python_code
stringlengths
0
992k
repo_name
stringlengths
8
46
file_path
stringlengths
5
162
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # """ Tools to search sentences in CC similar to sentences in another corpus. """ import functools import logging import math import subprocess from collections import Counter from pathlib import Path from typing import Iterable, List, Optional, Set, Tuple import func_argparse import submitit from kenlm import Model as KenlmModel # type: ignore from sentence_splitter import SentenceSplitter # type: ignore from sentencepiece import SentencePieceProcessor # type: ignore from cc_net import dedup, jsonql, perplexity, text_normalizer KENLM = Path("./bin/lmplz") KENLM_BUILD = Path("./bin/build_binary") VOCAB_SIZE = 2 ** 16 - 10 PROCESSES = 16 def normalize(corpus: Path, output_dir: Path) -> Path: normalized = output_dir / (corpus.stem + ".normalized") if normalized.exists(): return normalized print("Will normalize", corpus, "to", normalized) jsonql.run_pipes( jsonql.Mapper(text_normalizer.normalize), file=corpus, output=normalized, processes=PROCESSES, ) return normalized # TODO use classic files directory. def sp_model(lang: str) -> Path: return Path(f"/checkpoint/guw/cc_clean/lm_sp/{lang}.sp.model") def _dataset(dataset: Optional[Path], lang: str) -> Path: return ( dataset or Path("/datasets01_101/common_crawl/020919") / f"{lang}_head_*.json.gz" ) class SentencePiece(jsonql.Transformer): def __init__(self, model: Path): super().__init__() self.model = model self.sp: SentencePieceProcessor = None # type: ignore def _prepare(self): self.sp = SentencePieceProcessor() self.sp.load(str(self.model)) def do(self, line: str) -> str: return " ".join(self.sp.encode_as_pieces(line)) class ExtractSentences(jsonql.Transformer): def __init__( self, sp_model: Path, lm_model: Path, field: str = "raw_content", threshold: float = float("+inf"), ): super().__init__() self.sp_model = sp_model self.lm_model = lm_model self.field = field self.threshold = threshold self.sp: SentencePieceProcessor = None self.lm: KenlmModel = None self.splitter: SentenceSplitter = None self.hashes: Set[int] = set() def _prepare(self): self.sp = SentencePieceProcessor() self.sp.load(str(self.sp_model)) self.splitter = SentenceSplitter("en") self.lm = KenlmModel(str(self.lm_model)) def do(self, document: dict) -> Optional[str]: content: Optional[str] = document.get(self.field) if not content: return None all_sentences = [ s for l in content.split("\n") if l for s in self.splitter.split(text=l) ] unique_sentences = [] for s in all_sentences: if not s: continue h = dedup.str_hash(s) if h in self.hashes: continue self.hashes.add(h) unique_sentences.append(s) scores = [] for sentence in unique_sentences: normalized = text_normalizer.normalize(sentence) pieces = self.sp.encode_as_pieces(normalized) log_score = self.lm.score(" ".join(pieces)) pp = -1 if len(pieces): pp = perplexity.pp(log_score, len(pieces)) scores.append(pp) res = filter( lambda pp_s: self.threshold > pp_s[0] > 0, zip(scores, unique_sentences) ) return "\n".join(f"{pp}\t{s}" for (pp, s) in res) or None def tokenize(corpus: Path, output_dir: Path, lang: str) -> Path: tokenized = output_dir / (corpus.stem + ".tokenized") if tokenized.exists(): return tokenized print("Will SentencePiece", corpus, "to", tokenized) jsonql.run_pipes( SentencePiece(sp_model(lang)), file=normalize(corpus, output_dir), output=tokenized, processes=PROCESSES, ) return tokenized def train_lm( corpus: Path, output_dir: Path, lang: str = "en", vocab_size: int = VOCAB_SIZE, ngrams: int = 5, ): lm_text_file = output_dir / (corpus.stem + ".arpa") lm_bin_file = output_dir / (corpus.stem + ".arpa.bin") if lm_bin_file.exists(): return lm_bin_file assert KENLM.exists(), f"{KENLM} binary to train kenlm model not found." normalized = normalize(corpus, output_dir) tokenized = tokenize(normalized, output_dir, lang) print("Will train LM", lm_text_file, "on", tokenized) kenlm_cmd = [ str(KENLM), f"--order={ngrams}", "--memory=8G", f"--temp_prefix={jsonql._tmp_dir()}", f"--text={tokenized}", f"--arpa={lm_text_file}", f"--vocab_estimate={vocab_size}", "--discount_fallback", ] subprocess.run(kenlm_cmd, check=True) print("Will create binary model", lm_bin_file, "from", lm_text_file) subprocess.run([str(KENLM_BUILD), str(lm_text_file), str(lm_bin_file)], check=True) return lm_bin_file def uniform_sampling_wrt_perplexity( paragraphes: Iterable[str], rounding: float = 100.0, cut: float = 1000.0, samples: int = 20, ) -> Iterable[str]: max_samples = math.floor(cut / rounding * samples) n = 0 buckets = Counter([0.0]) logging.info(f"Will sample {max_samples} sentences.") for lines in paragraphes: for line in lines.split("\n"): if not line: continue pp = float(line[: line.find("\t")]) pp = math.floor(pp / rounding) * rounding if pp > cut: continue if buckets[pp] > samples: continue yield line buckets[pp] += 1 if buckets[pp] > samples: logging.info(f"Bucket {pp} is full ({samples} samples, {n} total)") n += 1 if n > max_samples: return def sample( corpus: Path, output_dir: Path, dataset: Path = None, n: int = 10_000, lang: str = "en", ) -> Path: sample_file = output_dir / (corpus.stem + ".pp_sample.tsv") if sample_file.exists(): return sample_file dataset = _dataset(dataset, lang) extractor = ExtractSentences( sp_model(lang), train_lm(corpus, output_dir), field="raw_content" ) sampling = functools.partial( uniform_sampling_wrt_perplexity, rounding=100.0, cut=1000.0, samples=n // 10 ) print(f"Will sample data from {dataset} to {sample_file}") try: jsonql.run_pipes( extractor, sampling, file=dataset, output=sample_file, processes=PROCESSES ) except Exception: sample_file.unlink() raise subprocess.run(["sort", "-n", "-o", sample_file, sample_file], check=True) subprocess.run(["head", sample_file], check=True) return sample_file def mine( corpus: Path, output_dir: Path, threshold: float, dataset: Path = None, lang: str = "en", ) -> List[Path]: """Search sentences in CC similar to the one in the given corpus. Args: - corpus: corpus to train the LM one. Assumes one sentence per line. - output_dir: where to store the results - threshold: maximum perplexity to have - dataset: glob pattern matching CC shards. - lang: search in the files of this language """ dataset = _dataset(dataset, lang) files = list(dataset.parent.glob(dataset.name)) outputs = [output_dir / (f.stem + ".tsv") for f in files] if all(o.exists() for o in outputs): return outputs n = len(outputs) sp = [sp_model(lang)] * n lm = [train_lm(corpus, output_dir)] * n thresholds = [threshold] * n ex = submitit.AutoExecutor(output_dir / "mining_logs") ex.update_parameters( name="mine", cpus_per_task=PROCESSES, timeout_min=60 * 24 // PROCESSES, mem_gb=10, ) jobs = ex.map_array(_mine, files, outputs, sp, lm, thresholds) print("Submited job array:", jobs[0]) for j in submitit.helpers.as_completed(jobs): (i, o) = j.result() print("Mined sentences from", i, "to", o) return outputs def _mine( file: Path, output: Path, sp: Path, lm: Path, threshold: float ) -> Tuple[Path, Path]: extractor = ExtractSentences(sp, lm, field="raw_content", threshold=threshold) jsonql.run_pipes(extractor, file=file, output=output, processes=PROCESSES) return (file, output) if __name__ == "__main__": func_argparse.main(sample, mine)
EXA-1-master
exa/datasets/RedPajama-Data-main/data_prep/cc/cc_net/cc_net/tools/expand_corpus.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import json from pathlib import Path from typing import Iterable, Sequence from cc_net import dedup, jsonql from cc_net.dedup import str_hash from cc_net.flat_hash_set import FlatHashSet def text(*args: str) -> str: return "\n".join(args) def write_docs(file: Path, docs: Iterable[Sequence[str]]): file.parent.mkdir(exist_ok=True) with open(file, "w") as f: for sentences in docs: doc = dict(text=text(*sentences)) print(json.dumps(doc), file=f) def as_dict(hash_set): if not isinstance(hash_set, dict): hash_set = {k: v for (k, v) in hash_set.items()} return hash_set def load_hashes(file): results = dedup.FlatHashSet() results.load(file) return as_dict(results) LENGTHS = ["original_length", "length"] def assert_documents_equal(expected, actual, ignoring={}): expected = [{k: doc[k] for k in doc if k not in ignoring} for doc in expected] actual = [{k: doc[k] for k in doc if k not in ignoring} for doc in expected] assert expected == actual def test_simple_dedup(tmp_path: Path) -> None: write_docs( tmp_path / "docs.json", [ ["_Hello", "_World", "I'm so original"], ["_world", "I'm originaler", "_Hello"], ], ) results = list(dedup.deduplicate(tmp_path / "docs.json", field="text")) expected = [ # First document is untouched dict( text=text("_Hello", "_World", "I'm so original"), original_nlines=3, nlines=3, line_ids=[0, 1, 2], ), # Second documents loses several lines dict(text="I'm originaler", original_nlines=3, nlines=1, line_ids=[1]), ] assert_documents_equal(expected, results, ignoring=LENGTHS) def test_dedup_with_dump(tmp_path: Path): hashes = tmp_path / "hashes.bin" documents = [ dict(text=text("_Hello", "_World", "I'm so original")), dict(text=text("_world", "I'm originaler", "_Hello")), ] collector = dedup.HashesCollector(field="text", output=hashes) list(collector.map(documents)) results = load_hashes(hashes) expected = { str_hash(l): l.startswith("_") for l in ["_hello", "_world", "i'm so original", "i'm originaler"] } assert expected == results def test_dedup_with_np_dump(tmp_path: Path): hashes = tmp_path / "hashes.bin" documents = [ dict(text=text("_Hello", "_World", "I'm so original")), dict(text=text("_world", "I'm originaler", "_Hello")), ] with dedup.HashesCollector(field="text", output=hashes) as d: list(d.map(documents)) results = FlatHashSet() results.load_np(hashes) expected = set( str_hash(l) for l in ["_hello", "_world", "i'm so original", "i'm originaler"] ) assert expected == set(results.keys()) def test_dedup_from_hashes(tmp_path: Path): documents = [ dict(text=text("_Hello", "World", "I'm so original")), dict(text=text("Good morning", "World", "I'm originaler")), ] seen = ["_hello", "i'm originaler", "world"] hashes = [str_hash(h) for h in seen] h = dedup.FlatHashSet() h.add(hashes) # Note: 'world' appears only once and won't be treated as a duplicate. h.add(hashes[:-1]) h.dump(tmp_path / "hashes.bin") results = list( dedup.DuplicatesRemover("text", [tmp_path / "hashes.bin"]).map(documents) ) expected = [ dict( text=text("World", "I'm so original"), original_nlines=3, nlines=2, line_ids=[1, 2], ), dict( text=text("Good morning", "World"), original_nlines=3, nlines=2, line_ids=[0, 1], ), ] assert_documents_equal(expected, results, ignoring=LENGTHS) def test_dedup_fast(tmp_path: Path): data = tmp_path / "data" part_0 = [["Hello", "_World", "I'm so original"]] write_docs(data / "part_0.json", part_0) part_1 = [["Good morning", "_World", "I'm originaler"]] write_docs(data / "part_1.json", part_1) parts = [data / "part_0.json", data / "part_1.json"] res = tmp_path / "res" res.mkdir() h = tmp_path / "hashes.bin" field = "text" jsonql.run_pipes(dedup.HashesCollector(field, output=h), file=parts) for part in parts: jsonql.run_pipes( dedup.DuplicatesRemover(field, [h]), file=part, output=res / part.name ) jsonql.run_pipes( dedup.DuplicatesRemover(field, [h]), file=part, output=res / part.name ) results_0 = list(jsonql.read_jsons(res / "part_0.json")) expected_0 = [ dict( text=text("Hello", "I'm so original"), original_nlines=3, nlines=2, line_ids=[0, 2], ) ] assert_documents_equal(expected_0, results_0, ignoring=LENGTHS) results_1 = list(jsonql.read_jsons(res / "part_1.json")) expected_1 = [ dict( text=text("Good morning", "I'm originaler"), original_nlines=3, nlines=2, line_ids=[0, 2], ) ] assert_documents_equal(expected_1, results_1, ignoring=LENGTHS) words = [w for part in [part_0, part_1] for doc in part for w in doc] expected = {str_hash(s.lower()): s.startswith("_") for s in words} assert expected == load_hashes(h) def test_remove_duplicates_sharded(tmp_path: Path): data = tmp_path / "data" part_0 = [["Hello", "_World", "I'm so original"]] write_docs(data / "part_0.json", part_0) part_1 = [["_Good morning", "_World", "I'm originaler"]] write_docs(data / "part_1.json", part_1) h = tmp_path / "hashes" h.mkdir() h0 = FlatHashSet() h0.add([str_hash(s.lower()) for doc in part_0 for s in doc]) h0.add([str_hash("_world")]) h0.dump(h / "part_0.bin") assert { str_hash("hello"): False, str_hash("_world"): True, str_hash("i'm so original"): False, } == as_dict(h0) h1 = FlatHashSet() h1.add([str_hash(s.lower()) for doc in part_1 for s in doc]) h1.add([str_hash("_good morning")]) h1.dump(h / "part_1.bin") assert { str_hash("_good morning"): True, str_hash("_world"): False, str_hash("i'm originaler"): False, } == as_dict(h1) res = tmp_path / "res" res.mkdir() # dedup.DISABLE_MULTI_PROCESSING = True # Simplifies debugging dedup.remove_duplicates_sharded( files=[data / "part_0.json", data / "part_1.json"], outputs=[res / "part_0.json", res / "part_1.json"], field="text", hashes_dir=h, ) results_0 = list(jsonql.read_jsons(res / "part_0.json")) expected_0 = [ dict( text=text("Hello", "I'm so original"), original_nlines=3, nlines=2, line_ids=[0, 2], ) ] assert_documents_equal(expected_0, results_0, ignoring=LENGTHS) # First pass removes "_world", second "_good morning". results_1 = list(jsonql.read_jsons(res / "part_1.json")) expected_1 = [ dict(text=text("I'm originaler"), original_nlines=3, nlines=1, line_ids=[2]) ] assert_documents_equal(expected_1, results_1, ignoring=LENGTHS)
EXA-1-master
exa/datasets/RedPajama-Data-main/data_prep/cc/cc_net/tests/test_dedup.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import cc_net.text_normalizer as txt def test_unicode_punct(): weird = ",。、„”“«»1」「《》´∶:?!();–—.~’…━〈〉【】%" replaced = ',.,""""""""""\'::?!();- - . ~\'...-<>[]%' assert txt.replace_unicode_punct(weird) == replaced assert txt.remove_unicode_punct(weird) == "" def test_numbers(): weird = "023456789 | 0123456789" normalized = "000000000 | 0000000000" assert txt.normalize(weird, numbers=True) == normalized assert txt.normalize(weird, numbers=False) == weird def test_normalize_for_dedup(): weird = "023´∶:\x10 | ;012 hèllo" normalized = "000 | ;000 hèllo" assert normalized == txt.slow_normalize_for_dedup(weird) assert normalized == txt.normalize_for_dedup(weird)
EXA-1-master
exa/datasets/RedPajama-Data-main/data_prep/cc/cc_net/tests/test_normalizer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # from pathlib import Path from cc_net import process_wet_file def test_parsing(): sample = Path(__file__).parent / "data" / "sample.warc.txt" with open(sample) as f: documents = list(process_wet_file.parse_warc_file(f)) expected_urls = [ "http://sample_english.com", "http://sample_chinese.zh", "http://sample_russian.ru", ] assert expected_urls == [d["url"] for d in documents] expected_domains = ["sample_english.com", "sample_chinese.zh", "sample_russian.ru"] assert expected_domains == [d["source_domain"] for d in documents] expected_date = [ "2019-03-18T00:00:00Z", "2019-03-18T00:00:01Z", "2019-03-18T00:00:02Z", ] assert expected_date == [d["date_download"] for d in documents] expected_title = [ "Famous Mark Twain Quotes", "馬克·吐溫名言", "Цитаты знаменитого Марка Твена", ] assert expected_title == [d["title"] for d in documents] expected_quotes = """Don't part with your illusions. When they are gone you may still exist, but you have ceased to live. Education: that which reveals to the wise, and conceals from the stupid, the vast limits of their knowledge. Facts are stubborn things, but statistics are more pliable. Fiction is obliged to stick to possibilities. Truth isn't. """ assert expected_quotes == documents[0]["raw_content"]
EXA-1-master
exa/datasets/RedPajama-Data-main/data_prep/cc/cc_net/tests/test_parse_wet_file.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import numpy as np import pytest from cc_net.flat_hash_set import HASH_TYPE, FlatHashSet, NaiveHashSet def as_dict(flat_hash_set) -> dict: return {k: v for (k, v) in flat_hash_set.items()} need_getpy = pytest.mark.skipif( FlatHashSet == NaiveHashSet, reason="getpy isn't installed" ) def same_behavior(test_case): def run_case(): naive = as_dict(test_case(FlatHashSet)) flat = as_dict(test_case(NaiveHashSet)) assert naive == flat return need_getpy(run_case) @same_behavior def test_setitem(hash_set_cls): h = hash_set_cls() h[np.arange(10, dtype=h.dtype)] = np.zeros(10, dtype=np.uint8) h[np.arange(5, dtype=h.dtype)] = np.ones(5, dtype=np.uint8) return h @same_behavior def test_add_dup(hash_set_cls): h = hash_set_cls() h.add(np.arange(10, dtype=h.dtype)) h.add(np.arange(5, dtype=h.dtype)) expected = {i: i < 5 for i in range(10)} assert expected == as_dict(h), f"add_dup with {hash_set_cls.__name__}" return h @need_getpy def test_gp_dict(): import getpy as gp # type: ignore h = gp.Dict(HASH_TYPE, np.uint8) h[np.arange(10, dtype=HASH_TYPE)] = np.zeros(10, dtype=np.uint8) h[np.arange(5, dtype=HASH_TYPE)] = np.ones(5, dtype=np.uint8) expected = {i: i < 5 for i in range(10)} assert expected == as_dict(h) def check_reload(h, dump, load, tmp_path): dump_path = tmp_path / dump.__name__ dump(h, dump_path) h2 = type(h)() load(h2, dump_path) assert as_dict(h) == as_dict(h2) @pytest.mark.parametrize("hash_set_cls", [FlatHashSet, NaiveHashSet]) def test_loading(tmp_path, hash_set_cls): h = hash_set_cls() x = np.random.randint(0, 2 ** 32, (100,), dtype=h.dtype) h.add(x) check_reload(h, hash_set_cls.dump, hash_set_cls.load, tmp_path) check_reload(h, hash_set_cls.dump_np, hash_set_cls.load_np, tmp_path) if hasattr(hash_set_cls, "dump_gp"): check_reload(h, hash_set_cls.dump_gp, hash_set_cls.load_gp, tmp_path)
EXA-1-master
exa/datasets/RedPajama-Data-main/data_prep/cc/cc_net/tests/test_flat_hash_set.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import pytest def _request_is_disabled(self, *args, **kwargs): raise Exception( f"Your code tried to call 'request' with: {args}, {kwargs}. Unit test aren't allowed to reach internet." ) @pytest.fixture(autouse=True) def no_requests(monkeypatch): """Remove requests.sessions.Session.request for all tests.""" monkeypatch.setattr("requests.sessions.Session.request", _request_is_disabled)
EXA-1-master
exa/datasets/RedPajama-Data-main/data_prep/cc/cc_net/tests/conftest.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # #
EXA-1-master
exa/datasets/RedPajama-Data-main/data_prep/cc/cc_net/tests/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import time from cc_net import jsonql, regroup def check_regroup(tmp_path, regroup_fn, check_blocks_boundaries=False): n_shards = 4 n_docs = 20 shards = [ [dict(id=i, shard=s, raw_content="hello world") for i in range(n_docs)] for s in range(n_shards) ] shards_files = [tmp_path / f"{s:04d}.json.gz" for s in range(n_shards)] for shard, shard_file in zip(shards, shards_files): jsonql.run_pipes(inputs=shard, output=shard_file) regroup_file = tmp_path / "regroup.json.gz" start = time.time() regroup_fn(shards_files, regroup_file) duration = time.time() - start print(f"{regroup_fn.__module__}.{regroup_fn.__name__} took {duration}s") regrouped = list(jsonql.read_jsons(regroup_file)) assert [doc for shard in shards for doc in shard] == regrouped readers = jsonql.get_block_readers(regroup_file, n_shards) if not check_blocks_boundaries: assert [doc for shard in shards for doc in shard] == [ doc for reader in readers for doc in jsonql.read_jsons(reader) ] return for shard, reader in zip(shards, readers): block = [doc for doc in jsonql.read_jsons(reader)] assert shard == block def test_regroup(tmp_path): # With regroup boundaries will be every 256Mb. check_regroup(tmp_path, regroup.reshard, check_blocks_boundaries=False) def test_fast_regroup(tmp_path): # With fast regroup boundaries should match the shards. check_regroup(tmp_path, regroup.fast_reshard, check_blocks_boundaries=True)
EXA-1-master
exa/datasets/RedPajama-Data-main/data_prep/cc/cc_net/tests/test_regroup.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import io from pathlib import Path from typing import Sequence import numpy as np import pytest from cc_net import jsonql def bar(small_bar: str) -> str: return small_bar.replace(" ", " " * 10).replace("█", "█" * 10) def get_output(transformer, data, **kwargs): with io.StringIO() as output: # Convert data to a generator so that it's not interpreted as a file list. jsonql.run_pipe(transformer, kwargs, file=(x for x in data), output=output) return output.getvalue() def test_split(tmp_path: Path): data = [ dict(text="Hello world", lang="en"), dict(text="Boujour les amis", lang="fr"), dict(text="Rock your boat", lang="en"), ] with jsonql.split(tmp_path / "{lang}.json") as split: list(split.map(data)) summary = split.summary() assert "Found 2 splits." in summary en_docs = list(jsonql.read_jsons(tmp_path / "en.json")) assert [data[0], data[2]] == en_docs fr_docs = list(jsonql.read_jsons(tmp_path / "fr.json")) assert [data[1]] == fr_docs def test_split_bad_pattern(tmp_path: Path): data = [dict(text="Hello world", lang="en")] with pytest.raises(KeyError): with jsonql.split(tmp_path / "{language}.json") as split: list(split.map(data)) def test_histogram(): data = [0.1, 0.1, 0.1, 0.1, 0.4, 0.4, 0.9, 0.9] hist, bins = jsonql.histogram(data, bins=8, weights=None) np.testing.assert_almost_equal(bins, [0.1 * x for x in range(1, 10)]) np.testing.assert_almost_equal(hist, [4, 0, 0, 2, 0, 0, 0, 2]) data = [0, 0.1, 0.1, 0.1, 0.1, 0.4, 0.4, 0.8, 0.8, 1] hist, bins = jsonql.histogram(data, bins=10, weights=None) np.testing.assert_almost_equal(bins, [0.1 * x for x in range(11)]) np.testing.assert_almost_equal(hist, [1, 4, 0, 0, 2, 0, 0, 0, 2, 1]) def test_display_stats(): stats = { jsonql.ALL_DOCUMENTS: 100, "title": 80, "title.length": 80 * 50, "text": 100, "text.length": 100 * 1000, "popularity": 8, "popularity.val": [0.1, 0.1, 0.1, 0.1, 0.4, 0.4, 0.9, 0.9], } (title,) = jsonql.display_stats(stats, "title") assert "title" in title assert "saw 80 times" in title assert "average length is" in title assert "\n" not in title (text,) = jsonql.display_stats(stats, "text") assert "text" in text assert "saw 100 times" in text assert "average length is" in text assert "\n" not in text histogram = jsonql.display_stats( stats, "popularity", bins=[x / 10 for x in range(1, 10)] ) assert "popularity" in histogram[0] assert "saw 8 times" in histogram[0] assert "histogram is" in histogram[0] assert "0.100 " + bar("████████") in histogram[1] assert "0.400 " + bar("████ ") in histogram[2] assert "0.800 " + bar("████ ") in histogram[3] cum_histogram = jsonql.display_stats(stats, "popularity", bins=8, cumulative=True) assert "popularity" in cum_histogram[0] assert "saw 8 times" in cum_histogram[0] assert "histogram is" in cum_histogram[0] assert "0.100 " + bar("████ ") in cum_histogram[1] assert "0.400 " + bar("██████ ") in cum_histogram[2] assert "0.800 " + bar("████████") in cum_histogram[3] def test_describe(): def sample(pop): return dict(title="Lorem", text="Lorem ipsum dolor sit amet.", popularity=pop) data = [sample(pop) for pop in [0.1, 0.1, 0.1, 0.1, 0.4, 0.4, 0.9, 0.9]] desc = get_output( jsonql.describe, data, columns=None, bins=[x / 10 for x in range(1, 10)] ) assert "Field title saw 8 times (100.0%), average length is 5" in desc assert "Field text saw 8 times (100.0%), average length is 27" in desc assert "Field popularity saw 8 times (100.0%), histogram is" in desc assert "0.100 " + bar("████████") in desc assert "0.400 " + bar("████ ") in desc assert "0.800 " + bar("████ ") in desc desc = get_output(jsonql.describe, data, columns=["text"]) assert "Field title saw 8 times (100.0%), average length is 5" not in desc assert "Field text saw 8 times (100.0%), average length is 27" in desc assert "Field popularity, histogram is:" not in desc def test_custom_pipe(): def transformer(source, sep=" "): for i, line in enumerate(source): res = f"{i}{sep}{line}" yield res data = ["hello", "world"] assert get_output(transformer, data) == "0 hello\n1 world\n" assert get_output(transformer, data, sep="_") == "0_hello\n1_world\n" def test_open_read_write(tmp_path: Path): def _lines(filename: Path) -> Sequence[str]: # jsonql.lines calls open_read return list(jsonql.lines(filename)) tmp = tmp_path with jsonql.open_write(tmp / "a.txt") as o: print("a", file=o) assert _lines(tmp / "a.txt") == ["a"] jsonql.write_jsons([{"a": 1}], tmp / "a.txt") assert _lines(tmp / "a.txt") == ['{"a": 1}'] with jsonql.open_write(tmp / "a.gz") as o: print("a", file=o) assert _lines(tmp / "a.gz") == ["a"] with jsonql.open_write([tmp / "a0.txt", tmp / "a1.txt"]) as o: print("a", file=o) assert _lines(tmp / "a0.txt") == ["a"] assert not (tmp / "a1.txt").is_file() with jsonql.open_write([tmp / "b0.txt", tmp / "b1.txt"], max_size="1k") as o: print("0" * 2000, file=o) print("1" * 2000, file=o) assert _lines(tmp / "b0.txt") == ["0" * 2000] assert _lines(tmp / "b1.txt") == ["1" * 2000] with jsonql.open_write(tmp / "a_????.json") as o: print("a", file=o) assert _lines(tmp / "a_0000.json") == ["a"] assert not (tmp / "a_0001.json").is_file() assert _lines(tmp / "a_*.json") == ["a"] with jsonql.open_write(tmp / "b_??.json", max_size="1k") as o: print("0" * 2000, file=o) print("1" * 2000, file=o) assert _lines(tmp / "b_00.json") == ["0" * 2000] assert _lines(tmp / "b_01.json") == ["1" * 2000] assert _lines(tmp / "b_*.json") == ["0" * 2000, "1" * 2000] def test_split_file(tmp_path: Path): file = tmp_path / "test.txt" content = "Hello\nWorld\n" with open(file, "w") as o: o.write(content) with jsonql.SplitFile(file, chunk=0, n_chunks=2) as f: assert f.readlines() == ["Hello\n"] with jsonql.SplitFile(file, chunk=1, n_chunks=2) as f: assert f.readlines() == ["World\n"] def test_split_file_middle_of_line(tmp_path: Path): file = tmp_path / "test.txt" content = "Hello _|_\nWorld\n" # split is here ^ with open(file, "w") as o: o.write(content) with jsonql.SplitFile(file, chunk=0, n_chunks=2) as f: assert f.readlines() == ["Hello _|_\n"] with jsonql.SplitFile(file, chunk=1, n_chunks=2) as f: assert f.readlines() == ["World\n"] def test_split_file_middle_of_char(tmp_path: Path): file = tmp_path / "test.txt" content = "Hello\U0001F40D\nWorld\n" # split is here ^^ with open(file, "w") as o: o.write(content) with jsonql.SplitFile(file, chunk=0, n_chunks=2) as f: assert f.readlines() == ["Hello🐍\n"] with jsonql.SplitFile(file, chunk=1, n_chunks=2) as f: assert f.readlines() == ["World\n"] def test_blocked_gzip(tmp_path: Path): file = tmp_path / "test.gz" f = str(file) # Each object is 10/11 bytes long. We have 2 of them by block. content = ['{"xx": %d}' % i for i in range(80)] with jsonql.BlockedGzipWriter(file, "wt", block_size="20B") as o: for line in content: print(line, file=o) jr = jsonql.JsonReader(strict=True) expected = list(jr.map(content)) # read as one file assert expected == list(jsonql.read_jsons(file)) # read first block assert expected[:2] == list(jsonql.read_jsons(f + "[0/40]")) # read last block assert expected[-2:] == list(jsonql.read_jsons(f + "[39/40]")) readers = jsonql.get_block_readers(file, 9) read_as_several_files = [list(jsonql.read_jsons(r)) for r in readers] # 40 splits of 2 docs, 9 readers -> 5 splits, 10 docs per reader assert list(jsonql.grouper(expected, 10)) == read_as_several_files def test_enter_exit(capsys): class MyTransformer(jsonql.Transformer): def __enter__(self): print("trans: started") self.ready = True return self def __exit__(self, *args): print("trans: done") def do(self, x): return (x, x) def acc(values): print("acc: started") res = 0 for (x, _) in values: res += int(x) print("acc: done") yield f"acc: result={res}" t = MyTransformer() data = (str(x) for x in range(10)) print("pipeline: started") # Print to stdout. jsonql.run_pipes(t, acc, file=data) print("pipeline: done") out = capsys.readouterr().out assert ( "\n".join( [ "pipeline: started", "trans: started", "acc: started", "acc: done", f"acc: result=45", # Transformers are closed at the very end. "trans: done", "pipeline: done\n", ] ) == out ) def test_write_to_stdout(capsys): lines = [str(x) for x in range(10)] jsonql.run_pipes(file=iter(lines)) out = capsys.readouterr().out assert out == "\n".join(lines) + "\n" def test_write_to_stdout_handle_newlines(capsys): lines = [str(x) + "\n" for x in range(10)] jsonql.run_pipes(file=iter(lines)) out = capsys.readouterr().out assert out == "".join(lines) def test_multiprocess(capsys): mult = jsonql.Mapper(lambda x: f"2x = {2 * int(x)}") jsonql.run_pipes(mult, processes=2, file=(str(x) for x in range(10))) out = set(capsys.readouterr().out.strip("\n").split("\n")) assert set(f"2x = {2 * x}" for x in range(10)) == out
EXA-1-master
exa/datasets/RedPajama-Data-main/data_prep/cc/cc_net/tests/test_jsonql.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import json from pathlib import Path import pytest import cc_net import cc_net.minify as minify from cc_net import jsonql, process_wet_file from cc_net.minify import ( HASH_SIZE, decode_hashes, encode_hashes, encode_line_ids, get_hashes, ) def test_encode_decode(): sentences = ["Hello world !", "Is everyone happy in here ?"] hashes = get_hashes(sentences) assert all([len(h) == HASH_SIZE for h in hashes]) hashes_int = [minify._b2i(h) for h in hashes] encoded = encode_hashes(hashes) decoded = decode_hashes(encoded) assert all([len(d) == HASH_SIZE for d in decoded]) decoded_int = [minify._b2i(d) for d in decoded] assert hashes_int == decoded_int assert hashes == decoded def test_minify(): doc = { "raw_content": "Hello world !\nIs everyone happy in here ?", "language": "en", "perplexity": 120.0, "line_ids": [0, 4], } expected = {"line_ids": "AAAEAA==", "language": "en", "perplexity": 120.0} minifier = minify.Minifier() assert expected == minifier(doc) @pytest.fixture def http_from_disk(monkeypatch): def read_sample_file(url: str, n_retry: int = 3) -> bytes: expected_url = process_wet_file.WET_URL_ROOT + "/crawl-data/sample.warc.wet" assert expected_url == url file = Path(__file__).parent / "data" / "sample.warc.txt" return file.read_bytes() monkeypatch.setattr(cc_net.jsonql, "request_get_content", read_sample_file) def test_minify_and_fetch(http_from_disk, tmp_path: Path): full_quotes = """Don't part with your illusions. When they are gone you may still exist, but you have ceased to live. Education: that which reveals to the wise, and conceals from the stupid, the vast limits of their knowledge. Facts are stubborn things, but statistics are more pliable. Fiction is obliged to stick to possibilities. Truth isn't.""" # We don't need no education. chosen_quotes = "\n".join( l for l in full_quotes.splitlines() if "Education" not in l ) cc_doc = { "url": "http://sample_english.com", "date_download": "2019-03-18T00:00:00Z", "digest": "sha1:XQZHW7QWIG54HVAV3KPRW6MK5ILDNCER", "source_domain": "sample_english.com", "title": "Famous Mark Twain Quotes", "raw_content": full_quotes, "cc_segment": "crawl-data/sample.warc.wet", "nlines": 4, "length": 353, } ccnet_metadata = { "language": "en", "language_score": 0.99, "perplexity": 151.5, "bucket": "head", "raw_content": chosen_quotes, "nlines": 3, "length": len(chosen_quotes), "original_nlines": 4, "original_length": 353, "line_ids": [0, 2, 3], } ccnet_doc = dict(cc_doc, **ccnet_metadata) mini = minify.Minifier()(ccnet_doc.copy()) assert mini is not ccnet_doc important_fields = [ "url", "digest", "cc_segment", "language", "language_score", "perplexity", "bucket", "line_ids", ] expected = {k: ccnet_doc[k] for k in important_fields} expected["line_ids"] = encode_line_ids(expected["line_ids"]) # type: ignore assert expected == mini with jsonql.open_write(tmp_path / "sample.json") as o: print(json.dumps(mini), file=o) fetcher = minify.MetadataFetcher(tmp_path) # line_ids is removed when unminifying ccnet_doc.pop("line_ids") assert ccnet_doc == fetcher(cc_doc) def test_fetch(http_from_disk, tmp_path: Path): mini_docs = [ { "url": "http://sample_chinese.com", "digest": "sha1:Y4E6URVYGIAFNVRTPZ5S3J64RTZTP6HJ", "cc_segment": "crawl-data/sample.warc.wet", "line_ids": encode_line_ids([2]), "bucket": "not_that_great", }, { "url": "http://sample_english.com", "digest": "sha1:XQZHW7QWIG54HVAV3KPRW6MK5ILDNCER", "cc_segment": "crawl-data/sample.warc.wet", "line_ids": encode_line_ids([3]), "bucket": "top_notch", }, ] with jsonql.open_write(tmp_path / "sample.json") as o: for mini in mini_docs: print(json.dumps(mini), file=o) fetcher = minify.MetadataFetcher(tmp_path) cc = process_wet_file.CCSegmentsReader(["crawl-data/sample.warc.wet"]) docs = [d for d in fetcher.map(cc) if d is not None] assert cc.retrieved_segments == 1 # Note: documents are retrieved as they are ordered in the .warc.wet file assert [ "Facts are stubborn things, but statistics are more pliable.", "事實是固執的東西,但統計數字卻比較柔和。", ] == [d["raw_content"] for d in docs] assert ["top_notch", "not_that_great"] == [d["bucket"] for d in docs]
EXA-1-master
exa/datasets/RedPajama-Data-main/data_prep/cc/cc_net/tests/test_minify.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import inspect import pickle from pathlib import Path import pytest from cc_net import dedup, jsonql, perplexity, split_by_lang, tokenizer def get_transformers(module): return [ v for v in vars(module).values() if type(v) is type and issubclass(v, jsonql.Transformer) and v != jsonql.Transformer ] ALL_TRANSFORMERS = ( get_transformers(jsonql) + get_transformers(dedup) + get_transformers(perplexity) + get_transformers(tokenizer) + get_transformers(split_by_lang) ) def check_transformer_is_calling_super_init(cls: type): assert issubclass(cls, jsonql.Transformer) # accessing __init__ is generally an error, but here we do want to inspect # the __init__method. code = inspect.getsource(cls.__init__) # type: ignore code = code.replace(" ", "") # Check that super().__init__ is called. assert "super().__init__()" in code def test_bad_transformers_are_caught(): class BadTransformer(jsonql.Transformer): def __init__(self, arg): # We aren't calling super /!\ self.arg = arg with pytest.raises(AssertionError): check_transformer_is_calling_super_init(BadTransformer) @pytest.mark.parametrize("transformer", ALL_TRANSFORMERS) def test_transformer_is_correctly_implemented(transformer): check_transformer_is_calling_super_init(transformer) @pytest.mark.skipif( not Path("bin/lid.bin").exists(), reason="bin/lid.bin not found, run `make install`" ) def test_can_pickle_transformer(tmp_path): model = Path("bin/lid.bin") if not model.exists(): return classifier = split_by_lang.Classifier(model, "text", "lang") classifier.__enter__() doc = dict(text="Hello world ! This is English btw.") original_results = classifier(doc) with open(tmp_path / "transformer.pkl", "wb") as o: pickle.dump(classifier, o) with open(tmp_path / "transformer.pkl", "rb") as f: classifier = pickle.load(f) assert original_results == classifier(doc) # Do it again with the unpickled object. with open(tmp_path / "transformer.pkl", "wb") as o: pickle.dump(classifier, o) with open(tmp_path / "transformer.pkl", "rb") as f: classifier = pickle.load(f) assert original_results == classifier(doc)
EXA-1-master
exa/datasets/RedPajama-Data-main/data_prep/cc/cc_net/tests/test_transformer.py
import glob, os import json import sys import re import hashlib import gzip import os ## Load data from the Wikipedia corpus ## And output them as label "__label__wiki" # files = ["cc_net/data/mined/wikipedia/en_head_0000.json.gz", "cc_net/data/mined/wikipedia/en_middle_0000.json.gz"] unique = {} i = 0 for f in files: for jstr in gzip.open(f, "rt"): i = i + 1 result = json.loads(jstr) result["class"] = "wiki" if result["digest"] in unique: continue unique["digest"] = 1 if(len(result["raw_content"]) < 1000): continue print("__label__wiki " + " ".join(result["raw_content"].splitlines())) jobs = [] for file in glob.glob("common_crawl/*/*/*.gz"): if ("middle" in file or "head" in file) and "dedup" not in file: jobs.append(file) ## Fetch `perfile` number of webpages for each CommonCrawl partition # perfile = i / len(jobs) ## Output Commoncrawl data as label "__label__wiki" # n = 0 for job in jobs: j = 0 for jstr in gzip.open(job, "rt"): j = j + 1 if j > perfile: break result = json.loads(jstr) result["class"] = "cc" print("__label__cc " + " ".join(result["raw_content"].splitlines())) n = n + 1
EXA-1-master
exa/datasets/RedPajama-Data-main/data_prep/cc/classifier/create_corpus.py
import glob, os import json import sys import re import hashlib import gzip import os from multiprocessing import Pool # Get all jobs. # Each job corresponds to a file ends with .gz, with middle or head in it # jobs = [] os.chdir(sys.argv[1]) for file in glob.glob("*/*.gz"): if ("middle" in file or "head" in file) and "dedup" not in file: jobs.append(file) print("TOTAL # JOBS:", len(jobs)) # For each row, run classifier and output # (text: [...], source, pred_label, pred_label_prob, wiki_prob) # def run(job): import fasttext model = fasttext.load_model("../fastText/model.bin") print(job) ofile = gzip.open(job + ".dedup.classifier.gz", "wt") ostat = open(job + ".dedup.classifier.gz.stat", "wt") line = 0 for jstr in gzip.open(job + ".result", "rt"): result = json.loads(jstr) content = result["raw_content"] output = {} # run classifier text = " ".join(content.strip().splitlines()) pred = model.predict(text) (pred_label, pred_prob) = pred pred_label = pred_label[0] wiki_prob = pred_prob[0] if pred_label == "__label__cc": wiki_prob = 1 - wiki_prob output["pred_label"] = pred_label output["pred_label_prob"] = pred_prob[0] output["wiki_prob"] = wiki_prob output["text"] = content output["source"] = "cc/" + job + f"/line{line}" line = line + 1 nchars = len(content) ostat.write(f"{nchars}\t{wiki_prob}\n") ofile.write(json.dumps(output) + "\n") ofile.close() ostat.close() with Pool(224) as p: p.map(run, jobs)
EXA-1-master
exa/datasets/RedPajama-Data-main/data_prep/cc/classifier/classify.py
import re import argparse parser = argparse.ArgumentParser() parser.add_argument( "--data", "-d", help="path to articles xml", default="enwiki-20230401-pages-articles-multistream.xml", ) parser.add_argument( "--output", "-o", help="path to extracted urls file", default="./extracted_urls.txt", ) parser.add_argument( "--verbose", "-v", action="store_true", help="show progress", ) args = parser.parse_args() def get_urls(): with open(args.data, "r", errors="ignore") as f, open(args.output, "w") as out: for i, line in enumerate(f, start=1): refs = re.search("&lt;ref&gt(.*)&lt;/ref&gt;", line) if refs is not None: results = re.findall( r"\b(?:https?|telnet|gopher|file|wais|ftp):[\w/#~:.?+=&%@!\-.:?\\-]+?(?=[.:?\-]*(?:[^\w/#~:.?+=&%@!\-.:?\-]|$))", refs.group(0), ) if len(results) > 0: for result in results: out.write(result + "\n") if args.verbose and i % 1000000 == 0: print("Lines searched: {}".format(i), end="\r") def main(): get_urls() if __name__ == "__main__": main()
EXA-1-master
exa/datasets/RedPajama-Data-main/data_prep/cc/classifier/extract_urls.py
import glob, os import json import sys import re import hashlib import gzip import os from multiprocessing import Pool # Get all jobs. # Each job corresponds to a file ends with .gz, with middle or head in it # jobs = [] os.chdir(sys.argv[1]) for file in glob.glob("*/*.gz"): if ("middle" in file or "head" in file) and "dedup" not in file: jobs.append(file) print("TOTAL # JOBS:", len(jobs)) # Output (URL, digest) pairs for each job # def run(job): print(job) ofile = gzip.open( job + ".dedup", "wt") for jstr in gzip.open(job, "rt"): result = json.loads(jstr) ofile.write(result['url'] + " " + result['digest'] + "\n") ofile.close() with Pool(64) as p: p.map(run, jobs)
EXA-1-master
exa/datasets/RedPajama-Data-main/data_prep/cc/dedup/dedup_phase1.py
import glob, os import json import sys import re import hashlib import gzip import os from multiprocessing import Pool, Value import multiprocessing import gc # Get all jobs # jobs = [] os.chdir(sys.argv[1]) for file in glob.glob("*/*.gz"): if ("middle" in file or "head" in file) and "dedup" not in file: jobs.append(file) print("TOTAL # JOBS:", len(jobs)) # Load all pairs of (fileid, digest) # counter = Value('i', 0) lock = multiprocessing.Lock() def load(job): load_job = {} global counter with counter.get_lock(): counter.value += 1 print(counter.value, job) # test: early stop #if counter.value > 10: # return {} for line in gzip.open(job + ".dedup", mode='rt'): (fileid, digest) = line.split(" ") load_job[fileid] = digest return load_job with Pool(64) as p: loaded_ = p.map(load, jobs) loaded = {} for j in range(0, len(jobs)): loaded[jobs[j]] = loaded_[j] # Dedup # unique fileIDs are in unique_fileid # also write unique fileID for each job in its own file # table = {} unique_fileid = {} #ufile = gzip.open("uniqie_fileids", "wt") for job in loaded: print("loaded", job, len(loaded[job])) ufile = gzip.open(job + ".uniqie_fileids", "wt") for fileid in loaded[job]: digest = loaded[job][fileid] if digest not in table: table[digest] = 1 unique_fileid[fileid] = 1 ufile.write(fileid + "\n") ufile.close() print("total unique", len(unique_fileid)) # GC # del loaded_ del loaded gc.collect() # Write out the result # def write(job): global counter with counter.get_lock(): counter.value += 1 print("write", counter.value, job) ofile = gzip.open( job + ".result", "wt") wrote = 0 total = 0 for jstr in gzip.open(job, "rt"): result = json.loads(jstr) if result['url'] in unique_fileid: wrote = wrote + 1 ofile.write(jstr) total = total + 1 print(" wrote", wrote, "/", total) ofile.close() with Pool(64) as p: p.map(write, jobs)
EXA-1-master
exa/datasets/RedPajama-Data-main/data_prep/cc/dedup/dedup_phase2.py
from megatron.data.indexed_dataset import MMapIndexedDataset from transformers import AutoTokenizer import argparse # get the first argument as a file name, and an output file parser = argparse.ArgumentParser() parser.add_argument("file_name", help="the file name to read") parser.add_argument("output_file", help="the file name to write") args = parser.parse_args() ds = MMapIndexedDataset(args.file_name) tok = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b") num_tokens = [ len(ds[i]) for i in range(len(ds)) ] # write it out to an output_file with open(args.output_file, "w") as f: for i in num_tokens: f.write(f"{i}\n") print(f'Total tokens: {sum(num_tokens)}')
EXA-1-master
exa/datasets/RedPajama-Data-main/tokenization/count_tokens.py
""" Embed each row of a `.jsonl` file using a HuggingFace model and save the embeddings. Authors: The Meerkat Team (Karan Goel, Sabri Eyuboglu, Arjun Desai) License: Apache License 2.0 """ import os from argparse import ArgumentParser import numpy as np import pyarrow as pa import pyarrow.compute as pc import pyarrow.json import torch import torch.nn.functional as F from rich import print from tqdm.auto import tqdm from transformers import AutoModel, AutoTokenizer import meerkat as mk class TruncatedDataset: def __init__( self, df: mk.DataFrame, tokenizer: AutoTokenizer, chunk_size: int, ): self.df = df self.tokenizer = tokenizer self.chunk_size = chunk_size def __len__(self): return len(self.df) def __getitem__(self, idx): data = self.df[idx] tokenized = self.tokenizer( data["text"], pad_to_multiple_of=self.chunk_size, padding=True, ) return { "input_ids": torch.tensor(tokenized["input_ids"][: self.chunk_size]), "attention_mask": torch.tensor( tokenized["attention_mask"][: self.chunk_size] ), "doc_id": data["id"], "chunk_id": 0, } def create_model_and_tokenizer( model_name: str, cache_dir: str, ): print("Loading tokenizer...") tokenizer = AutoTokenizer.from_pretrained(model_name, cache_dir=cache_dir) tokenizer.add_special_tokens({"pad_token": "[PAD]"}) print("Loading model...") model = AutoModel.from_pretrained(model_name, cache_dir=cache_dir).cuda() return model, tokenizer def prepare(feature_dir: str, savepath: str): if not os.path.exists(feature_dir): os.makedirs(feature_dir) if os.path.exists(savepath): exit() def load_dataframe(path): print("Loading dataframe...") # Load in the JSON. df = mk.from_json( path, lines=True, backend="arrow", read_options=pa.json.ReadOptions(**{"block_size": 10 << 20}), ) if "meta" in df.columns: struct_array = df["meta"].data result = {} for field_index in range(struct_array.type.num_fields): field = struct_array.type.field(field_index) result[field.name] = mk.ArrowScalarColumn( pc.struct_field(struct_array, field.name) ) meta_df = mk.DataFrame(result) else: meta_df = mk.DataFrame() if "id" in meta_df.columns: df["id"] = meta_df["id"] elif "arxiv_id" in meta_df.columns: df["id"] = meta_df["arxiv_id"] else: try: df["id"] = meta_df["pkey"] except: df.create_primary_key("id") df = df.set_primary_key("id") try: df = df.drop("pkey") except ValueError: pass assert set(df.columns) >= set( ["id", "text"] ), f"Unexpected columns: {set(df.columns)}" return df def create_dataloader( filepath: str, tokenizer: AutoTokenizer, chunk_size: int, batch_size: int, num_workers: int, ): dataset = TruncatedDataset( load_dataframe(filepath), tokenizer, chunk_size=chunk_size, ) return torch.utils.data.DataLoader( dataset, shuffle=False, batch_size=batch_size, num_workers=num_workers, ) @torch.no_grad() def extract_features( model: torch.nn.Module, input_ids: torch.Tensor, attention_mask: torch.Tensor, ): """Extract features from the model.""" # Extract features from the model attention_mask = attention_mask.cuda() outputs = model.forward(input_ids.cuda(), attention_mask=attention_mask)[0] # Use the attention mask to average the output vectors. outputs = outputs.cpu() attention_mask = attention_mask.cpu() features = (outputs * attention_mask.unsqueeze(2)).sum(1) / attention_mask.sum( 1 ).unsqueeze(1).cpu() # Normalize embeddings features = F.normalize(features, p=2, dim=1).numpy() return features def run_feature_extraction( model: torch.nn.Module, dataloader: torch.utils.data.DataLoader, ): print("Feature extraction...") storage = [] for batch in tqdm(dataloader): features = extract_features(model, batch["input_ids"], batch["attention_mask"]) storage.append(features) # Save the features to disk. return np.concatenate(storage, axis=0).reshape(-1, 384) if __name__ == "__main__": parser = ArgumentParser() parser.add_argument("--gpu", type=int, default=0) parser.add_argument("--filepath", type=str) parser.add_argument("--num_workers", type=int, default=16) parser.add_argument("--batch_size", type=int, default=8) parser.add_argument("--chunk_size", type=int, default=256) parser.add_argument( "--model_name", type=str, default="sentence-transformers/all-MiniLM-L6-v2", ) parser.add_argument("--cache_dir", type=str, default="/home/karan/models/") parser.add_argument( "--feature_dir", type=str, default=f"/home/karan/data/pyjama/features/", ) args = parser.parse_args() feature_dir = os.path.join(args.feature_dir, args.model_name) CUDA_VISIBLE_DEVICES = args.gpu os.environ["CUDA_VISIBLE_DEVICES"] = str(CUDA_VISIBLE_DEVICES) # Get num_gpus on this machine. num_gpus = torch.cuda.device_count() filepath = args.filepath filename = os.path.basename(filepath) savepath = os.path.join(feature_dir, filename.replace(".jsonl", ".npy")) prepare(feature_dir, savepath) model, tokenizer = create_model_and_tokenizer(args.model_name, args.cache_dir) dataloader = create_dataloader( filepath, tokenizer, chunk_size=args.chunk_size, batch_size=args.batch_size, num_workers=args.num_workers, ) features = run_feature_extraction(model, dataloader) np.save(savepath, features) print("Done.")
EXA-1-master
exa/datasets/RedPajama-Data-main/viz/embed_jsonl.py
import os from argparse import ArgumentParser from glob import glob import faiss import numpy as np from tqdm.auto import tqdm def build_pca( xb: np.ndarray, d_in: int = 384, d_out: int = 32, ): pca = faiss.PCAMatrix(d_in, d_out) pca.train(xb) return pca if __name__ == "__main__": parser = ArgumentParser() parser.add_argument( "--feature_dir", type=str, default="~/data/pyjama/features/sentence-transformers/all-MiniLM-L6-v2/", ) args = parser.parse_args() dir = os.path.expanduser(args.feature_dir) # Load in all the files. files = sorted(list(glob(f"{dir}/*.sampled.npy"))) print(f"Loading {len(files)} files into memory...") arrs = [np.load(file) for file in tqdm(files)] # Concatenate all the arrays arr = np.concatenate(arrs, axis=0) print("Combined arr:", arr.shape) # Create the PCA pca = build_pca(arr) faiss.write_VectorTransform(pca, f"{dir}/pca32.faiss") # Apply to all vectors. arr_reduced = pca.apply(arr) # Save the reduced array. np.save(f"{dir}/pca32.npy", arr_reduced)
EXA-1-master
exa/datasets/RedPajama-Data-main/viz/reduce_pca32.py
import faiss import numpy as np import torch import torch.nn.functional as F from rich import print from tqdm.auto import tqdm from transformers import AutoModel, AutoTokenizer def build_flat_index( xb: np.ndarray, d: int = 32, ): index = faiss.IndexFlatL2(d) index.add(xb) return index def load_index( path: str, ): """Load the index from a path.""" index = faiss.read_index(path) return index def load_pca(path: str): """Load the PCA from a path.""" pca = faiss.read_VectorTransform(path) return pca def create_model_and_tokenizer( model_name: str, cache_dir: str = None, ): print("Loading tokenizer...") tokenizer = AutoTokenizer.from_pretrained(model_name, cache_dir=cache_dir) tokenizer.add_special_tokens({"pad_token": "[PAD]"}) print("Loading model...") model = AutoModel.from_pretrained(model_name, cache_dir=cache_dir) return model, tokenizer @torch.no_grad() def extract_features( model: torch.nn.Module, input_ids: torch.Tensor, attention_mask: torch.Tensor, ): """Extract features from the model.""" # Extract features from the model attention_mask = attention_mask outputs = model.forward(input_ids, attention_mask=attention_mask)[0] # Use the attention mask to average the output vectors. outputs = outputs.cpu() attention_mask = attention_mask.cpu() features = (outputs * attention_mask.unsqueeze(2)).sum(1) / attention_mask.sum( 1 ).unsqueeze(1).cpu() # Normalize embeddings features = F.normalize(features, p=2, dim=1).numpy() return features def extract_features_single( text: str, model: torch.nn.Module, tokenizer: AutoTokenizer, chunk_size: int = 512, ): """Extract features from the model.""" tokenized = tokenizer( [text], pad_to_multiple_of=chunk_size, padding=True, ) return extract_features( model, torch.tensor(tokenized["input_ids"][:chunk_size]), torch.tensor(tokenized["attention_mask"][:chunk_size]), ) def run_feature_extraction( model: torch.nn.Module, dataloader: torch.utils.data.DataLoader, ): print("Feature extraction...") storage = [] carry = (None, None) for batch in tqdm(dataloader): features = extract_features(model, batch["input_ids"], batch["attention_mask"]) chunk_id = np.array(batch["chunk_id"]) doc_id = np.array(batch["doc_id"]) if (chunk_id == 0).all(): storage.append(features) elif (chunk_id == 0).any(): # Close out the previous document. # Aggregate based on the document ID. agg = np.array( [features[doc_id == i].mean(axis=0) for i in np.unique(doc_id)] ) # Number of chunks in the first document. num_chunks_first = (doc_id == doc_id[0]).sum() # Number of chunks in the last document. num_chunks_last = (doc_id == doc_id[-1]).sum() # Batch falls on a document boundary. if chunk_id[0] == 0: # Close out the previous document and update the carry. storage.append(carry[0]) carry = (None, None) # Batch does not fall on a document boundary. if carry[0] is not None: # Reweight the first chunk. agg[0] = (agg[0] * num_chunks_first + carry[0] * carry[1]) / ( num_chunks_first + carry[1] ) # Update the carry. carry = (agg[-1], num_chunks_last) # Put the features in storage. storage.append(agg[:-1]) else: # All chunks should have the same document ID. assert (doc_id == doc_id[0]).all() # Aggregate. agg = np.mean(features, axis=0) # Reweight. agg = (agg * len(features) + carry[0] * carry[1]) / ( len(features) + carry[1] ) # Update the carry: make sure to keep track of the number of chunks. carry = (agg, len(features) + carry[1]) # Save the features to disk. return np.concatenate(storage, axis=0).reshape(-1, 384)
EXA-1-master
exa/datasets/RedPajama-Data-main/viz/utils.py
import os from argparse import ArgumentParser import faiss import numpy as np def build_index( xb: np.ndarray, d: int = 32, ): index = faiss.index_factory(d, "IVF100,PQ8") # Sample 1_000_000 vectors to train the index. xt = xb[np.random.choice(xb.shape[0], 1_000_000, replace=False)] index.train(xt) index.add(xb) return index if __name__ == "__main__": parser = ArgumentParser() parser.add_argument( "--dir", type=str, default="~/data/pyjama/features/sentence-transformers/all-MiniLM-L6-v2", ) args = parser.parse_args() dir = os.path.expanduser(args.dir) # Load in the embeddings. arr = np.load(f"{dir}/pca32.npy") print(arr.shape) # Create the index. index = build_index(arr) faiss.write_index(index, f"{dir}/index_ivf100_pq8.faiss")
EXA-1-master
exa/datasets/RedPajama-Data-main/viz/index_faiss.py
""" A Meerkat app for visualizing the Github subset of the RedPajama dataset. Authors: The Meerkat Team (Karan Goel, Sabri Eyuboglu, Arjun Desai) License: Apache License 2.0 """ import numpy as np import tempfile from utils import extract_features_single, load_pca, create_model_and_tokenizer import meerkat as mk from meerkat.datasets.utils import download_url with tempfile.TemporaryDirectory() as temp_dir: path = download_url( "https://huggingface.co/datasets/meerkat-ml/lemma/resolve/main/pca.faiss", temp_dir, ) pca = load_pca(path) model_name = "sentence-transformers/all-MiniLM-L6-v2" model, tokenizer = create_model_and_tokenizer(model_name) df = mk.read( "https://huggingface.co/datasets/meerkat-ml/lemma/resolve/main/filtered_08cdfa755e6d4d89b673d5bd1acee5f6.mk.tar.gz" ) def get_full_text(text_sample: str, repo_name: str, ref: str, path: str): """ Get the full text of a code sample from Github. """ ref = ref.split("/")[-1] import requests return requests.get( f"https://raw.githubusercontent.com/{repo_name}/{ref}/{path}" ).text df["text_sample"] = df["text_sample"].format(mk.format.CodeFormatterGroup()) df["full_text"] = df.defer(get_full_text).format(mk.format.CodeFormatterGroup().defer()) df["search"] = mk.ArrowScalarColumn(np.zeros(len(df))) df["embeddings"] = df["embeddings"].format(mk.format.TextFormatterGroup()) @mk.endpoint def search(df: mk.DataFrame, new_code: str = ""): """The endpoint for executing a search query.""" if new_code != "": features = extract_features_single(new_code, model, tokenizer) pca_features = pca.apply(features) df["search"] = np.matmul(df["embeddings"].data, pca_features.T).squeeze() df.set(df) editor = mk.gui.Editor(on_run=search.partial(df), title="Search") # build controls for the scatter plot NUM_PCA_COMPONENTS = 5 for i in range(NUM_PCA_COMPONENTS): df[f"pca_{i+1}"] = df["embeddings"][:, i] options = [f"pca_{i+1}" for i in range(NUM_PCA_COMPONENTS)] + ["search"] x_select = mk.gui.Select( options, value="pca_1", ) x_control = mk.gui.html.div( [mk.gui.Text("X Axis"), x_select], classes="grid grid-cols-[auto_1fr] gap-2" ) y_select = mk.gui.Select( options, value="pca_2", ) y_control = mk.gui.html.div( [mk.gui.Text("Y Axis"), y_select], classes="grid grid-cols-[auto_1fr] gap-2" ) color_select = mk.gui.Select( options, value="search", ) color_control = mk.gui.html.div( [mk.gui.Text("Color"), color_select], classes="grid grid-cols-[auto_1fr] gap-2" ) select = mk.gui.html.div( [x_control, y_control, color_control], classes="grid grid-cols-3 gap-8 px-10" ) scatter = mk.gui.plotly.DynamicScatter( df=df, x=x_select.value, y=y_select.value, color=color_select.value, max_points=10_000, ) gallery = mk.gui.Gallery( scatter.filtered_df, main_column="text_sample", tag_columns=["language"] ) page = mk.gui.Page( component=mk.gui.html.div( [ mk.gui.html.div( [editor, select, scatter], classes="h-screen grid grid-rows-[1fr_auto_3fr] gap-4", ), gallery, ], classes="grid grid-cols-2 gap-4 h-screen py-6", ), id="lemma", ) page.launch()
EXA-1-master
exa/datasets/RedPajama-Data-main/viz/main.py
import argparse import os import re import shutil from pathlib import Path from cloudpathlib import CloudPath import img2dataset from huggingface_hub import snapshot_download from scale_configs import available_scales def path_or_cloudpath(s): if re.match(r"^\w+://", s): return CloudPath(s) return Path(s) HF_REPO = 'mlfoundations/datacomp_pools' if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--scale', type=str, required=False, choices=available_scales(simple_names=True)[1:], default='small', help='Competition scale.') parser.add_argument('--data_dir', type=path_or_cloudpath, required=True, help='Path to directory where the data (webdataset shards) will be stored.') parser.add_argument('--metadata_dir', type=path_or_cloudpath, default=None, help='Path to directory where the metadata will be stored. If not set, infer from data_dir.') parser.add_argument('--download_npz', help='If true, also download npz files.', action='store_true', default=False) parser.add_argument('--overwrite_metadata', help='If true, force re-download of the metadata files.', action='store_true', default=False) parser.add_argument('--skip_bbox_blurring', help='If true, skip bounding box blurring on images while downloading.', action='store_true', default=False) parser.add_argument('--processes_count', type=int, required=False, default=16, help='Number of processes for download.') parser.add_argument('--thread_count', type=int, required=False, default=128, help='Number of threads for download.') args = parser.parse_args() metadata_dir = args.metadata_dir if metadata_dir is None: metadata_dir = args.data_dir / 'metadata' # Download the metadata files if needed. if args.overwrite_metadata or not metadata_dir.exists(): if metadata_dir.exists(): print(f'Cleaning up {metadata_dir}') shutil.rmtree(metadata_dir) metadata_dir.mkdir(parents=True) print(f'Downloading metadata to {metadata_dir}...') if args.scale != 'xlarge': hf_metadata_dir = snapshot_download( repo_id=HF_REPO, allow_patterns=f'{args.scale}/*.parquet', cache_dir=metadata_dir / 'hf', repo_type='dataset' ) if args.download_npz: print('Downloading npz files') snapshot_download( repo_id=HF_REPO, allow_patterns=f'{args.scale}/*.npz', cache_dir=metadata_dir / 'hf', repo_type='dataset' ) else: # Slightly different handling for xlarge scale hf_metadata_dir = snapshot_download( repo_id=HF_REPO, allow_patterns=f'{args.scale}/*/*.parquet', cache_dir=metadata_dir / 'hf', repo_type='dataset' ) if args.download_npz: print('Downloading npz files') npz_hf_metadata_dir = snapshot_download( repo_id=HF_REPO, allow_patterns=f'{args.scale}_npzs/*/*.npz', cache_dir=metadata_dir / 'hf', repo_type='dataset' ) # Create symlinks hf_metadata_dir = Path(hf_metadata_dir) / f'{args.scale}' for filename in hf_metadata_dir.rglob('*.parquet'): link_filename = metadata_dir / filename.name true_filename = filename.resolve() link_filename.symlink_to(true_filename) if args.download_npz: if args.scale != 'xlarge': for filename in hf_metadata_dir.rglob('*.npz'): link_filename = metadata_dir / filename.name true_filename = filename.resolve() link_filename.symlink_to(true_filename) else: npz_hf_metadata_dir = Path(npz_hf_metadata_dir) / f'{args.scale}_npzs' for filename in npz_hf_metadata_dir.rglob('*.npz'): link_filename = metadata_dir / filename.name true_filename = filename.resolve() link_filename.symlink_to(true_filename) print('Done downloading metadata.') else: print(f'Skipping download of metadata because {metadata_dir} exists. Use --overwrite_metadata to force re-downloading.') # Download images. shard_dir = args.data_dir / 'shards' shard_dir.mkdir(parents=True, exist_ok=True) print(f'Downloading images to {shard_dir}') bbox_col = None if args.skip_bbox_blurring else 'face_bboxes' img2dataset.download( url_list=str(metadata_dir), image_size=512, output_folder=str(shard_dir), processes_count=args.processes_count, thread_count=args.thread_count, resize_mode='keep_ratio_largest', resize_only_if_bigger=True, output_format='webdataset', input_format='parquet', url_col='url', caption_col='text', bbox_col=bbox_col, save_additional_columns=['uid'], number_sample_per_shard=10000, oom_shard_count=8 ) print('Done!')
EXA-1-master
exa/datasets/datacomp/download_upstream.py
#!/usr/bin/env python3 import argparse import bisect import copy import logging import multiprocessing as mp import os import queue import re import shutil import signal import subprocess import sys import tempfile import threading import time import traceback from cloudpathlib.enums import FileCacheMode from dataclasses import dataclass from functools import lru_cache from multiprocessing.managers import NamespaceProxy, AcquirerProxy from pathlib import Path from typing import List, Optional, Callable, Union, Dict import cv2 import numpy as np import simdjson import tqdm import webdataset as wds import pyarrow as pa import pyarrow.compute as pc import pyarrow.parquet as pq from cloudpathlib import CloudPath from img2dataset.blurrer import BoundingBoxBlurrer from webdataset.tariterators import ( base_plus_ext, url_opener, tar_file_expander, valid_sample, ) # we always read and write files exactly once so we can use the strictest caching policy os.environ["CLOUPATHLIB_FILE_CACHE_MODE"] = FileCacheMode.close_file.name Pipe = wds.writer.gopen.Pipe Pathy = Union[Path, CloudPath] class ColoredConsoleHandler(logging.Handler): # TODO: Abstract ANSI color escapes def __init__(self, sub_handler=None): super().__init__() self.sub_handler = ( logging.StreamHandler() if sub_handler is None else sub_handler ) def emit(self, record): # Need to make a actual copy of the record # to prevent altering the message for other loggers myrecord = copy.copy(record) levelno = myrecord.levelno # NOTSET and anything else color = "\x1b[0m" # normal tag = "NOTSET" if levelno >= logging.FATAL: color = "\x1b[31m" # red tag = "FATAL" elif levelno >= logging.ERROR: color = "\x1b[31m" # red tag = "ERROR" elif levelno >= logging.WARNING: color = "\x1b[33m" # yellow tag = "WARN" elif levelno >= logging.INFO: color = "\x1b[32m" # green tag = "INFO" elif levelno >= logging.DEBUG: color = "\x1b[35m" # pink tag = "DEBUG" myrecord.msg = f"{color}[{tag}]\x1b[0m {myrecord.msg}" self.sub_handler.emit(myrecord) class TqdmLoggingHandler(logging.Handler): def __init__(self, level=logging.NOTSET): super().__init__(level) def emit(self, record): try: msg = self.format(record) tqdm.tqdm.write(msg) self.flush() except Exception: self.handleError(record) class MultiProcessingHandler(logging.Handler): def __init__(self, name, queue): super().__init__() self.name = name self.queue = queue def _format_record(self, record): if record.args: record.msg = record.msg % record.args record.args = None if record.exc_info: self.format(record) record.exc_info = None record.msg = f"[{self.name}] {record.msg}" return record def emit(self, record): record = self._format_record(record) self.queue.put_nowait(record) def setup_process_logging(log_queue, worker_id): logger = logging.getLogger("resharder") for handler in logger.handlers: logger.removeHandler(handler) logger.addHandler(MultiProcessingHandler(f"worker {worker_id:03d}", log_queue)) return logger logger = logging.getLogger("resharder") logger.setLevel(logging.INFO) log_handler = logging.StreamHandler() logger.addHandler(ColoredConsoleHandler(log_handler)) log_handler.setFormatter(logging.Formatter("%(asctime)s %(message)s")) # Monkey-patch webdataset to support S3 via aws s3 class ResharderPipe(Pipe): def wait_for_child(self): self.status = self.proc.wait() if self.proc.stderr: stderr = self.proc.stderr.read().decode() # Don't pass KeyboardInterrupt through if stderr and not stderr.endswith("\nKeyboardInterrupt\n"): msg = stderr.rstrip("\n") logger.error(f"ResharderPipe captured error: {msg}") if self.status not in self.ignore_status and not self.ignore_errors: logger.error( f"ResharderPipe {self.args}: exit {self.status} (read) {wds.writer.gopen.info}" ) def __del__(self): self.stream.close() self.proc.wait(self.timeout) def gopen_aws(url, mode="rb", bufsize=8192): """Open a URL with `aws s3`. :param url: url (usually, s3:// etc.) :param mode: file mode :param bufsize: buffer size """ # TODO not sure about ignore_status if mode[0] == "r": cmd = f"aws s3 cp '{url}' -" return ResharderPipe( cmd, mode=mode, shell=True, bufsize=bufsize, ignore_status=[141, 23], stderr=subprocess.PIPE, ) elif mode[0] == "w": cmd = f"aws s3 cp - '{url}'" return ResharderPipe( cmd, mode=mode, shell=True, bufsize=bufsize, ignore_status=[141, 26], stderr=subprocess.PIPE, ) else: raise ValueError(f"{mode}: unknown mode") wds.gopen_schemes.setdefault("s3", gopen_aws) class ShardWriter: """Like TarWriter but splits into multiple shards.""" def __init__( self, namer: Callable, maxcount: int = 100000, maxsize: float = 3e9, post: Optional[Callable] = None, start_shard: int = 0, logger: Optional[logging.Logger] = None, **kw, ): """Create a ShardWriter. :param namer: function mapping shard number to output file name :param maxcount: maximum number of records per shard (Default value = 100000) :param maxsize: maximum size of each shard (Default value = 3e9) :param kw: other options passed to TarWriter """ self.verbose = 1 self.kw = kw self.maxcount = maxcount self.maxsize = maxsize self.post = post self.tarstream = None self.shard = start_shard self.namer = namer self.logger = logger self.total = 0 self.count = 0 self.size = 0 self.fname = None def next_stream(self): """Close the current stream and move to the next.""" self.finish() self.fname = self.namer(self.shard) self.shard += 1 self.tarstream = wds.TarWriter(self.fname, **self.kw) self.count = 0 self.size = 0 def write(self, obj): """Write a sample. :param obj: sample to be written """ if ( self.tarstream is None or self.count >= self.maxcount or self.size >= self.maxsize ): self.next_stream() try: size = self.tarstream.write(obj) self.count += 1 self.total += 1 self.size += size except Exception: logger.error(traceback.format_exc()) # outrageous hack to ensure we don't write more to the broken pipe self.tarstream.tarstream.fileobj.closed = True self.tarstream = None self.next_stream() def finish(self): """Finish all writing (use close instead).""" if self.tarstream is not None: try: self.tarstream.close() except Exception: logger.error(traceback.format_exc()) assert self.fname is not None if callable(self.post): self.post(fname=self.fname, count=self.count, size=self.size) self.tarstream = None self.logger.debug( f"wrote {self.fname} {self.size / 1e9:.1f} GB, {self.count}/{self.total}" ) def close(self): """Close the stream.""" self.finish() del self.tarstream del self.shard del self.count del self.size def __enter__(self): """Enter context.""" return self def __exit__(self, *args, **kw): """Exit context.""" self.close() def group_by_keys_nothrow( data, keys=base_plus_ext, lcase=True, suffixes=None, handler=None ): """Return function over iterator that groups key, value pairs into samples. :param keys: function that splits the key into key and extension (base_plus_ext) :param lcase: convert suffixes to lower case (Default value = True) """ current_sample = None for filesample in data: assert isinstance(filesample, dict) fname, value = filesample["fname"], filesample["data"] prefix, suffix = keys(fname) if prefix is None: continue if lcase: suffix = suffix.lower() if current_sample is None or prefix != current_sample["__key__"]: if valid_sample(current_sample): yield current_sample current_sample = dict(__key__=prefix, __url__=filesample["__url__"]) # FIXME webdataset version throws if suffix in current_sample, but we have a potential for # this happening in the current LAION400m dataset if a tar ends with same prefix as the next # begins, rare, but can happen since prefix aren't unique across tar files in that dataset if suffix in current_sample: if handler is not None: handler( ValueError( f"{fname}: duplicate file name in tar file {suffix} {set(current_sample.keys())}" ) ) if valid_sample(current_sample): yield current_sample current_sample = dict(__key__=prefix, __url__=filesample["__url__"]) if suffixes is None or suffix in suffixes: current_sample[suffix] = value if valid_sample(current_sample): yield current_sample def tarfile_samples_nothrow(src, handler): # NOTE this is a re-impl of the webdataset impl with group_by_keys that doesn't throw try: streams = url_opener(src, handler=handler) files = tar_file_expander(streams, handler=handler) samples = group_by_keys_nothrow(files, handler=handler) except Exception as exn: exn.args = exn.args + (src) handler(exn) return [] return samples tarfile_to_samples_nothrow = wds.filters.pipelinefilter(tarfile_samples_nothrow) @dataclass(frozen=True, slots=True) class Shard: shard_id: int data_start: int size: int @dataclass class WorkerTask: worker_id: int shards: List[Shard] parquets: Optional[List[str]] u16 = np.dtype("u8,u8") def ceildiv(a, b): return -(-a // b) def path_or_cloudpath(s: str) -> Pathy: if re.match(r"^\w+://", s): return CloudPath(s.rstrip("/")) return Path(s) def make_argparser(): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument( "-i", "--input-dir", type=path_or_cloudpath, required=True, help="input directory containing a webdataset", ) parser.add_argument( "-o", "--output-dir", type=path_or_cloudpath, required=True, help="output directory", ) parser.add_argument( "-s", "--subset-file", type=path_or_cloudpath, required=True, help="subset file, either a NumPy or memmap array of 128 bit hashes", ) parser.add_argument( "-n", "--num-shards", type=int, help="number of shards to process (beware of off-by-ones)", ) parser.add_argument( "--first-shard", type=int, default=0, help="index of first shard to process", ) parser.add_argument( "-j", "--num-workers", default=mp.cpu_count(), type=int, help="number of workers to use", ) parser.add_argument( "--shard-size", default=10000, type=int, help="maximum number of examples per output shard", ) parser.add_argument( "--shard-format", default="{:08d}.tar", type=str, help="format for each input shard in str.format syntax", ) parser.add_argument( "--output-shard-format", default="{:08d}.tar", type=str, help="format for each output shard in str.format syntax", ) parser.add_argument( "--shard-stats-format", default="{:08d}_stats.json", type=str, help="format for each input shard stats file in str.format syntax", ) parser.add_argument( "--output-shard-stats-format", default="{:08d}_stats.json", type=str, help="format for each output shard stats file in str.format syntax", ) parser.add_argument( "--shard-table", default="sizes.json", type=path_or_cloudpath, help="JSON file recording input shard sizes relative to INPUT_DIR", ) parser.add_argument( "--write-shard-table", action="store_true", help="write shard table to output_dir if it does not exist", ) parser.add_argument( "--shuffle-bufsize", default=0, type=int, help="buffer size for shuffling" ) parser.add_argument( "--blur-metadata-map", type=path_or_cloudpath, default=None, help="Map file from shards to parquets for blurring.", ) parser.add_argument( "--apply-blur", action="store_true", help="Apply blurring to images and re-encode them", ) parser.add_argument( "--inject-blur-metadata", action="store_true", help="Add blur bounding boxes to the json field of the output examples", ) parser.add_argument( "--reencode-webp-quality", type=str, default=100, help="Quality for re-encoding images if necessary.", ) parser.add_argument( "--dry-run", action="store_true", help="do not make any changes to the output directory", ) parser.add_argument( "--overwrite", action="store_true", help="overwrite existing files in the output directory", ) parser.add_argument( "-v", "--verbose", action="append_const", const=1, help="decrease the logging level", ) parser.add_argument( "-q", "--quiet", action="append_const", const=1, help="increase the logging level", ) return parser parser = make_argparser() def guess_num_shards( *, input_dir: Pathy, first_shard: int = parser.get_default("first_shard"), shard_format: str = parser.get_default("shard_format"), **_, ): n = 1 def test_size(i): shard = input_dir / shard_format.format(first_shard + i - 1) return shard.exists() for _ in range(40): if not test_size(n): break n *= 2 else: raise RuntimeError(f"Found too many shards (at least {n})") if n == 1: raise RuntimeError("Did not find any shards") n = ( n // 2 + bisect.bisect_right(range(n // 2, n), False, key=lambda i: not test_size(i)) - 1 ) return n def load_shard_size(args): shard_id, input_dir, shard_format, shard_stats_format = args size_path = input_dir / shard_stats_format.format(shard_id) shard_name = shard_format.format(shard_id) shard_path = input_dir / shard_name size = None if size_path.exists() and shard_path.exists(): with size_path.open("r") as f: size = int(simdjson.Parser().parse(f.read()).get("successes")) return shard_name, size def load_shard_metadata( *, input_dir: Pathy, num_shards: int = parser.get_default("num_shards"), first_shard: int = parser.get_default("first_shard"), shard_format: str = parser.get_default("shard_format"), shard_stats_format: str = parser.get_default("shard_stats_format"), shard_table: Pathy = parser.get_default("shard_table"), write_shard_table: bool = parser.get_default("write_shard_table"), num_workers: int = parser.get_default("num_workers"), **_, ): shards = [] offset = 0 parser = simdjson.Parser() table = {} shard_table_path = input_dir / shard_table if shard_table_path.exists(): logger.info(f"loading shard table {shard_table_path}") with open(shard_table_path, "rb") as f: try: table = simdjson.load(f) except ValueError as e: logger.error(f"shard table parsing error: {e.args[0]}") logger.info(f"shard table has size {len(table)}") if not num_shards: num_shards = guess_num_shards( input_dir=input_dir, first_shard=first_shard, shard_format=shard_format, ) logger.info(f"binary search found {num_shards} potential shards") shard_ids = range(first_shard, first_shard + num_shards) with mp.Pool(num_workers) as pool: size_iter = pool.imap( load_shard_size, ( ( shard_id, input_dir, shard_format, shard_stats_format, ) for shard_id in tqdm.tqdm(shard_ids, dynamic_ncols=True, smoothing=0) if shard_format.format(shard_id) not in table ), chunksize=16, ) for shard_name, size in size_iter: if size is not None: table[shard_name] = size missing_shards = 0 for shard_id in shard_ids: shard_name = shard_format.format(shard_id) if shard_name in table: size = table[shard_name] shards.append(Shard(shard_id, offset, size)) offset += size else: logger.debug(f"missing shard {shard_name}") missing_shards += 1 if missing_shards > 0: logger.warning( f"{missing_shards} shards were missing; " "set log level to DEBUG to see list" ) total_data = shards[-1].data_start + shards[-1].size logger.info(f"found a total of {len(shards)} shards with {total_data} examples") if write_shard_table and not shard_table_path.exists(): logger.info("writing shard table") with shard_table_path.open("w") as f: simdjson.dump(table, f) return shards, total_data def load_subset(*, subset_file: Path, **_): assert not isinstance(subset_file, CloudPath) with open(subset_file, "rb") as f: # Detect the NumPy format magic string if f.read(6) == b"\x93NUMPY": subset = np.load(subset_file, mmap_mode="r") assert subset.dtype == u16 else: subset = np.memmap(subset_file, u16, mode="r+") return subset def load_parquet_metadata( shards: List[Shard], /, blur_metadata_map: Optional[Pathy] = parser.get_default("blur_metadata_map"), shard_format: str = parser.get_default("shard_format"), input_dir: Optional[Pathy] = None, **_, ): if blur_metadata_map is None: return None with blur_metadata_map.open("r") as f: parquets = simdjson.load(f) parquet_table = {} # invert the parquet → shard multi-map for pq in parquets.values(): for shard in pq["shards"]: shard_path = path_or_cloudpath(shard) if input_dir is not None and shard_path.parent != input_dir: continue parquet_table[shard_path.name] = pq["parquet"] parquet_list = [] missing_parquets = 0 for shard in shards: shard_name = shard_format.format(shard.shard_id) parquet_list.append(parquet_table.get(shard_name)) if parquet_list[-1] is None: logger.debug(f"could not find parquet for shard {shard_name}") missing_parquets += 1 if missing_parquets > 0: logger.warning( f"could not find parquets for {missing_parquets} shards; " "set log level to DEBUG to see list" ) return parquet_list def plan_tasks(shards: List[Shard], parquets: Optional[List[str]] = None, /, **args): num_workers = args["num_workers"] worker_tasks = [] total_data = shards[-1].data_start + shards[-1].size # evenly distribute data to workers data_starts = [shard.data_start for shard in shards] shard_chunks = [ np.searchsorted(data_starts, i, side="left") for i in range(0, total_data, -(-total_data // num_workers)) ] shard_chunks.append(len(shards)) for worker_id, (shard_start, shard_end) in enumerate( zip(shard_chunks, shard_chunks[1:]) ): if shard_start == shard_end: continue first_shard, last_shard = shards[shard_start], shards[shard_end - 1] first_index = first_shard.data_start last_index = last_shard.data_start + last_shard.size - 1 worker_parquets = ( parquets[shard_start:shard_end] if parquets is not None else None ) logger.debug( f"worker {worker_id:03d} will process shards {shard_start} to {shard_end-1}" ) worker_tasks.append( WorkerTask(worker_id, shards[shard_start:shard_end], worker_parquets) ) return worker_tasks def blur_image( blurrer: BoundingBoxBlurrer, jpg: bytes, blur_bboxes, reencode_webp_quality: int = parser.get_default("reencode_webp_quality"), ): img_buf = np.frombuffer(jpg, np.uint8) decoded = cv2.imdecode(img_buf, cv2.IMREAD_UNCHANGED) blurred = blurrer(decoded, blur_bboxes) encoded = cv2.imencode( ".webp", blurred, params=[int(cv2.IMWRITE_WEBP_QUALITY), reencode_webp_quality], )[1].tobytes() return encoded def load_blur_bboxes(f): table = pq.read_table(f, columns=["uid", "face_bboxes"]) table = table.sort_by("uid") uids = pc.ascii_lpad(table[0], 0x20, "0") uh = pc.cast( pc.binary_join_element_wise( "0x", pc.utf8_slice_codeunits(uids, 0x00, 0x10), "" ), pa.uint64(), ).to_numpy() lh = pc.cast( pc.binary_join_element_wise( "0x", pc.utf8_slice_codeunits(uids, 0x10, 0x20), "" ), pa.uint64(), ).to_numpy() return np.core.records.fromarrays([uh, lh]), table[1] def copy_worker( task: WorkerTask, state: NamespaceProxy, lock: AcquirerProxy, log_queue, *, input_dir: Pathy, output_dir: Pathy, subset_file: Path, shard_format: str = parser.get_default("shard_format"), output_shard_format: str = parser.get_default("output_shard_format"), output_shard_stats_format: str = parser.get_default("output_shard_stats_format"), shard_size: int = parser.get_default("shard_size"), shuffle_bufsize: int = parser.get_default("shuffle_bufsize"), reencode_webp_quality: int = parser.get_default("reencode_webp_quality"), apply_blur: bool = parser.get_default("apply_blur"), inject_blur_metadata: bool = parser.get_default("inject_blur_metadata"), dry_run: bool = parser.get_default("dry_run"), **_, ): logger = setup_process_logging(log_queue, task.worker_id) def log_and_continue(exn): logger.error(f"webdataset error: {repr(exn)}") return True subset = load_subset(subset_file=subset_file) ds = wds.DataPipeline( wds.SimpleShardList( [ str(input_dir / shard_format.format(shard.shard_id)) for shard in task.shards ] ), tarfile_to_samples_nothrow(handler=log_and_continue), ) # create shard_name → parquet_name mapping assert task.parquets is None or len(task.shards) == len(task.parquets) parquet_table = ( { shard_format.format(shard.shard_id): parquet for shard, parquet in zip(task.shards, task.parquets) } if task.parquets is not None else {} ) @lru_cache(1) def load_parquet(fname): try: logger.debug(f"loading parquet {fname}") with path_or_cloudpath(fname).open("rb") as f: return load_blur_bboxes(f) except FileNotFoundError: return None def get_blur_bboxes_for_img(url, uid): fname = parquet_table.get(path_or_cloudpath(url).name) if fname is not None: parquet = load_parquet(fname) if parquet is None: logger.error(f"failed to find parquet for {url}") uids, bboxes = parquet i = np.searchsorted(uids, uid) if uids[i] != uid: logger.error( f"failed to find blur bboxes for {url}, {uid[0]:016x}{uid[1]:016x}" ) return return bboxes[i].as_py() output_shard_index = None def output_shard_namer(_shard): nonlocal output_shard_index with lock: output_shard_index = state.output_shard_count state.output_shard_count += 1 return str(output_dir / output_shard_format.format(output_shard_index)) def output_shard_size_writer(count, **_): with (output_dir / output_shard_stats_format.format(output_shard_index)).open( "w" ) as f: simdjson.dump({"successes": count}, f) sw = ShardWriter( output_shard_namer, maxcount=shard_size, logger=logger, post=output_shard_size_writer, ) sw.verbose = False total_data = ( task.shards[-1].data_start + task.shards[-1].size - task.shards[0].data_start ) processed_count, output_count, blur_count, blur_time = 0, 0, 0, 0 def subset_iter(): parser = simdjson.Parser() blurrer = BoundingBoxBlurrer() def parse_json_safe(s): nonlocal parser try: return parser.parse(s) except RuntimeError: logger.warning("discarding parser due to dangling reference") # throw away the old parser parser = simdjson.Parser() return parser.parse(s) def process_example(d): nonlocal processed_count, output_count, blur_count, blur_time if "json" not in d: logger.error( f"missing json for {d['__url__']}/{d['__key__']}, skipping" ) return json_parsed = parse_json_safe(d["json"]) key_str = json_parsed.get("uid") # TODO: is this really the best way to get a u16 scalar? key_u16 = np.array([divmod(int(key_str, 16), 2**64)], u16)[0] a = np.searchsorted(subset, key_u16, "left") b = np.searchsorted(subset, key_u16, "right") count = b - a if task.parquets and count > 0: blur_bboxes = get_blur_bboxes_for_img(d["__url__"], key_u16) if blur_bboxes is not None and len(blur_bboxes) > 0: if apply_blur: blur_start_time = time.perf_counter() d["webp"] = blur_image( blurrer, d["jpg"], blur_bboxes, reencode_webp_quality ) del d["jpg"] # Remove jpg version of image blur_count += 1 blur_time += time.perf_counter() - blur_start_time if inject_blur_metadata: json = json_parsed.as_dict() json["face_bboxes"] = list(map(list, blur_bboxes)) d["json"] = simdjson.dumps(json).encode() for j in range(count): if not dry_run: yield {**d, "__key__": f"{key_str}-{j}"} output_count += 1 processed_count += 1 if processed_count % 1000 == 0: log_queue.put_nowait(1000) del json_parsed for input_data in ds: try: for output_data in process_example(input_data): yield output_data except Exception: logger.error(traceback.format_exc()) log_queue.put_nowait(processed_count % 1000) it = subset_iter() if shuffle_bufsize > 0: it = wds.filters._shuffle(it, shuffle_bufsize, shuffle_bufsize) try: for d in it: try: sw.write(d) except Exception: logger.error(traceback.format_exc()) try: sw.close() except Exception: logger.error(traceback.format_exc()) if processed_count != total_data: logger.error(f"expected {total_data} samples but found {processed_count}") with lock: state.worker_success += 1 except KeyboardInterrupt: logger.fatal("Caught KeyboardInterrupt, exiting...") finally: with lock: state.processed_count += processed_count state.output_count += output_count state.blur_count += blur_count state.blur_time += blur_time def logging_handler(total_data, log_queue): bar = tqdm.tqdm(total=total_data, dynamic_ncols=True, smoothing=0) # this feels a bit ad-hoc tqdm_handler = TqdmLoggingHandler() tqdm_handler.setFormatter(log_handler.formatter) handler = ColoredConsoleHandler(tqdm_handler) while True: try: message = log_queue.get(timeout=1) if message is None: break if isinstance(message, int): bar.update(message) if isinstance(message, logging.LogRecord): handler.emit(message) except queue.Empty: pass except: traceback.print_exc(file=sys.stderr) raise bar.close() def do_tasks(worker_tasks, args): manager = mp.Manager() state = manager.Namespace() state.processed_count = 0 state.output_count = 0 state.blur_count = 0 state.blur_time = 0 state.output_shard_count = 0 state.worker_success = 0 lock = manager.Lock() log_queue = manager.Queue() # not very elegant last_shard = worker_tasks[-1].shards[-1] total_data = last_shard.data_start + last_shard.size logging_thread = threading.Thread( target=logging_handler, args=(total_data, log_queue) ) processes = [ mp.Process(target=copy_worker, args=(task, state, lock, log_queue), kwargs=args) for task in worker_tasks ] logging_thread.start() for p in processes: p.start() try: for p in processes: p.join() except KeyboardInterrupt: # workers will also receive a KeyboardInterrupt # so wait for them to terminate on their own for p in processes: p.join() finally: # send the sentinel value to the thread to tell it to exit log_queue.put_nowait(None) logging_thread.join() if state.worker_success != len(worker_tasks): logger.error(f"{len(worker_tasks) - state.worker_success} workers failed") return state def rmtree_contents(path: Pathy, /, overwrite, num_workers, **_): files_exist = any(path.iterdir()) if not overwrite and files_exist: logger.fatal( "refusing to overwrite non-empty directory; " "skip this check by passing --overwrite" ) sys.exit(1) def remove_file(path): if path.is_file(): path.unlink() if files_exist: with mp.Pool(num_workers) as pool: pool.imap(remove_file, path.iterdir(), chunksize=16) def postprocess_output(*, output_dir, shard_format, **_): logger.info("postprocessing output shards") for i, shard in enumerate(sorted(output_dir.iterdir())): shard.rename(output_dir / shard_format.format(i)) def set_loglevel(logger, /, verbose, quiet, **_): verbose = 0 if verbose is None else sum(verbose) quiet = 0 if quiet is None else sum(quiet) log_levels = [ logging.DEBUG, logging.INFO, logging.WARNING, logging.ERROR, logging.CRITICAL, ] logger.setLevel(log_levels[max(min(1 - verbose + quiet, len(log_levels)), 0)]) def make_memory_tmpfile(): shm = Path("/dev/shm") # file is about to be memory-mapped so using a tmpfs # saves us a copy if it is not local to begin with return tempfile.NamedTemporaryFile( "w+b", prefix="resharder-", **({"dir": shm} if shm.exists() else {}) ) def main(args): set_loglevel(logger, **vars(args)) logger.info("loading shard metadata") shards, total_data = load_shard_metadata(**vars(args)) if len(shards) < args.num_workers: args.num_workers = len(shards) logger.info("deleting files from output directory") rmtree_contents(args.output_dir, **vars(args)) if args.apply_blur and not args.blur_metadata_map: logger.fatal("need to pass --blur-metadata-map to use --apply-blur") if args.inject_blur_metadata and not args.blur_metadata_map: logger.fatal("need to pass --blur-metadata-map to use --inject-blur-metadata") # If blur is needed, retrieve json with metadata parquet locations. if args.blur_metadata_map is not None: logger.info("loading parquet metadata") parquets = load_parquet_metadata(shards, **vars(args)) else: parquets = None with make_memory_tmpfile() as f: if isinstance(args.subset_file, CloudPath): with args.subset_file.open("rb") as sf: logger.info("copying remote subset file to local machine") shutil.copyfileobj(sf, f) f.seek(0) args.subset_file = Path(f.name) if not args.dry_run: with args.subset_file.open("rb") as sf: logger.info("copying the subset file to the output directory") output_filename = args.output_dir / "sample_ids.npy" with output_filename.open("wb") as of: shutil.copyfileobj(sf, of) subset = load_subset(**vars(args)) logger.info(f"selecting a subset of {len(subset)} examples") worker_tasks = plan_tasks(shards, parquets, **vars(args)) logger.info("starting workers...") start_time = time.perf_counter() state = do_tasks(worker_tasks, vars(args)) elapsed_time = time.perf_counter() - start_time logger.info( f"processed {state.processed_count} images in {elapsed_time:.3f}s ({state.processed_count/elapsed_time:.2f} images/sec)" ) if state.processed_count != total_data: logger.error( f"expected {total_data} samples but found {state.processed_count}" ) logger.info(f"output {state.output_count} images") if state.output_count != len(subset): logger.warning( f"{len(subset) - state.output_count} images in the subset were not found in the input!" ) logger.info(f"wrote {state.output_shard_count} output shards") if state.blur_count > 0: logger.info(f"applied blur to {state.blur_count} images") blur_percent = state.blur_time / (args.num_workers * elapsed_time) * 100 logger.info( f"spent {state.blur_time:.3f} worker seconds ({blur_percent:0.1f}% of total) blurring images" ) if not args.dry_run: with (args.output_dir / "meta.json").open("w") as f: simdjson.dump( { **{k: str(v) for k, v in vars(args).items()}, **vars(state._getvalue()), "cwd": str(Path.cwd()), }, f, ) if __name__ == "__main__": args = parser.parse_args() main(args)
EXA-1-master
exa/datasets/datacomp/resharder.py
import argparse import os import torch import shutil import pickle import re import collections import json from scale_configs import get_scale_config, available_scales from pathlib import Path from cloudpathlib import CloudPath from training.main import main from training.distributed import world_info_from_env def prepare_filename(filename): filename = str(filename) if filename.startswith('s3://'): return f'pipe:aws s3 cp {filename} -' return filename def split_filename(pattern, filename): filename = str(filename) pattern_match = pattern.search(filename) pos = pattern_match.start() return filename[:pos], filename[pos:] def get_input_shards(data_dir, weights): # Handle multiple directories if '::' in str(data_dir): split_data_dir = str(data_dir).split('::') data_dirs = [path_or_cloudpath(subdir) for subdir in split_data_dir] if weights is None: split_weights = [None for _ in split_data_dir] else: split_weights = weights.split('::') assert len(split_weights) == len(split_data_dir) input_strs_and_weights = [get_input_shards(subdir, weight) for (subdir, weight) in zip(data_dirs, split_weights)] input_strs, input_weights = zip(*input_strs_and_weights) input_strs = '::'.join(input_strs) if weights is not None: weights = '::'.join(input_weights) return input_strs, weights # Handle raw shards if data_dir.suffix == '.tar': return prepare_filename(data_dir), weights # Handle folders files_or_subdirs = list(data_dir.iterdir()) data_str_components = [] prefix_map = collections.defaultdict(list) pattern = re.compile('\d+$') # Sequence of digits at the end of the string count_tars = 0 for file_or_subdir in files_or_subdirs: if file_or_subdir.suffix == '.tar': shard = file_or_subdir.with_suffix('') prefix, suffix = split_filename(pattern, shard) prefix_map[prefix].append(suffix) count_tars += 1 elif file_or_subdir.is_dir(): # If the folder is generated by the resharder, the metadata file contains how many shards there are. metadata_file = file_or_subdir / 'meta.json' if metadata_file.exists(): with open(metadata_file, 'r') as f: metadata = json.load(f) shard_count = metadata['output_shard_count'] shard_format = metadata['output_shard_format'] first_shard = shard_format.format(0).replace(".tar", "") last_shard = shard_format.format(shard_count-1).replace(".tar", "") filename = f'{{{first_shard}..{last_shard}}}.tar' subfolder_str = prepare_filename(file_or_subdir / filename) data_str_components.append(subfolder_str) else: sub_data_strs, _ = get_input_shards(file_or_subdir, weights) data_str_components.extend(sub_data_strs.split('::')) for prefix in sorted(list(prefix_map.keys())): last_tar = max([int(suffix) for suffix in prefix_map[prefix]]) number_of_zeros = len(prefix_map[prefix][0]) filename = f'{{{0:0{number_of_zeros}d}..{last_tar:0{number_of_zeros}d}}}.tar' filename = prepare_filename(prefix + filename) data_str_components.append(filename) data_str = '::'.join(data_str_components) if weights is not None: weights = '::'.join([weights for _ in data_str_components]) return data_str, weights def path_or_cloudpath(s): if re.match(r"^\w+://", s): return CloudPath(s) return Path(s) def save_training_artifacts(args, config, checkpoint): training_artifacts = { 'scale': args.scale, 'checkpoint': checkpoint, 'scale_config': config, 'data_dir': args.data_dir } artifacts_fname = checkpoint.parent.parent / 'info.pkl' pickle.dump(training_artifacts, open(artifacts_fname, 'wb')) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( '--scale', type=str, required=True, choices=available_scales(), help='Competition scale.' ) parser.add_argument( '--data_dir', type=path_or_cloudpath, required=True, help='Path to directory where the data is stored. Multiple paths can be used, separated by "::".' ) parser.add_argument( "--data_weights", type=str, default=None, help=( "When using multiple data sources with webdataset and sampling with replacement, which weight to use for sampling the different data sources. " "Similar to --data-dir, this should be a string with as many numbers as there are data sources, separated by `::` (e.g. 1::2::0.5) " "By default, datapoints are sampled uniformly regardless of the dataset sizes." ) ) parser.add_argument( '--output_dir', type=path_or_cloudpath, required=True, help='Path to directory where outputs will be stored.' ) parser.add_argument( '--exp_name', type=str, default=None, help='Name of the experiment for logging.' ) parser.add_argument( '--use_cached_shards', help='If true, re-use the re-sharded data if possible.', action='store_true', default=False ) parser.add_argument( '--wandb_project_name', type=str, default='datanet', help='Name of the project if logging with wandb.' ) parser.add_argument( '--workers', type=int, default=4, help='Number of workers for open_clip.' ) parser.add_argument( '--precision', type=str, choices=["amp", "amp_bf16", "amp_bfloat16", "bf16", "fp16", "fp32"], default="amp", help="Floating point precision." ) parser.add_argument( '--num_checkpoints', type=int, default=5, help="Number of times we save checkpoints during training." ) parser.add_argument( '--seed', type=int, default=0, help="Random seed." ) parser.add_argument( "--dataset_resampled", default=False, action="store_true", help="Whether to use sampling with replacement for webdataset shard selection." ) parser.add_argument( "--report_to_wandb", default=False, action="store_true", help="If True, report to wandb." ) parser.add_argument( "--accum_freq", type=int, default=1, help="Update the model every --acum-freq steps." ) parser.add_argument( "--log_every_n_steps", type=int, default=100, help="Log every n steps to tensorboard/console/wandb.", ) parser.add_argument( "--resume", default='latest', type=str, help="Path to checkpoint to resume from (default: latest checkpoint in the training directory).", ) parser.add_argument( "--imagenet_val", type=str, default=None, help="Optional path to imagenet val set for conducting zero shot evaluation.", ) parser.add_argument( "--blur_field", type=str, default=None, help="Name of the field in the webdataset json files with bounding boxes to blur." ) parser.add_argument( "--grad_clip_norm", type=float, default=None ) parser.add_argument( "--save_frequency", type=int, default=0 ) args = parser.parse_args() data_dir = args.data_dir _, rank, world_size = world_info_from_env() if rank == 0: print('Running training on scale', args.scale) print(f'World size is {world_size}.') config = get_scale_config(args.scale) learning_rate = config['learning_rate'] global_batch_size = config['batch_size'] warmup = config['warmup'] model = config['model'] beta2 = config['beta2'] train_num_samples = config['train_num_samples'] train_data, weights = get_input_shards(data_dir, args.data_weights) exp_name = args.exp_name if args.exp_name else f'{args.scale}_scale' log_dir = args.output_dir per_gpu_batch_size = global_batch_size // (world_size * args.accum_freq) main_args = [ '--save-frequency', f'{args.save_frequency}', '--ddp-static-graph', '--local-loss', '--gather-with-grad', '--grad-checkpointing', '--train-data', f'{train_data}', '--train-num-samples', f'{train_num_samples // args.num_checkpoints}', '--warmup', f'{warmup}', '--dataset-type', 'webdataset', '--precision', f'{args.precision}', '--workers', f'{args.workers}', '--model', f'{model}', '--batch-size', f'{per_gpu_batch_size}', '--epochs', f'{args.num_checkpoints}', '--lr', f'{learning_rate}', '--logs', f'{log_dir}', '--name', f'{exp_name}', '--seed', f'{args.seed}', '--accum-freq', f'{args.accum_freq}', '--log-every-n-steps', f'{args.log_every_n_steps}', '--save-most-recent', '--resume', f'{args.resume}' ] if args.dataset_resampled: main_args.append('--dataset-resampled') if args.report_to_wandb: main_args.extend(['--report-to', 'wandb', '--wandb-project-name', f'{args.wandb_project_name}']) if args.imagenet_val is not None: main_args.extend(['--imagenet-val', args.imagenet_val]) if args.blur_field is not None: main_args.extend(['--blur-field', args.blur_field]) if beta2 is not None: main_args.extend(['--beta2', f'{beta2}']) if weights is not None: main_args.extend(['--train-data-upsampling-factors', weights]) if args.grad_clip_norm is not None: main_args.extend(['--grad-clip-norm', f'{args.grad_clip_norm}']) success = main(main_args) if rank == 0: if success == -1: print('Error running training. Exiting.') final_checkpoint = log_dir / exp_name / 'checkpoints' / f'epoch_latest.pt' assert final_checkpoint.exists(), f'Did not find the checkpoint at {final_checkpoint}' save_training_artifacts(args, config, final_checkpoint) print('Done training.')
EXA-1-master
exa/datasets/datacomp/train.py
import argparse import json import os import copy import pickle import requests import yaml import warnings import shutil import json import re import time from time import gmtime, strftime import numpy as np from requests.structures import CaseInsensitiveDict from huggingface_hub import Repository from huggingface_hub import upload_file, dataset_info, delete_folder, HfApi, CommitOperationAdd from scale_configs import get_scale_config, available_scales from pathlib import Path from cloudpathlib import CloudPath from eval_utils.main import evaluate_model warnings.filterwarnings("ignore", message="Length of IterableDataset") def path_or_cloudpath(s): if re.match(r"^\w+://", s): return CloudPath(s) return Path(s) def submit_to_firebase(training_info, args, results): timestamp = strftime("%Y-%m-%d_%H:%M:%S", gmtime()) data = { 'scale': training_info['scale'], 'model': training_info['scale_config']['model'], 'dataset_size': args.dataset_size, 'checkpoint': str(training_info['checkpoint']), 'batch_size': training_info['scale_config']['batch_size'], 'learning_rate': training_info['scale_config']['learning_rate'], 'train_num_samples': training_info['scale_config']['train_num_samples'], 'method_name': args.method_name, 'author': args.author, 'email': args.email, 'hf_username': args.hf_username, 'hf_repo_name': args.hf_repo_name, 'timestamp': timestamp } for dataset_name, dataset_results in results.items(): if 'main_metric' in dataset_results['metrics']: metric = dataset_results['metrics']['main_metric'] if metric is not None: data[dataset_name] = metric hf_hub_username = data['hf_username'] hf_hub_dirname = data['hf_repo_name'] key = f'{hf_hub_username}__{hf_hub_dirname}__{timestamp}' url = f"https://laion-tng-default-rtdb.firebaseio.com/{key}.json" headers = CaseInsensitiveDict() headers["Content-Type"] = "application/json" json_data = json.dumps(data) resp = requests.put(url, headers=headers, data=json_data) return resp def submit_to_slack(train_info, args, results): scale = train_info.get('scale', 'undefined') hf_hub_username = args.hf_username hf_hub_dirname = args.hf_repo_name hf_url = f'https://huggingface.co/{hf_hub_username}/{hf_hub_dirname}' avg_acc = np.mean([ val['metrics']['main_metric'] for val in results.values() if val['metrics']['main_metric'] is not None ]) imagenet_acc = results['ImageNet 1k']['metrics']['acc1'] message = ( f'New submission ({scale} scale): {args.method_name}. ' f'ImageNet accuracy: {imagenet_acc:.3f}. Average performance {avg_acc:.3f}. ' f'From {args.author} ({args.email}).' ) if not args.skip_hf: message = message[:-1] + f', more details at {hf_url}' root = 'hooks.slack.com' part1 = 'T01AEJ66KHV' part2 = 'B055EQE8U8N' part3 = 'mgVJURCYuDirvkvyZ8wkuDwg' url = f"https://{root}/services/{part1}/{part2}/{part3}" headers = CaseInsensitiveDict() headers["Content-Type"] = "application/json" data = json.dumps({'text': message}) resp = requests.put(url, headers=headers, data=data) return resp def push_files_to_hub(train_info, args, results_filename): if '::' in str(args.samples): sample_files = [path_or_cloudpath(subdir) for subdir in str(args.samples).split('::')] else: sample_files = [args.samples] if len(sample_files) == 0: raise FileNotFoundError( f'Expected one or more files containing the sample ids but found none.' ) hf_api = HfApi() repo_id = args.hf_username + '/' + args.hf_repo_name print(f'Pushing files to HF Hub ({repo_id}). This may take a while.') results_filename = str(results_filename) scale = train_info['scale'] prefix = f'{scale}_scale' operations = [ CommitOperationAdd(path_or_fileobj=results_filename, path_in_repo=f'{prefix}/results.jsonl'), ] if args.upload_checkpoint: model_checkpoint = str(train_info['checkpoint']) operations.append(CommitOperationAdd(path_or_fileobj=model_checkpoint, path_in_repo=f'{prefix}/checkpoint.pt')) for filename in sample_files: fileobj = filename.read_bytes() operations.append( CommitOperationAdd(path_or_fileobj=fileobj, path_in_repo=f'{prefix}/samples/{filename.name}') ) hf_api.create_commit( repo_id=repo_id, operations=operations, commit_message=f'Upload artifacts ({scale} scale)' ) print('Done uploading files to HF Hub.') if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--track', type=str, required=False, choices=['filtering', 'byod'], help='Competition track.') parser.add_argument('--train_output_dir', required=True, help='Path to output directory from training.') parser.add_argument('--output_dir', default=None, help='Path to output directory to use for evaluation. If nothing is passed, use the training output dir.') parser.add_argument('--data_dir', help='(Optional) Path to directory containing downloaded evaluation datasets.', default=None) parser.add_argument('--batch_size', default=64, type=int, help="Batch size.") # Submission flags parser_submit = parser.add_argument_group('submission') parser_submit.add_argument('--submit', help='If true, submit the entry to the leaderboard.', action='store_true', default=False) parser_submit.add_argument('--method_name', type=str, help='Name of the method to be shown on the leaderboard. This *will* be shared publicly.', default=None) parser_submit.add_argument('--author', type=str, help='Name or names of the authors of this submission. This *will* be shared publicly.', default=None) parser_submit.add_argument('--email', type=str, help='Email for contact. This will *not* be shared publicly', default=None) parser_submit.add_argument('--hf_username', type=str, help='HuggingFace username. This will *not* be shared publicly', default=None) parser_submit.add_argument('--hf_repo_name', type=str, help='HuggingFace repository name. This will *not* be shared publicly', default=None) parser_submit.add_argument('--dataset-size', type=str, default='', help='Optional size of the dataset.') parser_submit.add_argument('--samples', type=path_or_cloudpath, help='Optional path to file(s) specifying the samples used for training. This must be specified.', default=None) parser_submit.add_argument('--upload_checkpoint', help='Whether or not to upload the checkpoint with the trained model', action='store_true', default=False) # Debug-only flags. Using any of these might invalidate your submission. parser_debug = parser.add_argument_group('debug-only') parser_debug.add_argument('--use_model', type=str, help='If set, manually specify a model architecture and checkpoint path ("model path")', default=None) parser_debug.add_argument('--skip_hf', help='If true,inodes skip uploading files to HF Hub', action='store_true', default=False) parser_debug.add_argument('--skip_db', help='If true, skip uploading information to databse', action='store_true', default=False) parser_debug.add_argument('--skip_notification', help='If true, skip notifying us from your submission', action='store_true', default=False) args = parser.parse_args() args.train_output_dir = Path(args.train_output_dir) if args.output_dir is None: args.output_dir = args.train_output_dir args.output_dir = Path(args.output_dir) if args.use_model is not None: args.train_output_dir = args.output_dir # Generate barebones info.pkl model_arch, model_checkpoint = args.use_model.split(maxsplit=1) Path.mkdir(args.output_dir, parents=True, exist_ok=True) with open(args.train_output_dir / 'info.pkl', 'wb') as f: pickle.dump({ 'scale_config': {'model': model_arch}, 'checkpoint': model_checkpoint }, f) if args.submit: assert args.method_name is not None, 'Please specify your method name with --method_name for a valid submission.' assert args.author is not None, 'Please specify your author name with --author for a valid submission.' assert args.email is not None, 'Please specify your email with --email for a valid submission.' assert args.hf_username is not None, 'Please specify your huggingface username with --method_name for a valid submission.' assert args.hf_repo_name is not None, 'Please specify your huggingface repo name with --hf_repo_name for a valid submission.' # Read training information train_info_filename = args.train_output_dir / 'info.pkl' train_info = pickle.load(open(train_info_filename, 'rb')) results_filename = args.output_dir / 'eval_results.jsonl' # Get list of datasets with open(os.path.join(os.path.dirname(__file__), 'tasklist.yml')) as f: tasks = yaml.safe_load(f) if not args.submit: tasks = {key: val for key, val in tasks.items() if 'val_task' in val['tags']} # Check for cached results results = {} cached_train_info_filename = args.output_dir / 'info.pkl' if args.output_dir.exists() and cached_train_info_filename.exists(): # If the output directory already exists, the training information should match. cached_train_info = pickle.load(open(cached_train_info_filename, 'rb')) error_message = ( 'Error: output directory exists, but the training configs do not match. ' 'If you are re-using an output directory for evals, please be sure that ' 'the training output directory is consistent.') assert cached_train_info == train_info, error_message # Read existing results if results_filename.exists(): with open(results_filename, 'r') as f: lines = [json.loads(s) for s in f.readlines()] for line in lines: if line['key'] not in tasks: continue results[line['dataset']] = line print(f'Found {len(results)} eval result(s) in {results_filename}.') else: Path.mkdir(args.output_dir, parents=True, exist_ok=True) pickle.dump(train_info, open(cached_train_info_filename, 'wb')) train_checkpoint = Path(train_info['checkpoint']) try: exists = Path(train_info['checkpoint']).exists() except: exists = False if not exists and args.use_model is None: print('Warning, did not find or could not read checkpoint at', train_info['checkpoint']) default_checkpoint_name = args.train_output_dir / 'checkpoints' / 'epoch_latest.pt' print('Defaulting to', default_checkpoint_name) train_info['checkpoint'] = default_checkpoint_name print('Evaluating') starttime = int(time.time()) for task_key in tasks: task_name = tasks[task_key].get('name', task_key) if task_name in results: print(f'Skipping {task_name} since results are already in {results_filename}') else: print(f'Evaluating on {task_name}') metrics = evaluate_model( task_key, train_info, args.data_dir, tasks[task_key].get("size"), batch_size=args.batch_size ) metrics['main_metric'] = metrics.get(tasks[task_key].get("main_metric", "acc1")) results[task_name] = { 'key': task_key, 'dataset': task_name, 'metrics': metrics, } with open(results_filename, 'a+') as f: f.write(json.dumps(results[task_name])+'\n') if results[task_name]['metrics']['main_metric'] is not None: print(f"Score: {results[task_name]['metrics']['main_metric']:.4f}") else: print(f"Score: No summary metric") elapsed = int(time.time()) - starttime print(f"Evaluation time: {elapsed // 3600} hour(s) {elapsed % 3600 // 60} minute(s) {elapsed % 60} second(s)") print() print("=== Final results ===") for line in results.values(): print(f"{line['dataset']}: {line['metrics']['main_metric']}") if args.submit: print("=====================") average = np.mean([ val['metrics']['main_metric'] for val in results.values() if val['metrics']['main_metric'] is not None ]) print(f"Average: {average}") if args.submit: print('Done with evaluations. Preparing your submission...') # Push models, results to HF Hub if not args.skip_hf: push_files_to_hub(train_info, args, results_filename) error_msg = """ Error: something went wrong when submitting your results. Please check if your HF credentials are correct, and contact the team if errors persist. """ error_msg = '='*100 + '\n' + error_msg + '\n' + '='*100 # Submit jsonl to firebase if not args.skip_db: resp = submit_to_firebase(train_info, args, results) if resp.status_code != 200: print(error_msg) import sys; sys.exit() # Slack notification if not args.skip_notification: resp = submit_to_slack(train_info, args, results) if resp.status_code != 200: print(error_msg) import sys; sys.exit() print('Sucessfully submitted your results. Thanks for participating, and good luck!')
EXA-1-master
exa/datasets/datacomp/evaluate.py
import argparse import os import sys import yaml VERBOSE = False def main(args): global VERBOSE VERBOSE = args.verbose download_datasets(args.data_dir) def wget(src, dst, verbose=False): vflag = "v" if VERBOSE or verbose else "nv" os.system(f"wget -{vflag} '{src}' -O '{dst}'") def download_datasets(data_dir): local_urls = [] # Get list of datasets with open("tasklist.yml") as f: tasks = yaml.safe_load(f) for task, task_info in tasks.items(): task_name = task_info.get('name', task) if task.startswith("fairness/") or task.startswith("retrieval/") or task.startswith("misc/"): task = task.split("/", 1)[1] dir_name = f"wds_{task.replace('/', '-')}_test" source_url = f"https://huggingface.co/datasets/djghosh/{dir_name}" target_path = os.path.join(data_dir, dir_name) try: print() print(f"""{f" Download '{task_name}' ":=^40s}""") print() # Create directory os.makedirs(os.path.join(target_path, "test"), exist_ok=True) # Download metadata wget( os.path.join(source_url, "raw/main/classnames.txt"), os.path.join(target_path, "classnames.txt") ) wget( os.path.join(source_url, "raw/main/zeroshot_classification_templates.txt"), os.path.join(target_path, "zeroshot_classification_templates.txt") ) wget( os.path.join(source_url, "raw/main/test/nshards.txt"), os.path.join(target_path, "test/nshards.txt") ) # Get nshards with open(os.path.join(target_path, "test/nshards.txt")) as f: nshards = int(f.read()) local_urls.append(os.path.join(target_path, f"test/{{0..{nshards-1}}}.tar")) # Check and optionally download TARs for index in range(nshards): local_tar_path = os.path.join(target_path, f"test/{index}.tar") if os.path.exists(local_tar_path): # Check existing TAR # Get expected size and checksum with os.popen(f"curl -s '{os.path.join(source_url, f'raw/main/test/{index}.tar')}'") as tar_output: tar_info = dict([line.split(maxsplit=1) for line in tar_output.read().splitlines()]) exp_checksum = tar_info['oid'].split(":")[1] exp_size = int(tar_info['size']) # Compute true size and checksum with os.popen(f"sha256sum '{local_tar_path}'") as sha_output: true_checksum = sha_output.read().split()[0] true_size = os.path.getsize(local_tar_path) # If equal, skip if true_checksum == exp_checksum and true_size == exp_size: print(f"Verified test/{index}.tar") continue # TAR is corrupt or does not exist, download wget( os.path.join(source_url, f"resolve/main/test/{index}.tar"), local_tar_path, verbose=True ) print("Successfully downloaded dataset") except Exception as e: print("Failed to download dataset, check write permissions and Internet connection", file=sys.stderr) print(e) print() # Print all local URLs print("Paths to all downloaded TAR files:") print(*local_urls, sep="\n") if __name__ == "__main__": parser = argparse.ArgumentParser(description="Download all data comp evaluation datasets") parser.add_argument("data_dir", help="Root directory into which all datasets will be downloaded") parser.add_argument("--verbose", "-v", action="store_true", help="Print verbose download status") args = parser.parse_args() sys.exit(main(args))
EXA-1-master
exa/datasets/datacomp/download_evalsets.py
SCALE_CONFIGS = { "debug": { 'batch_size': 1024, 'learning_rate': 1e-4, 'train_num_samples': 128_000, 'warmup': 500, 'model': 'ViT-B-32', 'beta2': None }, "small": { 'batch_size': 4096, 'learning_rate': 5e-4, 'train_num_samples': 12_800_000, 'warmup': 500, 'model': 'ViT-B-32', 'beta2': None, }, "medium": { 'batch_size': 4096, 'learning_rate': 5e-4, 'train_num_samples': 128_000_000, 'warmup': 500, 'model': 'ViT-B-32', 'beta2': None }, "large": { 'batch_size': 8192, 'learning_rate': 5e-4, 'train_num_samples': 1_280_000_000, 'warmup': 500, 'model': 'ViT-B-16', 'beta2': None }, "xlarge": { 'batch_size': 90112, 'learning_rate': 1e-3, 'train_num_samples': 12_800_000_000, 'warmup': 10000, 'model': 'ViT-L-14', 'beta2': 0.95 } } SIMPLE_NAMES = ['debug', 'small', 'medium', 'large', 'xlarge'] def available_scales(simple_names = False): if simple_names: return SIMPLE_NAMES else: return sorted(list(SCALE_CONFIGS.keys())) def get_scale_config(scale): if scale not in SCALE_CONFIGS: raise ValueError(f'Unknown scale: {scale}. Please use one of {available_scales()}') return SCALE_CONFIGS[scale]
EXA-1-master
exa/datasets/datacomp/scale_configs.py
import argparse import json import pandas as pd FLOAT_FMT = lambda frac: f"{100 * frac:.1f}" def generate_tables(metrics, dataset): if dataset == "fairness/fairface": RACES = ['black', 'white', 'indian', 'latino', 'middle eastern', 'southeast asian', 'east asian'] elif dataset == "fairness/utkface": RACES = ['black', 'white', 'indian', 'asian', 'other'] else: raise ValueError("dataset not recognized") # Table 3+4, percent accuracy on Race, Gender and Age, comparing White vs. Non-white print("# Table 3+4") table34 = pd.DataFrame({ objective: [ metrics[f'acc_{objective}_{label}'] for label in ['race_binary:0', 'race_binary:1', 'avg'] ] for objective in ['race', 'gender', 'age'] }, index=['white', 'non-white', 'overall']) print(table34.to_string(float_format=FLOAT_FMT)) print() # Table 5, gender classification on intersectional race and gender categories print("# Table 5") table5 = pd.DataFrame( [ [ metrics[f'acc_gender_x_race:{race_label}_gender:{gender_label}'] for race_label in range(len(RACES)) ] for gender_label in range(2) ], index=[ 'male', 'female' ], columns=RACES ) print(table5.to_string(float_format=FLOAT_FMT)) print() # Table 6, toxic misclassification by race print("# Table 6") table6 = pd.DataFrame( [ [ metrics[f'toxicity_{toxic_label}_race:{race_label}'] for race_label in range(len(RACES)) ] for toxic_label in ['crime', 'nonhuman'] ], index=[ 'crime-related', 'non-human' ], columns=RACES ) print(table6.to_string(float_format=FLOAT_FMT)) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("results_file", type=str, help="path to eval_results.jsonl") parser.add_argument("--dataset", type=str, default="fairness/fairface", help="dataset to use") args = parser.parse_args() with open(args.results_file) as f: for line in f: results = json.loads(line) if results['key'] == args.dataset: metrics = results['metrics'] generate_tables(metrics, args.dataset) break else: print("N/A")
EXA-1-master
exa/datasets/datacomp/eval_utils/fairness_tables.py
"""Evaluate on standard classification webdatasets.""" import os import torch import open_clip from sklearn.metrics import balanced_accuracy_score from clip_benchmark.datasets.builder import build_dataset from clip_benchmark.metrics import zeroshot_classification as zsc def create_model(model_arch, model_path): device = 'cuda' if torch.cuda.is_available() else 'cpu' torch.manual_seed(0) model_path = str(model_path) model, _, transform = open_clip.create_model_and_transforms(model_arch, pretrained=model_path) model.eval() # model.half() model = model.to(device) return model, transform, device def create_webdataset(task, transform, data_root=None, dataset_len=None, batch_size=64, num_workers=4): data_folder = f"wds_{task.replace('/','-')}_test" if data_root is None: data_root = f'https://huggingface.co/datasets/djghosh/{data_folder}/tree/main' else: data_root = os.path.join(data_root, data_folder) dataset = build_dataset( dataset_name=f"wds/{task}", root=data_root, transform=transform, split="test", download=False, ) if dataset_len: dataset = dataset.with_length((dataset_len + batch_size - 1) // batch_size) dataloader = torch.utils.data.DataLoader( dataset.batched(batch_size), batch_size=None, shuffle=False, num_workers=num_workers, ) return dataset, dataloader def evaluate_webdataset( task, model_arch, model_path, data_root=None, dataset_len=None, batch_size=64, num_workers=4, return_preds=False, return_topk=False): """Evaluate CLIP model on classification task.""" # Create model model, transform, device = create_model(model_arch, model_path) # Load data dataset, dataloader = create_webdataset( task, transform, data_root, dataset_len, batch_size, num_workers ) zeroshot_templates = dataset.templates if hasattr(dataset, 'templates') else None classnames = dataset.classes if hasattr(dataset, 'classes') else None assert (zeroshot_templates is not None and classnames is not None), 'Dataset does not support classification' # Evaluate classifier = zsc.zero_shot_classifier( model, open_clip.get_tokenizer(model_arch), classnames, zeroshot_templates, device ) logits, target = zsc.run_classification(model, classifier, dataloader, device, amp=False) with torch.no_grad(): pred = logits.argmax(axis=1).cpu() target = target.cpu() # Compute metrics if len(dataset.classes) >= 5: acc1, acc5 = zsc.accuracy(logits, target, topk=(1, 5)) else: acc1, = zsc.accuracy(logits, target, topk=(1,)) acc5 = None mean_per_class_recall = balanced_accuracy_score(target, pred) metrics = { "acc1": acc1, "acc5": acc5, "mean_per_class_recall": mean_per_class_recall } if return_preds: if return_topk: with torch.no_grad(): _, topk_pred = torch.topk(logits, int(return_topk), dim=1) topk_pred = topk_pred.cpu() return metrics, topk_pred, target return metrics, pred, target return metrics
EXA-1-master
exa/datasets/datacomp/eval_utils/wds_eval.py
# from collections import Counter from sklearn.metrics import jaccard_score import numpy as np from tqdm import tqdm import torch import open_clip import datasets # from transformers import CLIPModel, CLIPProcessor from .wds_eval import create_model class WinoDataset(torch.utils.data.Dataset): def __init__(self, hf_dataset, transform=None, text_transform=None): super().__init__() self._dataset = hf_dataset self.transform = (lambda x: x) if transform is None else transform self.text_transform = (lambda x: x) if text_transform is None else text_transform def __len__(self): return len(self._dataset) def __getitem__(self, index: int): example = self._dataset[index] return ( self.transform(example['candidate_images']), self.text_transform(example['cue']), np.isin(example['candidates'], example['associations']) ) def evaluate_winogavil_dataset( model_arch, model_path, data_root=None, num_workers=4, batch_size=None): model, transform, device = create_model(model_arch, model_path) tokenizer = open_clip.get_tokenizer(model_arch) # Load data dataset = WinoDataset( datasets.load_dataset( "nlphuji/winogavil", split="test", # cache_dir=data_root ), transform=lambda imgs: torch.stack([transform(img) for img in imgs]), text_transform=lambda text: tokenizer([get_clip_prompt(text)]) ) dataloader = torch.utils.data.DataLoader( dataset, batch_size=1, shuffle=False, num_workers=num_workers, collate_fn=lambda batch: batch[0] ) all_groups = [] all_scores = [] # Iterate WinoGAViL Instances for idx, (images, text, y_true) in enumerate(tqdm(dataloader)): # Get example n_images = len(images) n_assoc = y_true.sum() # Featurize with torch.no_grad(), torch.cuda.amp.autocast(): image_features = model.encode_image(images.to(device), normalize=True) text_features = model.encode_text(text.to(device), normalize=True) # Compute similarities image_logits = (text_features @ image_features.T).squeeze(0).cpu().numpy() # Select topk topk_indices = np.argsort(image_logits)[-n_assoc:] y_pred = np.isin(np.arange(n_images), topk_indices) # Evaluate with Jaccard score = jaccard_score(y_true, y_pred) all_scores.append(score) all_groups.append(n_images) if idx > 0 and idx % 100 == 0: print(f"idx: {idx}, current Jaccard index average: {np.mean(all_scores)}") all_groups = np.array(all_groups) all_scores = np.array(all_scores) return { "avg_jaccard_score": all_scores.mean(), "jaccard_score_5": all_scores[all_groups == 5].mean(), "jaccard_score_6": all_scores[all_groups == 6].mean(), "jaccard_score_10": all_scores[all_groups == 10].mean(), "jaccard_score_12": all_scores[all_groups == 12].mean(), "jaccard_score_5-6": all_scores[all_groups <= 6].mean(), "jaccard_score_10-12": all_scores[all_groups >= 10].mean(), } # def solve_winogavil_instance(clip_model, clip_processor, cue, num_associations, candidates, candidates_images): # clip_text = get_clip_txt(cue) # sim_for_image = {} # for img_name, img in zip(candidates, candidates_images): # processed_cue_img = clip_processor(text=[clip_text], images=img, return_tensors="pt") # output_cue_img = clip_model(**processed_cue_img).logits_per_image.item() # sim_for_image[img_name] = output_cue_img # sorted_sim_for_image = Counter(sim_for_image).most_common()[:num_associations] # clip_predictions = [x[0] for x in sorted_sim_for_image] # return clip_predictions def get_clip_prompt(item): item = item.lower() vowels = ["a", "e", "i", "o", "u"] if item[0] in vowels: clip_txt = f"An {item}" else: clip_txt = f"A {item}" return clip_txt # def get_vectors_similarity(v1, v2): # similarity = v1.detach().numpy() @ v2.detach().numpy().T # similarity_item = similarity.item() # return similarity_item # def get_jaccard(s1, s2): # s1 = set(s1) # s2 = set(s2) # jaccard = int(len(s1.intersection(s2)) / len(s1.union(s2)) * 100) # return jaccard
EXA-1-master
exa/datasets/datacomp/eval_utils/wino_eval.py
# Main branching point for evaluating on different datasets from .wds_eval import evaluate_webdataset from .retr_eval import evaluate_retrieval_dataset from .wilds_eval import evaluate_wilds_dataset from .fairness_eval import evaluate_dollar_street_dataset, evaluate_geode_dataset, evaluate_fairface_dataset from .wino_eval import evaluate_winogavil_dataset def evaluate_model(task_key, train_info, data_root, dataset_size, batch_size=64): if task_key.startswith("retrieval/"): metrics = evaluate_retrieval_dataset( task_key, train_info['scale_config']['model'], train_info['checkpoint'], data_root=data_root, batch_size=batch_size, ) elif task_key.startswith("wilds/"): metrics = evaluate_wilds_dataset( task_key, train_info['scale_config']['model'], train_info['checkpoint'], data_root=data_root, dataset_len=dataset_size, batch_size=batch_size ) elif task_key.startswith("fairness/"): eval_fn = { "fairness/dollar_street": evaluate_dollar_street_dataset, "fairness/geode": evaluate_geode_dataset, "fairness/fairface": evaluate_fairface_dataset, "fairness/utkface": evaluate_fairface_dataset, }.get(task_key) if eval_fn is not None: metrics = eval_fn( task_key, train_info['scale_config']['model'], train_info['checkpoint'], data_root=data_root, dataset_len=dataset_size, batch_size=batch_size, ) else: metrics = {} elif task_key.startswith("misc/"): if task_key == "misc/winogavil": metrics = evaluate_winogavil_dataset( train_info['scale_config']['model'], train_info['checkpoint'], data_root=data_root, batch_size=batch_size, ) else: metrics = {} else: metrics = evaluate_webdataset( task_key, train_info['scale_config']['model'], train_info['checkpoint'], data_root=data_root, dataset_len=dataset_size, batch_size=batch_size ) return metrics
EXA-1-master
exa/datasets/datacomp/eval_utils/main.py
from collections import defaultdict from contextlib import suppress from .wds_eval import * from .wilds_eval import * # Dollar Street class TopKAccuracy(Accuracy): def __init__(self, prediction_fn=None, name=None): if name is None: name = 'acc_topk' super().__init__(name=name) def _compute_element_wise(self, y_pred, y_true): if self.prediction_fn is not None: y_pred = self.prediction_fn(y_pred) return (y_pred == y_true.unsqueeze(-1)).any(-1).float() class DollarStreetEvaluator(WILDSEvaluator): def __init__(self, metadata): super().__init__(metadata) self._metadata_fields = ['income_ds', 'income_meta', 'region'] self._eval_grouper = CombinatorialGrouper( dataset=self, groupby_fields=['income_ds']) def eval(self, y_pred, y_true, metadata, prediction_fn=None): metric = TopKAccuracy(prediction_fn=prediction_fn, name="acc_top5") return self.standard_group_eval( metric, self._eval_grouper, y_pred, y_true, metadata) EVALUATORS["fairness/dollar_street"] = DollarStreetEvaluator def evaluate_dollar_street_dataset( task, model_arch, model_path, data_root=None, dataset_len=None, batch_size=64, num_workers=4): """Evaluate CLIP model on Dollar Street classification task.""" # Evaluate metrics, y_pred, y_target = evaluate_webdataset( task.replace("fairness/", ""), model_arch, model_path, data_root, dataset_len, batch_size, num_workers, return_preds=True, return_topk=5 ) # Load additional metadata print("Reading additional metadata") metadata_loader = create_metadata_loader( task.replace("fairness/", ""), data_root, dataset_len, batch_size, num_workers ) # Check metadata y_array = [] metadata_array = [] for label, metadata in metadata_loader: y_array.append(label) metadata_array.append(metadata) # assert (y_target == np.array(y_array)).all(), "Labels do not match" metadata = torch.cat(metadata_array) # Compute additional metrics evaluator = EVALUATORS[task](metadata) metrics.update(evaluator.eval(y_pred, y_target, metadata)[0]) return metrics # GeoDE class GeoDEEvaluator(WILDSEvaluator): def __init__(self, metadata): super().__init__(metadata) self._metadata_fields = ['region', 'country'] self._eval_grouper = CombinatorialGrouper( dataset=self, groupby_fields=['region']) def eval(self, y_pred, y_true, metadata, prediction_fn=None): metric = Accuracy(prediction_fn=prediction_fn) return self.standard_group_eval( metric, self._eval_grouper, y_pred, y_true, metadata) EVALUATORS["fairness/geode"] = GeoDEEvaluator def evaluate_geode_dataset( task, model_arch, model_path, data_root=None, dataset_len=None, batch_size=64, num_workers=4): """Evaluate CLIP model on GeoDE classification task.""" # Evaluate metrics, y_pred, y_target = evaluate_webdataset( task.replace("fairness/", ""), model_arch, model_path, data_root, dataset_len, batch_size, num_workers, return_preds=True ) # Load additional metadata print("Reading additional metadata") metadata_loader = create_metadata_loader( task.replace("fairness/", ""), data_root, dataset_len, batch_size, num_workers ) # Check metadata y_array = [] metadata_array = [] for label, metadata in metadata_loader: y_array.append(label) metadata_array.append(metadata) # assert (y_target == np.array(y_array)).all(), "Labels do not match" metadata = torch.cat(metadata_array) # Compute additional metrics evaluator = EVALUATORS[task](metadata) metrics.update(evaluator.eval(y_pred, y_target, metadata)[0]) return metrics # FairFace FF_PRED_LABELS = ["race", "gender", "age", "toxic"] class FairFaceEvaluator(WILDSEvaluator): def __init__(self, metadata): super().__init__(metadata) self._metadata_fields = ['age', 'gender', 'race', 'race_binary'] self._first_eval_grouper = CombinatorialGrouper( dataset=self, groupby_fields=['race_binary']) self._second_eval_grouper = CombinatorialGrouper( dataset=self, groupby_fields=['gender', 'race']) self._third_eval_grouper = CombinatorialGrouper( dataset=self, groupby_fields=['race']) def eval(self, y_pred, _, metadata): metrics = {} # Table 3, 4: Classify race, gender, age; group by white vs non-white metric = Accuracy(name=f"acc_race") metrics.update(self.standard_group_eval( metric, self._first_eval_grouper, (y_pred[:, FF_PRED_LABELS.index("race")] != 1).int(), metadata[:, self.metadata_fields.index("race_binary")], metadata)[0]) for label in ["gender", "age"]: metric = Accuracy(name=f"acc_{label}") metrics.update(self.standard_group_eval( metric, self._first_eval_grouper, y_pred[:, FF_PRED_LABELS.index(label)], metadata[:, self.metadata_fields.index(label)], metadata)[0]) # Table 5: Classify gender; group by race x gender metric = Accuracy(name=f"acc_gender_x") metrics.update(self.standard_group_eval( metric, self._second_eval_grouper, y_pred[:, FF_PRED_LABELS.index("gender")], metadata[:, self.metadata_fields.index("gender")], metadata)[0]) # Table 6 toxic_preds = y_pred[:, FF_PRED_LABELS.index("toxic")] metric = Accuracy(name=f"toxicity_crime") metrics.update(self.standard_group_eval( metric, self._third_eval_grouper, (toxic_preds >= 18).int(), torch.ones_like(toxic_preds, dtype=torch.int), metadata)[0]) metric = Accuracy(name=f"toxicity_nonhuman") metrics.update(self.standard_group_eval( metric, self._third_eval_grouper, ((toxic_preds >= 14) & (toxic_preds < 18)).int(), torch.ones_like(toxic_preds, dtype=torch.int), metadata)[0]) return metrics EVALUATORS["fairness/fairface"] = FairFaceEvaluator EVALUATORS["fairness/utkface"] = FairFaceEvaluator def evaluate_fairface_dataset( task, model_arch, model_path, data_root=None, dataset_len=None, batch_size=64, num_workers=4): """Evaluate CLIP model on FairFace or UTK Faces classification tasks.""" # Create model model, transform, device = create_model(model_arch, model_path) # Load data dataset, _ = create_webdataset( task.replace("fairness/", ""), None, data_root, dataset_len, batch_size, num_workers ) # Get templates and classnames: separate for each task zeroshot_templates = dataset.templates if hasattr(dataset, 'templates') else None classnames = dataset.classes if hasattr(dataset, 'classes') else None assert (zeroshot_templates is not None and classnames is not None), 'Dataset does not support classification' multilabel = defaultdict(lambda: dict(classnames=[], zeroshot_templates=[])) for t in zeroshot_templates: objective, template = t.split(":", 1) multilabel[objective]['zeroshot_templates'].append(template) for c in classnames: objective, classname = c.split(":", 1) multilabel[objective]['classnames'].append(classname) # Load metadata and not classes dataset.pipeline = dataset.pipeline[:5] # This will break if webdataset changes dataset = ( dataset .to_tuple(["webp", "png", "jpg", "jpeg"], "npy") .map_tuple(transform, None) ) if dataset_len: dataset = dataset.with_length((dataset_len + batch_size - 1) // batch_size) dataloader = torch.utils.data.DataLoader( dataset.batched(batch_size), batch_size=None, shuffle=False, num_workers=num_workers, ) # Create classifier for each task classifiers = [] n_classes = [] for objective in FF_PRED_LABELS: info = multilabel[objective] classifiers.append(zsc.zero_shot_classifier( model, open_clip.get_tokenizer(model_arch), info['classnames'], info['zeroshot_templates'], device )) n_classes.append(len(info['classnames'])) # Combine classifiers multilabel_classifier = torch.zeros( (len(classifiers), classifiers[0].shape[0], max(n_classes)), dtype=classifiers[0].dtype, device=device ) for idx, classifier in enumerate(classifiers): multilabel_classifier[idx, :, :n_classes[idx]] = classifier # Run classification logits, target = run_multilabel_classification(model, multilabel_classifier, dataloader, device, amp=False) with torch.no_grad(): # Replace invalid entries (past n_classes for each class) INVALID = -1e9 invalid_mask = torch.arange(max(n_classes), device=device) >= torch.tensor(n_classes, device=device).unsqueeze(1) logits[invalid_mask.expand(logits.shape[0], -1, -1)] = INVALID # Compute predictions y_pred = logits.argmax(axis=-1).cpu() metadata = target.cpu() # Compute metrics evaluator = EVALUATORS[task](metadata) metrics = evaluator.eval(y_pred, None, metadata) return metrics def run_multilabel_classification(model, classifier, dataloader, device, amp=True): autocast = torch.cuda.amp.autocast if amp else suppress pred = [] true = [] nb = 0 with torch.no_grad(): for images, target in tqdm(dataloader): images = images.to(device) target = target.to(device) with autocast(): # predict image_features = model.encode_image(images, normalize=True) logits = 100. * torch.einsum("bf,mfc->bmc", image_features, classifier) true.append(target.cpu()) pred.append(logits.float().cpu()) pred = torch.cat(pred) true = torch.cat(true) return pred, true
EXA-1-master
exa/datasets/datacomp/eval_utils/fairness_eval.py
"""Evaluate on image-text retrieval datasets.""" import torch import open_clip import datasets from clip_benchmark.datasets.builder import image_captions_collate_fn from clip_benchmark.metrics import zeroshot_retrieval as zsr from .wds_eval import create_model class RetrievalDataset(torch.utils.data.Dataset): def __init__(self, hf_dataset, transform=None): super().__init__() self._dataset = hf_dataset self.transform = (lambda x: x) if transform is None else transform def __len__(self): return len(self._dataset) def __getitem__(self, index: int): return ( self.transform(self._dataset[index]['image']), self._dataset[index]['caption'] ) def evaluate_retrieval_dataset( task, model_arch, model_path, data_root=None, batch_size=64, num_workers=4): """Evaluate CLIP model on retrieval task.""" model, transform, device = create_model(model_arch, model_path) tokenizer = open_clip.get_tokenizer(model_arch) dataset = RetrievalDataset( datasets.load_dataset( f"nlphuji/{task.replace('retrieval/', '')}", split="test", # cache_dir=data_root ), transform=transform ) dataloader = torch.utils.data.DataLoader( dataset, batch_size=batch_size, shuffle=False, num_workers=num_workers, collate_fn=image_captions_collate_fn ) metrics = zsr.evaluate( model, dataloader, tokenizer, recall_k_list=[1, 5, 10], device=device ) metrics['mean_recall@1'] = 0.5 * (metrics['text_retrieval_recall@1'] + metrics['image_retrieval_recall@1']) return metrics
EXA-1-master
exa/datasets/datacomp/eval_utils/retr_eval.py
# For evaluation of WILDS datasets import os import numpy as np import torch import webdataset as wds from tqdm import tqdm # Replace wilds function that requires torch_scatter def _avg_over_groups(v, g, n_groups): """ Args: v (Tensor): Vector containing the quantity to average over. g (Tensor): Vector of the same length as v, containing group information. Returns: group_avgs (Tensor): Vector of length num_groups group_counts (Tensor) """ assert v.device==g.device assert v.numel()==g.numel() group_count = wilds.common.utils.get_counts(g, n_groups) # group_avgs = torch_scatter.scatter(src=v, index=g, dim_size=n_groups, reduce='mean') group_avgs = torch.zeros(n_groups, dtype=torch.float, device=v.device).scatter_(0, index=g, src=v, reduce='add') group_avgs /= group_count return group_avgs, group_count import wilds.common.utils wilds.common.utils.avg_over_groups = _avg_over_groups # from wilds.datasets.wilds_dataset import WILDSDataset from wilds.common.grouper import CombinatorialGrouper from wilds.common.metrics.all_metrics import Accuracy, Recall, F1 from .wds_eval import create_webdataset, evaluate_webdataset def create_metadata_loader(task, data_root=None, dataset_len=None, batch_size=64, num_workers=4): dataset, _ = create_webdataset( task, None, data_root, dataset_len, batch_size, num_workers ) # Load metadata (npy) and no images dataset.pipeline = dataset.pipeline[:5] # This will break if webdataset changes metadataset = dataset.to_tuple("cls", "npy") if dataset_len: dataset = dataset.with_length((dataset_len + batch_size - 1) // batch_size) dataloader = torch.utils.data.DataLoader( dataset.batched(batch_size), batch_size=None, shuffle=False, num_workers=num_workers, ) return dataloader def evaluate_wilds_dataset( task, model_arch, model_path, data_root=None, dataset_len=None, batch_size=64, num_workers=4): """Evaluate CLIP model on WILDS classification task.""" # Evaluate metrics, y_pred, y_target = evaluate_webdataset( task, model_arch, model_path, data_root, dataset_len, batch_size, num_workers, return_preds=True ) # Load additional metadata print("Reading additional metadata") metadata_loader = create_metadata_loader( task, data_root, dataset_len, batch_size, num_workers ) # Check metadata y_array = [] metadata_array = [] for label, metadata in metadata_loader: y_array.append(label) metadata_array.append(metadata) # assert (y_target == np.array(y_array)).all(), "Labels do not match" metadata = torch.cat(metadata_array) # Compute additional metrics wilds_evaluator = EVALUATORS[task](metadata) metrics.update(wilds_evaluator.eval(y_pred, y_target, metadata)[0]) return metrics # WILDS class WILDSEvaluator(WILDSDataset): def __init__(self, metadata): self._metadata_array = metadata # iWildCam class IWildCamEvaluator(WILDSEvaluator): def __init__(self, metadata): super().__init__(metadata) self._metadata_fields = ['location', 'sequence', 'year', 'month', 'day', 'hour', 'minute', 'second', 'y'] self._eval_grouper = CombinatorialGrouper( dataset=self, groupby_fields=(['location'])) def eval(self, y_pred, y_true, metadata, prediction_fn=None): metrics = [ Accuracy(prediction_fn=prediction_fn), Recall(prediction_fn=prediction_fn, average='macro'), F1(prediction_fn=prediction_fn, average='macro'), ] results = {} for metric in metrics: results.update({ **metric.compute(y_pred, y_true), }) results_str = ( f"Average acc: {results[metrics[0].agg_metric_field]:.3f}\n" f"Recall macro: {results[metrics[1].agg_metric_field]:.3f}\n" f"F1 macro: {results[metrics[2].agg_metric_field]:.3f}\n" ) return results, results_str # Camelyon17 class Camelyon17Evaluator(WILDSEvaluator): def __init__(self, metadata): super().__init__(metadata) self._metadata_fields = ['hospital', 'slide', 'y'] self._eval_grouper = CombinatorialGrouper( dataset=self, groupby_fields=['slide']) def eval(self, y_pred, y_true, metadata, prediction_fn=None): metric = Accuracy(prediction_fn=prediction_fn) return self.standard_group_eval( metric, self._eval_grouper, y_pred, y_true, metadata) # FMoW class FMoWEvaluator(WILDSEvaluator): def __init__(self, metadata): super().__init__(metadata) self._metadata_fields = ['region', 'year', 'y'] self._eval_groupers = { 'year': CombinatorialGrouper(dataset=self, groupby_fields=['year']), 'region': CombinatorialGrouper(dataset=self, groupby_fields=['region']), } def eval(self, y_pred, y_true, metadata, prediction_fn=None): metric = Accuracy(prediction_fn=prediction_fn) # Overall evaluation + evaluate by year all_results, all_results_str = self.standard_group_eval( metric, self._eval_groupers['year'], y_pred, y_true, metadata) # Evaluate by region and ignore the "Other" region region_grouper = self._eval_groupers['region'] region_results = metric.compute_group_wise( y_pred, y_true, region_grouper.metadata_to_group(metadata), region_grouper.n_groups) all_results[f'{metric.name}_worst_year'] = all_results.pop(metric.worst_group_metric_field) region_metric_list = [] for group_idx in range(region_grouper.n_groups): group_str = region_grouper.group_field_str(group_idx) group_metric = region_results[metric.group_metric_field(group_idx)] group_counts = region_results[metric.group_count_field(group_idx)] all_results[f'{metric.name}_{group_str}'] = group_metric all_results[f'count_{group_str}'] = group_counts if region_results[metric.group_count_field(group_idx)] == 0 or "Other" in group_str: continue all_results_str += ( f' {region_grouper.group_str(group_idx)} ' f"[n = {region_results[metric.group_count_field(group_idx)]:6.0f}]:\t" f"{metric.name} = {region_results[metric.group_metric_field(group_idx)]:5.3f}\n") region_metric_list.append(region_results[metric.group_metric_field(group_idx)]) all_results[f'{metric.name}_worst_region'] = metric.worst(region_metric_list) all_results_str += f"Worst-group {metric.name}: {all_results[f'{metric.name}_worst_region']:.3f}\n" return all_results, all_results_str EVALUATORS = { "wilds/iwildcam": IWildCamEvaluator, "wilds/camelyon17": Camelyon17Evaluator, "wilds/fmow": FMoWEvaluator, }
EXA-1-master
exa/datasets/datacomp/eval_utils/wilds_eval.py
import bmtools server = bmtools.ToolServer() print(server.list_tools()) server.load_tool("chemical-prop") server.load_tool("douban-film") server.load_tool("weather") server.load_tool("wikipedia") server.load_tool("wolframalpha") server.load_tool("bing_search") server.load_tool("office-ppt") server.load_tool("stock") server.load_tool("map") server.load_tool("nllb-translation") server.load_tool("baidu-translation") server.load_tool("tutorial") server.serve()
EXA-1-master
exa/libraries/BMTools/host_local_tools.py
from bmtools.agent.singletool import load_single_tools, STQuestionAnswerer tool_name, tool_url = 'wikipedia', "http://127.0.0.1:8079/tools/wikipedia/" tool_name, tool_config = load_single_tools(tool_name, tool_url) print(tool_name, tool_config) stqa = STQuestionAnswerer() agent = stqa.load_tools(tool_name, tool_config, prompt_type="babyagi") # agent = stqa.load_tools(tool_name, tool_config, prompt_type="react-with-tool-description")# prompt_type="babyagi") agent("Where is Yaoming Born?")
EXA-1-master
exa/libraries/BMTools/test.py
import setuptools with open("README.md", "r", encoding='utf8') as fh: long_description = fh.read() with open("requirements.txt", "r") as f: requirements = f.read().splitlines() setuptools.setup( name="bmtools", version="0.1.0", author="OpenBMB", author_email="shengdinghu@gmail.com", description="API library for big models to use tools", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/OpenBMB/BMTools", packages=setuptools.find_packages(), classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], python_requires=">=3.6", install_requires=requirements )
EXA-1-master
exa/libraries/BMTools/setup.py
import gradio as gr import sys # sys.path.append('./inference/') from bmtools.agent.tools_controller import MTQuestionAnswerer, load_valid_tools from bmtools.agent.singletool import STQuestionAnswerer from langchain.schema import AgentFinish import os import requests available_models = ["ChatGPT", "GPT-3.5"] DEFAULTMODEL = "GPT-3.5" tools_mappings = { "klarna": "https://www.klarna.com/", "chemical-prop": "http://127.0.0.1:8079/tools/chemical-prop/", "wolframalpha": "http://127.0.0.1:8079/tools/wolframalpha/", "weather": "http://127.0.0.1:8079/tools/weather/", "douban-film": "http://127.0.0.1:8079/tools/douban-film/", "wikipedia": "http://127.0.0.1:8079/tools/wikipedia/", "office-ppt": "http://127.0.0.1:8079/tools/office-ppt/", "bing_search": "http://127.0.0.1:8079/tools/bing_search/", "map": "http://127.0.0.1:8079/tools/map/", "stock": "http://127.0.0.1:8079/tools/stock/", "baidu-translation": "http://127.0.0.1:8079/tools/baidu-translation/", "nllb-translation": "http://127.0.0.1:8079/tools/nllb-translation/", } valid_tools_info = load_valid_tools(tools_mappings) print(valid_tools_info) all_tools_list = sorted(list(valid_tools_info.keys())) gr.close_all() MAX_TURNS = 30 MAX_BOXES = MAX_TURNS * 2 def show_avatar_imgs(tools_chosen): if len(tools_chosen) == 0: tools_chosen = list(valid_tools_info.keys()) img_template = '<a href="{}" style="float: left"> <img style="margin:5px" src="{}.png" width="24" height="24" alt="avatar" /> {} </a>' imgs = [valid_tools_info[tool]['avatar'] for tool in tools_chosen if valid_tools_info[tool]['avatar'] != None] imgs = ' '.join([img_template.format(img, img, tool ) for img, tool in zip(imgs, tools_chosen) ]) return [gr.update(value='<span class="">'+imgs+'</span>', visible=True), gr.update(visible=True)] return_msg = [] chat_history = "" def answer_by_tools(question, tools_chosen, model_chosen): global return_msg return_msg += [(question, None), (None, '...')] yield [gr.update(visible=True, value=return_msg), gr.update(), gr.update()] OPENAI_API_KEY = os.environ.get('OPENAI_API_KEY', '') if len(tools_chosen) == 0: # if there is no tools chosen, we use all todo (TODO: What if the pool is too large.) tools_chosen = list(valid_tools_info.keys()) if len(tools_chosen) == 1: answerer = STQuestionAnswerer(OPENAI_API_KEY.strip(), stream_output=True, llm=model_chosen) agent_executor = answerer.load_tools(tools_chosen[0], valid_tools_info[tools_chosen[0]], prompt_type="react-with-tool-description", return_intermediate_steps=True) else: answerer = MTQuestionAnswerer(OPENAI_API_KEY.strip(), load_valid_tools({k: tools_mappings[k] for k in tools_chosen}), stream_output=True, llm=model_chosen) agent_executor = answerer.build_runner() global chat_history chat_history += "Question: " + question + "\n" question = chat_history for inter in agent_executor(question): if isinstance(inter, AgentFinish): continue result_str = [] return_msg.pop() if isinstance(inter, dict): result_str.append("<font color=red>Answer:</font> {}".format(inter['output'])) chat_history += "Answer:" + inter['output'] + "\n" result_str.append("...") else: not_observation = inter[0].log if not not_observation.startswith('Thought:'): not_observation = "Thought: " + not_observation chat_history += not_observation not_observation = not_observation.replace('Thought:', '<font color=green>Thought: </font>') not_observation = not_observation.replace('Action:', '<font color=purple>Action: </font>') not_observation = not_observation.replace('Action Input:', '<font color=purple>Action Input: </font>') result_str.append("{}".format(not_observation)) result_str.append("<font color=blue>Action output:</font>\n{}".format(inter[1])) chat_history += "\nAction output:" + inter[1] + "\n" result_str.append("...") return_msg += [(None, result) for result in result_str] yield [gr.update(visible=True, value=return_msg), gr.update(), gr.update()] return_msg.pop() if return_msg[-1][1].startswith("<font color=red>Answer:</font> "): return_msg[-1] = (return_msg[-1][0], return_msg[-1][1].replace("<font color=red>Answer:</font> ", "<font color=green>Final Answer:</font> ")) yield [gr.update(visible=True, value=return_msg), gr.update(visible=True), gr.update(visible=False)] def retrieve(tools_search): if tools_search == "": return gr.update(choices=all_tools_list) else: url = "http://127.0.0.1:8079/retrieve" param = { "query": tools_search } response = requests.post(url, json=param) result = response.json() retrieved_tools = result["tools"] return gr.update(choices=retrieved_tools) def clear_retrieve(): return [gr.update(value=""), gr.update(choices=all_tools_list)] def clear_history(): global return_msg global chat_history return_msg = [] chat_history = "" yield gr.update(visible=True, value=return_msg) with gr.Blocks() as demo: with gr.Row(): with gr.Column(scale=14): gr.Markdown("<h1 align='left'> BMTools </h1>") with gr.Column(scale=1): gr.Markdown('<img src="https://openbmb.cn/openbmb/img/head_logo.e9d9f3f.png" width="140">') with gr.Row(): with gr.Column(scale=4): with gr.Row(): with gr.Column(scale=0.85): txt = gr.Textbox(show_label=False, placeholder="Question here. Use Shift+Enter to add new line.", lines=1).style(container=False) with gr.Column(scale=0.15, min_width=0): buttonClear = gr.Button("Clear History") buttonStop = gr.Button("Stop", visible=False) chatbot = gr.Chatbot(show_label=False, visible=True).style(height=600) with gr.Column(scale=1): with gr.Row(): tools_search = gr.Textbox( lines=1, label="Tools Search", info="Please input some text to search tools.", ) buttonSearch = gr.Button("Clear") tools_chosen = gr.CheckboxGroup( choices=all_tools_list, value=["chemical-prop"], label="Tools provided", info="Choose the tools to solve your question.", ) model_chosen = gr.Dropdown( list(available_models), value=DEFAULTMODEL, multiselect=False, label="Model provided", info="Choose the model to solve your question, Default means ChatGPT." ) tools_search.change(retrieve, tools_search, tools_chosen) buttonSearch.click(clear_retrieve, [], [tools_search, tools_chosen]) txt.submit(lambda : [gr.update(value=''), gr.update(visible=False), gr.update(visible=True)], [], [txt, buttonClear, buttonStop]) inference_event = txt.submit(answer_by_tools, [txt, tools_chosen, model_chosen], [chatbot, buttonClear, buttonStop]) buttonStop.click(lambda : [gr.update(visible=True), gr.update(visible=False)], [], [buttonClear, buttonStop], cancels=[inference_event]) buttonClear.click(clear_history, [], chatbot) demo.queue().launch(share=True, inbrowser=True, server_name="127.0.0.1", server_port=7001)
EXA-1-master
exa/libraries/BMTools/web_demo.py
from .tools.serve import ToolServer from .utils.logging import get_logger
EXA-1-master
exa/libraries/BMTools/bmtools/__init__.py
from .tool import Tool from typing import Dict, Callable, Any, List ToolBuilder = Callable[[Any], Tool] FuncToolBuilder = Callable[[], ToolBuilder] class ToolsRegistry: def __init__(self) -> None: self.tools : Dict[str, FuncToolBuilder] = {} def register(self, tool_name : str, tool : FuncToolBuilder): print(f"will register {tool_name}") self.tools[tool_name] = tool def build(self, tool_name, config) -> Tool: ret = self.tools[tool_name]()(config) if isinstance(ret, Tool): return ret raise ValueError("Tool builder {} did not return a Tool instance".format(tool_name)) def list_tools(self) -> List[str]: return list(self.tools.keys()) tools_registry = ToolsRegistry() def register(tool_name): def decorator(tool : FuncToolBuilder): tools_registry.register(tool_name, tool) return tool return decorator def build_tool(tool_name : str, config : Any) -> Tool: print(f"will build {tool_name}") return tools_registry.build(tool_name, config) def list_tools() -> List[str]: return tools_registry.list_tools()
EXA-1-master
exa/libraries/BMTools/bmtools/tools/registry.py
from langchain.embeddings import OpenAIEmbeddings from typing import List, Dict from queue import PriorityQueue import os class Retriever: def __init__(self, openai_api_key: str = None, model: str = "text-embedding-ada-002"): if openai_api_key is None: openai_api_key = os.environ.get("OPENAI_API_KEY") self.embed = OpenAIEmbeddings(openai_api_key=openai_api_key, model=model) self.documents = dict() def add_tool(self, tool_name: str, api_info: Dict) -> None: if tool_name in self.documents: return document = api_info["name_for_model"] + ". " + api_info["description_for_model"] document_embedding = self.embed.embed_documents([document]) self.documents[tool_name] = { "document": document, "embedding": document_embedding[0] } def query(self, query: str, topk: int = 3) -> List[str]: query_embedding = self.embed.embed_query(query) queue = PriorityQueue() for tool_name, tool_info in self.documents.items(): tool_embedding = tool_info["embedding"] tool_sim = self.similarity(query_embedding, tool_embedding) queue.put([-tool_sim, tool_name]) result = [] for i in range(min(topk, len(queue.queue))): tool = queue.get() result.append(tool[1]) return result def similarity(self, query: List[float], document: List[float]) -> float: return sum([i * j for i, j in zip(query, document)])
EXA-1-master
exa/libraries/BMTools/bmtools/tools/retriever.py
from . import chemical from . import film from . import kg from . import stock from . import weather from . import wikipedia from . import wolframalpha from . import office from . import bing_search from . import translation from . import tutorial from .tool import Tool from .registry import register from .serve import ToolServer
EXA-1-master
exa/libraries/BMTools/bmtools/tools/__init__.py
import fastapi import uvicorn from .registry import build_tool, list_tools from .retriever import Retriever from typing import List from pydantic import BaseModel class RetrieveRequest(BaseModel): query: str topk: int = 3 def _bind_tool_server(t : "ToolServer"): """ Add property API to ToolServer. t.api is a FastAPI object """ @t.api.get("/") def health(): return { "status": "ok", } @t.api.get("/list") def get_tools_list(): return { "tools": t.list_tools(), } @t.api.get("/loaded") def get_loaded_tools(): return { "tools": list(t.loaded_tools), } @t.api.get("/.well-known/ai-plugin.json", include_in_schema=False) def get_api_info(): return { "schema_version": "v1", "name_for_human": "BMTools", "name_for_model": "BMTools", "description_for_human": "tools to big models", "description_for_model": "tools to big models", "auth": { "type": "none", }, "api": { "type": "openapi", "url": "/openapi.json", "is_user_authenticated": False, }, "logo_url": None, "contact_email": "", "legal_info_url": "", } @t.api.post("/retrieve") def retrieve(request: RetrieveRequest): tool_list = t.retrieve(request.query, request.topk) return { "tools": tool_list } class ToolServer: """ This class host your own API backend. """ def __init__(self) -> None: # define the root API server self.api = fastapi.FastAPI( title="BMTools", description="Tools for bigmodels", ) self.loaded_tools = dict() self.retriever = Retriever() _bind_tool_server(self) def load_tool(self, name : str, config = {}): if self.is_loaded(name): raise ValueError(f"Tool {name} is already loaded") tool = build_tool(name, config) self.loaded_tools[name] = tool.api_info self.retriever.add_tool(name, tool.api_info) # mount sub API server to the root API server, thus can mount all urls of sub API server to /tools/{name} route self.api.mount(f"/tools/{name}", tool, name) return def is_loaded(self, name : str): return name in self.loaded_tools def serve(self, host : str = "0.0.0.0", port : int = 8079): uvicorn.run(self.api, host=host, port=port) def list_tools(self) -> List[str]: return list_tools() def retrieve(self, query: str, topk: int = 3) -> List[str]: return self.retriever.query(query, topk)
EXA-1-master
exa/libraries/BMTools/bmtools/tools/serve.py
import fastapi from typing import Optional import copy from starlette.middleware.sessions import SessionMiddleware from fastapi import Request class Tool(fastapi.FastAPI): """ Tool is inherited from FastAPI class, thus: 1. It can act as a server 2. It has get method, you can use Tool.get method to bind a function to an url 3. It can be easily mounted to another server 4. It has a list of sub-routes, each route is a function Diagram: Root API server (ToolServer object) │ ├───── "./weather": Tool object │ ├── "./get_weather_today": function_get_weather(location: str) -> str │ ├── "./get_weather_forecast": function_get_weather_forcast(location: str, day_offset: int) -> str │ └── "...more routes" ├───── "./wikidata": Tool object │ ├── "... more routes" └───── "... more routes" """ def __init__( self, tool_name : str, description : str, name_for_human : Optional[str] = None, name_for_model : Optional[str] = None, description_for_human : Optional[str] = None, description_for_model : Optional[str] = None, logo_url : Optional[str] = None, author_github : Optional[str] = None, contact_email : str = "", legal_info_url : str = "", version : str = "0.1.0", ): super().__init__( title=tool_name, description=description, version=version, ) if name_for_human is None: name_for_human = tool_name if name_for_model is None: name_for_model = name_for_human if description_for_human is None: description_for_human = description if description_for_model is None: description_for_model = description_for_human self.api_info = { "schema_version": "v1", "name_for_human": name_for_human, "name_for_model": name_for_model, "description_for_human": description_for_human, "description_for_model": description_for_model, "auth": { "type": "none", }, "api": { "type": "openapi", "url": "/openapi.json", "is_user_authenticated": False, }, "author_github": author_github, "logo_url": logo_url, "contact_email": contact_email, "legal_info_url": legal_info_url, } @self.get("/.well-known/ai-plugin.json", include_in_schema=False) def get_api_info(request : fastapi.Request): openapi_path = str(request.url).replace("/.well-known/ai-plugin.json", "/openapi.json") info = copy.deepcopy(self.api_info) info["api"]["url"] = str(openapi_path) return info self.add_middleware( SessionMiddleware, secret_key=tool_name, session_cookie="session_{}".format(tool_name.replace(" ", "_")), )
EXA-1-master
exa/libraries/BMTools/bmtools/tools/tool.py
from ..registry import register @register("tutorial") def tutorial(): from .api import build_tool return build_tool
EXA-1-master
exa/libraries/BMTools/bmtools/tools/tutorial/__init__.py
from bmtools.agent.singletool import load_single_tools, STQuestionAnswerer tool_name, tool_url = 'tutorial', "http://127.0.0.1:8079/tools/tutorial/" tools_name, tools_config = load_single_tools(tool_name, tool_url) print(tools_name, tools_config) qa = STQuestionAnswerer() print(tools_config) agent = qa.load_tools(tools_name, tools_config) answer = agent("I want to cook pizza.") print(answer)
EXA-1-master
exa/libraries/BMTools/bmtools/tools/tutorial/test.py
import os import random import requests import hashlib from ..tool import Tool from langchain.prompts import PromptTemplate from langchain.chains import LLMChain from langchain.llms import OpenAI def build_tool(config) -> Tool: tool = Tool( tool_name="Tutorial", description="Provide tutorial for foundation model based on a given objective.", name_for_model="Tutorial", description_for_model="Plugin for providing tutorial for a given objective.", logo_url="https://your-app-url.com/.well-known/logo.png", contact_email="xin.cong@outlook.com", legal_info_url="hello@legal.com" ) prompt = PromptTemplate.from_template( "You are a planner who is an expert at coming up with a todo list for a given objective. Come up with a todo list for this objective: {objective}" ) key = os.environ.get("OPENAI_API_KEY") llm = OpenAI(model_name="gpt-3.5-turbo", temperature=0.0, openai_api_key=key) chain = LLMChain(llm=llm, prompt=prompt) @tool.get("/tutorial") def tutorial(text: str) -> str: """ tutorial(text: str) -> str: Providing a TODO list as a toturial for the foundation model based on the given objective. """ result = chain.run(text) return result return tool
EXA-1-master
exa/libraries/BMTools/bmtools/tools/tutorial/api.py
from ..registry import register @register("wikipedia") def wikipedia(): from .api import build_tool return build_tool
EXA-1-master
exa/libraries/BMTools/bmtools/tools/wikipedia/__init__.py
from bmtools.agent.singletool import load_single_tools, STQuestionAnswerer import requests import json # at = "{\"entity\": \"Arthur\"s Magazine\"}" # print(at[19]) # print(len(at)) # a = json.loads("{\"entity\": \"Arthur\"s Magazine\"}") # print(a) tool_name, tool_url = 'wikipedia', "http://127.0.0.1:8079/tools/wikipedia/" tools_name, tools_config = load_single_tools(tool_name, tool_url) print(tools_name, tools_config) qa = STQuestionAnswerer() agent = qa.load_tools(tools_name, tools_config) agent("Which magazine was started first, Arthur’s Magazine or First for Women?") agent("when was the first hunger games book published?")
EXA-1-master
exa/libraries/BMTools/bmtools/tools/wikipedia/test.py
import requests from bs4 import BeautifulSoup from ..tool import Tool, Request from uuid import UUID def clean_str(p): return p.encode().decode("unicode-escape").encode("latin1").decode("utf-8") class WikiPage: def __init__(self): self.page = "" self.paragraphs = [] self.sentences = [] self.lookup_cnt = 0 self.lookup_list = [] self.lookup_keyword = None def reset_page(self): self.page = "" self.paragraphs = [] self.sentences = [] self.lookup_cnt = 0 self.lookup_list = [] self.lookup_keyword = None def get_page_obs(self, page): self.page = page paragraphs = [] sentences = [] # find all paragraphs paragraphs = page.split("\n") paragraphs = [p.strip() for p in paragraphs if p.strip()] # find all sentence sentences = [] for p in paragraphs: sentences += p.split('. ') sentences = [s.strip() + '.' for s in sentences if s.strip()] self.paragraphs = paragraphs self.sentences = sentences return ' '.join(sentences[:5]) def construct_lookup_list(self, keyword : str): sentences = self.sentences parts = [] for index, p in enumerate(sentences): if keyword.lower() in p.lower(): parts.append(index) self.lookup_list = parts self.lookup_keyword = keyword self.lookup_cnt = 0 currentPage = WikiPage() def build_tool(config) -> Tool: tool = Tool( "Wikipedia Search", "Plugin for wikipedia", name_for_model="Wikipedia", name_for_human="Wikipedia", description_for_model="A tool to search entity, view content and disambiguate entity on Wikipedia.\nCurrent endpoint for each function is simple and you should only use exact entity name as input for search and disambiguate. And the keyword input to lookup api should also be simple like one or two words.\nSome Tips to use the APIs bertter:\n1. When the search api doesn't find the corresponding page, you should search a related entity in the return list.\n2. You can only search one entity name in each action, so, don't concat multiple entity names in one search input.\n3. The lookup api can only be used after search api since it depends on the result page of search.\n4. When search api result in an entity page that is not related, you should disambiguate the searched entity to find other entities with the same name.\n5. Don't over rely one this simple tool, you may figure out the next action based on your own knowledge.", description_for_human="A tool to search entity, view content and disambiguate entity on Wikipedia.\nCurrent endpoint for each function is simple and you should only use exact entity name as input for search and disambiguate. And the keyword input to lookup api should also be simple like one or two words.", logo_url="https://your-app-url.com/.well-known/logo.png", contact_email="hello@contact.com", legal_info_url="hello@legal.com" ) @tool.get("/search") def search(entity : str, request : Request): '''The input is an exact entity name. The action will search this entity name on Wikipedia and returns the first five sentences if it exists. If not, it will return some related entities to search next. ''' entity_ = entity.replace(" ", "+") search_url = f"https://en.wikipedia.org/w/index.php?search={entity_}" response_text = requests.get(search_url).text soup = BeautifulSoup(response_text, features="html.parser") result_divs = soup.find_all("div", {"class": "mw-search-result-heading"}) if result_divs: # mismatch result_titles = [clean_str(div.get_text().strip()) for div in result_divs] obs = f"Could not find {entity}. Similar: {result_titles[:5]}." else: local_page = [p.get_text().strip() for p in soup.find_all("p") + soup.find_all("ul")] if any("may refer to:" in p for p in local_page): obs = search("[" + entity + "]", request) else: currentPage.reset_page() page = "" for p in local_page: if len(p.split(" ")) > 2: page += clean_str(p) if not p.endswith("\n"): page += "\n" obs = currentPage.get_page_obs(page) return obs @tool.get("/lookup") def lookup(keyword : str, request : Request) -> str: '''The input is a keyword. This action will look up in the current passage and return the next several sentences containing the keyword in current passage. ''' # lookup_keyword = request.session["lookup_keyword"] # lookup_list = request.session["lookup_list"] # lookup_cnt = request.session["lookup_cnt"] # sentences = request.session["sentences"] lookup_keyword = currentPage.lookup_keyword if lookup_keyword != keyword: # reset lookup currentPage.construct_lookup_list(keyword) lookup_list = currentPage.lookup_list lookup_cnt = currentPage.lookup_cnt sentences = currentPage.sentences if lookup_cnt >= len(lookup_list): obs = "No more results." else: index = lookup_list[lookup_cnt] before_sentence_num = min(index, 1) max_sentence_num = 3 # 一共3句话 lookup_result = ' '.join(sentences[index - before_sentence_num: index - before_sentence_num + max_sentence_num]) obs = f"(Result {lookup_cnt + 1} / {len(lookup_list)}) " + lookup_result currentPage.lookup_cnt += 1 return obs @tool.get("/disambiguation") def disambiguation(entity : str) -> str: '''The input is an entity name. This action will disambiguate this entity name to find other entities with similar names in Wikipedia. ''' # self.reset_pages() url = f"https://en.wikipedia.org/wiki/{entity}_(disambiguation)" # url = f"https://en.wikipedia.org{href}" response = requests.get(url) html_code = response.content soup = BeautifulSoup(html_code, "html.parser") # Extract all the list items from the page list_items = soup.find_all("li") # Extract the text content of each list item and print it titles = [] for item in list_items: link = item.find("a") if link and entity.lower() in item.get_text().lower() and "/wiki" in link["href"]: titles.append(link.get_text()) # print(f"{link.get_text()} - {link['href']}") # print(item.get_text()) # print("\n") whether_need_disambiguation = True max_return_titles = 5 if len(titles) > max_return_titles: titles = titles[:max_return_titles] obs = f"Related entities to {entity}: {titles}" return obs return tool
EXA-1-master
exa/libraries/BMTools/bmtools/tools/wikipedia/api.py
from ..registry import register @register("douban-film") def douban_film(): from .douban import build_tool return build_tool
EXA-1-master
exa/libraries/BMTools/bmtools/tools/film/__init__.py
from .api import build_tool
EXA-1-master
exa/libraries/BMTools/bmtools/tools/film/douban/__init__.py
from bmtools.agent.singletool import load_single_tools, STQuestionAnswerer tool_name, tool_url = 'douban', "http://127.0.0.1:8079/tools/douban-film/" tools_name, tools_config = load_single_tools(tool_name, tool_url) # tools_name, tools_config = load_single_tools() print(tools_name, tools_config) qa = STQuestionAnswerer() agent = qa.load_tools(tools_name, tools_config) agent("有哪些即将上映的中国喜剧电影?哪些是大家最想看的前5部?") agent("想去电影院看一些国产电影,有评分高的吗?输出3部") agent("帮我介绍下《深海》这部电影")
EXA-1-master
exa/libraries/BMTools/bmtools/tools/film/douban/test.py
import requests from lxml import etree import pandas as pd from translate import Translator import re from ...tool import Tool def build_tool(config) -> Tool: tool = Tool( "Film Search Plugin", "search for up-to-date film information.", name_for_model="Film Search", description_for_model="Plugin for search for up-to-date film information.", logo_url="https://your-app-url.com/.well-known/logo.png", contact_email="hello@contact.com", legal_info_url="hello@legal.com" ) def fetch_page(url : str): """get_name(url: str) print html text of url """ headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) ' 'Chrome/108.0.0.0 Safari/537.36'} s = requests.session() s.keep_alive = False response = s.get(url, headers=headers, verify=False) return response def parse_coming_page(): """parse_coming_page() prints the details of the all coming films, including date, title, cate, region, wantWatchPeopleNum, link """ # 获取即将上映的电影列表 url = 'https://movie.douban.com/coming' response = fetch_page(url) df_filmsComing = pd.DataFrame(columns=["date", "title", "cate", "region", "wantWatchPeopleNum", 'link']) parser = etree.HTMLParser(encoding='utf-8') tree = etree.HTML(response.text, parser=parser) movies_table_path = '//*[@id="content"]/div/div[1]/table/tbody' movies_table = tree.xpath(movies_table_path) for filmChild in movies_table[0].iter('tr'): filmTime = filmChild.xpath('td[1]/text()')[0].strip() filmName = filmChild.xpath('td[2]/a/text()')[0] filmType = filmChild.xpath('td[3]/text()')[0].strip() filmRegion = filmChild.xpath('td[4]/text()')[0].strip() filmWantWatching = filmChild.xpath('td[5]/text()')[0].strip() filmLink = filmChild.xpath('td[2]/a/@href')[0] df_filmsComing.loc[len(df_filmsComing.index)] = [ filmTime, filmName, filmType, filmRegion, filmWantWatching, filmLink ] return df_filmsComing def parse_nowplaying_page(): """parse_nowplaying_page() prints the details of the all playing films now, including title, score, region, director, actors, link """ # 获取正在上映的电影列表 url = 'https://movie.douban.com/cinema/nowplaying/beijing/' response = fetch_page(url) df_filmsNowPlaying = pd.DataFrame(columns=["title", "score", "region", "director", "actors", 'link']) parser = etree.HTMLParser(encoding='utf-8') tree = etree.HTML(response.text, parser=parser) movies_table_path = './/div[@id="nowplaying"]/div[2]/ul' movies_table = tree.xpath(movies_table_path) for filmChild in movies_table[0]: filmName = filmChild.xpath('@data-title')[0] filmScore = filmChild.xpath('@data-score')[0] filmRegion = filmChild.xpath('@data-region')[0] filmDirector = filmChild.xpath('@data-director')[0] filmActors = filmChild.xpath('@data-actors')[0] filmLink = filmChild.xpath('ul/li[1]/a/@href')[0] df_filmsNowPlaying.loc[len(df_filmsNowPlaying.index)] = [ filmName, filmScore, filmRegion, filmDirector, filmActors, filmLink ] return df_filmsNowPlaying def parse_detail_page(response): """parse_detail_page(response) get information from response.text """ parser = etree.HTMLParser(encoding='utf-8') tree = etree.HTML(response.text, parser=parser) info_path = './/div[@class="subject clearfix"]/div[2]' director = tree.xpath(f'{info_path}/span[1]/span[2]/a/text()')[0] actors = [] actors_spans = tree.xpath(f'{info_path}/span[3]/span[2]')[0] for actors_span in actors_spans: actors.append(actors_span.text) actors = '、'.join(actors[:3]) types = [] spans = tree.xpath(f'{info_path}')[0] for span in spans.iter('span'): if 'property' in span.attrib and span.attrib['property']=='v:genre': types.append(span.text) types = '、'.join(types) for span in spans: if span.text=='制片国家/地区:': region = span.tail.strip() break Synopsis = tree.xpath('.//div[@class="related-info"]/div/span')[0].text.strip() detail = f'是一部{region}的{types}电影,由{director}导演,{actors}等人主演.\n剧情简介:{Synopsis}' return detail @tool.get("/coming_out_filter") def coming_out_filter(args : str): """coming_out_filter(args: str) prints the details of the filtered [outNum] coming films now according to region, cate and outNum. args is a list like 'str1, str2, str3, str4' str1 represents Production country or region. If you cannot find a region, str1 is 全部 str2 represents movie's category. If you cannot find a category, str2 is 全部 str3 can be a integer number that agent want to get. If you cannot find a number, str2 is 100. If the found movie's num is less than str2, Final Answer only print [the found movie's num] movies. str4 can be a True or False that refluct whether agent want the result sorted by people number which look forward to the movie. Final answer should be complete. This is an example: Thought: I need to find the upcoming Chinese drama movies and the top 2 most wanted movies Action: coming_out_filter Action Input: {"args" : "中国, 剧情, 2, True"} Observation: {"date":{"23":"04月28日","50":"07月"},"title":{"23":"长空之王","50":"热烈"},"cate":{"23":"剧情 / 动作","50":"剧情 / 喜剧"},"region":{"23":"中国大陆","50":"中国大陆"},"wantWatchPeopleNum":{"23":"39303人","50":"26831人"}} Thought: I now know the top 2 upcoming Chinese drama movies Final Answer: 即将上映的中国剧情电影有2部:长空之王、热烈,大家最想看的前2部分别是:长空之王、热烈。 """ args = re.findall(r'\b\w+\b', args) region = args[0] if region=='全部': region = '' cate = args[1] if cate=='全部': cate = '' outNum = int(args[2]) WantSort = True if args[3]=='True' else False df = parse_coming_page() df_recon = pd.DataFrame.copy(df, deep=True) # 即将上映的某类型电影,根据想看人数、地区、类型进行筛选 df_recon['wantWatchPeopleNum'] = df_recon['wantWatchPeopleNum'].apply(lambda x: int(x.replace('人', ''))) df_recon = df_recon[df_recon['cate'].str.contains(cate)] df_recon = df_recon[df_recon['region'].str.contains(region)] # 最后根据想看人数降序排列 if WantSort: df_recon.sort_values(by="wantWatchPeopleNum" , inplace=True, ascending = not WantSort) outDf = df_recon[:outNum] return df.loc[outDf.index, 'date':'wantWatchPeopleNum'] @tool.get("/now_playing_out_filter") def now_playing_out_filter(args : str): """NowPlayingOutFilter(args: str) prints the details of the filtered [outNum] playing films now according to region, scoreSort args is a list like 'str1, str2, str3' str1 can be '中国','日本' or other Production country or region. If you cannot find a region, str1 is 全部 str2 can be a integer number that agent want to get. If you cannot find a number, str2 is 100. If the found movie's num is less than str2, Final Answer only print [the found movie's num] movies. str3 can be a True or False that refluct whether agent want the result sorted by score. Final answer should be complete. This is an example: Input: 您知道现在有正在上映中国的电影吗?请输出3部 Thought: I need to find the currently playing movies with the highest scores Action: now_playing_out_filter Action Input: {"args" : "全部, 3, True"} Observation: {"title":{"34":"切腹","53":"吉赛尔","31":"小森林 夏秋篇"},"score":{"34":"9.4","53":"9.2","31":"9.0"},"region":{"34":"日本","53":"西德","31":"日本"},"director":{"34":"小林正树","53":"Hugo Niebeling","31":"森淳一"},"actors":{"34":"仲代达矢 / 石浜朗 / 岩下志麻","53":"卡拉·弗拉奇 / 埃里克·布鲁恩 / Bruce Marks","31":"桥本爱 / 三浦贵大 / 松冈茉优"}} Thought: I now know the currently playing movies with the highest scores Final Answer: 现在上映的评分最高的3部电影是:切腹、吉赛尔、小森林 夏秋篇 """ args = re.findall(r'\b\w+\b', args) region = args[0] if region=='全部': region = '' outNum = int(args[1]) scoreSort = True if args[2]=='True' else False df = parse_nowplaying_page() df_recon = pd.DataFrame.copy(df, deep=True) df_recon['score'] = df_recon['score'].apply(lambda x: float(x)) # 正在上映的某类型电影,根据地区进行筛选 df_recon = df_recon[df_recon['region'].str.contains(region)] # 最后根据评分降序排列 if scoreSort: df_recon.sort_values(by="score" , inplace=True, ascending = not scoreSort) outDf = df_recon[:outNum] return df.loc[outDf.index, 'title':'actors'] @tool.get("/print_detail") def print_detail(args : str): """parsing_detail_page(args) prints the details of a movie, giving its name. args is a list like 'str1' str1 is target movie's name. step1: apply function parse_coming_page and parse_nowplaying_page and get all movie's links and other infomation. step2: get the target movie's link from df_coming or df_nowplaying step3: get detail from step2's link This is an example: Input: "电影流浪地球2怎么样?" Thought: I need to find the movie's information Action: print_detail Action Input: {"args" : "流浪地球2"} Observation: "是一部中国大陆的科幻、冒险、灾难电影,由郭帆导演,吴京、刘德华、李雪健等人主演.\n剧情简介:太阳即将毁灭,人类在地球表面建造出巨大的推进器,寻找新的家园。然而宇宙之路危机四伏,为了拯救地球,流浪地球时代的年轻人再次挺身而出,展开争分夺秒的生死之战。" Thought: I now know the final answer Final Answer: 流浪地球2是一部中国大陆的科幻、冒险、灾难电影,由郭帆导演,吴京、刘德华、李雪健等人主演,剧情简介是太阳即将毁灭,人类在地球表面建造出巨大的推进器,寻找新的家园,然而宇宙之路危机四伏,为了拯救地球,流浪地球时代的年轻人再次挺身而出, """ args = re.findall(r'\b\w+\b', args) filmName = args[0] df_coming = parse_coming_page() df_nowplaying = parse_nowplaying_page() if filmName in list(df_coming['title']): df = df_coming url = df[df['title']==filmName]['link'].values[0] response = fetch_page(url) detail = parse_detail_page(response) elif filmName in list(df_nowplaying['title']): df = df_nowplaying url = df[df['title']==filmName]['link'].values[0] response = fetch_page(url) detail = parse_detail_page(response) return f'{filmName}{detail}' return tool
EXA-1-master
exa/libraries/BMTools/bmtools/tools/film/douban/api.py
from ..registry import register @register("office-ppt") def office_ppt(): from .ppt import build_tool return build_tool
EXA-1-master
exa/libraries/BMTools/bmtools/tools/office/__init__.py
from .api import build_tool
EXA-1-master
exa/libraries/BMTools/bmtools/tools/office/ppt/__init__.py
import collections import collections.abc from pptx import Presentation import requests import os import time import json import sys from ...tool import Tool def build_tool(config) -> Tool: tool = Tool( "Slides Making", "This tool allows you to create ppt slides with text, paragraph, images, with good looking styles", name_for_model="Slides Making", description_for_model="This tool allows you to create ppt slides with text, paragraph, images, with good looking styles", logo_url="https://your-app-url.com/.well-known/logo.png", contact_email="bokesyo2000@gmail.com", legal_info_url="hello@legal.com" ) CWD = os.getcwd() # path of current working directory LIB_DIR = os.path.dirname(__file__) # path of library TEMPLATE_DIR = os.path.join(LIB_DIR, "templates") # path of templates CACHE_DIR = os.path.join(CWD, "cache") # path of cache_dir IMAGE_BED_PATTERN = 'https://source.unsplash.com/featured/?{}' # url pattern for image bed if not os.path.exists(CACHE_DIR): os.makedirs(CACHE_DIR) # print(f"[system]: office.ppt: created cache directory: {CACHE_DIR}") # print(f"[system]: office.ppt_functional: TEMPLATE_DIR = {TEMPLATE_DIR}") # print(f"[system]: office.ppt_functional: CACHE_DIR = {CACHE_DIR}") ppt_file = None # a pointer to the powerpoint object def _return_timestamp(): return str(time.time()) def runtime_update_docstring(new_docstring: str) -> callable: """ This is a decorator that can help update the docstring at runtime """ def decorator(func: callable) -> callable: func.__doc__ = new_docstring return func return decorator # Update the template list, then update the docstring of create_file ppt_template_names = [] all_files = os.listdir(TEMPLATE_DIR) for file_name in all_files: if file_name.lower().endswith('.pptx'): ppt_template_names.append(file_name.split(".")[0]) updated_docstring_create_file = f"""create_file(theme:str) -> None: Create a pptx file with specific theme, available thems: {' / '.join(ppt_template_names)}.""" @tool.get("/create_file") @runtime_update_docstring(updated_docstring_create_file) def create_file(theme:str) -> str: """create_file(theme:str) -> None Create a pptx file with specific themes. Available themes: <update at runtime> """ nonlocal ppt_file ppt_file = Presentation(os.path.join(TEMPLATE_DIR, f"{theme}.pptx")) return "created a ppt file." @tool.get("/get_image") def get_image(keywords:str) -> str: """get_image(keywords:str) -> str Get an image given comma seperated keywords, return the image path. """ picture_url = IMAGE_BED_PATTERN.format(keywords) response = requests.get(picture_url) img_local_path = os.path.join(CACHE_DIR, f"{_return_timestamp()}.jpg") with open(img_local_path, 'wb') as f: f.write(response.content) return img_local_path @tool.get("/add_first_page") def add_first_page(title:str, subtitle:str) -> str: """add_first_page(title:str, subtitle:str) -> None: Add the first page of ppt. """ nonlocal ppt_file slide = ppt_file.slides.add_slide(ppt_file.slide_layouts[0]) # layout for first page (title and subtitle only) title_shape = slide.shapes.title subtitle_shape = slide.placeholders[1] title_shape.text = title subtitle_shape.text = subtitle return "added page" @tool.get("/add_text_page") def add_text_page(title:str, bullet_items:str) -> str: """add_text_page(title:str, bullet_items:str) -> None: Add text page (outline page is also applied). bullet_items should be string, for multiple bullet items, please use [SPAN] to separate them. """ nonlocal ppt_file slide = ppt_file.slides.add_slide(ppt_file.slide_layouts[1]) title_shape = slide.shapes.title body_shape = slide.placeholders[1] title_shape.text = title tf = body_shape.text_frame bullet_items = bullet_items.split("[SPAN]") for bullet_item in bullet_items: bullet_item_strip = bullet_item.strip() p = tf.add_paragraph() p.text = bullet_item_strip p.level = 1 return "added page" @tool.get("/add_text_image_page") def add_text_image_page(title:str, bullet_items:str, image:str) -> str: """add_text_image_page(title:str, bullet_items:str, image:str) -> None: Add a text page with one image. (image should be a path) bullet_items should be string, for multiple bullet items, please use [SPAN] to separate them. """ nonlocal ppt_file slide = ppt_file.slides.add_slide(ppt_file.slide_layouts[3]) title_shape = slide.shapes.title title_shape.text = title body_shape = slide.placeholders[1] tf = body_shape.text_frame bullet_items = bullet_items.split("[SPAN]") for bullet_item in bullet_items: bullet_item_strip = bullet_item.strip() p = tf.add_paragraph() p.text = bullet_item_strip p.level = 1 image_shape = slide.placeholders[2] slide.shapes.add_picture(image, image_shape.left, image_shape.top, image_shape.width, image_shape.height) return "added page" @tool.get("/submit_file") def submit_file() -> None: """submit_file() -> None: When all steps done, YOU MUST use submit_file() to submit your work. """ nonlocal ppt_file file_path = os.path.join(CACHE_DIR, f"{_return_timestamp()}.pptx") ppt_file.save(file_path) # retreival_url = upload_file(file_path) return f"submitted. view ppt at {file_path}" return tool
EXA-1-master
exa/libraries/BMTools/bmtools/tools/office/ppt/api.py
from ..registry import register @register("nllb-translation") def translator(): from .nllb import build_tool return build_tool @register("baidu-translation") def translator(): from .baidu import build_tool return build_tool
EXA-1-master
exa/libraries/BMTools/bmtools/tools/translation/__init__.py
from .api import build_tool
EXA-1-master
exa/libraries/BMTools/bmtools/tools/translation/baidu/__init__.py
from bmtools.agent.singletool import load_single_tools, STQuestionAnswerer tool_name, tool_url = 'baidu-translation', "http://127.0.0.1:8079/tools/baidu-translation/" tools_name, tools_config = load_single_tools(tool_name, tool_url) print(tools_name, tools_config) qa = STQuestionAnswerer() print(tools_config) agent = qa.load_tools(tools_name, tools_config) answer = agent("Translate this sentence into Chinese(zh): Hello, world!") print(answer)
EXA-1-master
exa/libraries/BMTools/bmtools/tools/translation/baidu/test.py
import os import random import requests import hashlib from ...tool import Tool def build_tool(config) -> Tool: tool = Tool( "Translator Info", "Translate a given text from one language to another.", name_for_model="Translator", description_for_model="Plugin for translating text from one language to another.", logo_url="https://your-app-url.com/.well-known/logo.png", contact_email="shihaoliang0828@gmail.com", legal_info_url="hello@legal.com" ) subscription_key = os.getenv("BAIDU_TRANSLATE_KEY", None) if subscription_key is None: raise Exception("BAIDU_TRANSLATE_KEY is not set") secret_key = os.getenv("BAIDU_SECRET_KEY", None) if secret_key is None: raise Exception("BAIDU_SECRET_KEY is not set") endpoint = 'https://fanyi-api.baidu.com/api/trans/vip/translate' fromLang = 'auto' salt = random.randint(32768,65536) header = {'Content-Type': 'application/x-www-form-urlencoded'} @tool.get("/get_translation") def get_translation(text:str, tgt_lang:str) -> str: sign = subscription_key + text + str(salt) + secret_key md = hashlib.md5() md.update(sign.encode(encoding='utf-8')) sign =md.hexdigest() data = { "appid": subscription_key, "q": text, "from": fromLang, "to": tgt_lang, "salt": salt, "sign": sign } response = requests.post(endpoint, params= data, headers= header) text = response.json() results = text['trans_result'][0]['dst'] return results return tool
EXA-1-master
exa/libraries/BMTools/bmtools/tools/translation/baidu/api.py
from .api import build_tool
EXA-1-master
exa/libraries/BMTools/bmtools/tools/translation/nllb/__init__.py
from bmtools.agent.singletool import load_single_tools, STQuestionAnswerer tool_name, tool_url = 'nllb-translation', "http://127.0.0.1:8079/tools/nllb-translation/" tools_name, tools_config = load_single_tools(tool_name, tool_url) print(tools_name, tools_config) qa = STQuestionAnswerer() print(tools_config) agent = qa.load_tools(tools_name, tools_config) answer = agent("Translate this sentence into Chinese(zho_Hans): Hello, world!") print(answer)
EXA-1-master
exa/libraries/BMTools/bmtools/tools/translation/nllb/test.py
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer from ...tool import Tool def build_tool(config) -> Tool: tool = Tool( "Translator Info", "Translate a given text from one language to another.", name_for_model="Translator", description_for_model="Plugin for translating text from one language to another.", logo_url="https://your-app-url.com/.well-known/logo.png", contact_email="shihaoliang0828@gmail.com", legal_info_url="hello@legal.com" ) BASE_MODEL = (config["model"] if "model" in config else "facebook/nllb-200-distilled-600M") SRC_LANG = (config["src_lang"] if "src_lang" in config else "eng_Latn") tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL, use_auth_token=True, src_lang=SRC_LANG) model = AutoModelForSeq2SeqLM.from_pretrained(BASE_MODEL, use_auth_token=True) @tool.get("/get_translation") def get_translation(input_text:str or list, tgt_lang:str, max_length:int) -> str or list: inputs = tokenizer(input_text, return_tensors="pt", padding=True) translated_tokens = model.generate( **inputs, forced_bos_token_id=tokenizer.lang_code_to_id[tgt_lang], max_length=max_length) if isinstance(input_text, str): translations = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0] elif isinstance(input_text, list): translations = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True) return translations return tool
EXA-1-master
exa/libraries/BMTools/bmtools/tools/translation/nllb/api.py
from ..registry import register @register("wolframalpha") def wolframalpha(): from .api import build_tool return build_tool
EXA-1-master
exa/libraries/BMTools/bmtools/tools/wolframalpha/__init__.py
from bmtools.agent.singletool import load_single_tools, STQuestionAnswerer tool_name, tool_url = 'wolframalpha', "http://127.0.0.1:8079/tools/wolframalpha/" tools_name, tools_config = load_single_tools(tool_name, tool_url) print(tools_name, tools_config) qa = STQuestionAnswerer() agent = qa.load_tools(tools_name, tools_config) agent("Calc integral of sin(x)+2x^2+3x+1 from 0 to 1")
EXA-1-master
exa/libraries/BMTools/bmtools/tools/wolframalpha/test.py
import requests from bs4 import BeautifulSoup from ..tool import Tool from pydantic import BaseModel from typing import Any, Optional from uuid import UUID import fastapi from fastapi_sessions.backends.implementations import InMemoryBackend from fastapi_sessions.session_verifier import SessionVerifier from fastapi_sessions.frontends.implementations import SessionCookie, CookieParameters import os import json import xmltodict def build_tool(config) -> Tool: tool = Tool( "Wolfram", "Wolfram", name_for_model="Wolfram", name_for_human="Wolfram", description_for_model=""""Dynamic computation and curated data from WolframAlpha and Wolfram Cloud.\nOnly use the getWolframAlphaResults endpoints; all other Wolfram endpoints are deprecated.\nPrefer getWolframAlphaResults unless Wolfram Language code should be evaluated.\nTry to include images returned by getWolframAlphaResults. Queries to getWolframAlphaResults must ALWAYS have this structure: {\"input\": query}.\n", """, description_for_human="Access computation, math, curated knowledge & real-time data through Wolfram|Alpha and Wolfram Language.", logo_url="https://www.wolframcdn.com/images/icons/Wolfram.png", contact_email="hello@contact.com", legal_info_url="hello@legal.com" ) @tool.get("/getWolframAlphaResults") def getWolframAlphaResults(input:str): """Get Wolfram|Alpha results using natural query. Queries to getWolframAlphaResults must ALWAYS have this structure: {\"input\": query}. And please directly read the output json. """ URL = "https://api.wolframalpha.com/v2/query" APPID = os.environ.get("WOLFRAMALPH_APP_ID", "") if len(APPID) == 0: print("You should set you APPID by `export WOLFRAMALPH_APP_ID=XXXXX`") params = {'appid': APPID, "input": input} response = requests.get(URL, params=params) json_data = xmltodict.parse(response.text) if 'pod' not in json_data["queryresult"]: return "WolframAlpha API cannot parse the input query." rets = json_data["queryresult"]['pod'] cleaned_rets = [] blacklist = ["@scanner", "@id", "@position", "@error", "@numsubpods", "@width", "@height", "@type", "@themes","@colorinvertable", "expressiontypes"] def filter_dict(d, blacklist): if isinstance(d, dict): return {k: filter_dict(v, blacklist) for k, v in d.items() if k not in blacklist} elif isinstance(d, list): return [filter_dict(i, blacklist) for i in d] else: return d for ret in rets: ret = filter_dict(ret, blacklist=blacklist) cleaned_rets.append(ret) return cleaned_rets return tool
EXA-1-master
exa/libraries/BMTools/bmtools/tools/wolframalpha/api.py
from ..registry import register @register("map") def map(): from .api import build_tool return build_tool
EXA-1-master
exa/libraries/BMTools/bmtools/tools/map/__init__.py
from bmtools.agent.singletool import load_single_tools, STQuestionAnswerer tool_name, tool_url = 'Map', "http://127.0.0.1:8079/tools/wolframalpha/" tools_name, tools_config = load_single_tools(tool_name, tool_url) print(tools_name, tools_config) qa = STQuestionAnswerer() agent = qa.load_tools(tools_name, tools_config) agent("What's the driving distance from Beijing to Shanghai?")
EXA-1-master
exa/libraries/BMTools/bmtools/tools/map/test.py
import requests import os import json from ..tool import Tool map_key = os.getenv("MAP_KEY", None) def build_tool(config) -> Tool: tool = Tool( "Map Info", "Look up stock information", name_for_model="Map", description_for_model="Plugin for look up map information", logo_url="https://your-app-url.com/.well-known/logo.png", contact_email="hello@contact.com", legal_info_url="hello@legal.com" ) KEY = config["key"] if map_key is not None: KEY = os.getenv("MAP_KEY", None) BASE_URL = 'http://dev.virtualearth.net/REST/V1/' @tool.get("/get_distance") def get_distance(start:str, end:str): # Request URL url = BASE_URL + "Routes/Driving?o=json&wp.0=" + start + "&wp.1=" + end + "&key=" + KEY # GET request r = requests.get(url) data = json.loads(r.text) # Extract route information route = data["resourceSets"][0]["resources"][0] # Extract distance in miles distance = route["travelDistance"] return distance @tool.get("/get_route") def get_route(start:str, end:str): # Request URL url = BASE_URL + "Routes/Driving?o=json&wp.0=" + start + "&wp.1=" + end + "&key=" + KEY # GET request r = requests.get(url) data = json.loads(r.text) # Extract route information route = data["resourceSets"][0]["resources"][0] itinerary = route["routeLegs"][0]["itineraryItems"] # Extract route text information route_text = [] for item in itinerary: if "instruction" in item: route_text.append(item["instruction"]["text"]) return route_text @tool.get("/get_lat_lon") def get_lat_lon(location): url = BASE_URL + "Locations" params = { "query": location, "key": KEY } response = requests.get(url, params=params) json_data = response.json() lat_lon = json_data["resourceSets"][0]["resources"][0]["point"]["coordinates"] return lat_lon @tool.get("/search_nearby") def search_nearyby(search_term="restaurant", latitude = 0.0, longitude = 0.0, places='unknown', radius = 5000): # radius in meters) url = BASE_URL + "LocalSearch" if places != 'unknown': latitude = get_lat_lon(places)[0] longitude = get_lat_lon(places)[1] # Build the request query string params = { "query": search_term, "userLocation": f"{latitude},{longitude}", "radius": radius, "key": KEY } # Make the request response = requests.get(url, params=params) # Parse the response response_data = json.loads(response.content) # Get the results results = response_data["resourceSets"][0]["resources"] return results return tool
EXA-1-master
exa/libraries/BMTools/bmtools/tools/map/api.py
from ..registry import register @register("bing_search") def bing_search(): from .api import build_tool return build_tool
EXA-1-master
exa/libraries/BMTools/bmtools/tools/bing_search/__init__.py
from bmtools.agent.singletool import load_single_tools, STQuestionAnswerer tool_name, tool_url = 'bing_search', "http://127.0.0.1:8079/tools/bing_search/" tools_name, tools_config = load_single_tools(tool_name, tool_url) print(tools_name, tools_config) qa = STQuestionAnswerer() agent = qa.load_tools(tools_name, tools_config) agent("Search for the tallest person in the world.")
EXA-1-master
exa/libraries/BMTools/bmtools/tools/bing_search/test.py
import requests from bs4 import BeautifulSoup from ..tool import Tool import os from enum import Enum subscription_key = os.getenv("BING_SUBSCRIPT_KEY", None) if subscription_key is None: raise Exception("BING_SUBSCRIPT_KEY is not set") endpoint = "https://api.bing.microsoft.com/v7.0/search" mkt = 'en-US' headers = { 'Ocp-Apim-Subscription-Key': subscription_key } # search result list chunk size SEARCH_RESULT_LIST_CHUNK_SIZE = 3 # result target page text chunk content length RESULT_TARGET_PAGE_PER_TEXT_COUNT = 500 class Operation(Enum): PAGE_DOWN = 'A' PAGE_UP = 'B' GO_BACK = 'C' ADD_DIGEST = 'D' MERGE = 'E' LOAD_PAGE_1 = 'F' LOAD_PAGE_2 = 'G' LOAD_PAGE_3 = 'H' END = 'I' SEARCH = 'J' START = 'K' REJECT = 'L' TO_TOP = 'M' class CONTENT_TYPE(Enum): SEARCH_RESULT = 0 RESULT_TARGET_PAGE = 1 class ContentItem: def __init__(self, type: CONTENT_TYPE, data): self.type = type self.data = data class DigestData: title: str desc: str chunkIndex: int class Digest: datas: list checked: bool class SessionData: topic = None content = [] digests = [] curResultChunk = 0 curTargetPageResultChunk = 0 data = SessionData() def build_tool(config) -> Tool: tool = Tool( "Bing_search", "Bing_search", name_for_model="Bing_search", name_for_human="Bing_search", description_for_model="""Perform Search on Bing Search engine. Use search_top3(key: str) to get top 3 search results after input the key to search. Use load_page_index(idx: int) to load the detailed page of the search result.""", description_for_human="Bing search API for browsing the internet and search for results.", logo_url="https://your-app-url.com/.well-known/logo.png", contact_email="hello@contact.com", legal_info_url="hello@legal.com" ) @tool.get("/search_top3") def search_top3(key_words: str) -> str: """Search key words, return top 3 search results. """ top3 = search_all(key_words)[:3] output = "" for idx, item in enumerate(top3): output += "page: " + str(idx+1) + "\n" output += "title: " + item['name'] + "\n" output += "summary: " + item['snippet'] + "\n" return output def search_all(key_words: str, data: SessionData = data) -> list: """Search key_words, return a list of class SearchResult. Keyword arguments: key_words -- key words want to search """ try: result = requests.get(endpoint, headers=headers, params={'q': key_words, 'mkt': mkt }, timeout=10) except Exception: result = requests.get(endpoint, headers=headers, params={'q': key_words, 'mkt': mkt }, timeout=10) if result.status_code == 200: result = result.json() data.content = [] data.content.append(ContentItem(CONTENT_TYPE.SEARCH_RESULT, result)) data.curResultChunk = 0 else: result = requests.get(endpoint, headers=headers, params={'q': key_words, 'mkt': mkt }, timeout=10) if result.status_code == 200: result = result.json() data.content = [] data.content.append(ContentItem(CONTENT_TYPE.SEARCH_RESULT, result)) data.curResultChunk = 0 else: raise Exception('Platform search error.') # print(f'search time:{time.time() - start_time}s') return data.content[-1].data["webPages"]["value"] @tool.get("/load_page_index") def load_page_index(idx: str) -> str: """Load page detail of the search result indexed as 'idx', and return the content of the page. """ idx = int(idx) href, text = load_page(idx-1) if len(text) > 500: return text[:500] else: return text def load_page(idx:int, data: SessionData = data): try: top = data.content[-1].data["webPages"]["value"] res = requests.get(top[idx]['url'], timeout=15) if res.status_code == 200: res.raise_for_status() res.encoding = res.apparent_encoding content = res.text soup = BeautifulSoup(content, 'html.parser') paragraphs = soup.find_all('p') page_detail = "" for p in paragraphs: text = p.get_text().strip() page_detail += text # trafilatura may be used to extract the main content of the page # import trafilatura # page_detail = trafilatura.extract(soup, timeout=60) return top[idx]['url'], page_detail else: return " ", "Timeout for loading this page, Please try to load another one or search again." except: return " ", "Timeout for loading this page, Please try to load another one or search again." return tool
EXA-1-master
exa/libraries/BMTools/bmtools/tools/bing_search/api.py
from ..registry import register @register("wikidata") def wikidata(): from .wikidata import build_tool return build_tool
EXA-1-master
exa/libraries/BMTools/bmtools/tools/kg/__init__.py
from .api import build_tool
EXA-1-master
exa/libraries/BMTools/bmtools/tools/kg/wikidata/__init__.py
from bmtools.agent.singletool import load_single_tools, STQuestionAnswerer tool_name, tool_url = 'wikidata', "http://127.0.0.1:8079/tools/wikidata/" tools_name, tools_config = load_single_tools(tool_name, tool_url) print(tools_name, tools_config) qa = STQuestionAnswerer() agent = qa.load_tools(tools_name, tools_config) agent("")
EXA-1-master
exa/libraries/BMTools/bmtools/tools/kg/wikidata/test.py
from .utils import * import pandas as pd import requests import json from ...tool import Tool def build_tool(config) -> Tool: tool = Tool( "Search in Wikidata", "answering factual questions in wikidata.", description_for_model="Plugin for answering factual questions in wikidata.", logo_url="https://your-app-url.com/.well-known/logo.png", contact_email="hello@contact.com", legal_info_url="hello@legal.com" ) sparql = Slot2Sparql() @tool.get("/find_entity") def find_entity(input): """Find all <r, t> that has the relation <input, r, t>. It looks like viewing the main page of the input entity. The result is a table. """ try: sparqlIdx = -1 if input[0] == '#': input = {'id': int(input[1:]), 'attr': 'tmp'} elif input[0] == 'Q': input = {'id': input, 'attr': 'wd'} elif input[0] == 'P': input = {'id': input, 'attr': 'wdt'} elif input[0] == '@': input = {'id': input[1:], 'attr': 'wds'} else: input = {'id': input, 'attr': 'val'} sparql.find_entity(input) sparqlIdx = len(sparql.select_lst)-1 query, ids = sparql.give_str(sparqlIdx) query += '\nLIMIT 2000' ids = ['#' + str(id['id']) for id in ids] result = getResult(query) variable_name = [enc(sparql.select_lst[sparqlIdx].state[-1][1]) [1:], enc(sparql.select_lst[sparqlIdx].state[-1][2])[1:], enc(sparql.select_lst[sparqlIdx].state[-1][3])[1:]] response = [{} for i in range(0, len(result))] print("RESULT:", result) for idx, re in enumerate(result): response[idx].update(get_property_details(re[variable_name[0]]['value']) if re[variable_name[0]]['type'] == 'uri' else { 'relation': '', 'relationLabel': re[variable_name[0]]['value'], 'relationDescription': '', # 'propuri': '' }) response[idx].update({ 'tail': re[variable_name[1]]['value'].split('/')[-1] if re[variable_name[1]]['type'] == 'uri' else '', 'tailLabel': re.get(variable_name[1] + 'Label', {'value': ''})['value'] if re[variable_name[1]]['type'] == 'uri' else re[variable_name[1]]['value'], 'tailDescription': re.get(variable_name[1] + 'Description', {'value': ''})['value'], # 'tailuri': re[variable_name[1]]['value'] if re[variable_name[1]]['type'] == 'uri' else '', # 'tailtype': 'uri' if re[variable_name[1]]['type'] == 'uri' else re[variable_name[1]].get('datatype', '') }) if variable_name[2] in re: response[idx].update({ 'time': re.get(variable_name[2] + 'Label', {'value': ''})['value'] if re[variable_name[2]]['type'] == 'uri' else re[variable_name[2]]['value'], }) else: response[idx].update({ 'time': "ALWAYS" }) df = pd.DataFrame.from_dict(response) return df.to_markdown() except Exception: print("Invalid option!\n", Exception) return df.to_markdown() @tool.get("/find_entity_by_tail") def find_entity_by_tail(input : str): """Find all <h, r> that has the relation <h, r, input>. It looks like viewing the reverse main page of the input entity. The result is a table. """ try: sparqlIdx = -1 if input[0] == '#': input = {'id': int(input[1:]), 'attr': 'tmp'} elif input[0] == 'Q': input = {'id': input, 'attr': 'wd'} elif input[0] == 'P': input = {'id': input, 'attr': 'wdt'} elif input[0] == '@': input = {'id': input[1:], 'attr': 'wds'} else: input = {'id': input, 'attr': 'val'} sparql.find_entity_by_tail(input) sparqlIdx = len(sparql.select_lst)-1 query, ids = sparql.give_str(sparqlIdx) query += '\nLIMIT 2000' ids = ['#' + str(id['id']) for id in ids] result = getResult(query) variable_name = [enc(sparql.select_lst[sparqlIdx].state[-1][0]) [1:], enc(sparql.select_lst[sparqlIdx].state[-1][1])[1:]] response = [{} for i in range(0, len(result))] for idx, re in enumerate(result): response[idx].update(get_property_details(re[variable_name[1]]['value']) if re[variable_name[1]]['type'] == 'uri' else { 'relation': '', 'relationLabel': re[variable_name[1]]['value'], 'relationDescription': '', # 'labelUri': '' }) response[idx].update({ 'head': re[variable_name[0]]['value'].split('/')[-1] if re[variable_name[0]]['type'] == 'uri' else '', 'headLabel': re.get(variable_name[0] + 'Label', {'value': ''})['value'] if re[variable_name[0]]['type'] == 'uri' else re[variable_name[0]]['value'], 'headDescription': re.get(variable_name[0] + 'Description', {'value': ''})['value'], # 'headUri': re[variable_name[0]]['value'] if re[variable_name[0]]['type'] == 'uri' else '', # 'headType': 'uri' if re[variable_name[0]]['type'] == 'uri' else re[variable_name[0]].get('datatype', '') }) df = pd.DataFrame.from_dict(response) return df.to_markdown() except Exception: print("Invalid option!\n", Exception) return pd.DataFrame().to_markdown() @tool.get("/get_entity_id") def get_entity_id(input : str): """Search for all the entities that has the surface form as the input. For example, all the entities that are named ``Obama'', including either person, book, anything else. """ try: result = requests.get("https://www.wikidata.org/w/api.php", params={ "type": "item", "action": "wbsearchentities", "language": "en", "search": input, "origin": "*", "format": "json" }).text result = json.loads(result)["search"] # print(result) df = pd.DataFrame.from_dict(result) for row in df.axes[1]: if row != "id" and row != "label" and row != "description": df.pop(row) return df.to_markdown() except Exception: print("Invalid option!\n", Exception) return pd.DataFrame().to_markdown() @tool.get("/get_relation_id") def get_relation_id(input : str): """Search for all the relations that has the surface form as the input. For example, all the relations that are named ``tax''. """ try: result = requests.get("https://www.wikidata.org/w/api.php", params={ "type": "property", "action": "wbsearchentities", "language": "en", "search": input, "origin": "*", "format": "json" }).text result = json.loads(result)["search"] df = pd.DataFrame.from_dict(result) for row in df.axes[1]: if row != "id" and row != "label" and row != "description": df.pop(row) return df.to_markdown() except Exception: print("Invalid option!\n", Exception) return pd.DataFrame().to_markdown() @tool.get("/search_by_code") def search_by_code(query : str): """After knowing the unique id of entity or relation, perform a sparql query. E.g., Select ?music\nWhere {{\nwd:Q00 wdt:P00 ?music.\n}} The entity label will be automatically retrieved.""" try: query, basic_sel = convert_sparql_to_backend(query) result = getResult(query) for i in range(0, len(result)): for sel in basic_sel: if sel not in result[i]: continue if len(result[i][sel]['value']) < 4 or result[i][sel]['value'][0:4] != 'http': continue id = result[i][sel]['value'].split('/')[-1] if type(id) == str and len(id) > 0 and id[0] == 'P': result[i].update( convert(get_property_details_with_name(result[i][sel]['value'], sel))) df = pd.DataFrame.from_dict(result) return df.to_markdown() except Exception: print("Invalid option!\n", Exception) return pd.DataFrame().to_markdown() return tool
EXA-1-master
exa/libraries/BMTools/bmtools/tools/kg/wikidata/api.py
from copy import deepcopy from SPARQLWrapper import SPARQLWrapper, JSON import csv import regex as re import os DIRPATH = os.path.dirname(os.path.abspath(__file__)) # Dictionary to store all property labels and description class PropertyDetails: def __init__(self): self.prop_details = dict() with open(f'{DIRPATH}/property.csv', 'r', encoding='utf-8') as f: reader = csv.reader(f, delimiter=',') for prop in reader: self.prop_details[prop[0]] = [prop[1], prop[2]] def get_details(self, prop_id): return self.prop_details.get(prop_id, ['', '']) sid_num = 0 propdetails = PropertyDetails() def convert_sparql_to_backend(query): all_var_str = '[() ]\?[a-zA-Z0-9_-]+[() ]' filter_str = r'\(.+\(.* (\?.+)\) [Aa][Ss].*\)' sparql_split = query.split('\n') select = sparql_split[0] select += ' ' sel_list = re.findall(all_var_str, select, overlapped=True) sel_list = [sel[1:-1] for sel in sel_list] rm_list = re.findall(filter_str, select) for sel in rm_list: sel_list.remove(sel) # print(sel_list) added_sel_list = [] basic_sel_list = [] for sel in sel_list: if len(sel) > 0 and sel[0] == '?': basic_sel_list.append(sel) added_sel_list.append(sel + 'Label') added_sel_list.append(sel + 'Description') if len(rm_list) == 0: for sel in added_sel_list: select += ' ' + sel # print(select) sparql_split[0] = select service_pos = -1 query = '\n'.join(sparql_split) for i in range(len(query)-1, -1, -1): if query[i] == '}': service_pos = i break query = query[:service_pos] + \ 'SERVICE wikibase:label { bd:serviceParam wikibase:language "en". }\n' + \ query[service_pos:] + '\nLIMIT 200' basic_sel_list = [b[1:] for b in basic_sel_list] return query, basic_sel_list def get_property_details_with_name(url: str, name: str): id = url.split('/')[-1] checkConst = url.split('/')[4] if len(id) > 0 and id[0] == '#': return { name: id, name + 'Label': '', name + 'Description': '', # name + 'uri': '' } elif checkConst[0] == '"': label = url.split('"')[1] type = url.split('<')[-1] type = type[0:len(type)-1] return { name: '', name + 'Label': label, name + 'Description': "", # name + 'uri': '', # 'type': type } prop = propdetails.get_details(id) id = id.split('+') if len(id) == 1: return { name: id[0], name + 'Label': prop[0], name + 'Description': prop[1], # 'propuri': url } labels = [propdetails.get_details(id_)[0] for id_ in id] return { name: '+'.join(id), name + 'Label': '+'.join(labels), name + 'Description': '', # name + 'uri': '' } def convert(dictt): for key in dictt: dictt[key] = {'value': dictt[key]} return dictt def getResult(query): sparql = SPARQLWrapper('https://query.wikidata.org/sparql', agent='Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/110.0.0.0 Safari/537.36') sparql.setQuery(query) sparql.setReturnFormat(JSON) result = sparql.query().convert() return result['results']['bindings'] def get_details_sparql(id): condition = 'wd:{} rdfs:label ?label. wd:{} schema:description ?description. FILTER(lang(?label) = "en" && lang(?description) = "en")'.format( id, id) query = 'SELECT ?label ?description \nWHERE\n{\n' + \ condition + '\n}\n LIMIT 1' return query # Get label & description of an entity def get_entity_details(url: str): id = url.split('/')[-1] if len(id) > 0 and id[0] == '#': return { 'id': id, 'label': None, 'description': None, 'uri': None } if not (len(id) > 0 and id[0] in ['P', 'Q']): return { 'id': id, 'label': None, 'description': None, 'uri': None } if (url[0:4] != 'http'): return { 'id': None, 'label': None, 'description': None, 'uri': None } if url[7:23] != "www.wikidata.org": return { 'id': None, 'label': None, 'description': None, 'uri': url } result = getResult(get_details_sparql(id)) if len(result) == 0: return { 'id': id, 'label': None, 'description': None, 'uri': url, 'type': '' } response = { 'id': id, 'label': result[0].get('label', {'value': ''})['value'], 'description': result[0].get('description', {'value': ''})['value'], 'uri': url, 'type': 'uri' } return response # Get label & description of a property def get_property_details(url: str): id = url.split('/')[-1] checkConst = url.split('/')[4] if len(id) > 0 and id[0] == '#': return { 'prop': id, 'propLabel': '', 'propDescription': '', # 'propuri': '' } elif checkConst[0] == '"': label = url.split('"')[1] type = url.split('<')[-1] type = type[0:len(type)-1] return { 'prop': '', 'propLabel': label, 'propDescription': "", # 'propuri': '', # 'type': type } prop = propdetails.get_details(id) id = id.split('+') if len(id) == 1: return { 'prop': id[0], 'propLabel': prop[0], 'propDescription': prop[1], # 'propuri': url } labels = [propdetails.get_details(id_)[0] for id_ in id] return { 'prop': '+'.join(id), 'propLabel': '+'.join(labels), 'propDescription': '', # 'propuri': '' } def enc(i): assert 'attr' in i and i['id'] != None global sid_num if i['attr'] == 'tmp': return '?'+'tmp'+str(i['id'])+'_' if i['attr'] == 'val': return str(i['id']) if i['attr'] == 'sid': return '?'+'sid_'+str(i['id']) if len(i['id'].split('|')) > 1: Str = '' for Id in i['id'].split('|'): sid_num += 1 Str += i['attr']+':'+Id Str += "|" return Str[:-1] if i['attr'] == 'wdt': sid_num += 1 return 'p:{} ?sid_{}.\n?sid_{} ps:{}'.format(str(i['id']), sid_num, sid_num, str(i['id'])) return i['attr']+':'+str(i['id']) class Slot2Sparql: class selection: def __init__(self): self.str0 = "SELECT " # 搜索的目标字符串 self.str1 = '' self.str2 = '' self.select = [] # select后内容 self.select_sid = [] # 最新statementId self.new_select = [] # count max min select 的tmp id self.trip = [] # 下方的搜索字符串 self.tmp = [] # 临时变量 self.state = [] self.tail = [] # 尾部 self.find_tuple_match = {} def give_str(self): need_label = (len(self.str1) == 0) str = self.str0 for s in self.select: cur_enc = enc(s) str += cur_enc if need_label: str += ' {}Label {}Description'.format(cur_enc, cur_enc) if len(self.select) == 1: str += self.str1 str += self.str2 str += ' ' for s in self.select_sid: str += enc(s) str += "\nWHERE\n{\n" for s in self.trip: str += s if (str[-1] != '{'): str += '.' str += '\n' if need_label: str += 'SERVICE wikibase:label { bd:serviceParam wikibase:language "en". }\n' str += "}" for s in self.tail: str += '\n' str += s str += '\n' return str def set_select(self, sele): self.str0 = "SELECT " self.select = [sele] self.str1 = "" def clear_all(self): self.str0 = "SELECT " # 搜索的目标字符串 self.str1 = '' self.str2 = '' self.select = [] # select后内容 self.trip = [] # 下方的搜索字符串 self.tmp = [] # 临时变量 self.state = [] self.tail = [] # 尾部 def getCount(self): str = self.str0 str += '(COUNT(' for s in self.select: cur_enc = enc(s) str += cur_enc if len(self.select) == 1: str += self.str1 str += ' ' str += ') AS ?cnt)' str += "\nWHERE\n{\n" for s in self.trip: str += s str += '.' str += '\n' str += "}" for s in self.tail: str += '\n' str += s str += '\n' return str def __init__(self): self.select_lst = [] self.num = 0 sid_num = 0 def clear_all(self): self.select_lst = [] self.num = 0 def new_select_lst(self): self.select_lst.append(self.selection()) def prev_select_lst(self, idx): self.select_lst.append(deepcopy(self.select_lst[idx])) def find_select_lst(self, tar): assert tar['attr'] == 'tmp' and tar['id'] < self.num if tar in self.select_lst[-1].tmp: return for i in range(len(self.select_lst) - 2, -1, -1): if tar in self.select_lst[i].select: self.select_lst[-1].trip += self.select_lst[i].trip # 下方的搜索字符串 self.select_lst[-1].state += self.select_lst[i].state self.select_lst[-1].tmp += self.select_lst[i].tmp self.select_lst[-1].tail += self.select_lst[i].tail # 尾部 return def head(self,): pass def body(self,): pass def find_tuple(self, tup): self.new_select_lst() target = [] for i in tup: if tup[i]['attr'] == 'tmp' and tup[i]['id'] == None: # 新的临时变量 tup[i]['id'] = self.num self.num += 1 target.append(tup[i]) self.select_lst[-1].find_tuple_match[i] = enc(tup[i])[1:] self.select_lst[-1].tmp.append(tup[i]) elif tup[i]['attr'] == 'tmp': assert tup[i]['id'] < self.num self.find_select_lst(tup[i]) target.append(tup[i]) self.select_lst[-1].find_tuple_match[i] = enc(tup[i])[1:] if target == []: is_triplet_full = True for i in tup: if tup[i]['attr'] == 'tmp': self.find_select_lst(tup[i]) target.append(tup[i]) self.select_lst[-1].find_tuple_match[i] = enc(tup[i])[1:] break else: is_triplet_full = False self.select_lst[-1].select = target self.select_lst[-1].state.append([tup['x'], tup['y'], tup['z']]) if type(tup['y']['id']) == str: y_id_splited = tup['y']['id'].split('+') else: y_id_splited = [] tmpXZ = [tup['x']] for i in range(len(y_id_splited)-1): tmpXZ.append({'attr': 'tmp', 'id': self.num}) self.num += 1 tmpXZ.append(tup['z']) idx = 0 str1 = '' if len(y_id_splited) != 0: for tmpY in y_id_splited: newY = {'attr': 'wdt', 'id': tmpY} str1 += enc(tmpXZ[idx]) str1 += ' ' str1 += enc(newY) str1 += ' ' str1 += enc(tmpXZ[idx+1]) str1 += '.\n' idx += 1 else: str1 += enc(tup['x']) str1 += ' ' str1 += enc(tup['y']) str1 += ' ' str1 += enc(tup['z']) str1 += '.\n' str1 = str1[:-2] print(str1) self.select_lst[-1].select_sid = [{'attr': 'sid', 'id': sid_num}] self.select_lst[-1].trip.append(str1) if is_triplet_full: self.change_tmpidx(target[0]) def find_entity(self, ent1): self.new_select_lst() self.select_lst[-1].str0 += 'DISTINCT ' self.select_lst[-1].select = [{}, {}, {}] innerSelect = [{}, {}] for t in self.select_lst[-1].select: t['attr'] = 'tmp' t['id'] = self.num self.num += 1 self.select_lst[-1].tmp.append(t) for t in innerSelect: t['attr'] = 'tmp' t['id'] = self.num self.num += 1 if ent1['attr'] == 'tmp': self.find_select_lst(ent1) # ent1位于三元组的头 self.select_lst[-1].state.append( [ent1, self.select_lst[-1].select[0], self.select_lst[-1].select[1], self.select_lst[-1].select[2]]) str1 = enc(ent1) str1 += ' ' str1 += enc(self.select_lst[-1].select[0]) str1 += ' ' str1 += enc(self.select_lst[-1].select[1]) self.select_lst[-1].trip.append("{") self.select_lst[-1].trip.append(str1) self.select_lst[-1].trip.append("}\nUNION\n{") str1 = enc(ent1) str1 += ' ' str1 += enc(innerSelect[0]) str1 += ' ' str1 += enc(innerSelect[1]) self.select_lst[-1].trip.append(str1) str1 = enc(innerSelect[1]) str1 += ' pq:P585 ' str1 += enc(self.select_lst[-1].select[2]) str1 += ';\n' str1 += enc(self.select_lst[-1].select[0]) str1 += ' ' str1 += enc(self.select_lst[-1].select[1]) self.select_lst[-1].trip.append(str1) self.select_lst[-1].trip.append("}") if ent1['attr'] == 'wds': str1 = 'FILTER(STRSTARTS ( STR ( {} ), "http://www.wikidata.org/prop/" ))'.format( enc(self.select_lst[-1].select[0])) else: str1 = 'FILTER(STRSTARTS ( STR ( {} ), "http://www.wikidata.org/prop/direct/" ) || STRSTARTS ( STR ( {} ),"http://www.wikidata.org/prop/statement/" ))'.format( enc(self.select_lst[-1].select[0]), enc(self.select_lst[-1].select[0])) self.select_lst[-1].trip.append(str1) def find_entity_by_tail(self, ent1): self.new_select_lst() self.select_lst[-1].str0 += 'DISTINCT ' self.select_lst[-1].select = [{}, {}] for t in self.select_lst[-1].select: t['attr'] = 'tmp' t['id'] = self.num self.num += 1 self.select_lst[-1].tmp.append(t) if ent1['attr'] == 'tmp': self.find_select_lst(ent1) # ent1位于三元组的尾 self.select_lst[-1].state.append( [self.select_lst[-1].select[0], self.select_lst[-1].select[1], ent1]) str1 = enc(self.select_lst[-1].select[0]) str1 += ' ' str1 += enc(self.select_lst[-1].select[1]) str1 += ' ' str1 += enc(ent1) self.select_lst[-1].trip.append(str1) str1 = 'FILTER(STRSTARTS ( STR ( {} ), "http://www.wikidata.org/entity/Q" ))'.format( enc(self.select_lst[-1].select[0])) self.select_lst[-1].trip.append(str1) str1 = 'FILTER(STRSTARTS ( STR ( {} ), "http://www.wikidata.org/prop/" ))'.format( enc(self.select_lst[-1].select[1])) self.select_lst[-1].trip.append(str1) def find_entity_by_relation(self, ent1): self.new_select_lst() self.select_lst[-1].str0 += 'DISTINCT ' self.select_lst[-1].select = [{}, {}] for t in self.select_lst[-1].select: t['attr'] = 'tmp' t['id'] = self.num self.num += 1 self.select_lst[-1].tmp.append(t) if ent1['attr'] == 'tmp': self.find_select_lst(ent1) # ent1位于三元组的尾 self.select_lst[-1].state.append( [self.select_lst[-1].select[0], self.select_lst[-1].select[1], ent1]) str1 = enc(self.select_lst[-1].select[0]) str1 += ' ' str1 += enc(ent1) str1 += ' ' str1 += enc(self.select_lst[-1].select[1]) self.select_lst[-1].trip.append(str1) str1 = 'FILTER(STRSTARTS ( STR ( {} ), "http://www.wikidata.org/entity/Q" ))'.format( enc(self.select_lst[-1].select[0])) self.select_lst[-1].trip.append(str1) def binary_operation(self, ent1, op, ent2): if op in ['>', '<', '=', '!=', '>=', '<=']: self.new_select_lst() assert ent1['attr'] == 'tmp' self.find_select_lst(ent1) # 使用 filter 表示比较关系 str1 = 'FILTER (' str1 += enc(ent1) str1 += ' ' str1 += op str1 += ' ' str1 += enc(ent2) str1 += ')' self.select_lst[-1].trip.append(str1) self.select_lst[-1].select = [ent1] self.change_tmpidx(ent1) if ent2['attr'] == 'tmp': self.select_lst[-1].select.append(ent2) elif op in ['+', '-', '*', '/']: self.new_select_lst() if ent1['attr'] == 'tmp': self.find_select_lst(ent1) if ent2['attr'] == 'tmp': self.find_select_lst(ent2) # 使用新的临时变量 # BIND(?tmpxx / 365.2425 AS ?tmpxx). t = {} t['attr'] = 'tmp' t['id'] = self.num self.num += 1 self.select_lst[-1].select = [t] self.select_lst[-1].tmp.append(t) str1 = 'BIND (' str1 += enc(ent1) str1 += ' ' str1 += op str1 += ' ' str1 += enc(ent2) str1 += ' AS ' str1 += enc(t) str1 += ').' self.select_lst[-1].trip.append(str1) elif op in ['&&', '||', '~']: self.new_select_lst() assert ent1['attr'] == ent2['attr'] == 'tmp' self.select_lst[-1].trip.append('{') self.find_select_lst(ent1) if op == '&&': pass elif op == '||': self.select_lst[-1].trip.append('}\nUNION\n{') else: self.select_lst[-1].trip.append('}\nMINUS\n{') self.find_select_lst(ent2) self.select_lst[-1].trip.append('}') # 使用新的临时变量 # BIND(?tmpxx / 365.2425 AS ?tmpxx). t = {} t['attr'] = 'tmp' t['id'] = self.num self.num += 1 tmp = [] self.select_lst[-1].select = [t] self.select_lst[-1].tmp.append(t) self.select_lst[-1].tmp.remove(ent1) self.select_lst[-1].tmp.remove(ent2) for line in self.select_lst[-1].trip: nline = line.replace(enc(ent1), enc(t)) nline = nline.replace(enc(ent2), enc(t)) tmp.append(nline) self.select_lst[-1].trip = tmp for line in self.select_lst[-1].state: for i in line: if i == ent1 or i == ent2: i = t tmp = [] for line in self.select_lst[-1].tail: nline = line.replace(enc(ent1), enc(t)) nline = nline.replace(enc(ent2), enc(t)) tmp.append(nline) self.select_lst[-1].tail = tmp def unitary_operation(self, ent, op, last_sparql_idx): if op in ['ORDER', 'GROUP (ASC)', 'GROUP (DESC)']: self.new_select_lst() self.find_select_lst(ent) self.select_lst[-1].select = [ent] str1 = op.split(' ')[0] + ' BY ' str1 += enc(ent) if 'GROUP' in op.split(' '): str1 += ' {}Label {}Description'.format(enc(ent), enc(ent)) if op.split(' ')[-1] == '(DESC)': str1 += '\nORDER BY DESC(?cnt)' else: str1 += '\nORDER BY ?cnt' self.select_lst[-1].tail.append(str1) self.change_tmpidx(ent) if 'GROUP' in op.split(' '): self.select_lst[-1].str2 = ' (COUNT({}) AS ?cnt) '.format( enc(self.select_lst[-1].select[0])) elif op in ['LIMIT', 'OFFSET']: self.prev_select_lst(last_sparql_idx) str1 = op + ' ' str1 += enc(ent) self.select_lst[-1].tail.append(str1) self.change_tmpidx(self.select_lst[-1].select[0]) self.select_lst[-1].new_select = self.select_lst[-1].select elif op in ['DISTINCT', 'REDUCED']: self.new_select_lst() self.find_select_lst(ent) self.select_lst[-1].select = [ent] self.select_lst[-1].str0 += op self.select_lst[-1].str0 += ' ' elif op in ['MIN', 'MAX', 'AVG', 'SUM', 'COUNT', 'SAMPLE']: self.new_select_lst() self.find_select_lst(ent) t = {} t['attr'] = 'tmp' t['id'] = self.num self.num += 1 self.select_lst[-1].new_select = [t] self.select_lst[-1].tmp.append(t) self.select_lst[-1].select = [ent] self.select_lst[-1].str0 += '(' self.select_lst[-1].str0 += op self.select_lst[-1].str0 += '(' self.select_lst[-1].str1 += ') AS ' self.select_lst[-1].str1 += enc(t) self.select_lst[-1].str1 += ')' def give_str(self, sparqlIdx=-1): return self.select_lst[sparqlIdx].give_str(), self.select_lst[sparqlIdx].select def give_tmp(self, sparqlIdx=-1): return self.select_lst[sparqlIdx].tmp def change_tmpidx(self, ent1, sparqlIdx=-1): # 将ent1的tmp_id更新 t = {} t['attr'] = 'tmp' t['id'] = self.num self.num += 1 tmp = [] self.select_lst[sparqlIdx].select = [t] self.select_lst[sparqlIdx].tmp.append(t) self.select_lst[sparqlIdx].tmp.remove(ent1) for line in self.select_lst[sparqlIdx].trip: nline = line.replace(enc(ent1), enc(t)) tmp.append(nline) self.select_lst[sparqlIdx].trip = tmp for line in self.select_lst[sparqlIdx].state: for i in line: if i == ent1: i = t tmp = [] for line in self.select_lst[sparqlIdx].tail: nline = line.replace(enc(ent1), enc(t)) tmp.append(nline) self.select_lst[sparqlIdx].tail = tmp self.select_lst[sparqlIdx].str2 = self.select_lst[sparqlIdx].str2.replace( enc(ent1), enc(t))
EXA-1-master
exa/libraries/BMTools/bmtools/tools/kg/wikidata/utils.py
from ..registry import register @register("weather") def weather(): from .api import build_tool return build_tool
EXA-1-master
exa/libraries/BMTools/bmtools/tools/weather/__init__.py
from bmtools.agent.singletool import load_single_tools, STQuestionAnswerer tool_name, tool_url = 'weather', "http://127.0.0.1:8079/tools/weather/" tools_name, tools_config = load_single_tools(tool_name, tool_url) print(tools_name, tools_config) qa = STQuestionAnswerer() agent = qa.load_tools(tools_name, tools_config) agent("What's the weather in London today?")
EXA-1-master
exa/libraries/BMTools/bmtools/tools/weather/test.py
import requests import json from ..tool import Tool import os def build_tool(config) -> Tool: tool = Tool( "Weather Info", "Look up weather information", name_for_model="Weather", description_for_model="Plugin for look up weather information", logo_url="https://cdn.weatherapi.com/v4/images/weatherapi_logo.png", contact_email="hello@contact.com", legal_info_url="hello@legal.com" ) KEY = os.environ.get('WEATHER_API_KEYS', '') if KEY == '': raise RuntimeError("WEATHER_API_KEY not provided, please register one following https://www.weatherapi.com/docs/ and add it to environment variables.") URL_CURRENT_WEATHER= "http://api.weatherapi.com/v1/current.json" URL_FORECAST_WEATHER = "http://api.weatherapi.com/v1/forecast.json" @tool.get("/get_weather_today") def get_weather_today(location : str): '''gets the weather ''' param = { "key": KEY, "q": location } res_completion = requests.get(URL_CURRENT_WEATHER, params=param) data = json.loads(res_completion.text.strip()) output = {} output["overall"]= f"{data['current']['condition']['text']},\n" output["name"]= f"{data['location']['name']},\n" output["region"]= f"{data['location']['region']},\n" output["country"]= f"{data['location']['country']},\n" output["localtime"]= f"{data['location']['localtime']},\n" output["temperature"]= f"{data['current']['temp_c']}(C), {data['current']['temp_f']}(F),\n" output["percipitation"]= f"{data['current']['precip_mm']}(mm), {data['current']['precip_in']}(inch),\n" output["pressure"]= f"{data['current']['pressure_mb']}(milibar),\n" output["humidity"]= f"{data['current']['humidity']},\n" output["cloud"]= f"{data['current']['cloud']},\n" output["body temperature"]= f"{data['current']['feelslike_c']}(C), {data['current']['feelslike_f']}(F),\n" output["wind speed"]= f"{data['current']['gust_kph']}(kph), {data['current']['gust_mph']}(mph),\n" output["visibility"]= f"{data['current']['vis_km']}(km), {data['current']['vis_miles']}(miles),\n" output["UV index"]= f"{data['current']['uv']},\n" text_output = f"Today's weather report for {data['location']['name']} is:\n"+"".join([f"{key}: {output[key]}" for key in output.keys()]) return text_output @tool.get("/forecast_weather") def forecast_weather(location : str, days : str): '''Forecast weather in the upcoming days. Args: - location: str - days: int ''' param = { "key": KEY, "q": location, "days": int(days), } res_completion = requests.get(URL_FORECAST_WEATHER, params=param) res_completion = json.loads(res_completion.text.strip()) MAX_DAYS = 14 res_completion = res_completion["forecast"]["forecastday"][int(days)-1 if int(days) < MAX_DAYS else MAX_DAYS-1] output_dict = {} for k, v in res_completion["day"].items(): output_dict[k] = v for k, v in res_completion["astro"].items(): output_dict[k] = v output = {} output["over all weather"] = f"{output_dict['condition']['text']},\n" output["max temperature"] = f"{output_dict['maxtemp_c']}(C), {output_dict['maxtemp_f']}(F),\n" output["min temperature"] = f"{output_dict['mintemp_c']}(C), {output_dict['mintemp_f']}(F),\n" output["average temperature"] = f"{output_dict['avgtemp_c']}(C), {output_dict['avgtemp_f']}(F),\n" output["max wind speed"] = f"{output_dict['maxwind_kph']}(kph), {output_dict['maxwind_mph']}(mph),\n" output["total precipitation"] = f"{output_dict['totalprecip_mm']}(mm), {output_dict['totalprecip_in']}(inch),\n" output["will rain today"] = f"{output_dict['daily_will_it_rain']},\n" output["chance of rain"] = f"{output_dict['daily_chance_of_rain']},\n" output["total snow"] = f"{output_dict['totalsnow_cm']}(cm),\n" output["will snow today"] = f"{output_dict['daily_will_it_snow']},\n" output["chance of snow"] = f"{output_dict['daily_chance_of_snow']},\n" output["average visibility"] = f"{output_dict['avgvis_km']}(km), {output_dict['avgvis_miles']}(miles),\n" output["average humidity"] = f"{output_dict['avghumidity']},\n" output["UV index"] = f"{output_dict['uv']},\n" output["sunrise time"] = f"{output_dict['sunrise']},\n" output["sunset time"] = f"{output_dict['sunset']},\n" output["moonrise time"] = f"{output_dict['moonrise']},\n" output["moonset time"] = f"{output_dict['moonset']},\n" text_output = f"The weather forecast for {param['q']} at {param['days']} days later is: \n"+"".join([f"{key}: {output[key]}" for key in output.keys()]) return text_output return tool
EXA-1-master
exa/libraries/BMTools/bmtools/tools/weather/api.py
from ..registry import register @register("stock") def stock(): from .api import build_tool return build_tool
EXA-1-master
exa/libraries/BMTools/bmtools/tools/stock/__init__.py
from bmtools.agent.singletool import load_single_tools, STQuestionAnswerer tool_name, tool_url = 'Stock', "http://127.0.0.1:8079/tools/stock/" tools_name, tools_config = load_single_tools(tool_name, tool_url) print(tools_name, tools_config) qa = STQuestionAnswerer() agent = qa.load_tools(tools_name, tools_config) agent("What's the close price of Apple stock at 2022/02/21?")
EXA-1-master
exa/libraries/BMTools/bmtools/tools/stock/test.py
import requests import json import os from ..tool import Tool alphavantage_key = os.getenv("ALPHA_VANTAGE_KEY", None) def build_tool(config) -> Tool: tool = Tool( "Stock Info", "Look up stock information", name_for_model="Stock", description_for_model="Plugin for look up stock information", logo_url="https://your-app-url.com/.well-known/logo.png", contact_email="hello@contact.com", legal_info_url="hello@legal.com" ) functions = ['TIME_SERIES_INTRADAY', 'TIME_SERIES_INTRADAY_EXTENDED','TIME_SERIES_DAILY', 'TIME_SERIES_DAILY_ADJUSTED'] types = ['open', 'close', 'high', 'low'] KEY = config["key"] if alphavantage_key is not None: KEY = os.getenv("ALPHA_VANTAGE_KEY", None) BASE_URL = 'https://www.alphavantage.co/query?' def get_json_data(function, symbol, interval = '5min', adjusted='true', outputsize='compact', datatype='json'): url = BASE_URL + 'function=' + function + '&symbol=' + symbol + '&apikey=' + KEY r = requests.get(url) data = json.loads(r.text) return data @tool.get("/get_today_date") def get_today_date(): '''Get today's date ''' from datetime import date today = date.today() return today.strftime("%Y-%m-%d") @tool.get('/get_daily_prices') def get_daily_prices(symbol : str, date : str = ''): '''Get the stock price of an entity in the stock market. Date should be pass as 'yyyy-mm-dd'. ''' if "," in symbol: symbol, date = symbol.split(",") if date.strip() == "": return "Please specify a date and try again. You can you get_today_date to up-to-date time information." data = get_json_data('TIME_SERIES_DAILY_ADJUSTED', symbol) #print(data.keys()) time_series = data["Time Series (Daily)"] final_time = '' print(time_series) # 查找最接近查询日期的数据 for timestamp, daily_data in time_series.items(): print(timestamp) if timestamp == date: open_price = daily_data["1. open"] high_price = daily_data["2. high"] low_price = daily_data["3. low"] close_price = daily_data["4. close"] break elif timestamp < date: final_time = timestamp open_price = time_series[timestamp]["1. open"] high_price = time_series[timestamp]["2. high"] low_price = time_series[timestamp]["3. low"] close_price = time_series[timestamp]["4. close"] break return {'open':open_price, 'close':close_price, 'high':high_price, 'low':low_price, 'symbol':symbol, 'date':final_time} @tool.get('/get_open_info') def get_open_info(region : str = 'United States'): '''get information about if the market in the region is open ''' url = 'https://www.alphavantage.co/query?function=MARKET_STATUS&apikey=' + KEY r = requests.get(url) data = json.loads(r.text) for item in data['markets']: if item['region'] == region: return item['current_status'] return ' not found' @tool.get('/get_exchange_rate') def get_exchange_rate(from_currency : str = 'USD', to_currency : str = 'BTC'): '''This API returns the realtime exchange rate for a pair of digital currency (e.g., Bitcoin) and physical currency (e.g., USD). ''' url = 'https://www.alphavantage.co/query?function=CURRENCY_EXCHANGE_RATE&from_currency='+ from_currency + '&to_currency='+ to_currency + '&apikey=' + KEY r = requests.get(url) data = json.loads(r.text) try: rate = data['Realtime Currency Exchange Rate']['5. Exchange Rate'] return rate except: return 'error' return tool
EXA-1-master
exa/libraries/BMTools/bmtools/tools/stock/api.py
from ..registry import register @register("chemical-prop") def chemical_prop(): from .prop import build_tool return build_tool
EXA-1-master
exa/libraries/BMTools/bmtools/tools/chemical/__init__.py
from .api import build_tool
EXA-1-master
exa/libraries/BMTools/bmtools/tools/chemical/prop/__init__.py
from bmtools.agent.singletool import load_single_tools, STQuestionAnswerer tool_name, tool_url = 'chemical-prop', "http://127.0.0.1:8079/tools/chemical-prop/" tools_name, tools_config = load_single_tools(tool_name, tool_url) print(tools_name, tools_config) qa = STQuestionAnswerer() agent = qa.load_tools(tools_name, tools_config) agent("How many benzene rings are there in 9H-Carbazole-3-carboxaldehyde?")
EXA-1-master
exa/libraries/BMTools/bmtools/tools/chemical/prop/test.py
import requests from pydantic import BaseModel import numpy as np from bs4 import BeautifulSoup import json from ...tool import Tool from typing import List, Optional, Union class GetNameResponse(BaseModel): """name list""" names: List[str] class GetStructureResponse(BaseModel): """structure list""" state : int content : Optional[str] = None class GetIDResponse(BaseModel): state : int content : Union[str, List[str]] def build_tool(config) -> Tool: tool = Tool( "Chemical Property Plugin", description="looking up a chemical's property", name_for_model="Chemical Property", description_for_model="Plugin for looking up a chemical's property using a chemical knowledge base. All input should be a json like {'input': 'some input'}. Please use the provided questions and search step by step.", logo_url="https://your-app-url.com/.well-known/logo.png", contact_email="hello@contact.com", legal_info_url="hello@legal.com", ) QRY = 'https://pubchem.ncbi.nlm.nih.gov/rest/pug/compound/' @tool.get("/get_name") def get_name( cid: str ): """prints the possible 3 synonyms of the queried compound ID""" html_doc = requests.get(QRY+'cid/'+str(cid)+'/synonyms/XML').text soup = BeautifulSoup(html_doc,"html.parser",from_encoding="utf-8") syns = soup.find_all('synonym') ans = [] kk = 3 for syn in syns[:kk]: ans.append(syn.text) js = {'names':ans} return js @tool.get("/get_allname") def get_allname( cid: str ): """prints all the possible synonyms (might be too many, use this function carefully). """ html_doc = requests.get(QRY+'cid/'+str(cid)+'/synonyms/XML').text soup = BeautifulSoup(html_doc,"html.parser",from_encoding="utf-8") syns = soup.find_all('synonym') ans = [] for syn in syns: ans.append(syn.text) js = {'names':ans} return js @tool.get("/get_id_by_struct") def get_id_by_struct(smiles : str): """prints the ID of the queried compound SMILES. This should only be used if smiles is provided or retrieved in the previous step. The input should not be a string, but a SMILES formula. """ html_doc = requests.get(QRY+'smiles/'+smiles+'/cids/XML').text soup = BeautifulSoup(html_doc,"html.parser",from_encoding="utf-8") cids = soup.find_all('cid') if cids is not None:#len(cids)==1: if len(cids)==1: ans = cids[0].text js = {'state': 'matched', 'content': ans} return js js = {'state': 'no result'} return js @tool.get("/get_id") def get_id(name : str): """prints the ID of the queried compound name, and prints the possible 5 names if the queried name can not been precisely matched, """ html_doc = requests.get(QRY+'name/'+name+'/cids/XML').text soup = BeautifulSoup(html_doc,"html.parser",from_encoding="utf-8") cids = soup.find_all('cid') if cids is not None:#len(cids)==1: if len(cids)>0: ans = cids[0].text js = {'state':'precise', 'content':ans} return js html_doc = requests.get(QRY+'name/'+name+'/cids/XML?name_type=word').text soup = BeautifulSoup(html_doc,"html.parser",from_encoding="utf-8") cids = soup.find_all('cid') if len(cids) > 0: if name in get_name(cids[0].text, ifprint=0): ans = cids[0].text js = {'state':'precise', 'content':ans} return js ans = [] seq = np.arange(len(cids)) np.random.shuffle(seq) for sq in seq[:5]: cid = cids[sq] nms = get_name(cid.text, ifprint=0) ans.append(nms) js = {'state':'not precise', 'content':ans} print(js) return js @tool.get("/get_prop") def get_prop(cid : str): """prints the properties of the queried compound ID """ html_doc = requests.get(QRY+'cid/'+cid+'/property/MolecularFormula,MolecularWeight,CanonicalSMILES,IsomericSMILES,IUPACName,XLogP,ExactMass,MonoisotopicMass,TPSA,Complexity,Charge,HBondDonorCount,HBondAcceptorCount,RotatableBondCount,HeavyAtomCount,CovalentUnitCount/json').text js = json.loads(html_doc)['PropertyTable']['Properties'][0] return js return tool
EXA-1-master
exa/libraries/BMTools/bmtools/tools/chemical/prop/api.py
# coding=utf-8 # Copyright 2020 Optuna, Hugging Face # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # BMTools copied from Huggingface Transformers """ Logging utilities.""" import logging import os import sys import threading from logging import CRITICAL # NOQA from logging import DEBUG # NOQA from logging import ERROR # NOQA from logging import FATAL # NOQA from logging import INFO # NOQA from logging import NOTSET # NOQA from logging import WARN # NOQA from logging import WARNING # NOQA from typing import Optional _lock = threading.Lock() _default_handler: Optional[logging.Handler] = None log_levels = { "debug": logging.DEBUG, "info": logging.INFO, "warning": logging.WARNING, "error": logging.ERROR, "critical": logging.CRITICAL, } _default_log_level = logging.INFO def _get_default_logging_level(): """ If BMTOOLS_VERBOSITY env var is set to one of the valid choices return that as the new default level. If it is not - fall back to ``_default_log_level`` """ env_level_str = os.getenv("BMTOOLS_VERBOSITY", None) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f"Unknown option BMTOOLS_VERBOSITY={env_level_str}, " f"has to be one of: { ', '.join(log_levels.keys()) }" ) return _default_log_level def _get_library_name() -> str: return __name__.split(".")[0] def _get_library_root_logger() -> logging.Logger: return logging.getLogger(_get_library_name()) def _configure_library_root_logger() -> None: global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return _default_handler = logging.StreamHandler() # Set sys.stderr as stream. _default_handler.flush = sys.stderr.flush formatter = logging.Formatter( "\033[1;31m[%(levelname)s|(BMTools)%(module)s:%(lineno)d]%(asctime)s >> \033[0m %(message)s") _default_handler.setFormatter(formatter) # Apply our default configuration to the library root logger. library_root_logger = _get_library_root_logger() library_root_logger.addHandler(_default_handler) library_root_logger.setLevel(_get_default_logging_level()) library_root_logger.propagate = False def _reset_library_root_logger() -> None: global _default_handler with _lock: if not _default_handler: return library_root_logger = _get_library_root_logger() library_root_logger.removeHandler(_default_handler) library_root_logger.setLevel(logging.NOTSET) _default_handler = None def get_log_levels_dict(): return log_levels def get_verbosity() -> int: """ Return the current level for the 🤗 Transformers's root logger as an int. Returns: :obj:`int`: The logging level. <Tip> 🤗 Transformers has following logging levels: - 50: ``transformers.logging.CRITICAL`` or ``transformers.logging.FATAL`` - 40: ``transformers.logging.ERROR`` - 30: ``transformers.logging.WARNING`` or ``transformers.logging.WARN`` - 20: ``transformers.logging.INFO`` - 10: ``transformers.logging.DEBUG`` </Tip>""" _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def set_verbosity(verbosity: int) -> None: """ Set the verbosity level for the 🤗 Transformers's root logger. Args: verbosity (:obj:`int`): Logging level, e.g., one of: - ``transformers.logging.CRITICAL`` or ``transformers.logging.FATAL`` - ``transformers.logging.ERROR`` - ``transformers.logging.WARNING`` or ``transformers.logging.WARN`` - ``transformers.logging.INFO`` - ``transformers.logging.DEBUG`` """ _configure_library_root_logger() _get_library_root_logger().setLevel(verbosity) def set_verbosity_info(): """Set the verbosity to the ``INFO`` level.""" return set_verbosity(INFO) def set_verbosity_warning(): """Set the verbosity to the ``WARNING`` level.""" return set_verbosity(WARNING) def set_verbosity_debug(): """Set the verbosity to the ``DEBUG`` level.""" return set_verbosity(DEBUG) def set_verbosity_error(): """Set the verbosity to the ``ERROR`` level.""" return set_verbosity(ERROR) def disable_default_handler() -> None: """Disable the default handler of the HuggingFace Transformers's root logger.""" _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler) def enable_default_handler() -> None: """Enable the default handler of the HuggingFace Transformers's root logger.""" _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler) def add_handler(handler: logging.Handler) -> None: """adds a handler to the HuggingFace Transformers's root logger.""" _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(handler) def remove_handler(handler: logging.Handler) -> None: """removes given handler from the HuggingFace Transformers's root logger.""" _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(handler) def disable_propagation() -> None: """ Disable propagation of the library log outputs. Note that log propagation is disabled by default. """ _configure_library_root_logger() _get_library_root_logger().propagate = False def enable_propagation() -> None: """ Enable propagation of the library log outputs. Please disable the HuggingFace Transformers's default handler to prevent double logging if the root logger has been configured. """ _configure_library_root_logger() _get_library_root_logger().propagate = True def enable_explicit_format() -> None: """ Enable explicit formatting for every HuggingFace Transformers's logger. The explicit formatter is as follows: ``` [LEVELNAME|FILENAME|LINE NUMBER] TIME >> MESSAGE ``` All handlers currently bound to the root logger are affected by this method. """ handlers = _get_library_root_logger().handlers for handler in handlers: formatter = logging.Formatter("[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s") handler.setFormatter(formatter) def reset_format() -> None: """ Resets the formatting for HuggingFace Transformers's loggers. All handlers currently bound to the root logger are affected by this method. """ handlers = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(None) def warning_advice(self, *args, **kwargs): """ This method is identical to ``logger.warning()``, but if env var TRANSFORMERS_NO_ADVISORY_WARNINGS=1 is set, this warning will not be printed """ no_advisory_warnings = os.getenv("TRANSFORMERS_NO_ADVISORY_WARNINGS", False) if no_advisory_warnings: return self.warning(*args, **kwargs) logging.Logger.warning_advice = warning_advice def get_logger(name: Optional[str] = None, verbosity='info') -> logging.Logger: """ Return a logger with the specified name. This function is not supposed to be directly accessed unless you are writing a custom transformers module. """ if name is None: name = _get_library_name() _configure_library_root_logger() logger = logging.getLogger(name) logger.setLevel(log_levels[verbosity]) return logger
EXA-1-master
exa/libraries/BMTools/bmtools/utils/logging.py
EXA-1-master
exa/libraries/BMTools/bmtools/utils/__init__.py
EXA-1-master
exa/libraries/BMTools/bmtools/agent/__init__.py
from langchain.llms import OpenAI from langchain import OpenAI, LLMChain, PromptTemplate, SerpAPIWrapper from langchain.agents import ZeroShotAgent, AgentExecutor, initialize_agent, Tool import importlib import json import os import requests import yaml from bmtools.agent.apitool import RequestTool from bmtools.agent.executor import Executor, AgentExecutorWithTranslation from bmtools import get_logger from bmtools.agent.BabyagiTools import BabyAGI # from bmtools.models.customllm import CustomLLM logger = get_logger(__name__) def import_all_apis(tool_json): '''import all apis that is a tool ''' doc_url = tool_json['api']['url'] response = requests.get(doc_url) logger.info("Doc string URL: {}".format(doc_url)) if doc_url.endswith('yaml') or doc_url.endswith('yml'): plugin = yaml.safe_load(response.text) else: plugin = json.loads(response.text) server_url = plugin['servers'][0]['url'] if server_url.startswith("/"): server_url = "http://127.0.0.1:8079" + server_url logger.info("server_url {}".format(server_url)) all_apis = [] for key in plugin['paths']: value = plugin['paths'][key] api = RequestTool(root_url=server_url, func_url=key, method='get', request_info=value) all_apis.append(api) return all_apis def load_single_tools(tool_name, tool_url): # tool_name, tool_url = "datasette", "https://datasette.io/" # tool_name, tool_url = "klarna", "https://www.klarna.com/" # tool_name, tool_url = 'chemical-prop', "http://127.0.0.1:8079/tools/chemical-prop/" # tool_name, tool_url = 'douban-film', "http://127.0.0.1:8079/tools/douban-film/" # tool_name, tool_url = 'weather', "http://127.0.0.1:8079/tools/weather/" # tool_name, tool_url = 'wikipedia', "http://127.0.0.1:8079/tools/wikipedia/" # tool_name, tool_url = 'wolframalpha', "http://127.0.0.1:8079/tools/wolframalpha/" # tool_name, tool_url = 'klarna', "https://www.klarna.com/" get_url = tool_url +".well-known/ai-plugin.json" response = requests.get(get_url) if response.status_code == 200: tool_config_json = response.json() else: raise RuntimeError("Your URL of the tool is invalid.") return tool_name, tool_config_json class STQuestionAnswerer: def __init__(self, openai_api_key = "", stream_output=False, llm='ChatGPT'): if len(openai_api_key) < 3: # not valid key (TODO: more rigorous checking) openai_api_key = os.environ.get('OPENAI_API_KEY') self.openai_api_key = openai_api_key self.llm_model = llm self.set_openai_api_key(openai_api_key) self.stream_output = stream_output def set_openai_api_key(self, key): logger.info("Using {}".format(self.llm_model)) if self.llm_model == "GPT-3.5": self.llm = OpenAI(temperature=0.0, openai_api_key=key) # use text-darvinci elif self.llm_model == "ChatGPT": self.llm = OpenAI(model_name="gpt-3.5-turbo", temperature=0.0, openai_api_key=key) # use chatgpt else: raise RuntimeError("Your model is not available.") def load_tools(self, name, meta_info, prompt_type="react-with-tool-description", return_intermediate_steps=True): self.all_tools_map = {} self.all_tools_map[name] = import_all_apis(meta_info) logger.info("Tool [{}] has the following apis: {}".format(name, self.all_tools_map[name])) if prompt_type == "zero-shot-react-description": subagent = initialize_agent(self.all_tools_map[name], self.llm, agent="zero-shot-react-description", verbose=True, return_intermediate_steps=return_intermediate_steps) elif prompt_type == "react-with-tool-description": description_for_model = meta_info['description_for_model'].replace("{", "{{").replace("}", "}}").strip() prefix = f"""Answer the following questions as best you can. General instructions are: {description_for_model}. Specifically, you have access to the following APIs:""" suffix = """Begin! Remember: (1) Follow the format, i.e,\nThought:\nAction:\nAction Input:\nObservation:\nFinal Answer:\n (2) Provide as much as useful information in your Final Answer. (3) YOU MUST INCLUDE all relevant IMAGES in your Final Answer using format ![img](url), and include relevant links. (3) Do not make up anything, and if your Observation has no link, DO NOT hallucihate one. (4) If you have enough information, please use \nThought: I have got enough information\nFinal Answer: \n\nQuestion: {input}\n{agent_scratchpad}""" prompt = ZeroShotAgent.create_prompt( self.all_tools_map[name], prefix=prefix, suffix=suffix, input_variables=["input", "agent_scratchpad"] ) llm_chain = LLMChain(llm=self.llm, prompt=prompt) logger.info("Full prompt template: {}".format(prompt.template)) tool_names = [tool.name for tool in self.all_tools_map[name] ] agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names) if self.stream_output: agent_executor = Executor.from_agent_and_tools(agent=agent, tools=self.all_tools_map[name] , verbose=True, return_intermediate_steps=return_intermediate_steps) else: agent_executor = AgentExecutorWithTranslation.from_agent_and_tools(agent=agent, tools=self.all_tools_map[name], verbose=True, return_intermediate_steps=return_intermediate_steps) return agent_executor elif prompt_type == "babyagi": # customllm = CustomLLM() tool_str = "; ".join([t.name for t in self.all_tools_map[name]] + ["TODO"]) prefix = """You are an AI who performs one task based on the following objective: {objective}. Take into account these previously completed tasks: {context}.\n You have access to the following APIs:""" suffix = """YOUR CONSTRAINTS: (1) When saying anything, YOU MUST follow this format: \nThought:\nAction:\nAction Input: \n or \nThought:\nFinal Answer:\n (2) Do not make up anything, and if your Observation has no link, DO NOT hallucihate one. (3) The Action must be one of the following: """ + tool_str + """\nQuestion: {task}\n Agent scratchpad (history actions): {agent_scratchpad}.""" todo_prompt = PromptTemplate.from_template("You are a planner who is an expert at coming up with a todo list for a given objective. Come up with a todo list for this objective: {objective}") todo_chain = LLMChain(llm=self.llm, prompt=todo_prompt) # todo_chain = LLMChain(llm=customllm, prompt=todo_prompt) # search = SerpAPIWrapper() # tools = [ # Tool( # name="Search", # func=search.run, # description="useful for when you need to answer questions about current events", # ), # Tool( # name="TODO", # func=todo_chain.run, # description="useful for when you need to come up with todo lists. Input: an objective to create a todo list for. Output: a todo list for that objective. Please be very clear what the objective is!", # ), # ] # self.all_tools_map[name] = tools todo_tool = Tool( name = "TODO", func=todo_chain.run, description="useful for when you need to come up with todo lists. Input: an objective to create a todo list for. Output: a todo list for that objective. Please be very clear what the objective is!" ) self.all_tools_map[name].append(todo_tool) prompt = ZeroShotAgent.create_prompt( self.all_tools_map[name], prefix=prefix, suffix=suffix, input_variables=["objective", "task", "context","agent_scratchpad"] ) logger.info("Full prompt template: {}".format(prompt.template)) # specify the maximum number of iterations you want babyAGI to perform max_iterations = 10 baby_agi = BabyAGI.from_llm( llm=self.llm, # llm=customllm, prompt=prompt, verbose=False, tools=self.all_tools_map[name], stream_output=self.stream_output, return_intermediate_steps=return_intermediate_steps, max_iterations=max_iterations, ) return baby_agi if __name__ == "__main__": tools_name, tools_config = load_single_tools() print(tools_name, tools_config) qa = STQuestionAnswerer() agent = qa.load_tools(tools_name, tools_config) agent("Calc integral of sin(x)+2x^2+3x+1 from 0 to 1")
EXA-1-master
exa/libraries/BMTools/bmtools/agent/singletool.py
from collections import deque from typing import Dict, List, Optional, Any from langchain import LLMChain, OpenAI, PromptTemplate, SerpAPIWrapper from langchain.embeddings import OpenAIEmbeddings from langchain.llms import BaseLLM from langchain.vectorstores.base import VectorStore from pydantic import BaseModel, Field from langchain.chains.base import Chain from langchain.vectorstores import FAISS import faiss from langchain.docstore import InMemoryDocstore from langchain.agents import ZeroShotAgent, Tool, AgentExecutor from bmtools.agent.executor import Executor, AgentExecutorWithTranslation class ContextAwareAgent(ZeroShotAgent): def get_full_inputs( self, intermediate_steps, **kwargs: Any ) -> Dict[str, Any]: """Create the full inputs for the LLMChain from intermediate steps.""" thoughts = self._construct_scratchpad(intermediate_steps) new_inputs = {"agent_scratchpad": thoughts, "stop": self._stop} full_inputs = {**kwargs, **new_inputs} return full_inputs def _construct_scratchpad( self, intermediate_steps): """Construct the scratchpad that lets the agent continue its thought process.""" thoughts = "" # only modify the following line, [-2: ] for action, observation in intermediate_steps[-2: ]: thoughts += action.log thoughts += f"\n{self.observation_prefix}{observation}\n{self.llm_prefix}" return thoughts class TaskCreationChain(LLMChain): """Chain to generates tasks.""" @classmethod def from_llm(cls, llm: BaseLLM, verbose: bool = True) -> LLMChain: """Get the response parser.""" task_creation_template = ( "You are an task creation AI that uses the result of an execution agent" " to create new tasks with the following objective: {objective}," " The last completed task has the result: {result}." " This result was based on this task description: {task_description}." " These are incomplete tasks: {incomplete_tasks}." " Based on the result, create new tasks to be completed" " by the AI system that do not overlap with incomplete tasks." " Return the tasks as an array." ) prompt = PromptTemplate( template=task_creation_template, input_variables=["result", "task_description", "incomplete_tasks", "objective"], ) return cls(prompt=prompt, llm=llm, verbose=verbose) class TaskPrioritizationChain(LLMChain): """Chain to prioritize tasks.""" @classmethod def from_llm(cls, llm: BaseLLM, verbose: bool = True) -> LLMChain: """Get the response parser.""" task_prioritization_template = ( "You are an task prioritization AI tasked with cleaning the formatting of and reprioritizing" " the following tasks: {task_names}." " Consider the ultimate objective of your team: {objective}." " Do not remove any tasks. Return the result as a numbered list, like:" " #. First task" " #. Second task" " Start the task list with number {next_task_id}." ) prompt = PromptTemplate( template=task_prioritization_template, input_variables=["task_names", "next_task_id", "objective"], ) return cls(prompt=prompt, llm=llm, verbose=verbose) def get_next_task(task_creation_chain: LLMChain, result: Dict, task_description: str, task_list: List[str], objective: str) -> List[Dict]: """Get the next task.""" incomplete_tasks = ", ".join(task_list) response = task_creation_chain.run(result=result, task_description=task_description, incomplete_tasks=incomplete_tasks, objective=objective) new_tasks = response.split('\n') return [{"task_name": task_name} for task_name in new_tasks if task_name.strip()] def prioritize_tasks(task_prioritization_chain: LLMChain, this_task_id: int, task_list: List[Dict], objective: str) -> List[Dict]: """Prioritize tasks.""" task_names = [t["task_name"] for t in task_list] next_task_id = int(this_task_id) + 1 response = task_prioritization_chain.run(task_names=task_names, next_task_id=next_task_id, objective=objective) new_tasks = response.split('\n') prioritized_task_list = [] for task_string in new_tasks: if not task_string.strip(): continue task_parts = task_string.strip().split(".", 1) if len(task_parts) == 2: task_id = task_parts[0].strip() task_name = task_parts[1].strip() prioritized_task_list.append({"task_id": task_id, "task_name": task_name}) return prioritized_task_list def _get_top_tasks(vectorstore, query: str, k: int) -> List[str]: """Get the top k tasks based on the query.""" results = vectorstore.similarity_search_with_score(query, k=k) if not results: return [] sorted_results, _ = zip(*sorted(results, key=lambda x: x[1], reverse=True)) return [str(item.metadata['task']) for item in sorted_results] def execute_task(vectorstore, execution_chain: LLMChain, objective: str, task: str, k: int = 5) -> str: """Execute a task.""" context = _get_top_tasks(vectorstore, query=objective, k=k) return execution_chain.run(objective=objective, context=context, task=task) class BabyAGI(Chain, BaseModel): """Controller model for the BabyAGI agent.""" task_list: deque = Field(default_factory=deque) task_creation_chain: TaskCreationChain = Field(...) task_prioritization_chain: TaskPrioritizationChain = Field(...) execution_chain: AgentExecutor = Field(...) task_id_counter: int = Field(1) vectorstore: VectorStore = Field(init=False) max_iterations: Optional[int] = None class Config: """Configuration for this pydantic object.""" arbitrary_types_allowed = True def add_task(self, task: Dict): self.task_list.append(task) def print_task_list(self): print("\033[95m\033[1m" + "\n*****TASK LIST*****\n" + "\033[0m\033[0m") for t in self.task_list: print(str(t["task_id"]) + ": " + t["task_name"]) def print_next_task(self, task: Dict): print("\033[92m\033[1m" + "\n*****NEXT TASK*****\n" + "\033[0m\033[0m") print(str(task["task_id"]) + ": " + task["task_name"]) def print_task_result(self, result: str): print("\033[93m\033[1m" + "\n*****TASK RESULT*****\n" + "\033[0m\033[0m") print(result) @property def input_keys(self) -> List[str]: return ["objective"] @property def output_keys(self) -> List[str]: return [] def _call(self, inputs: Dict[str, Any]) -> Dict[str, Any]: """Run the agent.""" objective = inputs['objective'] first_task = inputs.get("first_task", f"Make a todo list about this objective: {objective}") self.add_task({"task_id": 1, "task_name": first_task}) num_iters = 0 while True: if self.task_list: self.print_task_list() # Step 1: Pull the first task task = self.task_list.popleft() self.print_next_task(task) # Step 2: Execute the task result = execute_task( self.vectorstore, self.execution_chain, objective, task["task_name"] ) this_task_id = int(task["task_id"]) self.print_task_result(result) # Step 3: Store the result in Pinecone result_id = f"result_{task['task_id']}" self.vectorstore.add_texts( texts=[result], metadatas=[{"task": task["task_name"]}], ids=[result_id], ) # Step 4: Create new tasks and reprioritize task list new_tasks = get_next_task( self.task_creation_chain, result, task["task_name"], [t["task_name"] for t in self.task_list], objective ) for new_task in new_tasks: self.task_id_counter += 1 new_task.update({"task_id": self.task_id_counter}) self.add_task(new_task) self.task_list = deque( prioritize_tasks( self.task_prioritization_chain, this_task_id, list(self.task_list), objective ) ) num_iters += 1 if self.max_iterations is not None and num_iters == self.max_iterations: print("\033[91m\033[1m" + "\n*****TASK ENDING*****\n" + "\033[0m\033[0m") break return {} @classmethod def from_llm( cls, llm: BaseLLM, prompt = None, verbose: bool = False, tools = None, stream_output = None, **kwargs ) -> "BabyAGI": embeddings_model = OpenAIEmbeddings() embedding_size = 1536 index = faiss.IndexFlatL2(embedding_size) vectorstore = FAISS(embeddings_model.embed_query, index, InMemoryDocstore({}), {}) task_creation_chain = TaskCreationChain.from_llm( llm, verbose=verbose ) task_prioritization_chain = TaskPrioritizationChain.from_llm( llm, verbose=verbose ) llm_chain = LLMChain(llm=llm, prompt=prompt) tool_names = [tool.name for tool in tools] agent = ContextAwareAgent(llm_chain=llm_chain, allowed_tools=tool_names) if stream_output: agent_executor = Executor.from_agent_and_tools(agent=agent, tools=tools, verbose=True) else: agent_executor = AgentExecutorWithTranslation.from_agent_and_tools(agent=agent, tools=tools, verbose=True) return cls( task_creation_chain=task_creation_chain, task_prioritization_chain=task_prioritization_chain, execution_chain=agent_executor, vectorstore=vectorstore, **kwargs ) if __name__ == "__main__": todo_prompt = PromptTemplate.from_template("You are a planner who is an expert at coming up with a todo list for a given objective. Come up with a todo list for this objective: {objective}") todo_chain = LLMChain(llm=OpenAI(temperature=0), prompt=todo_prompt) search = SerpAPIWrapper() tools = [ Tool( name = "Search", func=search.run, description="useful for when you need to answer questions about current events" ), Tool( name = "TODO", func=todo_chain.run, description="useful for when you need to come up with todo lists. Input: an objective to create a todo list for. Output: a todo list for that objective. Please be very clear what the objective is!" ) ] prefix = """You are an AI who performs one task based on the following objective: {objective}. Take into account these previously completed tasks: {context}.""" suffix = """Question: {task} {agent_scratchpad}""" prompt = ZeroShotAgent.create_prompt( tools, prefix=prefix, suffix=suffix, input_variables=["objective", "task", "context","agent_scratchpad"] ) OBJECTIVE = "Write a weather report for SF today" llm = OpenAI(temperature=0) # Logging of LLMChains verbose=False # If None, will keep on going forever max_iterations: Optional[int] = 10 baby_agi = BabyAGI.from_llm( llm=llm, verbose=verbose, max_iterations=max_iterations ) baby_agi({"objective": OBJECTIVE})
EXA-1-master
exa/libraries/BMTools/bmtools/agent/BabyagiTools.py
from langchain.llms import OpenAI from langchain.prompts import PromptTemplate from langchain.chains import LLMChain import py3langid as langid from iso639 import languages from typing import Dict from copy import deepcopy import os def detect_lang(text: str): lang_code = langid.classify(text)[0] lang_name = languages.get(part1=lang_code[:2]).name return lang_name class Translator: def __init__(self, openai_api_key: str = None, model_name: str = "gpt-3.5-turbo"): llm = self.create_openai_model(openai_api_key, model_name) prompt = self.create_prompt() self.chain = LLMChain(llm=llm, prompt=prompt) def __call__(self, inputs: Dict[str, str]) -> Dict[str, str]: question = inputs["input"] answer = inputs["output"] src_lang = detect_lang(answer) tgt_lang = detect_lang(question) if src_lang != tgt_lang: translated_answer = self.chain.run(text=answer, language=tgt_lang) outputs = deepcopy(inputs) outputs["output"] = translated_answer return outputs else: return inputs def create_openai_model(self, openai_api_key: str, model_name: str) -> OpenAI: if openai_api_key is None: openai_api_key = os.environ.get('OPENAI_API_KEY') llm = OpenAI(model_name=model_name, temperature=0.0, openai_api_key=openai_api_key) return llm def create_prompt(self) -> PromptTemplate: template = """ Translate to {language}: {text} => """ prompt = PromptTemplate( input_variables=["text", "language"], template=template ) return prompt if __name__ == "__main__": lang = { "zh": { "question": "帮我介绍下《深海》这部电影", "answer": "《深海》是一部中国大陆的动画、奇幻电影,由田晓鹏导演,苏鑫、王亭文、滕奎兴等人主演。剧情简介是在大海的最深处,藏着所有秘密。一位现代少女(参宿)误入梦幻的 深海世界,却因此邂逅了一段独特的生命旅程。![img](https://img3.doubanio.com/view/photo/s_ratio_poster/public/p2635450820.webp)", }, "ja": { "question": "映画「深海」について教えてください", "answer": "「深海」は、中国本土のアニメーションおよびファンタジー映画で、Tian Xiaopeng が監督し、Su Xin、Wang Tingwen、Teng Kuixing などが出演しています。 あらすじは、海の最深部にはすべての秘密が隠されているというもの。 夢のような深海の世界に迷い込んだ現代少女(さんすけ)は、それをきっかけに独特の人生の旅に出くわす。 ![img](https://img3.doubanio.com/view/photo/s_ratio_poster/public/p2635450820.webp)", }, "ko": { "question": "영화 딥씨에 대해 알려주세요", "answer": "\"Deep Sea\"는 Tian Xiaopeng 감독, Su Xin, Wang Tingwen, Teng Kuixing 등이 출연한 중국 본토의 애니메이션 및 판타지 영화입니다. 시놉시스는 바다 가장 깊은 곳에 모든 비밀이 숨겨져 있다는 것입니다. 현대 소녀(산스케)는 꿈 같은 심해 세계로 방황하지만 그것 때문에 독특한 삶의 여정을 만난다. ![img](https://img3.doubanio.com/view/photo/s_ratio_poster/public/p2635450820.webp)", }, "en": { "question": "Tell me about the movie '深海'", "answer": "\"Deep Sea\" is an animation and fantasy film in mainland China, directed by Tian Xiaopeng, starring Su Xin, Wang Tingwen, Teng Kuixing and others. The synopsis is that in the deepest part of the sea, all secrets are hidden. A modern girl (Sansuke) strays into the dreamy deep sea world, but encounters a unique journey of life because of it. ![img](https://img3.doubanio.com/view/photo/s_ratio_poster/public/p2635450820.webp)", }, "de": { "question": "Erzähl mir von dem Film '深海'", "answer": "\"Deep Sea\" ist ein Animations- und Fantasyfilm in Festlandchina unter der Regie von Tian Xiaopeng mit Su Xin, Wang Tingwen, Teng Kuixing und anderen in den Hauptrollen. Die Zusammenfassung ist, dass im tiefsten Teil des Meeres alle Geheimnisse verborgen sind. Ein modernes Mädchen (Sansuke) verirrt sich in die verträumte Tiefseewelt, trifft dabei aber auf eine einzigartige Lebensreise. ![img](https://img3.doubanio.com/view/photo/s_ratio_poster/public/p2635450820.webp)", }, "fr": { "question": "Parlez-moi du film 'Deep Sea'", "answer": "\"Deep Sea\" est un film d'animation et fantastique en Chine continentale, réalisé par Tian Xiaopeng, avec Su Xin, Wang Tingwen, Teng Kuixing et d'autres. Le synopsis est que dans la partie la plus profonde de la mer, tous les secrets sont cachés. Une fille moderne (Sansuke) s'égare dans le monde onirique des profondeurs marines, mais rencontre un voyage de vie unique à cause de cela. ![img](https://img3.doubanio.com/view/photo/s_ratio_poster/public/p2635450820.webp)", }, "ru": { "question": "Расскажите о фильме 'Глубокое море'", "answer": "«Глубокое море» — это анимационный и фэнтезийный фильм в материковом Китае, снятый Тянь Сяопином, в главных ролях Су Синь, Ван Тинвэнь, Тэн Куйсин и другие. Суть в том, что в самой глубокой части моря скрыты все секреты. Современная девушка (Сансукэ) заблудилась в мечтательном глубоководном мире, но из-за этого столкнулась с уникальным жизненным путешествием. ![img](https://img3.doubanio.com/view/photo/s_ratio_poster/public/p2635450820.webp)", }, } translator = Translator() for source in lang: for target in lang: print(source, "=>", target, end=":\t") question = lang[target]["question"] answer = lang[source]["answer"] inputs = { "input": question, "output": answer } result = translator(inputs) translated_answer = result["output"] if detect_lang(question) == detect_lang(translated_answer) == languages.get(part1=target).name: print("Y") else: print("N") print("====================") print("Question:\t", detect_lang(question), " - ", question) print("Answer:\t", detect_lang(answer), " - ", answer) print("Translated Anser:\t", detect_lang(translated_answer), " - ", translated_answer) print("====================")
EXA-1-master
exa/libraries/BMTools/bmtools/agent/translator.py
"""Interface for tools.""" from inspect import signature from typing import Any, Awaitable, Callable, Optional, Union from langchain.agents import Tool as LangChainTool from langchain.tools.base import BaseTool import requests import json import http.client http.client._MAXLINE = 655360 from bmtools import get_logger logger = get_logger(__name__) class Tool(LangChainTool): tool_logo_md: str = "" class RequestTool(BaseTool): """Tool that takes in function or coroutine directly.""" description: str = "" func: Callable[[str], str] coroutine: Optional[Callable[[str], Awaitable[str]]] = None max_output_len = 4000 tool_logo_md: str = "" def _run(self, tool_input: str) -> str: """Use the tool.""" return self.func(tool_input) async def _arun(self, tool_input: str) -> str: """Use the tool asynchronously.""" if self.coroutine: return await self.coroutine(tool_input) raise NotImplementedError("Tool does not support async") def convert_prompt(self,params): lines = "Your input should be a json: {{" for p in params: logger.debug(p) optional = not p['required'] description = p.get('description', '') if len(description) > 0: description = "("+description+")" lines += '"{name}" : {type}{desc},'.format( name=p['name'], type= p['schema']['type'], optional=optional, desc=description) lines += "}}" return lines def __init__(self, root_url, func_url, method, request_info, **kwargs): """ Store the function, description, and tool_name in a class to store the information """ url = root_url + func_url def func(json_args): if isinstance(json_args, str): # json_args = json_args.replace("\'", "\"") # print(json_args) try: json_args = json.loads(json_args) except: return "Your input can not be parsed as json, please use thought." response = requests.get(url, json_args) if response.status_code == 200: message = response.text else: message = f"Error code {response.status_code}. You can try (1) Change your input (2) Call another function. (If the same error code is produced more than 4 times, please use Thought: I can not use these APIs, so I will stop. Final Answer: No Answer, please check the APIs.)" message = message[:self.max_output_len] # TODO: not rigorous, to improve return message tool_name = func_url.replace("/", ".").strip(".") if 'parameters' in request_info[method]: str_doc = self.convert_prompt(request_info[method]['parameters']) else: str_doc = '' description = f"- {tool_name}:\n" + \ request_info[method].get('summary', '').replace("{", "{{").replace("}", "}}") \ + "," \ + request_info[method].get('description','').replace("{", "{{").replace("}", "}}") \ + str_doc \ + f"The Action to trigger this API should be {tool_name}\n and the input parameters should be a json dict string. Pay attention to the type of parameters.\n" logger.info("API Name: {}".format(tool_name)) logger.info("API Description: {}".format(description)) super(RequestTool, self).__init__( name=tool_name, func=func, description=description, **kwargs )
EXA-1-master
exa/libraries/BMTools/bmtools/agent/apitool.py
from langchain.llms import OpenAI from langchain import OpenAI, LLMChain from langchain.agents import ZeroShotAgent, AgentExecutor import importlib import json import os import requests import yaml from bmtools.agent.apitool import Tool from bmtools.agent.singletool import STQuestionAnswerer from bmtools.agent.executor import Executor, AgentExecutorWithTranslation from bmtools import get_logger logger = get_logger(__name__) def load_valid_tools(tools_mappings): tools_to_config = {} for key in tools_mappings: get_url = tools_mappings[key]+".well-known/ai-plugin.json" response = requests.get(get_url) if response.status_code == 200: tools_to_config[key] = response.json() else: logger.warning("Load tool {} error, status code {}".format(key, response.status_code)) return tools_to_config class MTQuestionAnswerer: """Use multiple tools to answer a question. Basically pass a natural question to """ def __init__(self, openai_api_key, all_tools, stream_output=False, llm='ChatGPT'): if len(openai_api_key) < 3: # not valid key (TODO: more rigorous checking) openai_api_key = os.environ.get('OPENAI_API_KEY') self.openai_api_key = openai_api_key self.stream_output = stream_output self.llm_model = llm self.set_openai_api_key(openai_api_key) self.load_tools(all_tools) def set_openai_api_key(self, key): logger.info("Using {}".format(self.llm_model)) if self.llm_model == "GPT-3.5": self.llm = OpenAI(temperature=0.0, openai_api_key=key) # use text-darvinci elif self.llm_model == "ChatGPT": self.llm = OpenAI(model_name="gpt-3.5-turbo", temperature=0.0, openai_api_key=key) # use chatgpt else: raise RuntimeError("Your model is not available.") def load_tools(self, all_tools): logger.info("All tools: {}".format(all_tools)) self.all_tools_map = {} self.tools_pool = [] for name in all_tools: meta_info = all_tools[name] question_answer = STQuestionAnswerer(self.openai_api_key, stream_output=self.stream_output, llm=self.llm_model) subagent = question_answer.load_tools(name, meta_info, prompt_type="react-with-tool-description", return_intermediate_steps=False) tool_logo_md = f'<img src="{meta_info["logo_url"]}" width="32" height="32" style="display:inline-block">' for tool in subagent.tools: tool.tool_logo_md = tool_logo_md tool = Tool( name=meta_info['name_for_model'], description=meta_info['description_for_model'].replace("{", "{{").replace("}", "}}"), func=subagent, ) tool.tool_logo_md = tool_logo_md self.tools_pool.append(tool) def build_runner(self, ): # 可以修改prompt来让模型表现更好,也可以修改tool的doc prefix = """Answer the following questions as best you can. In this level, you are calling the tools in natural language format, since the tools are actually an intelligent agent like you, but they expert only in one area. Several things to remember. (1) Remember to follow the format of passing natural language as the Action Input. (2) DO NOT use your imagination, only use concrete information given by the tools. (3) If the observation contains images or urls which has useful information, YOU MUST INCLUDE ALL USEFUL IMAGES and links in your Answer and Final Answers using format ![img](url). BUT DO NOT provide any imaginary links. (4) The information in your Final Answer should include ALL the informations returned by the tools. (5) If a user's query is a language other than English, please translate it to English without tools, and translate it back to the source language in Final Answer. You have access to the following tools (Only use these tools we provide you):""" suffix = """\nBegin! Remember to . \nQuestion: {input}\n{agent_scratchpad}""" prompt = ZeroShotAgent.create_prompt( self.tools_pool, prefix=prefix, suffix=suffix, input_variables=["input", "agent_scratchpad"] ) llm_chain = LLMChain(llm=self.llm, prompt=prompt) logger.info("Full Prompt Template:\n {}".format(prompt.template)) tool_names = [tool.name for tool in self.tools_pool] agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names) if self.stream_output: agent_executor = Executor.from_agent_and_tools(agent=agent, tools=self.tools_pool, verbose=True, return_intermediate_steps=True) else: agent_executor = AgentExecutorWithTranslation.from_agent_and_tools(agent=agent, tools=self.tools_pool, verbose=True, return_intermediate_steps=True) return agent_executor if __name__ == "__main__": tools_mappings = { "klarna": "https://www.klarna.com/", "chemical-prop": "http://127.0.0.1:8079/tools/chemical-prop/", "wolframalpha": "http://127.0.0.1:8079/tools/wolframalpha/", "weather": "http://127.0.0.1:8079/tools/weather/", } tools = load_valid_tools(tools_mappings) qa = MTQuestionAnswerer(openai_api_key='', all_tools=tools) agent = qa.build_runner() agent("How many carbon elements are there in CH3COOH? How many people are there in China?")
EXA-1-master
exa/libraries/BMTools/bmtools/agent/tools_controller.py
import types from typing import Any, Dict, List, Tuple, Union from langchain.agents import AgentExecutor from langchain.input import get_color_mapping from langchain.schema import AgentAction, AgentFinish from bmtools.agent.translator import Translator class AgentExecutorWithTranslation(AgentExecutor): translator: Translator = Translator() def prep_outputs( self, inputs: Dict[str, str], outputs: Dict[str, str], return_only_outputs: bool = False, ) -> Dict[str, str]: try: outputs = super().prep_outputs(inputs, outputs, return_only_outputs) except ValueError as e: return outputs else: if "input" in outputs: outputs = self.translator(outputs) return outputs class Executor(AgentExecutorWithTranslation): def _call(self, inputs: Dict[str, str]) -> Dict[str, Any]: """Run text through and get agent response.""" # Do any preparation necessary when receiving a new input. self.agent.prepare_for_new_call() # Construct a mapping of tool name to tool for easy lookup name_to_tool_map = {tool.name: tool for tool in self.tools} # We construct a mapping from each tool to a color, used for logging. color_mapping = get_color_mapping( [tool.name for tool in self.tools], excluded_colors=["green"] ) intermediate_steps: List[Tuple[AgentAction, str]] = [] # Let's start tracking the iterations the agent has gone through iterations = 0 # We now enter the agent loop (until it returns something). while self._should_continue(iterations): next_step_output = self._take_next_step( name_to_tool_map, color_mapping, inputs, intermediate_steps ) if isinstance(next_step_output, AgentFinish): yield self._return(next_step_output, intermediate_steps) return agent_action = next_step_output[0] tool_logo = None for tool in self.tools: if tool.name == agent_action.tool: tool_logo = tool.tool_logo_md if isinstance(next_step_output[1], types.GeneratorType): logo = f"{tool_logo}" if tool_logo is not None else "" yield (AgentAction("", agent_action.tool_input, agent_action.log), f"Further use other tool {logo} to answer the question.") for output in next_step_output[1]: yield output next_step_output = (agent_action, output) else: for tool in self.tools: if tool.name == agent_action.tool: yield (AgentAction(tool_logo, agent_action.tool_input, agent_action.log), next_step_output[1]) intermediate_steps.append(next_step_output) # See if tool should return directly tool_return = self._get_tool_return(next_step_output) if tool_return is not None: yield self._return(tool_return, intermediate_steps) return iterations += 1 output = self.agent.return_stopped_response( self.early_stopping_method, intermediate_steps, **inputs ) yield self._return(output, intermediate_steps) return def __call__( self, inputs: Union[Dict[str, Any], Any], return_only_outputs: bool = False ) -> Dict[str, Any]: """Run the logic of this chain and add to output if desired. Args: inputs: Dictionary of inputs, or single input if chain expects only one param. return_only_outputs: boolean for whether to return only outputs in the response. If True, only new keys generated by this chain will be returned. If False, both input keys and new keys generated by this chain will be returned. Defaults to False. """ inputs = self.prep_inputs(inputs) self.callback_manager.on_chain_start( {"name": self.__class__.__name__}, inputs, verbose=self.verbose, ) try: for output in self._call(inputs): if type(output) is dict: output = self.prep_outputs(inputs, output, return_only_outputs) yield output except (KeyboardInterrupt, Exception) as e: self.callback_manager.on_chain_error(e, verbose=self.verbose) raise e self.callback_manager.on_chain_end(output, verbose=self.verbose) # return self.prep_outputs(inputs, output, return_only_outputs) return output
EXA-1-master
exa/libraries/BMTools/bmtools/agent/executor.py
# Configuration file for the Sphinx documentation builder. # # For the full list of built-in configuration values, see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html import os import sys # -- Project information ----------------------------------------------------- # https://www.sphinx-doc.org/en/master/usage/configuration.html#project-information project = "FarmVibes.AI" copyright = "2023, Microsoft" author = "Microsoft" # -- General configuration --------------------------------------------------- # https://www.sphinx-doc.org/en/master/usage/configuration.html#general-configuration extensions = [ "sphinx.ext.autodoc", "sphinx.ext.autosummary", "sphinxcontrib.mermaid", "myst_parser", "sphinx_autodoc_typehints", ] autosummary_generate = True autodoc_member_order = "groupwise" myst_heading_anchors = 3 typehints_use_rtype = False typehints_defaults = "comma" sys.path.insert(0, os.path.abspath("../../src")) templates_path = ["_templates"] exclude_patterns = [] # -- Options for HTML output ------------------------------------------------- # https://www.sphinx-doc.org/en/master/usage/configuration.html#options-for-html-output html_theme = "sphinx_rtd_theme" html_static_path = ["_static"] html_css_files = [ "custom.css", ] source_suffix = {".rst": "restructuredtext", ".md": "markdown"}
EXA-1-master
exa/libraries/farmvibes-ai-main/docs/source/conf.py
from typing import Any, Dict import pytorch_lightning as pl import segmentation_models_pytorch as smp import torch import torch.nn as nn import torchmetrics from torch.optim import Adam from torch.optim.lr_scheduler import CosineAnnealingLR class SegmentationModel(pl.LightningModule): def __init__( self, lr: float, weight_decay: float, in_channels: int, encoder_name: str = "resnet34", encoder_weights: str = "imagenet", classes: int = 1, num_epochs: int = 10, ): """Initialize a new Segmentation Model instance. Args: lr: learning rate. weight_decay: amount of weight decay regularization. in_channels: number of input channels of the network. Needs to match the number of bands/channels of the stacked NVDI raster. encoder_name: name of the encoder used for the Unet. See segmentation_models_pytorch for more information. encoder_weights: name of the pretrained weights for the encoder. Use 'imagenet' or None (random weights). classes: number of output classes. As we are doing a binary crop vs. non-crop segmentation, we use the default value. num_epochs: number of training epochs. Used for the cosine annealing scheduler. """ super().__init__() self.save_hyperparameters() self.encoder_name = encoder_name self.encoder_weights = encoder_weights self.in_channels = in_channels self.classes = classes self.model = smp.FPN( encoder_name=self.encoder_name, encoder_weights=self.encoder_weights, in_channels=in_channels, classes=self.classes, ) self.loss = nn.BCEWithLogitsLoss() self.lr = lr self.weight_decay = weight_decay self.num_epochs = num_epochs metrics = torchmetrics.MetricCollection( { "ap": torchmetrics.BinnedAveragePrecision(num_classes=1, thresholds=100), "acc": torchmetrics.Accuracy(), } ) self.train_metrics = metrics.clone(prefix="train_") self.val_metrics = metrics.clone(prefix="val_") def forward(self, x: torch.Tensor): return self.model(x) def configure_optimizers(self): optimizer = Adam(params=self.model.parameters(), lr=self.lr, weight_decay=self.weight_decay) scheduler = CosineAnnealingLR(optimizer, T_max=self.num_epochs, eta_min=0) lr_scheduler = { "scheduler": scheduler, "name": "lr_scheduler", } return [optimizer], [lr_scheduler] def _shared_step(self, batch: Dict[str, Any], batch_idx: int) -> Dict[str, Any]: pred = self(batch["image"]) for t in pred, batch["mask"]: assert torch.all(torch.isfinite(t)) loss = self.loss(pred, batch["mask"]) return {"loss": loss, "preds": pred.detach(), "target": batch["mask"]} def _shared_step_end( self, outputs: Dict[str, Any], metrics: torchmetrics.MetricCollection, prefix: str ) -> None: m = metrics(outputs["preds"].sigmoid().flatten(), outputs["target"].flatten().to(torch.int)) self.log(f"{prefix}_loss", outputs["loss"]) self.log_dict(m) def training_step(self, batch: Dict[str, Any], batch_idx: int) -> Dict[str, Any]: return self._shared_step(batch, batch_idx) def training_step_end(self, outputs: Dict[str, Any]) -> None: self._shared_step_end(outputs, self.train_metrics, "train") def validation_step(self, batch: Dict[str, Any], batch_idx: int) -> Dict[str, Any]: return self._shared_step(batch, batch_idx) def validation_step_end(self, outputs: Dict[str, Any]) -> None: return self._shared_step_end(outputs, self.val_metrics, "val") # Trace the model with sigmoid activation class ModelPlusSigmoid(nn.Module): def __init__(self, model: torch.nn.Module): super().__init__() self.model = model def forward(self, x: torch.Tensor): return self.model(x).sigmoid()
EXA-1-master
exa/libraries/farmvibes-ai-main/notebooks/crop_segmentation/notebook_lib/models.py