentencepiece.SentencePieceProcessor() sp.load(str(self.models[lang])) self.sp[lang] = sp load_time = time.time() - start_load self.log(f"Loaded {self.models[lang]} (took {load_time / 60:.1f}min)") return sp def do(self, document: dict) -> Optional[dict]: text = document[self.field] if self.normalize: text = text_normalizer.normalize(text) sp = self.get_sp(document.get("language")) if sp is None: return document tokenized = sp.encode_as_pieces(text) document[self.output_field] = " ".join(tokenized) return document class DocLM(jsonql.Transformer): def __init__( self, models: Union[Path, Dict[str, Path]], field: str, output_field: str = "perplexity", newline: str = "\n", normalize: bool = True, load_method: int = 2, ): super().__init__() self.field = field self.output_field = output_field self.newline = newline self.normalize = normalize self._prefetch: Sequence[str] = [] self.lm_config = kenlm.Config() # This is the default settings # POPULATE will mmap the models and populate the pages. # Maybe that's not the best way when the models are on a network disk. # TODO: try copying models file, try READ or PARALLEL_READ self.lm_config.load_method = load_method if isinstance(models, Path): self.models = { m.name.split(".")[0]: m for m in models.parent.glob(models.name) } else: self.models = models self._prefetch = list(models.keys()) self.lm: Dict[str, kenlm.Model] = {} self.n_lines = 0 def _prepare(self) -> None: for lang in self._prefetch: assert ( self.get_lm(lang) is not None ), f"No model found for {lang} at {self.models.get(lang)}." def get_lines(self, document: dict) -> List[str]: lang = document.get("language") if not lang: return [] if lang not in self.models: return [] content = document.get(self.field) if not content: return [] lines = content.split(self.newline) self.n_lines += len(lines) return lines def get_lm(self, lang: Optional[str]) -> Optional[kenlm.Model]: if lang is None: return None lm = self.lm.get(lang) if lm is not None: return lm model = self.models.get(lang) if model is None: return None start_load = time.time() self.log(f"Loading {self.models[lang]}...") lm = kenlm.Model(str(model), self.lm_config) self.lm[lang] = lm load_time = time.time() - start_load self.log(f"Loaded {self.models[lang]} (took {load_time / 60:.1f}min)") return lm def do(self, document: dict) -> dict: lines = self.get_lines(document) model = self.get_lm(document.get("language")) if not lines or not model: return document doc_log_score, doc_length = 0, 0 for line in lines: if self.normalize: line = text_normalizer.normalize(line) log_score = model.score(line) length = len(line.split()) + 1 doc_log_score += log_score doc_length += length document[self.output_field] = round(pp(doc_log_score, doc_length), 1) return document def summary(self): delay = time.time() - self.start_time h = delay / 3600 s = self.n_lines / delay summ = super().summary() summ.append(f"Processed {self.n_lines:_} lines in {h:.2}h ({s:.1} lines/s).") return summ class SentencesLM(DocLM): """Returns the score of each individual paragraph.""" def do(self, document: dict) -> Optional[str]: # type: ignore lines = self.get_lines(document) model = self.get_lm(document.get("language")) if not lines or not model: return None sentences = [] for line in lines: if self.normalize: line = text_normalizer.normalize(line) log_score = model.score(line) length = len(line.split()) + 1 sentences.append(f"{pp(log_score, length)}\t{line}") return "\n".join(sentences) class PerplexityBucket(jsonql.Transformer): def __init__( self, cutoff_csv: Path, percentile_head: int = 30, percentile_tail: int = 60 ): super().__init__() self.cutoff_csv = cutoff_csv self.percentile_head = percentile_head self.percentile_tail = percentile_tail self.cutoffs: Dict[str, Tuple[float, float]] = {} def _prepare(self) -> None: cutoffs = pd.read_csv(self.cutoff_csv, index_col=0) self.cutoffs = { l: (cutoffs[l][self.percentile_head], cutoffs[l][self.percentile_tail]) for l in cutoffs.columns } def get_bucket(self, doc: dict) -> str: perplexity = doc.get("perplexity", -1) lang = doc.get("language") if lang not in self.cutoffs or perplexity < 0: return "all" pp_head, pp_tail = self.cutoffs[lang] if perplexity < pp_head: return "head" if perplexity < pp_tail: return "middle" return "tail" def do(self, doc: dict) -> dict: doc["bucket"] = self.get_bucket(doc) return doc class DropKeys(jsonql.Transformer): def __init__(self, *keys): super().__init__() self.keys = keys def do(self, document: dict) -> Optional[dict]: if not document: return None for key in self.keys: document.pop(key, None) return document class RemoveSmall(jsonql.Transformer): def __init__(self, field, min_len): super().__init__() self.field = field self.min_len = min_len self.removed = 0 def do(self, document: dict) -> Optional[dict]: if not document: return None content = document.get(self.field) if not content or len(content) < self.min_len: self.removed += 1 return None return document def summary(self): r, n = self.removed, self.processed ratio = r / n if n else 0 return [f"Removed {r} small documents out of {n} ({ratio:.1%})"] def perplexity_to_bin(file: Path, output: Path, models, tok_field: str): pp_field = "perplexity" lm = DocLM(models, tok_field, output_field=pp_field) stats: List[float] = [] max_stats = 1_000_000 batch_size = 100_000 i = 0 batch = [] with open(output, "wb") as o: for doc in jsonql.read_jsons(file): i += 1 pp = lm(doc)[pp_field] if len(stats) < max_stats: stats.append(pp) batch.append(pp) if len(batch) >= batch_size: np.array(batch, dtype=np.float32).tofile(o) batch = [] if len(batch) > 0: np.array(batch, dtype=np.float32).tofile(o) if __name__ == "__main__": args = get_args() output = Path(args["output"]) if output.suffix == ".bin": perplexity_to_bin(args["file"], output, args["models"], args["field"]) else: jsonql.run_pipe(DocLM, args)
EXA-1-master
exa/datasets/RedPajama-Data-main/data_prep/cc/cc_net/cc_net/perplexity.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. #
EXA-1-master
exa/datasets/RedPajama-Data-main/data_prep/cc/cc_net/cc_net/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import time from typing import Dict, Optional import sacremoses # type: ignore from cc_net import jsonql, text_normalizer class RobustTokenizer(jsonql.Transformer): """Moses tokenizer with the expected preprocessing.""" LANG_WITHOUT_ACCENT = {"en", "my"} def __init__(self, lang: str): super().__init__() self.lang = lang self.moses = sacremoses.MosesTokenizer(lang) self.rm_accent = lang in self.LANG_WITHOUT_ACCENT self.ready = True def do(self, text: str): text = text_normalizer.normalize( text, accent=self.rm_accent, case=False, numbers=False, punct=True ) text = text_normalizer.normalize_spacing_for_tok(text, language=self.lang) return self.moses.tokenize(text, return_str=True, escape=False) class DocTokenizer(jsonql.Transformer): """Tokenize the text found in `output_field and store the result in `output_field`.""" def __init__( self, field: str, output_field: str = "tokenized", language_field: str = "language", ): super().__init__() self.field = field self.output_field = output_field self.language_field = language_field self.n_docs = 0 self.tokenizers: Dict[str, RobustTokenizer] = {} def get_tokenizer(self, lang: str) -> Optional[RobustTokenizer]: cache = self.tokenizers if lang in cache: return cache[lang] if lang in ("th", "zh", "ja"): # TODO find a tokenizer for those languages return None cache[lang] = RobustTokenizer(lang) return cache[lang] def do(self, document): lang = document[self.language_field] tok = self.get_tokenizer(lang) if not tok: return document self.n_docs += 1 lines = document[self.field].split("\n") tokenized = "\n".join(tok(l) for l in lines) document[self.output_field] = tokenized return document def summary(self): delay = (time.time() - self.start_time) / 3600 speed = self.n_docs / delay return [ f"Tokenized {self.n_docs:_} documents in {delay:.2}h ({speed:.1} doc/s)." ]
EXA-1-master
exa/datasets/RedPajama-Data-main/data_prep/cc/cc_net/cc_net/tokenizer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # """ Tools to remove duplicate paragraphs across one or several shards. """ import argparse import gc import hashlib import logging import multiprocessing import os import tempfile import time from pathlib import Path from typing import Iterable, List, Optional, Set, Union import numpy as np from cc_net import jsonql from cc_net.flat_hash_set import HASH_TYPE, AbstractDedupHashSet, FlatHashSet from cc_net.jsonql import mem_footprint_gb from cc_net.text_normalizer import normalize_for_dedup BYTE_ORDER = "little" HASH_SIZE = HASH_TYPE(0).nbytes DISABLE_MULTI_PROCESSING = False FilesOrDir = Union[List[Path], Path] def get_args(): parser = argparse.ArgumentParser( description="Read a set of json files and allow to query them", parents=[jsonql.io_parser()], ) parser.add_argument("--field", type=str, default="raw_content") parser.add_argument("--output_hashes", type=str) parser.add_argument("--no_finalize", action="store_false", dest="finalize") # parser.add_argument("--mem_gb", type=int) parser.add_argument("--hashes", type=str) return vars(parser.parse_args()) def _b2i(b: bytes) -> int: return np.frombuffer(b[:HASH_SIZE], dtype=HASH_TYPE, count=1, offset=0).item(0) def str_hash(s: str) -> int: h = hashlib.sha1(bytes(s, encoding="utf-8")) return _b2i(h.digest()) log = logging.getLogger(__name__).info def run_par(processes): # This is different from multiprocessing.map since it allows for kwargs. processes = list(processes) if len(processes) == 1 or DISABLE_MULTI_PROCESSING: for f, args, kwargs in processes: f(*args, **kwargs) return log(f"Starting {len(processes)} subprocess") processes = [ multiprocessing.Process(target=f, args=a, kwargs=kw) for (f, a, kw) in processes ] for p in processes: p.start() for p in processes: p.join() failed = 0 for p in processes: if p.exitcode != 0: log(f"Process failed with code {p.exitcode}: {p}") failed += 1 assert failed == 0, f"{failed} processes failed..." def split_file(file, n_splits): for i in range(n_splits): yield jsonql.SplitFile(file, i, n_splits) def merge(hashes_1, hashes_2, output): if isinstance(hashes_1, str): h1 = FlatHashSet() h1.load(hashes_1) else: h1 = hashes_1 if isinstance(hashes_2, str): h2 = FlatHashSet() h2.load(hashes_2) else: h2 = hashes_2 h2_np = np.fromiter(h2.keys(), dtype=FlatHashSet.dtype, count=len(h2)) dup = h1.__contains__(h2_np) # Dups between h1 and h2 will be set to 1, keys unique to h2 are copied to # h1 with their value. h1[h2_np] = dup if output: h1.dump(output) return h1 def merge_shard(hash_files, output): h = FlatHashSet() h.load(hash_files[0]) for hash_file in hash_files[1:]: h = merge(h, hash_file, output=None) print(f"Merged {hash_file}. We now have {len(h)} hashes.") h.dump(output) print(f"Saved {len(h)} hashes to {output}.") def _dump_sentence_hashes(source: Path, output: Path, field: str): treated = 0 started = time.time() with open(output, "wb") as o: for doc in jsonql.read_jsons(source): content = doc.get(field) if not content: continue h = compute_hashes(content) if h is None: continue h.tofile(o) treated += 1 if treated % 100_000 == 0: delay = time.time() - started log( f"Computed {treated} documents hashes in {delay / 3600:.2f}h ({treated / delay} doc / s)" ) def _remove_duplicate_hashes(duplicates, source, output): batch_size = 100_000 n_lines, n_lines_kept = 0, 0 with open(source, "rb") as f, open(output, "wb") as o: log(f"Opening {source} with mode rb") log(f"Opening {output} with mode wb") while True: hashes = np.fromfile(f, dtype=HASH_TYPE, count=batch_size) if hashes.size == 0: break keep = duplicates[hashes] < 1 kept = keep.sum() hashes *= keep hashes.tofile(o) n_lines += hashes.size n_lines_kept += kept removed = n_lines - n_lines_kept selectivity = n_lines_kept / n_lines if n_lines else 0 log(f"Removed {removed} duplicate hashes with selectivity: {selectivity:3.1%}") def remove_duplicates_sharded( files: List[Path], outputs: List[Path], hashes_dir: FilesOrDir, field: str, group_hashes: int = 1, tmp_dir: Path = None, min_len: int = 0, ): """Remove duplicates in several passes, when all hashes don't fit in RAM. Note: The current implementation is not doing a 'perfect' deduplication. If a hash appear exactly once in each shard of hashes it won't be detected as a duplicate. This can be fixed if hashes are fully dedup beforehand. """ assert len(files) == len(outputs) if isinstance(hashes_dir, list): hashes_files = hashes_dir else: hashes_files = sorted( h for h in Path(hashes_dir).iterdir() if h.suffix == ".bin" ) assert len(hashes_files) > 0, f"no hashes files found in: {hashes_dir}" if len(hashes_files) <= group_hashes: log(f"All hashes can be done in one pass, using DuplicatesRemover on {files}") rm_dups = DuplicatesRemover(field, hashes_files) rm_dups._prepare() run_par( (jsonql.run_pipes, (rm_dups,), dict(file=f, output=o)) for f, o in zip(files, outputs) ) return log(f"Starting deduplicate_sharded on {files}.") tmp_directory = tempfile.TemporaryDirectory(dir=str(tmp_dir) if tmp_dir else None) def tmp_files(i): return [ Path(tmp_directory.name) / (f.name.split(".")[0] + f".{i}.bin") for f in files ] last = tmp_files(0) run_par((_dump_sentence_hashes, (f, tmp, field), {}) for f, tmp in zip(files, last)) if isinstance(hashes_dir, list): hashes_files = hashes_dir else: hashes_files = sorted( h for h in Path(hashes_dir).iterdir() if h.suffix == ".bin" ) for i, group in enumerate(jsonql.grouper(hashes_files, group_hashes)): hashes = FlatHashSet() for h in group: hashes.load(h) log(f"Loaded {h}, up to {len(hashes)} hashes ({mem_footprint_gb()}GB)") intermediates = tmp_files(i + 1) # Remove hashes in parallel. Since modern OS have "copy-on-write" and # `hashes` is read-only, we will only have one version of it in RAM. run_par( (_remove_duplicate_hashes, (hashes, f, tmp), {}) for f, tmp in zip(last, intermediates) ) # Force hashes to be freed, before we start allocating a new one. del hashes gc.collect() for tmp in last: os.remove(tmp) last = intermediates def finalize(source, dedup_hashes, min_len): n_chars, n_chars_kept = 0, 0 with open(dedup_hashes, "rb") as hashes: for doc in jsonql.read_jsons(source): content = doc.get(field) if not content or len(content) < min_len: continue sentences = content.split("\n") doc_hashes = np.fromfile(hashes, dtype=HASH_TYPE, count=len(sentences)) chars, kept_chars = finalize_doc(doc, field, doc_hashes) n_chars += chars n_chars_kept += kept_chars yield doc selectivity = n_chars_kept / n_chars if n_chars else 0 log(f"Kept {n_chars_kept} chars out of {n_chars} ({selectivity:.1%}).") dedup_hashes = last run_par( [ ( jsonql.run_pipe, (finalize,), dict(kwargs=dict(dedup_hashes=h, min_len=min_len), file=f, output=o), ) for h, f, o in zip(dedup_hashes, files, outputs) ] ) tmp_directory.cleanup() def compute_hashes(content) -> Optional[np.ndarray]: if not content: return None lines = content.split("\n") # save hashes as bytes but reinterpret them as uint64. hashes = np.fromiter( ( hashlib.sha1(bytes(normalize_for_dedup(l), encoding="utf-8")).digest()[ :HASH_SIZE ] for l in lines ), dtype=np.dtype((bytes, HASH_SIZE)), count=len(lines), ) return np.ndarray(dtype=HASH_TYPE, buffer=hashes.data, shape=hashes.shape) def finalize_doc(doc, field, hashes=None): content = doc.get(field) lines = content.split("\n") n_chars = len(content) if "original_nlines" not in doc: doc["original_nlines"] = doc.get("nlines", len(lines)) if "original_length" not in doc: doc["original_length"] = doc.get("length", n_chars) if hashes is None: hashes = doc.pop(field + "_hash") # Remove duplicates inside doc seen: Set[int] = set() original_line_ids = doc.get("line_ids", range(len(hashes))) line_ids = [] new_lines = [] for l, line, h in zip(original_line_ids, lines, hashes): if h not in seen and h != 0: line_ids.append(l) new_lines.append(line) seen.add(h) doc[field] = "\n".join(new_lines) doc["nlines"] = len(line_ids) n_chars_kept = len(doc[field]) doc["length"] = n_chars_kept doc["line_ids"] = line_ids return n_chars, n_chars_kept class HashesCollector(jsonql.Transformer): """ Collect all hashes found of lines found in the `field` of the source documents. """ parallelisable = False def __init__( self, field: str, output: Path = None, hashes: AbstractDedupHashSet = None ): super().__init__() self.n_lines = 0 self.field = field self.output = output self.hashes = FlatHashSet() if hashes is None else hashes self.num_hashes_end = 0 self.num_hashes_start = len(self.hashes) def summary(self) -> List[str]: summ = super().summary() h = self.num_hashes_end if self.hashes is None else len(self.hashes) h = (h - self.num_hashes_start) // 1000 max_mem = mem_footprint_gb() n = self.n_lines // 1000 summ.append( f"Found {h:_}k unique hashes over {n:_}k lines. Using {max_mem:.1f}GB of RAM." ) return summ def do(self, doc: dict) -> None: doc_hashes = compute_hashes(doc.get(self.field)) if doc_hashes is None: return self.hashes.add(doc_hashes) self.n_lines += doc_hashes.size def close(self): if self.output and self.hashes: self.hashes.dump(self.output) self.log(f"Saved {len(self.hashes)} hashes to {self.output}") # Save the number of hashes. self.num_hashes_end = len(self.hashes) # Free up mem even if the transformer is kept somewhere else. self.hashes = None # type: ignore class DuplicatesRemover(jsonql.Transformer): """DuplicatesRemover""" # The hashes can't be pickled so they will have to be read back from disk. warn_when_pickling = True def __init__(self, field: str, hashes_files: List[Path], collect: bool = False): """ Remove duplicates """ super().__init__() self.field = field self.collect = collect self.hashes_files = hashes_files self.duplicates: Optional[AbstractDedupHashSet] = None self.n_lines, self.n_lines_kept = 0, 0 self.n_chars, self.n_chars_kept = 0, 0 def _prepare(self): if self.duplicates is not None: return self.duplicates = FlatHashSet() start = time.time() for h in self.hashes_files: shard_start = time.time() self.duplicates.load(str(h)) delay = time.time() - shard_start self.log( f"Loaded hashes from {h} ({mem_footprint_gb():.3f}GB total, took {delay / 60:.1}m)" ) delay = time.time() - start self.log( f"Loaded {len(self.duplicates):_d} hashes from {len(self.hashes_files)} files. ({mem_footprint_gb():.1f}GB total, took {delay / 60:.1}m)" ) def do(self, doc: dict) -> Optional[dict]: content = doc.get(self.field) if not content: return None doc_hashes = compute_hashes(content) assert self.duplicates is not None seen = ( self.duplicates.add(doc_hashes) if self.collect else self.duplicates[doc_hashes] ) keep = seen < True kept = keep.sum() if kept == 0: return None doc_hashes = doc_hashes * keep self.n_lines += keep.size self.n_lines_kept += kept chars, kept_chars = finalize_doc(doc, self.field, hashes=doc_hashes) self.n_chars += chars self.n_chars_kept += kept_chars return doc def summary(self) -> List[str]: summ = super().summary() end_time = time.time() n_lines_kept, n_lines, n_docs = self.n_lines_kept, self.n_lines, self.processed speed = n_docs / (end_time - self.start_time) summ.append( f"Processed {self.n_lines} lines in {n_docs} docs. [{speed:.1f} doc/s]" ) selectivity = self.n_lines_kept / self.n_lines if n_lines else 0 summ.append(f"Kept {n_lines_kept} lines out of {n_lines} ({selectivity:.1%}).") n_chars_kept, n_chars = self.n_chars_kept, self.n_chars selectivity = n_chars_kept / n_chars if n_chars else 0 summ.append(f"Kept {n_chars_kept} chars out of {n_chars} ({selectivity:.1%}).") return summ def deduplicate( file: jsonql.ReadableFileLike, field: str = "raw_content" ) -> Iterable[dict]: """Remove duplicates of the given file (but keep the first occurence).""" dup_remover = DuplicatesRemover(field, [], collect=True) return dup_remover.map(jsonql.read_jsons(file)) def deduplicate_two_pass( file: jsonql.FileDescriptor, field: str = "raw_content" ) -> Iterable[dict]: """Remove duplicates of the given file (even removing the first occurence). This is what is done in the paper, and in mine.py """ try: if isinstance(file, Path): hash_file: Path = file.with_suffix(".bin") else: hash_file = jsonql._tmp(Path("hashes.bin")) jsonql.run_pipes( jsonql.JsonReader(), HashesCollector(field, output=hash_file), file=file ) dup_remover = DuplicatesRemover(field, [hash_file]) return dup_remover.map(jsonql.read_jsons(file)) finally: if hash_file.exists(): hash_file.unlink()
EXA-1-master
exa/datasets/RedPajama-Data-main/data_prep/cc/cc_net/cc_net/dedup.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import contextlib import functools import logging import re import tempfile import time import urllib.request from pathlib import Path from typing import ContextManager, Iterable, Iterator, List, Optional, Sequence from urllib.parse import urlparse import func_argparse from bs4 import BeautifulSoup # type: ignore from cc_net import jsonql WET_URL_ROOT = "https://data.commoncrawl.org" logger = logging.getLogger(__name__) def cc_wet_paths_url(dump_id: str) -> str: return "/".join([WET_URL_ROOT, "crawl-data", "CC-MAIN-" + dump_id, "wet.paths.gz"]) @functools.lru_cache() def cc_segments(dump_id: str, cache_dir: Path = None) -> List[str]: wet_paths = cc_wet_paths_url(dump_id) cache_dir = cache_dir or jsonql._tmp_dir() wet_paths_cache = cache_dir / f"wet_{dump_id}.paths.gz" f = jsonql.open_remote_file(wet_paths, cache=wet_paths_cache) return [segment.strip() for segment in f] def list_dumps() -> List[str]: home_page = BeautifulSoup( urllib.request.urlopen("http://index.commoncrawl.org/"), features="html.parser" ) dumps = [a.get("href").strip("/") for a in home_page.findAll("a")] dumps = [a[8:] for a in dumps if re.match(r"^CC-MAIN-\d\d\d\d-\d\d$", a)] return sorted(dumps) def ls(): for dump in list_dumps(): print(dump, "->", cc_wet_paths_url(dump)) def parse_doc(headers: List[str], doc: List[str]) -> Optional[dict]: """BEFORE 2020, Headers format is: WARC/1.0 WARC-Type: conversion WARC-Target-URI: [url] WARC-Date: [crawldate: 2019-02-15T19:15:59Z] WARC-Record-ID: <urn:uuid:8865156e-d5f1-4734-9c68-4b46eaf2bb7e> WARC-Refers-To: <urn:uuid:340152e2-65cf-4143-b522-8ce4e2d069d7> WARC-Block-Digest: sha1:S3DTWCONT2L6ORTGCY2KXEZ37LNBB7V2 Content-Type: text/plain Content-Length: 7743 AFTER 2020, Headers format is: WARC/1.0 WARC-Type: conversion WARC-Target-URI: http://100greatpiano.com/video/wilhelm-kempff-plays-beethovens-moonlight-sonata/ WARC-Date: 2023-01-26T22:21:08Z WARC-Record-ID: <urn:uuid:ccafeba8-a08b-47d0-86be-cf0855f4f6d0> WARC-Refers-To: <urn:uuid:935a6ef4-8708-41f5-a152-412cdf1b48c1> WARC-Block-Digest: sha1:2WURD74BLDCLPV6INBQEQ6OOJRQDPJBA WARC-Identified-Content-Language: eng,jpn Content-Type: text/plain Content-Length: 886 """ if not headers or not doc: return None try: warc_type = headers[1].split()[1] if warc_type != "conversion": return None url = headers[2].split()[1] date = headers[3].split()[1] digest = headers[6].split()[1] # process length, may be in the 8th or 9th position try: length = int(headers[9].split()[1]) except IndexError as e: length = int(headers[8].split()[1]) except Exception as e: logger.warning("Can't parse header:", e, headers, doc) return None # Docs are separated by two empty lines. last = None if not doc[-1] and not doc[-2]: last = -2 title, doc = doc[0], doc[1:last] return { "url": url, "date_download": date, "digest": digest, "length": length, "nlines": len(doc), "source_domain": urlparse(url).netloc, "title": title, "raw_content": "\n".join(doc), } def group_by_docs(warc_lines: Iterable[str]) -> Iterable[dict]: doc: List[str] = [] headers, read_headers = [], True for warc in warc_lines: warc = warc.strip() if read_headers: headers.append(warc) read_headers = warc != "" continue if warc == "WARC/1.0": # We reached the beginning of the new doc. parsed = parse_doc(headers, doc) if parsed is not None: yield parsed headers, doc, read_headers = [warc], [], True continue doc.append(warc) # Return the last document if doc: parsed = parse_doc(headers, doc) if parsed is not None: yield parsed def parse_warc_file(lines: Iterable[str], min_len: int = 1) -> Iterator[dict]: n_doc = 0 n_ok = 0 for doc in group_by_docs(lines): n_doc += 1 if not doc or len(doc["raw_content"]) < min_len: continue n_ok += 1 yield doc if n_doc > 0: logger.info(f"Kept {n_ok:_d} documents over {n_doc:_d} ({n_ok / n_doc:.1%}).") else: logger.info(f"Found no documents") def dl( dump: str, shard: int, num_shards: int, output: Path = None, num_segments_per_shard: int = 0, ): """Download a shard of the common crawl, and export it to json. Arguments: output: filename of the output file dump: CC dump id shard: id of the shard num_shards: total number of shards num_segments_per_shard: manual control of the number of segment per shard. """ reader = CCShardReader(dump, shard, num_shards, num_segments_per_shard) jsonql.run_pipes(inputs=reader, output=output) logger.info(f"Done. {output} is ready.") class CCSegmentsReader(Iterable[dict]): def __init__( self, segments: Sequence[str], min_len: int = 0, cache_dir: Path = None ): self._segments = segments self.min_len = min_len if cache_dir is not None: cache_dir = Path(cache_dir) cache_dir.mkdir(exist_ok=True) self.cache_dir = cache_dir self.retrieved_segments = 0 def segment_url(self, segment: str): return "/".join((WET_URL_ROOT, segment)) @property def segments(self) -> Sequence[str]: return self._segments def open_segment(self, segment: str) -> Iterable[str]: url = self.segment_url(segment) file: Optional[Path] = None if self.cache_dir: file = self.cache_dir / segment.split("/")[-1] if not file or not file.exists(): self.retrieved_segments += 1 return jsonql.open_remote_file(url, cache=file) def __iter__(self) -> Iterator[dict]: n = len(self.segments) for i, segment in enumerate(self.segments): start = time.time() # TODO: start downloading the next segment in the background for doc in parse_warc_file(self.open_segment(segment), self.min_len): doc["cc_segment"] = segment yield doc if i + 1 >= n: continue end = time.time() delay = (end - start) / 3600 * (n - 1 - i) logger.info( f"Parsed {i + 1} / {n} files. Estimated remaining time: {delay:.1f}h" ) class CCShardReader(CCSegmentsReader): def __init__( self, dump: str, shard: int, num_shards: int = -1, num_segments_per_shard: int = 40, min_len: int = 300, cache_dir: Path = None, ): """Downloads a shard of Common Crawl, and yields dict. Arguments: dump: CC dump id shard: id of the shard num_shards: total number of shards num_segments_per_shard: if set will limit the number of files by shard. Useful for testing. """ super().__init__([], min_len=min_len, cache_dir=cache_dir) self.dump = dump self.shard = shard assert num_shards > 0 or num_segments_per_shard > 0 self.num_shards = num_shards self.num_segments_per_shard = num_segments_per_shard @property def segments(self) -> Sequence[str]: # Delaying the initialization allows to delay the looking up of the WET files if self._segments: return self._segments segments = cc_segments(self.dump, self.cache_dir) n = len(segments) if self.num_shards < 0: self.num_shards = n // self.num_segments_per_shard i_min = (self.shard * n) // self.num_shards i_max = ((self.shard + 1) * n) // self.num_shards if self.num_segments_per_shard > 0: i_max = min(i_max, i_min + self.num_segments_per_shard) self._segments = segments[i_min:i_max] return self._segments def _tmp(prefix: str = None, suffix: str = None, dir: Path = None) -> Path: _, tmp_path = tempfile.mkstemp(prefix=prefix, suffix=suffix, dir=dir) return Path(tmp_path) @contextlib.contextmanager def timer(name: str = "-"): start = time.time() yield None delay = time.time() - start print(f"{name} took {delay:.1f}s") def benchmark(tmp_path: Path): segments = [ "crawl-data/CC-MAIN-2019-09/segments/1550249406966.99/wet/CC-MAIN-20190222220601-20190223002601-00441.warc.wet.gz" ] seg_file = tmp_path / "CC-MAIN-20190222220601-20190223002601-00441.warc.wet.gz" with timer("from network"): list(CCSegmentsReader(segments)) with timer("from network, with caching"): list(CCSegmentsReader(segments, cache_dir=tmp_path)) assert seg_file.exists() with timer("from disk"): CCSegmentsReader(segments, cache_dir=tmp_path) seg_file.unlink() if __name__ == "__main__": func_argparse.main(ls, dl)
EXA-1-master
exa/datasets/RedPajama-Data-main/data_prep/cc/cc_net/cc_net/process_wet_file.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import func_argparse import cc_net.mine def main(): func_argparse.parse_and_call(cc_net.mine.get_main_parser()) if __name__ == "__main__": main()
EXA-1-master
exa/datasets/RedPajama-Data-main/data_prep/cc/cc_net/cc_net/__main__.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import argparse import collections from pathlib import Path from typing import Dict, Optional import fasttext # type: ignore from cc_net import jsonql def get_args(): parser = argparse.ArgumentParser( description="Read a list of json files and split them ", parents=[jsonql.io_parser()], ) parser.add_argument("--pattern", type=str) parser.add_argument("--field", type=str, default="raw_content") parser.add_argument("--threshold", type=float, default=0) parser.add_argument("--model", type=str, required=True) parser.add_argument("--out_field", type=str, default="language") parser.add_argument("--top", type=int, default=1) return vars(parser.parse_args()) def predict(model, text: str, k: int = 1): labels, scores = model.predict(text, k=k) labels = [l.replace("__label__", "") for l in labels] return labels, scores def avg_predict(model, text): # Overall gives the same results than predict(model, text.replace("\n", "")) text = text.split("\n") text_len = sum(len(line) for line in text) if text_len == 0: return None, 0 scores = [predict(model, line) for line in text] scores_by_label: Dict[str, float] = collections.defaultdict(float) for (label, score), line in zip(scores, text): scores_by_label[label] += score * len(line) label, score = max(scores_by_label.items(), key=lambda kv: kv[1]) return label, score / text_len class Classifier(jsonql.Transformer): def __init__( self, model: Path, field: str, out_field: str, threshold: float = 0, top: int = 1, language: str = None, rounding: int = 2, ): super().__init__() self.model = model assert model.exists(), f"Model {model} doesn't exist." self.field = field self.out_field = out_field self.threshold = threshold self.top = top self.language = language self.rounding = rounding # Fasttext model is a C object and can't be pickled self.fasttext_model: fasttext._FastText = None self.n_doc, self.n_accepted, self.n_ignored, self.n_disagreement = 0, 0, 0, 0 self.cnt: Dict[str, int] = {} def _prepare(self): self.log(f"Loading {self.model}") self.fasttext_model = fasttext.load_model(str(self.model)) def predict(self, text): return predict(self.fasttext_model, text.replace("\n", ""), k=self.top) def do(self, doc: dict) -> Optional[dict]: text = doc.get(self.field, None) if not text: return None if self.language and doc.get("language") != self.language: self.n_ignored += 1 return doc self.n_doc += 1 labels, scores = self.predict(text) scores.round(self.rounding, out=scores) for l in labels: self.cnt[l] = self.cnt.get(l, 0) + 1 if self.top == 1: existing_label = doc.get(self.out_field, None) if existing_label and labels[0] != existing_label: self.n_disagreement += 1 if all(s < self.threshold for s in scores): return None self.n_accepted += 1 if self.top == 1: doc[self.out_field] = labels[0] doc[self.out_field + "_score"] = scores[0] else: doc[self.out_field] = {l: s for l, s in zip(labels, scores)} return doc def summary(self): n_doc, n_accepted, n_disagreement, cnt, out_field = ( self.n_doc, self.n_accepted, self.n_disagreement, self.cnt, self.out_field, ) summ = super().summary() if self.threshold > 0: ratio = n_accepted / n_doc if n_doc else 0 summ.append(f"Kept {n_accepted} docs over {n_doc} ({ratio :.1%})") summ.append(f"Found {len(cnt)} {out_field} labels: {cnt}") disagreement = n_disagreement / n_doc if n_doc else 0 if disagreement: summ.append(f"{out_field} disagreement is at {disagreement:.1%}.") return summ def __repr__(self): return f"Classifier({self.model})" def classify_and_split(file, output, pattern, **kwargs): classifier = Classifier(**kwargs) splitter = jsonql.split(pattern) jsonql.run_pipes(classifier, splitter, file=file, output=output) if __name__ == "__main__": args = get_args() pattern = args.get("pattern") if pattern: classify_and_split(**args) else: args.pop("pattern") jsonql.run_pipe(Classifier, args)
EXA-1-master
exa/datasets/RedPajama-Data-main/data_prep/cc/cc_net/cc_net/split_by_lang.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import contextlib import functools import gzip import logging import multiprocessing from collections import defaultdict from pathlib import Path from typing import Callable, Dict, Iterator, List, NamedTuple, Optional, Tuple import cc_net from cc_net import jsonql from cc_net.process_wet_file import CCSegmentsReader # Set this to a directory to use as cache for intermediary files. # This helps for debugging. WET_CACHE = None # WET_CACHE = Path("wet_cache") S3_BUCKET = "https://dl.fbaipublicfiles.com/cc100" VERSION = "1.0.0" CC_100_SNAPSHOTS = [ "2018-05", "2018-09", "2018-13", "2018-17", "2018-22", "2018-26", "2018-30", "2018-34", "2018-39", "2018-43", "2018-47", "2018-51", ] BIG_LANGUAGES = { "es_XX", "fr_XX", "de_DE", "ja_XX", "ru_RU", "zh_CN", "en_XX", "it_IT", "ar_AR", "nl_XX", "pl_PL", "pt_XX", "tr_TR", "zh_TW", } class Paragraph(NamedTuple): lang: str text: str lm_score: float def _dl_shard(snapshot: str, shard: int) -> Iterator[Paragraph]: """ Download metadata from a shards. Sample metadata: { "cc_segment": "crawl-data/CC-MAIN-2018-51/segments/1544376823009.19/wet/CC-MAIN-20181209185547-20181209211547-00000.warc.wet.gz", "digest": "sha1:222LWNHN5FM26XGS7WJSMI6IISTVWBKJ", "url": "http://personals.gearplay.com/ads/DRJONES.htm", "line_ids": [10], "languages": ["en_XX"], "lm_scores": [-2.658], } """ snapshot = snapshot.replace("-", "_") name = f"snap_{snapshot}_batch_{shard}.json.gz" url = "/".join([S3_BUCKET, VERSION, name]) shard_metadata: Dict[str, Dict[str, dict]] = defaultdict(dict) try: cache_file: Optional[Path] = None if WET_CACHE is not None: cache_file = WET_CACHE / name metadata_file = jsonql.open_remote_file(url, cache_file) except: logging.warning(f"Couldn't open {url}") return for meta in jsonql.read_jsons(metadata_file): shard_metadata[meta["cc_segment"]][meta["digest"]] = meta found_pars, missed_pars = 0, 0 for seg, segment_metadata in shard_metadata.items(): for doc in CCSegmentsReader([seg], cache_dir=WET_CACHE): if doc["digest"] not in segment_metadata: continue meta = segment_metadata[doc["digest"]] full_pars = [doc["title"]] + doc["raw_content"].split("\n") assert len(meta["line_ids"]) == len(meta["languages"]) assert len(meta["line_ids"]) == len(meta["lm_scores"]) for i, lang, score in zip( meta["line_ids"], meta["languages"], meta["lm_scores"] ): if snapshot != "2018-51" and lang in BIG_LANGUAGES: # Big languages only come from "2018-51" snapshot continue if i >= len(full_pars): # This is because CC100 was created by saving only urls. # Some urls appears in different snapshot with slightly different # versions, but we don't know which one is correct. # Here we read both versions, but some index may end up # being incorrect. # This impact ~3% documents. missed_pars += 1 continue yield Paragraph(lang, full_pars[i], score) found_pars += 1 if missed_pars > 0: logging.warning( f"Missed {missed_pars} ({missed_pars / found_pars:%}) paragraphes." ) def _split_by_par( paragraphes: Iterator[Paragraph], snapshot: str, shard: int, outdir: Path ) -> int: outdir.mkdir(exist_ok=True) outfiles = {} num_pars = 0 try: for par in paragraphes: # MODIFY ME: filter paragraph if needed (languages, score, ...) if par.lang not in outfiles: (outdir / par.lang).mkdir(exist_ok=True) outfile = outdir / par.lang / f"snap_{snapshot}_batch_{shard}.gz" outfiles[par.lang] = gzip.open(outfile, "wt") print(par.text, file=outfiles[par.lang]) num_pars += 1 finally: for o in outfiles.values(): o.close() logging.info(f"Extracted {num_pars:_d} paragraphs from shard {snapshot}_{shard}") return num_pars def dl_shard(snapshot: str, shard: int, outdir: Path) -> int: return _split_by_par(_dl_shard(snapshot, shard), snapshot, shard, outdir) @contextlib.contextmanager def unordered_map(processes: int): if processes == 0: yield map return with multiprocessing.Pool(processes) as pool: yield pool.imap_unordered def dl_snapshot(snapshot: str, outdir: Path, processes: int = 1) -> None: _dl_shard = functools.partial(dl_shard, snapshot, outdir=outdir) with unordered_map(processes) as umap: num_pars = sum(umap(_dl_shard, range(500))) logging.info(f"Extracted {num_pars:_d} paragraphs from snapshot {snapshot}.") def dl( snapshot: str = None, outdir: Path = Path("data_cc100"), processes: int = 1 ) -> None: """ Download CC100 corpus. Will create one text file per language and CC snapshot. - snapshot: restrict to one snapshot. Useful for parallelization. - outdir: output directory - processes: number of processes to use """ if snapshot is None: snapshots = CC_100_SNAPSHOTS else: snapshots = snapshot.split(",") invalids = [s for s in snapshots if s not in CC_100_SNAPSHOTS] assert not invalids, f"Invalid snapshots {invalids}, chose from {CC_100_SNAPSHOTS}" for snapshot in snapshots: dl_snapshot(snapshot, outdir, processes) if __name__ == "__main__": import func_argparse func_argparse.single_main(dl)
EXA-1-master
exa/datasets/RedPajama-Data-main/data_prep/cc/cc_net/cc_net/tools/dl_cc_100.py
EXA-1-master
exa/datasets/RedPajama-Data-main/data_prep/cc/cc_net/cc_net/tools/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # """ This code is used to train a fastText classifier to label document with DMOZ categories. The data, distributed under the cc-by 3.0 license (https://web.archive.org/web/20140605215533/http://www.dmoz.org/license.html), can be downloaded from https://web.archive.org/web/20140617145301/http://rdf.dmoz.org/rdf/content.rdf.u8.gz. """ import urllib.request from io import StringIO from pathlib import Path from typing import Dict, Set from urllib.parse import urlparse import func_argparse from lxml import etree # type: ignore from cc_net import jsonql TaggedUrls = Dict[str, Set[str]] DMOZ_TAGS_URL = "https://web.archive.org/web/20140617145301/http://rdf.dmoz.org/rdf/content.rdf.u8.gz" def add_tags(url: str, tags: Set[str], url2tags: TaggedUrls): if url in url2tags: url2tags[url] &= tags else: url2tags[url] = tags def load_tags(filename: Path = None) -> TaggedUrls: if filename is None: with StringIO("".join(jsonql.open_remote_file(DMOZ_TAGS_URL))) as dmoz: tree = etree.parse(dmoz) else: tree = etree.parse(str(filename)) root = tree.getroot() url2tags: Dict[str, Set[str]] = {} for external_page in root.iterfind("{http://dmoz.org/rdf/}ExternalPage"): url = external_page.get("about") domain = urlparse(url).netloc for topic in external_page.iterfind("{http://dmoz.org/rdf/}topic"): # print(url, topic.text) # Tags looks like Top/Arts/Animation/Anime/Collectibles tags = set(topic.text.split("/")[1:]) add_tags(url, tags, url2tags) add_tags(domain, tags, url2tags) return url2tags def dl(output: Path) -> None: urllib.request.urlretrieve(DMOZ_TAGS_URL, output) def make_corpus(file: Path, tags_file: Path = None, output: Path = None) -> None: """ Loads a tags file and create a training dataset using the given webpages. Arguments: - file: CC shard file - tags_file: dmoz tagging file, (like the one produced by `dl`) - output: "" """ url2tags = load_tags(tags_file) with jsonql.open_write(output) as o: for document in jsonql.read_jsons(file): if not document: continue url = document["url"] domain = document["source_domain"] if url in url2tags: tags = url2tags[url] elif domain in url2tags: tags = url2tags[domain] else: continue if len(tags) == 0: continue fasttext_tags = ["__label__" + tag for tag in tags] content = document["tokenized"].replace("\n", " ").lower() if len(content) > 200: print(" ".join(fasttext_tags), content, file=o) # type: ignore if __name__ == "__main__": func_argparse.single_main(make_corpus)
EXA-1-master
exa/datasets/RedPajama-Data-main/data_prep/cc/cc_net/cc_net/tools/make_dmoz_corpus.py