python_code
stringlengths
0
1.02M
repo_name
stringlengths
9
48
file_path
stringlengths
5
114
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Adagrad optimizer for TensorFlow.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.optimizer_v2 import optimizer_v2 from tensorflow.python.ops import array_ops from tensorflow.python.ops import gen_array_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import math_ops from tensorflow.python.training import training_ops class AdagradOptimizer(optimizer_v2.OptimizerV2): """Optimizer that implements the Adagrad algorithm. See this [paper](http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf) or this [intro](https://ppasupat.github.io/a9online/uploads/proximal_notes.pdf). """ def __init__(self, learning_rate, initial_accumulator_value=0.1, use_locking=False, name="Adagrad"): """Construct a new Adagrad optimizer. The learning_rate arg below is a hyperparameter, where a hyperparameter is defined as a scalar Tensor, a regular Python value or a callable (which will be evaluated when `apply_gradients` is called) returning a scalar Tensor or a Python value. Args: learning_rate: A float hyperparameter. The learning rate. initial_accumulator_value: A floating point value. Starting value for the accumulators, must be positive. use_locking: If `True` use locks for update operations. name: Optional name prefix for the operations created when applying gradients. Defaults to "Adagrad". Raises: ValueError: If the `initial_accumulator_value` is invalid. """ if initial_accumulator_value <= 0.0: raise ValueError("initial_accumulator_value must be positive: %s" % initial_accumulator_value) super(AdagradOptimizer, self).__init__(use_locking, name) self._set_hyper("learning_rate", learning_rate) self._initial_accumulator_value = initial_accumulator_value def _create_vars(self, var_list, state): for v in var_list: dtype = v.dtype.base_dtype if v.get_shape().is_fully_defined(): init = init_ops.constant_initializer( self._initial_accumulator_value, dtype=dtype) else: def init(v=v, dtype=dtype): # Use a Tensor instead of initializer if variable does not have # static shape. init_constant = gen_array_ops.fill( array_ops.shape(v), self._initial_accumulator_value) return math_ops.cast(init_constant, dtype) state.create_slot_with_initializer(v, init, v.get_shape(), dtype, "accumulator") def _apply_dense(self, grad, var, state): acc = state.get_slot(var, "accumulator") return training_ops.apply_adagrad( var, acc, state.get_hyper("learning_rate", var.dtype.base_dtype), grad, use_locking=self._use_locking) def _resource_apply_dense(self, grad, var, state): acc = state.get_slot(var, "accumulator") return training_ops.resource_apply_adagrad( var.handle, acc.handle, state.get_hyper("learning_rate", var.dtype.base_dtype), grad, use_locking=self._use_locking) def _apply_sparse(self, grad, var, state): acc = state.get_slot(var, "accumulator") return training_ops.sparse_apply_adagrad( var, acc, state.get_hyper("learning_rate", var.dtype.base_dtype), grad.values, grad.indices, use_locking=self._use_locking) def _resource_apply_sparse(self, grad, var, indices, state): acc = state.get_slot(var, "accumulator") return training_ops.resource_sparse_apply_adagrad( var.handle, acc.handle, state.get_hyper("learning_rate", var.dtype.base_dtype), grad, indices, use_locking=self._use_locking)
tensorflow-master
tensorflow/contrib/optimizer_v2/adagrad.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function # TODO(josh11b): Forked from contrib/eager/python to test OptimizerV2 the same way # OptimizerV1 is tested. This file should be removed once the fork is resolved. import functools import os import six from tensorflow.contrib.optimizer_v2 import adam from tensorflow.python.client import session as session_lib from tensorflow.python.eager import backprop from tensorflow.python.eager import context from tensorflow.python.eager import function from tensorflow.python.eager import test from tensorflow.python.framework import constant_op from tensorflow.python.framework import ops from tensorflow.python.framework import test_util from tensorflow.python.keras.engine import training from tensorflow.python.keras.layers import core from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import resource_variable_ops from tensorflow.python.ops import state_ops from tensorflow.python.ops import template from tensorflow.python.ops import variable_scope from tensorflow.python.training import checkpoint_management from tensorflow.python.training import saver as core_saver from tensorflow.python.training import training_util from tensorflow.python.training.tracking import graph_view from tensorflow.python.training.tracking import tracking from tensorflow.python.training.tracking import util class NonLayerTrackable(tracking.AutoTrackable): def __init__(self): super(NonLayerTrackable, self).__init__() self.a_variable = util.add_variable( self, name="a_variable", shape=[]) # pylint: disable=not-callable class MyModel(training.Model): """A concrete Model for testing.""" def __init__(self): super(MyModel, self).__init__() self._named_dense = core.Dense(1, use_bias=True) self._second = core.Dense(1, use_bias=False) # We can still track Trackables which aren't Layers. self._non_layer = NonLayerTrackable() def call(self, values): ret = self._second(self._named_dense(values)) return ret class _MirroringSaveable( core_saver.BaseSaverBuilder.ResourceVariableSaveable): def __init__(self, primary_variable, mirrored_variable, name): self._primary_variable = primary_variable self._mirrored_variable = mirrored_variable super(_MirroringSaveable, self).__init__( self._primary_variable, "", name) def restore(self, restored_tensors, restored_shapes): """Restore the same value into both variables.""" tensor, = restored_tensors return control_flow_ops.group( self._primary_variable.assign(tensor), self._mirrored_variable.assign(tensor)) class CheckpointingTests(test.TestCase): @test_util.run_in_graph_and_eager_modes(assert_no_eager_garbage=True) def testNamingWithOptimizer(self): input_value = constant_op.constant([[3.]]) model = MyModel() # A nuisance Model using the same optimizer. Its slot variables should not # go in the checkpoint, since it is never depended on. other_model = MyModel() optimizer = adam.AdamOptimizer(0.001) optimizer_step = training_util.get_or_create_global_step() root_trackable = util.Checkpoint( optimizer=optimizer, model=model, optimizer_step=optimizer_step) if context.executing_eagerly(): optimizer.minimize( lambda: model(input_value), global_step=optimizer_step) optimizer.minimize( lambda: other_model(input_value), global_step=optimizer_step) else: train_op = optimizer.minimize( model(input_value), global_step=optimizer_step) optimizer.minimize( other_model(input_value), global_step=optimizer_step) self.evaluate(util.gather_initializers( root_trackable)) self.evaluate(train_op) named_variables, serialized_graph, _ = graph_view.ObjectGraphView( root_trackable).serialize_object_graph() expected_checkpoint_names = ( # Created in the root node, so no prefix. "optimizer_step", "model/_second/kernel", "model/_named_dense/kernel", "model/_named_dense/bias", # non-Layer dependency of the model "model/_non_layer/a_variable", # The optimizer creates two non-slot variables "optimizer/beta1_power", "optimizer/beta2_power", # Slot variables "model/_second/kernel/.OPTIMIZER_SLOT/optimizer/m", "model/_second/kernel/.OPTIMIZER_SLOT/optimizer/v", "model/_named_dense/kernel/.OPTIMIZER_SLOT/optimizer/m", "model/_named_dense/kernel/.OPTIMIZER_SLOT/optimizer/v", "model/_named_dense/bias/.OPTIMIZER_SLOT/optimizer/m", "model/_named_dense/bias/.OPTIMIZER_SLOT/optimizer/v", ) suffix = "/.ATTRIBUTES/VARIABLE_VALUE" expected_checkpoint_names = [ name + suffix for name in expected_checkpoint_names] named_variables = {v.name: v for v in named_variables} six.assertCountEqual(self, expected_checkpoint_names, named_variables.keys()) # Check that we've mapped to the right variable objects (not exhaustive) self.assertEqual( "global_step", named_variables["optimizer_step" + suffix].full_name) self.assertEqual( "my_model/dense_1/kernel", named_variables["model/_second/kernel" + suffix].full_name) self.assertEqual( "my_model/dense/kernel", named_variables["model/_named_dense/kernel" + suffix].full_name) self.assertEqual( "beta1_power", named_variables["optimizer/beta1_power" + suffix].full_name) self.assertEqual( "beta2_power", named_variables["optimizer/beta2_power" + suffix].full_name) # Spot check the generated protocol buffers. self.assertEqual("optimizer", serialized_graph.nodes[0].children[1].local_name) optimizer_node = serialized_graph.nodes[serialized_graph.nodes[0].children[ 1].node_id] self.assertEqual("beta1_power", optimizer_node.children[0].local_name) self.assertEqual( "beta1_power", serialized_graph.nodes[optimizer_node.children[0] .node_id].attributes[0].full_name) self.assertEqual( "my_model/dense/kernel", serialized_graph.nodes[optimizer_node.slot_variables[0] .original_variable_node_id] .attributes[0].full_name) # We strip off the :0 suffix, as variable.name-based saving does. self.assertEqual( "my_model/dense/kernel/Adam", serialized_graph.nodes[optimizer_node.slot_variables[0] .slot_variable_node_id] .attributes[0].full_name) self.assertEqual( "my_model/dense/kernel/Adam:0", optimizer.get_slot( var=model._named_dense.kernel, name="m").name) self.assertEqual( "model/_named_dense/kernel" + suffix, serialized_graph.nodes[ optimizer_node.slot_variables[0] .original_variable_node_id].attributes[0].checkpoint_key) self.assertEqual("m", optimizer_node.slot_variables[0].slot_name) self.assertEqual( "model/_named_dense/kernel/.OPTIMIZER_SLOT/optimizer/m" + suffix, serialized_graph.nodes[ optimizer_node.slot_variables[0] .slot_variable_node_id].attributes[0].checkpoint_key) @test_util.run_in_graph_and_eager_modes def testSaveRestore(self): model = MyModel() optimizer = adam.AdamOptimizer(0.001) root_trackable = util.Checkpoint( optimizer=optimizer, model=model) input_value = constant_op.constant([[3.]]) if context.executing_eagerly(): optimizer.minimize( lambda: model(input_value)) else: train_op = optimizer.minimize(model(input_value)) # TODO(allenl): Make initialization more pleasant when graph building. root_trackable.save_counter # pylint: disable=pointless-statement self.evaluate(util.gather_initializers( root_trackable)) self.evaluate(train_op) prefix = os.path.join(self.get_temp_dir(), "ckpt") self.evaluate(state_ops.assign(model._named_dense.variables[1], [42.])) m_bias_slot = optimizer.get_slot(model._named_dense.variables[1], "m") self.evaluate(state_ops.assign(m_bias_slot, [1.5])) save_path = root_trackable.save(file_prefix=prefix) self.evaluate(state_ops.assign(model._named_dense.variables[1], [43.])) self.evaluate(state_ops.assign(root_trackable.save_counter, 3)) optimizer_variables = self.evaluate(optimizer.variables()) self.evaluate(state_ops.assign(m_bias_slot, [-2.])) # Immediate restoration status = root_trackable.restore(save_path=save_path).assert_consumed() status.run_restore_ops() self.assertAllEqual([42.], self.evaluate(model._named_dense.variables[1])) self.assertAllEqual(1, self.evaluate(root_trackable.save_counter)) self.assertAllEqual([1.5], self.evaluate(m_bias_slot)) if not context.executing_eagerly(): return # Restore-on-create is only supported when executing eagerly on_create_model = MyModel() on_create_optimizer = adam.AdamOptimizer( 0.001, # Preserve beta_1_power and beta_2_power when appying gradients # so we can test that they've been restored correctly. beta1=1.0, beta2=1.0) on_create_root = util.Checkpoint( optimizer=on_create_optimizer, model=on_create_model) # Deferred restoration status = on_create_root.restore(save_path=save_path) on_create_model(constant_op.constant([[3.]])) # create variables self.assertAllEqual(1, self.evaluate(on_create_root.save_counter)) self.assertAllEqual([42.], self.evaluate( on_create_model._named_dense.variables[1])) on_create_m_bias_slot = on_create_optimizer.get_slot( on_create_model._named_dense.variables[1], "m") # Optimizer slot variables are created when the original variable is # restored. self.assertAllEqual([1.5], self.evaluate(on_create_m_bias_slot)) self.assertAllEqual(optimizer_variables[2:], self.evaluate(on_create_optimizer.variables())) dummy_var = resource_variable_ops.ResourceVariable([1.]) on_create_optimizer.minimize(loss=dummy_var.read_value) status.assert_consumed() beta_1_power, beta_2_power = on_create_optimizer._get_beta_accumulators() self.assertAllEqual(optimizer_variables[0], self.evaluate(beta_1_power)) self.assertAllEqual(optimizer_variables[1], self.evaluate(beta_2_power)) # TODO(allenl): Debug garbage created by this test in python3. def testDeferredRestorationUsageEager(self): """An idiomatic eager execution example.""" num_training_steps = 10 checkpoint_directory = self.get_temp_dir() checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt") for training_continuation in range(3): model = MyModel() optimizer = adam.AdamOptimizer(0.001) root = util.Checkpoint( optimizer=optimizer, model=model, optimizer_step=training_util.get_or_create_global_step()) root.restore(checkpoint_management.latest_checkpoint( checkpoint_directory)) for _ in range(num_training_steps): # TODO(allenl): Use a Dataset and serialize/checkpoint it. input_value = constant_op.constant([[3.]]) optimizer.minimize( lambda: model(input_value), # pylint: disable=cell-var-from-loop global_step=root.optimizer_step) root.save(file_prefix=checkpoint_prefix) self.assertEqual((training_continuation + 1) * num_training_steps, root.optimizer_step.numpy()) def testUsageGraph(self): """Expected usage when graph building.""" with context.graph_mode(): num_training_steps = 10 checkpoint_directory = self.get_temp_dir() checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt") for training_continuation in range(3): with ops.Graph().as_default(): model = MyModel() optimizer = adam.AdamOptimizer(0.001) root = util.CheckpointV1( optimizer=optimizer, model=model, global_step=training_util.get_or_create_global_step()) input_value = constant_op.constant([[3.]]) train_op = optimizer.minimize( model(input_value), global_step=root.global_step) checkpoint_path = checkpoint_management.latest_checkpoint( checkpoint_directory) with self.session(graph=ops.get_default_graph()) as session: status = root.restore(save_path=checkpoint_path) status.initialize_or_restore(session=session) if checkpoint_path is None: self.assertEqual(0, training_continuation) with self.assertRaises(AssertionError): status.assert_consumed() else: status.assert_consumed() for _ in range(num_training_steps): session.run(train_op) root.save(file_prefix=checkpoint_prefix, session=session) self.assertEqual((training_continuation + 1) * num_training_steps, session.run(root.global_step)) self.assertEqual(training_continuation + 1, session.run(root.save_counter)) @test_util.run_in_graph_and_eager_modes def testAgnosticUsage(self): """Graph/eager agnostic usage.""" # Does create garbage when executing eagerly due to ops.Graph() creation. num_training_steps = 10 checkpoint_directory = self.get_temp_dir() checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt") for training_continuation in range(3): with ops.Graph().as_default(), self.test_session( graph=ops.get_default_graph()), test_util.device(use_gpu=True): model = MyModel() optimizer = adam.AdamOptimizer(0.001) root = util.Checkpoint( optimizer=optimizer, model=model, global_step=training_util.get_or_create_global_step()) checkpoint_path = checkpoint_management.latest_checkpoint( checkpoint_directory) status = root.restore(save_path=checkpoint_path) input_value = constant_op.constant([[3.]]) train_fn = functools.partial( optimizer.minimize, functools.partial(model, input_value), global_step=root.global_step) if not context.executing_eagerly(): train_fn = functools.partial(self.evaluate, train_fn()) status.initialize_or_restore() for _ in range(num_training_steps): train_fn() root.save(file_prefix=checkpoint_prefix) self.assertEqual((training_continuation + 1) * num_training_steps, self.evaluate(root.global_step)) self.assertEqual(training_continuation + 1, self.evaluate(root.save_counter)) # pylint: disable=cell-var-from-loop @test_util.run_in_graph_and_eager_modes def testWithDefun(self): num_training_steps = 2 checkpoint_directory = self.get_temp_dir() checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt") for training_continuation in range(3): with ops.Graph().as_default(), self.test_session( graph=ops.get_default_graph()), test_util.device(use_gpu=True): model = MyModel() # Don't actually train so we can test variable values optimizer = adam.AdamOptimizer(0.) root = util.Checkpoint( optimizer=optimizer, model=model, global_step=training_util.get_or_create_global_step()) checkpoint_path = checkpoint_management.latest_checkpoint( checkpoint_directory) status = root.restore(save_path=checkpoint_path) def train_fn(): @function.defun def _call_model(x): return model(x) with backprop.GradientTape() as tape: loss = _call_model(constant_op.constant([[3.]])) gradients = tape.gradient(loss, model.variables) return optimizer.apply_gradients(zip(gradients, model.variables), global_step=root.global_step) if not context.executing_eagerly(): train_fn = functools.partial( self.evaluate, train_fn()) status.initialize_or_restore() for _ in range(num_training_steps): train_fn() if training_continuation > 0: status.assert_consumed() self.assertAllClose([[42.]], self.evaluate(model.variables[0])) else: self.evaluate(model.variables[0].assign([[42.]])) root.save(file_prefix=checkpoint_prefix) self.assertEqual((training_continuation + 1) * num_training_steps, self.evaluate(root.global_step)) self.assertEqual(training_continuation + 1, self.evaluate(root.save_counter)) # pylint: enable=cell-var-from-loop def testAnonymousVarsInInit(self): class Model(training.Model): def __init__(self): super(Model, self).__init__() self.w = resource_variable_ops.ResourceVariable(0.0) self.b = resource_variable_ops.ResourceVariable(0.0) self.vars = [self.w, self.b] def call(self, x): return x * self.w + self.b with context.eager_mode(): model = Model() optimizer = adam.AdamOptimizer(learning_rate=0.05) checkpoint_directory = self.get_temp_dir() checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt") checkpoint = util.Checkpoint( model=model, optimizer=optimizer) for _ in range(2): checkpoint.save(checkpoint_prefix) with backprop.GradientTape() as tape: loss = (constant_op.constant(1.) - model(constant_op.constant(1.))) ** 2 grad = tape.gradient(loss, model.vars) optimizer.apply_gradients( [(g, v) for g, v in zip(grad, model.vars)]) @test_util.run_in_graph_and_eager_modes def testDeferredSlotRestoration(self): checkpoint_directory = self.get_temp_dir() root = util.Checkpoint() root.var = util.add_variable( root, name="var", initializer=0.) optimizer = adam.AdamOptimizer(0.1) if context.executing_eagerly(): optimizer.minimize(root.var.read_value) else: train_op = optimizer.minimize(root.var) # Note that `optimizer` has not been added as a dependency of # `root`. Create a one-off grouping so that slot variables for `root.var` # get initialized too. self.evaluate(util.gather_initializers( util.Checkpoint(root=root, optimizer=optimizer))) self.evaluate(train_op) self.evaluate(state_ops.assign(root.var, 12.)) no_slots_path = root.save(os.path.join(checkpoint_directory, "no_slots")) root.optimizer = optimizer self.evaluate(state_ops.assign(root.var, 13.)) self.evaluate(state_ops.assign(optimizer.get_slot(name="m", var=root.var), 14.)) slots_path = root.save(os.path.join(checkpoint_directory, "with_slots")) new_root = util.Checkpoint() # Load the slot-containing checkpoint (deferred), then immediately overwrite # the non-slot variable (also deferred). slot_status = new_root.restore(slots_path) no_slot_status = new_root.restore(no_slots_path) with self.assertRaises(AssertionError): no_slot_status.assert_consumed() new_root.var = util.add_variable( new_root, name="var", shape=[]) no_slot_status.assert_consumed() no_slot_status.run_restore_ops() self.assertEqual(12., self.evaluate(new_root.var)) new_root.optimizer = adam.AdamOptimizer(0.1) with self.assertRaisesRegexp(AssertionError, "beta1_power"): slot_status.assert_consumed() self.assertEqual(12., self.evaluate(new_root.var)) if context.executing_eagerly(): # Slot variables are only created with restoring initializers when # executing eagerly. self.assertEqual(14., self.evaluate( new_root.optimizer.get_slot(name="m", var=new_root.var))) else: self.assertIs(new_root.optimizer.get_slot(name="m", var=new_root.var), None) if context.executing_eagerly(): new_root.optimizer.minimize(new_root.var.read_value) else: train_op = new_root.optimizer.minimize(new_root.var) # The slot variable now exists; restore() didn't create it, but we should # now have a restore op for it. slot_status.run_restore_ops() self.assertEqual(14., self.evaluate( new_root.optimizer.get_slot(name="m", var=new_root.var))) self.evaluate(train_op) slot_status.assert_consumed() def testManySavesGraph(self): """Saves after the first should not modify the graph.""" with context.graph_mode(): graph = ops.Graph() with graph.as_default(), self.session(graph): checkpoint_directory = self.get_temp_dir() checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt") obj = util.Checkpoint() obj.var = variable_scope.get_variable(name="v", initializer=0.) obj.opt = adam.AdamOptimizer(0.1) obj.opt.minimize(obj.var.read_value()) self.evaluate(util.gather_initializers(obj)) obj.save(checkpoint_prefix) before_ops = graph.get_operations() obj.save(checkpoint_prefix) self.assertEqual(before_ops, graph.get_operations()) def testManyRestoresGraph(self): """Restores after the first should not modify the graph.""" with context.graph_mode(): graph = ops.Graph() with graph.as_default(), self.session(graph): checkpoint_directory = self.get_temp_dir() checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt") obj = util.Checkpoint() obj.var = variable_scope.get_variable(name="v", initializer=0.) obj.opt = adam.AdamOptimizer(0.1) obj.opt.minimize(obj.var.read_value()) self.evaluate(util.gather_initializers(obj)) save_path = obj.save(checkpoint_prefix) obj.restore(save_path) before_ops = graph.get_operations() obj.restore(save_path) self.assertEqual(before_ops, graph.get_operations()) def testMultipleGraphsNonSlotVariables(self): with context.graph_mode(): checkpoint_directory = self.get_temp_dir() checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt") optimizer = adam.AdamOptimizer(0.001) # Construct a model in one graph first_graph = ops.Graph() first_session = session_lib.Session(graph=first_graph) with first_graph.as_default(), first_session.as_default(): first_variable = resource_variable_ops.ResourceVariable([1.]) first_root_trackable = util.Checkpoint( optimizer=optimizer, variable=first_variable) train_op = optimizer.minimize(first_variable.read_value) self.evaluate(util.gather_initializers( first_root_trackable)) self.evaluate(train_op) self.evaluate(first_variable.assign([1.])) self.evaluate(optimizer.get_slot( var=first_variable, name="m").assign([2.])) beta_1_power, _ = optimizer._get_beta_accumulators() self.evaluate(beta_1_power.assign(3.)) # Save and load in a second graph second_graph = ops.Graph() with second_graph.as_default(), session_lib.Session(graph=second_graph): second_variable = resource_variable_ops.ResourceVariable([1.]) second_root_trackable = util.Checkpoint( optimizer=optimizer, variable=second_variable) train_op = optimizer.minimize(second_variable.read_value) second_root_trackable.restore(None).initialize_or_restore() self.evaluate(train_op) self.evaluate(second_variable.assign([4.])) self.evaluate(optimizer.get_slot( var=second_variable, name="m").assign([5.])) beta_1_power, _ = optimizer._get_beta_accumulators() self.evaluate(beta_1_power.assign(6.)) save_path = second_root_trackable.save(checkpoint_prefix) self.evaluate(second_variable.assign([7.])) self.evaluate(optimizer.get_slot( var=second_variable, name="m").assign([8.])) beta_1_power, _ = optimizer._get_beta_accumulators() self.assertAllEqual(6., self.evaluate(beta_1_power)) status = second_root_trackable.restore(save_path) status.assert_consumed().run_restore_ops() self.assertAllEqual([4.], self.evaluate(second_variable)) self.assertAllEqual([5.], self.evaluate(optimizer.get_slot( var=second_variable, name="m"))) beta_1_power, _ = optimizer._get_beta_accumulators() self.assertAllEqual(6., self.evaluate(beta_1_power)) # Check that the first graph is unmolested with first_graph.as_default(), first_session.as_default(): self.assertAllEqual([1.], self.evaluate(first_variable)) self.assertAllEqual([2.], self.evaluate(optimizer.get_slot( var=first_variable, name="m"))) beta_1_power, _ = optimizer._get_beta_accumulators() self.assertAllEqual(3., self.evaluate(beta_1_power)) class TemplateTests(test.TestCase): @test_util.run_in_graph_and_eager_modes def test_trackable_save_restore(self): def _templated(): v = variable_scope.get_variable( "v", shape=[1], initializer=init_ops.zeros_initializer(), use_resource=True) v2 = variable_scope.get_variable( "v2", shape=[1], initializer=init_ops.zeros_initializer(), use_resource=True) return v, v + 1., v2 save_template = template.make_template("s1", _templated) v1_save, _, v2_save = save_template() optimizer = adam.AdamOptimizer(0.0) save_root = util.Checkpoint( my_template=save_template, optimizer=optimizer) optimizer.minimize(v1_save.read_value) self.evaluate([v.initializer for v in optimizer.variables()]) self.evaluate(v1_save.assign([12.])) self.evaluate(v2_save.assign([14.])) checkpoint_directory = self.get_temp_dir() checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt") save_path = save_root.save(checkpoint_prefix) load_template = template.make_template("s2", _templated) load_optimizer = adam.AdamOptimizer(0.0) load_root = util.Checkpoint( my_template=load_template, optimizer=load_optimizer) status = load_root.restore(save_path) var, var_plus_one, var2 = load_template() load_optimizer.minimize(var.read_value) self.assertEqual(2, len(load_template._checkpoint_dependencies)) self.assertEqual("v", load_template._checkpoint_dependencies[0].name) self.assertEqual("v2", load_template._checkpoint_dependencies[1].name) status.assert_consumed().run_restore_ops() self.assertAllEqual([12.], self.evaluate(var)) self.assertAllEqual([13.], self.evaluate(var_plus_one)) self.assertAllEqual([14.], self.evaluate(var2)) class CheckpointCompatibilityTests(test.TestCase): def _initialized_model(self): input_value = constant_op.constant([[3.]]) model = MyModel() optimizer = adam.AdamOptimizer(0.001) optimizer_step = training_util.get_or_create_global_step() root_trackable = util.Checkpoint( optimizer=optimizer, model=model, optimizer_step=optimizer_step) train_op = optimizer.minimize( functools.partial(model, input_value), global_step=optimizer_step) self.evaluate(util.gather_initializers( root_trackable)) self.evaluate(train_op) # A regular variable, a slot variable, and a non-slot Optimizer variable # with known values to check when loading. self.evaluate(model._named_dense.bias.assign([1.])) self.evaluate(optimizer.get_slot( var=model._named_dense.bias, name="m").assign([2.])) beta_1_power, _ = optimizer._get_beta_accumulators() self.evaluate(beta_1_power.assign(3.)) return root_trackable def _set_sentinels(self, root_trackable): self.evaluate(root_trackable.model._named_dense.bias.assign([101.])) self.evaluate( root_trackable.optimizer.get_slot( var=root_trackable.model._named_dense.bias, name="m") .assign([102.])) beta_1_power, _ = root_trackable.optimizer._get_beta_accumulators() self.evaluate(beta_1_power.assign(103.)) def _check_sentinels(self, root_trackable): self.assertAllEqual( [1.], self.evaluate(root_trackable.model._named_dense.bias)) self.assertAllEqual([2.], self.evaluate( root_trackable.optimizer.get_slot( var=root_trackable.model._named_dense.bias, name="m"))) beta_1_power, _ = root_trackable.optimizer._get_beta_accumulators() self.assertAllEqual(3., self.evaluate(beta_1_power)) def _write_name_based_checkpoint(self): checkpoint_directory = self.get_temp_dir() checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt") with context.graph_mode(): save_graph = ops.Graph() with save_graph.as_default(), self.test_session( graph=save_graph) as session: root = self._initialized_model() name_saver = core_saver.Saver() return name_saver.save( sess=session, save_path=checkpoint_prefix, global_step=root.optimizer_step) @test_util.run_in_graph_and_eager_modes def testLoadFromNameBasedSaver(self): """Save a name-based checkpoint, load it using the object-based API.""" with test_util.device(use_gpu=True): save_path = self._write_name_based_checkpoint() root = self._initialized_model() self._set_sentinels(root) with self.assertRaises(AssertionError): self._check_sentinels(root) object_saver = util.TrackableSaver(graph_view.ObjectGraphView(root)) self._set_sentinels(root) status = object_saver.restore(save_path) if context.executing_eagerly(): self._check_sentinels(root) if context.executing_eagerly(): status.assert_consumed() else: # When graph building, we haven't read any keys, so we don't know # whether the restore will be complete. with self.assertRaisesRegexp(AssertionError, "not restored"): status.assert_consumed() status.run_restore_ops() self._check_sentinels(root) self._set_sentinels(root) status = object_saver.restore(save_path) status.initialize_or_restore() self._check_sentinels(root) # TODO(allenl): Test for the core name-based saver loading object-based # checkpoints once object-based checkpointing is in core. def testSaveGraphLoadEager(self): checkpoint_directory = self.get_temp_dir() checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt") with context.graph_mode(): save_graph = ops.Graph() with save_graph.as_default(), self.test_session( graph=save_graph): root = self._initialized_model() save_path = root.save(file_prefix=checkpoint_prefix) with context.eager_mode(): root = self._initialized_model() self._set_sentinels(root) root.restore(save_path).assert_consumed() self._check_sentinels(root) def testSaveEagerLoadGraph(self): checkpoint_directory = self.get_temp_dir() checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt") with context.eager_mode(): root = self._initialized_model() save_path = root.save(file_prefix=checkpoint_prefix) with context.graph_mode(): save_graph = ops.Graph() with save_graph.as_default(), self.test_session(graph=save_graph): root = self._initialized_model() self._set_sentinels(root) root.restore(save_path).assert_consumed().run_restore_ops() self._check_sentinels(root) if __name__ == "__main__": test.main()
tensorflow-master
tensorflow/contrib/optimizer_v2/checkpointable_utils_test.py
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Adam optimizer for TensorFlow.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.optimizer_v2 import optimizer_v2 from tensorflow.python.framework import ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import resource_variable_ops from tensorflow.python.ops import state_ops from tensorflow.python.training import training_ops class AdamOptimizer(optimizer_v2.OptimizerV2): """Optimizer that implements the Adam algorithm. See [Kingma et al., 2014](http://arxiv.org/abs/1412.6980) ([pdf](http://arxiv.org/pdf/1412.6980.pdf)). """ def __init__(self, learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-8, use_locking=False, name="Adam"): r"""Construct a new Adam optimizer. Initialization: $$m_0 := 0 \text{(Initialize initial 1st moment vector)}$$ $$v_0 := 0 \text{(Initialize initial 2nd moment vector)}$$ $$t := 0 \text{(Initialize timestep)}$$ The update rule for `variable` with gradient `g` uses an optimization described at the end of section2 of the paper: $$t := t + 1$$ $$lr_t := \text{learning\_rate} * \sqrt{1 - beta_2^t} / (1 - beta_1^t)$$ $$m_t := beta_1 * m_{t-1} + (1 - beta_1) * g$$ $$v_t := beta_2 * v_{t-1} + (1 - beta_2) * g * g$$ $$variable := variable - lr_t * m_t / (\sqrt{v_t} + \epsilon)$$ The default value of 1e-8 for epsilon might not be a good default in general. For example, when training an Inception network on ImageNet a current good choice is 1.0 or 0.1. Note that since AdamOptimizer uses the formulation just before Section 2.1 of the Kingma and Ba paper rather than the formulation in Algorithm 1, the "epsilon" referred to here is "epsilon hat" in the paper. The sparse implementation of this algorithm (used when the gradient is an IndexedSlices object, typically because of `tf.gather` or an embedding lookup in the forward pass) does apply momentum to variable slices even if they were not used in the forward pass (meaning they have a gradient equal to zero). Momentum decay (beta1) is also applied to the entire momentum accumulator. This means that the sparse behavior is equivalent to the dense behavior (in contrast to some momentum implementations which ignore momentum unless a variable slice was actually used). Some of the args below are hyperparameters where a hyperparameter is defined as a scalar Tensor, a regular Python value or a callable (which will be evaluated when `apply_gradients` is called) returning a scalar Tensor or a Python value. Args: learning_rate: A float hyperparameter. The learning rate. beta1: A float hyperparameter. The exponential decay rate for the 1st moment estimates. beta2: A float hyperparameter. The exponential decay rate for the 2nd moment estimates. epsilon: A float hyperparameter. This epsilon is "epsilon hat" in the Kingma and Ba paper (in the formula just before Section 2.1), not the epsilon in Algorithm 1 of the paper. use_locking: If True use locks for update operations. name: Optional name for the operations created when applying gradients. Defaults to "Adam". """ super(AdamOptimizer, self).__init__(use_locking, name) self._set_hyper("learning_rate", learning_rate) self._set_hyper("beta1", beta1) self._set_hyper("beta2", beta2) self._set_hyper("epsilon", epsilon) def _get_beta_accumulators(self, state=None): if state is None: state = self._get_per_graph_state() return (state.get_non_slot("beta1_power"), state.get_non_slot("beta2_power")) def _create_vars(self, var_list, state): # Non-slot variables end up on the same device(s). state.create_non_slot( initial_value=lambda: state.get_hyper("beta1"), name="beta1_power") state.create_non_slot( initial_value=lambda: state.get_hyper("beta2"), name="beta2_power") # Create slots for the first and second moments. for v in var_list: state.zeros_slot(v, "m") state.zeros_slot(v, "v") def _apply_dense(self, grad, var, state): m = state.get_slot(var, "m") v = state.get_slot(var, "v") beta1_power, beta2_power = self._get_beta_accumulators(state) return training_ops.apply_adam( var, m, v, math_ops.cast(beta1_power, var.dtype.base_dtype), math_ops.cast(beta2_power, var.dtype.base_dtype), state.get_hyper("learning_rate", var.dtype.base_dtype), state.get_hyper("beta1", var.dtype.base_dtype), state.get_hyper("beta2", var.dtype.base_dtype), state.get_hyper("epsilon", var.dtype.base_dtype), grad, use_locking=self._use_locking).op def _resource_apply_dense(self, grad, var, state): m = state.get_slot(var, "m") v = state.get_slot(var, "v") beta1_power, beta2_power = self._get_beta_accumulators(state) return training_ops.resource_apply_adam( var.handle, m.handle, v.handle, math_ops.cast(beta1_power, grad.dtype.base_dtype), math_ops.cast(beta2_power, grad.dtype.base_dtype), state.get_hyper("learning_rate", grad.dtype.base_dtype), state.get_hyper("beta1", grad.dtype.base_dtype), state.get_hyper("beta2", grad.dtype.base_dtype), state.get_hyper("epsilon", grad.dtype.base_dtype), grad, use_locking=self._use_locking) def _apply_sparse_shared(self, grad, var, indices, scatter_add, state): beta1_power, beta2_power = self._get_beta_accumulators(state) beta1_power = math_ops.cast(beta1_power, var.dtype.base_dtype) beta2_power = math_ops.cast(beta2_power, var.dtype.base_dtype) lr_t = state.get_hyper("learning_rate", var.dtype.base_dtype) beta1_t = state.get_hyper("beta1", var.dtype.base_dtype) beta2_t = state.get_hyper("beta2", var.dtype.base_dtype) epsilon_t = state.get_hyper("epsilon", var.dtype.base_dtype) lr = (lr_t * math_ops.sqrt(1 - beta2_power) / (1 - beta1_power)) # m_t = beta1 * m + (1 - beta1) * g_t m = state.get_slot(var, "m") m_scaled_g_values = grad * (1 - beta1_t) m_t = state_ops.assign(m, m * beta1_t, use_locking=self._use_locking) with ops.control_dependencies([m_t]): m_t = scatter_add(m, indices, m_scaled_g_values) # v_t = beta2 * v + (1 - beta2) * (g_t * g_t) v = state.get_slot(var, "v") v_scaled_g_values = (grad * grad) * (1 - beta2_t) v_t = state_ops.assign(v, v * beta2_t, use_locking=self._use_locking) with ops.control_dependencies([v_t]): v_t = scatter_add(v, indices, v_scaled_g_values) v_sqrt = math_ops.sqrt(v_t) var_update = state_ops.assign_sub( var, lr * m_t / (v_sqrt + epsilon_t), use_locking=self._use_locking) return control_flow_ops.group(*[var_update, m_t, v_t]) def _apply_sparse(self, grad, var, state): return self._apply_sparse_shared( grad.values, var, grad.indices, lambda x, i, v: state_ops.scatter_add( # pylint: disable=g-long-lambda x, i, v, use_locking=self._use_locking), state) def _resource_scatter_add(self, x, i, v): with ops.control_dependencies( [resource_variable_ops.resource_scatter_add(x.handle, i, v)]): return x.value() def _resource_apply_sparse(self, grad, var, indices, state): return self._apply_sparse_shared(grad, var, indices, self._resource_scatter_add, state) def _finish(self, state): # Update the power accumulators. beta1_power, beta2_power = self._get_beta_accumulators(state) update_beta1 = beta1_power.assign( beta1_power * state.get_hyper("beta1"), use_locking=self._use_locking) update_beta2 = beta2_power.assign( beta2_power * state.get_hyper("beta2"), use_locking=self._use_locking) return control_flow_ops.group(update_beta1, update_beta2)
tensorflow-master
tensorflow/contrib/optimizer_v2/adam.py
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Version 2 of class Optimizer.""" # pylint: disable=g-bad-name from __future__ import absolute_import from __future__ import division from __future__ import print_function import abc import six from tensorflow.python.distribute import distribution_strategy_context as distribute_ctx from tensorflow.python.distribute import reduce_util as ds_reduce_util from tensorflow.python.eager import backprop from tensorflow.python.eager import context from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import gradients from tensorflow.python.ops import math_ops from tensorflow.python.ops import resource_variable_ops from tensorflow.python.ops import variable_scope from tensorflow.python.ops import variables from tensorflow.python.training import optimizer as optimizer_v1 from tensorflow.python.training import slot_creator from tensorflow.python.training.tracking import base as trackable from tensorflow.python.util import nest @six.add_metaclass(abc.ABCMeta) class _OptimizableVariable(object): """Interface for abstracting over variables in the optimizers.""" @abc.abstractmethod def target(self): """Returns the optimization target for this variable.""" raise NotImplementedError("Calling an abstract method.") @abc.abstractmethod def update_op(self, optimizer, g, *args): """Returns the update ops for updating the variable.""" raise NotImplementedError("Calling an abstract method.") class _RefVariableProcessor(_OptimizableVariable): """Processor for Variable.""" def __init__(self, v): self._v = v def target(self): return self._v._ref() # pylint: disable=protected-access def update_op(self, optimizer, g, *args): if isinstance(g, ops.Tensor): update_op = optimizer._apply_dense(g, self._v, *args) # pylint: disable=protected-access if self._v.constraint is not None: with ops.control_dependencies([update_op]): return self._v.assign(self._v.constraint(self._v)) else: return update_op else: assert isinstance(g, ops.IndexedSlices), ("Gradient ", g, " is neither a " "tensor nor IndexedSlices.") if self._v.constraint is not None: raise RuntimeError( "Cannot use a constraint function on a sparse variable.") # pylint: disable=protected-access return optimizer._apply_sparse_duplicate_indices(g, self._v, *args) class _DenseReadResourceVariableProcessor(_OptimizableVariable): """Processor for dense ResourceVariables.""" def __init__(self, v): self._v = v def target(self): return self._v def update_op(self, optimizer, g, *args): # pylint: disable=protected-access update_op = optimizer._resource_apply_dense(g, self._v.op.inputs[0], *args) if self._v.constraint is not None: with ops.control_dependencies([update_op]): return self._v.assign(self._v.constraint(self._v)) else: return update_op class _DenseResourceVariableProcessor(_OptimizableVariable): """Processor for dense ResourceVariables.""" def __init__(self, v): self._v = v def target(self): return self._v def update_op(self, optimizer, g, *args): # pylint: disable=protected-access if isinstance(g, ops.IndexedSlices): if self._v.constraint is not None: raise RuntimeError( "Cannot use a constraint function on a sparse variable.") return optimizer._resource_apply_sparse_duplicate_indices( g.values, self._v, g.indices, *args) update_op = optimizer._resource_apply_dense(g, self._v, *args) if self._v.constraint is not None: with ops.control_dependencies([update_op]): return self._v.assign(self._v.constraint(self._v)) else: return update_op class _TensorProcessor(_OptimizableVariable): """Processor for ordinary Tensors. Even though a Tensor can't really be updated, sometimes it is useful to compute the gradients with respect to a Tensor using the optimizer. Updating the Tensor is, of course, unsupported. """ def __init__(self, v): self._v = v def target(self): return self._v def update_op(self, optimizer, g, *args): raise NotImplementedError("Trying to update a Tensor ", self._v) def _get_processor(v): """The processor of v.""" if context.executing_eagerly(): if isinstance(v, ops.Tensor): return _TensorProcessor(v) else: return _DenseResourceVariableProcessor(v) if v.op.type == "VarHandleOp": return _DenseResourceVariableProcessor(v) if isinstance(v, variables.Variable): return _RefVariableProcessor(v) if isinstance(v, ops.Tensor): return _TensorProcessor(v) raise NotImplementedError("Trying to optimize unsupported type ", v) def _var_key_v2(var): """Key for representing a primary variable, for looking up slots.""" # pylint: disable=protected-access if hasattr(var, "_distributed_container"): distributed_container = var._distributed_container() assert distributed_container is not None if context.executing_eagerly(): return distributed_container._unique_id return distributed_container._shared_name if context.executing_eagerly(): return var._unique_id return var.op.name def _resolve(value, name): if callable(value): value = value() return ops.convert_to_tensor(value, name=name) def _is_dynamic(value): """Returns true if __init__ arg `value` should be re-evaluated each step.""" if callable(value): return True # Don't need to do anything special in graph mode, since dynamic values # will propagate correctly automatically. # TODO(josh11b): Add per-replica caching across steps using variables for # truly static values once we add distributed support. if context.executing_eagerly() and isinstance( value, resource_variable_ops.ResourceVariable): return True return False class _OptimizerV2State(object): """Holds per-graph and per-step optimizer state. Use _init_with_static_hyper() to create the state for a graph, and then _copy_with_dynamic_hyper() to convert that to state for a particular step. The difference between the two is that the former only has hyper parameter values that are static and the latter also has values that can change every step (according to _is_dynamic()). """ def __init__(self, op_name): self._op_name = op_name def _init_with_static_hyper(self, hyper): """Initialize a fresh state object from hyper dict.""" # self._hyper contains a dict from name to a dict with the Tensor values. # This dict starts with a single item with key "None" with the hyper # parameter value converted to a Tensor. Other items have dtype keys # with that Tensor cast to that dtype. with ops.init_scope(): self._hyper = { name: { None: ops.convert_to_tensor(value, name=name) } for name, (dynamic, value) in sorted(hyper.items()) if not dynamic } self._slots = {} self._non_slot_dict = {} # Extra state to help Optimizers implement Trackable. Holds information # about variables which will be restored as soon as they're created. self._deferred_dependencies = {} # Non-slot variables self._deferred_slot_restorations = {} # Slot variables def _copy_with_dynamic_hyper(self, hyper, distribution, non_slot_devices): """Create a new state object for a particular step.""" ret = _OptimizerV2State(self._op_name) # pylint: disable=protected-access ret._slots = self._slots ret._non_slot_dict = self._non_slot_dict ret._deferred_dependencies = self._deferred_dependencies ret._deferred_slot_restorations = self._deferred_slot_restorations ret._hyper = { name: { None: _resolve(value, name) } for name, (dynamic, value) in sorted(hyper.items()) if dynamic } ret._hyper.update(self._hyper) ret._non_slot_devices = non_slot_devices ret._distribution = distribution return ret def _variables(self): """Returns a list of all variables held by self.""" optimizer_variables = list(self._non_slot_dict.values()) for variable_dict in self._slots.values(): for slot_for_variable in variable_dict.values(): optimizer_variables.append(slot_for_variable) # Sort variables by name so that the return is deterministic. return sorted(optimizer_variables, key=lambda v: v.name) def _slot_dict(self, slot_name): """Returns a dict for caching slots created under the given name. Args: slot_name: Name for the slot. Returns: A dict that maps primary `Variable` objects to the slot created for that variable, under the given slot name. """ named_slots = self._slots.get(slot_name, None) if named_slots is None: named_slots = {} self._slots[slot_name] = named_slots return named_slots def create_slot(self, var, val, slot_name, optional_op_name=None): """Find or create a slot for a variable. Args: var: A `Variable` object. val: A `Tensor`. The initial value of the slot. slot_name: Name for the slot. optional_op_name: Name to use when scoping the Variable that needs to be created for the slot. Returns: A `Variable` object. """ named_slots = self._slot_dict(slot_name) var_key = _var_key_v2(var) if var_key not in named_slots: new_slot_variable = slot_creator.create_slot( var, val, optional_op_name or self._op_name) self._restore_slot_variable( slot_name=slot_name, variable=var, slot_variable=new_slot_variable) named_slots[var_key] = new_slot_variable return named_slots[var_key] def create_slot_with_initializer(self, var, initializer, shape, dtype, slot_name, optional_op_name=None): """Find or create a slot for a variable, using an Initializer. Args: var: A `Variable` object. initializer: An `Initializer`. The initial value of the slot. shape: Shape of the initial value of the slot. dtype: Type of the value of the slot. slot_name: Name for the slot. optional_op_name: Name to use when scoping the Variable that needs to be created for the slot. Returns: A `Variable` object. """ named_slots = self._slot_dict(slot_name) var_key = _var_key_v2(var) if var_key not in named_slots: new_slot_variable = slot_creator.create_slot_with_initializer( var, initializer, shape, dtype, optional_op_name or self._op_name) self._restore_slot_variable( slot_name=slot_name, variable=var, slot_variable=new_slot_variable) named_slots[var_key] = new_slot_variable return named_slots[var_key] def zeros_slot(self, var, slot_name, optional_op_name=None): """Find or create a slot initialized with 0.0. Args: var: A `Variable` object. slot_name: Name for the slot. optional_op_name: Name to use when scoping the Variable that needs to be created for the slot. Returns: A `Variable` object. """ named_slots = self._slot_dict(slot_name) var_key = _var_key_v2(var) if var_key not in named_slots: new_slot_variable = slot_creator.create_zeros_slot( var, optional_op_name or self._op_name) self._restore_slot_variable( slot_name=slot_name, variable=var, slot_variable=new_slot_variable) named_slots[var_key] = new_slot_variable return named_slots[var_key] def _create_or_restore_slot_variable(self, slot_variable_position, slot_name, variable, optional_op_name=None): """Restore a slot variable's value, possibly creating it. Called when a variable which has an associated slot variable is created or restored. When executing eagerly, we create the slot variable with a restoring initializer. No new variables are created when graph building. Instead, _restore_slot_variable catches these after normal creation and adds restore ops to the graph. This method is nonetheless important when graph building for the case when a slot variable has already been created but `variable` has just been added to a dependency graph (causing us to realize that the slot variable needs to be restored). Args: slot_variable_position: A `trackable._CheckpointPosition` object indicating the slot variable `Trackable` object to be restored. slot_name: The name of this `Optimizer`'s slot to restore into. variable: The variable object this slot is being created for. optional_op_name: Name to use when scoping the Variable that needs to be created for the slot. """ slot_variable = self.get_slot(var=variable, name=slot_name) if (slot_variable is None and context.executing_eagerly() and slot_variable_position.is_simple_variable() # Defer slot variable creation if there is an active variable creator # scope. Generally we'd like to eagerly create/restore slot variables # when possible, but this may mean that scopes intended to catch # `variable` also catch its eagerly created slot variable # unintentionally (specifically make_template would add a dependency on # a slot variable if not for this case). Deferring is mostly harmless # (aside from double initialization), and makes variable creator scopes # behave the same way they do when graph building. and not ops.get_default_graph()._variable_creator_stack): # pylint: disable=protected-access initializer = trackable.CheckpointInitialValue( checkpoint_position=slot_variable_position) slot_variable = self.create_slot( var=variable, val=initializer, slot_name=slot_name, optional_op_name=optional_op_name) # Optimizers do not have unconditional dependencies on their slot # variables (nor do any other objects). They are only saved if the # variables they were created for are also saved. if slot_variable is not None: # If we've either made this slot variable, or if we've pulled out an # existing slot variable, we should restore it. slot_variable_position.restore(slot_variable) else: # We didn't make the slot variable. Defer restoring until it gets created # normally. We keep a list rather than the one with the highest restore # UID in case slot variables have their own dependencies, in which case # those could differ between restores. variable_key = _var_key_v2(variable) self._deferred_slot_restorations.setdefault(slot_name, {}).setdefault( variable_key, []).append(slot_variable_position) def get_slot(self, var, name): """Return a slot named `name` created for `var` by the Optimizer. Some `Optimizer` subclasses use additional variables. For example `Momentum` and `Adagrad` use variables to accumulate updates. This method gives access to these `Variable` objects if for some reason you need them. Use `get_slot_names()` to get the list of slot names created by the `Optimizer`. Args: var: A variable passed to `minimize()` or `apply_gradients()`. name: A string. Returns: The `Variable` for the slot if it was created, `None` otherwise. """ named_slots = self._slots.get(name, None) if not named_slots: return None return named_slots.get(_var_key_v2(var), None) def get_slot_names(self): """Return a list of the names of slots created by the `Optimizer`. See `get_slot()`. Returns: A list of strings. """ return sorted(self._slots.keys()) def create_non_slot(self, initial_value, name, colocate_with=None): """Add an extra variable, not associated with a slot.""" v = self._non_slot_dict.get(name, None) if v is None: if colocate_with is None: colocate_with = self._non_slot_devices with self._distribution.extended.colocate_vars_with(colocate_with): # TODO(josh11b): Use get_variable() except for the legacy Adam use case. v = variable_scope.variable(initial_value, name=name, trainable=False) self._non_slot_dict[name] = v deferred_dependencies_list = self._deferred_dependencies.pop(name, ()) for checkpoint_position in sorted( deferred_dependencies_list, key=lambda restore: restore.checkpoint.restore_uid, reverse=True): checkpoint_position.restore(v) return v def _restore_slot_variable(self, slot_name, variable, slot_variable): """Restore a newly created slot variable's value.""" variable_key = _var_key_v2(variable) deferred_restorations = self._deferred_slot_restorations.get( slot_name, {}).pop(variable_key, []) # Iterate over restores, highest restore UID first to minimize the number # of assignments. deferred_restorations.sort( key=lambda position: position.restore_uid, reverse=True) for checkpoint_position in deferred_restorations: checkpoint_position.restore(slot_variable) def get_non_slot(self, name): """Returns the non-slot variable identified by `name`.""" return self._non_slot_dict.get(name, None) def get_hyper(self, name, dtype=None): """Returns the `name` hyper parameter, optionally cast to `dtype`.""" dtype_dict = self._hyper[name] # Do we have the value cast to dtype already cached? This should always # succeed when dtype is None. if dtype in dtype_dict: return dtype_dict[dtype] # Not cached, cast to dtype and save the result in the cache. result = math_ops.cast(dtype_dict[None], dtype) dtype_dict[dtype] = result return result class OptimizerV2(optimizer_v1.Optimizer): """Updated base class for optimizers. This class defines the API to add Ops to train a model. You never use this class directly, but instead instantiate one of its subclasses such as `GradientDescentOptimizer`, `AdagradOptimizer`, or `MomentumOptimizer`. ### Usage ```python # Create an optimizer with the desired parameters. opt = GradientDescentOptimizer(learning_rate=0.1) # Add Ops to the graph to minimize a cost by updating a list of variables. # "cost" is a Tensor, and the list of variables contains tf.Variable # objects. opt_op = opt.minimize(cost, var_list=<list of variables>) ``` In the training program you will just have to run the returned Op. ```python # Execute opt_op to do one step of training: opt_op.run() ``` ### Processing gradients before applying them. Calling `minimize()` takes care of both computing the gradients and applying them to the variables. If you want to process the gradients before applying them you can instead use the optimizer in three steps: 1. Compute the gradients with `compute_gradients()`. 2. Process the gradients as you wish. 3. Apply the processed gradients with `apply_gradients()`. Example: ```python # Create an optimizer. opt = GradientDescentOptimizer(learning_rate=0.1) # Compute the gradients for a list of variables. grads_and_vars = opt.compute_gradients(loss, <list of variables>) # grads_and_vars is a list of tuples (gradient, variable). Do whatever you # need to the 'gradient' part, for example cap them, etc. capped_grads_and_vars = [(MyCapper(gv[0]), gv[1]) for gv in grads_and_vars] # Ask the optimizer to apply the capped gradients. opt.apply_gradients(capped_grads_and_vars) ``` ### Gating Gradients Both `minimize()` and `compute_gradients()` accept a `gate_gradients` argument that controls the degree of parallelism during the application of the gradients. The possible values are: `GATE_NONE`, `GATE_OP`, and `GATE_GRAPH`. <b>`GATE_NONE`</b>: Compute and apply gradients in parallel. This provides the maximum parallelism in execution, at the cost of some non-reproducibility in the results. For example the two gradients of `matmul` depend on the input values: With `GATE_NONE` one of the gradients could be applied to one of the inputs _before_ the other gradient is computed resulting in non-reproducible results. <b>`GATE_OP`</b>: For each Op, make sure all gradients are computed before they are used. This prevents race conditions for Ops that generate gradients for multiple inputs where the gradients depend on the inputs. <b>`GATE_GRAPH`</b>: Make sure all gradients for all variables are computed before any one of them is used. This provides the least parallelism but can be useful if you want to process all gradients before applying any of them. ### Slots Some optimizer subclasses, such as `MomentumOptimizer` and `AdagradOptimizer` allocate and manage additional variables associated with the variables to train. These are called <i>Slots</i>. Slots have names and you can ask the optimizer for the names of the slots that it uses. Once you have a slot name you can ask the optimizer for the variable it created to hold the slot value. This can be useful if you want to log debug a training algorithm, report stats about the slots, etc. ### Non-slot variables Some optimizer subclasses, such as `AdamOptimizer` have variables that are not associated with the variables to train, just the step itself. ### Hyper parameters These are arguments passed to the optimizer subclass constructor (the `__init__` method), and then passed to `self._set_hyper()`. They can be either regular Python values (like 1.0), tensors, or callables. If they are callable, the callable will be called during `apply_gradients()` to get the value for the hyper parameter. ### State Internal methods are passed a `state` argument with the correct values to use for the slot and non-slot variables, and the hyper parameters. """ # Values for gate_gradients. GATE_NONE = 0 GATE_OP = 1 GATE_GRAPH = 2 def __init__(self, use_locking, name): """Create a new Optimizer. This must be called by the constructors of subclasses. Note that Optimizer instances should not bind to a single graph, and so shouldn't keep Tensors as member variables. Generally you should be able to use the _set_hyper()/state.get_hyper() facility instead. Args: use_locking: Bool. If True apply use locks to prevent concurrent updates to variables. name: A non-empty string. The name to use for accumulators created for the optimizer. Raises: ValueError: If name is malformed. RuntimeError: If _create_slots has been overridden instead of _create_vars. """ # Note: We intentionally don't call parent __init__. # Optimizer._create_slots was replaced by _create_vars in OptimizerV2. if (self.__class__._create_slots.__code__ is not # pylint: disable=protected-access OptimizerV2._create_slots.__code__): raise RuntimeError( "Override _create_vars instead of _create_slots when " "descending from OptimizerV2 (class %s)" % self.__class__.__name__) if not name: raise ValueError("Must specify the optimizer name") self._use_locking = use_locking self._name = name # Map from graph_key to state for that graph. We use the graph_key # since it works in both eager and graph mode, and gives the outer # graph inside functions. replica_context = distribute_ctx.get_replica_context() if replica_context is None: # In a cross-replica context for a DistributionStrategy, which means # only one Optimizer will be created, not one per replica. self._per_graph_state = {} else: # We use get_replica_context().merge_call() to get a single dict # shared across all model replicas when running with a # DistributionStrategy. self._per_graph_state = replica_context.merge_call(lambda _: {}) # Hyper parameters, and whether they should be re-evaluated every step. self._hyper = {} def _set_hyper(self, name, value): self._hyper[name] = (_is_dynamic(value), value) def minimize(self, loss, global_step=None, var_list=None, gate_gradients=GATE_OP, aggregation_method=None, name=None, grad_loss=None, stop_gradients=None, scale_loss_by_num_replicas=False): """Add operations to minimize `loss` by updating `var_list`. This method simply combines calls `compute_gradients()` and `apply_gradients()`. If you want to process the gradient before applying them call `compute_gradients()` and `apply_gradients()` explicitly instead of using this function. Args: loss: A `Tensor` containing the value to minimize. global_step: Optional `Variable` to increment by one after the variables have been updated. var_list: Optional list or tuple of `Variable` objects to update to minimize `loss`. Defaults to the list of variables collected in the graph under the key `GraphKeys.TRAINABLE_VARIABLES`. gate_gradients: How to gate the computation of gradients. Can be `GATE_NONE`, `GATE_OP`, or `GATE_GRAPH`. aggregation_method: Specifies the method used to combine gradient terms. Valid values are defined in the class `AggregationMethod`. name: Optional name for the returned operation. grad_loss: Optional. A `Tensor` holding the gradient computed for `loss`. stop_gradients: Optional. A Tensor or list of tensors not to differentiate through. scale_loss_by_num_replicas: Optional boolean. If true, scale the loss down by the number of replicas. DEPRECATED and generally no longer needed. Returns: An Operation that updates the variables in `var_list`. If `global_step` was not `None`, that operation also increments `global_step`. Raises: ValueError: If some of the variables are not `Variable` objects. @compatibility(eager) When eager execution is enabled, `loss` should be a Python function that takes elements of `var_list` as arguments and computes the value to be minimized. If `var_list` is None, `loss` should take no arguments. Minimization (and gradient computation) is done with respect to the elements of `var_list` if not None, else with respect to any trainable variables created during the execution of the `loss` function. `gate_gradients`, `aggregation_method`, and `grad_loss` are ignored when eager execution is enabled. @end_compatibility """ grads_and_vars = self.compute_gradients( loss, var_list=var_list, gate_gradients=gate_gradients, aggregation_method=aggregation_method, grad_loss=grad_loss, stop_gradients=stop_gradients, scale_loss_by_num_replicas=scale_loss_by_num_replicas) vars_with_grad = [v for g, v in grads_and_vars if g is not None] if not vars_with_grad: raise ValueError( "No gradients provided for any variable, check your graph for ops" " that do not support gradients, between variables %s and loss %s." % ([str(v) for _, v in grads_and_vars], loss)) return self.apply_gradients( grads_and_vars, global_step=global_step, name=name) def compute_gradients(self, loss, var_list=None, gate_gradients=GATE_OP, aggregation_method=None, grad_loss=None, stop_gradients=None, scale_loss_by_num_replicas=False): """Compute gradients of `loss` for the variables in `var_list`. This is the first part of `minimize()`. It returns a list of (gradient, variable) pairs where "gradient" is the gradient for "variable". Note that "gradient" can be a `Tensor`, an `IndexedSlices`, or `None` if there is no gradient for the given variable. Args: loss: A Tensor containing the value to minimize or a callable taking no arguments which returns the value to minimize. When eager execution is enabled it must be a callable. var_list: Optional list or tuple of `tf.Variable` to update to minimize `loss`. Defaults to the list of variables collected in the graph under the key `GraphKeys.TRAINABLE_VARIABLES`. gate_gradients: How to gate the computation of gradients. Can be `GATE_NONE`, `GATE_OP`, or `GATE_GRAPH`. aggregation_method: Specifies the method used to combine gradient terms. Valid values are defined in the class `AggregationMethod`. grad_loss: Optional. A `Tensor` holding the gradient computed for `loss`. stop_gradients: Optional. A Tensor or list of tensors not to differentiate through. scale_loss_by_num_replicas: Optional boolean. If true, scale the loss down by the number of replicas. DEPRECATED and generally no longer needed. Returns: A list of (gradient, variable) pairs. Variable is always present, but gradient can be `None`. Raises: TypeError: If `var_list` contains anything else than `Variable` objects. ValueError: If some arguments are invalid. RuntimeError: If called with eager execution enabled and `loss` is not callable. @compatibility(eager) When eager execution is enabled, `gate_gradients`, and `aggregation_method` are ignored. @end_compatibility """ # TODO(josh11b): Test that we handle weight decay in a reasonable way. if callable(loss): with backprop.GradientTape() as tape: if var_list is not None: tape.watch(var_list) loss_value = loss() # Scale loss for number of replicas (callable-loss case). loss_value = self._scale_loss(loss_value, scale_loss_by_num_replicas) if var_list is None: var_list = tape.watched_variables() grads = tape.gradient(loss_value, var_list, grad_loss) return list(zip(grads, var_list)) if context.executing_eagerly(): raise RuntimeError("`loss` passed to Optimizer.compute_gradients should " "be a function when eager execution is enabled.") # Scale loss for number of replicas (non-callable-loss case). loss = self._scale_loss(loss, scale_loss_by_num_replicas) if gate_gradients not in [ optimizer_v1.Optimizer.GATE_NONE, optimizer_v1.Optimizer.GATE_OP, optimizer_v1.Optimizer.GATE_GRAPH ]: raise ValueError( "gate_gradients must be one of: Optimizer.GATE_NONE, " "Optimizer.GATE_OP, Optimizer.GATE_GRAPH. Not %s" % gate_gradients) self._assert_valid_dtypes([loss]) if grad_loss is not None: self._assert_valid_dtypes([grad_loss]) if var_list is None: var_list = ( variables.trainable_variables() + ops.get_collection( ops.GraphKeys.TRAINABLE_RESOURCE_VARIABLES)) else: var_list = nest.flatten(var_list) # pylint: disable=protected-access var_list += ops.get_collection(ops.GraphKeys._STREAMING_MODEL_PORTS) # pylint: enable=protected-access processors = [_get_processor(v) for v in var_list] if not var_list: raise ValueError("No variables to optimize.") var_refs = [p.target() for p in processors] grads = gradients.gradients( loss, var_refs, grad_ys=grad_loss, gate_gradients=(gate_gradients == optimizer_v1.Optimizer.GATE_OP), aggregation_method=aggregation_method, stop_gradients=stop_gradients) if gate_gradients == optimizer_v1.Optimizer.GATE_GRAPH: grads = control_flow_ops.tuple(grads) grads_and_vars = list(zip(grads, var_list)) self._assert_valid_dtypes([ v for g, v in grads_and_vars if g is not None and v.dtype != dtypes.resource ]) return grads_and_vars @staticmethod def _scale_loss(loss_value, scale_loss_by_num_replicas): """Scale loss for the number of replicas.""" if scale_loss_by_num_replicas: num_replicas = distribute_ctx.get_strategy().num_replicas_in_sync if num_replicas > 1: loss_value *= 1. / num_replicas return loss_value def apply_gradients(self, grads_and_vars, global_step=None, name=None): """Apply gradients to variables. This is the second part of `minimize()`. It returns an `Operation` that applies gradients. Args: grads_and_vars: List of (gradient, variable) pairs as returned by `compute_gradients()`. global_step: Optional `Variable` to increment by one after the variables have been updated. name: Optional name for the returned operation. Default to the name passed to the `Optimizer` constructor. Returns: An `Operation` that applies the specified gradients. If `global_step` was not None, that operation also increments `global_step`. Raises: TypeError: If `grads_and_vars` is malformed. ValueError: If none of the variables have gradients. """ # This is a default implementation of apply_gradients() that can be shared # by most optimizers. It relies on the subclass implementing the following # methods: _create_vars(), _prepare(), _apply_dense(), and _apply_sparse(). # Filter out variables with gradients of `None`. grads_and_vars = tuple(grads_and_vars) # Make sure repeat iteration works. if not grads_and_vars: raise ValueError("No variables provided.") filtered = tuple((g, v) for (g, v) in grads_and_vars if g is not None) if not filtered: raise ValueError("No gradients provided for any variable: %s." % ([str(v) for _, v in grads_and_vars],)) return distribute_ctx.get_replica_context().merge_call( self._distributed_apply, args=(filtered,), kwargs={"global_step": global_step, "name": name}) def _get_or_create_state(self, var_list=None): """Either looks up or creates `_OptimizerV2State`. If any variables are available, they should be passed via the `var_list` argument, and these will be used to determine the graph to create/retrieve state for. Otherwise the returned state is for the current default graph. Args: var_list: A list of variables to extract a graph from. Returns: An `_OptimizerV2State` object. """ # Determine the graph_key from the current graph. eager_execution = context.executing_eagerly() if eager_execution or var_list is None: graph = ops.get_default_graph() else: graph = ops._get_graph_from_inputs(var_list) # pylint: disable=protected-access assert graph is not None graph_key = graph._graph_key # pylint: disable=protected-access # Get the per graph state by looking up the graph_key. if graph_key in self._per_graph_state: per_graph_state = self._per_graph_state[graph_key] else: per_graph_state = _OptimizerV2State(self._name) per_graph_state._init_with_static_hyper(self._hyper) # pylint: disable=protected-access self._per_graph_state[graph_key] = per_graph_state return per_graph_state def _distributed_apply(self, distribution, grads_and_vars, global_step, name): """`apply_gradients` for use with a `DistributionStrategy`.""" reduced_grads = distribution.extended.batch_reduce_to( ds_reduce_util.ReduceOp.SUM, grads_and_vars) var_list = [v for _, v in grads_and_vars] grads_and_vars = zip(reduced_grads, var_list) unwrapped_var_list = [ x for v in var_list for x in distribution.experimental_local_results(v)] eager_execution = context.executing_eagerly() if eager_execution: # Give a clear error in this case instead of "name not supported # for Eager Tensors" when we compute non_slot_devices. for v in unwrapped_var_list: if isinstance(v, ops.Tensor): raise NotImplementedError("Trying to update a Tensor ", v) with ops.name_scope(name, self._name) as name: per_graph_state = self._get_or_create_state(var_list=unwrapped_var_list) # Include the current value of any dynamic hyper parameters in `state`. non_slot_devices = distribution.extended.non_slot_devices(var_list) state = per_graph_state._copy_with_dynamic_hyper( # pylint: disable=protected-access self._hyper, distribution, non_slot_devices) # Create any slot and non-slot variables we need in `state`. with ops.init_scope(): self._create_vars(var_list, state) with ops.name_scope(name): # Re-enter name_scope created above # Give the child class a chance to do something before we start # applying gradients. self._prepare(state) def update(v, g): """Update variable `v` using gradient `g`.""" assert v is not None # Convert the grad to Tensor or IndexedSlices if necessary, and # look up a processor for each variable's type. try: g = ops.convert_to_tensor_or_indexed_slices(g) except TypeError: raise TypeError("Gradient must be convertible to a Tensor" " or IndexedSlices, or None: %s" % g) if not isinstance(g, (ops.Tensor, ops.IndexedSlices)): raise TypeError( "Gradient must be a Tensor, IndexedSlices, or None: %s" % g) processor = _get_processor(v) # We colocate all ops created in _apply_dense or _apply_sparse # on the same device as the variable. # TODO(apassos): figure out how to get the variable name here. scope_name = "" if eager_execution else v.op.name # device_policy is set because non-mirrored tensors will be read in # `update_op`. # TODO(josh11b): Make different state objects for each device to # avoid needing to set the device_policy. device_policy = context.device_policy( context.DEVICE_PLACEMENT_SILENT) with ops.name_scope("update_" + scope_name), device_policy: return processor.update_op(self, g, state) # Use the processors to update the variables. update_ops = [] for grad, var in grads_and_vars: update_ops.extend(distribution.extended.update( var, update, args=(grad,), group=False)) # Give the child class a chance to do something after applying # gradients def finish(): # TODO(josh11b): Make different state objects for each device to # avoid needing to set the device_policy. with context.device_policy(context.DEVICE_PLACEMENT_SILENT): return self._finish(state) update_ops = control_flow_ops.group(update_ops) with ops.control_dependencies([update_ops]): finish_updates = distribution.extended.update_non_slot( non_slot_devices, finish, group=False) # We said group=False, which means finish_updates is always a tuple. # It will be (None,) when finish() returns None. if finish_updates == (None,): finish_updates = (update_ops,) # Update `global_step` (if any). if global_step is None: apply_updates = distribution.group(finish_updates, name=name) else: with ops.control_dependencies(finish_updates): def update_global_step(global_step, name): return global_step.assign_add(1, read_value=False, name=name) apply_updates = distribution.extended.update( global_step, update_global_step, args=(name,)) # Add the training op to the TRAIN_OP graph collection in graph mode. if not eager_execution: if isinstance(apply_updates, ops.Tensor): apply_updates = apply_updates.op train_op = ops.get_collection_ref(ops.GraphKeys.TRAIN_OP) if apply_updates not in train_op: train_op.append(apply_updates) return apply_updates def get_slot(self, var, name): """Return a slot named `name` created for `var` by the Optimizer. Some `Optimizer` subclasses use additional variables. For example `Momentum` and `Adagrad` use variables to accumulate updates. This method gives access to these `Variable` objects if for some reason you need them. Use `get_slot_names()` to get the list of slot names created by the `Optimizer`. Args: var: A variable passed to `minimize()` or `apply_gradients()`. name: A string. Returns: The `Variable` for the slot if it was created, `None` otherwise. """ state = self._get_state_for_var(var) return state.get_slot(var, name) if state is not None else None def get_slot_names(self): """Return a list of the names of slots created by the `Optimizer`. See `get_slot()`. Returns: A list of strings. """ state = self._get_per_graph_state() return state.get_slot_names() if state is not None else [] def variables(self): """A list of variables which encode the current state of `Optimizer`. Includes slot variables and additional global variables created by the optimizer in the current default graph. Returns: A list of variables. """ state = self._get_per_graph_state() return state._variables() if state is not None else [] # pylint: disable=protected-access # -------------- # Methods to be implemented by subclasses if they want to use the # inherited implementation of apply_gradients() or compute_gradients(). # -------------- def _create_vars(self, var_list, state): """Create all slots needed by the variables and any non-slot variables. Args: var_list: A list of `Variable` objects. state: An object with these methods: `create_slot(var, val, slot_name, optional_op_name)`, `create_slot_with_initializer(` `var, initializer, shape, dtype, slot_name, optional_op_name)`, `zeros_slot(var, slot_name, optional_op_name)`, `create_non_slot_variable(initial_value, name, colocate_with)`, `get_hyper(name)` """ # No slots needed by default pass def _prepare(self, state): """Code to execute before applying gradients. Note that most uses of _prepare() in Optimizer have been subsumed by explicit support for hyper parameters in OptimizerV2 Args: state: An object with a `get_hyper(name)` method. Returns: Return value will be ignored. """ pass def _apply_dense(self, grad, var, state): """Add ops to apply dense gradients to `var`. Args: grad: A `Tensor`. var: A `Variable` object. state: An object with `get_slot(var, name)`, `get_non_slot(self, name)`, and `get_hyper(name)` methods. Returns: An `Operation`. """ raise NotImplementedError() def _resource_apply_dense(self, grad, handle, state): """Add ops to apply dense gradients to the variable `handle`. Args: grad: a `Tensor` representing the gradient. handle: a `Tensor` of dtype `resource` which points to the variable to be updated. state: An object with `get_slot(var, name)`, `get_non_slot(self, name)`, and `get_hyper(name)` methods. Returns: An `Operation` which updates the value of the variable. """ raise NotImplementedError() def _resource_apply_sparse_duplicate_indices(self, grad, handle, indices, state): """Add ops to apply sparse gradients to `handle`, with repeated indices. Optimizers which override this method must deal with repeated indices. See the docstring of `_apply_sparse_duplicate_indices` for details. By default the correct behavior, to sum non-unique indices and their associated gradients, is enforced by first pre-processing `grad` and `indices` and passing them on to `_resource_apply_sparse`. Optimizers which deal correctly with duplicate indices may instead override this method to avoid the overhead of summing. Args: grad: a `Tensor` representing the gradient for the affected indices. handle: a `Tensor` of dtype `resource` which points to the variable to be updated. indices: a `Tensor` of integral type representing the indices for which the gradient is nonzero. Indices may be repeated. state: An object with `get_slot(var, name)`, `get_non_slot(self, name)`, and `get_hyper(name)` methods. Returns: An `Operation` which updates the value of the variable. """ # pylint: disable=protected-access summed_grad, unique_indices = optimizer_v1._deduplicate_indexed_slices( values=grad, indices=indices) # pylint: enable=protected-access return self._resource_apply_sparse(summed_grad, handle, unique_indices, state) def _resource_apply_sparse(self, grad, handle, indices, state): """Add ops to apply sparse gradients to the variable `handle`. Similar to `_apply_sparse`, the `indices` argument to this method has been de-duplicated. Optimizers which deal correctly with non-unique indices may instead override `_resource_apply_sparse_duplicate_indices` to avoid this overhead. Args: grad: a `Tensor` representing the gradient for the affected indices. handle: a `Tensor` of dtype `resource` which points to the variable to be updated. indices: a `Tensor` of integral type representing the indices for which the gradient is nonzero. Indices are unique. state: An object with `get_slot(var, name)`, `get_non_slot(self, name)`, and `get_hyper(name)` methods. Returns: An `Operation` which updates the value of the variable. """ raise NotImplementedError() def _apply_sparse_duplicate_indices(self, grad, var, state): """Add ops to apply sparse gradients to `var`, with repeated sparse indices. Optimizers which override this method must deal with IndexedSlices objects such as the following: IndexedSlicesValue(values=[1, 1], indices=[0, 0], dense_shape=[1]) The correct interpretation is: IndexedSlicesValue(values=[2], indices=[0], dense_shape=[1]) Many optimizers deal incorrectly with repeated indices when updating based on sparse gradients (e.g. summing squares rather than squaring the sum, or applying momentum terms multiple times). Adding first is always the correct behavior, so this is enforced here by reconstructing the IndexedSlices to have only unique indices, then calling _apply_sparse. Optimizers which deal correctly with repeated indices may instead override this method to avoid the overhead of summing indices. Args: grad: `IndexedSlices`. var: A `Variable` object. state: An object with `get_slot(var, name)`, `get_non_slot(self, name)`, and `get_hyper(name)` methods. Returns: An `Operation`. """ # pylint: disable=protected-access summed_values, unique_indices = optimizer_v1._deduplicate_indexed_slices( values=grad.values, indices=grad.indices) # pylint: enable=protected-access gradient_no_duplicate_indices = ops.IndexedSlices( indices=unique_indices, values=summed_values, dense_shape=grad.dense_shape) return self._apply_sparse(gradient_no_duplicate_indices, var, state) def _apply_sparse(self, grad, var, state): """Add ops to apply sparse gradients to `var`. The IndexedSlices object passed to `grad` in this function is by default pre-processed in `_apply_sparse_duplicate_indices` to remove duplicate indices (see its docstring for details). Optimizers which can tolerate or have correct special cases for duplicate sparse indices may override `_apply_sparse_duplicate_indices` instead of this function, avoiding that overhead. Args: grad: `IndexedSlices`, with no repeated indices. var: A `Variable` object. state: An object with `get_slot(var, name)`, `get_non_slot(self, name)`, and `get_hyper(name)` methods. Returns: An `Operation`. """ raise NotImplementedError() def _finish(self, state): """Do what is needed to finish the update. This is called inside a scope colocated with any non-slot variables. Args: state: An object with `get_slot(var, name)`, `get_non_slot(self, name)`, and `get_hyper(name)` methods. Returns: The operation to apply updates, or None if no updates. """ return None # -------------- # Utility methods for subclasses. # -------------- def _get_per_graph_state(self): # pylint: disable=protected-access return self._per_graph_state.get(ops.get_default_graph()._graph_key, None) def _get_state_for_var(self, var): # pylint: disable=protected-access return self._per_graph_state.get(var._graph_key, None) # -------------- # Overridden methods from Trackable. # -------------- def _track_trackable(self, *args, **kwargs): """Optimizers may not track dependencies. Raises an error.""" raise NotImplementedError( "Optimizers may not have dependencies. File a feature request if this " "limitation bothers you.") @property def _checkpoint_dependencies(self): """From Trackable. Gather graph-specific non-slot variables to save.""" current_graph_non_slot_variables = [] state = self._get_per_graph_state() if state is not None: for name, variable_object in sorted( state._non_slot_dict.items(), # pylint: disable=protected-access # Avoid comparing variables key=lambda item: item[0]): current_graph_non_slot_variables.append( trackable.TrackableReference( name=name, ref=variable_object)) # Note: ignores super(); Optimizers may not have any dependencies outside of # state objects. return current_graph_non_slot_variables def _lookup_dependency(self, name): """From Trackable. Find a non-slot variable in the current graph.""" state = self._get_per_graph_state() if state is None: return None else: return state.get_non_slot(name) @property def _deferred_dependencies(self): """Lets Trackable know where non-slot variables are created. If necessary, creates a new state object for the current default graph. Trackable will then add entries to that state's deferred dependency dictionary. The state object will check that dictionary when creating non-slot variables, restoring their value if an entry is found. Returns: A dictionary which holds deferred dependencies for the current default graph. """ state = self._get_or_create_state() return state._deferred_dependencies # pylint: disable=protected-access def _create_or_restore_slot_variable(self, slot_variable_position, slot_name, variable): """Trackable: Restore a slot variable's value, possibly creating it. Called when a variable which has an associated slot variable is created or restored. Args: slot_variable_position: A `trackable._CheckpointPosition` object indicating the slot variable `Trackable` object to be restored. slot_name: The name of this `Optimizer`'s slot to restore into. variable: The variable object this slot is being created for. """ state = self._get_or_create_state(var_list=[variable]) state._create_or_restore_slot_variable( # pylint: disable=protected-access slot_variable_position=slot_variable_position, slot_name=slot_name, variable=variable, optional_op_name=self._name) # -------------- # Unsupported parent methods # -------------- def _slot_dict(self, slot_name): raise NotImplementedError("_slot_dict() method unsupported in OptimizerV2") def _get_or_make_slot(self, var, val, slot_name, op_name): raise NotImplementedError( "_get_or_make_slot() method unsupported in OptimizerV2") def _get_or_make_slot_with_initializer(self, var, initializer, shape, dtype, slot_name, op_name): raise NotImplementedError( "_get_or_make_slot_with_initializer() method unsupported in " "OptimizerV2") def _create_non_slot_variable(self, initial_value, name, colocate_with): raise NotImplementedError( "_create_non_slot_variable() method unsupported in OptimizerV2") def _get_non_slot_variable(self, name, graph=None): raise NotImplementedError( "_get_non_slot_variable() method unsupported in OptimizerV2") def _non_slot_variables(self): raise NotImplementedError( "_non_slot_variables() method unsupported in OptimizerV2")
tensorflow-master
tensorflow/contrib/optimizer_v2/optimizer_v2.py
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Adadelta Optimizer.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.optimizer_v2 import adadelta from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.ops import embedding_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import resource_variable_ops from tensorflow.python.ops import variables from tensorflow.python.platform import test class AdadeltaOptimizerTest(test.TestCase): def doTestBasic(self, use_resource=False): num_updates = 4 # number of ADADELTA steps to perform for dtype in [dtypes.half, dtypes.float32]: for grad in [0.2, 0.1, 0.01]: for lr in [1.0, 0.5, 0.1]: with self.cached_session(): var0_init = [1.0, 2.0] var1_init = [3.0, 4.0] if use_resource: var0 = resource_variable_ops.ResourceVariable( var0_init, dtype=dtype) var1 = resource_variable_ops.ResourceVariable( var1_init, dtype=dtype) else: var0 = variables.Variable(var0_init, dtype=dtype) var1 = variables.Variable(var1_init, dtype=dtype) grads = constant_op.constant([grad, grad], dtype=dtype) accum = 0.0 accum_update = 0.0 # ADADELTA gradient optimizer rho = 0.95 epsilon = 1e-8 adadelta_opt = adadelta.AdadeltaOptimizer(lr, rho, epsilon) adadelta_update = adadelta_opt.apply_gradients( zip([grads, grads], [var0, var1])) opt_vars = adadelta_opt.variables() self.assertStartsWith(opt_vars[0].name, var0._shared_name) self.assertStartsWith(opt_vars[1].name, var0._shared_name) self.assertStartsWith(opt_vars[2].name, var1._shared_name) self.assertStartsWith(opt_vars[3].name, var1._shared_name) self.assertEqual(4, len(opt_vars)) variables.global_variables_initializer().run() # Assign slots slot = [None] * 2 slot_update = [None] * 2 self.assertEqual(["accum", "accum_update"], adadelta_opt.get_slot_names()) slot[0] = adadelta_opt.get_slot(var0, "accum") self.assertEquals(slot[0].get_shape(), var0.get_shape()) self.assertFalse(slot[0] in variables.trainable_variables()) slot_update[0] = adadelta_opt.get_slot(var0, "accum_update") self.assertEquals(slot_update[0].get_shape(), var0.get_shape()) self.assertFalse(slot_update[0] in variables.trainable_variables()) slot[1] = adadelta_opt.get_slot(var1, "accum") self.assertEquals(slot[1].get_shape(), var1.get_shape()) self.assertFalse(slot[1] in variables.trainable_variables()) slot_update[1] = adadelta_opt.get_slot(var1, "accum_update") self.assertEquals(slot_update[1].get_shape(), var1.get_shape()) self.assertFalse(slot_update[1] in variables.trainable_variables()) # Fetch params to validate initial values self.assertAllClose(var0_init, var0.eval()) self.assertAllClose(var1_init, var1.eval()) update = [None] * num_updates tot_update = 0 for step in range(num_updates): # Run adadelta update for comparison adadelta_update.run() # Perform initial update without previous accum values accum = accum * rho + (grad**2) * (1 - rho) update[step] = (np.sqrt(accum_update + epsilon) * (1. / np.sqrt(accum + epsilon)) * grad) accum_update = (accum_update * rho + (update[step]**2) * (1.0 - rho)) tot_update += update[step] * lr # Check that the accumulators have been updated for slot_idx in range(2): self.assertAllCloseAccordingToType( np.array([accum, accum], dtype=dtype.as_numpy_dtype()), slot[slot_idx].eval(), rtol=1e-5) self.assertAllCloseAccordingToType( np.array( [accum_update, accum_update], dtype=dtype.as_numpy_dtype()), slot_update[slot_idx].eval(), rtol=1e-5) # Check that the parameters have been updated self.assertAllCloseAccordingToType( np.array( [var0_init[0] - tot_update, var0_init[1] - tot_update], dtype=dtype.as_numpy_dtype()), var0.eval(), rtol=1e-5) self.assertAllCloseAccordingToType( np.array( [var1_init[0] - tot_update, var1_init[1] - tot_update], dtype=dtype.as_numpy_dtype()), var1.eval(), rtol=1e-5) def testBasic(self): self.doTestBasic(use_resource=False) def testResourceBasic(self): self.doTestBasic(use_resource=True) def testMinimizeSparseResourceVariable(self): for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: with self.cached_session(): var0 = resource_variable_ops.ResourceVariable([[1.0, 2.0]], dtype=dtype) x = constant_op.constant([[4.0], [5.0]], dtype=dtype) pred = math_ops.matmul(embedding_ops.embedding_lookup([var0], [0]), x) loss = pred * pred sgd_op = adadelta.AdadeltaOptimizer( 1.0, 1.0, 1.0).minimize(loss) variables.global_variables_initializer().run() # Fetch params to validate initial values self.assertAllCloseAccordingToType([[1.0, 2.0]], var0.eval()) # Run 1 step of sgd sgd_op.run() # Validate updated params self.assertAllCloseAccordingToType( [[-111, -138]], var0.eval()) if __name__ == "__main__": test.main()
tensorflow-master
tensorflow/contrib/optimizer_v2/adadelta_test.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Distribution-aware version of Optimizer.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function # pylint: disable=unused-import from tensorflow.contrib.optimizer_v2.adadelta import AdadeltaOptimizer from tensorflow.contrib.optimizer_v2.adagrad import AdagradOptimizer from tensorflow.contrib.optimizer_v2.adam import AdamOptimizer from tensorflow.contrib.optimizer_v2.gradient_descent import GradientDescentOptimizer from tensorflow.contrib.optimizer_v2.momentum import MomentumOptimizer from tensorflow.contrib.optimizer_v2.optimizer_v2 import OptimizerV2 from tensorflow.contrib.optimizer_v2.rmsprop import RMSPropOptimizer from tensorflow.python.util.all_util import remove_undocumented _allowed_symbols = [ 'AdadeltaOptimizer', 'AdagradOptimizer', 'AdamOptimizer', 'GradientDescentOptimizer', 'MomentumOptimizer', 'OptimizerV2', 'RMSPropOptimizer', ] remove_undocumented(__name__, _allowed_symbols)
tensorflow-master
tensorflow/contrib/optimizer_v2/optimizer_v2_symbols.py
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Momentum.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from six.moves import xrange # pylint: disable=redefined-builtin from tensorflow.contrib.optimizer_v2 import momentum as momentum_lib from tensorflow.python.eager import context from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import embedding_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import resource_variable_ops from tensorflow.python.ops import variables from tensorflow.python.platform import test class MomentumOptimizerTest(test.TestCase): def _update_nesterov_momentum_numpy(self, var, accum, g, lr, momentum): var = var + accum * lr * momentum accum = accum * momentum + g var = var - lr * accum var = var - accum * lr * momentum return var, accum def doTestBasic(self, use_resource=False, use_callable_params=False): for i, dtype in enumerate([dtypes.half, dtypes.float32, dtypes.float64]): if use_resource: var0 = resource_variable_ops.ResourceVariable( [1.0, 2.0], dtype=dtype, name="var0_%d" % i) var1 = resource_variable_ops.ResourceVariable( [3.0, 4.0], dtype=dtype, name="var1_%d" % i) else: var0 = variables.Variable([1.0, 2.0], dtype=dtype) var1 = variables.Variable([3.0, 4.0], dtype=dtype) grads0 = constant_op.constant([0.1, 0.1], dtype=dtype) grads1 = constant_op.constant([0.01, 0.01], dtype=dtype) learning_rate = lambda: 2.0 momentum = lambda: 0.9 if not use_callable_params: learning_rate = learning_rate() momentum = momentum() mom_opt = momentum_lib.MomentumOptimizer( learning_rate=learning_rate, momentum=momentum) mom_update = mom_opt.apply_gradients( zip([grads0, grads1], [var0, var1])) if not context.executing_eagerly(): self.evaluate(variables.global_variables_initializer()) # Fetch params to validate initial values self.assertAllClose([1.0, 2.0], self.evaluate(var0)) self.assertAllClose([3.0, 4.0], self.evaluate(var1)) # Check we have slots self.assertEqual(["momentum"], mom_opt.get_slot_names()) slot0 = mom_opt.get_slot(var0, "momentum") self.assertEquals(slot0.get_shape(), var0.get_shape()) slot1 = mom_opt.get_slot(var1, "momentum") self.assertEquals(slot1.get_shape(), var1.get_shape()) if not context.executing_eagerly(): self.assertFalse(slot0 in variables.trainable_variables()) self.assertFalse(slot1 in variables.trainable_variables()) # Step 1: the momentum accumulators where 0. So we should see a normal # update: v -= grad * learning_rate if not context.executing_eagerly(): self.evaluate(mom_update) # Check that the momentum accumulators have been updated. self.assertAllCloseAccordingToType(np.array([0.1, 0.1]), self.evaluate(slot0)) self.assertAllCloseAccordingToType(np.array([0.01, 0.01]), self.evaluate(slot1)) # Check that the parameters have been updated. self.assertAllCloseAccordingToType( np.array([1.0 - (0.1 * 2.0), 2.0 - (0.1 * 2.0)]), self.evaluate(var0)) self.assertAllCloseAccordingToType( np.array([3.0 - (0.01 * 2.0), 4.0 - (0.01 * 2.0)]), self.evaluate(var1)) # Step 2: the momentum accumulators contain the previous update. if context.executing_eagerly(): mom_opt.apply_gradients(zip([grads0, grads1], [var0, var1])) else: self.evaluate(mom_update) # Check that the momentum accumulators have been updated. self.assertAllCloseAccordingToType( np.array([(0.9 * 0.1 + 0.1), (0.9 * 0.1 + 0.1)]), self.evaluate(slot0)) self.assertAllCloseAccordingToType( np.array([(0.9 * 0.01 + 0.01), (0.9 * 0.01 + 0.01)]), self.evaluate(slot1)) # Check that the parameters have been updated. self.assertAllCloseAccordingToType( np.array([ 1.0 - (0.1 * 2.0) - ((0.9 * 0.1 + 0.1) * 2.0), 2.0 - (0.1 * 2.0) - ((0.9 * 0.1 + 0.1) * 2.0) ]), self.evaluate(var0)) self.assertAllCloseAccordingToType( np.array([ 2.98 - ((0.9 * 0.01 + 0.01) * 2.0), 3.98 - ( (0.9 * 0.01 + 0.01) * 2.0) ]), self.evaluate(var1)) def testBasic(self): with self.cached_session(): self.doTestBasic(use_resource=False) @test_util.run_in_graph_and_eager_modes(reset_test=True) def testResourceBasic(self): self.doTestBasic(use_resource=True) def testBasicCallableParams(self): with context.eager_mode(): self.doTestBasic(use_resource=True, use_callable_params=True) def testVariablesAcrossGraphs(self): optimizer = momentum_lib.MomentumOptimizer(0.01, 0.5) with ops.Graph().as_default(): var0 = resource_variable_ops.ResourceVariable( [1.0, 2.0], dtype=dtypes.float32, name="var0") var1 = resource_variable_ops.ResourceVariable( [3.0, 4.0], dtype=dtypes.float32, name="var1") loss = math_ops.reduce_sum(var0 + var1) optimizer.minimize(loss) optimizer_variables = optimizer.variables() self.assertStartsWith(optimizer_variables[0].name, "var0") self.assertStartsWith(optimizer_variables[1].name, "var1") self.assertEquals(2, len(optimizer_variables)) with ops.Graph().as_default(): var2 = resource_variable_ops.ResourceVariable( [1.0, 2.0], dtype=dtypes.float32, name="var2") var3 = resource_variable_ops.ResourceVariable( [3.0, 4.0], dtype=dtypes.float32, name="var3") loss = math_ops.reduce_sum(var2 + var3) optimizer.minimize(loss) optimizer_variables = optimizer.variables() self.assertStartsWith(optimizer_variables[0].name, "var2") self.assertStartsWith(optimizer_variables[1].name, "var3") self.assertEquals(2, len(optimizer_variables)) def testNesterovMomentum(self): for dtype in [dtypes.float32, dtypes.float64]: with self.cached_session(): var0 = variables.Variable([1.0, 2.0], dtype=dtype) var1 = variables.Variable([3.0, 4.0], dtype=dtype) var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) accum0_np = np.array([0.0, 0.0], dtype=dtype.as_numpy_dtype) accum1_np = np.array([0.0, 0.0], dtype=dtype.as_numpy_dtype) cost = 5 * var0 * var0 + 3 * var1 global_step = variables.Variable( array_ops.zeros([], dtypes.int64), name="global_step") mom_op = momentum_lib.MomentumOptimizer( learning_rate=2.0, momentum=0.9, use_nesterov=True) opt_op = mom_op.minimize(cost, global_step, [var0, var1]) variables.global_variables_initializer().run() for t in range(1, 5): opt_op.run() var0_np, accum0_np = self._update_nesterov_momentum_numpy( var0_np, accum0_np, var0_np * 10, 2.0, 0.9) var1_np, accum1_np = self._update_nesterov_momentum_numpy(var1_np, accum1_np, 3, 2.0, 0.9) self.assertAllClose(var0_np, var0.eval()) self.assertAllClose(var1_np, var1.eval()) def testSparseNesterovMomentum(self): for dtype in [dtypes.float32, dtypes.float64]: with self.cached_session(): var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) accum0_np = np.array([0.0, 0.0], dtype=dtype.as_numpy_dtype) accum1_np = np.array([0.0, 0.0], dtype=dtype.as_numpy_dtype) grads = [] for t in range(1, 5): grads.append(var0_np * 10) var0_np, accum0_np = self._update_nesterov_momentum_numpy( var0_np, accum0_np, var0_np * 10, 2.0, 0.9) var1_np, accum1_np = self._update_nesterov_momentum_numpy(var1_np, accum1_np, 3, 2.0, 0.9) var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) accum0_np = np.array([0.0, 0.0], dtype=dtype.as_numpy_dtype) accum1_np = np.array([0.0, 0.0], dtype=dtype.as_numpy_dtype) var0 = variables.Variable(var0_np) var1 = variables.Variable(var1_np) loss = 5 * var0 * var0 + 3 * var1 mom_op = momentum_lib.MomentumOptimizer( learning_rate=2.0, momentum=0.9, use_nesterov=True) x_feed = array_ops.placeholder(dtype) y_feed = ops.IndexedSlices( x_feed, constant_op.constant([0, 1]), constant_op.constant([2])) grads_and_vars = [(y_feed, var0), (constant_op.constant( [3.0, 3.0], dtype=dtype), var1)] opt_update = mom_op.apply_gradients(grads_and_vars) variables.global_variables_initializer().run() for t in range(1, 5): opt_update.run(feed_dict={x_feed: grads[t - 1]}) var0_np, accum0_np = self._update_nesterov_momentum_numpy( var0_np, accum0_np, var0_np * 10, 2.0, 0.9) var1_np, accum1_np = self._update_nesterov_momentum_numpy(var1_np, accum1_np, 3, 2.0, 0.9) self.assertAllClose(var0_np, var0.eval()) self.assertAllClose(var1_np, var1.eval()) @test_util.run_in_graph_and_eager_modes(reset_test=True) def testMinimizeSparseResourceVariable(self): for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: # This test invokes the ResourceSparseApplyMomentum operation, which # did not have a registered GPU kernel as of April 2018. With graph # execution, the placement algorithm notices this and automatically # places the variable in CPU (host) memory. With eager execution, # the variable would be placed in GPU memory if available, which # would then conflict with the future invocation of the # ResourceSparseApplyMomentum operation. # To work around this discrepancy, for now we force the variable # to be placed on CPU. with ops.device("/cpu:0"): var0 = resource_variable_ops.ResourceVariable([[1.0, 2.0]], dtype=dtype) # pylint: disable=cell-var-from-loop def loss(): x = constant_op.constant([[4.0], [5.0]], dtype=dtype) pred = math_ops.matmul(embedding_ops.embedding_lookup([var0], [0]), x) return pred * pred # pylint: enable=cell-var-from-loop opt = momentum_lib.MomentumOptimizer(learning_rate=1.0, momentum=0.0) sgd_op = opt.minimize(loss) self.evaluate(variables.global_variables_initializer()) # Run 1 step of sgd self.evaluate(sgd_op) # Validate updated params self.assertAllCloseAccordingToType([[-111, -138]], self.evaluate(var0)) @test_util.run_in_graph_and_eager_modes(reset_test=True) def testMinimizeWith2DIndiciesForEmbeddingLookup(self): # This test invokes the ResourceSparseApplyMomentum operation, which # did not have a registered GPU kernel as of April 2018. With graph # execution, the placement algorithm notices this and automatically # places the variable in CPU (host) memory. With eager execution, # the variable would be placed in GPU memory if available, which # would then conflict with the future invocation of the # ResourceSparseApplyMomentum operation. # To work around this discrepancy, for now we force the variable # to be placed on CPU. with ops.device("/cpu:0"): var0 = resource_variable_ops.ResourceVariable(array_ops.ones([2, 2])) def loss(): return math_ops.reduce_sum(embedding_ops.embedding_lookup(var0, [[1]])) opt = momentum_lib.MomentumOptimizer(learning_rate=1.0, momentum=0.0) sgd_op = opt.minimize(loss) self.evaluate(variables.global_variables_initializer()) self.evaluate(sgd_op) self.assertAllCloseAccordingToType([[1, 1], [0, 0]], self.evaluate(var0)) def testTensorLearningRateAndMomentum(self): for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: with self.cached_session(): var0 = variables.Variable([1.0, 2.0], dtype=dtype) var1 = variables.Variable([3.0, 4.0], dtype=dtype) grads0 = constant_op.constant([0.1, 0.1], dtype=dtype) grads1 = constant_op.constant([0.01, 0.01], dtype=dtype) mom_opt = momentum_lib.MomentumOptimizer( learning_rate=constant_op.constant(2.0), momentum=constant_op.constant(0.9)) mom_update = mom_opt.apply_gradients( zip([grads0, grads1], [var0, var1])) variables.global_variables_initializer().run() # Check we have slots self.assertEqual(["momentum"], mom_opt.get_slot_names()) slot0 = mom_opt.get_slot(var0, "momentum") self.assertEquals(slot0.get_shape(), var0.get_shape()) self.assertFalse(slot0 in variables.trainable_variables()) slot1 = mom_opt.get_slot(var1, "momentum") self.assertEquals(slot1.get_shape(), var1.get_shape()) self.assertFalse(slot1 in variables.trainable_variables()) # Fetch params to validate initial values self.assertAllClose([1.0, 2.0], var0.eval()) self.assertAllClose([3.0, 4.0], var1.eval()) # Step 1: the momentum accumulators where 0. So we should see a normal # update: v -= grad * learning_rate mom_update.run() # Check that the momentum accumulators have been updated. self.assertAllCloseAccordingToType(np.array([0.1, 0.1]), slot0.eval()) self.assertAllCloseAccordingToType(np.array([0.01, 0.01]), slot1.eval()) # Check that the parameters have been updated. self.assertAllCloseAccordingToType( np.array([1.0 - (0.1 * 2.0), 2.0 - (0.1 * 2.0)]), var0.eval()) self.assertAllCloseAccordingToType( np.array([3.0 - (0.01 * 2.0), 4.0 - (0.01 * 2.0)]), var1.eval()) # Step 2: the momentum accumulators contain the previous update. mom_update.run() # Check that the momentum accumulators have been updated. self.assertAllCloseAccordingToType( np.array([(0.9 * 0.1 + 0.1), (0.9 * 0.1 + 0.1)]), slot0.eval()) self.assertAllCloseAccordingToType( np.array([(0.9 * 0.01 + 0.01), (0.9 * 0.01 + 0.01)]), slot1.eval()) # Check that the parameters have been updated. self.assertAllCloseAccordingToType( np.array([ 1.0 - (0.1 * 2.0) - ((0.9 * 0.1 + 0.1) * 2.0), 2.0 - (0.1 * 2.0) - ((0.9 * 0.1 + 0.1) * 2.0) ]), var0.eval()) self.assertAllCloseAccordingToType( np.array([ 2.98 - ((0.9 * 0.01 + 0.01) * 2.0), 3.98 - ( (0.9 * 0.01 + 0.01) * 2.0) ]), var1.eval()) def _dbParamsMom01(self): """Return dist-belief momentum values. Return values been generated from the dist-belief momentum unittest, running with a learning rate of 0.1 and a momentum of 0.1. These values record how a parameter vector of size 10, initialized with 0.0, gets updated with 10 consecutive momentum steps. It uses random gradients. Returns: db_grad: The gradients to apply db_out: The parameters after the momentum update. """ db_grad = [[]] * 10 db_out = [[]] * 10 # pylint: disable=line-too-long db_grad[0] = [ 0.00096264342, 0.17914793, 0.93945462, 0.41396621, 0.53037018, 0.93197989, 0.78648776, 0.50036013, 0.55345792, 0.96722615 ] db_out[0] = [ -9.6264346e-05, -0.017914793, -0.093945466, -0.041396622, -0.053037018, -0.093197994, -0.078648776, -0.050036013, -0.055345792, -0.096722618 ] db_grad[1] = [ 0.17075552, 0.88821375, 0.20873757, 0.25236958, 0.57578111, 0.15312378, 0.5513742, 0.94687688, 0.16012503, 0.22159521 ] db_out[1] = [ -0.017181443, -0.10852765, -0.12421377, -0.070773244, -0.11591884, -0.11783017, -0.14165108, -0.14972731, -0.076892875, -0.1285544 ] db_grad[2] = [ 0.35077485, 0.47304362, 0.44412705, 0.44368884, 0.078527533, 0.81223965, 0.31168157, 0.43203235, 0.16792089, 0.24644311 ] db_out[2] = [ -0.053967446, -0.1648933, -0.1716533, -0.1180798, -0.13005978, -0.20151734, -0.17911947, -0.20289968, -0.095839672, -0.15638189 ] db_grad[3] = [ 0.9694621, 0.75035888, 0.28171822, 0.83813518, 0.53807181, 0.3728098, 0.81454384, 0.03848977, 0.89759839, 0.93665648 ] db_out[3] = [ -0.15459226, -0.24556576, -0.20456907, -0.20662397, -0.18528105, -0.24716705, -0.2643207, -0.21206589, -0.18749419, -0.2528303 ] db_grad[4] = [ 0.38578293, 0.8536852, 0.88722926, 0.66276771, 0.13678469, 0.94036359, 0.69107032, 0.81897682, 0.5433259, 0.67860287 ] db_out[4] = [ -0.20323303, -0.33900154, -0.29658359, -0.28175515, -0.20448165, -0.34576839, -0.34194785, -0.29488021, -0.25099224, -0.33033544 ] db_grad[5] = [ 0.27885768, 0.76100707, 0.24625534, 0.81354135, 0.18959245, 0.48038563, 0.84163809, 0.41172323, 0.83259648, 0.44941229 ] db_out[5] = [ -0.23598288, -0.42444581, -0.33041057, -0.3706224, -0.22536094, -0.40366709, -0.43387437, -0.34433398, -0.34060168, -0.38302717 ] db_grad[6] = [ 0.27233034, 0.056316052, 0.5039115, 0.24105175, 0.35697976, 0.75913221, 0.73577434, 0.16014607, 0.57500273, 0.071136251 ] db_out[6] = [ -0.26649091, -0.43862185, -0.38418442, -0.40361428, -0.26314685, -0.48537019, -0.51664448, -0.36529395, -0.40706289, -0.39540997 ] db_grad[7] = [ 0.58697265, 0.2494842, 0.08106143, 0.39954534, 0.15892942, 0.12683646, 0.74053431, 0.16033, 0.66625422, 0.73515922 ] db_out[7] = [ -0.32823896, -0.46498787, -0.39766794, -0.446868, -0.28281838, -0.50622416, -0.59897494, -0.38342294, -0.48033443, -0.47016418 ] db_grad[8] = [ 0.8215279, 0.41994119, 0.95172721, 0.68000203, 0.79439718, 0.43384039, 0.55561525, 0.22567581, 0.93331909, 0.29438227 ] db_out[8] = [ -0.41656655, -0.50961858, -0.49418902, -0.51919359, -0.36422527, -0.55169362, -0.6627695, -0.40780342, -0.58099347, -0.50707781 ] db_grad[9] = [ 0.68297005, 0.67758518, 0.1748755, 0.13266537, 0.70697063, 0.055731893, 0.68593478, 0.50580865, 0.12602448, 0.093537711 ] db_out[9] = [ -0.49369633, -0.58184016, -0.52132869, -0.5396927, -0.44306302, -0.56181377, -0.73774242, -0.46082234, -0.60366184, -0.52012295 ] # pylint: enable=line-too-long return db_grad, db_out def testLikeDistBeliefMom01(self): with self.cached_session(): db_grad, db_out = self._dbParamsMom01() num_samples = len(db_grad) var0 = variables.Variable([0.0] * num_samples) grads0 = constant_op.constant([0.0] * num_samples) mom_opt = momentum_lib.MomentumOptimizer(learning_rate=0.1, momentum=0.1) mom_update = mom_opt.apply_gradients(zip([grads0], [var0])) variables.global_variables_initializer().run() for i in xrange(num_samples): mom_update.run(feed_dict={grads0: db_grad[i]}) self.assertAllClose(np.array(db_out[i]), var0.eval()) def testSparse(self): for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: with self.cached_session(): var0 = variables.Variable(array_ops.zeros([4, 2], dtype=dtype)) var1 = variables.Variable(constant_op.constant(1.0, dtype, [4, 2])) grads0 = ops.IndexedSlices( constant_op.constant( [[.1, .1]], dtype=dtype), constant_op.constant([1]), constant_op.constant([4, 2])) grads1 = ops.IndexedSlices( constant_op.constant( [[.01, .01], [.01, .01]], dtype=dtype), constant_op.constant([2, 3]), constant_op.constant([4, 2])) mom_opt = momentum_lib.MomentumOptimizer( learning_rate=2.0, momentum=0.9) mom_update = mom_opt.apply_gradients( zip([grads0, grads1], [var0, var1])) variables.global_variables_initializer().run() # Check we have slots self.assertEqual(["momentum"], mom_opt.get_slot_names()) slot0 = mom_opt.get_slot(var0, "momentum") self.assertEquals(slot0.get_shape(), var0.get_shape()) slot1 = mom_opt.get_slot(var1, "momentum") self.assertEquals(slot1.get_shape(), var1.get_shape()) # Fetch params to validate initial values self.assertAllClose([0, 0], var0.eval()[0]) self.assertAllClose([0, 0], var0.eval()[1]) self.assertAllClose([1, 1], var1.eval()[2]) # Step 1: the momentum accumulators are 0. So we should see a normal # update: v -= grad * learning_rate mom_update.run() # Check that the momentum accumulators have been updated. self.assertAllCloseAccordingToType(np.array([0, 0]), slot0.eval()[0]) self.assertAllCloseAccordingToType(np.array([.1, .1]), slot0.eval()[1]) self.assertAllCloseAccordingToType( np.array([.01, .01]), slot1.eval()[2]) # Check that the parameters have been updated. self.assertAllCloseAccordingToType(np.array([0, 0]), var0.eval()[0]) self.assertAllCloseAccordingToType( np.array([-(0.1 * 2.0), -(0.1 * 2.0)]), var0.eval()[1]) self.assertAllCloseAccordingToType( np.array([1.0 - (0.01 * 2.0), 1.0 - (0.01 * 2.0)]), var1.eval()[2]) # Step 2: the momentum accumulators contain the previous update. mom_update.run() # Check that the momentum accumulators have been updated. self.assertAllClose(np.array([0, 0]), slot0.eval()[0]) self.assertAllCloseAccordingToType( np.array([(0.9 * 0.1 + 0.1), (0.9 * 0.1 + 0.1)]), slot0.eval()[1]) self.assertAllCloseAccordingToType( np.array([(0.9 * 0.01 + 0.01), (0.9 * 0.01 + 0.01)]), slot1.eval()[2]) # Check that the parameters have been updated. self.assertAllClose(np.array([0, 0]), var0.eval()[0]) self.assertAllCloseAccordingToType( np.array([ -(0.1 * 2.0) - ((0.9 * 0.1 + 0.1) * 2.0), -(0.1 * 2.0) - ( (0.9 * 0.1 + 0.1) * 2.0) ]), var0.eval()[1]) self.assertAllCloseAccordingToType( np.array([ 0.98 - ((0.9 * 0.01 + 0.01) * 2.0), 0.98 - ( (0.9 * 0.01 + 0.01) * 2.0) ]), var1.eval()[2]) def testSharing(self): for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: with self.cached_session(): var0 = variables.Variable([1.0, 2.0], dtype=dtype) var1 = variables.Variable([3.0, 4.0], dtype=dtype) grads0 = constant_op.constant([0.1, 0.1], dtype=dtype) grads1 = constant_op.constant([0.01, 0.01], dtype=dtype) mom_opt = momentum_lib.MomentumOptimizer( learning_rate=2.0, momentum=0.9) mom_update1 = mom_opt.apply_gradients( zip([grads0, grads1], [var0, var1])) mom_update2 = mom_opt.apply_gradients( zip([grads0, grads1], [var0, var1])) variables.global_variables_initializer().run() self.assertEqual(["momentum"], mom_opt.get_slot_names()) slot0 = mom_opt.get_slot(var0, "momentum") self.assertEquals(slot0.get_shape(), var0.get_shape()) slot1 = mom_opt.get_slot(var1, "momentum") self.assertEquals(slot1.get_shape(), var1.get_shape()) # Fetch params to validate initial values self.assertAllClose([1.0, 2.0], var0.eval()) self.assertAllClose([3.0, 4.0], var1.eval()) # Step 1: the momentum accumulators where 0. So we should see a normal # update: v -= grad * learning_rate mom_update1.run() # Check that the momentum accumulators have been updated. self.assertAllCloseAccordingToType(np.array([0.1, 0.1]), slot0.eval()) self.assertAllCloseAccordingToType(np.array([0.01, 0.01]), slot1.eval()) # Check that the parameters have been updated. self.assertAllCloseAccordingToType( np.array([1.0 - (0.1 * 2.0), 2.0 - (0.1 * 2.0)]), var0.eval()) self.assertAllCloseAccordingToType( np.array([3.0 - (0.01 * 2.0), 4.0 - (0.01 * 2.0)]), var1.eval()) # Step 2: the second momentum accumulators contain the previous update. mom_update2.run() # Check that the momentum accumulators have been updated. self.assertAllCloseAccordingToType( np.array([(0.9 * 0.1 + 0.1), (0.9 * 0.1 + 0.1)]), slot0.eval()) self.assertAllCloseAccordingToType( np.array([(0.9 * 0.01 + 0.01), (0.9 * 0.01 + 0.01)]), slot1.eval()) # Check that the parameters have been updated. self.assertAllCloseAccordingToType( np.array([ 1.0 - (0.1 * 2.0) - ((0.9 * 0.1 + 0.1) * 2.0), 2.0 - (0.1 * 2.0) - ((0.9 * 0.1 + 0.1) * 2.0) ]), var0.eval()) self.assertAllCloseAccordingToType( np.array([ 2.98 - ((0.9 * 0.01 + 0.01) * 2.0), 3.98 - ( (0.9 * 0.01 + 0.01) * 2.0) ]), var1.eval()) if __name__ == "__main__": test.main()
tensorflow-master
tensorflow/contrib/optimizer_v2/momentum_test.py
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Functional test for OptimizerV2.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.optimizer_v2 import gradient_descent from tensorflow.contrib.optimizer_v2 import optimizer_v2 from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import clip_ops from tensorflow.python.ops import gradients_util from tensorflow.python.ops import resource_variable_ops from tensorflow.python.ops import state_ops from tensorflow.python.ops import variables from tensorflow.python.platform import test class OptimizerTest(test.TestCase): @test_util.run_in_graph_and_eager_modes def testBasic(self): for i, dtype in enumerate([dtypes.half, dtypes.float32, dtypes.float64]): var0 = resource_variable_ops.ResourceVariable([1.0, 2.0], dtype=dtype) var1 = resource_variable_ops.ResourceVariable([3.0, 4.0], dtype=dtype) def loss(): return 5 * var0 + 3 * var1 # pylint: disable=cell-var-from-loop # Note that for eager execution, minimize expects a function instead of a # Tensor. global_step = resource_variable_ops.ResourceVariable( array_ops.zeros([], dtypes.int64), name='global_step_%d' % i) sgd_op = gradient_descent.GradientDescentOptimizer(3.0) self.evaluate(variables.global_variables_initializer()) # Fetch params to validate initial values self.assertAllClose([1.0, 2.0], self.evaluate(var0)) self.assertAllClose([3.0, 4.0], self.evaluate(var1)) # Run 1 step of sgd through optimizer opt_op = sgd_op.minimize(loss, global_step, [var0, var1]) self.evaluate(opt_op) # Validate updated params self.assertAllClose([-14., -13.], self.evaluate(var0)) self.assertAllClose([-6., -5.], self.evaluate(var1)) def testAggregationMethod(self): for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: with self.cached_session(): var0 = variables.Variable([1.0, 2.0], dtype=dtype) var1 = variables.Variable([3.0, 4.0], dtype=dtype) cost = 5 * var0 + 3 * var1 global_step = variables.Variable( array_ops.zeros([], dtypes.int64), name='global_step') sgd_op = gradient_descent.GradientDescentOptimizer(3.0) opt_op = sgd_op.minimize( cost, global_step, [var0, var1], aggregation_method=gradients_util.AggregationMethod. EXPERIMENTAL_ACCUMULATE_N) variables.global_variables_initializer().run() # Fetch params to validate initial values self.assertAllClose([1.0, 2.0], var0.eval()) self.assertAllClose([3.0, 4.0], var1.eval()) # Run 1 step of sgd through optimizer opt_op.run() # Validate updated params self.assertAllClose([-14., -13.], var0.eval()) self.assertAllClose([-6., -5.], var1.eval()) def testPrecomputedGradient(self): for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: with self.cached_session(): var0 = variables.Variable([1.0, 2.0], dtype=dtype) var1 = variables.Variable([3.0, 4.0], dtype=dtype) cost = 5 * var0 + 3 * var1 grad_loss = constant_op.constant([42, -42], dtype=dtype) global_step = variables.Variable( array_ops.zeros([], dtypes.int64), name='global_step') sgd_op = gradient_descent.GradientDescentOptimizer(3.0) opt_op = sgd_op.minimize( cost, global_step, [var0, var1], grad_loss=grad_loss) variables.global_variables_initializer().run() # Fetch params to validate initial values self.assertAllClose([1.0, 2.0], var0.eval()) self.assertAllClose([3.0, 4.0], var1.eval()) # Run 1 step of sgd through optimizer opt_op.run() # Validate updated params self.assertAllClose([1.0 - 3 * 5 * 42.0, 2.0 - 3 * 5 * (-42.0)], var0.eval()) self.assertAllClose([3.0 - 3 * 3 * 42.0, 4.0 - 3 * 3 * (-42.0)], var1.eval()) @test_util.run_in_graph_and_eager_modes def testNoVariables(self): for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: # pylint: disable=cell-var-from-loop def loss(): var0 = resource_variable_ops.ResourceVariable( [1.0, 2.0], dtype=dtype, trainable=False, name='a') var1 = resource_variable_ops.ResourceVariable( [3.0, 4.0], dtype=dtype, trainable=False, name='b') return 5 * var0 + var1 # pylint: enable=cell-var-from-loop sgd_op = gradient_descent.GradientDescentOptimizer(3.0) with self.assertRaisesRegexp(ValueError, 'No.*variables'): sgd_op.minimize(loss) @test_util.run_in_graph_and_eager_modes def testNoGradients(self): for i, dtype in enumerate([dtypes.half, dtypes.float32, dtypes.float64]): var0 = resource_variable_ops.ResourceVariable([1.0, 2.0], dtype=dtype) var1 = resource_variable_ops.ResourceVariable([3.0, 4.0], dtype=dtype) # pylint: disable=cell-var-from-loop def loss(): return 5 * var0 # pylint: enable=cell-var-from-loop sgd_op = gradient_descent.GradientDescentOptimizer(3.0) with self.assertRaisesRegexp(ValueError, 'No gradients'): # var1 has no gradient sgd_op.minimize(loss, var_list=[var1]) @test_util.run_in_graph_and_eager_modes def testNoGradientsForAnyVariables_Minimize(self): for i, dtype in enumerate([dtypes.half, dtypes.float32, dtypes.float64]): var0 = resource_variable_ops.ResourceVariable([1.0, 2.0], dtype=dtype) var1 = resource_variable_ops.ResourceVariable([3.0, 4.0], dtype=dtype) def loss(): return constant_op.constant(5.0) sgd_op = gradient_descent.GradientDescentOptimizer(3.0) with self.assertRaisesRegexp(ValueError, 'No gradients provided for any variable'): sgd_op.minimize(loss, var_list=[var0, var1]) @test_util.run_in_graph_and_eager_modes def testNoGradientsForAnyVariables_ApplyGradients(self): for i, dtype in enumerate([dtypes.half, dtypes.float32, dtypes.float64]): var0 = resource_variable_ops.ResourceVariable([1.0, 2.0], dtype=dtype) var1 = resource_variable_ops.ResourceVariable([3.0, 4.0], dtype=dtype) sgd_op = gradient_descent.GradientDescentOptimizer(3.0) with self.assertRaisesRegexp(ValueError, 'No gradients provided for any variable'): sgd_op.apply_gradients([(None, var0), (None, var1)]) @test_util.run_in_graph_and_eager_modes def testGradientsAsVariables(self): for i, dtype in enumerate([dtypes.half, dtypes.float32, dtypes.float64]): var0 = resource_variable_ops.ResourceVariable([1.0, 2.0], dtype=dtype) var1 = resource_variable_ops.ResourceVariable([3.0, 4.0], dtype=dtype) def loss(): return 5 * var0 + 3 * var1 # pylint: disable=cell-var-from-loop sgd_op = gradient_descent.GradientDescentOptimizer(3.0) grads_and_vars = sgd_op.compute_gradients(loss, [var0, var1]) # Convert gradients to tf.Variables converted_grads = [ resource_variable_ops.ResourceVariable(array_ops.zeros([2], dtype), name='c_%d_%d' % (i, j)) for j, gv in enumerate(grads_and_vars) ] convert_ops = [ state_ops.assign(converted_grads[j], gv[0]) for j, gv in enumerate(grads_and_vars) ] self.evaluate(variables.global_variables_initializer()) # Run convert_ops to achieve the gradietns converting self.evaluate(convert_ops) # Fetch params to validate initial values self.assertAllClose([1.0, 2.0], self.evaluate(var0)) self.assertAllClose([3.0, 4.0], self.evaluate(var1)) # Run 1 step of sgd through optimizer converted_grads_and_vars = list(zip(converted_grads, [var0, var1])) opt_op = sgd_op.apply_gradients(converted_grads_and_vars) self.evaluate(opt_op) # Validate updated params self.assertAllClose([-14., -13.], self.evaluate(var0)) self.assertAllClose([-6., -5.], self.evaluate(var1)) @test_util.run_in_graph_and_eager_modes def testComputeGradientsWithTensors(self): x = ops.convert_to_tensor(1.0) def f(): return x * x sgd_op = gradient_descent.GradientDescentOptimizer(3.0) grads_and_vars = sgd_op.compute_gradients(f, [x]) self.assertEqual(1, len(grads_and_vars)) grad, x_as_var = grads_and_vars[0] self.assertIs(x, x_as_var) self.assertEqual(2.0, self.evaluate(grad)) with self.assertRaises(NotImplementedError): sgd_op.apply_gradients(grads_and_vars) def testTrainOp(self): with self.cached_session(): var0 = variables.Variable([1.0, 2.0]) var1 = variables.Variable([3.0, 4.0]) cost = 5 * var0 + 3 * var1 global_step = variables.Variable( array_ops.zeros([], dtypes.int64), name='global_step') sgd_op = gradient_descent.GradientDescentOptimizer(3.0) opt_op = sgd_op.minimize(cost, global_step, [var0, var1]) self.assertTrue(opt_op in ops.get_collection(ops.GraphKeys.TRAIN_OP)) def testConstraint(self): constraint_01 = lambda x: clip_ops.clip_by_value(x, -0.1, 0.) constraint_0 = lambda x: clip_ops.clip_by_value(x, 0., 1.) with self.cached_session(): var0 = variables.Variable([1.0, 2.0], constraint=constraint_01) var1 = variables.Variable([3.0, 4.0], constraint=constraint_0) cost = 5 * var0 + 3 * var1 global_step = variables.Variable( array_ops.zeros([], dtypes.int64), name='global_step') sgd_op = gradient_descent.GradientDescentOptimizer(3.0) opt_op = sgd_op.minimize(cost, global_step, [var0, var1]) variables.global_variables_initializer().run() # Fetch params to validate initial values self.assertAllClose([1.0, 2.0], var0.eval()) self.assertAllClose([3.0, 4.0], var1.eval()) # Run 1 step of sgd through optimizer opt_op.run() # Validate updated params self.assertAllClose([-0.1, -0.1], var0.eval()) self.assertAllClose([0., 0.], var1.eval()) def testStopGradients(self): with self.cached_session(): var0 = variables.Variable([1.0, 2.0], name='var0') var1 = variables.Variable([3.0, 4.0], name='var1') var0_id = array_ops.identity(var0) cost = 5 * var0_id + 3 * var1 sgd_op = gradient_descent.GradientDescentOptimizer(3.0) grads_and_vars = sgd_op.compute_gradients(cost, [var0, var1], stop_gradients=[var0_id]) grad_dict = {var.op.name: grad for grad, var in grads_and_vars} self.assertIsNone(grad_dict['var0']) self.assertIsNotNone(grad_dict['var1']) def testDoNotOverrideCreateSlots(self): class ShouldNotOverrideCreateSlots(optimizer_v2.OptimizerV2): def _create_slots(self, var_list): """In OptimizerV2 _create_slots was renamed _create_vars.""" return var_list with self.assertRaises(RuntimeError): ShouldNotOverrideCreateSlots(True, 'name') if __name__ == '__main__': test.main()
tensorflow-master
tensorflow/contrib/optimizer_v2/optimizer_v2_test.py
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for rmsprop optimizer.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import copy import math from absl.testing import parameterized import numpy as np from tensorflow.contrib.optimizer_v2 import rmsprop from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import embedding_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import resource_variable_ops from tensorflow.python.ops import variables from tensorflow.python.platform import test _DATA_TYPES = [dtypes.half, dtypes.float32] _TEST_PARAM_VALUES = [ # learning_rate, decay, momentum, epsilon, centered, use_resource [0.5, 0.9, 0.0, 1.0, True, False], [0.5, 0.9, 0.0, 1.0, False, False], [0.5, 0.9, 0.0, 1.0, True, True], [0.5, 0.9, 0.0, 1.0, False, True], [0.1, 0.9, 0.0, 1.0, True, False], [0.5, 0.95, 0.0, 1.0, False, False], [0.5, 0.8, 0.0, 1e-3, True, False], [0.5, 0.8, 0.9, 1e-3, True, False], ] class RMSPropOptimizerTest(test.TestCase, parameterized.TestCase): def _rmsprop_update_numpy(self, var, g, mg, rms, mom, lr, decay, momentum, centered): rms_t = rms * decay + (1 - decay) * g * g if centered: mg_t = mg * decay + (1 - decay) * g denom_t = rms_t - mg_t * mg_t else: mg_t = mg denom_t = rms_t mom_t = momentum * mom + lr * g / np.sqrt(denom_t, dtype=denom_t.dtype) var_t = var - mom_t return var_t, mg_t, rms_t, mom_t def _sparse_rmsprop_update_numpy(self, var, gindexs, gvalues, mg, rms, mom, lr, decay, momentum, centered): mg_t = copy.deepcopy(mg) rms_t = copy.deepcopy(rms) mom_t = copy.deepcopy(mom) var_t = copy.deepcopy(var) for i in range(len(gindexs)): gindex = gindexs[i] gvalue = gvalues[i] rms_t[gindex] = rms[gindex] * decay + (1 - decay) * gvalue * gvalue denom_t = rms_t[gindex] if centered: mg_t[gindex] = mg_t[gindex] * decay + (1 - decay) * gvalue denom_t -= mg_t[gindex] * mg_t[gindex] mom_t[gindex] = momentum * mom[gindex] + lr * gvalue / np.sqrt(denom_t) var_t[gindex] = var[gindex] - mom_t[gindex] return var_t, mg_t, rms_t, mom_t @parameterized.named_parameters( *test_util.generate_combinations_with_testcase_name( dtype=_DATA_TYPES, param_value=_TEST_PARAM_VALUES)) def testDense(self, dtype, param_value): (learning_rate, decay, momentum, epsilon, centered, use_resource) = tuple( param_value) with self.session(use_gpu=True): # Initialize variables for numpy implementation. var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) grads0_np = np.array([0.1, 0.2], dtype=dtype.as_numpy_dtype) var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) grads1_np = np.array([0.01, 0.2], dtype=dtype.as_numpy_dtype) if use_resource: var0 = resource_variable_ops.ResourceVariable(var0_np) var1 = resource_variable_ops.ResourceVariable(var1_np) else: var0 = variables.Variable(var0_np) var1 = variables.Variable(var1_np) grads0 = constant_op.constant(grads0_np) grads1 = constant_op.constant(grads1_np) opt = rmsprop.RMSPropOptimizer( learning_rate=learning_rate, decay=decay, momentum=momentum, epsilon=epsilon, centered=centered) update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) variables.global_variables_initializer().run() mg0 = opt.get_slot(var0, "mg") self.assertEqual(mg0 is not None, centered) mg1 = opt.get_slot(var1, "mg") self.assertEqual(mg1 is not None, centered) rms0 = opt.get_slot(var0, "rms") self.assertIsNotNone(rms0) rms1 = opt.get_slot(var1, "rms") self.assertIsNotNone(rms1) mom0 = opt.get_slot(var0, "momentum") self.assertIsNotNone(mom0) mom1 = opt.get_slot(var1, "momentum") self.assertIsNotNone(mom1) mg0_np = np.array([0.0, 0.0], dtype=dtype.as_numpy_dtype) mg1_np = np.array([0.0, 0.0], dtype=dtype.as_numpy_dtype) rms0_np = np.array([epsilon, epsilon], dtype=dtype.as_numpy_dtype) rms1_np = np.array([epsilon, epsilon], dtype=dtype.as_numpy_dtype) mom0_np = np.array([0.0, 0.0], dtype=dtype.as_numpy_dtype) mom1_np = np.array([0.0, 0.0], dtype=dtype.as_numpy_dtype) # Fetch params to validate initial values self.assertAllClose([1.0, 2.0], var0.eval()) self.assertAllClose([3.0, 4.0], var1.eval()) # Run 4 steps of RMSProp for _ in range(4): update.run() var0_np, mg0_np, rms0_np, mom0_np = self._rmsprop_update_numpy( var0_np, grads0_np, mg0_np, rms0_np, mom0_np, learning_rate, decay, momentum, centered) var1_np, mg1_np, rms1_np, mom1_np = self._rmsprop_update_numpy( var1_np, grads1_np, mg1_np, rms1_np, mom1_np, learning_rate, decay, momentum, centered) # Validate updated params if centered: self.assertAllCloseAccordingToType(mg0_np, mg0.eval()) self.assertAllCloseAccordingToType(mg1_np, mg1.eval()) self.assertAllCloseAccordingToType(rms0_np, rms0.eval()) self.assertAllCloseAccordingToType(rms1_np, rms1.eval()) self.assertAllCloseAccordingToType(mom0_np, mom0.eval()) self.assertAllCloseAccordingToType(mom1_np, mom1.eval()) # TODO(b/117393988): Reduce tolerances for float16. self.assertAllCloseAccordingToType( var0_np, var0.eval(), half_rtol=3e-3, half_atol=3e-3) self.assertAllCloseAccordingToType( var1_np, var1.eval(), half_rtol=3e-3, half_atol=3e-3) @parameterized.parameters([dtypes.float32, dtypes.float64]) def testMinimizeSparseResourceVariable(self, dtype): with self.cached_session(): var0 = resource_variable_ops.ResourceVariable([[1.0, 2.0]], dtype=dtype) x = constant_op.constant([[4.0], [5.0]], dtype=dtype) pred = math_ops.matmul(embedding_ops.embedding_lookup([var0], [0]), x) loss = pred * pred sgd_op = rmsprop.RMSPropOptimizer( learning_rate=1.0, decay=0.0, momentum=0.0, epsilon=0.0, centered=False).minimize(loss) variables.global_variables_initializer().run() # Fetch params to validate initial values self.assertAllCloseAccordingToType([[1.0, 2.0]], var0.eval()) # Run 1 step of sgd sgd_op.run() # Validate updated params self.assertAllCloseAccordingToType( [[0., 1.]], var0.eval(), atol=0.01) @parameterized.parameters([dtypes.float32, dtypes.float64]) def testMinimizeSparseResourceVariableCentered(self, dtype): with self.cached_session(): var0 = resource_variable_ops.ResourceVariable([[1.0, 2.0]], dtype=dtype) x = constant_op.constant([[4.0], [5.0]], dtype=dtype) pred = math_ops.matmul(embedding_ops.embedding_lookup([var0], [0]), x) loss = pred * pred sgd_op = rmsprop.RMSPropOptimizer( learning_rate=1.0, decay=0.1, momentum=0.0, epsilon=1.0, centered=True).minimize(loss) variables.global_variables_initializer().run() # Fetch params to validate initial values self.assertAllCloseAccordingToType([[1.0, 2.0]], var0.eval()) # Run 1 step of sgd sgd_op.run() # Validate updated params self.assertAllCloseAccordingToType( [[-7/3.0, -4/3.0]], var0.eval(), atol=0.01) @parameterized.named_parameters( *test_util.generate_combinations_with_testcase_name( dtype=_DATA_TYPES, param_value=_TEST_PARAM_VALUES)) def testSparse(self, dtype, param_value): (learning_rate, decay, momentum, epsilon, centered, _) = tuple( param_value) with self.session(use_gpu=True): # Initialize variables for numpy implementation. var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) grads0_np = np.array([0.1], dtype=dtype.as_numpy_dtype) var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) grads1_np = np.array([0.01], dtype=dtype.as_numpy_dtype) var0 = variables.Variable(var0_np) var1 = variables.Variable(var1_np) grads0_np_indices = np.array([0], dtype=np.int32) grads0 = ops.IndexedSlices( constant_op.constant(grads0_np), constant_op.constant(grads0_np_indices), constant_op.constant([1])) grads1_np_indices = np.array([1], dtype=np.int32) grads1 = ops.IndexedSlices( constant_op.constant(grads1_np), constant_op.constant(grads1_np_indices), constant_op.constant([1])) opt = rmsprop.RMSPropOptimizer( learning_rate=learning_rate, decay=decay, momentum=momentum, epsilon=epsilon, centered=centered) update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) variables.global_variables_initializer().run() mg0 = opt.get_slot(var0, "mg") self.assertEqual(mg0 is not None, centered) mg1 = opt.get_slot(var1, "mg") self.assertEqual(mg1 is not None, centered) rms0 = opt.get_slot(var0, "rms") self.assertIsNotNone(rms0) rms1 = opt.get_slot(var1, "rms") self.assertIsNotNone(rms1) mom0 = opt.get_slot(var0, "momentum") self.assertIsNotNone(mom0) mom1 = opt.get_slot(var1, "momentum") self.assertIsNotNone(mom1) mg0_np = np.array([0.0, 0.0], dtype=dtype.as_numpy_dtype) mg1_np = np.array([0.0, 0.0], dtype=dtype.as_numpy_dtype) rms0_np = np.array([epsilon, epsilon], dtype=dtype.as_numpy_dtype) rms1_np = np.array([epsilon, epsilon], dtype=dtype.as_numpy_dtype) mom0_np = np.array([0.0, 0.0], dtype=dtype.as_numpy_dtype) mom1_np = np.array([0.0, 0.0], dtype=dtype.as_numpy_dtype) # Fetch params to validate initial values self.assertAllClose([1.0, 2.0], var0.eval()) self.assertAllClose([3.0, 4.0], var1.eval()) # Run 4 steps of RMSProp for _ in range(4): update.run() var0_np, mg0_np, rms0_np, mom0_np = self._sparse_rmsprop_update_numpy( var0_np, grads0_np_indices, grads0_np, mg0_np, rms0_np, mom0_np, learning_rate, decay, momentum, centered) var1_np, mg1_np, rms1_np, mom1_np = self._sparse_rmsprop_update_numpy( var1_np, grads1_np_indices, grads1_np, mg1_np, rms1_np, mom1_np, learning_rate, decay, momentum, centered) # Validate updated params if centered: self.assertAllCloseAccordingToType(mg0_np, mg0.eval()) self.assertAllCloseAccordingToType(mg1_np, mg1.eval()) self.assertAllCloseAccordingToType(rms0_np, rms0.eval()) self.assertAllCloseAccordingToType(rms1_np, rms1.eval()) self.assertAllCloseAccordingToType(mom0_np, mom0.eval()) self.assertAllCloseAccordingToType(mom1_np, mom1.eval()) self.assertAllCloseAccordingToType(var0_np, var0.eval()) self.assertAllCloseAccordingToType(var1_np, var1.eval()) @parameterized.parameters(_DATA_TYPES) def testWithoutMomentum(self, dtype): with self.session(use_gpu=True): var0 = variables.Variable([1.0, 2.0], dtype=dtype) var1 = variables.Variable([3.0, 4.0], dtype=dtype) grads0 = constant_op.constant([0.1, 0.1], dtype=dtype) grads1 = constant_op.constant([0.01, 0.01], dtype=dtype) opt = rmsprop.RMSPropOptimizer( learning_rate=2.0, decay=0.9, momentum=0.0, epsilon=1.0) update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) variables.global_variables_initializer().run() rms0 = opt.get_slot(var0, "rms") self.assertIsNotNone(rms0) rms1 = opt.get_slot(var1, "rms") self.assertIsNotNone(rms1) mom0 = opt.get_slot(var0, "momentum") self.assertIsNotNone(mom0) mom1 = opt.get_slot(var1, "momentum") self.assertIsNotNone(mom1) # Fetch params to validate initial values self.assertAllClose([1.0, 2.0], var0.eval()) self.assertAllClose([3.0, 4.0], var1.eval()) # Step 1: the rms accumulators where 1. So we should see a normal # update: v -= grad * learning_rate update.run() # Check the root mean square accumulators. self.assertAllCloseAccordingToType( np.array([0.901, 0.901]), rms0.eval()) self.assertAllCloseAccordingToType( np.array([0.90001, 0.90001]), rms1.eval()) # Check the parameters. self.assertAllCloseAccordingToType( np.array([ 1.0 - (0.1 * 2.0 / math.sqrt(0.901)), 2.0 - (0.1 * 2.0 / math.sqrt(0.901)) ]), var0.eval()) self.assertAllCloseAccordingToType( np.array([ 3.0 - (0.01 * 2.0 / math.sqrt(0.90001)), 4.0 - (0.01 * 2.0 / math.sqrt(0.90001)) ]), var1.eval()) # Step 2: the root mean square accumulators contain the previous update. update.run() # Check the rms accumulators. self.assertAllCloseAccordingToType( np.array([0.901 * 0.9 + 0.001, 0.901 * 0.9 + 0.001]), rms0.eval()) self.assertAllCloseAccordingToType( np.array([0.90001 * 0.9 + 1e-5, 0.90001 * 0.9 + 1e-5]), rms1.eval()) # Check the parameters. self.assertAllCloseAccordingToType( np.array([ 1.0 - (0.1 * 2.0 / math.sqrt(0.901)) - (0.1 * 2.0 / math.sqrt(0.901 * 0.9 + 0.001)), 2.0 - (0.1 * 2.0 / math.sqrt(0.901)) - (0.1 * 2.0 / math.sqrt(0.901 * 0.9 + 0.001)) ]), var0.eval()) self.assertAllCloseAccordingToType( np.array([ 3.0 - (0.01 * 2.0 / math.sqrt(0.90001)) - (0.01 * 2.0 / math.sqrt(0.90001 * 0.9 + 1e-5)), 4.0 - (0.01 * 2.0 / math.sqrt(0.90001)) - (0.01 * 2.0 / math.sqrt(0.90001 * 0.9 + 1e-5)) ]), var1.eval()) @parameterized.parameters(_DATA_TYPES) def testWithMomentum(self, dtype): with self.session(use_gpu=True): var0 = variables.Variable([1.0, 2.0], dtype=dtype) var1 = variables.Variable([3.0, 4.0], dtype=dtype) grads0 = constant_op.constant([0.1, 0.1], dtype=dtype) grads1 = constant_op.constant([0.01, 0.01], dtype=dtype) opt = rmsprop.RMSPropOptimizer( learning_rate=2.0, decay=0.9, momentum=0.5, epsilon=1.0) update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) variables.global_variables_initializer().run() rms0 = opt.get_slot(var0, "rms") self.assertIsNotNone(rms0) rms1 = opt.get_slot(var1, "rms") self.assertIsNotNone(rms1) mom0 = opt.get_slot(var0, "momentum") self.assertIsNotNone(mom0) mom1 = opt.get_slot(var1, "momentum") self.assertIsNotNone(mom1) # Fetch params to validate initial values self.assertAllClose([1.0, 2.0], var0.eval()) self.assertAllClose([3.0, 4.0], var1.eval()) # Step 1: rms = 1, mom = 0. So we should see a normal # update: v -= grad * learning_rate update.run() # Check the root mean square accumulators. self.assertAllCloseAccordingToType( np.array([0.901, 0.901]), rms0.eval()) self.assertAllCloseAccordingToType( np.array([0.90001, 0.90001]), rms1.eval()) # Check the momentum accumulators self.assertAllCloseAccordingToType( np.array([(0.1 * 2.0 / math.sqrt(0.901)), (0.1 * 2.0 / math.sqrt(0.901))]), mom0.eval()) self.assertAllCloseAccordingToType( np.array([(0.01 * 2.0 / math.sqrt(0.90001)), (0.01 * 2.0 / math.sqrt(0.90001))]), mom1.eval()) # Check that the parameters. self.assertAllCloseAccordingToType( np.array([ 1.0 - (0.1 * 2.0 / math.sqrt(0.901)), 2.0 - (0.1 * 2.0 / math.sqrt(0.901)) ]), var0.eval()) self.assertAllCloseAccordingToType( np.array([ 3.0 - (0.01 * 2.0 / math.sqrt(0.90001)), 4.0 - (0.01 * 2.0 / math.sqrt(0.90001)) ]), var1.eval()) # Step 2: the root mean square accumulators contain the previous update. update.run() # Check the rms accumulators. self.assertAllCloseAccordingToType( np.array([0.901 * 0.9 + 0.001, 0.901 * 0.9 + 0.001]), rms0.eval()) self.assertAllCloseAccordingToType( np.array([0.90001 * 0.9 + 1e-5, 0.90001 * 0.9 + 1e-5]), rms1.eval()) self.assertAllCloseAccordingToType( np.array([ 0.5 * (0.1 * 2.0 / math.sqrt(0.901)) + (0.1 * 2.0 / math.sqrt(0.901 * 0.9 + 0.001)), 0.5 * (0.1 * 2.0 / math.sqrt(0.901)) + (0.1 * 2.0 / math.sqrt(0.901 * 0.9 + 0.001)) ]), mom0.eval()) self.assertAllCloseAccordingToType( np.array([ 0.5 * (0.01 * 2.0 / math.sqrt(0.90001)) + (0.01 * 2.0 / math.sqrt(0.90001 * 0.9 + 1e-5)), 0.5 * (0.01 * 2.0 / math.sqrt(0.90001)) + (0.01 * 2.0 / math.sqrt(0.90001 * 0.9 + 1e-5)) ]), mom1.eval()) # Check the parameters. self.assertAllCloseAccordingToType( np.array([ 1.0 - (0.1 * 2.0 / math.sqrt(0.901)) - (0.5 * (0.1 * 2.0 / math.sqrt(0.901)) + (0.1 * 2.0 / math.sqrt(0.901 * 0.9 + 0.001))), 2.0 - (0.1 * 2.0 / math.sqrt(0.901)) - (0.5 * (0.1 * 2.0 / math.sqrt(0.901)) + (0.1 * 2.0 / math.sqrt(0.901 * 0.9 + 0.001))) ]), var0.eval()) self.assertAllCloseAccordingToType( np.array([ 3.0 - (0.01 * 2.0 / math.sqrt(0.90001)) - (0.5 * (0.01 * 2.0 / math.sqrt(0.90001)) + (0.01 * 2.0 / math.sqrt(0.90001 * 0.9 + 1e-5))), 4.0 - (0.01 * 2.0 / math.sqrt(0.90001)) - (0.5 * (0.01 * 2.0 / math.sqrt(0.90001)) + (0.01 * 2.0 / math.sqrt(0.90001 * 0.9 + 1e-5))) ]), var1.eval()) class SlotColocationTest(test.TestCase, parameterized.TestCase): @parameterized.parameters([True, False]) @test_util.run_gpu_only @test_util.run_in_graph_and_eager_modes def testRunMinimizeOnGPUForCPUVariables(self, use_resource): with ops.device("/device:CPU:0"): if use_resource: var0 = resource_variable_ops.ResourceVariable([1.0, 2.0], dtype=dtypes.float32) var1 = resource_variable_ops.ResourceVariable([3.0, 4.0], dtype=dtypes.float32) global_step = resource_variable_ops.ResourceVariable( array_ops.zeros([], dtypes.int64), name="global_step") else: var0 = variables.Variable([1.0, 2.0], dtype=dtypes.float32) var1 = variables.Variable([3.0, 4.0], dtype=dtypes.float32) global_step = variables.Variable( array_ops.zeros([], dtypes.int64), name="global_step") def loss(): return 5 * var0 + 3 * var1 opt = rmsprop.RMSPropOptimizer( learning_rate=1.0, decay=0.9, momentum=0.5, epsilon=1.0) # Fetch params to validate initial values self.evaluate(variables.global_variables_initializer()) self.assertAllClose([1.0, 2.0], self.evaluate(var0)) self.assertAllClose([3.0, 4.0], self.evaluate(var1)) # Run 1 step through optimizer on GPU. # Slot variables are created the first time optimizer is used on some # variable. This tests that slot variables will be colocated with the base # variable. with ops.device("/device:GPU:0"): # Note that for eager execution, minimize expects a function instead of a # Tensor. opt_op = opt.minimize(loss, global_step, [var0, var1]) self.evaluate(variables.global_variables_initializer()) self.evaluate(opt_op) # Validate updated params, All variables should have decreased. self.assertTrue(all(v < 0.0 for v in self.evaluate(var0)), msg="updated variables: %s" % self.evaluate(var0)) self.assertTrue(all(v < 2.0 for v in self.evaluate(var1)), msg="updated variables: %s" % self.evaluate(var1)) if __name__ == "__main__": test.main()
tensorflow-master
tensorflow/contrib/optimizer_v2/rmsprop_test.py
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Momentum for TensorFlow.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.optimizer_v2 import optimizer_v2 from tensorflow.python.training import training_ops class MomentumOptimizer(optimizer_v2.OptimizerV2): """Optimizer that implements the Momentum algorithm. Computes (if `use_nesterov = False`): ``` accumulation = momentum * accumulation + gradient variable -= learning_rate * accumulation ``` Note that in the dense version of this algorithm, `accumulation` is updated and applied regardless of a gradient's value, whereas the sparse version (when the gradient is an `IndexedSlices`, typically because of `tf.gather` or an embedding) only updates variable slices and corresponding `accumulation` terms when that part of the variable was used in the forward pass. """ def __init__(self, learning_rate, momentum, use_locking=False, name="Momentum", use_nesterov=False): """Construct a new Momentum optimizer. Some of the args below are hyperparameters, where a hyperparameter is defined as a scalar Tensor, a regular Python value or a callable (which will be evaluated when `apply_gradients` is called) returning a scalar Tensor or a Python value. Args: learning_rate: A float hyperparameter. The learning rate. momentum: A float hyperparameter. The momentum. use_locking: If `True` use locks for update operations. name: Optional name prefix for the operations created when applying gradients. Defaults to "Momentum". use_nesterov: If `True` use Nesterov Momentum. See [Sutskever et al., 2013]( http://jmlr.org/proceedings/papers/v28/sutskever13.pdf). This implementation always computes gradients at the value of the variable(s) passed to the optimizer. Using Nesterov Momentum makes the variable(s) track the values called `theta_t + mu*v_t` in the paper. @compatibility(eager) When eager execution is enabled, learning_rate and momentum can each be a callable that takes no arguments and returns the actual value to use. This can be useful for changing these values across different invocations of optimizer functions. @end_compatibility """ super(MomentumOptimizer, self).__init__(use_locking, name) self._set_hyper("learning_rate", learning_rate) self._set_hyper("momentum", momentum) self._use_nesterov = use_nesterov def _create_vars(self, var_list, state): for v in var_list: state.zeros_slot(v, "momentum") def _apply_dense(self, grad, var, state): mom = state.get_slot(var, "momentum") return training_ops.apply_momentum( var, mom, state.get_hyper("learning_rate", var.dtype.base_dtype), grad, state.get_hyper("momentum", var.dtype.base_dtype), use_locking=self._use_locking, use_nesterov=self._use_nesterov).op def _resource_apply_dense(self, grad, var, state): mom = state.get_slot(var, "momentum") return training_ops.resource_apply_momentum( var.handle, mom.handle, state.get_hyper("learning_rate", var.dtype.base_dtype), grad, state.get_hyper("momentum", var.dtype.base_dtype), use_locking=self._use_locking, use_nesterov=self._use_nesterov) def _apply_sparse(self, grad, var, state): mom = state.get_slot(var, "momentum") return training_ops.sparse_apply_momentum( var, mom, state.get_hyper("learning_rate", var.dtype.base_dtype), grad.values, grad.indices, state.get_hyper("momentum", var.dtype.base_dtype), use_locking=self._use_locking, use_nesterov=self._use_nesterov).op def _resource_apply_sparse(self, grad, var, indices, state): mom = state.get_slot(var, "momentum") return training_ops.resource_sparse_apply_momentum( var.handle, mom.handle, state.get_hyper("learning_rate", var.dtype.base_dtype), grad, indices, state.get_hyper("momentum", var.dtype.base_dtype), use_locking=self._use_locking, use_nesterov=self._use_nesterov)
tensorflow-master
tensorflow/contrib/optimizer_v2/momentum.py
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Adadelta for TensorFlow.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.optimizer_v2 import optimizer_v2 from tensorflow.python.training import training_ops class AdadeltaOptimizer(optimizer_v2.OptimizerV2): """Optimizer that implements the Adadelta algorithm. See [M. D. Zeiler](http://arxiv.org/abs/1212.5701) ([pdf](http://arxiv.org/pdf/1212.5701v1.pdf)) """ def __init__(self, learning_rate=0.001, rho=0.95, epsilon=1e-8, use_locking=False, name="Adadelta"): """Construct a new Adadelta optimizer. Some of the args below are hyperparameters, where a hyperparameter is defined as a scalar Tensor, a regular Python value or a callable (which will be evaluated when `apply_gradients` is called) returning a scalar Tensor or a Python value. Args: learning_rate: A float hyperparameter. The learning rate. To match the exact form in the original paper use 1.0. rho: A float hyperparameter. The decay rate. epsilon: A float hyperparameter. A constant epsilon used to better condition the grad update. use_locking: If `True` use locks for update operations. name: Optional name prefix for the operations created when applying gradients. Defaults to "Adadelta". """ super(AdadeltaOptimizer, self).__init__(use_locking, name) self._set_hyper("learning_rate", learning_rate) self._set_hyper("rho", rho) self._set_hyper("epsilon", epsilon) def _create_vars(self, var_list, state): for v in var_list: state.zeros_slot(v, "accum") state.zeros_slot(v, "accum_update") def _apply_dense(self, grad, var, state): accum = state.get_slot(var, "accum") accum_update = state.get_slot(var, "accum_update") return training_ops.apply_adadelta( var, accum, accum_update, state.get_hyper("learning_rate", var.dtype.base_dtype), state.get_hyper("rho", var.dtype.base_dtype), state.get_hyper("epsilon", var.dtype.base_dtype), grad, use_locking=self._use_locking) def _resource_apply_dense(self, grad, var, state): accum = state.get_slot(var, "accum") accum_update = state.get_slot(var, "accum_update") return training_ops.resource_apply_adadelta( var.handle, accum.handle, accum_update.handle, state.get_hyper("learning_rate", var.dtype.base_dtype), state.get_hyper("rho", var.dtype.base_dtype), state.get_hyper("epsilon", var.dtype.base_dtype), grad, use_locking=self._use_locking) def _apply_sparse(self, grad, var, state): accum = state.get_slot(var, "accum") accum_update = state.get_slot(var, "accum_update") return training_ops.sparse_apply_adadelta( var, accum, accum_update, state.get_hyper("learning_rate", var.dtype.base_dtype), state.get_hyper("rho", var.dtype.base_dtype), state.get_hyper("epsilon", var.dtype.base_dtype), grad.values, grad.indices, use_locking=self._use_locking) def _resource_apply_sparse(self, grad, var, indices, state): accum = state.get_slot(var, "accum") accum_update = state.get_slot(var, "accum_update") return training_ops.resource_sparse_apply_adadelta( var.handle, accum.handle, accum_update.handle, state.get_hyper("learning_rate", var.dtype.base_dtype), state.get_hyper("rho", var.dtype.base_dtype), state.get_hyper("epsilon", var.dtype.base_dtype), grad, indices, use_locking=self._use_locking)
tensorflow-master
tensorflow/contrib/optimizer_v2/adadelta.py
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Ops for building neural network seq2seq decoders and losses. See the [Contrib Seq2seq](https://tensorflow.org/api_guides/python/contrib.seq2seq) guide. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function # pylint: disable=unused-import,wildcard-import,line-too-long from tensorflow.contrib.seq2seq.python.ops.attention_wrapper import * from tensorflow.contrib.seq2seq.python.ops.basic_decoder import * from tensorflow.contrib.seq2seq.python.ops.beam_search_decoder import * from tensorflow.contrib.seq2seq.python.ops.beam_search_ops import * from tensorflow.contrib.seq2seq.python.ops.decoder import * from tensorflow.contrib.seq2seq.python.ops.helper import * from tensorflow.contrib.seq2seq.python.ops.loss import * from tensorflow.python.util.all_util import remove_undocumented # pylint: enable=unused-import,widcard-import,line-too-long _allowed_symbols = [ "sequence_loss", "Decoder", "dynamic_decode", "BasicDecoder", "BasicDecoderOutput", "BeamSearchDecoder", "BeamSearchDecoderOutput", "BeamSearchDecoderState", "Helper", "CustomHelper", "FinalBeamSearchDecoderOutput", "gather_tree", "GreedyEmbeddingHelper", "InferenceHelper", "SampleEmbeddingHelper", "ScheduledEmbeddingTrainingHelper", "ScheduledOutputTrainingHelper", "TrainingHelper", "BahdanauAttention", "LuongAttention", "hardmax", "AttentionWrapperState", "AttentionWrapper", "AttentionMechanism", "tile_batch", "safe_cumprod", "monotonic_attention", "monotonic_probability_fn", "BahdanauMonotonicAttention", "LuongMonotonicAttention", ] remove_undocumented(__name__, _allowed_symbols)
tensorflow-master
tensorflow/contrib/seq2seq/__init__.py
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for contrib.seq2seq.python.seq2seq.basic_decoder_v2.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import parameterized import numpy as np from tensorflow.contrib.seq2seq.python.ops import basic_decoder from tensorflow.contrib.seq2seq.python.ops import sampler as sampler_py from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import tensor_shape from tensorflow.python.keras import keras_parameterized from tensorflow.python.layers import core as layers_core from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import rnn_cell from tensorflow.python.ops import variables from tensorflow.python.platform import test @keras_parameterized.run_all_keras_modes class BasicDecoderTest(keras_parameterized.TestCase): """Unit test for basic_decoder.BasicDecoderV2.""" @parameterized.named_parameters( ("use_output_layer", True), ("without_output_layer", False)) def testStepWithTrainingHelperOutputLayer(self, use_output_layer): sequence_length = [3, 4, 3, 1, 0] batch_size = 5 max_time = 8 input_depth = 7 cell_depth = 10 output_layer_depth = 3 with self.cached_session(use_gpu=True): inputs = np.random.randn(batch_size, max_time, input_depth).astype(np.float32) input_t = constant_op.constant(inputs) cell = rnn_cell.LSTMCell(cell_depth) sampler = sampler_py.TrainingSampler(time_major=False) if use_output_layer: output_layer = layers_core.Dense(output_layer_depth, use_bias=False) expected_output_depth = output_layer_depth else: output_layer = None expected_output_depth = cell_depth initial_state = cell.zero_state(dtype=dtypes.float32, batch_size=batch_size) my_decoder = basic_decoder.BasicDecoderV2( cell=cell, sampler=sampler, output_layer=output_layer) (first_finished, first_inputs, first_state) = my_decoder.initialize(input_t, initial_state=initial_state, sequence_length=sequence_length) output_size = my_decoder.output_size output_dtype = my_decoder.output_dtype self.assertEqual( basic_decoder.BasicDecoderOutput(expected_output_depth, tensor_shape.TensorShape([])), output_size) self.assertEqual( basic_decoder.BasicDecoderOutput(dtypes.float32, dtypes.int32), output_dtype) (step_outputs, step_state, step_next_inputs, step_finished) = my_decoder.step( constant_op.constant(0), first_inputs, first_state) batch_size_t = my_decoder.batch_size self.assertTrue(isinstance(first_state, rnn_cell.LSTMStateTuple)) self.assertTrue(isinstance(step_state, rnn_cell.LSTMStateTuple)) self.assertTrue( isinstance(step_outputs, basic_decoder.BasicDecoderOutput)) self.assertEqual((batch_size, expected_output_depth), step_outputs[0].get_shape()) self.assertEqual((batch_size,), step_outputs[1].get_shape()) self.assertEqual((batch_size, cell_depth), first_state[0].get_shape()) self.assertEqual((batch_size, cell_depth), first_state[1].get_shape()) self.assertEqual((batch_size, cell_depth), step_state[0].get_shape()) self.assertEqual((batch_size, cell_depth), step_state[1].get_shape()) if use_output_layer: # The output layer was accessed self.assertEqual(len(output_layer.variables), 1) self.evaluate(variables.global_variables_initializer()) eval_result = self.evaluate({ "batch_size": batch_size_t, "first_finished": first_finished, "first_inputs": first_inputs, "first_state": first_state, "step_outputs": step_outputs, "step_state": step_state, "step_next_inputs": step_next_inputs, "step_finished": step_finished }) self.assertAllEqual([False, False, False, False, True], eval_result["first_finished"]) self.assertAllEqual([False, False, False, True, True], eval_result["step_finished"]) self.assertEqual(output_dtype.sample_id, eval_result["step_outputs"].sample_id.dtype) self.assertAllEqual( np.argmax(eval_result["step_outputs"].rnn_output, -1), eval_result["step_outputs"].sample_id) def DISABLED_testStepWithGreedyEmbeddingHelper(self): batch_size = 5 vocabulary_size = 7 cell_depth = vocabulary_size # cell's logits must match vocabulary size input_depth = 10 start_tokens = np.random.randint(0, vocabulary_size, size=batch_size) end_token = 1 with self.cached_session(use_gpu=True): embeddings = np.random.randn(vocabulary_size, input_depth).astype(np.float32) embeddings_t = constant_op.constant(embeddings) cell = rnn_cell.LSTMCell(vocabulary_size) sampler = sampler_py.GreedyEmbeddingSampler() initial_state = cell.zero_state( dtype=dtypes.float32, batch_size=batch_size) my_decoder = basic_decoder.BasicDecoderV2( cell=cell, sampler=sampler) (first_finished, first_inputs, first_state) = my_decoder.initialize( embeddings_t, start_tokens=start_tokens, end_token=end_token, initial_state=initial_state) output_size = my_decoder.output_size output_dtype = my_decoder.output_dtype self.assertEqual( basic_decoder.BasicDecoderOutput(cell_depth, tensor_shape.TensorShape([])), output_size) self.assertEqual( basic_decoder.BasicDecoderOutput(dtypes.float32, dtypes.int32), output_dtype) (step_outputs, step_state, step_next_inputs, step_finished) = my_decoder.step( constant_op.constant(0), first_inputs, first_state) batch_size_t = my_decoder.batch_size self.assertTrue(isinstance(first_state, rnn_cell.LSTMStateTuple)) self.assertTrue(isinstance(step_state, rnn_cell.LSTMStateTuple)) self.assertTrue( isinstance(step_outputs, basic_decoder.BasicDecoderOutput)) self.assertEqual((batch_size, cell_depth), step_outputs[0].get_shape()) self.assertEqual((batch_size,), step_outputs[1].get_shape()) self.assertEqual((batch_size, cell_depth), first_state[0].get_shape()) self.assertEqual((batch_size, cell_depth), first_state[1].get_shape()) self.assertEqual((batch_size, cell_depth), step_state[0].get_shape()) self.assertEqual((batch_size, cell_depth), step_state[1].get_shape()) self.evaluate(variables.global_variables_initializer()) eval_result = self.evaluate({ "batch_size": batch_size_t, "first_finished": first_finished, "first_inputs": first_inputs, "first_state": first_state, "step_outputs": step_outputs, "step_state": step_state, "step_next_inputs": step_next_inputs, "step_finished": step_finished }) expected_sample_ids = np.argmax( eval_result["step_outputs"].rnn_output, -1) expected_step_finished = (expected_sample_ids == end_token) expected_step_next_inputs = embeddings[expected_sample_ids] self.assertAllEqual([False, False, False, False, False], eval_result["first_finished"]) self.assertAllEqual(expected_step_finished, eval_result["step_finished"]) self.assertEqual(output_dtype.sample_id, eval_result["step_outputs"].sample_id.dtype) self.assertAllEqual(expected_sample_ids, eval_result["step_outputs"].sample_id) self.assertAllEqual(expected_step_next_inputs, eval_result["step_next_inputs"]) def testStepWithSampleEmbeddingHelper(self): batch_size = 5 vocabulary_size = 7 cell_depth = vocabulary_size # cell's logits must match vocabulary size input_depth = 10 np.random.seed(0) start_tokens = np.random.randint(0, vocabulary_size, size=batch_size) end_token = 1 with self.cached_session(use_gpu=True): embeddings = np.random.randn(vocabulary_size, input_depth).astype(np.float32) embeddings_t = constant_op.constant(embeddings) cell = rnn_cell.LSTMCell(vocabulary_size) sampler = sampler_py.SampleEmbeddingSampler(seed=0) initial_state = cell.zero_state( dtype=dtypes.float32, batch_size=batch_size) my_decoder = basic_decoder.BasicDecoderV2(cell=cell, sampler=sampler) (first_finished, first_inputs, first_state) = my_decoder.initialize(embeddings_t, start_tokens=start_tokens, end_token=end_token, initial_state=initial_state) output_size = my_decoder.output_size output_dtype = my_decoder.output_dtype self.assertEqual( basic_decoder.BasicDecoderOutput(cell_depth, tensor_shape.TensorShape([])), output_size) self.assertEqual( basic_decoder.BasicDecoderOutput(dtypes.float32, dtypes.int32), output_dtype) (step_outputs, step_state, step_next_inputs, step_finished) = my_decoder.step( constant_op.constant(0), first_inputs, first_state) batch_size_t = my_decoder.batch_size self.assertTrue(isinstance(first_state, rnn_cell.LSTMStateTuple)) self.assertTrue(isinstance(step_state, rnn_cell.LSTMStateTuple)) self.assertTrue( isinstance(step_outputs, basic_decoder.BasicDecoderOutput)) self.assertEqual((batch_size, cell_depth), step_outputs[0].get_shape()) self.assertEqual((batch_size,), step_outputs[1].get_shape()) self.assertEqual((batch_size, cell_depth), first_state[0].get_shape()) self.assertEqual((batch_size, cell_depth), first_state[1].get_shape()) self.assertEqual((batch_size, cell_depth), step_state[0].get_shape()) self.assertEqual((batch_size, cell_depth), step_state[1].get_shape()) self.evaluate(variables.global_variables_initializer()) eval_result = self.evaluate({ "batch_size": batch_size_t, "first_finished": first_finished, "first_inputs": first_inputs, "first_state": first_state, "step_outputs": step_outputs, "step_state": step_state, "step_next_inputs": step_next_inputs, "step_finished": step_finished }) sample_ids = eval_result["step_outputs"].sample_id self.assertEqual(output_dtype.sample_id, sample_ids.dtype) expected_step_finished = (sample_ids == end_token) expected_step_next_inputs = embeddings[sample_ids] self.assertAllEqual(expected_step_finished, eval_result["step_finished"]) self.assertAllEqual(expected_step_next_inputs, eval_result["step_next_inputs"]) def testStepWithScheduledEmbeddingTrainingHelper(self): sequence_length = [3, 4, 3, 1, 0] batch_size = 5 max_time = 8 input_depth = 7 vocabulary_size = 10 with self.cached_session(use_gpu=True): inputs = np.random.randn( batch_size, max_time, input_depth).astype(np.float32) input_t = constant_op.constant(inputs) embeddings = np.random.randn( vocabulary_size, input_depth).astype(np.float32) half = constant_op.constant(0.5) cell = rnn_cell.LSTMCell(vocabulary_size) sampler = sampler_py.ScheduledEmbeddingTrainingSampler( sampling_probability=half, time_major=False) initial_state = cell.zero_state( dtype=dtypes.float32, batch_size=batch_size) my_decoder = basic_decoder.BasicDecoderV2( cell=cell, sampler=sampler) (first_finished, first_inputs, first_state) = my_decoder.initialize( input_t, sequence_length=sequence_length, embedding=embeddings, initial_state=initial_state) output_size = my_decoder.output_size output_dtype = my_decoder.output_dtype self.assertEqual( basic_decoder.BasicDecoderOutput(vocabulary_size, tensor_shape.TensorShape([])), output_size) self.assertEqual( basic_decoder.BasicDecoderOutput(dtypes.float32, dtypes.int32), output_dtype) (step_outputs, step_state, step_next_inputs, step_finished) = my_decoder.step( constant_op.constant(0), first_inputs, first_state) batch_size_t = my_decoder.batch_size self.assertTrue(isinstance(first_state, rnn_cell.LSTMStateTuple)) self.assertTrue(isinstance(step_state, rnn_cell.LSTMStateTuple)) self.assertTrue( isinstance(step_outputs, basic_decoder.BasicDecoderOutput)) self.assertEqual((batch_size, vocabulary_size), step_outputs[0].get_shape()) self.assertEqual((batch_size,), step_outputs[1].get_shape()) self.assertEqual((batch_size, vocabulary_size), first_state[0].get_shape()) self.assertEqual((batch_size, vocabulary_size), first_state[1].get_shape()) self.assertEqual((batch_size, vocabulary_size), step_state[0].get_shape()) self.assertEqual((batch_size, vocabulary_size), step_state[1].get_shape()) self.assertEqual((batch_size, input_depth), step_next_inputs.get_shape()) self.evaluate(variables.global_variables_initializer()) eval_result = self.evaluate({ "batch_size": batch_size_t, "first_finished": first_finished, "first_inputs": first_inputs, "first_state": first_state, "step_outputs": step_outputs, "step_state": step_state, "step_next_inputs": step_next_inputs, "step_finished": step_finished }) self.assertAllEqual([False, False, False, False, True], eval_result["first_finished"]) self.assertAllEqual([False, False, False, True, True], eval_result["step_finished"]) sample_ids = eval_result["step_outputs"].sample_id self.assertEqual(output_dtype.sample_id, sample_ids.dtype) batch_where_not_sampling = np.where(sample_ids == -1) batch_where_sampling = np.where(sample_ids > -1) self.assertAllClose( eval_result["step_next_inputs"][batch_where_sampling], embeddings[sample_ids[batch_where_sampling]]) self.assertAllClose( eval_result["step_next_inputs"][batch_where_not_sampling], np.squeeze(inputs[batch_where_not_sampling, 1], axis=0)) def _testStepWithScheduledOutputTrainingHelper( self, sampling_probability, use_next_inputs_fn, use_auxiliary_inputs): sequence_length = [3, 4, 3, 1, 0] batch_size = 5 max_time = 8 input_depth = 7 cell_depth = input_depth if use_auxiliary_inputs: auxiliary_input_depth = 4 auxiliary_inputs = np.random.randn( batch_size, max_time, auxiliary_input_depth).astype(np.float32) else: auxiliary_inputs = None with self.cached_session(use_gpu=True): inputs = np.random.randn(batch_size, max_time, input_depth).astype(np.float32) input_t = constant_op.constant(inputs) cell = rnn_cell.LSTMCell(cell_depth) sampling_probability = constant_op.constant(sampling_probability) if use_next_inputs_fn: def next_inputs_fn(outputs): # Use deterministic function for test. samples = math_ops.argmax(outputs, axis=1) return array_ops.one_hot(samples, cell_depth, dtype=dtypes.float32) else: next_inputs_fn = None sampler = sampler_py.ScheduledOutputTrainingSampler( sampling_probability=sampling_probability, time_major=False, next_inputs_fn=next_inputs_fn) initial_state = cell.zero_state( dtype=dtypes.float32, batch_size=batch_size) my_decoder = basic_decoder.BasicDecoderV2( cell=cell, sampler=sampler) (first_finished, first_inputs, first_state) = my_decoder.initialize(input_t, sequence_length=sequence_length, initial_state=initial_state, auxiliary_inputs=auxiliary_inputs) output_size = my_decoder.output_size output_dtype = my_decoder.output_dtype self.assertEqual( basic_decoder.BasicDecoderOutput(cell_depth, tensor_shape.TensorShape([])), output_size) self.assertEqual( basic_decoder.BasicDecoderOutput(dtypes.float32, dtypes.int32), output_dtype) (step_outputs, step_state, step_next_inputs, step_finished) = my_decoder.step( constant_op.constant(0), first_inputs, first_state) if use_next_inputs_fn: output_after_next_inputs_fn = next_inputs_fn(step_outputs.rnn_output) batch_size_t = my_decoder.batch_size self.assertTrue(isinstance(first_state, rnn_cell.LSTMStateTuple)) self.assertTrue(isinstance(step_state, rnn_cell.LSTMStateTuple)) self.assertTrue( isinstance(step_outputs, basic_decoder.BasicDecoderOutput)) self.assertEqual((batch_size, cell_depth), step_outputs[0].get_shape()) self.assertEqual((batch_size,), step_outputs[1].get_shape()) self.assertEqual((batch_size, cell_depth), first_state[0].get_shape()) self.assertEqual((batch_size, cell_depth), first_state[1].get_shape()) self.assertEqual((batch_size, cell_depth), step_state[0].get_shape()) self.assertEqual((batch_size, cell_depth), step_state[1].get_shape()) self.evaluate(variables.global_variables_initializer()) fetches = { "batch_size": batch_size_t, "first_finished": first_finished, "first_inputs": first_inputs, "first_state": first_state, "step_outputs": step_outputs, "step_state": step_state, "step_next_inputs": step_next_inputs, "step_finished": step_finished } if use_next_inputs_fn: fetches["output_after_next_inputs_fn"] = output_after_next_inputs_fn eval_result = self.evaluate(fetches) self.assertAllEqual([False, False, False, False, True], eval_result["first_finished"]) self.assertAllEqual([False, False, False, True, True], eval_result["step_finished"]) sample_ids = eval_result["step_outputs"].sample_id self.assertEqual(output_dtype.sample_id, sample_ids.dtype) batch_where_not_sampling = np.where(np.logical_not(sample_ids)) batch_where_sampling = np.where(sample_ids) auxiliary_inputs_to_concat = ( auxiliary_inputs[:, 1] if use_auxiliary_inputs else np.array([]).reshape(batch_size, 0).astype(np.float32)) expected_next_sampling_inputs = np.concatenate( (eval_result["output_after_next_inputs_fn"][batch_where_sampling] if use_next_inputs_fn else eval_result["step_outputs"].rnn_output[batch_where_sampling], auxiliary_inputs_to_concat[batch_where_sampling]), axis=-1) self.assertAllClose( eval_result["step_next_inputs"][batch_where_sampling], expected_next_sampling_inputs) self.assertAllClose( eval_result["step_next_inputs"][batch_where_not_sampling], np.concatenate( (np.squeeze(inputs[batch_where_not_sampling, 1], axis=0), auxiliary_inputs_to_concat[batch_where_not_sampling]), axis=-1)) def testStepWithScheduledOutputTrainingHelperWithoutNextInputsFnOrAuxInputs( self): self._testStepWithScheduledOutputTrainingHelper( sampling_probability=0.5, use_next_inputs_fn=False, use_auxiliary_inputs=False) def testStepWithScheduledOutputTrainingHelperWithNextInputsFn(self): self._testStepWithScheduledOutputTrainingHelper( sampling_probability=0.5, use_next_inputs_fn=True, use_auxiliary_inputs=False) def testStepWithScheduledOutputTrainingHelperWithAuxiliaryInputs(self): self._testStepWithScheduledOutputTrainingHelper( sampling_probability=0.5, use_next_inputs_fn=False, use_auxiliary_inputs=True) def testStepWithScheduledOutputTrainingHelperWithNextInputsFnAndAuxInputs( self): self._testStepWithScheduledOutputTrainingHelper( sampling_probability=0.5, use_next_inputs_fn=True, use_auxiliary_inputs=True) def testStepWithScheduledOutputTrainingHelperWithNoSampling(self): self._testStepWithScheduledOutputTrainingHelper( sampling_probability=0.0, use_next_inputs_fn=True, use_auxiliary_inputs=True) def testStepWithInferenceHelperCategorical(self): batch_size = 5 vocabulary_size = 7 cell_depth = vocabulary_size start_token = 0 end_token = 6 start_inputs = array_ops.one_hot( np.ones(batch_size, dtype=np.int32) * start_token, vocabulary_size) # The sample function samples categorically from the logits. sample_fn = lambda x: sampler_py.categorical_sample(logits=x) # The next inputs are a one-hot encoding of the sampled labels. next_inputs_fn = ( lambda x: array_ops.one_hot(x, vocabulary_size, dtype=dtypes.float32)) end_fn = lambda sample_ids: math_ops.equal(sample_ids, end_token) with self.cached_session(use_gpu=True): cell = rnn_cell.LSTMCell(vocabulary_size) sampler = sampler_py.InferenceSampler( sample_fn, sample_shape=(), sample_dtype=dtypes.int32, end_fn=end_fn, next_inputs_fn=next_inputs_fn) initial_state = cell.zero_state( dtype=dtypes.float32, batch_size=batch_size) my_decoder = basic_decoder.BasicDecoderV2( cell=cell, sampler=sampler) (first_finished, first_inputs, first_state) = my_decoder.initialize( start_inputs, initial_state=initial_state) output_size = my_decoder.output_size output_dtype = my_decoder.output_dtype self.assertEqual( basic_decoder.BasicDecoderOutput(cell_depth, tensor_shape.TensorShape([])), output_size) self.assertEqual( basic_decoder.BasicDecoderOutput(dtypes.float32, dtypes.int32), output_dtype) (step_outputs, step_state, step_next_inputs, step_finished) = my_decoder.step( constant_op.constant(0), first_inputs, first_state) batch_size_t = my_decoder.batch_size self.assertTrue(isinstance(first_state, rnn_cell.LSTMStateTuple)) self.assertTrue(isinstance(step_state, rnn_cell.LSTMStateTuple)) self.assertTrue( isinstance(step_outputs, basic_decoder.BasicDecoderOutput)) self.assertEqual((batch_size, cell_depth), step_outputs[0].get_shape()) self.assertEqual((batch_size,), step_outputs[1].get_shape()) self.assertEqual((batch_size, cell_depth), first_state[0].get_shape()) self.assertEqual((batch_size, cell_depth), first_state[1].get_shape()) self.assertEqual((batch_size, cell_depth), step_state[0].get_shape()) self.assertEqual((batch_size, cell_depth), step_state[1].get_shape()) self.evaluate(variables.global_variables_initializer()) eval_result = self.evaluate({ "batch_size": batch_size_t, "first_finished": first_finished, "first_inputs": first_inputs, "first_state": first_state, "step_outputs": step_outputs, "step_state": step_state, "step_next_inputs": step_next_inputs, "step_finished": step_finished }) sample_ids = eval_result["step_outputs"].sample_id self.assertEqual(output_dtype.sample_id, sample_ids.dtype) expected_step_finished = (sample_ids == end_token) expected_step_next_inputs = np.zeros((batch_size, vocabulary_size)) expected_step_next_inputs[np.arange(batch_size), sample_ids] = 1.0 self.assertAllEqual(expected_step_finished, eval_result["step_finished"]) self.assertAllEqual(expected_step_next_inputs, eval_result["step_next_inputs"]) def testStepWithInferenceHelperMultilabel(self): batch_size = 5 vocabulary_size = 7 cell_depth = vocabulary_size start_token = 0 end_token = 6 start_inputs = array_ops.one_hot( np.ones(batch_size, dtype=np.int32) * start_token, vocabulary_size) # The sample function samples independent bernoullis from the logits. sample_fn = ( lambda x: sampler_py.bernoulli_sample(logits=x, dtype=dtypes.bool)) # The next inputs are a one-hot encoding of the sampled labels. next_inputs_fn = math_ops.to_float end_fn = lambda sample_ids: sample_ids[:, end_token] with self.cached_session(use_gpu=True): cell = rnn_cell.LSTMCell(vocabulary_size) sampler = sampler_py.InferenceSampler( sample_fn, sample_shape=[cell_depth], sample_dtype=dtypes.bool, end_fn=end_fn, next_inputs_fn=next_inputs_fn) initial_state = cell.zero_state( dtype=dtypes.float32, batch_size=batch_size) my_decoder = basic_decoder.BasicDecoderV2( cell=cell, sampler=sampler) (first_finished, first_inputs, first_state) = my_decoder.initialize( start_inputs, initial_state=initial_state) output_size = my_decoder.output_size output_dtype = my_decoder.output_dtype self.assertEqual( basic_decoder.BasicDecoderOutput(cell_depth, cell_depth), output_size) self.assertEqual( basic_decoder.BasicDecoderOutput(dtypes.float32, dtypes.bool), output_dtype) (step_outputs, step_state, step_next_inputs, step_finished) = my_decoder.step( constant_op.constant(0), first_inputs, first_state) batch_size_t = my_decoder.batch_size self.assertTrue(isinstance(first_state, rnn_cell.LSTMStateTuple)) self.assertTrue(isinstance(step_state, rnn_cell.LSTMStateTuple)) self.assertTrue( isinstance(step_outputs, basic_decoder.BasicDecoderOutput)) self.assertEqual((batch_size, cell_depth), step_outputs[0].get_shape()) self.assertEqual((batch_size, cell_depth), step_outputs[1].get_shape()) self.assertEqual((batch_size, cell_depth), first_state[0].get_shape()) self.assertEqual((batch_size, cell_depth), first_state[1].get_shape()) self.assertEqual((batch_size, cell_depth), step_state[0].get_shape()) self.assertEqual((batch_size, cell_depth), step_state[1].get_shape()) self.evaluate(variables.global_variables_initializer()) eval_result = self.evaluate({ "batch_size": batch_size_t, "first_finished": first_finished, "first_inputs": first_inputs, "first_state": first_state, "step_outputs": step_outputs, "step_state": step_state, "step_next_inputs": step_next_inputs, "step_finished": step_finished }) sample_ids = eval_result["step_outputs"].sample_id self.assertEqual(output_dtype.sample_id, sample_ids.dtype) expected_step_finished = sample_ids[:, end_token] expected_step_next_inputs = sample_ids.astype(np.float32) self.assertAllEqual(expected_step_finished, eval_result["step_finished"]) self.assertAllEqual(expected_step_next_inputs, eval_result["step_next_inputs"]) if __name__ == "__main__": test.main()
tensorflow-master
tensorflow/contrib/seq2seq/python/kernel_tests/basic_decoder_v2_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for contrib.seq2seq.python.seq2seq.decoder.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.seq2seq.python.ops import basic_decoder from tensorflow.contrib.seq2seq.python.ops import decoder from tensorflow.contrib.seq2seq.python.ops import helper as helper_py from tensorflow.python.framework import dtypes from tensorflow.python.framework import test_util from tensorflow.python.ops import rnn from tensorflow.python.ops import rnn_cell from tensorflow.python.ops import variables from tensorflow.python.ops import variable_scope as vs from tensorflow.python.platform import test @test_util.run_v1_only("contrib code not supported in TF2.0") class DynamicDecodeRNNTest(test.TestCase): def _testDynamicDecodeRNN(self, time_major, maximum_iterations=None): sequence_length = [3, 4, 3, 1, 0] batch_size = 5 max_time = 8 input_depth = 7 cell_depth = 10 max_out = max(sequence_length) with self.session(use_gpu=True) as sess: if time_major: inputs = np.random.randn(max_time, batch_size, input_depth).astype(np.float32) else: inputs = np.random.randn(batch_size, max_time, input_depth).astype(np.float32) cell = rnn_cell.LSTMCell(cell_depth) helper = helper_py.TrainingHelper( inputs, sequence_length, time_major=time_major) my_decoder = basic_decoder.BasicDecoder( cell=cell, helper=helper, initial_state=cell.zero_state( dtype=dtypes.float32, batch_size=batch_size)) final_outputs, final_state, final_sequence_length = ( decoder.dynamic_decode(my_decoder, output_time_major=time_major, maximum_iterations=maximum_iterations)) def _t(shape): if time_major: return (shape[1], shape[0]) + shape[2:] return shape self.assertTrue( isinstance(final_outputs, basic_decoder.BasicDecoderOutput)) self.assertTrue(isinstance(final_state, rnn_cell.LSTMStateTuple)) self.assertEqual( (batch_size,), tuple(final_sequence_length.get_shape().as_list())) self.assertEqual( _t((batch_size, None, cell_depth)), tuple(final_outputs.rnn_output.get_shape().as_list())) self.assertEqual( _t((batch_size, None)), tuple(final_outputs.sample_id.get_shape().as_list())) sess.run(variables.global_variables_initializer()) sess_results = sess.run({ "final_outputs": final_outputs, "final_state": final_state, "final_sequence_length": final_sequence_length, }) # Mostly a smoke test time_steps = max_out expected_length = sequence_length if maximum_iterations is not None: time_steps = min(max_out, maximum_iterations) expected_length = [min(x, maximum_iterations) for x in expected_length] self.assertEqual( _t((batch_size, time_steps, cell_depth)), sess_results["final_outputs"].rnn_output.shape) self.assertEqual( _t((batch_size, time_steps)), sess_results["final_outputs"].sample_id.shape) self.assertItemsEqual(expected_length, sess_results["final_sequence_length"]) def testDynamicDecodeRNNBatchMajor(self): self._testDynamicDecodeRNN(time_major=False) def testDynamicDecodeRNNTimeMajor(self): self._testDynamicDecodeRNN(time_major=True) def testDynamicDecodeRNNZeroMaxIters(self): self._testDynamicDecodeRNN(time_major=True, maximum_iterations=0) def testDynamicDecodeRNNOneMaxIter(self): self._testDynamicDecodeRNN(time_major=True, maximum_iterations=1) def _testDynamicDecodeRNNWithTrainingHelperMatchesDynamicRNN( self, use_sequence_length): sequence_length = [3, 4, 3, 1, 0] batch_size = 5 max_time = 8 input_depth = 7 cell_depth = 10 max_out = max(sequence_length) with self.session(use_gpu=True) as sess: inputs = np.random.randn(batch_size, max_time, input_depth).astype(np.float32) cell = rnn_cell.LSTMCell(cell_depth) zero_state = cell.zero_state(dtype=dtypes.float32, batch_size=batch_size) helper = helper_py.TrainingHelper(inputs, sequence_length) my_decoder = basic_decoder.BasicDecoder( cell=cell, helper=helper, initial_state=zero_state) # Match the variable scope of dynamic_rnn below so we end up # using the same variables with vs.variable_scope("root") as scope: final_decoder_outputs, final_decoder_state, _ = decoder.dynamic_decode( my_decoder, # impute_finished=True ensures outputs and final state # match those of dynamic_rnn called with sequence_length not None impute_finished=use_sequence_length, scope=scope) with vs.variable_scope(scope, reuse=True) as scope: final_rnn_outputs, final_rnn_state = rnn.dynamic_rnn( cell, inputs, sequence_length=sequence_length if use_sequence_length else None, initial_state=zero_state, scope=scope) sess.run(variables.global_variables_initializer()) sess_results = sess.run({ "final_decoder_outputs": final_decoder_outputs, "final_decoder_state": final_decoder_state, "final_rnn_outputs": final_rnn_outputs, "final_rnn_state": final_rnn_state }) # Decoder only runs out to max_out; ensure values are identical # to dynamic_rnn, which also zeros out outputs and passes along state. self.assertAllClose(sess_results["final_decoder_outputs"].rnn_output, sess_results["final_rnn_outputs"][:, 0:max_out, :]) if use_sequence_length: self.assertAllClose(sess_results["final_decoder_state"], sess_results["final_rnn_state"]) def testDynamicDecodeRNNWithTrainingHelperMatchesDynamicRNNWithSeqLen(self): self._testDynamicDecodeRNNWithTrainingHelperMatchesDynamicRNN( use_sequence_length=True) def testDynamicDecodeRNNWithTrainingHelperMatchesDynamicRNNNoSeqLen(self): self._testDynamicDecodeRNNWithTrainingHelperMatchesDynamicRNN( use_sequence_length=False) if __name__ == "__main__": test.main()
tensorflow-master
tensorflow/contrib/seq2seq/python/kernel_tests/decoder_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function
tensorflow-master
tensorflow/contrib/seq2seq/python/kernel_tests/__init__.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for contrib.seq2seq.python.seq2seq.loss_ops.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.seq2seq.python.ops import loss from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.platform import test @test_util.run_all_in_graph_and_eager_modes class LossTest(test.TestCase): def config_default_values(self): self.batch_size = 2 self.sequence_length = 3 self.number_of_classes = 5 logits = [ constant_op.constant(i + 0.5, shape=[self.batch_size, self.number_of_classes]) for i in range(self.sequence_length) ] self.logits = array_ops.stack(logits, axis=1) targets = [ constant_op.constant(i, dtypes.int32, shape=[self.batch_size]) for i in range(self.sequence_length) ] self.targets = array_ops.stack(targets, axis=1) weights = [ constant_op.constant(1.0, shape=[self.batch_size]) for _ in range(self.sequence_length) ] self.weights = array_ops.stack(weights, axis=1) # expected_loss = sparse_softmax_cross_entropy_with_logits(targets, logits) # where targets = [0, 1, 2], and logits = [[0.5] * 5, [1.5] * 5, [2.5] * 5] self.expected_loss = 1.60944 def testSequenceLoss(self): self.config_default_values() with self.cached_session(use_gpu=True): average_loss_per_example = loss.sequence_loss( self.logits, self.targets, self.weights, average_across_timesteps=True, average_across_batch=True) res = self.evaluate(average_loss_per_example) self.assertAllClose(self.expected_loss, res) average_loss_per_sequence = loss.sequence_loss( self.logits, self.targets, self.weights, average_across_timesteps=False, average_across_batch=True) res = self.evaluate(average_loss_per_sequence) compare_per_sequence = np.full((self.sequence_length), self.expected_loss) self.assertAllClose(compare_per_sequence, res) average_loss_per_batch = loss.sequence_loss( self.logits, self.targets, self.weights, average_across_timesteps=True, average_across_batch=False) res = self.evaluate(average_loss_per_batch) compare_per_batch = np.full((self.batch_size), self.expected_loss) self.assertAllClose(compare_per_batch, res) total_loss = loss.sequence_loss( self.logits, self.targets, self.weights, average_across_timesteps=False, average_across_batch=False) res = self.evaluate(total_loss) compare_total = np.full((self.batch_size, self.sequence_length), self.expected_loss) self.assertAllClose(compare_total, res) def testSequenceLossClass(self): self.config_default_values() with self.cached_session(use_gpu=True): seq_loss = loss.SequenceLoss(average_across_timesteps=True, average_across_batch=True, sum_over_timesteps=False, sum_over_batch=False) average_loss_per_example = seq_loss( self.targets, self.logits, self.weights) res = self.evaluate(average_loss_per_example) self.assertAllClose(self.expected_loss, res) seq_loss = loss.SequenceLoss(average_across_timesteps=False, average_across_batch=True, sum_over_timesteps=False, sum_over_batch=False) average_loss_per_sequence = seq_loss( self.targets, self.logits, self.weights) res = self.evaluate(average_loss_per_sequence) compare_per_sequence = np.full((self.sequence_length), self.expected_loss) self.assertAllClose(compare_per_sequence, res) seq_loss = loss.SequenceLoss(average_across_timesteps=True, average_across_batch=False, sum_over_timesteps=False, sum_over_batch=False) average_loss_per_batch = seq_loss( self.targets, self.logits, self.weights) res = self.evaluate(average_loss_per_batch) compare_per_batch = np.full((self.batch_size), self.expected_loss) self.assertAllClose(compare_per_batch, res) seq_loss = loss.SequenceLoss(average_across_timesteps=False, average_across_batch=False, sum_over_timesteps=False, sum_over_batch=False) total_loss = seq_loss( self.targets, self.logits, self.weights) res = self.evaluate(total_loss) compare_total = np.full((self.batch_size, self.sequence_length), self.expected_loss) self.assertAllClose(compare_total, res) def testSumReduction(self): self.config_default_values() with self.cached_session(use_gpu=True): seq_loss = loss.SequenceLoss(average_across_timesteps=False, average_across_batch=False, sum_over_timesteps=True, sum_over_batch=True) average_loss_per_example = seq_loss( self.targets, self.logits, self.weights) res = self.evaluate(average_loss_per_example) self.assertAllClose(self.expected_loss, res) seq_loss = loss.SequenceLoss(average_across_timesteps=False, average_across_batch=False, sum_over_timesteps=False, sum_over_batch=True) average_loss_per_sequence = seq_loss( self.targets, self.logits, self.weights) res = self.evaluate(average_loss_per_sequence) compare_per_sequence = np.full((self.sequence_length), self.expected_loss) self.assertAllClose(compare_per_sequence, res) seq_loss = loss.SequenceLoss(average_across_timesteps=False, average_across_batch=False, sum_over_timesteps=True, sum_over_batch=False) average_loss_per_batch = seq_loss( self.targets, self.logits, self.weights) res = self.evaluate(average_loss_per_batch) compare_per_batch = np.full((self.batch_size), self.expected_loss) self.assertAllClose(compare_per_batch, res) seq_loss = loss.SequenceLoss(average_across_timesteps=False, average_across_batch=False, sum_over_timesteps=False, sum_over_batch=False) total_loss = seq_loss( self.targets, self.logits, self.weights) res = self.evaluate(total_loss) compare_total = np.full((self.batch_size, self.sequence_length), self.expected_loss) self.assertAllClose(compare_total, res) def testWeightedSumReduction(self): self.config_default_values() weights = [ constant_op.constant(1.0, shape=[self.batch_size]) for _ in range(self.sequence_length) ] # Make the last element in the sequence to have zero weights. weights[-1] = constant_op.constant(0.0, shape=[self.batch_size]) self.weights = array_ops.stack(weights, axis=1) with self.cached_session(use_gpu=True): seq_loss = loss.SequenceLoss(average_across_timesteps=False, average_across_batch=False, sum_over_timesteps=True, sum_over_batch=True) average_loss_per_example = seq_loss( self.targets, self.logits, self.weights) res = self.evaluate(average_loss_per_example) self.assertAllClose(self.expected_loss, res) seq_loss = loss.SequenceLoss(average_across_timesteps=False, average_across_batch=False, sum_over_timesteps=False, sum_over_batch=True) average_loss_per_sequence = seq_loss( self.targets, self.logits, self.weights) res = self.evaluate(average_loss_per_sequence) compare_per_sequence = np.full((self.sequence_length), self.expected_loss) # The last element in every sequence are zeros, which will be filtered. compare_per_sequence[-1] = 0. self.assertAllClose(compare_per_sequence, res) seq_loss = loss.SequenceLoss(average_across_timesteps=False, average_across_batch=False, sum_over_timesteps=True, sum_over_batch=False) average_loss_per_batch = seq_loss(self.targets, self.logits, self.weights) res = self.evaluate(average_loss_per_batch) compare_per_batch = np.full((self.batch_size), self.expected_loss) self.assertAllClose(compare_per_batch, res) seq_loss = loss.SequenceLoss(average_across_timesteps=False, average_across_batch=False, sum_over_timesteps=False, sum_over_batch=False) total_loss = seq_loss(self.targets, self.logits, self.weights) res = self.evaluate(total_loss) compare_total = np.full((self.batch_size, self.sequence_length), self.expected_loss) # The last element in every sequence are zeros, which will be filtered. compare_total[:, -1] = 0 self.assertAllClose(compare_total, res) def testZeroWeights(self): self.config_default_values() weights = [ constant_op.constant(0.0, shape=[self.batch_size]) for _ in range(self.sequence_length) ] weights = array_ops.stack(weights, axis=1) with self.cached_session(use_gpu=True): average_loss_per_example = loss.sequence_loss( self.logits, self.targets, weights, average_across_timesteps=True, average_across_batch=True) res = self.evaluate(average_loss_per_example) self.assertAllClose(0.0, res) average_loss_per_sequence = loss.sequence_loss( self.logits, self.targets, weights, average_across_timesteps=False, average_across_batch=True) res = self.evaluate(average_loss_per_sequence) compare_per_sequence = np.zeros((self.sequence_length)) self.assertAllClose(compare_per_sequence, res) average_loss_per_batch = loss.sequence_loss( self.logits, self.targets, weights, average_across_timesteps=True, average_across_batch=False) res = self.evaluate(average_loss_per_batch) compare_per_batch = np.zeros((self.batch_size)) self.assertAllClose(compare_per_batch, res) total_loss = loss.sequence_loss( self.logits, self.targets, weights, average_across_timesteps=False, average_across_batch=False) res = self.evaluate(total_loss) compare_total = np.zeros((self.batch_size, self.sequence_length)) self.assertAllClose(compare_total, res) if __name__ == '__main__': test.main()
tensorflow-master
tensorflow/contrib/seq2seq/python/kernel_tests/loss_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for contrib.seq2seq.python.seq2seq.beam_search_decoder.""" # pylint: disable=unused-import,g-bad-import-order from __future__ import absolute_import from __future__ import division from __future__ import print_function # pylint: enable=unused-import import numpy as np from tensorflow.contrib.seq2seq.python.ops import attention_wrapper from tensorflow.contrib.seq2seq.python.ops import beam_search_decoder from tensorflow.contrib.seq2seq.python.ops import beam_search_ops from tensorflow.contrib.seq2seq.python.ops import decoder from tensorflow.python.eager import context from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.framework import ops from tensorflow.python.framework import test_util from tensorflow.python.keras import layers from tensorflow.python.layers import core as layers_core from tensorflow.python.ops import array_ops from tensorflow.python.ops import nn_ops from tensorflow.python.ops import rnn_cell from tensorflow.python.ops import variables from tensorflow.python.platform import test # pylint: enable=g-import-not-at-top class TestGatherTree(test.TestCase): """Tests the gather_tree function.""" def test_gather_tree(self): # (max_time = 3, batch_size = 2, beam_width = 3) # create (batch_size, max_time, beam_width) matrix and transpose it predicted_ids = np.array( [[[1, 2, 3], [4, 5, 6], [7, 8, 9]], [[2, 3, 4], [5, 6, 7], [8, 9, 10]]], dtype=np.int32).transpose([1, 0, 2]) parent_ids = np.array( [[[0, 0, 0], [0, 1, 1], [2, 1, 2]], [[0, 0, 0], [1, 2, 0], [2, 1, 1]]], dtype=np.int32).transpose([1, 0, 2]) # sequence_lengths is shaped (batch_size = 3) max_sequence_lengths = [3, 3] expected_result = np.array([[[2, 2, 2], [6, 5, 6], [7, 8, 9]], [[2, 4, 4], [7, 6, 6], [8, 9, 10]]]).transpose([1, 0, 2]) res = beam_search_ops.gather_tree( predicted_ids, parent_ids, max_sequence_lengths=max_sequence_lengths, end_token=11) with self.cached_session() as sess: res_ = sess.run(res) self.assertAllEqual(expected_result, res_) def _test_gather_tree_from_array(self, depth_ndims=0, merged_batch_beam=False): array = np.array( [[[1, 2, 3], [4, 5, 6], [7, 8, 9], [0, 0, 0]], [[2, 3, 4], [5, 6, 7], [8, 9, 10], [11, 12, 0]]]).transpose([1, 0, 2]) parent_ids = np.array( [[[0, 0, 0], [0, 1, 1], [2, 1, 2], [-1, -1, -1]], [[0, 0, 0], [1, 1, 0], [2, 0, 1], [0, 1, 0]]]).transpose([1, 0, 2]) expected_array = np.array( [[[2, 2, 2], [6, 5, 6], [7, 8, 9], [0, 0, 0]], [[2, 3, 2], [7, 5, 7], [8, 9, 8], [11, 12, 0]]]).transpose([1, 0, 2]) sequence_length = [[3, 3, 3], [4, 4, 3]] array = ops.convert_to_tensor( array, dtype=dtypes.float32) parent_ids = ops.convert_to_tensor( parent_ids, dtype=dtypes.int32) expected_array = ops.convert_to_tensor( expected_array, dtype=dtypes.float32) max_time = array_ops.shape(array)[0] batch_size = array_ops.shape(array)[1] beam_width = array_ops.shape(array)[2] def _tile_in_depth(tensor): # Generate higher rank tensors by concatenating tensor and tensor + 1. for _ in range(depth_ndims): tensor = array_ops.stack([tensor, tensor + 1], -1) return tensor if merged_batch_beam: array = array_ops.reshape( array, [max_time, batch_size * beam_width]) expected_array = array_ops.reshape( expected_array, [max_time, batch_size * beam_width]) if depth_ndims > 0: array = _tile_in_depth(array) expected_array = _tile_in_depth(expected_array) sorted_array = beam_search_decoder.gather_tree_from_array( array, parent_ids, sequence_length) with self.cached_session() as sess: sorted_array = sess.run(sorted_array) expected_array = sess.run(expected_array) self.assertAllEqual(expected_array, sorted_array) def test_gather_tree_from_array_scalar(self): self._test_gather_tree_from_array() def test_gather_tree_from_array_1d(self): self._test_gather_tree_from_array(depth_ndims=1) def test_gather_tree_from_array_1d_with_merged_batch_beam(self): self._test_gather_tree_from_array(depth_ndims=1, merged_batch_beam=True) def test_gather_tree_from_array_2d(self): self._test_gather_tree_from_array(depth_ndims=2) def test_gather_tree_from_array_complex_trajectory(self): # Max. time = 7, batch = 1, beam = 5. array = np.expand_dims(np.array( [[[25, 12, 114, 89, 97]], [[9, 91, 64, 11, 162]], [[34, 34, 34, 34, 34]], [[2, 4, 2, 2, 4]], [[2, 3, 6, 2, 2]], [[2, 2, 2, 3, 2]], [[2, 2, 2, 2, 2]]]), -1) parent_ids = np.array( [[[0, 0, 0, 0, 0]], [[0, 0, 0, 0, 0]], [[0, 1, 2, 3, 4]], [[0, 0, 1, 2, 1]], [[0, 1, 1, 2, 3]], [[0, 1, 3, 1, 2]], [[0, 1, 2, 3, 4]]]) expected_array = np.expand_dims(np.array( [[[25, 25, 25, 25, 25]], [[9, 9, 91, 9, 9]], [[34, 34, 34, 34, 34]], [[2, 4, 2, 4, 4]], [[2, 3, 6, 3, 6]], [[2, 2, 2, 3, 2]], [[2, 2, 2, 2, 2]]]), -1) sequence_length = [[4, 6, 4, 7, 6]] array = ops.convert_to_tensor( array, dtype=dtypes.float32) parent_ids = ops.convert_to_tensor( parent_ids, dtype=dtypes.int32) expected_array = ops.convert_to_tensor( expected_array, dtype=dtypes.float32) sorted_array = beam_search_decoder.gather_tree_from_array( array, parent_ids, sequence_length) with self.cached_session() as sess: sorted_array, expected_array = sess.run([sorted_array, expected_array]) self.assertAllEqual(expected_array, sorted_array) class TestArrayShapeChecks(test.TestCase): def _test_array_shape_dynamic_checks(self, static_shape, dynamic_shape, batch_size, beam_width, is_valid=True): t = array_ops.placeholder_with_default( np.random.randn(*static_shape).astype(np.float32), shape=dynamic_shape) batch_size = array_ops.constant(batch_size) def _test_body(): # pylint: disable=protected-access if context.executing_eagerly(): beam_search_decoder._check_batch_beam(t, batch_size, beam_width) else: with self.cached_session(): check_op = beam_search_decoder._check_batch_beam( t, batch_size, beam_width) self.evaluate(check_op) # pylint: enable=protected-access if is_valid: _test_body() else: with self.assertRaises(errors.InvalidArgumentError): _test_body() def test_array_shape_dynamic_checks(self): self._test_array_shape_dynamic_checks( (8, 4, 5, 10), (None, None, 5, 10), 4, 5, is_valid=True) self._test_array_shape_dynamic_checks( (8, 20, 10), (None, None, 10), 4, 5, is_valid=True) self._test_array_shape_dynamic_checks( (8, 21, 10), (None, None, 10), 4, 5, is_valid=False) self._test_array_shape_dynamic_checks( (8, 4, 6, 10), (None, None, None, 10), 4, 5, is_valid=False) self._test_array_shape_dynamic_checks( (8, 4), (None, None), 4, 5, is_valid=False) class TestEosMasking(test.TestCase): """Tests EOS masking used in beam search.""" def test_eos_masking(self): probs = constant_op.constant([ [[-.2, -.2, -.2, -.2, -.2], [-.3, -.3, -.3, 3, 0], [5, 6, 0, 0, 0]], [[-.2, -.2, -.2, -.2, 0], [-.3, -.3, -.1, 3, 0], [5, 6, 3, 0, 0]], ]) eos_token = 0 previously_finished = np.array([[0, 1, 0], [0, 1, 1]], dtype=bool) masked = beam_search_decoder._mask_probs(probs, eos_token, previously_finished) with self.cached_session() as sess: probs = sess.run(probs) masked = sess.run(masked) self.assertAllEqual(probs[0][0], masked[0][0]) self.assertAllEqual(probs[0][2], masked[0][2]) self.assertAllEqual(probs[1][0], masked[1][0]) self.assertEqual(masked[0][1][0], 0) self.assertEqual(masked[1][1][0], 0) self.assertEqual(masked[1][2][0], 0) for i in range(1, 5): self.assertAllClose(masked[0][1][i], np.finfo('float32').min) self.assertAllClose(masked[1][1][i], np.finfo('float32').min) self.assertAllClose(masked[1][2][i], np.finfo('float32').min) class TestBeamStep(test.TestCase): """Tests a single step of beam search.""" def setUp(self): super(TestBeamStep, self).setUp() self.batch_size = 2 self.beam_width = 3 self.vocab_size = 5 self.end_token = 0 self.length_penalty_weight = 0.6 self.coverage_penalty_weight = 0.0 def test_step(self): dummy_cell_state = array_ops.zeros([self.batch_size, self.beam_width]) beam_state = beam_search_decoder.BeamSearchDecoderState( cell_state=dummy_cell_state, log_probs=nn_ops.log_softmax( array_ops.ones([self.batch_size, self.beam_width])), lengths=constant_op.constant( 2, shape=[self.batch_size, self.beam_width], dtype=dtypes.int64), finished=array_ops.zeros( [self.batch_size, self.beam_width], dtype=dtypes.bool), accumulated_attention_probs=()) logits_ = np.full([self.batch_size, self.beam_width, self.vocab_size], 0.0001) logits_[0, 0, 2] = 1.9 logits_[0, 0, 3] = 2.1 logits_[0, 1, 3] = 3.1 logits_[0, 1, 4] = 0.9 logits_[1, 0, 1] = 0.5 logits_[1, 1, 2] = 2.7 logits_[1, 2, 2] = 10.0 logits_[1, 2, 3] = 0.2 logits = ops.convert_to_tensor(logits_, dtype=dtypes.float32) log_probs = nn_ops.log_softmax(logits) outputs, next_beam_state = beam_search_decoder._beam_search_step( time=2, logits=logits, next_cell_state=dummy_cell_state, beam_state=beam_state, batch_size=ops.convert_to_tensor(self.batch_size), beam_width=self.beam_width, end_token=self.end_token, length_penalty_weight=self.length_penalty_weight, coverage_penalty_weight=self.coverage_penalty_weight) with self.cached_session() as sess: outputs_, next_state_, state_, log_probs_ = sess.run( [outputs, next_beam_state, beam_state, log_probs]) self.assertAllEqual(outputs_.predicted_ids, [[3, 3, 2], [2, 2, 1]]) self.assertAllEqual(outputs_.parent_ids, [[1, 0, 0], [2, 1, 0]]) self.assertAllEqual(next_state_.lengths, [[3, 3, 3], [3, 3, 3]]) self.assertAllEqual(next_state_.finished, [[False, False, False], [False, False, False]]) expected_log_probs = [] expected_log_probs.append(state_.log_probs[0][[1, 0, 0]]) expected_log_probs.append(state_.log_probs[1][[2, 1, 0]]) # 0 --> 1 expected_log_probs[0][0] += log_probs_[0, 1, 3] expected_log_probs[0][1] += log_probs_[0, 0, 3] expected_log_probs[0][2] += log_probs_[0, 0, 2] expected_log_probs[1][0] += log_probs_[1, 2, 2] expected_log_probs[1][1] += log_probs_[1, 1, 2] expected_log_probs[1][2] += log_probs_[1, 0, 1] self.assertAllEqual(next_state_.log_probs, expected_log_probs) def test_step_with_eos(self): dummy_cell_state = array_ops.zeros([self.batch_size, self.beam_width]) beam_state = beam_search_decoder.BeamSearchDecoderState( cell_state=dummy_cell_state, log_probs=nn_ops.log_softmax( array_ops.ones([self.batch_size, self.beam_width])), lengths=ops.convert_to_tensor( [[2, 1, 2], [2, 2, 1]], dtype=dtypes.int64), finished=ops.convert_to_tensor( [[False, True, False], [False, False, True]], dtype=dtypes.bool), accumulated_attention_probs=()) logits_ = np.full([self.batch_size, self.beam_width, self.vocab_size], 0.0001) logits_[0, 0, 2] = 1.9 logits_[0, 0, 3] = 2.1 logits_[0, 1, 3] = 3.1 logits_[0, 1, 4] = 0.9 logits_[1, 0, 1] = 0.5 logits_[1, 1, 2] = 5.7 # why does this not work when it's 2.7? logits_[1, 2, 2] = 1.0 logits_[1, 2, 3] = 0.2 logits = ops.convert_to_tensor(logits_, dtype=dtypes.float32) log_probs = nn_ops.log_softmax(logits) outputs, next_beam_state = beam_search_decoder._beam_search_step( time=2, logits=logits, next_cell_state=dummy_cell_state, beam_state=beam_state, batch_size=ops.convert_to_tensor(self.batch_size), beam_width=self.beam_width, end_token=self.end_token, length_penalty_weight=self.length_penalty_weight, coverage_penalty_weight=self.coverage_penalty_weight) with self.cached_session() as sess: outputs_, next_state_, state_, log_probs_ = sess.run( [outputs, next_beam_state, beam_state, log_probs]) self.assertAllEqual(outputs_.parent_ids, [[1, 0, 0], [1, 2, 0]]) self.assertAllEqual(outputs_.predicted_ids, [[0, 3, 2], [2, 0, 1]]) self.assertAllEqual(next_state_.lengths, [[1, 3, 3], [3, 1, 3]]) self.assertAllEqual(next_state_.finished, [[True, False, False], [False, True, False]]) expected_log_probs = [] expected_log_probs.append(state_.log_probs[0][[1, 0, 0]]) expected_log_probs.append(state_.log_probs[1][[1, 2, 0]]) expected_log_probs[0][1] += log_probs_[0, 0, 3] expected_log_probs[0][2] += log_probs_[0, 0, 2] expected_log_probs[1][0] += log_probs_[1, 1, 2] expected_log_probs[1][2] += log_probs_[1, 0, 1] self.assertAllEqual(next_state_.log_probs, expected_log_probs) class TestLargeBeamStep(test.TestCase): """Tests large beam step. Tests a single step of beam search in such case that beam size is larger than vocabulary size. """ def setUp(self): super(TestLargeBeamStep, self).setUp() self.batch_size = 2 self.beam_width = 8 self.vocab_size = 5 self.end_token = 0 self.length_penalty_weight = 0.6 self.coverage_penalty_weight = 0.0 def test_step(self): def get_probs(): """this simulates the initialize method in BeamSearchDecoder.""" log_prob_mask = array_ops.one_hot( array_ops.zeros([self.batch_size], dtype=dtypes.int32), depth=self.beam_width, on_value=True, off_value=False, dtype=dtypes.bool) log_prob_zeros = array_ops.zeros( [self.batch_size, self.beam_width], dtype=dtypes.float32) log_prob_neg_inf = array_ops.ones( [self.batch_size, self.beam_width], dtype=dtypes.float32) * -np.Inf log_probs = array_ops.where(log_prob_mask, log_prob_zeros, log_prob_neg_inf) return log_probs log_probs = get_probs() dummy_cell_state = array_ops.zeros([self.batch_size, self.beam_width]) # pylint: disable=invalid-name _finished = array_ops.one_hot( array_ops.zeros([self.batch_size], dtype=dtypes.int32), depth=self.beam_width, on_value=False, off_value=True, dtype=dtypes.bool) _lengths = np.zeros([self.batch_size, self.beam_width], dtype=np.int64) _lengths[:, 0] = 2 _lengths = constant_op.constant(_lengths, dtype=dtypes.int64) beam_state = beam_search_decoder.BeamSearchDecoderState( cell_state=dummy_cell_state, log_probs=log_probs, lengths=_lengths, finished=_finished, accumulated_attention_probs=()) logits_ = np.full([self.batch_size, self.beam_width, self.vocab_size], 0.0001) logits_[0, 0, 2] = 1.9 logits_[0, 0, 3] = 2.1 logits_[0, 1, 3] = 3.1 logits_[0, 1, 4] = 0.9 logits_[1, 0, 1] = 0.5 logits_[1, 1, 2] = 2.7 logits_[1, 2, 2] = 10.0 logits_[1, 2, 3] = 0.2 logits = constant_op.constant(logits_, dtype=dtypes.float32) log_probs = nn_ops.log_softmax(logits) outputs, next_beam_state = beam_search_decoder._beam_search_step( time=2, logits=logits, next_cell_state=dummy_cell_state, beam_state=beam_state, batch_size=ops.convert_to_tensor(self.batch_size), beam_width=self.beam_width, end_token=self.end_token, length_penalty_weight=self.length_penalty_weight, coverage_penalty_weight=self.coverage_penalty_weight) with self.cached_session() as sess: outputs_, next_state_, _, _ = sess.run( [outputs, next_beam_state, beam_state, log_probs]) self.assertEqual(outputs_.predicted_ids[0, 0], 3) self.assertEqual(outputs_.predicted_ids[0, 1], 2) self.assertEqual(outputs_.predicted_ids[1, 0], 1) neg_inf = -np.Inf self.assertAllEqual( next_state_.log_probs[:, -3:], [[neg_inf, neg_inf, neg_inf], [neg_inf, neg_inf, neg_inf]]) self.assertEqual((next_state_.log_probs[:, :-3] > neg_inf).all(), True) self.assertEqual((next_state_.lengths[:, :-3] > 0).all(), True) self.assertAllEqual(next_state_.lengths[:, -3:], [[0, 0, 0], [0, 0, 0]]) @test_util.run_v1_only('contrib code not supported in TF2.0') class BeamSearchDecoderTest(test.TestCase): def _testDynamicDecodeRNN(self, time_major, has_attention, with_alignment_history=False): encoder_sequence_length = np.array([3, 2, 3, 1, 1]) decoder_sequence_length = np.array([2, 0, 1, 2, 3]) batch_size = 5 decoder_max_time = 4 input_depth = 7 cell_depth = 9 attention_depth = 6 vocab_size = 20 end_token = vocab_size - 1 start_token = 0 embedding_dim = 50 max_out = max(decoder_sequence_length) output_layer = layers_core.Dense(vocab_size, use_bias=True, activation=None) beam_width = 3 with self.cached_session() as sess: batch_size_tensor = constant_op.constant(batch_size) embedding = np.random.randn(vocab_size, embedding_dim).astype(np.float32) cell = rnn_cell.LSTMCell(cell_depth) initial_state = cell.zero_state(batch_size, dtypes.float32) coverage_penalty_weight = 0.0 if has_attention: coverage_penalty_weight = 0.2 inputs = array_ops.placeholder_with_default( np.random.randn(batch_size, decoder_max_time, input_depth).astype( np.float32), shape=(None, None, input_depth)) tiled_inputs = beam_search_decoder.tile_batch( inputs, multiplier=beam_width) tiled_sequence_length = beam_search_decoder.tile_batch( encoder_sequence_length, multiplier=beam_width) attention_mechanism = attention_wrapper.BahdanauAttention( num_units=attention_depth, memory=tiled_inputs, memory_sequence_length=tiled_sequence_length) initial_state = beam_search_decoder.tile_batch( initial_state, multiplier=beam_width) cell = attention_wrapper.AttentionWrapper( cell=cell, attention_mechanism=attention_mechanism, attention_layer_size=attention_depth, alignment_history=with_alignment_history) cell_state = cell.zero_state( dtype=dtypes.float32, batch_size=batch_size_tensor * beam_width) if has_attention: cell_state = cell_state.clone(cell_state=initial_state) bsd = beam_search_decoder.BeamSearchDecoder( cell=cell, embedding=embedding, start_tokens=array_ops.fill([batch_size_tensor], start_token), end_token=end_token, initial_state=cell_state, beam_width=beam_width, output_layer=output_layer, length_penalty_weight=0.0, coverage_penalty_weight=coverage_penalty_weight) final_outputs, final_state, final_sequence_lengths = ( decoder.dynamic_decode( bsd, output_time_major=time_major, maximum_iterations=max_out)) def _t(shape): if time_major: return (shape[1], shape[0]) + shape[2:] return shape self.assertIsInstance( final_outputs, beam_search_decoder.FinalBeamSearchDecoderOutput) self.assertIsInstance( final_state, beam_search_decoder.BeamSearchDecoderState) beam_search_decoder_output = final_outputs.beam_search_decoder_output self.assertEqual( _t((batch_size, None, beam_width)), tuple(beam_search_decoder_output.scores.get_shape().as_list())) self.assertEqual( _t((batch_size, None, beam_width)), tuple(final_outputs.predicted_ids.get_shape().as_list())) sess.run(variables.global_variables_initializer()) sess_results = sess.run({ 'final_outputs': final_outputs, 'final_state': final_state, 'final_sequence_lengths': final_sequence_lengths }) max_sequence_length = np.max(sess_results['final_sequence_lengths']) # A smoke test self.assertEqual( _t((batch_size, max_sequence_length, beam_width)), sess_results['final_outputs'].beam_search_decoder_output.scores.shape) self.assertEqual( _t((batch_size, max_sequence_length, beam_width)), sess_results[ 'final_outputs'].beam_search_decoder_output.predicted_ids.shape) def testDynamicDecodeRNNBatchMajorNoAttention(self): self._testDynamicDecodeRNN(time_major=False, has_attention=False) def testDynamicDecodeRNNBatchMajorYesAttention(self): self._testDynamicDecodeRNN(time_major=False, has_attention=True) def testDynamicDecodeRNNBatchMajorYesAttentionWithAlignmentHistory(self): self._testDynamicDecodeRNN( time_major=False, has_attention=True, with_alignment_history=True) @test_util.run_all_in_graph_and_eager_modes class BeamSearchDecoderV2Test(test.TestCase): def _testDynamicDecodeRNN(self, time_major, has_attention, with_alignment_history=False): encoder_sequence_length = np.array([3, 2, 3, 1, 1]) decoder_sequence_length = np.array([2, 0, 1, 2, 3]) batch_size = 5 decoder_max_time = 4 input_depth = 7 cell_depth = 9 attention_depth = 6 vocab_size = 20 end_token = vocab_size - 1 start_token = 0 embedding_dim = 50 max_out = max(decoder_sequence_length) output_layer = layers.Dense(vocab_size, use_bias=True, activation=None) beam_width = 3 with self.cached_session(): batch_size_tensor = constant_op.constant(batch_size) embedding = np.random.randn(vocab_size, embedding_dim).astype(np.float32) cell = rnn_cell.LSTMCell(cell_depth) initial_state = cell.zero_state(batch_size, dtypes.float32) coverage_penalty_weight = 0.0 if has_attention: coverage_penalty_weight = 0.2 inputs = array_ops.placeholder_with_default( np.random.randn(batch_size, decoder_max_time, input_depth).astype( np.float32), shape=(None, None, input_depth)) tiled_inputs = beam_search_decoder.tile_batch( inputs, multiplier=beam_width) tiled_sequence_length = beam_search_decoder.tile_batch( encoder_sequence_length, multiplier=beam_width) attention_mechanism = attention_wrapper.BahdanauAttention( num_units=attention_depth, memory=tiled_inputs, memory_sequence_length=tiled_sequence_length) initial_state = beam_search_decoder.tile_batch( initial_state, multiplier=beam_width) cell = attention_wrapper.AttentionWrapper( cell=cell, attention_mechanism=attention_mechanism, attention_layer_size=attention_depth, alignment_history=with_alignment_history) cell_state = cell.zero_state( dtype=dtypes.float32, batch_size=batch_size_tensor * beam_width) if has_attention: cell_state = cell_state.clone(cell_state=initial_state) bsd = beam_search_decoder.BeamSearchDecoderV2( cell=cell, beam_width=beam_width, output_layer=output_layer, length_penalty_weight=0.0, coverage_penalty_weight=coverage_penalty_weight, output_time_major=time_major, maximum_iterations=max_out) final_outputs, final_state, final_sequence_lengths = bsd( embedding, start_tokens=array_ops.fill([batch_size_tensor], start_token), end_token=end_token, initial_state=cell_state) def _t(shape): if time_major: return (shape[1], shape[0]) + shape[2:] return shape self.assertIsInstance( final_outputs, beam_search_decoder.FinalBeamSearchDecoderOutput) self.assertIsInstance( final_state, beam_search_decoder.BeamSearchDecoderState) beam_search_decoder_output = final_outputs.beam_search_decoder_output expected_seq_length = 3 if context.executing_eagerly() else None self.assertEqual( _t((batch_size, expected_seq_length, beam_width)), tuple(beam_search_decoder_output.scores.get_shape().as_list())) self.assertEqual( _t((batch_size, expected_seq_length, beam_width)), tuple(final_outputs.predicted_ids.get_shape().as_list())) self.evaluate(variables.global_variables_initializer()) eval_results = self.evaluate({ 'final_outputs': final_outputs, 'final_sequence_lengths': final_sequence_lengths }) max_sequence_length = np.max(eval_results['final_sequence_lengths']) # A smoke test self.assertEqual( _t((batch_size, max_sequence_length, beam_width)), eval_results['final_outputs'].beam_search_decoder_output.scores.shape) self.assertEqual( _t((batch_size, max_sequence_length, beam_width)), eval_results[ 'final_outputs'].beam_search_decoder_output.predicted_ids.shape) def testDynamicDecodeRNNBatchMajorNoAttention(self): self._testDynamicDecodeRNN(time_major=False, has_attention=False) def testDynamicDecodeRNNBatchMajorYesAttention(self): self._testDynamicDecodeRNN(time_major=False, has_attention=True) def testDynamicDecodeRNNBatchMajorYesAttentionWithAlignmentHistory(self): self._testDynamicDecodeRNN( time_major=False, has_attention=True, with_alignment_history=True) if __name__ == '__main__': test.main()
tensorflow-master
tensorflow/contrib/seq2seq/python/kernel_tests/beam_search_decoder_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for contrib.seq2seq.python.ops.attention_wrapper.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import functools import numpy as np from tensorflow.contrib.seq2seq.python.ops import decoder from tensorflow.contrib.seq2seq.python.ops import attention_wrapper as wrapper from tensorflow.contrib.seq2seq.python.ops import helper as helper_py from tensorflow.contrib.seq2seq.python.ops import basic_decoder from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import test_util from tensorflow.python.layers import core as layers_core from tensorflow.python.ops import array_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import random_ops from tensorflow.python.ops import rnn from tensorflow.python.ops import rnn_cell from tensorflow.python.ops import variables from tensorflow.python.ops import variable_scope as vs from tensorflow.python.platform import test from tensorflow.python.util import nest # pylint: enable=g-import-not-at-top # for testing AttentionWrapperState = wrapper.AttentionWrapperState # pylint: disable=invalid-name LSTMStateTuple = rnn_cell.LSTMStateTuple # pylint: disable=invalid-name BasicDecoderOutput = basic_decoder.BasicDecoderOutput # pylint: disable=invalid-name float32 = np.float32 int32 = np.int32 array = np.array dtype = np.dtype class ResultSummary( collections.namedtuple('ResultSummary', ('shape', 'dtype', 'mean'))): pass def get_result_summary(x): if isinstance(x, np.ndarray): return ResultSummary(x.shape, x.dtype, x.mean()) return x @test_util.run_v1_only('contrib code not supported in TF2.0') class AttentionWrapperTest(test.TestCase): def assertAllCloseOrEqual(self, x, y, **kwargs): if isinstance(x, np.ndarray) or isinstance(x, float): return super(AttentionWrapperTest, self).assertAllClose( x, y, atol=1e-3, **kwargs) else: self.assertAllEqual(x, y, **kwargs) def testAttentionWrapperState(self): num_fields = len(wrapper.AttentionWrapperState._fields) # pylint: disable=protected-access state = wrapper.AttentionWrapperState(*([None] * num_fields)) new_state = state.clone(time=1) self.assertEqual(state.time, None) self.assertEqual(new_state.time, 1) def testAttentionWrapperStateShapePropgation(self): batch_size = 5 max_time = 5 num_units = 5 memory = random_ops.random_uniform( [batch_size, max_time, num_units], seed=1) mechanism = wrapper.LuongAttention(num_units, memory) cell = wrapper.AttentionWrapper(rnn_cell.LSTMCell(num_units), mechanism) # Create zero state with static batch size. static_state = cell.zero_state(batch_size, dtypes.float32) # Create zero state without static batch size. state = cell.zero_state(array_ops.shape(memory)[0], dtypes.float32) state = static_state.clone( cell_state=state.cell_state, attention=state.attention) self.assertEqual(state.cell_state.c.shape, static_state.cell_state.c.shape) self.assertEqual(state.cell_state.h.shape, static_state.cell_state.h.shape) self.assertEqual(state.attention.shape, static_state.attention.shape) def _testWithAttention(self, create_attention_mechanism, expected_final_output, expected_final_state, attention_mechanism_depth=3, alignment_history=False, expected_final_alignment_history=None, attention_layer_size=6, attention_layer=None, name=''): attention_layer_sizes = ( [attention_layer_size] if attention_layer_size is not None else None) attention_layers = ( [attention_layer] if attention_layer is not None else None) self._testWithMaybeMultiAttention( is_multi=False, create_attention_mechanisms=[create_attention_mechanism], expected_final_output=expected_final_output, expected_final_state=expected_final_state, attention_mechanism_depths=[attention_mechanism_depth], alignment_history=alignment_history, expected_final_alignment_history=expected_final_alignment_history, attention_layer_sizes=attention_layer_sizes, attention_layers=attention_layers, name=name) def _testWithMaybeMultiAttention(self, is_multi, create_attention_mechanisms, expected_final_output, expected_final_state, attention_mechanism_depths, alignment_history=False, expected_final_alignment_history=None, attention_layer_sizes=None, attention_layers=None, name=''): # Allow is_multi to be True with a single mechanism to enable test for # passing in a single mechanism in a list. assert len(create_attention_mechanisms) == 1 or is_multi encoder_sequence_length = [3, 2, 3, 1, 1] decoder_sequence_length = [2, 0, 1, 2, 3] batch_size = 5 encoder_max_time = 8 decoder_max_time = 4 input_depth = 7 encoder_output_depth = 10 cell_depth = 9 if attention_layer_sizes is not None: # Compute sum of attention_layer_sizes. Use encoder_output_depth if None. attention_depth = sum(attention_layer_size or encoder_output_depth for attention_layer_size in attention_layer_sizes) elif attention_layers is not None: # Compute sum of attention_layers output depth. attention_depth = sum( attention_layer.compute_output_shape( [batch_size, cell_depth + encoder_output_depth]).dims[-1].value for attention_layer in attention_layers) else: attention_depth = encoder_output_depth * len(create_attention_mechanisms) decoder_inputs = array_ops.placeholder_with_default( np.random.randn(batch_size, decoder_max_time, input_depth).astype(np.float32), shape=(None, None, input_depth)) encoder_outputs = array_ops.placeholder_with_default( np.random.randn(batch_size, encoder_max_time, encoder_output_depth).astype(np.float32), shape=(None, None, encoder_output_depth)) attention_mechanisms = [ creator(num_units=depth, memory=encoder_outputs, memory_sequence_length=encoder_sequence_length) for creator, depth in zip(create_attention_mechanisms, attention_mechanism_depths)] with self.session(use_gpu=True) as sess: with vs.variable_scope( 'root', initializer=init_ops.random_normal_initializer(stddev=0.01, seed=3)): attention_layer_size = attention_layer_sizes attention_layer = attention_layers if not is_multi: if attention_layer_size is not None: attention_layer_size = attention_layer_size[0] if attention_layer is not None: attention_layer = attention_layer[0] cell = rnn_cell.LSTMCell(cell_depth) cell = wrapper.AttentionWrapper( cell, attention_mechanisms if is_multi else attention_mechanisms[0], attention_layer_size=attention_layer_size, alignment_history=alignment_history, attention_layer=attention_layer) helper = helper_py.TrainingHelper(decoder_inputs, decoder_sequence_length) my_decoder = basic_decoder.BasicDecoder( cell=cell, helper=helper, initial_state=cell.zero_state( dtype=dtypes.float32, batch_size=batch_size)) final_outputs, final_state, _ = decoder.dynamic_decode(my_decoder) self.assertTrue( isinstance(final_outputs, basic_decoder.BasicDecoderOutput)) self.assertTrue( isinstance(final_state, wrapper.AttentionWrapperState)) self.assertTrue( isinstance(final_state.cell_state, rnn_cell.LSTMStateTuple)) self.assertEqual((batch_size, None, attention_depth), tuple(final_outputs.rnn_output.get_shape().as_list())) self.assertEqual((batch_size, None), tuple(final_outputs.sample_id.get_shape().as_list())) self.assertEqual((batch_size, attention_depth), tuple(final_state.attention.get_shape().as_list())) self.assertEqual((batch_size, cell_depth), tuple(final_state.cell_state.c.get_shape().as_list())) self.assertEqual((batch_size, cell_depth), tuple(final_state.cell_state.h.get_shape().as_list())) if alignment_history: if is_multi: state_alignment_history = [] for history_array in final_state.alignment_history: history = history_array.stack() self.assertEqual( (None, batch_size, None), tuple(history.get_shape().as_list())) state_alignment_history.append(history) state_alignment_history = tuple(state_alignment_history) else: state_alignment_history = final_state.alignment_history.stack() self.assertEqual( (None, batch_size, None), tuple(state_alignment_history.get_shape().as_list())) nest.assert_same_structure( cell.state_size, cell.zero_state(batch_size, dtypes.float32)) # Remove the history from final_state for purposes of the # remainder of the tests. final_state = final_state._replace(alignment_history=()) # pylint: disable=protected-access else: state_alignment_history = () sess.run(variables.global_variables_initializer()) sess_results = sess.run({ 'final_outputs': final_outputs, 'final_state': final_state, 'state_alignment_history': state_alignment_history, }) final_output_info = nest.map_structure(get_result_summary, sess_results['final_outputs']) final_state_info = nest.map_structure(get_result_summary, sess_results['final_state']) print(name) print('Copy/paste:\nexpected_final_output = %s' % str(final_output_info)) print('expected_final_state = %s' % str(final_state_info)) nest.map_structure(self.assertAllCloseOrEqual, expected_final_output, final_output_info) nest.map_structure(self.assertAllCloseOrEqual, expected_final_state, final_state_info) if alignment_history: # by default, the wrapper emits attention as output final_alignment_history_info = nest.map_structure( get_result_summary, sess_results['state_alignment_history']) print('expected_final_alignment_history = %s' % str(final_alignment_history_info)) nest.map_structure( self.assertAllCloseOrEqual, # outputs are batch major but the stacked TensorArray is time major expected_final_alignment_history, final_alignment_history_info) def testBahdanauNormalizedDType(self): for dtype in [np.float16, np.float32, np.float64]: num_units = 128 encoder_outputs = array_ops.placeholder(dtype, shape=[64, None, 256]) encoder_sequence_length = array_ops.placeholder(dtypes.int32, shape=[64]) decoder_inputs = array_ops.placeholder(dtype, shape=[64, None, 128]) decoder_sequence_length = array_ops.placeholder(dtypes.int32, shape=[64]) batch_size = 64 attention_mechanism = wrapper.BahdanauAttention( num_units=num_units, memory=encoder_outputs, memory_sequence_length=encoder_sequence_length, normalize=True, dtype=dtype, ) cell = rnn_cell.LSTMCell(num_units) cell = wrapper.AttentionWrapper(cell, attention_mechanism) helper = helper_py.TrainingHelper(decoder_inputs, decoder_sequence_length) my_decoder = basic_decoder.BasicDecoder( cell=cell, helper=helper, initial_state=cell.zero_state( dtype=dtype, batch_size=batch_size)) final_outputs, final_state, _ = decoder.dynamic_decode(my_decoder) self.assertTrue( isinstance(final_outputs, basic_decoder.BasicDecoderOutput)) self.assertEqual(final_outputs.rnn_output.dtype, dtype) self.assertTrue( isinstance(final_state, wrapper.AttentionWrapperState)) self.assertTrue( isinstance(final_state.cell_state, rnn_cell.LSTMStateTuple)) def testBahdanauNotNormalized(self): create_attention_mechanism = wrapper.BahdanauAttention expected_final_output = BasicDecoderOutput( rnn_output=ResultSummary( shape=(5, 3, 6), dtype=dtype('float32'), mean=-0.0052250605), sample_id=ResultSummary( shape=(5, 3), dtype=dtype('int32'), mean=1.4)) expected_final_state = AttentionWrapperState( cell_state=LSTMStateTuple( c=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0040092287), h=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0020015112)), attention=ResultSummary( shape=(5, 6), dtype=dtype('float32'), mean=-0.0052052638), time=3, alignments=ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.125), attention_state=ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.125), alignment_history=()) expected_final_alignment_history = ResultSummary( shape=(3, 5, 8), dtype=dtype('float32'), mean=0.12500001) self._testWithAttention( create_attention_mechanism, expected_final_output, expected_final_state, alignment_history=True, expected_final_alignment_history=expected_final_alignment_history, name='testBahdanauNotNormalized') def testBahdanauNormalized(self): create_attention_mechanism = functools.partial( wrapper.BahdanauAttention, normalize=True) expected_final_output = BasicDecoderOutput( rnn_output=ResultSummary( shape=(5, 3, 6), dtype=dtype('float32'), mean=-0.00597103), sample_id=ResultSummary( shape=(5, 3), dtype=dtype('int32'), mean=1.4)) expected_final_state = AttentionWrapperState( cell_state=LSTMStateTuple( c=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0040052128), h=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0019996136)), attention=ResultSummary( shape=(5, 6), dtype=dtype('float32'), mean=-0.00595117), time=3, alignments=ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.125), attention_state=ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.125), alignment_history=()) self._testWithAttention( create_attention_mechanism, expected_final_output, expected_final_state, name='testBahdanauNormalized') def testLuongNotNormalized(self): create_attention_mechanism = wrapper.LuongAttention expected_final_output = BasicDecoderOutput( rnn_output=ResultSummary( shape=(5, 3, 6), dtype=dtype('float32'), mean=-0.0052615386), sample_id=ResultSummary( shape=(5, 3), dtype=dtype('int32'), mean=1.4)) expected_final_state = AttentionWrapperState( cell_state=LSTMStateTuple( c=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.004009536), h=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0020016613)), attention=ResultSummary( shape=(5, 6), dtype=dtype('float32'), mean=-0.0051812846), time=3, alignments=ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.125), attention_state=ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.125), alignment_history=()) self._testWithAttention( create_attention_mechanism, expected_final_output, expected_final_state, attention_mechanism_depth=9, name='testLuongNotNormalized') def testLuongScaledDType(self): # Test case for GitHub issue 18099 for dt in [np.float16, np.float32, np.float64]: num_units = 128 encoder_outputs = array_ops.placeholder(dt, shape=[64, None, 256]) encoder_sequence_length = array_ops.placeholder(dtypes.int32, shape=[64]) decoder_inputs = array_ops.placeholder(dt, shape=[64, None, 128]) decoder_sequence_length = array_ops.placeholder(dtypes.int32, shape=[64]) batch_size = 64 attention_mechanism = wrapper.LuongAttention( num_units=num_units, memory=encoder_outputs, memory_sequence_length=encoder_sequence_length, scale=True, dtype=dt, ) cell = rnn_cell.LSTMCell(num_units) cell = wrapper.AttentionWrapper(cell, attention_mechanism) helper = helper_py.TrainingHelper(decoder_inputs, decoder_sequence_length) my_decoder = basic_decoder.BasicDecoder( cell=cell, helper=helper, initial_state=cell.zero_state( dtype=dt, batch_size=batch_size)) final_outputs, final_state, _ = decoder.dynamic_decode(my_decoder) self.assertTrue( isinstance(final_outputs, basic_decoder.BasicDecoderOutput)) self.assertEqual(final_outputs.rnn_output.dtype, dt) self.assertTrue( isinstance(final_state, wrapper.AttentionWrapperState)) self.assertTrue( isinstance(final_state.cell_state, rnn_cell.LSTMStateTuple)) def testLuongScaled(self): create_attention_mechanism = functools.partial( wrapper.LuongAttention, scale=True) expected_final_output = BasicDecoderOutput( rnn_output=ResultSummary( shape=(5, 3, 6), dtype=dtype('float32'), mean=-0.0052615386), sample_id=ResultSummary( shape=(5, 3), dtype=dtype('int32'), mean=1.4)) expected_final_state = AttentionWrapperState( cell_state=LSTMStateTuple( c=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.004009536), h=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0020016613)), attention=ResultSummary( shape=(5, 6), dtype=dtype('float32'), mean=-0.0051812846), time=3, alignments=ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.125), attention_state=ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.125), alignment_history=()) self._testWithAttention( create_attention_mechanism, expected_final_output, expected_final_state, attention_mechanism_depth=9, name='testLuongScaled') def testNotUseAttentionLayer(self): create_attention_mechanism = wrapper.BahdanauAttention expected_final_output = BasicDecoderOutput( rnn_output=ResultSummary( shape=(5, 3, 10), dtype=dtype('float32'), mean=0.117389656), sample_id=ResultSummary( shape=(5, 3), dtype=dtype('int32'), mean=4.5999999999999996)) expected_final_state = AttentionWrapperState( cell_state=LSTMStateTuple( c=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0063607907), h=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.00323448)), attention=ResultSummary( shape=(5, 10), dtype=dtype('float32'), mean=0.117389656,), time=3, alignments=ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.125), attention_state=ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.125), alignment_history=()) self._testWithAttention( create_attention_mechanism, expected_final_output, expected_final_state, attention_layer_size=None, name='testNotUseAttentionLayer') def test_safe_cumprod(self): # Create some random test input test_input = np.random.uniform(size=(10, 20)) for axis in [0, 1]: for exclusive in [True, False]: with self.cached_session(): # Compute cumprod with regular tf.math.cumprod cumprod_output = math_ops.cumprod( test_input, axis=axis, exclusive=exclusive).eval() # Compute cumprod with safe_cumprod safe_cumprod_output = wrapper.safe_cumprod( test_input, axis=axis, exclusive=exclusive).eval() for x, y in zip(cumprod_output.shape, safe_cumprod_output.shape): self.assertEqual(x, y) for x, y in zip(cumprod_output.flatten(), safe_cumprod_output.flatten()): # Use assertAlmostEqual for the actual values due to floating point self.assertAlmostEqual(x, y, places=5) def test_monotonic_attention(self): def monotonic_attention_explicit(p_choose_i, previous_attention): """Explicitly compute monotonic attention distribution using numpy.""" # Base case for recurrence relation out = [previous_attention[0]] # Explicitly follow the recurrence relation for j in range(1, p_choose_i.shape[0]): out.append((1 - p_choose_i[j - 1])*out[j - 1] + previous_attention[j]) return p_choose_i*np.array(out) # Generate a random batch of choosing probabilities for seq. len. 20 p_choose_i = np.random.uniform(size=(10, 20)).astype(np.float32) # Generate random previous attention distributions previous_attention = np.random.uniform(size=(10, 20)).astype(np.float32) previous_attention /= previous_attention.sum(axis=1).reshape((-1, 1)) # Create the output to test against explicit_output = np.array([ monotonic_attention_explicit(p, a) for p, a in zip(p_choose_i, previous_attention)]) # Compute output with TensorFlow function, for both calculation types with self.cached_session(): recursive_output = wrapper.monotonic_attention( p_choose_i, previous_attention, 'recursive').eval() self.assertEqual(recursive_output.ndim, explicit_output.ndim) for x, y in zip(recursive_output.shape, explicit_output.shape): self.assertEqual(x, y) for x, y in zip(recursive_output.flatten(), explicit_output.flatten()): # Use assertAlmostEqual for the actual values due to floating point self.assertAlmostEqual(x, y, places=5) # Generate new p_choose_i for parallel, which is unstable when p_choose_i[n] # is close to 1 p_choose_i = np.random.uniform(0, 0.9, size=(10, 20)).astype(np.float32) # Create new output to test against explicit_output = np.array([ monotonic_attention_explicit(p, a) for p, a in zip(p_choose_i, previous_attention)]) # Compute output with TensorFlow function, for both calculation types with self.cached_session(): parallel_output = wrapper.monotonic_attention( p_choose_i, previous_attention, 'parallel').eval() self.assertEqual(parallel_output.ndim, explicit_output.ndim) for x, y in zip(parallel_output.shape, explicit_output.shape): self.assertEqual(x, y) for x, y in zip(parallel_output.flatten(), explicit_output.flatten()): # Use assertAlmostEqual for the actual values due to floating point self.assertAlmostEqual(x, y, places=5) # Now, test hard mode, where probabilities must be 0 or 1 p_choose_i = np.random.choice(np.array([0, 1], np.float32), (10, 20)) previous_attention = np.zeros((10, 20), np.float32) # Randomly choose input sequence indices at each timestep random_idx = np.random.randint(0, previous_attention.shape[1], previous_attention.shape[0]) previous_attention[np.arange(previous_attention.shape[0]), random_idx] = 1 # Create the output to test against explicit_output = np.array([ monotonic_attention_explicit(p, a) for p, a in zip(p_choose_i, previous_attention)]) # Compute output with TensorFlow function, for both calculation types with self.cached_session(): hard_output = wrapper.monotonic_attention( # TensorFlow is unhappy when these are not wrapped as tf.constant constant_op.constant(p_choose_i), constant_op.constant(previous_attention), 'hard').eval() self.assertEqual(hard_output.ndim, explicit_output.ndim) for x, y in zip(hard_output.shape, explicit_output.shape): self.assertEqual(x, y) for x, y in zip(hard_output.flatten(), explicit_output.flatten()): # Use assertAlmostEqual for the actual values due to floating point self.assertAlmostEqual(x, y, places=5) # Now, test recursively computing attention distributions vs. sampling def sample(p_choose_i): """Generate a sequence of emit-ingest decisions from p_choose_i.""" output = np.zeros(p_choose_i.shape) t_im1 = 0 for i in range(p_choose_i.shape[0]): for j in range(t_im1, p_choose_i.shape[1]): if np.random.uniform() <= p_choose_i[i, j]: output[i, j] = 1 t_im1 = j break else: t_im1 = p_choose_i.shape[1] return output # Now, the first axis is output timestep and second is input timestep p_choose_i = np.random.uniform(size=(4, 5)).astype(np.float32) # Generate the average of a bunch of samples n_samples = 100000 sampled_output = np.mean( [sample(p_choose_i) for _ in range(n_samples)], axis=0) # Create initial previous_attention base case recursive_output = [np.array([1] + [0]*(p_choose_i.shape[1] - 1), np.float32)] # Compute output with TensorFlow function, for both calculation types with self.cached_session(): for j in range(p_choose_i.shape[0]): # Compute attention distribution for this output time step recursive_output.append(wrapper.monotonic_attention( # newaxis is for adding the expected batch dimension p_choose_i[j][np.newaxis], recursive_output[-1][np.newaxis], 'recursive').eval()[0]) # Stack together distributions; remove basecase recursive_output = np.array(recursive_output[1:]) self.assertEqual(recursive_output.ndim, sampled_output.ndim) for x, y in zip(recursive_output.shape, sampled_output.shape): self.assertEqual(x, y) for x, y in zip(recursive_output.flatten(), sampled_output.flatten()): # Use a very forgiving threshold since we are sampling self.assertAlmostEqual(x, y, places=2) def testBahdanauMonotonicNotNormalized(self): create_attention_mechanism = functools.partial( wrapper.BahdanauMonotonicAttention, sigmoid_noise=1.0, sigmoid_noise_seed=3) expected_final_output = BasicDecoderOutput( rnn_output=ResultSummary( shape=(5, 3, 6), dtype=dtype('float32'), mean=-0.002122893), sample_id=ResultSummary( shape=(5, 3), dtype=dtype('int32'), mean=1.7333333333333334)) expected_final_state = AttentionWrapperState( cell_state=LSTMStateTuple( c=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0040002423), h=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0019968653)), attention=ResultSummary( shape=(5, 6), dtype=dtype('float32'), mean=-5.9313523e-05), time=3, alignments=ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.032228071), attention_state=ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.032228071), alignment_history=()) expected_final_alignment_history = ResultSummary( shape=(3, 5, 8), dtype=dtype('float32'), mean=0.050430927) self._testWithAttention( create_attention_mechanism, expected_final_output, expected_final_state, alignment_history=True, expected_final_alignment_history=expected_final_alignment_history, name='testBahdanauMonotonicNotNormalized') def testBahdanauMonotonicNormalized(self): create_attention_mechanism = functools.partial( wrapper.BahdanauMonotonicAttention, normalize=True, sigmoid_noise=1.0, sigmoid_noise_seed=3) expected_final_output = BasicDecoderOutput( rnn_output=ResultSummary( shape=(5, 3, 6), dtype=dtype('float32'), mean=-0.0025896581), sample_id=ResultSummary( shape=(5, 3), dtype=dtype('int32'), mean=1.73333333)) expected_final_state = AttentionWrapperState( cell_state=LSTMStateTuple( c=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0040013152), h=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0019973689)), attention=ResultSummary( shape=(5, 6), dtype=dtype('float32'), mean=-0.00069823361), time=3, alignments=ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.029914695), attention_state=ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.029914695), alignment_history=()) expected_final_alignment_history = ResultSummary( shape=(3, 5, 8), dtype=dtype('float32'), mean=0.0465225502849) self._testWithAttention( create_attention_mechanism, expected_final_output, expected_final_state, alignment_history=True, expected_final_alignment_history=expected_final_alignment_history, name='testBahdanauMonotonicNormalized') def testBahdanauMonotonicHard(self): # Run attention mechanism with mode='hard', make sure probabilities are hard b, t, u, d = 10, 20, 30, 40 with self.session(use_gpu=True) as sess: a = wrapper.BahdanauMonotonicAttention( d, random_ops.random_normal((b, t, u)), mode='hard') # Just feed previous attention as [1, 0, 0, ...] attn, unused_state = a( random_ops.random_normal((b, d)), array_ops.one_hot([0]*b, t)) sess.run(variables.global_variables_initializer()) attn_out = attn.eval() # All values should be 0 or 1 self.assertTrue(np.all(np.logical_or(attn_out == 0, attn_out == 1))) # Sum of distributions should be 0 or 1 (0 when all p_choose_i are 0) self.assertTrue(np.all(np.logical_or(attn_out.sum(axis=1) == 1, attn_out.sum(axis=1) == 0))) def testLuongMonotonicNotNormalized(self): create_attention_mechanism = functools.partial( wrapper.LuongMonotonicAttention, sigmoid_noise=1.0, sigmoid_noise_seed=3) expected_final_output = BasicDecoderOutput( rnn_output=ResultSummary( shape=(5, 3, 6), dtype=dtype('float32'), mean=-0.0021257224), sample_id=ResultSummary( shape=(5, 3), dtype=dtype('int32'), mean=1.7333333333333334)) expected_final_state = AttentionWrapperState( cell_state=LSTMStateTuple( c=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0040003359), h=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.001996913)), attention=ResultSummary( shape=(5, 6), dtype=dtype('float32'), mean=-5.2024145e-05), time=3, alignments=ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.032198936), attention_state=ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.032198936), alignment_history=()) expected_final_alignment_history = ResultSummary( shape=(3, 5, 8), dtype=dtype('float32'), mean=0.050387777) self._testWithAttention( create_attention_mechanism, expected_final_output, expected_final_state, attention_mechanism_depth=9, alignment_history=True, expected_final_alignment_history=expected_final_alignment_history, name='testLuongMonotonicNotNormalized') def testLuongMonotonicScaled(self): create_attention_mechanism = functools.partial( wrapper.LuongMonotonicAttention, scale=True, sigmoid_noise=1.0, sigmoid_noise_seed=3) expected_final_output = BasicDecoderOutput( rnn_output=ResultSummary( shape=(5, 3, 6), dtype=dtype('float32'), mean=-0.0021257224), sample_id=ResultSummary( shape=(5, 3), dtype=dtype('int32'), mean=1.7333333333333334)) expected_final_state = AttentionWrapperState( cell_state=LSTMStateTuple( c=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0040003359), h=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.001996913)), attention=ResultSummary( shape=(5, 6), dtype=dtype('float32'), mean=-5.2024145e-05), time=3, alignments=ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.032198936), attention_state=ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.032198936), alignment_history=()) expected_final_alignment_history = ResultSummary( shape=(3, 5, 8), dtype=dtype('float32'), mean=0.050387777) self._testWithAttention( create_attention_mechanism, expected_final_output, expected_final_state, attention_mechanism_depth=9, alignment_history=True, expected_final_alignment_history=expected_final_alignment_history, name='testLuongMonotonicScaled') def testMultiAttention(self): create_attention_mechanisms = ( wrapper.BahdanauAttention, wrapper.LuongAttention) expected_final_output = BasicDecoderOutput( rnn_output=ResultSummary( shape=(5, 3, 7), dtype=dtype('float32'), mean=0.0011709079), sample_id=ResultSummary( shape=(5, 3), dtype=dtype('int32'), mean=3.2000000000000002)) expected_final_state = AttentionWrapperState( cell_state=LSTMStateTuple( c=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0038725811), h=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0019329828)), attention=ResultSummary( shape=(5, 7), dtype=dtype('float32'), mean=0.001174294), time=3, alignments=( ResultSummary(shape=(5, 8), dtype=dtype('float32'), mean=0.125), ResultSummary(shape=(5, 8), dtype=dtype('float32'), mean=0.125)), attention_state=( ResultSummary(shape=(5, 8), dtype=dtype('float32'), mean=0.125), ResultSummary(shape=(5, 8), dtype=dtype('float32'), mean=0.125)), alignment_history=()) expected_final_alignment_history = ( ResultSummary(shape=(3, 5, 8), dtype=dtype('float32'), mean=0.125), ResultSummary(shape=(3, 5, 8), dtype=dtype('float32'), mean=0.125)) self._testWithMaybeMultiAttention( True, create_attention_mechanisms, expected_final_output, expected_final_state, attention_mechanism_depths=[9, 9], attention_layer_sizes=[3, 4], alignment_history=True, expected_final_alignment_history=expected_final_alignment_history, name='testMultiAttention') def testMultiAttentionWithLayerInstances(self): create_attention_mechanisms = ( wrapper.BahdanauAttention, wrapper.LuongAttention) expected_final_output = BasicDecoderOutput( rnn_output=ResultSummary( shape=(5, 3, 7), dtype=dtype('float32'), mean=0.0011709079), sample_id=ResultSummary( shape=(5, 3), dtype=dtype('int32'), mean=3.2000000000000002)) expected_final_state = AttentionWrapperState( cell_state=LSTMStateTuple( c=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0038725811), h=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0019329828)), attention=ResultSummary( shape=(5, 7), dtype=dtype('float32'), mean=0.001174294), time=3, alignments=( ResultSummary(shape=(5, 8), dtype=dtype('float32'), mean=0.125), ResultSummary(shape=(5, 8), dtype=dtype('float32'), mean=0.125)), attention_state=( ResultSummary(shape=(5, 8), dtype=dtype('float32'), mean=0.125), ResultSummary(shape=(5, 8), dtype=dtype('float32'), mean=0.125)), alignment_history=()) expected_final_alignment_history = ( ResultSummary(shape=(3, 5, 8), dtype=dtype('float32'), mean=0.125), ResultSummary(shape=(3, 5, 8), dtype=dtype('float32'), mean=0.125)) self._testWithMaybeMultiAttention( True, create_attention_mechanisms, expected_final_output, expected_final_state, attention_mechanism_depths=[9, 9], attention_layers=[layers_core.Dense(3, use_bias=False), layers_core.Dense(4, use_bias=False)], alignment_history=True, expected_final_alignment_history=expected_final_alignment_history, name='testMultiAttention') def testLuongMonotonicHard(self): # Run attention mechanism with mode='hard', make sure probabilities are hard b, t, u, d = 10, 20, 30, 40 with self.session(use_gpu=True) as sess: a = wrapper.LuongMonotonicAttention( d, random_ops.random_normal((b, t, u)), mode='hard') # Just feed previous attention as [1, 0, 0, ...] attn, unused_state = a( random_ops.random_normal((b, d)), array_ops.one_hot([0]*b, t)) sess.run(variables.global_variables_initializer()) attn_out = attn.eval() # All values should be 0 or 1 self.assertTrue(np.all(np.logical_or(attn_out == 0, attn_out == 1))) # Sum of distributions should be 0 or 1 (0 when all p_choose_i are 0) self.assertTrue(np.all(np.logical_or(attn_out.sum(axis=1) == 1, attn_out.sum(axis=1) == 0))) def testMultiAttentionNoAttentionLayer(self): create_attention_mechanisms = ( wrapper.BahdanauAttention, wrapper.LuongAttention) expected_final_output = BasicDecoderOutput( rnn_output=ResultSummary( shape=(5, 3, 20), dtype=dtype('float32'), mean=0.115853324533), sample_id=ResultSummary( shape=(5, 3), dtype=dtype('int32'), mean=8.6)) expected_final_state = AttentionWrapperState( cell_state=LSTMStateTuple( c=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.003545674), h=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0018327223)), attention=ResultSummary( shape=(5, 20), dtype=dtype('float32'), mean=0.11462739855), time=3, alignments=(ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.125), ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.125)), alignment_history=(), attention_state=(ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.125), ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.125))) expected_final_alignment_history = ( ResultSummary(shape=(3, 5, 8), dtype=dtype('float32'), mean=0.125), ResultSummary(shape=(3, 5, 8), dtype=dtype('float32'), mean=0.125)) self._testWithMaybeMultiAttention( is_multi=True, create_attention_mechanisms=create_attention_mechanisms, expected_final_output=expected_final_output, expected_final_state=expected_final_state, attention_mechanism_depths=[9, 9], alignment_history=True, expected_final_alignment_history=expected_final_alignment_history, name='testMultiAttention') def testSingleAttentionAsList(self): create_attention_mechanisms = [wrapper.BahdanauAttention] expected_final_output = BasicDecoderOutput( rnn_output=ResultSummary( shape=(5, 3, 3), dtype=dtype('float32'), mean=-0.0098485695), sample_id=ResultSummary( shape=(5, 3), dtype=dtype('int32'), mean=1.8)) expected_final_state = AttentionWrapperState( cell_state=LSTMStateTuple( c=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0040023471), h=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0019979973)), attention=ResultSummary( shape=(5, 3), dtype=dtype('float32'), mean=-0.0098808752), time=3, alignments=( ResultSummary(shape=(5, 8), dtype=dtype('float32'), mean=0.125),), attention_state=( ResultSummary(shape=(5, 8), dtype=dtype('float32'), mean=0.125),), alignment_history=()) expected_final_alignment_history = ( ResultSummary(shape=(3, 5, 8), dtype=dtype('float32'), mean=0.125),) self._testWithMaybeMultiAttention( is_multi=True, # pass the AttentionMechanism wrapped in a list create_attention_mechanisms=create_attention_mechanisms, expected_final_output=expected_final_output, expected_final_state=expected_final_state, attention_mechanism_depths=[9], attention_layer_sizes=[3], alignment_history=True, expected_final_alignment_history=expected_final_alignment_history, name='testMultiAttention') def testCustomizedAttention(self): batch_size = 2 max_time = 3 num_units = 2 memory = constant_op.constant([[[1., 1.], [2., 2.], [3., 3.]], [[4., 4.], [5., 5.], [6., 6.]]]) memory_sequence_length = constant_op.constant([3, 2]) attention_mechanism = wrapper.BahdanauAttention(num_units, memory, memory_sequence_length) # Sets all returned values to be all ones. def _customized_attention(unused_attention_mechanism, unused_cell_output, unused_attention_state, unused_attention_layer): """Customized attention. Returns: attention: `Tensor` of shape [batch_size, num_units], attention output. alignments: `Tensor` of shape [batch_size, max_time], sigma value for each input memory (prob. function of input keys). next_attention_state: A `Tensor` representing the next state for the attention. """ attention = array_ops.ones([batch_size, num_units]) alignments = array_ops.ones([batch_size, max_time]) next_attention_state = alignments return attention, alignments, next_attention_state attention_cell = wrapper.AttentionWrapper( rnn_cell.LSTMCell(2), attention_mechanism, attention_layer_size=None, # don't use attention layer. output_attention=False, alignment_history=(), attention_fn=_customized_attention, name='attention') self.assertEqual(num_units, attention_cell.output_size) initial_state = attention_cell.zero_state( batch_size=2, dtype=dtypes.float32) source_input_emb = array_ops.ones([2, 3, 2]) source_input_length = constant_op.constant([3, 2]) # 'state' is a tuple of # (cell_state, h, attention, alignments, alignment_history, attention_state) output, state = rnn.dynamic_rnn( attention_cell, inputs=source_input_emb, sequence_length=source_input_length, initial_state=initial_state, dtype=dtypes.float32) with self.session() as sess: sess.run(variables.global_variables_initializer()) output_value, state_value = sess.run([output, state], feed_dict={}) self.assertAllEqual(np.array([2, 3, 2]), output_value.shape) self.assertAllClose(np.array([[1., 1.], [1., 1.]]), state_value.attention) self.assertAllClose( np.array([[1., 1., 1.], [1., 1., 1.]]), state_value.alignments) self.assertAllClose( np.array([[1., 1., 1.], [1., 1., 1.]]), state_value.attention_state) if __name__ == '__main__': test.main()
tensorflow-master
tensorflow/contrib/seq2seq/python/kernel_tests/attention_wrapper_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for contrib.seq2seq.python.seq2seq.basic_decoder.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.seq2seq.python.ops import basic_decoder from tensorflow.contrib.seq2seq.python.ops import helper as helper_py from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import tensor_shape from tensorflow.python.framework import test_util from tensorflow.python.layers import core as layers_core from tensorflow.python.ops import array_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import rnn_cell from tensorflow.python.ops import variable_scope from tensorflow.python.ops import variables from tensorflow.python.platform import test @test_util.run_v1_only("contrib code not supported in TF2.0") class BasicDecoderTest(test.TestCase): def _testStepWithTrainingHelper(self, use_output_layer): sequence_length = [3, 4, 3, 1, 0] batch_size = 5 max_time = 8 input_depth = 7 cell_depth = 10 output_layer_depth = 3 with self.session(use_gpu=True) as sess: inputs = np.random.randn(batch_size, max_time, input_depth).astype(np.float32) cell = rnn_cell.LSTMCell(cell_depth) helper = helper_py.TrainingHelper( inputs, sequence_length, time_major=False) if use_output_layer: output_layer = layers_core.Dense(output_layer_depth, use_bias=False) expected_output_depth = output_layer_depth else: output_layer = None expected_output_depth = cell_depth my_decoder = basic_decoder.BasicDecoder( cell=cell, helper=helper, initial_state=cell.zero_state( dtype=dtypes.float32, batch_size=batch_size), output_layer=output_layer) output_size = my_decoder.output_size output_dtype = my_decoder.output_dtype self.assertEqual( basic_decoder.BasicDecoderOutput(expected_output_depth, tensor_shape.TensorShape([])), output_size) self.assertEqual( basic_decoder.BasicDecoderOutput(dtypes.float32, dtypes.int32), output_dtype) (first_finished, first_inputs, first_state) = my_decoder.initialize() (step_outputs, step_state, step_next_inputs, step_finished) = my_decoder.step( constant_op.constant(0), first_inputs, first_state) batch_size_t = my_decoder.batch_size self.assertTrue(isinstance(first_state, rnn_cell.LSTMStateTuple)) self.assertTrue(isinstance(step_state, rnn_cell.LSTMStateTuple)) self.assertTrue( isinstance(step_outputs, basic_decoder.BasicDecoderOutput)) self.assertEqual((batch_size, expected_output_depth), step_outputs[0].get_shape()) self.assertEqual((batch_size,), step_outputs[1].get_shape()) self.assertEqual((batch_size, cell_depth), first_state[0].get_shape()) self.assertEqual((batch_size, cell_depth), first_state[1].get_shape()) self.assertEqual((batch_size, cell_depth), step_state[0].get_shape()) self.assertEqual((batch_size, cell_depth), step_state[1].get_shape()) if use_output_layer: # The output layer was accessed self.assertEqual(len(output_layer.variables), 1) sess.run(variables.global_variables_initializer()) sess_results = sess.run({ "batch_size": batch_size_t, "first_finished": first_finished, "first_inputs": first_inputs, "first_state": first_state, "step_outputs": step_outputs, "step_state": step_state, "step_next_inputs": step_next_inputs, "step_finished": step_finished }) self.assertAllEqual([False, False, False, False, True], sess_results["first_finished"]) self.assertAllEqual([False, False, False, True, True], sess_results["step_finished"]) self.assertEqual(output_dtype.sample_id, sess_results["step_outputs"].sample_id.dtype) self.assertAllEqual( np.argmax(sess_results["step_outputs"].rnn_output, -1), sess_results["step_outputs"].sample_id) def testStepWithTrainingHelperNoOutputLayer(self): self._testStepWithTrainingHelper(use_output_layer=False) def testStepWithTrainingHelperWithOutputLayer(self): self._testStepWithTrainingHelper(use_output_layer=True) def testStepWithGreedyEmbeddingHelper(self): batch_size = 5 vocabulary_size = 7 cell_depth = vocabulary_size # cell's logits must match vocabulary size input_depth = 10 start_tokens = np.random.randint(0, vocabulary_size, size=batch_size) end_token = 1 with self.session(use_gpu=True) as sess: embeddings = np.random.randn(vocabulary_size, input_depth).astype(np.float32) cell = rnn_cell.LSTMCell(vocabulary_size) helper = helper_py.GreedyEmbeddingHelper(embeddings, start_tokens, end_token) my_decoder = basic_decoder.BasicDecoder( cell=cell, helper=helper, initial_state=cell.zero_state( dtype=dtypes.float32, batch_size=batch_size)) output_size = my_decoder.output_size output_dtype = my_decoder.output_dtype self.assertEqual( basic_decoder.BasicDecoderOutput(cell_depth, tensor_shape.TensorShape([])), output_size) self.assertEqual( basic_decoder.BasicDecoderOutput(dtypes.float32, dtypes.int32), output_dtype) (first_finished, first_inputs, first_state) = my_decoder.initialize() (step_outputs, step_state, step_next_inputs, step_finished) = my_decoder.step( constant_op.constant(0), first_inputs, first_state) batch_size_t = my_decoder.batch_size self.assertTrue(isinstance(first_state, rnn_cell.LSTMStateTuple)) self.assertTrue(isinstance(step_state, rnn_cell.LSTMStateTuple)) self.assertTrue( isinstance(step_outputs, basic_decoder.BasicDecoderOutput)) self.assertEqual((batch_size, cell_depth), step_outputs[0].get_shape()) self.assertEqual((batch_size,), step_outputs[1].get_shape()) self.assertEqual((batch_size, cell_depth), first_state[0].get_shape()) self.assertEqual((batch_size, cell_depth), first_state[1].get_shape()) self.assertEqual((batch_size, cell_depth), step_state[0].get_shape()) self.assertEqual((batch_size, cell_depth), step_state[1].get_shape()) sess.run(variables.global_variables_initializer()) sess_results = sess.run({ "batch_size": batch_size_t, "first_finished": first_finished, "first_inputs": first_inputs, "first_state": first_state, "step_outputs": step_outputs, "step_state": step_state, "step_next_inputs": step_next_inputs, "step_finished": step_finished }) expected_sample_ids = np.argmax( sess_results["step_outputs"].rnn_output, -1) expected_step_finished = (expected_sample_ids == end_token) expected_step_next_inputs = embeddings[expected_sample_ids] self.assertAllEqual([False, False, False, False, False], sess_results["first_finished"]) self.assertAllEqual(expected_step_finished, sess_results["step_finished"]) self.assertEqual(output_dtype.sample_id, sess_results["step_outputs"].sample_id.dtype) self.assertAllEqual(expected_sample_ids, sess_results["step_outputs"].sample_id) self.assertAllEqual(expected_step_next_inputs, sess_results["step_next_inputs"]) def testStepWithSampleEmbeddingHelper(self): batch_size = 5 vocabulary_size = 7 cell_depth = vocabulary_size # cell's logits must match vocabulary size input_depth = 10 np.random.seed(0) start_tokens = np.random.randint(0, vocabulary_size, size=batch_size) end_token = 1 with self.session(use_gpu=True) as sess: with variable_scope.variable_scope( "testStepWithSampleEmbeddingHelper", initializer=init_ops.constant_initializer(0.01)): embeddings = np.random.randn(vocabulary_size, input_depth).astype(np.float32) cell = rnn_cell.LSTMCell(vocabulary_size) helper = helper_py.SampleEmbeddingHelper(embeddings, start_tokens, end_token, seed=0) my_decoder = basic_decoder.BasicDecoder( cell=cell, helper=helper, initial_state=cell.zero_state( dtype=dtypes.float32, batch_size=batch_size)) output_size = my_decoder.output_size output_dtype = my_decoder.output_dtype self.assertEqual( basic_decoder.BasicDecoderOutput(cell_depth, tensor_shape.TensorShape([])), output_size) self.assertEqual( basic_decoder.BasicDecoderOutput(dtypes.float32, dtypes.int32), output_dtype) (first_finished, first_inputs, first_state) = my_decoder.initialize() (step_outputs, step_state, step_next_inputs, step_finished) = my_decoder.step( constant_op.constant(0), first_inputs, first_state) batch_size_t = my_decoder.batch_size self.assertTrue(isinstance(first_state, rnn_cell.LSTMStateTuple)) self.assertTrue(isinstance(step_state, rnn_cell.LSTMStateTuple)) self.assertTrue( isinstance(step_outputs, basic_decoder.BasicDecoderOutput)) self.assertEqual((batch_size, cell_depth), step_outputs[0].get_shape()) self.assertEqual((batch_size,), step_outputs[1].get_shape()) self.assertEqual((batch_size, cell_depth), first_state[0].get_shape()) self.assertEqual((batch_size, cell_depth), first_state[1].get_shape()) self.assertEqual((batch_size, cell_depth), step_state[0].get_shape()) self.assertEqual((batch_size, cell_depth), step_state[1].get_shape()) sess.run(variables.global_variables_initializer()) sess_results = sess.run({ "batch_size": batch_size_t, "first_finished": first_finished, "first_inputs": first_inputs, "first_state": first_state, "step_outputs": step_outputs, "step_state": step_state, "step_next_inputs": step_next_inputs, "step_finished": step_finished }) sample_ids = sess_results["step_outputs"].sample_id self.assertEqual(output_dtype.sample_id, sample_ids.dtype) expected_step_finished = (sample_ids == end_token) expected_step_next_inputs = embeddings[sample_ids] self.assertAllEqual(expected_step_finished, sess_results["step_finished"]) self.assertAllEqual(expected_step_next_inputs, sess_results["step_next_inputs"]) def testStepWithScheduledEmbeddingTrainingHelper(self): sequence_length = [3, 4, 3, 1, 0] batch_size = 5 max_time = 8 input_depth = 7 vocabulary_size = 10 with self.session(use_gpu=True) as sess: inputs = np.random.randn( batch_size, max_time, input_depth).astype(np.float32) embeddings = np.random.randn( vocabulary_size, input_depth).astype(np.float32) half = constant_op.constant(0.5) cell = rnn_cell.LSTMCell(vocabulary_size) helper = helper_py.ScheduledEmbeddingTrainingHelper( inputs=inputs, sequence_length=sequence_length, embedding=embeddings, sampling_probability=half, time_major=False) my_decoder = basic_decoder.BasicDecoder( cell=cell, helper=helper, initial_state=cell.zero_state( dtype=dtypes.float32, batch_size=batch_size)) output_size = my_decoder.output_size output_dtype = my_decoder.output_dtype self.assertEqual( basic_decoder.BasicDecoderOutput(vocabulary_size, tensor_shape.TensorShape([])), output_size) self.assertEqual( basic_decoder.BasicDecoderOutput(dtypes.float32, dtypes.int32), output_dtype) (first_finished, first_inputs, first_state) = my_decoder.initialize() (step_outputs, step_state, step_next_inputs, step_finished) = my_decoder.step( constant_op.constant(0), first_inputs, first_state) batch_size_t = my_decoder.batch_size self.assertTrue(isinstance(first_state, rnn_cell.LSTMStateTuple)) self.assertTrue(isinstance(step_state, rnn_cell.LSTMStateTuple)) self.assertTrue( isinstance(step_outputs, basic_decoder.BasicDecoderOutput)) self.assertEqual((batch_size, vocabulary_size), step_outputs[0].get_shape()) self.assertEqual((batch_size,), step_outputs[1].get_shape()) self.assertEqual((batch_size, vocabulary_size), first_state[0].get_shape()) self.assertEqual((batch_size, vocabulary_size), first_state[1].get_shape()) self.assertEqual((batch_size, vocabulary_size), step_state[0].get_shape()) self.assertEqual((batch_size, vocabulary_size), step_state[1].get_shape()) self.assertEqual((batch_size, input_depth), step_next_inputs.get_shape()) sess.run(variables.global_variables_initializer()) sess_results = sess.run({ "batch_size": batch_size_t, "first_finished": first_finished, "first_inputs": first_inputs, "first_state": first_state, "step_outputs": step_outputs, "step_state": step_state, "step_next_inputs": step_next_inputs, "step_finished": step_finished }) self.assertAllEqual([False, False, False, False, True], sess_results["first_finished"]) self.assertAllEqual([False, False, False, True, True], sess_results["step_finished"]) sample_ids = sess_results["step_outputs"].sample_id self.assertEqual(output_dtype.sample_id, sample_ids.dtype) batch_where_not_sampling = np.where(sample_ids == -1) batch_where_sampling = np.where(sample_ids > -1) self.assertAllClose( sess_results["step_next_inputs"][batch_where_sampling], embeddings[sample_ids[batch_where_sampling]]) self.assertAllClose( sess_results["step_next_inputs"][batch_where_not_sampling], np.squeeze(inputs[batch_where_not_sampling, 1])) def _testStepWithScheduledOutputTrainingHelper( self, sampling_probability, use_next_inputs_fn, use_auxiliary_inputs): sequence_length = [3, 4, 3, 1, 0] batch_size = 5 max_time = 8 input_depth = 7 cell_depth = input_depth if use_auxiliary_inputs: auxiliary_input_depth = 4 auxiliary_inputs = np.random.randn( batch_size, max_time, auxiliary_input_depth).astype(np.float32) else: auxiliary_inputs = None with self.session(use_gpu=True) as sess: inputs = np.random.randn(batch_size, max_time, input_depth).astype(np.float32) cell = rnn_cell.LSTMCell(cell_depth) sampling_probability = constant_op.constant(sampling_probability) if use_next_inputs_fn: def next_inputs_fn(outputs): # Use deterministic function for test. samples = math_ops.argmax(outputs, axis=1) return array_ops.one_hot(samples, cell_depth, dtype=dtypes.float32) else: next_inputs_fn = None helper = helper_py.ScheduledOutputTrainingHelper( inputs=inputs, sequence_length=sequence_length, sampling_probability=sampling_probability, time_major=False, next_inputs_fn=next_inputs_fn, auxiliary_inputs=auxiliary_inputs) my_decoder = basic_decoder.BasicDecoder( cell=cell, helper=helper, initial_state=cell.zero_state( dtype=dtypes.float32, batch_size=batch_size)) output_size = my_decoder.output_size output_dtype = my_decoder.output_dtype self.assertEqual( basic_decoder.BasicDecoderOutput(cell_depth, tensor_shape.TensorShape([])), output_size) self.assertEqual( basic_decoder.BasicDecoderOutput(dtypes.float32, dtypes.int32), output_dtype) (first_finished, first_inputs, first_state) = my_decoder.initialize() (step_outputs, step_state, step_next_inputs, step_finished) = my_decoder.step( constant_op.constant(0), first_inputs, first_state) if use_next_inputs_fn: output_after_next_inputs_fn = next_inputs_fn(step_outputs.rnn_output) batch_size_t = my_decoder.batch_size self.assertTrue(isinstance(first_state, rnn_cell.LSTMStateTuple)) self.assertTrue(isinstance(step_state, rnn_cell.LSTMStateTuple)) self.assertTrue( isinstance(step_outputs, basic_decoder.BasicDecoderOutput)) self.assertEqual((batch_size, cell_depth), step_outputs[0].get_shape()) self.assertEqual((batch_size,), step_outputs[1].get_shape()) self.assertEqual((batch_size, cell_depth), first_state[0].get_shape()) self.assertEqual((batch_size, cell_depth), first_state[1].get_shape()) self.assertEqual((batch_size, cell_depth), step_state[0].get_shape()) self.assertEqual((batch_size, cell_depth), step_state[1].get_shape()) sess.run(variables.global_variables_initializer()) fetches = { "batch_size": batch_size_t, "first_finished": first_finished, "first_inputs": first_inputs, "first_state": first_state, "step_outputs": step_outputs, "step_state": step_state, "step_next_inputs": step_next_inputs, "step_finished": step_finished } if use_next_inputs_fn: fetches["output_after_next_inputs_fn"] = output_after_next_inputs_fn sess_results = sess.run(fetches) self.assertAllEqual([False, False, False, False, True], sess_results["first_finished"]) self.assertAllEqual([False, False, False, True, True], sess_results["step_finished"]) sample_ids = sess_results["step_outputs"].sample_id self.assertEqual(output_dtype.sample_id, sample_ids.dtype) batch_where_not_sampling = np.where(np.logical_not(sample_ids)) batch_where_sampling = np.where(sample_ids) auxiliary_inputs_to_concat = ( auxiliary_inputs[:, 1] if use_auxiliary_inputs else np.array([]).reshape(batch_size, 0).astype(np.float32)) expected_next_sampling_inputs = np.concatenate( (sess_results["output_after_next_inputs_fn"][batch_where_sampling] if use_next_inputs_fn else sess_results["step_outputs"].rnn_output[batch_where_sampling], auxiliary_inputs_to_concat[batch_where_sampling]), axis=-1) self.assertAllClose( sess_results["step_next_inputs"][batch_where_sampling], expected_next_sampling_inputs) self.assertAllClose( sess_results["step_next_inputs"][batch_where_not_sampling], np.concatenate( (np.squeeze(inputs[batch_where_not_sampling, 1], axis=0), auxiliary_inputs_to_concat[batch_where_not_sampling]), axis=-1)) def testStepWithScheduledOutputTrainingHelperWithoutNextInputsFnOrAuxInputs( self): self._testStepWithScheduledOutputTrainingHelper( sampling_probability=0.5, use_next_inputs_fn=False, use_auxiliary_inputs=False) def testStepWithScheduledOutputTrainingHelperWithNextInputsFn(self): self._testStepWithScheduledOutputTrainingHelper( sampling_probability=0.5, use_next_inputs_fn=True, use_auxiliary_inputs=False) def testStepWithScheduledOutputTrainingHelperWithAuxiliaryInputs(self): self._testStepWithScheduledOutputTrainingHelper( sampling_probability=0.5, use_next_inputs_fn=False, use_auxiliary_inputs=True) def testStepWithScheduledOutputTrainingHelperWithNextInputsFnAndAuxInputs( self): self._testStepWithScheduledOutputTrainingHelper( sampling_probability=0.5, use_next_inputs_fn=True, use_auxiliary_inputs=True) def testStepWithScheduledOutputTrainingHelperWithNoSampling(self): self._testStepWithScheduledOutputTrainingHelper( sampling_probability=0.0, use_next_inputs_fn=True, use_auxiliary_inputs=True) def testStepWithInferenceHelperCategorical(self): batch_size = 5 vocabulary_size = 7 cell_depth = vocabulary_size start_token = 0 end_token = 6 start_inputs = array_ops.one_hot( np.ones(batch_size) * start_token, vocabulary_size) # The sample function samples categorically from the logits. sample_fn = lambda x: helper_py.categorical_sample(logits=x) # The next inputs are a one-hot encoding of the sampled labels. next_inputs_fn = ( lambda x: array_ops.one_hot(x, vocabulary_size, dtype=dtypes.float32)) end_fn = lambda sample_ids: math_ops.equal(sample_ids, end_token) with self.session(use_gpu=True) as sess: with variable_scope.variable_scope( "testStepWithInferenceHelper", initializer=init_ops.constant_initializer(0.01)): cell = rnn_cell.LSTMCell(vocabulary_size) helper = helper_py.InferenceHelper( sample_fn, sample_shape=(), sample_dtype=dtypes.int32, start_inputs=start_inputs, end_fn=end_fn, next_inputs_fn=next_inputs_fn) my_decoder = basic_decoder.BasicDecoder( cell=cell, helper=helper, initial_state=cell.zero_state( dtype=dtypes.float32, batch_size=batch_size)) output_size = my_decoder.output_size output_dtype = my_decoder.output_dtype self.assertEqual( basic_decoder.BasicDecoderOutput(cell_depth, tensor_shape.TensorShape([])), output_size) self.assertEqual( basic_decoder.BasicDecoderOutput(dtypes.float32, dtypes.int32), output_dtype) (first_finished, first_inputs, first_state) = my_decoder.initialize() (step_outputs, step_state, step_next_inputs, step_finished) = my_decoder.step( constant_op.constant(0), first_inputs, first_state) batch_size_t = my_decoder.batch_size self.assertTrue(isinstance(first_state, rnn_cell.LSTMStateTuple)) self.assertTrue(isinstance(step_state, rnn_cell.LSTMStateTuple)) self.assertTrue( isinstance(step_outputs, basic_decoder.BasicDecoderOutput)) self.assertEqual((batch_size, cell_depth), step_outputs[0].get_shape()) self.assertEqual((batch_size,), step_outputs[1].get_shape()) self.assertEqual((batch_size, cell_depth), first_state[0].get_shape()) self.assertEqual((batch_size, cell_depth), first_state[1].get_shape()) self.assertEqual((batch_size, cell_depth), step_state[0].get_shape()) self.assertEqual((batch_size, cell_depth), step_state[1].get_shape()) sess.run(variables.global_variables_initializer()) sess_results = sess.run({ "batch_size": batch_size_t, "first_finished": first_finished, "first_inputs": first_inputs, "first_state": first_state, "step_outputs": step_outputs, "step_state": step_state, "step_next_inputs": step_next_inputs, "step_finished": step_finished }) sample_ids = sess_results["step_outputs"].sample_id self.assertEqual(output_dtype.sample_id, sample_ids.dtype) expected_step_finished = (sample_ids == end_token) expected_step_next_inputs = np.zeros((batch_size, vocabulary_size)) expected_step_next_inputs[np.arange(batch_size), sample_ids] = 1.0 self.assertAllEqual(expected_step_finished, sess_results["step_finished"]) self.assertAllEqual(expected_step_next_inputs, sess_results["step_next_inputs"]) def testStepWithInferenceHelperMultilabel(self): batch_size = 5 vocabulary_size = 7 cell_depth = vocabulary_size start_token = 0 end_token = 6 start_inputs = array_ops.one_hot( np.ones(batch_size) * start_token, vocabulary_size) # The sample function samples independent bernoullis from the logits. sample_fn = ( lambda x: helper_py.bernoulli_sample(logits=x, dtype=dtypes.bool)) # The next inputs are a one-hot encoding of the sampled labels. next_inputs_fn = math_ops.to_float end_fn = lambda sample_ids: sample_ids[:, end_token] with self.session(use_gpu=True) as sess: with variable_scope.variable_scope( "testStepWithInferenceHelper", initializer=init_ops.constant_initializer(0.01)): cell = rnn_cell.LSTMCell(vocabulary_size) helper = helper_py.InferenceHelper( sample_fn, sample_shape=[cell_depth], sample_dtype=dtypes.bool, start_inputs=start_inputs, end_fn=end_fn, next_inputs_fn=next_inputs_fn) my_decoder = basic_decoder.BasicDecoder( cell=cell, helper=helper, initial_state=cell.zero_state( dtype=dtypes.float32, batch_size=batch_size)) output_size = my_decoder.output_size output_dtype = my_decoder.output_dtype self.assertEqual( basic_decoder.BasicDecoderOutput(cell_depth, cell_depth), output_size) self.assertEqual( basic_decoder.BasicDecoderOutput(dtypes.float32, dtypes.bool), output_dtype) (first_finished, first_inputs, first_state) = my_decoder.initialize() (step_outputs, step_state, step_next_inputs, step_finished) = my_decoder.step( constant_op.constant(0), first_inputs, first_state) batch_size_t = my_decoder.batch_size self.assertTrue(isinstance(first_state, rnn_cell.LSTMStateTuple)) self.assertTrue(isinstance(step_state, rnn_cell.LSTMStateTuple)) self.assertTrue( isinstance(step_outputs, basic_decoder.BasicDecoderOutput)) self.assertEqual((batch_size, cell_depth), step_outputs[0].get_shape()) self.assertEqual((batch_size, cell_depth), step_outputs[1].get_shape()) self.assertEqual((batch_size, cell_depth), first_state[0].get_shape()) self.assertEqual((batch_size, cell_depth), first_state[1].get_shape()) self.assertEqual((batch_size, cell_depth), step_state[0].get_shape()) self.assertEqual((batch_size, cell_depth), step_state[1].get_shape()) sess.run(variables.global_variables_initializer()) sess_results = sess.run({ "batch_size": batch_size_t, "first_finished": first_finished, "first_inputs": first_inputs, "first_state": first_state, "step_outputs": step_outputs, "step_state": step_state, "step_next_inputs": step_next_inputs, "step_finished": step_finished }) sample_ids = sess_results["step_outputs"].sample_id self.assertEqual(output_dtype.sample_id, sample_ids.dtype) expected_step_finished = sample_ids[:, end_token] expected_step_next_inputs = sample_ids.astype(np.float32) self.assertAllEqual(expected_step_finished, sess_results["step_finished"]) self.assertAllEqual(expected_step_next_inputs, sess_results["step_next_inputs"]) if __name__ == "__main__": test.main()
tensorflow-master
tensorflow/contrib/seq2seq/python/kernel_tests/basic_decoder_test.py
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for contrib.seq2seq.python.seq2seq.decoder.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.seq2seq.python.ops import basic_decoder from tensorflow.contrib.seq2seq.python.ops import sampler as sampler_py from tensorflow.python.eager import context from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.keras import keras_parameterized from tensorflow.python.ops import rnn from tensorflow.python.ops import rnn_cell from tensorflow.python.ops import variables from tensorflow.python.platform import test @keras_parameterized.run_all_keras_modes class DecodeV2RNNTest(keras_parameterized.TestCase, test.TestCase): """Tests for DecoderV2.""" def _testDecodeRNN(self, time_major, maximum_iterations=None): sequence_length = [3, 4, 3, 1, 0] batch_size = 5 max_time = 8 input_depth = 7 cell_depth = 10 max_out = max(sequence_length) with self.cached_session(use_gpu=True): if time_major: inputs = np.random.randn(max_time, batch_size, input_depth).astype(np.float32) else: inputs = np.random.randn(batch_size, max_time, input_depth).astype(np.float32) input_t = constant_op.constant(inputs) cell = rnn_cell.LSTMCell(cell_depth) sampler = sampler_py.TrainingSampler(time_major=time_major) my_decoder = basic_decoder.BasicDecoderV2( cell=cell, sampler=sampler, output_time_major=time_major, maximum_iterations=maximum_iterations) initial_state = cell.zero_state( dtype=dtypes.float32, batch_size=batch_size) (final_outputs, unused_final_state, final_sequence_length) = my_decoder( input_t, initial_state=initial_state, sequence_length=sequence_length) def _t(shape): if time_major: return (shape[1], shape[0]) + shape[2:] return shape if not context.executing_eagerly(): self.assertEqual((batch_size,), tuple(final_sequence_length.get_shape().as_list())) self.assertEqual( _t((batch_size, None, cell_depth)), tuple(final_outputs.rnn_output.get_shape().as_list())) self.assertEqual( _t((batch_size, None)), tuple(final_outputs.sample_id.get_shape().as_list())) self.evaluate(variables.global_variables_initializer()) final_outputs = self.evaluate(final_outputs) final_sequence_length = self.evaluate(final_sequence_length) # Mostly a smoke test time_steps = max_out expected_length = sequence_length if maximum_iterations is not None: time_steps = min(max_out, maximum_iterations) expected_length = [min(x, maximum_iterations) for x in expected_length] if context.executing_eagerly() and maximum_iterations != 0: # Only check the shape of output when maximum_iterations > 0, see # b/123431432 for more details. self.assertEqual( _t((batch_size, time_steps, cell_depth)), final_outputs.rnn_output.shape) self.assertEqual( _t((batch_size, time_steps)), final_outputs.sample_id.shape) self.assertItemsEqual(expected_length, final_sequence_length) def testDynamicDecodeRNNBatchMajor(self): self._testDecodeRNN(time_major=False) def testDynamicDecodeRNNTimeMajor(self): self._testDecodeRNN(time_major=True) def testDynamicDecodeRNNZeroMaxIters(self): self._testDecodeRNN(time_major=True, maximum_iterations=0) def testDynamicDecodeRNNOneMaxIter(self): self._testDecodeRNN(time_major=True, maximum_iterations=1) def _testDynamicDecodeRNNWithTrainingHelperMatchesDynamicRNN( self, use_sequence_length): sequence_length = [3, 4, 3, 1, 0] batch_size = 5 max_time = 8 input_depth = 7 cell_depth = 10 max_out = max(sequence_length) with self.cached_session(use_gpu=True): inputs = np.random.randn(batch_size, max_time, input_depth).astype(np.float32) inputs = constant_op.constant(inputs) cell = rnn_cell.LSTMCell(cell_depth) zero_state = cell.zero_state(dtype=dtypes.float32, batch_size=batch_size) sampler = sampler_py.TrainingSampler() my_decoder = basic_decoder.BasicDecoderV2( cell=cell, sampler=sampler, impute_finished=use_sequence_length) final_decoder_outputs, final_decoder_state, _ = my_decoder( inputs, initial_state=zero_state, sequence_length=sequence_length) final_rnn_outputs, final_rnn_state = rnn.dynamic_rnn( cell, inputs, sequence_length=sequence_length if use_sequence_length else None, initial_state=zero_state) self.evaluate(variables.global_variables_initializer()) eval_result = self.evaluate({ "final_decoder_outputs": final_decoder_outputs, "final_decoder_state": final_decoder_state, "final_rnn_outputs": final_rnn_outputs, "final_rnn_state": final_rnn_state }) # Decoder only runs out to max_out; ensure values are identical # to dynamic_rnn, which also zeros out outputs and passes along state. self.assertAllClose(eval_result["final_decoder_outputs"].rnn_output, eval_result["final_rnn_outputs"][:, 0:max_out, :]) if use_sequence_length: self.assertAllClose(eval_result["final_decoder_state"], eval_result["final_rnn_state"]) def testDynamicDecodeRNNWithTrainingHelperMatchesDynamicRNNWithSeqLen(self): self._testDynamicDecodeRNNWithTrainingHelperMatchesDynamicRNN( use_sequence_length=True) def testDynamicDecodeRNNWithTrainingHelperMatchesDynamicRNNNoSeqLen(self): self._testDynamicDecodeRNNWithTrainingHelperMatchesDynamicRNN( use_sequence_length=False) if __name__ == "__main__": test.main()
tensorflow-master
tensorflow/contrib/seq2seq/python/kernel_tests/decoder_v2_test.py
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for contrib.seq2seq.python.ops.attention_wrapper.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections from absl.testing import parameterized import numpy as np from tensorflow.contrib.seq2seq.python.ops import attention_wrapper as wrapper from tensorflow.contrib.seq2seq.python.ops import basic_decoder from tensorflow.contrib.seq2seq.python.ops import sampler as sampler_py from tensorflow.python import keras from tensorflow.python.eager import context from tensorflow.python.framework import dtypes from tensorflow.python.framework import test_util from tensorflow.python.keras import initializers from tensorflow.python.ops import variables from tensorflow.python.platform import test from tensorflow.python.util import nest @test_util.run_all_in_graph_and_eager_modes class AttentionMechanismTest(test.TestCase, parameterized.TestCase): def setUp(self): super(AttentionMechanismTest, self).setUp() self.batch = 10 self.timestep = 5 self.memory_size = 6 self.units = 8 self.memory = np.random.randn(self.batch, self.timestep, self.memory_size).astype(np.float32) self.query = np.random.randn(self.batch, self.units).astype(np.float32) self.state = np.random.randn(self.batch, self.timestep).astype(np.float32) @parameterized.named_parameters( ("luong", wrapper.LuongAttentionV2), ("luong_monotonic", wrapper.LuongMonotonicAttentionV2), ("bahdanau", wrapper.BahdanauAttentionV2), ("bahdanau_monotonic", wrapper.BahdanauMonotonicAttentionV2), ) def test_attention_shape_inference(self, attention_cls): attention = attention_cls(self.units, self.memory) attention_score = attention([self.query, self.state]) self.assertLen(attention_score, 2) self.assertEqual(attention_score[0].shape, (self.batch, self.timestep)) self.assertEqual(attention_score[1].shape, (self.batch, self.timestep)) @parameterized.named_parameters( ("luong", wrapper.LuongAttentionV2), ("luong_monotonic", wrapper.LuongMonotonicAttentionV2), ("bahdanau", wrapper.BahdanauAttentionV2), ("bahdanau_monotonic", wrapper.BahdanauMonotonicAttentionV2), ) def test_get_config(self, attention_cls): attention = attention_cls(self.units, self.memory) config = attention.get_config() attention_from_config = attention_cls.from_config(config) config_from_clone = attention_from_config.get_config() self.assertDictEqual(config, config_from_clone) @parameterized.named_parameters( ("luong", wrapper.LuongAttentionV2), ("luong_monotonic", wrapper.LuongMonotonicAttentionV2), ("bahdanau", wrapper.BahdanauAttentionV2), ("bahdanau_monotonic", wrapper.BahdanauMonotonicAttentionV2), ) def test_layer_output(self, attention_cls): attention = attention_cls(self.units, self.memory) score = attention([self.query, self.state]) self.evaluate(variables.variables_initializer(attention.variables)) score_val = self.evaluate(score) self.assertLen(score_val, 2) self.assertEqual(score_val[0].shape, (self.batch, self.timestep)) self.assertEqual(score_val[1].shape, (self.batch, self.timestep)) @parameterized.named_parameters( ("luong", wrapper.LuongAttentionV2), ("luong_monotonic", wrapper.LuongMonotonicAttentionV2), ("bahdanau", wrapper.BahdanauAttentionV2), ("bahdanau_monotonic", wrapper.BahdanauMonotonicAttentionV2), ) def test_passing_memory_from_call(self, attention_cls): attention = attention_cls(self.units, self.memory) weights_before_query = attention.get_weights() ref_score = attention([self.query, self.state]) self.evaluate(variables.global_variables_initializer()) ref_score_val = self.evaluate(ref_score) all_weights = attention.get_weights() config = attention.get_config() # Simulate the twice invocation of calls here. attention_from_config = attention_cls.from_config(config) attention_from_config.build(self.memory.shape) attention_from_config.set_weights(weights_before_query) attention_from_config(self.memory, setup_memory=True) attention_from_config.build([self.query.shape, self.state.shape]) attention_from_config.set_weights(all_weights) score = attention_from_config([self.query, self.state]) score_val = self.evaluate(score) self.assertAllClose(ref_score_val, score_val) @parameterized.named_parameters( ("luong", wrapper.LuongAttentionV2), ("luong_monotonic", wrapper.LuongMonotonicAttentionV2), ("bahdanau", wrapper.BahdanauAttentionV2), ("bahdanau_monotonic", wrapper.BahdanauMonotonicAttentionV2), ) def test_save_load_layer(self, attention_cls): vocab = 20 embedding_dim = 6 inputs = keras.layers.Input(shape=[self.timestep]) encoder_input = keras.layers.Embedding( vocab, embedding_dim, mask_zero=True)( inputs) encoder_output = keras.layers.LSTM( self.memory_size, return_sequences=True)( encoder_input) attention = attention_cls(self.units, encoder_output) query = keras.layers.Input(shape=[self.units]) state = keras.layers.Input(shape=[self.timestep]) score = attention([query, state]) x = np.random.randint(vocab, size=(self.batch, self.timestep)) x_test = np.random.randint(vocab, size=(self.batch, self.timestep)) y = np.random.randn(self.batch, self.timestep) model = keras.models.Model([inputs, query, state], score) model.compile("rmsprop", "mse") model.fit([x, self.query, self.state], (y, y)) y_ref = model.predict_on_batch([x_test, self.query, self.state]) config = model.get_config() weights = model.get_weights() loaded_model = keras.models.Model.from_config( config, custom_objects={attention_cls.__name__: attention_cls}) loaded_model.set_weights(weights) y = loaded_model.predict_on_batch([x_test, self.query, self.state]) self.assertAllClose(y_ref, y) # TODO(scottzhu): Add tests for model.compile(run_eagerly=True) class ResultSummary( collections.namedtuple("ResultSummary", ("shape", "dtype", "mean"))): pass def get_result_summary(x): if isinstance(x, np.ndarray): return ResultSummary(x.shape, x.dtype, x.mean()) return x @test_util.run_all_in_graph_and_eager_modes class AttentionWrapperV2Test(test.TestCase, parameterized.TestCase): def assertAllCloseOrEqual(self, x, y, **kwargs): if isinstance(x, np.ndarray) or isinstance(x, float): return super(AttentionWrapperV2Test, self).assertAllClose( x, y, atol=1e-3, **kwargs) else: self.assertAllEqual(x, y, **kwargs) def setUp(self): super(AttentionWrapperV2Test, self).setUp() self.batch = 64 self.units = 128 self.encoder_timestep = 10 self.encoder_dim = 256 self.decoder_timestep = 12 self.encoder_outputs = np.random.randn(self.batch, self.encoder_timestep, self.encoder_dim) self.encoder_sequence_length = np.random.randint( self.encoder_timestep, size=(self.batch,)).astype(np.int32) self.decoder_inputs = np.random.randn(self.batch, self.decoder_timestep, self.units) self.decoder_sequence_length = np.random.randint( self.decoder_timestep, size=(self.batch,)).astype(np.int32) def _testWithAttention(self, create_attention_mechanism, expected_final_output, expected_final_state, attention_mechanism_depth=3, alignment_history=False, expected_final_alignment_history=None, attention_layer_size=6, attention_layer=None, create_query_layer=False, create_memory_layer=True, create_attention_kwargs=None): attention_layer_sizes = ([attention_layer_size] if attention_layer_size is not None else None) attention_layers = ([attention_layer] if attention_layer is not None else None) self._testWithMaybeMultiAttention( is_multi=False, create_attention_mechanisms=[create_attention_mechanism], expected_final_output=expected_final_output, expected_final_state=expected_final_state, attention_mechanism_depths=[attention_mechanism_depth], alignment_history=alignment_history, expected_final_alignment_history=expected_final_alignment_history, attention_layer_sizes=attention_layer_sizes, attention_layers=attention_layers, create_query_layer=create_query_layer, create_memory_layer=create_memory_layer, create_attention_kwargs=create_attention_kwargs) def _testWithMaybeMultiAttention(self, is_multi, create_attention_mechanisms, expected_final_output, expected_final_state, attention_mechanism_depths, alignment_history=False, expected_final_alignment_history=None, attention_layer_sizes=None, attention_layers=None, create_query_layer=False, create_memory_layer=True, create_attention_kwargs=None): # Allow is_multi to be True with a single mechanism to enable test for # passing in a single mechanism in a list. assert len(create_attention_mechanisms) == 1 or is_multi encoder_sequence_length = [3, 2, 3, 1, 1] decoder_sequence_length = [2, 0, 1, 2, 3] batch_size = 5 encoder_max_time = 8 decoder_max_time = 4 input_depth = 7 encoder_output_depth = 10 cell_depth = 9 create_attention_kwargs = create_attention_kwargs or {} if attention_layer_sizes is not None: # Compute sum of attention_layer_sizes. Use encoder_output_depth if None. attention_depth = sum(attention_layer_size or encoder_output_depth for attention_layer_size in attention_layer_sizes) elif attention_layers is not None: # Compute sum of attention_layers output depth. attention_depth = sum( attention_layer.compute_output_shape( [batch_size, cell_depth + encoder_output_depth]).dims[-1].value for attention_layer in attention_layers) else: attention_depth = encoder_output_depth * len(create_attention_mechanisms) decoder_inputs = np.random.randn(batch_size, decoder_max_time, input_depth).astype(np.float32) encoder_outputs = np.random.randn(batch_size, encoder_max_time, encoder_output_depth).astype(np.float32) attention_mechanisms = [] for creator, depth in zip(create_attention_mechanisms, attention_mechanism_depths): # Create a memory layer with deterministic initializer to avoid randomness # in the test between graph and eager. if create_query_layer: create_attention_kwargs["query_layer"] = keras.layers.Dense( depth, kernel_initializer="ones", use_bias=False) if create_memory_layer: create_attention_kwargs["memory_layer"] = keras.layers.Dense( depth, kernel_initializer="ones", use_bias=False) attention_mechanisms.append( creator( units=depth, memory=encoder_outputs, memory_sequence_length=encoder_sequence_length, **create_attention_kwargs)) with self.cached_session(use_gpu=True): attention_layer_size = attention_layer_sizes attention_layer = attention_layers if not is_multi: if attention_layer_size is not None: attention_layer_size = attention_layer_size[0] if attention_layer is not None: attention_layer = attention_layer[0] cell = keras.layers.LSTMCell(cell_depth, recurrent_activation="sigmoid", kernel_initializer="ones", recurrent_initializer="ones") cell = wrapper.AttentionWrapper( cell, attention_mechanisms if is_multi else attention_mechanisms[0], attention_layer_size=attention_layer_size, alignment_history=alignment_history, attention_layer=attention_layer) if cell._attention_layers is not None: for layer in cell._attention_layers: if getattr(layer, "kernel_initializer") is None: layer.kernel_initializer = initializers.glorot_uniform(seed=1337) sampler = sampler_py.TrainingSampler() my_decoder = basic_decoder.BasicDecoderV2(cell=cell, sampler=sampler) initial_state = cell.get_initial_state( dtype=dtypes.float32, batch_size=batch_size) final_outputs, final_state, _ = my_decoder( decoder_inputs, initial_state=initial_state, sequence_length=decoder_sequence_length) self.assertIsInstance(final_outputs, basic_decoder.BasicDecoderOutput) self.assertIsInstance(final_state, wrapper.AttentionWrapperState) expected_time = ( expected_final_state.time if context.executing_eagerly() else None) self.assertEqual((batch_size, expected_time, attention_depth), tuple(final_outputs.rnn_output.get_shape().as_list())) self.assertEqual((batch_size, expected_time), tuple(final_outputs.sample_id.get_shape().as_list())) self.assertEqual((batch_size, attention_depth), tuple(final_state.attention.get_shape().as_list())) self.assertEqual((batch_size, cell_depth), tuple(final_state.cell_state[0].get_shape().as_list())) self.assertEqual((batch_size, cell_depth), tuple(final_state.cell_state[1].get_shape().as_list())) if alignment_history: if is_multi: state_alignment_history = [] for history_array in final_state.alignment_history: history = history_array.stack() self.assertEqual((expected_time, batch_size, encoder_max_time), tuple(history.get_shape().as_list())) state_alignment_history.append(history) state_alignment_history = tuple(state_alignment_history) else: state_alignment_history = final_state.alignment_history.stack() self.assertEqual((expected_time, batch_size, encoder_max_time), tuple(state_alignment_history.get_shape().as_list())) nest.assert_same_structure(cell.state_size, cell.zero_state(batch_size, dtypes.float32)) # Remove the history from final_state for purposes of the # remainder of the tests. final_state = final_state._replace(alignment_history=()) # pylint: disable=protected-access else: state_alignment_history = () self.evaluate(variables.global_variables_initializer()) eval_result = self.evaluate({ "final_outputs": final_outputs, "final_state": final_state, "state_alignment_history": state_alignment_history, }) final_output_info = nest.map_structure(get_result_summary, eval_result["final_outputs"]) final_state_info = nest.map_structure(get_result_summary, eval_result["final_state"]) print("final_output_info: ", final_output_info) print("final_state_info: ", final_state_info) nest.map_structure(self.assertAllCloseOrEqual, expected_final_output, final_output_info) nest.map_structure(self.assertAllCloseOrEqual, expected_final_state, final_state_info) if alignment_history: # by default, the wrapper emits attention as output final_alignment_history_info = nest.map_structure( get_result_summary, eval_result["state_alignment_history"]) print("final_alignment_history_info: ", final_alignment_history_info) nest.map_structure( self.assertAllCloseOrEqual, # outputs are batch major but the stacked TensorArray is time major expected_final_alignment_history, final_alignment_history_info) # TODO(b/126893309): reenable np.float16 once the bug is fixed. @parameterized.parameters([np.float32, np.float64]) def testBahdanauNormalizedDType(self, dtype): encoder_outputs = self.encoder_outputs.astype(dtype) decoder_inputs = self.decoder_inputs.astype(dtype) attention_mechanism = wrapper.BahdanauAttentionV2( units=self.units, memory=encoder_outputs, memory_sequence_length=self.encoder_sequence_length, normalize=True, dtype=dtype) cell = keras.layers.LSTMCell(self.units, recurrent_activation="sigmoid") cell = wrapper.AttentionWrapper(cell, attention_mechanism) sampler = sampler_py.TrainingSampler() my_decoder = basic_decoder.BasicDecoderV2(cell=cell, sampler=sampler) final_outputs, final_state, _ = my_decoder( decoder_inputs, initial_state=cell.zero_state(dtype=dtype, batch_size=self.batch), sequence_length=self.decoder_sequence_length) self.assertIsInstance(final_outputs, basic_decoder.BasicDecoderOutput) self.assertEqual(final_outputs.rnn_output.dtype, dtype) self.assertIsInstance(final_state, wrapper.AttentionWrapperState) # TODO(b/126893309): reenable np.float16 once the bug is fixed. @parameterized.parameters([np.float32, np.float64]) def testLuongScaledDType(self, dtype): # Test case for GitHub issue 18099 encoder_outputs = self.encoder_outputs.astype(dtype) decoder_inputs = self.decoder_inputs.astype(dtype) attention_mechanism = wrapper.LuongAttentionV2( units=self.units, memory=encoder_outputs, memory_sequence_length=self.encoder_sequence_length, scale=True, dtype=dtype, ) cell = keras.layers.LSTMCell(self.units, recurrent_activation="sigmoid") cell = wrapper.AttentionWrapper(cell, attention_mechanism) sampler = sampler_py.TrainingSampler() my_decoder = basic_decoder.BasicDecoderV2(cell=cell, sampler=sampler) final_outputs, final_state, _ = my_decoder( decoder_inputs, initial_state=cell.zero_state(dtype=dtype, batch_size=self.batch), sequence_length=self.decoder_sequence_length) self.assertIsInstance(final_outputs, basic_decoder.BasicDecoderOutput) self.assertEqual(final_outputs.rnn_output.dtype, dtype) self.assertIsInstance(final_state, wrapper.AttentionWrapperState) def testBahdanauNotNormalized(self): create_attention_mechanism = wrapper.BahdanauAttentionV2 create_attention_kwargs = {"kernel_initializer": "ones"} expected_final_output = basic_decoder.BasicDecoderOutput( rnn_output=ResultSummary( shape=(5, 3, 6), dtype=np.dtype(np.float32), mean=0.051747426), sample_id=ResultSummary( shape=(5, 3), dtype=np.dtype(np.int32), mean=3.33333333)) expected_final_state = wrapper.AttentionWrapperState( cell_state=[ ResultSummary( shape=(5, 9), dtype=np.dtype(np.float32), mean=0.44189346), ResultSummary( shape=(5, 9), dtype=np.dtype(np.float32), mean=0.65429491)], attention=ResultSummary( shape=(5, 6), dtype=np.dtype(np.float32), mean=0.073610783), time=3, alignments=ResultSummary( shape=(5, 8), dtype=np.dtype(np.float32), mean=0.125), attention_state=ResultSummary( shape=(5, 8), dtype=np.dtype(np.float32), mean=0.125), alignment_history=()) expected_final_alignment_history = ResultSummary( shape=(3, 5, 8), dtype=np.dtype(np.float32), mean=0.125) self._testWithAttention( create_attention_mechanism, expected_final_output, expected_final_state, alignment_history=True, create_query_layer=True, expected_final_alignment_history=expected_final_alignment_history, create_attention_kwargs=create_attention_kwargs) def testBahdanauNormalized(self): create_attention_mechanism = wrapper.BahdanauAttentionV2 create_attention_kwargs = {"kernel_initializer": "ones", "normalize": True} expected_final_output = basic_decoder.BasicDecoderOutput( rnn_output=ResultSummary( shape=(5, 3, 6), dtype=np.dtype("float32"), mean=0.047594748), sample_id=ResultSummary( shape=(5, 3), dtype=np.dtype("int32"), mean=3.6)) expected_final_state = wrapper.AttentionWrapperState( cell_state=[ ResultSummary( shape=(5, 9), dtype=np.dtype("float32"), mean=0.41311637), ResultSummary( shape=(5, 9), dtype=np.dtype("float32"), mean=0.61683208)], attention=ResultSummary( shape=(5, 6), dtype=np.dtype("float32"), mean=0.090581432), time=3, alignments=ResultSummary( shape=(5, 8), dtype=np.dtype("float32"), mean=0.125), attention_state=ResultSummary( shape=(5, 8), dtype=np.dtype("float32"), mean=0.125), alignment_history=()) self._testWithAttention( create_attention_mechanism, expected_final_output, expected_final_state, create_query_layer=True, create_attention_kwargs=create_attention_kwargs) def testLuongNotNormalized(self): create_attention_mechanism = wrapper.LuongAttentionV2 expected_final_output = basic_decoder.BasicDecoderOutput( rnn_output=ResultSummary( shape=(5, 3, 6), dtype=np.dtype("float32"), mean=0.05481226), sample_id=ResultSummary( shape=(5, 3), dtype=np.dtype("int32"), mean=3.13333333)) expected_final_state = wrapper.AttentionWrapperState( cell_state=[ ResultSummary( shape=(5, 9), dtype=np.dtype("float32"), mean=0.38453412), ResultSummary( shape=(5, 9), dtype=np.dtype("float32"), mean=0.5785929)], attention=ResultSummary( shape=(5, 6), dtype=np.dtype("float32"), mean=0.16311775), time=3, alignments=ResultSummary( shape=(5, 8), dtype=np.dtype("float32"), mean=0.125), attention_state=ResultSummary( shape=(5, 8), dtype=np.dtype("float32"), mean=0.125), alignment_history=()) self._testWithAttention( create_attention_mechanism, expected_final_output, expected_final_state, attention_mechanism_depth=9) def testLuongScaled(self): create_attention_mechanism = wrapper.LuongAttentionV2 create_attention_kwargs = {"scale": True} expected_final_output = basic_decoder.BasicDecoderOutput( rnn_output=ResultSummary( shape=(5, 3, 6), dtype=np.dtype("float32"), mean=0.05481226), sample_id=ResultSummary( shape=(5, 3), dtype=np.dtype("int32"), mean=3.13333333)) expected_final_state = wrapper.AttentionWrapperState( cell_state=[ ResultSummary( shape=(5, 9), dtype=np.dtype("float32"), mean=0.38453412), ResultSummary( shape=(5, 9), dtype=np.dtype("float32"), mean=0.5785929)], attention=ResultSummary( shape=(5, 6), dtype=np.dtype("float32"), mean=0.16311775), time=3, alignments=ResultSummary( shape=(5, 8), dtype=np.dtype("float32"), mean=0.125), attention_state=ResultSummary( shape=(5, 8), dtype=np.dtype("float32"), mean=0.125), alignment_history=()) self._testWithAttention( create_attention_mechanism, expected_final_output, expected_final_state, attention_mechanism_depth=9, create_attention_kwargs=create_attention_kwargs) def testNotUseAttentionLayer(self): create_attention_mechanism = wrapper.BahdanauAttentionV2 create_attention_kwargs = {"kernel_initializer": "ones"} expected_final_output = basic_decoder.BasicDecoderOutput( rnn_output=ResultSummary( shape=(5, 3, 10), dtype=np.dtype("float32"), mean=0.072406612), sample_id=ResultSummary( shape=(5, 3), dtype=np.dtype("int32"), mean=3.86666666)) expected_final_state = wrapper.AttentionWrapperState( cell_state=[ ResultSummary( shape=(5, 9), dtype=np.dtype("float32"), mean=0.61177742), ResultSummary( shape=(5, 9), dtype=np.dtype("float32"), mean=1.032002)], attention=ResultSummary( shape=(5, 10), dtype=np.dtype("float32"), mean=0.011346335), time=3, alignments=ResultSummary( shape=(5, 8), dtype=np.dtype("float32"), mean=0.125), attention_state=ResultSummary( shape=(5, 8), dtype=np.dtype("float32"), mean=0.125), alignment_history=()) self._testWithAttention( create_attention_mechanism, expected_final_output, expected_final_state, attention_layer_size=None, create_query_layer=True, create_attention_kwargs=create_attention_kwargs) def testBahdanauMonotonicNotNormalized(self): create_attention_mechanism = wrapper.BahdanauMonotonicAttentionV2 create_attention_kwargs = {"kernel_initializer": "ones"} expected_final_output = basic_decoder.BasicDecoderOutput( rnn_output=ResultSummary( shape=(5, 3, 6), dtype=np.dtype("float32"), mean=0.041342419), sample_id=ResultSummary( shape=(5, 3), dtype=np.dtype("int32"), mean=3.53333333)) expected_final_state = wrapper.AttentionWrapperState( cell_state=[ ResultSummary( shape=(5, 9), dtype=np.dtype("float32"), mean=0.33866978), ResultSummary( shape=(5, 9), dtype=np.dtype("float32"), mean=0.46913195)], attention=ResultSummary( shape=(5, 6), dtype=np.dtype("float32"), mean=0.092498459), time=3, alignments=ResultSummary( shape=(5, 8), dtype=np.dtype("float32"), mean=0.12079944), attention_state=ResultSummary( shape=(5, 8), dtype=np.dtype("float32"), mean=0.12079944), alignment_history=()) expected_final_alignment_history = ResultSummary( shape=(3, 5, 8), dtype=np.dtype("float32"), mean=0.121448785067) self._testWithAttention( create_attention_mechanism, expected_final_output, expected_final_state, alignment_history=True, expected_final_alignment_history=expected_final_alignment_history, create_query_layer=True, create_attention_kwargs=create_attention_kwargs) def testBahdanauMonotonicNormalized(self): create_attention_mechanism = wrapper.BahdanauMonotonicAttentionV2 create_attention_kwargs = {"kernel_initializer": "ones", "normalize": True} expected_final_output = basic_decoder.BasicDecoderOutput( rnn_output=ResultSummary( shape=(5, 3, 6), dtype=np.dtype("float32"), mean=0.043294173), sample_id=ResultSummary( shape=(5, 3), dtype=np.dtype("int32"), mean=3.53333333)) expected_final_state = wrapper.AttentionWrapperState( cell_state=[ ResultSummary( shape=(5, 9), dtype=np.dtype("float32"), mean=0.40034312), ResultSummary( shape=(5, 9), dtype=np.dtype("float32"), mean=0.5925445)], attention=ResultSummary( shape=(5, 6), dtype=np.dtype("float32"), mean=0.096119694), time=3, alignments=ResultSummary( shape=(5, 8), dtype=np.dtype("float32"), mean=0.1211452), attention_state=ResultSummary( shape=(5, 8), dtype=np.dtype("float32"), mean=0.1211452), alignment_history=()) expected_final_alignment_history = ResultSummary( shape=(3, 5, 8), dtype=np.dtype("float32"), mean=0.12258384) self._testWithAttention( create_attention_mechanism, expected_final_output, expected_final_state, alignment_history=True, expected_final_alignment_history=expected_final_alignment_history, create_query_layer=True, create_attention_kwargs=create_attention_kwargs) def testLuongMonotonicNotNormalized(self): create_attention_mechanism = wrapper.LuongMonotonicAttentionV2 expected_final_output = basic_decoder.BasicDecoderOutput( rnn_output=ResultSummary( shape=(5, 3, 6), dtype=np.dtype("float32"), mean=0.027387079), sample_id=ResultSummary( shape=(5, 3), dtype=np.dtype("int32"), mean=3.133333333)) expected_final_state = wrapper.AttentionWrapperState( cell_state=[ ResultSummary( shape=(5, 9), dtype=np.dtype("float32"), mean=0.32660431), ResultSummary( shape=(5, 9), dtype=np.dtype("float32"), mean=0.52464348)], attention=ResultSummary( shape=(5, 6), dtype=np.dtype("float32"), mean=0.089345723), time=3, alignments=ResultSummary( shape=(5, 8), dtype=np.dtype("float32"), mean=0.11831035), attention_state=ResultSummary( shape=(5, 8), dtype=np.dtype("float32"), mean=0.11831035), alignment_history=()) expected_final_alignment_history = ResultSummary( shape=(3, 5, 8), dtype=np.dtype("float32"), mean=0.12194442004) self._testWithAttention( create_attention_mechanism, expected_final_output, expected_final_state, attention_mechanism_depth=9, alignment_history=True, expected_final_alignment_history=expected_final_alignment_history) def testLuongMonotonicScaled(self): create_attention_mechanism = wrapper.LuongMonotonicAttentionV2 create_attention_kwargs = {"scale": True} expected_final_output = basic_decoder.BasicDecoderOutput( rnn_output=ResultSummary( shape=(5, 3, 6), dtype=np.dtype("float32"), mean=0.027387079), sample_id=ResultSummary( shape=(5, 3), dtype=np.dtype("int32"), mean=3.13333333)) expected_final_state = wrapper.AttentionWrapperState( cell_state=[ ResultSummary( shape=(5, 9), dtype=np.dtype("float32"), mean=0.32660431), ResultSummary( shape=(5, 9), dtype=np.dtype("float32"), mean=0.52464348)], attention=ResultSummary( shape=(5, 6), dtype=np.dtype("float32"), mean=0.089345723), time=3, alignments=ResultSummary( shape=(5, 8), dtype=np.dtype("float32"), mean=0.11831035), attention_state=ResultSummary( shape=(5, 8), dtype=np.dtype("float32"), mean=0.11831035), alignment_history=()) expected_final_alignment_history = ResultSummary( shape=(3, 5, 8), dtype=np.dtype("float32"), mean=0.12194442004) self._testWithAttention( create_attention_mechanism, expected_final_output, expected_final_state, attention_mechanism_depth=9, alignment_history=True, expected_final_alignment_history=expected_final_alignment_history, create_attention_kwargs=create_attention_kwargs) if __name__ == "__main__": test.main()
tensorflow-master
tensorflow/contrib/seq2seq/python/kernel_tests/attention_wrapper_v2_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for contrib.seq2seq.python.seq2seq.beam_search_ops.""" # pylint: disable=unused-import,g-bad-import-order from __future__ import absolute_import from __future__ import division from __future__ import print_function # pylint: enable=unused-import import itertools import numpy as np from tensorflow.contrib.seq2seq.python.ops import beam_search_ops from tensorflow.python.framework import ops from tensorflow.python.platform import test def _transpose_batch_time(x): return np.transpose(x, [1, 0, 2]).astype(np.int32) class GatherTreeTest(test.TestCase): def testGatherTreeOne(self): # (max_time = 4, batch_size = 1, beams = 3) end_token = 10 step_ids = _transpose_batch_time( [[[1, 2, 3], [4, 5, 6], [7, 8, 9], [-1, -1, -1]]]) parent_ids = _transpose_batch_time( [[[0, 0, 0], [0, 1, 1], [2, 1, 2], [-1, -1, -1]]]) max_sequence_lengths = [3] expected_result = _transpose_batch_time([[[2, 2, 2], [6, 5, 6], [7, 8, 9], [10, 10, 10]]]) beams = beam_search_ops.gather_tree( step_ids=step_ids, parent_ids=parent_ids, max_sequence_lengths=max_sequence_lengths, end_token=end_token) with self.cached_session(use_gpu=True): self.assertAllEqual(expected_result, self.evaluate(beams)) def testBadParentValuesOnCPU(self): # (batch_size = 1, max_time = 4, beams = 3) # bad parent in beam 1 time 1 end_token = 10 step_ids = _transpose_batch_time( [[[1, 2, 3], [4, 5, 6], [7, 8, 9], [-1, -1, -1]]]) parent_ids = _transpose_batch_time( [[[0, 0, 0], [0, -1, 1], [2, 1, 2], [-1, -1, -1]]]) max_sequence_lengths = [3] with ops.device("/cpu:0"): with self.assertRaisesOpError( r"parent id -1 at \(batch, time, beam\) == \(0, 0, 1\)"): beams = beam_search_ops.gather_tree( step_ids=step_ids, parent_ids=parent_ids, max_sequence_lengths=max_sequence_lengths, end_token=end_token) self.evaluate(beams) def testBadParentValuesOnGPU(self): # Only want to run this test on CUDA devices, as gather_tree is not # registered for SYCL devices. if not test.is_gpu_available(cuda_only=True): return # (max_time = 4, batch_size = 1, beams = 3) # bad parent in beam 1 time 1; appears as a negative index at time 0 end_token = 10 step_ids = _transpose_batch_time( [[[1, 2, 3], [4, 5, 6], [7, 8, 9], [-1, -1, -1]]]) parent_ids = _transpose_batch_time( [[[0, 0, 0], [0, -1, 1], [2, 1, 2], [-1, -1, -1]]]) max_sequence_lengths = [3] expected_result = _transpose_batch_time([[[2, -1, 2], [6, 5, 6], [7, 8, 9], [10, 10, 10]]]) with ops.device("/device:GPU:0"): beams = beam_search_ops.gather_tree( step_ids=step_ids, parent_ids=parent_ids, max_sequence_lengths=max_sequence_lengths, end_token=end_token) self.assertAllEqual(expected_result, self.evaluate(beams)) def testGatherTreeBatch(self): batch_size = 10 beam_width = 15 max_time = 8 max_sequence_lengths = [0, 1, 2, 4, 7, 8, 9, 10, 11, 0] end_token = 5 with self.cached_session(use_gpu=True): step_ids = np.random.randint( 0, high=end_token + 1, size=(max_time, batch_size, beam_width)) parent_ids = np.random.randint( 0, high=beam_width - 1, size=(max_time, batch_size, beam_width)) beams = beam_search_ops.gather_tree( step_ids=step_ids.astype(np.int32), parent_ids=parent_ids.astype(np.int32), max_sequence_lengths=max_sequence_lengths, end_token=end_token) self.assertEqual((max_time, batch_size, beam_width), beams.shape) beams_value = self.evaluate(beams) for b in range(batch_size): # Past max_sequence_lengths[b], we emit all end tokens. b_value = beams_value[max_sequence_lengths[b]:, b, :] self.assertAllClose(b_value, end_token * np.ones_like(b_value)) for batch, beam in itertools.product( range(batch_size), range(beam_width)): v = np.squeeze(beams_value[:, batch, beam]) if end_token in v: found_bad = np.where(v == -1)[0] self.assertEqual(0, len(found_bad)) found = np.where(v == end_token)[0] found = found[0] # First occurrence of end_token. # If an end_token is found, everything before it should be a # valid id and everything after it should be -1. if found > 0: self.assertAllEqual( v[:found - 1] >= 0, np.ones_like(v[:found - 1], dtype=bool)) self.assertAllClose(v[found + 1:], end_token * np.ones_like(v[found + 1:])) if __name__ == "__main__": test.main()
tensorflow-master
tensorflow/contrib/seq2seq/python/kernel_tests/beam_search_ops_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Seq2seq layer operations for use in neural networks.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import abc import six from tensorflow.python.eager import context from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.framework import tensor_util from tensorflow.python.keras import layers from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import control_flow_util from tensorflow.python.ops import math_ops from tensorflow.python.ops import rnn from tensorflow.python.ops import rnn_cell_impl from tensorflow.python.ops import tensor_array_ops from tensorflow.python.ops import variable_scope from tensorflow.python.util import nest __all__ = ["Decoder", "dynamic_decode"] _transpose_batch_time = rnn._transpose_batch_time # pylint: disable=protected-access _zero_state_tensors = rnn_cell_impl._zero_state_tensors # pylint: disable=protected-access @six.add_metaclass(abc.ABCMeta) class Decoder(object): """An RNN Decoder abstract interface object. Concepts used by this interface: - `inputs`: (structure of) tensors and TensorArrays that is passed as input to the RNNCell composing the decoder, at each time step. - `state`: (structure of) tensors and TensorArrays that is passed to the RNNCell instance as the state. - `finished`: boolean tensor telling whether each sequence in the batch is finished. - `outputs`: Instance of BasicDecoderOutput. Result of the decoding, at each time step. """ @property def batch_size(self): """The batch size of input values.""" raise NotImplementedError @property def output_size(self): """A (possibly nested tuple of...) integer[s] or `TensorShape` object[s].""" raise NotImplementedError @property def output_dtype(self): """A (possibly nested tuple of...) dtype[s].""" raise NotImplementedError @abc.abstractmethod def initialize(self, name=None): """Called before any decoding iterations. This methods must compute initial input values and initial state. Args: name: Name scope for any created operations. Returns: `(finished, initial_inputs, initial_state)`: initial values of 'finished' flags, inputs and state. """ raise NotImplementedError @abc.abstractmethod def step(self, time, inputs, state, name=None): """Called per step of decoding (but only once for dynamic decoding). Args: time: Scalar `int32` tensor. Current step number. inputs: RNNCell input (possibly nested tuple of) tensor[s] for this time step. state: RNNCell state (possibly nested tuple of) tensor[s] from previous time step. name: Name scope for any created operations. Returns: `(outputs, next_state, next_inputs, finished)`: `outputs` is an object containing the decoder output, `next_state` is a (structure of) state tensors and TensorArrays, `next_inputs` is the tensor that should be used as input for the next step, `finished` is a boolean tensor telling whether the sequence is complete, for each sequence in the batch. """ raise NotImplementedError def finalize(self, outputs, final_state, sequence_lengths): """Called after decoding iterations complete. Args: outputs: RNNCell outputs (possibly nested tuple of) tensor[s] for all time steps. final_state: RNNCell final state (possibly nested tuple of) tensor[s] for last time step. sequence_lengths: 1-D `int32` tensor containing lengths of each sequence. Returns: `(final_outputs, final_state)`: `final_outputs` is an object containing the final decoder output, `final_state` is a (structure of) state tensors and TensorArrays. """ raise NotImplementedError @property def tracks_own_finished(self): """Describes whether the Decoder keeps track of finished states. Most decoders will emit a true/false `finished` value independently at each time step. In this case, the `dynamic_decode` function keeps track of which batch entries are already finished, and performs a logical OR to insert new batches to the finished set. Some decoders, however, shuffle batches / beams between time steps and `dynamic_decode` will mix up the finished state across these entries because it does not track the reshuffle across time steps. In this case, it is up to the decoder to declare that it will keep track of its own finished state by setting this property to `True`. Returns: Python bool. """ return False class BaseDecoder(layers.Layer): """An RNN Decoder that is based on a Keras layer. Concepts used by this interface: - `inputs`: (structure of) tensors and TensorArrays that is passed as input to the RNNCell composing the decoder, at each time step. - `state`: (structure of) tensors and TensorArrays that is passed to the RNNCell instance as the state. - `memory`: (sturecute of) tensors that is usually the full output of the encoder, which will be used for the attention wrapper for the RNNCell. - `finished`: boolean tensor telling whether each sequence in the batch is finished. - `outputs`: Instance of BasicDecoderOutput. Result of the decoding, at each time step. """ def __init__(self, output_time_major=False, impute_finished=False, maximum_iterations=None, parallel_iterations=32, swap_memory=False, **kwargs): self.output_time_major = output_time_major self.impute_finished = impute_finished self.maximum_iterations = maximum_iterations self.parallel_iterations = parallel_iterations self.swap_memory = swap_memory super(BaseDecoder, self).__init__(**kwargs) def call(self, inputs, initial_state=None, **kwargs): init_kwargs = kwargs init_kwargs["initial_state"] = initial_state return dynamic_decode(self, output_time_major=self.output_time_major, impute_finished=self.impute_finished, maximum_iterations=self.maximum_iterations, parallel_iterations=self.parallel_iterations, swap_memory=self.swap_memory, decoder_init_input=inputs, decoder_init_kwargs=init_kwargs) @property def batch_size(self): """The batch size of input values.""" raise NotImplementedError @property def output_size(self): """A (possibly nested tuple of...) integer[s] or `TensorShape` object[s].""" raise NotImplementedError @property def output_dtype(self): """A (possibly nested tuple of...) dtype[s].""" raise NotImplementedError def initialize(self, inputs, initial_state=None, **kwargs): """Called before any decoding iterations. This methods must compute initial input values and initial state. Args: inputs: (structure of) tensors that contains the input for the decoder. In the normal case, its a tensor with shape [batch, timestep, embedding]. initial_state: (structure of) tensors that contains the initial state for the RNNCell. **kwargs: Other arguments that are passed in from layer.call() method. It could contains item like input sequence_length, or masking for input. Returns: `(finished, initial_inputs, initial_state)`: initial values of 'finished' flags, inputs and state. """ raise NotImplementedError def step(self, time, inputs, state): """Called per step of decoding (but only once for dynamic decoding). Args: time: Scalar `int32` tensor. Current step number. inputs: RNNCell input (possibly nested tuple of) tensor[s] for this time step. state: RNNCell state (possibly nested tuple of) tensor[s] from previous time step. Returns: `(outputs, next_state, next_inputs, finished)`: `outputs` is an object containing the decoder output, `next_state` is a (structure of) state tensors and TensorArrays, `next_inputs` is the tensor that should be used as input for the next step, `finished` is a boolean tensor telling whether the sequence is complete, for each sequence in the batch. """ raise NotImplementedError def finalize(self, outputs, final_state, sequence_lengths): raise NotImplementedError @property def tracks_own_finished(self): """Describes whether the Decoder keeps track of finished states. Most decoders will emit a true/false `finished` value independently at each time step. In this case, the `dynamic_decode` function keeps track of which batch entries are already finished, and performs a logical OR to insert new batches to the finished set. Some decoders, however, shuffle batches / beams between time steps and `dynamic_decode` will mix up the finished state across these entries because it does not track the reshuffle across time steps. In this case, it is up to the decoder to declare that it will keep track of its own finished state by setting this property to `True`. Returns: Python bool. """ return False # TODO(scottzhu): Add build/get_config/from_config and other layer methods. def _create_zero_outputs(size, dtype, batch_size): """Create a zero outputs Tensor structure.""" def _create(s, d): return _zero_state_tensors(s, batch_size, d) return nest.map_structure(_create, size, dtype) def dynamic_decode(decoder, output_time_major=False, impute_finished=False, maximum_iterations=None, parallel_iterations=32, swap_memory=False, scope=None, **kwargs): """Perform dynamic decoding with `decoder`. Calls initialize() once and step() repeatedly on the Decoder object. Args: decoder: A `Decoder` instance. output_time_major: Python boolean. Default: `False` (batch major). If `True`, outputs are returned as time major tensors (this mode is faster). Otherwise, outputs are returned as batch major tensors (this adds extra time to the computation). impute_finished: Python boolean. If `True`, then states for batch entries which are marked as finished get copied through and the corresponding outputs get zeroed out. This causes some slowdown at each time step, but ensures that the final state and outputs have the correct values and that backprop ignores time steps that were marked as finished. maximum_iterations: `int32` scalar, maximum allowed number of decoding steps. Default is `None` (decode until the decoder is fully done). parallel_iterations: Argument passed to `tf.while_loop`. swap_memory: Argument passed to `tf.while_loop`. scope: Optional variable scope to use. **kwargs: dict, other keyword arguments for dynamic_decode. It might contain arguments for `BaseDecoder` to initialize, which takes all tensor inputs during call(). Returns: `(final_outputs, final_state, final_sequence_lengths)`. Raises: TypeError: if `decoder` is not an instance of `Decoder`. ValueError: if `maximum_iterations` is provided but is not a scalar. """ if not isinstance(decoder, (Decoder, BaseDecoder)): raise TypeError("Expected decoder to be type Decoder, but saw: %s" % type(decoder)) with variable_scope.variable_scope(scope, "decoder") as varscope: # Determine context types. ctxt = ops.get_default_graph()._get_control_flow_context() # pylint: disable=protected-access is_xla = control_flow_util.GetContainingXLAContext(ctxt) is not None in_while_loop = ( control_flow_util.GetContainingWhileContext(ctxt) is not None) # Properly cache variable values inside the while_loop. # Don't set a caching device when running in a loop, since it is possible # that train steps could be wrapped in a tf.while_loop. In that scenario # caching prevents forward computations in loop iterations from re-reading # the updated weights. if not context.executing_eagerly() and not in_while_loop: if varscope.caching_device is None: varscope.set_caching_device(lambda op: op.device) if maximum_iterations is not None: maximum_iterations = ops.convert_to_tensor( maximum_iterations, dtype=dtypes.int32, name="maximum_iterations") if maximum_iterations.get_shape().ndims != 0: raise ValueError("maximum_iterations must be a scalar") if isinstance(decoder, Decoder): initial_finished, initial_inputs, initial_state = decoder.initialize() else: # For BaseDecoder that takes tensor inputs during call. decoder_init_input = kwargs.pop("decoder_init_input", None) decoder_init_kwargs = kwargs.pop("decoder_init_kwargs", {}) initial_finished, initial_inputs, initial_state = decoder.initialize( decoder_init_input, **decoder_init_kwargs) zero_outputs = _create_zero_outputs(decoder.output_size, decoder.output_dtype, decoder.batch_size) if is_xla and maximum_iterations is None: raise ValueError("maximum_iterations is required for XLA compilation.") if maximum_iterations is not None: initial_finished = math_ops.logical_or( initial_finished, 0 >= maximum_iterations) initial_sequence_lengths = array_ops.zeros_like( initial_finished, dtype=dtypes.int32) initial_time = constant_op.constant(0, dtype=dtypes.int32) def _shape(batch_size, from_shape): if (not isinstance(from_shape, tensor_shape.TensorShape) or from_shape.ndims == 0): return None else: batch_size = tensor_util.constant_value( ops.convert_to_tensor( batch_size, name="batch_size")) return tensor_shape.TensorShape([batch_size]).concatenate(from_shape) dynamic_size = maximum_iterations is None or not is_xla def _create_ta(s, d): return tensor_array_ops.TensorArray( dtype=d, size=0 if dynamic_size else maximum_iterations, dynamic_size=dynamic_size, element_shape=_shape(decoder.batch_size, s)) initial_outputs_ta = nest.map_structure(_create_ta, decoder.output_size, decoder.output_dtype) def condition(unused_time, unused_outputs_ta, unused_state, unused_inputs, finished, unused_sequence_lengths): return math_ops.logical_not(math_ops.reduce_all(finished)) def body(time, outputs_ta, state, inputs, finished, sequence_lengths): """Internal while_loop body. Args: time: scalar int32 tensor. outputs_ta: structure of TensorArray. state: (structure of) state tensors and TensorArrays. inputs: (structure of) input tensors. finished: bool tensor (keeping track of what's finished). sequence_lengths: int32 tensor (keeping track of time of finish). Returns: `(time + 1, outputs_ta, next_state, next_inputs, next_finished, next_sequence_lengths)`. ``` """ (next_outputs, decoder_state, next_inputs, decoder_finished) = decoder.step(time, inputs, state) if decoder.tracks_own_finished: next_finished = decoder_finished else: next_finished = math_ops.logical_or(decoder_finished, finished) next_sequence_lengths = array_ops.where( math_ops.logical_not(finished), array_ops.fill(array_ops.shape(sequence_lengths), time + 1), sequence_lengths) nest.assert_same_structure(state, decoder_state) nest.assert_same_structure(outputs_ta, next_outputs) nest.assert_same_structure(inputs, next_inputs) # Zero out output values past finish if impute_finished: emit = nest.map_structure( lambda out, zero: array_ops.where(finished, zero, out), next_outputs, zero_outputs) else: emit = next_outputs # Copy through states past finish def _maybe_copy_state(new, cur): # TensorArrays and scalar states get passed through. if isinstance(cur, tensor_array_ops.TensorArray): pass_through = True else: new.set_shape(cur.shape) pass_through = (new.shape.ndims == 0) return new if pass_through else array_ops.where(finished, cur, new) if impute_finished: next_state = nest.map_structure( _maybe_copy_state, decoder_state, state) else: next_state = decoder_state outputs_ta = nest.map_structure(lambda ta, out: ta.write(time, out), outputs_ta, emit) return (time + 1, outputs_ta, next_state, next_inputs, next_finished, next_sequence_lengths) res = control_flow_ops.while_loop( condition, body, loop_vars=( initial_time, initial_outputs_ta, initial_state, initial_inputs, initial_finished, initial_sequence_lengths, ), parallel_iterations=parallel_iterations, maximum_iterations=maximum_iterations, swap_memory=swap_memory) final_outputs_ta = res[1] final_state = res[2] final_sequence_lengths = res[5] final_outputs = nest.map_structure(lambda ta: ta.stack(), final_outputs_ta) try: final_outputs, final_state = decoder.finalize( final_outputs, final_state, final_sequence_lengths) except NotImplementedError: pass if not output_time_major: final_outputs = nest.map_structure(_transpose_batch_time, final_outputs) return final_outputs, final_state, final_sequence_lengths
tensorflow-master
tensorflow/contrib/seq2seq/python/ops/decoder.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A class of Decoders that may sample to generate the next input.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections from tensorflow.contrib.seq2seq.python.ops import decoder from tensorflow.contrib.seq2seq.python.ops import helper as helper_py from tensorflow.contrib.seq2seq.python.ops import sampler as sampler_py from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.keras import layers from tensorflow.python.layers import base as layers_base from tensorflow.python.ops import rnn_cell_impl from tensorflow.python.util import nest __all__ = [ "BasicDecoderOutput", "BasicDecoder", ] class BasicDecoderOutput( collections.namedtuple("BasicDecoderOutput", ("rnn_output", "sample_id"))): pass class BasicDecoder(decoder.Decoder): """Basic sampling decoder.""" def __init__(self, cell, helper, initial_state, output_layer=None): """Initialize BasicDecoder. Args: cell: An `RNNCell` instance. helper: A `Helper` instance. initial_state: A (possibly nested tuple of...) tensors and TensorArrays. The initial state of the RNNCell. output_layer: (Optional) An instance of `tf.compat.v1.layers.Layer`, i.e., `tf.compat.v1.layers.Dense`. Optional layer to apply to the RNN output prior to storing the result or sampling. Raises: TypeError: if `cell`, `helper` or `output_layer` have an incorrect type. """ rnn_cell_impl.assert_like_rnncell("cell", cell) if not isinstance(helper, helper_py.Helper): raise TypeError("helper must be a Helper, received: %s" % type(helper)) if (output_layer is not None and not isinstance(output_layer, layers_base.Layer)): raise TypeError("output_layer must be a Layer, received: %s" % type(output_layer)) self._cell = cell self._helper = helper self._initial_state = initial_state self._output_layer = output_layer @property def batch_size(self): return self._helper.batch_size def _rnn_output_size(self): size = self._cell.output_size if self._output_layer is None: return size else: # To use layer's compute_output_shape, we need to convert the # RNNCell's output_size entries into shapes with an unknown # batch size. We then pass this through the layer's # compute_output_shape and read off all but the first (batch) # dimensions to get the output size of the rnn with the layer # applied to the top. output_shape_with_unknown_batch = nest.map_structure( lambda s: tensor_shape.TensorShape([None]).concatenate(s), size) layer_output_shape = self._output_layer.compute_output_shape( output_shape_with_unknown_batch) return nest.map_structure(lambda s: s[1:], layer_output_shape) @property def output_size(self): # Return the cell output and the id return BasicDecoderOutput( rnn_output=self._rnn_output_size(), sample_id=self._helper.sample_ids_shape) @property def output_dtype(self): # Assume the dtype of the cell is the output_size structure # containing the input_state's first component's dtype. # Return that structure and the sample_ids_dtype from the helper. dtype = nest.flatten(self._initial_state)[0].dtype return BasicDecoderOutput( nest.map_structure(lambda _: dtype, self._rnn_output_size()), self._helper.sample_ids_dtype) def initialize(self, name=None): """Initialize the decoder. Args: name: Name scope for any created operations. Returns: `(finished, first_inputs, initial_state)`. """ return self._helper.initialize() + (self._initial_state,) def step(self, time, inputs, state, name=None): """Perform a decoding step. Args: time: scalar `int32` tensor. inputs: A (structure of) input tensors. state: A (structure of) state tensors and TensorArrays. name: Name scope for any created operations. Returns: `(outputs, next_state, next_inputs, finished)`. """ with ops.name_scope(name, "BasicDecoderStep", (time, inputs, state)): cell_outputs, cell_state = self._cell(inputs, state) if self._output_layer is not None: cell_outputs = self._output_layer(cell_outputs) sample_ids = self._helper.sample( time=time, outputs=cell_outputs, state=cell_state) (finished, next_inputs, next_state) = self._helper.next_inputs( time=time, outputs=cell_outputs, state=cell_state, sample_ids=sample_ids) outputs = BasicDecoderOutput(cell_outputs, sample_ids) return (outputs, next_state, next_inputs, finished) class BasicDecoderV2(decoder.BaseDecoder): """Basic sampling decoder.""" def __init__(self, cell, sampler, output_layer=None, **kwargs): """Initialize BasicDecoder. Args: cell: An `RNNCell` instance. sampler: A `Sampler` instance. output_layer: (Optional) An instance of `tf.compat.v1.layers.Layer`, i.e., `tf.compat.v1.layers.Dense`. Optional layer to apply to the RNN output prior to storing the result or sampling. **kwargs: Other keyward arguments for layer creation. Raises: TypeError: if `cell`, `helper` or `output_layer` have an incorrect type. """ rnn_cell_impl.assert_like_rnncell("cell", cell) if not isinstance(sampler, sampler_py.Sampler): raise TypeError("sampler must be a Sampler, received: %s" % (sampler,)) if (output_layer is not None and not isinstance(output_layer, layers.Layer)): raise TypeError("output_layer must be a Layer, received: %s" % (output_layer,)) self.cell = cell self.sampler = sampler self.output_layer = output_layer super(BasicDecoderV2, self).__init__(**kwargs) def initialize(self, inputs, initial_state=None, **kwargs): """Initialize the decoder.""" # Assume the dtype of the cell is the output_size structure # containing the input_state's first component's dtype. self._cell_dtype = nest.flatten(initial_state)[0].dtype return self.sampler.initialize(inputs, **kwargs) + (initial_state,) @property def batch_size(self): return self.sampler.batch_size def _rnn_output_size(self): size = tensor_shape.TensorShape(self.cell.output_size) if self.output_layer is None: return size else: # To use layer's compute_output_shape, we need to convert the # RNNCell's output_size entries into shapes with an unknown # batch size. We then pass this through the layer's # compute_output_shape and read off all but the first (batch) # dimensions to get the output size of the rnn with the layer # applied to the top. output_shape_with_unknown_batch = nest.map_structure( lambda s: tensor_shape.TensorShape([None]).concatenate(s), size) layer_output_shape = self.output_layer.compute_output_shape( output_shape_with_unknown_batch) return nest.map_structure(lambda s: s[1:], layer_output_shape) @property def output_size(self): # Return the cell output and the id return BasicDecoderOutput( rnn_output=self._rnn_output_size(), sample_id=self.sampler.sample_ids_shape) @property def output_dtype(self): # Assume the dtype of the cell is the output_size structure # containing the input_state's first component's dtype. # Return that structure and the sample_ids_dtype from the helper. dtype = self._cell_dtype return BasicDecoderOutput( nest.map_structure(lambda _: dtype, self._rnn_output_size()), self.sampler.sample_ids_dtype) def step(self, time, inputs, state): """Perform a decoding step. Args: time: scalar `int32` tensor. inputs: A (structure of) input tensors. state: A (structure of) state tensors and TensorArrays. Returns: `(outputs, next_state, next_inputs, finished)`. """ cell_outputs, cell_state = self.cell(inputs, state) if self.output_layer is not None: cell_outputs = self.output_layer(cell_outputs) sample_ids = self.sampler.sample( time=time, outputs=cell_outputs, state=cell_state) (finished, next_inputs, next_state) = self.sampler.next_inputs( time=time, outputs=cell_outputs, state=cell_state, sample_ids=sample_ids) outputs = BasicDecoderOutput(cell_outputs, sample_ids) return (outputs, next_state, next_inputs, finished)
tensorflow-master
tensorflow/contrib/seq2seq/python/ops/basic_decoder.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function
tensorflow-master
tensorflow/contrib/seq2seq/python/ops/__init__.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Seq2seq loss operations for use in sequence models. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.framework import ops from tensorflow.python.keras.losses import Loss from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn_ops __all__ = ["sequence_loss", "SequenceLoss"] def sequence_loss(logits, targets, weights, average_across_timesteps=True, average_across_batch=True, sum_over_timesteps=False, sum_over_batch=False, softmax_loss_function=None, name=None): """Weighted cross-entropy loss for a sequence of logits. Depending on the values of `average_across_timesteps` / `sum_over_timesteps` and `average_across_batch` / `sum_over_batch`, the return Tensor will have rank 0, 1, or 2 as these arguments reduce the cross-entropy at each target, which has shape `[batch_size, sequence_length]`, over their respective dimensions. For example, if `average_across_timesteps` is `True` and `average_across_batch` is `False`, then the return Tensor will have shape `[batch_size]`. Note that `average_across_timesteps` and `sum_over_timesteps` cannot be True at same time. Same for `average_across_batch` and `sum_over_batch`. The recommended loss reduction in tf 2.0 has been changed to sum_over, instead of weighted average. User are recommend to use `sum_over_timesteps` and `sum_over_batch` for reduction. Args: logits: A Tensor of shape `[batch_size, sequence_length, num_decoder_symbols]` and dtype float. The logits correspond to the prediction across all classes at each timestep. targets: A Tensor of shape `[batch_size, sequence_length]` and dtype int. The target represents the true class at each timestep. weights: A Tensor of shape `[batch_size, sequence_length]` and dtype float. `weights` constitutes the weighting of each prediction in the sequence. When using `weights` as masking, set all valid timesteps to 1 and all padded timesteps to 0, e.g. a mask returned by `tf.sequence_mask`. average_across_timesteps: If set, sum the cost across the sequence dimension and divide the cost by the total label weight across timesteps. average_across_batch: If set, sum the cost across the batch dimension and divide the returned cost by the batch size. sum_over_timesteps: If set, sum the cost across the sequence dimension and divide the size of the sequence. Note that any element with 0 weights will be excluded from size calculation. sum_over_batch: if set, sum the cost across the batch dimension and divide the total cost by the batch size. Not that any element with 0 weights will be excluded from size calculation. softmax_loss_function: Function (labels, logits) -> loss-batch to be used instead of the standard softmax (the default if this is None). **Note that to avoid confusion, it is required for the function to accept named arguments.** name: Optional name for this operation, defaults to "sequence_loss". Returns: A float Tensor of rank 0, 1, or 2 depending on the `average_across_timesteps` and `average_across_batch` arguments. By default, it has rank 0 (scalar) and is the weighted average cross-entropy (log-perplexity) per symbol. Raises: ValueError: logits does not have 3 dimensions or targets does not have 2 dimensions or weights does not have 2 dimensions. """ if len(logits.get_shape()) != 3: raise ValueError("Logits must be a " "[batch_size x sequence_length x logits] tensor") if len(targets.get_shape()) != 2: raise ValueError("Targets must be a [batch_size x sequence_length] tensor") if len(weights.get_shape()) != 2: raise ValueError("Weights must be a [batch_size x sequence_length] tensor") if average_across_timesteps and sum_over_timesteps: raise ValueError("average_across_timesteps and sum_over_timesteps cannot " "be set to True at same time.") if average_across_batch and sum_over_batch: raise ValueError("average_across_batch and sum_over_batch cannot be set " "to True at same time.") with ops.name_scope(name, "sequence_loss", [logits, targets, weights]): num_classes = array_ops.shape(logits)[2] logits_flat = array_ops.reshape(logits, [-1, num_classes]) targets = array_ops.reshape(targets, [-1]) if softmax_loss_function is None: crossent = nn_ops.sparse_softmax_cross_entropy_with_logits( labels=targets, logits=logits_flat) else: crossent = softmax_loss_function(labels=targets, logits=logits_flat) crossent *= array_ops.reshape(weights, [-1]) if average_across_timesteps and average_across_batch: crossent = math_ops.reduce_sum(crossent) total_size = math_ops.reduce_sum(weights) crossent = math_ops.div_no_nan(crossent, total_size) elif sum_over_timesteps and sum_over_batch: crossent = math_ops.reduce_sum(crossent) total_count = math_ops.cast(math_ops.count_nonzero(weights), crossent.dtype) crossent = math_ops.div_no_nan(crossent, total_count) else: crossent = array_ops.reshape(crossent, array_ops.shape(logits)[0:2]) if average_across_timesteps or average_across_batch: reduce_axis = [0] if average_across_batch else [1] crossent = math_ops.reduce_sum(crossent, axis=reduce_axis) total_size = math_ops.reduce_sum(weights, axis=reduce_axis) crossent = math_ops.div_no_nan(crossent, total_size) elif sum_over_timesteps or sum_over_batch: reduce_axis = [0] if sum_over_batch else [1] crossent = math_ops.reduce_sum(crossent, axis=reduce_axis) total_count = math_ops.cast( math_ops.count_nonzero(weights, axis=reduce_axis), dtype=crossent.dtype) crossent = math_ops.div_no_nan(crossent, total_count) return crossent class SequenceLoss(Loss): """Weighted cross-entropy loss for a sequence of logits.""" def __init__(self, average_across_timesteps=False, average_across_batch=False, sum_over_timesteps=True, sum_over_batch=True, softmax_loss_function=None, name=None): super(SequenceLoss, self).__init__(name=name) self.average_across_timesteps = average_across_timesteps self.average_across_batch = average_across_batch self.sum_over_timesteps = sum_over_timesteps self.sum_over_batch = sum_over_batch self.softmax_loss_function = softmax_loss_function def __call__(self, y_true, y_pred, sample_weight=None): """Override the parent __call__ to have a customized reduce behavior.""" return sequence_loss(y_pred, y_true, sample_weight, average_across_timesteps=self.average_across_timesteps, average_across_batch=self.average_across_batch, sum_over_timesteps=self.sum_over_timesteps, sum_over_batch=self.sum_over_batch, softmax_loss_function=self.softmax_loss_function, name=self.name) def call(self, y_true, y_pred): # Skip this method since the __call__ contains real implementation. pass
tensorflow-master
tensorflow/contrib/seq2seq/python/ops/loss.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A library of helpers for use with SamplingDecoders. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import abc import six from tensorflow.contrib.seq2seq.python.ops import decoder from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import embedding_ops from tensorflow.python.ops import gen_array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import random_ops from tensorflow.python.ops import tensor_array_ops from tensorflow.python.util import nest __all__ = [ "Helper", "TrainingHelper", "GreedyEmbeddingHelper", "SampleEmbeddingHelper", "CustomHelper", "ScheduledEmbeddingTrainingHelper", "ScheduledOutputTrainingHelper", "InferenceHelper", ] _transpose_batch_time = decoder._transpose_batch_time # pylint: disable=protected-access # The following sample functions (_call_sampler, bernoulli_sample, # categorical_sample) mimic TensorFlow Probability distribution semantics. def _call_sampler(sample_n_fn, sample_shape, name=None): """Reshapes vector of samples.""" with ops.name_scope(name, "call_sampler", values=[sample_shape]): sample_shape = ops.convert_to_tensor( sample_shape, dtype=dtypes.int32, name="sample_shape") # Ensure sample_shape is a vector (vs just a scalar). pad = math_ops.cast(math_ops.equal(array_ops.rank(sample_shape), 0), dtypes.int32) sample_shape = array_ops.reshape( sample_shape, array_ops.pad(array_ops.shape(sample_shape), paddings=[[pad, 0]], constant_values=1)) samples = sample_n_fn(math_ops.reduce_prod(sample_shape)) batch_event_shape = array_ops.shape(samples)[1:] final_shape = array_ops.concat([sample_shape, batch_event_shape], 0) return array_ops.reshape(samples, final_shape) def bernoulli_sample(probs=None, logits=None, dtype=dtypes.int32, sample_shape=(), seed=None): """Samples from Bernoulli distribution.""" if probs is None: probs = math_ops.sigmoid(logits, name="probs") else: probs = ops.convert_to_tensor(probs, name="probs") batch_shape_tensor = array_ops.shape(probs) def _sample_n(n): """Sample vector of Bernoullis.""" new_shape = array_ops.concat([[n], batch_shape_tensor], 0) uniform = random_ops.random_uniform( new_shape, seed=seed, dtype=probs.dtype) return math_ops.cast(math_ops.less(uniform, probs), dtype) return _call_sampler(_sample_n, sample_shape) def categorical_sample(logits, dtype=dtypes.int32, sample_shape=(), seed=None): """Samples from categorical distribution.""" logits = ops.convert_to_tensor(logits, name="logits") event_size = array_ops.shape(logits)[-1] batch_shape_tensor = array_ops.shape(logits)[:-1] def _sample_n(n): """Sample vector of categoricals.""" if logits.shape.ndims == 2: logits_2d = logits else: logits_2d = array_ops.reshape(logits, [-1, event_size]) sample_dtype = dtypes.int64 if logits.dtype.size > 4 else dtypes.int32 draws = random_ops.multinomial( logits_2d, n, seed=seed, output_dtype=sample_dtype) draws = array_ops.reshape( array_ops.transpose(draws), array_ops.concat([[n], batch_shape_tensor], 0)) return math_ops.cast(draws, dtype) return _call_sampler(_sample_n, sample_shape) def _unstack_ta(inp): return tensor_array_ops.TensorArray( dtype=inp.dtype, size=array_ops.shape(inp)[0], element_shape=inp.get_shape()[1:]).unstack(inp) @six.add_metaclass(abc.ABCMeta) class Helper(object): """Interface for implementing sampling in seq2seq decoders. Helper instances are used by `BasicDecoder`. """ @abc.abstractproperty def batch_size(self): """Batch size of tensor returned by `sample`. Returns a scalar int32 tensor. """ raise NotImplementedError("batch_size has not been implemented") @abc.abstractproperty def sample_ids_shape(self): """Shape of tensor returned by `sample`, excluding the batch dimension. Returns a `TensorShape`. """ raise NotImplementedError("sample_ids_shape has not been implemented") @abc.abstractproperty def sample_ids_dtype(self): """DType of tensor returned by `sample`. Returns a DType. """ raise NotImplementedError("sample_ids_dtype has not been implemented") @abc.abstractmethod def initialize(self, name=None): """Returns `(initial_finished, initial_inputs)`.""" pass @abc.abstractmethod def sample(self, time, outputs, state, name=None): """Returns `sample_ids`.""" pass @abc.abstractmethod def next_inputs(self, time, outputs, state, sample_ids, name=None): """Returns `(finished, next_inputs, next_state)`.""" pass class CustomHelper(Helper): """Base abstract class that allows the user to customize sampling.""" def __init__(self, initialize_fn, sample_fn, next_inputs_fn, sample_ids_shape=None, sample_ids_dtype=None): """Initializer. Args: initialize_fn: callable that returns `(finished, next_inputs)` for the first iteration. sample_fn: callable that takes `(time, outputs, state)` and emits tensor `sample_ids`. next_inputs_fn: callable that takes `(time, outputs, state, sample_ids)` and emits `(finished, next_inputs, next_state)`. sample_ids_shape: Either a list of integers, or a 1-D Tensor of type `int32`, the shape of each value in the `sample_ids` batch. Defaults to a scalar. sample_ids_dtype: The dtype of the `sample_ids` tensor. Defaults to int32. """ self._initialize_fn = initialize_fn self._sample_fn = sample_fn self._next_inputs_fn = next_inputs_fn self._batch_size = None self._sample_ids_shape = tensor_shape.TensorShape(sample_ids_shape or []) self._sample_ids_dtype = sample_ids_dtype or dtypes.int32 @property def batch_size(self): if self._batch_size is None: raise ValueError("batch_size accessed before initialize was called") return self._batch_size @property def sample_ids_shape(self): return self._sample_ids_shape @property def sample_ids_dtype(self): return self._sample_ids_dtype def initialize(self, name=None): with ops.name_scope(name, "%sInitialize" % type(self).__name__): (finished, next_inputs) = self._initialize_fn() if self._batch_size is None: self._batch_size = array_ops.size(finished) return (finished, next_inputs) def sample(self, time, outputs, state, name=None): with ops.name_scope( name, "%sSample" % type(self).__name__, (time, outputs, state)): return self._sample_fn(time=time, outputs=outputs, state=state) def next_inputs(self, time, outputs, state, sample_ids, name=None): with ops.name_scope( name, "%sNextInputs" % type(self).__name__, (time, outputs, state)): return self._next_inputs_fn( time=time, outputs=outputs, state=state, sample_ids=sample_ids) class TrainingHelper(Helper): """A helper for use during training. Only reads inputs. Returned sample_ids are the argmax of the RNN output logits. """ def __init__(self, inputs, sequence_length, time_major=False, name=None): """Initializer. Args: inputs: A (structure of) input tensors. sequence_length: An int32 vector tensor. time_major: Python bool. Whether the tensors in `inputs` are time major. If `False` (default), they are assumed to be batch major. name: Name scope for any created operations. Raises: ValueError: if `sequence_length` is not a 1D tensor. """ with ops.name_scope(name, "TrainingHelper", [inputs, sequence_length]): inputs = ops.convert_to_tensor(inputs, name="inputs") self._inputs = inputs if not time_major: inputs = nest.map_structure(_transpose_batch_time, inputs) self._input_tas = nest.map_structure(_unstack_ta, inputs) self._sequence_length = ops.convert_to_tensor( sequence_length, name="sequence_length") if self._sequence_length.get_shape().ndims != 1: raise ValueError( "Expected sequence_length to be a vector, but received shape: %s" % self._sequence_length.get_shape()) self._zero_inputs = nest.map_structure( lambda inp: array_ops.zeros_like(inp[0, :]), inputs) self._batch_size = array_ops.size(sequence_length) @property def inputs(self): return self._inputs @property def sequence_length(self): return self._sequence_length @property def batch_size(self): return self._batch_size @property def sample_ids_shape(self): return tensor_shape.TensorShape([]) @property def sample_ids_dtype(self): return dtypes.int32 def initialize(self, name=None): with ops.name_scope(name, "TrainingHelperInitialize"): finished = math_ops.equal(0, self._sequence_length) all_finished = math_ops.reduce_all(finished) next_inputs = control_flow_ops.cond( all_finished, lambda: self._zero_inputs, lambda: nest.map_structure(lambda inp: inp.read(0), self._input_tas)) return (finished, next_inputs) def sample(self, time, outputs, name=None, **unused_kwargs): with ops.name_scope(name, "TrainingHelperSample", [time, outputs]): sample_ids = math_ops.cast( math_ops.argmax(outputs, axis=-1), dtypes.int32) return sample_ids def next_inputs(self, time, outputs, state, name=None, **unused_kwargs): """next_inputs_fn for TrainingHelper.""" with ops.name_scope(name, "TrainingHelperNextInputs", [time, outputs, state]): next_time = time + 1 finished = (next_time >= self._sequence_length) all_finished = math_ops.reduce_all(finished) def read_from_ta(inp): return inp.read(next_time) next_inputs = control_flow_ops.cond( all_finished, lambda: self._zero_inputs, lambda: nest.map_structure(read_from_ta, self._input_tas)) return (finished, next_inputs, state) class ScheduledEmbeddingTrainingHelper(TrainingHelper): """A training helper that adds scheduled sampling. Returns -1s for sample_ids where no sampling took place; valid sample id values elsewhere. """ def __init__(self, inputs, sequence_length, embedding, sampling_probability, time_major=False, seed=None, scheduling_seed=None, name=None): """Initializer. Args: inputs: A (structure of) input tensors. sequence_length: An int32 vector tensor. embedding: A callable that takes a vector tensor of `ids` (argmax ids), or the `params` argument for `embedding_lookup`. sampling_probability: A 0D `float32` tensor: the probability of sampling categorically from the output ids instead of reading directly from the inputs. time_major: Python bool. Whether the tensors in `inputs` are time major. If `False` (default), they are assumed to be batch major. seed: The sampling seed. scheduling_seed: The schedule decision rule sampling seed. name: Name scope for any created operations. Raises: ValueError: if `sampling_probability` is not a scalar or vector. """ with ops.name_scope(name, "ScheduledEmbeddingSamplingWrapper", [embedding, sampling_probability]): if callable(embedding): self._embedding_fn = embedding else: self._embedding_fn = ( lambda ids: embedding_ops.embedding_lookup(embedding, ids)) self._sampling_probability = ops.convert_to_tensor( sampling_probability, name="sampling_probability") if self._sampling_probability.get_shape().ndims not in (0, 1): raise ValueError( "sampling_probability must be either a scalar or a vector. " "saw shape: %s" % (self._sampling_probability.get_shape())) self._seed = seed self._scheduling_seed = scheduling_seed super(ScheduledEmbeddingTrainingHelper, self).__init__( inputs=inputs, sequence_length=sequence_length, time_major=time_major, name=name) def initialize(self, name=None): return super(ScheduledEmbeddingTrainingHelper, self).initialize(name=name) def sample(self, time, outputs, state, name=None): with ops.name_scope(name, "ScheduledEmbeddingTrainingHelperSample", [time, outputs, state]): # Return -1s where we did not sample, and sample_ids elsewhere select_sample = bernoulli_sample( probs=self._sampling_probability, dtype=dtypes.bool, sample_shape=self.batch_size, seed=self._scheduling_seed) return array_ops.where( select_sample, categorical_sample(logits=outputs, seed=self._seed), gen_array_ops.fill([self.batch_size], -1)) def next_inputs(self, time, outputs, state, sample_ids, name=None): with ops.name_scope(name, "ScheduledEmbeddingTrainingHelperNextInputs", [time, outputs, state, sample_ids]): (finished, base_next_inputs, state) = ( super(ScheduledEmbeddingTrainingHelper, self).next_inputs( time=time, outputs=outputs, state=state, sample_ids=sample_ids, name=name)) def maybe_sample(): """Perform scheduled sampling.""" where_sampling = math_ops.cast( array_ops.where(sample_ids > -1), dtypes.int32) where_not_sampling = math_ops.cast( array_ops.where(sample_ids <= -1), dtypes.int32) sample_ids_sampling = array_ops.gather_nd(sample_ids, where_sampling) inputs_not_sampling = array_ops.gather_nd( base_next_inputs, where_not_sampling) sampled_next_inputs = self._embedding_fn(sample_ids_sampling) base_shape = array_ops.shape(base_next_inputs) return (array_ops.scatter_nd(indices=where_sampling, updates=sampled_next_inputs, shape=base_shape) + array_ops.scatter_nd(indices=where_not_sampling, updates=inputs_not_sampling, shape=base_shape)) all_finished = math_ops.reduce_all(finished) next_inputs = control_flow_ops.cond( all_finished, lambda: base_next_inputs, maybe_sample) return (finished, next_inputs, state) class ScheduledOutputTrainingHelper(TrainingHelper): """A training helper that adds scheduled sampling directly to outputs. Returns False for sample_ids where no sampling took place; True elsewhere. """ def __init__(self, inputs, sequence_length, sampling_probability, time_major=False, seed=None, next_inputs_fn=None, auxiliary_inputs=None, name=None): """Initializer. Args: inputs: A (structure) of input tensors. sequence_length: An int32 vector tensor. sampling_probability: A 0D `float32` tensor: the probability of sampling from the outputs instead of reading directly from the inputs. time_major: Python bool. Whether the tensors in `inputs` are time major. If `False` (default), they are assumed to be batch major. seed: The sampling seed. next_inputs_fn: (Optional) callable to apply to the RNN outputs to create the next input when sampling. If `None` (default), the RNN outputs will be used as the next inputs. auxiliary_inputs: An optional (structure of) auxiliary input tensors with a shape that matches `inputs` in all but (potentially) the final dimension. These tensors will be concatenated to the sampled output or the `inputs` when not sampling for use as the next input. name: Name scope for any created operations. Raises: ValueError: if `sampling_probability` is not a scalar or vector. """ with ops.name_scope(name, "ScheduledOutputTrainingHelper", [inputs, auxiliary_inputs, sampling_probability]): self._sampling_probability = ops.convert_to_tensor( sampling_probability, name="sampling_probability") if self._sampling_probability.get_shape().ndims not in (0, 1): raise ValueError( "sampling_probability must be either a scalar or a vector. " "saw shape: %s" % (self._sampling_probability.get_shape())) if auxiliary_inputs is None: maybe_concatenated_inputs = inputs else: inputs = ops.convert_to_tensor(inputs, name="inputs") auxiliary_inputs = ops.convert_to_tensor( auxiliary_inputs, name="auxiliary_inputs") maybe_concatenated_inputs = nest.map_structure( lambda x, y: array_ops.concat((x, y), -1), inputs, auxiliary_inputs) if not time_major: auxiliary_inputs = nest.map_structure( _transpose_batch_time, auxiliary_inputs) self._auxiliary_input_tas = ( nest.map_structure(_unstack_ta, auxiliary_inputs) if auxiliary_inputs is not None else None) self._seed = seed self._next_inputs_fn = next_inputs_fn super(ScheduledOutputTrainingHelper, self).__init__( inputs=maybe_concatenated_inputs, sequence_length=sequence_length, time_major=time_major, name=name) def initialize(self, name=None): return super(ScheduledOutputTrainingHelper, self).initialize(name=name) def sample(self, time, outputs, state, name=None): with ops.name_scope(name, "ScheduledOutputTrainingHelperSample", [time, outputs, state]): return bernoulli_sample( probs=self._sampling_probability, sample_shape=self.batch_size, seed=self._seed) def next_inputs(self, time, outputs, state, sample_ids, name=None): with ops.name_scope(name, "ScheduledOutputTrainingHelperNextInputs", [time, outputs, state, sample_ids]): (finished, base_next_inputs, state) = ( super(ScheduledOutputTrainingHelper, self).next_inputs( time=time, outputs=outputs, state=state, sample_ids=sample_ids, name=name)) sample_ids = math_ops.cast(sample_ids, dtypes.bool) def maybe_sample(): """Perform scheduled sampling.""" def maybe_concatenate_auxiliary_inputs(outputs_, indices=None): """Concatenate outputs with auxiliary inputs, if they exist.""" if self._auxiliary_input_tas is None: return outputs_ next_time = time + 1 auxiliary_inputs = nest.map_structure( lambda ta: ta.read(next_time), self._auxiliary_input_tas) if indices is not None: auxiliary_inputs = array_ops.gather_nd(auxiliary_inputs, indices) return nest.map_structure( lambda x, y: array_ops.concat((x, y), -1), outputs_, auxiliary_inputs) if self._next_inputs_fn is None: return array_ops.where( sample_ids, maybe_concatenate_auxiliary_inputs(outputs), base_next_inputs) where_sampling = math_ops.cast( array_ops.where(sample_ids), dtypes.int32) where_not_sampling = math_ops.cast( array_ops.where(math_ops.logical_not(sample_ids)), dtypes.int32) outputs_sampling = array_ops.gather_nd(outputs, where_sampling) inputs_not_sampling = array_ops.gather_nd(base_next_inputs, where_not_sampling) sampled_next_inputs = maybe_concatenate_auxiliary_inputs( self._next_inputs_fn(outputs_sampling), where_sampling) base_shape = array_ops.shape(base_next_inputs) return (array_ops.scatter_nd(indices=where_sampling, updates=sampled_next_inputs, shape=base_shape) + array_ops.scatter_nd(indices=where_not_sampling, updates=inputs_not_sampling, shape=base_shape)) all_finished = math_ops.reduce_all(finished) no_samples = math_ops.logical_not(math_ops.reduce_any(sample_ids)) next_inputs = control_flow_ops.cond( math_ops.logical_or(all_finished, no_samples), lambda: base_next_inputs, maybe_sample) return (finished, next_inputs, state) class GreedyEmbeddingHelper(Helper): """A helper for use during inference. Uses the argmax of the output (treated as logits) and passes the result through an embedding layer to get the next input. """ def __init__(self, embedding, start_tokens, end_token): """Initializer. Args: embedding: A callable that takes a vector tensor of `ids` (argmax ids), or the `params` argument for `embedding_lookup`. The returned tensor will be passed to the decoder input. start_tokens: `int32` vector shaped `[batch_size]`, the start tokens. end_token: `int32` scalar, the token that marks end of decoding. Raises: ValueError: if `start_tokens` is not a 1D tensor or `end_token` is not a scalar. """ if callable(embedding): self._embedding_fn = embedding else: self._embedding_fn = ( lambda ids: embedding_ops.embedding_lookup(embedding, ids)) self._start_tokens = ops.convert_to_tensor( start_tokens, dtype=dtypes.int32, name="start_tokens") self._end_token = ops.convert_to_tensor( end_token, dtype=dtypes.int32, name="end_token") if self._start_tokens.get_shape().ndims != 1: raise ValueError("start_tokens must be a vector") self._batch_size = array_ops.size(start_tokens) if self._end_token.get_shape().ndims != 0: raise ValueError("end_token must be a scalar") self._start_inputs = self._embedding_fn(self._start_tokens) @property def batch_size(self): return self._batch_size @property def sample_ids_shape(self): return tensor_shape.TensorShape([]) @property def sample_ids_dtype(self): return dtypes.int32 def initialize(self, name=None): finished = array_ops.tile([False], [self._batch_size]) return (finished, self._start_inputs) def sample(self, time, outputs, state, name=None): """sample for GreedyEmbeddingHelper.""" del time, state # unused by sample_fn # Outputs are logits, use argmax to get the most probable id if not isinstance(outputs, ops.Tensor): raise TypeError("Expected outputs to be a single Tensor, got: %s" % type(outputs)) sample_ids = math_ops.argmax(outputs, axis=-1, output_type=dtypes.int32) return sample_ids def next_inputs(self, time, outputs, state, sample_ids, name=None): """next_inputs_fn for GreedyEmbeddingHelper.""" del time, outputs # unused by next_inputs_fn finished = math_ops.equal(sample_ids, self._end_token) all_finished = math_ops.reduce_all(finished) next_inputs = control_flow_ops.cond( all_finished, # If we're finished, the next_inputs value doesn't matter lambda: self._start_inputs, lambda: self._embedding_fn(sample_ids)) return (finished, next_inputs, state) class SampleEmbeddingHelper(GreedyEmbeddingHelper): """A helper for use during inference. Uses sampling (from a distribution) instead of argmax and passes the result through an embedding layer to get the next input. """ def __init__(self, embedding, start_tokens, end_token, softmax_temperature=None, seed=None): """Initializer. Args: embedding: A callable that takes a vector tensor of `ids` (argmax ids), or the `params` argument for `embedding_lookup`. The returned tensor will be passed to the decoder input. start_tokens: `int32` vector shaped `[batch_size]`, the start tokens. end_token: `int32` scalar, the token that marks end of decoding. softmax_temperature: (Optional) `float32` scalar, value to divide the logits by before computing the softmax. Larger values (above 1.0) result in more random samples, while smaller values push the sampling distribution towards the argmax. Must be strictly greater than 0. Defaults to 1.0. seed: (Optional) The sampling seed. Raises: ValueError: if `start_tokens` is not a 1D tensor or `end_token` is not a scalar. """ super(SampleEmbeddingHelper, self).__init__( embedding, start_tokens, end_token) self._softmax_temperature = softmax_temperature self._seed = seed def sample(self, time, outputs, state, name=None): """sample for SampleEmbeddingHelper.""" del time, state # unused by sample_fn # Outputs are logits, we sample instead of argmax (greedy). if not isinstance(outputs, ops.Tensor): raise TypeError("Expected outputs to be a single Tensor, got: %s" % type(outputs)) if self._softmax_temperature is None: logits = outputs else: logits = outputs / self._softmax_temperature sample_ids = categorical_sample(logits=logits, seed=self._seed) return sample_ids class InferenceHelper(Helper): """A helper to use during inference with a custom sampling function.""" def __init__(self, sample_fn, sample_shape, sample_dtype, start_inputs, end_fn, next_inputs_fn=None): """Initializer. Args: sample_fn: A callable that takes `outputs` and emits tensor `sample_ids`. sample_shape: Either a list of integers, or a 1-D Tensor of type `int32`, the shape of the each sample in the batch returned by `sample_fn`. sample_dtype: the dtype of the sample returned by `sample_fn`. start_inputs: The initial batch of inputs. end_fn: A callable that takes `sample_ids` and emits a `bool` vector shaped `[batch_size]` indicating whether each sample is an end token. next_inputs_fn: (Optional) A callable that takes `sample_ids` and returns the next batch of inputs. If not provided, `sample_ids` is used as the next batch of inputs. """ self._sample_fn = sample_fn self._end_fn = end_fn self._sample_shape = tensor_shape.TensorShape(sample_shape) self._sample_dtype = sample_dtype self._next_inputs_fn = next_inputs_fn self._batch_size = array_ops.shape(start_inputs)[0] self._start_inputs = ops.convert_to_tensor( start_inputs, name="start_inputs") @property def batch_size(self): return self._batch_size @property def sample_ids_shape(self): return self._sample_shape @property def sample_ids_dtype(self): return self._sample_dtype def initialize(self, name=None): finished = array_ops.tile([False], [self._batch_size]) return (finished, self._start_inputs) def sample(self, time, outputs, state, name=None): del time, state # unused by sample return self._sample_fn(outputs) def next_inputs(self, time, outputs, state, sample_ids, name=None): del time, outputs # unused by next_inputs if self._next_inputs_fn is None: next_inputs = sample_ids else: next_inputs = self._next_inputs_fn(sample_ids) finished = self._end_fn(sample_ids) return (finished, next_inputs, state)
tensorflow-master
tensorflow/contrib/seq2seq/python/ops/helper.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A powerful dynamic attention wrapper object.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import functools import math import numpy as np from tensorflow.contrib.framework.python.framework import tensor_util from tensorflow.python.eager import context from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.keras import initializers from tensorflow.python.keras import layers from tensorflow.python.keras.engine import base_layer_utils from tensorflow.python.layers import base as layers_base from tensorflow.python.layers import core as layers_core from tensorflow.python.ops import array_ops from tensorflow.python.ops import check_ops from tensorflow.python.ops import clip_ops from tensorflow.python.ops import functional_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn_ops from tensorflow.python.ops import random_ops from tensorflow.python.ops import rnn_cell_impl from tensorflow.python.ops import tensor_array_ops from tensorflow.python.ops import variable_scope from tensorflow.python.util import nest __all__ = [ "AttentionMechanism", "AttentionWrapper", "AttentionWrapperState", "LuongAttention", "BahdanauAttention", "hardmax", "safe_cumprod", "monotonic_attention", "BahdanauMonotonicAttention", "LuongMonotonicAttention", ] _zero_state_tensors = rnn_cell_impl._zero_state_tensors # pylint: disable=protected-access class AttentionMechanism(object): @property def alignments_size(self): raise NotImplementedError @property def state_size(self): raise NotImplementedError class _BaseAttentionMechanism(AttentionMechanism): """A base AttentionMechanism class providing common functionality. Common functionality includes: 1. Storing the query and memory layers. 2. Preprocessing and storing the memory. """ def __init__(self, query_layer, memory, probability_fn, memory_sequence_length=None, memory_layer=None, check_inner_dims_defined=True, score_mask_value=None, custom_key_value_fn=None, name=None): """Construct base AttentionMechanism class. Args: query_layer: Callable. Instance of `tf.compat.v1.layers.Layer`. The layer's depth must match the depth of `memory_layer`. If `query_layer` is not provided, the shape of `query` must match that of `memory_layer`. memory: The memory to query; usually the output of an RNN encoder. This tensor should be shaped `[batch_size, max_time, ...]`. probability_fn: A `callable`. Converts the score and previous alignments to probabilities. Its signature should be: `probabilities = probability_fn(score, state)`. memory_sequence_length (optional): Sequence lengths for the batch entries in memory. If provided, the memory tensor rows are masked with zeros for values past the respective sequence lengths. memory_layer: Instance of `tf.compat.v1.layers.Layer` (may be None). The layer's depth must match the depth of `query_layer`. If `memory_layer` is not provided, the shape of `memory` must match that of `query_layer`. check_inner_dims_defined: Python boolean. If `True`, the `memory` argument's shape is checked to ensure all but the two outermost dimensions are fully defined. score_mask_value: (optional): The mask value for score before passing into `probability_fn`. The default is -inf. Only used if `memory_sequence_length` is not None. custom_key_value_fn: (optional): The custom function for computing keys and values. name: Name to use when creating ops. """ if (query_layer is not None and not isinstance(query_layer, layers_base.Layer)): raise TypeError("query_layer is not a Layer: %s" % type(query_layer).__name__) if (memory_layer is not None and not isinstance(memory_layer, layers_base.Layer)): raise TypeError("memory_layer is not a Layer: %s" % type(memory_layer).__name__) self._query_layer = query_layer self._memory_layer = memory_layer self.dtype = memory_layer.dtype if not callable(probability_fn): raise TypeError("probability_fn must be callable, saw type: %s" % type(probability_fn).__name__) if score_mask_value is None: score_mask_value = dtypes.as_dtype( self._memory_layer.dtype).as_numpy_dtype(-np.inf) self._probability_fn = lambda score, prev: ( # pylint:disable=g-long-lambda probability_fn( _maybe_mask_score( score, memory_sequence_length=memory_sequence_length, score_mask_value=score_mask_value), prev)) with ops.name_scope(name, "BaseAttentionMechanismInit", nest.flatten(memory)): self._values = _prepare_memory( memory, memory_sequence_length=memory_sequence_length, check_inner_dims_defined=check_inner_dims_defined) self._keys = ( self.memory_layer(self._values) if self.memory_layer # pylint: disable=not-callable else self._values) if custom_key_value_fn is not None: self._keys, self._values = custom_key_value_fn(self._keys, self._values) self._batch_size = ( tensor_shape.dimension_value(self._keys.shape[0]) or array_ops.shape(self._keys)[0]) self._alignments_size = ( tensor_shape.dimension_value(self._keys.shape[1]) or array_ops.shape(self._keys)[1]) @property def memory_layer(self): return self._memory_layer @property def query_layer(self): return self._query_layer @property def values(self): return self._values @property def keys(self): return self._keys @property def batch_size(self): return self._batch_size @property def alignments_size(self): return self._alignments_size @property def state_size(self): return self._alignments_size def initial_alignments(self, batch_size, dtype): """Creates the initial alignment values for the `AttentionWrapper` class. This is important for AttentionMechanisms that use the previous alignment to calculate the alignment at the next time step (e.g. monotonic attention). The default behavior is to return a tensor of all zeros. Args: batch_size: `int32` scalar, the batch_size. dtype: The `dtype`. Returns: A `dtype` tensor shaped `[batch_size, alignments_size]` (`alignments_size` is the values' `max_time`). """ max_time = self._alignments_size return _zero_state_tensors(max_time, batch_size, dtype) def initial_state(self, batch_size, dtype): """Creates the initial state values for the `AttentionWrapper` class. This is important for AttentionMechanisms that use the previous alignment to calculate the alignment at the next time step (e.g. monotonic attention). The default behavior is to return the same output as initial_alignments. Args: batch_size: `int32` scalar, the batch_size. dtype: The `dtype`. Returns: A structure of all-zero tensors with shapes as described by `state_size`. """ return self.initial_alignments(batch_size, dtype) class _BaseAttentionMechanismV2(AttentionMechanism, layers.Layer): """A base AttentionMechanism class providing common functionality. Common functionality includes: 1. Storing the query and memory layers. 2. Preprocessing and storing the memory. Note that this layer takes memory as its init parameter, which is an anti-pattern of Keras API, we have to keep the memory as init parameter for performance and dependency reason. Under the hood, during `__init__()`, it will invoke `base_layer.__call__(memory, setup_memory=True)`. This will let keras to keep track of the memory tensor as the input of this layer. Once the `__init__()` is done, then user can query the attention by `score = att_obj([query, state])`, and use it as a normal keras layer. Special attention is needed when adding using this class as the base layer for new attention: 1. Build() could be invoked at least twice. So please make sure weights are not duplicated. 2. Layer.get_weights() might return different set of weights if the instance has `query_layer`. The query_layer weights is not initialized until the memory is configured. Also note that this layer does not work with Keras model when `model.compile(run_eagerly=True)` due to the fact that this layer is stateful. The support for that will be added in a future version. """ def __init__(self, memory, probability_fn, query_layer=None, memory_layer=None, memory_sequence_length=None, **kwargs): """Construct base AttentionMechanism class. Args: memory: The memory to query; usually the output of an RNN encoder. This tensor should be shaped `[batch_size, max_time, ...]`. probability_fn: A `callable`. Converts the score and previous alignments to probabilities. Its signature should be: `probabilities = probability_fn(score, state)`. query_layer: (optional): Instance of `tf.keras.Layer`. The layer's depth must match the depth of `memory_layer`. If `query_layer` is not provided, the shape of `query` must match that of `memory_layer`. memory_layer: (optional): Instance of `tf.keras.Layer`. The layer's depth must match the depth of `query_layer`. If `memory_layer` is not provided, the shape of `memory` must match that of `query_layer`. memory_sequence_length (optional): Sequence lengths for the batch entries in memory. If provided, the memory tensor rows are masked with zeros for values past the respective sequence lengths. **kwargs: Dictionary that contains other common arguments for layer creation. """ if (query_layer is not None and not isinstance(query_layer, layers.Layer)): raise TypeError("query_layer is not a Layer: %s" % type(query_layer).__name__) if (memory_layer is not None and not isinstance(memory_layer, layers.Layer)): raise TypeError("memory_layer is not a Layer: %s" % type(memory_layer).__name__) self.query_layer = query_layer self.memory_layer = memory_layer if self.memory_layer is not None and "dtype" not in kwargs: kwargs["dtype"] = self.memory_layer.dtype super(_BaseAttentionMechanismV2, self).__init__(**kwargs) if not callable(probability_fn): raise TypeError("probability_fn must be callable, saw type: %s" % type(probability_fn).__name__) self.probability_fn = probability_fn self.keys = None self.values = None self.batch_size = None self._memory_initialized = False self._check_inner_dims_defined = True self.supports_masking = True self.score_mask_value = dtypes.as_dtype(self.dtype).as_numpy_dtype(-np.inf) if memory is not None: # Setup the memory by self.__call__() with memory and memory_seq_length. # This will make the attention follow the keras convention which takes # all the tensor inputs via __call__(). if memory_sequence_length is None: inputs = memory else: inputs = [memory, memory_sequence_length] self.values = super(_BaseAttentionMechanismV2, self).__call__( inputs, setup_memory=True) def build(self, input_shape): if not self._memory_initialized: # This is for setting up the memory, which contains memory and optional # memory_sequence_length. Build the memory_layer with memory shape. if self.memory_layer is not None and not self.memory_layer.built: if isinstance(input_shape, list): self.memory_layer.build(input_shape[0]) else: self.memory_layer.build(input_shape) else: # The input_shape should be query.shape and state.shape. Use the query # to init the query layer. if self.query_layer is not None and not self.query_layer.built: self.query_layer.build(input_shape[0]) def __call__(self, inputs, **kwargs): """Preprocess the inputs before calling `base_layer.__call__()`. Note that there are situation here, one for setup memory, and one with actual query and state. 1. When the memory has not been configured, we just pass all the param to base_layer.__call__(), which will then invoke self.call() with proper inputs, which allows this class to setup memory. 2. When the memory has already been setup, the input should contain query and state, and optionally processed memory. If the processed memory is not included in the input, we will have to append it to the inputs and give it to the base_layer.__call__(). The processed memory is the output of first invocation of self.__call__(). If we don't add it here, then from keras perspective, the graph is disconnected since the output from previous call is never used. Args: inputs: the inputs tensors. **kwargs: dict, other keyeword arguments for the `__call__()` """ if self._memory_initialized: if len(inputs) not in (2, 3): raise ValueError("Expect the inputs to have 2 or 3 tensors, got %d" % len(inputs)) if len(inputs) == 2: # We append the calculated memory here so that the graph will be # connected. inputs.append(self.values) return super(_BaseAttentionMechanismV2, self).__call__(inputs, **kwargs) def call(self, inputs, mask=None, setup_memory=False, **kwargs): """Setup the memory or query the attention. There are two case here, one for setup memory, and the second is query the attention score. `setup_memory` is the flag to indicate which mode it is. The input list will be treated differently based on that flag. Args: inputs: a list of tensor that could either be `query` and `state`, or `memory` and `memory_sequence_length`. `query` is the tensor of dtype matching `memory` and shape `[batch_size, query_depth]`. `state` is the tensor of dtype matching `memory` and shape `[batch_size, alignments_size]`. (`alignments_size` is memory's `max_time`). `memory` is the memory to query; usually the output of an RNN encoder. The tensor should be shaped `[batch_size, max_time, ...]`. `memory_sequence_length` (optional) is the sequence lengths for the batch entries in memory. If provided, the memory tensor rows are masked with zeros for values past the respective sequence lengths. mask: optional bool tensor with shape `[batch, max_time]` for the mask of memory. If it is not None, the corresponding item of the memory should be filtered out during calculation. setup_memory: boolean, whether the input is for setting up memory, or query attention. **kwargs: Dict, other keyword arguments for the call method. Returns: Either processed memory or attention score, based on `setup_memory`. """ if setup_memory: if isinstance(inputs, list): if len(inputs) not in (1, 2): raise ValueError("Expect inputs to have 1 or 2 tensors, got %d" % len(inputs)) memory = inputs[0] memory_sequence_length = inputs[1] if len(inputs) == 2 else None memory_mask = mask else: memory, memory_sequence_length = inputs, None memory_mask = mask self._setup_memory(memory, memory_sequence_length, memory_mask) # We force the self.built to false here since only memory is initialized, # but the real query/state has not been call() yet. The layer should be # build and call again. self.built = False # Return the processed memory in order to create the Keras connectivity # data for it. return self.values else: if not self._memory_initialized: raise ValueError("Cannot query the attention before the setup of " "memory") if len(inputs) not in (2, 3): raise ValueError("Expect the inputs to have query, state, and optional " "processed memory, got %d items" % len(inputs)) # Ignore the rest of the inputs and only care about the query and state query, state = inputs[0], inputs[1] return self._calculate_attention(query, state) def _setup_memory(self, memory, memory_sequence_length=None, memory_mask=None): """Pre-process the memory before actually query the memory. This should only be called once at the first invocation of call(). Args: memory: The memory to query; usually the output of an RNN encoder. This tensor should be shaped `[batch_size, max_time, ...]`. memory_sequence_length (optional): Sequence lengths for the batch entries in memory. If provided, the memory tensor rows are masked with zeros for values past the respective sequence lengths. memory_mask: (Optional) The boolean tensor with shape `[batch_size, max_time]`. For any value equal to False, the corresponding value in memory should be ignored. """ if self._memory_initialized: raise ValueError("The memory for the attention has already been setup.") if memory_sequence_length is not None and memory_mask is not None: raise ValueError("memory_sequence_length and memory_mask cannot be " "used at same time for attention.") with ops.name_scope(self.name, "BaseAttentionMechanismInit", nest.flatten(memory)): self.values = _prepare_memory( memory, memory_sequence_length=memory_sequence_length, memory_mask=memory_mask, check_inner_dims_defined=self._check_inner_dims_defined) # Mark the value as check since the memory and memory mask might not # passed from __call__(), which does not have proper keras metadata. # TODO(omalleyt): Remove this hack once the mask the has proper keras # history. base_layer_utils.mark_checked(self.values) if self.memory_layer is not None: self.keys = self.memory_layer(self.values) else: self.keys = self.values self.batch_size = ( tensor_shape.dimension_value(self.keys.shape[0]) or array_ops.shape(self.keys)[0]) self._alignments_size = ( tensor_shape.dimension_value(self.keys.shape[1]) or array_ops.shape(self.keys)[1]) if memory_mask is not None: unwrapped_probability_fn = self.probability_fn def _mask_probability_fn(score, prev): return unwrapped_probability_fn( _maybe_mask_score( score, memory_mask=memory_mask, memory_sequence_length=memory_sequence_length, score_mask_value=self.score_mask_value), prev) self.probability_fn = _mask_probability_fn self._memory_initialized = True def _calculate_attention(self, query, state): raise NotImplementedError( "_calculate_attention need to be implemented by subclasses.") def compute_mask(self, inputs, mask=None): # There real input of the attention is query and state, and the memory layer # mask shouldn't be pass down. Returning None for all output mask here. return None, None def get_config(self): config = {} # Since the probability_fn is likely to be a wrapped function, the child # class should preserve the original function and how its wrapped. if self.query_layer is not None: config["query_layer"] = { "class_name": self.query_layer.__class__.__name__, "config": self.query_layer.get_config(), } if self.memory_layer is not None: config["memory_layer"] = { "class_name": self.memory_layer.__class__.__name__, "config": self.memory_layer.get_config(), } # memory is a required init parameter and its a tensor. It cannot be # serialized to config, so we put a placeholder for it. config["memory"] = None base_config = super(_BaseAttentionMechanismV2, self).get_config() return dict(list(base_config.items()) + list(config.items())) def _process_probability_fn(self, func_name): """Helper method to retrieve the probably function by string input.""" valid_probability_fns = { "softmax": nn_ops.softmax, "hardmax": hardmax, } if func_name not in valid_probability_fns.keys(): raise ValueError("Invalid probability function: %s, options are %s" % (func_name, valid_probability_fns.keys())) return valid_probability_fns[func_name] @classmethod def deserialize_inner_layer_from_config(cls, config, custom_objects): """Helper method that reconstruct the query and memory from the config. In the get_config() method, the query and memory layer configs are serialized into dict for persistence, this method perform the reverse action to reconstruct the layer from the config. Args: config: dict, the configs that will be used to reconstruct the object. custom_objects: dict mapping class names (or function names) of custom (non-Keras) objects to class/functions. Returns: config: dict, the config with layer instance created, which is ready to be used as init parameters. """ # Reconstruct the query and memory layer for parent class. from tensorflow.python.keras.layers import deserialize as deserialize_layer # pylint: disable=g-import-not-at-top # Instead of updating the input, create a copy and use that. config = config.copy() query_layer_config = config.pop("query_layer", None) if query_layer_config: query_layer = deserialize_layer( query_layer_config, custom_objects=custom_objects) config["query_layer"] = query_layer memory_layer_config = config.pop("memory_layer", None) if memory_layer_config: memory_layer = deserialize_layer( memory_layer_config, custom_objects=custom_objects) config["memory_layer"] = memory_layer return config @property def alignments_size(self): return self._alignments_size @property def state_size(self): return self._alignments_size def initial_alignments(self, batch_size, dtype): """Creates the initial alignment values for the `AttentionWrapper` class. This is important for AttentionMechanisms that use the previous alignment to calculate the alignment at the next time step (e.g. monotonic attention). The default behavior is to return a tensor of all zeros. Args: batch_size: `int32` scalar, the batch_size. dtype: The `dtype`. Returns: A `dtype` tensor shaped `[batch_size, alignments_size]` (`alignments_size` is the values' `max_time`). """ max_time = self._alignments_size return _zero_state_tensors(max_time, batch_size, dtype) def initial_state(self, batch_size, dtype): """Creates the initial state values for the `AttentionWrapper` class. This is important for AttentionMechanisms that use the previous alignment to calculate the alignment at the next time step (e.g. monotonic attention). The default behavior is to return the same output as initial_alignments. Args: batch_size: `int32` scalar, the batch_size. dtype: The `dtype`. Returns: A structure of all-zero tensors with shapes as described by `state_size`. """ return self.initial_alignments(batch_size, dtype) def _luong_score(query, keys, scale): """Implements Luong-style (multiplicative) scoring function. This attention has two forms. The first is standard Luong attention, as described in: Minh-Thang Luong, Hieu Pham, Christopher D. Manning. "Effective Approaches to Attention-based Neural Machine Translation." EMNLP 2015. https://arxiv.org/abs/1508.04025 The second is the scaled form inspired partly by the normalized form of Bahdanau attention. To enable the second form, call this function with `scale=True`. Args: query: Tensor, shape `[batch_size, num_units]` to compare to keys. keys: Processed memory, shape `[batch_size, max_time, num_units]`. scale: the optional tensor to scale the attention score. Returns: A `[batch_size, max_time]` tensor of unnormalized score values. Raises: ValueError: If `key` and `query` depths do not match. """ depth = query.get_shape()[-1] key_units = keys.get_shape()[-1] if depth != key_units: raise ValueError( "Incompatible or unknown inner dimensions between query and keys. " "Query (%s) has units: %s. Keys (%s) have units: %s. " "Perhaps you need to set num_units to the keys' dimension (%s)?" % (query, depth, keys, key_units, key_units)) # Reshape from [batch_size, depth] to [batch_size, 1, depth] # for matmul. query = array_ops.expand_dims(query, 1) # Inner product along the query units dimension. # matmul shapes: query is [batch_size, 1, depth] and # keys is [batch_size, max_time, depth]. # the inner product is asked to **transpose keys' inner shape** to get a # batched matmul on: # [batch_size, 1, depth] . [batch_size, depth, max_time] # resulting in an output shape of: # [batch_size, 1, max_time]. # we then squeeze out the center singleton dimension. score = math_ops.matmul(query, keys, transpose_b=True) score = array_ops.squeeze(score, [1]) if scale is not None: score = scale * score return score class LuongAttention(_BaseAttentionMechanism): """Implements Luong-style (multiplicative) attention scoring. This attention has two forms. The first is standard Luong attention, as described in: Minh-Thang Luong, Hieu Pham, Christopher D. Manning. [Effective Approaches to Attention-based Neural Machine Translation. EMNLP 2015.](https://arxiv.org/abs/1508.04025) The second is the scaled form inspired partly by the normalized form of Bahdanau attention. To enable the second form, construct the object with parameter `scale=True`. """ def __init__(self, num_units, memory, memory_sequence_length=None, scale=False, probability_fn=None, score_mask_value=None, dtype=None, custom_key_value_fn=None, name="LuongAttention"): """Construct the AttentionMechanism mechanism. Args: num_units: The depth of the attention mechanism. memory: The memory to query; usually the output of an RNN encoder. This tensor should be shaped `[batch_size, max_time, ...]`. memory_sequence_length: (optional) Sequence lengths for the batch entries in memory. If provided, the memory tensor rows are masked with zeros for values past the respective sequence lengths. scale: Python boolean. Whether to scale the energy term. probability_fn: (optional) A `callable`. Converts the score to probabilities. The default is `tf.nn.softmax`. Other options include `tf.contrib.seq2seq.hardmax` and `tf.contrib.sparsemax.sparsemax`. Its signature should be: `probabilities = probability_fn(score)`. score_mask_value: (optional) The mask value for score before passing into `probability_fn`. The default is -inf. Only used if `memory_sequence_length` is not None. dtype: The data type for the memory layer of the attention mechanism. custom_key_value_fn: (optional): The custom function for computing keys and values. name: Name to use when creating ops. """ # For LuongAttention, we only transform the memory layer; thus # num_units **must** match expected the query depth. if probability_fn is None: probability_fn = nn_ops.softmax if dtype is None: dtype = dtypes.float32 wrapped_probability_fn = lambda score, _: probability_fn(score) super(LuongAttention, self).__init__( query_layer=None, memory_layer=layers_core.Dense( num_units, name="memory_layer", use_bias=False, dtype=dtype), memory=memory, probability_fn=wrapped_probability_fn, memory_sequence_length=memory_sequence_length, score_mask_value=score_mask_value, custom_key_value_fn=custom_key_value_fn, name=name) self._num_units = num_units self._scale = scale self._name = name def __call__(self, query, state): """Score the query based on the keys and values. Args: query: Tensor of dtype matching `self.values` and shape `[batch_size, query_depth]`. state: Tensor of dtype matching `self.values` and shape `[batch_size, alignments_size]` (`alignments_size` is memory's `max_time`). Returns: alignments: Tensor of dtype matching `self.values` and shape `[batch_size, alignments_size]` (`alignments_size` is memory's `max_time`). """ with variable_scope.variable_scope(None, "luong_attention", [query]): attention_g = None if self._scale: attention_g = variable_scope.get_variable( "attention_g", dtype=query.dtype, initializer=init_ops.ones_initializer, shape=()) score = _luong_score(query, self._keys, attention_g) alignments = self._probability_fn(score, state) next_state = alignments return alignments, next_state class LuongAttentionV2(_BaseAttentionMechanismV2): """Implements Luong-style (multiplicative) attention scoring. This attention has two forms. The first is standard Luong attention, as described in: Minh-Thang Luong, Hieu Pham, Christopher D. Manning. [Effective Approaches to Attention-based Neural Machine Translation. EMNLP 2015.](https://arxiv.org/abs/1508.04025) The second is the scaled form inspired partly by the normalized form of Bahdanau attention. To enable the second form, construct the object with parameter `scale=True`. """ def __init__(self, units, memory, memory_sequence_length=None, scale=False, probability_fn="softmax", dtype=None, name="LuongAttention", **kwargs): """Construct the AttentionMechanism mechanism. Args: units: The depth of the attention mechanism. memory: The memory to query; usually the output of an RNN encoder. This tensor should be shaped `[batch_size, max_time, ...]`. memory_sequence_length: (optional): Sequence lengths for the batch entries in memory. If provided, the memory tensor rows are masked with zeros for values past the respective sequence lengths. scale: Python boolean. Whether to scale the energy term. probability_fn: (optional) string, the name of function to convert the attention score to probabilities. The default is `softmax` which is `tf.nn.softmax`. Other options is `hardmax`, which is hardmax() within this module. Any other value will result intovalidation error. Default to use `softmax`. dtype: The data type for the memory layer of the attention mechanism. name: Name to use when creating ops. **kwargs: Dictionary that contains other common arguments for layer creation. """ # For LuongAttention, we only transform the memory layer; thus # num_units **must** match expected the query depth. self.probability_fn_name = probability_fn probability_fn = self._process_probability_fn(self.probability_fn_name) wrapped_probability_fn = lambda score, _: probability_fn(score) if dtype is None: dtype = dtypes.float32 memory_layer = kwargs.pop("memory_layer", None) if not memory_layer: memory_layer = layers.Dense( units, name="memory_layer", use_bias=False, dtype=dtype) self.units = units self.scale = scale self.scale_weight = None super(LuongAttentionV2, self).__init__( memory=memory, memory_sequence_length=memory_sequence_length, query_layer=None, memory_layer=memory_layer, probability_fn=wrapped_probability_fn, name=name, dtype=dtype, **kwargs) def build(self, input_shape): super(LuongAttentionV2, self).build(input_shape) if self.scale and self.scale_weight is None: self.scale_weight = self.add_weight( "attention_g", initializer=init_ops.ones_initializer, shape=()) self.built = True def _calculate_attention(self, query, state): """Score the query based on the keys and values. Args: query: Tensor of dtype matching `self.values` and shape `[batch_size, query_depth]`. state: Tensor of dtype matching `self.values` and shape `[batch_size, alignments_size]` (`alignments_size` is memory's `max_time`). Returns: alignments: Tensor of dtype matching `self.values` and shape `[batch_size, alignments_size]` (`alignments_size` is memory's `max_time`). next_state: Same as the alignments. """ score = _luong_score(query, self.keys, self.scale_weight) alignments = self.probability_fn(score, state) next_state = alignments return alignments, next_state def get_config(self): config = { "units": self.units, "scale": self.scale, "probability_fn": self.probability_fn_name, } base_config = super(LuongAttentionV2, self).get_config() return dict(list(base_config.items()) + list(config.items())) @classmethod def from_config(cls, config, custom_objects=None): config = _BaseAttentionMechanismV2.deserialize_inner_layer_from_config( config, custom_objects=custom_objects) return cls(**config) def _bahdanau_score(processed_query, keys, attention_v, attention_g=None, attention_b=None): """Implements Bahdanau-style (additive) scoring function. This attention has two forms. The first is Bhandanau attention, as described in: Dzmitry Bahdanau, Kyunghyun Cho, Yoshua Bengio. "Neural Machine Translation by Jointly Learning to Align and Translate." ICLR 2015. https://arxiv.org/abs/1409.0473 The second is the normalized form. This form is inspired by the weight normalization article: Tim Salimans, Diederik P. Kingma. "Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks." https://arxiv.org/abs/1602.07868 To enable the second form, set please pass in attention_g and attention_b. Args: processed_query: Tensor, shape `[batch_size, num_units]` to compare to keys. keys: Processed memory, shape `[batch_size, max_time, num_units]`. attention_v: Tensor, shape `[num_units]`. attention_g: Optional scalar tensor for normalization. attention_b: Optional tensor with shape `[num_units]` for normalization. Returns: A `[batch_size, max_time]` tensor of unnormalized score values. """ # Reshape from [batch_size, ...] to [batch_size, 1, ...] for broadcasting. processed_query = array_ops.expand_dims(processed_query, 1) if attention_g is not None and attention_b is not None: normed_v = attention_g * attention_v * math_ops.rsqrt( math_ops.reduce_sum(math_ops.square(attention_v))) return math_ops.reduce_sum( normed_v * math_ops.tanh(keys + processed_query + attention_b), [2]) else: return math_ops.reduce_sum( attention_v * math_ops.tanh(keys + processed_query), [2]) class BahdanauAttention(_BaseAttentionMechanism): """Implements Bahdanau-style (additive) attention. This attention has two forms. The first is Bahdanau attention, as described in: Dzmitry Bahdanau, Kyunghyun Cho, Yoshua Bengio. "Neural Machine Translation by Jointly Learning to Align and Translate." ICLR 2015. https://arxiv.org/abs/1409.0473 The second is the normalized form. This form is inspired by the weight normalization article: Tim Salimans, Diederik P. Kingma. "Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks." https://arxiv.org/abs/1602.07868 To enable the second form, construct the object with parameter `normalize=True`. """ def __init__(self, num_units, memory, memory_sequence_length=None, normalize=False, probability_fn=None, score_mask_value=None, dtype=None, custom_key_value_fn=None, name="BahdanauAttention"): """Construct the Attention mechanism. Args: num_units: The depth of the query mechanism. memory: The memory to query; usually the output of an RNN encoder. This tensor should be shaped `[batch_size, max_time, ...]`. memory_sequence_length: (optional) Sequence lengths for the batch entries in memory. If provided, the memory tensor rows are masked with zeros for values past the respective sequence lengths. normalize: Python boolean. Whether to normalize the energy term. probability_fn: (optional) A `callable`. Converts the score to probabilities. The default is `tf.nn.softmax`. Other options include `tf.contrib.seq2seq.hardmax` and `tf.contrib.sparsemax.sparsemax`. Its signature should be: `probabilities = probability_fn(score)`. score_mask_value: (optional): The mask value for score before passing into `probability_fn`. The default is -inf. Only used if `memory_sequence_length` is not None. dtype: The data type for the query and memory layers of the attention mechanism. custom_key_value_fn: (optional): The custom function for computing keys and values. name: Name to use when creating ops. """ if probability_fn is None: probability_fn = nn_ops.softmax if dtype is None: dtype = dtypes.float32 wrapped_probability_fn = lambda score, _: probability_fn(score) super(BahdanauAttention, self).__init__( query_layer=layers_core.Dense( num_units, name="query_layer", use_bias=False, dtype=dtype), memory_layer=layers_core.Dense( num_units, name="memory_layer", use_bias=False, dtype=dtype), memory=memory, probability_fn=wrapped_probability_fn, custom_key_value_fn=custom_key_value_fn, memory_sequence_length=memory_sequence_length, score_mask_value=score_mask_value, name=name) self._num_units = num_units self._normalize = normalize self._name = name def __call__(self, query, state): """Score the query based on the keys and values. Args: query: Tensor of dtype matching `self.values` and shape `[batch_size, query_depth]`. state: Tensor of dtype matching `self.values` and shape `[batch_size, alignments_size]` (`alignments_size` is memory's `max_time`). Returns: alignments: Tensor of dtype matching `self.values` and shape `[batch_size, alignments_size]` (`alignments_size` is memory's `max_time`). """ with variable_scope.variable_scope(None, "bahdanau_attention", [query]): processed_query = self.query_layer(query) if self.query_layer else query attention_v = variable_scope.get_variable( "attention_v", [self._num_units], dtype=query.dtype) if not self._normalize: attention_g = None attention_b = None else: attention_g = variable_scope.get_variable( "attention_g", dtype=query.dtype, initializer=init_ops.constant_initializer( math.sqrt((1. / self._num_units))), shape=()) attention_b = variable_scope.get_variable( "attention_b", [self._num_units], dtype=query.dtype, initializer=init_ops.zeros_initializer()) score = _bahdanau_score( processed_query, self._keys, attention_v, attention_g=attention_g, attention_b=attention_b) alignments = self._probability_fn(score, state) next_state = alignments return alignments, next_state class BahdanauAttentionV2(_BaseAttentionMechanismV2): """Implements Bahdanau-style (additive) attention. This attention has two forms. The first is Bahdanau attention, as described in: Dzmitry Bahdanau, Kyunghyun Cho, Yoshua Bengio. "Neural Machine Translation by Jointly Learning to Align and Translate." ICLR 2015. https://arxiv.org/abs/1409.0473 The second is the normalized form. This form is inspired by the weight normalization article: Tim Salimans, Diederik P. Kingma. "Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks." https://arxiv.org/abs/1602.07868 To enable the second form, construct the object with parameter `normalize=True`. """ def __init__(self, units, memory, memory_sequence_length=None, normalize=False, probability_fn="softmax", kernel_initializer="glorot_uniform", dtype=None, name="BahdanauAttention", **kwargs): """Construct the Attention mechanism. Args: units: The depth of the query mechanism. memory: The memory to query; usually the output of an RNN encoder. This tensor should be shaped `[batch_size, max_time, ...]`. memory_sequence_length: (optional): Sequence lengths for the batch entries in memory. If provided, the memory tensor rows are masked with zeros for values past the respective sequence lengths. normalize: Python boolean. Whether to normalize the energy term. probability_fn: (optional) string, the name of function to convert the attention score to probabilities. The default is `softmax` which is `tf.nn.softmax`. Other options is `hardmax`, which is hardmax() within this module. Any other value will result into validation error. Default to use `softmax`. kernel_initializer: (optional), the name of the initializer for the attention kernel. dtype: The data type for the query and memory layers of the attention mechanism. name: Name to use when creating ops. **kwargs: Dictionary that contains other common arguments for layer creation. """ self.probability_fn_name = probability_fn probability_fn = self._process_probability_fn(self.probability_fn_name) wrapped_probability_fn = lambda score, _: probability_fn(score) if dtype is None: dtype = dtypes.float32 query_layer = kwargs.pop("query_layer", None) if not query_layer: query_layer = layers.Dense( units, name="query_layer", use_bias=False, dtype=dtype) memory_layer = kwargs.pop("memory_layer", None) if not memory_layer: memory_layer = layers.Dense( units, name="memory_layer", use_bias=False, dtype=dtype) self.units = units self.normalize = normalize self.kernel_initializer = initializers.get(kernel_initializer) self.attention_v = None self.attention_g = None self.attention_b = None super(BahdanauAttentionV2, self).__init__( memory=memory, memory_sequence_length=memory_sequence_length, query_layer=query_layer, memory_layer=memory_layer, probability_fn=wrapped_probability_fn, name=name, dtype=dtype, **kwargs) def build(self, input_shape): super(BahdanauAttentionV2, self).build(input_shape) if self.attention_v is None: self.attention_v = self.add_weight( "attention_v", [self.units], dtype=self.dtype, initializer=self.kernel_initializer) if self.normalize and self.attention_g is None and self.attention_b is None: self.attention_g = self.add_weight( "attention_g", initializer=init_ops.constant_initializer( math.sqrt((1. / self.units))), shape=()) self.attention_b = self.add_weight( "attention_b", shape=[self.units], initializer=init_ops.zeros_initializer()) self.built = True def _calculate_attention(self, query, state): """Score the query based on the keys and values. Args: query: Tensor of dtype matching `self.values` and shape `[batch_size, query_depth]`. state: Tensor of dtype matching `self.values` and shape `[batch_size, alignments_size]` (`alignments_size` is memory's `max_time`). Returns: alignments: Tensor of dtype matching `self.values` and shape `[batch_size, alignments_size]` (`alignments_size` is memory's `max_time`). next_state: same as alignments. """ processed_query = self.query_layer(query) if self.query_layer else query score = _bahdanau_score( processed_query, self.keys, self.attention_v, attention_g=self.attention_g, attention_b=self.attention_b) alignments = self.probability_fn(score, state) next_state = alignments return alignments, next_state def get_config(self): config = { "units": self.units, "normalize": self.normalize, "probability_fn": self.probability_fn_name, "kernel_initializer": initializers.serialize(self.kernel_initializer) } base_config = super(BahdanauAttentionV2, self).get_config() return dict(list(base_config.items()) + list(config.items())) @classmethod def from_config(cls, config, custom_objects=None): config = _BaseAttentionMechanismV2.deserialize_inner_layer_from_config( config, custom_objects=custom_objects) return cls(**config) def safe_cumprod(x, *args, **kwargs): """Computes cumprod of x in logspace using cumsum to avoid underflow. The cumprod function and its gradient can result in numerical instabilities when its argument has very small and/or zero values. As long as the argument is all positive, we can instead compute the cumulative product as exp(cumsum(log(x))). This function can be called identically to tf.cumprod. Args: x: Tensor to take the cumulative product of. *args: Passed on to cumsum; these are identical to those in cumprod. **kwargs: Passed on to cumsum; these are identical to those in cumprod. Returns: Cumulative product of x. """ with ops.name_scope(None, "SafeCumprod", [x]): x = ops.convert_to_tensor(x, name="x") tiny = np.finfo(x.dtype.as_numpy_dtype).tiny return math_ops.exp( math_ops.cumsum( math_ops.log(clip_ops.clip_by_value(x, tiny, 1)), *args, **kwargs)) def monotonic_attention(p_choose_i, previous_attention, mode): """Compute monotonic attention distribution from choosing probabilities. Monotonic attention implies that the input sequence is processed in an explicitly left-to-right manner when generating the output sequence. In addition, once an input sequence element is attended to at a given output timestep, elements occurring before it cannot be attended to at subsequent output timesteps. This function generates attention distributions according to these assumptions. For more information, see `Online and Linear-Time Attention by Enforcing Monotonic Alignments`. Args: p_choose_i: Probability of choosing input sequence/memory element i. Should be of shape (batch_size, input_sequence_length), and should all be in the range [0, 1]. previous_attention: The attention distribution from the previous output timestep. Should be of shape (batch_size, input_sequence_length). For the first output timestep, preevious_attention[n] should be [1, 0, 0, ..., 0] for all n in [0, ... batch_size - 1]. mode: How to compute the attention distribution. Must be one of 'recursive', 'parallel', or 'hard'. * 'recursive' uses tf.scan to recursively compute the distribution. This is slowest but is exact, general, and does not suffer from numerical instabilities. * 'parallel' uses parallelized cumulative-sum and cumulative-product operations to compute a closed-form solution to the recurrence relation defining the attention distribution. This makes it more efficient than 'recursive', but it requires numerical checks which make the distribution non-exact. This can be a problem in particular when input_sequence_length is long and/or p_choose_i has entries very close to 0 or 1. * 'hard' requires that the probabilities in p_choose_i are all either 0 or 1, and subsequently uses a more efficient and exact solution. Returns: A tensor of shape (batch_size, input_sequence_length) representing the attention distributions for each sequence in the batch. Raises: ValueError: mode is not one of 'recursive', 'parallel', 'hard'. """ # Force things to be tensors p_choose_i = ops.convert_to_tensor(p_choose_i, name="p_choose_i") previous_attention = ops.convert_to_tensor( previous_attention, name="previous_attention") if mode == "recursive": # Use .shape[0] when it's not None, or fall back on symbolic shape batch_size = tensor_shape.dimension_value( p_choose_i.shape[0]) or array_ops.shape(p_choose_i)[0] # Compute [1, 1 - p_choose_i[0], 1 - p_choose_i[1], ..., 1 - p_choose_i[-2]] shifted_1mp_choose_i = array_ops.concat( [array_ops.ones((batch_size, 1)), 1 - p_choose_i[:, :-1]], 1) # Compute attention distribution recursively as # q[i] = (1 - p_choose_i[i - 1])*q[i - 1] + previous_attention[i] # attention[i] = p_choose_i[i]*q[i] attention = p_choose_i * array_ops.transpose( functional_ops.scan( # Need to use reshape to remind TF of the shape between loop iterations lambda x, yz: array_ops.reshape(yz[0] * x + yz[1], (batch_size,)), # Loop variables yz[0] and yz[1] [ array_ops.transpose(shifted_1mp_choose_i), array_ops.transpose(previous_attention) ], # Initial value of x is just zeros array_ops.zeros((batch_size,)))) elif mode == "parallel": # safe_cumprod computes cumprod in logspace with numeric checks cumprod_1mp_choose_i = safe_cumprod(1 - p_choose_i, axis=1, exclusive=True) # Compute recurrence relation solution attention = p_choose_i * cumprod_1mp_choose_i * math_ops.cumsum( previous_attention / # Clip cumprod_1mp to avoid divide-by-zero clip_ops.clip_by_value(cumprod_1mp_choose_i, 1e-10, 1.), axis=1) elif mode == "hard": # Remove any probabilities before the index chosen last time step p_choose_i *= math_ops.cumsum(previous_attention, axis=1) # Now, use exclusive cumprod to remove probabilities after the first # chosen index, like so: # p_choose_i = [0, 0, 0, 1, 1, 0, 1, 1] # cumprod(1 - p_choose_i, exclusive=True) = [1, 1, 1, 1, 0, 0, 0, 0] # Product of above: [0, 0, 0, 1, 0, 0, 0, 0] attention = p_choose_i * math_ops.cumprod( 1 - p_choose_i, axis=1, exclusive=True) else: raise ValueError("mode must be 'recursive', 'parallel', or 'hard'.") return attention def _monotonic_probability_fn(score, previous_alignments, sigmoid_noise, mode, seed=None): """Attention probability function for monotonic attention. Takes in unnormalized attention scores, adds pre-sigmoid noise to encourage the model to make discrete attention decisions, passes them through a sigmoid to obtain "choosing" probabilities, and then calls monotonic_attention to obtain the attention distribution. For more information, see Colin Raffel, Minh-Thang Luong, Peter J. Liu, Ron J. Weiss, Douglas Eck, "Online and Linear-Time Attention by Enforcing Monotonic Alignments." ICML 2017. https://arxiv.org/abs/1704.00784 Args: score: Unnormalized attention scores, shape `[batch_size, alignments_size]` previous_alignments: Previous attention distribution, shape `[batch_size, alignments_size]` sigmoid_noise: Standard deviation of pre-sigmoid noise. Setting this larger than 0 will encourage the model to produce large attention scores, effectively making the choosing probabilities discrete and the resulting attention distribution one-hot. It should be set to 0 at test-time, and when hard attention is not desired. mode: How to compute the attention distribution. Must be one of 'recursive', 'parallel', or 'hard'. See the docstring for `tf.contrib.seq2seq.monotonic_attention` for more information. seed: (optional) Random seed for pre-sigmoid noise. Returns: A `[batch_size, alignments_size]`-shape tensor corresponding to the resulting attention distribution. """ # Optionally add pre-sigmoid noise to the scores if sigmoid_noise > 0: noise = random_ops.random_normal( array_ops.shape(score), dtype=score.dtype, seed=seed) score += sigmoid_noise * noise # Compute "choosing" probabilities from the attention scores if mode == "hard": # When mode is hard, use a hard sigmoid p_choose_i = math_ops.cast(score > 0, score.dtype) else: p_choose_i = math_ops.sigmoid(score) # Convert from choosing probabilities to attention distribution return monotonic_attention(p_choose_i, previous_alignments, mode) class _BaseMonotonicAttentionMechanism(_BaseAttentionMechanism): """Base attention mechanism for monotonic attention. Simply overrides the initial_alignments function to provide a dirac distribution, which is needed in order for the monotonic attention distributions to have the correct behavior. """ def initial_alignments(self, batch_size, dtype): """Creates the initial alignment values for the monotonic attentions. Initializes to dirac distributions, i.e. [1, 0, 0, ...memory length..., 0] for all entries in the batch. Args: batch_size: `int32` scalar, the batch_size. dtype: The `dtype`. Returns: A `dtype` tensor shaped `[batch_size, alignments_size]` (`alignments_size` is the values' `max_time`). """ max_time = self._alignments_size return array_ops.one_hot( array_ops.zeros((batch_size,), dtype=dtypes.int32), max_time, dtype=dtype) class _BaseMonotonicAttentionMechanismV2(_BaseAttentionMechanismV2): """Base attention mechanism for monotonic attention. Simply overrides the initial_alignments function to provide a dirac distribution, which is needed in order for the monotonic attention distributions to have the correct behavior. """ def initial_alignments(self, batch_size, dtype): """Creates the initial alignment values for the monotonic attentions. Initializes to dirac distributions, i.e. [1, 0, 0, ...memory length..., 0] for all entries in the batch. Args: batch_size: `int32` scalar, the batch_size. dtype: The `dtype`. Returns: A `dtype` tensor shaped `[batch_size, alignments_size]` (`alignments_size` is the values' `max_time`). """ max_time = self._alignments_size return array_ops.one_hot( array_ops.zeros((batch_size,), dtype=dtypes.int32), max_time, dtype=dtype) class BahdanauMonotonicAttention(_BaseMonotonicAttentionMechanism): """Monotonic attention mechanism with Bahadanau-style energy function. This type of attention enforces a monotonic constraint on the attention distributions; that is once the model attends to a given point in the memory it can't attend to any prior points at subsequence output timesteps. It achieves this by using the _monotonic_probability_fn instead of softmax to construct its attention distributions. Since the attention scores are passed through a sigmoid, a learnable scalar bias parameter is applied after the score function and before the sigmoid. Otherwise, it is equivalent to BahdanauAttention. This approach is proposed in Colin Raffel, Minh-Thang Luong, Peter J. Liu, Ron J. Weiss, Douglas Eck, "Online and Linear-Time Attention by Enforcing Monotonic Alignments." ICML 2017. https://arxiv.org/abs/1704.00784 """ def __init__(self, num_units, memory, memory_sequence_length=None, normalize=False, score_mask_value=None, sigmoid_noise=0., sigmoid_noise_seed=None, score_bias_init=0., mode="parallel", dtype=None, name="BahdanauMonotonicAttention"): """Construct the Attention mechanism. Args: num_units: The depth of the query mechanism. memory: The memory to query; usually the output of an RNN encoder. This tensor should be shaped `[batch_size, max_time, ...]`. memory_sequence_length (optional): Sequence lengths for the batch entries in memory. If provided, the memory tensor rows are masked with zeros for values past the respective sequence lengths. normalize: Python boolean. Whether to normalize the energy term. score_mask_value: (optional): The mask value for score before passing into `probability_fn`. The default is -inf. Only used if `memory_sequence_length` is not None. sigmoid_noise: Standard deviation of pre-sigmoid noise. See the docstring for `_monotonic_probability_fn` for more information. sigmoid_noise_seed: (optional) Random seed for pre-sigmoid noise. score_bias_init: Initial value for score bias scalar. It's recommended to initialize this to a negative value when the length of the memory is large. mode: How to compute the attention distribution. Must be one of 'recursive', 'parallel', or 'hard'. See the docstring for `tf.contrib.seq2seq.monotonic_attention` for more information. dtype: The data type for the query and memory layers of the attention mechanism. name: Name to use when creating ops. """ # Set up the monotonic probability fn with supplied parameters if dtype is None: dtype = dtypes.float32 wrapped_probability_fn = functools.partial( _monotonic_probability_fn, sigmoid_noise=sigmoid_noise, mode=mode, seed=sigmoid_noise_seed) super(BahdanauMonotonicAttention, self).__init__( query_layer=layers_core.Dense( num_units, name="query_layer", use_bias=False, dtype=dtype), memory_layer=layers_core.Dense( num_units, name="memory_layer", use_bias=False, dtype=dtype), memory=memory, probability_fn=wrapped_probability_fn, memory_sequence_length=memory_sequence_length, score_mask_value=score_mask_value, name=name) self._num_units = num_units self._normalize = normalize self._name = name self._score_bias_init = score_bias_init def __call__(self, query, state): """Score the query based on the keys and values. Args: query: Tensor of dtype matching `self.values` and shape `[batch_size, query_depth]`. state: Tensor of dtype matching `self.values` and shape `[batch_size, alignments_size]` (`alignments_size` is memory's `max_time`). Returns: alignments: Tensor of dtype matching `self.values` and shape `[batch_size, alignments_size]` (`alignments_size` is memory's `max_time`). """ with variable_scope.variable_scope(None, "bahdanau_monotonic_attention", [query]): processed_query = self.query_layer(query) if self.query_layer else query attention_v = variable_scope.get_variable( "attention_v", [self._num_units], dtype=query.dtype) if not self._normalize: attention_g = None attention_b = None else: attention_g = variable_scope.get_variable( "attention_g", dtype=query.dtype, initializer=init_ops.constant_initializer( math.sqrt((1. / self._num_units))), shape=()) attention_b = variable_scope.get_variable( "attention_b", [self._num_units], dtype=query.dtype, initializer=init_ops.zeros_initializer()) score = _bahdanau_score( processed_query, self._keys, attention_v, attention_g=attention_g, attention_b=attention_b) score_bias = variable_scope.get_variable( "attention_score_bias", dtype=processed_query.dtype, initializer=self._score_bias_init) score += score_bias alignments = self._probability_fn(score, state) next_state = alignments return alignments, next_state class BahdanauMonotonicAttentionV2(_BaseMonotonicAttentionMechanismV2): """Monotonic attention mechanism with Bahadanau-style energy function. This type of attention enforces a monotonic constraint on the attention distributions; that is once the model attends to a given point in the memory it can't attend to any prior points at subsequence output timesteps. It achieves this by using the _monotonic_probability_fn instead of softmax to construct its attention distributions. Since the attention scores are passed through a sigmoid, a learnable scalar bias parameter is applied after the score function and before the sigmoid. Otherwise, it is equivalent to BahdanauAttention. This approach is proposed in Colin Raffel, Minh-Thang Luong, Peter J. Liu, Ron J. Weiss, Douglas Eck, "Online and Linear-Time Attention by Enforcing Monotonic Alignments." ICML 2017. https://arxiv.org/abs/1704.00784 """ def __init__(self, units, memory, memory_sequence_length=None, normalize=False, sigmoid_noise=0., sigmoid_noise_seed=None, score_bias_init=0., mode="parallel", kernel_initializer="glorot_uniform", dtype=None, name="BahdanauMonotonicAttention", **kwargs): """Construct the Attention mechanism. Args: units: The depth of the query mechanism. memory: The memory to query; usually the output of an RNN encoder. This tensor should be shaped `[batch_size, max_time, ...]`. memory_sequence_length: (optional): Sequence lengths for the batch entries in memory. If provided, the memory tensor rows are masked with zeros for values past the respective sequence lengths. normalize: Python boolean. Whether to normalize the energy term. sigmoid_noise: Standard deviation of pre-sigmoid noise. See the docstring for `_monotonic_probability_fn` for more information. sigmoid_noise_seed: (optional) Random seed for pre-sigmoid noise. score_bias_init: Initial value for score bias scalar. It's recommended to initialize this to a negative value when the length of the memory is large. mode: How to compute the attention distribution. Must be one of 'recursive', 'parallel', or 'hard'. See the docstring for `tf.contrib.seq2seq.monotonic_attention` for more information. kernel_initializer: (optional), the name of the initializer for the attention kernel. dtype: The data type for the query and memory layers of the attention mechanism. name: Name to use when creating ops. **kwargs: Dictionary that contains other common arguments for layer creation. """ # Set up the monotonic probability fn with supplied parameters if dtype is None: dtype = dtypes.float32 wrapped_probability_fn = functools.partial( _monotonic_probability_fn, sigmoid_noise=sigmoid_noise, mode=mode, seed=sigmoid_noise_seed) query_layer = kwargs.pop("query_layer", None) if not query_layer: query_layer = layers.Dense( units, name="query_layer", use_bias=False, dtype=dtype) memory_layer = kwargs.pop("memory_layer", None) if not memory_layer: memory_layer = layers.Dense( units, name="memory_layer", use_bias=False, dtype=dtype) self.units = units self.normalize = normalize self.sigmoid_noise = sigmoid_noise self.sigmoid_noise_seed = sigmoid_noise_seed self.score_bias_init = score_bias_init self.mode = mode self.kernel_initializer = initializers.get(kernel_initializer) self.attention_v = None self.attention_score_bias = None self.attention_g = None self.attention_b = None super(BahdanauMonotonicAttentionV2, self).__init__( memory=memory, memory_sequence_length=memory_sequence_length, query_layer=query_layer, memory_layer=memory_layer, probability_fn=wrapped_probability_fn, name=name, dtype=dtype, **kwargs) def build(self, input_shape): super(BahdanauMonotonicAttentionV2, self).build(input_shape) if self.attention_v is None: self.attention_v = self.add_weight( "attention_v", [self.units], dtype=self.dtype, initializer=self.kernel_initializer) if self.attention_score_bias is None: self.attention_score_bias = self.add_weight( "attention_score_bias", shape=(), dtype=self.dtype, initializer=init_ops.constant_initializer( self.score_bias_init, dtype=self.dtype)) if self.normalize and self.attention_g is None and self.attention_b is None: self.attention_g = self.add_weight( "attention_g", dtype=self.dtype, initializer=init_ops.constant_initializer( math.sqrt((1. / self.units))), shape=()) self.attention_b = self.add_weight( "attention_b", [self.units], dtype=self.dtype, initializer=init_ops.zeros_initializer()) self.built = True def _calculate_attention(self, query, state): """Score the query based on the keys and values. Args: query: Tensor of dtype matching `self.values` and shape `[batch_size, query_depth]`. state: Tensor of dtype matching `self.values` and shape `[batch_size, alignments_size]` (`alignments_size` is memory's `max_time`). Returns: alignments: Tensor of dtype matching `self.values` and shape `[batch_size, alignments_size]` (`alignments_size` is memory's `max_time`). """ processed_query = self.query_layer(query) if self.query_layer else query score = _bahdanau_score( processed_query, self.keys, self.attention_v, attention_g=self.attention_g, attention_b=self.attention_b) score += self.attention_score_bias alignments = self.probability_fn(score, state) next_state = alignments return alignments, next_state def get_config(self): config = { "units": self.units, "normalize": self.normalize, "sigmoid_noise": self.sigmoid_noise, "sigmoid_noise_seed": self.sigmoid_noise_seed, "score_bias_init": self.score_bias_init, "mode": self.mode, "kernel_initializer": initializers.serialize(self.kernel_initializer), } base_config = super(BahdanauMonotonicAttentionV2, self).get_config() return dict(list(base_config.items()) + list(config.items())) @classmethod def from_config(cls, config, custom_objects=None): config = _BaseAttentionMechanismV2.deserialize_inner_layer_from_config( config, custom_objects=custom_objects) return cls(**config) class LuongMonotonicAttention(_BaseMonotonicAttentionMechanism): """Monotonic attention mechanism with Luong-style energy function. This type of attention enforces a monotonic constraint on the attention distributions; that is once the model attends to a given point in the memory it can't attend to any prior points at subsequence output timesteps. It achieves this by using the _monotonic_probability_fn instead of softmax to construct its attention distributions. Otherwise, it is equivalent to LuongAttention. This approach is proposed in Colin Raffel, Minh-Thang Luong, Peter J. Liu, Ron J. Weiss, Douglas Eck, "Online and Linear-Time Attention by Enforcing Monotonic Alignments." ICML 2017. https://arxiv.org/abs/1704.00784 """ def __init__(self, num_units, memory, memory_sequence_length=None, scale=False, score_mask_value=None, sigmoid_noise=0., sigmoid_noise_seed=None, score_bias_init=0., mode="parallel", dtype=None, name="LuongMonotonicAttention"): """Construct the Attention mechanism. Args: num_units: The depth of the query mechanism. memory: The memory to query; usually the output of an RNN encoder. This tensor should be shaped `[batch_size, max_time, ...]`. memory_sequence_length (optional): Sequence lengths for the batch entries in memory. If provided, the memory tensor rows are masked with zeros for values past the respective sequence lengths. scale: Python boolean. Whether to scale the energy term. score_mask_value: (optional): The mask value for score before passing into `probability_fn`. The default is -inf. Only used if `memory_sequence_length` is not None. sigmoid_noise: Standard deviation of pre-sigmoid noise. See the docstring for `_monotonic_probability_fn` for more information. sigmoid_noise_seed: (optional) Random seed for pre-sigmoid noise. score_bias_init: Initial value for score bias scalar. It's recommended to initialize this to a negative value when the length of the memory is large. mode: How to compute the attention distribution. Must be one of 'recursive', 'parallel', or 'hard'. See the docstring for `tf.contrib.seq2seq.monotonic_attention` for more information. dtype: The data type for the query and memory layers of the attention mechanism. name: Name to use when creating ops. """ # Set up the monotonic probability fn with supplied parameters if dtype is None: dtype = dtypes.float32 wrapped_probability_fn = functools.partial( _monotonic_probability_fn, sigmoid_noise=sigmoid_noise, mode=mode, seed=sigmoid_noise_seed) super(LuongMonotonicAttention, self).__init__( query_layer=None, memory_layer=layers_core.Dense( num_units, name="memory_layer", use_bias=False, dtype=dtype), memory=memory, probability_fn=wrapped_probability_fn, memory_sequence_length=memory_sequence_length, score_mask_value=score_mask_value, name=name) self._num_units = num_units self._scale = scale self._score_bias_init = score_bias_init self._name = name def __call__(self, query, state): """Score the query based on the keys and values. Args: query: Tensor of dtype matching `self.values` and shape `[batch_size, query_depth]`. state: Tensor of dtype matching `self.values` and shape `[batch_size, alignments_size]` (`alignments_size` is memory's `max_time`). Returns: alignments: Tensor of dtype matching `self.values` and shape `[batch_size, alignments_size]` (`alignments_size` is memory's `max_time`). """ with variable_scope.variable_scope(None, "luong_monotonic_attention", [query]): attention_g = None if self._scale: attention_g = variable_scope.get_variable( "attention_g", dtype=query.dtype, initializer=init_ops.ones_initializer, shape=()) score = _luong_score(query, self._keys, attention_g) score_bias = variable_scope.get_variable( "attention_score_bias", dtype=query.dtype, initializer=self._score_bias_init) score += score_bias alignments = self._probability_fn(score, state) next_state = alignments return alignments, next_state class LuongMonotonicAttentionV2(_BaseMonotonicAttentionMechanismV2): """Monotonic attention mechanism with Luong-style energy function. This type of attention enforces a monotonic constraint on the attention distributions; that is once the model attends to a given point in the memory it can't attend to any prior points at subsequence output timesteps. It achieves this by using the _monotonic_probability_fn instead of softmax to construct its attention distributions. Otherwise, it is equivalent to LuongAttention. This approach is proposed in [Colin Raffel, Minh-Thang Luong, Peter J. Liu, Ron J. Weiss, Douglas Eck, "Online and Linear-Time Attention by Enforcing Monotonic Alignments." ICML 2017.](https://arxiv.org/abs/1704.00784) """ def __init__(self, units, memory, memory_sequence_length=None, scale=False, sigmoid_noise=0., sigmoid_noise_seed=None, score_bias_init=0., mode="parallel", dtype=None, name="LuongMonotonicAttention", **kwargs): """Construct the Attention mechanism. Args: units: The depth of the query mechanism. memory: The memory to query; usually the output of an RNN encoder. This tensor should be shaped `[batch_size, max_time, ...]`. memory_sequence_length: (optional): Sequence lengths for the batch entries in memory. If provided, the memory tensor rows are masked with zeros for values past the respective sequence lengths. scale: Python boolean. Whether to scale the energy term. sigmoid_noise: Standard deviation of pre-sigmoid noise. See the docstring for `_monotonic_probability_fn` for more information. sigmoid_noise_seed: (optional) Random seed for pre-sigmoid noise. score_bias_init: Initial value for score bias scalar. It's recommended to initialize this to a negative value when the length of the memory is large. mode: How to compute the attention distribution. Must be one of 'recursive', 'parallel', or 'hard'. See the docstring for `tf.contrib.seq2seq.monotonic_attention` for more information. dtype: The data type for the query and memory layers of the attention mechanism. name: Name to use when creating ops. **kwargs: Dictionary that contains other common arguments for layer creation. """ # Set up the monotonic probability fn with supplied parameters if dtype is None: dtype = dtypes.float32 wrapped_probability_fn = functools.partial( _monotonic_probability_fn, sigmoid_noise=sigmoid_noise, mode=mode, seed=sigmoid_noise_seed) memory_layer = kwargs.pop("memory_layer", None) if not memory_layer: memory_layer = layers.Dense( units, name="memory_layer", use_bias=False, dtype=dtype) self.units = units self.scale = scale self.sigmoid_noise = sigmoid_noise self.sigmoid_noise_seed = sigmoid_noise_seed self.score_bias_init = score_bias_init self.mode = mode self.attention_g = None self.attention_score_bias = None super(LuongMonotonicAttentionV2, self).__init__( memory=memory, memory_sequence_length=memory_sequence_length, query_layer=None, memory_layer=memory_layer, probability_fn=wrapped_probability_fn, name=name, dtype=dtype, **kwargs) def build(self, input_shape): super(LuongMonotonicAttentionV2, self).build(input_shape) if self.scale and self.attention_g is None: self.attention_g = self.add_weight( "attention_g", initializer=init_ops.ones_initializer, shape=()) if self.attention_score_bias is None: self.attention_score_bias = self.add_weight( "attention_score_bias", shape=(), initializer=init_ops.constant_initializer( self.score_bias_init, dtype=self.dtype)) self.built = True def _calculate_attention(self, query, state): """Score the query based on the keys and values. Args: query: Tensor of dtype matching `self.values` and shape `[batch_size, query_depth]`. state: Tensor of dtype matching `self.values` and shape `[batch_size, alignments_size]` (`alignments_size` is memory's `max_time`). Returns: alignments: Tensor of dtype matching `self.values` and shape `[batch_size, alignments_size]` (`alignments_size` is memory's `max_time`). next_state: Same as alignments """ score = _luong_score(query, self.keys, self.attention_g) score += self.attention_score_bias alignments = self.probability_fn(score, state) next_state = alignments return alignments, next_state def get_config(self): config = { "units": self.units, "scale": self.scale, "sigmoid_noise": self.sigmoid_noise, "sigmoid_noise_seed": self.sigmoid_noise_seed, "score_bias_init": self.score_bias_init, "mode": self.mode, } base_config = super(LuongMonotonicAttentionV2, self).get_config() return dict(list(base_config.items()) + list(config.items())) @classmethod def from_config(cls, config, custom_objects=None): config = _BaseAttentionMechanismV2.deserialize_inner_layer_from_config( config, custom_objects=custom_objects) return cls(**config) class AttentionWrapperState( collections.namedtuple("AttentionWrapperState", ("cell_state", "attention", "time", "alignments", "alignment_history", "attention_state"))): """`namedtuple` storing the state of a `AttentionWrapper`. Contains: - `cell_state`: The state of the wrapped `RNNCell` at the previous time step. - `attention`: The attention emitted at the previous time step. - `time`: int32 scalar containing the current time step. - `alignments`: A single or tuple of `Tensor`(s) containing the alignments emitted at the previous time step for each attention mechanism. - `alignment_history`: (if enabled) a single or tuple of `TensorArray`(s) containing alignment matrices from all time steps for each attention mechanism. Call `stack()` on each to convert to a `Tensor`. - `attention_state`: A single or tuple of nested objects containing attention mechanism state for each attention mechanism. The objects may contain Tensors or TensorArrays. """ def clone(self, **kwargs): """Clone this object, overriding components provided by kwargs. The new state fields' shape must match original state fields' shape. This will be validated, and original fields' shape will be propagated to new fields. Example: ```python initial_state = attention_wrapper.zero_state(dtype=..., batch_size=...) initial_state = initial_state.clone(cell_state=encoder_state) ``` Args: **kwargs: Any properties of the state object to replace in the returned `AttentionWrapperState`. Returns: A new `AttentionWrapperState` whose properties are the same as this one, except any overridden properties as provided in `kwargs`. """ def with_same_shape(old, new): """Check and set new tensor's shape.""" if isinstance(old, ops.Tensor) and isinstance(new, ops.Tensor): if not context.executing_eagerly(): return tensor_util.with_same_shape(old, new) else: if old.shape.as_list() != new.shape.as_list(): raise ValueError("The shape of the AttentionWrapperState is " "expected to be same as the one to clone. " "self.shape: %s, input.shape: %s" % (old.shape, new.shape)) return new return new return nest.map_structure( with_same_shape, self, super(AttentionWrapperState, self)._replace(**kwargs)) def _prepare_memory(memory, memory_sequence_length=None, memory_mask=None, check_inner_dims_defined=True): """Convert to tensor and possibly mask `memory`. Args: memory: `Tensor`, shaped `[batch_size, max_time, ...]`. memory_sequence_length: `int32` `Tensor`, shaped `[batch_size]`. memory_mask: `boolean` tensor with shape [batch_size, max_time]. The memory should be skipped when the corresponding mask is False. check_inner_dims_defined: Python boolean. If `True`, the `memory` argument's shape is checked to ensure all but the two outermost dimensions are fully defined. Returns: A (possibly masked), checked, new `memory`. Raises: ValueError: If `check_inner_dims_defined` is `True` and not `memory.shape[2:].is_fully_defined()`. """ memory = nest.map_structure(lambda m: ops.convert_to_tensor(m, name="memory"), memory) if memory_sequence_length is not None and memory_mask is not None: raise ValueError("memory_sequence_length and memory_mask can't be provided " "at same time.") if memory_sequence_length is not None: memory_sequence_length = ops.convert_to_tensor( memory_sequence_length, name="memory_sequence_length") if check_inner_dims_defined: def _check_dims(m): if not m.get_shape()[2:].is_fully_defined(): raise ValueError("Expected memory %s to have fully defined inner dims, " "but saw shape: %s" % (m.name, m.get_shape())) nest.map_structure(_check_dims, memory) if memory_sequence_length is None and memory_mask is None: return memory elif memory_sequence_length is not None: seq_len_mask = array_ops.sequence_mask( memory_sequence_length, maxlen=array_ops.shape(nest.flatten(memory)[0])[1], dtype=nest.flatten(memory)[0].dtype) else: # For memory_mask is not None seq_len_mask = math_ops.cast( memory_mask, dtype=nest.flatten(memory)[0].dtype) def _maybe_mask(m, seq_len_mask): """Mask the memory based on the memory mask.""" rank = m.get_shape().ndims rank = rank if rank is not None else array_ops.rank(m) extra_ones = array_ops.ones(rank - 2, dtype=dtypes.int32) seq_len_mask = array_ops.reshape( seq_len_mask, array_ops.concat((array_ops.shape(seq_len_mask), extra_ones), 0)) return m * seq_len_mask return nest.map_structure(lambda m: _maybe_mask(m, seq_len_mask), memory) def _maybe_mask_score(score, memory_sequence_length=None, memory_mask=None, score_mask_value=None): """Mask the attention score based on the masks.""" if memory_sequence_length is None and memory_mask is None: return score if memory_sequence_length is not None and memory_mask is not None: raise ValueError("memory_sequence_length and memory_mask can't be provided " "at same time.") if memory_sequence_length is not None: message = "All values in memory_sequence_length must be greater than zero." with ops.control_dependencies( [check_ops.assert_positive(memory_sequence_length, message=message)]): memory_mask = array_ops.sequence_mask( memory_sequence_length, maxlen=array_ops.shape(score)[1]) score_mask_values = score_mask_value * array_ops.ones_like(score) return array_ops.where(memory_mask, score, score_mask_values) def hardmax(logits, name=None): """Returns batched one-hot vectors. The depth index containing the `1` is that of the maximum logit value. Args: logits: A batch tensor of logit values. name: Name to use when creating ops. Returns: A batched one-hot tensor. """ with ops.name_scope(name, "Hardmax", [logits]): logits = ops.convert_to_tensor(logits, name="logits") if tensor_shape.dimension_value(logits.get_shape()[-1]) is not None: depth = tensor_shape.dimension_value(logits.get_shape()[-1]) else: depth = array_ops.shape(logits)[-1] return array_ops.one_hot( math_ops.argmax(logits, -1), depth, dtype=logits.dtype) def _compute_attention(attention_mechanism, cell_output, attention_state, attention_layer): """Computes the attention and alignments for a given attention_mechanism.""" if isinstance(attention_mechanism, _BaseAttentionMechanismV2): alignments, next_attention_state = attention_mechanism( [cell_output, attention_state]) else: # For other class, assume they are following _BaseAttentionMechanism, which # takes query and state as separate parameter. alignments, next_attention_state = attention_mechanism( cell_output, state=attention_state) # Reshape from [batch_size, memory_time] to [batch_size, 1, memory_time] expanded_alignments = array_ops.expand_dims(alignments, 1) # Context is the inner product of alignments and values along the # memory time dimension. # alignments shape is # [batch_size, 1, memory_time] # attention_mechanism.values shape is # [batch_size, memory_time, memory_size] # the batched matmul is over memory_time, so the output shape is # [batch_size, 1, memory_size]. # we then squeeze out the singleton dim. context_ = math_ops.matmul(expanded_alignments, attention_mechanism.values) context_ = array_ops.squeeze(context_, [1]) if attention_layer is not None: attention = attention_layer(array_ops.concat([cell_output, context_], 1)) else: attention = context_ return attention, alignments, next_attention_state class AttentionWrapper(rnn_cell_impl.RNNCell): """Wraps another `RNNCell` with attention.""" def __init__(self, cell, attention_mechanism, attention_layer_size=None, alignment_history=False, cell_input_fn=None, output_attention=True, initial_cell_state=None, name=None, attention_layer=None, attention_fn=None): """Construct the `AttentionWrapper`. **NOTE** If you are using the `BeamSearchDecoder` with a cell wrapped in `AttentionWrapper`, then you must ensure that: - The encoder output has been tiled to `beam_width` via `tf.contrib.seq2seq.tile_batch` (NOT `tf.tile`). - The `batch_size` argument passed to the `zero_state` method of this wrapper is equal to `true_batch_size * beam_width`. - The initial state created with `zero_state` above contains a `cell_state` value containing properly tiled final state from the encoder. An example: ``` tiled_encoder_outputs = tf.contrib.seq2seq.tile_batch( encoder_outputs, multiplier=beam_width) tiled_encoder_final_state = tf.conrib.seq2seq.tile_batch( encoder_final_state, multiplier=beam_width) tiled_sequence_length = tf.contrib.seq2seq.tile_batch( sequence_length, multiplier=beam_width) attention_mechanism = MyFavoriteAttentionMechanism( num_units=attention_depth, memory=tiled_inputs, memory_sequence_length=tiled_sequence_length) attention_cell = AttentionWrapper(cell, attention_mechanism, ...) decoder_initial_state = attention_cell.zero_state( dtype, batch_size=true_batch_size * beam_width) decoder_initial_state = decoder_initial_state.clone( cell_state=tiled_encoder_final_state) ``` Args: cell: An instance of `RNNCell`. attention_mechanism: A list of `AttentionMechanism` instances or a single instance. attention_layer_size: A list of Python integers or a single Python integer, the depth of the attention (output) layer(s). If None (default), use the context as attention at each time step. Otherwise, feed the context and cell output into the attention layer to generate attention at each time step. If attention_mechanism is a list, attention_layer_size must be a list of the same length. If attention_layer is set, this must be None. If attention_fn is set, it must guaranteed that the outputs of attention_fn also meet the above requirements. alignment_history: Python boolean, whether to store alignment history from all time steps in the final output state (currently stored as a time major `TensorArray` on which you must call `stack()`). cell_input_fn: (optional) A `callable`. The default is: `lambda inputs, attention: array_ops.concat([inputs, attention], -1)`. output_attention: Python bool. If `True` (default), the output at each time step is the attention value. This is the behavior of Luong-style attention mechanisms. If `False`, the output at each time step is the output of `cell`. This is the behavior of Bhadanau-style attention mechanisms. In both cases, the `attention` tensor is propagated to the next time step via the state and is used there. This flag only controls whether the attention mechanism is propagated up to the next cell in an RNN stack or to the top RNN output. initial_cell_state: The initial state value to use for the cell when the user calls `zero_state()`. Note that if this value is provided now, and the user uses a `batch_size` argument of `zero_state` which does not match the batch size of `initial_cell_state`, proper behavior is not guaranteed. name: Name to use when creating ops. attention_layer: A list of `tf.compat.v1.layers.Layer` instances or a single `tf.compat.v1.layers.Layer` instance taking the context and cell output as inputs to generate attention at each time step. If None (default), use the context as attention at each time step. If attention_mechanism is a list, attention_layer must be a list of the same length. If attention_layers_size is set, this must be None. attention_fn: An optional callable function that allows users to provide their own customized attention function, which takes input (attention_mechanism, cell_output, attention_state, attention_layer) and outputs (attention, alignments, next_attention_state). If provided, the attention_layer_size should be the size of the outputs of attention_fn. Raises: TypeError: `attention_layer_size` is not None and (`attention_mechanism` is a list but `attention_layer_size` is not; or vice versa). ValueError: if `attention_layer_size` is not None, `attention_mechanism` is a list, and its length does not match that of `attention_layer_size`; if `attention_layer_size` and `attention_layer` are set simultaneously. """ super(AttentionWrapper, self).__init__(name=name) rnn_cell_impl.assert_like_rnncell("cell", cell) if isinstance(attention_mechanism, (list, tuple)): self._is_multi = True attention_mechanisms = attention_mechanism for attention_mechanism in attention_mechanisms: if not isinstance(attention_mechanism, AttentionMechanism): raise TypeError("attention_mechanism must contain only instances of " "AttentionMechanism, saw type: %s" % type(attention_mechanism).__name__) else: self._is_multi = False if not isinstance(attention_mechanism, AttentionMechanism): raise TypeError( "attention_mechanism must be an AttentionMechanism or list of " "multiple AttentionMechanism instances, saw type: %s" % type(attention_mechanism).__name__) attention_mechanisms = (attention_mechanism,) if cell_input_fn is None: cell_input_fn = ( lambda inputs, attention: array_ops.concat([inputs, attention], -1)) else: if not callable(cell_input_fn): raise TypeError("cell_input_fn must be callable, saw type: %s" % type(cell_input_fn).__name__) if attention_layer_size is not None and attention_layer is not None: raise ValueError("Only one of attention_layer_size and attention_layer " "should be set") if attention_layer_size is not None: attention_layer_sizes = tuple( attention_layer_size if isinstance(attention_layer_size, ( list, tuple)) else (attention_layer_size,)) if len(attention_layer_sizes) != len(attention_mechanisms): raise ValueError( "If provided, attention_layer_size must contain exactly one " "integer per attention_mechanism, saw: %d vs %d" % (len(attention_layer_sizes), len(attention_mechanisms))) self._attention_layers = tuple( layers_core.Dense( attention_layer_size, name="attention_layer", use_bias=False, dtype=attention_mechanisms[i].dtype) for i, attention_layer_size in enumerate(attention_layer_sizes)) self._attention_layer_size = sum(attention_layer_sizes) elif attention_layer is not None: self._attention_layers = tuple( attention_layer if isinstance(attention_layer, (list, tuple)) else ( attention_layer,)) if len(self._attention_layers) != len(attention_mechanisms): raise ValueError( "If provided, attention_layer must contain exactly one " "layer per attention_mechanism, saw: %d vs %d" % (len(self._attention_layers), len(attention_mechanisms))) self._attention_layer_size = sum( tensor_shape.dimension_value( layer.compute_output_shape([ None, cell.output_size + tensor_shape.dimension_value(mechanism.values.shape[-1]) ])[-1]) for layer, mechanism in zip(self._attention_layers, attention_mechanisms)) else: self._attention_layers = None self._attention_layer_size = sum( tensor_shape.dimension_value(attention_mechanism.values.shape[-1]) for attention_mechanism in attention_mechanisms) if attention_fn is None: attention_fn = _compute_attention self._attention_fn = attention_fn self._cell = cell self._attention_mechanisms = attention_mechanisms self._cell_input_fn = cell_input_fn self._output_attention = output_attention self._alignment_history = alignment_history with ops.name_scope(name, "AttentionWrapperInit"): if initial_cell_state is None: self._initial_cell_state = None else: final_state_tensor = nest.flatten(initial_cell_state)[-1] state_batch_size = ( tensor_shape.dimension_value(final_state_tensor.shape[0]) or array_ops.shape(final_state_tensor)[0]) error_message = ( "When constructing AttentionWrapper %s: " % self._base_name + "Non-matching batch sizes between the memory " "(encoder output) and initial_cell_state. Are you using " "the BeamSearchDecoder? You may need to tile your initial state " "via the tf.contrib.seq2seq.tile_batch function with argument " "multiple=beam_width.") with ops.control_dependencies( self._batch_size_checks(state_batch_size, error_message)): self._initial_cell_state = nest.map_structure( lambda s: array_ops.identity(s, name="check_initial_cell_state"), initial_cell_state) def _batch_size_checks(self, batch_size, error_message): return [ check_ops.assert_equal( batch_size, attention_mechanism.batch_size, message=error_message) for attention_mechanism in self._attention_mechanisms ] def _item_or_tuple(self, seq): """Returns `seq` as tuple or the singular element. Which is returned is determined by how the AttentionMechanism(s) were passed to the constructor. Args: seq: A non-empty sequence of items or generator. Returns: Either the values in the sequence as a tuple if AttentionMechanism(s) were passed to the constructor as a sequence or the singular element. """ t = tuple(seq) if self._is_multi: return t else: return t[0] @property def output_size(self): if self._output_attention: return self._attention_layer_size else: return self._cell.output_size @property def state_size(self): """The `state_size` property of `AttentionWrapper`. Returns: An `AttentionWrapperState` tuple containing shapes used by this object. """ return AttentionWrapperState( cell_state=self._cell.state_size, time=tensor_shape.TensorShape([]), attention=self._attention_layer_size, alignments=self._item_or_tuple( a.alignments_size for a in self._attention_mechanisms), attention_state=self._item_or_tuple( a.state_size for a in self._attention_mechanisms), alignment_history=self._item_or_tuple( a.alignments_size if self._alignment_history else () for a in self._attention_mechanisms)) # sometimes a TensorArray def zero_state(self, batch_size, dtype): """Return an initial (zero) state tuple for this `AttentionWrapper`. **NOTE** Please see the initializer documentation for details of how to call `zero_state` if using an `AttentionWrapper` with a `BeamSearchDecoder`. Args: batch_size: `0D` integer tensor: the batch size. dtype: The internal state data type. Returns: An `AttentionWrapperState` tuple containing zeroed out tensors and, possibly, empty `TensorArray` objects. Raises: ValueError: (or, possibly at runtime, InvalidArgument), if `batch_size` does not match the output size of the encoder passed to the wrapper object at initialization time. """ with ops.name_scope(type(self).__name__ + "ZeroState", values=[batch_size]): if self._initial_cell_state is not None: cell_state = self._initial_cell_state else: cell_state = self._cell.get_initial_state( batch_size=batch_size, dtype=dtype) error_message = ( "When calling zero_state of AttentionWrapper %s: " % self._base_name + "Non-matching batch sizes between the memory " "(encoder output) and the requested batch size. Are you using " "the BeamSearchDecoder? If so, make sure your encoder output has " "been tiled to beam_width via tf.contrib.seq2seq.tile_batch, and " "the batch_size= argument passed to zero_state is " "batch_size * beam_width.") with ops.control_dependencies( self._batch_size_checks(batch_size, error_message)): cell_state = nest.map_structure( lambda s: array_ops.identity(s, name="checked_cell_state"), cell_state) initial_alignments = [ attention_mechanism.initial_alignments(batch_size, dtype) for attention_mechanism in self._attention_mechanisms ] return AttentionWrapperState( cell_state=cell_state, time=array_ops.zeros([], dtype=dtypes.int32), attention=_zero_state_tensors(self._attention_layer_size, batch_size, dtype), alignments=self._item_or_tuple(initial_alignments), attention_state=self._item_or_tuple( attention_mechanism.initial_state(batch_size, dtype) for attention_mechanism in self._attention_mechanisms), alignment_history=self._item_or_tuple( tensor_array_ops.TensorArray( dtype, size=0, dynamic_size=True, element_shape=alignment.shape) if self._alignment_history else () for alignment in initial_alignments)) def call(self, inputs, state): """Perform a step of attention-wrapped RNN. - Step 1: Mix the `inputs` and previous step's `attention` output via `cell_input_fn`. - Step 2: Call the wrapped `cell` with this input and its previous state. - Step 3: Score the cell's output with `attention_mechanism`. - Step 4: Calculate the alignments by passing the score through the `normalizer`. - Step 5: Calculate the context vector as the inner product between the alignments and the attention_mechanism's values (memory). - Step 6: Calculate the attention output by concatenating the cell output and context through the attention layer (a linear layer with `attention_layer_size` outputs). Args: inputs: (Possibly nested tuple of) Tensor, the input at this time step. state: An instance of `AttentionWrapperState` containing tensors from the previous time step. Returns: A tuple `(attention_or_cell_output, next_state)`, where: - `attention_or_cell_output` depending on `output_attention`. - `next_state` is an instance of `AttentionWrapperState` containing the state calculated at this time step. Raises: TypeError: If `state` is not an instance of `AttentionWrapperState`. """ if not isinstance(state, AttentionWrapperState): raise TypeError("Expected state to be instance of AttentionWrapperState. " "Received type %s instead." % type(state)) # Step 1: Calculate the true inputs to the cell based on the # previous attention value. cell_inputs = self._cell_input_fn(inputs, state.attention) cell_state = state.cell_state cell_output, next_cell_state = self._cell(cell_inputs, cell_state) cell_batch_size = ( tensor_shape.dimension_value(cell_output.shape[0]) or array_ops.shape(cell_output)[0]) error_message = ( "When applying AttentionWrapper %s: " % self.name + "Non-matching batch sizes between the memory " "(encoder output) and the query (decoder output). Are you using " "the BeamSearchDecoder? You may need to tile your memory input via " "the tf.contrib.seq2seq.tile_batch function with argument " "multiple=beam_width.") with ops.control_dependencies( self._batch_size_checks(cell_batch_size, error_message)): cell_output = array_ops.identity(cell_output, name="checked_cell_output") if self._is_multi: previous_attention_state = state.attention_state previous_alignment_history = state.alignment_history else: previous_attention_state = [state.attention_state] previous_alignment_history = [state.alignment_history] all_alignments = [] all_attentions = [] all_attention_states = [] maybe_all_histories = [] for i, attention_mechanism in enumerate(self._attention_mechanisms): attention, alignments, next_attention_state = self._attention_fn( attention_mechanism, cell_output, previous_attention_state[i], self._attention_layers[i] if self._attention_layers else None) alignment_history = previous_alignment_history[i].write( state.time, alignments) if self._alignment_history else () all_attention_states.append(next_attention_state) all_alignments.append(alignments) all_attentions.append(attention) maybe_all_histories.append(alignment_history) attention = array_ops.concat(all_attentions, 1) next_state = AttentionWrapperState( time=state.time + 1, cell_state=next_cell_state, attention=attention, attention_state=self._item_or_tuple(all_attention_states), alignments=self._item_or_tuple(all_alignments), alignment_history=self._item_or_tuple(maybe_all_histories)) if self._output_attention: return attention, next_state else: return cell_output, next_state
tensorflow-master
tensorflow/contrib/seq2seq/python/ops/attention_wrapper.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Beam Search helper ops.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.seq2seq.ops import gen_beam_search_ops from tensorflow.contrib.util import loader from tensorflow.python.platform import resource_loader _beam_search_ops_so = loader.load_op_library( resource_loader.get_path_to_datafile("_beam_search_ops.so")) gather_tree = gen_beam_search_ops.gather_tree
tensorflow-master
tensorflow/contrib/seq2seq/python/ops/beam_search_ops.py
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A library of sampler for use with SamplingDecoders.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import abc import six from tensorflow.contrib.seq2seq.python.ops import decoder from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import embedding_ops from tensorflow.python.ops import gen_array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import random_ops from tensorflow.python.ops import tensor_array_ops from tensorflow.python.util import nest __all__ = [ "Sampler", "TrainingSampler", "GreedyEmbeddingSampler", "SampleEmbeddingSampler", "CustomSampler", "ScheduledEmbeddingTrainingSampler", "ScheduledOutputTrainingSampler", "InferenceSampler", ] _transpose_batch_time = decoder._transpose_batch_time # pylint: disable=protected-access @six.add_metaclass(abc.ABCMeta) class Sampler(object): """Interface for implementing sampling in seq2seq decoders. Sampler instances are used by `BasicDecoder`. The normal usage of a sampler is like below: sampler = Sampler(init_args) (initial_finished, initial_inputs) = sampler.initialize(input_tensors) for time_step in range(time): cell_output, cell_state = cell.call(cell_input, previous_state) sample_ids = sampler.sample(time_step, cell_output, cell_state) (finished, next_inputs, next_state) = sampler.next_inputs( time_step,cell_output, cell_state) Note that all the tensor input should not be feed to Sampler as __init__() parameters, instead, they should be feed by decoders via initialize(). """ @abc.abstractmethod def initialize(self, inputs, **kwargs): """initialize the sampler with the input tensors. This method suppose to be only invoke once before the calling other methods of the Sampler. Args: inputs: A (structure of) input tensors, it could be a nested tuple or a single tensor. **kwargs: Other kwargs for initialization. It could contain tensors like mask for inputs, or non tensor parameter. Returns: `(initial_finished, initial_inputs)`. """ pass @abc.abstractmethod def sample(self, time, outputs, state): """Returns `sample_ids`.""" pass @abc.abstractmethod def next_inputs(self, time, outputs, state, sample_ids): """Returns `(finished, next_inputs, next_state)`.""" pass @abc.abstractproperty def batch_size(self): """Batch size of tensor returned by `sample`. Returns a scalar int32 tensor. The return value might not available before the invocation of initialize(), in this case, ValueError is raised. """ raise NotImplementedError("batch_size has not been implemented") @abc.abstractproperty def sample_ids_shape(self): """Shape of tensor returned by `sample`, excluding the batch dimension. Returns a `TensorShape`. The return value might not available before the invocation of initialize(). """ raise NotImplementedError("sample_ids_shape has not been implemented") @abc.abstractproperty def sample_ids_dtype(self): """DType of tensor returned by `sample`. Returns a DType. The return value might not available before the invocation of initialize(). """ raise NotImplementedError("sample_ids_dtype has not been implemented") class CustomSampler(Sampler): """Base abstract class that allows the user to customize sampling.""" def __init__(self, initialize_fn, sample_fn, next_inputs_fn, sample_ids_shape=None, sample_ids_dtype=None): """Initializer. Args: initialize_fn: callable that returns `(finished, next_inputs)` for the first iteration. sample_fn: callable that takes `(time, outputs, state)` and emits tensor `sample_ids`. next_inputs_fn: callable that takes `(time, outputs, state, sample_ids)` and emits `(finished, next_inputs, next_state)`. sample_ids_shape: Either a list of integers, or a 1-D Tensor of type `int32`, the shape of each value in the `sample_ids` batch. Defaults to a scalar. sample_ids_dtype: The dtype of the `sample_ids` tensor. Defaults to int32. """ self._initialize_fn = initialize_fn self._sample_fn = sample_fn self._next_inputs_fn = next_inputs_fn self._batch_size = None self._sample_ids_shape = tensor_shape.TensorShape(sample_ids_shape or []) self._sample_ids_dtype = sample_ids_dtype or dtypes.int32 @property def batch_size(self): if self._batch_size is None: raise ValueError("batch_size accessed before initialize was called") return self._batch_size @property def sample_ids_shape(self): return self._sample_ids_shape @property def sample_ids_dtype(self): return self._sample_ids_dtype def initialize(self, inputs, **kwargs): (finished, next_inputs) = self._initialize_fn(inputs, **kwargs) if self._batch_size is None: self._batch_size = array_ops.size(finished) return (finished, next_inputs) def sample(self, time, outputs, state): return self._sample_fn(time=time, outputs=outputs, state=state) def next_inputs(self, time, outputs, state, sample_ids): return self._next_inputs_fn( time=time, outputs=outputs, state=state, sample_ids=sample_ids) class TrainingSampler(Sampler): """A Sampler for use during training. Only reads inputs. Returned sample_ids are the argmax of the RNN output logits. """ def __init__(self, time_major=False): """Initializer. Args: time_major: Python bool. Whether the tensors in `inputs` are time major. If `False` (default), they are assumed to be batch major. Raises: ValueError: if `sequence_length` is not a 1D tensor. """ self.time_major = time_major self._batch_size = None @property def batch_size(self): if self._batch_size is None: raise ValueError("batch_size accessed before initialize was called") return self._batch_size @property def sample_ids_shape(self): return tensor_shape.TensorShape([]) @property def sample_ids_dtype(self): return dtypes.int32 def initialize(self, inputs, sequence_length=None): """Initialize the TrainSampler. Args: inputs: A (structure of) input tensors. sequence_length: An int32 vector tensor. Returns: (finished, next_inputs), a tuple of two items. The first item is a boolean vector to indicate whether the item in the batch has finished. The second item is the first slide of input data based on the timestep dimension (usually the second dim of the input). """ self.inputs = ops.convert_to_tensor(inputs, name="inputs") if not self.time_major: inputs = nest.map_structure(_transpose_batch_time, inputs) self.input_tas = nest.map_structure(_unstack_ta, inputs) if sequence_length is None: raise ValueError("sequence_length is required for TrainingSampler") self.sequence_length = ops.convert_to_tensor( sequence_length, name="sequence_length") if self.sequence_length.get_shape().ndims != 1: raise ValueError( "Expected sequence_length to be a vector, but received shape: %s" % self._sequence_length.get_shape()) self.zero_inputs = nest.map_structure( lambda inp: array_ops.zeros_like(inp[0, :]), inputs) self._batch_size = array_ops.size(self.sequence_length) finished = math_ops.equal(0, self.sequence_length) all_finished = math_ops.reduce_all(finished) next_inputs = control_flow_ops.cond( all_finished, lambda: self.zero_inputs, lambda: nest.map_structure(lambda inp: inp.read(0), self.input_tas)) return (finished, next_inputs) def sample(self, time, outputs, state): del state sample_ids = math_ops.cast(math_ops.argmax(outputs, axis=-1), dtypes.int32) return sample_ids def next_inputs(self, time, outputs, state, sample_ids): del sample_ids next_time = time + 1 finished = (next_time >= self.sequence_length) all_finished = math_ops.reduce_all(finished) def read_from_ta(inp): return inp.read(next_time) next_inputs = control_flow_ops.cond( all_finished, lambda: self.zero_inputs, lambda: nest.map_structure(read_from_ta, self.input_tas)) return (finished, next_inputs, state) class ScheduledEmbeddingTrainingSampler(TrainingSampler): """A training sampler that adds scheduled sampling. Returns -1s for sample_ids where no sampling took place; valid sample id values elsewhere. """ def __init__(self, sampling_probability, embedding_fn=None, time_major=False, seed=None, scheduling_seed=None): """Initializer. Args: sampling_probability: A `float32` 0-D or 1-D tensor: the probability of sampling categorically from the output ids instead of reading directly from the inputs. embedding_fn: A callable that takes a vector tensor of `ids` (argmax ids), or the `params` argument for `embedding_lookup`. time_major: Python bool. Whether the tensors in `inputs` are time major. If `False` (default), they are assumed to be batch major. seed: The sampling seed. scheduling_seed: The schedule decision rule sampling seed. Raises: ValueError: if `sampling_probability` is not a scalar or vector. """ if callable(embedding_fn) or embedding_fn is None: self.embedding_fn = embedding_fn else: raise ValueError("embedding_fn is expected to be callable, got %s" % type(embedding_fn)) self.sampling_probability = ops.convert_to_tensor( sampling_probability, name="sampling_probability") if self.sampling_probability.get_shape().ndims not in (0, 1): raise ValueError( "sampling_probability must be either a scalar or a vector. " "saw shape: %s" % (self.sampling_probability.get_shape())) self.seed = seed self.scheduling_seed = scheduling_seed super(ScheduledEmbeddingTrainingSampler, self).__init__(time_major=time_major) def initialize(self, inputs, sequence_length=None, embedding=None): if self.embedding_fn is None: if embedding is None: raise ValueError("embedding is required as a keyword argument for " "ScheduledEmbeddingTrainingSampler") self.embedding_fn = ( lambda ids: embedding_ops.embedding_lookup(embedding, ids)) return super(ScheduledEmbeddingTrainingSampler, self).initialize( inputs, sequence_length=sequence_length) def sample(self, time, outputs, state): del state # Return -1s where we did not sample, and sample_ids elsewhere select_sample = bernoulli_sample( probs=self.sampling_probability, dtype=dtypes.bool, sample_shape=self.batch_size, seed=self.scheduling_seed) return array_ops.where(select_sample, categorical_sample(logits=outputs, seed=self.seed), gen_array_ops.fill([self.batch_size], -1)) def next_inputs(self, time, outputs, state, sample_ids): (finished, base_next_inputs, state) = ( super(ScheduledEmbeddingTrainingSampler, self).next_inputs( time=time, outputs=outputs, state=state, sample_ids=sample_ids)) def maybe_sample(): """Perform scheduled sampling.""" where_sampling = math_ops.cast( array_ops.where(sample_ids > -1), dtypes.int32) where_not_sampling = math_ops.cast( array_ops.where(sample_ids <= -1), dtypes.int32) sample_ids_sampling = array_ops.gather_nd(sample_ids, where_sampling) inputs_not_sampling = array_ops.gather_nd(base_next_inputs, where_not_sampling) sampled_next_inputs = self.embedding_fn(sample_ids_sampling) base_shape = array_ops.shape(base_next_inputs) return (array_ops.scatter_nd( indices=where_sampling, updates=sampled_next_inputs, shape=base_shape) + array_ops.scatter_nd( indices=where_not_sampling, updates=inputs_not_sampling, shape=base_shape)) all_finished = math_ops.reduce_all(finished) next_inputs = control_flow_ops.cond(all_finished, lambda: base_next_inputs, maybe_sample) return (finished, next_inputs, state) class ScheduledOutputTrainingSampler(TrainingSampler): """A training sampler that adds scheduled sampling directly to outputs. Returns False for sample_ids where no sampling took place; True elsewhere. """ def __init__(self, sampling_probability, time_major=False, seed=None, next_inputs_fn=None): """Initializer. Args: sampling_probability: A `float32` scalar tensor: the probability of sampling from the outputs instead of reading directly from the inputs. time_major: Python bool. Whether the tensors in `inputs` are time major. If `False` (default), they are assumed to be batch major. seed: The sampling seed. next_inputs_fn: (Optional) callable to apply to the RNN outputs to create the next input when sampling. If `None` (default), the RNN outputs will be used as the next inputs. Raises: ValueError: if `sampling_probability` is not a scalar or vector. """ self.sampling_probability = ops.convert_to_tensor( sampling_probability, name="sampling_probability") if self.sampling_probability.get_shape().ndims not in (0, 1): raise ValueError( "sampling_probability must be either a scalar or a vector. " "saw shape: %s" % (self._sampling_probability.get_shape())) self.seed = seed self.next_inputs_fn = next_inputs_fn super(ScheduledOutputTrainingSampler, self).__init__(time_major=time_major) def initialize(self, inputs, sequence_length=None, auxiliary_inputs=None): if auxiliary_inputs is None: maybe_concatenated_inputs = inputs else: inputs = ops.convert_to_tensor(inputs) auxiliary_inputs = ops.convert_to_tensor(auxiliary_inputs) maybe_concatenated_inputs = nest.map_structure( lambda x, y: array_ops.concat((x, y), -1), inputs, auxiliary_inputs) if not self.time_major: auxiliary_inputs = nest.map_structure(_transpose_batch_time, auxiliary_inputs) if auxiliary_inputs is not None: self._auxiliary_input_tas = nest.map_structure(_unstack_ta, auxiliary_inputs) else: self._auxiliary_input_tas = None return super(ScheduledOutputTrainingSampler, self).initialize( maybe_concatenated_inputs, sequence_length=sequence_length) def sample(self, time, outputs, state): del state return bernoulli_sample( probs=self.sampling_probability, sample_shape=self.batch_size, seed=self.seed) def next_inputs(self, time, outputs, state, sample_ids): (finished, base_next_inputs, state) = ( super(ScheduledOutputTrainingSampler, self).next_inputs( time=time, outputs=outputs, state=state, sample_ids=sample_ids)) sample_ids = math_ops.cast(sample_ids, dtypes.bool) def maybe_sample(): """Perform scheduled sampling.""" def maybe_concatenate_auxiliary_inputs(outputs_, indices=None): """Concatenate outputs with auxiliary inputs, if they exist.""" if self._auxiliary_input_tas is None: return outputs_ next_time = time + 1 auxiliary_inputs = nest.map_structure(lambda ta: ta.read(next_time), self._auxiliary_input_tas) if indices is not None: auxiliary_inputs = array_ops.gather_nd(auxiliary_inputs, indices) return nest.map_structure(lambda x, y: array_ops.concat((x, y), -1), outputs_, auxiliary_inputs) if self.next_inputs_fn is None: return array_ops.where(sample_ids, maybe_concatenate_auxiliary_inputs(outputs), base_next_inputs) where_sampling = math_ops.cast(array_ops.where(sample_ids), dtypes.int32) where_not_sampling = math_ops.cast( array_ops.where(math_ops.logical_not(sample_ids)), dtypes.int32) outputs_sampling = array_ops.gather_nd(outputs, where_sampling) inputs_not_sampling = array_ops.gather_nd(base_next_inputs, where_not_sampling) sampled_next_inputs = maybe_concatenate_auxiliary_inputs( self.next_inputs_fn(outputs_sampling), where_sampling) base_shape = array_ops.shape(base_next_inputs) return (array_ops.scatter_nd( indices=where_sampling, updates=sampled_next_inputs, shape=base_shape) + array_ops.scatter_nd( indices=where_not_sampling, updates=inputs_not_sampling, shape=base_shape)) all_finished = math_ops.reduce_all(finished) no_samples = math_ops.logical_not(math_ops.reduce_any(sample_ids)) next_inputs = control_flow_ops.cond( math_ops.logical_or(all_finished, no_samples), lambda: base_next_inputs, maybe_sample) return (finished, next_inputs, state) class GreedyEmbeddingSampler(Sampler): """A sampler for use during inference. Uses the argmax of the output (treated as logits) and passes the result through an embedding layer to get the next input. """ def __init__(self, embedding_fn=None): """Initializer. Args: embedding_fn: A optional callable that takes a vector tensor of `ids` (argmax ids), or the `params` argument for `embedding_lookup`. The returned tensor will be passed to the decoder input. Default to use `embedding_ops.embedding_lookup`. """ if embedding_fn is None or callable(embedding_fn): self.embedding_fn = embedding_fn else: raise ValueError("embedding_fn is expected to be a callable, got %s" % type(embedding_fn)) self._batch_size = None @property def batch_size(self): if self._batch_size is None: raise ValueError("batch_size accessed before initialize was called") return self._batch_size @property def sample_ids_shape(self): return tensor_shape.TensorShape([]) @property def sample_ids_dtype(self): return dtypes.int32 def initialize(self, embedding, start_tokens=None, end_token=None): """Initialize the GreedyEmbeddingSampler. Args: embedding: tensor that contains embedding states matrix. It will be used to generate generate outputs with start_tokens and end_tokens. The embedding will be ignored if the embedding_fn has been provided at __init__(). start_tokens: `int32` vector shaped `[batch_size]`, the start tokens. end_token: `int32` scalar, the token that marks end of decoding. Returns: Tuple of two items: `(finished, self.start_inputs)`. Raises: ValueError: if `start_tokens` is not a 1D tensor or `end_token` is not a scalar. """ if self.embedding_fn is None: self.embedding_fn = ( lambda ids: embedding_ops.embedding_lookup(embedding, ids)) self.start_tokens = ops.convert_to_tensor( start_tokens, dtype=dtypes.int32, name="start_tokens") self.end_token = ops.convert_to_tensor( end_token, dtype=dtypes.int32, name="end_token") if self.start_tokens.get_shape().ndims != 1: raise ValueError("start_tokens must be a vector") self._batch_size = array_ops.size(start_tokens) if self.end_token.get_shape().ndims != 0: raise ValueError("end_token must be a scalar") self.start_inputs = self.embedding_fn(self.start_tokens) finished = array_ops.tile([False], [self._batch_size]) return (finished, self.start_inputs) def sample(self, time, outputs, state): """sample for GreedyEmbeddingHelper.""" del time, state # unused by sample_fn # Outputs are logits, use argmax to get the most probable id if not isinstance(outputs, ops.Tensor): raise TypeError( "Expected outputs to be a single Tensor, got: %s" % type(outputs)) sample_ids = math_ops.argmax(outputs, axis=-1, output_type=dtypes.int32) return sample_ids def next_inputs(self, time, outputs, state, sample_ids): """next_inputs_fn for GreedyEmbeddingHelper.""" del time, outputs # unused by next_inputs_fn finished = math_ops.equal(sample_ids, self.end_token) all_finished = math_ops.reduce_all(finished) next_inputs = control_flow_ops.cond( all_finished, # If we're finished, the next_inputs value doesn't matter lambda: self.start_inputs, lambda: self.embedding_fn(sample_ids)) return (finished, next_inputs, state) class SampleEmbeddingSampler(GreedyEmbeddingSampler): """A sampler for use during inference. Uses sampling (from a distribution) instead of argmax and passes the result through an embedding layer to get the next input. """ def __init__(self, embedding_fn=None, softmax_temperature=None, seed=None): """Initializer. Args: embedding_fn: (Optional) A callable that takes a vector tensor of `ids` (argmax ids), or the `params` argument for `embedding_lookup`. The returned tensor will be passed to the decoder input. softmax_temperature: (Optional) `float32` scalar, value to divide the logits by before computing the softmax. Larger values (above 1.0) result in more random samples, while smaller values push the sampling distribution towards the argmax. Must be strictly greater than 0. Defaults to 1.0. seed: (Optional) The sampling seed. Raises: ValueError: if `start_tokens` is not a 1D tensor or `end_token` is not a scalar. """ super(SampleEmbeddingSampler, self).__init__(embedding_fn) self.softmax_temperature = softmax_temperature self.seed = seed def sample(self, time, outputs, state): """sample for SampleEmbeddingHelper.""" del time, state # unused by sample_fn # Outputs are logits, we sample instead of argmax (greedy). if not isinstance(outputs, ops.Tensor): raise TypeError( "Expected outputs to be a single Tensor, got: %s" % type(outputs)) if self.softmax_temperature is None: logits = outputs else: logits = outputs / self.softmax_temperature return categorical_sample(logits=logits, seed=self.seed) class InferenceSampler(Sampler): """A helper to use during inference with a custom sampling function.""" def __init__(self, sample_fn, sample_shape, sample_dtype, end_fn, next_inputs_fn=None): """Initializer. Args: sample_fn: A callable that takes `outputs` and emits tensor `sample_ids`. sample_shape: Either a list of integers, or a 1-D Tensor of type `int32`, the shape of the each sample in the batch returned by `sample_fn`. sample_dtype: the dtype of the sample returned by `sample_fn`. end_fn: A callable that takes `sample_ids` and emits a `bool` vector shaped `[batch_size]` indicating whether each sample is an end token. next_inputs_fn: (Optional) A callable that takes `sample_ids` and returns the next batch of inputs. If not provided, `sample_ids` is used as the next batch of inputs. """ self.sample_fn = sample_fn self.sample_shape = tensor_shape.TensorShape(sample_shape) self.sample_dtype = sample_dtype self.end_fn = end_fn self.next_inputs_fn = next_inputs_fn self._batch_size = None @property def batch_size(self): if self._batch_size is None: raise ValueError("batch_size accessed before initialize was called") return self._batch_size @property def sample_ids_shape(self): return self.sample_shape @property def sample_ids_dtype(self): return self.sample_dtype def initialize(self, start_inputs): self.start_inputs = ops.convert_to_tensor(start_inputs, name="start_inputs") self._batch_size = array_ops.shape(start_inputs)[0] finished = array_ops.tile([False], [self._batch_size]) return (finished, self.start_inputs) def sample(self, time, outputs, state): del time, state # unused by sample return self.sample_fn(outputs) def next_inputs(self, time, outputs, state, sample_ids): del time, outputs # unused by next_inputs if self.next_inputs_fn is None: next_inputs = sample_ids else: next_inputs = self.next_inputs_fn(sample_ids) finished = self.end_fn(sample_ids) return (finished, next_inputs, state) # The following sample functions (_call_sampler, bernoulli_sample, # categorical_sample) mimic TensorFlow Probability distribution semantics. def _call_sampler(sample_n_fn, sample_shape, name=None): """Reshapes vector of samples.""" with ops.name_scope(name, "call_sampler", values=[sample_shape]): sample_shape = ops.convert_to_tensor( sample_shape, dtype=dtypes.int32, name="sample_shape") # Ensure sample_shape is a vector (vs just a scalar). pad = math_ops.cast( math_ops.equal(array_ops.rank(sample_shape), 0), dtypes.int32) sample_shape = array_ops.reshape( sample_shape, array_ops.pad( array_ops.shape(sample_shape), paddings=[[pad, 0]], constant_values=1)) samples = sample_n_fn(math_ops.reduce_prod(sample_shape)) batch_event_shape = array_ops.shape(samples)[1:] final_shape = array_ops.concat([sample_shape, batch_event_shape], 0) return array_ops.reshape(samples, final_shape) def bernoulli_sample(probs=None, logits=None, dtype=dtypes.int32, sample_shape=(), seed=None): """Samples from Bernoulli distribution.""" if probs is None: probs = math_ops.sigmoid(logits, name="probs") else: probs = ops.convert_to_tensor(probs, name="probs") batch_shape_tensor = array_ops.shape(probs) def _sample_n(n): """Sample vector of Bernoullis.""" new_shape = array_ops.concat([[n], batch_shape_tensor], 0) uniform = random_ops.random_uniform(new_shape, seed=seed, dtype=probs.dtype) return math_ops.cast(math_ops.less(uniform, probs), dtype) return _call_sampler(_sample_n, sample_shape) def categorical_sample(logits, dtype=dtypes.int32, sample_shape=(), seed=None): """Samples from categorical distribution.""" logits = ops.convert_to_tensor(logits, name="logits") event_size = array_ops.shape(logits)[-1] batch_shape_tensor = array_ops.shape(logits)[:-1] def _sample_n(n): """Sample vector of categoricals.""" if logits.shape.ndims == 2: logits_2d = logits else: logits_2d = array_ops.reshape(logits, [-1, event_size]) sample_dtype = dtypes.int64 if logits.dtype.size > 4 else dtypes.int32 draws = random_ops.multinomial( logits_2d, n, seed=seed, output_dtype=sample_dtype) draws = array_ops.reshape( array_ops.transpose(draws), array_ops.concat([[n], batch_shape_tensor], 0)) return math_ops.cast(draws, dtype) return _call_sampler(_sample_n, sample_shape) def _unstack_ta(inp): return tensor_array_ops.TensorArray( dtype=inp.dtype, size=array_ops.shape(inp)[0], element_shape=inp.get_shape()[1:]).unstack(inp)
tensorflow-master
tensorflow/contrib/seq2seq/python/ops/sampler.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A decoder that performs beam search.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import numpy as np from tensorflow.contrib.seq2seq.python.ops import attention_wrapper from tensorflow.contrib.seq2seq.python.ops import beam_search_ops from tensorflow.contrib.seq2seq.python.ops import decoder from tensorflow.python.eager import context from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.framework import tensor_util from tensorflow.python.keras import layers from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import embedding_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn_ops from tensorflow.python.ops import rnn_cell_impl from tensorflow.python.ops import tensor_array_ops from tensorflow.python.platform import tf_logging from tensorflow.python.util import nest __all__ = [ "BeamSearchDecoderOutput", "BeamSearchDecoderState", "BeamSearchDecoder", "FinalBeamSearchDecoderOutput", "tile_batch", ] class BeamSearchDecoderState( collections.namedtuple("BeamSearchDecoderState", ("cell_state", "log_probs", "finished", "lengths", "accumulated_attention_probs"))): pass class BeamSearchDecoderOutput( collections.namedtuple("BeamSearchDecoderOutput", ("scores", "predicted_ids", "parent_ids"))): pass class FinalBeamSearchDecoderOutput( collections.namedtuple("FinalBeamDecoderOutput", ["predicted_ids", "beam_search_decoder_output"])): """Final outputs returned by the beam search after all decoding is finished. Args: predicted_ids: The final prediction. A tensor of shape `[batch_size, T, beam_width]` (or `[T, batch_size, beam_width]` if `output_time_major` is True). Beams are ordered from best to worst. beam_search_decoder_output: An instance of `BeamSearchDecoderOutput` that describes the state of the beam search. """ pass def _tile_batch(t, multiplier): """Core single-tensor implementation of tile_batch.""" t = ops.convert_to_tensor(t, name="t") shape_t = array_ops.shape(t) if t.shape.ndims is None or t.shape.ndims < 1: raise ValueError("t must have statically known rank") tiling = [1] * (t.shape.ndims + 1) tiling[1] = multiplier tiled_static_batch_size = ( t.shape.dims[0].value * multiplier if t.shape.dims[0].value is not None else None) tiled = array_ops.tile(array_ops.expand_dims(t, 1), tiling) tiled = array_ops.reshape(tiled, array_ops.concat( ([shape_t[0] * multiplier], shape_t[1:]), 0)) tiled.set_shape( tensor_shape.TensorShape([tiled_static_batch_size]).concatenate( t.shape[1:])) return tiled def tile_batch(t, multiplier, name=None): """Tile the batch dimension of a (possibly nested structure of) tensor(s) t. For each tensor t in a (possibly nested structure) of tensors, this function takes a tensor t shaped `[batch_size, s0, s1, ...]` composed of minibatch entries `t[0], ..., t[batch_size - 1]` and tiles it to have a shape `[batch_size * multiplier, s0, s1, ...]` composed of minibatch entries `t[0], t[0], ..., t[1], t[1], ...` where each minibatch entry is repeated `multiplier` times. Args: t: `Tensor` shaped `[batch_size, ...]`. multiplier: Python int. name: Name scope for any created operations. Returns: A (possibly nested structure of) `Tensor` shaped `[batch_size * multiplier, ...]`. Raises: ValueError: if tensor(s) `t` do not have a statically known rank or the rank is < 1. """ flat_t = nest.flatten(t) with ops.name_scope(name, "tile_batch", flat_t + [multiplier]): return nest.map_structure(lambda t_: _tile_batch(t_, multiplier), t) def gather_tree_from_array(t, parent_ids, sequence_length): """Calculates the full beams for `TensorArray`s. Args: t: A stacked `TensorArray` of size `max_time` that contains `Tensor`s of shape `[batch_size, beam_width, s]` or `[batch_size * beam_width, s]` where `s` is the depth shape. parent_ids: The parent ids of shape `[max_time, batch_size, beam_width]`. sequence_length: The sequence length of shape `[batch_size, beam_width]`. Returns: A `Tensor` which is a stacked `TensorArray` of the same size and type as `t` and where beams are sorted in each `Tensor` according to `parent_ids`. """ max_time = parent_ids.shape.dims[0].value or array_ops.shape(parent_ids)[0] batch_size = parent_ids.shape.dims[1].value or array_ops.shape(parent_ids)[1] beam_width = parent_ids.shape.dims[2].value or array_ops.shape(parent_ids)[2] # Generate beam ids that will be reordered by gather_tree. beam_ids = array_ops.expand_dims( array_ops.expand_dims(math_ops.range(beam_width), 0), 0) beam_ids = array_ops.tile(beam_ids, [max_time, batch_size, 1]) max_sequence_lengths = math_ops.cast( math_ops.reduce_max(sequence_length, axis=1), dtypes.int32) sorted_beam_ids = beam_search_ops.gather_tree( step_ids=beam_ids, parent_ids=parent_ids, max_sequence_lengths=max_sequence_lengths, end_token=beam_width + 1) # For out of range steps, simply copy the same beam. in_bound_steps = array_ops.transpose( array_ops.sequence_mask(sequence_length, maxlen=max_time), perm=[2, 0, 1]) sorted_beam_ids = array_ops.where( in_bound_steps, x=sorted_beam_ids, y=beam_ids) # Generate indices for gather_nd. time_ind = array_ops.tile(array_ops.reshape( math_ops.range(max_time), [-1, 1, 1]), [1, batch_size, beam_width]) batch_ind = array_ops.tile(array_ops.reshape( math_ops.range(batch_size), [-1, 1, 1]), [1, max_time, beam_width]) batch_ind = array_ops.transpose(batch_ind, perm=[1, 0, 2]) indices = array_ops.stack([time_ind, batch_ind, sorted_beam_ids], -1) # Gather from a tensor with collapsed additional dimensions. gather_from = t final_shape = array_ops.shape(gather_from) gather_from = array_ops.reshape( gather_from, [max_time, batch_size, beam_width, -1]) ordered = array_ops.gather_nd(gather_from, indices) ordered = array_ops.reshape(ordered, final_shape) return ordered def _check_ndims(t): if t.shape.ndims is None: raise ValueError( "Expected tensor (%s) to have known rank, but ndims == None." % t) def _check_static_batch_beam_maybe(shape, batch_size, beam_width): """Raises an exception if dimensions are known statically and can not be reshaped to [batch_size, beam_size, -1]. """ reshaped_shape = tensor_shape.TensorShape([batch_size, beam_width, None]) if (batch_size is not None and shape.dims[0].value is not None and (shape[0] != batch_size * beam_width or (shape.ndims >= 2 and shape.dims[1].value is not None and (shape[0] != batch_size or shape[1] != beam_width)))): tf_logging.warn("TensorArray reordering expects elements to be " "reshapable to %s which is incompatible with the " "current shape %s. Consider setting " "reorder_tensor_arrays to False to disable TensorArray " "reordering during the beam search." % (reshaped_shape, shape)) return False return True def _check_batch_beam(t, batch_size, beam_width): """Returns an Assert operation checking that the elements of the stacked TensorArray can be reshaped to [batch_size, beam_size, -1]. At this point, the TensorArray elements have a known rank of at least 1. """ error_message = ("TensorArray reordering expects elements to be " "reshapable to [batch_size, beam_size, -1] which is " "incompatible with the dynamic shape of %s elements. " "Consider setting reorder_tensor_arrays to False to disable " "TensorArray reordering during the beam search." % (t if context.executing_eagerly() else t.name)) rank = t.shape.ndims shape = array_ops.shape(t) if rank == 2: condition = math_ops.equal(shape[1], batch_size * beam_width) else: condition = math_ops.logical_or( math_ops.equal(shape[1], batch_size * beam_width), math_ops.logical_and( math_ops.equal(shape[1], batch_size), math_ops.equal(shape[2], beam_width))) return control_flow_ops.Assert(condition, [error_message]) class BeamSearchDecoderMixin(object): """BeamSearchDecoderMixin contains the common methods for BeamSearchDecoder. It is expected to be used a base class for concrete BeamSearchDecoder. Since this is a mixin class, it is expected to be used together with other class as base. """ def __init__(self, cell, beam_width, output_layer=None, length_penalty_weight=0.0, coverage_penalty_weight=0.0, reorder_tensor_arrays=True, **kwargs): """Initialize the BeamSearchDecoderMixin. Args: cell: An `RNNCell` instance. beam_width: Python integer, the number of beams. output_layer: (Optional) An instance of `tf.keras.layers.Layer`, i.e., `tf.keras.layers.Dense`. Optional layer to apply to the RNN output prior to storing the result or sampling. length_penalty_weight: Float weight to penalize length. Disabled with 0.0. coverage_penalty_weight: Float weight to penalize the coverage of source sentence. Disabled with 0.0. reorder_tensor_arrays: If `True`, `TensorArray`s' elements within the cell state will be reordered according to the beam search path. If the `TensorArray` can be reordered, the stacked form will be returned. Otherwise, the `TensorArray` will be returned as is. Set this flag to `False` if the cell state contains `TensorArray`s that are not amenable to reordering. **kwargs: Dict, other keyword arguments for parent class. Raises: TypeError: if `cell` is not an instance of `RNNCell`, or `output_layer` is not an instance of `tf.keras.layers.Layer`. """ rnn_cell_impl.assert_like_rnncell("cell", cell) # pylint: disable=protected-access if (output_layer is not None and not isinstance(output_layer, layers.Layer)): raise TypeError( "output_layer must be a Layer, received: %s" % type(output_layer)) self._cell = cell self._output_layer = output_layer self._reorder_tensor_arrays = reorder_tensor_arrays self._start_tokens = None self._end_token = None self._batch_size = None self._beam_width = beam_width self._length_penalty_weight = length_penalty_weight self._coverage_penalty_weight = coverage_penalty_weight super(BeamSearchDecoderMixin, self).__init__(**kwargs) @property def batch_size(self): return self._batch_size def _rnn_output_size(self): """Get the output shape from the RNN layer.""" size = self._cell.output_size if self._output_layer is None: return size else: # To use layer's compute_output_shape, we need to convert the # RNNCell's output_size entries into shapes with an unknown # batch size. We then pass this through the layer's # compute_output_shape and read off all but the first (batch) # dimensions to get the output size of the rnn with the layer # applied to the top. output_shape_with_unknown_batch = nest.map_structure( lambda s: tensor_shape.TensorShape([None]).concatenate(s), size) layer_output_shape = self._output_layer.compute_output_shape( output_shape_with_unknown_batch) return nest.map_structure(lambda s: s[1:], layer_output_shape) @property def tracks_own_finished(self): """The BeamSearchDecoder shuffles its beams and their finished state. For this reason, it conflicts with the `dynamic_decode` function's tracking of finished states. Setting this property to true avoids early stopping of decoding due to mismanagement of the finished state in `dynamic_decode`. Returns: `True`. """ return True @property def output_size(self): # Return the cell output and the id return BeamSearchDecoderOutput( scores=tensor_shape.TensorShape([self._beam_width]), predicted_ids=tensor_shape.TensorShape([self._beam_width]), parent_ids=tensor_shape.TensorShape([self._beam_width])) def finalize(self, outputs, final_state, sequence_lengths): """Finalize and return the predicted_ids. Args: outputs: An instance of BeamSearchDecoderOutput. final_state: An instance of BeamSearchDecoderState. Passed through to the output. sequence_lengths: An `int64` tensor shaped `[batch_size, beam_width]`. The sequence lengths determined for each beam during decode. **NOTE** These are ignored; the updated sequence lengths are stored in `final_state.lengths`. Returns: outputs: An instance of `FinalBeamSearchDecoderOutput` where the predicted_ids are the result of calling _gather_tree. final_state: The same input instance of `BeamSearchDecoderState`. """ del sequence_lengths # Get max_sequence_length across all beams for each batch. max_sequence_lengths = math_ops.cast( math_ops.reduce_max(final_state.lengths, axis=1), dtypes.int32) predicted_ids = beam_search_ops.gather_tree( outputs.predicted_ids, outputs.parent_ids, max_sequence_lengths=max_sequence_lengths, end_token=self._end_token) if self._reorder_tensor_arrays: final_state = final_state._replace(cell_state=nest.map_structure( lambda t: self._maybe_sort_array_beams( t, outputs.parent_ids, final_state.lengths), final_state.cell_state)) outputs = FinalBeamSearchDecoderOutput( beam_search_decoder_output=outputs, predicted_ids=predicted_ids) return outputs, final_state def _merge_batch_beams(self, t, s=None): """Merges the tensor from a batch of beams into a batch by beams. More exactly, t is a tensor of dimension [batch_size, beam_width, s]. We reshape this into [batch_size*beam_width, s] Args: t: Tensor of dimension [batch_size, beam_width, s] s: (Possibly known) depth shape. Returns: A reshaped version of t with dimension [batch_size * beam_width, s]. """ if isinstance(s, ops.Tensor): s = tensor_shape.as_shape(tensor_util.constant_value(s)) else: s = tensor_shape.TensorShape(s) t_shape = array_ops.shape(t) static_batch_size = tensor_util.constant_value(self._batch_size) batch_size_beam_width = ( None if static_batch_size is None else static_batch_size * self._beam_width) reshaped_t = array_ops.reshape( t, array_ops.concat(([self._batch_size * self._beam_width], t_shape[2:]), 0)) reshaped_t.set_shape( (tensor_shape.TensorShape([batch_size_beam_width]).concatenate(s))) return reshaped_t def _split_batch_beams(self, t, s=None): """Splits the tensor from a batch by beams into a batch of beams. More exactly, t is a tensor of dimension [batch_size*beam_width, s]. We reshape this into [batch_size, beam_width, s] Args: t: Tensor of dimension [batch_size*beam_width, s]. s: (Possibly known) depth shape. Returns: A reshaped version of t with dimension [batch_size, beam_width, s]. Raises: ValueError: If, after reshaping, the new tensor is not shaped `[batch_size, beam_width, s]` (assuming batch_size and beam_width are known statically). """ if isinstance(s, ops.Tensor): s = tensor_shape.TensorShape(tensor_util.constant_value(s)) else: s = tensor_shape.TensorShape(s) t_shape = array_ops.shape(t) reshaped_t = array_ops.reshape( t, array_ops.concat(([self._batch_size, self._beam_width], t_shape[1:]), 0)) static_batch_size = tensor_util.constant_value(self._batch_size) expected_reshaped_shape = tensor_shape.TensorShape( [static_batch_size, self._beam_width]).concatenate(s) if not reshaped_t.shape.is_compatible_with(expected_reshaped_shape): raise ValueError("Unexpected behavior when reshaping between beam width " "and batch size. The reshaped tensor has shape: %s. " "We expected it to have shape " "(batch_size, beam_width, depth) == %s. Perhaps you " "forgot to create a zero_state with " "batch_size=encoder_batch_size * beam_width?" % (reshaped_t.shape, expected_reshaped_shape)) reshaped_t.set_shape(expected_reshaped_shape) return reshaped_t def _maybe_split_batch_beams(self, t, s): """Maybe splits the tensor from a batch by beams into a batch of beams. We do this so that we can use nest and not run into problems with shapes. Args: t: `Tensor`, either scalar or shaped `[batch_size * beam_width] + s`. s: `Tensor`, Python int, or `TensorShape`. Returns: If `t` is a matrix or higher order tensor, then the return value is `t` reshaped to `[batch_size, beam_width] + s`. Otherwise `t` is returned unchanged. Raises: ValueError: If the rank of `t` is not statically known. """ if isinstance(t, tensor_array_ops.TensorArray): return t _check_ndims(t) if t.shape.ndims >= 1: return self._split_batch_beams(t, s) else: return t def _maybe_merge_batch_beams(self, t, s): """Splits the tensor from a batch by beams into a batch of beams. More exactly, `t` is a tensor of dimension `[batch_size * beam_width] + s`, then we reshape it to `[batch_size, beam_width] + s`. Args: t: `Tensor` of dimension `[batch_size * beam_width] + s`. s: `Tensor`, Python int, or `TensorShape`. Returns: A reshaped version of t with shape `[batch_size, beam_width] + s`. Raises: ValueError: If the rank of `t` is not statically known. """ if isinstance(t, tensor_array_ops.TensorArray): return t _check_ndims(t) if t.shape.ndims >= 2: return self._merge_batch_beams(t, s) else: return t def _maybe_sort_array_beams(self, t, parent_ids, sequence_length): """Maybe sorts beams within a `TensorArray`. Args: t: A `TensorArray` of size `max_time` that contains `Tensor`s of shape `[batch_size, beam_width, s]` or `[batch_size * beam_width, s]` where `s` is the depth shape. parent_ids: The parent ids of shape `[max_time, batch_size, beam_width]`. sequence_length: The sequence length of shape `[batch_size, beam_width]`. Returns: A `TensorArray` where beams are sorted in each `Tensor` or `t` itself if it is not a `TensorArray` or does not meet shape requirements. """ if not isinstance(t, tensor_array_ops.TensorArray): return t # pylint: disable=protected-access # This is a bad hack due to the implementation detail of eager/graph TA. # TODO(b/124374427): Update this to use public property of TensorArray. if context.executing_eagerly(): element_shape = t._element_shape else: element_shape = t._element_shape[0] if (not t._infer_shape or not t._element_shape or element_shape.ndims is None or element_shape.ndims < 1): shape = ( element_shape if t._infer_shape and t._element_shape else tensor_shape.TensorShape(None)) tf_logging.warn("The TensorArray %s in the cell state is not amenable to " "sorting based on the beam search result. For a " "TensorArray to be sorted, its elements shape must be " "defined and have at least a rank of 1, but saw shape: %s" % (t.handle.name, shape)) return t # pylint: enable=protected-access if not _check_static_batch_beam_maybe( element_shape, tensor_util.constant_value(self._batch_size), self._beam_width): return t t = t.stack() with ops.control_dependencies( [_check_batch_beam(t, self._batch_size, self._beam_width)]): return gather_tree_from_array(t, parent_ids, sequence_length) def step(self, time, inputs, state, name=None): """Perform a decoding step. Args: time: scalar `int32` tensor. inputs: A (structure of) input tensors. state: A (structure of) state tensors and TensorArrays. name: Name scope for any created operations. Returns: `(outputs, next_state, next_inputs, finished)`. """ batch_size = self._batch_size beam_width = self._beam_width end_token = self._end_token length_penalty_weight = self._length_penalty_weight coverage_penalty_weight = self._coverage_penalty_weight with ops.name_scope(name, "BeamSearchDecoderStep", (time, inputs, state)): cell_state = state.cell_state inputs = nest.map_structure( lambda inp: self._merge_batch_beams(inp, s=inp.shape[2:]), inputs) cell_state = nest.map_structure(self._maybe_merge_batch_beams, cell_state, self._cell.state_size) cell_outputs, next_cell_state = self._cell(inputs, cell_state) cell_outputs = nest.map_structure( lambda out: self._split_batch_beams(out, out.shape[1:]), cell_outputs) next_cell_state = nest.map_structure( self._maybe_split_batch_beams, next_cell_state, self._cell.state_size) if self._output_layer is not None: cell_outputs = self._output_layer(cell_outputs) beam_search_output, beam_search_state = _beam_search_step( time=time, logits=cell_outputs, next_cell_state=next_cell_state, beam_state=state, batch_size=batch_size, beam_width=beam_width, end_token=end_token, length_penalty_weight=length_penalty_weight, coverage_penalty_weight=coverage_penalty_weight) finished = beam_search_state.finished sample_ids = beam_search_output.predicted_ids next_inputs = control_flow_ops.cond( math_ops.reduce_all(finished), lambda: self._start_inputs, lambda: self._embedding_fn(sample_ids)) return (beam_search_output, beam_search_state, next_inputs, finished) class BeamSearchDecoder(BeamSearchDecoderMixin, decoder.Decoder): # Note that the inheritance hierarchy is important here. The Mixin has to be # the first parent class since we will use super().__init__(), and Mixin which # is a object will properly invoke the __init__ method of other parent class. """BeamSearch sampling decoder. **NOTE** If you are using the `BeamSearchDecoder` with a cell wrapped in `AttentionWrapper`, then you must ensure that: - The encoder output has been tiled to `beam_width` via `tf.contrib.seq2seq.tile_batch` (NOT `tf.tile`). - The `batch_size` argument passed to the `zero_state` method of this wrapper is equal to `true_batch_size * beam_width`. - The initial state created with `zero_state` above contains a `cell_state` value containing properly tiled final state from the encoder. An example: ``` tiled_encoder_outputs = tf.contrib.seq2seq.tile_batch( encoder_outputs, multiplier=beam_width) tiled_encoder_final_state = tf.contrib.seq2seq.tile_batch( encoder_final_state, multiplier=beam_width) tiled_sequence_length = tf.contrib.seq2seq.tile_batch( sequence_length, multiplier=beam_width) attention_mechanism = MyFavoriteAttentionMechanism( num_units=attention_depth, memory=tiled_inputs, memory_sequence_length=tiled_sequence_length) attention_cell = AttentionWrapper(cell, attention_mechanism, ...) decoder_initial_state = attention_cell.zero_state( dtype, batch_size=true_batch_size * beam_width) decoder_initial_state = decoder_initial_state.clone( cell_state=tiled_encoder_final_state) ``` Meanwhile, with `AttentionWrapper`, coverage penalty is suggested to use when computing scores (https://arxiv.org/pdf/1609.08144.pdf). It encourages the decoder to cover all inputs. """ def __init__(self, cell, embedding, start_tokens, end_token, initial_state, beam_width, output_layer=None, length_penalty_weight=0.0, coverage_penalty_weight=0.0, reorder_tensor_arrays=True): """Initialize the BeamSearchDecoder. Args: cell: An `RNNCell` instance. embedding: A callable that takes a vector tensor of `ids` (argmax ids), or the `params` argument for `embedding_lookup`. start_tokens: `int32` vector shaped `[batch_size]`, the start tokens. end_token: `int32` scalar, the token that marks end of decoding. initial_state: A (possibly nested tuple of...) tensors and TensorArrays. beam_width: Python integer, the number of beams. output_layer: (Optional) An instance of `tf.keras.layers.Layer`, i.e., `tf.keras.layers.Dense`. Optional layer to apply to the RNN output prior to storing the result or sampling. length_penalty_weight: Float weight to penalize length. Disabled with 0.0. coverage_penalty_weight: Float weight to penalize the coverage of source sentence. Disabled with 0.0. reorder_tensor_arrays: If `True`, `TensorArray`s' elements within the cell state will be reordered according to the beam search path. If the `TensorArray` can be reordered, the stacked form will be returned. Otherwise, the `TensorArray` will be returned as is. Set this flag to `False` if the cell state contains `TensorArray`s that are not amenable to reordering. Raises: TypeError: if `cell` is not an instance of `RNNCell`, or `output_layer` is not an instance of `tf.keras.layers.Layer`. ValueError: If `start_tokens` is not a vector or `end_token` is not a scalar. """ super(BeamSearchDecoder, self).__init__( cell, beam_width, output_layer=output_layer, length_penalty_weight=length_penalty_weight, coverage_penalty_weight=coverage_penalty_weight, reorder_tensor_arrays=reorder_tensor_arrays) if callable(embedding): self._embedding_fn = embedding else: self._embedding_fn = ( lambda ids: embedding_ops.embedding_lookup(embedding, ids)) self._start_tokens = ops.convert_to_tensor( start_tokens, dtype=dtypes.int32, name="start_tokens") if self._start_tokens.get_shape().ndims != 1: raise ValueError("start_tokens must be a vector") self._end_token = ops.convert_to_tensor( end_token, dtype=dtypes.int32, name="end_token") if self._end_token.get_shape().ndims != 0: raise ValueError("end_token must be a scalar") self._batch_size = array_ops.size(start_tokens) self._initial_cell_state = nest.map_structure( self._maybe_split_batch_beams, initial_state, self._cell.state_size) self._start_tokens = array_ops.tile( array_ops.expand_dims(self._start_tokens, 1), [1, self._beam_width]) self._start_inputs = self._embedding_fn(self._start_tokens) self._finished = array_ops.one_hot( array_ops.zeros([self._batch_size], dtype=dtypes.int32), depth=self._beam_width, on_value=False, off_value=True, dtype=dtypes.bool) def initialize(self, name=None): """Initialize the decoder. Args: name: Name scope for any created operations. Returns: `(finished, start_inputs, initial_state)`. """ finished, start_inputs = self._finished, self._start_inputs dtype = nest.flatten(self._initial_cell_state)[0].dtype log_probs = array_ops.one_hot( # shape(batch_sz, beam_sz) array_ops.zeros([self._batch_size], dtype=dtypes.int32), depth=self._beam_width, on_value=ops.convert_to_tensor(0.0, dtype=dtype), off_value=ops.convert_to_tensor(-np.Inf, dtype=dtype), dtype=dtype) init_attention_probs = get_attention_probs( self._initial_cell_state, self._coverage_penalty_weight) if init_attention_probs is None: init_attention_probs = () initial_state = BeamSearchDecoderState( cell_state=self._initial_cell_state, log_probs=log_probs, finished=finished, lengths=array_ops.zeros( [self._batch_size, self._beam_width], dtype=dtypes.int64), accumulated_attention_probs=init_attention_probs) return (finished, start_inputs, initial_state) @property def output_dtype(self): # Assume the dtype of the cell is the output_size structure # containing the input_state's first component's dtype. # Return that structure and int32 (the id) dtype = nest.flatten(self._initial_cell_state)[0].dtype return BeamSearchDecoderOutput( scores=nest.map_structure(lambda _: dtype, self._rnn_output_size()), predicted_ids=dtypes.int32, parent_ids=dtypes.int32) class BeamSearchDecoderV2(BeamSearchDecoderMixin, decoder.BaseDecoder): # Note that the inheritance hierarchy is important here. The Mixin has to be # the first parent class since we will use super().__init__(), and Mixin which # is a object will properly invoke the __init__ method of other parent class. """BeamSearch sampling decoder. **NOTE** If you are using the `BeamSearchDecoder` with a cell wrapped in `AttentionWrapper`, then you must ensure that: - The encoder output has been tiled to `beam_width` via `tf.contrib.seq2seq.tile_batch` (NOT `tf.tile`). - The `batch_size` argument passed to the `zero_state` method of this wrapper is equal to `true_batch_size * beam_width`. - The initial state created with `zero_state` above contains a `cell_state` value containing properly tiled final state from the encoder. An example: ``` tiled_encoder_outputs = tf.contrib.seq2seq.tile_batch( encoder_outputs, multiplier=beam_width) tiled_encoder_final_state = tf.contrib.seq2seq.tile_batch( encoder_final_state, multiplier=beam_width) tiled_sequence_length = tf.contrib.seq2seq.tile_batch( sequence_length, multiplier=beam_width) attention_mechanism = MyFavoriteAttentionMechanism( num_units=attention_depth, memory=tiled_inputs, memory_sequence_length=tiled_sequence_length) attention_cell = AttentionWrapper(cell, attention_mechanism, ...) decoder_initial_state = attention_cell.zero_state( dtype, batch_size=true_batch_size * beam_width) decoder_initial_state = decoder_initial_state.clone( cell_state=tiled_encoder_final_state) ``` Meanwhile, with `AttentionWrapper`, coverage penalty is suggested to use when computing scores (https://arxiv.org/pdf/1609.08144.pdf). It encourages the decoding to cover all inputs. """ def __init__(self, cell, beam_width, embedding_fn=None, output_layer=None, length_penalty_weight=0.0, coverage_penalty_weight=0.0, reorder_tensor_arrays=True, **kwargs): """Initialize the BeamSearchDecoderV2. Args: cell: An `RNNCell` instance. beam_width: Python integer, the number of beams. embedding_fn: A callable that takes a vector tensor of `ids` (argmax ids). output_layer: (Optional) An instance of `tf.keras.layers.Layer`, i.e., `tf.keras.layers.Dense`. Optional layer to apply to the RNN output prior to storing the result or sampling. length_penalty_weight: Float weight to penalize length. Disabled with 0.0. coverage_penalty_weight: Float weight to penalize the coverage of source sentence. Disabled with 0.0. reorder_tensor_arrays: If `True`, `TensorArray`s' elements within the cell state will be reordered according to the beam search path. If the `TensorArray` can be reordered, the stacked form will be returned. Otherwise, the `TensorArray` will be returned as is. Set this flag to `False` if the cell state contains `TensorArray`s that are not amenable to reordering. **kwargs: Dict, other keyword arguments for initialization. Raises: TypeError: if `cell` is not an instance of `RNNCell`, or `output_layer` is not an instance of `tf.keras.layers.Layer`. """ super(BeamSearchDecoderV2, self).__init__( cell, beam_width, output_layer=output_layer, length_penalty_weight=length_penalty_weight, coverage_penalty_weight=coverage_penalty_weight, reorder_tensor_arrays=reorder_tensor_arrays, **kwargs) if embedding_fn is None or callable(embedding_fn): self._embedding_fn = embedding_fn else: raise ValueError("embedding_fn is expected to be a callable, got %s" % type(embedding_fn)) def initialize(self, embedding, start_tokens, end_token, initial_state): """Initialize the decoder. Args: embedding: A tensor from the embedding layer output, which is the `params` argument for `embedding_lookup`. start_tokens: `int32` vector shaped `[batch_size]`, the start tokens. end_token: `int32` scalar, the token that marks end of decoding. initial_state: A (possibly nested tuple of...) tensors and TensorArrays. Returns: `(finished, start_inputs, initial_state)`. Raises: ValueError: If `start_tokens` is not a vector or `end_token` is not a scalar. """ if embedding is not None and self._embedding_fn is not None: raise ValueError( "embedding and embedding_fn cannot be provided at same time") elif embedding is not None: self._embedding_fn = ( lambda ids: embedding_ops.embedding_lookup(embedding, ids)) self._start_tokens = ops.convert_to_tensor( start_tokens, dtype=dtypes.int32, name="start_tokens") if self._start_tokens.get_shape().ndims != 1: raise ValueError("start_tokens must be a vector") self._end_token = ops.convert_to_tensor( end_token, dtype=dtypes.int32, name="end_token") if self._end_token.get_shape().ndims != 0: raise ValueError("end_token must be a scalar") self._batch_size = array_ops.size(start_tokens) self._initial_cell_state = nest.map_structure( self._maybe_split_batch_beams, initial_state, self._cell.state_size) self._start_tokens = array_ops.tile( array_ops.expand_dims(self._start_tokens, 1), [1, self._beam_width]) self._start_inputs = self._embedding_fn(self._start_tokens) self._finished = array_ops.one_hot( array_ops.zeros([self._batch_size], dtype=dtypes.int32), depth=self._beam_width, on_value=False, off_value=True, dtype=dtypes.bool) finished, start_inputs = self._finished, self._start_inputs dtype = nest.flatten(self._initial_cell_state)[0].dtype log_probs = array_ops.one_hot( # shape(batch_sz, beam_sz) array_ops.zeros([self._batch_size], dtype=dtypes.int32), depth=self._beam_width, on_value=ops.convert_to_tensor(0.0, dtype=dtype), off_value=ops.convert_to_tensor(-np.Inf, dtype=dtype), dtype=dtype) init_attention_probs = get_attention_probs( self._initial_cell_state, self._coverage_penalty_weight) if init_attention_probs is None: init_attention_probs = () initial_state = BeamSearchDecoderState( cell_state=self._initial_cell_state, log_probs=log_probs, finished=finished, lengths=array_ops.zeros( [self._batch_size, self._beam_width], dtype=dtypes.int64), accumulated_attention_probs=init_attention_probs) return (finished, start_inputs, initial_state) @property def output_dtype(self): # Assume the dtype of the cell is the output_size structure # containing the input_state's first component's dtype. # Return that structure and int32 (the id) dtype = nest.flatten(self._initial_cell_state)[0].dtype return BeamSearchDecoderOutput( scores=nest.map_structure(lambda _: dtype, self._rnn_output_size()), predicted_ids=dtypes.int32, parent_ids=dtypes.int32) def call(self, embeddning, start_tokens, end_token, initial_state, **kwargs): init_kwargs = kwargs init_kwargs["start_tokens"] = start_tokens init_kwargs["end_token"] = end_token init_kwargs["initial_state"] = initial_state return decoder.dynamic_decode(self, output_time_major=self.output_time_major, impute_finished=self.impute_finished, maximum_iterations=self.maximum_iterations, parallel_iterations=self.parallel_iterations, swap_memory=self.swap_memory, decoder_init_input=embeddning, decoder_init_kwargs=init_kwargs) def _beam_search_step(time, logits, next_cell_state, beam_state, batch_size, beam_width, end_token, length_penalty_weight, coverage_penalty_weight): """Performs a single step of Beam Search Decoding. Args: time: Beam search time step, should start at 0. At time 0 we assume that all beams are equal and consider only the first beam for continuations. logits: Logits at the current time step. A tensor of shape `[batch_size, beam_width, vocab_size]` next_cell_state: The next state from the cell, e.g. an instance of AttentionWrapperState if the cell is attentional. beam_state: Current state of the beam search. An instance of `BeamSearchDecoderState`. batch_size: The batch size for this input. beam_width: Python int. The size of the beams. end_token: The int32 end token. length_penalty_weight: Float weight to penalize length. Disabled with 0.0. coverage_penalty_weight: Float weight to penalize the coverage of source sentence. Disabled with 0.0. Returns: A new beam state. """ static_batch_size = tensor_util.constant_value(batch_size) # Calculate the current lengths of the predictions prediction_lengths = beam_state.lengths previously_finished = beam_state.finished not_finished = math_ops.logical_not(previously_finished) # Calculate the total log probs for the new hypotheses # Final Shape: [batch_size, beam_width, vocab_size] step_log_probs = nn_ops.log_softmax(logits) step_log_probs = _mask_probs(step_log_probs, end_token, previously_finished) total_probs = array_ops.expand_dims(beam_state.log_probs, 2) + step_log_probs # Calculate the continuation lengths by adding to all continuing beams. vocab_size = logits.shape.dims[-1].value or array_ops.shape(logits)[-1] lengths_to_add = array_ops.one_hot( indices=array_ops.fill([batch_size, beam_width], end_token), depth=vocab_size, on_value=math_ops.to_int64(0), off_value=math_ops.to_int64(1), dtype=dtypes.int64) add_mask = math_ops.cast(not_finished, dtypes.int64) lengths_to_add *= array_ops.expand_dims(add_mask, 2) new_prediction_lengths = ( lengths_to_add + array_ops.expand_dims(prediction_lengths, 2)) # Calculate the accumulated attention probabilities if coverage penalty is # enabled. accumulated_attention_probs = None attention_probs = get_attention_probs( next_cell_state, coverage_penalty_weight) if attention_probs is not None: attention_probs *= array_ops.expand_dims( math_ops.cast(not_finished, dtypes.float32), 2) accumulated_attention_probs = ( beam_state.accumulated_attention_probs + attention_probs) # Calculate the scores for each beam scores = _get_scores( log_probs=total_probs, sequence_lengths=new_prediction_lengths, length_penalty_weight=length_penalty_weight, coverage_penalty_weight=coverage_penalty_weight, finished=previously_finished, accumulated_attention_probs=accumulated_attention_probs) time = ops.convert_to_tensor(time, name="time") # During the first time step we only consider the initial beam scores_flat = array_ops.reshape(scores, [batch_size, -1]) # Pick the next beams according to the specified successors function next_beam_size = ops.convert_to_tensor( beam_width, dtype=dtypes.int32, name="beam_width") next_beam_scores, word_indices = nn_ops.top_k(scores_flat, k=next_beam_size) next_beam_scores.set_shape([static_batch_size, beam_width]) word_indices.set_shape([static_batch_size, beam_width]) # Pick out the probs, beam_ids, and states according to the chosen predictions next_beam_probs = _tensor_gather_helper( gather_indices=word_indices, gather_from=total_probs, batch_size=batch_size, range_size=beam_width * vocab_size, gather_shape=[-1], name="next_beam_probs") # Note: just doing the following # math_ops.cast( # word_indices % vocab_size, # dtypes.int32, # name="next_beam_word_ids") # would be a lot cleaner but for reasons unclear, that hides the results of # the op which prevents capturing it with tfdbg debug ops. raw_next_word_ids = math_ops.mod( word_indices, vocab_size, name="next_beam_word_ids") next_word_ids = math_ops.cast(raw_next_word_ids, dtypes.int32) next_beam_ids = math_ops.cast( word_indices / vocab_size, dtypes.int32, name="next_beam_parent_ids") # Append new ids to current predictions previously_finished = _tensor_gather_helper( gather_indices=next_beam_ids, gather_from=previously_finished, batch_size=batch_size, range_size=beam_width, gather_shape=[-1]) next_finished = math_ops.logical_or( previously_finished, math_ops.equal(next_word_ids, end_token), name="next_beam_finished") # Calculate the length of the next predictions. # 1. Finished beams remain unchanged. # 2. Beams that are now finished (EOS predicted) have their length # increased by 1. # 3. Beams that are not yet finished have their length increased by 1. lengths_to_add = math_ops.cast( math_ops.logical_not(previously_finished), dtypes.int64) next_prediction_len = _tensor_gather_helper( gather_indices=next_beam_ids, gather_from=beam_state.lengths, batch_size=batch_size, range_size=beam_width, gather_shape=[-1]) next_prediction_len += lengths_to_add next_accumulated_attention_probs = () if accumulated_attention_probs is not None: next_accumulated_attention_probs = _tensor_gather_helper( gather_indices=next_beam_ids, gather_from=accumulated_attention_probs, batch_size=batch_size, range_size=beam_width, gather_shape=[batch_size * beam_width, -1], name="next_accumulated_attention_probs") # Pick out the cell_states according to the next_beam_ids. We use a # different gather_shape here because the cell_state tensors, i.e. # the tensors that would be gathered from, all have dimension # greater than two and we need to preserve those dimensions. # pylint: disable=g-long-lambda next_cell_state = nest.map_structure( lambda gather_from: _maybe_tensor_gather_helper( gather_indices=next_beam_ids, gather_from=gather_from, batch_size=batch_size, range_size=beam_width, gather_shape=[batch_size * beam_width, -1]), next_cell_state) # pylint: enable=g-long-lambda next_state = BeamSearchDecoderState( cell_state=next_cell_state, log_probs=next_beam_probs, lengths=next_prediction_len, finished=next_finished, accumulated_attention_probs=next_accumulated_attention_probs) output = BeamSearchDecoderOutput( scores=next_beam_scores, predicted_ids=next_word_ids, parent_ids=next_beam_ids) return output, next_state def get_attention_probs(next_cell_state, coverage_penalty_weight): """Get attention probabilities from the cell state. Args: next_cell_state: The next state from the cell, e.g. an instance of AttentionWrapperState if the cell is attentional. coverage_penalty_weight: Float weight to penalize the coverage of source sentence. Disabled with 0.0. Returns: The attention probabilities with shape `[batch_size, beam_width, max_time]` if coverage penalty is enabled. Otherwise, returns None. Raises: ValueError: If no cell is attentional but coverage penalty is enabled. """ if coverage_penalty_weight == 0.0: return None # Attention probabilities of each attention layer. Each with shape # `[batch_size, beam_width, max_time]`. probs_per_attn_layer = [] if isinstance(next_cell_state, attention_wrapper.AttentionWrapperState): probs_per_attn_layer = [attention_probs_from_attn_state(next_cell_state)] elif isinstance(next_cell_state, tuple): for state in next_cell_state: if isinstance(state, attention_wrapper.AttentionWrapperState): probs_per_attn_layer.append(attention_probs_from_attn_state(state)) if not probs_per_attn_layer: raise ValueError( "coverage_penalty_weight must be 0.0 if no cell is attentional.") if len(probs_per_attn_layer) == 1: attention_probs = probs_per_attn_layer[0] else: # Calculate the average attention probabilities from all attention layers. attention_probs = [ array_ops.expand_dims(prob, -1) for prob in probs_per_attn_layer] attention_probs = array_ops.concat(attention_probs, -1) attention_probs = math_ops.reduce_mean(attention_probs, -1) return attention_probs def _get_scores(log_probs, sequence_lengths, length_penalty_weight, coverage_penalty_weight, finished, accumulated_attention_probs): """Calculates scores for beam search hypotheses. Args: log_probs: The log probabilities with shape `[batch_size, beam_width, vocab_size]`. sequence_lengths: The array of sequence lengths. length_penalty_weight: Float weight to penalize length. Disabled with 0.0. coverage_penalty_weight: Float weight to penalize the coverage of source sentence. Disabled with 0.0. finished: A boolean tensor of shape `[batch_size, beam_width]` that specifies which elements in the beam are finished already. accumulated_attention_probs: Accumulated attention probabilities up to the current time step, with shape `[batch_size, beam_width, max_time]` if coverage_penalty_weight is not 0.0. Returns: The scores normalized by the length_penalty and coverage_penalty. Raises: ValueError: accumulated_attention_probs is None when coverage penalty is enabled. """ length_penalty_ = _length_penalty( sequence_lengths=sequence_lengths, penalty_factor=length_penalty_weight) length_penalty_ = math_ops.cast(length_penalty_, dtype=log_probs.dtype) scores = log_probs / length_penalty_ coverage_penalty_weight = ops.convert_to_tensor( coverage_penalty_weight, name="coverage_penalty_weight") if coverage_penalty_weight.shape.ndims != 0: raise ValueError("coverage_penalty_weight should be a scalar, " "but saw shape: %s" % coverage_penalty_weight.shape) if tensor_util.constant_value(coverage_penalty_weight) == 0.0: return scores if accumulated_attention_probs is None: raise ValueError( "accumulated_attention_probs can be None only if coverage penalty is " "disabled.") # Add source sequence length mask before computing coverage penalty. accumulated_attention_probs = array_ops.where( math_ops.equal(accumulated_attention_probs, 0.0), array_ops.ones_like(accumulated_attention_probs), accumulated_attention_probs) # coverage penalty = # sum over `max_time` {log(min(accumulated_attention_probs, 1.0))} coverage_penalty = math_ops.reduce_sum( math_ops.log(math_ops.minimum(accumulated_attention_probs, 1.0)), 2) # Apply coverage penalty to finished predictions. coverage_penalty *= math_ops.cast(finished, dtypes.float32) weighted_coverage_penalty = coverage_penalty * coverage_penalty_weight # Reshape from [batch_size, beam_width] to [batch_size, beam_width, 1] weighted_coverage_penalty = array_ops.expand_dims( weighted_coverage_penalty, 2) return scores + weighted_coverage_penalty def attention_probs_from_attn_state(attention_state): """Calculates the average attention probabilities. Args: attention_state: An instance of `AttentionWrapperState`. Returns: The attention probabilities in the given AttentionWrapperState. If there're multiple attention mechanisms, return the average value from all attention mechanisms. """ # Attention probabilities over time steps, with shape # `[batch_size, beam_width, max_time]`. attention_probs = attention_state.alignments if isinstance(attention_probs, tuple): attention_probs = [ array_ops.expand_dims(prob, -1) for prob in attention_probs] attention_probs = array_ops.concat(attention_probs, -1) attention_probs = math_ops.reduce_mean(attention_probs, -1) return attention_probs def _length_penalty(sequence_lengths, penalty_factor): """Calculates the length penalty. See https://arxiv.org/abs/1609.08144. Returns the length penalty tensor: ``` [(5+sequence_lengths)/6]**penalty_factor ``` where all operations are performed element-wise. Args: sequence_lengths: `Tensor`, the sequence lengths of each hypotheses. penalty_factor: A scalar that weights the length penalty. Returns: If the penalty is `0`, returns the scalar `1.0`. Otherwise returns the length penalty factor, a tensor with the same shape as `sequence_lengths`. """ penalty_factor = ops.convert_to_tensor(penalty_factor, name="penalty_factor") penalty_factor.set_shape(()) # penalty should be a scalar. static_penalty = tensor_util.constant_value(penalty_factor) if static_penalty is not None and static_penalty == 0: return 1.0 return math_ops.div( (5. + math_ops.cast(sequence_lengths, dtypes.float32))**penalty_factor, (5. + 1.)**penalty_factor) def _mask_probs(probs, eos_token, finished): """Masks log probabilities. The result is that finished beams allocate all probability mass to eos and unfinished beams remain unchanged. Args: probs: Log probabilities of shape `[batch_size, beam_width, vocab_size]` eos_token: An int32 id corresponding to the EOS token to allocate probability to. finished: A boolean tensor of shape `[batch_size, beam_width]` that specifies which elements in the beam are finished already. Returns: A tensor of shape `[batch_size, beam_width, vocab_size]`, where unfinished beams stay unchanged and finished beams are replaced with a tensor with all probability on the EOS token. """ vocab_size = array_ops.shape(probs)[2] # All finished examples are replaced with a vector that has all # probability on EOS finished_row = array_ops.one_hot( eos_token, vocab_size, dtype=probs.dtype, on_value=ops.convert_to_tensor(0., dtype=probs.dtype), off_value=probs.dtype.min) finished_probs = array_ops.tile( array_ops.reshape(finished_row, [1, 1, -1]), array_ops.concat([array_ops.shape(finished), [1]], 0)) finished_mask = array_ops.tile( array_ops.expand_dims(finished, 2), [1, 1, vocab_size]) return array_ops.where(finished_mask, finished_probs, probs) def _maybe_tensor_gather_helper(gather_indices, gather_from, batch_size, range_size, gather_shape): """Maybe applies _tensor_gather_helper. This applies _tensor_gather_helper when the gather_from dims is at least as big as the length of gather_shape. This is used in conjunction with nest so that we don't apply _tensor_gather_helper to inapplicable values like scalars. Args: gather_indices: The tensor indices that we use to gather. gather_from: The tensor that we are gathering from. batch_size: The batch size. range_size: The number of values in each range. Likely equal to beam_width. gather_shape: What we should reshape gather_from to in order to preserve the correct values. An example is when gather_from is the attention from an AttentionWrapperState with shape [batch_size, beam_width, attention_size]. There, we want to preserve the attention_size elements, so gather_shape is [batch_size * beam_width, -1]. Then, upon reshape, we still have the attention_size as desired. Returns: output: Gathered tensor of shape tf.shape(gather_from)[:1+len(gather_shape)] or the original tensor if its dimensions are too small. """ if isinstance(gather_from, tensor_array_ops.TensorArray): return gather_from _check_ndims(gather_from) if gather_from.shape.ndims >= len(gather_shape): return _tensor_gather_helper( gather_indices=gather_indices, gather_from=gather_from, batch_size=batch_size, range_size=range_size, gather_shape=gather_shape) else: return gather_from def _tensor_gather_helper(gather_indices, gather_from, batch_size, range_size, gather_shape, name=None): """Helper for gathering the right indices from the tensor. This works by reshaping gather_from to gather_shape (e.g. [-1]) and then gathering from that according to the gather_indices, which are offset by the right amounts in order to preserve the batch order. Args: gather_indices: The tensor indices that we use to gather. gather_from: The tensor that we are gathering from. batch_size: The input batch size. range_size: The number of values in each range. Likely equal to beam_width. gather_shape: What we should reshape gather_from to in order to preserve the correct values. An example is when gather_from is the attention from an AttentionWrapperState with shape [batch_size, beam_width, attention_size]. There, we want to preserve the attention_size elements, so gather_shape is [batch_size * beam_width, -1]. Then, upon reshape, we still have the attention_size as desired. name: The tensor name for set of operations. By default this is 'tensor_gather_helper'. The final output is named 'output'. Returns: output: Gathered tensor of shape tf.shape(gather_from)[:1+len(gather_shape)] """ with ops.name_scope(name, "tensor_gather_helper"): range_ = array_ops.expand_dims(math_ops.range(batch_size) * range_size, 1) gather_indices = array_ops.reshape(gather_indices + range_, [-1]) output = array_ops.gather( array_ops.reshape(gather_from, gather_shape), gather_indices) final_shape = array_ops.shape(gather_from)[:1 + len(gather_shape)] static_batch_size = tensor_util.constant_value(batch_size) final_static_shape = ( tensor_shape.TensorShape([static_batch_size]).concatenate( gather_from.shape[1:1 + len(gather_shape)])) output = array_ops.reshape(output, final_shape, name="output") output.set_shape(final_static_shape) return output
tensorflow-master
tensorflow/contrib/seq2seq/python/ops/beam_search_decoder.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Kafka Dataset. @@KafkaDataset """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.kafka.python.ops.kafka_dataset_ops import KafkaDataset from tensorflow.python.util.all_util import remove_undocumented _allowed_symbols = [ "KafkaDataset", ] remove_undocumented(__name__)
tensorflow-master
tensorflow/contrib/kafka/__init__.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may not # use this file except in compliance with the License. You may obtain a copy of # the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations under # the License. # ============================================================================== """Tests for KafkaDataset.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.kafka.python.ops import kafka_dataset_ops from tensorflow.python.data.ops import dataset_ops from tensorflow.python.data.ops import iterator_ops from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.ops import array_ops from tensorflow.python.platform import test class KafkaDatasetTest(test.TestCase): def setUp(self): # The Kafka server has to be setup before the test # and tear down after the test manually. # The docker engine has to be installed. # # To setup the Kafka server: # $ bash kafka_test.sh start kafka # # To team down the Kafka server: # $ bash kafka_test.sh stop kafka pass def testKafkaDataset(self): topics = array_ops.placeholder(dtypes.string, shape=[None]) num_epochs = array_ops.placeholder(dtypes.int64, shape=[]) batch_size = array_ops.placeholder(dtypes.int64, shape=[]) repeat_dataset = kafka_dataset_ops.KafkaDataset( topics, group="test", eof=True).repeat(num_epochs) batch_dataset = repeat_dataset.batch(batch_size) iterator = iterator_ops.Iterator.from_structure( dataset_ops.get_legacy_output_types(batch_dataset)) init_op = iterator.make_initializer(repeat_dataset) init_batch_op = iterator.make_initializer(batch_dataset) get_next = iterator.get_next() with self.cached_session() as sess: # Basic test: read from topic 0. sess.run(init_op, feed_dict={topics: ["test:0:0:4"], num_epochs: 1}) for i in range(5): self.assertEqual("D" + str(i), sess.run(get_next)) with self.assertRaises(errors.OutOfRangeError): sess.run(get_next) # Basic test: read from topic 1. sess.run(init_op, feed_dict={topics: ["test:0:5:-1"], num_epochs: 1}) for i in range(5): self.assertEqual("D" + str(i + 5), sess.run(get_next)) with self.assertRaises(errors.OutOfRangeError): sess.run(get_next) # Basic test: read from both topics. sess.run( init_op, feed_dict={ topics: ["test:0:0:4", "test:0:5:-1"], num_epochs: 1 }) for j in range(2): for i in range(5): self.assertEqual("D" + str(i + j * 5), sess.run(get_next)) with self.assertRaises(errors.OutOfRangeError): sess.run(get_next) # Test repeated iteration through both files. sess.run( init_op, feed_dict={ topics: ["test:0:0:4", "test:0:5:-1"], num_epochs: 10 }) for _ in range(10): for j in range(2): for i in range(5): self.assertEqual("D" + str(i + j * 5), sess.run(get_next)) with self.assertRaises(errors.OutOfRangeError): sess.run(get_next) # Test batched and repeated iteration through both files. sess.run( init_batch_op, feed_dict={ topics: ["test:0:0:4", "test:0:5:-1"], num_epochs: 10, batch_size: 5 }) for _ in range(10): self.assertAllEqual(["D" + str(i) for i in range(5)], sess.run(get_next)) self.assertAllEqual(["D" + str(i + 5) for i in range(5)], sess.run(get_next)) if __name__ == "__main__": test.main()
tensorflow-master
tensorflow/contrib/kafka/python/kernel_tests/kafka_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Kafka Dataset.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.kafka.python.ops import gen_dataset_ops from tensorflow.contrib.kafka.python.ops import kafka_op_loader # pylint: disable=unused-import from tensorflow.python.data.ops import dataset_ops from tensorflow.python.data.util import structure from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.util import deprecation class KafkaDataset(dataset_ops.DatasetSource): """A Kafka Dataset that consumes the message. """ @deprecation.deprecated( None, "tf.contrib.kafka will be removed in 2.0, the support for Apache Kafka " "will continue to be provided through the tensorflow/io GitHub project.") def __init__(self, topics, servers="localhost", group="", eof=False, timeout=1000): """Create a KafkaReader. Args: topics: A `tf.string` tensor containing one or more subscriptions, in the format of [topic:partition:offset:length], by default length is -1 for unlimited. servers: A list of bootstrap servers. group: The consumer group id. eof: If True, the kafka reader will stop on EOF. timeout: The timeout value for the Kafka Consumer to wait (in millisecond). """ self._topics = ops.convert_to_tensor( topics, dtype=dtypes.string, name="topics") self._servers = ops.convert_to_tensor( servers, dtype=dtypes.string, name="servers") self._group = ops.convert_to_tensor( group, dtype=dtypes.string, name="group") self._eof = ops.convert_to_tensor(eof, dtype=dtypes.bool, name="eof") self._timeout = ops.convert_to_tensor( timeout, dtype=dtypes.int64, name="timeout") super(KafkaDataset, self).__init__(self._as_variant_tensor()) def _as_variant_tensor(self): return gen_dataset_ops.kafka_dataset(self._topics, self._servers, self._group, self._eof, self._timeout) @property def _element_structure(self): return structure.TensorStructure(dtypes.string, [])
tensorflow-master
tensorflow/contrib/kafka/python/ops/kafka_dataset_ops.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Python helper for loading kafka ops and kernels.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.util import loader from tensorflow.python.platform import resource_loader _dataset_ops = loader.load_op_library( resource_loader.get_path_to_datafile("../../_dataset_ops.so"))
tensorflow-master
tensorflow/contrib/kafka/python/ops/kafka_op_loader.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= """Exposes the python wrapper for TensorRT graph transforms.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function # pylint: disable=unused-import,wildcard-import from tensorflow.contrib.tensorrt.python import * # pylint: enable=unused-import,wildcard-import
tensorflow-master
tensorflow/contrib/tensorrt/__init__.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= """Exposes the Python wrapper conversion to trt_graph.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.compiler.tensorrt import trt_convert def create_inference_graph( input_graph_def, outputs, max_batch_size=1, max_workspace_size_bytes=trt_convert.DEFAULT_TRT_MAX_WORKSPACE_SIZE_BYTES, precision_mode=trt_convert.TrtPrecisionMode.FP32, minimum_segment_size=3, is_dynamic_op=False, maximum_cached_engines=1, cached_engine_batches=None, input_saved_model_dir=None, input_saved_model_tags=None, output_saved_model_dir=None, session_config=None): return trt_convert.create_inference_graph( input_graph_def=input_graph_def, outputs=outputs, max_batch_size=max_batch_size, max_workspace_size_bytes=max_workspace_size_bytes, precision_mode=precision_mode, minimum_segment_size=minimum_segment_size, is_dynamic_op=is_dynamic_op, maximum_cached_engines=maximum_cached_engines, cached_engine_batches=cached_engine_batches, input_saved_model_dir=input_saved_model_dir, input_saved_model_tags=input_saved_model_tags, output_saved_model_dir=output_saved_model_dir, session_config=session_config)
tensorflow-master
tensorflow/contrib/tensorrt/python/trt_convert.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= """Exposes the python wrapper for TensorRT graph transforms.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function # pylint: disable=unused-import,line-too-long from tensorflow.contrib.tensorrt.python.trt_convert import create_inference_graph # pylint: enable=unused-import,line-too-long
tensorflow-master
tensorflow/contrib/tensorrt/python/__init__.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Sequence File Dataset. @@SequenceFileDataset """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.hadoop.python.ops.hadoop_dataset_ops import SequenceFileDataset from tensorflow.python.util.all_util import remove_undocumented _allowed_symbols = [ "SequenceFileDataset", ] remove_undocumented(__name__)
tensorflow-master
tensorflow/contrib/hadoop/__init__.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may not # use this file except in compliance with the License. You may obtain a copy of # the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations under # the License. # ============================================================================== """Tests for SequenceFileDataset.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from tensorflow.contrib.hadoop.python.ops import hadoop_dataset_ops from tensorflow.python.data.ops import dataset_ops from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.platform import resource_loader from tensorflow.python.platform import test class SequenceFileDatasetTest(test.TestCase): def test_sequence_file_dataset(self): """Test case for SequenceFileDataset. The file is generated with `org.apache.hadoop.io.Text` for key/value. There are 25 records in the file with the format of: key = XXX value = VALUEXXX where XXX is replaced as the line number (starts with 001). """ filename = os.path.join(resource_loader.get_data_files_path(), "testdata", "string.seq") filenames = constant_op.constant([filename], dtypes.string) num_repeats = 2 dataset = hadoop_dataset_ops.SequenceFileDataset(filenames).repeat( num_repeats) iterator = dataset_ops.make_initializable_iterator(dataset) init_op = iterator.initializer get_next = iterator.get_next() with self.cached_session() as sess: sess.run(init_op) for _ in range(num_repeats): # Dataset is repeated. for i in range(25): # 25 records. v0 = b"%03d" % (i + 1) v1 = b"VALUE%03d" % (i + 1) self.assertEqual((v0, v1), sess.run(get_next)) with self.assertRaises(errors.OutOfRangeError): sess.run(get_next) if __name__ == "__main__": test.main()
tensorflow-master
tensorflow/contrib/hadoop/python/kernel_tests/hadoop_test.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Python helper for loading hadoop ops and kernels.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.util import loader from tensorflow.python.platform import resource_loader _dataset_ops = loader.load_op_library( resource_loader.get_path_to_datafile("../../_dataset_ops.so"))
tensorflow-master
tensorflow/contrib/hadoop/python/ops/hadoop_op_loader.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """SequenceFile Dataset.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.hadoop.python.ops import gen_dataset_ops from tensorflow.contrib.hadoop.python.ops import hadoop_op_loader # pylint: disable=unused-import from tensorflow.python.data.ops import dataset_ops from tensorflow.python.data.util import structure from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.util import deprecation class SequenceFileDataset(dataset_ops.DatasetSource): """A Sequence File Dataset that reads the sequence file.""" @deprecation.deprecated( None, "tf.contrib.hadoop will be removed in 2.0, the support for Apache Hadoop " "will continue to be provided through the tensorflow/io GitHub project.") def __init__(self, filenames): """Create a `SequenceFileDataset`. `SequenceFileDataset` allows a user to read data from a hadoop sequence file. A sequence file consists of (key value) pairs sequentially. At the moment, `org.apache.hadoop.io.Text` is the only serialization type being supported, and there is no compression support. For example: ```python tf.compat.v1.enable_eager_execution() dataset = tf.contrib.hadoop.SequenceFileDataset("/foo/bar.seq") # Prints the (key, value) pairs inside a hadoop sequence file. for key, value in dataset: print(key, value) ``` Args: filenames: A `tf.string` tensor containing one or more filenames. """ self._filenames = ops.convert_to_tensor( filenames, dtype=dtypes.string, name="filenames") variant_tensor = gen_dataset_ops.sequence_file_dataset( self._filenames, self._element_structure._flat_types) # pylint: disable=protected-access super(SequenceFileDataset, self).__init__(variant_tensor) @property def _element_structure(self): return structure.NestedStructure( (structure.TensorStructure(dtypes.string, []), structure.TensorStructure(dtypes.string, [])))
tensorflow-master
tensorflow/contrib/hadoop/python/ops/hadoop_dataset_ops.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """hooks: A module containing `SessionRunHook`s for use with `MonitoredSession`. @@ProfilerHook """ from __future__ import absolute_import from __future__ import division from __future__ import print_function # pylint: disable=wildcard-import from tensorflow.contrib.hooks.python.training import * # pylint: enable=wildcard-import from tensorflow.python.util.all_util import remove_undocumented _allowed_symbols = ['ProfilerHook'] remove_undocumented(__name__, _allowed_symbols)
tensorflow-master
tensorflow/contrib/hooks/__init__.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Experimental `SessionRunHooks` for use with `MonitoredSession`.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function # pylint: disable=wildcard-import from tensorflow.contrib.hooks.python.training import * # pylint: enable=wildcard-import
tensorflow-master
tensorflow/contrib/hooks/python/__init__.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """hooks: A module containing `SessionRunHook`s for use with `MonitoredSession`. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.hooks.python.training.profiler_hook import ProfilerHook
tensorflow-master
tensorflow/contrib/hooks/python/training/__init__.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Placeholder of ProfilerHook for backward compatibility.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.training import basic_session_run_hooks ProfilerHook = basic_session_run_hooks.ProfilerHook # pylint: disable=invalid-name
tensorflow-master
tensorflow/contrib/hooks/python/training/profiler_hook.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Ops and modules related to batch. @@batch_function_v1 @@batch_function """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.batching.python.ops.batch_ops import batch_function from tensorflow.python.util.all_util import remove_undocumented remove_undocumented(__name__)
tensorflow-master
tensorflow/contrib/batching/__init__.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Operations for automatic batching and unbatching.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.framework import ops from tensorflow.python.ops import gen_batch_ops # pylint: disable=unused-import from tensorflow.python.ops.batch_ops import batch from tensorflow.python.ops.batch_ops import batch_function from tensorflow.python.ops.batch_ops import unbatch # pylint: enable=unused-import @ops.RegisterGradient("Batch") def _BatchGrad(op, *out_grads): # pylint: disable=invalid-name """Gradient for batch op.""" gradients = [] for i in range(len(op.inputs)): gradients.append( gen_batch_ops.unbatch( out_grads[i], op.outputs[-2], op.outputs[-1], timeout_micros=op.get_attr("grad_timeout_micros"), shared_name="batch_gradient_{}_{}".format(op.name, i))) return gradients @ops.RegisterGradient("Unbatch") def _UnbatchGrad(op, grad): # pylint: disable=invalid-name return [ gen_batch_ops.unbatch_grad( op.inputs[0], op.inputs[1], grad, op.inputs[2], shared_name="unbatch_gradient_{}".format(op.name)), None, None ] def batch_function_v1(num_batch_threads, max_batch_size, batch_timeout_micros, allowed_batch_sizes=None, grad_timeout_micros=60 * 1000 * 1000, unbatch_timeout_micros=60 * 1000 * 1000, max_enqueued_batches=10): """Batches the computation done by the decorated function. This is the older version of batch_function(). Please use the former instead of this. Args: num_batch_threads: Number of scheduling threads for processing batches of work. Determines the number of batches processed in parallel. max_batch_size: Batch sizes will never be bigger than this. batch_timeout_micros: Maximum number of microseconds to wait before outputting an incomplete batch. allowed_batch_sizes: Optional list of allowed batch sizes. If left empty, does nothing. Otherwise, supplies a list of batch sizes, causing the op to pad batches up to one of those sizes. The entries must increase monotonically, and the final entry must equal max_batch_size. grad_timeout_micros: The timeout to use for the gradient. See the documentation of the unbatch op for more details. Defaults to 60s. unbatch_timeout_micros: The timeout to use for unbatching. See the documentation of the unbatch op for more details. Defaults to 60s. max_enqueued_batches: The maximum depth of the batch queue. Defaults to 10. Returns: The decorated function will return the unbatched computation output Tensors. """ def decorator(f): # pylint: disable=missing-docstring def decorated(*args): with ops.name_scope("batch") as name: for a in args: if not isinstance(a, ops.Tensor): raise ValueError("All arguments to functions decorated with " "`batch_function` are supposed to be Tensors; " "found %s" % repr(a)) batched_tensors, batch_index, id_t = gen_batch_ops.batch( args, num_batch_threads=num_batch_threads, max_batch_size=max_batch_size, batch_timeout_micros=batch_timeout_micros, max_enqueued_batches=max_enqueued_batches, allowed_batch_sizes=allowed_batch_sizes, grad_timeout_micros=grad_timeout_micros, shared_name=name) outputs = f(*batched_tensors) if isinstance(outputs, ops.Tensor): outputs_list = [outputs] else: outputs_list = outputs with ops.name_scope("unbatch") as unbatch_name: unbatched = [ gen_batch_ops.unbatch(t, batch_index, id_t, timeout_micros=unbatch_timeout_micros, shared_name=unbatch_name + "/" + t.name) for t in outputs_list] if isinstance(outputs, ops.Tensor): return unbatched[0] return unbatched return decorated return decorator
tensorflow-master
tensorflow/contrib/batching/python/ops/batch_ops.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for the currently experimental in-graph batch ops.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import threading import time from tensorflow.contrib.batching.python.ops import batch_ops from tensorflow.python.framework import dtypes from tensorflow.python.ops import array_ops from tensorflow.python.ops import gradients_impl from tensorflow.python.platform import test def delayed_plus1(x): """Sleeps for 100ms then returns x+1.""" time.sleep(0.1) return x + 1 class BatchOpsTest(test.TestCase): """Tests for batch_ops.{un,}batch.""" def testBasicUnbatchV1Decorated(self): """Tests that the batch_function_v1 decorator works.""" with self.cached_session() as sess: @batch_ops.batch_function_v1(1, 10, 100000) def computation(in_t): return in_t + 1 inp = array_ops.placeholder(dtype=dtypes.int32, shape=[1]) result = computation(inp) thread_results = [] def worker(): thread_results.extend(sess.run([result], feed_dict={inp: [1]})) worker_thread = threading.Thread(target=worker) worker_thread.start() main_results = sess.run([result], feed_dict={inp: [2]}) worker_thread.join() self.assertEqual(thread_results[0], [2]) self.assertEqual(main_results[0], [3]) def testUnbatchGrad(self): """Tests that batch and unbatch are differentiable.""" with self.cached_session() as sess: inp = array_ops.placeholder(dtype=dtypes.float32, shape=[1]) batched, index, id_t = batch_ops.batch( [inp], num_batch_threads=1, max_batch_size=2, batch_timeout_micros=36000000, grad_timeout_micros=1000000, batching_queue="") computation = batched[0] * batched[0] result = batch_ops.unbatch(computation, index, id_t, timeout_micros=1000000, shared_name="unbatch") grad = gradients_impl.gradients(result, inp) thread_results = [] def worker(): thread_results.extend(sess.run([grad], feed_dict={inp: [1]})) worker_thread = threading.Thread(target=worker) worker_thread.start() main_results = sess.run([grad], feed_dict={inp: [2]}) worker_thread.join() self.assertEqual(thread_results[0], [2]) self.assertEqual(main_results[0], [4]) if __name__ == "__main__": test.main()
tensorflow-master
tensorflow/contrib/batching/python/ops/batch_ops_test.py
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Functions to copy elements between graphs. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.copy_graph.python.util import copy_elements # pylint: disable=wildcard-import from tensorflow.contrib.copy_graph.python.util.copy_elements import * # pylint: enable=wildcard-import from tensorflow.python.util.all_util import remove_undocumented remove_undocumented(__name__, doc_string_modules=[copy_elements])
tensorflow-master
tensorflow/contrib/copy_graph/__init__.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Functions for copying elements from one graph to another. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function
tensorflow-master
tensorflow/contrib/copy_graph/python/__init__.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Functions for copying elements from one graph to another. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function
tensorflow-master
tensorflow/contrib/copy_graph/python/util/__init__.py
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """## Functions for copying elements from one graph to another. These functions allow for recursive copying of elements (ops and variables) from one graph to another. The copied elements are initialized inside a user-specified scope in the other graph. There are separate functions to copy ops and variables. There is also a function to retrieve the copied version of an op from the first graph inside a scope in the second graph. @@copy_op_to_graph @@copy_variable_to_graph @@get_copied_op """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from copy import deepcopy from tensorflow.python.ops.variables import VariableV1 from tensorflow.python.client.session import Session from tensorflow.python.framework import ops __all__ = ['copy_op_to_graph', 'copy_variable_to_graph', 'get_copied_op'] def copy_variable_to_graph(org_instance, to_graph, scope=''): """Given a `Variable` instance from one `Graph`, initializes and returns a copy of it from another `Graph`, under the specified scope (default `""`). Args: org_instance: A `Variable` from some `Graph`. to_graph: The `Graph` to copy the `Variable` to. scope: A scope for the new `Variable` (default `""`). Returns: The copied `Variable` from `to_graph`. Raises: TypeError: If `org_instance` is not a `Variable`. """ if not isinstance(org_instance, VariableV1): raise TypeError(str(org_instance) + ' is not a Variable') #The name of the new variable if scope != '': new_name = (scope + '/' + org_instance.name[:org_instance.name.index(':')]) else: new_name = org_instance.name[:org_instance.name.index(':')] #Get the collections that the new instance needs to be added to. #The new collections will also be a part of the given scope, #except the special ones required for variable initialization and #training. collections = [] for name, collection in org_instance.graph._collections.items(): if org_instance in collection: if (name == ops.GraphKeys.GLOBAL_VARIABLES or name == ops.GraphKeys.TRAINABLE_VARIABLES or scope == ''): collections.append(name) else: collections.append(scope + '/' + name) #See if it's trainable. trainable = ( org_instance in org_instance.graph.get_collection( ops.GraphKeys.TRAINABLE_VARIABLES)) #Get the initial value with org_instance.graph.as_default(): temp_session = Session() init_value = temp_session.run(org_instance.initialized_value()) #Initialize the new variable with to_graph.as_default(): new_var = VariableV1( init_value, trainable, name=new_name, collections=collections, validate_shape=False) return new_var def copy_op_to_graph(org_instance, to_graph, variables, scope=''): """Returns a copy of an operation from another Graph under a specified scope. Given an `Operation` `org_instance` from one `Graph`, initializes and returns a copy of it from another `Graph`, under the specified scope (default `""`). The copying is done recursively, so any `Operation` whose output is required to evaluate the `org_instance`, is also copied (unless already done). Since `Variable` instances are copied separately, those required to evaluate `org_instance` must be provided as input. Args: org_instance: An `Operation` from some `Graph`. Could be a `Placeholder` as well. to_graph: The `Graph` to copy `org_instance` to. variables: An iterable of `Variable` instances to copy `org_instance` to. scope: A scope for the new `Variable` (default `""`). Returns: The copied `Operation` from `to_graph`. Raises: TypeError: If `org_instance` is not an `Operation` or `Tensor`. """ #The name of the new instance if scope != '': new_name = scope + '/' + org_instance.name else: new_name = org_instance.name #Extract names of variables copied_variables = dict((x.name, x) for x in variables) #If a variable by the new name already exists, return the #correspondng tensor that will act as an input if new_name in copied_variables: return to_graph.get_tensor_by_name(copied_variables[new_name].name) #If an instance of the same name exists, return appropriately try: already_present = to_graph.as_graph_element( new_name, allow_tensor=True, allow_operation=True) return already_present except: pass #Get the collections that the new instance needs to be added to. #The new collections will also be a part of the given scope. collections = [] for name, collection in org_instance.graph._collections.items(): if org_instance in collection: if scope == '': collections.append(name) else: collections.append(scope + '/' + name) #Take action based on the class of the instance if isinstance(org_instance, ops.Tensor): #If it's a Tensor, it is one of the outputs of the underlying #op. Therefore, copy the op itself and return the appropriate #output. op = org_instance.op new_op = copy_op_to_graph(op, to_graph, variables, scope) output_index = op.outputs.index(org_instance) new_tensor = new_op.outputs[output_index] #Add to collections if any for collection in collections: to_graph.add_to_collection(collection, new_tensor) return new_tensor elif isinstance(org_instance, ops.Operation): op = org_instance #If it has an original_op parameter, copy it if op._original_op is not None: new_original_op = copy_op_to_graph(op._original_op, to_graph, variables, scope) else: new_original_op = None #If it has control inputs, call this function recursively on each. new_control_inputs = [ copy_op_to_graph(x, to_graph, variables, scope) for x in op.control_inputs ] #If it has inputs, call this function recursively on each. new_inputs = [ copy_op_to_graph(x, to_graph, variables, scope) for x in op.inputs ] #Make a new node_def based on that of the original. #An instance of tensorflow.core.framework.node_def_pb2.NodeDef, it #stores String-based info such as name, device and type of the op. #Unique to every Operation instance. new_node_def = deepcopy(op.node_def) #Change the name new_node_def.name = new_name #Copy the other inputs needed for initialization output_types = op._output_types[:] input_types = op._input_types[:] #Make a copy of the op_def too. #Its unique to every _type_ of Operation. op_def = deepcopy(op.op_def) #Initialize a new Operation instance new_op = ops.Operation(new_node_def, to_graph, new_inputs, output_types, new_control_inputs, input_types, new_original_op, op_def) #Use Graph's hidden methods to add the op to_graph._record_op_seen_by_control_dependencies(new_op) # pylint: disable=protected-access for device_function in to_graph._device_functions_outer_to_inner: new_op._set_device(device_function(new_op)) # pylint: enable=protected-access return new_op else: raise TypeError('Could not copy instance: ' + str(org_instance)) def get_copied_op(org_instance, graph, scope=''): """Given an `Operation` instance from some `Graph`, returns its namesake from `graph`, under the specified scope (default `""`). If a copy of `org_instance` is present in `graph` under the given `scope`, it will be returned. Args: org_instance: An `Operation` from some `Graph`. graph: The `Graph` to be searched for a copr of `org_instance`. scope: The scope `org_instance` is present in. Returns: The `Operation` copy from `graph`. """ #The name of the copied instance if scope != '': new_name = scope + '/' + org_instance.name else: new_name = org_instance.name return graph.as_graph_element( new_name, allow_tensor=True, allow_operation=True)
tensorflow-master
tensorflow/contrib/copy_graph/python/util/copy_elements.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for contrib.copy_graph.python.util.copy.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.copy_graph.python.util import copy_elements from tensorflow.python.client import session as session_lib from tensorflow.python.framework import constant_op from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import variables from tensorflow.python.platform import test class CopyVariablesTest(test.TestCase): def setUp(self): self.graph1 = ops.Graph() self.graph2 = ops.Graph() def testVariableCopy(self): with self.graph1.as_default(): #Define a Variable in graph1 some_var = variables.VariableV1(2) #Initialize session sess1 = session_lib.Session() #Initialize the Variable variables.global_variables_initializer().run(session=sess1) #Make a copy of some_var in the defsult scope in graph2 copy1 = copy_elements.copy_variable_to_graph(some_var, self.graph2) #Make another copy with different scope copy2 = copy_elements.copy_variable_to_graph(some_var, self.graph2, "test_scope") #Initialize both the copies with self.graph2.as_default(): #Initialize Session sess2 = session_lib.Session() #Initialize the Variables variables.global_variables_initializer().run(session=sess2) #Ensure values in all three variables are the same v1 = some_var.eval(session=sess1) v2 = copy1.eval(session=sess2) v3 = copy2.eval(session=sess2) assert isinstance(copy1, variables.Variable) assert isinstance(copy2, variables.Variable) assert v1 == v2 == v3 == 2 class CopyOpsTest(test.TestCase): def setUp(self): self.graph1 = ops.Graph() self.graph2 = ops.Graph() def testOpsCopy(self): with self.graph1.as_default(): #Initialize a basic expression y = ax + b x = array_ops.placeholder("float") a = variables.VariableV1(3.0) b = constant_op.constant(4.0) ax = math_ops.multiply(x, a) y = math_ops.add(ax, b) #Initialize session sess1 = session_lib.Session() #Initialize the Variable variables.global_variables_initializer().run(session=sess1) #First, initialize a as a Variable in graph2 a1 = copy_elements.copy_variable_to_graph(a, self.graph2) #Initialize a1 in graph2 with self.graph2.as_default(): #Initialize session sess2 = session_lib.Session() #Initialize the Variable variables.global_variables_initializer().run(session=sess2) #Initialize a copy of y in graph2 y1 = copy_elements.copy_op_to_graph(y, self.graph2, [a1]) #Now that y has been copied, x must be copied too. #Get that instance x1 = copy_elements.get_copied_op(x, self.graph2) #Compare values of y & y1 for a sample input #and check if they match v1 = y.eval({x: 5}, session=sess1) v2 = y1.eval({x1: 5}, session=sess2) assert v1 == v2 if __name__ == "__main__": test.main()
tensorflow-master
tensorflow/contrib/copy_graph/python/util/copy_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Module for cloud ops.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os # pylint: disable=line-too-long,wildcard-import,g-import-not-at-top from tensorflow.contrib.cloud.python.ops.bigquery_reader_ops import * from tensorflow.contrib.cloud.python.ops.gcs_config_ops import * if os.name != 'nt': from tensorflow.contrib.bigtable.python.ops.bigtable_api import BigtableClient from tensorflow.contrib.bigtable.python.ops.bigtable_api import BigtableTable del os from tensorflow.python.util.all_util import remove_undocumented _allowed_symbols = [ 'BigQueryReader', 'BigtableClient', 'BigtableTable', 'BlockCacheParams', 'configure_colab_session', 'configure_gcs', 'ConfigureGcsHook', ] remove_undocumented(__name__, _allowed_symbols)
tensorflow-master
tensorflow/contrib/cloud/__init__.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for BigQueryReader Op.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import json import os import re import socket import threading from six.moves import SimpleHTTPServer from six.moves import socketserver from tensorflow.contrib.cloud.python.ops import bigquery_reader_ops as cloud from tensorflow.core.example import example_pb2 from tensorflow.core.framework import types_pb2 from tensorflow.python.framework import dtypes from tensorflow.python.ops import array_ops from tensorflow.python.ops import data_flow_ops from tensorflow.python.ops import parsing_ops from tensorflow.python.platform import test from tensorflow.python.platform import tf_logging as logging from tensorflow.python.util import compat _PROJECT = "test-project" _DATASET = "test-dataset" _TABLE = "test-table" # List representation of the test rows in the 'test-table' in BigQuery. # The schema for each row is: [int64, string, float]. # The values for rows are generated such that some columns have null values. The # general formula here is: # - The int64 column is present in every row. # - The string column is only available in even rows. # - The float column is only available in every third row. _ROWS = [[0, "s_0", 0.1], [1, None, None], [2, "s_2", None], [3, None, 3.1], [4, "s_4", None], [5, None, None], [6, "s_6", 6.1], [7, None, None], [8, "s_8", None], [9, None, 9.1]] # Schema for 'test-table'. # The schema currently has three columns: int64, string, and float _SCHEMA = { "kind": "bigquery#table", "id": "test-project:test-dataset.test-table", "schema": { "fields": [{ "name": "int64_col", "type": "INTEGER", "mode": "NULLABLE" }, { "name": "string_col", "type": "STRING", "mode": "NULLABLE" }, { "name": "float_col", "type": "FLOAT", "mode": "NULLABLE" }] } } def _ConvertRowToExampleProto(row): """Converts the input row to an Example proto. Args: row: Input Row instance. Returns: An Example proto initialized with row values. """ example = example_pb2.Example() example.features.feature["int64_col"].int64_list.value.append(row[0]) if row[1] is not None: example.features.feature["string_col"].bytes_list.value.append( compat.as_bytes(row[1])) if row[2] is not None: example.features.feature["float_col"].float_list.value.append(row[2]) return example class IPv6TCPServer(socketserver.TCPServer): address_family = socket.AF_INET6 class FakeBigQueryServer(threading.Thread): """Fake http server to return schema and data for sample table.""" def __init__(self, address, port): """Creates a FakeBigQueryServer. Args: address: Server address port: Server port. Pass 0 to automatically pick an empty port. """ threading.Thread.__init__(self) self.handler = BigQueryRequestHandler try: self.httpd = socketserver.TCPServer((address, port), self.handler) self.host_port = "{}:{}".format(*self.httpd.server_address) except IOError: self.httpd = IPv6TCPServer((address, port), self.handler) self.host_port = "[{}]:{}".format(*self.httpd.server_address) def run(self): self.httpd.serve_forever() def shutdown(self): self.httpd.shutdown() self.httpd.socket.close() class BigQueryRequestHandler(SimpleHTTPServer.SimpleHTTPRequestHandler): """Responds to BigQuery HTTP requests. Attributes: num_rows: num_rows in the underlying table served by this class. """ num_rows = 0 def do_GET(self): if "data?maxResults=" not in self.path: # This is a schema request. _SCHEMA["numRows"] = self.num_rows response = json.dumps(_SCHEMA) else: # This is a data request. # # Extract max results and start index. max_results = int(re.findall(r"maxResults=(\d+)", self.path)[0]) start_index = int(re.findall(r"startIndex=(\d+)", self.path)[0]) # Send the rows as JSON. rows = [] for row in _ROWS[start_index:start_index + max_results]: row_json = { "f": [{ "v": str(row[0]) }, { "v": str(row[1]) if row[1] is not None else None }, { "v": str(row[2]) if row[2] is not None else None }] } rows.append(row_json) response = json.dumps({ "kind": "bigquery#table", "id": "test-project:test-dataset.test-table", "rows": rows }) self.send_response(200) self.end_headers() self.wfile.write(compat.as_bytes(response)) def _SetUpQueue(reader): """Sets up a queue for a reader.""" queue = data_flow_ops.FIFOQueue(8, [types_pb2.DT_STRING], shapes=()) key, value = reader.read(queue) queue.enqueue_many(reader.partitions()).run() queue.close().run() return key, value class BigQueryReaderOpsTest(test.TestCase): def setUp(self): super(BigQueryReaderOpsTest, self).setUp() self.server = FakeBigQueryServer("localhost", 0) self.server.start() logging.info("server address is %s", self.server.host_port) # An override to bypass the GCP auth token retrieval logic # in google_auth_provider.cc. os.environ["GOOGLE_AUTH_TOKEN_FOR_TESTING"] = "not-used" def tearDown(self): self.server.shutdown() super(BigQueryReaderOpsTest, self).tearDown() def _ReadAndCheckRowsUsingFeatures(self, num_rows): self.server.handler.num_rows = num_rows with self.cached_session() as sess: feature_configs = { "int64_col": parsing_ops.FixedLenFeature( [1], dtype=dtypes.int64), "string_col": parsing_ops.FixedLenFeature( [1], dtype=dtypes.string, default_value="s_default"), } reader = cloud.BigQueryReader( project_id=_PROJECT, dataset_id=_DATASET, table_id=_TABLE, num_partitions=4, features=feature_configs, timestamp_millis=1, test_end_point=self.server.host_port) key, value = _SetUpQueue(reader) seen_rows = [] features = parsing_ops.parse_example( array_ops.reshape(value, [1]), feature_configs) for _ in range(num_rows): int_value, str_value = sess.run( [features["int64_col"], features["string_col"]]) # Parse values returned from the session. self.assertEqual(int_value.shape, (1, 1)) self.assertEqual(str_value.shape, (1, 1)) int64_col = int_value[0][0] string_col = str_value[0][0] seen_rows.append(int64_col) # Compare. expected_row = _ROWS[int64_col] self.assertEqual(int64_col, expected_row[0]) self.assertEqual( compat.as_str(string_col), ("s_%d" % int64_col) if expected_row[1] else "s_default") self.assertItemsEqual(seen_rows, range(num_rows)) with self.assertRaisesOpError("is closed and has insufficient elements " "\\(requested 1, current size 0\\)"): sess.run([key, value]) def testReadingSingleRowUsingFeatures(self): self._ReadAndCheckRowsUsingFeatures(1) def testReadingMultipleRowsUsingFeatures(self): self._ReadAndCheckRowsUsingFeatures(10) def testReadingMultipleRowsUsingColumns(self): num_rows = 10 self.server.handler.num_rows = num_rows with self.cached_session() as sess: reader = cloud.BigQueryReader( project_id=_PROJECT, dataset_id=_DATASET, table_id=_TABLE, num_partitions=4, columns=["int64_col", "float_col", "string_col"], timestamp_millis=1, test_end_point=self.server.host_port) key, value = _SetUpQueue(reader) seen_rows = [] for row_index in range(num_rows): returned_row_id, example_proto = sess.run([key, value]) example = example_pb2.Example() example.ParseFromString(example_proto) self.assertIn("int64_col", example.features.feature) feature = example.features.feature["int64_col"] self.assertEqual(len(feature.int64_list.value), 1) int64_col = feature.int64_list.value[0] seen_rows.append(int64_col) # Create our expected Example. expected_example = example_pb2.Example() expected_example = _ConvertRowToExampleProto(_ROWS[int64_col]) # Compare. self.assertProtoEquals(example, expected_example) self.assertEqual(row_index, int(returned_row_id)) self.assertItemsEqual(seen_rows, range(num_rows)) with self.assertRaisesOpError("is closed and has insufficient elements " "\\(requested 1, current size 0\\)"): sess.run([key, value]) if __name__ == "__main__": test.main()
tensorflow-master
tensorflow/contrib/cloud/python/ops/bigquery_reader_ops_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for the gcs_config_ops.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.cloud.python.ops import gcs_config_ops from tensorflow.python.platform import test class GcsConfigOpsTest(test.TestCase): def testSetBlockCache(self): cfg = gcs_config_ops.BlockCacheParams(max_bytes=1024*1024*1024) with self.cached_session() as sess: gcs_config_ops.configure_gcs(sess, block_cache=cfg) def testConfigureGcsHook(self): creds = {'client_id': 'fake_client', 'refresh_token': 'fake_token', 'client_secret': 'fake_secret', 'type': 'authorized_user'} hook = gcs_config_ops.ConfigureGcsHook(credentials=creds) hook.begin() with self.cached_session() as sess: sess.run = lambda _, feed_dict=None, options=None, run_metadata=None: None hook.after_create_session(sess, None) if __name__ == '__main__': test.main()
tensorflow-master
tensorflow/contrib/cloud/python/ops/gcs_config_ops_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """BigQuery reading support for TensorFlow.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.cloud.python.ops import gen_bigquery_reader_ops from tensorflow.python.framework import ops from tensorflow.python.ops import io_ops class BigQueryReader(io_ops.ReaderBase): """A Reader that outputs keys and tf.Example values from a BigQuery table. Example use: ```python # Assume a BigQuery has the following schema, # name STRING, # age INT, # state STRING # Create the parse_examples list of features. features = dict( name=tf.io.FixedLenFeature([1], tf.string), age=tf.io.FixedLenFeature([1], tf.int32), state=tf.io.FixedLenFeature([1], dtype=tf.string, default_value="UNK")) # Create a Reader. reader = bigquery_reader_ops.BigQueryReader(project_id=PROJECT, dataset_id=DATASET, table_id=TABLE, timestamp_millis=TIME, num_partitions=NUM_PARTITIONS, features=features) # Populate a queue with the BigQuery Table partitions. queue = tf.compat.v1.train.string_input_producer(reader.partitions()) # Read and parse examples. row_id, examples_serialized = reader.read(queue) examples = tf.io.parse_example(examples_serialized, features=features) # Process the Tensors examples["name"], examples["age"], etc... ``` Note that to create a reader a snapshot timestamp is necessary. This will enable the reader to look at a consistent snapshot of the table. For more information, see 'Table Decorators' in BigQuery docs. See ReaderBase for supported methods. """ def __init__(self, project_id, dataset_id, table_id, timestamp_millis, num_partitions, features=None, columns=None, test_end_point=None, name=None): """Creates a BigQueryReader. Args: project_id: GCP project ID. dataset_id: BigQuery dataset ID. table_id: BigQuery table ID. timestamp_millis: timestamp to snapshot the table in milliseconds since the epoch. Relative (negative or zero) snapshot times are not allowed. For more details, see 'Table Decorators' in BigQuery docs. num_partitions: Number of non-overlapping partitions to read from. features: parse_example compatible dict from keys to `VarLenFeature` and `FixedLenFeature` objects. Keys are read as columns from the db. columns: list of columns to read, can be set iff features is None. test_end_point: Used only for testing purposes (optional). name: a name for the operation (optional). Raises: TypeError: - If features is neither None nor a dict or - If columns is neither None nor a list or - If both features and columns are None or set. """ if (features is None) == (columns is None): raise TypeError("exactly one of features and columns must be set.") if features is not None: if not isinstance(features, dict): raise TypeError("features must be a dict.") self._columns = list(features.keys()) elif columns is not None: if not isinstance(columns, list): raise TypeError("columns must be a list.") self._columns = columns self._project_id = project_id self._dataset_id = dataset_id self._table_id = table_id self._timestamp_millis = timestamp_millis self._num_partitions = num_partitions self._test_end_point = test_end_point reader = gen_bigquery_reader_ops.big_query_reader( name=name, project_id=self._project_id, dataset_id=self._dataset_id, table_id=self._table_id, timestamp_millis=self._timestamp_millis, columns=self._columns, test_end_point=self._test_end_point) super(BigQueryReader, self).__init__(reader) def partitions(self, name=None): """Returns serialized BigQueryTablePartition messages. These messages represent a non-overlapping division of a table for a bulk read. Args: name: a name for the operation (optional). Returns: `1-D` string `Tensor` of serialized `BigQueryTablePartition` messages. """ return gen_bigquery_reader_ops.generate_big_query_reader_partitions( name=name, project_id=self._project_id, dataset_id=self._dataset_id, table_id=self._table_id, timestamp_millis=self._timestamp_millis, num_partitions=self._num_partitions, test_end_point=self._test_end_point, columns=self._columns) ops.NotDifferentiable("BigQueryReader")
tensorflow-master
tensorflow/contrib/cloud/python/ops/bigquery_reader_ops.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """GCS file system configuration for TensorFlow.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import json import os from tensorflow.contrib.cloud.python.ops import gen_gcs_config_ops from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.training import training # @tf_export('contrib.cloud.BlockCacheParams') class BlockCacheParams(object): """BlockCacheParams is a struct used for configuring the GCS Block Cache.""" def __init__(self, block_size=None, max_bytes=None, max_staleness=None): self._block_size = block_size or 128 * 1024 * 1024 self._max_bytes = max_bytes or 2 * self._block_size self._max_staleness = max_staleness or 0 @property def block_size(self): return self._block_size @property def max_bytes(self): return self._max_bytes @property def max_staleness(self): return self._max_staleness # @tf_export('contrib.cloud.ConfigureGcsHook') class ConfigureGcsHook(training.SessionRunHook): """ConfigureGcsHook configures GCS when used with Estimator/TPUEstimator. Warning: GCS `credentials` may be transmitted over the network unencrypted. Please ensure that the network is trusted before using this function. For users running code entirely within Google Cloud, your data is protected by encryption in between data centers. For more information, please take a look at https://cloud.google.com/security/encryption-in-transit/. Example: ``` sess = tf.compat.v1.Session() refresh_token = raw_input("Refresh token: ") client_secret = raw_input("Client secret: ") client_id = "<REDACTED>" creds = { "client_id": client_id, "refresh_token": refresh_token, "client_secret": client_secret, "type": "authorized_user", } tf.contrib.cloud.configure_gcs(sess, credentials=creds) ``` """ def _verify_dictionary(self, creds_dict): if 'refresh_token' in creds_dict or 'private_key' in creds_dict: return True return False def __init__(self, credentials=None, block_cache=None): """Constructs a ConfigureGcsHook. Args: credentials: A json-formatted string. block_cache: A `BlockCacheParams` Raises: ValueError: If credentials is improperly formatted or block_cache is not a BlockCacheParams. """ if credentials is not None: if isinstance(credentials, str): try: data = json.loads(credentials) except ValueError as e: raise ValueError('credentials was not a well formed JSON string.', e) if not self._verify_dictionary(data): raise ValueError( 'credentials has neither a "refresh_token" nor a "private_key" ' 'field.') elif isinstance(credentials, dict): if not self._verify_dictionary(credentials): raise ValueError('credentials has neither a "refresh_token" nor a ' '"private_key" field.') credentials = json.dumps(credentials) else: raise ValueError('credentials is of an unknown type') self._credentials = credentials if block_cache and not isinstance(block_cache, BlockCacheParams): raise ValueError('block_cache must be an instance of BlockCacheParams.') self._block_cache = block_cache def begin(self): if self._credentials: self._credentials_placeholder = array_ops.placeholder(dtypes.string) self._credentials_op = gen_gcs_config_ops.gcs_configure_credentials( self._credentials_placeholder) else: self._credentials_op = None if self._block_cache: self._block_cache_op = gen_gcs_config_ops.gcs_configure_block_cache( max_cache_size=self._block_cache.max_bytes, block_size=self._block_cache.block_size, max_staleness=self._block_cache.max_staleness) else: self._block_cache_op = None def after_create_session(self, session, coord): del coord if self._credentials_op: session.run( self._credentials_op, feed_dict={self._credentials_placeholder: self._credentials}) if self._block_cache_op: session.run(self._block_cache_op) def configure_gcs(session, credentials=None, block_cache=None, device=None): """Configures the GCS file system for a given a session. Warning: GCS `credentials` may be transmitted over the network unencrypted. Please ensure that the network is trusted before using this function. For users running code entirely within Google Cloud, your data is protected by encryption in between data centers. For more information, please take a look at https://cloud.google.com/security/encryption-in-transit/. Args: session: A `tf.compat.v1.Session` session that should be used to configure the GCS file system. credentials: [Optional.] A JSON string block_cache: [Optional.] A BlockCacheParams to configure the block cache . device: [Optional.] The device to place the configure ops. """ def configure(credentials, block_cache): """Helper function to actually configure GCS.""" if credentials: if isinstance(credentials, dict): credentials = json.dumps(credentials) placeholder = array_ops.placeholder(dtypes.string) op = gen_gcs_config_ops.gcs_configure_credentials(placeholder) session.run(op, feed_dict={placeholder: credentials}) if block_cache: op = gen_gcs_config_ops.gcs_configure_block_cache( max_cache_size=block_cache.max_bytes, block_size=block_cache.block_size, max_staleness=block_cache.max_staleness) session.run(op) if device: with ops.device(device): return configure(credentials, block_cache) return configure(credentials, block_cache) def configure_colab_session(session): """ConfigureColabSession configures the GCS file system in Colab. Args: session: A `tf.compat.v1.Session` session. """ # Read from the application default credentials (adc). adc_filename = os.environ.get( 'GOOGLE_APPLICATION_CREDENTIALS', '/content/adc.json') with open(adc_filename) as f: data = json.load(f) configure_gcs(session, credentials=data)
tensorflow-master
tensorflow/contrib/cloud/python/ops/gcs_config_ops.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Ops for representing Bayesian computation. Use [tfp](/probability/api_docs/python/tfp) instead. ## This package provides classes for Bayesian computation with TensorFlow. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function # pylint: disable=unused-import,line-too-long from tensorflow.contrib.bayesflow.python.ops import monte_carlo # pylint: enable=unused-import,line-too-long from tensorflow.python.util.all_util import remove_undocumented _allowed_symbols = [ 'monte_carlo', ] remove_undocumented(__name__, _allowed_symbols)
tensorflow-master
tensorflow/contrib/bayesflow/__init__.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ops module.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function
tensorflow-master
tensorflow/contrib/bayesflow/python/__init__.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Monte Carlo Ops.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib import layers as layers_lib from tensorflow.contrib.bayesflow.python.ops import monte_carlo_impl as monte_carlo_lib from tensorflow.contrib.bayesflow.python.ops.monte_carlo_impl import _get_samples from tensorflow.contrib.distributions.python.ops import mvn_diag as mvn_diag_lib from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.ops import gradients_impl from tensorflow.python.ops import math_ops from tensorflow.python.ops.distributions import distribution as distribution_lib from tensorflow.python.ops.distributions import kullback_leibler from tensorflow.python.ops.distributions import normal as normal_lib from tensorflow.python.platform import test layers = layers_lib mc = monte_carlo_lib class ExpectationImportanceSampleTest(test.TestCase): def test_normal_integral_mean_and_var_correctly_estimated(self): n = int(1e6) with self.cached_session(): mu_p = constant_op.constant([-1.0, 1.0], dtype=dtypes.float64) mu_q = constant_op.constant([0.0, 0.0], dtype=dtypes.float64) sigma_p = constant_op.constant([0.5, 0.5], dtype=dtypes.float64) sigma_q = constant_op.constant([1.0, 1.0], dtype=dtypes.float64) p = normal_lib.Normal(loc=mu_p, scale=sigma_p) q = normal_lib.Normal(loc=mu_q, scale=sigma_q) # Compute E_p[X]. e_x = mc.expectation_importance_sampler( f=lambda x: x, log_p=p.log_prob, sampling_dist_q=q, n=n, seed=42) # Compute E_p[X^2]. e_x2 = mc.expectation_importance_sampler( f=math_ops.square, log_p=p.log_prob, sampling_dist_q=q, n=n, seed=42) stddev = math_ops.sqrt(e_x2 - math_ops.square(e_x)) # Relative tolerance (rtol) chosen 2 times as large as minimim needed to # pass. # Convergence of mean is +- 0.003 if n = 100M # Convergence of stddev is +- 0.00001 if n = 100M self.assertEqual(p.batch_shape, e_x.get_shape()) self.assertAllClose(p.mean().eval(), e_x.eval(), rtol=0.01) self.assertAllClose(p.stddev().eval(), stddev.eval(), rtol=0.02) def test_multivariate_normal_prob_positive_product_of_components(self): # Test that importance sampling can correctly estimate the probability that # the product of components in a MultivariateNormal are > 0. n = 1000 with self.cached_session(): p = mvn_diag_lib.MultivariateNormalDiag( loc=[0.], scale_diag=[1.0, 1.0]) q = mvn_diag_lib.MultivariateNormalDiag( loc=[0.5], scale_diag=[3., 3.]) # Compute E_p[X_1 * X_2 > 0], with X_i the ith component of X ~ p(x). # Should equal 1/2 because p is a spherical Gaussian centered at (0, 0). def indicator(x): x1_times_x2 = math_ops.reduce_prod(x, axis=[-1]) return 0.5 * (math_ops.sign(x1_times_x2) + 1.0) prob = mc.expectation_importance_sampler( f=indicator, log_p=p.log_prob, sampling_dist_q=q, n=n, seed=42) # Relative tolerance (rtol) chosen 2 times as large as minimim needed to # pass. # Convergence is +- 0.004 if n = 100k. self.assertEqual(p.batch_shape, prob.get_shape()) self.assertAllClose(0.5, prob.eval(), rtol=0.05) class ExpectationImportanceSampleLogspaceTest(test.TestCase): def test_normal_distribution_second_moment_estimated_correctly(self): # Test the importance sampled estimate against an analytical result. n = int(1e6) with self.cached_session(): mu_p = constant_op.constant([0.0, 0.0], dtype=dtypes.float64) mu_q = constant_op.constant([-1.0, 1.0], dtype=dtypes.float64) sigma_p = constant_op.constant([1.0, 2 / 3.], dtype=dtypes.float64) sigma_q = constant_op.constant([1.0, 1.0], dtype=dtypes.float64) p = normal_lib.Normal(loc=mu_p, scale=sigma_p) q = normal_lib.Normal(loc=mu_q, scale=sigma_q) # Compute E_p[X^2]. # Should equal [1, (2/3)^2] log_e_x2 = mc.expectation_importance_sampler_logspace( log_f=lambda x: math_ops.log(math_ops.square(x)), log_p=p.log_prob, sampling_dist_q=q, n=n, seed=42) e_x2 = math_ops.exp(log_e_x2) # Relative tolerance (rtol) chosen 2 times as large as minimim needed to # pass. self.assertEqual(p.batch_shape, e_x2.get_shape()) self.assertAllClose([1., (2 / 3.)**2], e_x2.eval(), rtol=0.02) class GetSamplesTest(test.TestCase): """Test the private method 'get_samples'.""" def test_raises_if_both_z_and_n_are_none(self): with self.cached_session(): dist = normal_lib.Normal(loc=0., scale=1.) z = None n = None seed = None with self.assertRaisesRegexp(ValueError, 'exactly one'): _get_samples(dist, z, n, seed) def test_raises_if_both_z_and_n_are_not_none(self): with self.cached_session(): dist = normal_lib.Normal(loc=0., scale=1.) z = dist.sample(seed=42) n = 1 seed = None with self.assertRaisesRegexp(ValueError, 'exactly one'): _get_samples(dist, z, n, seed) def test_returns_n_samples_if_n_provided(self): with self.cached_session(): dist = normal_lib.Normal(loc=0., scale=1.) z = None n = 10 seed = None z = _get_samples(dist, z, n, seed) self.assertEqual((10,), z.get_shape()) def test_returns_z_if_z_provided(self): with self.cached_session(): dist = normal_lib.Normal(loc=0., scale=1.) z = dist.sample(10, seed=42) n = None seed = None z = _get_samples(dist, z, n, seed) self.assertEqual((10,), z.get_shape()) class ExpectationTest(test.TestCase): def test_works_correctly(self): with self.cached_session() as sess: x = constant_op.constant([-1e6, -100, -10, -1, 1, 10, 100, 1e6]) p = normal_lib.Normal(loc=x, scale=1.) # We use the prefex "efx" to mean "E_p[f(X)]". f = lambda u: u efx_true = x samples = p.sample(int(1e5), seed=1) efx_reparam = mc.expectation(f, samples, p.log_prob) efx_score = mc.expectation(f, samples, p.log_prob, use_reparametrization=False) [ efx_true_, efx_reparam_, efx_score_, efx_true_grad_, efx_reparam_grad_, efx_score_grad_, ] = sess.run([ efx_true, efx_reparam, efx_score, gradients_impl.gradients(efx_true, x)[0], gradients_impl.gradients(efx_reparam, x)[0], gradients_impl.gradients(efx_score, x)[0], ]) self.assertAllEqual(np.ones_like(efx_true_grad_), efx_true_grad_) self.assertAllClose(efx_true_, efx_reparam_, rtol=0.005, atol=0.) self.assertAllClose(efx_true_, efx_score_, rtol=0.005, atol=0.) self.assertAllEqual(np.ones_like(efx_true_grad_, dtype=np.bool), np.isfinite(efx_reparam_grad_)) self.assertAllEqual(np.ones_like(efx_true_grad_, dtype=np.bool), np.isfinite(efx_score_grad_)) self.assertAllClose(efx_true_grad_, efx_reparam_grad_, rtol=0.03, atol=0.) # Variance is too high to be meaningful, so we'll only check those which # converge. self.assertAllClose(efx_true_grad_[2:-2], efx_score_grad_[2:-2], rtol=0.05, atol=0.) def test_docstring_example_normal(self): with self.cached_session() as sess: num_draws = int(1e5) mu_p = constant_op.constant(0.) mu_q = constant_op.constant(1.) p = normal_lib.Normal(loc=mu_p, scale=1.) q = normal_lib.Normal(loc=mu_q, scale=2.) exact_kl_normal_normal = kullback_leibler.kl_divergence(p, q) approx_kl_normal_normal = monte_carlo_lib.expectation( f=lambda x: p.log_prob(x) - q.log_prob(x), samples=p.sample(num_draws, seed=42), log_prob=p.log_prob, use_reparametrization=(p.reparameterization_type == distribution_lib.FULLY_REPARAMETERIZED)) [exact_kl_normal_normal_, approx_kl_normal_normal_] = sess.run([ exact_kl_normal_normal, approx_kl_normal_normal]) self.assertEqual( True, p.reparameterization_type == distribution_lib.FULLY_REPARAMETERIZED) self.assertAllClose(exact_kl_normal_normal_, approx_kl_normal_normal_, rtol=0.01, atol=0.) # Compare gradients. (Not present in `docstring`.) gradp = lambda fp: gradients_impl.gradients(fp, mu_p)[0] gradq = lambda fq: gradients_impl.gradients(fq, mu_q)[0] [ gradp_exact_kl_normal_normal_, gradq_exact_kl_normal_normal_, gradp_approx_kl_normal_normal_, gradq_approx_kl_normal_normal_, ] = sess.run([ gradp(exact_kl_normal_normal), gradq(exact_kl_normal_normal), gradp(approx_kl_normal_normal), gradq(approx_kl_normal_normal), ]) self.assertAllClose(gradp_exact_kl_normal_normal_, gradp_approx_kl_normal_normal_, rtol=0.01, atol=0.) self.assertAllClose(gradq_exact_kl_normal_normal_, gradq_approx_kl_normal_normal_, rtol=0.01, atol=0.) if __name__ == '__main__': test.main()
tensorflow-master
tensorflow/contrib/bayesflow/python/kernel_tests/monte_carlo_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Monte Carlo integration and helpers. Use [tfp.monte_carlo](/probability/api_docs/python/tfp/monte_carlo) instead. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function # go/tf-wildcard-import # pylint: disable=wildcard-import from tensorflow.contrib.bayesflow.python.ops.monte_carlo_impl import * # pylint: enable=wildcard-import from tensorflow.python.util.all_util import remove_undocumented _allowed_symbols = [ 'expectation', 'expectation_importance_sampler', 'expectation_importance_sampler_logspace', ] remove_undocumented(__name__, _allowed_symbols)
tensorflow-master
tensorflow/contrib/bayesflow/python/ops/monte_carlo.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Monte Carlo integration and helpers. @@expectation @@expectation_importance_sampler @@expectation_importance_sampler_logspace """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn from tensorflow.python.util import deprecation __all__ = [ 'expectation', 'expectation_importance_sampler', 'expectation_importance_sampler_logspace', ] def expectation_importance_sampler(f, log_p, sampling_dist_q, z=None, n=None, seed=None, name='expectation_importance_sampler'): r"""Monte Carlo estimate of \\(E_p[f(Z)] = E_q[f(Z) p(Z) / q(Z)]\\). With \\(p(z) := exp^{log_p(z)}\\), this `Op` returns \\(n^{-1} sum_{i=1}^n [ f(z_i) p(z_i) / q(z_i) ], z_i ~ q,\\) \\(\approx E_q[ f(Z) p(Z) / q(Z) ]\\) \\(= E_p[f(Z)]\\) This integral is done in log-space with max-subtraction to better handle the often extreme values that `f(z) p(z) / q(z)` can take on. If `f >= 0`, it is up to 2x more efficient to exponentiate the result of `expectation_importance_sampler_logspace` applied to `Log[f]`. User supplies either `Tensor` of samples `z`, or number of samples to draw `n` Args: f: Callable mapping samples from `sampling_dist_q` to `Tensors` with shape broadcastable to `q.batch_shape`. For example, `f` works "just like" `q.log_prob`. log_p: Callable mapping samples from `sampling_dist_q` to `Tensors` with shape broadcastable to `q.batch_shape`. For example, `log_p` works "just like" `sampling_dist_q.log_prob`. sampling_dist_q: The sampling distribution. `tfp.distributions.Distribution`. `float64` `dtype` recommended. `log_p` and `q` should be supported on the same set. z: `Tensor` of samples from `q`, produced by `q.sample` for some `n`. n: Integer `Tensor`. Number of samples to generate if `z` is not provided. seed: Python integer to seed the random number generator. name: A name to give this `Op`. Returns: The importance sampling estimate. `Tensor` with `shape` equal to batch shape of `q`, and `dtype` = `q.dtype`. """ q = sampling_dist_q with ops.name_scope(name, values=[z, n]): z = _get_samples(q, z, n, seed) log_p_z = log_p(z) q_log_prob_z = q.log_prob(z) def _importance_sampler_positive_f(log_f_z): # Same as expectation_importance_sampler_logspace, but using Tensors # rather than samples and functions. Allows us to sample once. log_values = log_f_z + log_p_z - q_log_prob_z return _logspace_mean(log_values) # With \\(f_{plus}(z) = max(0, f(z)), f_{minus}(z) = max(0, -f(z))\\), # \\(E_p[f(Z)] = E_p[f_{plus}(Z)] - E_p[f_{minus}(Z)]\\) # \\( = E_p[f_{plus}(Z) + 1] - E_p[f_{minus}(Z) + 1]\\) # Without incurring bias, 1 is added to each to prevent zeros in logspace. # The logarithm is approximately linear around 1 + epsilon, so this is good # for small values of 'z' as well. f_z = f(z) log_f_plus_z = math_ops.log(nn.relu(f_z) + 1.) log_f_minus_z = math_ops.log(nn.relu(-1. * f_z) + 1.) log_f_plus_integral = _importance_sampler_positive_f(log_f_plus_z) log_f_minus_integral = _importance_sampler_positive_f(log_f_minus_z) return math_ops.exp(log_f_plus_integral) - math_ops.exp(log_f_minus_integral) def expectation_importance_sampler_logspace( log_f, log_p, sampling_dist_q, z=None, n=None, seed=None, name='expectation_importance_sampler_logspace'): r"""Importance sampling with a positive function, in log-space. With \\(p(z) := exp^{log_p(z)}\\), and \\(f(z) = exp{log_f(z)}\\), this `Op` returns \\(Log[ n^{-1} sum_{i=1}^n [ f(z_i) p(z_i) / q(z_i) ] ], z_i ~ q,\\) \\(\approx Log[ E_q[ f(Z) p(Z) / q(Z) ] ]\\) \\(= Log[E_p[f(Z)]]\\) This integral is done in log-space with max-subtraction to better handle the often extreme values that `f(z) p(z) / q(z)` can take on. In contrast to `expectation_importance_sampler`, this `Op` returns values in log-space. User supplies either `Tensor` of samples `z`, or number of samples to draw `n` Args: log_f: Callable mapping samples from `sampling_dist_q` to `Tensors` with shape broadcastable to `q.batch_shape`. For example, `log_f` works "just like" `sampling_dist_q.log_prob`. log_p: Callable mapping samples from `sampling_dist_q` to `Tensors` with shape broadcastable to `q.batch_shape`. For example, `log_p` works "just like" `q.log_prob`. sampling_dist_q: The sampling distribution. `tfp.distributions.Distribution`. `float64` `dtype` recommended. `log_p` and `q` should be supported on the same set. z: `Tensor` of samples from `q`, produced by `q.sample` for some `n`. n: Integer `Tensor`. Number of samples to generate if `z` is not provided. seed: Python integer to seed the random number generator. name: A name to give this `Op`. Returns: Logarithm of the importance sampling estimate. `Tensor` with `shape` equal to batch shape of `q`, and `dtype` = `q.dtype`. """ q = sampling_dist_q with ops.name_scope(name, values=[z, n]): z = _get_samples(q, z, n, seed) log_values = log_f(z) + log_p(z) - q.log_prob(z) return _logspace_mean(log_values) def _logspace_mean(log_values): """Evaluate `Log[E[values]]` in a stable manner. Args: log_values: `Tensor` holding `Log[values]`. Returns: `Tensor` of same `dtype` as `log_values`, reduced across dim 0. `Log[Mean[values]]`. """ # center = Max[Log[values]], with stop-gradient # The center hopefully keep the exponentiated term small. It is canceled # from the final result, so putting stop gradient on it will not change the # final result. We put stop gradient on to eliminate unnecessary computation. center = array_ops.stop_gradient(_sample_max(log_values)) # centered_values = exp{Log[values] - E[Log[values]]} centered_values = math_ops.exp(log_values - center) # log_mean_of_values = Log[ E[centered_values] ] + center # = Log[ E[exp{log_values - E[log_values]}] ] + center # = Log[E[values]] - E[log_values] + center # = Log[E[values]] log_mean_of_values = math_ops.log(_sample_mean(centered_values)) + center return log_mean_of_values @deprecation.deprecated( '2018-10-01', 'The tf.contrib.bayesflow library has moved to ' 'TensorFlow Probability (https://github.com/tensorflow/probability). ' 'Use `tfp.monte_carlo.expectation` instead.', warn_once=True) def expectation(f, samples, log_prob=None, use_reparametrization=True, axis=0, keep_dims=False, name=None): r"""Computes the Monte-Carlo approximation of \\(E_p[f(X)]\\). This function computes the Monte-Carlo approximation of an expectation, i.e., \\(E_p[f(X)] \approx= m^{-1} sum_i^m f(x_j), x_j\ ~iid\ p(X)\\) where: - `x_j = samples[j, ...]`, - `log(p(samples)) = log_prob(samples)` and - `m = prod(shape(samples)[axis])`. Tricks: Reparameterization and Score-Gradient When p is "reparameterized", i.e., a diffeomorphic transformation of a parameterless distribution (e.g., `Normal(Y; m, s) <=> Y = sX + m, X ~ Normal(0,1)`), we can swap gradient and expectation, i.e., grad[ Avg{ \\(s_i : i=1...n\\) } ] = Avg{ grad[\\(s_i\\)] : i=1...n } where S_n = Avg{\\(s_i\\)}` and `\\(s_i = f(x_i), x_i ~ p\\). However, if p is not reparameterized, TensorFlow's gradient will be incorrect since the chain-rule stops at samples of non-reparameterized distributions. (The non-differentiated result, `approx_expectation`, is the same regardless of `use_reparametrization`.) In this circumstance using the Score-Gradient trick results in an unbiased gradient, i.e., ```none grad[ E_p[f(X)] ] = grad[ int dx p(x) f(x) ] = int dx grad[ p(x) f(x) ] = int dx [ p'(x) f(x) + p(x) f'(x) ] = int dx p(x) [p'(x) / p(x) f(x) + f'(x) ] = int dx p(x) grad[ f(x) p(x) / stop_grad[p(x)] ] = E_p[ grad[ f(x) p(x) / stop_grad[p(x)] ] ] ``` Unless p is not reparametrized, it is usually preferable to `use_reparametrization = True`. Warning: users are responsible for verifying `p` is a "reparameterized" distribution. Example Use: ```python import tensorflow_probability as tfp tfd = tfp.distributions # Monte-Carlo approximation of a reparameterized distribution, e.g., Normal. num_draws = int(1e5) p = tfd.Normal(loc=0., scale=1.) q = tfd.Normal(loc=1., scale=2.) exact_kl_normal_normal = tfd.kl_divergence(p, q) # ==> 0.44314718 approx_kl_normal_normal = tfp.monte_carlo.expectation( f=lambda x: p.log_prob(x) - q.log_prob(x), samples=p.sample(num_draws, seed=42), log_prob=p.log_prob, use_reparametrization=(p.reparameterization_type == distribution.FULLY_REPARAMETERIZED)) # ==> 0.44632751 # Relative Error: <1% # Monte-Carlo approximation of non-reparameterized distribution, e.g., Gamma. num_draws = int(1e5) p = ds.Gamma(concentration=1., rate=1.) q = ds.Gamma(concentration=2., rate=3.) exact_kl_gamma_gamma = tfd.kl_divergence(p, q) # ==> 0.37999129 approx_kl_gamma_gamma = tfp.monte_carlo.expectation( f=lambda x: p.log_prob(x) - q.log_prob(x), samples=p.sample(num_draws, seed=42), log_prob=p.log_prob, use_reparametrization=(p.reparameterization_type == distribution.FULLY_REPARAMETERIZED)) # ==> 0.37696719 # Relative Error: <1% # For comparing the gradients, see `monte_carlo_test.py`. ``` Note: The above example is for illustration only. To compute approximate KL-divergence, the following is preferred: ```python approx_kl_p_q = tfp.vi.monte_carlo_csiszar_f_divergence( f=bf.kl_reverse, p_log_prob=q.log_prob, q=p, num_draws=num_draws) ``` Args: f: Python callable which can return `f(samples)`. samples: `Tensor` of samples used to form the Monte-Carlo approximation of \\(E_p[f(X)]\\). A batch of samples should be indexed by `axis` dimensions. log_prob: Python callable which can return `log_prob(samples)`. Must correspond to the natural-logarithm of the pdf/pmf of each sample. Only required/used if `use_reparametrization=False`. Default value: `None`. use_reparametrization: Python `bool` indicating that the approximation should use the fact that the gradient of samples is unbiased. Whether `True` or `False`, this arg only affects the gradient of the resulting `approx_expectation`. Default value: `True`. axis: The dimensions to average. If `None`, averages all dimensions. Default value: `0` (the left-most dimension). keep_dims: If True, retains averaged dimensions using size `1`. Default value: `False`. name: A `name_scope` for operations created by this function. Default value: `None` (which implies "expectation"). Returns: approx_expectation: `Tensor` corresponding to the Monte-Carlo approximation of \\(E_p[f(X)]\\). Raises: ValueError: if `f` is not a Python `callable`. ValueError: if `use_reparametrization=False` and `log_prob` is not a Python `callable`. """ with ops.name_scope(name, 'expectation', [samples]): if not callable(f): raise ValueError('`f` must be a callable function.') if use_reparametrization: return math_ops.reduce_mean(f(samples), axis=axis, keepdims=keep_dims) else: if not callable(log_prob): raise ValueError('`log_prob` must be a callable function.') stop = array_ops.stop_gradient # For readability. x = stop(samples) logpx = log_prob(x) fx = f(x) # Call `f` once in case it has side-effects. # We now rewrite f(x) so that: # `grad[f(x)] := grad[f(x)] + f(x) * grad[logqx]`. # To achieve this, we use a trick that # `h(x) - stop(h(x)) == zeros_like(h(x))` # but its gradient is grad[h(x)]. # Note that IEEE754 specifies that `x - x == 0.` and `x + 0. == x`, hence # this trick loses no precision. For more discussion regarding the # relevant portions of the IEEE754 standard, see the StackOverflow # question, # "Is there a floating point value of x, for which x-x == 0 is false?" # http://stackoverflow.com/q/2686644 fx += stop(fx) * (logpx - stop(logpx)) # Add zeros_like(logpx). return math_ops.reduce_mean(fx, axis=axis, keepdims=keep_dims) def _sample_mean(values): """Mean over sample indices. In this module this is always [0].""" return math_ops.reduce_mean(values, axis=[0]) def _sample_max(values): """Max over sample indices. In this module this is always [0].""" return math_ops.reduce_max(values, axis=[0]) def _get_samples(dist, z, n, seed): """Check args and return samples.""" with ops.name_scope('get_samples', values=[z, n]): if (n is None) == (z is None): raise ValueError( 'Must specify exactly one of arguments "n" and "z". Found: ' 'n = %s, z = %s' % (n, z)) if n is not None: return dist.sample(n, seed=seed) else: return ops.convert_to_tensor(z, name='z')
tensorflow-master
tensorflow/contrib/bayesflow/python/ops/monte_carlo_impl.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """tensorboard module containing volatile or experimental code.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function # Add projects here, they will show up under tf.contrib.tensorboard. from tensorflow.contrib.tensorboard import plugins
tensorflow-master
tensorflow/contrib/tensorboard/__init__.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """tensorboard plugins module containing volatile or experimental code.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function # Add projects here, they will show up under tf.contrib.tensorboard.plugins from tensorflow.contrib.tensorboard.plugins import projector
tensorflow-master
tensorflow/contrib/tensorboard/plugins/__init__.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Public API for the Embedding Projector. @@ProjectorPluginAsset @@ProjectorConfig @@EmbeddingInfo @@EmbeddingMetadata @@SpriteMetadata """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from google.protobuf import text_format from tensorflow.contrib.tensorboard.plugins.projector import projector_config_pb2 # pylint: disable=wildcard-import from tensorflow.contrib.tensorboard.plugins.projector.projector_config_pb2 import * # pylint: enable=wildcard-import from tensorflow.python.lib.io import file_io def visualize_embeddings(summary_writer, config): """Stores a config file used by the embedding projector. Args: summary_writer: The summary writer used for writing events. config: `tf.contrib.tensorboard.plugins.projector.ProjectorConfig` proto that holds the configuration for the projector such as paths to checkpoint files and metadata files for the embeddings. If `config.model_checkpoint_path` is none, it defaults to the `logdir` used by the summary_writer. Raises: ValueError: If the summary writer does not have a `logdir`. """ logdir = summary_writer.get_logdir() # Sanity checks. if logdir is None: raise ValueError('Summary writer must have a logdir') # Saving the config file in the logdir. config_pbtxt = text_format.MessageToString(config) # FYI - the 'projector_config.pbtxt' string is hardcoded in the projector # plugin. # TODO(dandelion): Restore this to a reference to the projector plugin file_io.write_string_to_file( os.path.join(logdir, 'projector_config.pbtxt'), config_pbtxt)
tensorflow-master
tensorflow/contrib/tensorboard/plugins/projector/__init__.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """API tests for the projector plugin in TensorBoard.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import shutil from google.protobuf import text_format from tensorflow.contrib.tensorboard.plugins import projector from tensorflow.contrib.tensorboard.plugins.projector import projector_config_pb2 from tensorflow.python.platform import gfile from tensorflow.python.platform import test from tensorflow.python.summary.writer import writer as writer_lib class ProjectorApiTest(test.TestCase): def testVisualizeEmbeddings(self): # Create a dummy configuration. config = projector_config_pb2.ProjectorConfig() config.model_checkpoint_path = 'test' emb1 = config.embeddings.add() emb1.tensor_name = 'tensor1' emb1.metadata_path = 'metadata1' # Call the API method to save the configuration to a temporary dir. temp_dir = self.get_temp_dir() self.addCleanup(shutil.rmtree, temp_dir) writer = writer_lib.FileWriter(temp_dir) projector.visualize_embeddings(writer, config) # Read the configurations from disk and make sure it matches the original. with gfile.GFile(os.path.join(temp_dir, 'projector_config.pbtxt')) as f: config2 = projector_config_pb2.ProjectorConfig() text_format.Parse(f.read(), config2) self.assertEqual(config, config2) if __name__ == '__main__': test.main()
tensorflow-master
tensorflow/contrib/tensorboard/plugins/projector/projector_api_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A module containing optimization routines.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function # pylint: disable=wildcard-import from tensorflow.contrib.opt.python.training.adam_gs_optimizer import * from tensorflow.contrib.opt.python.training.adamax import * from tensorflow.contrib.opt.python.training.addsign import * from tensorflow.contrib.opt.python.training.agn_optimizer import * from tensorflow.contrib.opt.python.training.drop_stale_gradient_optimizer import * from tensorflow.contrib.opt.python.training.elastic_average_optimizer import * from tensorflow.contrib.opt.python.training.external_optimizer import * from tensorflow.contrib.opt.python.training.lars_optimizer import * from tensorflow.contrib.opt.python.training.ggt import * from tensorflow.contrib.opt.python.training.lazy_adam_optimizer import * from tensorflow.contrib.opt.python.training.lazy_adam_gs_optimizer import * from tensorflow.contrib.opt.python.training.model_average_optimizer import * from tensorflow.contrib.opt.python.training.moving_average_optimizer import * from tensorflow.contrib.opt.python.training.multitask_optimizer_wrapper import * from tensorflow.contrib.opt.python.training.nadam_optimizer import * from tensorflow.contrib.opt.python.training.reg_adagrad_optimizer import * from tensorflow.contrib.opt.python.training.shampoo import * from tensorflow.contrib.opt.python.training.weight_decay_optimizers import * from tensorflow.contrib.opt.python.training.powersign import * from tensorflow.contrib.opt.python.training.variable_clipping_optimizer import * # pylint: enable=wildcard-import from tensorflow.python.util.all_util import remove_undocumented _allowed_symbols = [ 'AdaMaxOptimizer', 'AdamGSOptimizer', 'PowerSignOptimizer', 'AddSignOptimizer', 'DelayCompensatedGradientDescentOptimizer', 'DropStaleGradientOptimizer', 'ExternalOptimizerInterface', 'LARSOptimizer', 'LazyAdamGSOptimizer', 'LazyAdamOptimizer', 'NadamOptimizer', 'MovingAverageOptimizer', 'MomentumWOptimizer', 'AdamWOptimizer', 'DecoupledWeightDecayExtension', 'extend_with_decoupled_weight_decay', 'ScipyOptimizerInterface', 'VariableClippingOptimizer', 'MultitaskOptimizerWrapper', 'clip_gradients_by_global_norm', 'AGNOptimizer', 'AGNCustomGetter', 'ElasticAverageOptimizer', 'ElasticAverageCustomGetter', 'ModelAverageOptimizer', 'ModelAverageCustomGetter', 'GGTOptimizer', 'ShampooOptimizer', 'RegAdagradOptimizer', ] remove_undocumented(__name__, _allowed_symbols)
tensorflow-master
tensorflow/contrib/opt/__init__.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for DropStaleGradientOptimizer.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import portpicker from tensorflow.contrib.opt.python.training import drop_stale_gradient_optimizer from tensorflow.python.client import session from tensorflow.python.framework import ops from tensorflow.python.ops import data_flow_ops from tensorflow.python.ops import variables from tensorflow.python.platform import test from tensorflow.python.training import gradient_descent from tensorflow.python.training import server_lib from tensorflow.python.training import training_util # Creates the workers and return their sessions, graphs, train_ops. def _get_workers(num_workers, staleness): worker_ports = [portpicker.pick_unused_port() for _ in range(num_workers)] cluster_dict = { 'worker': ['localhost:%s' % port for port in worker_ports], 'ps': ['localhost:%s' % portpicker.pick_unused_port()] } cs = server_lib.ClusterSpec(cluster_dict) workers = [ server_lib.Server( cs, job_name='worker', task_index=ix, start=True) for ix in range(num_workers) ] server_lib.Server(cs, job_name='ps', task_index=0, start=True) sessions = [] graphs = [] train_ops = [] # To simulate stale cases, maintaining two queues for computing and # applying gradients respectively. In the phase of computing gradients, # all workers except chief worker compute gradients together and chief worker # computes after all other worers' computing finished. In the phase of # applying gradients, chief worker will first apply gradients, then all other # workers will apply gradients one by one. Therefore, the chief worker will # always have 0 staleness, each of all other workers will have a unique # staleness value from [1, num_workers). for worker_id in range(num_workers): graph = ops.Graph() with graph.as_default(): global_step = training_util.create_global_step() var_0 = variables.VariableV1(0.0, name='v0') var_1 = variables.VariableV1(1.0, name='v1') compute_gradients_queue = data_flow_ops.FIFOQueue( -1, global_step.dtype.base_dtype, shapes=(), name='compute_gradients_queue', shared_name='compute_gradients_queue') apply_gradients_queue = data_flow_ops.FIFOQueue( -1, global_step.dtype.base_dtype, shapes=(), name='apply_gradients_queue', shared_name='apply_gradients_queue') # Gradients for loss on var_0 and var_1 will be 1.0. loss = 0 - var_0 - var_1 sgd_opt = gradient_descent.GradientDescentOptimizer(1.0) stale_check_opt = ( drop_stale_gradient_optimizer.DropStaleGradientOptimizer( sgd_opt, staleness)) # Compute gradients. if worker_id == 0: with ops.control_dependencies( [compute_gradients_queue.dequeue_many(num_workers - 1)]): grad_and_vars = stale_check_opt.compute_gradients(loss) else: grad_and_vars = stale_check_opt.compute_gradients(loss) with ops.control_dependencies([t[0] for t in grad_and_vars]): worker_enqueue_op = compute_gradients_queue.enqueue(global_step) # Apply gradients. if worker_id == 0: with ops.control_dependencies( [stale_check_opt.apply_gradients(grad_and_vars, global_step)]): train_op = apply_gradients_queue.enqueue(global_step) else: with ops.control_dependencies([worker_enqueue_op]): with ops.control_dependencies([apply_gradients_queue.dequeue()]): with ops.control_dependencies( [stale_check_opt.apply_gradients( grad_and_vars, global_step)]): train_op = apply_gradients_queue.enqueue(global_step) sess = session.Session(workers[worker_id].target) sessions.append(sess) graphs.append(graph) train_ops.append(train_op) return sessions, graphs, train_ops class DropStaleGradientOptimizerTest(test.TestCase): def _run(self, train_op, sess): sess.run(train_op) def test1Worker(self): num_workers = 1 sessions, graphs, train_ops = _get_workers(num_workers, 0) with graphs[0].as_default(): sessions[0].run(variables.global_variables_initializer()) global_step = training_util.get_global_step(graphs[0]) var_0 = graphs[0].get_tensor_by_name('v0:0') var_1 = graphs[0].get_tensor_by_name('v1:0') stale_counter = graphs[0].get_tensor_by_name('stale_counter:0') # Verify the initialized value. self.assertAllEqual(0.0, sessions[0].run(var_0)) self.assertAllEqual(1.0, sessions[0].run(var_1)) self.assertAllEqual(0.0, sessions[0].run(stale_counter)) self.assertAllEqual(0, sessions[0].run(global_step)) sessions[0].run(train_ops[0]) # Verify the updated value after 1 step. self.assertAllEqual(1, sessions[0].run(global_step)) self.assertAllEqual(0.0 + 1.0, sessions[0].run(var_0)) self.assertAllEqual(1.0 + 1.0, sessions[0].run(var_1)) self.assertAllEqual(1, sessions[0].run(global_step)) def test1WorkerNegativeStaleness(self): num_workers = 1 sessions, graphs, train_ops = _get_workers(num_workers, -1) with graphs[0].as_default(): sessions[0].run(variables.global_variables_initializer()) global_step = training_util.get_global_step(graphs[0]) var_0 = graphs[0].get_tensor_by_name('v0:0') var_1 = graphs[0].get_tensor_by_name('v1:0') stale_counter = graphs[0].get_tensor_by_name('stale_counter:0') # Verify the initialized value. self.assertAllEqual(0.0, sessions[0].run(var_0)) self.assertAllEqual(1.0, sessions[0].run(var_1)) self.assertAllEqual(0.0, sessions[0].run(stale_counter)) self.assertAllEqual(0, sessions[0].run(global_step)) sessions[0].run(train_ops[0]) # Verify no updates because max staleness is negative. self.assertAllEqual(0, sessions[0].run(global_step)) self.assertAllEqual(1.0, sessions[0].run(stale_counter)) self.assertAllEqual(0.0, sessions[0].run(var_0)) self.assertAllEqual(1.0, sessions[0].run(var_1)) def test2WorkersStaleness0(self): num_workers = 2 sessions, graphs, train_ops = _get_workers(num_workers, 0) with graphs[0].as_default(): sessions[0].run(variables.global_variables_initializer()) global_step = training_util.get_global_step(graphs[0]) var_0 = graphs[0].get_tensor_by_name('v0:0') var_1 = graphs[0].get_tensor_by_name('v1:0') stale_counter = graphs[0].get_tensor_by_name('stale_counter:0') # Verify the initialized value. self.assertAllEqual(0.0, sessions[0].run(var_0)) self.assertAllEqual(1.0, sessions[0].run(var_1)) self.assertAllEqual(0.0, sessions[0].run(stale_counter)) self.assertAllEqual(0, sessions[0].run(global_step)) thread_0 = self.checkedThread( target=self._run, args=(train_ops[0], sessions[0])) thread_1 = self.checkedThread( target=self._run, args=(train_ops[1], sessions[1])) thread_0.start() thread_1.start() thread_0.join() thread_1.join() # With 2 workers and max staleness set to 0, only chief worker will update # var_0 and var_1. self.assertAllEqual(1, sessions[0].run(global_step)) self.assertAllEqual(1.0, sessions[0].run(stale_counter)) self.assertAllEqual(0.0 + 1.0, sessions[0].run(var_0)) self.assertAllEqual(1.0 + 1.0, sessions[0].run(var_1)) def test2WorkersStaleness1(self): num_workers = 2 sessions, graphs, train_ops = _get_workers(num_workers, 1) with graphs[0].as_default(): sessions[0].run(variables.global_variables_initializer()) global_step = training_util.get_global_step(graphs[0]) var_0 = graphs[0].get_tensor_by_name('v0:0') var_1 = graphs[0].get_tensor_by_name('v1:0') stale_counter = graphs[0].get_tensor_by_name('stale_counter:0') # Verify the initialized value. self.assertAllEqual(0.0, sessions[0].run(var_0)) self.assertAllEqual(1.0, sessions[0].run(var_1)) self.assertAllEqual(0.0, sessions[0].run(stale_counter)) self.assertAllEqual(0, sessions[0].run(global_step)) thread_0 = self.checkedThread( target=self._run, args=(train_ops[0], sessions[0])) thread_1 = self.checkedThread( target=self._run, args=(train_ops[1], sessions[1])) thread_0.start() thread_1.start() thread_0.join() thread_1.join() # With 2 workers and max staleness set to 1, both workers will update # var_0 and var_1. self.assertAllEqual(2, sessions[0].run(global_step)) self.assertAllEqual(0.0, sessions[0].run(stale_counter)) self.assertAllEqual(0.0 + 2.0, sessions[0].run(var_0)) self.assertAllEqual(1.0 + 2.0, sessions[0].run(var_1)) def test3WorkersStaleness0(self): num_workers = 3 sessions, graphs, train_ops = _get_workers(num_workers, 0) with graphs[0].as_default(): sessions[0].run(variables.global_variables_initializer()) global_step = training_util.get_global_step(graphs[0]) var_0 = graphs[0].get_tensor_by_name('v0:0') var_1 = graphs[0].get_tensor_by_name('v1:0') stale_counter = graphs[0].get_tensor_by_name('stale_counter:0') # Verify the initialized value. self.assertAllEqual(0.0, sessions[0].run(var_0)) self.assertAllEqual(1.0, sessions[0].run(var_1)) self.assertAllEqual(0.0, sessions[0].run(stale_counter)) self.assertAllEqual(0, sessions[0].run(global_step)) thread_0 = self.checkedThread( target=self._run, args=(train_ops[0], sessions[0])) thread_1 = self.checkedThread( target=self._run, args=(train_ops[1], sessions[1])) thread_2 = self.checkedThread( target=self._run, args=(train_ops[2], sessions[2])) thread_0.start() thread_1.start() thread_2.start() thread_0.join() thread_1.join() thread_2.join() # With 3 workers and max staleness set to 0, only chief worker will update # var_0 and var_1. self.assertAllEqual(1, sessions[0].run(global_step)) self.assertAllEqual(2.0, sessions[0].run(stale_counter)) self.assertAllEqual(0.0 + 1.0, sessions[0].run(var_0)) self.assertAllEqual(1.0 + 1.0, sessions[0].run(var_1)) def test3WorkersStaleness1(self): num_workers = 3 sessions, graphs, train_ops = _get_workers(num_workers, 1) with graphs[0].as_default(): sessions[0].run(variables.global_variables_initializer()) global_step = training_util.get_global_step(graphs[0]) var_0 = graphs[0].get_tensor_by_name('v0:0') var_1 = graphs[0].get_tensor_by_name('v1:0') stale_counter = graphs[0].get_tensor_by_name('stale_counter:0') # Verify the initialized value. self.assertAllEqual(0.0, sessions[0].run(var_0)) self.assertAllEqual(1.0, sessions[0].run(var_1)) self.assertAllEqual(0.0, sessions[0].run(stale_counter)) self.assertAllEqual(0, sessions[0].run(global_step)) thread_0 = self.checkedThread( target=self._run, args=(train_ops[0], sessions[0])) thread_1 = self.checkedThread( target=self._run, args=(train_ops[1], sessions[1])) thread_2 = self.checkedThread( target=self._run, args=(train_ops[2], sessions[2])) thread_0.start() thread_1.start() thread_2.start() thread_0.join() thread_1.join() thread_2.join() # With 3 workers and max staleness set to 1, chief worker and only one of # the two other workers will update var_0 and var_1. self.assertAllEqual(2, sessions[0].run(global_step)) self.assertAllEqual(1.0, sessions[0].run(stale_counter)) self.assertAllEqual(0.0 + 2.0, sessions[0].run(var_0)) self.assertAllEqual(1.0 + 2.0, sessions[0].run(var_1)) if __name__ == '__main__': test.main()
tensorflow-master
tensorflow/contrib/opt/python/training/drop_stale_gradient_optimizer_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Wrapper optimizer for checking and dropping stale gradients.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import gen_array_ops from tensorflow.python.ops import gen_math_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import variable_scope from tensorflow.python.summary import summary from tensorflow.python.training import optimizer from tensorflow.python.training import training_util class DropStaleGradientOptimizer(optimizer.Optimizer): """Wrapper optimizer that checks and drops stale gradient. This optimizer records the global step for each worker before computing gradients and compares it with the global step at the time of applying the gradients. If the difference is larger than a threshold, it will drop all the computed gradients. """ def __init__(self, opt, staleness, use_locking=False, name="DropStaleGradient"): """Constructs a new DropStaleGradientOptimizer. Args: opt: The actual optimizer that will be used to compute and apply the gradients. Must be one of the Optimizer classes. staleness: The maximum staleness allowed for the optimizer. use_locking: If `True` use locks for clip update operations. name: Optional name prefix for the operations created when applying gradients. Defaults to "DropStaleGradient". """ super(DropStaleGradientOptimizer, self).__init__(use_locking, name) self._opt = opt self._staleness = staleness def compute_gradients(self, loss, *args, **kwargs): # Record current global step for worker. with ops.colocate_with(loss): self._local_step = training_util.get_global_step() + 0 with ops.control_dependencies([self._local_step]): loss = gen_array_ops.identity(loss) return self._opt.compute_gradients(loss, *args, **kwargs) def get_slot(self, *args, **kwargs): return self._opt.get_slot(*args, **kwargs) def get_slot_names(self, *args, **kwargs): return self._opt.get_slot_names(*args, **kwargs) def apply_gradients(self, grads_and_vars, global_step=None, name=None): gradients = [] # Number of stale gradients. with ops.colocate_with(global_step): stale_counter = variable_scope.get_variable( "stale_counter", [], initializer=init_ops.zeros_initializer(), trainable=False) def _AcceptGradientOp(): with ops.control_dependencies( [self._opt.apply_gradients( grads_and_vars, global_step=global_step, name=name)]): return gen_array_ops.identity(0.0) def _DropGradientOp(): return gen_array_ops.identity(1.0) for grad_and_var in grads_and_vars: grad = grad_and_var[0] if isinstance(grad, ops.Tensor): gradients.append(grad) elif grad is not None: gradients.append(grad.op) with ops.control_dependencies(gradients), ops.colocate_with(global_step): staleness = gen_array_ops.reshape( global_step - self._local_step, shape=()) conditional_update = stale_counter.assign_add(control_flow_ops.cond( gen_math_ops.less_equal(staleness, self._staleness), _AcceptGradientOp, _DropGradientOp)) summary.scalar( "Gradient staleness percentage", stale_counter / (math_ops.cast(global_step + 1, dtypes.float32))) return conditional_update
tensorflow-master
tensorflow/contrib/opt/python/training/drop_stale_gradient_optimizer.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for LazyAdamGSOptimizer.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import parameterized import numpy as np from tensorflow.contrib.opt.python.training import lazy_adam_gs_optimizer from tensorflow.python.eager import context from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import resource_variable_ops from tensorflow.python.ops import variables from tensorflow.python.platform import test def adam_update_numpy(param, g_t, t, m, v, alpha=0.001, beta1=0.9, beta2=0.999, epsilon=1e-8): alpha_t = alpha * np.sqrt(1 - beta2**t) / (1 - beta1**t) m_t = beta1 * m + (1 - beta1) * g_t v_t = beta2 * v + (1 - beta2) * g_t * g_t param_t = param - alpha_t * m_t / (np.sqrt(v_t) + epsilon) return param_t, m_t, v_t class LazyAdamGSOptimizerTest(test.TestCase, parameterized.TestCase): @parameterized.parameters([False, True]) def testSparse(self, use_resource): for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: with self.cached_session(): # Initialize variables for numpy implementation. m0, v0, m1, v1 = 0.0, 0.0, 0.0, 0.0 var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype) if use_resource: global_step = resource_variable_ops.ResourceVariable( array_ops.zeros([], dtypes.int64)) var0 = resource_variable_ops.ResourceVariable(var0_np) var1 = resource_variable_ops.ResourceVariable(var1_np) else: global_step = variables.Variable(array_ops.zeros([], dtypes.int64)) var0 = variables.Variable(var0_np) var1 = variables.Variable(var1_np) grads0_np_indices = np.array([0, 1], dtype=np.int32) grads0 = ops.IndexedSlices( constant_op.constant(grads0_np), constant_op.constant(grads0_np_indices), constant_op.constant([2])) grads1_np_indices = np.array([0, 1], dtype=np.int32) grads1 = ops.IndexedSlices( constant_op.constant(grads1_np), constant_op.constant(grads1_np_indices), constant_op.constant([2])) opt = lazy_adam_gs_optimizer.LazyAdamGSOptimizer( global_step=global_step) update = opt.apply_gradients(zip([grads0, grads1], [var0, var1]), global_step=global_step) variables.global_variables_initializer().run() # Fetch params to validate initial values self.assertAllClose([1.0, 2.0], var0.eval()) self.assertAllClose([3.0, 4.0], var1.eval()) beta1_power, beta2_power = opt._get_beta_accumulators() # Run 3 steps of Adam for t in range(1, 4): self.assertAllCloseAccordingToType(0.9**t, beta1_power.eval()) self.assertAllCloseAccordingToType(0.999**t, beta2_power.eval()) update.run() var0_np, m0, v0 = adam_update_numpy(var0_np, grads0_np, t, m0, v0) var1_np, m1, v1 = adam_update_numpy(var1_np, grads1_np, t, m1, v1) # Validate updated params self.assertAllCloseAccordingToType(var0_np, var0.eval()) self.assertAllCloseAccordingToType(var1_np, var1.eval()) @parameterized.parameters([False, True]) def testSparseDevicePlacement(self, use_resource): for index_dtype in [dtypes.int32, dtypes.int64]: with self.cached_session(force_gpu=test.is_gpu_available()): # If a GPU is available, tests that all optimizer ops can be placed on # it (i.e. they have GPU kernels). if use_resource: global_step = resource_variable_ops.ResourceVariable( array_ops.zeros([], dtypes.int64)) var = resource_variable_ops.ResourceVariable([[1.0], [2.0]]) else: global_step = variables.Variable(array_ops.zeros([], dtypes.int64)) var = variables.Variable([[1.0], [2.0]]) indices = constant_op.constant([0, 1], dtype=index_dtype) gathered_sum = math_ops.reduce_sum(array_ops.gather(var, indices)) optimizer = lazy_adam_gs_optimizer.LazyAdamGSOptimizer( global_step=global_step, learning_rate=3.0) minimize_op = optimizer.minimize(gathered_sum, global_step=global_step) variables.global_variables_initializer().run() minimize_op.run() @parameterized.parameters([False, True]) def testSparseRepeatedIndices(self, use_resource): for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: with self.cached_session(): if use_resource: repeated_index_global_step = resource_variable_ops.ResourceVariable( array_ops.zeros([], dtypes.int64)) aggregated_global_step = resource_variable_ops.ResourceVariable( array_ops.zeros([], dtypes.int64)) repeated_index_update_var = resource_variable_ops.ResourceVariable( [[1.0], [2.0]], dtype=dtype) aggregated_update_var = resource_variable_ops.ResourceVariable( [[1.0], [2.0]], dtype=dtype) else: repeated_index_global_step = variables.Variable( array_ops.zeros([], dtypes.int64)) aggregated_global_step = variables.Variable( array_ops.zeros([], dtypes.int64)) repeated_index_update_var = variables.Variable( [[1.0], [2.0]], dtype=dtype) aggregated_update_var = variables.Variable( [[1.0], [2.0]], dtype=dtype) grad_repeated_index = ops.IndexedSlices( constant_op.constant( [0.1, 0.1], shape=[2, 1], dtype=dtype), constant_op.constant([1, 1]), constant_op.constant([2, 1])) grad_aggregated = ops.IndexedSlices( constant_op.constant( [0.2], shape=[1, 1], dtype=dtype), constant_op.constant([1]), constant_op.constant([2, 1])) repeated_update_opt = lazy_adam_gs_optimizer.LazyAdamGSOptimizer( global_step=repeated_index_global_step) repeated_update = repeated_update_opt.apply_gradients( [(grad_repeated_index, repeated_index_update_var)], global_step=repeated_index_global_step) aggregated_update_opt = lazy_adam_gs_optimizer.LazyAdamGSOptimizer( global_step=aggregated_global_step) aggregated_update = aggregated_update_opt.apply_gradients( [(grad_aggregated, aggregated_update_var)], global_step=aggregated_global_step) variables.global_variables_initializer().run() self.assertAllClose(aggregated_update_var.eval(), repeated_index_update_var.eval()) for _ in range(3): repeated_update.run() aggregated_update.run() self.assertAllClose(aggregated_update_var.eval(), repeated_index_update_var.eval()) def doTestBasic(self, use_resource=False, use_callable_params=False): for i, dtype in enumerate([dtypes.half, dtypes.float32, dtypes.float64]): with self.session(graph=ops.Graph()): # Initialize variables for numpy implementation. m0, v0, m1, v1 = 0.0, 0.0, 0.0, 0.0 var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype) if use_resource: global_step = resource_variable_ops.ResourceVariable( array_ops.zeros([], dtypes.int64), name="global_step_%d" % i) var0 = resource_variable_ops.ResourceVariable( var0_np, name="var0_%d" % i) var1 = resource_variable_ops.ResourceVariable( var1_np, name="var1_%d" % i) else: global_step = variables.Variable(array_ops.zeros([], dtypes.int64)) var0 = variables.Variable(var0_np) var1 = variables.Variable(var1_np) grads0 = constant_op.constant(grads0_np) grads1 = constant_op.constant(grads1_np) learning_rate = lambda: 0.001 beta1 = lambda: 0.9 beta2 = lambda: 0.999 epsilon = lambda: 1e-8 if not use_callable_params: learning_rate = learning_rate() beta1 = beta1() beta2 = beta2() epsilon = epsilon() opt = lazy_adam_gs_optimizer.LazyAdamGSOptimizer( global_step=global_step, learning_rate=learning_rate) update = opt.apply_gradients(zip([grads0, grads1], [var0, var1]), global_step=global_step) opt_variables = opt.variables() beta1_power, beta2_power = opt._get_beta_accumulators() self.assertIsNotNone(beta1_power) self.assertIsNotNone(beta2_power is not None) self.assertNotIn(beta1_power, opt_variables) self.assertNotIn(beta2_power, opt_variables) if not context.executing_eagerly(): with ops.Graph().as_default(): # Shouldn't return non-slot variables from other graphs. self.assertEqual(0, len(opt.variables())) self.evaluate(variables.global_variables_initializer()) # Fetch params to validate initial values self.assertAllClose([1.0, 2.0], self.evaluate(var0)) self.assertAllClose([3.0, 4.0], self.evaluate(var1)) # Run 3 steps of Adam for t in range(1, 4): if not context.executing_eagerly(): self.evaluate(update) self.assertAllCloseAccordingToType( 0.9**(t + 1), self.evaluate(beta1_power)) self.assertAllCloseAccordingToType( 0.999**(t + 1), self.evaluate(beta2_power)) else: if t > 1: opt.apply_gradients(zip([grads0, grads1], [var0, var1]), global_step=global_step) beta1_power, beta2_power = opt._get_beta_accumulators() self.assertAllCloseAccordingToType( 0.9**t, self.evaluate(beta1_power)) self.assertAllCloseAccordingToType( 0.999**t, self.evaluate(beta2_power)) var0_np, m0, v0 = adam_update_numpy(var0_np, grads0_np, t, m0, v0) var1_np, m1, v1 = adam_update_numpy(var1_np, grads1_np, t, m1, v1) # Validate updated params self.assertAllCloseAccordingToType(var0_np, self.evaluate(var0)) self.assertAllCloseAccordingToType(var1_np, self.evaluate(var1)) if use_resource: self.assertEqual("var0_%d/Adam:0" % (i,), opt.get_slot(var=var0, name="m").name) def testBasic(self): with self.cached_session(): self.doTestBasic(use_resource=False) @test_util.run_in_graph_and_eager_modes(reset_test=True) def testResourceBasic(self): self.doTestBasic(use_resource=True) def testBasicCallableParams(self): with context.eager_mode(): self.doTestBasic(use_resource=True, use_callable_params=True) def testTensorLearningRate(self): for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: with self.cached_session(): global_step = variables.Variable(array_ops.zeros([], dtypes.int64)) # Initialize variables for numpy implementation. m0, v0, m1, v1 = 0.0, 0.0, 0.0, 0.0 var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype) var0 = variables.Variable(var0_np) var1 = variables.Variable(var1_np) grads0 = constant_op.constant(grads0_np) grads1 = constant_op.constant(grads1_np) opt = lazy_adam_gs_optimizer.LazyAdamGSOptimizer( global_step=global_step, learning_rate=constant_op.constant(0.001)) update = opt.apply_gradients(zip([grads0, grads1], [var0, var1]), global_step=global_step) variables.global_variables_initializer().run() # Fetch params to validate initial values self.assertAllClose([1.0, 2.0], var0.eval()) self.assertAllClose([3.0, 4.0], var1.eval()) beta1_power, beta2_power = opt._get_beta_accumulators() # Run 3 steps of Adam for t in range(1, 4): self.assertAllCloseAccordingToType(0.9**t, beta1_power.eval()) self.assertAllCloseAccordingToType(0.999**t, beta2_power.eval()) update.run() var0_np, m0, v0 = adam_update_numpy(var0_np, grads0_np, t, m0, v0) var1_np, m1, v1 = adam_update_numpy(var1_np, grads1_np, t, m1, v1) # Validate updated params self.assertAllCloseAccordingToType(var0_np, var0.eval()) self.assertAllCloseAccordingToType(var1_np, var1.eval()) def testSharing(self): for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: with self.cached_session(): global_step = variables.Variable(array_ops.zeros([], dtypes.int64)) # Initialize variables for numpy implementation. m0, v0, m1, v1 = 0.0, 0.0, 0.0, 0.0 var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype) var0 = variables.Variable(var0_np) var1 = variables.Variable(var1_np) grads0 = constant_op.constant(grads0_np) grads1 = constant_op.constant(grads1_np) opt = lazy_adam_gs_optimizer.LazyAdamGSOptimizer( global_step=global_step) update1 = opt.apply_gradients(zip([grads0, grads1], [var0, var1]), global_step=global_step) update2 = opt.apply_gradients(zip([grads0, grads1], [var0, var1]), global_step=global_step) variables.global_variables_initializer().run() beta1_power, beta2_power = opt._get_beta_accumulators() # Fetch params to validate initial values self.assertAllClose([1.0, 2.0], var0.eval()) self.assertAllClose([3.0, 4.0], var1.eval()) # Run 3 steps of intertwined Adam1 and Adam2. for t in range(1, 4): self.assertAllCloseAccordingToType(0.9**t, beta1_power.eval()) self.assertAllCloseAccordingToType(0.999**t, beta2_power.eval()) if t % 2 == 0: update1.run() else: update2.run() var0_np, m0, v0 = adam_update_numpy(var0_np, grads0_np, t, m0, v0) var1_np, m1, v1 = adam_update_numpy(var1_np, grads1_np, t, m1, v1) # Validate updated params self.assertAllCloseAccordingToType(var0_np, var0.eval()) self.assertAllCloseAccordingToType(var1_np, var1.eval()) def testTwoSessions(self): optimizer = lazy_adam_gs_optimizer.LazyAdamGSOptimizer() with context.eager_mode(): var0 = variables.Variable(np.array([1.0, 2.0]), name="v0") grads0 = constant_op.constant(np.array([0.1, 0.1])) optimizer.apply_gradients([(grads0, var0)]) g = ops.Graph() with g.as_default(): with self.session(graph=g): var0 = variables.Variable(np.array([1.0, 2.0]), name="v0") grads0 = constant_op.constant(np.array([0.1, 0.1])) optimizer.apply_gradients([(grads0, var0)]) gg = ops.Graph() with gg.as_default(): with self.session(graph=gg): var0 = variables.Variable(np.array([1.0, 2.0]), name="v0") grads0 = constant_op.constant(np.array([0.1, 0.1])) # If the optimizer saves any state not keyed by graph the following line # fails. optimizer.apply_gradients([(grads0, var0)]) def testSlotsUniqueEager(self): with context.eager_mode(): v1 = resource_variable_ops.ResourceVariable(1.) v2 = resource_variable_ops.ResourceVariable(1.) opt = lazy_adam_gs_optimizer.LazyAdamGSOptimizer(1.) opt.minimize(lambda: v1 + v2) # There should be two non-slot variables, and two unique slot variables # for v1 and v2 respectively. self.assertLen(set(opt.variables()), 4) if __name__ == "__main__": test.main()
tensorflow-master
tensorflow/contrib/opt/python/training/lazy_adam_gs_optimizer_test.py
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Wrapper optimizer for Elastic Average SGD """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import data_flow_ops from tensorflow.python.ops import gen_nn_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import state_ops from tensorflow.python.ops import variable_scope from tensorflow.python.ops import variables from tensorflow.python.training import optimizer from tensorflow.python.training import saver from tensorflow.python.training import session_run_hook from tensorflow.python.training.saving import saveable_object_util LOCAL_VARIABLE_NAME = 'local_center_variable' GLOBAL_VARIABLE_NAME = 'global_center_variable' GLOBAL_STEP = 'global_step' class ElasticAverageCustomGetter(object): """Custom_getter class is used to do: 1. Change trainable variables to local collection and place them at worker device 2. Generate global variables(global center variables) 3. Generate local variables(local center variables) which record the global variables and place them at worker device Notice that the class should be used with tf.replica_device_setter, so that the global center variables and global step variable can be placed at ps device. Besides, use 'tf.compat.v1.get_variable' instead of 'tf.Variable' to use this custom getter. For example, ea_custom_getter = ElasticAverageCustomGetter(worker_device) with tf.device( tf.compat.v1.train.replica_device_setter( worker_device=worker_device, ps_device="/job:ps", cluster=cluster)), tf.compat.v1.variable_scope('',custom_getter=ea_custom_getter): ... create your model here ... with tf.device(worker_device): opt = tf.compat.v1.train.MomentumOptimizer(...) optimizer = ElasticAverageOptimizer( opt, num_worker=2, moving_rate=0.01, # or use default value communication_period=20, ea_custom_getter=ea_custom_getter) ... train_op = optimizer.apply_gradients( grads_vars, global_step=global_step) ... hooks = [optimizer.make_session_run_hook(is_chief, task_index)] ... with tf.compat.v1.train.MonitoredTrainingSession(master=server.target, is_chief=is_chief, checkpoint_dir=("...), save_checkpoint_secs=600, hooks=hooks) as mon_sess: """ def __init__(self, worker_device): """Create a new `ElasticAverageCustomGetter`. Args: worker_device: String. Name of the `worker` job. """ self._worker_device = worker_device self._local_map = {} self._global_map = {} def __call__(self, getter, name, trainable, collections, *args, **kwargs): if trainable: with ops.device(self._worker_device): local_var = getter( name, trainable=True, collections=[ops.GraphKeys.LOCAL_VARIABLES], *args, **kwargs) if kwargs['reuse'] == True: return local_var global_center_variable = getter( name='%s/%s' % (GLOBAL_VARIABLE_NAME, name), trainable=False, collections=[ops.GraphKeys.GLOBAL_VARIABLES], *args, **kwargs) with ops.device(self._worker_device): local_center_variable = getter( name='%s/%s' % (LOCAL_VARIABLE_NAME, name), trainable=False, collections=[ops.GraphKeys.LOCAL_VARIABLES], *args, **kwargs) if kwargs['partitioner'] is None: self._local_map[local_var] = local_center_variable self._global_map[local_var] = global_center_variable else: v_list = list(local_var) for i in range(len(v_list)): self._local_map[v_list[i]] \ = list(local_center_variable)[i] self._global_map[v_list[i]] \ = list(global_center_variable)[i] return local_var else: kwargs['trainable'] = trainable kwargs['collections'] = collections if ops.GraphKeys.LOCAL_VARIABLES in collections: with ops.device(self._worker_device): return getter(name, *args, **kwargs) else: return getter(name, *args, **kwargs) class ElasticAverageOptimizer(optimizer.Optimizer): """Wrapper optimizer that implements the Elastic Average SGD algorithm. This is an async optimizer. During the training, Each worker will update the local variables and maintains its own local_step, which starts from 0 and is incremented by 1 after each update of local variables. Whenever the communication period divides the local step, the worker requests the current global center variables and then computed the elastic difference between global center variables and local variables. The elastic difference then be used to update both local variables and global variables. """ # Default value as paper described BETA = 0.9 def __init__(self, opt, num_worker, ea_custom_getter, communication_period=10, moving_rate=None, rho=None, use_locking=True, synchronous=False, name='ElasticAverageOptimizer'): """Construct a new gradient descent optimizer. Args: opt: The actual optimizer that will be used to update local variables. Must be one of the Optimizer classes. num_worker: The number of workers ea_custom_getter: The ElasticAverageCustomGetter communication_period: An int point value to controls the frequency of the communication between every worker and the ps. moving_rate: A floating point value to control the elastic difference. rho: the amount of exploration we allow in the model. The default value is moving_rate/learning_rate rho=0.0 is suggested in async mode. use_locking: If True use locks for update operations. synchronous: Add_sync_queues_and_barrier or not. True: all workers will wait for each other before start training False: worker can start training when its initilization is done, no need to wait for everyone is ready. in case one worker is restarted, it can join and continue training without being blocked. name: Optional name prefix for the operations created when applying gradients. Defaults to "ElasticAverageOptimizer". """ super(ElasticAverageOptimizer, self).__init__(use_locking, name) self._opt = opt self._num_worker = num_worker self._period = communication_period self._local_map = ea_custom_getter._local_map self._global_map = ea_custom_getter._global_map self._synchronous = synchronous if moving_rate is None: self._moving_rate = self.BETA / communication_period / num_worker else: self._moving_rate = moving_rate if rho is None: self._rho = self._moving_rate / self._opt._learning_rate else: self._rho = rho self._local_step = variable_scope.get_variable( initializer=0, trainable=False, collections=[ops.GraphKeys.LOCAL_VARIABLES], name='local_step') self._opt._prepare() def compute_gradients(self, loss, var_list=None, gate_gradients=optimizer.Optimizer.GATE_OP, aggregation_method=None, colocate_gradients_with_ops=False, grad_loss=None): """Compute gradients of `loss` for the variables in `var_list`. Add rho*elastic_difference to loss to control the exploration This is the first part of `minimize()`. It returns a list of (gradient, variable) pairs where "gradient" is the gradient for "variable". Note that "gradient" can be a `Tensor`, an `IndexedSlices`, or `None` if there is no gradient for the given variable. Args: loss: A Tensor containing the value to minimize. var_list: Optional list or tuple of `tf.Variable` to update to minimize `loss`. Defaults to the list of variables collected in the graph under the key `GraphKey.TRAINABLE_VARIABLES`. gate_gradients: How to gate the computation of gradients. Can be `GATE_NONE`, `GATE_OP`, or `GATE_GRAPH`. aggregation_method: Specifies the method used to combine gradient terms. Valid values are defined in the class `AggregationMethod`. colocate_gradients_with_ops: If True, try colocating gradients with the corresponding op. grad_loss: Optional. A `Tensor` holding the gradient computed for `loss`. Returns: A list of (gradient, variable) pairs. Variable is always present, but gradient can be `None`. Raises: TypeError: If `var_list` contains anything else than `Variable` objects. ValueError: If some arguments are invalid. """ if not var_list: var_list = variables.trainable_variables() elastic_difference = [ math_ops.subtract(v, lv) for v, lv in zip(variables.trainable_variables(), [self._local_map[var] for var in var_list]) ] distance_loss = self._rho * math_ops.add_n( [gen_nn_ops.l2_loss(ed) for ed in elastic_difference]) total_loss = loss + distance_loss return self._opt.compute_gradients(total_loss, var_list, gate_gradients, aggregation_method, colocate_gradients_with_ops, grad_loss) def apply_gradients(self, grads_and_vars, global_step=None, name=None): """Apply gradients to global variables. This is the second part of `minimize()`. It returns an `Operation` that applies gradients. Args: grads_and_vars: List of (gradient, variable) pairs as returned by `compute_gradients()`. global_step: Optional `Variable` to increment by one after the variables have been updated. name: Optional name for the returned operation. Default to the name passed to the `Optimizer` constructor. Returns: An `Operation` that applies the specified gradients. If `global_step` was not None, that operation also increments `global_step`. Raises: TypeError: If `grads_and_vars` is malformed. ValueError: If none of the variables have gradients. """ global_old = set(n.op.name for n in variables.global_variables()) apply_updates = self._opt.apply_gradients(grads_and_vars) global_new = set(n.op.name for n in variables.global_variables()) with ops.control_dependencies([apply_updates]): local_update = state_ops.assign_add( self._local_step, 1, name='local_step_update').op # this is for place the variables created by optimizer to local collection # e.g., AdamOptimizer will create beta as global variables def _adjust_optimizer_variable_collection(opt_vars): g = ops.get_default_graph() idx = 0 for _ in range(len(g._collections[ops.GraphKeys.GLOBAL_VARIABLES])): var = g.get_collection_ref(ops.GraphKeys.GLOBAL_VARIABLES)[idx] name = var.op.name if name in opt_vars: ops.add_to_collection(ops.GraphKeys.LOCAL_VARIABLES, var) del g.get_collection_ref(ops.GraphKeys.GLOBAL_VARIABLES)[idx] else: idx += 1 _adjust_optimizer_variable_collection(global_new - global_old) # update global variables. def _Update_global_variables(): local_vars = [v for g, v in grads_and_vars if g is not None] global_center_vars = [self._global_map[var] for var in local_vars] local_center_vars = [self._local_map[var] for var in local_vars] local_center_vars_update = [] for lvar, var in zip(local_center_vars, global_center_vars): local_center_vars_update.append(lvar.assign(var)) update_ops = [] differences = [] with ops.control_dependencies(local_center_vars_update): for v, lv in zip(local_vars, local_center_vars): with ops.device(v.device): differences.append(math_ops.subtract(v, lv)) for lvar, diff in zip(local_vars, differences): with ops.device(lvar.device): update_ops.append( state_ops.assign_sub(lvar, math_ops.multiply(self._moving_rate, diff))) for var, diff in zip(global_center_vars, differences): with ops.device(var.device): update_ops.append( state_ops.assign_add(var, math_ops.multiply(self._moving_rate, diff))) if global_step: with ops.colocate_with(global_step): update_ops.append(state_ops.assign_add(global_step, 1)) variable_update = control_flow_ops.group(*(update_ops)) return variable_update with ops.control_dependencies([local_update]): condition = math_ops.equal( math_ops.mod(self._local_step, self._period), 0) conditional_update = control_flow_ops.cond(condition, _Update_global_variables, control_flow_ops.no_op) return conditional_update def get_init_op(self, task_index): """Returns the op to let all the local variables and local center variables equal to the global center variables before the training begins """ def _Add_sync_queues_and_barrier(enqueue_after_list): """Adds ops to enqueue on all worker queues""" sync_queues = [ data_flow_ops.FIFOQueue( self._num_worker, [dtypes.bool], shapes=[[]], shared_name='%s%s' % ('variable_init_sync_queue', i)) for i in range(self._num_worker) ] queue_ops = [] # For each other worker, add an entry in a queue token = constant_op.constant(False) with ops.control_dependencies(enqueue_after_list): for i, q in enumerate(sync_queues): if i == task_index: queue_ops.append(control_flow_ops.no_op()) else: queue_ops.append(q.enqueue(token)) queue_ops.append( sync_queues[task_index].dequeue_many(len(sync_queues) - 1)) return control_flow_ops.group(*queue_ops) init_ops = [] local_vars = variables.trainable_variables() global_center_vars = [self._global_map[var] for var in local_vars] local_center_vars = [self._local_map[var] for var in local_vars] if not (local_vars and global_center_vars and local_center_vars): raise ValueError('The lists of local_variables, global_center_variables, ' 'local_center_variables should not be empty ') for lvar, gc_var, lc_var in zip(local_vars, global_center_vars, local_center_vars): init_ops.append(state_ops.assign(lvar, gc_var)) init_ops.append(state_ops.assign(lc_var, gc_var)) init_op = control_flow_ops.group(*(init_ops)) if self._synchronous == False: return init_op sync_queue_op = _Add_sync_queues_and_barrier([init_op]) return sync_queue_op def make_session_run_hook(self, is_chief, task_index): """Creates a hook to handle ElasticAverageOptimizerHook ops such as initialization.""" return _ElasticAverageOptimizerHook(self, is_chief, task_index) def swapping_saver(self, var_list=None, name='swapping_saver', **kwargs): """Create a saver copy global_center_variable to trainable variables Please call this function after all your variables created with ElasticAverageCustomGetter. For evaluations or inference, use this saver during training. It will save the global_center_variable of the trained parameters under the original parameter names. Args: var_list: List of variables to save, as per `Saver()`. If set to None, save all the trainable_variables that have been created before this call. name: The name of the saver. **kwargs: Keyword arguments of `Saver()`. Returns: A `tf.compat.v1.train.Saver` object. Raises: RuntimeError: global_center_variable is empty, please make sure this is called after model created and ElasticAverageCustomGetter is used when declaring you model """ if not self._global_map: raise RuntimeError('global_center_variable is empty, please make sure ' 'this is called after model created and ' 'ElasticAverageCustomGetter is used when declaring ' 'you model') if var_list is None: var_list = variables.trainable_variables() if not isinstance(var_list, dict): var_list = saveable_object_util.op_list_to_dict(var_list) swapped_var_list = {} for key, var in var_list.items(): tensor = var if not isinstance(var, list): for tvar in variables.trainable_variables(): if tvar.op.name == var.op.name: tensor = self._global_map.get(tvar, var) break else: #partitioned variable tensor = [self._global_map.get(lvar, lvar) for lvar in var] swapped_var_list[key] = tensor return saver.Saver(swapped_var_list, name=name, **kwargs) class _ElasticAverageOptimizerHook(session_run_hook.SessionRunHook): def __init__(self, ea_optimizer, is_chief, task_index): """Creates hook to handle ElasticAverageOptimizer initialization ops. Args: ea_optimizer: `ElasticAverageOptimizer` which this hook will initialize. is_chief: `Bool`, whether is this a chief replica or not. """ self._ea_optimizer = ea_optimizer self._is_chief = is_chief self._task_index = task_index def begin(self): self._local_init_op = variables.local_variables_initializer() self._global_init_op = None if self._is_chief: self._global_init_op = variables.global_variables_initializer() self._variable_init_op = self._ea_optimizer.get_init_op(self._task_index) def after_create_session(self, session, coord): """Run initialization ops""" session.run(self._variable_init_op)
tensorflow-master
tensorflow/contrib/opt/python/training/elastic_average_optimizer.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Implementation of the sign decay functions used in PowerSign and AddSign. See [Bello et al., ICML 2017] Neural Optimizer Search with Reinforcement Learning for details. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import math from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops def get_linear_decay_fn(decay_steps): """Returns a function that computes a linear decay. This decay computes linear annealing: max(0, (decay_steps - global_step) / decay_steps) Example usage: ``` decay_steps = 1000 linear_decay_fn = get_linear_decay_fn(decay_steps) decayed = linear_decay_fn(global_step) x *= decayed ``` Args: decay_steps: number of steps to decay over. Returns: linear_decay_fn: a function that computes the linear decay. """ # pylint:disable=missing-docstring def linear_decay_fn(global_step): if global_step is None: raise ValueError("global_step is required for linear_decay.") global_step = math_ops.minimum(global_step, decay_steps) remaining_steps = math_ops.cast( decay_steps, dtypes.int32) - math_ops.cast(global_step, dtypes.int32) decayed = (math_ops.cast(remaining_steps, dtypes.float32) / math_ops.cast(decay_steps, dtypes.float32)) return math_ops.maximum(0.0, decayed) # pylint:enable=missing-docstring return linear_decay_fn def get_cosine_decay_fn(decay_steps, num_periods=0.5, zero_after=None): """Returns a function that computes a cosine decay. This decay computes cosine annealing: 0.5 * (1.0 + cos(2.0 * pi * num_periods * global_step / decay_steps)) This decay can be used to decay the sign quantity in the AddSign and PowerSign optimizers discovered in [Bello et al., ICML 2017] Neural Optimizer Search with RL. Example usage: ``` decay_steps = 1000 num_periods = 2 cosine_decay_fn = get_cosine_decay_fn(decay_steps, num_periods=num_periods) decayed = cosine_decay_fn(global_step) x *= decayed ``` Args: decay_steps: number of steps to decay over. num_periods: number of periods for cosine signal. 0.5 by default, which maps the last decay step to 0. zero_after: if not None, number after which the decay function will just return 0. Returns: cosine_decay_fn: a function that computes the cosine decay. """ # pylint:disable=missing-docstring def cosine_decay_fn(global_step): if global_step is None: raise ValueError("global_step is required for cosine_decay.") global_step = math_ops.minimum(global_step, decay_steps) completed_fraction = (math_ops.cast(global_step, dtypes.float32) / math_ops.cast(decay_steps, dtypes.float32)) fraction = 2.0 * num_periods * completed_fraction decayed = 0.5 * ( 1.0 + math_ops.cos(constant_op.constant(math.pi) * fraction)) if zero_after is not None: decayed = array_ops.where( math_ops.greater_equal(fraction, 2 * zero_after), 0.0, decayed) return decayed # pylint:enable=missing-docstring return cosine_decay_fn def get_restart_decay_fn(decay_steps, num_periods=1, zero_after=None): """Returns a function that computes a restart decay. This decay computes 0.5 * (1.0 + cos(pi * (num_periods * global_step) % num_training_steps)) This is a simplified version of the restart decay introduced in "SGDR: Stochastic Gradient Descent with Warm Restarts" by Ilya Loshchilov & Frank Hutter, Proceedings of ICLR'2017, available at https://arxiv.org/pdf/1608.03983.pdf This decay can be used to decay the sign quantity in the AddSign and PowerSign optimizers discovered in [Bello et al., ICML 2017] Neural Optimizer Search with RL. Example usage: ``` decay_steps = 1000 num_periods = 2.0 restart_decay_fn = get_restart_decay_fn(decay_steps, num_periods=num_periods) decayed = restart_decay_fn(global_step) x *= decayed ``` Args: decay_steps: number of steps to decay over. num_periods: number of periods for cosine signal. 1 by default, which maps the last decay step to 0. zero_after: if not None, number after which the decay function will return 0. Returns: restart_decay_fn: a function that computes the restart decay. """ # pylint:disable=missing-docstring def restart_decay_fn(global_step): if global_step is None: raise ValueError("global_step is required for cosine_decay.") global_step = math_ops.minimum(global_step, decay_steps) num = math_ops.mod(num_periods * math_ops.cast(global_step, dtypes.float32), decay_steps) fraction = num / math_ops.cast(decay_steps, dtypes.float32) decayed = 0.5 * ( 1.0 + math_ops.cos(constant_op.constant(math.pi) * fraction)) if zero_after is not None: tmp = (math_ops.cast(num_periods * global_step, dtypes.float32) / math_ops.cast(decay_steps, dtypes.float32)) decayed = array_ops.where( math_ops.greater_equal(tmp, zero_after), 0.0, decayed) return decayed # pylint:enable=missing-docstring return restart_decay_fn
tensorflow-master
tensorflow/contrib/opt/python/training/sign_decay.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """An optimizer wrapper for stateful optimizers with multitask loss.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import types import six from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import clip_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.training import optimizer __all__ = ['MultitaskOptimizerWrapper', 'clip_gradients_by_global_norm'] def _is_all_zeros(grad): all_zeros = math_ops.equal(math_ops.count_nonzero(grad), 0) return all_zeros def _get_wrapper(fn, opt): def wrapper(self, grad, *args, **kwargs): # pylint: disable=unused-argument all_zeros = _is_all_zeros(grad) def call_fn(): with ops.control_dependencies([fn(grad, *args, **kwargs)]): return control_flow_ops.no_op() return control_flow_ops.cond(all_zeros, control_flow_ops.no_op, call_fn) wrapper = types.MethodType(wrapper, opt) return wrapper class MultitaskOptimizerWrapper(object): """Optimizer wrapper making all-zero gradients harmless. This might be useful when a multi-task loss is used, and some components of the loss might be not present (e.g. masked out) in some training batches. Technically their gradient would be zero, which would normally affect the optimizer state (e.g. push running average to zero). However this is not the desired behaviour, since the missing loss component should be treated as unknown rather than zero. This wrapper filters out all-zero gradient tensors, therefore preserving the optimizer state. If gradient clipping by global norm is used, the provided function clip_gradients_by_global_norm should be used (and specified explicitly by the user). Otherwise the global norm would be underestimated because of all-zero tensors that should be ignored. The gradient calculation and application are delegated to an underlying optimizer. The gradient application is altered only for all-zero tensors. Example: ```python momentum_optimizer = tf.compat.v1.train.MomentumOptimizer( learning_rate, momentum=0.9) multitask_momentum_optimizer = tf.contrib.opt.MultitaskOptimizerWrapper( momentum_optimizer) gradvars = multitask_momentum_optimizer.compute_gradients( loss) gradvars_clipped, _ = tf.contrib.opt.clip_gradients_by_global_norm( gradvars, 15.0) train_op = multitask_momentum_optimizer.apply_gradients( gradvars_clipped, global_step=batch) ``` """ def __init__(self, opt): """Constructor. Args: opt: an instance of a class that implements tf.train.Optimizer. """ if not isinstance(opt, optimizer.Optimizer): raise TypeError( 'Supplied optimizer must be an instance of tf.train.Optimizer') self._opt = opt overridden_methods = ('_apply_dense', '_resource_apply_dense', '_apply_sparse', '_resource_apply_sparse') for name in overridden_methods: fn = getattr(self._opt, name) wrapper = _get_wrapper(fn, self._opt) setattr(self._opt, name, wrapper) def __getattr__(self, name): return getattr(self._opt, name) def clip_gradients_by_global_norm(gradients_variables, clip_norm=20.): """Clips gradients of a multitask loss by their global norm. Ignores all-zero tensors when computing the global norm. Args: gradients_variables: a list of pairs (gradient, variable). clip_norm: a float Tensor, the global norm to clip on. Default is 20.0. Returns: list: A list of pairs of the same type as gradients_variables,. fixed_global_norm: A 0-D (scalar) Tensor representing the global norm. """ gradients, variables = six.moves.zip(*gradients_variables) def _replace_nonexisting_grad(grad): if grad is None: return grad all_zeros = _is_all_zeros(grad) return control_flow_ops.cond( all_zeros, lambda: array_ops.zeros([], dtype=dtypes.as_dtype(grad.dtype)), lambda: grad) nonzero_gradients = [_replace_nonexisting_grad(g) for g in gradients] fixed_global_norm = clip_ops.global_norm(nonzero_gradients) gradients, _ = clip_ops.clip_by_global_norm( gradients, clip_norm, use_norm=fixed_global_norm) return list(six.moves.zip(gradients, variables)), fixed_global_norm
tensorflow-master
tensorflow/contrib/opt/python/training/multitask_optimizer_wrapper.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for sign_decay.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import math from tensorflow.contrib.opt.python.training import sign_decay from tensorflow.python.platform import test def py_linear_decay_fn(decay_steps): def linear_decay(step): step = min(step, decay_steps) return float(decay_steps - step) / decay_steps return linear_decay def py_cosine_decay_fn(decay_steps, num_periods=0.5, zero_after=None): def cosine_decay(step): step = min(step, decay_steps) fraction = 2.0 * num_periods * step / float(decay_steps) if zero_after is not None and fraction >= 2 * zero_after: return 0.0 return 0.5 * (1.0 + math.cos(math.pi * fraction)) return cosine_decay def py_restart_decay_fn(decay_steps, num_periods=1, zero_after=None): def restart_decay(step): step = min(step, decay_steps) tmp = num_periods * step / float(decay_steps) fraction = ( num_periods * step % decay_steps) / float(decay_steps) if zero_after is not None and tmp >= zero_after: return 0 return 0.5 * (1.0 + math.cos(math.pi * fraction)) return restart_decay class SignDecaysTest(test.TestCase): def testLinearDecay(self): num_training_steps = 1000 linear_decay_fn = sign_decay.get_linear_decay_fn(num_training_steps) for step in range(0, 1000, 100): with self.cached_session(): tf_decayed = linear_decay_fn(step).eval() py_decayed = py_linear_decay_fn(num_training_steps)(step) self.assertAlmostEqual(tf_decayed, py_decayed, places=4) def testCosineDecay(self): num_training_steps = 1000 cosine_decay_fn = sign_decay.get_cosine_decay_fn(num_training_steps) cosine_decay_2_fn = sign_decay.get_cosine_decay_fn( num_training_steps, num_periods=5, zero_after=2) for step in range(0, 1000, 100): with self.cached_session(): tf_decayed = cosine_decay_fn(step).eval() py_decayed = py_cosine_decay_fn(num_training_steps)(step) self.assertAlmostEqual(tf_decayed, py_decayed, places=4) tf_decayed = cosine_decay_2_fn(step).eval() py_decayed = py_cosine_decay_fn( num_training_steps, num_periods=5, zero_after=2)(step) self.assertAlmostEqual(tf_decayed, py_decayed, places=4) def testRestartDecay(self): num_training_steps = 1000 restart_decay_fn = sign_decay.get_restart_decay_fn(num_training_steps) restart_decay_2_fn = sign_decay.get_restart_decay_fn( num_training_steps, num_periods=5, zero_after=2) for step in range(0, 1000, 100): with self.cached_session(): tf_decayed = restart_decay_fn(step).eval() py_decayed = py_restart_decay_fn(num_training_steps)(step) self.assertAlmostEqual(tf_decayed, py_decayed, places=4) tf_decayed = restart_decay_2_fn(step).eval() py_decayed = py_restart_decay_fn( num_training_steps, num_periods=5, zero_after=2)(step) self.assertAlmostEqual(tf_decayed, py_decayed, places=4) if __name__ == "__main__": test.main()
tensorflow-master
tensorflow/contrib/opt/python/training/sign_decay_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for PowerSign.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import numpy as np from tensorflow.contrib.opt.python.training import powersign from tensorflow.contrib.opt.python.training import sign_decay from tensorflow.python.eager import context from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import resource_variable_ops from tensorflow.python.ops import variables from tensorflow.python.platform import test def py_linear_decay_fn(decay_steps): def linear_decay(step): step = min(step, decay_steps) return float(decay_steps - step) / decay_steps return linear_decay def powersign_update_numpy(params, g_t, m, lr, base=math.e, beta=0.9, py_sign_decay_fn=None, t=None): m_t = beta * m + (1 - beta) * g_t if py_sign_decay_fn is None: sign_decayed = 1.0 else: sign_decayed = py_sign_decay_fn(t-1) multiplier = base ** (sign_decayed * np.sign(g_t) * np.sign(m_t)) params_t = params - lr * multiplier * g_t return params_t, m_t class PowerSignTest(test.TestCase): def _testDense(self, use_resource=False, learning_rate=0.1, sign_decay_fn=None, py_sign_decay_fn=None, base=math.e, beta=0.9): for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: with self.cached_session(use_gpu=True): # Initialize variables for numpy implementation. m0, m1 = 0.0, 0.0 var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype) if use_resource: var0 = resource_variable_ops.ResourceVariable(var0_np) var1 = resource_variable_ops.ResourceVariable(var1_np) global_step = resource_variable_ops.ResourceVariable( 0, trainable=False) else: var0 = variables.VariableV1(var0_np) var1 = variables.VariableV1(var1_np) global_step = variables.VariableV1( 0, trainable=False) grads0 = constant_op.constant(grads0_np) grads1 = constant_op.constant(grads1_np) opt = powersign.PowerSignOptimizer( learning_rate=learning_rate, base=base, beta=beta, sign_decay_fn=sign_decay_fn, ) update = opt.apply_gradients(zip([grads0, grads1], [var0, var1]), global_step=global_step) neg_update = opt.apply_gradients(zip([-grads0, -grads1], [var0, var1]), global_step=global_step) if not context.executing_eagerly(): self.evaluate(variables.global_variables_initializer()) # Fetch params to validate initial values self.assertAllClose([1.0, 2.0], self.evaluate(var0)) self.assertAllClose([3.0, 4.0], self.evaluate(var1)) # Run 7 steps of powersign # first 4 steps with positive gradient # last 3 steps with negative gradient (sign(gm) should be -1) for t in range(1, 8): if t < 5: if not context.executing_eagerly(): self.evaluate(update) elif t > 1: opt.apply_gradients(zip([grads0, grads1], [var0, var1]), global_step=global_step) else: if not context.executing_eagerly(): self.evaluate(neg_update) elif t > 1: opt.apply_gradients(zip([-grads0, -grads1], [var0, var1]), global_step=global_step) var0_np, m0 = powersign_update_numpy( var0_np, grads0_np if t < 5 else -grads0_np, m0, learning_rate, base=base, beta=beta, py_sign_decay_fn=py_sign_decay_fn, t=t, ) var1_np, m1 = powersign_update_numpy( var1_np, grads1_np if t < 5 else -grads1_np, m1, learning_rate, base=base, beta=beta, py_sign_decay_fn=py_sign_decay_fn, t=t, ) # Validate updated params self.assertAllCloseAccordingToType(var0_np, self.evaluate(var0)) self.assertAllCloseAccordingToType(var1_np, self.evaluate(var1)) def testDense(self): decay_steps = 10 sign_decay_fn = sign_decay.get_linear_decay_fn(decay_steps) py_sign_decay_fn = py_linear_decay_fn(decay_steps) self._testDense(use_resource=False) self._testDense(use_resource=False, learning_rate=0.1, base=10.0, beta=0.8) self._testDense(use_resource=False, sign_decay_fn=sign_decay_fn, py_sign_decay_fn=py_sign_decay_fn) self._testDense(use_resource=True) self._testDense(use_resource=True, learning_rate=0.1, base=10.0, beta=0.8) self._testDense(use_resource=True, sign_decay_fn=sign_decay_fn, py_sign_decay_fn=py_sign_decay_fn) def _testSparse(self, use_resource=False, learning_rate=0.1, sign_decay_fn=None, py_sign_decay_fn=None, base=math.e, beta=0.9): with self.session(use_gpu=True): for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: # Initialize variables for numpy implementation. m0, m1 = 0.0, 0.0 var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype) if use_resource: var0 = resource_variable_ops.ResourceVariable(var0_np) var1 = resource_variable_ops.ResourceVariable(var1_np) global_step = resource_variable_ops.ResourceVariable( 0, trainable=False) else: var0 = variables.VariableV1(var0_np) var1 = variables.VariableV1(var1_np) global_step = variables.VariableV1( 0, trainable=False) grads0_np_indices = np.array([0, 1], dtype=np.int32) grads0 = ops.IndexedSlices( constant_op.constant(grads0_np), constant_op.constant(grads0_np_indices), constant_op.constant([2])) grads1_np_indices = np.array([0, 1], dtype=np.int32) grads1 = ops.IndexedSlices( constant_op.constant(grads1_np), constant_op.constant(grads1_np_indices), constant_op.constant([2])) opt = powersign.PowerSignOptimizer( learning_rate=learning_rate, base=base, beta=beta, sign_decay_fn=sign_decay_fn, ) update = opt.apply_gradients(zip([grads0, grads1], [var0, var1]), global_step=global_step) neg_update = opt.apply_gradients(zip([-grads0, -grads1], [var0, var1]), global_step=global_step) variables.global_variables_initializer().run() # Fetch params to validate initial values self.assertAllClose([1.0, 2.0], var0.eval()) self.assertAllClose([3.0, 4.0], var1.eval()) # Run 7 steps of powersign # first 4 steps with positive gradient # last 3 steps with negative gradient (sign(gm) should be -1) for t in range(1, 8): if t < 5: update.run() else: neg_update.run() var0_np, m0 = powersign_update_numpy( var0_np, grads0_np if t < 5 else -grads0_np, m0, learning_rate, base=base, beta=beta, py_sign_decay_fn=py_sign_decay_fn, t=t, ) var1_np, m1 = powersign_update_numpy( var1_np, grads1_np if t < 5 else -grads1_np, m1, learning_rate, base=base, beta=beta, py_sign_decay_fn=py_sign_decay_fn, t=t, ) # Validate updated params self.assertAllCloseAccordingToType(var0_np, var0.eval()) self.assertAllCloseAccordingToType(var1_np, var1.eval()) def testSparse(self): decay_steps = 10 sign_decay_fn = sign_decay.get_linear_decay_fn(decay_steps) py_sign_decay_fn = py_linear_decay_fn(decay_steps) self._testSparse(use_resource=False) self._testSparse(use_resource=False, learning_rate=0.01, base=2.0, beta=0.8) self._testSparse(use_resource=False, sign_decay_fn=sign_decay_fn, py_sign_decay_fn=py_sign_decay_fn) if __name__ == '__main__': test.main()
tensorflow-master
tensorflow/contrib/opt/python/training/powersign_test.py
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """RegAdagrad for TensorFlow.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.ops import math_ops from tensorflow.python.training import adagrad from tensorflow.python.training import training_ops from tensorflow.python.util import tf_contextlib class RegAdagradOptimizer(adagrad.AdagradOptimizer): """RegAdagrad: Adagrad with updates that optionally skip updating the slots. This is meant to address the problem of additional regularization terms in the loss function affecting learning rate decay and causing hyper-param entanglement. Example usage: loss = tf.nn.cross_entropy(x, labels) reg_loss = reg_strength * tf.reduce_sum(x * x) opt = tf.contrib.opt.RegAdagradOptimizer(learning_rate) loss_update = opt.minimize(loss) with opt.avoid_updating_slots(): reg_update = opt.minimize(reg_loss) total_update = tf.group([loss_update, reg_update]) # ... sess.run(total_update, ...) """ def __init__(self, learning_rate, initial_accumulator_value=0.1, use_locking=False, name="RegAdagrad"): super(RegAdagradOptimizer, self).__init__( learning_rate, initial_accumulator_value=initial_accumulator_value, use_locking=use_locking, name=name) self._should_update_slots = True @tf_contextlib.contextmanager def avoid_updating_slots(self): old = self._should_update_slots self._should_update_slots = False try: yield finally: self._should_update_slots = old def _apply_dense(self, grad, var): acc = self.get_slot(var, "accumulator") return training_ops.apply_adagrad( var, acc, math_ops.cast(self._learning_rate_tensor, var.dtype.base_dtype), grad, use_locking=self._use_locking, update_slots=self._should_update_slots) def _resource_apply_dense(self, grad, var, update_slots=True): acc = self.get_slot(var, "accumulator") return training_ops.resource_apply_adagrad( var.handle, acc.handle, math_ops.cast(self._learning_rate_tensor, grad.dtype.base_dtype), grad, use_locking=self._use_locking, update_slots=self._should_update_slots) def _apply_sparse(self, grad, var, update_slots=True): acc = self.get_slot(var, "accumulator") return training_ops.sparse_apply_adagrad( var, acc, math_ops.cast(self._learning_rate_tensor, var.dtype.base_dtype), grad.values, grad.indices, use_locking=self._use_locking, update_slots=self._should_update_slots) def _resource_apply_sparse(self, grad, var, indices, update_slots=True): acc = self.get_slot(var, "accumulator") return training_ops.resource_sparse_apply_adagrad( var.handle, acc.handle, math_ops.cast(self._learning_rate_tensor, grad.dtype), grad, indices, use_locking=self._use_locking, update_slots=self._should_update_slots)
tensorflow-master
tensorflow/contrib/opt/python/training/reg_adagrad_optimizer.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for GGTOptimizer.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.opt.python.training.ggt import GGTOptimizer from tensorflow.python.eager import context from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import test_util from tensorflow.python.ops import resource_variable_ops from tensorflow.python.ops import variables from tensorflow.python.platform import test def ggt_update_numpy(param, g_t, lr, grad_buffer, m, window, t, beta1=0.9, eps=1e-4, svd_eps=1e-6, sigma_eps=1e-2): """Tests the correctness of one step of GGT.""" m_t = m * beta1 + (1 - beta1) * g_t grad_buffer[((t - 1) % window), :] = m_t m_matrix = np.transpose(grad_buffer / np.sqrt(np.minimum(t, window))) mm = np.dot(np.transpose(m_matrix), m_matrix) damping = np.eye(window) * svd_eps u, sigma, _ = np.linalg.svd(mm + damping) sigma_sqrt_inv = np.power(np.sqrt(sigma) + sigma_eps, -3) new_step = np.linalg.multi_dot([ m_matrix, u, np.diag(sigma_sqrt_inv), np.transpose(u), np.transpose(m_matrix), m_t ]) sigma_sqrt_min = np.sqrt(sigma).min() if sigma_sqrt_min > eps: new_step += (m_t - np.linalg.multi_dot([ m_matrix, u, np.diag(1.0 / sigma), np.transpose(u), np.transpose(m_matrix), m_t ])) * (1.0 / sigma_sqrt_min) param_t = param - lr * new_step return param_t, m_t, grad_buffer class GGTOptimizerTest(test.TestCase): def doTestBasic(self, use_resource=False): # SVD does not support float16 for i, dtype in enumerate([dtypes.float32, dtypes.float64]): with self.session(graph=ops.Graph()): # Initialize variables for numpy implementation. m0 = 0.0 window = 3 grad_buffer = np.zeros((window, 4), dtype=dtype.as_numpy_dtype) lr = 0.001 var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype) if use_resource: var0 = resource_variable_ops.ResourceVariable( var0_np, name="var0_%d" % i) var1 = resource_variable_ops.ResourceVariable( var1_np, name="var1_%d" % i) else: var0 = variables.Variable(var0_np, name="var0") var1 = variables.Variable(var1_np, name="var1") grads0 = constant_op.constant(grads0_np) grads1 = constant_op.constant(grads1_np) opt = GGTOptimizer(learning_rate=lr, window=window) update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) opt_variables = opt.variables() m_t = opt._get_moment1() grad_buffer_t = opt._get_grad_buffer() g_t = opt._get_flat_grad() self.assertTrue(m_t is not None) self.assertTrue(grad_buffer_t is not None) self.assertTrue(g_t is not None) self.assertIn(m_t, opt_variables) self.assertIn(grad_buffer_t, opt_variables) self.assertIn(g_t, opt_variables) with ops.Graph().as_default(): # Shouldn't return non-slot variables from other graphs. self.assertEqual(0, len(opt.variables())) if not context.executing_eagerly(): self.evaluate(variables.global_variables_initializer()) # Fetch params to validate initial values self.assertAllClose([1.0, 2.0], self.evaluate(var0)) self.assertAllClose([3.0, 4.0], self.evaluate(var1)) m_t = opt._get_moment1() grad_buffer_t = opt._get_grad_buffer() g_t = opt._get_flat_grad() # Run 3 steps of GGT for t in range(1, 4): if not context.executing_eagerly(): self.evaluate(update) elif t > 1: opt.apply_gradients(zip([grads0, grads1], [var0, var1])) if t == 1: self.assertAllCloseAccordingToType( np.array([0.01, 0.01, 0.001, 0.001]), self.evaluate(m_t)) self.assertAllCloseAccordingToType( np.array([[0.01, 0.01, 0.001, 0.001], [0., 0., 0., 0.], [0., 0., 0., 0.]]), self.evaluate(grad_buffer_t)) elif t == 2: self.assertAllCloseAccordingToType( np.array([0.019, 0.019, 0.0019, 0.0019]), self.evaluate(m_t)) self.assertAllCloseAccordingToType( np.array([[0.01, 0.01, 0.001, 0.001], [0.019, 0.019, 0.0019, 0.0019], [0., 0., 0., 0.]]), self.evaluate(grad_buffer_t)) else: self.assertAllCloseAccordingToType( np.array([0.0271, 0.0271, 0.00271, 0.00271]), self.evaluate(m_t)) self.assertAllCloseAccordingToType( np.array([[0.01, 0.01, 0.001, 0.001], [0.019, 0.019, 0.0019, 0.0019], [0.0271, 0.0271, 0.00271, 0.00271]]), self.evaluate(grad_buffer_t)) self.assertAllCloseAccordingToType([0.1, 0.1, 0.01, 0.01], self.evaluate(g_t)) var_np = np.append(var0_np, var1_np) grads_np = np.append(grads0_np, grads1_np) var_np, m0, grad_buffer = ggt_update_numpy(var_np, grads_np, lr, grad_buffer, m0, window, t) var0_np = var_np[:2] var1_np = var_np[2:] # Validate updated params self.assertAllCloseAccordingToType(var0_np, self.evaluate(var0)) self.assertAllCloseAccordingToType(var1_np, self.evaluate(var1)) def testBasic(self): with self.cached_session(): self.doTestBasic(use_resource=False) @test_util.run_in_graph_and_eager_modes(reset_test=True) def testResourceBasic(self): self.doTestBasic(use_resource=True) if __name__ == "__main__": test.main()
tensorflow-master
tensorflow/contrib/opt/python/training/ggt_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for external_optimizer.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.opt.python.training import external_optimizer from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import random_ops from tensorflow.python.ops import variables from tensorflow.python.platform import test # pylint: disable=g-import-not-at-top,unused-import try: import __builtin__ as builtins except ImportError: import builtins class MockOptimizerInterface(external_optimizer.ExternalOptimizerInterface): NUM_STEP_CALLS = 5 NUM_LOSS_CALLS = 2 def _minimize(self, initial_val, loss_grad_func, step_callback, optimizer_kwargs, **unused_kwargs): """Minimize (x - x0)**2 / 2 with respect to x.""" for _ in range(self.NUM_LOSS_CALLS): loss_grad_func(initial_val) for _ in range(self.NUM_STEP_CALLS): step_callback(initial_val) _, grad = loss_grad_func(initial_val) return initial_val - grad class TestCase(test.TestCase): def assertAllClose(self, array1, array2, rtol=1e-5, atol=1e-5): array1 = np.asarray(array1) array2 = np.asarray(array2) if not array1.shape: array1 = np.array([array1]) if not array2.shape: array2 = np.array([array2]) super(TestCase, self).assertAllClose(array1, array2, rtol=rtol, atol=atol) class ExternalOptimizerInterfaceTest(TestCase): def test_optimize(self): scalar = variables.VariableV1(random_ops.random_normal([]), 'scalar') vector = variables.VariableV1(random_ops.random_normal([2]), 'vector') matrix = variables.VariableV1(random_ops.random_normal([2, 3]), 'matrix') minimum_location = constant_op.constant(np.arange(9), dtype=dtypes.float32) loss = math_ops.reduce_sum( math_ops.square(vector - minimum_location[:2])) / 2. loss += math_ops.reduce_sum( math_ops.square(scalar - minimum_location[2])) / 2. loss += math_ops.reduce_sum( math_ops.square( matrix - array_ops.reshape(minimum_location[3:], [2, 3]))) / 2. optimizer = MockOptimizerInterface(loss) with self.cached_session() as sess: sess.run(variables.global_variables_initializer()) optimizer.minimize(sess) self.assertAllClose(np.arange(2), sess.run(vector)) self.assertAllClose(np.arange(1) + 2, sess.run(scalar)) self.assertAllClose(np.arange(6).reshape(2, 3) + 3, sess.run(matrix)) def test_callbacks(self): vector_val = np.array([7., -2.], dtype=np.float32) vector = variables.VariableV1(vector_val, 'vector') minimum_location_val = np.arange(2) minimum_location = constant_op.constant( minimum_location_val, dtype=dtypes.float32) loss = math_ops.reduce_sum(math_ops.square(vector - minimum_location)) / 2. loss_val = ((vector_val - minimum_location_val)**2).sum() / 2. optimizer = MockOptimizerInterface(loss) with self.cached_session() as sess: sess.run(variables.global_variables_initializer()) initial_vector_val = sess.run(vector) extra_fetches = [loss] step_callback = test.mock.Mock() loss_callback = test.mock.Mock() optimizer.minimize( sess, fetches=extra_fetches, loss_callback=loss_callback, step_callback=step_callback) call = test.mock.call(loss_val) loss_calls = [call] * MockOptimizerInterface.NUM_LOSS_CALLS loss_callback.assert_has_calls(loss_calls) args, _ = step_callback.call_args self.assertAllClose(initial_vector_val, args[0]) class ScipyOptimizerInterfaceTest(TestCase): def _objective(self, x): """Rosenbrock function. (Carl Edward Rasmussen, 2001-07-21). f(x) = sum_{i=1:D-1} 100*(x(i+1) - x(i)^2)^2 + (1-x(i))^2 Args: x: a Variable Returns: f: a tensor (objective value) """ d = array_ops.size(x) s = math_ops.add( 100 * math_ops.square( math_ops.subtract( array_ops.strided_slice(x, [1], [d]), math_ops.square(array_ops.strided_slice(x, [0], [d - 1])))), math_ops.square( math_ops.subtract(1.0, array_ops.strided_slice(x, [0], [d - 1])))) return math_ops.reduce_sum(s) def _test_optimization_method(self, method, options, rtol=1e-5, atol=1e-5, dimension=5): x = variables.VariableV1(array_ops.zeros(dimension)) optimizer = external_optimizer.ScipyOptimizerInterface( self._objective(x), method=method, options=options) with self.cached_session() as sess: sess.run(variables.global_variables_initializer()) optimizer.minimize(sess) self.assertAllClose(np.ones(dimension), sess.run(x), rtol=rtol, atol=atol) def test_unconstrained(self): dimension = 5 x = variables.VariableV1(array_ops.zeros(dimension)) optimizer = external_optimizer.ScipyOptimizerInterface(self._objective(x)) with self.cached_session() as sess: sess.run(variables.global_variables_initializer()) optimizer.minimize(sess) self.assertAllClose(np.ones(dimension), sess.run(x)) def test_nelder_mead_method2(self): self._test_optimization_method( method='Nelder-Mead', options={}, rtol=1e-4, atol=1e-4) def test_newton_cg_method(self): self._test_optimization_method( method='Newton-CG', options={'eps': 1e-03, 'xtol': 1e-05}, rtol=1e-3, atol=1e-3) def test_newton_tnc_method(self): self._test_optimization_method( method='TNC', options={'gtol': -5, 'maxiter': 1000}, rtol=1e-1, atol=1e-1) def test_cobyla_method(self): # COBYLA does not reach the global optima self._test_optimization_method( method='COBYLA', options={ 'maxiter': 9000, }, rtol=1e-1, atol=1e-1, dimension=2) def test_slsqp_method(self): self._test_optimization_method( method='SLSQP', options={}, rtol=1e-3, atol=1e-3) def test_cg_method(self): self._test_optimization_method( method='CG', options={'gtol': 1e-03}, rtol=1e-3, atol=1e-3) def test_other_optimization_methods(self): # These methods do not require special options to converge on rosenbrock methods = ['Powell', 'BFGS', 'L-BFGS-B'] for method in methods: self._test_optimization_method(method=method, options={}) def test_nonlinear_programming(self): vector_initial_value = [7., 7.] vector = variables.VariableV1(vector_initial_value, 'vector') # Make norm as small as possible. loss = math_ops.reduce_sum(math_ops.square(vector)) # Ensure y = 1. equalities = [vector[1] - 1.] # Ensure x >= 1. Thus optimum should be at (1, 1). inequalities = [vector[0] - 1.] optimizer = external_optimizer.ScipyOptimizerInterface( loss, equalities=equalities, inequalities=inequalities, method='SLSQP') with self.cached_session() as sess: sess.run(variables.global_variables_initializer()) optimizer.minimize(sess) self.assertAllClose(np.ones(2), sess.run(vector)) def test_scalar_bounds(self): vector_initial_value = [7., 7.] vector = variables.VariableV1(vector_initial_value, 'vector') # Make norm as small as possible. loss = math_ops.reduce_sum(math_ops.square(vector)) # Make the minimum value of each component be 1. var_to_bounds = {vector: (1., np.infty)} optimizer = external_optimizer.ScipyOptimizerInterface( loss, var_to_bounds=var_to_bounds) with self.cached_session() as sess: sess.run(variables.global_variables_initializer()) optimizer.minimize(sess) self.assertAllClose(np.ones(2), sess.run(vector)) def test_vector_bounds(self): vector_initial_value = [7., 7.] vector = variables.VariableV1(vector_initial_value, 'vector') # Make norm as small as possible. loss = math_ops.reduce_sum(math_ops.square(vector)) var_to_bounds = {vector: ([None, 2.], None)} optimizer = external_optimizer.ScipyOptimizerInterface( loss, var_to_bounds=var_to_bounds) with self.cached_session() as sess: sess.run(variables.global_variables_initializer()) optimizer.minimize(sess) self.assertAllClose([0., 2.], sess.run(vector)) def test_optimizer_kwargs(self): # Checks that the 'method' argument is stil present # after running optimizer.minimize(). # Bug reference: b/64065260 vector_initial_value = [7., 7.] vector = variables.VariableV1(vector_initial_value, 'vector') loss = math_ops.reduce_sum(math_ops.square(vector)) optimizer = external_optimizer.ScipyOptimizerInterface( loss, method='SLSQP') with self.cached_session() as sess: sess.run(variables.global_variables_initializer()) optimizer.minimize(sess) method = optimizer.optimizer_kwargs.get('method') self.assertEqual('SLSQP', method) def test_callbacks(self): vector_val = np.array([7., -2.], dtype=np.float32) vector = variables.VariableV1(vector_val, 'vector') minimum_location_val = np.arange(2) minimum_location = constant_op.constant( minimum_location_val, dtype=dtypes.float32) loss = math_ops.reduce_sum(math_ops.square(vector - minimum_location)) / 2. loss_val_first = ((vector_val - minimum_location_val)**2).sum() / 2. optimizer = external_optimizer.ScipyOptimizerInterface(loss, method='SLSQP') with self.cached_session() as sess: sess.run(variables.global_variables_initializer()) initial_vector_val = sess.run(vector) extra_fetches = [loss] step_callback = test.mock.Mock() loss_callback = test.mock.Mock() optimizer.minimize( sess, fetches=extra_fetches, loss_callback=loss_callback, step_callback=step_callback) loss_val_last = sess.run(loss) call_first = test.mock.call(loss_val_first) call_last = test.mock.call(loss_val_last) loss_calls = [call_first, call_last] loss_callback.assert_has_calls(loss_calls, any_order=True) args, _ = step_callback.call_args self.assertAllClose(minimum_location_val, args[0]) if __name__ == '__main__': test.main()
tensorflow-master
tensorflow/contrib/opt/python/training/external_optimizer_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for ElasticAverageOptimizer.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import portpicker from tensorflow.python.client import session from tensorflow.python.framework import constant_op from tensorflow.python.framework import ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import partitioned_variables from tensorflow.python.ops import variable_scope from tensorflow.python.ops import variables from tensorflow.python.platform import test from tensorflow.python.training import device_setter from tensorflow.python.training import gradient_descent from tensorflow.python.training import saver from tensorflow.python.training import server_lib from tensorflow.python.training import training from tensorflow.python.training import training_util from tensorflow.contrib.opt.python.training.elastic_average_optimizer import \ ElasticAverageOptimizer, ElasticAverageCustomGetter, GLOBAL_VARIABLE_NAME def create_local_cluster(num_workers, num_ps, protocol="grpc"): """Create local GRPC servers and return them.""" worker_ports = [portpicker.pick_unused_port() for _ in range(num_workers)] ps_ports = [portpicker.pick_unused_port() for _ in range(num_ps)] cluster_dict = { "worker": ["localhost:%s" % port for port in worker_ports], "ps": ["localhost:%s" % port for port in ps_ports] } cs = server_lib.ClusterSpec(cluster_dict) workers = [ server_lib.Server( cs, job_name="worker", protocol=protocol, task_index=ix, start=True) for ix in range(num_workers) ] ps_servers = [ server_lib.Server( cs, job_name="ps", protocol=protocol, task_index=ix, start=True) for ix in range(num_ps) ] return cluster_dict, workers, ps_servers # Creates the workers and return their sessions, graphs, train_ops. # Chief worker will update at last def _get_workers(num_workers, period, workers, moving_rate, num_ps=1): sessions = [] graphs = [] train_ops = [] savers = [] for worker_id in range(num_workers): graph = ops.Graph() is_chief = (worker_id == 0) with graph.as_default(): worker_device = "/job:worker/task:%d/cpu:0" % (worker_id) ea_custom = ElasticAverageCustomGetter(worker_device=worker_device) with variable_scope.variable_scope( "", custom_getter=ea_custom), ops.device( device_setter.replica_device_setter( worker_device=worker_device, ps_device="/job:ps/task:0/cpu:0", ps_tasks=1)): global_step = training_util.get_or_create_global_step() var_0 = variable_scope.get_variable(initializer=0.0, name="v0") var_1 = variable_scope.get_variable(initializer=1.0, name="v1") if num_ps > 1: with variable_scope.variable_scope( "", partitioner=partitioned_variables.fixed_size_partitioner( num_ps, axis=0), custom_getter=ea_custom), ops.device( device_setter.replica_device_setter( worker_device=worker_device, ps_device="/job:ps/task:0/cpu:0", ps_tasks=num_ps)): partition_var = variable_scope.get_variable( 'partition_var', shape=[2, 4], initializer=init_ops.ones_initializer) part_0 = list(partition_var)[0] part_1 = list(partition_var)[1] with ops.device("/job:worker/task:" + str(worker_id)): grads_0 = constant_op.constant(-1.0) grads_1 = constant_op.constant(-1.0) grads_part_0 = constant_op.constant([[-1., -1., -1., -1.]]) grads_part_1 = constant_op.constant([[-1., -1., -1., -1.]]) sgd_opt = gradient_descent.GradientDescentOptimizer(1.0) opt = ElasticAverageOptimizer( opt=sgd_opt, num_worker=num_workers, moving_rate=moving_rate, communication_period=period, ea_custom_getter=ea_custom) if num_ps == 1: train_op = [ opt.apply_gradients(([grads_0, var_0], [grads_1, var_1]), global_step) ] else: train_op = [ opt.apply_gradients(([grads_0, var_0], [grads_1, var_1], [grads_part_0, part_0], [grads_part_1, part_1]), global_step) ] easgd_hook = opt.make_session_run_hook(is_chief, worker_id) saver = opt.swapping_saver() # Creates MonitoredSession sess = training.MonitoredTrainingSession( workers[worker_id].target, hooks=[easgd_hook]) sessions.append(sess) graphs.append(graph) train_ops.append(train_op) savers.append(saver) return sessions, graphs, train_ops, savers class ElasticAverageOptimizerTest(test.TestCase): def _run(self, train_op, sess): sess.run(train_op) def test1Workers2Period(self): num_workers = 1 communication_period = 2 num_ps = 1 cluster, workers, _ = create_local_cluster( num_workers=num_workers, num_ps=num_ps) sessions, graphs, train_ops, savers = _get_workers( num_workers, communication_period, workers, 1.0) var_0 = graphs[0].get_tensor_by_name("v0:0") var_1 = graphs[0].get_tensor_by_name("v1:0") global_step = training_util.get_global_step(graphs[0]) var_0_g = graphs[0].get_tensor_by_name(GLOBAL_VARIABLE_NAME + "/v0:0") var_1_g = graphs[0].get_tensor_by_name(GLOBAL_VARIABLE_NAME + "/v1:0") # Verify the initialized value. self.assertAllEqual(0.0, sessions[0].run(var_0)) self.assertAllEqual(1.0, sessions[0].run(var_1)) self.assertAllEqual(0.0, sessions[0].run(var_0_g)) self.assertAllEqual(1.0, sessions[0].run(var_1_g)) self.assertAllEqual(0, sessions[0].run(global_step)) sessions[0].run(train_ops[0]) self.assertAllEqual(1.0, sessions[0].run(var_0)) self.assertAllEqual(2.0, sessions[0].run(var_1)) self.assertAllEqual(0.0, sessions[0].run(var_0_g)) self.assertAllEqual(1.0, sessions[0].run(var_1_g)) self.assertAllEqual(0, sessions[0].run(global_step)) # iteration 2, global variable update sessions[0].run(train_ops[0]) self.assertAllEqual(0.0, sessions[0].run(var_0)) self.assertAllEqual(1.0, sessions[0].run(var_1)) self.assertAllEqual(2.0, sessions[0].run(var_0_g)) self.assertAllEqual(3.0, sessions[0].run(var_1_g)) self.assertAllEqual(1, sessions[0].run(global_step)) # iteration 3 sessions[0].run(train_ops[0]) self.assertAllEqual(1.0, sessions[0].run(var_0)) self.assertAllEqual(2.0, sessions[0].run(var_1)) self.assertAllEqual(2.0, sessions[0].run(var_0_g)) self.assertAllEqual(3.0, sessions[0].run(var_1_g)) self.assertAllEqual(1, sessions[0].run(global_step)) sessions[0].run(train_ops[0]) # save, data will be global value outfile = os.path.join(test.get_temp_dir(), "model") savers[0].save(sessions[0]._sess._sess._sess._sess, save_path=outfile) ops.reset_default_graph() # restore on a new graph with session.Session() as sess: v0 = variable_scope.get_variable(initializer=0.0, name="v0") v1 = variable_scope.get_variable(initializer=1.0, name="v1") sess.run(variables.local_variables_initializer()) saver_opt = saver.Saver(var_list=[v1, v0]) saver_opt.restore(sess, outfile) self.assertAllEqual(2.0, sess.run(v0)) self.assertAllEqual(3.0, sess.run(v1)) def test2Worker1Period(self): num_workers = 2 communication_period = 1 num_ps = 2 cluster, workers, _ = create_local_cluster( num_workers=num_workers, num_ps=num_ps) sessions, graphs, train_ops, savers = _get_workers( num_workers, communication_period, workers, 0.5, num_ps=2) var_0 = graphs[0].get_tensor_by_name("v0:0") var_1 = graphs[0].get_tensor_by_name("v1:0") var_0_1 = graphs[1].get_tensor_by_name("v0:0") var_1_1 = graphs[1].get_tensor_by_name("v1:0") var_0_g = graphs[0].get_tensor_by_name(GLOBAL_VARIABLE_NAME + "/v0:0") var_1_g = graphs[0].get_tensor_by_name(GLOBAL_VARIABLE_NAME + "/v1:0") part_0_g = graphs[0].get_tensor_by_name( GLOBAL_VARIABLE_NAME + "/partition_var/part_0:0") # Verify the initialized value. self.assertAllEqual(0.0, sessions[0].run(var_0)) self.assertAllEqual(1.0, sessions[0].run(var_1)) self.assertAllEqual(0.0, sessions[1].run(var_0_1)) self.assertAllEqual(1.0, sessions[1].run(var_1_1)) self.assertAllEqual(0.0, sessions[0].run(var_0_g)) self.assertAllEqual(1.0, sessions[0].run(var_1_g)) sessions[0].run(train_ops[0]) sessions[1].run(train_ops[1]) self.assertAllEqual(0.5, sessions[0].run(var_0)) self.assertAllEqual(1.5, sessions[0].run(var_1)) self.assertAllEqual(0.75, sessions[0].run(var_0_g)) self.assertAllEqual(1.75, sessions[0].run(var_1_g)) self.assertAllEqual(0.75, sessions[1].run(var_0_1)) self.assertAllEqual(1.75, sessions[1].run(var_1_1)) # part_0 of global_center copy part_0_g = sessions[0].run(part_0_g) outfile = os.path.join(test.get_temp_dir(), "model") savers[0].save(sessions[0]._sess._sess._sess._sess, save_path=outfile) # verify restore of partitioned_variables ops.reset_default_graph() # restore on a new graph g = ops.get_default_graph() with session.Session() as sess, g.as_default(): with variable_scope.variable_scope( "", partitioner=partitioned_variables.fixed_size_partitioner( num_ps, axis=0)): partition_var = variable_scope.get_variable( 'partition_var', shape=[2, 4], initializer=init_ops.ones_initializer) s = saver.Saver(var_list=[partition_var]) s.restore(sess, outfile) part_0 = g.get_tensor_by_name('partition_var/part_0:0') self.assertAllEqual(part_0_g, sess.run(part_0)) def testPS2TasksWithClusterSpecClass(self): cluster_spec = server_lib.ClusterSpec({ "ps": ["ps0:2222", "ps1:2222"], "worker": ["worker0:2222", "worker1:2222", "worker2:2222"] }) ea_custom = ElasticAverageCustomGetter(worker_device="/job:worker/task:0") from tensorflow.python.training import device_setter with ops.device( device_setter.replica_device_setter(cluster=cluster_spec, worker_device="/job:worker/task:0", ps_device="/job:ps")), \ variable_scope.variable_scope("", custom_getter=ea_custom): v = variable_scope.get_variable(initializer=[1, 2], name="v") w = variable_scope.get_variable(initializer=[2, 1], name="w") v_g, w_g = ea_custom._global_map[v], ea_custom._global_map[w] self.assertDeviceEqual("/job:worker/task:0", v.device) self.assertDeviceEqual("job:ps/task:0", v_g.device) self.assertDeviceEqual("/job:worker/task:0", w.device) self.assertDeviceEqual("job:ps/task:1", w_g.device) if __name__ == "__main__": test.main()
tensorflow-master
tensorflow/contrib/opt/python/training/elastic_average_optimizer_test.py
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import state_ops from tensorflow.python.ops import variable_scope from tensorflow.python.ops import variables from tensorflow.python.training import optimizer from tensorflow.python.training import session_run_hook GLOBAL_VARIABLE_NAME = 'global_center_variable' GRAD_VARIABLE_NAME = 'grad_variable' class AGNCustomGetter(object): """Custom_getter class is used to do: 1. Change trainable variables to local collection and place them at worker device 2. Generate global variables(global center variables) 3. Generate grad variables(gradients) which record the gradients sum and place them at worker device Notice that the class should be used with tf.replica_device_setter, so that the global center variables and global step variable can be placed at ps device. """ def __init__(self, worker_device): """ Args: worker_device: put the grad_variables on worker device """ self._worker_device = worker_device self._global_map = {} self._grad_map = {} def __call__(self, getter, name, trainable, collections, *args, **kwargs): if trainable: with ops.device(self._worker_device): local_var = getter( name, trainable=True, collections=[ops.GraphKeys.LOCAL_VARIABLES], *args, **kwargs) if kwargs['reuse'] == True: return local_var global_center_variable = getter( name='%s/%s' % (GLOBAL_VARIABLE_NAME, name), trainable=False, collections=[ops.GraphKeys.GLOBAL_VARIABLES], *args, **kwargs) with ops.device(self._worker_device): grad_variable = getter( name='%s/%s' % (GRAD_VARIABLE_NAME, name), trainable=False, collections=[ops.GraphKeys.LOCAL_VARIABLES], *args, **kwargs) if kwargs['partitioner'] is None: self._grad_map[local_var] = grad_variable self._global_map[local_var] = global_center_variable else: v_list = list(local_var) for i in range(len(v_list)): self._grad_map[v_list[i]] = list(grad_variable)[i] self._global_map[v_list[i]] = list(global_center_variable)[i] return local_var else: return getter( name, trainable=trainable, collections=collections, *args, **kwargs) class AGNOptimizer(optimizer.Optimizer): """Wrapper that implements the Accumulated GradientNormalization algorithm. Reference: Accumulated Gradient Normalization: Joeri Hermans ACML2017 https://arxiv.org/abs/1710.02368 """ def __init__(self, optimizer, num_worker, custom_getter, communication_period=10, use_locking=True, name='AGNOptimizer'): """Construct a new AGN optimizer. Args: optimizer: input optimizer, can be sgd/momentum/adam etc. num_worker: The number of workers custom_getter: The AGNCustomGetter communication_period: An int point value to controls the frequency of the communication between every worker and the ps. use_locking: If True use locks for update operations. name: Optional name prefix for the operations created when applying gradients. Defaults to "AGNOptimizer". """ super(AGNOptimizer, self).__init__(use_locking, name) self._opt = optimizer self._num_worker = num_worker self._period = communication_period self._global_map = custom_getter._global_map self._grad_map = custom_getter._grad_map self._local_step = variable_scope.get_variable( initializer=0, trainable=False, collections=[ops.GraphKeys.LOCAL_VARIABLES], name='local_step') self._opt._prepare() def apply_gradients(self, grads_and_vars, global_step=None, name=None): """Apply gradients to global variables. This is the second part of `minimize()`. It returns an `Operation` that applies gradients. Args: grads_and_vars: List of (gradient, variable) pairs as returned by `compute_gradients()`. global_step: Optional `Variable` to increment by one after the variables have been updated. name: Optional name for the returned operation. Default to the name passed to the `Optimizer` constructor. Returns: An `Operation` that applies the specified gradients. If `global_step` was not None, that operation also increments `global_step`. """ local_vars = [v for g, v in grads_and_vars if g is not None] grads = [g for g, v in grads_and_vars if g is not None] def _variable_creator(next_creator, collections, **kwargs): if not collections: collections = [ops.GraphKeys.LOCAL_VARIABLES] elif ops.GraphKeys.GLOBAL_VARIABLES in collections: collections = list(collections) collections.append(ops.GraphKeys.LOCAL_VARIABLES) collections.remove(ops.GraphKeys.GLOBAL_VARIABLES) return next_creator(collections=collections, **kwargs) # theta = theta - lr * grad with variable_scope.variable_creator_scope(_variable_creator): local_update_op = self._opt.apply_gradients(grads_and_vars) # a = a + grad update_ops = [] update_ops.append(local_update_op) grad_vars = [self._grad_map[var] for var in local_vars] for g, grad_var in zip(grads, grad_vars): update_ops.append(state_ops.assign_add(grad_var, g)) global_center_vars = [self._global_map[var] for var in local_vars] # update global variables. def _Update_global_variables(): global_norm = [] # a = a / t for g in grad_vars: global_norm.append(state_ops.assign(g, g / self._period)) # apply with ops.control_dependencies(global_norm): apply_global_op = self._opt.apply_gradients( zip(grad_vars, global_center_vars)) # pull with ops.control_dependencies([apply_global_op]): update_ops = [] if global_step: with ops.colocate_with(global_step): update_ops.append(state_ops.assign_add(global_step, 1)) for lvar in local_vars: g_val = self._global_map[lvar].read_value() update_ops.append(state_ops.assign(lvar, g_val)) for grad_var in grad_vars: update_ops.append( state_ops.assign(grad_var, array_ops.zeros_like(grad_var))) variable_update = control_flow_ops.group(*(update_ops)) return variable_update local_update = state_ops.assign_add( self._local_step, 1, name='local_step_update').op with ops.control_dependencies([local_update]): condition = math_ops.equal( math_ops.mod(self._local_step, self._period), 0) with ops.control_dependencies(update_ops): conditional_update = control_flow_ops.cond( condition, _Update_global_variables, control_flow_ops.no_op) return conditional_update def get_init_op(self, task_index): """Returns the op to let all the local variables and local center variables equal to the global center variables before the training begins """ init_ops = [] local_vars = variables.trainable_variables() global_center_vars = [self._global_map[var] for var in local_vars] grad_vars = [self._grad_map[var] for var in local_vars] if not (local_vars and global_center_vars and grad_vars): raise ValueError('The lists of local_variables, global_center_variables,' 'grad_center_variables should not be empty') for lvar, gc_var in zip(local_vars, global_center_vars): init_ops.append(state_ops.assign(lvar, gc_var)) for g in grad_vars: init_ops.append(state_ops.assign(g, array_ops.zeros_like(g))) init_op = control_flow_ops.group(*(init_ops)) return init_op def make_session_run_hook(self, is_chief, task_index): """Creates a hook to handle AGNOptimizerHook ops such as initialization.""" return _AGNOptimizerHook(self, is_chief, task_index) class _AGNOptimizerHook(session_run_hook.SessionRunHook): def __init__(self, agn_optimizer, is_chief, task_index): """Creates hook to handle AGNOptimizer initialization ops. Args: agn_optimizer: `AGNOptimizer` which this hook will initialize. is_chief: `Bool`, whether is this a chief replica or not. task_index: int, task_index of worker """ self._agn_optimizer = agn_optimizer self._is_chief = is_chief self._task_index = task_index def begin(self): self._local_init_op = variables.local_variables_initializer() self._global_init_op = None if self._is_chief: self._global_init_op = variables.global_variables_initializer() self._variable_init_op = self._agn_optimizer.get_init_op(self._task_index) def after_create_session(self, session, coord): """Run initialization ops""" session.run(self._variable_init_op)
tensorflow-master
tensorflow/contrib/opt/python/training/agn_optimizer.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for AdaMax.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.opt.python.training import adamax from tensorflow.python.client import session from tensorflow.python.eager import context from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import resource_variable_ops from tensorflow.python.ops import variables from tensorflow.python.platform import test def adamax_update_numpy(param, g_t, t, m, v, alpha=0.001, beta1=0.9, beta2=0.999, epsilon=1e-8): m_t = beta1 * m + (1 - beta1) * g_t v_t = np.maximum(beta2 * v, np.abs(g_t)) param_t = param - (alpha / (1 - beta1**t)) * (m_t / (v_t + epsilon)) return param_t, m_t, v_t def adamax_sparse_update_numpy(param, indices, g_t, t, m, v, alpha=0.001, beta1=0.9, beta2=0.999, epsilon=1e-8): m_t, v_t, param_t = np.copy(m), np.copy(v), np.copy(param) m_t_slice = beta1 * m[indices] + (1 - beta1) * g_t v_t_slice = np.maximum(beta2 * v[indices], np.abs(g_t)) param_t_slice = param[indices] - ((alpha / (1 - beta1**t)) * (m_t_slice / (v_t_slice + epsilon))) m_t[indices] = m_t_slice v_t[indices] = v_t_slice param_t[indices] = param_t_slice return param_t, m_t, v_t class AdaMaxOptimizerTest(test.TestCase): def doTestSparse(self, use_resource=False): for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: with self.cached_session(): # Initialize variables for numpy implementation. zero_slots = lambda: np.zeros((3), dtype=dtype.as_numpy_dtype) m0, v0, m1, v1 = zero_slots(), zero_slots(), zero_slots(), zero_slots() var0_np = np.array([1.0, 2.0, 3.0], dtype=dtype.as_numpy_dtype) grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) var1_np = np.array([4.0, 5.0, 6.0], dtype=dtype.as_numpy_dtype) grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype) if use_resource: var0 = resource_variable_ops.ResourceVariable(var0_np) var1 = resource_variable_ops.ResourceVariable(var1_np) else: var0 = variables.Variable(var0_np) var1 = variables.Variable(var1_np) grads0_np_indices = np.array([0, 1], dtype=np.int32) grads0 = ops.IndexedSlices( constant_op.constant(grads0_np), constant_op.constant(grads0_np_indices), constant_op.constant([2])) grads1_np_indices = np.array([2, 1], dtype=np.int32) grads1 = ops.IndexedSlices( constant_op.constant(grads1_np), constant_op.constant(grads1_np_indices), constant_op.constant([2])) opt = adamax.AdaMaxOptimizer() update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) variables.global_variables_initializer().run() # Fetch params to validate initial values self.assertAllClose([1.0, 2.0, 3.0], var0.eval()) self.assertAllClose([4.0, 5.0, 6.0], var1.eval()) beta1_power = opt._get_beta_accumulators() # Run 3 steps of AdaMax for t in range(1, 4): self.assertAllCloseAccordingToType(0.9**t, beta1_power.eval()) update.run() var0_np, m0, v0 = adamax_sparse_update_numpy( var0_np, grads0_np_indices, grads0_np, t, m0, v0) var1_np, m1, v1 = adamax_sparse_update_numpy( var1_np, grads1_np_indices, grads1_np, t, m1, v1) # Validate updated params self.assertAllCloseAccordingToType(var0_np, var0.eval()) self.assertAllCloseAccordingToType(var1_np, var1.eval()) def testSparse(self): self.doTestSparse(use_resource=False) def testResourceSparse(self): self.doTestSparse(use_resource=True) def testSparseDevicePlacement(self): for index_dtype in [dtypes.int32, dtypes.int64]: with self.cached_session(force_gpu=test.is_gpu_available()): # If a GPU is available, tests that all optimizer ops can be placed on # it (i.e. they have GPU kernels). var = variables.Variable([[1.0], [2.0]]) indices = constant_op.constant([0, 1], dtype=index_dtype) gathered_sum = math_ops.reduce_sum(array_ops.gather(var, indices)) optimizer = adamax.AdaMaxOptimizer(3.0) minimize_op = optimizer.minimize(gathered_sum) variables.global_variables_initializer().run() minimize_op.run() def testSparseRepeatedIndices(self): for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: with self.cached_session(): repeated_index_update_var = variables.Variable( [[1.0], [2.0]], dtype=dtype) aggregated_update_var = variables.Variable( [[1.0], [2.0]], dtype=dtype) grad_repeated_index = ops.IndexedSlices( constant_op.constant( [0.1, 0.1], shape=[2, 1], dtype=dtype), constant_op.constant([1, 1]), constant_op.constant([2, 1])) grad_aggregated = ops.IndexedSlices( constant_op.constant( [0.2], shape=[1, 1], dtype=dtype), constant_op.constant([1]), constant_op.constant([2, 1])) repeated_update = adamax.AdaMaxOptimizer().apply_gradients( [(grad_repeated_index, repeated_index_update_var)]) aggregated_update = adamax.AdaMaxOptimizer().apply_gradients( [(grad_aggregated, aggregated_update_var)]) variables.global_variables_initializer().run() self.assertAllClose(aggregated_update_var.eval(), repeated_index_update_var.eval()) for _ in range(3): repeated_update.run() aggregated_update.run() self.assertAllClose(aggregated_update_var.eval(), repeated_index_update_var.eval()) def doTestBasic(self, use_resource=False): for i, dtype in enumerate([dtypes.half, dtypes.float32, dtypes.float64]): with self.session(graph=ops.Graph()): # Initialize variables for numpy implementation. m0, v0, m1, v1 = 0.0, 0.0, 0.0, 0.0 var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype) if use_resource: var0 = resource_variable_ops.ResourceVariable( var0_np, name="var0_%d" % i) var1 = resource_variable_ops.ResourceVariable( var1_np, name="var1_%d" % i) else: var0 = variables.Variable(var0_np) var1 = variables.Variable(var1_np) grads0 = constant_op.constant(grads0_np) grads1 = constant_op.constant(grads1_np) opt = adamax.AdaMaxOptimizer() update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) opt_variables = opt.variables() beta1_power = opt._get_beta_accumulators() self.assertTrue(beta1_power is not None) self.assertIn(beta1_power, opt_variables) if not context.executing_eagerly(): with ops.Graph().as_default(): # Shouldn't return non-slot variables from other graphs. self.assertEqual(0, len(opt.variables())) self.evaluate(variables.global_variables_initializer()) # Fetch params to validate initial values self.assertAllClose([1.0, 2.0], self.evaluate(var0)) self.assertAllClose([3.0, 4.0], self.evaluate(var1)) beta1_power = opt._get_beta_accumulators() # Run 3 steps of AdaMax for t in range(1, 4): if not context.executing_eagerly(): self.evaluate(update) elif t > 1: opt.apply_gradients(zip([grads0, grads1], [var0, var1])) self.assertAllCloseAccordingToType(0.9**(t + 1), self.evaluate(beta1_power)) var0_np, m0, v0 = adamax_update_numpy(var0_np, grads0_np, t, m0, v0) var1_np, m1, v1 = adamax_update_numpy(var1_np, grads1_np, t, m1, v1) # Validate updated params self.assertAllCloseAccordingToType(var0_np, self.evaluate(var0), rtol=1e-2) self.assertAllCloseAccordingToType(var1_np, self.evaluate(var1), rtol=1e-2) if use_resource: self.assertEqual("var0_%d/AdaMax:0" % (i,), opt.get_slot(var=var0, name="m").name) def testBasic(self): with self.cached_session(): self.doTestBasic(use_resource=False) @test_util.run_in_graph_and_eager_modes(reset_test=True) def testResourceBasic(self): self.doTestBasic(use_resource=True) def testTensorLearningRate(self): for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: with self.cached_session(): # Initialize variables for numpy implementation. m0, v0, m1, v1 = 0.0, 0.0, 0.0, 0.0 var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype) var0 = variables.Variable(var0_np) var1 = variables.Variable(var1_np) grads0 = constant_op.constant(grads0_np) grads1 = constant_op.constant(grads1_np) opt = adamax.AdaMaxOptimizer(constant_op.constant(0.001)) update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) variables.global_variables_initializer().run() # Fetch params to validate initial values self.assertAllClose([1.0, 2.0], var0.eval()) self.assertAllClose([3.0, 4.0], var1.eval()) beta1_power = opt._get_beta_accumulators() # Run 3 steps of AdaMax for t in range(1, 4): self.assertAllCloseAccordingToType(0.9**t, beta1_power.eval()) update.run() var0_np, m0, v0 = adamax_update_numpy(var0_np, grads0_np, t, m0, v0) var1_np, m1, v1 = adamax_update_numpy(var1_np, grads1_np, t, m1, v1) # Validate updated params self.assertAllCloseAccordingToType(var0_np, var0.eval()) self.assertAllCloseAccordingToType(var1_np, var1.eval()) def testSharing(self): for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: with self.cached_session(): # Initialize variables for numpy implementation. m0, v0, m1, v1 = 0.0, 0.0, 0.0, 0.0 var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype) var0 = variables.Variable(var0_np) var1 = variables.Variable(var1_np) grads0 = constant_op.constant(grads0_np) grads1 = constant_op.constant(grads1_np) opt = adamax.AdaMaxOptimizer() update1 = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) update2 = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) variables.global_variables_initializer().run() beta1_power = opt._get_beta_accumulators() # Fetch params to validate initial values self.assertAllClose([1.0, 2.0], var0.eval()) self.assertAllClose([3.0, 4.0], var1.eval()) # Run 3 steps of intertwined AdaMax1 and AdaMax2. for t in range(1, 4): self.assertAllCloseAccordingToType(0.9**t, beta1_power.eval()) if t % 2 == 0: update1.run() else: update2.run() var0_np, m0, v0 = adamax_update_numpy(var0_np, grads0_np, t, m0, v0) var1_np, m1, v1 = adamax_update_numpy(var1_np, grads1_np, t, m1, v1) # Validate updated params self.assertAllCloseAccordingToType(var0_np, var0.eval()) self.assertAllCloseAccordingToType(var1_np, var1.eval()) def testTwoSessions(self): optimizer = adamax.AdaMaxOptimizer() g = ops.Graph() with g.as_default(): with session.Session(): var0 = variables.Variable(np.array([1.0, 2.0]), name="v0") grads0 = constant_op.constant(np.array([0.1, 0.1])) optimizer.apply_gradients([(grads0, var0)]) gg = ops.Graph() with gg.as_default(): with session.Session(): var0 = variables.Variable(np.array([1.0, 2.0]), name="v0") grads0 = constant_op.constant(np.array([0.1, 0.1])) # If the optimizer saves any state not keyed by graph the following line # fails. optimizer.apply_gradients([(grads0, var0)]) def testSlotsUniqueEager(self): with context.eager_mode(): v1 = resource_variable_ops.ResourceVariable(1.) v2 = resource_variable_ops.ResourceVariable(1.) opt = adamax.AdaMaxOptimizer(1.) opt.minimize(lambda: v1 + v2) # There should be two non-slot variables, and two unique slot variables # for v1 and v2 respectively. self.assertEqual(5, len(set(opt.variables()))) if __name__ == "__main__": test.main()
tensorflow-master
tensorflow/contrib/opt/python/training/adamax_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """TensorFlow interface for third-party optimizers.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import gradients from tensorflow.python.ops import variables from tensorflow.python.platform import tf_logging as logging __all__ = ['ExternalOptimizerInterface', 'ScipyOptimizerInterface'] class ExternalOptimizerInterface(object): """Base class for interfaces with external optimization algorithms. Subclass this and implement `_minimize` in order to wrap a new optimization algorithm. `ExternalOptimizerInterface` should not be instantiated directly; instead use e.g. `ScipyOptimizerInterface`. @@__init__ @@minimize """ def __init__(self, loss, var_list=None, equalities=None, inequalities=None, var_to_bounds=None, **optimizer_kwargs): """Initialize a new interface instance. Args: loss: A scalar `Tensor` to be minimized. var_list: Optional `list` of `Variable` objects to update to minimize `loss`. Defaults to the list of variables collected in the graph under the key `GraphKeys.TRAINABLE_VARIABLES`. equalities: Optional `list` of equality constraint scalar `Tensor`s to be held equal to zero. inequalities: Optional `list` of inequality constraint scalar `Tensor`s to be held nonnegative. var_to_bounds: Optional `dict` where each key is an optimization `Variable` and each corresponding value is a length-2 tuple of `(low, high)` bounds. Although enforcing this kind of simple constraint could be accomplished with the `inequalities` arg, not all optimization algorithms support general inequality constraints, e.g. L-BFGS-B. Both `low` and `high` can either be numbers or anything convertible to a NumPy array that can be broadcast to the shape of `var` (using `np.broadcast_to`). To indicate that there is no bound, use `None` (or `+/- np.infty`). For example, if `var` is a 2x3 matrix, then any of the following corresponding `bounds` could be supplied: * `(0, np.infty)`: Each element of `var` held positive. * `(-np.infty, [1, 2])`: First column less than 1, second column less than 2. * `(-np.infty, [[1], [2], [3]])`: First row less than 1, second row less than 2, etc. * `(-np.infty, [[1, 2, 3], [4, 5, 6]])`: Entry `var[0, 0]` less than 1, `var[0, 1]` less than 2, etc. **optimizer_kwargs: Other subclass-specific keyword arguments. """ self._loss = loss self._equalities = equalities or [] self._inequalities = inequalities or [] if var_list is None: self._vars = variables.trainable_variables() else: self._vars = list(var_list) packed_bounds = None if var_to_bounds is not None: left_packed_bounds = [] right_packed_bounds = [] for var in self._vars: shape = var.get_shape().as_list() bounds = (-np.infty, np.infty) if var in var_to_bounds: bounds = var_to_bounds[var] left_packed_bounds.extend(list(np.broadcast_to(bounds[0], shape).flat)) right_packed_bounds.extend(list(np.broadcast_to(bounds[1], shape).flat)) packed_bounds = list(zip(left_packed_bounds, right_packed_bounds)) self._packed_bounds = packed_bounds self._update_placeholders = [ array_ops.placeholder(var.dtype) for var in self._vars ] self._var_updates = [ var.assign(array_ops.reshape(placeholder, _get_shape_tuple(var))) for var, placeholder in zip(self._vars, self._update_placeholders) ] loss_grads = _compute_gradients(loss, self._vars) equalities_grads = [ _compute_gradients(equality, self._vars) for equality in self._equalities ] inequalities_grads = [ _compute_gradients(inequality, self._vars) for inequality in self._inequalities ] self.optimizer_kwargs = optimizer_kwargs self._packed_var = self._pack(self._vars) self._packed_loss_grad = self._pack(loss_grads) self._packed_equality_grads = [ self._pack(equality_grads) for equality_grads in equalities_grads ] self._packed_inequality_grads = [ self._pack(inequality_grads) for inequality_grads in inequalities_grads ] dims = [_prod(_get_shape_tuple(var)) for var in self._vars] accumulated_dims = list(_accumulate(dims)) self._packing_slices = [ slice(start, end) for start, end in zip(accumulated_dims[:-1], accumulated_dims[1:]) ] def minimize(self, session=None, feed_dict=None, fetches=None, step_callback=None, loss_callback=None, **run_kwargs): """Minimize a scalar `Tensor`. Variables subject to optimization are updated in-place at the end of optimization. Note that this method does *not* just return a minimization `Op`, unlike `Optimizer.minimize()`; instead it actually performs minimization by executing commands to control a `Session`. Args: session: A `Session` instance. feed_dict: A feed dict to be passed to calls to `session.run`. fetches: A list of `Tensor`s to fetch and supply to `loss_callback` as positional arguments. step_callback: A function to be called at each optimization step; arguments are the current values of all optimization variables flattened into a single vector. loss_callback: A function to be called every time the loss and gradients are computed, with evaluated fetches supplied as positional arguments. **run_kwargs: kwargs to pass to `session.run`. """ session = session or ops.get_default_session() feed_dict = feed_dict or {} fetches = fetches or [] loss_callback = loss_callback or (lambda *fetches: None) step_callback = step_callback or (lambda xk: None) # Construct loss function and associated gradient. loss_grad_func = self._make_eval_func([self._loss, self._packed_loss_grad], session, feed_dict, fetches, loss_callback) # Construct equality constraint functions and associated gradients. equality_funcs = self._make_eval_funcs(self._equalities, session, feed_dict, fetches) equality_grad_funcs = self._make_eval_funcs(self._packed_equality_grads, session, feed_dict, fetches) # Construct inequality constraint functions and associated gradients. inequality_funcs = self._make_eval_funcs(self._inequalities, session, feed_dict, fetches) inequality_grad_funcs = self._make_eval_funcs(self._packed_inequality_grads, session, feed_dict, fetches) # Get initial value from TF session. initial_packed_var_val = session.run(self._packed_var) # Perform minimization. packed_var_val = self._minimize( initial_val=initial_packed_var_val, loss_grad_func=loss_grad_func, equality_funcs=equality_funcs, equality_grad_funcs=equality_grad_funcs, inequality_funcs=inequality_funcs, inequality_grad_funcs=inequality_grad_funcs, packed_bounds=self._packed_bounds, step_callback=step_callback, optimizer_kwargs=self.optimizer_kwargs) var_vals = [ packed_var_val[packing_slice] for packing_slice in self._packing_slices ] # Set optimization variables to their new values. session.run( self._var_updates, feed_dict=dict(zip(self._update_placeholders, var_vals)), **run_kwargs) def _minimize(self, initial_val, loss_grad_func, equality_funcs, equality_grad_funcs, inequality_funcs, inequality_grad_funcs, packed_bounds, step_callback, optimizer_kwargs): """Wrapper for a particular optimization algorithm implementation. It would be appropriate for a subclass implementation of this method to raise `NotImplementedError` if unsupported arguments are passed: e.g. if an algorithm does not support constraints but `len(equality_funcs) > 0`. Args: initial_val: A NumPy vector of initial values. loss_grad_func: A function accepting a NumPy packed variable vector and returning two outputs, a loss value and the gradient of that loss with respect to the packed variable vector. equality_funcs: A list of functions each of which specifies a scalar quantity that an optimizer should hold exactly zero. equality_grad_funcs: A list of gradients of equality_funcs. inequality_funcs: A list of functions each of which specifies a scalar quantity that an optimizer should hold >= 0. inequality_grad_funcs: A list of gradients of inequality_funcs. packed_bounds: A list of bounds for each index, or `None`. step_callback: A callback function to execute at each optimization step, supplied with the current value of the packed variable vector. optimizer_kwargs: Other key-value arguments available to the optimizer. Returns: The optimal variable vector as a NumPy vector. """ raise NotImplementedError( 'To use ExternalOptimizerInterface, subclass from it and implement ' 'the _minimize() method.') @classmethod def _pack(cls, tensors): """Pack a list of `Tensor`s into a single, flattened, rank-1 `Tensor`.""" if not tensors: return None elif len(tensors) == 1: return array_ops.reshape(tensors[0], [-1]) else: flattened = [array_ops.reshape(tensor, [-1]) for tensor in tensors] return array_ops.concat(flattened, 0) def _make_eval_func(self, tensors, session, feed_dict, fetches, callback=None): """Construct a function that evaluates a `Tensor` or list of `Tensor`s.""" if not isinstance(tensors, list): tensors = [tensors] num_tensors = len(tensors) def eval_func(x): """Function to evaluate a `Tensor`.""" augmented_feed_dict = { var: x[packing_slice].reshape(_get_shape_tuple(var)) for var, packing_slice in zip(self._vars, self._packing_slices) } augmented_feed_dict.update(feed_dict) augmented_fetches = tensors + fetches augmented_fetch_vals = session.run( augmented_fetches, feed_dict=augmented_feed_dict) if callable(callback): callback(*augmented_fetch_vals[num_tensors:]) return augmented_fetch_vals[:num_tensors] return eval_func def _make_eval_funcs(self, tensors, session, feed_dict, fetches, callback=None): return [ self._make_eval_func(tensor, session, feed_dict, fetches, callback) for tensor in tensors ] class ScipyOptimizerInterface(ExternalOptimizerInterface): """Wrapper allowing `scipy.optimize.minimize` to operate a `tf.compat.v1.Session`. Example: ```python vector = tf.Variable([7., 7.], 'vector') # Make vector norm as small as possible. loss = tf.reduce_sum(tf.square(vector)) optimizer = ScipyOptimizerInterface(loss, options={'maxiter': 100}) with tf.compat.v1.Session() as session: optimizer.minimize(session) # The value of vector should now be [0., 0.]. ``` Example with simple bound constraints: ```python vector = tf.Variable([7., 7.], 'vector') # Make vector norm as small as possible. loss = tf.reduce_sum(tf.square(vector)) optimizer = ScipyOptimizerInterface( loss, var_to_bounds={vector: ([1, 2], np.infty)}) with tf.compat.v1.Session() as session: optimizer.minimize(session) # The value of vector should now be [1., 2.]. ``` Example with more complicated constraints: ```python vector = tf.Variable([7., 7.], 'vector') # Make vector norm as small as possible. loss = tf.reduce_sum(tf.square(vector)) # Ensure the vector's y component is = 1. equalities = [vector[1] - 1.] # Ensure the vector's x component is >= 1. inequalities = [vector[0] - 1.] # Our default SciPy optimization algorithm, L-BFGS-B, does not support # general constraints. Thus we use SLSQP instead. optimizer = ScipyOptimizerInterface( loss, equalities=equalities, inequalities=inequalities, method='SLSQP') with tf.compat.v1.Session() as session: optimizer.minimize(session) # The value of vector should now be [1., 1.]. ``` """ _DEFAULT_METHOD = 'L-BFGS-B' def _minimize(self, initial_val, loss_grad_func, equality_funcs, equality_grad_funcs, inequality_funcs, inequality_grad_funcs, packed_bounds, step_callback, optimizer_kwargs): def loss_grad_func_wrapper(x): # SciPy's L-BFGS-B Fortran implementation requires gradients as doubles. loss, gradient = loss_grad_func(x) return loss, gradient.astype('float64') optimizer_kwargs = dict(optimizer_kwargs.items()) method = optimizer_kwargs.pop('method', self._DEFAULT_METHOD) constraints = [] for func, grad_func in zip(equality_funcs, equality_grad_funcs): constraints.append({'type': 'eq', 'fun': func, 'jac': grad_func}) for func, grad_func in zip(inequality_funcs, inequality_grad_funcs): constraints.append({'type': 'ineq', 'fun': func, 'jac': grad_func}) minimize_args = [loss_grad_func_wrapper, initial_val] minimize_kwargs = { 'jac': True, 'callback': step_callback, 'method': method, 'constraints': constraints, 'bounds': packed_bounds, } for kwarg in minimize_kwargs: if kwarg in optimizer_kwargs: if kwarg == 'bounds': # Special handling for 'bounds' kwarg since ability to specify bounds # was added after this module was already publicly released. raise ValueError( 'Bounds must be set using the var_to_bounds argument') raise ValueError( 'Optimizer keyword arg \'{}\' is set ' 'automatically and cannot be injected manually'.format(kwarg)) minimize_kwargs.update(optimizer_kwargs) import scipy.optimize # pylint: disable=g-import-not-at-top result = scipy.optimize.minimize(*minimize_args, **minimize_kwargs) message_lines = [ 'Optimization terminated with:', ' Message: %s', ' Objective function value: %f', ] message_args = [result.message, result.fun] if hasattr(result, 'nit'): # Some optimization methods might not provide information such as nit and # nfev in the return. Logs only available information. message_lines.append(' Number of iterations: %d') message_args.append(result.nit) if hasattr(result, 'nfev'): message_lines.append(' Number of functions evaluations: %d') message_args.append(result.nfev) logging.info('\n'.join(message_lines), *message_args) return result['x'] def _accumulate(list_): total = 0 yield total for x in list_: total += x yield total def _get_shape_tuple(tensor): return tuple(tensor.get_shape().as_list()) def _prod(array): prod = 1 for value in array: prod *= value return prod def _compute_gradients(tensor, var_list): grads = gradients.gradients(tensor, var_list) # tf.gradients sometimes returns `None` when it should return 0. return [ grad if grad is not None else array_ops.zeros_like(var) for var, grad in zip(var_list, grads) ]
tensorflow-master
tensorflow/contrib/opt/python/training/external_optimizer.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Layer-wise Adaptive Rate Scaling optimizer for large-batch training.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import linalg_ops from tensorflow.python.ops import math_ops from tensorflow.python.training import optimizer from tensorflow.python.training import training_ops class LARSOptimizer(optimizer.Optimizer): """Layer-wise Adaptive Rate Scaling for large batch training. Introduced by "Large Batch Training of Convolutional Networks" by Y. You, I. Gitman, and B. Ginsburg. (https://arxiv.org/abs/1708.03888) Implements the LARS learning rate scheme presented in the paper above. This optimizer is useful when scaling the batch size to up to 32K without significant performance degradation. It is recommended to use the optimizer in conjunction with: - Gradual learning rate warm-up - Linear learning rate scaling - Poly rule learning rate decay Note, LARS scaling is currently only enabled for dense tensors. Sparse tensors use the default momentum optimizer. """ def __init__( self, learning_rate, momentum=0.9, weight_decay=0.0001, # The LARS coefficient is a hyperparameter eeta=0.001, epsilon=0.0, name="LARSOptimizer", # Enable skipping variables from LARS scaling. # TODO(sameerkm): Enable a direct mechanism to pass a # subset of variables to the optimizer. skip_list=None, use_nesterov=False): """Construct a new LARS Optimizer. Args: learning_rate: A `Tensor` or floating point value. The base learning rate. momentum: A floating point value. Momentum hyperparameter. weight_decay: A floating point value. Weight decay hyperparameter. eeta: LARS coefficient as used in the paper. Dfault set to LARS coefficient from the paper. (eeta / weight_decay) determines the highest scaling factor in LARS. epsilon: Optional epsilon parameter to be set in models that have very small gradients. Default set to 0.0. name: Optional name prefix for variables and ops created by LARSOptimizer. skip_list: List of strings to enable skipping variables from LARS scaling. If any of the strings in skip_list is a subset of var.name, variable 'var' is skipped from LARS scaling. For a typical classification model with batch normalization, the skip_list is ['batch_normalization', 'bias'] use_nesterov: when set to True, nesterov momentum will be enabled Raises: ValueError: If a hyperparameter is set to a non-sensical value. """ if momentum < 0.0: raise ValueError("momentum should be positive: %s" % momentum) if weight_decay < 0.0: raise ValueError("weight_decay should be positive: %s" % weight_decay) super(LARSOptimizer, self).__init__(use_locking=False, name=name) self._learning_rate = learning_rate self._momentum = momentum self._weight_decay = weight_decay self._eeta = eeta self._epsilon = epsilon self._name = name self._skip_list = skip_list self._use_nesterov = use_nesterov def _create_slots(self, var_list): for v in var_list: self._zeros_slot(v, "momentum", self._name) def compute_lr(self, grad, var): scaled_lr = self._learning_rate if self._skip_list is None or not any(v in var.name for v in self._skip_list): w_norm = linalg_ops.norm(var, ord=2) g_norm = linalg_ops.norm(grad, ord=2) trust_ratio = array_ops.where( math_ops.greater(w_norm, 0), array_ops.where( math_ops.greater(g_norm, 0), (self._eeta * w_norm / (g_norm + self._weight_decay * w_norm + self._epsilon)), 1.0), 1.0) scaled_lr = self._learning_rate * trust_ratio return scaled_lr def _apply_dense(self, grad, var): scaled_lr = self.compute_lr(grad, var) mom = self.get_slot(var, "momentum") return training_ops.apply_momentum( var, mom, scaled_lr, grad, self._momentum, use_locking=False, use_nesterov=self._use_nesterov) def _resource_apply_dense(self, grad, var): scaled_lr = self.compute_lr(grad, var) mom = self.get_slot(var, "momentum") return training_ops.resource_apply_momentum( var.handle, mom.handle, scaled_lr, grad, self._momentum, use_locking=False, use_nesterov=self._use_nesterov) # Fallback to momentum optimizer for sparse tensors def _apply_sparse(self, grad, var): mom = self.get_slot(var, "momentum") return training_ops.sparse_apply_momentum( var, mom, math_ops.cast(self._learning_rate_tensor, var.dtype.base_dtype), grad.values, grad.indices, math_ops.cast(self._momentum_tensor, var.dtype.base_dtype), use_locking=self._use_locking, use_nesterov=self._use_nesterov).op def _resource_apply_sparse(self, grad, var, indices): mom = self.get_slot(var, "momentum") return training_ops.resource_sparse_apply_momentum( var.handle, mom.handle, math_ops.cast(self._learning_rate_tensor, grad.dtype), grad, indices, math_ops.cast(self._momentum_tensor, grad.dtype), use_locking=self._use_locking, use_nesterov=self._use_nesterov) def _prepare(self): learning_rate = self._learning_rate if callable(learning_rate): learning_rate = learning_rate() self._learning_rate_tensor = ops.convert_to_tensor( learning_rate, name="learning_rate") momentum = self._momentum if callable(momentum): momentum = momentum() self._momentum_tensor = ops.convert_to_tensor(momentum, name="momentum")
tensorflow-master
tensorflow/contrib/opt/python/training/lars_optimizer.py
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Wrapper optimizer for Model Average.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import data_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import state_ops from tensorflow.python.ops import variable_scope from tensorflow.python.ops import variables from tensorflow.python.training import optimizer from tensorflow.python.training import session_run_hook GLOBAL_VARIABLE_NAME = "global_center_variable" class ModelAverageCustomGetter(object): """Custom_getter class is used to do. 1. Change trainable variables to local collection and place them at worker device 2. Generate global variables Notice that the class should be used with tf.replica_device_setter, so that the global center variables and global step variable can be placed at ps device. Besides, use 'tf.compat.v1.get_variable' instead of 'tf.Variable' to use this custom getter. For example, ma_custom_getter = ModelAverageCustomGetter(worker_device) with tf.device( tf.compat.v1.train.replica_device_setter( worker_device=worker_device, ps_device="/job:ps/cpu:0", cluster=cluster)), tf.compat.v1.variable_scope('',custom_getter=ma_custom_getter): hid_w = tf.compat.v1.get_variable( initializer=tf.random.truncated_normal( [IMAGE_PIXELS * IMAGE_PIXELS, FLAGS.hidden_units], stddev=1.0 / IMAGE_PIXELS), name="hid_w") hid_b = tf.compat.v1.get_variable(initializer=tf.zeros([FLAGS.hidden_units]), name="hid_b") """ def __init__(self, worker_device): """Create a new `ModelAverageCustomGetter`. Args: worker_device: String. Name of the `worker` job. """ self._worker_device = worker_device self._local_2_global = {} def __call__(self, getter, name, trainable, collections, *args, **kwargs): if trainable: with ops.device(self._worker_device): local_var = getter( name, trainable=True, collections=[ops.GraphKeys.LOCAL_VARIABLES], *args, **kwargs) global_variable = variable_scope.variable( name="%s/%s" % (GLOBAL_VARIABLE_NAME, name), initial_value=local_var.initialized_value(), trainable=False, collections=[ops.GraphKeys.GLOBAL_VARIABLES]) self._local_2_global[local_var] = global_variable return local_var else: kwargs["trainable"] = trainable kwargs["collections"] = collections if ops.GraphKeys.LOCAL_VARIABLES in collections: with ops.device(self._worker_device): return getter(name, *args, **kwargs) else: return getter(name, *args, **kwargs) class ModelAverageOptimizer(optimizer.Optimizer): """Wrapper optimizer that implements the Model Average algorithm. This is a sync optimizer. During the training, each worker will update the local variables and maintains its own local_step, which starts from 0 and is incremented by 1 after each update of local variables. Whenever the interval_steps divides the local step, the local variables from all the workers will be averaged and assigned to global center variables. Then the local variables will be assigned by global center variables. """ def __init__(self, opt, num_worker, is_chief, ma_custom_getter, interval_steps=100, use_locking=True, name="ModelAverageOptimizer"): """Construct a new model average optimizer. Args: opt: The actual optimizer that will be used to update local variables num_worker: The number of workers is_chief: whether chief worker ma_custom_getter: ModelAverageCustomGetter interval_steps: An int point value to controls the frequency of the average of local variables use_locking: If True use locks for update operations name: string. Optional name of the returned operation """ super(ModelAverageOptimizer, self).__init__(use_locking, name) self._opt = opt self._num_worker = num_worker self._is_chief = is_chief self._local_2_global = ma_custom_getter._local_2_global # pylint:disable=protected-access self._interval_steps = interval_steps self._accumulator_list = [] self._chief_init_op = None self._local_step = variable_scope.get_variable( initializer=0, trainable=False, collections=[ops.GraphKeys.LOCAL_VARIABLES], name="local_step") self._opt._prepare() # pylint:disable=protected-access def compute_gradients(self, *args, **kwargs): """Compute gradients of "loss" for the variables in "var_list". This simply wraps the compute_gradients() from the real optimizer. Args: *args: Arguments for compute_gradients(). **kwargs: Keyword arguments for compute_gradients(). Returns: A list of (gradient, variable) pairs. """ return self._opt.compute_gradients(*args, **kwargs) def _local_vars_update(self, var_list): """Get the update ops for the local variables in "var_list". Args: var_list: Optional list or tuple of 'tf.Variable' to update Returns: An update op Raises: ValueError: if var_list is empty. """ if not var_list: raise ValueError("The list of local_variables should not be empty") update_ops = [] global_center_vars = [self._local_2_global[var] for var in var_list] for lvar, gvar in zip(var_list, global_center_vars): with ops.device(lvar.device): update_ops.append(state_ops.assign(lvar, gvar.read_value())) return control_flow_ops.group(*(update_ops)) def apply_gradients(self, grads_and_vars, global_step=None, name=None): """Apply gradients to variables. This contains most of the synchronization implementation and also wraps the apply_gradients() from the real optimizer. The chief work updates global variables. Args: grads_and_vars: List of (gradient, variable) pairs as returned by compute_gradients(). global_step: Optional Variable to increment by one after the variables have been updated. name: Optional name for the returned operation. Default to the name passed to the Optimizer constructor. Returns: A conditional 'Operation' that update both local and global variables or just local variables Raises: ValueError: If the grads_and_vars is empty. ValueError: If global step is not provided, the staleness cannot be checked. """ # update local variables if not grads_and_vars: raise ValueError("Must supply at least one variable") if global_step is None: raise ValueError("Global step is required") apply_updates = self._opt.apply_gradients(grads_and_vars) with ops.control_dependencies([apply_updates]): local_update = state_ops.assign_add( self._local_step, 1, name="local_step_update").op # update global variables. def _update_global_variables(): # pylint: disable=missing-docstring local_vars = [v for g, v in grads_and_vars if g is not None] global_vars = [self._local_2_global[v] for v in local_vars] # sync queue with ops.colocate_with(global_step): sync_queue = data_flow_ops.FIFOQueue( -1, [dtypes.bool], shapes=[[]], shared_name="sync_queue") train_ops = [] aggregated_vars = [] with ops.name_scope(None, self._name + "/global"): for var, gvar in zip(local_vars, global_vars): # pylint: disable=protected-access with ops.device(gvar.device): if isinstance(var._ref(), ops.Tensor): var_accum = data_flow_ops.ConditionalAccumulator( var.dtype, shape=var.get_shape(), shared_name=gvar.name + "/var_accum") train_ops.append( var_accum.apply_grad(var._ref(), local_step=global_step)) aggregated_vars.append(var_accum.take_grad(self._num_worker)) else: raise ValueError("Unknown local variable type!") self._accumulator_list.append((var_accum, gvar.device)) # chief worker updates global vars and enqueues tokens to the sync queue if self._is_chief: update_ops = [] with ops.control_dependencies(train_ops): for avg_var, gvar in zip(aggregated_vars, global_vars): with ops.device(gvar.device): update_ops.append(state_ops.assign(gvar, avg_var)) with ops.device(global_step.device): update_ops.append(state_ops.assign_add(global_step, 1)) with ops.control_dependencies(update_ops), ops.device( global_step.device): tokens = array_ops.fill([self._num_worker - 1], constant_op.constant(False)) sync_op = sync_queue.enqueue_many(tokens) else: with ops.control_dependencies(train_ops), ops.device( global_step.device): sync_op = sync_queue.dequeue() with ops.control_dependencies([sync_op]): local_update_op = self._local_vars_update(local_vars) return local_update_op with ops.control_dependencies([local_update]): condition = math_ops.equal( math_ops.mod(self._local_step, self._interval_steps), 0) conditional_update = control_flow_ops.cond(condition, _update_global_variables, control_flow_ops.no_op) chief_init_ops = [] for accum, dev in self._accumulator_list: with ops.device(dev): chief_init_ops.append( accum.set_global_step(global_step, name="SetGlobalStep")) self._chief_init_op = control_flow_ops.group(*(chief_init_ops)) return conditional_update def get_init_op(self): """Returns the op. This method lets all the local variables equal to the global variables before the training begins. """ return self._local_vars_update(variables.trainable_variables()) def make_session_run_hook(self): """Creates a hook to handle ModelAverage ops such as initialization.""" return _ModelAverageOptimizerHook(self, self._is_chief) class _ModelAverageOptimizerHook(session_run_hook.SessionRunHook): # pylint: disable=missing-docstring def __init__(self, ma_optimizer, is_chief): """Creates hook to handle ModelAverageOptimizer initialization ops. Args: ma_optimizer: `ModelAverageOptimizer` which this hook will initialize. is_chief: `Bool`, whether is this a chief replica or not. """ self._ma_optimizer = ma_optimizer self._is_chief = is_chief def begin(self): self._local_init_op = variables.local_variables_initializer() self._global_init_op = None if self._is_chief: self._global_init_op = variables.global_variables_initializer() self._chief_init_op = self._ma_optimizer._chief_init_op # pylint: disable=protected-access self._variable_init_op = self._ma_optimizer.get_init_op()
tensorflow-master
tensorflow/contrib/opt/python/training/model_average_optimizer.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Base class to make optimizers weight decay ready.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.opt.python.training import shampoo from tensorflow.python.framework import ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import resource_variable_ops from tensorflow.python.ops import state_ops from tensorflow.python.training import adam from tensorflow.python.training import momentum as momentum_opt from tensorflow.python.training import optimizer from tensorflow.python.util.tf_export import tf_export from tensorflow.python.ops import array_ops class DecoupledWeightDecayExtension(object): """This class allows to extend optimizers with decoupled weight decay. It implements the decoupled weight decay described by Loshchilov & Hutter (https://arxiv.org/pdf/1711.05101.pdf), in which the weight decay is decoupled from the optimization steps w.r.t. to the loss function. For SGD variants, this simplifies hyperparameter search since it decouples the settings of weight decay and learning rate. For adaptive gradient algorithms, it regularizes variables with large gradients more than L2 regularization would, which was shown to yield better training loss and generalization error in the paper above. This class alone is not an optimizer but rather extends existing optimizers with decoupled weight decay. We explicitly define the two examples used in the above paper (SGDW and AdamW), but in general this can extend any OptimizerX by using `extend_with_weight_decay(OptimizerX, weight_decay=weight_decay)`. In order for it to work, it must be the first class the Optimizer with weight decay inherits from, e.g. ```python class AdamWOptimizer(DecoupledWeightDecayExtension, adam.AdamOptimizer): def __init__(self, weight_decay, *args, **kwargs): super(AdamWOptimizer, self).__init__(weight_decay, *args, **kwargs). ``` Note that this extension decays weights BEFORE applying the update based on the gradient, i.e. this extension only has the desired behaviour for optimizers which do not depend on the value of'var' in the update step! Note: when applying a decay to the learning rate, be sure to manually apply the decay to the `weight_decay` as well. For example: ```python schedule = tf.compat.v1.train.piecewise_constant(tf.compat.v1.train.get_global_step(), [10000, 15000], [1e-0, 1e-1, 1e-2]) lr = 1e-1 * schedule() wd = lambda: 1e-4 * schedule() # ... optimizer = tf.contrib.opt.MomentumWOptimizer(learning_rate=lr, weight_decay=wd, momentum=0.9, use_nesterov=True) ``` """ def __init__(self, weight_decay, **kwargs): """Construct the extension class that adds weight decay to an optimizer. Args: weight_decay: A `Tensor` or a floating point value, the factor by which a variable is decayed in the update step. **kwargs: Optional list or tuple or set of `Variable` objects to decay. """ self._decay_var_list = None # is set in minimize or apply_gradients self._weight_decay = weight_decay # The tensors are initialized in call to _prepare self._weight_decay_tensor = None super(DecoupledWeightDecayExtension, self).__init__(**kwargs) def minimize(self, loss, global_step=None, var_list=None, gate_gradients=optimizer.Optimizer.GATE_OP, aggregation_method=None, colocate_gradients_with_ops=False, name=None, grad_loss=None, decay_var_list=None): """Add operations to minimize `loss` by updating `var_list` with decay. This function is the same as Optimizer.minimize except that it allows to specify the variables that should be decayed using decay_var_list. If decay_var_list is None, all variables in var_list are decayed. For more information see the documentation of Optimizer.minimize. Args: loss: A `Tensor` containing the value to minimize. global_step: Optional `Variable` to increment by one after the variables have been updated. var_list: Optional list or tuple of `Variable` objects to update to minimize `loss`. Defaults to the list of variables collected in the graph under the key `GraphKeys.TRAINABLE_VARIABLES`. gate_gradients: How to gate the computation of gradients. Can be `GATE_NONE`, `GATE_OP`, or `GATE_GRAPH`. aggregation_method: Specifies the method used to combine gradient terms. Valid values are defined in the class `AggregationMethod`. colocate_gradients_with_ops: If True, try colocating gradients with the corresponding op. name: Optional name for the returned operation. grad_loss: Optional. A `Tensor` holding the gradient computed for `loss`. decay_var_list: Optional list of decay variables. Returns: An Operation that updates the variables in `var_list`. If `global_step` was not `None`, that operation also increments `global_step`. """ self._decay_var_list = set(decay_var_list) if decay_var_list else False return super(DecoupledWeightDecayExtension, self).minimize( loss, global_step=global_step, var_list=var_list, gate_gradients=gate_gradients, aggregation_method=aggregation_method, colocate_gradients_with_ops=colocate_gradients_with_ops, name=name, grad_loss=grad_loss) def apply_gradients(self, grads_and_vars, global_step=None, name=None, decay_var_list=None): """Apply gradients to variables and decay the variables. This function is the same as Optimizer.apply_gradients except that it allows to specify the variables that should be decayed using decay_var_list. If decay_var_list is None, all variables in var_list are decayed. For more information see the documentation of Optimizer.apply_gradients. Args: grads_and_vars: List of (gradient, variable) pairs as returned by `compute_gradients()`. global_step: Optional `Variable` to increment by one after the variables have been updated. name: Optional name for the returned operation. Default to the name passed to the `Optimizer` constructor. decay_var_list: Optional list of decay variables. Returns: An `Operation` that applies the specified gradients. If `global_step` was not None, that operation also increments `global_step`. """ self._decay_var_list = set(decay_var_list) if decay_var_list else False return super(DecoupledWeightDecayExtension, self).apply_gradients( grads_and_vars, global_step=global_step, name=name) def _prepare(self): weight_decay = self._weight_decay if callable(weight_decay): weight_decay = weight_decay() self._weight_decay_tensor = ops.convert_to_tensor( weight_decay, name="weight_decay") # Call the optimizers _prepare function. super(DecoupledWeightDecayExtension, self)._prepare() def _decay_weights_op(self, var): if not self._decay_var_list or var in self._decay_var_list: return var.assign_sub(self._weight_decay * var, self._use_locking) return control_flow_ops.no_op() def _decay_weights_sparse_op(self, var, indices, scatter_add): if not self._decay_var_list or var in self._decay_var_list: update = -self._weight_decay * array_ops.gather(var, indices) return scatter_add(var, indices, update, self._use_locking) return control_flow_ops.no_op() # Here, we overwrite the apply functions that the base optimizer calls. # super().apply_x resolves to the apply_x function of the BaseOptimizer. def _apply_dense(self, grad, var): with ops.control_dependencies([self._decay_weights_op(var)]): return super(DecoupledWeightDecayExtension, self)._apply_dense(grad, var) def _resource_apply_dense(self, grad, var): with ops.control_dependencies([self._decay_weights_op(var)]): return super(DecoupledWeightDecayExtension, self)._resource_apply_dense(grad, var) def _apply_sparse(self, grad, var): scatter_add = state_ops.scatter_add decay_op = self._decay_weights_sparse_op(var, grad.indices, scatter_add) with ops.control_dependencies([decay_op]): return super(DecoupledWeightDecayExtension, self)._apply_sparse(grad, var) def _resource_scatter_add(self, x, i, v, _=None): # last argument allows for one overflow argument, to have the same function # signature as state_ops.scatter_add with ops.control_dependencies( [resource_variable_ops.resource_scatter_add(x.handle, i, v)]): return x.value() def _resource_apply_sparse(self, grad, var, indices): scatter_add = self._resource_scatter_add decay_op = self._decay_weights_sparse_op(var, indices, scatter_add) with ops.control_dependencies([decay_op]): return super(DecoupledWeightDecayExtension, self)._resource_apply_sparse(grad, var, indices) def extend_with_decoupled_weight_decay(base_optimizer): """Factory function returning an optimizer class with decoupled weight decay. Returns an optimizer class. An instance of the returned class computes the update step of `base_optimizer` and additionally decays the weights. E.g., the class returned by `extend_with_decoupled_weight_decay(tf.compat.v1.train.AdamOptimizer)` is equivalent to `tf.contrib.opt.AdamWOptimizer`. The API of the new optimizer class slightly differs from the API of the base optimizer: - The first argument to the constructor is the weight decay rate. - `minimize` and `apply_gradients` accept the optional keyword argument `decay_var_list`, which specifies the variables that should be decayed. If `None`, all variables that are optimized are decayed. Usage example: ```python # MyAdamW is a new class MyAdamW = extend_with_decoupled_weight_decay(tf.compat.v1.train.AdamOptimizer) # Create a MyAdamW object optimizer = MyAdamW(weight_decay=0.001, learning_rate=0.001) sess.run(optimizer.minimize(loss, decay_variables=[var1, var2])) Note that this extension decays weights BEFORE applying the update based on the gradient, i.e. this extension only has the desired behaviour for optimizers which do not depend on the value of'var' in the update step! ``` Args: base_optimizer: An optimizer class that inherits from tf.train.Optimizer. Returns: A new optimizer class that inherits from DecoupledWeightDecayExtension and base_optimizer. """ class OptimizerWithDecoupledWeightDecay(DecoupledWeightDecayExtension, base_optimizer): """Base_optimizer with decoupled weight decay. This class computes the update step of `base_optimizer` and additionally decays the variable with the weight decay being decoupled from the optimization steps w.r.t. to the loss function, as described by Loshchilov & Hutter (https://arxiv.org/pdf/1711.05101.pdf). For SGD variants, this simplifies hyperparameter search since it decouples the settings of weight decay and learning rate. For adaptive gradient algorithms, it regularizes variables with large gradients more than L2 regularization would, which was shown to yield better training loss and generalization error in the paper above. """ def __init__(self, weight_decay, *args, **kwargs): # super delegation is necessary here # pylint: disable=useless-super-delegation super(OptimizerWithDecoupledWeightDecay, self).__init__(weight_decay, *args, **kwargs) # pylint: enable=useless-super-delegation return OptimizerWithDecoupledWeightDecay @tf_export("contrib.opt.MomentumWOptimizer") class MomentumWOptimizer(DecoupledWeightDecayExtension, momentum_opt.MomentumOptimizer): """Optimizer that implements the Momentum algorithm with weight_decay. This is an implementation of the SGDW optimizer described in "Fixing Weight Decay Regularization in Adam" by Loshchilov & Hutter (https://arxiv.org/abs/1711.05101) ([pdf])(https://arxiv.org/pdf/1711.05101.pdf). It computes the update step of `train.MomentumOptimizer` and additionally decays the variable. Note that this is different from adding L2 regularization on the variables to the loss. Decoupling the weight decay from other hyperparameters (in particular the learning rate) simplifies hyperparameter search. For further information see the documentation of the Momentum Optimizer. Note that this optimizer can also be instantiated as ```python extend_with_weight_decay(tf.compat.v1.train.MomentumOptimizer, weight_decay=weight_decay) ``` """ def __init__(self, weight_decay, learning_rate, momentum, use_locking=False, name="MomentumW", use_nesterov=False): """Construct a new MomentumW optimizer. For further information see the documentation of the Momentum Optimizer. Args: weight_decay: A `Tensor` or a floating point value. The weight decay. learning_rate: A `Tensor` or a floating point value. The learning rate. momentum: A `Tensor` or a floating point value. The momentum. use_locking: If `True` use locks for update operations. name: Optional name prefix for the operations created when applying gradients. Defaults to "Momentum". use_nesterov: If `True` use Nesterov Momentum. See [Sutskever et al., 2013]( http://jmlr.org/proceedings/papers/v28/sutskever13.pdf). This implementation always computes gradients at the value of the variable(s) passed to the optimizer. Using Nesterov Momentum makes the variable(s) track the values called `theta_t + mu*v_t` in the paper. @compatibility(eager) When eager execution is enabled, learning_rate, weight_decay and momentum can each be a callable that takes no arguments and returns the actual value to use. This can be useful for changing these values across different invocations of optimizer functions. @end_compatibility """ super(MomentumWOptimizer, self).__init__( weight_decay, learning_rate=learning_rate, momentum=momentum, use_locking=use_locking, name=name, use_nesterov=use_nesterov) @tf_export("contrib.opt.AdamWOptimizer") class AdamWOptimizer(DecoupledWeightDecayExtension, adam.AdamOptimizer): """Optimizer that implements the Adam algorithm with weight decay. This is an implementation of the AdamW optimizer described in "Fixing Weight Decay Regularization in Adam" by Loshchilov & Hutter (https://arxiv.org/abs/1711.05101) ([pdf])(https://arxiv.org/pdf/1711.05101.pdf). It computes the update step of `train.AdamOptimizer` and additionally decays the variable. Note that this is different from adding L2 regularization on the variables to the loss: it regularizes variables with large gradients more than L2 regularization would, which was shown to yield better training loss and generalization error in the paper above. For further information see the documentation of the Adam Optimizer. Note that this optimizer can also be instantiated as ```python extend_with_weight_decay(tf.compat.v1.train.AdamOptimizer, weight_decay=weight_decay) ``` """ def __init__(self, weight_decay, learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-8, use_locking=False, name="AdamW"): """Construct a new AdamW optimizer. For further information see the documentation of the Adam Optimizer. Args: weight_decay: A `Tensor` or a floating point value. The weight decay. learning_rate: A Tensor or a floating point value. The learning rate. beta1: A float value or a constant float tensor. The exponential decay rate for the 1st moment estimates. beta2: A float value or a constant float tensor. The exponential decay rate for the 2nd moment estimates. epsilon: A small constant for numerical stability. This epsilon is "epsilon hat" in the Kingma and Ba paper (in the formula just before Section 2.1), not the epsilon in Algorithm 1 of the paper. use_locking: If True use locks for update operations. name: Optional name for the operations created when applying gradients. Defaults to "Adam". """ super(AdamWOptimizer, self).__init__( weight_decay, learning_rate=learning_rate, beta1=beta1, beta2=beta2, epsilon=epsilon, use_locking=use_locking, name=name) @tf_export("contrib.opt.ShampooWOptimizer") class ShampooWOptimizer(DecoupledWeightDecayExtension, shampoo.ShampooOptimizer): """Optimizer that implements the Shampoo algorithm with weight decay. For further information see the documentation of the Shampoo Optimizer. """ def __init__(self, weight_decay, global_step, max_matrix_size=768, gbar_decay=0.0, gbar_weight=1.0, mat_gbar_decay=1.0, mat_gbar_weight=1.0, learning_rate=1.0, svd_interval=1, precond_update_interval=1, epsilon=1e-4, alpha=0.5, use_iterative_root=False, use_locking=False, name="ShampooW"): """Construct a new ShampooW optimizer. For further information see the documentation of the Shampoo Optimizer. Args: weight_decay: A `Tensor` or a floating point value. The weight decay. global_step: tensorflow variable indicating the step. max_matrix_size: We do not perform SVD for matrices larger than this. gbar_decay: gbar_weight: Used to update gbar: gbar[t] = gbar_decay[t] * gbar[t-1] + gbar_weight[t] * g[t] mat_gbar_decay: mat_gbar_weight: Used to update mat_gbar: mat_gbar_j[t] = mat_gbar_decay[t] * mat_gbar_j[t-1] + mat_gbar_weight[t] * gg_j[t] learning_rate: Similar to SGD svd_interval: We should do SVD after this many steps. Default = 1, i.e. every step. Usually 20 leads to no loss of accuracy, and 50 or 100 is also OK. May also want more often early, and less often later - set in caller as for example: "svd_interval = lambda(T): tf.cond( T < 2000, lambda: 20.0, lambda: 1000.0)" precond_update_interval: We should update the preconditioners after this many steps. Default = 1. Usually less than svd_interval. epsilon: epsilon * I_n is added to each mat_gbar_j for stability alpha: total power of the preconditioners. use_iterative_root: should the optimizer use SVD (faster) or the iterative root method (for TPU) for finding the roots of PSD matrices. use_locking: If `True` use locks for update operations. name: name of optimizer. """ super(ShampooWOptimizer, self).__init__( weight_decay, global_step=global_step, max_matrix_size=max_matrix_size, gbar_decay=gbar_decay, gbar_weight=gbar_weight, mat_gbar_decay=mat_gbar_weight, learning_rate=learning_rate, svd_interval=svd_interval, precond_update_interval=precond_update_interval, epsilon=epsilon, alpha=alpha, use_iterative_root=use_iterative_root, use_locking=use_locking, name=name)
tensorflow-master
tensorflow/contrib/opt/python/training/weight_decay_optimizers.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Functional tests for AdaMoo optimizer.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import parameterized import numpy as np from tensorflow.contrib.opt.python.training import shampoo from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import variables from tensorflow.python.platform import test TOLERANCE = 1e-3 RIDGE_EPSILON = 1e-4 def np_power(mat_g, alpha): """Computes mat_g^alpha for a square symmetric matrix mat_g.""" mat_u, diag_d, mat_v = np.linalg.svd(mat_g) diag_d = np.power(diag_d, alpha) return np.dot(np.dot(mat_u, np.diag(diag_d)), mat_v) class ShampooTest(test.TestCase, parameterized.TestCase): @parameterized.named_parameters(('Var', False), ('ResourceVar', True)) def testBasicVector(self, use_resource_var): """Similar to the full Adagrad update.""" size = 20 init_var_np = np.zeros(size) grad_np = np.random.rand(size) grad_np_2 = np.random.rand(size) with self.cached_session() as sess: global_step = variables.VariableV1( 0, dtype=dtypes.int64, use_resource=use_resource_var) var = variables.VariableV1( init_var_np, dtype=dtypes.float32, use_resource=use_resource_var) grad = constant_op.constant(grad_np, dtype=dtypes.float32) grad_2 = constant_op.constant(grad_np_2, dtype=dtypes.float32) opt = shampoo.ShampooOptimizer(global_step) update = opt.apply_gradients(zip([grad], [var]), global_step=global_step) update_2 = opt.apply_gradients(zip([grad_2], [var]), global_step=global_step) variables.global_variables_initializer().run() init_val = sess.run(var) self.assertAllCloseAccordingToType(init_var_np, init_val) # Run a step of Shampoo update.run() new_val = sess.run(var) # let up compute this in numpy # Update rule is var = var - lr * mat_g^{-0.5} * grad # lr = 1 mat_g = np.outer(grad_np, grad_np) / grad_np.shape[0] mat_h = np_power(mat_g + RIDGE_EPSILON * np.eye(size), -0.5) new_val_np = init_var_np - np.dot(mat_h, grad_np) self.assertAllCloseAccordingToType(new_val_np, new_val, atol=TOLERANCE, rtol=TOLERANCE) # Run another step of Shampoo update_2.run() new_val = sess.run(var) mat_g += np.outer(grad_np_2, grad_np_2) / grad_np.shape[0] mat_h = np_power(mat_g + RIDGE_EPSILON * np.eye(size), -0.5) new_val_np -= np.dot(mat_h, grad_np_2) self.assertAllCloseAccordingToType(new_val_np, new_val, atol=TOLERANCE, rtol=TOLERANCE) @parameterized.named_parameters(('Var', False), ('ResourceVar', True)) def testBasicMatrix(self, use_resource_var): """Check update when gradient is a matrix.""" size = [10, 5] init_var_np = np.zeros(size) grad_np = np.random.rand(size[0], size[1]) grad_np_2 = np.random.rand(size[0], size[1]) with self.cached_session() as sess: global_step = variables.VariableV1( 0, dtype=dtypes.int64, use_resource=use_resource_var) var = variables.VariableV1( init_var_np, dtype=dtypes.float32, use_resource=use_resource_var) grad = constant_op.constant(grad_np, dtype=dtypes.float32) grad_2 = constant_op.constant(grad_np_2, dtype=dtypes.float32) opt = shampoo.ShampooOptimizer(global_step) update = opt.apply_gradients(zip([grad], [var]), global_step=global_step) update_2 = opt.apply_gradients(zip([grad_2], [var]), global_step=global_step) variables.global_variables_initializer().run() init_val = sess.run(var) self.assertAllCloseAccordingToType(init_var_np, init_val) # Run a step of Shampoo update.run() new_val = sess.run(var) # let up compute this in numpy # Update rule is var = var - lr * mat_g1^{-0.25} * grad * mat_g2^{-0.25} # lr = 1 mat_g1 = np.dot(grad_np, grad_np.transpose()) / grad_np.shape[0] mat_left = np_power(mat_g1 + RIDGE_EPSILON * np.eye(size[0]), -0.25) mat_g2 = np.dot(grad_np.transpose(), grad_np) / grad_np.shape[1] mat_right = np_power(mat_g2 + RIDGE_EPSILON * np.eye(size[1]), -0.25) new_val_np = init_var_np - np.dot(np.dot(mat_left, grad_np), mat_right) self.assertAllCloseAccordingToType(new_val_np, new_val, atol=TOLERANCE, rtol=TOLERANCE) # Run another step of Shampoo update_2.run() new_val = sess.run(var) mat_g1 += np.dot(grad_np_2, grad_np_2.transpose()) / grad_np_2.shape[0] mat_left = np_power(mat_g1 + RIDGE_EPSILON * np.eye(size[0]), -0.25) mat_g2 += np.dot(grad_np_2.transpose(), grad_np_2) / grad_np_2.shape[1] mat_right = np_power(mat_g2 + RIDGE_EPSILON * np.eye(size[1]), -0.25) new_val_np -= np.dot(np.dot(mat_left, grad_np_2), mat_right) self.assertAllCloseAccordingToType(new_val_np, new_val, atol=TOLERANCE, rtol=TOLERANCE) def _testBasicTensor(self, use_iterative_root, use_resource_var): """Check update when gradient is a tensor. Args: use_iterative_root: use iterative power method or SVD to find nth roots. use_resource_var: use resource var as variables. """ size = [10, 5, 7] init_var_np = np.zeros(size) grad_np = np.random.rand(size[0], size[1], size[2]) grad_np_2 = np.random.rand(size[0], size[1], size[2]) with self.cached_session() as sess: global_step = variables.VariableV1( 0, dtype=dtypes.int64, use_resource=use_resource_var) var = variables.VariableV1( init_var_np, dtype=dtypes.float32, use_resource=use_resource_var) grad = constant_op.constant(grad_np, dtype=dtypes.float32) grad_2 = constant_op.constant(grad_np_2, dtype=dtypes.float32) opt = shampoo.ShampooOptimizer(global_step, use_iterative_root=use_iterative_root) update = opt.apply_gradients(zip([grad], [var]), global_step=global_step) update_2 = opt.apply_gradients(zip([grad_2], [var]), global_step=global_step) variables.global_variables_initializer().run() init_val = sess.run(var) self.assertAllCloseAccordingToType(init_var_np, init_val) # Run a step of Shampoo update.run() new_val = sess.run(var) # let up compute this in numpy # Update rule is var = var - lr * Prod_i mat_g_i^{-0.5/3} grad # lr = 1 mat_g1 = ( np.tensordot(grad_np, grad_np, axes=([1, 2], [1, 2])) / grad_np.shape[0]) mat_g1_a = np_power(mat_g1 + RIDGE_EPSILON * np.eye(size[0]), -0.5 / 3.0) mat_g2 = ( np.tensordot(grad_np, grad_np, axes=([0, 2], [0, 2])) / grad_np.shape[1]) mat_g2_a = np_power(mat_g2 + RIDGE_EPSILON * np.eye(size[1]), -0.5 / 3.0) mat_g3 = ( np.tensordot(grad_np, grad_np, axes=([0, 1], [0, 1])) / grad_np.shape[2]) mat_g3_a = np_power(mat_g3 + RIDGE_EPSILON * np.eye(size[2]), -0.5 / 3.0) precond_grad = np.tensordot(grad_np, mat_g1_a, axes=([0], [0])) precond_grad = np.tensordot(precond_grad, mat_g2_a, axes=([0], [0])) precond_grad = np.tensordot(precond_grad, mat_g3_a, axes=([0], [0])) new_val_np = init_var_np - precond_grad self.assertAllCloseAccordingToType(new_val_np, new_val, atol=TOLERANCE, rtol=TOLERANCE) # Run another step of Shampoo update_2.run() new_val = sess.run(var) mat_g1 += ( np.tensordot(grad_np_2, grad_np_2, axes=([1, 2], [1, 2])) / grad_np_2.shape[0]) mat_g1_a = np_power(mat_g1 + RIDGE_EPSILON * np.eye(size[0]), -0.5 / 3.0) mat_g2 += ( np.tensordot(grad_np_2, grad_np_2, axes=([0, 2], [0, 2])) / grad_np_2.shape[1]) mat_g2_a = np_power(mat_g2 + RIDGE_EPSILON * np.eye(size[1]), -0.5 / 3.0) mat_g3 += ( np.tensordot(grad_np_2, grad_np_2, axes=([0, 1], [0, 1])) / grad_np_2.shape[2]) mat_g3_a = np_power(mat_g3 + RIDGE_EPSILON * np.eye(size[2]), -0.5 / 3.0) precond_grad = np.tensordot(grad_np_2, mat_g1_a, axes=([0], [0])) precond_grad = np.tensordot(precond_grad, mat_g2_a, axes=([0], [0])) precond_grad = np.tensordot(precond_grad, mat_g3_a, axes=([0], [0])) new_val_np -= precond_grad self.assertAllCloseAccordingToType(new_val_np, new_val, atol=TOLERANCE, rtol=TOLERANCE) @parameterized.named_parameters( ('SVDWithVar', False, False), ('SVDWithResourceVar', False, True), ('IterRootWithVar', True, False), ('IterRootWithResourceVar', True, True), ) def testBasicTensor(self, use_iterative_root, use_resource_var): self._testBasicTensor(use_iterative_root, use_resource_var) @parameterized.named_parameters(('Var', False), ('ResourceVar', True)) def testLargeVector(self, use_resource_var): """This is just the diagonal Adagrad update.""" size = 2000 init_var_np = np.zeros(size) grad_np = np.random.rand(size) grad_np_2 = np.random.rand(size) with self.cached_session() as sess: global_step = variables.VariableV1( 0, dtype=dtypes.int64, use_resource=use_resource_var) var = variables.VariableV1( init_var_np, dtype=dtypes.float32, use_resource=use_resource_var) grad = constant_op.constant(grad_np, dtype=dtypes.float32) grad_2 = constant_op.constant(grad_np_2, dtype=dtypes.float32) opt = shampoo.ShampooOptimizer(global_step) update = opt.apply_gradients(zip([grad], [var]), global_step=global_step) update_2 = opt.apply_gradients(zip([grad_2], [var]), global_step=global_step) variables.global_variables_initializer().run() init_val = sess.run(var) self.assertAllCloseAccordingToType(init_var_np, init_val) # Run a step of Shampoo update.run() new_val = sess.run(var) # let up compute this in numpy # Update rule is var = var - lr * gg^{-0.5} * grad # lr = 1 mat_g = (grad_np * grad_np) new_val_np = init_var_np - np.power(mat_g, -0.5) * grad_np self.assertAllCloseAccordingToType( new_val_np, new_val, atol=TOLERANCE, rtol=TOLERANCE) # Run another step of Shampoo update_2.run() new_val = sess.run(var) mat_g += (grad_np_2 * grad_np_2) new_val_np -= np.power(mat_g, -0.5) * grad_np_2 self.assertAllCloseAccordingToType( new_val_np, new_val, atol=TOLERANCE, rtol=TOLERANCE) @parameterized.named_parameters(('Var', False), ('ResourceVar', True)) def testLargeMatrix(self, use_resource_var): """Gradient is a matrix, one of whose dimensions is large. We do diagonal updates for large dimensions. Args: use_resource_var: use resource var as variables. """ size = [2000, 3] init_var_np = np.zeros(size) grad_np = np.random.rand(size[0], size[1]) grad_np_2 = np.random.rand(size[0], size[1]) with self.cached_session() as sess: global_step = variables.VariableV1( 0, dtype=dtypes.int64, use_resource=use_resource_var) var = variables.VariableV1( init_var_np, dtype=dtypes.float32, use_resource=use_resource_var) grad = constant_op.constant(grad_np, dtype=dtypes.float32) grad_2 = constant_op.constant(grad_np_2, dtype=dtypes.float32) opt = shampoo.ShampooOptimizer(global_step) update = opt.apply_gradients(zip([grad], [var]), global_step=global_step) update_2 = opt.apply_gradients(zip([grad_2], [var]), global_step=global_step) variables.global_variables_initializer().run() init_val = sess.run(var) self.assertAllCloseAccordingToType(init_var_np, init_val) # Run a step of Shampoo update.run() new_val = sess.run(var) # let up compute this in numpy # Update rule is var = var - lr * mat_left * grad * mat_right # where the mat_left * grad is just element-wise product, # with broadcasting # lr = 1 mat_g1 = np.sum( grad_np * grad_np, axis=1, keepdims=True) / grad_np.shape[0] mat_left = np.power(mat_g1, -0.25) mat_g2 = np.dot(grad_np.transpose(), grad_np) / grad_np.shape[1] mat_right = np_power(mat_g2 + RIDGE_EPSILON * np.eye(size[1]), -0.25) new_val_np = init_var_np - np.dot(grad_np * mat_left, mat_right) self.assertAllCloseAccordingToType(new_val_np, new_val, atol=TOLERANCE, rtol=TOLERANCE) # Run another step of Shampoo update_2.run() new_val = sess.run(var) mat_g1 += np.sum( grad_np_2 * grad_np_2, axis=1, keepdims=True) / grad_np_2.shape[0] mat_left = np.power(mat_g1, -0.25) mat_g2 += np.dot(grad_np_2.transpose(), grad_np_2) / grad_np_2.shape[1] mat_right = np_power(mat_g2 + RIDGE_EPSILON * np.eye(size[1]), -0.25) new_val_np -= np.dot(grad_np_2 * mat_left, mat_right) self.assertAllCloseAccordingToType(new_val_np, new_val, atol=TOLERANCE, rtol=TOLERANCE) @parameterized.named_parameters(('Var', False)) def testSparseUpdateLarge(self, use_resource_var): """Check update when gradient is of type IndexSlices. We do diagonal updates for the first dimension, unless it is very small. Args: use_resource_var: use resource var as variables. """ size = [2000, 3] sample_size_1 = 100 init_var_np = np.zeros(size) grad_indices = np.sort(np.random.choice(np.arange(size[0]), sample_size_1, replace=False)) grad_np = np.random.rand(sample_size_1, size[1]) sample_size_2 = 7 grad_indices_2 = np.sort(np.random.choice(np.arange(size[0]), sample_size_2, replace=False)) grad_np_2 = np.random.rand(sample_size_2, size[1]) with self.cached_session() as sess: global_step = variables.VariableV1( 0, dtype=dtypes.int64, use_resource=use_resource_var) var = variables.VariableV1( init_var_np, dtype=dtypes.float32, use_resource=use_resource_var) grad = ops.IndexedSlices( constant_op.constant(grad_np, dtype=dtypes.float32), constant_op.constant(grad_indices), constant_op.constant(size)) grad_2 = ops.IndexedSlices( constant_op.constant(grad_np_2, dtype=dtypes.float32), constant_op.constant(grad_indices_2), constant_op.constant(size)) opt = shampoo.ShampooOptimizer(global_step) update = opt.apply_gradients(zip([grad], [var]), global_step=global_step) update_2 = opt.apply_gradients(zip([grad_2], [var]), global_step=global_step) variables.global_variables_initializer().run() init_val = sess.run(var) self.assertAllCloseAccordingToType(init_var_np, init_val) # Run a step of Shampoo update.run() new_val = sess.run(var) # let up compute this in numpy # Update rule is var = var - lr * mat_left * grad * mat_right # where the mat_left * grad is just element-wise product, # with broadcasting # lr = 1 # In this case the update lr * mat_left * grad * mat_right is # of size 10 x 2. # So the correct indices of var need to be updated. mat_g1 = np.sum(grad_np * grad_np, axis=1, keepdims=True) mat_g1_acc = np.zeros((size[0], 1)) mat_g1_acc[grad_indices] += mat_g1 mat_left = np.power(mat_g1 + RIDGE_EPSILON, -0.25) mat_g2 = np.dot(grad_np.transpose(), grad_np) / grad_np.shape[1] mat_right = np_power(mat_g2 + RIDGE_EPSILON * np.eye(size[1]), -0.25) new_val_np = init_var_np new_val_np[grad_indices, :] -= np.dot(grad_np * mat_left, mat_right) self.assertAllCloseAccordingToType(new_val_np, new_val, atol=TOLERANCE, rtol=TOLERANCE) # Run another step of Shampoo update_2.run() new_val = sess.run(var) mat_g1 = np.sum(grad_np_2 * grad_np_2, axis=1, keepdims=True) mat_g1_acc[grad_indices_2] += mat_g1 mat_left = np.power(mat_g1_acc[grad_indices_2] + RIDGE_EPSILON, -0.25) mat_g2 += np.dot(grad_np_2.transpose(), grad_np_2) / grad_np_2.shape[1] mat_right = np_power(mat_g2 + RIDGE_EPSILON * np.eye(size[1]), -0.25) new_val_np[grad_indices_2, :] -= np.dot(grad_np_2 * mat_left, mat_right) self.assertAllCloseAccordingToType(new_val_np, new_val, atol=TOLERANCE, rtol=TOLERANCE) def _testSparseUpdateSmall(self, use_iterative_root, use_resource_var): """Gradient is of type IndexSlices, but the first dimension is small. We create dense gradient and do the full update with SVD etc. Args: use_iterative_root: use iterative power method or SVD to find nth roots. use_resource_var: use resource var as variables. """ size = [100, 3, 5] sample_size = 10 init_var_np = np.zeros(size) grad_indices = np.sort(np.random.choice(np.arange(size[0]), sample_size, replace=False)) grad_np = np.random.rand(sample_size, size[1], size[2]) with self.cached_session() as sess: global_step = variables.VariableV1( 0, dtype=dtypes.int64, use_resource=use_resource_var) var = variables.VariableV1( init_var_np, dtype=dtypes.float32, use_resource=use_resource_var) grad = ops.IndexedSlices( constant_op.constant(grad_np, dtype=dtypes.float32), constant_op.constant(grad_indices), constant_op.constant(size)) opt = shampoo.ShampooOptimizer(global_step, use_iterative_root=use_iterative_root) update = opt.apply_gradients(zip([grad], [var]), global_step=global_step) variables.global_variables_initializer().run() init_val = sess.run(var) self.assertAllCloseAccordingToType(init_var_np, init_val) # Run a step of Shampoo update.run() new_val = sess.run(var) # let up compute this in numpy # Update rule is var = var - lr * Prod_i mat_g_i^{-0.125} grad # lr = 1 grad_dense = np.zeros_like(init_var_np) grad_dense[grad_indices] = grad_np mat_g1 = np.tensordot( grad_dense, grad_dense, axes=([1, 2], [1, 2])) / grad_dense.shape[0] mat_g1_a = np_power(mat_g1 + RIDGE_EPSILON * np.eye(size[0]), -0.5 / 3.0) mat_g2 = np.tensordot( grad_dense, grad_dense, axes=([0, 2], [0, 2])) / grad_dense.shape[1] mat_g2_a = np_power(mat_g2 + RIDGE_EPSILON * np.eye(size[1]), -0.5 / 3.0) mat_g3 = np.tensordot( grad_dense, grad_dense, axes=([0, 1], [0, 1])) / grad_dense.shape[2] mat_g3_a = np_power(mat_g3 + RIDGE_EPSILON * np.eye(size[2]), -0.5 / 3.0) precond_grad = np.tensordot(grad_dense, mat_g1_a, axes=([0], [0])) precond_grad = np.tensordot(precond_grad, mat_g2_a, axes=([0], [0])) precond_grad = np.tensordot(precond_grad, mat_g3_a, axes=([0], [0])) new_val_np = init_var_np - precond_grad self.assertAllCloseAccordingToType(new_val_np, new_val, atol=TOLERANCE, rtol=TOLERANCE) @parameterized.named_parameters( ('SVDWithVar', False, False), ('SVDWithResourceVar', False, True), ('IterRootWithVar', True, False), ('IterRootWithResourceVar', True, True), ) def testSparseUpdateSmall(self, use_iterative_root, use_resource_var): self._testSparseUpdateSmall(use_iterative_root, use_resource_var) def _testBasicTensorWithMomentum(self, use_iterative_root, use_resource_var): """Check update with momentum when gradient is a tensor. Args: use_iterative_root: use iterative power method or SVD to find nth roots. use_resource_var: use resource var as variables. """ size = [10, 5, 7] init_var_np = np.zeros(size) grad_np = np.random.rand(size[0], size[1], size[2]) grad_np_2 = np.random.rand(size[0], size[1], size[2]) gbar_decay = 0.9 gbar_weight = 0.1 with self.cached_session() as sess: global_step = variables.VariableV1( 0, dtype=dtypes.int64, use_resource=use_resource_var) var = variables.VariableV1( init_var_np, dtype=dtypes.float32, use_resource=use_resource_var) grad = constant_op.constant(grad_np, dtype=dtypes.float32) grad_2 = constant_op.constant(grad_np_2, dtype=dtypes.float32) opt = shampoo.ShampooOptimizer(global_step, gbar_decay=gbar_decay, gbar_weight=gbar_weight, use_iterative_root=use_iterative_root) update = opt.apply_gradients(zip([grad], [var]), global_step=global_step) update_2 = opt.apply_gradients(zip([grad_2], [var]), global_step=global_step) variables.global_variables_initializer().run() # Run a step of Shampoo update.run() new_val = sess.run(var) # let up compute this in numpy # Update rule is var = var - lr * Prod_i mat_g_i^{-0.5/3} grad # lr = 1 mat_g1 = np.tensordot( grad_np, grad_np, axes=([1, 2], [1, 2])) / grad_np.shape[0] mat_g1_a = np_power(mat_g1 + RIDGE_EPSILON * np.eye(size[0]), -0.5 / 3.0) mat_g2 = np.tensordot( grad_np, grad_np, axes=([0, 2], [0, 2])) / grad_np.shape[1] mat_g2_a = np_power(mat_g2 + RIDGE_EPSILON * np.eye(size[1]), -0.5 / 3.0) mat_g3 = np.tensordot( grad_np, grad_np, axes=([0, 1], [0, 1])) / grad_np.shape[2] mat_g3_a = np_power(mat_g3 + RIDGE_EPSILON * np.eye(size[2]), -0.5 / 3.0) gbar_np = gbar_weight * grad_np precond_grad = np.tensordot(gbar_np, mat_g1_a, axes=([0], [0])) precond_grad = np.tensordot(precond_grad, mat_g2_a, axes=([0], [0])) precond_grad = np.tensordot(precond_grad, mat_g3_a, axes=([0], [0])) new_val_np = init_var_np - precond_grad self.assertAllCloseAccordingToType(new_val_np, new_val, atol=TOLERANCE, rtol=TOLERANCE) # Run another step of Shampoo update_2.run() new_val = sess.run(var) mat_g1 += np.tensordot( grad_np_2, grad_np_2, axes=([1, 2], [1, 2])) / grad_np_2.shape[0] mat_g1_a = np_power(mat_g1 + RIDGE_EPSILON * np.eye(size[0]), -0.5 / 3.0) mat_g2 += np.tensordot( grad_np_2, grad_np_2, axes=([0, 2], [0, 2])) / grad_np_2.shape[1] mat_g2_a = np_power(mat_g2 + RIDGE_EPSILON * np.eye(size[1]), -0.5 / 3.0) mat_g3 += np.tensordot( grad_np_2, grad_np_2, axes=([0, 1], [0, 1])) / grad_np_2.shape[2] mat_g3_a = np_power(mat_g3 + RIDGE_EPSILON * np.eye(size[2]), -0.5 / 3.0) gbar_np_2 = gbar_decay * gbar_np + gbar_weight * grad_np_2 precond_grad = np.tensordot(gbar_np_2, mat_g1_a, axes=([0], [0])) precond_grad = np.tensordot(precond_grad, mat_g2_a, axes=([0], [0])) precond_grad = np.tensordot(precond_grad, mat_g3_a, axes=([0], [0])) new_val_np -= precond_grad self.assertAllCloseAccordingToType(new_val_np, new_val, atol=TOLERANCE, rtol=TOLERANCE) @parameterized.named_parameters( ('SVDWithVar', False, False), ('SVDWithResourceVar', False, True), ('IterRootWithVar', True, False), ('IterRootWithResourceVar', True, True), ) def testBasicTensorWithMomentum(self, use_iterative_root, use_resource_var): self._testBasicTensorWithMomentum(use_iterative_root, use_resource_var) def _testDelayedSVD(self, use_iterative_root, use_resource_var): """Performing the SVD every nth step. Args: use_iterative_root: use iterative power method or SVD to find nth roots. use_resource_var: use resource var as variables. """ size = [10, 5, 7] init_var_np = np.zeros(size).astype(np.float32) iterations = 20 svd_interval = 5 grad_np = np.random.rand( iterations, size[0], size[1], size[2]).astype(np.float32) mat_g1_a = np.eye(size[0]) mat_g1 = np.zeros_like(mat_g1_a) mat_g2_a = np.eye(size[1]) mat_g2 = np.zeros_like(mat_g2_a) mat_g3_a = np.eye(size[2]) mat_g3 = np.zeros_like(mat_g3_a) with self.cached_session() as sess: global_step = variables.VariableV1( 0, dtype=dtypes.int64, use_resource=use_resource_var) var = variables.VariableV1( init_var_np, dtype=dtypes.float32, use_resource=use_resource_var) grad = array_ops.placeholder(dtypes.float32, shape=size) opt = shampoo.ShampooOptimizer(global_step, svd_interval=svd_interval, use_iterative_root=use_iterative_root) update = opt.apply_gradients(zip([grad], [var]), global_step=global_step) variables.global_variables_initializer().run() init_val = sess.run(var) self.assertAllCloseAccordingToType(init_var_np, init_val) new_val_np = init_var_np # Run n steps of Shampoo for i in range(iterations): _ = sess.run(update, feed_dict={grad: grad_np[i]}) new_val = sess.run(var) # let up compute this in numpy # Update rule is var = var - lr * Prod_i mat_g_i^{-0.5/3} grad # lr = 1 mat_g1 += np.tensordot( grad_np[i], grad_np[i], axes=([1, 2], [1, 2])) / grad_np[i].shape[0] mat_g2 += np.tensordot( grad_np[i], grad_np[i], axes=([0, 2], [0, 2])) / grad_np[i].shape[1] mat_g3 += np.tensordot( grad_np[i], grad_np[i], axes=([0, 1], [0, 1])) / grad_np[i].shape[2] if (i + 1) % svd_interval == 0: mat_g1_a = np_power(mat_g1 + RIDGE_EPSILON * np.eye(size[0]), -0.5 / 3.0) mat_g2_a = np_power(mat_g2 + RIDGE_EPSILON * np.eye(size[1]), -0.5 / 3.0) mat_g3_a = np_power(mat_g3 + RIDGE_EPSILON * np.eye(size[2]), -0.5 / 3.0) precond_grad = np.tensordot(grad_np[i], mat_g1_a, axes=([0], [0])) precond_grad = np.tensordot(precond_grad, mat_g2_a, axes=([0], [0])) precond_grad = np.tensordot(precond_grad, mat_g3_a, axes=([0], [0])) new_val_np -= precond_grad self.assertAllCloseAccordingToType(new_val_np, new_val, atol=TOLERANCE, rtol=TOLERANCE) @parameterized.named_parameters( ('SVDWithVar', False, False), ('SVDWithResourceVar', False, True), ('IterRootWithVar', True, False), ('IterRootWithResourceVar', True, True), ) def testDelayedSVD(self, use_iterative_root, use_resource_var): self._testDelayedSVD(use_iterative_root, use_resource_var) def _testDelayedPrecondUpdate(self, use_iterative_root, use_resource_var): """Update the squared sum every nth step, drop the other steps. Args: use_iterative_root: use iterative power method or SVD to find nth roots. use_resource_var: use resource var as variables. """ size = [10, 5, 7] init_var_np = np.zeros(size).astype(np.float32) iterations = 100 grad_np = np.random.rand( iterations, size[0], size[1], size[2]).astype(np.float32) svd_interval = 20 precond_update_interval = 5 mat_g1_a = np.eye(size[0]) mat_g1 = np.zeros_like(mat_g1_a) mat_g2_a = np.eye(size[1]) mat_g2 = np.zeros_like(mat_g2_a) mat_g3_a = np.eye(size[2]) mat_g3 = np.zeros_like(mat_g3_a) with self.cached_session() as sess: global_step = variables.VariableV1( 0, dtype=dtypes.int64, use_resource=use_resource_var) var = variables.VariableV1( init_var_np, dtype=dtypes.float32, use_resource=use_resource_var) grad = array_ops.placeholder(dtypes.float32, shape=size) opt = shampoo.ShampooOptimizer( global_step, svd_interval=svd_interval, precond_update_interval=precond_update_interval, use_iterative_root=use_iterative_root) update = opt.apply_gradients(zip([grad], [var]), global_step=global_step) variables.global_variables_initializer().run() init_val = sess.run(var) self.assertAllCloseAccordingToType(init_var_np, init_val) new_val_np = init_var_np # Run n steps of Shampoo for i in range(iterations): _ = sess.run(update, feed_dict={grad: grad_np[i]}) new_val = sess.run(var) # let up compute this in numpy # Update rule is var = var - lr * Prod_i mat_g_i^{-0.5/3} grad # lr = 1 if (i + 1) % precond_update_interval == 0: mat_g1 += ( np.tensordot(grad_np[i], grad_np[i], axes=([1, 2], [1, 2])) / grad_np[i].shape[0] * precond_update_interval) mat_g2 += ( np.tensordot(grad_np[i], grad_np[i], axes=([0, 2], [0, 2])) / grad_np[i].shape[1] * precond_update_interval) mat_g3 += ( np.tensordot(grad_np[i], grad_np[i], axes=([0, 1], [0, 1])) / grad_np[i].shape[2] * precond_update_interval) if (i + 1) % svd_interval == 0: mat_g1_a = np_power(mat_g1 + RIDGE_EPSILON * np.eye(size[0]), -0.5 / 3.0) mat_g2_a = np_power(mat_g2 + RIDGE_EPSILON * np.eye(size[1]), -0.5 / 3.0) mat_g3_a = np_power(mat_g3 + RIDGE_EPSILON * np.eye(size[2]), -0.5 / 3.0) precond_grad = np.tensordot(grad_np[i], mat_g1_a, axes=([0], [0])) precond_grad = np.tensordot(precond_grad, mat_g2_a, axes=([0], [0])) precond_grad = np.tensordot(precond_grad, mat_g3_a, axes=([0], [0])) new_val_np -= precond_grad self.assertAllCloseAccordingToType(new_val_np, new_val, atol=TOLERANCE, rtol=TOLERANCE) @parameterized.named_parameters( ('SVDWithVar', False, False), ('SVDWithResourceVar', False, True), ('IterRootWithVar', True, False), ('IterRootWithResourceVar', True, True), ) def testDelayedPrecondUpdate(self, use_iterative_root, use_resource_var): self._testDelayedPrecondUpdate(use_iterative_root, use_resource_var) if __name__ == '__main__': test.main()
tensorflow-master
tensorflow/contrib/opt/python/training/shampoo_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Variant of the Adam optimizer that handles sparse updates more efficiently. Compared with the original Adam optimizer, the one in this file can provide a large improvement in model training throughput for some applications. However, it provides slightly different semantics than the original Adam algorithm, and may lead to different empirical results. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import resource_variable_ops from tensorflow.python.ops import state_ops from tensorflow.python.training import adam class LazyAdamOptimizer(adam.AdamOptimizer): """Variant of the Adam optimizer that handles sparse updates more efficiently. The original Adam algorithm maintains two moving-average accumulators for each trainable variable; the accumulators are updated at every step. This class provides lazier handling of gradient updates for sparse variables. It only updates moving-average accumulators for sparse variable indices that appear in the current batch, rather than updating the accumulators for all indices. Compared with the original Adam optimizer, it can provide large improvements in model training throughput for some applications. However, it provides slightly different semantics than the original Adam algorithm, and may lead to different empirical results. """ def _apply_sparse(self, grad, var): beta1_power, beta2_power = self._get_beta_accumulators() beta1_power = math_ops.cast(beta1_power, var.dtype.base_dtype) beta2_power = math_ops.cast(beta2_power, var.dtype.base_dtype) lr_t = math_ops.cast(self._lr_t, var.dtype.base_dtype) beta1_t = math_ops.cast(self._beta1_t, var.dtype.base_dtype) beta2_t = math_ops.cast(self._beta2_t, var.dtype.base_dtype) epsilon_t = math_ops.cast(self._epsilon_t, var.dtype.base_dtype) lr = (lr_t * math_ops.sqrt(1 - beta2_power) / (1 - beta1_power)) # \\(m := beta1 * m + (1 - beta1) * g_t\\) m = self.get_slot(var, "m") m_t = state_ops.scatter_update(m, grad.indices, beta1_t * array_ops.gather(m, grad.indices) + (1 - beta1_t) * grad.values, use_locking=self._use_locking) # \\(v := beta2 * v + (1 - beta2) * (g_t * g_t)\\) v = self.get_slot(var, "v") v_t = state_ops.scatter_update(v, grad.indices, beta2_t * array_ops.gather(v, grad.indices) + (1 - beta2_t) * math_ops.square(grad.values), use_locking=self._use_locking) # \\(variable -= learning_rate * m_t / (epsilon_t + sqrt(v_t))\\) m_t_slice = array_ops.gather(m_t, grad.indices) v_t_slice = array_ops.gather(v_t, grad.indices) denominator_slice = math_ops.sqrt(v_t_slice) + epsilon_t var_update = state_ops.scatter_sub(var, grad.indices, lr * m_t_slice / denominator_slice, use_locking=self._use_locking) return control_flow_ops.group(var_update, m_t, v_t) def _resource_apply_sparse(self, grad, var, indices): beta1_power, beta2_power = self._get_beta_accumulators() beta1_power = math_ops.cast(beta1_power, var.dtype.base_dtype) beta2_power = math_ops.cast(beta2_power, var.dtype.base_dtype) lr_t = math_ops.cast(self._lr_t, var.dtype.base_dtype) beta1_t = math_ops.cast(self._beta1_t, var.dtype.base_dtype) beta2_t = math_ops.cast(self._beta2_t, var.dtype.base_dtype) epsilon_t = math_ops.cast(self._epsilon_t, var.dtype.base_dtype) lr = (lr_t * math_ops.sqrt(1 - beta2_power) / (1 - beta1_power)) # \\(m := beta1 * m + (1 - beta1) * g_t\\) m = self.get_slot(var, "m") m_t_slice = beta1_t * array_ops.gather(m, indices) + (1 - beta1_t) * grad m_update_op = resource_variable_ops.resource_scatter_update(m.handle, indices, m_t_slice) # \\(v := beta2 * v + (1 - beta2) * (g_t * g_t)\\) v = self.get_slot(var, "v") v_t_slice = (beta2_t * array_ops.gather(v, indices) + (1 - beta2_t) * math_ops.square(grad)) v_update_op = resource_variable_ops.resource_scatter_update(v.handle, indices, v_t_slice) # \\(variable -= learning_rate * m_t / (epsilon_t + sqrt(v_t))\\) var_slice = lr * m_t_slice / (math_ops.sqrt(v_t_slice) + epsilon_t) var_update_op = resource_variable_ops.resource_scatter_sub(var.handle, indices, var_slice) return control_flow_ops.group(var_update_op, m_update_op, v_update_op)
tensorflow-master
tensorflow/contrib/opt/python/training/lazy_adam_optimizer.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Matrix functions contains iterative methods for M^p.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.framework import dtypes from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import linalg_ops from tensorflow.python.ops import math_ops def matrix_square_root(mat_a, mat_a_size, iter_count=100, ridge_epsilon=1e-4): """Iterative method to get matrix square root. Stable iterations for the matrix square root, Nicholas J. Higham Page 231, Eq 2.6b http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.6.8799&rep=rep1&type=pdf Args: mat_a: the symmetric PSD matrix whose matrix square root be computed mat_a_size: size of mat_a. iter_count: Maximum number of iterations. ridge_epsilon: Ridge epsilon added to make the matrix positive definite. Returns: mat_a^0.5 """ def _iter_condition(i, unused_mat_y, unused_old_mat_y, unused_mat_z, unused_old_mat_z, err, old_err): # This method require that we check for divergence every step. return math_ops.logical_and(i < iter_count, err < old_err) def _iter_body(i, mat_y, unused_old_mat_y, mat_z, unused_old_mat_z, err, unused_old_err): current_iterate = 0.5 * (3.0 * identity - math_ops.matmul(mat_z, mat_y)) current_mat_y = math_ops.matmul(mat_y, current_iterate) current_mat_z = math_ops.matmul(current_iterate, mat_z) # Compute the error in approximation. mat_sqrt_a = current_mat_y * math_ops.sqrt(norm) mat_a_approx = math_ops.matmul(mat_sqrt_a, mat_sqrt_a) residual = mat_a - mat_a_approx current_err = math_ops.sqrt(math_ops.reduce_sum(residual * residual)) / norm return i + 1, current_mat_y, mat_y, current_mat_z, mat_z, current_err, err identity = linalg_ops.eye(math_ops.cast(mat_a_size, dtypes.int32)) mat_a = mat_a + ridge_epsilon * identity norm = math_ops.sqrt(math_ops.reduce_sum(mat_a * mat_a)) mat_init_y = mat_a / norm mat_init_z = identity init_err = norm _, _, prev_mat_y, _, _, _, _ = control_flow_ops.while_loop( _iter_condition, _iter_body, [ 0, mat_init_y, mat_init_y, mat_init_z, mat_init_z, init_err, init_err + 1.0 ]) return prev_mat_y * math_ops.sqrt(norm) def matrix_inverse_pth_root(mat_g, mat_g_size, alpha, iter_count=100, epsilon=1e-6, ridge_epsilon=1e-6): """Computes mat_g^alpha, where alpha = -1/p, p a positive integer. We use an iterative Schur-Newton method from equation 3.2 on page 9 of: A Schur-Newton Method for the Matrix p-th Root and its Inverse by Chun-Hua Guo and Nicholas J. Higham SIAM Journal on Matrix Analysis and Applications, 2006, Vol. 28, No. 3 : pp. 788-804 https://pdfs.semanticscholar.org/0abe/7f77433cf5908bfe2b79aa91af881da83858.pdf Args: mat_g: the symmetric PSD matrix whose power it to be computed mat_g_size: size of mat_g. alpha: exponent, must be -1/p for p a positive integer. iter_count: Maximum number of iterations. epsilon: accuracy indicator, useful for early termination. ridge_epsilon: Ridge epsilon added to make the matrix positive definite. Returns: mat_g^alpha """ identity = linalg_ops.eye(math_ops.cast(mat_g_size, dtypes.int32)) def mat_power(mat_m, p): """Computes mat_m^p, for p a positive integer. Power p is known at graph compile time, so no need for loop and cond. Args: mat_m: a square matrix p: a positive integer Returns: mat_m^p """ assert p == int(p) and p > 0 power = None while p > 0: if p % 2 == 1: power = math_ops.matmul(mat_m, power) if power is not None else mat_m p //= 2 mat_m = math_ops.matmul(mat_m, mat_m) return power def _iter_condition(i, mat_m, _): return math_ops.logical_and( i < iter_count, math_ops.reduce_max(math_ops.abs(mat_m - identity)) > epsilon) def _iter_body(i, mat_m, mat_x): mat_m_i = (1 - alpha) * identity + alpha * mat_m return (i + 1, math_ops.matmul(mat_power(mat_m_i, -1.0 / alpha), mat_m), math_ops.matmul(mat_x, mat_m_i)) if mat_g_size == 1: mat_h = math_ops.pow(mat_g + ridge_epsilon, alpha) else: damped_mat_g = mat_g + ridge_epsilon * identity z = (1 - 1 / alpha) / (2 * linalg_ops.norm(damped_mat_g)) # The best value for z is # (1 - 1/alpha) * (c_max^{-alpha} - c_min^{-alpha}) / # (c_max^{1-alpha} - c_min^{1-alpha}) # where c_max and c_min are the largest and smallest singular values of # damped_mat_g. # The above estimate assumes that c_max > c_min * 2^p. (p = -1/alpha) # Can replace above line by the one below, but it is less accurate, # hence needs more iterations to converge. # z = (1 - 1/alpha) / math_ops.trace(damped_mat_g) # If we want the method to always converge, use z = 1 / norm(damped_mat_g) # or z = 1 / math_ops.trace(damped_mat_g), but these can result in many # extra iterations. _, _, mat_h = control_flow_ops.while_loop( _iter_condition, _iter_body, [0, damped_mat_g * z, identity * math_ops.pow(z, -alpha)]) return mat_h
tensorflow-master
tensorflow/contrib/opt/python/training/matrix_functions.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """AdaMax for TensorFlow.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.eager import context from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import resource_variable_ops from tensorflow.python.ops import state_ops from tensorflow.python.training import adam from tensorflow.python.training import training_ops class AdaMaxOptimizer(adam.AdamOptimizer): """Optimizer that implements the AdaMax algorithm. Adamax is sometimes superior to adam, specially in models with embeddings, see [Kingma et al., 2014](http://arxiv.org/abs/1412.6980) ([pdf](http://arxiv.org/pdf/1412.6980.pdf)). """ def __init__(self, learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-8, use_locking=False, name="AdaMax"): """Construct a new AdaMax optimizer. Initialization: ``` m_0 <- 0 (Initialize initial 1st moment vector) v_0 <- 0 (Initialize the exponentially weighted infinity norm) t <- 0 (Initialize timestep) ``` The update rule for `variable` with gradient `g` uses an optimization described at the end of section 7.1 of the paper: ``` t <- t + 1 m_t <- beta1 * m_{t-1} + (1 - beta1) * g v_t <- max(beta2 * v_{t-1}, abs(g)) variable <- variable - learning_rate / (1 - beta1^t) * m_t / (v_t + epsilon) ``` Similar to AdamOptimizer, the epsilon is added for numerical stability (especially to get rid of division by zero when v_t = 0). Contrast to AdamOptimizer, the sparse implementation of this algorithm (used when the gradient is an IndexedSlices object, typically because of `tf.gather` or an embedding lookup in the forward pass) only updates variable slices and corresponding `m_t`, `v_t` terms when that part of the variable was used in the forward pass. This means that the sparse behavior is contrast to the dense behavior (similar to some momentum implementations which ignore momentum unless a variable slice was actually used). Args: learning_rate: A Tensor or a floating point value. The learning rate. beta1: A float value or a constant float tensor. The exponential decay rate for the 1st moment estimates. beta2: A float value or a constant float tensor. The exponential decay rate for the exponentially weighted infinity norm. epsilon: A small constant for numerical stability. use_locking: If True use locks for update operations. name: Optional name for the operations created when applying gradients. Defaults to "AdaMax". """ super(AdaMaxOptimizer, self).__init__(learning_rate, beta1, beta2, epsilon, use_locking, name) def _get_beta_accumulators(self): if context.executing_eagerly(): graph = None else: graph = ops.get_default_graph() return self._get_non_slot_variable("beta1_power", graph=graph) def _create_slots(self, var_list): # Create the beta1 accumulators on the same device as the first # variable. Sort the var_list to make sure this device is consistent across # workers (these need to go on the same PS, otherwise some updates are # silently ignored). first_var = min(var_list, key=lambda x: x.name) self._create_non_slot_variable(initial_value=self._beta1, name="beta1_power", colocate_with=first_var) # Create slots for the first and second moments. for v in var_list: self._zeros_slot(v, "m", self._name) self._zeros_slot(v, "v", self._name) def _apply_dense(self, grad, var): m = self.get_slot(var, "m") v = self.get_slot(var, "v") beta1_power = self._get_beta_accumulators() return training_ops.apply_ada_max( var, m, v, math_ops.cast(beta1_power, var.dtype.base_dtype), math_ops.cast(self._lr_t, var.dtype.base_dtype), math_ops.cast(self._beta1_t, var.dtype.base_dtype), math_ops.cast(self._beta2_t, var.dtype.base_dtype), math_ops.cast(self._epsilon_t, var.dtype.base_dtype), grad, use_locking=self._use_locking).op def _resource_apply_dense(self, grad, var): m = self.get_slot(var, "m") v = self.get_slot(var, "v") beta1_power = self._get_beta_accumulators() return training_ops.resource_apply_ada_max( var.handle, m.handle, v.handle, math_ops.cast(beta1_power, grad.dtype.base_dtype), math_ops.cast(self._lr_t, grad.dtype.base_dtype), math_ops.cast(self._beta1_t, grad.dtype.base_dtype), math_ops.cast(self._beta2_t, grad.dtype.base_dtype), math_ops.cast(self._epsilon_t, grad.dtype.base_dtype), grad, use_locking=self._use_locking) def _apply_sparse_shared(self, grad, var, indices, scatter_add, scatter_update): beta1_power = self._get_beta_accumulators() beta1_power = math_ops.cast(beta1_power, var.dtype.base_dtype) lr_t = math_ops.cast(self._lr_t, var.dtype.base_dtype) beta1_t = math_ops.cast(self._beta1_t, var.dtype.base_dtype) beta2_t = math_ops.cast(self._beta2_t, var.dtype.base_dtype) epsilon_t = math_ops.cast(self._epsilon_t, var.dtype.base_dtype) # m_t = beta1 * m + (1 - beta1) * g_t m = self.get_slot(var, "m") m_slice = array_ops.gather(m, indices) m_t_slice = m_slice * beta1_t + grad * (1 - beta1_t) with ops.control_dependencies([m_t_slice]): m_t = scatter_update(m, indices, m_t_slice) # u_t = max(beta2 * u, abs(g_t)) v = self.get_slot(var, "v") v_slice = array_ops.gather(v, indices) v_t_slice = math_ops.maximum(v_slice * beta2_t, math_ops.abs(grad)) with ops.control_dependencies([v_t_slice]): v_t = scatter_update(v, indices, v_t_slice) # theta_t = theta - lr / (1 - beta1^t) * m_t / u_t var_slice = -lr_t / (1 - beta1_power) * (m_t_slice / (v_t_slice + epsilon_t)) with ops.control_dependencies([var_slice]): var_update = scatter_add(var, indices, var_slice) return control_flow_ops.group(*[var_update, m_t, v_t]) def _apply_sparse(self, grad, var): return self._apply_sparse_shared( grad.values, var, grad.indices, lambda x, i, v: state_ops.scatter_add( # pylint: disable=g-long-lambda x, i, v, use_locking=self._use_locking), lambda x, i, v: state_ops.scatter_update( # pylint: disable=g-long-lambda x, i, v, use_locking=self._use_locking)) def _resource_scatter_update(self, x, i, v): with ops.control_dependencies( [resource_variable_ops.resource_scatter_update( x.handle, i, v)]): return x.value() def _resource_apply_sparse(self, grad, var, indices): return self._apply_sparse_shared( grad, var, indices, self._resource_scatter_add, self._resource_scatter_update) def _finish(self, update_ops, name_scope): # Update the power accumulators. with ops.control_dependencies(update_ops): beta1_power = self._get_beta_accumulators() with ops.colocate_with(beta1_power): update_beta1 = beta1_power.assign( beta1_power * self._beta1_t, use_locking=self._use_locking) return control_flow_ops.group(*update_ops + [update_beta1], name=name_scope)
tensorflow-master
tensorflow/contrib/opt/python/training/adamax.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Implementation of AddSign.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import state_ops from tensorflow.python.training import optimizer from tensorflow.python.training import training_ops class AddSignOptimizer(optimizer.Optimizer): """Optimizer that implements the AddSign update. See [Bello et al., ICML2017], [Neural Optimizer Search with RL](https://arxiv.org/abs/1709.07417). """ def __init__(self, learning_rate=0.1, alpha=1.0, beta=0.9, sign_decay_fn=None, use_locking=False, name='AddSignOptimizer'): """Constructs a new AddSignOptimizer object. Initialization: ``` m_0 <- 0 (Initialize initial 1st moment vector) t <- 0 (Initialize timestep) ``` Update: ``` t <- t + 1 m_t <- beta1 * m_{t-1} + (1 - beta1) * g sign_decay <- sign_decay_fn(t) update <- (alpha + sign_decay * sign(g) *sign(m)) * g variable <- variable - lr_t * update ``` Example for AddSign-ld (AddSign with linear sign decay) ``` decay_steps = 1000 linear_decay_fn = sign_decays.get_linear_decay_fn(decay_steps) opt = AddSignOptimizer(learning_rate=0.1, sign_decay_fn=linear_decay_fn) ``` Args: learning_rate: learning_rate used when taking a step. alpha: alpha used in optimizer. beta: decay used for computing the moving average m. sign_decay_fn: decay function applied to the sign(g) sign(m) quantity. Takes global_step as an argument. See sign_decay.py for some examples. use_locking: If True, use locks for update operations. name: Optional name for the operations created when applying gradients. Defaults to "AddSignOptimizer". """ super(AddSignOptimizer, self).__init__(use_locking, name) self._lr = learning_rate self._alpha = alpha self._beta = beta self._sign_decay_fn = sign_decay_fn # Tensor versions of the constructor arguments, created in _prepare(). self._lr_t = None self._alpha_t = None self._beta_t = None def apply_gradients(self, grads_and_vars, global_step=None, name=None): if self._sign_decay_fn is not None: self._sign_decay_t = ops.convert_to_tensor( self._sign_decay_fn(global_step), name='sign_decay') return super(AddSignOptimizer, self).apply_gradients( grads_and_vars, global_step=global_step, name=name) def _create_slots(self, var_list): # Create slots for the first moment. for v in var_list: self._zeros_slot(v, 'm', self._name) def _prepare(self): self._lr_t = ops.convert_to_tensor(self._lr, name='learning_rate') self._beta_t = ops.convert_to_tensor(self._beta, name='beta') self._alpha_t = ops.convert_to_tensor(self._alpha, name='alpha') if self._sign_decay_fn is None: self._sign_decay_t = ops.convert_to_tensor(1.0, name='sign_decay') def _apply_dense(self, grad, var): m = self.get_slot(var, 'm') return training_ops.apply_add_sign( var, m, math_ops.cast(self._lr_t, var.dtype.base_dtype), math_ops.cast(self._alpha_t, var.dtype.base_dtype), math_ops.cast(self._sign_decay_t, var.dtype.base_dtype), math_ops.cast(self._beta_t, var.dtype.base_dtype), grad, use_locking=self._use_locking).op def _resource_apply_dense(self, grad, var): m = self.get_slot(var, 'm') return training_ops.resource_apply_add_sign( var.handle, m.handle, math_ops.cast(self._lr_t, var.dtype.base_dtype), math_ops.cast(self._alpha_t, var.dtype.base_dtype), math_ops.cast(self._sign_decay_t, var.dtype.base_dtype), math_ops.cast(self._beta_t, var.dtype.base_dtype), grad, use_locking=self._use_locking) def _apply_sparse(self, grad, var): lr_t = math_ops.cast(self._lr_t, var.dtype.base_dtype) alpha_t = math_ops.cast(self._alpha_t, var.dtype.base_dtype) beta_t = math_ops.cast(self._beta_t, var.dtype.base_dtype) m = self.get_slot(var, 'm') m_t = state_ops.assign( m, (m * beta_t) + (grad * (1 - beta_t)), use_locking=self._use_locking) sign_g = ops.IndexedSlices( math_ops.sign(grad.values), grad.indices, dense_shape=grad.dense_shape) sign_gm = ops.IndexedSlices( array_ops.gather(math_ops.sign(m_t), sign_g.indices) * sign_g.values, sign_g.indices, dense_shape=sign_g.dense_shape) sign_decayed = math_ops.cast( self._sign_decay_t, var.dtype.base_dtype) multiplier_values = alpha_t + sign_decayed * sign_gm.values multiplier = ops.IndexedSlices( multiplier_values, sign_gm.indices, dense_shape=sign_gm.dense_shape) final_update = ops.IndexedSlices( lr_t * multiplier.values * grad.values, multiplier.indices, dense_shape=multiplier.dense_shape) var_update = state_ops.scatter_sub( var, final_update.indices, final_update.values, use_locking=self._use_locking) return control_flow_ops.group(* [var_update, m_t])
tensorflow-master
tensorflow/contrib/opt/python/training/addsign.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for ModelAverageOptimizer.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import portpicker from tensorflow.contrib.opt.python.training import model_average_optimizer from tensorflow.python.framework import constant_op from tensorflow.python.framework import ops from tensorflow.python.ops import variable_scope from tensorflow.python.ops import variables from tensorflow.python.platform import test from tensorflow.python.training import device_setter from tensorflow.python.training import gradient_descent from tensorflow.python.training import server_lib from tensorflow.python.training import training from tensorflow.python.training import training_util def create_local_cluster(num_workers, num_ps, protocol="grpc"): """Create local GRPC servers and return them.""" worker_ports = [portpicker.pick_unused_port() for _ in range(num_workers)] ps_ports = [portpicker.pick_unused_port() for _ in range(num_ps)] cluster_dict = { "worker": ["localhost:%s" % port for port in worker_ports], "ps": ["localhost:%s" % port for port in ps_ports] } cs = server_lib.ClusterSpec(cluster_dict) workers = [ server_lib.Server( cs, job_name="worker", protocol=protocol, task_index=ix, start=True) for ix in range(num_workers) ] ps_servers = [ server_lib.Server( cs, job_name="ps", protocol=protocol, task_index=ix, start=True) for ix in range(num_ps) ] return cluster_dict, workers, ps_servers # Creates the workers and return their sessions, graphs, train_ops. # Chief worker will update at last def _get_workers(num_workers, steps, workers): sessions = [] graphs = [] train_ops = [] for worker_id in range(num_workers): graph = ops.Graph() is_chief = (worker_id == 0) with graph.as_default(): worker_device = "/job:worker/task:%d/cpu:0" % (worker_id) ma_coustom = model_average_optimizer.ModelAverageCustomGetter( worker_device=worker_device) with variable_scope.variable_scope( "", custom_getter=ma_coustom), ops.device( device_setter.replica_device_setter( worker_device=worker_device, ps_device="/job:ps/task:0/cpu:0", ps_tasks=1)): global_step = variables.Variable(0, name="global_step", trainable=False) var_0 = variable_scope.get_variable(initializer=0.0, name="v0") var_1 = variable_scope.get_variable(initializer=1.0, name="v1") with ops.device("/job:worker/task:" + str(worker_id)): if worker_id == 0: grads_0 = constant_op.constant(-1.0) grads_1 = constant_op.constant(-1.0) else: grads_0 = constant_op.constant(-2.0) grads_1 = constant_op.constant(-2.0) sgd_opt = gradient_descent.GradientDescentOptimizer(1.0) opt = model_average_optimizer.ModelAverageOptimizer( opt=sgd_opt, num_worker=num_workers, ma_custom_getter=ma_coustom, is_chief=is_chief, interval_steps=steps) train_op = [ opt.apply_gradients([[grads_0, var_0], [grads_1, var_1]], global_step) ] ma_hook = opt.make_session_run_hook() # Creates MonitoredSession sess = training.MonitoredTrainingSession( workers[worker_id].target, hooks=[ma_hook]) sessions.append(sess) graphs.append(graph) train_ops.append(train_op) return sessions, graphs, train_ops class ModelAverageOptimizerTest(test.TestCase): def _run(self, train_op, sess): sess.run(train_op) def disabled_test1Workers2Period(self): num_workers = 2 steps = 2 num_ps = 1 _, workers, _ = create_local_cluster( num_workers=num_workers, num_ps=num_ps) sessions, graphs, train_ops = _get_workers(num_workers, steps, workers) var_0 = graphs[0].get_tensor_by_name("v0:0") var_1 = graphs[0].get_tensor_by_name("v1:0") global_step = training_util.get_global_step(graphs[0]) global_var_0 = graphs[0].get_tensor_by_name( model_average_optimizer.GLOBAL_VARIABLE_NAME + "/v0:0") global_var_1 = graphs[0].get_tensor_by_name( model_average_optimizer.GLOBAL_VARIABLE_NAME + "/v1:0") # Verify the initialized value. self.assertAllEqual(0.0, sessions[0].run(var_0)) self.assertAllEqual(1.0, sessions[0].run(var_1)) self.assertAllEqual(0.0, sessions[0].run(global_var_0)) self.assertAllEqual(1.0, sessions[0].run(global_var_1)) self.assertAllEqual(0, sessions[0].run(global_step)) sessions[0].run(train_ops[0]) sessions[1].run(train_ops[1]) self.assertAllEqual(1.0, sessions[0].run(var_0)) self.assertAllEqual(2.0, sessions[0].run(var_1)) self.assertAllEqual(0.0, sessions[0].run(global_var_0)) self.assertAllEqual(1.0, sessions[0].run(global_var_1)) self.assertAllEqual(0, sessions[0].run(global_step)) # iteration 2, global variable update thread_0 = self.checkedThread( target=self._run, args=(train_ops[0], sessions[0])) thread_1 = self.checkedThread( target=self._run, args=(train_ops[1], sessions[1])) thread_0.start() thread_1.start() thread_0.join() thread_1.join() self.assertAllEqual(3.0, sessions[0].run(var_0)) self.assertAllEqual(4.0, sessions[0].run(var_1)) self.assertAllEqual(3.0, sessions[0].run(global_var_0)) self.assertAllEqual(4.0, sessions[0].run(global_var_1)) self.assertAllEqual(1, sessions[0].run(global_step)) # iteration 3 sessions[0].run(train_ops[0]) self.assertAllEqual(4.0, sessions[0].run(var_0)) self.assertAllEqual(5.0, sessions[0].run(var_1)) self.assertAllEqual(3.0, sessions[0].run(global_var_0)) self.assertAllEqual(4.0, sessions[0].run(global_var_1)) self.assertAllEqual(1, sessions[0].run(global_step)) def testPS2TasksWithClusterSpecClass(self): cluster_spec = server_lib.ClusterSpec({ "ps": ["ps0:2222", "ps1:2222"], "worker": ["worker0:2222", "worker1:2222", "worker2:2222"] }) worker_device = "/job:worker/task:0" ma_coustom = model_average_optimizer.ModelAverageCustomGetter( worker_device=worker_device) from tensorflow.python.training import device_setter with ops.device( device_setter.replica_device_setter(cluster=cluster_spec, worker_device=worker_device, ps_device="/job:ps")), \ variable_scope.variable_scope("", custom_getter=ma_coustom): v = variable_scope.get_variable(initializer=[1, 2], name="v") w = variable_scope.get_variable(initializer=[2, 1], name="w") v_g, w_g = ma_coustom._local_2_global[v], ma_coustom._local_2_global[w] self.assertDeviceEqual("/job:worker/task:0", v.device) self.assertDeviceEqual("job:ps/task:0", v_g.device) self.assertDeviceEqual("/job:worker/task:0", w.device) self.assertDeviceEqual("job:ps/task:1", w_g.device) if __name__ == "__main__": test.main()
tensorflow-master
tensorflow/contrib/opt/python/training/model_average_optimizer_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for moving_average_optimizer.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os.path import tempfile import six from tensorflow.contrib.opt.python.training import moving_average_optimizer from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import partitioned_variables from tensorflow.python.ops import state_ops from tensorflow.python.ops import variable_scope from tensorflow.python.ops import variables from tensorflow.python.platform import test from tensorflow.python.training import gradient_descent from tensorflow.python.training import saver class MovingAverageOptimizerTest(test.TestCase): def testRun(self): self._helpTestRun(use_resource=False) def testRunUseResource(self): # Test that MovingAverageOptimizer works with resource variables. self._helpTestRun(use_resource=True) def testRunUsePartitionedVars(self): # Test that MovingAverageOptimizer works with partitioned variables. self._helpTestRun(use_partitioned_vars=True) def testRunUseResourcePartitionedVars(self): # Test that MovingAverageOptimizer works with resource and partitioned # variables. self._helpTestRun(use_partitioned_vars=True, use_resource=True) def _helpTestRun(self, use_resource=False, use_partitioned_vars=False): # Partitioned variables are represented as a "collection" of partitions. # To simplify the test and reuse as much code as possible we employ # following test strategy for partitioned variables. # # In the case of non-partitioned variables test runs on variables with # shape [2]. # # In the case of partitioned variables we use shape [4] with two partitions, # thus each partition has shape [2]. # For partitioned variables the test is run twice (for loop over # variable_part_names), first time on the first partition of each variable, # second time on the second partition of each variable. variable_part_names = ['part_0', 'part_1'] if use_partitioned_vars else [''] for sequential_update in [True, False]: for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: for var_part_name in variable_part_names: with self.session(graph=ops.Graph()) as sess: orig_val0 = [1.0, 2.0] orig_val1 = [3.0, 4.0] grads0 = [0.1, 0.1] grads1 = [0.01, 0.01] if use_partitioned_vars: # Use partitioned variables. # Create partitioned and duplicate each value used as initial # value of variables. partitioner = partitioned_variables.fixed_size_partitioner( num_shards=2) orig_val0 = orig_val0 * 2 orig_val1 = orig_val1 * 2 grads0 = grads0 * 2 grads1 = grads1 * 2 else: # Regular (non-partitioned) variables. partitioner = None var0 = variable_scope.get_variable( 'var0', initializer=constant_op.constant(orig_val0, dtype=dtype), use_resource=use_resource, partitioner=partitioner) var1 = variable_scope.get_variable( 'var1', initializer=constant_op.constant(orig_val1, dtype=dtype), use_resource=use_resource, partitioner=partitioner) # Make a fake loss, such that gradient(loss, var0) == grads0 # and gradient(loss, var1) == grads1 grads0 = constant_op.constant(grads0, dtype=dtype) grads1 = constant_op.constant(grads1, dtype=dtype) loss = (math_ops.reduce_sum(grads0 * var0) + math_ops.reduce_sum(grads1 * var1)) opt = moving_average_optimizer.MovingAverageOptimizer( gradient_descent.GradientDescentOptimizer(learning_rate=2.0), average_decay=0.5, sequential_update=sequential_update) save_dir = tempfile.mkdtemp( prefix=os.path.join(self.get_temp_dir(), 'run_1')) save_path = os.path.join(save_dir, 'model') update = opt.minimize(loss) # Get variables and their EMAs. In case of partitioned variables # get proper part of each variable. def _get_variable(var_name, part_name, ema): """Returns variable of it's moving average by name.""" matches = [ v for v in variables.global_variables() if ((var_name in v.op.name) and (part_name in v.op.name) and (('ExponentialMovingAverage' in v.op.name) == ema)) ] self.assertEqual(len(matches), 1) return matches[0] var0 = _get_variable('var0', var_part_name, ema=False) var1 = _get_variable('var1', var_part_name, ema=False) ema_var0 = _get_variable('var0', var_part_name, ema=True) ema_var1 = _get_variable('var1', var_part_name, ema=True) perturb = control_flow_ops.group([ state_ops.assign_add(var0, [1.0, 1.0]), state_ops.assign_add(var1, [2.0, 2.0]), state_ops.assign_add(ema_var0, [3.0, 3.0]), state_ops.assign_add(ema_var1, [4.0, 4.0]) ]) # Test that saver with missing ema variables will fail. with self.assertRaisesRegexp(ValueError, r'Variable to swap'): opt.swapping_saver(var_list=[var0]) train_saver = opt.swapping_saver() train_saver_subset = opt.swapping_saver(var_list=[var0, ema_var0]) inference_saver = saver.Saver() variables.global_variables_initializer().run() # Step 1. update.run() self.assertAllCloseAccordingToType([0.8, 1.8], var0.eval()) self.assertAllCloseAccordingToType([2.98, 3.98], var1.eval()) if sequential_update: self.assertAllCloseAccordingToType([0.9, 1.9], ema_var0.eval()) self.assertAllCloseAccordingToType([2.99, 3.99], ema_var1.eval()) # Test that the swapping saver save/restore operation is identity. train_saver.save(sess, save_path) train_saver.restore(sess, save_path) self.assertAllCloseAccordingToType([0.8, 1.8], var0.eval()) self.assertAllCloseAccordingToType([2.98, 3.98], var1.eval()) if sequential_update: self.assertAllCloseAccordingToType([0.9, 1.9], ema_var0.eval()) self.assertAllCloseAccordingToType([2.99, 3.99], ema_var1.eval()) # Test that the subset saver saves the EMA variable as well. if sequential_update: subset_save_path = save_path + '_subset' train_saver_subset.save(sess, subset_save_path) perturb.run() self.assertAllCloseAccordingToType([1.8, 2.8], var0.eval()) self.assertAllCloseAccordingToType([3.9, 4.9], ema_var0.eval()) self.assertAllCloseAccordingToType([4.98, 5.98], var1.eval()) self.assertAllCloseAccordingToType([6.99, 7.99], ema_var1.eval()) # Restoring should only restore var0 and ema_var0. train_saver_subset.restore(sess, subset_save_path) self.assertAllCloseAccordingToType([0.8, 1.8], var0.eval()) self.assertAllCloseAccordingToType([0.9, 1.9], ema_var0.eval()) self.assertAllCloseAccordingToType([4.98, 5.98], var1.eval()) self.assertAllCloseAccordingToType([6.99, 7.99], ema_var1.eval()) # Restore back to previous state. train_saver.restore(sess, save_path) # If updates are parallel, # this is not always true after the 1st step. if sequential_update: # Test that the normal saver will have the averaged variables. # We test that the average values are between the original value # and the most recent variable values (since they are an average # of the two). val0 = var0.eval() val1 = var1.eval() train_saver.save(sess, save_path) inference_saver.restore(sess, save_path) avg_val0 = var0.eval() avg_val1 = var1.eval() for i in six.moves.range(len(val0)): self.assertLess(val0[i], avg_val0[i]) self.assertLess(avg_val0[i], orig_val0[i]) self.assertLess(val1[i], avg_val1[i]) self.assertLess(avg_val1[i], orig_val1[i]) train_saver.restore(sess, save_path) # Step 2. update.run() # Test that the normal saver will have the averaged variables. # We test that the average values are between the original value and # the most recent variable values (since they are an average of the # two). val0 = var0.eval() val1 = var1.eval() self.assertAllCloseAccordingToType([0.6, 1.6], val0) self.assertAllCloseAccordingToType([2.96, 3.96], val1) train_saver.save(sess, save_path) inference_saver.restore(sess, save_path) avg_val0 = var0.eval() avg_val1 = var1.eval() for i in six.moves.range(len(val0)): self.assertLess(val0[i], avg_val0[i]) self.assertLess(avg_val0[i], orig_val0[i]) self.assertLess(val1[i], avg_val1[i]) self.assertLess(avg_val1[i], orig_val1[i]) def testFailWhenSaverCreatedBeforeInitialized(self): with self.cached_session(): var = variables.Variable([1.0], name='var', dtype=dtypes.float32) opt = moving_average_optimizer.MovingAverageOptimizer( gradient_descent.GradientDescentOptimizer(learning_rate=2.0)) # We didn't call apply_gradients yet. # This will raise an exception. with self.assertRaises(RuntimeError): _ = opt.swapping_saver([var]) def testCorrectOverride(self): class WrapperOptimizer(gradient_descent.GradientDescentOptimizer): def compute_gradients(self, *args, **kwargs): self.compute_gradients_called = True return super(WrapperOptimizer, self).compute_gradients( *args, **kwargs) def apply_gradients(self, *args, **kwargs): self.apply_gradients_called = True return super(WrapperOptimizer, self).apply_gradients(*args, **kwargs) with self.cached_session() as sess: var = variables.Variable([1.2], name='var', dtype=dtypes.float32) loss = var ** 2 wrapper_opt = WrapperOptimizer(learning_rate=2.0) opt = moving_average_optimizer.MovingAverageOptimizer(wrapper_opt) train_op = opt.minimize(loss) # Check that both methods are called on the underlying optimizer. self.assertTrue(wrapper_opt.compute_gradients_called) self.assertTrue(wrapper_opt.apply_gradients_called) # Run train_op once, and verify that we've updated the variable. variables.global_variables_initializer().run() sess.run(train_op) var_value = sess.run(var) # Started at 1.2, gradient is 2*1.2=2.4, lr=2, so should now be -3.6. self.assertNear(-3.6, var_value, 1e-6) if __name__ == '__main__': test.main()
tensorflow-master
tensorflow/contrib/opt/python/training/moving_average_optimizer_test.py
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Nadam.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.opt.python.training import nadam_optimizer from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import resource_variable_ops from tensorflow.python.ops import variables from tensorflow.python.platform import test def nadam_update_numpy(param, g_t, t, m, v, alpha=0.001, beta1=0.9, beta2=0.999, epsilon=1e-8): alpha_t = alpha * np.sqrt(1 - beta2**t) / (1 - beta1**t) m_t = beta1 * m + (1 - beta1) * g_t v_t = beta2 * v + (1 - beta2) * g_t * g_t m_bar = (1 - beta1) * g_t + beta1 * m_t param_t = param - alpha_t * m_bar / (np.sqrt(v_t) + epsilon) return param_t, m_t, v_t class NadamOptimizerTest(test.TestCase): def doTestSparse(self, use_resource=False): # need to use a larger value of epsilon here so that # np.sqrt(v_t) + epsilon doesn't get rounded to 0 when # the dtype is half and np.sqrt(v_t) = 0, as is the case # when the gradient is 0 sparse_epsilon = 1e-7 for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: with self.cached_session(): # Initialize variables for numpy implementation. m0, v0, m1, v1 = 0.0, 0.0, 0.0, 0.0 var0_np = np.array([1.0, 1.0, 2.0], dtype=dtype.as_numpy_dtype) grads0_np = np.array([0.1, 0, 0.1], dtype=dtype.as_numpy_dtype) var1_np = np.array([3.0, 3.0, 4.0], dtype=dtype.as_numpy_dtype) grads1_np = np.array([0.01, 0, 0.01], dtype=dtype.as_numpy_dtype) if use_resource: var0 = resource_variable_ops.ResourceVariable(var0_np) var1 = resource_variable_ops.ResourceVariable(var1_np) else: var0 = variables.Variable(var0_np) var1 = variables.Variable(var1_np) grads0_np_indices = np.array([0, 2], dtype=np.int32) grads0 = ops.IndexedSlices( constant_op.constant(grads0_np[grads0_np_indices]), constant_op.constant(grads0_np_indices), constant_op.constant([3])) grads1_np_indices = np.array([0, 2], dtype=np.int32) grads1 = ops.IndexedSlices( constant_op.constant(grads1_np[grads1_np_indices]), constant_op.constant(grads1_np_indices), constant_op.constant([3])) opt = nadam_optimizer.NadamOptimizer(epsilon=sparse_epsilon) update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) variables.global_variables_initializer().run() # Fetch params to validate initial values self.assertAllClose([1.0, 1.0, 2.0], var0.eval()) self.assertAllClose([3.0, 3.0, 4.0], var1.eval()) beta1_power, beta2_power = opt._get_beta_accumulators() # Run 3 steps of Nadam for t in range(1, 4): self.assertAllCloseAccordingToType(0.9**t, beta1_power.eval()) self.assertAllCloseAccordingToType(0.999**t, beta2_power.eval()) update.run() var0_np, m0, v0 = nadam_update_numpy(var0_np, grads0_np, t, m0, v0, epsilon=sparse_epsilon) var1_np, m1, v1 = nadam_update_numpy(var1_np, grads1_np, t, m1, v1, epsilon=sparse_epsilon) # Validate updated params self.assertAllCloseAccordingToType(var0_np, var0.eval()) self.assertAllCloseAccordingToType(var1_np, var1.eval()) def testSparse(self): self.doTestSparse(use_resource=False) def testResourceSparse(self): self.doTestSparse(use_resource=True) def doTestBasic(self, use_resource=False): for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: with self.cached_session(): # Initialize variables for numpy implementation. m0, v0, m1, v1 = 0.0, 0.0, 0.0, 0.0 var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype) if use_resource: var0 = resource_variable_ops.ResourceVariable(var0_np) var1 = resource_variable_ops.ResourceVariable(var1_np) else: var0 = variables.Variable(var0_np) var1 = variables.Variable(var1_np) grads0 = constant_op.constant(grads0_np) grads1 = constant_op.constant(grads1_np) opt = nadam_optimizer.NadamOptimizer() update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) variables.global_variables_initializer().run() # Fetch params to validate initial values self.assertAllClose([1.0, 2.0], var0.eval()) self.assertAllClose([3.0, 4.0], var1.eval()) beta1_power, beta2_power = opt._get_beta_accumulators() # Run 3 steps of Nadam for t in range(1, 4): self.assertAllCloseAccordingToType(0.9**t, beta1_power.eval()) self.assertAllCloseAccordingToType(0.999**t, beta2_power.eval()) update.run() var0_np, m0, v0 = nadam_update_numpy(var0_np, grads0_np, t, m0, v0) var1_np, m1, v1 = nadam_update_numpy(var1_np, grads1_np, t, m1, v1) # Validate updated params self.assertAllCloseAccordingToType(var0_np, var0.eval()) self.assertAllCloseAccordingToType(var1_np, var1.eval()) def testBasic(self): self.doTestBasic(use_resource=False) def testResourceBasic(self): self.doTestBasic(use_resource=True) if __name__ == "__main__": test.main()
tensorflow-master
tensorflow/contrib/opt/python/training/nadam_optimizer_test.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0. Licensed to the Apache # Software Foundation. You may not use this file except in compliance with the # License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Test for Layer-wise Adaptive Rate Scaling optimizer.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.opt.python.training import lars_optimizer as lo from tensorflow.python.framework import dtypes from tensorflow.python.ops import variables from tensorflow.python.platform import test class LARSOptimizerTest(test.TestCase): def testLARSGradientOneStep(self): for _ in range(10): for dtype in [dtypes.float32, dtypes.float64]: with self.cached_session() as sess: shape = [3, 3] var_np = np.ones(shape) grad_np = np.ones(shape) lr_np = 0.1 m_np = 0.9 wd_np = 0.1 ep_np = 1e-5 eeta = 0.1 vel_np = np.zeros(shape) var = variables.Variable(var_np, dtype=dtype) grad = variables.Variable(grad_np, dtype=dtype) opt = lo.LARSOptimizer( learning_rate=lr_np, momentum=m_np, weight_decay=wd_np, eeta=eeta, epsilon=ep_np) step = opt.apply_gradients([(grad, var)]) variables.global_variables_initializer().run() pre_var = sess.run(var) pre_vel = sess.run(opt.get_slot(var, 'momentum')) self.assertAllClose(var_np, pre_var) self.assertAllClose(vel_np, pre_vel) step.run() post_var = sess.run(var) post_vel = sess.run(opt.get_slot(var, 'momentum')) w_norm = np.linalg.norm(var_np.flatten(), ord=2) g_norm = np.linalg.norm(grad_np.flatten(), ord=2) trust_ratio = eeta * w_norm / (g_norm + wd_np * w_norm + ep_np) scaled_lr = lr_np * trust_ratio vel_np = m_np * vel_np + grad_np var_np -= scaled_lr * vel_np self.assertAllClose(var_np, post_var) self.assertAllClose(vel_np, post_vel) def testLARSGradientMultiStep(self): for _ in range(10): for dtype in [dtypes.float32, dtypes.float64]: with self.cached_session() as sess: shape = [3, 3] var_np = np.ones(shape) grad_np = np.ones(shape) lr_np = 0.1 m_np = 0.9 wd_np = 0.1 ep_np = 1e-5 eeta = 0.1 vel_np = np.zeros(shape) var = variables.Variable(var_np, dtype=dtype) grad = variables.Variable(grad_np, dtype=dtype) opt = lo.LARSOptimizer( learning_rate=lr_np, momentum=m_np, eeta=eeta, weight_decay=wd_np, epsilon=ep_np) step = opt.apply_gradients([(grad, var)]) variables.global_variables_initializer().run() pre_var = sess.run(var) pre_vel = sess.run(opt.get_slot(var, 'momentum')) self.assertAllClose(var_np, pre_var) self.assertAllClose(vel_np, pre_vel) for _ in range(10): step.run() post_var = sess.run(var) post_vel = sess.run(opt.get_slot(var, 'momentum')) w_norm = np.linalg.norm(var_np.flatten(), ord=2) g_norm = np.linalg.norm(grad_np.flatten(), ord=2) trust_ratio = eeta * w_norm / (g_norm + wd_np * w_norm + ep_np) scaled_lr = lr_np * trust_ratio vel_np = m_np * vel_np + grad_np var_np -= scaled_lr * vel_np self.assertAllClose(var_np, post_var) self.assertAllClose(vel_np, post_vel) if __name__ == '__main__': test.main()
tensorflow-master
tensorflow/contrib/opt/python/training/lars_optimizer_test.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """LazyAdam rewrite to use global step for computing beta1 & beta2 accumulation. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.opt.python.training import adam_gs_optimizer from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import resource_variable_ops from tensorflow.python.ops import state_ops class LazyAdamGSOptimizer(adam_gs_optimizer.AdamGSOptimizer): """Variant of the Adam optimizer that handles sparse updates more efficiently. Branched from tf.contrib.opt.LazyAdamGSOptimizer. The only difference is to pass global step for computing beta1 and beta2 accumulators, instead of having optimizer keep its own independent beta1 and beta2 accumulators as non-slot variables. The original Adam algorithm maintains two moving-average accumulators for each trainable variable; the accumulators are updated at every step. This class provides lazier handling of gradient updates for sparse variables. It only updates moving-average accumulators for sparse variable indices that appear in the current batch, rather than updating the accumulators for all indices. Compared with the original Adam optimizer, it can provide large improvements in model training throughput for some applications. However, it provides slightly different semantics than the original Adam algorithm, and may lead to different empirical results. """ def _apply_sparse(self, grad, var): beta1_power, beta2_power = self._get_beta_accumulators() beta1_power = math_ops.cast(beta1_power, var.dtype.base_dtype) beta2_power = math_ops.cast(beta2_power, var.dtype.base_dtype) lr_t = math_ops.cast(self._lr_t, var.dtype.base_dtype) beta1_t = math_ops.cast(self._beta1_t, var.dtype.base_dtype) beta2_t = math_ops.cast(self._beta2_t, var.dtype.base_dtype) epsilon_t = math_ops.cast(self._epsilon_t, var.dtype.base_dtype) lr = (lr_t * math_ops.sqrt(1 - beta2_power) / (1 - beta1_power)) # \\(m := beta1 * m + (1 - beta1) * g_t\\) m = self.get_slot(var, "m") m_t = state_ops.scatter_update(m, grad.indices, beta1_t * array_ops.gather(m, grad.indices) + (1 - beta1_t) * grad.values, use_locking=self._use_locking) # \\(v := beta2 * v + (1 - beta2) * (g_t * g_t)\\) v = self.get_slot(var, "v") v_t = state_ops.scatter_update(v, grad.indices, beta2_t * array_ops.gather(v, grad.indices) + (1 - beta2_t) * math_ops.square(grad.values), use_locking=self._use_locking) # \\(variable -= learning_rate * m_t / (epsilon_t + sqrt(v_t))\\) m_t_slice = array_ops.gather(m_t, grad.indices) v_t_slice = array_ops.gather(v_t, grad.indices) denominator_slice = math_ops.sqrt(v_t_slice) + epsilon_t var_update = state_ops.scatter_sub(var, grad.indices, lr * m_t_slice / denominator_slice, use_locking=self._use_locking) return control_flow_ops.group(var_update, m_t, v_t) def _resource_apply_sparse(self, grad, var, indices): beta1_power, beta2_power = self._get_beta_accumulators() beta1_power = math_ops.cast(beta1_power, var.dtype.base_dtype) beta2_power = math_ops.cast(beta2_power, var.dtype.base_dtype) lr_t = math_ops.cast(self._lr_t, var.dtype.base_dtype) beta1_t = math_ops.cast(self._beta1_t, var.dtype.base_dtype) beta2_t = math_ops.cast(self._beta2_t, var.dtype.base_dtype) epsilon_t = math_ops.cast(self._epsilon_t, var.dtype.base_dtype) lr = (lr_t * math_ops.sqrt(1 - beta2_power) / (1 - beta1_power)) # \\(m := beta1 * m + (1 - beta1) * g_t\\) m = self.get_slot(var, "m") m_t_slice = beta1_t * array_ops.gather(m, indices) + (1 - beta1_t) * grad m_update_op = resource_variable_ops.resource_scatter_update(m.handle, indices, m_t_slice) # \\(v := beta2 * v + (1 - beta2) * (g_t * g_t)\\) v = self.get_slot(var, "v") v_t_slice = (beta2_t * array_ops.gather(v, indices) + (1 - beta2_t) * math_ops.square(grad)) v_update_op = resource_variable_ops.resource_scatter_update(v.handle, indices, v_t_slice) # \\(variable -= learning_rate * m_t / (epsilon_t + sqrt(v_t))\\) var_slice = lr * m_t_slice / (math_ops.sqrt(v_t_slice) + epsilon_t) var_update_op = resource_variable_ops.resource_scatter_sub(var.handle, indices, var_slice) return control_flow_ops.group(var_update_op, m_update_op, v_update_op)
tensorflow-master
tensorflow/contrib/opt/python/training/lazy_adam_gs_optimizer.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for VariableClippingOptimizer.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import contextlib import socket import numpy as np from tensorflow.contrib.opt.python.training import variable_clipping_optimizer from tensorflow.python.client import session from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import variables from tensorflow.python.platform import test from tensorflow.python.training import gradient_descent from tensorflow.python.training import server_lib class VariableClippingOptimizerTest(test.TestCase): def _setupCluster(self): def get_open_port(): try: s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) except IOError: s = socket.socket(socket.AF_INET6, socket.SOCK_STREAM) s.bind(("", 0)) port = s.getsockname()[1] s.close() return port port1 = get_open_port() port2 = get_open_port() cs = server_lib.ClusterSpec({ "worker": ["localhost:%s" % port1], "ps": ["localhost:%s" % port2] }) worker = server_lib.Server(cs, job_name="worker", start=True) ps = server_lib.Server(cs, job_name="ps", start=True) return worker, ps @contextlib.contextmanager def _maybeWithDevice(self, device): if device is not None: with ops.device(device): yield else: yield def _setupDense(self, is_distributed, dtype): with self._maybeWithDevice("/job:ps" if is_distributed else None): var0 = variables.Variable([[0.0, 1.0], [2.0, 3.0]], dtype=dtype) var1 = variables.Variable([4.0, 5.0], dtype=dtype) with self._maybeWithDevice("/job:worker" if is_distributed else None): grads0 = constant_op.constant([[0.1, 0.1], [0.1, 0.1]], dtype=dtype) grads1 = constant_op.constant([0.01, 0.01], dtype=dtype) sgd = gradient_descent.GradientDescentOptimizer(3.0) clip_opt = variable_clipping_optimizer.VariableClippingOptimizer( sgd, {var0: [1]}, 2.0) update_op = clip_opt.apply_gradients( list(zip([grads0, grads1], [var0, var1]))) variables.global_variables_initializer().run() return var0, var1, update_op def _assertDenseCorrect(self, var0, var1, update_op): # Fetch params to validate initial values self.assertAllCloseAccordingToType([[0.0, 1.0], [2.0, 3.0]], var0.eval()) self.assertAllCloseAccordingToType([4.0, 5.0], var1.eval()) # Run 1 step of sgd, clipping each var0[i] to max L2-norm 2.0 update_op.run() # Validate updated params var0_out = var0.eval() # var0[0] has norm < 2.0, so it is not clipped. self.assertAllCloseAccordingToType([(0.0 - 3.0 * 0.1), (1.0 - 3.0 * 0.1)], var0_out[0]) # var0[1] has norm > 2.0, so it is clipped. expected_unclipped = np.array([(2.0 - 3.0 * 0.1), (3.0 - 3.0 * 0.1)]) self.assertAllCloseAccordingToType(2.0 * expected_unclipped / np.linalg.norm(expected_unclipped), var0_out[1]) # var1 is not in the var list, so it should not be clipped self.assertAllCloseAccordingToType([4.0 - 3.0 * 0.01, 5.0 - 3.0 * 0.01], var1.eval()) def _setupSparse(self, is_distributed, dtype): with self._maybeWithDevice("/job:ps" if is_distributed else None): var0 = variables.Variable( [[0.0, 1.0], [2.0, 3.0], [4.0, 5.0]], dtype=dtype) var1 = variables.Variable( [[0.0, 1.0], [0.0, 3.0], [0.0, 5.0]], dtype=dtype) with self._maybeWithDevice("/job:worker" if is_distributed else None): grads = ops.IndexedSlices( constant_op.constant( [[0.1, 0.1], [0.1, 0.1]], dtype=dtype), [0, 2], [3, 2]) sgd = gradient_descent.GradientDescentOptimizer(3.0) clip_opt = variable_clipping_optimizer.VariableClippingOptimizer( sgd, {var0: [1], var1: [0]}, 2.0) update_op = clip_opt.apply_gradients( list(zip([grads, grads], [var0, var1]))) variables.global_variables_initializer().run() return var0, var1, update_op def _assertSparseCorrect(self, var0, var1, update_op): # Fetch params to validate initial values self.assertAllCloseAccordingToType([[0.0, 1.0], [2.0, 3.0], [4.0, 5.0]], var0.eval()) self.assertAllCloseAccordingToType([[0.0, 1.0], [0.0, 3.0], [0.0, 5.0]], var1.eval()) # Run 1 step of sgd update_op.run() # var1 is clipped along the sparse dimension, so defaults to using dense # calculations. There should be a warning logged, but the numerics # should still be correct. var1_out = var1.eval() # var1[:, 0] has norm < 2.0, so it is not clipped. self.assertAllCloseAccordingToType( [(0.0 - 3.0 * 0.1), 0.0, (0.0 - 3.0 * 0.1)], var1_out[:, 0]) # var1[:, 1] has norm > 2.0, so it is clipped. expected_unclipped = np.array([(1.0 - 3.0 * 0.1), 3.0, (5.0 - 3.0 * 0.1)]) self.assertAllCloseAccordingToType(2.0 * expected_unclipped / np.linalg.norm(expected_unclipped), var1_out[:, 1]) # Validate updated params var0_out = var0.eval() # var0[0] has norm < 2.0, so it is not clipped. self.assertAllCloseAccordingToType([(0.0 - 3.0 * 0.1), (1.0 - 3.0 * 0.1)], var0_out[0]) # var0[1] has no gradients, so it should remain unchanged. self.assertAllCloseAccordingToType([2.0, 3.0], var0_out[1]) # var0[2] has norm > 2.0, so it is clipped. expected_unclipped = np.array([(4.0 - 3.0 * 0.1), (5.0 - 3.0 * 0.1)]) self.assertAllCloseAccordingToType(2.0 * expected_unclipped / np.linalg.norm(expected_unclipped), var0_out[2]) def testDenseLocal(self): for dtype in [dtypes.float32, dtypes.float64, dtypes.half]: with self.cached_session(): var0, var1, update_op = self._setupDense(False, dtype) self._assertDenseCorrect(var0, var1, update_op) def testDenseDistributed(self): worker, unused_ps = self._setupCluster() for dtype in [dtypes.float64, dtypes.half, dtypes.float32]: with session.Session(worker.target): var0, var1, update_op = self._setupDense(True, dtype) self._assertDenseCorrect(var0, var1, update_op) def testSparseLocal(self): for dtype in [dtypes.float64, dtypes.float32, dtypes.half]: with self.cached_session(): var0, var1, update_op = self._setupSparse(False, dtype) self._assertSparseCorrect(var0, var1, update_op) def testSparseDistributed(self): worker, unused_ps = self._setupCluster() for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: with session.Session(worker.target): var0, var1, update_op = self._setupSparse(True, dtype) self._assertSparseCorrect(var0, var1, update_op) if __name__ == "__main__": test.main()
tensorflow-master
tensorflow/contrib/opt/python/training/variable_clipping_optimizer_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for LazyAdamOptimizer.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import parameterized import numpy as np from tensorflow.contrib.opt.python.training import lazy_adam_optimizer from tensorflow.python.eager import context from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import resource_variable_ops from tensorflow.python.ops import variables from tensorflow.python.platform import test def adam_update_numpy(param, g_t, t, m, v, alpha=0.001, beta1=0.9, beta2=0.999, epsilon=1e-8): alpha_t = alpha * np.sqrt(1 - beta2**t) / (1 - beta1**t) m_t = beta1 * m + (1 - beta1) * g_t v_t = beta2 * v + (1 - beta2) * g_t * g_t param_t = param - alpha_t * m_t / (np.sqrt(v_t) + epsilon) return param_t, m_t, v_t class AdamOptimizerTest(test.TestCase, parameterized.TestCase): @parameterized.parameters([False, True]) def testSparse(self, use_resource): for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: with self.cached_session(): # Initialize variables for numpy implementation. m0, v0, m1, v1 = 0.0, 0.0, 0.0, 0.0 var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype) if use_resource: var0 = resource_variable_ops.ResourceVariable(var0_np) var1 = resource_variable_ops.ResourceVariable(var1_np) else: var0 = variables.Variable(var0_np) var1 = variables.Variable(var1_np) grads0_np_indices = np.array([0, 1], dtype=np.int32) grads0 = ops.IndexedSlices( constant_op.constant(grads0_np), constant_op.constant(grads0_np_indices), constant_op.constant([2])) grads1_np_indices = np.array([0, 1], dtype=np.int32) grads1 = ops.IndexedSlices( constant_op.constant(grads1_np), constant_op.constant(grads1_np_indices), constant_op.constant([2])) opt = lazy_adam_optimizer.LazyAdamOptimizer() update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) variables.global_variables_initializer().run() # Fetch params to validate initial values self.assertAllClose([1.0, 2.0], var0.eval()) self.assertAllClose([3.0, 4.0], var1.eval()) beta1_power, beta2_power = opt._get_beta_accumulators() # Run 3 steps of Adam for t in range(1, 4): self.assertAllCloseAccordingToType(0.9**t, beta1_power.eval()) self.assertAllCloseAccordingToType(0.999**t, beta2_power.eval()) update.run() var0_np, m0, v0 = adam_update_numpy(var0_np, grads0_np, t, m0, v0) var1_np, m1, v1 = adam_update_numpy(var1_np, grads1_np, t, m1, v1) # Validate updated params self.assertAllCloseAccordingToType(var0_np, var0.eval()) self.assertAllCloseAccordingToType(var1_np, var1.eval()) @parameterized.parameters([False, True]) def testSparseDevicePlacement(self, use_resource): for index_dtype in [dtypes.int32, dtypes.int64]: with self.cached_session(force_gpu=test.is_gpu_available()): # If a GPU is available, tests that all optimizer ops can be placed on # it (i.e. they have GPU kernels). if use_resource: var = resource_variable_ops.ResourceVariable([[1.0], [2.0]]) else: var = variables.Variable([[1.0], [2.0]]) indices = constant_op.constant([0, 1], dtype=index_dtype) gathered_sum = math_ops.reduce_sum(array_ops.gather(var, indices)) optimizer = lazy_adam_optimizer.LazyAdamOptimizer(3.0) minimize_op = optimizer.minimize(gathered_sum) variables.global_variables_initializer().run() minimize_op.run() @parameterized.parameters([False, True]) def testSparseRepeatedIndices(self, use_resource): for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: with self.cached_session(): if use_resource: repeated_index_update_var = resource_variable_ops.ResourceVariable( [[1.0], [2.0]], dtype=dtype) aggregated_update_var = resource_variable_ops.ResourceVariable( [[1.0], [2.0]], dtype=dtype) else: repeated_index_update_var = variables.Variable( [[1.0], [2.0]], dtype=dtype) aggregated_update_var = variables.Variable( [[1.0], [2.0]], dtype=dtype) grad_repeated_index = ops.IndexedSlices( constant_op.constant( [0.1, 0.1], shape=[2, 1], dtype=dtype), constant_op.constant([1, 1]), constant_op.constant([2, 1])) grad_aggregated = ops.IndexedSlices( constant_op.constant( [0.2], shape=[1, 1], dtype=dtype), constant_op.constant([1]), constant_op.constant([2, 1])) repeated_update_opt = lazy_adam_optimizer.LazyAdamOptimizer() repeated_update = repeated_update_opt.apply_gradients( [(grad_repeated_index, repeated_index_update_var)]) aggregated_update_opt = lazy_adam_optimizer.LazyAdamOptimizer() aggregated_update = aggregated_update_opt.apply_gradients( [(grad_aggregated, aggregated_update_var)]) variables.global_variables_initializer().run() self.assertAllClose(aggregated_update_var.eval(), repeated_index_update_var.eval()) for _ in range(3): repeated_update.run() aggregated_update.run() self.assertAllClose(aggregated_update_var.eval(), repeated_index_update_var.eval()) def doTestBasic(self, use_resource=False, use_callable_params=False): for i, dtype in enumerate([dtypes.half, dtypes.float32, dtypes.float64]): with self.session(graph=ops.Graph()): # Initialize variables for numpy implementation. m0, v0, m1, v1 = 0.0, 0.0, 0.0, 0.0 var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype) if use_resource: var0 = resource_variable_ops.ResourceVariable( var0_np, name="var0_%d" % i) var1 = resource_variable_ops.ResourceVariable( var1_np, name="var1_%d" % i) else: var0 = variables.Variable(var0_np) var1 = variables.Variable(var1_np) grads0 = constant_op.constant(grads0_np) grads1 = constant_op.constant(grads1_np) learning_rate = lambda: 0.001 beta1 = lambda: 0.9 beta2 = lambda: 0.999 epsilon = lambda: 1e-8 if not use_callable_params: learning_rate = learning_rate() beta1 = beta1() beta2 = beta2() epsilon = epsilon() opt = lazy_adam_optimizer.LazyAdamOptimizer(learning_rate=learning_rate) update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) opt_variables = opt.variables() beta1_power, beta2_power = opt._get_beta_accumulators() self.assertIsNotNone(beta1_power) self.assertIsNotNone(beta2_power is not None) self.assertIn(beta1_power, opt_variables) self.assertIn(beta2_power, opt_variables) if not context.executing_eagerly(): with ops.Graph().as_default(): # Shouldn't return non-slot variables from other graphs. self.assertEqual(0, len(opt.variables())) self.evaluate(variables.global_variables_initializer()) # Fetch params to validate initial values self.assertAllClose([1.0, 2.0], self.evaluate(var0)) self.assertAllClose([3.0, 4.0], self.evaluate(var1)) beta1_power, beta2_power = opt._get_beta_accumulators() # Run 3 steps of Adam for t in range(1, 4): if not context.executing_eagerly(): self.evaluate(update) elif t > 1: opt.apply_gradients(zip([grads0, grads1], [var0, var1])) self.assertAllCloseAccordingToType(0.9**(t + 1), self.evaluate(beta1_power)) self.assertAllCloseAccordingToType(0.999**(t + 1), self.evaluate(beta2_power)) var0_np, m0, v0 = adam_update_numpy(var0_np, grads0_np, t, m0, v0) var1_np, m1, v1 = adam_update_numpy(var1_np, grads1_np, t, m1, v1) # Validate updated params self.assertAllCloseAccordingToType(var0_np, self.evaluate(var0)) self.assertAllCloseAccordingToType(var1_np, self.evaluate(var1)) if use_resource: self.assertEqual("var0_%d/Adam:0" % (i,), opt.get_slot(var=var0, name="m").name) def testBasic(self): with self.cached_session(): self.doTestBasic(use_resource=False) @test_util.run_in_graph_and_eager_modes(reset_test=True) def testResourceBasic(self): self.doTestBasic(use_resource=True) def testBasicCallableParams(self): with context.eager_mode(): self.doTestBasic(use_resource=True, use_callable_params=True) def testTensorLearningRate(self): for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: with self.cached_session(): # Initialize variables for numpy implementation. m0, v0, m1, v1 = 0.0, 0.0, 0.0, 0.0 var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype) var0 = variables.Variable(var0_np) var1 = variables.Variable(var1_np) grads0 = constant_op.constant(grads0_np) grads1 = constant_op.constant(grads1_np) opt = lazy_adam_optimizer.LazyAdamOptimizer(constant_op.constant(0.001)) update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) variables.global_variables_initializer().run() # Fetch params to validate initial values self.assertAllClose([1.0, 2.0], var0.eval()) self.assertAllClose([3.0, 4.0], var1.eval()) beta1_power, beta2_power = opt._get_beta_accumulators() # Run 3 steps of Adam for t in range(1, 4): self.assertAllCloseAccordingToType(0.9**t, beta1_power.eval()) self.assertAllCloseAccordingToType(0.999**t, beta2_power.eval()) update.run() var0_np, m0, v0 = adam_update_numpy(var0_np, grads0_np, t, m0, v0) var1_np, m1, v1 = adam_update_numpy(var1_np, grads1_np, t, m1, v1) # Validate updated params self.assertAllCloseAccordingToType(var0_np, var0.eval()) self.assertAllCloseAccordingToType(var1_np, var1.eval()) def testSharing(self): for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: with self.cached_session(): # Initialize variables for numpy implementation. m0, v0, m1, v1 = 0.0, 0.0, 0.0, 0.0 var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype) var0 = variables.Variable(var0_np) var1 = variables.Variable(var1_np) grads0 = constant_op.constant(grads0_np) grads1 = constant_op.constant(grads1_np) opt = lazy_adam_optimizer.LazyAdamOptimizer() update1 = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) update2 = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) variables.global_variables_initializer().run() beta1_power, beta2_power = opt._get_beta_accumulators() # Fetch params to validate initial values self.assertAllClose([1.0, 2.0], var0.eval()) self.assertAllClose([3.0, 4.0], var1.eval()) # Run 3 steps of intertwined Adam1 and Adam2. for t in range(1, 4): self.assertAllCloseAccordingToType(0.9**t, beta1_power.eval()) self.assertAllCloseAccordingToType(0.999**t, beta2_power.eval()) if t % 2 == 0: update1.run() else: update2.run() var0_np, m0, v0 = adam_update_numpy(var0_np, grads0_np, t, m0, v0) var1_np, m1, v1 = adam_update_numpy(var1_np, grads1_np, t, m1, v1) # Validate updated params self.assertAllCloseAccordingToType(var0_np, var0.eval()) self.assertAllCloseAccordingToType(var1_np, var1.eval()) def testTwoSessions(self): optimizer = lazy_adam_optimizer.LazyAdamOptimizer() with context.eager_mode(): var0 = variables.Variable(np.array([1.0, 2.0]), name="v0") grads0 = constant_op.constant(np.array([0.1, 0.1])) optimizer.apply_gradients([(grads0, var0)]) g = ops.Graph() with g.as_default(): with self.session(graph=g): var0 = variables.Variable(np.array([1.0, 2.0]), name="v0") grads0 = constant_op.constant(np.array([0.1, 0.1])) optimizer.apply_gradients([(grads0, var0)]) gg = ops.Graph() with gg.as_default(): with self.session(graph=gg): var0 = variables.Variable(np.array([1.0, 2.0]), name="v0") grads0 = constant_op.constant(np.array([0.1, 0.1])) # If the optimizer saves any state not keyed by graph the following line # fails. optimizer.apply_gradients([(grads0, var0)]) def testSlotsUniqueEager(self): with context.eager_mode(): v1 = resource_variable_ops.ResourceVariable(1.) v2 = resource_variable_ops.ResourceVariable(1.) opt = lazy_adam_optimizer.LazyAdamOptimizer(1.) opt.minimize(lambda: v1 + v2) # There should be two non-slot variables, and two unique slot variables # for v1 and v2 respectively. self.assertEqual(6, len(set(opt.variables()))) if __name__ == "__main__": test.main()
tensorflow-master
tensorflow/contrib/opt/python/training/lazy_adam_optimizer_test.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for optimizers with weight decay.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.opt.python.training import weight_decay_optimizers from tensorflow.python.eager import context from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import test_util from tensorflow.python.ops import resource_variable_ops from tensorflow.python.ops import variables from tensorflow.python.platform import test from tensorflow.python.training import adam WEIGHT_DECAY = 0.01 def adamw_update_numpy(param, g_t, t, m, v, lr=0.001, beta1=0.9, beta2=0.999, epsilon=1e-8): lr_t = lr * np.sqrt(1 - beta2**t) / (1 - beta1**t) m_t = beta1 * m + (1 - beta1) * g_t v_t = beta2 * v + (1 - beta2) * g_t * g_t param_t = (param - lr_t * m_t / (np.sqrt(v_t) + epsilon) - (param * WEIGHT_DECAY)) return param_t, m_t, v_t def momentumw_update_numpy(param, g_t, m, lr=0.001, momentum=0.9, **_): # v, t are not needed for momentum optimizer m = momentum * m + g_t param_t = param - lr * m - param * WEIGHT_DECAY return param_t, m, None class WeightDecayOptimizerTest(test.TestCase): def doTest(self, optimizer, update_fn, optimizer_name, slot_name, use_resource=False, do_sparse=False): for i, dtype in enumerate([dtypes.half, dtypes.float32, dtypes.float64]): with self.session(graph=ops.Graph()): # Initialize variables for numpy implementation. m0, v0, m1, v1 = 0.0, 0.0, 0.0, 0.0 var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype) if use_resource: var0 = resource_variable_ops.ResourceVariable( var0_np, name="var0_%d" % i) var1 = resource_variable_ops.ResourceVariable( var1_np, name="var1_%d" % i) else: var0 = variables.Variable(var0_np) var1 = variables.Variable(var1_np) if do_sparse: grads0_np_indices = np.array([0, 1], dtype=np.int32) grads0 = ops.IndexedSlices(constant_op.constant(grads0_np), constant_op.constant(grads0_np_indices), constant_op.constant([2])) grads1_np_indices = np.array([0, 1], dtype=np.int32) grads1 = ops.IndexedSlices(constant_op.constant(grads1_np), constant_op.constant(grads1_np_indices), constant_op.constant([2])) else: grads0 = constant_op.constant(grads0_np) grads1 = constant_op.constant(grads1_np) opt = optimizer() update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) if not context.executing_eagerly(): with ops.Graph().as_default(): # Shouldn't return non-slot variables from other graphs. self.assertEqual(0, len(opt.variables())) self.evaluate(variables.global_variables_initializer()) # Fetch params to validate initial values self.assertAllClose([1.0, 2.0], self.evaluate(var0)) self.assertAllClose([3.0, 4.0], self.evaluate(var1)) # Run 3 steps of the optimizer for t in range(1, 4): if not context.executing_eagerly(): self.evaluate(update) elif t > 1: opt.apply_gradients(zip([grads0, grads1], [var0, var1])) var0_np, m0, v0 = update_fn(var0_np, grads0_np, t=t, m=m0, v=v0) var1_np, m1, v1 = update_fn(var1_np, grads1_np, t=t, m=m1, v=v1) # Validate updated params self.assertAllCloseAccordingToType(var0_np, self.evaluate(var0)) self.assertAllCloseAccordingToType(var1_np, self.evaluate(var1)) if use_resource: self.assertEqual("var0_%d/%s:0" % (i, optimizer_name), opt.get_slot(var=var0, name=slot_name).name) class AdamWOptimizerTest(WeightDecayOptimizerTest): @staticmethod def get_optimizer(): return weight_decay_optimizers.AdamWOptimizer(WEIGHT_DECAY) def testSparse(self): self.doTest(self.get_optimizer, adamw_update_numpy, "AdamW", "m", use_resource=False, do_sparse=True) def testResourceSparse(self): self.doTest(self.get_optimizer, adamw_update_numpy, "AdamW", "m", use_resource=True, do_sparse=True) def testBasic(self): self.doTest(self.get_optimizer, adamw_update_numpy, "AdamW", "m", use_resource=False) @test_util.run_in_graph_and_eager_modes(reset_test=True) def testResourceBasic(self): self.doTest(self.get_optimizer, adamw_update_numpy, "AdamW", "m", use_resource=True) class MomentumWOptimizerTest(WeightDecayOptimizerTest): @staticmethod def get_optimizer(): return weight_decay_optimizers.MomentumWOptimizer(WEIGHT_DECAY, 0.001, 0.9) def testSparse(self): self.doTest(self.get_optimizer, momentumw_update_numpy, "MomentumW", "momentum", use_resource=False, do_sparse=True) def testResourceSparse(self): self.doTest(self.get_optimizer, momentumw_update_numpy, "MomentumW", "momentum", use_resource=True, do_sparse=True) def testBasic(self): self.doTest(self.get_optimizer, momentumw_update_numpy, "MomentumW", "momentum", use_resource=False) @test_util.run_in_graph_and_eager_modes(reset_test=True) def testResourceBasic(self): self.doTest(self.get_optimizer, momentumw_update_numpy, "MomentumW", "momentum", use_resource=True) class ExtendWithWeightDecayTest(WeightDecayOptimizerTest): @staticmethod def get_optimizer(): adamw = weight_decay_optimizers.extend_with_decoupled_weight_decay( adam.AdamOptimizer) return adamw(WEIGHT_DECAY) def testBasic(self): self.doTest(self.get_optimizer, adamw_update_numpy, "Adam", "m", use_resource=False) @test_util.run_in_graph_and_eager_modes(reset_test=True) def testResourceBasic(self): self.doTest(self.get_optimizer, adamw_update_numpy, "Adam", "m", use_resource=True) if __name__ == "__main__": test.main()
tensorflow-master
tensorflow/contrib/opt/python/training/weight_decay_optimizers_test.py