python_code
stringlengths
0
1.02M
repo_name
stringlengths
9
48
file_path
stringlengths
5
114
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Python wrapper for prefetching_ops.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.data.experimental.ops import prefetching_ops from tensorflow.python.util import deprecation @deprecation.deprecated(None, "Use `tf.data.experimental.prefetch_to_device(...)`.") def prefetch_to_device(device, buffer_size=None): """A transformation that prefetches dataset values to the given `device`. NOTE: Although the transformation creates a `tf.data.Dataset`, the transformation must be the final `Dataset` in the input pipeline. Args: device: A string. The name of a device to which elements will be prefetched. buffer_size: (Optional.) The number of elements to buffer on `device`. Defaults to an automatically chosen value. Returns: A `Dataset` transformation function, which can be passed to `tf.data.Dataset.apply`. """ return prefetching_ops.prefetch_to_device(device, buffer_size) @deprecation.deprecated(None, "Use `tf.data.experimental.copy_to_device(...)`.") def copy_to_device(target_device, source_device="/cpu:0"): """A transformation that copies dataset elements to the given `target_device`. Args: target_device: The name of a device to which elements will be copied. source_device: The original device on which `input_dataset` will be placed. Returns: A `Dataset` transformation function, which can be passed to `tf.data.Dataset.apply`. """ return prefetching_ops.copy_to_device(target_device, source_device)
tensorflow-master
tensorflow/contrib/data/python/ops/prefetching_ops.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Grouping dataset transformations.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.data.experimental.ops import grouping from tensorflow.python.util import deprecation @deprecation.deprecated(None, "Use `tf.data.experimental.group_by_reducer(...)`.") def group_by_reducer(key_func, reducer): """A transformation that groups elements and performs a reduction. This transformation maps element of a dataset to a key using `key_func` and groups the elements by key. The `reducer` is used to process each group; its `init_func` is used to initialize state for each group when it is created, the `reduce_func` is used to update the state every time an element is mapped to the matching group, and the `finalize_func` is used to map the final state to an output value. Args: key_func: A function mapping a nested structure of tensors (having shapes and types defined by `self.output_shapes` and `self.output_types`) to a scalar `tf.int64` tensor. reducer: An instance of `Reducer`, which captures the reduction logic using the `init_func`, `reduce_func`, and `finalize_func` functions. Returns: A `Dataset` transformation function, which can be passed to `tf.data.Dataset.apply`. """ return grouping.group_by_reducer(key_func, reducer) @deprecation.deprecated(None, "Use `tf.data.experimental.group_by_window(...)`.") def group_by_window(key_func, reduce_func, window_size=None, window_size_func=None): """A transformation that groups windows of elements by key and reduces them. This transformation maps each consecutive element in a dataset to a key using `key_func` and groups the elements by key. It then applies `reduce_func` to at most `window_size_func(key)` elements matching the same key. All except the final window for each key will contain `window_size_func(key)` elements; the final window may be smaller. You may provide either a constant `window_size` or a window size determined by the key through `window_size_func`. Args: key_func: A function mapping a nested structure of tensors (having shapes and types defined by `self.output_shapes` and `self.output_types`) to a scalar `tf.int64` tensor. reduce_func: A function mapping a key and a dataset of up to `window_size` consecutive elements matching that key to another dataset. window_size: A `tf.int64` scalar `tf.Tensor`, representing the number of consecutive elements matching the same key to combine in a single batch, which will be passed to `reduce_func`. Mutually exclusive with `window_size_func`. window_size_func: A function mapping a key to a `tf.int64` scalar `tf.Tensor`, representing the number of consecutive elements matching the same key to combine in a single batch, which will be passed to `reduce_func`. Mutually exclusive with `window_size`. Returns: A `Dataset` transformation function, which can be passed to `tf.data.Dataset.apply`. Raises: ValueError: if neither or both of {`window_size`, `window_size_func`} are passed. """ return grouping.group_by_window(key_func, reduce_func, window_size, window_size_func) @deprecation.deprecated( None, "Use `tf.data.experimental.bucket_by_sequence_length(...)`.") def bucket_by_sequence_length(element_length_func, bucket_boundaries, bucket_batch_sizes, padded_shapes=None, padding_values=None, pad_to_bucket_boundary=False, no_padding=False): """A transformation that buckets elements in a `Dataset` by length. Elements of the `Dataset` are grouped together by length and then are padded and batched. This is useful for sequence tasks in which the elements have variable length. Grouping together elements that have similar lengths reduces the total fraction of padding in a batch which increases training step efficiency. Args: element_length_func: function from element in `Dataset` to `tf.int32`, determines the length of the element, which will determine the bucket it goes into. bucket_boundaries: `list<int>`, upper length boundaries of the buckets. bucket_batch_sizes: `list<int>`, batch size per bucket. Length should be `len(bucket_boundaries) + 1`. padded_shapes: Nested structure of `tf.TensorShape` to pass to `tf.data.Dataset.padded_batch`. If not provided, will use `dataset.output_shapes`, which will result in variable length dimensions being padded out to the maximum length in each batch. padding_values: Values to pad with, passed to `tf.data.Dataset.padded_batch`. Defaults to padding with 0. pad_to_bucket_boundary: bool, if `False`, will pad dimensions with unknown size to maximum length in batch. If `True`, will pad dimensions with unknown size to bucket boundary minus 1 (i.e., the maximum length in each bucket), and caller must ensure that the source `Dataset` does not contain any elements with length longer than `max(bucket_boundaries)`. no_padding: `bool`, indicates whether to pad the batch features (features need to be either of type `tf.SparseTensor` or of same shape). Returns: A `Dataset` transformation function, which can be passed to `tf.data.Dataset.apply`. Raises: ValueError: if `len(bucket_batch_sizes) != len(bucket_boundaries) + 1`. """ return grouping.bucket_by_sequence_length( element_length_func, bucket_boundaries, bucket_batch_sizes, padded_shapes, padding_values, pad_to_bucket_boundary, no_padding) class Reducer(grouping.Reducer): """A reducer is used for reducing a set of elements. A reducer is represented as a tuple of the three functions: 1) initialization function: key => initial state 2) reduce function: (old state, input) => new state 3) finalization function: state => result """ @deprecation.deprecated(None, "Use `tf.data.experimental.Reducer(...)`.") def __init__(self, init_func, reduce_func, finalize_func): super(Reducer, self).__init__(init_func, reduce_func, finalize_func)
tensorflow-master
tensorflow/contrib/data/python/ops/grouping.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Experimental API for controlling threading in `tf.data` pipelines.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function # pylint: disable=unused-import from tensorflow.python.data.experimental.ops.threadpool import override_threadpool from tensorflow.python.data.experimental.ops.threadpool import PrivateThreadPool
tensorflow-master
tensorflow/contrib/data/python/ops/threadpool.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Experimental `dataset` API for parsing example.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.data.experimental.ops import parsing_ops from tensorflow.python.util import deprecation @deprecation.deprecated( None, "Use `tf.data.experimental.parse_example_dataset(...)`.") def parse_example_dataset(features, num_parallel_calls=1): """A transformation that parses `Example` protos into a `dict` of tensors. Parses a number of serialized `Example` protos given in `serialized`. We refer to `serialized` as a batch with `batch_size` many entries of individual `Example` protos. This op parses serialized examples into a dictionary mapping keys to `Tensor` and `SparseTensor` objects. `features` is a dict from keys to `VarLenFeature`, `SparseFeature`, and `FixedLenFeature` objects. Each `VarLenFeature` and `SparseFeature` is mapped to a `SparseTensor`, and each `FixedLenFeature` is mapped to a `Tensor`. See `tf.io.parse_example` for more details about feature dictionaries. Args: features: A `dict` mapping feature keys to `FixedLenFeature`, `VarLenFeature`, and `SparseFeature` values. num_parallel_calls: (Optional.) A `tf.int32` scalar `tf.Tensor`, representing the number of parsing processes to call in parallel. Returns: A dataset transformation function, which can be passed to `tf.data.Dataset.apply`. Raises: ValueError: if features argument is None. """ return parsing_ops.parse_example_dataset(features, num_parallel_calls)
tensorflow-master
tensorflow/contrib/data/python/ops/parsing_ops.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Unique element dataset transformations.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.data.experimental.ops import unique as experimental_unique from tensorflow.python.util import deprecation @deprecation.deprecated(None, "Use `tf.data.experimental.unique()`.") def unique(): """Creates a `Dataset` from another `Dataset`, discarding duplicates. Use this transformation to produce a dataset that contains one instance of each unique element in the input. For example: ```python dataset = tf.data.Dataset.from_tensor_slices([1, 37, 2, 37, 2, 1]) # Using `unique()` will drop the duplicate elements. dataset = dataset.apply(tf.data.experimental.unique()) # ==> { 1, 37, 2 } ``` Returns: A `Dataset` transformation function, which can be passed to `tf.data.Dataset.apply`. """ return experimental_unique.unique()
tensorflow-master
tensorflow/contrib/data/python/ops/unique.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Python wrappers for Datasets and Iterators.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python.data.experimental.ops import get_single_element as experimental_get_single_element from tensorflow.python.data.ops import dataset_ops from tensorflow.python.util import deprecation @deprecation.deprecated(None, "Use `tf.data.experimental.get_single_element(...)`.") def get_single_element(dataset): """Returns the single element in `dataset` as a nested structure of tensors. This function enables you to use a `tf.data.Dataset` in a stateless "tensor-in tensor-out" expression, without creating a `tf.compat.v1.data.Iterator`. This can be useful when your preprocessing transformations are expressed as a `Dataset`, and you want to use the transformation at serving time. For example: ```python input_batch = tf.compat.v1.placeholder(tf.string, shape=[BATCH_SIZE]) def preprocessing_fn(input_str): # ... return image, label dataset = (tf.data.Dataset.from_tensor_slices(input_batch) .map(preprocessing_fn, num_parallel_calls=BATCH_SIZE) .batch(BATCH_SIZE)) image_batch, label_batch = tf.data.experimental.get_single_element(dataset) ``` Args: dataset: A `tf.data.Dataset` object containing a single element. Returns: A nested structure of `tf.Tensor` objects, corresponding to the single element of `dataset`. Raises: TypeError: if `dataset` is not a `tf.data.Dataset` object. InvalidArgumentError (at runtime): if `dataset` does not contain exactly one element. """ return experimental_get_single_element.get_single_element(dataset) @deprecation.deprecated(None, "Use `tf.data.Dataset.reduce(...)`.") def reduce_dataset(dataset, reducer): """Returns the result of reducing the `dataset` using `reducer`. Args: dataset: A `tf.data.Dataset` object. reducer: A `tf.data.experimental.Reducer` object representing the reduce logic. Returns: A nested structure of `tf.Tensor` objects, corresponding to the result of reducing `dataset` using `reducer`. Raises: TypeError: if `dataset` is not a `tf.data.Dataset` object. """ if not isinstance(dataset, dataset_ops.Dataset): raise TypeError("`dataset` must be a `tf.data.Dataset` object.") return dataset.reduce(reducer.init_func(np.int64(0)), reducer.reduce_func)
tensorflow-master
tensorflow/contrib/data/python/ops/get_single_element.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Scan dataset transformation.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.data.experimental.ops import scan_ops from tensorflow.python.util import deprecation @deprecation.deprecated(None, "Use `tf.data.experimental.scan(...)`.") def scan(initial_state, scan_func): """A transformation that scans a function across an input dataset. This transformation is a stateful relative of `tf.data.Dataset.map`. In addition to mapping `scan_func` across the elements of the input dataset, `scan()` accumulates one or more state tensors, whose initial values are `initial_state`. Args: initial_state: A nested structure of tensors, representing the initial state of the accumulator. scan_func: A function that maps `(old_state, input_element)` to `(new_state, output_element). It must take two arguments and return a pair of nested structures of tensors. The `new_state` must match the structure of `initial_state`. Returns: A `Dataset` transformation function, which can be passed to `tf.data.Dataset.apply`. """ return scan_ops.scan(initial_state, scan_func)
tensorflow-master
tensorflow/contrib/data/python/ops/scan_ops.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Experimental shuffle ops.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.data.experimental.ops import shuffle_ops from tensorflow.python.util import deprecation @deprecation.deprecated(None, "Use `tf.data.experimental.shuffle_and_repeat(...)`.") def shuffle_and_repeat(buffer_size, count=None, seed=None): """Shuffles and repeats a Dataset returning a new permutation for each epoch. `dataset.apply(tf.data.experimental.shuffle_and_repeat(buffer_size, count))` is equivalent to `dataset.shuffle(buffer_size, reshuffle_each_iteration=True).repeat(count)` The difference is that the latter dataset is not serializable. So, if you need to checkpoint an input pipeline with reshuffling you must use this implementation. Args: buffer_size: A `tf.int64` scalar `tf.Tensor`, representing the maximum number elements that will be buffered when prefetching. count: (Optional.) A `tf.int64` scalar `tf.Tensor`, representing the number of times the dataset should be repeated. The default behavior (if `count` is `None` or `-1`) is for the dataset be repeated indefinitely. seed: (Optional.) A `tf.int64` scalar `tf.Tensor`, representing the random seed that will be used to create the distribution. See `tf.compat.v1.set_random_seed` for behavior. Returns: A `Dataset` transformation function, which can be passed to `tf.data.Dataset.apply`. """ return shuffle_ops.shuffle_and_repeat(buffer_size, count, seed)
tensorflow-master
tensorflow/contrib/data/python/ops/shuffle_ops.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Python wrappers for tf.data writers.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.data.experimental.ops import writers from tensorflow.python.util import deprecation class TFRecordWriter(writers.TFRecordWriter): """Writes data to a TFRecord file.""" @deprecation.deprecated( None, "Use `tf.data.experimental.TFRecordWriter(...)`.") def __init__(self, filename, compression_type=None): super(TFRecordWriter, self).__init__(filename, compression_type)
tensorflow-master
tensorflow/contrib/data/python/ops/writers.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Iterator ops.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.data.experimental.ops import iterator_ops from tensorflow.python.util import deprecation @deprecation.deprecated( None, "Use `tf.data.experimental.make_saveable_from_iterator(...)`.") def make_saveable_from_iterator(iterator): """Returns a SaveableObject for saving/restore iterator state using Saver. Args: iterator: Iterator. For example: ```python with tf.Graph().as_default(): ds = tf.data.Dataset.range(10) iterator = ds.make_initializable_iterator() # Build the iterator SaveableObject. saveable_obj = tf.data.experimental.make_saveable_from_iterator(iterator) # Add the SaveableObject to the SAVEABLE_OBJECTS collection so # it can be automatically saved using Saver. tf.compat.v1.add_to_collection(tf.GraphKeys.SAVEABLE_OBJECTS, saveable_obj) saver = tf.compat.v1.train.Saver() while continue_training: ... Perform training ... if should_save_checkpoint: saver.save() ``` Note: When restoring the iterator, the existing iterator state is completely discarded. This means that any changes you may have made to the Dataset graph will be discarded as well! This includes the new Dataset graph that you may have built during validation. So, while running validation, make sure to run the initializer for the validation input pipeline after restoring the checkpoint. Note: Not all iterators support checkpointing yet. Attempting to save the state of an unsupported iterator will throw an error. """ return iterator_ops.make_saveable_from_iterator(iterator) class CheckpointInputPipelineHook(iterator_ops.CheckpointInputPipelineHook): """Checkpoints input pipeline state every N steps or seconds. This hook saves the state of the iterators in the `Graph` so that when training is resumed the input pipeline continues from where it left off. This could potentially avoid overfitting in certain pipelines where the number of training steps per eval are small compared to the dataset size or if the training pipeline is pre-empted. Differences from `CheckpointSaverHook`: 1. Saves only the input pipelines in the "iterators" collection and not the global variables or other saveable objects. 2. Does not write the `GraphDef` and `MetaGraphDef` to the summary. Example of checkpointing the training pipeline: ```python est = tf.estimator.Estimator(model_fn) while True: est.train( train_input_fn, hooks=[tf.data.experimental.CheckpointInputPipelineHook(est)], steps=train_steps_per_eval) # Note: We do not pass the hook here. metrics = est.evaluate(eval_input_fn) if should_stop_the_training(metrics): break ``` This hook should be used if the input pipeline state needs to be saved separate from the model checkpoint. Doing so may be useful for a few reasons: 1. The input pipeline checkpoint may be large, if there are large shuffle or prefetch buffers for instance, and may bloat the checkpoint size. 2. If the input pipeline is shared between training and validation, restoring the checkpoint during validation may override the validation input pipeline. For saving the input pipeline checkpoint alongside the model weights use `tf.data.experimental.make_saveable_from_iterator` directly to create a `SaveableObject` and add to the `SAVEABLE_OBJECTS` collection. Note, however, that you will need to be careful not to restore the training iterator during eval. You can do that by not adding the iterator to the SAVEABLE_OBJECTS collector when building the eval graph. """ @deprecation.deprecated( None, "Use `tf.data.experimental.CheckpointInputPipelineHook(...)`.") def __init__(self, estimator): super(CheckpointInputPipelineHook, self).__init__(estimator)
tensorflow-master
tensorflow/contrib/data/python/ops/iterator_ops.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Non-deterministic dataset transformations.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.data.experimental.ops import interleave_ops from tensorflow.python.util import deprecation @deprecation.deprecated(None, "Use `tf.data.experimental.parallel_interleave(...)`.") def parallel_interleave(map_func, cycle_length, block_length=1, sloppy=False, buffer_output_elements=None, prefetch_input_elements=None): """A parallel version of the `Dataset.interleave()` transformation. `parallel_interleave()` maps `map_func` across its input to produce nested datasets, and outputs their elements interleaved. Unlike `tf.data.Dataset.interleave`, it gets elements from `cycle_length` nested datasets in parallel, which increases the throughput, especially in the presence of stragglers. Furthermore, the `sloppy` argument can be used to improve performance, by relaxing the requirement that the outputs are produced in a deterministic order, and allowing the implementation to skip over nested datasets whose elements are not readily available when requested. Example usage: ```python # Preprocess 4 files concurrently. filenames = tf.data.Dataset.list_files("/path/to/data/train*.tfrecords") dataset = filenames.apply( tf.data.experimental.parallel_interleave( lambda filename: tf.data.TFRecordDataset(filename), cycle_length=4)) ``` WARNING: If `sloppy` is `True`, the order of produced elements is not deterministic. Args: map_func: A function mapping a nested structure of tensors to a `Dataset`. cycle_length: The number of input `Dataset`s to interleave from in parallel. block_length: The number of consecutive elements to pull from an input `Dataset` before advancing to the next input `Dataset`. sloppy: If false, elements are produced in deterministic order. Otherwise, the implementation is allowed, for the sake of expediency, to produce elements in a non-deterministic order. buffer_output_elements: The number of elements each iterator being interleaved should buffer (similar to the `.prefetch()` transformation for each interleaved iterator). prefetch_input_elements: The number of input elements to transform to iterators before they are needed for interleaving. Returns: A `Dataset` transformation function, which can be passed to `tf.data.Dataset.apply`. """ return interleave_ops.parallel_interleave( map_func, cycle_length, block_length, sloppy, buffer_output_elements, prefetch_input_elements) @deprecation.deprecated( None, "Use `tf.contrib.data.parallel_interleave(..., sloppy=True)`.") def sloppy_interleave(map_func, cycle_length, block_length=1): """A non-deterministic version of the `Dataset.interleave()` transformation. `sloppy_interleave()` maps `map_func` across `dataset`, and non-deterministically interleaves the results. The resulting dataset is almost identical to `interleave`. The key difference is that if retrieving a value from a given output iterator would cause `get_next` to block, that iterator will be skipped, and consumed when next available. If consuming from all iterators would cause the `get_next` call to block, the `get_next` call blocks until the first value is available. If the underlying datasets produce elements as fast as they are consumed, the `sloppy_interleave` transformation behaves identically to `interleave`. However, if an underlying dataset would block the consumer, `sloppy_interleave` can violate the round-robin order (that `interleave` strictly obeys), producing an element from a different underlying dataset instead. Example usage: ```python # Preprocess 4 files concurrently. filenames = tf.data.Dataset.list_files("/path/to/data/train*.tfrecords") dataset = filenames.apply( tf.contrib.data.sloppy_interleave( lambda filename: tf.data.TFRecordDataset(filename), cycle_length=4)) ``` WARNING: The order of elements in the resulting dataset is not deterministic. Use `Dataset.interleave()` if you want the elements to have a deterministic order. Args: map_func: A function mapping a nested structure of tensors (having shapes and types defined by `self.output_shapes` and `self.output_types`) to a `Dataset`. cycle_length: The number of input `Dataset`s to interleave from in parallel. block_length: The number of consecutive elements to pull from an input `Dataset` before advancing to the next input `Dataset`. Note: `sloppy_interleave` will skip the remainder of elements in the `block_length` in order to avoid blocking. Returns: A `Dataset` transformation function, which can be passed to `tf.data.Dataset.apply`. """ return interleave_ops.parallel_interleave( map_func, cycle_length, block_length, sloppy=True) @deprecation.deprecated(None, "Use `tf.data.experimental.sample_from_datasets(...)`.") def sample_from_datasets(datasets, weights=None, seed=None): """Samples elements at random from the datasets in `datasets`. Args: datasets: A list of `tf.data.Dataset` objects with compatible structure. weights: (Optional.) A list of `len(datasets)` floating-point values where `weights[i]` represents the probability with which an element should be sampled from `datasets[i]`, or a `tf.data.Dataset` object where each element is such a list. Defaults to a uniform distribution across `datasets`. seed: (Optional.) A `tf.int64` scalar `tf.Tensor`, representing the random seed that will be used to create the distribution. See `tf.compat.v1.set_random_seed` for behavior. Returns: A dataset that interleaves elements from `datasets` at random, according to `weights` if provided, otherwise with uniform probability. Raises: TypeError: If the `datasets` or `weights` arguments have the wrong type. ValueError: If the `weights` argument is specified and does not match the length of the `datasets` element. """ return interleave_ops.sample_from_datasets(datasets, weights, seed) @deprecation.deprecated(None, "Use `tf.data.experimental.choose_from_datasets(...)`.") def choose_from_datasets(datasets, choice_dataset): """Creates a dataset that deterministically chooses elements from `datasets`. For example, given the following datasets: ```python datasets = [tf.data.Dataset.from_tensors("foo").repeat(), tf.data.Dataset.from_tensors("bar").repeat(), tf.data.Dataset.from_tensors("baz").repeat()] # Define a dataset containing `[0, 1, 2, 0, 1, 2, 0, 1, 2]`. choice_dataset = tf.data.Dataset.range(3).repeat(3) result = tf.data.experimental.choose_from_datasets(datasets, choice_dataset) ``` The elements of `result` will be: ``` "foo", "bar", "baz", "foo", "bar", "baz", "foo", "bar", "baz" ``` Args: datasets: A list of `tf.data.Dataset` objects with compatible structure. choice_dataset: A `tf.data.Dataset` of scalar `tf.int64` tensors between `0` and `len(datasets) - 1`. Returns: A dataset that interleaves elements from `datasets` according to the values of `choice_dataset`. Raises: TypeError: If the `datasets` or `choice_dataset` arguments have the wrong type. """ return interleave_ops.choose_from_datasets(datasets, choice_dataset)
tensorflow-master
tensorflow/contrib/data/python/ops/interleave_ops.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Enumerate dataset transformations.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.data.experimental.ops import enumerate_ops from tensorflow.python.util import deprecation @deprecation.deprecated(None, "Use `tf.data.experimental.enumerate_dataset(...)`.") def enumerate_dataset(start=0): """A transformation that enumerate the elements of a dataset. It is Similar to python's `enumerate`. For example: ```python # NOTE: The following examples use `{ ... }` to represent the # contents of a dataset. a = { 1, 2, 3 } b = { (7, 8), (9, 10) } # The nested structure of the `datasets` argument determines the # structure of elements in the resulting dataset. a.apply(tf.contrib.data.enumerate(start=5)) == { (5, 1), (6, 2), (7, 3) } b.apply(tf.contrib.data.enumerate()) == { (0, (7, 8)), (1, (9, 10)) } ``` Args: start: A `tf.int64` scalar `tf.Tensor`, representing the start value for enumeration. Returns: A `Dataset` transformation function, which can be passed to `tf.data.Dataset.apply`. """ return enumerate_ops.enumerate_dataset(start)
tensorflow-master
tensorflow/contrib/data/python/ops/enumerate_ops.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Ignore_errors dataset transformations.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.data.experimental.ops import error_ops from tensorflow.python.util import deprecation @deprecation.deprecated(None, "Use `tf.data.experimental.ignore_errors()`.") def ignore_errors(): """Creates a `Dataset` from another `Dataset` and silently ignores any errors. Use this transformation to produce a dataset that contains the same elements as the input, but silently drops any elements that caused an error. For example: ```python dataset = tf.data.Dataset.from_tensor_slices([1., 2., 0., 4.]) # Computing `tf.debugging.check_numerics(1. / 0.)` will raise an InvalidArgumentError. dataset = dataset.map(lambda x: tf.debugging.check_numerics(1. / x, "error")) # Using `ignore_errors()` will drop the element that causes an error. dataset = dataset.apply(tf.data.experimental.ignore_errors()) # ==> { 1., 0.5, 0.2 } ``` Returns: A `Dataset` transformation function, which can be passed to `tf.data.Dataset.apply`. """ return error_ops.ignore_errors()
tensorflow-master
tensorflow/contrib/data/python/ops/error_ops.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Datasets for random number generators.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.data.experimental.ops import random_ops from tensorflow.python.util import deprecation class RandomDataset(random_ops.RandomDataset): """A `Dataset` of pseudorandom values.""" @deprecation.deprecated( None, "Use `tf.data.experimental.RandomDataset(...)`.") def __init__(self, seed=None): super(RandomDataset, self).__init__(seed)
tensorflow-master
tensorflow/contrib/data/python/ops/random_ops.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """The Counter Dataset.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.data.experimental.ops import counter from tensorflow.python.framework import dtypes from tensorflow.python.util import deprecation @deprecation.deprecated(None, "Use `tf.data.experimental.Counter(...)`.") def Counter(start=0, step=1, dtype=dtypes.int64): """Creates a `Dataset` that counts from `start` in steps of size `step`. For example: ```python Dataset.count() == [0, 1, 2, ...) Dataset.count(2) == [2, 3, ...) Dataset.count(2, 5) == [2, 7, 12, ...) Dataset.count(0, -1) == [0, -1, -2, ...) Dataset.count(10, -1) == [10, 9, ...) ``` Args: start: (Optional.) The starting value for the counter. Defaults to 0. step: (Optional.) The step size for the counter. Defaults to 1. dtype: (Optional.) The data type for counter elements. Defaults to `tf.int64`. Returns: A `Dataset` of scalar `dtype` elements. """ return counter.Counter(start, step, dtype)
tensorflow-master
tensorflow/contrib/data/python/ops/counter.py
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Stateless random ops which take seed as a tensor input. DEPRECATED: Use `tf.random.stateless_uniform` rather than `tf.contrib.stateless.stateless_random_uniform`, and similarly for the other routines. Instead of taking `seed` as an attr which initializes a mutable state within the op, these random ops take `seed` as an input, and the random numbers are a deterministic function of `shape` and `seed`. WARNING: These ops are in contrib, and are not stable. They should be consistent across multiple runs on the same hardware, but only for the same version of the code. @@stateless_multinomial @@stateless_random_uniform @@stateless_random_normal @@stateless_truncated_normal """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.ops.stateless_random_ops import stateless_random_uniform from tensorflow.python.ops.stateless_random_ops import stateless_random_normal from tensorflow.python.ops.stateless_random_ops import stateless_truncated_normal from tensorflow.python.ops.stateless_random_ops import stateless_multinomial from tensorflow.python.util.all_util import remove_undocumented remove_undocumented(__name__)
tensorflow-master
tensorflow/contrib/stateless/__init__.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for tf.contrib.stateless API. The real tests are in python/kernel_tests/random/stateless_random_ops_test.py. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib import stateless from tensorflow.python.ops import stateless_random_ops from tensorflow.python.platform import test class StatelessOpsTest(test.TestCase): def testAPI(self): self.assertIs(stateless.stateless_random_uniform, stateless_random_ops.stateless_random_uniform) self.assertIs(stateless.stateless_random_normal, stateless_random_ops.stateless_random_normal) self.assertIs(stateless.stateless_truncated_normal, stateless_random_ops.stateless_truncated_normal) self.assertIs(stateless.stateless_multinomial, stateless_random_ops.stateless_multinomial) if __name__ == '__main__': test.main()
tensorflow-master
tensorflow/contrib/stateless/python/kernel_tests/stateless_random_ops_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Model pruning implementation in tensorflow.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function # pylint: disable=unused-import from tensorflow.contrib.model_pruning.python.layers.layers import masked_conv2d from tensorflow.contrib.model_pruning.python.layers.layers import masked_convolution from tensorflow.contrib.model_pruning.python.layers.layers import masked_fully_connected from tensorflow.contrib.model_pruning.python.layers.rnn_cells import MaskedBasicLSTMCell from tensorflow.contrib.model_pruning.python.layers.rnn_cells import MaskedLSTMCell from tensorflow.contrib.model_pruning.python.learning import train from tensorflow.contrib.model_pruning.python.pruning import apply_mask from tensorflow.contrib.model_pruning.python.pruning import get_masked_weights from tensorflow.contrib.model_pruning.python.pruning import get_masks from tensorflow.contrib.model_pruning.python.pruning import get_pruning_hparams from tensorflow.contrib.model_pruning.python.pruning import get_thresholds from tensorflow.contrib.model_pruning.python.pruning import get_weight_sparsity from tensorflow.contrib.model_pruning.python.pruning import get_weights from tensorflow.contrib.model_pruning.python.pruning import Pruning from tensorflow.contrib.model_pruning.python.strip_pruning_vars_lib import graph_def_from_checkpoint from tensorflow.contrib.model_pruning.python.strip_pruning_vars_lib import strip_pruning_vars_fn # pylint: enable=unused-import from tensorflow.python.util.all_util import remove_undocumented _allowed_symbols = [ 'masked_convolution', 'masked_conv2d', 'masked_fully_connected', 'MaskedBasicLSTMCell', 'MaskedLSTMCell', 'train', 'apply_mask', 'get_masked_weights', 'get_masks', 'get_pruning_hparams', 'get_thresholds', 'get_weights', 'get_weight_sparsity', 'Pruning', 'strip_pruning_vars_fn', 'graph_def_from_checkpoint' ] remove_undocumented(__name__, _allowed_symbols)
tensorflow-master
tensorflow/contrib/model_pruning/__init__.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for strip_pruning_vars.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import re from tensorflow.contrib.model_pruning.python import pruning from tensorflow.contrib.model_pruning.python import strip_pruning_vars_lib from tensorflow.contrib.model_pruning.python.layers import layers from tensorflow.contrib.model_pruning.python.layers import rnn_cells from tensorflow.python.framework import dtypes from tensorflow.python.framework import graph_util from tensorflow.python.framework import importer from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import random_ops from tensorflow.python.ops import rnn from tensorflow.python.ops import rnn_cell as tf_rnn_cells from tensorflow.python.ops import state_ops from tensorflow.python.ops import variable_scope from tensorflow.python.ops import variables from tensorflow.python.platform import test from tensorflow.python.training import training_util def _get_number_pruning_vars(graph_def): number_vars = 0 for node in graph_def.node: if re.match(r"^.*(mask$)|(threshold$)", node.name): number_vars += 1 return number_vars def _get_node_names(tensor_names): return [ strip_pruning_vars_lib._node_name(tensor_name) for tensor_name in tensor_names ] class StripPruningVarsTest(test.TestCase): def setUp(self): param_list = [ "pruning_frequency=1", "begin_pruning_step=1", "end_pruning_step=10", "nbins=2048", "threshold_decay=0.0" ] self.initial_graph = ops.Graph() self.initial_graph_def = None self.final_graph = ops.Graph() self.final_graph_def = None self.pruning_spec = ",".join(param_list) with self.initial_graph.as_default(): self.sparsity = variables.Variable(0.5, name="sparsity") self.global_step = training_util.get_or_create_global_step() self.increment_global_step = state_ops.assign_add(self.global_step, 1) self.mask_update_op = None def _build_convolutional_model(self, number_of_layers): # Create a graph with several conv2d layers kernel_size = 3 base_depth = 4 depth_step = 7 height, width = 7, 9 with variable_scope.variable_scope("conv_model"): input_tensor = array_ops.ones((8, height, width, base_depth)) top_layer = input_tensor for ix in range(number_of_layers): top_layer = layers.masked_conv2d( top_layer, base_depth + (ix + 1) * depth_step, kernel_size, scope="Conv_" + str(ix)) return top_layer def _build_fully_connected_model(self, number_of_layers): base_depth = 4 depth_step = 7 input_tensor = array_ops.ones((8, base_depth)) top_layer = input_tensor with variable_scope.variable_scope("fc_model"): for ix in range(number_of_layers): top_layer = layers.masked_fully_connected( top_layer, base_depth + (ix + 1) * depth_step) return top_layer def _build_lstm_model(self, number_of_layers): batch_size = 8 dim = 10 inputs = variables.Variable(random_ops.random_normal([batch_size, dim])) def lstm_cell(): return rnn_cells.MaskedBasicLSTMCell( dim, forget_bias=0.0, state_is_tuple=True, reuse=False) cell = tf_rnn_cells.MultiRNNCell( [lstm_cell() for _ in range(number_of_layers)], state_is_tuple=True) outputs = rnn.static_rnn( cell, [inputs], initial_state=cell.zero_state(batch_size, dtypes.float32)) return outputs def _prune_model(self, session): pruning_hparams = pruning.get_pruning_hparams().parse(self.pruning_spec) p = pruning.Pruning(pruning_hparams, sparsity=self.sparsity) self.mask_update_op = p.conditional_mask_update_op() variables.global_variables_initializer().run() for _ in range(20): session.run(self.mask_update_op) session.run(self.increment_global_step) def _get_outputs(self, session, input_graph, tensors_list, graph_prefix=None): outputs = [] for output_tensor in tensors_list: if graph_prefix: output_tensor = graph_prefix + "/" + output_tensor outputs.append( session.run(session.graph.get_tensor_by_name(output_tensor))) return outputs def _get_initial_outputs(self, output_tensor_names_list): with self.session(graph=self.initial_graph) as sess1: self._prune_model(sess1) reference_outputs = self._get_outputs(sess1, self.initial_graph, output_tensor_names_list) self.initial_graph_def = graph_util.convert_variables_to_constants( sess1, sess1.graph.as_graph_def(), _get_node_names(output_tensor_names_list)) return reference_outputs def _get_final_outputs(self, output_tensor_names_list): self.final_graph_def = strip_pruning_vars_lib.strip_pruning_vars_fn( self.initial_graph_def, _get_node_names(output_tensor_names_list)) _ = importer.import_graph_def(self.final_graph_def, name="final") with self.test_session(self.final_graph) as sess2: final_outputs = self._get_outputs( sess2, self.final_graph, output_tensor_names_list, graph_prefix="final") return final_outputs def _check_removal_of_pruning_vars(self, number_masked_layers): self.assertEqual( _get_number_pruning_vars(self.initial_graph_def), number_masked_layers) self.assertEqual(_get_number_pruning_vars(self.final_graph_def), 0) def _check_output_equivalence(self, initial_outputs, final_outputs): for initial_output, final_output in zip(initial_outputs, final_outputs): self.assertAllEqual(initial_output, final_output) def testConvolutionalModel(self): with self.initial_graph.as_default(): number_masked_conv_layers = 5 top_layer = self._build_convolutional_model(number_masked_conv_layers) output_tensor_names = [top_layer.name] initial_outputs = self._get_initial_outputs(output_tensor_names) # Remove pruning-related nodes. with self.final_graph.as_default(): final_outputs = self._get_final_outputs(output_tensor_names) # Check that the final graph has no pruning-related vars self._check_removal_of_pruning_vars(number_masked_conv_layers) # Check that outputs remain the same after removal of pruning-related nodes self._check_output_equivalence(initial_outputs, final_outputs) def testFullyConnectedModel(self): with self.initial_graph.as_default(): number_masked_fc_layers = 3 top_layer = self._build_fully_connected_model(number_masked_fc_layers) output_tensor_names = [top_layer.name] initial_outputs = self._get_initial_outputs(output_tensor_names) # Remove pruning-related nodes. with self.final_graph.as_default(): final_outputs = self._get_final_outputs(output_tensor_names) # Check that the final graph has no pruning-related vars self._check_removal_of_pruning_vars(number_masked_fc_layers) # Check that outputs remain the same after removal of pruning-related nodes self._check_output_equivalence(initial_outputs, final_outputs) def testLSTMModel(self): with self.initial_graph.as_default(): number_masked_lstm_layers = 2 outputs = self._build_lstm_model(number_masked_lstm_layers) output_tensor_names = [outputs[0][0].name] initial_outputs = self._get_initial_outputs(output_tensor_names) # Remove pruning-related nodes. with self.final_graph.as_default(): final_outputs = self._get_final_outputs(output_tensor_names) # Check that the final graph has no pruning-related vars self._check_removal_of_pruning_vars(number_masked_lstm_layers) # Check that outputs remain the same after removal of pruning-related nodes self._check_output_equivalence(initial_outputs, final_outputs) if __name__ == "__main__": test.main()
tensorflow-master
tensorflow/contrib/model_pruning/python/strip_pruning_vars_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Helper functions to add support for magnitude-based model pruning. # Adds variables and ops to the graph to enable # elementwise masking of weights apply_mask(weights) # Returns a list containing the sparsity of each of the weight tensors get_weight_sparsity() # Returns a list of all the masked weight tensorflow variables get_masked_weights() # Returns a list of all the mask tensorflow variables get_masks() # Returns a list of all the thresholds get_thresholds() # Returns a list of all the weight tensors that have been masked get_weights() The Pruning class uses a tf.hparams object to set up the parameters for a model pruning. Here's a typical usage: # Parse pruning hyperparameters pruning_hparams = pruning.get_pruning_hparams().parse(FLAGS.pruning_hparams) # Create a pruning object using the pruning_hparams p = pruning.Pruning(pruning_hparams) # Add mask update ops to the graph mask_update_op = p.conditional_mask_update_op() # Add the summaries p.add_pruning_summaries() # Run the op session.run(mask_update_op) # An object of the pruning also accepts externally defined sparsity: sparsity = tf.Variable(0.5, name = "ConstantSparsity") p = pruning.Pruning(pruning_hparams, sparsity=sparsity) """ # pylint: disable=missing-docstring from __future__ import absolute_import from __future__ import division from __future__ import print_function import re from tensorflow.contrib.model_pruning.python import pruning_utils from tensorflow.contrib.model_pruning.python.layers import core_layers as core from tensorflow.contrib.training.python.training import hparam from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn_impl from tensorflow.python.ops import nn_ops from tensorflow.python.ops import state_ops from tensorflow.python.ops import variable_scope from tensorflow.python.ops import variables from tensorflow.python.platform import tf_logging as logging from tensorflow.python.summary import summary from tensorflow.python.training import training_util _MASK_COLLECTION = core.MASK_COLLECTION _THRESHOLD_COLLECTION = core.THRESHOLD_COLLECTION _MASKED_WEIGHT_COLLECTION = core.MASKED_WEIGHT_COLLECTION _WEIGHT_COLLECTION = core.WEIGHT_COLLECTION _MASKED_WEIGHT_NAME = core.MASKED_WEIGHT_NAME def apply_mask(x, scope=''): """Apply mask to a given weight tensor. Args: x: Input weight tensor scope: The current variable scope. Defaults to "". Returns: Tensor representing masked_weights """ mask = pruning_utils.weight_mask_variable(x, scope) threshold = pruning_utils.weight_threshold_variable(x, scope) # Add masked_weights in the weights namescope so as to make it easier # for the quantization library to add quant ops. masked_weights = math_ops.multiply(mask, x, _MASKED_WEIGHT_NAME) # Make sure the mask for a given variable are not added multiple times to the # collection. This is particularly important when applying mask to RNN's # weight variables if mask not in ops.get_collection_ref(_MASK_COLLECTION): ops.add_to_collection(_THRESHOLD_COLLECTION, threshold) ops.add_to_collection(_MASK_COLLECTION, mask) ops.add_to_collection(_MASKED_WEIGHT_COLLECTION, masked_weights) ops.add_to_collection(_WEIGHT_COLLECTION, x) return masked_weights def get_masked_weights(): return ops.get_collection(_MASKED_WEIGHT_COLLECTION) def get_masks(): return ops.get_collection(_MASK_COLLECTION) def get_thresholds(): return ops.get_collection(_THRESHOLD_COLLECTION) def get_weights(): return ops.get_collection(_WEIGHT_COLLECTION) def get_weight_sparsity(): """Get sparsity of the weights. Args: None Returns: A list containing the sparsity of each of the weight tensors """ masks = get_masks() return [nn_impl.zero_fraction(mask) for mask in masks] def get_pruning_hparams(): """Get a tf.HParams object with the default values for the hyperparameters. name: string name of the pruning specification. Used for adding summaries and ops under a common tensorflow name_scope begin_pruning_step: integer the global step at which to begin pruning end_pruning_step: integer the global step at which to terminate pruning. Defaults to -1 implying that pruning continues till the training stops weight_sparsity_map: list of strings comma separed list of weight variable name regex:target sparsity pairs. For layers/weights not in this list, sparsity as specified by the target_sparsity hyperparameter is used. Eg. [conv1:0.9,conv2/kernel:0.8] threshold_decay: float the decay factor to use for exponential decay of the thresholds pruning_frequency: integer How often should the masks be updated? (in # of global_steps) nbins: integer number of bins to use for histogram computation block_height: integer number of rows in a block (defaults to 1) block_width: integer number of cols in a block (defaults to 1) block_pooling_function: string Whether to perform average (AVG) or max (MAX) pooling in the block (default: AVG) initial_sparsity: float initial sparsity value target_sparsity: float target sparsity value sparsity_function_begin_step: integer the global step at this which the gradual sparsity function begins to take effect sparsity_function_end_step: integer the global step used as the end point for the gradual sparsity function sparsity_function_exponent: float exponent = 1 is linearly varying sparsity between initial and final. exponent > 1 varies more slowly towards the end than the beginning use_tpu: False Indicates whether to use TPU We use the following sparsity function: num_steps = (sparsity_function_end_step - sparsity_function_begin_step)/pruning_frequency sparsity(step) = (initial_sparsity - target_sparsity)* [1-step/(num_steps -1)]**exponent + target_sparsity Args: None Returns: tf.HParams object initialized to default values """ return hparam.HParams( name='model_pruning', begin_pruning_step=0, end_pruning_step=-1, weight_sparsity_map=[''], threshold_decay=0.0, pruning_frequency=10, nbins=256, block_height=1, block_width=1, block_pooling_function='AVG', initial_sparsity=0.0, target_sparsity=0.5, sparsity_function_begin_step=0, sparsity_function_end_step=100, sparsity_function_exponent=3.0, use_tpu=False) class Pruning(object): def __init__(self, spec=None, global_step=None, sparsity=None): """Set up the specification for model pruning. If a spec is provided, the sparsity is set up based on the sparsity_function in the spec. The effect of sparsity_function is overridden if the sparsity variable is passed to the constructor. This enables setting up arbitrary sparsity profiles externally and passing it to this pruning functions. Args: spec: Pruning spec as defined in pruning.proto global_step: A tensorflow variable that is used while setting up the sparsity function sparsity: A tensorflow scalar variable storing the sparsity """ # Pruning specification self._spec = spec if spec else get_pruning_hparams() # Sanity check for pruning hparams self._validate_spec() # A tensorflow variable that tracks the sparsity function. # If not provided as input, the graph must already contain the global_step # variable before calling this constructor. self._global_step = self._setup_global_step(global_step) # Stores the tensorflow sparsity variable. # Built using self._setup_sparsity() or provided externally self._sparsity = (sparsity if sparsity is not None else self._setup_sparsity()) # List of tensorflow assignments ops for new masks and thresholds self._assign_ops = [] # Tensorflow variable keeping track of the last global step when the masks # were updated self._last_update_step = self._setup_last_update_step() # Block dimensions self._block_dim = [self._spec.block_height, self._spec.block_width] # Block pooling function self._block_pooling_function = self._spec.block_pooling_function # Mapping of weight names and target sparsity self._weight_sparsity_map = self._get_weight_sparsity_map() def _validate_spec(self): spec = self._spec if spec.begin_pruning_step < 0: raise ValueError('Illegal value for begin_pruning_step') if spec.begin_pruning_step >= spec.end_pruning_step: if spec.end_pruning_step != -1: raise ValueError( 'Pruning must begin before it can end. begin_step=%d, end_step=%d.' 'Set end_pruning_step to -1 if pruning is required till training' 'stops' % (spec.begin_pruning_step, spec.end_pruning_step)) if spec.sparsity_function_begin_step < 0: raise ValueError('Illegal value for sparsity_function_begin_step') if spec.sparsity_function_begin_step >= spec.sparsity_function_end_step: raise ValueError( 'Sparsity function requires begin_step < end_step') if not 0.0 <= spec.threshold_decay < 1.0: raise ValueError('threshold_decay must be in range [0,1)') if not 0.0 <= spec.initial_sparsity < 1.0: raise ValueError('initial_sparsity must be in range [0,1)') if not 0.0 <= spec.target_sparsity < 1.0: raise ValueError('target_sparsity must be in range [0,1)') def _setup_global_step(self, global_step): graph_global_step = global_step if graph_global_step is None: graph_global_step = training_util.get_global_step() return math_ops.cast(graph_global_step, dtypes.int32) def _setup_sparsity(self): begin_step = self._spec.sparsity_function_begin_step end_step = self._spec.sparsity_function_end_step initial_sparsity = self._spec.initial_sparsity target_sparsity = self._spec.target_sparsity exponent = self._spec.sparsity_function_exponent with ops.name_scope(self._spec.name): p = math_ops.minimum( 1.0, math_ops.maximum( 0.0, math_ops.div( math_ops.cast(self._global_step - begin_step, dtypes.float32), end_step - begin_step))) sparsity = math_ops.add( math_ops.multiply(initial_sparsity - target_sparsity, math_ops.pow(1 - p, exponent)), target_sparsity, name='sparsity') return sparsity def _setup_last_update_step(self): with variable_scope.variable_scope( self._spec.name, use_resource=self._spec.use_tpu) as scope: try: last_update_step = variable_scope.get_variable( 'last_mask_update_step', [], initializer=init_ops.zeros_initializer(), trainable=False, dtype=dtypes.int32) except ValueError: scope.reuse_variables() last_update_step = variable_scope.get_variable( 'last_mask_update_step', dtype=dtypes.int32) return last_update_step def _get_weight_sparsity_map(self): """Return the map of weight_name:sparsity parsed from the hparams.""" weight_sparsity_map = {} val_list = self._spec.weight_sparsity_map filtered_val_list = [l for l in val_list if l] for val in filtered_val_list: weight_name, sparsity = val.split(':') if float(sparsity) >= 1.0: raise ValueError('Weight sparsity can not exceed 1.0') weight_sparsity_map[weight_name] = float(sparsity) return weight_sparsity_map def _get_sparsity(self, weight_name): """Return target sparsity for the given layer/weight name.""" target_sparsity = [ sparsity for regexp, sparsity in self._weight_sparsity_map.items() if re.match(regexp, weight_name) ] if not target_sparsity: return self._sparsity if len(target_sparsity) > 1: raise ValueError( 'Multiple matches in weight_sparsity_map for weight %s' % weight_name) # TODO(suyoggupta): This will work when initial_sparsity = 0. Generalize # to handle other cases as well. return math_ops.mul( self._sparsity, math_ops.div(target_sparsity[0], self._spec.target_sparsity)) def _update_mask(self, weights, threshold): """Updates the mask for a given weight tensor. This functions first computes the cdf of the weight tensor, and estimates the threshold value such that 'desired_sparsity' fraction of weights have magnitude less than the threshold. Args: weights: The weight tensor that needs to be masked. threshold: The current threshold value. The function will compute a new threshold and return the exponential moving average using the current value of threshold Returns: new_threshold: The new value of the threshold based on weights, and sparsity at the current global_step new_mask: A numpy array of the same size and shape as weights containing 0 or 1 to indicate which of the values in weights falls below the threshold Raises: ValueError: if sparsity is not defined """ if self._sparsity is None: raise ValueError('Sparsity variable undefined') sparsity = self._get_sparsity(weights.op.name) with ops.name_scope(weights.op.name + '_pruning_ops'): abs_weights = math_ops.abs(weights) k = math_ops.cast( math_ops.round( math_ops.cast(array_ops.size(abs_weights), dtypes.float32) * (1 - sparsity)), dtypes.int32) # Sort the entire array values, _ = nn_ops.top_k( array_ops.reshape(abs_weights, [-1]), k=array_ops.size(abs_weights)) # Grab the (k-1) th value current_threshold = array_ops.gather(values, k - 1) smoothed_threshold = math_ops.add_n([ math_ops.multiply(current_threshold, 1 - self._spec.threshold_decay), math_ops.multiply(threshold, self._spec.threshold_decay) ]) new_mask = math_ops.cast( math_ops.greater_equal(abs_weights, smoothed_threshold), dtypes.float32) return smoothed_threshold, new_mask def _maybe_update_block_mask(self, weights, threshold): """Performs block-granular masking of the weights. Block pruning occurs only if the block_height or block_width is > 1 and if the weight tensor, when squeezed, has ndims = 2. Otherwise, elementwise pruning occurs. Args: weights: The weight tensor that needs to be masked. threshold: The current threshold value. The function will compute a new threshold and return the exponential moving average using the current value of threshold Returns: new_threshold: The new value of the threshold based on weights, and sparsity at the current global_step new_mask: A numpy array of the same size and shape as weights containing 0 or 1 to indicate which of the values in weights falls below the threshold Raises: ValueError: if block pooling function is not AVG or MAX """ squeezed_weights = array_ops.squeeze(weights) if squeezed_weights.get_shape().ndims != 2 or self._block_dim == [1, 1]: return self._update_mask(weights, threshold) if self._block_pooling_function not in ['AVG', 'MAX']: raise ValueError('Unknown pooling function for block sparsity: %s' % self._block_pooling_function) with ops.name_scope(weights.op.name + '_pruning_ops'): abs_weights = math_ops.abs(squeezed_weights) pool_window = [self._block_dim[0], self._block_dim[1]] pool_fn = pruning_utils.factorized_pool squeeze_axis = None if not self._spec.use_tpu: pool_fn = nn_ops.pool abs_weights = array_ops.reshape( abs_weights, [1, abs_weights.get_shape()[0], abs_weights.get_shape()[1], 1]) squeeze_axis = [0, 3] pooled_weights = pool_fn( abs_weights, window_shape=pool_window, pooling_type=self._block_pooling_function, strides=pool_window, padding='SAME', name=weights.op.name + '_pooled') if pooled_weights.get_shape().ndims != 2: pooled_weights = array_ops.squeeze(pooled_weights, axis=squeeze_axis) smoothed_threshold, new_mask = self._update_mask(pooled_weights, threshold) updated_mask = pruning_utils.expand_tensor(new_mask, self._block_dim) sliced_mask = array_ops.slice( updated_mask, [0, 0], [squeezed_weights.get_shape()[0], squeezed_weights.get_shape()[1]]) return smoothed_threshold, array_ops.reshape(sliced_mask, array_ops.shape(weights)) def _get_mask_assign_ops(self): # Make sure the assignment ops have not already been added to the list if self._assign_ops: raise ValueError( 'Assign op list not empty. _get_mask_assign_ops() called twice?') masks = get_masks() weights = get_weights() thresholds = get_thresholds() if len(masks) != len(thresholds): raise ValueError( 'Number of masks %s and number of thresholds %s mismatch' % (len(masks), len(thresholds))) for index, mask in enumerate(masks): threshold = thresholds[index] weight = weights[index] is_partitioned = isinstance(weight, variables.PartitionedVariable) if is_partitioned: weight = weight.as_tensor() new_threshold, new_mask = self._maybe_update_block_mask(weight, threshold) self._assign_ops.append( pruning_utils.variable_assign(threshold, new_threshold)) self._assign_ops.append( pruning_utils.partitioned_variable_assign(mask, new_mask) if is_partitioned else pruning_utils.variable_assign(mask, new_mask)) def mask_update_op(self): with ops.name_scope(self._spec.name): if not self._assign_ops: self._get_mask_assign_ops() with ops.control_dependencies([ state_ops.assign( self._last_update_step, self._global_step, name='last_mask_update_step_assign') ]): with ops.control_dependencies(self._assign_ops): logging.info('Updating masks.') return control_flow_ops.no_op('mask_update') def conditional_mask_update_op(self): def maybe_update_masks(): with ops.name_scope(self._spec.name): is_step_within_pruning_range = math_ops.logical_and( math_ops.greater_equal(self._global_step, self._spec.begin_pruning_step), # If end_pruning_step is negative, keep pruning forever! math_ops.logical_or( math_ops.less_equal(self._global_step, self._spec.end_pruning_step), math_ops.less(self._spec.end_pruning_step, 0))) is_pruning_step = math_ops.less_equal( math_ops.add(self._last_update_step, self._spec.pruning_frequency), self._global_step) return math_ops.logical_and(is_step_within_pruning_range, is_pruning_step) def mask_update_op(): return self.mask_update_op() def no_update_op(): return control_flow_ops.no_op() return control_flow_ops.cond(maybe_update_masks(), mask_update_op, no_update_op) def add_pruning_summaries(self): """Adds summaries of weight sparsities and thresholds.""" with ops.name_scope(self._spec.name + '_summaries'): summary.scalar('sparsity', self._sparsity) summary.scalar('last_mask_update_step', self._last_update_step) masks = get_masks() thresholds = get_thresholds() for mask, threshold in zip(masks, thresholds): summary.scalar(mask.op.name + '/sparsity', nn_impl.zero_fraction(mask)) summary.scalar(threshold.op.name + '/threshold', threshold) def print_hparams(self): logging.info(self._spec.to_json())
tensorflow-master
tensorflow/contrib/model_pruning/python/pruning.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for utility functions in pruning_utils.py.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import parameterized from tensorflow.contrib.model_pruning.python import pruning_utils from tensorflow.python.ops import array_ops from tensorflow.python.ops import nn_ops from tensorflow.python.ops import random_ops from tensorflow.python.ops import variable_scope from tensorflow.python.ops import variables from tensorflow.python.platform import test @parameterized.named_parameters( ("Input_32x32_block_1x1", [32, 32], [1, 1]), # block size 6x6 ("Input_3x3_block_6x6", [3, 3], [6, 6]), ("Input_32x32_block_6x6", [32, 32], [6, 6]), ("Input_2x32_block_6x6", [2, 32], [6, 6]), ("Input_32x2_block_6x6", [32, 2], [6, 6]), ("Input_30x30_block_6x6", [30, 30], [6, 6]), # block size 4x4 ("Input_32x32_block_4x4", [32, 32], [4, 4]), ("Input_2x32_block_4x4", [2, 32], [4, 4]), ("Input_32x2_block_4x4", [32, 2], [4, 4]), ("Input_30x30_block_4x4", [30, 30], [4, 4]), # block size 1x4 ("Input_32x32_block_1x4", [32, 32], [1, 4]), ("Input_2x32_block_1x4", [2, 32], [1, 4]), ("Input_32x2_block_1x4", [32, 2], [1, 4]), ("Input_30x30_block_1x4", [30, 30], [1, 4]), # block size 4x1 ("Input_32x32_block_4x1", [32, 32], [4, 1]), ("Input_2x32_block_4x1", [2, 32], [4, 1]), ("Input_32x2_block_4x1", [32, 2], [4, 1]), ("Input_30x30_block_4x1", [30, 30], [4, 1])) class PruningUtilsParameterizedTest(test.TestCase, parameterized.TestCase): def _compare_pooling_methods(self, weights, pooling_kwargs): with self.cached_session(): variables.global_variables_initializer().run() pooled_weights_tf = array_ops.squeeze( nn_ops.pool( array_ops.reshape( weights, [1, weights.get_shape()[0], weights.get_shape()[1], 1]), **pooling_kwargs), axis=[0, 3]) pooled_weights_factorized_pool = pruning_utils.factorized_pool( weights, **pooling_kwargs) self.assertAllClose(pooled_weights_tf.eval(), pooled_weights_factorized_pool.eval()) def _compare_expand_tensor_with_kronecker_product(self, tensor, block_dim): with self.cached_session() as session: variables.global_variables_initializer().run() expanded_tensor = pruning_utils.expand_tensor(tensor, block_dim) kronecker_product = pruning_utils.kronecker_product( tensor, array_ops.ones(block_dim)) expanded_tensor_val, kronecker_product_val = session.run( [expanded_tensor, kronecker_product]) self.assertAllEqual(expanded_tensor_val, kronecker_product_val) def testFactorizedAvgPool(self, input_shape, window_shape): weights = variable_scope.get_variable("weights", shape=input_shape) pooling_kwargs = { "window_shape": window_shape, "pooling_type": "AVG", "strides": window_shape, "padding": "SAME" } self._compare_pooling_methods(weights, pooling_kwargs) def testFactorizedMaxPool(self, input_shape, window_shape): weights = variable_scope.get_variable("weights", shape=input_shape) pooling_kwargs = { "window_shape": window_shape, "pooling_type": "MAX", "strides": window_shape, "padding": "SAME" } self._compare_pooling_methods(weights, pooling_kwargs) def testExpandTensor(self, input_shape, block_dim): weights = random_ops.random_normal(shape=input_shape) self._compare_expand_tensor_with_kronecker_product(weights, block_dim) if __name__ == "__main__": test.main()
tensorflow-master
tensorflow/contrib/model_pruning/python/pruning_utils_test.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utilities to remove pruning-related ops and variables from a GraphDef. """ # pylint: disable=missing-docstring from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.core.framework import attr_value_pb2 from tensorflow.core.framework import graph_pb2 from tensorflow.core.framework import node_def_pb2 from tensorflow.python.client import session from tensorflow.python.framework import graph_util from tensorflow.python.framework import importer from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_util from tensorflow.python.platform import tf_logging as logging from tensorflow.python.training import saver as saver_lib def _node_name(tensor_name): """Remove the trailing ':0' from the variable name.""" if ':' not in tensor_name: return tensor_name return tensor_name.split(':')[0] def _tensor_name(node_name): """Appends the :0 in the op name to get the canonical tensor name.""" if ':' in node_name: return node_name return node_name + ':0' def _get_masked_weights(input_graph_def): """Extracts masked_weights from the graph as a dict of {var_name:ndarray}.""" input_graph = ops.Graph() with input_graph.as_default(): importer.import_graph_def(input_graph_def, name='') with session.Session(graph=input_graph) as sess: masked_weights_dict = {} for node in input_graph_def.node: if 'masked_weight' in node.name: masked_weight_val = sess.run( sess.graph.get_tensor_by_name(_tensor_name(node.name))) logging.info( '%s has %d values, %1.2f%% zeros \n', node.name, np.size(masked_weight_val), 100 - float(100 * np.count_nonzero(masked_weight_val)) / np.size(masked_weight_val)) masked_weights_dict.update({node.name: masked_weight_val}) return masked_weights_dict def strip_pruning_vars_fn(input_graph_def, output_node_names): """Removes mask variable from the graph. Replaces the masked_weight tensor with element-wise multiplication of mask and the corresponding weight variable. Args: input_graph_def: A GraphDef in which the variables have been converted to constants. This is typically the output of tf.graph_util.convert_variables_to_constant() output_node_names: List of name strings for the result nodes of the graph Returns: A GraphDef in which pruning-related variables have been removed """ masked_weights_dict = _get_masked_weights(input_graph_def) pruned_graph_def = graph_pb2.GraphDef() # Replace masked_weight with a const op containing the # result of tf.multiply(mask,weight) for node in input_graph_def.node: output_node = node_def_pb2.NodeDef() if 'masked_weight' in node.name: output_node.op = 'Const' output_node.name = node.name dtype = node.attr['T'] data = masked_weights_dict[node.name] output_node.attr['dtype'].CopyFrom(dtype) output_node.attr['value'].CopyFrom( attr_value_pb2.AttrValue(tensor=tensor_util.make_tensor_proto(data))) else: output_node.CopyFrom(node) pruned_graph_def.node.extend([output_node]) # Remove stranded nodes: mask and weights return graph_util.extract_sub_graph(pruned_graph_def, output_node_names) def graph_def_from_checkpoint(checkpoint_dir, output_node_names): """Converts checkpoint data to GraphDef. Reads the latest checkpoint data and produces a GraphDef in which the variables have been converted to constants. Args: checkpoint_dir: Path to the checkpoints. output_node_names: List of name strings for the result nodes of the graph. Returns: A GraphDef from the latest checkpoint Raises: ValueError: if no checkpoint is found """ checkpoint_path = saver_lib.latest_checkpoint(checkpoint_dir) if checkpoint_path is None: raise ValueError('Could not find a checkpoint at: {0}.' .format(checkpoint_dir)) saver_for_restore = saver_lib.import_meta_graph( checkpoint_path + '.meta', clear_devices=True) with session.Session() as sess: saver_for_restore.restore(sess, checkpoint_path) graph_def = ops.get_default_graph().as_graph_def() output_graph_def = graph_util.convert_variables_to_constants( sess, graph_def, output_node_names) return output_graph_def
tensorflow-master
tensorflow/contrib/model_pruning/python/strip_pruning_vars_lib.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== r"""Removes the auxiliary variables and ops added by the pruning library. Usage: bazel build tensorflow/contrib/model_pruning:strip_pruning_vars && \ bazel-bin/tensorflow/contrib/model_pruning/strip_pruning_vars \ --checkpoint_dir=/tmp/model_ckpts \ --output_node_names=softmax \ --output_dir=/tmp \ --filename=pruning_stripped.pb """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import os import sys from tensorflow.contrib.model_pruning.python import strip_pruning_vars_lib from tensorflow.python.framework import graph_io from tensorflow.python.platform import app from tensorflow.python.platform import tf_logging as logging FLAGS = None def strip_pruning_vars(checkpoint_dir, output_node_names, output_dir, filename): """Remove pruning-related auxiliary variables and ops from the graph. Accepts training checkpoints and produces a GraphDef in which the pruning vars and ops have been removed. Args: checkpoint_dir: Path to the checkpoints. output_node_names: The name of the output nodes, comma separated. output_dir: Directory where to write the graph. filename: Output GraphDef file name. Returns: None Raises: ValueError: if output_nodes_names are not provided. """ if not output_node_names: raise ValueError( 'Need to specify atleast 1 output node through output_node_names flag') output_node_names = output_node_names.replace(' ', '').split(',') initial_graph_def = strip_pruning_vars_lib.graph_def_from_checkpoint( checkpoint_dir, output_node_names) final_graph_def = strip_pruning_vars_lib.strip_pruning_vars_fn( initial_graph_def, output_node_names) graph_io.write_graph(final_graph_def, output_dir, filename, as_text=False) logging.info('\nFinal graph written to %s', os.path.join( output_dir, filename)) def main(unused_args): return strip_pruning_vars(FLAGS.checkpoint_dir, FLAGS.output_node_names, FLAGS.output_dir, FLAGS.filename) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.register('type', 'bool', lambda v: v.lower() == 'true') parser.add_argument( '--checkpoint_dir', type=str, default='', help='Path to the checkpoints.') parser.add_argument( '--output_node_names', type=str, default='', help='The name of the output nodes, comma separated.') parser.add_argument( '--output_dir', type=str, default='/tmp', help='Directory where to write the graph.') parser.add_argument( '--filename', type=str, default='pruning_stripped.pb', help='Output \'GraphDef\' file name.') FLAGS, unparsed = parser.parse_known_args() app.run(main=main, argv=[sys.argv[0]] + unparsed)
tensorflow-master
tensorflow/contrib/model_pruning/python/strip_pruning_vars.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Wrapper around tf-slim's training code contrib/slim/python/slim/learning.py to support training of pruned models ******************************************************************* * A simple working training script with support for model pruning * ******************************************************************* # Load data and create the model: images, labels = LoadData(...) predictions = MyModel(images) # Define the loss: slim.losses.log_loss(predictions, labels) total_loss = slim.losses.get_total_loss() # Define the optimizer: optimizer = tf.compat.v1.train.MomentumOptimizer(FLAGS.learning_rate, FLAGS.momentum) # Create the train_op train_op = slim.learning.create_train_op(total_loss, optimizer) # Parse pruning hyperparameters pruning_hparams = pruning.get_pruning_hparams().parse(FLAGS.pruning_hparams) # Create a pruning object using the pruning_hparams p = pruning.Pruning(pruning_hparams) # Add mask update ops to the graph mask_update_op = p.conditional_mask_update_op() # Run training. learning.train(train_op, my_log_dir, mask_update_op) see contrib/slim/python/slim/learning.py for additional examples """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib import slim as _slim _USE_DEFAULT = 0 train_step = _slim.learning.train_step def train(train_op, logdir, mask_update_op, train_step_fn=train_step, train_step_kwargs=_USE_DEFAULT, log_every_n_steps=1, graph=None, master='', is_chief=True, global_step=None, number_of_steps=None, init_op=_USE_DEFAULT, init_feed_dict=None, local_init_op=_USE_DEFAULT, init_fn=None, ready_op=_USE_DEFAULT, summary_op=_USE_DEFAULT, save_summaries_secs=600, summary_writer=_USE_DEFAULT, startup_delay_steps=0, saver=None, save_interval_secs=600, sync_optimizer=None, session_config=None, trace_every_n_steps=None): """Wrapper around tf-slim's train function. Runs a training loop using a TensorFlow supervisor. When the sync_optimizer is supplied, gradient updates are applied synchronously. Otherwise, gradient updates are applied asynchronous. Args: train_op: A `Tensor` that, when executed, will apply the gradients and return the loss value. logdir: The directory where training logs are written to. If None, model checkpoints and summaries will not be written. mask_update_op: Operation that upon execution updates the weight masks and thresholds. train_step_fn: The function to call in order to execute a single gradient step. The function must have take exactly four arguments: the current session, the `train_op` `Tensor`, a global step `Tensor` and a dictionary. train_step_kwargs: A dictionary which is passed to the `train_step_fn`. By default, two `Boolean`, scalar ops called "should_stop" and "should_log" are provided. log_every_n_steps: The frequency, in terms of global steps, that the loss and global step and logged. graph: The graph to pass to the supervisor. If no graph is supplied the default graph is used. master: The address of the tensorflow master. is_chief: Specifies whether or not the training is being run by the primary replica during replica training. global_step: The `Tensor` representing the global step. If left as `None`, then slim.variables.get_or_create_global_step() is used. number_of_steps: The max number of gradient steps to take during training, as measured by 'global_step': training will stop if global_step is greater than 'number_of_steps'. If the value is left as None, training proceeds indefinitely. init_op: The initialization operation. If left to its default value, then the session is initialized by calling `tf.compat.v1.global_variables_initializer()`. init_feed_dict: A feed dictionary to use when executing the `init_op`. local_init_op: The local initialization operation. If left to its default value, then the session is initialized by calling `tf.compat.v1.local_variables_initializer()` and `tf.compat.v1.tables_initializer()`. init_fn: An optional callable to be executed after `init_op` is called. The callable must accept one argument, the session being initialized. ready_op: Operation to check if the model is ready to use. If left to its default value, then the session checks for readiness by calling `tf.compat.v1.report_uninitialized_variables()`. summary_op: The summary operation. save_summaries_secs: How often, in seconds, to save summaries. summary_writer: `SummaryWriter` to use. Can be `None` to indicate that no summaries should be written. If unset, we create a SummaryWriter. startup_delay_steps: The number of steps to wait for before beginning. Note that this must be 0 if a sync_optimizer is supplied. saver: Saver to save checkpoints. If None, a default one will be created and used. save_interval_secs: How often, in seconds, to save the model to `logdir`. sync_optimizer: an instance of tf.compat.v1.train.SyncReplicasOptimizer, or a list of them. If the argument is supplied, gradient updates will be synchronous. If left as `None`, gradient updates will be asynchronous. session_config: An instance of `tf.compat.v1.ConfigProto` that will be used to configure the `Session`. If left as `None`, the default will be used. trace_every_n_steps: produce and save a `Timeline` in Chrome trace format and add it to the summaries every `trace_every_n_steps`. If None, no trace information will be produced or saved. Returns: the value of the loss function after training. Raises: ValueError: if `train_op` is empty or if `startup_delay_steps` is non-zero when `sync_optimizer` is supplied, if `number_of_steps` is negative, or if `trace_every_n_steps` is not `None` and no `logdir` is provided. """ def train_step_with_pruning_fn(sess, train_op, global_step, train_step_kwargs): total_loss, should_stop = train_step_fn(sess, train_op, global_step, train_step_kwargs) sess.run(mask_update_op) return total_loss, should_stop total_loss, _ = _slim.learning.train( train_op, logdir, train_step_fn=train_step_with_pruning_fn, train_step_kwargs=train_step_kwargs, log_every_n_steps=log_every_n_steps, graph=graph, master=master, is_chief=is_chief, global_step=global_step, number_of_steps=number_of_steps, init_op=init_op, init_feed_dict=init_feed_dict, local_init_op=local_init_op, init_fn=init_fn, ready_op=ready_op, summary_op=summary_op, save_summaries_secs=save_summaries_secs, summary_writer=summary_writer, startup_delay_steps=startup_delay_steps, saver=saver, save_interval_secs=save_interval_secs, sync_optimizer=sync_optimizer, session_config=session_config, trace_every_n_steps=trace_every_n_steps) return total_loss
tensorflow-master
tensorflow/contrib/model_pruning/python/learning.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utility functions for adding pruning related ops to the graph. """ # pylint: disable=missing-docstring from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import nn_ops from tensorflow.python.ops import state_ops from tensorflow.python.ops import variable_scope def weight_mask_variable(var, scope): """Create a mask for the weights. This function adds a variable 'mask' to the graph. Args: var: the weight variable that needs to be masked scope: The variable scope of the variable var Returns: the mask variable of the same size and shape as var, initialized to all 1s. """ with variable_scope.variable_scope(scope): mask = variable_scope.get_variable( 'mask', var.get_shape(), initializer=init_ops.ones_initializer(), trainable=False, dtype=var.dtype) return mask def weight_threshold_variable(var, scope): """Create a scalar threshold for the weights. This function adds a variable 'threshold' to the graph. Args: var: The weight variable that needs to be masked scope: The variable scope of the variable var Returns: A scalar threshold variable initialized to 0. """ with variable_scope.variable_scope(scope): threshold = variable_scope.get_variable( 'threshold', [], initializer=init_ops.zeros_initializer(), trainable=False, dtype=var.dtype) return threshold def kronecker_product(mat1, mat2): """Computes the Kronecker product of two matrices mat1 and mat2. Args: mat1: A matrix of size m x n mat2: A matrix of size p x q Returns: Kronecker product of matrices mat1 and mat2 of size mp x nq """ m1, n1 = mat1.get_shape().as_list() mat1_rsh = array_ops.reshape(mat1, [m1, 1, n1, 1]) m2, n2 = mat2.get_shape().as_list() mat2_rsh = array_ops.reshape(mat2, [1, m2, 1, n2]) return array_ops.reshape(mat1_rsh * mat2_rsh, [m1 * m2, n1 * n2]) def expand_tensor(tensor, block_dims): """Expands a 2D tensor by replicating the tensor values. This is equivalent to the kronecker product of the tensor and a matrix of ones of size block_dims. Example: tensor = [[1,2] [3,4]] block_dims = [2,2] result = [[1 1 2 2] [1 1 2 2] [3 3 4 4] [3 3 4 4]] Args: tensor: A 2D tensor that needs to be expanded. block_dims: List of integers specifying the expansion factor. Returns: The expanded tensor Raises: ValueError: if tensor is not rank-2 or block_dims is does not have 2 elements. """ if tensor.get_shape().ndims != 2: raise ValueError('Input tensor must be rank 2') if len(block_dims) != 2: raise ValueError('block_dims must have 2 elements') block_height, block_width = block_dims def _tile_rows(tensor, multiple): """Create a new tensor by tiling the tensor along rows.""" return array_ops.tile(tensor, [multiple, 1]) def _generate_indices(num_rows, block_dim): indices = np.zeros(shape=[num_rows * block_dim, 1], dtype=np.int32) for k in range(block_dim): for r in range(num_rows): indices[k * num_rows + r] = r * block_dim + k return indices def _replicate_rows(tensor, multiple): tensor_shape = tensor.shape.as_list() expanded_shape = [tensor_shape[0] * multiple, tensor_shape[1]] indices = constant_op.constant(_generate_indices(tensor_shape[0], multiple)) return array_ops.scatter_nd(indices, _tile_rows(tensor, multiple), expanded_shape) expanded_tensor = tensor # Expand rows by factor block_height. if block_height > 1: expanded_tensor = _replicate_rows(tensor, block_height) # Transpose and expand by factor block_width. Transpose the result. if block_width > 1: expanded_tensor = array_ops.transpose( _replicate_rows(array_ops.transpose(expanded_tensor), block_width)) return expanded_tensor def factorized_pool(input_tensor, window_shape, pooling_type, strides, padding, name=None): """Performs m x n pooling through a combination of 1xm and 1xn pooling. Args: input_tensor: Input tensor. Must be rank 2 window_shape: Pooling window shape pooling_type: Either 'MAX' or 'AVG' strides: The stride of the pooling window padding: 'SAME' or 'VALID'. name: Name of the op Returns: A rank 2 tensor containing the pooled output Raises: ValueError: if the input tensor is not rank 2 """ if input_tensor.get_shape().ndims != 2: raise ValueError('factorized_pool() accepts tensors of rank 2 only') [height, width] = input_tensor.get_shape() with ops.name_scope(name, 'factorized_pool'): input_tensor_aligned = array_ops.reshape( input_tensor, [1, 1, height, width], name=input_tensor.op.name + '_aligned') height_pooling = nn_ops.pool( input_tensor_aligned, window_shape=[1, window_shape[0]], pooling_type=pooling_type, strides=[1, strides[0]], padding=padding) swap_height_width = array_ops.transpose(height_pooling, perm=[0, 1, 3, 2]) width_pooling = nn_ops.pool( swap_height_width, window_shape=[1, window_shape[1]], pooling_type=pooling_type, strides=[1, strides[1]], padding=padding) return array_ops.squeeze( array_ops.transpose(width_pooling, perm=[0, 1, 3, 2]), axis=[0, 1]) def determine_partitioned_axis(partitioned_variable): partitioned_axis = 0 concatenated_variable_shape = partitioned_variable.get_shape() for partition in partitioned_variable: partition_shape = partition.get_shape() maybe_partitioned_axis = np.less(partition_shape, concatenated_variable_shape) # Sanity check: make sure number of partitioned axis == 1 if np.count_nonzero(maybe_partitioned_axis) != 1: raise ValueError('Number of partitioned axes %s not equal to 1' % np.count_nonzero(maybe_partitioned_axis)) partitioned_axis = np.where(maybe_partitioned_axis)[0][0] return partitioned_axis def variable_assign(var, new_value): return state_ops.assign(var, new_value, name=var.op.name + '_assign') def partitioned_variable_assign(partitioned_var, new_value): """Assign op for partitioned variables. Args: partitioned_var: A partitioned tensorflow variable new_value: Value to be assigned to the variable var Returns: A tensorflow op that groups the assign ops for each of the variable slices """ # Determine which axis was used to partition the variable. Currently # tensorflow allows partitioning variable only along 1 axis. axis = 0 if len(partitioned_var) == 1 else determine_partitioned_axis( partitioned_var) partition_sizes = np.array( [partition.get_shape()[axis] for partition in partitioned_var]) new_partitioned_values = array_ops.split( new_value, ops.convert_to_tensor(partition_sizes, dtype=dtypes.int32), axis=axis) op_list = [] for partition in partitioned_var: op_list.append( variable_assign(partition, new_partitioned_values[len(op_list)])) return control_flow_ops.group( *op_list, name=partitioned_var.name + '_group_assign')
tensorflow-master
tensorflow/contrib/model_pruning/python/pruning_utils.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for the key functions in pruning library.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.model_pruning.python import pruning from tensorflow.python.framework import constant_op from tensorflow.python.ops import math_ops from tensorflow.python.ops import partitioned_variables from tensorflow.python.ops import random_ops from tensorflow.python.ops import state_ops from tensorflow.python.ops import variable_scope from tensorflow.python.ops import variables from tensorflow.python.platform import test from tensorflow.python.training import training_util class PruningHParamsTest(test.TestCase): PARAM_LIST = [ "name=test", "threshold_decay=0.9", "pruning_frequency=10", "sparsity_function_end_step=100", "target_sparsity=0.9", "weight_sparsity_map=[conv1:0.8,conv2/kernel:0.8]" ] TEST_HPARAMS = ",".join(PARAM_LIST) def setUp(self): super(PruningHParamsTest, self).setUp() # Add global step variable to the graph self.global_step = training_util.get_or_create_global_step() # Add sparsity self.sparsity = variables.VariableV1(0.5, name="sparsity") # Parse hparams self.pruning_hparams = pruning.get_pruning_hparams().parse( self.TEST_HPARAMS) def testInit(self): p = pruning.Pruning(self.pruning_hparams) self.assertEqual(p._spec.name, "test") self.assertAlmostEqual(p._spec.threshold_decay, 0.9) self.assertEqual(p._spec.pruning_frequency, 10) self.assertEqual(p._spec.sparsity_function_end_step, 100) self.assertAlmostEqual(p._spec.target_sparsity, 0.9) self.assertEqual(p._weight_sparsity_map["conv1"], 0.8) self.assertEqual(p._weight_sparsity_map["conv2/kernel"], 0.8) def testInitWithExternalSparsity(self): with self.cached_session(): p = pruning.Pruning(spec=self.pruning_hparams, sparsity=self.sparsity) variables.global_variables_initializer().run() sparsity = p._sparsity.eval() self.assertAlmostEqual(sparsity, 0.5) def testInitWithVariableReuse(self): with self.cached_session(): p = pruning.Pruning(spec=self.pruning_hparams, sparsity=self.sparsity) p_copy = pruning.Pruning( spec=self.pruning_hparams, sparsity=self.sparsity) variables.global_variables_initializer().run() sparsity = p._sparsity.eval() self.assertAlmostEqual(sparsity, 0.5) self.assertEqual(p._sparsity.eval(), p_copy._sparsity.eval()) class PruningTest(test.TestCase): def setUp(self): super(PruningTest, self).setUp() self.global_step = training_util.get_or_create_global_step() def testCreateMask2D(self): width = 10 height = 20 with self.cached_session(): weights = variables.VariableV1( random_ops.random_normal([width, height], stddev=1), name="weights") masked_weights = pruning.apply_mask(weights, variable_scope.get_variable_scope()) variables.global_variables_initializer().run() weights_val = weights.eval() masked_weights_val = masked_weights.eval() self.assertAllEqual(weights_val, masked_weights_val) def testUpdateSingleMask(self): with self.cached_session() as session: weights = variables.VariableV1( math_ops.linspace(1.0, 100.0, 100), name="weights") masked_weights = pruning.apply_mask(weights) sparsity = variables.VariableV1(0.95, name="sparsity") p = pruning.Pruning(sparsity=sparsity) p._spec.threshold_decay = 0.0 mask_update_op = p.mask_update_op() variables.global_variables_initializer().run() masked_weights_val = masked_weights.eval() self.assertAllEqual(np.count_nonzero(masked_weights_val), 100) session.run(mask_update_op) masked_weights_val = masked_weights.eval() self.assertAllEqual(np.count_nonzero(masked_weights_val), 5) def _blockMasking(self, hparams, weights, expected_mask): threshold = variables.VariableV1(0.0, name="threshold") sparsity = variables.VariableV1(0.5, name="sparsity") test_spec = ",".join(hparams) pruning_hparams = pruning.get_pruning_hparams().parse(test_spec) # Set up pruning p = pruning.Pruning(pruning_hparams, sparsity=sparsity) with self.cached_session(): variables.global_variables_initializer().run() _, new_mask = p._maybe_update_block_mask(weights, threshold) # Check if the mask is the same size as the weights self.assertAllEqual(new_mask.get_shape(), weights.get_shape()) mask_val = new_mask.eval() self.assertAllEqual(mask_val, expected_mask) def testBlockMasking(self): param_list = ["block_height=2", "block_width=2", "threshold_decay=0"] weights_avg = constant_op.constant( [[0.1, 0.1, 0.2, 0.2], [0.1, 0.1, 0.2, 0.2], [0.3, 0.3, 0.4, 0.4], [0.3, 0.3, 0.4, 0.4]]) weights_max = constant_op.constant( [[0.1, 0.0, 0.2, 0.0], [0.0, -0.1, 0.0, -0.2], [0.3, 0.0, 0.4, 0.0], [0.0, -0.3, 0.0, -0.4]]) expected_mask = [[0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0], [1., 1., 1., 1.], [1., 1., 1., 1.]] self._blockMasking(param_list + ["block_pooling_function=MAX"], weights_max, expected_mask) self._blockMasking(param_list + ["block_pooling_function=AVG"], weights_avg, expected_mask) def testBlockMaskingWithHigherDimensions(self): param_list = ["block_height=2", "block_width=2", "threshold_decay=0"] # Weights as in testBlockMasking, but with one extra dimension. weights_avg = constant_op.constant( [[[0.1, 0.1, 0.2, 0.2], [0.1, 0.1, 0.2, 0.2], [0.3, 0.3, 0.4, 0.4], [0.3, 0.3, 0.4, 0.4]]]) weights_max = constant_op.constant( [[[0.1, 0.0, 0.2, 0.0], [0.0, -0.1, 0.0, -0.2], [0.3, 0.0, 0.4, 0.0], [0.0, -0.3, 0.0, -0.4]]]) expected_mask = [[[0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0], [1., 1., 1., 1.], [1., 1., 1., 1.]]] self._blockMasking(param_list + ["block_pooling_function=MAX"], weights_max, expected_mask) self._blockMasking(param_list + ["block_pooling_function=AVG"], weights_avg, expected_mask) def testPartitionedVariableMasking(self): partitioner = partitioned_variables.variable_axis_size_partitioner(40) with self.cached_session() as session: with variable_scope.variable_scope("", partitioner=partitioner): sparsity = variables.VariableV1(0.5, name="Sparsity") weights = variable_scope.get_variable( "weights", initializer=math_ops.linspace(1.0, 100.0, 100)) masked_weights = pruning.apply_mask( weights, scope=variable_scope.get_variable_scope()) p = pruning.Pruning(sparsity=sparsity) p._spec.threshold_decay = 0.0 mask_update_op = p.mask_update_op() variables.global_variables_initializer().run() masked_weights_val = masked_weights.eval() session.run(mask_update_op) masked_weights_val = masked_weights.eval() self.assertAllEqual(np.count_nonzero(masked_weights_val), 50) def testConditionalMaskUpdate(self): param_list = [ "pruning_frequency=2", "begin_pruning_step=1", "end_pruning_step=6", "nbins=100" ] test_spec = ",".join(param_list) pruning_hparams = pruning.get_pruning_hparams().parse(test_spec) weights = variables.VariableV1( math_ops.linspace(1.0, 100.0, 100), name="weights") masked_weights = pruning.apply_mask(weights) sparsity = variables.VariableV1(0.00, name="sparsity") # Set up pruning p = pruning.Pruning(pruning_hparams, sparsity=sparsity) p._spec.threshold_decay = 0.0 mask_update_op = p.conditional_mask_update_op() sparsity_val = math_ops.linspace(0.0, 0.9, 10) increment_global_step = state_ops.assign_add(self.global_step, 1) non_zero_count = [] with self.cached_session() as session: variables.global_variables_initializer().run() for i in range(10): session.run(state_ops.assign(sparsity, sparsity_val[i])) session.run(mask_update_op) session.run(increment_global_step) non_zero_count.append(np.count_nonzero(masked_weights.eval())) # Weights pruned at steps 0,2,4,and,6 expected_non_zero_count = [100, 100, 80, 80, 60, 60, 40, 40, 40, 40] self.assertAllEqual(expected_non_zero_count, non_zero_count) def testWeightSpecificSparsity(self): param_list = [ "begin_pruning_step=1", "pruning_frequency=1", "end_pruning_step=100", "target_sparsity=0.5", "weight_sparsity_map=[layer2/weights:0.75]", "threshold_decay=0.0" ] test_spec = ",".join(param_list) pruning_hparams = pruning.get_pruning_hparams().parse(test_spec) with variable_scope.variable_scope("layer1"): w1 = variables.VariableV1( math_ops.linspace(1.0, 100.0, 100), name="weights") _ = pruning.apply_mask(w1) with variable_scope.variable_scope("layer2"): w2 = variables.VariableV1( math_ops.linspace(1.0, 100.0, 100), name="weights") _ = pruning.apply_mask(w2) p = pruning.Pruning(pruning_hparams) mask_update_op = p.conditional_mask_update_op() increment_global_step = state_ops.assign_add(self.global_step, 1) with self.cached_session() as session: variables.global_variables_initializer().run() for _ in range(110): session.run(mask_update_op) session.run(increment_global_step) self.assertAllEqual( session.run(pruning.get_weight_sparsity()), [0.5, 0.75]) if __name__ == "__main__": test.main()
tensorflow-master
tensorflow/contrib/model_pruning/python/pruning_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for imagingvision.intelligence.tensorflow.model_pruning.layers.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.model_pruning.python.layers import core_layers from tensorflow.contrib.model_pruning.python.layers import layers from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.platform import test class MaskedConvolutionLayerTest(test.TestCase): def setUp(self): super(MaskedConvolutionLayerTest, self).setUp() self.height, self.width = 7, 9 def testInvalidRank3(self): input_tensor = array_ops.ones((self.height, self.width, 3)) with self.assertRaisesRegexp(ValueError, 'rank'): layers.masked_conv2d(input_tensor, 32, 3) def testInvalidRank5(self): input_tensor = array_ops.ones((8, 8, self.height, self.width, 3)) with self.assertRaisesRegexp(ValueError, 'rank'): layers.masked_conv2d(input_tensor, 32, 3) def testSingleConvMaskAdded(self): kernel_size = 3 input_depth, output_depth = 8, 32 input_tensor = array_ops.ones((8, self.height, self.width, input_depth)) layers.masked_conv2d(input_tensor, output_depth, kernel_size) masks = ops.get_collection(core_layers.MASK_COLLECTION) self.assertEqual(len(masks), 1) self.assertListEqual(masks[0].get_shape().as_list(), [kernel_size, kernel_size, input_depth, output_depth]) masked_weight = ops.get_collection(core_layers.MASKED_WEIGHT_COLLECTION) self.assertEqual(len(masked_weight), 1) self.assertListEqual(masked_weight[0].get_shape().as_list(), [kernel_size, kernel_size, input_depth, output_depth]) def testMultipleConvMaskAdded(self): number_of_layers = 5 kernel_size = 3 base_depth = 4 depth_step = 7 input_tensor = array_ops.ones((8, self.height, self.width, base_depth)) top_layer = input_tensor for ix in range(number_of_layers): top_layer = layers.masked_conv2d(top_layer, base_depth + (ix + 1) * depth_step, kernel_size) masks = ops.get_collection(core_layers.MASK_COLLECTION) self.assertEqual(len(masks), number_of_layers) for ix in range(number_of_layers): self.assertListEqual(masks[ix].get_shape().as_list(), [ kernel_size, kernel_size, base_depth + ix * depth_step, base_depth + (ix + 1) * depth_step ]) masked_weight = ops.get_collection(core_layers.MASKED_WEIGHT_COLLECTION) self.assertEqual(len(masked_weight), number_of_layers) for ix in range(number_of_layers): self.assertListEqual(masked_weight[ix].get_shape().as_list(), [ kernel_size, kernel_size, base_depth + ix * depth_step, base_depth + (ix + 1) * depth_step ]) class MaskedFullyConnectedLayerTest(test.TestCase): def testSingleFCMaskAdded(self): input_depth, output_depth = 8, 32 input_tensor = array_ops.ones((5, input_depth)) layers.masked_fully_connected(input_tensor, output_depth) masks = ops.get_collection(core_layers.MASK_COLLECTION) self.assertEqual(len(masks), 1) self.assertListEqual(masks[0].get_shape().as_list(), [input_depth, output_depth]) masked_weight = ops.get_collection(core_layers.MASKED_WEIGHT_COLLECTION) self.assertEqual(len(masked_weight), 1) self.assertListEqual(masked_weight[0].get_shape().as_list(), [input_depth, output_depth]) def testMultipleConvMaskAdded(self): number_of_layers = 5 base_depth = 4 depth_step = 7 input_tensor = array_ops.ones((8, base_depth)) top_layer = input_tensor for ix in range(number_of_layers): top_layer = layers.masked_fully_connected(top_layer, base_depth + (ix + 1) * depth_step) masks = ops.get_collection(core_layers.MASK_COLLECTION) self.assertEqual(len(masks), number_of_layers) for ix in range(number_of_layers): self.assertListEqual(masks[ix].get_shape().as_list(), [ base_depth + ix * depth_step, base_depth + (ix + 1) * depth_step ]) masked_weight = ops.get_collection(core_layers.MASKED_WEIGHT_COLLECTION) self.assertEqual(len(masked_weight), number_of_layers) for ix in range(number_of_layers): self.assertListEqual(masked_weight[ix].get_shape().as_list(), [ base_depth + ix * depth_step, base_depth + (ix + 1) * depth_step ]) if __name__ == '__main__': test.main()
tensorflow-master
tensorflow/contrib/model_pruning/python/layers/layers_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for creating different number of masks in rnn_cells.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.model_pruning.python import pruning from tensorflow.contrib.model_pruning.python.layers import rnn_cells from tensorflow.python.ops import random_ops from tensorflow.python.ops import rnn_cell as tf_rnn_cells from tensorflow.python.ops import variables from tensorflow.python.platform import test class RnnCellsTest(test.TestCase): def setUp(self): super(RnnCellsTest, self).setUp() self.batch_size = 8 self.dim = 10 def testMaskedBasicLSTMCell(self): expected_num_masks = 1 expected_num_rows = 2 * self.dim expected_num_cols = 4 * self.dim with self.cached_session(): inputs = variables.Variable( random_ops.random_normal([self.batch_size, self.dim])) c = variables.Variable( random_ops.random_normal([self.batch_size, self.dim])) h = variables.Variable( random_ops.random_normal([self.batch_size, self.dim])) state = tf_rnn_cells.LSTMStateTuple(c, h) lstm_cell = rnn_cells.MaskedBasicLSTMCell(self.dim) lstm_cell(inputs, state) self.assertEqual(len(pruning.get_masks()), expected_num_masks) self.assertEqual(len(pruning.get_masked_weights()), expected_num_masks) self.assertEqual(len(pruning.get_thresholds()), expected_num_masks) self.assertEqual(len(pruning.get_weights()), expected_num_masks) for mask in pruning.get_masks(): self.assertEqual(mask.shape, (expected_num_rows, expected_num_cols)) for weight in pruning.get_weights(): self.assertEqual(weight.shape, (expected_num_rows, expected_num_cols)) def testMaskedLSTMCell(self): expected_num_masks = 1 expected_num_rows = 2 * self.dim expected_num_cols = 4 * self.dim with self.cached_session(): inputs = variables.Variable( random_ops.random_normal([self.batch_size, self.dim])) c = variables.Variable( random_ops.random_normal([self.batch_size, self.dim])) h = variables.Variable( random_ops.random_normal([self.batch_size, self.dim])) state = tf_rnn_cells.LSTMStateTuple(c, h) lstm_cell = rnn_cells.MaskedLSTMCell(self.dim) lstm_cell(inputs, state) self.assertEqual(len(pruning.get_masks()), expected_num_masks) self.assertEqual(len(pruning.get_masked_weights()), expected_num_masks) self.assertEqual(len(pruning.get_thresholds()), expected_num_masks) self.assertEqual(len(pruning.get_weights()), expected_num_masks) for mask in pruning.get_masks(): self.assertEqual(mask.shape, (expected_num_rows, expected_num_cols)) for weight in pruning.get_weights(): self.assertEqual(weight.shape, (expected_num_rows, expected_num_cols)) if __name__ == '__main__': test.main()
tensorflow-master
tensorflow/contrib/model_pruning/python/layers/rnn_cells_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Contains the core layer classes for model pruning and its functional aliases. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.keras.engine import input_spec from tensorflow.python.layers import base from tensorflow.python.layers import utils from tensorflow.python.ops import array_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn from tensorflow.python.ops import standard_ops MASK_COLLECTION = 'masks' THRESHOLD_COLLECTION = 'thresholds' MASKED_WEIGHT_COLLECTION = 'masked_weights' WEIGHT_COLLECTION = 'kernel' # The 'weights' part of the name is needed for the quantization library # to recognize that the kernel should be quantized. MASKED_WEIGHT_NAME = 'weights/masked_weight' class _MaskedConv(base.Layer): """Abstract nD convolution layer (private, used as implementation base). This layer creates a convolution kernel that is convolved (actually cross-correlated) with the layer input to produce a tensor of outputs. The weight tensor of this layer is masked. If `use_bias` is True (and a `bias_initializer` is provided), a bias vector is created and added to the outputs. Finally, if `activation` is not `None`, it is applied to the outputs as well. Arguments: rank: An integer, the rank of the convolution, e.g. "2" for 2D convolution. filters: Integer, the dimensionality of the output space (i.e. the number of filters in the convolution). kernel_size: An integer or tuple/list of n integers, specifying the length of the convolution window. strides: An integer or tuple/list of n integers, specifying the stride length of the convolution. Specifying any stride value != 1 is incompatible with specifying any `dilation_rate` value != 1. padding: One of `"valid"` or `"same"` (case-insensitive). data_format: A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, ..., channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, ...)`. dilation_rate: An integer or tuple/list of n integers, specifying the dilation rate to use for dilated convolution. Currently, specifying any `dilation_rate` value != 1 is incompatible with specifying any `strides` value != 1. activation: Activation function. Set it to None to maintain a linear activation. use_bias: Boolean, whether the layer uses a bias. kernel_initializer: An initializer for the convolution kernel. bias_initializer: An initializer for the bias vector. If None, the default initializer will be used. kernel_regularizer: Optional regularizer for the convolution kernel. bias_regularizer: Optional regularizer for the bias vector. activity_regularizer: Regularizer function for the output. trainable: Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`). name: A string, the name of the layer. """ def __init__(self, rank, filters, kernel_size, strides=1, padding='valid', data_format='channels_last', dilation_rate=1, activation=None, use_bias=True, kernel_initializer=None, bias_initializer=init_ops.zeros_initializer(), kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, trainable=True, name=None, **kwargs): super(_MaskedConv, self).__init__( trainable=trainable, name=name, activity_regularizer=activity_regularizer, **kwargs) self.rank = rank self.filters = filters self.kernel_size = utils.normalize_tuple(kernel_size, rank, 'kernel_size') self.strides = utils.normalize_tuple(strides, rank, 'strides') self.padding = utils.normalize_padding(padding) self.data_format = utils.normalize_data_format(data_format) self.dilation_rate = utils.normalize_tuple(dilation_rate, rank, 'dilation_rate') self.activation = activation self.use_bias = use_bias self.kernel_initializer = kernel_initializer self.bias_initializer = bias_initializer self.kernel_regularizer = kernel_regularizer self.bias_regularizer = bias_regularizer self.input_spec = input_spec.InputSpec(ndim=self.rank + 2) def build(self, input_shape): input_shape = tensor_shape.TensorShape(input_shape) channel_axis = 1 if self.data_format == 'channels_first' else -1 if tensor_shape.dimension_value(input_shape[channel_axis]) is None: raise ValueError('The channel dimension of the inputs ' 'should be defined. Found `None`.') input_dim = tensor_shape.dimension_value(input_shape[channel_axis]) kernel_shape = self.kernel_size + (input_dim, self.filters) self.mask = self.add_variable( name='mask', shape=kernel_shape, initializer=init_ops.ones_initializer(), trainable=False, dtype=self.dtype) self.kernel = self.add_variable( name='kernel', shape=kernel_shape, initializer=self.kernel_initializer, regularizer=self.kernel_regularizer, trainable=True, dtype=self.dtype) self.threshold = self.add_variable( name='threshold', shape=[], initializer=init_ops.zeros_initializer(), trainable=False, dtype=self.dtype) # Add masked_weights in the weights namescope so as to make it easier # for the quantization library to add quant ops. self.masked_kernel = math_ops.multiply(self.mask, self.kernel, MASKED_WEIGHT_NAME) ops.add_to_collection(MASK_COLLECTION, self.mask) ops.add_to_collection(MASKED_WEIGHT_COLLECTION, self.masked_kernel) ops.add_to_collection(THRESHOLD_COLLECTION, self.threshold) ops.add_to_collection(WEIGHT_COLLECTION, self.kernel) if self.use_bias: self.bias = self.add_variable( name='bias', shape=(self.filters,), initializer=self.bias_initializer, regularizer=self.bias_regularizer, trainable=True, dtype=self.dtype) else: self.bias = None self.input_spec = input_spec.InputSpec( ndim=self.rank + 2, axes={channel_axis: input_dim}) self.built = True def call(self, inputs): outputs = nn.convolution( input=inputs, filter=self.masked_kernel, dilation_rate=self.dilation_rate, strides=self.strides, padding=self.padding.upper(), data_format=utils.convert_data_format(self.data_format, self.rank + 2)) if self.bias is not None: if self.data_format == 'channels_first': if self.rank == 1: # nn.bias_add does not accept a 1D input tensor. bias = array_ops.reshape(self.bias, (1, self.filters, 1)) outputs += bias if self.rank == 2: outputs = nn.bias_add(outputs, self.bias, data_format='NCHW') if self.rank == 3: # As of Mar 2017, direct addition is significantly slower than # bias_add when computing gradients. To use bias_add, we collapse Z # and Y into a single dimension to obtain a 4D input tensor. outputs_shape = outputs.shape.as_list() outputs_4d = array_ops.reshape(outputs, [ outputs_shape[0], outputs_shape[1], outputs_shape[2] * outputs_shape[3], outputs_shape[4] ]) outputs_4d = nn.bias_add(outputs_4d, self.bias, data_format='NCHW') outputs = array_ops.reshape(outputs_4d, outputs_shape) else: outputs = nn.bias_add(outputs, self.bias, data_format='NHWC') if self.activation is not None: return self.activation(outputs) return outputs def compute_output_shape(self, input_shape): input_shape = tensor_shape.TensorShape(input_shape).as_list() if self.data_format == 'channels_last': space = input_shape[1:-1] new_space = [] for i in range(len(space)): new_dim = utils.conv_output_length( space[i], self.kernel_size[i], padding=self.padding, stride=self.strides[i], dilation=self.dilation_rate[i]) new_space.append(new_dim) return tensor_shape.TensorShape([input_shape[0]] + new_space + [self.filters]) else: space = input_shape[2:] new_space = [] for i in range(len(space)): new_dim = utils.conv_output_length( space[i], self.kernel_size[i], padding=self.padding, stride=self.strides[i], dilation=self.dilation_rate[i]) new_space.append(new_dim) return tensor_shape.TensorShape([input_shape[0], self.filters] + new_space) class MaskedConv2D(_MaskedConv): """2D convolution layer (e.g. spatial convolution over images). This layer creates a convolution kernel that is convolved (actually cross-correlated) with the layer input to produce a tensor of outputs. If `use_bias` is True (and a `bias_initializer` is provided), a bias vector is created and added to the outputs. Finally, if `activation` is not `None`, it is applied to the outputs as well. Arguments: filters: Integer, the dimensionality of the output space (i.e. the number of filters in the convolution). kernel_size: An integer or tuple/list of 2 integers, specifying the height and width of the 2D convolution window. Can be a single integer to specify the same value for all spatial dimensions. strides: An integer or tuple/list of 2 integers, specifying the strides of the convolution along the height and width. Can be a single integer to specify the same value for all spatial dimensions. Specifying any stride value != 1 is incompatible with specifying any `dilation_rate` value != 1. padding: One of `"valid"` or `"same"` (case-insensitive). data_format: A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, height, width)`. dilation_rate: An integer or tuple/list of 2 integers, specifying the dilation rate to use for dilated convolution. Can be a single integer to specify the same value for all spatial dimensions. Currently, specifying any `dilation_rate` value != 1 is incompatible with specifying any stride value != 1. activation: Activation function. Set it to None to maintain a linear activation. use_bias: Boolean, whether the layer uses a bias. kernel_initializer: An initializer for the convolution kernel. bias_initializer: An initializer for the bias vector. If None, the default initializer will be used. kernel_regularizer: Optional regularizer for the convolution kernel. bias_regularizer: Optional regularizer for the bias vector. activity_regularizer: Regularizer function for the output. trainable: Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`). name: A string, the name of the layer. """ def __init__(self, filters, kernel_size, strides=(1, 1), padding='valid', data_format='channels_last', dilation_rate=(1, 1), activation=None, use_bias=True, kernel_initializer=None, bias_initializer=init_ops.zeros_initializer(), kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, trainable=True, name=None, **kwargs): super(MaskedConv2D, self).__init__( rank=2, filters=filters, kernel_size=kernel_size, strides=strides, padding=padding, data_format=data_format, dilation_rate=dilation_rate, activation=activation, use_bias=use_bias, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, activity_regularizer=activity_regularizer, trainable=trainable, name=name, **kwargs) class MaskedFullyConnected(base.Layer): """Fully-connected layer class with masked weights. This layer implements the operation: `outputs = activation(inputs.kernel + bias)` Where `activation` is the activation function passed as the `activation` argument (if not `None`), `kernel` is a weights matrix created by the layer, and `bias` is a bias vector created by the layer (only if `use_bias` is `True`). Note: if the input to the layer has a rank greater than 2, then it is flattened prior to the initial matrix multiply by `kernel`. Arguments: units: Integer or Long, dimensionality of the output space. activation: Activation function (callable). Set it to None to maintain a linear activation. use_bias: Boolean, whether the layer uses a bias. kernel_initializer: Initializer function for the weight matrix. bias_initializer: Initializer function for the bias. kernel_regularizer: Regularizer function for the weight matrix. bias_regularizer: Regularizer function for the bias. activity_regularizer: Regularizer function for the output. trainable: Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`). name: String, the name of the layer. Layers with the same name will share weights, but to avoid mistakes we require reuse=True in such cases. reuse: Boolean, whether to reuse the weights of a previous layer by the same name. Properties: units: Python integer, dimensionality of the output space. activation: Activation function (callable). use_bias: Boolean, whether the layer uses a bias. kernel_initializer: Initializer instance (or name) for the weight matrix. bias_initializer: Initializer instance (or name) for the bias. kernel_regularizer: Regularizer instance for the weight matrix (callable) bias_regularizer: Regularizer instance for the bias (callable). activity_regularizer: Regularizer instance for the output (callable) kernel: Weight matrix (TensorFlow variable or tensor). bias: Bias vector, if applicable (TensorFlow variable or tensor). """ def __init__(self, units, activation=None, use_bias=True, kernel_initializer=None, bias_initializer=init_ops.zeros_initializer(), kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, trainable=True, name=None, **kwargs): super(MaskedFullyConnected, self).__init__( trainable=trainable, name=name, activity_regularizer=activity_regularizer, **kwargs) self.units = units self.activation = activation self.use_bias = use_bias self.kernel_initializer = kernel_initializer self.bias_initializer = bias_initializer self.kernel_regularizer = kernel_regularizer self.bias_regularizer = bias_regularizer self.input_spec = input_spec.InputSpec(min_ndim=2) def build(self, input_shape): input_shape = tensor_shape.TensorShape(input_shape) if tensor_shape.dimension_value(input_shape[-1]) is None: raise ValueError('The last dimension of the inputs to `Dense` ' 'should be defined. Found `None`.') self.input_spec = input_spec.InputSpec( min_ndim=2, axes={-1: tensor_shape.dimension_value(input_shape[-1])}) self.kernel = self.add_variable( 'kernel', shape=[tensor_shape.dimension_value(input_shape[-1]), self.units], initializer=self.kernel_initializer, regularizer=self.kernel_regularizer, dtype=self.dtype, trainable=True) self.mask = self.add_variable( name='mask', shape=[tensor_shape.dimension_value(input_shape[-1]), self.units], initializer=init_ops.ones_initializer(), trainable=False, dtype=self.dtype) self.threshold = self.add_variable( name='threshold', shape=[], initializer=init_ops.zeros_initializer(), trainable=False, dtype=self.dtype) # Add masked_weights in the weights namescope so as to make it easier # for the quantization library to add quant ops. self.masked_kernel = math_ops.multiply(self.mask, self.kernel, MASKED_WEIGHT_NAME) ops.add_to_collection(MASK_COLLECTION, self.mask) ops.add_to_collection(MASKED_WEIGHT_COLLECTION, self.masked_kernel) ops.add_to_collection(THRESHOLD_COLLECTION, self.threshold) ops.add_to_collection(WEIGHT_COLLECTION, self.kernel) if self.use_bias: self.bias = self.add_variable( 'bias', shape=[ self.units, ], initializer=self.bias_initializer, regularizer=self.bias_regularizer, dtype=self.dtype, trainable=True) else: self.bias = None self.built = True def call(self, inputs): inputs = ops.convert_to_tensor(inputs, dtype=self.dtype) shape = inputs.get_shape().as_list() output_shape = shape[:-1] + [self.units] if len(output_shape) > 2: # Broadcasting is required for the inputs. outputs = standard_ops.tensordot(inputs, self.masked_kernel, [[len(shape) - 1], [0]]) # Reshape the output back to the original ndim of the input. outputs.set_shape(output_shape) else: outputs = standard_ops.matmul(inputs, self.masked_kernel) if self.use_bias: outputs = nn.bias_add(outputs, self.bias) if self.activation is not None: return self.activation(outputs) # pylint: disable=not-callable return outputs def compute_output_shape(self, input_shape): input_shape = tensor_shape.TensorShape(input_shape) input_shape = input_shape.with_rank_at_least(2) if tensor_shape.dimension_value(input_shape[-1]) is None: raise ValueError( 'The innermost dimension of input_shape must be defined, but saw: %s' % input_shape) return input_shape[:-1].concatenate(self.units)
tensorflow-master
tensorflow/contrib/model_pruning/python/layers/core_layers.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tensorflow layers with added variables for parameter masking. Branched from tensorflow/contrib/layers/python/layers/layers.py """ # pylint: disable=missing-docstring from __future__ import absolute_import from __future__ import division from __future__ import print_function import six from tensorflow.contrib.framework.python.ops import add_arg_scope from tensorflow.contrib.framework.python.ops import variables from tensorflow.contrib.layers.python.layers import initializers from tensorflow.contrib.layers.python.layers import utils from tensorflow.contrib.model_pruning.python.layers import core_layers as core from tensorflow.python.framework import ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import nn from tensorflow.python.ops import variable_scope from tensorflow.python.ops import variables as tf_variables def _model_variable_getter(getter, name, shape=None, dtype=None, initializer=None, regularizer=None, trainable=True, collections=None, caching_device=None, partitioner=None, rename=None, use_resource=None, **_): """Getter that uses model_variable for compatibility with core layers.""" short_name = name.split('/')[-1] if rename and short_name in rename: name_components = name.split('/') name_components[-1] = rename[short_name] name = '/'.join(name_components) return variables.model_variable( name, shape=shape, dtype=dtype, initializer=initializer, regularizer=regularizer, collections=collections, trainable=trainable, caching_device=caching_device, partitioner=partitioner, custom_getter=getter, use_resource=use_resource) def _build_variable_getter(rename=None): """Build a model variable getter that respects scope getter and renames.""" # VariableScope will nest the getters def layer_variable_getter(getter, *args, **kwargs): kwargs['rename'] = rename return _model_variable_getter(getter, *args, **kwargs) return layer_variable_getter def _add_variable_to_collections(variable, collections_set, collections_name): """Adds variable (or all its parts) to all collections with that name.""" collections = utils.get_variable_collections(collections_set, collections_name) or [] variables_list = [variable] if isinstance(variable, tf_variables.PartitionedVariable): variables_list = [v for v in variable] for collection in collections: for var in variables_list: if var not in ops.get_collection(collection): ops.add_to_collection(collection, var) @add_arg_scope def masked_convolution(inputs, num_outputs, kernel_size, stride=1, padding='SAME', data_format=None, rate=1, activation_fn=nn.relu, normalizer_fn=None, normalizer_params=None, weights_initializer=initializers.xavier_initializer(), weights_regularizer=None, biases_initializer=init_ops.zeros_initializer(), biases_regularizer=None, reuse=None, variables_collections=None, outputs_collections=None, trainable=True, scope=None): """Adds an 2D convolution followed by an optional batch_norm layer. The layer creates a mask variable on top of the weight variable. The input to the convolution operation is the elementwise multiplication of the mask variable and the weigh It is required that 1 <= N <= 3. `convolution` creates a variable called `weights`, representing the convolutional kernel, that is convolved (actually cross-correlated) with the `inputs` to produce a `Tensor` of activations. If a `normalizer_fn` is provided (such as `batch_norm`), it is then applied. Otherwise, if `normalizer_fn` is None and a `biases_initializer` is provided then a `biases` variable would be created and added the activations. Finally, if `activation_fn` is not `None`, it is applied to the activations as well. Performs atrous convolution with input stride/dilation rate equal to `rate` if a value > 1 for any dimension of `rate` is specified. In this case `stride` values != 1 are not supported. Args: inputs: A Tensor of rank N+2 of shape `[batch_size] + input_spatial_shape + [in_channels]` if data_format does not start with "NC" (default), or `[batch_size, in_channels] + input_spatial_shape` if data_format starts with "NC". num_outputs: Integer, the number of output filters. kernel_size: A sequence of N positive integers specifying the spatial dimensions of the filters. Can be a single integer to specify the same value for all spatial dimensions. stride: A sequence of N positive integers specifying the stride at which to compute output. Can be a single integer to specify the same value for all spatial dimensions. Specifying any `stride` value != 1 is incompatible with specifying any `rate` value != 1. padding: One of `"VALID"` or `"SAME"`. data_format: A string or None. Specifies whether the channel dimension of the `input` and output is the last dimension (default, or if `data_format` does not start with "NC"), or the second dimension (if `data_format` starts with "NC"). For N=1, the valid values are "NWC" (default) and "NCW". For N=2, the valid values are "NHWC" (default) and "NCHW". For N=3, the valid values are "NDHWC" (default) and "NCDHW". rate: A sequence of N positive integers specifying the dilation rate to use for atrous convolution. Can be a single integer to specify the same value for all spatial dimensions. Specifying any `rate` value != 1 is incompatible with specifying any `stride` value != 1. activation_fn: Activation function. The default value is a ReLU function. Explicitly set it to None to skip it and maintain a linear activation. normalizer_fn: Normalization function to use instead of `biases`. If `normalizer_fn` is provided then `biases_initializer` and `biases_regularizer` are ignored and `biases` are not created nor added. default set to None for no normalizer function normalizer_params: Normalization function parameters. weights_initializer: An initializer for the weights. weights_regularizer: Optional regularizer for the weights. biases_initializer: An initializer for the biases. If None skip biases. biases_regularizer: Optional regularizer for the biases. reuse: Whether or not the layer and its variables should be reused. To be able to reuse the layer scope must be given. variables_collections: Optional list of collections for all the variables or a dictionary containing a different list of collection per variable. outputs_collections: Collection to add the outputs. trainable: If `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable). scope: Optional scope for `variable_scope`. Returns: A tensor representing the output of the operation. Raises: ValueError: If `data_format` is invalid. ValueError: Both 'rate' and `stride` are not uniformly 1. """ if data_format not in [None, 'NWC', 'NCW', 'NHWC', 'NCHW', 'NDHWC', 'NCDHW']: raise ValueError('Invalid data_format: %r' % (data_format,)) layer_variable_getter = _build_variable_getter({ 'bias': 'biases', 'kernel': 'weights' }) with variable_scope.variable_scope( scope, 'Conv', [inputs], reuse=reuse, custom_getter=layer_variable_getter) as sc: inputs = ops.convert_to_tensor(inputs) input_rank = inputs.get_shape().ndims if input_rank == 3: raise ValueError('Sparse Convolution not supported for input with rank', input_rank) elif input_rank == 4: layer_class = core.MaskedConv2D elif input_rank == 5: raise ValueError('Sparse Convolution not supported for input with rank', input_rank) else: raise ValueError('Sparse Convolution not supported for input with rank', input_rank) if data_format is None or data_format == 'NHWC': df = 'channels_last' elif data_format == 'NCHW': df = 'channels_first' else: raise ValueError('Unsupported data format', data_format) layer = layer_class( filters=num_outputs, kernel_size=kernel_size, strides=stride, padding=padding, data_format=df, dilation_rate=rate, activation=None, use_bias=not normalizer_fn and biases_initializer, kernel_initializer=weights_initializer, bias_initializer=biases_initializer, kernel_regularizer=weights_regularizer, bias_regularizer=biases_regularizer, activity_regularizer=None, trainable=trainable, name=sc.name, dtype=inputs.dtype.base_dtype, _scope=sc, _reuse=reuse) outputs = layer.apply(inputs) # Add variables to collections. _add_variable_to_collections(layer.kernel, variables_collections, 'weights') if layer.use_bias: _add_variable_to_collections(layer.bias, variables_collections, 'biases') if normalizer_fn is not None: normalizer_params = normalizer_params or {} outputs = normalizer_fn(outputs, **normalizer_params) if activation_fn is not None: outputs = activation_fn(outputs) return utils.collect_named_outputs(outputs_collections, sc.original_name_scope, outputs) masked_conv2d = masked_convolution @add_arg_scope def masked_fully_connected( inputs, num_outputs, activation_fn=nn.relu, normalizer_fn=None, normalizer_params=None, weights_initializer=initializers.xavier_initializer(), weights_regularizer=None, biases_initializer=init_ops.zeros_initializer(), biases_regularizer=None, reuse=None, variables_collections=None, outputs_collections=None, trainable=True, scope=None): """Adds a sparse fully connected layer. The weight matrix is masked. `fully_connected` creates a variable called `weights`, representing a fully connected weight matrix, which is multiplied by the `inputs` to produce a `Tensor` of hidden units. If a `normalizer_fn` is provided (such as `batch_norm`), it is then applied. Otherwise, if `normalizer_fn` is None and a `biases_initializer` is provided then a `biases` variable would be created and added the hidden units. Finally, if `activation_fn` is not `None`, it is applied to the hidden units as well. Note: that if `inputs` have a rank greater than 2, then `inputs` is flattened prior to the initial matrix multiply by `weights`. Args: inputs: A tensor of at least rank 2 and static value for the last dimension; i.e. `[batch_size, depth]`, `[None, None, None, channels]`. num_outputs: Integer or long, the number of output units in the layer. activation_fn: Activation function. The default value is a ReLU function. Explicitly set it to None to skip it and maintain a linear activation. normalizer_fn: Normalization function to use instead of `biases`. If `normalizer_fn` is provided then `biases_initializer` and `biases_regularizer` are ignored and `biases` are not created nor added. default set to None for no normalizer function normalizer_params: Normalization function parameters. weights_initializer: An initializer for the weights. weights_regularizer: Optional regularizer for the weights. biases_initializer: An initializer for the biases. If None skip biases. biases_regularizer: Optional regularizer for the biases. reuse: Whether or not the layer and its variables should be reused. To be able to reuse the layer scope must be given. variables_collections: Optional list of collections for all the variables or a dictionary containing a different list of collections per variable. outputs_collections: Collection to add the outputs. trainable: If `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable). scope: Optional scope for variable_scope. Returns: The tensor variable representing the result of the series of operations. Raises: ValueError: If x has rank less than 2 or if its last dimension is not set. """ if not isinstance(num_outputs, six.integer_types): raise ValueError('num_outputs should be int or long, got %s.' % (num_outputs,)) layer_variable_getter = _build_variable_getter({ 'bias': 'biases', 'kernel': 'weights' }) with variable_scope.variable_scope( scope, 'fully_connected', [inputs], reuse=reuse, custom_getter=layer_variable_getter) as sc: inputs = ops.convert_to_tensor(inputs) layer = core.MaskedFullyConnected( units=num_outputs, activation=None, use_bias=not normalizer_fn and biases_initializer, kernel_initializer=weights_initializer, bias_initializer=biases_initializer, kernel_regularizer=weights_regularizer, bias_regularizer=biases_regularizer, activity_regularizer=None, trainable=trainable, name=sc.name, dtype=inputs.dtype.base_dtype, _scope=sc, _reuse=reuse) outputs = layer.apply(inputs) # Add variables to collections. _add_variable_to_collections(layer.kernel, variables_collections, 'weights') if layer.bias is not None: _add_variable_to_collections(layer.bias, variables_collections, 'biases') # Apply normalizer function / layer. if normalizer_fn is not None: if not normalizer_params: normalizer_params = {} outputs = normalizer_fn(outputs, **normalizer_params) if activation_fn is not None: outputs = activation_fn(outputs) return utils.collect_named_outputs(outputs_collections, sc.original_name_scope, outputs)
tensorflow-master
tensorflow/contrib/model_pruning/python/layers/layers.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Module implementing RNN Cells with pruning. This module implements BasicLSTMCell and LSTMCell with pruning. Code adapted from third_party/tensorflow/python/ops/rnn_cell_impl.py """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.model_pruning.python.layers import core_layers from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import clip_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn_ops from tensorflow.python.ops import rnn_cell as tf_rnn class MaskedBasicLSTMCell(tf_rnn.BasicLSTMCell): """Basic LSTM recurrent network cell with pruning. Overrides the call method of tensorflow BasicLSTMCell and injects the weight masks The implementation is based on: http://arxiv.org/abs/1409.2329. We add forget_bias (default: 1) to the biases of the forget gate in order to reduce the scale of forgetting in the beginning of the training. It does not allow cell clipping, a projection layer, and does not use peep-hole connections: it is the basic baseline. For advanced models, please use the full `tf.compat.v1.nn.rnn_cell.LSTMCell` that follows. """ def __init__(self, num_units, forget_bias=1.0, state_is_tuple=True, activation=None, reuse=None, name=None): """Initialize the basic LSTM cell with pruning. Args: num_units: int, The number of units in the LSTM cell. forget_bias: float, The bias added to forget gates (see above). Must set to `0.0` manually when restoring from CudnnLSTM-trained checkpoints. state_is_tuple: If True, accepted and returned states are 2-tuples of the `c_state` and `m_state`. If False, they are concatenated along the column axis. The latter behavior will soon be deprecated. activation: Activation function of the inner states. Default: `tanh`. reuse: (optional) Python boolean describing whether to reuse variables in an existing scope. If not `True`, and the existing scope already has the given variables, an error is raised. name: String, the name of the layer. Layers with the same name will share weights, but to avoid mistakes we require reuse=True in such cases. When restoring from CudnnLSTM-trained checkpoints, must use CudnnCompatibleLSTMCell instead. """ super(MaskedBasicLSTMCell, self).__init__( num_units, forget_bias=forget_bias, state_is_tuple=state_is_tuple, activation=activation, reuse=reuse, name=name) def build(self, inputs_shape): # Call the build method of the parent class. super(MaskedBasicLSTMCell, self).build(inputs_shape) self.built = False input_depth = inputs_shape.dims[1].value h_depth = self._num_units self._mask = self.add_variable( name="mask", shape=[input_depth + h_depth, 4 * h_depth], initializer=init_ops.ones_initializer(), trainable=False, dtype=self.dtype) self._threshold = self.add_variable( name="threshold", shape=[], initializer=init_ops.zeros_initializer(), trainable=False, dtype=self.dtype) # Add masked_weights in the weights namescope so as to make it easier # for the quantization library to add quant ops. self._masked_kernel = math_ops.multiply(self._mask, self._kernel, core_layers.MASKED_WEIGHT_NAME) if self._mask not in ops.get_collection_ref(core_layers.MASK_COLLECTION): ops.add_to_collection(core_layers.MASK_COLLECTION, self._mask) ops.add_to_collection(core_layers.MASKED_WEIGHT_COLLECTION, self._masked_kernel) ops.add_to_collection(core_layers.THRESHOLD_COLLECTION, self._threshold) ops.add_to_collection(core_layers.WEIGHT_COLLECTION, self._kernel) self.built = True def call(self, inputs, state): """Long short-term memory cell (LSTM) with masks for pruning. Args: inputs: `2-D` tensor with shape `[batch_size, input_size]`. state: An `LSTMStateTuple` of state tensors, each shaped `[batch_size, self.state_size]`, if `state_is_tuple` has been set to `True`. Otherwise, a `Tensor` shaped `[batch_size, 2 * self.state_size]`. Returns: A pair containing the new hidden state, and the new state (either a `LSTMStateTuple` or a concatenated state, depending on `state_is_tuple`). """ sigmoid = math_ops.sigmoid one = constant_op.constant(1, dtype=dtypes.int32) # Parameters of gates are concatenated into one multiply for efficiency. if self._state_is_tuple: c, h = state else: c, h = array_ops.split(value=state, num_or_size_splits=2, axis=one) gate_inputs = math_ops.matmul( array_ops.concat([inputs, h], 1), self._masked_kernel) gate_inputs = nn_ops.bias_add(gate_inputs, self._bias) # i = input_gate, j = new_input, f = forget_gate, o = output_gate i, j, f, o = array_ops.split( value=gate_inputs, num_or_size_splits=4, axis=one) forget_bias_tensor = constant_op.constant(self._forget_bias, dtype=f.dtype) # Note that using `add` and `multiply` instead of `+` and `*` gives a # performance improvement. So using those at the cost of readability. add = math_ops.add multiply = math_ops.multiply new_c = add( multiply(c, sigmoid(add(f, forget_bias_tensor))), multiply(sigmoid(i), self._activation(j))) new_h = multiply(self._activation(new_c), sigmoid(o)) if self._state_is_tuple: new_state = tf_rnn.LSTMStateTuple(new_c, new_h) else: new_state = array_ops.concat([new_c, new_h], 1) return new_h, new_state class MaskedLSTMCell(tf_rnn.LSTMCell): """LSTMCell with pruning. Overrides the call method of tensorflow LSTMCell and injects the weight masks. Masks are applied to only the weight matrix of the LSTM and not the projection matrix. """ def __init__(self, num_units, use_peepholes=False, cell_clip=None, initializer=None, num_proj=None, proj_clip=None, num_unit_shards=None, num_proj_shards=None, forget_bias=1.0, state_is_tuple=True, activation=None, reuse=None): """Initialize the parameters for an LSTM cell with masks for pruning. Args: num_units: int, The number of units in the LSTM cell use_peepholes: bool, set True to enable diagonal/peephole connections. cell_clip: (optional) A float value, if provided the cell state is clipped by this value prior to the cell output activation. initializer: (optional) The initializer to use for the weight and projection matrices. num_proj: (optional) int, The output dimensionality for the projection matrices. If None, no projection is performed. proj_clip: (optional) A float value. If `num_proj > 0` and `proj_clip` is provided, then the projected values are clipped elementwise to within `[-proj_clip, proj_clip]`. num_unit_shards: Deprecated, will be removed by Jan. 2017. Use a variable_scope partitioner instead. num_proj_shards: Deprecated, will be removed by Jan. 2017. Use a variable_scope partitioner instead. forget_bias: Biases of the forget gate are initialized by default to 1 in order to reduce the scale of forgetting at the beginning of the training. Must set it manually to `0.0` when restoring from CudnnLSTM trained checkpoints. state_is_tuple: If True, accepted and returned states are 2-tuples of the `c_state` and `m_state`. If False, they are concatenated along the column axis. This latter behavior will soon be deprecated. activation: Activation function of the inner states. Default: `tanh`. reuse: (optional) Python boolean describing whether to reuse variables in an existing scope. If not `True`, and the existing scope already has the given variables, an error is raised. When restoring from CudnnLSTM-trained checkpoints, must use CudnnCompatibleLSTMCell instead. """ super(MaskedLSTMCell, self).__init__( num_units, use_peepholes=use_peepholes, cell_clip=cell_clip, initializer=initializer, num_proj=num_proj, proj_clip=proj_clip, num_unit_shards=num_unit_shards, num_proj_shards=num_proj_shards, forget_bias=forget_bias, state_is_tuple=state_is_tuple, activation=activation, reuse=reuse) def build(self, inputs_shape): # Call the build method of the parent class. super(MaskedLSTMCell, self).build(inputs_shape) self.built = False input_depth = inputs_shape.dims[1].value h_depth = self._num_units self._mask = self.add_variable( name="mask", shape=[input_depth + h_depth, 4 * h_depth], initializer=init_ops.ones_initializer(), trainable=False, dtype=self.dtype) self._threshold = self.add_variable( name="threshold", shape=[], initializer=init_ops.zeros_initializer(), trainable=False, dtype=self.dtype) # Add masked_weights in the weights namescope so as to make it easier # for the quantization library to add quant ops. self._masked_kernel = math_ops.multiply(self._mask, self._kernel, core_layers.MASKED_WEIGHT_NAME) if self._mask not in ops.get_collection_ref(core_layers.MASK_COLLECTION): ops.add_to_collection(core_layers.MASK_COLLECTION, self._mask) ops.add_to_collection(core_layers.MASKED_WEIGHT_COLLECTION, self._masked_kernel) ops.add_to_collection(core_layers.THRESHOLD_COLLECTION, self._threshold) ops.add_to_collection(core_layers.WEIGHT_COLLECTION, self._kernel) self.built = True def call(self, inputs, state): """Run one step of LSTM. Args: inputs: input Tensor, 2D, `[batch, num_units]. state: if `state_is_tuple` is False, this must be a state Tensor, `2-D, [batch, state_size]`. If `state_is_tuple` is True, this must be a tuple of state Tensors, both `2-D`, with column sizes `c_state` and `m_state`. Returns: A tuple containing: - A `2-D, [batch, output_dim]`, Tensor representing the output of the LSTM after reading `inputs` when previous state was `state`. Here output_dim is: num_proj if num_proj was set, num_units otherwise. - Tensor(s) representing the new state of LSTM after reading `inputs` when the previous state was `state`. Same type and shape(s) as `state`. Raises: ValueError: If input size cannot be inferred from inputs via static shape inference. """ num_proj = self._num_units if self._num_proj is None else self._num_proj sigmoid = math_ops.sigmoid if self._state_is_tuple: (c_prev, m_prev) = state else: c_prev = array_ops.slice(state, [0, 0], [-1, self._num_units]) m_prev = array_ops.slice(state, [0, self._num_units], [-1, num_proj]) input_size = inputs.get_shape().with_rank(2).dims[1] if input_size.value is None: raise ValueError("Could not infer input size from inputs.get_shape()[-1]") # i = input_gate, j = new_input, f = forget_gate, o = output_gate lstm_matrix = math_ops.matmul( array_ops.concat([inputs, m_prev], 1), self._masked_kernel) lstm_matrix = nn_ops.bias_add(lstm_matrix, self._bias) i, j, f, o = array_ops.split( value=lstm_matrix, num_or_size_splits=4, axis=1) # Diagonal connections if self._use_peepholes: c = ( sigmoid(f + self._forget_bias + self._w_f_diag * c_prev) * c_prev + sigmoid(i + self._w_i_diag * c_prev) * self._activation(j)) else: c = ( sigmoid(f + self._forget_bias) * c_prev + sigmoid(i) * self._activation(j)) if self._cell_clip is not None: # pylint: disable=invalid-unary-operand-type c = clip_ops.clip_by_value(c, -self._cell_clip, self._cell_clip) # pylint: enable=invalid-unary-operand-type if self._use_peepholes: m = sigmoid(o + self._w_o_diag * c) * self._activation(c) else: m = sigmoid(o) * self._activation(c) if self._num_proj is not None: m = math_ops.matmul(m, self._proj_kernel) if self._proj_clip is not None: # pylint: disable=invalid-unary-operand-type m = clip_ops.clip_by_value(m, -self._proj_clip, self._proj_clip) # pylint: enable=invalid-unary-operand-type new_state = ( tf_rnn.LSTMStateTuple(c, m) if self._state_is_tuple else array_ops.concat([c, m], 1)) return m, new_state
tensorflow-master
tensorflow/contrib/model_pruning/python/layers/rnn_cells.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Builds the CIFAR-10 network with additional variables to support pruning. Summary of available functions: # Compute input images and labels for training. If you would like to run # evaluations, use inputs() instead. inputs, labels = distorted_inputs() # Compute inference on the model inputs to make a prediction. predictions = inference(inputs) # Compute the total loss of the prediction with respect to the labels. loss = loss(predictions, labels) # Create a graph to run one step of training with respect to the loss. train_op = train(loss, global_step) """ # pylint: disable=missing-docstring from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import re import sys import tarfile from six.moves import urllib import tensorflow as tf from tensorflow.contrib.model_pruning.examples.cifar10 import cifar10_input from tensorflow.contrib.model_pruning.python import pruning # Global constants describing the CIFAR-10 data set. IMAGE_SIZE = cifar10_input.IMAGE_SIZE NUM_CLASSES = cifar10_input.NUM_CLASSES NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN = cifar10_input.NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN # pylint: disable=line-too-long NUM_EXAMPLES_PER_EPOCH_FOR_EVAL = cifar10_input.NUM_EXAMPLES_PER_EPOCH_FOR_EVAL BATCH_SIZE = 128 DATA_DIR = '/tmp/cifar10_data' # Constants describing the training process. MOVING_AVERAGE_DECAY = 0.9999 # The decay to use for the moving average. NUM_EPOCHS_PER_DECAY = 350.0 # Epochs after which learning rate decays. LEARNING_RATE_DECAY_FACTOR = 0.1 # Learning rate decay factor. INITIAL_LEARNING_RATE = 0.1 # Initial learning rate. # If a model is trained with multiple GPUs, prefix all Op names with tower_name # to differentiate the operations. Note that this prefix is removed from the # names of the summaries when visualizing a model. TOWER_NAME = 'tower' DATA_URL = 'http://www.cs.toronto.edu/~kriz/cifar-10-binary.tar.gz' def _activation_summary(x): """Helper to create summaries for activations. Creates a summary that provides a histogram of activations. Creates a summary that measures the sparsity of activations. Args: x: Tensor Returns: nothing """ # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training # session. This helps the clarity of presentation on tensorboard. tensor_name = re.sub('%s_[0-9]*/' % TOWER_NAME, '', x.op.name) tf.summary.histogram(tensor_name + '/activations', x) tf.summary.scalar(tensor_name + '/sparsity', tf.nn.zero_fraction(x)) def _variable_on_cpu(name, shape, initializer): """Helper to create a Variable stored on CPU memory. Args: name: name of the variable shape: list of ints initializer: initializer for Variable Returns: Variable Tensor """ with tf.device('/cpu:0'): dtype = tf.float32 var = tf.get_variable(name, shape, initializer=initializer, dtype=dtype) return var def _variable_with_weight_decay(name, shape, stddev, wd): """Helper to create an initialized Variable with weight decay. Note that the Variable is initialized with a truncated normal distribution. A weight decay is added only if one is specified. Args: name: name of the variable shape: list of ints stddev: standard deviation of a truncated Gaussian wd: add L2Loss weight decay multiplied by this float. If None, weight decay is not added for this Variable. Returns: Variable Tensor """ dtype = tf.float32 var = _variable_on_cpu( name, shape, tf.truncated_normal_initializer(stddev=stddev, dtype=dtype)) if wd is not None: weight_decay = tf.multiply(tf.nn.l2_loss(var), wd, name='weight_loss') tf.add_to_collection('losses', weight_decay) return var def distorted_inputs(): """Construct distorted input for CIFAR training using the Reader ops. Returns: images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size. labels: Labels. 1D tensor of [batch_size] size. Raises: ValueError: If no data_dir """ if not DATA_DIR: raise ValueError('Please supply a data_dir') data_dir = os.path.join(DATA_DIR, 'cifar-10-batches-bin') images, labels = cifar10_input.distorted_inputs( data_dir=data_dir, batch_size=BATCH_SIZE) return images, labels def inputs(eval_data): """Construct input for CIFAR evaluation using the Reader ops. Args: eval_data: bool, indicating if one should use the train or eval data set. Returns: images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size. labels: Labels. 1D tensor of [batch_size] size. Raises: ValueError: If no data_dir """ if not DATA_DIR: raise ValueError('Please supply a data_dir') data_dir = os.path.join(DATA_DIR, 'cifar-10-batches-bin') images, labels = cifar10_input.inputs( eval_data=eval_data, data_dir=data_dir, batch_size=BATCH_SIZE) return images, labels def inference(images): """Build the CIFAR-10 model. Args: images: Images returned from distorted_inputs() or inputs(). Returns: Logits. """ # We instantiate all variables using tf.compat.v1.get_variable() instead of # tf.Variable() in order to share variables across multiple GPU training runs. # If we only ran this model on a single GPU, we could simplify this function # by replacing all instances of tf.compat.v1.get_variable() with tf.Variable(). # # While instantiating conv and local layers, we add mask and threshold # variables to the layer by calling the pruning.apply_mask() function. # Note that the masks are applied only to the weight tensors # conv1 with tf.variable_scope('conv1') as scope: kernel = _variable_with_weight_decay( 'weights', shape=[5, 5, 3, 64], stddev=5e-2, wd=0.0) conv = tf.nn.conv2d( images, pruning.apply_mask(kernel, scope), [1, 1, 1, 1], padding='SAME') biases = _variable_on_cpu('biases', [64], tf.constant_initializer(0.0)) pre_activation = tf.nn.bias_add(conv, biases) conv1 = tf.nn.relu(pre_activation, name=scope.name) _activation_summary(conv1) # pool1 pool1 = tf.nn.max_pool( conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME', name='pool1') # norm1 norm1 = tf.nn.lrn( pool1, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm1') # conv2 with tf.variable_scope('conv2') as scope: kernel = _variable_with_weight_decay( 'weights', shape=[5, 5, 64, 64], stddev=5e-2, wd=0.0) conv = tf.nn.conv2d( norm1, pruning.apply_mask(kernel, scope), [1, 1, 1, 1], padding='SAME') biases = _variable_on_cpu('biases', [64], tf.constant_initializer(0.1)) pre_activation = tf.nn.bias_add(conv, biases) conv2 = tf.nn.relu(pre_activation, name=scope.name) _activation_summary(conv2) # norm2 norm2 = tf.nn.lrn( conv2, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm2') # pool2 pool2 = tf.nn.max_pool( norm2, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME', name='pool2') # local3 with tf.variable_scope('local3') as scope: # Move everything into depth so we can perform a single matrix multiply. reshape = tf.reshape(pool2, [BATCH_SIZE, -1]) dim = reshape.get_shape()[1].value weights = _variable_with_weight_decay( 'weights', shape=[dim, 384], stddev=0.04, wd=0.004) biases = _variable_on_cpu('biases', [384], tf.constant_initializer(0.1)) local3 = tf.nn.relu( tf.matmul(reshape, pruning.apply_mask(weights, scope)) + biases, name=scope.name) _activation_summary(local3) # local4 with tf.variable_scope('local4') as scope: weights = _variable_with_weight_decay( 'weights', shape=[384, 192], stddev=0.04, wd=0.004) biases = _variable_on_cpu('biases', [192], tf.constant_initializer(0.1)) local4 = tf.nn.relu( tf.matmul(local3, pruning.apply_mask(weights, scope)) + biases, name=scope.name) _activation_summary(local4) # linear layer(WX + b), # We don't apply softmax here because # tf.nn.sparse_softmax_cross_entropy_with_logits accepts the unscaled logits # and performs the softmax internally for efficiency. with tf.variable_scope('softmax_linear') as scope: weights = _variable_with_weight_decay( 'weights', [192, NUM_CLASSES], stddev=1 / 192.0, wd=0.0) biases = _variable_on_cpu('biases', [NUM_CLASSES], tf.constant_initializer(0.0)) softmax_linear = tf.add( tf.matmul(local4, pruning.apply_mask(weights, scope)), biases, name=scope.name) _activation_summary(softmax_linear) return softmax_linear def loss(logits, labels): """Add L2Loss to all the trainable variables. Add summary for "Loss" and "Loss/avg". Args: logits: Logits from inference(). labels: Labels from distorted_inputs or inputs(). 1-D tensor of shape [batch_size] Returns: Loss tensor of type float. """ # Calculate the average cross entropy loss across the batch. labels = tf.cast(labels, tf.int64) cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits( labels=labels, logits=logits, name='cross_entropy_per_example') cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy') tf.add_to_collection('losses', cross_entropy_mean) # The total loss is defined as the cross entropy loss plus all of the weight # decay terms (L2 loss). return tf.add_n(tf.get_collection('losses'), name='total_loss') def _add_loss_summaries(total_loss): """Add summaries for losses in CIFAR-10 model. Generates moving average for all losses and associated summaries for visualizing the performance of the network. Args: total_loss: Total loss from loss(). Returns: loss_averages_op: op for generating moving averages of losses. """ # Compute the moving average of all individual losses and the total loss. loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg') losses = tf.get_collection('losses') loss_averages_op = loss_averages.apply(losses + [total_loss]) # Attach a scalar summary to all individual losses and the total loss; do the # same for the averaged version of the losses. for l in losses + [total_loss]: # Name each loss as '(raw)' and name the moving average version of the loss # as the original loss name. tf.summary.scalar(l.op.name + ' (raw)', l) tf.summary.scalar(l.op.name, loss_averages.average(l)) return loss_averages_op def train(total_loss, global_step): """Train CIFAR-10 model. Create an optimizer and apply to all trainable variables. Add moving average for all trainable variables. Args: total_loss: Total loss from loss(). global_step: Integer Variable counting the number of training steps processed. Returns: train_op: op for training. """ # Variables that affect learning rate. num_batches_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN / BATCH_SIZE decay_steps = int(num_batches_per_epoch * NUM_EPOCHS_PER_DECAY) # Decay the learning rate exponentially based on the number of steps. lr = tf.train.exponential_decay( INITIAL_LEARNING_RATE, global_step, decay_steps, LEARNING_RATE_DECAY_FACTOR, staircase=True) tf.summary.scalar('learning_rate', lr) # Generate moving averages of all losses and associated summaries. loss_averages_op = _add_loss_summaries(total_loss) # Compute gradients. with tf.control_dependencies([loss_averages_op]): opt = tf.train.GradientDescentOptimizer(lr) grads = opt.compute_gradients(total_loss) # Apply gradients. apply_gradient_op = opt.apply_gradients(grads, global_step=global_step) # Add histograms for trainable variables. for var in tf.trainable_variables(): tf.summary.histogram(var.op.name, var) # Add histograms for gradients. for grad, var in grads: if grad is not None: tf.summary.histogram(var.op.name + '/gradients', grad) # Track the moving averages of all trainable variables. variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step) variables_averages_op = variable_averages.apply(tf.trainable_variables()) with tf.control_dependencies([apply_gradient_op, variables_averages_op]): train_op = tf.no_op(name='train') return train_op def maybe_download_and_extract(): """Download and extract the tarball from Alex's website.""" dest_directory = DATA_DIR if not os.path.exists(dest_directory): os.makedirs(dest_directory) filename = DATA_URL.split('/')[-1] filepath = os.path.join(dest_directory, filename) if not os.path.exists(filepath): def _progress(count, block_size, total_size): sys.stdout.write( '\r>> Downloading %s %.1f%%' % (filename, float(count * block_size) / float(total_size) * 100.0)) sys.stdout.flush() filepath, _ = urllib.request.urlretrieve(DATA_URL, filepath, _progress) print() statinfo = os.stat(filepath) print('Successfully downloaded', filename, statinfo.st_size, 'bytes.') tarfile.open(filepath, 'r:gz').extractall(dest_directory)
tensorflow-master
tensorflow/contrib/model_pruning/examples/cifar10/cifar10_pruning.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Routine for decoding the CIFAR-10 binary file format.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from six.moves import xrange # pylint: disable=redefined-builtin import tensorflow as tf # Process images of this size. Note that this differs from the original CIFAR # image size of 32 x 32. If one alters this number, then the entire model # architecture will change and any model would need to be retrained. IMAGE_SIZE = 24 # Global constants describing the CIFAR-10 data set. NUM_CLASSES = 10 NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN = 50000 NUM_EXAMPLES_PER_EPOCH_FOR_EVAL = 10000 def read_cifar10(filename_queue): """Reads and parses examples from CIFAR10 data files. Recommendation: if you want N-way read parallelism, call this function N times. This will give you N independent Readers reading different files & positions within those files, which will give better mixing of examples. Args: filename_queue: A queue of strings with the filenames to read from. Returns: An object representing a single example, with the following fields: height: number of rows in the result (32) width: number of columns in the result (32) depth: number of color channels in the result (3) key: a scalar string Tensor describing the filename & record number for this example. label: an int32 Tensor with the label in the range 0..9. uint8image: a [height, width, depth] uint8 Tensor with the image data """ class CIFAR10Record(object): pass result = CIFAR10Record() # Dimensions of the images in the CIFAR-10 dataset. # See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the # input format. label_bytes = 1 # 2 for CIFAR-100 result.height = 32 result.width = 32 result.depth = 3 image_bytes = result.height * result.width * result.depth # Every record consists of a label followed by the image, with a # fixed number of bytes for each. record_bytes = label_bytes + image_bytes # Read a record, getting filenames from the filename_queue. No # header or footer in the CIFAR-10 format, so we leave header_bytes # and footer_bytes at their default of 0. reader = tf.FixedLengthRecordReader(record_bytes=record_bytes) result.key, value = reader.read(filename_queue) # Convert from a string to a vector of uint8 that is record_bytes long. record_bytes = tf.decode_raw(value, tf.uint8) # The first bytes represent the label, which we convert from uint8->int32. result.label = tf.cast( tf.strided_slice(record_bytes, [0], [label_bytes]), tf.int32) # The remaining bytes after the label represent the image, which we reshape # from [depth * height * width] to [depth, height, width]. depth_major = tf.reshape( tf.strided_slice(record_bytes, [label_bytes], [label_bytes + image_bytes]), [result.depth, result.height, result.width]) # Convert from [depth, height, width] to [height, width, depth]. result.uint8image = tf.transpose(depth_major, [1, 2, 0]) return result def _generate_image_and_label_batch(image, label, min_queue_examples, batch_size, shuffle): """Construct a queued batch of images and labels. Args: image: 3-D Tensor of [height, width, 3] of type.float32. label: 1-D Tensor of type.int32 min_queue_examples: int32, minimum number of samples to retain in the queue that provides of batches of examples. batch_size: Number of images per batch. shuffle: boolean indicating whether to use a shuffling queue. Returns: images: Images. 4D tensor of [batch_size, height, width, 3] size. labels: Labels. 1D tensor of [batch_size] size. """ # Create a queue that shuffles the examples, and then # read 'batch_size' images + labels from the example queue. num_preprocess_threads = 16 if shuffle: images, label_batch = tf.train.shuffle_batch( [image, label], batch_size=batch_size, num_threads=num_preprocess_threads, capacity=min_queue_examples + 3 * batch_size, min_after_dequeue=min_queue_examples) else: images, label_batch = tf.train.batch( [image, label], batch_size=batch_size, num_threads=num_preprocess_threads, capacity=min_queue_examples + 3 * batch_size) # Display the training images in the visualizer. tf.summary.image('images', images) return images, tf.reshape(label_batch, [batch_size]) def distorted_inputs(data_dir, batch_size): """Construct distorted input for CIFAR training using the Reader ops. Args: data_dir: Path to the CIFAR-10 data directory. batch_size: Number of images per batch. Returns: images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size. labels: Labels. 1D tensor of [batch_size] size. """ filenames = [ os.path.join(data_dir, 'data_batch_%d.bin' % i) for i in xrange(1, 6) ] for f in filenames: if not tf.gfile.Exists(f): raise ValueError('Failed to find file: ' + f) # Create a queue that produces the filenames to read. filename_queue = tf.train.string_input_producer(filenames) # Read examples from files in the filename queue. read_input = read_cifar10(filename_queue) reshaped_image = tf.cast(read_input.uint8image, tf.float32) height = IMAGE_SIZE width = IMAGE_SIZE # Image processing for training the network. Note the many random # distortions applied to the image. # Randomly crop a [height, width] section of the image. distorted_image = tf.random_crop(reshaped_image, [height, width, 3]) # Randomly flip the image horizontally. distorted_image = tf.image.random_flip_left_right(distorted_image) # Because these operations are not commutative, consider randomizing # the order their operation. distorted_image = tf.image.random_brightness(distorted_image, max_delta=63) distorted_image = tf.image.random_contrast( distorted_image, lower=0.2, upper=1.8) # Subtract off the mean and divide by the variance of the pixels. float_image = tf.image.per_image_standardization(distorted_image) # Set the shapes of tensors. float_image.set_shape([height, width, 3]) read_input.label.set_shape([1]) # Ensure that the random shuffling has good mixing properties. min_fraction_of_examples_in_queue = 0.4 min_queue_examples = int( NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN * min_fraction_of_examples_in_queue) print('Filling queue with %d CIFAR images before starting to train. ' 'This will take a few minutes.' % min_queue_examples) # Generate a batch of images and labels by building up a queue of examples. return _generate_image_and_label_batch( float_image, read_input.label, min_queue_examples, batch_size, shuffle=True) def inputs(eval_data, data_dir, batch_size): """Construct input for CIFAR evaluation using the Reader ops. Args: eval_data: bool, indicating if one should use the train or eval data set. data_dir: Path to the CIFAR-10 data directory. batch_size: Number of images per batch. Returns: images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size. labels: Labels. 1D tensor of [batch_size] size. """ if not eval_data: filenames = [ os.path.join(data_dir, 'data_batch_%d.bin' % i) for i in xrange(1, 6) ] num_examples_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN else: filenames = [os.path.join(data_dir, 'test_batch.bin')] num_examples_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_EVAL for f in filenames: if not tf.gfile.Exists(f): raise ValueError('Failed to find file: ' + f) # Create a queue that produces the filenames to read. filename_queue = tf.train.string_input_producer(filenames) # Read examples from files in the filename queue. read_input = read_cifar10(filename_queue) reshaped_image = tf.cast(read_input.uint8image, tf.float32) height = IMAGE_SIZE width = IMAGE_SIZE # Image processing for evaluation. # Crop the central [height, width] of the image. resized_image = tf.image.resize_image_with_crop_or_pad( reshaped_image, width, height) # Subtract off the mean and divide by the variance of the pixels. float_image = tf.image.per_image_standardization(resized_image) # Set the shapes of tensors. float_image.set_shape([height, width, 3]) read_input.label.set_shape([1]) # Ensure that the random shuffling has good mixing properties. min_fraction_of_examples_in_queue = 0.4 min_queue_examples = int( num_examples_per_epoch * min_fraction_of_examples_in_queue) # Generate a batch of images and labels by building up a queue of examples. return _generate_image_and_label_batch( float_image, read_input.label, min_queue_examples, batch_size, shuffle=False)
tensorflow-master
tensorflow/contrib/model_pruning/examples/cifar10/cifar10_input.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A binary to train pruned CIFAR-10 using a single GPU. Accuracy: cifar10_train.py achieves ~86% accuracy after 100K steps (256 epochs of data) as judged by cifar10_eval.py when target sparsity in cifar10_pruning_spec.pbtxt is set to zero Results: Sparsity | Accuracy after 150K steps -------- | ------------------------- 0% | 86% 50% | 86% 75% | TODO(suyoggupta) 90% | TODO(suyoggupta) 95% | 77% Usage: Please see the tutorial and website for how to download the CIFAR-10 data set, compile the program and train the model. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import datetime import sys import time import tensorflow as tf from tensorflow.contrib.model_pruning.examples.cifar10 import cifar10_pruning as cifar10 from tensorflow.contrib.model_pruning.python import pruning FLAGS = None def train(): """Train CIFAR-10 for a number of steps.""" with tf.Graph().as_default(): global_step = tf.contrib.framework.get_or_create_global_step() # Get images and labels for CIFAR-10. images, labels = cifar10.distorted_inputs() # Build a Graph that computes the logits predictions from the # inference model. logits = cifar10.inference(images) # Calculate loss. loss = cifar10.loss(logits, labels) # Build a Graph that trains the model with one batch of examples and # updates the model parameters. train_op = cifar10.train(loss, global_step) # Parse pruning hyperparameters pruning_hparams = pruning.get_pruning_hparams().parse(FLAGS.pruning_hparams) # Create a pruning object using the pruning hyperparameters pruning_obj = pruning.Pruning(pruning_hparams, global_step=global_step) # Use the pruning_obj to add ops to the training graph to update the masks # The conditional_mask_update_op will update the masks only when the # training step is in [begin_pruning_step, end_pruning_step] specified in # the pruning spec proto mask_update_op = pruning_obj.conditional_mask_update_op() # Use the pruning_obj to add summaries to the graph to track the sparsity # of each of the layers pruning_obj.add_pruning_summaries() class _LoggerHook(tf.train.SessionRunHook): """Logs loss and runtime.""" def begin(self): self._step = -1 def before_run(self, run_context): self._step += 1 self._start_time = time.time() return tf.train.SessionRunArgs(loss) # Asks for loss value. def after_run(self, run_context, run_values): duration = time.time() - self._start_time loss_value = run_values.results if self._step % 10 == 0: num_examples_per_step = 128 examples_per_sec = num_examples_per_step / duration sec_per_batch = float(duration) format_str = ('%s: step %d, loss = %.2f (%.1f examples/sec; %.3f ' 'sec/batch)') print(format_str % (datetime.datetime.now(), self._step, loss_value, examples_per_sec, sec_per_batch)) with tf.train.MonitoredTrainingSession( checkpoint_dir=FLAGS.train_dir, hooks=[tf.train.StopAtStepHook(last_step=FLAGS.max_steps), tf.train.NanTensorHook(loss), _LoggerHook()], config=tf.ConfigProto( log_device_placement=FLAGS.log_device_placement)) as mon_sess: while not mon_sess.should_stop(): mon_sess.run(train_op) # Update the masks mon_sess.run(mask_update_op) def main(argv=None): # pylint: disable=unused-argument cifar10.maybe_download_and_extract() if tf.gfile.Exists(FLAGS.train_dir): tf.gfile.DeleteRecursively(FLAGS.train_dir) tf.gfile.MakeDirs(FLAGS.train_dir) train() if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( '--train_dir', type=str, default='/tmp/cifar10_train', help='Directory where to write event logs and checkpoint.') parser.add_argument( '--pruning_hparams', type=str, default='', help="""Comma separated list of pruning-related hyperparameters""") parser.add_argument( '--max_steps', type=int, default=1000000, help='Number of batches to run.') parser.add_argument( '--log_device_placement', type=bool, default=False, help='Whether to log device placement.') FLAGS, unparsed = parser.parse_known_args() tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
tensorflow-master
tensorflow/contrib/model_pruning/examples/cifar10/cifar10_train.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Evaluation for CIFAR-10. Accuracy: cifar10_train.py achieves 83.0% accuracy after 100K steps (256 epochs of data) as judged by cifar10_eval.py. Speed: On a single Tesla K40, cifar10_train.py processes a single batch of 128 images in 0.25-0.35 sec (i.e. 350 - 600 images /sec). The model reaches ~86% accuracy after 100K steps in 8 hours of training time. Usage: Please see the tutorial and website for how to download the CIFAR-10 data set, compile the program and train the model. http://tensorflow.org/tutorials/deep_cnn/ """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import datetime import math import sys import time import numpy as np import tensorflow as tf from tensorflow.contrib.model_pruning.examples.cifar10 import cifar10_pruning as cifar10 FLAGS = None def eval_once(saver, summary_writer, top_k_op, summary_op): """Run Eval once. Args: saver: Saver. summary_writer: Summary writer. top_k_op: Top K op. summary_op: Summary op. """ with tf.Session() as sess: ckpt = tf.train.get_checkpoint_state(FLAGS.checkpoint_dir) if ckpt and ckpt.model_checkpoint_path: # Restores from checkpoint saver.restore(sess, ckpt.model_checkpoint_path) # Assuming model_checkpoint_path looks something like: # /my-favorite-path/cifar10_train/model.ckpt-0, # extract global_step from it. global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1] else: print('No checkpoint file found') return # Start the queue runners. coord = tf.train.Coordinator() try: threads = [] for qr in tf.get_collection(tf.GraphKeys.QUEUE_RUNNERS): threads.extend(qr.create_threads(sess, coord=coord, daemon=True, start=True)) num_iter = int(math.ceil(FLAGS.num_examples / 128)) true_count = 0 # Counts the number of correct predictions. total_sample_count = num_iter * 128 step = 0 while step < num_iter and not coord.should_stop(): predictions = sess.run([top_k_op]) true_count += np.sum(predictions) step += 1 # Compute precision @ 1. precision = true_count / total_sample_count print('%s: precision @ 1 = %.3f' % (datetime.datetime.now(), precision)) summary = tf.Summary() summary.ParseFromString(sess.run(summary_op)) summary.value.add(tag='Precision @ 1', simple_value=precision) summary_writer.add_summary(summary, global_step) except Exception as e: # pylint: disable=broad-except coord.request_stop(e) coord.request_stop() coord.join(threads, stop_grace_period_secs=10) def evaluate(): """Eval CIFAR-10 for a number of steps.""" with tf.Graph().as_default() as g: # Get images and labels for CIFAR-10. eval_data = FLAGS.eval_data == 'test' images, labels = cifar10.inputs(eval_data=eval_data) # Build a Graph that computes the logits predictions from the # inference model. logits = cifar10.inference(images) # Calculate predictions. top_k_op = tf.nn.in_top_k(logits, labels, 1) # Restore the moving average version of the learned variables for eval. variable_averages = tf.train.ExponentialMovingAverage( cifar10.MOVING_AVERAGE_DECAY) variables_to_restore = variable_averages.variables_to_restore() saver = tf.train.Saver(variables_to_restore) # Build the summary operation based on the TF collection of Summaries. summary_op = tf.summary.merge_all() summary_writer = tf.summary.FileWriter(FLAGS.eval_dir, g) while True: eval_once(saver, summary_writer, top_k_op, summary_op) if FLAGS.run_once: break time.sleep(FLAGS.eval_interval_secs) def main(argv=None): # pylint: disable=unused-argument cifar10.maybe_download_and_extract() if tf.gfile.Exists(FLAGS.eval_dir): tf.gfile.DeleteRecursively(FLAGS.eval_dir) tf.gfile.MakeDirs(FLAGS.eval_dir) evaluate() if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( '--eval_dir', type=str, default='/tmp/cifar10_eval', help='Directory where to write event logs.') parser.add_argument( '--eval_data', type=str, default='test', help="""Either 'test' or 'train_eval'.""") parser.add_argument( '--checkpoint_dir', type=str, default='/tmp/cifar10_train', help="""Directory where to read model checkpoints.""") parser.add_argument( '--eval_interval_secs', type=int, default=60 * 5, help='How often to run the eval.') parser.add_argument( '--num_examples', type=int, default=10000, help='Number of examples to run.') parser.add_argument( '--run_once', type=bool, default=False, help='Whether to run eval only once.') FLAGS, unparsed = parser.parse_known_args() tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
tensorflow-master
tensorflow/contrib/model_pruning/examples/cifar10/cifar10_eval.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """TensorFlow Eager execution prototype. EXPERIMENTAL: APIs here are unstable and likely to change without notice. To use, at program startup, call `tf.compat.v1.enable_eager_execution()`. @@metrics @@list_devices @@num_gpus @@py_func @@defun @@function @@make_template @@implicit_gradients @@implicit_value_and_gradients @@gradients_function @@value_and_gradients_function @@GradientTape @@run @@enable_eager_execution @@enable_remote_eager_execution @@custom_gradient @@add_execution_callback @@clear_execution_callbacks @@errstate @@ExecutionCallback @@inf_callback @@inf_nan_callback @@nan_callback @@seterr @@Iterator @@Saver @@restore_variables_on_create @@Variable @@get_optimizer_variables @@EagerVariableStore @@Network @@Sequential @@save_network_checkpoint @@restore_network_checkpoint @@Checkpoint @@Checkpointable @@executing_eagerly @@in_eager_mode @@set_execution_mode @@execution_mode @@async_wait @@async_clear_error @@set_server_def @@run_test_in_graph_and_eager_modes @@run_all_tests_in_graph_and_eager_modes @@TensorSpec @@connect_to_remote_host @@DEVICE_PLACEMENT_EXPLICIT @@DEVICE_PLACEMENT_WARN @@DEVICE_PLACEMENT_SILENT @@SYNC @@ASYNC """ from __future__ import absolute_import from __future__ import division from __future__ import print_function # pylint:disable=g-bad-import-order,g-import-not-at-top,unused-import # from tensorflow.contrib.eager.python import metrics from tensorflow.contrib.eager.python.datasets import Iterator from tensorflow.contrib.eager.python.network import Network from tensorflow.contrib.eager.python.network import Sequential from tensorflow.contrib.eager.python.network import save_network_checkpoint from tensorflow.contrib.eager.python.network import restore_network_checkpoint from tensorflow.contrib.eager.python.saver import get_optimizer_variables from tensorflow.contrib.eager.python.saver import restore_variables_on_create from tensorflow.contrib.eager.python.saver import Saver from tensorflow.python.eager import backprop from tensorflow.python.eager import function as _function_lib from tensorflow.python.eager.context import DEVICE_PLACEMENT_EXPLICIT from tensorflow.python.eager.context import DEVICE_PLACEMENT_WARN from tensorflow.python.eager.context import DEVICE_PLACEMENT_SILENT from tensorflow.python.eager.context import executing_eagerly from tensorflow.python.eager.context import list_devices from tensorflow.python.eager.context import set_execution_mode from tensorflow.python.eager.context import execution_mode from tensorflow.python.eager.context import async_wait from tensorflow.python.eager.context import async_clear_error from tensorflow.python.eager.context import SYNC from tensorflow.python.eager.context import ASYNC from tensorflow.python.eager.context import num_gpus from tensorflow.python.eager.context import set_server_def from tensorflow.python.eager.def_function import function from tensorflow.python.eager.execution_callbacks import add_execution_callback from tensorflow.python.eager.execution_callbacks import clear_execution_callbacks from tensorflow.python.eager.execution_callbacks import errstate from tensorflow.python.eager.execution_callbacks import ExecutionCallback from tensorflow.python.eager.execution_callbacks import inf_callback from tensorflow.python.eager.execution_callbacks import inf_nan_callback from tensorflow.python.eager.execution_callbacks import nan_callback from tensorflow.python.eager.execution_callbacks import seterr from tensorflow.python.eager.remote import connect_to_remote_host from tensorflow.python.framework.tensor_spec import TensorSpec from tensorflow.python.framework.ops import enable_eager_execution from tensorflow.python.framework.ops import enable_eager_execution_internal as enable_remote_eager_execution from tensorflow.python.framework.ops import eager_run as run from tensorflow.python.framework.test_util import run_in_graph_and_eager_modes as run_test_in_graph_and_eager_modes from tensorflow.python.framework.test_util import run_all_in_graph_and_eager_modes as run_all_tests_in_graph_and_eager_modes from tensorflow.python.ops.custom_gradient import custom_gradient from tensorflow.python.ops.resource_variable_ops import ResourceVariable as Variable from tensorflow.python.ops.variable_scope import EagerVariableStore from tensorflow.python.ops import script_ops from tensorflow.python.ops import template from tensorflow.python.training.tracking.tracking import AutoTrackable as Checkpointable from tensorflow.python.training.tracking.util import CheckpointV1 as Checkpoint from tensorflow.python.util.all_util import remove_undocumented py_func = script_ops.eager_py_func defun = _function_lib.defun make_template = template.make_template_internal implicit_gradients = backprop.implicit_grad implicit_value_and_gradients = backprop.implicit_val_and_grad gradients_function = backprop.gradients_function value_and_gradients_function = backprop.val_and_grad_function GradientTape = backprop.GradientTape # pylint: disable=invalid-name in_eager_mode = executing_eagerly remove_undocumented(__name__)
tensorflow-master
tensorflow/contrib/eager/python/tfe.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Metrics namespace.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function # pylint:disable=wildcard-import from tensorflow.contrib.eager.python.metrics_impl import * from tensorflow.python.util.all_util import remove_undocumented _allowed_symbols = ['Accuracy', 'Mean', 'Metric', 'CategoricalAccuracy', 'BinaryAccuracy', 'SparseAccuracy'] remove_undocumented(__name__, _allowed_symbols)
tensorflow-master
tensorflow/contrib/eager/python/metrics.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for class Evaluator.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tempfile from tensorflow.contrib.eager.python import evaluator from tensorflow.contrib.eager.python import metrics from tensorflow.contrib.summary import summary_test_util from tensorflow.python.data.ops import dataset_ops from tensorflow.python.eager import context from tensorflow.python.eager import test from tensorflow.python.framework import ops from tensorflow.python.ops import variables from tensorflow.python.training import training_util class IdentityModel(object): def eval_data(self, d): return d class PrefixLModel(object): def eval_data(self, d): return {"l_" + key: d[key] for key in d} class SimpleEvaluator(evaluator.Evaluator): def __init__(self, model): super(SimpleEvaluator, self).__init__(model) self.mean = self.track_metric(metrics.Mean("mean")) def call(self, eval_data): self.mean(eval_data) class DelegatingEvaluator(evaluator.Evaluator): def __init__(self, model): super(DelegatingEvaluator, self).__init__(model) self.sub = self.track_evaluator("inner", SimpleEvaluator(model)) self.mean = self.track_metric(metrics.Mean("outer-mean")) def call(self, eval_data): # Keys here come from PrefixLModel, which adds "l_". self.mean(eval_data["l_outer"]) self.sub.call(eval_data["l_inner"]) # pylint: disable=not-callable class EvaluatorTest(test.TestCase): def testSimple(self): e = SimpleEvaluator(IdentityModel()) e(3.0) e([5.0, 7.0, 9.0]) results = e.all_metric_results() self.assertEqual(set(["mean"]), set(results.keys())) self.assertEqual(6.0, results["mean"].numpy()) def testWriteSummaries(self): e = SimpleEvaluator(IdentityModel()) e(3.0) e([5.0, 7.0, 9.0]) training_util.get_or_create_global_step() logdir = tempfile.mkdtemp() e.all_metric_results(logdir) events = summary_test_util.events_from_logdir(logdir) self.assertEqual(len(events), 2) self.assertEqual(events[1].summary.value[0].simple_value, 6.0) def testComposition(self): e = DelegatingEvaluator(PrefixLModel()) e({"inner": 2.0, "outer": 100.0}) e({"inner": 4.0, "outer": 1000.0}) results = e.all_metric_results() self.assertEqual(set(["inner/mean", "outer-mean"]), set(results.keys())) self.assertEqual(3.0, results["inner/mean"].numpy()) self.assertEqual(550.0, results["outer-mean"].numpy()) def testMetricVariables(self): e = DelegatingEvaluator(PrefixLModel()) e({"inner": 2.0, "outer": 100.0}) prefix_count = {} for v in e.metric_variables: p = v.name.split("/")[0] prefix_count[p] = prefix_count.get(p, 0) + 1 self.assertEqual({"outer_mean": 2, "mean": 2}, prefix_count) def testDatasetEager(self): e = SimpleEvaluator(IdentityModel()) ds = dataset_ops.Dataset.from_tensor_slices([3.0, 5.0, 7.0, 9.0]) results = e.evaluate_on_dataset(ds) self.assertEqual(set(["mean"]), set(results.keys())) self.assertEqual(6.0, results["mean"].numpy()) def testDatasetGraph(self): with context.graph_mode(), ops.Graph().as_default(), self.cached_session(): e = SimpleEvaluator(IdentityModel()) ds = dataset_ops.Dataset.from_tensor_slices([3.0, 5.0, 7.0, 9.0]) init_op, call_op, results_op = e.evaluate_on_dataset(ds) results = e.run_evaluation(init_op, call_op, results_op) self.assertEqual(set(["mean"]), set(results.keys())) self.assertEqual(6.0, results["mean"]) def testWriteSummariesGraph(self): with context.graph_mode(), ops.Graph().as_default(), self.cached_session(): e = SimpleEvaluator(IdentityModel()) ds = dataset_ops.Dataset.from_tensor_slices([3.0, 5.0, 7.0, 9.0]) training_util.get_or_create_global_step() logdir = tempfile.mkdtemp() init_op, call_op, results_op = e.evaluate_on_dataset( ds, summary_logdir=logdir) variables.global_variables_initializer().run() e.run_evaluation(init_op, call_op, results_op) events = summary_test_util.events_from_logdir(logdir) self.assertEqual(len(events), 2) self.assertEqual(events[1].summary.value[0].simple_value, 6.0) def testModelProperty(self): m = IdentityModel() e = SimpleEvaluator(m) self.assertIs(m, e.model) def testMetricsProperty(self): e = DelegatingEvaluator(PrefixLModel()) names = set([(p, m.name) for p, m in e.metrics]) self.assertEqual(set([("", "outer-mean"), ("inner/", "mean")]), names) def testSharedMetric(self): class MetricArgEvaluator(evaluator.Evaluator): def __init__(self, model, m): super(MetricArgEvaluator, self).__init__(model) self.m = self.track_metric(m) metric = metrics.Mean("mean") model = IdentityModel() e = MetricArgEvaluator(model, metric) with self.assertRaisesRegexp(ValueError, "already added"): MetricArgEvaluator(model, metric) del e def testMetricTrackedTwice(self): class MetricTwiceEvaluator(evaluator.Evaluator): def __init__(self, model): super(MetricTwiceEvaluator, self).__init__(model) self.m = self.track_metric(metrics.Mean("mean")) self.track_metric(self.m) # okay to track same metric again MetricTwiceEvaluator(IdentityModel()) class SparseSoftmaxEvaluatorTest(test.TestCase): def testSimple(self): e = evaluator.SparseSoftmaxEvaluator(IdentityModel()) e({e.loss_key: 1.0, e.label_key: 5, e.predicted_class_key: 5}) e({e.loss_key: [0.0, 3.0, 4.0], e.label_key: [1, 2, 3], e.predicted_class_key: [1, 1, 3]}) results = e.all_metric_results() self.assertEqual(set(["Avg Loss", "Accuracy"]), set(results.keys())) self.assertEqual(2.0, results["Avg Loss"].numpy()) self.assertEqual(0.75, results["Accuracy"].numpy()) if __name__ == "__main__": test.main()
tensorflow-master
tensorflow/contrib/eager/python/evaluator_test.py
"""Tests for eager mode Saver.""" # Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from tensorflow.contrib.eager.python import saver as _saver from tensorflow.python.eager import context from tensorflow.python.eager import test from tensorflow.python.framework import errors from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import resource_variable_ops from tensorflow.python.training import adam from tensorflow.python.training import gradient_descent from tensorflow.python.training import momentum from tensorflow.python.training import rmsprop class SaverTest(test.TestCase): def _dev(self): return '/device:GPU:0' if context.num_gpus() else '/device:CPU:0' def testBasics(self): with ops.device(self._dev()): v1 = resource_variable_ops.ResourceVariable(1.0, name='v1') def model(): return array_ops.constant(2.0) * v1 ckpt_prefix = os.path.join(test.get_temp_dir(), 'ckpt') _ = model() saver = _saver.Saver([v1]) saver.save(ckpt_prefix) v1.assign(2.0) self.assertEqual(v1.read_value().numpy(), 2.0) saver.restore(ckpt_prefix) self.assertEqual(v1.read_value().numpy(), 1.0) def testSameNameNoClobbering(self): with ops.device(self._dev()): v1 = resource_variable_ops.ResourceVariable(1.0, name='v1') v2 = resource_variable_ops.ResourceVariable(2.0, name='v1') saver = _saver.Saver([v1, v2]) ckpt_prefix = os.path.join(test.get_temp_dir(), 'ckpt') with self.assertRaisesRegexp(ValueError, 'v1'): saver.save(ckpt_prefix) def testSameObjectOK(self): with ops.device(self._dev()): v1 = resource_variable_ops.ResourceVariable(1.0, name='v1') # While different objects with the same shared_name are not good, passing # in the same object multiple times is fine. saver = _saver.Saver([v1, v1]) ckpt_prefix = os.path.join(test.get_temp_dir(), 'ckpt') saver.save(ckpt_prefix) def testSaveByDict(self): with ops.device(self._dev()): v1 = resource_variable_ops.ResourceVariable(1.0, name='v1') v2 = resource_variable_ops.ResourceVariable(1.0, name='v2') def model(): return array_ops.constant(2.0) * v1 * v2 ckpt_prefix = os.path.join(test.get_temp_dir(), 'ckpt') # Save the variables under different names. _ = model() saver = _saver.Saver({'ckpt/v1': v1, 'ckpt/v2': v2}) saver.save(ckpt_prefix) v1.assign(2.0) v2.assign(2.0) self.assertEqual(v1.read_value().numpy(), 2.0) self.assertEqual(v2.read_value().numpy(), 2.0) # Can still restore it. saver.restore(ckpt_prefix) self.assertEqual(v1.read_value().numpy(), 1.0) # However, cannot restore it with default name. with self.assertRaisesOpError('not found in checkpoint'): saver = _saver.Saver([v1, v2]).restore(ckpt_prefix) # Can specify which variable in ckpt to restore to which variable. def map_func(x): return {'v3': 'ckpt/v1', 'v4': 'ckpt/v2'}.get(x, x) with _saver.restore_variables_on_create(ckpt_prefix, map_func): v3 = resource_variable_ops.ResourceVariable(2.0, name='v3') v4 = resource_variable_ops.ResourceVariable(2.0, name='v4') self.assertEqual(v3.read_value().numpy(), 1.0) self.assertEqual(v4.read_value().numpy(), 1.0) def testRestoreOnCreate(self): with ops.device(self._dev()): def model(init_val): v1 = resource_variable_ops.ResourceVariable(init_val, name='v1') return array_ops.constant(1.0) * v1, v1 ckpt_prefix = os.path.join(test.get_temp_dir(), 'ckpt') _, v1 = model(1.0) saver = _saver.Saver([v1]) saver.save(ckpt_prefix) saver = _saver.Saver([v1]) with _saver.restore_variables_on_create(ckpt_prefix): # Value is from checkpoint, but not from argument. ret, _ = model(2.0) self.assertEqual(ret.numpy(), 1.0) def testRestoreNotFound(self): with ops.device(self._dev()): def model(v): return array_ops.constant(1.0) * v ckpt_prefix = os.path.join(test.get_temp_dir(), 'ckpt') v = resource_variable_ops.ResourceVariable(1.0, name='v1') _ = model(v) saver = _saver.Saver([v]) saver.save(ckpt_prefix) with self.assertRaisesRegexp(errors.NotFoundError, 'v2 not found in checkpoint'): with _saver.restore_variables_on_create(ckpt_prefix): _ = model(resource_variable_ops.ResourceVariable(1.0, name='v2')) class GetOptimizerTests(test.TestCase): def _optimizer_test_template(self, optimizer): """Checks save and restore. Returns the optimizer variables.""" v = resource_variable_ops.ResourceVariable([[2., 3.]], name='v') loss_fn = lambda: v[0, 0] ** 2 + v[0, 1] ** 2 optimizer.minimize(loss_fn) optimizer_variables = _saver.get_optimizer_variables(optimizer) saver = _saver.Saver(optimizer_variables + [v]) checkpoint_path = saver.save(self.get_temp_dir()) optimizer.minimize(loss_fn) after_first_minimize = v.numpy() # After we restore, the next step should be exactly the same as the one we # just did. saver.restore(checkpoint_path) optimizer.minimize(loss_fn) self.assertAllEqual(after_first_minimize, v.numpy()) return optimizer_variables def testAdam(self): optimizer = adam.AdamOptimizer(0.1) self._optimizer_test_template(optimizer) def testGradientDescent(self): optimizer = gradient_descent.GradientDescentOptimizer(0.02) self.assertEqual(0, len(self._optimizer_test_template(optimizer))) def testMomentum(self): optimizer = momentum.MomentumOptimizer( learning_rate=0.03, momentum=0.5) self._optimizer_test_template(optimizer) def testRMSProp(self): optimizer = rmsprop.RMSPropOptimizer(0.01) self._optimizer_test_template(optimizer) if __name__ == '__main__': test.main()
tensorflow-master
tensorflow/contrib/eager/python/saver_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Iteration over tf.data.Datasets when eager execution is enabled.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.data.experimental.ops import prefetching_ops from tensorflow.python.data.ops import iterator_ops from tensorflow.python.eager import context from tensorflow.python.framework import ops class Iterator(iterator_ops.IteratorV2): """An iterator producing tf.Tensor objects from a tf.data.Dataset. NOTE: Unlike the iterator created by the `tf.data.Dataset.make_one_shot_iterator` method, this class enables additional experimental functionality, such as prefetching to the GPU. """ def __init__(self, dataset): """Creates a new iterator over the given dataset. For example: ```python dataset = tf.data.Dataset.range(4) for x in Iterator(dataset): print(x) ``` Tensors produced will be placed on the device on which this iterator object was created. Args: dataset: A `tf.data.Dataset` object. Raises: TypeError: If `dataset` is an unsupported type. RuntimeError: When invoked without eager execution enabled. """ if not context.context().device_spec.device_type: is_remote_device = False else: is_remote_device = context.context().device_spec.device_type != "CPU" if is_remote_device: with ops.device(None): # Let the placer figure out where to place the various functions etc. # created by the CopyToDeviceDataset. dataset = dataset.apply(prefetching_ops.copy_to_device( context.context().device_name)) dataset = dataset.prefetch(1) super(Iterator, self).__init__(dataset) def _next_internal(self): """Returns a nested structure of `tf.Tensor`s containing the next element. """ # This runs in sync mode as iterators use an error status to communicate # that there is no more data to iterate over. # TODO(b/77291417): Fix with context.execution_mode(context.SYNC): return super(Iterator, self)._next_internal()
tensorflow-master
tensorflow/contrib/eager/python/datasets.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Metrics.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import tempfile from tensorflow.contrib.eager.python import metrics from tensorflow.contrib.summary import summary_test_util from tensorflow.python.eager import context from tensorflow.python.eager import test from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.framework import ops from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import summary_ops_v2 as summary_ops from tensorflow.python.training import training_util from tensorflow.python.training.tracking import util as trackable_utils class MetricsTest(test.TestCase): def testMean(self): m = metrics.Mean() m([1, 10, 100]) m(1000) m([10000.0, 100000.0]) self.assertEqual(111111.0/6, m.result().numpy()) self.assertEqual(dtypes.float64, m.dtype) self.assertEqual(dtypes.float64, m.result().dtype) def testVariableCollections(self): with context.graph_mode(), ops.Graph().as_default(): m = metrics.Mean() m(1000) self.assertEqual( set(m.variables), set(ops.get_collection(ops.GraphKeys.LOCAL_VARIABLES))) self.assertEqual(ops.get_collection(ops.GraphKeys.GLOBAL_VARIABLES), []) self.assertEqual( set(m.variables), set(ops.get_collection(ops.GraphKeys.METRIC_VARIABLES))) def testUseGlobalVariablesCollections(self): with context.graph_mode(), ops.Graph().as_default(): m = metrics.Mean(use_global_variables=True) m(1000) self.assertEqual( set(m.variables), set(ops.get_collection(ops.GraphKeys.GLOBAL_VARIABLES))) self.assertEqual(ops.get_collection(ops.GraphKeys.LOCAL_VARIABLES), []) self.assertEqual( set(m.variables), set(ops.get_collection(ops.GraphKeys.METRIC_VARIABLES))) def testInitVariables(self): m = metrics.Mean() m([1, 10, 100, 1000]) m([10000.0, 100000.0]) self.assertEqual(111111.0/6, m.result().numpy()) m.init_variables() m(7) self.assertEqual(7.0, m.result().numpy()) def testWriteSummaries(self): m = metrics.Mean() m([1, 10, 100]) training_util.get_or_create_global_step() logdir = tempfile.mkdtemp() with summary_ops.create_file_writer( logdir, max_queue=0, name="t0").as_default(), summary_ops.always_record_summaries(): m.result() # As a side-effect will write summaries. events = summary_test_util.events_from_logdir(logdir) self.assertEqual(len(events), 2) self.assertEqual(events[1].summary.value[0].simple_value, 37.0) # Get result without saving the summary. logdir = tempfile.mkdtemp() with summary_ops.create_file_writer( logdir, max_queue=0, name="t0").as_default(), summary_ops.always_record_summaries(): m.result(write_summary=False) # As a side-effect will write summaries. # events_from_logdir(_) asserts the directory exists. events = summary_test_util.events_from_logdir(logdir) self.assertEqual(len(events), 1) def testWeightedMean(self): m = metrics.Mean() m([1, 100, 100000], weights=[1, 0.2, 0.3]) m([500000, 5000, 500]) # weights of 1 each self.assertNear(535521/4.5, m.result().numpy(), 0.001) def testMeanDtype(self): # Can override default dtype of float64. m = metrics.Mean(dtype=dtypes.float32) m([0, 2]) self.assertEqual(1, m.result().numpy()) self.assertEqual(dtypes.float32, m.dtype) self.assertEqual(dtypes.float32, m.result().dtype) def testAccuracy(self): m = metrics.Accuracy() m([0, 1, 2, 3], [0, 0, 0, 0]) # 1 correct m([4], [4]) # 1 correct m([5], [0]) # 0 correct m([6], [6]) # 1 correct m([7], [2]) # 0 correct self.assertEqual(3.0/8, m.result().numpy()) self.assertEqual(dtypes.float64, m.dtype) self.assertEqual(dtypes.float64, m.result().dtype) def testCategoricalAccuracy(self): m = metrics.CategoricalAccuracy() m([[1, 0, 0, 0], [0, 1, 0, 0]], [[0.6, 0.1, 0.25, 0.05], [0.4, 0.05, 0.45, 0.0]]) # 1/2 correct m([[0, 0, 0, 1]], [[0.25, 0.95, 0.25, 0.0]]) # 0/1 correct m([[1, 0, 0, 0], [0, 1, 0, 0]], [[0.99, 0.01, 0.0, 0.0], [0.35, 0.35, 0.3, 0.0]]) # 1/2 correct self.assertEqual(2.0/5, m.result().numpy()) self.assertEqual(dtypes.float64, m.dtype) self.assertEqual(dtypes.float64, m.result().dtype) def testBinaryAccuracy(self): m = metrics.BinaryAccuracy(threshold=0) # as threshold is 0 hence the predictions are logits m([[0, 0, 0, 0]], [[-4.2, 4.5, 1.2, -1.1]]) # 2/4 correct m([[0, 1]], [[-5.3, 11.65]]) # 2/2 correct m([[0, 1], [1, 1]], [[-5.3, 11.65], [-10.32, 56.38]]) # 3/4 correct self.assertEqual(7.0/10, m.result().numpy()) self.assertEqual(dtypes.float64, m.dtype) self.assertEqual(dtypes.float64, m.result().dtype) def testSparseAccuracy(self): m = metrics.SparseAccuracy() m([0, 2], [[0.6, 0.1, 0.25, 0.05], [0.4, 0.05, 0.45, 0.0]]) # 2/2 correct m([1], [[0.25, 0.95, 0.25, 0.0]]) # 1/1 correct m([0, 3], [[0.99, 0.01, 0.0, 0.0], [0.35, 0.35, 0.3, 0.0]]) # 1/2 correct self.assertEqual(4.0/5, m.result().numpy()) self.assertEqual(dtypes.float64, m.dtype) self.assertEqual(dtypes.float64, m.result().dtype) def testAccuracyDifferentShapes(self): m = metrics.Accuracy() with self.assertRaises(errors.InvalidArgumentError): m([[0], [0]], [0, 1]) def testWeightedAccuracy(self): m = metrics.Accuracy() # 1 correct, total weight of 2 m([0, 1, 2, 3], [0, 0, 0, 0], weights=[1, 1, 0, 0]) m([4], [4], weights=[0.5]) # 1 correct with a weight of 0.5 m([5], [0], weights=[0.5]) # 0 correct, weight 0.5 m([6], [6]) # 1 correct, weight 1 m([7], [2]) # 0 correct, weight 1 self.assertEqual(2.5/5, m.result().numpy()) def testAccuracyDtype(self): # Can override default dtype of float64. m = metrics.Accuracy(dtype=dtypes.float32) m([0, 0], [0, 1]) self.assertEqual(0.5, m.result().numpy()) self.assertEqual(dtypes.float32, m.dtype) self.assertEqual(dtypes.float32, m.result().dtype) def testTwoMeans(self): # Verify two metrics with the same class and name don't # accidentally share state. m1 = metrics.Mean() m1(0) m2 = metrics.Mean() m2(2) self.assertAllEqual(0.0, m1.result()) self.assertAllEqual(2.0, m2.result()) def testNamesWithSpaces(self): m1 = metrics.Mean("has space") m1(0) self.assertEqual(m1.name, "has space") self.assertEqual(m1.numer.name, "has_space/numer:0") def testGraphWithPlaceholder(self): with context.graph_mode(), self.cached_session() as sess: m = metrics.Mean() p = array_ops.placeholder(dtypes.float32) accumulate = m(p) init_op = m.init_variables() init_op.run() sess.run(accumulate, feed_dict={p: [1, 10, 100]}) sess.run(accumulate, feed_dict={p: 1000}) sess.run(accumulate, feed_dict={p: [10000, 100000]}) self.assertAllEqual(m.result().eval(), 111111.0/6) # Second init resets all the variables. init_op.run() sess.run(accumulate, feed_dict={p: 7}) self.assertAllEqual(m.result().eval(), 7) @test_util.run_in_graph_and_eager_modes def testGraphAndEagerTensor(self): m = metrics.Mean() inputs = ops.convert_to_tensor([1.0, 2.0]) accumulate = m(inputs) result = m.result() self.evaluate(m.init_variables()) self.evaluate(accumulate) self.assertEqual(self.evaluate(result), 1.5) # Second init resets all the variables. self.evaluate(m.init_variables()) inputs = ops.convert_to_tensor([2.0, 3.0]) self.evaluate(m(inputs)) value = m.value() self.assertEqual(self.evaluate(value), 2.5) @test_util.run_in_graph_and_eager_modes def testGraphAndEagerTensorGlobalVariables(self): m = metrics.Mean(use_global_variables=True) inputs = ops.convert_to_tensor([1.0, 2.0]) accumulate = m(inputs) result = m.result() self.evaluate(m.init_variables()) self.evaluate(accumulate) self.assertEqual(self.evaluate(result), 1.5) # Second init resets all the variables. self.evaluate(m.init_variables()) inputs = ops.convert_to_tensor([2.0, 3.0]) self.evaluate(m(inputs)) value = m.value() self.assertEqual(self.evaluate(value), 2.5) @test_util.run_in_graph_and_eager_modes def testGraphAndEagerTensorWhileLoopDoubleCall(self): m = metrics.Mean() init_value = constant_op.constant(1) cond = lambda i: math_ops.less(i, 3) def body(x): with ops.control_dependencies([m(x)]): return math_ops.add(x, 1) accumulate = control_flow_ops.while_loop(cond, body, [init_value]) result = m.result() self.evaluate(m.init_variables()) self.evaluate(accumulate) self.assertEqual(self.evaluate(result), 1.5) # Second init resets all the variables. self.evaluate(m.init_variables()) inputs = ops.convert_to_tensor([2.0, 3.0]) self.evaluate(m(inputs)) if ops.context.executing_eagerly(): self.evaluate(control_flow_ops.while_loop(cond, body, [init_value])) else: # Reuse the loop operators in graph mode self.evaluate(accumulate) value = m.value() self.assertEqual(self.evaluate(value), 2.0) def testTwoMeansGraph(self): # Verify two metrics with the same name in the same graph raises a # ValueError. with context.graph_mode(): m1 = metrics.Mean() m1(0) with self.assertRaises(ValueError): m2 = metrics.Mean() m2(2) def testBuildMean(self): # Verify that calling build() on Mean and then calling it won't recreate # variables. m = metrics.Mean() m.build() old_numer = m.numer m(0.0) self.assertTrue(old_numer is m.numer) def testMetricsChain(self): with context.graph_mode(), self.cached_session(): m1 = metrics.Mean() m2 = metrics.Mean(name="m2") update_m2 = m2(3.0) update_m2_2 = m2(m1(1.0)) m1.init_variables().run() m2.init_variables().run() update_m2.eval() update_m2_2.eval() self.assertAllEqual(m2.result().eval(), 2.0) self.assertAllEqual(m1.result().eval(), 1.0) @test_util.run_in_graph_and_eager_modes def testSaveRestore(self): checkpoint_directory = self.get_temp_dir() checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt") mean = metrics.Mean() checkpoint = trackable_utils.Checkpoint(mean=mean) mean.build() mean._built = True self.evaluate(mean.init_variables()) self.evaluate(mean(100.)) self.evaluate(mean(200.)) save_path = checkpoint.save(checkpoint_prefix) self.evaluate(mean(1000.)) checkpoint.restore(save_path).assert_consumed().run_restore_ops() self.evaluate(mean(300.)) self.assertAllEqual(200., self.evaluate(mean.value())) restore_mean = metrics.Mean() restore_checkpoint = trackable_utils.Checkpoint(mean=restore_mean) status = restore_checkpoint.restore(save_path) restore_update = restore_mean(300.) status.assert_consumed().run_restore_ops() self.evaluate(restore_update) self.assertAllEqual(200., self.evaluate(restore_mean.value())) self.assertEqual(3, self.evaluate(restore_mean.denom)) if __name__ == "__main__": test.main()
tensorflow-master
tensorflow/contrib/eager/python/metrics_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import threading import time import numpy as np from tensorflow.contrib import lookup from tensorflow.contrib.eager.python import datasets from tensorflow.python.data import Dataset from tensorflow.python.data.experimental.ops import threadpool from tensorflow.python.data.experimental.ops import unique from tensorflow.python.eager import test from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.framework import ops from tensorflow.python.framework import sparse_tensor from tensorflow.python.ops import math_ops from tensorflow.python.ops import script_ops from tensorflow.python.training import checkpoint_management from tensorflow.python.training.tracking import util as trackable_utils class IteratorTest(test.TestCase): def testBasic(self): got = [] for t in datasets.Iterator(Dataset.range(4)): got.append(t.numpy()) self.assertAllEqual([0, 1, 2, 3], got) def testBasicOneShotIterator(self): got = [] for t in Dataset.range(4).make_one_shot_iterator(): got.append(t.numpy()) self.assertAllEqual([0, 1, 2, 3], got) def testBasicImplicitIterator(self): got = [] for t in Dataset.range(4): got.append(t.numpy()) self.assertAllEqual([0, 1, 2, 3], got) def testGetNext(self): iterator = datasets.Iterator(Dataset.range(4)) self.assertEqual(0, iterator.get_next().numpy()) self.assertEqual(1, iterator.get_next().numpy()) self.assertEqual(2, iterator.get_next().numpy()) self.assertEqual(3, iterator.get_next().numpy()) with self.assertRaises(errors.OutOfRangeError): iterator.get_next() def testGetNextOneShotIterator(self): iterator = Dataset.range(4).make_one_shot_iterator() self.assertEqual(0, iterator.get_next().numpy()) self.assertEqual(1, iterator.get_next().numpy()) self.assertEqual(2, iterator.get_next().numpy()) self.assertEqual(3, iterator.get_next().numpy()) with self.assertRaises(errors.OutOfRangeError): iterator.get_next() def testMultipleIteratorsOnTheSameDataset(self): ds = Dataset.range(4) it1 = datasets.Iterator(ds) it2 = datasets.Iterator(ds) got = [x.numpy() for x in it1] self.assertAllEqual([0, 1, 2, 3], got) got = [x.numpy() for x in it2] self.assertAllEqual([0, 1, 2, 3], got) def testNestedOutputs(self): ds = Dataset.zip((Dataset.range(4), Dataset.zip((Dataset.range(4), Dataset.range(4))))) total = 0 # The Iterator will return a nested structure of Tensor objects. # Some funkiness to compare against simple integers. for (i, x) in enumerate(datasets.Iterator(ds)): want = (i, (i, i)) got = (x[0].numpy(), (x[1][0].numpy(), x[1][1].numpy())) self.assertEqual(got, want) total += 1 self.assertEqual(4, total) def testMapAndFilter(self): def even(x): return math_ops.equal(math_ops.mod(x, 2), 0) it = datasets.Iterator(Dataset.range(8).map(math_ops.square).filter(even)) got = [x.numpy() for x in it] self.assertAllEqual([0, 4, 16, 36], got) def testMapCaptureLookupTable(self): default_val = -1 keys = constant_op.constant(['brain', 'salad', 'surgery']) values = constant_op.constant([0, 1, 2], dtypes.int64) table = lookup.HashTable( lookup.KeyValueTensorInitializer(keys, values), default_val) dataset = Dataset.from_tensor_slices(['brain', 'salad', 'surgery']) dataset = dataset.map(table.lookup) it = datasets.Iterator(dataset) got = [x.numpy() for x in it] self.assertAllEqual([0, 1, 2], got) def testMultipleIteratorsOnADatasetThatUsesFunctions(self): ds = Dataset.from_tensor_slices([1, 2, 3, 4, 5, 6]).map(math_ops.square) got1 = [x.numpy() for x in datasets.Iterator(ds)] self.assertAllEqual([1, 4, 9, 16, 25, 36], got1) got2 = [x.numpy() for x in datasets.Iterator(ds)] self.assertAllEqual(got1, got2) def assertSparseValuesEqual(self, a, b): self.assertAllEqual(a.indices, b.indices) self.assertAllEqual(a.values, b.values) self.assertAllEqual(a.dense_shape, b.dense_shape) def testSparseTensorElements(self): components = (sparse_tensor.SparseTensorValue( indices=np.array([[0, 0], [1, 0], [2, 0]]), values=np.array([0, 0, 0]), dense_shape=np.array([3, 1])), sparse_tensor.SparseTensorValue( indices=np.array([[0, 0], [1, 1], [2, 2]]), values=np.array([1, 2, 3]), dense_shape=np.array([3, 3]))) expected = [ (sparse_tensor.SparseTensorValue( indices=np.array([[0]]), values=np.array([0]), dense_shape=np.array([1])), sparse_tensor.SparseTensorValue( indices=np.array([[0]]), values=np.array([1]), dense_shape=np.array([3]))), (sparse_tensor.SparseTensorValue( indices=np.array([[0]]), values=np.array([0]), dense_shape=np.array([1])), sparse_tensor.SparseTensorValue( indices=np.array([[1]]), values=np.array([2]), dense_shape=np.array([3]))), (sparse_tensor.SparseTensorValue( indices=np.array([[0]]), values=np.array([0]), dense_shape=np.array([1])), sparse_tensor.SparseTensorValue( indices=np.array([[2]]), values=np.array([3]), dense_shape=np.array([3]))), ] for i, result in enumerate( datasets.Iterator(Dataset.from_tensor_slices(components))): self.assertSparseValuesEqual(expected[i][0], result[0]) self.assertSparseValuesEqual(expected[i][1], result[1]) def testPyFunc(self): def my_map(inp): return [[x + 1 for x in inp]] ds = Dataset.range(4).map( lambda x: script_ops.py_func(my_map, [[x]], dtypes.int64)) got = [x.numpy() for x in datasets.Iterator(ds)] self.assertAllEqual([[1], [2], [3], [4]], got) def testTensorsPlacedOnDevice(self): ds = Dataset.from_tensors([0., 1.]) with ops.device(test.gpu_device_name()): x = datasets.Iterator(ds).next() x = math_ops.add(x, x) self.assertAllEqual([0., 2.], x.numpy()) def testGpuTensor(self): ds = Dataset.from_tensors([0., 1.]) with ops.device(test.gpu_device_name()): for x in ds: y = math_ops.add(x, x) self.assertAllEqual([0., 2.], y.numpy()) def testOverrideThreadPool(self): def get_thread_id(_): # Python creates a dummy thread object to represent the current # thread when called from an "alien" thread (such as a # `PrivateThreadPool` thread in this case). It does not include # the TensorFlow-given display name, but it has a unique # identifier that maps one-to-one with the underlying OS thread. return np.array(threading.current_thread().ident).astype(np.int64) for num_threads in [1, 2, 4, 8, 16]: dataset = ( Dataset.range(1000).map( lambda x: script_ops.py_func(get_thread_id, [x], dtypes.int64), num_parallel_calls=32).apply(unique.unique())) dataset = threadpool.override_threadpool( dataset, threadpool.PrivateThreadPool( num_threads, display_name='private_thread_pool_%d' % num_threads)) thread_ids = [] for next_element in datasets.Iterator(dataset): thread_ids.append(next_element) self.assertEqual(len(thread_ids), len(set(thread_ids))) self.assertGreater(len(thread_ids), 0) # NOTE(mrry): We don't control the thread pool scheduling, and # so cannot guarantee that all of the threads in the pool will # perform work. self.assertLessEqual(len(thread_ids), num_threads) def testSaveRestore(self): checkpoint_directory = self.get_temp_dir() checkpoint_prefix = os.path.join(checkpoint_directory, 'ckpt') dataset = Dataset.from_tensor_slices([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]) dataset = dataset.map(math_ops.square).batch(2) iterator = datasets.Iterator(dataset) checkpoint = trackable_utils.Checkpoint(iterator=iterator) self.assertAllEqual([1, 4], iterator.get_next().numpy()) save_path = checkpoint.save(checkpoint_prefix) self.assertAllEqual([9, 16], iterator.get_next().numpy()) self.assertAllEqual([25, 36], iterator.get_next().numpy()) checkpoint.restore(save_path) self.assertAllEqual([9, 16], iterator.get_next().numpy()) self.assertAllEqual([25, 36], iterator.get_next().numpy()) def testSaveRestoreMultipleIterator(self): checkpoint_directory = self.get_temp_dir() checkpoint_prefix = os.path.join(checkpoint_directory, 'ckpt') dataset = Dataset.from_tensor_slices([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]) dataset = dataset.map(math_ops.square).batch(2) iterator_1 = datasets.Iterator(dataset) iterator_2 = datasets.Iterator(dataset) dataset_2 = Dataset.range(10) iterator_3 = datasets.Iterator(dataset_2) checkpoint = trackable_utils.Checkpoint( iterator_1=iterator_1, iterator_2=iterator_2, iterator_3=iterator_3) self.assertAllEqual([1, 4], iterator_1.get_next().numpy()) self.assertEqual(0, iterator_3.get_next().numpy()) self.assertEqual(1, iterator_3.get_next().numpy()) self.assertEqual(2, iterator_3.get_next().numpy()) save_path = checkpoint.save(checkpoint_prefix) self.assertAllEqual([1, 4], iterator_2.get_next().numpy()) self.assertAllEqual([9, 16], iterator_2.get_next().numpy()) self.assertEqual(3, iterator_3.get_next().numpy()) checkpoint.restore(save_path) self.assertAllEqual([9, 16], iterator_1.get_next().numpy()) self.assertAllEqual([1, 4], iterator_2.get_next().numpy()) self.assertEqual(3, iterator_3.get_next().numpy()) def testRestoreExhaustedIterator(self): checkpoint_directory = self.get_temp_dir() checkpoint_prefix = os.path.join(checkpoint_directory, 'ckpt') dataset = Dataset.range(3) iterator = datasets.Iterator(dataset) checkpoint = trackable_utils.Checkpoint(iterator=iterator) self.assertEqual(0, iterator.get_next().numpy()) self.assertEqual(1, iterator.get_next().numpy()) save_path = checkpoint.save(checkpoint_prefix) self.assertEqual(2, iterator.get_next().numpy()) checkpoint.restore(save_path) self.assertEqual(2, iterator.get_next().numpy()) def testRestoreInReconstructedIterator(self): checkpoint_directory = self.get_temp_dir() checkpoint_prefix = os.path.join(checkpoint_directory, 'ckpt') dataset = Dataset.range(10) for i in range(5): iterator = datasets.Iterator(dataset) checkpoint = trackable_utils.Checkpoint(iterator=iterator) checkpoint.restore(checkpoint_management.latest_checkpoint( checkpoint_directory)) for j in range(2): self.assertEqual(i * 2 + j, iterator.get_next().numpy()) checkpoint.save(file_prefix=checkpoint_prefix) class DatasetConstructorBenchmark(test.Benchmark): def benchmarkSliceRepeatBatchEager(self): input_size = 10000 batch_size = 100 num_epochs = 100 input_data = np.random.randn(input_size) dataset = ( Dataset.from_tensor_slices(input_data).repeat(num_epochs) .batch(batch_size)) iterator = datasets.Iterator(dataset) ends = [time.time()] for _ in iterator: ends.append(time.time()) deltas = np.ediff1d(ends) median_wall_time = np.median(deltas) print( 'Slice/repeat/batch eager input size: %d batch size: %d Median wall ' 'time per element: %f' % (input_size, batch_size, median_wall_time)) self.report_benchmark( iters=len(deltas), wall_time=median_wall_time, name='benchmark_slice_repeat_batch_eager_input_%d_batch_%d' % (input_size, batch_size)) def benchmarkSliceBatchCacheRepeatCallable(self): input_size = 10000 batch_size = 100 num_epochs = 100 input_data = np.random.randn(input_size) dataset = ( Dataset.from_tensor_slices(input_data).batch(batch_size).cache() .repeat(num_epochs)) iterator = datasets.Iterator(dataset) ends = [time.time()] for _ in iterator: ends.append(time.time()) deltas = np.ediff1d(ends) median_wall_time = np.median(deltas) print( 'Slice/batch/cache/repeat eager input size: %d batch size: %d Median ' 'wall time per element: %f' % (input_size, batch_size, median_wall_time)) self.report_benchmark( iters=len(deltas), wall_time=median_wall_time, name='benchmark_slice_batch_cache_repeat_eager_input_%d_batch_%d' % (input_size, batch_size)) if __name__ == '__main__': test.main()
tensorflow-master
tensorflow/contrib/eager/python/datasets_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function import gc from tensorflow.contrib.eager.python import network from tensorflow.contrib.layers.python.layers import regularizers from tensorflow.python.eager import function from tensorflow.python.eager import test from tensorflow.python.framework import constant_op from tensorflow.python.framework import errors_impl from tensorflow.python.framework import test_util from tensorflow.python.layers import core from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn_ops from tensorflow.python.ops import resource_variable_ops from tensorflow.python.ops import variable_scope from tensorflow.python.training import training_util from tensorflow.python.training.tracking import util as trackable_utils # pylint: disable=not-callable class MyNetwork(network.Network): def __init__(self, name=None): super(MyNetwork, self).__init__(name=name) self.l1 = self.track_layer(core.Dense(1, use_bias=False)) def call(self, x): return self.l1(x) class RegularizedNetwork(network.Network): def __init__(self): super(RegularizedNetwork, self).__init__() self.l1 = self.track_layer(core.Dense( 1, bias_regularizer=regularizers.l1_regularizer(2.0), kernel_regularizer=regularizers.l1_regularizer(2.0))) self.l2 = self.track_layer(core.Dense( 1, bias_regularizer=regularizers.l1_regularizer(2.0))) def call(self, values): return self.l2(self.l1(values)) class NetworkTest(test.TestCase): def test_checkpointing_not_implemented(self): checkpoint_directory = self.get_temp_dir() checkpoint = trackable_utils.Checkpoint(net=MyNetwork()) with self.assertRaises(NotImplementedError): checkpoint.save(checkpoint_directory) def _save_modify_load_network_built(self, net, global_step=None): checkpoint_directory = self.get_temp_dir() checkpoint_path = network.save_network_checkpoint( network=net, save_path=checkpoint_directory, global_step=global_step) input_value = constant_op.constant([[42.0]]) original_output = self.evaluate(net(input_value)) for var in net.variables: self.evaluate(var.assign(var + 1.)) self.assertGreater( self.evaluate(net(input_value)), original_output) # Either the returned explicit checkpoint path or the directory should work. network.restore_network_checkpoint(net, save_path=checkpoint_directory) self.assertAllEqual( original_output, self.evaluate(net(input_value))) for var in net.variables: self.evaluate(var.assign(var + 2.)) network.restore_network_checkpoint(net, save_path=checkpoint_path) self.assertAllEqual( original_output, self.evaluate(net(input_value))) @test_util.run_in_graph_and_eager_modes(assert_no_eager_garbage=True) def testTrainableAttribute(self): net = network.Network() self.assertTrue(net.trainable) with self.assertRaises(AttributeError): net.trainable = False self.assertTrue(net.trainable) @test_util.run_in_graph_and_eager_modes(assert_no_eager_garbage=True) def testNetworkCall(self): net = MyNetwork(name="abcd") net(constant_op.constant([[2.0]])) # Force variables to be created. self.assertEqual(1, len(net.trainable_variables)) self.evaluate(net.trainable_variables[0].assign([[17.0]])) # TODO(josh11b): Support passing Python values to networks. result = net(constant_op.constant([[2.0]])) self.assertEqual(34.0, self.evaluate(result)) def testReplacingNetworkCallWithDefun(self): net = MyNetwork(name="abcd") net.call = function.defun(net.call) x = constant_op.constant([[2.0]]) net(x) # Force variables to be created. self.evaluate(net.trainable_variables[0].assign([[17.0]])) result = net(x) # Build and execute the TensorFlow function self.assertEqual(34.0, self.evaluate(result)) # Force the creation of another TensorFlow function by changing input shape y = constant_op.constant([[1.0], [2.0]]) result = net(y) self.assertAllEqual([[17.0], [34.0]], self.evaluate(result)) # TODO(allenl): This test creates garbage in some Python versions @test_util.run_in_graph_and_eager_modes def testNetworkSaveRestoreAlreadyBuilt(self): net = MyNetwork(name="abcd") with self.assertRaisesRegexp( ValueError, "Attempt to save the Network before it was first called"): network.save_network_checkpoint(net, self.get_temp_dir()) net(constant_op.constant([[2.0]])) self.evaluate(net.trainable_variables[0].assign([[17.0]])) self._save_modify_load_network_built(net, global_step=None) self._save_modify_load_network_built(net, global_step=10) # TODO(allenl): This test creates garbage in some Python versions @test_util.run_in_graph_and_eager_modes def testSaveRestoreDefaultGlobalStep(self): net = MyNetwork(name="abcd") net(constant_op.constant([[2.0]])) self.evaluate(net.variables[0].assign([[3.]])) default_global_step = training_util.get_or_create_global_step() self.evaluate(default_global_step.assign(4242)) save_path = network.save_network_checkpoint(net, self.get_temp_dir()) self.assertIn("abcd-4242", save_path) # TODO(allenl): This test creates garbage in some Python versions @test_util.run_in_graph_and_eager_modes def testNetworkSaveAndRestoreIntoUnbuilt(self): save_dir = self.get_temp_dir() net1 = MyNetwork() test_input = constant_op.constant([[2.0]]) net1(test_input) self.evaluate(net1.trainable_variables[0].assign([[17.0]])) save_path = network.save_network_checkpoint(net1, save_dir) # With a pre-build restore we should have the same value. net2 = MyNetwork() network.restore_network_checkpoint(net2, save_path) self.assertAllEqual(self.evaluate(net1(test_input)), self.evaluate(net2(test_input))) self.assertIsNot(net1.variables[0], net2.variables[0]) self.assertAllEqual(self.evaluate(net1.variables[0]), self.evaluate(net2.variables[0])) @test_util.run_in_graph_and_eager_modes def testNetworkMatchesLayerVariableNames(self): zero = constant_op.constant([[0.]]) layer_one = core.Dense(1, use_bias=False) layer_one(zero) layer_two = core.Dense(1, use_bias=False) layer_two(zero) class TwoLayerNet(network.Network): def __init__(self, name=None): super(TwoLayerNet, self).__init__(name=name) self.first = self.track_layer(core.Dense( 1, use_bias=False)) self.second = self.track_layer(core.Dense( 1, use_bias=False)) def call(self, x): return self.second(self.first(x)) net = TwoLayerNet() net(zero) self.assertEqual("two_layer_net/" + layer_one.variables[0].name, net.first.variables[0].name) self.assertEqual("two_layer_net/" + layer_two.variables[0].name, net.second.variables[0].name) @test_util.run_in_graph_and_eager_modes def testLoadIntoUnbuiltSharedLayer(self): class Owner(network.Network): def __init__(self, name=None): super(Owner, self).__init__(name=name) self.first = self.track_layer(core.Dense( 1, name="first_layer", use_bias=False)) def call(self, x): return self.first(x) first_owner = Owner() class User(network.Network): def __init__(self, use_layer, name=None): super(User, self).__init__(name=name) self.first = self.track_layer(use_layer) self.second = self.track_layer(core.Dense( 1, name="second_layer", use_bias=False)) def call(self, x): return self.second(self.first(x)) class LikeUserButNotSharing(network.Network): def __init__(self, name=None): super(LikeUserButNotSharing, self).__init__(name=name) self.first = self.track_layer(core.Dense( 1, name="first_layer", use_bias=False)) self.second = self.track_layer(core.Dense( 1, name="second_layer", use_bias=False)) def call(self, x): return self.second(self.first(x)) checkpoint_creator = LikeUserButNotSharing(name="checkpoint_creator") one = constant_op.constant([[1.0]]) checkpoint_creator(one) self.assertEqual(2, len(checkpoint_creator.variables)) self.evaluate(checkpoint_creator.variables[0].assign([[5.]])) self.evaluate(checkpoint_creator.variables[1].assign([[6.]])) # Re-map the variable names so that with default restore mapping we'll # attempt to restore into the unbuilt Layer. name_mapping = { "checkpoint_creator/first_layer/kernel": "owner/first_layer/kernel", "checkpoint_creator/second_layer/kernel": "second_layer/kernel", } save_path = network.save_network_checkpoint( checkpoint_creator, self.get_temp_dir(), map_func=lambda full_name: name_mapping[full_name]) load_into = User(use_layer=first_owner.first) network.restore_network_checkpoint(load_into, save_path) self.assertEqual(0, len(first_owner.variables)) self.assertAllEqual(self.evaluate(checkpoint_creator(one)), self.evaluate(load_into(one))) self.assertEqual(1, len(first_owner.variables)) self.assertAllEqual([[5.]], self.evaluate(load_into.variables[0])) self.assertAllEqual([[6.]], self.evaluate(load_into.variables[1])) first_owner(one) self.assertAllEqual([[5.]], self.evaluate(first_owner.variables[0])) # Try again with a garbage collected parent. first_owner = Owner() load_into = User(use_layer=first_owner.first) del first_owner gc.collect() def _restore_map_func(original_name): if original_name.startswith("owner/"): return original_name.replace("owner/", "owner_1/") else: return "user_1/" + original_name with self.assertRaisesRegexp(ValueError, "garbage collected"): network.restore_network_checkpoint( load_into, save_path, map_func=_restore_map_func) @test_util.run_in_graph_and_eager_modes def testRestoreIntoSubNetwork(self): class Parent(network.Network): def __init__(self, name=None): super(Parent, self).__init__(name=name) self.first = self.track_layer(MyNetwork()) self.second = self.track_layer(MyNetwork()) def call(self, x): return self.first(self.second(x)) one = constant_op.constant([[3.]]) whole_model_saver = Parent() whole_model_saver(one) self.evaluate(whole_model_saver.variables[0].assign([[15.]])) self.evaluate(whole_model_saver.variables[1].assign([[16.]])) whole_model_checkpoint = network.save_network_checkpoint( whole_model_saver, self.get_temp_dir()) save_from = MyNetwork() save_from(one) self.evaluate(save_from.variables[0].assign([[5.]])) checkpoint = network.save_network_checkpoint(save_from, self.get_temp_dir()) save_into_parent = Parent() network.restore_network_checkpoint(save_into_parent, whole_model_checkpoint) network.restore_network_checkpoint(save_into_parent.first, checkpoint) # deferred loading multiple times is fine network.restore_network_checkpoint(save_into_parent.first, checkpoint) save_into_parent(one) # deferred loading self.assertAllEqual([[5.]], self.evaluate(save_into_parent.variables[0])) self.assertAllEqual([[16.]], self.evaluate(save_into_parent.variables[1])) # Try again with the opposite ordering, and we should get different results # (deferred restoration should happen the same way non-deferred happens, # with later restorations overwriting older ones). save_into_parent = Parent() # deferred loading multiple times is fine network.restore_network_checkpoint(save_into_parent.first, checkpoint) network.restore_network_checkpoint(save_into_parent, whole_model_checkpoint) save_into_parent(one) # deferred loading # We've overwritten the sub-Network restore. self.assertAllEqual([[15.]], self.evaluate(save_into_parent.variables[0])) self.assertAllEqual([[16.]], self.evaluate(save_into_parent.variables[1])) self.evaluate(save_into_parent.variables[0].assign([[3.]])) self.evaluate(save_into_parent.variables[1].assign([[4.]])) network.restore_network_checkpoint(save_into_parent.second, checkpoint) self.assertAllEqual([[5.]], self.evaluate(save_into_parent.variables[1])) with self.assertRaisesRegexp(errors_impl.NotFoundError, "not found in checkpoint"): # The checkpoint is incompatible. network.restore_network_checkpoint(save_into_parent, checkpoint) @test_util.run_in_graph_and_eager_modes def testCustomMapCollisionErrors(self): class Parent(network.Network): def __init__(self, name=None): super(Parent, self).__init__(name=name) self.first = self.track_layer(MyNetwork()) self.second = self.track_layer(MyNetwork()) def call(self, x): return self.first(self.second(x)) make_checkpoint = Parent() one = constant_op.constant([[1.]]) make_checkpoint(one) self.evaluate(make_checkpoint.variables[0].assign([[2.]])) self.evaluate(make_checkpoint.variables[1].assign([[3.]])) with self.assertRaisesRegexp( ValueError, "The map_func passed to save_network_checkpoint for the Network " "'parent' resulted in two variables named 'foo'"): network.save_network_checkpoint( make_checkpoint, self.get_temp_dir(), map_func=lambda n: "foo") checkpoint = network.save_network_checkpoint( network=make_checkpoint.first, save_path=self.get_temp_dir(), map_func=lambda n: "foo") loader = Parent() network.restore_network_checkpoint( loader, checkpoint, map_func=lambda n: "foo") with self.assertRaisesRegexp( ValueError, ("The map_func passed to restore_network_checkpoint for the Network" " 'parent_1' resulted in two variables named 'foo'")): loader(one) loader = Parent() loader(one) with self.assertRaisesRegexp( ValueError, ("The map_func passed to restore_network_checkpoint for the Network" " 'parent_2' resulted in two variables named 'foo'")): network.restore_network_checkpoint( loader, checkpoint, map_func=lambda n: "foo") @test_util.run_in_graph_and_eager_modes def testDefaultMapCollisionErrors(self): one = constant_op.constant([[1.]]) first = core.Dense(1, name="dense", use_bias=False) first(one) class Parent(network.Network): def __init__(self, name=None): super(Parent, self).__init__(name=name) self.first = self.track_layer(first) self.second = self.track_layer(core.Dense(1, use_bias=False)) def call(self, x): return self.first(self.second(x)) make_checkpoint = Parent() one = constant_op.constant([[1.]]) make_checkpoint(one) self.evaluate(make_checkpoint.variables[0].assign([[2.]])) self.evaluate(make_checkpoint.variables[1].assign([[3.]])) with self.assertRaisesRegexp( ValueError, ("The default checkpoint variable name mapping strategy for Network " "'parent' resulted in a naming conflict.")): network.save_network_checkpoint(make_checkpoint, self.get_temp_dir()) class Compatible(network.Network): def __init__(self, name=None): super(Compatible, self).__init__(name=name) self.first = self.track_layer(core.Dense(1, use_bias=False)) def call(self, x): return self.first(x) successful_checkpoint = Compatible() successful_checkpoint(one) self.evaluate(successful_checkpoint.variables[0].assign([[-1.]])) checkpoint_path = network.save_network_checkpoint( successful_checkpoint, self.get_temp_dir()) load_checkpoint = Parent() load_checkpoint(one) with self.assertRaisesRegexp( ValueError, ("The default checkpoint variable name mapping strategy for Network " "'parent_1' resulted in a naming conflict.")): network.restore_network_checkpoint(load_checkpoint, checkpoint_path) def testNoReferenceCyclesAfterCall(self): class ChildNetwork(network.Network): def __init__(self, name=None): super(ChildNetwork, self).__init__(name=name) def call(self, x): return x * 2. class ParentNetwork(network.Network): def __init__(self, name=None): super(ParentNetwork, self).__init__(name=name) self.l1 = self.track_layer(ChildNetwork()) def call(self, x): return self.l1(x) one = constant_op.constant([[1.0]]) gc.disable() gc.collect() previous_gc_debug_flags = gc.get_debug() gc.set_debug(gc.DEBUG_SAVEALL) preexisting = len(gc.garbage) net = ParentNetwork() net(one) del net gc.collect() # There should be no additional garbage requiring collection. self.assertEqual(preexisting, len(gc.garbage)) gc.set_debug(previous_gc_debug_flags) gc.enable() @test_util.run_in_graph_and_eager_modes(assert_no_eager_garbage=True) def testAnonymousNoNameInitially(self): net = MyNetwork() with self.assertRaisesRegexp(ValueError, "does not yet have a final name"): net.name # pylint: disable=pointless-statement @test_util.run_in_graph_and_eager_modes(assert_no_eager_garbage=True) def testExplicitHasNameInitially(self): net = MyNetwork(name="abcd") self.assertEqual("abcd", net.name) @test_util.run_in_graph_and_eager_modes(assert_no_eager_garbage=True) def testUsingResourceVariables(self): net = MyNetwork() net(constant_op.constant([[0.]])) self.assertIsInstance(net.trainable_weights[0], resource_variable_ops.ResourceVariable) @test_util.run_in_graph_and_eager_modes(assert_no_eager_garbage=True) def testVariableRegularizers(self): net = RegularizedNetwork() net(constant_op.constant([[1.]])) self.evaluate(net.variables[0].assign([[2.]])) self.evaluate(net.variables[1].assign([3.])) self.evaluate(net.variables[2].assign([[-2.]])) self.evaluate(net.variables[3].assign([4.])) self.assertAllEqual([4., 6., 8.], self.evaluate(net.losses)) self.evaluate(net.variables[3].assign([5.])) self.assertAllEqual([4., 6., 10.], self.evaluate(net.losses)) @test_util.run_in_graph_and_eager_modes(assert_no_eager_garbage=True) def testDuplicateNameError(self): one = constant_op.constant([[1.]]) net = MyNetwork(name="foo") net(one) with self.assertRaisesRegexp( ValueError, "named 'foo' already exists"): net1 = MyNetwork(name="foo") net1(one) @test_util.run_in_graph_and_eager_modes(assert_no_eager_garbage=True) def testWrappingInVariableScope(self): one = constant_op.constant([[1.]]) # Naming happens in the order of first build rather than the order of # construction, but for clarity they're the same here and construction is # annotated. outside_net_before = MyNetwork() # name=my_network outside_net_before(one) captured_scope = variable_scope.get_variable_scope() with variable_scope.variable_scope("outside_scope"): net1 = MyNetwork() # name=outside_scope/my_network net1(one) name_conflict1 = MyNetwork(name="name_conflict") # fine, unique so far name_conflict2 = MyNetwork(name="name_conflict") # error on build with variable_scope.variable_scope("inside_scope"): # No issue here since the name is unique within its scope. name_conflict3 = MyNetwork(name="name_conflict") net2 = MyNetwork() # name=outside_scope/my_network_2 to avoid the # variable_scope my_network_1 below. vs_name_conflict = MyNetwork(name="vs_name_conflict") # conflict below with variable_scope.variable_scope("intervening_scope"): with variable_scope.variable_scope(captured_scope): with variable_scope.variable_scope("outside_scope"): name_conflict4 = MyNetwork(name="name_conflict") # error on build with variable_scope.variable_scope("my_network_1"): pass with variable_scope.variable_scope("vs_name_conflict"): pass net3 = MyNetwork() # name=outside_scope/my_network_4 name_conflict1(one) with self.assertRaisesRegexp( ValueError, "named 'name_conflict' already exists"): name_conflict2(one) name_conflict3(one) net2(one) with self.assertRaisesRegexp( ValueError, "or a variable_scope was created with this name"): vs_name_conflict(one) with self.assertRaisesRegexp( ValueError, "named 'name_conflict' already exists"): name_conflict4(one) self.assertEqual("outside_scope/name_conflict", name_conflict1.name) self.assertStartsWith( expected_start="outside_scope/name_conflict/dense/", actual=name_conflict1.variables[0].name) self.assertEqual("outside_scope/inside_scope/name_conflict", name_conflict3.name) self.assertStartsWith( expected_start="outside_scope/inside_scope/name_conflict/dense/", actual=name_conflict3.variables[0].name) self.assertEqual("outside_scope/my_network", net1.name) self.assertStartsWith( expected_start="outside_scope/my_network/dense/", actual=net1.trainable_weights[0].name) self.assertEqual("outside_scope/my_network_2", net2.name) self.assertStartsWith( expected_start="outside_scope/my_network_2/dense/", actual=net2.trainable_weights[0].name) net3(one) self.assertEqual("outside_scope/my_network_3", net3.name) self.assertStartsWith( expected_start="outside_scope/my_network_3/dense/", actual=net3.trainable_weights[0].name) outside_net_after = MyNetwork() outside_net_after(one) self.assertEqual("my_network", outside_net_before.name) self.assertStartsWith( expected_start="my_network/dense/", actual=outside_net_before.trainable_weights[0].name) self.assertEqual("my_network_1", outside_net_after.name) self.assertStartsWith( expected_start="my_network_1/dense/", actual=outside_net_after.trainable_weights[0].name) @test_util.run_in_graph_and_eager_modes def testVariableScopeStripping(self): with variable_scope.variable_scope("scope1"): with variable_scope.variable_scope("scope2"): net = MyNetwork() net(constant_op.constant([[2.0]])) self.evaluate(net.variables[0].assign([[42.]])) self.assertEqual(net.name, "scope1/scope2/my_network") self.assertStartsWith( expected_start="scope1/scope2/my_network/dense/", actual=net.trainable_weights[0].name) save_path = network.save_network_checkpoint(net, self.get_temp_dir()) self.assertIn("scope1_scope2_my_network", save_path) restore_net = MyNetwork() # Delayed restoration network.restore_network_checkpoint(restore_net, save_path) restore_net(constant_op.constant([[1.0]])) self.assertAllEqual([[42.]], self.evaluate(restore_net.variables[0])) self.evaluate(restore_net.variables[0].assign([[-1.]])) # Immediate restoration network.restore_network_checkpoint(restore_net, save_path) self.assertAllEqual([[42.]], self.evaluate(restore_net.variables[0])) @test_util.run_in_graph_and_eager_modes def testLayerNamesRespected(self): class ParentNetwork(network.Network): def __init__(self): super(ParentNetwork, self).__init__() self.first = self.track_layer( core.Dense(1, use_bias=False, name="explicit_name")) def call(self, x): return self.first(x) one = constant_op.constant([[1.]]) net = ParentNetwork() net(one) self.assertStartsWith(expected_start="parent_network/explicit_name/", actual=net.trainable_weights[0].name) self.assertEqual("explicit_name", net.first.name) @test_util.run_in_graph_and_eager_modes(assert_no_eager_garbage=True) def testWrappingInAnonymousVariableScope(self): # Named outside variable_scopes are not supported at the moment. However, # blank-named top level variable scopes do not change variable names, and so # can be used to set the properties of Network variables. was_called = [False] def _custom_getter(getter, *args, **kwargs): was_called[0] = True return getter(*args, **kwargs) with variable_scope.variable_scope("", custom_getter=_custom_getter): net = MyNetwork() one = constant_op.constant([[1.]]) net(one) self.assertTrue(was_called[0]) @test_util.run_in_graph_and_eager_modes(assert_no_eager_garbage=True) def testReasonableSlashError(self): with self.assertRaisesRegexp( ValueError, "not allowed in Network names"): MyNetwork(name="slash/slash") @test_util.run_in_graph_and_eager_modes(assert_no_eager_garbage=True) def testNoVariableScopeNames(self): with self.assertRaisesRegexp( ValueError, "VariableScopes are not valid Network names"): with variable_scope.variable_scope("some_scope") as vs: MyNetwork(name=vs) @test_util.run_in_graph_and_eager_modes(assert_no_eager_garbage=True) def testVariableScopeNameCollision(self): with variable_scope.variable_scope("abcd"): pass with self.assertRaisesRegexp( ValueError, "or a variable_scope was created with this name"): net = MyNetwork(name="abcd") one = constant_op.constant([[1.]]) net(one) @test_util.run_in_graph_and_eager_modes(assert_no_eager_garbage=True) def testNetworkVariablesDoNotInterfere(self): core.Dense(1, use_bias=True) # Should not interfere with naming. net1 = MyNetwork() net2 = MyNetwork() one = constant_op.constant([[1.]]) net1(one) net2(one) # Layer names typically are globally unique rather than being unique within # the scope of their first use. However, within a Network they must be named # locally so that previous Layer construction does not interfere with # variable naming (e.g. add a Layer construction before the Network, # suddenly your previously saved checkpoint is incompatible). self.assertEqual("dense", net1.l1.name) self.assertEqual("dense", net2.l1.name) self.evaluate(net1.trainable_weights[0].assign([[1.]])) self.evaluate(net2.trainable_weights[0].assign([[2.]])) self.assertEqual(2., self.evaluate(net2.trainable_weights[0])) self.assertEqual(1., self.evaluate(net1.trainable_weights[0])) self.assertStartsWith(expected_start="my_network/dense/", actual=net1.trainable_weights[0].name) self.assertStartsWith(expected_start="my_network_1/dense/", actual=net2.trainable_weights[0].name) @test_util.run_in_graph_and_eager_modes def testNestableAnonymous(self): # The case where no explicit names are specified. We make up unique names, # and these should match the variable names. class ParentNetwork(network.Network): def __init__(self): super(ParentNetwork, self).__init__() self.first = self.track_layer(MyNetwork()) self.second = self.track_layer(MyNetwork()) def call(self, x): return self.second(self.first(x)) one = constant_op.constant([[1.]]) net = ParentNetwork() net(one) self.assertStartsWith(expected_start="parent_network/my_network/dense", actual=net.trainable_weights[0].name) self.assertStartsWith(expected_start="parent_network/my_network/dense", actual=net.first.trainable_weights[0].name) self.assertStartsWith(expected_start="parent_network/my_network_1/dense", actual=net.trainable_weights[1].name) self.assertStartsWith(expected_start="parent_network/my_network_1/dense", actual=net.second.trainable_weights[0].name) self.assertEqual("parent_network", net.name) self.assertEqual("my_network", net.first.name) self.assertEqual("my_network_1", net.second.name) net2 = ParentNetwork() net2(one) self.assertStartsWith(expected_start="parent_network_1/my_network/dense", actual=net2.trainable_weights[0].name) self.assertStartsWith(expected_start="parent_network_1/my_network/dense", actual=net2.first.trainable_weights[0].name) self.assertStartsWith(expected_start="parent_network_1/my_network_1/dense", actual=net2.trainable_weights[1].name) self.assertStartsWith(expected_start="parent_network_1/my_network_1/dense", actual=net2.second.trainable_weights[0].name) self.assertEqual("parent_network_1", net2.name) self.assertEqual("my_network", net2.first.name) self.assertEqual("my_network_1", net2.second.name) @test_util.run_in_graph_and_eager_modes def testNestableExplicit(self): # We have explicit network names and everything is globally unique. class ParentNetwork(network.Network): def __init__(self): super(ParentNetwork, self).__init__(name="unique_parent_name") self.first = self.track_layer( MyNetwork(name="first_unique_child_name")) self.second = self.track_layer( MyNetwork(name="second_unique_child_name")) def call(self, x): return self.second(self.first(x)) one = constant_op.constant([[1.]]) net = ParentNetwork() net(one) self.assertStartsWith( expected_start="unique_parent_name/first_unique_child_name/dense", actual=net.trainable_weights[0].name) self.assertStartsWith( expected_start="unique_parent_name/second_unique_child_name/dense", actual=net.trainable_weights[1].name) self.assertEqual("unique_parent_name", net.name) self.assertEqual("first_unique_child_name", net.first.name) self.assertEqual("second_unique_child_name", net.second.name) @test_util.run_in_graph_and_eager_modes def testLayerNetworkNameInteractions(self): # Same base name as core.Dense; Networks and non-Network Layers with the # same base name should use the same numbering system. class Dense(network.Network): def __init__(self): super(Dense, self).__init__() self.first = self.track_layer(core.Dense(1, use_bias=False)) def call(self, x): return self.first(x) class MixedLayerNetwork(network.Network): def __init__(self): super(MixedLayerNetwork, self).__init__() self.first = self.track_layer(core.Dense(1, use_bias=False)) self.second = self.track_layer(core.Dense(1, use_bias=False)) self.third = self.track_layer(Dense()) self.fourth = self.track_layer(core.Dense(1, use_bias=False)) self.fifth = self.track_layer(core.Dense(1, use_bias=False)) def call(self, x): return self.fifth(self.fourth(self.third(self.second(self.first(x))))) one = constant_op.constant([[1.]]) net = MixedLayerNetwork() net(one) self.assertEqual("dense", net.first.name) self.assertEqual("dense_1", net.second.name) self.assertEqual("dense_2", net.third.name) self.assertEqual("dense_3", net.fourth.name) self.assertEqual("dense_4", net.fifth.name) # Note that this is _not_ the default naming behavior for Layers. Layers # which are added to Networks follow Network variable naming conventions # (i.e. variable names = network name unless variable sharing). Nested # Layers revert to Layer behavior. self.assertStartsWith(expected_start="mixed_layer_network/dense/", actual=net.trainable_weights[0].name) self.assertStartsWith(expected_start="mixed_layer_network/dense_1/", actual=net.trainable_weights[1].name) self.assertStartsWith(expected_start="mixed_layer_network/dense_2/", actual=net.trainable_weights[2].name) self.assertStartsWith(expected_start="mixed_layer_network/dense_3/", actual=net.trainable_weights[3].name) self.assertStartsWith(expected_start="mixed_layer_network/dense_4/", actual=net.trainable_weights[4].name) self.assertEqual("mixed_layer_network", net.name) @test_util.run_in_graph_and_eager_modes def testNestableExplicitCollisions(self): # We have explicit network names and they are unique within the layer # they're added to. class ParentNetwork(network.Network): def __init__(self): super(ParentNetwork, self).__init__(name="nonunique_name") self.first = self.track_layer( MyNetwork(name="nonunique_name")) self.second = self.track_layer( MyNetwork(name="second_unique_child_name")) def call(self, x): return self.second(self.first(x)) one = constant_op.constant([[1.]]) net = ParentNetwork() net(one) self.assertStartsWith( expected_start="nonunique_name/nonunique_name/dense", actual=net.trainable_weights[0].name) self.assertStartsWith( expected_start="nonunique_name/second_unique_child_name/dense", actual=net.trainable_weights[1].name) self.assertEqual("nonunique_name", net.name) self.assertEqual("nonunique_name", net.first.name) self.assertEqual("second_unique_child_name", net.second.name) @test_util.run_in_graph_and_eager_modes def testNestableExplicitWithAnonymousParent(self): # A parent network is instantiated multiple times with explicitly named # children. We shouldn't throw any name errors. class ParentNetwork(network.Network): def __init__(self): super(ParentNetwork, self).__init__() self.first = self.track_layer( MyNetwork(name="first_unique_child_name")) self.second = self.track_layer( MyNetwork(name="second_unique_child_name")) def call(self, x): return self.second(self.first(x)) one = constant_op.constant([[1.]]) net = ParentNetwork() net(one) self.assertStartsWith( expected_start="parent_network/first_unique_child_name/dense/", actual=net.trainable_weights[0].name) self.assertStartsWith( expected_start="parent_network/second_unique_child_name/dense/", actual=net.trainable_weights[1].name) self.assertEqual("parent_network", net.name) self.assertEqual("first_unique_child_name", net.first.name) self.assertEqual("second_unique_child_name", net.second.name) net2 = ParentNetwork() net2(one) self.assertStartsWith( expected_start="parent_network_1/first_unique_child_name/dense", actual=net2.trainable_weights[0].name) self.assertStartsWith( expected_start="parent_network_1/second_unique_child_name/dense", actual=net2.trainable_weights[1].name) self.assertEqual("parent_network_1", net2.name) self.assertEqual("first_unique_child_name", net2.first.name) self.assertEqual("second_unique_child_name", net2.second.name) @test_util.run_in_graph_and_eager_modes def testNestableExplicitSameLayerCollisions(self): # We have explicit network names and they are _not_ unique within the layer # they're added to. Error. class ParentNetwork(network.Network): def __init__(self): super(ParentNetwork, self).__init__(name="unique_parent_name") self.first = self.track_layer(MyNetwork(name="nonunique_name")) self.second = self.track_layer(MyNetwork(name="nonunique_name")) def call(self, x): return self.second(self.first(x)) with self.assertRaisesRegexp(ValueError, "nonunique_name"): ParentNetwork() @test_util.run_in_graph_and_eager_modes def testAnonymousVariableSharing(self): # Two "owned" Networks class FirstParentNetwork(network.Network): def __init__(self): super(FirstParentNetwork, self).__init__() self.first = self.track_layer(MyNetwork()) self.second = self.track_layer(MyNetwork()) def call(self, x): return self.second(self.first(x)) one = constant_op.constant([[1.]]) net = FirstParentNetwork() net(one) # One Network shared with FirstParentNetwork, one owned Network. Same name, # but this is OK because only one is owned. This name collision is # avoidable; we could have looked at the base_name of the non-owned Network # and incremented our naming based on that. class SecondParentNetwork(network.Network): def __init__(self): super(SecondParentNetwork, self).__init__() self.first = self.track_layer(net.first) self.second = self.track_layer(MyNetwork()) def call(self, x): return self.second(self.first(x)) net2 = SecondParentNetwork() net2(one) self.assertStartsWith( expected_start="first_parent_network/my_network/dense/", actual=net2.trainable_weights[0].name) self.assertStartsWith( expected_start="second_parent_network/my_network/dense/", actual=net2.trainable_weights[1].name) self.assertEqual("second_parent_network", net2.name) self.assertTrue(net2.first is net.first) self.assertEqual("my_network", net2.first.name) self.assertEqual("my_network", net2.second.name) # No name collision; the owned Network is added first and has a different # name than the shared Network. class ThirdParentNetwork(network.Network): def __init__(self): super(ThirdParentNetwork, self).__init__() self.first = self.track_layer(MyNetwork()) self.second = self.track_layer(net.second) def call(self, x): return self.second(self.first(x)) net3 = ThirdParentNetwork() net3(one) self.assertStartsWith( expected_start="third_parent_network/my_network/dense", actual=net3.trainable_weights[0].name) self.assertStartsWith( expected_start="first_parent_network/my_network_1/dense", actual=net3.trainable_weights[1].name) self.assertEqual("third_parent_network", net3.name) self.assertTrue(net3.second is net.second) self.assertEqual("my_network", net3.first.name) self.assertEqual("my_network_1", net3.second.name) # "Unavoidable" same-name Layer. The owned name is added first (fixed), then # a shared Network is added with the same name. class FourthParentNetwork(network.Network): def __init__(self): super(FourthParentNetwork, self).__init__() self.first = self.track_layer(MyNetwork()) self.second = self.track_layer(net.first) def call(self, x): return self.second(self.first(x)) net4 = FourthParentNetwork() net4(one) self.assertStartsWith( expected_start="fourth_parent_network/my_network/dense/", actual=net4.trainable_weights[0].name) self.assertStartsWith( expected_start="first_parent_network/my_network/dense/", actual=net4.trainable_weights[1].name) self.assertEqual("fourth_parent_network", net4.name) self.assertTrue(net4.second is net.first) self.assertEqual("my_network", net4.first.name) self.assertEqual("my_network", net4.second.name) @test_util.run_in_graph_and_eager_modes def testRecursiveLayerRenaming(self): core.Dense(1) # Under default Layer naming, would change subsequent names. class NetworkWithLayerChildren(network.Network): def __init__(self): super(NetworkWithLayerChildren, self).__init__() self.first = self.track_layer(core.Dense(1, use_bias=False)) self.second = self.track_layer(core.Dense(1, use_bias=False)) def call(self, x): return self.second(self.first(x)) class ParentNetwork(network.Network): def __init__(self): super(ParentNetwork, self).__init__() self.first = self.track_layer(NetworkWithLayerChildren()) self.second = self.track_layer(NetworkWithLayerChildren()) def call(self, x): return self.second(self.first(x)) net = ParentNetwork() one = constant_op.constant([[1.]]) net(one) self.assertStartsWith( expected_start=("parent_network/network_with_layer_children/" "dense/"), actual=net.trainable_weights[0].name) self.assertStartsWith( expected_start=("parent_network/network_with_layer_children/" "dense_1/"), actual=net.trainable_weights[1].name) self.assertStartsWith( expected_start=("parent_network/network_with_layer_children_1/" "dense/"), actual=net.trainable_weights[2].name) self.assertStartsWith( expected_start=("parent_network/network_with_layer_children_1/" "dense_1/"), actual=net.trainable_weights[3].name) self.assertEqual("parent_network", net.name) self.assertEqual("network_with_layer_children", net.first.name) self.assertEqual("network_with_layer_children_1", net.second.name) self.assertEqual("dense", net.first.first.name) self.assertEqual("dense_1", net.first.second.name) self.assertEqual("dense", net.second.first.name) self.assertEqual("dense_1", net.second.second.name) @test_util.run_in_graph_and_eager_modes def testCallInDifferentOrderThanConstruct(self): shared_network = MyNetwork() class FirstNetwork(network.Network): def __init__(self): super(FirstNetwork, self).__init__() self.first = self.track_layer(shared_network) self.second = self.track_layer(MyNetwork()) def call(self, x): return self.second(self.first(x)) class SecondNetwork(network.Network): def __init__(self): super(SecondNetwork, self).__init__() self.first = self.track_layer(shared_network) self.second = self.track_layer(MyNetwork()) def call(self, x): return self.second(self.first(x)) net1 = FirstNetwork() net2 = SecondNetwork() one = constant_op.constant([[1.]]) net2(one) net1(one) self.assertStartsWith( expected_start="first_network/my_network/dense/", actual=net1.trainable_weights[0].name) self.assertStartsWith( expected_start="first_network/my_network_1/dense/", actual=net1.trainable_weights[1].name) self.assertStartsWith( expected_start="first_network/my_network/dense/", actual=net2.trainable_weights[0].name) self.assertStartsWith( expected_start="second_network/my_network/dense/", actual=net2.trainable_weights[1].name) self.assertTrue(net1.trainable_weights[0] is net2.trainable_weights[0]) self.assertEqual("first_network", net1.name) self.assertEqual("my_network", net1.first.name) self.assertEqual("my_network_1", net1.second.name) self.assertTrue(net2.first is net1.first) self.assertEqual("my_network", net2.second.name) @test_util.run_in_graph_and_eager_modes def testLayerCallInDifferentOrderThanConstruct(self): # Same idea as testCallInDifferentOrderThanConstruct, but this time with a # non-Network Layer shared between two Networks rather than a # Network. Naming should follow the same rules. shared_layer = core.Dense(1, use_bias=False) class FirstNetwork(network.Network): def __init__(self): super(FirstNetwork, self).__init__() self.first = self.track_layer(shared_layer) self.second = self.track_layer(core.Dense(1, use_bias=False)) def call(self, x): return self.second(self.first(x)) class SecondNetwork(network.Network): def __init__(self): super(SecondNetwork, self).__init__() self.first = self.track_layer(shared_layer) self.second = self.track_layer(core.Dense(1, use_bias=False)) def call(self, x): return self.second(self.first(x)) net1 = FirstNetwork() net2 = SecondNetwork() one = constant_op.constant([[1.]]) net2(one) net1(one) self.assertStartsWith( expected_start="first_network/dense/", actual=net1.trainable_weights[0].name) self.assertStartsWith( expected_start="first_network/dense_1/", actual=net1.trainable_weights[1].name) self.assertStartsWith( expected_start="first_network/dense/", actual=net2.trainable_weights[0].name) self.assertStartsWith( expected_start="second_network/dense/", actual=net2.trainable_weights[1].name) self.assertTrue(net1.trainable_weights[0] is net2.trainable_weights[0]) self.assertEqual("first_network", net1.name) self.assertEqual("dense", net1.first.name) self.assertEqual("dense_1", net1.second.name) self.assertTrue(net2.first is net1.first) self.assertEqual("dense", net2.second.name) @test_util.run_in_graph_and_eager_modes def testLayerAlreadyBuilt(self): one = constant_op.constant([[1.]]) core.Dense(1, use_bias=False) # pre-built layers use global naming one = constant_op.constant([[1.]]) core.Dense(1, use_bias=False)(one) shared_layer = core.Dense(1, use_bias=False) shared_layer(one) class FirstNetwork(network.Network): def __init__(self): super(FirstNetwork, self).__init__() self.first = self.track_layer(shared_layer) self.second = self.track_layer(core.Dense(1, use_bias=False)) def call(self, x): return self.second(self.first(x)) net = FirstNetwork() net(one) self.assertStartsWith( expected_start="dense_1/", # Pre-built layers have variable names which # do not match their layer names. actual=net.trainable_weights[0].name) self.assertStartsWith( expected_start="first_network/dense/", actual=net.trainable_weights[1].name) self.assertTrue( net.trainable_weights[0] is shared_layer.trainable_weights[0]) self.assertEqual("first_network", net.name) self.assertEqual("dense_3", net.first.name) self.assertEqual("dense", net.second.name) class SequentialTest(test.TestCase): @test_util.assert_no_garbage_created def testTwoLayers(self): # Create a sequential network with one layer. net = network.Sequential([core.Dense(1, use_bias=False)]) # Set that layer's weights so it multiplies by 3 l1 = net.get_layer(index=0) net(constant_op.constant([[2.0]])) # Create l1's variables self.assertEqual(1, len(l1.trainable_variables)) l1.trainable_variables[0].assign([[3.0]]) self.assertEqual(21.0, net(constant_op.constant([[7.0]])).numpy()) # Add a second layer to the network. l2 = core.Dense(1, use_bias=False) net.add(l2) # Set the second layer's weights so it multiplies by 11 net(constant_op.constant([[2.0]])) # Create l2's variables self.assertEqual(1, len(l2.trainable_variables)) l2.trainable_variables[0].assign([[11.0]]) self.assertEqual(231.0, net(constant_op.constant([[7.0]])).numpy()) @test_util.assert_no_garbage_created def testFunctions(self): # Create a sequential network with one function. net = network.Sequential([nn_ops.relu]) two = constant_op.constant(2.0) self.assertEqual(2.0, net(two).numpy()) self.assertEqual(0.0, net(-two).numpy()) # Add a second function. net.add(math_ops.negative) self.assertEqual(-2.0, net(two).numpy()) @test_util.assert_no_garbage_created def testTrainingLayer(self): net = network.Sequential([core.Dropout(0.99999)]) two = constant_op.constant(2.0) self.assertEqual(2.0, net(two).numpy()) self.assertEqual(2.0, net(two, training=False).numpy()) for _ in range(20): with_dropout = net(two, training=True).numpy() self.assertIn(with_dropout, [0.0, 2.0]) if with_dropout == 0.0: return # Should only fail spuriously 1 in 10^100 runs. self.fail("Didn't see dropout happen after 20 tries.") @test_util.assert_no_garbage_created def testTrainingFunction(self): # Output depends on value of "training". def add_training(input_value, training=None): if training is None: return input_value elif training: return input_value + 1 return input_value - 1 # Passing a "training" argument to double would cause an error. def double(input_value): return 2 * input_value net = network.Sequential([add_training, double]) two = constant_op.constant(2) self.assertEqual(4, net(two).numpy()) self.assertEqual(2, net(two, training=False).numpy()) self.assertEqual(6, net(two, training=True).numpy()) if __name__ == "__main__": test.main()
tensorflow-master
tensorflow/contrib/eager/python/network_test.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for remote eager execution.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import os import numpy as np from tensorflow.python import pywrap_tensorflow from tensorflow.contrib.eager.python import parameter_server from tensorflow.core.protobuf import cluster_pb2 from tensorflow.core.protobuf import tensorflow_server_pb2 from tensorflow.python.eager import backprop from tensorflow.python.eager import context from tensorflow.python.eager import function from tensorflow.python.eager import remote from tensorflow.python.framework import ops from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import resource_variable_ops from tensorflow.python.ops import variables from tensorflow.python.platform import test from tensorflow.python.training import server_lib JOB_NAME = "remote_device" ALT_JOB_NAME = "alt_remote_device" def run_sync_and_async(f): """Execute all test methods in the given class in sync and async modes.""" @functools.wraps(f) def decorator(self, *args, **kwargs): # TODO(b/117110239): Re-enable. # with context.execution_mode(context.ASYNC): # f(self, *args, **kwargs) with context.execution_mode(context.SYNC): f(self, *args, **kwargs) return decorator def get_server_def(job_name, local_server_port, remote_server_addresses, task_index): """Returns a server def with a single job + multiple tasks.""" cluster_def = cluster_pb2.ClusterDef() job_def = cluster_def.job.add() job_def.name = job_name job_def.tasks[0] = "localhost:%d" % local_server_port for i, remote_server_address in enumerate(remote_server_addresses, start=1): job_def.tasks[i] = remote_server_address server_def = tensorflow_server_pb2.ServerDef( cluster=cluster_def, job_name=job_name, task_index=task_index, protocol="grpc") return server_def class RemoteExecutionTest(test.TestCase): def __init__(self, methodName="runTest"): # pylint: disable=invalid-name super(RemoteExecutionTest, self).__init__(methodName) self._cached_server1 = server_lib.Server.create_local_server() self._cached_server2 = server_lib.Server.create_local_server() os.environ["TF_EAGER_REMOTE_USE_SEND_TENSOR_RPC"] = "1" self._cached_server1_target = self._cached_server1.target[len("grpc://"):] self._cached_server2_target = self._cached_server2.target[len("grpc://"):] def setUp(self): # Start the local server. local_port = pywrap_tensorflow.TF_PickUnusedPortOrDie() context.set_server_def( server_def=get_server_def( JOB_NAME, local_server_port=local_port, remote_server_addresses=[ self._cached_server1_target, self._cached_server2_target ], task_index=0)) @run_sync_and_async def testDefunMatmul(self): """Basic remote eager execution with defun.""" mm_defun = function.defun(math_ops.matmul) with ops.device("job:%s/replica:0/task:1/device:CPU:0" % JOB_NAME): x1 = array_ops.ones([2, 2]) with ops.device("job:%s/replica:0/task:2/device:CPU:0" % JOB_NAME): x2 = array_ops.ones([2, 2]) y = mm_defun(x1, x2) np.testing.assert_array_equal([[2, 2], [2, 2]], y.numpy()) @run_sync_and_async def testSimpleMatmul(self): """Basic remote eager execution.""" with ops.device("job:%s/replica:0/task:1/device:CPU:0" % JOB_NAME): x1 = array_ops.ones([2, 2]) with ops.device("job:%s/replica:0/task:2/device:CPU:0" % JOB_NAME): x2 = array_ops.ones([2, 2]) y = math_ops.matmul(x1, x2) np.testing.assert_array_equal([[2, 2], [2, 2]], y.numpy()) def testParameterServer(self): with parameter_server.parameter_server_scope( is_chief=True, ps_job_name=JOB_NAME, num_ps_tasks=3): v0 = variables.Variable([1.0], name="v0") v1 = variables.Variable([2.0], name="v1") v0.assign(v0 * v1) self.assertAllEqual(v0.read_value(), [2.0]) self.assertAllEqual(v0.device, "/job:%s/replica:0/task:0/device:CPU:0" % JOB_NAME) self.assertAllEqual(v1.device, "/job:%s/replica:0/task:1/device:CPU:0" % JOB_NAME) v1.assign_add(v1) # Simulate aliasing another variable of the same name as v1 with ops.device("/job:%s/replica:0/task:1/device:CPU:0" % JOB_NAME): v1_replica = parameter_server.SharedVariable( [1.0], name="v1", initialize=False) self.assertAllEqual(v1_replica.read_value(), [4.0]) @run_sync_and_async def testSimpleWeightRead(self): """Basic remote eager weight read.""" with ops.device("job:%s/replica:0/task:1/device:CPU:0" % JOB_NAME): w = resource_variable_ops.ResourceVariable([[2.0]]) loss = w * w np.testing.assert_array_equal([[4.0]], loss.numpy()) @run_sync_and_async def testTapeWeightRead(self): """Remote eager weight read in a tape.""" with ops.device("job:%s/replica:0/task:1/device:CPU:0" % JOB_NAME): w = resource_variable_ops.ResourceVariable([[3.0]]) with backprop.GradientTape() as tape: loss = w * w grad = tape.gradient(loss, w) np.testing.assert_array_equal([[9.0]], loss.numpy()) np.testing.assert_array_equal([[6.0]], grad.numpy()) @run_sync_and_async def testServerDefChanged(self): """Update server def, and run ops on new cluster.""" context.set_server_def( server_def=get_server_def( ALT_JOB_NAME, local_server_port=0, remote_server_addresses=[ self._cached_server1_target, self._cached_server2_target ], task_index=0)) with ops.device("job:%s/replica:0/task:1/device:CPU:0" % ALT_JOB_NAME): x1 = array_ops.ones([2, 2]) y = math_ops.matmul(x1, x1) np.testing.assert_array_equal([[2, 2], [2, 2]], y.numpy()) # Set the server def back to JOB_NAME context.set_server_def( server_def=get_server_def( JOB_NAME, local_server_port=0, remote_server_addresses=[ self._cached_server1_target, self._cached_server2_target ], task_index=0)) with ops.device("job:%s/replica:0/task:1/device:CPU:0" % JOB_NAME): x1 = array_ops.ones([2, 2]) y = math_ops.matmul(x1, x1) np.testing.assert_array_equal([[2, 2], [2, 2]], y.numpy()) @run_sync_and_async def testConnectToRemoteServer(self): """Basic server connection.""" remote.connect_to_remote_host(self._cached_server1_target) with ops.device("job:worker/replica:0/task:0/device:CPU:0"): x1 = array_ops.ones([2, 2]) x2 = array_ops.ones([2, 2]) y = math_ops.matmul(x1, x2) np.testing.assert_array_equal([[2, 2], [2, 2]], y.numpy()) @run_sync_and_async def testContextDeviceUpdated(self): """Tests that the context device is correctly updated.""" with ops.device("cpu:0"): x1 = array_ops.ones([2, 2]) x2 = array_ops.ones([2, 2]) y = math_ops.matmul(x1, x2) np.testing.assert_array_equal([[2, 2], [2, 2]], y.numpy()) # `y` is placed on the local CPU as expected. self.assertEqual(y.device, "/job:%s/replica:0/task:0/device:CPU:0" % JOB_NAME) @test_util.run_gpu_only @run_sync_and_async def testGPUToRemoteCopy(self): """Tests that the remote copy happens satisfactorily.""" x1 = array_ops.ones([2, 2]).gpu() with ops.device("/job:remote_device/replica:0/task:1/device:CPU:0"): x2 = x1._copy() # pylint: disable=protected-access np.testing.assert_array_equal(x1.numpy(), x2.numpy()) if __name__ == "__main__": ops.enable_eager_execution() test.main()
tensorflow-master
tensorflow/contrib/eager/python/remote_test.py
"""Saver for eager mode TensorFlow.""" # Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function import contextlib from tensorflow.python.eager import context from tensorflow.python.framework import errors from tensorflow.python.framework import ops from tensorflow.python.ops import resource_variable_ops from tensorflow.python.training import checkpoint_utils from tensorflow.python.training import saver as _saver def _init_from_checkpoint(self, *args, **kwargs): """Overrides default init by loading value from checkpoint.""" # pylint: disable=protected-access self._old_init(*args, **kwargs) ckpt_name = self._map_func(self._shared_name) if ckpt_name not in self._ckpt_var_cache: raise errors.NotFoundError(None, None, "%s not found in checkpoint" % ckpt_name) val = self._ckpt_var_cache.get(ckpt_name, None) if val is not None: self.assign(val) # Avoid assigning for the second time. self._ckpt_var_cache[ckpt_name] = None # pylint: enable=protected-access @contextlib.contextmanager def restore_variables_on_create(save_path, map_func=None): """ContextManager that restores variables on creation. When save_path is None (e.g. No checkpoint), does nothing. Otherwise, it preloads all values from checkpoint. When the corresponding variable is first created, it assigns the checkpoint value to the variable. ```python with restore_variables_on_create( tf.train.latest_checkpoint(checkpoint_dir)): ``` Args: save_path: The checkpoint file prefix. map_func: A function that given the variable name as argument and returns a variable name in checkpoint for restore. If None, use the variable with the same name in checkpoint to restore. It's an error that the mapped variable name doesn't exist in checkpoint. Yields: Nothing. Raises: NotFoundError: If the variable is not found in checkpoint. ValueError: If not used in eager mode or map_func is not callable. """ if not context.executing_eagerly(): raise ValueError( "Currently, restore_variables_on_create can only be used with " "eager execution enabled.") if save_path: if map_func is None: map_func_wrapper = lambda self, x: x else: if not callable(map_func): raise ValueError("map_func must be callable.") map_func_wrapper = lambda self, x: map_func(x) ckpt_var_cache = {} reader = checkpoint_utils.load_checkpoint(save_path) for k, _ in checkpoint_utils.list_variables(save_path): ckpt_var_cache[k] = reader.get_tensor(k) old_init = getattr(resource_variable_ops.ResourceVariable, "_init_from_args", None) assert old_init, "ResourceVariable misses _init_from_args method." setattr(resource_variable_ops.ResourceVariable, "_init_from_args", _init_from_checkpoint) setattr(resource_variable_ops.ResourceVariable, "_old_init", old_init) setattr(resource_variable_ops.ResourceVariable, "_map_func", map_func_wrapper) setattr(resource_variable_ops.ResourceVariable, "_ckpt_var_cache", ckpt_var_cache) try: yield except Exception as e: raise e finally: if save_path: setattr(resource_variable_ops.ResourceVariable, "_init_from_args", old_init) setattr(resource_variable_ops.ResourceVariable, "_old_init", None) setattr(resource_variable_ops.ResourceVariable, "_map_func", None) setattr(resource_variable_ops.ResourceVariable, "_ckpt_var_cache", None) class Saver(object): """A tf.compat.v1.train.Saver adapter for use when eager execution is enabled. `Saver`'s name-based checkpointing strategy is fragile. Please switch to `tf.train.Checkpoint` or `tf.keras.Model.save_weights`, which perform a more robust object-based saving. These APIs will load checkpoints written by `Saver`. """ def __init__(self, var_list): """A tf.compat.v1.train.Saver adapter for use when eager execution is enabled. The API, and on-disk format, mimic tf.compat.v1.train.Saver except that no Session is needed. Args: var_list: The list of variables that will be saved and restored. Either a list of `tf.Variable` objects, or a dictionary mapping names to `tf.Variable` objects. Raises: RuntimeError: if invoked when eager execution has not been enabled. """ if not context.executing_eagerly(): raise RuntimeError("tfe.Saver can only be used when eager " "execution is enabled. Use tf.train.Saver when " "building graphs.") self._saver = _saver.Saver(var_list=var_list) def save(self, file_prefix, global_step=None): """Saves variables. Args: file_prefix: Path prefix of files created for the checkpoint. global_step: If provided the global step number is appended to file_prefix to create the checkpoint filename. The optional argument can be a Tensor, a Variable, or an integer. Returns: A string: prefix of filenames created for the checkpoint. This may be an extension of file_prefix that is suitable to pass as an argument to a subsequent call to `restore()`. """ with ops.device("/device:CPU:0"): return self._saver.save( None, file_prefix, write_meta_graph=False, global_step=global_step) def restore(self, file_prefix): """Restores previously saved variables. Args: file_prefix: Path prefix where parameters were previously saved. Typically obtained from a previous `save()` call, or from `tf.train.latest_checkpoint`. """ with ops.device("/device:CPU:0"): self._saver.restore(None, file_prefix) def get_optimizer_variables(optimizer): """Returns a list of variables for the given `tf.compat.v1.train.Optimizer`. Equivalent to `optimizer.variables()`. Args: optimizer: An instance of `tf.compat.v1.train.Optimizer` which has created variables (typically after a call to `Optimizer.minimize`). Returns: A list of variables which have been created by the `Optimizer`. """ return optimizer.variables()
tensorflow-master
tensorflow/contrib/eager/python/saver.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """TensorFlow Eager Execution: Sanity tests.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tempfile from tensorflow.contrib.eager.python import tfe from tensorflow.python.framework import constant_op from tensorflow.python.framework import errors from tensorflow.python.framework import ops from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import numerics from tensorflow.python.platform import test from tensorflow.python.summary import summary from tensorflow.python.summary.writer import writer class TFETest(test_util.TensorFlowTestCase): def testMatmul(self): x = [[2.]] y = math_ops.matmul(x, x) # tf.matmul self.assertAllEqual([[4.]], y.numpy()) def testInstantError(self): if test_util.is_gpu_available(): # TODO(nareshmodi): make this test better self.skipTest("Gather doesn't do index checking on GPUs") with self.assertRaisesRegexp(errors.InvalidArgumentError, r'indices = 7 is not in \[0, 3\)'): array_ops.gather([0, 1, 2], 7) def testGradients(self): def square(x): return math_ops.multiply(x, x) grad = tfe.gradients_function(square) self.assertEquals([6], [x.numpy() for x in grad(3.)]) def testGradOfGrad(self): def square(x): return math_ops.multiply(x, x) grad = tfe.gradients_function(square) gradgrad = tfe.gradients_function(lambda x: grad(x)[0]) self.assertEquals([2], [x.numpy() for x in gradgrad(3.)]) def testCustomGrad(self): @tfe.custom_gradient def f(x): y = math_ops.multiply(x, x) def grad_fn(_): return [x + y] return y, grad_fn grad = tfe.gradients_function(f) self.assertEquals([12], [x.numpy() for x in grad(3.)]) @test_util.run_gpu_only def testGPU(self): # tf.Tensor.as_gpu_device() moves a tensor to GPU. x = constant_op.constant([[1., 2.], [3., 4.]]).gpu() # Alternatively, tf.device() as a context manager places tensors and # operations. with ops.device('gpu:0'): x += 1. # Without a device context, heuristics are used to place ops. # In this case, ops.reduce_mean runs on the GPU. axis = range(x.shape.ndims) m = math_ops.reduce_mean(x, axis) # m is on GPU, bring it back to CPU and compare. self.assertEqual(3.5, m.cpu().numpy()) def testListDevices(self): # Expect at least one device. self.assertTrue(tfe.list_devices()) def testAddCheckNumericsOpsRaisesError(self): with self.assertRaisesRegexp( RuntimeError, r'add_check_numerics_ops\(\) is not compatible with eager execution'): numerics.add_check_numerics_ops() def testClassicSummaryOpsErrorOut(self): x = constant_op.constant(42) x_summary = summary.scalar('x', x) y = constant_op.constant([1, 3, 3, 7]) y_summary = summary.histogram('hist', y) with self.assertRaisesRegexp( RuntimeError, r'Merging tf\.summary\.\* ops is not compatible with eager execution'): summary.merge([x_summary, y_summary]) with self.assertRaisesRegexp( RuntimeError, r'Merging tf\.summary\.\* ops is not compatible with eager execution'): summary.merge_all() def testClassicSummaryFileWriterErrorsOut(self): with self.assertRaisesRegexp( RuntimeError, r'tf\.summary\.FileWriter is not compatible with eager execution'): writer.FileWriter(tempfile.mkdtemp()) if __name__ == '__main__': tfe.enable_eager_execution() test.main()
tensorflow-master
tensorflow/contrib/eager/python/tfe_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A Network is a composition of Layers.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import os import weakref from tensorflow.python.eager import context from tensorflow.python.framework import ops from tensorflow.python.keras import backend from tensorflow.python.layers import base from tensorflow.python.ops import variable_scope from tensorflow.python.platform import tf_logging as logging from tensorflow.python.training import checkpoint_utils from tensorflow.python.training import saver as saver_lib from tensorflow.python.training import training_util from tensorflow.python.util import deprecation from tensorflow.python.util import function_utils # pylint: disable=protected-access # Explanation for protected-access disable: Network has lots of same-class and # parent-class references across different objects, and some to private # functions in base.py which should be reused. def _network_name_scope_naming(current_variable_scope): """Name scope naming to match operation names to variable names. Used in Networks and also applied to non-Network Layers which are added to Networks before being built. Args: current_variable_scope: A VariableScope object. Returns: A name scope name. """ return current_variable_scope.name + "/" _NETWORK_DEPRECATION_MESSAGE = ( "Please inherit from `tf.keras.Model`, and see its documentation for " "details. `tf.keras.Model` should be a drop-in replacement for " "`tfe.Network` in most cases, but note that `track_layer` is no longer " "necessary or supported. Instead, `Layer` instances are tracked on " "attribute assignment (see the section of `tf.keras.Model`'s documentation " "on subclassing). Since the output of `track_layer` is often assigned to " "an attribute anyway, most code can be ported by simply removing the " "`track_layer` calls.\n\n`tf.keras.Model` works with all TensorFlow " "`Layer` instances, including those from `tf.layers`, but switching to " "the `tf.keras.layers` versions along with the migration to " "`tf.keras.Model` is recommended, since it will preserve variable names. " "Feel free to import it with an alias to avoid excess typing :).") class Network(base.Layer): """Represents the composition of a set of Layers. *Deprecated*. Please inherit from `tf.keras.Model`, and see its documentation for details. `tf.keras.Model` should be a drop-in replacement for `tfe.Network` in most cases, but note that `track_layer` is no longer necessary or supported. Instead, `Layer` instances are tracked on attribute assignment (see the section of `tf.keras.Model`'s documentation on subclassing). Since the output of `track_layer` is often assigned to an attribute anyway, most code can be ported by simply removing the `track_layer` calls. `tf.keras.Model` works with all TensorFlow `Layer` instances, including those from `tf.layers`, but switching to the `tf.keras.layers` versions along with the migration to `tf.keras.Model` is recommended, since it will preserve variable names. Feel free to import it with an alias to avoid excess typing :). `Network` implements the `Layer` interface and adds convenience methods for managing sub-`Layer`s, such as listing variables. `Layer`s (including other `Network`s) should be added via `track_layer`. They can then be used when overriding the `Network.call` method: ```python class TwoLayerNetwork(tfe.Network): def __init__(self, name): super(TwoLayerNetwork, self).__init__(name=name) self.layer_one = self.track_layer(tf.compat.v1.layers.Dense(16, input_shape=(8,))) self.layer_two = self.track_layer(tf.compat.v1.layers.Dense(1, input_shape=(16,))) def call(self, inputs): return self.layer_two(self.layer_one(inputs)) ``` After constructing an object and calling the `Network`, a list of variables created by tracked `Layer`s is available via `Network.variables`: ```python net = TwoLayerNetwork(name="net") output = net(tf.ones([1, 8])) print([v.name for v in net.variables]) ``` This example prints variable names, one kernel and one bias per `tf.compat.v1.layers.Dense` layer: ``` ['net/dense/kernel:0', 'net/dense/bias:0', 'net/dense_1/kernel:0', 'net/dense_1/bias:0'] ``` These variables can be passed to a `Saver` (`tf.compat.v1.train.Saver`, or `tf.contrib.eager.Saver` when executing eagerly) to save or restore the `Network`, typically alongside a global step and `tf.compat.v1.train.Optimizer` variables when checkpointing during training. Note that the semantics of calling a `Network` with graph execution (i.e. not executing eagerly) may change slightly in the future. Currently stateful ops are pruned from the graph unless they or something that depends on them is executed in a session, but this behavior is not consistent with eager execution (where stateful ops are executed eagerly). `Layer`s from `tf.layers` do not depend on this pruning and so will not be affected, but `Network`s which rely on stateful ops being added to the graph but not executed (e.g. via custom `Layer`s which manage stateful ops) may break with this change. """ # TODO(josh11b,ashankar,allenl): # - Should 'trainable' be changeable on the Network object? # - Do we allow add_variable in Network? # - Detect layers used in __call__ that weren't registered with track_layer. # - Convert inputs to __call__ to tensors. @deprecation.deprecated(date=None, instructions=_NETWORK_DEPRECATION_MESSAGE) def __init__(self, name=None): """Configure the `Network`. Args: name: The name to use for this `Network`. If specified, it must be unique in the context where this `Network` is first (1) added to another `Network` (in which case it must not share a name with other `Layers` added to that `Network`), or (2) built/called (in which case no other 'top-level' `Network`s may share this name). If unspecified or None, the `Network` will be named using its class name, with a number appended if necessary for uniqueness (e.g. MyNetwork -> 'my_network_1'). Raises: ValueError: If `name` is not valid. Note that some naming errors will instead be raised when the `Network` is called. """ if context.executing_eagerly(): logging.warning( ("** tfe.Network is deprecated and will be removed in a future " "version.\n\n%s"), _NETWORK_DEPRECATION_MESSAGE) if isinstance(name, variable_scope.VariableScope): raise ValueError("VariableScopes are not valid Network names.") if name is not None and "/" in name: raise ValueError( "Forward slashes ('/') are not allowed in Network names.") super(Network, self).__init__(name=name) self._layers = [] self._sub_layer_name_uids = collections.defaultdict(int) # Initially None, but set to False for networks which are first built as # top-level. self._first_parent = None # A weak reference to our first parent. self._non_network_sublayers = [] self._owned_layers = {} # The scope to use if we end up without a parent. self._default_parent_variable_scope = variable_scope.get_variable_scope() # Hold on to the variable scope counts from init to check whether a scope # with the name we want was ever created in our parent scope. Without this # check we might have name collisions if the parent scope on init gets # closed before build is called. self._variable_scope_counts_on_init = ( variable_scope.get_variable_scope_store().variable_scopes_count) def _gather_saveables_for_checkpoint(self): raise NotImplementedError( "tfe.Network does not support object-based checkpointing.\n\n%s" % _NETWORK_DEPRECATION_MESSAGE) def _name_scope_name(self, current_variable_scope): """Overrides Layer op naming to match variable naming.""" return _network_name_scope_naming( current_variable_scope=current_variable_scope) def _init_set_name(self, name): # Anonymous Networks (name=None) defer setting a final name until they are # (1) added to another Network, or (2) built/called (where (2) is only used # for a "top level" network). # # However, if we were provided an explicit name (name is not None), that # will always be the final name of the Network; if it turns out not to be # unique or if variable names can't be prefixed by it we will throw an # error. self._name = name self._base_name = None def _finalize_name(self, parent_network): if not self._name: # Were were not passed a name explicitly (or it was blank), so this is an # anonymous Network. We make up a unique name. if parent_network: avoid_names = parent_network._owned_layers name_uid_map = parent_network._sub_layer_name_uids else: name_uid_map = backend.get_default_graph_uid_map() # Figure out which names we have to avoid based on which variable scope # we're nested in. strip_name = self._default_parent_variable_scope.name if strip_name: strip_name += "/" def _strip_on_init_scope(name): if name.startswith(strip_name): return name[len(strip_name):] else: return None avoid_names = set( _strip_on_init_scope(name) for name in self._variable_scope_counts_on_init.keys() if name) self._name, self._base_name = self._make_unique_name( name_uid_map=name_uid_map, avoid_names=avoid_names, namespace=self._default_parent_variable_scope.name, zero_based=True) if self._first_parent is None or (self._first_parent # False = no parent and self._first_parent() is None): # Save a pointer to the parent Network so that we can later check that the # scope name we get is correct. if not parent_network: self._first_parent = parent_network else: self._first_parent = weakref.ref(parent_network) def _set_scope(self, scope=None): if self._scope is None: if not self._first_parent: first_parent = self._first_parent else: first_parent = self._first_parent() if first_parent is None: # If we were never added to another Network, or that Network has beed # garbage collected before being called, then we're a top-level Network. self._finalize_name( # Use False to make sure the value sticks and we don't inherit a # parent if we're added to a network later. parent_network=False) if scope is not None: raise ValueError("Networks may not be created with explicit scopes.") if first_parent: first_parent._set_scope() parent_scope = first_parent._scope else: parent_scope = self._default_parent_variable_scope with variable_scope.variable_scope(parent_scope) as parent_vs: expected_scope_name = parent_vs.name + "/" + self._name if expected_scope_name in self._variable_scope_counts_on_init: raise ValueError( ("A Network named '%s' already exists (or a variable_scope was " "created with this name). Names must be unique.") % (self._name,)) # Make sure variables with this prefix will be unique. with variable_scope.variable_scope( None, use_resource=True, default_name=self._name) as scope: self._scope = scope scope_name = scope.name suffix_start = scope_name.rfind("/") + 1 # rfind is -1 if there is no slash in the string, in which case the # suffix starts at the beginning of the string (there is no prefix). scope_suffix = scope_name[suffix_start:] scope_prefix = scope_name[:suffix_start] if scope_suffix != self._name: raise ValueError( ("A Network named '%s' already exists (or a variable_scope was " "created with this name). Names must be unique.") % (self._name,)) if (first_parent and scope_prefix[:-1] != first_parent.scope_name): raise ValueError( ("Network variable names must match a nesting of sub-Network " "names. Expected prefix '%s' from parent network, but got " "'%s' when attempting to create a variable_scope for Network " "'%s'. Likely an explicit variable_scope was inserted into " "the nesting.") % (first_parent.scope_name, scope_prefix[:-1], self._name)) elif not first_parent and scope_prefix: # For the case when this Network is not nested inside any other # Network, but is in a variable_scope. This Network's name takes on # the full variable scope prefix. self._name = scope_name for non_network_sublayer in self._non_network_sublayers: self._set_scope_for_nonnetwork_sublayer(non_network_sublayer) def _set_scope_for_nonnetwork_sublayer(self, sublayer): if sublayer._scope is None: if sublayer._first_parent is None: constituent_first_parent = None else: constituent_first_parent = sublayer._first_parent() if constituent_first_parent: constituent_first_parent._set_scope() parent_scope = constituent_first_parent._scope else: self._finalize_name(False) raise ValueError( ("The parent of a Layer added to Network %s was garbage collected " "before the Layer was built. If this limitation bothers you " "please file a feature request.") % (self.name,)) with variable_scope.variable_scope(parent_scope): # Horrid hack to make Layer variable names which are direct # sub-layers of Networks conform to the Network variable naming # conventions. with variable_scope.variable_scope( None, use_resource=True, default_name=sublayer.name) as sub_scope: sublayer._scope = sub_scope # Also switch op naming for this Layer to match Network conventions, # i.e. op naming matching variable naming. sublayer._name_scope_name = _network_name_scope_naming @base.Layer.name.getter def name(self): if self._name is None: raise ValueError( "The network does not yet have a final name, but a name was " "requested for it. Networks get a name when they are added to " "another Network via track_layer, or when they are first " "called/built.") return self._name def track_layer(self, layer): """Track a Layer in this Network. `Network` requires that all `Layer`s used in `call()` be tracked so that the `Network` can export a complete list of variables. Args: layer: A `tf.compat.v1.layers.Layer` object. Returns: The passed in `layer`. Raises: RuntimeError: If __init__ has not been called. TypeError: If `layer` is the wrong type. ValueError: If a `Layer` with the same name has already been added. """ if not hasattr(self, "_layers"): raise RuntimeError("Need to call Network.__init__ before adding layers") if not isinstance(layer, base.Layer): raise TypeError( "Network.track_layer() passed type %s, not a tf.layers.Layer" % (type(layer),)) # Always use `ResourceVariable` with legacy layers. layer._use_resource_variables = True if isinstance(layer, Network): layer._finalize_name(parent_network=self) else: # `layer` is a non-Network, so it hasn't been named to follow Network # conventions for contained Layers (i.e. the same conventions as for # sub-Networks). This renaming is necessary to isolate Network variable # naming from Layers constructed outside the Network and never added to it # (because Layers are named globally). if not layer.built: if not hasattr(layer, "_first_parent"): dereferenced_layer_first_parent = None else: dereferenced_layer_first_parent = layer._first_parent() if dereferenced_layer_first_parent is None: if layer._name != layer._base_name: # If name and base_name do not match, then this Layer used anonymous # naming and we have to rename it. Otherwise there's an explicit # name, and we should respect it (subject to error checking). layer._name, layer._base_name = layer._make_unique_name( name_uid_map=self._sub_layer_name_uids, avoid_names=self._owned_layers, zero_based=True # No namespace required, since we've specified our own UID map. ) layer._first_parent = weakref.ref(self) self._non_network_sublayers.append(layer) if (not layer.built and layer._first_parent and self is layer._first_parent()): if layer.name in self._owned_layers: if self._owned_layers[layer.name] is layer: return layer raise ValueError( "Attempt to add two Layers with the name '%s' to the same Network." % (layer.name)) self._owned_layers[layer.name] = layer self._layers.append(layer) return layer def get_layer(self, name=None, index=None): """Get a contained `tf.compat.v1.layers.Layer` either by name or index. Args: name: String matching one of the names of a contained `Layer`. Note that the names of `Layer`s added to `Network`s may not be unique when doing layer sharing (i.e. adding a `Layer` to this `Network` which was already added to another `Network`). The lowest index `Layer` with a matching name will be returned. index: Integer in [0, number of layers). Layers are assigned an index by the order they are added. Returns: A `tf.compat.v1.layers.Layer` object. Raises: ValueError: If neither or both of 'index' or 'name' is specified, or the lookup failed. """ if index is not None: if name is not None: raise ValueError("Exactly one of 'index' or 'name' must be provided") if len(self._layers) <= index: raise ValueError("Was asked to retrieve layer at index " + str(index) + " but model only has " + str(len(self._layers)) + " layers.") else: return self._layers[index] else: if not name: raise ValueError("Provide either a layer name or layer index.") for layer in self._layers: if layer.name == name: return layer raise ValueError("No such layer: " + name) # The following methods are for implementing the Layer interface. @property def weights(self): # TODO(josh11b): Should this return a set or perform de-duplication of # variables in the case of shared layers/variables that appear in # multiple places in the Network? weights = [] for layer in self._layers: weights += layer.weights return weights @property def trainable_weights(self): weights = [] for layer in self._layers: weights += layer.trainable_weights return weights @property def non_trainable_weights(self): weights = [] for layer in self._layers: weights += layer.non_trainable_weights return weights @property def trainable(self): return True @trainable.setter def trainable(self, value): if not value: # We believe it better to decide which layers & networks are trainable # at the Trainer level than here. Otherwise you can run into trouble if a # layer/network is shared between two models, but is trainable in one # but not the other (like with adversarial networks). raise AttributeError("cannot mark Network as not trainable") @property def layers(self): return self._layers def add_variable(self, name, shape, dtype=None, initializer=None, regularizer=None, trainable=True, constraint=None): raise RuntimeError( "add_variable not supported in Network class yet. Please file an issue " "at https://github.com/tensorflow/tensorflow/issues/new if this is " "important to you") def add_loss(self, losses, inputs=None): raise RuntimeError( "add_loss is not supported in Network class yet. Please file an issue " "at https://github.com/tensorflow/tensorflow/issues/new if this is " "important to you") @property def losses(self): """Gather losses from `Layer`s in the `Network`. Note that when executing eagerly, `Layer.losses` evaluates regularizers. When using graph execution, variable regularization ops have already been created and are simply returned here. Returns: A list of tensors. """ layer_losses = [] for layer in self.layers: layer_losses.extend(layer.losses) return layer_losses # TODO(allenl): Support other Layer methods needed for graph mode, such as for # updates class Sequential(Network): """Represents a linear sequence of Layers or functions. The output of each layer/function is provided as the input to the next. The inputs passed to `__call__` are passed to the inputs of the first Layer, and it returns the outputs of the last Layer. Args: layers_funcs: An optional sequence where each element is either a tf.compat.v1.layers.Layer object or a callable. name: An optional string name to use for this Network. """ def __init__(self, layers_funcs=None, name=None): super(Sequential, self).__init__(name=name) self._layers_funcs = [] if layers_funcs: for l in layers_funcs: self.add(l) def add(self, layer_func): if isinstance(layer_func, base.Layer): args = function_utils.fn_args(layer_func.call) self.track_layer(layer_func) elif callable(layer_func): args = function_utils.fn_args(layer_func) else: raise TypeError( "Sequential.add() takes only tf.layers.Layer objects or callables; " "not '%s' of type '%s'." % (layer_func, type(layer_func))) self._layers_funcs.append((("training" in args), layer_func)) def call(self, inputs, training=None): """Call each Layer in the order they were added.""" # TODO(josh11b): Support "mode" and maybe other arguments if training is None: for _, l in self._layers_funcs: inputs = l(inputs) else: for has_training_arg, l in self._layers_funcs: if has_training_arg: inputs = l(inputs, training) else: inputs = l(inputs) return inputs _DeferredRestoration = collections.namedtuple( "_DeferredRestoration", [ # The map_func to use (either user-specified or the default). "map_func", # Boolean, True if the user specified an explicit map_func, for error # messages. "map_func_is_user", # A mapping from checkpoint names to initial values of not-yet-created # variables which should be restored. These values come from parsing a # checkpoint. "checkpointed_variables_to_restore", # A mapping from checkpoint name to variable objects of variables which # have already been restored, for error checking. "restored_variables", # The session to restore with (if in graph mode). "session", # Names of the Network where the restore was requested, for error # messages. "network_name", "network_scope_name" ]) def _default_naming_conflict_error_message(mapped_name, first_variable, second_variable, network_name, network_scope_name): return ( ("The default checkpoint variable name mapping strategy for Network " "'%s' resulted in a naming conflict. We attempted to strip off the " "variable prefix for the Network ('%s'), but this resulted in two " "variables named '%s' (originally '%s' and '%s'). This should only " "happen when using variable sharing (i.e. the Network contains Networks " "or Layers which were first added to another Network, and therefore " "have that Network's variable prefix). One solution is to pass " "`map_func=lambda n: n` to save and restore to use fully qualified " "variable names in the checkpoint, although this will require that the " "variable prefix of the Network being restored into is also '%s'. You " "may alternatively write an arbitrary mapping.") % (network_name, network_scope_name, mapped_name, first_variable._shared_name, second_variable._shared_name, network_scope_name)) def _restore_custom_map_func_error_message(mapped_name, first_variable, second_variable, network_name, network_scope_name): return ( ("The map_func passed to restore_network_checkpoint for the Network '%s' " "resulted in two variables named '%s' (originally '%s' and '%s'). Since " "this is also an error when saving, this Network was " "probably not saved with this map_func. Note that map_func " "always maps from full variable names to checkpoint names; " "there is no need to specify an inverse mapping.\n\n" "Try stripping less from the variable names, or renaming parts " "of the Network. For reference, variables created by sub-Layers " "of this Network are prefixed with '%s', but if they are " "re-used after being added to another Network they will have " "that Network's full variable prefix instead.") % (network_name, mapped_name, first_variable._shared_name, second_variable._shared_name, network_scope_name)) def _make_custom_getter_for_deferred_restorations(): """Returns a custom getter which searches `deferred_restorations`. Returns: A tuple of (_custom_getter, deferred_restorations) _custom_getter: The getter which should be added to variable_scopes where variables will be created. deferred_restorations: A list for _DeferredRestoration objects. Typically empty when the getter is set, and expanded as deferred restorations are requested. All new deferred restorations should be appended to the end of the list, where they will have priority over older deferred restorations. """ deferred_restorations = [] def _custom_getter(getter, name, shape=None, dtype=None, initializer=None, *args, **kwargs): """A custom getter which processes deferred restorations.""" # Iterate over restorations, newest first (newer restorations will take # precedence over older restorations, just like with immediate restorations # into existing variables). delayed_restoration = None found_value = False value_to_restore = None for delayed_restoration in reversed(deferred_restorations): checkpoint_name = delayed_restoration.map_func(name) if (checkpoint_name in delayed_restoration.checkpointed_variables_to_restore): found_value = True value_to_restore = ( delayed_restoration .checkpointed_variables_to_restore[checkpoint_name]) if found_value: break # value_to_restore may be False because this variable is not in any # checkpoint we are restoring, or None because we have explicitly set it to # None when it was previously fetched. In either case, we don't need to # set an initializer. if found_value and value_to_restore is not None: initializer = value_to_restore shape = None variable = getter( name, shape=shape, dtype=dtype, initializer=initializer, *args, **kwargs) if found_value and value_to_restore is not None: # Mark as already restored from this checkpoint. delayed_restoration.checkpointed_variables_to_restore[ checkpoint_name] = None if not context.executing_eagerly(): delayed_restoration.session.run(variable.initializer) if found_value: # Error checking should run even if we've already restored a value. if delayed_restoration.restored_variables.setdefault( checkpoint_name, variable) is not variable: # Naming conflict. We've tried to initialize two variables with the # same value from the checkpoint. if delayed_restoration.map_func_is_user: raise ValueError( _restore_custom_map_func_error_message( mapped_name=checkpoint_name, first_variable=delayed_restoration .restored_variables[checkpoint_name], second_variable=variable, network_name=delayed_restoration.network_name, network_scope_name=delayed_restoration.network_scope_name)) else: raise ValueError( _default_naming_conflict_error_message( mapped_name=checkpoint_name, first_variable=delayed_restoration .restored_variables[checkpoint_name], second_variable=variable, network_name=delayed_restoration.network_name, network_scope_name=delayed_restoration.network_scope_name)) return variable return _custom_getter, deferred_restorations def _make_prefix_stripping_map_fn(scope_name): """Closure for stripping the scope name of a Network. Implemented as a closure rather than a member function to avoid reference cycles in deferred restorations (this function should not have a reference to the Network which created it). Args: scope_name: The Network.scope_name to strip from variables. Returns: A scope_name-stripping default `map_fn` for the Network. """ def _strip_variable_prefix(original_variable_name): """The default map_func for saving or restoring variables. Strips the variable prefix for the Network on which save/restore was called, and leaves other variable names fully qualified in the checkpoint. Args: original_variable_name: The _shared_name of the variable (no :0 suffix) to map. Returns: The checkpoint name of the variable. """ scope_name_with_slash = scope_name + "/" if original_variable_name.startswith(scope_name_with_slash): return original_variable_name[len(scope_name_with_slash):] else: return original_variable_name return _strip_variable_prefix @deprecation.deprecated( date=None, instructions=( "Please inherit from tf.keras.Model instead of tfe.Network, and use " "tf.keras.Model.save_weights.")) def save_network_checkpoint(network, save_path, global_step=None, map_func=None): """Save variables from the Network to a checkpoint. Args: network: A Network object to save. save_path: Either a checkpoint prefix or the name of a directory to save the checkpoint in (in which case the checkpoint will be named based on the Network name). global_step: The global step to use when naming the checkpoint. If None (default), we will first try to get the default global step. If that fails because no default global step exists, then the checkpoint is created without a global step suffix. map_func: A function mapping fully qualified variable names (e.g. 'my_network_1/dense_1/kernel') to names in the checkpoint. By default (if `map_func=None`), the variable prefix for the network being restored (`Network.scope_name + '/'`, e.g. 'my_network_1/') is stripped and all other variable names (shared with other Networks) are left unchanged. Returns: The checkpoint prefix for the saved checkpoint, which may be passed to `Network.restore`. Raises: ValueError: If the Network has not yet been called, or if map_func results in a name collision. """ if not network.built: raise ValueError( "Attempt to save the Network before it was first called. This means " "variables have not yet been created, so there is nothing to save.") network._set_scope() # scope_name should be available to map_funcs if global_step is None: global_step = training_util.get_global_step() if os.path.isdir(save_path): # If we were passed a directory, default to naming based on the Network # name. save_path = os.path.join(save_path, network.name.replace("/", "_")) user_map_func = map_func if map_func is None: map_func = _make_prefix_stripping_map_fn(network.scope_name) variable_map = {} for variable in network.variables: mapped_name = map_func(variable._shared_name) if variable_map.setdefault(mapped_name, variable) is not variable: if user_map_func is None: # Instead of erroring out, we could just re-try and silently use the # full variable names in the checkpoint. This could be odd for deeply # nested sub-Networks (since the full prefix from the nesting would # get added), so for now we'll let the user deal with this case. raise ValueError( _default_naming_conflict_error_message( mapped_name=mapped_name, first_variable=variable_map[mapped_name], second_variable=variable, network_name=network.name, network_scope_name=network.scope_name)) else: # The user passed their own problematic map_func. raise ValueError( ("The map_func passed to save_network_checkpoint for the Network " "'%s' resulted in two variables named '%s' ('%s' and '%s'). Try " "stripping less from the variable names, or renaming parts of " "the Network. For reference, variables created by sub-Layers of " "this Network are prefixed with '%s', but if they are re-used " "after being added to another Network, they will have that " "Network's full variable prefix instead.") % (network.name, mapped_name, variable_map[mapped_name]._shared_name, variable._shared_name, network.scope_name)) if context.executing_eagerly(): sess = None else: sess = ops.get_default_session() return saver_lib.Saver(variable_map).save( sess=sess, save_path=save_path, write_meta_graph=False, global_step=global_step) def _add_deferred_restoration(layer, deferred_restoration): """Add a deferred restoration to this Layer and all children. Restorations which are requested later have higher priority, and the highest priority matching restoration is applied to a variable when it is created. Args: layer: The Layer (may not be a Network) to operate on. deferred_restoration: A _DeferredRestoration object. """ # Networks don't create variables at the moment, so this append isn't strictly # necessary. We could get by with only adding deferred restorations to # non-Network Layers. if isinstance(layer, Network): layer._set_scope() # Make sure this Layer has a deferred restoration queue and a custom getter, # then add our request to it. if not hasattr(layer, "_custom_getter"): assert not hasattr(layer, "_deferred_restorations") layer._custom_getter, layer._deferred_restorations = ( _make_custom_getter_for_deferred_restorations()) # We use set_custom_getter because it avoids recursively calling up the # variable_scope tree. We've done the tree traversal ourselves and have added # the request to each Layer which needs it. layer._scope.set_custom_getter(layer._custom_getter) layer._deferred_restorations.append(deferred_restoration) if isinstance(layer, Network): for sublayer in layer.layers: if not isinstance(sublayer, Network): layer._set_scope_for_nonnetwork_sublayer(sublayer) _add_deferred_restoration(sublayer, deferred_restoration) def _restore_existing_variables(network, save_path, map_func, user_map_func): """Use a standard Saver to restore existing variables from a checkpoint. Args: network: A Network object to restore. save_path: The checkpoint prefix or directory to read from. map_func: The function to use when mapping from variable names to checkpoint names. user_map_func: The original map_func passed by the user, for error checking. Returns: A dictionary mapping from checkpoint names to variable objects which have been restored (for bookkeeping to avoid deferred restorations on these variables). Raises: ValueError: If there is a name collision. """ existing_variables_by_checkpoint_name = {} for variable in network.variables: checkpoint_name = map_func(variable._shared_name) if existing_variables_by_checkpoint_name.setdefault( checkpoint_name, variable) is not variable: if user_map_func is None: raise ValueError( _default_naming_conflict_error_message( mapped_name=checkpoint_name, first_variable=existing_variables_by_checkpoint_name[ checkpoint_name], second_variable=variable, network_name=network.name, network_scope_name=network.scope_name)) else: raise ValueError( _restore_custom_map_func_error_message( mapped_name=checkpoint_name, first_variable=existing_variables_by_checkpoint_name[ checkpoint_name], second_variable=variable, network_name=network.name, network_scope_name=network.scope_name)) if existing_variables_by_checkpoint_name: if context.executing_eagerly(): sess = None else: sess = ops.get_default_session() saver_lib.Saver(var_list=existing_variables_by_checkpoint_name).restore( sess=sess, save_path=save_path) return existing_variables_by_checkpoint_name def _set_restore_on_create(network, save_path, map_func, user_map_func, existing_variables_by_checkpoint_name): """If necessary, request deferred restorations of variables.""" checkpoint_reader = checkpoint_utils.load_checkpoint(save_path) checkpointed_variables_to_restore = {} for checkpoint_name, _ in checkpoint_utils.list_variables(save_path): if checkpoint_name in existing_variables_by_checkpoint_name: # This variable was already created and restored. continue # Save the variable for later restoration in a custom getter. checkpointed_variables_to_restore[checkpoint_name] = ( checkpoint_reader.get_tensor(checkpoint_name)) # Only set a deferred restoration if there are checkpoint variables which # have not been assigned to existing variables. Note that this loses out on # some opportunity for error checking, but avoids creating # _DeferredRestoration objects once a Network has been built (so that # restoring in a loop does not take increasing amounts of memory). if checkpointed_variables_to_restore: if context.executing_eagerly(): sess = None else: sess = ops.get_default_session() # We need a name for error messages. If we haven't been added to another # Network yet, we're top-level. network._finalize_name(False) network._set_scope() # Save a record of this restoration for use in the custom getter. deferred_restoration = _DeferredRestoration( map_func=map_func, map_func_is_user=(user_map_func is not None), checkpointed_variables_to_restore=checkpointed_variables_to_restore, restored_variables={}, session=sess, network_name=network.name, network_scope_name=network.scope_name) # Add the deferred registration to non-Network children, and request that # Networks propagate the request to their children. _add_deferred_restoration(network, deferred_restoration) @deprecation.deprecated( date=None, instructions=( "Please inherit from tf.keras.Model instead of tfe.Network, and use " "tf.keras.Model.load_weights.")) def restore_network_checkpoint(network, save_path, map_func=None): """Restore the Network from a checkpoint. If variables have already been created (typically when some or all of the `Network` is built), they are assigned values from the checkpoint immediately, overwriting any existing values (in graph mode the default session is used for the assignments). If there are checkpoint entries which do not correspond to any existing variables in the `Network`, these values are saved for deferred restoration; their initial values will be the checkpointed values once they are created. Requests for multiple deferred restorations behave the same way as immediate restorations, in that later requests will take priority over earlier requests relevant to the same variable. If this `Network` shares `Layer`s with another network, those `Layer`s will also have their variables restored from the checkpoint. Args: network: A Network object to restore. save_path: The return value of `tfe.save_network_checkpoint`, or a directory to search for a checkpoint. map_func: A function mapping fully qualified variable names (e.g. 'my_network_1/dense_1/kernel') to names in the checkpoint. By default (if `map_func=None`), the variable prefix for the network being restored (`Network.scope_name + '/'`, e.g. 'my_network_1/') is stripped and all other variable names (shared with other Networks) are left unchanged. Note that this is the _same_ map_func as `tfe.save_network_checkpoint`, not an inverse mapping. """ network._finalize_name(parent_network=False) network._set_scope() # scope_name should be available to map_funcs if os.path.isdir(save_path): # If we don't have a name yet, set no parent. save_path = os.path.join(save_path, network.name.replace("/", "_")) user_map_func = map_func if map_func is None: map_func = _make_prefix_stripping_map_fn(network.scope_name) # Step one is to restore any existing variables from the checkpoint. existing_variables_by_checkpoint_name = _restore_existing_variables( network=network, save_path=save_path, map_func=map_func, user_map_func=user_map_func) # Step two is to set a custom getter which restores variables on creation, # for those variables which have not been added to sub-Layers yet. _set_restore_on_create( network=network, save_path=save_path, map_func=map_func, user_map_func=user_map_func, existing_variables_by_checkpoint_name=( existing_variables_by_checkpoint_name))
tensorflow-master
tensorflow/contrib/eager/python/network.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Metrics classes for computing the output of an evaluation.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import re from tensorflow.python.eager import context from tensorflow.python.eager import function from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import smart_cond from tensorflow.python.ops import array_ops from tensorflow.python.ops import check_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import summary_ops_v2 as summary_ops from tensorflow.python.ops import variable_scope from tensorflow.python.training.tracking import base as trackable _to_replace = re.compile("[^A-Za-z0-9.]") class Metric(trackable.Trackable): """A metric holds state for aggregating statistics over an evaluation run. Example use with eager execution: ```python m = SomeMetric(...) for input in ...: m(input) print(m.result()) ``` Example use with graph execution: ```python m = SomeMetric(...) inputs = ... # Some tensors to compute the metric on. m_update = m(inputs) # Variables defined in first call, so get the initialization op afterwards. m_init = m.init_variables() # or tf.compat.v1.global_variables_initializer() m_result = m.result() with tf.compat.v1.Session() as sess: sess.run(m_init) for input in ...: sess.run(m_update) print(sess.run(m_result)) ``` Example use with graph execution with placeholders and feed_dict: ```python m = SomeMetric(...) m_placeholder = tf.compat.v1.placeholder(...) m_update = m(m_placeholder) # Variables defined in first call, so get the initialization op afterwards. m_init = m.init_variables() # or tf.compat.v1.global_variables_initializer() m_result = m.result() with tf.compat.v1.Session() as sess: sess.run(m_init) for input in ...: sess.run(m_update, feed_dict={m_placeholder: input}) print(sess.run(m_result)) ``` Descendants will implement: * `build()`: All variables should be created in this method, by calling `self.add_variable()` as in: `self.var = self.add_variable(...)` build() will be called in the first invocation of `__call__()`, with the same arguments passed `call()`. * `call()`: Has all updates to variables, as in: self.var.assign_add(...) * `result()`: Computes and returns a final value for the metric from the variables in `self`. Descendants may override `aggregate()`, but usually won't need to. It adds in the state from a list of metrics of the same type as `self`. (Default is to sum all the variables.) Note that users should not call `aggregate()`, it is for use by TensorFlow infrastructure. """ def __init__(self, name=None, use_global_variables=False): self._built = False self._vars = [] self._initial_values = {} self._updates = [] self._use_global_variables = use_global_variables name = name or self.__class__.__name__ # Replace things like spaces in name to create a valid scope name. scope_name = _to_replace.sub("_", name) # We create the variable scope now to get the unique name that will # be used as a variable prefix when build() calls add_variable(). with variable_scope.variable_scope( scope_name, use_resource=True, reuse=False) as scope: pos = scope.name.rfind(scope_name) self._name = name + scope.name[pos + len(scope_name):] self._scope = scope # Ensures that if the user calls build directly we still set self._built to # True to prevent variables from being recreated. self._build = self.build def actual_build(*args, **kwargs): self._build(*args, **kwargs) self._built = True self.build = actual_build self.build.__doc__ = self._build.__doc__ # Captures construction scope for proper initialization. if context.executing_eagerly(): self._construction_scope = context.eager_mode else: # We make self.call() into a graph callable here, so that we can # return a single op that performs all of the variable updates. self._construction_scope = ops.get_default_graph().as_default self.call = function.defun(self.call) # ---- API for users ---- def __call__(self, *args, **kwargs): """Returns op to execute to update this metric for these inputs. Returns None if eager execution is enabled. Returns a graph-mode function if graph execution is enabled. Args: *args: **kwargs: A mini-batch of inputs to the Metric, passed on to `call()`. """ if not self._built: with variable_scope.variable_scope( self._scope), self._construction_scope(): self.build(*args, **kwargs) self._built = True return self.call(*args, **kwargs) @property def name(self): return self._name @property def variables(self): return self._vars def init_variables(self): """Initializes this Metric's variables. Should be called after variables are created in the first execution of `__call__()`. If using graph execution, the return value should be `run()` in a session before running the op returned by `__call__()`. (See example above.) Returns: If using graph execution, this returns an op to perform the initialization. Under eager execution, the variables are reset to their initial values as a side effect and this function returns None. """ if context.executing_eagerly(): for v in self._vars: v.assign(self._initial_values[v]) else: return control_flow_ops.group([v.initializer for v in self._vars]) # ---- To be implemented by descendants --- def build(self, *args, **kwargs): """Method to create variables. Called by `__call__()` before `call()` for the first time. Args: *args: **kwargs: The arguments to the first invocation of `__call__()`. `build()` may use the shape and/or dtype of these arguments when deciding how to create variables. """ raise NotImplementedError("Metrics must define a build() member function") def call(self, *args, **kwargs): """Accumulates statistics for the metric. Users should use __call__ instead. Note: This function is executed as a graph function in graph mode. This means: a) Operations on the same resource are executed in textual order. This should make it easier to do things like add the updated value of a variable to another, for example. b) You don't need to worry about collecting the update ops to execute. All update ops added to the graph by this function will be executed. As a result, code should generally work the same way with graph or eager execution. Args: *args: **kwargs: A mini-batch of inputs to the Metric, as passed to `__call__()`. """ raise NotImplementedError("Metrics must define a call() member function") def result(self): # TODO(josh11b): Add an optional summary_writer parameter. """Computes and returns a final value for the metric.""" raise NotImplementedError("Metrics must define a result() member function") def value(self): """In graph mode returns the result Tensor while in eager the callable.""" if context.executing_eagerly(): return self.result else: return self.result() # We can support two different strategies of for doing data-parallel # distributed metric computations: # * Put metric variables on the first device and rely on small # bandwidth needed to do updates. (Doesn't require any particular # code in Metric implementations.) # * Ask each type of metric to define an aggregation method to run # at the end of eval to merge across devices. Note: this is good # for the use case where they want to record the metric's state # for each example and then later decide which examples they want # to aggregate over. (Recommended -- not too much harder and adds # flexibility over previous option.) # I'm going with the second strategy since we can define a default # implementation of aggregate() that will work for most descendants. def aggregate(self, metrics): """Adds in the state from a list of metrics. Default implementation sums all the metric variables. Args: metrics: A list of metrics with the same type as `self`. Raises: ValueError: If metrics contains invalid data. """ for m in metrics: if type(self) != type(m): # pylint: disable=unidiomatic-typecheck raise TypeError("All metrics must be the same type, '%s' != '%s'." % (type(self), type(m))) # pylint: disable=protected-access for i in range(len(self._vars)): if any(m._vars[i].name != self._vars[i].name for m in metrics): raise ValueError("All metrics must have variables in the same order.") self._vars[i].assign_add(math_ops.add_n([m._vars[i] for m in metrics])) # pylint: enable=protected-access # ---- For use by descendants --- def add_variable(self, name, shape=None, dtype=None, initializer=None): """***Only for use by descendants of Metric***.""" if self._built: raise RuntimeError("Can't call add_variable() except in build().") if context.executing_eagerly(): collections = None else: if self._use_global_variables: collections = [ops.GraphKeys.GLOBAL_VARIABLES] else: collections = [ops.GraphKeys.LOCAL_VARIABLES] collections += [ops.GraphKeys.METRIC_VARIABLES] # Variables are Trackable dependencies of Metrics regardless of the # global/local distinction. Users can avoid saving variables by not adding a # dependency on the Metric. v = self._add_variable_with_custom_getter( name=name, shape=shape, dtype=dtype, initializer=initializer, trainable=False, collections=collections, use_resource=True, getter=variable_scope.get_variable, # Raise duplicate variable exceptions from get_variable rather than # Trackable. overwrite=True) self._vars.append(v) if context.executing_eagerly(): self._initial_values[v] = v.value() return v class Mean(Metric): """Computes the (weighted) mean of the given values.""" def __init__(self, name=None, dtype=dtypes.float64, use_global_variables=False): super(Mean, self).__init__(name=name, use_global_variables=use_global_variables) self.dtype = dtype def build(self, *args, **kwargs): # build() does not use call's arguments, by using *args, **kwargs # we make it easier to inherit from Mean(). del args, kwargs self.numer = self.add_variable(name="numer", shape=(), dtype=self.dtype, initializer=init_ops.zeros_initializer) self.denom = self.add_variable(name="denom", shape=(), dtype=self.dtype, initializer=init_ops.zeros_initializer) def call(self, values, weights=None): """Accumulate statistics for computing the mean. For example, if values is [1, 3, 5, 7] then the mean is 4. If the weights were specified as [1, 1, 0, 0] then the mean would be 2. Args: values: Tensor with the per-example value. weights: Optional weighting of each example. Defaults to 1. Returns: The arguments, for easy chaining. """ if weights is None: self.denom.assign_add( math_ops.cast(array_ops.identity(array_ops.size(values)), self.dtype)) values = math_ops.reduce_sum(values) self.numer.assign_add(math_ops.cast(values, self.dtype)) else: weights = math_ops.cast(weights, self.dtype) self.denom.assign_add(math_ops.reduce_sum(weights)) values = math_ops.cast(values, self.dtype) * weights self.numer.assign_add(math_ops.reduce_sum(values)) if weights is None: return values return values, weights def result(self, write_summary=True): """Returns the result of the Metric. Args: write_summary: bool indicating whether to feed the result to the summary before returning. Returns: aggregated metric as float. Raises: ValueError: if the optional argument is not bool """ # Convert the boolean to tensor for tf.cond, if it is not. if not isinstance(write_summary, ops.Tensor): write_summary = ops.convert_to_tensor(write_summary) t = self.numer / self.denom def write_summary_f(): summary_ops.scalar(name=self.name, tensor=t) return t smart_cond.smart_cond(write_summary, write_summary_f, lambda: t, name="") return t class Accuracy(Mean): """Calculates how often `predictions` matches `labels`. Attributes: name: name of the accuracy object dtype: data type of the tensor """ def __init__(self, name=None, dtype=dtypes.float64): """Inits Accuracy class with name and dtype.""" super(Accuracy, self).__init__(name=name, dtype=dtype) def call(self, labels, predictions, weights=None): """Accumulate accuracy statistics. For example, if labels is [1, 2, 3, 4] and predictions is [0, 2, 3, 4] then the accuracy is 3/4 or .75. If the weights were specified as [1, 1, 0, 0] then the accuracy would be 1/2 or .5. `labels` and `predictions` should have the same shape and type. Args: labels: Tensor with the true labels for each example. One example per element of the Tensor. predictions: Tensor with the predicted label for each example. weights: Optional weighting of each example. Defaults to 1. Returns: The arguments, for easy chaining. """ check_ops.assert_equal( array_ops.shape(labels), array_ops.shape(predictions), message="Shapes of labels and predictions are unequal") matches = math_ops.equal(labels, predictions) matches = math_ops.cast(matches, self.dtype) super(Accuracy, self).call(matches, weights=weights) if weights is None: return labels, predictions return labels, predictions, weights class CategoricalAccuracy(Mean): """Calculates how often `predictions` matches `labels`. This class is compatible with `tf.keras.losses.categorical_crossentropy`, `tf.nn.softmax_cross_entropy_with_logits`, `tf.compat.v1.losses.softmax_cross_entropy`. Attributes: name: name of the accuracy object. dtype: data type of tensor. """ def __init__(self, name=None, dtype=dtypes.float64): """Inits CategoricalAccuracy with name and dtype.""" super(CategoricalAccuracy, self).__init__(name=name, dtype=dtype) def call(self, labels, predictions, weights=None): """Accumulate accuracy statistics. `labels` and `predictions` should have the same shape. As argmax is being done here, labels and predictions type can be different. Args: labels: One-hot Tensor. predictions: Tensor with the logits or probabilities for each example. weights: Optional weighting of each example. Defaults to 1. Returns: The arguments, for easy chaining. """ check_ops.assert_equal( array_ops.shape(labels), array_ops.shape(predictions), message="Shapes of labels and predictions are unequal") labels = math_ops.argmax(labels, axis=-1) predictions = math_ops.argmax(predictions, axis=-1) matches = math_ops.equal(labels, predictions) matches = math_ops.cast(matches, self.dtype) super(CategoricalAccuracy, self).call(matches, weights=weights) if weights is None: return labels, predictions return labels, predictions, weights class BinaryAccuracy(Mean): """Calculates how often `predictions` matches `labels`. This class is compatible with `tf.keras.losses.binary_crossentropy`, `tf.compat.v1.losses.sigmoid_cross_entropy`, `tf.nn.sigmoid_cross_entropy_with_logits`. If there is more than one label, this will become multi-label classification. Attributes: name: name of the accuracy object. threshold: Used for rounding off the predictions. If the predictions are, 1. probabilities then set the threshold to 0.5. 2. logits then set the threshold to 0. You can set the threshold appropriately, to trade off with precision and recall. dtype: data type of tensor. """ def __init__(self, threshold, name=None, dtype=dtypes.float64): """Inits BinaryAccuracy with name, threshold and dtype.""" super(BinaryAccuracy, self).__init__(name=name, dtype=dtype) self.threshold = threshold def call(self, labels, predictions, weights=None): """Accumulate accuracy statistics. `labels` and `predictions` should have the same shape and type. Args: labels: Binary Tensor(containing 0 or 1). predictions: Tensor with probabilities or logits. weights: Optional weighting of each example. Defaults to 1. Returns: The arguments, for easy chaining. """ check_ops.assert_equal( array_ops.shape(labels), array_ops.shape(predictions), message="Shapes of labels and predictions are unequal") predictions = ops.convert_to_tensor(predictions) predictions = predictions > self.threshold # Convert labels to bool to match predictions. labels = math_ops.cast(labels, dtypes.bool) matches = math_ops.equal(labels, predictions) matches = math_ops.cast(matches, self.dtype) super(BinaryAccuracy, self).call(matches, weights=weights) if weights is None: return labels, predictions return labels, predictions, weights class SparseAccuracy(Mean): """Calculates how often `predictions` matches `labels`. This class is compatible with `tf.keras.losses.sparse_categorical_crossentropy`, `tf.nn.sparse_softmax_cross_entropy_with_logits`, `tf.compat.v1.losses.sparse_softmax_cross_entropy`. Attributes: name: name of the accuracy object dtype: data type of tensor. """ def __init__(self, name=None, dtype=dtypes.float64): """Inits SparseAccuracy with name and dtype.""" super(SparseAccuracy, self).__init__(name=name, dtype=dtype) def call(self, labels, predictions, weights=None): """Accumulate accuracy statistics. `labels` and `predictions` should have the same shape except the predictions must have one additional trailing dimension equal to the number of classes(you want to predict). Type of labels and predictions can be different. Args: labels: Tensor of shape (batch_size, ) containing integers predictions: Tensor with the logits or probabilities for each example. weights: Optional weighting of each example. Defaults to 1. Returns: The arguments, for easy chaining. """ check_ops.assert_equal( array_ops.shape(labels), array_ops.shape(predictions)[0], message="First axis of labels and predictions is unequal") predictions = math_ops.argmax(predictions, axis=-1) labels = math_ops.cast(labels, dtypes.int64) matches = math_ops.equal(labels, predictions) matches = math_ops.cast(matches, self.dtype) super(SparseAccuracy, self).call(matches, weights=weights) if weights is None: return labels, predictions return labels, predictions, weights
tensorflow-master
tensorflow/contrib/eager/python/metrics_impl.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Class Evaluator holds Metrics for the duration of an evaluation run.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import six from tensorflow.contrib.eager.python import datasets from tensorflow.contrib.eager.python import metrics from tensorflow.python.data.ops import dataset_ops from tensorflow.python.eager import context from tensorflow.python.eager import function from tensorflow.python.framework import errors_impl from tensorflow.python.framework import ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import summary_ops_v2 as summary_ops class Evaluator(object): """This holds and updates Metrics for the duration of a single eval run. Usage: evaluator = my_model.evaluator() # or MyEvaluator(my_model) for example_batch in ...: evaluator(example_batch) results = evaluator.all_metric_results(optional_summary_logdir) Or, if you are getting your examples from a tf.data.Dataset, you can use the evaluate_on_dataset() method. Implementers of Evaluators should (a) Call `track_metric()` and/or `track_evaluator()` in __init__(). (b) Override the `call()` method. It will be passed the output of the model's `eval_data()` method, and should call its contained metrics (treating them as callables) and any child Evaluators (using their call() method to avoid calling eval_data() again). Args: model: A `Model` object with an `eval_data()` method. """ def __init__(self, model): self._model = model self._metrics = {} self._evaluators = {} if not context.executing_eagerly(): self.call = function.defun(self.call) # ---- API for users ---- def __call__(self, *args, **kwargs): """Update metrics with a minibatch of input examples. Args: *args: **kwargs: Arguments representing an input mini-batch of examples to pass to self.model.eval_data(). Returns: The op to execute or None if executing eagerly. """ return self.call(self._model.eval_data(*args, **kwargs)) def init_variables(self): """Return an op for initializing all contained uninitialized variables. Only for graph execution. Should be called after variables are created in the first execution of __call__(). Returns: An op. Raises: RuntimeError: if eager execution is enabled. @compatibility(eager) Only for graph execution. @end_compatibility """ if context.executing_eagerly(): raise RuntimeError("Evaluator.init_variables() not needed when " "eager execution is enabled.") return control_flow_ops.group([m.init_variables() for _, m in self.metrics]) def all_metric_results(self, summary_logdir=None): """Computes results for all contained metrics. Args: summary_logdir: An optional string. If specified, metric results will be written as summaries to this directory. Returns: A `dict` mapping string names to tensors. """ if summary_logdir is None: with summary_ops.never_record_summaries(): return self._all_metric_results() else: def f(): with summary_ops.create_file_writer( summary_logdir).as_default(), summary_ops.always_record_summaries(): return self._all_metric_results() if context.executing_eagerly(): return f() else: return function.defun(f)() def _all_metric_results(self): """Implementation of `all_metric_results` in the summary context.""" results = {} for name, metric in six.iteritems(self._metrics): results[name] = metric.result() for prefix, evaluator in six.iteritems(self._evaluators): for name, metric in six.iteritems(evaluator._metrics): # pylint: disable=protected-access results[prefix + "/" + name] = metric.result() return results def evaluate_on_dataset(self, dataset, *args, **kwargs): """Convenience method for performing an eval on a Dataset. Args: dataset: Dataset object with the input data to evaluate on. *args: **kwargs: Optional additional arguments to __call__(), except `summary_logdir`: if specified, metrics will be written as summaries to this directory. Returns: @compatibility(eager) When eager execution is enabled, this returns the result of performing an evaluation as a dictionary. With graph execution, this returns a tuple (init_op, call_op, results_op) which may be executed using this code: ```python sess.run(init_op) try: while True: sess.run(call_op) except tf.errors.OutOfRangeError: pass return sess.run(results_op) # A dictionary # equivalently: return evaluator.run_evaluation(init_op, call_op, results_op, sess=sess) ``` @end_compatibility """ summary_logdir = kwargs.pop("summary_logdir", None) if context.executing_eagerly(): for example in datasets.Iterator(dataset): self.__call__(example, *args, **kwargs) return self.all_metric_results(summary_logdir) # Graph construction next_value = dataset_ops.make_one_shot_iterator(dataset).get_next() # Function inlining destroys strict inputs semantics (function body might # start execution before all inputs are ready). When iterator is exhausted # and throws out of range error, function body might be partially executed. # To prevent this we add an explicit control dependency from the 'get_next'. with ops.control_dependencies([next_value]): has_next_value = control_flow_ops.no_op(name="iterator_has_next") with ops.control_dependencies([has_next_value]): call_op = self.__call__(next_value, *args, **kwargs) init_op = self.init_variables() results_op = self.all_metric_results(summary_logdir) return (init_op, call_op, results_op) @staticmethod def run_evaluation(init_op, call_op, results_op, sess=None): """Convenience method for running the ops returned by evaluate_on_dataset. Args: init_op: An op that initializes/resets evaluation state. call_op: An op that updates evaluation state on a mini-batch of examples. Must generate an tf.errors.OutOfRangeError when done. results_op: A dictionary of tensors that compute the final evaluation results from the evaluation state. sess: The Session to run the evaluation in. Defaults to the default Session. Returns: A dictionary of values, parallel to results_op. Raises: RuntimeError: if eager execution is enabled. @compatibility(eager) Only for graph execution. @end_compatibility """ if context.executing_eagerly(): raise RuntimeError("Evaluator.run_evaluation() not supported when " "eager execution is enabled.") sess = sess or ops.get_default_session() sess.run(init_op) try: while True: sess.run(call_op) except errors_impl.OutOfRangeError: pass return sess.run(results_op) # ---- To be implemented by descendants --- def call(self, eval_data): """Update metrics using the output of self.model. Note: This function is executed as a graph function in graph mode. This means: a) Operations on the same resource are executed in textual order. This should make it easier to do things like add the updated value of a variable to another, for example. b) You don't need to worry about collecting the update ops to execute. All update ops added to the graph by this function will be executed. As a result, code should generally work the same way with graph or eager execution. Args: eval_data: The output of self.model.eval_data() on a mini-batch of examples. """ raise NotImplementedError("Evaluators must define a call member function.") # ---- For use by descendants --- @property def model(self): return self._model def track_metric(self, metric): """Add a Metric to be tracked. Metrics can only be tracked by one `Evaluator`. Metrics must be tracked or they will not appear in `all_metric_results()`. Args: metric: A `Metric` object. Returns: The `metric` passed into this function. Raises: RuntimeError: If called before __init__. TypeError: If `metric` is not of the correct type. ValueError: If there is a name collision between Metrics or `metric` has already been added to another `Evaluator`. """ if not hasattr(self, "_metrics"): raise RuntimeError( "Need to call Evaluator.__init__ before adding metrics") if not isinstance(metric, metrics.Metric): raise TypeError( "Evaluator.track_metric() passed type %s, not a tfe.metrics.Metric" % (type(metric),)) if metric.name in self._metrics: if metric is self._metrics[metric.name]: return metric raise ValueError( "Attempt to add two Metrics with the name '%s' to the same Evaluator " "'%s'" % (metric.name, self.name)) # pylint: disable=protected-access if hasattr(metric, "_added_to_an_evaluator"): raise ValueError("Metric %s already added to Evaluator %s" % (metric.name, metric._added_to_an_evaluator)) metric._added_to_an_evaluator = self.__class__.__name__ # pylint: enable=protected-access self._metrics[metric.name] = metric return metric def track_evaluator(self, prefix, evaluator): """Add a contained `Evaluator`. This is for delegating to another `Evaluator`, e.g. for when you have a model with multiple heads. Users should manually invoke the child `Evaluator`'s `call` method from their `call` method. Args: prefix: A string. Metrics from `evaluator` are exported with this prefix and a '/'. evaluator: An `Evaluator` object. Returns: The value of `evaluator` passed into this function. Raises: RuntimeError: If called before __init__. TypeError: If `evaluator` is not of the correct type. ValueError: If an `Evaluator` has already been added with that `prefix`. """ if not hasattr(self, "_evaluators"): raise RuntimeError( "Need to call Evaluator.__init__ before adding evaluators") if not isinstance(evaluator, Evaluator): raise TypeError( "Evaluator.track_evaluator() passed type %s, not a tfe.Evaluator." % (type(evaluator),)) if prefix in self._evaluators: if evaluator is self._evaluators[prefix]: return evaluator raise RuntimeError( "Attempt to add two Evaluators with the same prefix '%s'." % prefix) self._evaluators[prefix] = evaluator return evaluator @property def metric_variables(self): v = [] for metric in six.itervalues(self._metrics): v += metric.variables for evaluator in six.itervalues(self._evaluators): v += evaluator.metric_variables return v @property def metrics(self): """Returns a list of (prefix, metric) pairs.""" m = [] for metric in six.itervalues(self._metrics): m.append(("", metric)) for prefix, evaluator in six.iteritems(self._evaluators): m += [(prefix + "/" + p, m) for p, m in evaluator.metrics] return m class SparseSoftmaxEvaluator(Evaluator): """Evaluator for a sparse softmax model. Computes a standard set of metrics for single-label, multi-class models. Args: model: A `SparseSoftmaxModel` object or a `Model` whose `eval_data()` method produces a `dict` containing values for the loss, true label, predicted class, and optional weights. loss_key: Optional key for looking up the value of the loss in the `eval_data()` dict. Defaults to "loss". label_key: Optional key for looking up the value of the label in the `eval_data()` dict. Defaults to "label". predicted_class_key: Optional key for looking up the value of the predicted class in the `eval_data()` dict. Defaults to "predicted_class". weights_key: Optional key for looking up the value of the weights in the `eval_data()` dict. Defaults to "weights". Note that weights are optional, and default to 1 if not present in `eval_data`. """ def __init__(self, model, loss_key="loss", label_key="label", predicted_class_key="predicted_class", weights_key="weights"): super(SparseSoftmaxEvaluator, self).__init__(model) # TODO(josh11b): Expand this to include everything from the standard # SparseSoftmax Head. self.avg_loss = self.track_metric(metrics.Mean("Avg Loss")) self.accuracy = self.track_metric(metrics.Accuracy()) self.loss_key = loss_key self.label_key = label_key self.predicted_class_key = predicted_class_key self.weights_key = weights_key def call(self, eval_data): """Update metrics for `eval_data` dict (described above).""" weights = eval_data.get(self.weights_key, None) if weights is None: self.avg_loss(eval_data[self.loss_key]) self.accuracy(eval_data[self.label_key], eval_data[self.predicted_class_key]) else: self.avg_loss(eval_data[self.loss_key], weights=weights) self.accuracy(eval_data[self.label_key], eval_data[self.predicted_class_key], weights=weights)
tensorflow-master
tensorflow/contrib/eager/python/evaluator.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """EXPERIMENTAL utilities for parameter server training with eager execution. Note: this should eventually be merged with the distribution strategy for ParameterServer. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import contextlib import time from tensorflow.python.eager import context from tensorflow.python.framework import ops from tensorflow.python.ops import resource_variable_ops from tensorflow.python.ops import variable_scope from tensorflow.python.training.tracking import base as trackable def _eager_safe_variable_handle(shape, dtype, shared_name, name, graph_mode): """Creates a variable handle with information to do shape inference.""" container = ops.get_default_graph()._container # pylint: disable=protected-access if container is None: container = "" handle = resource_variable_ops.var_handle_op(shape=shape, dtype=dtype, shared_name=shared_name, name=name, container=container) if graph_mode: return handle with context.graph_mode(), ops.Graph().as_default() as graph: h = resource_variable_ops.var_handle_op(shape=shape, dtype=dtype, shared_name=shared_name, name=name, container=container) # Tensor._handle_data contains information for the shape-inference code to # know the shape and dtype of the variable pointed to by a handle. Since # shape inference doesn't run in eager mode we copy this data here for when # the handle is captured by an eager mode function. # pylint: disable=protected-access handle._handle_data = resource_variable_ops.get_resource_handle_data(h) # pylint: enable=protected-access # Clean up op->graph->op reference cycles. ops.dismantle_graph(graph) return handle class SharedVariable(resource_variable_ops.BaseResourceVariable): """Experimental Variable designed for parameter server training. A SharedVariable has a name and two instances of SharedVariable with the same name will have the same value, even if they are in different Sessions, as long as they are placed on the same device. The storage associated with SharedVariables is also not deleted when they go out of scope. """ def __init__(self, # pylint: disable=super-init-not-called initial_value=None, trainable=True, name=None, dtype=None, constraint=None, initialize=True, **unused_kwargs): """Creates a variable. Args: initial_value: A `Tensor`, or Python object convertible to a `Tensor`, which is the initial value for the Variable. The initial value must have a shape specified unless `validate_shape` is set to False. Can also be a callable with no argument that returns the initial value when called. (Note that initializer functions from init_ops.py must first be bound to a shape before being used here.) trainable: If `True`, automatically watches this variable on GradientTape whenever it's used. name: Optional name for the variable. Defaults to `'Variable'` and gets uniquified automatically. dtype: If set, initial_value will be converted to the given type. If None, either the datatype will be kept (if initial_value is a Tensor) or float32 will be used (if it is a Python object convertible to a Tensor). constraint: An optional projection function to be applied to the variable after being updated by an `Optimizer` (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected Tensor representing the value of the variable and return the Tensor for the projected value (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training. initialize: if True, runs initialization in eager execution; leaves the variable uninitialized otherwise. Raises: ValueError: If the initial value is not specified, or does not have a shape and `validate_shape` is `True`. """ if initial_value is None: raise ValueError("initial_value must be specified.") init_from_fn = callable(initial_value) if isinstance(initial_value, ops.Tensor) and hasattr( initial_value, "graph") and initial_value.graph.building_function: raise ValueError("Tensor-typed variable initializers must either be " "wrapped in an init_scope or callable " "(e.g., `tf.Variable(lambda : " "tf.truncated_normal([10, 40]))`) when building " "functions. Please file a feature request if this " "restriction inconveniences you.") if constraint is not None and not callable(constraint): raise ValueError("The `constraint` argument must be a callable.") if isinstance(initial_value, trackable.CheckpointInitialValue): self._maybe_initialize_trackable() self._update_uid = initial_value.checkpoint_position.restore_uid initial_value = initial_value.wrapped_value self._trainable = trainable self._save_slice_info = None # Store the graph key so optimizers know how to only retrieve variables from # this graph. self._graph_key = ops.get_default_graph()._graph_key # pylint: disable=protected-access with ops.init_scope(): self._in_graph_mode = not context.executing_eagerly() with ops.name_scope(name, "Variable", [] if init_from_fn else [initial_value]) as name: # pylint: disable=protected-access handle_name = ops.name_from_scope_name(name) shared_name = handle_name if init_from_fn: # Use attr_scope and device(None) to simulate the behavior of # colocate_with when the variable we want to colocate with doesn't # yet exist. if self._in_graph_mode: with ops.name_scope("Initializer"), ops.device(None): initial_value = ops.convert_to_tensor( initial_value(), name="initial_value", dtype=dtype) self._handle = _eager_safe_variable_handle( shape=initial_value.get_shape(), dtype=initial_value.dtype.base_dtype, shared_name=shared_name, name=name, graph_mode=self._in_graph_mode) self._shape = initial_value.get_shape() else: initial_value = initial_value() with ops.name_scope("Initializer"): initial_value = ops.convert_to_tensor( initial_value, name="initial_value", dtype=dtype) self._handle = _eager_safe_variable_handle( shape=initial_value.get_shape(), dtype=initial_value.dtype.base_dtype, shared_name=shared_name, name=name, graph_mode=False) self._shape = initial_value.get_shape() # pylint: enable=protected-access # Or get the initial value from a Tensor or Python object. else: with ops.name_scope("Initializer"): initial_value = ops.convert_to_tensor( initial_value, name="initial_value", dtype=dtype) # pylint: disable=protected-access if (self._in_graph_mode and initial_value is not None and initial_value.op._get_control_flow_context() is not None): raise ValueError( "Initializer for variable %s is from inside a control-flow " "construct, such as a loop or conditional. When creating a " "variable inside a loop or conditional, use a lambda as the " "initializer." % name) # pylint: enable=protected-access self._handle = _eager_safe_variable_handle( shape=initial_value.get_shape(), dtype=initial_value.dtype.base_dtype, shared_name=shared_name, name=name, graph_mode=self._in_graph_mode) self._shape = initial_value.get_shape() self._unique_id = shared_name self._initial_value = initial_value if self._in_graph_mode else None self._handle_name = handle_name + ":0" self._dtype = initial_value.dtype.base_dtype self._constraint = constraint if self._in_graph_mode: with ops.name_scope("IsInitialized"): self._is_initialized_op = ( resource_variable_ops.var_is_initialized_op(self._handle)) if initial_value is not None: with ops.name_scope("Assign") as n, ops.colocate_with(self._handle): self._initializer_op = ( resource_variable_ops.assign_variable_op( self._handle, self._try_guard_against_uninitialized_dependencies( initial_value), name=n)) with ops.name_scope("Read"), ops.colocate_with(self._handle): # Manually assign reads to the handle's device to avoid log # messages. with ops.device(self._handle.device): value = self._read_variable_op() self._graph_element = value self._cached_value = None else: if initialize: resource_variable_ops.assign_variable_op(self._handle, initial_value) self._is_initialized_op = None self._initializer_op = None self._graph_element = None self._cached_value = None self._handle_deleter = object() self._cached_shape_as_list = None @contextlib.contextmanager def parameter_server_scope(is_chief, ps_job_name, num_ps_tasks): """Strategy to use parameter servers in eager. Creates SharedVariable objects for variables created in this scope. These SharedVariable objects will be placed round-robin on the parameter servers specified by the ps_job_name and num_ps_tasks arguments. To use parameter servers you need only to wrap your model initialization in this scope: ``` with tf.contrib.eager.parameter_server_scope( is_chief, ps_job_name, num_ps_tasks): my_model = tf.keras.Sequential([...]) # Or input = tf.keras.Input(...) .... my_model = tf.keras.Model(input, output) my_model.compile(...) # or other usages of the model. ``` Args: is_chief: Boolean. Whether this worker is responsible for initializing variables. ps_job_name: The name of the ps job in this cluster. num_ps_tasks: The number of ps tasks to use. Yields: a context manager. """ # Note: capturing in a list to allow assignment. ps_index = [0] def variable_creator_scope(unused_next_creator, **kwargs): kwargs["initialize"] = is_chief with ops.device( "/job:%s/task:%s" % (ps_job_name, ps_index[0] % num_ps_tasks)): ps_index[0] += 1 v = SharedVariable(**kwargs) if not is_chief: while not resource_variable_ops.var_is_initialized_op(v.handle): time.sleep(10) return v with variable_scope.variable_creator_scope(variable_creator_scope): yield
tensorflow-master
tensorflow/contrib/eager/python/parameter_server.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function import tempfile import time import numpy as np import tensorflow as tf from tensorflow.contrib.eager.python.examples.gan import mnist NOISE_DIM = 100 # Big enough so that summaries are never recorded. # Lower this value if would like to benchmark with some summaries. SUMMARY_INTERVAL = 10000 SUMMARY_FLUSH_MS = 100 # Flush summaries every 100ms def data_format(): return 'channels_first' if tf.test.is_gpu_available() else 'channels_last' class MnistGraphGanBenchmark(tf.test.Benchmark): def _create_graph(self, batch_size): # Generate some random data. images_data = np.random.randn(batch_size, 784).astype(np.float32) dataset = tf.data.Dataset.from_tensors(images_data) images = tf.compat.v1.data.make_one_shot_iterator( dataset.repeat()).get_next() # Create the models and optimizers generator = mnist.Generator(data_format()) discriminator = mnist.Discriminator(data_format()) with tf.variable_scope('generator'): generator_optimizer = tf.train.AdamOptimizer(0.001) with tf.variable_scope('discriminator'): discriminator_optimizer = tf.train.AdamOptimizer(0.001) # Run models and compute loss noise_placeholder = tf.placeholder(tf.float32, shape=[batch_size, NOISE_DIM]) generated_images = generator(noise_placeholder) tf.contrib.summary.image('generated_images', tf.reshape(generated_images, [-1, 28, 28, 1]), max_images=10) discriminator_gen_outputs = discriminator(generated_images) discriminator_real_outputs = discriminator(images) generator_loss = mnist.generator_loss(discriminator_gen_outputs) discriminator_loss = mnist.discriminator_loss(discriminator_real_outputs, discriminator_gen_outputs) # Get train ops with tf.variable_scope('generator'): generator_train = generator_optimizer.minimize( generator_loss, var_list=generator.variables) with tf.variable_scope('discriminator'): discriminator_train = discriminator_optimizer.minimize( discriminator_loss, var_list=discriminator.variables) return (generator_train, discriminator_train, noise_placeholder) def _report(self, test_name, start, num_iters, batch_size): avg_time = (time.time() - start) / num_iters dev = 'gpu' if tf.test.is_gpu_available() else 'cpu' name = 'graph_%s_%s_batch_%d_%s' % (test_name, dev, batch_size, data_format()) extras = {'examples_per_sec': batch_size / avg_time} self.report_benchmark( iters=num_iters, wall_time=avg_time, name=name, extras=extras) def benchmark_train(self): for batch_size in [64, 128, 256]: with tf.Graph().as_default(): global_step = tf.train.get_or_create_global_step() increment_global_step = tf.assign_add(global_step, 1) with tf.contrib.summary.create_file_writer( tempfile.mkdtemp(), flush_millis=SUMMARY_FLUSH_MS).as_default(), ( tf.contrib.summary.record_summaries_every_n_global_steps( SUMMARY_INTERVAL)): (generator_train, discriminator_train, noise_placeholder ) = self._create_graph(batch_size) with tf.Session() as sess: tf.contrib.summary.initialize(graph=tf.get_default_graph(), session=sess) sess.run(tf.global_variables_initializer()) num_burn, num_iters = (3, 100) for _ in range(num_burn): noise = np.random.uniform(-1.0, 1.0, size=[batch_size, NOISE_DIM]) # Increment global step before evaluating summary ops to avoid # race condition. sess.run(increment_global_step) sess.run([generator_train, discriminator_train, tf.contrib.summary.all_summary_ops()], feed_dict={noise_placeholder: noise}) # Run and benchmark 2 epochs start = time.time() for _ in range(num_iters): noise = np.random.uniform(-1.0, 1.0, size=[batch_size, NOISE_DIM]) sess.run(increment_global_step) sess.run([generator_train, discriminator_train, tf.contrib.summary.all_summary_ops()], feed_dict={noise_placeholder: noise}) self._report('train', start, num_iters, batch_size) def benchmark_generate(self): for batch_size in [64, 128, 256]: with tf.Graph().as_default(): # Using random weights. This will generate garbage. generator = mnist.Generator(data_format()) noise_placeholder = tf.placeholder(tf.float32, shape=[batch_size, NOISE_DIM]) generated_images = generator(noise_placeholder) init = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) noise = np.random.uniform(-1.0, 1.0, size=[batch_size, NOISE_DIM]) num_burn, num_iters = (30, 1000) for _ in range(num_burn): sess.run(generated_images, feed_dict={noise_placeholder: noise}) start = time.time() for _ in range(num_iters): # Comparison with the eager execution benchmark in mnist_test.py # isn't entirely fair as the time here includes the cost of copying # the feeds from CPU memory to GPU. sess.run(generated_images, feed_dict={noise_placeholder: noise}) self._report('generate', start, num_iters, batch_size) if __name__ == '__main__': tf.test.main()
tensorflow-master
tensorflow/contrib/eager/python/examples/gan/mnist_graph_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function import tempfile import time import tensorflow as tf from tensorflow.contrib.eager.python.examples.gan import mnist NOISE_DIM = 100 # Big enough so that summaries are never recorded. # Lower this value if would like to benchmark with some summaries. SUMMARY_INTERVAL = 10000 SUMMARY_FLUSH_MS = 100 # Flush summaries every 100ms def data_format(): return 'channels_first' if tf.test.is_gpu_available() else 'channels_last' def device(): return '/gpu:0' if tf.test.is_gpu_available() else '/cpu:0' class MnistEagerGanBenchmark(tf.test.Benchmark): def _report(self, test_name, start, num_iters, batch_size): avg_time = (time.time() - start) / num_iters dev = 'gpu' if tf.test.is_gpu_available() else 'cpu' name = 'eager_%s_%s_batch_%d_%s' % (test_name, dev, batch_size, data_format()) extras = {'examples_per_sec': batch_size / avg_time} self.report_benchmark( iters=num_iters, wall_time=avg_time, name=name, extras=extras) def benchmark_train(self): for batch_size in [64, 128, 256]: # Generate some random data. burn_batches, measure_batches = (3, 100) burn_images = [tf.random_normal([batch_size, 784]) for _ in range(burn_batches)] burn_dataset = tf.data.Dataset.from_tensor_slices(burn_images) measure_images = [tf.random_normal([batch_size, 784]) for _ in range(measure_batches)] measure_dataset = tf.data.Dataset.from_tensor_slices(measure_images) step_counter = tf.train.get_or_create_global_step() with tf.device(device()): # Create the models and optimizers generator = mnist.Generator(data_format()) discriminator = mnist.Discriminator(data_format()) with tf.variable_scope('generator'): generator_optimizer = tf.train.AdamOptimizer(0.001) with tf.variable_scope('discriminator'): discriminator_optimizer = tf.train.AdamOptimizer(0.001) with tf.contrib.summary.create_file_writer( tempfile.mkdtemp(), flush_millis=SUMMARY_FLUSH_MS).as_default(): # warm up mnist.train_one_epoch(generator, discriminator, generator_optimizer, discriminator_optimizer, burn_dataset, step_counter, log_interval=SUMMARY_INTERVAL, noise_dim=NOISE_DIM) # measure start = time.time() mnist.train_one_epoch(generator, discriminator, generator_optimizer, discriminator_optimizer, measure_dataset, step_counter, log_interval=SUMMARY_INTERVAL, noise_dim=NOISE_DIM) self._report('train', start, measure_batches, batch_size) def benchmark_generate(self): for batch_size in [64, 128, 256]: with tf.device(device()): # Using random weights. This will generate garbage. generator = mnist.Generator(data_format()) num_burn, num_iters = (30, 1000) for _ in range(num_burn): noise = tf.random_uniform(shape=[batch_size, NOISE_DIM], minval=-1., maxval=1.) generator(noise) start = time.time() for _ in range(num_iters): noise = tf.random_uniform(shape=[batch_size, NOISE_DIM], minval=-1., maxval=1.) generator(noise) self._report('generate', start, num_iters, batch_size) if __name__ == '__main__': tf.enable_eager_execution() tf.test.main()
tensorflow-master
tensorflow/contrib/eager/python/examples/gan/mnist_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A deep MNIST classifier using convolutional layers. Sample usage: python mnist.py --help """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import os import sys import time import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data layers = tf.keras.layers FLAGS = None class Discriminator(tf.keras.Model): """GAN Discriminator. A network to differentiate between generated and real handwritten digits. """ def __init__(self, data_format): """Creates a model for discriminating between real and generated digits. Args: data_format: Either 'channels_first' or 'channels_last'. 'channels_first' is typically faster on GPUs while 'channels_last' is typically faster on CPUs. See https://www.tensorflow.org/performance/performance_guide#data_formats """ super(Discriminator, self).__init__(name='') if data_format == 'channels_first': self._input_shape = [-1, 1, 28, 28] else: assert data_format == 'channels_last' self._input_shape = [-1, 28, 28, 1] self.conv1 = layers.Conv2D( 64, 5, padding='SAME', data_format=data_format, activation=tf.tanh) self.pool1 = layers.AveragePooling2D(2, 2, data_format=data_format) self.conv2 = layers.Conv2D( 128, 5, data_format=data_format, activation=tf.tanh) self.pool2 = layers.AveragePooling2D(2, 2, data_format=data_format) self.flatten = layers.Flatten() self.fc1 = layers.Dense(1024, activation=tf.tanh) self.fc2 = layers.Dense(1, activation=None) def call(self, inputs): """Return two logits per image estimating input authenticity. Users should invoke __call__ to run the network, which delegates to this method (and not call this method directly). Args: inputs: A batch of images as a Tensor with shape [batch_size, 28, 28, 1] or [batch_size, 1, 28, 28] Returns: A Tensor with shape [batch_size] containing logits estimating the probability that corresponding digit is real. """ x = tf.reshape(inputs, self._input_shape) x = self.conv1(x) x = self.pool1(x) x = self.conv2(x) x = self.pool2(x) x = self.flatten(x) x = self.fc1(x) x = self.fc2(x) return x class Generator(tf.keras.Model): """Generator of handwritten digits similar to the ones in the MNIST dataset. """ def __init__(self, data_format): """Creates a model for discriminating between real and generated digits. Args: data_format: Either 'channels_first' or 'channels_last'. 'channels_first' is typically faster on GPUs while 'channels_last' is typically faster on CPUs. See https://www.tensorflow.org/performance/performance_guide#data_formats """ super(Generator, self).__init__(name='') self.data_format = data_format # We are using 128 6x6 channels as input to the first deconvolution layer if data_format == 'channels_first': self._pre_conv_shape = [-1, 128, 6, 6] else: assert data_format == 'channels_last' self._pre_conv_shape = [-1, 6, 6, 128] self.fc1 = layers.Dense(6 * 6 * 128, activation=tf.tanh) # In call(), we reshape the output of fc1 to _pre_conv_shape # Deconvolution layer. Resulting image shape: (batch, 14, 14, 64) self.conv1 = layers.Conv2DTranspose( 64, 4, strides=2, activation=None, data_format=data_format) # Deconvolution layer. Resulting image shape: (batch, 28, 28, 1) self.conv2 = layers.Conv2DTranspose( 1, 2, strides=2, activation=tf.nn.sigmoid, data_format=data_format) def call(self, inputs): """Return a batch of generated images. Users should invoke __call__ to run the network, which delegates to this method (and not call this method directly). Args: inputs: A batch of noise vectors as a Tensor with shape [batch_size, length of noise vectors]. Returns: A Tensor containing generated images. If data_format is 'channels_last', the shape of returned images is [batch_size, 28, 28, 1], else [batch_size, 1, 28, 28] """ x = self.fc1(inputs) x = tf.reshape(x, shape=self._pre_conv_shape) x = self.conv1(x) x = self.conv2(x) return x def discriminator_loss(discriminator_real_outputs, discriminator_gen_outputs): """Original discriminator loss for GANs, with label smoothing. See `Generative Adversarial Nets` (https://arxiv.org/abs/1406.2661) for more details. Args: discriminator_real_outputs: Discriminator output on real data. discriminator_gen_outputs: Discriminator output on generated data. Expected to be in the range of (-inf, inf). Returns: A scalar loss Tensor. """ loss_on_real = tf.losses.sigmoid_cross_entropy( tf.ones_like(discriminator_real_outputs), discriminator_real_outputs, label_smoothing=0.25) loss_on_generated = tf.losses.sigmoid_cross_entropy( tf.zeros_like(discriminator_gen_outputs), discriminator_gen_outputs) loss = loss_on_real + loss_on_generated tf.contrib.summary.scalar('discriminator_loss', loss) return loss def generator_loss(discriminator_gen_outputs): """Original generator loss for GANs. L = -log(sigmoid(D(G(z)))) See `Generative Adversarial Nets` (https://arxiv.org/abs/1406.2661) for more details. Args: discriminator_gen_outputs: Discriminator output on generated data. Expected to be in the range of (-inf, inf). Returns: A scalar loss Tensor. """ loss = tf.losses.sigmoid_cross_entropy( tf.ones_like(discriminator_gen_outputs), discriminator_gen_outputs) tf.contrib.summary.scalar('generator_loss', loss) return loss def train_one_epoch(generator, discriminator, generator_optimizer, discriminator_optimizer, dataset, step_counter, log_interval, noise_dim): """Trains `generator` and `discriminator` models on `dataset`. Args: generator: Generator model. discriminator: Discriminator model. generator_optimizer: Optimizer to use for generator. discriminator_optimizer: Optimizer to use for discriminator. dataset: Dataset of images to train on. step_counter: An integer variable, used to write summaries regularly. log_interval: How many steps to wait between logging and collecting summaries. noise_dim: Dimension of noise vector to use. """ total_generator_loss = 0.0 total_discriminator_loss = 0.0 for (batch_index, images) in enumerate(dataset): with tf.device('/cpu:0'): tf.assign_add(step_counter, 1) with tf.contrib.summary.record_summaries_every_n_global_steps( log_interval, global_step=step_counter): current_batch_size = images.shape[0] noise = tf.random_uniform( shape=[current_batch_size, noise_dim], minval=-1., maxval=1., seed=batch_index) # we can use 2 tapes or a single persistent tape. # Using two tapes is memory efficient since intermediate tensors can be # released between the two .gradient() calls below with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape: generated_images = generator(noise) tf.contrib.summary.image( 'generated_images', tf.reshape(generated_images, [-1, 28, 28, 1]), max_images=10) discriminator_gen_outputs = discriminator(generated_images) discriminator_real_outputs = discriminator(images) discriminator_loss_val = discriminator_loss(discriminator_real_outputs, discriminator_gen_outputs) total_discriminator_loss += discriminator_loss_val generator_loss_val = generator_loss(discriminator_gen_outputs) total_generator_loss += generator_loss_val generator_grad = gen_tape.gradient(generator_loss_val, generator.variables) discriminator_grad = disc_tape.gradient(discriminator_loss_val, discriminator.variables) generator_optimizer.apply_gradients( zip(generator_grad, generator.variables)) discriminator_optimizer.apply_gradients( zip(discriminator_grad, discriminator.variables)) if log_interval and batch_index > 0 and batch_index % log_interval == 0: print('Batch #%d\tAverage Generator Loss: %.6f\t' 'Average Discriminator Loss: %.6f' % (batch_index, total_generator_loss / batch_index, total_discriminator_loss / batch_index)) def main(_): (device, data_format) = ('/gpu:0', 'channels_first') if FLAGS.no_gpu or tf.contrib.eager.num_gpus() <= 0: (device, data_format) = ('/cpu:0', 'channels_last') print('Using device %s, and data format %s.' % (device, data_format)) # Load the datasets data = input_data.read_data_sets(FLAGS.data_dir) dataset = ( tf.data.Dataset.from_tensor_slices(data.train.images).shuffle(60000) .batch(FLAGS.batch_size)) # Create the models and optimizers. model_objects = { 'generator': Generator(data_format), 'discriminator': Discriminator(data_format), 'generator_optimizer': tf.train.AdamOptimizer(FLAGS.lr), 'discriminator_optimizer': tf.train.AdamOptimizer(FLAGS.lr), 'step_counter': tf.train.get_or_create_global_step(), } # Prepare summary writer and checkpoint info summary_writer = tf.contrib.summary.create_summary_file_writer( FLAGS.output_dir, flush_millis=1000) checkpoint_prefix = os.path.join(FLAGS.checkpoint_dir, 'ckpt') latest_cpkt = tf.train.latest_checkpoint(FLAGS.checkpoint_dir) if latest_cpkt: print('Using latest checkpoint at ' + latest_cpkt) checkpoint = tf.train.Checkpoint(**model_objects) # Restore variables on creation if a checkpoint exists. checkpoint.restore(latest_cpkt) with tf.device(device): for _ in range(100): start = time.time() with summary_writer.as_default(): train_one_epoch(dataset=dataset, log_interval=FLAGS.log_interval, noise_dim=FLAGS.noise, **model_objects) end = time.time() checkpoint.save(checkpoint_prefix) print('\nTrain time for epoch #%d (step %d): %f' % (checkpoint.save_counter.numpy(), checkpoint.step_counter.numpy(), end - start)) if __name__ == '__main__': tf.enable_eager_execution() parser = argparse.ArgumentParser() parser.add_argument( '--data-dir', type=str, default='/tmp/tensorflow/mnist/input_data', help=('Directory for storing input data (default ' '/tmp/tensorflow/mnist/input_data)')) parser.add_argument( '--batch-size', type=int, default=128, metavar='N', help='input batch size for training (default: 128)') parser.add_argument( '--log-interval', type=int, default=100, metavar='N', help=('number of batches between logging and writing summaries ' '(default: 100)')) parser.add_argument( '--output_dir', type=str, default=None, metavar='DIR', help='Directory to write TensorBoard summaries (defaults to none)') parser.add_argument( '--checkpoint_dir', type=str, default='/tmp/tensorflow/mnist/checkpoints/', metavar='DIR', help=('Directory to save checkpoints in (once per epoch) (default ' '/tmp/tensorflow/mnist/checkpoints/)')) parser.add_argument( '--lr', type=float, default=0.001, metavar='LR', help='learning rate (default: 0.001)') parser.add_argument( '--noise', type=int, default=100, metavar='N', help='Length of noise vector for generator input (default: 100)') parser.add_argument( '--no-gpu', action='store_true', default=False, help='disables GPU usage even if a GPU is available') FLAGS, unparsed = parser.parse_known_args() tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
tensorflow-master
tensorflow/contrib/eager/python/examples/gan/mnist.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests and benchmarks for the ResNet50 model, executed eagerly.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import gc import tempfile import time from six.moves import xrange # pylint: disable=redefined-builtin import tensorflow as tf import tensorflow.contrib.eager as tfe from tensorflow.contrib.eager.python.examples.resnet50 import resnet50 from tensorflow.contrib.summary import summary_test_util from tensorflow.python.client import device_lib from tensorflow.python.eager import tape def device_and_data_format(): return ('/gpu:0', 'channels_first') if tfe.num_gpus() else ('/cpu:0', 'channels_last') def random_batch(batch_size, data_format): shape = (3, 224, 224) if data_format == 'channels_first' else (224, 224, 3) shape = (batch_size,) + shape num_classes = 1000 images = tf.random_uniform(shape) labels = tf.random_uniform( [batch_size], minval=0, maxval=num_classes, dtype=tf.int32) one_hot = tf.one_hot(labels, num_classes) return images, one_hot def compute_gradients(model, images, labels, num_replicas=1): with tf.GradientTape() as grad_tape: logits = model(images, training=True) loss = tf.losses.softmax_cross_entropy( logits=logits, onehot_labels=labels) tf.contrib.summary.scalar(name='loss', tensor=loss) if num_replicas != 1: loss /= num_replicas # TODO(b/110991947): We can mistakenly trace the gradient call in # multi-threaded environment. Explicitly disable recording until # this is fixed. with tape.stop_recording(): grads = grad_tape.gradient(loss, model.variables) return grads def apply_gradients(model, optimizer, gradients): optimizer.apply_gradients(zip(gradients, model.variables)) class ResNet50Test(tf.test.TestCase): def _apply(self, defun=False, execution_mode=None): device, data_format = device_and_data_format() model = resnet50.ResNet50(data_format) if defun: model.call = tfe.function(model.call) with tf.device(device), tfe.execution_mode(execution_mode): images, _ = random_batch(2, data_format) output = model(images, training=False) tfe.async_wait() self.assertEqual((2, 1000), output.shape) def test_apply(self): self._apply(defun=False) def test_apply_async(self): self._apply(defun=False, execution_mode=tfe.ASYNC) def test_apply_with_defun(self): self._apply(defun=True) def test_apply_with_defun_async(self): self._apply(defun=True, execution_mode=tfe.ASYNC) def test_apply_no_top(self): device, data_format = device_and_data_format() model = resnet50.ResNet50(data_format, include_top=False) with tf.device(device): images, _ = random_batch(2, data_format) output = model(images, training=False) output_shape = ((2, 2048, 1, 1) if data_format == 'channels_first' else (2, 1, 1, 2048)) self.assertEqual(output_shape, output.shape) def test_apply_with_pooling(self): device, data_format = device_and_data_format() model = resnet50.ResNet50(data_format, include_top=False, pooling='avg') with tf.device(device): images, _ = random_batch(2, data_format) output = model(images, training=False) self.assertEqual((2, 2048), output.shape) def _test_train(self, execution_mode=None): device, data_format = device_and_data_format() model = resnet50.ResNet50(data_format) tf.train.get_or_create_global_step() logdir = tempfile.mkdtemp() with tf.contrib.summary.create_file_writer( logdir, max_queue=0, name='t0').as_default(), tf.contrib.summary.always_record_summaries(): with tf.device(device), tfe.execution_mode(execution_mode): optimizer = tf.train.GradientDescentOptimizer(0.1) images, labels = random_batch(2, data_format) apply_gradients(model, optimizer, compute_gradients(model, images, labels)) self.assertEqual(320, len(model.variables)) tfe.async_wait() events = summary_test_util.events_from_logdir(logdir) self.assertEqual(len(events), 2) self.assertEqual(events[1].summary.value[0].tag, 'loss') def test_train(self): self._test_train() def test_train_async(self): self._test_train(execution_mode=tfe.ASYNC) def test_no_garbage(self): device, data_format = device_and_data_format() model = resnet50.ResNet50(data_format) optimizer = tf.train.GradientDescentOptimizer(0.1) with tf.device(device): images, labels = random_batch(2, data_format) gc.disable() # Warm up. Note that this first run does create significant amounts of # garbage to be collected. The hope is that this is a build-only effect, # and a subsequent training loop will create nothing which needs to be # collected. apply_gradients(model, optimizer, compute_gradients(model, images, labels)) gc.collect() previous_gc_debug_flags = gc.get_debug() gc.set_debug(gc.DEBUG_SAVEALL) for _ in range(2): # Run twice to ensure that garbage that is created on the first # iteration is no longer accessible. apply_gradients(model, optimizer, compute_gradients(model, images, labels)) gc.collect() # There should be no garbage requiring collection. self.assertEqual(0, len(gc.garbage)) gc.set_debug(previous_gc_debug_flags) gc.enable() class MockIterator(object): def __init__(self, tensors): self._tensors = [tf.identity(x) for x in tensors] def next(self): return self._tensors class ResNet50Benchmarks(tf.test.Benchmark): def _train_batch_sizes(self): """Choose batch sizes based on GPU capability.""" for device in device_lib.list_local_devices(): if tf.DeviceSpec.from_string(device.name).device_type == 'GPU': # Avoid OOM errors with larger batch sizes, which seem to cause errors # later on even if caught. # # TODO(allenl): Base this on device memory; memory limit information # during the test seems to exclude the amount TensorFlow has allocated, # which isn't useful. if 'K20' in device.physical_device_desc: return (16,) if 'P100' in device.physical_device_desc: return (16, 32, 64) if tf.DeviceSpec.from_string(device.name).device_type == 'TPU': return (32,) return (16, 32) def _report(self, label, start, num_iters, device, batch_size, data_format, num_replicas=1): avg_time = (time.time() - start) / num_iters dev = tf.DeviceSpec.from_string(device).device_type.lower() replica_str = '' if num_replicas == 1 else 'replicas_%d_' % num_replicas name = '%s_%s_batch_%d_%s%s' % (label, dev, batch_size, replica_str, data_format) extras = {'examples_per_sec': (num_replicas * batch_size) / avg_time} self.report_benchmark( iters=num_iters, wall_time=avg_time, name=name, extras=extras) def _force_device_sync(self): # If this function is called in the context of a non-CPU device # (e.g., inside a 'with tf.device("/gpu:0")' block) # then this will force a copy from CPU->NON_CPU_DEVICE->CPU, # which forces a sync. This is a roundabout way, yes. tf.constant(1.).cpu() def _benchmark_eager_apply(self, label, device_and_format, defun=False, execution_mode=None): with tfe.execution_mode(execution_mode): device, data_format = device_and_format model = resnet50.ResNet50(data_format) if defun: model.call = tfe.function(model.call) batch_size = 64 num_burn = 5 num_iters = 30 with tf.device(device): images, _ = random_batch(batch_size, data_format) for _ in xrange(num_burn): model(images, training=False).cpu() if execution_mode: tfe.async_wait() gc.collect() start = time.time() for _ in xrange(num_iters): model(images, training=False).cpu() if execution_mode: tfe.async_wait() self._report(label, start, num_iters, device, batch_size, data_format) def benchmark_eager_apply_sync(self): self._benchmark_eager_apply('eager_apply', device_and_data_format(), defun=False) def benchmark_eager_apply_async(self): self._benchmark_eager_apply( 'eager_apply_async', device_and_data_format(), defun=False, execution_mode=tfe.ASYNC) def benchmark_eager_apply_with_defun(self): self._benchmark_eager_apply('eager_apply_with_defun', device_and_data_format(), defun=True) def _benchmark_eager_train(self, label, make_iterator, device_and_format, defun=False, execution_mode=None): with tfe.execution_mode(execution_mode): device, data_format = device_and_format for batch_size in self._train_batch_sizes(): (images, labels) = random_batch(batch_size, data_format) model = resnet50.ResNet50(data_format) optimizer = tf.train.GradientDescentOptimizer(0.1) apply_grads = apply_gradients if defun: model.call = tfe.function(model.call) apply_grads = tfe.function(apply_gradients) num_burn = 3 num_iters = 10 with tf.device(device): iterator = make_iterator((images, labels)) for _ in xrange(num_burn): (images, labels) = iterator.next() apply_grads(model, optimizer, compute_gradients(model, images, labels)) if execution_mode: tfe.async_wait() self._force_device_sync() gc.collect() start = time.time() for _ in xrange(num_iters): (images, labels) = iterator.next() apply_grads(model, optimizer, compute_gradients(model, images, labels)) if execution_mode: tfe.async_wait() self._force_device_sync() self._report(label, start, num_iters, device, batch_size, data_format) def benchmark_eager_train_sync(self): self._benchmark_eager_train('eager_train', MockIterator, device_and_data_format(), defun=False) def benchmark_eager_train_async(self): self._benchmark_eager_train( 'eager_train_async', MockIterator, device_and_data_format(), defun=False, execution_mode=tfe.ASYNC) def benchmark_eager_train_with_defun(self): self._benchmark_eager_train( 'eager_train_with_defun', MockIterator, device_and_data_format(), defun=True) def benchmark_eager_train_datasets(self): def make_iterator(tensors): with tf.device('/device:CPU:0'): ds = tf.data.Dataset.from_tensors(tensors).repeat() return tfe.Iterator(ds) self._benchmark_eager_train( 'eager_train_dataset', make_iterator, device_and_data_format(), defun=False) def benchmark_eager_train_datasets_with_defun(self): def make_iterator(tensors): with tf.device('/device:CPU:0'): ds = tf.data.Dataset.from_tensors(tensors).repeat() return tfe.Iterator(ds) self._benchmark_eager_train( 'eager_train_dataset_with_defun', make_iterator, device_and_data_format(), defun=True) if __name__ == '__main__': tfe.enable_eager_execution() tf.test.main()
tensorflow-master
tensorflow/contrib/eager/python/examples/resnet50/resnet50_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests and benchmarks for ResNet50 under graph execution.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tempfile import time import numpy as np import tensorflow as tf from tensorflow.contrib.eager.python.examples.resnet50 import resnet50 from tensorflow.contrib.summary import summary_test_util def data_format(): return 'channels_first' if tf.test.is_gpu_available() else 'channels_last' def image_shape(batch_size): if data_format() == 'channels_first': return [batch_size, 3, 224, 224] return [batch_size, 224, 224, 3] def random_batch(batch_size): images = np.random.rand(*image_shape(batch_size)).astype(np.float32) num_classes = 1000 labels = np.random.randint( low=0, high=num_classes, size=[batch_size]).astype(np.int32) one_hot = np.zeros((batch_size, num_classes)).astype(np.float32) one_hot[np.arange(batch_size), labels] = 1. return images, one_hot class ResNet50GraphTest(tf.test.TestCase): def testApply(self): # Use small batches for tests because the OSS version runs # in constrained GPU environment with 1-2GB of memory. batch_size = 8 with tf.Graph().as_default(): images = tf.placeholder(tf.float32, image_shape(None)) model = resnet50.ResNet50(data_format()) predictions = model(images, training=False) init = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) np_images, _ = random_batch(batch_size) out = sess.run(predictions, feed_dict={images: np_images}) self.assertAllEqual([batch_size, 1000], out.shape) def testTrainWithSummary(self): with tf.Graph().as_default(): images = tf.placeholder(tf.float32, image_shape(None), name='images') labels = tf.placeholder(tf.float32, [None, 1000], name='labels') tf.train.get_or_create_global_step() logdir = tempfile.mkdtemp() with tf.contrib.summary.always_record_summaries(): with tf.contrib.summary.create_file_writer( logdir, max_queue=0, name='t0').as_default(): model = resnet50.ResNet50(data_format()) logits = model(images, training=True) loss = tf.losses.softmax_cross_entropy( logits=logits, onehot_labels=labels) tf.contrib.summary.scalar(name='loss', tensor=loss) optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01) train_op = optimizer.minimize(loss) init = tf.global_variables_initializer() self.assertEqual(321, len(tf.global_variables())) # Use small batches for tests because the OSS version runs # in constrained GPU environment with 1-2GB of memory. batch_size = 2 with tf.Session() as sess: sess.run(init) sess.run(tf.contrib.summary.summary_writer_initializer_op()) np_images, np_labels = random_batch(batch_size) sess.run([train_op, tf.contrib.summary.all_summary_ops()], feed_dict={images: np_images, labels: np_labels}) events = summary_test_util.events_from_logdir(logdir) self.assertEqual(len(events), 2) self.assertEqual(events[1].summary.value[0].tag, 'loss') class ResNet50Benchmarks(tf.test.Benchmark): def _report(self, label, start, num_iters, batch_size): avg_time = (time.time() - start) / num_iters dev = 'gpu' if tf.test.is_gpu_available() else 'cpu' name = 'graph_%s_%s_batch_%d_%s' % (label, dev, batch_size, data_format()) extras = {'examples_per_sec': batch_size / avg_time} self.report_benchmark( iters=num_iters, wall_time=avg_time, name=name, extras=extras) def benchmark_graph_apply(self): with tf.Graph().as_default(): images = tf.placeholder(tf.float32, image_shape(None)) model = resnet50.ResNet50(data_format()) predictions = model(images, training=False) init = tf.global_variables_initializer() batch_size = 64 with tf.Session() as sess: sess.run(init) np_images, _ = random_batch(batch_size) num_burn, num_iters = (3, 30) for _ in range(num_burn): sess.run(predictions, feed_dict={images: np_images}) start = time.time() for _ in range(num_iters): # Comparison with the eager execution benchmark in resnet50_test.py # isn't entirely fair as the time here includes the cost of copying # the feeds from CPU memory to GPU. sess.run(predictions, feed_dict={images: np_images}) self._report('apply', start, num_iters, batch_size) def benchmark_graph_train(self): for batch_size in [16, 32, 64]: with tf.Graph().as_default(): np_images, np_labels = random_batch(batch_size) dataset = tf.data.Dataset.from_tensors((np_images, np_labels)).repeat() images, labels = tf.compat.v1.data.make_one_shot_iterator( dataset).get_next() model = resnet50.ResNet50(data_format()) logits = model(images, training=True) loss = tf.losses.softmax_cross_entropy( logits=logits, onehot_labels=labels) optimizer = tf.train.GradientDescentOptimizer(learning_rate=1.0) train_op = optimizer.minimize(loss) init = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) (num_burn, num_iters) = (5, 10) for _ in range(num_burn): sess.run(train_op) start = time.time() for _ in range(num_iters): sess.run(train_op) self._report('train', start, num_iters, batch_size) if __name__ == '__main__': tf.test.main()
tensorflow-master
tensorflow/contrib/eager/python/examples/resnet50/resnet50_graph_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ResNet50 model definition compatible with TensorFlow's eager execution. Reference [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) Adapted from tf.keras.applications.ResNet50. A notable difference is that the model here outputs logits while the Keras model outputs probability. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import tensorflow as tf layers = tf.keras.layers class _IdentityBlock(tf.keras.Model): """_IdentityBlock is the block that has no conv layer at shortcut. Args: kernel_size: the kernel size of middle conv layer at main path filters: list of integers, the filters of 3 conv layer at main path stage: integer, current stage label, used for generating layer names block: 'a','b'..., current block label, used for generating layer names data_format: data_format for the input ('channels_first' or 'channels_last'). """ def __init__(self, kernel_size, filters, stage, block, data_format): super(_IdentityBlock, self).__init__(name='') filters1, filters2, filters3 = filters conv_name_base = 'res' + str(stage) + block + '_branch' bn_name_base = 'bn' + str(stage) + block + '_branch' bn_axis = 1 if data_format == 'channels_first' else 3 self.conv2a = layers.Conv2D( filters1, (1, 1), name=conv_name_base + '2a', data_format=data_format) self.bn2a = layers.BatchNormalization( axis=bn_axis, name=bn_name_base + '2a') self.conv2b = layers.Conv2D( filters2, kernel_size, padding='same', data_format=data_format, name=conv_name_base + '2b') self.bn2b = layers.BatchNormalization( axis=bn_axis, name=bn_name_base + '2b') self.conv2c = layers.Conv2D( filters3, (1, 1), name=conv_name_base + '2c', data_format=data_format) self.bn2c = layers.BatchNormalization( axis=bn_axis, name=bn_name_base + '2c') def call(self, input_tensor, training=False): x = self.conv2a(input_tensor) x = self.bn2a(x, training=training) x = tf.nn.relu(x) x = self.conv2b(x) x = self.bn2b(x, training=training) x = tf.nn.relu(x) x = self.conv2c(x) x = self.bn2c(x, training=training) x += input_tensor return tf.nn.relu(x) class _ConvBlock(tf.keras.Model): """_ConvBlock is the block that has a conv layer at shortcut. Args: kernel_size: the kernel size of middle conv layer at main path filters: list of integers, the filters of 3 conv layer at main path stage: integer, current stage label, used for generating layer names block: 'a','b'..., current block label, used for generating layer names data_format: data_format for the input ('channels_first' or 'channels_last'). strides: strides for the convolution. Note that from stage 3, the first conv layer at main path is with strides=(2,2), and the shortcut should have strides=(2,2) as well. """ def __init__(self, kernel_size, filters, stage, block, data_format, strides=(2, 2)): super(_ConvBlock, self).__init__(name='') filters1, filters2, filters3 = filters conv_name_base = 'res' + str(stage) + block + '_branch' bn_name_base = 'bn' + str(stage) + block + '_branch' bn_axis = 1 if data_format == 'channels_first' else 3 self.conv2a = layers.Conv2D( filters1, (1, 1), strides=strides, name=conv_name_base + '2a', data_format=data_format) self.bn2a = layers.BatchNormalization( axis=bn_axis, name=bn_name_base + '2a') self.conv2b = layers.Conv2D( filters2, kernel_size, padding='same', name=conv_name_base + '2b', data_format=data_format) self.bn2b = layers.BatchNormalization( axis=bn_axis, name=bn_name_base + '2b') self.conv2c = layers.Conv2D( filters3, (1, 1), name=conv_name_base + '2c', data_format=data_format) self.bn2c = layers.BatchNormalization( axis=bn_axis, name=bn_name_base + '2c') self.conv_shortcut = layers.Conv2D( filters3, (1, 1), strides=strides, name=conv_name_base + '1', data_format=data_format) self.bn_shortcut = layers.BatchNormalization( axis=bn_axis, name=bn_name_base + '1') def call(self, input_tensor, training=False): x = self.conv2a(input_tensor) x = self.bn2a(x, training=training) x = tf.nn.relu(x) x = self.conv2b(x) x = self.bn2b(x, training=training) x = tf.nn.relu(x) x = self.conv2c(x) x = self.bn2c(x, training=training) shortcut = self.conv_shortcut(input_tensor) shortcut = self.bn_shortcut(shortcut, training=training) x += shortcut return tf.nn.relu(x) # pylint: disable=not-callable class ResNet50(tf.keras.Model): """Instantiates the ResNet50 architecture. Args: data_format: format for the image. Either 'channels_first' or 'channels_last'. 'channels_first' is typically faster on GPUs while 'channels_last' is typically faster on CPUs. See https://www.tensorflow.org/performance/performance_guide#data_formats name: Prefix applied to names of variables created in the model. trainable: Is the model trainable? If true, performs backward and optimization after call() method. include_top: whether to include the fully-connected layer at the top of the network. pooling: Optional pooling mode for feature extraction when `include_top` is `False`. - `None` means that the output of the model will be the 4D tensor output of the last convolutional layer. - `avg` means that global average pooling will be applied to the output of the last convolutional layer, and thus the output of the model will be a 2D tensor. - `max` means that global max pooling will be applied. classes: optional number of classes to classify images into, only to be specified if `include_top` is True. Raises: ValueError: in case of invalid argument for data_format. """ def __init__(self, data_format, name='', trainable=True, include_top=True, pooling=None, classes=1000): super(ResNet50, self).__init__(name=name) valid_channel_values = ('channels_first', 'channels_last') if data_format not in valid_channel_values: raise ValueError('Unknown data_format: %s. Valid values: %s' % (data_format, valid_channel_values)) self.include_top = include_top def conv_block(filters, stage, block, strides=(2, 2)): return _ConvBlock( 3, filters, stage=stage, block=block, data_format=data_format, strides=strides) def id_block(filters, stage, block): return _IdentityBlock( 3, filters, stage=stage, block=block, data_format=data_format) self.conv1 = layers.Conv2D( 64, (7, 7), strides=(2, 2), data_format=data_format, padding='same', name='conv1') bn_axis = 1 if data_format == 'channels_first' else 3 self.bn_conv1 = layers.BatchNormalization(axis=bn_axis, name='bn_conv1') self.max_pool = layers.MaxPooling2D( (3, 3), strides=(2, 2), data_format=data_format) self.l2a = conv_block([64, 64, 256], stage=2, block='a', strides=(1, 1)) self.l2b = id_block([64, 64, 256], stage=2, block='b') self.l2c = id_block([64, 64, 256], stage=2, block='c') self.l3a = conv_block([128, 128, 512], stage=3, block='a') self.l3b = id_block([128, 128, 512], stage=3, block='b') self.l3c = id_block([128, 128, 512], stage=3, block='c') self.l3d = id_block([128, 128, 512], stage=3, block='d') self.l4a = conv_block([256, 256, 1024], stage=4, block='a') self.l4b = id_block([256, 256, 1024], stage=4, block='b') self.l4c = id_block([256, 256, 1024], stage=4, block='c') self.l4d = id_block([256, 256, 1024], stage=4, block='d') self.l4e = id_block([256, 256, 1024], stage=4, block='e') self.l4f = id_block([256, 256, 1024], stage=4, block='f') self.l5a = conv_block([512, 512, 2048], stage=5, block='a') self.l5b = id_block([512, 512, 2048], stage=5, block='b') self.l5c = id_block([512, 512, 2048], stage=5, block='c') self.avg_pool = layers.AveragePooling2D( (7, 7), strides=(7, 7), data_format=data_format) if self.include_top: self.flatten = layers.Flatten() self.fc1000 = layers.Dense(classes, name='fc1000') else: reduction_indices = [1, 2] if data_format == 'channels_last' else [2, 3] reduction_indices = tf.constant(reduction_indices) if pooling == 'avg': self.global_pooling = functools.partial( tf.reduce_mean, reduction_indices=reduction_indices, keep_dims=False) elif pooling == 'max': self.global_pooling = functools.partial( tf.reduce_max, reduction_indices=reduction_indices, keep_dims=False) else: self.global_pooling = None def call(self, inputs, training=True): x = self.conv1(inputs) x = self.bn_conv1(x, training=training) x = tf.nn.relu(x) x = self.max_pool(x) x = self.l2a(x, training=training) x = self.l2b(x, training=training) x = self.l2c(x, training=training) x = self.l3a(x, training=training) x = self.l3b(x, training=training) x = self.l3c(x, training=training) x = self.l3d(x, training=training) x = self.l4a(x, training=training) x = self.l4b(x, training=training) x = self.l4c(x, training=training) x = self.l4d(x, training=training) x = self.l4e(x, training=training) x = self.l4f(x, training=training) x = self.l5a(x, training=training) x = self.l5b(x, training=training) x = self.l5c(x, training=training) x = self.avg_pool(x) if self.include_top: return self.fc1000(self.flatten(x)) elif self.global_pooling: return self.global_pooling(x) else: return x
tensorflow-master
tensorflow/contrib/eager/python/examples/resnet50/resnet50.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Densely Connected Convolutional Networks. Reference [ Densely Connected Convolutional Networks](https://arxiv.org/abs/1608.06993) """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf l2 = tf.keras.regularizers.l2 class ConvBlock(tf.keras.Model): """Convolutional Block consisting of (batchnorm->relu->conv). Arguments: num_filters: number of filters passed to a convolutional layer. data_format: "channels_first" or "channels_last" bottleneck: if True, then a 1x1 Conv is performed followed by 3x3 Conv. weight_decay: weight decay dropout_rate: dropout rate. """ def __init__(self, num_filters, data_format, bottleneck, weight_decay=1e-4, dropout_rate=0): super(ConvBlock, self).__init__() self.bottleneck = bottleneck axis = -1 if data_format == "channels_last" else 1 inter_filter = num_filters * 4 # don't forget to set use_bias=False when using batchnorm self.conv2 = tf.keras.layers.Conv2D(num_filters, (3, 3), padding="same", use_bias=False, data_format=data_format, kernel_initializer="he_normal", kernel_regularizer=l2(weight_decay)) self.batchnorm1 = tf.keras.layers.BatchNormalization(axis=axis) self.dropout = tf.keras.layers.Dropout(dropout_rate) if self.bottleneck: self.conv1 = tf.keras.layers.Conv2D(inter_filter, (1, 1), padding="same", use_bias=False, data_format=data_format, kernel_initializer="he_normal", kernel_regularizer=l2(weight_decay)) self.batchnorm2 = tf.keras.layers.BatchNormalization(axis=axis) def call(self, x, training=True): output = self.batchnorm1(x, training=training) if self.bottleneck: output = self.conv1(tf.nn.relu(output)) output = self.batchnorm2(output, training=training) output = self.conv2(tf.nn.relu(output)) output = self.dropout(output, training=training) return output class TransitionBlock(tf.keras.Model): """Transition Block to reduce the number of features. Arguments: num_filters: number of filters passed to a convolutional layer. data_format: "channels_first" or "channels_last" weight_decay: weight decay dropout_rate: dropout rate. """ def __init__(self, num_filters, data_format, weight_decay=1e-4, dropout_rate=0): super(TransitionBlock, self).__init__() axis = -1 if data_format == "channels_last" else 1 self.batchnorm = tf.keras.layers.BatchNormalization(axis=axis) self.conv = tf.keras.layers.Conv2D(num_filters, (1, 1), padding="same", use_bias=False, data_format=data_format, kernel_initializer="he_normal", kernel_regularizer=l2(weight_decay)) self.avg_pool = tf.keras.layers.AveragePooling2D(data_format=data_format) def call(self, x, training=True): output = self.batchnorm(x, training=training) output = self.conv(tf.nn.relu(output)) output = self.avg_pool(output) return output class DenseBlock(tf.keras.Model): """Dense Block consisting of ConvBlocks where each block's output is concatenated with its input. Arguments: num_layers: Number of layers in each block. growth_rate: number of filters to add per conv block. data_format: "channels_first" or "channels_last" bottleneck: boolean, that decides which part of ConvBlock to call. weight_decay: weight decay dropout_rate: dropout rate. """ def __init__(self, num_layers, growth_rate, data_format, bottleneck, weight_decay=1e-4, dropout_rate=0): super(DenseBlock, self).__init__() self.num_layers = num_layers self.axis = -1 if data_format == "channels_last" else 1 self.blocks = [] for _ in range(int(self.num_layers)): self.blocks.append(ConvBlock(growth_rate, data_format, bottleneck, weight_decay, dropout_rate)) def call(self, x, training=True): for i in range(int(self.num_layers)): output = self.blocks[i](x, training=training) x = tf.concat([x, output], axis=self.axis) return x class DenseNet(tf.keras.Model): """Creating the Densenet Architecture. Arguments: depth_of_model: number of layers in the model. growth_rate: number of filters to add per conv block. num_of_blocks: number of dense blocks. output_classes: number of output classes. num_layers_in_each_block: number of layers in each block. If -1, then we calculate this by (depth-3)/4. If positive integer, then the it is used as the number of layers per block. If list or tuple, then this list is used directly. data_format: "channels_first" or "channels_last" bottleneck: boolean, to decide which part of conv block to call. compression: reducing the number of inputs(filters) to the transition block. weight_decay: weight decay rate: dropout rate. pool_initial: If True add a 7x7 conv with stride 2 followed by 3x3 maxpool else, do a 3x3 conv with stride 1. include_top: If true, GlobalAveragePooling Layer and Dense layer are included. """ def __init__(self, depth_of_model, growth_rate, num_of_blocks, output_classes, num_layers_in_each_block, data_format, bottleneck=True, compression=0.5, weight_decay=1e-4, dropout_rate=0, pool_initial=False, include_top=True): super(DenseNet, self).__init__() self.depth_of_model = depth_of_model self.growth_rate = growth_rate self.num_of_blocks = num_of_blocks self.output_classes = output_classes self.num_layers_in_each_block = num_layers_in_each_block self.data_format = data_format self.bottleneck = bottleneck self.compression = compression self.weight_decay = weight_decay self.dropout_rate = dropout_rate self.pool_initial = pool_initial self.include_top = include_top # deciding on number of layers in each block if isinstance(self.num_layers_in_each_block, list) or isinstance( self.num_layers_in_each_block, tuple): self.num_layers_in_each_block = list(self.num_layers_in_each_block) else: if self.num_layers_in_each_block == -1: if self.num_of_blocks != 3: raise ValueError( "Number of blocks must be 3 if num_layers_in_each_block is -1") if (self.depth_of_model - 4) % 3 == 0: num_layers = (self.depth_of_model - 4) / 3 if self.bottleneck: num_layers //= 2 self.num_layers_in_each_block = [num_layers] * self.num_of_blocks else: raise ValueError("Depth must be 3N+4 if num_layer_in_each_block=-1") else: self.num_layers_in_each_block = [ self.num_layers_in_each_block] * self.num_of_blocks axis = -1 if self.data_format == "channels_last" else 1 # setting the filters and stride of the initial covn layer. if self.pool_initial: init_filters = (7, 7) stride = (2, 2) else: init_filters = (3, 3) stride = (1, 1) self.num_filters = 2 * self.growth_rate # first conv and pool layer self.conv1 = tf.keras.layers.Conv2D(self.num_filters, init_filters, strides=stride, padding="same", use_bias=False, data_format=self.data_format, kernel_initializer="he_normal", kernel_regularizer=l2( self.weight_decay)) if self.pool_initial: self.pool1 = tf.keras.layers.MaxPooling2D(pool_size=(3, 3), strides=(2, 2), padding="same", data_format=self.data_format) self.batchnorm1 = tf.keras.layers.BatchNormalization(axis=axis) self.batchnorm2 = tf.keras.layers.BatchNormalization(axis=axis) # last pooling and fc layer if self.include_top: self.last_pool = tf.keras.layers.GlobalAveragePooling2D( data_format=self.data_format) self.classifier = tf.keras.layers.Dense(self.output_classes) # calculating the number of filters after each block num_filters_after_each_block = [self.num_filters] for i in range(1, self.num_of_blocks): temp_num_filters = num_filters_after_each_block[i-1] + ( self.growth_rate * self.num_layers_in_each_block[i-1]) # using compression to reduce the number of inputs to the # transition block temp_num_filters = int(temp_num_filters * compression) num_filters_after_each_block.append(temp_num_filters) # dense block initialization self.dense_blocks = [] self.transition_blocks = [] for i in range(self.num_of_blocks): self.dense_blocks.append(DenseBlock(self.num_layers_in_each_block[i], self.growth_rate, self.data_format, self.bottleneck, self.weight_decay, self.dropout_rate)) if i+1 < self.num_of_blocks: self.transition_blocks.append( TransitionBlock(num_filters_after_each_block[i+1], self.data_format, self.weight_decay, self.dropout_rate)) def call(self, x, training=True): output = self.conv1(x) if self.pool_initial: output = self.batchnorm1(output, training=training) output = tf.nn.relu(output) output = self.pool1(output) for i in range(self.num_of_blocks - 1): output = self.dense_blocks[i](output, training=training) output = self.transition_blocks[i](output, training=training) output = self.dense_blocks[ self.num_of_blocks - 1](output, training=training) output = self.batchnorm2(output, training=training) output = tf.nn.relu(output) if self.include_top: output = self.last_pool(output) output = self.classifier(output) return output
tensorflow-master
tensorflow/contrib/eager/python/examples/densenet/densenet.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests and Benchmarks for Densenet model under graph execution.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import time import numpy as np import tensorflow as tf from tensorflow.contrib.eager.python.examples.densenet import densenet def data_format(): return 'channels_first' if tf.test.is_gpu_available() else 'channels_last' def image_shape(batch_size): if data_format() == 'channels_first': return [batch_size, 3, 224, 224] return [batch_size, 224, 224, 3] def random_batch(batch_size): images = np.random.rand(*image_shape(batch_size)).astype(np.float32) num_classes = 1000 labels = np.random.randint( low=0, high=num_classes, size=[batch_size]).astype(np.int32) one_hot = np.zeros((batch_size, num_classes)).astype(np.float32) one_hot[np.arange(batch_size), labels] = 1. return images, one_hot class DensenetGraphTest(tf.test.TestCase): def testApply(self): depth = 7 growth_rate = 2 num_blocks = 3 output_classes = 10 num_layers_in_each_block = -1 batch_size = 1 with tf.Graph().as_default(): images = tf.placeholder(tf.float32, image_shape(None)) model = densenet.DenseNet(depth, growth_rate, num_blocks, output_classes, num_layers_in_each_block, data_format(), bottleneck=True, compression=0.5, weight_decay=1e-4, dropout_rate=0, pool_initial=False, include_top=True) predictions = model(images, training=False) init = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) np_images, _ = random_batch(batch_size) out = sess.run(predictions, feed_dict={images: np_images}) self.assertAllEqual([batch_size, output_classes], out.shape) class DensenetBenchmark(tf.test.Benchmark): def __init__(self): self.depth = 121 self.growth_rate = 32 self.num_blocks = 4 self.output_classes = 1000 self.num_layers_in_each_block = [6, 12, 24, 16] def _report(self, label, start, num_iters, batch_size): avg_time = (time.time() - start) / num_iters dev = 'gpu' if tf.test.is_gpu_available() else 'cpu' name = 'graph_%s_%s_batch_%d_%s' % (label, dev, batch_size, data_format()) extras = {'examples_per_sec': batch_size / avg_time} self.report_benchmark( iters=num_iters, wall_time=avg_time, name=name, extras=extras) def benchmark_graph_apply(self): with tf.Graph().as_default(): images = tf.placeholder(tf.float32, image_shape(None)) model = densenet.DenseNet(self.depth, self.growth_rate, self.num_blocks, self.output_classes, self.num_layers_in_each_block, data_format(), bottleneck=True, compression=0.5, weight_decay=1e-4, dropout_rate=0, pool_initial=True, include_top=True) predictions = model(images, training=False) init = tf.global_variables_initializer() batch_size = 64 with tf.Session() as sess: sess.run(init) np_images, _ = random_batch(batch_size) num_burn, num_iters = (3, 30) for _ in range(num_burn): sess.run(predictions, feed_dict={images: np_images}) start = time.time() for _ in range(num_iters): sess.run(predictions, feed_dict={images: np_images}) self._report('apply', start, num_iters, batch_size) def benchmark_graph_train(self): for batch_size in [16, 32, 64]: with tf.Graph().as_default(): np_images, np_labels = random_batch(batch_size) dataset = tf.data.Dataset.from_tensors((np_images, np_labels)).repeat() (images, labels) = tf.compat.v1.data.make_one_shot_iterator( dataset).get_next() model = densenet.DenseNet(self.depth, self.growth_rate, self.num_blocks, self.output_classes, self.num_layers_in_each_block, data_format(), bottleneck=True, compression=0.5, weight_decay=1e-4, dropout_rate=0, pool_initial=True, include_top=True) logits = model(images, training=True) cross_ent = tf.losses.softmax_cross_entropy( logits=logits, onehot_labels=labels) regularization = tf.add_n(model.losses) loss = cross_ent + regularization optimizer = tf.train.GradientDescentOptimizer(learning_rate=1.0) train_op = optimizer.minimize(loss) init = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) (num_burn, num_iters) = (5, 10) for _ in range(num_burn): sess.run(train_op) start = time.time() for _ in range(num_iters): sess.run(train_op) self._report('train', start, num_iters, batch_size) if __name__ == '__main__': tf.test.main()
tensorflow-master
tensorflow/contrib/eager/python/examples/densenet/densenet_graph_test.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests and Benchmarks for Densenet model.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import gc import time import tensorflow as tf import tensorflow.contrib.eager as tfe from tensorflow.contrib.eager.python.examples.densenet import densenet from tensorflow.python.client import device_lib class DensenetTest(tf.test.TestCase): def test_bottleneck_true(self): depth = 7 growth_rate = 2 num_blocks = 3 output_classes = 10 num_layers_in_each_block = -1 batch_size = 1 data_format = ('channels_first') if tf.test.is_gpu_available() else ( 'channels_last') model = densenet.DenseNet(depth, growth_rate, num_blocks, output_classes, num_layers_in_each_block, data_format, bottleneck=True, compression=0.5, weight_decay=1e-4, dropout_rate=0, pool_initial=False, include_top=True) if data_format == 'channels_last': rand_input = tf.random_uniform((batch_size, 32, 32, 3)) else: rand_input = tf.random_uniform((batch_size, 3, 32, 32)) output_shape = model(rand_input).shape self.assertEqual(output_shape, (batch_size, output_classes)) def test_bottleneck_false(self): depth = 7 growth_rate = 2 num_blocks = 3 output_classes = 10 num_layers_in_each_block = -1 batch_size = 1 data_format = ('channels_first') if tf.test.is_gpu_available() else ( 'channels_last') model = densenet.DenseNet(depth, growth_rate, num_blocks, output_classes, num_layers_in_each_block, data_format, bottleneck=False, compression=0.5, weight_decay=1e-4, dropout_rate=0, pool_initial=False, include_top=True) if data_format == 'channels_last': rand_input = tf.random_uniform((batch_size, 32, 32, 3)) else: rand_input = tf.random_uniform((batch_size, 3, 32, 32)) output_shape = model(rand_input).shape self.assertEqual(output_shape, (batch_size, output_classes)) def test_pool_initial_true(self): depth = 7 growth_rate = 2 num_blocks = 4 output_classes = 10 num_layers_in_each_block = [1, 2, 2, 1] batch_size = 1 data_format = ('channels_first') if tf.test.is_gpu_available() else ( 'channels_last') model = densenet.DenseNet(depth, growth_rate, num_blocks, output_classes, num_layers_in_each_block, data_format, bottleneck=True, compression=0.5, weight_decay=1e-4, dropout_rate=0, pool_initial=True, include_top=True) if data_format == 'channels_last': rand_input = tf.random_uniform((batch_size, 32, 32, 3)) else: rand_input = tf.random_uniform((batch_size, 3, 32, 32)) output_shape = model(rand_input).shape self.assertEqual(output_shape, (batch_size, output_classes)) def test_regularization(self): if tf.test.is_gpu_available(): rand_input = tf.random_uniform((10, 3, 32, 32)) data_format = 'channels_first' else: rand_input = tf.random_uniform((10, 32, 32, 3)) data_format = 'channels_last' weight_decay = 1e-4 conv = tf.keras.layers.Conv2D( 3, (3, 3), padding='same', use_bias=False, data_format=data_format, kernel_regularizer=tf.keras.regularizers.l2(weight_decay)) optimizer = tf.train.GradientDescentOptimizer(0.1) conv(rand_input) # Initialize the variables in the layer def compute_true_l2(vs, wd): return tf.reduce_sum(tf.square(vs)) * wd true_l2 = compute_true_l2(conv.variables, weight_decay) keras_l2 = tf.add_n(conv.losses) self.assertAllClose(true_l2, keras_l2) with tf.GradientTape() as tape_true, tf.GradientTape() as tape_keras: loss = tf.reduce_sum(conv(rand_input)) loss_with_true_l2 = loss + compute_true_l2(conv.variables, weight_decay) loss_with_keras_l2 = loss + tf.add_n(conv.losses) true_grads = tape_true.gradient(loss_with_true_l2, conv.variables) keras_grads = tape_keras.gradient(loss_with_keras_l2, conv.variables) self.assertAllClose(true_grads, keras_grads) optimizer.apply_gradients(zip(keras_grads, conv.variables)) keras_l2_after_update = tf.add_n(conv.losses) self.assertNotAllClose(keras_l2, keras_l2_after_update) def compute_gradients(model, images, labels): with tf.GradientTape() as tape: logits = model(images, training=True) cross_ent = tf.losses.softmax_cross_entropy( logits=logits, onehot_labels=labels) regularization = tf.add_n(model.losses) loss = cross_ent + regularization tf.contrib.summary.scalar(name='loss', tensor=loss) return tape.gradient(loss, model.variables) def apply_gradients(model, optimizer, gradients): optimizer.apply_gradients(zip(gradients, model.variables)) def device_and_data_format(): return ('/gpu:0', 'channels_first') if tf.test.is_gpu_available() else ('/cpu:0', 'channels_last') def random_batch(batch_size, data_format): shape = (3, 224, 224) if data_format == 'channels_first' else (224, 224, 3) shape = (batch_size,) + shape num_classes = 1000 images = tf.random_uniform(shape) labels = tf.random_uniform( [batch_size], minval=0, maxval=num_classes, dtype=tf.int32) one_hot = tf.one_hot(labels, num_classes) return images, one_hot class MockIterator(object): def __init__(self, tensors): self._tensors = [tf.identity(x) for x in tensors] def next(self): return self._tensors class DensenetBenchmark(tf.test.Benchmark): def __init__(self): self.depth = 121 self.growth_rate = 32 self.num_blocks = 4 self.output_classes = 1000 self.num_layers_in_each_block = [6, 12, 24, 16] def _train_batch_sizes(self): """Choose batch sizes based on GPU capability.""" for device in device_lib.list_local_devices(): if tf.DeviceSpec.from_string(device.name).device_type == 'GPU': if 'K20' in device.physical_device_desc: return (16,) if 'P100' in device.physical_device_desc: return (16, 32, 64) if tf.DeviceSpec.from_string(device.name).device_type == 'TPU': return (32,) return (16, 32) def _report(self, label, start, num_iters, device, batch_size, data_format): avg_time = (time.time() - start) / num_iters dev = tf.DeviceSpec.from_string(device).device_type.lower() name = '%s_%s_batch_%d_%s' % (label, dev, batch_size, data_format) extras = {'examples_per_sec': batch_size / avg_time} self.report_benchmark( iters=num_iters, wall_time=avg_time, name=name, extras=extras) def _force_device_sync(self): # If this function is called in the context of a non-CPU device # (e.g., inside a 'with tf.device("/gpu:0")' block) # then this will force a copy from CPU->NON_CPU_DEVICE->CPU, # which forces a sync. This is a roundabout way, yes. tf.constant(1.).cpu() def _benchmark_eager_apply(self, label, device_and_format, defun=False, execution_mode=None): with tfe.execution_mode(execution_mode): device, data_format = device_and_format model = densenet.DenseNet(self.depth, self.growth_rate, self.num_blocks, self.output_classes, self.num_layers_in_each_block, data_format, bottleneck=True, compression=0.5, weight_decay=1e-4, dropout_rate=0, pool_initial=True, include_top=True) if defun: # TODO(apassos) enable tfe.function here model.call = tfe.defun(model.call) batch_size = 64 num_burn = 5 num_iters = 30 with tf.device(device): images, _ = random_batch(batch_size, data_format) for _ in xrange(num_burn): model(images, training=False).cpu() if execution_mode: tfe.async_wait() gc.collect() start = time.time() for _ in xrange(num_iters): model(images, training=False).cpu() if execution_mode: tfe.async_wait() self._report(label, start, num_iters, device, batch_size, data_format) def benchmark_eager_apply_sync(self): self._benchmark_eager_apply('eager_apply', device_and_data_format(), defun=False) def benchmark_eager_apply_async(self): self._benchmark_eager_apply( 'eager_apply_async', device_and_data_format(), defun=False, execution_mode=tfe.ASYNC) def benchmark_eager_apply_with_defun(self): self._benchmark_eager_apply('eager_apply_with_defun', device_and_data_format(), defun=True) def _benchmark_eager_train(self, label, make_iterator, device_and_format, defun=False, execution_mode=None): with tfe.execution_mode(execution_mode): device, data_format = device_and_format for batch_size in self._train_batch_sizes(): (images, labels) = random_batch(batch_size, data_format) model = densenet.DenseNet(self.depth, self.growth_rate, self.num_blocks, self.output_classes, self.num_layers_in_each_block, data_format, bottleneck=True, compression=0.5, weight_decay=1e-4, dropout_rate=0, pool_initial=True, include_top=True) optimizer = tf.train.GradientDescentOptimizer(0.1) apply_grads = apply_gradients if defun: model.call = tfe.defun(model.call) apply_grads = tfe.defun(apply_gradients) num_burn = 3 num_iters = 10 with tf.device(device): iterator = make_iterator((images, labels)) for _ in xrange(num_burn): (images, labels) = iterator.next() apply_grads(model, optimizer, compute_gradients(model, images, labels)) if execution_mode: tfe.async_wait() self._force_device_sync() gc.collect() start = time.time() for _ in xrange(num_iters): (images, labels) = iterator.next() apply_grads(model, optimizer, compute_gradients(model, images, labels)) if execution_mode: tfe.async_wait() self._force_device_sync() self._report(label, start, num_iters, device, batch_size, data_format) def benchmark_eager_train_sync(self): self._benchmark_eager_train('eager_train', MockIterator, device_and_data_format(), defun=False) def benchmark_eager_train_async(self): self._benchmark_eager_train( 'eager_train_async', MockIterator, device_and_data_format(), defun=False, execution_mode=tfe.ASYNC) def benchmark_eager_train_with_defun(self): self._benchmark_eager_train( 'eager_train_with_defun', MockIterator, device_and_data_format(), defun=True) def benchmark_eager_train_datasets(self): def make_iterator(tensors): with tf.device('/device:CPU:0'): ds = tf.data.Dataset.from_tensors(tensors).repeat() return tfe.Iterator(ds) self._benchmark_eager_train( 'eager_train_dataset', make_iterator, device_and_data_format(), defun=False) def benchmark_eager_train_datasets_with_defun(self): def make_iterator(tensors): with tf.device('/device:CPU:0'): ds = tf.data.Dataset.from_tensors(tensors).repeat() return tfe.Iterator(ds) self._benchmark_eager_train( 'eager_train_dataset_with_defun', make_iterator, device_and_data_format(), defun=True) if __name__ == '__main__': tf.enable_eager_execution() tf.test.main()
tensorflow-master
tensorflow/contrib/eager/python/examples/densenet/densenet_test.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Script for reading and loading CIFAR-10.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import tensorflow as tf # Global constants describing the CIFAR data set. IMAGE_HEIGHT = 32 IMAGE_WIDTH = 32 NUM_CHANNEL = 3 def get_ds_from_tfrecords(data_dir, split, data_aug=True, batch_size=100, epochs=None, shuffle=True, data_format="channels_first", num_parallel_calls=12, prefetch=0, div255=True, dtype=tf.float32): """Returns a tf.train.Dataset object from reading tfrecords. Args: data_dir: Directory of tfrecords split: "train", "validation", or "test" data_aug: Apply data augmentation if True batch_size: Batch size of dataset object epochs: Number of epochs to repeat the dataset; default `None` means repeating indefinitely shuffle: Shuffle the dataset if True data_format: `channels_first` or `channels_last` num_parallel_calls: Number of threads for dataset preprocess prefetch: Buffer size for prefetch div255: Divide the images by 255 if True dtype: Data type of images Returns: A tf.train.Dataset object Raises: ValueError: Unknown split """ if split not in ["train", "validation", "test", "train_all"]: raise ValueError("Unknown split {}".format(split)) def _parser(serialized_example): """Parses a single tf.Example into image and label tensors.""" features = tf.parse_single_example( serialized_example, features={ "image": tf.FixedLenFeature([], tf.string), "label": tf.FixedLenFeature([], tf.int64), }) image = tf.decode_raw(features["image"], tf.uint8) # Initially reshaping to [H, W, C] does not work image = tf.reshape(image, [NUM_CHANNEL, IMAGE_HEIGHT, IMAGE_WIDTH]) # This is needed for `tf.image.resize_image_with_crop_or_pad` image = tf.transpose(image, [1, 2, 0]) image = tf.cast(image, dtype) label = tf.cast(features["label"], tf.int32) if data_aug: image = tf.image.resize_image_with_crop_or_pad(image, IMAGE_HEIGHT + 4, IMAGE_WIDTH + 4) image = tf.random_crop(image, [IMAGE_HEIGHT, IMAGE_WIDTH, NUM_CHANNEL]) image = tf.image.random_flip_left_right(image) if data_format == "channels_first": image = tf.transpose(image, [2, 0, 1]) if div255: image /= 255. return image, label filename = os.path.join(data_dir, split + ".tfrecords") dataset = tf.data.TFRecordDataset(filename) dataset = dataset.repeat(epochs) dataset = dataset.map(_parser, num_parallel_calls=num_parallel_calls) dataset = dataset.prefetch(prefetch) if shuffle: # Find the right size according to the split size = { "train": 40000, "validation": 10000, "test": 10000, "train_all": 50000 }[split] dataset = dataset.shuffle(size) dataset = dataset.batch(batch_size, drop_remainder=True) return dataset
tensorflow-master
tensorflow/contrib/eager/python/examples/revnet/cifar_input.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Cloud TPU Estimator workflow with RevNet train on ImageNet.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import time from absl import flags import tensorflow as tf from tensorflow.contrib import summary from tensorflow.contrib.eager.python.examples.revnet import config as config_ from tensorflow.contrib.eager.python.examples.revnet import imagenet_input from tensorflow.contrib.eager.python.examples.revnet import revnet from tensorflow.contrib.training.python.training import evaluation from tensorflow.python.estimator import estimator MEAN_RGB = [0.485, 0.456, 0.406] STDDEV_RGB = [0.229, 0.224, 0.225] def _host_call_fn(gs, loss, lr): """Training host call. Creates scalar summaries for training metrics. This function is executed on the CPU and should not directly reference any Tensors in the rest of the `model_fn`. To pass Tensors from the model to the `metric_fn`, provide as part of the `host_call`. See https://www.tensorflow.org/api_docs/python/tf/contrib/tpu/TPUEstimatorSpec for more information. Arguments should match the list of `Tensor` objects passed as the second element in the tuple passed to `host_call`. Args: gs: `Tensor with shape `[batch]` for the global_step loss: `Tensor` with shape `[batch]` for the training loss. lr: `Tensor` with shape `[batch]` for the learning_rate. Returns: List of summary ops to run on the CPU host. """ # Host call fns are executed FLAGS.iterations_per_loop times after one # TPU loop is finished, setting max_queue value to the same as number of # iterations will make the summary writer only flush the data to storage # once per loop. gs = gs[0] with summary.create_file_writer( FLAGS.model_dir, max_queue=FLAGS.iterations_per_loop).as_default(): with summary.always_record_summaries(): summary.scalar("loss", loss[0], step=gs) summary.scalar("learning_rate", lr[0], step=gs) return summary.all_summary_ops() def _metric_fn(labels, logits): """Evaluation metric function. Evaluates accuracy. This function is executed on the CPU and should not directly reference any Tensors in the rest of the `model_fn`. To pass Tensors from the model to the `metric_fn`, provide as part of the `eval_metrics`. See https://www.tensorflow.org/api_docs/python/tf/contrib/tpu/TPUEstimatorSpec for more information. Arguments should match the list of `Tensor` objects passed as the second element in the tuple passed to `eval_metrics`. Args: labels: `Tensor` with shape `[batch]`. logits: `Tensor` with shape `[batch, num_classes]`. Returns: A dict of the metrics to return from evaluation. """ predictions = tf.argmax(logits, axis=1) top_1_accuracy = tf.metrics.accuracy(labels, predictions) in_top_5 = tf.cast(tf.nn.in_top_k(logits, labels, 5), tf.float32) top_5_accuracy = tf.metrics.mean(in_top_5) return { "top_1_accuracy": top_1_accuracy, "top_5_accuracy": top_5_accuracy, } def model_fn(features, labels, mode, params): """Model function required by the `tf.contrib.tpu.TPUEstimator` API. Args: features: Input images labels: Labels of images mode: One of `ModeKeys.TRAIN`, `ModeKeys.EVAL` or 'ModeKeys.PREDICT' params: A dictionary of extra parameter that might be passed Returns: An instance of `tf.contrib.tpu.TPUEstimatorSpec` """ revnet_config = params["revnet_config"] model = revnet.RevNet(config=revnet_config) inputs = features if isinstance(inputs, dict): inputs = features["image"] if revnet_config.data_format == "channels_first": assert not FLAGS.transpose_input # channels_first only for GPU inputs = tf.transpose(inputs, [0, 3, 1, 2]) if FLAGS.transpose_input and mode != tf.estimator.ModeKeys.PREDICT: inputs = tf.transpose(inputs, [3, 0, 1, 2]) # HWCN to NHWC # Normalize the image to zero mean and unit variance. inputs -= tf.constant(MEAN_RGB, shape=[1, 1, 3], dtype=inputs.dtype) inputs /= tf.constant(STDDEV_RGB, shape=[1, 1, 3], dtype=inputs.dtype) if mode == tf.estimator.ModeKeys.TRAIN: global_step = tf.train.get_or_create_global_step() learning_rate = tf.train.piecewise_constant( global_step, revnet_config.lr_decay_steps, revnet_config.lr_list) optimizer = tf.train.MomentumOptimizer(learning_rate, revnet_config.momentum) if FLAGS.use_tpu: optimizer = tf.contrib.tpu.CrossShardOptimizer(optimizer) logits, saved_hidden = model(inputs, training=True) grads, loss = model.compute_gradients(saved_hidden, labels, training=True) with tf.control_dependencies(model.get_updates_for(inputs)): train_op = optimizer.apply_gradients( zip(grads, model.trainable_variables), global_step=global_step) if not FLAGS.skip_host_call: # To log the loss, current learning rate, and epoch for Tensorboard, the # summary op needs to be run on the host CPU via host_call. host_call # expects [batch_size, ...] Tensors, thus reshape to introduce a batch # dimension. These Tensors are implicitly concatenated to # [params['batch_size']]. gs_t = tf.reshape(global_step, [1]) loss_t = tf.reshape(loss, [1]) lr_t = tf.reshape(learning_rate, [1]) host_call = (_host_call_fn, [gs_t, loss_t, lr_t]) return tf.contrib.tpu.TPUEstimatorSpec( mode=mode, loss=loss, train_op=train_op, host_call=host_call) elif mode == tf.estimator.ModeKeys.EVAL: logits, _ = model(inputs, training=False) loss = model.compute_loss(labels=labels, logits=logits) return tf.contrib.tpu.TPUEstimatorSpec( mode=mode, loss=loss, eval_metrics=(_metric_fn, [labels, logits])) else: # Predict or export logits, _ = model(inputs, training=False) predictions = { "classes": tf.argmax(logits, axis=1), "probabilities": tf.nn.softmax(logits), } return tf.contrib.tpu.TPUEstimatorSpec( mode=mode, predictions=predictions, export_outputs={ "classify": tf.estimator.export.PredictOutput(predictions) }) def main(_): tf.logging.set_verbosity(tf.logging.INFO) # RevNet specific configuration revnet_config = { "revnet-56": config_.get_hparams_imagenet_56(), "revnet-104": config_.get_hparams_imagenet_104() }[FLAGS.revnet_config] if FLAGS.use_tpu: revnet_config.data_format = "channels_last" tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver( FLAGS.tpu, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project) # Estimator specific configuration config = tf.contrib.tpu.RunConfig( cluster=tpu_cluster_resolver, model_dir=FLAGS.model_dir, session_config=tf.ConfigProto( allow_soft_placement=True, log_device_placement=True), tpu_config=tf.contrib.tpu.TPUConfig( iterations_per_loop=FLAGS.iterations_per_loop, num_shards=FLAGS.num_shards, per_host_input_for_training=tf.contrib.tpu.InputPipelineConfig. PER_HOST_V2), ) # Input pipelines are slightly different (with regards to shuffling and # preprocessing) between training and evaluation. imagenet_train, imagenet_eval = [ imagenet_input.ImageNetInput( is_training=is_training, data_dir=FLAGS.data_dir, transpose_input=FLAGS.transpose_input, use_bfloat16=False) for is_training in [True, False] ] revnet_classifier = tf.contrib.tpu.TPUEstimator( model_fn=model_fn, use_tpu=FLAGS.use_tpu, train_batch_size=revnet_config.tpu_batch_size, eval_batch_size=revnet_config.tpu_eval_batch_size, config=config, export_to_tpu=False, params={"revnet_config": revnet_config}) steps_per_epoch = revnet_config.tpu_iters_per_epoch eval_steps = revnet_config.tpu_eval_steps # pylint: disable=protected-access if FLAGS.mode == "eval": # Run evaluation when there's a new checkpoint for ckpt in evaluation.checkpoints_iterator( FLAGS.model_dir, timeout=FLAGS.eval_timeout): tf.logging.info("Starting to evaluate.") try: start_timestamp = time.time() # This time will include compilation time eval_results = revnet_classifier.evaluate( input_fn=imagenet_eval.input_fn, steps=eval_steps, checkpoint_path=ckpt) elapsed_time = int(time.time() - start_timestamp) tf.logging.info("Eval results: %s. Elapsed seconds: %d" % (eval_results, elapsed_time)) # Terminate eval job when final checkpoint is reached current_step = int(os.path.basename(ckpt).split("-")[1]) if current_step >= revnet_config.max_train_iter: tf.logging.info( "Evaluation finished after training step %d" % current_step) break except tf.errors.NotFoundError: # Since the coordinator is on a different job than the TPU worker, # sometimes the TPU worker does not finish initializing until long after # the CPU job tells it to start evaluating. In this case, the checkpoint # file could have been deleted already. tf.logging.info( "Checkpoint %s no longer exists, skipping checkpoint" % ckpt) else: # FLAGS.mode == 'train' or FLAGS.mode == 'train_and_eval' current_step = estimator._load_global_step_from_checkpoint_dir( FLAGS.model_dir) tf.logging.info( "Training for %d steps (%.2f epochs in total). Current" " step %d." % (revnet_config.max_train_iter, revnet_config.max_train_iter / steps_per_epoch, current_step)) start_timestamp = time.time() # This time will include compilation time if FLAGS.mode == "train": revnet_classifier.train( input_fn=imagenet_train.input_fn, max_steps=revnet_config.max_train_iter) else: assert FLAGS.mode == "train_and_eval" while current_step < revnet_config.max_train_iter: # Train for up to steps_per_eval number of steps. # At the end of training, a checkpoint will be written to --model_dir. next_checkpoint = min(current_step + FLAGS.steps_per_eval, revnet_config.max_train_iter) revnet_classifier.train( input_fn=imagenet_train.input_fn, max_steps=next_checkpoint) current_step = next_checkpoint tf.logging.info("Finished training up to step %d. Elapsed seconds %d." % (next_checkpoint, int(time.time() - start_timestamp))) # Evaluate the model on the most recent model in --model_dir. # Since evaluation happens in batches of --eval_batch_size, some images # may be excluded modulo the batch size. As long as the batch size is # consistent, the evaluated images are also consistent. tf.logging.info("Starting to evaluate.") eval_results = revnet_classifier.evaluate( input_fn=imagenet_eval.input_fn, steps=eval_steps) tf.logging.info("Eval results: %s" % eval_results) elapsed_time = int(time.time() - start_timestamp) tf.logging.info("Finished training up to step %d. Elapsed seconds %d." % (revnet_config.max_train_iter, elapsed_time)) if FLAGS.export_dir is not None: # The guide to serve an exported TensorFlow model is at: # https://www.tensorflow.org/serving/serving_basic tf.logging.info("Starting to export model.") revnet_classifier.export_saved_model( export_dir_base=FLAGS.export_dir, serving_input_receiver_fn=imagenet_input.image_serving_input_fn) if __name__ == "__main__": # Cloud TPU Cluster Resolver flags flags.DEFINE_string( "tpu", default=None, help="The Cloud TPU to use for training. This should be either the name " "used when creating the Cloud TPU, or a grpc://ip.address.of.tpu:8470 " "url.") flags.DEFINE_string( "tpu_zone", default=None, help="[Optional] GCE zone where the Cloud TPU is located in. If not " "specified, we will attempt to automatically detect the GCE project from " "metadata.") flags.DEFINE_string( "gcp_project", default=None, help="[Optional] Project name for the Cloud TPU-enabled project. If not " "specified, we will attempt to automatically detect the GCE project from " "metadata.") # Model specific parameters flags.DEFINE_string( "data_dir", default=None, help="Directory to load tfrecords") flags.DEFINE_string( "model_dir", default=None, help="[Optional] Directory to store the model information") flags.DEFINE_string( "revnet_config", default="revnet-56", help="[Optional] Architecture of network. " "Other options include `revnet-104`") flags.DEFINE_boolean( "use_tpu", default=True, help="[Optional] Whether to use TPU") flags.DEFINE_integer( "num_shards", default=8, help="Number of shards (TPU chips).") flags.DEFINE_integer( "iterations_per_loop", default=100, help=( "Number of steps to run on TPU before feeding metrics to the CPU." " If the number of iterations in the loop would exceed the number of" " train steps, the loop will exit before reaching" " --iterations_per_loop. The larger this value is, the higher the" " utilization on the TPU.")) flags.DEFINE_integer( "eval_timeout", default=None, help="Maximum seconds between checkpoints before evaluation terminates.") flags.DEFINE_integer( "steps_per_eval", default=5000, help=( "Controls how often evaluation is performed. Since evaluation is" " fairly expensive, it is advised to evaluate as infrequently as" " possible (i.e. up to --train_steps, which evaluates the model only" " after finishing the entire training regime).")) flags.DEFINE_bool( "transpose_input", default=True, help="Use TPU double transpose optimization") flags.DEFINE_string( "export_dir", default=None, help=("The directory where the exported SavedModel will be stored.")) flags.DEFINE_bool( "skip_host_call", default=False, help=("Skip the host_call which is executed every training step. This is" " generally used for generating training summaries (train loss," " learning rate, etc...). When --skip_host_call=false, there could" " be a performance drop if host_call function is slow and cannot" " keep up with the TPU-side computation.")) flags.DEFINE_string( "mode", default="train_and_eval", help='One of {"train_and_eval", "train", "eval"}.') FLAGS = flags.FLAGS tf.app.run()
tensorflow-master
tensorflow/contrib/eager/python/examples/revnet/main_estimator_tpu.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Reversible residual network compatible with eager execution. Configuration in format of tf.contrib.training.HParams. Supports CIFAR-10, CIFAR-100, and ImageNet datasets. Reference [The Reversible Residual Network: Backpropagation Without Storing Activations](https://arxiv.org/pdf/1707.04585.pdf) """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf def get_hparams_cifar_38(): """RevNet-38 configurations for CIFAR-10/CIFAR-100.""" config = tf.contrib.training.HParams() config.add_hparam("num_train_images", 50000) config.add_hparam("num_eval_images", 10000) config.add_hparam("init_filters", 32) config.add_hparam("init_kernel", 3) config.add_hparam("init_stride", 1) config.add_hparam("n_rev_blocks", 3) config.add_hparam("n_res", [3, 3, 3]) config.add_hparam("filters", [32, 64, 112]) config.add_hparam("strides", [1, 2, 2]) config.add_hparam("batch_size", 100) config.add_hparam("bottleneck", False) config.add_hparam("fused", True) config.add_hparam("init_max_pool", False) if tf.test.is_gpu_available(): config.add_hparam("input_shape", (3, 32, 32)) config.add_hparam("data_format", "channels_first") else: config.add_hparam("input_shape", (32, 32, 3)) config.add_hparam("data_format", "channels_last") # Training details config.add_hparam("weight_decay", 2e-4) config.add_hparam("momentum", .9) config.add_hparam("lr_decay_steps", [40000, 60000]) config.add_hparam("lr_list", [1e-1, 1e-2, 1e-3]) config.add_hparam("max_train_iter", 80000) config.add_hparam("seed", 1234) config.add_hparam("shuffle", True) config.add_hparam("log_every", 500) config.add_hparam("save_every", 500) config.add_hparam("dtype", tf.float32) config.add_hparam("eval_batch_size", 1000) config.add_hparam("div255", True) # This is imprecise, when training with validation set, # we only have 40k images in training data config.add_hparam("iters_per_epoch", config.num_train_images // config.batch_size) config.add_hparam("epochs", config.max_train_iter // config.iters_per_epoch) # Customized TPU hyperparameters due to differing batch size caused by # TPU architecture specifics # Suggested batch sizes to reduce overhead from excessive tensor padding # https://cloud.google.com/tpu/docs/troubleshooting config.add_hparam("tpu_batch_size", 1024) config.add_hparam("tpu_eval_batch_size", 1024) config.add_hparam("tpu_iters_per_epoch", config.num_train_images // config.tpu_batch_size) config.add_hparam("tpu_epochs", config.max_train_iter // config.tpu_iters_per_epoch) config.add_hparam("tpu_eval_steps", config.num_eval_images // config.tpu_eval_batch_size) return config def get_hparams_cifar_110(): config = get_hparams_cifar_38() config.filters = [32, 64, 128] config.n_res = [9, 9, 9] return config def get_hparams_cifar_164(): config = get_hparams_cifar_38() config.filters = [32, 64, 128] config.n_res = [9, 9, 9] config.use_bottleneck = True # Due to bottleneck residual blocks filters = [f * 4 for f in config.filters] config.filters = filters return config def get_hparams_imagenet_56(): """RevNet-56 configurations for ImageNet.""" config = tf.contrib.training.HParams() config.add_hparam("n_classes", 1000) config.add_hparam("dataset", "ImageNet") config.add_hparam("num_train_images", 1281167) config.add_hparam("num_eval_images", 50000) config.add_hparam("init_filters", 128) config.add_hparam("init_kernel", 7) config.add_hparam("init_stride", 2) config.add_hparam("n_rev_blocks", 4) config.add_hparam("n_res", [2, 2, 2, 2]) config.add_hparam("filters", [128, 256, 512, 832]) config.add_hparam("strides", [1, 2, 2, 2]) config.add_hparam("batch_size", 256) config.add_hparam("bottleneck", True) config.add_hparam("fused", True) config.add_hparam("init_max_pool", True) if tf.test.is_gpu_available(): config.add_hparam("input_shape", (3, 224, 224)) config.add_hparam("data_format", "channels_first") else: config.add_hparam("input_shape", (224, 224, 3)) config.add_hparam("data_format", "channels_last") # Due to bottleneck residual blocks filters = [f * 4 for f in config.filters] config.filters = filters # Training details config.add_hparam("weight_decay", 1e-4) config.add_hparam("momentum", .9) config.add_hparam("lr_decay_steps", [160000, 320000, 480000]) config.add_hparam("lr_list", [1e-1, 1e-2, 1e-3, 1e-4]) config.add_hparam("max_train_iter", 600000) config.add_hparam("seed", 1234) config.add_hparam("shuffle", True) config.add_hparam("log_every", 500) config.add_hparam("save_every", 500) config.add_hparam("dtype", tf.float32) config.add_hparam("eval_batch_size", 256) config.add_hparam("div255", True) config.add_hparam("iters_per_epoch", config.num_train_images // config.batch_size) config.add_hparam("epochs", config.max_train_iter // config.iters_per_epoch) # Customized TPU hyperparameters due to differing batch size caused by # TPU architecture specifics # Suggested batch sizes to reduce overhead from excessive tensor padding # https://cloud.google.com/tpu/docs/troubleshooting config.add_hparam("tpu_batch_size", 1024) config.add_hparam("tpu_eval_batch_size", 1024) config.add_hparam("tpu_iters_per_epoch", config.num_train_images // config.tpu_batch_size) config.add_hparam("tpu_epochs", config.max_train_iter // config.tpu_iters_per_epoch) config.add_hparam("tpu_eval_steps", config.num_eval_images // config.tpu_eval_batch_size) return config def get_hparams_imagenet_104(): config = get_hparams_imagenet_56() config.n_res = [2, 2, 11, 2] return config
tensorflow-master
tensorflow/contrib/eager/python/examples/revnet/config.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Efficient ImageNet input pipeline using tf.data.Dataset.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import os import tensorflow as tf from tensorflow.contrib.eager.python.examples.revnet import resnet_preprocessing def image_serving_input_fn(): """Serving input fn for raw images.""" def _preprocess_image(image_bytes): """Preprocess a single raw image.""" image = resnet_preprocessing.preprocess_image( image_bytes=image_bytes, is_training=False) return image image_bytes_list = tf.placeholder( shape=[None], dtype=tf.string, ) images = tf.map_fn( _preprocess_image, image_bytes_list, back_prop=False, dtype=tf.float32) return tf.estimator.export.ServingInputReceiver( images, {'image_bytes': image_bytes_list}) class ImageNetInput(object): """Generates ImageNet input_fn for training or evaluation. The training data is assumed to be in TFRecord format with keys as specified in the dataset_parser below, sharded across 1024 files, named sequentially: train-00000-of-01024 train-00001-of-01024 ... train-01023-of-01024 The validation data is in the same format but sharded in 128 files. The format of the data required is created by the script at: https://github.com/tensorflow/tpu/blob/master/tools/datasets/imagenet_to_gcs.py Args: is_training: `bool` for whether the input is for training data_dir: `str` for the directory of the training and validation data; if 'null' (the literal string 'null', not None), then construct a null pipeline, consisting of empty images. use_bfloat16: If True, use bfloat16 precision; else use float32. transpose_input: 'bool' for whether to use the double transpose trick num_cores: `int` for the number of TPU cores """ def __init__(self, is_training, use_bfloat16, data_dir, num_cores=8, num_parallel_calls=64, image_size=224, transpose_input=False, cache=False): self.image_preprocessing_fn = resnet_preprocessing.preprocess_image self.is_training = is_training self.use_bfloat16 = use_bfloat16 self.data_dir = data_dir self.num_cores = num_cores self.num_parallel_calls = num_parallel_calls if self.data_dir == 'null' or self.data_dir == '': self.data_dir = None self.transpose_input = transpose_input self.image_size = image_size self.cache = cache def set_shapes(self, batch_size, images, labels): """Statically set the batch_size dimension.""" if self.transpose_input: images.set_shape(images.get_shape().merge_with( tf.TensorShape([None, None, None, batch_size]))) labels.set_shape(labels.get_shape().merge_with( tf.TensorShape([batch_size]))) else: images.set_shape(images.get_shape().merge_with( tf.TensorShape([batch_size, None, None, None]))) labels.set_shape(labels.get_shape().merge_with( tf.TensorShape([batch_size]))) return images, labels def dataset_parser(self, value): """Parse an ImageNet record from a serialized string Tensor.""" keys_to_features = { 'image/encoded': tf.FixedLenFeature((), tf.string, ''), 'image/format': tf.FixedLenFeature((), tf.string, 'jpeg'), 'image/class/label': tf.FixedLenFeature([], tf.int64, -1), 'image/class/text': tf.FixedLenFeature([], tf.string, ''), 'image/object/bbox/xmin': tf.VarLenFeature(dtype=tf.float32), 'image/object/bbox/ymin': tf.VarLenFeature(dtype=tf.float32), 'image/object/bbox/xmax': tf.VarLenFeature(dtype=tf.float32), 'image/object/bbox/ymax': tf.VarLenFeature(dtype=tf.float32), 'image/object/class/label': tf.VarLenFeature(dtype=tf.int64), } parsed = tf.parse_single_example(value, keys_to_features) image_bytes = tf.reshape(parsed['image/encoded'], shape=[]) image = self.image_preprocessing_fn( image_bytes=image_bytes, is_training=self.is_training, image_size=self.image_size, use_bfloat16=self.use_bfloat16) # Subtract one so that labels are in [0, 1000). label = tf.cast( tf.reshape(parsed['image/class/label'], shape=[]), dtype=tf.int32) - 1 return image, label def input_fn(self, params): """Input function which provides a single batch for train or eval. Args: params: `dict` of parameters passed from the `TPUEstimator`. `params['batch_size']` is always provided and should be used as the effective batch size. Returns: A `tf.data.Dataset` object. """ if self.data_dir is None: tf.logging.info('Using fake input.') return self.input_fn_null(params) # Retrieves the batch size for the current shard. The # of shards is # computed according to the input pipeline deployment. See # tf.contrib.tpu.RunConfig for details. batch_size = params['batch_size'] # Shuffle the filenames to ensure better randomization. file_pattern = os.path.join( self.data_dir, 'train-*' if self.is_training else 'validation-*') dataset = tf.data.Dataset.list_files(file_pattern, shuffle=self.is_training) if self.is_training and not self.cache: dataset = dataset.repeat() def fetch_dataset(filename): buffer_size = 8 * 1024 * 1024 # 8 MiB per file dataset = tf.data.TFRecordDataset(filename, buffer_size=buffer_size) return dataset # Read the data from disk in parallel dataset = dataset.apply( tf.data.experimental.parallel_interleave( fetch_dataset, cycle_length=self.num_parallel_calls, sloppy=True)) if self.cache: dataset = dataset.cache().apply( tf.data.experimental.shuffle_and_repeat(1024 * 16)) else: dataset = dataset.shuffle(1024) # Use the fused map-and-batch operation. # # For XLA, we must used fixed shapes. Because we repeat the source training # dataset indefinitely, we can use `drop_remainder=True` to get fixed-size # batches without dropping any training examples. # # When evaluating, `drop_remainder=True` prevents accidentally evaluating # the same image twice by dropping the final batch if it is less than a full # batch size. As long as this validation is done with consistent batch size, # exactly the same images will be used. dataset = dataset.apply( tf.data.experimental.map_and_batch( self.dataset_parser, batch_size=batch_size, num_parallel_batches=self.num_cores, drop_remainder=True)) # Transpose for performance on TPU if self.transpose_input: dataset = dataset.map( lambda images, labels: (tf.transpose(images, [1, 2, 3, 0]), labels), num_parallel_calls=self.num_cores) # Assign static batch size dimension dataset = dataset.map(functools.partial(self.set_shapes, batch_size)) # Prefetch overlaps in-feed with training dataset = dataset.prefetch(tf.contrib.data.AUTOTUNE) return dataset def input_fn_null(self, params): """Input function which provides null (black) images.""" batch_size = params['batch_size'] dataset = tf.data.Dataset.range(1).repeat().map(self._get_null_input) dataset = dataset.prefetch(batch_size) dataset = dataset.batch(batch_size, drop_remainder=True) if self.transpose_input: dataset = dataset.map( lambda images, labels: (tf.transpose(images, [1, 2, 3, 0]), labels), num_parallel_calls=8) dataset = dataset.map(functools.partial(self.set_shapes, batch_size)) dataset = dataset.prefetch(32) # Prefetch overlaps in-feed with training tf.logging.info('Input dataset: %s', str(dataset)) return dataset def _get_null_input(self, _): null_image = tf.zeros([224, 224, 3], tf.bfloat16 if self.use_bfloat16 else tf.float32) return (null_image, tf.constant(0, tf.int32))
tensorflow-master
tensorflow/contrib/eager/python/examples/revnet/imagenet_input.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for basic building blocks used in eager mode RevNet.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from tensorflow.contrib.eager.python.examples.revnet import blocks def compute_degree(g1, g2, eps=1e-7): """Compute the degree between two vectors using their usual inner product.""" def _dot(u, v): return tf.reduce_sum(u * v) g1_norm = tf.sqrt(_dot(g1, g1)) g2_norm = tf.sqrt(_dot(g2, g2)) if g1_norm.numpy() == 0 and g2_norm.numpy() == 0: cosine = 1. - eps else: g1_norm = 1. if g1_norm.numpy() == 0 else g1_norm g2_norm = 1. if g2_norm.numpy() == 0 else g2_norm cosine = _dot(g1, g2) / g1_norm / g2_norm # Restrict to arccos range cosine = tf.minimum(tf.maximum(cosine, eps - 1.), 1. - eps) degree = tf.acos(cosine) * 180. / 3.141592653589793 return degree def _validate_block_call_channels_last(block_factory, test): """Generic testing function for `channels_last` data format. Completes a set of tests varying data format, stride, and batch normalization configured train vs test time. Args: block_factory: constructor of one of blocks.InitBlock, blocks.FinalBlock, blocks._ResidualInner test: tf.test.TestCase object """ with tf.device("/cpu:0"): # NHWC format input_shape = (8, 8, 128) data_shape = (16,) + input_shape x = tf.random_normal(shape=data_shape) # Stride 1 block = block_factory( filters=128, strides=(1, 1), input_shape=input_shape, data_format="channels_last") y_tr, y_ev = block(x, training=True), block(x, training=False) test.assertEqual(y_tr.shape, y_ev.shape) test.assertEqual(y_ev.shape, (16, 8, 8, 128)) test.assertNotAllClose(y_tr, y_ev) # Stride of 2 block = block_factory( filters=128, strides=(2, 2), input_shape=input_shape, data_format="channels_last") y_tr, y_ev = block(x, training=True), block(x, training=False) test.assertEqual(y_tr.shape, y_ev.shape) test.assertEqual(y_ev.shape, (16, 4, 4, 128)) test.assertNotAllClose(y_tr, y_ev) def _validate_block_call_channels_first(block_factory, test): """Generic testing function for `channels_first` data format. Completes a set of tests varying data format, stride, and batch normalization configured train vs test time. Args: block_factory: constructor of one of blocks.InitBlock, blocks.FinalBlock, blocks._ResidualInner test: tf.test.TestCase object """ if not tf.test.is_gpu_available(): test.skipTest("GPU not available") with tf.device("/gpu:0"): # Default NCHW format input_shape = (128, 8, 8) data_shape = (16,) + input_shape x = tf.random_normal(shape=data_shape) # Stride of 1 block = block_factory(filters=128, strides=(1, 1), input_shape=input_shape) y_tr, y_ev = block(x, training=True), block(x, training=False) test.assertEqual(y_tr.shape, y_ev.shape) test.assertEqual(y_ev.shape, (16, 128, 8, 8)) test.assertNotAllClose(y_tr, y_ev) # Stride of 2 block = block_factory(filters=128, strides=(2, 2), input_shape=input_shape) y_tr, y_ev = block(x, training=True), block(x, training=False) test.assertEqual(y_tr.shape, y_ev.shape) test.assertEqual(y_ev.shape, (16, 128, 4, 4)) test.assertNotAllClose(y_tr, y_ev) class RevBlockTest(tf.test.TestCase): def _check_grad_angle(self, grads, grads_true, atol=1e0): """Check the angle between two list of vectors are all close.""" for g1, g2 in zip(grads, grads_true): degree = compute_degree(g1, g2) self.assertLessEqual(degree, atol) def test_backward_grads_channels_first(self): """Test `backward` function with `channels_first` data format.""" if not tf.test.is_gpu_available(): self.skipTest("GPU not available") with tf.device("/gpu:0"): # Default NCHW format # Stride 1 input_shape = (128, 8, 8) data_shape = (16,) + input_shape x = tf.random_normal(shape=data_shape, dtype=tf.float64) dy = tf.random_normal(shape=data_shape, dtype=tf.float64) dy1, dy2 = tf.split(dy, num_or_size_splits=2, axis=1) block = blocks.RevBlock( n_res=3, filters=128, strides=(1, 1), input_shape=input_shape, fused=False, dtype=tf.float64) with tf.GradientTape() as tape: tape.watch(x) x1, x2 = tf.split(x, num_or_size_splits=2, axis=1) y1, y2 = block((x1, x2), training=True) y = tf.concat((y1, y2), axis=1) # Compute grads from reconstruction (dx1, dx2), dw = block.backward_grads( x=(x1, x2), y=(y1, y2), dy=(dy1, dy2), training=True) dx = tf.concat((dx1, dx2), axis=1) vars_ = block.trainable_variables # Compute true grads grads = tape.gradient(y, [x] + vars_, output_gradients=dy) dx_true, dw_true = grads[0], grads[1:] self.assertAllClose(dx_true, dx) self.assertAllClose(dw_true, dw) self._check_grad_angle(dx_true, dx) self._check_grad_angle(dw_true, dw) # Stride 2 x = tf.random_normal(shape=data_shape, dtype=tf.float64) dy = tf.random_normal(shape=(16, 128, 4, 4), dtype=tf.float64) dy1, dy2 = tf.split(dy, num_or_size_splits=2, axis=1) block = blocks.RevBlock( n_res=3, filters=128, strides=(2, 2), input_shape=input_shape, fused=False, dtype=tf.float64) with tf.GradientTape() as tape: tape.watch(x) x1, x2 = tf.split(x, num_or_size_splits=2, axis=1) y1, y2 = block((x1, x2), training=True) y = tf.concat((y1, y2), axis=1) # Compute grads from reconstruction (dx1, dx2), dw = block.backward_grads( x=(x1, x2), y=(y1, y2), dy=(dy1, dy2), training=True) dx = tf.concat((dx1, dx2), axis=1) vars_ = block.trainable_variables # Compute true grads grads = tape.gradient(y, [x] + vars_, output_gradients=dy) dx_true, dw_true = grads[0], grads[1:] self.assertAllClose(dx_true, dx) self.assertAllClose(dw_true, dw) self._check_grad_angle(dx_true, dx) self._check_grad_angle(dw_true, dw) def test_backward_grads_with_nativepy(self): if not tf.test.is_gpu_available(): self.skipTest("GPU not available") input_shape = (128, 8, 8) data_shape = (16,) + input_shape x = tf.random_normal(shape=data_shape, dtype=tf.float64) dy = tf.random_normal(shape=data_shape, dtype=tf.float64) dy1, dy2 = tf.split(dy, num_or_size_splits=2, axis=1) block = blocks.RevBlock( n_res=3, filters=128, strides=(1, 1), input_shape=input_shape, fused=False, dtype=tf.float64) with tf.GradientTape() as tape: tape.watch(x) x1, x2 = tf.split(x, num_or_size_splits=2, axis=1) y1, y2 = block((x1, x2), training=True) y = tf.concat((y1, y2), axis=1) # Compute true grads dx_true = tape.gradient(y, x, output_gradients=dy) # Compute grads from reconstruction (dx1, dx2), _ = block.backward_grads( x=(x1, x2), y=(y1, y2), dy=(dy1, dy2), training=True) dx = tf.concat((dx1, dx2), axis=1) thres = 1e-5 diff_abs = tf.reshape(abs(dx - dx_true), [-1]) assert all(diff_abs < thres) class _ResidualTest(tf.test.TestCase): def test_backward_grads_channels_first(self): """Test `backward_grads` function with `channels_first` data format.""" if not tf.test.is_gpu_available(): self.skipTest("GPU not available") with tf.device("/gpu:0"): # Default NCHW format input_shape = (128, 8, 8) data_shape = (16,) + input_shape # Use double precision for testing x_true = tf.random_normal(shape=data_shape, dtype=tf.float64) dy = tf.random_normal(shape=data_shape, dtype=tf.float64) dy1, dy2 = tf.split(dy, num_or_size_splits=2, axis=1) residual = blocks._Residual( filters=128, strides=(1, 1), input_shape=input_shape, fused=False, dtype=tf.float64) with tf.GradientTape() as tape: tape.watch(x_true) x1_true, x2_true = tf.split(x_true, num_or_size_splits=2, axis=1) y1, y2 = residual((x1_true, x2_true), training=True) y = tf.concat((y1, y2), axis=1) # Gradients computed due to reversibility (x1, x2), (dx1, dx2), dw = residual.backward_grads( y=(y1, y2), dy=(dy1, dy2), training=True) x = tf.concat((x1, x2), axis=1) dx = tf.concat((dx1, dx2), axis=1) # True gradients computed by the tape grads = tape.gradient( y, [x_true] + residual.trainable_variables, output_gradients=dy) dx_true, dw_true = grads[0], grads[1:] self.assertAllClose(x_true, x) self.assertAllClose(dx_true, dx) self.assertAllClose(dw_true, dw) class _ResidualInnerTest(tf.test.TestCase): def test_call(self): """Test `call` function.""" _validate_block_call_channels_first(blocks._ResidualInner, self) _validate_block_call_channels_last(blocks._ResidualInner, self) class _BottleneckResidualInner(tf.test.TestCase): def test_call(self): """Test `call` function.""" _validate_block_call_channels_first(blocks._BottleneckResidualInner, self) _validate_block_call_channels_last(blocks._BottleneckResidualInner, self) if __name__ == "__main__": tf.enable_eager_execution() tf.test.main()
tensorflow-master
tensorflow/contrib/eager/python/examples/revnet/blocks_test.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ImageNet preprocessing for ResNet.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf IMAGE_SIZE = 224 CROP_PADDING = 32 def distorted_bounding_box_crop(image_bytes, bbox, min_object_covered=0.1, aspect_ratio_range=(0.75, 1.33), area_range=(0.05, 1.0), max_attempts=100, scope=None): """Generates cropped_image using one of the bboxes randomly distorted. See `tf.image.sample_distorted_bounding_box` for more documentation. Args: image_bytes: `Tensor` of binary image data. bbox: `Tensor` of bounding boxes arranged `[1, num_boxes, coords]` where each coordinate is [0, 1) and the coordinates are arranged as `[ymin, xmin, ymax, xmax]`. If num_boxes is 0 then use the whole image. min_object_covered: An optional `float`. Defaults to `0.1`. The cropped area of the image must contain at least this fraction of any bounding box supplied. aspect_ratio_range: An optional list of `float`s. The cropped area of the image must have an aspect ratio = width / height within this range. area_range: An optional list of `float`s. The cropped area of the image must contain a fraction of the supplied image within in this range. max_attempts: An optional `int`. Number of attempts at generating a cropped region of the image of the specified constraints. After `max_attempts` failures, return the entire image. scope: Optional `str` for name scope. Returns: cropped image `Tensor` """ with tf.name_scope(scope, 'distorted_bounding_box_crop', [image_bytes, bbox]): shape = tf.image.extract_jpeg_shape(image_bytes) sample_distorted_bounding_box = tf.image.sample_distorted_bounding_box( shape, bounding_boxes=bbox, min_object_covered=min_object_covered, aspect_ratio_range=aspect_ratio_range, area_range=area_range, max_attempts=max_attempts, use_image_if_no_bounding_boxes=True) bbox_begin, bbox_size, _ = sample_distorted_bounding_box # Crop the image to the specified bounding box. offset_y, offset_x, _ = tf.unstack(bbox_begin) target_height, target_width, _ = tf.unstack(bbox_size) crop_window = tf.stack([offset_y, offset_x, target_height, target_width]) image = tf.image.decode_and_crop_jpeg(image_bytes, crop_window, channels=3) return image def _at_least_x_are_equal(a, b, x): """At least `x` of `a` and `b` `Tensors` are equal.""" match = tf.equal(a, b) match = tf.cast(match, tf.int32) return tf.greater_equal(tf.reduce_sum(match), x) def _decode_and_random_crop(image_bytes, image_size): """Make a random crop of image_size.""" bbox = tf.constant([0.0, 0.0, 1.0, 1.0], dtype=tf.float32, shape=[1, 1, 4]) image = distorted_bounding_box_crop( image_bytes, bbox, min_object_covered=0.1, aspect_ratio_range=(3. / 4, 4. / 3.), area_range=(0.08, 1.0), max_attempts=10, scope=None) original_shape = tf.image.extract_jpeg_shape(image_bytes) bad = _at_least_x_are_equal(original_shape, tf.shape(image), 3) image = tf.cond( bad, lambda: _decode_and_center_crop(image_bytes, image_size), lambda: tf.image.resize_bicubic([image], # pylint: disable=g-long-lambda [image_size, image_size])[0]) return image def _decode_and_center_crop(image_bytes, image_size): """Crops to center of image with padding then scales image_size.""" shape = tf.image.extract_jpeg_shape(image_bytes) image_height = shape[0] image_width = shape[1] padded_center_crop_size = tf.cast( ((image_size / (image_size + CROP_PADDING)) * tf.cast(tf.minimum(image_height, image_width), tf.float32)), tf.int32) offset_height = ((image_height - padded_center_crop_size) + 1) // 2 offset_width = ((image_width - padded_center_crop_size) + 1) // 2 crop_window = tf.stack([offset_height, offset_width, padded_center_crop_size, padded_center_crop_size]) image = tf.image.decode_and_crop_jpeg(image_bytes, crop_window, channels=3) image = tf.image.resize_bicubic([image], [image_size, image_size])[0] return image def _flip(image): """Random horizontal image flip.""" image = tf.image.random_flip_left_right(image) return image def preprocess_for_train(image_bytes, use_bfloat16, image_size=IMAGE_SIZE): """Preprocesses the given image for evaluation. Args: image_bytes: `Tensor` representing an image binary of arbitrary size. use_bfloat16: `bool` for whether to use bfloat16. image_size: image size. Returns: A preprocessed image `Tensor`. """ image = _decode_and_random_crop(image_bytes, image_size) image = _flip(image) image = tf.reshape(image, [image_size, image_size, 3]) image = tf.image.convert_image_dtype( image, dtype=tf.bfloat16 if use_bfloat16 else tf.float32) return image def preprocess_for_eval(image_bytes, use_bfloat16, image_size=IMAGE_SIZE): """Preprocesses the given image for evaluation. Args: image_bytes: `Tensor` representing an image binary of arbitrary size. use_bfloat16: `bool` for whether to use bfloat16. image_size: image size. Returns: A preprocessed image `Tensor`. """ image = _decode_and_center_crop(image_bytes, image_size) image = tf.reshape(image, [image_size, image_size, 3]) image = tf.image.convert_image_dtype( image, dtype=tf.bfloat16 if use_bfloat16 else tf.float32) return image def preprocess_image(image_bytes, is_training=False, use_bfloat16=False, image_size=IMAGE_SIZE): """Preprocesses the given image. Args: image_bytes: `Tensor` representing an image binary of arbitrary size. is_training: `bool` for whether the preprocessing is for training. use_bfloat16: `bool` for whether to use bfloat16. image_size: image size. Returns: A preprocessed image `Tensor`. """ if is_training: return preprocess_for_train(image_bytes, use_bfloat16, image_size) else: return preprocess_for_eval(image_bytes, use_bfloat16, image_size)
tensorflow-master
tensorflow/contrib/eager/python/examples/revnet/resnet_preprocessing.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Reversible residual network compatible with eager execution. Customized basic operations. Reference [The Reversible Residual Network: Backpropagation Without Storing Activations](https://arxiv.org/pdf/1707.04585.pdf) """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf def downsample(x, filters, strides, axis=1): """Downsample feature map with avg pooling, if filter size doesn't match.""" def pad_strides(strides, axis=1): """Convert length 2 to length 4 strides. Needed since `tf.compat.v1.layers.Conv2D` uses length 2 strides, whereas operations such as `tf.nn.avg_pool2d` use length 4 strides. Args: strides: length 2 list/tuple strides for height and width axis: integer specifying feature dimension according to data format Returns: length 4 strides padded with 1 on batch and channel dimension """ assert len(strides) == 2 if axis == 1: return [1, 1, strides[0], strides[1]] return [1, strides[0], strides[1], 1] assert len(x.shape) == 4 and (axis == 1 or axis == 3) data_format = "NCHW" if axis == 1 else "NHWC" strides_ = pad_strides(strides, axis=axis) if strides[0] > 1: x = tf.nn.avg_pool( x, strides_, strides_, padding="VALID", data_format=data_format) in_filter = x.shape[axis] out_filter = filters if in_filter < out_filter: pad_size = [(out_filter - in_filter) // 2, (out_filter - in_filter) // 2] if axis == 1: x = tf.pad(x, [[0, 0], pad_size, [0, 0], [0, 0]]) else: x = tf.pad(x, [[0, 0], [0, 0], [0, 0], pad_size]) # In case `tape.gradient(x, [x])` produces a list of `None` return x + 0.
tensorflow-master
tensorflow/contrib/eager/python/examples/revnet/ops.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Read CIFAR data from pickled numpy arrays and writes TFRecords. Generates tf.train.Example protos and writes them to TFRecord files from the python version of the CIFAR dataset downloaded from https://www.cs.toronto.edu/~kriz/cifar.html. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys import tarfile from absl import flags from six.moves import cPickle as pickle from six.moves import urllib import tensorflow as tf BASE_URL = 'https://www.cs.toronto.edu/~kriz/' CIFAR_FILE_NAMES = ['cifar-10-python.tar.gz', 'cifar-100-python.tar.gz'] CIFAR_DOWNLOAD_URLS = [BASE_URL + name for name in CIFAR_FILE_NAMES] CIFAR_LOCAL_FOLDERS = ['cifar-10', 'cifar-100'] EXTRACT_FOLDERS = ['cifar-10-batches-py', 'cifar-100-python'] def download_and_extract(data_dir, file_name, url): """Download CIFAR if not already downloaded.""" filepath = os.path.join(data_dir, file_name) if tf.gfile.Exists(filepath): return filepath if not tf.gfile.Exists(data_dir): tf.gfile.MakeDirs(data_dir) urllib.request.urlretrieve(url, filepath) tarfile.open(os.path.join(filepath), 'r:gz').extractall(data_dir) return filepath def _int64_feature(value): return tf.train.Feature(int64_list=tf.train.Int64List(value=[value])) def _bytes_feature(value): return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) def _get_file_names(folder): """Returns the file names expected to exist in the input_dir.""" assert folder in ['cifar-10', 'cifar-100'] file_names = {} if folder == 'cifar-10': file_names['train'] = ['data_batch_%d' % i for i in range(1, 5)] file_names['validation'] = ['data_batch_5'] file_names['train_all'] = ['data_batch_%d' % i for i in range(1, 6)] file_names['test'] = ['test_batch'] else: file_names['train_all'] = ['train'] file_names['test'] = ['test'] # Split in `convert_to_tfrecord` function file_names['train'] = ['train'] file_names['validation'] = ['train'] return file_names def read_pickle_from_file(filename): with tf.gfile.Open(filename, 'rb') as f: if sys.version_info >= (3, 0): data_dict = pickle.load(f, encoding='bytes') else: data_dict = pickle.load(f) return data_dict def convert_to_tfrecord(input_files, output_file, folder): """Converts files with pickled data to TFRecords.""" assert folder in ['cifar-10', 'cifar-100'] print('Generating %s' % output_file) with tf.python_io.TFRecordWriter(output_file) as record_writer: for input_file in input_files: data_dict = read_pickle_from_file(input_file) data = data_dict[b'data'] try: labels = data_dict[b'labels'] except KeyError: labels = data_dict[b'fine_labels'] if folder == 'cifar-100' and input_file.endswith('train.tfrecords'): data = data[:40000] labels = labels[:40000] elif folder == 'cifar-100' and input_file.endswith( 'validation.tfrecords'): data = data[40000:] labels = labels[40000:] num_entries_in_batch = len(labels) for i in range(num_entries_in_batch): example = tf.train.Example( features=tf.train.Features( feature={ 'image': _bytes_feature(data[i].tobytes()), 'label': _int64_feature(labels[i]) })) record_writer.write(example.SerializeToString()) def main(_): for file_name, url, folder, extract_folder in zip( CIFAR_FILE_NAMES, CIFAR_DOWNLOAD_URLS, CIFAR_LOCAL_FOLDERS, EXTRACT_FOLDERS): print('Download from {} and extract.'.format(url)) data_dir = os.path.join(FLAGS.data_dir, folder) download_and_extract(data_dir, file_name, url) file_names = _get_file_names(folder) input_dir = os.path.join(data_dir, extract_folder) for mode, files in file_names.items(): input_files = [os.path.join(input_dir, f) for f in files] output_file = os.path.join(data_dir, mode + '.tfrecords') try: os.remove(output_file) except OSError: pass convert_to_tfrecord(input_files, output_file, folder) print('Done!') if __name__ == '__main__': FLAGS = flags.FLAGS flags.DEFINE_string( 'data_dir', default=None, help='Directory to download, extract and store TFRecords.') tf.app.run(main)
tensorflow-master
tensorflow/contrib/eager/python/examples/revnet/cifar_tfrecords.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for basic ops used in eager mode RevNet.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from tensorflow.contrib.eager.python.examples.revnet import ops tfe = tf.contrib.eager class OpsTest(tf.test.TestCase): def test_downsample(self): """Test `possible_down_sample` function with mock object.""" batch_size = 100 # NHWC format x = tf.random_normal(shape=[batch_size, 32, 32, 3]) # HW doesn't change but number of features increased y = ops.downsample(x, filters=5, strides=(1, 1), axis=3) self.assertEqual(y.shape, [batch_size, 32, 32, 5]) # Feature map doesn't change but HW reduced y = ops.downsample(x, filters=3, strides=(2, 2), axis=3) self.assertEqual(y.shape, [batch_size, 16, 16, 3]) # Number of feature increased and HW reduced y = ops.downsample(x, filters=5, strides=(2, 2), axis=3) self.assertEqual(y.shape, [batch_size, 16, 16, 5]) # Test gradient flow x = tf.random_normal(shape=[batch_size, 32, 32, 3]) with tfe.GradientTape() as tape: tape.watch(x) y = ops.downsample(x, filters=3, strides=(1, 1)) self.assertEqual(y.shape, x.shape) dy = tf.random_normal(shape=[batch_size, 32, 32, 3]) grad, = tape.gradient(y, [x], output_gradients=[dy]) self.assertEqual(grad.shape, x.shape) # Default NCHW format if tf.test.is_gpu_available(): x = tf.random_normal(shape=[batch_size, 3, 32, 32]) # HW doesn't change but feature map reduced y = ops.downsample(x, filters=5, strides=(1, 1)) self.assertEqual(y.shape, [batch_size, 5, 32, 32]) # Feature map doesn't change but HW reduced y = ops.downsample(x, filters=3, strides=(2, 2)) self.assertEqual(y.shape, [batch_size, 3, 16, 16]) # Both feature map and HW reduced y = ops.downsample(x, filters=5, strides=(2, 2)) self.assertEqual(y.shape, [batch_size, 5, 16, 16]) # Test gradient flow x = tf.random_normal(shape=[batch_size, 3, 32, 32]) with tfe.GradientTape() as tape: tape.watch(x) y = ops.downsample(x, filters=3, strides=(1, 1)) self.assertEqual(y.shape, x.shape) dy = tf.random_normal(shape=[batch_size, 3, 32, 32]) grad, = tape.gradient(y, [x], output_gradients=[dy]) self.assertEqual(grad.shape, x.shape) if __name__ == '__main__': tf.enable_eager_execution() tf.test.main()
tensorflow-master
tensorflow/contrib/eager/python/examples/revnet/ops_test.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Reversible residual network compatible with eager execution. Building blocks with manual backward gradient computation. Reference [The Reversible Residual Network: Backpropagation Without Storing Activations](https://arxiv.org/pdf/1707.04585.pdf) """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import operator import tensorflow as tf from tensorflow.contrib.eager.python.examples.revnet import ops class RevBlock(tf.keras.Model): """Single reversible block containing several `_Residual` blocks. Each `_Residual` block in turn contains two _ResidualInner blocks, corresponding to the `F`/`G` functions in the paper. """ def __init__(self, n_res, filters, strides, input_shape, batch_norm_first=False, data_format="channels_first", bottleneck=False, fused=True, dtype=tf.float32): """Initialization. Args: n_res: number of residual blocks filters: list/tuple of integers for output filter sizes of each residual strides: length 2 list/tuple of integers for height and width strides input_shape: length 3 list/tuple of integers batch_norm_first: whether to apply activation and batch norm before conv data_format: tensor data format, "NCHW"/"NHWC" bottleneck: use bottleneck residual if True fused: use fused batch normalization if True dtype: float16, float32, or float64 """ super(RevBlock, self).__init__() self.blocks = tf.contrib.checkpoint.List() for i in range(n_res): curr_batch_norm_first = batch_norm_first and i == 0 curr_strides = strides if i == 0 else (1, 1) block = _Residual( filters, curr_strides, input_shape, batch_norm_first=curr_batch_norm_first, data_format=data_format, bottleneck=bottleneck, fused=fused, dtype=dtype) self.blocks.append(block) if data_format == "channels_first": input_shape = (filters, input_shape[1] // curr_strides[0], input_shape[2] // curr_strides[1]) else: input_shape = (input_shape[0] // curr_strides[0], input_shape[1] // curr_strides[1], filters) def call(self, h, training=True): """Apply reversible block to inputs.""" for block in self.blocks: h = block(h, training=training) return h def backward_grads(self, x, y, dy, training=True): """Apply reversible block backward to outputs.""" grads_all = [] for i in reversed(range(len(self.blocks))): block = self.blocks[i] if i == 0: # First block usually contains downsampling that can't be reversed dy, grads = block.backward_grads_with_downsample( x, y, dy, training=True) else: y, dy, grads = block.backward_grads(y, dy, training=training) grads_all = grads + grads_all return dy, grads_all class _Residual(tf.keras.Model): """Single residual block contained in a _RevBlock. Each `_Residual` object has two _ResidualInner objects, corresponding to the `F` and `G` functions in the paper. """ def __init__(self, filters, strides, input_shape, batch_norm_first=True, data_format="channels_first", bottleneck=False, fused=True, dtype=tf.float32): """Initialization. Args: filters: output filter size strides: length 2 list/tuple of integers for height and width strides input_shape: length 3 list/tuple of integers batch_norm_first: whether to apply activation and batch norm before conv data_format: tensor data format, "NCHW"/"NHWC", bottleneck: use bottleneck residual if True fused: use fused batch normalization if True dtype: float16, float32, or float64 """ super(_Residual, self).__init__() self.filters = filters self.strides = strides self.axis = 1 if data_format == "channels_first" else 3 if data_format == "channels_first": f_input_shape = (input_shape[0] // 2,) + input_shape[1:] g_input_shape = (filters // 2, input_shape[1] // strides[0], input_shape[2] // strides[1]) else: f_input_shape = input_shape[:2] + (input_shape[2] // 2,) g_input_shape = (input_shape[0] // strides[0], input_shape[1] // strides[1], filters // 2) factory = _BottleneckResidualInner if bottleneck else _ResidualInner self.f = factory( filters=filters // 2, strides=strides, input_shape=f_input_shape, batch_norm_first=batch_norm_first, data_format=data_format, fused=fused, dtype=dtype) self.g = factory( filters=filters // 2, strides=(1, 1), input_shape=g_input_shape, batch_norm_first=batch_norm_first, data_format=data_format, fused=fused, dtype=dtype) def call(self, x, training=True): """Apply residual block to inputs.""" x1, x2 = x f_x2 = self.f(x2, training=training) x1_down = ops.downsample( x1, self.filters // 2, self.strides, axis=self.axis) x2_down = ops.downsample( x2, self.filters // 2, self.strides, axis=self.axis) y1 = f_x2 + x1_down g_y1 = self.g(y1, training=training) y2 = g_y1 + x2_down return y1, y2 def backward_grads(self, y, dy, training=True): """Manually compute backward gradients given input and output grads.""" dy1, dy2 = dy y1, y2 = y with tf.GradientTape() as gtape: gtape.watch(y1) gy1 = self.g(y1, training=training) grads_combined = gtape.gradient( gy1, [y1] + self.g.trainable_variables, output_gradients=dy2) dg = grads_combined[1:] dx1 = dy1 + grads_combined[0] # This doesn't affect eager execution, but improves memory efficiency with # graphs with tf.control_dependencies(dg + [dx1]): x2 = y2 - gy1 with tf.GradientTape() as ftape: ftape.watch(x2) fx2 = self.f(x2, training=training) grads_combined = ftape.gradient( fx2, [x2] + self.f.trainable_variables, output_gradients=dx1) df = grads_combined[1:] dx2 = dy2 + grads_combined[0] # Same behavior as above with tf.control_dependencies(df + [dx2]): x1 = y1 - fx2 x = x1, x2 dx = dx1, dx2 grads = df + dg return x, dx, grads def backward_grads_with_downsample(self, x, y, dy, training=True): """Manually compute backward gradients given input and output grads.""" # Splitting this from `backward_grads` for better readability x1, x2 = x y1, _ = y dy1, dy2 = dy with tf.GradientTape() as gtape: gtape.watch(y1) gy1 = self.g(y1, training=training) grads_combined = gtape.gradient( gy1, [y1] + self.g.trainable_variables, output_gradients=dy2) dg = grads_combined[1:] dz1 = dy1 + grads_combined[0] # dx1 need one more step to backprop through downsample with tf.GradientTape() as x1tape: x1tape.watch(x1) z1 = ops.downsample(x1, self.filters // 2, self.strides, axis=self.axis) dx1 = x1tape.gradient(z1, x1, output_gradients=dz1) with tf.GradientTape() as ftape: ftape.watch(x2) fx2 = self.f(x2, training=training) grads_combined = ftape.gradient( fx2, [x2] + self.f.trainable_variables, output_gradients=dz1) dx2, df = grads_combined[0], grads_combined[1:] # dx2 need one more step to backprop through downsample with tf.GradientTape() as x2tape: x2tape.watch(x2) z2 = ops.downsample(x2, self.filters // 2, self.strides, axis=self.axis) dx2 += x2tape.gradient(z2, x2, output_gradients=dy2) dx = dx1, dx2 grads = df + dg return dx, grads # Ideally, the following should be wrapped in `tf.keras.Sequential`, however # there are subtle issues with its placeholder insertion policy and batch norm class _BottleneckResidualInner(tf.keras.Model): """Single bottleneck residual inner function contained in _Resdual. Corresponds to the `F`/`G` functions in the paper. Suitable for training on ImageNet dataset. """ def __init__(self, filters, strides, input_shape, batch_norm_first=True, data_format="channels_first", fused=True, dtype=tf.float32): """Initialization. Args: filters: output filter size strides: length 2 list/tuple of integers for height and width strides input_shape: length 3 list/tuple of integers batch_norm_first: whether to apply activation and batch norm before conv data_format: tensor data format, "NCHW"/"NHWC" fused: use fused batch normalization if True dtype: float16, float32, or float64 """ super(_BottleneckResidualInner, self).__init__() axis = 1 if data_format == "channels_first" else 3 if batch_norm_first: self.batch_norm_0 = tf.keras.layers.BatchNormalization( axis=axis, input_shape=input_shape, fused=fused, dtype=dtype) self.conv2d_1 = tf.keras.layers.Conv2D( filters=filters // 4, kernel_size=1, strides=strides, input_shape=input_shape, data_format=data_format, use_bias=False, padding="SAME", dtype=dtype) self.batch_norm_1 = tf.keras.layers.BatchNormalization( axis=axis, fused=fused, dtype=dtype) self.conv2d_2 = tf.keras.layers.Conv2D( filters=filters // 4, kernel_size=3, strides=(1, 1), data_format=data_format, use_bias=False, padding="SAME", dtype=dtype) self.batch_norm_2 = tf.keras.layers.BatchNormalization( axis=axis, fused=fused, dtype=dtype) self.conv2d_3 = tf.keras.layers.Conv2D( filters=filters, kernel_size=1, strides=(1, 1), data_format=data_format, use_bias=False, padding="SAME", dtype=dtype) self.batch_norm_first = batch_norm_first def call(self, x, training=True): net = x if self.batch_norm_first: net = self.batch_norm_0(net, training=training) net = tf.nn.relu(net) net = self.conv2d_1(net) net = self.batch_norm_1(net, training=training) net = tf.nn.relu(net) net = self.conv2d_2(net) net = self.batch_norm_2(net, training=training) net = tf.nn.relu(net) net = self.conv2d_3(net) return net class _ResidualInner(tf.keras.Model): """Single residual inner function contained in _ResdualBlock. Corresponds to the `F`/`G` functions in the paper. """ def __init__(self, filters, strides, input_shape, batch_norm_first=True, data_format="channels_first", fused=True, dtype=tf.float32): """Initialization. Args: filters: output filter size strides: length 2 list/tuple of integers for height and width strides input_shape: length 3 list/tuple of integers batch_norm_first: whether to apply activation and batch norm before conv data_format: tensor data format, "NCHW"/"NHWC" fused: use fused batch normalization if True dtype: float16, float32, or float64 """ super(_ResidualInner, self).__init__() axis = 1 if data_format == "channels_first" else 3 if batch_norm_first: self.batch_norm_0 = tf.keras.layers.BatchNormalization( axis=axis, input_shape=input_shape, fused=fused, dtype=dtype) self.conv2d_1 = tf.keras.layers.Conv2D( filters=filters, kernel_size=3, strides=strides, input_shape=input_shape, data_format=data_format, use_bias=False, padding="SAME", dtype=dtype) self.batch_norm_1 = tf.keras.layers.BatchNormalization( axis=axis, fused=fused, dtype=dtype) self.conv2d_2 = tf.keras.layers.Conv2D( filters=filters, kernel_size=3, strides=(1, 1), data_format=data_format, use_bias=False, padding="SAME", dtype=dtype) self.batch_norm_first = batch_norm_first def call(self, x, training=True): net = x if self.batch_norm_first: net = self.batch_norm_0(net, training=training) net = tf.nn.relu(net) net = self.conv2d_1(net) net = self.batch_norm_1(net, training=training) net = tf.nn.relu(net) net = self.conv2d_2(net) return net class InitBlock(tf.keras.Model): """Initial block of RevNet.""" def __init__(self, config): """Initialization. Args: config: tf.contrib.training.HParams object; specifies hyperparameters """ super(InitBlock, self).__init__() self.config = config self.axis = 1 if self.config.data_format == "channels_first" else 3 self.conv2d = tf.keras.layers.Conv2D( filters=self.config.init_filters, kernel_size=self.config.init_kernel, strides=(self.config.init_stride, self.config.init_stride), data_format=self.config.data_format, use_bias=False, padding="SAME", input_shape=self.config.input_shape, dtype=self.config.dtype) self.batch_norm = tf.keras.layers.BatchNormalization( axis=self.axis, fused=self.config.fused, dtype=self.config.dtype) self.activation = tf.keras.layers.Activation("relu") if self.config.init_max_pool: self.max_pool = tf.keras.layers.MaxPooling2D( pool_size=(3, 3), strides=(2, 2), padding="SAME", data_format=self.config.data_format, dtype=self.config.dtype) def call(self, x, training=True): net = x net = self.conv2d(net) net = self.batch_norm(net, training=training) net = self.activation(net) if self.config.init_max_pool: net = self.max_pool(net) return tf.split(net, num_or_size_splits=2, axis=self.axis) class FinalBlock(tf.keras.Model): """Final block of RevNet.""" def __init__(self, config): """Initialization. Args: config: tf.contrib.training.HParams object; specifies hyperparameters Raises: ValueError: Unsupported data format """ super(FinalBlock, self).__init__() self.config = config self.axis = 1 if self.config.data_format == "channels_first" else 3 f = self.config.filters[-1] # Number of filters r = functools.reduce(operator.mul, self.config.strides, 1) # Reduce ratio r *= self.config.init_stride if self.config.init_max_pool: r *= 2 if self.config.data_format == "channels_first": w, h = self.config.input_shape[1], self.config.input_shape[2] input_shape = (f, w // r, h // r) elif self.config.data_format == "channels_last": w, h = self.config.input_shape[0], self.config.input_shape[1] input_shape = (w // r, h // r, f) else: raise ValueError("Data format should be either `channels_first`" " or `channels_last`") self.batch_norm = tf.keras.layers.BatchNormalization( axis=self.axis, input_shape=input_shape, fused=self.config.fused, dtype=self.config.dtype) self.activation = tf.keras.layers.Activation("relu") self.global_avg_pool = tf.keras.layers.GlobalAveragePooling2D( data_format=self.config.data_format, dtype=self.config.dtype) self.dense = tf.keras.layers.Dense( self.config.n_classes, dtype=self.config.dtype) def call(self, x, training=True): net = tf.concat(x, axis=self.axis) net = self.batch_norm(net, training=training) net = self.activation(net) net = self.global_avg_pool(net) net = self.dense(net) return net
tensorflow-master
tensorflow/contrib/eager/python/examples/revnet/blocks.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Eager execution workflow with RevNet train on CIFAR-10.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys from absl import flags import tensorflow as tf from tensorflow.contrib.eager.python.examples.revnet import cifar_input from tensorflow.contrib.eager.python.examples.revnet import config as config_ from tensorflow.contrib.eager.python.examples.revnet import revnet tfe = tf.contrib.eager def apply_gradients(optimizer, grads, vars_, global_step=None): """Functional style apply_grads for `tfe.defun`.""" optimizer.apply_gradients(zip(grads, vars_), global_step=global_step) def main(_): """Eager execution workflow with RevNet trained on CIFAR-10.""" tf.enable_eager_execution() config = get_config(config_name=FLAGS.config, dataset=FLAGS.dataset) ds_train, ds_train_one_shot, ds_validation, ds_test = get_datasets( data_dir=FLAGS.data_dir, config=config) model = revnet.RevNet(config=config) global_step = tf.train.get_or_create_global_step() # Ensure correct summary global_step.assign(1) learning_rate = tf.train.piecewise_constant( global_step, config.lr_decay_steps, config.lr_list) optimizer = tf.train.MomentumOptimizer( learning_rate, momentum=config.momentum) checkpointer = tf.train.Checkpoint( optimizer=optimizer, model=model, optimizer_step=global_step) if FLAGS.use_defun: model.call = tfe.defun(model.call) model.compute_gradients = tfe.defun(model.compute_gradients) model.get_moving_stats = tfe.defun(model.get_moving_stats) model.restore_moving_stats = tfe.defun(model.restore_moving_stats) global apply_gradients # pylint:disable=global-variable-undefined apply_gradients = tfe.defun(apply_gradients) if FLAGS.train_dir: summary_writer = tf.contrib.summary.create_file_writer(FLAGS.train_dir) if FLAGS.restore: latest_path = tf.train.latest_checkpoint(FLAGS.train_dir) checkpointer.restore(latest_path) print("Restored latest checkpoint at path:\"{}\" " "with global_step: {}".format(latest_path, global_step.numpy())) sys.stdout.flush() for x, y in ds_train: train_one_iter(model, x, y, optimizer, global_step=global_step) if global_step.numpy() % config.log_every == 0: acc_test, loss_test = evaluate(model, ds_test) if FLAGS.validate: acc_train, loss_train = evaluate(model, ds_train_one_shot) acc_validation, loss_validation = evaluate(model, ds_validation) print("Iter {}, " "training set accuracy {:.4f}, loss {:.4f}; " "validation set accuracy {:.4f}, loss {:.4f}; " "test accuracy {:.4f}, loss {:.4f}".format( global_step.numpy(), acc_train, loss_train, acc_validation, loss_validation, acc_test, loss_test)) else: print("Iter {}, test accuracy {:.4f}, loss {:.4f}".format( global_step.numpy(), acc_test, loss_test)) sys.stdout.flush() if FLAGS.train_dir: with summary_writer.as_default(): with tf.contrib.summary.always_record_summaries(): tf.contrib.summary.scalar("Test accuracy", acc_test) tf.contrib.summary.scalar("Test loss", loss_test) if FLAGS.validate: tf.contrib.summary.scalar("Training accuracy", acc_train) tf.contrib.summary.scalar("Training loss", loss_train) tf.contrib.summary.scalar("Validation accuracy", acc_validation) tf.contrib.summary.scalar("Validation loss", loss_validation) if global_step.numpy() % config.save_every == 0 and FLAGS.train_dir: saved_path = checkpointer.save( file_prefix=os.path.join(FLAGS.train_dir, "ckpt")) print("Saved checkpoint at path: \"{}\" " "with global_step: {}".format(saved_path, global_step.numpy())) sys.stdout.flush() def get_config(config_name="revnet-38", dataset="cifar-10"): """Return configuration.""" print("Config: {}".format(config_name)) sys.stdout.flush() config = { "revnet-38": config_.get_hparams_cifar_38(), "revnet-110": config_.get_hparams_cifar_110(), "revnet-164": config_.get_hparams_cifar_164(), }[config_name] if dataset == "cifar-10": config.add_hparam("n_classes", 10) config.add_hparam("dataset", "cifar-10") else: config.add_hparam("n_classes", 100) config.add_hparam("dataset", "cifar-100") return config def get_datasets(data_dir, config): """Return dataset.""" if data_dir is None: raise ValueError("No supplied data directory") if not os.path.exists(data_dir): raise ValueError("Data directory {} does not exist".format(data_dir)) if config.dataset not in ["cifar-10", "cifar-100"]: raise ValueError("Unknown dataset {}".format(config.dataset)) print("Training on {} dataset.".format(config.dataset)) sys.stdout.flush() data_dir = os.path.join(data_dir, config.dataset) if FLAGS.validate: # 40k Training set ds_train = cifar_input.get_ds_from_tfrecords( data_dir=data_dir, split="train", data_aug=True, batch_size=config.batch_size, epochs=config.epochs, shuffle=config.shuffle, data_format=config.data_format, dtype=config.dtype, prefetch=config.batch_size) # 10k Training set ds_validation = cifar_input.get_ds_from_tfrecords( data_dir=data_dir, split="validation", data_aug=False, batch_size=config.eval_batch_size, epochs=1, shuffle=False, data_format=config.data_format, dtype=config.dtype, prefetch=config.eval_batch_size) else: # 50k Training set ds_train = cifar_input.get_ds_from_tfrecords( data_dir=data_dir, split="train_all", data_aug=True, batch_size=config.batch_size, epochs=config.epochs, shuffle=config.shuffle, data_format=config.data_format, dtype=config.dtype, prefetch=config.batch_size) ds_validation = None # Always compute loss and accuracy on whole test set ds_train_one_shot = cifar_input.get_ds_from_tfrecords( data_dir=data_dir, split="train_all", data_aug=False, batch_size=config.eval_batch_size, epochs=1, shuffle=False, data_format=config.data_format, dtype=config.dtype, prefetch=config.eval_batch_size) ds_test = cifar_input.get_ds_from_tfrecords( data_dir=data_dir, split="test", data_aug=False, batch_size=config.eval_batch_size, epochs=1, shuffle=False, data_format=config.data_format, dtype=config.dtype, prefetch=config.eval_batch_size) return ds_train, ds_train_one_shot, ds_validation, ds_test def train_one_iter(model, inputs, labels, optimizer, global_step=None): """Train for one iteration.""" logits, saved_hiddens = model(inputs, training=True) values = model.get_moving_stats() grads, loss = model.compute_gradients(saved_hiddens, labels) # Restore moving averages when executing eagerly to avoid updating twice model.restore_moving_stats(values) apply_gradients( optimizer, grads, model.trainable_variables, global_step=global_step) return logits, loss def evaluate(model, dataset): """Compute accuracy with the given dataset iterator.""" mean_loss = tfe.metrics.Mean() accuracy = tfe.metrics.Accuracy() for x, y in dataset: logits, _ = model(x, training=False) loss = model.compute_loss(logits=logits, labels=y) accuracy( labels=tf.cast(y, tf.int64), predictions=tf.argmax(logits, axis=1, output_type=tf.int64)) mean_loss(loss) return accuracy.result().numpy(), mean_loss.result().numpy() if __name__ == "__main__": flags.DEFINE_string( "data_dir", default=None, help="Directory to load tfrecords") flags.DEFINE_string( "train_dir", default=None, help="[Optional] Directory to store the training information") flags.DEFINE_boolean( "restore", default=False, help="[Optional] Restore the latest checkpoint from `train_dir` if True") flags.DEFINE_boolean( "validate", default=False, help="[Optional] Use the validation set or not for hyperparameter search") flags.DEFINE_string( "dataset", default="cifar-10", help="[Optional] The dataset used; either `cifar-10` or `cifar-100`") flags.DEFINE_string( "config", default="revnet-38", help="[Optional] Architecture of network. " "Other options include `revnet-110` and `revnet-164`") flags.DEFINE_boolean( "use_defun", default=False, help="[Optional] Use `tfe.defun` to boost performance.") FLAGS = flags.FLAGS tf.app.run(main)
tensorflow-master
tensorflow/contrib/eager/python/examples/revnet/main.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for basic building blocks used in eager mode RevNet.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import gc import time import tensorflow as tf from tensorflow.contrib.eager.python.examples.revnet import blocks_test from tensorflow.contrib.eager.python.examples.revnet import config as config_ from tensorflow.contrib.eager.python.examples.revnet import revnet from tensorflow.python.client import device_lib tfe = tf.contrib.eager def train_one_iter(model, inputs, labels, optimizer, global_step=None): """Train for one iteration.""" logits, saved_hidden = model(inputs) grads, loss = model.compute_gradients( saved_hidden=saved_hidden, labels=labels) optimizer.apply_gradients( zip(grads, model.trainable_variables), global_step=global_step) return logits, loss class RevNetTest(tf.test.TestCase): def setUp(self): super(RevNetTest, self).setUp() config = config_.get_hparams_cifar_38() config.add_hparam("n_classes", 10) config.add_hparam("dataset", "cifar-10") # Reconstruction could cause numerical error, use double precision for tests config.dtype = tf.float64 config.fused = False # Fused batch norm does not support tf.float64 # Reduce the batch size for tests because the OSS version runs # in constrained GPU environment with 1-2GB of memory. config.batch_size = 2 shape = (config.batch_size,) + config.input_shape self.model = revnet.RevNet(config=config) self.x = tf.random_normal(shape=shape, dtype=tf.float64) self.t = tf.random_uniform( shape=[config.batch_size], minval=0, maxval=config.n_classes, dtype=tf.int64) self.config = config def tearDown(self): del self.model del self.x del self.t del self.config super(RevNetTest, self).tearDown() def test_call(self): """Test `call` function.""" y, _ = self.model(self.x, training=False) self.assertEqual(y.shape, [self.config.batch_size, self.config.n_classes]) def _check_grad_angle_combined(self, grads, grads_true): """Verify that the reconstructed gradients has correct direction. Due to numerical imprecision, the magnitude may be slightly different. Yet according to the paper, the angle should be roughly the same. Args: grads: list of gradients from reconstruction grads_true: list of true gradients """ def _combine(gs): return [tf.reshape(g, [-1]) for g in gs] g1_all = tf.concat(_combine(grads), axis=0) g2_all = tf.concat(_combine(grads_true), axis=0) self.assertEqual(len(g1_all.shape), 1) self.assertEqual(len(g2_all.shape), 1) degree = blocks_test.compute_degree(g1_all, g2_all) self.assertLessEqual(degree, 1e0) def test_compute_gradients(self): """Test `compute_gradients` function.""" _, saved_hidden = self.model(self.x) # Initialize model grads, loss = self.model.compute_gradients( saved_hidden=saved_hidden, labels=self.t) vars_ = self.model.trainable_variables self.assertTrue(isinstance(grads, list)) self.assertTrue(isinstance(vars_, list)) self.assertEqual(len(grads), len(vars_)) for grad, var in zip(grads, vars_): self.assertEqual(grad.shape, var.shape) # Compare against the true gradient computed by the tape with tf.GradientTape() as tape: logits, _ = self.model(self.x) loss_true = self.model.compute_loss(logits=logits, labels=self.t) grads_true = tape.gradient(loss_true, vars_) self.assertAllClose(loss, loss_true) self.assertAllClose(grads, grads_true, rtol=1e-4, atol=1e-4) self._check_grad_angle_combined(grads, grads_true) def test_call_defun(self): """Test `call` function with defun.""" y, _ = tfe.defun(self.model.call)(self.x, training=False) self.assertEqual(y.shape, [self.config.batch_size, self.config.n_classes]) def test_compute_gradients_defun(self): """Test `compute_gradients` function with defun.""" # TODO(apassos): make cond support returning None to let this happen with # tf.function. compute_gradients = tfe.defun(self.model.compute_gradients) _, saved_hidden = self.model(self.x) grads, _ = compute_gradients(saved_hidden=saved_hidden, labels=self.t) vars_ = self.model.trainable_variables self.assertTrue(isinstance(grads, list)) self.assertTrue(isinstance(vars_, list)) self.assertEqual(len(grads), len(vars_)) for grad, var in zip(grads, vars_): if grad is not None: self.assertEqual(grad.shape, var.shape) def test_training_graph(self): """Test model training in graph mode.""" with tf.Graph().as_default(): config = config_.get_hparams_cifar_38() config.add_hparam("n_classes", 10) config.add_hparam("dataset", "cifar-10") x = tf.random_normal( shape=(self.config.batch_size,) + self.config.input_shape) t = tf.random_uniform( shape=(self.config.batch_size,), minval=0, maxval=self.config.n_classes, dtype=tf.int32) global_step = tf.Variable(0., trainable=False) model = revnet.RevNet(config=config) _, saved_hidden = model(x) grads, _ = model.compute_gradients(saved_hidden=saved_hidden, labels=t) optimizer = tf.train.AdamOptimizer(learning_rate=1e-3) train_op = optimizer.apply_gradients( zip(grads, model.trainable_variables), global_step=global_step) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for _ in range(1): sess.run(train_op) # Benchmark related def device_and_data_format(): return ("/gpu:0", "channels_first") if tf.test.is_gpu_available() else ("/cpu:0", "channels_last") def random_batch(batch_size, config): shape = (batch_size,) + config.input_shape images = tf.random_uniform(shape) labels = tf.random_uniform( [batch_size], minval=0, maxval=config.n_classes, dtype=tf.int32) return images, labels class MockIterator(object): def __init__(self, tensors): self._tensors = [tf.identity(x) for x in tensors] def next(self): return self._tensors class RevNetBenchmark(tf.test.Benchmark): """Eager and graph benchmarks for RevNet.""" def _train_batch_sizes(self): """Shamelessly copied from `resnet50_test.py`. Note: This is targeted towards ImageNet. CIFAR-10 should allow more aggressive batch sizes. Returns: A tuple of possible batch sizes """ for device in device_lib.list_local_devices(): if tf.DeviceSpec.from_string(device.name).device_type == "GPU": if "K20" in device.physical_device_desc: return (16,) if "P100" in device.physical_device_desc: return (16, 32, 64) if tf.DeviceSpec.from_string(device.name).device_type == "TPU": return (32,) return (16, 32) def _force_device_sync(self): """Shamelessly copied from `resnet50_test.py`.""" tf.constant(1.).cpu() def _report(self, label, start, num_iters, device, batch_size, data_format): avg_time = (time.time() - start) / num_iters dev = tf.DeviceSpec.from_string(device).device_type.lower() name = "%s_%s_batch_%d_%s" % (label, dev, batch_size, data_format) extras = {"examples_per_sec": batch_size / avg_time} self.report_benchmark( iters=num_iters, wall_time=avg_time, name=name, extras=extras) def _benchmark_eager_apply(self, label, device_and_format, defun=False, execution_mode=None): config = config_.get_hparams_imagenet_56() with tfe.execution_mode(execution_mode): device, data_format = device_and_format model = revnet.RevNet(config=config) if defun: # TODO(apassos): reenable after cond lets you return None model.call = tfe.defun(model.call) batch_size = 64 num_burn = 5 num_iters = 10 with tf.device(device): images, _ = random_batch(batch_size, config) for _ in range(num_burn): model(images, training=False) if execution_mode: tfe.async_wait() gc.collect() start = time.time() for _ in range(num_iters): model(images, training=False) if execution_mode: tfe.async_wait() self._report(label, start, num_iters, device, batch_size, data_format) def benchmark_eager_apply_sync(self): self._benchmark_eager_apply( "eager_apply_sync", device_and_data_format(), defun=False) def benchmark_eager_apply_async(self): self._benchmark_eager_apply( "eager_apply_async", device_and_data_format(), defun=False, execution_mode=tfe.ASYNC) def benchmark_eager_call_defun(self): self._benchmark_eager_apply( "eager_apply_with_defun", device_and_data_format(), defun=True) def _benchmark_eager_train(self, label, make_iterator, device_and_format, defun=False, execution_mode=None): config = config_.get_hparams_imagenet_56() with tfe.execution_mode(execution_mode): device, data_format = device_and_format for batch_size in self._train_batch_sizes(): (images, labels) = random_batch(batch_size, config) model = revnet.RevNet(config=config) optimizer = tf.train.GradientDescentOptimizer(0.1) if defun: model.call = tfe.function(model.call) num_burn = 3 num_iters = 10 with tf.device(device): iterator = make_iterator((images, labels)) for _ in range(num_burn): (images, labels) = iterator.next() train_one_iter(model, images, labels, optimizer) if execution_mode: tfe.async_wait() self._force_device_sync() gc.collect() start = time.time() for _ in range(num_iters): (images, labels) = iterator.next() train_one_iter(model, images, labels, optimizer) if execution_mode: tfe.async_wait() self._force_device_sync() self._report(label, start, num_iters, device, batch_size, data_format) def benchmark_eager_train_sync(self): self._benchmark_eager_train( "eager_train_sync", MockIterator, device_and_data_format(), defun=False) def benchmark_eager_train_async(self): self._benchmark_eager_train( "eager_train_async", MockIterator, device_and_data_format(), defun=False, execution_mode=tfe.ASYNC) def benchmark_eager_train_defun(self): self._benchmark_eager_train( "eager_train", MockIterator, device_and_data_format(), defun=False) def benchmark_eager_train_datasets_with_defun(self): def make_iterator(tensors): with tf.device("/device:CPU:0"): ds = tf.data.Dataset.from_tensors(tensors).repeat() return tfe.Iterator(ds) self._benchmark_eager_train( "eager_train_dataset_with_defun", make_iterator, device_and_data_format(), defun=True) if __name__ == "__main__": tf.enable_eager_execution() tf.test.main()
tensorflow-master
tensorflow/contrib/eager/python/examples/revnet/revnet_test.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Estimator workflow with RevNet train on CIFAR-10.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from absl import flags import tensorflow as tf from tensorflow.contrib.eager.python.examples.revnet import cifar_input from tensorflow.contrib.eager.python.examples.revnet import main as main_ from tensorflow.contrib.eager.python.examples.revnet import revnet def model_fn(features, labels, mode, params): """Function specifying the model that is required by the `tf.estimator` API. Args: features: Input images labels: Labels of images mode: One of `ModeKeys.TRAIN`, `ModeKeys.EVAL` or 'ModeKeys.PREDICT' params: A dictionary of extra parameter that might be passed Returns: An instance of `tf.estimator.EstimatorSpec` """ inputs = features if isinstance(inputs, dict): inputs = features["image"] config = params["config"] model = revnet.RevNet(config=config) if mode == tf.estimator.ModeKeys.TRAIN: global_step = tf.train.get_or_create_global_step() learning_rate = tf.train.piecewise_constant( global_step, config.lr_decay_steps, config.lr_list) optimizer = tf.train.MomentumOptimizer( learning_rate, momentum=config.momentum) logits, saved_hidden = model(inputs, training=True) grads, loss = model.compute_gradients(saved_hidden, labels, training=True) with tf.control_dependencies(model.get_updates_for(inputs)): train_op = optimizer.apply_gradients( zip(grads, model.trainable_variables), global_step=global_step) return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op) else: logits, _ = model(inputs, training=False) predictions = tf.argmax(logits, axis=1) probabilities = tf.nn.softmax(logits) if mode == tf.estimator.ModeKeys.EVAL: loss = model.compute_loss(labels=labels, logits=logits) return tf.estimator.EstimatorSpec( mode=mode, loss=loss, eval_metric_ops={ "accuracy": tf.metrics.accuracy(labels=labels, predictions=predictions) }) else: # mode == tf.estimator.ModeKeys.PREDICT result = { "classes": predictions, "probabilities": probabilities, } return tf.estimator.EstimatorSpec( mode=mode, predictions=predictions, export_outputs={ "classify": tf.estimator.export.PredictOutput(result) }) def get_input_fn(config, data_dir, split): """Get the input function that is required by the `tf.estimator` API. Args: config: Customized hyperparameters data_dir: Directory where the data is stored split: One of `train`, `validation`, `train_all`, and `test` Returns: Input function required by the `tf.estimator` API """ data_dir = os.path.join(data_dir, config.dataset) # Fix split-dependent hyperparameters if split == "train_all" or split == "train": data_aug = True batch_size = config.batch_size epochs = config.epochs shuffle = True prefetch = config.batch_size else: data_aug = False batch_size = config.eval_batch_size epochs = 1 shuffle = False prefetch = config.eval_batch_size def input_fn(): """Input function required by the `tf.estimator.Estimator` API.""" return cifar_input.get_ds_from_tfrecords( data_dir=data_dir, split=split, data_aug=data_aug, batch_size=batch_size, epochs=epochs, shuffle=shuffle, prefetch=prefetch, data_format=config.data_format) return input_fn def main(_): tf.logging.set_verbosity(tf.logging.INFO) # RevNet specific configuration config = main_.get_config(config_name=FLAGS.config, dataset=FLAGS.dataset) # Estimator specific configuration run_config = tf.estimator.RunConfig( model_dir=FLAGS.model_dir, # Directory for storing checkpoints tf_random_seed=config.seed, save_summary_steps=config.log_every, save_checkpoints_steps=config.log_every, session_config=None, # Using default keep_checkpoint_max=100, keep_checkpoint_every_n_hours=10000, # Using default log_step_count_steps=config.log_every, train_distribute=None # Default not use distribution strategy ) # Construct estimator revnet_estimator = tf.estimator.Estimator( model_fn=model_fn, model_dir=FLAGS.model_dir, config=run_config, params={"config": config}) # Construct input functions train_input_fn = get_input_fn( config=config, data_dir=FLAGS.data_dir, split="train_all") eval_input_fn = get_input_fn( config=config, data_dir=FLAGS.data_dir, split="test") # Train and evaluate estimator revnet_estimator.train(input_fn=train_input_fn) revnet_estimator.evaluate(input_fn=eval_input_fn) if FLAGS.export: input_shape = (None,) + config.input_shape inputs = tf.placeholder(tf.float32, shape=input_shape) input_fn = tf.estimator.export.build_raw_serving_input_receiver_fn({ "image": inputs }) revnet_estimator.export_saved_model(FLAGS.model_dir, input_fn) if __name__ == "__main__": flags.DEFINE_string( "data_dir", default=None, help="Directory to load tfrecords") flags.DEFINE_string( "model_dir", default=None, help="[Optional] Directory to store the training information") flags.DEFINE_string( "dataset", default="cifar-10", help="[Optional] The dataset used; either `cifar-10` or `cifar-100`") flags.DEFINE_boolean( "export", default=False, help="[Optional] Export the model for serving if True") flags.DEFINE_string( "config", default="revnet-38", help="[Optional] Architecture of network. " "Other options include `revnet-110` and `revnet-164`") FLAGS = flags.FLAGS tf.app.run()
tensorflow-master
tensorflow/contrib/eager/python/examples/revnet/main_estimator.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Reversible residual network compatible with eager execution. Code for main model. Reference [The Reversible Residual Network: Backpropagation Without Storing Activations](https://arxiv.org/pdf/1707.04585.pdf) """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from tensorflow.contrib.eager.python.examples.revnet import blocks class RevNet(tf.keras.Model): """RevNet that depends on all the blocks.""" def __init__(self, config): """Initialize RevNet with building blocks. Args: config: tf.contrib.training.HParams object; specifies hyperparameters """ super(RevNet, self).__init__() self.axis = 1 if config.data_format == "channels_first" else 3 self.config = config self._init_block = blocks.InitBlock(config=self.config) self._final_block = blocks.FinalBlock(config=self.config) self._block_list = self._construct_intermediate_blocks() self._moving_average_variables = [] def _construct_intermediate_blocks(self): # Precompute input shape after initial block stride = self.config.init_stride if self.config.init_max_pool: stride *= 2 if self.config.data_format == "channels_first": w, h = self.config.input_shape[1], self.config.input_shape[2] input_shape = (self.config.init_filters, w // stride, h // stride) else: w, h = self.config.input_shape[0], self.config.input_shape[1] input_shape = (w // stride, h // stride, self.config.init_filters) # Aggregate intermediate blocks block_list = tf.contrib.checkpoint.List() for i in range(self.config.n_rev_blocks): # RevBlock configurations n_res = self.config.n_res[i] filters = self.config.filters[i] if filters % 2 != 0: raise ValueError("Number of output filters must be even to ensure" "correct partitioning of channels") stride = self.config.strides[i] strides = (self.config.strides[i], self.config.strides[i]) # Add block rev_block = blocks.RevBlock( n_res, filters, strides, input_shape, batch_norm_first=(i != 0), # Only skip on first block data_format=self.config.data_format, bottleneck=self.config.bottleneck, fused=self.config.fused, dtype=self.config.dtype) block_list.append(rev_block) # Precompute input shape for the next block if self.config.data_format == "channels_first": w, h = input_shape[1], input_shape[2] input_shape = (filters, w // stride, h // stride) else: w, h = input_shape[0], input_shape[1] input_shape = (w // stride, h // stride, filters) return block_list def call(self, inputs, training=True): """Forward pass.""" saved_hidden = None if training: saved_hidden = [inputs] h = self._init_block(inputs, training=training) if training: saved_hidden.append(h) for block in self._block_list: h = block(h, training=training) if training: saved_hidden.append(h) logits = self._final_block(h, training=training) return (logits, saved_hidden) if training else (logits, None) def compute_loss(self, logits, labels): """Compute cross entropy loss.""" if self.config.dtype == tf.float32 or self.config.dtype == tf.float16: cross_ent = tf.nn.sparse_softmax_cross_entropy_with_logits( logits=logits, labels=labels) else: # `sparse_softmax_cross_entropy_with_logits` does not have a GPU kernel # for float64, int32 pairs labels = tf.one_hot( labels, depth=self.config.n_classes, axis=1, dtype=self.config.dtype) cross_ent = tf.nn.softmax_cross_entropy_with_logits( logits=logits, labels=labels) return tf.reduce_mean(cross_ent) def compute_gradients(self, saved_hidden, labels, training=True, l2_reg=True): """Manually computes gradients. This method silently updates the running averages of batch normalization. Args: saved_hidden: List of hidden states Tensors labels: One-hot labels for classification training: Use the mini-batch stats in batch norm if set to True l2_reg: Apply l2 regularization Returns: A tuple with the first entry being a list of all gradients and the second being the loss """ def _defunable_pop(l): """Functional style list pop that works with `tfe.defun`.""" t, l = l[-1], l[:-1] return t, l # Backprop through last block x = saved_hidden[-1] with tf.GradientTape() as tape: tape.watch(x) logits = self._final_block(x, training=training) loss = self.compute_loss(logits, labels) grads_combined = tape.gradient(loss, [x] + self._final_block.trainable_variables) dy, final_grads = grads_combined[0], grads_combined[1:] # Backprop through intermediate blocks intermediate_grads = [] for block in reversed(self._block_list): y, saved_hidden = _defunable_pop(saved_hidden) x = saved_hidden[-1] dy, grads = block.backward_grads(x, y, dy, training=training) intermediate_grads = grads + intermediate_grads # Backprop through first block _, saved_hidden = _defunable_pop(saved_hidden) x, saved_hidden = _defunable_pop(saved_hidden) assert not saved_hidden with tf.GradientTape() as tape: y = self._init_block(x, training=training) init_grads = tape.gradient( y, self._init_block.trainable_variables, output_gradients=dy) # Ordering match up with `model.trainable_variables` grads_all = init_grads + final_grads + intermediate_grads if l2_reg: grads_all = self._apply_weight_decay(grads_all) return grads_all, loss def _apply_weight_decay(self, grads): """Update gradients to reflect weight decay.""" return [ g + self.config.weight_decay * v if v.name.endswith("kernel:0") else g for g, v in zip(grads, self.trainable_variables) ] def get_moving_stats(self): """Get moving averages of batch normalization.""" device = "/gpu:0" if tf.test.is_gpu_available() else "/cpu:0" with tf.device(device): return [v.read_value() for v in self.moving_average_variables] def restore_moving_stats(self, values): """Restore moving averages of batch normalization.""" device = "/gpu:0" if tf.test.is_gpu_available() else "/cpu:0" with tf.device(device): for var_, val in zip(self.moving_average_variables, values): var_.assign(val) @property def moving_average_variables(self): """Get all variables that are batch norm moving averages.""" def _is_moving_avg(v): n = v.name return n.endswith("moving_mean:0") or n.endswith("moving_variance:0") if not self._moving_average_variables: self._moving_average_variables = filter(_is_moving_avg, self.variables) return self._moving_average_variables
tensorflow-master
tensorflow/contrib/eager/python/examples/revnet/revnet.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests l2hmc fit to 2D strongly correlated Gaussian executed eagerly.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import time import numpy.random as npr import tensorflow as tf import tensorflow.contrib.eager as tfe from tensorflow.contrib.eager.python.examples.l2hmc import l2hmc def get_default_hparams(): return tf.contrib.training.HParams( x_dim=2, n_samples=200, n_steps=10, eps=.1, n_iters=10, learning_rate=.0003, n_warmup_iters=3) def step(dynamics, optimizer, samples): loss, grads, samples, _ = l2hmc.loss_and_grads( dynamics, samples, loss_fn=l2hmc.compute_loss) optimizer.apply_gradients(zip(grads, dynamics.variables)) return loss, samples # To be defunnable, the function cannot return an Operation, so the above # function is used for defun or eager, and this function is used in graph to be # able to run the gradient updates. def graph_step(dynamics, optimizer, samples): loss, grads, samples, _ = l2hmc.loss_and_grads( dynamics, samples, loss_fn=l2hmc.compute_loss) train_op = optimizer.apply_gradients(zip(grads, dynamics.variables)) return train_op, loss, samples def warmup(dynamics, optimizer, n_iters=1, n_samples=200, step_fn=step): """Warmup optimization to reduce overhead.""" samples = tf.random_normal( shape=[n_samples, dynamics.x_dim], dtype=tf.float32) for _ in range(n_iters): _, samples = step_fn(dynamics, optimizer, samples) def fit(dynamics, samples, optimizer, step_fn=step, n_iters=5000, verbose=True, logdir=None): """Fit L2HMC sampler with given log-likelihood function.""" if logdir: summary_writer = tf.contrib.summary.create_file_writer(logdir) for i in range(n_iters): loss, samples = step_fn(dynamics, optimizer, samples) if verbose: print("Iteration %d: loss %.4f" % (i, loss)) if logdir: with summary_writer.as_default(): with tf.contrib.summary.always_record_summaries(): tf.contrib.summary.scalar("loss", loss) class L2hmcTest(tf.test.TestCase): """Unit tests for l2hmc in both eager and graph mode.""" def test_apply_transition(self): """Testing function `Dynamics.apply_transition` in graph and eager mode.""" # Eager mode testing hparams = get_default_hparams() energy_fn, _, _ = l2hmc.get_scg_energy_fn() dynamics = l2hmc.Dynamics( x_dim=hparams.x_dim, minus_loglikelihood_fn=energy_fn, n_steps=hparams.n_steps, eps=hparams.eps) samples = tf.random_normal(shape=[hparams.n_samples, hparams.x_dim]) x_, v_, x_accept_prob, x_out = dynamics.apply_transition(samples) self.assertEqual(x_.shape, v_.shape) self.assertEqual(x_out.shape, samples.shape) self.assertEqual(x_.shape, x_out.shape) self.assertEqual(x_accept_prob.shape, (hparams.n_samples,)) # Graph mode testing with tf.Graph().as_default(): energy_fn, _, _ = l2hmc.get_scg_energy_fn() dynamics = l2hmc.Dynamics( x_dim=hparams.x_dim, minus_loglikelihood_fn=energy_fn, n_steps=hparams.n_steps, eps=hparams.eps) x = tf.placeholder(tf.float32, shape=[None, hparams.x_dim]) x_, v_, x_accept_prob, x_out = dynamics.apply_transition(x) samples = npr.normal(size=[hparams.n_samples, hparams.x_dim]) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) np_x_, np_v_, np_x_accept_prob, np_x_out = sess.run( [x_, v_, x_accept_prob, x_out], feed_dict={x: samples}) self.assertEqual(np_x_.shape, np_v_.shape) self.assertEqual(samples.shape, np_x_out.shape) self.assertEqual(np_x_.shape, np_x_out.shape) self.assertEqual(np_x_accept_prob.shape, (hparams.n_samples,)) class L2hmcBenchmark(tf.test.Benchmark): """Eager and graph benchmarks for l2hmc.""" def benchmark_graph(self): """Benchmark Graph performance.""" hparams = get_default_hparams() tf.enable_resource_variables() for sample_size in [10, 25, 50, 100, 200]: hparams.n_samples = sample_size tf.reset_default_graph() with tf.Graph().as_default(): energy_fn, _, _ = l2hmc.get_scg_energy_fn() x = tf.random_normal([hparams.n_samples, hparams.x_dim], dtype=tf.float32) dynamics = l2hmc.Dynamics( x_dim=hparams.x_dim, minus_loglikelihood_fn=energy_fn, n_steps=hparams.n_steps, eps=hparams.eps) loss, _, _ = l2hmc.compute_loss(dynamics, x) optimizer = tf.train.AdamOptimizer(learning_rate=hparams.learning_rate) train_op, loss, _ = graph_step(dynamics, optimizer, x) # Single thread; fairer comparison against eager session_conf = tf.ConfigProto(inter_op_parallelism_threads=1) with tf.Session(config=session_conf) as sess: sess.run(tf.global_variables_initializer()) # Warmup to reduce initialization effect when timing for _ in range(hparams.n_warmup_iters): _, _ = sess.run([train_op, loss]) # Training start_time = time.time() for i in range(hparams.n_iters): _, loss_np = sess.run([train_op, loss]) print("Iteration %d: loss %.4f" % (i, loss_np)) wall_time = (time.time() - start_time) / hparams.n_iters examples_per_sec = hparams.n_samples / wall_time self.report_benchmark( name="graph_train_%s_%d" % ("gpu" if tf.test.is_gpu_available() else "cpu", sample_size), iters=hparams.n_iters, extras={"examples_per_sec": examples_per_sec}, wall_time=wall_time) def benchmark_eager(self): self._benchmark_eager() def benchmark_eager_defun(self): self._benchmark_eager(defun=True) def _benchmark_eager(self, defun=False): """Benchmark Eager performance.""" hparams = get_default_hparams() for sample_size in [10, 25, 50, 100, 200]: hparams.n_samples = sample_size energy_fn, _, _ = l2hmc.get_scg_energy_fn() dynamics = l2hmc.Dynamics( x_dim=hparams.x_dim, minus_loglikelihood_fn=energy_fn, n_steps=hparams.n_steps, eps=hparams.eps) optimizer = tf.train.AdamOptimizer(learning_rate=hparams.learning_rate) step_fn = tfe.defun(step) if defun else step # Warmup to reduce initialization effect when timing warmup( dynamics, optimizer, n_iters=hparams.n_warmup_iters, n_samples=hparams.n_samples, step_fn=step_fn) # Training samples = tf.random_normal( shape=[hparams.n_samples, hparams.x_dim], dtype=tf.float32) start_time = time.time() fit(dynamics, samples, optimizer, step_fn=step_fn, n_iters=hparams.n_iters) wall_time = (time.time() - start_time) / hparams.n_iters examples_per_sec = hparams.n_samples / wall_time self.report_benchmark( name="eager_train_%s%s_%d" % ("gpu" if tf.test.is_gpu_available() else "cpu", "_defun" if defun else "", sample_size), iters=hparams.n_iters, extras={"examples_per_sec": examples_per_sec}, wall_time=wall_time) del dynamics if __name__ == "__main__": tf.enable_eager_execution() tf.test.main()
tensorflow-master
tensorflow/contrib/eager/python/examples/l2hmc/l2hmc_test.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """L2HMC compatible with TensorFlow's eager execution. Reference [Generalizing Hamiltonian Monte Carlo with Neural Networks](https://arxiv.org/pdf/1711.09268.pdf) Code adapted from the released TensorFlow graph implementation by original authors https://github.com/brain-research/l2hmc. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import numpy.random as npr import tensorflow as tf import tensorflow.contrib.eager as tfe from tensorflow.contrib.eager.python.examples.l2hmc import neural_nets class Dynamics(tf.keras.Model): """Dynamics engine of naive L2HMC sampler.""" def __init__(self, x_dim, minus_loglikelihood_fn, n_steps=25, eps=.1, np_seed=1): """Initialization. Args: x_dim: dimensionality of observed data minus_loglikelihood_fn: log-likelihood function of conditional probability n_steps: number of leapfrog steps within each transition eps: initial value learnable scale of step size np_seed: Random seed for numpy; used to control sampled masks. """ super(Dynamics, self).__init__() npr.seed(np_seed) self.x_dim = x_dim self.potential = minus_loglikelihood_fn self.n_steps = n_steps self._construct_time() self._construct_masks() self.position_fn = neural_nets.GenericNet(x_dim, factor=2.) self.momentum_fn = neural_nets.GenericNet(x_dim, factor=1.) self.eps = tf.Variable( initial_value=eps, name="eps", dtype=tf.float32, trainable=True) def apply_transition(self, position): """Propose a new state and perform the accept or reject step.""" # Simulate dynamics both forward and backward; # Use sampled Bernoulli masks to compute the actual solutions position_f, momentum_f, accept_prob_f = self.transition_kernel( position, forward=True) position_b, momentum_b, accept_prob_b = self.transition_kernel( position, forward=False) # Decide direction uniformly batch_size = tf.shape(position)[0] forward_mask = tf.cast(tf.random_uniform((batch_size,)) > .5, tf.float32) backward_mask = 1. - forward_mask # Obtain proposed states position_post = ( forward_mask[:, None] * position_f + backward_mask[:, None] * position_b) momentum_post = ( forward_mask[:, None] * momentum_f + backward_mask[:, None] * momentum_b) # Probability of accepting the proposed states accept_prob = forward_mask * accept_prob_f + backward_mask * accept_prob_b # Accept or reject step accept_mask = tf.cast( accept_prob > tf.random_uniform(tf.shape(accept_prob)), tf.float32) reject_mask = 1. - accept_mask # Samples after accept/reject step position_out = ( accept_mask[:, None] * position_post + reject_mask[:, None] * position) return position_post, momentum_post, accept_prob, position_out def transition_kernel(self, position, forward=True): """Transition kernel of augmented leapfrog integrator.""" lf_fn = self._forward_lf if forward else self._backward_lf # Resample momentum momentum = tf.random_normal(tf.shape(position)) position_post, momentum_post = position, momentum sumlogdet = 0. # Apply augmented leapfrog steps for i in range(self.n_steps): position_post, momentum_post, logdet = lf_fn(position_post, momentum_post, i) sumlogdet += logdet accept_prob = self._compute_accept_prob(position, momentum, position_post, momentum_post, sumlogdet) return position_post, momentum_post, accept_prob def _forward_lf(self, position, momentum, i): """One forward augmented leapfrog step. See eq (5-6) in paper.""" t = self._get_time(i) mask, mask_inv = self._get_mask(i) sumlogdet = 0. momentum, logdet = self._update_momentum_forward(position, momentum, t) sumlogdet += logdet position, logdet = self._update_position_forward(position, momentum, t, mask, mask_inv) sumlogdet += logdet position, logdet = self._update_position_forward(position, momentum, t, mask_inv, mask) sumlogdet += logdet momentum, logdet = self._update_momentum_forward(position, momentum, t) sumlogdet += logdet return position, momentum, sumlogdet def _backward_lf(self, position, momentum, i): """One backward augmented leapfrog step. See Appendix A in paper.""" # Reversed index/sinusoidal time t = self._get_time(self.n_steps - i - 1) mask, mask_inv = self._get_mask(self.n_steps - i - 1) sumlogdet = 0. momentum, logdet = self._update_momentum_backward(position, momentum, t) sumlogdet += logdet position, logdet = self._update_position_backward(position, momentum, t, mask_inv, mask) sumlogdet += logdet position, logdet = self._update_position_backward(position, momentum, t, mask, mask_inv) sumlogdet += logdet momentum, logdet = self._update_momentum_backward(position, momentum, t) sumlogdet += logdet return position, momentum, sumlogdet def _update_momentum_forward(self, position, momentum, t): """Update v in the forward leapfrog step.""" grad = self.grad_potential(position) scale, translation, transformed = self.momentum_fn([position, grad, t]) scale *= .5 * self.eps transformed *= self.eps momentum = ( momentum * tf.exp(scale) - .5 * self.eps * (tf.exp(transformed) * grad - translation)) return momentum, tf.reduce_sum(scale, axis=1) def _update_position_forward(self, position, momentum, t, mask, mask_inv): """Update x in the forward leapfrog step.""" scale, translation, transformed = self.position_fn( [momentum, mask * position, t]) scale *= self.eps transformed *= self.eps position = ( mask * position + mask_inv * (position * tf.exp(scale) + self.eps * (tf.exp(transformed) * momentum + translation))) return position, tf.reduce_sum(mask_inv * scale, axis=1) def _update_momentum_backward(self, position, momentum, t): """Update v in the backward leapfrog step. Inverting the forward update.""" grad = self.grad_potential(position) scale, translation, transformed = self.momentum_fn([position, grad, t]) scale *= -.5 * self.eps transformed *= self.eps momentum = ( tf.exp(scale) * (momentum + .5 * self.eps * (tf.exp(transformed) * grad - translation))) return momentum, tf.reduce_sum(scale, axis=1) def _update_position_backward(self, position, momentum, t, mask, mask_inv): """Update x in the backward leapfrog step. Inverting the forward update.""" scale, translation, transformed = self.position_fn( [momentum, mask * position, t]) scale *= -self.eps transformed *= self.eps position = ( mask * position + mask_inv * tf.exp(scale) * (position - self.eps * (tf.exp(transformed) * momentum + translation))) return position, tf.reduce_sum(mask_inv * scale, axis=1) def _compute_accept_prob(self, position, momentum, position_post, momentum_post, sumlogdet): """Compute the prob of accepting the proposed state given old state.""" old_hamil = self.hamiltonian(position, momentum) new_hamil = self.hamiltonian(position_post, momentum_post) prob = tf.exp(tf.minimum(old_hamil - new_hamil + sumlogdet, 0.)) # Ensure numerical stability as well as correct gradients return tf.where(tf.is_finite(prob), prob, tf.zeros_like(prob)) def _construct_time(self): """Convert leapfrog step index into sinusoidal time.""" self.ts = [] for i in range(self.n_steps): t = tf.constant( [ np.cos(2 * np.pi * i / self.n_steps), np.sin(2 * np.pi * i / self.n_steps) ], dtype=tf.float32) self.ts.append(t[None, :]) def _get_time(self, i): """Get sinusoidal time for i-th augmented leapfrog step.""" return self.ts[i] def _construct_masks(self): """Construct different binary masks for different time steps.""" self.masks = [] for _ in range(self.n_steps): # Need to use npr here because tf would generated different random # values across different `sess.run` idx = npr.permutation(np.arange(self.x_dim))[:self.x_dim // 2] mask = np.zeros((self.x_dim,)) mask[idx] = 1. mask = tf.constant(mask, dtype=tf.float32) self.masks.append(mask[None, :]) def _get_mask(self, i): """Get binary masks for i-th augmented leapfrog step.""" m = self.masks[i] return m, 1. - m def kinetic(self, v): """Compute the kinetic energy.""" return .5 * tf.reduce_sum(v**2, axis=1) def hamiltonian(self, position, momentum): """Compute the overall Hamiltonian.""" return self.potential(position) + self.kinetic(momentum) def grad_potential(self, position, check_numerics=True): """Get gradient of potential function at current location.""" if tf.executing_eagerly(): grad = tfe.gradients_function(self.potential)(position)[0] else: grad = tf.gradients(self.potential(position), position)[0] return grad # Examples of unnormalized log densities def get_scg_energy_fn(): """Get energy function for 2d strongly correlated Gaussian.""" # Avoid recreating tf constants on each invocation of gradients mu = tf.constant([0., 0.]) sigma = tf.constant([[50.05, -49.95], [-49.95, 50.05]]) sigma_inv = tf.matrix_inverse(sigma) def energy(x): """Unnormalized minus log density of 2d strongly correlated Gaussian.""" xmmu = x - mu return .5 * tf.diag_part( tf.matmul(tf.matmul(xmmu, sigma_inv), tf.transpose(xmmu))) return energy, mu, sigma def get_rw_energy_fn(): """Get energy function for rough well distribution.""" # For small eta, the density underlying the rough-well energy is very close to # a unit Gaussian; however, the gradient is greatly affected by the small # cosine perturbations eta = 1e-2 mu = tf.constant([0., 0.]) sigma = tf.constant([[1., 0.], [0., 1.]]) def energy(x): ip = tf.reduce_sum(x**2., axis=1) return .5 * ip + eta * tf.reduce_sum(tf.cos(x / eta), axis=1) return energy, mu, sigma # Loss function def compute_loss(dynamics, x, scale=.1, eps=1e-4): """Compute loss defined in equation (8).""" z = tf.random_normal(tf.shape(x)) # Auxiliary variable x_, _, x_accept_prob, x_out = dynamics.apply_transition(x) z_, _, z_accept_prob, _ = dynamics.apply_transition(z) # Add eps for numerical stability; following released impl x_loss = tf.reduce_sum((x - x_)**2, axis=1) * x_accept_prob + eps z_loss = tf.reduce_sum((z - z_)**2, axis=1) * z_accept_prob + eps loss = tf.reduce_mean( (1. / x_loss + 1. / z_loss) * scale - (x_loss + z_loss) / scale, axis=0) return loss, x_out, x_accept_prob def loss_and_grads(dynamics, x, loss_fn=compute_loss): """Obtain loss value and gradients.""" with tf.GradientTape() as tape: loss_val, out, accept_prob = loss_fn(dynamics, x) grads = tape.gradient(loss_val, dynamics.trainable_variables) return loss_val, grads, out, accept_prob
tensorflow-master
tensorflow/contrib/eager/python/examples/l2hmc/l2hmc.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """L2HMC on simple Gaussian mixture model with TensorFlow eager.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys from absl import flags import numpy as np import tensorflow as tf from tensorflow.contrib.eager.python.examples.l2hmc import l2hmc try: import matplotlib.pyplot as plt # pylint: disable=g-import-not-at-top HAS_MATPLOTLIB = True except ImportError: HAS_MATPLOTLIB = False tfe = tf.contrib.eager def main(_): tf.enable_eager_execution() global_step = tf.train.get_or_create_global_step() global_step.assign(1) energy_fn, mean, covar = { "scg": l2hmc.get_scg_energy_fn(), "rw": l2hmc.get_rw_energy_fn() }[FLAGS.energy_fn] x_dim = 2 train_iters = 5000 eval_iters = 2000 eps = 0.1 n_steps = 10 # Chain length n_samples = 200 record_loss_every = 100 dynamics = l2hmc.Dynamics( x_dim=x_dim, minus_loglikelihood_fn=energy_fn, n_steps=n_steps, eps=eps) learning_rate = tf.train.exponential_decay( 1e-3, global_step, 1000, 0.96, staircase=True) optimizer = tf.train.AdamOptimizer(learning_rate) checkpointer = tf.train.Checkpoint( optimizer=optimizer, dynamics=dynamics, global_step=global_step) if FLAGS.train_dir: summary_writer = tf.contrib.summary.create_file_writer(FLAGS.train_dir) if FLAGS.restore: latest_path = tf.train.latest_checkpoint(FLAGS.train_dir) checkpointer.restore(latest_path) print("Restored latest checkpoint at path:\"{}\" ".format(latest_path)) sys.stdout.flush() if not FLAGS.restore: # Training if FLAGS.use_defun: # Use `tfe.deun` to boost performance when there are lots of small ops loss_fn = tfe.function(l2hmc.compute_loss) else: loss_fn = l2hmc.compute_loss samples = tf.random_normal(shape=[n_samples, x_dim]) for i in range(1, train_iters + 1): loss, samples, accept_prob = train_one_iter( dynamics, samples, optimizer, loss_fn=loss_fn, global_step=global_step) if i % record_loss_every == 0: print("Iteration {}, loss {:.4f}, x_accept_prob {:.4f}".format( i, loss.numpy(), accept_prob.numpy().mean())) if FLAGS.train_dir: with summary_writer.as_default(): with tf.contrib.summary.always_record_summaries(): tf.contrib.summary.scalar("Training loss", loss, step=global_step) print("Training complete.") sys.stdout.flush() if FLAGS.train_dir: saved_path = checkpointer.save( file_prefix=os.path.join(FLAGS.train_dir, "ckpt")) print("Saved checkpoint at path: \"{}\" ".format(saved_path)) sys.stdout.flush() # Evaluation if FLAGS.use_defun: # Use tfe.deun to boost performance when there are lots of small ops apply_transition = tfe.function(dynamics.apply_transition) else: apply_transition = dynamics.apply_transition samples = tf.random_normal(shape=[n_samples, x_dim]) samples_history = [] for i in range(eval_iters): samples_history.append(samples.numpy()) _, _, _, samples = apply_transition(samples) samples_history = np.array(samples_history) print("Sampling complete.") sys.stdout.flush() # Mean and covariance of target distribution mean = mean.numpy() covar = covar.numpy() ac_spectrum = compute_ac_spectrum(samples_history, mean, covar) print("First 25 entries of the auto-correlation spectrum: {}".format( ac_spectrum[:25])) ess = compute_ess(ac_spectrum) print("Effective sample size per Metropolis-Hastings step: {}".format(ess)) sys.stdout.flush() if FLAGS.train_dir: # Plot autocorrelation spectrum in tensorboard plot_step = tfe.Variable(1, trainable=False, dtype=tf.int64) for ac in ac_spectrum: with summary_writer.as_default(): with tf.contrib.summary.always_record_summaries(): tf.contrib.summary.scalar("Autocorrelation", ac, step=plot_step) plot_step.assign(plot_step + n_steps) if HAS_MATPLOTLIB: # Choose a single chain and plot the trajectory single_chain = samples_history[:, 0, :] xs = single_chain[:100, 0] ys = single_chain[:100, 1] plt.figure() plt.plot(xs, ys, color="orange", marker="o", alpha=0.6) # Trained chain plt.savefig(os.path.join(FLAGS.train_dir, "single_chain.png")) def train_one_iter(dynamics, x, optimizer, loss_fn=l2hmc.compute_loss, global_step=None): """Train the sampler for one iteration.""" loss, grads, out, accept_prob = l2hmc.loss_and_grads( dynamics, x, loss_fn=loss_fn) optimizer.apply_gradients( zip(grads, dynamics.trainable_variables), global_step=global_step) return loss, out, accept_prob def compute_ac_spectrum(samples_history, target_mean, target_covar): """Compute autocorrelation spectrum. Follows equation 15 from the L2HMC paper. Args: samples_history: Numpy array of shape [T, B, D], where T is the total number of time steps, B is the batch size, and D is the dimensionality of sample space. target_mean: 1D Numpy array of the mean of target(true) distribution. target_covar: 2D Numpy array representing a symmetric matrix for variance. Returns: Autocorrelation spectrum, Numpy array of shape [T-1]. """ # Using numpy here since eager is a bit slow due to the loop time_steps = samples_history.shape[0] trace = np.trace(target_covar) rhos = [] for t in range(time_steps - 1): rho_t = 0. for tau in range(time_steps - t): v_tau = samples_history[tau, :, :] - target_mean v_tau_plus_t = samples_history[tau + t, :, :] - target_mean # Take dot product over observation dims and take mean over batch dims rho_t += np.mean(np.sum(v_tau * v_tau_plus_t, axis=1)) rho_t /= trace * (time_steps - t) rhos.append(rho_t) return np.array(rhos) def compute_ess(ac_spectrum): """Compute the effective sample size based on autocorrelation spectrum. This follows equation 16 from the L2HMC paper. Args: ac_spectrum: Autocorrelation spectrum Returns: The effective sample size """ # Cutoff from the first value less than 0.05 cutoff = np.argmax(ac_spectrum[1:] < .05) if cutoff == 0: cutoff = len(ac_spectrum) ess = 1. / (1. + 2. * np.sum(ac_spectrum[1:cutoff])) return ess if __name__ == "__main__": flags.DEFINE_string( "train_dir", default=None, help="[Optional] Directory to store the training information") flags.DEFINE_boolean( "restore", default=False, help="[Optional] Restore the latest checkpoint from `train_dir` if True") flags.DEFINE_boolean( "use_defun", default=False, help="[Optional] Use `tfe.defun` to boost performance") flags.DEFINE_string( "energy_fn", default="scg", help="[Optional] The energy function used for experimentation" "Other options include `rw`") FLAGS = flags.FLAGS tf.app.run(main)
tensorflow-master
tensorflow/contrib/eager/python/examples/l2hmc/main.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Neural nets utility for L2HMC compatible with TensorFlow's eager execution. Reference [Generalizing Hamiltonian Monte Carlo with Neural Networks](https://arxiv.org/pdf/1711.09268.pdf) Code adapted from the released TensorFlow graph implementation by original authors https://github.com/brain-research/l2hmc. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf class GenericNet(tf.keras.Model): """Generic neural net with different initialization scale based on input. Args: x_dim: dimensionality of observed data factor: factor of variance scaling initializer n_hidden: number of hidden units """ def __init__(self, x_dim, factor, n_hidden=10): super(GenericNet, self).__init__() self.v_layer = _custom_dense(n_hidden, 1. / 3.) self.x_layer = _custom_dense(n_hidden, factor / 3.) self.t_layer = _custom_dense(n_hidden, 1. / 3.) self.h_layer = _custom_dense(n_hidden) # Scale self.scale_layer = _custom_dense(x_dim, .001) self.coeff_scale = tf.Variable( initial_value=tf.zeros([1, x_dim]), name='coeff_scale', trainable=True) # Translation self.translation_layer = _custom_dense(x_dim, factor=.001) # Transformation self.transformation_layer = _custom_dense(x_dim, .001) self.coeff_transformation = tf.Variable( initial_value=tf.zeros([1, x_dim]), name='coeff_transformation', trainable=True) def call(self, inputs): v, x, t = inputs h = self.v_layer(v) + self.x_layer(x) + self.t_layer(t) h = tf.nn.relu(h) h = self.h_layer(h) h = tf.nn.relu(h) scale = tf.nn.tanh(self.scale_layer(h)) * tf.exp(self.coeff_scale) translation = self.translation_layer(h) transformation = ( tf.nn.tanh(self.transformation_layer(h)) * tf.exp( self.coeff_transformation)) return scale, translation, transformation def _custom_dense(units, factor=1.): """Custom dense layer with specified weight initialization.""" return tf.keras.layers.Dense( units=units, use_bias=True, kernel_initializer=tf.contrib.layers.variance_scaling_initializer( factor=factor * 2., mode='FAN_IN', uniform=False), bias_initializer=tf.constant_initializer(0., dtype=tf.float32))
tensorflow-master
tensorflow/contrib/eager/python/examples/l2hmc/neural_nets.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== r"""TensorFlow Eager Execution Example: Linear Regression. This example shows how to use TensorFlow Eager Execution to fit a simple linear regression model using some synthesized data. Specifically, it illustrates how to define the forward path of the linear model and the loss function, as well as how to obtain the gradients of the loss function with respect to the variables and update the variables with the gradients. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import sys import tensorflow as tf import tensorflow.contrib.eager as tfe layers = tf.keras.layers class LinearModel(tf.keras.Model): """A TensorFlow linear regression model.""" def __init__(self): """Constructs a LinearModel object.""" super(LinearModel, self).__init__() self._hidden_layer = layers.Dense(1) def call(self, xs): """Invoke the linear model. Args: xs: input features, as a tensor of size [batch_size, ndims]. Returns: ys: the predictions of the linear mode, as a tensor of size [batch_size] """ return self._hidden_layer(xs) def mean_square_loss(model, xs, ys): return tf.reduce_mean(tf.squared_difference(model(xs), ys)) def fit(model, dataset, optimizer, verbose=False, logdir=None): """Fit the linear-regression model. Args: model: The LinearModel to fit. dataset: The tf.data.Dataset to use for training data. optimizer: The TensorFlow Optimizer object to be used. verbose: If true, will print out loss values at every iteration. logdir: The directory in which summaries will be written for TensorBoard (optional). """ # The loss function to optimize. mse = lambda xs, ys: mean_square_loss(model, xs, ys) loss_and_grads = tfe.implicit_value_and_gradients(mse) if logdir: # Support for TensorBoard summaries. Once training has started, use: # tensorboard --logdir=<logdir> summary_writer = tf.contrib.summary.create_file_writer(logdir) # Training loop. for i, (xs, ys) in enumerate(tfe.Iterator(dataset)): loss, grads = loss_and_grads(xs, ys) if verbose: print("Iteration %d: loss = %s" % (i, loss.numpy())) optimizer.apply_gradients(grads) if logdir: with summary_writer.as_default(): with tf.contrib.summary.always_record_summaries(): tf.contrib.summary.scalar("loss", loss, step=i) tf.contrib.summary.scalar("step", i, step=i) def synthetic_dataset(w, b, noise_level, batch_size, num_batches): """tf.data.Dataset that yields synthetic data for linear regression.""" return synthetic_dataset_helper(w, b, tf.shape(w)[0], noise_level, batch_size, num_batches) def synthetic_dataset_helper(w, b, num_features, noise_level, batch_size, num_batches): # w is a matrix with shape [N, M] # b is a vector with shape [M] # So: # - Generate x's as vectors with shape [batch_size N] # - y = tf.matmul(x, W) + b + noise def batch(_): x = tf.random_normal([batch_size, num_features]) y = tf.matmul(x, w) + b + noise_level * tf.random_normal([]) return x, y with tf.device("/device:CPU:0"): return tf.data.Dataset.range(num_batches).map(batch) def main(_): tf.enable_eager_execution() # Ground-truth constants. true_w = [[-2.0], [4.0], [1.0]] true_b = [0.5] noise_level = 0.01 # Training constants. batch_size = 64 learning_rate = 0.1 print("True w: %s" % true_w) print("True b: %s\n" % true_b) model = LinearModel() dataset = synthetic_dataset(true_w, true_b, noise_level, batch_size, 20) device = "gpu:0" if tfe.num_gpus() else "cpu:0" print("Using device: %s" % device) with tf.device(device): optimizer = tf.train.GradientDescentOptimizer(learning_rate) fit(model, dataset, optimizer, verbose=True, logdir=FLAGS.logdir) print("\nAfter training: w = %s" % model.variables[0].numpy()) print("\nAfter training: b = %s" % model.variables[1].numpy()) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--logdir", type=str, default=None, help="logdir in which TensorBoard summaries will be written (optional).") FLAGS, unparsed = parser.parse_known_args() tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
tensorflow-master
tensorflow/contrib/eager/python/examples/linear_regression/linear_regression.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Graph benchmark for linear regression, to contrast with eager execution.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import time import tensorflow as tf from tensorflow.contrib.eager.python.examples.linear_regression import linear_regression class GraphLinearRegressionBenchmark(tf.test.Benchmark): def benchmarkGraphLinearRegression(self): num_epochs = 10 num_batches = 200 batch_size = 64 dataset = linear_regression.synthetic_dataset_helper( w=tf.random_uniform([3, 1]), b=tf.random_uniform([1]), num_features=3, noise_level=0.01, batch_size=batch_size, num_batches=num_batches) iterator = tf.compat.v1.data.make_initializable_iterator(dataset) x, y = iterator.get_next() model = linear_regression.LinearModel() if tf.test.is_gpu_available(): use_gpu = True device = "/device:GPU:0" else: use_gpu = False device = "/device:CPU:0" with tf.device(device): loss = linear_regression.mean_square_loss(model, x, y) optimization_step = tf.train.GradientDescentOptimizer( learning_rate=0.1).minimize(loss) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) def train(num_epochs): for _ in range(num_epochs): sess.run(iterator.initializer) try: while True: _, _ = sess.run([optimization_step, loss]) except tf.errors.OutOfRangeError: pass # Warmup: a single epoch. train(1) start_time = time.time() train(num_epochs) wall_time = time.time() - start_time examples_per_sec = num_epochs * num_batches * batch_size / wall_time self.report_benchmark( name="graph_train_%s" % ("gpu" if use_gpu else "cpu"), iters=num_epochs * num_batches, extras={"examples_per_sec": examples_per_sec}, wall_time=wall_time) if __name__ == "__main__": tf.test.main()
tensorflow-master
tensorflow/contrib/eager/python/examples/linear_regression/linear_regression_graph_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Unit tests for linear regression example under TensorFlow eager execution.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import glob import os import shutil import tempfile import time import tensorflow as tf import tensorflow.contrib.eager as tfe from tensorflow.contrib.eager.python.examples.linear_regression import linear_regression def device(): return "/device:GPU:0" if tfe.num_gpus() > 0 else "/device:CPU:0" class LinearRegressionTest(tf.test.TestCase): def setUp(self): super(LinearRegressionTest, self).setUp() self._tmp_logdir = tempfile.mkdtemp() def tearDown(self): shutil.rmtree(self._tmp_logdir) super(LinearRegressionTest, self).tearDown() def testSyntheticDataset(self): true_w = tf.random_uniform([3, 1]) true_b = [1.0] batch_size = 10 num_batches = 2 noise_level = 0. dataset = linear_regression.synthetic_dataset(true_w, true_b, noise_level, batch_size, num_batches) it = tfe.Iterator(dataset) for _ in range(2): (xs, ys) = it.next() self.assertEqual((batch_size, 3), xs.shape) self.assertEqual((batch_size, 1), ys.shape) self.assertEqual(tf.float32, xs.dtype) self.assertEqual(tf.float32, ys.dtype) with self.assertRaises(StopIteration): it.next() def testLinearRegression(self): true_w = [[1.0], [-0.5], [2.0]] true_b = [1.0] model = linear_regression.LinearModel() dataset = linear_regression.synthetic_dataset( true_w, true_b, noise_level=0., batch_size=64, num_batches=40) with tf.device(device()): optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.1) linear_regression.fit(model, dataset, optimizer, logdir=self._tmp_logdir) self.assertAllClose(true_w, model.variables[0].numpy(), rtol=1e-2) self.assertAllClose(true_b, model.variables[1].numpy(), rtol=1e-2) self.assertTrue(glob.glob(os.path.join(self._tmp_logdir, "events.out.*"))) class EagerLinearRegressionBenchmark(tf.test.Benchmark): def benchmarkEagerLinearRegression(self): num_epochs = 10 num_batches = 200 batch_size = 64 dataset = linear_regression.synthetic_dataset( w=tf.random_uniform([3, 1]), b=tf.random_uniform([1]), noise_level=0.01, batch_size=batch_size, num_batches=num_batches) burn_in_dataset = dataset.take(10) model = linear_regression.LinearModel() with tf.device(device()): optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.1) # Perform burn-in. linear_regression.fit(model, burn_in_dataset, optimizer) start_time = time.time() for _ in range(num_epochs): linear_regression.fit(model, dataset, optimizer) wall_time = time.time() - start_time examples_per_sec = num_epochs * num_batches * batch_size / wall_time self.report_benchmark( name="eager_train_%s" % ("gpu" if tfe.num_gpus() > 0 else "cpu"), iters=num_epochs * num_batches, extras={"examples_per_sec": examples_per_sec}, wall_time=wall_time) if __name__ == "__main__": tf.enable_eager_execution() tf.test.main()
tensorflow-master
tensorflow/contrib/eager/python/examples/linear_regression/linear_regression_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import gc import glob import os import shutil import tempfile import time import numpy as np from six.moves import xrange # pylint: disable=redefined-builtin import tensorflow as tf # pylint: disable=g-bad-import-order from tensorflow.contrib.eager.python.examples.spinn import data from third_party.examples.eager.spinn import spinn from tensorflow.contrib.summary import summary_test_util from tensorflow.python.eager import test from tensorflow.python.framework import test_util from tensorflow.python.training import checkpoint_management from tensorflow.python.training.tracking import util as trackable_utils # pylint: enable=g-bad-import-order def _generate_synthetic_snli_data_batch(sequence_length, batch_size, vocab_size): """Generate a fake batch of SNLI data for testing.""" with tf.device("cpu:0"): labels = tf.random_uniform([batch_size], minval=1, maxval=4, dtype=tf.int64) prem = tf.random_uniform( (sequence_length, batch_size), maxval=vocab_size, dtype=tf.int64) prem_trans = tf.constant(np.array( [[3, 3, 2, 3, 3, 3, 2, 2, 2, 3, 3, 3, 2, 3, 3, 2, 2, 3, 3, 3, 2, 2, 2, 2, 3, 2, 2]] * batch_size, dtype=np.int64).T) hypo = tf.random_uniform( (sequence_length, batch_size), maxval=vocab_size, dtype=tf.int64) hypo_trans = tf.constant(np.array( [[3, 3, 2, 3, 3, 3, 2, 2, 2, 3, 3, 3, 2, 3, 3, 2, 2, 3, 3, 3, 2, 2, 2, 2, 3, 2, 2]] * batch_size, dtype=np.int64).T) if test_util.is_gpu_available(): labels = labels.gpu() prem = prem.gpu() prem_trans = prem_trans.gpu() hypo = hypo.gpu() hypo_trans = hypo_trans.gpu() return labels, prem, prem_trans, hypo, hypo_trans def _test_spinn_config(d_embed, d_out, logdir=None, inference_sentences=None): """Generate a config tuple for testing. Args: d_embed: Embedding dimensions. d_out: Model output dimensions. logdir: Optional logdir. inference_sentences: A 2-tuple of strings representing the sentences (with binary parsing result), e.g., ("( ( The dog ) ( ( is running ) . ) )", "( ( The dog ) ( moves . ) )"). Returns: A config tuple. """ config_tuple = collections.namedtuple( "Config", ["d_hidden", "d_proj", "d_tracker", "predict", "embed_dropout", "mlp_dropout", "n_mlp_layers", "d_mlp", "d_out", "projection", "lr", "batch_size", "epochs", "force_cpu", "logdir", "log_every", "dev_every", "save_every", "lr_decay_every", "lr_decay_by", "inference_premise", "inference_hypothesis"]) inference_premise = inference_sentences[0] if inference_sentences else None inference_hypothesis = inference_sentences[1] if inference_sentences else None return config_tuple( d_hidden=d_embed, d_proj=d_embed * 2, d_tracker=8, predict=False, embed_dropout=0.1, mlp_dropout=0.1, n_mlp_layers=2, d_mlp=32, d_out=d_out, projection=True, lr=2e-2, batch_size=2, epochs=20, force_cpu=False, logdir=logdir, log_every=1, dev_every=2, save_every=2, lr_decay_every=1, lr_decay_by=0.75, inference_premise=inference_premise, inference_hypothesis=inference_hypothesis) class SpinnTest(test_util.TensorFlowTestCase): def setUp(self): super(SpinnTest, self).setUp() self._test_device = "gpu:0" if test_util.is_gpu_available() else "cpu:0" self._temp_data_dir = tempfile.mkdtemp() def tearDown(self): shutil.rmtree(self._temp_data_dir) super(SpinnTest, self).tearDown() def testBundle(self): with tf.device(self._test_device): lstm_iter = [np.array([[0, 1], [2, 3]], dtype=np.float32), np.array([[0, -1], [-2, -3]], dtype=np.float32), np.array([[0, 2], [4, 6]], dtype=np.float32), np.array([[0, -2], [-4, -6]], dtype=np.float32)] out = spinn._bundle(lstm_iter) self.assertEqual(2, len(out)) self.assertEqual(tf.float32, out[0].dtype) self.assertEqual(tf.float32, out[1].dtype) self.assertAllEqual(np.array([[0, 2, 0, -2, 0, 4, 0, -4]]).T, out[0].numpy()) self.assertAllEqual(np.array([[1, 3, -1, -3, 2, 6, -2, -6]]).T, out[1].numpy()) def testUnbunbdle(self): with tf.device(self._test_device): state = [np.array([[0, 1, 2], [3, 4, 5]], dtype=np.float32), np.array([[0, -1, -2], [-3, -4, -5]], dtype=np.float32)] out = spinn._unbundle(state) self.assertEqual(2, len(out)) self.assertEqual(tf.float32, out[0].dtype) self.assertEqual(tf.float32, out[1].dtype) self.assertAllEqual(np.array([[0, 1, 2, 0, -1, -2]]), out[0].numpy()) self.assertAllEqual(np.array([[3, 4, 5, -3, -4, -5]]), out[1].numpy()) def testReducer(self): with tf.device(self._test_device): batch_size = 3 size = 10 tracker_size = 8 reducer = spinn.Reducer(size, tracker_size=tracker_size) left_in = [] right_in = [] tracking = [] for _ in range(batch_size): left_in.append(tf.random_normal((1, size * 2))) right_in.append(tf.random_normal((1, size * 2))) tracking.append(tf.random_normal((1, tracker_size * 2))) out = reducer(left_in, right_in, tracking=tracking) self.assertEqual(batch_size, len(out)) self.assertEqual(tf.float32, out[0].dtype) self.assertEqual((1, size * 2), out[0].shape) def testReduceTreeLSTM(self): with tf.device(self._test_device): size = 10 tracker_size = 8 reducer = spinn.Reducer(size, tracker_size=tracker_size) lstm_in = np.array([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [0, -1, -2, -3, -4, -5, -6, -7, -8, -9]], dtype=np.float32) c1 = np.array([[0, 1], [2, 3]], dtype=np.float32) c2 = np.array([[0, -1], [-2, -3]], dtype=np.float32) h, c = reducer._tree_lstm(c1, c2, lstm_in) self.assertEqual(tf.float32, h.dtype) self.assertEqual(tf.float32, c.dtype) self.assertEqual((2, 2), h.shape) self.assertEqual((2, 2), c.shape) def testTracker(self): with tf.device(self._test_device): batch_size = 2 size = 10 tracker_size = 8 buffer_length = 18 stack_size = 3 tracker = spinn.Tracker(tracker_size, False) tracker.reset_state() # Create dummy inputs for testing. bufs = [] buf = [] for _ in range(buffer_length): buf.append(tf.random_normal((batch_size, size * 2))) bufs.append(buf) self.assertEqual(1, len(bufs)) self.assertEqual(buffer_length, len(bufs[0])) self.assertEqual((batch_size, size * 2), bufs[0][0].shape) stacks = [] stack = [] for _ in range(stack_size): stack.append(tf.random_normal((batch_size, size * 2))) stacks.append(stack) self.assertEqual(1, len(stacks)) self.assertEqual(3, len(stacks[0])) self.assertEqual((batch_size, size * 2), stacks[0][0].shape) for _ in range(2): out1, out2 = tracker(bufs, stacks) self.assertIsNone(out2) self.assertEqual(batch_size, len(out1)) self.assertEqual(tf.float32, out1[0].dtype) self.assertEqual((1, tracker_size * 2), out1[0].shape) self.assertEqual(tf.float32, tracker.state.c.dtype) self.assertEqual((batch_size, tracker_size), tracker.state.c.shape) self.assertEqual(tf.float32, tracker.state.h.dtype) self.assertEqual((batch_size, tracker_size), tracker.state.h.shape) def testSPINN(self): with tf.device(self._test_device): embedding_dims = 10 d_tracker = 8 sequence_length = 15 num_transitions = 27 config_tuple = collections.namedtuple( "Config", ["d_hidden", "d_proj", "d_tracker", "predict"]) config = config_tuple( embedding_dims, embedding_dims * 2, d_tracker, False) s = spinn.SPINN(config) # Create some fake data. buffers = tf.random_normal((sequence_length, 1, config.d_proj)) transitions = tf.constant( [[3], [3], [2], [3], [3], [3], [2], [2], [2], [3], [3], [3], [2], [3], [3], [2], [2], [3], [3], [3], [2], [2], [2], [2], [3], [2], [2]], dtype=tf.int64) self.assertEqual(tf.int64, transitions.dtype) self.assertEqual((num_transitions, 1), transitions.shape) out = s(buffers, transitions, training=True) self.assertEqual(tf.float32, out.dtype) self.assertEqual((1, embedding_dims), out.shape) def testSNLIClassifierAndTrainer(self): with tf.device(self._test_device): vocab_size = 40 batch_size = 2 d_embed = 10 sequence_length = 15 d_out = 4 config = _test_spinn_config(d_embed, d_out) # Create fake embedding matrix. embed = tf.random_normal((vocab_size, d_embed)) model = spinn.SNLIClassifier(config, embed) trainer = spinn.SNLIClassifierTrainer(model, config.lr) (labels, prem, prem_trans, hypo, hypo_trans) = _generate_synthetic_snli_data_batch(sequence_length, batch_size, vocab_size) # Invoke model under non-training mode. logits = model(prem, prem_trans, hypo, hypo_trans, training=False) self.assertEqual(tf.float32, logits.dtype) self.assertEqual((batch_size, d_out), logits.shape) # Invoke model under training model. logits = model(prem, prem_trans, hypo, hypo_trans, training=True) self.assertEqual(tf.float32, logits.dtype) self.assertEqual((batch_size, d_out), logits.shape) # Calculate loss. loss1 = trainer.loss(labels, logits) self.assertEqual(tf.float32, loss1.dtype) self.assertEqual((), loss1.shape) loss2, logits = trainer.train_batch( labels, prem, prem_trans, hypo, hypo_trans) self.assertEqual(tf.float32, loss2.dtype) self.assertEqual((), loss2.shape) self.assertEqual(tf.float32, logits.dtype) self.assertEqual((batch_size, d_out), logits.shape) # Training on the batch should have led to a change in the loss value. self.assertNotEqual(loss1.numpy(), loss2.numpy()) def _create_test_data(self, snli_1_0_dir): fake_train_file = os.path.join(snli_1_0_dir, "snli_1.0_train.txt") os.makedirs(snli_1_0_dir) # Four sentences in total. with open(fake_train_file, "wt") as f: f.write("gold_label\tsentence1_binary_parse\tsentence2_binary_parse\t" "sentence1_parse\tsentence2_parse\tsentence1\tsentence2\t" "captionID\tpairID\tlabel1\tlabel2\tlabel3\tlabel4\tlabel5\n") f.write("neutral\t( ( Foo bar ) . )\t( ( foo . )\t" "DummySentence1Parse\tDummySentence2Parse\t" "Foo bar.\tfoo baz.\t" "4705552913.jpg#2\t4705552913.jpg#2r1n\t" "neutral\tentailment\tneutral\tneutral\tneutral\n") f.write("contradiction\t( ( Bar foo ) . )\t( ( baz . )\t" "DummySentence1Parse\tDummySentence2Parse\t" "Foo bar.\tfoo baz.\t" "4705552913.jpg#2\t4705552913.jpg#2r1n\t" "neutral\tentailment\tneutral\tneutral\tneutral\n") f.write("entailment\t( ( Quux quuz ) . )\t( ( grault . )\t" "DummySentence1Parse\tDummySentence2Parse\t" "Foo bar.\tfoo baz.\t" "4705552913.jpg#2\t4705552913.jpg#2r1n\t" "neutral\tentailment\tneutral\tneutral\tneutral\n") f.write("entailment\t( ( Quuz quux ) . )\t( ( garply . )\t" "DummySentence1Parse\tDummySentence2Parse\t" "Foo bar.\tfoo baz.\t" "4705552913.jpg#2\t4705552913.jpg#2r1n\t" "neutral\tentailment\tneutral\tneutral\tneutral\n") glove_dir = os.path.join(self._temp_data_dir, "glove") os.makedirs(glove_dir) glove_file = os.path.join(glove_dir, "glove.42B.300d.txt") words = [".", "foo", "bar", "baz", "quux", "quuz", "grault", "garply"] with open(glove_file, "wt") as f: for i, word in enumerate(words): f.write("%s " % word) for j in range(data.WORD_VECTOR_LEN): f.write("%.5f" % (i * 0.1)) if j < data.WORD_VECTOR_LEN - 1: f.write(" ") else: f.write("\n") return fake_train_file def testInferSpinnWorks(self): """Test inference with the spinn model.""" snli_1_0_dir = os.path.join(self._temp_data_dir, "snli/snli_1.0") self._create_test_data(snli_1_0_dir) vocab = data.load_vocabulary(self._temp_data_dir) word2index, embed = data.load_word_vectors(self._temp_data_dir, vocab) config = _test_spinn_config( data.WORD_VECTOR_LEN, 4, logdir=os.path.join(self._temp_data_dir, "logdir"), inference_sentences=("( foo ( bar . ) )", "( bar ( foo . ) )")) logits = spinn.train_or_infer_spinn( embed, word2index, None, None, None, config) self.assertEqual(tf.float32, logits.dtype) self.assertEqual((3,), logits.shape) def testInferSpinnThrowsErrorIfOnlyOneSentenceIsSpecified(self): snli_1_0_dir = os.path.join(self._temp_data_dir, "snli/snli_1.0") self._create_test_data(snli_1_0_dir) vocab = data.load_vocabulary(self._temp_data_dir) word2index, embed = data.load_word_vectors(self._temp_data_dir, vocab) config = _test_spinn_config( data.WORD_VECTOR_LEN, 4, logdir=os.path.join(self._temp_data_dir, "logdir"), inference_sentences=("( foo ( bar . ) )", None)) with self.assertRaises(ValueError): spinn.train_or_infer_spinn(embed, word2index, None, None, None, config) def testTrainSpinn(self): """Test with fake toy SNLI data and GloVe vectors.""" # 1. Create and load a fake SNLI data file and a fake GloVe embedding file. snli_1_0_dir = os.path.join(self._temp_data_dir, "snli/snli_1.0") fake_train_file = self._create_test_data(snli_1_0_dir) vocab = data.load_vocabulary(self._temp_data_dir) word2index, embed = data.load_word_vectors(self._temp_data_dir, vocab) train_data = data.SnliData(fake_train_file, word2index) dev_data = data.SnliData(fake_train_file, word2index) test_data = data.SnliData(fake_train_file, word2index) # 2. Create a fake config. config = _test_spinn_config( data.WORD_VECTOR_LEN, 4, logdir=os.path.join(self._temp_data_dir, "logdir")) # 3. Test training of a SPINN model. trainer = spinn.train_or_infer_spinn( embed, word2index, train_data, dev_data, test_data, config) # 4. Load train loss values from the summary files and verify that they # decrease with training. summary_file = glob.glob(os.path.join(config.logdir, "events.out.*"))[0] events = summary_test_util.events_from_file(summary_file) train_losses = [event.summary.value[0].simple_value for event in events if event.summary.value and event.summary.value[0].tag == "train/loss"] self.assertEqual(config.epochs, len(train_losses)) # 5. Verify that checkpoints exist and contains all the expected variables. self.assertTrue(glob.glob(os.path.join(config.logdir, "ckpt*"))) object_graph = trackable_utils.object_metadata( checkpoint_management.latest_checkpoint(config.logdir)) ckpt_variable_names = set() for node in object_graph.nodes: for attribute in node.attributes: ckpt_variable_names.add(attribute.full_name) self.assertIn("global_step", ckpt_variable_names) for v in trainer.variables: variable_name = v.name[:v.name.index(":")] if ":" in v.name else v.name self.assertIn(variable_name, ckpt_variable_names) class EagerSpinnSNLIClassifierBenchmark(test.Benchmark): def benchmarkEagerSpinnSNLIClassifier(self): test_device = "gpu:0" if test_util.is_gpu_available() else "cpu:0" with tf.device(test_device): burn_in_iterations = 2 benchmark_iterations = 10 vocab_size = 1000 batch_size = 128 sequence_length = 15 d_embed = 200 d_out = 4 embed = tf.random_normal((vocab_size, d_embed)) config = _test_spinn_config(d_embed, d_out) model = spinn.SNLIClassifier(config, embed) trainer = spinn.SNLIClassifierTrainer(model, config.lr) (labels, prem, prem_trans, hypo, hypo_trans) = _generate_synthetic_snli_data_batch(sequence_length, batch_size, vocab_size) for _ in range(burn_in_iterations): trainer.train_batch(labels, prem, prem_trans, hypo, hypo_trans) gc.collect() start_time = time.time() for _ in xrange(benchmark_iterations): trainer.train_batch(labels, prem, prem_trans, hypo, hypo_trans) wall_time = time.time() - start_time # Named "examples"_per_sec to conform with other benchmarks. extras = {"examples_per_sec": benchmark_iterations / wall_time} self.report_benchmark( name="Eager_SPINN_SNLIClassifier_Benchmark", iters=benchmark_iterations, wall_time=wall_time, extras=extras) if __name__ == "__main__": test.main()
tensorflow-master
tensorflow/contrib/eager/python/examples/spinn/spinn_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Unit tests for SPINN data module.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import shutil import tempfile import numpy as np import tensorflow as tf from tensorflow.contrib.eager.python.examples.spinn import data class DataTest(tf.test.TestCase): def setUp(self): super(DataTest, self).setUp() self._temp_data_dir = tempfile.mkdtemp() def tearDown(self): shutil.rmtree(self._temp_data_dir) super(DataTest, self).tearDown() def testGenNonParenthesisWords(self): seq_with_parse = ( "( Man ( ( ( ( ( wearing pass ) ( on ( a lanyard ) ) ) and " ") ( standing ( in ( ( a crowd ) ( of people ) ) ) ) ) . ) )") self.assertEqual( ["man", "wearing", "pass", "on", "a", "lanyard", "and", "standing", "in", "a", "crowd", "of", "people", "."], data.get_non_parenthesis_words(seq_with_parse.split(" "))) def testGetShiftReduce(self): seq_with_parse = ( "( Man ( ( ( ( ( wearing pass ) ( on ( a lanyard ) ) ) and " ") ( standing ( in ( ( a crowd ) ( of people ) ) ) ) ) . ) )") self.assertEqual( [3, 3, 3, 2, 3, 3, 3, 2, 2, 2, 3, 2, 3, 3, 3, 3, 2, 3, 3, 2, 2, 2, 2, 2, 3, 2, 2], data.get_shift_reduce(seq_with_parse.split(" "))) def testPadAndReverseWordIds(self): id_sequences = [[0, 2, 3, 4, 5], [6, 7, 8], [9, 10, 11, 12, 13, 14, 15, 16]] self.assertAllClose( [[1, 1, 1, 1, 5, 4, 3, 2, 0], [1, 1, 1, 1, 1, 1, 8, 7, 6], [1, 16, 15, 14, 13, 12, 11, 10, 9]], data.pad_and_reverse_word_ids(id_sequences)) def testPadTransitions(self): unpadded = [[3, 3, 3, 2, 2, 2, 2], [3, 3, 2, 2, 2]] self.assertAllClose( [[3, 3, 3, 2, 2, 2, 2], [3, 3, 2, 2, 2, 1, 1]], data.pad_transitions(unpadded)) def testCalculateBins(self): length2count = { 1: 10, 2: 15, 3: 25, 4: 40, 5: 35, 6: 10} self.assertEqual([2, 3, 4, 5, 6], data.calculate_bins(length2count, 20)) self.assertEqual([3, 4, 6], data.calculate_bins(length2count, 40)) self.assertEqual([4, 6], data.calculate_bins(length2count, 60)) def testLoadVoacbulary(self): snli_1_0_dir = os.path.join(self._temp_data_dir, "snli/snli_1.0") fake_train_file = os.path.join(snli_1_0_dir, "snli_1.0_train.txt") fake_dev_file = os.path.join(snli_1_0_dir, "snli_1.0_dev.txt") os.makedirs(snli_1_0_dir) with open(fake_train_file, "wt") as f: f.write("gold_label\tsentence1_binary_parse\tsentence2_binary_parse\t" "sentence1_parse\tsentence2_parse\tsentence1\tsentence2\t" "captionID\tpairID\tlabel1\tlabel2\tlabel3\tlabel4\tlabel5\n") f.write("neutral\t( ( Foo bar ) . )\t( ( foo baz ) . )\t" "DummySentence1Parse\tDummySentence2Parse\t" "Foo bar.\tfoo baz.\t" "4705552913.jpg#2\t4705552913.jpg#2r1n\t" "neutral\tentailment\tneutral\tneutral\tneutral\n") with open(fake_dev_file, "wt") as f: f.write("gold_label\tsentence1_binary_parse\tsentence2_binary_parse\t" "sentence1_parse\tsentence2_parse\tsentence1\tsentence2\t" "captionID\tpairID\tlabel1\tlabel2\tlabel3\tlabel4\tlabel5\n") f.write("neutral\t( ( Quux quuz ) ? )\t( ( Corge grault ) ! )\t" "DummySentence1Parse\tDummySentence2Parse\t" "Quux quuz?\t.Corge grault!\t" "4705552913.jpg#2\t4705552913.jpg#2r1n\t" "neutral\tentailment\tneutral\tneutral\tneutral\n") vocab = data.load_vocabulary(self._temp_data_dir) self.assertSetEqual( {".", "?", "!", "foo", "bar", "baz", "quux", "quuz", "corge", "grault"}, vocab) def testLoadVoacbularyWithoutFileRaisesError(self): with self.assertRaisesRegexp(ValueError, "Cannot find SNLI data files at"): data.load_vocabulary(self._temp_data_dir) os.makedirs(os.path.join(self._temp_data_dir, "snli")) with self.assertRaisesRegexp(ValueError, "Cannot find SNLI data files at"): data.load_vocabulary(self._temp_data_dir) os.makedirs(os.path.join(self._temp_data_dir, "snli/snli_1.0")) with self.assertRaisesRegexp(ValueError, "Cannot find SNLI data files at"): data.load_vocabulary(self._temp_data_dir) def testLoadWordVectors(self): glove_dir = os.path.join(self._temp_data_dir, "glove") os.makedirs(glove_dir) glove_file = os.path.join(glove_dir, "glove.42B.300d.txt") words = [".", ",", "foo", "bar", "baz"] with open(glove_file, "wt") as f: for i, word in enumerate(words): f.write("%s " % word) for j in range(data.WORD_VECTOR_LEN): f.write("%.5f" % (i * 0.1)) if j < data.WORD_VECTOR_LEN - 1: f.write(" ") else: f.write("\n") vocab = {"foo", "bar", "baz", "qux", "."} # Notice that "qux" is not present in `words`. word2index, embed = data.load_word_vectors(self._temp_data_dir, vocab) self.assertEqual(6, len(word2index)) self.assertEqual(0, word2index["<unk>"]) self.assertEqual(1, word2index["<pad>"]) self.assertEqual(2, word2index["."]) self.assertEqual(3, word2index["foo"]) self.assertEqual(4, word2index["bar"]) self.assertEqual(5, word2index["baz"]) self.assertEqual((6, data.WORD_VECTOR_LEN), embed.shape) self.assertAllClose([0.0] * data.WORD_VECTOR_LEN, embed[0, :]) self.assertAllClose([0.0] * data.WORD_VECTOR_LEN, embed[1, :]) self.assertAllClose([0.0] * data.WORD_VECTOR_LEN, embed[2, :]) self.assertAllClose([0.2] * data.WORD_VECTOR_LEN, embed[3, :]) self.assertAllClose([0.3] * data.WORD_VECTOR_LEN, embed[4, :]) self.assertAllClose([0.4] * data.WORD_VECTOR_LEN, embed[5, :]) def testLoadWordVectorsWithoutFileRaisesError(self): vocab = {"foo", "bar", "baz", "qux", "."} with self.assertRaisesRegexp( ValueError, "Cannot find GloVe embedding file at"): data.load_word_vectors(self._temp_data_dir, vocab) os.makedirs(os.path.join(self._temp_data_dir, "glove")) with self.assertRaisesRegexp( ValueError, "Cannot find GloVe embedding file at"): data.load_word_vectors(self._temp_data_dir, vocab) def _createFakeSnliData(self, fake_snli_file): # Four sentences in total. with open(fake_snli_file, "wt") as f: f.write("gold_label\tsentence1_binary_parse\tsentence2_binary_parse\t" "sentence1_parse\tsentence2_parse\tsentence1\tsentence2\t" "captionID\tpairID\tlabel1\tlabel2\tlabel3\tlabel4\tlabel5\n") f.write("neutral\t( ( Foo bar ) . )\t( ( foo . )\t" "DummySentence1Parse\tDummySentence2Parse\t" "Foo bar.\tfoo baz.\t" "4705552913.jpg#2\t4705552913.jpg#2r1n\t" "neutral\tentailment\tneutral\tneutral\tneutral\n") f.write("contradiction\t( ( Bar foo ) . )\t( ( baz . )\t" "DummySentence1Parse\tDummySentence2Parse\t" "Foo bar.\tfoo baz.\t" "4705552913.jpg#2\t4705552913.jpg#2r1n\t" "neutral\tentailment\tneutral\tneutral\tneutral\n") f.write("entailment\t( ( Quux quuz ) . )\t( ( grault . )\t" "DummySentence1Parse\tDummySentence2Parse\t" "Foo bar.\tfoo baz.\t" "4705552913.jpg#2\t4705552913.jpg#2r1n\t" "neutral\tentailment\tneutral\tneutral\tneutral\n") f.write("entailment\t( ( Quuz quux ) . )\t( ( garply . )\t" "DummySentence1Parse\tDummySentence2Parse\t" "Foo bar.\tfoo baz.\t" "4705552913.jpg#2\t4705552913.jpg#2r1n\t" "neutral\tentailment\tneutral\tneutral\tneutral\n") def _createFakeGloveData(self, glove_file): words = [".", "foo", "bar", "baz", "quux", "quuz", "grault", "garply"] with open(glove_file, "wt") as f: for i, word in enumerate(words): f.write("%s " % word) for j in range(data.WORD_VECTOR_LEN): f.write("%.5f" % (i * 0.1)) if j < data.WORD_VECTOR_LEN - 1: f.write(" ") else: f.write("\n") def testEncodeSingleSentence(self): snli_1_0_dir = os.path.join(self._temp_data_dir, "snli/snli_1.0") fake_train_file = os.path.join(snli_1_0_dir, "snli_1.0_train.txt") os.makedirs(snli_1_0_dir) self._createFakeSnliData(fake_train_file) vocab = data.load_vocabulary(self._temp_data_dir) glove_dir = os.path.join(self._temp_data_dir, "glove") os.makedirs(glove_dir) glove_file = os.path.join(glove_dir, "glove.42B.300d.txt") self._createFakeGloveData(glove_file) word2index, _ = data.load_word_vectors(self._temp_data_dir, vocab) sentence_variants = [ "( Foo ( ( bar baz ) . ) )", " ( Foo ( ( bar baz ) . ) ) ", "( Foo ( ( bar baz ) . ) )"] for sentence in sentence_variants: word_indices, shift_reduce = data.encode_sentence(sentence, word2index) self.assertEqual(np.int64, word_indices.dtype) self.assertEqual((5, 1), word_indices.shape) self.assertAllClose( np.array([[3, 3, 3, 2, 3, 2, 2]], dtype=np.int64).T, shift_reduce) def testSnliData(self): snli_1_0_dir = os.path.join(self._temp_data_dir, "snli/snli_1.0") fake_train_file = os.path.join(snli_1_0_dir, "snli_1.0_train.txt") os.makedirs(snli_1_0_dir) self._createFakeSnliData(fake_train_file) glove_dir = os.path.join(self._temp_data_dir, "glove") os.makedirs(glove_dir) glove_file = os.path.join(glove_dir, "glove.42B.300d.txt") self._createFakeGloveData(glove_file) vocab = data.load_vocabulary(self._temp_data_dir) word2index, _ = data.load_word_vectors(self._temp_data_dir, vocab) train_data = data.SnliData(fake_train_file, word2index) self.assertEqual(4, train_data.num_batches(1)) self.assertEqual(2, train_data.num_batches(2)) self.assertEqual(2, train_data.num_batches(3)) self.assertEqual(1, train_data.num_batches(4)) generator = train_data.get_generator(2)() for _ in range(2): label, prem, prem_trans, hypo, hypo_trans = next(generator) self.assertEqual(2, len(label)) self.assertEqual((4, 2), prem.shape) self.assertEqual((5, 2), prem_trans.shape) self.assertEqual((3, 2), hypo.shape) self.assertEqual((3, 2), hypo_trans.shape) if __name__ == "__main__": tf.test.main()
tensorflow-master
tensorflow/contrib/eager/python/examples/spinn/data_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utilities of SNLI data and GloVe word vectors for SPINN model. See more details about the SNLI data set at: https://nlp.stanford.edu/projects/snli/ See more details about the GloVe pretrained word embeddings at: https://nlp.stanford.edu/projects/glove/ """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import glob import math import os import random import numpy as np POSSIBLE_LABELS = ("entailment", "contradiction", "neutral") UNK_CODE = 0 # Code for unknown word tokens. PAD_CODE = 1 # Code for padding tokens. SHIFT_CODE = 3 REDUCE_CODE = 2 WORD_VECTOR_LEN = 300 # Embedding dimensions. LEFT_PAREN = "(" RIGHT_PAREN = ")" PARENTHESES = (LEFT_PAREN, RIGHT_PAREN) def get_non_parenthesis_words(items): """Get the non-parenthesis items from a SNLI parsed sentence. Args: items: Data items from a parsed SNLI sentence, with parentheses. E.g., ["(", "Man", "(", "(", "(", "(", "(", "wearing", "pass", ")", ... Returns: A list of non-parentheses word items, all converted to lower case. E.g., ["man", "wearing", "pass", ... """ return [x.lower() for x in items if x not in PARENTHESES and x] def get_shift_reduce(items): """Obtain shift-reduce vector from a list of items from the SNLI data. Args: items: Data items as a list of str, e.g., ["(", "Man", "(", "(", "(", "(", "(", "wearing", "pass", ")", ... Returns: A list of shift-reduce transitions, encoded as `SHIFT_CODE` for shift and `REDUCE_CODE` for reduce. See code above for the values of `SHIFT_CODE` and `REDUCE_CODE`. """ trans = [] for item in items: if item == LEFT_PAREN: continue elif item == RIGHT_PAREN: trans.append(REDUCE_CODE) else: trans.append(SHIFT_CODE) return trans def pad_and_reverse_word_ids(sentences): """Pad a list of sentences to the common maximum length + 1. Args: sentences: A list of sentences as a list of list of integers. Each integer is a word ID. Each list of integer corresponds to one sentence. Returns: A numpy.ndarray of shape (num_sentences, max_length + 1), wherein max_length is the maximum sentence length (in # of words). Each sentence is reversed and then padded with an extra one at head, as required by the model. """ max_len = max(len(sent) for sent in sentences) for sent in sentences: if len(sent) < max_len: sent.extend([PAD_CODE] * (max_len - len(sent))) # Reverse in time order and pad an extra one. sentences = np.fliplr(np.array(sentences, dtype=np.int64)) sentences = np.concatenate( [np.ones([sentences.shape[0], 1], dtype=np.int64), sentences], axis=1) return sentences def pad_transitions(sentences_transitions): """Pad a list of shift-reduce transitions to the maximum length.""" max_len = max(len(transitions) for transitions in sentences_transitions) for transitions in sentences_transitions: if len(transitions) < max_len: transitions.extend([PAD_CODE] * (max_len - len(transitions))) return np.array(sentences_transitions, dtype=np.int64) def load_vocabulary(data_root): """Load vocabulary from SNLI data files. Args: data_root: Root directory of the data. It is assumed that the SNLI data files have been downloaded and extracted to the "snli/snli_1.0" subdirectory of it. Returns: Vocabulary as a set of strings. Raises: ValueError: If SNLI data files cannot be found. """ snli_path = os.path.join(data_root, "snli") snli_glob_pattern = os.path.join(snli_path, "snli_1.0/snli_1.0_*.txt") file_names = glob.glob(snli_glob_pattern) if not file_names: raise ValueError( "Cannot find SNLI data files at %s. " "Please download and extract SNLI data first." % snli_glob_pattern) print("Loading vocabulary...") vocab = set() for file_name in file_names: with open(os.path.join(snli_path, file_name), "rt") as f: for i, line in enumerate(f): if i == 0: continue items = line.split("\t") premise_words = get_non_parenthesis_words(items[1].split(" ")) hypothesis_words = get_non_parenthesis_words(items[2].split(" ")) vocab.update(premise_words) vocab.update(hypothesis_words) return vocab def load_word_vectors(data_root, vocab): """Load GloVe word vectors for words present in the vocabulary. Args: data_root: Data root directory. It is assumed that the GloVe file has been downloaded and extracted at the "glove/" subdirectory of it. vocab: A `set` of words, representing the vocabulary. Returns: 1. word2index: A dict from lower-case word to row index in the embedding matrix, i.e, `embed` below. 2. embed: The embedding matrix as a float32 numpy array. Its shape is [vocabulary_size, WORD_VECTOR_LEN]. vocabulary_size is len(vocab). WORD_VECTOR_LEN is the embedding dimension (300). Raises: ValueError: If GloVe embedding file cannot be found. """ glove_path = os.path.join(data_root, "glove/glove.42B.300d.txt") if not os.path.isfile(glove_path): raise ValueError( "Cannot find GloVe embedding file at %s. " "Please download and extract GloVe embeddings first." % glove_path) print("Loading word vectors...") word2index = {} embed = [] embed.append([0] * WORD_VECTOR_LEN) # <unk> embed.append([0] * WORD_VECTOR_LEN) # <pad> word2index["<unk>"] = UNK_CODE word2index["<pad>"] = PAD_CODE with open(glove_path, "rt") as f: for line in f: items = line.split(" ") word = items[0] if word in vocab and word not in word2index: word2index[word] = len(embed) vector = np.array([float(item) for item in items[1:]]) assert (WORD_VECTOR_LEN,) == vector.shape embed.append(vector) embed = np.array(embed, dtype=np.float32) return word2index, embed def calculate_bins(length2count, min_bin_size): """Calculate bin boundaries given a histogram of lengths and minimum bin size. Args: length2count: A `dict` mapping length to sentence count. min_bin_size: Minimum bin size in terms of total number of sentence pairs in the bin. Returns: A `list` representing the right bin boundaries, starting from the inclusive right boundary of the first bin. For example, if the output is [10, 20, 35], it means there are three bins: [1, 10], [11, 20] and [21, 35]. """ bounds = [] lengths = sorted(length2count.keys()) cum_count = 0 for length in lengths: cum_count += length2count[length] if cum_count >= min_bin_size: bounds.append(length) cum_count = 0 if bounds[-1] != lengths[-1]: bounds.append(lengths[-1]) return bounds def encode_sentence(sentence, word2index): """Encode a single sentence as word indices and shift-reduce code. Args: sentence: The sentence with added binary parse information, represented as a string, with all the word items and parentheses separated by spaces. E.g., '( ( The dog ) ( ( is ( playing toys ) ) . ) )'. word2index: A `dict` mapping words to their word indices. Returns: 1. Word indices as a numpy array, with shape `(sequence_len, 1)`. 2. Shift-reduce sequence as a numpy array, with shape `(sequence_len * 2 - 3, 1)`. """ items = [w for w in sentence.split(" ") if w] words = get_non_parenthesis_words(items) shift_reduce = get_shift_reduce(items) word_indices = pad_and_reverse_word_ids( [[word2index.get(word, UNK_CODE) for word in words]]).T return (word_indices, np.expand_dims(np.array(shift_reduce, dtype=np.int64), -1)) class SnliData(object): """A split of SNLI data.""" def __init__(self, data_file, word2index, sentence_len_limit=-1): """SnliData constructor. Args: data_file: Full path to the data file, e.g., "/tmp/spinn-data/snli/snli_1.0/snli_1.0.train.txt" word2index: A dict from lower-case word to row index in the embedding matrix (see `load_word_vectors()` for details). sentence_len_limit: Maximum allowed sentence length (# of words). A value of <= 0 means unlimited. Sentences longer than this limit are currently discarded, not truncated. """ self._labels = [] self._premises = [] self._premise_transitions = [] self._hypotheses = [] self._hypothesis_transitions = [] with open(data_file, "rt") as f: for i, line in enumerate(f): if i == 0: # Skip header line. continue items = line.split("\t") if items[0] not in POSSIBLE_LABELS: continue premise_items = items[1].split(" ") hypothesis_items = items[2].split(" ") premise_words = get_non_parenthesis_words(premise_items) hypothesis_words = get_non_parenthesis_words(hypothesis_items) if (sentence_len_limit > 0 and (len(premise_words) > sentence_len_limit or len(hypothesis_words) > sentence_len_limit)): # TODO(cais): Maybe truncate; do not discard. continue premise_ids = [ word2index.get(word, UNK_CODE) for word in premise_words] hypothesis_ids = [ word2index.get(word, UNK_CODE) for word in hypothesis_words] self._premises.append(premise_ids) self._hypotheses.append(hypothesis_ids) self._premise_transitions.append(get_shift_reduce(premise_items)) self._hypothesis_transitions.append(get_shift_reduce(hypothesis_items)) assert (len(self._premise_transitions[-1]) == 2 * len(premise_words) - 1) assert (len(self._hypothesis_transitions[-1]) == 2 * len(hypothesis_words) - 1) self._labels.append(POSSIBLE_LABELS.index(items[0]) + 1) assert len(self._labels) == len(self._premises) assert len(self._labels) == len(self._hypotheses) assert len(self._labels) == len(self._premise_transitions) assert len(self._labels) == len(self._hypothesis_transitions) def num_batches(self, batch_size): """Calculate number of batches given batch size.""" return int(math.ceil(len(self._labels) / batch_size)) def get_generator(self, batch_size): """Obtain a generator for batched data. All examples of this SnliData object are randomly shuffled, sorted according to the maximum sentence length of the premise and hypothesis sentences in the pair, and batched. Args: batch_size: Desired batch size. Returns: A generator for data batches. The generator yields a 5-tuple: label: An array of the shape (batch_size,). premise: An array of the shape (max_premise_len, batch_size), wherein max_premise_len is the maximum length of the (padded) premise sentence in the batch. premise_transitions: An array of the shape (2 * max_premise_len -3, batch_size). hypothesis: Same as `premise`, but for hypothesis sentences. hypothesis_transitions: Same as `premise_transitions`, but for hypothesis sentences. All the elements of the 5-tuple have dtype `int64`. """ # Randomly shuffle examples. zipped = list(zip( self._labels, self._premises, self._premise_transitions, self._hypotheses, self._hypothesis_transitions)) random.shuffle(zipped) # Then sort the examples by maximum of the premise and hypothesis sentence # lengths in the pair. During training, the batches are expected to be # shuffled. So it is okay to leave them sorted by max length here. (labels, premises, premise_transitions, hypotheses, hypothesis_transitions) = zip( *sorted(zipped, key=lambda x: max(len(x[1]), len(x[3])))) def _generator(): begin = 0 while begin < len(labels): # The sorting above and the batching here makes sure that sentences of # similar max lengths are batched together, minimizing the inefficiency # due to uneven max lengths. The sentences are batched differently in # each call to get_generator() due to the shuffling before sorting # above. The pad_and_reverse_word_ids() and pad_transitions() functions # take care of any remaining unevenness of the max sentence lengths. end = min(begin + batch_size, len(labels)) # Transpose, because the SPINN model requires time-major, instead of # batch-major. yield (labels[begin:end], pad_and_reverse_word_ids(premises[begin:end]).T, pad_transitions(premise_transitions[begin:end]).T, pad_and_reverse_word_ids(hypotheses[begin:end]).T, pad_transitions(hypothesis_transitions[begin:end]).T) begin = end return _generator
tensorflow-master
tensorflow/contrib/eager/python/examples/spinn/data.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from tensorflow.contrib.eager.python.examples.rnn_colorbot import rnn_colorbot from tensorflow.python.framework import test_util LABEL_DIMENSION = 5 def random_dataset(): batch_size = 64 time_steps = 10 alphabet = 50 chars = tf.one_hot( tf.random_uniform( [batch_size, time_steps], minval=0, maxval=alphabet, dtype=tf.int32), alphabet) sequence_length = tf.constant( [time_steps for _ in range(batch_size)], dtype=tf.int64) labels = tf.random_normal([batch_size, LABEL_DIMENSION]) return tf.data.Dataset.from_tensors((labels, chars, sequence_length)) class RNNColorbotTest(tf.test.TestCase): def testTrainOneEpoch(self): model = rnn_colorbot.RNNColorbot( rnn_cell_sizes=[256, 128, 64], label_dimension=LABEL_DIMENSION, keep_prob=1.0) optimizer = tf.train.AdamOptimizer(learning_rate=.01) dataset = random_dataset() with test_util.use_gpu(): rnn_colorbot.train_one_epoch(model, optimizer, dataset) def testTest(self): model = rnn_colorbot.RNNColorbot( rnn_cell_sizes=[256], label_dimension=LABEL_DIMENSION, keep_prob=1.0) dataset = random_dataset() with test_util.use_gpu(): rnn_colorbot.test(model, dataset) if __name__ == "__main__": tf.enable_eager_execution() tf.test.main()
tensorflow-master
tensorflow/contrib/eager/python/examples/rnn_colorbot/rnn_colorbot_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== r"""TensorFlow Eager Execution Example: RNN Colorbot. This example builds, trains, and evaluates a multi-layer RNN that can be run with eager execution enabled. The RNN is trained to map color names to their RGB values: it takes as input a one-hot encoded character sequence and outputs a three-tuple (R, G, B) (scaled by 1/255). For example, say we'd like the RNN Colorbot to generate the RGB values for the color white. To represent our query in a form that the Colorbot could understand, we would create a sequence of five 256-long vectors encoding the ASCII values of the characters in "white". The first vector in our sequence would be 0 everywhere except for the ord("w")-th position, where it would be 1, the second vector would be 0 everywhere except for the ord("h")-th position, where it would be 1, and similarly for the remaining three vectors. We refer to such indicator vectors as "one-hot encodings" of characters. After consuming these vectors, a well-trained Colorbot would output the three tuple (1, 1, 1), since the RGB values for white are (255, 255, 255). We are of course free to ask the colorbot to generate colors for any string we'd like, such as "steel gray," "tensorflow orange," or "green apple," though your mileage may vary as your queries increase in creativity. This example shows how to: 1. read, process, (one-hot) encode, and pad text data via the Datasets API; 2. build a trainable model; 3. implement a multi-layer RNN using Python control flow constructs (e.g., a for loop); 4. train a model using an iterative gradient-based method; and The data used in this example is licensed under the Creative Commons Attribution-ShareAlike License and is available at https://en.wikipedia.org/wiki/List_of_colors:_A-F https://en.wikipedia.org/wiki/List_of_colors:_G-M https://en.wikipedia.org/wiki/List_of_colors:_N-Z This example was adapted from https://github.com/random-forests/tensorflow-workshop/tree/master/extras/colorbot """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import functools import os import sys import time import urllib import six import tensorflow as tf from tensorflow.contrib.eager.python import tfe try: import matplotlib.pyplot as plt # pylint: disable=g-import-not-at-top HAS_MATPLOTLIB = True except ImportError: HAS_MATPLOTLIB = False layers = tf.keras.layers def parse(line): """Parse a line from the colors dataset.""" # Each line of the dataset is comma-separated and formatted as # color_name, r, g, b # so `items` is a list [color_name, r, g, b]. items = tf.string_split([line], ",").values rgb = tf.string_to_number(items[1:], out_type=tf.float32) / 255. # Represent the color name as a one-hot encoded character sequence. color_name = items[0] chars = tf.one_hot(tf.decode_raw(color_name, tf.uint8), depth=256) # The sequence length is needed by our RNN. length = tf.cast(tf.shape(chars)[0], dtype=tf.int64) return rgb, chars, length def maybe_download(filename, work_directory, source_url): """Download the data from source url, unless it's already here. Args: filename: string, name of the file in the directory. work_directory: string, path to working directory. source_url: url to download from if file doesn't exist. Returns: Path to resulting file. """ if not tf.gfile.Exists(work_directory): tf.gfile.MakeDirs(work_directory) filepath = os.path.join(work_directory, filename) if not tf.gfile.Exists(filepath): temp_file_name, _ = urllib.request.urlretrieve(source_url) tf.gfile.Copy(temp_file_name, filepath) with tf.gfile.GFile(filepath) as f: size = f.size() print("Successfully downloaded", filename, size, "bytes.") return filepath def load_dataset(data_dir, url, batch_size): """Loads the colors data at path into a PaddedDataset.""" # Downloads data at url into data_dir/basename(url). The dataset has a header # row (color_name, r, g, b) followed by comma-separated lines. path = maybe_download(os.path.basename(url), data_dir, url) # This chain of commands loads our data by: # 1. skipping the header; (.skip(1)) # 2. parsing the subsequent lines; (.map(parse)) # 3. shuffling the data; (.shuffle(...)) # 3. grouping the data into padded batches (.padded_batch(...)). dataset = tf.data.TextLineDataset(path).skip(1).map(parse).shuffle( buffer_size=10000).padded_batch( batch_size, padded_shapes=([None], [None, None], [])) return dataset # pylint: disable=not-callable class RNNColorbot(tf.keras.Model): """Multi-layer (LSTM) RNN that regresses on real-valued vector labels. """ def __init__(self, rnn_cell_sizes, label_dimension, keep_prob): """Constructs an RNNColorbot. Args: rnn_cell_sizes: list of integers denoting the size of each LSTM cell in the RNN; rnn_cell_sizes[i] is the size of the i-th layer cell label_dimension: the length of the labels on which to regress keep_prob: (1 - dropout probability); dropout is applied to the outputs of each LSTM layer """ super(RNNColorbot, self).__init__(name="") self.label_dimension = label_dimension self.keep_prob = keep_prob self.cells = tf.contrib.checkpoint.List( [tf.nn.rnn_cell.BasicLSTMCell(size) for size in rnn_cell_sizes]) self.relu = layers.Dense( label_dimension, activation=tf.nn.relu, name="relu") def call(self, inputs, training=False): """Implements the RNN logic and prediction generation. Args: inputs: A tuple (chars, sequence_length), where chars is a batch of one-hot encoded color names represented as a Tensor with dimensions [batch_size, time_steps, 256] and sequence_length holds the length of each character sequence (color name) as a Tensor with dimension [batch_size]. training: whether the invocation is happening during training Returns: A tensor of dimension [batch_size, label_dimension] that is produced by passing chars through a multi-layer RNN and applying a ReLU to the final hidden state. """ (chars, sequence_length) = inputs # Transpose the first and second dimensions so that chars is of shape # [time_steps, batch_size, dimension]. chars = tf.transpose(chars, [1, 0, 2]) # The outer loop cycles through the layers of the RNN; the inner loop # executes the time steps for a particular layer. batch_size = int(chars.shape[1]) for l in range(len(self.cells)): cell = self.cells[l] outputs = [] state = cell.zero_state(batch_size, tf.float32) # Unstack the inputs to obtain a list of batches, one for each time step. chars = tf.unstack(chars, axis=0) for ch in chars: output, state = cell(ch, state) outputs.append(output) # The outputs of this layer are the inputs of the subsequent layer. chars = tf.stack(outputs, axis=0) if training: chars = tf.nn.dropout(chars, self.keep_prob) # Extract the correct output (i.e., hidden state) for each example. All the # character sequences in this batch were padded to the same fixed length so # that they could be easily fed through the above RNN loop. The # `sequence_length` vector tells us the true lengths of the character # sequences, letting us obtain for each sequence the hidden state that was # generated by its non-padding characters. batch_range = [i for i in range(batch_size)] indices = tf.stack([sequence_length - 1, batch_range], axis=1) hidden_states = tf.gather_nd(chars, indices) return self.relu(hidden_states) def loss(labels, predictions): """Computes mean squared loss.""" return tf.reduce_mean(tf.squared_difference(predictions, labels)) def test(model, eval_data): """Computes the average loss on eval_data, which should be a Dataset.""" avg_loss = tfe.metrics.Mean("loss") for (labels, chars, sequence_length) in tfe.Iterator(eval_data): predictions = model((chars, sequence_length), training=False) avg_loss(loss(labels, predictions)) print("eval/loss: %.6f\n" % avg_loss.result()) with tf.contrib.summary.always_record_summaries(): tf.contrib.summary.scalar("loss", avg_loss.result()) def train_one_epoch(model, optimizer, train_data, log_interval=10): """Trains model on train_data using optimizer.""" tf.train.get_or_create_global_step() def model_loss(labels, chars, sequence_length): predictions = model((chars, sequence_length), training=True) loss_value = loss(labels, predictions) tf.contrib.summary.scalar("loss", loss_value) return loss_value for (batch, (labels, chars, sequence_length)) in enumerate( tfe.Iterator(train_data)): with tf.contrib.summary.record_summaries_every_n_global_steps(log_interval): batch_model_loss = functools.partial(model_loss, labels, chars, sequence_length) optimizer.minimize( batch_model_loss, global_step=tf.train.get_global_step()) if log_interval and batch % log_interval == 0: print("train/batch #%d\tloss: %.6f" % (batch, batch_model_loss())) SOURCE_TRAIN_URL = "https://raw.githubusercontent.com/random-forests/tensorflow-workshop/master/archive/extras/colorbot/data/train.csv" SOURCE_TEST_URL = "https://raw.githubusercontent.com/random-forests/tensorflow-workshop/master/archive/extras/colorbot/data/test.csv" def main(_): data_dir = os.path.join(FLAGS.dir, "data") train_data = load_dataset( data_dir=data_dir, url=SOURCE_TRAIN_URL, batch_size=FLAGS.batch_size) eval_data = load_dataset( data_dir=data_dir, url=SOURCE_TEST_URL, batch_size=FLAGS.batch_size) model = RNNColorbot( rnn_cell_sizes=FLAGS.rnn_cell_sizes, label_dimension=3, keep_prob=FLAGS.keep_probability) optimizer = tf.train.AdamOptimizer(learning_rate=FLAGS.learning_rate) if FLAGS.no_gpu or tfe.num_gpus() <= 0: print(tfe.num_gpus()) device = "/cpu:0" else: device = "/gpu:0" print("Using device %s." % device) log_dir = os.path.join(FLAGS.dir, "summaries") tf.gfile.MakeDirs(log_dir) train_summary_writer = tf.contrib.summary.create_file_writer( os.path.join(log_dir, "train"), flush_millis=10000) test_summary_writer = tf.contrib.summary.create_file_writer( os.path.join(log_dir, "eval"), flush_millis=10000, name="eval") with tf.device(device): for epoch in range(FLAGS.num_epochs): start = time.time() with train_summary_writer.as_default(): train_one_epoch(model, optimizer, train_data, FLAGS.log_interval) end = time.time() print("train/time for epoch #%d: %.2f" % (epoch, end - start)) with test_summary_writer.as_default(): test(model, eval_data) print("Colorbot is ready to generate colors!") while True: try: color_name = six.moves.input( "Give me a color name (or press enter to exit): ") except EOFError: return if not color_name: return _, chars, length = parse(color_name) with tf.device(device): (chars, length) = (tf.identity(chars), tf.identity(length)) chars = tf.expand_dims(chars, 0) length = tf.expand_dims(length, 0) preds = tf.unstack(model((chars, length), training=False)[0]) # Predictions cannot be negative, as they are generated by a ReLU layer; # they may, however, be greater than 1. clipped_preds = tuple(min(float(p), 1.0) for p in preds) rgb = tuple(int(p * 255) for p in clipped_preds) print("rgb:", rgb) data = [[clipped_preds]] if HAS_MATPLOTLIB: plt.imshow(data) plt.title(color_name) plt.show() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--dir", type=str, default="/tmp/rnn_colorbot/", help="Directory to download data files and save logs.") parser.add_argument( "--log_interval", type=int, default=10, metavar="N", help="Log training loss every log_interval batches.") parser.add_argument( "--num_epochs", type=int, default=20, help="Number of epochs to train.") parser.add_argument( "--rnn_cell_sizes", type=int, nargs="+", default=[256, 128], help="List of sizes for each layer of the RNN.") parser.add_argument( "--batch_size", type=int, default=64, help="Batch size for training and eval.") parser.add_argument( "--keep_probability", type=float, default=0.5, help="Keep probability for dropout between layers.") parser.add_argument( "--learning_rate", type=float, default=0.01, help="Learning rate to be used during training.") parser.add_argument( "--no_gpu", action="store_true", default=False, help="Disables GPU usage even if a GPU is available.") FLAGS, unparsed = parser.parse_known_args() tfe.run(main=main, argv=[sys.argv[0]] + unparsed)
tensorflow-master
tensorflow/contrib/eager/python/examples/rnn_colorbot/rnn_colorbot.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for PTBModel with eager execution enabled.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import gc import time import numpy as np import tensorflow as tf from tensorflow.contrib.eager.python import tfe from tensorflow.contrib.eager.python.examples.rnn_ptb import rnn_ptb def device(): return "/device:GPU:0" if tfe.num_gpus() else "/device:CPU:0" class PTBTest(tf.test.TestCase): def testTrain(self): model = rnn_ptb.test_model(tfe.num_gpus() > 0) sequence_length = 35 data = np.ones([4 * sequence_length, 20], dtype=np.int64) with tf.device(device()): optimizer = tf.train.GradientDescentOptimizer(1.0) # Train two epochs rnn_ptb.train(model, optimizer, data, sequence_length, 0.25) rnn_ptb.train(model, optimizer, data, sequence_length, 0.25) def testApply(self): model = rnn_ptb.test_model(tfe.num_gpus() > 0) with tf.device(device()): model(tf.ones([35, 20], dtype=tf.int64), training=False) def force_gpu_sync(): if tfe.num_gpus(): tf.constant(1).gpu().cpu() class PTBBenchmark(tf.test.Benchmark): BATCH_SIZE = 20 SEQ_LEN = 35 def _report(self, label, start, num_iters, dev, batch_size): wall_time = (time.time() - start) / num_iters dev = "cpu" if "cpu" in dev.lower() else "gpu" name = "%s_%s_batch_%d" % (label, dev, batch_size) examples_per_sec = batch_size / wall_time self.report_benchmark( iters=num_iters, wall_time=wall_time, name=name, extras={ "examples_per_sec": examples_per_sec }) def _benchmark_apply(self, label, model): with tf.device(device()): sequence_batch = tf.ones( [PTBBenchmark.SEQ_LEN, PTBBenchmark.BATCH_SIZE], dtype=tf.int64) for _ in range(10): # Warmup model(sequence_batch, training=False).cpu() gc.collect() start = time.time() iters = 100 for _ in range(iters): model(sequence_batch, training=False).cpu() self._report(label, start, iters, device(), int(sequence_batch.shape[1])) def benchmark_apply_small(self): self._benchmark_apply("eager_apply_small", rnn_ptb.small_model(False)) def benchmark_apply_large(self): self._benchmark_apply("eager_apply_large", rnn_ptb.large_model(False)) def benchmark_cudnn_apply_small(self): if not tfe.num_gpus(): return self._benchmark_apply("eager_cudnn_apply_small", rnn_ptb.small_model(True)) def benchmark_cudnn_apply_large(self): if not tfe.num_gpus(): return self._benchmark_apply("eager_cudnn_apply_large", rnn_ptb.large_model(True)) def _benchmark_train(self, label, model): with tf.device(device()): optimizer = tf.train.GradientDescentOptimizer(1.) def model_loss(inputs, targets): return rnn_ptb.loss_fn(model, inputs, targets, training=True) grads = tfe.implicit_gradients(model_loss) sequence_batch = tf.ones( [PTBBenchmark.SEQ_LEN, PTBBenchmark.BATCH_SIZE], dtype=tf.int64) def step(): optimizer.apply_gradients( rnn_ptb.clip_gradients(grads(sequence_batch, sequence_batch), 0.25)) for _ in range(10): # Warmup step() force_gpu_sync() gc.collect() start = time.time() iters = 100 for _ in range(iters): step() force_gpu_sync() self._report(label, start, iters, device(), int(sequence_batch.shape[1])) def benchmark_train_small(self): self._benchmark_train("eager_train_small", rnn_ptb.small_model(False)) def benchmark_train_large(self): self._benchmark_train("eager_train_large", rnn_ptb.large_model(False)) def benchmark_cudnn_train_small(self): if not tfe.num_gpus(): return self._benchmark_train("eager_cudnn_train_small", rnn_ptb.small_model(True)) def benchmark_cudnn_train_large(self): if not tfe.num_gpus(): return self._benchmark_train("eager_cudnn_train_large", rnn_ptb.large_model(True)) if __name__ == "__main__": tfe.enable_eager_execution() tf.test.main()
tensorflow-master
tensorflow/contrib/eager/python/examples/rnn_ptb/rnn_ptb_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Penn Treebank RNN model definition compatible with eager execution. Model similar to https://github.com/tensorflow/models/tree/master/tutorials/rnn/ptb Usage: python ./rnn_ptb.py --data-path=<path_to_dataset> Penn Treebank (PTB) dataset from: http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import os import sys import time import numpy as np import tensorflow as tf from tensorflow.contrib.cudnn_rnn.python.layers import cudnn_rnn from tensorflow.contrib.eager.python import tfe layers = tf.keras.layers class RNN(tf.keras.Model): """A static RNN. Similar to tf.compat.v1.nn.static_rnn, implemented as a class. """ def __init__(self, hidden_dim, num_layers, keep_ratio): super(RNN, self).__init__() self.keep_ratio = keep_ratio self.cells = tf.contrib.checkpoint.List([ tf.nn.rnn_cell.BasicLSTMCell(num_units=hidden_dim) for _ in range(num_layers) ]) def call(self, input_seq, training): batch_size = int(input_seq.shape[1]) for c in self.cells: state = c.zero_state(batch_size, tf.float32) outputs = [] input_seq = tf.unstack(input_seq, num=int(input_seq.shape[0]), axis=0) for inp in input_seq: output, state = c(inp, state) outputs.append(output) input_seq = tf.stack(outputs, axis=0) if training: input_seq = tf.nn.dropout(input_seq, self.keep_ratio) # Returning a list instead of a single tensor so that the line: # y = self.rnn(y, ...)[0] # in PTBModel.call works for both this RNN and CudnnLSTM (which returns a # tuple (output, output_states). return [input_seq] class Embedding(layers.Layer): """An Embedding layer.""" def __init__(self, vocab_size, embedding_dim, **kwargs): super(Embedding, self).__init__(**kwargs) self.vocab_size = vocab_size self.embedding_dim = embedding_dim def build(self, _): self.embedding = self.add_variable( "embedding_kernel", shape=[self.vocab_size, self.embedding_dim], dtype=tf.float32, initializer=tf.random_uniform_initializer(-0.1, 0.1), trainable=True) def call(self, x): return tf.nn.embedding_lookup(self.embedding, x) # pylint: disable=not-callable class PTBModel(tf.keras.Model): """LSTM for word language modeling. Model described in: (Zaremba, et. al.) Recurrent Neural Network Regularization http://arxiv.org/abs/1409.2329 See also: https://github.com/tensorflow/models/tree/master/tutorials/rnn/ptb """ def __init__(self, vocab_size, embedding_dim, hidden_dim, num_layers, dropout_ratio, use_cudnn_rnn=True): super(PTBModel, self).__init__() self.keep_ratio = 1 - dropout_ratio self.use_cudnn_rnn = use_cudnn_rnn self.embedding = Embedding(vocab_size, embedding_dim) if self.use_cudnn_rnn: self.rnn = cudnn_rnn.CudnnLSTM( num_layers, hidden_dim, dropout=dropout_ratio) else: self.rnn = RNN(hidden_dim, num_layers, self.keep_ratio) self.linear = layers.Dense( vocab_size, kernel_initializer=tf.random_uniform_initializer(-0.1, 0.1)) self._output_shape = [-1, hidden_dim] def call(self, input_seq, training): """Run the forward pass of PTBModel. Args: input_seq: [length, batch] shape int64 tensor. training: Is this a training call. Returns: outputs tensors of inference. """ y = self.embedding(input_seq) if training: y = tf.nn.dropout(y, self.keep_ratio) y = self.rnn(y, training=training)[0] return self.linear(tf.reshape(y, self._output_shape)) def clip_gradients(grads_and_vars, clip_ratio): gradients, variables = zip(*grads_and_vars) clipped, _ = tf.clip_by_global_norm(gradients, clip_ratio) return zip(clipped, variables) def loss_fn(model, inputs, targets, training): labels = tf.reshape(targets, [-1]) outputs = model(inputs, training=training) return tf.reduce_mean( tf.nn.sparse_softmax_cross_entropy_with_logits( labels=labels, logits=outputs)) def _divide_into_batches(data, batch_size): """Convert a sequence to a batch of sequences.""" nbatch = data.shape[0] // batch_size data = data[:nbatch * batch_size] data = data.reshape(batch_size, -1).transpose() return data def _get_batch(data, i, seq_len): slen = min(seq_len, data.shape[0] - 1 - i) inputs = data[i:i + slen, :] target = data[i + 1:i + 1 + slen, :] return tf.constant(inputs), tf.constant(target) def evaluate(model, data): """evaluate an epoch.""" total_loss = 0.0 total_batches = 0 start = time.time() for _, i in enumerate(range(0, data.shape[0] - 1, FLAGS.seq_len)): inp, target = _get_batch(data, i, FLAGS.seq_len) loss = loss_fn(model, inp, target, training=False) total_loss += loss.numpy() total_batches += 1 time_in_ms = (time.time() - start) * 1000 sys.stderr.write("eval loss %.2f (eval took %d ms)\n" % (total_loss / total_batches, time_in_ms)) return total_loss def train(model, optimizer, train_data, sequence_length, clip_ratio): """training an epoch.""" def model_loss(inputs, targets): return loss_fn(model, inputs, targets, training=True) grads = tfe.implicit_gradients(model_loss) total_time = 0 for batch, i in enumerate(range(0, train_data.shape[0] - 1, sequence_length)): train_seq, train_target = _get_batch(train_data, i, sequence_length) start = time.time() optimizer.apply_gradients( clip_gradients(grads(train_seq, train_target), clip_ratio)) total_time += (time.time() - start) if batch % 10 == 0: time_in_ms = (total_time * 1000) / (batch + 1) sys.stderr.write("batch %d: training loss %.2f, avg step time %d ms\n" % (batch, model_loss(train_seq, train_target).numpy(), time_in_ms)) class Datasets(object): """Processed form of the Penn Treebank dataset.""" def __init__(self, path): """Load the Penn Treebank dataset. Args: path: Path to the data/ directory of the dataset from Tomas Mikolov's webpage - http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz """ self.word2idx = {} # string -> integer id self.idx2word = [] # integer id -> word string # Files represented as a list of integer ids (as opposed to list of string # words). self.train = self.tokenize(os.path.join(path, "ptb.train.txt")) self.valid = self.tokenize(os.path.join(path, "ptb.valid.txt")) def vocab_size(self): return len(self.idx2word) def add(self, word): if word not in self.word2idx: self.idx2word.append(word) self.word2idx[word] = len(self.idx2word) - 1 def tokenize(self, path): """Read text file in path and return a list of integer token ids.""" tokens = 0 with tf.gfile.Open(path, "r") as f: for line in f: words = line.split() + ["<eos>"] tokens += len(words) for word in words: self.add(word) # Tokenize file content with tf.gfile.Open(path, "r") as f: ids = np.zeros(tokens).astype(np.int64) token = 0 for line in f: words = line.split() + ["<eos>"] for word in words: ids[token] = self.word2idx[word] token += 1 return ids def small_model(use_cudnn_rnn): """Returns a PTBModel with a 'small' configuration.""" return PTBModel( vocab_size=10000, embedding_dim=200, hidden_dim=200, num_layers=2, dropout_ratio=0., use_cudnn_rnn=use_cudnn_rnn) def large_model(use_cudnn_rnn): """Returns a PTBModel with a 'large' configuration.""" return PTBModel( vocab_size=10000, embedding_dim=650, hidden_dim=650, num_layers=2, dropout_ratio=0.5, use_cudnn_rnn=use_cudnn_rnn) def test_model(use_cudnn_rnn): """Returns a tiny PTBModel for unit tests.""" return PTBModel( vocab_size=100, embedding_dim=20, hidden_dim=20, num_layers=2, dropout_ratio=0., use_cudnn_rnn=use_cudnn_rnn) def main(_): tf.enable_eager_execution() if not FLAGS.data_path: raise ValueError("Must specify --data-path") corpus = Datasets(FLAGS.data_path) train_data = _divide_into_batches(corpus.train, FLAGS.batch_size) eval_data = _divide_into_batches(corpus.valid, 10) have_gpu = tfe.num_gpus() > 0 use_cudnn_rnn = not FLAGS.no_use_cudnn_rnn and have_gpu with tf.device("/device:GPU:0" if have_gpu else None): # Make learning_rate a Variable so it can be included in the checkpoint # and we can resume training with the last saved learning_rate. learning_rate = tf.Variable(20.0, name="learning_rate") model = PTBModel(corpus.vocab_size(), FLAGS.embedding_dim, FLAGS.hidden_dim, FLAGS.num_layers, FLAGS.dropout, use_cudnn_rnn) optimizer = tf.train.GradientDescentOptimizer(learning_rate) checkpoint = tf.train.Checkpoint( learning_rate=learning_rate, model=model, # GradientDescentOptimizer has no state to checkpoint, but noting it # here lets us swap in an optimizer that does. optimizer=optimizer) # Restore existing variables now (learning_rate), and restore new variables # on creation if a checkpoint exists. checkpoint.restore(tf.train.latest_checkpoint(FLAGS.logdir)) sys.stderr.write("learning_rate=%f\n" % learning_rate.numpy()) best_loss = None for _ in range(FLAGS.epoch): train(model, optimizer, train_data, FLAGS.seq_len, FLAGS.clip) eval_loss = evaluate(model, eval_data) if not best_loss or eval_loss < best_loss: if FLAGS.logdir: checkpoint.save(os.path.join(FLAGS.logdir, "ckpt")) best_loss = eval_loss else: learning_rate.assign(learning_rate / 4.0) sys.stderr.write("eval_loss did not reduce in this epoch, " "changing learning rate to %f for the next epoch\n" % learning_rate.numpy()) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--data-path", type=str, default="", help="Data directory of the Penn Treebank dataset from " "http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz") parser.add_argument( "--logdir", type=str, default="", help="Directory for checkpoint.") parser.add_argument("--epoch", type=int, default=20, help="Number of epochs.") parser.add_argument("--batch-size", type=int, default=20, help="Batch size.") parser.add_argument( "--seq-len", type=int, default=35, help="Sequence length.") parser.add_argument( "--embedding-dim", type=int, default=200, help="Embedding dimension.") parser.add_argument( "--hidden-dim", type=int, default=200, help="Hidden layer dimension.") parser.add_argument( "--num-layers", type=int, default=2, help="Number of RNN layers.") parser.add_argument( "--dropout", type=float, default=0.2, help="Drop out ratio.") parser.add_argument( "--clip", type=float, default=0.25, help="Gradient clipping ratio.") parser.add_argument( "--no-use-cudnn-rnn", action="store_true", default=False, help="Disable the fast CuDNN RNN (when no gpu)") FLAGS, unparsed = parser.parse_known_args() tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
tensorflow-master
tensorflow/contrib/eager/python/examples/rnn_ptb/rnn_ptb.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for PTBModel used for graph construction.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import gc import time import numpy as np import tensorflow as tf from tensorflow.contrib.eager.python.examples.rnn_ptb import rnn_ptb class PTBTest(tf.test.TestCase): def testTrain(self): batch_size = 20 sequence_length = 35 with tf.Graph().as_default(), tf.device(tf.test.gpu_device_name()): inputs_ph = tf.placeholder(tf.int64, [sequence_length, batch_size], "inputs") labels_ph = tf.placeholder(tf.int64, [sequence_length, batch_size], "labels") inputs = np.ones(inputs_ph.shape.as_list(), dtype=np.int64) labels = np.ones(labels_ph.shape.as_list(), dtype=np.int64) model = rnn_ptb.test_model(tf.test.is_gpu_available()) optimizer = tf.train.GradientDescentOptimizer(learning_rate=1.0) loss = rnn_ptb.loss_fn(model, inputs_ph, labels_ph, training=True) grads = rnn_ptb.clip_gradients(optimizer.compute_gradients(loss), 0.25) train_op = optimizer.apply_gradients(grads) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) sess.run(train_op, feed_dict={inputs_ph: inputs, labels_ph: labels}) sess.run( [train_op, loss], feed_dict={ inputs_ph: inputs, labels_ph: labels }) class PTBBenchmark(tf.test.Benchmark): BATCH_SIZE = 20 SEQ_LEN = 35 def _report(self, label, start, num_iters, device, batch_size): wall_time = (time.time() - start) / num_iters dev = "cpu" if "cpu" in device.lower() else "gpu" name = "%s_%s_batch_%d" % (label, dev, batch_size) examples_per_sec = batch_size / wall_time self.report_benchmark( iters=num_iters, wall_time=wall_time, name=name, extras={ "examples_per_sec": examples_per_sec }) def _benchmark_apply(self, label, model): num_iters = 100 num_warmup = 10 dataset = tf.data.Dataset.from_tensors( tf.ones( [PTBBenchmark.SEQ_LEN, PTBBenchmark.BATCH_SIZE], dtype=tf.int64)).repeat(num_iters + num_warmup) inputs = tf.compat.v1.data.make_one_shot_iterator(dataset).get_next() with tf.device(tf.test.gpu_device_name()): outputs = model(inputs, training=True) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for _ in range(num_warmup): sess.run(outputs) gc.collect() start = time.time() for _ in range(num_iters): sess.run(outputs) self._report(label, start, num_iters, tf.test.gpu_device_name(), PTBBenchmark.BATCH_SIZE) def benchmark_apply_small(self): self._benchmark_apply("graph_apply_small", rnn_ptb.small_model(False)) def benchmark_apply_large(self): self._benchmark_apply("graph_apply_large", rnn_ptb.large_model(False)) def benchmark_cudnn_apply_small(self): if not tf.test.is_gpu_available(): return self._benchmark_apply("graph_cudnn_apply_small", rnn_ptb.small_model(True)) def benchmark_cudnn_apply_large(self): if not tf.test.is_gpu_available(): return self._benchmark_apply("graph_cudnn_apply_large", rnn_ptb.large_model(True)) def _benchmark_train(self, label, model): num_iters = 100 num_warmup = 10 dataset = tf.data.Dataset.from_tensors( tf.ones( [PTBBenchmark.SEQ_LEN, PTBBenchmark.BATCH_SIZE], dtype=tf.int64)).repeat(num_iters + num_warmup) # inputs and labels have the same shape dataset = tf.data.Dataset.zip((dataset, dataset)) (inputs, labels) = tf.compat.v1.data.make_one_shot_iterator( dataset).get_next() with tf.device(tf.test.gpu_device_name()): optimizer = tf.train.GradientDescentOptimizer(learning_rate=1.0) loss = rnn_ptb.loss_fn(model, inputs, labels, training=True) grads = rnn_ptb.clip_gradients(optimizer.compute_gradients(loss), 0.25) train_op = optimizer.apply_gradients(grads) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for _ in range(num_warmup): sess.run(train_op) gc.collect() start = time.time() for _ in range(num_iters): sess.run(train_op) self._report(label, start, num_iters, tf.test.gpu_device_name(), PTBBenchmark.BATCH_SIZE) def benchmark_train_small(self): self._benchmark_train("graph_train_small", rnn_ptb.small_model(False)) def benchmark_train_large(self): self._benchmark_train("graph_train_large", rnn_ptb.large_model(False)) def benchmark_cudnn_train_small(self): if not tf.test.is_gpu_available(): return self._benchmark_train("graph_cudnn_train_small", rnn_ptb.small_model(True)) def benchmark_cudnn_train_large(self): if not tf.test.is_gpu_available(): return self._benchmark_train("graph_cudnn_train_large", rnn_ptb.large_model(True)) if __name__ == "__main__": tf.test.main()
tensorflow-master
tensorflow/contrib/eager/python/examples/rnn_ptb/rnn_ptb_graph_test.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= """Tests for contrib.compiler.xla.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import re from absl.testing import parameterized from tensorflow.contrib.compiler import xla from tensorflow.contrib.tpu.python.tpu import tpu_estimator from tensorflow.contrib.training.python.training import hparam from tensorflow.python import summary from tensorflow.python.data.ops import dataset_ops from tensorflow.python.estimator import model_fn as model_fn_lib from tensorflow.python.framework import constant_op from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.platform import test from tensorflow.python.training import training _TRAIN = model_fn_lib.ModeKeys.TRAIN _EVAL = model_fn_lib.ModeKeys.EVAL _EXPECTED_LOSS = 1 _EXPECTED_FEATURE = 2 _EXPECTED_LABEL = 3 def _test_train_model_fn(features, labels, mode, params): """A dummy model_fn for testing purpose.""" del features, labels, params loss = constant_op.constant(_EXPECTED_LOSS) return model_fn_lib.EstimatorSpec( mode=mode, loss=loss, train_op=array_ops.identity(loss)) @xla.estimator_model_fn def decorated_model_fn(features, labels, mode, params): return _test_train_model_fn(features, labels, mode, params) def make_dummy_features_labels(): # XLA CPU/GPU backend doesn't support guaranteed constant, thus use dataset # container to work around. features_dataset = dataset_ops.Dataset.from_tensors( constant_op.constant(_EXPECTED_FEATURE)).repeat(10) features_op = features_dataset.make_one_shot_iterator().get_next() labels_dataset = dataset_ops.Dataset.from_tensors( constant_op.constant(_EXPECTED_LABEL)).repeat(10) labels_op = labels_dataset.make_one_shot_iterator().get_next() return features_op, labels_op class XlaDecoratorTest(test.TestCase, parameterized.TestCase): @parameterized.named_parameters( ('test_use_as_decorator', decorated_model_fn, None), ('test_use_as_function', xla.estimator_model_fn(_test_train_model_fn), None), ('test_use_tpu_false_hparams', decorated_model_fn, hparam.HParams(use_tpu=False)), ('test_use_tpu_false_dict_params', decorated_model_fn, { 'use_tpu': False }), ) def test_compile(self, model_fn, params): """Calls model_fn and verifies it is compiled.""" with test.mock.patch.object(xla, 'compile') as mock_xla_compile: loss = constant_op.constant(_EXPECTED_LOSS) mock_xla_compile.return_value = [loss] features, labels = make_dummy_features_labels() estimator_spec = model_fn( features=features, labels=labels, mode=_TRAIN, params=params or {}) self.assertEqual(mock_xla_compile.call_count, 1) self.assertEqual(estimator_spec.mode, _TRAIN) with self.test_session() as sess: self.assertEqual(sess.run(estimator_spec.loss), sess.run(loss)) self.assertEqual(sess.run(estimator_spec.train_op), sess.run(loss)) @parameterized.named_parameters( ('test_use_tpu_true_hparams', decorated_model_fn, hparam.HParams(use_tpu=True)), ('test_use_tpu_true_dict_params', decorated_model_fn, { 'use_tpu': True }), ) def test_not_compile(self, model_fn, params): """Calls model_fn and verifies it is NOT compiled.""" with test.mock.patch.object(xla, 'compile') as mock_xla_compile: loss = constant_op.constant(_EXPECTED_LOSS) mock_xla_compile.return_value = [loss] features, labels = make_dummy_features_labels() estimator_spec = model_fn( features=features, labels=labels, mode=_TRAIN, params=params or {}) mock_xla_compile.assert_not_called() self.assertEqual(estimator_spec.mode, _TRAIN) with self.test_session() as sess: self.assertEqual(sess.run(estimator_spec.loss), sess.run(loss)) self.assertEqual(sess.run(estimator_spec.train_op), sess.run(loss)) def test_model_with_summary(self): """Tests that summary ops are disabled.""" @xla.estimator_model_fn def model_fn_with_summary(features, labels, mode, params): del features, labels, params loss = constant_op.constant(_EXPECTED_LOSS) summary.scalar('loss_scalar_summary', loss) summary.histogram('loss_histogram_summary', loss) summary.image('loss_image_summary', loss) return model_fn_lib.EstimatorSpec( mode=mode, loss=loss, train_op=array_ops.identity(loss)) features, labels = make_dummy_features_labels() estimator_spec = model_fn_with_summary( features=features, labels=labels, mode=_TRAIN, params={}) with self.test_session() as sess: self.assertEqual(sess.run(estimator_spec.loss), _EXPECTED_LOSS) def _test_eval_metric_fn(eval_tensor_1, eval_tensor_2): return { 'metric_1': (eval_tensor_1, eval_tensor_1), 'metric_2': (eval_tensor_2, eval_tensor_2), } class XlaDecoratorEvaluationTest(test.TestCase): def _verify_evaluation_result(self, eval_model_fn): features, labels = make_dummy_features_labels() estimator_spec = eval_model_fn( features=features, labels=labels, mode=_EVAL, params={}) with self.test_session() as sess: self.assertEqual(sess.run(estimator_spec.loss), _EXPECTED_LOSS) self.assertEqual( sess.run(estimator_spec.eval_metric_ops['metric_1'][0]), _EXPECTED_FEATURE + _EXPECTED_LABEL) self.assertEqual( sess.run(estimator_spec.eval_metric_ops['metric_1'][1]), _EXPECTED_FEATURE + _EXPECTED_LABEL) self.assertEqual( sess.run(estimator_spec.eval_metric_ops['metric_2'][0]), _EXPECTED_FEATURE - _EXPECTED_LABEL) self.assertEqual( sess.run(estimator_spec.eval_metric_ops['metric_2'][1]), _EXPECTED_FEATURE - _EXPECTED_LABEL) def test_eval_base_estimator_spec_eval_metric_ops_disallowed(self): @xla.estimator_model_fn def eval_model_fn_return_estimator_spec(features, labels, mode, params): del features, labels, params loss = constant_op.constant(_EXPECTED_LOSS) return model_fn_lib.EstimatorSpec( mode=mode, loss=loss, eval_metric_ops={ 'metric': (array_ops.identity(loss), control_flow_ops.no_op()) }) with self.assertRaisesRegexp( ValueError, 'EstimatorSpec.eval_metric_ops is not supported with XLA ' 'compilation. Please use TPUEstimatorSpec.eval_metrics instead.'): self._verify_evaluation_result(eval_model_fn_return_estimator_spec) def test_eval_base_estimator_spec_no_eval_metric_ops(self): @xla.estimator_model_fn def eval_model_fn_no_eval_metric_ops(features, labels, mode, params): del features, labels, params return model_fn_lib.EstimatorSpec( mode=mode, loss=constant_op.constant(_EXPECTED_LOSS)) features, labels = make_dummy_features_labels() estimator_spec = eval_model_fn_no_eval_metric_ops( features=features, labels=labels, mode=_EVAL, params={}) with self.test_session() as sess: self.assertEqual(sess.run(estimator_spec.loss), _EXPECTED_LOSS) def test_eval_no_eval_metrics(self): @xla.estimator_model_fn def eval_model_fn_no_eval_metrics(features, labels, mode, params): del features, labels, params return tpu_estimator.TPUEstimatorSpec( mode=mode, loss=constant_op.constant(_EXPECTED_LOSS)) features, labels = make_dummy_features_labels() estimator_spec = eval_model_fn_no_eval_metrics( features=features, labels=labels, mode=_EVAL, params={}) self.assertEqual(estimator_spec.eval_metric_ops, {}) with self.test_session() as sess: self.assertEqual(sess.run(estimator_spec.loss), _EXPECTED_LOSS) def test_eval_fn_missing_input_tensor(self): @xla.estimator_model_fn def eval_model_fn(features, labels, mode, params): del params dummy_eval_metric_fn_tensors_dict = { 'eval_tensor_1': features + labels, } return tpu_estimator.TPUEstimatorSpec( mode=mode, loss=constant_op.constant(_EXPECTED_LOSS), eval_metrics=(_test_eval_metric_fn, dummy_eval_metric_fn_tensors_dict)) with self.assertRaisesRegexp( ValueError, re.escape("Arguments ['eval_tensor_2'] are needed by metric_fn (first " 'element of TPUEstimatorSpec.eval_metrics) but they are not ' 'provided by evaluation tensors (second element of ' 'TPUEstimatorSpec.eval_metrics).')): self._verify_evaluation_result(eval_model_fn) def test_eval_fn_extraneous_input_tensor(self): @xla.estimator_model_fn def eval_model_fn(features, labels, mode, params): del params dummy_eval_metric_fn_tensors_dict = { 'eval_tensor_1': features + labels, 'eval_tensor_2': features - labels, 'extra_tensor': features * 2 - labels, } return tpu_estimator.TPUEstimatorSpec( mode=mode, loss=constant_op.constant(_EXPECTED_LOSS), eval_metrics=(_test_eval_metric_fn, dummy_eval_metric_fn_tensors_dict)) with self.assertRaisesRegexp( ValueError, re.escape("Arguments ['extra_tensor'] are provided by evaluation " 'tensors (second element of TPUEstimatorSpec.eval_metrics) ' 'but they are not needed by metric_fn (first element of ' 'TPUEstimatorSpec.eval_metrics).')): self._verify_evaluation_result(eval_model_fn) def test_eval_tensors_as_list(self): @xla.estimator_model_fn def eval_model_fn(features, labels, mode, params): del params dummy_eval_metric_fn_tensors = [features + labels, features - labels] return tpu_estimator.TPUEstimatorSpec( mode=mode, loss=constant_op.constant(_EXPECTED_LOSS), eval_metrics=(_test_eval_metric_fn, dummy_eval_metric_fn_tensors)) self._verify_evaluation_result(eval_model_fn) def test_eval_tensors_as_dict(self): @xla.estimator_model_fn def eval_model_fn(features, labels, mode, params): del params dummy_eval_metric_fn_tensors_dict = { 'eval_tensor_1': features + labels, 'eval_tensor_2': features - labels, } return tpu_estimator.TPUEstimatorSpec( mode=mode, loss=constant_op.constant(_EXPECTED_LOSS), eval_metrics=(_test_eval_metric_fn, dummy_eval_metric_fn_tensors_dict)) self._verify_evaluation_result(eval_model_fn) def test_model_with_summary(self): """Tests that summary ops are disabled.""" @xla.estimator_model_fn def model_fn_with_summary(features, labels, mode, params): del features, labels, params loss = constant_op.constant(_EXPECTED_LOSS) summary.scalar('loss_scalar_summary', loss) summary.histogram('loss_histogram_summary', loss) summary.image('loss_image_summary', loss) return tpu_estimator.TPUEstimatorSpec(mode=mode, loss=loss) features, labels = make_dummy_features_labels() estimator_spec = model_fn_with_summary( features=features, labels=labels, mode=_EVAL, params={}) with self.test_session() as sess: self.assertEqual(sess.run(estimator_spec.loss), _EXPECTED_LOSS) class XlaDecoratorScaffoldTest(test.TestCase, parameterized.TestCase): def _make_scaffold_fn(self, mode): def _scaffold_fn_on_cpu(): scaffold = training.Scaffold() self.assertNotIn(mode, self.is_scaffold_fn_called) self.is_scaffold_fn_called[mode] = True return scaffold return _scaffold_fn_on_cpu def test_scaffold_fn_return_none(self): @xla.estimator_model_fn def model_fn(features, labels, mode, params): del features, labels, params return tpu_estimator.TPUEstimatorSpec( mode=mode, loss=constant_op.constant(_EXPECTED_LOSS), train_op=control_flow_ops.no_op(), scaffold_fn=lambda: None) features, labels = make_dummy_features_labels() with self.assertRaisesRegexp( ValueError, 'TPUEstimatorSpec.scaffold_fn returns None, which is not allowed'): model_fn(features=features, labels=labels, mode=_TRAIN, params={}) @parameterized.named_parameters( ('train_mode', _TRAIN), ('eval_mode', _EVAL), # TODO(ycao): Add predict_mode test after PREDICT mode is implemented. ) def test_scaffold_fn_in_mode(self, mode): @xla.estimator_model_fn def model_fn(features, labels, mode, params): del features, labels, params return tpu_estimator.TPUEstimatorSpec( mode=mode, loss=constant_op.constant(_EXPECTED_LOSS), train_op=control_flow_ops.no_op(), scaffold_fn=self._make_scaffold_fn(mode)) features, labels = make_dummy_features_labels() self.is_scaffold_fn_called = {} model_fn(features=features, labels=labels, mode=mode, params={}) self.assertTrue(self.is_scaffold_fn_called[mode]) if __name__ == '__main__': test.main()
tensorflow-master
tensorflow/contrib/compiler/xla_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Library for controlling the Tensorflow/XLA JIT compiler.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.compiler.xla import jit experimental_jit_scope = jit.experimental_jit_scope
tensorflow-master
tensorflow/contrib/compiler/jit.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A module for controlling the Tensorflow/XLA JIT compiler.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.compiler import jit from tensorflow.contrib.compiler import xla
tensorflow-master
tensorflow/contrib/compiler/__init__.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= """xla is an experimental library that provides XLA support APIs.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.compiler.xla import xla from tensorflow.python.estimator import model_fn as model_fn_lib from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.platform import tf_logging as logging from tensorflow.python.util import function_utils from tensorflow.python.util import tf_decorator compile = xla.compile # pylint: disable=redefined-builtin check_function_argument_count = xla.check_function_argument_count class _CapturedObject(object): """A placeholder to capture an object.""" def __init__(self): self._object = None def capture(self, o): if self._object: raise RuntimeError( 'InternalError: _CapturedObject can capture only once. Please file ' 'bug.') self._object = o def get(self): return self._object def _get_scaffold(captured_scaffold_fn): """Retrieves the Scaffold from `captured_scaffold_fn`.""" scaffold_fn = captured_scaffold_fn.get() if not scaffold_fn: return None scaffold = scaffold_fn() if scaffold is None: raise ValueError( 'TPUEstimatorSpec.scaffold_fn returns None, which is not allowed') return scaffold class _ModelFnWrapper(object): """_ModelFnWrapper supports executing model_fn with XLA.""" def __init__(self, function): self._model_fn = function def __call__(self, features, labels, mode, params): # TPUEstimator compiles model_fn when use_tpu=True. To avoid double # compilation, we use this params['use_tpu'] as a hint. When it is set to # True, model_fn is called without compilation. # Note that this condition isn't accurate for the case of exporting a model. # In that case we should ideally not compile so that user can see detailed # graph. However, we don't have enough information to tell whether model_fn # is being called for export mode or not. # TODO(ycao): Make this condition more accurate when implementing PREDICT # mode. if params.get('use_tpu'): return self._call_model_fn(features, labels, mode, params) if mode == model_fn_lib.ModeKeys.TRAIN: train_step, captured_scaffold_fn = self._make_train_step( features, labels, params) (loss,) = compile(train_step) return model_fn_lib.EstimatorSpec( mode=mode, loss=loss, train_op=array_ops.identity(loss), scaffold=_get_scaffold(captured_scaffold_fn)) elif mode == model_fn_lib.ModeKeys.EVAL: eval_step, captured_eval_metric_fn, captured_scaffold_fn = ( self._make_eval_step(features, labels, params)) outputs = compile(eval_step) loss = outputs[0] # Calculate eval_metric_ops if eval_metric_fn is set and captured. eval_metric_fn = captured_eval_metric_fn.get() if eval_metric_fn: eval_metric_fn_tensors = outputs[1:] eval_metric_ops = eval_metric_fn(*eval_metric_fn_tensors) else: eval_metric_ops = None return model_fn_lib.EstimatorSpec( mode=mode, loss=loss, eval_metric_ops=eval_metric_ops, scaffold=_get_scaffold(captured_scaffold_fn)) else: raise NotImplementedError('%s is not implemented, only TRAIN and EVAL are' ' supported' % mode) def _make_train_step(self, features, labels, params): """Creates a single step of training for xla.compile().""" captured_scaffold_fn = _CapturedObject() def train_step(): """A single step of training.""" estimator_spec = self._call_model_fn(features, labels, model_fn_lib.ModeKeys.TRAIN, params) try: captured_scaffold_fn.capture(estimator_spec.scaffold_fn) except AttributeError: captured_scaffold_fn.capture(None) # train_step will be run by xla.compile(). xla.compile() only supports # tensor output while train_op can be either an operation or a tensor. # Even though xla.compile() automatically adds operation-typed train_op as # control dependency of other tensor outputs, it doesn't do so for # tensor-typed train_op. Thus, we need to set it explicitly here. with ops.control_dependencies([estimator_spec.train_op]): return array_ops.identity(estimator_spec.loss) return train_step, captured_scaffold_fn def _make_eval_step(self, features, labels, params): """Creates a single step of evaluation for xla.compile().""" captured_eval_metric_fn = _CapturedObject() captured_scaffold_fn = _CapturedObject() def eval_step(): """A single step of evaluation.""" estimator_spec = self._call_model_fn(features, labels, model_fn_lib.ModeKeys.EVAL, params) try: captured_scaffold_fn.capture(estimator_spec.scaffold_fn) except AttributeError: captured_scaffold_fn.capture(None) eval_metric_fn = None eval_metric_fn_tensors = [] try: if estimator_spec.eval_metrics: (eval_metric_fn, eval_metric_fn_tensors) = estimator_spec.eval_metrics except AttributeError: pass # If a dictionary is provided, we need to convert it into a list sorted # according to order of eval_metric_fn positional arguments. if isinstance(eval_metric_fn_tensors, dict): eval_metric_fn_args = function_utils.fn_args(eval_metric_fn) eval_metric_fn_tensors = [ eval_metric_fn_tensors[i] for i in eval_metric_fn_args ] captured_eval_metric_fn.capture(eval_metric_fn) return tuple([estimator_spec.loss] + eval_metric_fn_tensors) return eval_step, captured_eval_metric_fn, captured_scaffold_fn def _call_model_fn(self, features, labels, mode, params): """Calls the model_fn with required parameters.""" model_fn_args = function_utils.fn_args(self._model_fn) kwargs = {} if 'labels' in model_fn_args: kwargs['labels'] = labels elif labels is not None: raise ValueError( 'model_fn does not take labels, but input_fn returns labels.') if 'mode' in model_fn_args: kwargs['mode'] = mode if 'params' in model_fn_args: kwargs['params'] = params return self._verify_estimator_spec( self._model_fn(features=features, **kwargs)) def _verify_estimator_spec(self, estimator_spec): """Verifies estimator spec contains correct data.""" # TODO(ycao): Implement estimator spec verification for other modes. try: if estimator_spec.scaffold: logging.warning('EstimatorSpec.scaffold is ignored with XLA compilation' '. Please use TPUEstimatorSpec.scaffold_fn instead.') except AttributeError: pass try: if estimator_spec.eval_metric_ops: raise ValueError('EstimatorSpec.eval_metric_ops is not supported with ' 'XLA compilation. Please use ' 'TPUEstimatorSpec.eval_metrics instead.') except AttributeError: pass if estimator_spec.mode == model_fn_lib.ModeKeys.EVAL: # If estimator_spec is of type TPUEstimatorSpec and contains eval_metrics, # check that eval_metrics contains eval_metric_fn and # eval_metric_fn_tensors with matching arguments. try: eval_metrics = estimator_spec.eval_metrics except AttributeError: eval_metrics = None if eval_metrics: (eval_metric_fn, eval_metric_fn_tensors) = eval_metrics eval_metric_fn_args = function_utils.fn_args(eval_metric_fn) if isinstance(eval_metric_fn_tensors, dict): missing_tensors = [ i for i in eval_metric_fn_args if i not in eval_metric_fn_tensors ] additional_tensors = [ i for i in eval_metric_fn_tensors if i not in eval_metric_fn_args ] if missing_tensors: raise ValueError('Arguments %s are needed by metric_fn (first ' 'element of TPUEstimatorSpec.eval_metrics) but ' 'they are not provided by evaluation tensors ' '(second element of TPUEstimatorSpec.eval_metrics)' '.' % missing_tensors) if additional_tensors: raise ValueError('Arguments %s are provided by evaluation tensors ' '(second element of TPUEstimatorSpec.eval_metrics)' ' but they are not needed by metric_fn (first ' 'element of TPUEstimatorSpec.eval_metrics).' % additional_tensors) return estimator_spec def estimator_model_fn(target_model_fn=None): """estimator_model_fn decorates a model_fn to be compiled for execution. Currently it only works with `TPUEstimator`. If you need to use it with base `Estimator`, please add `tf.compat.v1.enable_resource_variables()` at the beginning of your program. Example 1, decorating model_fn: ``` @xla.estimator_model_fn() def model_fn(features, labels, mode, params): ... return EstimatorSpec(...) est = Estimator(model_fn=model_fn, ...) est.train(...) ``` Example 2, decorator as function: ``` def model_fn(features, labels, mode, params): ... return EstimatorSpec(...) est = Estimator(model_fn=xla.estimator_model_fn(model_fn), ...) est.train(...) ``` Args: target_model_fn: model_fn to be decorated. This is only needed when decorator is used in function call form (example 2). Returns: Decorated target_model_fn. """ def decorated(function): return tf_decorator.make_decorator(function, _ModelFnWrapper(function)) return decorated(target_model_fn) if target_model_fn else decorated
tensorflow-master
tensorflow/contrib/compiler/xla.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Signal processing operations. `tf.contrib.signal` has been renamed to `tf.signal`. `tf.contrib.signal` will be removed in TensorFlow 2.0. See the [Contrib Signal](https://tensorflow.org/api_guides/python/contrib.signal) guide. @@frame @@hamming_window @@hann_window @@inverse_stft @@inverse_stft_window_fn @@mfccs_from_log_mel_spectrograms @@linear_to_mel_weight_matrix @@overlap_and_add @@stft [hamming]: https://en.wikipedia.org/wiki/Window_function#Hamming_window [hann]: https://en.wikipedia.org/wiki/Window_function#Hann_window [mel]: https://en.wikipedia.org/wiki/Mel_scale [mfcc]: https://en.wikipedia.org/wiki/Mel-frequency_cepstrum [stft]: https://en.wikipedia.org/wiki/Short-time_Fourier_transform """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.ops.signal.mel_ops import linear_to_mel_weight_matrix from tensorflow.python.ops.signal.mfcc_ops import mfccs_from_log_mel_spectrograms from tensorflow.python.ops.signal.reconstruction_ops import overlap_and_add from tensorflow.python.ops.signal.shape_ops import frame from tensorflow.python.ops.signal.spectral_ops import inverse_stft from tensorflow.python.ops.signal.spectral_ops import inverse_stft_window_fn from tensorflow.python.ops.signal.spectral_ops import stft from tensorflow.python.ops.signal.window_ops import hamming_window from tensorflow.python.ops.signal.window_ops import hann_window from tensorflow.python.util.all_util import remove_undocumented # `frame` used to be named `frames`, which is a noun and not a verb. # Keep an alias to `frames` for backwards compatibility. frames = frame remove_undocumented(__name__)
tensorflow-master
tensorflow/contrib/signal/__init__.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Signal ops.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function
tensorflow-master
tensorflow/contrib/signal/python/ops/__init__.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Classes representing statistical distributions and ops for working with them. Use [tfp.distributions](/probability/api_docs/python/tfp/distributions) instead. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.util import deprecation # pylint: disable=unused-import,wildcard-import,line-too-long,g-importing-member,g-import-not-at-top with deprecation.silence(): from tensorflow.contrib.distributions.python.ops import bijectors from tensorflow.contrib.distributions.python.ops.autoregressive import * from tensorflow.contrib.distributions.python.ops.batch_reshape import * from tensorflow.contrib.distributions.python.ops.binomial import * from tensorflow.contrib.distributions.python.ops.cauchy import * from tensorflow.contrib.distributions.python.ops.chi2 import * from tensorflow.contrib.distributions.python.ops.conditional_distribution import * from tensorflow.contrib.distributions.python.ops.conditional_transformed_distribution import * from tensorflow.contrib.distributions.python.ops.deterministic import * from tensorflow.contrib.distributions.python.ops.distribution_util import fill_triangular from tensorflow.contrib.distributions.python.ops.distribution_util import fill_triangular_inverse from tensorflow.contrib.distributions.python.ops.distribution_util import matrix_diag_transform from tensorflow.contrib.distributions.python.ops.distribution_util import reduce_weighted_logsumexp from tensorflow.contrib.distributions.python.ops.distribution_util import softplus_inverse from tensorflow.contrib.distributions.python.ops.distribution_util import tridiag from tensorflow.contrib.distributions.python.ops.estimator import * from tensorflow.contrib.distributions.python.ops.geometric import * from tensorflow.contrib.distributions.python.ops.half_normal import * from tensorflow.contrib.distributions.python.ops.independent import * from tensorflow.contrib.distributions.python.ops.inverse_gamma import * from tensorflow.contrib.distributions.python.ops.kumaraswamy import * from tensorflow.contrib.distributions.python.ops.logistic import * from tensorflow.contrib.distributions.python.ops.mixture import * from tensorflow.contrib.distributions.python.ops.mixture_same_family import * from tensorflow.contrib.distributions.python.ops.moving_stats import * from tensorflow.contrib.distributions.python.ops.mvn_diag import * from tensorflow.contrib.distributions.python.ops.mvn_diag_plus_low_rank import * from tensorflow.contrib.distributions.python.ops.mvn_full_covariance import * from tensorflow.contrib.distributions.python.ops.mvn_tril import * from tensorflow.contrib.distributions.python.ops.negative_binomial import * from tensorflow.contrib.distributions.python.ops.normal_conjugate_posteriors import * from tensorflow.contrib.distributions.python.ops.onehot_categorical import * from tensorflow.contrib.distributions.python.ops.poisson import * from tensorflow.contrib.distributions.python.ops.poisson_lognormal import * from tensorflow.contrib.distributions.python.ops.quantized_distribution import * from tensorflow.contrib.distributions.python.ops.relaxed_bernoulli import * from tensorflow.contrib.distributions.python.ops.relaxed_onehot_categorical import * from tensorflow.contrib.distributions.python.ops.sample_stats import * from tensorflow.contrib.distributions.python.ops.seed_stream import * from tensorflow.contrib.distributions.python.ops.sinh_arcsinh import * from tensorflow.contrib.distributions.python.ops.test_util import * from tensorflow.contrib.distributions.python.ops.vector_diffeomixture import * from tensorflow.contrib.distributions.python.ops.vector_exponential_diag import * from tensorflow.contrib.distributions.python.ops.vector_laplace_diag import * from tensorflow.contrib.distributions.python.ops.vector_sinh_arcsinh_diag import * from tensorflow.contrib.distributions.python.ops.wishart import * from tensorflow.python.ops.distributions.bernoulli import * from tensorflow.python.ops.distributions.beta import * from tensorflow.python.ops.distributions.categorical import * from tensorflow.python.ops.distributions.dirichlet import * from tensorflow.python.ops.distributions.dirichlet_multinomial import * from tensorflow.python.ops.distributions.distribution import * from tensorflow.python.ops.distributions.exponential import * from tensorflow.python.ops.distributions.gamma import * from tensorflow.python.ops.distributions.kullback_leibler import * from tensorflow.python.ops.distributions.laplace import * from tensorflow.python.ops.distributions.multinomial import * from tensorflow.python.ops.distributions.normal import * from tensorflow.python.ops.distributions.student_t import * from tensorflow.python.ops.distributions.transformed_distribution import * from tensorflow.python.ops.distributions.uniform import * # pylint: enable=unused-import,wildcard-import,line-too-long,g-importing-member from tensorflow.python.util.all_util import remove_undocumented _allowed_symbols = [ 'auto_correlation', 'bijectors', 'Cauchy', 'ConditionalDistribution', 'ConditionalTransformedDistribution', 'FULLY_REPARAMETERIZED', 'NOT_REPARAMETERIZED', 'ReparameterizationType', 'Distribution', 'Autoregressive', 'BatchReshape', 'Bernoulli', 'Beta', 'Binomial', 'BetaWithSoftplusConcentration', 'Categorical', 'Chi2', 'Chi2WithAbsDf', 'Deterministic', 'VectorDeterministic', 'Exponential', 'ExponentialWithSoftplusRate', 'VectorExponentialDiag', 'Gamma', 'GammaWithSoftplusConcentrationRate', 'Geometric', 'HalfNormal', 'Independent', 'InverseGamma', 'InverseGammaWithSoftplusConcentrationRate', 'Kumaraswamy', 'Laplace', 'LaplaceWithSoftplusScale', 'Logistic', 'NegativeBinomial', 'Normal', 'NormalWithSoftplusScale', 'Poisson', 'PoissonLogNormalQuadratureCompound', 'SeedStream', 'SinhArcsinh', 'StudentT', 'StudentTWithAbsDfSoftplusScale', 'Uniform', 'MultivariateNormalDiag', 'MultivariateNormalFullCovariance', 'MultivariateNormalTriL', 'MultivariateNormalDiagPlusLowRank', 'MultivariateNormalDiagWithSoftplusScale', 'Dirichlet', 'DirichletMultinomial', 'Multinomial', 'VectorDiffeomixture', 'VectorLaplaceDiag', 'VectorSinhArcsinhDiag', 'WishartCholesky', 'WishartFull', 'TransformedDistribution', 'QuantizedDistribution', 'Mixture', 'MixtureSameFamily', 'ExpRelaxedOneHotCategorical', 'OneHotCategorical', 'RelaxedBernoulli', 'RelaxedOneHotCategorical', 'kl_divergence', 'RegisterKL', 'fill_triangular', 'fill_triangular_inverse', 'matrix_diag_transform', 'reduce_weighted_logsumexp', 'softplus_inverse', 'tridiag', 'normal_conjugates_known_scale_posterior', 'normal_conjugates_known_scale_predictive', 'percentile', 'assign_moving_mean_variance', 'assign_log_moving_mean_exp', 'moving_mean_variance', 'estimator_head_distribution_regression', 'quadrature_scheme_softmaxnormal_gauss_hermite', 'quadrature_scheme_softmaxnormal_quantiles', 'quadrature_scheme_lognormal_gauss_hermite', 'quadrature_scheme_lognormal_quantiles', ] remove_undocumented(__name__, _allowed_symbols)
tensorflow-master
tensorflow/contrib/distributions/__init__.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ops module.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function
tensorflow-master
tensorflow/contrib/distributions/python/__init__.py
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Relaxed One-Hot Categorical distribution.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from scipy.special import gamma from tensorflow.contrib.distributions.python.ops import relaxed_onehot_categorical from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.ops import array_ops from tensorflow.python.ops import random_ops from tensorflow.python.platform import test def make_relaxed_categorical(batch_shape, num_classes, dtype=dtypes.float32): logits = random_ops.random_uniform( list(batch_shape) + [num_classes], -10, 10, dtype=dtype) - 50. temperatures = random_ops.random_uniform( list(batch_shape), 0.1, 10, dtype=dtypes.float32) return relaxed_onehot_categorical.RelaxedOneHotCategorical( temperatures, logits, dtype=dtype) class ExpRelaxedOneHotCategoricalTest(test.TestCase): def testP(self): temperature = 1.0 logits = [2.0, 3.0, -4.0] dist = relaxed_onehot_categorical.ExpRelaxedOneHotCategorical(temperature, logits) expected_p = np.exp(logits)/np.sum(np.exp(logits)) with self.cached_session(): self.assertAllClose(expected_p, dist.probs.eval()) self.assertAllEqual([3], dist.probs.get_shape()) def testPdf(self): temperature = .4 logits = [.3, .1, .4] k = len(logits) p = np.exp(logits)/np.sum(np.exp(logits)) dist = relaxed_onehot_categorical.ExpRelaxedOneHotCategorical(temperature, logits) with self.cached_session(): x = dist.sample().eval() # analytical ExpConcrete density presented in Maddison et al. 2016 prod_term = p*np.exp(-temperature * x) expected_pdf = (gamma(k) * np.power(temperature, k-1) * np.prod(prod_term/np.sum(prod_term))) pdf = dist.prob(x).eval() self.assertAllClose(expected_pdf, pdf) class RelaxedOneHotCategoricalTest(test.TestCase): def testLogits(self): temperature = 1.0 logits = [2.0, 3.0, -4.0] dist = relaxed_onehot_categorical.RelaxedOneHotCategorical(temperature, logits) with self.cached_session(): # check p for ExpRelaxed base distribution self.assertAllClose(logits, dist._distribution.logits.eval()) self.assertAllEqual([3], dist._distribution.logits.get_shape()) def testSample(self): temperature = 1.4 with self.cached_session(): # single logit logits = [.3, .1, .4] dist = relaxed_onehot_categorical.RelaxedOneHotCategorical(temperature, logits) self.assertAllEqual([3], dist.sample().eval().shape) self.assertAllEqual([5, 3], dist.sample(5).eval().shape) # multiple distributions logits = [[2.0, 3.0, -4.0], [.3, .1, .4]] dist = relaxed_onehot_categorical.RelaxedOneHotCategorical(temperature, logits) self.assertAllEqual([2, 3], dist.sample().eval().shape) self.assertAllEqual([5, 2, 3], dist.sample(5).eval().shape) # multiple distributions logits = np.random.uniform(size=(4, 1, 3)).astype(np.float32) dist = relaxed_onehot_categorical.RelaxedOneHotCategorical(temperature, logits) self.assertAllEqual([4, 1, 3], dist.sample().eval().shape) self.assertAllEqual([5, 4, 1, 3], dist.sample(5).eval().shape) def testPdf(self): def analytical_pdf(x, temperature, logits): # analytical density of RelaxedOneHotCategorical temperature = np.reshape(temperature, (-1, 1)) if len(x.shape) == 1: x = np.expand_dims(x, 0) k = logits.shape[1] p = np.exp(logits)/np.sum(np.exp(logits), axis=1, keepdims=True) term1 = gamma(k)*np.power(temperature, k-1) term2 = np.sum(p/(np.power(x, temperature)), axis=1, keepdims=True) term3 = np.prod(p/(np.power(x, temperature+1)), axis=1, keepdims=True) expected_pdf = term1*np.power(term2, -k)*term3 return expected_pdf with self.cached_session(): temperature = .4 logits = np.array([[.3, .1, .4]]).astype(np.float32) dist = relaxed_onehot_categorical.RelaxedOneHotCategorical(temperature, logits) x = dist.sample().eval() pdf = dist.prob(x).eval() expected_pdf = analytical_pdf(x, temperature, logits) self.assertAllClose(expected_pdf.flatten(), pdf, rtol=1e-4) # variable batch size logits = np.array([[.3, .1, .4], [.6, -.1, 2.]]).astype(np.float32) temperatures = np.array([0.4, 2.3]).astype(np.float32) dist = relaxed_onehot_categorical.RelaxedOneHotCategorical(temperatures, logits) x = dist.sample().eval() pdf = dist.prob(x).eval() expected_pdf = analytical_pdf(x, temperatures, logits) self.assertAllClose(expected_pdf.flatten(), pdf, rtol=1e-4) def testShapes(self): with self.cached_session(): for batch_shape in ([], [1], [2, 3, 4]): dist = make_relaxed_categorical(batch_shape, 10) self.assertAllEqual(batch_shape, dist.batch_shape.as_list()) self.assertAllEqual(batch_shape, dist.batch_shape_tensor().eval()) self.assertAllEqual([10], dist.event_shape_tensor().eval()) self.assertAllEqual([10], dist.event_shape_tensor().eval()) for batch_shape in ([], [1], [2, 3, 4]): dist = make_relaxed_categorical( batch_shape, constant_op.constant(10, dtype=dtypes.int32)) self.assertAllEqual(len(batch_shape), dist.batch_shape.ndims) self.assertAllEqual(batch_shape, dist.batch_shape_tensor().eval()) self.assertAllEqual([10], dist.event_shape_tensor().eval()) self.assertAllEqual([10], dist.event_shape_tensor().eval()) def testUnknownShape(self): with self.cached_session(): logits_pl = array_ops.placeholder(dtypes.float32) temperature = 1.0 dist = relaxed_onehot_categorical.ExpRelaxedOneHotCategorical(temperature, logits_pl) with self.cached_session(): feed_dict = {logits_pl: [.3, .1, .4]} self.assertAllEqual([3], dist.sample().eval(feed_dict=feed_dict).shape) self.assertAllEqual([5, 3], dist.sample(5).eval(feed_dict=feed_dict).shape) def testDTypes(self): # check that sampling and log_prob work for a range of dtypes with self.cached_session(): for dtype in (dtypes.float16, dtypes.float32, dtypes.float64): logits = random_ops.random_uniform(shape=[3, 3], dtype=dtype) dist = relaxed_onehot_categorical.RelaxedOneHotCategorical( temperature=0.5, logits=logits) dist.log_prob(dist.sample()) if __name__ == "__main__": test.main()
tensorflow-master
tensorflow/contrib/distributions/python/kernel_tests/relaxed_onehot_categorical_test.py
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for initializers.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import math from tensorflow.contrib import distributions as distributions_lib from tensorflow.python.client import session from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.platform import test distributions = distributions_lib class NormalTest(test.TestCase): def testNormalConjugateKnownSigmaPosterior(self): with session.Session(): mu0 = constant_op.constant([3.0]) sigma0 = constant_op.constant([math.sqrt(10.0)]) sigma = constant_op.constant([math.sqrt(2.0)]) x = constant_op.constant([-2.5, 2.5, 4.0, 0.0, -1.0, 2.0]) s = math_ops.reduce_sum(x) n = array_ops.size(x) prior = distributions.Normal(loc=mu0, scale=sigma0) posterior = distributions.normal_conjugates_known_scale_posterior( prior=prior, scale=sigma, s=s, n=n) # Smoke test self.assertTrue(isinstance(posterior, distributions.Normal)) posterior_log_pdf = posterior.log_prob(x).eval() self.assertEqual(posterior_log_pdf.shape, (6,)) def testNormalConjugateKnownSigmaPosteriorND(self): with session.Session(): batch_size = 6 mu0 = constant_op.constant([[3.0, -3.0]] * batch_size) sigma0 = constant_op.constant([[math.sqrt(10.0), math.sqrt(15.0)]] * batch_size) sigma = constant_op.constant([[math.sqrt(2.0)]] * batch_size) x = array_ops.transpose( constant_op.constant( [[-2.5, 2.5, 4.0, 0.0, -1.0, 2.0]], dtype=dtypes.float32)) s = math_ops.reduce_sum(x) n = array_ops.size(x) prior = distributions.Normal(loc=mu0, scale=sigma0) posterior = distributions.normal_conjugates_known_scale_posterior( prior=prior, scale=sigma, s=s, n=n) # Smoke test self.assertTrue(isinstance(posterior, distributions.Normal)) posterior_log_pdf = posterior.log_prob(x).eval() self.assertEqual(posterior_log_pdf.shape, (6, 2)) def testNormalConjugateKnownSigmaNDPosteriorND(self): with session.Session(): batch_size = 6 mu0 = constant_op.constant([[3.0, -3.0]] * batch_size) sigma0 = constant_op.constant([[math.sqrt(10.0), math.sqrt(15.0)]] * batch_size) sigma = constant_op.constant([[math.sqrt(2.0), math.sqrt(4.0)]] * batch_size) x = constant_op.constant( [[-2.5, 2.5, 4.0, 0.0, -1.0, 2.0], [2.5, -2.5, -4.0, 0.0, 1.0, -2.0]], dtype=dtypes.float32) s = math_ops.reduce_sum(x, axis=[1]) x = array_ops.transpose(x) # Reshape to shape (6, 2) n = constant_op.constant([6] * 2) prior = distributions.Normal(loc=mu0, scale=sigma0) posterior = distributions.normal_conjugates_known_scale_posterior( prior=prior, scale=sigma, s=s, n=n) # Smoke test self.assertTrue(isinstance(posterior, distributions.Normal)) # Calculate log_pdf under the 2 models posterior_log_pdf = posterior.log_prob(x) self.assertEqual(posterior_log_pdf.get_shape(), (6, 2)) self.assertEqual(posterior_log_pdf.eval().shape, (6, 2)) def testNormalConjugateKnownSigmaPredictive(self): with session.Session(): batch_size = 6 mu0 = constant_op.constant([3.0] * batch_size) sigma0 = constant_op.constant([math.sqrt(10.0)] * batch_size) sigma = constant_op.constant([math.sqrt(2.0)] * batch_size) x = constant_op.constant([-2.5, 2.5, 4.0, 0.0, -1.0, 2.0]) s = math_ops.reduce_sum(x) n = array_ops.size(x) prior = distributions.Normal(loc=mu0, scale=sigma0) predictive = distributions.normal_conjugates_known_scale_predictive( prior=prior, scale=sigma, s=s, n=n) # Smoke test self.assertTrue(isinstance(predictive, distributions.Normal)) predictive_log_pdf = predictive.log_prob(x).eval() self.assertEqual(predictive_log_pdf.shape, (6,)) if __name__ == "__main__": test.main()
tensorflow-master
tensorflow/contrib/distributions/python/kernel_tests/normal_conjugate_posteriors_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for ShapeUtil.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.distributions.python.ops.shape import _DistributionShape from tensorflow.python.framework import dtypes from tensorflow.python.framework import tensor_util from tensorflow.python.ops import array_ops from tensorflow.python.platform import test _empty_shape = np.array([], dtype=np.int32) def _eval(x): if hasattr(x, "__iter__"): return [x.eval() for x in x] return x.eval() def _constant(x): if hasattr(x, "__iter__"): return [tensor_util.constant_value(x) for x in x] return tensor_util.constant_value(x) class MakeBatchReadyTest(test.TestCase): def setUp(self): self._rng = np.random.RandomState(42) def _random_sample(self, sample_shape, dtype=np.float32): return self._rng.random_sample(sample_shape).astype(dtype) def _get_expected(self, x, batch_ndims, event_ndims, expand_batch_dim): # Cast as int32 array explicitly, since an empty x.shape defaults # to float64, and we can't index as float64 in numpy 1.12+. x_shape = np.array(x.shape, dtype=np.int32) n = x.ndim - batch_ndims - event_ndims sample_shape = x_shape[:n] y = np.reshape(x, np.concatenate([[-1], x_shape[n:]], 0)) y = np.transpose(y, np.roll(np.arange(y.ndim), -1)) if event_ndims == 0: y = y[..., np.newaxis, :] if batch_ndims == 0 and expand_batch_dim: y = y[np.newaxis, ...] return y, sample_shape def _build_graph(self, x, batch_ndims, event_ndims, expand_batch_dim): shaper = _DistributionShape(batch_ndims=batch_ndims, event_ndims=event_ndims) y, sample_shape = shaper.make_batch_of_event_sample_matrices( x, expand_batch_dim=expand_batch_dim) should_be_x_value = shaper.undo_make_batch_of_event_sample_matrices( y, sample_shape, expand_batch_dim=expand_batch_dim) return y, sample_shape, should_be_x_value def _test_dynamic(self, x, batch_ndims, event_ndims, expand_batch_dim=True): with self.cached_session() as sess: x_pl = array_ops.placeholder(x.dtype) batch_ndims_pl = array_ops.placeholder(dtypes.int32) event_ndims_pl = array_ops.placeholder(dtypes.int32) [y_, sample_shape_, should_be_x_value_] = sess.run( self._build_graph( x_pl, batch_ndims_pl, event_ndims_pl, expand_batch_dim), feed_dict={ x_pl: x, batch_ndims_pl: batch_ndims, event_ndims_pl: event_ndims}) expected_y, expected_sample_shape = self._get_expected( x, batch_ndims, event_ndims, expand_batch_dim) self.assertAllEqual(expected_sample_shape, sample_shape_) self.assertAllEqual(expected_y, y_) self.assertAllEqual(x, should_be_x_value_) def _test_static(self, x, batch_ndims, event_ndims, expand_batch_dim): with self.cached_session() as sess: [y_, sample_shape_, should_be_x_value_] = sess.run( self._build_graph(x, batch_ndims, event_ndims, expand_batch_dim)) expected_y, expected_sample_shape = self._get_expected( x, batch_ndims, event_ndims, expand_batch_dim) self.assertAllEqual(expected_sample_shape, sample_shape_) self.assertAllEqual(expected_y, y_) self.assertAllEqual(x, should_be_x_value_) # Group 1a: Static scalar input. def testStaticScalarNdims00ExpandNo(self): self._test_static(x=self._random_sample([]), batch_ndims=0, event_ndims=0, expand_batch_dim=False) def testStaticScalarNdims00ExpandYes(self): self._test_static(x=self._random_sample([]), batch_ndims=0, event_ndims=0, expand_batch_dim=True) def testStaticScalarNdims01ExpandNo(self): with self.assertRaises(ValueError): self._test_static(x=self._random_sample([]), batch_ndims=0, event_ndims=1, expand_batch_dim=False) def testStaticScalarNdims01ExpandYes(self): with self.assertRaises(ValueError): self._test_static(x=self._random_sample([]), batch_ndims=0, event_ndims=1, expand_batch_dim=True) def testStaticScalarNdims10ExpandNo(self): with self.assertRaises(ValueError): self._test_static(x=self._random_sample([]), batch_ndims=1, event_ndims=0, expand_batch_dim=False) def testStaticScalarNdims10ExpandYes(self): with self.assertRaises(ValueError): self._test_static(x=self._random_sample([]), batch_ndims=1, event_ndims=0, expand_batch_dim=True) def testStaticScalarNdims11ExpandNo(self): with self.assertRaises(ValueError): self._test_static(x=self._random_sample([]), batch_ndims=1, event_ndims=1, expand_batch_dim=False) def testStaticScalarNdims11ExpandYes(self): with self.assertRaises(ValueError): self._test_static(x=self._random_sample([]), batch_ndims=1, event_ndims=1, expand_batch_dim=True) # Group 1b: Dynamic scalar input. def testDynamicScalar3Ndims00ExpandNo(self): self._test_dynamic(x=self._random_sample([]), batch_ndims=0, event_ndims=0, expand_batch_dim=False) def testDynamicScalar3Ndims00ExpandYes(self): self._test_dynamic(x=self._random_sample([]), batch_ndims=0, event_ndims=0, expand_batch_dim=True) def testDynamicScalarNdims01ExpandNo(self): with self.assertRaisesOpError(""): self._test_dynamic(x=self._random_sample([]), batch_ndims=0, event_ndims=1, expand_batch_dim=False) def testDynamicScalarNdims01ExpandYes(self): with self.assertRaisesOpError(""): self._test_dynamic(x=self._random_sample([]), batch_ndims=0, event_ndims=1, expand_batch_dim=True) def testDynamicScalarNdims10ExpandNo(self): with self.assertRaisesOpError(""): self._test_dynamic(x=self._random_sample([]), batch_ndims=1, event_ndims=0, expand_batch_dim=False) def testDynamicScalarNdims10ExpandYes(self): with self.assertRaisesOpError(""): self._test_dynamic(x=self._random_sample([]), batch_ndims=1, event_ndims=0, expand_batch_dim=True) def testDynamicScalarNdims11ExpandNo(self): with self.assertRaisesOpError(""): self._test_dynamic(x=self._random_sample([]), batch_ndims=1, event_ndims=1, expand_batch_dim=False) def testDynamicScalarNdims11ExpandYes(self): with self.assertRaisesOpError(""): self._test_dynamic(x=self._random_sample([]), batch_ndims=1, event_ndims=1, expand_batch_dim=True) # Group 2a: Static vector input. def testStaticVectorNdims00ExpandNo(self): self._test_static(x=self._random_sample([3]), batch_ndims=0, event_ndims=0, expand_batch_dim=False) def testStaticVectorNdims00ExpandYes(self): self._test_static(x=self._random_sample([3]), batch_ndims=0, event_ndims=0, expand_batch_dim=True) def testStaticVectorNdims01ExpandNo(self): self._test_static(x=self._random_sample([3]), batch_ndims=0, event_ndims=1, expand_batch_dim=False) def testStaticVectorNdims01ExpandYes(self): self._test_static(x=self._random_sample([3]), batch_ndims=0, event_ndims=1, expand_batch_dim=True) def testStaticVectorNdims10ExpandNo(self): self._test_static(x=self._random_sample([3]), batch_ndims=1, event_ndims=0, expand_batch_dim=False) def testStaticVectorNdims10ExpandYes(self): self._test_static(x=self._random_sample([3]), batch_ndims=1, event_ndims=0, expand_batch_dim=True) def testStaticVectorNdims11ExpandNo(self): with self.assertRaises(ValueError): self._test_static(x=self._random_sample([3]), batch_ndims=1, event_ndims=1, expand_batch_dim=False) def testStaticVectorNdims11ExpandYes(self): with self.assertRaises(ValueError): self._test_static(x=self._random_sample([3]), batch_ndims=1, event_ndims=1, expand_batch_dim=True) # Group 2b: Dynamic vector input. def testDynamicVectorNdims00ExpandNo(self): self._test_dynamic(x=self._random_sample([3]), batch_ndims=0, event_ndims=0, expand_batch_dim=False) def testDynamicVectorNdims00ExpandYes(self): self._test_dynamic(x=self._random_sample([3]), batch_ndims=0, event_ndims=0, expand_batch_dim=True) def testDynamicVectorNdims01ExpandNo(self): self._test_dynamic(x=self._random_sample([3]), batch_ndims=0, event_ndims=1, expand_batch_dim=False) def testDynamicVectorNdims01ExpandYes(self): self._test_dynamic(x=self._random_sample([3]), batch_ndims=0, event_ndims=1, expand_batch_dim=True) def testDynamicVectorNdims10ExpandNo(self): self._test_dynamic(x=self._random_sample([3]), batch_ndims=1, event_ndims=0, expand_batch_dim=False) def testDynamicVectorNdims10ExpandYes(self): self._test_dynamic(x=self._random_sample([3]), batch_ndims=1, event_ndims=0, expand_batch_dim=True) def testDynamicVectorNdims11ExpandNo(self): with self.assertRaisesOpError(""): self._test_dynamic(x=self._random_sample([3]), batch_ndims=1, event_ndims=1, expand_batch_dim=False) def testDynamicVectorNdims11ExpandYes(self): with self.assertRaisesOpError(""): self._test_dynamic(x=self._random_sample([3]), batch_ndims=1, event_ndims=1, expand_batch_dim=True) # Group 3a: Static matrix input. def testStaticMatrixNdims00ExpandNo(self): self._test_static(x=self._random_sample([2, 3]), batch_ndims=0, event_ndims=0, expand_batch_dim=False) def testStaticMatrixNdims00ExpandYes(self): self._test_static(x=self._random_sample([2, 3]), batch_ndims=0, event_ndims=0, expand_batch_dim=True) def testStaticMatrixNdims01ExpandNo(self): self._test_static(x=self._random_sample([2, 3]), batch_ndims=0, event_ndims=1, expand_batch_dim=False) def testStaticMatrixNdims01ExpandYes(self): self._test_static(x=self._random_sample([2, 3]), batch_ndims=0, event_ndims=1, expand_batch_dim=True) def testStaticMatrixNdims10ExpandNo(self): self._test_static(x=self._random_sample([2, 3]), batch_ndims=1, event_ndims=0, expand_batch_dim=False) def testStaticMatrixNdims10ExpandYes(self): self._test_static(x=self._random_sample([2, 3]), batch_ndims=1, event_ndims=0, expand_batch_dim=True) def testStaticMatrixNdims11ExpandNo(self): self._test_static(x=self._random_sample([2, 3]), batch_ndims=1, event_ndims=1, expand_batch_dim=False) def testStaticMatrixNdims11ExpandYes(self): self._test_static(x=self._random_sample([2, 3]), batch_ndims=1, event_ndims=1, expand_batch_dim=True) # Group 3b: Dynamic matrix input. def testDynamicMatrixNdims00ExpandNo(self): self._test_dynamic(x=self._random_sample([2, 3]), batch_ndims=0, event_ndims=0, expand_batch_dim=False) def testDynamicMatrixNdims00ExpandYes(self): self._test_dynamic(x=self._random_sample([2, 3]), batch_ndims=0, event_ndims=0, expand_batch_dim=True) def testDynamicMatrixNdims01ExpandNo(self): self._test_dynamic(x=self._random_sample([2, 3]), batch_ndims=0, event_ndims=1, expand_batch_dim=False) def testDynamicMatrixNdims01ExpandYes(self): self._test_dynamic(x=self._random_sample([2, 3]), batch_ndims=0, event_ndims=1, expand_batch_dim=True) def testDynamicMatrixNdims10ExpandNo(self): self._test_dynamic(x=self._random_sample([2, 3]), batch_ndims=1, event_ndims=0, expand_batch_dim=False) def testDynamicMatrixNdims10ExpandYes(self): self._test_dynamic(x=self._random_sample([2, 3]), batch_ndims=1, event_ndims=0, expand_batch_dim=True) def testDynamicMatrixNdims11ExpandNo(self): self._test_dynamic(x=self._random_sample([2, 3]), batch_ndims=1, event_ndims=1, expand_batch_dim=False) def testDynamicMatrixNdims11ExpandYes(self): self._test_dynamic(x=self._random_sample([2, 3]), batch_ndims=1, event_ndims=1, expand_batch_dim=True) # Group 4a: Static tensor input. def testStaticTensorNdims00ExpandNo(self): self._test_static(x=self._random_sample([4, 1, 2, 3]), batch_ndims=0, event_ndims=0, expand_batch_dim=False) def testStaticTensorNdims00ExpandYes(self): self._test_static(x=self._random_sample([4, 1, 2, 3]), batch_ndims=0, event_ndims=0, expand_batch_dim=True) def testStaticTensorNdims01ExpandNo(self): self._test_static(x=self._random_sample([4, 1, 2, 3]), batch_ndims=0, event_ndims=1, expand_batch_dim=False) def testStaticTensorNdims01ExpandYes(self): self._test_static(x=self._random_sample([4, 1, 2, 3]), batch_ndims=0, event_ndims=1, expand_batch_dim=True) def testStaticTensorNdims10ExpandNo(self): self._test_static(x=self._random_sample([4, 1, 2, 3]), batch_ndims=1, event_ndims=0, expand_batch_dim=False) def testStaticTensorNdims10ExpandYes(self): self._test_static(x=self._random_sample([4, 1, 2, 3]), batch_ndims=1, event_ndims=0, expand_batch_dim=True) def testStaticTensorNdims11ExpandNo(self): self._test_static(x=self._random_sample([4, 1, 2, 3]), batch_ndims=1, event_ndims=1, expand_batch_dim=False) def testStaticTensorNdims11ExpandYes(self): self._test_static(x=self._random_sample([4, 1, 2, 3]), batch_ndims=1, event_ndims=1, expand_batch_dim=True) # Group 4b: Dynamic tensor input. def testDynamicTensorNdims00ExpandNo(self): self._test_dynamic(x=self._random_sample([4, 1, 2, 3]), batch_ndims=0, event_ndims=0, expand_batch_dim=False) def testDynamicTensorNdims00ExpandYes(self): self._test_dynamic(x=self._random_sample([4, 1, 2, 3]), batch_ndims=0, event_ndims=0, expand_batch_dim=True) def testDynamicTensorNdims01ExpandNo(self): self._test_dynamic(x=self._random_sample([4, 1, 2, 3]), batch_ndims=0, event_ndims=1, expand_batch_dim=False) def testDynamicTensorNdims01ExpandYes(self): self._test_dynamic(x=self._random_sample([4, 1, 2, 3]), batch_ndims=0, event_ndims=1, expand_batch_dim=True) def testDynamicTensorNdims10ExpandNo(self): self._test_dynamic(x=self._random_sample([4, 1, 2, 3]), batch_ndims=1, event_ndims=0, expand_batch_dim=False) def testDynamicTensorNdims10ExpandYes(self): self._test_dynamic(x=self._random_sample([4, 1, 2, 3]), batch_ndims=1, event_ndims=0, expand_batch_dim=True) def testDynamicTensorNdims11ExpandNo(self): self._test_dynamic(x=self._random_sample([4, 1, 2, 3]), batch_ndims=1, event_ndims=1, expand_batch_dim=False) def testDynamicTensorNdims11ExpandYes(self): self._test_dynamic(x=self._random_sample([4, 1, 2, 3]), batch_ndims=1, event_ndims=1, expand_batch_dim=True) class DistributionShapeTest(test.TestCase): def setUp(self): self._rng = np.random.RandomState(42) def _random_sample(self, sample_shape, dtype=dtypes.float64): return self._rng.random_sample(sample_shape).astype(dtype.as_numpy_dtype()) def _assertNdArrayEqual(self, expected, actual): """Helper which properly compares two np.ndarray-like objects. This function checks for exact equality so is probably only suitable for integers or powers of 2. Args: expected: np.ndarray. Ground-truth value. actual: np.ndarray. Observed value. """ expected = np.asarray(expected) actual = np.asarray(actual) self.assertEqual(expected.shape, actual.shape, "Shape mismatch: expected %s, got %s." % (expected.shape, actual.shape)) actual_item = actual.flat for expected_item in expected.flat: self.assertAllEqual(expected_item, next(actual_item)) def testDistributionShapeGetNdimsStatic(self): with self.cached_session(): shaper = _DistributionShape(batch_ndims=0, event_ndims=0) x = 1 self.assertEqual(0, shaper.get_sample_ndims(x).eval()) self.assertEqual(0, shaper.batch_ndims.eval()) self.assertEqual(0, shaper.event_ndims.eval()) shaper = _DistributionShape(batch_ndims=1, event_ndims=1) x = self._random_sample((1, 2, 3)) self.assertAllEqual(3, shaper.get_ndims(x).eval()) self.assertEqual(1, shaper.get_sample_ndims(x).eval()) self.assertEqual(1, shaper.batch_ndims.eval()) self.assertEqual(1, shaper.event_ndims.eval()) x += self._random_sample((1, 2, 3)) self.assertAllEqual(3, shaper.get_ndims(x).eval()) self.assertEqual(1, shaper.get_sample_ndims(x).eval()) self.assertEqual(1, shaper.batch_ndims.eval()) self.assertEqual(1, shaper.event_ndims.eval()) # Test ndims functions work, even despite unfed Tensors. y = array_ops.placeholder(dtypes.float32, shape=(1024, None, 1024)) self.assertEqual(3, shaper.get_ndims(y).eval()) self.assertEqual(1, shaper.get_sample_ndims(y).eval()) self.assertEqual(1, shaper.batch_ndims.eval()) self.assertEqual(1, shaper.event_ndims.eval()) def testDistributionShapeGetNdimsDynamic(self): with self.cached_session() as sess: batch_ndims = array_ops.placeholder(dtypes.int32) event_ndims = array_ops.placeholder(dtypes.int32) shaper = _DistributionShape( batch_ndims=batch_ndims, event_ndims=event_ndims) y = array_ops.placeholder(dtypes.float32) y_value = np.ones((4, 2), dtype=y.dtype.as_numpy_dtype()) feed_dict = {y: y_value, batch_ndims: 1, event_ndims: 1} self.assertEqual(2, sess.run(shaper.get_ndims(y), feed_dict=feed_dict)) def testDistributionShapeGetDimsStatic(self): with self.cached_session(): shaper = _DistributionShape(batch_ndims=0, event_ndims=0) x = 1 self.assertAllEqual((_empty_shape, _empty_shape, _empty_shape), _constant(shaper.get_dims(x))) shaper = _DistributionShape(batch_ndims=1, event_ndims=2) x += self._random_sample((1, 1, 2, 2)) self._assertNdArrayEqual(([0], [1], [2, 3]), _constant(shaper.get_dims(x))) x += x self._assertNdArrayEqual(([0], [1], [2, 3]), _constant(shaper.get_dims(x))) def testDistributionShapeGetDimsDynamic(self): with self.cached_session() as sess: # Works for static {batch,event}_ndims despite unfed input. shaper = _DistributionShape(batch_ndims=1, event_ndims=2) y = array_ops.placeholder(dtypes.float32, shape=(10, None, 5, 5)) self._assertNdArrayEqual([[0], [1], [2, 3]], _eval(shaper.get_dims(y))) # Works for deferred {batch,event}_ndims. batch_ndims = array_ops.placeholder(dtypes.int32) event_ndims = array_ops.placeholder(dtypes.int32) shaper = _DistributionShape( batch_ndims=batch_ndims, event_ndims=event_ndims) y = array_ops.placeholder(dtypes.float32) y_value = self._random_sample((10, 3, 5, 5), dtype=y.dtype) feed_dict = {y: y_value, batch_ndims: 1, event_ndims: 2} self._assertNdArrayEqual( ([0], [1], [2, 3]), sess.run(shaper.get_dims(y), feed_dict=feed_dict)) def testDistributionShapeGetShapeStatic(self): with self.cached_session(): shaper = _DistributionShape(batch_ndims=0, event_ndims=0) self.assertAllEqual((_empty_shape, _empty_shape, _empty_shape), _constant(shaper.get_shape(1.))) self._assertNdArrayEqual(([1], _empty_shape, _empty_shape), _constant(shaper.get_shape(np.ones(1)))) self._assertNdArrayEqual(([2, 2], _empty_shape, _empty_shape), _constant(shaper.get_shape(np.ones((2, 2))))) self._assertNdArrayEqual(([3, 2, 1], _empty_shape, _empty_shape), _constant(shaper.get_shape(np.ones((3, 2, 1))))) shaper = _DistributionShape(batch_ndims=0, event_ndims=1) with self.assertRaisesRegexp(ValueError, "expected .* <= ndims"): shaper.get_shape(1.) self._assertNdArrayEqual((_empty_shape, _empty_shape, [1]), _constant(shaper.get_shape(np.ones(1)))) self._assertNdArrayEqual(([2], _empty_shape, [2]), _constant(shaper.get_shape(np.ones((2, 2))))) self._assertNdArrayEqual(([3, 2], _empty_shape, [1]), _constant(shaper.get_shape(np.ones((3, 2, 1))))) shaper = _DistributionShape(batch_ndims=1, event_ndims=0) with self.assertRaisesRegexp(ValueError, "expected .* <= ndims"): shaper.get_shape(1.) self._assertNdArrayEqual((_empty_shape, [1], _empty_shape), _constant(shaper.get_shape(np.ones(1)))) self._assertNdArrayEqual(([2], [2], _empty_shape), _constant(shaper.get_shape(np.ones((2, 2))))) self._assertNdArrayEqual(([3, 2], [1], _empty_shape), _constant(shaper.get_shape(np.ones((3, 2, 1))))) shaper = _DistributionShape(batch_ndims=1, event_ndims=1) with self.assertRaisesRegexp(ValueError, "expected .* <= ndims"): shaper.get_shape(1.) with self.assertRaisesRegexp(ValueError, "expected .* <= ndims"): shaper.get_shape(np.ones(1)) self._assertNdArrayEqual((_empty_shape, [2], [2]), _constant(shaper.get_shape(np.ones((2, 2))))) self._assertNdArrayEqual(([3], [2], [1]), _constant(shaper.get_shape(np.ones((3, 2, 1))))) def testDistributionShapeGetShapeDynamic(self): with self.cached_session() as sess: # Works for static ndims despite unknown static shape. shaper = _DistributionShape(batch_ndims=1, event_ndims=1) y = array_ops.placeholder(dtypes.int32, shape=(None, None, 2)) y_value = np.ones((3, 4, 2), dtype=y.dtype.as_numpy_dtype()) self._assertNdArrayEqual( ([3], [4], [2]), sess.run(shaper.get_shape(y), feed_dict={y: y_value})) shaper = _DistributionShape(batch_ndims=0, event_ndims=1) y = array_ops.placeholder(dtypes.int32, shape=(None, None)) y_value = np.ones((3, 2), dtype=y.dtype.as_numpy_dtype()) self._assertNdArrayEqual( ([3], _empty_shape, [2]), sess.run(shaper.get_shape(y), feed_dict={y: y_value})) # Works for deferred {batch,event}_ndims. batch_ndims = array_ops.placeholder(dtypes.int32) event_ndims = array_ops.placeholder(dtypes.int32) shaper = _DistributionShape( batch_ndims=batch_ndims, event_ndims=event_ndims) y = array_ops.placeholder(dtypes.float32) y_value = self._random_sample((3, 4, 2), dtype=y.dtype) feed_dict = {y: y_value, batch_ndims: 1, event_ndims: 1} self._assertNdArrayEqual( ([3], [4], [2]), sess.run(shaper.get_shape(y), feed_dict=feed_dict)) y_value = self._random_sample((3, 2), dtype=y.dtype) feed_dict = {y: y_value, batch_ndims: 0, event_ndims: 1} self._assertNdArrayEqual( ([3], _empty_shape, [2]), sess.run(shaper.get_shape(y), feed_dict=feed_dict)) if __name__ == "__main__": test.main()
tensorflow-master
tensorflow/contrib/distributions/python/kernel_tests/shape_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for MixtureSameFamily distribution.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.distributions.python.ops import mixture_same_family as mixture_same_family_lib from tensorflow.contrib.distributions.python.ops import mvn_diag as mvn_diag_lib from tensorflow.contrib.distributions.python.ops import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops.distributions import bernoulli as bernoulli_lib from tensorflow.python.ops.distributions import categorical as categorical_lib from tensorflow.python.ops.distributions import normal as normal_lib from tensorflow.python.platform import test class MixtureSameFamilyTest(test_util.VectorDistributionTestHelpers, test.TestCase): def testSampleAndLogProbUnivariateShapes(self): with self.cached_session(): gm = mixture_same_family_lib.MixtureSameFamily( mixture_distribution=categorical_lib.Categorical(probs=[0.3, 0.7]), components_distribution=normal_lib.Normal( loc=[-1., 1], scale=[0.1, 0.5])) x = gm.sample([4, 5], seed=42) log_prob_x = gm.log_prob(x) self.assertEqual([4, 5], x.shape) self.assertEqual([4, 5], log_prob_x.shape) def testSampleAndLogProbBatch(self): with self.cached_session(): gm = mixture_same_family_lib.MixtureSameFamily( mixture_distribution=categorical_lib.Categorical(probs=[[0.3, 0.7]]), components_distribution=normal_lib.Normal( loc=[[-1., 1]], scale=[[0.1, 0.5]])) x = gm.sample([4, 5], seed=42) log_prob_x = gm.log_prob(x) self.assertEqual([4, 5, 1], x.shape) self.assertEqual([4, 5, 1], log_prob_x.shape) def testSampleAndLogProbShapesBroadcastMix(self): mix_probs = np.float32([.3, .7]) bern_probs = np.float32([[.4, .6], [.25, .75]]) with self.cached_session(): bm = mixture_same_family_lib.MixtureSameFamily( mixture_distribution=categorical_lib.Categorical(probs=mix_probs), components_distribution=bernoulli_lib.Bernoulli(probs=bern_probs)) x = bm.sample([4, 5], seed=42) log_prob_x = bm.log_prob(x) x_ = x.eval() self.assertEqual([4, 5, 2], x.shape) self.assertEqual([4, 5, 2], log_prob_x.shape) self.assertAllEqual( np.ones_like(x_, dtype=np.bool), np.logical_or(x_ == 0., x_ == 1.)) def testSampleAndLogProbMultivariateShapes(self): with self.cached_session(): gm = mixture_same_family_lib.MixtureSameFamily( mixture_distribution=categorical_lib.Categorical(probs=[0.3, 0.7]), components_distribution=mvn_diag_lib.MultivariateNormalDiag( loc=[[-1., 1], [1, -1]], scale_identity_multiplier=[1., 0.5])) x = gm.sample([4, 5], seed=42) log_prob_x = gm.log_prob(x) self.assertEqual([4, 5, 2], x.shape) self.assertEqual([4, 5], log_prob_x.shape) def testSampleAndLogProbBatchMultivariateShapes(self): with self.cached_session(): gm = mixture_same_family_lib.MixtureSameFamily( mixture_distribution=categorical_lib.Categorical(probs=[0.3, 0.7]), components_distribution=mvn_diag_lib.MultivariateNormalDiag( loc=[[[-1., 1], [1, -1]], [[0., 1], [1, 0]]], scale_identity_multiplier=[1., 0.5])) x = gm.sample([4, 5], seed=42) log_prob_x = gm.log_prob(x) self.assertEqual([4, 5, 2, 2], x.shape) self.assertEqual([4, 5, 2], log_prob_x.shape) def testSampleConsistentLogProb(self): with self.cached_session() as sess: gm = mixture_same_family_lib.MixtureSameFamily( mixture_distribution=categorical_lib.Categorical(probs=[0.3, 0.7]), components_distribution=mvn_diag_lib.MultivariateNormalDiag( loc=[[-1., 1], [1, -1]], scale_identity_multiplier=[1., 0.5])) # Ball centered at component0's mean. self.run_test_sample_consistent_log_prob( sess.run, gm, radius=1., center=[-1., 1], rtol=0.02) # Larger ball centered at component1's mean. self.run_test_sample_consistent_log_prob( sess.run, gm, radius=1., center=[1., -1], rtol=0.02) def testLogCdf(self): with self.cached_session() as sess: gm = mixture_same_family_lib.MixtureSameFamily( mixture_distribution=categorical_lib.Categorical(probs=[0.3, 0.7]), components_distribution=normal_lib.Normal( loc=[-1., 1], scale=[0.1, 0.5])) x = gm.sample(10, seed=42) actual_log_cdf = gm.log_cdf(x) expected_log_cdf = math_ops.reduce_logsumexp( (gm.mixture_distribution.logits + gm.components_distribution.log_cdf(x[..., array_ops.newaxis])), axis=1) actual_log_cdf_, expected_log_cdf_ = sess.run([ actual_log_cdf, expected_log_cdf]) self.assertAllClose(actual_log_cdf_, expected_log_cdf_, rtol=1e-6, atol=0.0) def testSampleConsistentMeanCovariance(self): with self.cached_session() as sess: gm = mixture_same_family_lib.MixtureSameFamily( mixture_distribution=categorical_lib.Categorical(probs=[0.3, 0.7]), components_distribution=mvn_diag_lib.MultivariateNormalDiag( loc=[[-1., 1], [1, -1]], scale_identity_multiplier=[1., 0.5])) self.run_test_sample_consistent_mean_covariance(sess.run, gm) def testVarianceConsistentCovariance(self): with self.cached_session() as sess: gm = mixture_same_family_lib.MixtureSameFamily( mixture_distribution=categorical_lib.Categorical(probs=[0.3, 0.7]), components_distribution=mvn_diag_lib.MultivariateNormalDiag( loc=[[-1., 1], [1, -1]], scale_identity_multiplier=[1., 0.5])) cov_, var_ = sess.run([gm.covariance(), gm.variance()]) self.assertAllClose(cov_.diagonal(), var_, atol=0.) if __name__ == "__main__": test.main()
tensorflow-master
tensorflow/contrib/distributions/python/kernel_tests/mixture_same_family_test.py