python_code
stringlengths
0
1.02M
repo_name
stringlengths
9
48
file_path
stringlengths
5
114
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for slim.evaluation.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import glob import os import shutil import time import numpy as np from tensorflow.contrib.framework.python.ops import variables as variables_lib from tensorflow.contrib.slim.python.slim import evaluation from tensorflow.contrib.training.python.training import evaluation as evaluation_lib from tensorflow.core.protobuf import saver_pb2 from tensorflow.python.debug.lib import debug_data from tensorflow.python.debug.wrappers import hooks from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import metrics from tensorflow.python.ops import variables from tensorflow.python.platform import flags from tensorflow.python.platform import gfile from tensorflow.python.platform import test from tensorflow.python.summary import summary_iterator from tensorflow.python.training import input # pylint: disable=redefined-builtin from tensorflow.python.training import saver as saver_lib from tensorflow.python.training import session_run_hook FLAGS = flags.FLAGS def GenerateTestData(num_classes, batch_size): inputs = np.random.rand(batch_size, num_classes) np.random.seed(0) labels = np.random.randint(low=0, high=num_classes, size=batch_size) labels = labels.reshape((batch_size,)) return inputs, labels def TestModel(inputs): scale = variables.Variable(1.0, trainable=False) # Scaling the outputs wont change the result... outputs = math_ops.multiply(inputs, scale) return math_ops.argmax(outputs, 1), scale def GroundTruthAccuracy(inputs, labels, batch_size): predictions = np.argmax(inputs, 1) num_correct = np.sum(predictions == labels) return float(num_correct) / batch_size class EvaluationTest(test.TestCase): def setUp(self): super(EvaluationTest, self).setUp() num_classes = 8 batch_size = 16 inputs, labels = GenerateTestData(num_classes, batch_size) self._expected_accuracy = GroundTruthAccuracy(inputs, labels, batch_size) self._global_step = variables_lib.get_or_create_global_step() self._inputs = constant_op.constant(inputs, dtype=dtypes.float32) self._labels = constant_op.constant(labels, dtype=dtypes.int64) self._predictions, self._scale = TestModel(self._inputs) def testFinalOpsOnEvaluationLoop(self): value_op, update_op = metrics.accuracy( labels=self._labels, predictions=self._predictions) init_op = control_flow_ops.group(variables.global_variables_initializer(), variables.local_variables_initializer()) # Create checkpoint and log directories: chkpt_dir = os.path.join(self.get_temp_dir(), 'tmp_logs/') gfile.MakeDirs(chkpt_dir) logdir = os.path.join(self.get_temp_dir(), 'tmp_logs2/') gfile.MakeDirs(logdir) # Save initialized variables to a checkpoint directory: saver = saver_lib.Saver() with self.cached_session() as sess: init_op.run() saver.save(sess, os.path.join(chkpt_dir, 'chkpt')) class Object(object): def __init__(self): self.hook_was_run = False obj = Object() # Create a custom session run hook. class CustomHook(session_run_hook.SessionRunHook): def __init__(self, obj): self.obj = obj def end(self, session): self.obj.hook_was_run = True # Now, run the evaluation loop: accuracy_value = evaluation.evaluation_loop( '', chkpt_dir, logdir, eval_op=update_op, final_op=value_op, hooks=[CustomHook(obj)], max_number_of_evaluations=1) self.assertAlmostEqual(accuracy_value, self._expected_accuracy) # Validate that custom hook ran. self.assertTrue(obj.hook_was_run) def _create_names_to_metrics(self, predictions, labels): accuracy0, update_op0 = metrics.accuracy( labels=labels, predictions=predictions) accuracy1, update_op1 = metrics.accuracy( labels=labels, predictions=predictions + 1) names_to_values = {'Accuracy': accuracy0, 'Another_accuracy': accuracy1} names_to_updates = {'Accuracy': update_op0, 'Another_accuracy': update_op1} return names_to_values, names_to_updates def _verify_summaries(self, output_dir, names_to_values): """Verifies that the given `names_to_values` are found in the summaries. Args: output_dir: An existing directory where summaries are found. names_to_values: A dictionary of strings to values. """ # Check that the results were saved. The events file may have additional # entries, e.g. the event version stamp, so have to parse things a bit. output_filepath = glob.glob(os.path.join(output_dir, '*')) self.assertEqual(len(output_filepath), 1) events = summary_iterator.summary_iterator(output_filepath[0]) summaries = [e.summary for e in events if e.summary.value] values = [] for summary in summaries: for value in summary.value: values.append(value) saved_results = {v.tag: v.simple_value for v in values} for name in names_to_values: self.assertAlmostEqual(names_to_values[name], saved_results[name]) def testLatestCheckpointReturnsNoneAfterTimeout(self): start = time.time() ret = evaluation_lib.wait_for_new_checkpoint( '/non-existent-dir', 'foo', timeout=1.0, seconds_to_sleep=0.5) end = time.time() self.assertIsNone(ret) # We've waited one time. self.assertGreater(end, start + 0.5) # The timeout kicked in. self.assertLess(end, start + 1.1) def testTimeoutFnOnEvaluationLoop(self): # We require a mutable object (e.g. list but not an int) to maintain state # across calls of a nested function. timeout_fn_calls = [0] def _TimeoutFn(): timeout_fn_calls[0] += 1 return timeout_fn_calls[0] >= 3 # Need not do any evaluation, but should just call timeout_fn repeatedly. evaluation.evaluation_loop('', '', '', timeout=0, timeout_fn=_TimeoutFn) self.assertEqual(timeout_fn_calls[0], 3) def testMonitorCheckpointsLoopTimeout(self): ret = list( evaluation_lib.checkpoints_iterator( '/non-existent-dir', timeout=0)) self.assertEqual(ret, []) def testWithEpochLimit(self): predictions_limited = input.limit_epochs(self._predictions, num_epochs=1) labels_limited = input.limit_epochs(self._labels, num_epochs=1) value_op, update_op = metrics.accuracy( labels=labels_limited, predictions=predictions_limited) init_op = control_flow_ops.group(variables.global_variables_initializer(), variables.local_variables_initializer()) # Create checkpoint and log directories: chkpt_dir = os.path.join(self.get_temp_dir(), 'tmp_logs/') gfile.MakeDirs(chkpt_dir) logdir = os.path.join(self.get_temp_dir(), 'tmp_logs2/') gfile.MakeDirs(logdir) # Save initialized variables to a checkpoint directory: saver = saver_lib.Saver() with self.cached_session() as sess: init_op.run() saver.save(sess, os.path.join(chkpt_dir, 'chkpt')) # Now, run the evaluation loop: accuracy_value = evaluation.evaluation_loop( '', chkpt_dir, logdir, eval_op=update_op, final_op=value_op, max_number_of_evaluations=1, num_evals=10000) self.assertAlmostEqual(accuracy_value, self._expected_accuracy) class SingleEvaluationTest(test.TestCase): def setUp(self): super(SingleEvaluationTest, self).setUp() num_classes = 8 batch_size = 16 inputs, labels = GenerateTestData(num_classes, batch_size) self._expected_accuracy = GroundTruthAccuracy(inputs, labels, batch_size) self._global_step = variables_lib.get_or_create_global_step() self._inputs = constant_op.constant(inputs, dtype=dtypes.float32) self._labels = constant_op.constant(labels, dtype=dtypes.int64) self._predictions, self._scale = TestModel(self._inputs) def testErrorRaisedIfCheckpointDoesntExist(self): checkpoint_path = os.path.join(self.get_temp_dir(), 'this_file_doesnt_exist') log_dir = os.path.join(self.get_temp_dir(), 'error_raised') with self.assertRaises(ValueError): evaluation.evaluate_once('', checkpoint_path, log_dir) def _prepareCheckpoint(self, checkpoint_path): init_op = control_flow_ops.group(variables.global_variables_initializer(), variables.local_variables_initializer()) saver = saver_lib.Saver(write_version=saver_pb2.SaverDef.V1) with self.cached_session() as sess: sess.run(init_op) saver.save(sess, checkpoint_path) def testRestoredModelPerformance(self): checkpoint_path = os.path.join(self.get_temp_dir(), 'model.ckpt') log_dir = os.path.join(self.get_temp_dir(), 'log_dir1/') # First, save out the current model to a checkpoint: self._prepareCheckpoint(checkpoint_path) # Next, determine the metric to evaluate: value_op, update_op = metrics.accuracy( labels=self._labels, predictions=self._predictions) # Run the evaluation and verify the results: accuracy_value = evaluation.evaluate_once( '', checkpoint_path, log_dir, eval_op=update_op, final_op=value_op) self.assertAlmostEqual(accuracy_value, self._expected_accuracy) def testAdditionalHooks(self): checkpoint_path = os.path.join(self.get_temp_dir(), 'model.ckpt') log_dir = os.path.join(self.get_temp_dir(), 'log_dir1/') # First, save out the current model to a checkpoint: self._prepareCheckpoint(checkpoint_path) # Next, determine the metric to evaluate: value_op, update_op = metrics.accuracy( labels=self._labels, predictions=self._predictions) dumping_root = os.path.join(self.get_temp_dir(), 'tfdbg_dump_dir') dumping_hook = hooks.DumpingDebugHook(dumping_root, log_usage=False) try: # Run the evaluation and verify the results: accuracy_value = evaluation.evaluate_once( '', checkpoint_path, log_dir, eval_op=update_op, final_op=value_op, hooks=[dumping_hook]) self.assertAlmostEqual(accuracy_value, self._expected_accuracy) dump = debug_data.DebugDumpDir( glob.glob(os.path.join(dumping_root, 'run_*'))[0]) # Here we simply assert that the dumped data has been loaded and is # non-empty. We do not care about the detailed model-internal tensors or # their values. self.assertTrue(dump.dumped_tensor_data) finally: if os.path.isdir(dumping_root): shutil.rmtree(dumping_root) if __name__ == '__main__': test.main()
tensorflow-master
tensorflow/contrib/slim/python/slim/evaluation_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Contains TF-Slim code for training models. This script contains various functions for training models. These include manipulating gradients, creating a `train_op` (an operation that computes the loss and applies the gradients) and a training loop function. The training loop allows the user to pass in the `train_op` and runs the optimization according to user-specified arguments. Note that the training loop uses the tf.compat.v1.train.Supervisor and its managed_session in its implementation to ensure the ability of worker processes to recover from failures. ************************************ * A simple working training script * ************************************ # Load data and create the model: images, labels = LoadData(...) predictions = MyModel(images) # Define the loss: slim.losses.log_loss(predictions, labels) total_loss = slim.losses.get_total_loss() # Define the optimizer: optimizer = tf.compat.v1.train.MomentumOptimizer(FLAGS.learning_rate, FLAGS.momentum) # Create the train_op train_op = slim.learning.create_train_op(total_loss, optimizer) # Run training. slim.learning.train(train_op, my_log_dir) ************************* * Creating the train_op * ************************* In order to train, TF-Slim's train loop needs a train_op: an `Operation` that (a) computes the loss, (b) applies the gradients to update the weights and (c) returns the value of the loss. slim.learning.create_train_op creates such an `Operation`. This function also provides the ability to manipulate the gradients using a few arguments: # Create the train_op and clip the gradient norms: train_op = slim.learning.create_train_op( total_loss, optimizer, clip_gradient_norm=4) # Create the train_op and scale the gradients by providing a map from variable # name (or variable) to a scaling coefficient: gradient_multipliers = { 'conv0/weights': 1.2, 'fc8/weights': 3.4, } train_op = slim.learning.create_train_op( total_loss, optimizer, gradient_multipliers=gradient_multipliers) **************************************************************** * Performing additional (non-gradient) updates during training * **************************************************************** Many networks utilize modules, like BatchNorm, that require performing a series of non-gradient updates during training. slim.learning.create_train_op allows a user to pass in a list of update_ops to call along with the gradient updates. train_op = slim.learning.create_train_op(total_loss, optimizer, update_ops) By default, slim.learning.create_train_op includes all update ops that are part of the `tf.GraphKeys.UPDATE_OPS` collection. Additionally, TF-Slim's slim.batch_norm function adds the moving mean and moving variance updates to this collection. Consequently, users who want to use slim.batch_norm will not need to take any additional steps in order to have the moving mean and moving variance updates be computed. However, users with additional, specialized updates can either override the default update ops or simply add additional update ops to the `tf.GraphKeys.UPDATE_OPS` collection: # Force TF-Slim NOT to use ANY update_ops: train_op = slim.learning.create_train_op( total_loss, optimizer, update_ops=[]) # Use an alternative set of update ops: train_op = slim.learning.create_train_op( total_loss, optimizer, update_ops=my_other_update_ops) # Use an alternative set of update ops in addition to the default updates: tf.compat.v1.add_to_collection(tf.GraphKeys.UPDATE_OPS, my_update0) tf.compat.v1.add_to_collection(tf.GraphKeys.UPDATE_OPS, my_update1) train_op = slim.learning.create_train_op( total_loss, optimizer) # Which is the same as: train_op = slim.learning.create_train_op( total_loss, optimizer, update_ops=tf.compat.v1.get_collection(tf.GraphKeys.UPDATE_OPS)) ****************************************** * Initializing a model from a checkpoint * ****************************************** It is common to want to 'warm-start' a model from a pre-trained checkpoint. TF-Slim provides a convenient mechanism for doing so: ... # Create the train_op train_op = slim.learning.create_train_op(total_loss, optimizer) # Create the initial assignment op checkpoint_path = '/path/to/old_model_checkpoint' variables_to_restore = slim.get_model_variables() init_assign_op, init_feed_dict = slim.assign_from_checkpoint( checkpoint_path, variables_to_restore) # Create an initial assignment function. def InitAssignFn(sess): sess.run(init_assign_op, init_feed_dict) # Run training. slim.learning.train(train_op, my_log_dir, init_fn=InitAssignFn) *************************************************************************** * Initializing a model from a checkpoint whose variable names don't match * *************************************************************************** At times, a user may want to initialize a new model with values from a checkpoint whose variable names do not match those of the current model. In this case, one needs to create a mapping from the checkpoint variable names to the current model variables. This requires only a small modification of the code above: ... # Creates a model with two variables, var0 and var1 predictions = MyModel(images) ... # Create the train_op train_op = slim.learning.create_train_op(total_loss, optimizer) checkpoint_path = '/path/to/old_model_checkpoint' # Create the mapping: variables_to_restore = { 'name_var_0_in_checkpoint': slim.get_unique_variable('var0'), 'name_var_1_in_checkpoint': slim.get_unique_variable('var1') } init_assign_op, init_feed_dict = slim.assign_from_checkpoint( checkpoint_path, variables_to_restore) # Create an initial assignment function. def InitAssignFn(sess): sess.run(init_assign_op, init_feed_dict) # Run training. slim.learning.train(train_op, my_log_dir, init_fn=InitAssignFn) ************************************************* * Fine-Tuning Part of a model from a checkpoint * ************************************************* Rather than initializing all of the weights of a given model, we sometimes only want to restore some of the weights from a checkpoint. To do this, one need only filter those variables to initialize as follows: ... # Create the train_op train_op = slim.learning.create_train_op(total_loss, optimizer) checkpoint_path = '/path/to/old_model_checkpoint' # Specify the variables to restore via a list of inclusion or exclusion # patterns: variables_to_restore = slim.get_variables_to_restore( include=["conv"], exclude=["fc8", "fc9]) # or variables_to_restore = slim.get_variables_to_restore(exclude=["conv"]) init_assign_op, init_feed_dict = slim.assign_from_checkpoint( checkpoint_path, variables_to_restore) # Create an initial assignment function. def InitAssignFn(sess): sess.run(init_assign_op, init_feed_dict) # Run training. slim.learning.train(train_op, my_log_dir, init_fn=InitAssignFn) ****************************************************** * Initializing model variables from values in memory * ****************************************************** One may want to initialize the weights of a model from values from an arbitrary source (a text document, matlab file, etc). While this is technically feasible using plain TensorFlow, it also results in the values of your weights being stored in the graph. For large models, this becomes prohibitively large. TF-Slim allows you to perform this initial assignment without having to store the values of the initial model in the graph itself by using placeholders and a feed dictionary: ... # Create the train_op train_op = slim.learning.create_train_op(total_loss, optimizer) # Create the mapping from variable names to values: var0_initial_value = ReadFromDisk(...) var1_initial_value = ReadFromDisk(...) var_names_to_values = { 'var0': var0_initial_value, 'var1': var1_initial_value, } init_assign_op, init_feed_dict = slim.assign_from_values(var_names_to_values) # Create an initial assignment function. def InitAssignFn(sess): sess.run(init_assign_op, init_feed_dict) # Run training. slim.learning.train(train_op, my_log_dir, init_fn=InitAssignFn) """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys import time from tensorflow.contrib.training.python.training import training from tensorflow.core.protobuf import config_pb2 from tensorflow.python.client import timeline from tensorflow.python.framework import constant_op from tensorflow.python.framework import errors from tensorflow.python.framework import ops from tensorflow.python.lib.io import file_io from tensorflow.python.ops import clip_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import lookup_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import variables from tensorflow.python.platform import tf_logging as logging from tensorflow.python.summary import summary from tensorflow.python.training import optimizer as tf_optimizer from tensorflow.python.training import saver as tf_saver from tensorflow.python.training import supervisor from tensorflow.python.training import sync_replicas_optimizer from tensorflow.python.training import training_util __all__ = [ 'add_gradients_summaries', 'clip_gradient_norms', 'multiply_gradients', 'create_train_op', 'train_step', 'train' ] def clip_gradient_norms(gradients_to_variables, max_norm): """Clips the gradients by the given value. Args: gradients_to_variables: A list of gradient to variable pairs (tuples). max_norm: the maximum norm value. Returns: A list of clipped gradient to variable pairs. """ clipped_grads_and_vars = [] for grad, var in gradients_to_variables: if grad is not None: if isinstance(grad, ops.IndexedSlices): tmp = clip_ops.clip_by_norm(grad.values, max_norm) grad = ops.IndexedSlices(tmp, grad.indices, grad.dense_shape) else: grad = clip_ops.clip_by_norm(grad, max_norm) clipped_grads_and_vars.append((grad, var)) return clipped_grads_and_vars def multiply_gradients(grads_and_vars, gradient_multipliers): """Multiply specified gradients. Args: grads_and_vars: A list of gradient to variable pairs (tuples). gradient_multipliers: A map from either `Variables` or `Variable` op names to the coefficient by which the associated gradient should be scaled. Returns: The updated list of gradient to variable pairs. Raises: ValueError: If `grads_and_vars` is not a list or if `gradient_multipliers` is empty or None or if `gradient_multipliers` is not a dictionary. """ if not isinstance(grads_and_vars, list): raise ValueError('`grads_and_vars` must be a list.') if not gradient_multipliers: raise ValueError('`gradient_multipliers` is empty.') if not isinstance(gradient_multipliers, dict): raise ValueError('`gradient_multipliers` must be a dict.') multiplied_grads_and_vars = [] for grad, var in grads_and_vars: if var in gradient_multipliers or var.op.name in gradient_multipliers: key = var if var in gradient_multipliers else var.op.name if grad is None: raise ValueError('Requested multiple of `None` gradient.') multiplier = gradient_multipliers[key] if not isinstance(multiplier, ops.Tensor): multiplier = constant_op.constant(multiplier, dtype=grad.dtype) if isinstance(grad, ops.IndexedSlices): tmp = grad.values * multiplier grad = ops.IndexedSlices(tmp, grad.indices, grad.dense_shape) else: grad *= multiplier multiplied_grads_and_vars.append((grad, var)) return multiplied_grads_and_vars def add_gradients_summaries(grads_and_vars): """Add summaries to gradients. Args: grads_and_vars: A list of gradient to variable pairs (tuples). Returns: The list of created summaries. """ summaries = [] for grad, var in grads_and_vars: if grad is not None: if isinstance(grad, ops.IndexedSlices): grad_values = grad.values else: grad_values = grad summaries.append( summary.histogram(var.op.name + '/gradient', grad_values)) summaries.append( summary.scalar(var.op.name + '/gradient_norm', clip_ops.global_norm([grad_values]))) else: logging.info('Var %s has no gradient', var.op.name) return summaries _USE_GLOBAL_STEP = 0 def create_train_op(total_loss, optimizer, global_step=_USE_GLOBAL_STEP, update_ops=None, variables_to_train=None, clip_gradient_norm=0, summarize_gradients=False, gate_gradients=tf_optimizer.Optimizer.GATE_OP, aggregation_method=None, colocate_gradients_with_ops=False, gradient_multipliers=None, check_numerics=True): """Creates an `Operation` that evaluates the gradients and returns the loss. Args: total_loss: A `Tensor` representing the total loss. optimizer: A tf.Optimizer to use for computing the gradients. global_step: A `Tensor` representing the global step variable. If left as `_USE_GLOBAL_STEP`, then tf.contrib.framework.global_step() is used. update_ops: An optional list of updates to execute. If `update_ops` is `None`, then the update ops are set to the contents of the `tf.GraphKeys.UPDATE_OPS` collection. If `update_ops` is not `None`, but it doesn't contain all of the update ops in `tf.GraphKeys.UPDATE_OPS`, a warning will be displayed. variables_to_train: an optional list of variables to train. If None, it will default to all tf.compat.v1.trainable_variables(). clip_gradient_norm: If greater than 0 then the gradients would be clipped by it. summarize_gradients: Whether or not add summaries for each gradient. gate_gradients: How to gate the computation of gradients. See tf.Optimizer. aggregation_method: Specifies the method used to combine gradient terms. Valid values are defined in the class `AggregationMethod`. colocate_gradients_with_ops: Whether or not to try colocating the gradients with the ops that generated them. gradient_multipliers: A dictionary of either `Variables` or `Variable` op names to the coefficient by which the associated gradient should be scaled. check_numerics: Whether or not we apply check_numerics. Returns: A `Tensor` that when evaluated, computes the gradients and returns the total loss value. """ def transform_grads_fn(grads): if gradient_multipliers: with ops.name_scope('multiply_grads'): grads = multiply_gradients(grads, gradient_multipliers) # Clip gradients. if clip_gradient_norm > 0: with ops.name_scope('clip_grads'): grads = clip_gradient_norms(grads, clip_gradient_norm) return grads return training.create_train_op( total_loss=total_loss, optimizer=optimizer, global_step=global_step, update_ops=update_ops, variables_to_train=variables_to_train, transform_grads_fn=transform_grads_fn, summarize_gradients=summarize_gradients, gate_gradients=gate_gradients, aggregation_method=aggregation_method, colocate_gradients_with_ops=colocate_gradients_with_ops, check_numerics=check_numerics) def _wait_for_step(sess, global_step, step): """Wait till the global step has reached at least 'step'. Args: sess: A session. global_step: A Tensor. step: Int. The global step to reach. """ while True: if training_util.global_step(sess, global_step) >= step: break time.sleep(1.0) def train_step(sess, train_op, global_step, train_step_kwargs): """Function that takes a gradient step and specifies whether to stop. Args: sess: The current session. train_op: An `Operation` that evaluates the gradients and returns the total loss. global_step: A `Tensor` representing the global training step. train_step_kwargs: A dictionary of keyword arguments. Returns: The total loss and a boolean indicating whether or not to stop training. Raises: ValueError: if 'should_trace' is in `train_step_kwargs` but `logdir` is not. """ start_time = time.time() trace_run_options = None run_metadata = None if 'should_trace' in train_step_kwargs: if 'logdir' not in train_step_kwargs: raise ValueError('logdir must be present in train_step_kwargs when ' 'should_trace is present') if sess.run(train_step_kwargs['should_trace']): trace_run_options = config_pb2.RunOptions( trace_level=config_pb2.RunOptions.FULL_TRACE) run_metadata = config_pb2.RunMetadata() total_loss, np_global_step = sess.run([train_op, global_step], options=trace_run_options, run_metadata=run_metadata) time_elapsed = time.time() - start_time if run_metadata is not None: tl = timeline.Timeline(run_metadata.step_stats) trace = tl.generate_chrome_trace_format() trace_filename = os.path.join(train_step_kwargs['logdir'], 'tf_trace-%d.json' % np_global_step) logging.info('Writing trace to %s', trace_filename) file_io.write_string_to_file(trace_filename, trace) if 'summary_writer' in train_step_kwargs: train_step_kwargs['summary_writer'].add_run_metadata( run_metadata, 'run_metadata-%d' % np_global_step) if 'should_log' in train_step_kwargs: if sess.run(train_step_kwargs['should_log']): logging.info('global step %d: loss = %.4f (%.3f sec/step)', np_global_step, total_loss, time_elapsed) # TODO(nsilberman): figure out why we can't put this into sess.run. The # issue right now is that the stop check depends on the global step. The # increment of global step often happens via the train op, which used # created using optimizer.apply_gradients. # # Since running `train_op` causes the global step to be incremented, one # would expected that using a control dependency would allow the # should_stop check to be run in the same session.run call: # # with ops.control_dependencies([train_op]): # should_stop_op = ... # # However, this actually seems not to work on certain platforms. if 'should_stop' in train_step_kwargs: should_stop = sess.run(train_step_kwargs['should_stop']) else: should_stop = False return total_loss, should_stop _USE_DEFAULT = 0 def train(train_op, logdir, train_step_fn=train_step, train_step_kwargs=_USE_DEFAULT, log_every_n_steps=1, graph=None, master='', is_chief=True, global_step=None, number_of_steps=None, init_op=_USE_DEFAULT, init_feed_dict=None, local_init_op=_USE_DEFAULT, init_fn=None, ready_op=_USE_DEFAULT, summary_op=_USE_DEFAULT, save_summaries_secs=600, summary_writer=_USE_DEFAULT, startup_delay_steps=0, saver=None, save_interval_secs=600, sync_optimizer=None, session_config=None, session_wrapper=None, trace_every_n_steps=None, ignore_live_threads=False): """Runs a training loop using a TensorFlow supervisor. When the sync_optimizer is supplied, gradient updates are applied synchronously. Otherwise, gradient updates are applied asynchronous. Args: train_op: A `Tensor` that, when executed, will apply the gradients and return the loss value. logdir: The directory where training logs are written to. If None, model checkpoints and summaries will not be written. train_step_fn: The function to call in order to execute a single gradient step. The function must have take exactly four arguments: the current session, the `train_op` `Tensor`, a global step `Tensor` and a dictionary. train_step_kwargs: A dictionary which is passed to the `train_step_fn`. By default, two `Boolean`, scalar ops called "should_stop" and "should_log" are provided. log_every_n_steps: The frequency, in terms of global steps, that the loss and global step are logged. graph: The graph to pass to the supervisor. If no graph is supplied the default graph is used. master: The address of the tensorflow master. is_chief: Specifies whether or not the training is being run by the primary replica during replica training. global_step: The `Tensor` representing the global step. If left as `None`, then training_util.get_or_create_global_step(), that is, tf.contrib.framework.global_step() is used. number_of_steps: The max number of gradient steps to take during training, as measured by 'global_step': training will stop if global_step is greater than 'number_of_steps'. If the value is left as None, training proceeds indefinitely. init_op: The initialization operation. If left to its default value, then the session is initialized by calling `tf.compat.v1.global_variables_initializer()`. init_feed_dict: A feed dictionary to use when executing the `init_op`. local_init_op: The local initialization operation. If left to its default value, then the session is initialized by calling `tf.compat.v1.local_variables_initializer()` and `tf.compat.v1.tables_initializer()`. init_fn: An optional callable to be executed after `init_op` is called. The callable must accept one argument, the session being initialized. ready_op: Operation to check if the model is ready to use. If left to its default value, then the session checks for readiness by calling `tf.compat.v1.report_uninitialized_variables()`. summary_op: The summary operation. save_summaries_secs: How often, in seconds, to save summaries. summary_writer: `SummaryWriter` to use. Can be `None` to indicate that no summaries should be written. If unset, we create a SummaryWriter. startup_delay_steps: The number of steps to wait for before beginning. Note that this must be 0 if a sync_optimizer is supplied. saver: Saver to save checkpoints. If None, a default one will be created and used. save_interval_secs: How often, in seconds, to save the model to `logdir`. sync_optimizer: an instance of tf.compat.v1.train.SyncReplicasOptimizer, or a list of them. If the argument is supplied, gradient updates will be synchronous. If left as `None`, gradient updates will be asynchronous. session_config: An instance of `tf.compat.v1.ConfigProto` that will be used to configure the `Session`. If left as `None`, the default will be used. session_wrapper: A function that takes a `tf.compat.v1.Session` object as the only argument and returns a wrapped session object that has the same methods that the original object has, or `None`. Iff not `None`, the wrapped object will be used for training. trace_every_n_steps: produce and save a `Timeline` in Chrome trace format and add it to the summaries every `trace_every_n_steps`. If None, no trace information will be produced or saved. ignore_live_threads: If `True` ignores threads that remain running after a grace period when stopping the supervisor, instead of raising a RuntimeError. Returns: the value of the loss function after training. Raises: ValueError: if `train_op` is empty or if `startup_delay_steps` is non-zero when `sync_optimizer` is supplied, if `number_of_steps` is negative, or if `trace_every_n_steps` is not `None` and no `logdir` is provided. """ if train_op is None: raise ValueError('train_op cannot be None.') if logdir is None: if summary_op != _USE_DEFAULT: raise ValueError('Cannot provide summary_op because logdir=None') if saver is not None: raise ValueError('Cannot provide saver because logdir=None') if trace_every_n_steps is not None: raise ValueError('Cannot provide trace_every_n_steps because ' 'logdir=None') if isinstance(sync_optimizer, sync_replicas_optimizer.SyncReplicasOptimizer): sync_optimizer = [sync_optimizer] if sync_optimizer is not None and startup_delay_steps > 0: raise ValueError( 'startup_delay_steps must be zero when sync_optimizer is supplied.') if number_of_steps is not None and number_of_steps <= 0: raise ValueError( '`number_of_steps` must be either None or a positive number.') graph = graph or ops.get_default_graph() with graph.as_default(): if global_step is None: global_step = training_util.get_or_create_global_step() saver = saver or tf_saver.Saver() if sync_optimizer is not None: for opt in sync_optimizer: if not isinstance(opt, sync_replicas_optimizer.SyncReplicasOptimizer): raise ValueError( '`sync_optimizer` must be a tf.train.SyncReplicasOptimizer.') with ops.name_scope('init_ops'): if init_op == _USE_DEFAULT: init_op = variables.global_variables_initializer() if ready_op == _USE_DEFAULT: ready_op = variables.report_uninitialized_variables() if local_init_op == _USE_DEFAULT: local_init_op = control_flow_ops.group( variables.local_variables_initializer(), lookup_ops.tables_initializer()) if sync_optimizer is not None and isinstance(sync_optimizer, list): with ops.control_dependencies( [local_init_op] if local_init_op is not None else []): if is_chief: local_init_op = control_flow_ops.group( *[opt.chief_init_op for opt in sync_optimizer]) else: local_init_op = control_flow_ops.group( *[opt.local_step_init_op for opt in sync_optimizer]) ready_for_local_init_op = control_flow_ops.group( *[opt.ready_for_local_init_op for opt in sync_optimizer]) else: ready_for_local_init_op = None if summary_op == _USE_DEFAULT: summary_op = summary.merge_all() if summary_writer == _USE_DEFAULT: summary_writer = supervisor.Supervisor.USE_DEFAULT if is_chief and sync_optimizer is not None: # Need to create these BEFORE the supervisor finalizes the graph: init_tokens_op = [opt.get_init_tokens_op() for opt in sync_optimizer] chief_queue_runner = [ opt.get_chief_queue_runner() for opt in sync_optimizer ] if train_step_kwargs == _USE_DEFAULT: with ops.name_scope('train_step'): train_step_kwargs = {} if number_of_steps: should_stop_op = math_ops.greater_equal(global_step, number_of_steps) else: should_stop_op = constant_op.constant(False) train_step_kwargs['should_stop'] = should_stop_op if log_every_n_steps > 0: train_step_kwargs['should_log'] = math_ops.equal( math_ops.mod(global_step, log_every_n_steps), 0) if is_chief and trace_every_n_steps is not None: train_step_kwargs['should_trace'] = math_ops.equal( math_ops.mod(global_step, trace_every_n_steps), 0) train_step_kwargs['logdir'] = logdir sv = supervisor.Supervisor( graph=graph, is_chief=is_chief, logdir=logdir, init_op=init_op, init_feed_dict=init_feed_dict, local_init_op=local_init_op, ready_for_local_init_op=ready_for_local_init_op, ready_op=ready_op, summary_op=summary_op, summary_writer=summary_writer, global_step=global_step, saver=saver, save_summaries_secs=save_summaries_secs, save_model_secs=save_interval_secs, init_fn=init_fn) if summary_writer is not None: train_step_kwargs['summary_writer'] = sv.summary_writer total_loss = None should_retry = True while should_retry: try: should_retry = False with sv.managed_session( master, start_standard_services=False, config=session_config) as sess: logging.info('Starting Session.') if session_wrapper is not None: logging.info('Wrapping session with wrapper function: %s', session_wrapper) sess = session_wrapper(sess) if is_chief: if logdir: sv.start_standard_services(sess) elif startup_delay_steps > 0: # (use sys.maxsize because sys.maxint doesn't exist in Python 3) _wait_for_step( sess, global_step, min(startup_delay_steps, number_of_steps or sys.maxsize)) threads = sv.start_queue_runners(sess) logging.info('Starting Queues.') if is_chief and sync_optimizer is not None: sv.start_queue_runners(sess, chief_queue_runner) sess.run(init_tokens_op) try: while not sv.should_stop(): total_loss, should_stop = train_step_fn(sess, train_op, global_step, train_step_kwargs) if should_stop: logging.info('Stopping Training.') sv.request_stop() break except errors.OutOfRangeError as e: # OutOfRangeError is thrown when epoch limit per # tf.compat.v1.train.limit_epochs is reached. logging.info('Caught OutOfRangeError. Stopping Training. %s', e) if logdir and sv.is_chief: logging.info('Finished training! Saving model to disk.') sv.saver.save(sess, sv.save_path, global_step=sv.global_step) sv.stop( threads, close_summary_writer=True, ignore_live_threads=ignore_live_threads) except errors.AbortedError: # Always re-run on AbortedError as it indicates a restart of one of the # distributed tensorflow servers. logging.info('Retrying training!') should_retry = True return total_loss
tensorflow-master
tensorflow/contrib/slim/python/slim/learning.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Contains helper functions for creating summaries. This module contains various helper functions for quickly and easily adding tensorflow summaries. These allow users to print summary values automatically as they are computed and add prefixes to collections of summaries. Example usage: import tensorflow as tf slim = tf.contrib.slim slim.summaries.add_histogram_summaries(slim.variables.get_model_variables()) slim.summaries.add_scalar_summary(total_loss, 'Total Loss') slim.summaries.add_scalar_summary(learning_rate, 'Learning Rate') slim.summaries.add_histogram_summaries(my_tensors) slim.summaries.add_zero_fraction_summaries(my_tensors) """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.framework import ops from tensorflow.python.ops import logging_ops from tensorflow.python.ops import nn_impl as nn from tensorflow.python.summary import summary def _get_summary_name(tensor, name=None, prefix=None, postfix=None): """Produces the summary name given. Args: tensor: A variable or op `Tensor`. name: The optional name for the summary. prefix: An optional prefix for the summary name. postfix: An optional postfix for the summary name. Returns: a summary name. """ if not name: name = tensor.op.name if prefix: name = prefix + '/' + name if postfix: name = name + '/' + postfix return name def add_histogram_summary(tensor, name=None, prefix=None): """Adds a histogram summary for the given tensor. Args: tensor: A variable or op tensor. name: The optional name for the summary. prefix: An optional prefix for the summary names. Returns: A scalar `Tensor` of type `string` whose contents are the serialized `Summary` protocol buffer. """ return summary.histogram( _get_summary_name(tensor, name, prefix), tensor) def add_image_summary(tensor, name=None, prefix=None, print_summary=False): """Adds an image summary for the given tensor. Args: tensor: a variable or op tensor with shape [batch,height,width,channels] name: the optional name for the summary. prefix: An optional prefix for the summary names. print_summary: If `True`, the summary is printed to stdout when the summary is computed. Returns: An image `Tensor` of type `string` whose contents are the serialized `Summary` protocol buffer. """ summary_name = _get_summary_name(tensor, name, prefix) # If print_summary, then we need to make sure that this call doesn't add the # non-printing op to the collection. We'll add it to the collection later. collections = [] if print_summary else None op = summary.image( name=summary_name, tensor=tensor, collections=collections) if print_summary: op = logging_ops.Print(op, [tensor], summary_name) ops.add_to_collection(ops.GraphKeys.SUMMARIES, op) return op def add_scalar_summary(tensor, name=None, prefix=None, print_summary=False): """Adds a scalar summary for the given tensor. Args: tensor: a variable or op tensor. name: the optional name for the summary. prefix: An optional prefix for the summary names. print_summary: If `True`, the summary is printed to stdout when the summary is computed. Returns: A scalar `Tensor` of type `string` whose contents are the serialized `Summary` protocol buffer. """ collections = [] if print_summary else None summary_name = _get_summary_name(tensor, name, prefix) # If print_summary, then we need to make sure that this call doesn't add the # non-printing op to the collection. We'll add it to the collection later. op = summary.scalar( name=summary_name, tensor=tensor, collections=collections) if print_summary: op = logging_ops.Print(op, [tensor], summary_name) ops.add_to_collection(ops.GraphKeys.SUMMARIES, op) return op def add_zero_fraction_summary(tensor, name=None, prefix=None, print_summary=False): """Adds a summary for the percentage of zero values in the given tensor. Args: tensor: a variable or op tensor. name: the optional name for the summary. prefix: An optional prefix for the summary names. print_summary: If `True`, the summary is printed to stdout when the summary is computed. Returns: A scalar `Tensor` of type `string` whose contents are the serialized `Summary` protocol buffer. """ name = _get_summary_name(tensor, name, prefix, 'Fraction_of_Zero_Values') tensor = nn.zero_fraction(tensor) return add_scalar_summary(tensor, name, print_summary=print_summary) def add_histogram_summaries(tensors, prefix=None): """Adds a histogram summary for each of the given tensors. Args: tensors: A list of variable or op tensors. prefix: An optional prefix for the summary names. Returns: A list of scalar `Tensors` of type `string` whose contents are the serialized `Summary` protocol buffer. """ summary_ops = [] for tensor in tensors: summary_ops.append(add_histogram_summary(tensor, prefix=prefix)) return summary_ops def add_image_summaries(tensors, prefix=None): """Adds an image summary for each of the given tensors. Args: tensors: A list of variable or op tensors. prefix: An optional prefix for the summary names. Returns: A list of scalar `Tensors` of type `string` whose contents are the serialized `Summary` protocol buffer. """ summary_ops = [] for tensor in tensors: summary_ops.append(add_image_summary(tensor, prefix=prefix)) return summary_ops def add_scalar_summaries(tensors, prefix=None, print_summary=False): """Adds a scalar summary for each of the given tensors. Args: tensors: a list of variable or op tensors. prefix: An optional prefix for the summary names. print_summary: If `True`, the summary is printed to stdout when the summary is computed. Returns: A list of scalar `Tensors` of type `string` whose contents are the serialized `Summary` protocol buffer. """ summary_ops = [] for tensor in tensors: summary_ops.append(add_scalar_summary(tensor, prefix=prefix, print_summary=print_summary)) return summary_ops def add_zero_fraction_summaries(tensors, prefix=None): """Adds a scalar zero-fraction summary for each of the given tensors. Args: tensors: a list of variable or op tensors. prefix: An optional prefix for the summary names. Returns: A list of scalar `Tensors` of type `string` whose contents are the serialized `Summary` protocol buffer. """ summary_ops = [] for tensor in tensors: summary_ops.append(add_zero_fraction_summary(tensor, prefix=prefix)) return summary_ops
tensorflow-master
tensorflow/contrib/slim/python/slim/summaries.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tools for analyzing the operations and variables in a TensorFlow graph. To analyze the operations in a graph: images, labels = LoadData(...) predictions = MyModel(images) slim.model_analyzer.analyze_ops(tf.compat.v1.get_default_graph(), print_info=True) To analyze the model variables in a graph: variables = tf.compat.v1.model_variables() slim.model_analyzer.analyze_vars(variables, print_info=False) """ from __future__ import absolute_import from __future__ import division from __future__ import print_function def tensor_description(var): """Returns a compact and informative string about a tensor. Args: var: A tensor variable. Returns: a string with type and size, e.g.: (float32 1x8x8x1024). """ description = '(' + str(var.dtype.name) + ' ' sizes = var.get_shape() for i, size in enumerate(sizes): description += str(size) if i < len(sizes) - 1: description += 'x' description += ')' return description def analyze_ops(graph, print_info=False): """Compute the estimated size of the ops.outputs in the graph. Args: graph: the graph containing the operations. print_info: Optional, if true print ops and their outputs. Returns: total size of the ops.outputs """ if print_info: print('---------') print('Operations: name -> (type shapes) [size]') print('---------') total_size = 0 for op in graph.get_operations(): op_size = 0 shapes = [] for output in op.outputs: # if output.num_elements() is None or [] assume size 0. output_size = output.get_shape().num_elements() or 0 if output.get_shape(): shapes.append(tensor_description(output)) op_size += output_size if print_info: print(op.name, '\t->', ', '.join(shapes), '[' + str(op_size) + ']') total_size += op_size return total_size def analyze_vars(variables, print_info=False): """Prints the names and shapes of the variables. Args: variables: list of variables, for example tf.compat.v1.global_variables(). print_info: Optional, if true print variables and their shape. Returns: (total size of the variables, total bytes of the variables) """ if print_info: print('---------') print('Variables: name (type shape) [size]') print('---------') total_size = 0 total_bytes = 0 for var in variables: # if var.num_elements() is None or [] assume size 0. var_size = var.get_shape().num_elements() or 0 var_bytes = var_size * var.dtype.size total_size += var_size total_bytes += var_bytes if print_info: print(var.name, tensor_description(var), '[%d, bytes: %d]' % (var_size, var_bytes)) if print_info: print('Total size of variables: %d' % total_size) print('Total bytes of variables: %d' % total_bytes) return total_size, total_bytes
tensorflow-master
tensorflow/contrib/slim/python/slim/model_analyzer.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for slim.nets.resnet_v2.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib import layers from tensorflow.contrib.framework.python.ops import arg_scope from tensorflow.contrib.layers.python.layers import utils from tensorflow.contrib.slim.python.slim.nets import resnet_utils from tensorflow.contrib.slim.python.slim.nets import resnet_v2 from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import random_seed from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import variable_scope from tensorflow.python.ops import variables from tensorflow.python.platform import test def create_test_input(batch_size, height, width, channels): """Create test input tensor. Args: batch_size: The number of images per batch or `None` if unknown. height: The height of each image or `None` if unknown. width: The width of each image or `None` if unknown. channels: The number of channels per image or `None` if unknown. Returns: Either a placeholder `Tensor` of dimension [batch_size, height, width, channels] if any of the inputs are `None` or a constant `Tensor` with the mesh grid values along the spatial dimensions. """ if None in [batch_size, height, width, channels]: return array_ops.placeholder(dtypes.float32, (batch_size, height, width, channels)) else: return math_ops.cast( np.tile( np.reshape( np.reshape(np.arange(height), [height, 1]) + np.reshape( np.arange(width), [1, width]), [1, height, width, 1]), [batch_size, 1, 1, channels]), dtypes.float32) class ResnetUtilsTest(test.TestCase): def testSubsampleThreeByThree(self): x = array_ops.reshape(math_ops.cast(math_ops.range(9), dtypes.float32), [1, 3, 3, 1]) x = resnet_utils.subsample(x, 2) expected = array_ops.reshape( constant_op.constant([0, 2, 6, 8]), [1, 2, 2, 1]) with self.cached_session(): self.assertAllClose(x.eval(), expected.eval()) def testSubsampleFourByFour(self): x = array_ops.reshape(math_ops.cast(math_ops.range(16), dtypes.float32), [1, 4, 4, 1]) x = resnet_utils.subsample(x, 2) expected = array_ops.reshape( constant_op.constant([0, 2, 8, 10]), [1, 2, 2, 1]) with self.cached_session(): self.assertAllClose(x.eval(), expected.eval()) def testConv2DSameEven(self): n, n2 = 4, 2 # Input image. x = create_test_input(1, n, n, 1) # Convolution kernel. w = create_test_input(1, 3, 3, 1) w = array_ops.reshape(w, [3, 3, 1, 1]) variable_scope.get_variable('Conv/weights', initializer=w) variable_scope.get_variable('Conv/biases', initializer=array_ops.zeros([1])) variable_scope.get_variable_scope().reuse_variables() y1 = layers.conv2d(x, 1, [3, 3], stride=1, scope='Conv') y1_expected = math_ops.cast([[14, 28, 43, 26], [28, 48, 66, 37], [43, 66, 84, 46], [26, 37, 46, 22]], dtypes.float32) y1_expected = array_ops.reshape(y1_expected, [1, n, n, 1]) y2 = resnet_utils.subsample(y1, 2) y2_expected = math_ops.cast([[14, 43], [43, 84]], dtypes.float32) y2_expected = array_ops.reshape(y2_expected, [1, n2, n2, 1]) y3 = resnet_utils.conv2d_same(x, 1, 3, stride=2, scope='Conv') y3_expected = y2_expected y4 = layers.conv2d(x, 1, [3, 3], stride=2, scope='Conv') y4_expected = math_ops.cast([[48, 37], [37, 22]], dtypes.float32) y4_expected = array_ops.reshape(y4_expected, [1, n2, n2, 1]) with self.cached_session() as sess: sess.run(variables.global_variables_initializer()) self.assertAllClose(y1.eval(), y1_expected.eval()) self.assertAllClose(y2.eval(), y2_expected.eval()) self.assertAllClose(y3.eval(), y3_expected.eval()) self.assertAllClose(y4.eval(), y4_expected.eval()) def testConv2DSameOdd(self): n, n2 = 5, 3 # Input image. x = create_test_input(1, n, n, 1) # Convolution kernel. w = create_test_input(1, 3, 3, 1) w = array_ops.reshape(w, [3, 3, 1, 1]) variable_scope.get_variable('Conv/weights', initializer=w) variable_scope.get_variable('Conv/biases', initializer=array_ops.zeros([1])) variable_scope.get_variable_scope().reuse_variables() y1 = layers.conv2d(x, 1, [3, 3], stride=1, scope='Conv') y1_expected = math_ops.cast([[14, 28, 43, 58, 34], [28, 48, 66, 84, 46], [43, 66, 84, 102, 55], [58, 84, 102, 120, 64], [34, 46, 55, 64, 30]], dtypes.float32) y1_expected = array_ops.reshape(y1_expected, [1, n, n, 1]) y2 = resnet_utils.subsample(y1, 2) y2_expected = math_ops.cast([[14, 43, 34], [43, 84, 55], [34, 55, 30]], dtypes.float32) y2_expected = array_ops.reshape(y2_expected, [1, n2, n2, 1]) y3 = resnet_utils.conv2d_same(x, 1, 3, stride=2, scope='Conv') y3_expected = y2_expected y4 = layers.conv2d(x, 1, [3, 3], stride=2, scope='Conv') y4_expected = y2_expected with self.cached_session() as sess: sess.run(variables.global_variables_initializer()) self.assertAllClose(y1.eval(), y1_expected.eval()) self.assertAllClose(y2.eval(), y2_expected.eval()) self.assertAllClose(y3.eval(), y3_expected.eval()) self.assertAllClose(y4.eval(), y4_expected.eval()) def _resnet_plain(self, inputs, blocks, output_stride=None, scope=None): """A plain ResNet without extra layers before or after the ResNet blocks.""" with variable_scope.variable_scope(scope, values=[inputs]): with arg_scope([layers.conv2d], outputs_collections='end_points'): net = resnet_utils.stack_blocks_dense(inputs, blocks, output_stride) end_points = utils.convert_collection_to_dict('end_points') return net, end_points def testEndPointsV2(self): """Test the end points of a tiny v2 bottleneck network.""" blocks = [ resnet_v2.resnet_v2_block( 'block1', base_depth=1, num_units=2, stride=2), resnet_v2.resnet_v2_block( 'block2', base_depth=2, num_units=2, stride=1), ] inputs = create_test_input(2, 32, 16, 3) with arg_scope(resnet_utils.resnet_arg_scope()): _, end_points = self._resnet_plain(inputs, blocks, scope='tiny') expected = [ 'tiny/block1/unit_1/bottleneck_v2/shortcut', 'tiny/block1/unit_1/bottleneck_v2/conv1', 'tiny/block1/unit_1/bottleneck_v2/conv2', 'tiny/block1/unit_1/bottleneck_v2/conv3', 'tiny/block1/unit_2/bottleneck_v2/conv1', 'tiny/block1/unit_2/bottleneck_v2/conv2', 'tiny/block1/unit_2/bottleneck_v2/conv3', 'tiny/block2/unit_1/bottleneck_v2/shortcut', 'tiny/block2/unit_1/bottleneck_v2/conv1', 'tiny/block2/unit_1/bottleneck_v2/conv2', 'tiny/block2/unit_1/bottleneck_v2/conv3', 'tiny/block2/unit_2/bottleneck_v2/conv1', 'tiny/block2/unit_2/bottleneck_v2/conv2', 'tiny/block2/unit_2/bottleneck_v2/conv3' ] self.assertItemsEqual(expected, end_points) def _stack_blocks_nondense(self, net, blocks): """A simplified ResNet Block stacker without output stride control.""" for block in blocks: with variable_scope.variable_scope(block.scope, 'block', [net]): for i, unit in enumerate(block.args): with variable_scope.variable_scope('unit_%d' % (i + 1), values=[net]): net = block.unit_fn(net, rate=1, **unit) return net def testAtrousValuesBottleneck(self): """Verify the values of dense feature extraction by atrous convolution. Make sure that dense feature extraction by stack_blocks_dense() followed by subsampling gives identical results to feature extraction at the nominal network output stride using the simple self._stack_blocks_nondense() above. """ block = resnet_v2.resnet_v2_block blocks = [ block('block1', base_depth=1, num_units=2, stride=2), block('block2', base_depth=2, num_units=2, stride=2), block('block3', base_depth=4, num_units=2, stride=2), block('block4', base_depth=8, num_units=2, stride=1), ] nominal_stride = 8 # Test both odd and even input dimensions. height = 30 width = 31 with arg_scope(resnet_utils.resnet_arg_scope()): with arg_scope([layers.batch_norm], is_training=False): for output_stride in [1, 2, 4, 8, None]: with ops.Graph().as_default(): with self.cached_session() as sess: random_seed.set_random_seed(0) inputs = create_test_input(1, height, width, 3) # Dense feature extraction followed by subsampling. output = resnet_utils.stack_blocks_dense(inputs, blocks, output_stride) if output_stride is None: factor = 1 else: factor = nominal_stride // output_stride output = resnet_utils.subsample(output, factor) # Make the two networks use the same weights. variable_scope.get_variable_scope().reuse_variables() # Feature extraction at the nominal network rate. expected = self._stack_blocks_nondense(inputs, blocks) sess.run(variables.global_variables_initializer()) output, expected = sess.run([output, expected]) self.assertAllClose(output, expected, atol=1e-4, rtol=1e-4) class ResnetCompleteNetworkTest(test.TestCase): """Tests with complete small ResNet v2 networks.""" def _resnet_small(self, inputs, num_classes=None, is_training=True, global_pool=True, output_stride=None, include_root_block=True, reuse=None, scope='resnet_v2_small'): """A shallow and thin ResNet v2 for faster tests.""" block = resnet_v2.resnet_v2_block blocks = [ block('block1', base_depth=1, num_units=3, stride=2), block('block2', base_depth=2, num_units=3, stride=2), block('block3', base_depth=4, num_units=3, stride=2), block('block4', base_depth=8, num_units=2, stride=1), ] return resnet_v2.resnet_v2(inputs, blocks, num_classes, is_training, global_pool, output_stride, include_root_block, reuse, scope) def testClassificationEndPoints(self): global_pool = True num_classes = 10 inputs = create_test_input(2, 224, 224, 3) with arg_scope(resnet_utils.resnet_arg_scope()): logits, end_points = self._resnet_small( inputs, num_classes, global_pool=global_pool, scope='resnet') self.assertTrue(logits.op.name.startswith('resnet/logits')) self.assertListEqual(logits.get_shape().as_list(), [2, 1, 1, num_classes]) self.assertTrue('predictions' in end_points) self.assertListEqual(end_points['predictions'].get_shape().as_list(), [2, 1, 1, num_classes]) def testClassificationShapes(self): global_pool = True num_classes = 10 inputs = create_test_input(2, 224, 224, 3) with arg_scope(resnet_utils.resnet_arg_scope()): _, end_points = self._resnet_small( inputs, num_classes, global_pool=global_pool, scope='resnet') endpoint_to_shape = { 'resnet/block1': [2, 28, 28, 4], 'resnet/block2': [2, 14, 14, 8], 'resnet/block3': [2, 7, 7, 16], 'resnet/block4': [2, 7, 7, 32] } for endpoint in endpoint_to_shape: shape = endpoint_to_shape[endpoint] self.assertListEqual(end_points[endpoint].get_shape().as_list(), shape) def testFullyConvolutionalEndpointShapes(self): global_pool = False num_classes = 10 inputs = create_test_input(2, 321, 321, 3) with arg_scope(resnet_utils.resnet_arg_scope()): _, end_points = self._resnet_small( inputs, num_classes, global_pool=global_pool, scope='resnet') endpoint_to_shape = { 'resnet/block1': [2, 41, 41, 4], 'resnet/block2': [2, 21, 21, 8], 'resnet/block3': [2, 11, 11, 16], 'resnet/block4': [2, 11, 11, 32] } for endpoint in endpoint_to_shape: shape = endpoint_to_shape[endpoint] self.assertListEqual(end_points[endpoint].get_shape().as_list(), shape) def testRootlessFullyConvolutionalEndpointShapes(self): global_pool = False num_classes = 10 inputs = create_test_input(2, 128, 128, 3) with arg_scope(resnet_utils.resnet_arg_scope()): _, end_points = self._resnet_small( inputs, num_classes, global_pool=global_pool, include_root_block=False, scope='resnet') endpoint_to_shape = { 'resnet/block1': [2, 64, 64, 4], 'resnet/block2': [2, 32, 32, 8], 'resnet/block3': [2, 16, 16, 16], 'resnet/block4': [2, 16, 16, 32] } for endpoint in endpoint_to_shape: shape = endpoint_to_shape[endpoint] self.assertListEqual(end_points[endpoint].get_shape().as_list(), shape) def testAtrousFullyConvolutionalEndpointShapes(self): global_pool = False num_classes = 10 output_stride = 8 inputs = create_test_input(2, 321, 321, 3) with arg_scope(resnet_utils.resnet_arg_scope()): _, end_points = self._resnet_small( inputs, num_classes, global_pool=global_pool, output_stride=output_stride, scope='resnet') endpoint_to_shape = { 'resnet/block1': [2, 41, 41, 4], 'resnet/block2': [2, 41, 41, 8], 'resnet/block3': [2, 41, 41, 16], 'resnet/block4': [2, 41, 41, 32] } for endpoint in endpoint_to_shape: shape = endpoint_to_shape[endpoint] self.assertListEqual(end_points[endpoint].get_shape().as_list(), shape) def testAtrousFullyConvolutionalValues(self): """Verify dense feature extraction with atrous convolution.""" nominal_stride = 32 for output_stride in [4, 8, 16, 32, None]: with arg_scope(resnet_utils.resnet_arg_scope()): with ops.Graph().as_default(): with self.cached_session() as sess: random_seed.set_random_seed(0) inputs = create_test_input(2, 81, 81, 3) # Dense feature extraction followed by subsampling. output, _ = self._resnet_small( inputs, None, is_training=False, global_pool=False, output_stride=output_stride) if output_stride is None: factor = 1 else: factor = nominal_stride // output_stride output = resnet_utils.subsample(output, factor) # Make the two networks use the same weights. variable_scope.get_variable_scope().reuse_variables() # Feature extraction at the nominal network rate. expected, _ = self._resnet_small( inputs, None, is_training=False, global_pool=False) sess.run(variables.global_variables_initializer()) self.assertAllClose( output.eval(), expected.eval(), atol=1e-4, rtol=1e-4) def testUnknownBatchSize(self): batch = 2 height, width = 65, 65 global_pool = True num_classes = 10 inputs = create_test_input(None, height, width, 3) with arg_scope(resnet_utils.resnet_arg_scope()): logits, _ = self._resnet_small( inputs, num_classes, global_pool=global_pool, scope='resnet') self.assertTrue(logits.op.name.startswith('resnet/logits')) self.assertListEqual(logits.get_shape().as_list(), [None, 1, 1, num_classes]) images = create_test_input(batch, height, width, 3) with self.cached_session() as sess: sess.run(variables.global_variables_initializer()) output = sess.run(logits, {inputs: images.eval()}) self.assertEqual(output.shape, (batch, 1, 1, num_classes)) def testFullyConvolutionalUnknownHeightWidth(self): batch = 2 height, width = 65, 65 global_pool = False inputs = create_test_input(batch, None, None, 3) with arg_scope(resnet_utils.resnet_arg_scope()): output, _ = self._resnet_small(inputs, None, global_pool=global_pool) self.assertListEqual(output.get_shape().as_list(), [batch, None, None, 32]) images = create_test_input(batch, height, width, 3) with self.cached_session() as sess: sess.run(variables.global_variables_initializer()) output = sess.run(output, {inputs: images.eval()}) self.assertEqual(output.shape, (batch, 3, 3, 32)) def testAtrousFullyConvolutionalUnknownHeightWidth(self): batch = 2 height, width = 65, 65 global_pool = False output_stride = 8 inputs = create_test_input(batch, None, None, 3) with arg_scope(resnet_utils.resnet_arg_scope()): output, _ = self._resnet_small( inputs, None, global_pool=global_pool, output_stride=output_stride) self.assertListEqual(output.get_shape().as_list(), [batch, None, None, 32]) images = create_test_input(batch, height, width, 3) with self.cached_session() as sess: sess.run(variables.global_variables_initializer()) output = sess.run(output, {inputs: images.eval()}) self.assertEqual(output.shape, (batch, 9, 9, 32)) if __name__ == '__main__': test.main()
tensorflow-master
tensorflow/contrib/slim/python/slim/nets/resnet_v2_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for slim.nets.overfeat.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.framework.python.ops import variables as variables_lib from tensorflow.contrib.slim.python.slim.nets import overfeat from tensorflow.python.ops import math_ops from tensorflow.python.ops import random_ops from tensorflow.python.ops import variable_scope from tensorflow.python.ops import variables from tensorflow.python.platform import test class OverFeatTest(test.TestCase): def testBuild(self): batch_size = 5 height, width = 231, 231 num_classes = 1000 with self.cached_session(): inputs = random_ops.random_uniform((batch_size, height, width, 3)) logits, _ = overfeat.overfeat(inputs, num_classes) self.assertEquals(logits.op.name, 'overfeat/fc8/squeezed') self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) def testFullyConvolutional(self): batch_size = 1 height, width = 281, 281 num_classes = 1000 with self.cached_session(): inputs = random_ops.random_uniform((batch_size, height, width, 3)) logits, _ = overfeat.overfeat(inputs, num_classes, spatial_squeeze=False) self.assertEquals(logits.op.name, 'overfeat/fc8/BiasAdd') self.assertListEqual(logits.get_shape().as_list(), [batch_size, 2, 2, num_classes]) def testEndPoints(self): batch_size = 5 height, width = 231, 231 num_classes = 1000 with self.cached_session(): inputs = random_ops.random_uniform((batch_size, height, width, 3)) _, end_points = overfeat.overfeat(inputs, num_classes) expected_names = [ 'overfeat/conv1', 'overfeat/pool1', 'overfeat/conv2', 'overfeat/pool2', 'overfeat/conv3', 'overfeat/conv4', 'overfeat/conv5', 'overfeat/pool5', 'overfeat/fc6', 'overfeat/fc7', 'overfeat/fc8' ] self.assertSetEqual(set(end_points.keys()), set(expected_names)) def testModelVariables(self): batch_size = 5 height, width = 231, 231 num_classes = 1000 with self.cached_session(): inputs = random_ops.random_uniform((batch_size, height, width, 3)) overfeat.overfeat(inputs, num_classes) expected_names = [ 'overfeat/conv1/weights', 'overfeat/conv1/biases', 'overfeat/conv2/weights', 'overfeat/conv2/biases', 'overfeat/conv3/weights', 'overfeat/conv3/biases', 'overfeat/conv4/weights', 'overfeat/conv4/biases', 'overfeat/conv5/weights', 'overfeat/conv5/biases', 'overfeat/fc6/weights', 'overfeat/fc6/biases', 'overfeat/fc7/weights', 'overfeat/fc7/biases', 'overfeat/fc8/weights', 'overfeat/fc8/biases', ] model_variables = [v.op.name for v in variables_lib.get_model_variables()] self.assertSetEqual(set(model_variables), set(expected_names)) def testEvaluation(self): batch_size = 2 height, width = 231, 231 num_classes = 1000 with self.cached_session(): eval_inputs = random_ops.random_uniform((batch_size, height, width, 3)) logits, _ = overfeat.overfeat(eval_inputs, is_training=False) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) predictions = math_ops.argmax(logits, 1) self.assertListEqual(predictions.get_shape().as_list(), [batch_size]) def testTrainEvalWithReuse(self): train_batch_size = 2 eval_batch_size = 1 train_height, train_width = 231, 231 eval_height, eval_width = 281, 281 num_classes = 1000 with self.cached_session(): train_inputs = random_ops.random_uniform( (train_batch_size, train_height, train_width, 3)) logits, _ = overfeat.overfeat(train_inputs) self.assertListEqual(logits.get_shape().as_list(), [train_batch_size, num_classes]) variable_scope.get_variable_scope().reuse_variables() eval_inputs = random_ops.random_uniform( (eval_batch_size, eval_height, eval_width, 3)) logits, _ = overfeat.overfeat( eval_inputs, is_training=False, spatial_squeeze=False) self.assertListEqual(logits.get_shape().as_list(), [eval_batch_size, 2, 2, num_classes]) logits = math_ops.reduce_mean(logits, [1, 2]) predictions = math_ops.argmax(logits, 1) self.assertEquals(predictions.get_shape().as_list(), [eval_batch_size]) def testForward(self): batch_size = 1 height, width = 231, 231 with self.cached_session() as sess: inputs = random_ops.random_uniform((batch_size, height, width, 3)) logits, _ = overfeat.overfeat(inputs) sess.run(variables.global_variables_initializer()) output = sess.run(logits) self.assertTrue(output.any()) if __name__ == '__main__': test.main()
tensorflow-master
tensorflow/contrib/slim/python/slim/nets/overfeat_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Contains definitions for the original form of Residual Networks. The 'v1' residual networks (ResNets) implemented in this module were proposed by: [1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun Deep Residual Learning for Image Recognition. arXiv:1512.03385 Other variants were introduced in: [2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun Identity Mappings in Deep Residual Networks. arXiv: 1603.05027 The networks defined in this module utilize the bottleneck building block of [1] with projection shortcuts only for increasing depths. They employ batch normalization *after* every weight layer. This is the architecture used by MSRA in the Imagenet and MSCOCO 2016 competition models ResNet-101 and ResNet-152. See [2; Fig. 1a] for a comparison between the current 'v1' architecture and the alternative 'v2' architecture of [2] which uses batch normalization *before* every weight layer in the so-called full pre-activation units. Typical use: from tensorflow.contrib.slim.python.slim.nets import resnet_v1 ResNet-101 for image classification into 1000 classes: # inputs has shape [batch, 224, 224, 3] with slim.arg_scope(resnet_v1.resnet_arg_scope()): net, end_points = resnet_v1.resnet_v1_101(inputs, 1000, is_training=False) ResNet-101 for semantic segmentation into 21 classes: # inputs has shape [batch, 513, 513, 3] with slim.arg_scope(resnet_v1.resnet_arg_scope()): net, end_points = resnet_v1.resnet_v1_101(inputs, 21, is_training=False, global_pool=False, output_stride=16) """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib import layers from tensorflow.contrib.framework.python.ops import add_arg_scope from tensorflow.contrib.framework.python.ops import arg_scope from tensorflow.contrib.layers.python.layers import layers as layers_lib from tensorflow.contrib.layers.python.layers import utils from tensorflow.contrib.slim.python.slim.nets import resnet_utils from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn_ops from tensorflow.python.ops import variable_scope resnet_arg_scope = resnet_utils.resnet_arg_scope @add_arg_scope def bottleneck(inputs, depth, depth_bottleneck, stride, rate=1, outputs_collections=None, scope=None): """Bottleneck residual unit variant with BN after convolutions. This is the original residual unit proposed in [1]. See Fig. 1(a) of [2] for its definition. Note that we use here the bottleneck variant which has an extra bottleneck layer. When putting together two consecutive ResNet blocks that use this unit, one should use stride = 2 in the last unit of the first block. Args: inputs: A tensor of size [batch, height, width, channels]. depth: The depth of the ResNet unit output. depth_bottleneck: The depth of the bottleneck layers. stride: The ResNet unit's stride. Determines the amount of downsampling of the units output compared to its input. rate: An integer, rate for atrous convolution. outputs_collections: Collection to add the ResNet unit output. scope: Optional variable_scope. Returns: The ResNet unit's output. """ with variable_scope.variable_scope(scope, 'bottleneck_v1', [inputs]) as sc: depth_in = utils.last_dimension(inputs.get_shape(), min_rank=4) if depth == depth_in: shortcut = resnet_utils.subsample(inputs, stride, 'shortcut') else: shortcut = layers.conv2d( inputs, depth, [1, 1], stride=stride, activation_fn=None, scope='shortcut') residual = layers.conv2d( inputs, depth_bottleneck, [1, 1], stride=1, scope='conv1') residual = resnet_utils.conv2d_same( residual, depth_bottleneck, 3, stride, rate=rate, scope='conv2') residual = layers.conv2d( residual, depth, [1, 1], stride=1, activation_fn=None, scope='conv3') output = nn_ops.relu(shortcut + residual) return utils.collect_named_outputs(outputs_collections, sc.name, output) def resnet_v1(inputs, blocks, num_classes=None, is_training=True, global_pool=True, output_stride=None, include_root_block=True, reuse=None, scope=None): """Generator for v1 ResNet models. This function generates a family of ResNet v1 models. See the resnet_v1_*() methods for specific model instantiations, obtained by selecting different block instantiations that produce ResNets of various depths. Training for image classification on Imagenet is usually done with [224, 224] inputs, resulting in [7, 7] feature maps at the output of the last ResNet block for the ResNets defined in [1] that have nominal stride equal to 32. However, for dense prediction tasks we advise that one uses inputs with spatial dimensions that are multiples of 32 plus 1, e.g., [321, 321]. In this case the feature maps at the ResNet output will have spatial shape [(height - 1) / output_stride + 1, (width - 1) / output_stride + 1] and corners exactly aligned with the input image corners, which greatly facilitates alignment of the features to the image. Using as input [225, 225] images results in [8, 8] feature maps at the output of the last ResNet block. For dense prediction tasks, the ResNet needs to run in fully-convolutional (FCN) mode and global_pool needs to be set to False. The ResNets in [1, 2] all have nominal stride equal to 32 and a good choice in FCN mode is to use output_stride=16 in order to increase the density of the computed features at small computational and memory overhead, cf. http://arxiv.org/abs/1606.00915. Args: inputs: A tensor of size [batch, height_in, width_in, channels]. blocks: A list of length equal to the number of ResNet blocks. Each element is a resnet_utils.Block object describing the units in the block. num_classes: Number of predicted classes for classification tasks. If None we return the features before the logit layer. is_training: whether batch_norm layers are in training mode. global_pool: If True, we perform global average pooling before computing the logits. Set to True for image classification, False for dense prediction. output_stride: If None, then the output will be computed at the nominal network stride. If output_stride is not None, it specifies the requested ratio of input to output spatial resolution. include_root_block: If True, include the initial convolution followed by max-pooling, if False excludes it. reuse: whether or not the network and its variables should be reused. To be able to reuse 'scope' must be given. scope: Optional variable_scope. Returns: net: A rank-4 tensor of size [batch, height_out, width_out, channels_out]. If global_pool is False, then height_out and width_out are reduced by a factor of output_stride compared to the respective height_in and width_in, else both height_out and width_out equal one. If num_classes is None, then net is the output of the last ResNet block, potentially after global average pooling. If num_classes is not None, net contains the pre-softmax activations. end_points: A dictionary from components of the network to the corresponding activation. Raises: ValueError: If the target output_stride is not valid. """ with variable_scope.variable_scope( scope, 'resnet_v1', [inputs], reuse=reuse) as sc: end_points_collection = sc.original_name_scope + '_end_points' with arg_scope( [layers.conv2d, bottleneck, resnet_utils.stack_blocks_dense], outputs_collections=end_points_collection): with arg_scope([layers.batch_norm], is_training=is_training): net = inputs if include_root_block: if output_stride is not None: if output_stride % 4 != 0: raise ValueError('The output_stride needs to be a multiple of 4.') output_stride /= 4 net = resnet_utils.conv2d_same(net, 64, 7, stride=2, scope='conv1') net = layers_lib.max_pool2d(net, [3, 3], stride=2, scope='pool1') net = resnet_utils.stack_blocks_dense(net, blocks, output_stride) if global_pool: # Global average pooling. net = math_ops.reduce_mean(net, [1, 2], name='pool5', keepdims=True) if num_classes is not None: net = layers.conv2d( net, num_classes, [1, 1], activation_fn=None, normalizer_fn=None, scope='logits') # Convert end_points_collection into a dictionary of end_points. end_points = utils.convert_collection_to_dict(end_points_collection) if num_classes is not None: end_points['predictions'] = layers_lib.softmax( net, scope='predictions') return net, end_points resnet_v1.default_image_size = 224 def resnet_v1_block(scope, base_depth, num_units, stride): """Helper function for creating a resnet_v1 bottleneck block. Args: scope: The scope of the block. base_depth: The depth of the bottleneck layer for each unit. num_units: The number of units in the block. stride: The stride of the block, implemented as a stride in the last unit. All other units have stride=1. Returns: A resnet_v1 bottleneck block. """ return resnet_utils.Block(scope, bottleneck, [{ 'depth': base_depth * 4, 'depth_bottleneck': base_depth, 'stride': 1 }] * (num_units - 1) + [{ 'depth': base_depth * 4, 'depth_bottleneck': base_depth, 'stride': stride }]) def resnet_v1_50(inputs, num_classes=None, is_training=True, global_pool=True, output_stride=None, reuse=None, scope='resnet_v1_50'): """ResNet-50 model of [1]. See resnet_v1() for arg and return description.""" blocks = [ resnet_v1_block('block1', base_depth=64, num_units=3, stride=2), resnet_v1_block('block2', base_depth=128, num_units=4, stride=2), resnet_v1_block('block3', base_depth=256, num_units=6, stride=2), resnet_v1_block('block4', base_depth=512, num_units=3, stride=1), ] return resnet_v1( inputs, blocks, num_classes, is_training, global_pool, output_stride, include_root_block=True, reuse=reuse, scope=scope) def resnet_v1_101(inputs, num_classes=None, is_training=True, global_pool=True, output_stride=None, reuse=None, scope='resnet_v1_101'): """ResNet-101 model of [1]. See resnet_v1() for arg and return description.""" blocks = [ resnet_v1_block('block1', base_depth=64, num_units=3, stride=2), resnet_v1_block('block2', base_depth=128, num_units=4, stride=2), resnet_v1_block('block3', base_depth=256, num_units=23, stride=2), resnet_v1_block('block4', base_depth=512, num_units=3, stride=1), ] return resnet_v1( inputs, blocks, num_classes, is_training, global_pool, output_stride, include_root_block=True, reuse=reuse, scope=scope) def resnet_v1_152(inputs, num_classes=None, is_training=True, global_pool=True, output_stride=None, reuse=None, scope='resnet_v1_152'): """ResNet-152 model of [1]. See resnet_v1() for arg and return description.""" blocks = [ resnet_v1_block('block1', base_depth=64, num_units=3, stride=2), resnet_v1_block('block2', base_depth=128, num_units=8, stride=2), resnet_v1_block('block3', base_depth=256, num_units=36, stride=2), resnet_v1_block('block4', base_depth=512, num_units=3, stride=1), ] return resnet_v1( inputs, blocks, num_classes, is_training, global_pool, output_stride, include_root_block=True, reuse=reuse, scope=scope) def resnet_v1_200(inputs, num_classes=None, is_training=True, global_pool=True, output_stride=None, reuse=None, scope='resnet_v1_200'): """ResNet-200 model of [2]. See resnet_v1() for arg and return description.""" blocks = [ resnet_v1_block('block1', base_depth=64, num_units=3, stride=2), resnet_v1_block('block2', base_depth=128, num_units=24, stride=2), resnet_v1_block('block3', base_depth=256, num_units=36, stride=2), resnet_v1_block('block4', base_depth=512, num_units=3, stride=1), ] return resnet_v1( inputs, blocks, num_classes, is_training, global_pool, output_stride, include_root_block=True, reuse=reuse, scope=scope)
tensorflow-master
tensorflow/contrib/slim/python/slim/nets/resnet_v1.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Contains model definitions for versions of the Oxford VGG network. These model definitions were introduced in the following technical report: Very Deep Convolutional Networks For Large-Scale Image Recognition Karen Simonyan and Andrew Zisserman arXiv technical report, 2015 PDF: http://arxiv.org/pdf/1409.1556.pdf ILSVRC 2014 Slides: http://www.robots.ox.ac.uk/~karen/pdf/ILSVRC_2014.pdf CC-BY-4.0 More information can be obtained from the VGG website: www.robots.ox.ac.uk/~vgg/research/very_deep/ Usage: with slim.arg_scope(vgg.vgg_arg_scope()): outputs, end_points = vgg.vgg_a(inputs) with slim.arg_scope(vgg.vgg_arg_scope()): outputs, end_points = vgg.vgg_16(inputs) @@vgg_a @@vgg_16 @@vgg_19 """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib import layers from tensorflow.contrib.framework.python.ops import arg_scope from tensorflow.contrib.layers.python.layers import layers as layers_lib from tensorflow.contrib.layers.python.layers import regularizers from tensorflow.contrib.layers.python.layers import utils from tensorflow.python.ops import array_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import nn_ops from tensorflow.python.ops import variable_scope def vgg_arg_scope(weight_decay=0.0005): """Defines the VGG arg scope. Args: weight_decay: The l2 regularization coefficient. Returns: An arg_scope. """ with arg_scope( [layers.conv2d, layers_lib.fully_connected], activation_fn=nn_ops.relu, weights_regularizer=regularizers.l2_regularizer(weight_decay), biases_initializer=init_ops.zeros_initializer()): with arg_scope([layers.conv2d], padding='SAME') as arg_sc: return arg_sc def vgg_a(inputs, num_classes=1000, is_training=True, dropout_keep_prob=0.5, spatial_squeeze=True, scope='vgg_a'): """Oxford Net VGG 11-Layers version A Example. Note: All the fully_connected layers have been transformed to conv2d layers. To use in classification mode, resize input to 224x224. Args: inputs: a tensor of size [batch_size, height, width, channels]. num_classes: number of predicted classes. is_training: whether or not the model is being trained. dropout_keep_prob: the probability that activations are kept in the dropout layers during training. spatial_squeeze: whether or not should squeeze the spatial dimensions of the outputs. Useful to remove unnecessary dimensions for classification. scope: Optional scope for the variables. Returns: the last op containing the log predictions and end_points dict. """ with variable_scope.variable_scope(scope, 'vgg_a', [inputs]) as sc: end_points_collection = sc.original_name_scope + '_end_points' # Collect outputs for conv2d, fully_connected and max_pool2d. with arg_scope( [layers.conv2d, layers_lib.max_pool2d], outputs_collections=end_points_collection): net = layers_lib.repeat( inputs, 1, layers.conv2d, 64, [3, 3], scope='conv1') net = layers_lib.max_pool2d(net, [2, 2], scope='pool1') net = layers_lib.repeat(net, 1, layers.conv2d, 128, [3, 3], scope='conv2') net = layers_lib.max_pool2d(net, [2, 2], scope='pool2') net = layers_lib.repeat(net, 2, layers.conv2d, 256, [3, 3], scope='conv3') net = layers_lib.max_pool2d(net, [2, 2], scope='pool3') net = layers_lib.repeat(net, 2, layers.conv2d, 512, [3, 3], scope='conv4') net = layers_lib.max_pool2d(net, [2, 2], scope='pool4') net = layers_lib.repeat(net, 2, layers.conv2d, 512, [3, 3], scope='conv5') net = layers_lib.max_pool2d(net, [2, 2], scope='pool5') # Use conv2d instead of fully_connected layers. net = layers.conv2d(net, 4096, [7, 7], padding='VALID', scope='fc6') net = layers_lib.dropout( net, dropout_keep_prob, is_training=is_training, scope='dropout6') net = layers.conv2d(net, 4096, [1, 1], scope='fc7') net = layers_lib.dropout( net, dropout_keep_prob, is_training=is_training, scope='dropout7') net = layers.conv2d( net, num_classes, [1, 1], activation_fn=None, normalizer_fn=None, scope='fc8') # Convert end_points_collection into a end_point dict. end_points = utils.convert_collection_to_dict(end_points_collection) if spatial_squeeze: net = array_ops.squeeze(net, [1, 2], name='fc8/squeezed') end_points[sc.name + '/fc8'] = net return net, end_points vgg_a.default_image_size = 224 def vgg_16(inputs, num_classes=1000, is_training=True, dropout_keep_prob=0.5, spatial_squeeze=True, scope='vgg_16'): """Oxford Net VGG 16-Layers version D Example. Note: All the fully_connected layers have been transformed to conv2d layers. To use in classification mode, resize input to 224x224. Args: inputs: a tensor of size [batch_size, height, width, channels]. num_classes: number of predicted classes. is_training: whether or not the model is being trained. dropout_keep_prob: the probability that activations are kept in the dropout layers during training. spatial_squeeze: whether or not should squeeze the spatial dimensions of the outputs. Useful to remove unnecessary dimensions for classification. scope: Optional scope for the variables. Returns: the last op containing the log predictions and end_points dict. """ with variable_scope.variable_scope(scope, 'vgg_16', [inputs]) as sc: end_points_collection = sc.original_name_scope + '_end_points' # Collect outputs for conv2d, fully_connected and max_pool2d. with arg_scope( [layers.conv2d, layers_lib.fully_connected, layers_lib.max_pool2d], outputs_collections=end_points_collection): net = layers_lib.repeat( inputs, 2, layers.conv2d, 64, [3, 3], scope='conv1') net = layers_lib.max_pool2d(net, [2, 2], scope='pool1') net = layers_lib.repeat(net, 2, layers.conv2d, 128, [3, 3], scope='conv2') net = layers_lib.max_pool2d(net, [2, 2], scope='pool2') net = layers_lib.repeat(net, 3, layers.conv2d, 256, [3, 3], scope='conv3') net = layers_lib.max_pool2d(net, [2, 2], scope='pool3') net = layers_lib.repeat(net, 3, layers.conv2d, 512, [3, 3], scope='conv4') net = layers_lib.max_pool2d(net, [2, 2], scope='pool4') net = layers_lib.repeat(net, 3, layers.conv2d, 512, [3, 3], scope='conv5') net = layers_lib.max_pool2d(net, [2, 2], scope='pool5') # Use conv2d instead of fully_connected layers. net = layers.conv2d(net, 4096, [7, 7], padding='VALID', scope='fc6') net = layers_lib.dropout( net, dropout_keep_prob, is_training=is_training, scope='dropout6') net = layers.conv2d(net, 4096, [1, 1], scope='fc7') net = layers_lib.dropout( net, dropout_keep_prob, is_training=is_training, scope='dropout7') net = layers.conv2d( net, num_classes, [1, 1], activation_fn=None, normalizer_fn=None, scope='fc8') # Convert end_points_collection into a end_point dict. end_points = utils.convert_collection_to_dict(end_points_collection) if spatial_squeeze: net = array_ops.squeeze(net, [1, 2], name='fc8/squeezed') end_points[sc.name + '/fc8'] = net return net, end_points vgg_16.default_image_size = 224 def vgg_19(inputs, num_classes=1000, is_training=True, dropout_keep_prob=0.5, spatial_squeeze=True, scope='vgg_19'): """Oxford Net VGG 19-Layers version E Example. Note: All the fully_connected layers have been transformed to conv2d layers. To use in classification mode, resize input to 224x224. Args: inputs: a tensor of size [batch_size, height, width, channels]. num_classes: number of predicted classes. is_training: whether or not the model is being trained. dropout_keep_prob: the probability that activations are kept in the dropout layers during training. spatial_squeeze: whether or not should squeeze the spatial dimensions of the outputs. Useful to remove unnecessary dimensions for classification. scope: Optional scope for the variables. Returns: the last op containing the log predictions and end_points dict. """ with variable_scope.variable_scope(scope, 'vgg_19', [inputs]) as sc: end_points_collection = sc.name + '_end_points' # Collect outputs for conv2d, fully_connected and max_pool2d. with arg_scope( [layers.conv2d, layers_lib.fully_connected, layers_lib.max_pool2d], outputs_collections=end_points_collection): net = layers_lib.repeat( inputs, 2, layers.conv2d, 64, [3, 3], scope='conv1') net = layers_lib.max_pool2d(net, [2, 2], scope='pool1') net = layers_lib.repeat(net, 2, layers.conv2d, 128, [3, 3], scope='conv2') net = layers_lib.max_pool2d(net, [2, 2], scope='pool2') net = layers_lib.repeat(net, 4, layers.conv2d, 256, [3, 3], scope='conv3') net = layers_lib.max_pool2d(net, [2, 2], scope='pool3') net = layers_lib.repeat(net, 4, layers.conv2d, 512, [3, 3], scope='conv4') net = layers_lib.max_pool2d(net, [2, 2], scope='pool4') net = layers_lib.repeat(net, 4, layers.conv2d, 512, [3, 3], scope='conv5') net = layers_lib.max_pool2d(net, [2, 2], scope='pool5') # Use conv2d instead of fully_connected layers. net = layers.conv2d(net, 4096, [7, 7], padding='VALID', scope='fc6') net = layers_lib.dropout( net, dropout_keep_prob, is_training=is_training, scope='dropout6') net = layers.conv2d(net, 4096, [1, 1], scope='fc7') net = layers_lib.dropout( net, dropout_keep_prob, is_training=is_training, scope='dropout7') net = layers.conv2d( net, num_classes, [1, 1], activation_fn=None, normalizer_fn=None, scope='fc8') # Convert end_points_collection into a end_point dict. end_points = utils.convert_collection_to_dict(end_points_collection) if spatial_squeeze: net = array_ops.squeeze(net, [1, 2], name='fc8/squeezed') end_points[sc.name + '/fc8'] = net return net, end_points vgg_19.default_image_size = 224 # Alias vgg_d = vgg_16 vgg_e = vgg_19
tensorflow-master
tensorflow/contrib/slim/python/slim/nets/vgg.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Contains the definition for inception v1 classification network.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib import layers from tensorflow.contrib.framework.python.ops import arg_scope from tensorflow.contrib.layers.python.layers import initializers from tensorflow.contrib.layers.python.layers import layers as layers_lib from tensorflow.contrib.layers.python.layers import regularizers from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import nn_ops from tensorflow.python.ops import variable_scope trunc_normal = lambda stddev: init_ops.truncated_normal_initializer(0.0, stddev) def inception_v1_base(inputs, final_endpoint='Mixed_5c', scope='InceptionV1'): """Defines the Inception V1 base architecture. This architecture is defined in: Going deeper with convolutions Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich. http://arxiv.org/pdf/1409.4842v1.pdf. Args: inputs: a tensor of size [batch_size, height, width, channels]. final_endpoint: specifies the endpoint to construct the network up to. It can be one of ['Conv2d_1a_7x7', 'MaxPool_2a_3x3', 'Conv2d_2b_1x1', 'Conv2d_2c_3x3', 'MaxPool_3a_3x3', 'Mixed_3b', 'Mixed_3c', 'MaxPool_4a_3x3', 'Mixed_4b', 'Mixed_4c', 'Mixed_4d', 'Mixed_4e', 'Mixed_4f', 'MaxPool_5a_2x2', 'Mixed_5b', 'Mixed_5c'] scope: Optional variable_scope. Returns: A dictionary from components of the network to the corresponding activation. Raises: ValueError: if final_endpoint is not set to one of the predefined values. """ end_points = {} with variable_scope.variable_scope(scope, 'InceptionV1', [inputs]): with arg_scope( [layers.conv2d, layers_lib.fully_connected], weights_initializer=trunc_normal(0.01)): with arg_scope( [layers.conv2d, layers_lib.max_pool2d], stride=1, padding='SAME'): end_point = 'Conv2d_1a_7x7' net = layers.conv2d(inputs, 64, [7, 7], stride=2, scope=end_point) end_points[end_point] = net if final_endpoint == end_point: return net, end_points end_point = 'MaxPool_2a_3x3' net = layers_lib.max_pool2d(net, [3, 3], stride=2, scope=end_point) end_points[end_point] = net if final_endpoint == end_point: return net, end_points end_point = 'Conv2d_2b_1x1' net = layers.conv2d(net, 64, [1, 1], scope=end_point) end_points[end_point] = net if final_endpoint == end_point: return net, end_points end_point = 'Conv2d_2c_3x3' net = layers.conv2d(net, 192, [3, 3], scope=end_point) end_points[end_point] = net if final_endpoint == end_point: return net, end_points end_point = 'MaxPool_3a_3x3' net = layers_lib.max_pool2d(net, [3, 3], stride=2, scope=end_point) end_points[end_point] = net if final_endpoint == end_point: return net, end_points end_point = 'Mixed_3b' with variable_scope.variable_scope(end_point): with variable_scope.variable_scope('Branch_0'): branch_0 = layers.conv2d(net, 64, [1, 1], scope='Conv2d_0a_1x1') with variable_scope.variable_scope('Branch_1'): branch_1 = layers.conv2d(net, 96, [1, 1], scope='Conv2d_0a_1x1') branch_1 = layers.conv2d( branch_1, 128, [3, 3], scope='Conv2d_0b_3x3') with variable_scope.variable_scope('Branch_2'): branch_2 = layers.conv2d(net, 16, [1, 1], scope='Conv2d_0a_1x1') branch_2 = layers.conv2d( branch_2, 32, [3, 3], scope='Conv2d_0b_3x3') with variable_scope.variable_scope('Branch_3'): branch_3 = layers_lib.max_pool2d( net, [3, 3], scope='MaxPool_0a_3x3') branch_3 = layers.conv2d( branch_3, 32, [1, 1], scope='Conv2d_0b_1x1') net = array_ops.concat([branch_0, branch_1, branch_2, branch_3], 3) end_points[end_point] = net if final_endpoint == end_point: return net, end_points end_point = 'Mixed_3c' with variable_scope.variable_scope(end_point): with variable_scope.variable_scope('Branch_0'): branch_0 = layers.conv2d(net, 128, [1, 1], scope='Conv2d_0a_1x1') with variable_scope.variable_scope('Branch_1'): branch_1 = layers.conv2d(net, 128, [1, 1], scope='Conv2d_0a_1x1') branch_1 = layers.conv2d( branch_1, 192, [3, 3], scope='Conv2d_0b_3x3') with variable_scope.variable_scope('Branch_2'): branch_2 = layers.conv2d(net, 32, [1, 1], scope='Conv2d_0a_1x1') branch_2 = layers.conv2d( branch_2, 96, [3, 3], scope='Conv2d_0b_3x3') with variable_scope.variable_scope('Branch_3'): branch_3 = layers_lib.max_pool2d( net, [3, 3], scope='MaxPool_0a_3x3') branch_3 = layers.conv2d( branch_3, 64, [1, 1], scope='Conv2d_0b_1x1') net = array_ops.concat([branch_0, branch_1, branch_2, branch_3], 3) end_points[end_point] = net if final_endpoint == end_point: return net, end_points end_point = 'MaxPool_4a_3x3' net = layers_lib.max_pool2d(net, [3, 3], stride=2, scope=end_point) end_points[end_point] = net if final_endpoint == end_point: return net, end_points end_point = 'Mixed_4b' with variable_scope.variable_scope(end_point): with variable_scope.variable_scope('Branch_0'): branch_0 = layers.conv2d(net, 192, [1, 1], scope='Conv2d_0a_1x1') with variable_scope.variable_scope('Branch_1'): branch_1 = layers.conv2d(net, 96, [1, 1], scope='Conv2d_0a_1x1') branch_1 = layers.conv2d( branch_1, 208, [3, 3], scope='Conv2d_0b_3x3') with variable_scope.variable_scope('Branch_2'): branch_2 = layers.conv2d(net, 16, [1, 1], scope='Conv2d_0a_1x1') branch_2 = layers.conv2d( branch_2, 48, [3, 3], scope='Conv2d_0b_3x3') with variable_scope.variable_scope('Branch_3'): branch_3 = layers_lib.max_pool2d( net, [3, 3], scope='MaxPool_0a_3x3') branch_3 = layers.conv2d( branch_3, 64, [1, 1], scope='Conv2d_0b_1x1') net = array_ops.concat([branch_0, branch_1, branch_2, branch_3], 3) end_points[end_point] = net if final_endpoint == end_point: return net, end_points end_point = 'Mixed_4c' with variable_scope.variable_scope(end_point): with variable_scope.variable_scope('Branch_0'): branch_0 = layers.conv2d(net, 160, [1, 1], scope='Conv2d_0a_1x1') with variable_scope.variable_scope('Branch_1'): branch_1 = layers.conv2d(net, 112, [1, 1], scope='Conv2d_0a_1x1') branch_1 = layers.conv2d( branch_1, 224, [3, 3], scope='Conv2d_0b_3x3') with variable_scope.variable_scope('Branch_2'): branch_2 = layers.conv2d(net, 24, [1, 1], scope='Conv2d_0a_1x1') branch_2 = layers.conv2d( branch_2, 64, [3, 3], scope='Conv2d_0b_3x3') with variable_scope.variable_scope('Branch_3'): branch_3 = layers_lib.max_pool2d( net, [3, 3], scope='MaxPool_0a_3x3') branch_3 = layers.conv2d( branch_3, 64, [1, 1], scope='Conv2d_0b_1x1') net = array_ops.concat([branch_0, branch_1, branch_2, branch_3], 3) end_points[end_point] = net if final_endpoint == end_point: return net, end_points end_point = 'Mixed_4d' with variable_scope.variable_scope(end_point): with variable_scope.variable_scope('Branch_0'): branch_0 = layers.conv2d(net, 128, [1, 1], scope='Conv2d_0a_1x1') with variable_scope.variable_scope('Branch_1'): branch_1 = layers.conv2d(net, 128, [1, 1], scope='Conv2d_0a_1x1') branch_1 = layers.conv2d( branch_1, 256, [3, 3], scope='Conv2d_0b_3x3') with variable_scope.variable_scope('Branch_2'): branch_2 = layers.conv2d(net, 24, [1, 1], scope='Conv2d_0a_1x1') branch_2 = layers.conv2d( branch_2, 64, [3, 3], scope='Conv2d_0b_3x3') with variable_scope.variable_scope('Branch_3'): branch_3 = layers_lib.max_pool2d( net, [3, 3], scope='MaxPool_0a_3x3') branch_3 = layers.conv2d( branch_3, 64, [1, 1], scope='Conv2d_0b_1x1') net = array_ops.concat([branch_0, branch_1, branch_2, branch_3], 3) end_points[end_point] = net if final_endpoint == end_point: return net, end_points end_point = 'Mixed_4e' with variable_scope.variable_scope(end_point): with variable_scope.variable_scope('Branch_0'): branch_0 = layers.conv2d(net, 112, [1, 1], scope='Conv2d_0a_1x1') with variable_scope.variable_scope('Branch_1'): branch_1 = layers.conv2d(net, 144, [1, 1], scope='Conv2d_0a_1x1') branch_1 = layers.conv2d( branch_1, 288, [3, 3], scope='Conv2d_0b_3x3') with variable_scope.variable_scope('Branch_2'): branch_2 = layers.conv2d(net, 32, [1, 1], scope='Conv2d_0a_1x1') branch_2 = layers.conv2d( branch_2, 64, [3, 3], scope='Conv2d_0b_3x3') with variable_scope.variable_scope('Branch_3'): branch_3 = layers_lib.max_pool2d( net, [3, 3], scope='MaxPool_0a_3x3') branch_3 = layers.conv2d( branch_3, 64, [1, 1], scope='Conv2d_0b_1x1') net = array_ops.concat([branch_0, branch_1, branch_2, branch_3], 3) end_points[end_point] = net if final_endpoint == end_point: return net, end_points end_point = 'Mixed_4f' with variable_scope.variable_scope(end_point): with variable_scope.variable_scope('Branch_0'): branch_0 = layers.conv2d(net, 256, [1, 1], scope='Conv2d_0a_1x1') with variable_scope.variable_scope('Branch_1'): branch_1 = layers.conv2d(net, 160, [1, 1], scope='Conv2d_0a_1x1') branch_1 = layers.conv2d( branch_1, 320, [3, 3], scope='Conv2d_0b_3x3') with variable_scope.variable_scope('Branch_2'): branch_2 = layers.conv2d(net, 32, [1, 1], scope='Conv2d_0a_1x1') branch_2 = layers.conv2d( branch_2, 128, [3, 3], scope='Conv2d_0b_3x3') with variable_scope.variable_scope('Branch_3'): branch_3 = layers_lib.max_pool2d( net, [3, 3], scope='MaxPool_0a_3x3') branch_3 = layers.conv2d( branch_3, 128, [1, 1], scope='Conv2d_0b_1x1') net = array_ops.concat([branch_0, branch_1, branch_2, branch_3], 3) end_points[end_point] = net if final_endpoint == end_point: return net, end_points end_point = 'MaxPool_5a_2x2' net = layers_lib.max_pool2d(net, [2, 2], stride=2, scope=end_point) end_points[end_point] = net if final_endpoint == end_point: return net, end_points end_point = 'Mixed_5b' with variable_scope.variable_scope(end_point): with variable_scope.variable_scope('Branch_0'): branch_0 = layers.conv2d(net, 256, [1, 1], scope='Conv2d_0a_1x1') with variable_scope.variable_scope('Branch_1'): branch_1 = layers.conv2d(net, 160, [1, 1], scope='Conv2d_0a_1x1') branch_1 = layers.conv2d( branch_1, 320, [3, 3], scope='Conv2d_0b_3x3') with variable_scope.variable_scope('Branch_2'): branch_2 = layers.conv2d(net, 32, [1, 1], scope='Conv2d_0a_1x1') branch_2 = layers.conv2d( branch_2, 128, [3, 3], scope='Conv2d_0a_3x3') with variable_scope.variable_scope('Branch_3'): branch_3 = layers_lib.max_pool2d( net, [3, 3], scope='MaxPool_0a_3x3') branch_3 = layers.conv2d( branch_3, 128, [1, 1], scope='Conv2d_0b_1x1') net = array_ops.concat([branch_0, branch_1, branch_2, branch_3], 3) end_points[end_point] = net if final_endpoint == end_point: return net, end_points end_point = 'Mixed_5c' with variable_scope.variable_scope(end_point): with variable_scope.variable_scope('Branch_0'): branch_0 = layers.conv2d(net, 384, [1, 1], scope='Conv2d_0a_1x1') with variable_scope.variable_scope('Branch_1'): branch_1 = layers.conv2d(net, 192, [1, 1], scope='Conv2d_0a_1x1') branch_1 = layers.conv2d( branch_1, 384, [3, 3], scope='Conv2d_0b_3x3') with variable_scope.variable_scope('Branch_2'): branch_2 = layers.conv2d(net, 48, [1, 1], scope='Conv2d_0a_1x1') branch_2 = layers.conv2d( branch_2, 128, [3, 3], scope='Conv2d_0b_3x3') with variable_scope.variable_scope('Branch_3'): branch_3 = layers_lib.max_pool2d( net, [3, 3], scope='MaxPool_0a_3x3') branch_3 = layers.conv2d( branch_3, 128, [1, 1], scope='Conv2d_0b_1x1') net = array_ops.concat([branch_0, branch_1, branch_2, branch_3], 3) end_points[end_point] = net if final_endpoint == end_point: return net, end_points raise ValueError('Unknown final endpoint %s' % final_endpoint) def inception_v1(inputs, num_classes=1000, is_training=True, dropout_keep_prob=0.8, prediction_fn=layers_lib.softmax, spatial_squeeze=True, reuse=None, scope='InceptionV1'): """Defines the Inception V1 architecture. This architecture is defined in: Going deeper with convolutions Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich. http://arxiv.org/pdf/1409.4842v1.pdf. The default image size used to train this network is 224x224. Args: inputs: a tensor of size [batch_size, height, width, channels]. num_classes: number of predicted classes. is_training: whether is training or not. dropout_keep_prob: the percentage of activation values that are retained. prediction_fn: a function to get predictions out of logits. spatial_squeeze: if True, logits is of shape is [B, C], if false logits is of shape [B, 1, 1, C], where B is batch_size and C is number of classes. reuse: whether or not the network and its variables should be reused. To be able to reuse 'scope' must be given. scope: Optional variable_scope. Returns: logits: the pre-softmax activations, a tensor of size [batch_size, num_classes] end_points: a dictionary from components of the network to the corresponding activation. """ # Final pooling and prediction with variable_scope.variable_scope( scope, 'InceptionV1', [inputs, num_classes], reuse=reuse) as scope: with arg_scope( [layers_lib.batch_norm, layers_lib.dropout], is_training=is_training): net, end_points = inception_v1_base(inputs, scope=scope) with variable_scope.variable_scope('Logits'): net = layers_lib.avg_pool2d( net, [7, 7], stride=1, scope='MaxPool_0a_7x7') net = layers_lib.dropout(net, dropout_keep_prob, scope='Dropout_0b') logits = layers.conv2d( net, num_classes, [1, 1], activation_fn=None, normalizer_fn=None, scope='Conv2d_0c_1x1') if spatial_squeeze: logits = array_ops.squeeze(logits, [1, 2], name='SpatialSqueeze') end_points['Logits'] = logits end_points['Predictions'] = prediction_fn(logits, scope='Predictions') return logits, end_points inception_v1.default_image_size = 224 def inception_v1_arg_scope(weight_decay=0.00004, use_batch_norm=True, batch_norm_var_collection='moving_vars'): """Defines the default InceptionV1 arg scope. Note: Althougth the original paper didn't use batch_norm we found it useful. Args: weight_decay: The weight decay to use for regularizing the model. use_batch_norm: "If `True`, batch_norm is applied after each convolution. batch_norm_var_collection: The name of the collection for the batch norm variables. Returns: An `arg_scope` to use for the inception v3 model. """ batch_norm_params = { # Decay for the moving averages. 'decay': 0.9997, # epsilon to prevent 0s in variance. 'epsilon': 0.001, # collection containing update_ops. 'updates_collections': ops.GraphKeys.UPDATE_OPS, # collection containing the moving mean and moving variance. 'variables_collections': { 'beta': None, 'gamma': None, 'moving_mean': [batch_norm_var_collection], 'moving_variance': [batch_norm_var_collection], } } if use_batch_norm: normalizer_fn = layers_lib.batch_norm normalizer_params = batch_norm_params else: normalizer_fn = None normalizer_params = {} # Set weight_decay for weights in Conv and FC layers. with arg_scope( [layers.conv2d, layers_lib.fully_connected], weights_regularizer=regularizers.l2_regularizer(weight_decay)): with arg_scope( [layers.conv2d], weights_initializer=initializers.variance_scaling_initializer(), activation_fn=nn_ops.relu, normalizer_fn=normalizer_fn, normalizer_params=normalizer_params) as sc: return sc
tensorflow-master
tensorflow/contrib/slim/python/slim/nets/inception_v1.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for slim.nets.vgg.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.framework.python.ops import variables as variables_lib from tensorflow.contrib.slim.python.slim.nets import vgg from tensorflow.python.framework import ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import random_ops from tensorflow.python.ops import variable_scope from tensorflow.python.ops import variables from tensorflow.python.platform import test class VGGATest(test.TestCase): def testBuild(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 with self.cached_session(): inputs = random_ops.random_uniform((batch_size, height, width, 3)) logits, _ = vgg.vgg_a(inputs, num_classes) self.assertEquals(logits.op.name, 'vgg_a/fc8/squeezed') self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) def testFullyConvolutional(self): batch_size = 1 height, width = 256, 256 num_classes = 1000 with self.cached_session(): inputs = random_ops.random_uniform((batch_size, height, width, 3)) logits, _ = vgg.vgg_a(inputs, num_classes, spatial_squeeze=False) self.assertEquals(logits.op.name, 'vgg_a/fc8/BiasAdd') self.assertListEqual(logits.get_shape().as_list(), [batch_size, 2, 2, num_classes]) def testEndPoints(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 for is_training in [True, False]: with ops.Graph().as_default(): inputs = random_ops.random_uniform((batch_size, height, width, 3)) _, end_points = vgg.vgg_a(inputs, num_classes, is_training=is_training) expected_names = [ 'vgg_a/conv1/conv1_1', 'vgg_a/pool1', 'vgg_a/conv2/conv2_1', 'vgg_a/pool2', 'vgg_a/conv3/conv3_1', 'vgg_a/conv3/conv3_2', 'vgg_a/pool3', 'vgg_a/conv4/conv4_1', 'vgg_a/conv4/conv4_2', 'vgg_a/pool4', 'vgg_a/conv5/conv5_1', 'vgg_a/conv5/conv5_2', 'vgg_a/pool5', 'vgg_a/fc6', 'vgg_a/fc7', 'vgg_a/fc8' ] self.assertSetEqual(set(end_points.keys()), set(expected_names)) def testModelVariables(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 with self.cached_session(): inputs = random_ops.random_uniform((batch_size, height, width, 3)) vgg.vgg_a(inputs, num_classes) expected_names = [ 'vgg_a/conv1/conv1_1/weights', 'vgg_a/conv1/conv1_1/biases', 'vgg_a/conv2/conv2_1/weights', 'vgg_a/conv2/conv2_1/biases', 'vgg_a/conv3/conv3_1/weights', 'vgg_a/conv3/conv3_1/biases', 'vgg_a/conv3/conv3_2/weights', 'vgg_a/conv3/conv3_2/biases', 'vgg_a/conv4/conv4_1/weights', 'vgg_a/conv4/conv4_1/biases', 'vgg_a/conv4/conv4_2/weights', 'vgg_a/conv4/conv4_2/biases', 'vgg_a/conv5/conv5_1/weights', 'vgg_a/conv5/conv5_1/biases', 'vgg_a/conv5/conv5_2/weights', 'vgg_a/conv5/conv5_2/biases', 'vgg_a/fc6/weights', 'vgg_a/fc6/biases', 'vgg_a/fc7/weights', 'vgg_a/fc7/biases', 'vgg_a/fc8/weights', 'vgg_a/fc8/biases', ] model_variables = [v.op.name for v in variables_lib.get_model_variables()] self.assertSetEqual(set(model_variables), set(expected_names)) def testEvaluation(self): batch_size = 2 height, width = 224, 224 num_classes = 1000 with self.cached_session(): eval_inputs = random_ops.random_uniform((batch_size, height, width, 3)) logits, _ = vgg.vgg_a(eval_inputs, is_training=False) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) predictions = math_ops.argmax(logits, 1) self.assertListEqual(predictions.get_shape().as_list(), [batch_size]) def testTrainEvalWithReuse(self): train_batch_size = 2 eval_batch_size = 1 train_height, train_width = 224, 224 eval_height, eval_width = 256, 256 num_classes = 1000 with self.cached_session(): train_inputs = random_ops.random_uniform( (train_batch_size, train_height, train_width, 3)) logits, _ = vgg.vgg_a(train_inputs) self.assertListEqual(logits.get_shape().as_list(), [train_batch_size, num_classes]) variable_scope.get_variable_scope().reuse_variables() eval_inputs = random_ops.random_uniform( (eval_batch_size, eval_height, eval_width, 3)) logits, _ = vgg.vgg_a( eval_inputs, is_training=False, spatial_squeeze=False) self.assertListEqual(logits.get_shape().as_list(), [eval_batch_size, 2, 2, num_classes]) logits = math_ops.reduce_mean(logits, [1, 2]) predictions = math_ops.argmax(logits, 1) self.assertEquals(predictions.get_shape().as_list(), [eval_batch_size]) def testForward(self): batch_size = 1 height, width = 224, 224 with self.cached_session() as sess: inputs = random_ops.random_uniform((batch_size, height, width, 3)) logits, _ = vgg.vgg_a(inputs) sess.run(variables.global_variables_initializer()) output = sess.run(logits) self.assertTrue(output.any()) class VGG16Test(test.TestCase): def testBuild(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 with self.cached_session(): inputs = random_ops.random_uniform((batch_size, height, width, 3)) logits, _ = vgg.vgg_16(inputs, num_classes) self.assertEquals(logits.op.name, 'vgg_16/fc8/squeezed') self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) def testFullyConvolutional(self): batch_size = 1 height, width = 256, 256 num_classes = 1000 with self.cached_session(): inputs = random_ops.random_uniform((batch_size, height, width, 3)) logits, _ = vgg.vgg_16(inputs, num_classes, spatial_squeeze=False) self.assertEquals(logits.op.name, 'vgg_16/fc8/BiasAdd') self.assertListEqual(logits.get_shape().as_list(), [batch_size, 2, 2, num_classes]) def testEndPoints(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 for is_training in [True, False]: with ops.Graph().as_default(): inputs = random_ops.random_uniform((batch_size, height, width, 3)) _, end_points = vgg.vgg_16(inputs, num_classes, is_training=is_training) expected_names = [ 'vgg_16/conv1/conv1_1', 'vgg_16/conv1/conv1_2', 'vgg_16/pool1', 'vgg_16/conv2/conv2_1', 'vgg_16/conv2/conv2_2', 'vgg_16/pool2', 'vgg_16/conv3/conv3_1', 'vgg_16/conv3/conv3_2', 'vgg_16/conv3/conv3_3', 'vgg_16/pool3', 'vgg_16/conv4/conv4_1', 'vgg_16/conv4/conv4_2', 'vgg_16/conv4/conv4_3', 'vgg_16/pool4', 'vgg_16/conv5/conv5_1', 'vgg_16/conv5/conv5_2', 'vgg_16/conv5/conv5_3', 'vgg_16/pool5', 'vgg_16/fc6', 'vgg_16/fc7', 'vgg_16/fc8' ] self.assertSetEqual(set(end_points.keys()), set(expected_names)) def testModelVariables(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 with self.cached_session(): inputs = random_ops.random_uniform((batch_size, height, width, 3)) vgg.vgg_16(inputs, num_classes) expected_names = [ 'vgg_16/conv1/conv1_1/weights', 'vgg_16/conv1/conv1_1/biases', 'vgg_16/conv1/conv1_2/weights', 'vgg_16/conv1/conv1_2/biases', 'vgg_16/conv2/conv2_1/weights', 'vgg_16/conv2/conv2_1/biases', 'vgg_16/conv2/conv2_2/weights', 'vgg_16/conv2/conv2_2/biases', 'vgg_16/conv3/conv3_1/weights', 'vgg_16/conv3/conv3_1/biases', 'vgg_16/conv3/conv3_2/weights', 'vgg_16/conv3/conv3_2/biases', 'vgg_16/conv3/conv3_3/weights', 'vgg_16/conv3/conv3_3/biases', 'vgg_16/conv4/conv4_1/weights', 'vgg_16/conv4/conv4_1/biases', 'vgg_16/conv4/conv4_2/weights', 'vgg_16/conv4/conv4_2/biases', 'vgg_16/conv4/conv4_3/weights', 'vgg_16/conv4/conv4_3/biases', 'vgg_16/conv5/conv5_1/weights', 'vgg_16/conv5/conv5_1/biases', 'vgg_16/conv5/conv5_2/weights', 'vgg_16/conv5/conv5_2/biases', 'vgg_16/conv5/conv5_3/weights', 'vgg_16/conv5/conv5_3/biases', 'vgg_16/fc6/weights', 'vgg_16/fc6/biases', 'vgg_16/fc7/weights', 'vgg_16/fc7/biases', 'vgg_16/fc8/weights', 'vgg_16/fc8/biases', ] model_variables = [v.op.name for v in variables_lib.get_model_variables()] self.assertSetEqual(set(model_variables), set(expected_names)) def testEvaluation(self): batch_size = 2 height, width = 224, 224 num_classes = 1000 with self.cached_session(): eval_inputs = random_ops.random_uniform((batch_size, height, width, 3)) logits, _ = vgg.vgg_16(eval_inputs, is_training=False) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) predictions = math_ops.argmax(logits, 1) self.assertListEqual(predictions.get_shape().as_list(), [batch_size]) def testTrainEvalWithReuse(self): train_batch_size = 2 eval_batch_size = 1 train_height, train_width = 224, 224 eval_height, eval_width = 256, 256 num_classes = 1000 with self.cached_session(): train_inputs = random_ops.random_uniform( (train_batch_size, train_height, train_width, 3)) logits, _ = vgg.vgg_16(train_inputs) self.assertListEqual(logits.get_shape().as_list(), [train_batch_size, num_classes]) variable_scope.get_variable_scope().reuse_variables() eval_inputs = random_ops.random_uniform( (eval_batch_size, eval_height, eval_width, 3)) logits, _ = vgg.vgg_16( eval_inputs, is_training=False, spatial_squeeze=False) self.assertListEqual(logits.get_shape().as_list(), [eval_batch_size, 2, 2, num_classes]) logits = math_ops.reduce_mean(logits, [1, 2]) predictions = math_ops.argmax(logits, 1) self.assertEquals(predictions.get_shape().as_list(), [eval_batch_size]) def testForward(self): batch_size = 1 height, width = 224, 224 with self.cached_session() as sess: inputs = random_ops.random_uniform((batch_size, height, width, 3)) logits, _ = vgg.vgg_16(inputs) sess.run(variables.global_variables_initializer()) output = sess.run(logits) self.assertTrue(output.any()) class VGG19Test(test.TestCase): def testBuild(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 with self.cached_session(): inputs = random_ops.random_uniform((batch_size, height, width, 3)) logits, _ = vgg.vgg_19(inputs, num_classes) self.assertEquals(logits.op.name, 'vgg_19/fc8/squeezed') self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) def testFullyConvolutional(self): batch_size = 1 height, width = 256, 256 num_classes = 1000 with self.cached_session(): inputs = random_ops.random_uniform((batch_size, height, width, 3)) logits, _ = vgg.vgg_19(inputs, num_classes, spatial_squeeze=False) self.assertEquals(logits.op.name, 'vgg_19/fc8/BiasAdd') self.assertListEqual(logits.get_shape().as_list(), [batch_size, 2, 2, num_classes]) def testEndPoints(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 for is_training in [True, False]: with ops.Graph().as_default(): inputs = random_ops.random_uniform((batch_size, height, width, 3)) _, end_points = vgg.vgg_19(inputs, num_classes, is_training=is_training) expected_names = [ 'vgg_19/conv1/conv1_1', 'vgg_19/conv1/conv1_2', 'vgg_19/pool1', 'vgg_19/conv2/conv2_1', 'vgg_19/conv2/conv2_2', 'vgg_19/pool2', 'vgg_19/conv3/conv3_1', 'vgg_19/conv3/conv3_2', 'vgg_19/conv3/conv3_3', 'vgg_19/conv3/conv3_4', 'vgg_19/pool3', 'vgg_19/conv4/conv4_1', 'vgg_19/conv4/conv4_2', 'vgg_19/conv4/conv4_3', 'vgg_19/conv4/conv4_4', 'vgg_19/pool4', 'vgg_19/conv5/conv5_1', 'vgg_19/conv5/conv5_2', 'vgg_19/conv5/conv5_3', 'vgg_19/conv5/conv5_4', 'vgg_19/pool5', 'vgg_19/fc6', 'vgg_19/fc7', 'vgg_19/fc8' ] self.assertSetEqual(set(end_points.keys()), set(expected_names)) def testModelVariables(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 with self.cached_session(): inputs = random_ops.random_uniform((batch_size, height, width, 3)) vgg.vgg_19(inputs, num_classes) expected_names = [ 'vgg_19/conv1/conv1_1/weights', 'vgg_19/conv1/conv1_1/biases', 'vgg_19/conv1/conv1_2/weights', 'vgg_19/conv1/conv1_2/biases', 'vgg_19/conv2/conv2_1/weights', 'vgg_19/conv2/conv2_1/biases', 'vgg_19/conv2/conv2_2/weights', 'vgg_19/conv2/conv2_2/biases', 'vgg_19/conv3/conv3_1/weights', 'vgg_19/conv3/conv3_1/biases', 'vgg_19/conv3/conv3_2/weights', 'vgg_19/conv3/conv3_2/biases', 'vgg_19/conv3/conv3_3/weights', 'vgg_19/conv3/conv3_3/biases', 'vgg_19/conv3/conv3_4/weights', 'vgg_19/conv3/conv3_4/biases', 'vgg_19/conv4/conv4_1/weights', 'vgg_19/conv4/conv4_1/biases', 'vgg_19/conv4/conv4_2/weights', 'vgg_19/conv4/conv4_2/biases', 'vgg_19/conv4/conv4_3/weights', 'vgg_19/conv4/conv4_3/biases', 'vgg_19/conv4/conv4_4/weights', 'vgg_19/conv4/conv4_4/biases', 'vgg_19/conv5/conv5_1/weights', 'vgg_19/conv5/conv5_1/biases', 'vgg_19/conv5/conv5_2/weights', 'vgg_19/conv5/conv5_2/biases', 'vgg_19/conv5/conv5_3/weights', 'vgg_19/conv5/conv5_3/biases', 'vgg_19/conv5/conv5_4/weights', 'vgg_19/conv5/conv5_4/biases', 'vgg_19/fc6/weights', 'vgg_19/fc6/biases', 'vgg_19/fc7/weights', 'vgg_19/fc7/biases', 'vgg_19/fc8/weights', 'vgg_19/fc8/biases', ] model_variables = [v.op.name for v in variables_lib.get_model_variables()] self.assertSetEqual(set(model_variables), set(expected_names)) def testEvaluation(self): batch_size = 2 height, width = 224, 224 num_classes = 1000 with self.cached_session(): eval_inputs = random_ops.random_uniform((batch_size, height, width, 3)) logits, _ = vgg.vgg_19(eval_inputs, is_training=False) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) predictions = math_ops.argmax(logits, 1) self.assertListEqual(predictions.get_shape().as_list(), [batch_size]) def testTrainEvalWithReuse(self): train_batch_size = 2 eval_batch_size = 1 train_height, train_width = 224, 224 eval_height, eval_width = 256, 256 num_classes = 1000 with self.cached_session(): train_inputs = random_ops.random_uniform( (train_batch_size, train_height, train_width, 3)) logits, _ = vgg.vgg_19(train_inputs) self.assertListEqual(logits.get_shape().as_list(), [train_batch_size, num_classes]) variable_scope.get_variable_scope().reuse_variables() eval_inputs = random_ops.random_uniform( (eval_batch_size, eval_height, eval_width, 3)) logits, _ = vgg.vgg_19( eval_inputs, is_training=False, spatial_squeeze=False) self.assertListEqual(logits.get_shape().as_list(), [eval_batch_size, 2, 2, num_classes]) logits = math_ops.reduce_mean(logits, [1, 2]) predictions = math_ops.argmax(logits, 1) self.assertEquals(predictions.get_shape().as_list(), [eval_batch_size]) def testForward(self): batch_size = 1 height, width = 224, 224 with self.cached_session() as sess: inputs = random_ops.random_uniform((batch_size, height, width, 3)) logits, _ = vgg.vgg_19(inputs) sess.run(variables.global_variables_initializer()) output = sess.run(logits) self.assertTrue(output.any()) if __name__ == '__main__': test.main()
tensorflow-master
tensorflow/contrib/slim/python/slim/nets/vgg_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for slim.nets.resnet_v1.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib import layers from tensorflow.contrib.framework.python.ops import arg_scope from tensorflow.contrib.layers.python.layers import utils from tensorflow.contrib.slim.python.slim.nets import resnet_utils from tensorflow.contrib.slim.python.slim.nets import resnet_v1 from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import random_seed from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import variable_scope from tensorflow.python.ops import variables from tensorflow.python.platform import test def create_test_input(batch_size, height, width, channels): """Create test input tensor. Args: batch_size: The number of images per batch or `None` if unknown. height: The height of each image or `None` if unknown. width: The width of each image or `None` if unknown. channels: The number of channels per image or `None` if unknown. Returns: Either a placeholder `Tensor` of dimension [batch_size, height, width, channels] if any of the inputs are `None` or a constant `Tensor` with the mesh grid values along the spatial dimensions. """ if None in [batch_size, height, width, channels]: return array_ops.placeholder(dtypes.float32, (batch_size, height, width, channels)) else: return math_ops.cast( np.tile( np.reshape( np.reshape(np.arange(height), [height, 1]) + np.reshape( np.arange(width), [1, width]), [1, height, width, 1]), [batch_size, 1, 1, channels]), dtypes.float32) class ResnetUtilsTest(test.TestCase): def testSubsampleThreeByThree(self): x = array_ops.reshape(math_ops.cast(math_ops.range(9), dtypes.float32), [1, 3, 3, 1]) x = resnet_utils.subsample(x, 2) expected = array_ops.reshape( constant_op.constant([0, 2, 6, 8]), [1, 2, 2, 1]) with self.cached_session(): self.assertAllClose(x.eval(), expected.eval()) def testSubsampleFourByFour(self): x = array_ops.reshape(math_ops.cast(math_ops.range(16), dtypes.float32), [1, 4, 4, 1]) x = resnet_utils.subsample(x, 2) expected = array_ops.reshape( constant_op.constant([0, 2, 8, 10]), [1, 2, 2, 1]) with self.cached_session(): self.assertAllClose(x.eval(), expected.eval()) def testConv2DSameEven(self): n, n2 = 4, 2 # Input image. x = create_test_input(1, n, n, 1) # Convolution kernel. w = create_test_input(1, 3, 3, 1) w = array_ops.reshape(w, [3, 3, 1, 1]) variable_scope.get_variable('Conv/weights', initializer=w) variable_scope.get_variable('Conv/biases', initializer=array_ops.zeros([1])) variable_scope.get_variable_scope().reuse_variables() y1 = layers.conv2d(x, 1, [3, 3], stride=1, scope='Conv') y1_expected = math_ops.cast([[14, 28, 43, 26], [28, 48, 66, 37], [43, 66, 84, 46], [26, 37, 46, 22]], dtypes.float32) y1_expected = array_ops.reshape(y1_expected, [1, n, n, 1]) y2 = resnet_utils.subsample(y1, 2) y2_expected = math_ops.cast([[14, 43], [43, 84]], dtypes.float32) y2_expected = array_ops.reshape(y2_expected, [1, n2, n2, 1]) y3 = resnet_utils.conv2d_same(x, 1, 3, stride=2, scope='Conv') y3_expected = y2_expected y4 = layers.conv2d(x, 1, [3, 3], stride=2, scope='Conv') y4_expected = math_ops.cast([[48, 37], [37, 22]], dtypes.float32) y4_expected = array_ops.reshape(y4_expected, [1, n2, n2, 1]) with self.cached_session() as sess: sess.run(variables.global_variables_initializer()) self.assertAllClose(y1.eval(), y1_expected.eval()) self.assertAllClose(y2.eval(), y2_expected.eval()) self.assertAllClose(y3.eval(), y3_expected.eval()) self.assertAllClose(y4.eval(), y4_expected.eval()) def testConv2DSameOdd(self): n, n2 = 5, 3 # Input image. x = create_test_input(1, n, n, 1) # Convolution kernel. w = create_test_input(1, 3, 3, 1) w = array_ops.reshape(w, [3, 3, 1, 1]) variable_scope.get_variable('Conv/weights', initializer=w) variable_scope.get_variable('Conv/biases', initializer=array_ops.zeros([1])) variable_scope.get_variable_scope().reuse_variables() y1 = layers.conv2d(x, 1, [3, 3], stride=1, scope='Conv') y1_expected = math_ops.cast([[14, 28, 43, 58, 34], [28, 48, 66, 84, 46], [43, 66, 84, 102, 55], [58, 84, 102, 120, 64], [34, 46, 55, 64, 30]], dtypes.float32) y1_expected = array_ops.reshape(y1_expected, [1, n, n, 1]) y2 = resnet_utils.subsample(y1, 2) y2_expected = math_ops.cast([[14, 43, 34], [43, 84, 55], [34, 55, 30]], dtypes.float32) y2_expected = array_ops.reshape(y2_expected, [1, n2, n2, 1]) y3 = resnet_utils.conv2d_same(x, 1, 3, stride=2, scope='Conv') y3_expected = y2_expected y4 = layers.conv2d(x, 1, [3, 3], stride=2, scope='Conv') y4_expected = y2_expected with self.cached_session() as sess: sess.run(variables.global_variables_initializer()) self.assertAllClose(y1.eval(), y1_expected.eval()) self.assertAllClose(y2.eval(), y2_expected.eval()) self.assertAllClose(y3.eval(), y3_expected.eval()) self.assertAllClose(y4.eval(), y4_expected.eval()) def _resnet_plain(self, inputs, blocks, output_stride=None, scope=None): """A plain ResNet without extra layers before or after the ResNet blocks.""" with variable_scope.variable_scope(scope, values=[inputs]): with arg_scope([layers.conv2d], outputs_collections='end_points'): net = resnet_utils.stack_blocks_dense(inputs, blocks, output_stride) end_points = utils.convert_collection_to_dict('end_points') return net, end_points def testEndPointsV1(self): """Test the end points of a tiny v1 bottleneck network.""" blocks = [ resnet_v1.resnet_v1_block( 'block1', base_depth=1, num_units=2, stride=2), resnet_v1.resnet_v1_block( 'block2', base_depth=2, num_units=2, stride=1), ] inputs = create_test_input(2, 32, 16, 3) with arg_scope(resnet_utils.resnet_arg_scope()): _, end_points = self._resnet_plain(inputs, blocks, scope='tiny') expected = [ 'tiny/block1/unit_1/bottleneck_v1/shortcut', 'tiny/block1/unit_1/bottleneck_v1/conv1', 'tiny/block1/unit_1/bottleneck_v1/conv2', 'tiny/block1/unit_1/bottleneck_v1/conv3', 'tiny/block1/unit_2/bottleneck_v1/conv1', 'tiny/block1/unit_2/bottleneck_v1/conv2', 'tiny/block1/unit_2/bottleneck_v1/conv3', 'tiny/block2/unit_1/bottleneck_v1/shortcut', 'tiny/block2/unit_1/bottleneck_v1/conv1', 'tiny/block2/unit_1/bottleneck_v1/conv2', 'tiny/block2/unit_1/bottleneck_v1/conv3', 'tiny/block2/unit_2/bottleneck_v1/conv1', 'tiny/block2/unit_2/bottleneck_v1/conv2', 'tiny/block2/unit_2/bottleneck_v1/conv3'] self.assertItemsEqual(expected, end_points) def _stack_blocks_nondense(self, net, blocks): """A simplified ResNet Block stacker without output stride control.""" for block in blocks: with variable_scope.variable_scope(block.scope, 'block', [net]): for i, unit in enumerate(block.args): with variable_scope.variable_scope('unit_%d' % (i + 1), values=[net]): net = block.unit_fn(net, rate=1, **unit) return net def testAtrousValuesBottleneck(self): """Verify the values of dense feature extraction by atrous convolution. Make sure that dense feature extraction by stack_blocks_dense() followed by subsampling gives identical results to feature extraction at the nominal network output stride using the simple self._stack_blocks_nondense() above. """ block = resnet_v1.resnet_v1_block blocks = [ block('block1', base_depth=1, num_units=2, stride=2), block('block2', base_depth=2, num_units=2, stride=2), block('block3', base_depth=4, num_units=2, stride=2), block('block4', base_depth=8, num_units=2, stride=1), ] nominal_stride = 8 # Test both odd and even input dimensions. height = 30 width = 31 with arg_scope(resnet_utils.resnet_arg_scope()): with arg_scope([layers.batch_norm], is_training=False): for output_stride in [1, 2, 4, 8, None]: with ops.Graph().as_default(): with self.cached_session() as sess: random_seed.set_random_seed(0) inputs = create_test_input(1, height, width, 3) # Dense feature extraction followed by subsampling. output = resnet_utils.stack_blocks_dense(inputs, blocks, output_stride) if output_stride is None: factor = 1 else: factor = nominal_stride // output_stride output = resnet_utils.subsample(output, factor) # Make the two networks use the same weights. variable_scope.get_variable_scope().reuse_variables() # Feature extraction at the nominal network rate. expected = self._stack_blocks_nondense(inputs, blocks) sess.run(variables.global_variables_initializer()) output, expected = sess.run([output, expected]) self.assertAllClose(output, expected, atol=1e-4, rtol=1e-4) class ResnetCompleteNetworkTest(test.TestCase): """Tests with complete small ResNet v1 networks.""" def _resnet_small(self, inputs, num_classes=None, is_training=True, global_pool=True, output_stride=None, include_root_block=True, reuse=None, scope='resnet_v1_small'): """A shallow and thin ResNet v1 for faster tests.""" block = resnet_v1.resnet_v1_block blocks = [ block('block1', base_depth=1, num_units=3, stride=2), block('block2', base_depth=2, num_units=3, stride=2), block('block3', base_depth=4, num_units=3, stride=2), block('block4', base_depth=8, num_units=2, stride=1), ] return resnet_v1.resnet_v1(inputs, blocks, num_classes, is_training, global_pool, output_stride, include_root_block, reuse, scope) def testClassificationEndPoints(self): global_pool = True num_classes = 10 inputs = create_test_input(2, 224, 224, 3) with arg_scope(resnet_utils.resnet_arg_scope()): logits, end_points = self._resnet_small( inputs, num_classes, global_pool=global_pool, scope='resnet') self.assertTrue(logits.op.name.startswith('resnet/logits')) self.assertListEqual(logits.get_shape().as_list(), [2, 1, 1, num_classes]) self.assertTrue('predictions' in end_points) self.assertListEqual(end_points['predictions'].get_shape().as_list(), [2, 1, 1, num_classes]) def testClassificationShapes(self): global_pool = True num_classes = 10 inputs = create_test_input(2, 224, 224, 3) with arg_scope(resnet_utils.resnet_arg_scope()): _, end_points = self._resnet_small( inputs, num_classes, global_pool=global_pool, scope='resnet') endpoint_to_shape = { 'resnet/block1': [2, 28, 28, 4], 'resnet/block2': [2, 14, 14, 8], 'resnet/block3': [2, 7, 7, 16], 'resnet/block4': [2, 7, 7, 32] } for endpoint in endpoint_to_shape: shape = endpoint_to_shape[endpoint] self.assertListEqual(end_points[endpoint].get_shape().as_list(), shape) def testFullyConvolutionalEndpointShapes(self): global_pool = False num_classes = 10 inputs = create_test_input(2, 321, 321, 3) with arg_scope(resnet_utils.resnet_arg_scope()): _, end_points = self._resnet_small( inputs, num_classes, global_pool=global_pool, scope='resnet') endpoint_to_shape = { 'resnet/block1': [2, 41, 41, 4], 'resnet/block2': [2, 21, 21, 8], 'resnet/block3': [2, 11, 11, 16], 'resnet/block4': [2, 11, 11, 32] } for endpoint in endpoint_to_shape: shape = endpoint_to_shape[endpoint] self.assertListEqual(end_points[endpoint].get_shape().as_list(), shape) def testRootlessFullyConvolutionalEndpointShapes(self): global_pool = False num_classes = 10 inputs = create_test_input(2, 128, 128, 3) with arg_scope(resnet_utils.resnet_arg_scope()): _, end_points = self._resnet_small( inputs, num_classes, global_pool=global_pool, include_root_block=False, scope='resnet') endpoint_to_shape = { 'resnet/block1': [2, 64, 64, 4], 'resnet/block2': [2, 32, 32, 8], 'resnet/block3': [2, 16, 16, 16], 'resnet/block4': [2, 16, 16, 32] } for endpoint in endpoint_to_shape: shape = endpoint_to_shape[endpoint] self.assertListEqual(end_points[endpoint].get_shape().as_list(), shape) def testAtrousFullyConvolutionalEndpointShapes(self): global_pool = False num_classes = 10 output_stride = 8 inputs = create_test_input(2, 321, 321, 3) with arg_scope(resnet_utils.resnet_arg_scope()): _, end_points = self._resnet_small( inputs, num_classes, global_pool=global_pool, output_stride=output_stride, scope='resnet') endpoint_to_shape = { 'resnet/block1': [2, 41, 41, 4], 'resnet/block2': [2, 41, 41, 8], 'resnet/block3': [2, 41, 41, 16], 'resnet/block4': [2, 41, 41, 32] } for endpoint in endpoint_to_shape: shape = endpoint_to_shape[endpoint] self.assertListEqual(end_points[endpoint].get_shape().as_list(), shape) def testAtrousFullyConvolutionalValues(self): """Verify dense feature extraction with atrous convolution.""" nominal_stride = 32 for output_stride in [4, 8, 16, 32, None]: with arg_scope(resnet_utils.resnet_arg_scope()): with ops.Graph().as_default(): with self.cached_session() as sess: random_seed.set_random_seed(0) inputs = create_test_input(2, 81, 81, 3) # Dense feature extraction followed by subsampling. output, _ = self._resnet_small( inputs, None, is_training=False, global_pool=False, output_stride=output_stride) if output_stride is None: factor = 1 else: factor = nominal_stride // output_stride output = resnet_utils.subsample(output, factor) # Make the two networks use the same weights. variable_scope.get_variable_scope().reuse_variables() # Feature extraction at the nominal network rate. expected, _ = self._resnet_small( inputs, None, is_training=False, global_pool=False) sess.run(variables.global_variables_initializer()) self.assertAllClose( output.eval(), expected.eval(), atol=2e-4, rtol=1e-4) def testUnknownBatchSize(self): batch = 2 height, width = 65, 65 global_pool = True num_classes = 10 inputs = create_test_input(None, height, width, 3) with arg_scope(resnet_utils.resnet_arg_scope()): logits, _ = self._resnet_small( inputs, num_classes, global_pool=global_pool, scope='resnet') self.assertTrue(logits.op.name.startswith('resnet/logits')) self.assertListEqual(logits.get_shape().as_list(), [None, 1, 1, num_classes]) images = create_test_input(batch, height, width, 3) with self.cached_session() as sess: sess.run(variables.global_variables_initializer()) output = sess.run(logits, {inputs: images.eval()}) self.assertEqual(output.shape, (batch, 1, 1, num_classes)) def testFullyConvolutionalUnknownHeightWidth(self): batch = 2 height, width = 65, 65 global_pool = False inputs = create_test_input(batch, None, None, 3) with arg_scope(resnet_utils.resnet_arg_scope()): output, _ = self._resnet_small(inputs, None, global_pool=global_pool) self.assertListEqual(output.get_shape().as_list(), [batch, None, None, 32]) images = create_test_input(batch, height, width, 3) with self.cached_session() as sess: sess.run(variables.global_variables_initializer()) output = sess.run(output, {inputs: images.eval()}) self.assertEqual(output.shape, (batch, 3, 3, 32)) def testAtrousFullyConvolutionalUnknownHeightWidth(self): batch = 2 height, width = 65, 65 global_pool = False output_stride = 8 inputs = create_test_input(batch, None, None, 3) with arg_scope(resnet_utils.resnet_arg_scope()): output, _ = self._resnet_small( inputs, None, global_pool=global_pool, output_stride=output_stride) self.assertListEqual(output.get_shape().as_list(), [batch, None, None, 32]) images = create_test_input(batch, height, width, 3) with self.cached_session() as sess: sess.run(variables.global_variables_initializer()) output = sess.run(output, {inputs: images.eval()}) self.assertEqual(output.shape, (batch, 9, 9, 32)) if __name__ == '__main__': test.main()
tensorflow-master
tensorflow/contrib/slim/python/slim/nets/resnet_v1_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Brings inception_v1, inception_v2 and inception_v3 under one namespace.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function # pylint: disable=unused-import from tensorflow.contrib.slim.python.slim.nets.inception_v1 import inception_v1 from tensorflow.contrib.slim.python.slim.nets.inception_v1 import inception_v1_arg_scope from tensorflow.contrib.slim.python.slim.nets.inception_v1 import inception_v1_base from tensorflow.contrib.slim.python.slim.nets.inception_v2 import inception_v2 from tensorflow.contrib.slim.python.slim.nets.inception_v2 import inception_v2_arg_scope from tensorflow.contrib.slim.python.slim.nets.inception_v2 import inception_v2_base from tensorflow.contrib.slim.python.slim.nets.inception_v3 import inception_v3 from tensorflow.contrib.slim.python.slim.nets.inception_v3 import inception_v3_arg_scope from tensorflow.contrib.slim.python.slim.nets.inception_v3 import inception_v3_base # pylint: enable=unused-import
tensorflow-master
tensorflow/contrib/slim/python/slim/nets/inception.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Contains building blocks for various versions of Residual Networks. Residual networks (ResNets) were proposed in: Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun Deep Residual Learning for Image Recognition. arXiv:1512.03385, 2015 More variants were introduced in: Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun Identity Mappings in Deep Residual Networks. arXiv: 1603.05027, 2016 We can obtain different ResNet variants by changing the network depth, width, and form of residual unit. This module implements the infrastructure for building them. Concrete ResNet units and full ResNet networks are implemented in the accompanying resnet_v1.py and resnet_v2.py modules. Compared to https://github.com/KaimingHe/deep-residual-networks, in the current implementation we subsample the output activations in the last residual unit of each block, instead of subsampling the input activations in the first residual unit of each block. The two implementations give identical results but our implementation is more memory efficient. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections from tensorflow.contrib import layers as layers_lib from tensorflow.contrib.framework.python.ops import add_arg_scope from tensorflow.contrib.framework.python.ops import arg_scope from tensorflow.contrib.layers.python.layers import initializers from tensorflow.contrib.layers.python.layers import layers from tensorflow.contrib.layers.python.layers import regularizers from tensorflow.contrib.layers.python.layers import utils from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import nn_ops from tensorflow.python.ops import variable_scope class Block(collections.namedtuple('Block', ['scope', 'unit_fn', 'args'])): """A named tuple describing a ResNet block. Its parts are: scope: The scope of the `Block`. unit_fn: The ResNet unit function which takes as input a `Tensor` and returns another `Tensor` with the output of the ResNet unit. args: A list of length equal to the number of units in the `Block`. The list contains one (depth, depth_bottleneck, stride) tuple for each unit in the block to serve as argument to unit_fn. """ def subsample(inputs, factor, scope=None): """Subsamples the input along the spatial dimensions. Args: inputs: A `Tensor` of size [batch, height_in, width_in, channels]. factor: The subsampling factor. scope: Optional variable_scope. Returns: output: A `Tensor` of size [batch, height_out, width_out, channels] with the input, either intact (if factor == 1) or subsampled (if factor > 1). """ if factor == 1: return inputs else: return layers.max_pool2d(inputs, [1, 1], stride=factor, scope=scope) def conv2d_same(inputs, num_outputs, kernel_size, stride, rate=1, scope=None): """Strided 2-D convolution with 'SAME' padding. When stride > 1, then we do explicit zero-padding, followed by conv2d with 'VALID' padding. Note that net = conv2d_same(inputs, num_outputs, 3, stride=stride) is equivalent to net = tf.contrib.layers.conv2d(inputs, num_outputs, 3, stride=1, padding='SAME') net = subsample(net, factor=stride) whereas net = tf.contrib.layers.conv2d(inputs, num_outputs, 3, stride=stride, padding='SAME') is different when the input's height or width is even, which is why we add the current function. For more details, see ResnetUtilsTest.testConv2DSameEven(). Args: inputs: A 4-D tensor of size [batch, height_in, width_in, channels]. num_outputs: An integer, the number of output filters. kernel_size: An int with the kernel_size of the filters. stride: An integer, the output stride. rate: An integer, rate for atrous convolution. scope: Scope. Returns: output: A 4-D tensor of size [batch, height_out, width_out, channels] with the convolution output. """ if stride == 1: return layers_lib.conv2d( inputs, num_outputs, kernel_size, stride=1, rate=rate, padding='SAME', scope=scope) else: kernel_size_effective = kernel_size + (kernel_size - 1) * (rate - 1) pad_total = kernel_size_effective - 1 pad_beg = pad_total // 2 pad_end = pad_total - pad_beg inputs = array_ops.pad( inputs, [[0, 0], [pad_beg, pad_end], [pad_beg, pad_end], [0, 0]]) return layers_lib.conv2d( inputs, num_outputs, kernel_size, stride=stride, rate=rate, padding='VALID', scope=scope) @add_arg_scope def stack_blocks_dense(net, blocks, output_stride=None, outputs_collections=None): """Stacks ResNet `Blocks` and controls output feature density. First, this function creates scopes for the ResNet in the form of 'block_name/unit_1', 'block_name/unit_2', etc. Second, this function allows the user to explicitly control the ResNet output_stride, which is the ratio of the input to output spatial resolution. This is useful for dense prediction tasks such as semantic segmentation or object detection. Most ResNets consist of 4 ResNet blocks and subsample the activations by a factor of 2 when transitioning between consecutive ResNet blocks. This results to a nominal ResNet output_stride equal to 8. If we set the output_stride to half the nominal network stride (e.g., output_stride=4), then we compute responses twice. Control of the output feature density is implemented by atrous convolution. Args: net: A `Tensor` of size [batch, height, width, channels]. blocks: A list of length equal to the number of ResNet `Blocks`. Each element is a ResNet `Block` object describing the units in the `Block`. output_stride: If `None`, then the output will be computed at the nominal network stride. If output_stride is not `None`, it specifies the requested ratio of input to output spatial resolution, which needs to be equal to the product of unit strides from the start up to some level of the ResNet. For example, if the ResNet employs units with strides 1, 2, 1, 3, 4, 1, then valid values for the output_stride are 1, 2, 6, 24 or None (which is equivalent to output_stride=24). outputs_collections: Collection to add the ResNet block outputs. Returns: net: Output tensor with stride equal to the specified output_stride. Raises: ValueError: If the target output_stride is not valid. """ # The current_stride variable keeps track of the effective stride of the # activations. This allows us to invoke atrous convolution whenever applying # the next residual unit would result in the activations having stride larger # than the target output_stride. current_stride = 1 # The atrous convolution rate parameter. rate = 1 for block in blocks: with variable_scope.variable_scope(block.scope, 'block', [net]) as sc: for i, unit in enumerate(block.args): if output_stride is not None and current_stride > output_stride: raise ValueError('The target output_stride cannot be reached.') with variable_scope.variable_scope('unit_%d' % (i + 1), values=[net]): # If we have reached the target output_stride, then we need to employ # atrous convolution with stride=1 and multiply the atrous rate by the # current unit's stride for use in subsequent layers. if output_stride is not None and current_stride == output_stride: net = block.unit_fn(net, rate=rate, **dict(unit, stride=1)) rate *= unit.get('stride', 1) else: net = block.unit_fn(net, rate=1, **unit) current_stride *= unit.get('stride', 1) net = utils.collect_named_outputs(outputs_collections, sc.name, net) if output_stride is not None and current_stride != output_stride: raise ValueError('The target output_stride cannot be reached.') return net def resnet_arg_scope(weight_decay=0.0001, batch_norm_decay=0.997, batch_norm_epsilon=1e-5, batch_norm_scale=True): """Defines the default ResNet arg scope. TODO(gpapan): The batch-normalization related default values above are appropriate for use in conjunction with the reference ResNet models released at https://github.com/KaimingHe/deep-residual-networks. When training ResNets from scratch, they might need to be tuned. Args: weight_decay: The weight decay to use for regularizing the model. batch_norm_decay: The moving average decay when estimating layer activation statistics in batch normalization. batch_norm_epsilon: Small constant to prevent division by zero when normalizing activations by their variance in batch normalization. batch_norm_scale: If True, uses an explicit `gamma` multiplier to scale the activations in the batch normalization layer. Returns: An `arg_scope` to use for the resnet models. """ batch_norm_params = { 'decay': batch_norm_decay, 'epsilon': batch_norm_epsilon, 'scale': batch_norm_scale, 'updates_collections': ops.GraphKeys.UPDATE_OPS, } with arg_scope( [layers_lib.conv2d], weights_regularizer=regularizers.l2_regularizer(weight_decay), weights_initializer=initializers.variance_scaling_initializer(), activation_fn=nn_ops.relu, normalizer_fn=layers.batch_norm, normalizer_params=batch_norm_params): with arg_scope([layers.batch_norm], **batch_norm_params): # The following implies padding='SAME' for pool1, which makes feature # alignment easier for dense prediction tasks. This is also used in # https://github.com/facebook/fb.resnet.torch. However the accompanying # code of 'Deep Residual Learning for Image Recognition' uses # padding='VALID' for pool1. You can switch to that choice by setting # tf.contrib.framework.arg_scope([tf.contrib.layers.max_pool2d], padding='VALID'). with arg_scope([layers.max_pool2d], padding='SAME') as arg_sc: return arg_sc
tensorflow-master
tensorflow/contrib/slim/python/slim/nets/resnet_utils.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for slim.nets.alexnet.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.framework.python.ops import variables as variables_lib from tensorflow.contrib.slim.python.slim.nets import alexnet from tensorflow.python.ops import math_ops from tensorflow.python.ops import random_ops from tensorflow.python.ops import variable_scope from tensorflow.python.ops import variables from tensorflow.python.platform import test class AlexnetV2Test(test.TestCase): def testBuild(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 with self.cached_session(): inputs = random_ops.random_uniform((batch_size, height, width, 3)) logits, _ = alexnet.alexnet_v2(inputs, num_classes) self.assertEquals(logits.op.name, 'alexnet_v2/fc8/squeezed') self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) def testFullyConvolutional(self): batch_size = 1 height, width = 300, 400 num_classes = 1000 with self.cached_session(): inputs = random_ops.random_uniform((batch_size, height, width, 3)) logits, _ = alexnet.alexnet_v2(inputs, num_classes, spatial_squeeze=False) self.assertEquals(logits.op.name, 'alexnet_v2/fc8/BiasAdd') self.assertListEqual(logits.get_shape().as_list(), [batch_size, 4, 7, num_classes]) def testEndPoints(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 with self.cached_session(): inputs = random_ops.random_uniform((batch_size, height, width, 3)) _, end_points = alexnet.alexnet_v2(inputs, num_classes) expected_names = [ 'alexnet_v2/conv1', 'alexnet_v2/pool1', 'alexnet_v2/conv2', 'alexnet_v2/pool2', 'alexnet_v2/conv3', 'alexnet_v2/conv4', 'alexnet_v2/conv5', 'alexnet_v2/pool5', 'alexnet_v2/fc6', 'alexnet_v2/fc7', 'alexnet_v2/fc8' ] self.assertSetEqual(set(end_points.keys()), set(expected_names)) def testModelVariables(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 with self.cached_session(): inputs = random_ops.random_uniform((batch_size, height, width, 3)) alexnet.alexnet_v2(inputs, num_classes) expected_names = [ 'alexnet_v2/conv1/weights', 'alexnet_v2/conv1/biases', 'alexnet_v2/conv2/weights', 'alexnet_v2/conv2/biases', 'alexnet_v2/conv3/weights', 'alexnet_v2/conv3/biases', 'alexnet_v2/conv4/weights', 'alexnet_v2/conv4/biases', 'alexnet_v2/conv5/weights', 'alexnet_v2/conv5/biases', 'alexnet_v2/fc6/weights', 'alexnet_v2/fc6/biases', 'alexnet_v2/fc7/weights', 'alexnet_v2/fc7/biases', 'alexnet_v2/fc8/weights', 'alexnet_v2/fc8/biases', ] model_variables = [v.op.name for v in variables_lib.get_model_variables()] self.assertSetEqual(set(model_variables), set(expected_names)) def testEvaluation(self): batch_size = 2 height, width = 224, 224 num_classes = 1000 with self.cached_session(): eval_inputs = random_ops.random_uniform((batch_size, height, width, 3)) logits, _ = alexnet.alexnet_v2(eval_inputs, is_training=False) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) predictions = math_ops.argmax(logits, 1) self.assertListEqual(predictions.get_shape().as_list(), [batch_size]) def testTrainEvalWithReuse(self): train_batch_size = 2 eval_batch_size = 1 train_height, train_width = 224, 224 eval_height, eval_width = 300, 400 num_classes = 1000 with self.cached_session(): train_inputs = random_ops.random_uniform( (train_batch_size, train_height, train_width, 3)) logits, _ = alexnet.alexnet_v2(train_inputs) self.assertListEqual(logits.get_shape().as_list(), [train_batch_size, num_classes]) variable_scope.get_variable_scope().reuse_variables() eval_inputs = random_ops.random_uniform( (eval_batch_size, eval_height, eval_width, 3)) logits, _ = alexnet.alexnet_v2( eval_inputs, is_training=False, spatial_squeeze=False) self.assertListEqual(logits.get_shape().as_list(), [eval_batch_size, 4, 7, num_classes]) logits = math_ops.reduce_mean(logits, [1, 2]) predictions = math_ops.argmax(logits, 1) self.assertEquals(predictions.get_shape().as_list(), [eval_batch_size]) def testForward(self): batch_size = 1 height, width = 224, 224 with self.cached_session() as sess: inputs = random_ops.random_uniform((batch_size, height, width, 3)) logits, _ = alexnet.alexnet_v2(inputs) sess.run(variables.global_variables_initializer()) output = sess.run(logits) self.assertTrue(output.any()) if __name__ == '__main__': test.main()
tensorflow-master
tensorflow/contrib/slim/python/slim/nets/alexnet_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for nets.inception_v3.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.framework.python.ops import arg_scope from tensorflow.contrib.framework.python.ops import variables as variables_lib from tensorflow.contrib.slim.python.slim import model_analyzer from tensorflow.contrib.slim.python.slim.nets import inception_v3 from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import random_ops from tensorflow.python.ops import variables from tensorflow.python.platform import test class InceptionV3Test(test.TestCase): def testBuildClassificationNetwork(self): batch_size = 5 height, width = 299, 299 num_classes = 1000 inputs = random_ops.random_uniform((batch_size, height, width, 3)) logits, end_points = inception_v3.inception_v3(inputs, num_classes) self.assertTrue(logits.op.name.startswith('InceptionV3/Logits')) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) self.assertTrue('Predictions' in end_points) self.assertListEqual(end_points['Predictions'].get_shape().as_list(), [batch_size, num_classes]) def testBuildBaseNetwork(self): batch_size = 5 height, width = 299, 299 inputs = random_ops.random_uniform((batch_size, height, width, 3)) final_endpoint, end_points = inception_v3.inception_v3_base(inputs) self.assertTrue(final_endpoint.op.name.startswith('InceptionV3/Mixed_7c')) self.assertListEqual(final_endpoint.get_shape().as_list(), [batch_size, 8, 8, 2048]) expected_endpoints = [ 'Conv2d_1a_3x3', 'Conv2d_2a_3x3', 'Conv2d_2b_3x3', 'MaxPool_3a_3x3', 'Conv2d_3b_1x1', 'Conv2d_4a_3x3', 'MaxPool_5a_3x3', 'Mixed_5b', 'Mixed_5c', 'Mixed_5d', 'Mixed_6a', 'Mixed_6b', 'Mixed_6c', 'Mixed_6d', 'Mixed_6e', 'Mixed_7a', 'Mixed_7b', 'Mixed_7c' ] self.assertItemsEqual(end_points.keys(), expected_endpoints) def testBuildOnlyUptoFinalEndpoint(self): batch_size = 5 height, width = 299, 299 endpoints = [ 'Conv2d_1a_3x3', 'Conv2d_2a_3x3', 'Conv2d_2b_3x3', 'MaxPool_3a_3x3', 'Conv2d_3b_1x1', 'Conv2d_4a_3x3', 'MaxPool_5a_3x3', 'Mixed_5b', 'Mixed_5c', 'Mixed_5d', 'Mixed_6a', 'Mixed_6b', 'Mixed_6c', 'Mixed_6d', 'Mixed_6e', 'Mixed_7a', 'Mixed_7b', 'Mixed_7c' ] for index, endpoint in enumerate(endpoints): with ops.Graph().as_default(): inputs = random_ops.random_uniform((batch_size, height, width, 3)) out_tensor, end_points = inception_v3.inception_v3_base( inputs, final_endpoint=endpoint) self.assertTrue( out_tensor.op.name.startswith('InceptionV3/' + endpoint)) self.assertItemsEqual(endpoints[:index + 1], end_points) def testBuildAndCheckAllEndPointsUptoMixed7c(self): batch_size = 5 height, width = 299, 299 inputs = random_ops.random_uniform((batch_size, height, width, 3)) _, end_points = inception_v3.inception_v3_base( inputs, final_endpoint='Mixed_7c') endpoints_shapes = { 'Conv2d_1a_3x3': [batch_size, 149, 149, 32], 'Conv2d_2a_3x3': [batch_size, 147, 147, 32], 'Conv2d_2b_3x3': [batch_size, 147, 147, 64], 'MaxPool_3a_3x3': [batch_size, 73, 73, 64], 'Conv2d_3b_1x1': [batch_size, 73, 73, 80], 'Conv2d_4a_3x3': [batch_size, 71, 71, 192], 'MaxPool_5a_3x3': [batch_size, 35, 35, 192], 'Mixed_5b': [batch_size, 35, 35, 256], 'Mixed_5c': [batch_size, 35, 35, 288], 'Mixed_5d': [batch_size, 35, 35, 288], 'Mixed_6a': [batch_size, 17, 17, 768], 'Mixed_6b': [batch_size, 17, 17, 768], 'Mixed_6c': [batch_size, 17, 17, 768], 'Mixed_6d': [batch_size, 17, 17, 768], 'Mixed_6e': [batch_size, 17, 17, 768], 'Mixed_7a': [batch_size, 8, 8, 1280], 'Mixed_7b': [batch_size, 8, 8, 2048], 'Mixed_7c': [batch_size, 8, 8, 2048] } self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys()) for endpoint_name in endpoints_shapes: expected_shape = endpoints_shapes[endpoint_name] self.assertTrue(endpoint_name in end_points) self.assertListEqual(end_points[endpoint_name].get_shape().as_list(), expected_shape) def testModelHasExpectedNumberOfParameters(self): batch_size = 5 height, width = 299, 299 inputs = random_ops.random_uniform((batch_size, height, width, 3)) with arg_scope(inception_v3.inception_v3_arg_scope()): inception_v3.inception_v3_base(inputs) total_params, _ = model_analyzer.analyze_vars( variables_lib.get_model_variables()) self.assertAlmostEqual(21802784, total_params) def testBuildEndPoints(self): batch_size = 5 height, width = 299, 299 num_classes = 1000 inputs = random_ops.random_uniform((batch_size, height, width, 3)) _, end_points = inception_v3.inception_v3(inputs, num_classes) self.assertTrue('Logits' in end_points) logits = end_points['Logits'] self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) self.assertTrue('AuxLogits' in end_points) aux_logits = end_points['AuxLogits'] self.assertListEqual(aux_logits.get_shape().as_list(), [batch_size, num_classes]) self.assertTrue('Mixed_7c' in end_points) pre_pool = end_points['Mixed_7c'] self.assertListEqual(pre_pool.get_shape().as_list(), [batch_size, 8, 8, 2048]) self.assertTrue('PreLogits' in end_points) pre_logits = end_points['PreLogits'] self.assertListEqual(pre_logits.get_shape().as_list(), [batch_size, 1, 1, 2048]) def testBuildEndPointsWithDepthMultiplierLessThanOne(self): batch_size = 5 height, width = 299, 299 num_classes = 1000 inputs = random_ops.random_uniform((batch_size, height, width, 3)) _, end_points = inception_v3.inception_v3(inputs, num_classes) endpoint_keys = [ key for key in end_points.keys() if key.startswith('Mixed') or key.startswith('Conv') ] _, end_points_with_multiplier = inception_v3.inception_v3( inputs, num_classes, scope='depth_multiplied_net', depth_multiplier=0.5) for key in endpoint_keys: original_depth = end_points[key].get_shape().as_list()[3] new_depth = end_points_with_multiplier[key].get_shape().as_list()[3] self.assertEqual(0.5 * original_depth, new_depth) def testBuildEndPointsWithDepthMultiplierGreaterThanOne(self): batch_size = 5 height, width = 299, 299 num_classes = 1000 inputs = random_ops.random_uniform((batch_size, height, width, 3)) _, end_points = inception_v3.inception_v3(inputs, num_classes) endpoint_keys = [ key for key in end_points.keys() if key.startswith('Mixed') or key.startswith('Conv') ] _, end_points_with_multiplier = inception_v3.inception_v3( inputs, num_classes, scope='depth_multiplied_net', depth_multiplier=2.0) for key in endpoint_keys: original_depth = end_points[key].get_shape().as_list()[3] new_depth = end_points_with_multiplier[key].get_shape().as_list()[3] self.assertEqual(2.0 * original_depth, new_depth) def testRaiseValueErrorWithInvalidDepthMultiplier(self): batch_size = 5 height, width = 299, 299 num_classes = 1000 inputs = random_ops.random_uniform((batch_size, height, width, 3)) with self.assertRaises(ValueError): _ = inception_v3.inception_v3(inputs, num_classes, depth_multiplier=-0.1) with self.assertRaises(ValueError): _ = inception_v3.inception_v3(inputs, num_classes, depth_multiplier=0.0) def testHalfSizeImages(self): batch_size = 5 height, width = 150, 150 num_classes = 1000 inputs = random_ops.random_uniform((batch_size, height, width, 3)) logits, end_points = inception_v3.inception_v3(inputs, num_classes) self.assertTrue(logits.op.name.startswith('InceptionV3/Logits')) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) pre_pool = end_points['Mixed_7c'] self.assertListEqual(pre_pool.get_shape().as_list(), [batch_size, 3, 3, 2048]) def testUnknownImageShape(self): ops.reset_default_graph() batch_size = 2 height, width = 299, 299 num_classes = 1000 input_np = np.random.uniform(0, 1, (batch_size, height, width, 3)) with self.cached_session() as sess: inputs = array_ops.placeholder( dtypes.float32, shape=(batch_size, None, None, 3)) logits, end_points = inception_v3.inception_v3(inputs, num_classes) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) pre_pool = end_points['Mixed_7c'] feed_dict = {inputs: input_np} variables.global_variables_initializer().run() pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict) self.assertListEqual(list(pre_pool_out.shape), [batch_size, 8, 8, 2048]) def testUnknownBatchSize(self): batch_size = 1 height, width = 299, 299 num_classes = 1000 inputs = array_ops.placeholder(dtypes.float32, (None, height, width, 3)) logits, _ = inception_v3.inception_v3(inputs, num_classes) self.assertTrue(logits.op.name.startswith('InceptionV3/Logits')) self.assertListEqual(logits.get_shape().as_list(), [None, num_classes]) images = random_ops.random_uniform((batch_size, height, width, 3)) with self.cached_session() as sess: sess.run(variables.global_variables_initializer()) output = sess.run(logits, {inputs: images.eval()}) self.assertEquals(output.shape, (batch_size, num_classes)) def testEvaluation(self): batch_size = 2 height, width = 299, 299 num_classes = 1000 eval_inputs = random_ops.random_uniform((batch_size, height, width, 3)) logits, _ = inception_v3.inception_v3( eval_inputs, num_classes, is_training=False) predictions = math_ops.argmax(logits, 1) with self.cached_session() as sess: sess.run(variables.global_variables_initializer()) output = sess.run(predictions) self.assertEquals(output.shape, (batch_size,)) def testTrainEvalWithReuse(self): train_batch_size = 5 eval_batch_size = 2 height, width = 150, 150 num_classes = 1000 train_inputs = random_ops.random_uniform( (train_batch_size, height, width, 3)) inception_v3.inception_v3(train_inputs, num_classes) eval_inputs = random_ops.random_uniform((eval_batch_size, height, width, 3)) logits, _ = inception_v3.inception_v3( eval_inputs, num_classes, is_training=False, reuse=True) predictions = math_ops.argmax(logits, 1) with self.cached_session() as sess: sess.run(variables.global_variables_initializer()) output = sess.run(predictions) self.assertEquals(output.shape, (eval_batch_size,)) def testLogitsNotSqueezed(self): num_classes = 25 images = random_ops.random_uniform([1, 299, 299, 3]) logits, _ = inception_v3.inception_v3( images, num_classes=num_classes, spatial_squeeze=False) with self.cached_session() as sess: variables.global_variables_initializer().run() logits_out = sess.run(logits) self.assertListEqual(list(logits_out.shape), [1, 1, 1, num_classes]) if __name__ == '__main__': test.main()
tensorflow-master
tensorflow/contrib/slim/python/slim/nets/inception_v3_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Contains the definition for inception v3 classification network.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib import layers from tensorflow.contrib.framework.python.ops import arg_scope from tensorflow.contrib.layers.python.layers import initializers from tensorflow.contrib.layers.python.layers import layers as layers_lib from tensorflow.contrib.layers.python.layers import regularizers from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import nn_ops from tensorflow.python.ops import variable_scope trunc_normal = lambda stddev: init_ops.truncated_normal_initializer(0.0, stddev) def inception_v3_base(inputs, final_endpoint='Mixed_7c', min_depth=16, depth_multiplier=1.0, scope=None): """Inception model from http://arxiv.org/abs/1512.00567. Constructs an Inception v3 network from inputs to the given final endpoint. This method can construct the network up to the final inception block Mixed_7c. Note that the names of the layers in the paper do not correspond to the names of the endpoints registered by this function although they build the same network. Here is a mapping from the old_names to the new names: Old name | New name ======================================= conv0 | Conv2d_1a_3x3 conv1 | Conv2d_2a_3x3 conv2 | Conv2d_2b_3x3 pool1 | MaxPool_3a_3x3 conv3 | Conv2d_3b_1x1 conv4 | Conv2d_4a_3x3 pool2 | MaxPool_5a_3x3 mixed_35x35x256a | Mixed_5b mixed_35x35x288a | Mixed_5c mixed_35x35x288b | Mixed_5d mixed_17x17x768a | Mixed_6a mixed_17x17x768b | Mixed_6b mixed_17x17x768c | Mixed_6c mixed_17x17x768d | Mixed_6d mixed_17x17x768e | Mixed_6e mixed_8x8x1280a | Mixed_7a mixed_8x8x2048a | Mixed_7b mixed_8x8x2048b | Mixed_7c Args: inputs: a tensor of size [batch_size, height, width, channels]. final_endpoint: specifies the endpoint to construct the network up to. It can be one of ['Conv2d_1a_3x3', 'Conv2d_2a_3x3', 'Conv2d_2b_3x3', 'MaxPool_3a_3x3', 'Conv2d_3b_1x1', 'Conv2d_4a_3x3', 'MaxPool_5a_3x3', 'Mixed_5b', 'Mixed_5c', 'Mixed_5d', 'Mixed_6a', 'Mixed_6b', 'Mixed_6c', 'Mixed_6d', 'Mixed_6e', 'Mixed_7a', 'Mixed_7b', 'Mixed_7c']. min_depth: Minimum depth value (number of channels) for all convolution ops. Enforced when depth_multiplier < 1, and not an active constraint when depth_multiplier >= 1. depth_multiplier: Float multiplier for the depth (number of channels) for all convolution ops. The value must be greater than zero. Typical usage will be to set this value in (0, 1) to reduce the number of parameters or computation cost of the model. scope: Optional variable_scope. Returns: tensor_out: output tensor corresponding to the final_endpoint. end_points: a set of activations for external use, for example summaries or losses. Raises: ValueError: if final_endpoint is not set to one of the predefined values, or depth_multiplier <= 0 """ # end_points will collect relevant activations for external use, for example # summaries or losses. end_points = {} if depth_multiplier <= 0: raise ValueError('depth_multiplier is not greater than zero.') depth = lambda d: max(int(d * depth_multiplier), min_depth) with variable_scope.variable_scope(scope, 'InceptionV3', [inputs]): with arg_scope( [layers.conv2d, layers_lib.max_pool2d, layers_lib.avg_pool2d], stride=1, padding='VALID'): # 299 x 299 x 3 end_point = 'Conv2d_1a_3x3' net = layers.conv2d(inputs, depth(32), [3, 3], stride=2, scope=end_point) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # 149 x 149 x 32 end_point = 'Conv2d_2a_3x3' net = layers.conv2d(net, depth(32), [3, 3], scope=end_point) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # 147 x 147 x 32 end_point = 'Conv2d_2b_3x3' net = layers.conv2d( net, depth(64), [3, 3], padding='SAME', scope=end_point) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # 147 x 147 x 64 end_point = 'MaxPool_3a_3x3' net = layers_lib.max_pool2d(net, [3, 3], stride=2, scope=end_point) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # 73 x 73 x 64 end_point = 'Conv2d_3b_1x1' net = layers.conv2d(net, depth(80), [1, 1], scope=end_point) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # 73 x 73 x 80. end_point = 'Conv2d_4a_3x3' net = layers.conv2d(net, depth(192), [3, 3], scope=end_point) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # 71 x 71 x 192. end_point = 'MaxPool_5a_3x3' net = layers_lib.max_pool2d(net, [3, 3], stride=2, scope=end_point) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # 35 x 35 x 192. # Inception blocks with arg_scope( [layers.conv2d, layers_lib.max_pool2d, layers_lib.avg_pool2d], stride=1, padding='SAME'): # mixed: 35 x 35 x 256. end_point = 'Mixed_5b' with variable_scope.variable_scope(end_point): with variable_scope.variable_scope('Branch_0'): branch_0 = layers.conv2d( net, depth(64), [1, 1], scope='Conv2d_0a_1x1') with variable_scope.variable_scope('Branch_1'): branch_1 = layers.conv2d( net, depth(48), [1, 1], scope='Conv2d_0a_1x1') branch_1 = layers.conv2d( branch_1, depth(64), [5, 5], scope='Conv2d_0b_5x5') with variable_scope.variable_scope('Branch_2'): branch_2 = layers.conv2d( net, depth(64), [1, 1], scope='Conv2d_0a_1x1') branch_2 = layers.conv2d( branch_2, depth(96), [3, 3], scope='Conv2d_0b_3x3') branch_2 = layers.conv2d( branch_2, depth(96), [3, 3], scope='Conv2d_0c_3x3') with variable_scope.variable_scope('Branch_3'): branch_3 = layers_lib.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3') branch_3 = layers.conv2d( branch_3, depth(32), [1, 1], scope='Conv2d_0b_1x1') net = array_ops.concat([branch_0, branch_1, branch_2, branch_3], 3) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # mixed_1: 35 x 35 x 288. end_point = 'Mixed_5c' with variable_scope.variable_scope(end_point): with variable_scope.variable_scope('Branch_0'): branch_0 = layers.conv2d( net, depth(64), [1, 1], scope='Conv2d_0a_1x1') with variable_scope.variable_scope('Branch_1'): branch_1 = layers.conv2d( net, depth(48), [1, 1], scope='Conv2d_0b_1x1') branch_1 = layers.conv2d( branch_1, depth(64), [5, 5], scope='Conv_1_0c_5x5') with variable_scope.variable_scope('Branch_2'): branch_2 = layers.conv2d( net, depth(64), [1, 1], scope='Conv2d_0a_1x1') branch_2 = layers.conv2d( branch_2, depth(96), [3, 3], scope='Conv2d_0b_3x3') branch_2 = layers.conv2d( branch_2, depth(96), [3, 3], scope='Conv2d_0c_3x3') with variable_scope.variable_scope('Branch_3'): branch_3 = layers_lib.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3') branch_3 = layers.conv2d( branch_3, depth(64), [1, 1], scope='Conv2d_0b_1x1') net = array_ops.concat([branch_0, branch_1, branch_2, branch_3], 3) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # mixed_2: 35 x 35 x 288. end_point = 'Mixed_5d' with variable_scope.variable_scope(end_point): with variable_scope.variable_scope('Branch_0'): branch_0 = layers.conv2d( net, depth(64), [1, 1], scope='Conv2d_0a_1x1') with variable_scope.variable_scope('Branch_1'): branch_1 = layers.conv2d( net, depth(48), [1, 1], scope='Conv2d_0a_1x1') branch_1 = layers.conv2d( branch_1, depth(64), [5, 5], scope='Conv2d_0b_5x5') with variable_scope.variable_scope('Branch_2'): branch_2 = layers.conv2d( net, depth(64), [1, 1], scope='Conv2d_0a_1x1') branch_2 = layers.conv2d( branch_2, depth(96), [3, 3], scope='Conv2d_0b_3x3') branch_2 = layers.conv2d( branch_2, depth(96), [3, 3], scope='Conv2d_0c_3x3') with variable_scope.variable_scope('Branch_3'): branch_3 = layers_lib.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3') branch_3 = layers.conv2d( branch_3, depth(64), [1, 1], scope='Conv2d_0b_1x1') net = array_ops.concat([branch_0, branch_1, branch_2, branch_3], 3) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # mixed_3: 17 x 17 x 768. end_point = 'Mixed_6a' with variable_scope.variable_scope(end_point): with variable_scope.variable_scope('Branch_0'): branch_0 = layers.conv2d( net, depth(384), [3, 3], stride=2, padding='VALID', scope='Conv2d_1a_1x1') with variable_scope.variable_scope('Branch_1'): branch_1 = layers.conv2d( net, depth(64), [1, 1], scope='Conv2d_0a_1x1') branch_1 = layers.conv2d( branch_1, depth(96), [3, 3], scope='Conv2d_0b_3x3') branch_1 = layers.conv2d( branch_1, depth(96), [3, 3], stride=2, padding='VALID', scope='Conv2d_1a_1x1') with variable_scope.variable_scope('Branch_2'): branch_2 = layers_lib.max_pool2d( net, [3, 3], stride=2, padding='VALID', scope='MaxPool_1a_3x3') net = array_ops.concat([branch_0, branch_1, branch_2], 3) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # mixed4: 17 x 17 x 768. end_point = 'Mixed_6b' with variable_scope.variable_scope(end_point): with variable_scope.variable_scope('Branch_0'): branch_0 = layers.conv2d( net, depth(192), [1, 1], scope='Conv2d_0a_1x1') with variable_scope.variable_scope('Branch_1'): branch_1 = layers.conv2d( net, depth(128), [1, 1], scope='Conv2d_0a_1x1') branch_1 = layers.conv2d( branch_1, depth(128), [1, 7], scope='Conv2d_0b_1x7') branch_1 = layers.conv2d( branch_1, depth(192), [7, 1], scope='Conv2d_0c_7x1') with variable_scope.variable_scope('Branch_2'): branch_2 = layers.conv2d( net, depth(128), [1, 1], scope='Conv2d_0a_1x1') branch_2 = layers.conv2d( branch_2, depth(128), [7, 1], scope='Conv2d_0b_7x1') branch_2 = layers.conv2d( branch_2, depth(128), [1, 7], scope='Conv2d_0c_1x7') branch_2 = layers.conv2d( branch_2, depth(128), [7, 1], scope='Conv2d_0d_7x1') branch_2 = layers.conv2d( branch_2, depth(192), [1, 7], scope='Conv2d_0e_1x7') with variable_scope.variable_scope('Branch_3'): branch_3 = layers_lib.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3') branch_3 = layers.conv2d( branch_3, depth(192), [1, 1], scope='Conv2d_0b_1x1') net = array_ops.concat([branch_0, branch_1, branch_2, branch_3], 3) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # mixed_5: 17 x 17 x 768. end_point = 'Mixed_6c' with variable_scope.variable_scope(end_point): with variable_scope.variable_scope('Branch_0'): branch_0 = layers.conv2d( net, depth(192), [1, 1], scope='Conv2d_0a_1x1') with variable_scope.variable_scope('Branch_1'): branch_1 = layers.conv2d( net, depth(160), [1, 1], scope='Conv2d_0a_1x1') branch_1 = layers.conv2d( branch_1, depth(160), [1, 7], scope='Conv2d_0b_1x7') branch_1 = layers.conv2d( branch_1, depth(192), [7, 1], scope='Conv2d_0c_7x1') with variable_scope.variable_scope('Branch_2'): branch_2 = layers.conv2d( net, depth(160), [1, 1], scope='Conv2d_0a_1x1') branch_2 = layers.conv2d( branch_2, depth(160), [7, 1], scope='Conv2d_0b_7x1') branch_2 = layers.conv2d( branch_2, depth(160), [1, 7], scope='Conv2d_0c_1x7') branch_2 = layers.conv2d( branch_2, depth(160), [7, 1], scope='Conv2d_0d_7x1') branch_2 = layers.conv2d( branch_2, depth(192), [1, 7], scope='Conv2d_0e_1x7') with variable_scope.variable_scope('Branch_3'): branch_3 = layers_lib.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3') branch_3 = layers.conv2d( branch_3, depth(192), [1, 1], scope='Conv2d_0b_1x1') net = array_ops.concat([branch_0, branch_1, branch_2, branch_3], 3) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # mixed_6: 17 x 17 x 768. end_point = 'Mixed_6d' with variable_scope.variable_scope(end_point): with variable_scope.variable_scope('Branch_0'): branch_0 = layers.conv2d( net, depth(192), [1, 1], scope='Conv2d_0a_1x1') with variable_scope.variable_scope('Branch_1'): branch_1 = layers.conv2d( net, depth(160), [1, 1], scope='Conv2d_0a_1x1') branch_1 = layers.conv2d( branch_1, depth(160), [1, 7], scope='Conv2d_0b_1x7') branch_1 = layers.conv2d( branch_1, depth(192), [7, 1], scope='Conv2d_0c_7x1') with variable_scope.variable_scope('Branch_2'): branch_2 = layers.conv2d( net, depth(160), [1, 1], scope='Conv2d_0a_1x1') branch_2 = layers.conv2d( branch_2, depth(160), [7, 1], scope='Conv2d_0b_7x1') branch_2 = layers.conv2d( branch_2, depth(160), [1, 7], scope='Conv2d_0c_1x7') branch_2 = layers.conv2d( branch_2, depth(160), [7, 1], scope='Conv2d_0d_7x1') branch_2 = layers.conv2d( branch_2, depth(192), [1, 7], scope='Conv2d_0e_1x7') with variable_scope.variable_scope('Branch_3'): branch_3 = layers_lib.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3') branch_3 = layers.conv2d( branch_3, depth(192), [1, 1], scope='Conv2d_0b_1x1') net = array_ops.concat([branch_0, branch_1, branch_2, branch_3], 3) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # mixed_7: 17 x 17 x 768. end_point = 'Mixed_6e' with variable_scope.variable_scope(end_point): with variable_scope.variable_scope('Branch_0'): branch_0 = layers.conv2d( net, depth(192), [1, 1], scope='Conv2d_0a_1x1') with variable_scope.variable_scope('Branch_1'): branch_1 = layers.conv2d( net, depth(192), [1, 1], scope='Conv2d_0a_1x1') branch_1 = layers.conv2d( branch_1, depth(192), [1, 7], scope='Conv2d_0b_1x7') branch_1 = layers.conv2d( branch_1, depth(192), [7, 1], scope='Conv2d_0c_7x1') with variable_scope.variable_scope('Branch_2'): branch_2 = layers.conv2d( net, depth(192), [1, 1], scope='Conv2d_0a_1x1') branch_2 = layers.conv2d( branch_2, depth(192), [7, 1], scope='Conv2d_0b_7x1') branch_2 = layers.conv2d( branch_2, depth(192), [1, 7], scope='Conv2d_0c_1x7') branch_2 = layers.conv2d( branch_2, depth(192), [7, 1], scope='Conv2d_0d_7x1') branch_2 = layers.conv2d( branch_2, depth(192), [1, 7], scope='Conv2d_0e_1x7') with variable_scope.variable_scope('Branch_3'): branch_3 = layers_lib.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3') branch_3 = layers.conv2d( branch_3, depth(192), [1, 1], scope='Conv2d_0b_1x1') net = array_ops.concat([branch_0, branch_1, branch_2, branch_3], 3) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # mixed_8: 8 x 8 x 1280. end_point = 'Mixed_7a' with variable_scope.variable_scope(end_point): with variable_scope.variable_scope('Branch_0'): branch_0 = layers.conv2d( net, depth(192), [1, 1], scope='Conv2d_0a_1x1') branch_0 = layers.conv2d( branch_0, depth(320), [3, 3], stride=2, padding='VALID', scope='Conv2d_1a_3x3') with variable_scope.variable_scope('Branch_1'): branch_1 = layers.conv2d( net, depth(192), [1, 1], scope='Conv2d_0a_1x1') branch_1 = layers.conv2d( branch_1, depth(192), [1, 7], scope='Conv2d_0b_1x7') branch_1 = layers.conv2d( branch_1, depth(192), [7, 1], scope='Conv2d_0c_7x1') branch_1 = layers.conv2d( branch_1, depth(192), [3, 3], stride=2, padding='VALID', scope='Conv2d_1a_3x3') with variable_scope.variable_scope('Branch_2'): branch_2 = layers_lib.max_pool2d( net, [3, 3], stride=2, padding='VALID', scope='MaxPool_1a_3x3') net = array_ops.concat([branch_0, branch_1, branch_2], 3) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # mixed_9: 8 x 8 x 2048. end_point = 'Mixed_7b' with variable_scope.variable_scope(end_point): with variable_scope.variable_scope('Branch_0'): branch_0 = layers.conv2d( net, depth(320), [1, 1], scope='Conv2d_0a_1x1') with variable_scope.variable_scope('Branch_1'): branch_1 = layers.conv2d( net, depth(384), [1, 1], scope='Conv2d_0a_1x1') branch_1 = array_ops.concat( [ layers.conv2d( branch_1, depth(384), [1, 3], scope='Conv2d_0b_1x3'), layers.conv2d( branch_1, depth(384), [3, 1], scope='Conv2d_0b_3x1') ], 3) with variable_scope.variable_scope('Branch_2'): branch_2 = layers.conv2d( net, depth(448), [1, 1], scope='Conv2d_0a_1x1') branch_2 = layers.conv2d( branch_2, depth(384), [3, 3], scope='Conv2d_0b_3x3') branch_2 = array_ops.concat( [ layers.conv2d( branch_2, depth(384), [1, 3], scope='Conv2d_0c_1x3'), layers.conv2d( branch_2, depth(384), [3, 1], scope='Conv2d_0d_3x1') ], 3) with variable_scope.variable_scope('Branch_3'): branch_3 = layers_lib.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3') branch_3 = layers.conv2d( branch_3, depth(192), [1, 1], scope='Conv2d_0b_1x1') net = array_ops.concat([branch_0, branch_1, branch_2, branch_3], 3) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # mixed_10: 8 x 8 x 2048. end_point = 'Mixed_7c' with variable_scope.variable_scope(end_point): with variable_scope.variable_scope('Branch_0'): branch_0 = layers.conv2d( net, depth(320), [1, 1], scope='Conv2d_0a_1x1') with variable_scope.variable_scope('Branch_1'): branch_1 = layers.conv2d( net, depth(384), [1, 1], scope='Conv2d_0a_1x1') branch_1 = array_ops.concat( [ layers.conv2d( branch_1, depth(384), [1, 3], scope='Conv2d_0b_1x3'), layers.conv2d( branch_1, depth(384), [3, 1], scope='Conv2d_0c_3x1') ], 3) with variable_scope.variable_scope('Branch_2'): branch_2 = layers.conv2d( net, depth(448), [1, 1], scope='Conv2d_0a_1x1') branch_2 = layers.conv2d( branch_2, depth(384), [3, 3], scope='Conv2d_0b_3x3') branch_2 = array_ops.concat( [ layers.conv2d( branch_2, depth(384), [1, 3], scope='Conv2d_0c_1x3'), layers.conv2d( branch_2, depth(384), [3, 1], scope='Conv2d_0d_3x1') ], 3) with variable_scope.variable_scope('Branch_3'): branch_3 = layers_lib.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3') branch_3 = layers.conv2d( branch_3, depth(192), [1, 1], scope='Conv2d_0b_1x1') net = array_ops.concat([branch_0, branch_1, branch_2, branch_3], 3) end_points[end_point] = net if end_point == final_endpoint: return net, end_points raise ValueError('Unknown final endpoint %s' % final_endpoint) def inception_v3(inputs, num_classes=1000, is_training=True, dropout_keep_prob=0.8, min_depth=16, depth_multiplier=1.0, prediction_fn=layers_lib.softmax, spatial_squeeze=True, reuse=None, scope='InceptionV3'): """Inception model from http://arxiv.org/abs/1512.00567. "Rethinking the Inception Architecture for Computer Vision" Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, Zbigniew Wojna. With the default arguments this method constructs the exact model defined in the paper. However, one can experiment with variations of the inception_v3 network by changing arguments dropout_keep_prob, min_depth and depth_multiplier. The default image size used to train this network is 299x299. Args: inputs: a tensor of size [batch_size, height, width, channels]. num_classes: number of predicted classes. is_training: whether is training or not. dropout_keep_prob: the percentage of activation values that are retained. min_depth: Minimum depth value (number of channels) for all convolution ops. Enforced when depth_multiplier < 1, and not an active constraint when depth_multiplier >= 1. depth_multiplier: Float multiplier for the depth (number of channels) for all convolution ops. The value must be greater than zero. Typical usage will be to set this value in (0, 1) to reduce the number of parameters or computation cost of the model. prediction_fn: a function to get predictions out of logits. spatial_squeeze: if True, logits is of shape is [B, C], if false logits is of shape [B, 1, 1, C], where B is batch_size and C is number of classes. To use this parameter, the input images must be smaller than 300x300 pixels, in which case the output logit layer does not contain spatial information and can be removed. reuse: whether or not the network and its variables should be reused. To be able to reuse 'scope' must be given. scope: Optional variable_scope. Returns: logits: the pre-softmax activations, a tensor of size [batch_size, num_classes] end_points: a dictionary from components of the network to the corresponding activation. Raises: ValueError: if 'depth_multiplier' is less than or equal to zero. """ if depth_multiplier <= 0: raise ValueError('depth_multiplier is not greater than zero.') depth = lambda d: max(int(d * depth_multiplier), min_depth) with variable_scope.variable_scope( scope, 'InceptionV3', [inputs, num_classes], reuse=reuse) as scope: with arg_scope( [layers_lib.batch_norm, layers_lib.dropout], is_training=is_training): net, end_points = inception_v3_base( inputs, scope=scope, min_depth=min_depth, depth_multiplier=depth_multiplier) # Auxiliary Head logits with arg_scope( [layers.conv2d, layers_lib.max_pool2d, layers_lib.avg_pool2d], stride=1, padding='SAME'): aux_logits = end_points['Mixed_6e'] with variable_scope.variable_scope('AuxLogits'): aux_logits = layers_lib.avg_pool2d( aux_logits, [5, 5], stride=3, padding='VALID', scope='AvgPool_1a_5x5') aux_logits = layers.conv2d( aux_logits, depth(128), [1, 1], scope='Conv2d_1b_1x1') # Shape of feature map before the final layer. kernel_size = _reduced_kernel_size_for_small_input(aux_logits, [5, 5]) aux_logits = layers.conv2d( aux_logits, depth(768), kernel_size, weights_initializer=trunc_normal(0.01), padding='VALID', scope='Conv2d_2a_{}x{}'.format(*kernel_size)) aux_logits = layers.conv2d( aux_logits, num_classes, [1, 1], activation_fn=None, normalizer_fn=None, weights_initializer=trunc_normal(0.001), scope='Conv2d_2b_1x1') if spatial_squeeze: aux_logits = array_ops.squeeze( aux_logits, [1, 2], name='SpatialSqueeze') end_points['AuxLogits'] = aux_logits # Final pooling and prediction with variable_scope.variable_scope('Logits'): kernel_size = _reduced_kernel_size_for_small_input(net, [8, 8]) net = layers_lib.avg_pool2d( net, kernel_size, padding='VALID', scope='AvgPool_1a_{}x{}'.format(*kernel_size)) # 1 x 1 x 2048 net = layers_lib.dropout( net, keep_prob=dropout_keep_prob, scope='Dropout_1b') end_points['PreLogits'] = net # 2048 logits = layers.conv2d( net, num_classes, [1, 1], activation_fn=None, normalizer_fn=None, scope='Conv2d_1c_1x1') if spatial_squeeze: logits = array_ops.squeeze(logits, [1, 2], name='SpatialSqueeze') # 1000 end_points['Logits'] = logits end_points['Predictions'] = prediction_fn(logits, scope='Predictions') return logits, end_points inception_v3.default_image_size = 299 def _reduced_kernel_size_for_small_input(input_tensor, kernel_size): """Define kernel size which is automatically reduced for small input. If the shape of the input images is unknown at graph construction time this function assumes that the input images are is large enough. Args: input_tensor: input tensor of size [batch_size, height, width, channels]. kernel_size: desired kernel size of length 2: [kernel_height, kernel_width] Returns: a tensor with the kernel size. TODO(jrru): Make this function work with unknown shapes. Theoretically, this can be done with the code below. Problems are two-fold: (1) If the shape was known, it will be lost. (2) inception.tf.contrib.slim.ops._two_element_tuple cannot handle tensors that define the kernel size. shape = tf.shape(input_tensor) return = tf.stack([tf.minimum(shape[1], kernel_size[0]), tf.minimum(shape[2], kernel_size[1])]) """ shape = input_tensor.get_shape().as_list() if shape[1] is None or shape[2] is None: kernel_size_out = kernel_size else: kernel_size_out = [ min(shape[1], kernel_size[0]), min(shape[2], kernel_size[1]) ] return kernel_size_out def inception_v3_arg_scope(weight_decay=0.00004, batch_norm_var_collection='moving_vars', batch_norm_decay=0.9997, batch_norm_epsilon=0.001, updates_collections=ops.GraphKeys.UPDATE_OPS, use_fused_batchnorm=True): """Defines the default InceptionV3 arg scope. Args: weight_decay: The weight decay to use for regularizing the model. batch_norm_var_collection: The name of the collection for the batch norm variables. batch_norm_decay: Decay for batch norm moving average batch_norm_epsilon: Small float added to variance to avoid division by zero updates_collections: Collections for the update ops of the layer use_fused_batchnorm: Enable fused batchnorm. Returns: An `arg_scope` to use for the inception v3 model. """ batch_norm_params = { # Decay for the moving averages. 'decay': batch_norm_decay, # epsilon to prevent 0s in variance. 'epsilon': batch_norm_epsilon, # collection containing update_ops. 'updates_collections': updates_collections, # Use fused batch norm if possible. 'fused': use_fused_batchnorm, # collection containing the moving mean and moving variance. 'variables_collections': { 'beta': None, 'gamma': None, 'moving_mean': [batch_norm_var_collection], 'moving_variance': [batch_norm_var_collection], } } # Set weight_decay for weights in Conv and FC layers. with arg_scope( [layers.conv2d, layers_lib.fully_connected], weights_regularizer=regularizers.l2_regularizer(weight_decay)): with arg_scope( [layers.conv2d], weights_initializer=initializers.variance_scaling_initializer(), activation_fn=nn_ops.relu, normalizer_fn=layers_lib.batch_norm, normalizer_params=batch_norm_params) as sc: return sc
tensorflow-master
tensorflow/contrib/slim/python/slim/nets/inception_v3.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Contains the definition for inception v2 classification network.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib import layers from tensorflow.contrib.framework.python.ops import arg_scope from tensorflow.contrib.layers.python.layers import initializers from tensorflow.contrib.layers.python.layers import layers as layers_lib from tensorflow.contrib.layers.python.layers import regularizers from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import nn_ops from tensorflow.python.ops import variable_scope trunc_normal = lambda stddev: init_ops.truncated_normal_initializer(0.0, stddev) def inception_v2_base(inputs, final_endpoint='Mixed_5c', min_depth=16, depth_multiplier=1.0, scope=None): """Inception v2 (6a2). Constructs an Inception v2 network from inputs to the given final endpoint. This method can construct the network up to the layer inception(5b) as described in http://arxiv.org/abs/1502.03167. Args: inputs: a tensor of shape [batch_size, height, width, channels]. final_endpoint: specifies the endpoint to construct the network up to. It can be one of ['Conv2d_1a_7x7', 'MaxPool_2a_3x3', 'Conv2d_2b_1x1', 'Conv2d_2c_3x3', 'MaxPool_3a_3x3', 'Mixed_3b', 'Mixed_3c', 'Mixed_4a', 'Mixed_4b', 'Mixed_4c', 'Mixed_4d', 'Mixed_4e', 'Mixed_5a', 'Mixed_5b', 'Mixed_5c']. min_depth: Minimum depth value (number of channels) for all convolution ops. Enforced when depth_multiplier < 1, and not an active constraint when depth_multiplier >= 1. depth_multiplier: Float multiplier for the depth (number of channels) for all convolution ops. The value must be greater than zero. Typical usage will be to set this value in (0, 1) to reduce the number of parameters or computation cost of the model. scope: Optional variable_scope. Returns: tensor_out: output tensor corresponding to the final_endpoint. end_points: a set of activations for external use, for example summaries or losses. Raises: ValueError: if final_endpoint is not set to one of the predefined values, or depth_multiplier <= 0 """ # end_points will collect relevant activations for external use, for example # summaries or losses. end_points = {} # Used to find thinned depths for each layer. if depth_multiplier <= 0: raise ValueError('depth_multiplier is not greater than zero.') depth = lambda d: max(int(d * depth_multiplier), min_depth) with variable_scope.variable_scope(scope, 'InceptionV2', [inputs]): with arg_scope( [ layers.conv2d, layers_lib.max_pool2d, layers_lib.avg_pool2d, layers.separable_conv2d ], stride=1, padding='SAME'): # Note that sizes in the comments below assume an input spatial size of # 224x224, however, the inputs can be of any size greater 32x32. # 224 x 224 x 3 end_point = 'Conv2d_1a_7x7' # depthwise_multiplier here is different from depth_multiplier. # depthwise_multiplier determines the output channels of the initial # depthwise conv (see docs for tf.nn.separable_conv2d), while # depth_multiplier controls the # channels of the subsequent 1x1 # convolution. Must have # in_channels * depthwise_multipler <= out_channels # so that the separable convolution is not overparameterized. depthwise_multiplier = min(int(depth(64) / 3), 8) net = layers.separable_conv2d( inputs, depth(64), [7, 7], depth_multiplier=depthwise_multiplier, stride=2, weights_initializer=trunc_normal(1.0), scope=end_point) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # 112 x 112 x 64 end_point = 'MaxPool_2a_3x3' net = layers_lib.max_pool2d(net, [3, 3], scope=end_point, stride=2) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # 56 x 56 x 64 end_point = 'Conv2d_2b_1x1' net = layers.conv2d( net, depth(64), [1, 1], scope=end_point, weights_initializer=trunc_normal(0.1)) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # 56 x 56 x 64 end_point = 'Conv2d_2c_3x3' net = layers.conv2d(net, depth(192), [3, 3], scope=end_point) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # 56 x 56 x 192 end_point = 'MaxPool_3a_3x3' net = layers_lib.max_pool2d(net, [3, 3], scope=end_point, stride=2) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # 28 x 28 x 192 # Inception module. end_point = 'Mixed_3b' with variable_scope.variable_scope(end_point): with variable_scope.variable_scope('Branch_0'): branch_0 = layers.conv2d( net, depth(64), [1, 1], scope='Conv2d_0a_1x1') with variable_scope.variable_scope('Branch_1'): branch_1 = layers.conv2d( net, depth(64), [1, 1], weights_initializer=trunc_normal(0.09), scope='Conv2d_0a_1x1') branch_1 = layers.conv2d( branch_1, depth(64), [3, 3], scope='Conv2d_0b_3x3') with variable_scope.variable_scope('Branch_2'): branch_2 = layers.conv2d( net, depth(64), [1, 1], weights_initializer=trunc_normal(0.09), scope='Conv2d_0a_1x1') branch_2 = layers.conv2d( branch_2, depth(96), [3, 3], scope='Conv2d_0b_3x3') branch_2 = layers.conv2d( branch_2, depth(96), [3, 3], scope='Conv2d_0c_3x3') with variable_scope.variable_scope('Branch_3'): branch_3 = layers_lib.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3') branch_3 = layers.conv2d( branch_3, depth(32), [1, 1], weights_initializer=trunc_normal(0.1), scope='Conv2d_0b_1x1') net = array_ops.concat([branch_0, branch_1, branch_2, branch_3], 3) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # 28 x 28 x 256 end_point = 'Mixed_3c' with variable_scope.variable_scope(end_point): with variable_scope.variable_scope('Branch_0'): branch_0 = layers.conv2d( net, depth(64), [1, 1], scope='Conv2d_0a_1x1') with variable_scope.variable_scope('Branch_1'): branch_1 = layers.conv2d( net, depth(64), [1, 1], weights_initializer=trunc_normal(0.09), scope='Conv2d_0a_1x1') branch_1 = layers.conv2d( branch_1, depth(96), [3, 3], scope='Conv2d_0b_3x3') with variable_scope.variable_scope('Branch_2'): branch_2 = layers.conv2d( net, depth(64), [1, 1], weights_initializer=trunc_normal(0.09), scope='Conv2d_0a_1x1') branch_2 = layers.conv2d( branch_2, depth(96), [3, 3], scope='Conv2d_0b_3x3') branch_2 = layers.conv2d( branch_2, depth(96), [3, 3], scope='Conv2d_0c_3x3') with variable_scope.variable_scope('Branch_3'): branch_3 = layers_lib.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3') branch_3 = layers.conv2d( branch_3, depth(64), [1, 1], weights_initializer=trunc_normal(0.1), scope='Conv2d_0b_1x1') net = array_ops.concat([branch_0, branch_1, branch_2, branch_3], 3) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # 28 x 28 x 320 end_point = 'Mixed_4a' with variable_scope.variable_scope(end_point): with variable_scope.variable_scope('Branch_0'): branch_0 = layers.conv2d( net, depth(128), [1, 1], weights_initializer=trunc_normal(0.09), scope='Conv2d_0a_1x1') branch_0 = layers.conv2d( branch_0, depth(160), [3, 3], stride=2, scope='Conv2d_1a_3x3') with variable_scope.variable_scope('Branch_1'): branch_1 = layers.conv2d( net, depth(64), [1, 1], weights_initializer=trunc_normal(0.09), scope='Conv2d_0a_1x1') branch_1 = layers.conv2d( branch_1, depth(96), [3, 3], scope='Conv2d_0b_3x3') branch_1 = layers.conv2d( branch_1, depth(96), [3, 3], stride=2, scope='Conv2d_1a_3x3') with variable_scope.variable_scope('Branch_2'): branch_2 = layers_lib.max_pool2d( net, [3, 3], stride=2, scope='MaxPool_1a_3x3') net = array_ops.concat([branch_0, branch_1, branch_2], 3) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # 14 x 14 x 576 end_point = 'Mixed_4b' with variable_scope.variable_scope(end_point): with variable_scope.variable_scope('Branch_0'): branch_0 = layers.conv2d( net, depth(224), [1, 1], scope='Conv2d_0a_1x1') with variable_scope.variable_scope('Branch_1'): branch_1 = layers.conv2d( net, depth(64), [1, 1], weights_initializer=trunc_normal(0.09), scope='Conv2d_0a_1x1') branch_1 = layers.conv2d( branch_1, depth(96), [3, 3], scope='Conv2d_0b_3x3') with variable_scope.variable_scope('Branch_2'): branch_2 = layers.conv2d( net, depth(96), [1, 1], weights_initializer=trunc_normal(0.09), scope='Conv2d_0a_1x1') branch_2 = layers.conv2d( branch_2, depth(128), [3, 3], scope='Conv2d_0b_3x3') branch_2 = layers.conv2d( branch_2, depth(128), [3, 3], scope='Conv2d_0c_3x3') with variable_scope.variable_scope('Branch_3'): branch_3 = layers_lib.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3') branch_3 = layers.conv2d( branch_3, depth(128), [1, 1], weights_initializer=trunc_normal(0.1), scope='Conv2d_0b_1x1') net = array_ops.concat([branch_0, branch_1, branch_2, branch_3], 3) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # 14 x 14 x 576 end_point = 'Mixed_4c' with variable_scope.variable_scope(end_point): with variable_scope.variable_scope('Branch_0'): branch_0 = layers.conv2d( net, depth(192), [1, 1], scope='Conv2d_0a_1x1') with variable_scope.variable_scope('Branch_1'): branch_1 = layers.conv2d( net, depth(96), [1, 1], weights_initializer=trunc_normal(0.09), scope='Conv2d_0a_1x1') branch_1 = layers.conv2d( branch_1, depth(128), [3, 3], scope='Conv2d_0b_3x3') with variable_scope.variable_scope('Branch_2'): branch_2 = layers.conv2d( net, depth(96), [1, 1], weights_initializer=trunc_normal(0.09), scope='Conv2d_0a_1x1') branch_2 = layers.conv2d( branch_2, depth(128), [3, 3], scope='Conv2d_0b_3x3') branch_2 = layers.conv2d( branch_2, depth(128), [3, 3], scope='Conv2d_0c_3x3') with variable_scope.variable_scope('Branch_3'): branch_3 = layers_lib.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3') branch_3 = layers.conv2d( branch_3, depth(128), [1, 1], weights_initializer=trunc_normal(0.1), scope='Conv2d_0b_1x1') net = array_ops.concat([branch_0, branch_1, branch_2, branch_3], 3) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # 14 x 14 x 576 end_point = 'Mixed_4d' with variable_scope.variable_scope(end_point): with variable_scope.variable_scope('Branch_0'): branch_0 = layers.conv2d( net, depth(160), [1, 1], scope='Conv2d_0a_1x1') with variable_scope.variable_scope('Branch_1'): branch_1 = layers.conv2d( net, depth(128), [1, 1], weights_initializer=trunc_normal(0.09), scope='Conv2d_0a_1x1') branch_1 = layers.conv2d( branch_1, depth(160), [3, 3], scope='Conv2d_0b_3x3') with variable_scope.variable_scope('Branch_2'): branch_2 = layers.conv2d( net, depth(128), [1, 1], weights_initializer=trunc_normal(0.09), scope='Conv2d_0a_1x1') branch_2 = layers.conv2d( branch_2, depth(160), [3, 3], scope='Conv2d_0b_3x3') branch_2 = layers.conv2d( branch_2, depth(160), [3, 3], scope='Conv2d_0c_3x3') with variable_scope.variable_scope('Branch_3'): branch_3 = layers_lib.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3') branch_3 = layers.conv2d( branch_3, depth(96), [1, 1], weights_initializer=trunc_normal(0.1), scope='Conv2d_0b_1x1') net = array_ops.concat([branch_0, branch_1, branch_2, branch_3], 3) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # 14 x 14 x 576 end_point = 'Mixed_4e' with variable_scope.variable_scope(end_point): with variable_scope.variable_scope('Branch_0'): branch_0 = layers.conv2d( net, depth(96), [1, 1], scope='Conv2d_0a_1x1') with variable_scope.variable_scope('Branch_1'): branch_1 = layers.conv2d( net, depth(128), [1, 1], weights_initializer=trunc_normal(0.09), scope='Conv2d_0a_1x1') branch_1 = layers.conv2d( branch_1, depth(192), [3, 3], scope='Conv2d_0b_3x3') with variable_scope.variable_scope('Branch_2'): branch_2 = layers.conv2d( net, depth(160), [1, 1], weights_initializer=trunc_normal(0.09), scope='Conv2d_0a_1x1') branch_2 = layers.conv2d( branch_2, depth(192), [3, 3], scope='Conv2d_0b_3x3') branch_2 = layers.conv2d( branch_2, depth(192), [3, 3], scope='Conv2d_0c_3x3') with variable_scope.variable_scope('Branch_3'): branch_3 = layers_lib.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3') branch_3 = layers.conv2d( branch_3, depth(96), [1, 1], weights_initializer=trunc_normal(0.1), scope='Conv2d_0b_1x1') net = array_ops.concat([branch_0, branch_1, branch_2, branch_3], 3) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # 14 x 14 x 576 end_point = 'Mixed_5a' with variable_scope.variable_scope(end_point): with variable_scope.variable_scope('Branch_0'): branch_0 = layers.conv2d( net, depth(128), [1, 1], weights_initializer=trunc_normal(0.09), scope='Conv2d_0a_1x1') branch_0 = layers.conv2d( branch_0, depth(192), [3, 3], stride=2, scope='Conv2d_1a_3x3') with variable_scope.variable_scope('Branch_1'): branch_1 = layers.conv2d( net, depth(192), [1, 1], weights_initializer=trunc_normal(0.09), scope='Conv2d_0a_1x1') branch_1 = layers.conv2d( branch_1, depth(256), [3, 3], scope='Conv2d_0b_3x3') branch_1 = layers.conv2d( branch_1, depth(256), [3, 3], stride=2, scope='Conv2d_1a_3x3') with variable_scope.variable_scope('Branch_2'): branch_2 = layers_lib.max_pool2d( net, [3, 3], stride=2, scope='MaxPool_1a_3x3') net = array_ops.concat([branch_0, branch_1, branch_2], 3) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # 7 x 7 x 1024 end_point = 'Mixed_5b' with variable_scope.variable_scope(end_point): with variable_scope.variable_scope('Branch_0'): branch_0 = layers.conv2d( net, depth(352), [1, 1], scope='Conv2d_0a_1x1') with variable_scope.variable_scope('Branch_1'): branch_1 = layers.conv2d( net, depth(192), [1, 1], weights_initializer=trunc_normal(0.09), scope='Conv2d_0a_1x1') branch_1 = layers.conv2d( branch_1, depth(320), [3, 3], scope='Conv2d_0b_3x3') with variable_scope.variable_scope('Branch_2'): branch_2 = layers.conv2d( net, depth(160), [1, 1], weights_initializer=trunc_normal(0.09), scope='Conv2d_0a_1x1') branch_2 = layers.conv2d( branch_2, depth(224), [3, 3], scope='Conv2d_0b_3x3') branch_2 = layers.conv2d( branch_2, depth(224), [3, 3], scope='Conv2d_0c_3x3') with variable_scope.variable_scope('Branch_3'): branch_3 = layers_lib.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3') branch_3 = layers.conv2d( branch_3, depth(128), [1, 1], weights_initializer=trunc_normal(0.1), scope='Conv2d_0b_1x1') net = array_ops.concat([branch_0, branch_1, branch_2, branch_3], 3) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # 7 x 7 x 1024 end_point = 'Mixed_5c' with variable_scope.variable_scope(end_point): with variable_scope.variable_scope('Branch_0'): branch_0 = layers.conv2d( net, depth(352), [1, 1], scope='Conv2d_0a_1x1') with variable_scope.variable_scope('Branch_1'): branch_1 = layers.conv2d( net, depth(192), [1, 1], weights_initializer=trunc_normal(0.09), scope='Conv2d_0a_1x1') branch_1 = layers.conv2d( branch_1, depth(320), [3, 3], scope='Conv2d_0b_3x3') with variable_scope.variable_scope('Branch_2'): branch_2 = layers.conv2d( net, depth(192), [1, 1], weights_initializer=trunc_normal(0.09), scope='Conv2d_0a_1x1') branch_2 = layers.conv2d( branch_2, depth(224), [3, 3], scope='Conv2d_0b_3x3') branch_2 = layers.conv2d( branch_2, depth(224), [3, 3], scope='Conv2d_0c_3x3') with variable_scope.variable_scope('Branch_3'): branch_3 = layers_lib.max_pool2d(net, [3, 3], scope='MaxPool_0a_3x3') branch_3 = layers.conv2d( branch_3, depth(128), [1, 1], weights_initializer=trunc_normal(0.1), scope='Conv2d_0b_1x1') net = array_ops.concat([branch_0, branch_1, branch_2, branch_3], 3) end_points[end_point] = net if end_point == final_endpoint: return net, end_points raise ValueError('Unknown final endpoint %s' % final_endpoint) def inception_v2(inputs, num_classes=1000, is_training=True, dropout_keep_prob=0.8, min_depth=16, depth_multiplier=1.0, prediction_fn=layers_lib.softmax, spatial_squeeze=True, reuse=None, scope='InceptionV2'): """Inception v2 model for classification. Constructs an Inception v2 network for classification as described in http://arxiv.org/abs/1502.03167. The recommended image size used to train this network is 224x224. For image sizes that differ substantially, it is recommended to use inception_v2_base() and connect custom final layers to the output. Args: inputs: a tensor of shape [batch_size, height, width, channels]. num_classes: number of predicted classes. is_training: whether is training or not. dropout_keep_prob: the percentage of activation values that are retained. min_depth: Minimum depth value (number of channels) for all convolution ops. Enforced when depth_multiplier < 1, and not an active constraint when depth_multiplier >= 1. depth_multiplier: Float multiplier for the depth (number of channels) for all convolution ops. The value must be greater than zero. Typical usage will be to set this value in (0, 1) to reduce the number of parameters or computation cost of the model. prediction_fn: a function to get predictions out of logits. spatial_squeeze: if True, logits is of shape [B, C], if false logits is of shape [B, 1, 1, C], where B is batch_size and C is number of classes. Note that input image sizes other than 224x224 might lead to different spatial dimensions, and hence cannot be squeezed. In this event, it is best to set spatial_squeeze as False, and perform a reduce_mean over the resulting spatial dimensions with sizes exceeding 1. reuse: whether or not the network and its variables should be reused. To be able to reuse 'scope' must be given. scope: Optional variable_scope. Returns: logits: the pre-softmax activations, a tensor of size [batch_size, num_classes] end_points: a dictionary from components of the network to the corresponding activation. Raises: ValueError: if depth_multiplier <= 0. """ if depth_multiplier <= 0: raise ValueError('depth_multiplier is not greater than zero.') # Final pooling and prediction with variable_scope.variable_scope( scope, 'InceptionV2', [inputs, num_classes], reuse=reuse) as scope: with arg_scope( [layers_lib.batch_norm, layers_lib.dropout], is_training=is_training): net, end_points = inception_v2_base( inputs, scope=scope, min_depth=min_depth, depth_multiplier=depth_multiplier) with variable_scope.variable_scope('Logits'): kernel_size = _reduced_kernel_size_for_small_input(net, [7, 7]) net = layers_lib.avg_pool2d( net, kernel_size, padding='VALID', scope='AvgPool_1a_{}x{}'.format(*kernel_size)) # 1 x 1 x 1024 net = layers_lib.dropout( net, keep_prob=dropout_keep_prob, scope='Dropout_1b') logits = layers.conv2d( net, num_classes, [1, 1], activation_fn=None, normalizer_fn=None, scope='Conv2d_1c_1x1') if spatial_squeeze: logits = array_ops.squeeze(logits, [1, 2], name='SpatialSqueeze') end_points['Logits'] = logits end_points['Predictions'] = prediction_fn(logits, scope='Predictions') return logits, end_points inception_v2.default_image_size = 224 def _reduced_kernel_size_for_small_input(input_tensor, kernel_size): """Define kernel size which is automatically reduced for small input. If the shape of the input images is unknown at graph construction time this function assumes that the input images are is large enough. Args: input_tensor: input tensor of size [batch_size, height, width, channels]. kernel_size: desired kernel size of length 2: [kernel_height, kernel_width] Returns: a tensor with the kernel size. TODO(jrru): Make this function work with unknown shapes. Theoretically, this can be done with the code below. Problems are two-fold: (1) If the shape was known, it will be lost. (2) inception.slim.ops._two_element_tuple cannot handle tensors that define the kernel size. shape = tf.shape(input_tensor) return = tf.stack([tf.minimum(shape[1], kernel_size[0]), tf.minimum(shape[2], kernel_size[1])]) """ shape = input_tensor.get_shape().as_list() if shape[1] is None or shape[2] is None: kernel_size_out = kernel_size else: kernel_size_out = [ min(shape[1], kernel_size[0]), min(shape[2], kernel_size[1]) ] return kernel_size_out def inception_v2_arg_scope(weight_decay=0.00004, batch_norm_var_collection='moving_vars'): """Defines the default InceptionV2 arg scope. Args: weight_decay: The weight decay to use for regularizing the model. batch_norm_var_collection: The name of the collection for the batch norm variables. Returns: An `arg_scope` to use for the inception v3 model. """ batch_norm_params = { # Decay for the moving averages. 'decay': 0.9997, # epsilon to prevent 0s in variance. 'epsilon': 0.001, # collection containing update_ops. 'updates_collections': ops.GraphKeys.UPDATE_OPS, # collection containing the moving mean and moving variance. 'variables_collections': { 'beta': None, 'gamma': None, 'moving_mean': [batch_norm_var_collection], 'moving_variance': [batch_norm_var_collection], } } # Set weight_decay for weights in Conv and FC layers. with arg_scope( [layers.conv2d, layers_lib.fully_connected], weights_regularizer=regularizers.l2_regularizer(weight_decay)): with arg_scope( [layers.conv2d], weights_initializer=initializers.variance_scaling_initializer(), activation_fn=nn_ops.relu, normalizer_fn=layers_lib.batch_norm, normalizer_params=batch_norm_params) as sc: return sc
tensorflow-master
tensorflow/contrib/slim/python/slim/nets/inception_v2.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for nets.inception_v2.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.framework.python.ops import arg_scope from tensorflow.contrib.framework.python.ops import variables as variables_lib from tensorflow.contrib.slim.python.slim import model_analyzer from tensorflow.contrib.slim.python.slim.nets import inception_v2 from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import random_ops from tensorflow.python.ops import variables from tensorflow.python.platform import test class InceptionV2Test(test.TestCase): def testBuildClassificationNetwork(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 inputs = random_ops.random_uniform((batch_size, height, width, 3)) logits, end_points = inception_v2.inception_v2(inputs, num_classes) self.assertTrue(logits.op.name.startswith('InceptionV2/Logits')) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) self.assertTrue('Predictions' in end_points) self.assertListEqual(end_points['Predictions'].get_shape().as_list(), [batch_size, num_classes]) def testBuildBaseNetwork(self): batch_size = 5 height, width = 224, 224 inputs = random_ops.random_uniform((batch_size, height, width, 3)) mixed_5c, end_points = inception_v2.inception_v2_base(inputs) self.assertTrue(mixed_5c.op.name.startswith('InceptionV2/Mixed_5c')) self.assertListEqual(mixed_5c.get_shape().as_list(), [batch_size, 7, 7, 1024]) expected_endpoints = [ 'Mixed_3b', 'Mixed_3c', 'Mixed_4a', 'Mixed_4b', 'Mixed_4c', 'Mixed_4d', 'Mixed_4e', 'Mixed_5a', 'Mixed_5b', 'Mixed_5c', 'Conv2d_1a_7x7', 'MaxPool_2a_3x3', 'Conv2d_2b_1x1', 'Conv2d_2c_3x3', 'MaxPool_3a_3x3' ] self.assertItemsEqual(end_points.keys(), expected_endpoints) def testBuildOnlyUptoFinalEndpoint(self): batch_size = 5 height, width = 224, 224 endpoints = [ 'Conv2d_1a_7x7', 'MaxPool_2a_3x3', 'Conv2d_2b_1x1', 'Conv2d_2c_3x3', 'MaxPool_3a_3x3', 'Mixed_3b', 'Mixed_3c', 'Mixed_4a', 'Mixed_4b', 'Mixed_4c', 'Mixed_4d', 'Mixed_4e', 'Mixed_5a', 'Mixed_5b', 'Mixed_5c' ] for index, endpoint in enumerate(endpoints): with ops.Graph().as_default(): inputs = random_ops.random_uniform((batch_size, height, width, 3)) out_tensor, end_points = inception_v2.inception_v2_base( inputs, final_endpoint=endpoint) self.assertTrue( out_tensor.op.name.startswith('InceptionV2/' + endpoint)) self.assertItemsEqual(endpoints[:index + 1], end_points) def testBuildAndCheckAllEndPointsUptoMixed5c(self): batch_size = 5 height, width = 224, 224 inputs = random_ops.random_uniform((batch_size, height, width, 3)) _, end_points = inception_v2.inception_v2_base( inputs, final_endpoint='Mixed_5c') endpoints_shapes = { 'Mixed_3b': [batch_size, 28, 28, 256], 'Mixed_3c': [batch_size, 28, 28, 320], 'Mixed_4a': [batch_size, 14, 14, 576], 'Mixed_4b': [batch_size, 14, 14, 576], 'Mixed_4c': [batch_size, 14, 14, 576], 'Mixed_4d': [batch_size, 14, 14, 576], 'Mixed_4e': [batch_size, 14, 14, 576], 'Mixed_5a': [batch_size, 7, 7, 1024], 'Mixed_5b': [batch_size, 7, 7, 1024], 'Mixed_5c': [batch_size, 7, 7, 1024], 'Conv2d_1a_7x7': [batch_size, 112, 112, 64], 'MaxPool_2a_3x3': [batch_size, 56, 56, 64], 'Conv2d_2b_1x1': [batch_size, 56, 56, 64], 'Conv2d_2c_3x3': [batch_size, 56, 56, 192], 'MaxPool_3a_3x3': [batch_size, 28, 28, 192] } self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys()) for endpoint_name in endpoints_shapes: expected_shape = endpoints_shapes[endpoint_name] self.assertTrue(endpoint_name in end_points) self.assertListEqual(end_points[endpoint_name].get_shape().as_list(), expected_shape) def testModelHasExpectedNumberOfParameters(self): batch_size = 5 height, width = 224, 224 inputs = random_ops.random_uniform((batch_size, height, width, 3)) with arg_scope(inception_v2.inception_v2_arg_scope()): inception_v2.inception_v2_base(inputs) total_params, _ = model_analyzer.analyze_vars( variables_lib.get_model_variables()) self.assertAlmostEqual(10173112, total_params) def testBuildEndPointsWithDepthMultiplierLessThanOne(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 inputs = random_ops.random_uniform((batch_size, height, width, 3)) _, end_points = inception_v2.inception_v2(inputs, num_classes) endpoint_keys = [ key for key in end_points.keys() if key.startswith('Mixed') or key.startswith('Conv') ] _, end_points_with_multiplier = inception_v2.inception_v2( inputs, num_classes, scope='depth_multiplied_net', depth_multiplier=0.5) for key in endpoint_keys: original_depth = end_points[key].get_shape().as_list()[3] new_depth = end_points_with_multiplier[key].get_shape().as_list()[3] self.assertEqual(0.5 * original_depth, new_depth) def testBuildEndPointsWithDepthMultiplierGreaterThanOne(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 inputs = random_ops.random_uniform((batch_size, height, width, 3)) _, end_points = inception_v2.inception_v2(inputs, num_classes) endpoint_keys = [ key for key in end_points.keys() if key.startswith('Mixed') or key.startswith('Conv') ] _, end_points_with_multiplier = inception_v2.inception_v2( inputs, num_classes, scope='depth_multiplied_net', depth_multiplier=2.0) for key in endpoint_keys: original_depth = end_points[key].get_shape().as_list()[3] new_depth = end_points_with_multiplier[key].get_shape().as_list()[3] self.assertEqual(2.0 * original_depth, new_depth) def testRaiseValueErrorWithInvalidDepthMultiplier(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 inputs = random_ops.random_uniform((batch_size, height, width, 3)) with self.assertRaises(ValueError): _ = inception_v2.inception_v2(inputs, num_classes, depth_multiplier=-0.1) with self.assertRaises(ValueError): _ = inception_v2.inception_v2(inputs, num_classes, depth_multiplier=0.0) def testHalfSizeImages(self): batch_size = 5 height, width = 112, 112 num_classes = 1000 inputs = random_ops.random_uniform((batch_size, height, width, 3)) logits, end_points = inception_v2.inception_v2(inputs, num_classes) self.assertTrue(logits.op.name.startswith('InceptionV2/Logits')) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) pre_pool = end_points['Mixed_5c'] self.assertListEqual(pre_pool.get_shape().as_list(), [batch_size, 4, 4, 1024]) def testUnknownImageShape(self): ops.reset_default_graph() batch_size = 2 height, width = 224, 224 num_classes = 1000 input_np = np.random.uniform(0, 1, (batch_size, height, width, 3)) with self.cached_session() as sess: inputs = array_ops.placeholder( dtypes.float32, shape=(batch_size, None, None, 3)) logits, end_points = inception_v2.inception_v2(inputs, num_classes) self.assertTrue(logits.op.name.startswith('InceptionV2/Logits')) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) pre_pool = end_points['Mixed_5c'] feed_dict = {inputs: input_np} variables.global_variables_initializer().run() pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict) self.assertListEqual(list(pre_pool_out.shape), [batch_size, 7, 7, 1024]) def testUnknownBatchSize(self): batch_size = 1 height, width = 224, 224 num_classes = 1000 inputs = array_ops.placeholder(dtypes.float32, (None, height, width, 3)) logits, _ = inception_v2.inception_v2(inputs, num_classes) self.assertTrue(logits.op.name.startswith('InceptionV2/Logits')) self.assertListEqual(logits.get_shape().as_list(), [None, num_classes]) images = random_ops.random_uniform((batch_size, height, width, 3)) with self.cached_session() as sess: sess.run(variables.global_variables_initializer()) output = sess.run(logits, {inputs: images.eval()}) self.assertEquals(output.shape, (batch_size, num_classes)) def testEvaluation(self): batch_size = 2 height, width = 224, 224 num_classes = 1000 eval_inputs = random_ops.random_uniform((batch_size, height, width, 3)) logits, _ = inception_v2.inception_v2( eval_inputs, num_classes, is_training=False) predictions = math_ops.argmax(logits, 1) with self.cached_session() as sess: sess.run(variables.global_variables_initializer()) output = sess.run(predictions) self.assertEquals(output.shape, (batch_size,)) def testTrainEvalWithReuse(self): train_batch_size = 5 eval_batch_size = 2 height, width = 150, 150 num_classes = 1000 train_inputs = random_ops.random_uniform( (train_batch_size, height, width, 3)) inception_v2.inception_v2(train_inputs, num_classes) eval_inputs = random_ops.random_uniform((eval_batch_size, height, width, 3)) logits, _ = inception_v2.inception_v2(eval_inputs, num_classes, reuse=True) predictions = math_ops.argmax(logits, 1) with self.cached_session() as sess: sess.run(variables.global_variables_initializer()) output = sess.run(predictions) self.assertEquals(output.shape, (eval_batch_size,)) def testLogitsNotSqueezed(self): num_classes = 25 images = random_ops.random_uniform([1, 224, 224, 3]) logits, _ = inception_v2.inception_v2( images, num_classes=num_classes, spatial_squeeze=False) with self.cached_session() as sess: variables.global_variables_initializer().run() logits_out = sess.run(logits) self.assertListEqual(list(logits_out.shape), [1, 1, 1, num_classes]) if __name__ == '__main__': test.main()
tensorflow-master
tensorflow/contrib/slim/python/slim/nets/inception_v2_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Contains the model definition for the OverFeat network. The definition for the network was obtained from: OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks Pierre Sermanet, David Eigen, Xiang Zhang, Michael Mathieu, Rob Fergus and Yann LeCun, 2014 http://arxiv.org/abs/1312.6229 Usage: with slim.arg_scope(overfeat.overfeat_arg_scope()): outputs, end_points = overfeat.overfeat(inputs) @@overfeat """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib import layers from tensorflow.contrib.framework.python.ops import arg_scope from tensorflow.contrib.layers.python.layers import layers as layers_lib from tensorflow.contrib.layers.python.layers import regularizers from tensorflow.contrib.layers.python.layers import utils from tensorflow.python.ops import array_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import nn_ops from tensorflow.python.ops import variable_scope trunc_normal = lambda stddev: init_ops.truncated_normal_initializer(0.0, stddev) def overfeat_arg_scope(weight_decay=0.0005): with arg_scope( [layers.conv2d, layers_lib.fully_connected], activation_fn=nn_ops.relu, weights_regularizer=regularizers.l2_regularizer(weight_decay), biases_initializer=init_ops.zeros_initializer()): with arg_scope([layers.conv2d], padding='SAME'): with arg_scope([layers_lib.max_pool2d], padding='VALID') as arg_sc: return arg_sc def overfeat(inputs, num_classes=1000, is_training=True, dropout_keep_prob=0.5, spatial_squeeze=True, scope='overfeat'): """Contains the model definition for the OverFeat network. The definition for the network was obtained from: OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks Pierre Sermanet, David Eigen, Xiang Zhang, Michael Mathieu, Rob Fergus and Yann LeCun, 2014 http://arxiv.org/abs/1312.6229 Note: All the fully_connected layers have been transformed to conv2d layers. To use in classification mode, resize input to 231x231. To use in fully convolutional mode, set spatial_squeeze to false. Args: inputs: a tensor of size [batch_size, height, width, channels]. num_classes: number of predicted classes. is_training: whether or not the model is being trained. dropout_keep_prob: the probability that activations are kept in the dropout layers during training. spatial_squeeze: whether or not should squeeze the spatial dimensions of the outputs. Useful to remove unnecessary dimensions for classification. scope: Optional scope for the variables. Returns: the last op containing the log predictions and end_points dict. """ with variable_scope.variable_scope(scope, 'overfeat', [inputs]) as sc: end_points_collection = sc.name + '_end_points' # Collect outputs for conv2d, fully_connected and max_pool2d with arg_scope( [layers.conv2d, layers_lib.fully_connected, layers_lib.max_pool2d], outputs_collections=end_points_collection): net = layers.conv2d( inputs, 64, [11, 11], 4, padding='VALID', scope='conv1') net = layers_lib.max_pool2d(net, [2, 2], scope='pool1') net = layers.conv2d(net, 256, [5, 5], padding='VALID', scope='conv2') net = layers_lib.max_pool2d(net, [2, 2], scope='pool2') net = layers.conv2d(net, 512, [3, 3], scope='conv3') net = layers.conv2d(net, 1024, [3, 3], scope='conv4') net = layers.conv2d(net, 1024, [3, 3], scope='conv5') net = layers_lib.max_pool2d(net, [2, 2], scope='pool5') with arg_scope( [layers.conv2d], weights_initializer=trunc_normal(0.005), biases_initializer=init_ops.constant_initializer(0.1)): # Use conv2d instead of fully_connected layers. net = layers.conv2d(net, 3072, [6, 6], padding='VALID', scope='fc6') net = layers_lib.dropout( net, dropout_keep_prob, is_training=is_training, scope='dropout6') net = layers.conv2d(net, 4096, [1, 1], scope='fc7') net = layers_lib.dropout( net, dropout_keep_prob, is_training=is_training, scope='dropout7') net = layers.conv2d( net, num_classes, [1, 1], activation_fn=None, normalizer_fn=None, biases_initializer=init_ops.zeros_initializer(), scope='fc8') # Convert end_points_collection into a end_point dict. end_points = utils.convert_collection_to_dict(end_points_collection) if spatial_squeeze: net = array_ops.squeeze(net, [1, 2], name='fc8/squeezed') end_points[sc.name + '/fc8'] = net return net, end_points
tensorflow-master
tensorflow/contrib/slim/python/slim/nets/overfeat.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for nets.inception_v1.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.framework.python.ops import arg_scope from tensorflow.contrib.framework.python.ops import variables as variables_lib from tensorflow.contrib.slim.python.slim import model_analyzer from tensorflow.contrib.slim.python.slim.nets import inception_v1 from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import random_ops from tensorflow.python.ops import variables from tensorflow.python.platform import test class InceptionV1Test(test.TestCase): def testBuildClassificationNetwork(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 inputs = random_ops.random_uniform((batch_size, height, width, 3)) logits, end_points = inception_v1.inception_v1(inputs, num_classes) self.assertTrue(logits.op.name.startswith('InceptionV1/Logits')) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) self.assertTrue('Predictions' in end_points) self.assertListEqual(end_points['Predictions'].get_shape().as_list(), [batch_size, num_classes]) def testBuildBaseNetwork(self): batch_size = 5 height, width = 224, 224 inputs = random_ops.random_uniform((batch_size, height, width, 3)) mixed_6c, end_points = inception_v1.inception_v1_base(inputs) self.assertTrue(mixed_6c.op.name.startswith('InceptionV1/Mixed_5c')) self.assertListEqual(mixed_6c.get_shape().as_list(), [batch_size, 7, 7, 1024]) expected_endpoints = [ 'Conv2d_1a_7x7', 'MaxPool_2a_3x3', 'Conv2d_2b_1x1', 'Conv2d_2c_3x3', 'MaxPool_3a_3x3', 'Mixed_3b', 'Mixed_3c', 'MaxPool_4a_3x3', 'Mixed_4b', 'Mixed_4c', 'Mixed_4d', 'Mixed_4e', 'Mixed_4f', 'MaxPool_5a_2x2', 'Mixed_5b', 'Mixed_5c' ] self.assertItemsEqual(end_points.keys(), expected_endpoints) def testBuildOnlyUptoFinalEndpoint(self): batch_size = 5 height, width = 224, 224 endpoints = [ 'Conv2d_1a_7x7', 'MaxPool_2a_3x3', 'Conv2d_2b_1x1', 'Conv2d_2c_3x3', 'MaxPool_3a_3x3', 'Mixed_3b', 'Mixed_3c', 'MaxPool_4a_3x3', 'Mixed_4b', 'Mixed_4c', 'Mixed_4d', 'Mixed_4e', 'Mixed_4f', 'MaxPool_5a_2x2', 'Mixed_5b', 'Mixed_5c' ] for index, endpoint in enumerate(endpoints): with ops.Graph().as_default(): inputs = random_ops.random_uniform((batch_size, height, width, 3)) out_tensor, end_points = inception_v1.inception_v1_base( inputs, final_endpoint=endpoint) self.assertTrue( out_tensor.op.name.startswith('InceptionV1/' + endpoint)) self.assertItemsEqual(endpoints[:index + 1], end_points) def testBuildAndCheckAllEndPointsUptoMixed5c(self): batch_size = 5 height, width = 224, 224 inputs = random_ops.random_uniform((batch_size, height, width, 3)) _, end_points = inception_v1.inception_v1_base( inputs, final_endpoint='Mixed_5c') endpoints_shapes = { 'Conv2d_1a_7x7': [5, 112, 112, 64], 'MaxPool_2a_3x3': [5, 56, 56, 64], 'Conv2d_2b_1x1': [5, 56, 56, 64], 'Conv2d_2c_3x3': [5, 56, 56, 192], 'MaxPool_3a_3x3': [5, 28, 28, 192], 'Mixed_3b': [5, 28, 28, 256], 'Mixed_3c': [5, 28, 28, 480], 'MaxPool_4a_3x3': [5, 14, 14, 480], 'Mixed_4b': [5, 14, 14, 512], 'Mixed_4c': [5, 14, 14, 512], 'Mixed_4d': [5, 14, 14, 512], 'Mixed_4e': [5, 14, 14, 528], 'Mixed_4f': [5, 14, 14, 832], 'MaxPool_5a_2x2': [5, 7, 7, 832], 'Mixed_5b': [5, 7, 7, 832], 'Mixed_5c': [5, 7, 7, 1024] } self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys()) for endpoint_name in endpoints_shapes: expected_shape = endpoints_shapes[endpoint_name] self.assertTrue(endpoint_name in end_points) self.assertListEqual(end_points[endpoint_name].get_shape().as_list(), expected_shape) def testModelHasExpectedNumberOfParameters(self): batch_size = 5 height, width = 224, 224 inputs = random_ops.random_uniform((batch_size, height, width, 3)) with arg_scope(inception_v1.inception_v1_arg_scope()): inception_v1.inception_v1_base(inputs) total_params, _ = model_analyzer.analyze_vars( variables_lib.get_model_variables()) self.assertAlmostEqual(5607184, total_params) def testHalfSizeImages(self): batch_size = 5 height, width = 112, 112 inputs = random_ops.random_uniform((batch_size, height, width, 3)) mixed_5c, _ = inception_v1.inception_v1_base(inputs) self.assertTrue(mixed_5c.op.name.startswith('InceptionV1/Mixed_5c')) self.assertListEqual(mixed_5c.get_shape().as_list(), [batch_size, 4, 4, 1024]) def testUnknownImageShape(self): ops.reset_default_graph() batch_size = 2 height, width = 224, 224 num_classes = 1000 input_np = np.random.uniform(0, 1, (batch_size, height, width, 3)) with self.cached_session() as sess: inputs = array_ops.placeholder( dtypes.float32, shape=(batch_size, None, None, 3)) logits, end_points = inception_v1.inception_v1(inputs, num_classes) self.assertTrue(logits.op.name.startswith('InceptionV1/Logits')) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) pre_pool = end_points['Mixed_5c'] feed_dict = {inputs: input_np} variables.global_variables_initializer().run() pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict) self.assertListEqual(list(pre_pool_out.shape), [batch_size, 7, 7, 1024]) def testUnknownBatchSize(self): batch_size = 1 height, width = 224, 224 num_classes = 1000 inputs = array_ops.placeholder(dtypes.float32, (None, height, width, 3)) logits, _ = inception_v1.inception_v1(inputs, num_classes) self.assertTrue(logits.op.name.startswith('InceptionV1/Logits')) self.assertListEqual(logits.get_shape().as_list(), [None, num_classes]) images = random_ops.random_uniform((batch_size, height, width, 3)) with self.cached_session() as sess: sess.run(variables.global_variables_initializer()) output = sess.run(logits, {inputs: images.eval()}) self.assertEquals(output.shape, (batch_size, num_classes)) def testEvaluation(self): batch_size = 2 height, width = 224, 224 num_classes = 1000 eval_inputs = random_ops.random_uniform((batch_size, height, width, 3)) logits, _ = inception_v1.inception_v1( eval_inputs, num_classes, is_training=False) predictions = math_ops.argmax(logits, 1) with self.cached_session() as sess: sess.run(variables.global_variables_initializer()) output = sess.run(predictions) self.assertEquals(output.shape, (batch_size,)) def testTrainEvalWithReuse(self): train_batch_size = 5 eval_batch_size = 2 height, width = 224, 224 num_classes = 1000 train_inputs = random_ops.random_uniform( (train_batch_size, height, width, 3)) inception_v1.inception_v1(train_inputs, num_classes) eval_inputs = random_ops.random_uniform((eval_batch_size, height, width, 3)) logits, _ = inception_v1.inception_v1(eval_inputs, num_classes, reuse=True) predictions = math_ops.argmax(logits, 1) with self.cached_session() as sess: sess.run(variables.global_variables_initializer()) output = sess.run(predictions) self.assertEquals(output.shape, (eval_batch_size,)) def testLogitsNotSqueezed(self): num_classes = 25 images = random_ops.random_uniform([1, 224, 224, 3]) logits, _ = inception_v1.inception_v1( images, num_classes=num_classes, spatial_squeeze=False) with self.cached_session() as sess: variables.global_variables_initializer().run() logits_out = sess.run(logits) self.assertListEqual(list(logits_out.shape), [1, 1, 1, num_classes]) if __name__ == '__main__': test.main()
tensorflow-master
tensorflow/contrib/slim/python/slim/nets/inception_v1_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Contains a model definition for AlexNet. This work was first described in: ImageNet Classification with Deep Convolutional Neural Networks Alex Krizhevsky, Ilya Sutskever and Geoffrey E. Hinton and later refined in: One weird trick for parallelizing convolutional neural networks Alex Krizhevsky, 2014 Here we provide the implementation proposed in "One weird trick" and not "ImageNet Classification", as per the paper, the LRN layers have been removed. Usage: with slim.arg_scope(alexnet.alexnet_v2_arg_scope()): outputs, end_points = alexnet.alexnet_v2(inputs) @@alexnet_v2 """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib import layers from tensorflow.contrib.framework.python.ops import arg_scope from tensorflow.contrib.layers.python.layers import layers as layers_lib from tensorflow.contrib.layers.python.layers import regularizers from tensorflow.contrib.layers.python.layers import utils from tensorflow.python.ops import array_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import nn_ops from tensorflow.python.ops import variable_scope trunc_normal = lambda stddev: init_ops.truncated_normal_initializer(0.0, stddev) def alexnet_v2_arg_scope(weight_decay=0.0005): with arg_scope( [layers.conv2d, layers_lib.fully_connected], activation_fn=nn_ops.relu, biases_initializer=init_ops.constant_initializer(0.1), weights_regularizer=regularizers.l2_regularizer(weight_decay)): with arg_scope([layers.conv2d], padding='SAME'): with arg_scope([layers_lib.max_pool2d], padding='VALID') as arg_sc: return arg_sc def alexnet_v2(inputs, num_classes=1000, is_training=True, dropout_keep_prob=0.5, spatial_squeeze=True, scope='alexnet_v2'): """AlexNet version 2. Described in: http://arxiv.org/pdf/1404.5997v2.pdf Parameters from: github.com/akrizhevsky/cuda-convnet2/blob/master/layers/ layers-imagenet-1gpu.cfg Note: All the fully_connected layers have been transformed to conv2d layers. To use in classification mode, resize input to 224x224. To use in fully convolutional mode, set spatial_squeeze to false. The LRN layers have been removed and change the initializers from random_normal_initializer to xavier_initializer. Args: inputs: a tensor of size [batch_size, height, width, channels]. num_classes: number of predicted classes. is_training: whether or not the model is being trained. dropout_keep_prob: the probability that activations are kept in the dropout layers during training. spatial_squeeze: whether or not should squeeze the spatial dimensions of the outputs. Useful to remove unnecessary dimensions for classification. scope: Optional scope for the variables. Returns: the last op containing the log predictions and end_points dict. """ with variable_scope.variable_scope(scope, 'alexnet_v2', [inputs]) as sc: end_points_collection = sc.original_name_scope + '_end_points' # Collect outputs for conv2d, fully_connected and max_pool2d. with arg_scope( [layers.conv2d, layers_lib.fully_connected, layers_lib.max_pool2d], outputs_collections=[end_points_collection]): net = layers.conv2d( inputs, 64, [11, 11], 4, padding='VALID', scope='conv1') net = layers_lib.max_pool2d(net, [3, 3], 2, scope='pool1') net = layers.conv2d(net, 192, [5, 5], scope='conv2') net = layers_lib.max_pool2d(net, [3, 3], 2, scope='pool2') net = layers.conv2d(net, 384, [3, 3], scope='conv3') net = layers.conv2d(net, 384, [3, 3], scope='conv4') net = layers.conv2d(net, 256, [3, 3], scope='conv5') net = layers_lib.max_pool2d(net, [3, 3], 2, scope='pool5') # Use conv2d instead of fully_connected layers. with arg_scope( [layers.conv2d], weights_initializer=trunc_normal(0.005), biases_initializer=init_ops.constant_initializer(0.1)): net = layers.conv2d(net, 4096, [5, 5], padding='VALID', scope='fc6') net = layers_lib.dropout( net, dropout_keep_prob, is_training=is_training, scope='dropout6') net = layers.conv2d(net, 4096, [1, 1], scope='fc7') net = layers_lib.dropout( net, dropout_keep_prob, is_training=is_training, scope='dropout7') net = layers.conv2d( net, num_classes, [1, 1], activation_fn=None, normalizer_fn=None, biases_initializer=init_ops.zeros_initializer(), scope='fc8') # Convert end_points_collection into a end_point dict. end_points = utils.convert_collection_to_dict(end_points_collection) if spatial_squeeze: net = array_ops.squeeze(net, [1, 2], name='fc8/squeezed') end_points[sc.name + '/fc8'] = net return net, end_points alexnet_v2.default_image_size = 224
tensorflow-master
tensorflow/contrib/slim/python/slim/nets/alexnet.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Contains definitions for the preactivation form of Residual Networks. Residual networks (ResNets) were originally proposed in: [1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun Deep Residual Learning for Image Recognition. arXiv:1512.03385 The full preactivation 'v2' ResNet variant implemented in this module was introduced by: [2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun Identity Mappings in Deep Residual Networks. arXiv: 1603.05027 The key difference of the full preactivation 'v2' variant compared to the 'v1' variant in [1] is the use of batch normalization before every weight layer. Typical use: from tensorflow.contrib.slim.python.slim.nets import resnet_v2 ResNet-101 for image classification into 1000 classes: # inputs has shape [batch, 224, 224, 3] with slim.arg_scope(resnet_v2.resnet_arg_scope()): net, end_points = resnet_v2.resnet_v2_101(inputs, 1000, is_training=False) ResNet-101 for semantic segmentation into 21 classes: # inputs has shape [batch, 513, 513, 3] with slim.arg_scope(resnet_v2.resnet_arg_scope()): net, end_points = resnet_v2.resnet_v2_101(inputs, 21, is_training=False, global_pool=False, output_stride=16) """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib import layers as layers_lib from tensorflow.contrib.framework.python.ops import add_arg_scope from tensorflow.contrib.framework.python.ops import arg_scope from tensorflow.contrib.layers.python.layers import layers from tensorflow.contrib.layers.python.layers import utils from tensorflow.contrib.slim.python.slim.nets import resnet_utils from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn_ops from tensorflow.python.ops import variable_scope resnet_arg_scope = resnet_utils.resnet_arg_scope @add_arg_scope def bottleneck(inputs, depth, depth_bottleneck, stride, rate=1, outputs_collections=None, scope=None): """Bottleneck residual unit variant with BN before convolutions. This is the full preactivation residual unit variant proposed in [2]. See Fig. 1(b) of [2] for its definition. Note that we use here the bottleneck variant which has an extra bottleneck layer. When putting together two consecutive ResNet blocks that use this unit, one should use stride = 2 in the last unit of the first block. Args: inputs: A tensor of size [batch, height, width, channels]. depth: The depth of the ResNet unit output. depth_bottleneck: The depth of the bottleneck layers. stride: The ResNet unit's stride. Determines the amount of downsampling of the units output compared to its input. rate: An integer, rate for atrous convolution. outputs_collections: Collection to add the ResNet unit output. scope: Optional variable_scope. Returns: The ResNet unit's output. """ with variable_scope.variable_scope(scope, 'bottleneck_v2', [inputs]) as sc: depth_in = utils.last_dimension(inputs.get_shape(), min_rank=4) preact = layers.batch_norm( inputs, activation_fn=nn_ops.relu, scope='preact') if depth == depth_in: shortcut = resnet_utils.subsample(inputs, stride, 'shortcut') else: shortcut = layers_lib.conv2d( preact, depth, [1, 1], stride=stride, normalizer_fn=None, activation_fn=None, scope='shortcut') residual = layers_lib.conv2d( preact, depth_bottleneck, [1, 1], stride=1, scope='conv1') residual = resnet_utils.conv2d_same( residual, depth_bottleneck, 3, stride, rate=rate, scope='conv2') residual = layers_lib.conv2d( residual, depth, [1, 1], stride=1, normalizer_fn=None, activation_fn=None, scope='conv3') output = shortcut + residual return utils.collect_named_outputs(outputs_collections, sc.name, output) def resnet_v2(inputs, blocks, num_classes=None, is_training=True, global_pool=True, output_stride=None, include_root_block=True, reuse=None, scope=None): """Generator for v2 (preactivation) ResNet models. This function generates a family of ResNet v2 models. See the resnet_v2_*() methods for specific model instantiations, obtained by selecting different block instantiations that produce ResNets of various depths. Training for image classification on Imagenet is usually done with [224, 224] inputs, resulting in [7, 7] feature maps at the output of the last ResNet block for the ResNets defined in [1] that have nominal stride equal to 32. However, for dense prediction tasks we advise that one uses inputs with spatial dimensions that are multiples of 32 plus 1, e.g., [321, 321]. In this case the feature maps at the ResNet output will have spatial shape [(height - 1) / output_stride + 1, (width - 1) / output_stride + 1] and corners exactly aligned with the input image corners, which greatly facilitates alignment of the features to the image. Using as input [225, 225] images results in [8, 8] feature maps at the output of the last ResNet block. For dense prediction tasks, the ResNet needs to run in fully-convolutional (FCN) mode and global_pool needs to be set to False. The ResNets in [1, 2] all have nominal stride equal to 32 and a good choice in FCN mode is to use output_stride=16 in order to increase the density of the computed features at small computational and memory overhead, cf. http://arxiv.org/abs/1606.00915. Args: inputs: A tensor of size [batch, height_in, width_in, channels]. blocks: A list of length equal to the number of ResNet blocks. Each element is a resnet_utils.Block object describing the units in the block. num_classes: Number of predicted classes for classification tasks. If None we return the features before the logit layer. is_training: whether batch_norm layers are in training mode. global_pool: If True, we perform global average pooling before computing the logits. Set to True for image classification, False for dense prediction. output_stride: If None, then the output will be computed at the nominal network stride. If output_stride is not None, it specifies the requested ratio of input to output spatial resolution. include_root_block: If True, include the initial convolution followed by max-pooling, if False excludes it. If excluded, `inputs` should be the results of an activation-less convolution. reuse: whether or not the network and its variables should be reused. To be able to reuse 'scope' must be given. scope: Optional variable_scope. Returns: net: A rank-4 tensor of size [batch, height_out, width_out, channels_out]. If global_pool is False, then height_out and width_out are reduced by a factor of output_stride compared to the respective height_in and width_in, else both height_out and width_out equal one. If num_classes is None, then net is the output of the last ResNet block, potentially after global average pooling. If num_classes is not None, net contains the pre-softmax activations. end_points: A dictionary from components of the network to the corresponding activation. Raises: ValueError: If the target output_stride is not valid. """ with variable_scope.variable_scope( scope, 'resnet_v2', [inputs], reuse=reuse) as sc: end_points_collection = sc.original_name_scope + '_end_points' with arg_scope( [layers_lib.conv2d, bottleneck, resnet_utils.stack_blocks_dense], outputs_collections=end_points_collection): with arg_scope([layers.batch_norm], is_training=is_training): net = inputs if include_root_block: if output_stride is not None: if output_stride % 4 != 0: raise ValueError('The output_stride needs to be a multiple of 4.') output_stride /= 4 # We do not include batch normalization or activation functions in # conv1 because the first ResNet unit will perform these. Cf. # Appendix of [2]. with arg_scope( [layers_lib.conv2d], activation_fn=None, normalizer_fn=None): net = resnet_utils.conv2d_same(net, 64, 7, stride=2, scope='conv1') net = layers.max_pool2d(net, [3, 3], stride=2, scope='pool1') net = resnet_utils.stack_blocks_dense(net, blocks, output_stride) # This is needed because the pre-activation variant does not have batch # normalization or activation functions in the residual unit output. See # Appendix of [2]. net = layers.batch_norm( net, activation_fn=nn_ops.relu, scope='postnorm') if global_pool: # Global average pooling. net = math_ops.reduce_mean(net, [1, 2], name='pool5', keepdims=True) if num_classes is not None: net = layers_lib.conv2d( net, num_classes, [1, 1], activation_fn=None, normalizer_fn=None, scope='logits') # Convert end_points_collection into a dictionary of end_points. end_points = utils.convert_collection_to_dict(end_points_collection) if num_classes is not None: end_points['predictions'] = layers.softmax(net, scope='predictions') return net, end_points resnet_v2.default_image_size = 224 def resnet_v2_block(scope, base_depth, num_units, stride): """Helper function for creating a resnet_v2 bottleneck block. Args: scope: The scope of the block. base_depth: The depth of the bottleneck layer for each unit. num_units: The number of units in the block. stride: The stride of the block, implemented as a stride in the last unit. All other units have stride=1. Returns: A resnet_v2 bottleneck block. """ return resnet_utils.Block(scope, bottleneck, [{ 'depth': base_depth * 4, 'depth_bottleneck': base_depth, 'stride': 1 }] * (num_units - 1) + [{ 'depth': base_depth * 4, 'depth_bottleneck': base_depth, 'stride': stride }]) def resnet_v2_50(inputs, num_classes=None, is_training=True, global_pool=True, output_stride=None, reuse=None, scope='resnet_v2_50'): """ResNet-50 model of [1]. See resnet_v2() for arg and return description.""" blocks = [ resnet_v2_block('block1', base_depth=64, num_units=3, stride=2), resnet_v2_block('block2', base_depth=128, num_units=4, stride=2), resnet_v2_block('block3', base_depth=256, num_units=6, stride=2), resnet_v2_block('block4', base_depth=512, num_units=3, stride=1), ] return resnet_v2( inputs, blocks, num_classes, is_training, global_pool, output_stride, include_root_block=True, reuse=reuse, scope=scope) def resnet_v2_101(inputs, num_classes=None, is_training=True, global_pool=True, output_stride=None, reuse=None, scope='resnet_v2_101'): """ResNet-101 model of [1]. See resnet_v2() for arg and return description.""" blocks = [ resnet_v2_block('block1', base_depth=64, num_units=3, stride=2), resnet_v2_block('block2', base_depth=128, num_units=4, stride=2), resnet_v2_block('block3', base_depth=256, num_units=23, stride=2), resnet_v2_block('block4', base_depth=512, num_units=3, stride=1), ] return resnet_v2( inputs, blocks, num_classes, is_training, global_pool, output_stride, include_root_block=True, reuse=reuse, scope=scope) def resnet_v2_152(inputs, num_classes=None, is_training=True, global_pool=True, output_stride=None, reuse=None, scope='resnet_v2_152'): """ResNet-152 model of [1]. See resnet_v2() for arg and return description.""" blocks = [ resnet_v2_block('block1', base_depth=64, num_units=3, stride=2), resnet_v2_block('block2', base_depth=128, num_units=8, stride=2), resnet_v2_block('block3', base_depth=256, num_units=36, stride=2), resnet_v2_block('block4', base_depth=512, num_units=3, stride=1), ] return resnet_v2( inputs, blocks, num_classes, is_training, global_pool, output_stride, include_root_block=True, reuse=reuse, scope=scope) def resnet_v2_200(inputs, num_classes=None, is_training=True, global_pool=True, output_stride=None, reuse=None, scope='resnet_v2_200'): """ResNet-200 model of [2]. See resnet_v2() for arg and return description.""" blocks = [ resnet_v2_block('block1', base_depth=64, num_units=3, stride=2), resnet_v2_block('block2', base_depth=128, num_units=24, stride=2), resnet_v2_block('block3', base_depth=256, num_units=36, stride=2), resnet_v2_block('block4', base_depth=512, num_units=3, stride=1), ] return resnet_v2( inputs, blocks, num_classes, is_training, global_pool, output_stride, include_root_block=True, reuse=reuse, scope=scope)
tensorflow-master
tensorflow/contrib/slim/python/slim/nets/resnet_v2.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Implements a parallel data reader with queues and optional shuffling.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.framework import dtypes as tf_dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import data_flow_ops from tensorflow.python.ops import io_ops from tensorflow.python.ops import math_ops from tensorflow.python.platform import gfile from tensorflow.python.summary import summary from tensorflow.python.training import input as tf_input from tensorflow.python.training import queue_runner class ParallelReader(io_ops.ReaderBase): """Reader class that uses multiple readers in parallel to improve speed. See ReaderBase for supported methods. """ def __init__(self, reader_class, common_queue, num_readers=4, reader_kwargs=None): """ParallelReader creates num_readers instances of the reader_class. Each instance is created by calling the `reader_class` function passing the arguments specified in `reader_kwargs` as in: reader_class(**read_kwargs) When you read from a ParallelReader, with its `read()` method, you just dequeue examples from the `common_queue`. The readers will read different files in parallel, asynchronously enqueueing their output into `common_queue`. The `common_queue.dtypes` must be [tf.string, tf.string] Because each reader can read from a different file, the examples in the `common_queue` could be from different files. Due to the asynchronous reading there is no guarantee that all the readers will read the same number of examples. If the `common_queue` is a shuffling queue, then the examples are shuffled. Usage: common_queue = tf.queue.RandomShuffleQueue( capacity=256, min_after_dequeue=128, dtypes=[tf.string, tf.string]) p_reader = ParallelReader(tf.compat.v1.TFRecordReader, common_queue) common_queue = tf.queue.FIFOQueue( capacity=256, dtypes=[tf.string, tf.string]) p_reader = ParallelReader(readers, common_queue, num_readers=2) Args: reader_class: one of the io_ops.ReaderBase subclasses ex: TFRecordReader common_queue: a Queue to hold (key, value pairs) with `dtypes` equal to [tf.string, tf.string]. Must be one of the data_flow_ops.Queues instances, ex. `tf.queue.FIFOQueue()`, `tf.queue.RandomShuffleQueue()`, ... num_readers: a integer, number of instances of reader_class to create. reader_kwargs: an optional dict of kwargs to create the readers. Raises: TypeError: if `common_queue.dtypes` is not [tf.string, tf.string]. """ if len(common_queue.dtypes) != 2: raise TypeError('common_queue.dtypes must be [tf.string, tf.string]') for dtype in common_queue.dtypes: if not dtype.is_compatible_with(tf_dtypes.string): raise TypeError('common_queue.dtypes must be [tf.string, tf.string]') reader_kwargs = reader_kwargs or {} self._readers = [reader_class(**reader_kwargs) for _ in range(num_readers)] self._common_queue = common_queue @property def num_readers(self): return len(self._readers) @property def common_queue(self): return self._common_queue def read(self, queue, name=None): """Returns the next record (key, value pair) produced by the reader. The multiple reader instances are all configured to `read()` from the filenames listed in `queue` and enqueue their output into the `common_queue` passed to the constructor, and this method returns the next record dequeued from that `common_queue`. Readers dequeue a work unit from `queue` if necessary (e.g. when a reader needs to start reading from a new file since it has finished with the previous file). A queue runner for enqueuing in the `common_queue` is automatically added to the TF QueueRunners collection. Args: queue: A Queue or a mutable string Tensor representing a handle to a Queue, with string work items. name: A name for the operation (optional). Returns: The next record (i.e. (key, value pair)) from the common_queue. """ self._configure_readers_by(queue) return self._common_queue.dequeue(name=name) def read_up_to(self, queue, num_records, name=None): """Returns up to num_records (key, value pairs) produced by a reader. Will dequeue a work unit from queue if necessary (e.g., when the Reader needs to start reading from a new file since it has finished with the previous file). It may return less than num_records even before the last batch. **Note** This operation is not supported by all types of `common_queue`s. If a `common_queue` does not support `dequeue_up_to()`, then a `tf.errors.UnimplementedError` is raised. Args: queue: A Queue or a mutable string Tensor representing a handle to a Queue, with string work items. num_records: Number of records to read. name: A name for the operation (optional). Returns: A tuple of Tensors (keys, values) from common_queue. keys: A 1-D string Tensor. values: A 1-D string Tensor. """ self._configure_readers_by(queue) return self._common_queue.dequeue_up_to(num_records, name) def _configure_readers_by(self, queue): enqueue_ops = [] for reader in self._readers: enqueue_ops.append(self._common_queue.enqueue(reader.read(queue))) queue_runner.add_queue_runner( queue_runner.QueueRunner(self._common_queue, enqueue_ops)) def num_records_produced(self, name=None): """Returns the number of records this reader has produced. Args: name: A name for the operation (optional). Returns: An int64 Tensor. """ num_records = [r.num_records_produced() for r in self._readers] return math_ops.add_n(num_records, name=name) def num_work_units_completed(self, name=None): """Returns the number of work units this reader has finished processing. Args: name: A name for the operation (optional). Returns: An int64 Tensor. """ num_work_units = [r.num_work_units_completed() for r in self._readers] return math_ops.add_n(num_work_units, name=name) def parallel_read(data_sources, reader_class, num_epochs=None, num_readers=4, reader_kwargs=None, shuffle=True, dtypes=None, capacity=256, min_after_dequeue=128, seed=None, scope=None): """Reads multiple records in parallel from data_sources using n readers. It uses a ParallelReader to read from multiple files in parallel using multiple readers created using `reader_class` with `reader_kwargs'. If shuffle is True the common_queue would be a RandomShuffleQueue otherwise it would be a FIFOQueue. Usage: data_sources = ['path_to/train*'] key, value = parallel_read(data_sources, tf.CSVReader, num_readers=4) Args: data_sources: a list/tuple of files or the location of the data, i.e. /path/to/train@128, /path/to/train* or /tmp/.../train* reader_class: one of the io_ops.ReaderBase subclasses ex: TFRecordReader num_epochs: The number of times each data source is read. If left as None, the data will be cycled through indefinitely. num_readers: a integer, number of Readers to create. reader_kwargs: an optional dict, of kwargs for the reader. shuffle: boolean, whether should shuffle the files and the records by using RandomShuffleQueue as common_queue. dtypes: A list of types. The length of dtypes must equal the number of elements in each record. If it is None it will default to [tf.string, tf.string] for (key, value). capacity: integer, capacity of the common_queue. min_after_dequeue: integer, minimum number of records in the common_queue after dequeue. Needed for a good shuffle. seed: A seed for RandomShuffleQueue. scope: Optional name scope for the ops. Returns: key, value: a tuple of keys and values from the data_source. """ data_files = get_data_files(data_sources) with ops.name_scope(scope, 'parallel_read'): filename_queue = tf_input.string_input_producer( data_files, num_epochs=num_epochs, shuffle=shuffle, seed=seed, name='filenames') dtypes = dtypes or [tf_dtypes.string, tf_dtypes.string] if shuffle: common_queue = data_flow_ops.RandomShuffleQueue( capacity=capacity, min_after_dequeue=min_after_dequeue, dtypes=dtypes, seed=seed, name='common_queue') else: common_queue = data_flow_ops.FIFOQueue( capacity=capacity, dtypes=dtypes, name='common_queue') summary.scalar( 'fraction_of_%d_full' % capacity, math_ops.cast(common_queue.size(), tf_dtypes.float32) * (1. / capacity)) return ParallelReader( reader_class, common_queue, num_readers=num_readers, reader_kwargs=reader_kwargs).read(filename_queue) def single_pass_read(data_sources, reader_class, reader_kwargs=None, scope=None): """Reads sequentially the data_sources using the reader, doing a single pass. Args: data_sources: a list/tuple of files or the location of the data, i.e. /path/to/train@128, /path/to/train* or /tmp/.../train* reader_class: one of the io_ops.ReaderBase subclasses ex: TFRecordReader. reader_kwargs: an optional dict, of kwargs for the reader. scope: Optional name scope for the ops. Returns: key, value: a tuple of keys and values from the data_source. """ data_files = get_data_files(data_sources) with ops.name_scope(scope, 'single_pass_read'): filename_queue = tf_input.string_input_producer( data_files, num_epochs=1, shuffle=False, capacity=1, name='filenames') reader_kwargs = reader_kwargs or {} return reader_class(**reader_kwargs).read(filename_queue) def get_data_files(data_sources): """Get data_files from data_sources. Args: data_sources: a list/tuple of files or the location of the data, i.e. /path/to/train@128, /path/to/train* or /tmp/.../train* Returns: a list of data_files. Raises: ValueError: if data files are not found """ if isinstance(data_sources, (list, tuple)): data_files = [] for source in data_sources: data_files += get_data_files(source) else: if '*' in data_sources or '?' in data_sources or '[' in data_sources: data_files = gfile.Glob(data_sources) else: data_files = [data_sources] if not data_files: raise ValueError('No data files found in %s' % (data_sources,)) return data_files
tensorflow-master
tensorflow/contrib/slim/python/slim/data/parallel_reader.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Contains test utilities.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import numpy as np from tensorflow.core.example import example_pb2 from tensorflow.core.example import feature_pb2 from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.lib.io import tf_record from tensorflow.python.ops import image_ops def _encoded_int64_feature(ndarray): return feature_pb2.Feature(int64_list=feature_pb2.Int64List( value=ndarray.flatten().tolist())) def _encoded_bytes_feature(tf_encoded): encoded = tf_encoded.eval() def string_to_bytes(value): return feature_pb2.BytesList(value=[value]) return feature_pb2.Feature(bytes_list=string_to_bytes(encoded)) def _string_feature(value): value = value.encode('utf-8') return feature_pb2.Feature(bytes_list=feature_pb2.BytesList(value=[value])) def _encoder(image, image_format): assert image_format in ['jpeg', 'png'] if image_format == 'jpeg': tf_image = constant_op.constant(image, dtype=dtypes.uint8) return image_ops.encode_jpeg(tf_image) if image_format == 'png': tf_image = constant_op.constant(image, dtype=dtypes.uint8) return image_ops.encode_png(tf_image) def generate_image(image_shape, image_format='jpeg', label=0): """Generates an image and an example containing the encoded image. GenerateImage must be called within an active session. Args: image_shape: the shape of the image to generate. image_format: the encoding format of the image. label: the int64 labels for the image. Returns: image: the generated image. example: a TF-example with a feature key 'image/encoded' set to the serialized image and a feature key 'image/format' set to the image encoding format ['jpeg', 'png']. """ image = np.random.random_integers(0, 255, size=image_shape) tf_encoded = _encoder(image, image_format) example = example_pb2.Example(features=feature_pb2.Features(feature={ 'image/encoded': _encoded_bytes_feature(tf_encoded), 'image/format': _string_feature(image_format), 'image/class/label': _encoded_int64_feature(np.array(label)), })) return image, example.SerializeToString() def create_tfrecord_files(output_dir, num_files=3, num_records_per_file=10): """Creates TFRecords files. The method must be called within an active session. Args: output_dir: The directory where the files are stored. num_files: The number of files to create. num_records_per_file: The number of records per file. Returns: A list of the paths to the TFRecord files. """ tfrecord_paths = [] for i in range(num_files): path = os.path.join(output_dir, 'flowers.tfrecord-%d-of-%s' % (i, num_files)) tfrecord_paths.append(path) writer = tf_record.TFRecordWriter(path) for _ in range(num_records_per_file): _, example = generate_image(image_shape=(10, 10, 3)) writer.write(example) writer.close() return tfrecord_paths
tensorflow-master
tensorflow/contrib/slim/python/slim/data/test_utils.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for slim.data.prefetch_queue.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.slim.python.slim.data import prefetch_queue from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors_impl from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import data_flow_ops from tensorflow.python.ops import random_ops from tensorflow.python.ops import variables from tensorflow.python.platform import test from tensorflow.python.training import input as input_lib from tensorflow.python.training import queue_runner_impl class PrefetchQueueTest(test.TestCase): def testOneThread(self): with self.cached_session() as sess: batch_size = 10 image_size = 32 num_batches = 5 zero64 = constant_op.constant(0, dtype=dtypes.int64) examples = variables.Variable(zero64) counter = examples.count_up_to(num_batches * batch_size) image = random_ops.random_normal( [image_size, image_size, 3], dtype=dtypes.float32, name='images') label = random_ops.random_uniform( [1], 0, 10, dtype=dtypes.int32, name='labels') batches = input_lib.batch( [counter, image, label], batch_size=batch_size, num_threads=1) batches = prefetch_queue.prefetch_queue(batches).dequeue() variables.global_variables_initializer().run() threads = queue_runner_impl.start_queue_runners() for i in range(num_batches): results = sess.run(batches) self.assertAllEqual(results[0], np.arange(i * batch_size, (i + 1) * batch_size)) self.assertEquals(results[1].shape, (batch_size, image_size, image_size, 3)) self.assertEquals(results[2].shape, (batch_size, 1)) # Reached the limit. with self.assertRaises(errors_impl.OutOfRangeError): sess.run(batches) for thread in threads: thread.join() def testMultiThread(self): with self.cached_session() as sess: batch_size = 10 image_size = 32 num_batches = 5 zero64 = constant_op.constant(0, dtype=dtypes.int64) examples = variables.Variable(zero64) counter = examples.count_up_to(num_batches * batch_size) image = random_ops.random_normal( [image_size, image_size, 3], dtype=dtypes.float32, name='images') label = random_ops.random_uniform( [1], 0, 10, dtype=dtypes.int32, name='labels') batches = input_lib.batch( [counter, image, label], batch_size=batch_size, num_threads=4) batches = prefetch_queue.prefetch_queue(batches).dequeue() variables.global_variables_initializer().run() threads = queue_runner_impl.start_queue_runners() value_counter = [] for _ in range(num_batches): results = sess.run(batches) value_counter.append(results[0]) self.assertEqual(results[1].shape, (batch_size, image_size, image_size, 3)) self.assertEqual(results[2].shape, (batch_size, 1)) self.assertAllEqual( np.sort(np.concatenate(value_counter)), np.arange(0, num_batches * batch_size)) # Reached the limit. with self.assertRaises(errors_impl.OutOfRangeError): sess.run(batches) for thread in threads: thread.join() def testMultipleDequeue(self): with self.cached_session() as sess: batch_size = 10 image_size = 32 num_batches = 4 zero64 = constant_op.constant(0, dtype=dtypes.int64) examples = variables.Variable(zero64) counter = examples.count_up_to(num_batches * batch_size) image = random_ops.random_normal( [image_size, image_size, 3], dtype=dtypes.float32, name='images') label = random_ops.random_uniform( [1], 0, 10, dtype=dtypes.int32, name='labels') batches = input_lib.batch( [counter, image, label], batch_size=batch_size, num_threads=4) batcher = prefetch_queue.prefetch_queue(batches) batches_list = [batcher.dequeue() for _ in range(2)] variables.global_variables_initializer().run() threads = queue_runner_impl.start_queue_runners() value_counter = [] for _ in range(int(num_batches / 2)): for batches in batches_list: results = sess.run(batches) value_counter.append(results[0]) self.assertEquals(results[1].shape, (batch_size, image_size, image_size, 3)) self.assertEquals(results[2].shape, (batch_size, 1)) self.assertAllEqual( np.sort(np.concatenate(value_counter)), np.arange(0, num_batches * batch_size)) # Reached the limit. with self.assertRaises(errors_impl.OutOfRangeError): sess.run(batches) for thread in threads: thread.join() def testDynamicPad_failure(self): with ops.Graph().as_default(): variable_tensor = array_ops.placeholder(dtypes.int32, shape=[None, 3]) with self.assertRaisesRegexp(ValueError, 'shapes must be fully defined'): prefetch_queue.prefetch_queue([variable_tensor]) def testDynamicPad(self): with self.cached_session() as sess: # Create 3 tensors of variable but compatible shapes. var_shape = [None, 2] p1 = constant_op.constant([[1, 2], [3, 4]]) p1.set_shape(var_shape) p2 = constant_op.constant([[5, 6], [7, 8], [9, 10]]) p2.set_shape(var_shape) p3 = constant_op.constant([[11, 12]]) p3.set_shape(var_shape) batch = [p1, p2, p3] batch_size = len(batch) zero64 = constant_op.constant(0, dtype=dtypes.int64) examples = variables.Variable(zero64) counter = examples.count_up_to(batch_size) # Create a PaddingFIFOQueue to enqueue these tensors. q = data_flow_ops.PaddingFIFOQueue( capacity=10, dtypes=[dtypes.int32], shapes=[var_shape]) for tensor in [p1, p2, p3]: q.enqueue([tensor]).run() # Dequeue from the queue and batch them using batch(). batches = input_lib.batch([q.dequeue(), counter], batch_size=batch_size, num_threads=1, dynamic_pad=True) self.assertEqual([batch_size, None, 2], batches[0].shape.as_list()) # Finally, assemble them into prefetch_queue with dynamic_pad. batcher = prefetch_queue.prefetch_queue(batches, dynamic_pad=True) batches = batcher.dequeue() self.assertEqual([batch_size, None, 2], batches[0].shape.as_list()) variables.global_variables_initializer().run() threads = queue_runner_impl.start_queue_runners() values, _ = sess.run(batches) # We enqueued 3 tensors of [None, 2] shapes, so using dynamic_pad # they should be padded to the fixed size [3, 3, 2], where 3 # is the maximum length of the batch. self.assertTrue(np.array_equal( np.array([[[1, 2], [3, 4], [0, 0]], [[5, 6], [7, 8], [9, 10]], [[11, 12], [0, 0], [0, 0]]]), values)) with self.assertRaises(errors_impl.OutOfRangeError): sess.run(batches) for thread in threads: thread.join() def testDictConstruction(self): with ops.Graph().as_default(): batches = { 'first': constant_op.constant([1]), 'second': constant_op.constant([2.0, 2.1]) } prefetcher = prefetch_queue.prefetch_queue(batches) dequeued = prefetcher.dequeue() self.assertTrue(isinstance(dequeued, dict)) self.assertEqual(2, len(dequeued)) self.assertEqual(dtypes.int32, dequeued['first'].dtype) self.assertEqual(dtypes.float32, dequeued['second'].dtype) if __name__ == '__main__': test.main()
tensorflow-master
tensorflow/contrib/slim/python/slim/data/prefetch_queue_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for slim.data.dataset_data_provider.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import tempfile from tensorflow.contrib.slim.python.slim import queues from tensorflow.contrib.slim.python.slim.data import dataset from tensorflow.contrib.slim.python.slim.data import dataset_data_provider from tensorflow.contrib.slim.python.slim.data import test_utils from tensorflow.contrib.slim.python.slim.data import tfexample_decoder from tensorflow.python.client import session from tensorflow.python.framework import dtypes from tensorflow.python.ops import array_ops from tensorflow.python.ops import image_ops from tensorflow.python.ops import io_ops from tensorflow.python.ops import parsing_ops from tensorflow.python.platform import gfile from tensorflow.python.platform import test def _resize_image(image, height, width): image = array_ops.expand_dims(image, 0) image = image_ops.resize_bilinear(image, [height, width]) return array_ops.squeeze(image, [0]) def _create_tfrecord_dataset(tmpdir): if not gfile.Exists(tmpdir): gfile.MakeDirs(tmpdir) data_sources = test_utils.create_tfrecord_files(tmpdir, num_files=1) keys_to_features = { 'image/encoded': parsing_ops.FixedLenFeature( shape=(), dtype=dtypes.string, default_value=''), 'image/format': parsing_ops.FixedLenFeature( shape=(), dtype=dtypes.string, default_value='jpeg'), 'image/class/label': parsing_ops.FixedLenFeature( shape=[1], dtype=dtypes.int64, default_value=array_ops.zeros( [1], dtype=dtypes.int64)) } items_to_handlers = { 'image': tfexample_decoder.Image(), 'label': tfexample_decoder.Tensor('image/class/label'), } decoder = tfexample_decoder.TFExampleDecoder(keys_to_features, items_to_handlers) return dataset.Dataset( data_sources=data_sources, reader=io_ops.TFRecordReader, decoder=decoder, num_samples=100, items_to_descriptions=None) class DatasetDataProviderTest(test.TestCase): def testTFRecordDataset(self): dataset_dir = tempfile.mkdtemp(prefix=os.path.join(self.get_temp_dir(), 'tfrecord_dataset')) height = 300 width = 280 with self.cached_session(): test_dataset = _create_tfrecord_dataset(dataset_dir) provider = dataset_data_provider.DatasetDataProvider(test_dataset) key, image, label = provider.get(['record_key', 'image', 'label']) image = _resize_image(image, height, width) with session.Session('') as sess: with queues.QueueRunners(sess): key, image, label = sess.run([key, image, label]) split_key = key.decode('utf-8').split(':') self.assertEqual(2, len(split_key)) self.assertEqual(test_dataset.data_sources[0], split_key[0]) self.assertTrue(split_key[1].isdigit()) self.assertListEqual([height, width, 3], list(image.shape)) self.assertListEqual([1], list(label.shape)) def testTFRecordSeparateGetDataset(self): dataset_dir = tempfile.mkdtemp(prefix=os.path.join(self.get_temp_dir(), 'tfrecord_separate_get')) height = 300 width = 280 with self.cached_session(): provider = dataset_data_provider.DatasetDataProvider( _create_tfrecord_dataset(dataset_dir)) [image] = provider.get(['image']) [label] = provider.get(['label']) image = _resize_image(image, height, width) with session.Session('') as sess: with queues.QueueRunners(sess): image, label = sess.run([image, label]) self.assertListEqual([height, width, 3], list(image.shape)) self.assertListEqual([1], list(label.shape)) def testConflictingRecordKeyItem(self): dataset_dir = tempfile.mkdtemp(prefix=os.path.join(self.get_temp_dir(), 'tfrecord_dataset')) with self.cached_session(): with self.assertRaises(ValueError): dataset_data_provider.DatasetDataProvider( _create_tfrecord_dataset(dataset_dir), record_key='image') if __name__ == '__main__': test.main()
tensorflow-master
tensorflow/contrib/slim/python/slim/data/dataset_data_provider_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Contains helper functions and classes necessary for decoding data. While data providers read data from disk, sstables or other formats, data decoders decode the data (if necessary). A data decoder is provided with a serialized or encoded piece of data as well as a list of items and returns a set of tensors, each of which correspond to the requested list of items extracted from the data: def Decode(self, data, items): ... For example, if data is a compressed map, the implementation might be: def Decode(self, data, items): decompressed_map = _Decompress(data) outputs = [] for item in items: outputs.append(decompressed_map[item]) return outputs. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import abc import six @six.add_metaclass(abc.ABCMeta) class DataDecoder(object): """An abstract class which is used to decode data for a provider.""" @abc.abstractmethod def decode(self, data, items): """Decodes the data to returns the tensors specified by the list of items. Args: data: A possibly encoded data format. items: A list of strings, each of which indicate a particular data type. Returns: A list of `Tensors`, whose length matches the length of `items`, where each `Tensor` corresponds to each item. Raises: ValueError: If any of the items cannot be satisfied. """ pass @abc.abstractmethod def list_items(self): """Lists the names of the items that the decoder can decode. Returns: A list of string names. """ pass
tensorflow-master
tensorflow/contrib/slim/python/slim/data/data_decoder.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for slim.data.parallel_reader.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.slim.python.slim import queues from tensorflow.contrib.slim.python.slim.data import parallel_reader from tensorflow.contrib.slim.python.slim.data import test_utils from tensorflow.python.framework import dtypes as dtypes_lib from tensorflow.python.framework import errors_impl from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.ops import data_flow_ops from tensorflow.python.ops import io_ops from tensorflow.python.ops import variables from tensorflow.python.platform import test from tensorflow.python.training import input as input_lib from tensorflow.python.training import supervisor class ParallelReaderTest(test.TestCase): def setUp(self): ops.reset_default_graph() def _verify_all_data_sources_read(self, shared_queue): with self.cached_session(): tfrecord_paths = test_utils.create_tfrecord_files( self.get_temp_dir(), num_files=3) num_readers = len(tfrecord_paths) p_reader = parallel_reader.ParallelReader( io_ops.TFRecordReader, shared_queue, num_readers=num_readers) data_files = parallel_reader.get_data_files(tfrecord_paths) filename_queue = input_lib.string_input_producer(data_files) key, value = p_reader.read(filename_queue) count0 = 0 count1 = 0 count2 = 0 num_reads = 50 sv = supervisor.Supervisor(logdir=self.get_temp_dir()) with sv.prepare_or_wait_for_session() as sess: sv.start_queue_runners(sess) for _ in range(num_reads): current_key, _ = sess.run([key, value]) if '0-of-3' in str(current_key): count0 += 1 if '1-of-3' in str(current_key): count1 += 1 if '2-of-3' in str(current_key): count2 += 1 self.assertGreater(count0, 0) self.assertGreater(count1, 0) self.assertGreater(count2, 0) self.assertEquals(count0 + count1 + count2, num_reads) def _verify_read_up_to_out(self, shared_queue): with self.cached_session(): num_files = 3 num_records_per_file = 7 tfrecord_paths = test_utils.create_tfrecord_files( self.get_temp_dir(), num_files=num_files, num_records_per_file=num_records_per_file) p_reader = parallel_reader.ParallelReader( io_ops.TFRecordReader, shared_queue, num_readers=5) data_files = parallel_reader.get_data_files(tfrecord_paths) filename_queue = input_lib.string_input_producer(data_files, num_epochs=1) key, value = p_reader.read_up_to(filename_queue, 4) count0 = 0 count1 = 0 count2 = 0 all_keys_count = 0 all_values_count = 0 sv = supervisor.Supervisor(logdir=self.get_temp_dir()) with sv.prepare_or_wait_for_session() as sess: sv.start_queue_runners(sess) while True: try: current_keys, current_values = sess.run([key, value]) self.assertEquals(len(current_keys), len(current_values)) all_keys_count += len(current_keys) all_values_count += len(current_values) for current_key in current_keys: if '0-of-3' in str(current_key): count0 += 1 if '1-of-3' in str(current_key): count1 += 1 if '2-of-3' in str(current_key): count2 += 1 except errors_impl.OutOfRangeError: break self.assertEquals(count0, num_records_per_file) self.assertEquals(count1, num_records_per_file) self.assertEquals(count2, num_records_per_file) self.assertEquals( all_keys_count, num_files * num_records_per_file) self.assertEquals(all_values_count, all_keys_count) self.assertEquals( count0 + count1 + count2, all_keys_count) def testRandomShuffleQueue(self): shared_queue = data_flow_ops.RandomShuffleQueue( capacity=256, min_after_dequeue=128, dtypes=[dtypes_lib.string, dtypes_lib.string]) self._verify_all_data_sources_read(shared_queue) def testFIFOSharedQueue(self): shared_queue = data_flow_ops.FIFOQueue( capacity=256, dtypes=[dtypes_lib.string, dtypes_lib.string]) self._verify_all_data_sources_read(shared_queue) def testReadUpToFromRandomShuffleQueue(self): shared_queue = data_flow_ops.RandomShuffleQueue( capacity=55, min_after_dequeue=28, dtypes=[dtypes_lib.string, dtypes_lib.string], shapes=[tensor_shape.scalar(), tensor_shape.scalar()]) self._verify_read_up_to_out(shared_queue) def testReadUpToFromFIFOQueue(self): shared_queue = data_flow_ops.FIFOQueue( capacity=99, dtypes=[dtypes_lib.string, dtypes_lib.string], shapes=[tensor_shape.scalar(), tensor_shape.scalar()]) self._verify_read_up_to_out(shared_queue) class ParallelReadTest(test.TestCase): def setUp(self): ops.reset_default_graph() def testTFRecordReader(self): with self.cached_session(): self._tfrecord_paths = test_utils.create_tfrecord_files( self.get_temp_dir(), num_files=3) key, value = parallel_reader.parallel_read( self._tfrecord_paths, reader_class=io_ops.TFRecordReader, num_readers=3) sv = supervisor.Supervisor(logdir=self.get_temp_dir()) with sv.prepare_or_wait_for_session() as sess: sv.start_queue_runners(sess) flowers = 0 num_reads = 100 for _ in range(num_reads): current_key, _ = sess.run([key, value]) if 'flowers' in str(current_key): flowers += 1 self.assertGreater(flowers, 0) self.assertEquals(flowers, num_reads) class SinglePassReadTest(test.TestCase): def setUp(self): ops.reset_default_graph() def testOutOfRangeError(self): with self.cached_session(): [tfrecord_path] = test_utils.create_tfrecord_files( self.get_temp_dir(), num_files=1) key, value = parallel_reader.single_pass_read( tfrecord_path, reader_class=io_ops.TFRecordReader) init_op = variables.local_variables_initializer() with self.cached_session() as sess: sess.run(init_op) with queues.QueueRunners(sess): num_reads = 11 with self.assertRaises(errors_impl.OutOfRangeError): for _ in range(num_reads): sess.run([key, value]) def testTFRecordReader(self): with self.cached_session(): [tfrecord_path] = test_utils.create_tfrecord_files( self.get_temp_dir(), num_files=1) key, value = parallel_reader.single_pass_read( tfrecord_path, reader_class=io_ops.TFRecordReader) init_op = variables.local_variables_initializer() with self.cached_session() as sess: sess.run(init_op) with queues.QueueRunners(sess): flowers = 0 num_reads = 9 for _ in range(num_reads): current_key, _ = sess.run([key, value]) if 'flowers' in str(current_key): flowers += 1 self.assertGreater(flowers, 0) self.assertEquals(flowers, num_reads) if __name__ == '__main__': test.main()
tensorflow-master
tensorflow/contrib/slim/python/slim/data/parallel_reader_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Contains the definition of a Dataset. A Dataset is a collection of several components: (1) a list of data sources (2) a Reader class that can read those sources and returns possibly encoded samples of data (3) a decoder that decodes each sample of data provided by the reader (4) the total number of samples and (5) an optional dictionary mapping the list of items returns to a description of those items. Data can be loaded from a dataset specification using a dataset_data_provider: dataset = CreateMyDataset(...) provider = dataset_data_provider.DatasetDataProvider( dataset, shuffle=False) image, label = provider.get(['image', 'label']) See slim.data.dataset_data_provider for additional examples. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function class Dataset(object): """Represents a Dataset specification.""" def __init__(self, data_sources, reader, decoder, num_samples, items_to_descriptions, **kwargs): """Initializes the dataset. Args: data_sources: A list of files that make up the dataset. reader: The reader class, a subclass of BaseReader such as TextLineReader or TFRecordReader. decoder: An instance of a data_decoder. num_samples: The number of samples in the dataset. items_to_descriptions: A map from the items that the dataset provides to the descriptions of those items. **kwargs: Any remaining dataset-specific fields. """ kwargs['data_sources'] = data_sources kwargs['reader'] = reader kwargs['decoder'] = decoder kwargs['num_samples'] = num_samples kwargs['items_to_descriptions'] = items_to_descriptions self.__dict__.update(kwargs)
tensorflow-master
tensorflow/contrib/slim/python/slim/data/dataset.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for slim.data.tfexample_decoder.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import sys from tensorflow.contrib.slim.python.slim.data import tfexample_decoder from tensorflow.core.example import example_pb2 from tensorflow.core.example import feature_pb2 from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import image_ops from tensorflow.python.ops import lookup_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import parsing_ops from tensorflow.python.platform import test class TFExampleDecoderTest(test.TestCase): def _EncodedFloatFeature(self, ndarray): return feature_pb2.Feature( float_list=feature_pb2.FloatList(value=ndarray.flatten().tolist())) def _EncodedInt64Feature(self, ndarray): return feature_pb2.Feature( int64_list=feature_pb2.Int64List(value=ndarray.flatten().tolist())) def _EncodedBytesFeature(self, tf_encoded): with self.cached_session(): encoded = tf_encoded.eval() def BytesList(value): return feature_pb2.BytesList(value=[value]) return feature_pb2.Feature(bytes_list=BytesList(encoded)) def _BytesFeature(self, ndarray): values = ndarray.flatten().tolist() for i in range(len(values)): values[i] = values[i].encode('utf-8') return feature_pb2.Feature(bytes_list=feature_pb2.BytesList(value=values)) def _StringFeature(self, value): value = value.encode('utf-8') return feature_pb2.Feature(bytes_list=feature_pb2.BytesList(value=[value])) def _Encoder(self, image, image_format): assert image_format in ['jpeg', 'JPEG', 'png', 'PNG', 'raw', 'RAW'] if image_format in ['jpeg', 'JPEG']: tf_image = constant_op.constant(image, dtype=dtypes.uint8) return image_ops.encode_jpeg(tf_image) if image_format in ['png', 'PNG']: tf_image = constant_op.constant(image, dtype=dtypes.uint8) return image_ops.encode_png(tf_image) if image_format in ['raw', 'RAW']: # If machine is big endian, change the byte ordering in case of dtype float32 # so that it should be interpreted correctly. if image.dtype == np.float32 and sys.byteorder == 'big': image = image.astype('<f4') return constant_op.constant(image.tostring(), dtype=dtypes.string) def GenerateImage(self, image_format, image_shape, image_dtype=np.uint8): """Generates an image and an example containing the encoded image. Args: image_format: the encoding format of the image. image_shape: the shape of the image to generate. image_dtype: the dtype of values in the image. Only 'raw' image can have type different than uint8. Returns: image: the generated image. example: a TF-example with a feature key 'image/encoded' set to the serialized image and a feature key 'image/format' set to the image encoding format ['jpeg', 'JPEG', 'png', 'PNG', 'raw']. """ assert image_format in ['raw', 'RAW'] or image_dtype == np.uint8 num_pixels = image_shape[0] * image_shape[1] * image_shape[2] image = np.linspace( 0, num_pixels - 1, num=num_pixels).reshape(image_shape).astype(image_dtype) tf_encoded = self._Encoder(image, image_format) example = example_pb2.Example( features=feature_pb2.Features( feature={ 'image/encoded': self._EncodedBytesFeature(tf_encoded), 'image/format': self._StringFeature(image_format) })) return image, example.SerializeToString() def DecodeExample(self, serialized_example, item_handler, image_format): """Decodes the given serialized example with the specified item handler. Args: serialized_example: a serialized TF example string. item_handler: the item handler used to decode the image. image_format: the image format being decoded. Returns: the decoded image found in the serialized Example. """ serialized_example = array_ops.reshape(serialized_example, shape=[]) decoder = tfexample_decoder.TFExampleDecoder( keys_to_features={ 'image/encoded': parsing_ops.FixedLenFeature( (), dtypes.string, default_value=''), 'image/format': parsing_ops.FixedLenFeature( (), dtypes.string, default_value=image_format), }, items_to_handlers={'image': item_handler}) [tf_image] = decoder.decode(serialized_example, ['image']) return tf_image def RunDecodeExample(self, serialized_example, item_handler, image_format): tf_image = self.DecodeExample(serialized_example, item_handler, image_format) with self.cached_session(): decoded_image = tf_image.eval() # We need to recast them here to avoid some issues with uint8. return decoded_image.astype(np.float32) def testDecodeExampleWithJpegEncoding(self): image_shape = (2, 3, 3) image, serialized_example = self.GenerateImage( image_format='jpeg', image_shape=image_shape) decoded_image = self.RunDecodeExample( serialized_example, tfexample_decoder.Image(), image_format='jpeg') # Need to use a tolerance of 1 because of noise in the jpeg encode/decode self.assertAllClose(image, decoded_image, atol=1.001) def testDecodeExampleWithJPEGEncoding(self): test_image_channels = [1, 3] for channels in test_image_channels: image_shape = (2, 3, channels) image, serialized_example = self.GenerateImage( image_format='JPEG', image_shape=image_shape) decoded_image = self.RunDecodeExample( serialized_example, tfexample_decoder.Image(channels=channels), image_format='JPEG') # Need to use a tolerance of 1 because of noise in the jpeg encode/decode self.assertAllClose(image, decoded_image, atol=1.001) def testDecodeExampleWithNoShapeInfo(self): test_image_channels = [1, 3] for channels in test_image_channels: image_shape = (2, 3, channels) _, serialized_example = self.GenerateImage( image_format='jpeg', image_shape=image_shape) tf_decoded_image = self.DecodeExample( serialized_example, tfexample_decoder.Image(shape=None, channels=channels), image_format='jpeg') self.assertEqual(tf_decoded_image.get_shape().ndims, 3) def testDecodeExampleWithPngEncoding(self): test_image_channels = [1, 3, 4] for channels in test_image_channels: image_shape = (2, 3, channels) image, serialized_example = self.GenerateImage( image_format='png', image_shape=image_shape) decoded_image = self.RunDecodeExample( serialized_example, tfexample_decoder.Image(channels=channels), image_format='png') self.assertAllClose(image, decoded_image, atol=0) def testDecodeExampleWithPNGEncoding(self): test_image_channels = [1, 3, 4] for channels in test_image_channels: image_shape = (2, 3, channels) image, serialized_example = self.GenerateImage( image_format='PNG', image_shape=image_shape) decoded_image = self.RunDecodeExample( serialized_example, tfexample_decoder.Image(channels=channels), image_format='PNG') self.assertAllClose(image, decoded_image, atol=0) def testDecodeExampleWithRawEncoding(self): image_shape = (2, 3, 3) image, serialized_example = self.GenerateImage( image_format='raw', image_shape=image_shape) decoded_image = self.RunDecodeExample( serialized_example, tfexample_decoder.Image(shape=image_shape), image_format='raw') self.assertAllClose(image, decoded_image, atol=0) def testDecodeExampleWithRAWEncoding(self): image_shape = (2, 3, 3) image, serialized_example = self.GenerateImage( image_format='RAW', image_shape=image_shape) decoded_image = self.RunDecodeExample( serialized_example, tfexample_decoder.Image(shape=image_shape), image_format='RAW') self.assertAllClose(image, decoded_image, atol=0) def testDecodeExampleWithRawEncodingFloatDtype(self): image_shape = (2, 3, 3) image, serialized_example = self.GenerateImage( image_format='raw', image_shape=image_shape, image_dtype=np.float32) decoded_image = self.RunDecodeExample( serialized_example, tfexample_decoder.Image(shape=image_shape, dtype=dtypes.float32), image_format='raw') self.assertAllClose(image, decoded_image, atol=0) def testDecodeExampleWithJpegEncodingAt16BitDoesNotCauseError(self): image_shape = (2, 3, 3) # Image has type uint8 but decoding at uint16 should not cause problems. image, serialized_example = self.GenerateImage( image_format='jpeg', image_shape=image_shape) decoded_image = self.RunDecodeExample( serialized_example, tfexample_decoder.Image(dtype=dtypes.uint16), image_format='jpeg') self.assertAllClose(image, decoded_image, atol=1.001) def testDecodeExampleWithStringTensor(self): tensor_shape = (2, 3, 1) np_array = np.array([[['ab'], ['cd'], ['ef']], [['ghi'], ['jkl'], ['mnop']]]) example = example_pb2.Example( features=feature_pb2.Features(feature={ 'labels': self._BytesFeature(np_array), })) serialized_example = example.SerializeToString() with self.cached_session(): serialized_example = array_ops.reshape(serialized_example, shape=[]) keys_to_features = { 'labels': parsing_ops.FixedLenFeature( tensor_shape, dtypes.string, default_value=constant_op.constant( '', shape=tensor_shape, dtype=dtypes.string)) } items_to_handlers = { 'labels': tfexample_decoder.Tensor('labels'), } decoder = tfexample_decoder.TFExampleDecoder(keys_to_features, items_to_handlers) [tf_labels] = decoder.decode(serialized_example, ['labels']) labels = tf_labels.eval() labels = labels.astype(np_array.dtype) self.assertTrue(np.array_equal(np_array, labels)) def testDecodeExampleWithFloatTensor(self): np_array = np.random.rand(2, 3, 1).astype('f') example = example_pb2.Example( features=feature_pb2.Features(feature={ 'array': self._EncodedFloatFeature(np_array), })) serialized_example = example.SerializeToString() with self.cached_session(): serialized_example = array_ops.reshape(serialized_example, shape=[]) keys_to_features = { 'array': parsing_ops.FixedLenFeature(np_array.shape, dtypes.float32) } items_to_handlers = { 'array': tfexample_decoder.Tensor('array'), } decoder = tfexample_decoder.TFExampleDecoder(keys_to_features, items_to_handlers) [tf_array] = decoder.decode(serialized_example, ['array']) self.assertAllEqual(tf_array.eval(), np_array) def testDecodeExampleWithInt64Tensor(self): np_array = np.random.randint(1, 10, size=(2, 3, 1)) example = example_pb2.Example( features=feature_pb2.Features(feature={ 'array': self._EncodedInt64Feature(np_array), })) serialized_example = example.SerializeToString() with self.cached_session(): serialized_example = array_ops.reshape(serialized_example, shape=[]) keys_to_features = { 'array': parsing_ops.FixedLenFeature(np_array.shape, dtypes.int64) } items_to_handlers = { 'array': tfexample_decoder.Tensor('array'), } decoder = tfexample_decoder.TFExampleDecoder(keys_to_features, items_to_handlers) [tf_array] = decoder.decode(serialized_example, ['array']) self.assertAllEqual(tf_array.eval(), np_array) def testDecodeExampleWithVarLenTensor(self): np_array = np.array([[[1], [2], [3]], [[4], [5], [6]]]) example = example_pb2.Example( features=feature_pb2.Features(feature={ 'labels': self._EncodedInt64Feature(np_array), })) serialized_example = example.SerializeToString() with self.cached_session(): serialized_example = array_ops.reshape(serialized_example, shape=[]) keys_to_features = { 'labels': parsing_ops.VarLenFeature(dtype=dtypes.int64), } items_to_handlers = { 'labels': tfexample_decoder.Tensor('labels'), } decoder = tfexample_decoder.TFExampleDecoder(keys_to_features, items_to_handlers) [tf_labels] = decoder.decode(serialized_example, ['labels']) labels = tf_labels.eval() self.assertAllEqual(labels, np_array.flatten()) def testDecodeExampleWithFixLenTensorWithShape(self): np_array = np.array([[1, 2, 3], [4, 5, 6]]) example = example_pb2.Example( features=feature_pb2.Features(feature={ 'labels': self._EncodedInt64Feature(np_array), })) serialized_example = example.SerializeToString() with self.cached_session(): serialized_example = array_ops.reshape(serialized_example, shape=[]) keys_to_features = { 'labels': parsing_ops.FixedLenFeature(np_array.shape, dtype=dtypes.int64), } items_to_handlers = { 'labels': tfexample_decoder.Tensor('labels', shape=np_array.shape), } decoder = tfexample_decoder.TFExampleDecoder(keys_to_features, items_to_handlers) [tf_labels] = decoder.decode(serialized_example, ['labels']) labels = tf_labels.eval() self.assertAllEqual(labels, np_array) def testDecodeExampleWithVarLenTensorToDense(self): np_array = np.array([[1, 2, 3], [4, 5, 6]]) example = example_pb2.Example( features=feature_pb2.Features(feature={ 'labels': self._EncodedInt64Feature(np_array), })) serialized_example = example.SerializeToString() with self.cached_session(): serialized_example = array_ops.reshape(serialized_example, shape=[]) keys_to_features = { 'labels': parsing_ops.VarLenFeature(dtype=dtypes.int64), } items_to_handlers = { 'labels': tfexample_decoder.Tensor('labels', shape=np_array.shape), } decoder = tfexample_decoder.TFExampleDecoder(keys_to_features, items_to_handlers) [tf_labels] = decoder.decode(serialized_example, ['labels']) labels = tf_labels.eval() self.assertAllEqual(labels, np_array) def testDecodeExampleShapeKeyTensor(self): np_image = np.random.rand(2, 3, 1).astype('f') np_labels = np.array([[[1], [2], [3]], [[4], [5], [6]]]) example = example_pb2.Example( features=feature_pb2.Features( feature={ 'image': self._EncodedFloatFeature(np_image), 'image/shape': self._EncodedInt64Feature(np.array(np_image.shape)), 'labels': self._EncodedInt64Feature(np_labels), 'labels/shape': self._EncodedInt64Feature(np.array(np_labels.shape)), })) serialized_example = example.SerializeToString() with self.cached_session(): serialized_example = array_ops.reshape(serialized_example, shape=[]) keys_to_features = { 'image': parsing_ops.VarLenFeature(dtype=dtypes.float32), 'image/shape': parsing_ops.VarLenFeature(dtype=dtypes.int64), 'labels': parsing_ops.VarLenFeature(dtype=dtypes.int64), 'labels/shape': parsing_ops.VarLenFeature(dtype=dtypes.int64), } items_to_handlers = { 'image': tfexample_decoder.Tensor('image', shape_keys='image/shape'), 'labels': tfexample_decoder.Tensor('labels', shape_keys='labels/shape'), } decoder = tfexample_decoder.TFExampleDecoder(keys_to_features, items_to_handlers) [tf_image, tf_labels] = decoder.decode(serialized_example, ['image', 'labels']) self.assertAllEqual(tf_image.eval(), np_image) self.assertAllEqual(tf_labels.eval(), np_labels) def testDecodeExampleMultiShapeKeyTensor(self): np_image = np.random.rand(2, 3, 1).astype('f') np_labels = np.array([[[1], [2], [3]], [[4], [5], [6]]]) height, width, depth = np_labels.shape example = example_pb2.Example( features=feature_pb2.Features( feature={ 'image': self._EncodedFloatFeature(np_image), 'image/shape': self._EncodedInt64Feature(np.array(np_image.shape)), 'labels': self._EncodedInt64Feature(np_labels), 'labels/height': self._EncodedInt64Feature(np.array([height])), 'labels/width': self._EncodedInt64Feature(np.array([width])), 'labels/depth': self._EncodedInt64Feature(np.array([depth])), })) serialized_example = example.SerializeToString() with self.cached_session(): serialized_example = array_ops.reshape(serialized_example, shape=[]) keys_to_features = { 'image': parsing_ops.VarLenFeature(dtype=dtypes.float32), 'image/shape': parsing_ops.VarLenFeature(dtype=dtypes.int64), 'labels': parsing_ops.VarLenFeature(dtype=dtypes.int64), 'labels/height': parsing_ops.VarLenFeature(dtype=dtypes.int64), 'labels/width': parsing_ops.VarLenFeature(dtype=dtypes.int64), 'labels/depth': parsing_ops.VarLenFeature(dtype=dtypes.int64), } items_to_handlers = { 'image': tfexample_decoder.Tensor('image', shape_keys='image/shape'), 'labels': tfexample_decoder.Tensor( 'labels', shape_keys=['labels/height', 'labels/width', 'labels/depth']), } decoder = tfexample_decoder.TFExampleDecoder(keys_to_features, items_to_handlers) [tf_image, tf_labels] = decoder.decode(serialized_example, ['image', 'labels']) self.assertAllEqual(tf_image.eval(), np_image) self.assertAllEqual(tf_labels.eval(), np_labels) def testDecodeExampleWithSparseTensor(self): np_indices = np.array([[1], [2], [5]]) np_values = np.array([0.1, 0.2, 0.6]).astype('f') example = example_pb2.Example( features=feature_pb2.Features( feature={ 'indices': self._EncodedInt64Feature(np_indices), 'values': self._EncodedFloatFeature(np_values), })) serialized_example = example.SerializeToString() with self.cached_session(): serialized_example = array_ops.reshape(serialized_example, shape=[]) keys_to_features = { 'indices': parsing_ops.VarLenFeature(dtype=dtypes.int64), 'values': parsing_ops.VarLenFeature(dtype=dtypes.float32), } items_to_handlers = { 'labels': tfexample_decoder.SparseTensor(), } decoder = tfexample_decoder.TFExampleDecoder(keys_to_features, items_to_handlers) [tf_labels] = decoder.decode(serialized_example, ['labels']) labels = tf_labels.eval() self.assertAllEqual(labels.indices, np_indices) self.assertAllEqual(labels.values, np_values) self.assertAllEqual(labels.dense_shape, np_values.shape) def testDecodeExampleWithSparseTensorWithKeyShape(self): np_indices = np.array([[1], [2], [5]]) np_values = np.array([0.1, 0.2, 0.6]).astype('f') np_shape = np.array([6]) example = example_pb2.Example( features=feature_pb2.Features( feature={ 'indices': self._EncodedInt64Feature(np_indices), 'values': self._EncodedFloatFeature(np_values), 'shape': self._EncodedInt64Feature(np_shape), })) serialized_example = example.SerializeToString() with self.cached_session(): serialized_example = array_ops.reshape(serialized_example, shape=[]) keys_to_features = { 'indices': parsing_ops.VarLenFeature(dtype=dtypes.int64), 'values': parsing_ops.VarLenFeature(dtype=dtypes.float32), 'shape': parsing_ops.VarLenFeature(dtype=dtypes.int64), } items_to_handlers = { 'labels': tfexample_decoder.SparseTensor(shape_key='shape'), } decoder = tfexample_decoder.TFExampleDecoder(keys_to_features, items_to_handlers) [tf_labels] = decoder.decode(serialized_example, ['labels']) labels = tf_labels.eval() self.assertAllEqual(labels.indices, np_indices) self.assertAllEqual(labels.values, np_values) self.assertAllEqual(labels.dense_shape, np_shape) def testDecodeExampleWithSparseTensorWithGivenShape(self): np_indices = np.array([[1], [2], [5]]) np_values = np.array([0.1, 0.2, 0.6]).astype('f') np_shape = np.array([6]) example = example_pb2.Example( features=feature_pb2.Features( feature={ 'indices': self._EncodedInt64Feature(np_indices), 'values': self._EncodedFloatFeature(np_values), })) serialized_example = example.SerializeToString() with self.cached_session(): serialized_example = array_ops.reshape(serialized_example, shape=[]) keys_to_features = { 'indices': parsing_ops.VarLenFeature(dtype=dtypes.int64), 'values': parsing_ops.VarLenFeature(dtype=dtypes.float32), } items_to_handlers = { 'labels': tfexample_decoder.SparseTensor(shape=np_shape), } decoder = tfexample_decoder.TFExampleDecoder(keys_to_features, items_to_handlers) [tf_labels] = decoder.decode(serialized_example, ['labels']) labels = tf_labels.eval() self.assertAllEqual(labels.indices, np_indices) self.assertAllEqual(labels.values, np_values) self.assertAllEqual(labels.dense_shape, np_shape) def testDecodeExampleWithSparseTensorToDense(self): np_indices = np.array([1, 2, 5]) np_values = np.array([0.1, 0.2, 0.6]).astype('f') np_shape = np.array([6]) np_dense = np.array([0.0, 0.1, 0.2, 0.0, 0.0, 0.6]).astype('f') example = example_pb2.Example( features=feature_pb2.Features( feature={ 'indices': self._EncodedInt64Feature(np_indices), 'values': self._EncodedFloatFeature(np_values), })) serialized_example = example.SerializeToString() with self.cached_session(): serialized_example = array_ops.reshape(serialized_example, shape=[]) keys_to_features = { 'indices': parsing_ops.VarLenFeature(dtype=dtypes.int64), 'values': parsing_ops.VarLenFeature(dtype=dtypes.float32), } items_to_handlers = { 'labels': tfexample_decoder.SparseTensor(shape=np_shape, densify=True), } decoder = tfexample_decoder.TFExampleDecoder(keys_to_features, items_to_handlers) [tf_labels] = decoder.decode(serialized_example, ['labels']) labels = tf_labels.eval() self.assertAllClose(labels, np_dense) def testDecodeExampleWithTensor(self): tensor_shape = (2, 3, 1) np_array = np.random.rand(2, 3, 1) example = example_pb2.Example( features=feature_pb2.Features(feature={ 'image/depth_map': self._EncodedFloatFeature(np_array), })) serialized_example = example.SerializeToString() with self.cached_session(): serialized_example = array_ops.reshape(serialized_example, shape=[]) keys_to_features = { 'image/depth_map': parsing_ops.FixedLenFeature( tensor_shape, dtypes.float32, default_value=array_ops.zeros(tensor_shape)) } items_to_handlers = {'depth': tfexample_decoder.Tensor('image/depth_map')} decoder = tfexample_decoder.TFExampleDecoder(keys_to_features, items_to_handlers) [tf_depth] = decoder.decode(serialized_example, ['depth']) depth = tf_depth.eval() self.assertAllClose(np_array, depth) def testDecodeExampleWithItemHandlerCallback(self): np.random.seed(0) tensor_shape = (2, 3, 1) np_array = np.random.rand(2, 3, 1) example = example_pb2.Example( features=feature_pb2.Features(feature={ 'image/depth_map': self._EncodedFloatFeature(np_array), })) serialized_example = example.SerializeToString() with self.cached_session(): serialized_example = array_ops.reshape(serialized_example, shape=[]) keys_to_features = { 'image/depth_map': parsing_ops.FixedLenFeature( tensor_shape, dtypes.float32, default_value=array_ops.zeros(tensor_shape)) } def HandleDepth(keys_to_tensors): depth = list(keys_to_tensors.values())[0] depth += 1 return depth items_to_handlers = { 'depth': tfexample_decoder.ItemHandlerCallback('image/depth_map', HandleDepth) } decoder = tfexample_decoder.TFExampleDecoder(keys_to_features, items_to_handlers) [tf_depth] = decoder.decode(serialized_example, ['depth']) depth = tf_depth.eval() self.assertAllClose(np_array, depth - 1) def testDecodeImageWithItemHandlerCallback(self): image_shape = (2, 3, 3) for image_encoding in ['jpeg', 'png']: image, serialized_example = self.GenerateImage( image_format=image_encoding, image_shape=image_shape) with self.cached_session(): def ConditionalDecoding(keys_to_tensors): """See base class.""" image_buffer = keys_to_tensors['image/encoded'] image_format = keys_to_tensors['image/format'] def DecodePng(): return image_ops.decode_png(image_buffer, 3) def DecodeJpg(): return image_ops.decode_jpeg(image_buffer, 3) image = control_flow_ops.case( { math_ops.equal(image_format, 'png'): DecodePng, }, default=DecodeJpg, exclusive=True) image = array_ops.reshape(image, image_shape) return image keys_to_features = { 'image/encoded': parsing_ops.FixedLenFeature( (), dtypes.string, default_value=''), 'image/format': parsing_ops.FixedLenFeature( (), dtypes.string, default_value='jpeg') } items_to_handlers = { 'image': tfexample_decoder.ItemHandlerCallback( ['image/encoded', 'image/format'], ConditionalDecoding) } decoder = tfexample_decoder.TFExampleDecoder(keys_to_features, items_to_handlers) [tf_image] = decoder.decode(serialized_example, ['image']) decoded_image = tf_image.eval() if image_encoding == 'jpeg': # For jenkins: image = image.astype(np.float32) decoded_image = decoded_image.astype(np.float32) self.assertAllClose(image, decoded_image, rtol=.5, atol=1.001) else: self.assertAllClose(image, decoded_image, atol=0) def testDecodeExampleWithBoundingBoxSparse(self): num_bboxes = 10 np_ymin = np.random.rand(num_bboxes, 1) np_xmin = np.random.rand(num_bboxes, 1) np_ymax = np.random.rand(num_bboxes, 1) np_xmax = np.random.rand(num_bboxes, 1) np_bboxes = np.hstack([np_ymin, np_xmin, np_ymax, np_xmax]) example = example_pb2.Example( features=feature_pb2.Features( feature={ 'image/object/bbox/ymin': self._EncodedFloatFeature(np_ymin), 'image/object/bbox/xmin': self._EncodedFloatFeature(np_xmin), 'image/object/bbox/ymax': self._EncodedFloatFeature(np_ymax), 'image/object/bbox/xmax': self._EncodedFloatFeature(np_xmax), })) serialized_example = example.SerializeToString() with self.cached_session(): serialized_example = array_ops.reshape(serialized_example, shape=[]) keys_to_features = { 'image/object/bbox/ymin': parsing_ops.VarLenFeature(dtypes.float32), 'image/object/bbox/xmin': parsing_ops.VarLenFeature(dtypes.float32), 'image/object/bbox/ymax': parsing_ops.VarLenFeature(dtypes.float32), 'image/object/bbox/xmax': parsing_ops.VarLenFeature(dtypes.float32), } items_to_handlers = { 'object/bbox': tfexample_decoder.BoundingBox(['ymin', 'xmin', 'ymax', 'xmax'], 'image/object/bbox/'), } decoder = tfexample_decoder.TFExampleDecoder(keys_to_features, items_to_handlers) [tf_bboxes] = decoder.decode(serialized_example, ['object/bbox']) bboxes = tf_bboxes.eval() self.assertAllClose(np_bboxes, bboxes) def testDecodeExampleWithBoundingBoxDense(self): num_bboxes = 10 np_ymin = np.random.rand(num_bboxes, 1) np_xmin = np.random.rand(num_bboxes, 1) np_ymax = np.random.rand(num_bboxes, 1) np_xmax = np.random.rand(num_bboxes, 1) np_bboxes = np.hstack([np_ymin, np_xmin, np_ymax, np_xmax]) example = example_pb2.Example( features=feature_pb2.Features( feature={ 'image/object/bbox/ymin': self._EncodedFloatFeature(np_ymin), 'image/object/bbox/xmin': self._EncodedFloatFeature(np_xmin), 'image/object/bbox/ymax': self._EncodedFloatFeature(np_ymax), 'image/object/bbox/xmax': self._EncodedFloatFeature(np_xmax), })) serialized_example = example.SerializeToString() with self.cached_session(): serialized_example = array_ops.reshape(serialized_example, shape=[]) keys_to_features = { 'image/object/bbox/ymin': parsing_ops.FixedLenSequenceFeature( [], dtypes.float32, allow_missing=True), 'image/object/bbox/xmin': parsing_ops.FixedLenSequenceFeature( [], dtypes.float32, allow_missing=True), 'image/object/bbox/ymax': parsing_ops.FixedLenSequenceFeature( [], dtypes.float32, allow_missing=True), 'image/object/bbox/xmax': parsing_ops.FixedLenSequenceFeature( [], dtypes.float32, allow_missing=True), } items_to_handlers = { 'object/bbox': tfexample_decoder.BoundingBox(['ymin', 'xmin', 'ymax', 'xmax'], 'image/object/bbox/'), } decoder = tfexample_decoder.TFExampleDecoder(keys_to_features, items_to_handlers) [tf_bboxes] = decoder.decode(serialized_example, ['object/bbox']) bboxes = tf_bboxes.eval() self.assertAllClose(np_bboxes, bboxes) def testDecodeExampleWithRepeatedImages(self): image_shape = (2, 3, 3) image_format = 'png' image, _ = self.GenerateImage( image_format=image_format, image_shape=image_shape) tf_encoded = self._Encoder(image, image_format) with self.cached_session(): tf_string = tf_encoded.eval() example = example_pb2.Example( features=feature_pb2.Features( feature={ 'image/encoded': feature_pb2.Feature( bytes_list=feature_pb2.BytesList( value=[tf_string, tf_string])), 'image/format': self._StringFeature(image_format), })) serialized_example = example.SerializeToString() with self.cached_session(): serialized_example = array_ops.reshape(serialized_example, shape=[]) decoder = tfexample_decoder.TFExampleDecoder( keys_to_features={ 'image/encoded': parsing_ops.FixedLenFeature((2,), dtypes.string), 'image/format': parsing_ops.FixedLenFeature( (), dtypes.string, default_value=image_format), }, items_to_handlers={'image': tfexample_decoder.Image(repeated=True)}) [tf_image] = decoder.decode(serialized_example, ['image']) output_image = tf_image.eval() self.assertEqual(output_image.shape, (2, 2, 3, 3)) self.assertAllEqual(np.squeeze(output_image[0, :, :, :]), image) self.assertAllEqual(np.squeeze(output_image[1, :, :, :]), image) def testDecodeExampleWithLookup(self): example = example_pb2.Example( features=feature_pb2.Features( feature={ 'image/object/class/text': self._BytesFeature(np.array(['cat', 'dog', 'guinea pig'])), })) serialized_example = example.SerializeToString() # 'dog' -> 0, 'guinea pig' -> 1, 'cat' -> 2 table = lookup_ops.index_table_from_tensor( constant_op.constant(['dog', 'guinea pig', 'cat'])) with self.cached_session() as sess: sess.run(lookup_ops.tables_initializer()) serialized_example = array_ops.reshape(serialized_example, shape=[]) keys_to_features = { 'image/object/class/text': parsing_ops.VarLenFeature(dtypes.string), } items_to_handlers = { 'labels': tfexample_decoder.LookupTensor('image/object/class/text', table), } decoder = tfexample_decoder.TFExampleDecoder(keys_to_features, items_to_handlers) obtained_class_ids = decoder.decode(serialized_example)[0].eval() self.assertAllClose([2, 0, 1], obtained_class_ids) def testDecodeExampleWithBackupHandlerLookup(self): example1 = example_pb2.Example( features=feature_pb2.Features( feature={ 'image/object/class/text': self._BytesFeature(np.array(['cat', 'dog', 'guinea pig'])), 'image/object/class/label': self._EncodedInt64Feature(np.array([42, 10, 900])) })) example2 = example_pb2.Example( features=feature_pb2.Features( feature={ 'image/object/class/text': self._BytesFeature(np.array(['cat', 'dog', 'guinea pig'])), })) example3 = example_pb2.Example( features=feature_pb2.Features( feature={ 'image/object/class/label': self._EncodedInt64Feature(np.array([42, 10, 901])) })) # 'dog' -> 0, 'guinea pig' -> 1, 'cat' -> 2 table = lookup_ops.index_table_from_tensor( constant_op.constant(['dog', 'guinea pig', 'cat'])) keys_to_features = { 'image/object/class/text': parsing_ops.VarLenFeature(dtypes.string), 'image/object/class/label': parsing_ops.VarLenFeature(dtypes.int64), } backup_handler = tfexample_decoder.BackupHandler( handler=tfexample_decoder.Tensor('image/object/class/label'), backup=tfexample_decoder.LookupTensor('image/object/class/text', table)) items_to_handlers = { 'labels': backup_handler, } decoder = tfexample_decoder.TFExampleDecoder(keys_to_features, items_to_handlers) obtained_class_ids_each_example = [] with self.cached_session() as sess: sess.run(lookup_ops.tables_initializer()) for example in [example1, example2, example3]: serialized_example = array_ops.reshape( example.SerializeToString(), shape=[]) obtained_class_ids_each_example.append( decoder.decode(serialized_example)[0].eval()) self.assertAllClose([42, 10, 900], obtained_class_ids_each_example[0]) self.assertAllClose([2, 0, 1], obtained_class_ids_each_example[1]) self.assertAllClose([42, 10, 901], obtained_class_ids_each_example[2]) if __name__ == '__main__': test.main()
tensorflow-master
tensorflow/contrib/slim/python/slim/data/tfexample_decoder_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A DataProvider that provides data from a Dataset. DatasetDataProviders provide data from datasets. The provide can be configured to use multiple readers simultaneously or read via a single reader. Additionally, the data being read can be optionally shuffled. For example, to read data using a single thread without shuffling: pascal_voc_data_provider = DatasetDataProvider( slim.datasets.pascal_voc.get_split('train'), shuffle=False) images, labels = pascal_voc_data_provider.get(['images', 'labels']) To read data using multiple readers simultaneous with shuffling: pascal_voc_data_provider = DatasetDataProvider( slim.datasets.pascal_voc.Dataset(), num_readers=10, shuffle=True) images, labels = pascal_voc_data_provider.get(['images', 'labels']) Equivalently, one may request different fields of the same sample separately: [images] = pascal_voc_data_provider.get(['images']) [labels] = pascal_voc_data_provider.get(['labels']) """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.slim.python.slim.data import data_provider from tensorflow.contrib.slim.python.slim.data import parallel_reader class DatasetDataProvider(data_provider.DataProvider): def __init__(self, dataset, num_readers=1, reader_kwargs=None, shuffle=True, num_epochs=None, common_queue_capacity=256, common_queue_min=128, record_key='record_key', seed=None, scope=None): """Creates a DatasetDataProvider. Note: if `num_epochs` is not `None`, local counter `epochs` will be created by relevant function. Use `local_variables_initializer()` to initialize local variables. Args: dataset: An instance of the Dataset class. num_readers: The number of parallel readers to use. reader_kwargs: An optional dict of kwargs for the reader. shuffle: Whether to shuffle the data sources and common queue when reading. num_epochs: The number of times each data source is read. If left as None, the data will be cycled through indefinitely. common_queue_capacity: The capacity of the common queue. common_queue_min: The minimum number of elements in the common queue after a dequeue. record_key: The item name to use for the dataset record keys in the provided tensors. seed: The seed to use if shuffling. scope: Optional name scope for the ops. Raises: ValueError: If `record_key` matches one of the items in the dataset. """ key, data = parallel_reader.parallel_read( dataset.data_sources, reader_class=dataset.reader, num_epochs=num_epochs, num_readers=num_readers, reader_kwargs=reader_kwargs, shuffle=shuffle, capacity=common_queue_capacity, min_after_dequeue=common_queue_min, seed=seed, scope=scope) items = dataset.decoder.list_items() tensors = dataset.decoder.decode(data, items) items_to_tensors = dict(zip(items, tensors)) if record_key in items_to_tensors: raise ValueError('The item name used for `record_key` cannot also be ' 'used for a dataset item: %s', record_key) items_to_tensors[record_key] = key super(DatasetDataProvider, self).__init__( items_to_tensors=items_to_tensors, num_samples=dataset.num_samples)
tensorflow-master
tensorflow/contrib/slim/python/slim/data/dataset_data_provider.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Contains code for the DataProvider. A DataProvider is a class which provides some predefined data types from some source (TFRecord, etc). The most basic function of a data provider is the `Get` operation where one requests one or more types of data, or 'items': provider.get(items=['image', 'sentence', 'class']) More concretely, a data provider (a subclass of BaseDataProvider) returns a single tensor for each requested item (data type): provider = MyDataProvider(...) image, sentence, clazz = provider.get(['image', 'sentence', 'class']) In this example, the provider `MyDataProvider` must know how to load each item. A data provider may be written in a way that the logic necessary to map from each item to tensor is completely encapsulated within the data_provider itself. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import abc import six @six.add_metaclass(abc.ABCMeta) class DataProvider(object): """Maps a list of requested data items to tensors from a data source. All data providers must inherit from DataProvider and implement the Get method which returns arbitrary types of data. No assumption is made about the source of the data nor the mechanism for providing it. """ def __init__(self, items_to_tensors, num_samples): """Constructs the Data Provider. Args: items_to_tensors: a dictionary of names to tensors. num_samples: the number of samples in the dataset being provided. """ self._items_to_tensors = items_to_tensors self._num_samples = num_samples def get(self, items): """Returns a list of tensors specified by the given list of items. The list of items is arbitrary different data providers satisfy different lists of items. For example the Pascal VOC might accept items 'image' and 'semantics', whereas the NYUDepthV2 data provider might accept items 'image', 'depths' and 'normals'. Args: items: a list of strings, each of which indicate a particular data type. Returns: a list of tensors, whose length matches the length of `items`, where each tensor corresponds to each item. Raises: ValueError: if any of the items cannot be satisfied. """ self._validate_items(items) return [self._items_to_tensors[item] for item in items] def list_items(self): """Returns the list of item names that can be provided by the data provider. Returns: a list of item names that can be passed to Get([items]). """ return self._items_to_tensors.keys() def num_samples(self): """Returns the number of data samples in the dataset. Returns: a positive whole number. """ return self._num_samples def _validate_items(self, items): """Verifies that each given item is a member of the list from ListItems(). Args: items: a list or tuple of strings. Raises: ValueError: if `items` is not a tuple or list or if any of the elements of `items` is not found in the list provided by self.ListItems(). """ if not isinstance(items, (list, tuple)): raise ValueError('items must be a list or tuple') valid_items = self.list_items() for item in items: if item not in valid_items: raise ValueError('Item [%s] is invalid. Valid entries include: %s' % (item, valid_items))
tensorflow-master
tensorflow/contrib/slim/python/slim/data/data_provider.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Implements a simple prefetch_queue.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.framework import dtypes as _dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import data_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.summary import summary from tensorflow.python.training import queue_runner def _which_queue(dynamic_pad): return (data_flow_ops.PaddingFIFOQueue if dynamic_pad else data_flow_ops.FIFOQueue) def prefetch_queue(tensors, capacity=8, num_threads=1, dynamic_pad=False, shared_name=None, name=None): """Creates a queue to prefetch tensors from `tensors`. A queue runner for enqueuing tensors into the prefetch_queue is automatically added to the TF QueueRunners collection. Example: This is for example useful to pre-assemble input batches read with `tf.compat.v1.train.batch()` and enqueue the pre-assembled batches. Ops that dequeue from the pre-assembled queue will not pay the cost of assembling the batch. images, labels = tf.compat.v1.train.batch([image, label], batch_size=32, num_threads=4) batch_queue = prefetch_queue([images, labels]) images, labels = batch_queue.dequeue() logits = Net(images) loss = Loss(logits, labels) Args: tensors: A list or dictionary of `Tensors` to enqueue in the buffer. capacity: An integer. The maximum number of elements in the queue. num_threads: An integer. Number of threads running the enqueue op. dynamic_pad: Boolean. Whether to allow variable dimensions in input shapes. shared_name: (optional). If set, this queue will be shared under the given name across multiple sessions. name: (Optional) A name for the operations. Returns: A queue from which you can dequeue tensors with the same type and shape as `tensors`. """ if isinstance(tensors, dict): # Need to wrap the keys and values in list() since Python3 returns views. # We sort the keys so the order is consistent across runs. names = list(sorted(tensors.keys())) tensor_list = list([tensors[n] for n in names]) else: names = None tensor_list = tensors with ops.name_scope(name, "prefetch_queue", tensor_list) as name: dtypes = [t.dtype for t in tensor_list] shapes = [t.get_shape() for t in tensor_list] queue = _which_queue(dynamic_pad)( capacity=capacity, dtypes=dtypes, shapes=shapes, names=names, shared_name=shared_name) enqueue_op = queue.enqueue(tensors) queue_runner.add_queue_runner( queue_runner.QueueRunner(queue, [enqueue_op] * num_threads)) summary.scalar( "fraction_of_%d_full" % capacity, math_ops.cast(queue.size(), _dtypes.float32) * (1. / capacity)) return queue
tensorflow-master
tensorflow/contrib/slim/python/slim/data/prefetch_queue.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Contains the TFExampleDecoder its associated helper classes. The TFExampleDecode is a DataDecoder used to decode TensorFlow Example protos. In order to do so each requested item must be paired with one or more Example features that are parsed to produce the Tensor-based manifestation of the item. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import abc import six from tensorflow.contrib.slim.python.slim.data import data_decoder from tensorflow.python.framework import dtypes from tensorflow.python.framework import sparse_tensor from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import map_fn from tensorflow.python.ops import image_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import parsing_ops from tensorflow.python.ops import sparse_ops @six.add_metaclass(abc.ABCMeta) class ItemHandler(object): """Specifies the item-to-Features mapping for tf.parse_example. An ItemHandler both specifies a list of Features used for parsing an Example proto as well as a function that post-processes the results of Example parsing. """ def __init__(self, keys): """Constructs the handler with the name of the tf.Feature keys to use. See third_party/tensorflow/core/example/feature.proto Args: keys: the name of the TensorFlow Example Feature. """ if not isinstance(keys, (tuple, list)): keys = [keys] self._keys = keys @property def keys(self): return self._keys @abc.abstractmethod def tensors_to_item(self, keys_to_tensors): """Maps the given dictionary of tensors to the requested item. Args: keys_to_tensors: a mapping of TF-Example keys to parsed tensors. Returns: the final tensor representing the item being handled. """ pass class ItemHandlerCallback(ItemHandler): """An ItemHandler that converts the parsed tensors via a given function. Unlike other ItemHandlers, the ItemHandlerCallback resolves its item via a callback function rather than using prespecified behavior. """ def __init__(self, keys, func): """Initializes the ItemHandler. Args: keys: a list of TF-Example keys. func: a function that takes as an argument a dictionary from `keys` to parsed Tensors. """ super(ItemHandlerCallback, self).__init__(keys) self._func = func def tensors_to_item(self, keys_to_tensors): return self._func(keys_to_tensors) class BoundingBox(ItemHandler): """An ItemHandler that concatenates a set of parsed Tensors to Bounding Boxes. """ def __init__(self, keys=None, prefix=''): """Initialize the bounding box handler. Args: keys: A list of four key names representing the ymin, xmin, ymax, mmax prefix: An optional prefix for each of the bounding box keys. If provided, `prefix` is appended to each key in `keys`. Raises: ValueError: if keys is not `None` and also not a list of exactly 4 keys """ if keys is None: keys = ['ymin', 'xmin', 'ymax', 'xmax'] elif len(keys) != 4: raise ValueError('BoundingBox expects 4 keys but got {}'.format( len(keys))) self._prefix = prefix self._keys = keys self._full_keys = [prefix + k for k in keys] super(BoundingBox, self).__init__(self._full_keys) def tensors_to_item(self, keys_to_tensors): """Maps the given dictionary of tensors to a concatenated list of bboxes. Args: keys_to_tensors: a mapping of TF-Example keys to parsed tensors. Returns: [num_boxes, 4] tensor of bounding box coordinates, i.e. 1 bounding box per row, in order [y_min, x_min, y_max, x_max]. """ sides = [] for key in self._full_keys: side = keys_to_tensors[key] if isinstance(side, sparse_tensor.SparseTensor): side = side.values side = array_ops.expand_dims(side, 0) sides.append(side) bounding_box = array_ops.concat(sides, 0) return array_ops.transpose(bounding_box) class Tensor(ItemHandler): """An ItemHandler that returns a parsed Tensor.""" def __init__(self, tensor_key, shape_keys=None, shape=None, default_value=0): """Initializes the Tensor handler. Tensors are, by default, returned without any reshaping. However, there are two mechanisms which allow reshaping to occur at load time. If `shape_keys` is provided, both the `Tensor` corresponding to `tensor_key` and `shape_keys` is loaded and the former `Tensor` is reshaped with the values of the latter. Alternatively, if a fixed `shape` is provided, the `Tensor` corresponding to `tensor_key` is loaded and reshape appropriately. If neither `shape_keys` nor `shape` are provided, the `Tensor` will be returned without any reshaping. Args: tensor_key: the name of the `TFExample` feature to read the tensor from. shape_keys: Optional name or list of names of the TF-Example feature in which the tensor shape is stored. If a list, then each corresponds to one dimension of the shape. shape: Optional output shape of the `Tensor`. If provided, the `Tensor` is reshaped accordingly. default_value: The value used when the `tensor_key` is not found in a particular `TFExample`. Raises: ValueError: if both `shape_keys` and `shape` are specified. """ if shape_keys and shape is not None: raise ValueError('Cannot specify both shape_keys and shape parameters.') if shape_keys and not isinstance(shape_keys, list): shape_keys = [shape_keys] self._tensor_key = tensor_key self._shape_keys = shape_keys self._shape = shape self._default_value = default_value keys = [tensor_key] if shape_keys: keys.extend(shape_keys) super(Tensor, self).__init__(keys) def tensors_to_item(self, keys_to_tensors): tensor = keys_to_tensors[self._tensor_key] shape = self._shape if self._shape_keys: shape_dims = [] for k in self._shape_keys: shape_dim = keys_to_tensors[k] if isinstance(shape_dim, sparse_tensor.SparseTensor): shape_dim = sparse_ops.sparse_tensor_to_dense(shape_dim) shape_dims.append(shape_dim) shape = array_ops.reshape(array_ops.stack(shape_dims), [-1]) if isinstance(tensor, sparse_tensor.SparseTensor): if shape is not None: tensor = sparse_ops.sparse_reshape(tensor, shape) tensor = sparse_ops.sparse_tensor_to_dense(tensor, self._default_value) else: if shape is not None: tensor = array_ops.reshape(tensor, shape) return tensor class LookupTensor(Tensor): """An ItemHandler that returns a parsed Tensor, the result of a lookup.""" def __init__(self, tensor_key, table, shape_keys=None, shape=None, default_value=''): """Initializes the LookupTensor handler. See Tensor. Simply calls a vocabulary (most often, a label mapping) lookup. Args: tensor_key: the name of the `TFExample` feature to read the tensor from. table: A tf.lookup table. shape_keys: Optional name or list of names of the TF-Example feature in which the tensor shape is stored. If a list, then each corresponds to one dimension of the shape. shape: Optional output shape of the `Tensor`. If provided, the `Tensor` is reshaped accordingly. default_value: The value used when the `tensor_key` is not found in a particular `TFExample`. Raises: ValueError: if both `shape_keys` and `shape` are specified. """ self._table = table super(LookupTensor, self).__init__(tensor_key, shape_keys, shape, default_value) def tensors_to_item(self, keys_to_tensors): unmapped_tensor = super(LookupTensor, self).tensors_to_item(keys_to_tensors) return self._table.lookup(unmapped_tensor) class BackupHandler(ItemHandler): """An ItemHandler that tries two ItemHandlers in order.""" def __init__(self, handler, backup): """Initializes the BackupHandler handler. If the first Handler's tensors_to_item returns a Tensor with no elements, the second Handler is used. Args: handler: The primary ItemHandler. backup: The backup ItemHandler. Raises: ValueError: if either is not an ItemHandler. """ if not isinstance(handler, ItemHandler): raise ValueError('Primary handler is of type %s instead of ItemHandler' % type(handler)) if not isinstance(backup, ItemHandler): raise ValueError('Backup handler is of type %s instead of ItemHandler' % type(backup)) self._handler = handler self._backup = backup super(BackupHandler, self).__init__(handler.keys + backup.keys) def tensors_to_item(self, keys_to_tensors): item = self._handler.tensors_to_item(keys_to_tensors) return control_flow_ops.cond( pred=math_ops.equal(math_ops.reduce_prod(array_ops.shape(item)), 0), true_fn=lambda: self._backup.tensors_to_item(keys_to_tensors), false_fn=lambda: item) class SparseTensor(ItemHandler): """An ItemHandler for SparseTensors.""" def __init__(self, indices_key=None, values_key=None, shape_key=None, shape=None, densify=False, default_value=0): """Initializes the Tensor handler. Args: indices_key: the name of the TF-Example feature that contains the ids. Defaults to 'indices'. values_key: the name of the TF-Example feature that contains the values. Defaults to 'values'. shape_key: the name of the TF-Example feature that contains the shape. If provided it would be used. shape: the output shape of the SparseTensor. If `shape_key` is not provided this `shape` would be used. densify: whether to convert the SparseTensor into a dense Tensor. default_value: Scalar value to set when making dense for indices not specified in the `SparseTensor`. """ indices_key = indices_key or 'indices' values_key = values_key or 'values' self._indices_key = indices_key self._values_key = values_key self._shape_key = shape_key self._shape = shape self._densify = densify self._default_value = default_value keys = [indices_key, values_key] if shape_key: keys.append(shape_key) super(SparseTensor, self).__init__(keys) def tensors_to_item(self, keys_to_tensors): indices = keys_to_tensors[self._indices_key] values = keys_to_tensors[self._values_key] if self._shape_key: shape = keys_to_tensors[self._shape_key] if isinstance(shape, sparse_tensor.SparseTensor): shape = sparse_ops.sparse_tensor_to_dense(shape) elif self._shape: shape = self._shape else: shape = indices.dense_shape indices_shape = array_ops.shape(indices.indices) rank = indices_shape[1] ids = math_ops.cast(indices.values, dtypes.int64) indices_columns_to_preserve = array_ops.slice( indices.indices, [0, 0], array_ops.stack([-1, rank - 1])) new_indices = array_ops.concat( [indices_columns_to_preserve, array_ops.reshape(ids, [-1, 1])], 1) tensor = sparse_tensor.SparseTensor(new_indices, values.values, shape) if self._densify: tensor = sparse_ops.sparse_tensor_to_dense(tensor, self._default_value) return tensor class Image(ItemHandler): """An ItemHandler that decodes a parsed Tensor as an image.""" def __init__(self, image_key=None, format_key=None, shape=None, channels=3, dtype=dtypes.uint8, repeated=False, dct_method=''): """Initializes the image. Args: image_key: the name of the TF-Example feature in which the encoded image is stored. format_key: the name of the TF-Example feature in which the image format is stored. shape: the output shape of the image as 1-D `Tensor` [height, width, channels]. If provided, the image is reshaped accordingly. If left as None, no reshaping is done. A shape should be supplied only if all the stored images have the same shape. channels: the number of channels in the image. dtype: images will be decoded at this bit depth. Different formats support different bit depths. See tf.image.decode_image, tf.io.decode_raw, repeated: if False, decodes a single image. If True, decodes a variable number of image strings from a 1D tensor of strings. dct_method: An optional string. Defaults to empty string. It only takes effect when image format is jpeg, used to specify a hint about the algorithm used for jpeg decompression. Currently valid values are ['INTEGER_FAST', 'INTEGER_ACCURATE']. The hint may be ignored, for example, the jpeg library does not have that specific option. """ if not image_key: image_key = 'image/encoded' if not format_key: format_key = 'image/format' super(Image, self).__init__([image_key, format_key]) self._image_key = image_key self._format_key = format_key self._shape = shape self._channels = channels self._dtype = dtype self._repeated = repeated self._dct_method = dct_method def tensors_to_item(self, keys_to_tensors): """See base class.""" image_buffer = keys_to_tensors[self._image_key] image_format = keys_to_tensors[self._format_key] if self._repeated: return map_fn.map_fn(lambda x: self._decode(x, image_format), image_buffer, dtype=self._dtype) else: return self._decode(image_buffer, image_format) def _decode(self, image_buffer, image_format): """Decodes the image buffer. Args: image_buffer: The tensor representing the encoded image tensor. image_format: The image format for the image in `image_buffer`. If image format is `raw`, all images are expected to be in this format, otherwise this op can decode a mix of `jpg` and `png` formats. Returns: A tensor that represents decoded image of self._shape, or (?, ?, self._channels) if self._shape is not specified. """ def decode_image(): """Decodes a image based on the headers.""" return math_ops.cast( image_ops.decode_image(image_buffer, channels=self._channels), self._dtype) def decode_jpeg(): """Decodes a jpeg image with specified '_dct_method'.""" return math_ops.cast( image_ops.decode_jpeg( image_buffer, channels=self._channels, dct_method=self._dct_method), self._dtype) def check_jpeg(): """Checks if an image is jpeg.""" # For jpeg, we directly use image_ops.decode_jpeg rather than decode_image # in order to feed the jpeg specify parameter 'dct_method'. return control_flow_ops.cond( image_ops.is_jpeg(image_buffer), decode_jpeg, decode_image, name='cond_jpeg') def decode_raw(): """Decodes a raw image.""" return parsing_ops.decode_raw(image_buffer, out_type=self._dtype) pred_fn_pairs = { math_ops.logical_or( math_ops.equal(image_format, 'raw'), math_ops.equal(image_format, 'RAW')): decode_raw, } image = control_flow_ops.case( pred_fn_pairs, default=check_jpeg, exclusive=True) image.set_shape([None, None, self._channels]) if self._shape is not None: image = array_ops.reshape(image, self._shape) return image class TFExampleDecoder(data_decoder.DataDecoder): """A decoder for TensorFlow Examples. Decoding Example proto buffers is comprised of two stages: (1) Example parsing and (2) tensor manipulation. In the first stage, the tf.io.parse_example function is called with a list of FixedLenFeatures and SparseLenFeatures. These instances tell TF how to parse the example. The output of this stage is a set of tensors. In the second stage, the resulting tensors are manipulated to provide the requested 'item' tensors. To perform this decoding operation, an ExampleDecoder is given a list of ItemHandlers. Each ItemHandler indicates the set of features for stage 1 and contains the instructions for post_processing its tensors for stage 2. """ def __init__(self, keys_to_features, items_to_handlers): """Constructs the decoder. Args: keys_to_features: a dictionary from TF-Example keys to either tf.io.VarLenFeature or tf.io.FixedLenFeature instances. See tensorflow's parsing_ops.py. items_to_handlers: a dictionary from items (strings) to ItemHandler instances. Note that the ItemHandler's are provided the keys that they use to return the final item Tensors. """ self._keys_to_features = keys_to_features self._items_to_handlers = items_to_handlers def list_items(self): """See base class.""" return list(self._items_to_handlers.keys()) def decode(self, serialized_example, items=None): """Decodes the given serialized TF-example. Args: serialized_example: a serialized TF-example tensor. items: the list of items to decode. These must be a subset of the item keys in self._items_to_handlers. If `items` is left as None, then all of the items in self._items_to_handlers are decoded. Returns: the decoded items, a list of tensor. """ example = parsing_ops.parse_single_example(serialized_example, self._keys_to_features) # Reshape non-sparse elements just once, adding the reshape ops in # deterministic order. for k in sorted(self._keys_to_features): v = self._keys_to_features[k] if isinstance(v, parsing_ops.FixedLenFeature): example[k] = array_ops.reshape(example[k], v.shape) if not items: items = self._items_to_handlers.keys() outputs = [] for item in items: handler = self._items_to_handlers[item] keys_to_tensors = {key: example[key] for key in handler.keys} outputs.append(handler.tensors_to_item(keys_to_tensors)) return outputs
tensorflow-master
tensorflow/contrib/slim/python/slim/data/tfexample_decoder.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Libsvm decoder. @@decode_libsvm """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.libsvm.python.ops.libsvm_ops import decode_libsvm from tensorflow.python.util.all_util import remove_undocumented _allowed_symbols = [ "decode_libsvm", ] remove_undocumented(__name__)
tensorflow-master
tensorflow/contrib/libsvm/__init__.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for DecodeLibsvm op.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.libsvm.python.ops import libsvm_ops from tensorflow.python.framework import dtypes from tensorflow.python.ops import sparse_ops from tensorflow.python.platform import test class DecodeLibsvmOpTest(test.TestCase): def testBasic(self): with self.cached_session() as sess: content = [ "1 1:3.4 2:0.5 4:0.231", "1 2:2.5 3:inf 5:0.503", "2 3:2.5 2:nan 1:0.105" ] sparse_features, labels = libsvm_ops.decode_libsvm( content, num_features=6) features = sparse_ops.sparse_tensor_to_dense( sparse_features, validate_indices=False) self.assertAllEqual(labels.get_shape().as_list(), [3]) features, labels = sess.run([features, labels]) self.assertAllEqual(labels, [1, 1, 2]) self.assertAllClose( features, [[0, 3.4, 0.5, 0, 0.231, 0], [0, 0, 2.5, np.inf, 0, 0.503], [0, 0.105, np.nan, 2.5, 0, 0]]) def testNDimension(self): with self.cached_session() as sess: content = [["1 1:3.4 2:0.5 4:0.231", "1 1:3.4 2:0.5 4:0.231"], ["1 2:2.5 3:inf 5:0.503", "1 2:2.5 3:inf 5:0.503"], ["2 3:2.5 2:nan 1:0.105", "2 3:2.5 2:nan 1:0.105"]] sparse_features, labels = libsvm_ops.decode_libsvm( content, num_features=6, label_dtype=dtypes.float64) features = sparse_ops.sparse_tensor_to_dense( sparse_features, validate_indices=False) self.assertAllEqual(labels.get_shape().as_list(), [3, 2]) features, labels = sess.run([features, labels]) self.assertAllEqual(labels, [[1, 1], [1, 1], [2, 2]]) self.assertAllClose( features, [[[0, 3.4, 0.5, 0, 0.231, 0], [0, 3.4, 0.5, 0, 0.231, 0]], [ [0, 0, 2.5, np.inf, 0, 0.503], [0, 0, 2.5, np.inf, 0, 0.503] ], [[0, 0.105, np.nan, 2.5, 0, 0], [0, 0.105, np.nan, 2.5, 0, 0]]]) if __name__ == "__main__": test.main()
tensorflow-master
tensorflow/contrib/libsvm/python/kernel_tests/decode_libsvm_op_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Libsvm decoder.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.libsvm.ops import gen_libsvm_ops from tensorflow.contrib.util import loader from tensorflow.python.framework import ops from tensorflow.python.framework import sparse_tensor from tensorflow.python.platform import resource_loader from tensorflow.python.util.deprecation import deprecated _libsvm_ops_so = loader.load_op_library( resource_loader.get_path_to_datafile("_libsvm_ops.so")) @deprecated(None, 'tf.contrib.libsvm will be removed in 2.0, the support for libsvm ' 'format will continue to be provided in tensorflow-io: ' 'https://github.com/tensorflow/io') def decode_libsvm(content, num_features, dtype=None, label_dtype=None): """Convert Libsvm records to a tensor of label and a tensor of feature. Args: content: A `Tensor` of type `string`. Each string is a record/row in the Libsvm format. num_features: The number of features. dtype: The type of the output feature tensor. Default to tf.float32. label_dtype: The type of the output label tensor. Default to tf.int64. Returns: features: A `SparseTensor` of the shape `[input_shape, num_features]`. labels: A `Tensor` of the same shape as content. """ labels, indices, values, shape = gen_libsvm_ops.decode_libsvm( content, num_features, dtype=dtype, label_dtype=label_dtype) return sparse_tensor.SparseTensor(indices, values, shape), labels ops.NotDifferentiable("DecodeLibSVM")
tensorflow-master
tensorflow/contrib/libsvm/python/ops/libsvm_ops.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Ops and modules related to RPC. @@rpc @@try_rpc """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.rpc.python.ops.rpc_op import rpc from tensorflow.contrib.rpc.python.ops.rpc_op import try_rpc from tensorflow.python.util.all_util import remove_undocumented remove_undocumented(__name__)
tensorflow-master
tensorflow/contrib/rpc/__init__.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= """Base class for RpcOp tests.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import itertools import numpy as np from tensorflow.contrib.rpc.python.kernel_tests import test_example_pb2 from tensorflow.contrib.rpc.python.ops import rpc_op from tensorflow.core.protobuf import config_pb2 from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.ops import proto_ops __all__ = ['I_WARNED_YOU', 'RpcOpTestBase'] I_WARNED_YOU = 'I warned you!' class RpcOpTestBase(object): # pylint: disable=missing-docstring,invalid-name """Base class for RpcOp tests.""" def get_method_name(self, suffix): raise NotImplementedError def rpc(self, *args, **kwargs): return rpc_op.rpc(*args, protocol=self._protocol, **kwargs) def try_rpc(self, *args, **kwargs): return rpc_op.try_rpc(*args, protocol=self._protocol, **kwargs) def testScalarHostPortRpc(self): with self.cached_session() as sess: request_tensors = ( test_example_pb2.TestCase(values=[1, 2, 3]).SerializeToString()) response_tensors = self.rpc( method=self.get_method_name('Increment'), address=self._address, request=request_tensors) self.assertEqual(response_tensors.shape, ()) response_values = sess.run(response_tensors) response_message = test_example_pb2.TestCase() self.assertTrue(response_message.ParseFromString(response_values)) self.assertAllEqual([2, 3, 4], response_message.values) def testScalarHostPortTryRpc(self): with self.cached_session() as sess: request_tensors = ( test_example_pb2.TestCase(values=[1, 2, 3]).SerializeToString()) response_tensors, status_code, status_message = self.try_rpc( method=self.get_method_name('Increment'), address=self._address, request=request_tensors) self.assertEqual(status_code.shape, ()) self.assertEqual(status_message.shape, ()) self.assertEqual(response_tensors.shape, ()) response_values, status_code_values, status_message_values = ( sess.run((response_tensors, status_code, status_message))) response_message = test_example_pb2.TestCase() self.assertTrue(response_message.ParseFromString(response_values)) self.assertAllEqual([2, 3, 4], response_message.values) # For the base Rpc op, don't expect to get error status back. self.assertEqual(errors.OK, status_code_values) self.assertEqual(b'', status_message_values) def testEmptyHostPortRpc(self): with self.cached_session() as sess: request_tensors = [] response_tensors = self.rpc( method=self.get_method_name('Increment'), address=self._address, request=request_tensors) self.assertAllEqual(response_tensors.shape, [0]) response_values = sess.run(response_tensors) self.assertAllEqual(response_values.shape, [0]) def testInvalidMethod(self): for method in [ '/InvalidService.Increment', self.get_method_name('InvalidMethodName') ]: with self.cached_session() as sess: with self.assertRaisesOpError(self.invalid_method_string): sess.run(self.rpc(method=method, address=self._address, request='')) _, status_code_value, status_message_value = sess.run( self.try_rpc(method=method, address=self._address, request='')) self.assertEqual(errors.UNIMPLEMENTED, status_code_value) self.assertTrue( self.invalid_method_string in status_message_value.decode('ascii')) def testInvalidAddress(self): # This covers the case of address='' and address='localhost:293874293874' address = 'unix:/tmp/this_unix_socket_doesnt_exist_97820348!!@' with self.cached_session() as sess: with self.assertRaises(errors.UnavailableError): sess.run( self.rpc( method=self.get_method_name('Increment'), address=address, request='')) _, status_code_value, status_message_value = sess.run( self.try_rpc( method=self.get_method_name('Increment'), address=address, request='')) self.assertEqual(errors.UNAVAILABLE, status_code_value) def testAlwaysFailingMethod(self): with self.cached_session() as sess: response_tensors = self.rpc( method=self.get_method_name('AlwaysFailWithInvalidArgument'), address=self._address, request='') self.assertEqual(response_tensors.shape, ()) with self.assertRaisesOpError(I_WARNED_YOU): sess.run(response_tensors) response_tensors, status_code, status_message = self.try_rpc( method=self.get_method_name('AlwaysFailWithInvalidArgument'), address=self._address, request='') self.assertEqual(response_tensors.shape, ()) self.assertEqual(status_code.shape, ()) self.assertEqual(status_message.shape, ()) status_code_value, status_message_value = sess.run((status_code, status_message)) self.assertEqual(errors.INVALID_ARGUMENT, status_code_value) self.assertTrue(I_WARNED_YOU in status_message_value.decode('ascii')) def testSometimesFailingMethodWithManyRequests(self): with self.cached_session() as sess: # Fail hard by default. response_tensors = self.rpc( method=self.get_method_name('SometimesFailWithInvalidArgument'), address=self._address, request=[''] * 20) self.assertEqual(response_tensors.shape, (20,)) with self.assertRaisesOpError(I_WARNED_YOU): sess.run(response_tensors) # Don't fail hard, use TryRpc - return the failing status instead. response_tensors, status_code, status_message = self.try_rpc( method=self.get_method_name('SometimesFailWithInvalidArgument'), address=self._address, request=[''] * 20) self.assertEqual(response_tensors.shape, (20,)) self.assertEqual(status_code.shape, (20,)) self.assertEqual(status_message.shape, (20,)) status_code_values, status_message_values = sess.run((status_code, status_message)) self.assertTrue([ x in (errors.OK, errors.INVALID_ARGUMENT) for x in status_code_values ]) expected_message_values = np.where( status_code_values == errors.INVALID_ARGUMENT, I_WARNED_YOU.encode('ascii'), b'') for msg, expected in zip(status_message_values, expected_message_values): self.assertTrue(expected in msg, '"%s" did not contain "%s"' % (msg, expected)) def testVecHostPortRpc(self): with self.cached_session() as sess: request_tensors = [ test_example_pb2.TestCase( values=[i, i + 1, i + 2]).SerializeToString() for i in range(20) ] response_tensors = self.rpc( method=self.get_method_name('Increment'), address=self._address, request=request_tensors) self.assertEqual(response_tensors.shape, (20,)) response_values = sess.run(response_tensors) self.assertEqual(response_values.shape, (20,)) for i in range(20): response_message = test_example_pb2.TestCase() self.assertTrue(response_message.ParseFromString(response_values[i])) self.assertAllEqual([i + 1, i + 2, i + 3], response_message.values) def testVecHostPortManyParallelRpcs(self): with self.cached_session() as sess: request_tensors = [ test_example_pb2.TestCase( values=[i, i + 1, i + 2]).SerializeToString() for i in range(20) ] many_response_tensors = [ self.rpc( method=self.get_method_name('Increment'), address=self._address, request=request_tensors) for _ in range(10) ] # Launch parallel 10 calls to the RpcOp, each containing 20 rpc requests. many_response_values = sess.run(many_response_tensors) self.assertEqual(10, len(many_response_values)) for response_values in many_response_values: self.assertEqual(response_values.shape, (20,)) for i in range(20): response_message = test_example_pb2.TestCase() self.assertTrue(response_message.ParseFromString(response_values[i])) self.assertAllEqual([i + 1, i + 2, i + 3], response_message.values) def testVecHostPortRpcUsingEncodeAndDecodeProto(self): with self.cached_session() as sess: request_tensors = proto_ops.encode_proto( message_type='tensorflow.contrib.rpc.TestCase', field_names=['values'], sizes=[[3]] * 20, values=[ [[i, i + 1, i + 2] for i in range(20)], ]) response_tensor_strings = self.rpc( method=self.get_method_name('Increment'), address=self._address, request=request_tensors) _, (response_shape,) = proto_ops.decode_proto( bytes=response_tensor_strings, message_type='tensorflow.contrib.rpc.TestCase', field_names=['values'], output_types=[dtypes.int32]) response_shape_values = sess.run(response_shape) self.assertAllEqual([[i + 1, i + 2, i + 3] for i in range(20)], response_shape_values) def testVecHostPortRpcCancelsUponSessionTimeOutWhenSleepingForever(self): with self.cached_session() as sess: request_tensors = [''] * 25 # This will launch 25 RPC requests. response_tensors = self.rpc( method=self.get_method_name('SleepForever'), address=self._address, request=request_tensors) for timeout_ms in [1, 500, 1000]: options = config_pb2.RunOptions(timeout_in_ms=timeout_ms) with self.assertRaises((errors.UnavailableError, errors.DeadlineExceededError)): sess.run(response_tensors, options=options) def testVecHostPortRpcCancelsUponConfiguredTimeOutWhenSleepingForever(self): with self.cached_session() as sess: request_tensors = [''] * 25 # This will launch 25 RPC requests. response_tensors = self.rpc( method=self.get_method_name('SleepForever'), address=self._address, timeout_in_ms=1000, request=request_tensors) with self.assertRaises(errors.DeadlineExceededError): sess.run(response_tensors) def testTryRpcPropagatesDeadlineErrorWithSometimesTimingOutRequests(self): with self.cached_session() as sess: response_tensors, status_code, status_message = self.try_rpc( method=self.get_method_name('SometimesSleepForever'), timeout_in_ms=1000, address=self._address, request=[''] * 20) self.assertEqual(response_tensors.shape, (20,)) self.assertEqual(status_code.shape, (20,)) self.assertEqual(status_message.shape, (20,)) status_code_values = sess.run(status_code) self.assertTrue([ x in (errors.OK, errors.DEADLINE_EXCEEDED) for x in status_code_values ]) def testTryRpcWithMultipleAddressesSingleRequest(self): flatten = lambda x: list(itertools.chain.from_iterable(x)) with self.cached_session() as sess: addresses = flatten([[ self._address, 'unix:/tmp/this_unix_socket_doesnt_exist_97820348!!@' ] for _ in range(10)]) request = test_example_pb2.TestCase(values=[0, 1, 2]).SerializeToString() response_tensors, status_code, _ = self.try_rpc( method=self.get_method_name('Increment'), address=addresses, request=request) response_tensors_values, status_code_values = sess.run((response_tensors, status_code)) self.assertAllEqual( flatten([errors.OK, errors.UNAVAILABLE] for _ in range(10)), status_code_values) for i in range(10): self.assertTrue(response_tensors_values[2 * i]) self.assertFalse(response_tensors_values[2 * i + 1]) def testTryRpcWithMultipleMethodsSingleRequest(self): flatten = lambda x: list(itertools.chain.from_iterable(x)) with self.cached_session() as sess: methods = flatten( [[self.get_method_name('Increment'), 'InvalidMethodName'] for _ in range(10)]) request = test_example_pb2.TestCase(values=[0, 1, 2]).SerializeToString() response_tensors, status_code, _ = self.try_rpc( method=methods, address=self._address, request=request) response_tensors_values, status_code_values = sess.run((response_tensors, status_code)) self.assertAllEqual( flatten([errors.OK, errors.UNIMPLEMENTED] for _ in range(10)), status_code_values) for i in range(10): self.assertTrue(response_tensors_values[2 * i]) self.assertFalse(response_tensors_values[2 * i + 1]) def testTryRpcWithMultipleAddressesAndRequests(self): flatten = lambda x: list(itertools.chain.from_iterable(x)) with self.cached_session() as sess: addresses = flatten([[ self._address, 'unix:/tmp/this_unix_socket_doesnt_exist_97820348!!@' ] for _ in range(10)]) requests = [ test_example_pb2.TestCase( values=[i, i + 1, i + 2]).SerializeToString() for i in range(20) ] response_tensors, status_code, _ = self.try_rpc( method=self.get_method_name('Increment'), address=addresses, request=requests) response_tensors_values, status_code_values = sess.run((response_tensors, status_code)) self.assertAllEqual( flatten([errors.OK, errors.UNAVAILABLE] for _ in range(10)), status_code_values) for i in range(20): if i % 2 == 1: self.assertFalse(response_tensors_values[i]) else: response_message = test_example_pb2.TestCase() self.assertTrue( response_message.ParseFromString(response_tensors_values[i])) self.assertAllEqual([i + 1, i + 2, i + 3], response_message.values)
tensorflow-master
tensorflow/contrib/rpc/python/kernel_tests/rpc_op_test_base.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= """Test servicer for RpcOp tests.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import random import time import grpc from tensorflow.contrib.rpc.python.kernel_tests import rpc_op_test_base from tensorflow.contrib.rpc.python.kernel_tests import test_example_pb2_grpc class RpcOpTestServicer(test_example_pb2_grpc.TestCaseServiceServicer): """Test servicer for RpcOp tests.""" def Increment(self, request, context): """Increment the entries in the `values` attribute of request. Args: request: input TestCase. context: the rpc context. Returns: output TestCase. """ for i in range(len(request.values)): request.values[i] += 1 return request def AlwaysFailWithInvalidArgument(self, request, context): """Always fails with an InvalidArgument status. Args: request: input TestCase. context: the rpc context. Returns: output TestCase. """ del request context.set_code(grpc.StatusCode.INVALID_ARGUMENT) context.set_details(rpc_op_test_base.I_WARNED_YOU) def SometimesFailWithInvalidArgument(self, request, context): """Sometimes fails with an InvalidArgument status. Args: request: input TestCase. context: the rpc context. Returns: output TestCase. """ if random.randint(0, 1) == 1: context.set_code(grpc.StatusCode.INVALID_ARGUMENT) context.set_details(rpc_op_test_base.I_WARNED_YOU) return request def SleepForever(self, request, context): """Sleeps forever. Args: request: input TestCase. context: the rpc context. Returns: output TestCase. """ # TODO(ebrevdo): Make this async wait like the stubby version. time.sleep(5) def SometimesSleepForever(self, request, context): """Sometimes sleeps forever. Args: request: input TestCase. context: the rpc context. Returns: output TestCase. """ if random.randint(0, 1) == 1: time.sleep(5) return request
tensorflow-master
tensorflow/contrib/rpc/python/kernel_tests/rpc_op_test_servicer.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= """Tests for RpcOp.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import ctypes as ct import os import grpc from grpc.framework.foundation import logging_pool import portpicker from tensorflow.contrib.rpc.python.kernel_tests import rpc_op_test_base from tensorflow.contrib.rpc.python.kernel_tests import rpc_op_test_servicer from tensorflow.contrib.rpc.python.kernel_tests import test_example_pb2_grpc from tensorflow.python.platform import test class RpcOpTest(test.TestCase, rpc_op_test_base.RpcOpTestBase): _protocol = 'grpc' invalid_method_string = 'Method not found' def __init__(self, methodName='runTest'): # pylint: disable=invalid-name super(RpcOpTest, self).__init__(methodName) lib = os.path.join(os.path.dirname(__file__), 'libtestexample.so') if os.path.isfile(lib): ct.cdll.LoadLibrary(lib) def get_method_name(self, suffix): return '/tensorflow.contrib.rpc.TestCaseService/%s' % suffix def setUp(self): super(RpcOpTest, self).setUp() service_port = portpicker.pick_unused_port() server = grpc.server(logging_pool.pool(max_workers=25)) servicer = rpc_op_test_servicer.RpcOpTestServicer() test_example_pb2_grpc.add_TestCaseServiceServicer_to_server( servicer, server) self._address = 'localhost:%d' % service_port server.add_insecure_port(self._address) server.start() self._server = server def tearDown(self): self._server.stop(grace=None) super(RpcOpTest, self).tearDown() if __name__ == '__main__': test.main()
tensorflow-master
tensorflow/contrib/rpc/python/kernel_tests/rpc_op_test.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= # pylint: disable=wildcard-import,unused-import """RPC communication.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.rpc.python.ops.gen_rpc_op import rpc from tensorflow.contrib.rpc.python.ops.gen_rpc_op import try_rpc from tensorflow.python.framework import ops ops.NotDifferentiable("Rpc") ops.NotDifferentiable("TryRpc")
tensorflow-master
tensorflow/contrib/rpc/python/ops/rpc_op.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Abstract base class for all predictors.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import abc import six @six.add_metaclass(abc.ABCMeta) class Predictor(object): """Abstract base class for all predictors.""" @property def graph(self): return self._graph @property def session(self): return self._session @property def feed_tensors(self): return self._feed_tensors @property def fetch_tensors(self): return self._fetch_tensors def __repr__(self): return '{} with feed tensors {} and fetch_tensors {}'.format( type(self).__name__, self._feed_tensors, self._fetch_tensors) def __call__(self, input_dict): """Returns predictions based on `input_dict`. Args: input_dict: a `dict` mapping strings to numpy arrays. These keys must match `self._feed_tensors.keys()`. Returns: A `dict` mapping strings to numpy arrays. The keys match `self.fetch_tensors.keys()`. Raises: ValueError: `input_dict` does not match `feed_tensors`. """ # TODO(jamieas): make validation optional? input_keys = set(input_dict.keys()) expected_keys = set(self.feed_tensors.keys()) unexpected_keys = input_keys - expected_keys if unexpected_keys: raise ValueError( 'Got unexpected keys in input_dict: {}\nexpected: {}'.format( unexpected_keys, expected_keys)) feed_dict = {} for key in self.feed_tensors.keys(): value = input_dict.get(key) if value is not None: feed_dict[self.feed_tensors[key]] = value return self._session.run(fetches=self.fetch_tensors, feed_dict=feed_dict)
tensorflow-master
tensorflow/contrib/predictor/predictor.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Factory functions for `Predictor`s.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.predictor import contrib_estimator_predictor from tensorflow.contrib.predictor import core_estimator_predictor from tensorflow.contrib.predictor import saved_model_predictor from tensorflow.contrib.learn.python.learn.estimators import estimator as contrib_estimator from tensorflow.python.estimator import estimator as core_estimator def from_contrib_estimator(estimator, prediction_input_fn, input_alternative_key=None, output_alternative_key=None, graph=None, config=None): """Constructs a `Predictor` from a `tf.contrib.learn.Estimator`. Args: estimator: an instance of `tf.contrib.learn.Estimator`. prediction_input_fn: a function that takes no arguments and returns an instance of `InputFnOps`. input_alternative_key: Optional. Specify the input alternative used for prediction. output_alternative_key: Specify the output alternative used for prediction. Not needed for single-headed models but required for multi-headed models. graph: Optional. The Tensorflow `graph` in which prediction should be done. config: `ConfigProto` proto used to configure the session. Returns: An initialized `Predictor`. Raises: TypeError: if `estimator` is a core `Estimator` instead of a contrib `Estimator`. """ if isinstance(estimator, core_estimator.Estimator): raise TypeError('Expected estimator to be of type ' 'tf.contrib.learn.Estimator, but got type ' 'tf.python.estimator.Estimator. You likely want to call ' 'from_estimator.') return contrib_estimator_predictor.ContribEstimatorPredictor( estimator, prediction_input_fn, input_alternative_key=input_alternative_key, output_alternative_key=output_alternative_key, graph=graph, config=config) def from_estimator(estimator, serving_input_receiver_fn, output_key=None, graph=None, config=None): """Constructs a `Predictor` from a `tf.python.estimator.Estimator`. Args: estimator: an instance of `learn.python.estimator.Estimator`. serving_input_receiver_fn: a function that takes no arguments and returns an instance of `ServingInputReceiver` compatible with `estimator`. output_key: Optional string specifying the export output to use. If `None`, then `DEFAULT_SERVING_SIGNATURE_DEF_KEY` is used. graph: Optional. The Tensorflow `graph` in which prediction should be done. config: `ConfigProto` proto used to configure the session. Returns: An initialized `Predictor`. Raises: TypeError: if `estimator` is a contrib `Estimator` instead of a core `Estimator`. """ if isinstance(estimator, contrib_estimator.Estimator): raise TypeError('Expected estimator to be of type ' 'tf.python.estimator.Estimator, but got type ' 'tf.contrib.learn.Estimator. You likely want to call ' 'from_contrib_estimator.') return core_estimator_predictor.CoreEstimatorPredictor( estimator, serving_input_receiver_fn, output_key=output_key, graph=graph, config=config) def from_saved_model(export_dir, signature_def_key=None, signature_def=None, input_names=None, output_names=None, tags=None, graph=None, config=None): """Constructs a `Predictor` from a `SavedModel` on disk. Args: export_dir: a path to a directory containing a `SavedModel`. signature_def_key: Optional string specifying the signature to use. If `None`, then `DEFAULT_SERVING_SIGNATURE_DEF_KEY` is used. Only one of `signature_def_key` and `signature_def` signature_def: A `SignatureDef` proto specifying the inputs and outputs for prediction. Only one of `signature_def_key` and `signature_def` should be specified. input_names: A dictionary mapping strings to `Tensor`s in the `SavedModel` that represent the input. The keys can be any string of the user's choosing. output_names: A dictionary mapping strings to `Tensor`s in the `SavedModel` that represent the output. The keys can be any string of the user's choosing. tags: Optional. Tags that will be used to retrieve the correct `SignatureDef`. Defaults to `DEFAULT_TAGS`. graph: Optional. The Tensorflow `graph` in which prediction should be done. config: `ConfigProto` proto used to configure the session. Returns: An initialized `Predictor`. Raises: ValueError: More than one of `signature_def_key` and `signature_def` is specified. """ return saved_model_predictor.SavedModelPredictor( export_dir, signature_def_key=signature_def_key, signature_def=signature_def, input_names=input_names, output_names=output_names, tags=tags, graph=graph, config=config)
tensorflow-master
tensorflow/contrib/predictor/predictor_factories.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for predictor.contrib_estimator_predictor.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tempfile import numpy as np from tensorflow.contrib.predictor import contrib_estimator_predictor from tensorflow.contrib.predictor import testing_common from tensorflow.python.platform import test KEYS_AND_OPS = (('sum', lambda x, y: x + y), ('product', lambda x, y: x * y,), ('difference', lambda x, y: x - y)) class ContribEstimatorPredictorTest(test.TestCase): """Test fixture for `ContribEstimatorPredictor`.""" def setUp(self): model_dir = tempfile.mkdtemp() self._estimator = testing_common.get_arithmetic_estimator( core=False, model_dir=model_dir) self._prediction_input_fn = testing_common.get_arithmetic_input_fn( core=False, train=False) def testSpecifiedSignatureKey(self): """Test prediction with spedicified signatures.""" np.random.seed(1234) for key, op in KEYS_AND_OPS: x = np.random.rand() y = np.random.rand() expected_output = op(x, y) predictor = contrib_estimator_predictor.ContribEstimatorPredictor( estimator=self._estimator, prediction_input_fn=self._prediction_input_fn, output_alternative_key=key) output_tensor_name = predictor.fetch_tensors[key].name self.assertRegexpMatches( output_tensor_name, key, msg='Unexpected fetch tensor.') output = predictor({'x': x, 'y': y})[key] self.assertAlmostEqual( expected_output, output, places=3, msg='Failed for output key "{}." ' 'Got output {} for x = {} and y = {}'.format( key, output, x, y)) if __name__ == '__main__': test.main()
tensorflow-master
tensorflow/contrib/predictor/contrib_estimator_predictor_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A `Predictor constructed from a `tf.contrib.learn.Estimator`.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.learn.python.learn.utils import saved_model_export_utils from tensorflow.contrib.predictor import predictor from tensorflow.python.framework import ops from tensorflow.python.training import checkpoint_management from tensorflow.python.training import monitored_session class ContribEstimatorPredictor(predictor.Predictor): """A `Predictor constructed from a `tf.contrib.learn.Estimator`.""" def __init__(self, estimator, prediction_input_fn, input_alternative_key=None, output_alternative_key=None, graph=None, config=None): """Initialize a `ContribEstimatorPredictor`. Args: estimator: an instance of `tf.contrib.learn.Estimator`. prediction_input_fn: a function that takes no arguments and returns an instance of `InputFnOps`. input_alternative_key: Optional. Specify the input alternative used for prediction. output_alternative_key: Specify the output alternative used for prediction. Not needed for single-headed models but required for multi-headed models. graph: Optional. The Tensorflow `graph` in which prediction should be done. config: `ConfigProto` proto used to configure the session. """ self._graph = graph or ops.Graph() with self._graph.as_default(): input_fn_ops = prediction_input_fn() # pylint: disable=protected-access model_fn_ops = estimator._get_predict_ops(input_fn_ops.features) # pylint: enable=protected-access checkpoint_path = checkpoint_management.latest_checkpoint( estimator.model_dir) self._session = monitored_session.MonitoredSession( session_creator=monitored_session.ChiefSessionCreator( config=config, checkpoint_filename_with_path=checkpoint_path)) input_alternative_key = ( input_alternative_key or saved_model_export_utils.DEFAULT_INPUT_ALTERNATIVE_KEY) input_alternatives, _ = saved_model_export_utils.get_input_alternatives( input_fn_ops) self._feed_tensors = input_alternatives[input_alternative_key] (output_alternatives, output_alternative_key) = saved_model_export_utils.get_output_alternatives( model_fn_ops, output_alternative_key) _, fetch_tensors = output_alternatives[output_alternative_key] self._fetch_tensors = fetch_tensors
tensorflow-master
tensorflow/contrib/predictor/contrib_estimator_predictor.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A `Predictor` constructed from an `learn.python.estimator.Estimator`.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.predictor import predictor from tensorflow.python.estimator import model_fn from tensorflow.python.framework import ops from tensorflow.python.saved_model import signature_constants from tensorflow.python.training import monitored_session def _get_signature_def( serving_input_receiver, estimator, output_key=None): """Construct a `SignatureDef` proto.""" if output_key is None: output_key = signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY # pylint: disable=protected-access estimator_spec = estimator.model_fn( serving_input_receiver.features, None, model_fn.ModeKeys.PREDICT, estimator.config) # pylint: enable=protected-access export_outputs = estimator_spec.export_outputs export_output = export_outputs.get(output_key) if export_output is None: raise KeyError('output_key must be one of {}; got {}'.format( export_outputs.keys(), output_key)) return export_output.as_signature_def(serving_input_receiver.receiver_tensors) class CoreEstimatorPredictor(predictor.Predictor): """A `Predictor` constructed from an `learn.python.estimator.Estimator`.""" def __init__(self, estimator, serving_input_receiver_fn, output_key=None, graph=None, config=None): """Initialize a `CoreEstimatorPredictor`. Args: estimator: an instance of `learn.python.estimator.Estimator`. serving_input_receiver_fn: a function that takes no arguments and returns an instance of `ServingInputReceiver` compatible with `estimator`. output_key: Optional string specifying the export output to use. If `None`, then `DEFAULT_SERVING_SIGNATURE_DEF_KEY` is used. graph: Optional. The Tensorflow `graph` in which prediction should be done. config: `ConfigProto` proto used to configure the session. """ self._graph = graph or ops.Graph() with self._graph.as_default(): serving_input_receiver = serving_input_receiver_fn() signature_def = _get_signature_def( serving_input_receiver, estimator, output_key) checkpoint_dir = estimator.model_dir self._session = monitored_session.MonitoredSession( session_creator=monitored_session.ChiefSessionCreator( config=config, checkpoint_dir=checkpoint_dir)) feed_tensor_info = signature_def.inputs self._feed_tensors = {k: self._graph.get_tensor_by_name(v.name) for k, v in feed_tensor_info.items()} fetch_tensor_info = signature_def.outputs self._fetch_tensors = {k: self._graph.get_tensor_by_name(v.name) for k, v in fetch_tensor_info.items()}
tensorflow-master
tensorflow/contrib/predictor/core_estimator_predictor.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for predictor.predictor_factories.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.predictor import predictor_factories from tensorflow.contrib.predictor import testing_common from tensorflow.core.protobuf import config_pb2 from tensorflow.python.platform import test MODEL_DIR_NAME = 'contrib/predictor/test_export_dir' class PredictorFactoriesTest(test.TestCase): @classmethod def setUpClass(cls): # Load a saved model exported from the arithmetic `Estimator`. # See `testing_common.py`. cls._export_dir = test.test_src_dir_path(MODEL_DIR_NAME) def testFromSavedModel(self): """Test loading from_saved_model.""" predictor_factories.from_saved_model(self._export_dir) def testFromSavedModelWithTags(self): """Test loading from_saved_model with tags.""" predictor_factories.from_saved_model(self._export_dir, tags='serve') def testFromSavedModelWithSessionConfig(self): """Test loading from_saved_model with session config.""" predictor_factories.from_saved_model( self._export_dir, config=config_pb2.ConfigProto()) def testFromSavedModelWithBadTags(self): """Test that loading fails for bad tags.""" bad_tags_regex = ('.*? could not be found in SavedModel') with self.assertRaisesRegexp(RuntimeError, bad_tags_regex): predictor_factories.from_saved_model(self._export_dir, tags='bad_tag') def testFromContribEstimator(self): estimator = testing_common.get_arithmetic_estimator(core=False) input_fn = testing_common.get_arithmetic_input_fn(core=False) predictor_factories.from_contrib_estimator( estimator, input_fn, output_alternative_key='sum') def testFromContribEstimatorWithSessionConfig(self): estimator = testing_common.get_arithmetic_estimator(core=False) input_fn = testing_common.get_arithmetic_input_fn(core=False) predictor_factories.from_contrib_estimator( estimator, input_fn, output_alternative_key='sum', config=config_pb2.ConfigProto()) def testFromContribEstimatorWithCoreEstimatorRaises(self): estimator = testing_common.get_arithmetic_estimator(core=True) input_fn = testing_common.get_arithmetic_input_fn(core=True) with self.assertRaises(TypeError): predictor_factories.from_contrib_estimator(estimator, input_fn) def testFromCoreEstimator(self): estimator = testing_common.get_arithmetic_estimator(core=True) input_fn = testing_common.get_arithmetic_input_fn(core=True) predictor_factories.from_estimator(estimator, input_fn) def testFromCoreEstimatorWithSessionConfig(self): estimator = testing_common.get_arithmetic_estimator(core=True) input_fn = testing_common.get_arithmetic_input_fn(core=True) predictor_factories.from_estimator( estimator, input_fn, config=config_pb2.ConfigProto()) def testFromCoreEstimatorWithContribEstimatorRaises(self): estimator = testing_common.get_arithmetic_estimator(core=False) input_fn = testing_common.get_arithmetic_input_fn(core=False) with self.assertRaises(TypeError): predictor_factories.from_estimator(estimator, input_fn) if __name__ == '__main__': test.main()
tensorflow-master
tensorflow/contrib/predictor/predictor_factories_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Modules for `Predictor`s. @@from_contrib_estimator @@from_estimator @@from_saved_model """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.predictor.predictor_factories import from_contrib_estimator from tensorflow.contrib.predictor.predictor_factories import from_estimator from tensorflow.contrib.predictor.predictor_factories import from_saved_model from tensorflow.python.util.all_util import remove_undocumented remove_undocumented(__name__)
tensorflow-master
tensorflow/contrib/predictor/__init__.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A `Predictor` constructed from a `SavedModel`.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import logging from tensorflow.contrib.predictor import predictor from tensorflow.contrib.saved_model.python.saved_model import reader from tensorflow.python.client import session from tensorflow.python.framework import ops from tensorflow.python.saved_model import loader from tensorflow.python.saved_model import signature_constants DEFAULT_TAGS = 'serve' _DEFAULT_INPUT_ALTERNATIVE_FORMAT = 'default_input_alternative:{}' def get_meta_graph_def(saved_model_dir, tags): """Gets `MetaGraphDef` from a directory containing a `SavedModel`. Returns the `MetaGraphDef` for the given tag-set and SavedModel directory. Args: saved_model_dir: Directory containing the SavedModel. tags: Comma separated list of tags used to identify the correct `MetaGraphDef`. Raises: ValueError: An error when the given tags cannot be found. Returns: A `MetaGraphDef` corresponding to the given tags. """ saved_model = reader.read_saved_model(saved_model_dir) set_of_tags = set([tag.strip() for tag in tags.split(',')]) for meta_graph_def in saved_model.meta_graphs: if set(meta_graph_def.meta_info_def.tags) == set_of_tags: return meta_graph_def raise ValueError('Could not find MetaGraphDef with tags {}'.format(tags)) def _get_signature_def(signature_def_key, export_dir, tags): """Construct a `SignatureDef` proto.""" signature_def_key = ( signature_def_key or signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY) metagraph_def = get_meta_graph_def(export_dir, tags) try: signature_def = metagraph_def.signature_def[signature_def_key] except KeyError as e: formatted_key = _DEFAULT_INPUT_ALTERNATIVE_FORMAT.format( signature_def_key) try: signature_def = metagraph_def.signature_def[formatted_key] except KeyError: raise ValueError( 'Got signature_def_key "{}". Available signatures are {}. ' 'Original error:\n{}'.format( signature_def_key, list(metagraph_def.signature_def), e)) logging.warning('Could not find signature def "%s". ' 'Using "%s" instead', signature_def_key, formatted_key) return signature_def def _check_signature_arguments(signature_def_key, signature_def, input_names, output_names): """Validates signature arguments for `SavedModelPredictor`.""" signature_def_key_specified = signature_def_key is not None signature_def_specified = signature_def is not None input_names_specified = input_names is not None output_names_specified = output_names is not None if input_names_specified != output_names_specified: raise ValueError( 'input_names and output_names must both be specified or both be ' 'unspecified.' ) if (signature_def_key_specified + signature_def_specified + input_names_specified > 1): raise ValueError( 'You must specify at most one of signature_def_key OR signature_def OR' '(input_names AND output_names).' ) class SavedModelPredictor(predictor.Predictor): """A `Predictor` constructed from a `SavedModel`.""" def __init__(self, export_dir, signature_def_key=None, signature_def=None, input_names=None, output_names=None, tags=None, graph=None, config=None): """Initialize a `CoreEstimatorPredictor`. Args: export_dir: a path to a directory containing a `SavedModel`. signature_def_key: Optional string specifying the signature to use. If `None`, then `DEFAULT_SERVING_SIGNATURE_DEF_KEY` is used. Only one of `signature_def_key` and `signature_def` should be specified. signature_def: A `SignatureDef` proto specifying the inputs and outputs for prediction. Only one of `signature_def_key` and `signature_def` should be specified. input_names: A dictionary mapping strings to `Tensor`s in the `SavedModel` that represent the input. The keys can be any string of the user's choosing. output_names: A dictionary mapping strings to `Tensor`s in the `SavedModel` that represent the output. The keys can be any string of the user's choosing. tags: Optional. Comma separated list of tags that will be used to retrieve the correct `SignatureDef`. Defaults to `DEFAULT_TAGS`. graph: Optional. The Tensorflow `graph` in which prediction should be done. config: `ConfigProto` proto used to configure the session. Raises: ValueError: If more than one of signature_def_key OR signature_def OR (input_names AND output_names) is specified. """ _check_signature_arguments( signature_def_key, signature_def, input_names, output_names) tags = tags or DEFAULT_TAGS self._graph = graph or ops.Graph() with self._graph.as_default(): self._session = session.Session(config=config) loader.load(self._session, tags.split(','), export_dir) if input_names is None: if signature_def is None: signature_def = _get_signature_def(signature_def_key, export_dir, tags) input_names = {k: v.name for k, v in signature_def.inputs.items()} output_names = {k: v.name for k, v in signature_def.outputs.items()} self._feed_tensors = {k: self._graph.get_tensor_by_name(v) for k, v in input_names.items()} self._fetch_tensors = {k: self._graph.get_tensor_by_name(v) for k, v in output_names.items()}
tensorflow-master
tensorflow/contrib/predictor/saved_model_predictor.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Common code used for testing `Predictor`s.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.learn.python.learn.estimators import constants from tensorflow.contrib.learn.python.learn.estimators import estimator as contrib_estimator from tensorflow.contrib.learn.python.learn.estimators import model_fn as contrib_model_fn from tensorflow.contrib.learn.python.learn.utils import input_fn_utils from tensorflow.python.estimator import estimator as core_estimator from tensorflow.python.estimator import model_fn from tensorflow.python.estimator.export import export_lib from tensorflow.python.estimator.export import export_output from tensorflow.python.framework import constant_op from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.saved_model import signature_constants def get_arithmetic_estimator(core=True, model_dir=None): """Returns an `Estimator` that performs basic arithmetic. Args: core: if `True`, returns a `tensorflow.python.estimator.Estimator`. Otherwise, returns a `tensorflow.contrib.learn.Estimator`. model_dir: directory in which to export checkpoints and saved models. Returns: An `Estimator` that performs arithmetic operations on its inputs. """ def _model_fn(features, labels, mode): _ = labels x = features['x'] y = features['y'] with ops.name_scope('outputs'): predictions = {'sum': math_ops.add(x, y, name='sum'), 'product': math_ops.multiply(x, y, name='product'), 'difference': math_ops.subtract(x, y, name='difference')} if core: export_outputs = {k: export_output.PredictOutput({k: v}) for k, v in predictions.items()} export_outputs[signature_constants. DEFAULT_SERVING_SIGNATURE_DEF_KEY] = export_outputs['sum'] return model_fn.EstimatorSpec(mode=mode, predictions=predictions, export_outputs=export_outputs, loss=constant_op.constant(0), train_op=control_flow_ops.no_op()) else: output_alternatives = {k: (constants.ProblemType.UNSPECIFIED, {k: v}) for k, v in predictions.items()} return contrib_model_fn.ModelFnOps( mode=mode, predictions=predictions, output_alternatives=output_alternatives, loss=constant_op.constant(0), train_op=control_flow_ops.no_op()) if core: return core_estimator.Estimator(_model_fn) else: return contrib_estimator.Estimator(_model_fn, model_dir=model_dir) def get_arithmetic_input_fn(core=True, train=False): """Returns a input functions or serving input receiver function.""" def _input_fn(): with ops.name_scope('inputs'): x = array_ops.placeholder_with_default(0.0, shape=[], name='x') y = array_ops.placeholder_with_default(0.0, shape=[], name='y') label = constant_op.constant(0.0) features = {'x': x, 'y': y} if core: if train: return features, label return export_lib.ServingInputReceiver( features=features, receiver_tensors=features) else: if train: return features, label return input_fn_utils.InputFnOps( features=features, labels={}, default_inputs=features) return _input_fn
tensorflow-master
tensorflow/contrib/predictor/testing_common.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for predictor.core_estimator_predictor.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tempfile import numpy as np from tensorflow.contrib.predictor import core_estimator_predictor from tensorflow.contrib.predictor import testing_common from tensorflow.python.platform import test KEYS_AND_OPS = (('sum', lambda x, y: x + y), ('product', lambda x, y: x * y,), ('difference', lambda x, y: x - y)) class CoreEstimatorPredictorTest(test.TestCase): """Test fixture for `CoreEstimatorPredictor`.""" def setUp(self): model_dir = tempfile.mkdtemp() self._estimator = testing_common.get_arithmetic_estimator( core=True, model_dir=model_dir) self._serving_input_receiver_fn = testing_common.get_arithmetic_input_fn( core=True, train=False) def testDefault(self): """Test prediction with default signature.""" np.random.seed(1111) x = np.random.rand() y = np.random.rand() predictor = core_estimator_predictor.CoreEstimatorPredictor( estimator=self._estimator, serving_input_receiver_fn=self._serving_input_receiver_fn) output = predictor({'x': x, 'y': y})['sum'] self.assertAlmostEqual(output, x + y, places=3) def testSpecifiedSignatureKey(self): """Test prediction with spedicified signatures.""" np.random.seed(1234) for output_key, op in KEYS_AND_OPS: x = np.random.rand() y = np.random.rand() expected_output = op(x, y) predictor = core_estimator_predictor.CoreEstimatorPredictor( estimator=self._estimator, serving_input_receiver_fn=self._serving_input_receiver_fn, output_key=output_key) output_tensor_name = predictor.fetch_tensors[output_key].name self.assertRegexpMatches( output_tensor_name, output_key, msg='Unexpected fetch tensor.') output = predictor({'x': x, 'y': y})[output_key] self.assertAlmostEqual( expected_output, output, places=3, msg='Failed for output key "{}." ' 'Got output {} for x = {} and y = {}'.format( output_key, output, x, y)) if __name__ == '__main__': test.main()
tensorflow-master
tensorflow/contrib/predictor/core_estimator_predictor_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for predictor.saved_model_predictor.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.predictor import saved_model_predictor from tensorflow.core.framework import tensor_shape_pb2 from tensorflow.core.framework import types_pb2 from tensorflow.core.protobuf import meta_graph_pb2 from tensorflow.python.framework import ops from tensorflow.python.platform import test from tensorflow.python.saved_model import signature_def_utils KEYS_AND_OPS = (('sum', lambda x, y: x + y), ('product', lambda x, y: x * y,), ('difference', lambda x, y: x - y)) MODEL_DIR_NAME = 'contrib/predictor/test_export_dir' class SavedModelPredictorTest(test.TestCase): @classmethod def setUpClass(cls): # Load a saved model exported from the arithmetic `Estimator`. # See `testing_common.py`. cls._export_dir = test.test_src_dir_path(MODEL_DIR_NAME) def testDefault(self): """Test prediction with default signature.""" np.random.seed(1111) x = np.random.rand() y = np.random.rand() predictor = saved_model_predictor.SavedModelPredictor( export_dir=self._export_dir) output = predictor({'x': x, 'y': y})['outputs'] self.assertAlmostEqual(output, x + y, places=3) def testSpecifiedSignatureKey(self): """Test prediction with spedicified signature key.""" np.random.seed(1234) for signature_def_key, op in KEYS_AND_OPS: x = np.random.rand() y = np.random.rand() expected_output = op(x, y) predictor = saved_model_predictor.SavedModelPredictor( export_dir=self._export_dir, signature_def_key=signature_def_key) output_tensor_name = predictor.fetch_tensors['outputs'].name self.assertRegexpMatches( output_tensor_name, signature_def_key, msg='Unexpected fetch tensor.') output = predictor({'x': x, 'y': y})['outputs'] self.assertAlmostEqual( expected_output, output, places=3, msg='Failed for signature "{}." ' 'Got output {} for x = {} and y = {}'.format( signature_def_key, output, x, y)) def testSpecifiedSignature(self): """Test prediction with spedicified signature definition.""" np.random.seed(4444) for key, op in KEYS_AND_OPS: x = np.random.rand() y = np.random.rand() expected_output = op(x, y) inputs = { 'x': meta_graph_pb2.TensorInfo( name='inputs/x:0', dtype=types_pb2.DT_FLOAT, tensor_shape=tensor_shape_pb2.TensorShapeProto()), 'y': meta_graph_pb2.TensorInfo( name='inputs/y:0', dtype=types_pb2.DT_FLOAT, tensor_shape=tensor_shape_pb2.TensorShapeProto())} outputs = { key: meta_graph_pb2.TensorInfo( name='outputs/{}:0'.format(key), dtype=types_pb2.DT_FLOAT, tensor_shape=tensor_shape_pb2.TensorShapeProto())} signature_def = signature_def_utils.build_signature_def( inputs=inputs, outputs=outputs, method_name='tensorflow/serving/regress') predictor = saved_model_predictor.SavedModelPredictor( export_dir=self._export_dir, signature_def=signature_def) output_tensor_name = predictor.fetch_tensors[key].name self.assertRegexpMatches( output_tensor_name, key, msg='Unexpected fetch tensor.') output = predictor({'x': x, 'y': y})[key] self.assertAlmostEqual( expected_output, output, places=3, msg='Failed for signature "{}". ' 'Got output {} for x = {} and y = {}'.format(key, output, x, y)) def testSpecifiedTensors(self): """Test prediction with spedicified `Tensor`s.""" np.random.seed(987) for key, op in KEYS_AND_OPS: x = np.random.rand() y = np.random.rand() expected_output = op(x, y) input_names = {'x': 'inputs/x:0', 'y': 'inputs/y:0'} output_names = {key: 'outputs/{}:0'.format(key)} predictor = saved_model_predictor.SavedModelPredictor( export_dir=self._export_dir, input_names=input_names, output_names=output_names) output_tensor_name = predictor.fetch_tensors[key].name self.assertRegexpMatches( output_tensor_name, key, msg='Unexpected fetch tensor.') output = predictor({'x': x, 'y': y})[key] self.assertAlmostEqual( expected_output, output, places=3, msg='Failed for signature "{}". ' 'Got output {} for x = {} and y = {}'.format(key, output, x, y)) def testBadTagsFail(self): """Test that predictor construction fails for bad tags.""" bad_tags_regex = ('.* could not be found in SavedModel') with self.assertRaisesRegexp(RuntimeError, bad_tags_regex): _ = saved_model_predictor.SavedModelPredictor( export_dir=self._export_dir, tags=('zomg, bad, tags')) def testSpecifiedGraph(self): """Test that the predictor remembers a specified `Graph`.""" g = ops.Graph() predictor = saved_model_predictor.SavedModelPredictor( export_dir=self._export_dir, graph=g) self.assertEqual(predictor.graph, g) if __name__ == '__main__': test.main()
tensorflow-master
tensorflow/contrib/predictor/saved_model_predictor_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Random forest implementation in tensorflow.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function # pylint: disable=unused-import,wildcard-import from tensorflow.contrib.tensor_forest.client import * from tensorflow.contrib.tensor_forest.python import * # pylint: enable=unused-import,wildcard-import
tensorflow-master
tensorflow/contrib/tensor_forest/__init__.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Extremely random forest graph builder. go/brain-tree.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import numbers import random from google.protobuf import text_format from tensorflow.contrib.decision_trees.proto import generic_tree_model_pb2 as _tree_proto from tensorflow.contrib.framework.python.ops import variables as framework_variables from tensorflow.contrib.tensor_forest.proto import tensor_forest_params_pb2 as _params_proto from tensorflow.contrib.tensor_forest.python.ops import data_ops from tensorflow.contrib.tensor_forest.python.ops import model_ops from tensorflow.contrib.tensor_forest.python.ops import stats_ops from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import random_ops from tensorflow.python.ops import variable_scope from tensorflow.python.ops import variables as tf_variables from tensorflow.python.platform import tf_logging as logging # Stores tuples of (leaf model type, stats model type) CLASSIFICATION_LEAF_MODEL_TYPES = { 'all_dense': (_params_proto.MODEL_DENSE_CLASSIFICATION, _params_proto.STATS_DENSE_GINI), 'all_sparse': (_params_proto.MODEL_SPARSE_CLASSIFICATION, _params_proto.STATS_SPARSE_GINI), 'sparse_then_dense': (_params_proto.MODEL_SPARSE_OR_DENSE_CLASSIFICATION, _params_proto.STATS_SPARSE_THEN_DENSE_GINI), } REGRESSION_MODEL_TYPE = (_params_proto.MODEL_REGRESSION, _params_proto.STATS_LEAST_SQUARES_REGRESSION, _params_proto.COLLECTION_BASIC) FINISH_TYPES = { 'basic': _params_proto.SPLIT_FINISH_BASIC, 'hoeffding': _params_proto.SPLIT_FINISH_DOMINATE_HOEFFDING, 'bootstrap': _params_proto.SPLIT_FINISH_DOMINATE_BOOTSTRAP } PRUNING_TYPES = { 'none': _params_proto.SPLIT_PRUNE_NONE, 'half': _params_proto.SPLIT_PRUNE_HALF, 'quarter': _params_proto.SPLIT_PRUNE_QUARTER, '10_percent': _params_proto.SPLIT_PRUNE_10_PERCENT, 'hoeffding': _params_proto.SPLIT_PRUNE_HOEFFDING, } SPLIT_TYPES = { 'less_or_equal': _tree_proto.InequalityTest.LESS_OR_EQUAL, 'less': _tree_proto.InequalityTest.LESS_THAN } def parse_number_or_string_to_proto(proto, param): if isinstance(param, numbers.Number): proto.constant_value = param else: # assume it's a string if param.isdigit(): proto.constant_value = int(param) else: text_format.Merge(param, proto) def build_params_proto(params): """Build a TensorForestParams proto out of the V4ForestHParams object.""" proto = _params_proto.TensorForestParams() proto.num_trees = params.num_trees proto.max_nodes = params.max_nodes proto.is_regression = params.regression proto.num_outputs = params.num_classes proto.num_features = params.num_features proto.leaf_type = params.leaf_model_type proto.stats_type = params.stats_model_type proto.collection_type = _params_proto.COLLECTION_BASIC proto.pruning_type.type = params.pruning_type proto.finish_type.type = params.finish_type proto.inequality_test_type = params.split_type proto.drop_final_class = False proto.collate_examples = params.collate_examples proto.checkpoint_stats = params.checkpoint_stats proto.use_running_stats_method = params.use_running_stats_method proto.initialize_average_splits = params.initialize_average_splits proto.inference_tree_paths = params.inference_tree_paths parse_number_or_string_to_proto(proto.pruning_type.prune_every_samples, params.prune_every_samples) parse_number_or_string_to_proto(proto.finish_type.check_every_steps, params.early_finish_check_every_samples) parse_number_or_string_to_proto(proto.split_after_samples, params.split_after_samples) parse_number_or_string_to_proto(proto.num_splits_to_consider, params.num_splits_to_consider) proto.dominate_fraction.constant_value = params.dominate_fraction if params.param_file: with open(params.param_file) as f: text_format.Merge(f.read(), proto) return proto # A convenience class for holding random forest hyperparameters. # # To just get some good default parameters, use: # hparams = ForestHParams(num_classes=2, num_features=40).fill() # # Note that num_classes can not be inferred and so must always be specified. # Also, either num_splits_to_consider or num_features should be set. # # To override specific values, pass them to the constructor: # hparams = ForestHParams(num_classes=5, num_trees=10, num_features=5).fill() # # TODO(thomaswc): Inherit from tf.HParams when that is publicly available. class ForestHParams(object): """A base class for holding hyperparameters and calculating good defaults.""" def __init__( self, num_trees=100, max_nodes=10000, bagging_fraction=1.0, num_splits_to_consider=0, feature_bagging_fraction=1.0, max_fertile_nodes=0, # deprecated, unused. split_after_samples=250, valid_leaf_threshold=1, dominate_method='bootstrap', dominate_fraction=0.99, model_name='all_dense', split_finish_name='basic', split_pruning_name='none', prune_every_samples=0, early_finish_check_every_samples=0, collate_examples=False, checkpoint_stats=False, use_running_stats_method=False, initialize_average_splits=False, inference_tree_paths=False, param_file=None, split_name='less_or_equal', **kwargs): self.num_trees = num_trees self.max_nodes = max_nodes self.bagging_fraction = bagging_fraction self.feature_bagging_fraction = feature_bagging_fraction self.num_splits_to_consider = num_splits_to_consider self.max_fertile_nodes = max_fertile_nodes self.split_after_samples = split_after_samples self.valid_leaf_threshold = valid_leaf_threshold self.dominate_method = dominate_method self.dominate_fraction = dominate_fraction self.model_name = model_name self.split_finish_name = split_finish_name self.split_pruning_name = split_pruning_name self.collate_examples = collate_examples self.checkpoint_stats = checkpoint_stats self.use_running_stats_method = use_running_stats_method self.initialize_average_splits = initialize_average_splits self.inference_tree_paths = inference_tree_paths self.param_file = param_file self.split_name = split_name self.early_finish_check_every_samples = early_finish_check_every_samples self.prune_every_samples = prune_every_samples for name, value in kwargs.items(): setattr(self, name, value) def values(self): return self.__dict__ def fill(self): """Intelligently sets any non-specific parameters.""" # Fail fast if num_classes or num_features isn't set. _ = getattr(self, 'num_classes') _ = getattr(self, 'num_features') self.bagged_num_features = int(self.feature_bagging_fraction * self.num_features) self.bagged_features = None if self.feature_bagging_fraction < 1.0: self.bagged_features = [ random.sample(range(self.num_features), self.bagged_num_features) for _ in range(self.num_trees) ] self.regression = getattr(self, 'regression', False) # Num_outputs is the actual number of outputs (a single prediction for # classification, a N-dimensional point for regression). self.num_outputs = self.num_classes if self.regression else 1 # Add an extra column to classes for storing counts, which is needed for # regression and avoids having to recompute sums for classification. self.num_output_columns = self.num_classes + 1 # Our experiments have found that num_splits_to_consider = num_features # gives good accuracy. self.num_splits_to_consider = self.num_splits_to_consider or min( max(10, math.floor(math.sqrt(self.num_features))), 1000) # If base_random_seed is 0, the current time will be used to seed the # random number generators for each tree. If non-zero, the i-th tree # will be seeded with base_random_seed + i. self.base_random_seed = getattr(self, 'base_random_seed', 0) # How to store leaf models. self.leaf_model_type = ( REGRESSION_MODEL_TYPE[0] if self.regression else CLASSIFICATION_LEAF_MODEL_TYPES[self.model_name][0]) # How to store stats objects. self.stats_model_type = ( REGRESSION_MODEL_TYPE[1] if self.regression else CLASSIFICATION_LEAF_MODEL_TYPES[self.model_name][1]) self.finish_type = ( _params_proto.SPLIT_FINISH_BASIC if self.regression else FINISH_TYPES[self.split_finish_name]) self.pruning_type = PRUNING_TYPES[self.split_pruning_name] if self.pruning_type == _params_proto.SPLIT_PRUNE_NONE: self.prune_every_samples = 0 else: if (not self.prune_every_samples and not (isinstance(numbers.Number) or self.split_after_samples.isdigit())): logging.error( 'Must specify prune_every_samples if using a depth-dependent ' 'split_after_samples') # Pruning half-way through split_after_samples seems like a decent # default, making it easy to select the number being pruned with # pruning_type while not paying the cost of pruning too often. Note that # this only holds if not using a depth-dependent split_after_samples. self.prune_every_samples = ( self.prune_every_samples or int(self.split_after_samples) / 2) if self.finish_type == _params_proto.SPLIT_FINISH_BASIC: self.early_finish_check_every_samples = 0 else: if (not self.early_finish_check_every_samples and not (isinstance(numbers.Number) or self.split_after_samples.isdigit())): logging.error( 'Must specify prune_every_samples if using a depth-dependent ' 'split_after_samples') # Checking for early finish every quarter through split_after_samples # seems like a decent default. We don't want to incur the checking cost # too often, but (at least for hoeffding) it's lower than the cost of # pruning so we can do it a little more frequently. self.early_finish_check_every_samples = ( self.early_finish_check_every_samples or int(self.split_after_samples) / 4) self.split_type = SPLIT_TYPES[self.split_name] return self def get_epoch_variable(): """Returns the epoch variable, or [0] if not defined.""" # Grab epoch variable defined in # //third_party/tensorflow/python/training/input.py::limit_epochs for v in tf_variables.local_variables(): if 'limit_epochs/epoch' in v.op.name: return array_ops.reshape(v, [1]) # TODO(thomaswc): Access epoch from the data feeder. return [0] # A simple container to hold the training variables for a single tree. class TreeVariables(object): """Stores tf.Variables for training a single random tree. Uses tf.compat.v1.get_variable to get tree-specific names so that this can be used with a tf.learn-style implementation (one that trains a model, saves it, then relies on restoring that model to evaluate). """ def __init__(self, params, tree_num, training, tree_config='', tree_stat=''): if (not hasattr(params, 'params_proto') or not isinstance(params.params_proto, _params_proto.TensorForestParams)): params.params_proto = build_params_proto(params) params.serialized_params_proto = params.params_proto.SerializeToString() self.stats = None if training: # TODO(gilberth): Manually shard this to be able to fit it on # multiple machines. self.stats = stats_ops.fertile_stats_variable( params, tree_stat, self.get_tree_name('stats', tree_num)) self.tree = model_ops.tree_variable(params, tree_config, self.stats, self.get_tree_name('tree', tree_num)) def get_tree_name(self, name, num): return '{0}-{1}'.format(name, num) class ForestVariables(object): """A container for a forests training data, consisting of multiple trees. Instantiates a TreeVariables object for each tree. We override the __getitem__ and __setitem__ function so that usage looks like this: forest_variables = ForestVariables(params) ... forest_variables.tree ... """ def __init__(self, params, device_assigner, training=True, tree_variables_class=TreeVariables, tree_configs=None, tree_stats=None): self.variables = [] # Set up some scalar variables to run through the device assigner, then # we can use those to colocate everything related to a tree. self.device_dummies = [] with ops.device(device_assigner): for i in range(params.num_trees): self.device_dummies.append( variable_scope.get_variable(name='device_dummy_%d' % i, shape=0)) for i in range(params.num_trees): with ops.device(self.device_dummies[i].device): kwargs = {} if tree_configs is not None: kwargs.update(dict(tree_config=tree_configs[i])) if tree_stats is not None: kwargs.update(dict(tree_stat=tree_stats[i])) self.variables.append( tree_variables_class(params, i, training, **kwargs)) def __setitem__(self, t, val): self.variables[t] = val def __getitem__(self, t): return self.variables[t] class RandomForestGraphs(object): """Builds TF graphs for random forest training and inference.""" def __init__(self, params, tree_configs=None, tree_stats=None, device_assigner=None, variables=None, tree_variables_class=TreeVariables, tree_graphs=None, training=True): self.params = params self.device_assigner = ( device_assigner or framework_variables.VariableDeviceChooser()) logging.info('Constructing forest with params = ') logging.info(self.params.__dict__) self.variables = variables or ForestVariables( self.params, device_assigner=self.device_assigner, training=training, tree_variables_class=tree_variables_class, tree_configs=tree_configs, tree_stats=tree_stats) tree_graph_class = tree_graphs or RandomTreeGraphs self.trees = [ tree_graph_class(self.variables[i], self.params, i) for i in range(self.params.num_trees) ] def _bag_features(self, tree_num, input_data): split_data = array_ops.split( value=input_data, num_or_size_splits=self.params.num_features, axis=1) return array_ops.concat( [split_data[ind] for ind in self.params.bagged_features[tree_num]], 1) def get_all_resource_handles(self): return ([self.variables[i].tree for i in range(len(self.trees))] + [self.variables[i].stats for i in range(len(self.trees))]) def training_graph(self, input_data, input_labels, num_trainers=1, trainer_id=0, **tree_kwargs): """Constructs a TF graph for training a random forest. Args: input_data: A tensor or dict of string->Tensor for input data. input_labels: A tensor or placeholder for labels associated with input_data. num_trainers: Number of parallel trainers to split trees among. trainer_id: Which trainer this instance is. **tree_kwargs: Keyword arguments passed to each tree's training_graph. Returns: The last op in the random forest training graph. Raises: NotImplementedError: If trying to use bagging with sparse features. """ processed_dense_features, processed_sparse_features, data_spec = ( data_ops.ParseDataTensorOrDict(input_data)) if input_labels is not None: labels = data_ops.ParseLabelTensorOrDict(input_labels) data_spec = data_spec or self.get_default_data_spec(input_data) tree_graphs = [] trees_per_trainer = self.params.num_trees / num_trainers tree_start = int(trainer_id * trees_per_trainer) tree_end = int((trainer_id + 1) * trees_per_trainer) for i in range(tree_start, tree_end): with ops.device(self.variables.device_dummies[i].device): seed = self.params.base_random_seed if seed != 0: seed += i # If using bagging, randomly select some of the input. tree_data = processed_dense_features tree_labels = labels if self.params.bagging_fraction < 1.0: # TODO(gilberth): Support bagging for sparse features. if processed_sparse_features is not None: raise NotImplementedError( 'Bagging not supported with sparse features.') # TODO(thomaswc): This does sampling without replacement. Consider # also allowing sampling with replacement as an option. batch_size = array_ops.strided_slice( array_ops.shape(processed_dense_features), [0], [1]) r = random_ops.random_uniform(batch_size, seed=seed) mask = math_ops.less( r, array_ops.ones_like(r) * self.params.bagging_fraction) gather_indices = array_ops.squeeze(array_ops.where(mask), axis=[1]) # TODO(thomaswc): Calculate out-of-bag data and labels, and store # them for use in calculating statistics later. tree_data = array_ops.gather(processed_dense_features, gather_indices) tree_labels = array_ops.gather(labels, gather_indices) if self.params.bagged_features: if processed_sparse_features is not None: raise NotImplementedError( 'Feature bagging not supported with sparse features.') tree_data = self._bag_features(i, tree_data) tree_graphs.append(self.trees[i].training_graph( tree_data, tree_labels, seed, data_spec=data_spec, sparse_features=processed_sparse_features, **tree_kwargs)) return control_flow_ops.group(*tree_graphs, name='train') def inference_graph(self, input_data, **inference_args): """Constructs a TF graph for evaluating a random forest. Args: input_data: A tensor or dict of string->Tensor for the input data. This input_data must generate the same spec as the input_data used in training_graph: the dict must have the same keys, for example, and all tensors must have the same size in their first dimension. **inference_args: Keyword arguments to pass through to each tree. Returns: A tuple of (probabilities, tree_paths, variance). Raises: NotImplementedError: If trying to use feature bagging with sparse features. """ processed_dense_features, processed_sparse_features, data_spec = ( data_ops.ParseDataTensorOrDict(input_data)) probabilities = [] paths = [] for i in range(self.params.num_trees): with ops.device(self.variables.device_dummies[i].device): tree_data = processed_dense_features if self.params.bagged_features: if processed_sparse_features is not None: raise NotImplementedError( 'Feature bagging not supported with sparse features.') tree_data = self._bag_features(i, tree_data) probs, path = self.trees[i].inference_graph( tree_data, data_spec, sparse_features=processed_sparse_features, **inference_args) probabilities.append(probs) paths.append(path) with ops.device(self.variables.device_dummies[0].device): # shape of all_predict should be [batch_size, num_trees, num_outputs] all_predict = array_ops.stack(probabilities, axis=1) average_values = math_ops.div( math_ops.reduce_sum(all_predict, 1), self.params.num_trees, name='probabilities') tree_paths = array_ops.stack(paths, axis=1) expected_squares = math_ops.div( math_ops.reduce_sum(all_predict * all_predict, 1), self.params.num_trees) regression_variance = math_ops.maximum( 0., expected_squares - average_values * average_values) return average_values, tree_paths, regression_variance def average_size(self): """Constructs a TF graph for evaluating the average size of a forest. Returns: The average number of nodes over the trees. """ sizes = [] for i in range(self.params.num_trees): with ops.device(self.variables.device_dummies[i].device): sizes.append(self.trees[i].size()) return math_ops.reduce_mean( math_ops.cast(array_ops.stack(sizes), dtypes.float32)) # pylint: disable=unused-argument def training_loss(self, features, labels, name='training_loss'): return math_ops.negative(self.average_size(), name=name) # pylint: disable=unused-argument def validation_loss(self, features, labels): return math_ops.negative(self.average_size()) def average_impurity(self): """Constructs a TF graph for evaluating the leaf impurity of a forest. Returns: The last op in the graph. """ impurities = [] for i in range(self.params.num_trees): with ops.device(self.variables.device_dummies[i].device): impurities.append(self.trees[i].average_impurity()) return math_ops.reduce_mean(array_ops.stack(impurities)) def feature_importances(self): tree_counts = [ self.trees[i].feature_usage_counts() for i in range(self.params.num_trees) ] total_counts = math_ops.reduce_sum(array_ops.stack(tree_counts, 0), 0) return total_counts / math_ops.reduce_sum(total_counts) class RandomTreeGraphs(object): """Builds TF graphs for random tree training and inference.""" def __init__(self, variables, params, tree_num): self.variables = variables self.params = params self.tree_num = tree_num def training_graph(self, input_data, input_labels, random_seed, data_spec, sparse_features=None, input_weights=None): """Constructs a TF graph for training a random tree. Args: input_data: A tensor or placeholder for input data. input_labels: A tensor or placeholder for labels associated with input_data. random_seed: The random number generator seed to use for this tree. 0 means use the current time as the seed. data_spec: A data_ops.TensorForestDataSpec object specifying the original feature/columns of the data. sparse_features: A tf.SparseTensor for sparse input data. input_weights: A float tensor or placeholder holding per-input weights, or None if all inputs are to be weighted equally. Returns: The last op in the random tree training graph. """ # TODO(gilberth): Use this. unused_epoch = math_ops.cast(get_epoch_variable(), dtypes.int32) if input_weights is None: input_weights = [] sparse_indices = [] sparse_values = [] sparse_shape = [] if sparse_features is not None: sparse_indices = sparse_features.indices sparse_values = sparse_features.values sparse_shape = sparse_features.dense_shape if input_data is None: input_data = [] leaf_ids = model_ops.traverse_tree_v4( self.variables.tree, input_data, sparse_indices, sparse_values, sparse_shape, input_spec=data_spec.SerializeToString(), params=self.params.serialized_params_proto) update_model = model_ops.update_model_v4( self.variables.tree, leaf_ids, input_labels, input_weights, params=self.params.serialized_params_proto) finished_nodes = stats_ops.process_input_v4( self.variables.tree, self.variables.stats, input_data, sparse_indices, sparse_values, sparse_shape, input_labels, input_weights, leaf_ids, input_spec=data_spec.SerializeToString(), random_seed=random_seed, params=self.params.serialized_params_proto) with ops.control_dependencies([update_model]): return stats_ops.grow_tree_v4( self.variables.tree, self.variables.stats, finished_nodes, params=self.params.serialized_params_proto) def inference_graph(self, input_data, data_spec, sparse_features=None): """Constructs a TF graph for evaluating a random tree. Args: input_data: A tensor or placeholder for input data. data_spec: A TensorForestDataSpec proto specifying the original input columns. sparse_features: A tf.SparseTensor for sparse input data. Returns: A tuple of (probabilities, tree_paths). """ sparse_indices = [] sparse_values = [] sparse_shape = [] if sparse_features is not None: sparse_indices = sparse_features.indices sparse_values = sparse_features.values sparse_shape = sparse_features.dense_shape if input_data is None: input_data = [] return model_ops.tree_predictions_v4( self.variables.tree, input_data, sparse_indices, sparse_values, sparse_shape, input_spec=data_spec.SerializeToString(), params=self.params.serialized_params_proto) def size(self): """Constructs a TF graph for evaluating the current number of nodes. Returns: The current number of nodes in the tree. """ return model_ops.tree_size(self.variables.tree) def feature_usage_counts(self): return model_ops.feature_usage_counts( self.variables.tree, params=self.params.serialized_params_proto)
tensorflow-master
tensorflow/contrib/tensor_forest/python/tensor_forest.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for tf.contrib.tensor_forest.ops.tensor_forest.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from google.protobuf.json_format import ParseDict from tensorflow.contrib.decision_trees.proto import generic_tree_model_pb2 as _tree_proto from tensorflow.contrib.tensor_forest.python import tensor_forest from tensorflow.python.framework import ops from tensorflow.python.framework import sparse_tensor from tensorflow.python.framework import test_util from tensorflow.python.ops import resources from tensorflow.python.ops import variables from tensorflow.python.platform import googletest class TensorForestTest(test_util.TensorFlowTestCase): def testForestHParams(self): hparams = tensor_forest.ForestHParams( num_classes=2, num_trees=100, max_nodes=1000, split_after_samples=25, num_features=60).fill() self.assertEquals(2, hparams.num_classes) self.assertEquals(3, hparams.num_output_columns) self.assertEquals(10, hparams.num_splits_to_consider) # Default value of valid_leaf_threshold self.assertEquals(1, hparams.valid_leaf_threshold) self.assertEquals(0, hparams.base_random_seed) def testForestHParamsBigTree(self): hparams = tensor_forest.ForestHParams( num_classes=2, num_trees=100, max_nodes=1000000, split_after_samples=25, num_features=1000).fill() self.assertEquals(31, hparams.num_splits_to_consider) def testForestHParamsStringParams(self): hparams = tensor_forest.ForestHParams( num_classes=2, num_trees=100, max_nodes=1000000, split_after_samples="25", num_splits_to_consider="1000000", num_features=1000).fill() self.assertEquals("1000000", hparams.num_splits_to_consider) def testTrainingConstructionClassification(self): input_data = [[-1., 0.], [-1., 2.], # node 1 [1., 0.], [1., -2.]] # node 2 input_labels = [0, 1, 2, 3] params = tensor_forest.ForestHParams( num_classes=4, num_features=2, num_trees=10, max_nodes=1000, split_after_samples=25).fill() graph_builder = tensor_forest.RandomForestGraphs(params) graph = graph_builder.training_graph(input_data, input_labels) self.assertTrue(isinstance(graph, ops.Operation)) def testTrainingConstructionRegression(self): input_data = [[-1., 0.], [-1., 2.], # node 1 [1., 0.], [1., -2.]] # node 2 input_labels = [0, 1, 2, 3] params = tensor_forest.ForestHParams( num_classes=4, num_features=2, num_trees=10, max_nodes=1000, split_after_samples=25, regression=True).fill() graph_builder = tensor_forest.RandomForestGraphs(params) graph = graph_builder.training_graph(input_data, input_labels) self.assertTrue(isinstance(graph, ops.Operation)) def testInferenceConstruction(self): input_data = [[-1., 0.], [-1., 2.], # node 1 [1., 0.], [1., -2.]] # node 2 params = tensor_forest.ForestHParams( num_classes=4, num_features=2, num_trees=10, max_nodes=1000, split_after_samples=25).fill() graph_builder = tensor_forest.RandomForestGraphs(params) probs, paths, var = graph_builder.inference_graph(input_data) self.assertTrue(isinstance(probs, ops.Tensor)) self.assertTrue(isinstance(paths, ops.Tensor)) self.assertTrue(isinstance(var, ops.Tensor)) def testInfrenceFromRestoredModel(self): input_data = [[-1., 0.], [-1., 2.], # node 1 [1., 0.], [1., -2.]] # node 2 expected_prediction = [[0.0, 1.0], [0.0, 1.0], [0.0, 1.0], [0.0, 1.0]] hparams = tensor_forest.ForestHParams( num_classes=2, num_features=2, num_trees=1, max_nodes=1000, split_after_samples=25).fill() tree_weight = {'decisionTree': {'nodes': [{'binaryNode': {'rightChildId': 2, 'leftChildId': 1, 'inequalityLeftChildTest': {'featureId': {'id': '0'}, 'threshold': {'floatValue': 0}}}}, {'leaf': {'vector': {'value': [{'floatValue': 0.0}, {'floatValue': 1.0}]}}, 'nodeId': 1}, {'leaf': {'vector': {'value': [{'floatValue': 0.0}, {'floatValue': 1.0}]}}, 'nodeId': 2}]}} restored_tree_param = ParseDict(tree_weight, _tree_proto.Model()).SerializeToString() graph_builder = tensor_forest.RandomForestGraphs(hparams, [restored_tree_param]) probs, paths, var = graph_builder.inference_graph(input_data) self.assertTrue(isinstance(probs, ops.Tensor)) self.assertTrue(isinstance(paths, ops.Tensor)) self.assertTrue(isinstance(var, ops.Tensor)) with self.cached_session(): variables.global_variables_initializer().run() resources.initialize_resources(resources.shared_resources()).run() self.assertEquals(probs.eval().shape, (4, 2)) self.assertEquals(probs.eval().tolist(), expected_prediction) def testTrainingConstructionClassificationSparse(self): input_data = sparse_tensor.SparseTensor( indices=[[0, 0], [0, 3], [1, 0], [1, 7], [2, 1], [3, 9]], values=[-1.0, 0.0, -1., 2., 1., -2.0], dense_shape=[4, 10]) input_labels = [0, 1, 2, 3] params = tensor_forest.ForestHParams( num_classes=4, num_features=10, num_trees=10, max_nodes=1000, split_after_samples=25).fill() graph_builder = tensor_forest.RandomForestGraphs(params) graph = graph_builder.training_graph(input_data, input_labels) self.assertTrue(isinstance(graph, ops.Operation)) def testInferenceConstructionSparse(self): input_data = sparse_tensor.SparseTensor( indices=[[0, 0], [0, 3], [1, 0], [1, 7], [2, 1], [3, 9]], values=[-1.0, 0.0, -1., 2., 1., -2.0], dense_shape=[4, 10]) params = tensor_forest.ForestHParams( num_classes=4, num_features=10, num_trees=10, max_nodes=1000, regression=True, split_after_samples=25).fill() graph_builder = tensor_forest.RandomForestGraphs(params) probs, paths, var = graph_builder.inference_graph(input_data) self.assertTrue(isinstance(probs, ops.Tensor)) self.assertTrue(isinstance(paths, ops.Tensor)) self.assertTrue(isinstance(var, ops.Tensor)) if __name__ == "__main__": googletest.main()
tensorflow-master
tensorflow/contrib/tensor_forest/python/tensor_forest_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Random forest implementation in tensorflow.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.tensor_forest.python import tensor_forest from tensorflow.contrib.tensor_forest.python.ops import data_ops from tensorflow.contrib.tensor_forest.python.ops import model_ops from tensorflow.contrib.tensor_forest.python.ops import stats_ops from tensorflow.contrib.tensor_forest.python.ops import tensor_forest_ops
tensorflow-master
tensorflow/contrib/tensor_forest/python/__init__.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for tf.contrib.tensor_forest.ops.scatter_add_ndim_op.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.tensor_forest.python.ops import tensor_forest_ops from tensorflow.python.framework import test_util from tensorflow.python.ops import variables from tensorflow.python.platform import googletest class ScatterAddNdimTest(test_util.TensorFlowTestCase): def test1dim(self): input_data = variables.VariableV1( [1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12.]) indices = [[1], [10]] updates = [100., 200.] with self.cached_session(): variables.global_variables_initializer().run() tensor_forest_ops.scatter_add_ndim(input_data, indices, updates).run() self.assertAllEqual( [1., 102., 3., 4., 5., 6., 7., 8., 9., 10., 211., 12.], input_data.eval()) def test3dim(self): input_data = variables.VariableV1([[[1., 2., 3.], [4., 5., 6.]], [[7., 8., 9.], [10., 11., 12.]]]) indices = [[0, 0, 1], [1, 1, 2]] updates = [100., 200.] with self.cached_session(): variables.global_variables_initializer().run() tensor_forest_ops.scatter_add_ndim(input_data, indices, updates).run() self.assertAllEqual([[[1., 102., 3.], [4., 5., 6.]], [[7., 8., 9.], [10., 11., 212.]]], input_data.eval()) def testNoUpdates(self): init_val = [[[1., 2., 3.], [4., 5., 6.]], [[7., 8., 9.], [10., 11., 12.]]] input_data = variables.VariableV1(init_val) indices = [] updates = [] with self.cached_session(): variables.global_variables_initializer().run() tensor_forest_ops.scatter_add_ndim(input_data, indices, updates).run() self.assertAllEqual(init_val, input_data.eval()) def testBadInput(self): init_val = [[[1., 2., 3.], [4., 5., 6.]], [[7., 8., 9.], [10., 11., 12.]]] input_data = variables.VariableV1(init_val) indices = [[0, 0, 1], [1, 1, 2]] updates = [100.] with self.cached_session(): variables.global_variables_initializer().run() with self.assertRaisesOpError( 'Number of updates should be same as number of indices.'): tensor_forest_ops.scatter_add_ndim(input_data, indices, updates).run() self.assertAllEqual(init_val, input_data.eval()) def testIncompleteIndices(self): input_data = variables.VariableV1([[[1., 2., 3.], [4., 5., 6.]], [[7., 8., 9.], [10., 11., 12.]]]) indices = [[0, 0], [1, 1]] updates = [[100., 200., 300.], [400., 500., 600.]] with self.cached_session(): variables.global_variables_initializer().run() tensor_forest_ops.scatter_add_ndim(input_data, indices, updates).run() self.assertAllEqual([[[101., 202., 303.], [4., 5., 6.]], [[7., 8., 9.], [410., 511., 612.]]], input_data.eval()) if __name__ == '__main__': googletest.main()
tensorflow-master
tensorflow/contrib/tensor_forest/python/kernel_tests/scatter_add_ndim_op_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Stats ops python wrappers.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools from tensorflow.contrib.tensor_forest.python.ops import gen_stats_ops # pylint: disable=unused-import from tensorflow.contrib.tensor_forest.python.ops.gen_stats_ops import finalize_tree from tensorflow.contrib.tensor_forest.python.ops.gen_stats_ops import grow_tree_v4 from tensorflow.contrib.tensor_forest.python.ops.gen_stats_ops import process_input_v4 # pylint: enable=unused-import from tensorflow.contrib.util import loader from tensorflow.python.eager import context from tensorflow.python.framework import ops from tensorflow.python.ops import resources from tensorflow.python.platform import resource_loader from tensorflow.python.training import saver from tensorflow.python.training.tracking import tracking _stats_ops = loader.load_op_library( resource_loader.get_path_to_datafile("_stats_ops.so")) ops.NotDifferentiable("FertileStatsVariable") ops.NotDifferentiable("FertileStatsSerialize") ops.NotDifferentiable("FertileStatsDeserialize") ops.NotDifferentiable("GrowTreeV4") ops.NotDifferentiable("ProcessInputV4") ops.NotDifferentiable("FinalizeTree") class FertileStatsVariableSavable(saver.BaseSaverBuilder.SaveableObject): """SaveableObject implementation for FertileStatsVariable.""" def __init__(self, params, stats_handle, create_op, name): """Creates a FertileStatsVariableSavable object. Args: params: A TensorForestParams object. stats_handle: handle to the tree variable. create_op: the op to initialize the variable. name: the name to save the tree variable under. """ self.params = params tensor = gen_stats_ops.fertile_stats_serialize( stats_handle, params=params.serialized_params_proto) # slice_spec is useful for saving a slice from a variable. # It's not meaningful the tree variable. So we just pass an empty value. slice_spec = "" specs = [saver.BaseSaverBuilder.SaveSpec(tensor, slice_spec, name),] super(FertileStatsVariableSavable, self).__init__(stats_handle, specs, name) self._stats_handle = stats_handle self._create_op = create_op def restore(self, restored_tensors, unused_restored_shapes): """Restores the associated tree from 'restored_tensors'. Args: restored_tensors: the tensors that were loaded from a checkpoint. unused_restored_shapes: the shapes this object should conform to after restore. Not meaningful for trees. Returns: The operation that restores the state of the tree variable. """ with ops.control_dependencies([self._create_op]): return gen_stats_ops.fertile_stats_deserialize( self._stats_handle, restored_tensors[0], params=self.params.serialized_params_proto) class FertileStatsVariable(tracking.TrackableResource): """A Fertile stats variable.""" def __init__(self, params, stats_config, name, container=None): self._params = params self._stats_config = stats_config self._name = name self._container = container self._init_op = None super(FertileStatsVariable, self).__init__() self._resource_handle = self._create_resource() def _create_resource(self): if context.executing_eagerly(): # TODO(allenl): This will leak memory due to kernel caching by the # shared_name attribute value (but is better than the alternative of # sharing everything by default when executing eagerly; hopefully creating # tables in a loop is uncommon). shared_name = "fertile_stats_variable_%d" % (ops.uid(),) else: shared_name = self._name return gen_stats_ops.fertile_stats_resource_handle_op( self._container, shared_name=shared_name, name=self._name) def _initialize(self): return gen_stats_ops.create_fertile_stats_variable( self.resource_handle, self._stats_config, params=self._params.serialized_params_proto) @property def initializer(self): if self._init_op is None: self._init_op = self._initialize() return self._init_op def is_initialized(self): return gen_stats_ops.fertile_stats_is_initialized_op(self.resource_handle) def _gather_saveables_for_checkpoint(self): """For object-based checkpointing.""" return { "fertile_stats_variable": functools.partial( FertileStatsVariableSavable, params=self._params, stats_handle=self.resource_handle, create_op=self.initializer) } def fertile_stats_variable(params, stats_config, name, container=None): r"""Creates a stats object and returns a handle to it. Args: params: A TensorForestParams object. stats_config: A `Tensor` of type `string`. Serialized proto of the stats. name: A name for the variable. container: An optional `string`. Defaults to `""`. Returns: A `Tensor` of type mutable `string`. The handle to the stats. """ with ops.name_scope(name, "FertileStatsVariable") as name: fertile_stats_var = FertileStatsVariable(params, stats_config, name, container) resource_handle = fertile_stats_var.resource_handle create_op = fertile_stats_var.initializer is_initialized_op = fertile_stats_var.is_initialized() # Adds the variable to the savable list. saveable = ( fertile_stats_var._gather_saveables_for_checkpoint()[ # pylint: disable=protected-access "fertile_stats_variable"](name=resource_handle.name)) ops.add_to_collection(ops.GraphKeys.SAVEABLE_OBJECTS, saveable) resources.register_resource(resource_handle, create_op, is_initialized_op) return resource_handle
tensorflow-master
tensorflow/contrib/tensor_forest/python/ops/stats_ops.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Custom ops used by tensorforest.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function # go/tf-wildcard-import # pylint: disable=wildcard-import from tensorflow.contrib.tensor_forest.python.ops.gen_tensor_forest_ops import * # pylint: enable=wildcard-import from tensorflow.contrib.util import loader from tensorflow.python.platform import resource_loader _tensor_forest_ops = loader.load_op_library( resource_loader.get_path_to_datafile('_tensor_forest_ops.so'))
tensorflow-master
tensorflow/contrib/tensor_forest/python/ops/tensor_forest_ops.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Model ops python wrappers.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools from tensorflow.contrib.tensor_forest.python.ops import gen_model_ops # pylint: disable=unused-import from tensorflow.contrib.tensor_forest.python.ops.gen_model_ops import feature_usage_counts from tensorflow.contrib.tensor_forest.python.ops.gen_model_ops import traverse_tree_v4 from tensorflow.contrib.tensor_forest.python.ops.gen_model_ops import tree_predictions_v4 from tensorflow.contrib.tensor_forest.python.ops.gen_model_ops import tree_size from tensorflow.contrib.tensor_forest.python.ops.gen_model_ops import update_model_v4 # pylint: enable=unused-import from tensorflow.contrib.util import loader from tensorflow.python.eager import context from tensorflow.python.framework import ops from tensorflow.python.ops import resources from tensorflow.python.platform import resource_loader from tensorflow.python.training import saver from tensorflow.python.training.tracking import tracking _model_ops = loader.load_op_library( resource_loader.get_path_to_datafile("_model_ops.so")) ops.NotDifferentiable("TreeVariable") ops.NotDifferentiable("TreeSerialize") ops.NotDifferentiable("TreeDeserialize") ops.NotDifferentiable("TreeSize") ops.NotDifferentiable("TreePredictionsV4") ops.NotDifferentiable("FeatureUsageCounts") class TreeVariableSavable(saver.BaseSaverBuilder.SaveableObject): """SaveableObject implementation for TreeVariable.""" def __init__(self, params, tree_handle, stats_handle, create_op, name): """Creates a TreeVariableSavable object. Args: params: A TensorForestParams object. tree_handle: handle to the tree variable. stats_handle: handle to the stats variable. create_op: the op to initialize the variable. name: the name to save the tree variable under. """ self.params = params tensor = gen_model_ops.tree_serialize(tree_handle) # slice_spec is useful for saving a slice from a variable. # It's not meaningful the tree variable. So we just pass an empty value. slice_spec = "" specs = [saver.BaseSaverBuilder.SaveSpec(tensor, slice_spec, name),] super(TreeVariableSavable, self).__init__(tree_handle, specs, name) self._tree_handle = tree_handle self._create_op = create_op def restore(self, restored_tensors, unused_restored_shapes): """Restores the associated tree from 'restored_tensors'. Args: restored_tensors: the tensors that were loaded from a checkpoint. unused_restored_shapes: the shapes this object should conform to after restore. Not meaningful for trees. Returns: The operation that restores the state of the tree variable. """ with ops.control_dependencies([self._create_op]): return gen_model_ops.tree_deserialize( self._tree_handle, restored_tensors[0], params=self.params.serialized_params_proto) class TreeVariable(tracking.TrackableResource): """A tree model.""" def __init__(self, params, tree_config, stats_handle, name, container=None): self._params = params self._tree_config = tree_config self._stats_handle = stats_handle self._name = name self._container = container self._init_op = None super(TreeVariable, self).__init__() self._resource_handle = self._create_resource() def _create_resource(self): if context.executing_eagerly(): # TODO(allenl): This will leak memory due to kernel caching by the # shared_name attribute value (but is better than the alternative of # sharing everything by default when executing eagerly; hopefully creating # tables in a loop is uncommon). shared_name = "tree_variable_%d" % (ops.uid(),) else: shared_name = self._name return gen_model_ops.decision_tree_resource_handle_op( self._container, shared_name=shared_name, name=self._name) def _initialize(self): return gen_model_ops.create_tree_variable( self.resource_handle, self._tree_config, params=self._params.serialized_params_proto) @property def initializer(self): if self._init_op is None: self._init_op = self._initialize() return self._init_op def is_initialized(self): return gen_model_ops.tree_is_initialized_op(self.resource_handle) def _gather_saveables_for_checkpoint(self): """For object-based checkpointing.""" return { "tree_variable": functools.partial( TreeVariableSavable, params=self._params, tree_handle=self.resource_handle, stats_handle=self._stats_handle, create_op=self._init_op) } def tree_variable(params, tree_config, stats_handle, name, container=None): r"""Creates a tree model and returns a handle to it. Args: params: A TensorForestParams object. tree_config: A `Tensor` of type `string`. Serialized proto of the tree. stats_handle: Resource handle to the stats object. name: A name for the variable. container: An optional `string`. Defaults to `""`. Returns: A `Tensor` of type mutable `string`. The handle to the tree. """ with ops.name_scope(name, "TreeVariable") as name: tree_var = TreeVariable(params, tree_config, stats_handle, name, container) resource_handle = tree_var.resource_handle create_op = tree_var.initializer is_initialized_op = tree_var.is_initialized() # Adds the variable to the savable list. saveable = tree_var._gather_saveables_for_checkpoint()["tree_variable"]( # pylint: disable=protected-access name=resource_handle.name) ops.add_to_collection(ops.GraphKeys.SAVEABLE_OBJECTS, saveable) resources.register_resource(resource_handle, create_op, is_initialized_op) return resource_handle
tensorflow-master
tensorflow/contrib/tensor_forest/python/ops/model_ops.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Ops for preprocessing data.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.tensor_forest.python.ops import tensor_forest_ops from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import sparse_tensor from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import sparse_ops from tensorflow.python.platform import tf_logging as logging # Data column types for indicating categorical or other non-float values. DATA_FLOAT = 0 DATA_CATEGORICAL = 1 DTYPE_TO_FTYPE = { dtypes.string: DATA_CATEGORICAL, dtypes.int32: DATA_CATEGORICAL, dtypes.int64: DATA_CATEGORICAL, dtypes.float32: DATA_FLOAT, dtypes.float64: DATA_FLOAT } def CastToFloat(tensor): if tensor.dtype == dtypes.string: return tensor_forest_ops.reinterpret_string_to_float(tensor) elif tensor.dtype.is_integer: return math_ops.cast(tensor, dtypes.float32) else: return tensor # TODO(gilberth): If protos are ever allowed in dynamically loaded custom # op libraries, convert this to a proto like a sane person. class TensorForestDataSpec(object): def __init__(self): self.sparse = DataColumnCollection() self.dense = DataColumnCollection() self.dense_features_size = 0 def SerializeToString(self): return 'dense_features_size: %d dense: [%s] sparse: [%s]' % ( self.dense_features_size, self.dense.SerializeToString(), self.sparse.SerializeToString()) class DataColumnCollection(object): """Collection of DataColumns, meant to mimic a proto repeated field.""" def __init__(self): self.cols = [] def add(self): # pylint: disable=invalid-name self.cols.append(DataColumn()) return self.cols[-1] def size(self): # pylint: disable=invalid-name return len(self.cols) def SerializeToString(self): ret = '' for c in self.cols: ret += '{%s}' % c.SerializeToString() return ret class DataColumn(object): def __init__(self): self.name = '' self.original_type = '' self.size = 0 def SerializeToString(self): return 'name: {0} original_type: {1} size: {2}'.format(self.name, self.original_type, self.size) def GetColumnName(column_key, col_num): if isinstance(column_key, str): return column_key else: return getattr(column_key, 'column_name', str(col_num)) def ParseDataTensorOrDict(data): """Return a tensor to use for input data. The incoming features can be a dict where keys are the string names of the columns, which we turn into a single 2-D tensor. Args: data: `Tensor` or `dict` of `Tensor` objects. Returns: A 2-D tensor for input to tensor_forest, a keys tensor for the tf.Examples if they exist, and a list of the type of each column (e.g. continuous float, categorical). """ data_spec = TensorForestDataSpec() if isinstance(data, dict): dense_features_size = 0 dense_features = [] sparse_features = [] for k in sorted(data.keys()): is_sparse = isinstance(data[k], sparse_tensor.SparseTensor) if is_sparse: # TODO(gilberth): support sparse continuous. if data[k].dtype == dtypes.float32: logging.info('TensorForest does not support sparse continuous.') continue elif data_spec.sparse.size() == 0: col_spec = data_spec.sparse.add() col_spec.original_type = DATA_CATEGORICAL col_spec.name = 'all_sparse' col_spec.size = -1 sparse_features.append( sparse_tensor.SparseTensor(data[ k].indices, CastToFloat(data[k].values), data[k].dense_shape)) else: col_spec = data_spec.dense.add() col_spec.original_type = DTYPE_TO_FTYPE[data[k].dtype] col_spec.name = GetColumnName(k, len(dense_features)) # the second dimension of get_shape should always be known. shape = data[k].get_shape() if len(shape) == 1: col_spec.size = 1 else: col_spec.size = shape[1].value dense_features_size += col_spec.size dense_features.append(CastToFloat(data[k])) processed_dense_features = None processed_sparse_features = None if dense_features: processed_dense_features = array_ops.concat(dense_features, 1) data_spec.dense_features_size = dense_features_size if sparse_features: processed_sparse_features = sparse_ops.sparse_concat(1, sparse_features) logging.info(data_spec.SerializeToString()) return processed_dense_features, processed_sparse_features, data_spec elif isinstance(data, sparse_tensor.SparseTensor): col_spec = data_spec.sparse.add() col_spec.name = 'sparse_features' col_spec.original_type = DTYPE_TO_FTYPE[data.dtype] col_spec.size = -1 data_spec.dense_features_size = 0 return None, data, data_spec else: data = ops.convert_to_tensor(data) col_spec = data_spec.dense.add() col_spec.name = 'dense_features' col_spec.original_type = DTYPE_TO_FTYPE[data.dtype] col_spec.size = data.get_shape()[1] data_spec.dense_features_size = col_spec.size return data, None, data_spec def ParseLabelTensorOrDict(labels): """Return a tensor to use for input labels to tensor_forest. The incoming targets can be a dict where keys are the string names of the columns, which we turn into a single 1-D tensor for classification or 2-D tensor for regression. Converts sparse tensors to dense ones. Args: labels: `Tensor` or `dict` of `Tensor` objects. Returns: A 2-D tensor for labels/outputs. """ if isinstance(labels, dict): return math_ops.cast( array_ops.concat( [ sparse_ops.sparse_tensor_to_dense( labels[k], default_value=-1) if isinstance( labels, sparse_tensor.SparseTensor) else labels[k] for k in sorted(labels.keys()) ], 1), dtypes.float32) else: if isinstance(labels, sparse_tensor.SparseTensor): return math_ops.cast( sparse_ops.sparse_tensor_to_dense(labels, default_value=-1), dtypes.float32) else: return math_ops.cast(labels, dtypes.float32)
tensorflow-master
tensorflow/contrib/tensor_forest/python/ops/data_ops.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A collection of functions to be used as evaluation metrics.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib import losses from tensorflow.contrib.learn.python.learn.estimators import prediction_key from tensorflow.python.framework import dtypes from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import metrics from tensorflow.python.ops import nn INFERENCE_PROB_NAME = prediction_key.PredictionKey.PROBABILITIES INFERENCE_PRED_NAME = prediction_key.PredictionKey.CLASSES FEATURE_IMPORTANCE_NAME = 'global_feature_importance' def _top_k_generator(k): def _top_k(probabilities, targets): targets = math_ops.cast(targets, dtypes.int32) if targets.get_shape().ndims > 1: targets = array_ops.squeeze(targets, axis=[1]) return metrics.mean(nn.in_top_k(probabilities, targets, k)) return _top_k def _accuracy(predictions, targets, weights=None): return metrics.accuracy( labels=targets, predictions=predictions, weights=weights) def _r2(probabilities, targets, weights=None): targets = math_ops.cast(targets, dtypes.float32) y_mean = math_ops.reduce_mean(targets, 0) squares_total = math_ops.reduce_sum( math_ops.squared_difference(targets, y_mean), 0) squares_residuals = math_ops.reduce_sum( math_ops.squared_difference(targets, probabilities), 0) score = 1 - math_ops.reduce_sum(squares_residuals / squares_total) return metrics.mean(score, weights=weights) def _squeeze_and_onehot(targets, depth): targets = array_ops.squeeze(targets, axis=[1]) return array_ops.one_hot(math_ops.cast(targets, dtypes.int32), depth) def _sigmoid_entropy(probabilities, targets, weights=None): return metrics.mean( losses.sigmoid_cross_entropy(probabilities, _squeeze_and_onehot( targets, array_ops.shape(probabilities)[1])), weights=weights) def _softmax_entropy(probabilities, targets, weights=None): return metrics.mean( losses.sparse_softmax_cross_entropy(probabilities, math_ops.cast(targets, dtypes.int32)), weights=weights) def _predictions(predictions, unused_targets, **unused_kwargs): return predictions def _class_log_loss(probabilities, targets, weights=None): return metrics.mean( losses.log_loss(probabilities, _squeeze_and_onehot(targets, array_ops.shape(probabilities)[1])), weights=weights) def _precision(predictions, targets, weights=None): return metrics.precision( labels=targets, predictions=predictions, weights=weights) def _precision_at_thresholds(predictions, targets, weights=None): return metrics.precision_at_thresholds( labels=targets, predictions=array_ops.slice(predictions, [0, 1], [-1, 1]), thresholds=np.arange(0, 1, 0.01, dtype=np.float32), weights=weights) def _recall(predictions, targets, weights=None): return metrics.recall( labels=targets, predictions=predictions, weights=weights) def _recall_at_thresholds(predictions, targets, weights=None): return metrics.recall_at_thresholds( labels=targets, predictions=array_ops.slice(predictions, [0, 1], [-1, 1]), thresholds=np.arange(0, 1, 0.01, dtype=np.float32), weights=weights) def _auc(probs, targets, weights=None): return metrics.auc( labels=targets, predictions=array_ops.slice(probs, [0, 1], [-1, 1]), weights=weights) _EVAL_METRICS = { 'auc': _auc, 'sigmoid_entropy': _sigmoid_entropy, 'softmax_entropy': _softmax_entropy, 'accuracy': _accuracy, 'r2': _r2, 'predictions': _predictions, 'classification_log_loss': _class_log_loss, 'precision': _precision, 'precision_at_thresholds': _precision_at_thresholds, 'recall': _recall, 'recall_at_thresholds': _recall_at_thresholds, 'top_5': _top_k_generator(5) } _PREDICTION_KEYS = { 'auc': INFERENCE_PROB_NAME, 'sigmoid_entropy': INFERENCE_PROB_NAME, 'softmax_entropy': INFERENCE_PROB_NAME, 'accuracy': INFERENCE_PRED_NAME, 'r2': prediction_key.PredictionKey.SCORES, 'predictions': INFERENCE_PRED_NAME, 'classification_log_loss': INFERENCE_PROB_NAME, 'precision': INFERENCE_PRED_NAME, 'precision_at_thresholds': INFERENCE_PROB_NAME, 'recall': INFERENCE_PRED_NAME, 'recall_at_thresholds': INFERENCE_PROB_NAME, 'top_5': INFERENCE_PROB_NAME } def get_metric(metric_name): """Given a metric name, return the corresponding metric function.""" return _EVAL_METRICS[metric_name] def get_prediction_key(metric_name): return _PREDICTION_KEYS[metric_name]
tensorflow-master
tensorflow/contrib/tensor_forest/client/eval_metrics.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Random forest implementation in tensorflow.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function # pylint: disable=unused-import from tensorflow.contrib.tensor_forest.client import eval_metrics from tensorflow.contrib.tensor_forest.client import random_forest # pylint: enable=unused-import
tensorflow-master
tensorflow/contrib/tensor_forest/client/__init__.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for tf.contrib.tensor_forest.client.eval_metrics.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.tensor_forest.client import eval_metrics from tensorflow.python.framework import constant_op from tensorflow.python.framework import test_util from tensorflow.python.ops import variables from tensorflow.python.platform import googletest class EvalMetricsTest(test_util.TensorFlowTestCase): def testTop2(self): top_2_fn = eval_metrics._top_k_generator(2) probabilities = constant_op.constant([[0.1, 0.2, 0.3], [0.4, 0.7, 0.5], [0.9, 0.8, 0.2], [0.6, 0.4, 0.8]]) targets = constant_op.constant([[0], [2], [1], [1]]) in_top_2_op, update_op = top_2_fn(probabilities, targets) with self.cached_session(): # initializes internal accuracy vars variables.local_variables_initializer().run() # need to call in order to run the in_top_2_op internal operations because # it is a streaming function update_op.eval() self.assertNear(0.5, in_top_2_op.eval(), 0.0001) def testTop3(self): top_3_fn = eval_metrics._top_k_generator(3) probabilities = constant_op.constant([[0.1, 0.2, 0.6, 0.3, 0.5, 0.5], [0.1, 0.4, 0.7, 0.3, 0.5, 0.2], [0.1, 0.3, 0.8, 0.7, 0.4, 0.9], [0.9, 0.8, 0.1, 0.8, 0.2, 0.7], [0.3, 0.6, 0.9, 0.4, 0.8, 0.6]]) targets = constant_op.constant([3, 0, 2, 5, 1]) in_top_3_op, update_op = top_3_fn(probabilities, targets) with self.cached_session(): # initializes internal accuracy vars variables.local_variables_initializer().run() # need to call in order to run the in_top_3_op internal operations because # it is a streaming function update_op.eval() self.assertNear(0.4, in_top_3_op.eval(), 0.0001) def testAccuracy(self): predictions = constant_op.constant([0, 1, 3, 6, 5, 2, 7, 6, 4, 9]) targets = constant_op.constant([0, 1, 4, 6, 5, 1, 7, 5, 4, 8]) accuracy_op, update_op = eval_metrics._accuracy(predictions, targets) with self.cached_session(): variables.local_variables_initializer().run() # need to call in order to run the accuracy_op internal operations because # it is a streaming function update_op.eval() self.assertNear(0.6, accuracy_op.eval(), 0.0001) def testR2(self): scores = constant_op.constant( [1.2, 3.9, 2.1, 0.9, 2.2, 0.1, 6.0, 4.0, 0.9]) targets = constant_op.constant( [1.0, 4.3, 2.6, 0.5, 1.1, 0.7, 5.1, 3.4, 1.8]) r2_op, update_op = eval_metrics._r2(scores, targets) with self.cached_session(): # initializes internal accuracy vars variables.local_variables_initializer().run() # need to call in order to run the r2_op internal operations because # it is a streaming function update_op.eval() self.assertNear(0.813583, r2_op.eval(), 0.0001) if __name__ == '__main__': googletest.main()
tensorflow-master
tensorflow/contrib/tensor_forest/client/eval_metrics_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for TensorForestTrainer.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.learn.python.learn.datasets import base from tensorflow.contrib.tensor_forest.client import random_forest from tensorflow.contrib.tensor_forest.python import tensor_forest from tensorflow.python.estimator.canned import head as head_lib from tensorflow.python.estimator.inputs import numpy_io from tensorflow.python.feature_column import feature_column_lib as core_feature_column from tensorflow.python.framework import ops from tensorflow.python.ops.losses import losses from tensorflow.python.platform import test from tensorflow.python.training import checkpoint_utils def _get_classification_input_fns(): iris = base.load_iris() data = iris.data.astype(np.float32) labels = iris.target.astype(np.int32) train_input_fn = numpy_io.numpy_input_fn( x=data, y=labels, batch_size=150, num_epochs=None, shuffle=False) predict_input_fn = numpy_io.numpy_input_fn( x=data[:1,], y=None, batch_size=1, num_epochs=1, shuffle=False) return train_input_fn, predict_input_fn def _get_regression_input_fns(): boston = base.load_boston() data = boston.data.astype(np.float32) labels = boston.target.astype(np.int32) train_input_fn = numpy_io.numpy_input_fn( x=data, y=labels, batch_size=506, num_epochs=None, shuffle=False) predict_input_fn = numpy_io.numpy_input_fn( x=data[:1,], y=None, batch_size=1, num_epochs=1, shuffle=False) return train_input_fn, predict_input_fn class TensorForestTrainerTests(test.TestCase): def testClassification(self): """Tests multi-class classification using matrix data as input.""" hparams = tensor_forest.ForestHParams( num_trees=3, max_nodes=1000, num_classes=3, num_features=4, split_after_samples=20, inference_tree_paths=True) classifier = random_forest.TensorForestEstimator(hparams.fill()) input_fn, predict_input_fn = _get_classification_input_fns() classifier.fit(input_fn=input_fn, steps=100) res = classifier.evaluate(input_fn=input_fn, steps=10) self.assertEqual(1.0, res['accuracy']) self.assertAllClose(0.55144483, res['loss']) predictions = list(classifier.predict(input_fn=predict_input_fn)) self.assertAllClose([[0.576117, 0.211942, 0.211942]], [pred['probabilities'] for pred in predictions]) def testRegression(self): """Tests regression using matrix data as input.""" hparams = tensor_forest.ForestHParams( num_trees=5, max_nodes=1000, num_classes=1, num_features=13, regression=True, split_after_samples=20) regressor = random_forest.TensorForestEstimator(hparams.fill()) input_fn, predict_input_fn = _get_regression_input_fns() regressor.fit(input_fn=input_fn, steps=100) res = regressor.evaluate(input_fn=input_fn, steps=10) self.assertGreaterEqual(0.1, res['loss']) predictions = list(regressor.predict(input_fn=predict_input_fn)) self.assertAllClose([24.], [pred['scores'] for pred in predictions], atol=1) def testAdditionalOutputs(self): """Tests multi-class classification using matrix data as input.""" hparams = tensor_forest.ForestHParams( num_trees=1, max_nodes=100, num_classes=3, num_features=4, split_after_samples=20, inference_tree_paths=True) classifier = random_forest.TensorForestEstimator( hparams.fill(), keys_column='keys', include_all_in_serving=True) iris = base.load_iris() data = iris.data.astype(np.float32) labels = iris.target.astype(np.int32) input_fn = numpy_io.numpy_input_fn( x={ 'x': data, 'keys': np.arange(len(iris.data)).reshape(150, 1) }, y=labels, batch_size=10, num_epochs=1, shuffle=False) classifier.fit(input_fn=input_fn, steps=100) predictions = list(classifier.predict(input_fn=input_fn)) # Check that there is a key column, tree paths and var. for pred in predictions: self.assertTrue('keys' in pred) self.assertTrue('tree_paths' in pred) self.assertTrue('prediction_variance' in pred) def _assert_checkpoint(self, model_dir, global_step): reader = checkpoint_utils.load_checkpoint(model_dir) self.assertLessEqual( reader.get_tensor(ops.GraphKeys.GLOBAL_STEP), global_step) def testEarlyStopping(self): """Tests multi-class classification using matrix data as input.""" hparams = tensor_forest.ForestHParams( num_trees=100, max_nodes=10000, num_classes=3, num_features=4, split_after_samples=20, inference_tree_paths=True) classifier = random_forest.TensorForestEstimator( hparams.fill(), # Set a crazy threshold - 30% loss change. early_stopping_loss_threshold=0.3, early_stopping_rounds=2) input_fn, _ = _get_classification_input_fns() classifier.fit(input_fn=input_fn, steps=100) # We stopped early. self._assert_checkpoint(classifier.model_dir, global_step=5) class CoreTensorForestTests(test.TestCase): def testTrainEvaluateInferDoesNotThrowErrorForClassifier(self): head_fn = head_lib._multi_class_head_with_softmax_cross_entropy_loss( n_classes=3, loss_reduction=losses.Reduction.SUM_OVER_NONZERO_WEIGHTS) hparams = tensor_forest.ForestHParams( num_trees=3, max_nodes=1000, num_classes=3, num_features=4, split_after_samples=20, inference_tree_paths=True) est = random_forest.CoreTensorForestEstimator(hparams.fill(), head=head_fn) input_fn, predict_input_fn = _get_classification_input_fns() est.train(input_fn=input_fn, steps=100) res = est.evaluate(input_fn=input_fn, steps=1) self.assertEqual(1.0, res['accuracy']) self.assertAllClose(0.55144483, res['loss']) predictions = list(est.predict(input_fn=predict_input_fn)) self.assertAllClose([[0.576117, 0.211942, 0.211942]], [pred['probabilities'] for pred in predictions]) def testRegression(self): """Tests regression using matrix data as input.""" head_fn = head_lib._regression_head( label_dimension=1, loss_reduction=losses.Reduction.SUM_OVER_NONZERO_WEIGHTS) hparams = tensor_forest.ForestHParams( num_trees=5, max_nodes=1000, num_classes=1, num_features=13, regression=True, split_after_samples=20) regressor = random_forest.CoreTensorForestEstimator( hparams.fill(), head=head_fn) input_fn, predict_input_fn = _get_regression_input_fns() regressor.train(input_fn=input_fn, steps=100) res = regressor.evaluate(input_fn=input_fn, steps=10) self.assertGreaterEqual(0.1, res['loss']) predictions = list(regressor.predict(input_fn=predict_input_fn)) self.assertAllClose( [[24.]], [pred['predictions'] for pred in predictions], atol=1) def testWithFeatureColumns(self): head_fn = head_lib._multi_class_head_with_softmax_cross_entropy_loss( n_classes=3, loss_reduction=losses.Reduction.SUM_OVER_NONZERO_WEIGHTS) hparams = tensor_forest.ForestHParams( num_trees=3, max_nodes=1000, num_classes=3, num_features=4, split_after_samples=20, inference_tree_paths=True) est = random_forest.CoreTensorForestEstimator( hparams.fill(), head=head_fn, feature_columns=[core_feature_column.numeric_column('x')]) iris = base.load_iris() data = {'x': iris.data.astype(np.float32)} labels = iris.target.astype(np.int32) input_fn = numpy_io.numpy_input_fn( x=data, y=labels, batch_size=150, num_epochs=None, shuffle=False) est.train(input_fn=input_fn, steps=100) res = est.evaluate(input_fn=input_fn, steps=1) self.assertEqual(1.0, res['accuracy']) self.assertAllClose(0.55144483, res['loss']) def testAutofillsClassificationHead(self): hparams = tensor_forest.ForestHParams( num_trees=3, max_nodes=1000, num_classes=3, num_features=4, split_after_samples=20, inference_tree_paths=True) est = random_forest.CoreTensorForestEstimator(hparams.fill()) input_fn, _ = _get_classification_input_fns() est.train(input_fn=input_fn, steps=100) res = est.evaluate(input_fn=input_fn, steps=1) self.assertEqual(1.0, res['accuracy']) self.assertAllClose(0.55144483, res['loss']) def testAutofillsRegressionHead(self): hparams = tensor_forest.ForestHParams( num_trees=5, max_nodes=1000, num_classes=1, num_features=13, regression=True, split_after_samples=20) regressor = random_forest.CoreTensorForestEstimator(hparams.fill()) input_fn, predict_input_fn = _get_regression_input_fns() regressor.train(input_fn=input_fn, steps=100) res = regressor.evaluate(input_fn=input_fn, steps=10) self.assertGreaterEqual(0.1, res['loss']) predictions = list(regressor.predict(input_fn=predict_input_fn)) self.assertAllClose( [[24.]], [pred['predictions'] for pred in predictions], atol=1) def testAdditionalOutputs(self): """Tests multi-class classification using matrix data as input.""" hparams = tensor_forest.ForestHParams( num_trees=1, max_nodes=100, num_classes=3, num_features=4, split_after_samples=20, inference_tree_paths=True) classifier = random_forest.CoreTensorForestEstimator( hparams.fill(), keys_column='keys', include_all_in_serving=True) iris = base.load_iris() data = iris.data.astype(np.float32) labels = iris.target.astype(np.int32) input_fn = numpy_io.numpy_input_fn( x={ 'x': data, 'keys': np.arange(len(iris.data)).reshape(150, 1) }, y=labels, batch_size=10, num_epochs=1, shuffle=False) classifier.train(input_fn=input_fn, steps=100) predictions = list(classifier.predict(input_fn=input_fn)) # Check that there is a key column, tree paths and var. for pred in predictions: self.assertTrue('keys' in pred) self.assertTrue('tree_paths' in pred) self.assertTrue('prediction_variance' in pred) def _assert_checkpoint(self, model_dir, global_step): reader = checkpoint_utils.load_checkpoint(model_dir) self.assertLessEqual( reader.get_tensor(ops.GraphKeys.GLOBAL_STEP), global_step) def testEarlyStopping(self): head_fn = head_lib._multi_class_head_with_softmax_cross_entropy_loss( n_classes=3, loss_reduction=losses.Reduction.SUM_OVER_NONZERO_WEIGHTS) hparams = tensor_forest.ForestHParams( num_trees=3, max_nodes=1000, num_classes=3, num_features=4, split_after_samples=20, inference_tree_paths=True) est = random_forest.CoreTensorForestEstimator( hparams.fill(), head=head_fn, # Set a crazy threshold - 30% loss change. early_stopping_loss_threshold=0.3, early_stopping_rounds=2) input_fn, _ = _get_classification_input_fns() est.train(input_fn=input_fn, steps=100) # We stopped early. self._assert_checkpoint(est.model_dir, global_step=8) if __name__ == "__main__": test.main()
tensorflow-master
tensorflow/contrib/tensor_forest/client/random_forest_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A tf.learn implementation of online extremely random forests.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib import layers from tensorflow.contrib.estimator.python.estimator import head as core_head_lib from tensorflow.contrib.learn.python.learn.estimators import constants from tensorflow.contrib.learn.python.learn.estimators import estimator from tensorflow.contrib.learn.python.learn.estimators import head as head_lib from tensorflow.contrib.learn.python.learn.estimators import model_fn as model_fn_lib from tensorflow.contrib.tensor_forest.client import eval_metrics from tensorflow.contrib.tensor_forest.python import tensor_forest from tensorflow.python.estimator import estimator as core_estimator from tensorflow.python.estimator.export.export_output import PredictOutput from tensorflow.python.feature_column import feature_column as fc_core from tensorflow.python.framework import ops from tensorflow.python.framework import sparse_tensor from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import resource_variable_ops from tensorflow.python.ops import state_ops from tensorflow.python.ops import variable_scope from tensorflow.python.ops.losses import losses from tensorflow.python.platform import tf_logging as logging from tensorflow.python.summary import summary from tensorflow.python.training import session_run_hook from tensorflow.python.training import training_util KEYS_NAME = 'keys' LOSS_NAME = 'rf_training_loss' TREE_PATHS_PREDICTION_KEY = 'tree_paths' VARIANCE_PREDICTION_KEY = 'prediction_variance' ALL_SERVING_KEY = 'tensorforest_all' EPSILON = 0.000001 class ModelBuilderOutputType(object): MODEL_FN_OPS = 0 ESTIMATOR_SPEC = 1 class TensorForestRunOpAtEndHook(session_run_hook.SessionRunHook): def __init__(self, op_dict): """Ops is a dict of {name: op} to run before the session is destroyed.""" self._ops = op_dict def end(self, session): for name in sorted(self._ops.keys()): logging.info('{0}: {1}'.format(name, session.run(self._ops[name]))) class TensorForestLossHook(session_run_hook.SessionRunHook): """Monitor to request stop when loss stops decreasing.""" def __init__(self, early_stopping_rounds, early_stopping_loss_threshold=None, loss_op=None): self.early_stopping_rounds = early_stopping_rounds self.early_stopping_loss_threshold = early_stopping_loss_threshold self.loss_op = loss_op self.min_loss = None self.last_step = -1 # self.steps records the number of steps for which the loss has been # non-decreasing self.steps = 0 def before_run(self, run_context): loss = (self.loss_op if self.loss_op is not None else run_context.session.graph.get_operation_by_name( LOSS_NAME).outputs[0]) return session_run_hook.SessionRunArgs( {'global_step': training_util.get_global_step(), 'current_loss': loss}) def after_run(self, run_context, run_values): current_loss = run_values.results['current_loss'] current_step = run_values.results['global_step'] self.steps += 1 # Guard against the global step going backwards, which might happen # if we recover from something. if self.last_step == -1 or self.last_step > current_step: logging.info('TensorForestLossHook resetting last_step.') self.last_step = current_step self.steps = 0 self.min_loss = None return self.last_step = current_step if (self.min_loss is None or current_loss < (self.min_loss - self.min_loss * self.early_stopping_loss_threshold)): self.min_loss = current_loss self.steps = 0 if self.steps > self.early_stopping_rounds: logging.info('TensorForestLossHook requesting stop.') run_context.request_stop() def _get_default_head(params, weights_name, output_type, name=None): """Creates a default head based on a type of a problem.""" if output_type == ModelBuilderOutputType.MODEL_FN_OPS: if params.regression: return head_lib.regression_head( weight_column_name=weights_name, label_dimension=params.num_outputs, enable_centered_bias=False, head_name=name) else: return head_lib.multi_class_head( params.num_classes, weight_column_name=weights_name, enable_centered_bias=False, head_name=name) else: if params.regression: return core_head_lib.regression_head( weight_column=weights_name, label_dimension=params.num_outputs, name=name, loss_reduction=losses.Reduction.SUM_OVER_BATCH_SIZE) else: if params.num_classes == 2: return core_head_lib.binary_classification_head( weight_column=weights_name, name=name, loss_reduction=losses.Reduction.SUM_OVER_BATCH_SIZE) else: return core_head_lib.multi_class_head( n_classes=params.num_classes, weight_column=weights_name, name=name, loss_reduction=losses.Reduction.SUM_OVER_BATCH_SIZE) def get_model_fn(params, graph_builder_class, device_assigner, feature_columns=None, weights_name=None, model_head=None, keys_name=None, early_stopping_rounds=100, early_stopping_loss_threshold=0.001, num_trainers=1, trainer_id=0, report_feature_importances=False, local_eval=False, head_scope=None, include_all_in_serving=False, output_type=ModelBuilderOutputType.MODEL_FN_OPS): """Return a model function given a way to construct a graph builder.""" if model_head is None: model_head = _get_default_head(params, weights_name, output_type) def _model_fn(features, labels, mode): """Function that returns predictions, training loss, and training op.""" if (isinstance(features, ops.Tensor) or isinstance(features, sparse_tensor.SparseTensor)): features = {'features': features} if feature_columns: features = features.copy() if output_type == ModelBuilderOutputType.MODEL_FN_OPS: features.update(layers.transform_features(features, feature_columns)) else: for fc in feature_columns: tensor = fc_core._transform_features(features, [fc])[fc] # pylint: disable=protected-access features[fc.name] = tensor weights = None if weights_name and weights_name in features: weights = features.pop(weights_name) keys = None if keys_name and keys_name in features: keys = features.pop(keys_name) # If we're doing eval, optionally ignore device_assigner. # Also ignore device assigner if we're exporting (mode == INFER) dev_assn = device_assigner if (mode == model_fn_lib.ModeKeys.INFER or (local_eval and mode == model_fn_lib.ModeKeys.EVAL)): dev_assn = None graph_builder = graph_builder_class(params, device_assigner=dev_assn) logits, tree_paths, regression_variance = graph_builder.inference_graph( features) summary.scalar('average_tree_size', graph_builder.average_size()) # For binary classification problems, convert probabilities to logits. # Includes hack to get around the fact that a probability might be 0 or 1. if not params.regression and params.num_classes == 2: class_1_probs = array_ops.slice(logits, [0, 1], [-1, 1]) logits = math_ops.log( math_ops.maximum(class_1_probs / math_ops.maximum( 1.0 - class_1_probs, EPSILON), EPSILON)) # labels might be None if we're doing prediction (which brings up the # question of why we force everything to adhere to a single model_fn). training_graph = None training_hooks = [] if labels is not None and mode == model_fn_lib.ModeKeys.TRAIN: with ops.control_dependencies([logits.op]): training_graph = control_flow_ops.group( graph_builder.training_graph( features, labels, input_weights=weights, num_trainers=num_trainers, trainer_id=trainer_id), state_ops.assign_add(training_util.get_global_step(), 1)) # Put weights back in if weights is not None: features[weights_name] = weights # TensorForest's training graph isn't calculated directly from the loss # like many other models. def _train_fn(unused_loss): return training_graph # Ops are run in lexigraphical order of their keys. Run the resource # clean-up op last. all_handles = graph_builder.get_all_resource_handles() ops_at_end = { '9: clean up resources': control_flow_ops.group(*[ resource_variable_ops.destroy_resource_op(handle) for handle in all_handles ]) } if report_feature_importances: ops_at_end['1: feature_importances'] = ( graph_builder.feature_importances()) training_hooks = [TensorForestRunOpAtEndHook(ops_at_end)] if output_type == ModelBuilderOutputType.MODEL_FN_OPS: model_ops = model_head.create_model_fn_ops( features=features, labels=labels, mode=mode, train_op_fn=_train_fn, logits=logits, scope=head_scope) if early_stopping_rounds: training_hooks.append( TensorForestLossHook( early_stopping_rounds, early_stopping_loss_threshold=early_stopping_loss_threshold, loss_op=model_ops.loss)) model_ops.training_hooks.extend(training_hooks) if keys is not None: model_ops.predictions[keys_name] = keys if params.inference_tree_paths: model_ops.predictions[TREE_PATHS_PREDICTION_KEY] = tree_paths model_ops.predictions[VARIANCE_PREDICTION_KEY] = regression_variance if include_all_in_serving: # In order to serve the variance we need to add the prediction dict # to output_alternatives dict. if not model_ops.output_alternatives: model_ops.output_alternatives = {} model_ops.output_alternatives[ALL_SERVING_KEY] = ( constants.ProblemType.UNSPECIFIED, model_ops.predictions) return model_ops else: # Estimator spec estimator_spec = model_head.create_estimator_spec( features=features, mode=mode, labels=labels, train_op_fn=_train_fn, logits=logits) if early_stopping_rounds: training_hooks.append( TensorForestLossHook( early_stopping_rounds, early_stopping_loss_threshold=early_stopping_loss_threshold, loss_op=estimator_spec.loss)) estimator_spec = estimator_spec._replace( training_hooks=training_hooks + list(estimator_spec.training_hooks)) if keys is not None: estimator_spec.predictions[keys_name] = keys if params.inference_tree_paths: estimator_spec.predictions[TREE_PATHS_PREDICTION_KEY] = tree_paths estimator_spec.predictions[VARIANCE_PREDICTION_KEY] = regression_variance if include_all_in_serving: outputs = estimator_spec.export_outputs if not outputs: outputs = {} outputs = {ALL_SERVING_KEY: PredictOutput(estimator_spec.predictions)} print(estimator_spec.export_outputs) # In order to serve the variance we need to add the prediction dict # to output_alternatives dict. estimator_spec = estimator_spec._replace(export_outputs=outputs) return estimator_spec return _model_fn class TensorForestEstimator(estimator.Estimator): """An estimator that can train and evaluate a random forest. Example: ```python params = tf.contrib.tensor_forest.python.tensor_forest.ForestHParams( num_classes=2, num_features=40, num_trees=10, max_nodes=1000) # Estimator using the default graph builder. estimator = TensorForestEstimator(params, model_dir=model_dir) # Or estimator using TrainingLossForest as the graph builder. estimator = TensorForestEstimator( params, graph_builder_class=tensor_forest.TrainingLossForest, model_dir=model_dir) # Input builders def input_fn_train: # returns x, y ... def input_fn_eval: # returns x, y ... estimator.fit(input_fn=input_fn_train) estimator.evaluate(input_fn=input_fn_eval) # Predict returns an iterable of dicts. results = list(estimator.predict(x=x)) prob0 = results[0][eval_metrics.INFERENCE_PROB_NAME] prediction0 = results[0][eval_metrics.INFERENCE_PRED_NAME] ``` """ def __init__(self, params, device_assigner=None, model_dir=None, feature_columns=None, graph_builder_class=tensor_forest.RandomForestGraphs, config=None, weight_column=None, keys_column=None, feature_engineering_fn=None, early_stopping_rounds=100, early_stopping_loss_threshold=0.001, num_trainers=1, trainer_id=0, report_feature_importances=False, local_eval=False, version=None, head=None, include_all_in_serving=False): """Initializes a TensorForestEstimator instance. Args: params: ForestHParams object that holds random forest hyperparameters. These parameters will be passed into `model_fn`. device_assigner: An `object` instance that controls how trees get assigned to devices. If `None`, will use `tensor_forest.RandomForestDeviceAssigner`. model_dir: Directory to save model parameters, graph, etc. To continue training a previously saved model, load checkpoints saved to this directory into an estimator. feature_columns: An iterable containing all the feature columns used by the model. All items in the set should be instances of classes derived from `_FeatureColumn`. graph_builder_class: An `object` instance that defines how TF graphs for random forest training and inference are built. By default will use `tensor_forest.RandomForestGraphs`. Can be overridden by version kwarg. config: `RunConfig` object to configure the runtime settings. weight_column: A string defining feature column name representing weights. Will be multiplied by the loss of the example. Used to downweight or boost examples during training. keys_column: A string naming one of the features to strip out and pass through into the inference/eval results dict. Useful for associating specific examples with their prediction. feature_engineering_fn: Feature engineering function. Takes features and labels which are the output of `input_fn` and returns features and labels which will be fed into the model. early_stopping_rounds: Allows training to terminate early if the forest is no longer growing. 100 by default. Set to a Falsy value to disable the default training hook. early_stopping_loss_threshold: Percentage (as fraction) that loss must improve by within early_stopping_rounds steps, otherwise training will terminate. num_trainers: Number of training jobs, which will partition trees among them. trainer_id: Which trainer this instance is. report_feature_importances: If True, print out feature importances during evaluation. local_eval: If True, don't use a device assigner for eval. This is to support some common setups where eval is done on a single machine, even though training might be distributed. version: Unused. head: A heads_lib.Head object that calculates losses and such. If None, one will be automatically created based on params. include_all_in_serving: if True, allow preparation of the complete prediction dict including the variance to be exported for serving with the Servo lib; and it also requires calling export_savedmodel with default_output_alternative_key=ALL_SERVING_KEY, i.e. estimator.export_savedmodel(export_dir_base=your_export_dir, serving_input_fn=your_export_input_fn, default_output_alternative_key=ALL_SERVING_KEY) if False, resort to default behavior, i.e. export scores and probabilities but no variances. In this case default_output_alternative_key should be None while calling export_savedmodel(). Note, that due to backward compatibility we cannot always set include_all_in_serving to True because in this case calling export_saved_model() without default_output_alternative_key=ALL_SERVING_KEY (legacy behavior) the saved_model_export_utils.get_output_alternatives() would raise ValueError. Returns: A `TensorForestEstimator` instance. """ # Override default number of trainers if config is provided. if num_trainers == 1 and config is not None: num_trainers = max(1, config.num_worker_replicas) super(TensorForestEstimator, self).__init__( model_fn=get_model_fn( params.fill(), graph_builder_class, device_assigner, feature_columns=feature_columns, model_head=head, weights_name=weight_column, keys_name=keys_column, early_stopping_rounds=early_stopping_rounds, early_stopping_loss_threshold=early_stopping_loss_threshold, num_trainers=num_trainers, trainer_id=trainer_id, report_feature_importances=report_feature_importances, local_eval=local_eval, include_all_in_serving=include_all_in_serving, ), model_dir=model_dir, config=config, feature_engineering_fn=feature_engineering_fn) def get_combined_model_fn(model_fns): """Get a combined model function given a list of other model fns. The model function returned will call the individual model functions and combine them appropriately. For: training ops: tf.group them. loss: average them. predictions: concat probabilities such that predictions[*][0-C1] are the probabilities for output 1 (where C1 is the number of classes in output 1), predictions[*][C1-(C1+C2)] are the probabilities for output 2 (where C2 is the number of classes in output 2), etc. Also stack predictions such that predictions[i][j] is the class prediction for example i and output j. This assumes that labels are 2-dimensional, with labels[i][j] being the label for example i and output j, where forest j is trained using only output j. Args: model_fns: A list of model functions obtained from get_model_fn. Returns: A ModelFnOps instance. """ def _model_fn(features, labels, mode): """Function that returns predictions, training loss, and training op.""" model_fn_ops = [] for i in range(len(model_fns)): with variable_scope.variable_scope('label_{0}'.format(i)): sliced_labels = array_ops.slice(labels, [0, i], [-1, 1]) model_fn_ops.append( model_fns[i](features, sliced_labels, mode)) training_hooks = [] for mops in model_fn_ops: training_hooks += mops.training_hooks predictions = {} if (mode == model_fn_lib.ModeKeys.EVAL or mode == model_fn_lib.ModeKeys.INFER): # Flatten the probabilities into one dimension. predictions[eval_metrics.INFERENCE_PROB_NAME] = array_ops.concat( [mops.predictions[eval_metrics.INFERENCE_PROB_NAME] for mops in model_fn_ops], axis=1) predictions[eval_metrics.INFERENCE_PRED_NAME] = array_ops.stack( [mops.predictions[eval_metrics.INFERENCE_PRED_NAME] for mops in model_fn_ops], axis=1) loss = None if (mode == model_fn_lib.ModeKeys.EVAL or mode == model_fn_lib.ModeKeys.TRAIN): loss = math_ops.reduce_sum( array_ops.stack( [mops.loss for mops in model_fn_ops])) / len(model_fn_ops) train_op = None if mode == model_fn_lib.ModeKeys.TRAIN: train_op = control_flow_ops.group( *[mops.train_op for mops in model_fn_ops]) return model_fn_lib.ModelFnOps( mode=mode, predictions=predictions, loss=loss, train_op=train_op, training_hooks=training_hooks, scaffold=None, output_alternatives=None) return _model_fn class MultiForestMultiHeadEstimator(estimator.Estimator): """An estimator that can train a forest for a multi-headed problems. This class essentially trains separate forests (each with their own ForestHParams) for each output. For multi-headed regression, a single-headed TensorForestEstimator can be used to train a single model that predicts all outputs. This class can be used to train separate forests for each output. """ def __init__(self, params_list, device_assigner=None, model_dir=None, feature_columns=None, graph_builder_class=tensor_forest.RandomForestGraphs, config=None, weight_column=None, keys_column=None, feature_engineering_fn=None, early_stopping_rounds=100, num_trainers=1, trainer_id=0, report_feature_importances=False, local_eval=False): """See TensorForestEstimator.__init__.""" model_fns = [] # Override default number of trainers if config is provided. if num_trainers == 1 and config is not None: num_trainers = max(1, config.num_worker_replicas) for i in range(len(params_list)): params = params_list[i].fill() model_fns.append( get_model_fn( params, graph_builder_class, device_assigner, model_head=_get_default_head( params, weight_column, name='head{0}'.format(i), output_type=ModelBuilderOutputType.MODEL_FN_OPS), weights_name=weight_column, keys_name=keys_column, early_stopping_rounds=early_stopping_rounds, num_trainers=num_trainers, trainer_id=trainer_id, report_feature_importances=report_feature_importances, local_eval=local_eval, head_scope='output{0}'.format(i))) super(MultiForestMultiHeadEstimator, self).__init__( model_fn=get_combined_model_fn(model_fns), model_dir=model_dir, config=config, feature_engineering_fn=feature_engineering_fn) class CoreTensorForestEstimator(core_estimator.Estimator): """A CORE estimator that can train and evaluate a random forest. Example: ```python params = tf.contrib.tensor_forest.python.tensor_forest.ForestHParams( num_classes=2, num_features=40, num_trees=10, max_nodes=1000) # Estimator using the default graph builder. estimator = CoreTensorForestEstimator(params, model_dir=model_dir) # Or estimator using TrainingLossForest as the graph builder. estimator = CoreTensorForestEstimator( params, graph_builder_class=tensor_forest.TrainingLossForest, model_dir=model_dir) # Input builders def input_fn_train: # returns x, y ... def input_fn_eval: # returns x, y ... estimator.train(input_fn=input_fn_train) estimator.evaluate(input_fn=input_fn_eval) # Predict returns an iterable of dicts. results = list(estimator.predict(x=x)) prob0 = results[0][eval_metrics.INFERENCE_PROB_NAME] prediction0 = results[0][eval_metrics.INFERENCE_PRED_NAME] ``` """ def __init__(self, params, device_assigner=None, model_dir=None, feature_columns=None, graph_builder_class=tensor_forest.RandomForestGraphs, config=None, weight_column=None, keys_column=None, feature_engineering_fn=None, early_stopping_rounds=100, early_stopping_loss_threshold=0.001, num_trainers=1, trainer_id=0, report_feature_importances=False, local_eval=False, version=None, head=None, include_all_in_serving=False): """Initializes a TensorForestEstimator instance. Args: params: ForestHParams object that holds random forest hyperparameters. These parameters will be passed into `model_fn`. device_assigner: An `object` instance that controls how trees get assigned to devices. If `None`, will use `tensor_forest.RandomForestDeviceAssigner`. model_dir: Directory to save model parameters, graph, etc. To continue training a previously saved model, load checkpoints saved to this directory into an estimator. feature_columns: An iterable containing all the feature columns used by the model. All items in the set should be instances of classes derived from `_FeatureColumn`. graph_builder_class: An `object` instance that defines how TF graphs for random forest training and inference are built. By default will use `tensor_forest.RandomForestGraphs`. Can be overridden by version kwarg. config: `RunConfig` object to configure the runtime settings. weight_column: A string defining feature column name representing weights. Will be multiplied by the loss of the example. Used to downweight or boost examples during training. keys_column: A string naming one of the features to strip out and pass through into the inference/eval results dict. Useful for associating specific examples with their prediction. feature_engineering_fn: Feature engineering function. Takes features and labels which are the output of `input_fn` and returns features and labels which will be fed into the model. early_stopping_rounds: Allows training to terminate early if the forest is no longer growing. 100 by default. Set to a Falsy value to disable the default training hook. early_stopping_loss_threshold: Percentage (as fraction) that loss must improve by within early_stopping_rounds steps, otherwise training will terminate. num_trainers: Number of training jobs, which will partition trees among them. trainer_id: Which trainer this instance is. report_feature_importances: If True, print out feature importances during evaluation. local_eval: If True, don't use a device assigner for eval. This is to support some common setups where eval is done on a single machine, even though training might be distributed. version: Unused. head: A heads_lib.Head object that calculates losses and such. If None, one will be automatically created based on params. include_all_in_serving: if True, allow preparation of the complete prediction dict including the variance to be exported for serving with the Servo lib; and it also requires calling export_savedmodel with default_output_alternative_key=ALL_SERVING_KEY, i.e. estimator.export_savedmodel(export_dir_base=your_export_dir, serving_input_fn=your_export_input_fn, default_output_alternative_key=ALL_SERVING_KEY) if False, resort to default behavior, i.e. export scores and probabilities but no variances. In this case default_output_alternative_key should be None while calling export_savedmodel(). Note, that due to backward compatibility we cannot always set include_all_in_serving to True because in this case calling export_saved_model() without default_output_alternative_key=ALL_SERVING_KEY (legacy behavior) the saved_model_export_utils.get_output_alternatives() would raise ValueError. Returns: A `TensorForestEstimator` instance. """ # Override default number of trainers if config is provided. if num_trainers == 1 and config is not None: num_trainers = max(1, config.num_worker_replicas) if trainer_id == 0 and config is not None: trainer_id = config.global_id_in_cluster super(CoreTensorForestEstimator, self).__init__( model_fn=get_model_fn( params.fill(), graph_builder_class, device_assigner, feature_columns=feature_columns, model_head=head, weights_name=weight_column, keys_name=keys_column, early_stopping_rounds=early_stopping_rounds, early_stopping_loss_threshold=early_stopping_loss_threshold, num_trainers=num_trainers, trainer_id=trainer_id, report_feature_importances=report_feature_importances, local_eval=local_eval, include_all_in_serving=include_all_in_serving, output_type=ModelBuilderOutputType.ESTIMATOR_SPEC), model_dir=model_dir, config=config)
tensorflow-master
tensorflow/contrib/tensor_forest/client/random_forest.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Initialize tensor_forest/hybrid.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function # pylint: disable=unused-import,wildcard-import from tensorflow.contrib.tensor_forest.hybrid.python import * # pylint: enable=unused-import,wildcard-import
tensorflow-master
tensorflow/contrib/tensor_forest/hybrid/__init__.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Defines the layer abstraction for hybrid models.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.framework.python.ops import variables as framework_variables class HybridLayer(object): """Layers are building blocks for hybrid models.""" def _define_vars(self, params, **kwargs): """Override to define the TensorFlow variables for the layer.""" raise NotImplementedError # pylint: disable=unused-argument def __init__(self, params, layer_num, device_assigner, *args, **kwargs): self.layer_num = layer_num self.device_assigner = ( device_assigner or framework_variables.VariableDeviceChooser()) self.params = params self._define_vars(params, **kwargs) def inference_graph(self, data, data_spec=None): raise NotImplementedError
tensorflow-master
tensorflow/contrib/tensor_forest/hybrid/python/hybrid_layer.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for the hybrid tensor forest model.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function # pylint: disable=unused-import from tensorflow.contrib.tensor_forest.hybrid.python import hybrid_model from tensorflow.contrib.tensor_forest.hybrid.python.layers import fully_connected from tensorflow.contrib.tensor_forest.python import tensor_forest from tensorflow.python.framework import test_util from tensorflow.python.platform import googletest class HybridLayerTest(test_util.TensorFlowTestCase): def setUp(self): self.params = tensor_forest.ForestHParams( num_classes=3, num_features=7, layer_size=11, num_layers=13, num_trees=17, connection_probability=0.1, hybrid_tree_depth=4, regularization_strength=0.01, regularization="", weight_init_mean=0.0, weight_init_std=0.1) self.params.num_nodes = 2**self.params.hybrid_tree_depth - 1 self.params.num_leaves = 2**(self.params.hybrid_tree_depth - 1) def testLayerNums(self): l1 = fully_connected.FullyConnectedLayer(self.params, 0, None) self.assertEquals(l1.layer_num, 0) l2 = fully_connected.FullyConnectedLayer(self.params, 1, None) self.assertEquals(l2.layer_num, 1) l3 = fully_connected.FullyConnectedLayer(self.params, 2, None) self.assertEquals(l3.layer_num, 2) if __name__ == "__main__": googletest.main()
tensorflow-master
tensorflow/contrib/tensor_forest/hybrid/python/hybrid_layer_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Defines the model abstraction for hybrid models.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections from tensorflow.contrib import layers from tensorflow.contrib.framework.python.ops import variables as framework_variables from tensorflow.python.framework import dtypes from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn_ops from tensorflow.python.ops import variables from tensorflow.python.training import adagrad class HybridModel(object): """Defines a hybrid model. Models chain together the results of inference layers and provide training capabilities. """ # pylint: disable=unused-argument def __init__(self, params, device_assigner=None, optimizer_class=adagrad.AdagradOptimizer, **kwargs): self.device_assigner = ( device_assigner or framework_variables.VariableDeviceChooser()) self.params = params self.optimizer = optimizer_class(self.params.learning_rate) self.is_regression = params.regression self.regularizer = None if params.regularization == "l1": self.regularizer = layers.l1_regularizer( self.params.regularization_strength) elif params.regularization == "l2": self.regularizer = layers.l2_regularizer( self.params.regularization_strength) def _do_layer_inference(self, layer, data): # If this is a collection of layers, return the mean of their inference # results. if isinstance(layer, collections.Iterable): return math_ops.reduce_mean( array_ops.stack([l.inference_graph(data) for l in layer]), 0) # If this is a single layer, return its inference result. else: return layer.inference_graph(data) def _base_inference(self, data, data_spec=None): """Returns an op that performs inference without a softmax.""" inference_result = self._do_layer_inference(self.layers[0], data) for layer in self.layers[1:]: inference_result = self._do_layer_inference(layer, inference_result) output_size = 1 if self.is_regression else self.params.num_classes output = layers.fully_connected( inference_result, output_size, activation_fn=array_ops.identity) return output def inference_graph(self, data, data_spec=None): """Returns the op that performs inference on a batch of data.""" return nn_ops.softmax(self._base_inference(data, data_spec=data_spec)) def training_inference_graph(self, data, data_spec=None): """Returns an inference-without-softmax op for training purposes.""" return self._base_inference(data, data_spec=data_spec) def predict_proba(self, data, data_spec=None): inference_result = self.inference_graph(data, data_spec=data_spec) probabilities = nn_ops.softmax(inference_result, name="probabilities") return probabilities def training_graph(self, data, labels, data_spec=None, epoch=None): """Returns the op that trains the hybrid model.""" return self.optimizer.minimize(self.training_loss(data, labels)) def loss(self, data, labels): """The loss to minimize while training.""" if self.is_regression: diff = self.training_inference_graph(data) - math_ops.cast( labels, dtypes.float32) mean_squared_error = math_ops.reduce_mean(diff * diff) root_mean_squared_error = math_ops.sqrt(mean_squared_error, name="loss") loss = root_mean_squared_error else: loss = math_ops.reduce_mean( nn_ops.sparse_softmax_cross_entropy_with_logits( labels=array_ops.squeeze(math_ops.cast(labels, dtypes.int32)), logits=self.training_inference_graph(data)), name="loss") if self.regularizer: loss += layers.apply_regularization(self.regularizer, variables.trainable_variables()) return loss def training_loss(self, data, labels): return self.loss(data, labels) def validation_loss(self, data, labels): return self.loss(data, labels)
tensorflow-master
tensorflow/contrib/tensor_forest/hybrid/python/hybrid_model.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Initialize tensor_forest/hybrid/python.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.tensor_forest.hybrid.python import layers from tensorflow.contrib.tensor_forest.hybrid.python import models from tensorflow.contrib.tensor_forest.hybrid.python.ops import training_ops
tensorflow-master
tensorflow/contrib/tensor_forest/hybrid/python/__init__.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Initialize tensor_forest/hybrid/python/layers.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function
tensorflow-master
tensorflow/contrib/tensor_forest/hybrid/python/layers/__init__.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Neural network components for hybrid models.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib import layers from tensorflow.contrib.tensor_forest.hybrid.python import hybrid_layer from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops class FullyConnectedLayer(hybrid_layer.HybridLayer): """A stacked, fully-connected feed-forward neural network layer.""" def _define_vars(self, params): pass def inference_graph(self, data): with ops.device(self.device_assigner): # Compute activations for the neural network. nn_activations = layers.fully_connected(data, self.params.layer_size) for _ in range(1, self.params.num_layers): # pylint: disable=W0106 nn_activations = layers.fully_connected(nn_activations, self.params.layer_size) return nn_activations class ManyToOneLayer(hybrid_layer.HybridLayer): def _define_vars(self, params): pass def inference_graph(self, data): with ops.device(self.device_assigner): # Compute activations for the neural network. nn_activations = layers.fully_connected(data, 1) # There is always one activation per instance by definition, so squeeze # away the extra dimension. return array_ops.squeeze(nn_activations, axis=[1]) class FlattenedFullyConnectedLayer(hybrid_layer.HybridLayer): """A stacked, fully-connected flattened feed-forward neural network layer.""" def _define_vars(self, params): pass def inference_graph(self, data): with ops.device(self.device_assigner): # Compute activations for the neural network. nn_activations = [layers.fully_connected(data, self.params.layer_size)] for _ in range(1, self.params.num_layers): # pylint: disable=W0106 nn_activations.append( layers.fully_connected( nn_activations[-1], self.params.layer_size)) nn_activations_tensor = array_ops.concat( nn_activations, 1, name="flattened_nn_activations") return nn_activations_tensor
tensorflow-master
tensorflow/contrib/tensor_forest/hybrid/python/layers/fully_connected.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function import random # pylint: disable=unused-import from tensorflow.contrib.tensor_forest.hybrid.python.layers import decisions_to_data from tensorflow.contrib.tensor_forest.python import tensor_forest from tensorflow.python.framework import constant_op from tensorflow.python.framework import test_util from tensorflow.python.framework.ops import Operation from tensorflow.python.framework.ops import Tensor from tensorflow.python.ops import variable_scope from tensorflow.python.platform import googletest class DecisionsToDataTest(test_util.TensorFlowTestCase): def setUp(self): self.params = tensor_forest.ForestHParams( num_classes=2, num_features=31, layer_size=11, num_layers=13, num_trees=17, connection_probability=0.1, hybrid_tree_depth=4, regularization_strength=0.01, regularization="", learning_rate=0.01, weight_init_mean=0.0, weight_init_std=0.1) self.params.regression = False self.params.num_nodes = 2**self.params.hybrid_tree_depth - 1 self.params.num_leaves = 2**(self.params.hybrid_tree_depth - 1) # pylint: disable=W0612 self.input_data = constant_op.constant( [[random.uniform(-1, 1) for i in range(self.params.num_features)] for _ in range(100)]) def testInferenceConstruction(self): with variable_scope.variable_scope( "DecisionsToDataTest_testInferenceContruction"): graph_builder = decisions_to_data.DecisionsToDataLayer(self.params, 0, None) unused_graph = graph_builder.inference_graph(self.input_data) if __name__ == "__main__": googletest.main()
tensorflow-master
tensorflow/contrib/tensor_forest/hybrid/python/layers/decisions_to_data_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Treats a decision tree as a representation transformation layer. A decision tree transformer takes features as input and returns the probability of reaching each leaf as output. The routing throughout the tree is learnable via backpropagation. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.tensor_forest.hybrid.ops import gen_training_ops from tensorflow.contrib.tensor_forest.hybrid.python import hybrid_layer from tensorflow.contrib.tensor_forest.hybrid.python.ops import training_ops from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import variable_scope class DecisionsToDataLayer(hybrid_layer.HybridLayer): """A layer that treats soft decisions as data.""" def _define_vars(self, params, **kwargs): with ops.device(self.device_assigner): self.tree_parameters = variable_scope.get_variable( name='tree_parameters_%d' % self.layer_num, shape=[params.num_nodes, params.num_features], initializer=init_ops.truncated_normal_initializer( mean=params.weight_init_mean, stddev=params.weight_init_std)) self.tree_thresholds = variable_scope.get_variable( name='tree_thresholds_%d' % self.layer_num, shape=[params.num_nodes], initializer=init_ops.truncated_normal_initializer( mean=params.weight_init_mean, stddev=params.weight_init_std)) def __init__(self, params, layer_num, device_assigner, *args, **kwargs): super(DecisionsToDataLayer, self).__init__( params, layer_num, device_assigner, *args, **kwargs) self._training_ops = training_ops.Load() def inference_graph(self, data): with ops.device(self.device_assigner): routing_probabilities = gen_training_ops.routing_function( data, self.tree_parameters, self.tree_thresholds, max_nodes=self.params.num_nodes) output = array_ops.slice( routing_probabilities, [0, self.params.num_nodes - self.params.num_leaves - 1], [-1, self.params.num_leaves]) return output class KFeatureDecisionsToDataLayer(hybrid_layer.HybridLayer): """A layer that treats soft decisions made on single features as data.""" def _define_vars(self, params, **kwargs): with ops.device(self.device_assigner): self.tree_parameters = variable_scope.get_variable( name='tree_parameters_%d' % self.layer_num, shape=[params.num_nodes, params.num_features_per_node], initializer=init_ops.truncated_normal_initializer( mean=params.weight_init_mean, stddev=params.weight_init_std)) self.tree_thresholds = variable_scope.get_variable( name='tree_thresholds_%d' % self.layer_num, shape=[params.num_nodes], initializer=init_ops.truncated_normal_initializer( mean=params.weight_init_mean, stddev=params.weight_init_std)) def __init__(self, params, layer_num, device_assigner, *args, **kwargs): super(KFeatureDecisionsToDataLayer, self).__init__( params, layer_num, device_assigner, *args, **kwargs) self._training_ops = training_ops.Load() # pylint: disable=unused-argument def inference_graph(self, data): with ops.device(self.device_assigner): routing_probabilities = gen_training_ops.k_feature_routing_function( data, self.tree_parameters, self.tree_thresholds, max_nodes=self.params.num_nodes, num_features_per_node=self.params.num_features_per_node, layer_num=0, random_seed=self.params.base_random_seed) output = array_ops.slice( routing_probabilities, [0, self.params.num_nodes - self.params.num_leaves - 1], [-1, self.params.num_leaves]) return output class HardDecisionsToDataLayer(DecisionsToDataLayer): """A layer that learns a soft decision tree but treats it as hard at test.""" def _define_vars(self, params, **kwargs): with ops.device(self.device_assigner): self.tree_parameters = variable_scope.get_variable( name='hard_tree_parameters_%d' % self.layer_num, shape=[params.num_nodes, params.num_features], initializer=variable_scope.truncated_normal_initializer( mean=params.weight_init_mean, stddev=params.weight_init_std)) self.tree_thresholds = variable_scope.get_variable( name='hard_tree_thresholds_%d' % self.layer_num, shape=[params.num_nodes], initializer=variable_scope.truncated_normal_initializer( mean=params.weight_init_mean, stddev=params.weight_init_std)) def soft_inference_graph(self, data): return super(HardDecisionsToDataLayer, self).inference_graph(data) def inference_graph(self, data): with ops.device(self.device_assigner): path_probability, path = gen_training_ops.hard_routing_function( data, self.tree_parameters, self.tree_thresholds, max_nodes=self.params.num_nodes, tree_depth=self.params.hybrid_tree_depth) output = array_ops.slice( gen_training_ops.unpack_path(path, path_probability), [0, self.params.num_nodes - self.params.num_leaves - 1], [-1, self.params.num_leaves]) return output class StochasticHardDecisionsToDataLayer(HardDecisionsToDataLayer): """A layer that learns a soft decision tree by sampling paths.""" def _define_vars(self, params, **kwargs): with ops.device(self.device_assigner): self.tree_parameters = variable_scope.get_variable( name='stochastic_hard_tree_parameters_%d' % self.layer_num, shape=[params.num_nodes, params.num_features], initializer=init_ops.truncated_normal_initializer( mean=params.weight_init_mean, stddev=params.weight_init_std)) self.tree_thresholds = variable_scope.get_variable( name='stochastic_hard_tree_thresholds_%d' % self.layer_num, shape=[params.num_nodes], initializer=init_ops.truncated_normal_initializer( mean=params.weight_init_mean, stddev=params.weight_init_std)) def soft_inference_graph(self, data): with ops.device(self.device_assigner): path_probability, path = ( gen_training_ops.stochastic_hard_routing_function( data, self.tree_parameters, self.tree_thresholds, tree_depth=self.params.hybrid_tree_depth, random_seed=self.params.base_random_seed)) output = array_ops.slice( gen_training_ops.unpack_path(path, path_probability), [0, self.params.num_nodes - self.params.num_leaves - 1], [-1, self.params.num_leaves]) return output def inference_graph(self, data): with ops.device(self.device_assigner): path_probability, path = gen_training_ops.hard_routing_function( data, self.tree_parameters, self.tree_thresholds, max_nodes=self.params.num_nodes, tree_depth=self.params.hybrid_tree_depth) output = array_ops.slice( gen_training_ops.unpack_path(path, path_probability), [0, self.params.num_nodes - self.params.num_leaves - 1], [-1, self.params.num_leaves]) return output class StochasticSoftDecisionsToDataLayer(StochasticHardDecisionsToDataLayer): """A layer that learns a soft decision tree by sampling paths.""" def _define_vars(self, params, **kwargs): with ops.device(self.device_assigner): self.tree_parameters = variable_scope.get_variable( name='stochastic_soft_tree_parameters_%d' % self.layer_num, shape=[params.num_nodes, params.num_features], initializer=init_ops.truncated_normal_initializer( mean=params.weight_init_mean, stddev=params.weight_init_std)) self.tree_thresholds = variable_scope.get_variable( name='stochastic_soft_tree_thresholds_%d' % self.layer_num, shape=[params.num_nodes], initializer=init_ops.truncated_normal_initializer( mean=params.weight_init_mean, stddev=params.weight_init_std)) def inference_graph(self, data): with ops.device(self.device_assigner): routes = gen_training_ops.routing_function( data, self.tree_parameters, self.tree_thresholds, max_nodes=self.params.num_nodes) leaf_routes = array_ops.slice( routes, [0, self.params.num_nodes - self.params.num_leaves - 1], [-1, self.params.num_leaves]) return leaf_routes
tensorflow-master
tensorflow/contrib/tensor_forest/hybrid/python/layers/decisions_to_data.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for the routing function op.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.tensor_forest.hybrid.ops import gen_training_ops from tensorflow.contrib.tensor_forest.hybrid.python.ops import training_ops from tensorflow.python.framework import test_util from tensorflow.python.platform import googletest class RoutingFunctionTest(test_util.TensorFlowTestCase): def setUp(self): self.input_data = [[-1., 0.], [-1., 2.], [1., 0.], [1., -2.]] self.input_labels = [0., 1., 2., 3.] self.tree = [[1, 0], [-1, 0], [-1, 0]] self.tree_weights = [[1.0, 0.0], [1.0, 0.0], [1.0, 0.0]] self.tree_thresholds = [0., 0., 0.] self.ops = training_ops.Load() def testRoutingFunction(self): with self.cached_session(): route_tensor = gen_training_ops.routing_function( self.input_data, self.tree_weights, self.tree_thresholds, max_nodes=3) route_tensor_shape = route_tensor.get_shape() self.assertEquals(len(route_tensor_shape), 2) self.assertEquals(route_tensor_shape[0], 4) self.assertEquals(route_tensor_shape[1], 3) routes = route_tensor.eval() # Point 1 # Node 1 is a decision node => probability = 1.0 self.assertAlmostEquals(1.0, routes[0, 0]) # Probability left output = 1.0 / (1.0 + exp(1.0)) = 0.26894142 self.assertAlmostEquals(0.26894142, routes[0, 1]) # Probability right = 1 - 0.2689414 = 0.73105858 self.assertAlmostEquals(0.73105858, routes[0, 2]) if __name__ == '__main__': googletest.main()
tensorflow-master
tensorflow/contrib/tensor_forest/hybrid/python/kernel_tests/routing_function_op_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for the routing function op.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.tensor_forest.hybrid.ops import gen_training_ops from tensorflow.contrib.tensor_forest.hybrid.python.ops import training_ops from tensorflow.contrib.tensor_forest.python import tensor_forest from tensorflow.python.framework import test_util from tensorflow.python.platform import googletest class KFeatureRoutingFunctionTest(test_util.TensorFlowTestCase): def setUp(self): self.input_data = [[-1., 0.], [-1., 2.], [1., 0.], [1., -2.]] self.input_labels = [0., 1., 2., 3.] self.tree = [[1, 0], [-1, 0], [-1, 0]] self.tree_weights = [[1.0, 0.0], [1.0, 0.0], [1.0, 0.0]] self.tree_thresholds = [0., 0., 0.] self.ops = training_ops.Load() self.params = tensor_forest.ForestHParams( num_features=2, hybrid_tree_depth=2, base_random_seed=10, feature_bagging_fraction=1.0, regularization_strength=0.01, regularization="", weight_init_mean=0.0, weight_init_std=0.1) self.params.num_nodes = 2**self.params.hybrid_tree_depth - 1 self.params.num_leaves = 2**(self.params.hybrid_tree_depth - 1) self.params.num_features_per_node = ( self.params.feature_bagging_fraction * self.params.num_features) self.params.regression = False def testParams(self): self.assertEquals(self.params.num_nodes, 3) self.assertEquals(self.params.num_features, 2) self.assertEquals(self.params.num_features_per_node, 2) def testRoutingFunction(self): with self.cached_session(): route_tensor = gen_training_ops.k_feature_routing_function( self.input_data, self.tree_weights, self.tree_thresholds, max_nodes=self.params.num_nodes, num_features_per_node=self.params.num_features_per_node, layer_num=0, random_seed=self.params.base_random_seed) route_tensor_shape = route_tensor.get_shape() self.assertEquals(len(route_tensor_shape), 2) self.assertEquals(route_tensor_shape[0], 4) self.assertEquals(route_tensor_shape[1], 3) routes = route_tensor.eval() print(routes) # Point 1 # Node 1 is a decision node => probability = 1.0 self.assertAlmostEquals(1.0, routes[0, 0]) # Probability left output = 1.0 / (1.0 + exp(1.0)) = 0.26894142 self.assertAlmostEquals(0.26894142, routes[0, 1]) # Probability right = 1 - 0.2689414 = 0.73105858 self.assertAlmostEquals(0.73105858, routes[0, 2]) if __name__ == "__main__": googletest.main()
tensorflow-master
tensorflow/contrib/tensor_forest/hybrid/python/kernel_tests/k_feature_routing_function_op_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A hybrid model that samples paths when training.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.tensor_forest.hybrid.python.layers import decisions_to_data from tensorflow.contrib.tensor_forest.hybrid.python.layers import fully_connected from tensorflow.contrib.tensor_forest.hybrid.python.models import hard_decisions_to_data_then_nn from tensorflow.python.training import adagrad class StochasticSoftDecisionsToDataThenNN( hard_decisions_to_data_then_nn.HardDecisionsToDataThenNN): """A hybrid model that samples paths when training.""" def __init__(self, params, device_assigner=None, optimizer_class=adagrad.AdagradOptimizer, **kwargs): super(StochasticSoftDecisionsToDataThenNN, self).__init__( params, device_assigner=device_assigner, optimizer_class=optimizer_class, **kwargs) self.layers = [decisions_to_data.StochasticSoftDecisionsToDataLayer( params, 0, device_assigner), fully_connected.FullyConnectedLayer( params, 1, device_assigner=device_assigner)]
tensorflow-master
tensorflow/contrib/tensor_forest/hybrid/python/models/stochastic_soft_decisions_to_data_then_nn.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A simple baseline feed-forward neural network.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.tensor_forest.hybrid.python import hybrid_model from tensorflow.contrib.tensor_forest.hybrid.python.layers import fully_connected from tensorflow.python.training import adagrad class NN(hybrid_model.HybridModel): """A simple baseline feed-forward neural network.""" def __init__(self, params, device_assigner=None, optimizer_class=adagrad.AdagradOptimizer, **kwargs): super(NN, self).__init__( params, device_assigner=device_assigner, optimizer_class=optimizer_class, **kwargs) self.layers = [fully_connected.FullyConnectedLayer( params, 0, device_assigner=device_assigner)]
tensorflow-master
tensorflow/contrib/tensor_forest/hybrid/python/models/nn.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A model that places a decision tree embedding before a neural net.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.tensor_forest.hybrid.python import hybrid_model from tensorflow.contrib.tensor_forest.hybrid.python.layers import decisions_to_data from tensorflow.contrib.tensor_forest.hybrid.python.layers import fully_connected from tensorflow.python.training import adagrad class DecisionsToDataThenNN(hybrid_model.HybridModel): """A model that places a decision tree embedding before a neural net.""" def __init__(self, params, device_assigner=None, optimizer_class=adagrad.AdagradOptimizer, **kwargs): super(DecisionsToDataThenNN, self).__init__( params, device_assigner=device_assigner, optimizer_class=optimizer_class, **kwargs) self.layers = [decisions_to_data.DecisionsToDataLayer(params, 0, device_assigner), fully_connected.FullyConnectedLayer( params, 1, device_assigner=device_assigner)]
tensorflow-master
tensorflow/contrib/tensor_forest/hybrid/python/models/decisions_to_data_then_nn.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A model that places a hard decision tree embedding before a neural net.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib import layers from tensorflow.contrib.tensor_forest.hybrid.python import hybrid_model from tensorflow.contrib.tensor_forest.hybrid.python.layers import decisions_to_data from tensorflow.contrib.tensor_forest.hybrid.python.layers import fully_connected from tensorflow.python.ops import nn_ops from tensorflow.python.training import adagrad class HardDecisionsToDataThenNN(hybrid_model.HybridModel): """A model that treats tree inference as hard at test.""" def __init__(self, params, device_assigner=None, optimizer_class=adagrad.AdagradOptimizer, **kwargs): super(HardDecisionsToDataThenNN, self).__init__( params, device_assigner=device_assigner, optimizer_class=optimizer_class, **kwargs) self.layers = [decisions_to_data.HardDecisionsToDataLayer( params, 0, device_assigner), fully_connected.FullyConnectedLayer( params, 1, device_assigner=device_assigner)] def _base_inference(self, data, data_spec=None, soft=False): if soft: inference_result = self.layers[0].soft_inference_graph(data) else: inference_result = self._do_layer_inference(self.layers[0], data) for layer in self.layers[1:]: inference_result = self._do_layer_inference(layer, inference_result) output_size = 1 if self.is_regression else self.params.num_classes output = layers.fully_connected( inference_result, output_size, activation_fn=nn_ops.softmax) return output def inference_graph(self, data, data_spec=None): """Returns the op that performs inference on a batch of data.""" return nn_ops.softmax( self._base_inference( data, data_spec=data_spec, soft=True)) # pylint: disable=unused-argument def training_inference_graph(self, data, data_spec=None): return self._base_inference(data, data_spec=data_spec, soft=False)
tensorflow-master
tensorflow/contrib/tensor_forest/hybrid/python/models/hard_decisions_to_data_then_nn.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Initialize tensor_forest/hybrid/python/models.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function
tensorflow-master
tensorflow/contrib/tensor_forest/hybrid/python/models/__init__.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A hybrid model that samples paths when training.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.tensor_forest.hybrid.python.layers import decisions_to_data from tensorflow.contrib.tensor_forest.hybrid.python.layers import fully_connected from tensorflow.contrib.tensor_forest.hybrid.python.models import hard_decisions_to_data_then_nn from tensorflow.python.training import adagrad class StochasticHardDecisionsToDataThenNN( hard_decisions_to_data_then_nn.HardDecisionsToDataThenNN): """A hybrid model that samples paths when training.""" def __init__(self, params, device_assigner=None, optimizer_class=adagrad.AdagradOptimizer, **kwargs): super(StochasticHardDecisionsToDataThenNN, self).__init__( params, device_assigner=device_assigner, optimizer_class=optimizer_class, **kwargs) self.layers = [decisions_to_data.StochasticHardDecisionsToDataLayer( params, 0, device_assigner), fully_connected.FullyConnectedLayer( params, 1, device_assigner=device_assigner)]
tensorflow-master
tensorflow/contrib/tensor_forest/hybrid/python/models/stochastic_hard_decisions_to_data_then_nn.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A model that places a soft decision tree embedding before a neural net.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.tensor_forest.hybrid.python import hybrid_model from tensorflow.contrib.tensor_forest.hybrid.python.layers import decisions_to_data from tensorflow.contrib.tensor_forest.hybrid.python.layers import fully_connected from tensorflow.python.training import adagrad class KFeatureDecisionsToDataThenNN(hybrid_model.HybridModel): """A model that places a soft decision tree embedding before a neural net.""" def __init__(self, params, device_assigner=None, optimizer_class=adagrad.AdagradOptimizer, **kwargs): super(KFeatureDecisionsToDataThenNN, self).__init__( params, device_assigner=device_assigner, optimizer_class=optimizer_class, **kwargs) self.layers = [decisions_to_data.KFeatureDecisionsToDataLayer( params, 0, device_assigner), fully_connected.FullyConnectedLayer( params, 1, device_assigner=device_assigner)]
tensorflow-master
tensorflow/contrib/tensor_forest/hybrid/python/models/k_feature_decisions_to_data_then_nn.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for the hybrid tensor forest model.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import random # pylint: disable=unused-import from tensorflow.contrib.tensor_forest.hybrid.python.models import forest_to_data_then_nn from tensorflow.contrib.tensor_forest.python import tensor_forest from tensorflow.python.framework import constant_op from tensorflow.python.framework import test_util from tensorflow.python.framework.ops import Operation from tensorflow.python.framework.ops import Tensor from tensorflow.python.ops import variable_scope from tensorflow.python.platform import googletest class ForestToDataThenNNTest(test_util.TensorFlowTestCase): def setUp(self): self.params = tensor_forest.ForestHParams( num_classes=2, num_features=31, layer_size=11, num_layers=13, num_trees=3, connection_probability=0.1, hybrid_tree_depth=4, regularization_strength=0.01, regularization="", base_random_seed=10, feature_bagging_fraction=1.0, learning_rate=0.01, weight_init_mean=0.0, weight_init_std=0.1) self.params.regression = False self.params.num_nodes = 2**self.params.hybrid_tree_depth - 1 self.params.num_leaves = 2**(self.params.hybrid_tree_depth - 1) self.params.num_features_per_node = (self.params.feature_bagging_fraction * self.params.num_features) def testInferenceConstruction(self): # pylint: disable=W0612 data = constant_op.constant( [[random.uniform(-1, 1) for i in range(self.params.num_features)] for _ in range(100)]) with variable_scope.variable_scope( "ForestToDataThenNNTest_testInferenceContruction"): graph_builder = forest_to_data_then_nn.ForestToDataThenNN(self.params) graph = graph_builder.inference_graph(data, None) self.assertTrue(isinstance(graph, Tensor)) def testTrainingConstruction(self): # pylint: disable=W0612 data = constant_op.constant( [[random.uniform(-1, 1) for i in range(self.params.num_features)] for _ in range(100)]) labels = [1 for _ in range(100)] with variable_scope.variable_scope( "ForestToDataThenNNTest.testTrainingContruction"): graph_builder = forest_to_data_then_nn.ForestToDataThenNN(self.params) graph = graph_builder.training_graph(data, labels, None) self.assertTrue(isinstance(graph, Operation)) if __name__ == "__main__": googletest.main()
tensorflow-master
tensorflow/contrib/tensor_forest/hybrid/python/models/forest_to_data_then_nn_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for the hybrid tensor forest model.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import random # pylint: disable=unused-import from tensorflow.contrib.tensor_forest.hybrid.python.models import k_feature_decisions_to_data_then_nn from tensorflow.contrib.tensor_forest.python import tensor_forest from tensorflow.python.framework import constant_op from tensorflow.python.framework import test_util from tensorflow.python.framework.ops import Operation from tensorflow.python.framework.ops import Tensor from tensorflow.python.ops import variable_scope from tensorflow.python.platform import googletest class KFeatureDecisionsToDataThenNNTest(test_util.TensorFlowTestCase): def setUp(self): self.params = tensor_forest.ForestHParams( num_classes=2, num_features=31, layer_size=11, num_layers=13, num_trees=17, connection_probability=0.1, hybrid_tree_depth=4, regularization_strength=0.01, regularization="", base_random_seed=10, hybrid_feature_bagging_fraction=1.0, learning_rate=0.01, weight_init_mean=0.0, weight_init_std=0.1) self.params.regression = False self.params.num_nodes = 2**self.params.hybrid_tree_depth - 1 self.params.num_leaves = 2**(self.params.hybrid_tree_depth - 1) self.params.num_features_per_node = (self.params.feature_bagging_fraction * self.params.num_features) def testKFeatureInferenceConstruction(self): # pylint: disable=W0612 data = constant_op.constant( [[random.uniform(-1, 1) for i in range(self.params.num_features)] for _ in range(100)]) with variable_scope.variable_scope( "KFeatureDecisionsToDataThenNNTest.testKFeatureInferenceContruction"): graph_builder = ( k_feature_decisions_to_data_then_nn.KFeatureDecisionsToDataThenNN( self.params)) graph = graph_builder.inference_graph(data, None) self.assertTrue(isinstance(graph, Tensor)) def testKFeatureTrainingConstruction(self): # pylint: disable=W0612 data = constant_op.constant( [[random.uniform(-1, 1) for i in range(self.params.num_features)] for _ in range(100)]) labels = [1 for _ in range(100)] with variable_scope.variable_scope( "KFeatureDecisionsToDataThenNNTest.testKFeatureTrainingContruction"): graph_builder = ( k_feature_decisions_to_data_then_nn.KFeatureDecisionsToDataThenNN( self.params)) graph = graph_builder.training_graph(data, labels, None) self.assertTrue(isinstance(graph, Operation)) if __name__ == "__main__": googletest.main()
tensorflow-master
tensorflow/contrib/tensor_forest/hybrid/python/models/k_feature_decisions_to_data_then_nn_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A model that combines a decision forest embedding with a neural net.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.tensor_forest.hybrid.python import hybrid_model from tensorflow.contrib.tensor_forest.hybrid.python.layers import decisions_to_data from tensorflow.contrib.tensor_forest.hybrid.python.layers import fully_connected from tensorflow.python.training import adagrad class ForestToDataThenNN(hybrid_model.HybridModel): """A model that combines a decision forest embedding with a neural net.""" def __init__(self, params, device_assigner=None, optimizer_class=adagrad.AdagradOptimizer, **kwargs): super(ForestToDataThenNN, self).__init__( params, device_assigner=device_assigner, optimizer_class=optimizer_class, **kwargs) self.layers = [[decisions_to_data.KFeatureDecisionsToDataLayer( params, i, device_assigner) for i in range(self.params.num_trees)], fully_connected.FullyConnectedLayer( params, self.params.num_trees, device_assigner=device_assigner)]
tensorflow-master
tensorflow/contrib/tensor_forest/hybrid/python/models/forest_to_data_then_nn.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for the hybrid tensor forest model.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import random # pylint: disable=unused-import from tensorflow.contrib.tensor_forest.hybrid.python.models import decisions_to_data_then_nn from tensorflow.contrib.tensor_forest.python import tensor_forest from tensorflow.python.framework import constant_op from tensorflow.python.framework import test_util from tensorflow.python.framework.ops import Operation from tensorflow.python.framework.ops import Tensor from tensorflow.python.ops import variable_scope from tensorflow.python.platform import googletest class DecisionsToDataThenNNTest(test_util.TensorFlowTestCase): def setUp(self): self.params = tensor_forest.ForestHParams( num_classes=2, num_features=31, layer_size=11, num_layers=13, num_trees=17, connection_probability=0.1, hybrid_tree_depth=4, regularization_strength=0.01, learning_rate=0.01, regularization="", weight_init_mean=0.0, weight_init_std=0.1) self.params.regression = False self.params.num_nodes = 2**self.params.hybrid_tree_depth - 1 self.params.num_leaves = 2**(self.params.hybrid_tree_depth - 1) def testHParams(self): self.assertEquals(self.params.num_classes, 2) self.assertEquals(self.params.num_features, 31) self.assertEquals(self.params.layer_size, 11) self.assertEquals(self.params.num_layers, 13) self.assertEquals(self.params.num_trees, 17) self.assertEquals(self.params.hybrid_tree_depth, 4) self.assertEquals(self.params.connection_probability, 0.1) # Building the graphs modifies the params. with variable_scope.variable_scope("DecisionsToDataThenNNTest_testHParams"): # pylint: disable=W0612 graph_builder = decisions_to_data_then_nn.DecisionsToDataThenNN( self.params) # Tree with depth 4 should have 2**0 + 2**1 + 2**2 + 2**3 = 15 nodes. self.assertEquals(self.params.num_nodes, 15) def testConstructionPollution(self): """Ensure that graph building doesn't modify the params in a bad way.""" # pylint: disable=W0612 data = [[random.uniform(-1, 1) for i in range(self.params.num_features)] for _ in range(100)] self.assertTrue(isinstance(self.params, tensor_forest.ForestHParams)) self.assertFalse( isinstance(self.params.num_trees, tensor_forest.ForestHParams)) with variable_scope.variable_scope( "DecisionsToDataThenNNTest_testConstructionPollution"): graph_builder = decisions_to_data_then_nn.DecisionsToDataThenNN( self.params) self.assertTrue(isinstance(self.params, tensor_forest.ForestHParams)) self.assertFalse( isinstance(self.params.num_trees, tensor_forest.ForestHParams)) def testInferenceConstruction(self): # pylint: disable=W0612 data = constant_op.constant( [[random.uniform(-1, 1) for i in range(self.params.num_features)] for _ in range(100)]) with variable_scope.variable_scope( "DecisionsToDataThenNNTest_testInferenceConstruction"): graph_builder = decisions_to_data_then_nn.DecisionsToDataThenNN( self.params) graph = graph_builder.inference_graph(data, None) self.assertTrue(isinstance(graph, Tensor)) def testTrainingConstruction(self): # pylint: disable=W0612 data = constant_op.constant( [[random.uniform(-1, 1) for i in range(self.params.num_features)] for _ in range(100)]) labels = [1 for _ in range(100)] with variable_scope.variable_scope( "DecisionsToDataThenNNTest_testTrainingConstruction"): graph_builder = decisions_to_data_then_nn.DecisionsToDataThenNN( self.params) graph = graph_builder.training_graph(data, labels, None) self.assertTrue(isinstance(graph, Operation)) if __name__ == "__main__": googletest.main()
tensorflow-master
tensorflow/contrib/tensor_forest/hybrid/python/models/decisions_to_data_then_nn_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Ops for hybrid model training.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import threading from tensorflow.contrib.tensor_forest.hybrid.ops import gen_training_ops from tensorflow.contrib.util import loader from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.platform import resource_loader from tensorflow.python.platform import tf_logging as logging TRAINING_OPS_FILE = '_training_ops.so' _training_ops = None _ops_lock = threading.Lock() # TODO(b/31222613): Some of these ops are probably differentiable, and # there may be latent bugs here. ops.NotDifferentiable('HardRoutingFunction') ops.NotDifferentiable('RoutingGradient') ops.NotDifferentiable('KFeatureDataGradient') ops.NotDifferentiable('KFeatureRoutingGradient') ops.NotDifferentiable('KFeatureWeightGradient') ops.NotDifferentiable('UnpackPath') @ops.RegisterGradient('RoutingFunction') def _RoutingFunctionGradient(op, grad): """The gradient of RoutingFunction. Args: op: The RoutingFunction op. grad: Gradient with respect to the output of the RoutingFunction op. Returns: Gradients with respect to the input of the RoutingFunction op. """ routing_gradient = gen_training_ops.routing_gradient input_data_tensor = op.inputs[0] tree_weights_tensor = op.inputs[1] tree_thresholds_tensor = op.inputs[2] routing_function_tensor = op.outputs[0] # The derivatives below are each defined over one or two of three dimensions: # (batch_size, num_nodes, num_features). We explicitly expand each derivative # to three dimensions to ensure that they're broadcasted correctly. # dl / du is the derivative of the loss with respect to the output of the # routing function, which is provided by tensorflow. # # dl / du has dimension (batch_size, num_nodes), which we expand to # (batch_size, num_nodes, 1). dl_du = array_ops.expand_dims(grad, 2) # du / df is the derivative of the output of the routing function with respect # to the decision function at each node. It is computed by # routing_gradient_op.cc. # # du / df has dimension (batch_size, num_nodes), which we expand to # (batch_size, num_nodes, 1). du_df = array_ops.expand_dims( routing_gradient( input_data_tensor, tree_weights_tensor, tree_thresholds_tensor, routing_function_tensor, max_nodes=op.get_attr('max_nodes')), 2) # df / dx is the derivative of the decision function with respect to the input # data. f_i(x) = (-t_i * x + b_i), so df_i / dx = -t_i. # # df / dx has dimension (num_nodes, num_features), which we expand to # (1, num_nodes, num_features). df_dx = -array_ops.expand_dims(tree_weights_tensor, 0) # df / dt is the derivative of the decision function with respect to its # parameters. f_i(x) = (-t_i * x + b_i), so df_i / d t_i = -x. # # df / dt has dimension (batch_size, num_features), which we expand to # (batch_size, 1, num_features). df_dt = -array_ops.expand_dims(input_data_tensor, 1) # df / dt is the derivative of the decision function with respect to its # bias parameter. f_i(x) = (-t_i * x + b_i), so df_i / d t_i = 1. # # df / db has dimension (num_nodes), which we expand to # (1, num_nodes, 1). df_db = array_ops.expand_dims( array_ops.expand_dims(array_ops.ones_like(tree_thresholds_tensor), 0), 2) # Compute the derivatives of the loss with respect to the inputs using the # chain rule (backpropagation). dl_dx = math_ops.reduce_mean(dl_du * du_df * df_dx, 1) dl_dt = math_ops.reduce_mean(dl_du * du_df * df_dt, 0) dl_db = math_ops.reduce_mean(array_ops.squeeze(dl_du * du_df * df_db, [2]), 0) input_gradients = [dl_dx, dl_dt, dl_db] return input_gradients @ops.RegisterGradient('StochasticHardRoutingFunction') def _StochasticHardRoutingFunctionGradient(op, routing_grad, unused_path_grad): """The gradient of RoutingFunction. Args: op: The RoutingFunction op. routing_grad: Gradient with respect to the output of the RoutingFunction op. Returns: Gradients with respect to the input of the RoutingFunction op. """ gradient_op = gen_training_ops.stochastic_hard_routing_gradient unpack_path_op = gen_training_ops.unpack_path input_data_tensor = op.inputs[0] tree_weights_tensor = op.inputs[1] tree_thresholds_tensor = op.inputs[2] path_probability_tensor = op.outputs[0] path_tensor = op.outputs[1] # The derivatives below are each defined over one or two of three dimensions: # (batch_size, num_nodes, num_features). We explicitly expand each derivative # to three dimensions to ensure that they're broadcasted correctly. du_df_raw, df_dx_raw, df_dt_raw, df_db_raw = gradient_op( input_data_tensor, tree_weights_tensor, tree_thresholds_tensor, path_probability_tensor, path_tensor, tree_depth=op.get_attr('tree_depth')) # dl / du is the derivative of the loss with respect to the output of the # routing function, which is provided by tensorflow. # # dl / du has dimension (batch_size, num_nodes), which we expand to # (batch_size, num_nodes, 1). dl_du = array_ops.expand_dims(unpack_path_op(path_tensor, routing_grad), 2) # du / df is the derivative of the output of the routing function with respect # to the decision function at each node. It is computed by # single_feature_routing_gradient_op.cc. # # du / df has dimension (batch_size, num_nodes), which we expand to # (batch_size, num_nodes, 1). du_df = array_ops.expand_dims(du_df_raw, 2) # df / dx is the derivative of the decision function with respect to the input # data. f(x) = (-t * x + b), so df / dx = -t for the selected features and # zero elsewhere. # # df / dx has dimension (num_nodes, num_features), which we expand to # (1, num_nodes, num_features). df_dx = array_ops.expand_dims(df_dx_raw, 0) # df / dt is the derivative of the decision function with respect to its # parameters. f(x) = (-t * x + b), so df / dt = -x[feature]. # # df / dt has dimension (batch_size, num_nodes, num_features). df_dt = -df_dt_raw # df / dt is the derivative of the decision function with respect to its # bias parameter. f(x) = (-t * x + b), so df / dt = 1. # # df / db has dimension (num_nodes), which we expand to # (1, num_nodes, 1). df_db = array_ops.expand_dims(array_ops.expand_dims(df_db_raw, 0), 2) # Compute the derivatives of the loss with respect to the inputs using the # chain rule (backpropagation). dl_dx = math_ops.reduce_mean(dl_du * du_df * df_dx, 1) dl_dt = math_ops.reduce_mean(dl_du * du_df * df_dt, 0) dl_db = math_ops.reduce_mean(array_ops.squeeze(dl_du * du_df * df_db, [2]), 0) input_gradients = [dl_dx, dl_dt, dl_db] return input_gradients @ops.RegisterGradient('KFeatureRoutingFunction') def _KFeatureRoutingFunctionGradient(op, grad): """The gradient of RoutingFunction. Args: op: The RoutingFunction op. grad: Gradient with respect to the output of the RoutingFunction op. Returns: Gradients with respect to the input of the RoutingFunction op. """ gradient_op = gen_training_ops.k_feature_gradient input_data_tensor = op.inputs[0] tree_weights_tensor = op.inputs[1] tree_thresholds_tensor = op.inputs[2] routing_function_tensor = op.outputs[0] # The derivatives below are each defined over one or two of three dimensions: # (batch_size, num_nodes, num_features). We explicitly expand each derivative # to three dimensions to ensure that they're broadcasted correctly. du_df_raw, df_dx_raw, df_dt_raw = gradient_op( input_data_tensor, tree_weights_tensor, tree_thresholds_tensor, routing_function_tensor, layer_num=op.get_attr('layer_num'), random_seed=op.get_attr('random_seed')) # dl / du is the derivative of the loss with respect to the output of the # routing function, which is provided by tensorflow. # # dl / du has dimension (batch_size, num_nodes), which we expand to # (batch_size, num_nodes, 1). dl_du = array_ops.expand_dims(grad, 2) # du / df is the derivative of the output of the routing function with respect # to the decision function at each node. It is computed by # single_feature_routing_gradient_op.cc. # # du / df has dimension (batch_size, num_nodes), which we expand to # (batch_size, num_nodes, 1). du_df = array_ops.expand_dims(du_df_raw, 2) # df / dx is the derivative of the decision function with respect to the input # data. f(x) = (-t * x + b), so df / dx = -t for the selected features and # zero elsewhere. # # df / dx has dimension (num_nodes, num_features), which we expand to # (1, num_nodes, num_features). df_dx = array_ops.expand_dims(df_dx_raw, 0) # df / dt is the derivative of the decision function with respect to its # parameters. f(x) = (-t * x + b), so df / dt = -x[feature]. # # df / dt has dimension (batch_size, num_nodes, num_features). df_dt = -df_dt_raw # df / dt is the derivative of the decision function with respect to its # bias parameter. f(x) = (-t * x + b), so df / dt = 1. # # df / db has dimension (num_nodes), which we expand to # (1, num_nodes, 1). df_db = array_ops.expand_dims( array_ops.expand_dims(array_ops.ones_like(tree_thresholds_tensor), 0), 2) # Compute the derivatives of the loss with respect to the inputs using the # chain rule (backpropagation). dl_dx = math_ops.reduce_mean(dl_du * du_df * df_dx, 1) dl_dt = math_ops.reduce_mean(dl_du * du_df * df_dt, 0) dl_db = math_ops.reduce_mean(array_ops.squeeze(dl_du * du_df * df_db, [2]), 0) input_gradients = [dl_dx, dl_dt, dl_db] return input_gradients # Workaround for the fact that importing tensorflow imports contrib # (even if a user isn't using this or any other contrib op), but # there's not yet any guarantee that the shared object exists. # In which case, "import tensorflow" will always crash, even for users that # never use contrib. def Load(): """Load training ops library and return the loaded module.""" with _ops_lock: global _training_ops if not _training_ops: ops_path = resource_loader.get_path_to_datafile(TRAINING_OPS_FILE) logging.info('data path: %s', ops_path) _training_ops = loader.load_op_library(ops_path) assert _training_ops, 'Could not load _training_ops.so' return _training_ops
tensorflow-master
tensorflow/contrib/tensor_forest/hybrid/python/ops/training_ops.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Experimental API for building input pipelines. This module contains experimental `Dataset` sources and transformations that can be used in conjunction with the `tf.data.Dataset` API. Note that the `tf.contrib.data` API is not subject to the same backwards compatibility guarantees as `tf.data`, but we will provide deprecation advice in advance of removing existing functionality. See [Importing Data](https://tensorflow.org/guide/datasets) for an overview. @@Counter @@CheckpointInputPipelineHook @@CsvDataset @@LMDBDataset @@Optional @@RandomDataset @@Reducer @@SqlDataset @@TFRecordWriter @@assert_element_shape @@batch_and_drop_remainder @@bucket_by_sequence_length @@choose_from_datasets @@copy_to_device @@dense_to_sparse_batch @@enumerate_dataset @@get_next_as_optional @@get_single_element @@group_by_reducer @@group_by_window @@ignore_errors @@latency_stats @@make_batched_features_dataset @@make_csv_dataset @@make_saveable_from_iterator @@map_and_batch @@padded_batch_and_drop_remainder @@parallel_interleave @@parse_example_dataset @@prefetch_to_device @@read_batch_features @@rejection_resample @@reduce_dataset @@sample_from_datasets @@scan @@set_stats_aggregator @@shuffle_and_repeat @@sliding_window_batch @@sloppy_interleave @@StatsAggregator @@unbatch @@unique @@AUTOTUNE """ from __future__ import absolute_import from __future__ import division from __future__ import print_function # pylint: disable=unused-import from tensorflow.contrib.data.python.ops.batching import assert_element_shape from tensorflow.contrib.data.python.ops.batching import batch_and_drop_remainder from tensorflow.contrib.data.python.ops.batching import dense_to_sparse_batch from tensorflow.contrib.data.python.ops.batching import map_and_batch from tensorflow.contrib.data.python.ops.batching import padded_batch_and_drop_remainder from tensorflow.contrib.data.python.ops.batching import unbatch from tensorflow.contrib.data.python.ops.counter import Counter from tensorflow.contrib.data.python.ops.enumerate_ops import enumerate_dataset from tensorflow.contrib.data.python.ops.error_ops import ignore_errors from tensorflow.contrib.data.python.ops.get_single_element import get_single_element from tensorflow.contrib.data.python.ops.get_single_element import reduce_dataset from tensorflow.contrib.data.python.ops.grouping import bucket_by_sequence_length from tensorflow.contrib.data.python.ops.grouping import group_by_reducer from tensorflow.contrib.data.python.ops.grouping import group_by_window from tensorflow.contrib.data.python.ops.grouping import Reducer from tensorflow.contrib.data.python.ops.interleave_ops import choose_from_datasets from tensorflow.contrib.data.python.ops.interleave_ops import parallel_interleave from tensorflow.contrib.data.python.ops.interleave_ops import sample_from_datasets from tensorflow.contrib.data.python.ops.interleave_ops import sloppy_interleave from tensorflow.contrib.data.python.ops.iterator_ops import CheckpointInputPipelineHook from tensorflow.contrib.data.python.ops.iterator_ops import make_saveable_from_iterator from tensorflow.contrib.data.python.ops.parsing_ops import parse_example_dataset from tensorflow.contrib.data.python.ops.prefetching_ops import copy_to_device from tensorflow.contrib.data.python.ops.prefetching_ops import prefetch_to_device from tensorflow.contrib.data.python.ops.random_ops import RandomDataset from tensorflow.contrib.data.python.ops.readers import CsvDataset from tensorflow.contrib.data.python.ops.readers import LMDBDataset from tensorflow.contrib.data.python.ops.readers import make_batched_features_dataset from tensorflow.contrib.data.python.ops.readers import make_csv_dataset from tensorflow.contrib.data.python.ops.readers import read_batch_features from tensorflow.contrib.data.python.ops.readers import SqlDataset from tensorflow.contrib.data.python.ops.resampling import rejection_resample from tensorflow.contrib.data.python.ops.scan_ops import scan from tensorflow.contrib.data.python.ops.shuffle_ops import shuffle_and_repeat from tensorflow.contrib.data.python.ops.sliding import sliding_window_batch from tensorflow.contrib.data.python.ops.unique import unique from tensorflow.contrib.data.python.ops.writers import TFRecordWriter from tensorflow.python.data.ops.dataset_ops import AUTOTUNE from tensorflow.python.data.ops.iterator_ops import get_next_as_optional from tensorflow.python.data.ops.optional_ops import Optional # pylint: enable=unused-import from tensorflow.python.util.all_util import remove_undocumented remove_undocumented(__name__)
tensorflow-master
tensorflow/contrib/data/__init__.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for LMDBDatasetOp.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import shutil from tensorflow.contrib.data.python.ops import readers from tensorflow.python.data.kernel_tests import test_base from tensorflow.python.data.ops import dataset_ops from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.framework import test_util from tensorflow.python.platform import test from tensorflow.python.util import compat prefix_path = "tensorflow/core/lib" @test_util.run_v1_only("deprecated API, no eager or V2 test coverage") class LMDBDatasetTest(test_base.DatasetTestBase): def setUp(self): super(LMDBDatasetTest, self).setUp() # Copy database out because we need the path to be writable to use locks. path = os.path.join(prefix_path, "lmdb", "testdata", "data.mdb") self.db_path = os.path.join(self.get_temp_dir(), "data.mdb") shutil.copy(path, self.db_path) def testReadFromFile(self): filename = self.db_path filenames = constant_op.constant([filename], dtypes.string) num_repeats = 2 dataset = readers.LMDBDataset(filenames).repeat(num_repeats) iterator = dataset_ops.make_initializable_iterator(dataset) init_op = iterator.initializer get_next = iterator.get_next() with self.cached_session() as sess: sess.run(init_op) for _ in range(num_repeats): # Dataset is repeated. for i in range(10): # 10 records. k = compat.as_bytes(str(i)) v = compat.as_bytes(str(chr(ord("a") + i))) self.assertEqual((k, v), sess.run(get_next)) with self.assertRaises(errors.OutOfRangeError): sess.run(get_next) if __name__ == "__main__": test.main()
tensorflow-master
tensorflow/contrib/data/python/kernel_tests/lmdb_dataset_op_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for the experimental input pipeline ops.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.data.python.ops import batching from tensorflow.python.data.kernel_tests import test_base from tensorflow.python.data.ops import dataset_ops from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.framework import tensor_shape from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import script_ops from tensorflow.python.platform import test @test_util.run_v1_only("deprecated API, no eager or V2 test coverage") class AssertElementShapeTest(test_base.DatasetTestBase): def test_assert_element_shape(self): def create_dataset(_): return (array_ops.ones(2, dtype=dtypes.float32), array_ops.zeros((3, 4), dtype=dtypes.int32)) dataset = dataset_ops.Dataset.range(5).map(create_dataset) expected_shapes = (tensor_shape.TensorShape(2), tensor_shape.TensorShape((3, 4))) self.assertEqual(expected_shapes, dataset_ops.get_legacy_output_shapes(dataset)) result = dataset.apply(batching.assert_element_shape(expected_shapes)) self.assertEqual(expected_shapes, dataset_ops.get_legacy_output_shapes(result)) iterator = dataset_ops.make_initializable_iterator(result) init_op = iterator.initializer get_next = iterator.get_next() with self.cached_session() as sess: sess.run(init_op) for _ in range(5): sess.run(get_next) with self.assertRaises(errors.OutOfRangeError): sess.run(get_next) def test_assert_wrong_element_shape(self): def create_dataset(_): return (array_ops.ones(2, dtype=dtypes.float32), array_ops.zeros((3, 4), dtype=dtypes.int32)) dataset = dataset_ops.Dataset.range(3).map(create_dataset) wrong_shapes = (tensor_shape.TensorShape(2), tensor_shape.TensorShape((3, 10))) with self.assertRaises(ValueError): dataset.apply(batching.assert_element_shape(wrong_shapes)) def test_assert_element_shape_on_unknown_shape_dataset(self): def create_unknown_shape_dataset(x): return script_ops.py_func( lambda _: ( # pylint: disable=g-long-lambda np.ones(2, dtype=np.float32), np.zeros((3, 4), dtype=np.int32)), [x], [dtypes.float32, dtypes.int32]) dataset = dataset_ops.Dataset.range(5).map(create_unknown_shape_dataset) unknown_shapes = (tensor_shape.TensorShape(None), tensor_shape.TensorShape(None)) self.assertEqual(unknown_shapes, dataset_ops.get_legacy_output_shapes(dataset)) expected_shapes = (tensor_shape.TensorShape(2), tensor_shape.TensorShape((3, 4))) result = dataset.apply(batching.assert_element_shape(expected_shapes)) self.assertEqual(expected_shapes, dataset_ops.get_legacy_output_shapes(result)) iterator = dataset_ops.make_initializable_iterator(result) init_op = iterator.initializer get_next = iterator.get_next() with self.cached_session() as sess: sess.run(init_op) for _ in range(5): sess.run(get_next) with self.assertRaises(errors.OutOfRangeError): sess.run(get_next) def test_assert_wrong_element_shape_on_unknown_shape_dataset(self): def create_unknown_shape_dataset(x): return script_ops.py_func( lambda _: ( # pylint: disable=g-long-lambda np.ones(2, dtype=np.float32), np.zeros((3, 4), dtype=np.int32)), [x], [dtypes.float32, dtypes.int32]) dataset = dataset_ops.Dataset.range(3).map(create_unknown_shape_dataset) unknown_shapes = (tensor_shape.TensorShape(None), tensor_shape.TensorShape(None)) self.assertEqual(unknown_shapes, dataset_ops.get_legacy_output_shapes(dataset)) wrong_shapes = (tensor_shape.TensorShape(2), tensor_shape.TensorShape((3, 10))) iterator = dataset_ops.make_initializable_iterator( dataset.apply(batching.assert_element_shape(wrong_shapes))) init_op = iterator.initializer get_next = iterator.get_next() with self.cached_session() as sess: sess.run(init_op) with self.assertRaises(errors.InvalidArgumentError): sess.run(get_next) def test_assert_partial_element_shape(self): def create_dataset(_): return (array_ops.ones(2, dtype=dtypes.float32), array_ops.zeros((3, 4), dtype=dtypes.int32)) dataset = dataset_ops.Dataset.range(5).map(create_dataset) partial_expected_shape = ( tensor_shape.TensorShape(None), # Unknown shape tensor_shape.TensorShape((None, 4))) # Partial shape result = dataset.apply( batching.assert_element_shape(partial_expected_shape)) # Partial shapes are merged with actual shapes: actual_shapes = (tensor_shape.TensorShape(2), tensor_shape.TensorShape((3, 4))) self.assertEqual(actual_shapes, dataset_ops.get_legacy_output_shapes(result)) iterator = dataset_ops.make_initializable_iterator(result) init_op = iterator.initializer get_next = iterator.get_next() with self.cached_session() as sess: sess.run(init_op) for _ in range(5): sess.run(get_next) with self.assertRaises(errors.OutOfRangeError): sess.run(get_next) def test_assert_wrong_partial_element_shape(self): def create_dataset(_): return (array_ops.ones(2, dtype=dtypes.float32), array_ops.zeros((3, 4), dtype=dtypes.int32)) dataset = dataset_ops.Dataset.range(3).map(create_dataset) wrong_shapes = (tensor_shape.TensorShape(2), tensor_shape.TensorShape((None, 10))) with self.assertRaises(ValueError): dataset.apply(batching.assert_element_shape(wrong_shapes)) def test_assert_partial_element_shape_on_unknown_shape_dataset(self): def create_unknown_shape_dataset(x): return script_ops.py_func( lambda _: ( # pylint: disable=g-long-lambda np.ones(2, dtype=np.float32), np.zeros((3, 4), dtype=np.int32)), [x], [dtypes.float32, dtypes.int32]) dataset = dataset_ops.Dataset.range(5).map(create_unknown_shape_dataset) unknown_shapes = (tensor_shape.TensorShape(None), tensor_shape.TensorShape(None)) self.assertEqual(unknown_shapes, dataset_ops.get_legacy_output_shapes(dataset)) expected_shapes = (tensor_shape.TensorShape(2), tensor_shape.TensorShape((None, 4))) result = dataset.apply(batching.assert_element_shape(expected_shapes)) self.assertEqual(expected_shapes, dataset_ops.get_legacy_output_shapes(result)) iterator = dataset_ops.make_initializable_iterator(result) init_op = iterator.initializer get_next = iterator.get_next() with self.cached_session() as sess: sess.run(init_op) for _ in range(5): sess.run(get_next) with self.assertRaises(errors.OutOfRangeError): sess.run(get_next) def test_assert_wrong_partial_element_shape_on_unknown_shape_dataset(self): def create_unknown_shape_dataset(x): return script_ops.py_func( lambda _: ( # pylint: disable=g-long-lambda np.ones(2, dtype=np.float32), np.zeros((3, 4), dtype=np.int32)), [x], [dtypes.float32, dtypes.int32]) dataset = dataset_ops.Dataset.range(3).map(create_unknown_shape_dataset) unknown_shapes = (tensor_shape.TensorShape(None), tensor_shape.TensorShape(None)) self.assertEqual(unknown_shapes, dataset_ops.get_legacy_output_shapes(dataset)) wrong_shapes = (tensor_shape.TensorShape(2), tensor_shape.TensorShape((None, 10))) iterator = dataset_ops.make_initializable_iterator( dataset.apply(batching.assert_element_shape(wrong_shapes))) init_op = iterator.initializer get_next = iterator.get_next() with self.cached_session() as sess: sess.run(init_op) with self.assertRaises(errors.InvalidArgumentError): sess.run(get_next) if __name__ == "__main__": test.main()
tensorflow-master
tensorflow/contrib/data/python/kernel_tests/assert_element_shape_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for the experimental input pipeline ops.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import parameterized import numpy as np from tensorflow.contrib.data.python.ops import get_single_element from tensorflow.contrib.data.python.ops import grouping from tensorflow.python.data.kernel_tests import test_base from tensorflow.python.data.ops import dataset_ops from tensorflow.python.framework import test_util from tensorflow.python.platform import test @test_util.run_all_in_graph_and_eager_modes class ReduceDatasetTest(test_base.DatasetTestBase, parameterized.TestCase): @parameterized.named_parameters( ("SumZero", 0), ("SumOne", 1), ("SumFive", 5), ("SumTen", 10), ) def testReduceDataset(self, stop): def init_fn(_): return np.int64(0) def reduce_fn(state, value): return state + value def finalize_fn(state): return state sum_reducer = grouping.Reducer(init_fn, reduce_fn, finalize_fn) dataset = dataset_ops.Dataset.range(stop) element = get_single_element.reduce_dataset(dataset, sum_reducer) self.assertEqual(stop * (stop - 1) / 2, self.evaluate(element)) if __name__ == "__main__": test.main()
tensorflow-master
tensorflow/contrib/data/python/kernel_tests/reduce_dataset_test.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for the experimental input pipeline ops.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import parameterized import numpy as np from tensorflow.contrib.data.python.ops import sliding from tensorflow.python.data.kernel_tests import test_base from tensorflow.python.data.ops import dataset_ops from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.framework import sparse_tensor from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.platform import test @test_util.run_v1_only("deprecated API, no eager or V2 test coverage") class SlideDatasetTest(test_base.DatasetTestBase, parameterized.TestCase): @parameterized.named_parameters( ("1", 20, 14, 7, 1), ("2", 20, 17, 9, 1), ("3", 20, 14, 14, 1), ("4", 20, 10, 14, 1), ("5", 20, 14, 19, 1), ("6", 20, 4, 1, 2), ("7", 20, 2, 1, 6), ("8", 20, 4, 7, 2), ("9", 20, 2, 7, 6), ("10", 1, 10, 4, 1), ("11", 0, 10, 4, 1), ) def testSlideDataset(self, count, window_size, window_shift, window_stride): """Tests a dataset that slides a window its input elements.""" components = (np.arange(7), np.array([[1, 2, 3]]) * np.arange(7)[:, np.newaxis], np.array(37.0) * np.arange(7)) count_t = array_ops.placeholder(dtypes.int64, shape=[]) window_size_t = array_ops.placeholder(dtypes.int64, shape=[]) window_shift_t = array_ops.placeholder(dtypes.int64, shape=[]) window_stride_t = array_ops.placeholder(dtypes.int64, shape=[]) def _map_fn(x, y, z): return math_ops.square(x), math_ops.square(y), math_ops.square(z) # The pipeline is TensorSliceDataset -> MapDataset(square_3) -> # RepeatDataset(count) -> # _SlideDataset(window_size, window_shift, window_stride). iterator = dataset_ops.make_initializable_iterator( dataset_ops.Dataset.from_tensor_slices(components).map(_map_fn) .repeat(count).apply( sliding.sliding_window_batch( window_size=window_size_t, window_shift=window_shift_t, window_stride=window_stride_t))) init_op = iterator.initializer get_next = iterator.get_next() self.assertEqual([[None] + list(c.shape[1:]) for c in components], [t.shape.as_list() for t in get_next]) with self.cached_session() as sess: sess.run( init_op, feed_dict={ count_t: count, window_size_t: window_size, window_shift_t: window_shift, window_stride_t: window_stride }) num_batches = (count * 7 - ( (window_size - 1) * window_stride + 1)) // window_shift + 1 for i in range(num_batches): result = sess.run(get_next) for component, result_component in zip(components, result): for j in range(window_size): self.assertAllEqual( component[(i * window_shift + j * window_stride) % 7]**2, result_component[j]) with self.assertRaises(errors.OutOfRangeError): sess.run(get_next) @parameterized.named_parameters( ("1", 20, 14, 7, 1), ("2", 20, 17, 9, 1), ("3", 20, 14, 14, 1), ("4", 20, 10, 14, 1), ("5", 20, 14, 19, 1), ("6", 20, 4, 1, 2), ("7", 20, 2, 1, 6), ("8", 20, 4, 7, 2), ("9", 20, 2, 7, 6), ("10", 1, 10, 4, 1), ("11", 0, 10, 4, 1), ) def testSlideDatasetDeprecated(self, count, window_size, stride, window_stride): """Tests a dataset that slides a window its input elements.""" components = (np.arange(7), np.array([[1, 2, 3]]) * np.arange(7)[:, np.newaxis], np.array(37.0) * np.arange(7)) count_t = array_ops.placeholder(dtypes.int64, shape=[]) window_size_t = array_ops.placeholder(dtypes.int64, shape=[]) stride_t = array_ops.placeholder(dtypes.int64, shape=[]) window_stride_t = array_ops.placeholder(dtypes.int64, shape=[]) def _map_fn(x, y, z): return math_ops.square(x), math_ops.square(y), math_ops.square(z) # The pipeline is TensorSliceDataset -> MapDataset(square_3) -> # RepeatDataset(count) -> _SlideDataset(window_size, stride, window_stride). iterator = dataset_ops.make_initializable_iterator( dataset_ops.Dataset.from_tensor_slices(components).map(_map_fn) .repeat(count).apply( sliding.sliding_window_batch( window_size=window_size_t, stride=stride_t, window_stride=window_stride_t))) init_op = iterator.initializer get_next = iterator.get_next() self.assertEqual([[None] + list(c.shape[1:]) for c in components], [t.shape.as_list() for t in get_next]) with self.cached_session() as sess: sess.run( init_op, feed_dict={ count_t: count, window_size_t: window_size, stride_t: stride, window_stride_t: window_stride }) num_batches = (count * 7 - ( (window_size - 1) * window_stride + 1)) // stride + 1 for i in range(num_batches): result = sess.run(get_next) for component, result_component in zip(components, result): for j in range(window_size): self.assertAllEqual( component[(i * stride + j * window_stride) % 7]**2, result_component[j]) with self.assertRaises(errors.OutOfRangeError): sess.run(get_next) @parameterized.named_parameters( ("1", 14, 0, 3, 1), ("2", 14, 3, 0, 1), ("3", 14, 3, 3, 0), ) def testSlideDatasetInvalid(self, count, window_size, window_shift, window_stride): count_t = array_ops.placeholder(dtypes.int64, shape=[]) window_size_t = array_ops.placeholder(dtypes.int64, shape=[]) window_shift_t = array_ops.placeholder(dtypes.int64, shape=[]) window_stride_t = array_ops.placeholder(dtypes.int64, shape=[]) iterator = dataset_ops.make_initializable_iterator( dataset_ops.Dataset.range(10).map(lambda x: x).repeat(count_t).apply( sliding.sliding_window_batch( window_size=window_size_t, window_shift=window_shift_t, window_stride=window_stride_t))) init_op = iterator.initializer with self.cached_session() as sess: with self.assertRaises(errors.InvalidArgumentError): sess.run( init_op, feed_dict={ count_t: count, window_size_t: window_size, window_shift_t: window_shift, window_stride_t: window_stride }) def testSlideDatasetValueError(self): with self.assertRaises(ValueError): dataset_ops.Dataset.range(10).map(lambda x: x).apply( sliding.sliding_window_batch( window_size=1, stride=1, window_shift=1, window_stride=1)) def testSlideSparse(self): def _sparse(i): return sparse_tensor.SparseTensorValue( indices=[[0]], values=(i * [1]), dense_shape=[1]) iterator = dataset_ops.make_initializable_iterator( dataset_ops.Dataset.range(10).map(_sparse).apply( sliding.sliding_window_batch(window_size=5, window_shift=3))) init_op = iterator.initializer get_next = iterator.get_next() with self.cached_session() as sess: sess.run(init_op) num_batches = (10 - 5) // 3 + 1 for i in range(num_batches): actual = sess.run(get_next) expected = sparse_tensor.SparseTensorValue( indices=[[0, 0], [1, 0], [2, 0], [3, 0], [4, 0]], values=[i * 3, i * 3 + 1, i * 3 + 2, i * 3 + 3, i * 3 + 4], dense_shape=[5, 1]) self.assertTrue(sparse_tensor.is_sparse(actual)) self.assertSparseValuesEqual(actual, expected) with self.assertRaises(errors.OutOfRangeError): sess.run(get_next) def testSlideSparseWithDifferentDenseShapes(self): def _sparse(i): return sparse_tensor.SparseTensorValue( indices=array_ops.expand_dims( math_ops.range(i, dtype=dtypes.int64), 1), values=array_ops.fill([math_ops.cast(i, dtypes.int32)], i), dense_shape=[i]) iterator = dataset_ops.make_initializable_iterator( dataset_ops.Dataset.range(10).map(_sparse).apply( sliding.sliding_window_batch(window_size=5, window_shift=3))) init_op = iterator.initializer get_next = iterator.get_next() with self.cached_session() as sess: sess.run(init_op) num_batches = (10 - 5) // 3 + 1 for i in range(num_batches): actual = sess.run(get_next) expected_indices = [] expected_values = [] for j in range(5): for k in range(i * 3 + j): expected_indices.append([j, k]) expected_values.append(i * 3 + j) expected = sparse_tensor.SparseTensorValue( indices=expected_indices, values=expected_values, dense_shape=[5, i * 3 + 5 - 1]) self.assertTrue(sparse_tensor.is_sparse(actual)) self.assertSparseValuesEqual(actual, expected) with self.assertRaises(errors.OutOfRangeError): sess.run(get_next) def testNestedSlideSparse(self): def _sparse(i): return sparse_tensor.SparseTensorValue( indices=[[0]], values=(i * [1]), dense_shape=[1]) iterator = dataset_ops.make_initializable_iterator( dataset_ops.Dataset.range(10).map(_sparse).apply( sliding.sliding_window_batch(window_size=4, window_shift=2)).apply( sliding.sliding_window_batch(window_size=3, window_shift=1))) init_op = iterator.initializer get_next = iterator.get_next() with self.cached_session() as sess: sess.run(init_op) # Slide: 1st batch. actual = sess.run(get_next) expected = sparse_tensor.SparseTensorValue( indices=[[0, 0, 0], [0, 1, 0], [0, 2, 0], [0, 3, 0], [1, 0, 0], [1, 1, 0], [1, 2, 0], [1, 3, 0], [2, 0, 0], [2, 1, 0], [2, 2, 0], [2, 3, 0]], values=[0, 1, 2, 3, 2, 3, 4, 5, 4, 5, 6, 7], dense_shape=[3, 4, 1]) self.assertTrue(sparse_tensor.is_sparse(actual)) self.assertSparseValuesEqual(actual, expected) # Slide: 2nd batch. actual = sess.run(get_next) expected = sparse_tensor.SparseTensorValue( indices=[[0, 0, 0], [0, 1, 0], [0, 2, 0], [0, 3, 0], [1, 0, 0], [1, 1, 0], [1, 2, 0], [1, 3, 0], [2, 0, 0], [2, 1, 0], [2, 2, 0], [2, 3, 0]], values=[2, 3, 4, 5, 4, 5, 6, 7, 6, 7, 8, 9], dense_shape=[3, 4, 1]) self.assertTrue(sparse_tensor.is_sparse(actual)) self.assertSparseValuesEqual(actual, expected) with self.assertRaises(errors.OutOfRangeError): sess.run(get_next) def testSlideShapeError(self): def generator(): yield [1.0, 2.0, 3.0] yield [4.0, 5.0, 6.0] yield [7.0, 8.0, 9.0, 10.0] iterator = dataset_ops.make_initializable_iterator( dataset_ops.Dataset.from_generator( generator, dtypes.float32, output_shapes=[None]).apply( sliding.sliding_window_batch(window_size=3, window_shift=1))) next_element = iterator.get_next() with self.cached_session() as sess: sess.run(iterator.initializer) with self.assertRaisesRegexp( errors.InvalidArgumentError, r"Cannot batch tensors with different shapes in component 0. " r"First element had shape \[3\] and element 2 had shape \[4\]."): sess.run(next_element) if __name__ == "__main__": test.main()
tensorflow-master
tensorflow/contrib/data/python/kernel_tests/slide_dataset_op_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for the private `_RestructuredDataset` transformation.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.data.python.ops import batching from tensorflow.python.data.kernel_tests import test_base from tensorflow.python.data.ops import dataset_ops from tensorflow.python.data.util import nest from tensorflow.python.framework import dtypes from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.platform import test # TODO(b/117581999): Add eager specific test. class RestructuredDatasetTest(test_base.DatasetTestBase): @test_util.run_deprecated_v1 def testRestructureDataset(self): components = (array_ops.placeholder(dtypes.int32), (array_ops.placeholder(dtypes.int32, shape=[None]), array_ops.placeholder(dtypes.int32, shape=[20, 30]))) dataset = dataset_ops.Dataset.from_tensors(components) i32 = dtypes.int32 test_cases = [((i32, i32, i32), None), (((i32, i32), i32), None), ((i32, i32, i32), (None, None, None)), ((i32, i32, i32), ([17], [17], [20, 30]))] for new_types, new_shape_lists in test_cases: # pylint: disable=protected-access new = batching._RestructuredDataset(dataset, new_types, new_shape_lists) # pylint: enable=protected-access self.assertEqual(new_types, dataset_ops.get_legacy_output_types(new)) if new_shape_lists is not None: for expected_shape_list, shape in zip( nest.flatten(new_shape_lists), nest.flatten(dataset_ops.get_legacy_output_shapes(new))): if expected_shape_list is None: self.assertIs(None, shape.ndims) else: self.assertEqual(expected_shape_list, shape.as_list()) fail_cases = [((i32, dtypes.int64, i32), None), ((i32, i32, i32, i32), None), ((i32, i32, i32), ((None, None), None)), ((i32, i32, i32), (None, None, None, None)), ((i32, i32, i32), (None, [None], [21, 30]))] for new_types, new_shape_lists in fail_cases: with self.assertRaises(ValueError): # pylint: disable=protected-access new = batching._RestructuredDataset(dataset, new_types, new_shape_lists) # pylint: enable=protected-access if __name__ == "__main__": test.main()
tensorflow-master
tensorflow/contrib/data/python/kernel_tests/restructured_dataset_test.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Sliding dataset transformations.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.data.ops import dataset_ops from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import gen_experimental_dataset_ops as ged_ops from tensorflow.python.util import deprecation class _SlideDataset(dataset_ops.UnaryDataset): """A `Dataset` that passes a sliding window over its input.""" def __init__(self, input_dataset, window_size, window_shift, window_stride): """See `sliding_window_batch` for details.""" self._input_dataset = input_dataset self._window_size = ops.convert_to_tensor( window_size, dtype=dtypes.int64, name="window_stride") self._window_stride = ops.convert_to_tensor( window_stride, dtype=dtypes.int64, name="window_stride") self._window_shift = ops.convert_to_tensor( window_shift, dtype=dtypes.int64, name="window_shift") input_structure = dataset_ops.get_structure(input_dataset) self._structure = input_structure._batch(None) # pylint: disable=protected-access variant_tensor = ged_ops.experimental_sliding_window_dataset( self._input_dataset._variant_tensor, # pylint: disable=protected-access window_size=self._window_size, window_shift=self._window_shift, window_stride=self._window_stride, **dataset_ops.flat_structure(self)) super(_SlideDataset, self).__init__(input_dataset, variant_tensor) @property def _element_structure(self): return self._structure @deprecation.deprecated_args( None, "stride is deprecated, use window_shift instead", "stride") @deprecation.deprecated( None, "Use `tf.data.Dataset.window(size=window_size, shift=window_shift, " "stride=window_stride).flat_map(lambda x: x.batch(window_size))` " "instead.") def sliding_window_batch(window_size, stride=None, window_shift=None, window_stride=1): """A sliding window over a dataset. This transformation passes a sliding window over this dataset. The window size is `window_size`, the stride of the input elements is `window_stride`, and the shift between consecutive windows is `window_shift`. If the remaining elements cannot fill up the sliding window, this transformation will drop the final smaller element. For example: ```python # NOTE: The following examples use `{ ... }` to represent the # contents of a dataset. a = { [1], [2], [3], [4], [5], [6] } a.apply(sliding_window_batch(window_size=3)) == { [[1], [2], [3]], [[2], [3], [4]], [[3], [4], [5]], [[4], [5], [6]] } a.apply(sliding_window_batch(window_size=3, window_shift=2)) == { [[1], [2], [3]], [[3], [4], [5]] } a.apply(sliding_window_batch(window_size=3, window_stride=2)) == { [[1], [3], [5]], [[2], [4], [6]] } ``` Args: window_size: A `tf.int64` scalar `tf.Tensor`, representing the number of elements in the sliding window. It must be positive. stride: (Optional.) A `tf.int64` scalar `tf.Tensor`, representing the forward shift of the sliding window in each iteration. The default is `1`. It must be positive. Deprecated alias for `window_shift`. window_shift: (Optional.) A `tf.int64` scalar `tf.Tensor`, representing the forward shift of the sliding window in each iteration. The default is `1`. It must be positive. window_stride: (Optional.) A `tf.int64` scalar `tf.Tensor`, representing the stride of the input elements in the sliding window. The default is `1`. It must be positive. Returns: A `Dataset` transformation function, which can be passed to `tf.data.Dataset.apply`. Raises: ValueError: if invalid arguments are provided. """ if stride is None and window_shift is None: window_shift = 1 elif stride is not None and window_shift is None: window_shift = stride elif stride is not None and window_shift is not None: raise ValueError("Cannot specify both `stride` and `window_shift`") def _apply_fn(dataset): return _SlideDataset(dataset, window_size, window_shift, window_stride) return _apply_fn
tensorflow-master
tensorflow/contrib/data/python/ops/sliding.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Batching dataset transformations.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.framework import with_shape from tensorflow.python.data.experimental.ops import batching from tensorflow.python.data.ops import dataset_ops from tensorflow.python.data.util import nest from tensorflow.python.data.util import structure from tensorflow.python.framework import dtypes from tensorflow.python.framework import tensor_shape from tensorflow.python.util import deprecation @deprecation.deprecated( None, "Use `tf.data.experimental.dense_to_sparse_batch(...)`.") def dense_to_sparse_batch(batch_size, row_shape): """A transformation that batches ragged elements into `tf.SparseTensor`s. Like `Dataset.padded_batch()`, this transformation combines multiple consecutive elements of the dataset, which might have different shapes, into a single element. The resulting element has three components (`indices`, `values`, and `dense_shape`), which comprise a `tf.SparseTensor` that represents the same data. The `row_shape` represents the dense shape of each row in the resulting `tf.SparseTensor`, to which the effective batch size is prepended. For example: ```python # NOTE: The following examples use `{ ... }` to represent the # contents of a dataset. a = { ['a', 'b', 'c'], ['a', 'b'], ['a', 'b', 'c', 'd'] } a.apply(tf.data.experimental.dense_to_sparse_batch(batch_size=2, row_shape=[6])) == { ([[0, 0], [0, 1], [0, 2], [1, 0], [1, 1]], # indices ['a', 'b', 'c', 'a', 'b'], # values [2, 6]), # dense_shape ([[0, 0], [0, 1], [0, 2], [0, 3]], ['a', 'b', 'c', 'd'], [1, 6]) } ``` Args: batch_size: A `tf.int64` scalar `tf.Tensor`, representing the number of consecutive elements of this dataset to combine in a single batch. row_shape: A `tf.TensorShape` or `tf.int64` vector tensor-like object representing the equivalent dense shape of a row in the resulting `tf.SparseTensor`. Each element of this dataset must have the same rank as `row_shape`, and must have size less than or equal to `row_shape` in each dimension. Returns: A `Dataset` transformation function, which can be passed to `tf.data.Dataset.apply`. """ return batching.dense_to_sparse_batch(batch_size, row_shape) @deprecation.deprecated(None, "Use `tf.data.experimental.unbatch()`.") def unbatch(): """Splits elements of a dataset into multiple elements on the batch dimension. For example, if elements of the dataset are shaped `[B, a0, a1, ...]`, where `B` may vary for each input element, then for each element in the dataset, the unbatched dataset will contain `B` consecutive elements of shape `[a0, a1, ...]`. ```python # NOTE: The following example uses `{ ... }` to represent the contents # of a dataset. a = { ['a', 'b', 'c'], ['a', 'b'], ['a', 'b', 'c', 'd'] } a.apply(tf.data.experimental.unbatch()) == { 'a', 'b', 'c', 'a', 'b', 'a', 'b', 'c', 'd'} ``` Returns: A `Dataset` transformation function, which can be passed to `tf.data.Dataset.apply`. """ return batching.unbatch() @deprecation.deprecated( None, "Use `tf.data.Dataset.batch(..., drop_remainder=True)`.") def batch_and_drop_remainder(batch_size): """A batching transformation that omits the final small batch (if present). Like `tf.data.Dataset.batch`, this transformation combines consecutive elements of this dataset into batches. However, if the batch size does not evenly divide the input dataset size, this transformation will drop the final smaller element. The following example illustrates the difference between this transformation and `Dataset.batch()`: ```python dataset = tf.data.Dataset.range(200) batched = dataset.apply(tf.contrib.data.batch_and_drop_remainder(128)) print(batched.output_shapes) # ==> "(128,)" (the batch dimension is known) ``` By contrast, `dataset.batch(128)` would yield a two-element dataset with shapes `(128,)` and `(72,)`, so the batch dimension would not be statically known. Args: batch_size: A `tf.int64` scalar `tf.Tensor`, representing the number of consecutive elements of this dataset to combine in a single batch. Returns: A `Dataset` transformation function, which can be passed to `tf.data.Dataset.apply` """ def _apply_fn(dataset): """Function from `Dataset` to `Dataset` that applies the transformation.""" return dataset.batch(batch_size, drop_remainder=True) return _apply_fn @deprecation.deprecated( None, "Use `tf.data.Dataset.padded_batch(..., drop_remainder=True)`.") def padded_batch_and_drop_remainder(batch_size, padded_shapes, padding_values=None): """A batching and padding transformation that omits the final small batch. Like `tf.data.Dataset.padded_batch`, this transformation combines consecutive elements of this dataset into batches. However, if the batch size does not evenly divide the input dataset size, this transformation will drop the final smaller element. See `tf.contrib.data.batch_and_drop_remainder` for more details. Args: batch_size: A `tf.int64` scalar `tf.Tensor`, representing the number of consecutive elements of this dataset to combine in a single batch. padded_shapes: A nested structure of `tf.TensorShape` or `tf.int64` vector tensor-like objects. See `tf.data.Dataset.padded_batch` for details. padding_values: (Optional.) A nested structure of scalar-shaped `tf.Tensor`. See `tf.data.Dataset.padded_batch` for details. Returns: A `Dataset` transformation function, which can be passed to `tf.data.Dataset.apply` """ def _apply_fn(dataset): """Function from `Dataset` to `Dataset` that applies the transformation.""" return dataset.padded_batch( batch_size, padded_shapes=padded_shapes, padding_values=padding_values, drop_remainder=True) return _apply_fn # TODO(b/116817045): Move this to `tf.data.experimental` when the `with_shape()` # function is available in the core. def assert_element_shape(expected_shapes): """Assert the shape of this `Dataset`. ```python shapes = [tf.TensorShape([16, 256]), tf.TensorShape([None, 2])] result = dataset.apply(tf.data.experimental.assert_element_shape(shapes)) print(result.output_shapes) # ==> "((16, 256), (<unknown>, 2))" ``` If dataset shapes and expected_shape, are fully defined, assert they match. Otherwise, add assert op that will validate the shapes when tensors are evaluated, and set shapes on tensors, respectively. Note that unknown dimension in `expected_shapes` will be ignored. Args: expected_shapes: A nested structure of `tf.TensorShape` objects. Returns: A `Dataset` transformation function, which can be passed to `tf.data.Dataset.apply` """ def _merge_output_shapes(original_shapes, expected_shapes): flat_original_shapes = nest.flatten(original_shapes) flat_new_shapes = nest.flatten_up_to(original_shapes, expected_shapes) flat_merged_output_shapes = [ original_shape.merge_with(new_shape) for original_shape, new_shape in zip(flat_original_shapes, flat_new_shapes)] return nest.pack_sequence_as(original_shapes, flat_merged_output_shapes) def _check_shape(*elements): flatten_tensors = nest.flatten(elements) flatten_shapes = nest.flatten(expected_shapes) checked_tensors = [ with_shape(shape, tensor) if shape else tensor # Ignore unknown shape for shape, tensor in zip(flatten_shapes, flatten_tensors) ] return nest.pack_sequence_as(elements, checked_tensors) def _apply_fn(dataset): output_shapes = _merge_output_shapes( dataset_ops.get_legacy_output_shapes(dataset), expected_shapes) # pylint: disable=protected-access return _RestructuredDataset( dataset.map(_check_shape), dataset_ops.get_legacy_output_types(dataset), output_shapes=output_shapes, output_classes=dataset_ops.get_legacy_output_classes(dataset)) return _apply_fn @deprecation.deprecated(None, "Use `tf.data.experimental.map_and_batch(...)`.") def map_and_batch(map_func, batch_size, num_parallel_batches=None, drop_remainder=False, num_parallel_calls=None): """Fused implementation of `map` and `batch`. Maps `map_func` across `batch_size` consecutive elements of this dataset and then combines them into a batch. Functionally, it is equivalent to `map` followed by `batch`. However, by fusing the two transformations together, the implementation can be more efficient. Surfacing this transformation in the API is temporary. Once automatic input pipeline optimization is implemented, the fusing of `map` and `batch` will happen automatically and this API will be deprecated. Args: map_func: A function mapping a nested structure of tensors to another nested structure of tensors. batch_size: A `tf.int64` scalar `tf.Tensor`, representing the number of consecutive elements of this dataset to combine in a single batch. num_parallel_batches: (Optional.) A `tf.int64` scalar `tf.Tensor`, representing the number of batches to create in parallel. On one hand, higher values can help mitigate the effect of stragglers. On the other hand, higher values can increase contention if CPU is scarce. drop_remainder: (Optional.) A `tf.bool` scalar `tf.Tensor`, representing whether the last batch should be dropped in case its size is smaller than desired; the default behavior is not to drop the smaller batch. num_parallel_calls: (Optional.) A `tf.int32` scalar `tf.Tensor`, representing the number of elements to process in parallel. If not specified, `batch_size * num_parallel_batches` elements will be processed in parallel. Returns: A `Dataset` transformation function, which can be passed to `tf.data.Dataset.apply`. Raises: ValueError: If both `num_parallel_batches` and `num_parallel_calls` are specified. """ return batching.map_and_batch(map_func, batch_size, num_parallel_batches, drop_remainder, num_parallel_calls) class _RestructuredDataset(dataset_ops.UnaryDataset): """An internal helper for changing the structure and shape of a dataset.""" def __init__(self, dataset, output_types, output_shapes=None, output_classes=None): """Creates a new dataset with the given output types and shapes. The given `dataset` must have a structure that is convertible: * `dataset.output_types` must be the same as `output_types` module nesting. * Each shape in `dataset.output_shapes` must be compatible with each shape in `output_shapes` (if given). Note: This helper permits "unsafe casts" for shapes, equivalent to using `tf.Tensor.set_shape()` where domain-specific knowledge is available. Args: dataset: A `Dataset` object. output_types: A nested structure of `tf.DType` objects. output_shapes: (Optional.) A nested structure of `tf.TensorShape` objects. If omitted, the shapes will be inherited from `dataset`. output_classes: (Optional.) A nested structure of class types. If omitted, the class types will be inherited from `dataset`. Raises: ValueError: If either `output_types` or `output_shapes` is not compatible with the structure of `dataset`. """ self._input_dataset = dataset input_types = dataset_ops.get_legacy_output_types(dataset) # Validate that the types are compatible. output_types = nest.map_structure(dtypes.as_dtype, output_types) flat_original_types = nest.flatten(input_types) flat_new_types = nest.flatten(output_types) if flat_original_types != flat_new_types: raise ValueError( "Dataset with output types %r cannot be restructured to have " "output types %r" % (dataset_ops.get_legacy_output_types(dataset), output_types)) input_shapes = dataset_ops.get_legacy_output_shapes(dataset) if output_shapes is None: # Inherit shapes from the original `dataset`. output_shapes = nest.pack_sequence_as( output_types, nest.flatten(input_shapes)) else: # Validate that the shapes are compatible. nest.assert_same_structure(output_types, output_shapes) flat_original_shapes = nest.flatten(input_shapes) flat_new_shapes = nest.flatten_up_to(output_types, output_shapes) for original_shape, new_shape in zip(flat_original_shapes, flat_new_shapes): if not original_shape.is_compatible_with(new_shape): raise ValueError( "Dataset with output shapes %r cannot be restructured to have " "incompatible output shapes %r" % (input_shapes, output_shapes)) output_shapes = nest.map_structure_up_to( output_types, tensor_shape.as_shape, output_shapes) input_classes = dataset_ops.get_legacy_output_classes(dataset) if output_classes is None: # Inherit class types from the original `dataset`. output_classes = nest.pack_sequence_as( output_types, nest.flatten(input_classes)) self._structure = structure.convert_legacy_structure( output_types, output_shapes, output_classes) variant_tensor = self._input_dataset._variant_tensor # pylint: disable=protected-access super(_RestructuredDataset, self).__init__(dataset, variant_tensor) @property def _element_structure(self): return self._structure
tensorflow-master
tensorflow/contrib/data/python/ops/batching.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Python wrappers for reader Datasets.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.data.experimental.ops import readers from tensorflow.python.data.ops import dataset_ops from tensorflow.python.data.ops import readers as core_readers from tensorflow.python.data.util import structure from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import gen_experimental_dataset_ops from tensorflow.python.util import deprecation @deprecation.deprecated(None, "Use `tf.data.experimental.make_csv_dataset(...)`.") def make_csv_dataset( file_pattern, batch_size, column_names=None, column_defaults=None, label_name=None, select_columns=None, field_delim=",", use_quote_delim=True, na_value="", header=True, num_epochs=None, shuffle=True, shuffle_buffer_size=10000, shuffle_seed=None, prefetch_buffer_size=dataset_ops.AUTOTUNE, num_parallel_reads=1, sloppy=False, num_rows_for_inference=100, compression_type=None, ): """Reads CSV files into a dataset. Reads CSV files into a dataset, where each element is a (features, labels) tuple that corresponds to a batch of CSV rows. The features dictionary maps feature column names to `Tensor`s containing the corresponding feature data, and labels is a `Tensor` containing the batch's label data. Args: file_pattern: List of files or patterns of file paths containing CSV records. See `tf.io.gfile.glob` for pattern rules. batch_size: An int representing the number of records to combine in a single batch. column_names: An optional list of strings that corresponds to the CSV columns, in order. One per column of the input record. If this is not provided, infers the column names from the first row of the records. These names will be the keys of the features dict of each dataset element. column_defaults: A optional list of default values for the CSV fields. One item per selected column of the input record. Each item in the list is either a valid CSV dtype (float32, float64, int32, int64, or string), or a `Tensor` with one of the aforementioned types. The tensor can either be a scalar default value (if the column is optional), or an empty tensor (if the column is required). If a dtype is provided instead of a tensor, the column is also treated as required. If this list is not provided, tries to infer types based on reading the first num_rows_for_inference rows of files specified, and assumes all columns are optional, defaulting to `0` for numeric values and `""` for string values. If both this and `select_columns` are specified, these must have the same lengths, and `column_defaults` is assumed to be sorted in order of increasing column index. label_name: A optional string corresponding to the label column. If provided, the data for this column is returned as a separate `Tensor` from the features dictionary, so that the dataset complies with the format expected by a `tf.Estimator.train` or `tf.Estimator.evaluate` input function. select_columns: An optional list of integer indices or string column names, that specifies a subset of columns of CSV data to select. If column names are provided, these must correspond to names provided in `column_names` or inferred from the file header lines. When this argument is specified, only a subset of CSV columns will be parsed and returned, corresponding to the columns specified. Using this results in faster parsing and lower memory usage. If both this and `column_defaults` are specified, these must have the same lengths, and `column_defaults` is assumed to be sorted in order of increasing column index. field_delim: An optional `string`. Defaults to `","`. Char delimiter to separate fields in a record. use_quote_delim: An optional bool. Defaults to `True`. If false, treats double quotation marks as regular characters inside of the string fields. na_value: Additional string to recognize as NA/NaN. header: A bool that indicates whether the first rows of provided CSV files correspond to header lines with column names, and should not be included in the data. num_epochs: An int specifying the number of times this dataset is repeated. If None, cycles through the dataset forever. shuffle: A bool that indicates whether the input should be shuffled. shuffle_buffer_size: Buffer size to use for shuffling. A large buffer size ensures better shuffling, but increases memory usage and startup time. shuffle_seed: Randomization seed to use for shuffling. prefetch_buffer_size: An int specifying the number of feature batches to prefetch for performance improvement. Recommended value is the number of batches consumed per training step. Defaults to auto-tune. num_parallel_reads: Number of threads used to read CSV records from files. If >1, the results will be interleaved. sloppy: If `True`, reading performance will be improved at the cost of non-deterministic ordering. If `False`, the order of elements produced is deterministic prior to shuffling (elements are still randomized if `shuffle=True`. Note that if the seed is set, then order of elements after shuffling is deterministic). Defaults to `False`. num_rows_for_inference: Number of rows of a file to use for type inference if record_defaults is not provided. If None, reads all the rows of all the files. Defaults to 100. compression_type: (Optional.) A `tf.string` scalar evaluating to one of `""` (no compression), `"ZLIB"`, or `"GZIP"`. Defaults to no compression. Returns: A dataset, where each element is a (features, labels) tuple that corresponds to a batch of `batch_size` CSV rows. The features dictionary maps feature column names to `Tensor`s containing the corresponding column data, and labels is a `Tensor` containing the column data for the label column specified by `label_name`. Raises: ValueError: If any of the arguments is malformed. """ return readers.make_csv_dataset( file_pattern, batch_size, column_names, column_defaults, label_name, select_columns, field_delim, use_quote_delim, na_value, header, num_epochs, shuffle, shuffle_buffer_size, shuffle_seed, prefetch_buffer_size, num_parallel_reads, sloppy, num_rows_for_inference, compression_type) class CsvDataset(readers.CsvDataset): """A Dataset comprising lines from one or more CSV files.""" @deprecation.deprecated(None, "Use `tf.data.experimental.CsvDataset(...)`.") def __init__(self, filenames, record_defaults, compression_type=None, buffer_size=None, header=False, field_delim=",", use_quote_delim=True, na_value="", select_cols=None): super(CsvDataset, self).__init__( filenames, record_defaults, compression_type, buffer_size, header, field_delim, use_quote_delim, na_value, select_cols) @deprecation.deprecated( None, "Use `tf.data.experimental.make_batched_features_dataset(...)`.") def make_batched_features_dataset(file_pattern, batch_size, features, reader=core_readers.TFRecordDataset, label_key=None, reader_args=None, num_epochs=None, shuffle=True, shuffle_buffer_size=10000, shuffle_seed=None, prefetch_buffer_size=dataset_ops.AUTOTUNE, reader_num_threads=1, parser_num_threads=2, sloppy_ordering=False, drop_final_batch=False): """Returns a `Dataset` of feature dictionaries from `Example` protos. If label_key argument is provided, returns a `Dataset` of tuple comprising of feature dictionaries and label. Example: ``` serialized_examples = [ features { feature { key: "age" value { int64_list { value: [ 0 ] } } } feature { key: "gender" value { bytes_list { value: [ "f" ] } } } feature { key: "kws" value { bytes_list { value: [ "code", "art" ] } } } }, features { feature { key: "age" value { int64_list { value: [] } } } feature { key: "gender" value { bytes_list { value: [ "f" ] } } } feature { key: "kws" value { bytes_list { value: [ "sports" ] } } } } ] ``` We can use arguments: ``` features: { "age": FixedLenFeature([], dtype=tf.int64, default_value=-1), "gender": FixedLenFeature([], dtype=tf.string), "kws": VarLenFeature(dtype=tf.string), } ``` And the expected output is: ```python { "age": [[0], [-1]], "gender": [["f"], ["f"]], "kws": SparseTensor( indices=[[0, 0], [0, 1], [1, 0]], values=["code", "art", "sports"] dense_shape=[2, 2]), } ``` Args: file_pattern: List of files or patterns of file paths containing `Example` records. See `tf.io.gfile.glob` for pattern rules. batch_size: An int representing the number of records to combine in a single batch. features: A `dict` mapping feature keys to `FixedLenFeature` or `VarLenFeature` values. See `tf.io.parse_example`. reader: A function or class that can be called with a `filenames` tensor and (optional) `reader_args` and returns a `Dataset` of `Example` tensors. Defaults to `tf.data.TFRecordDataset`. label_key: (Optional) A string corresponding to the key labels are stored in `tf.Examples`. If provided, it must be one of the `features` key, otherwise results in `ValueError`. reader_args: Additional arguments to pass to the reader class. num_epochs: Integer specifying the number of times to read through the dataset. If None, cycles through the dataset forever. Defaults to `None`. shuffle: A boolean, indicates whether the input should be shuffled. Defaults to `True`. shuffle_buffer_size: Buffer size of the ShuffleDataset. A large capacity ensures better shuffling but would increase memory usage and startup time. shuffle_seed: Randomization seed to use for shuffling. prefetch_buffer_size: Number of feature batches to prefetch in order to improve performance. Recommended value is the number of batches consumed per training step. Defaults to auto-tune. reader_num_threads: Number of threads used to read `Example` records. If >1, the results will be interleaved. parser_num_threads: Number of threads to use for parsing `Example` tensors into a dictionary of `Feature` tensors. sloppy_ordering: If `True`, reading performance will be improved at the cost of non-deterministic ordering. If `False`, the order of elements produced is deterministic prior to shuffling (elements are still randomized if `shuffle=True`. Note that if the seed is set, then order of elements after shuffling is deterministic). Defaults to `False`. drop_final_batch: If `True`, and the batch size does not evenly divide the input dataset size, the final smaller batch will be dropped. Defaults to `False`. Returns: A dataset of `dict` elements, (or a tuple of `dict` elements and label). Each `dict` maps feature keys to `Tensor` or `SparseTensor` objects. Raises: ValueError: If `label_key` is not one of the `features` keys. """ return readers.make_batched_features_dataset( file_pattern, batch_size, features, reader, label_key, reader_args, num_epochs, shuffle, shuffle_buffer_size, shuffle_seed, prefetch_buffer_size, reader_num_threads, parser_num_threads, sloppy_ordering, drop_final_batch) @deprecation.deprecated( None, "Use `tf.data.experimental.make_batched_features_dataset(...)`") def read_batch_features(file_pattern, batch_size, features, reader=core_readers.TFRecordDataset, reader_args=None, randomize_input=True, num_epochs=None, capacity=10000): """Reads batches of Examples. Example: ``` serialized_examples = [ features { feature { key: "age" value { int64_list { value: [ 0 ] } } } feature { key: "gender" value { bytes_list { value: [ "f" ] } } } feature { key: "kws" value { bytes_list { value: [ "code", "art" ] } } } }, features { feature { key: "age" value { int64_list { value: [] } } } feature { key: "gender" value { bytes_list { value: [ "f" ] } } } feature { key: "kws" value { bytes_list { value: [ "sports" ] } } } } ] ``` We can use arguments: ``` features: { "age": FixedLenFeature([], dtype=tf.int64, default_value=-1), "gender": FixedLenFeature([], dtype=tf.string), "kws": VarLenFeature(dtype=tf.string), } ``` And the expected output is: ```python { "age": [[0], [-1]], "gender": [["f"], ["f"]], "kws": SparseTensor( indices=[[0, 0], [0, 1], [1, 0]], values=["code", "art", "sports"] dense_shape=[2, 2]), } ``` Args: file_pattern: List of files or patterns of file paths containing `Example` records. See `tf.io.gfile.glob` for pattern rules. batch_size: An int representing the number of records to combine in a single batch. features: A `dict` mapping feature keys to `FixedLenFeature` or `VarLenFeature` values. See `tf.io.parse_example`. reader: A function or class that can be called with a `filenames` tensor and (optional) `reader_args` and returns a `Dataset` of `Example` tensors. Defaults to `tf.data.TFRecordDataset`. reader_args: Additional arguments to pass to the reader class. randomize_input: Whether the input should be randomized. num_epochs: Integer specifying the number of times to read through the dataset. If None, cycles through the dataset forever. capacity: Buffer size of the ShuffleDataset. A large capacity ensures better shuffling but would increase memory usage and startup time. Returns: A dict from keys in features to `Tensor` or `SparseTensor` objects. """ dataset = readers.make_batched_features_dataset( file_pattern, batch_size, features, reader=reader, reader_args=reader_args, shuffle=randomize_input, num_epochs=num_epochs, shuffle_buffer_size=capacity) iterator = dataset_ops.make_one_shot_iterator(dataset) outputs = iterator.get_next() return outputs class SqlDataset(readers.SqlDataset): """A `Dataset` consisting of the results from a SQL query.""" @deprecation.deprecated(None, "Use `tf.data.experimental.SqlDataset(...)`.") def __init__(self, driver_name, data_source_name, query, output_types): super(SqlDataset, self).__init__( driver_name, data_source_name, query, output_types) class LMDBDataset(dataset_ops.DatasetSource): """A LMDB Dataset that reads the lmdb file.""" def __init__(self, filenames): """Create a `LMDBDataset`. `LMDBDataset` allows a user to read data from a mdb file as (key value) pairs sequentially. For example: ```python tf.compat.v1.enable_eager_execution() dataset = tf.contrib.lmdb.LMDBDataset("/foo/bar.mdb") # Prints the (key, value) pairs inside a lmdb file. for key, value in dataset: print(key, value) ``` Args: filenames: A `tf.string` tensor containing one or more filenames. """ self._filenames = ops.convert_to_tensor( filenames, dtype=dtypes.string, name="filenames") variant_tensor = gen_experimental_dataset_ops.experimental_lmdb_dataset( self._filenames, **dataset_ops.flat_structure(self)) super(LMDBDataset, self).__init__(variant_tensor) @property def _element_structure(self): return structure.NestedStructure( (structure.TensorStructure(dtypes.string, []), structure.TensorStructure(dtypes.string, [])))
tensorflow-master
tensorflow/contrib/data/python/ops/readers.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Resampling dataset transformations.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.data.experimental.ops import resampling from tensorflow.python.util import deprecation @deprecation.deprecated(None, "Use `tf.data.experimental.rejection_resample(...)`.") def rejection_resample(class_func, target_dist, initial_dist=None, seed=None): """A transformation that resamples a dataset to achieve a target distribution. **NOTE** Resampling is performed via rejection sampling; some fraction of the input values will be dropped. Args: class_func: A function mapping an element of the input dataset to a scalar `tf.int32` tensor. Values should be in `[0, num_classes)`. target_dist: A floating point type tensor, shaped `[num_classes]`. initial_dist: (Optional.) A floating point type tensor, shaped `[num_classes]`. If not provided, the true class distribution is estimated live in a streaming fashion. seed: (Optional.) Python integer seed for the resampler. Returns: A `Dataset` transformation function, which can be passed to `tf.data.Dataset.apply`. """ return resampling.rejection_resample(class_func, target_dist, initial_dist, seed)
tensorflow-master
tensorflow/contrib/data/python/ops/resampling.py