python_code
stringlengths
0
4.04M
repo_name
stringlengths
8
58
file_path
stringlengths
5
147
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from logging import getLogger from random import randrange import os import numpy as np from sklearn.feature_extraction import image import torch import torch.nn as nn import torchvision.datasets as datasets import torchvision.transforms as transforms from torch.utils.data.sampler import Sampler from .YFCC100M import YFCC100M_dataset logger = getLogger() def load_data(args): """ Load dataset. """ if 'yfcc100m' in args.data_path: return YFCC100M_dataset(args.data_path, size=args.size_dataset) return datasets.ImageFolder(args.data_path) def get_data_transformations(rotation=0): """ Return data transformations for clustering and for training """ tr_normalize = transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], ) final_process = [transforms.ToTensor(), tr_normalize] # for clustering stage tr_central_crop = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), lambda x: np.asarray(x), Rotate(0) ] + final_process) # for training stage tr_dataug = transforms.Compose([ transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), lambda x: np.asarray(x), Rotate(rotation) ] + final_process) return tr_central_crop, tr_dataug class Rotate(object): def __init__(self, rot): self.rot = rot def __call__(self, img): return rotate_img(img, self.rot) def rotate_img(img, rot): if rot == 0: # 0 degrees rotation return img elif rot == 90: # 90 degrees rotation return np.flipud(np.transpose(img, (1, 0, 2))).copy() elif rot == 180: # 90 degrees rotation return np.fliplr(np.flipud(img)).copy() elif rot == 270: # 270 degrees rotation / or -90 return np.transpose(np.flipud(img), (1, 0, 2)).copy() else: return class KFoldSampler(Sampler): def __init__(self, im_per_target, shuffle): self.im_per_target = im_per_target N = 0 for tar in im_per_target: N = N + len(im_per_target[tar]) self.N = N self.shuffle = shuffle def __iter__(self): indices = np.zeros(self.N).astype(int) c = 0 for tar in self.im_per_target: indices[c: c + len(self.im_per_target[tar])] = self.im_per_target[tar] c = c + len(self.im_per_target[tar]) if self.shuffle: np.random.shuffle(indices) return iter(indices) def __len__(self): return self.N class KFold(): """Class to perform k-fold cross-validation. Args: im_per_target (Dict): key (target), value (list of data with this target) i (int): index of the round of cross validation to perform K (int): dataset randomly partitioned into K equal sized subsamples Attributes: val (KFoldSampler): validation sampler train (KFoldSampler): training sampler """ def __init__(self, im_per_target, i, K): assert(i<K) per_target = {} for tar in im_per_target: per_target[tar] = int(len(im_per_target[tar]) // K) im_per_target_train = {} im_per_target_val = {} for k in range(K): for L in im_per_target: if k==i: im_per_target_val[L] = im_per_target[L][k * per_target[L]: (k + 1) * per_target[L]] else: if not L in im_per_target_train: im_per_target_train[L] = [] im_per_target_train[L] = im_per_target_train[L] + im_per_target[L][k * per_target[L]: (k + 1) * per_target[L]] self.val = KFoldSampler(im_per_target_val, False) self.train = KFoldSampler(im_per_target_train, True) def per_target(imgs): """Arrange samples per target. Args: imgs (list): List of (_, target) tuples. Returns: dict: key (target), value (list of data with this target) """ res = {} for index in range(len(imgs)): _, target = imgs[index] if target not in res: res[target] = [] res[target].append(index) return res
DeeperCluster-main
src/data/loader.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import zipfile import numpy as np from PIL import Image from PIL import ImageFile ImageFile.LOAD_TRUNCATED_IMAGES = True import torch.utils.data as data def loader(path_zip, file_img): """ Load imagefile from zip. """ with zipfile.ZipFile(path_zip, 'r') as myzip: img = Image.open(myzip.open(file_img)) return img.convert('RGB') class YFCC100M_dataset(data.Dataset): """ YFCC100M dataset. """ def __init__(self, root, size, flickr_unique_ids=True, transform=None): self.root = root self.transform = transform self.sub_classes = None # remove data with uniform color and data we didn't manage to download if flickr_unique_ids: self.indexes = np.load(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'flickr_unique_ids.npy')) self.indexes = self.indexes[:min(size, len(self.indexes))] else: self.indexes = np.arange(size) # for subsets self.subset_indexes = None def __getitem__(self, ind): index = ind if self.subset_indexes is not None: index = self.subset_indexes[ind] index = self.indexes[index] index = format(index, "0>8d") repo = index[:2] z = index[2: 5] file_img = index[5:] + '.jpg' path_zip = os.path.join(self.root, repo, z) + '.zip' # load the image img = loader(path_zip, file_img) # apply transformation if self.transform is not None: img = self.transform(img) # id of cluster sub_class = -100 if self.sub_classes is not None: sub_class = self.sub_classes[ind] return img, sub_class def __len__(self): if self.subset_indexes is not None: return len(self.subset_indexes) return len(self.indexes)
DeeperCluster-main
src/data/YFCC100M.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import glob import os from collections import defaultdict from PIL import Image from PIL import ImageFile ImageFile.LOAD_TRUNCATED_IMAGES = True import numpy as np import torch.utils.data as data class VOC2007_dataset(data.Dataset): def __init__(self, voc_dir, split='train', transform=None): # Find the image sets image_set_dir = os.path.join(voc_dir, 'ImageSets', 'Main') image_sets = glob.glob(os.path.join(image_set_dir, '*_' + split + '.txt')) assert len(image_sets) == 20 # Read the labels self.n_labels = len(image_sets) images = defaultdict(lambda:-np.ones(self.n_labels, dtype=np.uint8)) for k, s in enumerate(sorted(image_sets)): for l in open(s, 'r'): name, lbl = l.strip().split() lbl = int(lbl) # Switch the ignore label and 0 label (in VOC -1: not present, 0: ignore) if lbl < 0: lbl = 0 elif lbl == 0: lbl = 255 images[os.path.join(voc_dir, 'JPEGImages', name + '.jpg')][k] = lbl self.images = [(k, images[k]) for k in images.keys()] np.random.shuffle(self.images) self.transform = transform def __len__(self): return len(self.images) def __getitem__(self, i): img = Image.open(self.images[i][0]) img = img.convert('RGB') if self.transform is not None: img = self.transform(img) return img, self.images[i][1]
DeeperCluster-main
src/data/VOC2007.py
from __future__ import absolute_import from __future__ import division from __future__ import print_function import torch import torch.nn as nn import torch.optim as optim from torch.utils.tensorboard import SummaryWriter import numpy as np import time import os from six.moves import cPickle import traceback from collections import defaultdict import captioning.utils.opts as opts import captioning.models as models from captioning.data.dataloader import DataLoader import skimage.io import captioning.utils.eval_utils_joint as eval_utils import captioning.utils.misc as utils from captioning.utils.rewards import init_scorer, get_self_critical_reward from captioning.modules.loss_wrapper_joint import LossWrapper def add_summary_value(writer, key, value, iteration): if writer: writer.add_scalar(key, value, iteration) def train(opt): ################################ # Build dataloader ################################ loader = DataLoader(opt) opt.vocab_size = loader.vocab_size opt.seq_length = loader.seq_length ########################## # Initialize infos ########################## infos = { 'iter': 0, 'epoch': 0, 'loader_state_dict': None, 'vocab': loader.get_vocab(), } # Load old infos(if there is) and check if models are compatible if opt.start_from is not None and os.path.isfile(os.path.join(opt.start_from, 'infos_'+opt.id+'.pkl')): with open(os.path.join(opt.start_from, 'infos_'+opt.id+'.pkl'), 'rb') as f: infos = utils.pickle_load(f) saved_model_opt = infos['opt'] need_be_same=["caption_model", "rnn_type", "rnn_size", "num_layers"] for checkme in need_be_same: assert getattr(saved_model_opt, checkme) == getattr(opt, checkme), "Command line argument and saved model disagree on '%s' " % checkme infos['opt'] = opt ######################### # Build logger ######################### # naive dict logger histories = defaultdict(dict) if opt.start_from is not None and os.path.isfile(os.path.join(opt.start_from, 'histories_'+opt.id+'.pkl')): with open(os.path.join(opt.start_from, 'histories_'+opt.id+'.pkl'), 'rb') as f: histories.update(utils.pickle_load(f)) # tensorboard logger tb_summary_writer = SummaryWriter(opt.checkpoint_path) ########################## # Build model ########################## opt.vocab = loader.get_vocab() model = models.setup(opt).cuda() del opt.vocab # Load pretrained weights: if opt.start_from is not None and os.path.isfile(os.path.join(opt.start_from, 'model.pth')): model.load_state_dict(torch.load(os.path.join(opt.start_from, 'model.pth'))) # Wrap generation model with loss function(used for training) # This allows loss function computed separately on each machine lw_model = LossWrapper(model, opt) # Wrap with dataparallel dp_model = torch.nn.DataParallel(model) dp_model.vocab = getattr(model, 'vocab', None) # nasty dp_lw_model = torch.nn.DataParallel(lw_model) ########################## # Build optimizer ########################## if opt.noamopt: assert opt.caption_model in ['transformer', 'bert', 'm2transformer'], 'noamopt can only work with transformer' optimizer = utils.get_std_opt(model, optim_func=opt.optim, factor=opt.noamopt_factor, warmup=opt.noamopt_warmup) elif opt.reduce_on_plateau: optimizer = utils.build_optimizer(model.parameters(), opt) optimizer = utils.ReduceLROnPlateau(optimizer, factor=opt.reduce_on_plateau_factor, patience=opt.reduce_on_plateau_patience) else: optimizer = utils.build_optimizer(model.parameters(), opt) # Load the optimizer if opt.start_from is not None and os.path.isfile(os.path.join(opt.start_from,"optimizer.pth")): optimizer.load_state_dict(torch.load(os.path.join(opt.start_from, 'optimizer.pth'))) ######################### # Get ready to start ######################### iteration = infos['iter'] epoch = infos['epoch'] # For back compatibility if 'iterators' in infos: infos['loader_state_dict'] = {split: {'index_list': infos['split_ix'][split], 'iter_counter': infos['iterators'][split]} for split in ['train', 'val', 'test']} loader.load_state_dict(infos['loader_state_dict']) if opt.load_best_score == 1: best_val_score = infos.get('best_val_score', None) if opt.noamopt: optimizer._step = iteration # flag indicating finish of an epoch # Always set to True at the beginning to initialize the lr or etc. epoch_done = True # Assure in training mode dp_lw_model.train() # Start training try: while True: # Stop if reaching max epochs if epoch >= opt.max_epochs and opt.max_epochs != -1: break if epoch_done: if not opt.noamopt and not opt.reduce_on_plateau: # Assign the learning rate if epoch > opt.learning_rate_decay_start and opt.learning_rate_decay_start >= 0: frac = (epoch - opt.learning_rate_decay_start) // opt.learning_rate_decay_every decay_factor = opt.learning_rate_decay_rate ** frac opt.current_lr = opt.learning_rate * decay_factor else: opt.current_lr = opt.learning_rate utils.set_lr(optimizer, opt.current_lr) # set the decayed rate # Assign the scheduled sampling prob if epoch > opt.scheduled_sampling_start and opt.scheduled_sampling_start >= 0: frac = (epoch - opt.scheduled_sampling_start) // opt.scheduled_sampling_increase_every opt.ss_prob = min(opt.scheduled_sampling_increase_prob * frac, opt.scheduled_sampling_max_prob) model.ss_prob = opt.ss_prob # If start self critical training if opt.self_critical_after != -1 and epoch >= opt.self_critical_after: sc_flag = True init_scorer(opt.cached_tokens) else: sc_flag = False # If start structure loss training if opt.structure_after != -1 and epoch >= opt.structure_after: struc_flag = True init_scorer(opt.cached_tokens) else: struc_flag = False epoch_done = False start = time.time() if opt.use_warmup and (iteration < opt.noamopt_warmup): opt.current_lr = opt.learning_rate * (iteration+1) / opt.noamopt_warmup utils.set_lr(optimizer, opt.current_lr) # Load data from train split (0) data = loader.get_batch('train') print('Read data:', time.time() - start) torch.cuda.synchronize() start = time.time() tmp = [data['fc_feats'], data['att_feats'], data['trace_feats'], data['box_feats'], data['labels'], data['masks'], data['att_masks'], data['trace_masks']] tmp = [_ if _ is None else _.cuda() for _ in tmp] fc_feats, att_feats, trace_feats, box_feats, labels, masks, att_masks, trace_masks = tmp optimizer.zero_grad() model_out = dp_lw_model(fc_feats, att_feats, trace_feats, box_feats, labels, masks, att_masks, trace_masks, data['gts'], torch.arange(0, len(data['gts'])), sc_flag, struc_flag) loss = model_out['loss'].mean() loss.backward() if opt.grad_clip_value != 0: getattr(torch.nn.utils, 'clip_grad_%s_' %(opt.grad_clip_mode))(model.parameters(), opt.grad_clip_value) if not torch.isnan(loss): if opt.language_eval == 1: print('Doing final model evaluation, not updating model.') else: optimizer.step() else: print('Meet nan loss', data['gts'], model_out) train_loss = loss.item() torch.cuda.synchronize() end = time.time() if struc_flag: print("iter {} (epoch {}), train_loss = {:.3f}, lm_loss = {:.3f}, struc_loss = {:.3f}, time/batch = {:.3f}" \ .format(iteration, epoch, train_loss, model_out['lm_loss'].mean().item(), model_out['struc_loss'].mean().item(), end - start)) elif not sc_flag: print("iter {} (epoch {}), train_loss = {:.3f}, time/batch = {:.3f}" \ .format(iteration, epoch, train_loss, end - start)) else: print("iter {} (epoch {}), avg_reward = {:.3f}, time/batch = {:.3f}" \ .format(iteration, epoch, model_out['reward'].mean(), end - start)) # Update the iteration and epoch iteration += 1 if data['bounds']['wrapped']: epoch += 1 epoch_done = True # Write the training loss summary if (iteration % opt.losses_log_every == 0): tb_summary_writer.add_scalar('train_loss', train_loss, iteration) if opt.noamopt: opt.current_lr = optimizer.rate() elif opt.reduce_on_plateau: opt.current_lr = optimizer.current_lr tb_summary_writer.add_scalar('learning_rate', opt.current_lr, iteration) tb_summary_writer.add_scalar('scheduled_sampling_prob', model.ss_prob, iteration) if sc_flag: tb_summary_writer.add_scalar('avg_reward', model_out['reward'].mean(), iteration) elif struc_flag: tb_summary_writer.add_scalar('lm_loss', model_out['lm_loss'].mean().item(), iteration) tb_summary_writer.add_scalar('struc_loss', model_out['struc_loss'].mean().item(), iteration) tb_summary_writer.add_scalar('reward', model_out['reward'].mean().item(), iteration) tb_summary_writer.add_scalar('reward_var', model_out['reward'].var(1).mean(), iteration) histories['loss_history'][iteration] = train_loss if not sc_flag else model_out['reward'].mean() histories['lr_history'][iteration] = opt.current_lr histories['ss_prob_history'][iteration] = model.ss_prob # update infos infos['iter'] = iteration infos['epoch'] = epoch infos['loader_state_dict'] = loader.state_dict() # make evaluation on validation set, and save model if opt.language_eval == 1 or (iteration % opt.save_checkpoint_every == 0 and not opt.save_every_epoch) or \ (epoch_done and opt.save_every_epoch): # eval model eval_kwargs = {'split': 'val', 'dataset': opt.input_json} eval_kwargs.update(vars(opt)) assert (opt.task in ['caption', 'c_joint_t'] and opt.eval_task == 'caption') or \ (opt.task in ['trace', 'c_joint_t'] and opt.eval_task == 'trace') or \ (opt.task == 'pred_both' and opt.eval_task == 'pred_both') if opt.eval_task == 'caption': val_loss, predictions, lang_stats = eval_utils.eval_split(dp_model, lw_model.crit_caption, loader, 'caption', eval_kwargs) elif opt.eval_task == 'trace': val_loss = None # This is a little time consuming due to the linear programming solve. val_loss = eval_utils.eval_trace_generation(dp_model, lw_model.crit_trace, loader, window_size=0, eval_kwargs=eval_kwargs) # Adjust the window_size as needed lang_stats = None; predictions = None; elif opt.eval_task == 'pred_both': val_loss, predictions, lang_stats = eval_utils.eval_split(dp_model, lw_model.crit_caption, loader, 'both', eval_kwargs) # caption generation val_loss_trace = eval_utils.eval_trace_generation(dp_model, lw_model.crit_trace, loader, window_size=0, eval_kwargs=eval_kwargs) # Adjust the window_size as needed if opt.language_eval == 1: break # The language eval is done during testing, after the training finishes. if opt.reduce_on_plateau: if 'CIDEr' in lang_stats: optimizer.scheduler_step(-lang_stats['CIDEr']) else: optimizer.scheduler_step(val_loss) # Write validation result into summary tb_summary_writer.add_scalar('validation loss', val_loss, iteration) if lang_stats is not None: for k,v in lang_stats.items(): tb_summary_writer.add_scalar(k, v, iteration) histories['val_result_history'][iteration] = {'loss': val_loss, 'lang_stats': lang_stats, 'predictions': predictions} # Save model if is improving on validation result if opt.language_eval == 1: current_score = lang_stats['CIDEr'] else: current_score = - val_loss best_flag = False if best_val_score is None or current_score > best_val_score: best_val_score = current_score best_flag = True # Dump miscalleous informations infos['best_val_score'] = best_val_score # ''' utils.save_checkpoint(opt, model, infos, optimizer, histories) if opt.save_history_ckpt: utils.save_checkpoint(opt, model, infos, optimizer, append=str(epoch) if opt.save_every_epoch else str(iteration)) if best_flag: utils.save_checkpoint(opt, model, infos, optimizer, append='best') # ''' except (RuntimeError, KeyboardInterrupt): print('Save ckpt on exception ...') # ''' utils.save_checkpoint(opt, model, infos, optimizer) print('Save ckpt done.') stack_trace = traceback.format_exc() print(stack_trace) # ''' opt = opts.parse_opt() train(opt)
connect-caption-and-trace-main
tools/train.py
connect-caption-and-trace-main
captioning/__init__.py
from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import torch import torch.nn as nn import numpy as np import torch.optim as optim import os import torch.nn.functional as F import six from six.moves import cPickle bad_endings = ['with','in','on','of','a','at','to','for','an','this','his','her','that'] bad_endings += ['the'] def pickle_load(f): """ Load a pickle. Parameters ---------- f: file-like object """ if six.PY3: return cPickle.load(f, encoding='latin-1') else: return cPickle.load(f) def pickle_dump(obj, f): """ Dump a pickle. Parameters ---------- obj: pickled object f: file-like object """ if six.PY3: return cPickle.dump(obj, f, protocol=2) else: return cPickle.dump(obj, f) # modified from https://github.com/facebookresearch/detectron2/blob/master/detectron2/utils/comm.py def serialize_to_tensor(data): device = torch.device("cpu") buffer = cPickle.dumps(data) storage = torch.ByteStorage.from_buffer(buffer) tensor = torch.ByteTensor(storage).to(device=device) return tensor def deserialize(tensor): buffer = tensor.cpu().numpy().tobytes() return cPickle.loads(buffer) # Input: seq, N*D numpy array, with element 0 .. vocab_size. 0 is END token. def decode_sequence(ix_to_word, seq): N, D = seq.size() out = [] for i in range(N): txt = '' for j in range(D): ix = seq[i,j] if ix > 0 : if j >= 1: txt = txt + ' ' txt = txt + ix_to_word[str(ix.item())] else: break if int(os.getenv('REMOVE_BAD_ENDINGS', '0')): flag = 0 words = txt.split(' ') for j in range(len(words)): if words[-j-1] not in bad_endings: flag = -j break txt = ' '.join(words[0:len(words)+flag]) out.append(txt.replace('@@ ', '')) return out def save_checkpoint(opt, model, infos, optimizer, histories=None, append=''): if len(append) > 0: append = '-' + append # if checkpoint_path doesn't exist print('!!!!!!!!!!!!!!!!!', opt.checkpoint_path) if not os.path.isdir(opt.checkpoint_path): os.makedirs(opt.checkpoint_path) checkpoint_path = os.path.join(opt.checkpoint_path, 'model%s.pth' %(append)) torch.save(model.state_dict(), checkpoint_path) print("model saved to {}".format(checkpoint_path)) optimizer_path = os.path.join(opt.checkpoint_path, 'optimizer%s.pth' %(append)) torch.save(optimizer.state_dict(), optimizer_path) with open(os.path.join(opt.checkpoint_path, 'infos_'+opt.id+'%s.pkl' %(append)), 'wb') as f: pickle_dump(infos, f) if histories: with open(os.path.join(opt.checkpoint_path, 'histories_'+opt.id+'%s.pkl' %(append)), 'wb') as f: pickle_dump(histories, f) def set_lr(optimizer, lr): for group in optimizer.param_groups: group['lr'] = lr def get_lr(optimizer): for group in optimizer.param_groups: return group['lr'] def build_optimizer(params, opt): if opt.optim == 'rmsprop': return optim.RMSprop(params, opt.learning_rate, opt.optim_alpha, opt.optim_epsilon, weight_decay=opt.weight_decay) elif opt.optim == 'adagrad': return optim.Adagrad(params, opt.learning_rate, weight_decay=opt.weight_decay) elif opt.optim == 'sgd': return optim.SGD(params, opt.learning_rate, weight_decay=opt.weight_decay) elif opt.optim == 'sgdm': return optim.SGD(params, opt.learning_rate, opt.optim_alpha, weight_decay=opt.weight_decay) elif opt.optim == 'sgdmom': return optim.SGD(params, opt.learning_rate, opt.optim_alpha, weight_decay=opt.weight_decay, nesterov=True) elif opt.optim == 'adam': return optim.Adam(params, opt.learning_rate, (opt.optim_alpha, opt.optim_beta), opt.optim_epsilon, weight_decay=opt.weight_decay) elif opt.optim == 'adamw': return optim.AdamW(params, opt.learning_rate, (opt.optim_alpha, opt.optim_beta), opt.optim_epsilon, weight_decay=opt.weight_decay) else: raise Exception("bad option opt.optim: {}".format(opt.optim)) def penalty_builder(penalty_config): if penalty_config == '': return lambda x,y: y pen_type, alpha = penalty_config.split('_') alpha = float(alpha) if pen_type == 'wu': return lambda x,y: length_wu(x,y,alpha) if pen_type == 'avg': return lambda x,y: length_average(x,y,alpha) def length_wu(length, logprobs, alpha=0.): """ NMT length re-ranking score from "Google's Neural Machine Translation System" :cite:`wu2016google`. """ modifier = (((5 + length) ** alpha) / ((5 + 1) ** alpha)) return (logprobs / modifier) def length_average(length, logprobs, alpha=0.): """ Returns the average probability of tokens in a sequence. """ return logprobs / length class NoamOpt(object): "Optim wrapper that implements rate." def __init__(self, model_size, factor, warmup, optimizer): self.optimizer = optimizer self._step = 0 self.warmup = warmup self.factor = factor self.model_size = model_size self._rate = 0 def step(self): "Update parameters and rate" self._step += 1 rate = self.rate() for p in self.optimizer.param_groups: p['lr'] = rate self._rate = rate self.optimizer.step() def rate(self, step = None): "Implement `lrate` above" if step is None: step = self._step return self.factor * \ (self.model_size ** (-0.5) * min(step ** (-0.5), step * self.warmup ** (-1.5))) def __getattr__(self, name): return getattr(self.optimizer, name) def state_dict(self): state_dict = self.optimizer.state_dict() state_dict['_step'] = self._step return state_dict def load_state_dict(self, state_dict): if '_step' in state_dict: self._step = state_dict['_step'] del state_dict['_step'] self.optimizer.load_state_dict(state_dict) class ReduceLROnPlateau(object): "Optim wrapper that implements rate." def __init__(self, optimizer, mode='min', factor=0.1, patience=10, verbose=False, threshold=0.0001, threshold_mode='rel', cooldown=0, min_lr=0, eps=1e-08): self.scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode, factor, patience, verbose, threshold, threshold_mode, cooldown, min_lr, eps) self.optimizer = optimizer self.current_lr = get_lr(optimizer) def step(self): "Update parameters and rate" self.optimizer.step() def scheduler_step(self, val): self.scheduler.step(val) self.current_lr = get_lr(self.optimizer) def state_dict(self): return {'current_lr':self.current_lr, 'scheduler_state_dict': self.scheduler.state_dict(), 'optimizer_state_dict': self.optimizer.state_dict()} def load_state_dict(self, state_dict): if 'current_lr' not in state_dict: # it's normal optimizer self.optimizer.load_state_dict(state_dict) set_lr(self.optimizer, self.current_lr) # use the lr fromt the option else: # it's a schduler self.current_lr = state_dict['current_lr'] self.scheduler.load_state_dict(state_dict['scheduler_state_dict']) self.optimizer.load_state_dict(state_dict['optimizer_state_dict']) # current_lr is actually useless in this case def rate(self, step = None): "Implement `lrate` above" if step is None: step = self._step return self.factor * \ (self.model_size ** (-0.5) * min(step ** (-0.5), step * self.warmup ** (-1.5))) def __getattr__(self, name): return getattr(self.optimizer, name) def get_std_opt(model, optim_func='adam', factor=1, warmup=2000): # return NoamOpt(model.tgt_embed[0].d_model, 2, 4000, # torch.optim.Adam(model.parameters(), lr=0, betas=(0.9, 0.98), eps=1e-9)) optim_func = dict(adam=torch.optim.Adam, adamw=torch.optim.AdamW)[optim_func] return NoamOpt(model.d_model, factor, warmup, optim_func(model.parameters(), lr=0, betas=(0.9, 0.98), eps=1e-9))
connect-caption-and-trace-main
captioning/utils/misc.py
from __future__ import absolute_import from __future__ import division from __future__ import print_function import torch import torch.nn as nn import torch.nn.functional as F import numpy as np import json from json import encoder import random import string import time import os import sys from . import misc as utils # load coco-caption if available try: sys.path.append("coco-caption") from pycocotools.coco import COCO from pycocoevalcap.eval import COCOEvalCap except: print('Warning: coco-caption not available') bad_endings = ['a','an','the','in','for','at','of','with','before','after','on','upon','near','to','is','are','am'] bad_endings += ['the'] def count_bad(sen): sen = sen.split(' ') if sen[-1] in bad_endings: return 1 else: return 0 def getCOCO(dataset): if 'coco' in dataset: annFile = 'coco-caption/annotations/captions_val2014.json' # annFile = 'coco-caption/annotations/captions_LN_val2014_norepeat.json' # load localized narratives for evaluation elif 'flickr30k' in dataset or 'f30k' in dataset: annFile = 'data/f30k_captions4eval.json' return COCO(annFile) def language_eval(dataset, preds, preds_n, eval_kwargs, split): model_id = eval_kwargs['id'] eval_oracle = eval_kwargs.get('eval_oracle', 0) # create output dictionary out = {} if len(preds_n) > 0: # vocab size and novel sentences if 'coco' in dataset: dataset_file = 'data/dataset_coco.json' elif 'flickr30k' in dataset or 'f30k' in dataset: dataset_file = 'data/dataset_flickr30k.json' training_sentences = set([' '.join(__['tokens']) for _ in json.load(open(dataset_file))['images'] if not _['split'] in ['val', 'test'] for __ in _['sentences']]) generated_sentences = set([_['caption'] for _ in preds_n]) novels = generated_sentences - training_sentences out['novel_sentences'] = float(len(novels)) / len(preds_n) tmp = [_.split() for _ in generated_sentences] words = [] for _ in tmp: words += _ out['vocab_size'] = len(set(words)) # encoder.FLOAT_REPR = lambda o: format(o, '.3f') cache_path = os.path.join('eval_results/', '.cache_'+ model_id + '_' + split + '.json') coco = getCOCO(dataset) valids = coco.getImgIds() # filter results to only those in MSCOCO validation set preds_filt = [p for p in preds if p['image_id'] in valids] mean_perplexity = sum([_['perplexity'] for _ in preds_filt]) / len(preds_filt) mean_entropy = sum([_['entropy'] for _ in preds_filt]) / len(preds_filt) print('using %d/%d predictions' % (len(preds_filt), len(preds))) json.dump(preds_filt, open(cache_path, 'w')) # serialize to temporary json file. Sigh, COCO API... cocoRes = coco.loadRes(cache_path) cocoEval = COCOEvalCap(coco, cocoRes) cocoEval.params['image_id'] = cocoRes.getImgIds() cocoEval.evaluate() for metric, score in cocoEval.eval.items(): out[metric] = score # Add mean perplexity out['perplexity'] = mean_perplexity out['entropy'] = mean_entropy imgToEval = cocoEval.imgToEval for k in list(imgToEval.values())[0]['SPICE'].keys(): if k != 'All': out['SPICE_'+k] = np.array([v['SPICE'][k]['f'] for v in imgToEval.values()]) out['SPICE_'+k] = (out['SPICE_'+k][out['SPICE_'+k]==out['SPICE_'+k]]).mean() for p in preds_filt: image_id, caption = p['image_id'], p['caption'] imgToEval[image_id]['caption'] = caption if len(preds_n) > 0: from . import eval_multi cache_path_n = os.path.join('eval_results/', '.cache_'+ model_id + '_' + split + '_n.json') allspice = eval_multi.eval_allspice(dataset, preds_n, model_id, split) out.update(allspice['overall']) div_stats = eval_multi.eval_div_stats(dataset, preds_n, model_id, split) out.update(div_stats['overall']) if eval_oracle: oracle = eval_multi.eval_oracle(dataset, preds_n, model_id, split) out.update(oracle['overall']) else: oracle = None self_cider = eval_multi.eval_self_cider(dataset, preds_n, model_id, split) out.update(self_cider['overall']) with open(cache_path_n, 'w') as outfile: json.dump({'allspice': allspice, 'div_stats': div_stats, 'oracle': oracle, 'self_cider': self_cider}, outfile) out['bad_count_rate'] = sum([count_bad(_['caption']) for _ in preds_filt]) / float(len(preds_filt)) outfile_path = os.path.join('eval_results/', model_id + '_' + split + '.json') with open(outfile_path, 'w') as outfile: json.dump({'overall': out, 'imgToEval': imgToEval}, outfile) return out def eval_split(model, crit, loader, eval_kwargs={}): verbose = eval_kwargs.get('verbose', True) verbose_beam = eval_kwargs.get('verbose_beam', 0) verbose_loss = eval_kwargs.get('verbose_loss', 1) num_images = eval_kwargs.get('num_images', eval_kwargs.get('val_images_use', -1)) split = eval_kwargs.get('split', 'val') lang_eval = eval_kwargs.get('language_eval', 0) dataset = eval_kwargs.get('dataset', 'coco') beam_size = eval_kwargs.get('beam_size', 1) sample_n = eval_kwargs.get('sample_n', 1) remove_bad_endings = eval_kwargs.get('remove_bad_endings', 0) os.environ["REMOVE_BAD_ENDINGS"] = str(remove_bad_endings) # Use this nasty way to make other code clean since it's a global configuration device = eval_kwargs.get('device', 'cuda') # Make sure in the evaluation mode model.eval() loader.reset_iterator(split) n = 0 loss = 0 loss_sum = 0 loss_evals = 1e-8 predictions = [] n_predictions = [] # when sample_n > 1 while True: data = loader.get_batch(split) # print('In eval_utils:', split)###zihang n = n + len(data['infos']) tmp = [data['fc_feats'], data['att_feats'], data['labels'], data['masks'], data['att_masks']] tmp = [_.to(device) if _ is not None else _ for _ in tmp] fc_feats, att_feats, labels, masks, att_masks = tmp if labels is not None and verbose_loss: # forward the model to get loss with torch.no_grad(): loss = crit(model(fc_feats, att_feats, labels[..., :-1], att_masks), labels[..., 1:], masks[..., 1:]).item() loss_sum = loss_sum + loss loss_evals = loss_evals + 1 # forward the model to also get generated samples for each image with torch.no_grad(): tmp_eval_kwargs = eval_kwargs.copy() tmp_eval_kwargs.update({'sample_n': 1}) seq, seq_logprobs = model(fc_feats, att_feats, att_masks, opt=tmp_eval_kwargs, mode='sample') seq = seq.data entropy = - (F.softmax(seq_logprobs, dim=2) * seq_logprobs).sum(2).sum(1) / ((seq>0).to(seq_logprobs).sum(1)+1) perplexity = - seq_logprobs.gather(2, seq.unsqueeze(2)).squeeze(2).sum(1) / ((seq>0).to(seq_logprobs).sum(1)+1) # Print beam search if beam_size > 1 and verbose_beam: for i in range(fc_feats.shape[0]): print('\n'.join([utils.decode_sequence(model.vocab, _['seq'].unsqueeze(0))[0] for _ in model.done_beams[i]])) print('--' * 10) sents = utils.decode_sequence(model.vocab, seq) for k, sent in enumerate(sents): entry = {'image_id': data['infos'][k]['id'], 'caption': sent, 'perplexity': perplexity[k].item(), 'entropy': entropy[k].item()} if eval_kwargs.get('dump_path', 0) == 1: entry['file_name'] = data['infos'][k]['file_path'] predictions.append(entry) if eval_kwargs.get('dump_images', 0) == 1: # dump the raw image to vis/ folder cmd = 'cp "' + os.path.join(eval_kwargs['image_root'], data['infos'][k]['file_path']) + '" vis/imgs/img' + str(len(predictions)) + '.jpg' # bit gross print(cmd) os.system(cmd) if verbose: print('image %s: %s' %(entry['image_id'], entry['caption'])) if sample_n > 1: eval_split_n(model, n_predictions, [fc_feats, att_feats, att_masks, data], eval_kwargs) # ix0 = data['bounds']['it_pos_now'] ix1 = data['bounds']['it_max'] # print('ix1', ix1)###zihang if num_images != -1: ix1 = min(ix1, num_images) else: num_images = ix1 # print('len:', len(predictions), n, ix1, split, num_images) ###zihang for i in range(n - ix1): predictions.pop() if verbose: print('evaluating validation preformance... %d/%d (%f)' %(n, ix1, loss)) if num_images >= 0 and n >= num_images: break lang_stats = None if len(n_predictions) > 0 and 'perplexity' in n_predictions[0]: n_predictions = sorted(n_predictions, key=lambda x: x['perplexity']) if not os.path.isdir('eval_results'): os.mkdir('eval_results') torch.save((predictions, n_predictions), os.path.join('eval_results/', '.saved_pred_'+ eval_kwargs['id'] + '_' + split + '.pth')) if lang_eval == 1: lang_stats = language_eval(dataset, predictions, n_predictions, eval_kwargs, split) # Switch back to training mode model.train() return loss_sum/loss_evals, predictions, lang_stats # Only run when sample_n > 0 def eval_split_n(model, n_predictions, input_data, eval_kwargs={}): verbose = eval_kwargs.get('verbose', True) beam_size = eval_kwargs.get('beam_size', 1) sample_n = eval_kwargs.get('sample_n', 1) sample_n_method = eval_kwargs.get('sample_n_method', 'sample') fc_feats, att_feats, att_masks, data = input_data tmp_eval_kwargs = eval_kwargs.copy() if sample_n_method == 'bs': # case 1 sample_n == beam size tmp_eval_kwargs.update({'sample_n': 1, 'beam_size': sample_n, 'group_size': 1}) # randomness from softmax with torch.no_grad(): model(fc_feats, att_feats, att_masks, opt=tmp_eval_kwargs, mode='sample') for k in range(fc_feats.shape[0]): _sents = utils.decode_sequence(model.vocab, torch.stack([model.done_beams[k][_]['seq'] for _ in range(sample_n)])) for sent in _sents: entry = {'image_id': data['infos'][k]['id'], 'caption': sent} n_predictions.append(entry) # case 2 sample / gumbel / topk sampling/ nucleus sampling elif sample_n_method == 'sample' or \ sample_n_method == 'gumbel' or \ sample_n_method.startswith('top'): tmp_eval_kwargs.update({'sample_n': sample_n, 'sample_method': sample_n_method, 'beam_size': 1}) # randomness from sample with torch.no_grad(): _seq, _sampleLogprobs = model(fc_feats, att_feats, att_masks, opt=tmp_eval_kwargs, mode='sample') _sents = utils.decode_sequence(model.vocab, _seq) _perplexity = - _sampleLogprobs.gather(2, _seq.unsqueeze(2)).squeeze(2).sum(1) / ((_seq>0).to(_sampleLogprobs).sum(1)+1) for k, sent in enumerate(_sents): entry = {'image_id': data['infos'][k // sample_n]['id'], 'caption': sent, 'perplexity': _perplexity[k].item()} n_predictions.append(entry) elif sample_n_method == 'dbs': # Use diverse beam search tmp_eval_kwargs.update({'beam_size': sample_n * beam_size, 'group_size': sample_n}) # randomness from softmax with torch.no_grad(): model(fc_feats, att_feats, att_masks, opt=tmp_eval_kwargs, mode='sample') for k in range(loader.batch_size): _sents = utils.decode_sequence(model.vocab, torch.stack([model.done_beams[k][_]['seq'] for _ in range(0, sample_n*beam_size, beam_size)])) for sent in _sents: entry = {'image_id': data['infos'][k]['id'], 'caption': sent} n_predictions.append(entry) else: tmp_eval_kwargs.update({'sample_method': sample_n_method[1:], 'group_size': sample_n, 'beam_size':1}) # randomness from softmax with torch.no_grad(): _seq, _sampleLogprobs = model(fc_feats, att_feats, att_masks, opt=tmp_eval_kwargs, mode='sample') _sents = utils.decode_sequence(model.vocab, _seq) for k, sent in enumerate(_sents): entry = {'image_id': data['infos'][k // sample_n]['id'], 'caption': sent} n_predictions.append(entry) if verbose: for entry in sorted(n_predictions[-fc_feats.shape[0] * sample_n:], key=lambda x: x['image_id']): print('image %s: %s' %(entry['image_id'], entry['caption']))
connect-caption-and-trace-main
captioning/utils/eval_utils_orig.py
from __future__ import absolute_import from __future__ import division from __future__ import print_function import torch import torch.nn as nn import numpy as np import json from json import encoder import random import string import time import os import sys from . import misc as utils from eval_utils import getCOCO from .div_utils import compute_div_n, compute_global_div_n import sys try: sys.path.append("coco-caption") annFile = 'coco-caption/annotations/captions_val2014.json' from pycocotools.coco import COCO from pycocoevalcap.eval import COCOEvalCap from pycocoevalcap.eval_spice import COCOEvalCapSpice from pycocoevalcap.tokenizer.ptbtokenizer import PTBTokenizer from pycocoevalcap.bleu.bleu import Bleu sys.path.append("cider") from pyciderevalcap.cider.cider import Cider except: print('Warning: requirements for eval_multi not satisfied') def eval_allspice(dataset, preds_n, model_id, split): coco = getCOCO(dataset) valids = coco.getImgIds() capsById = {} for d in preds_n: capsById[d['image_id']] = capsById.get(d['image_id'], []) + [d] # filter results to only those in MSCOCO validation set (will be about a third) preds_filt_n = [p for p in preds_n if p['image_id'] in valids] print('using %d/%d predictions_n' % (len(preds_filt_n), len(preds_n))) cache_path_n = os.path.join('eval_results/', model_id + '_' + split + '_n.json') json.dump(preds_filt_n, open(cache_path_n, 'w')) # serialize to temporary json file. Sigh, COCO API... # Eval AllSPICE cocoRes_n = coco.loadRes(cache_path_n) cocoEvalAllSPICE = COCOEvalCapSpice(coco, cocoRes_n) cocoEvalAllSPICE.params['image_id'] = cocoRes_n.getImgIds() cocoEvalAllSPICE.evaluate() out = {} for metric, score in cocoEvalAllSPICE.eval.items(): out['All'+metric] = score imgToEvalAllSPICE = cocoEvalAllSPICE.imgToEval # collect SPICE_sub_score for k in list(imgToEvalAllSPICE.values())[0]['SPICE'].keys(): if k != 'All': out['AllSPICE_'+k] = np.array([v['SPICE'][k]['f'] for v in imgToEvalAllSPICE.values()]) out['AllSPICE_'+k] = (out['AllSPICE_'+k][out['AllSPICE_'+k]==out['AllSPICE_'+k]]).mean() for p in preds_filt_n: image_id, caption = p['image_id'], p['caption'] imgToEvalAllSPICE[image_id]['caption'] = capsById[image_id] return {'overall': out, 'imgToEvalAllSPICE': imgToEvalAllSPICE} def eval_oracle(dataset, preds_n, model_id, split): cache_path = os.path.join('eval_results/', model_id + '_' + split + '_n.json') coco = getCOCO(dataset) valids = coco.getImgIds() capsById = {} for d in preds_n: capsById[d['image_id']] = capsById.get(d['image_id'], []) + [d] sample_n = capsById[list(capsById.keys())[0]] for i in range(len(capsById[list(capsById.keys())[0]])): preds = [_[i] for _ in capsById.values()] json.dump(preds, open(cache_path, 'w')) # serialize to temporary json file. Sigh, COCO API... cocoRes = coco.loadRes(cache_path) cocoEval = COCOEvalCap(coco, cocoRes) cocoEval.params['image_id'] = cocoRes.getImgIds() cocoEval.evaluate() imgToEval = cocoEval.imgToEval for img_id in capsById.keys(): tmp = imgToEval[img_id] for k in tmp['SPICE'].keys(): if k != 'All': tmp['SPICE_'+k] = tmp['SPICE'][k]['f'] if tmp['SPICE_'+k] != tmp['SPICE_'+k]: # nan tmp['SPICE_'+k] = -100 tmp['SPICE'] = tmp['SPICE']['All']['f'] if tmp['SPICE'] != tmp['SPICE']: tmp['SPICE'] = -100 capsById[img_id][i]['scores'] = imgToEval[img_id] out = {'overall': {}, 'ImgToEval': {}} for img_id in capsById.keys(): out['ImgToEval'][img_id] = {} for metric in capsById[img_id][0]['scores'].keys(): if metric == 'image_id': continue out['ImgToEval'][img_id]['oracle_'+metric] = max([_['scores'][metric] for _ in capsById[img_id]]) out['ImgToEval'][img_id]['avg_'+metric] = sum([_['scores'][metric] for _ in capsById[img_id]]) / len(capsById[img_id]) out['ImgToEval'][img_id]['captions'] = capsById[img_id] for metric in list(out['ImgToEval'].values())[0].keys(): if metric == 'captions': continue tmp = np.array([_[metric] for _ in out['ImgToEval'].values()]) tmp = tmp[tmp!=-100] out['overall'][metric] = tmp.mean() return out def eval_div_stats(dataset, preds_n, model_id, split): tokenizer = PTBTokenizer() capsById = {} for i, d in enumerate(preds_n): d['id'] = i capsById[d['image_id']] = capsById.get(d['image_id'], []) + [d] n_caps_perimg = len(capsById[list(capsById.keys())[0]]) print(n_caps_perimg) _capsById = capsById # save the untokenized version capsById = tokenizer.tokenize(capsById) div_1, adiv_1 = compute_div_n(capsById,1) div_2, adiv_2 = compute_div_n(capsById,2) globdiv_1, _= compute_global_div_n(capsById,1) print('Diversity Statistics are as follows: \n Div1: %.2f, Div2: %.2f, gDiv1: %d\n'%(div_1,div_2, globdiv_1)) # compute mbleu scorer = Bleu(4) all_scrs = [] scrperimg = np.zeros((n_caps_perimg, len(capsById))) for i in range(n_caps_perimg): tempRefsById = {} candsById = {} for k in capsById: tempRefsById[k] = capsById[k][:i] + capsById[k][i+1:] candsById[k] = [capsById[k][i]] score, scores = scorer.compute_score(tempRefsById, candsById) all_scrs.append(score) scrperimg[i,:] = scores[1] all_scrs = np.array(all_scrs) out = {} out['overall'] = {'Div1': div_1, 'Div2': div_2, 'gDiv1': globdiv_1} for k, score in zip(range(4), all_scrs.mean(axis=0).tolist()): out['overall'].update({'mBLeu_%d'%(k+1): score}) imgToEval = {} for i,imgid in enumerate(capsById.keys()): imgToEval[imgid] = {'mBleu_2' : scrperimg[:,i].mean()} imgToEval[imgid]['individuals'] = [] for j, d in enumerate(_capsById[imgid]): imgToEval[imgid]['individuals'].append(preds_n[d['id']]) imgToEval[imgid]['individuals'][-1]['mBleu_2'] = scrperimg[j,i] out['ImgToEval'] = imgToEval print('Mean mutual Bleu scores on this set is:\nmBLeu_1, mBLeu_2, mBLeu_3, mBLeu_4') print(all_scrs.mean(axis=0)) return out def eval_self_cider(dataset, preds_n, model_id, split): cache_path = os.path.join('eval_results/', model_id + '_' + split + '_n.json') coco = getCOCO(dataset) valids = coco.getImgIds() # Get Cider_scorer Cider_scorer = Cider(df='corpus') tokenizer = PTBTokenizer() gts = {} for imgId in valids: gts[imgId] = coco.imgToAnns[imgId] gts = tokenizer.tokenize(gts) for imgId in valids: Cider_scorer.cider_scorer += (None, gts[imgId]) Cider_scorer.cider_scorer.compute_doc_freq() Cider_scorer.cider_scorer.ref_len = np.log(float(len(Cider_scorer.cider_scorer.crefs))) # Prepare captions capsById = {} for d in preds_n: capsById[d['image_id']] = capsById.get(d['image_id'], []) + [d] capsById = tokenizer.tokenize(capsById) imgIds = list(capsById.keys()) scores = Cider_scorer.my_self_cider([capsById[_] for _ in imgIds]) def get_div(eigvals): eigvals = np.clip(eigvals, 0, None) return -np.log(np.sqrt(eigvals[-1]) / (np.sqrt(eigvals).sum())) / np.log(len(eigvals)) sc_scores = [get_div(np.linalg.eigvalsh(_/10)) for _ in scores] score = np.mean(np.array(sc_scores)) imgToEval = {} for i, image_id in enumerate(imgIds): imgToEval[image_id] = {'self_cider': sc_scores[i], 'self_cider_mat': scores[i].tolist()} return {'overall': {'self_cider': score}, 'imgToEval': imgToEval} return score
connect-caption-and-trace-main
captioning/utils/eval_multi.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # Copy from fvcore import logging import os from typing import Any import yaml from yacs.config import CfgNode as _CfgNode import io as PathManager BASE_KEY = "_BASE_" class CfgNode(_CfgNode): """ Our own extended version of :class:`yacs.config.CfgNode`. It contains the following extra features: 1. The :meth:`merge_from_file` method supports the "_BASE_" key, which allows the new CfgNode to inherit all the attributes from the base configuration file. 2. Keys that start with "COMPUTED_" are treated as insertion-only "computed" attributes. They can be inserted regardless of whether the CfgNode is frozen or not. 3. With "allow_unsafe=True", it supports pyyaml tags that evaluate expressions in config. See examples in https://pyyaml.org/wiki/PyYAMLDocumentation#yaml-tags-and-python-types Note that this may lead to arbitrary code execution: you must not load a config file from untrusted sources before manually inspecting the content of the file. """ @staticmethod def load_yaml_with_base(filename, allow_unsafe = False): """ Just like `yaml.load(open(filename))`, but inherit attributes from its `_BASE_`. Args: filename (str): the file name of the current config. Will be used to find the base config file. allow_unsafe (bool): whether to allow loading the config file with `yaml.unsafe_load`. Returns: (dict): the loaded yaml """ with PathManager.open(filename, "r") as f: try: cfg = yaml.safe_load(f) except yaml.constructor.ConstructorError: if not allow_unsafe: raise logger = logging.getLogger(__name__) logger.warning( "Loading config {} with yaml.unsafe_load. Your machine may " "be at risk if the file contains malicious content.".format( filename ) ) f.close() with open(filename, "r") as f: cfg = yaml.unsafe_load(f) def merge_a_into_b(a, b): # merge dict a into dict b. values in a will overwrite b. for k, v in a.items(): if isinstance(v, dict) and k in b: assert isinstance( b[k], dict ), "Cannot inherit key '{}' from base!".format(k) merge_a_into_b(v, b[k]) else: b[k] = v if BASE_KEY in cfg: base_cfg_file = cfg[BASE_KEY] if base_cfg_file.startswith("~"): base_cfg_file = os.path.expanduser(base_cfg_file) if not any( map(base_cfg_file.startswith, ["/", "https://", "http://"]) ): # the path to base cfg is relative to the config file itself. base_cfg_file = os.path.join( os.path.dirname(filename), base_cfg_file ) base_cfg = CfgNode.load_yaml_with_base( base_cfg_file, allow_unsafe=allow_unsafe ) del cfg[BASE_KEY] merge_a_into_b(cfg, base_cfg) return base_cfg return cfg def merge_from_file(self, cfg_filename, allow_unsafe = False): """ Merge configs from a given yaml file. Args: cfg_filename: the file name of the yaml config. allow_unsafe: whether to allow loading the config file with `yaml.unsafe_load`. """ loaded_cfg = CfgNode.load_yaml_with_base( cfg_filename, allow_unsafe=allow_unsafe ) loaded_cfg = type(self)(loaded_cfg) self.merge_from_other_cfg(loaded_cfg) # Forward the following calls to base, but with a check on the BASE_KEY. def merge_from_other_cfg(self, cfg_other): """ Args: cfg_other (CfgNode): configs to merge from. """ assert ( BASE_KEY not in cfg_other ), "The reserved key '{}' can only be used in files!".format(BASE_KEY) return super().merge_from_other_cfg(cfg_other) def merge_from_list(self, cfg_list): """ Args: cfg_list (list): list of configs to merge from. """ keys = set(cfg_list[0::2]) assert ( BASE_KEY not in keys ), "The reserved key '{}' can only be used in files!".format(BASE_KEY) return super().merge_from_list(cfg_list) def __setattr__(self, name, val): if name.startswith("COMPUTED_"): if name in self: old_val = self[name] if old_val == val: return raise KeyError( "Computed attributed '{}' already exists " "with a different value! old={}, new={}.".format( name, old_val, val ) ) self[name] = val else: super().__setattr__(name, val) if __name__ == '__main__': cfg = CfgNode.load_yaml_with_base('configs/updown_long.yml') print(cfg)
connect-caption-and-trace-main
captioning/utils/config.py
from __future__ import absolute_import from __future__ import division from __future__ import print_function import torch import torch.nn as nn import torch.nn.functional as F import numpy as np import json from json import encoder import random import string import time import os import sys from . import misc as utils from .local_optimal_transport import local_OT from ..models import utils as utils_models # load coco-caption if available try: sys.path.append("coco-caption") from pycocotools.coco import COCO from pycocoevalcap.eval import COCOEvalCap except: print('Warning: coco-caption not available') bad_endings = ['a','an','the','in','for','at','of','with','before','after','on','upon','near','to','is','are','am'] bad_endings += ['the'] def count_bad(sen): sen = sen.split(' ') if sen[-1] in bad_endings: return 1 else: return 0 def getCOCO(dataset): if 'coco' in dataset: annFile = 'coco-caption/annotations/captions_val2014.json' # annFile = 'coco-caption/annotations/captions_LN_val2014_norepeat.json' # load localized narratives for evaluation # annFile = 'coco-caption/annotations/captions_LN_8kval.json' # load 8k LN validation set elif 'flickr30k' in dataset or 'f30k' in dataset: annFile = 'data/f30k_captions4eval.json' return COCO(annFile) def language_eval(dataset, preds, preds_n, eval_kwargs, split): model_id = eval_kwargs['id'] eval_oracle = eval_kwargs.get('eval_oracle', 0) # create output dictionary out = {} if len(preds_n) > 0: # vocab size and novel sentences if 'coco' in dataset: dataset_file = 'data/dataset_coco.json' elif 'flickr30k' in dataset or 'f30k' in dataset: dataset_file = 'data/dataset_flickr30k.json' training_sentences = set([' '.join(__['tokens']) for _ in json.load(open(dataset_file))['images'] if not _['split'] in ['val', 'test'] for __ in _['sentences']]) generated_sentences = set([_['caption'] for _ in preds_n]) novels = generated_sentences - training_sentences out['novel_sentences'] = float(len(novels)) / len(preds_n) tmp = [_.split() for _ in generated_sentences] words = [] for _ in tmp: words += _ out['vocab_size'] = len(set(words)) # encoder.FLOAT_REPR = lambda o: format(o, '.3f') cache_path = os.path.join('eval_results/', '.cache_'+ model_id + '_' + split + '.json') coco = getCOCO(dataset) valids = coco.getImgIds() # filter results to only those in MSCOCO validation set preds_filt = [p for p in preds if p['image_id'] in valids] mean_perplexity = sum([_['perplexity'] for _ in preds_filt]) / len(preds_filt) mean_entropy = sum([_['entropy'] for _ in preds_filt]) / len(preds_filt) print('using %d/%d predictions' % (len(preds_filt), len(preds))) json.dump(preds_filt, open(cache_path, 'w')) # serialize to temporary json file. Sigh, COCO API... cocoRes = coco.loadRes(cache_path) cocoEval = COCOEvalCap(coco, cocoRes) cocoEval.params['image_id'] = cocoRes.getImgIds() cocoEval.evaluate() for metric, score in cocoEval.eval.items(): out[metric] = score # Add mean perplexity out['perplexity'] = mean_perplexity out['entropy'] = mean_entropy imgToEval = cocoEval.imgToEval for k in list(imgToEval.values())[0]['SPICE'].keys(): if k != 'All': out['SPICE_'+k] = np.array([v['SPICE'][k]['f'] for v in imgToEval.values()]) out['SPICE_'+k] = (out['SPICE_'+k][out['SPICE_'+k]==out['SPICE_'+k]]).mean() for p in preds_filt: image_id, caption = p['image_id'], p['caption'] imgToEval[image_id]['caption'] = caption if len(preds_n) > 0: from . import eval_multi cache_path_n = os.path.join('eval_results/', '.cache_'+ model_id + '_' + split + '_n.json') allspice = eval_multi.eval_allspice(dataset, preds_n, model_id, split) out.update(allspice['overall']) div_stats = eval_multi.eval_div_stats(dataset, preds_n, model_id, split) out.update(div_stats['overall']) if eval_oracle: oracle = eval_multi.eval_oracle(dataset, preds_n, model_id, split) out.update(oracle['overall']) else: oracle = None self_cider = eval_multi.eval_self_cider(dataset, preds_n, model_id, split) out.update(self_cider['overall']) with open(cache_path_n, 'w') as outfile: json.dump({'allspice': allspice, 'div_stats': div_stats, 'oracle': oracle, 'self_cider': self_cider}, outfile) out['bad_count_rate'] = sum([count_bad(_['caption']) for _ in preds_filt]) / float(len(preds_filt)) outfile_path = os.path.join('eval_results/', model_id + '_' + split + '.json') with open(outfile_path, 'w') as outfile: json.dump({'overall': out, 'imgToEval': imgToEval}, outfile) return out def eval_split(model, crit, loader, task='caption', eval_kwargs={}): verbose = eval_kwargs.get('verbose', True) verbose_beam = eval_kwargs.get('verbose_beam', 0) verbose_loss = eval_kwargs.get('verbose_loss', 1) num_images = eval_kwargs.get('num_images', eval_kwargs.get('val_images_use', -1)) split = eval_kwargs.get('split', 'val') lang_eval = eval_kwargs.get('language_eval', 0) dataset = eval_kwargs.get('dataset', 'coco') beam_size = eval_kwargs.get('beam_size', 1) sample_n = eval_kwargs.get('sample_n', 1) remove_bad_endings = eval_kwargs.get('remove_bad_endings', 0) os.environ["REMOVE_BAD_ENDINGS"] = str(remove_bad_endings) # Use this nasty way to make other code clean since it's a global configuration device = eval_kwargs.get('device', 'cuda') # assert task assert task in ['caption', 'trace', 'both', 'show'] # Make sure in the evaluation mode model.eval() loader.reset_iterator(split) n = 0 loss = 0 loss_sum = 0 loss_evals = 1e-8 predictions = [] n_predictions = [] # when sample_n > 1 grounding_quality_loss = [] # for donstream task 2 while True: data = loader.get_batch(split) # print('In eval_utils:', split)###zihang print(num_images) n = n + len(data['infos']) tmp = [data['fc_feats'], data['att_feats'], data['trace_feats'], data['box_feats'], data['labels'], data['masks'], data['att_masks'], data['trace_masks'], data['show_labels'], data['show_trace_feats'], data['show_trace_masks'], data['show_masks'], data['show_gate_labels']] tmp = [_.to(device) if _ is not None else _ for _ in tmp] fc_feats, att_feats, trace_feats, box_feats, labels, masks, att_masks, \ trace_masks, show_labels, show_trace_feats, show_trace_masks, show_masks, show_gate_labels = tmp if labels is not None and verbose_loss: # forward the model to get loss with torch.no_grad(): if task == 'caption': loss = 0 # loss = crit(model(fc_feats, att_feats, trace_feats, box_feats, labels[..., :-1], att_masks, trace_masks, task=task), labels[..., 1:], masks[..., 1:]).item() elif task == 'show': loss = crit( model(fc_feats, att_feats, show_trace_feats, box_feats, show_labels[..., :-1], att_masks, show_trace_masks, show_gate_labels, task=task), show_labels[..., 1:], show_masks[..., 1:]).item() elif task == 'both': loss = crit( model(fc_feats, att_feats, trace_feats, box_feats, labels[..., :-1], att_masks, trace_masks, task=task)[0], labels[..., 1:], masks[..., 1:]).item() loss_sum = loss_sum + loss loss_evals = loss_evals + 1 test_grounding_quality = True test_baseline = False # forward the model to also get generated samples for each image with torch.no_grad(): tmp_eval_kwargs = eval_kwargs.copy() tmp_eval_kwargs.update({'sample_n': 1}) ### repeat att feats if test_grounding_quality: fc_feats, att_feats, att_masks, box_feats = utils_models.repeat_tensors(5, [fc_feats, att_feats, att_masks, box_feats] ) ############################# if task == 'both': seq, seq_logprobs, _ = model(fc_feats, att_feats, show_trace_feats[:att_feats.shape[0]], box_feats, att_masks, show_trace_masks[:att_feats.shape[0]], show_gate_labels[:att_feats.shape[0]], task, opt=tmp_eval_kwargs, mode='sample') # use gt-truth to get prediction _, trace_output = model(fc_feats, att_feats, show_trace_feats[:,:17], box_feats, show_labels[..., :-1].squeeze(1), att_masks, show_masks.squeeze(1)[:,:17], task='both') # ### debug try using trace to give trace output # print(show_trace_feats.shape, show_labels.shape, show_masks.shape) # trace_output = model(fc_feats, att_feats, show_trace_feats[:, :17], box_feats, # show_labels[..., :-1].squeeze(1), # att_masks, show_masks.squeeze(1), task='trace') else: if test_baseline is True and task == 'caption': seq, seq_logprobs, word_box_attn = model(fc_feats, att_feats, show_trace_feats[:att_feats.shape[0]], box_feats, att_masks, show_trace_masks[:att_feats.shape[0]], show_gate_labels[:att_feats.shape[0]], task, opt=tmp_eval_kwargs, mode='sample') else: seq, seq_logprobs = model(fc_feats, att_feats, show_trace_feats[:att_feats.shape[0]], box_feats, att_masks, show_trace_masks[:att_feats.shape[0]], show_gate_labels[:att_feats.shape[0]], task, opt=tmp_eval_kwargs, mode='sample') seq = seq.data entropy = - (F.softmax(seq_logprobs, dim=2) * seq_logprobs).sum(2).sum(1) / ((seq>0).to(seq_logprobs).sum(1)+1) perplexity = - seq_logprobs.gather(2, seq.unsqueeze(2)).squeeze(2).sum(1) / ((seq>0).to(seq_logprobs).sum(1)+1) ### log which caption has no bounding box ids_no_box = (show_trace_feats[:, 0, 4] == 1).float() # only focus on the gt-words if test_grounding_quality: batch_grounding_loss = [] if test_baseline: word_box_attn = torch.argmax(word_box_attn, dim=-1) # match the generated word with the show-caption show_labels = show_labels[:, :, 1:-1] for i in range(seq.shape[0]): # for j in range(seq.shape[1]): for k in range(show_labels.shape[2]): if show_trace_feats[i, k, 4] != 1 and show_labels[i, 0, k] != 0: # if show_trace_feats[i, k, 4] != 1 and show_labels[i, 0, k] != 0 \ # and seq[i, k] == show_labels[ # i, 0, k]: # the word match with the key word and show_labels[i,0,k] != 1 gt_box = show_trace_feats[i, k] # get the grounding box if test_baseline: pred_box_idx = word_box_attn[i, k].long() pred_box = box_feats[i, pred_box_idx] # get the predicted box else: pred_box = trace_output[i, k] # print(gt_box, pred_box, seq[i,j]) tmp_loss = torch.mean(torch.abs(gt_box[:4] - pred_box[:4])) batch_grounding_loss.append(tmp_loss.item()) ### compute the grounding quality # if test_grounding_quality: # batch_grounding_loss = [] # if test_baseline: # word_box_attn = torch.argmax(word_box_attn, dim=-1) # # match the generated word with the show-caption # for i in range(seq.shape[0]): # for j in range(seq.shape[1]): # for k in range(show_labels.shape[2]): # if show_trace_feats[i,k,4]!=1 and show_labels[i,0,k] != 0 \ # and seq[i,j] == show_labels[i,0,k]: # the word match with the key word and show_labels[i,0,k] != 1 # gt_box = show_trace_feats[i, k] # get the grounding box # if test_baseline: # pred_box_idx = word_box_attn[i,j].long() # pred_box = box_feats[i, pred_box_idx] # get the predicted box # else: # pred_box = trace_output[i, j] # # print(gt_box, pred_box, seq[i,j]) # tmp_loss = torch.mean(torch.abs(gt_box[:4] - pred_box[:4])) # batch_grounding_loss.append(tmp_loss.item()) # else: # assert task == 'both' # for i in range(seq.shape[0]): # for j in range(seq.shape[1]): # for k in range(show_labels.shape[2]): # if seq[i, j] != 0 and seq[i, j] == show_labels[i, 0, k]: # the word match with the key word # gt_box = show_trace_feats[i, k] # get the grounding box # pred_box = trace_output[i,j] # tmp_loss = torch.mean(torch.abs(gt_box[:4] - pred_box[:4])) # batch_grounding_loss.append(tmp_loss.item()) grounding_quality_loss.append(np.mean(np.array(batch_grounding_loss))) print('Visual grounding quality running ave: ', np.mean(np.array(grounding_quality_loss))) seq = seq.reshape([-1, 5, 20])[:,0,:] # Print beam search if beam_size > 1 and verbose_beam: for i in range(fc_feats.shape[0]): print('\n'.join([utils.decode_sequence(model.vocab, _['seq'].unsqueeze(0))[0] for _ in model.done_beams[i]])) print('--' * 10) sents = utils.decode_sequence(model.vocab, seq) for k, sent in enumerate(sents): entry = {'image_id': data['infos'][k]['id'], 'caption': sent, 'perplexity': perplexity[k].item(), 'entropy': entropy[k].item()} # entry to evaluate show-control-tell: seperate the 5 predictions per image # if ids_no_box[k]==1: # continue # entry = {'image_id': data['infos'][k//5]['id'] + 1000000 * (k%5), 'caption': sent, 'perplexity': perplexity[k].item(), # 'entropy': entropy[k].item()} if eval_kwargs.get('dump_path', 0) == 1: entry['file_name'] = data['infos'][k]['file_path'] predictions.append(entry) if eval_kwargs.get('dump_images', 0) == 1: # dump the raw image to vis/ folder cmd = 'cp "' + os.path.join(eval_kwargs['image_root'], data['infos'][k]['file_path']) + '" vis/imgs/img' + str(len(predictions)) + '.jpg' # bit gross print(cmd) os.system(cmd) if verbose: print('image %s: %s' %(entry['image_id'], entry['caption'])) if sample_n > 1: eval_split_n(model, n_predictions, [fc_feats, att_feats, trace_feats, box_feats, att_masks, trace_masks, data], eval_kwargs) # ix0 = data['bounds']['it_pos_now'] ix1 = data['bounds']['it_max'] # print('ix1', ix1)###zihang if num_images != -1: ix1 = min(ix1, num_images) else: num_images = ix1 # print('len:', len(predictions), n, ix1, split, num_images) ###zihang for i in range(n - ix1): predictions.pop() if verbose: print('evaluating validation preformance... %d/%d (%f)' %(n, ix1, loss)) if num_images >= 0 and n >= num_images: break print('Total visual grounding quality loss:', np.mean(np.array(grounding_quality_loss))) lang_stats = None if len(n_predictions) > 0 and 'perplexity' in n_predictions[0]: n_predictions = sorted(n_predictions, key=lambda x: x['perplexity']) if not os.path.isdir('eval_results'): os.mkdir('eval_results') torch.save((predictions, n_predictions), os.path.join('eval_results/', '.saved_pred_'+ eval_kwargs['id'] + '_' + split + '.pth')) if lang_eval == 1: lang_stats = language_eval(dataset, predictions, n_predictions, eval_kwargs, split) # Switch back to training mode model.train() return loss_sum/loss_evals, predictions, lang_stats # Only run when sample_n > 0 def eval_split_n(model, n_predictions, input_data, eval_kwargs={}): verbose = eval_kwargs.get('verbose', True) beam_size = eval_kwargs.get('beam_size', 1) sample_n = eval_kwargs.get('sample_n', 1) sample_n_method = eval_kwargs.get('sample_n_method', 'sample') fc_feats, att_feats, trace_feats, box_feats, att_masks, trace_masks, data = input_data tmp_eval_kwargs = eval_kwargs.copy() if sample_n_method == 'bs': # case 1 sample_n == beam size tmp_eval_kwargs.update({'sample_n': 1, 'beam_size': sample_n, 'group_size': 1}) # randomness from softmax with torch.no_grad(): model(fc_feats, att_feats, trace_feats, box_feats, att_masks, trace_masks, opt=tmp_eval_kwargs, mode='sample') for k in range(fc_feats.shape[0]): _sents = utils.decode_sequence(model.vocab, torch.stack([model.done_beams[k][_]['seq'] for _ in range(sample_n)])) for sent in _sents: entry = {'image_id': data['infos'][k]['id'], 'caption': sent} n_predictions.append(entry) # case 2 sample / gumbel / topk sampling/ nucleus sampling elif sample_n_method == 'sample' or \ sample_n_method == 'gumbel' or \ sample_n_method.startswith('top'): tmp_eval_kwargs.update({'sample_n': sample_n, 'sample_method': sample_n_method, 'beam_size': 1}) # randomness from sample with torch.no_grad(): _seq, _sampleLogprobs = model(fc_feats, att_feats, trace_feats, box_feats, att_masks, trace_masks, opt=tmp_eval_kwargs, mode='sample') _sents = utils.decode_sequence(model.vocab, _seq) _perplexity = - _sampleLogprobs.gather(2, _seq.unsqueeze(2)).squeeze(2).sum(1) / ((_seq>0).to(_sampleLogprobs).sum(1)+1) for k, sent in enumerate(_sents): entry = {'image_id': data['infos'][k // sample_n]['id'], 'caption': sent, 'perplexity': _perplexity[k].item()} n_predictions.append(entry) elif sample_n_method == 'dbs': # Use diverse beam search tmp_eval_kwargs.update({'beam_size': sample_n * beam_size, 'group_size': sample_n}) # randomness from softmax with torch.no_grad(): model(fc_feats, att_feats, trace_feats, box_feats, att_masks, trace_masks, opt=tmp_eval_kwargs, mode='sample') for k in range(loader.batch_size): _sents = utils.decode_sequence(model.vocab, torch.stack([model.done_beams[k][_]['seq'] for _ in range(0, sample_n*beam_size, beam_size)])) for sent in _sents: entry = {'image_id': data['infos'][k]['id'], 'caption': sent} n_predictions.append(entry) else: tmp_eval_kwargs.update({'sample_method': sample_n_method[1:], 'group_size': sample_n, 'beam_size':1}) # randomness from softmax with torch.no_grad(): _seq, _sampleLogprobs = model(fc_feats, att_feats, trace_feats, box_feats, att_masks, trace_masks, opt=tmp_eval_kwargs, mode='sample') _sents = utils.decode_sequence(model.vocab, _seq) for k, sent in enumerate(_sents): entry = {'image_id': data['infos'][k // sample_n]['id'], 'caption': sent} n_predictions.append(entry) if verbose: for entry in sorted(n_predictions[-fc_feats.shape[0] * sample_n:], key=lambda x: x['image_id']): print('image %s: %s' %(entry['image_id'], entry['caption'])) def eval_trace_generation(model, crit, loader, eval_kwargs={}): model.eval() count = 0 split = 'val' loader.reset_iterator(split) device = 'cuda' num_images = eval_kwargs.get('num_images', eval_kwargs.get('val_images_use', -1)) while True: data = loader.get_batch(split) # print(data['infos'][0]['id']) ix1 = data['bounds']['it_max'] # print('ix1', ix1)###zihang if num_images != -1: ix1 = min(ix1, num_images) else: num_images = ix1 tmp = [data['fc_feats'], data['att_feats'], data['trace_feats'], data['box_feats'], data['labels'], data['masks'], data['att_masks'], data['trace_masks']] tmp = [_.to(device) if _ is not None else _ for _ in tmp] fc_feats, att_feats, trace_feats, box_feats, labels, masks, att_masks, trace_masks = tmp loss_ce_list = [] gt_prev_acc_list = [] loss_list = [] loss_prev_gt_list = [] acc_list = [] with torch.no_grad(): use_local_OT = False # get the loss for l1-loss and classification accuracy tmp_trace_feats = trace_feats.clone() # trace_class_label = trace_feats[:,:,5] - 1 # pred_class_label = torch.zeros_like(trace_class_label).to(trace_class_label.device) # prev_gt_correct prev_gt_out = model(fc_feats, att_feats, tmp_trace_feats, box_feats, labels[..., :-1], att_masks, trace_masks, 'trace') prev_gt_out = prev_gt_out * trace_masks.unsqueeze(2) # print(prev_gt_out[0, :, :5]) loss_prev_gt_mask = ((trace_masks != 0) * (trace_feats[:, :, 4] != 1)).unsqueeze(2) loss_prev_gt = ((torch.abs(prev_gt_out[:, :, :4] - trace_feats[:, :, :4]) * loss_prev_gt_mask).sum() / ( loss_prev_gt_mask.sum() * 4)).item() loss_prev_gt_list.append(loss_prev_gt) for i in range(trace_feats.shape[1]): # for regression curr_out = model(fc_feats, att_feats, tmp_trace_feats, box_feats, labels[..., :-1], att_masks, trace_masks, 'trace')[:, i] curr_out[:, 4] = (curr_out[:, 2] - curr_out[:, 0]) * (curr_out[:, 3] - curr_out[:, 1]) tmp_trace_feats[:, i, :5] = curr_out # curr_out = model(fc_feats, att_feats, tmp_trace_feats, box_feats, labels[..., :-1], att_masks, trace_masks) # for non-iteratively # break # for non-iteratively # tmp_trace_feats = curr_out # for non-iteratively # ### save for visualization # for visualization of trace_generation # vis_img_id = data['infos'][0]['id'] # np.save('./vis/trace_generation_2/pred_trace_'+str(vis_img_id), tmp_trace_feats[:,:,:4].detach().cpu().numpy()) # np.save('./vis/trace_generation_2/gt_trace_' + str(vis_img_id), trace_feats[:,:,:4].detach().cpu().numpy()) # print(vis_img_id, crit(tmp_trace_feats[:,:,:4], trace_feats[:,:,:4]).item(), trace_feats.shape) # with open('./vis/trace_generation_2/info.txt', 'a') as f: # f.write('img_id:%d, l1-loss: %f\n'%(vis_img_id,(crit(tmp_trace_feats[:,:,:4], trace_feats[:,:,:4]) * trace_masks.shape[0]*trace_masks.shape[1] / (trace_masks!=0).sum()).item())) # f.close() # ############################ # tmp_trace_feats = tmp_trace_feats * trace_masks.unsqueeze(2) loss_mask = ((trace_masks != 0) * (trace_feats[:, :, 4] != 1)).unsqueeze(2) # if use_local_OT: D = torch.abs(tmp_trace_feats[:, :, :4].unsqueeze(2) - trace_feats[:, :, :4].unsqueeze(1)).mean(dim=-1) T = local_OT(D).to(tmp_trace_feats.device) loss = ((torch.abs(torch.matmul(tmp_trace_feats[:, :, :4].transpose(1, 2), T).transpose(1, 2) - trace_feats[:, :, :4]) * loss_mask).sum() / (loss_mask.sum() * 4)).item() print('loss', loss, 'loss_orig', ( (torch.abs(tmp_trace_feats[:, :, :4] - trace_feats[:, :, :4]) * loss_mask).sum() / ( loss_mask.sum() * 4)).item()) else: loss = ((torch.abs(tmp_trace_feats[:, :, :4] - trace_feats[:, :, :4]) * loss_mask).sum() / (loss_mask.sum() * 4)).item() # loss = (crit(tmp_trace_feats[:,:,:4], trace_feats[:,:,:4]) * trace_masks.shape[0]*trace_masks.shape[1] / (trace_masks!=0).sum()).item() loss_list.append(loss) count += att_feats.shape[0] print('Validation evaluation(%d/%d):'%(count, num_images), 'l1-loss:', loss, '; prev_gt_loss:', loss_prev_gt) if count >= num_images: ### currently use 5000 in validation set break val_loss = np.mean(np.array(loss_list)) val_loss_prev_gt = np.mean(np.array(loss_prev_gt_list)) print('Validation evaluation: loss', 'l1-loss:', val_loss, '; prev_gt_loss:', val_loss_prev_gt) model.train() return val_loss def eval_trace_generation_classification(model, crit, loader, eval_kwargs={}): model.eval() count = 0 split = 'val' loader.reset_iterator(split) device = 'cuda' num_images = eval_kwargs.get('num_images', eval_kwargs.get('val_images_use', -1)) while True: data = loader.get_batch(split) ix1 = data['bounds']['it_max'] # print('ix1', ix1)###zihang if num_images != -1: ix1 = min(ix1, num_images) else: num_images = ix1 tmp = [data['fc_feats'], data['att_feats'], data['trace_feats'], data['box_feats'], data['labels'], data['masks'], data['att_masks'], data['trace_masks']] tmp = [_.to(device) if _ is not None else _ for _ in tmp] fc_feats, att_feats, trace_feats, box_feats, labels, masks, att_masks, trace_masks = tmp loss_ce_list = [] gt_prev_acc_list = [] loss_list = [] acc_list = [] with torch.no_grad(): # get the loss in terms of cross-entropy model_outputs = model(fc_feats, att_feats, trace_feats, box_feats, labels[..., :-1], att_masks, trace_masks, 'trace') model_outputs = F.log_softmax(model_outputs, dim=-1) model_outputs = model_outputs.view(-1, model_outputs.shape[2]) trace_class_label = trace_feats[:, :, 5] - 1 trace_class_label = trace_class_label.view(-1).long() loss_ce = F.nll_loss(model_outputs, trace_class_label, ignore_index=-1).item() loss_ce_list.append(loss_ce) gt_prev_acc = (((model_outputs.argmax(dim=1) == trace_class_label)*(trace_class_label!=-1).float()).sum() / \ (trace_class_label != -1).float().sum()).item() gt_prev_acc_list.append(gt_prev_acc) # get the loss for l1-loss and classification accuracy tmp_trace_feats = trace_feats trace_class_label = trace_feats[:,:,5] - 1 pred_class_label = torch.zeros_like(trace_class_label).to(trace_class_label.device) for i in range(trace_feats.shape[1]): # for regression # curr_out = model(fc_feats, att_feats, tmp_trace_feats, box_feats, labels[..., :-1], att_masks, trace_masks)[:, i] # for classification curr_out = model(fc_feats, att_feats, tmp_trace_feats, box_feats, labels[..., :-1], att_masks, trace_masks, 'trace')[:,i] curr_out = curr_out.argmax(dim=-1) pred_class_label[:, i] = curr_out curr_out = box_feats[np.arange(box_feats.shape[0]), curr_out] tmp_trace_feats[:, i, :5] = curr_out print('prev_gt_class_label', model_outputs.argmax(dim=1).view(pred_class_label.shape)[0]) print('pred_class_label',pred_class_label[0]) classification_acc = ((pred_class_label == trace_class_label) * trace_masks).sum() / trace_masks.sum() acc_list.append(classification_acc.item()) tmp_trace_feats = tmp_trace_feats * trace_masks.unsqueeze(2) loss = crit(tmp_trace_feats[:,:,:4], trace_feats[:,:,:4]).item() loss_list.append(loss) count += att_feats.shape[0] print('Validation evaluation(%d/%d):'%(count, num_images), 'l1-loss:', loss, '; loss_ce:', loss_ce, '; classification-acc:', classification_acc.item(), '; gt_prev_acc:', gt_prev_acc) if count >= num_images: ### currently use 5000 in validation set break val_loss_ce = np.mean(np.array(loss_ce_list)) val_gt_prev_acc = np.mean(np.array(gt_prev_acc_list)) val_loss = np.mean(np.array(loss_list)) val_acc = np.mean(np.array(acc_list)) print('Validation evaluation: loss', 'l1-loss:', val_loss, '; loss_ce:', val_loss_ce, '; classification-acc:', val_acc, '; gt_prev_acc:', val_gt_prev_acc) model.train() return val_loss
connect-caption-and-trace-main
captioning/utils/eval_utils_for_coco_caption.py
from __future__ import absolute_import from __future__ import division from __future__ import print_function import torch import torch.nn as nn import torch.nn.functional as F import numpy as np import json from json import encoder import random import string import time import os import sys from . import misc as utils from .local_optimal_transport import local_OT from ..models import utils as utils_models # load coco-caption if available try: sys.path.append("coco-caption") from pycocotools.coco import COCO from pycocoevalcap.eval_show_control_tell import COCOEvalCap except: print('Warning: coco-caption not available') bad_endings = ['a','an','the','in','for','at','of','with','before','after','on','upon','near','to','is','are','am'] bad_endings += ['the'] def count_bad(sen): sen = sen.split(' ') if sen[-1] in bad_endings: return 1 else: return 0 def getCOCO(dataset): if 'coco' in dataset: annFile = 'coco-caption/annotations/captions_val2014.json' # annFile = 'coco-caption/annotations/captions_LN_val2014_norepeat.json' # load localized narratives for evaluation # annFile = 'coco-caption/annotations/captions_LN_8kval.json' # load 8k LN validation set elif 'flickr30k' in dataset or 'f30k' in dataset: annFile = 'data/f30k_captions4eval.json' return COCO(annFile) def language_eval(dataset, preds, preds_n, eval_kwargs, split): model_id = eval_kwargs['id'] eval_oracle = eval_kwargs.get('eval_oracle', 0) # create output dictionary out = {} if len(preds_n) > 0: # vocab size and novel sentences if 'coco' in dataset: dataset_file = 'data/dataset_coco.json' elif 'flickr30k' in dataset or 'f30k' in dataset: dataset_file = 'data/dataset_flickr30k.json' training_sentences = set([' '.join(__['tokens']) for _ in json.load(open(dataset_file))['images'] if not _['split'] in ['val', 'test'] for __ in _['sentences']]) generated_sentences = set([_['caption'] for _ in preds_n]) novels = generated_sentences - training_sentences out['novel_sentences'] = float(len(novels)) / len(preds_n) tmp = [_.split() for _ in generated_sentences] words = [] for _ in tmp: words += _ out['vocab_size'] = len(set(words)) # encoder.FLOAT_REPR = lambda o: format(o, '.3f') cache_path = os.path.join('eval_results/', '.cache_'+ model_id + '_' + split + '.json') coco = getCOCO(dataset) valids = coco.getImgIds() # filter results to only those in MSCOCO validation set preds_filt = [p for p in preds if p['image_id'] in valids] mean_perplexity = sum([_['perplexity'] for _ in preds_filt]) / len(preds_filt) mean_entropy = sum([_['entropy'] for _ in preds_filt]) / len(preds_filt) print('using %d/%d predictions' % (len(preds_filt), len(preds))) json.dump(preds_filt, open(cache_path, 'w')) # serialize to temporary json file. Sigh, COCO API... cocoRes = coco.loadRes(cache_path) cocoEval = COCOEvalCap(coco, cocoRes) cocoEval.params['image_id'] = cocoRes.getImgIds() cocoEval.evaluate() for metric, score in cocoEval.eval.items(): out[metric] = score # Add mean perplexity out['perplexity'] = mean_perplexity out['entropy'] = mean_entropy imgToEval = cocoEval.imgToEval for k in list(imgToEval.values())[0]['SPICE'].keys(): if k != 'All': out['SPICE_'+k] = np.array([v['SPICE'][k]['f'] for v in imgToEval.values()]) out['SPICE_'+k] = (out['SPICE_'+k][out['SPICE_'+k]==out['SPICE_'+k]]).mean() for p in preds_filt: image_id, caption = p['image_id'], p['caption'] imgToEval[image_id]['caption'] = caption if len(preds_n) > 0: from . import eval_multi cache_path_n = os.path.join('eval_results/', '.cache_'+ model_id + '_' + split + '_n.json') allspice = eval_multi.eval_allspice(dataset, preds_n, model_id, split) out.update(allspice['overall']) div_stats = eval_multi.eval_div_stats(dataset, preds_n, model_id, split) out.update(div_stats['overall']) if eval_oracle: oracle = eval_multi.eval_oracle(dataset, preds_n, model_id, split) out.update(oracle['overall']) else: oracle = None self_cider = eval_multi.eval_self_cider(dataset, preds_n, model_id, split) out.update(self_cider['overall']) with open(cache_path_n, 'w') as outfile: json.dump({'allspice': allspice, 'div_stats': div_stats, 'oracle': oracle, 'self_cider': self_cider}, outfile) out['bad_count_rate'] = sum([count_bad(_['caption']) for _ in preds_filt]) / float(len(preds_filt)) outfile_path = os.path.join('eval_results/', model_id + '_' + split + '.json') with open(outfile_path, 'w') as outfile: json.dump({'overall': out, 'imgToEval': imgToEval}, outfile) return out def eval_split(model, crit, loader, task='caption', eval_kwargs={}): verbose = eval_kwargs.get('verbose', True) verbose_beam = eval_kwargs.get('verbose_beam', 0) verbose_loss = eval_kwargs.get('verbose_loss', 1) num_images = eval_kwargs.get('num_images', eval_kwargs.get('val_images_use', -1)) split = eval_kwargs.get('split', 'val') lang_eval = eval_kwargs.get('language_eval', 0) dataset = eval_kwargs.get('dataset', 'coco') beam_size = eval_kwargs.get('beam_size', 1) sample_n = eval_kwargs.get('sample_n', 1) remove_bad_endings = eval_kwargs.get('remove_bad_endings', 0) os.environ["REMOVE_BAD_ENDINGS"] = str(remove_bad_endings) # Use this nasty way to make other code clean since it's a global configuration device = eval_kwargs.get('device', 'cuda') # assert task assert task in ['caption', 'trace', 'both', 'show'] # Make sure in the evaluation mode model.eval() loader.reset_iterator(split) n = 0 loss = 0 loss_sum = 0 loss_evals = 1e-8 predictions = [] n_predictions = [] # when sample_n > 1 while True: data = loader.get_batch(split) # print('In eval_utils:', split)###zihang print(num_images) n = n + len(data['infos']) tmp = [data['fc_feats'], data['att_feats'], data['trace_feats'], data['box_feats'], data['labels'], data['masks'], data['att_masks'], data['trace_masks'], data['show_labels'], data['show_trace_feats'], data['show_trace_masks'], data['show_masks'], data['show_gate_labels']] tmp = [_.to(device) if _ is not None else _ for _ in tmp] fc_feats, att_feats, trace_feats, box_feats, labels, masks, att_masks, \ trace_masks, show_labels, show_trace_feats, show_trace_masks, show_masks, show_gate_labels = tmp if labels is not None and verbose_loss: # forward the model to get loss with torch.no_grad(): if task == 'caption': loss = crit(model(fc_feats, att_feats, trace_feats, box_feats, labels[..., :-1], att_masks, trace_masks, task=task), labels[..., 1:], masks[..., 1:]).item() elif task == 'show': loss = crit( model(fc_feats, att_feats, show_trace_feats, box_feats, show_labels[..., :-1], att_masks, show_trace_masks, show_gate_labels, task=task), show_labels[..., 1:], show_masks[..., 1:]).item() elif task == 'both': loss = crit( model(fc_feats, att_feats, trace_feats, box_feats, labels[..., :-1], att_masks, trace_masks, task=task)[0], labels[..., 1:], masks[..., 1:]).item() loss_sum = loss_sum + loss loss_evals = loss_evals + 1 # forward the model to also get generated samples for each image with torch.no_grad(): tmp_eval_kwargs = eval_kwargs.copy() tmp_eval_kwargs.update({'sample_n': 1}) ### repeat att feats fc_feats, att_feats, att_masks, box_feats = utils_models.repeat_tensors(5, [fc_feats, att_feats, att_masks, box_feats] ) ############################# seq, seq_logprobs = model(fc_feats, att_feats, show_trace_feats, box_feats, att_masks, show_trace_masks, show_gate_labels, task, opt=tmp_eval_kwargs, mode='sample') seq = seq.data entropy = - (F.softmax(seq_logprobs, dim=2) * seq_logprobs).sum(2).sum(1) / ((seq>0).to(seq_logprobs).sum(1)+1) perplexity = - seq_logprobs.gather(2, seq.unsqueeze(2)).squeeze(2).sum(1) / ((seq>0).to(seq_logprobs).sum(1)+1) ### log which caption has no bounding box ids_no_box = (show_trace_feats[:, 0, 4] == 1).float() # Print beam search if beam_size > 1 and verbose_beam: for i in range(fc_feats.shape[0]): print('\n'.join([utils.decode_sequence(model.vocab, _['seq'].unsqueeze(0))[0] for _ in model.done_beams[i]])) print('--' * 10) sents = utils.decode_sequence(model.vocab, seq) for k, sent in enumerate(sents): # entry = {'image_id': data['infos'][k]['id'], 'caption': sent, 'perplexity': perplexity[k].item(), 'entropy': entropy[k].item()} # entry to evaluate show-control-tell: seperate the 5 predictions per image if ids_no_box[k]==1: continue entry = {'image_id': data['infos'][k//5]['id'] + 1000000 * (k%5), 'caption': sent, 'perplexity': perplexity[k].item(), 'entropy': entropy[k].item()} if eval_kwargs.get('dump_path', 0) == 1: entry['file_name'] = data['infos'][k]['file_path'] predictions.append(entry) if eval_kwargs.get('dump_images', 0) == 1: # dump the raw image to vis/ folder cmd = 'cp "' + os.path.join(eval_kwargs['image_root'], data['infos'][k]['file_path']) + '" vis/imgs/img' + str(len(predictions)) + '.jpg' # bit gross print(cmd) os.system(cmd) if verbose: print('image %s: %s' %(entry['image_id'], entry['caption'])) if sample_n > 1: eval_split_n(model, n_predictions, [fc_feats, att_feats, trace_feats, box_feats, att_masks, trace_masks, data], eval_kwargs) # ix0 = data['bounds']['it_pos_now'] ix1 = data['bounds']['it_max'] # print('ix1', ix1)###zihang if num_images != -1: ix1 = min(ix1, num_images) else: num_images = ix1 # print('len:', len(predictions), n, ix1, split, num_images) ###zihang for i in range(n - ix1): predictions.pop() if verbose: print('evaluating validation preformance... %d/%d (%f)' %(n, ix1, loss)) if num_images >= 0 and n >= num_images: break lang_stats = None if len(n_predictions) > 0 and 'perplexity' in n_predictions[0]: n_predictions = sorted(n_predictions, key=lambda x: x['perplexity']) if not os.path.isdir('eval_results'): os.mkdir('eval_results') torch.save((predictions, n_predictions), os.path.join('eval_results/', '.saved_pred_'+ eval_kwargs['id'] + '_' + split + '.pth')) if lang_eval == 1: lang_stats = language_eval(dataset, predictions, n_predictions, eval_kwargs, split) # Switch back to training mode model.train() return loss_sum/loss_evals, predictions, lang_stats # Only run when sample_n > 0 def eval_split_n(model, n_predictions, input_data, eval_kwargs={}): verbose = eval_kwargs.get('verbose', True) beam_size = eval_kwargs.get('beam_size', 1) sample_n = eval_kwargs.get('sample_n', 1) sample_n_method = eval_kwargs.get('sample_n_method', 'sample') fc_feats, att_feats, trace_feats, box_feats, att_masks, trace_masks, data = input_data tmp_eval_kwargs = eval_kwargs.copy() if sample_n_method == 'bs': # case 1 sample_n == beam size tmp_eval_kwargs.update({'sample_n': 1, 'beam_size': sample_n, 'group_size': 1}) # randomness from softmax with torch.no_grad(): model(fc_feats, att_feats, trace_feats, box_feats, att_masks, trace_masks, opt=tmp_eval_kwargs, mode='sample') for k in range(fc_feats.shape[0]): _sents = utils.decode_sequence(model.vocab, torch.stack([model.done_beams[k][_]['seq'] for _ in range(sample_n)])) for sent in _sents: entry = {'image_id': data['infos'][k]['id'], 'caption': sent} n_predictions.append(entry) # case 2 sample / gumbel / topk sampling/ nucleus sampling elif sample_n_method == 'sample' or \ sample_n_method == 'gumbel' or \ sample_n_method.startswith('top'): tmp_eval_kwargs.update({'sample_n': sample_n, 'sample_method': sample_n_method, 'beam_size': 1}) # randomness from sample with torch.no_grad(): _seq, _sampleLogprobs = model(fc_feats, att_feats, trace_feats, box_feats, att_masks, trace_masks, opt=tmp_eval_kwargs, mode='sample') _sents = utils.decode_sequence(model.vocab, _seq) _perplexity = - _sampleLogprobs.gather(2, _seq.unsqueeze(2)).squeeze(2).sum(1) / ((_seq>0).to(_sampleLogprobs).sum(1)+1) for k, sent in enumerate(_sents): entry = {'image_id': data['infos'][k // sample_n]['id'], 'caption': sent, 'perplexity': _perplexity[k].item()} n_predictions.append(entry) elif sample_n_method == 'dbs': # Use diverse beam search tmp_eval_kwargs.update({'beam_size': sample_n * beam_size, 'group_size': sample_n}) # randomness from softmax with torch.no_grad(): model(fc_feats, att_feats, trace_feats, box_feats, att_masks, trace_masks, opt=tmp_eval_kwargs, mode='sample') for k in range(loader.batch_size): _sents = utils.decode_sequence(model.vocab, torch.stack([model.done_beams[k][_]['seq'] for _ in range(0, sample_n*beam_size, beam_size)])) for sent in _sents: entry = {'image_id': data['infos'][k]['id'], 'caption': sent} n_predictions.append(entry) else: tmp_eval_kwargs.update({'sample_method': sample_n_method[1:], 'group_size': sample_n, 'beam_size':1}) # randomness from softmax with torch.no_grad(): _seq, _sampleLogprobs = model(fc_feats, att_feats, trace_feats, box_feats, att_masks, trace_masks, opt=tmp_eval_kwargs, mode='sample') _sents = utils.decode_sequence(model.vocab, _seq) for k, sent in enumerate(_sents): entry = {'image_id': data['infos'][k // sample_n]['id'], 'caption': sent} n_predictions.append(entry) if verbose: for entry in sorted(n_predictions[-fc_feats.shape[0] * sample_n:], key=lambda x: x['image_id']): print('image %s: %s' %(entry['image_id'], entry['caption'])) def eval_trace_generation(model, crit, loader, eval_kwargs={}): model.eval() count = 0 split = 'val' loader.reset_iterator(split) device = 'cuda' num_images = eval_kwargs.get('num_images', eval_kwargs.get('val_images_use', -1)) while True: data = loader.get_batch(split) # print(data['infos'][0]['id']) ix1 = data['bounds']['it_max'] # print('ix1', ix1)###zihang if num_images != -1: ix1 = min(ix1, num_images) else: num_images = ix1 tmp = [data['fc_feats'], data['att_feats'], data['trace_feats'], data['box_feats'], data['labels'], data['masks'], data['att_masks'], data['trace_masks']] tmp = [_.to(device) if _ is not None else _ for _ in tmp] fc_feats, att_feats, trace_feats, box_feats, labels, masks, att_masks, trace_masks = tmp loss_ce_list = [] gt_prev_acc_list = [] loss_list = [] loss_prev_gt_list = [] acc_list = [] with torch.no_grad(): use_local_OT = False # get the loss for l1-loss and classification accuracy tmp_trace_feats = trace_feats.clone() # trace_class_label = trace_feats[:,:,5] - 1 # pred_class_label = torch.zeros_like(trace_class_label).to(trace_class_label.device) # prev_gt_correct prev_gt_out = model(fc_feats, att_feats, tmp_trace_feats, box_feats, labels[..., :-1], att_masks, trace_masks, 'trace') prev_gt_out = prev_gt_out * trace_masks.unsqueeze(2) # print(prev_gt_out[0, :, :5]) loss_prev_gt_mask = ((trace_masks != 0) * (trace_feats[:, :, 4] != 1)).unsqueeze(2) loss_prev_gt = ((torch.abs(prev_gt_out[:, :, :4] - trace_feats[:, :, :4]) * loss_prev_gt_mask).sum() / ( loss_prev_gt_mask.sum() * 4)).item() loss_prev_gt_list.append(loss_prev_gt) for i in range(trace_feats.shape[1]): # for regression curr_out = model(fc_feats, att_feats, tmp_trace_feats, box_feats, labels[..., :-1], att_masks, trace_masks, 'trace')[:, i] curr_out[:, 4] = (curr_out[:, 2] - curr_out[:, 0]) * (curr_out[:, 3] - curr_out[:, 1]) tmp_trace_feats[:, i, :5] = curr_out # curr_out = model(fc_feats, att_feats, tmp_trace_feats, box_feats, labels[..., :-1], att_masks, trace_masks) # for non-iteratively # break # for non-iteratively # tmp_trace_feats = curr_out # for non-iteratively # ### save for visualization # for visualization of trace_generation # vis_img_id = data['infos'][0]['id'] # np.save('./vis/trace_generation_2/pred_trace_'+str(vis_img_id), tmp_trace_feats[:,:,:4].detach().cpu().numpy()) # np.save('./vis/trace_generation_2/gt_trace_' + str(vis_img_id), trace_feats[:,:,:4].detach().cpu().numpy()) # print(vis_img_id, crit(tmp_trace_feats[:,:,:4], trace_feats[:,:,:4]).item(), trace_feats.shape) # with open('./vis/trace_generation_2/info.txt', 'a') as f: # f.write('img_id:%d, l1-loss: %f\n'%(vis_img_id,(crit(tmp_trace_feats[:,:,:4], trace_feats[:,:,:4]) * trace_masks.shape[0]*trace_masks.shape[1] / (trace_masks!=0).sum()).item())) # f.close() # ############################ # tmp_trace_feats = tmp_trace_feats * trace_masks.unsqueeze(2) loss_mask = ((trace_masks != 0) * (trace_feats[:, :, 4] != 1)).unsqueeze(2) # if use_local_OT: D = torch.abs(tmp_trace_feats[:, :, :4].unsqueeze(2) - trace_feats[:, :, :4].unsqueeze(1)).mean(dim=-1) T = local_OT(D).to(tmp_trace_feats.device) loss = ((torch.abs(torch.matmul(tmp_trace_feats[:, :, :4].transpose(1, 2), T).transpose(1, 2) - trace_feats[:, :, :4]) * loss_mask).sum() / (loss_mask.sum() * 4)).item() print('loss', loss, 'loss_orig', ( (torch.abs(tmp_trace_feats[:, :, :4] - trace_feats[:, :, :4]) * loss_mask).sum() / ( loss_mask.sum() * 4)).item()) else: loss = ((torch.abs(tmp_trace_feats[:, :, :4] - trace_feats[:, :, :4]) * loss_mask).sum() / (loss_mask.sum() * 4)).item() # loss = (crit(tmp_trace_feats[:,:,:4], trace_feats[:,:,:4]) * trace_masks.shape[0]*trace_masks.shape[1] / (trace_masks!=0).sum()).item() loss_list.append(loss) count += att_feats.shape[0] print('Validation evaluation(%d/%d):'%(count, num_images), 'l1-loss:', loss, '; prev_gt_loss:', loss_prev_gt) if count >= num_images: ### currently use 5000 in validation set break val_loss = np.mean(np.array(loss_list)) val_loss_prev_gt = np.mean(np.array(loss_prev_gt_list)) print('Validation evaluation: loss', 'l1-loss:', val_loss, '; prev_gt_loss:', val_loss_prev_gt) model.train() return val_loss def eval_trace_generation_classification(model, crit, loader, eval_kwargs={}): model.eval() count = 0 split = 'val' loader.reset_iterator(split) device = 'cuda' num_images = eval_kwargs.get('num_images', eval_kwargs.get('val_images_use', -1)) while True: data = loader.get_batch(split) ix1 = data['bounds']['it_max'] # print('ix1', ix1)###zihang if num_images != -1: ix1 = min(ix1, num_images) else: num_images = ix1 tmp = [data['fc_feats'], data['att_feats'], data['trace_feats'], data['box_feats'], data['labels'], data['masks'], data['att_masks'], data['trace_masks']] tmp = [_.to(device) if _ is not None else _ for _ in tmp] fc_feats, att_feats, trace_feats, box_feats, labels, masks, att_masks, trace_masks = tmp loss_ce_list = [] gt_prev_acc_list = [] loss_list = [] acc_list = [] with torch.no_grad(): # get the loss in terms of cross-entropy model_outputs = model(fc_feats, att_feats, trace_feats, box_feats, labels[..., :-1], att_masks, trace_masks, 'trace') model_outputs = F.log_softmax(model_outputs, dim=-1) model_outputs = model_outputs.view(-1, model_outputs.shape[2]) trace_class_label = trace_feats[:, :, 5] - 1 trace_class_label = trace_class_label.view(-1).long() loss_ce = F.nll_loss(model_outputs, trace_class_label, ignore_index=-1).item() loss_ce_list.append(loss_ce) gt_prev_acc = (((model_outputs.argmax(dim=1) == trace_class_label)*(trace_class_label!=-1).float()).sum() / \ (trace_class_label != -1).float().sum()).item() gt_prev_acc_list.append(gt_prev_acc) # get the loss for l1-loss and classification accuracy tmp_trace_feats = trace_feats trace_class_label = trace_feats[:,:,5] - 1 pred_class_label = torch.zeros_like(trace_class_label).to(trace_class_label.device) for i in range(trace_feats.shape[1]): # for regression # curr_out = model(fc_feats, att_feats, tmp_trace_feats, box_feats, labels[..., :-1], att_masks, trace_masks)[:, i] # for classification curr_out = model(fc_feats, att_feats, tmp_trace_feats, box_feats, labels[..., :-1], att_masks, trace_masks, 'trace')[:,i] curr_out = curr_out.argmax(dim=-1) pred_class_label[:, i] = curr_out curr_out = box_feats[np.arange(box_feats.shape[0]), curr_out] tmp_trace_feats[:, i, :5] = curr_out print('prev_gt_class_label', model_outputs.argmax(dim=1).view(pred_class_label.shape)[0]) print('pred_class_label',pred_class_label[0]) classification_acc = ((pred_class_label == trace_class_label) * trace_masks).sum() / trace_masks.sum() acc_list.append(classification_acc.item()) tmp_trace_feats = tmp_trace_feats * trace_masks.unsqueeze(2) loss = crit(tmp_trace_feats[:,:,:4], trace_feats[:,:,:4]).item() loss_list.append(loss) count += att_feats.shape[0] print('Validation evaluation(%d/%d):'%(count, num_images), 'l1-loss:', loss, '; loss_ce:', loss_ce, '; classification-acc:', classification_acc.item(), '; gt_prev_acc:', gt_prev_acc) if count >= num_images: ### currently use 5000 in validation set break val_loss_ce = np.mean(np.array(loss_ce_list)) val_gt_prev_acc = np.mean(np.array(gt_prev_acc_list)) val_loss = np.mean(np.array(loss_list)) val_acc = np.mean(np.array(acc_list)) print('Validation evaluation: loss', 'l1-loss:', val_loss, '; loss_ce:', val_loss_ce, '; classification-acc:', val_acc, '; gt_prev_acc:', val_gt_prev_acc) model.train() return val_loss
connect-caption-and-trace-main
captioning/utils/eval_utils_show_control_tell.py
connect-caption-and-trace-main
captioning/utils/__init__.py
from __future__ import absolute_import from __future__ import division from __future__ import print_function import torch import torch.nn as nn import torch.nn.functional as F import numpy as np import json from json import encoder import random import string import time import os import sys from captioning.utils import misc as utils # from .local_optimal_transport import local_OT # load coco-caption if available try: sys.path.append("coco-caption") sys.path.append("/home/zihang/Research/Localized_Narratives/ImageCaptioning.pytorch") from pycocotools.coco import COCO from pycocoevalcap.eval import COCOEvalCap #COCOEvalCap_spice except: print('Warning: coco-caption not available') bad_endings = ['a','an','the','in','for','at','of','with','before','after','on','upon','near','to','is','are','am'] bad_endings += ['the'] def count_bad(sen): sen = sen.split(' ') if sen[-1] in bad_endings: return 1 else: return 0 def getCOCO(dataset): if 'coco' in dataset: # annFile = 'coco-caption/annotations/captions_val2014.json' # annFile = 'coco-caption/annotations/captions_LN_val2014_norepeat.json' # load localized narratives for evaluation annFile = 'coco-caption/annotations/captions_LN_8kval.json' # load 8k LN validation set elif 'flickr30k' in dataset or 'f30k' in dataset or 'flk30k' in dataset: annFile = 'coco-caption/annotations/captions_flk30k_LN_test.json' elif 'ade20k' in dataset: annFile = 'coco-caption/annotations/captions_ade20k_LN_test.json' elif 'openimg' in dataset: annFile = 'coco-caption/annotations/captions_openimg_LN_test.json' print(annFile) return COCO(annFile) cache_path = '/home/zihang/Research/Localized_Narratives/ImageCaptioning.pytorch/eval_results/zihang_transformer_LN_try804_openimg_twolayer_joint_cycle_b_val.json' score_list = [] l = len(json.load(open(cache_path))) size_per_split = 1000000 num_splits = (l//size_per_split) + (1 if (l%size_per_split)!=0 else 0) for i in range(num_splits): coco = getCOCO('openimg') valids = coco.getImgIds() cocoRes = coco.loadRes(cache_path)#, split=i, size_per_split = size_per_split) cocoEval = COCOEvalCap(coco, cocoRes) #_spice cocoEval.params['image_id'] = cocoRes.getImgIds() try: cocoEval.evaluate() except: print('this split fail: #', i) continue out = {} for metric, score in cocoEval.eval.items(): out[metric] = score score_list.append(score) print(i, '-th current_split:', score, 'Overall ave:', sum(score_list) / len(score_list)) print(score_list) print(sum(score_list) / len(score_list)) # # Add mean perplexity # out['perplexity'] = mean_perplexity # out['entropy'] = mean_entropy imgToEval = cocoEval.imgToEval for k in list(imgToEval.values())[0]['SPICE'].keys(): if k != 'All': out['SPICE_' + k] = np.array([v['SPICE'][k]['f'] for v in imgToEval.values()]) out['SPICE_' + k] = (out['SPICE_' + k][out['SPICE_' + k] == out['SPICE_' + k]]).mean() for p in preds_filt: image_id, caption = p['image_id'], p['caption'] imgToEval[image_id]['caption'] = caption out['bad_count_rate'] = sum([count_bad(_['caption']) for _ in preds_filt]) / float(len(preds_filt)) outfile_path = os.path.join('eval_results/', model_id + '_' + split + '.json') with open(outfile_path, 'w') as outfile: json.dump({'overall': out, 'imgToEval': imgToEval}, outfile)
connect-caption-and-trace-main
captioning/utils/for_debug_eval_spice.py
import torch import torch.nn as nn import torch.nn.functional as F class myResnet(nn.Module): def __init__(self, resnet): super(myResnet, self).__init__() self.resnet = resnet def forward(self, img, att_size=14): x = img.unsqueeze(0) x = self.resnet.conv1(x) x = self.resnet.bn1(x) x = self.resnet.relu(x) x = self.resnet.maxpool(x) x = self.resnet.layer1(x) x = self.resnet.layer2(x) x = self.resnet.layer3(x) x = self.resnet.layer4(x) fc = x.mean(3).mean(2).squeeze() att = F.adaptive_avg_pool2d(x,[att_size,att_size]).squeeze().permute(1, 2, 0) return fc, att
connect-caption-and-trace-main
captioning/utils/resnet_utils.py
import torch import torch.nn as nn import torchvision.models.resnet from torchvision.models.resnet import BasicBlock, Bottleneck class ResNet(torchvision.models.resnet.ResNet): def __init__(self, block, layers, num_classes=1000): super(ResNet, self).__init__(block, layers, num_classes) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=0, ceil_mode=True) # change for i in range(2, 5): getattr(self, 'layer%d'%i)[0].conv1.stride = (2,2) getattr(self, 'layer%d'%i)[0].conv2.stride = (1,1) def resnet18(pretrained=False): """Constructs a ResNet-18 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(BasicBlock, [2, 2, 2, 2]) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['resnet18'])) return model def resnet34(pretrained=False): """Constructs a ResNet-34 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(BasicBlock, [3, 4, 6, 3]) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['resnet34'])) return model def resnet50(pretrained=False): """Constructs a ResNet-50 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(Bottleneck, [3, 4, 6, 3]) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['resnet50'])) return model def resnet101(pretrained=False): """Constructs a ResNet-101 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(Bottleneck, [3, 4, 23, 3]) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['resnet101'])) return model def resnet152(pretrained=False): """Constructs a ResNet-152 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(Bottleneck, [3, 8, 36, 3]) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['resnet152'])) return model
connect-caption-and-trace-main
captioning/utils/resnet.py
from __future__ import absolute_import from __future__ import division from __future__ import print_function import torch import torch.nn as nn import torch.nn.functional as F import numpy as np import json from json import encoder import random import string import time import os import sys from . import misc as utils from .local_optimal_transport import local_OT # load coco-caption if available try: sys.path.append("coco-caption") from pycocotools.coco import COCO from pycocoevalcap.eval import COCOEvalCap except: print('Warning: coco-caption not available') bad_endings = ['a','an','the','in','for','at','of','with','before','after','on','upon','near','to','is','are','am'] bad_endings += ['the'] def count_bad(sen): sen = sen.split(' ') if sen[-1] in bad_endings: return 1 else: return 0 def getCOCO(dataset): if 'coco' in dataset: annFile = 'coco-caption/annotations/captions_coco_LN_test.json' elif 'flickr30k' in dataset or 'f30k' in dataset or 'flk30k' in dataset: annFile = 'coco-caption/annotations/captions_flk30k_LN_test.json' elif 'ade20k' in dataset: annFile = 'coco-caption/annotations/captions_ade20k_LN_test.json' elif 'openimg' in dataset: annFile = 'coco-caption/annotations/captions_openimg_LN_test.json' return COCO(annFile) def language_eval(dataset, preds, preds_n, eval_kwargs, split): model_id = eval_kwargs['id'] eval_oracle = eval_kwargs.get('eval_oracle', 0) # create output dictionary out = {} if len(preds_n) > 0: # vocab size and novel sentences if 'coco' in dataset: dataset_file = 'data/dataset_coco.json' elif 'flickr30k' in dataset or 'f30k' in dataset: dataset_file = 'data/dataset_flickr30k.json' training_sentences = set([' '.join(__['tokens']) for _ in json.load(open(dataset_file))['images'] if not _['split'] in ['val', 'test'] for __ in _['sentences']]) generated_sentences = set([_['caption'] for _ in preds_n]) novels = generated_sentences - training_sentences out['novel_sentences'] = float(len(novels)) / len(preds_n) tmp = [_.split() for _ in generated_sentences] words = [] for _ in tmp: words += _ out['vocab_size'] = len(set(words)) # encoder.FLOAT_REPR = lambda o: format(o, '.3f') cache_path = os.path.join('eval_results/', '.cache_'+ model_id + '_' + split + '.json') coco = getCOCO(dataset) valids = coco.getImgIds() # filter results to only those in MSCOCO validation set preds_filt = [p for p in preds if p['image_id'] in valids] mean_perplexity = sum([_['perplexity'] for _ in preds_filt]) / len(preds_filt) mean_entropy = sum([_['entropy'] for _ in preds_filt]) / len(preds_filt) print('using %d/%d predictions' % (len(preds_filt), len(preds))) json.dump(preds_filt, open(cache_path, 'w')) # serialize to temporary json file. Sigh, COCO API... cocoRes = coco.loadRes(cache_path) cocoEval = COCOEvalCap(coco, cocoRes) cocoEval.params['image_id'] = cocoRes.getImgIds() cocoEval.evaluate() for metric, score in cocoEval.eval.items(): out[metric] = score # Add mean perplexity out['perplexity'] = mean_perplexity out['entropy'] = mean_entropy imgToEval = cocoEval.imgToEval for k in list(imgToEval.values())[0]['SPICE'].keys(): if k != 'All': out['SPICE_'+k] = np.array([v['SPICE'][k]['f'] for v in imgToEval.values()]) out['SPICE_'+k] = (out['SPICE_'+k][out['SPICE_'+k]==out['SPICE_'+k]]).mean() for p in preds_filt: image_id, caption = p['image_id'], p['caption'] imgToEval[image_id]['caption'] = caption if len(preds_n) > 0: from . import eval_multi cache_path_n = os.path.join('eval_results/', '.cache_'+ model_id + '_' + split + '_n.json') allspice = eval_multi.eval_allspice(dataset, preds_n, model_id, split) out.update(allspice['overall']) div_stats = eval_multi.eval_div_stats(dataset, preds_n, model_id, split) out.update(div_stats['overall']) if eval_oracle: oracle = eval_multi.eval_oracle(dataset, preds_n, model_id, split) out.update(oracle['overall']) else: oracle = None self_cider = eval_multi.eval_self_cider(dataset, preds_n, model_id, split) out.update(self_cider['overall']) with open(cache_path_n, 'w') as outfile: json.dump({'allspice': allspice, 'div_stats': div_stats, 'oracle': oracle, 'self_cider': self_cider}, outfile) out['bad_count_rate'] = sum([count_bad(_['caption']) for _ in preds_filt]) / float(len(preds_filt)) outfile_path = os.path.join('eval_results/', model_id + '_' + split + '.json') with open(outfile_path, 'w') as outfile: json.dump({'overall': out, 'imgToEval': imgToEval}, outfile) return out def eval_split(model, crit, loader, task='caption', eval_kwargs={}): verbose = eval_kwargs.get('verbose', True) verbose_beam = eval_kwargs.get('verbose_beam', 0) verbose_loss = eval_kwargs.get('verbose_loss', 1) num_images = eval_kwargs.get('num_images', eval_kwargs.get('val_images_use', -1)) split = eval_kwargs.get('split', 'val') lang_eval = eval_kwargs.get('language_eval', 0) dataset = eval_kwargs.get('dataset', 'coco') beam_size = eval_kwargs.get('beam_size', 1) sample_n = eval_kwargs.get('sample_n', 1) remove_bad_endings = eval_kwargs.get('remove_bad_endings', 0) os.environ["REMOVE_BAD_ENDINGS"] = str(remove_bad_endings) # Use this nasty way to make other code clean since it's a global configuration device = eval_kwargs.get('device', 'cuda') # assert task assert task in ['caption', 'trace', 'both'] # Make sure in the evaluation mode model.eval() loader.reset_iterator(split) n = 0 loss = 0 loss_sum = 0 loss_evals = 1e-8 predictions = [] n_predictions = [] # when sample_n > 1 trace_cost = [] while True: data = loader.get_batch(split) n = n + len(data['infos']) tmp = [data['fc_feats'], data['att_feats'], data['trace_feats'], data['box_feats'], data['labels'], data['masks'], data['att_masks'], data['trace_masks']] tmp = [_.to(device) if _ is not None else _ for _ in tmp] fc_feats, att_feats, trace_feats, box_feats, labels, masks, att_masks, trace_masks = tmp if labels is not None and verbose_loss: # forward the model to get loss with torch.no_grad(): if task == 'caption': loss = crit(model(fc_feats, att_feats, trace_feats, box_feats, labels[..., :-1], att_masks, trace_masks, task=task), labels[..., 1:], masks[..., 1:]).item() elif task == 'both': loss = crit( model(fc_feats, att_feats, trace_feats, box_feats, labels[..., :-1], att_masks, trace_masks, task=task)[0], labels[..., 1:], masks[..., 1:]).item() loss_sum = loss_sum + loss loss_evals = loss_evals + 1 # forward the model to also get generated samples for each image with torch.no_grad(): tmp_eval_kwargs = eval_kwargs.copy() tmp_eval_kwargs.update({'sample_n': 1}) if task == 'both': seq, seq_logprobs, trace_predicted = model(fc_feats, att_feats, trace_feats, box_feats, att_masks, trace_masks, task=task, opt=tmp_eval_kwargs, mode='sample') else: try: seq, seq_logprobs = model(fc_feats, att_feats, trace_feats, box_feats, att_masks, trace_masks, task=task, opt=tmp_eval_kwargs, mode='sample') except: print('evaluation meet error') continue seq = seq.data entropy = - (F.softmax(seq_logprobs, dim=2) * seq_logprobs).sum(2).sum(1) / ((seq>0).to(seq_logprobs).sum(1)+1) perplexity = - seq_logprobs.gather(2, seq.unsqueeze(2)).squeeze(2).sum(1) / ((seq>0).to(seq_logprobs).sum(1)+1) if task == 'both': ### compute the loss for trace for k in range(trace_predicted.shape[0]): tmp_gt_length = trace_masks[k].sum().long() tmp_gt_trace = trace_feats[k, :tmp_gt_length] tmp_pred_length = (seq[k]>0).sum().long() tmp_pred_trace = trace_predicted[k, :tmp_pred_length] # choose only boxes not [0,0,1,1,1] in the ground truth nonzero_idx = torch.nonzero(tmp_gt_trace[:, 4] != 1).squeeze() tmp_gt_trace = tmp_gt_trace[nonzero_idx] if len(tmp_gt_trace.shape) < 2: # if there is only one chosen box in this trace tmp_gt_trace = tmp_gt_trace.unsqueeze(0) tmp_gt_trace = tmp_gt_trace.unsqueeze(0) tmp_pred_trace = tmp_pred_trace.unsqueeze(0) if tmp_pred_trace.shape[1] <= tmp_gt_trace.shape[1]: tmp_trace1 = tmp_pred_trace tmp_trace2 = tmp_gt_trace else: tmp_trace1 = tmp_gt_trace tmp_trace2 = tmp_pred_trace # processing in terms of segments of length 20 seg_loss_list = [] for seg_idx in range(np.ceil(tmp_trace1.shape[1] / 20).astype(int)): tmp_const = 20. * tmp_trace2.shape[1] / tmp_trace1.shape[1] seg_tmp_trace1 = tmp_trace1[:, seg_idx * 20:(seg_idx + 1) * 20, :4] seg_tmp_trace2 = tmp_trace2[:, np.floor(seg_idx * tmp_const).astype(int): np.ceil( (seg_idx + 1) * tmp_const).astype(int), :4] D = torch.abs(seg_tmp_trace1.unsqueeze(2) - seg_tmp_trace2.unsqueeze(1)).mean(dim=-1) seg_tmp_T = local_OT(D, window = 0) seg_tmp_cost = (seg_tmp_T * D).sum() / seg_tmp_trace1.shape[1] if not torch.isnan(seg_tmp_cost): seg_loss_list.append(seg_tmp_cost.item()) tmp_cost = np.mean(np.array(seg_loss_list)) if not np.isnan(tmp_cost): trace_cost.append(tmp_cost) print('trace LBM distance:', tmp_cost) # Print beam search if beam_size > 1 and verbose_beam: for i in range(fc_feats.shape[0]): print('\n'.join([utils.decode_sequence(model.vocab, _['seq'].unsqueeze(0))[0] for _ in model.done_beams[i]])) print('--' * 10) sents = utils.decode_sequence(model.vocab, seq) print('both trace running ave LBM loss :', np.mean(np.array(trace_cost))) # ### save for visualization # for visualization of trace_generation # for i in range(len(sents)): # vis_img_id = data['infos'][i]['id'] # with open('./vis/both_generation_supplement/pred_caption/pred_caption_' + str(vis_img_id)+'.txt', 'w') as f: # f.write(sents[i]) # np.save('./vis/both_generation_supplement/pred_trace/pred_trace_' + str(vis_img_id), # trace_predicted[i, :, :4].detach().cpu().numpy()) # print(vis_img_id, trace_feats.shape) # with open('./vis/both_generation_supplement/info.txt', 'a') as f: # f.write('img_id:%d\n' %vis_img_id) # f.close() # ############################ # ### save for visualization # for visualization of caption_generation # for i in range(len(sents)): # vis_img_id = data['infos'][i]['id'] # tmp_dir = './vis/caption_generation_' + eval_kwargs['dataset_choice'] # if not os.path.exists(tmp_dir): # os.makedirs(tmp_dir) # os.makedirs(tmp_dir + '/pred_caption') # os.makedirs(tmp_dir + '/gt_trace') # with open('./vis/caption_generation_'+ eval_kwargs['dataset_choice'] +'/pred_caption/pred_caption_' + str(vis_img_id) + '.txt', # 'w') as f: # f.write(sents[i]) # np.save('./vis/caption_generation_'+ eval_kwargs['dataset_choice'] +'/gt_trace/gt_trace_' + str(vis_img_id), # trace_feats[i, :, :4].detach().cpu().numpy()) # print(vis_img_id, trace_feats.shape) # with open('./vis/caption_generation_'+ eval_kwargs['dataset_choice'] +'/info.txt', 'a') as f: # f.write('img_id:%s\n' % str(vis_img_id)) # f.close() # ############################ for k, sent in enumerate(sents): entry = {'image_id': data['infos'][k]['id'], 'caption': sent, 'perplexity': perplexity[k].item(), 'entropy': entropy[k].item()} if eval_kwargs.get('dump_path', 0) == 1: entry['file_name'] = data['infos'][k]['file_path'] predictions.append(entry) if eval_kwargs.get('dump_images', 0) == 1: # dump the raw image to vis/ folder cmd = 'cp "' + os.path.join(eval_kwargs['image_root'], data['infos'][k]['file_path']) + '" vis/imgs/img' + str(len(predictions)) + '.jpg' # bit gross print(cmd) os.system(cmd) if verbose: print('image %s: %s' %(entry['image_id'], entry['caption'])) if sample_n > 1: eval_split_n(model, n_predictions, [fc_feats, att_feats, trace_feats, box_feats, att_masks, trace_masks, data], eval_kwargs) ix1 = data['bounds']['it_max'] if num_images != -1: ix1 = min(ix1, num_images) else: num_images = ix1 for i in range(n - ix1): predictions.pop() if verbose: print('evaluating validation preformance... %d/%d (%f)' %(n, ix1, loss)) if num_images >= 0 and n >= num_images: break if task == 'both': print('both trace total LBM loss:', np.mean(np.array(trace_cost))) lang_stats = None if len(n_predictions) > 0 and 'perplexity' in n_predictions[0]: n_predictions = sorted(n_predictions, key=lambda x: x['perplexity']) if not os.path.isdir('eval_results'): os.mkdir('eval_results') torch.save((predictions, n_predictions), os.path.join('eval_results/', '.saved_pred_'+ eval_kwargs['id'] + '_' + split + '.pth')) if lang_eval == 1: lang_stats = language_eval(dataset, predictions, n_predictions, eval_kwargs, split) # Switch back to training mode model.train() return loss_sum/loss_evals, predictions, lang_stats # Only run when sample_n > 0 def eval_split_n(model, n_predictions, input_data, eval_kwargs={}): verbose = eval_kwargs.get('verbose', True) beam_size = eval_kwargs.get('beam_size', 1) sample_n = eval_kwargs.get('sample_n', 1) sample_n_method = eval_kwargs.get('sample_n_method', 'sample') fc_feats, att_feats, trace_feats, box_feats, att_masks, trace_masks, data = input_data tmp_eval_kwargs = eval_kwargs.copy() if sample_n_method == 'bs': # case 1 sample_n == beam size tmp_eval_kwargs.update({'sample_n': 1, 'beam_size': sample_n, 'group_size': 1}) # randomness from softmax with torch.no_grad(): model(fc_feats, att_feats, trace_feats, box_feats, att_masks, trace_masks, opt=tmp_eval_kwargs, mode='sample') for k in range(fc_feats.shape[0]): _sents = utils.decode_sequence(model.vocab, torch.stack([model.done_beams[k][_]['seq'] for _ in range(sample_n)])) for sent in _sents: entry = {'image_id': data['infos'][k]['id'], 'caption': sent} n_predictions.append(entry) # case 2 sample / gumbel / topk sampling/ nucleus sampling elif sample_n_method == 'sample' or \ sample_n_method == 'gumbel' or \ sample_n_method.startswith('top'): tmp_eval_kwargs.update({'sample_n': sample_n, 'sample_method': sample_n_method, 'beam_size': 1}) # randomness from sample with torch.no_grad(): _seq, _sampleLogprobs = model(fc_feats, att_feats, trace_feats, box_feats, att_masks, trace_masks, opt=tmp_eval_kwargs, mode='sample') _sents = utils.decode_sequence(model.vocab, _seq) _perplexity = - _sampleLogprobs.gather(2, _seq.unsqueeze(2)).squeeze(2).sum(1) / ((_seq>0).to(_sampleLogprobs).sum(1)+1) for k, sent in enumerate(_sents): entry = {'image_id': data['infos'][k // sample_n]['id'], 'caption': sent, 'perplexity': _perplexity[k].item()} n_predictions.append(entry) elif sample_n_method == 'dbs': # Use diverse beam search tmp_eval_kwargs.update({'beam_size': sample_n * beam_size, 'group_size': sample_n}) # randomness from softmax with torch.no_grad(): model(fc_feats, att_feats, trace_feats, box_feats, att_masks, trace_masks, opt=tmp_eval_kwargs, mode='sample') for k in range(loader.batch_size): _sents = utils.decode_sequence(model.vocab, torch.stack([model.done_beams[k][_]['seq'] for _ in range(0, sample_n*beam_size, beam_size)])) for sent in _sents: entry = {'image_id': data['infos'][k]['id'], 'caption': sent} n_predictions.append(entry) else: tmp_eval_kwargs.update({'sample_method': sample_n_method[1:], 'group_size': sample_n, 'beam_size':1}) # randomness from softmax with torch.no_grad(): _seq, _sampleLogprobs = model(fc_feats, att_feats, trace_feats, box_feats, att_masks, trace_masks, opt=tmp_eval_kwargs, mode='sample') _sents = utils.decode_sequence(model.vocab, _seq) for k, sent in enumerate(_sents): entry = {'image_id': data['infos'][k // sample_n]['id'], 'caption': sent} n_predictions.append(entry) if verbose: for entry in sorted(n_predictions[-fc_feats.shape[0] * sample_n:], key=lambda x: x['image_id']): print('image %s: %s' %(entry['image_id'], entry['caption'])) def eval_trace_generation(model, crit, loader, window_size=0, eval_kwargs={}): model.eval() count = 0 split = 'val' loader.reset_iterator(split) device = 'cuda' num_images = eval_kwargs.get('num_images', eval_kwargs.get('val_images_use', -1)) loss_list = [] while True: data = loader.get_batch(split) ix1 = data['bounds']['it_max'] if num_images != -1: ix1 = min(ix1, num_images) else: num_images = ix1 tmp = [data['fc_feats'], data['att_feats'], data['trace_feats'], data['box_feats'], data['labels'], data['masks'], data['att_masks'], data['trace_masks']] tmp = [_.to(device) if _ is not None else _ for _ in tmp] fc_feats, att_feats, trace_feats, box_feats, labels, masks, att_masks, trace_masks = tmp with torch.no_grad(): # get the loss for l1-loss and classification accuracy tmp_trace_feats = trace_feats.clone() for i in range(trace_feats.shape[1]): # for regression curr_out = model(fc_feats, att_feats, tmp_trace_feats, box_feats, labels[..., :-1], att_masks, trace_masks, 'trace')[:, i] curr_out[:, 4] = (curr_out[:, 2] - curr_out[:, 0]) * (curr_out[:, 3] - curr_out[:, 1]) tmp_trace_feats[:, i, :5] = curr_out # # ### save for visualization # for visualization of trace_generation # sents = utils.decode_sequence(model.vocab, labels[:, 0, 1:]) # print(sents) # loss_mask = ((trace_masks != 0) * (trace_feats[:, :, 4] != 1)).unsqueeze(2) # # vis_img_id = data['infos'][0]['id'] # tmp_dir = './vis/trace_generation_' + eval_kwargs['dataset_choice'] # if not os.path.exists(tmp_dir): # os.makedirs(tmp_dir) # os.makedirs(tmp_dir + '/pred_trace') # os.makedirs(tmp_dir + '/gt_trace') # os.makedirs(tmp_dir + '/gt_caption') # with open(tmp_dir + '/gt_caption/' + str(vis_img_id)+'.txt', 'w') as f: # f.write(sents[0]) # # np.save('./vis/trace_generation_11_14/pred_caption_' + str(vis_img_id), # # labels[..., 1:].detach().cpu().numpy()) # np.save(tmp_dir + '/pred_trace/' +str(vis_img_id), tmp_trace_feats[:,:,:4].detach().cpu().numpy()) # np.save(tmp_dir + '/gt_trace/' + str(vis_img_id), trace_feats[:,:,:4].detach().cpu().numpy()) # print(vis_img_id, crit(tmp_trace_feats[:,:,:4], trace_feats[:,:,:4]).item(), trace_feats.shape) # with open(tmp_dir + '/info.txt', 'a') as f: # f.write('img_id:%s, l1-loss: %f\n'%(str(vis_img_id),((torch.abs(tmp_trace_feats[:, :, :4] - trace_feats[:, :, :4]) * loss_mask).sum() / (loss_mask.sum() * 4)).item())) # f.close() # # ############################ use_local_OT = True # loss_mask = ((trace_masks != 0) * (trace_feats[:, :, 4] != 1)).unsqueeze(2) # if use_local_OT: batch_loss_list = [] for idx_trace in range(trace_feats.shape[0]): tmp_gt_length = trace_masks[idx_trace].sum().long() single_tmp_trace_feats = tmp_trace_feats[idx_trace, :tmp_gt_length] single_trace_feats = trace_feats[idx_trace, :tmp_gt_length] # choose only boxes not [0,0,1,1,1] in the ground truth nonzero_idx = torch.nonzero(single_trace_feats[:,4]!=1).squeeze() single_trace_feats = single_trace_feats[nonzero_idx] if len(single_trace_feats.shape) < 2: # if there is only one chosen box in this trace single_trace_feats = single_trace_feats.unsqueeze(0) single_tmp_trace_feats = single_tmp_trace_feats.unsqueeze(0) single_trace_feats = single_trace_feats.unsqueeze(0) if single_tmp_trace_feats.shape[1] <= single_trace_feats.shape[1]: tmp_trace1 = single_tmp_trace_feats tmp_trace2 = single_trace_feats else: tmp_trace1 = single_trace_feats tmp_trace2 = single_tmp_trace_feats # processing in terms of segments of length 20 seg_loss_list = [] for seg_idx in range(np.ceil(tmp_trace1.shape[1]/20).astype(int)): tmp_const = 20. * tmp_trace2.shape[1] / tmp_trace1.shape[1] seg_tmp_trace1 = tmp_trace1[:, seg_idx*20:(seg_idx+1)*20, :4] seg_tmp_trace2 = tmp_trace2[:, np.floor(seg_idx*tmp_const).astype(int) : np.ceil((seg_idx+1)*tmp_const).astype(int) , :4] D = torch.abs(seg_tmp_trace1.unsqueeze(2) - seg_tmp_trace2.unsqueeze(1)).mean(dim=-1) seg_tmp_T = local_OT(D, window = window_size) seg_tmp_cost = (seg_tmp_T * D ).sum() / seg_tmp_trace1.shape[1] if not torch.isnan(seg_tmp_cost): seg_loss_list.append(seg_tmp_cost.item()) if len(seg_loss_list) != 0: batch_loss_list.append(np.mean(np.array(seg_loss_list))) loss = np.mean(np.array(batch_loss_list)) # loss_orig = ((torch.abs(tmp_trace_feats[:, :, :4] - trace_feats[:, :, :4]) * loss_mask).sum() / (loss_mask.sum() * 4)).item() else: loss = ((torch.abs(tmp_trace_feats[:, :, :4] - trace_feats[:, :, :4]) * loss_mask).sum() / (loss_mask.sum() * 4)).item() # loss_orig = loss if not np.isnan(loss): loss_list.append(loss) # loss_orig_list.append(loss_orig) print('Running ave l1 loss:', np.mean(np.array(loss_list))) #, np.mean(np.array(loss_orig_list))) count += att_feats.shape[0] print('Validation evaluation(%d/%d):'%(count, num_images), 'l1-loss:', loss) if count >= num_images: ### currently use 5000 in validation set break val_loss = np.mean(np.array(loss_list)) print('Validation evaluation:', 'l1-loss:', val_loss) model.train() return val_loss
connect-caption-and-trace-main
captioning/utils/eval_utils_joint.py
from __future__ import print_function import argparse def if_use_feat(caption_model): # Decide if load attention feature according to caption model if caption_model in ['show_tell', 'all_img', 'fc', 'newfc']: use_att, use_fc = False, True elif caption_model == 'language_model': use_att, use_fc = False, False elif caption_model in ['updown', 'topdown']: use_fc, use_att = True, True else: use_att, use_fc = True, False return use_fc, use_att def parse_opt(): parser = argparse.ArgumentParser() # training task: caption / trace / c_joint_t (joint training of controlled caption/trace generation) # / pred_both (the task of predicting both caption and trace at the same time) parser.add_argument('--task', type=str, default='c_joint_t', help='The task to train on. Choose from caption/trace/c_joint_t/pred_both') parser.add_argument('--eval_task', type=str, default='caption', help='The task to evaluate on. Choose from caption/trace/pred_both') # Data input settings parser.add_argument('--input_json', type=str, default='data/coco.json', help='path to the json file containing additional info and vocab') parser.add_argument('--input_fc_dir', type=str, default='data/cocotalk_fc', help='path to the directory containing the preprocessed fc feats') parser.add_argument('--input_att_dir', type=str, default='data/cocotalk_att', help='path to the directory containing the preprocessed att feats') parser.add_argument('--input_box_dir', type=str, default='data/cocotalk_box', help='path to the directory containing the boxes of att feats') parser.add_argument('--input_trace_dir', type=str, default='data/cocoLN_trace_box_by_04second', help='path to the directory containing the trace feats') parser.add_argument('--input_trace_class_label_dir', type=str, default='data/trace_by_word_classification_label', help='path to the directory containing the trace feats') parser.add_argument('--input_trace_feat_dir', type=str, default='/mnt/m2/Datasets/COCO/extracted_LN_trace_features_coco_by_word_correct_length', help='path to trace feats (T*1024/2048)') parser.add_argument('--input_label_h5', type=str, default='data/coco_label.h5', help='path to the h5file containing the preprocessed dataset') parser.add_argument('--data_in_memory', action='store_true', help='True if we want to save the features in memory') parser.add_argument('--start_from', type=str, default=None, help="""continue training from saved model at this path. Path must contain files saved by previous training process: 'infos.pkl' : configuration; 'model.pth' : weights """) parser.add_argument('--cached_tokens', type=str, default='coco-train-idxs', help='Cached token file for calculating cider score during self critical training.') # Model settings parser.add_argument('--caption_model', type=str, default="show_tell", help='show_tell, show_attend_tell, all_img, fc, att2in, att2in2, att2all2, adaatt, adaattmo, updown, stackatt, denseatt, transformer') parser.add_argument('--rnn_size', type=int, default=512, help='size of the rnn in number of hidden nodes in each layer') parser.add_argument('--num_layers', type=int, default=1, help='number of layers in the RNN') parser.add_argument('--rnn_type', type=str, default='lstm', help='rnn, gru, or lstm') parser.add_argument('--input_encoding_size', type=int, default=512, help='the encoding size of each token in the vocabulary, and the image.') parser.add_argument('--att_hid_size', type=int, default=512, help='the hidden size of the attention MLP; only useful in show_attend_tell; 0 if not using hidden layer') parser.add_argument('--fc_feat_size', type=int, default=2048, help='2048 for resnet, 4096 for vgg') parser.add_argument('--att_feat_size', type=int, default=2048, help='2048 for resnet, 512 for vgg') parser.add_argument('--logit_layers', type=int, default=1, help='number of layers in the RNN') parser.add_argument('--use_bn', type=int, default=0, help='If 1, then do batch_normalization first in att_embed, if 2 then do bn both in the beginning and the end of att_embed') # feature manipulation parser.add_argument('--norm_att_feat', type=int, default=0, help='If normalize attention features') parser.add_argument('--use_box', type=int, default=0, help='If use box features') parser.add_argument('--norm_box_feat', type=int, default=0, help='If use box, do we normalize box feature') # Add trace information from Localized Narratives: shape = Tx5 parser.add_argument('--use_trace', type=int, default=0, help='If use trace features') # Add trace feature: shape = Tx1024(2048 later) parser.add_argument('--use_trace_feat', type=int, default=0, help='If use trace features') parser.add_argument('--dataset_choice', type=str, default='coco', help='use coco or flk30k or others?') parser.add_argument('--trace_max_length', type=int, default=225, help='max length of trace/sentences') # Optimization: General parser.add_argument('--max_epochs', type=int, default=-1, help='number of epochs') parser.add_argument('--batch_size', type=int, default=16, help='minibatch size') parser.add_argument('--grad_clip_mode', type=str, default='value', help='value or norm') parser.add_argument('--grad_clip_value', type=float, default=0.1, help='clip gradients at this value/max_norm, 0 means no clipping') parser.add_argument('--drop_prob_lm', type=float, default=0.5, help='strength of dropout in the Language Model RNN') parser.add_argument('--self_critical_after', type=int, default=-1, help='After what epoch do we start finetuning the CNN? (-1 = disable; never finetune, 0 = finetune from start)') parser.add_argument('--seq_per_img', type=int, default=5, help='number of captions to sample for each image during training. Done for efficiency since CNN forward pass is expensive. E.g. coco has 5 sents/image') # Sample related add_eval_sample_opts(parser) #Optimization: for the Language Model parser.add_argument('--optim', type=str, default='adam', help='what update to use? rmsprop|sgd|sgdmom|adagrad|adam|adamw') parser.add_argument('--learning_rate', type=float, default=4e-4, help='learning rate') parser.add_argument('--learning_rate_decay_start', type=int, default=-1, help='at what iteration to start decaying learning rate? (-1 = dont) (in epoch)') parser.add_argument('--learning_rate_decay_every', type=int, default=3, help='every how many iterations thereafter to drop LR?(in epoch)') parser.add_argument('--learning_rate_decay_rate', type=float, default=0.8, help='every how many iterations thereafter to drop LR?(in epoch)') parser.add_argument('--optim_alpha', type=float, default=0.9, help='alpha for adam') parser.add_argument('--optim_beta', type=float, default=0.999, help='beta used for adam') parser.add_argument('--optim_epsilon', type=float, default=1e-8, help='epsilon that goes into denominator for smoothing') parser.add_argument('--weight_decay', type=float, default=0, help='weight_decay') # Transformer parser.add_argument('--label_smoothing', type=float, default=0, help='') parser.add_argument('--noamopt', action='store_true', help='') parser.add_argument('--noamopt_warmup', type=int, default=2000, help='') parser.add_argument('--noamopt_factor', type=float, default=1, help='') parser.add_argument('--reduce_on_plateau', action='store_true', help='') parser.add_argument('--reduce_on_plateau_factor', type=float, default=0.5, help='') parser.add_argument('--reduce_on_plateau_patience', type=int, default=3, help='') parser.add_argument('--cached_transformer', action='store_true', help='') parser.add_argument('--use_warmup', action='store_true', help='warm up the learing rate?') parser.add_argument('--scheduled_sampling_start', type=int, default=-1, help='at what iteration to start decay gt probability') parser.add_argument('--scheduled_sampling_increase_every', type=int, default=5, help='every how many iterations thereafter to gt probability') parser.add_argument('--scheduled_sampling_increase_prob', type=float, default=0.05, help='How much to update the prob') parser.add_argument('--scheduled_sampling_max_prob', type=float, default=0.25, help='Maximum scheduled sampling prob.') # Evaluation/Checkpointing parser.add_argument('--val_images_use', type=int, default=5000, help='how many images to use when periodically evaluating the validation loss? (-1 = all)') parser.add_argument('--save_checkpoint_every', type=int, default=2500, help='how often to save a model checkpoint (in iterations)?') parser.add_argument('--save_every_epoch', action='store_true', help='Save checkpoint every epoch, will overwrite save_checkpoint_every') parser.add_argument('--save_history_ckpt', type=int, default=0, help='If save checkpoints at every save point') parser.add_argument('--checkpoint_path', type=str, default=None, help='directory to store checkpointed models') parser.add_argument('--language_eval', type=int, default=0, help='Evaluate language as well (1 = yes, 0 = no)? BLEU/CIDEr/METEOR/ROUGE_L? requires coco-caption code from Github.') parser.add_argument('--losses_log_every', type=int, default=25, help='How often do we snapshot losses, for inclusion in the progress dump? (0 = disable)') parser.add_argument('--load_best_score', type=int, default=1, help='Do we load previous best score when resuming training.') # misc parser.add_argument('--id', type=str, default='', help='an id identifying this run/job. used in cross-val and appended when writing progress files') parser.add_argument('--train_only', type=int, default=0, help='if true then use 80k, else use 110k') # Reward parser.add_argument('--cider_reward_weight', type=float, default=1, help='The reward weight from cider') parser.add_argument('--bleu_reward_weight', type=float, default=0, help='The reward weight from bleu4') # Structure_loss parser.add_argument('--structure_loss_weight', type=float, default=1, help='') parser.add_argument('--structure_after', type=int, default=-1, help='T') parser.add_argument('--structure_loss_type', type=str, default='seqnll', help='') parser.add_argument('--struc_use_logsoftmax', action='store_true', help='') parser.add_argument('--entropy_reward_weight', type=float, default=0, help='Entropy reward, seems very interesting') parser.add_argument('--self_cider_reward_weight', type=float, default=0, help='self cider reward') # Used for self critical or structure. Used when sampling is need during training parser.add_argument('--train_sample_n', type=int, default=16, help='The reward weight from cider') parser.add_argument('--train_sample_method', type=str, default='sample', help='') parser.add_argument('--train_beam_size', type=int, default=1, help='') # Used for self critical parser.add_argument('--sc_sample_method', type=str, default='greedy', help='') parser.add_argument('--sc_beam_size', type=int, default=1, help='') # For diversity evaluation during training add_diversity_opts(parser) # config parser.add_argument('--cfg', type=str, default=None, help='configuration; similar to what is used in detectron') parser.add_argument( '--set_cfgs', dest='set_cfgs', help='Set config keys. Key value sequence seperate by whitespace.' 'e.g. [key] [value] [key] [value]\n This has higher priority' 'than cfg file but lower than other args. (You can only overwrite' 'arguments that have alerady been defined in config file.)', default=[], nargs='+') # How will config be used # 1) read cfg argument, and load the cfg file if it's not None # 2) Overwrite cfg argument with set_cfgs # 3) parse config argument to args. # 4) in the end, parse command line argument and overwrite args # step 1: read cfg_fn args = parser.parse_args() if args.cfg is not None or args.set_cfgs is not None: from .config import CfgNode if args.cfg is not None: cn = CfgNode(CfgNode.load_yaml_with_base(args.cfg)) else: cn = CfgNode() if args.set_cfgs is not None: cn.merge_from_list(args.set_cfgs) for k,v in cn.items(): if not hasattr(args, k): print('Warning: key %s not in args' %k) setattr(args, k, v) args = parser.parse_args(namespace=args) # Check if args are valid assert args.rnn_size > 0, "rnn_size should be greater than 0" assert args.num_layers > 0, "num_layers should be greater than 0" assert args.input_encoding_size > 0, "input_encoding_size should be greater than 0" assert args.batch_size > 0, "batch_size should be greater than 0" assert args.drop_prob_lm >= 0 and args.drop_prob_lm < 1, "drop_prob_lm should be between 0 and 1" assert args.seq_per_img > 0, "seq_per_img should be greater than 0" assert args.beam_size > 0, "beam_size should be greater than 0" assert args.save_checkpoint_every > 0, "save_checkpoint_every should be greater than 0" assert args.losses_log_every > 0, "losses_log_every should be greater than 0" assert args.language_eval == 0 or args.language_eval == 1, "language_eval should be 0 or 1" assert args.load_best_score == 0 or args.load_best_score == 1, "language_eval should be 0 or 1" assert args.train_only == 0 or args.train_only == 1, "language_eval should be 0 or 1" # default value for start_from and checkpoint_path args.checkpoint_path = args.checkpoint_path or './log_%s' %args.id args.start_from = args.start_from or args.checkpoint_path # Deal with feature things before anything args.use_fc, args.use_att = if_use_feat(args.caption_model) #if args.use_box: args.att_feat_size = args.att_feat_size + 5 # commented by zihang return args def add_eval_options(parser): # Basic options parser.add_argument('--batch_size', type=int, default=0, help='if > 0 then overrule, otherwise load from checkpoint.') parser.add_argument('--num_images', type=int, default=-1, help='how many images to use when periodically evaluating the loss? (-1 = all)') parser.add_argument('--language_eval', type=int, default=0, help='Evaluate language as well (1 = yes, 0 = no)? BLEU/CIDEr/METEOR/ROUGE_L? requires coco-caption code from Github.') parser.add_argument('--dump_images', type=int, default=1, help='Dump images into vis/imgs folder for vis? (1=yes,0=no)') parser.add_argument('--dump_json', type=int, default=1, help='Dump json with predictions into vis folder? (1=yes,0=no)') parser.add_argument('--dump_path', type=int, default=0, help='Write image paths along with predictions into vis json? (1=yes,0=no)') # Sampling options add_eval_sample_opts(parser) # For evaluation on a folder of images: parser.add_argument('--image_folder', type=str, default='', help='If this is nonempty then will predict on the images in this folder path') parser.add_argument('--image_root', type=str, default='', help='In case the image paths have to be preprended with a root path to an image folder') # For evaluation on MSCOCO images from some split: parser.add_argument('--input_fc_dir', type=str, default='', help='path to the h5file containing the preprocessed dataset') parser.add_argument('--input_att_dir', type=str, default='', help='path to the h5file containing the preprocessed dataset') parser.add_argument('--input_box_dir', type=str, default='', help='path to the h5file containing the preprocessed dataset') parser.add_argument('--input_trace_dir', type=str, default='', help='path to trace boxes (T*5)') ## h5file?? parser.add_argument('--input_trace_feat_dir', type=str, default='', help='path to trace feats (T*1024/2048)') ## h5file?? parser.add_argument('--input_label_h5', type=str, default='', help='path to the h5file containing the preprocessed dataset') parser.add_argument('--input_json', type=str, default='', help='path to the json file containing additional info and vocab. empty = fetch from model checkpoint.') parser.add_argument('--split', type=str, default='test', help='if running on MSCOCO images, which split to use: val|test|train') parser.add_argument('--coco_json', type=str, default='', help='if nonempty then use this file in DataLoaderRaw (see docs there). Used only in MSCOCO test evaluation, where we have a specific json file of only test set images.') # misc parser.add_argument('--id', type=str, default='', help='an id identifying this run/job. used only if language_eval = 1 for appending to intermediate files') parser.add_argument('--verbose_beam', type=int, default=1, help='if we need to print out all beam search beams.') parser.add_argument('--verbose_loss', type=int, default=0, help='If calculate loss using ground truth during evaluation') def add_diversity_opts(parser): parser.add_argument('--sample_n', type=int, default=1, help='Diverse sampling') parser.add_argument('--sample_n_method', type=str, default='sample', help='sample, bs, dbs, gumbel, topk, dgreedy, dsample, dtopk, dtopp') parser.add_argument('--eval_oracle', type=int, default=1, help='if we need to calculate loss.') # Sampling related options def add_eval_sample_opts(parser): parser.add_argument('--sample_method', type=str, default='greedy', help='greedy; sample; gumbel; top<int>, top<0-1>') parser.add_argument('--beam_size', type=int, default=1, help='used when sample_method = greedy, indicates number of beams in beam search. Usually 2 or 3 works well. More is not better. Set this to 1 for faster runtime but a bit worse performance.') parser.add_argument('--max_length', type=int, default=20, help='Maximum length during sampling') parser.add_argument('--length_penalty', type=str, default='', help='wu_X or avg_X, X is the alpha') parser.add_argument('--group_size', type=int, default=1, help='used for diverse beam search. if group_size is 1, then it\'s normal beam search') parser.add_argument('--diversity_lambda', type=float, default=0.5, help='used for diverse beam search. Usually from 0.2 to 0.8. Higher value of lambda produces a more diverse list') parser.add_argument('--temperature', type=float, default=1.0, help='temperature when sampling from distributions (i.e. when sample_method = sample). Lower = "safer" predictions.') parser.add_argument('--decoding_constraint', type=int, default=0, help='If 1, not allowing same word in a row') parser.add_argument('--block_trigrams', type=int, default=0, help='block repeated trigram.') parser.add_argument('--remove_bad_endings', type=int, default=0, help='Remove bad endings') parser.add_argument('--suppress_UNK', type=int, default=1, help='Not predicting UNK') if __name__ == '__main__': import sys sys.argv = [sys.argv[0]] args = parse_opt() print(args) print() sys.argv = [sys.argv[0], '--cfg', 'configs/updown_long.yml'] args1 = parse_opt() print(dict(set(vars(args1).items()) - set(vars(args).items()))) print() sys.argv = [sys.argv[0], '--cfg', 'configs/updown_long.yml', '--caption_model', 'att2in2'] args2 = parse_opt() print(dict(set(vars(args2).items()) - set(vars(args1).items())))
connect-caption-and-trace-main
captioning/utils/opts.py
import torch import scipy.optimize import numpy as np def local_OT(D, window = 0): window = window p = D.shape[1]; m = D.shape[2] # p < m, e.g., p = 10, m = 20 # construct the cx, ax=b x = torch.rand([10,p*m]) A = torch.zeros([p,p*m]) b = torch.ones([p]) for i in range(p): A[i, (i)*m:(i+1)*m] = 1 G = torch.zeros([m, p*m]) for i in range(m): for j in range(p): G[i, j*m+i] = 1 h = torch.ones([m]) A_local = torch.zeros([p, p, m]) for i in range(p): # left = np.floor((i - window) * (m*1.0/p)) # right = (i + window) * (m*1.0/p) left = (i - window) * (m * 1.0 / p) right = (i + 1 + window) * (m * 1.0 / p) for j in range(m): # if j < left or j >= right: if j < left or j >= right: A_local[i, i, j] = 1 # if i+window+1<=m-1: # A_local[i, i, i+(window+1):] = 1 # if i-(window+1) >=0: # A_local[i, i, :i-window] = 1 A_local = A_local.view([p, p*m]) b_local = torch.zeros([p]) A = torch.cat([A, A_local], 0).numpy() b = torch.cat([b, b_local], 0).numpy() G = G.numpy() h = h.numpy() T_list = [] for i in range(D.shape[0]): c = D[i].view(-1).detach().cpu().numpy() try: sol = scipy.optimize.linprog(c, A_ub = G, b_ub = h, A_eq = A, b_eq = b, bounds=(0, 1)) #options={'maxiter': 200, 'sym_pos':False} sol_x = torch.from_numpy(sol.x).view([p,m]).float() except: sol_x = torch.cat([torch.eye(p), torch.zeros(p, m-p)], 1) T_list.append(sol_x) T = torch.stack(T_list, 0) return T.to(D.device) #(D * T.cuda()).sum() / p #(T>0.5).float() # binarize it ### for debug # D = torch.rand([1, 10, 20]) # cost_orig = torch.diag(D[0]).sum() # T = local_OT(D) # cost_new = (D * T).sum() # print(cost_orig, cost_new)
connect-caption-and-trace-main
captioning/utils/local_optimal_transport.py
from random import uniform import numpy as np from collections import OrderedDict, defaultdict from itertools import tee import time # ----------------------------------------------- def find_ngrams(input_list, n): return zip(*[input_list[i:] for i in range(n)]) def compute_div_n(caps,n=1): aggr_div = [] for k in caps: all_ngrams = set() lenT = 0. for c in caps[k]: tkns = c.split() lenT += len(tkns) ng = find_ngrams(tkns, n) all_ngrams.update(ng) aggr_div.append(float(len(all_ngrams))/ (1e-6 + float(lenT))) return np.array(aggr_div).mean(), np.array(aggr_div) def compute_global_div_n(caps,n=1): aggr_div = [] all_ngrams = set() lenT = 0. for k in caps: for c in caps[k]: tkns = c.split() lenT += len(tkns) ng = find_ngrams(tkns, n) all_ngrams.update(ng) if n == 1: aggr_div.append(float(len(all_ngrams))) else: aggr_div.append(float(len(all_ngrams))/ (1e-6 + float(lenT))) return aggr_div[0], np.repeat(np.array(aggr_div),len(caps))
connect-caption-and-trace-main
captioning/utils/div_utils.py
from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import time from collections import OrderedDict import torch import sys try: sys.path.append("cider") from pyciderevalcap.ciderD.ciderD import CiderD from pyciderevalcap.cider.cider import Cider sys.path.append("coco-caption") from pycocoevalcap.bleu.bleu import Bleu except: print('cider or coco-caption missing') CiderD_scorer = None Cider_scorer = None Bleu_scorer = None #CiderD_scorer = CiderD(df='corpus') def init_scorer(cached_tokens): global CiderD_scorer CiderD_scorer = CiderD_scorer or CiderD(df=cached_tokens) global Cider_scorer Cider_scorer = Cider_scorer or Cider(df=cached_tokens) global Bleu_scorer Bleu_scorer = Bleu_scorer or Bleu(4) def array_to_str(arr): out = '' for i in range(len(arr)): out += str(arr[i]) + ' ' if arr[i] == 0: break return out.strip() def get_self_critical_reward(greedy_res, data_gts, gen_result, opt): batch_size = len(data_gts) gen_result_size = gen_result.shape[0] seq_per_img = gen_result_size // len(data_gts) # gen_result_size = batch_size * seq_per_img assert greedy_res.shape[0] == batch_size res = OrderedDict() gen_result = gen_result.data.cpu().numpy() greedy_res = greedy_res.data.cpu().numpy() for i in range(gen_result_size): res[i] = [array_to_str(gen_result[i])] for i in range(batch_size): res[gen_result_size + i] = [array_to_str(greedy_res[i])] gts = OrderedDict() for i in range(len(data_gts)): gts[i] = [array_to_str(data_gts[i][j]) for j in range(len(data_gts[i]))] res_ = [{'image_id':i, 'caption': res[i]} for i in range(len(res))] res__ = {i: res[i] for i in range(len(res_))} gts_ = {i: gts[i // seq_per_img] for i in range(gen_result_size)} gts_.update({i+gen_result_size: gts[i] for i in range(batch_size)}) if opt.cider_reward_weight > 0: _, cider_scores = CiderD_scorer.compute_score(gts_, res_) print('Cider scores:', _) else: cider_scores = 0 if opt.bleu_reward_weight > 0: _, bleu_scores = Bleu_scorer.compute_score(gts_, res__) bleu_scores = np.array(bleu_scores[3]) print('Bleu scores:', _[3]) else: bleu_scores = 0 scores = opt.cider_reward_weight * cider_scores + opt.bleu_reward_weight * bleu_scores scores = scores[:gen_result_size].reshape(batch_size, seq_per_img) - scores[-batch_size:][:, np.newaxis] scores = scores.reshape(gen_result_size) rewards = np.repeat(scores[:, np.newaxis], gen_result.shape[1], 1) return rewards def get_scores(data_gts, gen_result, opt): batch_size = gen_result.size(0)# batch_size = sample_size * seq_per_img seq_per_img = batch_size // len(data_gts) res = OrderedDict() gen_result = gen_result.data.cpu().numpy() for i in range(batch_size): res[i] = [array_to_str(gen_result[i])] gts = OrderedDict() for i in range(len(data_gts)): gts[i] = [array_to_str(data_gts[i][j]) for j in range(len(data_gts[i]))] res_ = [{'image_id':i, 'caption': res[i]} for i in range(batch_size)] res__ = {i: res[i] for i in range(batch_size)} gts = {i: gts[i // seq_per_img] for i in range(batch_size)} if opt.cider_reward_weight > 0: _, cider_scores = CiderD_scorer.compute_score(gts, res_) print('Cider scores:', _) else: cider_scores = 0 if opt.bleu_reward_weight > 0: _, bleu_scores = Bleu_scorer.compute_score(gts, res__) bleu_scores = np.array(bleu_scores[3]) print('Bleu scores:', _[3]) else: bleu_scores = 0 scores = opt.cider_reward_weight * cider_scores + opt.bleu_reward_weight * bleu_scores return scores def get_self_cider_scores(data_gts, gen_result, opt): batch_size = gen_result.size(0)# batch_size = sample_size * seq_per_img seq_per_img = batch_size // len(data_gts) res = [] gen_result = gen_result.data.cpu().numpy() for i in range(batch_size): res.append(array_to_str(gen_result[i])) scores = [] for i in range(len(data_gts)): tmp = Cider_scorer.my_self_cider([res[i*seq_per_img:(i+1)*seq_per_img]]) def get_div(eigvals): eigvals = np.clip(eigvals, 0, None) return -np.log(np.sqrt(eigvals[-1]) / (np.sqrt(eigvals).sum())) / np.log(len(eigvals)) scores.append(get_div(np.linalg.eigvalsh(tmp[0]/10))) scores = np.array(scores) return scores
connect-caption-and-trace-main
captioning/utils/rewards.py
from __future__ import absolute_import from __future__ import division from __future__ import print_function import torch import torch.nn as nn import torch.nn.functional as F import numpy as np import json from json import encoder import random import string import time import os import sys from . import misc as utils from .local_optimal_transport import local_OT # load coco-caption if available try: sys.path.append("coco-caption") from pycocotools.coco import COCO from pycocoevalcap.eval import COCOEvalCap except: print('Warning: coco-caption not available') bad_endings = ['a','an','the','in','for','at','of','with','before','after','on','upon','near','to','is','are','am'] bad_endings += ['the'] def count_bad(sen): sen = sen.split(' ') if sen[-1] in bad_endings: return 1 else: return 0 def getCOCO(dataset): if 'coco' in dataset: # annFile = 'coco-caption/annotations/captions_val2014.json' # annFile = 'coco-caption/annotations/captions_LN_val2014_norepeat.json' # load localized narratives for evaluation annFile = 'coco-caption/annotations/captions_LN_8kval.json' # load 8k LN validation set # use on 11/01 elif 'flickr30k' in dataset or 'f30k' in dataset: annFile = 'data/f30k_captions4eval.json' return COCO(annFile) def language_eval(dataset, preds, preds_n, eval_kwargs, split): model_id = eval_kwargs['id'] eval_oracle = eval_kwargs.get('eval_oracle', 0) # create output dictionary out = {} if len(preds_n) > 0: # vocab size and novel sentences if 'coco' in dataset: dataset_file = 'data/dataset_coco.json' elif 'flickr30k' in dataset or 'f30k' in dataset: dataset_file = 'data/dataset_flickr30k.json' training_sentences = set([' '.join(__['tokens']) for _ in json.load(open(dataset_file))['images'] if not _['split'] in ['val', 'test'] for __ in _['sentences']]) generated_sentences = set([_['caption'] for _ in preds_n]) novels = generated_sentences - training_sentences out['novel_sentences'] = float(len(novels)) / len(preds_n) tmp = [_.split() for _ in generated_sentences] words = [] for _ in tmp: words += _ out['vocab_size'] = len(set(words)) # encoder.FLOAT_REPR = lambda o: format(o, '.3f') cache_path = os.path.join('eval_results/', '.cache_'+ model_id + '_' + split + '.json') coco = getCOCO(dataset) valids = coco.getImgIds() # filter results to only those in MSCOCO validation set preds_filt = [p for p in preds if p['image_id'] in valids] mean_perplexity = sum([_['perplexity'] for _ in preds_filt]) / len(preds_filt) mean_entropy = sum([_['entropy'] for _ in preds_filt]) / len(preds_filt) print('using %d/%d predictions' % (len(preds_filt), len(preds))) json.dump(preds_filt, open(cache_path, 'w')) # serialize to temporary json file. Sigh, COCO API... cocoRes = coco.loadRes(cache_path) cocoEval = COCOEvalCap(coco, cocoRes) cocoEval.params['image_id'] = cocoRes.getImgIds() cocoEval.evaluate() for metric, score in cocoEval.eval.items(): out[metric] = score # Add mean perplexity out['perplexity'] = mean_perplexity out['entropy'] = mean_entropy imgToEval = cocoEval.imgToEval for k in list(imgToEval.values())[0]['SPICE'].keys(): if k != 'All': out['SPICE_'+k] = np.array([v['SPICE'][k]['f'] for v in imgToEval.values()]) out['SPICE_'+k] = (out['SPICE_'+k][out['SPICE_'+k]==out['SPICE_'+k]]).mean() for p in preds_filt: image_id, caption = p['image_id'], p['caption'] imgToEval[image_id]['caption'] = caption if len(preds_n) > 0: from . import eval_multi cache_path_n = os.path.join('eval_results/', '.cache_'+ model_id + '_' + split + '_n.json') allspice = eval_multi.eval_allspice(dataset, preds_n, model_id, split) out.update(allspice['overall']) div_stats = eval_multi.eval_div_stats(dataset, preds_n, model_id, split) out.update(div_stats['overall']) if eval_oracle: oracle = eval_multi.eval_oracle(dataset, preds_n, model_id, split) out.update(oracle['overall']) else: oracle = None self_cider = eval_multi.eval_self_cider(dataset, preds_n, model_id, split) out.update(self_cider['overall']) with open(cache_path_n, 'w') as outfile: json.dump({'allspice': allspice, 'div_stats': div_stats, 'oracle': oracle, 'self_cider': self_cider}, outfile) out['bad_count_rate'] = sum([count_bad(_['caption']) for _ in preds_filt]) / float(len(preds_filt)) outfile_path = os.path.join('eval_results/', model_id + '_' + split + '.json') with open(outfile_path, 'w') as outfile: json.dump({'overall': out, 'imgToEval': imgToEval}, outfile) return out def eval_split(model, crit, loader, eval_kwargs={}): verbose = eval_kwargs.get('verbose', True) verbose_beam = eval_kwargs.get('verbose_beam', 0) verbose_loss = eval_kwargs.get('verbose_loss', 1) num_images = eval_kwargs.get('num_images', eval_kwargs.get('val_images_use', -1)) split = eval_kwargs.get('split', 'val') lang_eval = eval_kwargs.get('language_eval', 0) dataset = eval_kwargs.get('dataset', 'coco') beam_size = eval_kwargs.get('beam_size', 1) sample_n = eval_kwargs.get('sample_n', 1) remove_bad_endings = eval_kwargs.get('remove_bad_endings', 0) os.environ["REMOVE_BAD_ENDINGS"] = str(remove_bad_endings) # Use this nasty way to make other code clean since it's a global configuration device = eval_kwargs.get('device', 'cuda') # Make sure in the evaluation mode model.eval() loader.reset_iterator(split) n = 0 loss = 0 loss_sum = 0 loss_evals = 1e-8 predictions = [] n_predictions = [] # when sample_n > 1 while True: data = loader.get_batch(split) # print('In eval_utils:', split)###zihang print(num_images) n = n + len(data['infos']) tmp = [data['fc_feats'], data['att_feats'], data['trace_feats'], data['box_feats'], data['labels'], data['masks'], data['att_masks'], data['trace_masks']] tmp = [_.to(device) if _ is not None else _ for _ in tmp] fc_feats, att_feats, trace_feats, box_feats, labels, masks, att_masks, trace_masks = tmp if labels is not None and verbose_loss: # forward the model to get loss with torch.no_grad(): loss = crit(model(fc_feats, att_feats, trace_feats, box_feats, labels[..., :-1], att_masks, trace_masks, 'caption'), labels[..., 1:], masks[..., 1:]).item() loss_sum = loss_sum + loss loss_evals = loss_evals + 1 # forward the model to also get generated samples for each image with torch.no_grad(): tmp_eval_kwargs = eval_kwargs.copy() tmp_eval_kwargs.update({'sample_n': 1}) seq, seq_logprobs = model(fc_feats, att_feats, trace_feats, box_feats, att_masks, trace_masks, opt=tmp_eval_kwargs, mode='sample') seq = seq.data entropy = - (F.softmax(seq_logprobs, dim=2) * seq_logprobs).sum(2).sum(1) / ((seq>0).to(seq_logprobs).sum(1)+1) perplexity = - seq_logprobs.gather(2, seq.unsqueeze(2)).squeeze(2).sum(1) / ((seq>0).to(seq_logprobs).sum(1)+1) # Print beam search if beam_size > 1 and verbose_beam: for i in range(fc_feats.shape[0]): print('\n'.join([utils.decode_sequence(model.vocab, _['seq'].unsqueeze(0))[0] for _ in model.done_beams[i]])) print('--' * 10) sents = utils.decode_sequence(model.vocab, seq) for k, sent in enumerate(sents): entry = {'image_id': data['infos'][k]['id'], 'caption': sent, 'perplexity': perplexity[k].item(), 'entropy': entropy[k].item()} if eval_kwargs.get('dump_path', 0) == 1: entry['file_name'] = data['infos'][k]['file_path'] predictions.append(entry) if eval_kwargs.get('dump_images', 0) == 1: # dump the raw image to vis/ folder cmd = 'cp "' + os.path.join(eval_kwargs['image_root'], data['infos'][k]['file_path']) + '" vis/imgs/img' + str(len(predictions)) + '.jpg' # bit gross print(cmd) os.system(cmd) if verbose: print('image %s: %s' %(entry['image_id'], entry['caption'])) if sample_n > 1: eval_split_n(model, n_predictions, [fc_feats, att_feats, trace_feats, box_feats, att_masks, trace_masks, data], eval_kwargs) # ix0 = data['bounds']['it_pos_now'] ix1 = data['bounds']['it_max'] # print('ix1', ix1)###zihang if num_images != -1: ix1 = min(ix1, num_images) else: num_images = ix1 # print('len:', len(predictions), n, ix1, split, num_images) ###zihang for i in range(n - ix1): predictions.pop() if verbose: print('evaluating validation preformance... %d/%d (%f)' %(n, ix1, loss)) if num_images >= 0 and n >= num_images: break lang_stats = None if len(n_predictions) > 0 and 'perplexity' in n_predictions[0]: n_predictions = sorted(n_predictions, key=lambda x: x['perplexity']) if not os.path.isdir('eval_results'): os.mkdir('eval_results') torch.save((predictions, n_predictions), os.path.join('eval_results/', '.saved_pred_'+ eval_kwargs['id'] + '_' + split + '.pth')) if lang_eval == 1: lang_stats = language_eval(dataset, predictions, n_predictions, eval_kwargs, split) # Switch back to training mode model.train() return loss_sum/loss_evals, predictions, lang_stats # Only run when sample_n > 0 def eval_split_n(model, n_predictions, input_data, eval_kwargs={}): verbose = eval_kwargs.get('verbose', True) beam_size = eval_kwargs.get('beam_size', 1) sample_n = eval_kwargs.get('sample_n', 1) sample_n_method = eval_kwargs.get('sample_n_method', 'sample') fc_feats, att_feats, trace_feats, box_feats, att_masks, trace_masks, data = input_data tmp_eval_kwargs = eval_kwargs.copy() if sample_n_method == 'bs': # case 1 sample_n == beam size tmp_eval_kwargs.update({'sample_n': 1, 'beam_size': sample_n, 'group_size': 1}) # randomness from softmax with torch.no_grad(): model(fc_feats, att_feats, trace_feats, box_feats, att_masks, trace_masks, opt=tmp_eval_kwargs, mode='sample') for k in range(fc_feats.shape[0]): _sents = utils.decode_sequence(model.vocab, torch.stack([model.done_beams[k][_]['seq'] for _ in range(sample_n)])) for sent in _sents: entry = {'image_id': data['infos'][k]['id'], 'caption': sent} n_predictions.append(entry) # case 2 sample / gumbel / topk sampling/ nucleus sampling elif sample_n_method == 'sample' or \ sample_n_method == 'gumbel' or \ sample_n_method.startswith('top'): tmp_eval_kwargs.update({'sample_n': sample_n, 'sample_method': sample_n_method, 'beam_size': 1}) # randomness from sample with torch.no_grad(): _seq, _sampleLogprobs = model(fc_feats, att_feats, trace_feats, box_feats, att_masks, trace_masks, opt=tmp_eval_kwargs, mode='sample') _sents = utils.decode_sequence(model.vocab, _seq) _perplexity = - _sampleLogprobs.gather(2, _seq.unsqueeze(2)).squeeze(2).sum(1) / ((_seq>0).to(_sampleLogprobs).sum(1)+1) for k, sent in enumerate(_sents): entry = {'image_id': data['infos'][k // sample_n]['id'], 'caption': sent, 'perplexity': _perplexity[k].item()} n_predictions.append(entry) elif sample_n_method == 'dbs': # Use diverse beam search tmp_eval_kwargs.update({'beam_size': sample_n * beam_size, 'group_size': sample_n}) # randomness from softmax with torch.no_grad(): model(fc_feats, att_feats, trace_feats, box_feats, att_masks, trace_masks, opt=tmp_eval_kwargs, mode='sample') for k in range(loader.batch_size): _sents = utils.decode_sequence(model.vocab, torch.stack([model.done_beams[k][_]['seq'] for _ in range(0, sample_n*beam_size, beam_size)])) for sent in _sents: entry = {'image_id': data['infos'][k]['id'], 'caption': sent} n_predictions.append(entry) else: tmp_eval_kwargs.update({'sample_method': sample_n_method[1:], 'group_size': sample_n, 'beam_size':1}) # randomness from softmax with torch.no_grad(): _seq, _sampleLogprobs = model(fc_feats, att_feats, trace_feats, box_feats, att_masks, trace_masks, opt=tmp_eval_kwargs, mode='sample') _sents = utils.decode_sequence(model.vocab, _seq) for k, sent in enumerate(_sents): entry = {'image_id': data['infos'][k // sample_n]['id'], 'caption': sent} n_predictions.append(entry) if verbose: for entry in sorted(n_predictions[-fc_feats.shape[0] * sample_n:], key=lambda x: x['image_id']): print('image %s: %s' %(entry['image_id'], entry['caption'])) def eval_trace_generation(model, crit, loader, eval_kwargs={}): model.eval() count = 0 split = 'val' loader.reset_iterator(split) device = 'cuda' num_images = eval_kwargs.get('num_images', eval_kwargs.get('val_images_use', -1)) while True: data = loader.get_batch(split) # print(data['infos'][0]['id']) ix1 = data['bounds']['it_max'] # print('ix1', ix1)###zihang if num_images != -1: ix1 = min(ix1, num_images) else: num_images = ix1 tmp = [data['fc_feats'], data['att_feats'], data['trace_feats'], data['box_feats'], data['labels'], data['masks'], data['att_masks'], data['trace_masks']] tmp = [_.to(device) if _ is not None else _ for _ in tmp] fc_feats, att_feats, trace_feats, box_feats, labels, masks, att_masks, trace_masks = tmp loss_ce_list = [] gt_prev_acc_list = [] loss_list = [] loss_prev_gt_list = [] acc_list = [] with torch.no_grad(): use_local_OT = False # get the loss for l1-loss and classification accuracy tmp_trace_feats = trace_feats.clone() # trace_class_label = trace_feats[:,:,5] - 1 # pred_class_label = torch.zeros_like(trace_class_label).to(trace_class_label.device) # prev_gt_correct prev_gt_out = model(fc_feats, att_feats, tmp_trace_feats, box_feats, labels[..., :-1], att_masks, trace_masks) prev_gt_out = prev_gt_out * trace_masks.unsqueeze(2) # print(prev_gt_out[0, :, :5]) loss_prev_gt_mask = ((trace_masks != 0) * (trace_feats[:, :, 4] != 1)).unsqueeze(2) loss_prev_gt = ((torch.abs(prev_gt_out[:, :, :4] - trace_feats[:, :, :4]) * loss_prev_gt_mask).sum() / ( loss_prev_gt_mask.sum() * 4)).item() loss_prev_gt_list.append(loss_prev_gt) for i in range(trace_feats.shape[1]): # for regression curr_out = model(fc_feats, att_feats, tmp_trace_feats, box_feats, labels[..., :-1], att_masks, trace_masks)[:, i] curr_out[:, 4] = (curr_out[:, 2] - curr_out[:, 0]) * (curr_out[:, 3] - curr_out[:, 1]) tmp_trace_feats[:, i, :5] = curr_out # curr_out = model(fc_feats, att_feats, tmp_trace_feats, box_feats, labels[..., :-1], att_masks, trace_masks) # for non-iteratively # break # for non-iteratively # tmp_trace_feats = curr_out # for non-iteratively # ### save for visualization # for visualization of trace_generation # vis_img_id = data['infos'][0]['id'] # np.save('./vis/trace_generation_2/pred_trace_'+str(vis_img_id), tmp_trace_feats[:,:,:4].detach().cpu().numpy()) # np.save('./vis/trace_generation_2/gt_trace_' + str(vis_img_id), trace_feats[:,:,:4].detach().cpu().numpy()) # print(vis_img_id, crit(tmp_trace_feats[:,:,:4], trace_feats[:,:,:4]).item(), trace_feats.shape) # with open('./vis/trace_generation_2/info.txt', 'a') as f: # f.write('img_id:%d, l1-loss: %f\n'%(vis_img_id,(crit(tmp_trace_feats[:,:,:4], trace_feats[:,:,:4]) * trace_masks.shape[0]*trace_masks.shape[1] / (trace_masks!=0).sum()).item())) # f.close() # ############################ # tmp_trace_feats = tmp_trace_feats * trace_masks.unsqueeze(2) loss_mask = ((trace_masks != 0) * (trace_feats[:, :, 4] != 1)).unsqueeze(2) # if use_local_OT: D = torch.abs(tmp_trace_feats[:, :, :4].unsqueeze(2) - trace_feats[:, :, :4].unsqueeze(1)).mean(dim=-1) T = local_OT(D).to(tmp_trace_feats.device) loss = ((torch.abs(torch.matmul(tmp_trace_feats[:, :, :4].transpose(1, 2), T).transpose(1, 2) - trace_feats[:, :, :4]) * loss_mask).sum() / (loss_mask.sum() * 4)).item() print('loss', loss, 'loss_orig', ( (torch.abs(tmp_trace_feats[:, :, :4] - trace_feats[:, :, :4]) * loss_mask).sum() / ( loss_mask.sum() * 4)).item()) else: loss = ((torch.abs(tmp_trace_feats[:, :, :4] - trace_feats[:, :, :4]) * loss_mask).sum() / (loss_mask.sum() * 4)).item() # loss = (crit(tmp_trace_feats[:,:,:4], trace_feats[:,:,:4]) * trace_masks.shape[0]*trace_masks.shape[1] / (trace_masks!=0).sum()).item() loss_list.append(loss) count += att_feats.shape[0] print('Validation evaluation(%d/%d):'%(count, num_images), 'l1-loss:', loss, '; prev_gt_loss:', loss_prev_gt) if count >= num_images: ### currently use 5000 in validation set break val_loss = np.mean(np.array(loss_list)) val_loss_prev_gt = np.mean(np.array(loss_prev_gt_list)) print('Validation evaluation: loss', 'l1-loss:', val_loss, '; prev_gt_loss:', val_loss_prev_gt) model.train() return val_loss def eval_trace_generation_classification(model, crit, loader, eval_kwargs={}): model.eval() count = 0 split = 'val' loader.reset_iterator(split) device = 'cuda' num_images = eval_kwargs.get('num_images', eval_kwargs.get('val_images_use', -1)) while True: data = loader.get_batch(split) ix1 = data['bounds']['it_max'] # print('ix1', ix1)###zihang if num_images != -1: ix1 = min(ix1, num_images) else: num_images = ix1 tmp = [data['fc_feats'], data['att_feats'], data['trace_feats'], data['box_feats'], data['labels'], data['masks'], data['att_masks'], data['trace_masks']] tmp = [_.to(device) if _ is not None else _ for _ in tmp] fc_feats, att_feats, trace_feats, box_feats, labels, masks, att_masks, trace_masks = tmp loss_ce_list = [] gt_prev_acc_list = [] loss_list = [] acc_list = [] with torch.no_grad(): # get the loss in terms of cross-entropy model_outputs = model(fc_feats, att_feats, trace_feats[:,:,1:], box_feats, labels[..., :-1], att_masks, trace_masks) model_outputs = F.log_softmax(model_outputs, dim=-1) model_outputs = model_outputs.view(-1, model_outputs.shape[2]) trace_class_label = trace_feats[:, :, 0] * (trace_feats[:, :, 5] != 1).float() - 1 trace_class_label = trace_class_label.view(-1).long() loss_ce = F.nll_loss(model_outputs, trace_class_label, ignore_index=-1).item() loss_ce_list.append(loss_ce) gt_prev_acc = (((model_outputs.argmax(dim=1) == trace_class_label)*(trace_class_label!=-1).float()).sum() / \ (trace_class_label != -1).float().sum()).item() gt_prev_acc_list.append(gt_prev_acc) # get the loss for l1-loss and classification accuracy tmp_trace_feats = trace_feats.clone() trace_class_label = trace_feats[:, :, 0] * (trace_feats[:, :, 5] != 1).float() - 1 pred_class_label = torch.zeros_like(trace_class_label).to(trace_class_label.device) for i in range(trace_feats.shape[1]): # for regression # curr_out = model(fc_feats, att_feats, tmp_trace_feats, box_feats, labels[..., :-1], att_masks, trace_masks)[:, i] # for classification curr_out = model(fc_feats, att_feats, tmp_trace_feats[:,:,1:], box_feats, labels[..., :-1], att_masks, trace_masks)[:,i] curr_out = curr_out.argmax(dim=-1) pred_class_label[:, i] = curr_out curr_out = box_feats[np.arange(box_feats.shape[0]), curr_out] tmp_trace_feats[:, i, 1:6] = curr_out # print('prev_gt_class_label', model_outputs.argmax(dim=1).view(pred_class_label.shape)[0]) # print('pred_class_label',pred_class_label[0]) loss_mask = ((trace_masks != 0) * (trace_feats[:, :, 5] != 1)) classification_acc = ((pred_class_label == trace_class_label) * loss_mask).sum().float() / loss_mask.sum() acc_list.append(classification_acc.item()) loss_mask = loss_mask.unsqueeze(2) loss = ((torch.abs(tmp_trace_feats[:, :, 1:5] - trace_feats[:, :, 1:5]) * loss_mask).sum() / ( loss_mask.sum() * 4)).item() loss_list.append(loss) count += att_feats.shape[0] print('Validation evaluation(%d/%d):'%(count, num_images), 'l1-loss:', loss, '; loss_ce:', loss_ce, '; classification-acc:', classification_acc.item(), '; gt_prev_acc:', gt_prev_acc) if count >= num_images: ### currently use 5000 in validation set break val_loss_ce = np.mean(np.array(loss_ce_list)) val_gt_prev_acc = np.mean(np.array(gt_prev_acc_list)) val_loss = np.mean(np.array(loss_list)) val_acc = np.mean(np.array(acc_list)) print('Validation evaluation: loss', 'l1-loss:', val_loss, '; loss_ce:', val_loss_ce, '; classification-acc:', val_acc, '; gt_prev_acc:', val_gt_prev_acc) model.train() return val_loss
connect-caption-and-trace-main
captioning/utils/eval_utils.py
from __future__ import absolute_import from __future__ import division from __future__ import print_function import torch import torch.nn as nn import torch.nn.functional as F import numpy as np import json from json import encoder import random import string import time import os import sys from . import misc as utils # load coco-caption if available try: sys.path.append("coco-caption") from pycocotools.coco import COCO from pycocoevalcap.eval import COCOEvalCap except: print('Warning: coco-caption not available') bad_endings = ['a','an','the','in','for','at','of','with','before','after','on','upon','near','to','is','are','am'] bad_endings += ['the'] def count_bad(sen): sen = sen.split(' ') if sen[-1] in bad_endings: return 1 else: return 0 def getCOCO(dataset): if 'coco' in dataset: #annFile = 'coco-caption/annotations/captions_val2014.json' # annFile = 'coco-caption/annotations/captions_LN_val2014_norepeat.json' # load localized narratives for evaluation annFile = 'coco-caption/annotations/captions_LN_8kval.json' # load 8k LN validation set elif 'flickr30k' in dataset or 'f30k' in dataset: annFile = 'data/f30k_captions4eval.json' return COCO(annFile) def language_eval(dataset, preds, preds_n, eval_kwargs, split): model_id = eval_kwargs['id'] eval_oracle = eval_kwargs.get('eval_oracle', 0) # create output dictionary out = {} if len(preds_n) > 0: # vocab size and novel sentences if 'coco' in dataset: dataset_file = 'data/dataset_coco.json' elif 'flickr30k' in dataset or 'f30k' in dataset: dataset_file = 'data/dataset_flickr30k.json' training_sentences = set([' '.join(__['tokens']) for _ in json.load(open(dataset_file))['images'] if not _['split'] in ['val', 'test'] for __ in _['sentences']]) generated_sentences = set([_['caption'] for _ in preds_n]) novels = generated_sentences - training_sentences out['novel_sentences'] = float(len(novels)) / len(preds_n) tmp = [_.split() for _ in generated_sentences] words = [] for _ in tmp: words += _ out['vocab_size'] = len(set(words)) # encoder.FLOAT_REPR = lambda o: format(o, '.3f') cache_path = os.path.join('eval_results/', '.cache_'+ model_id + '_' + split + '.json') coco = getCOCO(dataset) valids = coco.getImgIds() # filter results to only those in MSCOCO validation set preds_filt = [p for p in preds if p['image_id'] in valids] mean_perplexity = sum([_['perplexity'] for _ in preds_filt]) / len(preds_filt) mean_entropy = sum([_['entropy'] for _ in preds_filt]) / len(preds_filt) print('using %d/%d predictions' % (len(preds_filt), len(preds))) json.dump(preds_filt, open(cache_path, 'w')) # serialize to temporary json file. Sigh, COCO API... cocoRes = coco.loadRes(cache_path) cocoEval = COCOEvalCap(coco, cocoRes) cocoEval.params['image_id'] = cocoRes.getImgIds() cocoEval.evaluate() for metric, score in cocoEval.eval.items(): out[metric] = score # Add mean perplexity out['perplexity'] = mean_perplexity out['entropy'] = mean_entropy imgToEval = cocoEval.imgToEval for k in list(imgToEval.values())[0]['SPICE'].keys(): if k != 'All': out['SPICE_'+k] = np.array([v['SPICE'][k]['f'] for v in imgToEval.values()]) out['SPICE_'+k] = (out['SPICE_'+k][out['SPICE_'+k]==out['SPICE_'+k]]).mean() for p in preds_filt: image_id, caption = p['image_id'], p['caption'] imgToEval[image_id]['caption'] = caption if len(preds_n) > 0: from . import eval_multi cache_path_n = os.path.join('eval_results/', '.cache_'+ model_id + '_' + split + '_n.json') allspice = eval_multi.eval_allspice(dataset, preds_n, model_id, split) out.update(allspice['overall']) div_stats = eval_multi.eval_div_stats(dataset, preds_n, model_id, split) out.update(div_stats['overall']) if eval_oracle: oracle = eval_multi.eval_oracle(dataset, preds_n, model_id, split) out.update(oracle['overall']) else: oracle = None self_cider = eval_multi.eval_self_cider(dataset, preds_n, model_id, split) out.update(self_cider['overall']) with open(cache_path_n, 'w') as outfile: json.dump({'allspice': allspice, 'div_stats': div_stats, 'oracle': oracle, 'self_cider': self_cider}, outfile) out['bad_count_rate'] = sum([count_bad(_['caption']) for _ in preds_filt]) / float(len(preds_filt)) outfile_path = os.path.join('eval_results/', model_id + '_' + split + '.json') with open(outfile_path, 'w') as outfile: json.dump({'overall': out, 'imgToEval': imgToEval}, outfile) return out def eval_split(model, crit, loader, eval_kwargs={}): verbose = eval_kwargs.get('verbose', True) verbose_beam = eval_kwargs.get('verbose_beam', 0) verbose_loss = eval_kwargs.get('verbose_loss', 1) num_images = eval_kwargs.get('num_images', eval_kwargs.get('val_images_use', -1)) split = eval_kwargs.get('split', 'val') lang_eval = eval_kwargs.get('language_eval', 0) dataset = eval_kwargs.get('dataset', 'coco') beam_size = eval_kwargs.get('beam_size', 1) sample_n = eval_kwargs.get('sample_n', 1) remove_bad_endings = eval_kwargs.get('remove_bad_endings', 0) os.environ["REMOVE_BAD_ENDINGS"] = str(remove_bad_endings) # Use this nasty way to make other code clean since it's a global configuration device = eval_kwargs.get('device', 'cuda') # Make sure in the evaluation mode model.eval() loader.reset_iterator(split) n = 0 loss = 0 loss_sum = 0 loss_evals = 1e-8 predictions = [] n_predictions = [] # when sample_n > 1 while True: data = loader.get_batch(split) # print('In eval_utils:', split)###zihang print(num_images) n = n + len(data['infos']) tmp = [data['fc_feats'], data['att_feats'], data['trace_feats'], data['box_feats'], data['labels'], data['masks'], data['att_masks'], data['trace_masks']] tmp = [_.to(device) if _ is not None else _ for _ in tmp] fc_feats, att_feats, trace_feats, box_feats, labels, masks, att_masks, trace_masks = tmp if labels is not None and verbose_loss: # forward the model to get loss with torch.no_grad(): loss = crit(model(fc_feats, att_feats, trace_feats, box_feats, labels[..., :-1], att_masks, trace_masks), labels[..., 1:], masks[..., 1:]).item() loss_sum = loss_sum + loss loss_evals = loss_evals + 1 # forward the model to also get generated samples for each image with torch.no_grad(): tmp_eval_kwargs = eval_kwargs.copy() tmp_eval_kwargs.update({'sample_n': 1}) seq, seq_logprobs = model(fc_feats, att_feats, trace_feats, box_feats, att_masks, trace_masks, opt=tmp_eval_kwargs, mode='sample') seq = seq.data entropy = - (F.softmax(seq_logprobs, dim=2) * seq_logprobs).sum(2).sum(1) / ((seq>0).to(seq_logprobs).sum(1)+1) perplexity = - seq_logprobs.gather(2, seq.unsqueeze(2)).squeeze(2).sum(1) / ((seq>0).to(seq_logprobs).sum(1)+1) # Print beam search if beam_size > 1 and verbose_beam: for i in range(fc_feats.shape[0]): print('\n'.join([utils.decode_sequence(model.vocab, _['seq'].unsqueeze(0))[0] for _ in model.done_beams[i]])) print('--' * 10) sents = utils.decode_sequence(model.vocab, seq) for k, sent in enumerate(sents): entry = {'image_id': data['infos'][k]['id'], 'caption': sent, 'perplexity': perplexity[k].item(), 'entropy': entropy[k].item()} if eval_kwargs.get('dump_path', 0) == 1: entry['file_name'] = data['infos'][k]['file_path'] predictions.append(entry) if eval_kwargs.get('dump_images', 0) == 1: # dump the raw image to vis/ folder cmd = 'cp "' + os.path.join(eval_kwargs['image_root'], data['infos'][k]['file_path']) + '" vis/imgs/img' + str(len(predictions)) + '.jpg' # bit gross print(cmd) os.system(cmd) if verbose: print('image %s: %s' %(entry['image_id'], entry['caption'])) if sample_n > 1: eval_split_n(model, n_predictions, [fc_feats, att_feats, trace_feats, box_feats, att_masks, trace_masks, data], eval_kwargs) # ix0 = data['bounds']['it_pos_now'] ix1 = data['bounds']['it_max'] # print('ix1', ix1)###zihang if num_images != -1: ix1 = min(ix1, num_images) else: num_images = ix1 # print('len:', len(predictions), n, ix1, split, num_images) ###zihang for i in range(n - ix1): predictions.pop() if verbose: print('evaluating validation preformance... %d/%d (%f)' %(n, ix1, loss)) if num_images >= 0 and n >= num_images: break lang_stats = None if len(n_predictions) > 0 and 'perplexity' in n_predictions[0]: n_predictions = sorted(n_predictions, key=lambda x: x['perplexity']) if not os.path.isdir('eval_results'): os.mkdir('eval_results') torch.save((predictions, n_predictions), os.path.join('eval_results/', '.saved_pred_'+ eval_kwargs['id'] + '_' + split + '.pth')) if lang_eval == 1: lang_stats = language_eval(dataset, predictions, n_predictions, eval_kwargs, split) # Switch back to training mode model.train() return loss_sum/loss_evals, predictions, lang_stats # Only run when sample_n > 0 def eval_split_n(model, n_predictions, input_data, eval_kwargs={}): verbose = eval_kwargs.get('verbose', True) beam_size = eval_kwargs.get('beam_size', 1) sample_n = eval_kwargs.get('sample_n', 1) sample_n_method = eval_kwargs.get('sample_n_method', 'sample') fc_feats, att_feats, trace_feats, box_feats, att_masks, trace_masks, data = input_data tmp_eval_kwargs = eval_kwargs.copy() if sample_n_method == 'bs': # case 1 sample_n == beam size tmp_eval_kwargs.update({'sample_n': 1, 'beam_size': sample_n, 'group_size': 1}) # randomness from softmax with torch.no_grad(): model(fc_feats, att_feats, trace_feats, box_feats, att_masks, trace_masks, opt=tmp_eval_kwargs, mode='sample') for k in range(fc_feats.shape[0]): _sents = utils.decode_sequence(model.vocab, torch.stack([model.done_beams[k][_]['seq'] for _ in range(sample_n)])) for sent in _sents: entry = {'image_id': data['infos'][k]['id'], 'caption': sent} n_predictions.append(entry) # case 2 sample / gumbel / topk sampling/ nucleus sampling elif sample_n_method == 'sample' or \ sample_n_method == 'gumbel' or \ sample_n_method.startswith('top'): tmp_eval_kwargs.update({'sample_n': sample_n, 'sample_method': sample_n_method, 'beam_size': 1}) # randomness from sample with torch.no_grad(): _seq, _sampleLogprobs = model(fc_feats, att_feats, trace_feats, box_feats, att_masks, trace_masks, opt=tmp_eval_kwargs, mode='sample') _sents = utils.decode_sequence(model.vocab, _seq) _perplexity = - _sampleLogprobs.gather(2, _seq.unsqueeze(2)).squeeze(2).sum(1) / ((_seq>0).to(_sampleLogprobs).sum(1)+1) for k, sent in enumerate(_sents): entry = {'image_id': data['infos'][k // sample_n]['id'], 'caption': sent, 'perplexity': _perplexity[k].item()} n_predictions.append(entry) elif sample_n_method == 'dbs': # Use diverse beam search tmp_eval_kwargs.update({'beam_size': sample_n * beam_size, 'group_size': sample_n}) # randomness from softmax with torch.no_grad(): model(fc_feats, att_feats, trace_feats, box_feats, att_masks, trace_masks, opt=tmp_eval_kwargs, mode='sample') for k in range(loader.batch_size): _sents = utils.decode_sequence(model.vocab, torch.stack([model.done_beams[k][_]['seq'] for _ in range(0, sample_n*beam_size, beam_size)])) for sent in _sents: entry = {'image_id': data['infos'][k]['id'], 'caption': sent} n_predictions.append(entry) else: tmp_eval_kwargs.update({'sample_method': sample_n_method[1:], 'group_size': sample_n, 'beam_size':1}) # randomness from softmax with torch.no_grad(): _seq, _sampleLogprobs = model(fc_feats, att_feats, trace_feats, box_feats, att_masks, trace_masks, opt=tmp_eval_kwargs, mode='sample') _sents = utils.decode_sequence(model.vocab, _seq) for k, sent in enumerate(_sents): entry = {'image_id': data['infos'][k // sample_n]['id'], 'caption': sent} n_predictions.append(entry) if verbose: for entry in sorted(n_predictions[-fc_feats.shape[0] * sample_n:], key=lambda x: x['image_id']): print('image %s: %s' %(entry['image_id'], entry['caption'])) def eval_trace_generation(model, crit, loader, eval_kwargs={}): model.eval() count = 0 split = 'val' loader.reset_iterator(split) device = 'cuda' num_images = eval_kwargs.get('num_images', eval_kwargs.get('val_images_use', -1)) while True: data = loader.get_batch(split) print(data['infos'][0]['id']) ix1 = data['bounds']['it_max'] # print('ix1', ix1)###zihang if num_images != -1: ix1 = min(ix1, num_images) else: num_images = ix1 tmp = [data['fc_feats'], data['att_feats'], data['trace_feats'], data['box_feats'], data['labels'], data['masks'], data['att_masks'], data['trace_masks']] tmp = [_.to(device) if _ is not None else _ for _ in tmp] fc_feats, att_feats, trace_feats, box_feats, labels, masks, att_masks, trace_masks = tmp loss_ce_list = [] gt_prev_acc_list = [] loss_list = [] loss_prev_gt_list = [] acc_list = [] with torch.no_grad(): # get the loss for l1-loss and classification accuracy tmp_trace_feats = trace_feats trace_class_label = trace_feats[:,:,5] - 1 pred_class_label = torch.zeros_like(trace_class_label).to(trace_class_label.device) # prev_gt_correct prev_gt_out = model(fc_feats, att_feats, tmp_trace_feats, box_feats, labels[..., :-1], att_masks, trace_masks) prev_gt_out = prev_gt_out * trace_masks.unsqueeze(2) loss_prev_gt = crit(prev_gt_out[:, :, :4], trace_feats[:, :, :4]).item() loss_prev_gt_list.append(loss_prev_gt) for i in range(trace_feats.shape[1]): # for regression # curr_out = model(fc_feats, att_feats, tmp_trace_feats, box_feats, labels[..., :-1], att_masks, trace_masks)[:, i] curr_out = model(fc_feats, att_feats, tmp_trace_feats, box_feats, labels[..., :-1], att_masks, trace_masks, 'trace') # tmp_trace_feats[:, i, :5] = curr_out break tmp_trace_feats = curr_out ### save for visualization # for visualization of trace_generation # vis_img_id = data['infos'][0]['id'] # np.save('./vis/trace_generation/pred_trace_'+str(vis_img_id), curr_out.detach().cpu().numpy()) # np.save('./vis/trace_generation/gt_trace_' + str(vis_img_id), trace_feats.detach().cpu().numpy()) # print(vis_img_id, crit(tmp_trace_feats[:,:,:4], trace_feats[:,:,:4]).item(), trace_feats.shape) # with open('./vis/trace_generation/info.txt', 'a') as f: # f.write('img_id:%d, l1-loss: %f\n'%(vis_img_id,(crit(tmp_trace_feats[:,:,:4], trace_feats[:,:,:4]) * trace_masks.shape[0]*trace_masks.shape[1] / (trace_masks!=0).sum()).item())) # f.close() ############################ tmp_trace_feats = tmp_trace_feats * trace_masks.unsqueeze(2) loss = (torch.abs(tmp_trace_feats[:,:,:4] - trace_feats[:,:,:4]).sum() / ((trace_masks!=0).sum() * 4)).item() # loss = (crit(tmp_trace_feats[:,:,:4], trace_feats[:,:,:4]) * trace_masks.shape[0]*trace_masks.shape[1] / (trace_masks!=0).sum()).item() loss_list.append(loss) count += att_feats.shape[0] print('Validation evaluation(%d/%d):'%(count, num_images), 'l1-loss:', loss, '; prev_gt_loss:', loss_prev_gt) if count >= num_images: ### currently use 5000 in validation set break val_loss = np.mean(np.array(loss_list)) val_loss_prev_gt = np.mean(np.array(loss_prev_gt_list)) print('Validation evaluation: loss', 'l1-loss:', val_loss, '; prev_gt_loss:', val_loss_prev_gt) model.train() return val_loss def eval_trace_generation_classification(model, crit, loader, eval_kwargs={}): model.eval() count = 0 split = 'val' loader.reset_iterator(split) device = 'cuda' num_images = eval_kwargs.get('num_images', eval_kwargs.get('val_images_use', -1)) while True: data = loader.get_batch(split) ix1 = data['bounds']['it_max'] # print('ix1', ix1)###zihang if num_images != -1: ix1 = min(ix1, num_images) else: num_images = ix1 tmp = [data['fc_feats'], data['att_feats'], data['trace_feats'], data['box_feats'], data['labels'], data['masks'], data['att_masks'], data['trace_masks']] tmp = [_.to(device) if _ is not None else _ for _ in tmp] fc_feats, att_feats, trace_feats, box_feats, labels, masks, att_masks, trace_masks = tmp loss_ce_list = [] gt_prev_acc_list = [] loss_list = [] acc_list = [] with torch.no_grad(): # get the loss in terms of cross-entropy model_outputs = model(fc_feats, att_feats, trace_feats, box_feats, labels[..., :-1], att_masks, trace_masks) model_outputs = F.log_softmax(model_outputs, dim=-1) model_outputs = model_outputs.view(-1, model_outputs.shape[2]) trace_class_label = trace_feats[:, :, 5] - 1 trace_class_label = trace_class_label.view(-1).long() loss_ce = F.nll_loss(model_outputs, trace_class_label, ignore_index=-1).item() loss_ce_list.append(loss_ce) gt_prev_acc = (((model_outputs.argmax(dim=1) == trace_class_label)*(trace_class_label!=-1).float()).sum() / \ (trace_class_label != -1).float().sum()).item() gt_prev_acc_list.append(gt_prev_acc) # get the loss for l1-loss and classification accuracy tmp_trace_feats = trace_feats trace_class_label = trace_feats[:,:,5] - 1 pred_class_label = torch.zeros_like(trace_class_label).to(trace_class_label.device) for i in range(trace_feats.shape[1]): # for regression # curr_out = model(fc_feats, att_feats, tmp_trace_feats, box_feats, labels[..., :-1], att_masks, trace_masks)[:, i] # for classification curr_out = model(fc_feats, att_feats, tmp_trace_feats, box_feats, labels[..., :-1], att_masks, trace_masks)[:,i] curr_out = curr_out.argmax(dim=-1) pred_class_label[:, i] = curr_out curr_out = box_feats[np.arange(box_feats.shape[0]), curr_out] tmp_trace_feats[:, i, :5] = curr_out print('prev_gt_class_label', model_outputs.argmax(dim=1).view(pred_class_label.shape)[0]) print('pred_class_label',pred_class_label[0]) classification_acc = ((pred_class_label == trace_class_label) * trace_masks).sum() / trace_masks.sum() acc_list.append(classification_acc.item()) tmp_trace_feats = tmp_trace_feats * trace_masks.unsqueeze(2) loss = crit(tmp_trace_feats[:,:,:4], trace_feats[:,:,:4]).item() loss_list.append(loss) count += att_feats.shape[0] print('Validation evaluation(%d/%d):'%(count, num_images), 'l1-loss:', loss, '; loss_ce:', loss_ce, '; classification-acc:', classification_acc.item(), '; gt_prev_acc:', gt_prev_acc) if count >= num_images: ### currently use 5000 in validation set break val_loss_ce = np.mean(np.array(loss_ce_list)) val_gt_prev_acc = np.mean(np.array(gt_prev_acc_list)) val_loss = np.mean(np.array(loss_list)) val_acc = np.mean(np.array(acc_list)) print('Validation evaluation: loss', 'l1-loss:', val_loss, '; loss_ce:', val_loss_ce, '; classification-acc:', val_acc, '; gt_prev_acc:', val_gt_prev_acc) model.train() return val_loss
connect-caption-and-trace-main
captioning/utils/eval_utils_caption_generation.py
# This file contains Transformer network # Most of the code is copied from http://nlp.seas.harvard.edu/2018/04/03/attention.html # The cfg name correspondance: # N=num_layers # d_model=input_encoding_size # d_ff=rnn_size # h is always 8 from __future__ import absolute_import from __future__ import division from __future__ import print_function import torch import torch.nn as nn import torch.nn.functional as F from . import utils import copy import math import numpy as np from .CaptionModel import CaptionModel from .AttModel_both import sort_pack_padded_sequence, pad_unsort_packed_sequence, pack_wrapper, AttModel class EncoderDecoder(nn.Module): """ A standard Encoder-Decoder architecture. Base for this and many other models. """ def __init__(self, encoder, decoder, src_embed, tgt_embed, generator_caption, generator_trace, d_model, dropout): super(EncoderDecoder, self).__init__() self.encoder = encoder self.decoder = decoder self.src_embed = src_embed self.tgt_embed = tgt_embed self.generator_caption = generator_caption self.generator_trace = generator_trace # self.decode_layernorm = nn.LayerNorm(d_model, elementwise_affine=True) # self.dropout = nn.Dropout(dropout) self.trace_layernorm_caption = nn.LayerNorm(d_model, elementwise_affine=True) self.trace_layernorm_trace = nn.LayerNorm(d_model, elementwise_affine=True) self.position_encoder = PositionalEncoding(d_model,0) # here don't use dropout inside positional embedding self.trace_embed = nn.Sequential(*( (nn.Linear(5, d_model), nn.LayerNorm(d_model, elementwise_affine=True), nn.ReLU(), nn.Dropout(0.5)) )) self.trace_feat_embed = nn.Sequential(*( (nn.Linear(2048, d_model), nn.LayerNorm(d_model, elementwise_affine=True), nn.ReLU(), nn.Dropout(0.5)))) def forward(self, src, tgt, src_mask, tgt_mask, trace_feat, trace_masks, task): "Take in and process masked src and target sequences." memory = self.encode(src, src_mask) return self.decode(memory, src_mask, tgt, tgt_mask, trace_feat, trace_masks, task), memory def encode(self, src, src_mask): return self.encoder(self.src_embed(src), src_mask) def decode(self, memory, src_mask, tgt, tgt_mask, trace_feats, trace_masks, task): # if task == 'trace': ### get trace_feat # trace_grid_feats = trace_feats[:, :, 5:] trace_feats = trace_feats[:, :, :5] # trace_grid_feats = self.trace_feat_embed(trace_grid_feats) trace_feats = self.trace_embed(trace_feats) trace_feats = self.trace_layernorm_trace(self.position_encoder(trace_feats)) ### embed the tgt and then add the trace_grid_feat: add trace_feat in the beginning tgt_emd = self.tgt_embed(tgt, task) #, task # if tgt.shape[1] > trace_feats.shape[1]: # trace_feats = torch.cat([trace_feats, torch.zeros([trace_feats.shape[0], tgt_emd.shape[1]-trace_feats.shape[1], # trace_feats.shape[2]]).to(trace_feats.device)], 1) # else: # trace_feats = trace_feats[:, :tgt_emd.shape[1], :] # tgt_emd = self.dropout(self.decode_layernorm(tgt_emd + trace_feat)) return self.decoder(tgt_emd, trace_feats, memory, src_mask, tgt_mask, trace_masks, task) class Generator(nn.Module): "Define standard linear + softmax generation step." def __init__(self, d_model, vocab): super(Generator, self).__init__() self.proj = nn.Linear(d_model, vocab) def forward(self, x): return F.log_softmax(self.proj(x), dim=-1) def clones(module, N): "Produce N identical layers." return nn.ModuleList([copy.deepcopy(module) for _ in range(N)]) class Encoder(nn.Module): "Core encoder is a stack of N layers" def __init__(self, layer, N): super(Encoder, self).__init__() self.layers = clones(layer, N) self.norm = LayerNorm(layer.size) def forward(self, x, mask): "Pass the input (and mask) through each layer in turn." for layer in self.layers: x = layer(x, mask) return self.norm(x) class LayerNorm(nn.Module): "Construct a layernorm module (See citation for details)." def __init__(self, features, eps=1e-6): super(LayerNorm, self).__init__() self.a_2 = nn.Parameter(torch.ones(features)) self.b_2 = nn.Parameter(torch.zeros(features)) self.eps = eps def forward(self, x): mean = x.mean(-1, keepdim=True) std = x.std(-1, keepdim=True) return self.a_2 * (x - mean) / (std + self.eps) + self.b_2 class SublayerConnection(nn.Module): """ A residual connection followed by a layer norm. Note for code simplicity the norm is first as opposed to last. """ def __init__(self, size, dropout): super(SublayerConnection, self).__init__() self.norm = LayerNorm(size) self.dropout = nn.Dropout(dropout) def forward(self, x, sublayer): "Apply residual connection to any sublayer with the same size." return x + self.dropout(sublayer(self.norm(x))) class EncoderLayer(nn.Module): "Encoder is made up of self-attn and feed forward (defined below)" def __init__(self, size, self_attn, feed_forward, dropout): super(EncoderLayer, self).__init__() self.self_attn = self_attn self.feed_forward = feed_forward self.sublayer = clones(SublayerConnection(size, dropout), 2) self.size = size def forward(self, x, mask): "Follow Figure 1 (left) for connections." x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, mask)) return self.sublayer[1](x, self.feed_forward) class Decoder(nn.Module): "Generic N layer decoder with masking." def __init__(self, layer, N): super(Decoder, self).__init__() self.layers = clones(layer, N) self.norm = LayerNorm(layer.size) self.norm_2 = LayerNorm(layer.size) def forward(self, x, trace_feat, memory, src_mask, tgt_mask, trace_masks, task): for layer in self.layers: x = layer(x, trace_feat, memory, src_mask, tgt_mask, trace_masks, task) if task == 'both': return self.norm(x[0]), self.norm_2(x[1]) else: return self.norm(x) class DecoderLayer(nn.Module): "Decoder is made of self-attn, src-attn, and feed forward (defined below)" def __init__(self, size, self_attn, src_attn, caption_trace_attn, trace_caption_attn, trace_self_attn, trace_src_attn, feed_forward_caption, feed_forward_trace, both_caption_trace_attn, both_trace_caption_attn, both_feed_forward_caption, both_feed_forward_trace,dropout): super(DecoderLayer, self).__init__() self.size = size self.self_attn = self_attn self.src_attn = src_attn self.feed_forward_caption = feed_forward_caption self.feed_forward_trace = feed_forward_trace # self.sublayer = clones(SublayerConnection(size, dropout), 3) self.sublayer = clones(SublayerConnection(size, dropout), 8+4) ### self.caption_trace_attn = caption_trace_attn self.trace_caption_attn = trace_caption_attn self.trace_self_attn = trace_self_attn self.trace_src_attn = trace_src_attn ### both attn self.both_caption_trace_attn = both_caption_trace_attn self.both_trace_caption_attn = both_trace_caption_attn self.both_feed_forward_caption = both_feed_forward_caption self.both_feed_forward_trace = both_feed_forward_trace ########### def forward(self, x, trace_feat, memory, src_mask, tgt_mask, trace_masks, task): "Follow Figure 1 (right) for connections." m = memory if task == 'trace' or task == 'cycle_trace': x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, tgt_mask)) x = self.sublayer[1](x, lambda x: self.src_attn(x, m, m, src_mask)) ### add an layer for x to attend on trace feature trace_feat = self.sublayer[2](trace_feat, lambda trace_feat: self.trace_self_attn(trace_feat, trace_feat, trace_feat, trace_masks)) trace_feat = self.sublayer[3](trace_feat, lambda trace_feat: self.trace_src_attn(trace_feat, m, m, src_mask)) # trace_feat = self.sublayer[6](trace_feat, lambda trace_feat: self.trace_caption_attn(trace_feat, x, x, tgt_mask)) ################################################ return self.sublayer[7](trace_feat, self.feed_forward_trace) elif task == 'caption': m = memory x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, tgt_mask)) x = self.sublayer[1](x, lambda x: self.src_attn(x, m, m, src_mask)) ### add an layer for x to attend on trace feature # trace_mask = tgt_mask[:, -1, :].unsqueeze(1).long() trace_masks = trace_masks.unsqueeze(1) trace_feat = self.sublayer[2](trace_feat, lambda trace_feat: self.trace_self_attn(trace_feat, trace_feat, trace_feat, trace_masks)) trace_feat = self.sublayer[3](trace_feat, lambda trace_feat: self.trace_src_attn(trace_feat, m, m, src_mask)) x = self.sublayer[4](x, lambda x: self.caption_trace_attn(x, trace_feat, trace_feat, trace_masks)) ################################################ return self.sublayer[5](x, self.feed_forward_caption) elif task == 'both': m = memory x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, tgt_mask)) x = self.sublayer[1](x, lambda x: self.src_attn(x, m, m, src_mask)) ### add an layer for x to attend on trace feature # trace_mask = tgt_mask[:, -1, :].unsqueeze(1).long() # trace_masks = trace_masks.unsqueeze(1) trace_feat = self.sublayer[2](trace_feat, lambda trace_feat: self.trace_self_attn(trace_feat, trace_feat, trace_feat, trace_masks)) trace_feat = self.sublayer[3](trace_feat, lambda trace_feat: self.trace_src_attn(trace_feat, m, m, src_mask)) trace_masks_for_caption = torch.cat([trace_masks, trace_masks[:, -1, :].unsqueeze(1).repeat(1,tgt_mask.shape[1]-trace_masks.shape[1],1)], 1) tgt_mask_for_trace = tgt_mask[:, :trace_masks.shape[1], :] x_out = self.sublayer[8](x, lambda x: self.both_caption_trace_attn(x, trace_feat, trace_feat, trace_masks_for_caption)) trace_feat_out = self.sublayer[9](trace_feat, lambda trace_feat: self.both_trace_caption_attn(trace_feat, x, x, tgt_mask_for_trace)) return self.sublayer[10](x_out, self.both_feed_forward_caption), self.sublayer[11](trace_feat_out, self.both_feed_forward_trace) def subsequent_mask(size): "Mask out subsequent positions." attn_shape = (1, size, size) subsequent_mask = np.triu(np.ones(attn_shape), k=1).astype('uint8') return torch.from_numpy(subsequent_mask) == 0 def attention(query, key, value, mask=None, dropout=None): "Compute 'Scaled Dot Product Attention'" d_k = query.size(-1) scores = torch.matmul(query, key.transpose(-2, -1)) \ / math.sqrt(d_k) if mask is not None: scores = scores.masked_fill(mask == 0, float('-inf')) p_attn = F.softmax(scores, dim = -1) if dropout is not None: p_attn = dropout(p_attn) return torch.matmul(p_attn, value), p_attn class MultiHeadedAttention(nn.Module): def __init__(self, h, d_model, dropout=0.1): "Take in model size and number of heads." super(MultiHeadedAttention, self).__init__() assert d_model % h == 0 # We assume d_v always equals d_k self.d_k = d_model // h self.h = h self.linears = clones(nn.Linear(d_model, d_model), 4) self.attn = None self.dropout = nn.Dropout(p=dropout) def forward(self, query, key, value, mask=None): "Implements Figure 2" if mask is not None: # Same mask applied to all h heads. mask = mask.unsqueeze(1) nbatches = query.size(0) # 1) Do all the linear projections in batch from d_model => h x d_k query, key, value = \ [l(x).view(nbatches, -1, self.h, self.d_k).transpose(1, 2) for l, x in zip(self.linears, (query, key, value))] # 2) Apply attention on all the projected vectors in batch. x, self.attn = attention(query, key, value, mask=mask, dropout=self.dropout) # 3) "Concat" using a view and apply a final linear. x = x.transpose(1, 2).contiguous() \ .view(nbatches, -1, self.h * self.d_k) return self.linears[-1](x) class PositionwiseFeedForward(nn.Module): "Implements FFN equation." def __init__(self, d_model, d_ff, dropout=0.1): super(PositionwiseFeedForward, self).__init__() self.w_1 = nn.Linear(d_model, d_ff) self.w_2 = nn.Linear(d_ff, d_model) self.dropout = nn.Dropout(dropout) def forward(self, x): return self.w_2(self.dropout(F.relu(self.w_1(x)))) class Embeddings(nn.Module): def __init__(self, d_model, vocab): super(Embeddings, self).__init__() self.lut = nn.Embedding(vocab, d_model) self.d_model = d_model self.vocab = vocab # self.layernorm = nn.LayerNorm(self.d_model, elementwise_affine=True) def forward(self, x, task=None): if task != 'cycle_trace': return self.lut(x) * math.sqrt(self.d_model) else: # # use gumbel softmax with \tau = 1 x = torch.nn.functional.softmax(torch.log(x) - torch.log(-torch.log(torch.rand([x.shape[2]]))).unsqueeze(0).unsqueeze(0).to(x.device), dim=-1) return torch.matmul(x, self.lut(torch.arange(self.vocab).to(x.device))) \ * math.sqrt(self.d_model) class caption_Embeddings(nn.Module): def __init__(self, d_model, vocab, position_encoder): super(caption_Embeddings, self).__init__() self.position_encoder = position_encoder self.embed = Embeddings(d_model, vocab) def forward(self, x, task): x = self.embed(x, task) x = self.position_encoder(x) return x class PositionalEncoding(nn.Module): "Implement the PE function." def __init__(self, d_model, dropout, max_len=5000): super(PositionalEncoding, self).__init__() self.dropout = nn.Dropout(p=dropout) # Compute the positional encodings once in log space. pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len).unsqueeze(1).float() div_term = torch.exp(torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0) self.register_buffer('pe', pe) def forward(self, x): x = x + self.pe[:, :x.size(1)] return self.dropout(x) class TransformerModel(AttModel): def make_model(self, src_vocab, tgt_vocab, N_enc=6, N_dec=6, d_model=512, d_ff=2048, h=8, dropout=0.1): "Helper: Construct a model from hyperparameters." c = copy.deepcopy attn = MultiHeadedAttention(h, d_model, dropout) ff = PositionwiseFeedForward(d_model, d_ff, dropout) position = PositionalEncoding(d_model, dropout) # position_nodropout = PositionalEncoding(d_model, 0) model = EncoderDecoder( Encoder(EncoderLayer(d_model, c(attn), c(ff), dropout), N_enc), Decoder(DecoderLayer(d_model, c(attn), c(attn), c(attn), c(attn), c(attn), c(attn), c(ff), c(ff), c(attn), c(attn), c(ff), c(ff), dropout), N_dec), lambda x:x, # nn.Sequential(Embeddings(d_model, src_vocab), c(position)), caption_Embeddings(d_model, tgt_vocab, c(position)), #nn.Sequential(Embeddings(d_model, tgt_vocab), c(position)), # Generator(d_model, tgt_vocab), nn.Sequential(nn.Linear(d_model, 5), nn.Sigmoid()), d_model,dropout) # This was important from their code. # Initialize parameters with Glorot / fan_avg. for p in model.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) return model def __init__(self, opt): super(TransformerModel, self).__init__(opt) self.opt = opt # self.config = yaml.load(open(opt.config_file)) self.N_enc = getattr(opt, 'N_enc', opt.num_layers) self.N_dec = getattr(opt, 'N_dec', opt.num_layers) self.d_model = getattr(opt, 'd_model', opt.input_encoding_size) self.d_ff = getattr(opt, 'd_ff', opt.rnn_size) self.h = getattr(opt, 'num_att_heads', 8) self.dropout = getattr(opt, 'dropout', 0.1) self.use_trace_feat = getattr(opt, 'use_trace_feat', 0) delattr(self, 'att_embed') self.att_embed = nn.Sequential(*( ((nn.BatchNorm1d(self.att_feat_size),) if self.use_bn else ())+ (nn.Linear(self.att_feat_size, self.d_model), nn.ReLU(), nn.Dropout(self.drop_prob_lm))+ ((nn.BatchNorm1d(self.d_model),) if self.use_bn==2 else ()))) # define trace embedding and layernorm # self.trace_embed = nn.Linear(5, self.d_model) self.box_embed = nn.Sequential(*( ((nn.BatchNorm1d(5),) if self.use_bn else ()) + (nn.Linear(5, self.d_model), nn.ReLU(), nn.Dropout(self.drop_prob_lm)) + ((nn.BatchNorm1d(self.d_model),) if self.use_bn == 2 else ()))) self.trace_embed = nn.Sequential(*( ((nn.BatchNorm1d(5),) if self.use_bn else ())+ (nn.Linear(5, self.d_model), nn.ReLU(), nn.Dropout(self.drop_prob_lm))+ ((nn.BatchNorm1d(self.d_model),) if self.use_bn==2 else ()))) self.trace_feat_embed = nn.Sequential(*( ((nn.BatchNorm1d(5),) if self.use_bn else ()) + (nn.Linear(2048, self.d_model), nn.ReLU(), nn.Dropout(self.drop_prob_lm)) + ((nn.BatchNorm1d(self.d_model),) if self.use_bn == 2 else ()))) self.box_layernorm1 = nn.LayerNorm(self.d_model, elementwise_affine=True) self.box_layernorm2 = nn.LayerNorm(self.d_model, elementwise_affine=True) self.trace_layernorm1 = nn.LayerNorm(self.d_model, elementwise_affine=True) self.trace_layernorm2 = nn.LayerNorm(self.d_model, elementwise_affine=True) self.trace_layernorm3 = nn.LayerNorm(self.d_model, elementwise_affine=True) self.trace_layernorm4 = nn.LayerNorm(self.d_model, elementwise_affine=True) self.att_layernorm = nn.LayerNorm(self.d_model, elementwise_affine=True) self.position_encoder = PositionalEncoding(self.d_model, self.dropout) delattr(self, 'embed') self.embed = lambda x : x delattr(self, 'fc_embed') self.fc_embed = lambda x : x delattr(self, 'logit') del self.ctx2att tgt_vocab = self.vocab_size + 1 print(self.N_enc, self.N_dec, self.d_model, self.d_ff, self.h, self.dropout) self.model = self.make_model(0, tgt_vocab, N_enc=self.N_enc, N_dec=self.N_dec, d_model=self.d_model, d_ff=self.d_ff, h=self.h, dropout=self.dropout) c = copy.deepcopy # attn = MultiHeadedAttention(h, self.d_model, self.dropout) # ff = PositionwiseFeedForward(self.d_model, self.d_ff, self.dropout) position = PositionalEncoding(self.d_model, self.dropout) self.caption_embed = caption_Embeddings(self.d_model, tgt_vocab, c(position)) def logit(self, x): # unsafe way return self.model.generator_caption.proj(x) def init_hidden(self, bsz): return [] def _prepare_feature(self, fc_feats, att_feats, trace_feats, box_feats, att_masks, trace_masks): att_feats, box_feats, seq, att_masks, seq_mask = self._prepare_feature_forward(att_feats, box_feats, att_masks) # Localized Narratives: insert trace features into att_feats, trace_masks into att_masks att_feats = self.att_layernorm(att_feats) # normalize att feat if self.opt.use_box: box_feats = self.box_layernorm1(self.box_embed(box_feats)) att_feats = self.box_layernorm2(att_feats + box_feats) if self.opt.use_trace: trace_feats_to_decoder = trace_feats if self.opt.use_trace_feat: trace_grid_feats = trace_feats[:, :, 5:] trace_feats = trace_feats[:, :, :5] trace_grid_feats = self.trace_layernorm3(self.trace_feat_embed(trace_grid_feats)) # trace_grid_feats = self.position_encoder(trace_grid_feats) # trace_grid_feats = self.trace_layernorm4(trace_grid_feats) trace_feats = self.trace_layernorm1(self.trace_embed(trace_feats)) if self.opt.use_trace_feat: trace_feats = trace_feats + trace_grid_feats # trace_feats_to_decoder = trace_feats trace_feats = self.position_encoder(trace_feats) # add positional embedding trace_feats = self.trace_layernorm2(trace_feats) ### comment to test: trace feat not from encoder, only from decoder # att_feats = torch.cat([att_feats, trace_feats], 1) # concat with trace feats # att_masks = torch.cat([att_masks, trace_masks.unsqueeze(1)], 2) ########################### memory = self.model.encode(att_feats, att_masks) return fc_feats[...,:0], att_feats[...,:0], memory, att_masks, trace_feats_to_decoder def _prepare_feature_forward(self, att_feats, box_feats, att_masks=None, seq=None): # comment for classification # att_feats, box_feats, att_masks = self.clip_att(att_feats, box_feats, att_masks) # original version by ruotian # att_feats = pack_wrapper(self.att_embed, att_feats, att_masks) # my version: without pack and pad att_feats = self.att_embed(att_feats) if att_masks is None: att_masks = att_feats.new_ones(att_feats.shape[:2], dtype=torch.long) att_masks = att_masks.unsqueeze(-2) if seq is not None: # crop the last one # seq = seq[:,:-1] seq_mask = (seq.data != self.eos_idx) & (seq.data != self.pad_idx) seq_mask[:,0] = 1 # bos seq_mask = seq_mask.unsqueeze(-2) seq_mask = seq_mask & subsequent_mask(seq.size(-1)).to(seq_mask) seq_per_img = seq.shape[0] // att_feats.shape[0] if seq_per_img > 1: att_feats, att_masks = utils.repeat_tensors(seq_per_img, [att_feats, att_masks] ) else: seq_mask = None return att_feats, box_feats, seq, att_masks, seq_mask def _forward(self, fc_feats, att_feats, trace_feats, box_feats, seq, att_masks=None, trace_masks=None, task = None): assert task == 'trace' or task == 'caption' or task == 'both' or task == 'cycle_trace' if task != 'cycle_trace': if seq.ndim == 3: # B * seq_per_img * seq_len seq = seq.reshape(-1, seq.shape[2]) if task == 'both': ### get the original caption input tmp_seq = seq[:, :trace_masks.shape[1]] _, _, _, _, tmp_seq_mask = self._prepare_feature_forward(att_feats, box_feats, att_masks, tmp_seq) att_feats, box_feats, seq, att_masks, seq_mask = self._prepare_feature_forward(att_feats, box_feats, att_masks, seq) ## prepare the shifted trace shifted_trace = torch.cat( [torch.zeros(trace_feats.shape[0], 1, trace_feats.shape[2]).to(trace_feats.device), trace_feats], 1) shifted_trace = shifted_trace[:, :-1, :] # ignore the last segment in shifted trace shifted_trace_mask = tmp_seq_mask # Localized Narratives: insert trace features into att_feats, trace_masks into att_masks att_feats = self.att_layernorm(att_feats) # normalize att feat if self.opt.use_box: box_feats = self.box_layernorm1(self.box_embed(box_feats)) att_feats = self.box_layernorm2(att_feats + box_feats) # randomly mask part of trace_feats if self.training: random_mask_rate = 0 else: random_mask_rate = 0 random_mask = (torch.rand( [shifted_trace.shape[0], shifted_trace.shape[1]]) > random_mask_rate).float().unsqueeze(2).to( shifted_trace.device) shifted_trace[:, :, :5] = shifted_trace[:, :, :5] * random_mask + \ (1 - random_mask) * torch.tensor([0., 0., 1., 1., 1.]).to(shifted_trace.device).unsqueeze(0).unsqueeze(1) # out = self.model(att_feats, seq, att_masks, seq_mask, trace_feats_to_decoder, trace_masks) (out_caption, out_trace), memory = self.model(att_feats, seq, att_masks, seq_mask, shifted_trace, shifted_trace_mask, task) # trace generation # for regression, use generator which is a linear layer and sigmoid outputs_caption = self.model.generator_caption(out_caption) outputs_trace = self.model.generator_trace(out_trace) return outputs_caption, outputs_trace elif task == 'trace' or task == 'cycle_trace': # for classification trace_feats = trace_feats[:, :, :5] ### get the original caption input tmp_seq = torch.ones([trace_masks.shape[0], trace_masks.shape[1]]).to(trace_masks.device) # seq[:, :trace_masks.shape[1]] seq = seq[:, 1:trace_masks.shape[1]+1] # crop the seq to real length seq_mask = trace_masks.unsqueeze(1) att_feats, box_feats, tmp_seq, att_masks, tmp_seq_mask = self._prepare_feature_forward(att_feats, box_feats, att_masks, tmp_seq) ## prepare the shifted trace shifted_trace = torch.cat([torch.zeros(trace_feats.shape[0], 1, trace_feats.shape[2]).to(trace_feats.device), trace_feats], 1) shifted_trace = shifted_trace[:, :-1, :] # ignore the last segment in shifted trace shifted_trace_mask = tmp_seq_mask # Localized Narratives: insert trace features into att_feats, trace_masks into att_masks att_feats = self.att_layernorm(att_feats) # normalize att feat if self.opt.use_box: box_feats = self.box_layernorm1(self.box_embed(box_feats)) att_feats = self.box_layernorm2(att_feats + box_feats) # randomly mask part of trace_feats if self.training: random_mask_rate = 0 else: random_mask_rate = 0 random_mask = (torch.rand( [shifted_trace.shape[0], shifted_trace.shape[1]]) > random_mask_rate).float().unsqueeze(2).to( shifted_trace.device) # if torch.rand(1) > 0.5: # half [0,0,1,1,1], half random shifted_trace[:, :, :5] = shifted_trace[:, :, :5] * random_mask + \ (1 - random_mask) * torch.tensor([0., 0., 1., 1., 1.]).to( shifted_trace.device).unsqueeze(0).unsqueeze(1) # else: # tmp_1 = torch.rand([shifted_trace.shape[0], shifted_trace.shape[1], 2]).sort(dim=2)[0] # tmp_2 = torch.rand([shifted_trace.shape[0], shifted_trace.shape[1], 2]).sort(dim=2)[0] # tmp = torch.stack([tmp_1[:, :, 0], tmp_2[:, :, 0], tmp_1[:, :, 1], tmp_2[:, :, 1], # (tmp_1[:, :, 1] - tmp_1[:, :, 0]) * (tmp_2[:, :, 1] - tmp_2[:, :, 0])], 2) # shifted_trace[:, :, :5] = shifted_trace[:, :, :5] * random_mask + \ # (1 - random_mask) * tmp.to(shifted_trace.device) # concat the caption into visual features seq_emd = self.caption_embed(seq, task) att_feats = torch.cat([att_feats, seq_emd], 1) att_masks = torch.cat([att_masks, seq_mask], 2) # att_masks = torch.ones([att_feats.shape[0], 1, att_feats.shape[1]]).to(att_feats.device) # out = self.model(att_feats, seq, att_masks, seq_mask, trace_feats_to_decoder, trace_masks) out, memory = self.model(att_feats, seq, att_masks, seq_mask, shifted_trace, shifted_trace_mask, task) # trace generation # for regression, use generator which is a linear layer and sigmoid outputs = self.model.generator_trace(out) # for classification, use (masked) dot product to provide logits # out = out / torch.norm(out, dim=2).unsqueeze(2) # memory = memory / torch.norm(memory, dim=2).unsqueeze(2) # outputs = torch.matmul(out, memory.transpose(1,2)) # memory_mask = att_masks # outputs = outputs.masked_fill(memory_mask == 0, float('-inf')) # # outputs = F.softmax(outputs, dim=-1) # outputs = (outputs.unsqueeze(3) * box_feats.unsqueeze(1)).sum(dim=2) # print('transformer_out',outputs.argmax(dim=-1)[0]) return outputs elif task == 'caption': att_feats, box_feats, seq, att_masks, seq_mask = self._prepare_feature_forward(att_feats, box_feats, att_masks, seq) # Localized Narratives: insert trace features into att_feats, trace_masks into att_masks att_feats = self.att_layernorm(att_feats) # normalize att feat if self.opt.use_box: box_feats = self.box_layernorm1(self.box_embed(box_feats)) att_feats = self.box_layernorm2(att_feats + box_feats) if self.opt.use_trace: trace_feats_to_decoder = trace_feats out, _ = self.model(att_feats, seq, att_masks, seq_mask, trace_feats_to_decoder, trace_masks, task) outputs = self.model.generator_caption(out) return outputs # return torch.cat([_.unsqueeze(1) for _ in outputs], 1) def core(self, it, fc_feats_ph, att_feats_ph, memory, state, mask, trace_feats_to_decoder, trace_masks, task): """ state = [ys.unsqueeze(0)] """ if len(state) == 0: ys = it.unsqueeze(1) else: ys = torch.cat([state[0][0], it.unsqueeze(1)], dim=1) if task == 'caption': out = self.model.decode(memory, mask, ys, subsequent_mask(ys.size(1)).to(memory.device), trace_feats_to_decoder, trace_masks, 'caption') return out[:, -1], [ys.unsqueeze(0)] elif task == 'both': out_caption, out_trace = self.model.decode(memory, mask, ys, subsequent_mask(ys.size(1)).to(memory.device), trace_feats_to_decoder, subsequent_mask(ys.size(1)).to(memory.device), 'both') return out_caption[:, -1], [ys.unsqueeze(0)], out_trace
connect-caption-and-trace-main
captioning/models/TransformerModel_trace_generation_caption_to_encoder.py
# This file contains Transformer network # Most of the code is copied from http://nlp.seas.harvard.edu/2018/04/03/attention.html # The cfg name correspondance: # N=num_layers # d_model=input_encoding_size # d_ff=rnn_size # h is always 8 from __future__ import absolute_import from __future__ import division from __future__ import print_function import torch import torch.nn as nn import torch.nn.functional as F from . import utils import copy import math import numpy as np from .CaptionModel import CaptionModel from .AttModel import sort_pack_padded_sequence, pad_unsort_packed_sequence, pack_wrapper, AttModel class EncoderDecoder(nn.Module): """ A standard Encoder-Decoder architecture. Base for this and many other models. """ def __init__(self, encoder, decoder, src_embed, tgt_embed, generator): super(EncoderDecoder, self).__init__() self.encoder = encoder self.decoder = decoder self.src_embed = src_embed self.tgt_embed = tgt_embed self.generator = generator def forward(self, src, tgt, src_mask, tgt_mask): "Take in and process masked src and target sequences." return self.decode(self.encode(src, src_mask), src_mask, tgt, tgt_mask) def encode(self, src, src_mask): return self.encoder(self.src_embed(src), src_mask) def decode(self, memory, src_mask, tgt, tgt_mask, past=None): return self.decoder(self.tgt_embed(tgt), memory, src_mask, tgt_mask, past=past) class Generator(nn.Module): "Define standard linear + softmax generation step." def __init__(self, d_model, vocab): super(Generator, self).__init__() self.proj = nn.Linear(d_model, vocab) def forward(self, x): return F.log_softmax(self.proj(x), dim=-1) def clones(module, N): "Produce N identical layers." return nn.ModuleList([copy.deepcopy(module) for _ in range(N)]) class Encoder(nn.Module): "Core encoder is a stack of N layers" def __init__(self, layer, N): super(Encoder, self).__init__() self.layers = clones(layer, N) self.norm = LayerNorm(layer.size) def forward(self, x, mask): "Pass the input (and mask) through each layer in turn." for layer in self.layers: x = layer(x, mask) return self.norm(x) class LayerNorm(nn.Module): "Construct a layernorm module (See citation for details)." def __init__(self, features, eps=1e-6): super(LayerNorm, self).__init__() self.a_2 = nn.Parameter(torch.ones(features)) self.b_2 = nn.Parameter(torch.zeros(features)) self.eps = eps def forward(self, x): mean = x.mean(-1, keepdim=True) std = x.std(-1, keepdim=True) return self.a_2 * (x - mean) / (std + self.eps) + self.b_2 class SublayerConnection(nn.Module): """ A residual connection followed by a layer norm. Note for code simplicity the norm is first as opposed to last. """ def __init__(self, size, dropout): super(SublayerConnection, self).__init__() self.norm = LayerNorm(size) self.dropout = nn.Dropout(dropout) def forward(self, x, sublayer): "Apply residual connection to any sublayer with the same size." _x = sublayer(self.norm(x)) if type(_x) is tuple: # for multi-head attention that returns past return x + self.dropout(_x[0]), _x[1] return x + self.dropout(_x) class EncoderLayer(nn.Module): "Encoder is made up of self-attn and feed forward (defined below)" def __init__(self, size, self_attn, feed_forward, dropout): super(EncoderLayer, self).__init__() self.self_attn = self_attn self.feed_forward = feed_forward self.sublayer = clones(SublayerConnection(size, dropout), 2) self.size = size def forward(self, x, mask): "Follow Figure 1 (left) for connections." x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, mask)) return self.sublayer[1](x, self.feed_forward) class Decoder(nn.Module): "Generic N layer decoder with masking." def __init__(self, layer, N): super(Decoder, self).__init__() self.layers = clones(layer, N) self.norm = LayerNorm(layer.size) def forward(self, x, memory, src_mask, tgt_mask, past=None): if past is not None: present = [[], []] x = x[:, -1:] tgt_mask = tgt_mask[:, -1:] if tgt_mask is not None else None past = list(zip(past[0].split(2, dim=0), past[1].split(2, dim=0))) else: past = [None] * len(self.layers) for i, (layer, layer_past) in enumerate(zip(self.layers, past)): x = layer(x, memory, src_mask, tgt_mask, layer_past) if layer_past is not None: present[0].append(x[1][0]) present[1].append(x[1][1]) x = x[0] if past[0] is None: return self.norm(x) else: return self.norm(x), [torch.cat(present[0], 0), torch.cat(present[1], 0)] class DecoderLayer(nn.Module): "Decoder is made of self-attn, src-attn, and feed forward (defined below)" def __init__(self, size, self_attn, src_attn, feed_forward, dropout): super(DecoderLayer, self).__init__() self.size = size self.self_attn = self_attn self.src_attn = src_attn self.feed_forward = feed_forward self.sublayer = clones(SublayerConnection(size, dropout), 3) def forward(self, x, memory, src_mask, tgt_mask, layer_past=None): "Follow Figure 1 (right) for connections." m = memory if layer_past is None: x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, tgt_mask)) x = self.sublayer[1](x, lambda x: self.src_attn(x, m, m, src_mask)) return self.sublayer[2](x, self.feed_forward) else: present = [None, None] x, present[0] = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, tgt_mask, layer_past[0])) x, present[1] = self.sublayer[1](x, lambda x: self.src_attn(x, m, m, src_mask, layer_past[1])) return self.sublayer[2](x, self.feed_forward), present def subsequent_mask(size): "Mask out subsequent positions." attn_shape = (1, size, size) subsequent_mask = np.triu(np.ones(attn_shape), k=1).astype('uint8') return torch.from_numpy(subsequent_mask) == 0 def attention(query, key, value, mask=None, dropout=None): "Compute 'Scaled Dot Product Attention'" d_k = query.size(-1) scores = torch.matmul(query, key.transpose(-2, -1)) \ / math.sqrt(d_k) if mask is not None: scores = scores.masked_fill(mask == 0, float('-inf')) p_attn = F.softmax(scores, dim = -1) if dropout is not None: p_attn = dropout(p_attn) return torch.matmul(p_attn, value), p_attn class MultiHeadedAttention(nn.Module): def __init__(self, h, d_model, dropout=0.1): "Take in model size and number of heads." super(MultiHeadedAttention, self).__init__() assert d_model % h == 0 # We assume d_v always equals d_k self.d_k = d_model // h self.h = h self.linears = clones(nn.Linear(d_model, d_model), 4) self.attn = None self.dropout = nn.Dropout(p=dropout) def forward(self, query, key, value, mask=None, layer_past=None): "Implements Figure 2" if mask is not None: # Same mask applied to all h heads. mask = mask.unsqueeze(1) nbatches = query.size(0) # The past works differently here. For self attn, the query and key be updated incrementailly # For src_attn the past is fixed. # For src_attn, when the layer past is ready if layer_past is not None and layer_past.shape[2] == key.shape[1] > 1: # suppose memory size always greater than 1 query = self.linears[0](query) key, value = layer_past[0], layer_past[1] present = torch.stack([key, value]) else: # 1) Do all the linear projections in batch from d_model => h x d_k query, key, value = \ [l(x) for l, x in zip(self.linears, (query, key, value))] # self attn + past OR the first time step of src attn if layer_past is not None and not (layer_past.shape[2] == key.shape[1] > 1): past_key, past_value = layer_past[0], layer_past[1] key = torch.cat((past_key, key), dim=1) value = torch.cat((past_value, value), dim=1) present = torch.stack([key, value]) query, key, value = \ [x.view(nbatches, -1, self.h, self.d_k).transpose(1, 2) for x in [query, key, value]] # 2) Apply attention on all the projected vectors in batch. x, self.attn = attention(query, key, value, mask=mask, dropout=self.dropout) # 3) "Concat" using a view and apply a final linear. x = x.transpose(1, 2).contiguous() \ .view(nbatches, -1, self.h * self.d_k) if layer_past is not None: return self.linears[-1](x), present else: return self.linears[-1](x) class PositionwiseFeedForward(nn.Module): "Implements FFN equation." def __init__(self, d_model, d_ff, dropout=0.1): super(PositionwiseFeedForward, self).__init__() self.w_1 = nn.Linear(d_model, d_ff) self.w_2 = nn.Linear(d_ff, d_model) self.dropout = nn.Dropout(dropout) def forward(self, x): return self.w_2(self.dropout(F.relu(self.w_1(x)))) class Embeddings(nn.Module): def __init__(self, d_model, vocab): super(Embeddings, self).__init__() self.lut = nn.Embedding(vocab, d_model) self.d_model = d_model def forward(self, x): return self.lut(x) * math.sqrt(self.d_model) class PositionalEncoding(nn.Module): "Implement the PE function." def __init__(self, d_model, dropout, max_len=5000): super(PositionalEncoding, self).__init__() self.dropout = nn.Dropout(p=dropout) # Compute the positional encodings once in log space. pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len).unsqueeze(1).float() div_term = torch.exp(torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0) self.register_buffer('pe', pe) def forward(self, x): x = x + self.pe[:, :x.size(1)] return self.dropout(x) class TransformerModel(AttModel): def make_model(self, src_vocab, tgt_vocab, N_enc=6, N_dec=6, d_model=512, d_ff=2048, h=8, dropout=0.1): "Helper: Construct a model from hyperparameters." c = copy.deepcopy attn = MultiHeadedAttention(h, d_model, dropout) ff = PositionwiseFeedForward(d_model, d_ff, dropout) position = PositionalEncoding(d_model, dropout) model = EncoderDecoder( Encoder(EncoderLayer(d_model, c(attn), c(ff), dropout), N_enc), Decoder(DecoderLayer(d_model, c(attn), c(attn), c(ff), dropout), N_dec), lambda x:x, # nn.Sequential(Embeddings(d_model, src_vocab), c(position)), nn.Sequential(Embeddings(d_model, tgt_vocab), c(position)), Generator(d_model, tgt_vocab)) # This was important from their code. # Initialize parameters with Glorot / fan_avg. for p in model.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) return model def __init__(self, opt): super(TransformerModel, self).__init__(opt) self.opt = opt # self.config = yaml.load(open(opt.config_file)) self.N_enc = getattr(opt, 'N_enc', opt.num_layers) self.N_dec = getattr(opt, 'N_dec', opt.num_layers) self.d_model = getattr(opt, 'd_model', opt.input_encoding_size) self.d_ff = getattr(opt, 'd_ff', opt.rnn_size) self.h = getattr(opt, 'num_att_heads', 8) self.dropout = getattr(opt, 'dropout', 0.1) delattr(self, 'att_embed') self.att_embed = nn.Sequential(*( ((nn.BatchNorm1d(self.att_feat_size),) if self.use_bn else ())+ (nn.Linear(self.att_feat_size, self.d_model), nn.ReLU(), nn.Dropout(self.drop_prob_lm))+ ((nn.BatchNorm1d(self.d_model),) if self.use_bn==2 else ()))) delattr(self, 'embed') self.embed = lambda x : x delattr(self, 'fc_embed') self.fc_embed = lambda x : x delattr(self, 'logit') del self.ctx2att tgt_vocab = self.vocab_size + 1 self.model = self.make_model(0, tgt_vocab, N_enc=self.N_enc, N_dec=self.N_dec, d_model=self.d_model, d_ff=self.d_ff, h=self.h, dropout=self.dropout) def logit(self, x): # unsafe way return self.model.generator.proj(x) def init_hidden(self, bsz): return [] def _prepare_feature(self, fc_feats, att_feats, att_masks): att_feats, seq, att_masks, seq_mask = self._prepare_feature_forward(att_feats, att_masks) memory = self.model.encode(att_feats, att_masks) return fc_feats[...,:0], att_feats[...,:0], memory, att_masks def _prepare_feature_forward(self, att_feats, att_masks=None, seq=None): att_feats, att_masks = self.clip_att(att_feats, att_masks) att_feats = pack_wrapper(self.att_embed, att_feats, att_masks) if att_masks is None: att_masks = att_feats.new_ones(att_feats.shape[:2], dtype=torch.long) att_masks = att_masks.unsqueeze(-2) if seq is not None: # crop the last one # seq = seq[:,:-1] seq_mask = (seq.data != self.eos_idx) & (seq.data != self.pad_idx) seq_mask[:,0] = 1 # bos seq_mask = seq_mask.unsqueeze(-2) seq_mask = seq_mask & subsequent_mask(seq.size(-1)).to(seq_mask) seq_per_img = seq.shape[0] // att_feats.shape[0] if seq_per_img > 1: att_feats, att_masks = utils.repeat_tensors(seq_per_img, [att_feats, att_masks] ) else: seq_mask = None return att_feats, seq, att_masks, seq_mask def _forward(self, fc_feats, att_feats, seq, att_masks=None): if seq.ndim == 3: # B * seq_per_img * seq_len seq = seq.reshape(-1, seq.shape[2]) att_feats, seq, att_masks, seq_mask = self._prepare_feature_forward(att_feats, att_masks, seq) out = self.model(att_feats, seq, att_masks, seq_mask) outputs = self.model.generator(out) return outputs # return torch.cat([_.unsqueeze(1) for _ in outputs], 1) def core(self, it, fc_feats_ph, att_feats_ph, memory, state, mask): """ state is the precomputed key/value. N_dec x seq_len x d_model Note: due to the layer norm, it's not equivalant to stateless, but it seems behaving similar """ # state is tokens + past if len(state) == 0: ys = it.unsqueeze(1) # basically empty state, just to let it know to return past # The second dim has to be batch_size, for beam search purpose past = [fc_feats_ph.new_zeros(self.N_dec * 2, fc_feats_ph.shape[0], 0, self.d_model), # self fc_feats_ph.new_zeros(self.N_dec * 2, fc_feats_ph.shape[0], 0, self.d_model)] # src # 2 for self attn, 2 for src attn else: ys = torch.cat([state[0][0], it.unsqueeze(1)], dim=1) past = state[1:] out, past = self.model.decode(memory, mask, ys, # We still feed the full past words, because we need it for position embedding to know the position id subsequent_mask(ys.size(1)) .to(memory.device), past=past) return out[:, -1], [ys.unsqueeze(0)] + past
connect-caption-and-trace-main
captioning/models/cachedTransformer.py
from __future__ import absolute_import from __future__ import division from __future__ import print_function import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import * from . import utils from .CaptionModel import CaptionModel class ShowTellModel(CaptionModel): def __init__(self, opt): super(ShowTellModel, self).__init__() self.vocab_size = opt.vocab_size self.input_encoding_size = opt.input_encoding_size self.rnn_type = opt.rnn_type self.rnn_size = opt.rnn_size self.num_layers = opt.num_layers self.drop_prob_lm = opt.drop_prob_lm self.seq_length = opt.seq_length self.fc_feat_size = opt.fc_feat_size self.ss_prob = 0.0 # Schedule sampling probability self.img_embed = nn.Linear(self.fc_feat_size, self.input_encoding_size) self.core = getattr(nn, self.rnn_type.upper())(self.input_encoding_size, self.rnn_size, self.num_layers, bias=False, dropout=self.drop_prob_lm) self.embed = nn.Embedding(self.vocab_size + 1, self.input_encoding_size) self.logit = nn.Linear(self.rnn_size, self.vocab_size + 1) self.dropout = nn.Dropout(self.drop_prob_lm) self.init_weights() def init_weights(self): initrange = 0.1 self.embed.weight.data.uniform_(-initrange, initrange) self.logit.bias.data.fill_(0) self.logit.weight.data.uniform_(-initrange, initrange) def init_hidden(self, bsz): weight = self.logit.weight if self.rnn_type == 'lstm': return (weight.new_zeros(self.num_layers, bsz, self.rnn_size), weight.new_zeros(self.num_layers, bsz, self.rnn_size)) else: return weight.new_zeros(self.num_layers, bsz, self.rnn_size) def _forward(self, fc_feats, att_feats, seq, att_masks=None): batch_size = fc_feats.size(0) seq_per_img = seq.shape[0] // batch_size state = self.init_hidden(batch_size*seq_per_img) outputs = [] if seq_per_img > 1: fc_feats = utils.repeat_tensors(seq_per_img, fc_feats) for i in range(seq.size(1) + 1): if i == 0: xt = self.img_embed(fc_feats) else: if self.training and i >= 2 and self.ss_prob > 0.0: # otherwiste no need to sample sample_prob = fc_feats.data.new(batch_size*seq_per_img).uniform_(0, 1) sample_mask = sample_prob < self.ss_prob if sample_mask.sum() == 0: it = seq[:, i-1].clone() else: sample_ind = sample_mask.nonzero().view(-1) it = seq[:, i-1].data.clone() #prob_prev = torch.exp(outputs[-1].data.index_select(0, sample_ind)) # fetch prev distribution: shape Nx(M+1) #it.index_copy_(0, sample_ind, torch.multinomial(prob_prev, 1).view(-1)) prob_prev = torch.exp(outputs[-1].data) # fetch prev distribution: shape Nx(M+1) it.index_copy_(0, sample_ind, torch.multinomial(prob_prev, 1).view(-1).index_select(0, sample_ind)) else: it = seq[:, i-1].clone() # break if all the sequences end if i >= 2 and seq[:, i-1].data.sum() == 0: break xt = self.embed(it) output, state = self.core(xt.unsqueeze(0), state) output = F.log_softmax(self.logit(self.dropout(output.squeeze(0))), dim=1) outputs.append(output) return torch.cat([_.unsqueeze(1) for _ in outputs[1:]], 1).contiguous() def get_logprobs_state(self, it, state): # 'it' contains a word index xt = self.embed(it) output, state = self.core(xt.unsqueeze(0), state) logprobs = F.log_softmax(self.logit(self.dropout(output.squeeze(0))), dim=1) return logprobs, state def _sample_beam(self, fc_feats, att_feats, att_masks=None, opt={}): beam_size = opt.get('beam_size', 10) batch_size = fc_feats.size(0) assert beam_size <= self.vocab_size + 1, 'lets assume this for now, otherwise this corner case causes a few headaches down the road. can be dealt with in future if needed' seq = torch.LongTensor(self.seq_length, batch_size).zero_() seqLogprobs = torch.FloatTensor(self.seq_length, batch_size) # lets process every image independently for now, for simplicity self.done_beams = [[] for _ in range(batch_size)] for k in range(batch_size): state = self.init_hidden(beam_size) for t in range(2): if t == 0: xt = self.img_embed(fc_feats[k:k+1]).expand(beam_size, self.input_encoding_size) elif t == 1: # input <bos> it = fc_feats.data.new(beam_size).long().zero_() xt = self.embed(it) output, state = self.core(xt.unsqueeze(0), state) logprobs = F.log_softmax(self.logit(self.dropout(output.squeeze(0))), dim=1) self.done_beams[k] = self.beam_search(state, logprobs, opt=opt) seq[:, k] = self.done_beams[k][0]['seq'] # the first beam has highest cumulative score seqLogprobs[:, k] = self.done_beams[k][0]['logps'] # return the samples and their log likelihoods return seq.transpose(0, 1), seqLogprobs.transpose(0, 1) def _sample(self, fc_feats, att_feats, att_masks=None, opt={}): sample_method = opt.get('sample_method', 'greedy') beam_size = opt.get('beam_size', 1) temperature = opt.get('temperature', 1.0) if beam_size > 1 and sample_method in ['greedy', 'beam_search']: return self.sample_beam(fc_feats, att_feats, opt) batch_size = fc_feats.size(0) state = self.init_hidden(batch_size) seq = fc_feats.new_zeros(batch_size, self.seq_length, dtype=torch.long) seqLogprobs = fc_feats.new_zeros(batch_size, self.seq_length) for t in range(self.seq_length + 2): if t == 0: xt = self.img_embed(fc_feats) else: if t == 1: # input <bos> it = fc_feats.data.new(batch_size).long().zero_() xt = self.embed(it) output, state = self.core(xt.unsqueeze(0), state) logprobs = F.log_softmax(self.logit(self.dropout(output.squeeze(0))), dim=1) # sample the next word if t == self.seq_length + 1: # skip if we achieve maximum length break if sample_method == 'greedy': sampleLogprobs, it = torch.max(logprobs.data, 1) it = it.view(-1).long() else: if temperature == 1.0: prob_prev = torch.exp(logprobs.data).cpu() # fetch prev distribution: shape Nx(M+1) else: # scale logprobs by temperature prob_prev = torch.exp(torch.div(logprobs.data, temperature)).cpu() it = torch.multinomial(prob_prev, 1).to(logprobs.device) sampleLogprobs = logprobs.gather(1, it) # gather the logprobs at sampled positions it = it.view(-1).long() # and flatten indices for downstream processing if t >= 1: # stop when all finished if t == 1: unfinished = it > 0 else: unfinished = unfinished & (it > 0) it = it * unfinished.type_as(it) seq[:,t-1] = it #seq[t] the input of t+2 time step seqLogprobs[:,t-1] = sampleLogprobs.view(-1) if unfinished.sum() == 0: break return seq, seqLogprobs
connect-caption-and-trace-main
captioning/models/ShowTellModel.py
# This file contains Att2in2, AdaAtt, AdaAttMO, UpDown model # AdaAtt is from Knowing When to Look: Adaptive Attention via A Visual Sentinel for Image Captioning # https://arxiv.org/abs/1612.01887 # AdaAttMO is a modified version with maxout lstm # Att2in is from Self-critical Sequence Training for Image Captioning # https://arxiv.org/abs/1612.00563 # In this file we only have Att2in2, which is a slightly different version of att2in, # in which the img feature embedding and word embedding is the same as what in adaatt. # UpDown is from Bottom-Up and Top-Down Attention for Image Captioning and VQA # https://arxiv.org/abs/1707.07998 # However, it may not be identical to the author's architecture. from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from . import utils from torch.nn.utils.rnn import PackedSequence, pack_padded_sequence, pad_packed_sequence from .CaptionModel import CaptionModel bad_endings = ['a','an','the','in','for','at','of','with','before','after','on','upon','near','to','is','are','am'] bad_endings += ['the'] def sort_pack_padded_sequence(input, lengths): sorted_lengths, indices = torch.sort(lengths, descending=True) tmp = pack_padded_sequence(input[indices], sorted_lengths, batch_first=True) inv_ix = indices.clone() inv_ix[indices] = torch.arange(0,len(indices)).type_as(inv_ix) return tmp, inv_ix def pad_unsort_packed_sequence(input, inv_ix): tmp, _ = pad_packed_sequence(input, batch_first=True) tmp = tmp[inv_ix] return tmp def pack_wrapper(module, att_feats, att_masks): if att_masks is not None: packed, inv_ix = sort_pack_padded_sequence(att_feats, att_masks.data.long().sum(1)) return pad_unsort_packed_sequence(PackedSequence(module(packed[0]), packed[1]), inv_ix) else: return module(att_feats) class AttModel(CaptionModel): def __init__(self, opt): super(AttModel, self).__init__() self.vocab_size = opt.vocab_size self.input_encoding_size = opt.input_encoding_size #self.rnn_type = opt.rnn_type self.rnn_size = opt.rnn_size self.num_layers = opt.num_layers self.drop_prob_lm = opt.drop_prob_lm self.seq_length = getattr(opt, 'max_length', 20) or opt.seq_length # maximum sample length self.fc_feat_size = opt.fc_feat_size self.att_feat_size = opt.att_feat_size self.att_hid_size = opt.att_hid_size self.bos_idx = getattr(opt, 'bos_idx', 0) self.eos_idx = getattr(opt, 'eos_idx', 0) self.pad_idx = getattr(opt, 'pad_idx', 0) self.use_bn = getattr(opt, 'use_bn', 0) self.ss_prob = 0.0 # Schedule sampling probability self.embed = nn.Sequential(nn.Embedding(self.vocab_size + 1, self.input_encoding_size), nn.ReLU(), nn.Dropout(self.drop_prob_lm)) self.fc_embed = nn.Sequential(nn.Linear(self.fc_feat_size, self.rnn_size), nn.ReLU(), nn.Dropout(self.drop_prob_lm)) self.att_embed = nn.Sequential(*( ((nn.BatchNorm1d(self.att_feat_size),) if self.use_bn else ())+ (nn.Linear(self.att_feat_size, self.rnn_size), nn.ReLU(), nn.Dropout(self.drop_prob_lm))+ ((nn.BatchNorm1d(self.rnn_size),) if self.use_bn==2 else ()))) self.logit_layers = getattr(opt, 'logit_layers', 1) if self.logit_layers == 1: self.logit = nn.Linear(self.rnn_size, self.vocab_size + 1) else: self.logit = [[nn.Linear(self.rnn_size, self.rnn_size), nn.ReLU(), nn.Dropout(0.5)] for _ in range(opt.logit_layers - 1)] self.logit = nn.Sequential(*(reduce(lambda x,y:x+y, self.logit) + [nn.Linear(self.rnn_size, self.vocab_size + 1)])) self.ctx2att = nn.Linear(self.rnn_size, self.att_hid_size) # For remove bad endding self.vocab = opt.vocab self.bad_endings_ix = [int(k) for k,v in self.vocab.items() if v in bad_endings] def init_hidden(self, bsz): weight = self.logit.weight \ if hasattr(self.logit, "weight") \ else self.logit[0].weight return (weight.new_zeros(self.num_layers, bsz, self.rnn_size), weight.new_zeros(self.num_layers, bsz, self.rnn_size)) def clip_att(self, att_feats, box_feats, att_masks): # Clip the length of att_masks and att_feats to the maximum length if att_masks is not None: max_len = att_masks.data.long().sum(1).max() att_feats = att_feats[:, :max_len].contiguous() att_masks = att_masks[:, :max_len].contiguous() box_feats = box_feats[:, :max_len].contiguous() return att_feats, box_feats, att_masks def _prepare_feature(self, fc_feats, att_feats, att_masks): att_feats, att_masks = self.clip_att(att_feats, att_masks) # embed fc and att feats fc_feats = self.fc_embed(fc_feats) att_feats = pack_wrapper(self.att_embed, att_feats, att_masks) # Project the attention feats first to reduce memory and computation comsumptions. p_att_feats = self.ctx2att(att_feats) return fc_feats, att_feats, p_att_feats, att_masks def _forward(self, fc_feats, att_feats, trace_feats, seq, att_masks=None, trace_masks=None): batch_size = fc_feats.size(0) if seq.ndim == 3: # B * seq_per_img * seq_len seq = seq.reshape(-1, seq.shape[2]) seq_per_img = seq.shape[0] // batch_size state = self.init_hidden(batch_size*seq_per_img) outputs = fc_feats.new_zeros(batch_size*seq_per_img, seq.size(1), self.vocab_size+1) # Prepare the features p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = self._prepare_feature(fc_feats, att_feats, trace_feats, att_masks, trace_masks) # pp_att_feats is used for attention, we cache it in advance to reduce computation cost if seq_per_img > 1: p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = utils.repeat_tensors(seq_per_img, [p_fc_feats, p_att_feats, pp_att_feats, p_att_masks] ) for i in range(seq.size(1)): if self.training and i >= 1 and self.ss_prob > 0.0: # otherwiste no need to sample sample_prob = fc_feats.new(batch_size*seq_per_img).uniform_(0, 1) sample_mask = sample_prob < self.ss_prob if sample_mask.sum() == 0: it = seq[:, i].clone() else: sample_ind = sample_mask.nonzero().view(-1) it = seq[:, i].data.clone() prob_prev = torch.exp(outputs[:, i-1].detach()) # fetch prev distribution: shape Nx(M+1) it.index_copy_(0, sample_ind, torch.multinomial(prob_prev, 1).view(-1).index_select(0, sample_ind)) else: it = seq[:, i].clone() # break if all the sequences end if i >= 1 and seq[:, i].sum() == 0: break output, state = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, state) outputs[:, i] = output return outputs def get_logprobs_state(self, it, fc_feats, att_feats, p_att_feats, att_masks, trace_feats_to_decoder, trace_masks, show_gate_labels, task, state, output_logsoftmax=1): # 'it' contains a word index xt = self.embed(it) if task == 'caption' or task == 'show': if task == 'show': output, state = self.core(xt, fc_feats, att_feats, p_att_feats, state, att_masks, trace_feats_to_decoder, trace_masks, show_gate_labels, task) else: output, state = self.core(xt, fc_feats, att_feats, p_att_feats, state, att_masks, trace_feats_to_decoder, trace_masks, task) if output_logsoftmax: logprobs = F.log_softmax(self.logit(output), dim=1) else: logprobs = self.logit(output) return logprobs, state elif task == 'both': output, state, output_trace = self.core(xt, fc_feats, att_feats, p_att_feats, state, att_masks, trace_feats_to_decoder, trace_masks, task=task) if output_logsoftmax: logprobs = F.log_softmax(self.logit(output), dim=1) else: logprobs = self.logit(output) return logprobs, state, self.model.generator_trace(output_trace) def _old_sample_beam(self, fc_feats, att_feats, att_masks=None, opt={}): beam_size = opt.get('beam_size', 10) group_size = opt.get('group_size', 1) sample_n = opt.get('sample_n', 10) # when sample_n == beam_size then each beam is a sample. assert sample_n == 1 or sample_n == beam_size // group_size, 'when beam search, sample_n == 1 or beam search' batch_size = fc_feats.size(0) p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = self._prepare_feature(fc_feats, att_feats, att_masks) assert beam_size <= self.vocab_size + 1, 'lets assume this for now, otherwise this corner case causes a few headaches down the road. can be dealt with in future if needed' seq = fc_feats.new_full((batch_size*sample_n, self.seq_length), self.pad_idx, dtype=torch.long) seqLogprobs = fc_feats.new_zeros(batch_size*sample_n, self.seq_length, self.vocab_size + 1) # lets process every image independently for now, for simplicity self.done_beams = [[] for _ in range(batch_size)] for k in range(batch_size): state = self.init_hidden(beam_size) tmp_fc_feats, tmp_att_feats, tmp_p_att_feats, tmp_att_masks = utils.repeat_tensors(beam_size, [p_fc_feats[k:k+1], p_att_feats[k:k+1], pp_att_feats[k:k+1], p_att_masks[k:k+1] if att_masks is not None else None] ) for t in range(1): if t == 0: # input <bos> it = fc_feats.new_full([beam_size], self.bos_idx, dtype=torch.long) logprobs, state = self.get_logprobs_state(it, tmp_fc_feats, tmp_att_feats, tmp_p_att_feats, tmp_att_masks, state) self.done_beams[k] = self.old_beam_search(state, logprobs, tmp_fc_feats, tmp_att_feats, tmp_p_att_feats, tmp_att_masks, opt=opt) if sample_n == beam_size: for _n in range(sample_n): seq[k*sample_n+_n, :] = self.done_beams[k][_n]['seq'] seqLogprobs[k*sample_n+_n, :] = self.done_beams[k][_n]['logps'] else: seq[k, :] = self.done_beams[k][0]['seq'] # the first beam has highest cumulative score seqLogprobs[k, :] = self.done_beams[k][0]['logps'] # return the samples and their log likelihoods return seq, seqLogprobs def _sample_beam(self, fc_feats, att_feats, trace_feats, box_feats, att_masks=None, trace_masks=None, show_gate_labels=None, task=None, opt={}): beam_size = opt.get('beam_size', 10) group_size = opt.get('group_size', 1) sample_n = opt.get('sample_n', 10) # when sample_n == beam_size then each beam is a sample. assert sample_n == 1 or sample_n == beam_size // group_size, 'when beam search, sample_n == 1 or beam search' batch_size = fc_feats.size(0) p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, trace_feats_to_decoder = self._prepare_feature(fc_feats, att_feats, trace_feats, box_feats, att_masks, trace_masks) assert beam_size <= self.vocab_size + 1, 'lets assume this for now, otherwise this corner case causes a few headaches down the road. can be dealt with in future if needed' seq = fc_feats.new_full((batch_size*sample_n, self.seq_length), self.pad_idx, dtype=torch.long) seqLogprobs = fc_feats.new_zeros(batch_size*sample_n, self.seq_length, self.vocab_size + 1) # lets process every image independently for now, for simplicity self.done_beams = [[] for _ in range(batch_size)] state = self.init_hidden(batch_size) # first step, feed bos it = fc_feats.new_full([batch_size], self.bos_idx, dtype=torch.long) logprobs, state = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, trace_feats_to_decoder, trace_masks, show_gate_labels, task, state) p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, trace_feats_to_decoder, trace_masks, show_gate_labels = utils.repeat_tensors(beam_size, [p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, trace_feats_to_decoder, trace_masks, show_gate_labels] ) self.done_beams = self.beam_search(state, logprobs, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, trace_feats_to_decoder, trace_masks, show_gate_labels, task, opt=opt) for k in range(batch_size): if sample_n == beam_size: for _n in range(sample_n): seq_len = self.done_beams[k][_n]['seq'].shape[0] seq[k*sample_n+_n, :seq_len] = self.done_beams[k][_n]['seq'] seqLogprobs[k*sample_n+_n, :seq_len] = self.done_beams[k][_n]['logps'] else: seq_len = self.done_beams[k][0]['seq'].shape[0] seq[k, :seq_len] = self.done_beams[k][0]['seq'] # the first beam has highest cumulative score seqLogprobs[k, :seq_len] = self.done_beams[k][0]['logps'] # return the samples and their log likelihoods return seq, seqLogprobs def _sample(self, fc_feats, att_feats, trace_feats, box_feats, att_masks=None, trace_masks=None, show_gate_labels=None, task=None, opt={}): sample_method = opt.get('sample_method', 'greedy') beam_size = opt.get('beam_size', 1) temperature = opt.get('temperature', 1.0) sample_n = int(opt.get('sample_n', 1)) group_size = opt.get('group_size', 1) output_logsoftmax = opt.get('output_logsoftmax', 1) decoding_constraint = opt.get('decoding_constraint', 0) block_trigrams = opt.get('block_trigrams', 0) remove_bad_endings = opt.get('remove_bad_endings', 0) if beam_size > 1 and sample_method in ['greedy', 'beam_search']: return self._sample_beam(fc_feats, att_feats, trace_feats, box_feats, att_masks, trace_masks, show_gate_labels, task, opt) if group_size > 1: return self._diverse_sample(fc_feats, att_feats, att_masks, opt) batch_size = fc_feats.size(0) state = self.init_hidden(batch_size*sample_n) p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, trace_feats_to_decoder = \ self._prepare_feature(fc_feats, att_feats, trace_feats, box_feats, att_masks, trace_masks) if sample_n > 1: p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = utils.repeat_tensors(sample_n, [p_fc_feats, p_att_feats, pp_att_feats, p_att_masks] ) trigrams = [] # will be a list of batch_size dictionaries seq = fc_feats.new_full((batch_size*sample_n, self.seq_length), self.pad_idx, dtype=torch.long) seqLogprobs = fc_feats.new_zeros(batch_size*sample_n, self.seq_length, self.vocab_size + 1) if task == 'both': tmp_trace_feats = torch.zeros([trace_feats_to_decoder.shape[0], 1, trace_feats_to_decoder.shape[2]]).to(trace_masks.device) for t in range(self.seq_length + 1): if t == 0: # input <bos> it = fc_feats.new_full([batch_size*sample_n], self.bos_idx, dtype=torch.long) if task == 'caption' or task == 'show': logprobs, state = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, trace_feats_to_decoder, trace_masks, show_gate_labels, task, state, output_logsoftmax=output_logsoftmax) elif task == 'both': logprobs, state, output_trace = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, tmp_trace_feats, trace_masks, task, state, output_logsoftmax=output_logsoftmax) output_trace = output_trace[:, t] output_trace[:, 4] = (output_trace[:, 2] - output_trace[:, 0]) * (output_trace[:, 3] - output_trace[:, 1]) tmp_trace_feats = torch.cat([tmp_trace_feats, output_trace.unsqueeze(1)], 1) if decoding_constraint and t > 0: tmp = logprobs.new_zeros(logprobs.size()) tmp.scatter_(1, seq[:,t-1].data.unsqueeze(1), float('-inf')) logprobs = logprobs + tmp if remove_bad_endings and t > 0: tmp = logprobs.new_zeros(logprobs.size()) prev_bad = np.isin(seq[:,t-1].data.cpu().numpy(), self.bad_endings_ix) # Make it impossible to generate bad_endings tmp[torch.from_numpy(prev_bad.astype('uint8')), 0] = float('-inf') logprobs = logprobs + tmp # Mess with trigrams # Copy from https://github.com/lukemelas/image-paragraph-captioning if block_trigrams and t >= 3: # Store trigram generated at last step prev_two_batch = seq[:,t-3:t-1] for i in range(batch_size): # = seq.size(0) prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item()) current = seq[i][t-1] if t == 3: # initialize trigrams.append({prev_two: [current]}) # {LongTensor: list containing 1 int} elif t > 3: if prev_two in trigrams[i]: # add to list trigrams[i][prev_two].append(current) else: # create list trigrams[i][prev_two] = [current] # Block used trigrams at next step prev_two_batch = seq[:,t-2:t] mask = torch.zeros(logprobs.size(), requires_grad=False).to(logprobs.device) # batch_size x vocab_size for i in range(batch_size): prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item()) if prev_two in trigrams[i]: for j in trigrams[i][prev_two]: mask[i,j] += 1 # Apply mask to log probs #logprobs = logprobs - (mask * 1e9) alpha = 2.0 # = 4 logprobs = logprobs + (mask * -0.693 * alpha) # ln(1/2) * alpha (alpha -> infty works best) # sample the next word if t == self.seq_length: # skip if we achieve maximum length break it, sampleLogprobs = self.sample_next_word(logprobs, sample_method, temperature) # stop when all finished if t == 0: unfinished = it != self.eos_idx else: it[~unfinished] = self.pad_idx # This allows eos_idx not being overwritten to 0 logprobs = logprobs * unfinished.unsqueeze(1).to(logprobs) unfinished = unfinished & (it != self.eos_idx) seq[:,t] = it seqLogprobs[:,t] = logprobs # quit loop if all sequences have finished if unfinished.sum() == 0: break ### for decoder evaluate: cut at the ground truth caption length for i in range(trace_masks.shape[0]): tmp_num = trace_masks[i].sum().long() seq[i, tmp_num:] = 0 seqLogprobs[i, tmp_num:, :] = 0 return seq, seqLogprobs def _diverse_sample(self, fc_feats, att_feats, att_masks=None, opt={}): sample_method = opt.get('sample_method', 'greedy') beam_size = opt.get('beam_size', 1) temperature = opt.get('temperature', 1.0) group_size = opt.get('group_size', 1) diversity_lambda = opt.get('diversity_lambda', 0.5) decoding_constraint = opt.get('decoding_constraint', 0) block_trigrams = opt.get('block_trigrams', 0) remove_bad_endings = opt.get('remove_bad_endings', 0) batch_size = fc_feats.size(0) state = self.init_hidden(batch_size) p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = self._prepare_feature(fc_feats, att_feats, att_masks) trigrams_table = [[] for _ in range(group_size)] # will be a list of batch_size dictionaries seq_table = [fc_feats.new_full((batch_size, self.seq_length), self.pad_idx, dtype=torch.long) for _ in range(group_size)] seqLogprobs_table = [fc_feats.new_zeros(batch_size, self.seq_length) for _ in range(group_size)] state_table = [self.init_hidden(batch_size) for _ in range(group_size)] for tt in range(self.seq_length + group_size): for divm in range(group_size): t = tt - divm seq = seq_table[divm] seqLogprobs = seqLogprobs_table[divm] trigrams = trigrams_table[divm] if t >= 0 and t <= self.seq_length-1: if t == 0: # input <bos> it = fc_feats.new_full([batch_size], self.bos_idx, dtype=torch.long) else: it = seq[:, t-1] # changed logprobs, state_table[divm] = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, state_table[divm]) # changed logprobs = F.log_softmax(logprobs / temperature, dim=-1) # Add diversity if divm > 0: unaug_logprobs = logprobs.clone() for prev_choice in range(divm): prev_decisions = seq_table[prev_choice][:, t] logprobs[:, prev_decisions] = logprobs[:, prev_decisions] - diversity_lambda if decoding_constraint and t > 0: tmp = logprobs.new_zeros(logprobs.size()) tmp.scatter_(1, seq[:,t-1].data.unsqueeze(1), float('-inf')) logprobs = logprobs + tmp if remove_bad_endings and t > 0: tmp = logprobs.new_zeros(logprobs.size()) prev_bad = np.isin(seq[:,t-1].data.cpu().numpy(), self.bad_endings_ix) # Impossible to generate remove_bad_endings tmp[torch.from_numpy(prev_bad.astype('uint8')), 0] = float('-inf') logprobs = logprobs + tmp # Mess with trigrams if block_trigrams and t >= 3: # Store trigram generated at last step prev_two_batch = seq[:,t-3:t-1] for i in range(batch_size): # = seq.size(0) prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item()) current = seq[i][t-1] if t == 3: # initialize trigrams.append({prev_two: [current]}) # {LongTensor: list containing 1 int} elif t > 3: if prev_two in trigrams[i]: # add to list trigrams[i][prev_two].append(current) else: # create list trigrams[i][prev_two] = [current] # Block used trigrams at next step prev_two_batch = seq[:,t-2:t] mask = torch.zeros(logprobs.size(), requires_grad=False).cuda() # batch_size x vocab_size for i in range(batch_size): prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item()) if prev_two in trigrams[i]: for j in trigrams[i][prev_two]: mask[i,j] += 1 # Apply mask to log probs #logprobs = logprobs - (mask * 1e9) alpha = 2.0 # = 4 logprobs = logprobs + (mask * -0.693 * alpha) # ln(1/2) * alpha (alpha -> infty works best) it, sampleLogprobs = self.sample_next_word(logprobs, sample_method, 1) # stop when all finished if t == 0: unfinished = it != self.eos_idx else: unfinished = seq[:,t-1] != self.pad_idx & seq[:,t-1] != self.eos_idx it[~unfinished] = self.pad_idx unfinished = unfinished & (it != self.eos_idx) # changed seq[:,t] = it seqLogprobs[:,t] = sampleLogprobs.view(-1) return torch.stack(seq_table, 1).reshape(batch_size * group_size, -1), torch.stack(seqLogprobs_table, 1).reshape(batch_size * group_size, -1) class AdaAtt_lstm(nn.Module): def __init__(self, opt, use_maxout=True): super(AdaAtt_lstm, self).__init__() self.input_encoding_size = opt.input_encoding_size #self.rnn_type = opt.rnn_type self.rnn_size = opt.rnn_size self.num_layers = opt.num_layers self.drop_prob_lm = opt.drop_prob_lm self.fc_feat_size = opt.fc_feat_size self.att_feat_size = opt.att_feat_size self.att_hid_size = opt.att_hid_size self.use_maxout = use_maxout # Build a LSTM self.w2h = nn.Linear(self.input_encoding_size, (4+(use_maxout==True)) * self.rnn_size) self.v2h = nn.Linear(self.rnn_size, (4+(use_maxout==True)) * self.rnn_size) self.i2h = nn.ModuleList([nn.Linear(self.rnn_size, (4+(use_maxout==True)) * self.rnn_size) for _ in range(self.num_layers - 1)]) self.h2h = nn.ModuleList([nn.Linear(self.rnn_size, (4+(use_maxout==True)) * self.rnn_size) for _ in range(self.num_layers)]) # Layers for getting the fake region if self.num_layers == 1: self.r_w2h = nn.Linear(self.input_encoding_size, self.rnn_size) self.r_v2h = nn.Linear(self.rnn_size, self.rnn_size) else: self.r_i2h = nn.Linear(self.rnn_size, self.rnn_size) self.r_h2h = nn.Linear(self.rnn_size, self.rnn_size) def forward(self, xt, img_fc, state): hs = [] cs = [] for L in range(self.num_layers): # c,h from previous timesteps prev_h = state[0][L] prev_c = state[1][L] # the input to this layer if L == 0: x = xt i2h = self.w2h(x) + self.v2h(img_fc) else: x = hs[-1] x = F.dropout(x, self.drop_prob_lm, self.training) i2h = self.i2h[L-1](x) all_input_sums = i2h+self.h2h[L](prev_h) sigmoid_chunk = all_input_sums.narrow(1, 0, 3 * self.rnn_size) sigmoid_chunk = torch.sigmoid(sigmoid_chunk) # decode the gates in_gate = sigmoid_chunk.narrow(1, 0, self.rnn_size) forget_gate = sigmoid_chunk.narrow(1, self.rnn_size, self.rnn_size) out_gate = sigmoid_chunk.narrow(1, self.rnn_size * 2, self.rnn_size) # decode the write inputs if not self.use_maxout: in_transform = torch.tanh(all_input_sums.narrow(1, 3 * self.rnn_size, self.rnn_size)) else: in_transform = all_input_sums.narrow(1, 3 * self.rnn_size, 2 * self.rnn_size) in_transform = torch.max(\ in_transform.narrow(1, 0, self.rnn_size), in_transform.narrow(1, self.rnn_size, self.rnn_size)) # perform the LSTM update next_c = forget_gate * prev_c + in_gate * in_transform # gated cells form the output tanh_nex_c = torch.tanh(next_c) next_h = out_gate * tanh_nex_c if L == self.num_layers-1: if L == 0: i2h = self.r_w2h(x) + self.r_v2h(img_fc) else: i2h = self.r_i2h(x) n5 = i2h+self.r_h2h(prev_h) fake_region = torch.sigmoid(n5) * tanh_nex_c cs.append(next_c) hs.append(next_h) # set up the decoder top_h = hs[-1] top_h = F.dropout(top_h, self.drop_prob_lm, self.training) fake_region = F.dropout(fake_region, self.drop_prob_lm, self.training) state = (torch.cat([_.unsqueeze(0) for _ in hs], 0), torch.cat([_.unsqueeze(0) for _ in cs], 0)) return top_h, fake_region, state class AdaAtt_attention(nn.Module): def __init__(self, opt): super(AdaAtt_attention, self).__init__() self.input_encoding_size = opt.input_encoding_size #self.rnn_type = opt.rnn_type self.rnn_size = opt.rnn_size self.drop_prob_lm = opt.drop_prob_lm self.att_hid_size = opt.att_hid_size # fake region embed self.fr_linear = nn.Sequential( nn.Linear(self.rnn_size, self.input_encoding_size), nn.ReLU(), nn.Dropout(self.drop_prob_lm)) self.fr_embed = nn.Linear(self.input_encoding_size, self.att_hid_size) # h out embed self.ho_linear = nn.Sequential( nn.Linear(self.rnn_size, self.input_encoding_size), nn.Tanh(), nn.Dropout(self.drop_prob_lm)) self.ho_embed = nn.Linear(self.input_encoding_size, self.att_hid_size) self.alpha_net = nn.Linear(self.att_hid_size, 1) self.att2h = nn.Linear(self.rnn_size, self.rnn_size) def forward(self, h_out, fake_region, conv_feat, conv_feat_embed, att_masks=None): # View into three dimensions att_size = conv_feat.numel() // conv_feat.size(0) // self.rnn_size conv_feat = conv_feat.view(-1, att_size, self.rnn_size) conv_feat_embed = conv_feat_embed.view(-1, att_size, self.att_hid_size) # view neighbor from bach_size * neighbor_num x rnn_size to bach_size x rnn_size * neighbor_num fake_region = self.fr_linear(fake_region) fake_region_embed = self.fr_embed(fake_region) h_out_linear = self.ho_linear(h_out) h_out_embed = self.ho_embed(h_out_linear) txt_replicate = h_out_embed.unsqueeze(1).expand(h_out_embed.size(0), att_size + 1, h_out_embed.size(1)) img_all = torch.cat([fake_region.view(-1,1,self.input_encoding_size), conv_feat], 1) img_all_embed = torch.cat([fake_region_embed.view(-1,1,self.input_encoding_size), conv_feat_embed], 1) hA = torch.tanh(img_all_embed + txt_replicate) hA = F.dropout(hA,self.drop_prob_lm, self.training) hAflat = self.alpha_net(hA.view(-1, self.att_hid_size)) PI = F.softmax(hAflat.view(-1, att_size + 1), dim=1) if att_masks is not None: att_masks = att_masks.view(-1, att_size) PI = PI * torch.cat([att_masks[:,:1], att_masks], 1) # assume one one at the first time step. PI = PI / PI.sum(1, keepdim=True) visAtt = torch.bmm(PI.unsqueeze(1), img_all) visAttdim = visAtt.squeeze(1) atten_out = visAttdim + h_out_linear h = torch.tanh(self.att2h(atten_out)) h = F.dropout(h, self.drop_prob_lm, self.training) return h class AdaAttCore(nn.Module): def __init__(self, opt, use_maxout=False): super(AdaAttCore, self).__init__() self.lstm = AdaAtt_lstm(opt, use_maxout) self.attention = AdaAtt_attention(opt) def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None): h_out, p_out, state = self.lstm(xt, fc_feats, state) atten_out = self.attention(h_out, p_out, att_feats, p_att_feats, att_masks) return atten_out, state class UpDownCore(nn.Module): def __init__(self, opt, use_maxout=False): super(UpDownCore, self).__init__() self.drop_prob_lm = opt.drop_prob_lm self.att_lstm = nn.LSTMCell(opt.input_encoding_size + opt.rnn_size * 2, opt.rnn_size) # we, fc, h^2_t-1 self.lang_lstm = nn.LSTMCell(opt.rnn_size * 2, opt.rnn_size) # h^1_t, \hat v self.attention = Attention(opt) def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None): prev_h = state[0][-1] att_lstm_input = torch.cat([prev_h, fc_feats, xt], 1) h_att, c_att = self.att_lstm(att_lstm_input, (state[0][0], state[1][0])) att = self.attention(h_att, att_feats, p_att_feats, att_masks) lang_lstm_input = torch.cat([att, h_att], 1) # lang_lstm_input = torch.cat([att, F.dropout(h_att, self.drop_prob_lm, self.training)], 1) ????? h_lang, c_lang = self.lang_lstm(lang_lstm_input, (state[0][1], state[1][1])) output = F.dropout(h_lang, self.drop_prob_lm, self.training) state = (torch.stack([h_att, h_lang]), torch.stack([c_att, c_lang])) return output, state ############################################################################ # Notice: # StackAtt and DenseAtt are models that I randomly designed. # They are not related to any paper. ############################################################################ from .FCModel import LSTMCore class StackAttCore(nn.Module): def __init__(self, opt, use_maxout=False): super(StackAttCore, self).__init__() self.drop_prob_lm = opt.drop_prob_lm # self.att0 = Attention(opt) self.att1 = Attention(opt) self.att2 = Attention(opt) opt_input_encoding_size = opt.input_encoding_size opt.input_encoding_size = opt.input_encoding_size + opt.rnn_size self.lstm0 = LSTMCore(opt) # att_feat + word_embedding opt.input_encoding_size = opt.rnn_size * 2 self.lstm1 = LSTMCore(opt) self.lstm2 = LSTMCore(opt) opt.input_encoding_size = opt_input_encoding_size # self.emb1 = nn.Linear(opt.rnn_size, opt.rnn_size) self.emb2 = nn.Linear(opt.rnn_size, opt.rnn_size) def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None): # att_res_0 = self.att0(state[0][-1], att_feats, p_att_feats, att_masks) h_0, state_0 = self.lstm0(torch.cat([xt,fc_feats],1), [state[0][0:1], state[1][0:1]]) att_res_1 = self.att1(h_0, att_feats, p_att_feats, att_masks) h_1, state_1 = self.lstm1(torch.cat([h_0,att_res_1],1), [state[0][1:2], state[1][1:2]]) att_res_2 = self.att2(h_1 + self.emb2(att_res_1), att_feats, p_att_feats, att_masks) h_2, state_2 = self.lstm2(torch.cat([h_1,att_res_2],1), [state[0][2:3], state[1][2:3]]) return h_2, [torch.cat(_, 0) for _ in zip(state_0, state_1, state_2)] class DenseAttCore(nn.Module): def __init__(self, opt, use_maxout=False): super(DenseAttCore, self).__init__() self.drop_prob_lm = opt.drop_prob_lm # self.att0 = Attention(opt) self.att1 = Attention(opt) self.att2 = Attention(opt) opt_input_encoding_size = opt.input_encoding_size opt.input_encoding_size = opt.input_encoding_size + opt.rnn_size self.lstm0 = LSTMCore(opt) # att_feat + word_embedding opt.input_encoding_size = opt.rnn_size * 2 self.lstm1 = LSTMCore(opt) self.lstm2 = LSTMCore(opt) opt.input_encoding_size = opt_input_encoding_size # self.emb1 = nn.Linear(opt.rnn_size, opt.rnn_size) self.emb2 = nn.Linear(opt.rnn_size, opt.rnn_size) # fuse h_0 and h_1 self.fusion1 = nn.Sequential(nn.Linear(opt.rnn_size*2, opt.rnn_size), nn.ReLU(), nn.Dropout(opt.drop_prob_lm)) # fuse h_0, h_1 and h_2 self.fusion2 = nn.Sequential(nn.Linear(opt.rnn_size*3, opt.rnn_size), nn.ReLU(), nn.Dropout(opt.drop_prob_lm)) def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None): # att_res_0 = self.att0(state[0][-1], att_feats, p_att_feats, att_masks) h_0, state_0 = self.lstm0(torch.cat([xt,fc_feats],1), [state[0][0:1], state[1][0:1]]) att_res_1 = self.att1(h_0, att_feats, p_att_feats, att_masks) h_1, state_1 = self.lstm1(torch.cat([h_0,att_res_1],1), [state[0][1:2], state[1][1:2]]) att_res_2 = self.att2(h_1 + self.emb2(att_res_1), att_feats, p_att_feats, att_masks) h_2, state_2 = self.lstm2(torch.cat([self.fusion1(torch.cat([h_0, h_1], 1)),att_res_2],1), [state[0][2:3], state[1][2:3]]) return self.fusion2(torch.cat([h_0, h_1, h_2], 1)), [torch.cat(_, 0) for _ in zip(state_0, state_1, state_2)] class Attention(nn.Module): def __init__(self, opt): super(Attention, self).__init__() self.rnn_size = opt.rnn_size self.att_hid_size = opt.att_hid_size self.h2att = nn.Linear(self.rnn_size, self.att_hid_size) self.alpha_net = nn.Linear(self.att_hid_size, 1) def forward(self, h, att_feats, p_att_feats, att_masks=None): # The p_att_feats here is already projected att_size = att_feats.numel() // att_feats.size(0) // att_feats.size(-1) att = p_att_feats.view(-1, att_size, self.att_hid_size) att_h = self.h2att(h) # batch * att_hid_size att_h = att_h.unsqueeze(1).expand_as(att) # batch * att_size * att_hid_size dot = att + att_h # batch * att_size * att_hid_size dot = torch.tanh(dot) # batch * att_size * att_hid_size dot = dot.view(-1, self.att_hid_size) # (batch * att_size) * att_hid_size dot = self.alpha_net(dot) # (batch * att_size) * 1 dot = dot.view(-1, att_size) # batch * att_size weight = F.softmax(dot, dim=1) # batch * att_size if att_masks is not None: weight = weight * att_masks.view(-1, att_size).to(weight) weight = weight / weight.sum(1, keepdim=True) # normalize to 1 att_feats_ = att_feats.view(-1, att_size, att_feats.size(-1)) # batch * att_size * att_feat_size att_res = torch.bmm(weight.unsqueeze(1), att_feats_).squeeze(1) # batch * att_feat_size return att_res class Att2in2Core(nn.Module): def __init__(self, opt): super(Att2in2Core, self).__init__() self.input_encoding_size = opt.input_encoding_size #self.rnn_type = opt.rnn_type self.rnn_size = opt.rnn_size #self.num_layers = opt.num_layers self.drop_prob_lm = opt.drop_prob_lm self.fc_feat_size = opt.fc_feat_size self.att_feat_size = opt.att_feat_size self.att_hid_size = opt.att_hid_size # Build a LSTM self.a2c = nn.Linear(self.rnn_size, 2 * self.rnn_size) self.i2h = nn.Linear(self.input_encoding_size, 5 * self.rnn_size) self.h2h = nn.Linear(self.rnn_size, 5 * self.rnn_size) self.dropout = nn.Dropout(self.drop_prob_lm) self.attention = Attention(opt) def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None): att_res = self.attention(state[0][-1], att_feats, p_att_feats, att_masks) all_input_sums = self.i2h(xt) + self.h2h(state[0][-1]) sigmoid_chunk = all_input_sums.narrow(1, 0, 3 * self.rnn_size) sigmoid_chunk = torch.sigmoid(sigmoid_chunk) in_gate = sigmoid_chunk.narrow(1, 0, self.rnn_size) forget_gate = sigmoid_chunk.narrow(1, self.rnn_size, self.rnn_size) out_gate = sigmoid_chunk.narrow(1, self.rnn_size * 2, self.rnn_size) in_transform = all_input_sums.narrow(1, 3 * self.rnn_size, 2 * self.rnn_size) + \ self.a2c(att_res) in_transform = torch.max(\ in_transform.narrow(1, 0, self.rnn_size), in_transform.narrow(1, self.rnn_size, self.rnn_size)) next_c = forget_gate * state[1][-1] + in_gate * in_transform next_h = out_gate * torch.tanh(next_c) output = self.dropout(next_h) state = (next_h.unsqueeze(0), next_c.unsqueeze(0)) return output, state class Att2inCore(Att2in2Core): def __init__(self, opt): super(Att2inCore, self).__init__(opt) del self.a2c self.a2c = nn.Linear(self.att_feat_size, 2 * self.rnn_size) """ Note this is my attempt to replicate att2all model in self-critical paper. However, this is not a correct replication actually. Will fix it. """ class Att2all2Core(nn.Module): def __init__(self, opt): super(Att2all2Core, self).__init__() self.input_encoding_size = opt.input_encoding_size #self.rnn_type = opt.rnn_type self.rnn_size = opt.rnn_size #self.num_layers = opt.num_layers self.drop_prob_lm = opt.drop_prob_lm self.fc_feat_size = opt.fc_feat_size self.att_feat_size = opt.att_feat_size self.att_hid_size = opt.att_hid_size # Build a LSTM self.a2h = nn.Linear(self.rnn_size, 5 * self.rnn_size) self.i2h = nn.Linear(self.input_encoding_size, 5 * self.rnn_size) self.h2h = nn.Linear(self.rnn_size, 5 * self.rnn_size) self.dropout = nn.Dropout(self.drop_prob_lm) self.attention = Attention(opt) def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None): att_res = self.attention(state[0][-1], att_feats, p_att_feats, att_masks) all_input_sums = self.i2h(xt) + self.h2h(state[0][-1]) + self.a2h(att_res) sigmoid_chunk = all_input_sums.narrow(1, 0, 3 * self.rnn_size) sigmoid_chunk = torch.sigmoid(sigmoid_chunk) in_gate = sigmoid_chunk.narrow(1, 0, self.rnn_size) forget_gate = sigmoid_chunk.narrow(1, self.rnn_size, self.rnn_size) out_gate = sigmoid_chunk.narrow(1, self.rnn_size * 2, self.rnn_size) in_transform = all_input_sums.narrow(1, 3 * self.rnn_size, 2 * self.rnn_size) in_transform = torch.max(\ in_transform.narrow(1, 0, self.rnn_size), in_transform.narrow(1, self.rnn_size, self.rnn_size)) next_c = forget_gate * state[1][-1] + in_gate * in_transform next_h = out_gate * torch.tanh(next_c) output = self.dropout(next_h) state = (next_h.unsqueeze(0), next_c.unsqueeze(0)) return output, state class AdaAttModel(AttModel): def __init__(self, opt): super(AdaAttModel, self).__init__(opt) self.core = AdaAttCore(opt) # AdaAtt with maxout lstm class AdaAttMOModel(AttModel): def __init__(self, opt): super(AdaAttMOModel, self).__init__(opt) self.core = AdaAttCore(opt, True) class Att2in2Model(AttModel): def __init__(self, opt): super(Att2in2Model, self).__init__(opt) self.core = Att2in2Core(opt) delattr(self, 'fc_embed') self.fc_embed = lambda x : x class Att2all2Model(AttModel): def __init__(self, opt): super(Att2all2Model, self).__init__(opt) self.core = Att2all2Core(opt) delattr(self, 'fc_embed') self.fc_embed = lambda x : x class UpDownModel(AttModel): def __init__(self, opt): super(UpDownModel, self).__init__(opt) self.num_layers = 2 self.core = UpDownCore(opt) class StackAttModel(AttModel): def __init__(self, opt): super(StackAttModel, self).__init__(opt) self.num_layers = 3 self.core = StackAttCore(opt) class DenseAttModel(AttModel): def __init__(self, opt): super(DenseAttModel, self).__init__(opt) self.num_layers = 3 self.core = DenseAttCore(opt) class Att2inModel(AttModel): def __init__(self, opt): super(Att2inModel, self).__init__(opt) del self.embed, self.fc_embed, self.att_embed self.embed = nn.Embedding(self.vocab_size + 1, self.input_encoding_size) self.fc_embed = self.att_embed = lambda x: x del self.ctx2att self.ctx2att = nn.Linear(self.att_feat_size, self.att_hid_size) self.core = Att2inCore(opt) self.init_weights() def init_weights(self): initrange = 0.1 self.embed.weight.data.uniform_(-initrange, initrange) self.logit.bias.data.fill_(0) self.logit.weight.data.uniform_(-initrange, initrange) class NewFCModel(AttModel): def __init__(self, opt): super(NewFCModel, self).__init__(opt) self.fc_embed = nn.Linear(self.fc_feat_size, self.input_encoding_size) self.embed = nn.Embedding(self.vocab_size + 1, self.input_encoding_size) self._core = LSTMCore(opt) delattr(self, 'att_embed') self.att_embed = lambda x : x delattr(self, 'ctx2att') self.ctx2att = lambda x: x def core(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks): # Step 0, feed the input image # if (self.training and state[0].is_leaf) or \ # (not self.training and state[0].sum() == 0): # _, state = self._core(fc_feats, state) # three cases # normal mle training # Sample # beam search (diverse beam search) # fixed captioning module. is_first_step = (state[0]==0).all(2).all(0) # size: B if is_first_step.all(): _, state = self._core(fc_feats, state) elif is_first_step.any(): # This is mostly for diverse beam search I think new_state = [torch.zeros_like(_) for _ in state] new_state[0][:, ~is_first_step] = state[0][:, ~is_first_step] new_state[1][:, ~is_first_step] = state[1][:, ~is_first_step] _, state = self._core(fc_feats, state) new_state[0][:, is_first_step] = state[0][:, is_first_step] new_state[1][:, is_first_step] = state[1][:, is_first_step] state = new_state # if (state[0]==0).all(): # # Let's forget about diverse beam search first # _, state = self._core(fc_feats, state) return self._core(xt, state) def _prepare_feature(self, fc_feats, att_feats, att_masks): fc_feats = self.fc_embed(fc_feats) return fc_feats, att_feats, att_feats, att_masks class LMModel(AttModel): def __init__(self, opt): super(LMModel, self).__init__(opt) delattr(self, 'fc_embed') self.fc_embed = lambda x: x.new_zeros(x.shape[0], self.input_encoding_size) self.embed = nn.Embedding(self.vocab_size + 1, self.input_encoding_size) self._core = LSTMCore(opt) delattr(self, 'att_embed') self.att_embed = lambda x : x delattr(self, 'ctx2att') self.ctx2att = lambda x: x def core(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks): if (state[0]==0).all(): # Let's forget about diverse beam search first _, state = self._core(fc_feats, state) return self._core(xt, state) def _prepare_feature(self, fc_feats, att_feats, att_masks): fc_feats = self.fc_embed(fc_feats) return fc_feats, None, None, None
connect-caption-and-trace-main
captioning/models/AttModel_both_backup_2020_11_11.py
# This file contains Att2in2, AdaAtt, AdaAttMO, UpDown model # AdaAtt is from Knowing When to Look: Adaptive Attention via A Visual Sentinel for Image Captioning # https://arxiv.org/abs/1612.01887 # AdaAttMO is a modified version with maxout lstm # Att2in is from Self-critical Sequence Training for Image Captioning # https://arxiv.org/abs/1612.00563 # In this file we only have Att2in2, which is a slightly different version of att2in, # in which the img feature embedding and word embedding is the same as what in adaatt. # UpDown is from Bottom-Up and Top-Down Attention for Image Captioning and VQA # https://arxiv.org/abs/1707.07998 # However, it may not be identical to the author's architecture. from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from . import utils from torch.nn.utils.rnn import PackedSequence, pack_padded_sequence, pad_packed_sequence from .CaptionModel import CaptionModel bad_endings = ['a','an','the','in','for','at','of','with','before','after','on','upon','near','to','is','are','am'] bad_endings += ['the'] def sort_pack_padded_sequence(input, lengths): sorted_lengths, indices = torch.sort(lengths, descending=True) tmp = pack_padded_sequence(input[indices], sorted_lengths, batch_first=True) inv_ix = indices.clone() inv_ix[indices] = torch.arange(0,len(indices)).type_as(inv_ix) return tmp, inv_ix def pad_unsort_packed_sequence(input, inv_ix): tmp, _ = pad_packed_sequence(input, batch_first=True) tmp = tmp[inv_ix] return tmp def pack_wrapper(module, att_feats, att_masks): if att_masks is not None: packed, inv_ix = sort_pack_padded_sequence(att_feats, att_masks.data.long().sum(1)) return pad_unsort_packed_sequence(PackedSequence(module(packed[0]), packed[1]), inv_ix) else: return module(att_feats) class AttModel(CaptionModel): def __init__(self, opt): super(AttModel, self).__init__() self.vocab_size = opt.vocab_size self.input_encoding_size = opt.input_encoding_size #self.rnn_type = opt.rnn_type self.rnn_size = opt.rnn_size self.num_layers = opt.num_layers self.drop_prob_lm = opt.drop_prob_lm self.seq_length = getattr(opt, 'max_length', 20) or opt.seq_length # maximum sample length self.fc_feat_size = opt.fc_feat_size self.att_feat_size = opt.att_feat_size self.att_hid_size = opt.att_hid_size self.bos_idx = getattr(opt, 'bos_idx', 0) self.eos_idx = getattr(opt, 'eos_idx', 0) self.pad_idx = getattr(opt, 'pad_idx', 0) self.use_bn = getattr(opt, 'use_bn', 0) self.ss_prob = 0.0 # Schedule sampling probability self.embed = nn.Sequential(nn.Embedding(self.vocab_size + 1, self.input_encoding_size), nn.ReLU(), nn.Dropout(self.drop_prob_lm)) self.fc_embed = nn.Sequential(nn.Linear(self.fc_feat_size, self.rnn_size), nn.ReLU(), nn.Dropout(self.drop_prob_lm)) self.att_embed = nn.Sequential(*( ((nn.BatchNorm1d(self.att_feat_size),) if self.use_bn else ())+ (nn.Linear(self.att_feat_size, self.rnn_size), nn.ReLU(), nn.Dropout(self.drop_prob_lm))+ ((nn.BatchNorm1d(self.rnn_size),) if self.use_bn==2 else ()))) self.logit_layers = getattr(opt, 'logit_layers', 1) if self.logit_layers == 1: self.logit = nn.Linear(self.rnn_size, self.vocab_size + 1) else: self.logit = [[nn.Linear(self.rnn_size, self.rnn_size), nn.ReLU(), nn.Dropout(0.5)] for _ in range(opt.logit_layers - 1)] self.logit = nn.Sequential(*(reduce(lambda x,y:x+y, self.logit) + [nn.Linear(self.rnn_size, self.vocab_size + 1)])) self.ctx2att = nn.Linear(self.rnn_size, self.att_hid_size) # For remove bad endding self.vocab = opt.vocab self.bad_endings_ix = [int(k) for k,v in self.vocab.items() if v in bad_endings] def init_hidden(self, bsz): weight = self.logit.weight \ if hasattr(self.logit, "weight") \ else self.logit[0].weight return (weight.new_zeros(self.num_layers, bsz, self.rnn_size), weight.new_zeros(self.num_layers, bsz, self.rnn_size)) def clip_att(self, att_feats, box_feats, att_masks): # Clip the length of att_masks and att_feats to the maximum length if att_masks is not None: max_len = att_masks.data.long().sum(1).max() att_feats = att_feats[:, :max_len].contiguous() att_masks = att_masks[:, :max_len].contiguous() box_feats = box_feats[:, :max_len].contiguous() return att_feats, box_feats, att_masks def _prepare_feature(self, fc_feats, att_feats, att_masks): att_feats, att_masks = self.clip_att(att_feats, att_masks) # embed fc and att feats fc_feats = self.fc_embed(fc_feats) att_feats = pack_wrapper(self.att_embed, att_feats, att_masks) # Project the attention feats first to reduce memory and computation comsumptions. p_att_feats = self.ctx2att(att_feats) return fc_feats, att_feats, p_att_feats, att_masks def _forward(self, fc_feats, att_feats, trace_feats, seq, att_masks=None, trace_masks=None): batch_size = fc_feats.size(0) if seq.ndim == 3: # B * seq_per_img * seq_len seq = seq.reshape(-1, seq.shape[2]) seq_per_img = seq.shape[0] // batch_size state = self.init_hidden(batch_size*seq_per_img) outputs = fc_feats.new_zeros(batch_size*seq_per_img, seq.size(1), self.vocab_size+1) # Prepare the features p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = self._prepare_feature(fc_feats, att_feats, trace_feats, att_masks, trace_masks) # pp_att_feats is used for attention, we cache it in advance to reduce computation cost if seq_per_img > 1: p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = utils.repeat_tensors(seq_per_img, [p_fc_feats, p_att_feats, pp_att_feats, p_att_masks] ) for i in range(seq.size(1)): if self.training and i >= 1 and self.ss_prob > 0.0: # otherwiste no need to sample sample_prob = fc_feats.new(batch_size*seq_per_img).uniform_(0, 1) sample_mask = sample_prob < self.ss_prob if sample_mask.sum() == 0: it = seq[:, i].clone() else: sample_ind = sample_mask.nonzero().view(-1) it = seq[:, i].data.clone() prob_prev = torch.exp(outputs[:, i-1].detach()) # fetch prev distribution: shape Nx(M+1) it.index_copy_(0, sample_ind, torch.multinomial(prob_prev, 1).view(-1).index_select(0, sample_ind)) else: it = seq[:, i].clone() # break if all the sequences end if i >= 1 and seq[:, i].sum() == 0: break output, state = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, state) outputs[:, i] = output return outputs def get_logprobs_state(self, it, fc_feats, att_feats, p_att_feats, att_masks, state, trace_feats_to_decoder, trace_masks, output_logsoftmax=1): # 'it' contains a word index xt = self.embed(it) output, state = self.core(xt, fc_feats, att_feats, p_att_feats, state, att_masks, trace_feats_to_decoder, trace_masks) if output_logsoftmax: logprobs = F.log_softmax(self.logit(output), dim=1) else: logprobs = self.logit(output) return logprobs, state def _old_sample_beam(self, fc_feats, att_feats, att_masks=None, opt={}): beam_size = opt.get('beam_size', 10) group_size = opt.get('group_size', 1) sample_n = opt.get('sample_n', 10) # when sample_n == beam_size then each beam is a sample. assert sample_n == 1 or sample_n == beam_size // group_size, 'when beam search, sample_n == 1 or beam search' batch_size = fc_feats.size(0) p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = self._prepare_feature(fc_feats, att_feats, att_masks) assert beam_size <= self.vocab_size + 1, 'lets assume this for now, otherwise this corner case causes a few headaches down the road. can be dealt with in future if needed' seq = fc_feats.new_full((batch_size*sample_n, self.seq_length), self.pad_idx, dtype=torch.long) seqLogprobs = fc_feats.new_zeros(batch_size*sample_n, self.seq_length, self.vocab_size + 1) # lets process every image independently for now, for simplicity self.done_beams = [[] for _ in range(batch_size)] for k in range(batch_size): state = self.init_hidden(beam_size) tmp_fc_feats, tmp_att_feats, tmp_p_att_feats, tmp_att_masks = utils.repeat_tensors(beam_size, [p_fc_feats[k:k+1], p_att_feats[k:k+1], pp_att_feats[k:k+1], p_att_masks[k:k+1] if att_masks is not None else None] ) for t in range(1): if t == 0: # input <bos> it = fc_feats.new_full([beam_size], self.bos_idx, dtype=torch.long) logprobs, state = self.get_logprobs_state(it, tmp_fc_feats, tmp_att_feats, tmp_p_att_feats, tmp_att_masks, state) self.done_beams[k] = self.old_beam_search(state, logprobs, tmp_fc_feats, tmp_att_feats, tmp_p_att_feats, tmp_att_masks, opt=opt) if sample_n == beam_size: for _n in range(sample_n): seq[k*sample_n+_n, :] = self.done_beams[k][_n]['seq'] seqLogprobs[k*sample_n+_n, :] = self.done_beams[k][_n]['logps'] else: seq[k, :] = self.done_beams[k][0]['seq'] # the first beam has highest cumulative score seqLogprobs[k, :] = self.done_beams[k][0]['logps'] # return the samples and their log likelihoods return seq, seqLogprobs def _sample_beam(self, fc_feats, att_feats, trace_feats, box_feats, att_masks=None, trace_masks=None, opt={}): beam_size = opt.get('beam_size', 10) group_size = opt.get('group_size', 1) sample_n = opt.get('sample_n', 10) # when sample_n == beam_size then each beam is a sample. assert sample_n == 1 or sample_n == beam_size // group_size, 'when beam search, sample_n == 1 or beam search' batch_size = fc_feats.size(0) p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, _ = self._prepare_feature(fc_feats, att_feats, trace_feats, box_feats, att_masks, trace_masks) assert beam_size <= self.vocab_size + 1, 'lets assume this for now, otherwise this corner case causes a few headaches down the road. can be dealt with in future if needed' seq = fc_feats.new_full((batch_size*sample_n, self.seq_length), self.pad_idx, dtype=torch.long) seqLogprobs = fc_feats.new_zeros(batch_size*sample_n, self.seq_length, self.vocab_size + 1) # lets process every image independently for now, for simplicity self.done_beams = [[] for _ in range(batch_size)] state = self.init_hidden(batch_size) # first step, feed bos it = fc_feats.new_full([batch_size], self.bos_idx, dtype=torch.long) logprobs, state = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, state) p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = utils.repeat_tensors(beam_size, [p_fc_feats, p_att_feats, pp_att_feats, p_att_masks] ) self.done_beams = self.beam_search(state, logprobs, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, opt=opt) for k in range(batch_size): if sample_n == beam_size: for _n in range(sample_n): seq_len = self.done_beams[k][_n]['seq'].shape[0] seq[k*sample_n+_n, :seq_len] = self.done_beams[k][_n]['seq'] seqLogprobs[k*sample_n+_n, :seq_len] = self.done_beams[k][_n]['logps'] else: seq_len = self.done_beams[k][0]['seq'].shape[0] seq[k, :seq_len] = self.done_beams[k][0]['seq'] # the first beam has highest cumulative score seqLogprobs[k, :seq_len] = self.done_beams[k][0]['logps'] # return the samples and their log likelihoods return seq, seqLogprobs def _sample(self, fc_feats, att_feats, trace_feats, box_feats, att_masks=None, trace_masks=None, task=None,opt={}): sample_method = opt.get('sample_method', 'greedy') beam_size = opt.get('beam_size', 1) temperature = opt.get('temperature', 1.0) sample_n = int(opt.get('sample_n', 1)) group_size = opt.get('group_size', 1) output_logsoftmax = opt.get('output_logsoftmax', 1) decoding_constraint = opt.get('decoding_constraint', 0) block_trigrams = opt.get('block_trigrams', 0) remove_bad_endings = opt.get('remove_bad_endings', 0) if beam_size > 1 and sample_method in ['greedy', 'beam_search']: return self._sample_beam(fc_feats, att_feats, trace_feats, box_feats, att_masks, trace_masks, opt) if group_size > 1: return self._diverse_sample(fc_feats, att_feats, att_masks, opt) batch_size = fc_feats.size(0) state = self.init_hidden(batch_size*sample_n) p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, trace_feats_to_decoder = \ self._prepare_feature(fc_feats, att_feats, trace_feats, box_feats, att_masks, trace_masks) if sample_n > 1: p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = utils.repeat_tensors(sample_n, [p_fc_feats, p_att_feats, pp_att_feats, p_att_masks] ) trigrams = [] # will be a list of batch_size dictionaries seq = fc_feats.new_full((batch_size*sample_n, self.seq_length), self.pad_idx, dtype=torch.long) seqLogprobs = fc_feats.new_zeros(batch_size*sample_n, self.seq_length, self.vocab_size + 1) for t in range(self.seq_length + 1): if t == 0: # input <bos> it = fc_feats.new_full([batch_size*sample_n], self.bos_idx, dtype=torch.long) logprobs, state = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, state, trace_feats_to_decoder, trace_masks, output_logsoftmax=output_logsoftmax) if decoding_constraint and t > 0: tmp = logprobs.new_zeros(logprobs.size()) tmp.scatter_(1, seq[:,t-1].data.unsqueeze(1), float('-inf')) logprobs = logprobs + tmp if remove_bad_endings and t > 0: tmp = logprobs.new_zeros(logprobs.size()) prev_bad = np.isin(seq[:,t-1].data.cpu().numpy(), self.bad_endings_ix) # Make it impossible to generate bad_endings tmp[torch.from_numpy(prev_bad.astype('uint8')), 0] = float('-inf') logprobs = logprobs + tmp # Mess with trigrams # Copy from https://github.com/lukemelas/image-paragraph-captioning if block_trigrams and t >= 3: # Store trigram generated at last step prev_two_batch = seq[:,t-3:t-1] for i in range(batch_size): # = seq.size(0) prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item()) current = seq[i][t-1] if t == 3: # initialize trigrams.append({prev_two: [current]}) # {LongTensor: list containing 1 int} elif t > 3: if prev_two in trigrams[i]: # add to list trigrams[i][prev_two].append(current) else: # create list trigrams[i][prev_two] = [current] # Block used trigrams at next step prev_two_batch = seq[:,t-2:t] mask = torch.zeros(logprobs.size(), requires_grad=False).to(logprobs.device) # batch_size x vocab_size for i in range(batch_size): prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item()) if prev_two in trigrams[i]: for j in trigrams[i][prev_two]: mask[i,j] += 1 # Apply mask to log probs #logprobs = logprobs - (mask * 1e9) alpha = 2.0 # = 4 logprobs = logprobs + (mask * -0.693 * alpha) # ln(1/2) * alpha (alpha -> infty works best) # sample the next word if t == self.seq_length: # skip if we achieve maximum length break it, sampleLogprobs = self.sample_next_word(logprobs, sample_method, temperature) # stop when all finished if t == 0: unfinished = it != self.eos_idx else: it[~unfinished] = self.pad_idx # This allows eos_idx not being overwritten to 0 logprobs = logprobs * unfinished.unsqueeze(1).to(logprobs) unfinished = unfinished & (it != self.eos_idx) seq[:,t] = it seqLogprobs[:,t] = logprobs # quit loop if all sequences have finished if unfinished.sum() == 0: break ### for decoder evaluate: cut at the ground truth caption length for i in range(trace_masks.shape[0]): tmp_num = trace_masks[i].sum().long() seq[i, tmp_num:] = 0 seqLogprobs[i, tmp_num:, :] = 0 return seq, seqLogprobs def _diverse_sample(self, fc_feats, att_feats, att_masks=None, opt={}): sample_method = opt.get('sample_method', 'greedy') beam_size = opt.get('beam_size', 1) temperature = opt.get('temperature', 1.0) group_size = opt.get('group_size', 1) diversity_lambda = opt.get('diversity_lambda', 0.5) decoding_constraint = opt.get('decoding_constraint', 0) block_trigrams = opt.get('block_trigrams', 0) remove_bad_endings = opt.get('remove_bad_endings', 0) batch_size = fc_feats.size(0) state = self.init_hidden(batch_size) p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = self._prepare_feature(fc_feats, att_feats, att_masks) trigrams_table = [[] for _ in range(group_size)] # will be a list of batch_size dictionaries seq_table = [fc_feats.new_full((batch_size, self.seq_length), self.pad_idx, dtype=torch.long) for _ in range(group_size)] seqLogprobs_table = [fc_feats.new_zeros(batch_size, self.seq_length) for _ in range(group_size)] state_table = [self.init_hidden(batch_size) for _ in range(group_size)] for tt in range(self.seq_length + group_size): for divm in range(group_size): t = tt - divm seq = seq_table[divm] seqLogprobs = seqLogprobs_table[divm] trigrams = trigrams_table[divm] if t >= 0 and t <= self.seq_length-1: if t == 0: # input <bos> it = fc_feats.new_full([batch_size], self.bos_idx, dtype=torch.long) else: it = seq[:, t-1] # changed logprobs, state_table[divm] = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, state_table[divm]) # changed logprobs = F.log_softmax(logprobs / temperature, dim=-1) # Add diversity if divm > 0: unaug_logprobs = logprobs.clone() for prev_choice in range(divm): prev_decisions = seq_table[prev_choice][:, t] logprobs[:, prev_decisions] = logprobs[:, prev_decisions] - diversity_lambda if decoding_constraint and t > 0: tmp = logprobs.new_zeros(logprobs.size()) tmp.scatter_(1, seq[:,t-1].data.unsqueeze(1), float('-inf')) logprobs = logprobs + tmp if remove_bad_endings and t > 0: tmp = logprobs.new_zeros(logprobs.size()) prev_bad = np.isin(seq[:,t-1].data.cpu().numpy(), self.bad_endings_ix) # Impossible to generate remove_bad_endings tmp[torch.from_numpy(prev_bad.astype('uint8')), 0] = float('-inf') logprobs = logprobs + tmp # Mess with trigrams if block_trigrams and t >= 3: # Store trigram generated at last step prev_two_batch = seq[:,t-3:t-1] for i in range(batch_size): # = seq.size(0) prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item()) current = seq[i][t-1] if t == 3: # initialize trigrams.append({prev_two: [current]}) # {LongTensor: list containing 1 int} elif t > 3: if prev_two in trigrams[i]: # add to list trigrams[i][prev_two].append(current) else: # create list trigrams[i][prev_two] = [current] # Block used trigrams at next step prev_two_batch = seq[:,t-2:t] mask = torch.zeros(logprobs.size(), requires_grad=False).cuda() # batch_size x vocab_size for i in range(batch_size): prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item()) if prev_two in trigrams[i]: for j in trigrams[i][prev_two]: mask[i,j] += 1 # Apply mask to log probs #logprobs = logprobs - (mask * 1e9) alpha = 2.0 # = 4 logprobs = logprobs + (mask * -0.693 * alpha) # ln(1/2) * alpha (alpha -> infty works best) it, sampleLogprobs = self.sample_next_word(logprobs, sample_method, 1) # stop when all finished if t == 0: unfinished = it != self.eos_idx else: unfinished = seq[:,t-1] != self.pad_idx & seq[:,t-1] != self.eos_idx it[~unfinished] = self.pad_idx unfinished = unfinished & (it != self.eos_idx) # changed seq[:,t] = it seqLogprobs[:,t] = sampleLogprobs.view(-1) return torch.stack(seq_table, 1).reshape(batch_size * group_size, -1), torch.stack(seqLogprobs_table, 1).reshape(batch_size * group_size, -1) class AdaAtt_lstm(nn.Module): def __init__(self, opt, use_maxout=True): super(AdaAtt_lstm, self).__init__() self.input_encoding_size = opt.input_encoding_size #self.rnn_type = opt.rnn_type self.rnn_size = opt.rnn_size self.num_layers = opt.num_layers self.drop_prob_lm = opt.drop_prob_lm self.fc_feat_size = opt.fc_feat_size self.att_feat_size = opt.att_feat_size self.att_hid_size = opt.att_hid_size self.use_maxout = use_maxout # Build a LSTM self.w2h = nn.Linear(self.input_encoding_size, (4+(use_maxout==True)) * self.rnn_size) self.v2h = nn.Linear(self.rnn_size, (4+(use_maxout==True)) * self.rnn_size) self.i2h = nn.ModuleList([nn.Linear(self.rnn_size, (4+(use_maxout==True)) * self.rnn_size) for _ in range(self.num_layers - 1)]) self.h2h = nn.ModuleList([nn.Linear(self.rnn_size, (4+(use_maxout==True)) * self.rnn_size) for _ in range(self.num_layers)]) # Layers for getting the fake region if self.num_layers == 1: self.r_w2h = nn.Linear(self.input_encoding_size, self.rnn_size) self.r_v2h = nn.Linear(self.rnn_size, self.rnn_size) else: self.r_i2h = nn.Linear(self.rnn_size, self.rnn_size) self.r_h2h = nn.Linear(self.rnn_size, self.rnn_size) def forward(self, xt, img_fc, state): hs = [] cs = [] for L in range(self.num_layers): # c,h from previous timesteps prev_h = state[0][L] prev_c = state[1][L] # the input to this layer if L == 0: x = xt i2h = self.w2h(x) + self.v2h(img_fc) else: x = hs[-1] x = F.dropout(x, self.drop_prob_lm, self.training) i2h = self.i2h[L-1](x) all_input_sums = i2h+self.h2h[L](prev_h) sigmoid_chunk = all_input_sums.narrow(1, 0, 3 * self.rnn_size) sigmoid_chunk = torch.sigmoid(sigmoid_chunk) # decode the gates in_gate = sigmoid_chunk.narrow(1, 0, self.rnn_size) forget_gate = sigmoid_chunk.narrow(1, self.rnn_size, self.rnn_size) out_gate = sigmoid_chunk.narrow(1, self.rnn_size * 2, self.rnn_size) # decode the write inputs if not self.use_maxout: in_transform = torch.tanh(all_input_sums.narrow(1, 3 * self.rnn_size, self.rnn_size)) else: in_transform = all_input_sums.narrow(1, 3 * self.rnn_size, 2 * self.rnn_size) in_transform = torch.max(\ in_transform.narrow(1, 0, self.rnn_size), in_transform.narrow(1, self.rnn_size, self.rnn_size)) # perform the LSTM update next_c = forget_gate * prev_c + in_gate * in_transform # gated cells form the output tanh_nex_c = torch.tanh(next_c) next_h = out_gate * tanh_nex_c if L == self.num_layers-1: if L == 0: i2h = self.r_w2h(x) + self.r_v2h(img_fc) else: i2h = self.r_i2h(x) n5 = i2h+self.r_h2h(prev_h) fake_region = torch.sigmoid(n5) * tanh_nex_c cs.append(next_c) hs.append(next_h) # set up the decoder top_h = hs[-1] top_h = F.dropout(top_h, self.drop_prob_lm, self.training) fake_region = F.dropout(fake_region, self.drop_prob_lm, self.training) state = (torch.cat([_.unsqueeze(0) for _ in hs], 0), torch.cat([_.unsqueeze(0) for _ in cs], 0)) return top_h, fake_region, state class AdaAtt_attention(nn.Module): def __init__(self, opt): super(AdaAtt_attention, self).__init__() self.input_encoding_size = opt.input_encoding_size #self.rnn_type = opt.rnn_type self.rnn_size = opt.rnn_size self.drop_prob_lm = opt.drop_prob_lm self.att_hid_size = opt.att_hid_size # fake region embed self.fr_linear = nn.Sequential( nn.Linear(self.rnn_size, self.input_encoding_size), nn.ReLU(), nn.Dropout(self.drop_prob_lm)) self.fr_embed = nn.Linear(self.input_encoding_size, self.att_hid_size) # h out embed self.ho_linear = nn.Sequential( nn.Linear(self.rnn_size, self.input_encoding_size), nn.Tanh(), nn.Dropout(self.drop_prob_lm)) self.ho_embed = nn.Linear(self.input_encoding_size, self.att_hid_size) self.alpha_net = nn.Linear(self.att_hid_size, 1) self.att2h = nn.Linear(self.rnn_size, self.rnn_size) def forward(self, h_out, fake_region, conv_feat, conv_feat_embed, att_masks=None): # View into three dimensions att_size = conv_feat.numel() // conv_feat.size(0) // self.rnn_size conv_feat = conv_feat.view(-1, att_size, self.rnn_size) conv_feat_embed = conv_feat_embed.view(-1, att_size, self.att_hid_size) # view neighbor from bach_size * neighbor_num x rnn_size to bach_size x rnn_size * neighbor_num fake_region = self.fr_linear(fake_region) fake_region_embed = self.fr_embed(fake_region) h_out_linear = self.ho_linear(h_out) h_out_embed = self.ho_embed(h_out_linear) txt_replicate = h_out_embed.unsqueeze(1).expand(h_out_embed.size(0), att_size + 1, h_out_embed.size(1)) img_all = torch.cat([fake_region.view(-1,1,self.input_encoding_size), conv_feat], 1) img_all_embed = torch.cat([fake_region_embed.view(-1,1,self.input_encoding_size), conv_feat_embed], 1) hA = torch.tanh(img_all_embed + txt_replicate) hA = F.dropout(hA,self.drop_prob_lm, self.training) hAflat = self.alpha_net(hA.view(-1, self.att_hid_size)) PI = F.softmax(hAflat.view(-1, att_size + 1), dim=1) if att_masks is not None: att_masks = att_masks.view(-1, att_size) PI = PI * torch.cat([att_masks[:,:1], att_masks], 1) # assume one one at the first time step. PI = PI / PI.sum(1, keepdim=True) visAtt = torch.bmm(PI.unsqueeze(1), img_all) visAttdim = visAtt.squeeze(1) atten_out = visAttdim + h_out_linear h = torch.tanh(self.att2h(atten_out)) h = F.dropout(h, self.drop_prob_lm, self.training) return h class AdaAttCore(nn.Module): def __init__(self, opt, use_maxout=False): super(AdaAttCore, self).__init__() self.lstm = AdaAtt_lstm(opt, use_maxout) self.attention = AdaAtt_attention(opt) def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None): h_out, p_out, state = self.lstm(xt, fc_feats, state) atten_out = self.attention(h_out, p_out, att_feats, p_att_feats, att_masks) return atten_out, state class UpDownCore(nn.Module): def __init__(self, opt, use_maxout=False): super(UpDownCore, self).__init__() self.drop_prob_lm = opt.drop_prob_lm self.att_lstm = nn.LSTMCell(opt.input_encoding_size + opt.rnn_size * 2, opt.rnn_size) # we, fc, h^2_t-1 self.lang_lstm = nn.LSTMCell(opt.rnn_size * 2, opt.rnn_size) # h^1_t, \hat v self.attention = Attention(opt) def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None): prev_h = state[0][-1] att_lstm_input = torch.cat([prev_h, fc_feats, xt], 1) h_att, c_att = self.att_lstm(att_lstm_input, (state[0][0], state[1][0])) att = self.attention(h_att, att_feats, p_att_feats, att_masks) lang_lstm_input = torch.cat([att, h_att], 1) # lang_lstm_input = torch.cat([att, F.dropout(h_att, self.drop_prob_lm, self.training)], 1) ????? h_lang, c_lang = self.lang_lstm(lang_lstm_input, (state[0][1], state[1][1])) output = F.dropout(h_lang, self.drop_prob_lm, self.training) state = (torch.stack([h_att, h_lang]), torch.stack([c_att, c_lang])) return output, state ############################################################################ # Notice: # StackAtt and DenseAtt are models that I randomly designed. # They are not related to any paper. ############################################################################ from .FCModel import LSTMCore class StackAttCore(nn.Module): def __init__(self, opt, use_maxout=False): super(StackAttCore, self).__init__() self.drop_prob_lm = opt.drop_prob_lm # self.att0 = Attention(opt) self.att1 = Attention(opt) self.att2 = Attention(opt) opt_input_encoding_size = opt.input_encoding_size opt.input_encoding_size = opt.input_encoding_size + opt.rnn_size self.lstm0 = LSTMCore(opt) # att_feat + word_embedding opt.input_encoding_size = opt.rnn_size * 2 self.lstm1 = LSTMCore(opt) self.lstm2 = LSTMCore(opt) opt.input_encoding_size = opt_input_encoding_size # self.emb1 = nn.Linear(opt.rnn_size, opt.rnn_size) self.emb2 = nn.Linear(opt.rnn_size, opt.rnn_size) def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None): # att_res_0 = self.att0(state[0][-1], att_feats, p_att_feats, att_masks) h_0, state_0 = self.lstm0(torch.cat([xt,fc_feats],1), [state[0][0:1], state[1][0:1]]) att_res_1 = self.att1(h_0, att_feats, p_att_feats, att_masks) h_1, state_1 = self.lstm1(torch.cat([h_0,att_res_1],1), [state[0][1:2], state[1][1:2]]) att_res_2 = self.att2(h_1 + self.emb2(att_res_1), att_feats, p_att_feats, att_masks) h_2, state_2 = self.lstm2(torch.cat([h_1,att_res_2],1), [state[0][2:3], state[1][2:3]]) return h_2, [torch.cat(_, 0) for _ in zip(state_0, state_1, state_2)] class DenseAttCore(nn.Module): def __init__(self, opt, use_maxout=False): super(DenseAttCore, self).__init__() self.drop_prob_lm = opt.drop_prob_lm # self.att0 = Attention(opt) self.att1 = Attention(opt) self.att2 = Attention(opt) opt_input_encoding_size = opt.input_encoding_size opt.input_encoding_size = opt.input_encoding_size + opt.rnn_size self.lstm0 = LSTMCore(opt) # att_feat + word_embedding opt.input_encoding_size = opt.rnn_size * 2 self.lstm1 = LSTMCore(opt) self.lstm2 = LSTMCore(opt) opt.input_encoding_size = opt_input_encoding_size # self.emb1 = nn.Linear(opt.rnn_size, opt.rnn_size) self.emb2 = nn.Linear(opt.rnn_size, opt.rnn_size) # fuse h_0 and h_1 self.fusion1 = nn.Sequential(nn.Linear(opt.rnn_size*2, opt.rnn_size), nn.ReLU(), nn.Dropout(opt.drop_prob_lm)) # fuse h_0, h_1 and h_2 self.fusion2 = nn.Sequential(nn.Linear(opt.rnn_size*3, opt.rnn_size), nn.ReLU(), nn.Dropout(opt.drop_prob_lm)) def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None): # att_res_0 = self.att0(state[0][-1], att_feats, p_att_feats, att_masks) h_0, state_0 = self.lstm0(torch.cat([xt,fc_feats],1), [state[0][0:1], state[1][0:1]]) att_res_1 = self.att1(h_0, att_feats, p_att_feats, att_masks) h_1, state_1 = self.lstm1(torch.cat([h_0,att_res_1],1), [state[0][1:2], state[1][1:2]]) att_res_2 = self.att2(h_1 + self.emb2(att_res_1), att_feats, p_att_feats, att_masks) h_2, state_2 = self.lstm2(torch.cat([self.fusion1(torch.cat([h_0, h_1], 1)),att_res_2],1), [state[0][2:3], state[1][2:3]]) return self.fusion2(torch.cat([h_0, h_1, h_2], 1)), [torch.cat(_, 0) for _ in zip(state_0, state_1, state_2)] class Attention(nn.Module): def __init__(self, opt): super(Attention, self).__init__() self.rnn_size = opt.rnn_size self.att_hid_size = opt.att_hid_size self.h2att = nn.Linear(self.rnn_size, self.att_hid_size) self.alpha_net = nn.Linear(self.att_hid_size, 1) def forward(self, h, att_feats, p_att_feats, att_masks=None): # The p_att_feats here is already projected att_size = att_feats.numel() // att_feats.size(0) // att_feats.size(-1) att = p_att_feats.view(-1, att_size, self.att_hid_size) att_h = self.h2att(h) # batch * att_hid_size att_h = att_h.unsqueeze(1).expand_as(att) # batch * att_size * att_hid_size dot = att + att_h # batch * att_size * att_hid_size dot = torch.tanh(dot) # batch * att_size * att_hid_size dot = dot.view(-1, self.att_hid_size) # (batch * att_size) * att_hid_size dot = self.alpha_net(dot) # (batch * att_size) * 1 dot = dot.view(-1, att_size) # batch * att_size weight = F.softmax(dot, dim=1) # batch * att_size if att_masks is not None: weight = weight * att_masks.view(-1, att_size).to(weight) weight = weight / weight.sum(1, keepdim=True) # normalize to 1 att_feats_ = att_feats.view(-1, att_size, att_feats.size(-1)) # batch * att_size * att_feat_size att_res = torch.bmm(weight.unsqueeze(1), att_feats_).squeeze(1) # batch * att_feat_size return att_res class Att2in2Core(nn.Module): def __init__(self, opt): super(Att2in2Core, self).__init__() self.input_encoding_size = opt.input_encoding_size #self.rnn_type = opt.rnn_type self.rnn_size = opt.rnn_size #self.num_layers = opt.num_layers self.drop_prob_lm = opt.drop_prob_lm self.fc_feat_size = opt.fc_feat_size self.att_feat_size = opt.att_feat_size self.att_hid_size = opt.att_hid_size # Build a LSTM self.a2c = nn.Linear(self.rnn_size, 2 * self.rnn_size) self.i2h = nn.Linear(self.input_encoding_size, 5 * self.rnn_size) self.h2h = nn.Linear(self.rnn_size, 5 * self.rnn_size) self.dropout = nn.Dropout(self.drop_prob_lm) self.attention = Attention(opt) def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None): att_res = self.attention(state[0][-1], att_feats, p_att_feats, att_masks) all_input_sums = self.i2h(xt) + self.h2h(state[0][-1]) sigmoid_chunk = all_input_sums.narrow(1, 0, 3 * self.rnn_size) sigmoid_chunk = torch.sigmoid(sigmoid_chunk) in_gate = sigmoid_chunk.narrow(1, 0, self.rnn_size) forget_gate = sigmoid_chunk.narrow(1, self.rnn_size, self.rnn_size) out_gate = sigmoid_chunk.narrow(1, self.rnn_size * 2, self.rnn_size) in_transform = all_input_sums.narrow(1, 3 * self.rnn_size, 2 * self.rnn_size) + \ self.a2c(att_res) in_transform = torch.max(\ in_transform.narrow(1, 0, self.rnn_size), in_transform.narrow(1, self.rnn_size, self.rnn_size)) next_c = forget_gate * state[1][-1] + in_gate * in_transform next_h = out_gate * torch.tanh(next_c) output = self.dropout(next_h) state = (next_h.unsqueeze(0), next_c.unsqueeze(0)) return output, state class Att2inCore(Att2in2Core): def __init__(self, opt): super(Att2inCore, self).__init__(opt) del self.a2c self.a2c = nn.Linear(self.att_feat_size, 2 * self.rnn_size) """ Note this is my attempt to replicate att2all model in self-critical paper. However, this is not a correct replication actually. Will fix it. """ class Att2all2Core(nn.Module): def __init__(self, opt): super(Att2all2Core, self).__init__() self.input_encoding_size = opt.input_encoding_size #self.rnn_type = opt.rnn_type self.rnn_size = opt.rnn_size #self.num_layers = opt.num_layers self.drop_prob_lm = opt.drop_prob_lm self.fc_feat_size = opt.fc_feat_size self.att_feat_size = opt.att_feat_size self.att_hid_size = opt.att_hid_size # Build a LSTM self.a2h = nn.Linear(self.rnn_size, 5 * self.rnn_size) self.i2h = nn.Linear(self.input_encoding_size, 5 * self.rnn_size) self.h2h = nn.Linear(self.rnn_size, 5 * self.rnn_size) self.dropout = nn.Dropout(self.drop_prob_lm) self.attention = Attention(opt) def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None): att_res = self.attention(state[0][-1], att_feats, p_att_feats, att_masks) all_input_sums = self.i2h(xt) + self.h2h(state[0][-1]) + self.a2h(att_res) sigmoid_chunk = all_input_sums.narrow(1, 0, 3 * self.rnn_size) sigmoid_chunk = torch.sigmoid(sigmoid_chunk) in_gate = sigmoid_chunk.narrow(1, 0, self.rnn_size) forget_gate = sigmoid_chunk.narrow(1, self.rnn_size, self.rnn_size) out_gate = sigmoid_chunk.narrow(1, self.rnn_size * 2, self.rnn_size) in_transform = all_input_sums.narrow(1, 3 * self.rnn_size, 2 * self.rnn_size) in_transform = torch.max(\ in_transform.narrow(1, 0, self.rnn_size), in_transform.narrow(1, self.rnn_size, self.rnn_size)) next_c = forget_gate * state[1][-1] + in_gate * in_transform next_h = out_gate * torch.tanh(next_c) output = self.dropout(next_h) state = (next_h.unsqueeze(0), next_c.unsqueeze(0)) return output, state class AdaAttModel(AttModel): def __init__(self, opt): super(AdaAttModel, self).__init__(opt) self.core = AdaAttCore(opt) # AdaAtt with maxout lstm class AdaAttMOModel(AttModel): def __init__(self, opt): super(AdaAttMOModel, self).__init__(opt) self.core = AdaAttCore(opt, True) class Att2in2Model(AttModel): def __init__(self, opt): super(Att2in2Model, self).__init__(opt) self.core = Att2in2Core(opt) delattr(self, 'fc_embed') self.fc_embed = lambda x : x class Att2all2Model(AttModel): def __init__(self, opt): super(Att2all2Model, self).__init__(opt) self.core = Att2all2Core(opt) delattr(self, 'fc_embed') self.fc_embed = lambda x : x class UpDownModel(AttModel): def __init__(self, opt): super(UpDownModel, self).__init__(opt) self.num_layers = 2 self.core = UpDownCore(opt) class StackAttModel(AttModel): def __init__(self, opt): super(StackAttModel, self).__init__(opt) self.num_layers = 3 self.core = StackAttCore(opt) class DenseAttModel(AttModel): def __init__(self, opt): super(DenseAttModel, self).__init__(opt) self.num_layers = 3 self.core = DenseAttCore(opt) class Att2inModel(AttModel): def __init__(self, opt): super(Att2inModel, self).__init__(opt) del self.embed, self.fc_embed, self.att_embed self.embed = nn.Embedding(self.vocab_size + 1, self.input_encoding_size) self.fc_embed = self.att_embed = lambda x: x del self.ctx2att self.ctx2att = nn.Linear(self.att_feat_size, self.att_hid_size) self.core = Att2inCore(opt) self.init_weights() def init_weights(self): initrange = 0.1 self.embed.weight.data.uniform_(-initrange, initrange) self.logit.bias.data.fill_(0) self.logit.weight.data.uniform_(-initrange, initrange) class NewFCModel(AttModel): def __init__(self, opt): super(NewFCModel, self).__init__(opt) self.fc_embed = nn.Linear(self.fc_feat_size, self.input_encoding_size) self.embed = nn.Embedding(self.vocab_size + 1, self.input_encoding_size) self._core = LSTMCore(opt) delattr(self, 'att_embed') self.att_embed = lambda x : x delattr(self, 'ctx2att') self.ctx2att = lambda x: x def core(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks): # Step 0, feed the input image # if (self.training and state[0].is_leaf) or \ # (not self.training and state[0].sum() == 0): # _, state = self._core(fc_feats, state) # three cases # normal mle training # Sample # beam search (diverse beam search) # fixed captioning module. is_first_step = (state[0]==0).all(2).all(0) # size: B if is_first_step.all(): _, state = self._core(fc_feats, state) elif is_first_step.any(): # This is mostly for diverse beam search I think new_state = [torch.zeros_like(_) for _ in state] new_state[0][:, ~is_first_step] = state[0][:, ~is_first_step] new_state[1][:, ~is_first_step] = state[1][:, ~is_first_step] _, state = self._core(fc_feats, state) new_state[0][:, is_first_step] = state[0][:, is_first_step] new_state[1][:, is_first_step] = state[1][:, is_first_step] state = new_state # if (state[0]==0).all(): # # Let's forget about diverse beam search first # _, state = self._core(fc_feats, state) return self._core(xt, state) def _prepare_feature(self, fc_feats, att_feats, att_masks): fc_feats = self.fc_embed(fc_feats) return fc_feats, att_feats, att_feats, att_masks class LMModel(AttModel): def __init__(self, opt): super(LMModel, self).__init__(opt) delattr(self, 'fc_embed') self.fc_embed = lambda x: x.new_zeros(x.shape[0], self.input_encoding_size) self.embed = nn.Embedding(self.vocab_size + 1, self.input_encoding_size) self._core = LSTMCore(opt) delattr(self, 'att_embed') self.att_embed = lambda x : x delattr(self, 'ctx2att') self.ctx2att = lambda x: x def core(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks): if (state[0]==0).all(): # Let's forget about diverse beam search first _, state = self._core(fc_feats, state) return self._core(xt, state) def _prepare_feature(self, fc_feats, att_feats, att_masks): fc_feats = self.fc_embed(fc_feats) return fc_feats, None, None, None
connect-caption-and-trace-main
captioning/models/AttModel.py
# This file contains Att2in2, AdaAtt, AdaAttMO, UpDown model # AdaAtt is from Knowing When to Look: Adaptive Attention via A Visual Sentinel for Image Captioning # https://arxiv.org/abs/1612.01887 # AdaAttMO is a modified version with maxout lstm # Att2in is from Self-critical Sequence Training for Image Captioning # https://arxiv.org/abs/1612.00563 # In this file we only have Att2in2, which is a slightly different version of att2in, # in which the img feature embedding and word embedding is the same as what in adaatt. # UpDown is from Bottom-Up and Top-Down Attention for Image Captioning and VQA # https://arxiv.org/abs/1707.07998 # However, it may not be identical to the author's architecture. from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from . import utils from torch.nn.utils.rnn import PackedSequence, pack_padded_sequence, pad_packed_sequence from .CaptionModel import CaptionModel bad_endings = ['a','an','the','in','for','at','of','with','before','after','on','upon','near','to','is','are','am'] bad_endings += ['the'] def sort_pack_padded_sequence(input, lengths): sorted_lengths, indices = torch.sort(lengths, descending=True) tmp = pack_padded_sequence(input[indices], sorted_lengths, batch_first=True) inv_ix = indices.clone() inv_ix[indices] = torch.arange(0,len(indices)).type_as(inv_ix) return tmp, inv_ix def pad_unsort_packed_sequence(input, inv_ix): tmp, _ = pad_packed_sequence(input, batch_first=True) tmp = tmp[inv_ix] return tmp def pack_wrapper(module, att_feats, att_masks): if att_masks is not None: packed, inv_ix = sort_pack_padded_sequence(att_feats, att_masks.data.long().sum(1)) return pad_unsort_packed_sequence(PackedSequence(module(packed[0]), packed[1]), inv_ix) else: return module(att_feats) class AttModel(CaptionModel): def __init__(self, opt): super(AttModel, self).__init__() self.vocab_size = opt.vocab_size self.input_encoding_size = opt.input_encoding_size #self.rnn_type = opt.rnn_type self.rnn_size = opt.rnn_size self.num_layers = opt.num_layers self.drop_prob_lm = opt.drop_prob_lm self.seq_length = getattr(opt, 'max_length', 20) or opt.seq_length # maximum sample length self.fc_feat_size = opt.fc_feat_size self.att_feat_size = opt.att_feat_size self.att_hid_size = opt.att_hid_size self.bos_idx = getattr(opt, 'bos_idx', 0) self.eos_idx = getattr(opt, 'eos_idx', 0) self.pad_idx = getattr(opt, 'pad_idx', 0) self.use_bn = getattr(opt, 'use_bn', 0) self.ss_prob = 0.0 # Schedule sampling probability self.embed = nn.Sequential(nn.Embedding(self.vocab_size + 1, self.input_encoding_size), nn.ReLU(), nn.Dropout(self.drop_prob_lm)) self.fc_embed = nn.Sequential(nn.Linear(self.fc_feat_size, self.rnn_size), nn.ReLU(), nn.Dropout(self.drop_prob_lm)) self.att_embed = nn.Sequential(*( ((nn.BatchNorm1d(self.att_feat_size),) if self.use_bn else ())+ (nn.Linear(self.att_feat_size, self.rnn_size), nn.ReLU(), nn.Dropout(self.drop_prob_lm))+ ((nn.BatchNorm1d(self.rnn_size),) if self.use_bn==2 else ()))) self.logit_layers = getattr(opt, 'logit_layers', 1) if self.logit_layers == 1: self.logit = nn.Linear(self.rnn_size, self.vocab_size + 1) else: self.logit = [[nn.Linear(self.rnn_size, self.rnn_size), nn.ReLU(), nn.Dropout(0.5)] for _ in range(opt.logit_layers - 1)] self.logit = nn.Sequential(*(reduce(lambda x,y:x+y, self.logit) + [nn.Linear(self.rnn_size, self.vocab_size + 1)])) self.ctx2att = nn.Linear(self.rnn_size, self.att_hid_size) # For remove bad endding self.vocab = opt.vocab self.bad_endings_ix = [int(k) for k,v in self.vocab.items() if v in bad_endings] def init_hidden(self, bsz): weight = self.logit.weight \ if hasattr(self.logit, "weight") \ else self.logit[0].weight return (weight.new_zeros(self.num_layers, bsz, self.rnn_size), weight.new_zeros(self.num_layers, bsz, self.rnn_size)) def clip_att(self, att_feats, box_feats, att_masks): # Clip the length of att_masks and att_feats to the maximum length if att_masks is not None: max_len = att_masks.data.long().sum(1).max() att_feats = att_feats[:, :max_len].contiguous() att_masks = att_masks[:, :max_len].contiguous() box_feats = box_feats[:, :max_len].contiguous() return att_feats, box_feats, att_masks def _prepare_feature(self, fc_feats, att_feats, att_masks): att_feats, att_masks = self.clip_att(att_feats, att_masks) # embed fc and att feats fc_feats = self.fc_embed(fc_feats) att_feats = pack_wrapper(self.att_embed, att_feats, att_masks) # Project the attention feats first to reduce memory and computation comsumptions. p_att_feats = self.ctx2att(att_feats) return fc_feats, att_feats, p_att_feats, att_masks def _forward(self, fc_feats, att_feats, trace_feats, seq, att_masks=None, trace_masks=None): batch_size = fc_feats.size(0) if seq.ndim == 3: # B * seq_per_img * seq_len seq = seq.reshape(-1, seq.shape[2]) seq_per_img = seq.shape[0] // batch_size state = self.init_hidden(batch_size*seq_per_img) outputs = fc_feats.new_zeros(batch_size*seq_per_img, seq.size(1), self.vocab_size+1) # Prepare the features p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = self._prepare_feature(fc_feats, att_feats, trace_feats, att_masks, trace_masks) # pp_att_feats is used for attention, we cache it in advance to reduce computation cost if seq_per_img > 1: p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = utils.repeat_tensors(seq_per_img, [p_fc_feats, p_att_feats, pp_att_feats, p_att_masks] ) for i in range(seq.size(1)): if self.training and i >= 1 and self.ss_prob > 0.0: # otherwiste no need to sample sample_prob = fc_feats.new(batch_size*seq_per_img).uniform_(0, 1) sample_mask = sample_prob < self.ss_prob if sample_mask.sum() == 0: it = seq[:, i].clone() else: sample_ind = sample_mask.nonzero().view(-1) it = seq[:, i].data.clone() prob_prev = torch.exp(outputs[:, i-1].detach()) # fetch prev distribution: shape Nx(M+1) it.index_copy_(0, sample_ind, torch.multinomial(prob_prev, 1).view(-1).index_select(0, sample_ind)) else: it = seq[:, i].clone() # break if all the sequences end if i >= 1 and seq[:, i].sum() == 0: break output, state = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, state) outputs[:, i] = output return outputs def get_logprobs_state(self, it, fc_feats, att_feats, p_att_feats, att_masks, trace_feats_to_decoder, trace_masks, show_gate_labels, task, state, output_logsoftmax=1): # 'it' contains a word index xt = self.embed(it) if task == 'caption' or task == 'show': if task == 'show': output, state = self.core(xt, fc_feats, att_feats, p_att_feats, state, att_masks, trace_feats_to_decoder, trace_masks, show_gate_labels, task) else: output, state = self.core(xt, fc_feats, att_feats, p_att_feats, state, att_masks, trace_feats_to_decoder, trace_masks, task=task) if output_logsoftmax: logprobs = F.log_softmax(self.logit(output), dim=1) else: logprobs = self.logit(output) return logprobs, state elif task == 'both': output, state, output_trace = self.core(xt, fc_feats, att_feats, p_att_feats, state, att_masks, trace_feats_to_decoder, trace_masks, task=task) if output_logsoftmax: logprobs = F.log_softmax(self.logit(output), dim=1) else: logprobs = self.logit(output) return logprobs, state, self.model.generator_trace(output_trace) def _old_sample_beam(self, fc_feats, att_feats, att_masks=None, opt={}): beam_size = opt.get('beam_size', 10) group_size = opt.get('group_size', 1) sample_n = opt.get('sample_n', 10) # when sample_n == beam_size then each beam is a sample. assert sample_n == 1 or sample_n == beam_size // group_size, 'when beam search, sample_n == 1 or beam search' batch_size = fc_feats.size(0) p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = self._prepare_feature(fc_feats, att_feats, att_masks) assert beam_size <= self.vocab_size + 1, 'lets assume this for now, otherwise this corner case causes a few headaches down the road. can be dealt with in future if needed' seq = fc_feats.new_full((batch_size*sample_n, self.seq_length), self.pad_idx, dtype=torch.long) seqLogprobs = fc_feats.new_zeros(batch_size*sample_n, self.seq_length, self.vocab_size + 1) # lets process every image independently for now, for simplicity self.done_beams = [[] for _ in range(batch_size)] for k in range(batch_size): state = self.init_hidden(beam_size) tmp_fc_feats, tmp_att_feats, tmp_p_att_feats, tmp_att_masks = utils.repeat_tensors(beam_size, [p_fc_feats[k:k+1], p_att_feats[k:k+1], pp_att_feats[k:k+1], p_att_masks[k:k+1] if att_masks is not None else None] ) for t in range(1): if t == 0: # input <bos> it = fc_feats.new_full([beam_size], self.bos_idx, dtype=torch.long) logprobs, state = self.get_logprobs_state(it, tmp_fc_feats, tmp_att_feats, tmp_p_att_feats, tmp_att_masks, state) self.done_beams[k] = self.old_beam_search(state, logprobs, tmp_fc_feats, tmp_att_feats, tmp_p_att_feats, tmp_att_masks, opt=opt) if sample_n == beam_size: for _n in range(sample_n): seq[k*sample_n+_n, :] = self.done_beams[k][_n]['seq'] seqLogprobs[k*sample_n+_n, :] = self.done_beams[k][_n]['logps'] else: seq[k, :] = self.done_beams[k][0]['seq'] # the first beam has highest cumulative score seqLogprobs[k, :] = self.done_beams[k][0]['logps'] # return the samples and their log likelihoods return seq, seqLogprobs def _sample_beam(self, fc_feats, att_feats, trace_feats, box_feats, att_masks=None, trace_masks=None, show_gate_labels=None, task=None, opt={}): beam_size = opt.get('beam_size', 10) group_size = opt.get('group_size', 1) sample_n = opt.get('sample_n', 10) # when sample_n == beam_size then each beam is a sample. assert sample_n == 1 or sample_n == beam_size // group_size, 'when beam search, sample_n == 1 or beam search' batch_size = fc_feats.size(0) p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, trace_feats_to_decoder = self._prepare_feature(fc_feats, att_feats, trace_feats, box_feats, att_masks, trace_masks) assert beam_size <= self.vocab_size + 1, 'lets assume this for now, otherwise this corner case causes a few headaches down the road. can be dealt with in future if needed' seq = fc_feats.new_full((batch_size*sample_n, self.seq_length), self.pad_idx, dtype=torch.long) seqLogprobs = fc_feats.new_zeros(batch_size*sample_n, self.seq_length, self.vocab_size + 1) # lets process every image independently for now, for simplicity self.done_beams = [[] for _ in range(batch_size)] state = self.init_hidden(batch_size) # first step, feed bos it = fc_feats.new_full([batch_size], self.bos_idx, dtype=torch.long) logprobs, state = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, trace_feats_to_decoder, trace_masks, show_gate_labels, task, state) p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, trace_feats_to_decoder, trace_masks, show_gate_labels = utils.repeat_tensors(beam_size, [p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, trace_feats_to_decoder, trace_masks, show_gate_labels] ) self.done_beams = self.beam_search(state, logprobs, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, trace_feats_to_decoder, trace_masks, show_gate_labels, task, opt=opt) for k in range(batch_size): if sample_n == beam_size: for _n in range(sample_n): seq_len = self.done_beams[k][_n]['seq'].shape[0] seq[k*sample_n+_n, :seq_len] = self.done_beams[k][_n]['seq'] seqLogprobs[k*sample_n+_n, :seq_len] = self.done_beams[k][_n]['logps'] else: seq_len = self.done_beams[k][0]['seq'].shape[0] seq[k, :seq_len] = self.done_beams[k][0]['seq'] # the first beam has highest cumulative score seqLogprobs[k, :seq_len] = self.done_beams[k][0]['logps'] # return the samples and their log likelihoods return seq, seqLogprobs def _sample(self, fc_feats, att_feats, trace_feats, box_feats, att_masks=None, trace_masks=None, show_gate_labels=None, task=None, opt={}): sample_method = opt.get('sample_method', 'greedy') beam_size = opt.get('beam_size', 1) temperature = opt.get('temperature', 1.0) sample_n = int(opt.get('sample_n', 1)) group_size = opt.get('group_size', 1) output_logsoftmax = opt.get('output_logsoftmax', 1) decoding_constraint = opt.get('decoding_constraint', 0) block_trigrams = opt.get('block_trigrams', 0) remove_bad_endings = opt.get('remove_bad_endings', 0) if beam_size > 1 and sample_method in ['greedy', 'beam_search']: return self._sample_beam(fc_feats, att_feats, trace_feats, box_feats, att_masks, trace_masks, show_gate_labels, task, opt) if group_size > 1: return self._diverse_sample(fc_feats, att_feats, att_masks, opt) batch_size = fc_feats.size(0) state = self.init_hidden(batch_size*sample_n) p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, trace_feats_to_decoder = \ self._prepare_feature(fc_feats, att_feats, trace_feats, box_feats, att_masks, trace_masks) if sample_n > 1: p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = utils.repeat_tensors(sample_n, [p_fc_feats, p_att_feats, pp_att_feats, p_att_masks] ) trigrams = [] # will be a list of batch_size dictionaries seq = fc_feats.new_full((batch_size*sample_n, self.seq_length), self.pad_idx, dtype=torch.long) seqLogprobs = fc_feats.new_zeros(batch_size*sample_n, self.seq_length, self.vocab_size + 1) if task == 'both': tmp_trace_feats = torch.zeros([trace_feats_to_decoder.shape[0], 1, trace_feats_to_decoder.shape[2]]).to(trace_masks.device) for t in range(self.seq_length + 1): if t == 0: # input <bos> it = fc_feats.new_full([batch_size*sample_n], self.bos_idx, dtype=torch.long) if task == 'caption' or task == 'show': logprobs, state = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, trace_feats_to_decoder, trace_masks, show_gate_labels, task, state, output_logsoftmax=output_logsoftmax) elif task == 'both': logprobs, state, output_trace = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, tmp_trace_feats, trace_masks, show_gate_labels, task, state, output_logsoftmax=output_logsoftmax) output_trace = output_trace[:, t] output_trace[:, 4] = (output_trace[:, 2] - output_trace[:, 0]) * (output_trace[:, 3] - output_trace[:, 1]) tmp_trace_feats = torch.cat([tmp_trace_feats, output_trace.unsqueeze(1)], 1) if decoding_constraint and t > 0: tmp = logprobs.new_zeros(logprobs.size()) tmp.scatter_(1, seq[:,t-1].data.unsqueeze(1), float('-inf')) logprobs = logprobs + tmp if remove_bad_endings and t > 0: tmp = logprobs.new_zeros(logprobs.size()) prev_bad = np.isin(seq[:,t-1].data.cpu().numpy(), self.bad_endings_ix) # Make it impossible to generate bad_endings tmp[torch.from_numpy(prev_bad.astype('uint8')), 0] = float('-inf') logprobs = logprobs + tmp # Mess with trigrams # Copy from https://github.com/lukemelas/image-paragraph-captioning if block_trigrams and t >= 3: # Store trigram generated at last step prev_two_batch = seq[:,t-3:t-1] for i in range(batch_size): # = seq.size(0) prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item()) current = seq[i][t-1] if t == 3: # initialize trigrams.append({prev_two: [current]}) # {LongTensor: list containing 1 int} elif t > 3: if prev_two in trigrams[i]: # add to list trigrams[i][prev_two].append(current) else: # create list trigrams[i][prev_two] = [current] # Block used trigrams at next step prev_two_batch = seq[:,t-2:t] mask = torch.zeros(logprobs.size(), requires_grad=False).to(logprobs.device) # batch_size x vocab_size for i in range(batch_size): prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item()) if prev_two in trigrams[i]: for j in trigrams[i][prev_two]: mask[i,j] += 1 # Apply mask to log probs #logprobs = logprobs - (mask * 1e9) alpha = 2.0 # = 4 logprobs = logprobs + (mask * -0.693 * alpha) # ln(1/2) * alpha (alpha -> infty works best) # sample the next word if t == self.seq_length: # skip if we achieve maximum length break it, sampleLogprobs = self.sample_next_word(logprobs, sample_method, temperature) # stop when all finished if t == 0: unfinished = it != self.eos_idx else: it[~unfinished] = self.pad_idx # This allows eos_idx not being overwritten to 0 logprobs = logprobs * unfinished.unsqueeze(1).to(logprobs) unfinished = unfinished & (it != self.eos_idx) seq[:,t] = it seqLogprobs[:,t] = logprobs # quit loop if all sequences have finished if unfinished.sum() == 0: break ### for decoder evaluate: cut at the ground truth caption length. Since in controlled caption generation, we assume we know the caption length if task != 'both': for i in range(trace_masks.shape[0]): tmp_num = trace_masks[i].sum().long() seq[i, tmp_num:] = 0 seqLogprobs[i, tmp_num:, :] = 0 if task != 'both': return seq, seqLogprobs else: tmp_trace_feats = tmp_trace_feats[:, 1:-1] return seq, seqLogprobs, torch.cat([tmp_trace_feats, torch.zeros([seq.shape[0], seq.shape[1]-tmp_trace_feats.shape[1], tmp_trace_feats.shape[2]]).to(seq.device)], 1) def _diverse_sample(self, fc_feats, att_feats, att_masks=None, opt={}): sample_method = opt.get('sample_method', 'greedy') beam_size = opt.get('beam_size', 1) temperature = opt.get('temperature', 1.0) group_size = opt.get('group_size', 1) diversity_lambda = opt.get('diversity_lambda', 0.5) decoding_constraint = opt.get('decoding_constraint', 0) block_trigrams = opt.get('block_trigrams', 0) remove_bad_endings = opt.get('remove_bad_endings', 0) batch_size = fc_feats.size(0) state = self.init_hidden(batch_size) p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = self._prepare_feature(fc_feats, att_feats, att_masks) trigrams_table = [[] for _ in range(group_size)] # will be a list of batch_size dictionaries seq_table = [fc_feats.new_full((batch_size, self.seq_length), self.pad_idx, dtype=torch.long) for _ in range(group_size)] seqLogprobs_table = [fc_feats.new_zeros(batch_size, self.seq_length) for _ in range(group_size)] state_table = [self.init_hidden(batch_size) for _ in range(group_size)] for tt in range(self.seq_length + group_size): for divm in range(group_size): t = tt - divm seq = seq_table[divm] seqLogprobs = seqLogprobs_table[divm] trigrams = trigrams_table[divm] if t >= 0 and t <= self.seq_length-1: if t == 0: # input <bos> it = fc_feats.new_full([batch_size], self.bos_idx, dtype=torch.long) else: it = seq[:, t-1] # changed logprobs, state_table[divm] = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, state_table[divm]) # changed logprobs = F.log_softmax(logprobs / temperature, dim=-1) # Add diversity if divm > 0: unaug_logprobs = logprobs.clone() for prev_choice in range(divm): prev_decisions = seq_table[prev_choice][:, t] logprobs[:, prev_decisions] = logprobs[:, prev_decisions] - diversity_lambda if decoding_constraint and t > 0: tmp = logprobs.new_zeros(logprobs.size()) tmp.scatter_(1, seq[:,t-1].data.unsqueeze(1), float('-inf')) logprobs = logprobs + tmp if remove_bad_endings and t > 0: tmp = logprobs.new_zeros(logprobs.size()) prev_bad = np.isin(seq[:,t-1].data.cpu().numpy(), self.bad_endings_ix) # Impossible to generate remove_bad_endings tmp[torch.from_numpy(prev_bad.astype('uint8')), 0] = float('-inf') logprobs = logprobs + tmp # Mess with trigrams if block_trigrams and t >= 3: # Store trigram generated at last step prev_two_batch = seq[:,t-3:t-1] for i in range(batch_size): # = seq.size(0) prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item()) current = seq[i][t-1] if t == 3: # initialize trigrams.append({prev_two: [current]}) # {LongTensor: list containing 1 int} elif t > 3: if prev_two in trigrams[i]: # add to list trigrams[i][prev_two].append(current) else: # create list trigrams[i][prev_two] = [current] # Block used trigrams at next step prev_two_batch = seq[:,t-2:t] mask = torch.zeros(logprobs.size(), requires_grad=False).cuda() # batch_size x vocab_size for i in range(batch_size): prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item()) if prev_two in trigrams[i]: for j in trigrams[i][prev_two]: mask[i,j] += 1 # Apply mask to log probs #logprobs = logprobs - (mask * 1e9) alpha = 2.0 # = 4 logprobs = logprobs + (mask * -0.693 * alpha) # ln(1/2) * alpha (alpha -> infty works best) it, sampleLogprobs = self.sample_next_word(logprobs, sample_method, 1) # stop when all finished if t == 0: unfinished = it != self.eos_idx else: unfinished = seq[:,t-1] != self.pad_idx & seq[:,t-1] != self.eos_idx it[~unfinished] = self.pad_idx unfinished = unfinished & (it != self.eos_idx) # changed seq[:,t] = it seqLogprobs[:,t] = sampleLogprobs.view(-1) return torch.stack(seq_table, 1).reshape(batch_size * group_size, -1), torch.stack(seqLogprobs_table, 1).reshape(batch_size * group_size, -1) class AdaAtt_lstm(nn.Module): def __init__(self, opt, use_maxout=True): super(AdaAtt_lstm, self).__init__() self.input_encoding_size = opt.input_encoding_size #self.rnn_type = opt.rnn_type self.rnn_size = opt.rnn_size self.num_layers = opt.num_layers self.drop_prob_lm = opt.drop_prob_lm self.fc_feat_size = opt.fc_feat_size self.att_feat_size = opt.att_feat_size self.att_hid_size = opt.att_hid_size self.use_maxout = use_maxout # Build a LSTM self.w2h = nn.Linear(self.input_encoding_size, (4+(use_maxout==True)) * self.rnn_size) self.v2h = nn.Linear(self.rnn_size, (4+(use_maxout==True)) * self.rnn_size) self.i2h = nn.ModuleList([nn.Linear(self.rnn_size, (4+(use_maxout==True)) * self.rnn_size) for _ in range(self.num_layers - 1)]) self.h2h = nn.ModuleList([nn.Linear(self.rnn_size, (4+(use_maxout==True)) * self.rnn_size) for _ in range(self.num_layers)]) # Layers for getting the fake region if self.num_layers == 1: self.r_w2h = nn.Linear(self.input_encoding_size, self.rnn_size) self.r_v2h = nn.Linear(self.rnn_size, self.rnn_size) else: self.r_i2h = nn.Linear(self.rnn_size, self.rnn_size) self.r_h2h = nn.Linear(self.rnn_size, self.rnn_size) def forward(self, xt, img_fc, state): hs = [] cs = [] for L in range(self.num_layers): # c,h from previous timesteps prev_h = state[0][L] prev_c = state[1][L] # the input to this layer if L == 0: x = xt i2h = self.w2h(x) + self.v2h(img_fc) else: x = hs[-1] x = F.dropout(x, self.drop_prob_lm, self.training) i2h = self.i2h[L-1](x) all_input_sums = i2h+self.h2h[L](prev_h) sigmoid_chunk = all_input_sums.narrow(1, 0, 3 * self.rnn_size) sigmoid_chunk = torch.sigmoid(sigmoid_chunk) # decode the gates in_gate = sigmoid_chunk.narrow(1, 0, self.rnn_size) forget_gate = sigmoid_chunk.narrow(1, self.rnn_size, self.rnn_size) out_gate = sigmoid_chunk.narrow(1, self.rnn_size * 2, self.rnn_size) # decode the write inputs if not self.use_maxout: in_transform = torch.tanh(all_input_sums.narrow(1, 3 * self.rnn_size, self.rnn_size)) else: in_transform = all_input_sums.narrow(1, 3 * self.rnn_size, 2 * self.rnn_size) in_transform = torch.max(\ in_transform.narrow(1, 0, self.rnn_size), in_transform.narrow(1, self.rnn_size, self.rnn_size)) # perform the LSTM update next_c = forget_gate * prev_c + in_gate * in_transform # gated cells form the output tanh_nex_c = torch.tanh(next_c) next_h = out_gate * tanh_nex_c if L == self.num_layers-1: if L == 0: i2h = self.r_w2h(x) + self.r_v2h(img_fc) else: i2h = self.r_i2h(x) n5 = i2h+self.r_h2h(prev_h) fake_region = torch.sigmoid(n5) * tanh_nex_c cs.append(next_c) hs.append(next_h) # set up the decoder top_h = hs[-1] top_h = F.dropout(top_h, self.drop_prob_lm, self.training) fake_region = F.dropout(fake_region, self.drop_prob_lm, self.training) state = (torch.cat([_.unsqueeze(0) for _ in hs], 0), torch.cat([_.unsqueeze(0) for _ in cs], 0)) return top_h, fake_region, state class AdaAtt_attention(nn.Module): def __init__(self, opt): super(AdaAtt_attention, self).__init__() self.input_encoding_size = opt.input_encoding_size #self.rnn_type = opt.rnn_type self.rnn_size = opt.rnn_size self.drop_prob_lm = opt.drop_prob_lm self.att_hid_size = opt.att_hid_size # fake region embed self.fr_linear = nn.Sequential( nn.Linear(self.rnn_size, self.input_encoding_size), nn.ReLU(), nn.Dropout(self.drop_prob_lm)) self.fr_embed = nn.Linear(self.input_encoding_size, self.att_hid_size) # h out embed self.ho_linear = nn.Sequential( nn.Linear(self.rnn_size, self.input_encoding_size), nn.Tanh(), nn.Dropout(self.drop_prob_lm)) self.ho_embed = nn.Linear(self.input_encoding_size, self.att_hid_size) self.alpha_net = nn.Linear(self.att_hid_size, 1) self.att2h = nn.Linear(self.rnn_size, self.rnn_size) def forward(self, h_out, fake_region, conv_feat, conv_feat_embed, att_masks=None): # View into three dimensions att_size = conv_feat.numel() // conv_feat.size(0) // self.rnn_size conv_feat = conv_feat.view(-1, att_size, self.rnn_size) conv_feat_embed = conv_feat_embed.view(-1, att_size, self.att_hid_size) # view neighbor from bach_size * neighbor_num x rnn_size to bach_size x rnn_size * neighbor_num fake_region = self.fr_linear(fake_region) fake_region_embed = self.fr_embed(fake_region) h_out_linear = self.ho_linear(h_out) h_out_embed = self.ho_embed(h_out_linear) txt_replicate = h_out_embed.unsqueeze(1).expand(h_out_embed.size(0), att_size + 1, h_out_embed.size(1)) img_all = torch.cat([fake_region.view(-1,1,self.input_encoding_size), conv_feat], 1) img_all_embed = torch.cat([fake_region_embed.view(-1,1,self.input_encoding_size), conv_feat_embed], 1) hA = torch.tanh(img_all_embed + txt_replicate) hA = F.dropout(hA,self.drop_prob_lm, self.training) hAflat = self.alpha_net(hA.view(-1, self.att_hid_size)) PI = F.softmax(hAflat.view(-1, att_size + 1), dim=1) if att_masks is not None: att_masks = att_masks.view(-1, att_size) PI = PI * torch.cat([att_masks[:,:1], att_masks], 1) # assume one one at the first time step. PI = PI / PI.sum(1, keepdim=True) visAtt = torch.bmm(PI.unsqueeze(1), img_all) visAttdim = visAtt.squeeze(1) atten_out = visAttdim + h_out_linear h = torch.tanh(self.att2h(atten_out)) h = F.dropout(h, self.drop_prob_lm, self.training) return h class AdaAttCore(nn.Module): def __init__(self, opt, use_maxout=False): super(AdaAttCore, self).__init__() self.lstm = AdaAtt_lstm(opt, use_maxout) self.attention = AdaAtt_attention(opt) def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None): h_out, p_out, state = self.lstm(xt, fc_feats, state) atten_out = self.attention(h_out, p_out, att_feats, p_att_feats, att_masks) return atten_out, state class UpDownCore(nn.Module): def __init__(self, opt, use_maxout=False): super(UpDownCore, self).__init__() self.drop_prob_lm = opt.drop_prob_lm self.att_lstm = nn.LSTMCell(opt.input_encoding_size + opt.rnn_size * 2, opt.rnn_size) # we, fc, h^2_t-1 self.lang_lstm = nn.LSTMCell(opt.rnn_size * 2, opt.rnn_size) # h^1_t, \hat v self.attention = Attention(opt) def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None): prev_h = state[0][-1] att_lstm_input = torch.cat([prev_h, fc_feats, xt], 1) h_att, c_att = self.att_lstm(att_lstm_input, (state[0][0], state[1][0])) att = self.attention(h_att, att_feats, p_att_feats, att_masks) lang_lstm_input = torch.cat([att, h_att], 1) # lang_lstm_input = torch.cat([att, F.dropout(h_att, self.drop_prob_lm, self.training)], 1) ????? h_lang, c_lang = self.lang_lstm(lang_lstm_input, (state[0][1], state[1][1])) output = F.dropout(h_lang, self.drop_prob_lm, self.training) state = (torch.stack([h_att, h_lang]), torch.stack([c_att, c_lang])) return output, state ############################################################################ # Notice: # StackAtt and DenseAtt are models that I randomly designed. # They are not related to any paper. ############################################################################ from .FCModel import LSTMCore class StackAttCore(nn.Module): def __init__(self, opt, use_maxout=False): super(StackAttCore, self).__init__() self.drop_prob_lm = opt.drop_prob_lm # self.att0 = Attention(opt) self.att1 = Attention(opt) self.att2 = Attention(opt) opt_input_encoding_size = opt.input_encoding_size opt.input_encoding_size = opt.input_encoding_size + opt.rnn_size self.lstm0 = LSTMCore(opt) # att_feat + word_embedding opt.input_encoding_size = opt.rnn_size * 2 self.lstm1 = LSTMCore(opt) self.lstm2 = LSTMCore(opt) opt.input_encoding_size = opt_input_encoding_size # self.emb1 = nn.Linear(opt.rnn_size, opt.rnn_size) self.emb2 = nn.Linear(opt.rnn_size, opt.rnn_size) def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None): # att_res_0 = self.att0(state[0][-1], att_feats, p_att_feats, att_masks) h_0, state_0 = self.lstm0(torch.cat([xt,fc_feats],1), [state[0][0:1], state[1][0:1]]) att_res_1 = self.att1(h_0, att_feats, p_att_feats, att_masks) h_1, state_1 = self.lstm1(torch.cat([h_0,att_res_1],1), [state[0][1:2], state[1][1:2]]) att_res_2 = self.att2(h_1 + self.emb2(att_res_1), att_feats, p_att_feats, att_masks) h_2, state_2 = self.lstm2(torch.cat([h_1,att_res_2],1), [state[0][2:3], state[1][2:3]]) return h_2, [torch.cat(_, 0) for _ in zip(state_0, state_1, state_2)] class DenseAttCore(nn.Module): def __init__(self, opt, use_maxout=False): super(DenseAttCore, self).__init__() self.drop_prob_lm = opt.drop_prob_lm # self.att0 = Attention(opt) self.att1 = Attention(opt) self.att2 = Attention(opt) opt_input_encoding_size = opt.input_encoding_size opt.input_encoding_size = opt.input_encoding_size + opt.rnn_size self.lstm0 = LSTMCore(opt) # att_feat + word_embedding opt.input_encoding_size = opt.rnn_size * 2 self.lstm1 = LSTMCore(opt) self.lstm2 = LSTMCore(opt) opt.input_encoding_size = opt_input_encoding_size # self.emb1 = nn.Linear(opt.rnn_size, opt.rnn_size) self.emb2 = nn.Linear(opt.rnn_size, opt.rnn_size) # fuse h_0 and h_1 self.fusion1 = nn.Sequential(nn.Linear(opt.rnn_size*2, opt.rnn_size), nn.ReLU(), nn.Dropout(opt.drop_prob_lm)) # fuse h_0, h_1 and h_2 self.fusion2 = nn.Sequential(nn.Linear(opt.rnn_size*3, opt.rnn_size), nn.ReLU(), nn.Dropout(opt.drop_prob_lm)) def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None): # att_res_0 = self.att0(state[0][-1], att_feats, p_att_feats, att_masks) h_0, state_0 = self.lstm0(torch.cat([xt,fc_feats],1), [state[0][0:1], state[1][0:1]]) att_res_1 = self.att1(h_0, att_feats, p_att_feats, att_masks) h_1, state_1 = self.lstm1(torch.cat([h_0,att_res_1],1), [state[0][1:2], state[1][1:2]]) att_res_2 = self.att2(h_1 + self.emb2(att_res_1), att_feats, p_att_feats, att_masks) h_2, state_2 = self.lstm2(torch.cat([self.fusion1(torch.cat([h_0, h_1], 1)),att_res_2],1), [state[0][2:3], state[1][2:3]]) return self.fusion2(torch.cat([h_0, h_1, h_2], 1)), [torch.cat(_, 0) for _ in zip(state_0, state_1, state_2)] class Attention(nn.Module): def __init__(self, opt): super(Attention, self).__init__() self.rnn_size = opt.rnn_size self.att_hid_size = opt.att_hid_size self.h2att = nn.Linear(self.rnn_size, self.att_hid_size) self.alpha_net = nn.Linear(self.att_hid_size, 1) def forward(self, h, att_feats, p_att_feats, att_masks=None): # The p_att_feats here is already projected att_size = att_feats.numel() // att_feats.size(0) // att_feats.size(-1) att = p_att_feats.view(-1, att_size, self.att_hid_size) att_h = self.h2att(h) # batch * att_hid_size att_h = att_h.unsqueeze(1).expand_as(att) # batch * att_size * att_hid_size dot = att + att_h # batch * att_size * att_hid_size dot = torch.tanh(dot) # batch * att_size * att_hid_size dot = dot.view(-1, self.att_hid_size) # (batch * att_size) * att_hid_size dot = self.alpha_net(dot) # (batch * att_size) * 1 dot = dot.view(-1, att_size) # batch * att_size weight = F.softmax(dot, dim=1) # batch * att_size if att_masks is not None: weight = weight * att_masks.view(-1, att_size).to(weight) weight = weight / weight.sum(1, keepdim=True) # normalize to 1 att_feats_ = att_feats.view(-1, att_size, att_feats.size(-1)) # batch * att_size * att_feat_size att_res = torch.bmm(weight.unsqueeze(1), att_feats_).squeeze(1) # batch * att_feat_size return att_res class Att2in2Core(nn.Module): def __init__(self, opt): super(Att2in2Core, self).__init__() self.input_encoding_size = opt.input_encoding_size #self.rnn_type = opt.rnn_type self.rnn_size = opt.rnn_size #self.num_layers = opt.num_layers self.drop_prob_lm = opt.drop_prob_lm self.fc_feat_size = opt.fc_feat_size self.att_feat_size = opt.att_feat_size self.att_hid_size = opt.att_hid_size # Build a LSTM self.a2c = nn.Linear(self.rnn_size, 2 * self.rnn_size) self.i2h = nn.Linear(self.input_encoding_size, 5 * self.rnn_size) self.h2h = nn.Linear(self.rnn_size, 5 * self.rnn_size) self.dropout = nn.Dropout(self.drop_prob_lm) self.attention = Attention(opt) def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None): att_res = self.attention(state[0][-1], att_feats, p_att_feats, att_masks) all_input_sums = self.i2h(xt) + self.h2h(state[0][-1]) sigmoid_chunk = all_input_sums.narrow(1, 0, 3 * self.rnn_size) sigmoid_chunk = torch.sigmoid(sigmoid_chunk) in_gate = sigmoid_chunk.narrow(1, 0, self.rnn_size) forget_gate = sigmoid_chunk.narrow(1, self.rnn_size, self.rnn_size) out_gate = sigmoid_chunk.narrow(1, self.rnn_size * 2, self.rnn_size) in_transform = all_input_sums.narrow(1, 3 * self.rnn_size, 2 * self.rnn_size) + \ self.a2c(att_res) in_transform = torch.max(\ in_transform.narrow(1, 0, self.rnn_size), in_transform.narrow(1, self.rnn_size, self.rnn_size)) next_c = forget_gate * state[1][-1] + in_gate * in_transform next_h = out_gate * torch.tanh(next_c) output = self.dropout(next_h) state = (next_h.unsqueeze(0), next_c.unsqueeze(0)) return output, state class Att2inCore(Att2in2Core): def __init__(self, opt): super(Att2inCore, self).__init__(opt) del self.a2c self.a2c = nn.Linear(self.att_feat_size, 2 * self.rnn_size) """ Note this is my attempt to replicate att2all model in self-critical paper. However, this is not a correct replication actually. Will fix it. """ class Att2all2Core(nn.Module): def __init__(self, opt): super(Att2all2Core, self).__init__() self.input_encoding_size = opt.input_encoding_size #self.rnn_type = opt.rnn_type self.rnn_size = opt.rnn_size #self.num_layers = opt.num_layers self.drop_prob_lm = opt.drop_prob_lm self.fc_feat_size = opt.fc_feat_size self.att_feat_size = opt.att_feat_size self.att_hid_size = opt.att_hid_size # Build a LSTM self.a2h = nn.Linear(self.rnn_size, 5 * self.rnn_size) self.i2h = nn.Linear(self.input_encoding_size, 5 * self.rnn_size) self.h2h = nn.Linear(self.rnn_size, 5 * self.rnn_size) self.dropout = nn.Dropout(self.drop_prob_lm) self.attention = Attention(opt) def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None): att_res = self.attention(state[0][-1], att_feats, p_att_feats, att_masks) all_input_sums = self.i2h(xt) + self.h2h(state[0][-1]) + self.a2h(att_res) sigmoid_chunk = all_input_sums.narrow(1, 0, 3 * self.rnn_size) sigmoid_chunk = torch.sigmoid(sigmoid_chunk) in_gate = sigmoid_chunk.narrow(1, 0, self.rnn_size) forget_gate = sigmoid_chunk.narrow(1, self.rnn_size, self.rnn_size) out_gate = sigmoid_chunk.narrow(1, self.rnn_size * 2, self.rnn_size) in_transform = all_input_sums.narrow(1, 3 * self.rnn_size, 2 * self.rnn_size) in_transform = torch.max(\ in_transform.narrow(1, 0, self.rnn_size), in_transform.narrow(1, self.rnn_size, self.rnn_size)) next_c = forget_gate * state[1][-1] + in_gate * in_transform next_h = out_gate * torch.tanh(next_c) output = self.dropout(next_h) state = (next_h.unsqueeze(0), next_c.unsqueeze(0)) return output, state class AdaAttModel(AttModel): def __init__(self, opt): super(AdaAttModel, self).__init__(opt) self.core = AdaAttCore(opt) # AdaAtt with maxout lstm class AdaAttMOModel(AttModel): def __init__(self, opt): super(AdaAttMOModel, self).__init__(opt) self.core = AdaAttCore(opt, True) class Att2in2Model(AttModel): def __init__(self, opt): super(Att2in2Model, self).__init__(opt) self.core = Att2in2Core(opt) delattr(self, 'fc_embed') self.fc_embed = lambda x : x class Att2all2Model(AttModel): def __init__(self, opt): super(Att2all2Model, self).__init__(opt) self.core = Att2all2Core(opt) delattr(self, 'fc_embed') self.fc_embed = lambda x : x class UpDownModel(AttModel): def __init__(self, opt): super(UpDownModel, self).__init__(opt) self.num_layers = 2 self.core = UpDownCore(opt) class StackAttModel(AttModel): def __init__(self, opt): super(StackAttModel, self).__init__(opt) self.num_layers = 3 self.core = StackAttCore(opt) class DenseAttModel(AttModel): def __init__(self, opt): super(DenseAttModel, self).__init__(opt) self.num_layers = 3 self.core = DenseAttCore(opt) class Att2inModel(AttModel): def __init__(self, opt): super(Att2inModel, self).__init__(opt) del self.embed, self.fc_embed, self.att_embed self.embed = nn.Embedding(self.vocab_size + 1, self.input_encoding_size) self.fc_embed = self.att_embed = lambda x: x del self.ctx2att self.ctx2att = nn.Linear(self.att_feat_size, self.att_hid_size) self.core = Att2inCore(opt) self.init_weights() def init_weights(self): initrange = 0.1 self.embed.weight.data.uniform_(-initrange, initrange) self.logit.bias.data.fill_(0) self.logit.weight.data.uniform_(-initrange, initrange) class NewFCModel(AttModel): def __init__(self, opt): super(NewFCModel, self).__init__(opt) self.fc_embed = nn.Linear(self.fc_feat_size, self.input_encoding_size) self.embed = nn.Embedding(self.vocab_size + 1, self.input_encoding_size) self._core = LSTMCore(opt) delattr(self, 'att_embed') self.att_embed = lambda x : x delattr(self, 'ctx2att') self.ctx2att = lambda x: x def core(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks): # Step 0, feed the input image # if (self.training and state[0].is_leaf) or \ # (not self.training and state[0].sum() == 0): # _, state = self._core(fc_feats, state) # three cases # normal mle training # Sample # beam search (diverse beam search) # fixed captioning module. is_first_step = (state[0]==0).all(2).all(0) # size: B if is_first_step.all(): _, state = self._core(fc_feats, state) elif is_first_step.any(): # This is mostly for diverse beam search I think new_state = [torch.zeros_like(_) for _ in state] new_state[0][:, ~is_first_step] = state[0][:, ~is_first_step] new_state[1][:, ~is_first_step] = state[1][:, ~is_first_step] _, state = self._core(fc_feats, state) new_state[0][:, is_first_step] = state[0][:, is_first_step] new_state[1][:, is_first_step] = state[1][:, is_first_step] state = new_state # if (state[0]==0).all(): # # Let's forget about diverse beam search first # _, state = self._core(fc_feats, state) return self._core(xt, state) def _prepare_feature(self, fc_feats, att_feats, att_masks): fc_feats = self.fc_embed(fc_feats) return fc_feats, att_feats, att_feats, att_masks class LMModel(AttModel): def __init__(self, opt): super(LMModel, self).__init__(opt) delattr(self, 'fc_embed') self.fc_embed = lambda x: x.new_zeros(x.shape[0], self.input_encoding_size) self.embed = nn.Embedding(self.vocab_size + 1, self.input_encoding_size) self._core = LSTMCore(opt) delattr(self, 'att_embed') self.att_embed = lambda x : x delattr(self, 'ctx2att') self.ctx2att = lambda x: x def core(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks): if (state[0]==0).all(): # Let's forget about diverse beam search first _, state = self._core(fc_feats, state) return self._core(xt, state) def _prepare_feature(self, fc_feats, att_feats, att_masks): fc_feats = self.fc_embed(fc_feats) return fc_feats, None, None, None
connect-caption-and-trace-main
captioning/models/AttModel_both.py
from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import copy import numpy as np import torch from .ShowTellModel import ShowTellModel from .FCModel import FCModel from .AttModel_both import * from .TransformerModel_mitr import TransformerModel # from .cachedTransformer import TransformerModel as cachedTransformer # from .BertCapModel import BertCapModel # from .M2Transformer import M2TransformerModel # from .AoAModel import AoAModel def setup(opt): if opt.caption_model in ['fc', 'show_tell']: print('Warning: %s model is mostly deprecated; many new features are not supported.' %opt.caption_model) if opt.caption_model == 'fc': print('Use newfc instead of fc') if opt.caption_model == 'fc': model = FCModel(opt) elif opt.caption_model == 'language_model': model = LMModel(opt) elif opt.caption_model == 'newfc': model = NewFCModel(opt) elif opt.caption_model == 'show_tell': model = ShowTellModel(opt) # Att2in model in self-critical elif opt.caption_model == 'att2in': model = Att2inModel(opt) # Att2in model with two-layer MLP img embedding and word embedding elif opt.caption_model == 'att2in2': model = Att2in2Model(opt) elif opt.caption_model == 'att2all2': print('Warning: this is not a correct implementation of the att2all model in the original paper.') model = Att2all2Model(opt) # Adaptive Attention model from Knowing when to look elif opt.caption_model == 'adaatt': model = AdaAttModel(opt) # Adaptive Attention with maxout lstm elif opt.caption_model == 'adaattmo': model = AdaAttMOModel(opt) # Top-down attention model elif opt.caption_model in ['topdown', 'updown']: model = UpDownModel(opt) # StackAtt elif opt.caption_model == 'stackatt': model = StackAttModel(opt) # DenseAtt elif opt.caption_model == 'denseatt': model = DenseAttModel(opt) # Transformer elif opt.caption_model == 'transformer': if getattr(opt, 'cached_transformer', False): model = cachedTransformer(opt) else: print(TransformerModel) model = TransformerModel(opt) # AoANet elif opt.caption_model == 'aoa': model = AoAModel(opt) elif opt.caption_model == 'bert': model = BertCapModel(opt) elif opt.caption_model == 'm2transformer': model = M2TransformerModel(opt) else: raise Exception("Caption model not supported: {}".format(opt.caption_model)) return model
connect-caption-and-trace-main
captioning/models/__init__.py
# This file contains our mirrored Transformer network # The branch for extracted visual features is implemented in "encoder", # and then branches for trace and caption are implemented in "decoder" # The cfg name correspondance: # N_layer=num_layers # d_model=input_encoding_size # d_ff=rnn_size # h is always 8 from __future__ import absolute_import from __future__ import division from __future__ import print_function import torch import torch.nn as nn import torch.nn.functional as F from . import utils import copy import math import numpy as np from .CaptionModel import CaptionModel from .AttModel_both import sort_pack_padded_sequence, pad_unsort_packed_sequence, pack_wrapper, AttModel class EncoderDecoder(nn.Module): """ A standard Encoder-Decoder architecture. Base for this and many other models. """ def __init__(self, encoder, decoder, src_embed, tgt_embed, generator_caption, generator_trace, d_model, dropout): super(EncoderDecoder, self).__init__() self.encoder = encoder self.decoder = decoder self.src_embed = src_embed self.tgt_embed = tgt_embed self.generator_caption = generator_caption self.generator_trace = generator_trace self.trace_layernorm_caption = nn.LayerNorm(d_model, elementwise_affine=True) self.trace_layernorm_trace = nn.LayerNorm(d_model, elementwise_affine=True) self.position_encoder = PositionalEncoding(d_model,0) # here don't use dropout inside positional embedding self.trace_embed = nn.Sequential(*( (nn.Linear(5, d_model), nn.LayerNorm(d_model, elementwise_affine=True), nn.ReLU(), nn.Dropout(0.5)) )) def forward(self, src, tgt, src_mask, tgt_mask, trace_feat, trace_masks, task): "Take in and process masked src and target sequences." memory = self.encode(src, src_mask) return self.decode(memory, src_mask, tgt, tgt_mask, trace_feat, trace_masks, task), memory def encode(self, src, src_mask): return self.encoder(self.src_embed(src), src_mask) def decode(self, memory, src_mask, tgt, tgt_mask, trace_feats, trace_masks, task): # if task == 'trace': trace_feats = trace_feats[:, :, :5] trace_feats = self.trace_embed(trace_feats) trace_feats = self.trace_layernorm_trace(self.position_encoder(trace_feats)) ### embed the tgt tgt_emd = self.tgt_embed(tgt, task) return self.decoder(tgt_emd, trace_feats, memory, src_mask, tgt_mask, trace_masks, task) class Generator(nn.Module): "Define standard linear + softmax generation step." def __init__(self, d_model, vocab): super(Generator, self).__init__() self.proj = nn.Linear(d_model, vocab) def forward(self, x): return F.log_softmax(self.proj(x), dim=-1) def clones(module, N): "Produce N identical layers." return nn.ModuleList([copy.deepcopy(module) for _ in range(N)]) class Encoder(nn.Module): "Core encoder is a stack of N layers" def __init__(self, layer, N): super(Encoder, self).__init__() self.layers = clones(layer, N) self.norm = LayerNorm(layer.size) def forward(self, x, mask): "Pass the input (and mask) through each layer in turn." for layer in self.layers: x = layer(x, mask) return self.norm(x) class LayerNorm(nn.Module): "Construct a layernorm module (See citation for details)." def __init__(self, features, eps=1e-6): super(LayerNorm, self).__init__() self.a_2 = nn.Parameter(torch.ones(features)) self.b_2 = nn.Parameter(torch.zeros(features)) self.eps = eps def forward(self, x): mean = x.mean(-1, keepdim=True) std = x.std(-1, keepdim=True) return self.a_2 * (x - mean) / (std + self.eps) + self.b_2 class SublayerConnection(nn.Module): """ A residual connection followed by a layer norm. Note for code simplicity the norm is first as opposed to last. """ def __init__(self, size, dropout): super(SublayerConnection, self).__init__() self.norm = LayerNorm(size) self.dropout = nn.Dropout(dropout) def forward(self, x, sublayer): "Apply residual connection to any sublayer with the same size." return x + self.dropout(sublayer(self.norm(x))) class EncoderLayer(nn.Module): "Encoder is made up of self-attn and feed forward (defined below)" def __init__(self, size, self_attn, feed_forward, dropout): super(EncoderLayer, self).__init__() self.self_attn = self_attn self.feed_forward = feed_forward self.sublayer = clones(SublayerConnection(size, dropout), 2) self.size = size def forward(self, x, mask): "Follow Figure 1 (left) for connections." x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, mask)) return self.sublayer[1](x, self.feed_forward) class Decoder(nn.Module): def __init__(self, layer): super(Decoder, self).__init__() self.layer = layer self.norm = LayerNorm(layer.size) self.norm_2 = LayerNorm(layer.size) def forward(self, x, trace_feat, memory, src_mask, tgt_mask, trace_masks, task): x = self.layer(x, trace_feat, memory, src_mask, tgt_mask, trace_masks, task) if task == 'both': return self.norm(x[0]), self.norm_2(x[1]) else: return self.norm(x) class DecoderLayer(nn.Module): "Decoder is made of self-attn, src-attn, and feed forward (defined below)" def __init__(self, size, self_attn, src_attn, caption_trace_attn, trace_caption_attn, trace_self_attn, trace_src_attn, feed_forward_caption, feed_forward_trace, both_caption_trace_attn, both_trace_caption_attn, both_feed_forward_caption, both_feed_forward_trace, dropout): super(DecoderLayer, self).__init__() self.size = size self.self_attn = self_attn self.src_attn = src_attn self.feed_forward_caption = feed_forward_caption self.feed_forward_trace = feed_forward_trace self.sublayer = clones(SublayerConnection(size, dropout), 8+4*len(self.self_attn)) # 4 for each additional layer ### caption / trace generation self.caption_trace_attn = caption_trace_attn self.trace_caption_attn = trace_caption_attn self.trace_self_attn = trace_self_attn self.trace_src_attn = trace_src_attn ### pred both self.both_caption_trace_attn = both_caption_trace_attn self.both_trace_caption_attn = both_trace_caption_attn self.both_feed_forward_caption = both_feed_forward_caption self.both_feed_forward_trace = both_feed_forward_trace def forward(self, x, trace_feat, memory, src_mask, tgt_mask, trace_masks, task): "Follow Figure 1 (right) for connections." m = memory if task == 'trace' or task == 'cycle_trace': for i in range(len(self.self_attn)): x = self.sublayer[8 + 0 + 4 * i](x, lambda x: self.self_attn[i](x, x, x, tgt_mask)) x = self.sublayer[8 + 1 + 4 * i](x, lambda x: self.src_attn[i](x, m, m, src_mask)) trace_feat = self.sublayer[8 + 2 + 4 * i](trace_feat, lambda trace_feat: self.trace_self_attn[i](trace_feat, trace_feat, trace_feat, trace_masks)) trace_feat = self.sublayer[8 + 3 + 4 * i](trace_feat, lambda trace_feat: self.trace_src_attn[i](trace_feat, m, m, src_mask)) trace_feat = self.sublayer[0](trace_feat, lambda trace_feat: self.trace_caption_attn(trace_feat, x, x, tgt_mask)) return self.sublayer[1](trace_feat, self.feed_forward_trace) elif task == 'caption': trace_masks = trace_masks.unsqueeze(1) for i in range(len(self.self_attn)): x = self.sublayer[8 + 0 + 4 * i](x, lambda x: self.self_attn[i](x, x, x, tgt_mask)) x = self.sublayer[8 + 1 + 4 * i](x, lambda x: self.src_attn[i](x, m, m, src_mask)) trace_feat = self.sublayer[8 + 2 + 4 * i](trace_feat, lambda trace_feat: self.trace_self_attn[i](trace_feat, trace_feat, trace_feat, trace_masks)) trace_feat = self.sublayer[8 + 3 + 4 * i](trace_feat, lambda trace_feat: self.trace_src_attn[i](trace_feat, m, m, src_mask)) x = self.sublayer[2](x, lambda x: self.caption_trace_attn(x, trace_feat, trace_feat, trace_masks)) return self.sublayer[3](x, self.feed_forward_caption) elif task == 'both': for i in range(len(self.self_attn)): x = self.sublayer[8 + 0 + 4 * i](x, lambda x: self.self_attn[i](x, x, x, tgt_mask)) x = self.sublayer[8 + 1 + 4 * i](x, lambda x: self.src_attn[i](x, m, m, src_mask)) trace_feat = self.sublayer[8 + 2 + 4 * i](trace_feat, lambda trace_feat: self.trace_self_attn[i](trace_feat, trace_feat, trace_feat, trace_masks)) trace_feat = self.sublayer[8 + 3 + 4 * i](trace_feat, lambda trace_feat: self.trace_src_attn[i](trace_feat, m, m, src_mask)) trace_masks_for_caption = torch.cat([trace_masks, trace_masks[:, -1, :].unsqueeze(1).repeat(1,tgt_mask.shape[1]-trace_masks.shape[1],1)], 1) tgt_mask_for_trace = tgt_mask[:, :trace_masks.shape[1], :] x_out = self.sublayer[4](x, lambda x: self.both_caption_trace_attn(x, trace_feat, trace_feat, trace_masks_for_caption)) trace_feat_out = self.sublayer[5](trace_feat, lambda trace_feat: self.both_trace_caption_attn(trace_feat, x, x, tgt_mask_for_trace)) return self.sublayer[6](x_out, self.both_feed_forward_caption), self.sublayer[7](trace_feat_out, self.both_feed_forward_trace) def subsequent_mask(size): "Mask out subsequent positions." attn_shape = (1, size, size) subsequent_mask = np.triu(np.ones(attn_shape), k=1).astype('uint8') return torch.from_numpy(subsequent_mask) == 0 def attention(query, key, value, mask=None, dropout=None): "Compute 'Scaled Dot Product Attention'" d_k = query.size(-1) scores = torch.matmul(query, key.transpose(-2, -1)) \ / math.sqrt(d_k) if mask is not None: scores = scores.masked_fill(mask == 0, float('-inf')) p_attn = F.softmax(scores, dim = -1) if dropout is not None: p_attn = dropout(p_attn) return torch.matmul(p_attn, value), p_attn class MultiHeadedAttention(nn.Module): def __init__(self, h, d_model, dropout=0.1): "Take in model size and number of heads." super(MultiHeadedAttention, self).__init__() assert d_model % h == 0 # We assume d_v always equals d_k self.d_k = d_model // h self.h = h self.linears = clones(nn.Linear(d_model, d_model), 4) self.attn = None self.dropout = nn.Dropout(p=dropout) def forward(self, query, key, value, mask=None): "Implements Figure 2" if mask is not None: # Same mask applied to all h heads. mask = mask.unsqueeze(1) nbatches = query.size(0) # 1) Do all the linear projections in batch from d_model => h x d_k query, key, value = \ [l(x).view(nbatches, -1, self.h, self.d_k).transpose(1, 2) for l, x in zip(self.linears, (query, key, value))] # 2) Apply attention on all the projected vectors in batch. x, self.attn = attention(query, key, value, mask=mask, dropout=self.dropout) # 3) "Concat" using a view and apply a final linear. x = x.transpose(1, 2).contiguous() \ .view(nbatches, -1, self.h * self.d_k) return self.linears[-1](x) class PositionwiseFeedForward(nn.Module): "Implements FFN equation." def __init__(self, d_model, d_ff, dropout=0.1): super(PositionwiseFeedForward, self).__init__() self.w_1 = nn.Linear(d_model, d_ff) self.w_2 = nn.Linear(d_ff, d_model) self.dropout = nn.Dropout(dropout) def forward(self, x): return self.w_2(self.dropout(F.relu(self.w_1(x)))) class Embeddings(nn.Module): def __init__(self, d_model, vocab): super(Embeddings, self).__init__() self.lut = nn.Embedding(vocab, d_model) self.d_model = d_model self.vocab = vocab # self.layernorm = nn.LayerNorm(self.d_model, elementwise_affine=True) def forward(self, x, task=None): if task != 'cycle_trace': return self.lut(x) * math.sqrt(self.d_model) else: # # use gumbel softmax with \tau = 1 x = torch.nn.functional.softmax(torch.log(x) - torch.log(-torch.log(torch.rand([x.shape[2]]))).unsqueeze(0).unsqueeze(0).to(x.device), dim=-1) return torch.matmul(x, self.lut(torch.arange(self.vocab).to(x.device))) \ * math.sqrt(self.d_model) class caption_Embeddings(nn.Module): def __init__(self, d_model, vocab, position_encoder): super(caption_Embeddings, self).__init__() self.position_encoder = position_encoder self.embed = Embeddings(d_model, vocab) def forward(self, x, task): x = self.embed(x, task) x = self.position_encoder(x) return x class PositionalEncoding(nn.Module): "Implement the PE function." def __init__(self, d_model, dropout, max_len=5000): super(PositionalEncoding, self).__init__() self.dropout = nn.Dropout(p=dropout) # Compute the positional encodings once in log space. pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len).unsqueeze(1).float() div_term = torch.exp(torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0) self.register_buffer('pe', pe) def forward(self, x): x = x + self.pe[:, :x.size(1)] return self.dropout(x) class TransformerModel(AttModel): def make_model(self, src_vocab, tgt_vocab, N_layer=1, d_model=512, d_ff=2048, h=8, dropout=0.1): "Helper: Construct a model from hyperparameters." c = copy.deepcopy attn = MultiHeadedAttention(h, d_model, dropout) ff = PositionwiseFeedForward(d_model, d_ff, dropout) position = PositionalEncoding(d_model, dropout) # position_nodropout = PositionalEncoding(d_model, 0) model = EncoderDecoder( Encoder(EncoderLayer(d_model, c(attn), c(ff), dropout), N_layer), Decoder(DecoderLayer(d_model, clones(attn, N_layer), clones(attn, N_layer), c(attn), c(attn), clones(attn, N_layer), clones(attn, N_layer), c(ff), c(ff), c(attn), c(attn), c(ff), c(ff), dropout)), lambda x:x, # nn.Sequential(Embeddings(d_model, src_vocab), c(position)), caption_Embeddings(d_model, tgt_vocab, c(position)), #nn.Sequential(Embeddings(d_model, tgt_vocab), c(position)), # Generator(d_model, tgt_vocab), nn.Sequential(nn.Linear(d_model, 5), nn.Sigmoid()), d_model,dropout) # This was important from their code. # Initialize parameters with Glorot / fan_avg. for p in model.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) return model def __init__(self, opt): super(TransformerModel, self).__init__(opt) self.opt = opt # self.config = yaml.load(open(opt.config_file)) self.N_layer = getattr(opt, 'N_layer', opt.num_layers) # number of layers self.d_model = getattr(opt, 'd_model', opt.input_encoding_size) self.d_ff = getattr(opt, 'd_ff', opt.rnn_size) self.h = getattr(opt, 'num_att_heads', 8) self.dropout = getattr(opt, 'dropout', 0.1) self.use_trace_feat = getattr(opt, 'use_trace_feat', 0) delattr(self, 'att_embed') self.att_embed = nn.Sequential(*( ((nn.BatchNorm1d(self.att_feat_size),) if self.use_bn else ())+ (nn.Linear(self.att_feat_size, self.d_model), nn.ReLU(), nn.Dropout(self.drop_prob_lm))+ ((nn.BatchNorm1d(self.d_model),) if self.use_bn==2 else ()))) # define trace embedding and layernorm self.box_embed = nn.Sequential(*( ((nn.BatchNorm1d(5),) if self.use_bn else ()) + (nn.Linear(5, self.d_model), nn.ReLU(), nn.Dropout(self.drop_prob_lm)) + ((nn.BatchNorm1d(self.d_model),) if self.use_bn == 2 else ()))) self.box_layernorm1 = nn.LayerNorm(self.d_model, elementwise_affine=True) self.box_layernorm2 = nn.LayerNorm(self.d_model, elementwise_affine=True) self.att_layernorm = nn.LayerNorm(self.d_model, elementwise_affine=True) self.position_encoder = PositionalEncoding(self.d_model, self.dropout) delattr(self, 'embed') self.embed = lambda x : x delattr(self, 'fc_embed') self.fc_embed = lambda x : x delattr(self, 'logit') del self.ctx2att tgt_vocab = self.vocab_size + 1 self.model = self.make_model(0, tgt_vocab, N_layer=self.N_layer, d_model=self.d_model, d_ff=self.d_ff, h=self.h, dropout=self.dropout) def logit(self, x): # unsafe way return self.model.generator_caption.proj(x) def init_hidden(self, bsz): return [] def _prepare_feature(self, fc_feats, att_feats, trace_feats, box_feats, att_masks, trace_masks): att_feats, box_feats, seq, att_masks, seq_mask = self._prepare_feature_forward(att_feats, box_feats, att_masks) # Localized Narratives: insert trace features into att_feats, trace_masks into att_masks att_feats = self.att_layernorm(att_feats) if self.opt.use_box: box_feats = self.box_layernorm1(self.box_embed(box_feats)) att_feats = self.box_layernorm2(att_feats + box_feats) if self.opt.use_trace: trace_feats_to_decoder = trace_feats ########################### memory = self.model.encode(att_feats, att_masks) return fc_feats[...,:0], att_feats[...,:0], memory, att_masks, trace_feats_to_decoder def _prepare_feature_forward(self, att_feats, box_feats, att_masks=None, seq=None): att_feats = self.att_embed(att_feats) if att_masks is None: att_masks = att_feats.new_ones(att_feats.shape[:2], dtype=torch.long) att_masks = att_masks.unsqueeze(-2) if seq is not None: seq_mask = (seq.data != self.eos_idx) & (seq.data != self.pad_idx) seq_mask[:,0] = 1 # bos seq_mask = seq_mask.unsqueeze(-2) seq_mask = seq_mask & subsequent_mask(seq.size(-1)).to(seq_mask) seq_per_img = seq.shape[0] // att_feats.shape[0] if seq_per_img > 1: att_feats, att_masks = utils.repeat_tensors(seq_per_img, [att_feats, att_masks] ) else: seq_mask = None return att_feats, box_feats, seq, att_masks, seq_mask def _forward(self, fc_feats, att_feats, trace_feats, box_feats, seq, att_masks=None, trace_masks=None, task = None): assert task == 'trace' or task == 'caption' or task == 'both' or task == 'cycle_trace' if task != 'cycle_trace': if seq.ndim == 3: # B * seq_per_img * seq_len seq = seq.reshape(-1, seq.shape[2]) if task == 'both': ### get the original caption input tmp_seq = seq[:, :trace_masks.shape[1]] _, _, _, _, tmp_seq_mask = self._prepare_feature_forward(att_feats, box_feats, att_masks, tmp_seq) att_feats, box_feats, seq, att_masks, seq_mask = self._prepare_feature_forward(att_feats, box_feats, att_masks, seq) ## prepare the shifted trace shifted_trace = torch.cat( [torch.zeros(trace_feats.shape[0], 1, trace_feats.shape[2]).to(trace_feats.device), trace_feats], 1) shifted_trace = shifted_trace[:, :-1, :] # ignore the last segment in shifted trace shifted_trace_mask = tmp_seq_mask # Localized Narratives: insert trace features into att_feats, trace_masks into att_masks att_feats = self.att_layernorm(att_feats) # normalize att feat if self.opt.use_box: box_feats = self.box_layernorm1(self.box_embed(box_feats)) att_feats = self.box_layernorm2(att_feats + box_feats) # randomly mask part of trace_feats if self.training: random_mask_rate = 0.5 else: random_mask_rate = 0 random_mask = (torch.rand( [shifted_trace.shape[0], shifted_trace.shape[1]]) > random_mask_rate).float().unsqueeze(2).to( shifted_trace.device) shifted_trace[:, :, :5] = shifted_trace[:, :, :5] * random_mask + \ (1 - random_mask) * torch.tensor([0., 0., 1., 1., 1.]).to(shifted_trace.device).unsqueeze(0).unsqueeze(1) (out_caption, out_trace), memory = self.model(att_feats, seq, att_masks, seq_mask, shifted_trace, shifted_trace_mask, task) # trace generation # for regression, use generator which is a linear layer and sigmoid outputs_caption = self.model.generator_caption(out_caption) outputs_trace = self.model.generator_trace(out_trace) return outputs_caption, outputs_trace elif task == 'trace' or task == 'cycle_trace': # for classification trace_feats = trace_feats[:, :, :5] ### get the original caption input tmp_seq = torch.ones([trace_masks.shape[0], trace_masks.shape[1]]).to(trace_masks.device) # seq[:, :trace_masks.shape[1]] seq = seq[:, 1:trace_masks.shape[1]+1] # crop the seq to real length seq_mask = trace_masks.unsqueeze(1) att_feats, box_feats, tmp_seq, att_masks, tmp_seq_mask = self._prepare_feature_forward(att_feats, box_feats, att_masks, tmp_seq) ## prepare the shifted trace shifted_trace = torch.cat([torch.zeros(trace_feats.shape[0], 1, trace_feats.shape[2]).to(trace_feats.device), trace_feats], 1) shifted_trace = shifted_trace[:, :-1, :] # ignore the last segment in shifted trace shifted_trace_mask = tmp_seq_mask # Localized Narratives: insert trace features into att_feats, trace_masks into att_masks att_feats = self.att_layernorm(att_feats) # normalize att feat if self.opt.use_box: box_feats = self.box_layernorm1(self.box_embed(box_feats)) att_feats = self.box_layernorm2(att_feats + box_feats) # randomly mask part of trace_feats if self.training: random_mask_rate = 0 else: random_mask_rate = 0 random_mask = (torch.rand( [shifted_trace.shape[0], shifted_trace.shape[1]]) > random_mask_rate).float().unsqueeze(2).to( shifted_trace.device) shifted_trace[:, :, :5] = shifted_trace[:, :, :5] * random_mask + \ (1 - random_mask) * torch.tensor([0., 0., 1., 1., 1.]).to( shifted_trace.device).unsqueeze(0).unsqueeze(1) out, memory = self.model(att_feats, seq, att_masks, seq_mask, shifted_trace, shifted_trace_mask, task) # trace generation # for regression, use generator which is a linear layer and sigmoid outputs = self.model.generator_trace(out) return outputs elif task == 'caption': att_feats, box_feats, seq, att_masks, seq_mask = self._prepare_feature_forward(att_feats, box_feats, att_masks, seq) # Localized Narratives: insert trace features into att_feats, trace_masks into att_masks att_feats = self.att_layernorm(att_feats) # normalize att feat if self.opt.use_box: box_feats = self.box_layernorm1(self.box_embed(box_feats)) att_feats = self.box_layernorm2(att_feats + box_feats) if self.opt.use_trace: trace_feats_to_decoder = trace_feats out, _ = self.model(att_feats, seq, att_masks, seq_mask, trace_feats_to_decoder, trace_masks, task) outputs = self.model.generator_caption(out) return outputs def core(self, it, fc_feats_ph, att_feats_ph, memory, state, mask, trace_feats_to_decoder, trace_masks, task): """ state = [ys.unsqueeze(0)] """ if len(state) == 0: ys = it.unsqueeze(1) else: ys = torch.cat([state[0][0], it.unsqueeze(1)], dim=1) if task == 'caption': out = self.model.decode(memory, mask, ys, subsequent_mask(ys.size(1)).to(memory.device), trace_feats_to_decoder, trace_masks, 'caption') return out[:, -1], [ys.unsqueeze(0)] elif task == 'both': out_caption, out_trace = self.model.decode(memory, mask, ys, subsequent_mask(ys.size(1)).to(memory.device), trace_feats_to_decoder, subsequent_mask(ys.size(1)).to(memory.device), 'both') return out_caption[:, -1], [ys.unsqueeze(0)], out_trace
connect-caption-and-trace-main
captioning/models/TransformerModel_mitr.py
# This file contains Att2in2, AdaAtt, AdaAttMO, UpDown model # AdaAtt is from Knowing When to Look: Adaptive Attention via A Visual Sentinel for Image Captioning # https://arxiv.org/abs/1612.01887 # AdaAttMO is a modified version with maxout lstm # Att2in is from Self-critical Sequence Training for Image Captioning # https://arxiv.org/abs/1612.00563 # In this file we only have Att2in2, which is a slightly different version of att2in, # in which the img feature embedding and word embedding is the same as what in adaatt. # UpDown is from Bottom-Up and Top-Down Attention for Image Captioning and VQA # https://arxiv.org/abs/1707.07998 # However, it may not be identical to the author's architecture. from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from . import utils from torch.nn.utils.rnn import PackedSequence, pack_padded_sequence, pad_packed_sequence from .CaptionModel import CaptionModel bad_endings = ['a','an','the','in','for','at','of','with','before','after','on','upon','near','to','is','are','am'] bad_endings += ['the'] def sort_pack_padded_sequence(input, lengths): sorted_lengths, indices = torch.sort(lengths, descending=True) tmp = pack_padded_sequence(input[indices], sorted_lengths, batch_first=True) inv_ix = indices.clone() inv_ix[indices] = torch.arange(0,len(indices)).type_as(inv_ix) return tmp, inv_ix def pad_unsort_packed_sequence(input, inv_ix): tmp, _ = pad_packed_sequence(input, batch_first=True) tmp = tmp[inv_ix] return tmp def pack_wrapper(module, att_feats, att_masks): if att_masks is not None: packed, inv_ix = sort_pack_padded_sequence(att_feats, att_masks.data.long().sum(1)) return pad_unsort_packed_sequence(PackedSequence(module(packed[0]), packed[1]), inv_ix) else: return module(att_feats) class AttModel(CaptionModel): def __init__(self, opt): super(AttModel, self).__init__() self.vocab_size = opt.vocab_size self.input_encoding_size = opt.input_encoding_size #self.rnn_type = opt.rnn_type self.rnn_size = opt.rnn_size self.num_layers = opt.num_layers self.drop_prob_lm = opt.drop_prob_lm self.seq_length = getattr(opt, 'max_length', 20) or opt.seq_length # maximum sample length self.fc_feat_size = opt.fc_feat_size self.att_feat_size = opt.att_feat_size self.att_hid_size = opt.att_hid_size self.bos_idx = getattr(opt, 'bos_idx', 0) self.eos_idx = getattr(opt, 'eos_idx', 0) self.pad_idx = getattr(opt, 'pad_idx', 0) self.use_bn = getattr(opt, 'use_bn', 0) self.ss_prob = 0.0 # Schedule sampling probability self.embed = nn.Sequential(nn.Embedding(self.vocab_size + 1, self.input_encoding_size), nn.ReLU(), nn.Dropout(self.drop_prob_lm)) self.fc_embed = nn.Sequential(nn.Linear(self.fc_feat_size, self.rnn_size), nn.ReLU(), nn.Dropout(self.drop_prob_lm)) self.att_embed = nn.Sequential(*( ((nn.BatchNorm1d(self.att_feat_size),) if self.use_bn else ())+ (nn.Linear(self.att_feat_size, self.rnn_size), nn.ReLU(), nn.Dropout(self.drop_prob_lm))+ ((nn.BatchNorm1d(self.rnn_size),) if self.use_bn==2 else ()))) self.logit_layers = getattr(opt, 'logit_layers', 1) if self.logit_layers == 1: self.logit = nn.Linear(self.rnn_size, self.vocab_size + 1) else: self.logit = [[nn.Linear(self.rnn_size, self.rnn_size), nn.ReLU(), nn.Dropout(0.5)] for _ in range(opt.logit_layers - 1)] self.logit = nn.Sequential(*(reduce(lambda x,y:x+y, self.logit) + [nn.Linear(self.rnn_size, self.vocab_size + 1)])) self.ctx2att = nn.Linear(self.rnn_size, self.att_hid_size) # For remove bad endding self.vocab = opt.vocab self.bad_endings_ix = [int(k) for k,v in self.vocab.items() if v in bad_endings] def init_hidden(self, bsz): weight = self.logit.weight \ if hasattr(self.logit, "weight") \ else self.logit[0].weight return (weight.new_zeros(self.num_layers, bsz, self.rnn_size), weight.new_zeros(self.num_layers, bsz, self.rnn_size)) def clip_att(self, att_feats, box_feats, att_masks): # Clip the length of att_masks and att_feats to the maximum length if att_masks is not None: max_len = att_masks.data.long().sum(1).max() att_feats = att_feats[:, :max_len].contiguous() att_masks = att_masks[:, :max_len].contiguous() box_feats = box_feats[:, :max_len].contiguous() return att_feats, box_feats, att_masks def _prepare_feature(self, fc_feats, att_feats, att_masks): att_feats, att_masks = self.clip_att(att_feats, att_masks) # embed fc and att feats fc_feats = self.fc_embed(fc_feats) att_feats = pack_wrapper(self.att_embed, att_feats, att_masks) # Project the attention feats first to reduce memory and computation comsumptions. p_att_feats = self.ctx2att(att_feats) return fc_feats, att_feats, p_att_feats, att_masks def _forward(self, fc_feats, att_feats, trace_feats, seq, att_masks=None, trace_masks=None): batch_size = fc_feats.size(0) if seq.ndim == 3: # B * seq_per_img * seq_len seq = seq.reshape(-1, seq.shape[2]) seq_per_img = seq.shape[0] // batch_size state = self.init_hidden(batch_size*seq_per_img) outputs = fc_feats.new_zeros(batch_size*seq_per_img, seq.size(1), self.vocab_size+1) # Prepare the features p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = self._prepare_feature(fc_feats, att_feats, trace_feats, att_masks, trace_masks) # pp_att_feats is used for attention, we cache it in advance to reduce computation cost if seq_per_img > 1: p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = utils.repeat_tensors(seq_per_img, [p_fc_feats, p_att_feats, pp_att_feats, p_att_masks] ) for i in range(seq.size(1)): if self.training and i >= 1 and self.ss_prob > 0.0: # otherwiste no need to sample sample_prob = fc_feats.new(batch_size*seq_per_img).uniform_(0, 1) sample_mask = sample_prob < self.ss_prob if sample_mask.sum() == 0: it = seq[:, i].clone() else: sample_ind = sample_mask.nonzero().view(-1) it = seq[:, i].data.clone() prob_prev = torch.exp(outputs[:, i-1].detach()) # fetch prev distribution: shape Nx(M+1) it.index_copy_(0, sample_ind, torch.multinomial(prob_prev, 1).view(-1).index_select(0, sample_ind)) else: it = seq[:, i].clone() # break if all the sequences end if i >= 1 and seq[:, i].sum() == 0: break output, state = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, state) outputs[:, i] = output return outputs def get_logprobs_state(self, it, fc_feats, att_feats, p_att_feats, att_masks, state, output_logsoftmax=1): # 'it' contains a word index xt = self.embed(it) output, state = self.core(xt, fc_feats, att_feats, p_att_feats, state, att_masks) if output_logsoftmax: logprobs = F.log_softmax(self.logit(output), dim=1) else: logprobs = self.logit(output) return logprobs, state def _old_sample_beam(self, fc_feats, att_feats, att_masks=None, opt={}): beam_size = opt.get('beam_size', 10) group_size = opt.get('group_size', 1) sample_n = opt.get('sample_n', 10) # when sample_n == beam_size then each beam is a sample. assert sample_n == 1 or sample_n == beam_size // group_size, 'when beam search, sample_n == 1 or beam search' batch_size = fc_feats.size(0) p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = self._prepare_feature(fc_feats, att_feats, att_masks) assert beam_size <= self.vocab_size + 1, 'lets assume this for now, otherwise this corner case causes a few headaches down the road. can be dealt with in future if needed' seq = fc_feats.new_full((batch_size*sample_n, self.seq_length), self.pad_idx, dtype=torch.long) seqLogprobs = fc_feats.new_zeros(batch_size*sample_n, self.seq_length, self.vocab_size + 1) # lets process every image independently for now, for simplicity self.done_beams = [[] for _ in range(batch_size)] for k in range(batch_size): state = self.init_hidden(beam_size) tmp_fc_feats, tmp_att_feats, tmp_p_att_feats, tmp_att_masks = utils.repeat_tensors(beam_size, [p_fc_feats[k:k+1], p_att_feats[k:k+1], pp_att_feats[k:k+1], p_att_masks[k:k+1] if att_masks is not None else None] ) for t in range(1): if t == 0: # input <bos> it = fc_feats.new_full([beam_size], self.bos_idx, dtype=torch.long) logprobs, state = self.get_logprobs_state(it, tmp_fc_feats, tmp_att_feats, tmp_p_att_feats, tmp_att_masks, state) self.done_beams[k] = self.old_beam_search(state, logprobs, tmp_fc_feats, tmp_att_feats, tmp_p_att_feats, tmp_att_masks, opt=opt) if sample_n == beam_size: for _n in range(sample_n): seq[k*sample_n+_n, :] = self.done_beams[k][_n]['seq'] seqLogprobs[k*sample_n+_n, :] = self.done_beams[k][_n]['logps'] else: seq[k, :] = self.done_beams[k][0]['seq'] # the first beam has highest cumulative score seqLogprobs[k, :] = self.done_beams[k][0]['logps'] # return the samples and their log likelihoods return seq, seqLogprobs def _sample_beam(self, fc_feats, att_feats, trace_feats, box_feats, att_masks=None, trace_masks=None, opt={}): beam_size = opt.get('beam_size', 10) group_size = opt.get('group_size', 1) sample_n = opt.get('sample_n', 10) # when sample_n == beam_size then each beam is a sample. assert sample_n == 1 or sample_n == beam_size // group_size, 'when beam search, sample_n == 1 or beam search' batch_size = fc_feats.size(0) p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = self._prepare_feature(fc_feats, att_feats, trace_feats, box_feats, att_masks, trace_masks) assert beam_size <= self.vocab_size + 1, 'lets assume this for now, otherwise this corner case causes a few headaches down the road. can be dealt with in future if needed' seq = fc_feats.new_full((batch_size*sample_n, self.seq_length), self.pad_idx, dtype=torch.long) seqLogprobs = fc_feats.new_zeros(batch_size*sample_n, self.seq_length, self.vocab_size + 1) # lets process every image independently for now, for simplicity self.done_beams = [[] for _ in range(batch_size)] state = self.init_hidden(batch_size) # first step, feed bos it = fc_feats.new_full([batch_size], self.bos_idx, dtype=torch.long) logprobs, state = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, state) p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = utils.repeat_tensors(beam_size, [p_fc_feats, p_att_feats, pp_att_feats, p_att_masks] ) self.done_beams = self.beam_search(state, logprobs, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, opt=opt) for k in range(batch_size): if sample_n == beam_size: for _n in range(sample_n): seq_len = self.done_beams[k][_n]['seq'].shape[0] seq[k*sample_n+_n, :seq_len] = self.done_beams[k][_n]['seq'] seqLogprobs[k*sample_n+_n, :seq_len] = self.done_beams[k][_n]['logps'] else: seq_len = self.done_beams[k][0]['seq'].shape[0] seq[k, :seq_len] = self.done_beams[k][0]['seq'] # the first beam has highest cumulative score seqLogprobs[k, :seq_len] = self.done_beams[k][0]['logps'] # return the samples and their log likelihoods return seq, seqLogprobs def _sample(self, fc_feats, att_feats, trace_feats, box_feats, att_masks=None, trace_masks=None, task=None, opt={}): sample_method = opt.get('sample_method', 'greedy') beam_size = opt.get('beam_size', 1) temperature = opt.get('temperature', 1.0) sample_n = int(opt.get('sample_n', 1)) group_size = opt.get('group_size', 1) output_logsoftmax = opt.get('output_logsoftmax', 1) decoding_constraint = opt.get('decoding_constraint', 0) block_trigrams = opt.get('block_trigrams', 0) remove_bad_endings = opt.get('remove_bad_endings', 0) if beam_size > 1 and sample_method in ['greedy', 'beam_search']: return self._sample_beam(fc_feats, att_feats, trace_feats, box_feats, att_masks, trace_masks, opt) if group_size > 1: return self._diverse_sample(fc_feats, att_feats, att_masks, opt) batch_size = fc_feats.size(0) state = self.init_hidden(batch_size*sample_n) p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = self._prepare_feature(fc_feats, att_feats, trace_feats, box_feats, att_masks, trace_masks) if sample_n > 1: p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = utils.repeat_tensors(sample_n, [p_fc_feats, p_att_feats, pp_att_feats, p_att_masks] ) trigrams = [] # will be a list of batch_size dictionaries seq = fc_feats.new_full((batch_size*sample_n, self.seq_length), self.pad_idx, dtype=torch.long) seqLogprobs = fc_feats.new_zeros(batch_size*sample_n, self.seq_length, self.vocab_size + 1) for t in range(self.seq_length + 1): if t == 0: # input <bos> it = fc_feats.new_full([batch_size*sample_n], self.bos_idx, dtype=torch.long) logprobs, state = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, state, output_logsoftmax=output_logsoftmax) if decoding_constraint and t > 0: tmp = logprobs.new_zeros(logprobs.size()) tmp.scatter_(1, seq[:,t-1].data.unsqueeze(1), float('-inf')) logprobs = logprobs + tmp if remove_bad_endings and t > 0: tmp = logprobs.new_zeros(logprobs.size()) prev_bad = np.isin(seq[:,t-1].data.cpu().numpy(), self.bad_endings_ix) # Make it impossible to generate bad_endings tmp[torch.from_numpy(prev_bad.astype('uint8')), 0] = float('-inf') logprobs = logprobs + tmp # Mess with trigrams # Copy from https://github.com/lukemelas/image-paragraph-captioning if block_trigrams and t >= 3: # Store trigram generated at last step prev_two_batch = seq[:,t-3:t-1] for i in range(batch_size): # = seq.size(0) prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item()) current = seq[i][t-1] if t == 3: # initialize trigrams.append({prev_two: [current]}) # {LongTensor: list containing 1 int} elif t > 3: if prev_two in trigrams[i]: # add to list trigrams[i][prev_two].append(current) else: # create list trigrams[i][prev_two] = [current] # Block used trigrams at next step prev_two_batch = seq[:,t-2:t] mask = torch.zeros(logprobs.size(), requires_grad=False).to(logprobs.device) # batch_size x vocab_size for i in range(batch_size): prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item()) if prev_two in trigrams[i]: for j in trigrams[i][prev_two]: mask[i,j] += 1 # Apply mask to log probs #logprobs = logprobs - (mask * 1e9) alpha = 2.0 # = 4 logprobs = logprobs + (mask * -0.693 * alpha) # ln(1/2) * alpha (alpha -> infty works best) # sample the next word if t == self.seq_length: # skip if we achieve maximum length break it, sampleLogprobs = self.sample_next_word(logprobs, sample_method, temperature) # stop when all finished if t == 0: unfinished = it != self.eos_idx else: it[~unfinished] = self.pad_idx # This allows eos_idx not being overwritten to 0 logprobs = logprobs * unfinished.unsqueeze(1).to(logprobs) unfinished = unfinished & (it != self.eos_idx) seq[:,t] = it seqLogprobs[:,t] = logprobs # quit loop if all sequences have finished if unfinished.sum() == 0: break return seq, seqLogprobs def _diverse_sample(self, fc_feats, att_feats, att_masks=None, opt={}): sample_method = opt.get('sample_method', 'greedy') beam_size = opt.get('beam_size', 1) temperature = opt.get('temperature', 1.0) group_size = opt.get('group_size', 1) diversity_lambda = opt.get('diversity_lambda', 0.5) decoding_constraint = opt.get('decoding_constraint', 0) block_trigrams = opt.get('block_trigrams', 0) remove_bad_endings = opt.get('remove_bad_endings', 0) batch_size = fc_feats.size(0) state = self.init_hidden(batch_size) p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = self._prepare_feature(fc_feats, att_feats, att_masks) trigrams_table = [[] for _ in range(group_size)] # will be a list of batch_size dictionaries seq_table = [fc_feats.new_full((batch_size, self.seq_length), self.pad_idx, dtype=torch.long) for _ in range(group_size)] seqLogprobs_table = [fc_feats.new_zeros(batch_size, self.seq_length) for _ in range(group_size)] state_table = [self.init_hidden(batch_size) for _ in range(group_size)] for tt in range(self.seq_length + group_size): for divm in range(group_size): t = tt - divm seq = seq_table[divm] seqLogprobs = seqLogprobs_table[divm] trigrams = trigrams_table[divm] if t >= 0 and t <= self.seq_length-1: if t == 0: # input <bos> it = fc_feats.new_full([batch_size], self.bos_idx, dtype=torch.long) else: it = seq[:, t-1] # changed logprobs, state_table[divm] = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, state_table[divm]) # changed logprobs = F.log_softmax(logprobs / temperature, dim=-1) # Add diversity if divm > 0: unaug_logprobs = logprobs.clone() for prev_choice in range(divm): prev_decisions = seq_table[prev_choice][:, t] logprobs[:, prev_decisions] = logprobs[:, prev_decisions] - diversity_lambda if decoding_constraint and t > 0: tmp = logprobs.new_zeros(logprobs.size()) tmp.scatter_(1, seq[:,t-1].data.unsqueeze(1), float('-inf')) logprobs = logprobs + tmp if remove_bad_endings and t > 0: tmp = logprobs.new_zeros(logprobs.size()) prev_bad = np.isin(seq[:,t-1].data.cpu().numpy(), self.bad_endings_ix) # Impossible to generate remove_bad_endings tmp[torch.from_numpy(prev_bad.astype('uint8')), 0] = float('-inf') logprobs = logprobs + tmp # Mess with trigrams if block_trigrams and t >= 3: # Store trigram generated at last step prev_two_batch = seq[:,t-3:t-1] for i in range(batch_size): # = seq.size(0) prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item()) current = seq[i][t-1] if t == 3: # initialize trigrams.append({prev_two: [current]}) # {LongTensor: list containing 1 int} elif t > 3: if prev_two in trigrams[i]: # add to list trigrams[i][prev_two].append(current) else: # create list trigrams[i][prev_two] = [current] # Block used trigrams at next step prev_two_batch = seq[:,t-2:t] mask = torch.zeros(logprobs.size(), requires_grad=False).cuda() # batch_size x vocab_size for i in range(batch_size): prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item()) if prev_two in trigrams[i]: for j in trigrams[i][prev_two]: mask[i,j] += 1 # Apply mask to log probs #logprobs = logprobs - (mask * 1e9) alpha = 2.0 # = 4 logprobs = logprobs + (mask * -0.693 * alpha) # ln(1/2) * alpha (alpha -> infty works best) it, sampleLogprobs = self.sample_next_word(logprobs, sample_method, 1) # stop when all finished if t == 0: unfinished = it != self.eos_idx else: unfinished = seq[:,t-1] != self.pad_idx & seq[:,t-1] != self.eos_idx it[~unfinished] = self.pad_idx unfinished = unfinished & (it != self.eos_idx) # changed seq[:,t] = it seqLogprobs[:,t] = sampleLogprobs.view(-1) return torch.stack(seq_table, 1).reshape(batch_size * group_size, -1), torch.stack(seqLogprobs_table, 1).reshape(batch_size * group_size, -1) class AdaAtt_lstm(nn.Module): def __init__(self, opt, use_maxout=True): super(AdaAtt_lstm, self).__init__() self.input_encoding_size = opt.input_encoding_size #self.rnn_type = opt.rnn_type self.rnn_size = opt.rnn_size self.num_layers = opt.num_layers self.drop_prob_lm = opt.drop_prob_lm self.fc_feat_size = opt.fc_feat_size self.att_feat_size = opt.att_feat_size self.att_hid_size = opt.att_hid_size self.use_maxout = use_maxout # Build a LSTM self.w2h = nn.Linear(self.input_encoding_size, (4+(use_maxout==True)) * self.rnn_size) self.v2h = nn.Linear(self.rnn_size, (4+(use_maxout==True)) * self.rnn_size) self.i2h = nn.ModuleList([nn.Linear(self.rnn_size, (4+(use_maxout==True)) * self.rnn_size) for _ in range(self.num_layers - 1)]) self.h2h = nn.ModuleList([nn.Linear(self.rnn_size, (4+(use_maxout==True)) * self.rnn_size) for _ in range(self.num_layers)]) # Layers for getting the fake region if self.num_layers == 1: self.r_w2h = nn.Linear(self.input_encoding_size, self.rnn_size) self.r_v2h = nn.Linear(self.rnn_size, self.rnn_size) else: self.r_i2h = nn.Linear(self.rnn_size, self.rnn_size) self.r_h2h = nn.Linear(self.rnn_size, self.rnn_size) def forward(self, xt, img_fc, state): hs = [] cs = [] for L in range(self.num_layers): # c,h from previous timesteps prev_h = state[0][L] prev_c = state[1][L] # the input to this layer if L == 0: x = xt i2h = self.w2h(x) + self.v2h(img_fc) else: x = hs[-1] x = F.dropout(x, self.drop_prob_lm, self.training) i2h = self.i2h[L-1](x) all_input_sums = i2h+self.h2h[L](prev_h) sigmoid_chunk = all_input_sums.narrow(1, 0, 3 * self.rnn_size) sigmoid_chunk = torch.sigmoid(sigmoid_chunk) # decode the gates in_gate = sigmoid_chunk.narrow(1, 0, self.rnn_size) forget_gate = sigmoid_chunk.narrow(1, self.rnn_size, self.rnn_size) out_gate = sigmoid_chunk.narrow(1, self.rnn_size * 2, self.rnn_size) # decode the write inputs if not self.use_maxout: in_transform = torch.tanh(all_input_sums.narrow(1, 3 * self.rnn_size, self.rnn_size)) else: in_transform = all_input_sums.narrow(1, 3 * self.rnn_size, 2 * self.rnn_size) in_transform = torch.max(\ in_transform.narrow(1, 0, self.rnn_size), in_transform.narrow(1, self.rnn_size, self.rnn_size)) # perform the LSTM update next_c = forget_gate * prev_c + in_gate * in_transform # gated cells form the output tanh_nex_c = torch.tanh(next_c) next_h = out_gate * tanh_nex_c if L == self.num_layers-1: if L == 0: i2h = self.r_w2h(x) + self.r_v2h(img_fc) else: i2h = self.r_i2h(x) n5 = i2h+self.r_h2h(prev_h) fake_region = torch.sigmoid(n5) * tanh_nex_c cs.append(next_c) hs.append(next_h) # set up the decoder top_h = hs[-1] top_h = F.dropout(top_h, self.drop_prob_lm, self.training) fake_region = F.dropout(fake_region, self.drop_prob_lm, self.training) state = (torch.cat([_.unsqueeze(0) for _ in hs], 0), torch.cat([_.unsqueeze(0) for _ in cs], 0)) return top_h, fake_region, state class AdaAtt_attention(nn.Module): def __init__(self, opt): super(AdaAtt_attention, self).__init__() self.input_encoding_size = opt.input_encoding_size #self.rnn_type = opt.rnn_type self.rnn_size = opt.rnn_size self.drop_prob_lm = opt.drop_prob_lm self.att_hid_size = opt.att_hid_size # fake region embed self.fr_linear = nn.Sequential( nn.Linear(self.rnn_size, self.input_encoding_size), nn.ReLU(), nn.Dropout(self.drop_prob_lm)) self.fr_embed = nn.Linear(self.input_encoding_size, self.att_hid_size) # h out embed self.ho_linear = nn.Sequential( nn.Linear(self.rnn_size, self.input_encoding_size), nn.Tanh(), nn.Dropout(self.drop_prob_lm)) self.ho_embed = nn.Linear(self.input_encoding_size, self.att_hid_size) self.alpha_net = nn.Linear(self.att_hid_size, 1) self.att2h = nn.Linear(self.rnn_size, self.rnn_size) def forward(self, h_out, fake_region, conv_feat, conv_feat_embed, att_masks=None): # View into three dimensions att_size = conv_feat.numel() // conv_feat.size(0) // self.rnn_size conv_feat = conv_feat.view(-1, att_size, self.rnn_size) conv_feat_embed = conv_feat_embed.view(-1, att_size, self.att_hid_size) # view neighbor from bach_size * neighbor_num x rnn_size to bach_size x rnn_size * neighbor_num fake_region = self.fr_linear(fake_region) fake_region_embed = self.fr_embed(fake_region) h_out_linear = self.ho_linear(h_out) h_out_embed = self.ho_embed(h_out_linear) txt_replicate = h_out_embed.unsqueeze(1).expand(h_out_embed.size(0), att_size + 1, h_out_embed.size(1)) img_all = torch.cat([fake_region.view(-1,1,self.input_encoding_size), conv_feat], 1) img_all_embed = torch.cat([fake_region_embed.view(-1,1,self.input_encoding_size), conv_feat_embed], 1) hA = torch.tanh(img_all_embed + txt_replicate) hA = F.dropout(hA,self.drop_prob_lm, self.training) hAflat = self.alpha_net(hA.view(-1, self.att_hid_size)) PI = F.softmax(hAflat.view(-1, att_size + 1), dim=1) if att_masks is not None: att_masks = att_masks.view(-1, att_size) PI = PI * torch.cat([att_masks[:,:1], att_masks], 1) # assume one one at the first time step. PI = PI / PI.sum(1, keepdim=True) visAtt = torch.bmm(PI.unsqueeze(1), img_all) visAttdim = visAtt.squeeze(1) atten_out = visAttdim + h_out_linear h = torch.tanh(self.att2h(atten_out)) h = F.dropout(h, self.drop_prob_lm, self.training) return h class AdaAttCore(nn.Module): def __init__(self, opt, use_maxout=False): super(AdaAttCore, self).__init__() self.lstm = AdaAtt_lstm(opt, use_maxout) self.attention = AdaAtt_attention(opt) def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None): h_out, p_out, state = self.lstm(xt, fc_feats, state) atten_out = self.attention(h_out, p_out, att_feats, p_att_feats, att_masks) return atten_out, state class UpDownCore(nn.Module): def __init__(self, opt, use_maxout=False): super(UpDownCore, self).__init__() self.drop_prob_lm = opt.drop_prob_lm self.att_lstm = nn.LSTMCell(opt.input_encoding_size + opt.rnn_size * 2, opt.rnn_size) # we, fc, h^2_t-1 self.lang_lstm = nn.LSTMCell(opt.rnn_size * 2, opt.rnn_size) # h^1_t, \hat v self.attention = Attention(opt) def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None): prev_h = state[0][-1] att_lstm_input = torch.cat([prev_h, fc_feats, xt], 1) h_att, c_att = self.att_lstm(att_lstm_input, (state[0][0], state[1][0])) att = self.attention(h_att, att_feats, p_att_feats, att_masks) lang_lstm_input = torch.cat([att, h_att], 1) # lang_lstm_input = torch.cat([att, F.dropout(h_att, self.drop_prob_lm, self.training)], 1) ????? h_lang, c_lang = self.lang_lstm(lang_lstm_input, (state[0][1], state[1][1])) output = F.dropout(h_lang, self.drop_prob_lm, self.training) state = (torch.stack([h_att, h_lang]), torch.stack([c_att, c_lang])) return output, state ############################################################################ # Notice: # StackAtt and DenseAtt are models that I randomly designed. # They are not related to any paper. ############################################################################ from .FCModel import LSTMCore class StackAttCore(nn.Module): def __init__(self, opt, use_maxout=False): super(StackAttCore, self).__init__() self.drop_prob_lm = opt.drop_prob_lm # self.att0 = Attention(opt) self.att1 = Attention(opt) self.att2 = Attention(opt) opt_input_encoding_size = opt.input_encoding_size opt.input_encoding_size = opt.input_encoding_size + opt.rnn_size self.lstm0 = LSTMCore(opt) # att_feat + word_embedding opt.input_encoding_size = opt.rnn_size * 2 self.lstm1 = LSTMCore(opt) self.lstm2 = LSTMCore(opt) opt.input_encoding_size = opt_input_encoding_size # self.emb1 = nn.Linear(opt.rnn_size, opt.rnn_size) self.emb2 = nn.Linear(opt.rnn_size, opt.rnn_size) def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None): # att_res_0 = self.att0(state[0][-1], att_feats, p_att_feats, att_masks) h_0, state_0 = self.lstm0(torch.cat([xt,fc_feats],1), [state[0][0:1], state[1][0:1]]) att_res_1 = self.att1(h_0, att_feats, p_att_feats, att_masks) h_1, state_1 = self.lstm1(torch.cat([h_0,att_res_1],1), [state[0][1:2], state[1][1:2]]) att_res_2 = self.att2(h_1 + self.emb2(att_res_1), att_feats, p_att_feats, att_masks) h_2, state_2 = self.lstm2(torch.cat([h_1,att_res_2],1), [state[0][2:3], state[1][2:3]]) return h_2, [torch.cat(_, 0) for _ in zip(state_0, state_1, state_2)] class DenseAttCore(nn.Module): def __init__(self, opt, use_maxout=False): super(DenseAttCore, self).__init__() self.drop_prob_lm = opt.drop_prob_lm # self.att0 = Attention(opt) self.att1 = Attention(opt) self.att2 = Attention(opt) opt_input_encoding_size = opt.input_encoding_size opt.input_encoding_size = opt.input_encoding_size + opt.rnn_size self.lstm0 = LSTMCore(opt) # att_feat + word_embedding opt.input_encoding_size = opt.rnn_size * 2 self.lstm1 = LSTMCore(opt) self.lstm2 = LSTMCore(opt) opt.input_encoding_size = opt_input_encoding_size # self.emb1 = nn.Linear(opt.rnn_size, opt.rnn_size) self.emb2 = nn.Linear(opt.rnn_size, opt.rnn_size) # fuse h_0 and h_1 self.fusion1 = nn.Sequential(nn.Linear(opt.rnn_size*2, opt.rnn_size), nn.ReLU(), nn.Dropout(opt.drop_prob_lm)) # fuse h_0, h_1 and h_2 self.fusion2 = nn.Sequential(nn.Linear(opt.rnn_size*3, opt.rnn_size), nn.ReLU(), nn.Dropout(opt.drop_prob_lm)) def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None): # att_res_0 = self.att0(state[0][-1], att_feats, p_att_feats, att_masks) h_0, state_0 = self.lstm0(torch.cat([xt,fc_feats],1), [state[0][0:1], state[1][0:1]]) att_res_1 = self.att1(h_0, att_feats, p_att_feats, att_masks) h_1, state_1 = self.lstm1(torch.cat([h_0,att_res_1],1), [state[0][1:2], state[1][1:2]]) att_res_2 = self.att2(h_1 + self.emb2(att_res_1), att_feats, p_att_feats, att_masks) h_2, state_2 = self.lstm2(torch.cat([self.fusion1(torch.cat([h_0, h_1], 1)),att_res_2],1), [state[0][2:3], state[1][2:3]]) return self.fusion2(torch.cat([h_0, h_1, h_2], 1)), [torch.cat(_, 0) for _ in zip(state_0, state_1, state_2)] class Attention(nn.Module): def __init__(self, opt): super(Attention, self).__init__() self.rnn_size = opt.rnn_size self.att_hid_size = opt.att_hid_size self.h2att = nn.Linear(self.rnn_size, self.att_hid_size) self.alpha_net = nn.Linear(self.att_hid_size, 1) def forward(self, h, att_feats, p_att_feats, att_masks=None): # The p_att_feats here is already projected att_size = att_feats.numel() // att_feats.size(0) // att_feats.size(-1) att = p_att_feats.view(-1, att_size, self.att_hid_size) att_h = self.h2att(h) # batch * att_hid_size att_h = att_h.unsqueeze(1).expand_as(att) # batch * att_size * att_hid_size dot = att + att_h # batch * att_size * att_hid_size dot = torch.tanh(dot) # batch * att_size * att_hid_size dot = dot.view(-1, self.att_hid_size) # (batch * att_size) * att_hid_size dot = self.alpha_net(dot) # (batch * att_size) * 1 dot = dot.view(-1, att_size) # batch * att_size weight = F.softmax(dot, dim=1) # batch * att_size if att_masks is not None: weight = weight * att_masks.view(-1, att_size).to(weight) weight = weight / weight.sum(1, keepdim=True) # normalize to 1 att_feats_ = att_feats.view(-1, att_size, att_feats.size(-1)) # batch * att_size * att_feat_size att_res = torch.bmm(weight.unsqueeze(1), att_feats_).squeeze(1) # batch * att_feat_size return att_res class Att2in2Core(nn.Module): def __init__(self, opt): super(Att2in2Core, self).__init__() self.input_encoding_size = opt.input_encoding_size #self.rnn_type = opt.rnn_type self.rnn_size = opt.rnn_size #self.num_layers = opt.num_layers self.drop_prob_lm = opt.drop_prob_lm self.fc_feat_size = opt.fc_feat_size self.att_feat_size = opt.att_feat_size self.att_hid_size = opt.att_hid_size # Build a LSTM self.a2c = nn.Linear(self.rnn_size, 2 * self.rnn_size) self.i2h = nn.Linear(self.input_encoding_size, 5 * self.rnn_size) self.h2h = nn.Linear(self.rnn_size, 5 * self.rnn_size) self.dropout = nn.Dropout(self.drop_prob_lm) self.attention = Attention(opt) def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None): att_res = self.attention(state[0][-1], att_feats, p_att_feats, att_masks) all_input_sums = self.i2h(xt) + self.h2h(state[0][-1]) sigmoid_chunk = all_input_sums.narrow(1, 0, 3 * self.rnn_size) sigmoid_chunk = torch.sigmoid(sigmoid_chunk) in_gate = sigmoid_chunk.narrow(1, 0, self.rnn_size) forget_gate = sigmoid_chunk.narrow(1, self.rnn_size, self.rnn_size) out_gate = sigmoid_chunk.narrow(1, self.rnn_size * 2, self.rnn_size) in_transform = all_input_sums.narrow(1, 3 * self.rnn_size, 2 * self.rnn_size) + \ self.a2c(att_res) in_transform = torch.max(\ in_transform.narrow(1, 0, self.rnn_size), in_transform.narrow(1, self.rnn_size, self.rnn_size)) next_c = forget_gate * state[1][-1] + in_gate * in_transform next_h = out_gate * torch.tanh(next_c) output = self.dropout(next_h) state = (next_h.unsqueeze(0), next_c.unsqueeze(0)) return output, state class Att2inCore(Att2in2Core): def __init__(self, opt): super(Att2inCore, self).__init__(opt) del self.a2c self.a2c = nn.Linear(self.att_feat_size, 2 * self.rnn_size) """ Note this is my attempt to replicate att2all model in self-critical paper. However, this is not a correct replication actually. Will fix it. """ class Att2all2Core(nn.Module): def __init__(self, opt): super(Att2all2Core, self).__init__() self.input_encoding_size = opt.input_encoding_size #self.rnn_type = opt.rnn_type self.rnn_size = opt.rnn_size #self.num_layers = opt.num_layers self.drop_prob_lm = opt.drop_prob_lm self.fc_feat_size = opt.fc_feat_size self.att_feat_size = opt.att_feat_size self.att_hid_size = opt.att_hid_size # Build a LSTM self.a2h = nn.Linear(self.rnn_size, 5 * self.rnn_size) self.i2h = nn.Linear(self.input_encoding_size, 5 * self.rnn_size) self.h2h = nn.Linear(self.rnn_size, 5 * self.rnn_size) self.dropout = nn.Dropout(self.drop_prob_lm) self.attention = Attention(opt) def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None): att_res = self.attention(state[0][-1], att_feats, p_att_feats, att_masks) all_input_sums = self.i2h(xt) + self.h2h(state[0][-1]) + self.a2h(att_res) sigmoid_chunk = all_input_sums.narrow(1, 0, 3 * self.rnn_size) sigmoid_chunk = torch.sigmoid(sigmoid_chunk) in_gate = sigmoid_chunk.narrow(1, 0, self.rnn_size) forget_gate = sigmoid_chunk.narrow(1, self.rnn_size, self.rnn_size) out_gate = sigmoid_chunk.narrow(1, self.rnn_size * 2, self.rnn_size) in_transform = all_input_sums.narrow(1, 3 * self.rnn_size, 2 * self.rnn_size) in_transform = torch.max(\ in_transform.narrow(1, 0, self.rnn_size), in_transform.narrow(1, self.rnn_size, self.rnn_size)) next_c = forget_gate * state[1][-1] + in_gate * in_transform next_h = out_gate * torch.tanh(next_c) output = self.dropout(next_h) state = (next_h.unsqueeze(0), next_c.unsqueeze(0)) return output, state class AdaAttModel(AttModel): def __init__(self, opt): super(AdaAttModel, self).__init__(opt) self.core = AdaAttCore(opt) # AdaAtt with maxout lstm class AdaAttMOModel(AttModel): def __init__(self, opt): super(AdaAttMOModel, self).__init__(opt) self.core = AdaAttCore(opt, True) class Att2in2Model(AttModel): def __init__(self, opt): super(Att2in2Model, self).__init__(opt) self.core = Att2in2Core(opt) delattr(self, 'fc_embed') self.fc_embed = lambda x : x class Att2all2Model(AttModel): def __init__(self, opt): super(Att2all2Model, self).__init__(opt) self.core = Att2all2Core(opt) delattr(self, 'fc_embed') self.fc_embed = lambda x : x class UpDownModel(AttModel): def __init__(self, opt): super(UpDownModel, self).__init__(opt) self.num_layers = 2 self.core = UpDownCore(opt) class StackAttModel(AttModel): def __init__(self, opt): super(StackAttModel, self).__init__(opt) self.num_layers = 3 self.core = StackAttCore(opt) class DenseAttModel(AttModel): def __init__(self, opt): super(DenseAttModel, self).__init__(opt) self.num_layers = 3 self.core = DenseAttCore(opt) class Att2inModel(AttModel): def __init__(self, opt): super(Att2inModel, self).__init__(opt) del self.embed, self.fc_embed, self.att_embed self.embed = nn.Embedding(self.vocab_size + 1, self.input_encoding_size) self.fc_embed = self.att_embed = lambda x: x del self.ctx2att self.ctx2att = nn.Linear(self.att_feat_size, self.att_hid_size) self.core = Att2inCore(opt) self.init_weights() def init_weights(self): initrange = 0.1 self.embed.weight.data.uniform_(-initrange, initrange) self.logit.bias.data.fill_(0) self.logit.weight.data.uniform_(-initrange, initrange) class NewFCModel(AttModel): def __init__(self, opt): super(NewFCModel, self).__init__(opt) self.fc_embed = nn.Linear(self.fc_feat_size, self.input_encoding_size) self.embed = nn.Embedding(self.vocab_size + 1, self.input_encoding_size) self._core = LSTMCore(opt) delattr(self, 'att_embed') self.att_embed = lambda x : x delattr(self, 'ctx2att') self.ctx2att = lambda x: x def core(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks): # Step 0, feed the input image # if (self.training and state[0].is_leaf) or \ # (not self.training and state[0].sum() == 0): # _, state = self._core(fc_feats, state) # three cases # normal mle training # Sample # beam search (diverse beam search) # fixed captioning module. is_first_step = (state[0]==0).all(2).all(0) # size: B if is_first_step.all(): _, state = self._core(fc_feats, state) elif is_first_step.any(): # This is mostly for diverse beam search I think new_state = [torch.zeros_like(_) for _ in state] new_state[0][:, ~is_first_step] = state[0][:, ~is_first_step] new_state[1][:, ~is_first_step] = state[1][:, ~is_first_step] _, state = self._core(fc_feats, state) new_state[0][:, is_first_step] = state[0][:, is_first_step] new_state[1][:, is_first_step] = state[1][:, is_first_step] state = new_state # if (state[0]==0).all(): # # Let's forget about diverse beam search first # _, state = self._core(fc_feats, state) return self._core(xt, state) def _prepare_feature(self, fc_feats, att_feats, att_masks): fc_feats = self.fc_embed(fc_feats) return fc_feats, att_feats, att_feats, att_masks class LMModel(AttModel): def __init__(self, opt): super(LMModel, self).__init__(opt) delattr(self, 'fc_embed') self.fc_embed = lambda x: x.new_zeros(x.shape[0], self.input_encoding_size) self.embed = nn.Embedding(self.vocab_size + 1, self.input_encoding_size) self._core = LSTMCore(opt) delattr(self, 'att_embed') self.att_embed = lambda x : x delattr(self, 'ctx2att') self.ctx2att = lambda x: x def core(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks): if (state[0]==0).all(): # Let's forget about diverse beam search first _, state = self._core(fc_feats, state) return self._core(xt, state) def _prepare_feature(self, fc_feats, att_feats, att_masks): fc_feats = self.fc_embed(fc_feats) return fc_feats, None, None, None
connect-caption-and-trace-main
captioning/models/AttModel_encoder_trace.py
# This file contains Att2in2, AdaAtt, AdaAttMO, UpDown model # AdaAtt is from Knowing When to Look: Adaptive Attention via A Visual Sentinel for Image Captioning # https://arxiv.org/abs/1612.01887 # AdaAttMO is a modified version with maxout lstm # Att2in is from Self-critical Sequence Training for Image Captioning # https://arxiv.org/abs/1612.00563 # In this file we only have Att2in2, which is a slightly different version of att2in, # in which the img feature embedding and word embedding is the same as what in adaatt. # UpDown is from Bottom-Up and Top-Down Attention for Image Captioning and VQA # https://arxiv.org/abs/1707.07998 # However, it may not be identical to the author's architecture. from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from . import utils from torch.nn.utils.rnn import PackedSequence, pack_padded_sequence, pad_packed_sequence from .CaptionModel import CaptionModel bad_endings = ['a','an','the','in','for','at','of','with','before','after','on','upon','near','to','is','are','am'] bad_endings += ['the'] def sort_pack_padded_sequence(input, lengths): sorted_lengths, indices = torch.sort(lengths, descending=True) tmp = pack_padded_sequence(input[indices], sorted_lengths, batch_first=True) inv_ix = indices.clone() inv_ix[indices] = torch.arange(0,len(indices)).type_as(inv_ix) return tmp, inv_ix def pad_unsort_packed_sequence(input, inv_ix): tmp, _ = pad_packed_sequence(input, batch_first=True) tmp = tmp[inv_ix] return tmp def pack_wrapper(module, att_feats, att_masks): if att_masks is not None: packed, inv_ix = sort_pack_padded_sequence(att_feats, att_masks.data.long().sum(1)) return pad_unsort_packed_sequence(PackedSequence(module(packed[0]), packed[1]), inv_ix) else: return module(att_feats) class AttModel(CaptionModel): def __init__(self, opt): super(AttModel, self).__init__() self.vocab_size = opt.vocab_size self.input_encoding_size = opt.input_encoding_size #self.rnn_type = opt.rnn_type self.rnn_size = opt.rnn_size self.num_layers = opt.num_layers self.drop_prob_lm = opt.drop_prob_lm self.seq_length = getattr(opt, 'max_length', 20) or opt.seq_length # maximum sample length self.fc_feat_size = opt.fc_feat_size self.att_feat_size = opt.att_feat_size self.att_hid_size = opt.att_hid_size self.bos_idx = getattr(opt, 'bos_idx', 0) self.eos_idx = getattr(opt, 'eos_idx', 0) self.pad_idx = getattr(opt, 'pad_idx', 0) self.use_bn = getattr(opt, 'use_bn', 0) self.ss_prob = 0.0 # Schedule sampling probability self.embed = nn.Sequential(nn.Embedding(self.vocab_size + 1, self.input_encoding_size), nn.ReLU(), nn.Dropout(self.drop_prob_lm)) self.fc_embed = nn.Sequential(nn.Linear(self.fc_feat_size, self.rnn_size), nn.ReLU(), nn.Dropout(self.drop_prob_lm)) self.att_embed = nn.Sequential(*( ((nn.BatchNorm1d(self.att_feat_size),) if self.use_bn else ())+ (nn.Linear(self.att_feat_size, self.rnn_size), nn.ReLU(), nn.Dropout(self.drop_prob_lm))+ ((nn.BatchNorm1d(self.rnn_size),) if self.use_bn==2 else ()))) self.logit_layers = getattr(opt, 'logit_layers', 1) if self.logit_layers == 1: self.logit = nn.Linear(self.rnn_size, self.vocab_size + 1) else: self.logit = [[nn.Linear(self.rnn_size, self.rnn_size), nn.ReLU(), nn.Dropout(0.5)] for _ in range(opt.logit_layers - 1)] self.logit = nn.Sequential(*(reduce(lambda x,y:x+y, self.logit) + [nn.Linear(self.rnn_size, self.vocab_size + 1)])) self.ctx2att = nn.Linear(self.rnn_size, self.att_hid_size) # For remove bad endding self.vocab = opt.vocab self.bad_endings_ix = [int(k) for k,v in self.vocab.items() if v in bad_endings] def init_hidden(self, bsz): weight = self.logit.weight \ if hasattr(self.logit, "weight") \ else self.logit[0].weight return (weight.new_zeros(self.num_layers, bsz, self.rnn_size), weight.new_zeros(self.num_layers, bsz, self.rnn_size)) def clip_att(self, att_feats, box_feats, att_masks): # Clip the length of att_masks and att_feats to the maximum length if att_masks is not None: max_len = att_masks.data.long().sum(1).max() att_feats = att_feats[:, :max_len].contiguous() att_masks = att_masks[:, :max_len].contiguous() box_feats = box_feats[:, :max_len].contiguous() return att_feats, box_feats, att_masks def _prepare_feature(self, fc_feats, att_feats, att_masks): att_feats, att_masks = self.clip_att(att_feats, att_masks) # embed fc and att feats fc_feats = self.fc_embed(fc_feats) att_feats = pack_wrapper(self.att_embed, att_feats, att_masks) # Project the attention feats first to reduce memory and computation comsumptions. p_att_feats = self.ctx2att(att_feats) return fc_feats, att_feats, p_att_feats, att_masks def _forward(self, fc_feats, att_feats, trace_feats, seq, att_masks=None, trace_masks=None): batch_size = fc_feats.size(0) if seq.ndim == 3: # B * seq_per_img * seq_len seq = seq.reshape(-1, seq.shape[2]) seq_per_img = seq.shape[0] // batch_size state = self.init_hidden(batch_size*seq_per_img) outputs = fc_feats.new_zeros(batch_size*seq_per_img, seq.size(1), self.vocab_size+1) # Prepare the features p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = self._prepare_feature(fc_feats, att_feats, trace_feats, att_masks, trace_masks) # pp_att_feats is used for attention, we cache it in advance to reduce computation cost if seq_per_img > 1: p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = utils.repeat_tensors(seq_per_img, [p_fc_feats, p_att_feats, pp_att_feats, p_att_masks] ) for i in range(seq.size(1)): if self.training and i >= 1 and self.ss_prob > 0.0: # otherwiste no need to sample sample_prob = fc_feats.new(batch_size*seq_per_img).uniform_(0, 1) sample_mask = sample_prob < self.ss_prob if sample_mask.sum() == 0: it = seq[:, i].clone() else: sample_ind = sample_mask.nonzero().view(-1) it = seq[:, i].data.clone() prob_prev = torch.exp(outputs[:, i-1].detach()) # fetch prev distribution: shape Nx(M+1) it.index_copy_(0, sample_ind, torch.multinomial(prob_prev, 1).view(-1).index_select(0, sample_ind)) else: it = seq[:, i].clone() # break if all the sequences end if i >= 1 and seq[:, i].sum() == 0: break output, state = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, state) outputs[:, i] = output return outputs def get_logprobs_state(self, it, fc_feats, att_feats, p_att_feats, att_masks, state, trace_feats_to_decoder, trace_masks, task, output_logsoftmax=1): # 'it' contains a word index xt = self.embed(it) if task == 'caption' or task == 'show': output, state = self.core(xt, fc_feats, att_feats, p_att_feats, state, att_masks, trace_feats_to_decoder, trace_masks, task) if output_logsoftmax: logprobs = F.log_softmax(self.logit(output), dim=1) else: logprobs = self.logit(output) return logprobs, state elif task == 'both': output, state, output_trace = self.core(xt, fc_feats, att_feats, p_att_feats, state, att_masks, trace_feats_to_decoder, trace_masks, task) if output_logsoftmax: logprobs = F.log_softmax(self.logit(output), dim=1) else: logprobs = self.logit(output) return logprobs, state, self.model.generator_trace(output_trace) def _old_sample_beam(self, fc_feats, att_feats, att_masks=None, opt={}): beam_size = opt.get('beam_size', 10) group_size = opt.get('group_size', 1) sample_n = opt.get('sample_n', 10) # when sample_n == beam_size then each beam is a sample. assert sample_n == 1 or sample_n == beam_size // group_size, 'when beam search, sample_n == 1 or beam search' batch_size = fc_feats.size(0) p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = self._prepare_feature(fc_feats, att_feats, att_masks) assert beam_size <= self.vocab_size + 1, 'lets assume this for now, otherwise this corner case causes a few headaches down the road. can be dealt with in future if needed' seq = fc_feats.new_full((batch_size*sample_n, self.seq_length), self.pad_idx, dtype=torch.long) seqLogprobs = fc_feats.new_zeros(batch_size*sample_n, self.seq_length, self.vocab_size + 1) # lets process every image independently for now, for simplicity self.done_beams = [[] for _ in range(batch_size)] for k in range(batch_size): state = self.init_hidden(beam_size) tmp_fc_feats, tmp_att_feats, tmp_p_att_feats, tmp_att_masks = utils.repeat_tensors(beam_size, [p_fc_feats[k:k+1], p_att_feats[k:k+1], pp_att_feats[k:k+1], p_att_masks[k:k+1] if att_masks is not None else None] ) for t in range(1): if t == 0: # input <bos> it = fc_feats.new_full([beam_size], self.bos_idx, dtype=torch.long) logprobs, state = self.get_logprobs_state(it, tmp_fc_feats, tmp_att_feats, tmp_p_att_feats, tmp_att_masks, state) self.done_beams[k] = self.old_beam_search(state, logprobs, tmp_fc_feats, tmp_att_feats, tmp_p_att_feats, tmp_att_masks, opt=opt) if sample_n == beam_size: for _n in range(sample_n): seq[k*sample_n+_n, :] = self.done_beams[k][_n]['seq'] seqLogprobs[k*sample_n+_n, :] = self.done_beams[k][_n]['logps'] else: seq[k, :] = self.done_beams[k][0]['seq'] # the first beam has highest cumulative score seqLogprobs[k, :] = self.done_beams[k][0]['logps'] # return the samples and their log likelihoods return seq, seqLogprobs def _sample_beam(self, fc_feats, att_feats, trace_feats, box_feats, att_masks=None, trace_masks=None, task=None, opt={}): beam_size = opt.get('beam_size', 10) group_size = opt.get('group_size', 1) sample_n = opt.get('sample_n', 10) # when sample_n == beam_size then each beam is a sample. assert sample_n == 1 or sample_n == beam_size // group_size, 'when beam search, sample_n == 1 or beam search' batch_size = fc_feats.size(0) p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, trace_feats_to_decoder = self._prepare_feature(fc_feats, att_feats, trace_feats, box_feats, att_masks, trace_masks) assert beam_size <= self.vocab_size + 1, 'lets assume this for now, otherwise this corner case causes a few headaches down the road. can be dealt with in future if needed' seq = fc_feats.new_full((batch_size*sample_n, self.seq_length), self.pad_idx, dtype=torch.long) seqLogprobs = fc_feats.new_zeros(batch_size*sample_n, self.seq_length, self.vocab_size + 1) # lets process every image independently for now, for simplicity self.done_beams = [[] for _ in range(batch_size)] state = self.init_hidden(batch_size) # first step, feed bos it = fc_feats.new_full([batch_size], self.bos_idx, dtype=torch.long) logprobs, state = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, state, trace_feats_to_decoder, trace_masks, task) p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = utils.repeat_tensors(beam_size, [p_fc_feats, p_att_feats, pp_att_feats, p_att_masks] ) self.done_beams = self.beam_search(state, logprobs, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, trace_feats_to_decoder, trace_masks, task, opt=opt) for k in range(batch_size): if sample_n == beam_size: for _n in range(sample_n): seq_len = self.done_beams[k][_n]['seq'].shape[0] seq[k*sample_n+_n, :seq_len] = self.done_beams[k][_n]['seq'] seqLogprobs[k*sample_n+_n, :seq_len] = self.done_beams[k][_n]['logps'] else: seq_len = self.done_beams[k][0]['seq'].shape[0] seq[k, :seq_len] = self.done_beams[k][0]['seq'] # the first beam has highest cumulative score seqLogprobs[k, :seq_len] = self.done_beams[k][0]['logps'] # return the samples and their log likelihoods return seq, seqLogprobs def _sample(self, fc_feats, att_feats, trace_feats, box_feats, att_masks=None, trace_masks=None, task=None, opt={}): sample_method = opt.get('sample_method', 'greedy') beam_size = opt.get('beam_size', 1) temperature = opt.get('temperature', 1.0) sample_n = int(opt.get('sample_n', 1)) group_size = opt.get('group_size', 1) output_logsoftmax = opt.get('output_logsoftmax', 1) decoding_constraint = opt.get('decoding_constraint', 0) block_trigrams = opt.get('block_trigrams', 0) remove_bad_endings = opt.get('remove_bad_endings', 0) if beam_size > 1 and sample_method in ['greedy', 'beam_search']: return self._sample_beam(fc_feats, att_feats, trace_feats, box_feats, att_masks, trace_masks, task, opt) if group_size > 1: return self._diverse_sample(fc_feats, att_feats, att_masks, opt) batch_size = fc_feats.size(0) state = self.init_hidden(batch_size*sample_n) p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, trace_feats_to_decoder = \ self._prepare_feature(fc_feats, att_feats, trace_feats, box_feats, att_masks, trace_masks) if sample_n > 1: p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = utils.repeat_tensors(sample_n, [p_fc_feats, p_att_feats, pp_att_feats, p_att_masks] ) trigrams = [] # will be a list of batch_size dictionaries seq = fc_feats.new_full((batch_size*sample_n, self.seq_length), self.pad_idx, dtype=torch.long) seqLogprobs = fc_feats.new_zeros(batch_size*sample_n, self.seq_length, self.vocab_size + 1) if task == 'both': tmp_trace_feats = torch.zeros([trace_feats_to_decoder.shape[0], 1, trace_feats_to_decoder.shape[2]]).to(trace_masks.device) for t in range(self.seq_length + 1): if t == 0: # input <bos> it = fc_feats.new_full([batch_size*sample_n], self.bos_idx, dtype=torch.long) if task == 'caption' or task == 'show': logprobs, state = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, state, trace_feats_to_decoder, trace_masks, task, output_logsoftmax=output_logsoftmax) elif task == 'both': logprobs, state, output_trace = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, state, tmp_trace_feats, trace_masks, task, output_logsoftmax=output_logsoftmax) output_trace = output_trace[:, t] output_trace[:, 4] = (output_trace[:, 2] - output_trace[:, 0]) * (output_trace[:, 3] - output_trace[:, 1]) tmp_trace_feats = torch.cat([tmp_trace_feats, output_trace.unsqueeze(1)], 1) if decoding_constraint and t > 0: tmp = logprobs.new_zeros(logprobs.size()) tmp.scatter_(1, seq[:,t-1].data.unsqueeze(1), float('-inf')) logprobs = logprobs + tmp if remove_bad_endings and t > 0: tmp = logprobs.new_zeros(logprobs.size()) prev_bad = np.isin(seq[:,t-1].data.cpu().numpy(), self.bad_endings_ix) # Make it impossible to generate bad_endings tmp[torch.from_numpy(prev_bad.astype('uint8')), 0] = float('-inf') logprobs = logprobs + tmp # Mess with trigrams # Copy from https://github.com/lukemelas/image-paragraph-captioning if block_trigrams and t >= 3: # Store trigram generated at last step prev_two_batch = seq[:,t-3:t-1] for i in range(batch_size): # = seq.size(0) prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item()) current = seq[i][t-1] if t == 3: # initialize trigrams.append({prev_two: [current]}) # {LongTensor: list containing 1 int} elif t > 3: if prev_two in trigrams[i]: # add to list trigrams[i][prev_two].append(current) else: # create list trigrams[i][prev_two] = [current] # Block used trigrams at next step prev_two_batch = seq[:,t-2:t] mask = torch.zeros(logprobs.size(), requires_grad=False).to(logprobs.device) # batch_size x vocab_size for i in range(batch_size): prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item()) if prev_two in trigrams[i]: for j in trigrams[i][prev_two]: mask[i,j] += 1 # Apply mask to log probs #logprobs = logprobs - (mask * 1e9) alpha = 2.0 # = 4 logprobs = logprobs + (mask * -0.693 * alpha) # ln(1/2) * alpha (alpha -> infty works best) # sample the next word if t == self.seq_length: # skip if we achieve maximum length break it, sampleLogprobs = self.sample_next_word(logprobs, sample_method, temperature) # stop when all finished if t == 0: unfinished = it != self.eos_idx else: it[~unfinished] = self.pad_idx # This allows eos_idx not being overwritten to 0 logprobs = logprobs * unfinished.unsqueeze(1).to(logprobs) unfinished = unfinished & (it != self.eos_idx) seq[:,t] = it seqLogprobs[:,t] = logprobs # quit loop if all sequences have finished if unfinished.sum() == 0: break ### for decoder evaluate: cut at the ground truth caption length if task != 'both': for i in range(trace_masks.shape[0]): tmp_num = trace_masks[i].sum().long() seq[i, tmp_num:] = 0 seqLogprobs[i, tmp_num:, :] = 0 if task != 'both': return seq, seqLogprobs else: tmp_trace_feats = tmp_trace_feats[:, 1:-1] return seq, seqLogprobs, torch.cat([tmp_trace_feats, torch.zeros([seq.shape[0], seq.shape[1] - tmp_trace_feats.shape[1], tmp_trace_feats.shape[2]]).to(seq.device)], 1) def _diverse_sample(self, fc_feats, att_feats, att_masks=None, opt={}): sample_method = opt.get('sample_method', 'greedy') beam_size = opt.get('beam_size', 1) temperature = opt.get('temperature', 1.0) group_size = opt.get('group_size', 1) diversity_lambda = opt.get('diversity_lambda', 0.5) decoding_constraint = opt.get('decoding_constraint', 0) block_trigrams = opt.get('block_trigrams', 0) remove_bad_endings = opt.get('remove_bad_endings', 0) batch_size = fc_feats.size(0) state = self.init_hidden(batch_size) p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = self._prepare_feature(fc_feats, att_feats, att_masks) trigrams_table = [[] for _ in range(group_size)] # will be a list of batch_size dictionaries seq_table = [fc_feats.new_full((batch_size, self.seq_length), self.pad_idx, dtype=torch.long) for _ in range(group_size)] seqLogprobs_table = [fc_feats.new_zeros(batch_size, self.seq_length) for _ in range(group_size)] state_table = [self.init_hidden(batch_size) for _ in range(group_size)] for tt in range(self.seq_length + group_size): for divm in range(group_size): t = tt - divm seq = seq_table[divm] seqLogprobs = seqLogprobs_table[divm] trigrams = trigrams_table[divm] if t >= 0 and t <= self.seq_length-1: if t == 0: # input <bos> it = fc_feats.new_full([batch_size], self.bos_idx, dtype=torch.long) else: it = seq[:, t-1] # changed logprobs, state_table[divm] = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, state_table[divm]) # changed logprobs = F.log_softmax(logprobs / temperature, dim=-1) # Add diversity if divm > 0: unaug_logprobs = logprobs.clone() for prev_choice in range(divm): prev_decisions = seq_table[prev_choice][:, t] logprobs[:, prev_decisions] = logprobs[:, prev_decisions] - diversity_lambda if decoding_constraint and t > 0: tmp = logprobs.new_zeros(logprobs.size()) tmp.scatter_(1, seq[:,t-1].data.unsqueeze(1), float('-inf')) logprobs = logprobs + tmp if remove_bad_endings and t > 0: tmp = logprobs.new_zeros(logprobs.size()) prev_bad = np.isin(seq[:,t-1].data.cpu().numpy(), self.bad_endings_ix) # Impossible to generate remove_bad_endings tmp[torch.from_numpy(prev_bad.astype('uint8')), 0] = float('-inf') logprobs = logprobs + tmp # Mess with trigrams if block_trigrams and t >= 3: # Store trigram generated at last step prev_two_batch = seq[:,t-3:t-1] for i in range(batch_size): # = seq.size(0) prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item()) current = seq[i][t-1] if t == 3: # initialize trigrams.append({prev_two: [current]}) # {LongTensor: list containing 1 int} elif t > 3: if prev_two in trigrams[i]: # add to list trigrams[i][prev_two].append(current) else: # create list trigrams[i][prev_two] = [current] # Block used trigrams at next step prev_two_batch = seq[:,t-2:t] mask = torch.zeros(logprobs.size(), requires_grad=False).cuda() # batch_size x vocab_size for i in range(batch_size): prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item()) if prev_two in trigrams[i]: for j in trigrams[i][prev_two]: mask[i,j] += 1 # Apply mask to log probs #logprobs = logprobs - (mask * 1e9) alpha = 2.0 # = 4 logprobs = logprobs + (mask * -0.693 * alpha) # ln(1/2) * alpha (alpha -> infty works best) it, sampleLogprobs = self.sample_next_word(logprobs, sample_method, 1) # stop when all finished if t == 0: unfinished = it != self.eos_idx else: unfinished = seq[:,t-1] != self.pad_idx & seq[:,t-1] != self.eos_idx it[~unfinished] = self.pad_idx unfinished = unfinished & (it != self.eos_idx) # changed seq[:,t] = it seqLogprobs[:,t] = sampleLogprobs.view(-1) return torch.stack(seq_table, 1).reshape(batch_size * group_size, -1), torch.stack(seqLogprobs_table, 1).reshape(batch_size * group_size, -1) class AdaAtt_lstm(nn.Module): def __init__(self, opt, use_maxout=True): super(AdaAtt_lstm, self).__init__() self.input_encoding_size = opt.input_encoding_size #self.rnn_type = opt.rnn_type self.rnn_size = opt.rnn_size self.num_layers = opt.num_layers self.drop_prob_lm = opt.drop_prob_lm self.fc_feat_size = opt.fc_feat_size self.att_feat_size = opt.att_feat_size self.att_hid_size = opt.att_hid_size self.use_maxout = use_maxout # Build a LSTM self.w2h = nn.Linear(self.input_encoding_size, (4+(use_maxout==True)) * self.rnn_size) self.v2h = nn.Linear(self.rnn_size, (4+(use_maxout==True)) * self.rnn_size) self.i2h = nn.ModuleList([nn.Linear(self.rnn_size, (4+(use_maxout==True)) * self.rnn_size) for _ in range(self.num_layers - 1)]) self.h2h = nn.ModuleList([nn.Linear(self.rnn_size, (4+(use_maxout==True)) * self.rnn_size) for _ in range(self.num_layers)]) # Layers for getting the fake region if self.num_layers == 1: self.r_w2h = nn.Linear(self.input_encoding_size, self.rnn_size) self.r_v2h = nn.Linear(self.rnn_size, self.rnn_size) else: self.r_i2h = nn.Linear(self.rnn_size, self.rnn_size) self.r_h2h = nn.Linear(self.rnn_size, self.rnn_size) def forward(self, xt, img_fc, state): hs = [] cs = [] for L in range(self.num_layers): # c,h from previous timesteps prev_h = state[0][L] prev_c = state[1][L] # the input to this layer if L == 0: x = xt i2h = self.w2h(x) + self.v2h(img_fc) else: x = hs[-1] x = F.dropout(x, self.drop_prob_lm, self.training) i2h = self.i2h[L-1](x) all_input_sums = i2h+self.h2h[L](prev_h) sigmoid_chunk = all_input_sums.narrow(1, 0, 3 * self.rnn_size) sigmoid_chunk = torch.sigmoid(sigmoid_chunk) # decode the gates in_gate = sigmoid_chunk.narrow(1, 0, self.rnn_size) forget_gate = sigmoid_chunk.narrow(1, self.rnn_size, self.rnn_size) out_gate = sigmoid_chunk.narrow(1, self.rnn_size * 2, self.rnn_size) # decode the write inputs if not self.use_maxout: in_transform = torch.tanh(all_input_sums.narrow(1, 3 * self.rnn_size, self.rnn_size)) else: in_transform = all_input_sums.narrow(1, 3 * self.rnn_size, 2 * self.rnn_size) in_transform = torch.max(\ in_transform.narrow(1, 0, self.rnn_size), in_transform.narrow(1, self.rnn_size, self.rnn_size)) # perform the LSTM update next_c = forget_gate * prev_c + in_gate * in_transform # gated cells form the output tanh_nex_c = torch.tanh(next_c) next_h = out_gate * tanh_nex_c if L == self.num_layers-1: if L == 0: i2h = self.r_w2h(x) + self.r_v2h(img_fc) else: i2h = self.r_i2h(x) n5 = i2h+self.r_h2h(prev_h) fake_region = torch.sigmoid(n5) * tanh_nex_c cs.append(next_c) hs.append(next_h) # set up the decoder top_h = hs[-1] top_h = F.dropout(top_h, self.drop_prob_lm, self.training) fake_region = F.dropout(fake_region, self.drop_prob_lm, self.training) state = (torch.cat([_.unsqueeze(0) for _ in hs], 0), torch.cat([_.unsqueeze(0) for _ in cs], 0)) return top_h, fake_region, state class AdaAtt_attention(nn.Module): def __init__(self, opt): super(AdaAtt_attention, self).__init__() self.input_encoding_size = opt.input_encoding_size #self.rnn_type = opt.rnn_type self.rnn_size = opt.rnn_size self.drop_prob_lm = opt.drop_prob_lm self.att_hid_size = opt.att_hid_size # fake region embed self.fr_linear = nn.Sequential( nn.Linear(self.rnn_size, self.input_encoding_size), nn.ReLU(), nn.Dropout(self.drop_prob_lm)) self.fr_embed = nn.Linear(self.input_encoding_size, self.att_hid_size) # h out embed self.ho_linear = nn.Sequential( nn.Linear(self.rnn_size, self.input_encoding_size), nn.Tanh(), nn.Dropout(self.drop_prob_lm)) self.ho_embed = nn.Linear(self.input_encoding_size, self.att_hid_size) self.alpha_net = nn.Linear(self.att_hid_size, 1) self.att2h = nn.Linear(self.rnn_size, self.rnn_size) def forward(self, h_out, fake_region, conv_feat, conv_feat_embed, att_masks=None): # View into three dimensions att_size = conv_feat.numel() // conv_feat.size(0) // self.rnn_size conv_feat = conv_feat.view(-1, att_size, self.rnn_size) conv_feat_embed = conv_feat_embed.view(-1, att_size, self.att_hid_size) # view neighbor from bach_size * neighbor_num x rnn_size to bach_size x rnn_size * neighbor_num fake_region = self.fr_linear(fake_region) fake_region_embed = self.fr_embed(fake_region) h_out_linear = self.ho_linear(h_out) h_out_embed = self.ho_embed(h_out_linear) txt_replicate = h_out_embed.unsqueeze(1).expand(h_out_embed.size(0), att_size + 1, h_out_embed.size(1)) img_all = torch.cat([fake_region.view(-1,1,self.input_encoding_size), conv_feat], 1) img_all_embed = torch.cat([fake_region_embed.view(-1,1,self.input_encoding_size), conv_feat_embed], 1) hA = torch.tanh(img_all_embed + txt_replicate) hA = F.dropout(hA,self.drop_prob_lm, self.training) hAflat = self.alpha_net(hA.view(-1, self.att_hid_size)) PI = F.softmax(hAflat.view(-1, att_size + 1), dim=1) if att_masks is not None: att_masks = att_masks.view(-1, att_size) PI = PI * torch.cat([att_masks[:,:1], att_masks], 1) # assume one one at the first time step. PI = PI / PI.sum(1, keepdim=True) visAtt = torch.bmm(PI.unsqueeze(1), img_all) visAttdim = visAtt.squeeze(1) atten_out = visAttdim + h_out_linear h = torch.tanh(self.att2h(atten_out)) h = F.dropout(h, self.drop_prob_lm, self.training) return h class AdaAttCore(nn.Module): def __init__(self, opt, use_maxout=False): super(AdaAttCore, self).__init__() self.lstm = AdaAtt_lstm(opt, use_maxout) self.attention = AdaAtt_attention(opt) def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None): h_out, p_out, state = self.lstm(xt, fc_feats, state) atten_out = self.attention(h_out, p_out, att_feats, p_att_feats, att_masks) return atten_out, state class UpDownCore(nn.Module): def __init__(self, opt, use_maxout=False): super(UpDownCore, self).__init__() self.drop_prob_lm = opt.drop_prob_lm self.att_lstm = nn.LSTMCell(opt.input_encoding_size + opt.rnn_size * 2, opt.rnn_size) # we, fc, h^2_t-1 self.lang_lstm = nn.LSTMCell(opt.rnn_size * 2, opt.rnn_size) # h^1_t, \hat v self.attention = Attention(opt) def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None): prev_h = state[0][-1] att_lstm_input = torch.cat([prev_h, fc_feats, xt], 1) h_att, c_att = self.att_lstm(att_lstm_input, (state[0][0], state[1][0])) att = self.attention(h_att, att_feats, p_att_feats, att_masks) lang_lstm_input = torch.cat([att, h_att], 1) # lang_lstm_input = torch.cat([att, F.dropout(h_att, self.drop_prob_lm, self.training)], 1) ????? h_lang, c_lang = self.lang_lstm(lang_lstm_input, (state[0][1], state[1][1])) output = F.dropout(h_lang, self.drop_prob_lm, self.training) state = (torch.stack([h_att, h_lang]), torch.stack([c_att, c_lang])) return output, state ############################################################################ # Notice: # StackAtt and DenseAtt are models that I randomly designed. # They are not related to any paper. ############################################################################ from .FCModel import LSTMCore class StackAttCore(nn.Module): def __init__(self, opt, use_maxout=False): super(StackAttCore, self).__init__() self.drop_prob_lm = opt.drop_prob_lm # self.att0 = Attention(opt) self.att1 = Attention(opt) self.att2 = Attention(opt) opt_input_encoding_size = opt.input_encoding_size opt.input_encoding_size = opt.input_encoding_size + opt.rnn_size self.lstm0 = LSTMCore(opt) # att_feat + word_embedding opt.input_encoding_size = opt.rnn_size * 2 self.lstm1 = LSTMCore(opt) self.lstm2 = LSTMCore(opt) opt.input_encoding_size = opt_input_encoding_size # self.emb1 = nn.Linear(opt.rnn_size, opt.rnn_size) self.emb2 = nn.Linear(opt.rnn_size, opt.rnn_size) def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None): # att_res_0 = self.att0(state[0][-1], att_feats, p_att_feats, att_masks) h_0, state_0 = self.lstm0(torch.cat([xt,fc_feats],1), [state[0][0:1], state[1][0:1]]) att_res_1 = self.att1(h_0, att_feats, p_att_feats, att_masks) h_1, state_1 = self.lstm1(torch.cat([h_0,att_res_1],1), [state[0][1:2], state[1][1:2]]) att_res_2 = self.att2(h_1 + self.emb2(att_res_1), att_feats, p_att_feats, att_masks) h_2, state_2 = self.lstm2(torch.cat([h_1,att_res_2],1), [state[0][2:3], state[1][2:3]]) return h_2, [torch.cat(_, 0) for _ in zip(state_0, state_1, state_2)] class DenseAttCore(nn.Module): def __init__(self, opt, use_maxout=False): super(DenseAttCore, self).__init__() self.drop_prob_lm = opt.drop_prob_lm # self.att0 = Attention(opt) self.att1 = Attention(opt) self.att2 = Attention(opt) opt_input_encoding_size = opt.input_encoding_size opt.input_encoding_size = opt.input_encoding_size + opt.rnn_size self.lstm0 = LSTMCore(opt) # att_feat + word_embedding opt.input_encoding_size = opt.rnn_size * 2 self.lstm1 = LSTMCore(opt) self.lstm2 = LSTMCore(opt) opt.input_encoding_size = opt_input_encoding_size # self.emb1 = nn.Linear(opt.rnn_size, opt.rnn_size) self.emb2 = nn.Linear(opt.rnn_size, opt.rnn_size) # fuse h_0 and h_1 self.fusion1 = nn.Sequential(nn.Linear(opt.rnn_size*2, opt.rnn_size), nn.ReLU(), nn.Dropout(opt.drop_prob_lm)) # fuse h_0, h_1 and h_2 self.fusion2 = nn.Sequential(nn.Linear(opt.rnn_size*3, opt.rnn_size), nn.ReLU(), nn.Dropout(opt.drop_prob_lm)) def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None): # att_res_0 = self.att0(state[0][-1], att_feats, p_att_feats, att_masks) h_0, state_0 = self.lstm0(torch.cat([xt,fc_feats],1), [state[0][0:1], state[1][0:1]]) att_res_1 = self.att1(h_0, att_feats, p_att_feats, att_masks) h_1, state_1 = self.lstm1(torch.cat([h_0,att_res_1],1), [state[0][1:2], state[1][1:2]]) att_res_2 = self.att2(h_1 + self.emb2(att_res_1), att_feats, p_att_feats, att_masks) h_2, state_2 = self.lstm2(torch.cat([self.fusion1(torch.cat([h_0, h_1], 1)),att_res_2],1), [state[0][2:3], state[1][2:3]]) return self.fusion2(torch.cat([h_0, h_1, h_2], 1)), [torch.cat(_, 0) for _ in zip(state_0, state_1, state_2)] class Attention(nn.Module): def __init__(self, opt): super(Attention, self).__init__() self.rnn_size = opt.rnn_size self.att_hid_size = opt.att_hid_size self.h2att = nn.Linear(self.rnn_size, self.att_hid_size) self.alpha_net = nn.Linear(self.att_hid_size, 1) def forward(self, h, att_feats, p_att_feats, att_masks=None): # The p_att_feats here is already projected att_size = att_feats.numel() // att_feats.size(0) // att_feats.size(-1) att = p_att_feats.view(-1, att_size, self.att_hid_size) att_h = self.h2att(h) # batch * att_hid_size att_h = att_h.unsqueeze(1).expand_as(att) # batch * att_size * att_hid_size dot = att + att_h # batch * att_size * att_hid_size dot = torch.tanh(dot) # batch * att_size * att_hid_size dot = dot.view(-1, self.att_hid_size) # (batch * att_size) * att_hid_size dot = self.alpha_net(dot) # (batch * att_size) * 1 dot = dot.view(-1, att_size) # batch * att_size weight = F.softmax(dot, dim=1) # batch * att_size if att_masks is not None: weight = weight * att_masks.view(-1, att_size).to(weight) weight = weight / weight.sum(1, keepdim=True) # normalize to 1 att_feats_ = att_feats.view(-1, att_size, att_feats.size(-1)) # batch * att_size * att_feat_size att_res = torch.bmm(weight.unsqueeze(1), att_feats_).squeeze(1) # batch * att_feat_size return att_res class Att2in2Core(nn.Module): def __init__(self, opt): super(Att2in2Core, self).__init__() self.input_encoding_size = opt.input_encoding_size #self.rnn_type = opt.rnn_type self.rnn_size = opt.rnn_size #self.num_layers = opt.num_layers self.drop_prob_lm = opt.drop_prob_lm self.fc_feat_size = opt.fc_feat_size self.att_feat_size = opt.att_feat_size self.att_hid_size = opt.att_hid_size # Build a LSTM self.a2c = nn.Linear(self.rnn_size, 2 * self.rnn_size) self.i2h = nn.Linear(self.input_encoding_size, 5 * self.rnn_size) self.h2h = nn.Linear(self.rnn_size, 5 * self.rnn_size) self.dropout = nn.Dropout(self.drop_prob_lm) self.attention = Attention(opt) def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None): att_res = self.attention(state[0][-1], att_feats, p_att_feats, att_masks) all_input_sums = self.i2h(xt) + self.h2h(state[0][-1]) sigmoid_chunk = all_input_sums.narrow(1, 0, 3 * self.rnn_size) sigmoid_chunk = torch.sigmoid(sigmoid_chunk) in_gate = sigmoid_chunk.narrow(1, 0, self.rnn_size) forget_gate = sigmoid_chunk.narrow(1, self.rnn_size, self.rnn_size) out_gate = sigmoid_chunk.narrow(1, self.rnn_size * 2, self.rnn_size) in_transform = all_input_sums.narrow(1, 3 * self.rnn_size, 2 * self.rnn_size) + \ self.a2c(att_res) in_transform = torch.max(\ in_transform.narrow(1, 0, self.rnn_size), in_transform.narrow(1, self.rnn_size, self.rnn_size)) next_c = forget_gate * state[1][-1] + in_gate * in_transform next_h = out_gate * torch.tanh(next_c) output = self.dropout(next_h) state = (next_h.unsqueeze(0), next_c.unsqueeze(0)) return output, state class Att2inCore(Att2in2Core): def __init__(self, opt): super(Att2inCore, self).__init__(opt) del self.a2c self.a2c = nn.Linear(self.att_feat_size, 2 * self.rnn_size) """ Note this is my attempt to replicate att2all model in self-critical paper. However, this is not a correct replication actually. Will fix it. """ class Att2all2Core(nn.Module): def __init__(self, opt): super(Att2all2Core, self).__init__() self.input_encoding_size = opt.input_encoding_size #self.rnn_type = opt.rnn_type self.rnn_size = opt.rnn_size #self.num_layers = opt.num_layers self.drop_prob_lm = opt.drop_prob_lm self.fc_feat_size = opt.fc_feat_size self.att_feat_size = opt.att_feat_size self.att_hid_size = opt.att_hid_size # Build a LSTM self.a2h = nn.Linear(self.rnn_size, 5 * self.rnn_size) self.i2h = nn.Linear(self.input_encoding_size, 5 * self.rnn_size) self.h2h = nn.Linear(self.rnn_size, 5 * self.rnn_size) self.dropout = nn.Dropout(self.drop_prob_lm) self.attention = Attention(opt) def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None): att_res = self.attention(state[0][-1], att_feats, p_att_feats, att_masks) all_input_sums = self.i2h(xt) + self.h2h(state[0][-1]) + self.a2h(att_res) sigmoid_chunk = all_input_sums.narrow(1, 0, 3 * self.rnn_size) sigmoid_chunk = torch.sigmoid(sigmoid_chunk) in_gate = sigmoid_chunk.narrow(1, 0, self.rnn_size) forget_gate = sigmoid_chunk.narrow(1, self.rnn_size, self.rnn_size) out_gate = sigmoid_chunk.narrow(1, self.rnn_size * 2, self.rnn_size) in_transform = all_input_sums.narrow(1, 3 * self.rnn_size, 2 * self.rnn_size) in_transform = torch.max(\ in_transform.narrow(1, 0, self.rnn_size), in_transform.narrow(1, self.rnn_size, self.rnn_size)) next_c = forget_gate * state[1][-1] + in_gate * in_transform next_h = out_gate * torch.tanh(next_c) output = self.dropout(next_h) state = (next_h.unsqueeze(0), next_c.unsqueeze(0)) return output, state class AdaAttModel(AttModel): def __init__(self, opt): super(AdaAttModel, self).__init__(opt) self.core = AdaAttCore(opt) # AdaAtt with maxout lstm class AdaAttMOModel(AttModel): def __init__(self, opt): super(AdaAttMOModel, self).__init__(opt) self.core = AdaAttCore(opt, True) class Att2in2Model(AttModel): def __init__(self, opt): super(Att2in2Model, self).__init__(opt) self.core = Att2in2Core(opt) delattr(self, 'fc_embed') self.fc_embed = lambda x : x class Att2all2Model(AttModel): def __init__(self, opt): super(Att2all2Model, self).__init__(opt) self.core = Att2all2Core(opt) delattr(self, 'fc_embed') self.fc_embed = lambda x : x class UpDownModel(AttModel): def __init__(self, opt): super(UpDownModel, self).__init__(opt) self.num_layers = 2 self.core = UpDownCore(opt) class StackAttModel(AttModel): def __init__(self, opt): super(StackAttModel, self).__init__(opt) self.num_layers = 3 self.core = StackAttCore(opt) class DenseAttModel(AttModel): def __init__(self, opt): super(DenseAttModel, self).__init__(opt) self.num_layers = 3 self.core = DenseAttCore(opt) class Att2inModel(AttModel): def __init__(self, opt): super(Att2inModel, self).__init__(opt) del self.embed, self.fc_embed, self.att_embed self.embed = nn.Embedding(self.vocab_size + 1, self.input_encoding_size) self.fc_embed = self.att_embed = lambda x: x del self.ctx2att self.ctx2att = nn.Linear(self.att_feat_size, self.att_hid_size) self.core = Att2inCore(opt) self.init_weights() def init_weights(self): initrange = 0.1 self.embed.weight.data.uniform_(-initrange, initrange) self.logit.bias.data.fill_(0) self.logit.weight.data.uniform_(-initrange, initrange) class NewFCModel(AttModel): def __init__(self, opt): super(NewFCModel, self).__init__(opt) self.fc_embed = nn.Linear(self.fc_feat_size, self.input_encoding_size) self.embed = nn.Embedding(self.vocab_size + 1, self.input_encoding_size) self._core = LSTMCore(opt) delattr(self, 'att_embed') self.att_embed = lambda x : x delattr(self, 'ctx2att') self.ctx2att = lambda x: x def core(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks): # Step 0, feed the input image # if (self.training and state[0].is_leaf) or \ # (not self.training and state[0].sum() == 0): # _, state = self._core(fc_feats, state) # three cases # normal mle training # Sample # beam search (diverse beam search) # fixed captioning module. is_first_step = (state[0]==0).all(2).all(0) # size: B if is_first_step.all(): _, state = self._core(fc_feats, state) elif is_first_step.any(): # This is mostly for diverse beam search I think new_state = [torch.zeros_like(_) for _ in state] new_state[0][:, ~is_first_step] = state[0][:, ~is_first_step] new_state[1][:, ~is_first_step] = state[1][:, ~is_first_step] _, state = self._core(fc_feats, state) new_state[0][:, is_first_step] = state[0][:, is_first_step] new_state[1][:, is_first_step] = state[1][:, is_first_step] state = new_state # if (state[0]==0).all(): # # Let's forget about diverse beam search first # _, state = self._core(fc_feats, state) return self._core(xt, state) def _prepare_feature(self, fc_feats, att_feats, att_masks): fc_feats = self.fc_embed(fc_feats) return fc_feats, att_feats, att_feats, att_masks class LMModel(AttModel): def __init__(self, opt): super(LMModel, self).__init__(opt) delattr(self, 'fc_embed') self.fc_embed = lambda x: x.new_zeros(x.shape[0], self.input_encoding_size) self.embed = nn.Embedding(self.vocab_size + 1, self.input_encoding_size) self._core = LSTMCore(opt) delattr(self, 'att_embed') self.att_embed = lambda x : x delattr(self, 'ctx2att') self.ctx2att = lambda x: x def core(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks): if (state[0]==0).all(): # Let's forget about diverse beam search first _, state = self._core(fc_feats, state) return self._core(xt, state) def _prepare_feature(self, fc_feats, att_feats, att_masks): fc_feats = self.fc_embed(fc_feats) return fc_feats, None, None, None
connect-caption-and-trace-main
captioning/models/AttModel_standard_enco_deco_both.py
""" Instruction to use meshed_memory_transformer (https://arxiv.org/abs/1912.08226) pip install git+https://github.com/ruotianluo/meshed-memory-transformer.git Note: Currently m2transformer is not performing as well as original transformer. Not sure why? Still investigating. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import torch import torch.nn as nn import torch.nn.functional as F import copy import math import numpy as np from .CaptionModel import CaptionModel from .AttModel import sort_pack_padded_sequence, pad_unsort_packed_sequence, pack_wrapper, AttModel try: from m2transformer.models.transformer import Transformer, MemoryAugmentedEncoder, MeshedDecoder, ScaledDotProductAttentionMemory except: print('meshed-memory-transformer not installed; please run `pip install git+https://github.com/ruotianluo/meshed-memory-transformer.git`') from .TransformerModel import subsequent_mask, TransformerModel class M2TransformerModel(TransformerModel): def make_model(self, src_vocab, tgt_vocab, N_enc=6, N_dec=6, d_model=512, d_ff=2048, h=8, dropout=0.1): "Helper: Construct a model from hyperparameters." encoder = MemoryAugmentedEncoder(N_enc, 0, attention_module=ScaledDotProductAttentionMemory, attention_module_kwargs={'m': 40}) # Another implementation is to use MultiLevelEncoder + att_embed decoder = MeshedDecoder(tgt_vocab, 54, N_dec, -1) # -1 is padding; model = Transformer(0, encoder, decoder) # 0 is bos return model def __init__(self, opt): super(M2TransformerModel, self).__init__(opt) delattr(self, 'att_embed') self.att_embed = lambda x: x # The visual embed is in the MAEncoder # Notes: The dropout in MAEncoder is different from my att_embed, mine is 0.5? # Also the attention mask seems wrong in MAEncoder too...intersting def logit(self, x): # unsafe way return x # M2transformer always output logsoftmax def _prepare_feature(self, fc_feats, att_feats, att_masks): att_feats, seq, att_masks, seq_mask = self._prepare_feature_forward(att_feats, att_masks) memory, att_masks = self.model.encoder(att_feats) return fc_feats[...,:0], att_feats[...,:0], memory, att_masks def _forward(self, fc_feats, att_feats, seq, att_masks=None): if seq.ndim == 3: # B * seq_per_img * seq_len seq = seq.reshape(-1, seq.shape[2]) att_feats, seq, att_masks, seq_mask = self._prepare_feature_forward(att_feats, att_masks, seq) seq = seq.clone() seq[~seq_mask.any(-2)] = -1 # Make padding to be -1 (my dataloader uses 0 as padding) outputs = self.model(att_feats, seq) return outputs def core(self, it, fc_feats_ph, att_feats_ph, memory, state, mask): """ state = [ys.unsqueeze(0)] """ if len(state) == 0: ys = it.unsqueeze(1) else: ys = torch.cat([state[0][0], it.unsqueeze(1)], dim=1) out = self.model.decoder(ys, memory, mask) return out[:, -1], [ys.unsqueeze(0)] def _sample_beam(self, fc_feats, att_feats, att_masks=None, opt={}): beam_size = opt.get('beam_size', 10) group_size = opt.get('group_size', 1) sample_n = opt.get('sample_n', 10) assert sample_n == 1 or sample_n == beam_size // group_size, 'when beam search, sample_n == 1 or beam search' att_feats, _, __, ___ = self._prepare_feature_forward(att_feats, att_masks) seq, logprobs, seqLogprobs = self.model.beam_search(att_feats, self.seq_length, 0, beam_size, return_probs=True, out_size=beam_size) seq = seq.reshape(-1, *seq.shape[2:]) seqLogprobs = seqLogprobs.reshape(-1, *seqLogprobs.shape[2:]) # if not (seqLogprobs.gather(-1, seq.unsqueeze(-1)).squeeze(-1) == logprobs.reshape(-1, logprobs.shape[-1])).all(): # import pudb;pu.db # seqLogprobs = logprobs.reshape(-1, logprobs.shape[-1]).unsqueeze(-1).expand(-1,-1,seqLogprobs.shape[-1]) return seq, seqLogprobs
connect-caption-and-trace-main
captioning/models/M2Transformer.py
import torch def repeat_tensors(n, x): """ For a tensor of size Bx..., we repeat it n times, and make it Bnx... For collections, do nested repeat """ if torch.is_tensor(x): x = x.unsqueeze(1) # Bx1x... x = x.expand(-1, n, *([-1]*len(x.shape[2:]))) # Bxnx... x = x.reshape(x.shape[0]*n, *x.shape[2:]) # Bnx... elif type(x) is list or type(x) is tuple: x = [repeat_tensors(n, _) for _ in x] return x def split_tensors(n, x): if torch.is_tensor(x): assert x.shape[0] % n == 0 x = x.reshape(x.shape[0] // n, n, *x.shape[1:]).unbind(1) elif type(x) is list or type(x) is tuple: x = [split_tensors(n, _) for _ in x] elif x is None: x = [None] * n return x
connect-caption-and-trace-main
captioning/models/utils.py
# This file contains ShowAttendTell and AllImg model # ShowAttendTell is from Show, Attend and Tell: Neural Image Caption Generation with Visual Attention # https://arxiv.org/abs/1502.03044 # AllImg is a model where # img feature is concatenated with word embedding at every time step as the input of lstm from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import * from ..utils import misc as utils from . import utils as model_utils class CaptionModel(nn.Module): def __init__(self): super(CaptionModel, self).__init__() # implements beam search # calls beam_step and returns the final set of beams # augments log-probabilities with diversity terms when number of groups > 1 def forward(self, *args, **kwargs): mode = kwargs.get('mode', 'forward') if 'mode' in kwargs: del kwargs['mode'] return getattr(self, '_'+mode)(*args, **kwargs) def beam_search(self, init_state, init_logprobs, *args, **kwargs): # function computes the similarity score to be augmented def add_diversity(beam_seq_table, logprobs, t, divm, diversity_lambda, bdash): local_time = t - divm unaug_logprobs = logprobs.clone() batch_size = beam_seq_table[0].shape[0] if divm > 0: change = logprobs.new_zeros(batch_size, logprobs.shape[-1]) for prev_choice in range(divm): prev_decisions = beam_seq_table[prev_choice][:, :, local_time] # Nxb for prev_labels in range(bdash): change.scatter_add_(1, prev_decisions[:, prev_labels].unsqueeze(-1), change.new_ones(batch_size, 1)) if local_time == 0: logprobs = logprobs - change * diversity_lambda else: logprobs = logprobs - self.repeat_tensor(bdash, change) * diversity_lambda return logprobs, unaug_logprobs # does one step of classical beam search def beam_step(logprobs, unaug_logprobs, beam_size, t, beam_seq, beam_seq_logprobs, beam_logprobs_sum, state): #INPUTS: #logprobs: probabilities augmented after diversity N*bxV #beam_size: obvious #t : time instant #beam_seq : tensor contanining the beams #beam_seq_logprobs: tensor contanining the beam logprobs #beam_logprobs_sum: tensor contanining joint logprobs #OUPUTS: #beam_seq : tensor containing the word indices of the decoded captions Nxbxl #beam_seq_logprobs : log-probability of each decision made, NxbxlxV #beam_logprobs_sum : joint log-probability of each beam Nxb batch_size = beam_logprobs_sum.shape[0] vocab_size = logprobs.shape[-1] logprobs = logprobs.reshape(batch_size, -1, vocab_size) # NxbxV if t == 0: assert logprobs.shape[1] == 1 beam_logprobs_sum = beam_logprobs_sum[:, :1] candidate_logprobs = beam_logprobs_sum.unsqueeze(-1) + logprobs # beam_logprobs_sum Nxb logprobs is NxbxV ys, ix = torch.sort(candidate_logprobs.reshape(candidate_logprobs.shape[0], -1), -1, True) ys, ix = ys[:,:beam_size], ix[:,:beam_size] beam_ix = ix // vocab_size # Nxb which beam selected_ix = ix % vocab_size # Nxb # which world state_ix = (beam_ix + torch.arange(batch_size).type_as(beam_ix).unsqueeze(-1) * logprobs.shape[1]).reshape(-1) # N*b which in Nxb beams if t > 0: # gather according to beam_ix assert (beam_seq.gather(1, beam_ix.unsqueeze(-1).expand_as(beam_seq)) == beam_seq.reshape(-1, beam_seq.shape[-1])[state_ix].view_as(beam_seq)).all() beam_seq = beam_seq.gather(1, beam_ix.unsqueeze(-1).expand_as(beam_seq)) beam_seq_logprobs = beam_seq_logprobs.gather(1, beam_ix.unsqueeze(-1).unsqueeze(-1).expand_as(beam_seq_logprobs)) beam_seq = torch.cat([beam_seq, selected_ix.unsqueeze(-1)], -1) # beam_seq Nxbxl beam_logprobs_sum = beam_logprobs_sum.gather(1, beam_ix) + \ logprobs.reshape(batch_size, -1).gather(1, ix) assert (beam_logprobs_sum == ys).all() _tmp_beam_logprobs = unaug_logprobs[state_ix].reshape(batch_size, -1, vocab_size) beam_logprobs = unaug_logprobs.reshape(batch_size, -1, vocab_size).gather(1, beam_ix.unsqueeze(-1).expand(-1, -1, vocab_size)) # NxbxV assert (_tmp_beam_logprobs == beam_logprobs).all() beam_seq_logprobs = torch.cat([ beam_seq_logprobs, beam_logprobs.reshape(batch_size, -1, 1, vocab_size)], 2) new_state = [None for _ in state] for _ix in range(len(new_state)): # copy over state in previous beam q to new beam at vix new_state[_ix] = state[_ix][:, state_ix] state = new_state return beam_seq,beam_seq_logprobs,beam_logprobs_sum,state # Start diverse_beam_search opt = kwargs['opt'] temperature = opt.get('temperature', 1) # This should not affect beam search, but will affect dbs beam_size = opt.get('beam_size', 10) group_size = opt.get('group_size', 1) diversity_lambda = opt.get('diversity_lambda', 0.5) decoding_constraint = opt.get('decoding_constraint', 0) remove_bad_endings = opt.get('remove_bad_endings', 0) suppress_UNK = opt.get('suppress_UNK', 0) length_penalty = utils.penalty_builder(opt.get('length_penalty', '')) bdash = beam_size // group_size # beam per group batch_size = init_logprobs.shape[0] device = init_logprobs.device # INITIALIZATIONS beam_seq_table = [torch.LongTensor(batch_size, bdash, 0).to(device) for _ in range(group_size)] beam_seq_logprobs_table = [torch.FloatTensor(batch_size, bdash, 0, self.vocab_size + 1).to(device) for _ in range(group_size)] beam_logprobs_sum_table = [torch.zeros(batch_size, bdash).to(device) for _ in range(group_size)] # logprobs # logprobs predicted in last time step, shape (beam_size, vocab_size+1) done_beams_table = [[[] for __ in range(group_size)] for _ in range(batch_size)] # state_table = [list(torch.unbind(_)) for _ in torch.stack(init_state).chunk(group_size, 2)] # state_table = list(zip(*[_.reshape(-1, batch_size * bdash, group_size, *_.shape[2:]).chunk(group_size, 2) for _ in init_state])) state_table = [[_.clone() for _ in init_state] for _ in range(group_size)] # logprobs_table = list(init_logprobs.reshape(batch_size * bdash, group_size, -1).chunk(group_size, 0)) logprobs_table = [init_logprobs.clone() for _ in range(group_size)] # END INIT # Chunk elements in the args args = list(args) args = model_utils.split_tensors(group_size, args) # For each arg, turn (Bbg)x... to (Bb)x(g)x... if self.__class__.__name__ == 'AttEnsemble': args = [[[args[j][i][k] for i in range(len(self.models))] for j in range(len(args))] for k in range(group_size)] # group_name, arg_name, model_name else: args = [[args[i][j] for i in range(len(args))] for j in range(group_size)] for t in range(self.seq_length + group_size - 1): for divm in range(group_size): if t >= divm and t <= self.seq_length + divm - 1: # add diversity logprobs = logprobs_table[divm] # suppress previous word if decoding_constraint and t-divm > 0: logprobs.scatter_(1, beam_seq_table[divm][:, :, t-divm-1].reshape(-1, 1).to(device), float('-inf')) if remove_bad_endings and t-divm > 0: logprobs[torch.from_numpy(np.isin(beam_seq_table[divm][:, :, t-divm-1].cpu().numpy(), self.bad_endings_ix)).reshape(-1), 0] = float('-inf') # suppress UNK tokens in the decoding if suppress_UNK and hasattr(self, 'vocab') and self.vocab[str(logprobs.size(1)-1)] == 'UNK': logprobs[:,logprobs.size(1)-1] = logprobs[:, logprobs.size(1)-1] - 1000 # diversity is added here # the function directly modifies the logprobs values and hence, we need to return # the unaugmented ones for sorting the candidates in the end. # for historical # reasons :-) logprobs, unaug_logprobs = add_diversity(beam_seq_table,logprobs,t,divm,diversity_lambda,bdash) # infer new beams beam_seq_table[divm],\ beam_seq_logprobs_table[divm],\ beam_logprobs_sum_table[divm],\ state_table[divm] = beam_step(logprobs, unaug_logprobs, bdash, t-divm, beam_seq_table[divm], beam_seq_logprobs_table[divm], beam_logprobs_sum_table[divm], state_table[divm]) # if time's up... or if end token is reached then copy beams for b in range(batch_size): is_end = beam_seq_table[divm][b, :, t-divm] == self.eos_idx assert beam_seq_table[divm].shape[-1] == t-divm+1 if t == self.seq_length + divm - 1: is_end.fill_(1) for vix in range(bdash): if is_end[vix]: final_beam = { 'seq': beam_seq_table[divm][b, vix].clone(), 'logps': beam_seq_logprobs_table[divm][b, vix].clone(), 'unaug_p': beam_seq_logprobs_table[divm][b, vix].sum().item(), 'p': beam_logprobs_sum_table[divm][b, vix].item() } final_beam['p'] = length_penalty(t-divm+1, final_beam['p']) done_beams_table[b][divm].append(final_beam) beam_logprobs_sum_table[divm][b, is_end] -= 1000 # move the current group one step forward in time it = beam_seq_table[divm][:, :, t-divm].reshape(-1).to(logprobs.device) logprobs_table[divm], state_table[divm] = self.get_logprobs_state(it, *(args[divm] + [state_table[divm]])) logprobs_table[divm] = F.log_softmax(logprobs_table[divm] / temperature, dim=-1) # all beams are sorted by their log-probabilities done_beams_table = [[sorted(done_beams_table[b][i], key=lambda x: -x['p'])[:bdash] for i in range(group_size)] for b in range(batch_size)] done_beams = [sum(_, []) for _ in done_beams_table] return done_beams def old_beam_search(self, init_state, init_logprobs, *args, **kwargs): # function computes the similarity score to be augmented def add_diversity(beam_seq_table, logprobsf, t, divm, diversity_lambda, bdash): local_time = t - divm unaug_logprobsf = logprobsf.clone() for prev_choice in range(divm): prev_decisions = beam_seq_table[prev_choice][local_time] for sub_beam in range(bdash): for prev_labels in range(bdash): logprobsf[sub_beam][prev_decisions[prev_labels]] = logprobsf[sub_beam][prev_decisions[prev_labels]] - diversity_lambda return unaug_logprobsf # does one step of classical beam search def beam_step(logprobsf, unaug_logprobsf, beam_size, t, beam_seq, beam_seq_logprobs, beam_logprobs_sum, state): #INPUTS: #logprobsf: probabilities augmented after diversity #beam_size: obvious #t : time instant #beam_seq : tensor contanining the beams #beam_seq_logprobs: tensor contanining the beam logprobs #beam_logprobs_sum: tensor contanining joint logprobs #OUPUTS: #beam_seq : tensor containing the word indices of the decoded captions #beam_seq_logprobs : log-probability of each decision made, same size as beam_seq #beam_logprobs_sum : joint log-probability of each beam ys,ix = torch.sort(logprobsf,1,True) candidates = [] cols = min(beam_size, ys.size(1)) rows = beam_size if t == 0: rows = 1 for c in range(cols): # for each column (word, essentially) for q in range(rows): # for each beam expansion #compute logprob of expanding beam q with word in (sorted) position c local_logprob = ys[q,c].item() candidate_logprob = beam_logprobs_sum[q] + local_logprob # local_unaug_logprob = unaug_logprobsf[q,ix[q,c]] candidates.append({'c':ix[q,c], 'q':q, 'p':candidate_logprob, 'r':unaug_logprobsf[q]}) candidates = sorted(candidates, key=lambda x: -x['p']) new_state = [_.clone() for _ in state] #beam_seq_prev, beam_seq_logprobs_prev if t >= 1: #we''ll need these as reference when we fork beams around beam_seq_prev = beam_seq[:t].clone() beam_seq_logprobs_prev = beam_seq_logprobs[:t].clone() for vix in range(beam_size): v = candidates[vix] #fork beam index q into index vix if t >= 1: beam_seq[:t, vix] = beam_seq_prev[:, v['q']] beam_seq_logprobs[:t, vix] = beam_seq_logprobs_prev[:, v['q']] #rearrange recurrent states for state_ix in range(len(new_state)): # copy over state in previous beam q to new beam at vix new_state[state_ix][:, vix] = state[state_ix][:, v['q']] # dimension one is time step #append new end terminal at the end of this beam beam_seq[t, vix] = v['c'] # c'th word is the continuation beam_seq_logprobs[t, vix] = v['r'] # the raw logprob here beam_logprobs_sum[vix] = v['p'] # the new (sum) logprob along this beam state = new_state return beam_seq,beam_seq_logprobs,beam_logprobs_sum,state,candidates # Start diverse_beam_search opt = kwargs['opt'] temperature = opt.get('temperature', 1) # This should not affect beam search, but will affect dbs beam_size = opt.get('beam_size', 10) group_size = opt.get('group_size', 1) diversity_lambda = opt.get('diversity_lambda', 0.5) decoding_constraint = opt.get('decoding_constraint', 0) remove_bad_endings = opt.get('remove_bad_endings', 0) suppress_UNK = opt.get('suppress_UNK', 0) length_penalty = utils.penalty_builder(opt.get('length_penalty', '')) bdash = beam_size // group_size # beam per group # INITIALIZATIONS beam_seq_table = [torch.LongTensor(self.seq_length, bdash).zero_() for _ in range(group_size)] beam_seq_logprobs_table = [torch.FloatTensor(self.seq_length, bdash, self.vocab_size + 1).zero_() for _ in range(group_size)] beam_logprobs_sum_table = [torch.zeros(bdash) for _ in range(group_size)] # logprobs # logprobs predicted in last time step, shape (beam_size, vocab_size+1) done_beams_table = [[] for _ in range(group_size)] # state_table = [list(torch.unbind(_)) for _ in torch.stack(init_state).chunk(group_size, 2)] state_table = list(zip(*[_.chunk(group_size, 1) for _ in init_state])) logprobs_table = list(init_logprobs.chunk(group_size, 0)) # END INIT # Chunk elements in the args args = list(args) if self.__class__.__name__ == 'AttEnsemble': args = [[_.chunk(group_size) if _ is not None else [None]*group_size for _ in args_] for args_ in args] # arg_name, model_name, group_name args = [[[args[j][i][k] for i in range(len(self.models))] for j in range(len(args))] for k in range(group_size)] # group_name, arg_name, model_name else: args = [_.chunk(group_size) if _ is not None else [None]*group_size for _ in args] args = [[args[i][j] for i in range(len(args))] for j in range(group_size)] for t in range(self.seq_length + group_size - 1): for divm in range(group_size): if t >= divm and t <= self.seq_length + divm - 1: # add diversity logprobsf = logprobs_table[divm] # suppress previous word if decoding_constraint and t-divm > 0: logprobsf.scatter_(1, beam_seq_table[divm][t-divm-1].unsqueeze(1).to(logprobsf.device), float('-inf')) if remove_bad_endings and t-divm > 0: logprobsf[torch.from_numpy(np.isin(beam_seq_table[divm][t-divm-1].cpu().numpy(), self.bad_endings_ix)), 0] = float('-inf') # suppress UNK tokens in the decoding if suppress_UNK and hasattr(self, 'vocab') and self.vocab[str(logprobsf.size(1)-1)] == 'UNK': logprobsf[:,logprobsf.size(1)-1] = logprobsf[:, logprobsf.size(1)-1] - 1000 # diversity is added here # the function directly modifies the logprobsf values and hence, we need to return # the unaugmented ones for sorting the candidates in the end. # for historical # reasons :-) unaug_logprobsf = add_diversity(beam_seq_table,logprobsf,t,divm,diversity_lambda,bdash) # infer new beams beam_seq_table[divm],\ beam_seq_logprobs_table[divm],\ beam_logprobs_sum_table[divm],\ state_table[divm],\ candidates_divm = beam_step(logprobsf, unaug_logprobsf, bdash, t-divm, beam_seq_table[divm], beam_seq_logprobs_table[divm], beam_logprobs_sum_table[divm], state_table[divm]) # if time's up... or if end token is reached then copy beams for vix in range(bdash): if beam_seq_table[divm][t-divm,vix] == self.eos_idx or t == self.seq_length + divm - 1: final_beam = { 'seq': beam_seq_table[divm][:, vix].clone(), 'logps': beam_seq_logprobs_table[divm][:, vix].clone(), 'unaug_p': beam_seq_logprobs_table[divm][:, vix].sum().item(), 'p': beam_logprobs_sum_table[divm][vix].item() } final_beam['p'] = length_penalty(t-divm+1, final_beam['p']) done_beams_table[divm].append(final_beam) # don't continue beams from finished sequences beam_logprobs_sum_table[divm][vix] = -1000 # move the current group one step forward in time it = beam_seq_table[divm][t-divm].to(logprobsf.device) logprobs_table[divm], state_table[divm] = self.get_logprobs_state(it, *(args[divm] + [state_table[divm]])) logprobs_table[divm] = F.log_softmax(logprobs_table[divm] / temperature, dim=-1) # all beams are sorted by their log-probabilities done_beams_table = [sorted(done_beams_table[i], key=lambda x: -x['p'])[:bdash] for i in range(group_size)] done_beams = sum(done_beams_table, []) return done_beams def sample_next_word(self, logprobs, sample_method, temperature): if sample_method == 'greedy': sampleLogprobs, it = torch.max(logprobs.data, 1) it = it.view(-1).long() elif sample_method == 'gumbel': # gumbel softmax # ref: https://gist.github.com/yzh119/fd2146d2aeb329d067568a493b20172f def sample_gumbel(shape, eps=1e-20): U = torch.rand(shape).to(logprobs.device) return -torch.log(-torch.log(U + eps) + eps) def gumbel_softmax_sample(logits, temperature): y = logits + sample_gumbel(logits.size()) return F.log_softmax(y / temperature, dim=-1) _logprobs = gumbel_softmax_sample(logprobs, temperature) _, it = torch.max(_logprobs.data, 1) sampleLogprobs = logprobs.gather(1, it.unsqueeze(1)) # gather the logprobs at sampled positions else: logprobs = logprobs / temperature if sample_method.startswith('top'): # topk sampling top_num = float(sample_method[3:]) if 0 < top_num < 1: # nucleus sampling from # The Curious Case of Neural Text Degeneration probs = F.softmax(logprobs, dim=1) sorted_probs, sorted_indices = torch.sort(probs, descending=True, dim=1) _cumsum = sorted_probs.cumsum(1) mask = _cumsum < top_num mask = torch.cat([torch.ones_like(mask[:,:1]), mask[:,:-1]], 1) sorted_probs = sorted_probs * mask.to(sorted_probs) sorted_probs = sorted_probs / sorted_probs.sum(1, keepdim=True) logprobs.scatter_(1, sorted_indices, sorted_probs.log()) else: the_k = int(top_num) tmp = torch.empty_like(logprobs).fill_(float('-inf')) topk, indices = torch.topk(logprobs, the_k, dim=1) tmp = tmp.scatter(1, indices, topk) logprobs = tmp it = torch.distributions.Categorical(logits=logprobs.detach()).sample() sampleLogprobs = logprobs.gather(1, it.unsqueeze(1)) # gather the logprobs at sampled positions return it, sampleLogprobs def decode_sequence(self, seq): return utils.decode_sequence(self.vocab, seq)
connect-caption-and-trace-main
captioning/models/CaptionModel_orig.py
# This file contains Att2in2, AdaAtt, AdaAttMO, UpDown model # AdaAtt is from Knowing When to Look: Adaptive Attention via A Visual Sentinel for Image Captioning # https://arxiv.org/abs/1612.01887 # AdaAttMO is a modified version with maxout lstm # Att2in is from Self-critical Sequence Training for Image Captioning # https://arxiv.org/abs/1612.00563 # In this file we only have Att2in2, which is a slightly different version of att2in, # in which the img feature embedding and word embedding is the same as what in adaatt. # UpDown is from Bottom-Up and Top-Down Attention for Image Captioning and VQA # https://arxiv.org/abs/1707.07998 # However, it may not be identical to the author's architecture. from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from . import utils from torch.nn.utils.rnn import PackedSequence, pack_padded_sequence, pad_packed_sequence from .CaptionModel import CaptionModel bad_endings = ['a','an','the','in','for','at','of','with','before','after','on','upon','near','to','is','are','am'] bad_endings += ['the'] def sort_pack_padded_sequence(input, lengths): sorted_lengths, indices = torch.sort(lengths, descending=True) tmp = pack_padded_sequence(input[indices], sorted_lengths, batch_first=True) inv_ix = indices.clone() inv_ix[indices] = torch.arange(0,len(indices)).type_as(inv_ix) return tmp, inv_ix def pad_unsort_packed_sequence(input, inv_ix): tmp, _ = pad_packed_sequence(input, batch_first=True) tmp = tmp[inv_ix] return tmp def pack_wrapper(module, att_feats, att_masks): if att_masks is not None: packed, inv_ix = sort_pack_padded_sequence(att_feats, att_masks.data.long().sum(1)) return pad_unsort_packed_sequence(PackedSequence(module(packed[0]), packed[1]), inv_ix) else: return module(att_feats) class AttModel(CaptionModel): def __init__(self, opt): super(AttModel, self).__init__() self.vocab_size = opt.vocab_size self.input_encoding_size = opt.input_encoding_size #self.rnn_type = opt.rnn_type self.rnn_size = opt.rnn_size self.num_layers = opt.num_layers self.drop_prob_lm = opt.drop_prob_lm self.seq_length = getattr(opt, 'max_length', 20) or opt.seq_length # maximum sample length self.fc_feat_size = opt.fc_feat_size self.att_feat_size = opt.att_feat_size self.att_hid_size = opt.att_hid_size self.bos_idx = getattr(opt, 'bos_idx', 0) self.eos_idx = getattr(opt, 'eos_idx', 0) self.pad_idx = getattr(opt, 'pad_idx', 0) self.use_bn = getattr(opt, 'use_bn', 0) self.ss_prob = 0.0 # Schedule sampling probability self.embed = nn.Sequential(nn.Embedding(self.vocab_size + 1, self.input_encoding_size), nn.ReLU(), nn.Dropout(self.drop_prob_lm)) self.fc_embed = nn.Sequential(nn.Linear(self.fc_feat_size, self.rnn_size), nn.ReLU(), nn.Dropout(self.drop_prob_lm)) self.att_embed = nn.Sequential(*( ((nn.BatchNorm1d(self.att_feat_size),) if self.use_bn else ())+ (nn.Linear(self.att_feat_size, self.rnn_size), nn.ReLU(), nn.Dropout(self.drop_prob_lm))+ ((nn.BatchNorm1d(self.rnn_size),) if self.use_bn==2 else ()))) self.logit_layers = getattr(opt, 'logit_layers', 1) if self.logit_layers == 1: self.logit = nn.Linear(self.rnn_size, self.vocab_size + 1) else: self.logit = [[nn.Linear(self.rnn_size, self.rnn_size), nn.ReLU(), nn.Dropout(0.5)] for _ in range(opt.logit_layers - 1)] self.logit = nn.Sequential(*(reduce(lambda x,y:x+y, self.logit) + [nn.Linear(self.rnn_size, self.vocab_size + 1)])) self.ctx2att = nn.Linear(self.rnn_size, self.att_hid_size) # For remove bad endding self.vocab = opt.vocab self.bad_endings_ix = [int(k) for k,v in self.vocab.items() if v in bad_endings] def init_hidden(self, bsz): weight = self.logit.weight \ if hasattr(self.logit, "weight") \ else self.logit[0].weight return (weight.new_zeros(self.num_layers, bsz, self.rnn_size), weight.new_zeros(self.num_layers, bsz, self.rnn_size)) def clip_att(self, att_feats, box_feats, att_masks): # Clip the length of att_masks and att_feats to the maximum length if att_masks is not None: max_len = att_masks.data.long().sum(1).max() att_feats = att_feats[:, :max_len].contiguous() att_masks = att_masks[:, :max_len].contiguous() box_feats = box_feats[:, :max_len].contiguous() return att_feats, box_feats, att_masks def _prepare_feature(self, fc_feats, att_feats, att_masks): att_feats, att_masks = self.clip_att(att_feats, att_masks) # embed fc and att feats fc_feats = self.fc_embed(fc_feats) att_feats = pack_wrapper(self.att_embed, att_feats, att_masks) # Project the attention feats first to reduce memory and computation comsumptions. p_att_feats = self.ctx2att(att_feats) return fc_feats, att_feats, p_att_feats, att_masks def _forward(self, fc_feats, att_feats, trace_feats, seq, att_masks=None, trace_masks=None): batch_size = fc_feats.size(0) if seq.ndim == 3: # B * seq_per_img * seq_len seq = seq.reshape(-1, seq.shape[2]) seq_per_img = seq.shape[0] // batch_size state = self.init_hidden(batch_size*seq_per_img) outputs = fc_feats.new_zeros(batch_size*seq_per_img, seq.size(1), self.vocab_size+1) # Prepare the features p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = self._prepare_feature(fc_feats, att_feats, trace_feats, att_masks, trace_masks) # pp_att_feats is used for attention, we cache it in advance to reduce computation cost if seq_per_img > 1: p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = utils.repeat_tensors(seq_per_img, [p_fc_feats, p_att_feats, pp_att_feats, p_att_masks] ) for i in range(seq.size(1)): if self.training and i >= 1 and self.ss_prob > 0.0: # otherwiste no need to sample sample_prob = fc_feats.new(batch_size*seq_per_img).uniform_(0, 1) sample_mask = sample_prob < self.ss_prob if sample_mask.sum() == 0: it = seq[:, i].clone() else: sample_ind = sample_mask.nonzero().view(-1) it = seq[:, i].data.clone() prob_prev = torch.exp(outputs[:, i-1].detach()) # fetch prev distribution: shape Nx(M+1) it.index_copy_(0, sample_ind, torch.multinomial(prob_prev, 1).view(-1).index_select(0, sample_ind)) else: it = seq[:, i].clone() # break if all the sequences end if i >= 1 and seq[:, i].sum() == 0: break output, state = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, state) outputs[:, i] = output return outputs def get_logprobs_state(self, it, fc_feats, att_feats, p_att_feats, att_masks, state, trace_feats_to_decoder, trace_masks, output_logsoftmax=1): # 'it' contains a word index xt = self.embed(it) output, state = self.core(xt, fc_feats, att_feats, p_att_feats, state, att_masks, trace_feats_to_decoder, trace_masks) if output_logsoftmax: logprobs = F.log_softmax(self.logit(output), dim=1) else: logprobs = self.logit(output) return logprobs, state def _old_sample_beam(self, fc_feats, att_feats, att_masks=None, opt={}): beam_size = opt.get('beam_size', 10) group_size = opt.get('group_size', 1) sample_n = opt.get('sample_n', 10) # when sample_n == beam_size then each beam is a sample. assert sample_n == 1 or sample_n == beam_size // group_size, 'when beam search, sample_n == 1 or beam search' batch_size = fc_feats.size(0) p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = self._prepare_feature(fc_feats, att_feats, att_masks) assert beam_size <= self.vocab_size + 1, 'lets assume this for now, otherwise this corner case causes a few headaches down the road. can be dealt with in future if needed' seq = fc_feats.new_full((batch_size*sample_n, self.seq_length), self.pad_idx, dtype=torch.long) seqLogprobs = fc_feats.new_zeros(batch_size*sample_n, self.seq_length, self.vocab_size + 1) # lets process every image independently for now, for simplicity self.done_beams = [[] for _ in range(batch_size)] for k in range(batch_size): state = self.init_hidden(beam_size) tmp_fc_feats, tmp_att_feats, tmp_p_att_feats, tmp_att_masks = utils.repeat_tensors(beam_size, [p_fc_feats[k:k+1], p_att_feats[k:k+1], pp_att_feats[k:k+1], p_att_masks[k:k+1] if att_masks is not None else None] ) for t in range(1): if t == 0: # input <bos> it = fc_feats.new_full([beam_size], self.bos_idx, dtype=torch.long) logprobs, state = self.get_logprobs_state(it, tmp_fc_feats, tmp_att_feats, tmp_p_att_feats, tmp_att_masks, state) self.done_beams[k] = self.old_beam_search(state, logprobs, tmp_fc_feats, tmp_att_feats, tmp_p_att_feats, tmp_att_masks, opt=opt) if sample_n == beam_size: for _n in range(sample_n): seq[k*sample_n+_n, :] = self.done_beams[k][_n]['seq'] seqLogprobs[k*sample_n+_n, :] = self.done_beams[k][_n]['logps'] else: seq[k, :] = self.done_beams[k][0]['seq'] # the first beam has highest cumulative score seqLogprobs[k, :] = self.done_beams[k][0]['logps'] # return the samples and their log likelihoods return seq, seqLogprobs def _sample_beam(self, fc_feats, att_feats, trace_feats, box_feats, att_masks=None, trace_masks=None, opt={}): beam_size = opt.get('beam_size', 10) group_size = opt.get('group_size', 1) sample_n = opt.get('sample_n', 10) # when sample_n == beam_size then each beam is a sample. assert sample_n == 1 or sample_n == beam_size // group_size, 'when beam search, sample_n == 1 or beam search' batch_size = fc_feats.size(0) p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = self._prepare_feature(fc_feats, att_feats, trace_feats, box_feats, att_masks, trace_masks) assert beam_size <= self.vocab_size + 1, 'lets assume this for now, otherwise this corner case causes a few headaches down the road. can be dealt with in future if needed' seq = fc_feats.new_full((batch_size*sample_n, self.seq_length), self.pad_idx, dtype=torch.long) seqLogprobs = fc_feats.new_zeros(batch_size*sample_n, self.seq_length, self.vocab_size + 1) # lets process every image independently for now, for simplicity self.done_beams = [[] for _ in range(batch_size)] state = self.init_hidden(batch_size) # first step, feed bos it = fc_feats.new_full([batch_size], self.bos_idx, dtype=torch.long) logprobs, state = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, state) p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = utils.repeat_tensors(beam_size, [p_fc_feats, p_att_feats, pp_att_feats, p_att_masks] ) self.done_beams = self.beam_search(state, logprobs, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, opt=opt) for k in range(batch_size): if sample_n == beam_size: for _n in range(sample_n): seq_len = self.done_beams[k][_n]['seq'].shape[0] seq[k*sample_n+_n, :seq_len] = self.done_beams[k][_n]['seq'] seqLogprobs[k*sample_n+_n, :seq_len] = self.done_beams[k][_n]['logps'] else: seq_len = self.done_beams[k][0]['seq'].shape[0] seq[k, :seq_len] = self.done_beams[k][0]['seq'] # the first beam has highest cumulative score seqLogprobs[k, :seq_len] = self.done_beams[k][0]['logps'] # return the samples and their log likelihoods return seq, seqLogprobs def _sample(self, fc_feats, att_feats, trace_feats, box_feats, att_masks=None, trace_masks=None, opt={}): sample_method = opt.get('sample_method', 'greedy') beam_size = opt.get('beam_size', 1) temperature = opt.get('temperature', 1.0) sample_n = int(opt.get('sample_n', 1)) group_size = opt.get('group_size', 1) output_logsoftmax = opt.get('output_logsoftmax', 1) decoding_constraint = opt.get('decoding_constraint', 0) block_trigrams = opt.get('block_trigrams', 0) remove_bad_endings = opt.get('remove_bad_endings', 0) if beam_size > 1 and sample_method in ['greedy', 'beam_search']: return self._sample_beam(fc_feats, att_feats, trace_feats, box_feats, att_masks, trace_masks, opt) if group_size > 1: return self._diverse_sample(fc_feats, att_feats, att_masks, opt) batch_size = fc_feats.size(0) state = self.init_hidden(batch_size*sample_n) p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, trace_feats_to_decoder = \ self._prepare_feature(fc_feats, att_feats, trace_feats, box_feats, att_masks, trace_masks) if sample_n > 1: p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = utils.repeat_tensors(sample_n, [p_fc_feats, p_att_feats, pp_att_feats, p_att_masks] ) trigrams = [] # will be a list of batch_size dictionaries seq = fc_feats.new_full((batch_size*sample_n, self.seq_length), self.pad_idx, dtype=torch.long) seqLogprobs = fc_feats.new_zeros(batch_size*sample_n, self.seq_length, self.vocab_size + 1) for t in range(self.seq_length + 1): if t == 0: # input <bos> it = fc_feats.new_full([batch_size*sample_n], self.bos_idx, dtype=torch.long) logprobs, state = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, state, trace_feats_to_decoder, trace_masks, output_logsoftmax=output_logsoftmax) if decoding_constraint and t > 0: tmp = logprobs.new_zeros(logprobs.size()) tmp.scatter_(1, seq[:,t-1].data.unsqueeze(1), float('-inf')) logprobs = logprobs + tmp if remove_bad_endings and t > 0: tmp = logprobs.new_zeros(logprobs.size()) prev_bad = np.isin(seq[:,t-1].data.cpu().numpy(), self.bad_endings_ix) # Make it impossible to generate bad_endings tmp[torch.from_numpy(prev_bad.astype('uint8')), 0] = float('-inf') logprobs = logprobs + tmp # Mess with trigrams # Copy from https://github.com/lukemelas/image-paragraph-captioning if block_trigrams and t >= 3: # Store trigram generated at last step prev_two_batch = seq[:,t-3:t-1] for i in range(batch_size): # = seq.size(0) prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item()) current = seq[i][t-1] if t == 3: # initialize trigrams.append({prev_two: [current]}) # {LongTensor: list containing 1 int} elif t > 3: if prev_two in trigrams[i]: # add to list trigrams[i][prev_two].append(current) else: # create list trigrams[i][prev_two] = [current] # Block used trigrams at next step prev_two_batch = seq[:,t-2:t] mask = torch.zeros(logprobs.size(), requires_grad=False).to(logprobs.device) # batch_size x vocab_size for i in range(batch_size): prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item()) if prev_two in trigrams[i]: for j in trigrams[i][prev_two]: mask[i,j] += 1 # Apply mask to log probs #logprobs = logprobs - (mask * 1e9) alpha = 2.0 # = 4 logprobs = logprobs + (mask * -0.693 * alpha) # ln(1/2) * alpha (alpha -> infty works best) # sample the next word if t == self.seq_length: # skip if we achieve maximum length break it, sampleLogprobs = self.sample_next_word(logprobs, sample_method, temperature) # stop when all finished if t == 0: unfinished = it != self.eos_idx else: it[~unfinished] = self.pad_idx # This allows eos_idx not being overwritten to 0 logprobs = logprobs * unfinished.unsqueeze(1).to(logprobs) unfinished = unfinished & (it != self.eos_idx) seq[:,t] = it seqLogprobs[:,t] = logprobs # quit loop if all sequences have finished if unfinished.sum() == 0: break ### for decoder evaluate: cut at the ground truth caption length for i in range(trace_masks.shape[0]): tmp_num = trace_masks[i].sum().long() seq[i, tmp_num:] = 0 seqLogprobs[i, tmp_num:, :] = 0 return seq, seqLogprobs def _diverse_sample(self, fc_feats, att_feats, att_masks=None, opt={}): sample_method = opt.get('sample_method', 'greedy') beam_size = opt.get('beam_size', 1) temperature = opt.get('temperature', 1.0) group_size = opt.get('group_size', 1) diversity_lambda = opt.get('diversity_lambda', 0.5) decoding_constraint = opt.get('decoding_constraint', 0) block_trigrams = opt.get('block_trigrams', 0) remove_bad_endings = opt.get('remove_bad_endings', 0) batch_size = fc_feats.size(0) state = self.init_hidden(batch_size) p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = self._prepare_feature(fc_feats, att_feats, att_masks) trigrams_table = [[] for _ in range(group_size)] # will be a list of batch_size dictionaries seq_table = [fc_feats.new_full((batch_size, self.seq_length), self.pad_idx, dtype=torch.long) for _ in range(group_size)] seqLogprobs_table = [fc_feats.new_zeros(batch_size, self.seq_length) for _ in range(group_size)] state_table = [self.init_hidden(batch_size) for _ in range(group_size)] for tt in range(self.seq_length + group_size): for divm in range(group_size): t = tt - divm seq = seq_table[divm] seqLogprobs = seqLogprobs_table[divm] trigrams = trigrams_table[divm] if t >= 0 and t <= self.seq_length-1: if t == 0: # input <bos> it = fc_feats.new_full([batch_size], self.bos_idx, dtype=torch.long) else: it = seq[:, t-1] # changed logprobs, state_table[divm] = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, state_table[divm]) # changed logprobs = F.log_softmax(logprobs / temperature, dim=-1) # Add diversity if divm > 0: unaug_logprobs = logprobs.clone() for prev_choice in range(divm): prev_decisions = seq_table[prev_choice][:, t] logprobs[:, prev_decisions] = logprobs[:, prev_decisions] - diversity_lambda if decoding_constraint and t > 0: tmp = logprobs.new_zeros(logprobs.size()) tmp.scatter_(1, seq[:,t-1].data.unsqueeze(1), float('-inf')) logprobs = logprobs + tmp if remove_bad_endings and t > 0: tmp = logprobs.new_zeros(logprobs.size()) prev_bad = np.isin(seq[:,t-1].data.cpu().numpy(), self.bad_endings_ix) # Impossible to generate remove_bad_endings tmp[torch.from_numpy(prev_bad.astype('uint8')), 0] = float('-inf') logprobs = logprobs + tmp # Mess with trigrams if block_trigrams and t >= 3: # Store trigram generated at last step prev_two_batch = seq[:,t-3:t-1] for i in range(batch_size): # = seq.size(0) prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item()) current = seq[i][t-1] if t == 3: # initialize trigrams.append({prev_two: [current]}) # {LongTensor: list containing 1 int} elif t > 3: if prev_two in trigrams[i]: # add to list trigrams[i][prev_two].append(current) else: # create list trigrams[i][prev_two] = [current] # Block used trigrams at next step prev_two_batch = seq[:,t-2:t] mask = torch.zeros(logprobs.size(), requires_grad=False).cuda() # batch_size x vocab_size for i in range(batch_size): prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item()) if prev_two in trigrams[i]: for j in trigrams[i][prev_two]: mask[i,j] += 1 # Apply mask to log probs #logprobs = logprobs - (mask * 1e9) alpha = 2.0 # = 4 logprobs = logprobs + (mask * -0.693 * alpha) # ln(1/2) * alpha (alpha -> infty works best) it, sampleLogprobs = self.sample_next_word(logprobs, sample_method, 1) # stop when all finished if t == 0: unfinished = it != self.eos_idx else: unfinished = seq[:,t-1] != self.pad_idx & seq[:,t-1] != self.eos_idx it[~unfinished] = self.pad_idx unfinished = unfinished & (it != self.eos_idx) # changed seq[:,t] = it seqLogprobs[:,t] = sampleLogprobs.view(-1) return torch.stack(seq_table, 1).reshape(batch_size * group_size, -1), torch.stack(seqLogprobs_table, 1).reshape(batch_size * group_size, -1) class AdaAtt_lstm(nn.Module): def __init__(self, opt, use_maxout=True): super(AdaAtt_lstm, self).__init__() self.input_encoding_size = opt.input_encoding_size #self.rnn_type = opt.rnn_type self.rnn_size = opt.rnn_size self.num_layers = opt.num_layers self.drop_prob_lm = opt.drop_prob_lm self.fc_feat_size = opt.fc_feat_size self.att_feat_size = opt.att_feat_size self.att_hid_size = opt.att_hid_size self.use_maxout = use_maxout # Build a LSTM self.w2h = nn.Linear(self.input_encoding_size, (4+(use_maxout==True)) * self.rnn_size) self.v2h = nn.Linear(self.rnn_size, (4+(use_maxout==True)) * self.rnn_size) self.i2h = nn.ModuleList([nn.Linear(self.rnn_size, (4+(use_maxout==True)) * self.rnn_size) for _ in range(self.num_layers - 1)]) self.h2h = nn.ModuleList([nn.Linear(self.rnn_size, (4+(use_maxout==True)) * self.rnn_size) for _ in range(self.num_layers)]) # Layers for getting the fake region if self.num_layers == 1: self.r_w2h = nn.Linear(self.input_encoding_size, self.rnn_size) self.r_v2h = nn.Linear(self.rnn_size, self.rnn_size) else: self.r_i2h = nn.Linear(self.rnn_size, self.rnn_size) self.r_h2h = nn.Linear(self.rnn_size, self.rnn_size) def forward(self, xt, img_fc, state): hs = [] cs = [] for L in range(self.num_layers): # c,h from previous timesteps prev_h = state[0][L] prev_c = state[1][L] # the input to this layer if L == 0: x = xt i2h = self.w2h(x) + self.v2h(img_fc) else: x = hs[-1] x = F.dropout(x, self.drop_prob_lm, self.training) i2h = self.i2h[L-1](x) all_input_sums = i2h+self.h2h[L](prev_h) sigmoid_chunk = all_input_sums.narrow(1, 0, 3 * self.rnn_size) sigmoid_chunk = torch.sigmoid(sigmoid_chunk) # decode the gates in_gate = sigmoid_chunk.narrow(1, 0, self.rnn_size) forget_gate = sigmoid_chunk.narrow(1, self.rnn_size, self.rnn_size) out_gate = sigmoid_chunk.narrow(1, self.rnn_size * 2, self.rnn_size) # decode the write inputs if not self.use_maxout: in_transform = torch.tanh(all_input_sums.narrow(1, 3 * self.rnn_size, self.rnn_size)) else: in_transform = all_input_sums.narrow(1, 3 * self.rnn_size, 2 * self.rnn_size) in_transform = torch.max(\ in_transform.narrow(1, 0, self.rnn_size), in_transform.narrow(1, self.rnn_size, self.rnn_size)) # perform the LSTM update next_c = forget_gate * prev_c + in_gate * in_transform # gated cells form the output tanh_nex_c = torch.tanh(next_c) next_h = out_gate * tanh_nex_c if L == self.num_layers-1: if L == 0: i2h = self.r_w2h(x) + self.r_v2h(img_fc) else: i2h = self.r_i2h(x) n5 = i2h+self.r_h2h(prev_h) fake_region = torch.sigmoid(n5) * tanh_nex_c cs.append(next_c) hs.append(next_h) # set up the decoder top_h = hs[-1] top_h = F.dropout(top_h, self.drop_prob_lm, self.training) fake_region = F.dropout(fake_region, self.drop_prob_lm, self.training) state = (torch.cat([_.unsqueeze(0) for _ in hs], 0), torch.cat([_.unsqueeze(0) for _ in cs], 0)) return top_h, fake_region, state class AdaAtt_attention(nn.Module): def __init__(self, opt): super(AdaAtt_attention, self).__init__() self.input_encoding_size = opt.input_encoding_size #self.rnn_type = opt.rnn_type self.rnn_size = opt.rnn_size self.drop_prob_lm = opt.drop_prob_lm self.att_hid_size = opt.att_hid_size # fake region embed self.fr_linear = nn.Sequential( nn.Linear(self.rnn_size, self.input_encoding_size), nn.ReLU(), nn.Dropout(self.drop_prob_lm)) self.fr_embed = nn.Linear(self.input_encoding_size, self.att_hid_size) # h out embed self.ho_linear = nn.Sequential( nn.Linear(self.rnn_size, self.input_encoding_size), nn.Tanh(), nn.Dropout(self.drop_prob_lm)) self.ho_embed = nn.Linear(self.input_encoding_size, self.att_hid_size) self.alpha_net = nn.Linear(self.att_hid_size, 1) self.att2h = nn.Linear(self.rnn_size, self.rnn_size) def forward(self, h_out, fake_region, conv_feat, conv_feat_embed, att_masks=None): # View into three dimensions att_size = conv_feat.numel() // conv_feat.size(0) // self.rnn_size conv_feat = conv_feat.view(-1, att_size, self.rnn_size) conv_feat_embed = conv_feat_embed.view(-1, att_size, self.att_hid_size) # view neighbor from bach_size * neighbor_num x rnn_size to bach_size x rnn_size * neighbor_num fake_region = self.fr_linear(fake_region) fake_region_embed = self.fr_embed(fake_region) h_out_linear = self.ho_linear(h_out) h_out_embed = self.ho_embed(h_out_linear) txt_replicate = h_out_embed.unsqueeze(1).expand(h_out_embed.size(0), att_size + 1, h_out_embed.size(1)) img_all = torch.cat([fake_region.view(-1,1,self.input_encoding_size), conv_feat], 1) img_all_embed = torch.cat([fake_region_embed.view(-1,1,self.input_encoding_size), conv_feat_embed], 1) hA = torch.tanh(img_all_embed + txt_replicate) hA = F.dropout(hA,self.drop_prob_lm, self.training) hAflat = self.alpha_net(hA.view(-1, self.att_hid_size)) PI = F.softmax(hAflat.view(-1, att_size + 1), dim=1) if att_masks is not None: att_masks = att_masks.view(-1, att_size) PI = PI * torch.cat([att_masks[:,:1], att_masks], 1) # assume one one at the first time step. PI = PI / PI.sum(1, keepdim=True) visAtt = torch.bmm(PI.unsqueeze(1), img_all) visAttdim = visAtt.squeeze(1) atten_out = visAttdim + h_out_linear h = torch.tanh(self.att2h(atten_out)) h = F.dropout(h, self.drop_prob_lm, self.training) return h class AdaAttCore(nn.Module): def __init__(self, opt, use_maxout=False): super(AdaAttCore, self).__init__() self.lstm = AdaAtt_lstm(opt, use_maxout) self.attention = AdaAtt_attention(opt) def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None): h_out, p_out, state = self.lstm(xt, fc_feats, state) atten_out = self.attention(h_out, p_out, att_feats, p_att_feats, att_masks) return atten_out, state class UpDownCore(nn.Module): def __init__(self, opt, use_maxout=False): super(UpDownCore, self).__init__() self.drop_prob_lm = opt.drop_prob_lm self.att_lstm = nn.LSTMCell(opt.input_encoding_size + opt.rnn_size * 2, opt.rnn_size) # we, fc, h^2_t-1 self.lang_lstm = nn.LSTMCell(opt.rnn_size * 2, opt.rnn_size) # h^1_t, \hat v self.attention = Attention(opt) def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None): prev_h = state[0][-1] att_lstm_input = torch.cat([prev_h, fc_feats, xt], 1) h_att, c_att = self.att_lstm(att_lstm_input, (state[0][0], state[1][0])) att = self.attention(h_att, att_feats, p_att_feats, att_masks) lang_lstm_input = torch.cat([att, h_att], 1) # lang_lstm_input = torch.cat([att, F.dropout(h_att, self.drop_prob_lm, self.training)], 1) ????? h_lang, c_lang = self.lang_lstm(lang_lstm_input, (state[0][1], state[1][1])) output = F.dropout(h_lang, self.drop_prob_lm, self.training) state = (torch.stack([h_att, h_lang]), torch.stack([c_att, c_lang])) return output, state ############################################################################ # Notice: # StackAtt and DenseAtt are models that I randomly designed. # They are not related to any paper. ############################################################################ from .FCModel import LSTMCore class StackAttCore(nn.Module): def __init__(self, opt, use_maxout=False): super(StackAttCore, self).__init__() self.drop_prob_lm = opt.drop_prob_lm # self.att0 = Attention(opt) self.att1 = Attention(opt) self.att2 = Attention(opt) opt_input_encoding_size = opt.input_encoding_size opt.input_encoding_size = opt.input_encoding_size + opt.rnn_size self.lstm0 = LSTMCore(opt) # att_feat + word_embedding opt.input_encoding_size = opt.rnn_size * 2 self.lstm1 = LSTMCore(opt) self.lstm2 = LSTMCore(opt) opt.input_encoding_size = opt_input_encoding_size # self.emb1 = nn.Linear(opt.rnn_size, opt.rnn_size) self.emb2 = nn.Linear(opt.rnn_size, opt.rnn_size) def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None): # att_res_0 = self.att0(state[0][-1], att_feats, p_att_feats, att_masks) h_0, state_0 = self.lstm0(torch.cat([xt,fc_feats],1), [state[0][0:1], state[1][0:1]]) att_res_1 = self.att1(h_0, att_feats, p_att_feats, att_masks) h_1, state_1 = self.lstm1(torch.cat([h_0,att_res_1],1), [state[0][1:2], state[1][1:2]]) att_res_2 = self.att2(h_1 + self.emb2(att_res_1), att_feats, p_att_feats, att_masks) h_2, state_2 = self.lstm2(torch.cat([h_1,att_res_2],1), [state[0][2:3], state[1][2:3]]) return h_2, [torch.cat(_, 0) for _ in zip(state_0, state_1, state_2)] class DenseAttCore(nn.Module): def __init__(self, opt, use_maxout=False): super(DenseAttCore, self).__init__() self.drop_prob_lm = opt.drop_prob_lm # self.att0 = Attention(opt) self.att1 = Attention(opt) self.att2 = Attention(opt) opt_input_encoding_size = opt.input_encoding_size opt.input_encoding_size = opt.input_encoding_size + opt.rnn_size self.lstm0 = LSTMCore(opt) # att_feat + word_embedding opt.input_encoding_size = opt.rnn_size * 2 self.lstm1 = LSTMCore(opt) self.lstm2 = LSTMCore(opt) opt.input_encoding_size = opt_input_encoding_size # self.emb1 = nn.Linear(opt.rnn_size, opt.rnn_size) self.emb2 = nn.Linear(opt.rnn_size, opt.rnn_size) # fuse h_0 and h_1 self.fusion1 = nn.Sequential(nn.Linear(opt.rnn_size*2, opt.rnn_size), nn.ReLU(), nn.Dropout(opt.drop_prob_lm)) # fuse h_0, h_1 and h_2 self.fusion2 = nn.Sequential(nn.Linear(opt.rnn_size*3, opt.rnn_size), nn.ReLU(), nn.Dropout(opt.drop_prob_lm)) def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None): # att_res_0 = self.att0(state[0][-1], att_feats, p_att_feats, att_masks) h_0, state_0 = self.lstm0(torch.cat([xt,fc_feats],1), [state[0][0:1], state[1][0:1]]) att_res_1 = self.att1(h_0, att_feats, p_att_feats, att_masks) h_1, state_1 = self.lstm1(torch.cat([h_0,att_res_1],1), [state[0][1:2], state[1][1:2]]) att_res_2 = self.att2(h_1 + self.emb2(att_res_1), att_feats, p_att_feats, att_masks) h_2, state_2 = self.lstm2(torch.cat([self.fusion1(torch.cat([h_0, h_1], 1)),att_res_2],1), [state[0][2:3], state[1][2:3]]) return self.fusion2(torch.cat([h_0, h_1, h_2], 1)), [torch.cat(_, 0) for _ in zip(state_0, state_1, state_2)] class Attention(nn.Module): def __init__(self, opt): super(Attention, self).__init__() self.rnn_size = opt.rnn_size self.att_hid_size = opt.att_hid_size self.h2att = nn.Linear(self.rnn_size, self.att_hid_size) self.alpha_net = nn.Linear(self.att_hid_size, 1) def forward(self, h, att_feats, p_att_feats, att_masks=None): # The p_att_feats here is already projected att_size = att_feats.numel() // att_feats.size(0) // att_feats.size(-1) att = p_att_feats.view(-1, att_size, self.att_hid_size) att_h = self.h2att(h) # batch * att_hid_size att_h = att_h.unsqueeze(1).expand_as(att) # batch * att_size * att_hid_size dot = att + att_h # batch * att_size * att_hid_size dot = torch.tanh(dot) # batch * att_size * att_hid_size dot = dot.view(-1, self.att_hid_size) # (batch * att_size) * att_hid_size dot = self.alpha_net(dot) # (batch * att_size) * 1 dot = dot.view(-1, att_size) # batch * att_size weight = F.softmax(dot, dim=1) # batch * att_size if att_masks is not None: weight = weight * att_masks.view(-1, att_size).to(weight) weight = weight / weight.sum(1, keepdim=True) # normalize to 1 att_feats_ = att_feats.view(-1, att_size, att_feats.size(-1)) # batch * att_size * att_feat_size att_res = torch.bmm(weight.unsqueeze(1), att_feats_).squeeze(1) # batch * att_feat_size return att_res class Att2in2Core(nn.Module): def __init__(self, opt): super(Att2in2Core, self).__init__() self.input_encoding_size = opt.input_encoding_size #self.rnn_type = opt.rnn_type self.rnn_size = opt.rnn_size #self.num_layers = opt.num_layers self.drop_prob_lm = opt.drop_prob_lm self.fc_feat_size = opt.fc_feat_size self.att_feat_size = opt.att_feat_size self.att_hid_size = opt.att_hid_size # Build a LSTM self.a2c = nn.Linear(self.rnn_size, 2 * self.rnn_size) self.i2h = nn.Linear(self.input_encoding_size, 5 * self.rnn_size) self.h2h = nn.Linear(self.rnn_size, 5 * self.rnn_size) self.dropout = nn.Dropout(self.drop_prob_lm) self.attention = Attention(opt) def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None): att_res = self.attention(state[0][-1], att_feats, p_att_feats, att_masks) all_input_sums = self.i2h(xt) + self.h2h(state[0][-1]) sigmoid_chunk = all_input_sums.narrow(1, 0, 3 * self.rnn_size) sigmoid_chunk = torch.sigmoid(sigmoid_chunk) in_gate = sigmoid_chunk.narrow(1, 0, self.rnn_size) forget_gate = sigmoid_chunk.narrow(1, self.rnn_size, self.rnn_size) out_gate = sigmoid_chunk.narrow(1, self.rnn_size * 2, self.rnn_size) in_transform = all_input_sums.narrow(1, 3 * self.rnn_size, 2 * self.rnn_size) + \ self.a2c(att_res) in_transform = torch.max(\ in_transform.narrow(1, 0, self.rnn_size), in_transform.narrow(1, self.rnn_size, self.rnn_size)) next_c = forget_gate * state[1][-1] + in_gate * in_transform next_h = out_gate * torch.tanh(next_c) output = self.dropout(next_h) state = (next_h.unsqueeze(0), next_c.unsqueeze(0)) return output, state class Att2inCore(Att2in2Core): def __init__(self, opt): super(Att2inCore, self).__init__(opt) del self.a2c self.a2c = nn.Linear(self.att_feat_size, 2 * self.rnn_size) """ Note this is my attempt to replicate att2all model in self-critical paper. However, this is not a correct replication actually. Will fix it. """ class Att2all2Core(nn.Module): def __init__(self, opt): super(Att2all2Core, self).__init__() self.input_encoding_size = opt.input_encoding_size #self.rnn_type = opt.rnn_type self.rnn_size = opt.rnn_size #self.num_layers = opt.num_layers self.drop_prob_lm = opt.drop_prob_lm self.fc_feat_size = opt.fc_feat_size self.att_feat_size = opt.att_feat_size self.att_hid_size = opt.att_hid_size # Build a LSTM self.a2h = nn.Linear(self.rnn_size, 5 * self.rnn_size) self.i2h = nn.Linear(self.input_encoding_size, 5 * self.rnn_size) self.h2h = nn.Linear(self.rnn_size, 5 * self.rnn_size) self.dropout = nn.Dropout(self.drop_prob_lm) self.attention = Attention(opt) def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None): att_res = self.attention(state[0][-1], att_feats, p_att_feats, att_masks) all_input_sums = self.i2h(xt) + self.h2h(state[0][-1]) + self.a2h(att_res) sigmoid_chunk = all_input_sums.narrow(1, 0, 3 * self.rnn_size) sigmoid_chunk = torch.sigmoid(sigmoid_chunk) in_gate = sigmoid_chunk.narrow(1, 0, self.rnn_size) forget_gate = sigmoid_chunk.narrow(1, self.rnn_size, self.rnn_size) out_gate = sigmoid_chunk.narrow(1, self.rnn_size * 2, self.rnn_size) in_transform = all_input_sums.narrow(1, 3 * self.rnn_size, 2 * self.rnn_size) in_transform = torch.max(\ in_transform.narrow(1, 0, self.rnn_size), in_transform.narrow(1, self.rnn_size, self.rnn_size)) next_c = forget_gate * state[1][-1] + in_gate * in_transform next_h = out_gate * torch.tanh(next_c) output = self.dropout(next_h) state = (next_h.unsqueeze(0), next_c.unsqueeze(0)) return output, state class AdaAttModel(AttModel): def __init__(self, opt): super(AdaAttModel, self).__init__(opt) self.core = AdaAttCore(opt) # AdaAtt with maxout lstm class AdaAttMOModel(AttModel): def __init__(self, opt): super(AdaAttMOModel, self).__init__(opt) self.core = AdaAttCore(opt, True) class Att2in2Model(AttModel): def __init__(self, opt): super(Att2in2Model, self).__init__(opt) self.core = Att2in2Core(opt) delattr(self, 'fc_embed') self.fc_embed = lambda x : x class Att2all2Model(AttModel): def __init__(self, opt): super(Att2all2Model, self).__init__(opt) self.core = Att2all2Core(opt) delattr(self, 'fc_embed') self.fc_embed = lambda x : x class UpDownModel(AttModel): def __init__(self, opt): super(UpDownModel, self).__init__(opt) self.num_layers = 2 self.core = UpDownCore(opt) class StackAttModel(AttModel): def __init__(self, opt): super(StackAttModel, self).__init__(opt) self.num_layers = 3 self.core = StackAttCore(opt) class DenseAttModel(AttModel): def __init__(self, opt): super(DenseAttModel, self).__init__(opt) self.num_layers = 3 self.core = DenseAttCore(opt) class Att2inModel(AttModel): def __init__(self, opt): super(Att2inModel, self).__init__(opt) del self.embed, self.fc_embed, self.att_embed self.embed = nn.Embedding(self.vocab_size + 1, self.input_encoding_size) self.fc_embed = self.att_embed = lambda x: x del self.ctx2att self.ctx2att = nn.Linear(self.att_feat_size, self.att_hid_size) self.core = Att2inCore(opt) self.init_weights() def init_weights(self): initrange = 0.1 self.embed.weight.data.uniform_(-initrange, initrange) self.logit.bias.data.fill_(0) self.logit.weight.data.uniform_(-initrange, initrange) class NewFCModel(AttModel): def __init__(self, opt): super(NewFCModel, self).__init__(opt) self.fc_embed = nn.Linear(self.fc_feat_size, self.input_encoding_size) self.embed = nn.Embedding(self.vocab_size + 1, self.input_encoding_size) self._core = LSTMCore(opt) delattr(self, 'att_embed') self.att_embed = lambda x : x delattr(self, 'ctx2att') self.ctx2att = lambda x: x def core(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks): # Step 0, feed the input image # if (self.training and state[0].is_leaf) or \ # (not self.training and state[0].sum() == 0): # _, state = self._core(fc_feats, state) # three cases # normal mle training # Sample # beam search (diverse beam search) # fixed captioning module. is_first_step = (state[0]==0).all(2).all(0) # size: B if is_first_step.all(): _, state = self._core(fc_feats, state) elif is_first_step.any(): # This is mostly for diverse beam search I think new_state = [torch.zeros_like(_) for _ in state] new_state[0][:, ~is_first_step] = state[0][:, ~is_first_step] new_state[1][:, ~is_first_step] = state[1][:, ~is_first_step] _, state = self._core(fc_feats, state) new_state[0][:, is_first_step] = state[0][:, is_first_step] new_state[1][:, is_first_step] = state[1][:, is_first_step] state = new_state # if (state[0]==0).all(): # # Let's forget about diverse beam search first # _, state = self._core(fc_feats, state) return self._core(xt, state) def _prepare_feature(self, fc_feats, att_feats, att_masks): fc_feats = self.fc_embed(fc_feats) return fc_feats, att_feats, att_feats, att_masks class LMModel(AttModel): def __init__(self, opt): super(LMModel, self).__init__(opt) delattr(self, 'fc_embed') self.fc_embed = lambda x: x.new_zeros(x.shape[0], self.input_encoding_size) self.embed = nn.Embedding(self.vocab_size + 1, self.input_encoding_size) self._core = LSTMCore(opt) delattr(self, 'att_embed') self.att_embed = lambda x : x delattr(self, 'ctx2att') self.ctx2att = lambda x: x def core(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks): if (state[0]==0).all(): # Let's forget about diverse beam search first _, state = self._core(fc_feats, state) return self._core(xt, state) def _prepare_feature(self, fc_feats, att_feats, att_masks): fc_feats = self.fc_embed(fc_feats) return fc_feats, None, None, None
connect-caption-and-trace-main
captioning/models/AttModel_caption_generation.py
# Implementation for paper 'Attention on Attention for Image Captioning' # https://arxiv.org/abs/1908.06954 # RT: Code from original author's repo: https://github.com/husthuaan/AoANet/ from __future__ import absolute_import from __future__ import division from __future__ import print_function import torch import torch.nn as nn import torch.nn.functional as F from .AttModel import pack_wrapper, AttModel, Attention from .TransformerModel import LayerNorm, attention, clones, SublayerConnection, PositionwiseFeedForward class MultiHeadedDotAttention(nn.Module): def __init__(self, h, d_model, dropout=0.1, scale=1, project_k_v=1, use_output_layer=1, do_aoa=0, norm_q=0, dropout_aoa=0.3): super(MultiHeadedDotAttention, self).__init__() assert d_model * scale % h == 0 # We assume d_v always equals d_k self.d_k = d_model * scale // h self.h = h # Do we need to do linear projections on K and V? self.project_k_v = project_k_v # normalize the query? if norm_q: self.norm = LayerNorm(d_model) else: self.norm = lambda x:x self.linears = clones(nn.Linear(d_model, d_model * scale), 1 + 2 * project_k_v) # output linear layer after the multi-head attention? self.output_layer = nn.Linear(d_model * scale, d_model) # apply aoa after attention? self.use_aoa = do_aoa if self.use_aoa: self.aoa_layer = nn.Sequential(nn.Linear((1 + scale) * d_model, 2 * d_model), nn.GLU()) # dropout to the input of AoA layer if dropout_aoa > 0: self.dropout_aoa = nn.Dropout(p=dropout_aoa) else: self.dropout_aoa = lambda x:x if self.use_aoa or not use_output_layer: # AoA doesn't need the output linear layer del self.output_layer self.output_layer = lambda x:x self.attn = None self.dropout = nn.Dropout(p=dropout) def forward(self, query, value, key, mask=None): if mask is not None: if len(mask.size()) == 2: mask = mask.unsqueeze(-2) # Same mask applied to all h heads. mask = mask.unsqueeze(1) single_query = 0 if len(query.size()) == 2: single_query = 1 query = query.unsqueeze(1) nbatches = query.size(0) query = self.norm(query) # Do all the linear projections in batch from d_model => h x d_k if self.project_k_v == 0: query_ = self.linears[0](query).view(nbatches, -1, self.h, self.d_k).transpose(1, 2) key_ = key.view(nbatches, -1, self.h, self.d_k).transpose(1, 2) value_ = value.view(nbatches, -1, self.h, self.d_k).transpose(1, 2) else: query_, key_, value_ = \ [l(x).view(nbatches, -1, self.h, self.d_k).transpose(1, 2) for l, x in zip(self.linears, (query, key, value))] # Apply attention on all the projected vectors in batch. x, self.attn = attention(query_, key_, value_, mask=mask, dropout=self.dropout) # "Concat" using a view x = x.transpose(1, 2).contiguous() \ .view(nbatches, -1, self.h * self.d_k) if self.use_aoa: # Apply AoA x = self.aoa_layer(self.dropout_aoa(torch.cat([x, query], -1))) x = self.output_layer(x) if single_query: query = query.squeeze(1) x = x.squeeze(1) return x class AoA_Refiner_Layer(nn.Module): def __init__(self, size, self_attn, feed_forward, dropout): super(AoA_Refiner_Layer, self).__init__() self.self_attn = self_attn self.feed_forward = feed_forward self.use_ff = 0 if self.feed_forward is not None: self.use_ff = 1 self.sublayer = clones(SublayerConnection(size, dropout), 1+self.use_ff) self.size = size def forward(self, x, mask): x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, mask)) return self.sublayer[-1](x, self.feed_forward) if self.use_ff else x class AoA_Refiner_Core(nn.Module): def __init__(self, opt): super(AoA_Refiner_Core, self).__init__() attn = MultiHeadedDotAttention(opt.num_heads, opt.rnn_size, project_k_v=1, scale=opt.multi_head_scale, do_aoa=opt.refine_aoa, norm_q=0, dropout_aoa=getattr(opt, 'dropout_aoa', 0.3)) layer = AoA_Refiner_Layer(opt.rnn_size, attn, PositionwiseFeedForward(opt.rnn_size, 2048, 0.1) if opt.use_ff else None, 0.1) self.layers = clones(layer, 6) self.norm = LayerNorm(layer.size) def forward(self, x, mask): for layer in self.layers: x = layer(x, mask) return self.norm(x) class AoA_Decoder_Core(nn.Module): def __init__(self, opt): super(AoA_Decoder_Core, self).__init__() self.drop_prob_lm = opt.drop_prob_lm self.d_model = opt.rnn_size self.use_multi_head = opt.use_multi_head self.multi_head_scale = opt.multi_head_scale self.use_ctx_drop = getattr(opt, 'ctx_drop', 0) self.out_res = getattr(opt, 'out_res', 0) self.decoder_type = getattr(opt, 'decoder_type', 'AoA') self.att_lstm = nn.LSTMCell(opt.input_encoding_size + opt.rnn_size, opt.rnn_size) # we, fc, h^2_t-1 self.out_drop = nn.Dropout(self.drop_prob_lm) if self.decoder_type == 'AoA': # AoA layer self.att2ctx = nn.Sequential(nn.Linear(self.d_model * opt.multi_head_scale + opt.rnn_size, 2 * opt.rnn_size), nn.GLU()) elif self.decoder_type == 'LSTM': # LSTM layer self.att2ctx = nn.LSTMCell(self.d_model * opt.multi_head_scale + opt.rnn_size, opt.rnn_size) else: # Base linear layer self.att2ctx = nn.Sequential(nn.Linear(self.d_model * opt.multi_head_scale + opt.rnn_size, opt.rnn_size), nn.ReLU()) # if opt.use_multi_head == 1: # TODO, not implemented for now # self.attention = MultiHeadedAddAttention(opt.num_heads, opt.d_model, scale=opt.multi_head_scale) if opt.use_multi_head == 2: self.attention = MultiHeadedDotAttention(opt.num_heads, opt.rnn_size, project_k_v=0, scale=opt.multi_head_scale, use_output_layer=0, do_aoa=0, norm_q=1) else: self.attention = Attention(opt) if self.use_ctx_drop: self.ctx_drop = nn.Dropout(self.drop_prob_lm) else: self.ctx_drop = lambda x :x def forward(self, xt, mean_feats, att_feats, p_att_feats, state, att_masks=None): # state[0][1] is the context vector at the last step h_att, c_att = self.att_lstm(torch.cat([xt, mean_feats + self.ctx_drop(state[0][1])], 1), (state[0][0], state[1][0])) if self.use_multi_head == 2: att = self.attention(h_att, p_att_feats.narrow(2, 0, self.multi_head_scale * self.d_model), p_att_feats.narrow(2, self.multi_head_scale * self.d_model, self.multi_head_scale * self.d_model), att_masks) else: att = self.attention(h_att, att_feats, p_att_feats, att_masks) ctx_input = torch.cat([att, h_att], 1) if self.decoder_type == 'LSTM': output, c_logic = self.att2ctx(ctx_input, (state[0][1], state[1][1])) state = (torch.stack((h_att, output)), torch.stack((c_att, c_logic))) else: output = self.att2ctx(ctx_input) # save the context vector to state[0][1] state = (torch.stack((h_att, output)), torch.stack((c_att, state[1][1]))) if self.out_res: # add residual connection output = output + h_att output = self.out_drop(output) return output, state class AoAModel(AttModel): def __init__(self, opt): super(AoAModel, self).__init__(opt) self.num_layers = 2 # mean pooling self.use_mean_feats = getattr(opt, 'mean_feats', 1) if opt.use_multi_head == 2: del self.ctx2att self.ctx2att = nn.Linear(opt.rnn_size, 2 * opt.multi_head_scale * opt.rnn_size) if self.use_mean_feats: del self.fc_embed if opt.refine: self.refiner = AoA_Refiner_Core(opt) else: self.refiner = lambda x,y : x self.core = AoA_Decoder_Core(opt) def _prepare_feature(self, fc_feats, att_feats, att_masks): att_feats, att_masks = self.clip_att(att_feats, att_masks) # embed att feats att_feats = pack_wrapper(self.att_embed, att_feats, att_masks) att_feats = self.refiner(att_feats, att_masks) if self.use_mean_feats: # meaning pooling if att_masks is None: mean_feats = torch.mean(att_feats, dim=1) else: mean_feats = (torch.sum(att_feats * att_masks.unsqueeze(-1), 1) / torch.sum(att_masks.unsqueeze(-1), 1)) else: mean_feats = self.fc_embed(fc_feats) # Project the attention feats first to reduce memory and computation. p_att_feats = self.ctx2att(att_feats) return mean_feats, att_feats, p_att_feats, att_masks
connect-caption-and-trace-main
captioning/models/AoAModel.py
# This file contains Att2in2, AdaAtt, AdaAttMO, UpDown model # AdaAtt is from Knowing When to Look: Adaptive Attention via A Visual Sentinel for Image Captioning # https://arxiv.org/abs/1612.01887 # AdaAttMO is a modified version with maxout lstm # Att2in is from Self-critical Sequence Training for Image Captioning # https://arxiv.org/abs/1612.00563 # In this file we only have Att2in2, which is a slightly different version of att2in, # in which the img feature embedding and word embedding is the same as what in adaatt. # UpDown is from Bottom-Up and Top-Down Attention for Image Captioning and VQA # https://arxiv.org/abs/1707.07998 # However, it may not be identical to the author's architecture. from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from . import utils from torch.nn.utils.rnn import PackedSequence, pack_padded_sequence, pad_packed_sequence from .CaptionModel import CaptionModel bad_endings = ['a','an','the','in','for','at','of','with','before','after','on','upon','near','to','is','are','am'] bad_endings += ['the'] def sort_pack_padded_sequence(input, lengths): sorted_lengths, indices = torch.sort(lengths, descending=True) tmp = pack_padded_sequence(input[indices], sorted_lengths, batch_first=True) inv_ix = indices.clone() inv_ix[indices] = torch.arange(0,len(indices)).type_as(inv_ix) return tmp, inv_ix def pad_unsort_packed_sequence(input, inv_ix): tmp, _ = pad_packed_sequence(input, batch_first=True) tmp = tmp[inv_ix] return tmp def pack_wrapper(module, att_feats, att_masks): if att_masks is not None: packed, inv_ix = sort_pack_padded_sequence(att_feats, att_masks.data.long().sum(1)) return pad_unsort_packed_sequence(PackedSequence(module(packed[0]), packed[1]), inv_ix) else: return module(att_feats) class AttModel(CaptionModel): def __init__(self, opt): super(AttModel, self).__init__() self.vocab_size = opt.vocab_size self.input_encoding_size = opt.input_encoding_size #self.rnn_type = opt.rnn_type self.rnn_size = opt.rnn_size self.num_layers = opt.num_layers self.drop_prob_lm = opt.drop_prob_lm self.seq_length = getattr(opt, 'max_length', 20) or opt.seq_length # maximum sample length self.fc_feat_size = opt.fc_feat_size self.att_feat_size = opt.att_feat_size self.att_hid_size = opt.att_hid_size self.bos_idx = getattr(opt, 'bos_idx', 0) self.eos_idx = getattr(opt, 'eos_idx', 0) self.pad_idx = getattr(opt, 'pad_idx', 0) self.use_bn = getattr(opt, 'use_bn', 0) self.ss_prob = 0.0 # Schedule sampling probability self.embed = nn.Sequential(nn.Embedding(self.vocab_size + 1, self.input_encoding_size), nn.ReLU(), nn.Dropout(self.drop_prob_lm)) self.fc_embed = nn.Sequential(nn.Linear(self.fc_feat_size, self.rnn_size), nn.ReLU(), nn.Dropout(self.drop_prob_lm)) self.att_embed = nn.Sequential(*( ((nn.BatchNorm1d(self.att_feat_size),) if self.use_bn else ())+ (nn.Linear(self.att_feat_size, self.rnn_size), nn.ReLU(), nn.Dropout(self.drop_prob_lm))+ ((nn.BatchNorm1d(self.rnn_size),) if self.use_bn==2 else ()))) self.logit_layers = getattr(opt, 'logit_layers', 1) if self.logit_layers == 1: self.logit = nn.Linear(self.rnn_size, self.vocab_size + 1) else: self.logit = [[nn.Linear(self.rnn_size, self.rnn_size), nn.ReLU(), nn.Dropout(0.5)] for _ in range(opt.logit_layers - 1)] self.logit = nn.Sequential(*(reduce(lambda x,y:x+y, self.logit) + [nn.Linear(self.rnn_size, self.vocab_size + 1)])) self.ctx2att = nn.Linear(self.rnn_size, self.att_hid_size) # For remove bad endding self.vocab = opt.vocab self.bad_endings_ix = [int(k) for k,v in self.vocab.items() if v in bad_endings] def init_hidden(self, bsz): weight = self.logit.weight \ if hasattr(self.logit, "weight") \ else self.logit[0].weight return (weight.new_zeros(self.num_layers, bsz, self.rnn_size), weight.new_zeros(self.num_layers, bsz, self.rnn_size)) def clip_att(self, att_feats, att_masks): # Clip the length of att_masks and att_feats to the maximum length if att_masks is not None: max_len = att_masks.data.long().sum(1).max() att_feats = att_feats[:, :max_len].contiguous() att_masks = att_masks[:, :max_len].contiguous() return att_feats, att_masks def _prepare_feature(self, fc_feats, att_feats, att_masks): att_feats, att_masks = self.clip_att(att_feats, att_masks) # embed fc and att feats fc_feats = self.fc_embed(fc_feats) att_feats = pack_wrapper(self.att_embed, att_feats, att_masks) # Project the attention feats first to reduce memory and computation comsumptions. p_att_feats = self.ctx2att(att_feats) return fc_feats, att_feats, p_att_feats, att_masks def _forward(self, fc_feats, att_feats, seq, att_masks=None): batch_size = fc_feats.size(0) if seq.ndim == 3: # B * seq_per_img * seq_len seq = seq.reshape(-1, seq.shape[2]) seq_per_img = seq.shape[0] // batch_size state = self.init_hidden(batch_size*seq_per_img) outputs = fc_feats.new_zeros(batch_size*seq_per_img, seq.size(1), self.vocab_size+1) # Prepare the features p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = self._prepare_feature(fc_feats, att_feats, att_masks) # pp_att_feats is used for attention, we cache it in advance to reduce computation cost if seq_per_img > 1: p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = utils.repeat_tensors(seq_per_img, [p_fc_feats, p_att_feats, pp_att_feats, p_att_masks] ) for i in range(seq.size(1)): if self.training and i >= 1 and self.ss_prob > 0.0: # otherwiste no need to sample sample_prob = fc_feats.new(batch_size*seq_per_img).uniform_(0, 1) sample_mask = sample_prob < self.ss_prob if sample_mask.sum() == 0: it = seq[:, i].clone() else: sample_ind = sample_mask.nonzero().view(-1) it = seq[:, i].data.clone() prob_prev = torch.exp(outputs[:, i-1].detach()) # fetch prev distribution: shape Nx(M+1) it.index_copy_(0, sample_ind, torch.multinomial(prob_prev, 1).view(-1).index_select(0, sample_ind)) else: it = seq[:, i].clone() # break if all the sequences end if i >= 1 and seq[:, i].sum() == 0: break output, state = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, state) outputs[:, i] = output return outputs def get_logprobs_state(self, it, fc_feats, att_feats, p_att_feats, att_masks, state, output_logsoftmax=1): # 'it' contains a word index xt = self.embed(it) output, state = self.core(xt, fc_feats, att_feats, p_att_feats, state, att_masks) if output_logsoftmax: logprobs = F.log_softmax(self.logit(output), dim=1) else: logprobs = self.logit(output) return logprobs, state def _old_sample_beam(self, fc_feats, att_feats, att_masks=None, opt={}): beam_size = opt.get('beam_size', 10) group_size = opt.get('group_size', 1) sample_n = opt.get('sample_n', 10) # when sample_n == beam_size then each beam is a sample. assert sample_n == 1 or sample_n == beam_size // group_size, 'when beam search, sample_n == 1 or beam search' batch_size = fc_feats.size(0) p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = self._prepare_feature(fc_feats, att_feats, att_masks) assert beam_size <= self.vocab_size + 1, 'lets assume this for now, otherwise this corner case causes a few headaches down the road. can be dealt with in future if needed' seq = fc_feats.new_full((batch_size*sample_n, self.seq_length), self.pad_idx, dtype=torch.long) seqLogprobs = fc_feats.new_zeros(batch_size*sample_n, self.seq_length, self.vocab_size + 1) # lets process every image independently for now, for simplicity self.done_beams = [[] for _ in range(batch_size)] for k in range(batch_size): state = self.init_hidden(beam_size) tmp_fc_feats, tmp_att_feats, tmp_p_att_feats, tmp_att_masks = utils.repeat_tensors(beam_size, [p_fc_feats[k:k+1], p_att_feats[k:k+1], pp_att_feats[k:k+1], p_att_masks[k:k+1] if att_masks is not None else None] ) for t in range(1): if t == 0: # input <bos> it = fc_feats.new_full([beam_size], self.bos_idx, dtype=torch.long) logprobs, state = self.get_logprobs_state(it, tmp_fc_feats, tmp_att_feats, tmp_p_att_feats, tmp_att_masks, state) self.done_beams[k] = self.old_beam_search(state, logprobs, tmp_fc_feats, tmp_att_feats, tmp_p_att_feats, tmp_att_masks, opt=opt) if sample_n == beam_size: for _n in range(sample_n): seq[k*sample_n+_n, :] = self.done_beams[k][_n]['seq'] seqLogprobs[k*sample_n+_n, :] = self.done_beams[k][_n]['logps'] else: seq[k, :] = self.done_beams[k][0]['seq'] # the first beam has highest cumulative score seqLogprobs[k, :] = self.done_beams[k][0]['logps'] # return the samples and their log likelihoods return seq, seqLogprobs def _sample_beam(self, fc_feats, att_feats, att_masks=None, opt={}): beam_size = opt.get('beam_size', 10) group_size = opt.get('group_size', 1) sample_n = opt.get('sample_n', 10) # when sample_n == beam_size then each beam is a sample. assert sample_n == 1 or sample_n == beam_size // group_size, 'when beam search, sample_n == 1 or beam search' batch_size = fc_feats.size(0) p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = self._prepare_feature(fc_feats, att_feats, att_masks) assert beam_size <= self.vocab_size + 1, 'lets assume this for now, otherwise this corner case causes a few headaches down the road. can be dealt with in future if needed' seq = fc_feats.new_full((batch_size*sample_n, self.seq_length), self.pad_idx, dtype=torch.long) seqLogprobs = fc_feats.new_zeros(batch_size*sample_n, self.seq_length, self.vocab_size + 1) # lets process every image independently for now, for simplicity self.done_beams = [[] for _ in range(batch_size)] state = self.init_hidden(batch_size) # first step, feed bos it = fc_feats.new_full([batch_size], self.bos_idx, dtype=torch.long) logprobs, state = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, state) p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = utils.repeat_tensors(beam_size, [p_fc_feats, p_att_feats, pp_att_feats, p_att_masks] ) self.done_beams = self.beam_search(state, logprobs, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, opt=opt) for k in range(batch_size): if sample_n == beam_size: for _n in range(sample_n): seq_len = self.done_beams[k][_n]['seq'].shape[0] seq[k*sample_n+_n, :seq_len] = self.done_beams[k][_n]['seq'] seqLogprobs[k*sample_n+_n, :seq_len] = self.done_beams[k][_n]['logps'] else: seq_len = self.done_beams[k][0]['seq'].shape[0] seq[k, :seq_len] = self.done_beams[k][0]['seq'] # the first beam has highest cumulative score seqLogprobs[k, :seq_len] = self.done_beams[k][0]['logps'] # return the samples and their log likelihoods return seq, seqLogprobs def _sample(self, fc_feats, att_feats, att_masks=None, opt={}): sample_method = opt.get('sample_method', 'greedy') beam_size = opt.get('beam_size', 1) temperature = opt.get('temperature', 1.0) sample_n = int(opt.get('sample_n', 1)) group_size = opt.get('group_size', 1) output_logsoftmax = opt.get('output_logsoftmax', 1) decoding_constraint = opt.get('decoding_constraint', 0) block_trigrams = opt.get('block_trigrams', 0) remove_bad_endings = opt.get('remove_bad_endings', 0) if beam_size > 1 and sample_method in ['greedy', 'beam_search']: return self._sample_beam(fc_feats, att_feats, att_masks, opt) if group_size > 1: return self._diverse_sample(fc_feats, att_feats, att_masks, opt) batch_size = fc_feats.size(0) state = self.init_hidden(batch_size*sample_n) p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = self._prepare_feature(fc_feats, att_feats, att_masks) if sample_n > 1: p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = utils.repeat_tensors(sample_n, [p_fc_feats, p_att_feats, pp_att_feats, p_att_masks] ) trigrams = [] # will be a list of batch_size dictionaries seq = fc_feats.new_full((batch_size*sample_n, self.seq_length), self.pad_idx, dtype=torch.long) seqLogprobs = fc_feats.new_zeros(batch_size*sample_n, self.seq_length, self.vocab_size + 1) for t in range(self.seq_length + 1): if t == 0: # input <bos> it = fc_feats.new_full([batch_size*sample_n], self.bos_idx, dtype=torch.long) logprobs, state = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, state, output_logsoftmax=output_logsoftmax) if decoding_constraint and t > 0: tmp = logprobs.new_zeros(logprobs.size()) tmp.scatter_(1, seq[:,t-1].data.unsqueeze(1), float('-inf')) logprobs = logprobs + tmp if remove_bad_endings and t > 0: tmp = logprobs.new_zeros(logprobs.size()) prev_bad = np.isin(seq[:,t-1].data.cpu().numpy(), self.bad_endings_ix) # Make it impossible to generate bad_endings tmp[torch.from_numpy(prev_bad.astype('uint8')), 0] = float('-inf') logprobs = logprobs + tmp # Mess with trigrams # Copy from https://github.com/lukemelas/image-paragraph-captioning if block_trigrams and t >= 3: # Store trigram generated at last step prev_two_batch = seq[:,t-3:t-1] for i in range(batch_size): # = seq.size(0) prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item()) current = seq[i][t-1] if t == 3: # initialize trigrams.append({prev_two: [current]}) # {LongTensor: list containing 1 int} elif t > 3: if prev_two in trigrams[i]: # add to list trigrams[i][prev_two].append(current) else: # create list trigrams[i][prev_two] = [current] # Block used trigrams at next step prev_two_batch = seq[:,t-2:t] mask = torch.zeros(logprobs.size(), requires_grad=False).to(logprobs.device) # batch_size x vocab_size for i in range(batch_size): prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item()) if prev_two in trigrams[i]: for j in trigrams[i][prev_two]: mask[i,j] += 1 # Apply mask to log probs #logprobs = logprobs - (mask * 1e9) alpha = 2.0 # = 4 logprobs = logprobs + (mask * -0.693 * alpha) # ln(1/2) * alpha (alpha -> infty works best) # sample the next word if t == self.seq_length: # skip if we achieve maximum length break it, sampleLogprobs = self.sample_next_word(logprobs, sample_method, temperature) # stop when all finished if t == 0: unfinished = it != self.eos_idx else: it[~unfinished] = self.pad_idx # This allows eos_idx not being overwritten to 0 logprobs = logprobs * unfinished.unsqueeze(1).to(logprobs) unfinished = unfinished & (it != self.eos_idx) seq[:,t] = it seqLogprobs[:,t] = logprobs # quit loop if all sequences have finished if unfinished.sum() == 0: break return seq, seqLogprobs def _diverse_sample(self, fc_feats, att_feats, att_masks=None, opt={}): sample_method = opt.get('sample_method', 'greedy') beam_size = opt.get('beam_size', 1) temperature = opt.get('temperature', 1.0) group_size = opt.get('group_size', 1) diversity_lambda = opt.get('diversity_lambda', 0.5) decoding_constraint = opt.get('decoding_constraint', 0) block_trigrams = opt.get('block_trigrams', 0) remove_bad_endings = opt.get('remove_bad_endings', 0) batch_size = fc_feats.size(0) state = self.init_hidden(batch_size) p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = self._prepare_feature(fc_feats, att_feats, att_masks) trigrams_table = [[] for _ in range(group_size)] # will be a list of batch_size dictionaries seq_table = [fc_feats.new_full((batch_size, self.seq_length), self.pad_idx, dtype=torch.long) for _ in range(group_size)] seqLogprobs_table = [fc_feats.new_zeros(batch_size, self.seq_length) for _ in range(group_size)] state_table = [self.init_hidden(batch_size) for _ in range(group_size)] for tt in range(self.seq_length + group_size): for divm in range(group_size): t = tt - divm seq = seq_table[divm] seqLogprobs = seqLogprobs_table[divm] trigrams = trigrams_table[divm] if t >= 0 and t <= self.seq_length-1: if t == 0: # input <bos> it = fc_feats.new_full([batch_size], self.bos_idx, dtype=torch.long) else: it = seq[:, t-1] # changed logprobs, state_table[divm] = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, state_table[divm]) # changed logprobs = F.log_softmax(logprobs / temperature, dim=-1) # Add diversity if divm > 0: unaug_logprobs = logprobs.clone() for prev_choice in range(divm): prev_decisions = seq_table[prev_choice][:, t] logprobs[:, prev_decisions] = logprobs[:, prev_decisions] - diversity_lambda if decoding_constraint and t > 0: tmp = logprobs.new_zeros(logprobs.size()) tmp.scatter_(1, seq[:,t-1].data.unsqueeze(1), float('-inf')) logprobs = logprobs + tmp if remove_bad_endings and t > 0: tmp = logprobs.new_zeros(logprobs.size()) prev_bad = np.isin(seq[:,t-1].data.cpu().numpy(), self.bad_endings_ix) # Impossible to generate remove_bad_endings tmp[torch.from_numpy(prev_bad.astype('uint8')), 0] = float('-inf') logprobs = logprobs + tmp # Mess with trigrams if block_trigrams and t >= 3: # Store trigram generated at last step prev_two_batch = seq[:,t-3:t-1] for i in range(batch_size): # = seq.size(0) prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item()) current = seq[i][t-1] if t == 3: # initialize trigrams.append({prev_two: [current]}) # {LongTensor: list containing 1 int} elif t > 3: if prev_two in trigrams[i]: # add to list trigrams[i][prev_two].append(current) else: # create list trigrams[i][prev_two] = [current] # Block used trigrams at next step prev_two_batch = seq[:,t-2:t] mask = torch.zeros(logprobs.size(), requires_grad=False).cuda() # batch_size x vocab_size for i in range(batch_size): prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item()) if prev_two in trigrams[i]: for j in trigrams[i][prev_two]: mask[i,j] += 1 # Apply mask to log probs #logprobs = logprobs - (mask * 1e9) alpha = 2.0 # = 4 logprobs = logprobs + (mask * -0.693 * alpha) # ln(1/2) * alpha (alpha -> infty works best) it, sampleLogprobs = self.sample_next_word(logprobs, sample_method, 1) # stop when all finished if t == 0: unfinished = it != self.eos_idx else: unfinished = seq[:,t-1] != self.pad_idx & seq[:,t-1] != self.eos_idx it[~unfinished] = self.pad_idx unfinished = unfinished & (it != self.eos_idx) # changed seq[:,t] = it seqLogprobs[:,t] = sampleLogprobs.view(-1) return torch.stack(seq_table, 1).reshape(batch_size * group_size, -1), torch.stack(seqLogprobs_table, 1).reshape(batch_size * group_size, -1) class AdaAtt_lstm(nn.Module): def __init__(self, opt, use_maxout=True): super(AdaAtt_lstm, self).__init__() self.input_encoding_size = opt.input_encoding_size #self.rnn_type = opt.rnn_type self.rnn_size = opt.rnn_size self.num_layers = opt.num_layers self.drop_prob_lm = opt.drop_prob_lm self.fc_feat_size = opt.fc_feat_size self.att_feat_size = opt.att_feat_size self.att_hid_size = opt.att_hid_size self.use_maxout = use_maxout # Build a LSTM self.w2h = nn.Linear(self.input_encoding_size, (4+(use_maxout==True)) * self.rnn_size) self.v2h = nn.Linear(self.rnn_size, (4+(use_maxout==True)) * self.rnn_size) self.i2h = nn.ModuleList([nn.Linear(self.rnn_size, (4+(use_maxout==True)) * self.rnn_size) for _ in range(self.num_layers - 1)]) self.h2h = nn.ModuleList([nn.Linear(self.rnn_size, (4+(use_maxout==True)) * self.rnn_size) for _ in range(self.num_layers)]) # Layers for getting the fake region if self.num_layers == 1: self.r_w2h = nn.Linear(self.input_encoding_size, self.rnn_size) self.r_v2h = nn.Linear(self.rnn_size, self.rnn_size) else: self.r_i2h = nn.Linear(self.rnn_size, self.rnn_size) self.r_h2h = nn.Linear(self.rnn_size, self.rnn_size) def forward(self, xt, img_fc, state): hs = [] cs = [] for L in range(self.num_layers): # c,h from previous timesteps prev_h = state[0][L] prev_c = state[1][L] # the input to this layer if L == 0: x = xt i2h = self.w2h(x) + self.v2h(img_fc) else: x = hs[-1] x = F.dropout(x, self.drop_prob_lm, self.training) i2h = self.i2h[L-1](x) all_input_sums = i2h+self.h2h[L](prev_h) sigmoid_chunk = all_input_sums.narrow(1, 0, 3 * self.rnn_size) sigmoid_chunk = torch.sigmoid(sigmoid_chunk) # decode the gates in_gate = sigmoid_chunk.narrow(1, 0, self.rnn_size) forget_gate = sigmoid_chunk.narrow(1, self.rnn_size, self.rnn_size) out_gate = sigmoid_chunk.narrow(1, self.rnn_size * 2, self.rnn_size) # decode the write inputs if not self.use_maxout: in_transform = torch.tanh(all_input_sums.narrow(1, 3 * self.rnn_size, self.rnn_size)) else: in_transform = all_input_sums.narrow(1, 3 * self.rnn_size, 2 * self.rnn_size) in_transform = torch.max(\ in_transform.narrow(1, 0, self.rnn_size), in_transform.narrow(1, self.rnn_size, self.rnn_size)) # perform the LSTM update next_c = forget_gate * prev_c + in_gate * in_transform # gated cells form the output tanh_nex_c = torch.tanh(next_c) next_h = out_gate * tanh_nex_c if L == self.num_layers-1: if L == 0: i2h = self.r_w2h(x) + self.r_v2h(img_fc) else: i2h = self.r_i2h(x) n5 = i2h+self.r_h2h(prev_h) fake_region = torch.sigmoid(n5) * tanh_nex_c cs.append(next_c) hs.append(next_h) # set up the decoder top_h = hs[-1] top_h = F.dropout(top_h, self.drop_prob_lm, self.training) fake_region = F.dropout(fake_region, self.drop_prob_lm, self.training) state = (torch.cat([_.unsqueeze(0) for _ in hs], 0), torch.cat([_.unsqueeze(0) for _ in cs], 0)) return top_h, fake_region, state class AdaAtt_attention(nn.Module): def __init__(self, opt): super(AdaAtt_attention, self).__init__() self.input_encoding_size = opt.input_encoding_size #self.rnn_type = opt.rnn_type self.rnn_size = opt.rnn_size self.drop_prob_lm = opt.drop_prob_lm self.att_hid_size = opt.att_hid_size # fake region embed self.fr_linear = nn.Sequential( nn.Linear(self.rnn_size, self.input_encoding_size), nn.ReLU(), nn.Dropout(self.drop_prob_lm)) self.fr_embed = nn.Linear(self.input_encoding_size, self.att_hid_size) # h out embed self.ho_linear = nn.Sequential( nn.Linear(self.rnn_size, self.input_encoding_size), nn.Tanh(), nn.Dropout(self.drop_prob_lm)) self.ho_embed = nn.Linear(self.input_encoding_size, self.att_hid_size) self.alpha_net = nn.Linear(self.att_hid_size, 1) self.att2h = nn.Linear(self.rnn_size, self.rnn_size) def forward(self, h_out, fake_region, conv_feat, conv_feat_embed, att_masks=None): # View into three dimensions att_size = conv_feat.numel() // conv_feat.size(0) // self.rnn_size conv_feat = conv_feat.view(-1, att_size, self.rnn_size) conv_feat_embed = conv_feat_embed.view(-1, att_size, self.att_hid_size) # view neighbor from bach_size * neighbor_num x rnn_size to bach_size x rnn_size * neighbor_num fake_region = self.fr_linear(fake_region) fake_region_embed = self.fr_embed(fake_region) h_out_linear = self.ho_linear(h_out) h_out_embed = self.ho_embed(h_out_linear) txt_replicate = h_out_embed.unsqueeze(1).expand(h_out_embed.size(0), att_size + 1, h_out_embed.size(1)) img_all = torch.cat([fake_region.view(-1,1,self.input_encoding_size), conv_feat], 1) img_all_embed = torch.cat([fake_region_embed.view(-1,1,self.input_encoding_size), conv_feat_embed], 1) hA = torch.tanh(img_all_embed + txt_replicate) hA = F.dropout(hA,self.drop_prob_lm, self.training) hAflat = self.alpha_net(hA.view(-1, self.att_hid_size)) PI = F.softmax(hAflat.view(-1, att_size + 1), dim=1) if att_masks is not None: att_masks = att_masks.view(-1, att_size) PI = PI * torch.cat([att_masks[:,:1], att_masks], 1) # assume one one at the first time step. PI = PI / PI.sum(1, keepdim=True) visAtt = torch.bmm(PI.unsqueeze(1), img_all) visAttdim = visAtt.squeeze(1) atten_out = visAttdim + h_out_linear h = torch.tanh(self.att2h(atten_out)) h = F.dropout(h, self.drop_prob_lm, self.training) return h class AdaAttCore(nn.Module): def __init__(self, opt, use_maxout=False): super(AdaAttCore, self).__init__() self.lstm = AdaAtt_lstm(opt, use_maxout) self.attention = AdaAtt_attention(opt) def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None): h_out, p_out, state = self.lstm(xt, fc_feats, state) atten_out = self.attention(h_out, p_out, att_feats, p_att_feats, att_masks) return atten_out, state class UpDownCore(nn.Module): def __init__(self, opt, use_maxout=False): super(UpDownCore, self).__init__() self.drop_prob_lm = opt.drop_prob_lm self.att_lstm = nn.LSTMCell(opt.input_encoding_size + opt.rnn_size * 2, opt.rnn_size) # we, fc, h^2_t-1 self.lang_lstm = nn.LSTMCell(opt.rnn_size * 2, opt.rnn_size) # h^1_t, \hat v self.attention = Attention(opt) def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None): prev_h = state[0][-1] att_lstm_input = torch.cat([prev_h, fc_feats, xt], 1) h_att, c_att = self.att_lstm(att_lstm_input, (state[0][0], state[1][0])) att = self.attention(h_att, att_feats, p_att_feats, att_masks) lang_lstm_input = torch.cat([att, h_att], 1) # lang_lstm_input = torch.cat([att, F.dropout(h_att, self.drop_prob_lm, self.training)], 1) ????? h_lang, c_lang = self.lang_lstm(lang_lstm_input, (state[0][1], state[1][1])) output = F.dropout(h_lang, self.drop_prob_lm, self.training) state = (torch.stack([h_att, h_lang]), torch.stack([c_att, c_lang])) return output, state ############################################################################ # Notice: # StackAtt and DenseAtt are models that I randomly designed. # They are not related to any paper. ############################################################################ from .FCModel import LSTMCore class StackAttCore(nn.Module): def __init__(self, opt, use_maxout=False): super(StackAttCore, self).__init__() self.drop_prob_lm = opt.drop_prob_lm # self.att0 = Attention(opt) self.att1 = Attention(opt) self.att2 = Attention(opt) opt_input_encoding_size = opt.input_encoding_size opt.input_encoding_size = opt.input_encoding_size + opt.rnn_size self.lstm0 = LSTMCore(opt) # att_feat + word_embedding opt.input_encoding_size = opt.rnn_size * 2 self.lstm1 = LSTMCore(opt) self.lstm2 = LSTMCore(opt) opt.input_encoding_size = opt_input_encoding_size # self.emb1 = nn.Linear(opt.rnn_size, opt.rnn_size) self.emb2 = nn.Linear(opt.rnn_size, opt.rnn_size) def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None): # att_res_0 = self.att0(state[0][-1], att_feats, p_att_feats, att_masks) h_0, state_0 = self.lstm0(torch.cat([xt,fc_feats],1), [state[0][0:1], state[1][0:1]]) att_res_1 = self.att1(h_0, att_feats, p_att_feats, att_masks) h_1, state_1 = self.lstm1(torch.cat([h_0,att_res_1],1), [state[0][1:2], state[1][1:2]]) att_res_2 = self.att2(h_1 + self.emb2(att_res_1), att_feats, p_att_feats, att_masks) h_2, state_2 = self.lstm2(torch.cat([h_1,att_res_2],1), [state[0][2:3], state[1][2:3]]) return h_2, [torch.cat(_, 0) for _ in zip(state_0, state_1, state_2)] class DenseAttCore(nn.Module): def __init__(self, opt, use_maxout=False): super(DenseAttCore, self).__init__() self.drop_prob_lm = opt.drop_prob_lm # self.att0 = Attention(opt) self.att1 = Attention(opt) self.att2 = Attention(opt) opt_input_encoding_size = opt.input_encoding_size opt.input_encoding_size = opt.input_encoding_size + opt.rnn_size self.lstm0 = LSTMCore(opt) # att_feat + word_embedding opt.input_encoding_size = opt.rnn_size * 2 self.lstm1 = LSTMCore(opt) self.lstm2 = LSTMCore(opt) opt.input_encoding_size = opt_input_encoding_size # self.emb1 = nn.Linear(opt.rnn_size, opt.rnn_size) self.emb2 = nn.Linear(opt.rnn_size, opt.rnn_size) # fuse h_0 and h_1 self.fusion1 = nn.Sequential(nn.Linear(opt.rnn_size*2, opt.rnn_size), nn.ReLU(), nn.Dropout(opt.drop_prob_lm)) # fuse h_0, h_1 and h_2 self.fusion2 = nn.Sequential(nn.Linear(opt.rnn_size*3, opt.rnn_size), nn.ReLU(), nn.Dropout(opt.drop_prob_lm)) def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None): # att_res_0 = self.att0(state[0][-1], att_feats, p_att_feats, att_masks) h_0, state_0 = self.lstm0(torch.cat([xt,fc_feats],1), [state[0][0:1], state[1][0:1]]) att_res_1 = self.att1(h_0, att_feats, p_att_feats, att_masks) h_1, state_1 = self.lstm1(torch.cat([h_0,att_res_1],1), [state[0][1:2], state[1][1:2]]) att_res_2 = self.att2(h_1 + self.emb2(att_res_1), att_feats, p_att_feats, att_masks) h_2, state_2 = self.lstm2(torch.cat([self.fusion1(torch.cat([h_0, h_1], 1)),att_res_2],1), [state[0][2:3], state[1][2:3]]) return self.fusion2(torch.cat([h_0, h_1, h_2], 1)), [torch.cat(_, 0) for _ in zip(state_0, state_1, state_2)] class Attention(nn.Module): def __init__(self, opt): super(Attention, self).__init__() self.rnn_size = opt.rnn_size self.att_hid_size = opt.att_hid_size self.h2att = nn.Linear(self.rnn_size, self.att_hid_size) self.alpha_net = nn.Linear(self.att_hid_size, 1) def forward(self, h, att_feats, p_att_feats, att_masks=None): # The p_att_feats here is already projected att_size = att_feats.numel() // att_feats.size(0) // att_feats.size(-1) att = p_att_feats.view(-1, att_size, self.att_hid_size) att_h = self.h2att(h) # batch * att_hid_size att_h = att_h.unsqueeze(1).expand_as(att) # batch * att_size * att_hid_size dot = att + att_h # batch * att_size * att_hid_size dot = torch.tanh(dot) # batch * att_size * att_hid_size dot = dot.view(-1, self.att_hid_size) # (batch * att_size) * att_hid_size dot = self.alpha_net(dot) # (batch * att_size) * 1 dot = dot.view(-1, att_size) # batch * att_size weight = F.softmax(dot, dim=1) # batch * att_size if att_masks is not None: weight = weight * att_masks.view(-1, att_size).to(weight) weight = weight / weight.sum(1, keepdim=True) # normalize to 1 att_feats_ = att_feats.view(-1, att_size, att_feats.size(-1)) # batch * att_size * att_feat_size att_res = torch.bmm(weight.unsqueeze(1), att_feats_).squeeze(1) # batch * att_feat_size return att_res class Att2in2Core(nn.Module): def __init__(self, opt): super(Att2in2Core, self).__init__() self.input_encoding_size = opt.input_encoding_size #self.rnn_type = opt.rnn_type self.rnn_size = opt.rnn_size #self.num_layers = opt.num_layers self.drop_prob_lm = opt.drop_prob_lm self.fc_feat_size = opt.fc_feat_size self.att_feat_size = opt.att_feat_size self.att_hid_size = opt.att_hid_size # Build a LSTM self.a2c = nn.Linear(self.rnn_size, 2 * self.rnn_size) self.i2h = nn.Linear(self.input_encoding_size, 5 * self.rnn_size) self.h2h = nn.Linear(self.rnn_size, 5 * self.rnn_size) self.dropout = nn.Dropout(self.drop_prob_lm) self.attention = Attention(opt) def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None): att_res = self.attention(state[0][-1], att_feats, p_att_feats, att_masks) all_input_sums = self.i2h(xt) + self.h2h(state[0][-1]) sigmoid_chunk = all_input_sums.narrow(1, 0, 3 * self.rnn_size) sigmoid_chunk = torch.sigmoid(sigmoid_chunk) in_gate = sigmoid_chunk.narrow(1, 0, self.rnn_size) forget_gate = sigmoid_chunk.narrow(1, self.rnn_size, self.rnn_size) out_gate = sigmoid_chunk.narrow(1, self.rnn_size * 2, self.rnn_size) in_transform = all_input_sums.narrow(1, 3 * self.rnn_size, 2 * self.rnn_size) + \ self.a2c(att_res) in_transform = torch.max(\ in_transform.narrow(1, 0, self.rnn_size), in_transform.narrow(1, self.rnn_size, self.rnn_size)) next_c = forget_gate * state[1][-1] + in_gate * in_transform next_h = out_gate * torch.tanh(next_c) output = self.dropout(next_h) state = (next_h.unsqueeze(0), next_c.unsqueeze(0)) return output, state class Att2inCore(Att2in2Core): def __init__(self, opt): super(Att2inCore, self).__init__(opt) del self.a2c self.a2c = nn.Linear(self.att_feat_size, 2 * self.rnn_size) """ Note this is my attempt to replicate att2all model in self-critical paper. However, this is not a correct replication actually. Will fix it. """ class Att2all2Core(nn.Module): def __init__(self, opt): super(Att2all2Core, self).__init__() self.input_encoding_size = opt.input_encoding_size #self.rnn_type = opt.rnn_type self.rnn_size = opt.rnn_size #self.num_layers = opt.num_layers self.drop_prob_lm = opt.drop_prob_lm self.fc_feat_size = opt.fc_feat_size self.att_feat_size = opt.att_feat_size self.att_hid_size = opt.att_hid_size # Build a LSTM self.a2h = nn.Linear(self.rnn_size, 5 * self.rnn_size) self.i2h = nn.Linear(self.input_encoding_size, 5 * self.rnn_size) self.h2h = nn.Linear(self.rnn_size, 5 * self.rnn_size) self.dropout = nn.Dropout(self.drop_prob_lm) self.attention = Attention(opt) def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None): att_res = self.attention(state[0][-1], att_feats, p_att_feats, att_masks) all_input_sums = self.i2h(xt) + self.h2h(state[0][-1]) + self.a2h(att_res) sigmoid_chunk = all_input_sums.narrow(1, 0, 3 * self.rnn_size) sigmoid_chunk = torch.sigmoid(sigmoid_chunk) in_gate = sigmoid_chunk.narrow(1, 0, self.rnn_size) forget_gate = sigmoid_chunk.narrow(1, self.rnn_size, self.rnn_size) out_gate = sigmoid_chunk.narrow(1, self.rnn_size * 2, self.rnn_size) in_transform = all_input_sums.narrow(1, 3 * self.rnn_size, 2 * self.rnn_size) in_transform = torch.max(\ in_transform.narrow(1, 0, self.rnn_size), in_transform.narrow(1, self.rnn_size, self.rnn_size)) next_c = forget_gate * state[1][-1] + in_gate * in_transform next_h = out_gate * torch.tanh(next_c) output = self.dropout(next_h) state = (next_h.unsqueeze(0), next_c.unsqueeze(0)) return output, state class AdaAttModel(AttModel): def __init__(self, opt): super(AdaAttModel, self).__init__(opt) self.core = AdaAttCore(opt) # AdaAtt with maxout lstm class AdaAttMOModel(AttModel): def __init__(self, opt): super(AdaAttMOModel, self).__init__(opt) self.core = AdaAttCore(opt, True) class Att2in2Model(AttModel): def __init__(self, opt): super(Att2in2Model, self).__init__(opt) self.core = Att2in2Core(opt) delattr(self, 'fc_embed') self.fc_embed = lambda x : x class Att2all2Model(AttModel): def __init__(self, opt): super(Att2all2Model, self).__init__(opt) self.core = Att2all2Core(opt) delattr(self, 'fc_embed') self.fc_embed = lambda x : x class UpDownModel(AttModel): def __init__(self, opt): super(UpDownModel, self).__init__(opt) self.num_layers = 2 self.core = UpDownCore(opt) class StackAttModel(AttModel): def __init__(self, opt): super(StackAttModel, self).__init__(opt) self.num_layers = 3 self.core = StackAttCore(opt) class DenseAttModel(AttModel): def __init__(self, opt): super(DenseAttModel, self).__init__(opt) self.num_layers = 3 self.core = DenseAttCore(opt) class Att2inModel(AttModel): def __init__(self, opt): super(Att2inModel, self).__init__(opt) del self.embed, self.fc_embed, self.att_embed self.embed = nn.Embedding(self.vocab_size + 1, self.input_encoding_size) self.fc_embed = self.att_embed = lambda x: x del self.ctx2att self.ctx2att = nn.Linear(self.att_feat_size, self.att_hid_size) self.core = Att2inCore(opt) self.init_weights() def init_weights(self): initrange = 0.1 self.embed.weight.data.uniform_(-initrange, initrange) self.logit.bias.data.fill_(0) self.logit.weight.data.uniform_(-initrange, initrange) class NewFCModel(AttModel): def __init__(self, opt): super(NewFCModel, self).__init__(opt) self.fc_embed = nn.Linear(self.fc_feat_size, self.input_encoding_size) self.embed = nn.Embedding(self.vocab_size + 1, self.input_encoding_size) self._core = LSTMCore(opt) delattr(self, 'att_embed') self.att_embed = lambda x : x delattr(self, 'ctx2att') self.ctx2att = lambda x: x def core(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks): # Step 0, feed the input image # if (self.training and state[0].is_leaf) or \ # (not self.training and state[0].sum() == 0): # _, state = self._core(fc_feats, state) # three cases # normal mle training # Sample # beam search (diverse beam search) # fixed captioning module. is_first_step = (state[0]==0).all(2).all(0) # size: B if is_first_step.all(): _, state = self._core(fc_feats, state) elif is_first_step.any(): # This is mostly for diverse beam search I think new_state = [torch.zeros_like(_) for _ in state] new_state[0][:, ~is_first_step] = state[0][:, ~is_first_step] new_state[1][:, ~is_first_step] = state[1][:, ~is_first_step] _, state = self._core(fc_feats, state) new_state[0][:, is_first_step] = state[0][:, is_first_step] new_state[1][:, is_first_step] = state[1][:, is_first_step] state = new_state # if (state[0]==0).all(): # # Let's forget about diverse beam search first # _, state = self._core(fc_feats, state) return self._core(xt, state) def _prepare_feature(self, fc_feats, att_feats, att_masks): fc_feats = self.fc_embed(fc_feats) return fc_feats, att_feats, att_feats, att_masks class LMModel(AttModel): def __init__(self, opt): super(LMModel, self).__init__(opt) delattr(self, 'fc_embed') self.fc_embed = lambda x: x.new_zeros(x.shape[0], self.input_encoding_size) self.embed = nn.Embedding(self.vocab_size + 1, self.input_encoding_size) self._core = LSTMCore(opt) delattr(self, 'att_embed') self.att_embed = lambda x : x delattr(self, 'ctx2att') self.ctx2att = lambda x: x def core(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks): if (state[0]==0).all(): # Let's forget about diverse beam search first _, state = self._core(fc_feats, state) return self._core(xt, state) def _prepare_feature(self, fc_feats, att_feats, att_masks): fc_feats = self.fc_embed(fc_feats) return fc_feats, None, None, None
connect-caption-and-trace-main
captioning/models/AttModel_orig.py
# This file contains Transformer network # Most of the code is copied from http://nlp.seas.harvard.edu/2018/04/03/attention.html # The cfg name correspondance: # N=num_layers # d_model=input_encoding_size # d_ff=rnn_size # h is always 8 from __future__ import absolute_import from __future__ import division from __future__ import print_function import torch import torch.nn as nn import torch.nn.functional as F from . import utils import copy import math import numpy as np from .CaptionModel import CaptionModel from .AttModel_standard_enco_deco_both import sort_pack_padded_sequence, pad_unsort_packed_sequence, pack_wrapper, AttModel class EncoderDecoder(nn.Module): """ A standard Encoder-Decoder architecture. Base for this and many other models. """ def __init__(self, encoder, decoder, src_embed, tgt_embed, generator_caption, generator_trace, d_model, dropout): super(EncoderDecoder, self).__init__() self.encoder = encoder self.decoder = decoder self.src_embed = src_embed self.tgt_embed = tgt_embed self.generator_caption = generator_caption self.generator_trace = generator_trace # self.decode_layernorm = nn.LayerNorm(d_model, elementwise_affine=True) # self.dropout = nn.Dropout(dropout) self.trace_layernorm_caption = nn.LayerNorm(d_model, elementwise_affine=True) self.trace_layernorm_trace = nn.LayerNorm(d_model, elementwise_affine=True) self.position_encoder = PositionalEncoding(d_model,0) # here don't use dropout inside positional embedding self.trace_embed = nn.Sequential(*( (nn.Linear(5, d_model), nn.LayerNorm(d_model, elementwise_affine=True), nn.ReLU(), nn.Dropout(0.5)) )) self.trace_feat_embed = nn.Sequential(*( (nn.Linear(2048, d_model), nn.LayerNorm(d_model, elementwise_affine=True), nn.ReLU(), nn.Dropout(0.5)))) def forward(self, src, tgt, src_mask, tgt_mask, trace_feat, trace_masks, task): "Take in and process masked src and target sequences." memory = self.encode(src, src_mask) return self.decode(memory, src_mask, tgt, tgt_mask, trace_feat, trace_masks, task), memory def encode(self, src, src_mask): return self.encoder(self.src_embed(src), src_mask) def decode(self, memory, src_mask, tgt, tgt_mask, trace_feats, trace_masks, task): # if task == 'trace': ### get trace_feat # trace_grid_feats = trace_feats[:, :, 5:] trace_feats = trace_feats[:, :, :5] # trace_grid_feats = self.trace_feat_embed(trace_grid_feats) trace_feats = self.trace_embed(trace_feats) trace_feats = self.trace_layernorm_trace(self.position_encoder(trace_feats)) ### embed the tgt and then add the trace_grid_feat: add trace_feat in the beginning tgt_emd = self.tgt_embed(tgt, task) #, task # if tgt.shape[1] > trace_feats.shape[1]: # trace_feats = torch.cat([trace_feats, torch.zeros([trace_feats.shape[0], tgt_emd.shape[1]-trace_feats.shape[1], # trace_feats.shape[2]]).to(trace_feats.device)], 1) # else: # trace_feats = trace_feats[:, :tgt_emd.shape[1], :] # tgt_emd = self.dropout(self.decode_layernorm(tgt_emd + trace_feat)) return self.decoder(tgt_emd, trace_feats, memory, src_mask, tgt_mask, trace_masks, task) class Generator(nn.Module): "Define standard linear + softmax generation step." def __init__(self, d_model, vocab): super(Generator, self).__init__() self.proj = nn.Linear(d_model, vocab) def forward(self, x): return F.log_softmax(self.proj(x), dim=-1) def clones(module, N): "Produce N identical layers." return nn.ModuleList([copy.deepcopy(module) for _ in range(N)]) class Encoder(nn.Module): "Core encoder is a stack of N layers" def __init__(self, layer, N): super(Encoder, self).__init__() self.layers = clones(layer, N) self.norm = LayerNorm(layer.size) def forward(self, x, mask): "Pass the input (and mask) through each layer in turn." for layer in self.layers: x = layer(x, mask) return self.norm(x) class LayerNorm(nn.Module): "Construct a layernorm module (See citation for details)." def __init__(self, features, eps=1e-6): super(LayerNorm, self).__init__() self.a_2 = nn.Parameter(torch.ones(features)) self.b_2 = nn.Parameter(torch.zeros(features)) self.eps = eps def forward(self, x): mean = x.mean(-1, keepdim=True) std = x.std(-1, keepdim=True) return self.a_2 * (x - mean) / (std + self.eps) + self.b_2 class SublayerConnection(nn.Module): """ A residual connection followed by a layer norm. Note for code simplicity the norm is first as opposed to last. """ def __init__(self, size, dropout): super(SublayerConnection, self).__init__() self.norm = LayerNorm(size) self.dropout = nn.Dropout(dropout) def forward(self, x, sublayer): "Apply residual connection to any sublayer with the same size." return x + self.dropout(sublayer(self.norm(x))) class EncoderLayer(nn.Module): "Encoder is made up of self-attn and feed forward (defined below)" def __init__(self, size, self_attn, feed_forward, dropout): super(EncoderLayer, self).__init__() self.self_attn = self_attn self.feed_forward = feed_forward self.sublayer = clones(SublayerConnection(size, dropout), 2) self.size = size def forward(self, x, mask): "Follow Figure 1 (left) for connections." x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, mask)) return self.sublayer[1](x, self.feed_forward) class Decoder(nn.Module): "Generic N layer decoder with masking." def __init__(self, layer, N): super(Decoder, self).__init__() self.layers = clones(layer, N) self.norm = LayerNorm(layer.size) self.norm_2 = LayerNorm(layer.size) def forward(self, x, trace_feat, memory, src_mask, tgt_mask, trace_masks, task): for layer in self.layers: x = layer(x, trace_feat, memory, src_mask, tgt_mask, trace_masks, task) if task == 'both': return self.norm(x[0]), self.norm_2(x[1]) else: return self.norm(x) class DecoderLayer(nn.Module): "Decoder is made of self-attn, src-attn, and feed forward (defined below)" def __init__(self, size, self_attn, src_attn, caption_trace_attn, trace_caption_attn, trace_self_attn, trace_src_attn, feed_forward_caption, feed_forward_trace, both_caption_trace_attn, both_trace_caption_attn, both_feed_forward_caption, both_feed_forward_trace,dropout): super(DecoderLayer, self).__init__() self.size = size self.self_attn = self_attn self.src_attn = src_attn self.feed_forward_caption = feed_forward_caption self.feed_forward_trace = feed_forward_trace # self.sublayer = clones(SublayerConnection(size, dropout), 3) self.sublayer = clones(SublayerConnection(size, dropout), 8+4) ### self.caption_trace_attn = caption_trace_attn self.trace_caption_attn = trace_caption_attn self.trace_self_attn = trace_self_attn self.trace_src_attn = trace_src_attn ### both attn self.both_caption_trace_attn = both_caption_trace_attn self.both_trace_caption_attn = both_trace_caption_attn self.both_feed_forward_caption = both_feed_forward_caption self.both_feed_forward_trace = both_feed_forward_trace ########### def forward(self, x, trace_feat, memory, src_mask, tgt_mask, trace_masks, task): "Follow Figure 1 (right) for connections." m = memory if task == 'trace' or task == 'cycle_trace': x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, tgt_mask)) x = self.sublayer[1](x, lambda x: self.src_attn(x, m, m, src_mask)) ### add an layer for x to attend on trace feature trace_feat = self.sublayer[2](trace_feat, lambda trace_feat: self.trace_self_attn(trace_feat, trace_feat, trace_feat, trace_masks)) trace_feat = self.sublayer[3](trace_feat, lambda trace_feat: self.trace_src_attn(trace_feat, m, m, src_mask)) trace_feat = self.sublayer[6](trace_feat, lambda trace_feat: self.trace_caption_attn(trace_feat, x, x, tgt_mask)) ################################################ return self.sublayer[7](trace_feat, self.feed_forward_trace) elif task == 'caption': m = memory x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, tgt_mask)) x = self.sublayer[1](x, lambda x: self.src_attn(x, m, m, src_mask)) ### add an layer for x to attend on trace feature # trace_mask = tgt_mask[:, -1, :].unsqueeze(1).long() trace_masks = trace_masks.unsqueeze(1) trace_feat = self.sublayer[2](trace_feat, lambda trace_feat: self.trace_self_attn(trace_feat, trace_feat, trace_feat, trace_masks)) trace_feat = self.sublayer[3](trace_feat, lambda trace_feat: self.trace_src_attn(trace_feat, m, m, src_mask)) x = self.sublayer[4](x, lambda x: self.caption_trace_attn(x, trace_feat, trace_feat, trace_masks)) ################################################ return self.sublayer[5](x, self.feed_forward_caption) elif task == 'both': m = memory x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, tgt_mask)) x = self.sublayer[1](x, lambda x: self.src_attn(x, m, m, src_mask)) ### add an layer for x to attend on trace feature # trace_mask = tgt_mask[:, -1, :].unsqueeze(1).long() # trace_masks = trace_masks.unsqueeze(1) trace_feat = self.sublayer[2](trace_feat, lambda trace_feat: self.trace_self_attn(trace_feat, trace_feat, trace_feat, trace_masks)) trace_feat = self.sublayer[3](trace_feat, lambda trace_feat: self.trace_src_attn(trace_feat, m, m, src_mask)) trace_masks_for_caption = torch.cat([trace_masks, trace_masks[:, -1, :].unsqueeze(1).repeat(1,tgt_mask.shape[1]-trace_masks.shape[1],1)], 1) tgt_mask_for_trace = tgt_mask[:, :trace_masks.shape[1], :] # x_out = self.sublayer[8](x, lambda x: self.both_caption_trace_attn(x, trace_feat, trace_feat, trace_masks_for_caption)) # trace_feat_out = self.sublayer[9](trace_feat, # lambda trace_feat: self.both_trace_caption_attn(trace_feat, x, x, tgt_mask_for_trace)) return self.sublayer[10](x, self.both_feed_forward_caption), self.sublayer[11](trace_feat, self.both_feed_forward_trace) def subsequent_mask(size): "Mask out subsequent positions." attn_shape = (1, size, size) subsequent_mask = np.triu(np.ones(attn_shape), k=1).astype('uint8') return torch.from_numpy(subsequent_mask) == 0 def attention(query, key, value, mask=None, dropout=None): "Compute 'Scaled Dot Product Attention'" d_k = query.size(-1) scores = torch.matmul(query, key.transpose(-2, -1)) \ / math.sqrt(d_k) if mask is not None: scores = scores.masked_fill(mask == 0, float('-inf')) p_attn = F.softmax(scores, dim = -1) if dropout is not None: p_attn = dropout(p_attn) return torch.matmul(p_attn, value), p_attn class MultiHeadedAttention(nn.Module): def __init__(self, h, d_model, dropout=0.1): "Take in model size and number of heads." super(MultiHeadedAttention, self).__init__() assert d_model % h == 0 # We assume d_v always equals d_k self.d_k = d_model // h self.h = h self.linears = clones(nn.Linear(d_model, d_model), 4) self.attn = None self.dropout = nn.Dropout(p=dropout) def forward(self, query, key, value, mask=None): "Implements Figure 2" if mask is not None: # Same mask applied to all h heads. mask = mask.unsqueeze(1) nbatches = query.size(0) # 1) Do all the linear projections in batch from d_model => h x d_k query, key, value = \ [l(x).view(nbatches, -1, self.h, self.d_k).transpose(1, 2) for l, x in zip(self.linears, (query, key, value))] # 2) Apply attention on all the projected vectors in batch. x, self.attn = attention(query, key, value, mask=mask, dropout=self.dropout) # 3) "Concat" using a view and apply a final linear. x = x.transpose(1, 2).contiguous() \ .view(nbatches, -1, self.h * self.d_k) return self.linears[-1](x) class PositionwiseFeedForward(nn.Module): "Implements FFN equation." def __init__(self, d_model, d_ff, dropout=0.1): super(PositionwiseFeedForward, self).__init__() self.w_1 = nn.Linear(d_model, d_ff) self.w_2 = nn.Linear(d_ff, d_model) self.dropout = nn.Dropout(dropout) def forward(self, x): return self.w_2(self.dropout(F.relu(self.w_1(x)))) class Embeddings(nn.Module): def __init__(self, d_model, vocab): super(Embeddings, self).__init__() self.lut = nn.Embedding(vocab, d_model) self.d_model = d_model self.vocab = vocab # self.layernorm = nn.LayerNorm(self.d_model, elementwise_affine=True) def forward(self, x, task=None): if task != 'cycle_trace': return self.lut(x) * math.sqrt(self.d_model) else: # # use gumbel softmax with \tau = 1 x = torch.nn.functional.softmax(torch.log(x) - torch.log(-torch.log(torch.rand([x.shape[2]]))).unsqueeze(0).unsqueeze(0).to(x.device), dim=-1) return torch.matmul(x, self.lut(torch.arange(self.vocab).to(x.device))) \ * math.sqrt(self.d_model) class caption_Embeddings(nn.Module): def __init__(self, d_model, vocab, position_encoder): super(caption_Embeddings, self).__init__() self.position_encoder = position_encoder self.embed = Embeddings(d_model, vocab) def forward(self, x, task): x = self.embed(x, task) x = self.position_encoder(x) return x class PositionalEncoding(nn.Module): "Implement the PE function." def __init__(self, d_model, dropout, max_len=5000): super(PositionalEncoding, self).__init__() self.dropout = nn.Dropout(p=dropout) # Compute the positional encodings once in log space. pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len).unsqueeze(1).float() div_term = torch.exp(torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0) self.register_buffer('pe', pe) def forward(self, x): x = x + self.pe[:, :x.size(1)] return self.dropout(x) class TransformerModel(AttModel): def make_model(self, src_vocab, tgt_vocab, N_enc=6, N_dec=6, d_model=512, d_ff=2048, h=8, dropout=0.1): "Helper: Construct a model from hyperparameters." c = copy.deepcopy attn = MultiHeadedAttention(h, d_model, dropout) ff = PositionwiseFeedForward(d_model, d_ff, dropout) position = PositionalEncoding(d_model, dropout) # position_nodropout = PositionalEncoding(d_model, 0) model = EncoderDecoder( Encoder(EncoderLayer(d_model, c(attn), c(ff), dropout), N_enc), Decoder(DecoderLayer(d_model, c(attn), c(attn), c(attn), c(attn), c(attn), c(attn), c(ff), c(ff), c(attn), c(attn), c(ff), c(ff), dropout), N_dec), lambda x:x, # nn.Sequential(Embeddings(d_model, src_vocab), c(position)), caption_Embeddings(d_model, tgt_vocab, c(position)), #nn.Sequential(Embeddings(d_model, tgt_vocab), c(position)), # Generator(d_model, tgt_vocab), nn.Sequential(nn.Linear(d_model, 5), nn.Sigmoid()), d_model,dropout) # This was important from their code. # Initialize parameters with Glorot / fan_avg. for p in model.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) return model def __init__(self, opt): super(TransformerModel, self).__init__(opt) self.opt = opt # self.config = yaml.load(open(opt.config_file)) self.N_enc = getattr(opt, 'N_enc', opt.num_layers) self.N_dec = getattr(opt, 'N_dec', opt.num_layers) self.d_model = getattr(opt, 'd_model', opt.input_encoding_size) self.d_ff = getattr(opt, 'd_ff', opt.rnn_size) self.h = getattr(opt, 'num_att_heads', 8) self.dropout = getattr(opt, 'dropout', 0.1) self.use_trace_feat = getattr(opt, 'use_trace_feat', 0) delattr(self, 'att_embed') self.att_embed = nn.Sequential(*( ((nn.BatchNorm1d(self.att_feat_size),) if self.use_bn else ())+ (nn.Linear(self.att_feat_size, self.d_model), nn.ReLU(), nn.Dropout(self.drop_prob_lm))+ ((nn.BatchNorm1d(self.d_model),) if self.use_bn==2 else ()))) # define trace embedding and layernorm # self.trace_embed = nn.Linear(5, self.d_model) self.box_embed = nn.Sequential(*( ((nn.BatchNorm1d(5),) if self.use_bn else ()) + (nn.Linear(5, self.d_model), nn.ReLU(), nn.Dropout(self.drop_prob_lm)) + ((nn.BatchNorm1d(self.d_model),) if self.use_bn == 2 else ()))) self.trace_embed = nn.Sequential(*( ((nn.BatchNorm1d(5),) if self.use_bn else ())+ (nn.Linear(5, self.d_model), nn.ReLU(), nn.Dropout(self.drop_prob_lm))+ ((nn.BatchNorm1d(self.d_model),) if self.use_bn==2 else ()))) self.trace_feat_embed = nn.Sequential(*( ((nn.BatchNorm1d(5),) if self.use_bn else ()) + (nn.Linear(2048, self.d_model), nn.ReLU(), nn.Dropout(self.drop_prob_lm)) + ((nn.BatchNorm1d(self.d_model),) if self.use_bn == 2 else ()))) self.box_layernorm1 = nn.LayerNorm(self.d_model, elementwise_affine=True) self.box_layernorm2 = nn.LayerNorm(self.d_model, elementwise_affine=True) self.trace_layernorm1 = nn.LayerNorm(self.d_model, elementwise_affine=True) self.trace_layernorm2 = nn.LayerNorm(self.d_model, elementwise_affine=True) self.trace_layernorm3 = nn.LayerNorm(self.d_model, elementwise_affine=True) self.trace_layernorm4 = nn.LayerNorm(self.d_model, elementwise_affine=True) self.att_layernorm = nn.LayerNorm(self.d_model, elementwise_affine=True) self.position_encoder = PositionalEncoding(self.d_model, self.dropout) delattr(self, 'embed') self.embed = lambda x : x delattr(self, 'fc_embed') self.fc_embed = lambda x : x delattr(self, 'logit') del self.ctx2att tgt_vocab = self.vocab_size + 1 print(self.N_enc, self.N_dec, self.d_model, self.d_ff, self.h, self.dropout) self.model = self.make_model(0, tgt_vocab, N_enc=self.N_enc, N_dec=self.N_dec, d_model=self.d_model, d_ff=self.d_ff, h=self.h, dropout=self.dropout) def logit(self, x): # unsafe way return self.model.generator_caption.proj(x) def init_hidden(self, bsz): return [] def _prepare_feature(self, fc_feats, att_feats, trace_feats, box_feats, att_masks, trace_masks): att_feats, box_feats, seq, att_masks, seq_mask = self._prepare_feature_forward(att_feats, box_feats, att_masks) # Localized Narratives: insert trace features into att_feats, trace_masks into att_masks att_feats = self.att_layernorm(att_feats) # normalize att feat if self.opt.use_box: box_feats = self.box_layernorm1(self.box_embed(box_feats)) att_feats = self.box_layernorm2(att_feats + box_feats) if self.opt.use_trace: trace_feats_to_decoder = trace_feats if self.opt.use_trace_feat: trace_grid_feats = trace_feats[:, :, 5:] trace_feats = trace_feats[:, :, :5] trace_grid_feats = self.trace_layernorm3(self.trace_feat_embed(trace_grid_feats)) # trace_grid_feats = self.position_encoder(trace_grid_feats) # trace_grid_feats = self.trace_layernorm4(trace_grid_feats) trace_feats = self.trace_layernorm1(self.trace_embed(trace_feats)) if self.opt.use_trace_feat: trace_feats = trace_feats + trace_grid_feats # trace_feats_to_decoder = trace_feats trace_feats = self.position_encoder(trace_feats) # add positional embedding trace_feats = self.trace_layernorm2(trace_feats) ### comment to test: trace feat not from encoder, only from decoder # att_feats = torch.cat([att_feats, trace_feats], 1) # concat with trace feats # att_masks = torch.cat([att_masks, trace_masks.unsqueeze(1)], 2) ########################### memory = self.model.encode(att_feats, att_masks) return fc_feats[...,:0], att_feats[...,:0], memory, att_masks, trace_feats_to_decoder def _prepare_feature_forward(self, att_feats, box_feats, att_masks=None, seq=None): # comment for classification # att_feats, box_feats, att_masks = self.clip_att(att_feats, box_feats, att_masks) # original version by ruotian # att_feats = pack_wrapper(self.att_embed, att_feats, att_masks) # my version: without pack and pad att_feats = self.att_embed(att_feats) if att_masks is None: att_masks = att_feats.new_ones(att_feats.shape[:2], dtype=torch.long) att_masks = att_masks.unsqueeze(-2) if seq is not None: # crop the last one # seq = seq[:,:-1] seq_mask = (seq.data != self.eos_idx) & (seq.data != self.pad_idx) seq_mask[:,0] = 1 # bos seq_mask = seq_mask.unsqueeze(-2) seq_mask = seq_mask & subsequent_mask(seq.size(-1)).to(seq_mask) seq_per_img = seq.shape[0] // att_feats.shape[0] if seq_per_img > 1: att_feats, att_masks = utils.repeat_tensors(seq_per_img, [att_feats, att_masks] ) else: seq_mask = None return att_feats, box_feats, seq, att_masks, seq_mask def _forward(self, fc_feats, att_feats, trace_feats, box_feats, seq, att_masks=None, trace_masks=None, task = None): assert task == 'trace' or task == 'caption' or task == 'both' or task == 'cycle_trace' if task != 'cycle_trace': if seq.ndim == 3: # B * seq_per_img * seq_len seq = seq.reshape(-1, seq.shape[2]) if task == 'both': ### get the original caption input tmp_seq = seq[:, :trace_masks.shape[1]] _, _, _, _, tmp_seq_mask = self._prepare_feature_forward(att_feats, box_feats, att_masks, tmp_seq) att_feats, box_feats, seq, att_masks, seq_mask = self._prepare_feature_forward(att_feats, box_feats, att_masks, seq) ## prepare the shifted trace shifted_trace = torch.cat( [torch.zeros(trace_feats.shape[0], 1, trace_feats.shape[2]).to(trace_feats.device), trace_feats], 1) shifted_trace = shifted_trace[:, :-1, :] # ignore the last segment in shifted trace shifted_trace_mask = tmp_seq_mask # Localized Narratives: insert trace features into att_feats, trace_masks into att_masks att_feats = self.att_layernorm(att_feats) # normalize att feat if self.opt.use_box: box_feats = self.box_layernorm1(self.box_embed(box_feats)) att_feats = self.box_layernorm2(att_feats + box_feats) # randomly mask part of trace_feats if self.training: random_mask_rate = 0 else: random_mask_rate = 0 random_mask = (torch.rand( [shifted_trace.shape[0], shifted_trace.shape[1]]) > random_mask_rate).float().unsqueeze(2).to( shifted_trace.device) shifted_trace[:, :, :5] = shifted_trace[:, :, :5] * random_mask + \ (1 - random_mask) * torch.tensor([0., 0., 1., 1., 1.]).to(shifted_trace.device).unsqueeze(0).unsqueeze(1) # out = self.model(att_feats, seq, att_masks, seq_mask, trace_feats_to_decoder, trace_masks) (out_caption, out_trace), memory = self.model(att_feats, seq, att_masks, seq_mask, shifted_trace, shifted_trace_mask, task) # trace generation # for regression, use generator which is a linear layer and sigmoid outputs_caption = self.model.generator_caption(out_caption) outputs_trace = self.model.generator_trace(out_trace) return outputs_caption, outputs_trace elif task == 'trace' or task == 'cycle_trace': # for classification trace_feats = trace_feats[:, :, :5] ### get the original caption input tmp_seq = torch.ones([trace_masks.shape[0], trace_masks.shape[1]]).to(trace_masks.device) # seq[:, :trace_masks.shape[1]] seq = seq[:, 1:trace_masks.shape[1]+1] # crop the seq to real length seq_mask = trace_masks.unsqueeze(1) att_feats, box_feats, tmp_seq, att_masks, tmp_seq_mask = self._prepare_feature_forward(att_feats, box_feats, att_masks, tmp_seq) ## prepare the shifted trace shifted_trace = torch.cat([torch.zeros(trace_feats.shape[0], 1, trace_feats.shape[2]).to(trace_feats.device), trace_feats], 1) shifted_trace = shifted_trace[:, :-1, :] # ignore the last segment in shifted trace shifted_trace_mask = tmp_seq_mask # Localized Narratives: insert trace features into att_feats, trace_masks into att_masks att_feats = self.att_layernorm(att_feats) # normalize att feat if self.opt.use_box: box_feats = self.box_layernorm1(self.box_embed(box_feats)) att_feats = self.box_layernorm2(att_feats + box_feats) # randomly mask part of trace_feats if self.training: random_mask_rate = 0 else: random_mask_rate = 0 random_mask = (torch.rand( [shifted_trace.shape[0], shifted_trace.shape[1]]) > random_mask_rate).float().unsqueeze(2).to( shifted_trace.device) # if torch.rand(1) > 0.5: # half [0,0,1,1,1], half random shifted_trace[:, :, :5] = shifted_trace[:, :, :5] * random_mask + \ (1 - random_mask) * torch.tensor([0., 0., 1., 1., 1.]).to( shifted_trace.device).unsqueeze(0).unsqueeze(1) # else: # tmp_1 = torch.rand([shifted_trace.shape[0], shifted_trace.shape[1], 2]).sort(dim=2)[0] # tmp_2 = torch.rand([shifted_trace.shape[0], shifted_trace.shape[1], 2]).sort(dim=2)[0] # tmp = torch.stack([tmp_1[:, :, 0], tmp_2[:, :, 0], tmp_1[:, :, 1], tmp_2[:, :, 1], # (tmp_1[:, :, 1] - tmp_1[:, :, 0]) * (tmp_2[:, :, 1] - tmp_2[:, :, 0])], 2) # shifted_trace[:, :, :5] = shifted_trace[:, :, :5] * random_mask + \ # (1 - random_mask) * tmp.to(shifted_trace.device) # out = self.model(att_feats, seq, att_masks, seq_mask, trace_feats_to_decoder, trace_masks) out, memory = self.model(att_feats, seq, att_masks, seq_mask, shifted_trace, shifted_trace_mask, task) # trace generation # for regression, use generator which is a linear layer and sigmoid outputs = self.model.generator_trace(out) # for classification, use (masked) dot product to provide logits # out = out / torch.norm(out, dim=2).unsqueeze(2) # memory = memory / torch.norm(memory, dim=2).unsqueeze(2) # outputs = torch.matmul(out, memory.transpose(1,2)) # memory_mask = att_masks # outputs = outputs.masked_fill(memory_mask == 0, float('-inf')) # # outputs = F.softmax(outputs, dim=-1) # outputs = (outputs.unsqueeze(3) * box_feats.unsqueeze(1)).sum(dim=2) # print('transformer_out',outputs.argmax(dim=-1)[0]) return outputs elif task == 'caption': att_feats, box_feats, seq, att_masks, seq_mask = self._prepare_feature_forward(att_feats, box_feats, att_masks, seq) # Localized Narratives: insert trace features into att_feats, trace_masks into att_masks att_feats = self.att_layernorm(att_feats) # normalize att feat if self.opt.use_box: box_feats = self.box_layernorm1(self.box_embed(box_feats)) att_feats = self.box_layernorm2(att_feats + box_feats) if self.opt.use_trace: trace_feats_to_decoder = trace_feats out, _ = self.model(att_feats, seq, att_masks, seq_mask, trace_feats_to_decoder, trace_masks, task) outputs = self.model.generator_caption(out) return outputs # return torch.cat([_.unsqueeze(1) for _ in outputs], 1) def core(self, it, fc_feats_ph, att_feats_ph, memory, state, mask, trace_feats_to_decoder, trace_masks, task): """ state = [ys.unsqueeze(0)] """ if len(state) == 0: ys = it.unsqueeze(1) else: ys = torch.cat([state[0][0], it.unsqueeze(1)], dim=1) if task == 'caption': out = self.model.decode(memory, mask, ys, subsequent_mask(ys.size(1)).to(memory.device), trace_feats_to_decoder, trace_masks, 'caption') return out[:, -1], [ys.unsqueeze(0)] elif task == 'both': out_caption, out_trace = self.model.decode(memory, mask, ys, subsequent_mask(ys.size(1)).to(memory.device), trace_feats_to_decoder, subsequent_mask(ys.size(1)).to(memory.device), 'both') return out_caption[:, -1], [ys.unsqueeze(0)], out_trace
connect-caption-and-trace-main
captioning/models/TransformerModel_standard_enco_deco_both.py
# This file contains ShowAttendTell and AllImg model # ShowAttendTell is from Show, Attend and Tell: Neural Image Caption Generation with Visual Attention # https://arxiv.org/abs/1502.03044 # AllImg is a model where # img feature is concatenated with word embedding at every time step as the input of lstm from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import * from ..utils import misc as utils from . import utils as model_utils class CaptionModel(nn.Module): def __init__(self): super(CaptionModel, self).__init__() # implements beam search # calls beam_step and returns the final set of beams # augments log-probabilities with diversity terms when number of groups > 1 def forward(self, *args, **kwargs): mode = kwargs.get('mode', 'forward') if 'mode' in kwargs: del kwargs['mode'] return getattr(self, '_'+mode)(*args, **kwargs) def beam_search(self, init_state, init_logprobs, *args, **kwargs): # function computes the similarity score to be augmented def add_diversity(beam_seq_table, logprobs, t, divm, diversity_lambda, bdash): local_time = t - divm unaug_logprobs = logprobs.clone() batch_size = beam_seq_table[0].shape[0] if divm > 0: change = logprobs.new_zeros(batch_size, logprobs.shape[-1]) for prev_choice in range(divm): prev_decisions = beam_seq_table[prev_choice][:, :, local_time] # Nxb for prev_labels in range(bdash): change.scatter_add_(1, prev_decisions[:, prev_labels].unsqueeze(-1), change.new_ones(batch_size, 1)) if local_time == 0: logprobs = logprobs - change * diversity_lambda else: logprobs = logprobs - self.repeat_tensor(bdash, change) * diversity_lambda return logprobs, unaug_logprobs # does one step of classical beam search def beam_step(logprobs, unaug_logprobs, beam_size, t, beam_seq, beam_seq_logprobs, beam_logprobs_sum, state): #INPUTS: #logprobs: probabilities augmented after diversity N*bxV #beam_size: obvious #t : time instant #beam_seq : tensor contanining the beams #beam_seq_logprobs: tensor contanining the beam logprobs #beam_logprobs_sum: tensor contanining joint logprobs #OUPUTS: #beam_seq : tensor containing the word indices of the decoded captions Nxbxl #beam_seq_logprobs : log-probability of each decision made, NxbxlxV #beam_logprobs_sum : joint log-probability of each beam Nxb batch_size = beam_logprobs_sum.shape[0] vocab_size = logprobs.shape[-1] logprobs = logprobs.reshape(batch_size, -1, vocab_size) # NxbxV if t == 0: assert logprobs.shape[1] == 1 beam_logprobs_sum = beam_logprobs_sum[:, :1] candidate_logprobs = beam_logprobs_sum.unsqueeze(-1) + logprobs # beam_logprobs_sum Nxb logprobs is NxbxV ys, ix = torch.sort(candidate_logprobs.reshape(candidate_logprobs.shape[0], -1), -1, True) ys, ix = ys[:,:beam_size], ix[:,:beam_size] beam_ix = ix // vocab_size # Nxb which beam selected_ix = ix % vocab_size # Nxb # which world state_ix = (beam_ix + torch.arange(batch_size).type_as(beam_ix).unsqueeze(-1) * logprobs.shape[1]).reshape(-1) # N*b which in Nxb beams if t > 0: # gather according to beam_ix assert (beam_seq.gather(1, beam_ix.unsqueeze(-1).expand_as(beam_seq)) == beam_seq.reshape(-1, beam_seq.shape[-1])[state_ix].view_as(beam_seq)).all() beam_seq = beam_seq.gather(1, beam_ix.unsqueeze(-1).expand_as(beam_seq)) beam_seq_logprobs = beam_seq_logprobs.gather(1, beam_ix.unsqueeze(-1).unsqueeze(-1).expand_as(beam_seq_logprobs)) beam_seq = torch.cat([beam_seq, selected_ix.unsqueeze(-1)], -1) # beam_seq Nxbxl beam_logprobs_sum = beam_logprobs_sum.gather(1, beam_ix) + \ logprobs.reshape(batch_size, -1).gather(1, ix) assert (beam_logprobs_sum == ys).all() _tmp_beam_logprobs = unaug_logprobs[state_ix].reshape(batch_size, -1, vocab_size) beam_logprobs = unaug_logprobs.reshape(batch_size, -1, vocab_size).gather(1, beam_ix.unsqueeze(-1).expand(-1, -1, vocab_size)) # NxbxV assert (_tmp_beam_logprobs == beam_logprobs).all() beam_seq_logprobs = torch.cat([ beam_seq_logprobs, beam_logprobs.reshape(batch_size, -1, 1, vocab_size)], 2) new_state = [None for _ in state] for _ix in range(len(new_state)): # copy over state in previous beam q to new beam at vix new_state[_ix] = state[_ix][:, state_ix] state = new_state return beam_seq,beam_seq_logprobs,beam_logprobs_sum,state # Start diverse_beam_search opt = kwargs['opt'] temperature = opt.get('temperature', 1) # This should not affect beam search, but will affect dbs beam_size = opt.get('beam_size', 10) group_size = opt.get('group_size', 1) diversity_lambda = opt.get('diversity_lambda', 0.5) decoding_constraint = opt.get('decoding_constraint', 0) remove_bad_endings = opt.get('remove_bad_endings', 0) suppress_UNK = opt.get('suppress_UNK', 0) length_penalty = utils.penalty_builder(opt.get('length_penalty', '')) bdash = beam_size // group_size # beam per group batch_size = init_logprobs.shape[0] device = init_logprobs.device # INITIALIZATIONS beam_seq_table = [torch.LongTensor(batch_size, bdash, 0).to(device) for _ in range(group_size)] beam_seq_logprobs_table = [torch.FloatTensor(batch_size, bdash, 0, self.vocab_size + 1).to(device) for _ in range(group_size)] beam_logprobs_sum_table = [torch.zeros(batch_size, bdash).to(device) for _ in range(group_size)] # logprobs # logprobs predicted in last time step, shape (beam_size, vocab_size+1) done_beams_table = [[[] for __ in range(group_size)] for _ in range(batch_size)] # state_table = [list(torch.unbind(_)) for _ in torch.stack(init_state).chunk(group_size, 2)] # state_table = list(zip(*[_.reshape(-1, batch_size * bdash, group_size, *_.shape[2:]).chunk(group_size, 2) for _ in init_state])) state_table = [[_.clone() for _ in init_state] for _ in range(group_size)] # logprobs_table = list(init_logprobs.reshape(batch_size * bdash, group_size, -1).chunk(group_size, 0)) logprobs_table = [init_logprobs.clone() for _ in range(group_size)] # END INIT # Chunk elements in the args args = list(args) args = model_utils.split_tensors(group_size, args) # For each arg, turn (Bbg)x... to (Bb)x(g)x... if self.__class__.__name__ == 'AttEnsemble': args = [[[args[j][i][k] for i in range(len(self.models))] for j in range(len(args))] for k in range(group_size)] # group_name, arg_name, model_name else: args = [[args[i][j] for i in range(len(args)-1)]+[args[-1]] for j in range(group_size)] for t in range(self.seq_length + group_size - 1): for divm in range(group_size): if t >= divm and t <= self.seq_length + divm - 1: # add diversity logprobs = logprobs_table[divm] # suppress previous word if decoding_constraint and t-divm > 0: logprobs.scatter_(1, beam_seq_table[divm][:, :, t-divm-1].reshape(-1, 1).to(device), float('-inf')) if remove_bad_endings and t-divm > 0: logprobs[torch.from_numpy(np.isin(beam_seq_table[divm][:, :, t-divm-1].cpu().numpy(), self.bad_endings_ix)).reshape(-1), 0] = float('-inf') # suppress UNK tokens in the decoding if suppress_UNK and hasattr(self, 'vocab') and self.vocab[str(logprobs.size(1)-1)] == 'UNK': logprobs[:,logprobs.size(1)-1] = logprobs[:, logprobs.size(1)-1] - 1000 # diversity is added here # the function directly modifies the logprobs values and hence, we need to return # the unaugmented ones for sorting the candidates in the end. # for historical # reasons :-) logprobs, unaug_logprobs = add_diversity(beam_seq_table,logprobs,t,divm,diversity_lambda,bdash) # infer new beams beam_seq_table[divm],\ beam_seq_logprobs_table[divm],\ beam_logprobs_sum_table[divm],\ state_table[divm] = beam_step(logprobs, unaug_logprobs, bdash, t-divm, beam_seq_table[divm], beam_seq_logprobs_table[divm], beam_logprobs_sum_table[divm], state_table[divm]) # if time's up... or if end token is reached then copy beams for b in range(batch_size): is_end = beam_seq_table[divm][b, :, t-divm] == self.eos_idx assert beam_seq_table[divm].shape[-1] == t-divm+1 if t == self.seq_length + divm - 1: is_end.fill_(1) for vix in range(bdash): if is_end[vix]: final_beam = { 'seq': beam_seq_table[divm][b, vix].clone(), 'logps': beam_seq_logprobs_table[divm][b, vix].clone(), 'unaug_p': beam_seq_logprobs_table[divm][b, vix].sum().item(), 'p': beam_logprobs_sum_table[divm][b, vix].item() } final_beam['p'] = length_penalty(t-divm+1, final_beam['p']) done_beams_table[b][divm].append(final_beam) beam_logprobs_sum_table[divm][b, is_end] -= 1000 # move the current group one step forward in time it = beam_seq_table[divm][:, :, t-divm].reshape(-1).to(logprobs.device) logprobs_table[divm], state_table[divm] = self.get_logprobs_state(it, *(args[divm] + [state_table[divm]])) logprobs_table[divm] = F.log_softmax(logprobs_table[divm] / temperature, dim=-1) # all beams are sorted by their log-probabilities done_beams_table = [[sorted(done_beams_table[b][i], key=lambda x: -x['p'])[:bdash] for i in range(group_size)] for b in range(batch_size)] done_beams = [sum(_, []) for _ in done_beams_table] return done_beams def old_beam_search(self, init_state, init_logprobs, *args, **kwargs): # function computes the similarity score to be augmented def add_diversity(beam_seq_table, logprobsf, t, divm, diversity_lambda, bdash): local_time = t - divm unaug_logprobsf = logprobsf.clone() for prev_choice in range(divm): prev_decisions = beam_seq_table[prev_choice][local_time] for sub_beam in range(bdash): for prev_labels in range(bdash): logprobsf[sub_beam][prev_decisions[prev_labels]] = logprobsf[sub_beam][prev_decisions[prev_labels]] - diversity_lambda return unaug_logprobsf # does one step of classical beam search def beam_step(logprobsf, unaug_logprobsf, beam_size, t, beam_seq, beam_seq_logprobs, beam_logprobs_sum, state): #INPUTS: #logprobsf: probabilities augmented after diversity #beam_size: obvious #t : time instant #beam_seq : tensor contanining the beams #beam_seq_logprobs: tensor contanining the beam logprobs #beam_logprobs_sum: tensor contanining joint logprobs #OUPUTS: #beam_seq : tensor containing the word indices of the decoded captions #beam_seq_logprobs : log-probability of each decision made, same size as beam_seq #beam_logprobs_sum : joint log-probability of each beam ys,ix = torch.sort(logprobsf,1,True) candidates = [] cols = min(beam_size, ys.size(1)) rows = beam_size if t == 0: rows = 1 for c in range(cols): # for each column (word, essentially) for q in range(rows): # for each beam expansion #compute logprob of expanding beam q with word in (sorted) position c local_logprob = ys[q,c].item() candidate_logprob = beam_logprobs_sum[q] + local_logprob # local_unaug_logprob = unaug_logprobsf[q,ix[q,c]] candidates.append({'c':ix[q,c], 'q':q, 'p':candidate_logprob, 'r':unaug_logprobsf[q]}) candidates = sorted(candidates, key=lambda x: -x['p']) new_state = [_.clone() for _ in state] #beam_seq_prev, beam_seq_logprobs_prev if t >= 1: #we''ll need these as reference when we fork beams around beam_seq_prev = beam_seq[:t].clone() beam_seq_logprobs_prev = beam_seq_logprobs[:t].clone() for vix in range(beam_size): v = candidates[vix] #fork beam index q into index vix if t >= 1: beam_seq[:t, vix] = beam_seq_prev[:, v['q']] beam_seq_logprobs[:t, vix] = beam_seq_logprobs_prev[:, v['q']] #rearrange recurrent states for state_ix in range(len(new_state)): # copy over state in previous beam q to new beam at vix new_state[state_ix][:, vix] = state[state_ix][:, v['q']] # dimension one is time step #append new end terminal at the end of this beam beam_seq[t, vix] = v['c'] # c'th word is the continuation beam_seq_logprobs[t, vix] = v['r'] # the raw logprob here beam_logprobs_sum[vix] = v['p'] # the new (sum) logprob along this beam state = new_state return beam_seq,beam_seq_logprobs,beam_logprobs_sum,state,candidates # Start diverse_beam_search opt = kwargs['opt'] temperature = opt.get('temperature', 1) # This should not affect beam search, but will affect dbs beam_size = opt.get('beam_size', 10) group_size = opt.get('group_size', 1) diversity_lambda = opt.get('diversity_lambda', 0.5) decoding_constraint = opt.get('decoding_constraint', 0) remove_bad_endings = opt.get('remove_bad_endings', 0) suppress_UNK = opt.get('suppress_UNK', 0) length_penalty = utils.penalty_builder(opt.get('length_penalty', '')) bdash = beam_size // group_size # beam per group # INITIALIZATIONS beam_seq_table = [torch.LongTensor(self.seq_length, bdash).zero_() for _ in range(group_size)] beam_seq_logprobs_table = [torch.FloatTensor(self.seq_length, bdash, self.vocab_size + 1).zero_() for _ in range(group_size)] beam_logprobs_sum_table = [torch.zeros(bdash) for _ in range(group_size)] # logprobs # logprobs predicted in last time step, shape (beam_size, vocab_size+1) done_beams_table = [[] for _ in range(group_size)] # state_table = [list(torch.unbind(_)) for _ in torch.stack(init_state).chunk(group_size, 2)] state_table = list(zip(*[_.chunk(group_size, 1) for _ in init_state])) logprobs_table = list(init_logprobs.chunk(group_size, 0)) # END INIT # Chunk elements in the args args = list(args) if self.__class__.__name__ == 'AttEnsemble': args = [[_.chunk(group_size) if _ is not None else [None]*group_size for _ in args_] for args_ in args] # arg_name, model_name, group_name args = [[[args[j][i][k] for i in range(len(self.models))] for j in range(len(args))] for k in range(group_size)] # group_name, arg_name, model_name else: args = [_.chunk(group_size) if _ is not None else [None]*group_size for _ in args] args = [[args[i][j] for i in range(len(args))] for j in range(group_size)] for t in range(self.seq_length + group_size - 1): for divm in range(group_size): if t >= divm and t <= self.seq_length + divm - 1: # add diversity logprobsf = logprobs_table[divm] # suppress previous word if decoding_constraint and t-divm > 0: logprobsf.scatter_(1, beam_seq_table[divm][t-divm-1].unsqueeze(1).to(logprobsf.device), float('-inf')) if remove_bad_endings and t-divm > 0: logprobsf[torch.from_numpy(np.isin(beam_seq_table[divm][t-divm-1].cpu().numpy(), self.bad_endings_ix)), 0] = float('-inf') # suppress UNK tokens in the decoding if suppress_UNK and hasattr(self, 'vocab') and self.vocab[str(logprobsf.size(1)-1)] == 'UNK': logprobsf[:,logprobsf.size(1)-1] = logprobsf[:, logprobsf.size(1)-1] - 1000 # diversity is added here # the function directly modifies the logprobsf values and hence, we need to return # the unaugmented ones for sorting the candidates in the end. # for historical # reasons :-) unaug_logprobsf = add_diversity(beam_seq_table,logprobsf,t,divm,diversity_lambda,bdash) # infer new beams beam_seq_table[divm],\ beam_seq_logprobs_table[divm],\ beam_logprobs_sum_table[divm],\ state_table[divm],\ candidates_divm = beam_step(logprobsf, unaug_logprobsf, bdash, t-divm, beam_seq_table[divm], beam_seq_logprobs_table[divm], beam_logprobs_sum_table[divm], state_table[divm]) # if time's up... or if end token is reached then copy beams for vix in range(bdash): if beam_seq_table[divm][t-divm,vix] == self.eos_idx or t == self.seq_length + divm - 1: final_beam = { 'seq': beam_seq_table[divm][:, vix].clone(), 'logps': beam_seq_logprobs_table[divm][:, vix].clone(), 'unaug_p': beam_seq_logprobs_table[divm][:, vix].sum().item(), 'p': beam_logprobs_sum_table[divm][vix].item() } final_beam['p'] = length_penalty(t-divm+1, final_beam['p']) done_beams_table[divm].append(final_beam) # don't continue beams from finished sequences beam_logprobs_sum_table[divm][vix] = -1000 # move the current group one step forward in time it = beam_seq_table[divm][t-divm].to(logprobsf.device) logprobs_table[divm], state_table[divm] = self.get_logprobs_state(it, *(args[divm] + [state_table[divm]])) logprobs_table[divm] = F.log_softmax(logprobs_table[divm] / temperature, dim=-1) # all beams are sorted by their log-probabilities done_beams_table = [sorted(done_beams_table[i], key=lambda x: -x['p'])[:bdash] for i in range(group_size)] done_beams = sum(done_beams_table, []) return done_beams def sample_next_word(self, logprobs, sample_method, temperature): if sample_method == 'greedy': sampleLogprobs, it = torch.max(logprobs.data, 1) it = it.view(-1).long() elif sample_method == 'gumbel': # gumbel softmax # ref: https://gist.github.com/yzh119/fd2146d2aeb329d067568a493b20172f def sample_gumbel(shape, eps=1e-20): U = torch.rand(shape).to(logprobs.device) return -torch.log(-torch.log(U + eps) + eps) def gumbel_softmax_sample(logits, temperature): y = logits + sample_gumbel(logits.size()) return F.log_softmax(y / temperature, dim=-1) _logprobs = gumbel_softmax_sample(logprobs, temperature) _, it = torch.max(_logprobs.data, 1) sampleLogprobs = logprobs.gather(1, it.unsqueeze(1)) # gather the logprobs at sampled positions else: logprobs = logprobs / temperature if sample_method.startswith('top'): # topk sampling top_num = float(sample_method[3:]) if 0 < top_num < 1: # nucleus sampling from # The Curious Case of Neural Text Degeneration probs = F.softmax(logprobs, dim=1) sorted_probs, sorted_indices = torch.sort(probs, descending=True, dim=1) _cumsum = sorted_probs.cumsum(1) mask = _cumsum < top_num mask = torch.cat([torch.ones_like(mask[:,:1]), mask[:,:-1]], 1) sorted_probs = sorted_probs * mask.to(sorted_probs) sorted_probs = sorted_probs / sorted_probs.sum(1, keepdim=True) logprobs.scatter_(1, sorted_indices, sorted_probs.log()) else: the_k = int(top_num) tmp = torch.empty_like(logprobs).fill_(float('-inf')) topk, indices = torch.topk(logprobs, the_k, dim=1) tmp = tmp.scatter(1, indices, topk) logprobs = tmp it = torch.distributions.Categorical(logits=logprobs.detach()).sample() sampleLogprobs = logprobs.gather(1, it.unsqueeze(1)) # gather the logprobs at sampled positions return it, sampleLogprobs def decode_sequence(self, seq): return utils.decode_sequence(self.vocab, seq)
connect-caption-and-trace-main
captioning/models/CaptionModel.py
# This file is the implementation for ensemble evaluation. from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import * from .CaptionModel import CaptionModel from .AttModel import pack_wrapper, AttModel class AttEnsemble(AttModel): def __init__(self, models, weights=None): CaptionModel.__init__(self) # super(AttEnsemble, self).__init__() self.models = nn.ModuleList(models) self.vocab_size = models[0].vocab_size self.seq_length = models[0].seq_length self.bad_endings_ix = models[0].bad_endings_ix self.ss_prob = 0 weights = weights or [1.0] * len(self.models) self.register_buffer('weights', torch.tensor(weights)) def init_hidden(self, batch_size): state = [m.init_hidden(batch_size) for m in self.models] return self.pack_state(state) def pack_state(self, state): self.state_lengths = [len(_) for _ in state] return sum([list(_) for _ in state], []) def unpack_state(self, state): out = [] for l in self.state_lengths: out.append(state[:l]) state = state[l:] return out def embed(self, it): return [m.embed(it) for m in self.models] def core(self, *args): return zip(*[m.core(*_) for m, _ in zip(self.models, zip(*args))]) def get_logprobs_state(self, it, tmp_fc_feats, tmp_att_feats, tmp_p_att_feats, tmp_att_masks, state, output_logsoftmax=1): # 'it' contains a word index xt = self.embed(it) state = self.unpack_state(state) output, state = self.core(xt, tmp_fc_feats, tmp_att_feats, tmp_p_att_feats, state, tmp_att_masks) logprobs = torch.stack([F.softmax(m.logit(output[i]), dim=1) for i,m in enumerate(self.models)], 2).mul(self.weights).div(self.weights.sum()).sum(-1).log() return logprobs, self.pack_state(state) def _prepare_feature(self, *args): return tuple(zip(*[m._prepare_feature(*args) for m in self.models])) def _old_sample_beam(self, fc_feats, att_feats, att_masks=None, opt={}): beam_size = opt.get('beam_size', 10) batch_size = fc_feats.size(0) fc_feats, att_feats, p_att_feats, att_masks = self._prepare_feature(fc_feats, att_feats, att_masks) assert beam_size <= self.vocab_size + 1, 'lets assume this for now, otherwise this corner case causes a few headaches down the road. can be dealt with in future if needed' seq = torch.LongTensor(self.seq_length, batch_size).zero_() seqLogprobs = torch.FloatTensor(self.seq_length, batch_size, self.vocab_size + 1) # lets process every image independently for now, for simplicity self.done_beams = [[] for _ in range(batch_size)] for k in range(batch_size): state = self.init_hidden(beam_size) tmp_fc_feats = [fc_feats[i][k:k+1].expand(beam_size, fc_feats[i].size(1)) for i,m in enumerate(self.models)] tmp_att_feats = [att_feats[i][k:k+1].expand(*((beam_size,)+att_feats[i].size()[1:])).contiguous() for i,m in enumerate(self.models)] tmp_p_att_feats = [p_att_feats[i][k:k+1].expand(*((beam_size,)+p_att_feats[i].size()[1:])).contiguous() for i,m in enumerate(self.models)] tmp_att_masks = [att_masks[i][k:k+1].expand(*((beam_size,)+att_masks[i].size()[1:])).contiguous() if att_masks[i] is not None else att_masks[i] for i,m in enumerate(self.models)] it = fc_feats[0].data.new(beam_size).long().zero_() logprobs, state = self.get_logprobs_state(it, tmp_fc_feats, tmp_att_feats, tmp_p_att_feats, tmp_att_masks, state) self.done_beams[k] = self.old_beam_search(state, logprobs, tmp_fc_feats, tmp_att_feats, tmp_p_att_feats, tmp_att_masks, opt=opt) seq[:, k] = self.done_beams[k][0]['seq'] # the first beam has highest cumulative score seqLogprobs[:, k] = self.done_beams[k][0]['logps'] # return the samples and their log likelihoods return seq.transpose(0, 1), seqLogprobs.transpose(0, 1) # return the samples and their log likelihoods
connect-caption-and-trace-main
captioning/models/AttEnsemble.py
from __future__ import absolute_import from __future__ import division from __future__ import print_function import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import * from . import utils from .CaptionModel import CaptionModel class LSTMCore(nn.Module): def __init__(self, opt): super(LSTMCore, self).__init__() self.input_encoding_size = opt.input_encoding_size self.rnn_size = opt.rnn_size self.drop_prob_lm = opt.drop_prob_lm # Build a LSTM self.i2h = nn.Linear(self.input_encoding_size, 5 * self.rnn_size) self.h2h = nn.Linear(self.rnn_size, 5 * self.rnn_size) self.dropout = nn.Dropout(self.drop_prob_lm) def forward(self, xt, state): all_input_sums = self.i2h(xt) + self.h2h(state[0][-1]) sigmoid_chunk = all_input_sums.narrow(1, 0, 3 * self.rnn_size) sigmoid_chunk = torch.sigmoid(sigmoid_chunk) in_gate = sigmoid_chunk.narrow(1, 0, self.rnn_size) forget_gate = sigmoid_chunk.narrow(1, self.rnn_size, self.rnn_size) out_gate = sigmoid_chunk.narrow(1, self.rnn_size * 2, self.rnn_size) in_transform = torch.max(\ all_input_sums.narrow(1, 3 * self.rnn_size, self.rnn_size), all_input_sums.narrow(1, 4 * self.rnn_size, self.rnn_size)) next_c = forget_gate * state[1][-1] + in_gate * in_transform next_h = out_gate * torch.tanh(next_c) output = self.dropout(next_h) state = (next_h.unsqueeze(0), next_c.unsqueeze(0)) return output, state class FCModel(CaptionModel): def __init__(self, opt): super(FCModel, self).__init__() self.vocab_size = opt.vocab_size self.input_encoding_size = opt.input_encoding_size self.rnn_type = opt.rnn_type self.rnn_size = opt.rnn_size self.num_layers = opt.num_layers self.drop_prob_lm = opt.drop_prob_lm self.seq_length = opt.seq_length self.fc_feat_size = opt.fc_feat_size self.ss_prob = 0.0 # Schedule sampling probability self.img_embed = nn.Linear(self.fc_feat_size, self.input_encoding_size) self.core = LSTMCore(opt) self.embed = nn.Embedding(self.vocab_size + 1, self.input_encoding_size) self.logit = nn.Linear(self.rnn_size, self.vocab_size + 1) self.init_weights() def init_weights(self): initrange = 0.1 self.embed.weight.data.uniform_(-initrange, initrange) self.logit.bias.data.fill_(0) self.logit.weight.data.uniform_(-initrange, initrange) def init_hidden(self, bsz): weight = self.logit.weight if self.rnn_type == 'lstm': return (weight.new_zeros(self.num_layers, bsz, self.rnn_size), weight.new_zeros(self.num_layers, bsz, self.rnn_size)) else: return weight.new_zeros(self.num_layers, bsz, self.rnn_size) def _forward(self, fc_feats, att_feats, seq, att_masks=None): batch_size = fc_feats.size(0) seq_per_img = seq.shape[0] // batch_size state = self.init_hidden(batch_size*seq_per_img) outputs = [] if seq_per_img > 1: fc_feats = utils.repeat_tensors(seq_per_img, fc_feats) for i in range(seq.size(1) + 1): if i == 0: xt = self.img_embed(fc_feats) else: if self.training and i >= 2 and self.ss_prob > 0.0: # otherwiste no need to sample sample_prob = fc_feats.data.new(batch_size*seq_per_img).uniform_(0, 1) sample_mask = sample_prob < self.ss_prob if sample_mask.sum() == 0: it = seq[:, i-1].clone() else: sample_ind = sample_mask.nonzero().view(-1) it = seq[:, i-1].data.clone() #prob_prev = torch.exp(outputs[-1].data.index_select(0, sample_ind)) # fetch prev distribution: shape Nx(M+1) #it.index_copy_(0, sample_ind, torch.multinomial(prob_prev, 1).view(-1)) prob_prev = torch.exp(outputs[-1].data) # fetch prev distribution: shape Nx(M+1) it.index_copy_(0, sample_ind, torch.multinomial(prob_prev, 1).view(-1).index_select(0, sample_ind)) else: it = seq[:, i-1].clone() # break if all the sequences end if i >= 2 and seq[:, i-1].sum() == 0: break xt = self.embed(it) output, state = self.core(xt, state) output = F.log_softmax(self.logit(output), dim=1) outputs.append(output) return torch.cat([_.unsqueeze(1) for _ in outputs[1:]], 1).contiguous() def get_logprobs_state(self, it, state): # 'it' is contains a word index xt = self.embed(it) output, state = self.core(xt, state) logprobs = F.log_softmax(self.logit(output), dim=1) return logprobs, state def _sample_beam(self, fc_feats, att_feats, att_masks=None, opt={}): beam_size = opt.get('beam_size', 10) batch_size = fc_feats.size(0) assert beam_size <= self.vocab_size + 1, 'lets assume this for now, otherwise this corner case causes a few headaches down the road. can be dealt with in future if needed' seq = torch.LongTensor(self.seq_length, batch_size).zero_() seqLogprobs = torch.FloatTensor(self.seq_length, batch_size, self.vocab_size + 1) # lets process every image independently for now, for simplicity self.done_beams = [[] for _ in range(batch_size)] for k in range(batch_size): state = self.init_hidden(beam_size) for t in range(2): if t == 0: xt = self.img_embed(fc_feats[k:k+1]).expand(beam_size, self.input_encoding_size) elif t == 1: # input <bos> it = fc_feats.data.new(beam_size).long().zero_() xt = self.embed(it) output, state = self.core(xt, state) logprobs = F.log_softmax(self.logit(output), dim=1) self.done_beams[k] = self.beam_search(state, logprobs, opt=opt) seq[:, k] = self.done_beams[k][0]['seq'] # the first beam has highest cumulative score seqLogprobs[:, k] = self.done_beams[k][0]['logps'] # return the samples and their log likelihoods return seq.transpose(0, 1), seqLogprobs.transpose(0, 1) def _sample(self, fc_feats, att_feats, att_masks=None, opt={}): sample_method = opt.get('sample_method', 'greedy') beam_size = opt.get('beam_size', 1) temperature = opt.get('temperature', 1.0) if beam_size > 1 and sample_method in ['greedy', 'beam_search']: return self._sample_beam(fc_feats, att_feats, opt) batch_size = fc_feats.size(0) state = self.init_hidden(batch_size) seq = fc_feats.new_zeros(batch_size, self.seq_length, dtype=torch.long) seqLogprobs = fc_feats.new_zeros(batch_size, self.seq_length, self.vocab_size + 1) for t in range(self.seq_length + 2): if t == 0: xt = self.img_embed(fc_feats) else: if t == 1: # input <bos> it = fc_feats.data.new(batch_size).long().zero_() xt = self.embed(it) output, state = self.core(xt, state) logprobs = F.log_softmax(self.logit(output), dim=1) # sample the next_word if t == self.seq_length + 1: # skip if we achieve maximum length break if sample_method == 'greedy': sampleLogprobs, it = torch.max(logprobs.data, 1) it = it.view(-1).long() else: if temperature == 1.0: prob_prev = torch.exp(logprobs.data).cpu() # fetch prev distribution: shape Nx(M+1) else: # scale logprobs by temperature prob_prev = torch.exp(torch.div(logprobs.data, temperature)).cpu() it = torch.multinomial(prob_prev, 1).to(logprobs.device) sampleLogprobs = logprobs.gather(1, it) # gather the logprobs at sampled positions it = it.view(-1).long() # and flatten indices for downstream processing if t >= 1: # stop when all finished if t == 1: unfinished = it > 0 else: unfinished = unfinished & (it > 0) it = it * unfinished.type_as(it) seq[:,t-1] = it #seq[t] the input of t+2 time step seqLogprobs[:,t-1] = sampleLogprobs.view(-1) if unfinished.sum() == 0: break return seq, seqLogprobs
connect-caption-and-trace-main
captioning/models/FCModel.py
# This file contains Att2in2, AdaAtt, AdaAttMO, UpDown model # AdaAtt is from Knowing When to Look: Adaptive Attention via A Visual Sentinel for Image Captioning # https://arxiv.org/abs/1612.01887 # AdaAttMO is a modified version with maxout lstm # Att2in is from Self-critical Sequence Training for Image Captioning # https://arxiv.org/abs/1612.00563 # In this file we only have Att2in2, which is a slightly different version of att2in, # in which the img feature embedding and word embedding is the same as what in adaatt. # UpDown is from Bottom-Up and Top-Down Attention for Image Captioning and VQA # https://arxiv.org/abs/1707.07998 # However, it may not be identical to the author's architecture. from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from . import utils from torch.nn.utils.rnn import PackedSequence, pack_padded_sequence, pad_packed_sequence from .CaptionModel import CaptionModel bad_endings = ['a','an','the','in','for','at','of','with','before','after','on','upon','near','to','is','are','am'] bad_endings += ['the'] def sort_pack_padded_sequence(input, lengths): sorted_lengths, indices = torch.sort(lengths, descending=True) tmp = pack_padded_sequence(input[indices], sorted_lengths, batch_first=True) inv_ix = indices.clone() inv_ix[indices] = torch.arange(0,len(indices)).type_as(inv_ix) return tmp, inv_ix def pad_unsort_packed_sequence(input, inv_ix): tmp, _ = pad_packed_sequence(input, batch_first=True) tmp = tmp[inv_ix] return tmp def pack_wrapper(module, att_feats, att_masks): if att_masks is not None: packed, inv_ix = sort_pack_padded_sequence(att_feats, att_masks.data.long().sum(1)) return pad_unsort_packed_sequence(PackedSequence(module(packed[0]), packed[1]), inv_ix) else: return module(att_feats) class AttModel(CaptionModel): def __init__(self, opt): super(AttModel, self).__init__() self.vocab_size = opt.vocab_size self.input_encoding_size = opt.input_encoding_size #self.rnn_type = opt.rnn_type self.rnn_size = opt.rnn_size self.num_layers = opt.num_layers self.drop_prob_lm = opt.drop_prob_lm self.seq_length = getattr(opt, 'max_length', 20) or opt.seq_length # maximum sample length self.fc_feat_size = opt.fc_feat_size self.att_feat_size = opt.att_feat_size self.att_hid_size = opt.att_hid_size self.bos_idx = getattr(opt, 'bos_idx', 0) self.eos_idx = getattr(opt, 'eos_idx', 0) self.pad_idx = getattr(opt, 'pad_idx', 0) self.use_bn = getattr(opt, 'use_bn', 0) self.ss_prob = 0.0 # Schedule sampling probability self.embed = nn.Sequential(nn.Embedding(self.vocab_size + 1, self.input_encoding_size), nn.ReLU(), nn.Dropout(self.drop_prob_lm)) self.fc_embed = nn.Sequential(nn.Linear(self.fc_feat_size, self.rnn_size), nn.ReLU(), nn.Dropout(self.drop_prob_lm)) self.att_embed = nn.Sequential(*( ((nn.BatchNorm1d(self.att_feat_size),) if self.use_bn else ())+ (nn.Linear(self.att_feat_size, self.rnn_size), nn.ReLU(), nn.Dropout(self.drop_prob_lm))+ ((nn.BatchNorm1d(self.rnn_size),) if self.use_bn==2 else ()))) self.logit_layers = getattr(opt, 'logit_layers', 1) if self.logit_layers == 1: self.logit = nn.Linear(self.rnn_size, self.vocab_size + 1) else: self.logit = [[nn.Linear(self.rnn_size, self.rnn_size), nn.ReLU(), nn.Dropout(0.5)] for _ in range(opt.logit_layers - 1)] self.logit = nn.Sequential(*(reduce(lambda x,y:x+y, self.logit) + [nn.Linear(self.rnn_size, self.vocab_size + 1)])) self.ctx2att = nn.Linear(self.rnn_size, self.att_hid_size) # For remove bad endding self.vocab = opt.vocab self.bad_endings_ix = [int(k) for k,v in self.vocab.items() if v in bad_endings] def init_hidden(self, bsz): weight = self.logit.weight \ if hasattr(self.logit, "weight") \ else self.logit[0].weight return (weight.new_zeros(self.num_layers, bsz, self.rnn_size), weight.new_zeros(self.num_layers, bsz, self.rnn_size)) def clip_att(self, att_feats, box_feats, att_masks): # Clip the length of att_masks and att_feats to the maximum length if att_masks is not None: max_len = att_masks.data.long().sum(1).max() att_feats = att_feats[:, :max_len].contiguous() att_masks = att_masks[:, :max_len].contiguous() box_feats = box_feats[:, :max_len].contiguous() return att_feats, box_feats, att_masks def _prepare_feature(self, fc_feats, att_feats, att_masks): att_feats, att_masks = self.clip_att(att_feats, att_masks) # embed fc and att feats fc_feats = self.fc_embed(fc_feats) att_feats = pack_wrapper(self.att_embed, att_feats, att_masks) # Project the attention feats first to reduce memory and computation comsumptions. p_att_feats = self.ctx2att(att_feats) return fc_feats, att_feats, p_att_feats, att_masks def _forward(self, fc_feats, att_feats, trace_feats, seq, att_masks=None, trace_masks=None): batch_size = fc_feats.size(0) if seq.ndim == 3: # B * seq_per_img * seq_len seq = seq.reshape(-1, seq.shape[2]) seq_per_img = seq.shape[0] // batch_size state = self.init_hidden(batch_size*seq_per_img) outputs = fc_feats.new_zeros(batch_size*seq_per_img, seq.size(1), self.vocab_size+1) # Prepare the features p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = self._prepare_feature(fc_feats, att_feats, trace_feats, att_masks, trace_masks) # pp_att_feats is used for attention, we cache it in advance to reduce computation cost if seq_per_img > 1: p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = utils.repeat_tensors(seq_per_img, [p_fc_feats, p_att_feats, pp_att_feats, p_att_masks] ) for i in range(seq.size(1)): if self.training and i >= 1 and self.ss_prob > 0.0: # otherwiste no need to sample sample_prob = fc_feats.new(batch_size*seq_per_img).uniform_(0, 1) sample_mask = sample_prob < self.ss_prob if sample_mask.sum() == 0: it = seq[:, i].clone() else: sample_ind = sample_mask.nonzero().view(-1) it = seq[:, i].data.clone() prob_prev = torch.exp(outputs[:, i-1].detach()) # fetch prev distribution: shape Nx(M+1) it.index_copy_(0, sample_ind, torch.multinomial(prob_prev, 1).view(-1).index_select(0, sample_ind)) else: it = seq[:, i].clone() # break if all the sequences end if i >= 1 and seq[:, i].sum() == 0: break output, state = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, state) outputs[:, i] = output return outputs def get_logprobs_state(self, it, fc_feats, att_feats, p_att_feats, att_masks, state, trace_feats_to_decoder, trace_masks, task, output_logsoftmax=1): # 'it' contains a word index xt = self.embed(it) if task == 'caption' or task == 'show': output, state = self.core(xt, fc_feats, att_feats, p_att_feats, state, att_masks, trace_feats_to_decoder, trace_masks, task) if output_logsoftmax: logprobs = F.log_softmax(self.logit(output), dim=1) else: logprobs = self.logit(output) return logprobs, state elif task == 'both': output, state, output_trace = self.core(xt, fc_feats, att_feats, p_att_feats, state, att_masks, trace_feats_to_decoder, trace_masks, task) if output_logsoftmax: logprobs = F.log_softmax(self.logit(output), dim=1) else: logprobs = self.logit(output) return logprobs, state, self.model.generator_trace(output_trace) def _old_sample_beam(self, fc_feats, att_feats, att_masks=None, opt={}): beam_size = opt.get('beam_size', 10) group_size = opt.get('group_size', 1) sample_n = opt.get('sample_n', 10) # when sample_n == beam_size then each beam is a sample. assert sample_n == 1 or sample_n == beam_size // group_size, 'when beam search, sample_n == 1 or beam search' batch_size = fc_feats.size(0) p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = self._prepare_feature(fc_feats, att_feats, att_masks) assert beam_size <= self.vocab_size + 1, 'lets assume this for now, otherwise this corner case causes a few headaches down the road. can be dealt with in future if needed' seq = fc_feats.new_full((batch_size*sample_n, self.seq_length), self.pad_idx, dtype=torch.long) seqLogprobs = fc_feats.new_zeros(batch_size*sample_n, self.seq_length, self.vocab_size + 1) # lets process every image independently for now, for simplicity self.done_beams = [[] for _ in range(batch_size)] for k in range(batch_size): state = self.init_hidden(beam_size) tmp_fc_feats, tmp_att_feats, tmp_p_att_feats, tmp_att_masks = utils.repeat_tensors(beam_size, [p_fc_feats[k:k+1], p_att_feats[k:k+1], pp_att_feats[k:k+1], p_att_masks[k:k+1] if att_masks is not None else None] ) for t in range(1): if t == 0: # input <bos> it = fc_feats.new_full([beam_size], self.bos_idx, dtype=torch.long) logprobs, state = self.get_logprobs_state(it, tmp_fc_feats, tmp_att_feats, tmp_p_att_feats, tmp_att_masks, state) self.done_beams[k] = self.old_beam_search(state, logprobs, tmp_fc_feats, tmp_att_feats, tmp_p_att_feats, tmp_att_masks, opt=opt) if sample_n == beam_size: for _n in range(sample_n): seq[k*sample_n+_n, :] = self.done_beams[k][_n]['seq'] seqLogprobs[k*sample_n+_n, :] = self.done_beams[k][_n]['logps'] else: seq[k, :] = self.done_beams[k][0]['seq'] # the first beam has highest cumulative score seqLogprobs[k, :] = self.done_beams[k][0]['logps'] # return the samples and their log likelihoods return seq, seqLogprobs def _sample_beam(self, fc_feats, att_feats, trace_feats, box_feats, att_masks=None, trace_masks=None, task=None, opt={}): beam_size = opt.get('beam_size', 10) group_size = opt.get('group_size', 1) sample_n = opt.get('sample_n', 10) # when sample_n == beam_size then each beam is a sample. assert sample_n == 1 or sample_n == beam_size // group_size, 'when beam search, sample_n == 1 or beam search' batch_size = fc_feats.size(0) p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, trace_feats_to_decoder = self._prepare_feature(fc_feats, att_feats, trace_feats, box_feats, att_masks, trace_masks) assert beam_size <= self.vocab_size + 1, 'lets assume this for now, otherwise this corner case causes a few headaches down the road. can be dealt with in future if needed' seq = fc_feats.new_full((batch_size*sample_n, self.seq_length), self.pad_idx, dtype=torch.long) seqLogprobs = fc_feats.new_zeros(batch_size*sample_n, self.seq_length, self.vocab_size + 1) # lets process every image independently for now, for simplicity self.done_beams = [[] for _ in range(batch_size)] state = self.init_hidden(batch_size) # first step, feed bos it = fc_feats.new_full([batch_size], self.bos_idx, dtype=torch.long) logprobs, state = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, state, trace_feats_to_decoder, trace_masks, task) p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = utils.repeat_tensors(beam_size, [p_fc_feats, p_att_feats, pp_att_feats, p_att_masks] ) self.done_beams = self.beam_search(state, logprobs, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, trace_feats_to_decoder, trace_masks, task, opt=opt) for k in range(batch_size): if sample_n == beam_size: for _n in range(sample_n): seq_len = self.done_beams[k][_n]['seq'].shape[0] seq[k*sample_n+_n, :seq_len] = self.done_beams[k][_n]['seq'] seqLogprobs[k*sample_n+_n, :seq_len] = self.done_beams[k][_n]['logps'] else: seq_len = self.done_beams[k][0]['seq'].shape[0] seq[k, :seq_len] = self.done_beams[k][0]['seq'] # the first beam has highest cumulative score seqLogprobs[k, :seq_len] = self.done_beams[k][0]['logps'] # return the samples and their log likelihoods return seq, seqLogprobs def _sample(self, fc_feats, att_feats, trace_feats, box_feats, att_masks=None, trace_masks=None, task=None, opt={}): sample_method = opt.get('sample_method', 'greedy') beam_size = opt.get('beam_size', 1) temperature = opt.get('temperature', 1.0) sample_n = int(opt.get('sample_n', 1)) group_size = opt.get('group_size', 1) output_logsoftmax = opt.get('output_logsoftmax', 1) decoding_constraint = opt.get('decoding_constraint', 0) block_trigrams = opt.get('block_trigrams', 0) remove_bad_endings = opt.get('remove_bad_endings', 0) if beam_size > 1 and sample_method in ['greedy', 'beam_search']: return self._sample_beam(fc_feats, att_feats, trace_feats, box_feats, att_masks, trace_masks, task, opt) if group_size > 1: return self._diverse_sample(fc_feats, att_feats, att_masks, opt) batch_size = fc_feats.size(0) state = self.init_hidden(batch_size*sample_n) p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, trace_feats_to_decoder = \ self._prepare_feature(fc_feats, att_feats, trace_feats, box_feats, att_masks, trace_masks) if sample_n > 1: p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = utils.repeat_tensors(sample_n, [p_fc_feats, p_att_feats, pp_att_feats, p_att_masks] ) trigrams = [] # will be a list of batch_size dictionaries seq = fc_feats.new_full((batch_size*sample_n, self.seq_length), self.pad_idx, dtype=torch.long) seqLogprobs = fc_feats.new_zeros(batch_size*sample_n, self.seq_length, self.vocab_size + 1) if task == 'both': tmp_trace_feats = torch.zeros([trace_feats_to_decoder.shape[0], 1, trace_feats_to_decoder.shape[2]]).to(trace_masks.device) for t in range(self.seq_length + 1): if t == 0: # input <bos> it = fc_feats.new_full([batch_size*sample_n], self.bos_idx, dtype=torch.long) if task == 'caption' or task == 'show': logprobs, state = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, state, trace_feats_to_decoder, trace_masks, task, output_logsoftmax=output_logsoftmax) elif task == 'both': logprobs, state, output_trace = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, state, tmp_trace_feats, trace_masks, task, output_logsoftmax=output_logsoftmax) output_trace = output_trace[:, t] output_trace[:, 4] = (output_trace[:, 2] - output_trace[:, 0]) * (output_trace[:, 3] - output_trace[:, 1]) tmp_trace_feats = torch.cat([tmp_trace_feats, output_trace.unsqueeze(1)], 1) if decoding_constraint and t > 0: tmp = logprobs.new_zeros(logprobs.size()) tmp.scatter_(1, seq[:,t-1].data.unsqueeze(1), float('-inf')) logprobs = logprobs + tmp if remove_bad_endings and t > 0: tmp = logprobs.new_zeros(logprobs.size()) prev_bad = np.isin(seq[:,t-1].data.cpu().numpy(), self.bad_endings_ix) # Make it impossible to generate bad_endings tmp[torch.from_numpy(prev_bad.astype('uint8')), 0] = float('-inf') logprobs = logprobs + tmp # Mess with trigrams # Copy from https://github.com/lukemelas/image-paragraph-captioning if block_trigrams and t >= 3: # Store trigram generated at last step prev_two_batch = seq[:,t-3:t-1] for i in range(batch_size): # = seq.size(0) prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item()) current = seq[i][t-1] if t == 3: # initialize trigrams.append({prev_two: [current]}) # {LongTensor: list containing 1 int} elif t > 3: if prev_two in trigrams[i]: # add to list trigrams[i][prev_two].append(current) else: # create list trigrams[i][prev_two] = [current] # Block used trigrams at next step prev_two_batch = seq[:,t-2:t] mask = torch.zeros(logprobs.size(), requires_grad=False).to(logprobs.device) # batch_size x vocab_size for i in range(batch_size): prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item()) if prev_two in trigrams[i]: for j in trigrams[i][prev_two]: mask[i,j] += 1 # Apply mask to log probs #logprobs = logprobs - (mask * 1e9) alpha = 2.0 # = 4 logprobs = logprobs + (mask * -0.693 * alpha) # ln(1/2) * alpha (alpha -> infty works best) # sample the next word if t == self.seq_length: # skip if we achieve maximum length break it, sampleLogprobs = self.sample_next_word(logprobs, sample_method, temperature) # stop when all finished if t == 0: unfinished = it != self.eos_idx else: it[~unfinished] = self.pad_idx # This allows eos_idx not being overwritten to 0 logprobs = logprobs * unfinished.unsqueeze(1).to(logprobs) unfinished = unfinished & (it != self.eos_idx) seq[:,t] = it seqLogprobs[:,t] = logprobs # quit loop if all sequences have finished if unfinished.sum() == 0: break ### for decoder evaluate: cut at the ground truth caption length for i in range(trace_masks.shape[0]): tmp_num = trace_masks[i].sum().long() seq[i, tmp_num:] = 0 seqLogprobs[i, tmp_num:, :] = 0 return seq, seqLogprobs def _diverse_sample(self, fc_feats, att_feats, att_masks=None, opt={}): sample_method = opt.get('sample_method', 'greedy') beam_size = opt.get('beam_size', 1) temperature = opt.get('temperature', 1.0) group_size = opt.get('group_size', 1) diversity_lambda = opt.get('diversity_lambda', 0.5) decoding_constraint = opt.get('decoding_constraint', 0) block_trigrams = opt.get('block_trigrams', 0) remove_bad_endings = opt.get('remove_bad_endings', 0) batch_size = fc_feats.size(0) state = self.init_hidden(batch_size) p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = self._prepare_feature(fc_feats, att_feats, att_masks) trigrams_table = [[] for _ in range(group_size)] # will be a list of batch_size dictionaries seq_table = [fc_feats.new_full((batch_size, self.seq_length), self.pad_idx, dtype=torch.long) for _ in range(group_size)] seqLogprobs_table = [fc_feats.new_zeros(batch_size, self.seq_length) for _ in range(group_size)] state_table = [self.init_hidden(batch_size) for _ in range(group_size)] for tt in range(self.seq_length + group_size): for divm in range(group_size): t = tt - divm seq = seq_table[divm] seqLogprobs = seqLogprobs_table[divm] trigrams = trigrams_table[divm] if t >= 0 and t <= self.seq_length-1: if t == 0: # input <bos> it = fc_feats.new_full([batch_size], self.bos_idx, dtype=torch.long) else: it = seq[:, t-1] # changed logprobs, state_table[divm] = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, state_table[divm]) # changed logprobs = F.log_softmax(logprobs / temperature, dim=-1) # Add diversity if divm > 0: unaug_logprobs = logprobs.clone() for prev_choice in range(divm): prev_decisions = seq_table[prev_choice][:, t] logprobs[:, prev_decisions] = logprobs[:, prev_decisions] - diversity_lambda if decoding_constraint and t > 0: tmp = logprobs.new_zeros(logprobs.size()) tmp.scatter_(1, seq[:,t-1].data.unsqueeze(1), float('-inf')) logprobs = logprobs + tmp if remove_bad_endings and t > 0: tmp = logprobs.new_zeros(logprobs.size()) prev_bad = np.isin(seq[:,t-1].data.cpu().numpy(), self.bad_endings_ix) # Impossible to generate remove_bad_endings tmp[torch.from_numpy(prev_bad.astype('uint8')), 0] = float('-inf') logprobs = logprobs + tmp # Mess with trigrams if block_trigrams and t >= 3: # Store trigram generated at last step prev_two_batch = seq[:,t-3:t-1] for i in range(batch_size): # = seq.size(0) prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item()) current = seq[i][t-1] if t == 3: # initialize trigrams.append({prev_two: [current]}) # {LongTensor: list containing 1 int} elif t > 3: if prev_two in trigrams[i]: # add to list trigrams[i][prev_two].append(current) else: # create list trigrams[i][prev_two] = [current] # Block used trigrams at next step prev_two_batch = seq[:,t-2:t] mask = torch.zeros(logprobs.size(), requires_grad=False).cuda() # batch_size x vocab_size for i in range(batch_size): prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item()) if prev_two in trigrams[i]: for j in trigrams[i][prev_two]: mask[i,j] += 1 # Apply mask to log probs #logprobs = logprobs - (mask * 1e9) alpha = 2.0 # = 4 logprobs = logprobs + (mask * -0.693 * alpha) # ln(1/2) * alpha (alpha -> infty works best) it, sampleLogprobs = self.sample_next_word(logprobs, sample_method, 1) # stop when all finished if t == 0: unfinished = it != self.eos_idx else: unfinished = seq[:,t-1] != self.pad_idx & seq[:,t-1] != self.eos_idx it[~unfinished] = self.pad_idx unfinished = unfinished & (it != self.eos_idx) # changed seq[:,t] = it seqLogprobs[:,t] = sampleLogprobs.view(-1) return torch.stack(seq_table, 1).reshape(batch_size * group_size, -1), torch.stack(seqLogprobs_table, 1).reshape(batch_size * group_size, -1) class AdaAtt_lstm(nn.Module): def __init__(self, opt, use_maxout=True): super(AdaAtt_lstm, self).__init__() self.input_encoding_size = opt.input_encoding_size #self.rnn_type = opt.rnn_type self.rnn_size = opt.rnn_size self.num_layers = opt.num_layers self.drop_prob_lm = opt.drop_prob_lm self.fc_feat_size = opt.fc_feat_size self.att_feat_size = opt.att_feat_size self.att_hid_size = opt.att_hid_size self.use_maxout = use_maxout # Build a LSTM self.w2h = nn.Linear(self.input_encoding_size, (4+(use_maxout==True)) * self.rnn_size) self.v2h = nn.Linear(self.rnn_size, (4+(use_maxout==True)) * self.rnn_size) self.i2h = nn.ModuleList([nn.Linear(self.rnn_size, (4+(use_maxout==True)) * self.rnn_size) for _ in range(self.num_layers - 1)]) self.h2h = nn.ModuleList([nn.Linear(self.rnn_size, (4+(use_maxout==True)) * self.rnn_size) for _ in range(self.num_layers)]) # Layers for getting the fake region if self.num_layers == 1: self.r_w2h = nn.Linear(self.input_encoding_size, self.rnn_size) self.r_v2h = nn.Linear(self.rnn_size, self.rnn_size) else: self.r_i2h = nn.Linear(self.rnn_size, self.rnn_size) self.r_h2h = nn.Linear(self.rnn_size, self.rnn_size) def forward(self, xt, img_fc, state): hs = [] cs = [] for L in range(self.num_layers): # c,h from previous timesteps prev_h = state[0][L] prev_c = state[1][L] # the input to this layer if L == 0: x = xt i2h = self.w2h(x) + self.v2h(img_fc) else: x = hs[-1] x = F.dropout(x, self.drop_prob_lm, self.training) i2h = self.i2h[L-1](x) all_input_sums = i2h+self.h2h[L](prev_h) sigmoid_chunk = all_input_sums.narrow(1, 0, 3 * self.rnn_size) sigmoid_chunk = torch.sigmoid(sigmoid_chunk) # decode the gates in_gate = sigmoid_chunk.narrow(1, 0, self.rnn_size) forget_gate = sigmoid_chunk.narrow(1, self.rnn_size, self.rnn_size) out_gate = sigmoid_chunk.narrow(1, self.rnn_size * 2, self.rnn_size) # decode the write inputs if not self.use_maxout: in_transform = torch.tanh(all_input_sums.narrow(1, 3 * self.rnn_size, self.rnn_size)) else: in_transform = all_input_sums.narrow(1, 3 * self.rnn_size, 2 * self.rnn_size) in_transform = torch.max(\ in_transform.narrow(1, 0, self.rnn_size), in_transform.narrow(1, self.rnn_size, self.rnn_size)) # perform the LSTM update next_c = forget_gate * prev_c + in_gate * in_transform # gated cells form the output tanh_nex_c = torch.tanh(next_c) next_h = out_gate * tanh_nex_c if L == self.num_layers-1: if L == 0: i2h = self.r_w2h(x) + self.r_v2h(img_fc) else: i2h = self.r_i2h(x) n5 = i2h+self.r_h2h(prev_h) fake_region = torch.sigmoid(n5) * tanh_nex_c cs.append(next_c) hs.append(next_h) # set up the decoder top_h = hs[-1] top_h = F.dropout(top_h, self.drop_prob_lm, self.training) fake_region = F.dropout(fake_region, self.drop_prob_lm, self.training) state = (torch.cat([_.unsqueeze(0) for _ in hs], 0), torch.cat([_.unsqueeze(0) for _ in cs], 0)) return top_h, fake_region, state class AdaAtt_attention(nn.Module): def __init__(self, opt): super(AdaAtt_attention, self).__init__() self.input_encoding_size = opt.input_encoding_size #self.rnn_type = opt.rnn_type self.rnn_size = opt.rnn_size self.drop_prob_lm = opt.drop_prob_lm self.att_hid_size = opt.att_hid_size # fake region embed self.fr_linear = nn.Sequential( nn.Linear(self.rnn_size, self.input_encoding_size), nn.ReLU(), nn.Dropout(self.drop_prob_lm)) self.fr_embed = nn.Linear(self.input_encoding_size, self.att_hid_size) # h out embed self.ho_linear = nn.Sequential( nn.Linear(self.rnn_size, self.input_encoding_size), nn.Tanh(), nn.Dropout(self.drop_prob_lm)) self.ho_embed = nn.Linear(self.input_encoding_size, self.att_hid_size) self.alpha_net = nn.Linear(self.att_hid_size, 1) self.att2h = nn.Linear(self.rnn_size, self.rnn_size) def forward(self, h_out, fake_region, conv_feat, conv_feat_embed, att_masks=None): # View into three dimensions att_size = conv_feat.numel() // conv_feat.size(0) // self.rnn_size conv_feat = conv_feat.view(-1, att_size, self.rnn_size) conv_feat_embed = conv_feat_embed.view(-1, att_size, self.att_hid_size) # view neighbor from bach_size * neighbor_num x rnn_size to bach_size x rnn_size * neighbor_num fake_region = self.fr_linear(fake_region) fake_region_embed = self.fr_embed(fake_region) h_out_linear = self.ho_linear(h_out) h_out_embed = self.ho_embed(h_out_linear) txt_replicate = h_out_embed.unsqueeze(1).expand(h_out_embed.size(0), att_size + 1, h_out_embed.size(1)) img_all = torch.cat([fake_region.view(-1,1,self.input_encoding_size), conv_feat], 1) img_all_embed = torch.cat([fake_region_embed.view(-1,1,self.input_encoding_size), conv_feat_embed], 1) hA = torch.tanh(img_all_embed + txt_replicate) hA = F.dropout(hA,self.drop_prob_lm, self.training) hAflat = self.alpha_net(hA.view(-1, self.att_hid_size)) PI = F.softmax(hAflat.view(-1, att_size + 1), dim=1) if att_masks is not None: att_masks = att_masks.view(-1, att_size) PI = PI * torch.cat([att_masks[:,:1], att_masks], 1) # assume one one at the first time step. PI = PI / PI.sum(1, keepdim=True) visAtt = torch.bmm(PI.unsqueeze(1), img_all) visAttdim = visAtt.squeeze(1) atten_out = visAttdim + h_out_linear h = torch.tanh(self.att2h(atten_out)) h = F.dropout(h, self.drop_prob_lm, self.training) return h class AdaAttCore(nn.Module): def __init__(self, opt, use_maxout=False): super(AdaAttCore, self).__init__() self.lstm = AdaAtt_lstm(opt, use_maxout) self.attention = AdaAtt_attention(opt) def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None): h_out, p_out, state = self.lstm(xt, fc_feats, state) atten_out = self.attention(h_out, p_out, att_feats, p_att_feats, att_masks) return atten_out, state class UpDownCore(nn.Module): def __init__(self, opt, use_maxout=False): super(UpDownCore, self).__init__() self.drop_prob_lm = opt.drop_prob_lm self.att_lstm = nn.LSTMCell(opt.input_encoding_size + opt.rnn_size * 2, opt.rnn_size) # we, fc, h^2_t-1 self.lang_lstm = nn.LSTMCell(opt.rnn_size * 2, opt.rnn_size) # h^1_t, \hat v self.attention = Attention(opt) def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None): prev_h = state[0][-1] att_lstm_input = torch.cat([prev_h, fc_feats, xt], 1) h_att, c_att = self.att_lstm(att_lstm_input, (state[0][0], state[1][0])) att = self.attention(h_att, att_feats, p_att_feats, att_masks) lang_lstm_input = torch.cat([att, h_att], 1) # lang_lstm_input = torch.cat([att, F.dropout(h_att, self.drop_prob_lm, self.training)], 1) ????? h_lang, c_lang = self.lang_lstm(lang_lstm_input, (state[0][1], state[1][1])) output = F.dropout(h_lang, self.drop_prob_lm, self.training) state = (torch.stack([h_att, h_lang]), torch.stack([c_att, c_lang])) return output, state ############################################################################ # Notice: # StackAtt and DenseAtt are models that I randomly designed. # They are not related to any paper. ############################################################################ from .FCModel import LSTMCore class StackAttCore(nn.Module): def __init__(self, opt, use_maxout=False): super(StackAttCore, self).__init__() self.drop_prob_lm = opt.drop_prob_lm # self.att0 = Attention(opt) self.att1 = Attention(opt) self.att2 = Attention(opt) opt_input_encoding_size = opt.input_encoding_size opt.input_encoding_size = opt.input_encoding_size + opt.rnn_size self.lstm0 = LSTMCore(opt) # att_feat + word_embedding opt.input_encoding_size = opt.rnn_size * 2 self.lstm1 = LSTMCore(opt) self.lstm2 = LSTMCore(opt) opt.input_encoding_size = opt_input_encoding_size # self.emb1 = nn.Linear(opt.rnn_size, opt.rnn_size) self.emb2 = nn.Linear(opt.rnn_size, opt.rnn_size) def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None): # att_res_0 = self.att0(state[0][-1], att_feats, p_att_feats, att_masks) h_0, state_0 = self.lstm0(torch.cat([xt,fc_feats],1), [state[0][0:1], state[1][0:1]]) att_res_1 = self.att1(h_0, att_feats, p_att_feats, att_masks) h_1, state_1 = self.lstm1(torch.cat([h_0,att_res_1],1), [state[0][1:2], state[1][1:2]]) att_res_2 = self.att2(h_1 + self.emb2(att_res_1), att_feats, p_att_feats, att_masks) h_2, state_2 = self.lstm2(torch.cat([h_1,att_res_2],1), [state[0][2:3], state[1][2:3]]) return h_2, [torch.cat(_, 0) for _ in zip(state_0, state_1, state_2)] class DenseAttCore(nn.Module): def __init__(self, opt, use_maxout=False): super(DenseAttCore, self).__init__() self.drop_prob_lm = opt.drop_prob_lm # self.att0 = Attention(opt) self.att1 = Attention(opt) self.att2 = Attention(opt) opt_input_encoding_size = opt.input_encoding_size opt.input_encoding_size = opt.input_encoding_size + opt.rnn_size self.lstm0 = LSTMCore(opt) # att_feat + word_embedding opt.input_encoding_size = opt.rnn_size * 2 self.lstm1 = LSTMCore(opt) self.lstm2 = LSTMCore(opt) opt.input_encoding_size = opt_input_encoding_size # self.emb1 = nn.Linear(opt.rnn_size, opt.rnn_size) self.emb2 = nn.Linear(opt.rnn_size, opt.rnn_size) # fuse h_0 and h_1 self.fusion1 = nn.Sequential(nn.Linear(opt.rnn_size*2, opt.rnn_size), nn.ReLU(), nn.Dropout(opt.drop_prob_lm)) # fuse h_0, h_1 and h_2 self.fusion2 = nn.Sequential(nn.Linear(opt.rnn_size*3, opt.rnn_size), nn.ReLU(), nn.Dropout(opt.drop_prob_lm)) def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None): # att_res_0 = self.att0(state[0][-1], att_feats, p_att_feats, att_masks) h_0, state_0 = self.lstm0(torch.cat([xt,fc_feats],1), [state[0][0:1], state[1][0:1]]) att_res_1 = self.att1(h_0, att_feats, p_att_feats, att_masks) h_1, state_1 = self.lstm1(torch.cat([h_0,att_res_1],1), [state[0][1:2], state[1][1:2]]) att_res_2 = self.att2(h_1 + self.emb2(att_res_1), att_feats, p_att_feats, att_masks) h_2, state_2 = self.lstm2(torch.cat([self.fusion1(torch.cat([h_0, h_1], 1)),att_res_2],1), [state[0][2:3], state[1][2:3]]) return self.fusion2(torch.cat([h_0, h_1, h_2], 1)), [torch.cat(_, 0) for _ in zip(state_0, state_1, state_2)] class Attention(nn.Module): def __init__(self, opt): super(Attention, self).__init__() self.rnn_size = opt.rnn_size self.att_hid_size = opt.att_hid_size self.h2att = nn.Linear(self.rnn_size, self.att_hid_size) self.alpha_net = nn.Linear(self.att_hid_size, 1) def forward(self, h, att_feats, p_att_feats, att_masks=None): # The p_att_feats here is already projected att_size = att_feats.numel() // att_feats.size(0) // att_feats.size(-1) att = p_att_feats.view(-1, att_size, self.att_hid_size) att_h = self.h2att(h) # batch * att_hid_size att_h = att_h.unsqueeze(1).expand_as(att) # batch * att_size * att_hid_size dot = att + att_h # batch * att_size * att_hid_size dot = torch.tanh(dot) # batch * att_size * att_hid_size dot = dot.view(-1, self.att_hid_size) # (batch * att_size) * att_hid_size dot = self.alpha_net(dot) # (batch * att_size) * 1 dot = dot.view(-1, att_size) # batch * att_size weight = F.softmax(dot, dim=1) # batch * att_size if att_masks is not None: weight = weight * att_masks.view(-1, att_size).to(weight) weight = weight / weight.sum(1, keepdim=True) # normalize to 1 att_feats_ = att_feats.view(-1, att_size, att_feats.size(-1)) # batch * att_size * att_feat_size att_res = torch.bmm(weight.unsqueeze(1), att_feats_).squeeze(1) # batch * att_feat_size return att_res class Att2in2Core(nn.Module): def __init__(self, opt): super(Att2in2Core, self).__init__() self.input_encoding_size = opt.input_encoding_size #self.rnn_type = opt.rnn_type self.rnn_size = opt.rnn_size #self.num_layers = opt.num_layers self.drop_prob_lm = opt.drop_prob_lm self.fc_feat_size = opt.fc_feat_size self.att_feat_size = opt.att_feat_size self.att_hid_size = opt.att_hid_size # Build a LSTM self.a2c = nn.Linear(self.rnn_size, 2 * self.rnn_size) self.i2h = nn.Linear(self.input_encoding_size, 5 * self.rnn_size) self.h2h = nn.Linear(self.rnn_size, 5 * self.rnn_size) self.dropout = nn.Dropout(self.drop_prob_lm) self.attention = Attention(opt) def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None): att_res = self.attention(state[0][-1], att_feats, p_att_feats, att_masks) all_input_sums = self.i2h(xt) + self.h2h(state[0][-1]) sigmoid_chunk = all_input_sums.narrow(1, 0, 3 * self.rnn_size) sigmoid_chunk = torch.sigmoid(sigmoid_chunk) in_gate = sigmoid_chunk.narrow(1, 0, self.rnn_size) forget_gate = sigmoid_chunk.narrow(1, self.rnn_size, self.rnn_size) out_gate = sigmoid_chunk.narrow(1, self.rnn_size * 2, self.rnn_size) in_transform = all_input_sums.narrow(1, 3 * self.rnn_size, 2 * self.rnn_size) + \ self.a2c(att_res) in_transform = torch.max(\ in_transform.narrow(1, 0, self.rnn_size), in_transform.narrow(1, self.rnn_size, self.rnn_size)) next_c = forget_gate * state[1][-1] + in_gate * in_transform next_h = out_gate * torch.tanh(next_c) output = self.dropout(next_h) state = (next_h.unsqueeze(0), next_c.unsqueeze(0)) return output, state class Att2inCore(Att2in2Core): def __init__(self, opt): super(Att2inCore, self).__init__(opt) del self.a2c self.a2c = nn.Linear(self.att_feat_size, 2 * self.rnn_size) """ Note this is my attempt to replicate att2all model in self-critical paper. However, this is not a correct replication actually. Will fix it. """ class Att2all2Core(nn.Module): def __init__(self, opt): super(Att2all2Core, self).__init__() self.input_encoding_size = opt.input_encoding_size #self.rnn_type = opt.rnn_type self.rnn_size = opt.rnn_size #self.num_layers = opt.num_layers self.drop_prob_lm = opt.drop_prob_lm self.fc_feat_size = opt.fc_feat_size self.att_feat_size = opt.att_feat_size self.att_hid_size = opt.att_hid_size # Build a LSTM self.a2h = nn.Linear(self.rnn_size, 5 * self.rnn_size) self.i2h = nn.Linear(self.input_encoding_size, 5 * self.rnn_size) self.h2h = nn.Linear(self.rnn_size, 5 * self.rnn_size) self.dropout = nn.Dropout(self.drop_prob_lm) self.attention = Attention(opt) def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None): att_res = self.attention(state[0][-1], att_feats, p_att_feats, att_masks) all_input_sums = self.i2h(xt) + self.h2h(state[0][-1]) + self.a2h(att_res) sigmoid_chunk = all_input_sums.narrow(1, 0, 3 * self.rnn_size) sigmoid_chunk = torch.sigmoid(sigmoid_chunk) in_gate = sigmoid_chunk.narrow(1, 0, self.rnn_size) forget_gate = sigmoid_chunk.narrow(1, self.rnn_size, self.rnn_size) out_gate = sigmoid_chunk.narrow(1, self.rnn_size * 2, self.rnn_size) in_transform = all_input_sums.narrow(1, 3 * self.rnn_size, 2 * self.rnn_size) in_transform = torch.max(\ in_transform.narrow(1, 0, self.rnn_size), in_transform.narrow(1, self.rnn_size, self.rnn_size)) next_c = forget_gate * state[1][-1] + in_gate * in_transform next_h = out_gate * torch.tanh(next_c) output = self.dropout(next_h) state = (next_h.unsqueeze(0), next_c.unsqueeze(0)) return output, state class AdaAttModel(AttModel): def __init__(self, opt): super(AdaAttModel, self).__init__(opt) self.core = AdaAttCore(opt) # AdaAtt with maxout lstm class AdaAttMOModel(AttModel): def __init__(self, opt): super(AdaAttMOModel, self).__init__(opt) self.core = AdaAttCore(opt, True) class Att2in2Model(AttModel): def __init__(self, opt): super(Att2in2Model, self).__init__(opt) self.core = Att2in2Core(opt) delattr(self, 'fc_embed') self.fc_embed = lambda x : x class Att2all2Model(AttModel): def __init__(self, opt): super(Att2all2Model, self).__init__(opt) self.core = Att2all2Core(opt) delattr(self, 'fc_embed') self.fc_embed = lambda x : x class UpDownModel(AttModel): def __init__(self, opt): super(UpDownModel, self).__init__(opt) self.num_layers = 2 self.core = UpDownCore(opt) class StackAttModel(AttModel): def __init__(self, opt): super(StackAttModel, self).__init__(opt) self.num_layers = 3 self.core = StackAttCore(opt) class DenseAttModel(AttModel): def __init__(self, opt): super(DenseAttModel, self).__init__(opt) self.num_layers = 3 self.core = DenseAttCore(opt) class Att2inModel(AttModel): def __init__(self, opt): super(Att2inModel, self).__init__(opt) del self.embed, self.fc_embed, self.att_embed self.embed = nn.Embedding(self.vocab_size + 1, self.input_encoding_size) self.fc_embed = self.att_embed = lambda x: x del self.ctx2att self.ctx2att = nn.Linear(self.att_feat_size, self.att_hid_size) self.core = Att2inCore(opt) self.init_weights() def init_weights(self): initrange = 0.1 self.embed.weight.data.uniform_(-initrange, initrange) self.logit.bias.data.fill_(0) self.logit.weight.data.uniform_(-initrange, initrange) class NewFCModel(AttModel): def __init__(self, opt): super(NewFCModel, self).__init__(opt) self.fc_embed = nn.Linear(self.fc_feat_size, self.input_encoding_size) self.embed = nn.Embedding(self.vocab_size + 1, self.input_encoding_size) self._core = LSTMCore(opt) delattr(self, 'att_embed') self.att_embed = lambda x : x delattr(self, 'ctx2att') self.ctx2att = lambda x: x def core(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks): # Step 0, feed the input image # if (self.training and state[0].is_leaf) or \ # (not self.training and state[0].sum() == 0): # _, state = self._core(fc_feats, state) # three cases # normal mle training # Sample # beam search (diverse beam search) # fixed captioning module. is_first_step = (state[0]==0).all(2).all(0) # size: B if is_first_step.all(): _, state = self._core(fc_feats, state) elif is_first_step.any(): # This is mostly for diverse beam search I think new_state = [torch.zeros_like(_) for _ in state] new_state[0][:, ~is_first_step] = state[0][:, ~is_first_step] new_state[1][:, ~is_first_step] = state[1][:, ~is_first_step] _, state = self._core(fc_feats, state) new_state[0][:, is_first_step] = state[0][:, is_first_step] new_state[1][:, is_first_step] = state[1][:, is_first_step] state = new_state # if (state[0]==0).all(): # # Let's forget about diverse beam search first # _, state = self._core(fc_feats, state) return self._core(xt, state) def _prepare_feature(self, fc_feats, att_feats, att_masks): fc_feats = self.fc_embed(fc_feats) return fc_feats, att_feats, att_feats, att_masks class LMModel(AttModel): def __init__(self, opt): super(LMModel, self).__init__(opt) delattr(self, 'fc_embed') self.fc_embed = lambda x: x.new_zeros(x.shape[0], self.input_encoding_size) self.embed = nn.Embedding(self.vocab_size + 1, self.input_encoding_size) self._core = LSTMCore(opt) delattr(self, 'att_embed') self.att_embed = lambda x : x delattr(self, 'ctx2att') self.ctx2att = lambda x: x def core(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks): if (state[0]==0).all(): # Let's forget about diverse beam search first _, state = self._core(fc_feats, state) return self._core(xt, state) def _prepare_feature(self, fc_feats, att_feats, att_masks): fc_feats = self.fc_embed(fc_feats) return fc_feats, None, None, None
connect-caption-and-trace-main
captioning/models/AttModel_both_backup_2020_11_07.py
""" BertCapModel is using huggingface transformer bert model as seq2seq model. The result is not as goog as original transformer. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import torch import torch.nn as nn import torch.nn.functional as F import copy import math import numpy as np from .CaptionModel import CaptionModel from .AttModel import sort_pack_padded_sequence, pad_unsort_packed_sequence, pack_wrapper, AttModel try: from transformers import BertModel, BertConfig except: print('Hugginface transformers not installed; please visit https://github.com/huggingface/transformers') from .TransformerModel import subsequent_mask, TransformerModel, Generator class EncoderDecoder(nn.Module): """ A standard Encoder-Decoder architecture. Base for this and many other models. """ def __init__(self, encoder, decoder, generator): super(EncoderDecoder, self).__init__() self.encoder = encoder self.decoder = decoder self.generator = generator def forward(self, src, tgt, src_mask, tgt_mask): "Take in and process masked src and target sequences." return self.decode(self.encode(src, src_mask), src_mask, tgt, tgt_mask) def encode(self, src, src_mask): return self.encoder(inputs_embeds=src, attention_mask=src_mask)[0] def decode(self, memory, src_mask, tgt, tgt_mask): return self.decoder(input_ids=tgt, attention_mask=tgt_mask, encoder_hidden_states=memory, encoder_attention_mask=src_mask)[0] class BertCapModel(TransformerModel): def make_model(self, src_vocab, tgt_vocab, N_enc=6, N_dec=6, d_model=512, d_ff=2048, h=8, dropout=0.1): "Helper: Construct a model from hyperparameters." enc_config = BertConfig(vocab_size=1, hidden_size=d_model, num_hidden_layers=N_enc, num_attention_heads=h, intermediate_size=d_ff, hidden_dropout_prob=dropout, attention_probs_dropout_prob=dropout, max_position_embeddings=1, type_vocab_size=1) dec_config = BertConfig(vocab_size=tgt_vocab, hidden_size=d_model, num_hidden_layers=N_dec, num_attention_heads=h, intermediate_size=d_ff, hidden_dropout_prob=dropout, attention_probs_dropout_prob=dropout, max_position_embeddings=17, type_vocab_size=1, is_decoder=True) encoder = BertModel(enc_config) def return_embeds(*args, **kwargs): return kwargs['inputs_embeds'] del encoder.embeddings; encoder.embeddings = return_embeds decoder = BertModel(dec_config) model = EncoderDecoder( encoder, decoder, Generator(d_model, tgt_vocab)) return model def __init__(self, opt): super(BertCapModel, self).__init__(opt) def core(self, it, fc_feats_ph, att_feats_ph, memory, state, mask): """ state = [ys.unsqueeze(0)] """ if len(state) == 0: ys = it.unsqueeze(1) else: ys = torch.cat([state[0][0], it.unsqueeze(1)], dim=1) out = self.model.decode(memory, mask, ys, subsequent_mask(ys.size(1)) .to(memory.device)) return out[:, -1], [ys.unsqueeze(0)]
connect-caption-and-trace-main
captioning/models/BertCapModel.py
# This file contains Att2in2, AdaAtt, AdaAttMO, UpDown model # AdaAtt is from Knowing When to Look: Adaptive Attention via A Visual Sentinel for Image Captioning # https://arxiv.org/abs/1612.01887 # AdaAttMO is a modified version with maxout lstm # Att2in is from Self-critical Sequence Training for Image Captioning # https://arxiv.org/abs/1612.00563 # In this file we only have Att2in2, which is a slightly different version of att2in, # in which the img feature embedding and word embedding is the same as what in adaatt. # UpDown is from Bottom-Up and Top-Down Attention for Image Captioning and VQA # https://arxiv.org/abs/1707.07998 # However, it may not be identical to the author's architecture. from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from . import utils from torch.nn.utils.rnn import PackedSequence, pack_padded_sequence, pad_packed_sequence from .CaptionModel import CaptionModel bad_endings = ['a','an','the','in','for','at','of','with','before','after','on','upon','near','to','is','are','am'] bad_endings += ['the'] def sort_pack_padded_sequence(input, lengths): sorted_lengths, indices = torch.sort(lengths, descending=True) tmp = pack_padded_sequence(input[indices], sorted_lengths, batch_first=True) inv_ix = indices.clone() inv_ix[indices] = torch.arange(0,len(indices)).type_as(inv_ix) return tmp, inv_ix def pad_unsort_packed_sequence(input, inv_ix): tmp, _ = pad_packed_sequence(input, batch_first=True) tmp = tmp[inv_ix] return tmp def pack_wrapper(module, att_feats, att_masks): if att_masks is not None: packed, inv_ix = sort_pack_padded_sequence(att_feats, att_masks.data.long().sum(1)) return pad_unsort_packed_sequence(PackedSequence(module(packed[0]), packed[1]), inv_ix) else: return module(att_feats) class AttModel(CaptionModel): def __init__(self, opt): super(AttModel, self).__init__() self.vocab_size = opt.vocab_size self.input_encoding_size = opt.input_encoding_size #self.rnn_type = opt.rnn_type self.rnn_size = opt.rnn_size self.num_layers = opt.num_layers self.drop_prob_lm = opt.drop_prob_lm self.seq_length = getattr(opt, 'max_length', 20) or opt.seq_length # maximum sample length self.fc_feat_size = opt.fc_feat_size self.att_feat_size = opt.att_feat_size self.att_hid_size = opt.att_hid_size self.bos_idx = getattr(opt, 'bos_idx', 0) self.eos_idx = getattr(opt, 'eos_idx', 0) self.pad_idx = getattr(opt, 'pad_idx', 0) self.use_bn = getattr(opt, 'use_bn', 0) self.ss_prob = 0.0 # Schedule sampling probability self.embed = nn.Sequential(nn.Embedding(self.vocab_size + 1, self.input_encoding_size), nn.ReLU(), nn.Dropout(self.drop_prob_lm)) self.fc_embed = nn.Sequential(nn.Linear(self.fc_feat_size, self.rnn_size), nn.ReLU(), nn.Dropout(self.drop_prob_lm)) self.att_embed = nn.Sequential(*( ((nn.BatchNorm1d(self.att_feat_size),) if self.use_bn else ())+ (nn.Linear(self.att_feat_size, self.rnn_size), nn.ReLU(), nn.Dropout(self.drop_prob_lm))+ ((nn.BatchNorm1d(self.rnn_size),) if self.use_bn==2 else ()))) self.logit_layers = getattr(opt, 'logit_layers', 1) if self.logit_layers == 1: self.logit = nn.Linear(self.rnn_size, self.vocab_size + 1) else: self.logit = [[nn.Linear(self.rnn_size, self.rnn_size), nn.ReLU(), nn.Dropout(0.5)] for _ in range(opt.logit_layers - 1)] self.logit = nn.Sequential(*(reduce(lambda x,y:x+y, self.logit) + [nn.Linear(self.rnn_size, self.vocab_size + 1)])) self.ctx2att = nn.Linear(self.rnn_size, self.att_hid_size) # For remove bad endding self.vocab = opt.vocab self.bad_endings_ix = [int(k) for k,v in self.vocab.items() if v in bad_endings] def init_hidden(self, bsz): weight = self.logit.weight \ if hasattr(self.logit, "weight") \ else self.logit[0].weight return (weight.new_zeros(self.num_layers, bsz, self.rnn_size), weight.new_zeros(self.num_layers, bsz, self.rnn_size)) def clip_att(self, att_feats, box_feats, att_masks): # Clip the length of att_masks and att_feats to the maximum length if att_masks is not None: max_len = att_masks.data.long().sum(1).max() att_feats = att_feats[:, :max_len].contiguous() att_masks = att_masks[:, :max_len].contiguous() box_feats = box_feats[:, :max_len].contiguous() return att_feats, box_feats, att_masks def _prepare_feature(self, fc_feats, att_feats, att_masks): att_feats, att_masks = self.clip_att(att_feats, att_masks) # embed fc and att feats fc_feats = self.fc_embed(fc_feats) att_feats = pack_wrapper(self.att_embed, att_feats, att_masks) # Project the attention feats first to reduce memory and computation comsumptions. p_att_feats = self.ctx2att(att_feats) return fc_feats, att_feats, p_att_feats, att_masks def _forward(self, fc_feats, att_feats, trace_feats, seq, att_masks=None, trace_masks=None): batch_size = fc_feats.size(0) if seq.ndim == 3: # B * seq_per_img * seq_len seq = seq.reshape(-1, seq.shape[2]) seq_per_img = seq.shape[0] // batch_size state = self.init_hidden(batch_size*seq_per_img) outputs = fc_feats.new_zeros(batch_size*seq_per_img, seq.size(1), self.vocab_size+1) # Prepare the features p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = self._prepare_feature(fc_feats, att_feats, trace_feats, att_masks, trace_masks) # pp_att_feats is used for attention, we cache it in advance to reduce computation cost if seq_per_img > 1: p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = utils.repeat_tensors(seq_per_img, [p_fc_feats, p_att_feats, pp_att_feats, p_att_masks] ) for i in range(seq.size(1)): if self.training and i >= 1 and self.ss_prob > 0.0: # otherwiste no need to sample sample_prob = fc_feats.new(batch_size*seq_per_img).uniform_(0, 1) sample_mask = sample_prob < self.ss_prob if sample_mask.sum() == 0: it = seq[:, i].clone() else: sample_ind = sample_mask.nonzero().view(-1) it = seq[:, i].data.clone() prob_prev = torch.exp(outputs[:, i-1].detach()) # fetch prev distribution: shape Nx(M+1) it.index_copy_(0, sample_ind, torch.multinomial(prob_prev, 1).view(-1).index_select(0, sample_ind)) else: it = seq[:, i].clone() # break if all the sequences end if i >= 1 and seq[:, i].sum() == 0: break output, state = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, state) outputs[:, i] = output return outputs def get_logprobs_state(self, it, fc_feats, att_feats, p_att_feats, att_masks, trace_feats_to_decoder, trace_masks, show_gate_labels, task, state, output_logsoftmax=1): # 'it' contains a word index xt = self.embed(it) if task == 'caption' or task == 'show': if task == 'show': output, state = self.core(xt, fc_feats, att_feats, p_att_feats, state, att_masks, trace_feats_to_decoder, trace_masks, show_gate_labels, task) else: output, state, word_box_attn = self.core(xt, fc_feats, att_feats, p_att_feats, state, att_masks, trace_feats_to_decoder, trace_masks, task=task) if output_logsoftmax: logprobs = F.log_softmax(self.logit(output), dim=1) else: logprobs = self.logit(output) if task == 'caption': return logprobs, state, word_box_attn else: return logprobs, state, elif task == 'both': output, state, output_trace = self.core(xt, fc_feats, att_feats, p_att_feats, state, att_masks, trace_feats_to_decoder, trace_masks, task=task) if output_logsoftmax: logprobs = F.log_softmax(self.logit(output), dim=1) else: logprobs = self.logit(output) return logprobs, state, self.model.generator_trace(output_trace) def _old_sample_beam(self, fc_feats, att_feats, att_masks=None, opt={}): beam_size = opt.get('beam_size', 10) group_size = opt.get('group_size', 1) sample_n = opt.get('sample_n', 10) # when sample_n == beam_size then each beam is a sample. assert sample_n == 1 or sample_n == beam_size // group_size, 'when beam search, sample_n == 1 or beam search' batch_size = fc_feats.size(0) p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = self._prepare_feature(fc_feats, att_feats, att_masks) assert beam_size <= self.vocab_size + 1, 'lets assume this for now, otherwise this corner case causes a few headaches down the road. can be dealt with in future if needed' seq = fc_feats.new_full((batch_size*sample_n, self.seq_length), self.pad_idx, dtype=torch.long) seqLogprobs = fc_feats.new_zeros(batch_size*sample_n, self.seq_length, self.vocab_size + 1) # lets process every image independently for now, for simplicity self.done_beams = [[] for _ in range(batch_size)] for k in range(batch_size): state = self.init_hidden(beam_size) tmp_fc_feats, tmp_att_feats, tmp_p_att_feats, tmp_att_masks = utils.repeat_tensors(beam_size, [p_fc_feats[k:k+1], p_att_feats[k:k+1], pp_att_feats[k:k+1], p_att_masks[k:k+1] if att_masks is not None else None] ) for t in range(1): if t == 0: # input <bos> it = fc_feats.new_full([beam_size], self.bos_idx, dtype=torch.long) logprobs, state = self.get_logprobs_state(it, tmp_fc_feats, tmp_att_feats, tmp_p_att_feats, tmp_att_masks, state) self.done_beams[k] = self.old_beam_search(state, logprobs, tmp_fc_feats, tmp_att_feats, tmp_p_att_feats, tmp_att_masks, opt=opt) if sample_n == beam_size: for _n in range(sample_n): seq[k*sample_n+_n, :] = self.done_beams[k][_n]['seq'] seqLogprobs[k*sample_n+_n, :] = self.done_beams[k][_n]['logps'] else: seq[k, :] = self.done_beams[k][0]['seq'] # the first beam has highest cumulative score seqLogprobs[k, :] = self.done_beams[k][0]['logps'] # return the samples and their log likelihoods return seq, seqLogprobs def _sample_beam(self, fc_feats, att_feats, trace_feats, box_feats, att_masks=None, trace_masks=None, show_gate_labels=None, task=None, opt={}): beam_size = opt.get('beam_size', 10) group_size = opt.get('group_size', 1) sample_n = opt.get('sample_n', 10) # when sample_n == beam_size then each beam is a sample. assert sample_n == 1 or sample_n == beam_size // group_size, 'when beam search, sample_n == 1 or beam search' batch_size = fc_feats.size(0) p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, trace_feats_to_decoder = self._prepare_feature(fc_feats, att_feats, trace_feats, box_feats, att_masks, trace_masks) assert beam_size <= self.vocab_size + 1, 'lets assume this for now, otherwise this corner case causes a few headaches down the road. can be dealt with in future if needed' seq = fc_feats.new_full((batch_size*sample_n, self.seq_length), self.pad_idx, dtype=torch.long) seqLogprobs = fc_feats.new_zeros(batch_size*sample_n, self.seq_length, self.vocab_size + 1) # lets process every image independently for now, for simplicity self.done_beams = [[] for _ in range(batch_size)] state = self.init_hidden(batch_size) # first step, feed bos it = fc_feats.new_full([batch_size], self.bos_idx, dtype=torch.long) logprobs, state = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, trace_feats_to_decoder, trace_masks, show_gate_labels, task, state) p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, trace_feats_to_decoder, trace_masks, show_gate_labels = utils.repeat_tensors(beam_size, [p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, trace_feats_to_decoder, trace_masks, show_gate_labels] ) self.done_beams = self.beam_search(state, logprobs, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, trace_feats_to_decoder, trace_masks, show_gate_labels, task, opt=opt) for k in range(batch_size): if sample_n == beam_size: for _n in range(sample_n): seq_len = self.done_beams[k][_n]['seq'].shape[0] seq[k*sample_n+_n, :seq_len] = self.done_beams[k][_n]['seq'] seqLogprobs[k*sample_n+_n, :seq_len] = self.done_beams[k][_n]['logps'] else: seq_len = self.done_beams[k][0]['seq'].shape[0] seq[k, :seq_len] = self.done_beams[k][0]['seq'] # the first beam has highest cumulative score seqLogprobs[k, :seq_len] = self.done_beams[k][0]['logps'] # return the samples and their log likelihoods return seq, seqLogprobs def _sample(self, fc_feats, att_feats, trace_feats, box_feats, att_masks=None, trace_masks=None, show_gate_labels=None, task=None, opt={}): sample_method = opt.get('sample_method', 'greedy') beam_size = opt.get('beam_size', 1) temperature = opt.get('temperature', 1.0) sample_n = int(opt.get('sample_n', 1)) group_size = opt.get('group_size', 1) output_logsoftmax = opt.get('output_logsoftmax', 1) decoding_constraint = opt.get('decoding_constraint', 0) block_trigrams = opt.get('block_trigrams', 0) remove_bad_endings = opt.get('remove_bad_endings', 0) if beam_size > 1 and sample_method in ['greedy', 'beam_search']: return self._sample_beam(fc_feats, att_feats, trace_feats, box_feats, att_masks, trace_masks, show_gate_labels, task, opt) if group_size > 1: return self._diverse_sample(fc_feats, att_feats, att_masks, opt) batch_size = fc_feats.size(0) state = self.init_hidden(batch_size*sample_n) p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, trace_feats_to_decoder = \ self._prepare_feature(fc_feats, att_feats, trace_feats, box_feats, att_masks, trace_masks) if sample_n > 1: p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = utils.repeat_tensors(sample_n, [p_fc_feats, p_att_feats, pp_att_feats, p_att_masks] ) trigrams = [] # will be a list of batch_size dictionaries seq = fc_feats.new_full((batch_size*sample_n, self.seq_length), self.pad_idx, dtype=torch.long) seqLogprobs = fc_feats.new_zeros(batch_size*sample_n, self.seq_length, self.vocab_size + 1) if task == 'both': tmp_trace_feats = torch.zeros([trace_feats_to_decoder.shape[0], 1, trace_feats_to_decoder.shape[2]]).to(trace_masks.device) for t in range(self.seq_length + 1): if t == 0: # input <bos> it = fc_feats.new_full([batch_size*sample_n], self.bos_idx, dtype=torch.long) if task == 'caption' or task == 'show': logprobs, state, word_box_attn = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, trace_feats_to_decoder, trace_masks, show_gate_labels, task, state, output_logsoftmax=output_logsoftmax) elif task == 'both': logprobs, state, output_trace = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, tmp_trace_feats, trace_masks, show_gate_labels, task, state, output_logsoftmax=output_logsoftmax) output_trace = output_trace[:, t] output_trace[:, 4] = (output_trace[:, 2] - output_trace[:, 0]) * (output_trace[:, 3] - output_trace[:, 1]) tmp_trace_feats = torch.cat([tmp_trace_feats, output_trace.unsqueeze(1)], 1) if decoding_constraint and t > 0: tmp = logprobs.new_zeros(logprobs.size()) tmp.scatter_(1, seq[:,t-1].data.unsqueeze(1), float('-inf')) logprobs = logprobs + tmp if remove_bad_endings and t > 0: tmp = logprobs.new_zeros(logprobs.size()) prev_bad = np.isin(seq[:,t-1].data.cpu().numpy(), self.bad_endings_ix) # Make it impossible to generate bad_endings tmp[torch.from_numpy(prev_bad.astype('uint8')), 0] = float('-inf') logprobs = logprobs + tmp # Mess with trigrams # Copy from https://github.com/lukemelas/image-paragraph-captioning if block_trigrams and t >= 3: # Store trigram generated at last step prev_two_batch = seq[:,t-3:t-1] for i in range(batch_size): # = seq.size(0) prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item()) current = seq[i][t-1] if t == 3: # initialize trigrams.append({prev_two: [current]}) # {LongTensor: list containing 1 int} elif t > 3: if prev_two in trigrams[i]: # add to list trigrams[i][prev_two].append(current) else: # create list trigrams[i][prev_two] = [current] # Block used trigrams at next step prev_two_batch = seq[:,t-2:t] mask = torch.zeros(logprobs.size(), requires_grad=False).to(logprobs.device) # batch_size x vocab_size for i in range(batch_size): prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item()) if prev_two in trigrams[i]: for j in trigrams[i][prev_two]: mask[i,j] += 1 # Apply mask to log probs #logprobs = logprobs - (mask * 1e9) alpha = 2.0 # = 4 logprobs = logprobs + (mask * -0.693 * alpha) # ln(1/2) * alpha (alpha -> infty works best) # sample the next word if t == self.seq_length: # skip if we achieve maximum length break it, sampleLogprobs = self.sample_next_word(logprobs, sample_method, temperature) # stop when all finished if t == 0: unfinished = it != self.eos_idx else: it[~unfinished] = self.pad_idx # This allows eos_idx not being overwritten to 0 logprobs = logprobs * unfinished.unsqueeze(1).to(logprobs) unfinished = unfinished & (it != self.eos_idx) seq[:,t] = it seqLogprobs[:,t] = logprobs # quit loop if all sequences have finished if unfinished.sum() == 0: break ### for decoder evaluate: cut at the ground truth caption length. Since in controlled caption generation, we assume we know the caption length # if task != 'both': # for i in range(trace_masks.shape[0]): # tmp_num = trace_masks[i].sum().long() # seq[i, tmp_num:] = 0 # seqLogprobs[i, tmp_num:, :] = 0 if task != 'both': if task == 'caption': return seq, seqLogprobs, torch.cat([word_box_attn, torch.zeros([seq.shape[0], seq.shape[1]-word_box_attn.shape[1], word_box_attn.shape[2]]).to(seq.device)], 1) else: return seq, seqLogprobs else: tmp_trace_feats = tmp_trace_feats[:, 1:-1] return seq, seqLogprobs, torch.cat([tmp_trace_feats, torch.zeros([seq.shape[0], seq.shape[1]-tmp_trace_feats.shape[1], tmp_trace_feats.shape[2]]).to(seq.device)], 1) def _diverse_sample(self, fc_feats, att_feats, att_masks=None, opt={}): sample_method = opt.get('sample_method', 'greedy') beam_size = opt.get('beam_size', 1) temperature = opt.get('temperature', 1.0) group_size = opt.get('group_size', 1) diversity_lambda = opt.get('diversity_lambda', 0.5) decoding_constraint = opt.get('decoding_constraint', 0) block_trigrams = opt.get('block_trigrams', 0) remove_bad_endings = opt.get('remove_bad_endings', 0) batch_size = fc_feats.size(0) state = self.init_hidden(batch_size) p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = self._prepare_feature(fc_feats, att_feats, att_masks) trigrams_table = [[] for _ in range(group_size)] # will be a list of batch_size dictionaries seq_table = [fc_feats.new_full((batch_size, self.seq_length), self.pad_idx, dtype=torch.long) for _ in range(group_size)] seqLogprobs_table = [fc_feats.new_zeros(batch_size, self.seq_length) for _ in range(group_size)] state_table = [self.init_hidden(batch_size) for _ in range(group_size)] for tt in range(self.seq_length + group_size): for divm in range(group_size): t = tt - divm seq = seq_table[divm] seqLogprobs = seqLogprobs_table[divm] trigrams = trigrams_table[divm] if t >= 0 and t <= self.seq_length-1: if t == 0: # input <bos> it = fc_feats.new_full([batch_size], self.bos_idx, dtype=torch.long) else: it = seq[:, t-1] # changed logprobs, state_table[divm] = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, state_table[divm]) # changed logprobs = F.log_softmax(logprobs / temperature, dim=-1) # Add diversity if divm > 0: unaug_logprobs = logprobs.clone() for prev_choice in range(divm): prev_decisions = seq_table[prev_choice][:, t] logprobs[:, prev_decisions] = logprobs[:, prev_decisions] - diversity_lambda if decoding_constraint and t > 0: tmp = logprobs.new_zeros(logprobs.size()) tmp.scatter_(1, seq[:,t-1].data.unsqueeze(1), float('-inf')) logprobs = logprobs + tmp if remove_bad_endings and t > 0: tmp = logprobs.new_zeros(logprobs.size()) prev_bad = np.isin(seq[:,t-1].data.cpu().numpy(), self.bad_endings_ix) # Impossible to generate remove_bad_endings tmp[torch.from_numpy(prev_bad.astype('uint8')), 0] = float('-inf') logprobs = logprobs + tmp # Mess with trigrams if block_trigrams and t >= 3: # Store trigram generated at last step prev_two_batch = seq[:,t-3:t-1] for i in range(batch_size): # = seq.size(0) prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item()) current = seq[i][t-1] if t == 3: # initialize trigrams.append({prev_two: [current]}) # {LongTensor: list containing 1 int} elif t > 3: if prev_two in trigrams[i]: # add to list trigrams[i][prev_two].append(current) else: # create list trigrams[i][prev_two] = [current] # Block used trigrams at next step prev_two_batch = seq[:,t-2:t] mask = torch.zeros(logprobs.size(), requires_grad=False).cuda() # batch_size x vocab_size for i in range(batch_size): prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item()) if prev_two in trigrams[i]: for j in trigrams[i][prev_two]: mask[i,j] += 1 # Apply mask to log probs #logprobs = logprobs - (mask * 1e9) alpha = 2.0 # = 4 logprobs = logprobs + (mask * -0.693 * alpha) # ln(1/2) * alpha (alpha -> infty works best) it, sampleLogprobs = self.sample_next_word(logprobs, sample_method, 1) # stop when all finished if t == 0: unfinished = it != self.eos_idx else: unfinished = seq[:,t-1] != self.pad_idx & seq[:,t-1] != self.eos_idx it[~unfinished] = self.pad_idx unfinished = unfinished & (it != self.eos_idx) # changed seq[:,t] = it seqLogprobs[:,t] = sampleLogprobs.view(-1) return torch.stack(seq_table, 1).reshape(batch_size * group_size, -1), torch.stack(seqLogprobs_table, 1).reshape(batch_size * group_size, -1) class AdaAtt_lstm(nn.Module): def __init__(self, opt, use_maxout=True): super(AdaAtt_lstm, self).__init__() self.input_encoding_size = opt.input_encoding_size #self.rnn_type = opt.rnn_type self.rnn_size = opt.rnn_size self.num_layers = opt.num_layers self.drop_prob_lm = opt.drop_prob_lm self.fc_feat_size = opt.fc_feat_size self.att_feat_size = opt.att_feat_size self.att_hid_size = opt.att_hid_size self.use_maxout = use_maxout # Build a LSTM self.w2h = nn.Linear(self.input_encoding_size, (4+(use_maxout==True)) * self.rnn_size) self.v2h = nn.Linear(self.rnn_size, (4+(use_maxout==True)) * self.rnn_size) self.i2h = nn.ModuleList([nn.Linear(self.rnn_size, (4+(use_maxout==True)) * self.rnn_size) for _ in range(self.num_layers - 1)]) self.h2h = nn.ModuleList([nn.Linear(self.rnn_size, (4+(use_maxout==True)) * self.rnn_size) for _ in range(self.num_layers)]) # Layers for getting the fake region if self.num_layers == 1: self.r_w2h = nn.Linear(self.input_encoding_size, self.rnn_size) self.r_v2h = nn.Linear(self.rnn_size, self.rnn_size) else: self.r_i2h = nn.Linear(self.rnn_size, self.rnn_size) self.r_h2h = nn.Linear(self.rnn_size, self.rnn_size) def forward(self, xt, img_fc, state): hs = [] cs = [] for L in range(self.num_layers): # c,h from previous timesteps prev_h = state[0][L] prev_c = state[1][L] # the input to this layer if L == 0: x = xt i2h = self.w2h(x) + self.v2h(img_fc) else: x = hs[-1] x = F.dropout(x, self.drop_prob_lm, self.training) i2h = self.i2h[L-1](x) all_input_sums = i2h+self.h2h[L](prev_h) sigmoid_chunk = all_input_sums.narrow(1, 0, 3 * self.rnn_size) sigmoid_chunk = torch.sigmoid(sigmoid_chunk) # decode the gates in_gate = sigmoid_chunk.narrow(1, 0, self.rnn_size) forget_gate = sigmoid_chunk.narrow(1, self.rnn_size, self.rnn_size) out_gate = sigmoid_chunk.narrow(1, self.rnn_size * 2, self.rnn_size) # decode the write inputs if not self.use_maxout: in_transform = torch.tanh(all_input_sums.narrow(1, 3 * self.rnn_size, self.rnn_size)) else: in_transform = all_input_sums.narrow(1, 3 * self.rnn_size, 2 * self.rnn_size) in_transform = torch.max(\ in_transform.narrow(1, 0, self.rnn_size), in_transform.narrow(1, self.rnn_size, self.rnn_size)) # perform the LSTM update next_c = forget_gate * prev_c + in_gate * in_transform # gated cells form the output tanh_nex_c = torch.tanh(next_c) next_h = out_gate * tanh_nex_c if L == self.num_layers-1: if L == 0: i2h = self.r_w2h(x) + self.r_v2h(img_fc) else: i2h = self.r_i2h(x) n5 = i2h+self.r_h2h(prev_h) fake_region = torch.sigmoid(n5) * tanh_nex_c cs.append(next_c) hs.append(next_h) # set up the decoder top_h = hs[-1] top_h = F.dropout(top_h, self.drop_prob_lm, self.training) fake_region = F.dropout(fake_region, self.drop_prob_lm, self.training) state = (torch.cat([_.unsqueeze(0) for _ in hs], 0), torch.cat([_.unsqueeze(0) for _ in cs], 0)) return top_h, fake_region, state class AdaAtt_attention(nn.Module): def __init__(self, opt): super(AdaAtt_attention, self).__init__() self.input_encoding_size = opt.input_encoding_size #self.rnn_type = opt.rnn_type self.rnn_size = opt.rnn_size self.drop_prob_lm = opt.drop_prob_lm self.att_hid_size = opt.att_hid_size # fake region embed self.fr_linear = nn.Sequential( nn.Linear(self.rnn_size, self.input_encoding_size), nn.ReLU(), nn.Dropout(self.drop_prob_lm)) self.fr_embed = nn.Linear(self.input_encoding_size, self.att_hid_size) # h out embed self.ho_linear = nn.Sequential( nn.Linear(self.rnn_size, self.input_encoding_size), nn.Tanh(), nn.Dropout(self.drop_prob_lm)) self.ho_embed = nn.Linear(self.input_encoding_size, self.att_hid_size) self.alpha_net = nn.Linear(self.att_hid_size, 1) self.att2h = nn.Linear(self.rnn_size, self.rnn_size) def forward(self, h_out, fake_region, conv_feat, conv_feat_embed, att_masks=None): # View into three dimensions att_size = conv_feat.numel() // conv_feat.size(0) // self.rnn_size conv_feat = conv_feat.view(-1, att_size, self.rnn_size) conv_feat_embed = conv_feat_embed.view(-1, att_size, self.att_hid_size) # view neighbor from bach_size * neighbor_num x rnn_size to bach_size x rnn_size * neighbor_num fake_region = self.fr_linear(fake_region) fake_region_embed = self.fr_embed(fake_region) h_out_linear = self.ho_linear(h_out) h_out_embed = self.ho_embed(h_out_linear) txt_replicate = h_out_embed.unsqueeze(1).expand(h_out_embed.size(0), att_size + 1, h_out_embed.size(1)) img_all = torch.cat([fake_region.view(-1,1,self.input_encoding_size), conv_feat], 1) img_all_embed = torch.cat([fake_region_embed.view(-1,1,self.input_encoding_size), conv_feat_embed], 1) hA = torch.tanh(img_all_embed + txt_replicate) hA = F.dropout(hA,self.drop_prob_lm, self.training) hAflat = self.alpha_net(hA.view(-1, self.att_hid_size)) PI = F.softmax(hAflat.view(-1, att_size + 1), dim=1) if att_masks is not None: att_masks = att_masks.view(-1, att_size) PI = PI * torch.cat([att_masks[:,:1], att_masks], 1) # assume one one at the first time step. PI = PI / PI.sum(1, keepdim=True) visAtt = torch.bmm(PI.unsqueeze(1), img_all) visAttdim = visAtt.squeeze(1) atten_out = visAttdim + h_out_linear h = torch.tanh(self.att2h(atten_out)) h = F.dropout(h, self.drop_prob_lm, self.training) return h class AdaAttCore(nn.Module): def __init__(self, opt, use_maxout=False): super(AdaAttCore, self).__init__() self.lstm = AdaAtt_lstm(opt, use_maxout) self.attention = AdaAtt_attention(opt) def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None): h_out, p_out, state = self.lstm(xt, fc_feats, state) atten_out = self.attention(h_out, p_out, att_feats, p_att_feats, att_masks) return atten_out, state class UpDownCore(nn.Module): def __init__(self, opt, use_maxout=False): super(UpDownCore, self).__init__() self.drop_prob_lm = opt.drop_prob_lm self.att_lstm = nn.LSTMCell(opt.input_encoding_size + opt.rnn_size * 2, opt.rnn_size) # we, fc, h^2_t-1 self.lang_lstm = nn.LSTMCell(opt.rnn_size * 2, opt.rnn_size) # h^1_t, \hat v self.attention = Attention(opt) def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None): prev_h = state[0][-1] att_lstm_input = torch.cat([prev_h, fc_feats, xt], 1) h_att, c_att = self.att_lstm(att_lstm_input, (state[0][0], state[1][0])) att = self.attention(h_att, att_feats, p_att_feats, att_masks) lang_lstm_input = torch.cat([att, h_att], 1) # lang_lstm_input = torch.cat([att, F.dropout(h_att, self.drop_prob_lm, self.training)], 1) ????? h_lang, c_lang = self.lang_lstm(lang_lstm_input, (state[0][1], state[1][1])) output = F.dropout(h_lang, self.drop_prob_lm, self.training) state = (torch.stack([h_att, h_lang]), torch.stack([c_att, c_lang])) return output, state ############################################################################ # Notice: # StackAtt and DenseAtt are models that I randomly designed. # They are not related to any paper. ############################################################################ from .FCModel import LSTMCore class StackAttCore(nn.Module): def __init__(self, opt, use_maxout=False): super(StackAttCore, self).__init__() self.drop_prob_lm = opt.drop_prob_lm # self.att0 = Attention(opt) self.att1 = Attention(opt) self.att2 = Attention(opt) opt_input_encoding_size = opt.input_encoding_size opt.input_encoding_size = opt.input_encoding_size + opt.rnn_size self.lstm0 = LSTMCore(opt) # att_feat + word_embedding opt.input_encoding_size = opt.rnn_size * 2 self.lstm1 = LSTMCore(opt) self.lstm2 = LSTMCore(opt) opt.input_encoding_size = opt_input_encoding_size # self.emb1 = nn.Linear(opt.rnn_size, opt.rnn_size) self.emb2 = nn.Linear(opt.rnn_size, opt.rnn_size) def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None): # att_res_0 = self.att0(state[0][-1], att_feats, p_att_feats, att_masks) h_0, state_0 = self.lstm0(torch.cat([xt,fc_feats],1), [state[0][0:1], state[1][0:1]]) att_res_1 = self.att1(h_0, att_feats, p_att_feats, att_masks) h_1, state_1 = self.lstm1(torch.cat([h_0,att_res_1],1), [state[0][1:2], state[1][1:2]]) att_res_2 = self.att2(h_1 + self.emb2(att_res_1), att_feats, p_att_feats, att_masks) h_2, state_2 = self.lstm2(torch.cat([h_1,att_res_2],1), [state[0][2:3], state[1][2:3]]) return h_2, [torch.cat(_, 0) for _ in zip(state_0, state_1, state_2)] class DenseAttCore(nn.Module): def __init__(self, opt, use_maxout=False): super(DenseAttCore, self).__init__() self.drop_prob_lm = opt.drop_prob_lm # self.att0 = Attention(opt) self.att1 = Attention(opt) self.att2 = Attention(opt) opt_input_encoding_size = opt.input_encoding_size opt.input_encoding_size = opt.input_encoding_size + opt.rnn_size self.lstm0 = LSTMCore(opt) # att_feat + word_embedding opt.input_encoding_size = opt.rnn_size * 2 self.lstm1 = LSTMCore(opt) self.lstm2 = LSTMCore(opt) opt.input_encoding_size = opt_input_encoding_size # self.emb1 = nn.Linear(opt.rnn_size, opt.rnn_size) self.emb2 = nn.Linear(opt.rnn_size, opt.rnn_size) # fuse h_0 and h_1 self.fusion1 = nn.Sequential(nn.Linear(opt.rnn_size*2, opt.rnn_size), nn.ReLU(), nn.Dropout(opt.drop_prob_lm)) # fuse h_0, h_1 and h_2 self.fusion2 = nn.Sequential(nn.Linear(opt.rnn_size*3, opt.rnn_size), nn.ReLU(), nn.Dropout(opt.drop_prob_lm)) def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None): # att_res_0 = self.att0(state[0][-1], att_feats, p_att_feats, att_masks) h_0, state_0 = self.lstm0(torch.cat([xt,fc_feats],1), [state[0][0:1], state[1][0:1]]) att_res_1 = self.att1(h_0, att_feats, p_att_feats, att_masks) h_1, state_1 = self.lstm1(torch.cat([h_0,att_res_1],1), [state[0][1:2], state[1][1:2]]) att_res_2 = self.att2(h_1 + self.emb2(att_res_1), att_feats, p_att_feats, att_masks) h_2, state_2 = self.lstm2(torch.cat([self.fusion1(torch.cat([h_0, h_1], 1)),att_res_2],1), [state[0][2:3], state[1][2:3]]) return self.fusion2(torch.cat([h_0, h_1, h_2], 1)), [torch.cat(_, 0) for _ in zip(state_0, state_1, state_2)] class Attention(nn.Module): def __init__(self, opt): super(Attention, self).__init__() self.rnn_size = opt.rnn_size self.att_hid_size = opt.att_hid_size self.h2att = nn.Linear(self.rnn_size, self.att_hid_size) self.alpha_net = nn.Linear(self.att_hid_size, 1) def forward(self, h, att_feats, p_att_feats, att_masks=None): # The p_att_feats here is already projected att_size = att_feats.numel() // att_feats.size(0) // att_feats.size(-1) att = p_att_feats.view(-1, att_size, self.att_hid_size) att_h = self.h2att(h) # batch * att_hid_size att_h = att_h.unsqueeze(1).expand_as(att) # batch * att_size * att_hid_size dot = att + att_h # batch * att_size * att_hid_size dot = torch.tanh(dot) # batch * att_size * att_hid_size dot = dot.view(-1, self.att_hid_size) # (batch * att_size) * att_hid_size dot = self.alpha_net(dot) # (batch * att_size) * 1 dot = dot.view(-1, att_size) # batch * att_size weight = F.softmax(dot, dim=1) # batch * att_size if att_masks is not None: weight = weight * att_masks.view(-1, att_size).to(weight) weight = weight / weight.sum(1, keepdim=True) # normalize to 1 att_feats_ = att_feats.view(-1, att_size, att_feats.size(-1)) # batch * att_size * att_feat_size att_res = torch.bmm(weight.unsqueeze(1), att_feats_).squeeze(1) # batch * att_feat_size return att_res class Att2in2Core(nn.Module): def __init__(self, opt): super(Att2in2Core, self).__init__() self.input_encoding_size = opt.input_encoding_size #self.rnn_type = opt.rnn_type self.rnn_size = opt.rnn_size #self.num_layers = opt.num_layers self.drop_prob_lm = opt.drop_prob_lm self.fc_feat_size = opt.fc_feat_size self.att_feat_size = opt.att_feat_size self.att_hid_size = opt.att_hid_size # Build a LSTM self.a2c = nn.Linear(self.rnn_size, 2 * self.rnn_size) self.i2h = nn.Linear(self.input_encoding_size, 5 * self.rnn_size) self.h2h = nn.Linear(self.rnn_size, 5 * self.rnn_size) self.dropout = nn.Dropout(self.drop_prob_lm) self.attention = Attention(opt) def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None): att_res = self.attention(state[0][-1], att_feats, p_att_feats, att_masks) all_input_sums = self.i2h(xt) + self.h2h(state[0][-1]) sigmoid_chunk = all_input_sums.narrow(1, 0, 3 * self.rnn_size) sigmoid_chunk = torch.sigmoid(sigmoid_chunk) in_gate = sigmoid_chunk.narrow(1, 0, self.rnn_size) forget_gate = sigmoid_chunk.narrow(1, self.rnn_size, self.rnn_size) out_gate = sigmoid_chunk.narrow(1, self.rnn_size * 2, self.rnn_size) in_transform = all_input_sums.narrow(1, 3 * self.rnn_size, 2 * self.rnn_size) + \ self.a2c(att_res) in_transform = torch.max(\ in_transform.narrow(1, 0, self.rnn_size), in_transform.narrow(1, self.rnn_size, self.rnn_size)) next_c = forget_gate * state[1][-1] + in_gate * in_transform next_h = out_gate * torch.tanh(next_c) output = self.dropout(next_h) state = (next_h.unsqueeze(0), next_c.unsqueeze(0)) return output, state class Att2inCore(Att2in2Core): def __init__(self, opt): super(Att2inCore, self).__init__(opt) del self.a2c self.a2c = nn.Linear(self.att_feat_size, 2 * self.rnn_size) """ Note this is my attempt to replicate att2all model in self-critical paper. However, this is not a correct replication actually. Will fix it. """ class Att2all2Core(nn.Module): def __init__(self, opt): super(Att2all2Core, self).__init__() self.input_encoding_size = opt.input_encoding_size #self.rnn_type = opt.rnn_type self.rnn_size = opt.rnn_size #self.num_layers = opt.num_layers self.drop_prob_lm = opt.drop_prob_lm self.fc_feat_size = opt.fc_feat_size self.att_feat_size = opt.att_feat_size self.att_hid_size = opt.att_hid_size # Build a LSTM self.a2h = nn.Linear(self.rnn_size, 5 * self.rnn_size) self.i2h = nn.Linear(self.input_encoding_size, 5 * self.rnn_size) self.h2h = nn.Linear(self.rnn_size, 5 * self.rnn_size) self.dropout = nn.Dropout(self.drop_prob_lm) self.attention = Attention(opt) def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None): att_res = self.attention(state[0][-1], att_feats, p_att_feats, att_masks) all_input_sums = self.i2h(xt) + self.h2h(state[0][-1]) + self.a2h(att_res) sigmoid_chunk = all_input_sums.narrow(1, 0, 3 * self.rnn_size) sigmoid_chunk = torch.sigmoid(sigmoid_chunk) in_gate = sigmoid_chunk.narrow(1, 0, self.rnn_size) forget_gate = sigmoid_chunk.narrow(1, self.rnn_size, self.rnn_size) out_gate = sigmoid_chunk.narrow(1, self.rnn_size * 2, self.rnn_size) in_transform = all_input_sums.narrow(1, 3 * self.rnn_size, 2 * self.rnn_size) in_transform = torch.max(\ in_transform.narrow(1, 0, self.rnn_size), in_transform.narrow(1, self.rnn_size, self.rnn_size)) next_c = forget_gate * state[1][-1] + in_gate * in_transform next_h = out_gate * torch.tanh(next_c) output = self.dropout(next_h) state = (next_h.unsqueeze(0), next_c.unsqueeze(0)) return output, state class AdaAttModel(AttModel): def __init__(self, opt): super(AdaAttModel, self).__init__(opt) self.core = AdaAttCore(opt) # AdaAtt with maxout lstm class AdaAttMOModel(AttModel): def __init__(self, opt): super(AdaAttMOModel, self).__init__(opt) self.core = AdaAttCore(opt, True) class Att2in2Model(AttModel): def __init__(self, opt): super(Att2in2Model, self).__init__(opt) self.core = Att2in2Core(opt) delattr(self, 'fc_embed') self.fc_embed = lambda x : x class Att2all2Model(AttModel): def __init__(self, opt): super(Att2all2Model, self).__init__(opt) self.core = Att2all2Core(opt) delattr(self, 'fc_embed') self.fc_embed = lambda x : x class UpDownModel(AttModel): def __init__(self, opt): super(UpDownModel, self).__init__(opt) self.num_layers = 2 self.core = UpDownCore(opt) class StackAttModel(AttModel): def __init__(self, opt): super(StackAttModel, self).__init__(opt) self.num_layers = 3 self.core = StackAttCore(opt) class DenseAttModel(AttModel): def __init__(self, opt): super(DenseAttModel, self).__init__(opt) self.num_layers = 3 self.core = DenseAttCore(opt) class Att2inModel(AttModel): def __init__(self, opt): super(Att2inModel, self).__init__(opt) del self.embed, self.fc_embed, self.att_embed self.embed = nn.Embedding(self.vocab_size + 1, self.input_encoding_size) self.fc_embed = self.att_embed = lambda x: x del self.ctx2att self.ctx2att = nn.Linear(self.att_feat_size, self.att_hid_size) self.core = Att2inCore(opt) self.init_weights() def init_weights(self): initrange = 0.1 self.embed.weight.data.uniform_(-initrange, initrange) self.logit.bias.data.fill_(0) self.logit.weight.data.uniform_(-initrange, initrange) class NewFCModel(AttModel): def __init__(self, opt): super(NewFCModel, self).__init__(opt) self.fc_embed = nn.Linear(self.fc_feat_size, self.input_encoding_size) self.embed = nn.Embedding(self.vocab_size + 1, self.input_encoding_size) self._core = LSTMCore(opt) delattr(self, 'att_embed') self.att_embed = lambda x : x delattr(self, 'ctx2att') self.ctx2att = lambda x: x def core(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks): # Step 0, feed the input image # if (self.training and state[0].is_leaf) or \ # (not self.training and state[0].sum() == 0): # _, state = self._core(fc_feats, state) # three cases # normal mle training # Sample # beam search (diverse beam search) # fixed captioning module. is_first_step = (state[0]==0).all(2).all(0) # size: B if is_first_step.all(): _, state = self._core(fc_feats, state) elif is_first_step.any(): # This is mostly for diverse beam search I think new_state = [torch.zeros_like(_) for _ in state] new_state[0][:, ~is_first_step] = state[0][:, ~is_first_step] new_state[1][:, ~is_first_step] = state[1][:, ~is_first_step] _, state = self._core(fc_feats, state) new_state[0][:, is_first_step] = state[0][:, is_first_step] new_state[1][:, is_first_step] = state[1][:, is_first_step] state = new_state # if (state[0]==0).all(): # # Let's forget about diverse beam search first # _, state = self._core(fc_feats, state) return self._core(xt, state) def _prepare_feature(self, fc_feats, att_feats, att_masks): fc_feats = self.fc_embed(fc_feats) return fc_feats, att_feats, att_feats, att_masks class LMModel(AttModel): def __init__(self, opt): super(LMModel, self).__init__(opt) delattr(self, 'fc_embed') self.fc_embed = lambda x: x.new_zeros(x.shape[0], self.input_encoding_size) self.embed = nn.Embedding(self.vocab_size + 1, self.input_encoding_size) self._core = LSTMCore(opt) delattr(self, 'att_embed') self.att_embed = lambda x : x delattr(self, 'ctx2att') self.ctx2att = lambda x: x def core(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks): if (state[0]==0).all(): # Let's forget about diverse beam search first _, state = self._core(fc_feats, state) return self._core(xt, state) def _prepare_feature(self, fc_feats, att_feats, att_masks): fc_feats = self.fc_embed(fc_feats) return fc_feats, None, None, None
connect-caption-and-trace-main
captioning/models/AttModel_for_coco_caption_baseline.py
# This file contains Att2in2, AdaAtt, AdaAttMO, UpDown model # AdaAtt is from Knowing When to Look: Adaptive Attention via A Visual Sentinel for Image Captioning # https://arxiv.org/abs/1612.01887 # AdaAttMO is a modified version with maxout lstm # Att2in is from Self-critical Sequence Training for Image Captioning # https://arxiv.org/abs/1612.00563 # In this file we only have Att2in2, which is a slightly different version of att2in, # in which the img feature embedding and word embedding is the same as what in adaatt. # UpDown is from Bottom-Up and Top-Down Attention for Image Captioning and VQA # https://arxiv.org/abs/1707.07998 # However, it may not be identical to the author's architecture. from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from . import utils from torch.nn.utils.rnn import PackedSequence, pack_padded_sequence, pad_packed_sequence from .CaptionModel import CaptionModel bad_endings = ['a','an','the','in','for','at','of','with','before','after','on','upon','near','to','is','are','am'] bad_endings += ['the'] def sort_pack_padded_sequence(input, lengths): sorted_lengths, indices = torch.sort(lengths, descending=True) tmp = pack_padded_sequence(input[indices], sorted_lengths, batch_first=True) inv_ix = indices.clone() inv_ix[indices] = torch.arange(0,len(indices)).type_as(inv_ix) return tmp, inv_ix def pad_unsort_packed_sequence(input, inv_ix): tmp, _ = pad_packed_sequence(input, batch_first=True) tmp = tmp[inv_ix] return tmp def pack_wrapper(module, att_feats, att_masks): if att_masks is not None: packed, inv_ix = sort_pack_padded_sequence(att_feats, att_masks.data.long().sum(1)) return pad_unsort_packed_sequence(PackedSequence(module(packed[0]), packed[1]), inv_ix) else: return module(att_feats) class AttModel(CaptionModel): def __init__(self, opt): super(AttModel, self).__init__() self.vocab_size = opt.vocab_size self.input_encoding_size = opt.input_encoding_size #self.rnn_type = opt.rnn_type self.rnn_size = opt.rnn_size self.num_layers = opt.num_layers self.drop_prob_lm = opt.drop_prob_lm self.seq_length = getattr(opt, 'max_length', 20) or opt.seq_length # maximum sample length self.fc_feat_size = opt.fc_feat_size self.att_feat_size = opt.att_feat_size self.att_hid_size = opt.att_hid_size self.bos_idx = getattr(opt, 'bos_idx', 0) self.eos_idx = getattr(opt, 'eos_idx', 0) self.pad_idx = getattr(opt, 'pad_idx', 0) self.use_bn = getattr(opt, 'use_bn', 0) self.ss_prob = 0.0 # Schedule sampling probability self.embed = nn.Sequential(nn.Embedding(self.vocab_size + 1, self.input_encoding_size), nn.ReLU(), nn.Dropout(self.drop_prob_lm)) self.fc_embed = nn.Sequential(nn.Linear(self.fc_feat_size, self.rnn_size), nn.ReLU(), nn.Dropout(self.drop_prob_lm)) self.att_embed = nn.Sequential(*( ((nn.BatchNorm1d(self.att_feat_size),) if self.use_bn else ())+ (nn.Linear(self.att_feat_size, self.rnn_size), nn.ReLU(), nn.Dropout(self.drop_prob_lm))+ ((nn.BatchNorm1d(self.rnn_size),) if self.use_bn==2 else ()))) self.logit_layers = getattr(opt, 'logit_layers', 1) if self.logit_layers == 1: self.logit = nn.Linear(self.rnn_size, self.vocab_size + 1) else: self.logit = [[nn.Linear(self.rnn_size, self.rnn_size), nn.ReLU(), nn.Dropout(0.5)] for _ in range(opt.logit_layers - 1)] self.logit = nn.Sequential(*(reduce(lambda x,y:x+y, self.logit) + [nn.Linear(self.rnn_size, self.vocab_size + 1)])) self.ctx2att = nn.Linear(self.rnn_size, self.att_hid_size) # For remove bad endding self.vocab = opt.vocab self.bad_endings_ix = [int(k) for k,v in self.vocab.items() if v in bad_endings] def init_hidden(self, bsz): weight = self.logit.weight \ if hasattr(self.logit, "weight") \ else self.logit[0].weight return (weight.new_zeros(self.num_layers, bsz, self.rnn_size), weight.new_zeros(self.num_layers, bsz, self.rnn_size)) def clip_att(self, att_feats, box_feats, att_masks): # Clip the length of att_masks and att_feats to the maximum length if att_masks is not None: max_len = att_masks.data.long().sum(1).max() att_feats = att_feats[:, :max_len].contiguous() att_masks = att_masks[:, :max_len].contiguous() box_feats = box_feats[:, :max_len].contiguous() return att_feats, box_feats, att_masks def _prepare_feature(self, fc_feats, att_feats, att_masks): att_feats, att_masks = self.clip_att(att_feats, att_masks) # embed fc and att feats fc_feats = self.fc_embed(fc_feats) att_feats = pack_wrapper(self.att_embed, att_feats, att_masks) # Project the attention feats first to reduce memory and computation comsumptions. p_att_feats = self.ctx2att(att_feats) return fc_feats, att_feats, p_att_feats, att_masks def _forward(self, fc_feats, att_feats, trace_feats, seq, att_masks=None, trace_masks=None): batch_size = fc_feats.size(0) if seq.ndim == 3: # B * seq_per_img * seq_len seq = seq.reshape(-1, seq.shape[2]) seq_per_img = seq.shape[0] // batch_size state = self.init_hidden(batch_size*seq_per_img) outputs = fc_feats.new_zeros(batch_size*seq_per_img, seq.size(1), self.vocab_size+1) # Prepare the features p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = self._prepare_feature(fc_feats, att_feats, trace_feats, att_masks, trace_masks) # pp_att_feats is used for attention, we cache it in advance to reduce computation cost if seq_per_img > 1: p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = utils.repeat_tensors(seq_per_img, [p_fc_feats, p_att_feats, pp_att_feats, p_att_masks] ) for i in range(seq.size(1)): if self.training and i >= 1 and self.ss_prob > 0.0: # otherwiste no need to sample sample_prob = fc_feats.new(batch_size*seq_per_img).uniform_(0, 1) sample_mask = sample_prob < self.ss_prob if sample_mask.sum() == 0: it = seq[:, i].clone() else: sample_ind = sample_mask.nonzero().view(-1) it = seq[:, i].data.clone() prob_prev = torch.exp(outputs[:, i-1].detach()) # fetch prev distribution: shape Nx(M+1) it.index_copy_(0, sample_ind, torch.multinomial(prob_prev, 1).view(-1).index_select(0, sample_ind)) else: it = seq[:, i].clone() # break if all the sequences end if i >= 1 and seq[:, i].sum() == 0: break output, state = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, state) outputs[:, i] = output return outputs def get_logprobs_state(self, it, fc_feats, att_feats, p_att_feats, att_masks, trace_feats_to_decoder, trace_masks, show_gate_labels, task, state, output_logsoftmax=1): # 'it' contains a word index xt = self.embed(it) if task == 'caption' or task == 'show': if task == 'show': output, state = self.core(xt, fc_feats, att_feats, p_att_feats, state, att_masks, trace_feats_to_decoder, trace_masks, show_gate_labels, task) else: output, state = self.core(xt, fc_feats, att_feats, p_att_feats, state, att_masks, trace_feats_to_decoder, trace_masks, task=task) if output_logsoftmax: logprobs = F.log_softmax(self.logit(output), dim=1) else: logprobs = self.logit(output) return logprobs, state elif task == 'both': output, state, output_trace = self.core(xt, fc_feats, att_feats, p_att_feats, state, att_masks, trace_feats_to_decoder, trace_masks, task=task) if output_logsoftmax: logprobs = F.log_softmax(self.logit(output), dim=1) else: logprobs = self.logit(output) return logprobs, state, self.model.generator_trace(output_trace) def _old_sample_beam(self, fc_feats, att_feats, att_masks=None, opt={}): beam_size = opt.get('beam_size', 10) group_size = opt.get('group_size', 1) sample_n = opt.get('sample_n', 10) # when sample_n == beam_size then each beam is a sample. assert sample_n == 1 or sample_n == beam_size // group_size, 'when beam search, sample_n == 1 or beam search' batch_size = fc_feats.size(0) p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = self._prepare_feature(fc_feats, att_feats, att_masks) assert beam_size <= self.vocab_size + 1, 'lets assume this for now, otherwise this corner case causes a few headaches down the road. can be dealt with in future if needed' seq = fc_feats.new_full((batch_size*sample_n, self.seq_length), self.pad_idx, dtype=torch.long) seqLogprobs = fc_feats.new_zeros(batch_size*sample_n, self.seq_length, self.vocab_size + 1) # lets process every image independently for now, for simplicity self.done_beams = [[] for _ in range(batch_size)] for k in range(batch_size): state = self.init_hidden(beam_size) tmp_fc_feats, tmp_att_feats, tmp_p_att_feats, tmp_att_masks = utils.repeat_tensors(beam_size, [p_fc_feats[k:k+1], p_att_feats[k:k+1], pp_att_feats[k:k+1], p_att_masks[k:k+1] if att_masks is not None else None] ) for t in range(1): if t == 0: # input <bos> it = fc_feats.new_full([beam_size], self.bos_idx, dtype=torch.long) logprobs, state = self.get_logprobs_state(it, tmp_fc_feats, tmp_att_feats, tmp_p_att_feats, tmp_att_masks, state) self.done_beams[k] = self.old_beam_search(state, logprobs, tmp_fc_feats, tmp_att_feats, tmp_p_att_feats, tmp_att_masks, opt=opt) if sample_n == beam_size: for _n in range(sample_n): seq[k*sample_n+_n, :] = self.done_beams[k][_n]['seq'] seqLogprobs[k*sample_n+_n, :] = self.done_beams[k][_n]['logps'] else: seq[k, :] = self.done_beams[k][0]['seq'] # the first beam has highest cumulative score seqLogprobs[k, :] = self.done_beams[k][0]['logps'] # return the samples and their log likelihoods return seq, seqLogprobs def _sample_beam(self, fc_feats, att_feats, trace_feats, box_feats, att_masks=None, trace_masks=None, show_gate_labels=None, task=None, opt={}): beam_size = opt.get('beam_size', 10) group_size = opt.get('group_size', 1) sample_n = opt.get('sample_n', 10) # when sample_n == beam_size then each beam is a sample. assert sample_n == 1 or sample_n == beam_size // group_size, 'when beam search, sample_n == 1 or beam search' batch_size = fc_feats.size(0) p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, trace_feats_to_decoder = self._prepare_feature(fc_feats, att_feats, trace_feats, box_feats, att_masks, trace_masks) assert beam_size <= self.vocab_size + 1, 'lets assume this for now, otherwise this corner case causes a few headaches down the road. can be dealt with in future if needed' seq = fc_feats.new_full((batch_size*sample_n, self.seq_length), self.pad_idx, dtype=torch.long) seqLogprobs = fc_feats.new_zeros(batch_size*sample_n, self.seq_length, self.vocab_size + 1) # lets process every image independently for now, for simplicity self.done_beams = [[] for _ in range(batch_size)] state = self.init_hidden(batch_size) # first step, feed bos it = fc_feats.new_full([batch_size], self.bos_idx, dtype=torch.long) logprobs, state = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, trace_feats_to_decoder, trace_masks, show_gate_labels, task, state) p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, trace_feats_to_decoder, trace_masks, show_gate_labels = utils.repeat_tensors(beam_size, [p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, trace_feats_to_decoder, trace_masks, show_gate_labels] ) self.done_beams = self.beam_search(state, logprobs, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, trace_feats_to_decoder, trace_masks, show_gate_labels, task, opt=opt) for k in range(batch_size): if sample_n == beam_size: for _n in range(sample_n): seq_len = self.done_beams[k][_n]['seq'].shape[0] seq[k*sample_n+_n, :seq_len] = self.done_beams[k][_n]['seq'] seqLogprobs[k*sample_n+_n, :seq_len] = self.done_beams[k][_n]['logps'] else: seq_len = self.done_beams[k][0]['seq'].shape[0] seq[k, :seq_len] = self.done_beams[k][0]['seq'] # the first beam has highest cumulative score seqLogprobs[k, :seq_len] = self.done_beams[k][0]['logps'] # return the samples and their log likelihoods return seq, seqLogprobs def _sample(self, fc_feats, att_feats, trace_feats, box_feats, att_masks=None, trace_masks=None, show_gate_labels=None, task=None, opt={}): sample_method = opt.get('sample_method', 'greedy') beam_size = opt.get('beam_size', 1) temperature = opt.get('temperature', 1.0) sample_n = int(opt.get('sample_n', 1)) group_size = opt.get('group_size', 1) output_logsoftmax = opt.get('output_logsoftmax', 1) decoding_constraint = opt.get('decoding_constraint', 0) block_trigrams = opt.get('block_trigrams', 0) remove_bad_endings = opt.get('remove_bad_endings', 0) if beam_size > 1 and sample_method in ['greedy', 'beam_search']: return self._sample_beam(fc_feats, att_feats, trace_feats, box_feats, att_masks, trace_masks, show_gate_labels, task, opt) if group_size > 1: return self._diverse_sample(fc_feats, att_feats, att_masks, opt) batch_size = fc_feats.size(0) state = self.init_hidden(batch_size*sample_n) p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, trace_feats_to_decoder = \ self._prepare_feature(fc_feats, att_feats, trace_feats, box_feats, att_masks, trace_masks) if sample_n > 1: p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = utils.repeat_tensors(sample_n, [p_fc_feats, p_att_feats, pp_att_feats, p_att_masks] ) trigrams = [] # will be a list of batch_size dictionaries seq = fc_feats.new_full((batch_size*sample_n, self.seq_length), self.pad_idx, dtype=torch.long) seqLogprobs = fc_feats.new_zeros(batch_size*sample_n, self.seq_length, self.vocab_size + 1) if task == 'both': tmp_trace_feats = torch.zeros([trace_feats_to_decoder.shape[0], 1, trace_feats_to_decoder.shape[2]]).to(trace_masks.device) for t in range(self.seq_length + 1): if t == 0: # input <bos> it = fc_feats.new_full([batch_size*sample_n], self.bos_idx, dtype=torch.long) if task == 'caption' or task == 'show': logprobs, state = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, trace_feats_to_decoder, trace_masks, show_gate_labels, task, state, output_logsoftmax=output_logsoftmax) elif task == 'both': logprobs, state, output_trace = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, tmp_trace_feats, trace_masks, show_gate_labels, task, state, output_logsoftmax=output_logsoftmax) output_trace = output_trace[:, t] output_trace[:, 4] = (output_trace[:, 2] - output_trace[:, 0]) * (output_trace[:, 3] - output_trace[:, 1]) tmp_trace_feats = torch.cat([tmp_trace_feats, output_trace.unsqueeze(1)], 1) if decoding_constraint and t > 0: tmp = logprobs.new_zeros(logprobs.size()) tmp.scatter_(1, seq[:,t-1].data.unsqueeze(1), float('-inf')) logprobs = logprobs + tmp if remove_bad_endings and t > 0: tmp = logprobs.new_zeros(logprobs.size()) prev_bad = np.isin(seq[:,t-1].data.cpu().numpy(), self.bad_endings_ix) # Make it impossible to generate bad_endings tmp[torch.from_numpy(prev_bad.astype('uint8')), 0] = float('-inf') logprobs = logprobs + tmp # Mess with trigrams # Copy from https://github.com/lukemelas/image-paragraph-captioning if block_trigrams and t >= 3: # Store trigram generated at last step prev_two_batch = seq[:,t-3:t-1] for i in range(batch_size): # = seq.size(0) prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item()) current = seq[i][t-1] if t == 3: # initialize trigrams.append({prev_two: [current]}) # {LongTensor: list containing 1 int} elif t > 3: if prev_two in trigrams[i]: # add to list trigrams[i][prev_two].append(current) else: # create list trigrams[i][prev_two] = [current] # Block used trigrams at next step prev_two_batch = seq[:,t-2:t] mask = torch.zeros(logprobs.size(), requires_grad=False).to(logprobs.device) # batch_size x vocab_size for i in range(batch_size): prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item()) if prev_two in trigrams[i]: for j in trigrams[i][prev_two]: mask[i,j] += 1 # Apply mask to log probs #logprobs = logprobs - (mask * 1e9) alpha = 2.0 # = 4 logprobs = logprobs + (mask * -0.693 * alpha) # ln(1/2) * alpha (alpha -> infty works best) # sample the next word if t == self.seq_length: # skip if we achieve maximum length break it, sampleLogprobs = self.sample_next_word(logprobs, sample_method, temperature) # stop when all finished if t == 0: unfinished = it != self.eos_idx else: it[~unfinished] = self.pad_idx # This allows eos_idx not being overwritten to 0 logprobs = logprobs * unfinished.unsqueeze(1).to(logprobs) unfinished = unfinished & (it != self.eos_idx) seq[:,t] = it seqLogprobs[:,t] = logprobs # quit loop if all sequences have finished if unfinished.sum() == 0: break ### for decoder evaluate: cut at the ground truth caption length. Since in controlled caption generation, we assume we know the caption length # if task != 'both': # for i in range(trace_masks.shape[0]): # tmp_num = trace_masks[i].sum().long() # seq[i, tmp_num:] = 0 # seqLogprobs[i, tmp_num:, :] = 0 if task != 'both': return seq, seqLogprobs else: tmp_trace_feats = tmp_trace_feats[:, 1:-1] return seq, seqLogprobs, torch.cat([tmp_trace_feats, torch.zeros([seq.shape[0], seq.shape[1]-tmp_trace_feats.shape[1], tmp_trace_feats.shape[2]]).to(seq.device)], 1) def _diverse_sample(self, fc_feats, att_feats, att_masks=None, opt={}): sample_method = opt.get('sample_method', 'greedy') beam_size = opt.get('beam_size', 1) temperature = opt.get('temperature', 1.0) group_size = opt.get('group_size', 1) diversity_lambda = opt.get('diversity_lambda', 0.5) decoding_constraint = opt.get('decoding_constraint', 0) block_trigrams = opt.get('block_trigrams', 0) remove_bad_endings = opt.get('remove_bad_endings', 0) batch_size = fc_feats.size(0) state = self.init_hidden(batch_size) p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = self._prepare_feature(fc_feats, att_feats, att_masks) trigrams_table = [[] for _ in range(group_size)] # will be a list of batch_size dictionaries seq_table = [fc_feats.new_full((batch_size, self.seq_length), self.pad_idx, dtype=torch.long) for _ in range(group_size)] seqLogprobs_table = [fc_feats.new_zeros(batch_size, self.seq_length) for _ in range(group_size)] state_table = [self.init_hidden(batch_size) for _ in range(group_size)] for tt in range(self.seq_length + group_size): for divm in range(group_size): t = tt - divm seq = seq_table[divm] seqLogprobs = seqLogprobs_table[divm] trigrams = trigrams_table[divm] if t >= 0 and t <= self.seq_length-1: if t == 0: # input <bos> it = fc_feats.new_full([batch_size], self.bos_idx, dtype=torch.long) else: it = seq[:, t-1] # changed logprobs, state_table[divm] = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, state_table[divm]) # changed logprobs = F.log_softmax(logprobs / temperature, dim=-1) # Add diversity if divm > 0: unaug_logprobs = logprobs.clone() for prev_choice in range(divm): prev_decisions = seq_table[prev_choice][:, t] logprobs[:, prev_decisions] = logprobs[:, prev_decisions] - diversity_lambda if decoding_constraint and t > 0: tmp = logprobs.new_zeros(logprobs.size()) tmp.scatter_(1, seq[:,t-1].data.unsqueeze(1), float('-inf')) logprobs = logprobs + tmp if remove_bad_endings and t > 0: tmp = logprobs.new_zeros(logprobs.size()) prev_bad = np.isin(seq[:,t-1].data.cpu().numpy(), self.bad_endings_ix) # Impossible to generate remove_bad_endings tmp[torch.from_numpy(prev_bad.astype('uint8')), 0] = float('-inf') logprobs = logprobs + tmp # Mess with trigrams if block_trigrams and t >= 3: # Store trigram generated at last step prev_two_batch = seq[:,t-3:t-1] for i in range(batch_size): # = seq.size(0) prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item()) current = seq[i][t-1] if t == 3: # initialize trigrams.append({prev_two: [current]}) # {LongTensor: list containing 1 int} elif t > 3: if prev_two in trigrams[i]: # add to list trigrams[i][prev_two].append(current) else: # create list trigrams[i][prev_two] = [current] # Block used trigrams at next step prev_two_batch = seq[:,t-2:t] mask = torch.zeros(logprobs.size(), requires_grad=False).cuda() # batch_size x vocab_size for i in range(batch_size): prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item()) if prev_two in trigrams[i]: for j in trigrams[i][prev_two]: mask[i,j] += 1 # Apply mask to log probs #logprobs = logprobs - (mask * 1e9) alpha = 2.0 # = 4 logprobs = logprobs + (mask * -0.693 * alpha) # ln(1/2) * alpha (alpha -> infty works best) it, sampleLogprobs = self.sample_next_word(logprobs, sample_method, 1) # stop when all finished if t == 0: unfinished = it != self.eos_idx else: unfinished = seq[:,t-1] != self.pad_idx & seq[:,t-1] != self.eos_idx it[~unfinished] = self.pad_idx unfinished = unfinished & (it != self.eos_idx) # changed seq[:,t] = it seqLogprobs[:,t] = sampleLogprobs.view(-1) return torch.stack(seq_table, 1).reshape(batch_size * group_size, -1), torch.stack(seqLogprobs_table, 1).reshape(batch_size * group_size, -1) class AdaAtt_lstm(nn.Module): def __init__(self, opt, use_maxout=True): super(AdaAtt_lstm, self).__init__() self.input_encoding_size = opt.input_encoding_size #self.rnn_type = opt.rnn_type self.rnn_size = opt.rnn_size self.num_layers = opt.num_layers self.drop_prob_lm = opt.drop_prob_lm self.fc_feat_size = opt.fc_feat_size self.att_feat_size = opt.att_feat_size self.att_hid_size = opt.att_hid_size self.use_maxout = use_maxout # Build a LSTM self.w2h = nn.Linear(self.input_encoding_size, (4+(use_maxout==True)) * self.rnn_size) self.v2h = nn.Linear(self.rnn_size, (4+(use_maxout==True)) * self.rnn_size) self.i2h = nn.ModuleList([nn.Linear(self.rnn_size, (4+(use_maxout==True)) * self.rnn_size) for _ in range(self.num_layers - 1)]) self.h2h = nn.ModuleList([nn.Linear(self.rnn_size, (4+(use_maxout==True)) * self.rnn_size) for _ in range(self.num_layers)]) # Layers for getting the fake region if self.num_layers == 1: self.r_w2h = nn.Linear(self.input_encoding_size, self.rnn_size) self.r_v2h = nn.Linear(self.rnn_size, self.rnn_size) else: self.r_i2h = nn.Linear(self.rnn_size, self.rnn_size) self.r_h2h = nn.Linear(self.rnn_size, self.rnn_size) def forward(self, xt, img_fc, state): hs = [] cs = [] for L in range(self.num_layers): # c,h from previous timesteps prev_h = state[0][L] prev_c = state[1][L] # the input to this layer if L == 0: x = xt i2h = self.w2h(x) + self.v2h(img_fc) else: x = hs[-1] x = F.dropout(x, self.drop_prob_lm, self.training) i2h = self.i2h[L-1](x) all_input_sums = i2h+self.h2h[L](prev_h) sigmoid_chunk = all_input_sums.narrow(1, 0, 3 * self.rnn_size) sigmoid_chunk = torch.sigmoid(sigmoid_chunk) # decode the gates in_gate = sigmoid_chunk.narrow(1, 0, self.rnn_size) forget_gate = sigmoid_chunk.narrow(1, self.rnn_size, self.rnn_size) out_gate = sigmoid_chunk.narrow(1, self.rnn_size * 2, self.rnn_size) # decode the write inputs if not self.use_maxout: in_transform = torch.tanh(all_input_sums.narrow(1, 3 * self.rnn_size, self.rnn_size)) else: in_transform = all_input_sums.narrow(1, 3 * self.rnn_size, 2 * self.rnn_size) in_transform = torch.max(\ in_transform.narrow(1, 0, self.rnn_size), in_transform.narrow(1, self.rnn_size, self.rnn_size)) # perform the LSTM update next_c = forget_gate * prev_c + in_gate * in_transform # gated cells form the output tanh_nex_c = torch.tanh(next_c) next_h = out_gate * tanh_nex_c if L == self.num_layers-1: if L == 0: i2h = self.r_w2h(x) + self.r_v2h(img_fc) else: i2h = self.r_i2h(x) n5 = i2h+self.r_h2h(prev_h) fake_region = torch.sigmoid(n5) * tanh_nex_c cs.append(next_c) hs.append(next_h) # set up the decoder top_h = hs[-1] top_h = F.dropout(top_h, self.drop_prob_lm, self.training) fake_region = F.dropout(fake_region, self.drop_prob_lm, self.training) state = (torch.cat([_.unsqueeze(0) for _ in hs], 0), torch.cat([_.unsqueeze(0) for _ in cs], 0)) return top_h, fake_region, state class AdaAtt_attention(nn.Module): def __init__(self, opt): super(AdaAtt_attention, self).__init__() self.input_encoding_size = opt.input_encoding_size #self.rnn_type = opt.rnn_type self.rnn_size = opt.rnn_size self.drop_prob_lm = opt.drop_prob_lm self.att_hid_size = opt.att_hid_size # fake region embed self.fr_linear = nn.Sequential( nn.Linear(self.rnn_size, self.input_encoding_size), nn.ReLU(), nn.Dropout(self.drop_prob_lm)) self.fr_embed = nn.Linear(self.input_encoding_size, self.att_hid_size) # h out embed self.ho_linear = nn.Sequential( nn.Linear(self.rnn_size, self.input_encoding_size), nn.Tanh(), nn.Dropout(self.drop_prob_lm)) self.ho_embed = nn.Linear(self.input_encoding_size, self.att_hid_size) self.alpha_net = nn.Linear(self.att_hid_size, 1) self.att2h = nn.Linear(self.rnn_size, self.rnn_size) def forward(self, h_out, fake_region, conv_feat, conv_feat_embed, att_masks=None): # View into three dimensions att_size = conv_feat.numel() // conv_feat.size(0) // self.rnn_size conv_feat = conv_feat.view(-1, att_size, self.rnn_size) conv_feat_embed = conv_feat_embed.view(-1, att_size, self.att_hid_size) # view neighbor from bach_size * neighbor_num x rnn_size to bach_size x rnn_size * neighbor_num fake_region = self.fr_linear(fake_region) fake_region_embed = self.fr_embed(fake_region) h_out_linear = self.ho_linear(h_out) h_out_embed = self.ho_embed(h_out_linear) txt_replicate = h_out_embed.unsqueeze(1).expand(h_out_embed.size(0), att_size + 1, h_out_embed.size(1)) img_all = torch.cat([fake_region.view(-1,1,self.input_encoding_size), conv_feat], 1) img_all_embed = torch.cat([fake_region_embed.view(-1,1,self.input_encoding_size), conv_feat_embed], 1) hA = torch.tanh(img_all_embed + txt_replicate) hA = F.dropout(hA,self.drop_prob_lm, self.training) hAflat = self.alpha_net(hA.view(-1, self.att_hid_size)) PI = F.softmax(hAflat.view(-1, att_size + 1), dim=1) if att_masks is not None: att_masks = att_masks.view(-1, att_size) PI = PI * torch.cat([att_masks[:,:1], att_masks], 1) # assume one one at the first time step. PI = PI / PI.sum(1, keepdim=True) visAtt = torch.bmm(PI.unsqueeze(1), img_all) visAttdim = visAtt.squeeze(1) atten_out = visAttdim + h_out_linear h = torch.tanh(self.att2h(atten_out)) h = F.dropout(h, self.drop_prob_lm, self.training) return h class AdaAttCore(nn.Module): def __init__(self, opt, use_maxout=False): super(AdaAttCore, self).__init__() self.lstm = AdaAtt_lstm(opt, use_maxout) self.attention = AdaAtt_attention(opt) def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None): h_out, p_out, state = self.lstm(xt, fc_feats, state) atten_out = self.attention(h_out, p_out, att_feats, p_att_feats, att_masks) return atten_out, state class UpDownCore(nn.Module): def __init__(self, opt, use_maxout=False): super(UpDownCore, self).__init__() self.drop_prob_lm = opt.drop_prob_lm self.att_lstm = nn.LSTMCell(opt.input_encoding_size + opt.rnn_size * 2, opt.rnn_size) # we, fc, h^2_t-1 self.lang_lstm = nn.LSTMCell(opt.rnn_size * 2, opt.rnn_size) # h^1_t, \hat v self.attention = Attention(opt) def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None): prev_h = state[0][-1] att_lstm_input = torch.cat([prev_h, fc_feats, xt], 1) h_att, c_att = self.att_lstm(att_lstm_input, (state[0][0], state[1][0])) att = self.attention(h_att, att_feats, p_att_feats, att_masks) lang_lstm_input = torch.cat([att, h_att], 1) # lang_lstm_input = torch.cat([att, F.dropout(h_att, self.drop_prob_lm, self.training)], 1) ????? h_lang, c_lang = self.lang_lstm(lang_lstm_input, (state[0][1], state[1][1])) output = F.dropout(h_lang, self.drop_prob_lm, self.training) state = (torch.stack([h_att, h_lang]), torch.stack([c_att, c_lang])) return output, state ############################################################################ # Notice: # StackAtt and DenseAtt are models that I randomly designed. # They are not related to any paper. ############################################################################ from .FCModel import LSTMCore class StackAttCore(nn.Module): def __init__(self, opt, use_maxout=False): super(StackAttCore, self).__init__() self.drop_prob_lm = opt.drop_prob_lm # self.att0 = Attention(opt) self.att1 = Attention(opt) self.att2 = Attention(opt) opt_input_encoding_size = opt.input_encoding_size opt.input_encoding_size = opt.input_encoding_size + opt.rnn_size self.lstm0 = LSTMCore(opt) # att_feat + word_embedding opt.input_encoding_size = opt.rnn_size * 2 self.lstm1 = LSTMCore(opt) self.lstm2 = LSTMCore(opt) opt.input_encoding_size = opt_input_encoding_size # self.emb1 = nn.Linear(opt.rnn_size, opt.rnn_size) self.emb2 = nn.Linear(opt.rnn_size, opt.rnn_size) def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None): # att_res_0 = self.att0(state[0][-1], att_feats, p_att_feats, att_masks) h_0, state_0 = self.lstm0(torch.cat([xt,fc_feats],1), [state[0][0:1], state[1][0:1]]) att_res_1 = self.att1(h_0, att_feats, p_att_feats, att_masks) h_1, state_1 = self.lstm1(torch.cat([h_0,att_res_1],1), [state[0][1:2], state[1][1:2]]) att_res_2 = self.att2(h_1 + self.emb2(att_res_1), att_feats, p_att_feats, att_masks) h_2, state_2 = self.lstm2(torch.cat([h_1,att_res_2],1), [state[0][2:3], state[1][2:3]]) return h_2, [torch.cat(_, 0) for _ in zip(state_0, state_1, state_2)] class DenseAttCore(nn.Module): def __init__(self, opt, use_maxout=False): super(DenseAttCore, self).__init__() self.drop_prob_lm = opt.drop_prob_lm # self.att0 = Attention(opt) self.att1 = Attention(opt) self.att2 = Attention(opt) opt_input_encoding_size = opt.input_encoding_size opt.input_encoding_size = opt.input_encoding_size + opt.rnn_size self.lstm0 = LSTMCore(opt) # att_feat + word_embedding opt.input_encoding_size = opt.rnn_size * 2 self.lstm1 = LSTMCore(opt) self.lstm2 = LSTMCore(opt) opt.input_encoding_size = opt_input_encoding_size # self.emb1 = nn.Linear(opt.rnn_size, opt.rnn_size) self.emb2 = nn.Linear(opt.rnn_size, opt.rnn_size) # fuse h_0 and h_1 self.fusion1 = nn.Sequential(nn.Linear(opt.rnn_size*2, opt.rnn_size), nn.ReLU(), nn.Dropout(opt.drop_prob_lm)) # fuse h_0, h_1 and h_2 self.fusion2 = nn.Sequential(nn.Linear(opt.rnn_size*3, opt.rnn_size), nn.ReLU(), nn.Dropout(opt.drop_prob_lm)) def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None): # att_res_0 = self.att0(state[0][-1], att_feats, p_att_feats, att_masks) h_0, state_0 = self.lstm0(torch.cat([xt,fc_feats],1), [state[0][0:1], state[1][0:1]]) att_res_1 = self.att1(h_0, att_feats, p_att_feats, att_masks) h_1, state_1 = self.lstm1(torch.cat([h_0,att_res_1],1), [state[0][1:2], state[1][1:2]]) att_res_2 = self.att2(h_1 + self.emb2(att_res_1), att_feats, p_att_feats, att_masks) h_2, state_2 = self.lstm2(torch.cat([self.fusion1(torch.cat([h_0, h_1], 1)),att_res_2],1), [state[0][2:3], state[1][2:3]]) return self.fusion2(torch.cat([h_0, h_1, h_2], 1)), [torch.cat(_, 0) for _ in zip(state_0, state_1, state_2)] class Attention(nn.Module): def __init__(self, opt): super(Attention, self).__init__() self.rnn_size = opt.rnn_size self.att_hid_size = opt.att_hid_size self.h2att = nn.Linear(self.rnn_size, self.att_hid_size) self.alpha_net = nn.Linear(self.att_hid_size, 1) def forward(self, h, att_feats, p_att_feats, att_masks=None): # The p_att_feats here is already projected att_size = att_feats.numel() // att_feats.size(0) // att_feats.size(-1) att = p_att_feats.view(-1, att_size, self.att_hid_size) att_h = self.h2att(h) # batch * att_hid_size att_h = att_h.unsqueeze(1).expand_as(att) # batch * att_size * att_hid_size dot = att + att_h # batch * att_size * att_hid_size dot = torch.tanh(dot) # batch * att_size * att_hid_size dot = dot.view(-1, self.att_hid_size) # (batch * att_size) * att_hid_size dot = self.alpha_net(dot) # (batch * att_size) * 1 dot = dot.view(-1, att_size) # batch * att_size weight = F.softmax(dot, dim=1) # batch * att_size if att_masks is not None: weight = weight * att_masks.view(-1, att_size).to(weight) weight = weight / weight.sum(1, keepdim=True) # normalize to 1 att_feats_ = att_feats.view(-1, att_size, att_feats.size(-1)) # batch * att_size * att_feat_size att_res = torch.bmm(weight.unsqueeze(1), att_feats_).squeeze(1) # batch * att_feat_size return att_res class Att2in2Core(nn.Module): def __init__(self, opt): super(Att2in2Core, self).__init__() self.input_encoding_size = opt.input_encoding_size #self.rnn_type = opt.rnn_type self.rnn_size = opt.rnn_size #self.num_layers = opt.num_layers self.drop_prob_lm = opt.drop_prob_lm self.fc_feat_size = opt.fc_feat_size self.att_feat_size = opt.att_feat_size self.att_hid_size = opt.att_hid_size # Build a LSTM self.a2c = nn.Linear(self.rnn_size, 2 * self.rnn_size) self.i2h = nn.Linear(self.input_encoding_size, 5 * self.rnn_size) self.h2h = nn.Linear(self.rnn_size, 5 * self.rnn_size) self.dropout = nn.Dropout(self.drop_prob_lm) self.attention = Attention(opt) def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None): att_res = self.attention(state[0][-1], att_feats, p_att_feats, att_masks) all_input_sums = self.i2h(xt) + self.h2h(state[0][-1]) sigmoid_chunk = all_input_sums.narrow(1, 0, 3 * self.rnn_size) sigmoid_chunk = torch.sigmoid(sigmoid_chunk) in_gate = sigmoid_chunk.narrow(1, 0, self.rnn_size) forget_gate = sigmoid_chunk.narrow(1, self.rnn_size, self.rnn_size) out_gate = sigmoid_chunk.narrow(1, self.rnn_size * 2, self.rnn_size) in_transform = all_input_sums.narrow(1, 3 * self.rnn_size, 2 * self.rnn_size) + \ self.a2c(att_res) in_transform = torch.max(\ in_transform.narrow(1, 0, self.rnn_size), in_transform.narrow(1, self.rnn_size, self.rnn_size)) next_c = forget_gate * state[1][-1] + in_gate * in_transform next_h = out_gate * torch.tanh(next_c) output = self.dropout(next_h) state = (next_h.unsqueeze(0), next_c.unsqueeze(0)) return output, state class Att2inCore(Att2in2Core): def __init__(self, opt): super(Att2inCore, self).__init__(opt) del self.a2c self.a2c = nn.Linear(self.att_feat_size, 2 * self.rnn_size) """ Note this is my attempt to replicate att2all model in self-critical paper. However, this is not a correct replication actually. Will fix it. """ class Att2all2Core(nn.Module): def __init__(self, opt): super(Att2all2Core, self).__init__() self.input_encoding_size = opt.input_encoding_size #self.rnn_type = opt.rnn_type self.rnn_size = opt.rnn_size #self.num_layers = opt.num_layers self.drop_prob_lm = opt.drop_prob_lm self.fc_feat_size = opt.fc_feat_size self.att_feat_size = opt.att_feat_size self.att_hid_size = opt.att_hid_size # Build a LSTM self.a2h = nn.Linear(self.rnn_size, 5 * self.rnn_size) self.i2h = nn.Linear(self.input_encoding_size, 5 * self.rnn_size) self.h2h = nn.Linear(self.rnn_size, 5 * self.rnn_size) self.dropout = nn.Dropout(self.drop_prob_lm) self.attention = Attention(opt) def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None): att_res = self.attention(state[0][-1], att_feats, p_att_feats, att_masks) all_input_sums = self.i2h(xt) + self.h2h(state[0][-1]) + self.a2h(att_res) sigmoid_chunk = all_input_sums.narrow(1, 0, 3 * self.rnn_size) sigmoid_chunk = torch.sigmoid(sigmoid_chunk) in_gate = sigmoid_chunk.narrow(1, 0, self.rnn_size) forget_gate = sigmoid_chunk.narrow(1, self.rnn_size, self.rnn_size) out_gate = sigmoid_chunk.narrow(1, self.rnn_size * 2, self.rnn_size) in_transform = all_input_sums.narrow(1, 3 * self.rnn_size, 2 * self.rnn_size) in_transform = torch.max(\ in_transform.narrow(1, 0, self.rnn_size), in_transform.narrow(1, self.rnn_size, self.rnn_size)) next_c = forget_gate * state[1][-1] + in_gate * in_transform next_h = out_gate * torch.tanh(next_c) output = self.dropout(next_h) state = (next_h.unsqueeze(0), next_c.unsqueeze(0)) return output, state class AdaAttModel(AttModel): def __init__(self, opt): super(AdaAttModel, self).__init__(opt) self.core = AdaAttCore(opt) # AdaAtt with maxout lstm class AdaAttMOModel(AttModel): def __init__(self, opt): super(AdaAttMOModel, self).__init__(opt) self.core = AdaAttCore(opt, True) class Att2in2Model(AttModel): def __init__(self, opt): super(Att2in2Model, self).__init__(opt) self.core = Att2in2Core(opt) delattr(self, 'fc_embed') self.fc_embed = lambda x : x class Att2all2Model(AttModel): def __init__(self, opt): super(Att2all2Model, self).__init__(opt) self.core = Att2all2Core(opt) delattr(self, 'fc_embed') self.fc_embed = lambda x : x class UpDownModel(AttModel): def __init__(self, opt): super(UpDownModel, self).__init__(opt) self.num_layers = 2 self.core = UpDownCore(opt) class StackAttModel(AttModel): def __init__(self, opt): super(StackAttModel, self).__init__(opt) self.num_layers = 3 self.core = StackAttCore(opt) class DenseAttModel(AttModel): def __init__(self, opt): super(DenseAttModel, self).__init__(opt) self.num_layers = 3 self.core = DenseAttCore(opt) class Att2inModel(AttModel): def __init__(self, opt): super(Att2inModel, self).__init__(opt) del self.embed, self.fc_embed, self.att_embed self.embed = nn.Embedding(self.vocab_size + 1, self.input_encoding_size) self.fc_embed = self.att_embed = lambda x: x del self.ctx2att self.ctx2att = nn.Linear(self.att_feat_size, self.att_hid_size) self.core = Att2inCore(opt) self.init_weights() def init_weights(self): initrange = 0.1 self.embed.weight.data.uniform_(-initrange, initrange) self.logit.bias.data.fill_(0) self.logit.weight.data.uniform_(-initrange, initrange) class NewFCModel(AttModel): def __init__(self, opt): super(NewFCModel, self).__init__(opt) self.fc_embed = nn.Linear(self.fc_feat_size, self.input_encoding_size) self.embed = nn.Embedding(self.vocab_size + 1, self.input_encoding_size) self._core = LSTMCore(opt) delattr(self, 'att_embed') self.att_embed = lambda x : x delattr(self, 'ctx2att') self.ctx2att = lambda x: x def core(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks): # Step 0, feed the input image # if (self.training and state[0].is_leaf) or \ # (not self.training and state[0].sum() == 0): # _, state = self._core(fc_feats, state) # three cases # normal mle training # Sample # beam search (diverse beam search) # fixed captioning module. is_first_step = (state[0]==0).all(2).all(0) # size: B if is_first_step.all(): _, state = self._core(fc_feats, state) elif is_first_step.any(): # This is mostly for diverse beam search I think new_state = [torch.zeros_like(_) for _ in state] new_state[0][:, ~is_first_step] = state[0][:, ~is_first_step] new_state[1][:, ~is_first_step] = state[1][:, ~is_first_step] _, state = self._core(fc_feats, state) new_state[0][:, is_first_step] = state[0][:, is_first_step] new_state[1][:, is_first_step] = state[1][:, is_first_step] state = new_state # if (state[0]==0).all(): # # Let's forget about diverse beam search first # _, state = self._core(fc_feats, state) return self._core(xt, state) def _prepare_feature(self, fc_feats, att_feats, att_masks): fc_feats = self.fc_embed(fc_feats) return fc_feats, att_feats, att_feats, att_masks class LMModel(AttModel): def __init__(self, opt): super(LMModel, self).__init__(opt) delattr(self, 'fc_embed') self.fc_embed = lambda x: x.new_zeros(x.shape[0], self.input_encoding_size) self.embed = nn.Embedding(self.vocab_size + 1, self.input_encoding_size) self._core = LSTMCore(opt) delattr(self, 'att_embed') self.att_embed = lambda x : x delattr(self, 'ctx2att') self.ctx2att = lambda x: x def core(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks): if (state[0]==0).all(): # Let's forget about diverse beam search first _, state = self._core(fc_feats, state) return self._core(xt, state) def _prepare_feature(self, fc_feats, att_feats, att_masks): fc_feats = self.fc_embed(fc_feats) return fc_feats, None, None, None
connect-caption-and-trace-main
captioning/models/AttModel_for_coco_caption_task.py
import torch from . import losses from ..utils.rewards import init_scorer, get_self_critical_reward class LossWrapper(torch.nn.Module): def __init__(self, model, opt): super(LossWrapper, self).__init__() self.opt = opt self.model = model if opt.label_smoothing > 0: self.crit = losses.LabelSmoothing(smoothing=opt.label_smoothing) else: self.crit = losses.LanguageModelCriterion() self.rl_crit = losses.RewardCriterion() self.struc_crit = losses.StructureLosses(opt) def forward(self, fc_feats, att_feats, trace_feats, box_feats, labels, masks, att_masks, trace_masks, gts, gt_indices, sc_flag, struc_flag): opt = self.opt out = {} if struc_flag: if opt.structure_loss_weight < 1: lm_loss = self.crit(self.model(fc_feats, att_feats, labels[..., :-1], att_masks), labels[..., 1:], masks[..., 1:]) else: lm_loss = torch.tensor(0).type_as(fc_feats) if opt.structure_loss_weight > 0: gen_result, sample_logprobs = self.model(fc_feats, att_feats, att_masks, opt={'sample_method':opt.train_sample_method, 'beam_size':opt.train_beam_size, 'output_logsoftmax': opt.struc_use_logsoftmax or opt.structure_loss_type == 'softmax_margin'\ or not 'margin' in opt.structure_loss_type, 'sample_n': opt.train_sample_n}, mode='sample') gts = [gts[_] for _ in gt_indices.tolist()] struc_loss = self.struc_crit(sample_logprobs, gen_result, gts) else: struc_loss = {'loss': torch.tensor(0).type_as(fc_feats), 'reward': torch.tensor(0).type_as(fc_feats)} loss = (1-opt.structure_loss_weight) * lm_loss + opt.structure_loss_weight * struc_loss['loss'] out['lm_loss'] = lm_loss out['struc_loss'] = struc_loss['loss'] out['reward'] = struc_loss['reward'] elif not sc_flag: loss = self.crit(self.model(fc_feats, att_feats, trace_feats, box_feats, labels[..., :-1], att_masks, trace_masks), labels[..., 1:], masks[..., 1:]) else: self.model.eval() with torch.no_grad(): greedy_res, _ = self.model(fc_feats, att_feats, att_masks, mode='sample', opt={'sample_method': opt.sc_sample_method, 'beam_size': opt.sc_beam_size}) self.model.train() gen_result, sample_logprobs = self.model(fc_feats, att_feats, att_masks, opt={'sample_method':opt.train_sample_method, 'beam_size':opt.train_beam_size, 'sample_n': opt.train_sample_n}, mode='sample') gts = [gts[_] for _ in gt_indices.tolist()] reward = get_self_critical_reward(greedy_res, gts, gen_result, self.opt) reward = torch.from_numpy(reward).to(sample_logprobs) loss = self.rl_crit(sample_logprobs, gen_result.data, reward) out['reward'] = reward[:,0].mean() out['loss'] = loss return out
connect-caption-and-trace-main
captioning/modules/loss_wrapper_caption_generation.py
import torch import torch.nn.functional as F from . import losses from ..utils.rewards import init_scorer, get_self_critical_reward class LossWrapper(torch.nn.Module): def __init__(self, model, opt): super(LossWrapper, self).__init__() self.opt = opt self.model = model if opt.label_smoothing > 0: self.crit_caption = losses.LabelSmoothing(smoothing=opt.label_smoothing) else: self.crit_caption = losses.LanguageModelCriterion() self.rl_crit = losses.RewardCriterion() self.struc_crit = losses.StructureLosses(opt) self.show_gate_crit = torch.nn.CrossEntropyLoss() # regression loss for trace generation self.crit_trace = torch.nn.L1Loss() def forward(self, fc_feats, att_feats, trace_feats, box_feats, labels, masks, att_masks, trace_masks, show_labels, show_trace_feats, show_trace_masks, show_masks, show_gate_labels, gts, gt_indices, sc_flag, struc_flag): opt = self.opt out = {} if struc_flag: if opt.structure_loss_weight < 1: lm_loss = self.crit(self.model(fc_feats, att_feats, labels[..., :-1], att_masks), labels[..., 1:], masks[..., 1:]) else: lm_loss = torch.tensor(0).type_as(fc_feats) if opt.structure_loss_weight > 0: gen_result, sample_logprobs = self.model(fc_feats, att_feats, att_masks, opt={'sample_method':opt.train_sample_method, 'beam_size':opt.train_beam_size, 'output_logsoftmax': opt.struc_use_logsoftmax or opt.structure_loss_type == 'softmax_margin'\ or not 'margin' in opt.structure_loss_type, 'sample_n': opt.train_sample_n}, mode='sample') gts = [gts[_] for _ in gt_indices.tolist()] struc_loss = self.struc_crit(sample_logprobs, gen_result, gts) else: struc_loss = {'loss': torch.tensor(0).type_as(fc_feats), 'reward': torch.tensor(0).type_as(fc_feats)} loss = (1-opt.structure_loss_weight) * lm_loss + opt.structure_loss_weight * struc_loss['loss'] out['lm_loss'] = lm_loss out['struc_loss'] = struc_loss['loss'] out['reward'] = struc_loss['reward'] elif not sc_flag: # train generating both caption and trace # caption_outputs_both, trace_outputs_both = self.model(fc_feats, att_feats, trace_feats, box_feats, labels[..., :-1], # att_masks, trace_masks, task='both') # loss_mask = ((trace_masks != 0) * (trace_feats[:, :, 4] != 1)).unsqueeze(2) # loss_both_trace = (torch.abs(trace_outputs_both[:, :, :4] - trace_feats[:, :, :4]) * loss_mask).sum() / ( # loss_mask.sum() * 4) # loss_both_caption = self.crit_caption(caption_outputs_both, labels[..., 1:], masks[..., 1:]) # loss_both = loss_both_caption + loss_both_trace # # # # # # # for caption generation # caption_outputs = self.model(fc_feats, att_feats, trace_feats, box_feats, labels[..., :-1], # att_masks, trace_masks, task='caption') # loss_caption = self.crit_caption(caption_outputs, labels[..., 1:], masks[..., 1:]) # # # # # for trace generation - regression # trace_outputs = self.model(fc_feats, att_feats, trace_feats, box_feats, labels[..., :-1], # att_masks, trace_masks, task='trace') # loss_mask = ((trace_masks!=0) * (trace_feats[:,:,4]!=1)).unsqueeze(2) # for those words without labels ([0,0,1,1,1]), don't calculate the loss # loss_trace = (torch.abs(trace_outputs[:,:,:4] - trace_feats[:,:,:4]) * loss_mask).sum() / (loss_mask.sum() * 4) # # # for show-control-tell 2 layer with gate prediction # show_caption_outputs, show_gate_outputs = self.model(fc_feats, att_feats, show_trace_feats, box_feats, show_labels[..., :-1], # att_masks, show_trace_masks, show_gate_labels=None, task='show') # loss_show_caption = self.crit_caption(show_caption_outputs, show_labels[..., 1:], show_masks[..., 1:]) # loss_show_gate = self.show_gate_crit(show_gate_outputs.reshape(-1, show_gate_outputs.shape[-1]), # show_gate_labels[..., 1:].reshape(-1)) # # for show control tell 1 layer, without gate prediction show_caption_outputs = self.model(fc_feats, att_feats, show_trace_feats, box_feats, show_labels[..., :-1], att_masks, show_trace_masks, task='show') loss_show_caption = self.crit_caption(show_caption_outputs, show_labels[..., 1:], show_masks[..., 1:]) # # # for cycle trace and caption # # trace_outputs_both = trace_outputs_both.detach() # # caption_outputs_cycle = self.model(fc_feats, att_feats, trace_outputs_both, box_feats, labels[..., :-1], # # att_masks, trace_masks, task='caption') # # caption_outputs_cycle_1 = torch.exp(caption_outputs) # get the logits before log (only after softmax) # trace_outputs_cycle_1 = self.model(fc_feats, att_feats, trace_feats, box_feats, caption_outputs_cycle_1, # att_masks, trace_masks, task='cycle_trace') # loss_cycle_trace = (torch.abs(trace_outputs_cycle_1[:,:,:4] - trace_feats[:,:,:4]) * loss_mask).sum() / (loss_mask.sum() * 4) # # trace_outputs_cycle_2 = trace_outputs # caption_outputs_cycle_2 = self.model(fc_feats, att_feats, trace_outputs_cycle_2, box_feats, labels[..., :-1], # att_masks, trace_masks, task='caption') # loss_cycle_caption = self.crit_caption(caption_outputs_cycle_2, labels[..., 1:], masks[..., 1:]) # sum the loss of caption and trace generation loss = loss_show_caption # loss_caption + loss_trace + loss_both # + (loss_cycle_caption + loss_cycle_trace) * 0.5 + loss_caption + loss_trace # for trace generation - classification # model_outputs = self.model(fc_feats, att_feats, trace_feats, box_feats, labels[..., :-1], att_masks, trace_masks) # model_outputs = F.log_softmax(model_outputs, dim=-1) # model_outputs = model_outputs.view(-1, model_outputs.shape[2]) # trace_class_label = trace_feats[:,:,5] - 1 # trace_class_label = trace_class_label.view(-1).long() # loss = F.nll_loss(model_outputs, trace_class_label, ignore_index=-1) else: self.model.eval() with torch.no_grad(): greedy_res, _ = self.model(fc_feats, att_feats, att_masks, mode='sample', opt={'sample_method': opt.sc_sample_method, 'beam_size': opt.sc_beam_size}) self.model.train() gen_result, sample_logprobs = self.model(fc_feats, att_feats, att_masks, opt={'sample_method':opt.train_sample_method, 'beam_size':opt.train_beam_size, 'sample_n': opt.train_sample_n}, mode='sample') gts = [gts[_] for _ in gt_indices.tolist()] reward = get_self_critical_reward(greedy_res, gts, gen_result, self.opt) reward = torch.from_numpy(reward).to(sample_logprobs) loss = self.rl_crit(sample_logprobs, gen_result.data, reward) out['reward'] = reward[:,0].mean() out['loss'] = loss return out
connect-caption-and-trace-main
captioning/modules/loss_wrapper_show_control_tell.py
import torch import torch.nn.functional as F from . import losses from ..utils.rewards import init_scorer, get_self_critical_reward from ..utils.local_optimal_transport import local_OT class LossWrapper(torch.nn.Module): def __init__(self, model, opt): super(LossWrapper, self).__init__() self.opt = opt self.model = model # if opt.label_smoothing > 0: # self.crit = losses.LabelSmoothing(smoothing=opt.label_smoothing) # else: # self.crit = losses.LanguageModelCriterion() self.rl_crit = losses.RewardCriterion() self.struc_crit = losses.StructureLosses(opt) # regression loss for trace generation self.crit_trace = torch.nn.L1Loss() def forward(self, fc_feats, att_feats, trace_feats, box_feats, labels, masks, att_masks, trace_masks, gts, gt_indices, sc_flag, struc_flag): opt = self.opt out = {} if struc_flag: if opt.structure_loss_weight < 1: lm_loss = self.crit(self.model(fc_feats, att_feats, labels[..., :-1], att_masks), labels[..., 1:], masks[..., 1:]) else: lm_loss = torch.tensor(0).type_as(fc_feats) if opt.structure_loss_weight > 0: gen_result, sample_logprobs = self.model(fc_feats, att_feats, att_masks, opt={'sample_method':opt.train_sample_method, 'beam_size':opt.train_beam_size, 'output_logsoftmax': opt.struc_use_logsoftmax or opt.structure_loss_type == 'softmax_margin'\ or not 'margin' in opt.structure_loss_type, 'sample_n': opt.train_sample_n}, mode='sample') gts = [gts[_] for _ in gt_indices.tolist()] struc_loss = self.struc_crit(sample_logprobs, gen_result, gts) else: struc_loss = {'loss': torch.tensor(0).type_as(fc_feats), 'reward': torch.tensor(0).type_as(fc_feats)} loss = (1-opt.structure_loss_weight) * lm_loss + opt.structure_loss_weight * struc_loss['loss'] out['lm_loss'] = lm_loss out['struc_loss'] = struc_loss['loss'] out['reward'] = struc_loss['reward'] elif not sc_flag: # for caption generation # loss = self.crit(self.model(fc_feats, att_feats, trace_feats, box_feats, labels[..., :-1], att_masks, trace_masks), labels[..., 1:], masks[..., 1:]) # for trace generation - regression # outputs = self.model(fc_feats, att_feats, trace_feats, box_feats, labels[..., :-1], att_masks, trace_masks) # loss_mask = ((trace_masks!=0) * (trace_feats[:,:,4]!=1)).unsqueeze(2) # for those words without labels ([0,0,1,1,1]), don't calculate the loss # loss = (torch.abs(outputs[:,:,:4] - trace_feats[:,:,:4]) * loss_mask).sum() / (loss_mask.sum() * 4) # construct the localized optimal transport # D = torch.abs(outputs[:,:,:4].unsqueeze(2) - trace_feats[:,:,:4].unsqueeze(1)).mean(dim=-1) # T = local_OT(D).to(outputs.device) # loss = (torch.abs(torch.matmul(outputs[:, :, :4].transpose(1,2), T).transpose(1,2) - # trace_feats[:, :, :4]) * loss_mask).sum() / (loss_mask.sum() * 4) # for trace generation - classification trace_class_label = trace_feats[:, :, 0] * (trace_feats[:, :, 5] != 1).float() - 1 trace_class_label = trace_class_label.view(-1).long() model_outputs = self.model(fc_feats, att_feats, trace_feats[:,:,1:], box_feats, labels[..., :-1], att_masks, trace_masks) model_outputs = F.log_softmax(model_outputs, dim=-1) model_outputs = model_outputs.view(-1, model_outputs.shape[2]) loss = F.nll_loss(model_outputs, trace_class_label, ignore_index=-1) else: self.model.eval() with torch.no_grad(): greedy_res, _ = self.model(fc_feats, att_feats, att_masks, mode='sample', opt={'sample_method': opt.sc_sample_method, 'beam_size': opt.sc_beam_size}) self.model.train() gen_result, sample_logprobs = self.model(fc_feats, att_feats, att_masks, opt={'sample_method':opt.train_sample_method, 'beam_size':opt.train_beam_size, 'sample_n': opt.train_sample_n}, mode='sample') gts = [gts[_] for _ in gt_indices.tolist()] reward = get_self_critical_reward(greedy_res, gts, gen_result, self.opt) reward = torch.from_numpy(reward).to(sample_logprobs) loss = self.rl_crit(sample_logprobs, gen_result.data, reward) out['reward'] = reward[:,0].mean() out['loss'] = loss return out
connect-caption-and-trace-main
captioning/modules/loss_wrapper_trace_generation.py
import torch import torch.nn.functional as F from . import losses from ..utils.rewards import init_scorer, get_self_critical_reward import numpy as np import random class LossWrapper(torch.nn.Module): def __init__(self, model, opt): super(LossWrapper, self).__init__() self.opt = opt self.model = model if opt.label_smoothing > 0: self.crit_caption = losses.LabelSmoothing(smoothing=opt.label_smoothing) else: self.crit_caption = losses.LanguageModelCriterion() self.rl_crit = losses.RewardCriterion() self.struc_crit = losses.StructureLosses(opt) # regression loss for trace generation self.crit_trace = torch.nn.L1Loss() def forward(self, fc_feats, att_feats, trace_feats, box_feats, labels, masks, att_masks, trace_masks, gts, gt_indices, sc_flag, struc_flag): opt = self.opt out = {} if struc_flag: if opt.structure_loss_weight < 1: lm_loss = self.crit(self.model(fc_feats, att_feats, labels[..., :-1], att_masks), labels[..., 1:], masks[..., 1:]) else: lm_loss = torch.tensor(0).type_as(fc_feats) if opt.structure_loss_weight > 0: gen_result, sample_logprobs = self.model(fc_feats, att_feats, att_masks, opt={'sample_method':opt.train_sample_method, 'beam_size':opt.train_beam_size, 'output_logsoftmax': opt.struc_use_logsoftmax or opt.structure_loss_type == 'softmax_margin'\ or not 'margin' in opt.structure_loss_type, 'sample_n': opt.train_sample_n}, mode='sample') gts = [gts[_] for _ in gt_indices.tolist()] struc_loss = self.struc_crit(sample_logprobs, gen_result, gts) else: struc_loss = {'loss': torch.tensor(0).type_as(fc_feats), 'reward': torch.tensor(0).type_as(fc_feats)} loss = (1-opt.structure_loss_weight) * lm_loss + opt.structure_loss_weight * struc_loss['loss'] out['lm_loss'] = lm_loss out['struc_loss'] = struc_loss['loss'] out['reward'] = struc_loss['reward'] elif not sc_flag: if self.opt.task == 'pred_both': # train generating both caption and trace caption_outputs_both, trace_outputs_both = self.model(fc_feats, att_feats, trace_feats, box_feats, labels[..., :-1], att_masks, trace_masks, task='both') loss_mask = ((trace_masks != 0) * (trace_feats[:, :, 4] != 1)).unsqueeze(2) loss_both_trace = (torch.abs(trace_outputs_both[:, :, :4] - trace_feats[:, :, :4]) * loss_mask).sum() / ( loss_mask.sum() * 4) loss_both_caption = self.crit_caption(caption_outputs_both, labels[..., 1:], masks[..., 1:]) loss_both = loss_both_caption + loss_both_trace # for baseline training if self.opt.task in ['caption', 'c_joint_t']: # for caption generation caption_outputs = self.model(fc_feats, att_feats, trace_feats, box_feats, labels[..., :-1], att_masks, trace_masks, task='caption') loss_caption = self.crit_caption(caption_outputs, labels[..., 1:], masks[..., 1:]) if self.opt.task in ['trace', 'c_joint_t']: # for trace generation - regression trace_outputs = self.model(fc_feats, att_feats, trace_feats, box_feats, labels[..., :-1], att_masks, trace_masks, task='trace') loss_mask = ((trace_masks!=0) * (trace_feats[:,:,4]!=1)).unsqueeze(2) # for those words without labels ([0,0,1,1,1]), don't calculate the loss loss_trace = (torch.abs(trace_outputs[:,:,:4] - trace_feats[:,:,:4]) * loss_mask).sum() / (loss_mask.sum() * 4) # # for cycle trace and caption # trace_outputs_both = trace_outputs_both.detach() # caption_outputs_cycle = self.model(fc_feats, att_feats, trace_outputs_both, box_feats, labels[..., :-1], # att_masks, trace_masks, task='caption') # caption_outputs_cycle_1 = torch.exp(caption_outputs) # get the logits before log (only after softmax) # trace_outputs_cycle_1 = self.model(fc_feats, att_feats, trace_feats, box_feats, caption_outputs_cycle_1, # att_masks, trace_masks, task='cycle_trace') # loss_cycle_trace = (torch.abs(trace_outputs_cycle_1[:,:,:4] - trace_feats[:,:,:4]) * loss_mask).sum() / (loss_mask.sum() * 4) # # trace_outputs_cycle_2 = trace_outputs # caption_outputs_cycle_2 = self.model(fc_feats, att_feats, trace_outputs_cycle_2, box_feats, labels[..., :-1], # att_masks, trace_masks, task='caption') # loss_cycle_caption = self.crit_caption(caption_outputs_cycle_2, labels[..., 1:], masks[..., 1:]) ################ random permute cycle loss ################### ### random permute trace within its segments # permute_trace_list = [] # for i in range(trace_feats.shape[0]): # tmp_gt_length = trace_masks[i].sum().long().item() # tmp_trace = trace_feats[i, :tmp_gt_length] # segment_list = [] # tmp_const = np.ceil(tmp_gt_length / 5).astype(int) # for j in range(5): # segment_list.append(tmp_trace[j * tmp_const: (j + 1) * tmp_const]) # random.shuffle(segment_list) # tmp_permute_trace = torch.cat(segment_list, 0) # if tmp_permute_trace.shape[0] < trace_masks.shape[1]: # tmp_permute_trace = torch.cat([tmp_permute_trace, # torch.zeros([trace_masks.shape[1]-tmp_permute_trace.shape[0], tmp_permute_trace.shape[1]]).to(trace_masks.device)]) # permute_trace_list.append(tmp_permute_trace) # permute_trace_feats = torch.stack(permute_trace_list, 0) # if self.opt.task == 'c_joint_t': #### random exchange trace within batch random_idx = np.arange(trace_feats.shape[0]) np.random.shuffle(random_idx) rnd_trace_feats = trace_feats[random_idx] # construct the loss rnd_caption_outputs = self.model(fc_feats, att_feats, rnd_trace_feats, box_feats, labels[..., :-1], att_masks, trace_masks, task='caption') caption_outputs_cycle_1 = torch.exp(rnd_caption_outputs) ## caption_outputs_cycle_1 = torch.exp(caption_outputs) # get the logits before log (only after softmax) trace_outputs_cycle_1 = self.model(fc_feats, att_feats, trace_feats, box_feats, caption_outputs_cycle_1, att_masks, trace_masks, task='cycle_trace') loss_cycle_trace = (torch.abs( trace_outputs_cycle_1[:, :, :4] - trace_feats[:, :, :4]) * loss_mask).sum() / (loss_mask.sum() * 4) if self.opt.task == 'pred_both': loss = loss_both elif self.opt.task == 'caption': loss = loss_caption elif self.opt.task == 'caption': loss = loss_trace elif self.opt.task == 'c_joint_t': loss = loss_trace + 0.3 * (loss_caption) + 0.1 * (loss_cycle_trace) else: self.model.eval() with torch.no_grad(): greedy_res, _ = self.model(fc_feats, att_feats, att_masks, mode='sample', opt={'sample_method': opt.sc_sample_method, 'beam_size': opt.sc_beam_size}) self.model.train() gen_result, sample_logprobs = self.model(fc_feats, att_feats, att_masks, opt={'sample_method':opt.train_sample_method, 'beam_size':opt.train_beam_size, 'sample_n': opt.train_sample_n}, mode='sample') gts = [gts[_] for _ in gt_indices.tolist()] reward = get_self_critical_reward(greedy_res, gts, gen_result, self.opt) reward = torch.from_numpy(reward).to(sample_logprobs) loss = self.rl_crit(sample_logprobs, gen_result.data, reward) out['reward'] = reward[:,0].mean() out['loss'] = loss return out
connect-caption-and-trace-main
captioning/modules/loss_wrapper_joint.py
import torch import torch.nn.functional as F from . import losses from ..utils.rewards import init_scorer, get_self_critical_reward class LossWrapper(torch.nn.Module): def __init__(self, model, opt): super(LossWrapper, self).__init__() self.opt = opt self.model = model if opt.label_smoothing > 0: self.crit_caption = losses.LabelSmoothing(smoothing=opt.label_smoothing) else: self.crit_caption = losses.LanguageModelCriterion() self.rl_crit = losses.RewardCriterion() self.struc_crit = losses.StructureLosses(opt) self.show_gate_crit = torch.nn.CrossEntropyLoss() # regression loss for trace generation self.crit_trace = torch.nn.L1Loss() def forward(self, fc_feats, att_feats, trace_feats, box_feats, labels, masks, att_masks, trace_masks, show_labels, show_trace_feats, show_trace_masks, show_masks, show_gate_labels, gts, gt_indices, sc_flag, struc_flag): opt = self.opt out = {} if struc_flag: if opt.structure_loss_weight < 1: lm_loss = self.crit(self.model(fc_feats, att_feats, labels[..., :-1], att_masks), labels[..., 1:], masks[..., 1:]) else: lm_loss = torch.tensor(0).type_as(fc_feats) if opt.structure_loss_weight > 0: gen_result, sample_logprobs = self.model(fc_feats, att_feats, att_masks, opt={'sample_method':opt.train_sample_method, 'beam_size':opt.train_beam_size, 'output_logsoftmax': opt.struc_use_logsoftmax or opt.structure_loss_type == 'softmax_margin'\ or not 'margin' in opt.structure_loss_type, 'sample_n': opt.train_sample_n}, mode='sample') gts = [gts[_] for _ in gt_indices.tolist()] struc_loss = self.struc_crit(sample_logprobs, gen_result, gts) else: struc_loss = {'loss': torch.tensor(0).type_as(fc_feats), 'reward': torch.tensor(0).type_as(fc_feats)} loss = (1-opt.structure_loss_weight) * lm_loss + opt.structure_loss_weight * struc_loss['loss'] out['lm_loss'] = lm_loss out['struc_loss'] = struc_loss['loss'] out['reward'] = struc_loss['reward'] elif not sc_flag: # train generating both caption and trace # caption_outputs_both, trace_outputs_both = self.model(fc_feats, att_feats, trace_feats, box_feats, labels[..., :-1], # att_masks, trace_masks, task='both') # loss_mask = ((trace_masks != 0) * (trace_feats[:, :, 4] != 1)).unsqueeze(2) # loss_both_trace = (torch.abs(trace_outputs_both[:, :, :4] - trace_feats[:, :, :4]) * loss_mask).sum() / ( # loss_mask.sum() * 4) # loss_both_caption = self.crit_caption(caption_outputs_both, labels[..., 1:], masks[..., 1:]) # loss_both = loss_both_caption + loss_both_trace # # # # # # # # for caption generation # # caption_outputs = self.model(fc_feats, att_feats, trace_feats, box_feats, labels[..., :-1], # # att_masks, trace_masks, task='caption') # # loss_caption = self.crit_caption(caption_outputs, labels[..., 1:], masks[..., 1:]) # # # # # for trace generation - regression # trace_outputs = self.model(fc_feats, att_feats, trace_feats, box_feats, labels[..., :-1], # att_masks, trace_masks, task='trace')[:, :-1] # loss_mask = ((trace_masks!=0) * (trace_feats[:,:,4]!=1)).unsqueeze(2) # for those words without labels ([0,0,1,1,1]), don't calculate the loss # loss_trace = (torch.abs(trace_outputs[:,:,:4] - trace_feats[:,:,:4]) * loss_mask).sum() / (loss_mask.sum() * 4) # # for coco-caption training ### inference to get with coco trace with torch.no_grad(): tmp_trace_feats = show_trace_feats[:, :1] for i in range(show_labels.shape[2]-2): # for regression tmp_trace_feats_input = torch.cat( [tmp_trace_feats, torch.zeros(tmp_trace_feats.shape[0], 1, tmp_trace_feats.shape[2]).to(tmp_trace_feats.device)], 1) _, curr_out = self.model(fc_feats, att_feats, tmp_trace_feats_input, box_feats, show_labels[..., :-1].squeeze(1), att_masks, show_masks.squeeze(1)[:, :tmp_trace_feats_input.shape[1]], task='both') curr_out = curr_out[:, i] curr_out[:, 4] = (curr_out[:, 2] - curr_out[:, 0]) * (curr_out[:, 3] - curr_out[:, 1]) if i == 0: tmp_trace_feats = curr_out.unsqueeze(1) else: tmp_trace_feats = torch.cat([tmp_trace_feats, curr_out.unsqueeze(1)], 1) coco_trace_outputs = tmp_trace_feats.detach() coco_caption_outputs, coco_trace_outputs_both = self.model(fc_feats, att_feats, coco_trace_outputs, box_feats, show_labels[..., :-1].squeeze(1), att_masks, show_masks.squeeze(1)[:, :coco_trace_outputs.shape[1]], task='both') loss_coco_caption = self.crit_caption(coco_caption_outputs, show_labels[..., 1:], show_masks[..., 1:]) # # for coco-caption-baseline # baseline_caption_outputs = self.model(fc_feats, att_feats, show_trace_feats, box_feats, show_labels[..., :-1], # att_masks, show_masks, task='caption') # loss_coco_caption_baseline = self.crit_caption(baseline_caption_outputs, show_labels[..., 1:], show_masks[..., 1:]) # # # for show-control-tell # show_caption_outputs, show_gate_outputs = self.model(fc_feats, att_feats, show_trace_feats, box_feats, show_labels[..., :-1], # att_masks, show_trace_masks, show_gate_labels=show_gate_labels, task='show') # loss_show_caption = self.crit_caption(show_caption_outputs, show_labels[..., 1:], show_masks[..., 1:]) # loss_show_gate = self.show_gate_crit(show_gate_outputs.reshape(-1, show_gate_outputs.shape[-1]), # show_gate_labels[..., 1:].reshape(-1)) # # # for cycle trace and caption # # trace_outputs_both = trace_outputs_both.detach() # # caption_outputs_cycle = self.model(fc_feats, att_feats, trace_outputs_both, box_feats, labels[..., :-1], # # att_masks, trace_masks, task='caption') # # caption_outputs_cycle_1 = torch.exp(caption_outputs) # get the logits before log (only after softmax) # trace_outputs_cycle_1 = self.model(fc_feats, att_feats, trace_feats, box_feats, caption_outputs_cycle_1, # att_masks, trace_masks, task='cycle_trace') # loss_cycle_trace = (torch.abs(trace_outputs_cycle_1[:,:,:4] - trace_feats[:,:,:4]) * loss_mask).sum() / (loss_mask.sum() * 4) # # trace_outputs_cycle_2 = trace_outputs # caption_outputs_cycle_2 = self.model(fc_feats, att_feats, trace_outputs_cycle_2, box_feats, labels[..., :-1], # att_masks, trace_masks, task='caption') # loss_cycle_caption = self.crit_caption(caption_outputs_cycle_2, labels[..., 1:], masks[..., 1:]) # sum the loss of caption and trace generation loss = loss_coco_caption #loss_both + loss_trace #+ loss_caption # loss_coco_caption # loss_caption + loss_trace + loss_both # + (loss_cycle_caption + loss_cycle_trace) * 0.5 + loss_caption + loss_trace # for trace generation - classification # model_outputs = self.model(fc_feats, att_feats, trace_feats, box_feats, labels[..., :-1], att_masks, trace_masks) # model_outputs = F.log_softmax(model_outputs, dim=-1) # model_outputs = model_outputs.view(-1, model_outputs.shape[2]) # trace_class_label = trace_feats[:,:,5] - 1 # trace_class_label = trace_class_label.view(-1).long() # loss = F.nll_loss(model_outputs, trace_class_label, ignore_index=-1) else: self.model.eval() with torch.no_grad(): greedy_res, _ = self.model(fc_feats, att_feats, att_masks, mode='sample', opt={'sample_method': opt.sc_sample_method, 'beam_size': opt.sc_beam_size}) self.model.train() gen_result, sample_logprobs = self.model(fc_feats, att_feats, att_masks, opt={'sample_method':opt.train_sample_method, 'beam_size':opt.train_beam_size, 'sample_n': opt.train_sample_n}, mode='sample') gts = [gts[_] for _ in gt_indices.tolist()] reward = get_self_critical_reward(greedy_res, gts, gen_result, self.opt) reward = torch.from_numpy(reward).to(sample_logprobs) loss = self.rl_crit(sample_logprobs, gen_result.data, reward) out['reward'] = reward[:,0].mean() out['loss'] = loss return out
connect-caption-and-trace-main
captioning/modules/loss_wrapper_for_coco_caption.py
import torch import torch.nn as nn from ..utils.rewards import get_scores, get_self_cider_scores class RewardCriterion(nn.Module): def __init__(self): super(RewardCriterion, self).__init__() def forward(self, input, seq, reward): input = input.gather(2, seq.unsqueeze(2)).squeeze(2) input = input.reshape(-1) reward = reward.reshape(-1) mask = (seq>0).to(input) mask = torch.cat([mask.new(mask.size(0), 1).fill_(1), mask[:, :-1]], 1).reshape(-1) output = - input * reward * mask output = torch.sum(output) / torch.sum(mask) return output class StructureLosses(nn.Module): """ This loss is inspired by Classical Structured Prediction Losses for Sequence to Sequence Learning (Edunov et al., 2018). """ def __init__(self, opt): super(StructureLosses, self).__init__() self.opt = opt self.loss_type = opt.structure_loss_type def forward(self, input, seq, data_gts): """ Input is either logits or log softmax """ out = {} batch_size = input.size(0)# batch_size = sample_size * seq_per_img seq_per_img = batch_size // len(data_gts) assert seq_per_img == self.opt.train_sample_n, seq_per_img mask = (seq>0).to(input) mask = torch.cat([mask.new_full((mask.size(0), 1), 1), mask[:, :-1]], 1) scores = get_scores(data_gts, seq, self.opt) scores = torch.from_numpy(scores).type_as(input).view(-1, seq_per_img) out['reward'] = scores #.mean() if self.opt.entropy_reward_weight > 0: entropy = - (F.softmax(input, dim=2) * F.log_softmax(input, dim=2)).sum(2).data entropy = (entropy * mask).sum(1) / mask.sum(1) print('entropy', entropy.mean().item()) scores = scores + self.opt.entropy_reward_weight * entropy.view(-1, seq_per_img) # rescale cost to [0,1] costs = - scores if self.loss_type == 'risk' or self.loss_type == 'softmax_margin': costs = costs - costs.min(1, keepdim=True)[0] costs = costs / costs.max(1, keepdim=True)[0] # in principle # Only risk need such rescale # margin should be alright; Let's try. # Gather input: BxTxD -> BxT input = input.gather(2, seq.unsqueeze(2)).squeeze(2) if self.loss_type == 'seqnll': # input is logsoftmax input = input * mask input = input.sum(1) / mask.sum(1) input = input.view(-1, seq_per_img) target = costs.min(1)[1] output = F.cross_entropy(input, target) elif self.loss_type == 'risk': # input is logsoftmax input = input * mask input = input.sum(1) input = input.view(-1, seq_per_img) output = (F.softmax(input.exp()) * costs).sum(1).mean() # test # avg_scores = input # probs = F.softmax(avg_scores.exp_()) # loss = (probs * costs.type_as(probs)).sum() / input.size(0) # print(output.item(), loss.item()) elif self.loss_type == 'max_margin': # input is logits input = input * mask input = input.sum(1) / mask.sum(1) input = input.view(-1, seq_per_img) _, __ = costs.min(1, keepdim=True) costs_star = _ input_star = input.gather(1, __) output = F.relu(costs - costs_star - input_star + input).max(1)[0] / 2 output = output.mean() # sanity test # avg_scores = input + costs # scores_with_high_target = avg_scores.clone() # scores_with_high_target.scatter_(1, costs.min(1)[1].view(-1, 1), 1e10) # target_and_offender_index = scores_with_high_target.sort(1, True)[1][:, 0:2] # avg_scores = avg_scores.gather(1, target_and_offender_index) # target_index = avg_scores.new_zeros(avg_scores.size(0), dtype=torch.long) # loss = F.multi_margin_loss(avg_scores, target_index, size_average=True, margin=0) # print(loss.item() * 2, output.item()) elif self.loss_type == 'multi_margin': # input is logits input = input * mask input = input.sum(1) / mask.sum(1) input = input.view(-1, seq_per_img) _, __ = costs.min(1, keepdim=True) costs_star = _ input_star = input.gather(1, __) output = F.relu(costs - costs_star - input_star + input) output = output.mean() # sanity test # avg_scores = input + costs # loss = F.multi_margin_loss(avg_scores, costs.min(1)[1], margin=0) # print(output, loss) elif self.loss_type == 'softmax_margin': # input is logsoftmax input = input * mask input = input.sum(1) / mask.sum(1) input = input.view(-1, seq_per_img) input = input + costs target = costs.min(1)[1] output = F.cross_entropy(input, target) elif self.loss_type == 'real_softmax_margin': # input is logits # This is what originally defined in Kevin's paper # The result should be equivalent to softmax_margin input = input * mask input = input.sum(1) / mask.sum(1) input = input.view(-1, seq_per_img) input = input + costs target = costs.min(1)[1] output = F.cross_entropy(input, target) elif self.loss_type == 'new_self_critical': """ A different self critical Self critical uses greedy decoding score as baseline; This setting uses the average score of the rest samples as baseline (suppose c1...cn n samples, reward1 = score1 - 1/(n-1)(score2+..+scoren) ) """ baseline = (scores.sum(1, keepdim=True) - scores) / (scores.shape[1] - 1) scores = scores - baseline # self cider used as reward to promote diversity (not working that much in this way) if getattr(self.opt, 'self_cider_reward_weight', 0) > 0: _scores = get_self_cider_scores(data_gts, seq, self.opt) _scores = torch.from_numpy(_scores).type_as(scores).view(-1, 1) _scores = _scores.expand_as(scores - 1) scores += self.opt.self_cider_reward_weight * _scores output = - input * mask * scores.view(-1, 1) output = torch.sum(output) / torch.sum(mask) out['loss'] = output return out class LanguageModelCriterion(nn.Module): def __init__(self): super(LanguageModelCriterion, self).__init__() def forward(self, input, target, mask): if target.ndim == 3: target = target.reshape(-1, target.shape[2]) mask = mask.reshape(-1, mask.shape[2]) # truncate to the same size target = target[:, :input.size(1)] mask = mask[:, :input.size(1)].to(input) output = -input.gather(2, target.unsqueeze(2)).squeeze(2) * mask # Average over each token output = torch.sum(output) / torch.sum(mask) return output class LabelSmoothing(nn.Module): "Implement label smoothing." def __init__(self, size=0, padding_idx=0, smoothing=0.0): super(LabelSmoothing, self).__init__() self.criterion = nn.KLDivLoss(size_average=False, reduce=False) # self.padding_idx = padding_idx self.confidence = 1.0 - smoothing self.smoothing = smoothing # self.size = size self.true_dist = None def forward(self, input, target, mask): if target.ndim == 3: target = target.reshape(-1, target.shape[2]) mask = mask.reshape(-1, mask.shape[2]) # truncate to the same size target = target[:, :input.size(1)] mask = mask[:, :input.size(1)] input = input.reshape(-1, input.size(-1)) target = target.reshape(-1) mask = mask.reshape(-1).to(input) # assert x.size(1) == self.size self.size = input.size(1) # true_dist = x.data.clone() true_dist = input.data.clone() # true_dist.fill_(self.smoothing / (self.size - 2)) true_dist.fill_(self.smoothing / (self.size - 1)) true_dist.scatter_(1, target.data.unsqueeze(1), self.confidence) # true_dist[:, self.padding_idx] = 0 # mask = torch.nonzero(target.data == self.padding_idx) # self.true_dist = true_dist return (self.criterion(input, true_dist).sum(1) * mask).sum() / mask.sum()
connect-caption-and-trace-main
captioning/modules/losses.py
from __future__ import absolute_import from __future__ import division from __future__ import print_function import json import h5py import lmdb import os import numpy as np import numpy.random as npr import random import torch import torch.utils.data as data import multiprocessing import six class HybridLoader: """ If db_path is a director, then use normal file loading If lmdb, then load from lmdb The loading method depend on extention. in_memory: if in_memory is True, we save all the features in memory For individual np(y|z)s, we don't need to do that because the system will do this for us. Should be useful for lmdb or h5. (Copied this idea from vilbert) """ def __init__(self, db_path, ext, in_memory=False): self.db_path = db_path self.ext = ext if self.ext == '.npy': self.loader = lambda x: np.load(six.BytesIO(x)) else: self.loader = lambda x: np.load(six.BytesIO(x))['feat'] if db_path.endswith('.lmdb'): self.db_type = 'lmdb' env = lmdb.open(db_path, subdir=os.path.isdir(db_path), readonly=True, lock=False, readahead=False, meminit=False, map_size=1099511627776 * 2,) self.db_txn = env.begin(write=False) elif db_path.endswith('.pth'): # Assume a key,value dictionary self.db_type = 'pth' self.feat_file = torch.load(db_path) self.loader = lambda x: x print('HybridLoader: ext is ignored') elif db_path.endswith('h5'): self.db_type = 'h5' self.loader = lambda x: np.array(x).astype('float32') else: self.db_type = 'dir' self.in_memory = in_memory if self.in_memory: self.features = {} def __getstate__(self): state = self.__dict__ if self.db_type == 'lmdb': state["db_txn"] = None return state def __setstate__(self, state): self.__dict__ = state if self.db_type == 'lmdb': env = lmdb.open(self.db_path, subdir=os.path.isdir(self.db_path), readonly=True, lock=False, readahead=False, meminit=False, map_size=1099511627776 * 2,) self.db_txn = env.begin(write=False) def get(self, key): if self.in_memory and key in self.features: # We save f_input because we want to save the # compressed bytes to save memory f_input = self.features[key] elif self.db_type == 'lmdb': env = self.env byteflow = self.db_txn.get(key.encode()) f_input = byteflow elif self.db_type == 'pth': f_input = self.feat_file[key] elif self.db_type == 'h5': f_input = h5py.File(self.db_path, 'r')[key] else: f_input = open(os.path.join(self.db_path, key + self.ext), 'rb').read() if self.in_memory and key not in self.features: self.features[key] = f_input # load image feat = self.loader(f_input) return feat class CaptionDataset(data.Dataset): def get_vocab_size(self): return self.vocab_size def get_vocab(self): return self.ix_to_word def get_seq_length(self): return self.seq_length def __init__(self, opt): self.opt = opt self.seq_per_img = opt.seq_per_img # feature related options self.use_fc = getattr(opt, 'use_fc', True) self.use_att = getattr(opt, 'use_att', True) self.use_box = getattr(opt, 'use_box', 0) self.norm_att_feat = getattr(opt, 'norm_att_feat', 0) self.norm_box_feat = getattr(opt, 'norm_box_feat', 0) # load the json file which contains additional information about the dataset print('DataLoader loading json file: ', opt.input_json) self.info = json.load(open(self.opt.input_json)) if 'ix_to_word' in self.info: self.ix_to_word = self.info['ix_to_word'] self.vocab_size = len(self.ix_to_word) print('vocab size is ', self.vocab_size) # open the hdf5 file print('DataLoader loading h5 file: ', opt.input_fc_dir, opt.input_att_dir, opt.input_box_dir, opt.input_label_h5) """ Setting input_label_h5 to none is used when only doing generation. For example, when you need to test on coco test set. """ if self.opt.input_label_h5 != 'none': self.h5_label_file = h5py.File(self.opt.input_label_h5, 'r', driver='core') # load in the sequence data seq_size = self.h5_label_file['labels'].shape self.label = self.h5_label_file['labels'][:] self.seq_length = seq_size[1] print('max sequence length in data is', self.seq_length) # load the pointers in full to RAM (should be small enough) self.label_start_ix = self.h5_label_file['label_start_ix'][:] self.label_end_ix = self.h5_label_file['label_end_ix'][:] else: self.seq_length = 1 self.data_in_memory = getattr(opt, 'data_in_memory', False) self.fc_loader = HybridLoader(self.opt.input_fc_dir, '.npy', in_memory=self.data_in_memory) self.att_loader = HybridLoader(self.opt.input_att_dir, '.npz', in_memory=self.data_in_memory) self.box_loader = HybridLoader(self.opt.input_box_dir, '.npy', in_memory=self.data_in_memory) self.num_images = len(self.info['images']) # self.label_start_ix.shape[0] print('read %d image features' %(self.num_images)) # separate out indexes for each of the provided splits self.split_ix = {'train': [], 'val': [], 'test': []} for ix in range(len(self.info['images'])): img = self.info['images'][ix] if not 'split' in img: self.split_ix['train'].append(ix) self.split_ix['val'].append(ix) self.split_ix['test'].append(ix) elif img['split'] == 'train': self.split_ix['train'].append(ix) elif img['split'] == 'val': self.split_ix['val'].append(ix) elif img['split'] == 'test': self.split_ix['test'].append(ix) elif opt.train_only == 0: # restval self.split_ix['train'].append(ix) print('assigned %d images to split train' %len(self.split_ix['train'])) print('assigned %d images to split val' %len(self.split_ix['val'])) print('assigned %d images to split test' %len(self.split_ix['test'])) def get_captions(self, ix, seq_per_img): # fetch the sequence labels ix1 = self.label_start_ix[ix] - 1 #label_start_ix starts from 1 ix2 = self.label_end_ix[ix] - 1 ncap = ix2 - ix1 + 1 # number of captions available for this image assert ncap > 0, 'an image does not have any label. this can be handled but right now isn\'t' if ncap < seq_per_img: # we need to subsample (with replacement) seq = np.zeros([seq_per_img, self.seq_length], dtype = 'int') for q in range(seq_per_img): ixl = random.randint(ix1,ix2) seq[q, :] = self.label[ixl, :self.seq_length] else: ixl = random.randint(ix1, ix2 - seq_per_img + 1) seq = self.label[ixl: ixl + seq_per_img, :self.seq_length] return seq def collate_func(self, batch): seq_per_img = self.seq_per_img fc_batch = [] att_batch = [] label_batch = [] wrapped = False infos = [] gts = [] for sample in batch: # fetch image tmp_fc, tmp_att, tmp_seq, \ ix = sample fc_batch.append(tmp_fc) att_batch.append(tmp_att) tmp_label = np.zeros([seq_per_img, self.seq_length + 2], dtype = 'int') if hasattr(self, 'h5_label_file'): # if there is ground truth tmp_label[:, 1 : self.seq_length + 1] = tmp_seq label_batch.append(tmp_label) # Used for reward evaluation if hasattr(self, 'h5_label_file'): # if there is ground truth gts.append(self.label[self.label_start_ix[ix] - 1: self.label_end_ix[ix]]) else: gts.append([]) # record associated info as well info_dict = {} info_dict['ix'] = ix info_dict['id'] = self.info['images'][ix]['id'] info_dict['file_path'] = self.info['images'][ix].get('file_path', '') infos.append(info_dict) # #sort by att_feat length # fc_batch, att_batch, label_batch, gts, infos = \ # zip(*sorted(zip(fc_batch, att_batch, np.vsplit(label_batch, batch_size), gts, infos), key=lambda x: len(x[1]), reverse=True)) fc_batch, att_batch, label_batch, gts, infos = \ zip(*sorted(zip(fc_batch, att_batch, label_batch, gts, infos), key=lambda x: 0, reverse=True)) data = {} data['fc_feats'] = np.stack(fc_batch) # merge att_feats max_att_len = max([_.shape[0] for _ in att_batch]) data['att_feats'] = np.zeros([len(att_batch), max_att_len, att_batch[0].shape[1]], dtype = 'float32') for i in range(len(att_batch)): data['att_feats'][i, :att_batch[i].shape[0]] = att_batch[i] data['att_masks'] = np.zeros(data['att_feats'].shape[:2], dtype='float32') for i in range(len(att_batch)): data['att_masks'][i, :att_batch[i].shape[0]] = 1 # set att_masks to None if attention features have same length if data['att_masks'].sum() == data['att_masks'].size: data['att_masks'] = None data['labels'] = np.vstack(label_batch) # generate mask nonzeros = np.array(list(map(lambda x: (x != 0).sum()+2, data['labels']))) mask_batch = np.zeros([data['labels'].shape[0], self.seq_length + 2], dtype = 'float32') for ix, row in enumerate(mask_batch): row[:nonzeros[ix]] = 1 data['masks'] = mask_batch data['labels'] = data['labels'].reshape(len(batch), seq_per_img, -1) data['masks'] = data['masks'].reshape(len(batch), seq_per_img, -1) data['gts'] = gts # all ground truth captions of each images data['infos'] = infos data = {k:torch.from_numpy(v) if type(v) is np.ndarray else v for k,v in data.items()} # Turn all ndarray to torch tensor return data def __getitem__(self, ix): """This function returns a tuple that is further passed to collate_fn """ if self.use_att: att_feat = self.att_loader.get(str(self.info['images'][ix]['id'])) # Reshape to K x C att_feat = att_feat.reshape(-1, att_feat.shape[-1]) if self.norm_att_feat: att_feat = att_feat / np.linalg.norm(att_feat, 2, 1, keepdims=True) if self.use_box: box_feat = self.box_loader.get(str(self.info['images'][ix]['id'])) # devided by image width and height x1,y1,x2,y2 = np.hsplit(box_feat, 4) h,w = self.info['images'][ix]['height'], self.info['images'][ix]['width'] box_feat = np.hstack((x1/w, y1/h, x2/w, y2/h, (x2-x1)*(y2-y1)/(w*h))) # question? x2-x1+1?? if self.norm_box_feat: box_feat = box_feat / np.linalg.norm(box_feat, 2, 1, keepdims=True) att_feat = np.hstack([att_feat, box_feat]) # sort the features by the size of boxes att_feat = np.stack(sorted(att_feat, key=lambda x:x[-1], reverse=True)) else: att_feat = np.zeros((0,0), dtype='float32') if self.use_fc: try: fc_feat = self.fc_loader.get(str(self.info['images'][ix]['id'])) except: # Use average of attention when there is no fc provided (For bottomup feature) fc_feat = att_feat.mean(0) else: fc_feat = np.zeros((0), dtype='float32') if hasattr(self, 'h5_label_file'): seq = self.get_captions(ix, self.seq_per_img) else: seq = None return (fc_feat, att_feat, seq, ix) def __len__(self): return len(self.info['images']) if __name__ == '__main__': from captioning.utils.misc import pickle_load x = pickle_load(open('log_trans/infos_trans.pkl', 'rb')) dataset = Dataset(x['opt']) ds = torch.utils.data.Subset(dataset, dataset.split_ix['train']) import pudb;pu.db
connect-caption-and-trace-main
captioning/data/pth_loader.py
connect-caption-and-trace-main
captioning/data/__init__.py
from __future__ import absolute_import from __future__ import division from __future__ import print_function import json import h5py import os import numpy as np import random import torch import skimage import skimage.io import scipy.misc from torchvision import transforms as trn preprocess = trn.Compose([ #trn.ToTensor(), trn.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) from ..utils.resnet_utils import myResnet from ..utils import resnet class DataLoaderRaw(): def __init__(self, opt): self.opt = opt self.coco_json = opt.get('coco_json', '') self.folder_path = opt.get('folder_path', '') self.batch_size = opt.get('batch_size', 1) self.seq_per_img = 1 # Load resnet self.cnn_model = opt.get('cnn_model', 'resnet101') self.my_resnet = getattr(resnet, self.cnn_model)() self.my_resnet.load_state_dict(torch.load('./data/imagenet_weights/'+self.cnn_model+'.pth')) self.my_resnet = myResnet(self.my_resnet) self.my_resnet.cuda() self.my_resnet.eval() # load the json file which contains additional information about the dataset print('DataLoaderRaw loading images from folder: ', self.folder_path) self.files = [] self.ids = [] print(len(self.coco_json)) if len(self.coco_json) > 0: print('reading from ' + opt.coco_json) # read in filenames from the coco-style json file self.coco_annotation = json.load(open(self.coco_json)) for k,v in enumerate(self.coco_annotation['images']): fullpath = os.path.join(self.folder_path, v['file_name']) self.files.append(fullpath) self.ids.append(v['id']) else: # read in all the filenames from the folder print('listing all images in directory ' + self.folder_path) def isImage(f): supportedExt = ['.jpg','.JPG','.jpeg','.JPEG','.png','.PNG','.ppm','.PPM'] for ext in supportedExt: start_idx = f.rfind(ext) if start_idx >= 0 and start_idx + len(ext) == len(f): return True return False n = 1 for root, dirs, files in os.walk(self.folder_path, topdown=False): for file in files: fullpath = os.path.join(self.folder_path, file) if isImage(fullpath): self.files.append(fullpath) self.ids.append(str(n)) # just order them sequentially n = n + 1 self.N = len(self.files) print('DataLoaderRaw found ', self.N, ' images') self.iterator = 0 # Nasty self.dataset = self # to fix the bug in eval def get_batch(self, split, batch_size=None): batch_size = batch_size or self.batch_size # pick an index of the datapoint to load next fc_batch = np.ndarray((batch_size, 2048), dtype = 'float32') att_batch = np.ndarray((batch_size, 14, 14, 2048), dtype = 'float32') max_index = self.N wrapped = False infos = [] for i in range(batch_size): ri = self.iterator ri_next = ri + 1 if ri_next >= max_index: ri_next = 0 wrapped = True # wrap back around self.iterator = ri_next img = skimage.io.imread(self.files[ri]) if len(img.shape) == 2: img = img[:,:,np.newaxis] img = np.concatenate((img, img, img), axis=2) img = img[:,:,:3].astype('float32')/255.0 img = torch.from_numpy(img.transpose([2,0,1])).cuda() img = preprocess(img) with torch.no_grad(): tmp_fc, tmp_att = self.my_resnet(img) fc_batch[i] = tmp_fc.data.cpu().float().numpy() att_batch[i] = tmp_att.data.cpu().float().numpy() info_struct = {} info_struct['id'] = self.ids[ri] info_struct['file_path'] = self.files[ri] infos.append(info_struct) data = {} data['fc_feats'] = fc_batch data['att_feats'] = att_batch.reshape(batch_size, -1, 2048) data['labels'] = np.zeros([batch_size, 0]) data['masks'] = None data['att_masks'] = None data['bounds'] = {'it_pos_now': self.iterator, 'it_max': self.N, 'wrapped': wrapped} data['infos'] = infos data = {k:torch.from_numpy(v) if type(v) is np.ndarray else v for k,v in data.items()} # Turn all ndarray to torch tensor return data def reset_iterator(self, split): self.iterator = 0 def get_vocab_size(self): return len(self.ix_to_word) def get_vocab(self): return self.ix_to_word
connect-caption-and-trace-main
captioning/data/dataloaderraw.py
from __future__ import absolute_import from __future__ import division from __future__ import print_function import json import h5py import lmdb import os import numpy as np import numpy.random as npr import random import torch import torch.utils.data as data import multiprocessing import six class HybridLoader: """ If db_path is a director, then use normal file loading If lmdb, then load from lmdb The loading method depend on extention. in_memory: if in_memory is True, we save all the features in memory For individual np(y|z)s, we don't need to do that because the system will do this for us. Should be useful for lmdb or h5. (Copied this idea from vilbert) """ def __init__(self, db_path, ext, in_memory=False): self.db_path = db_path self.ext = ext if self.ext == '.npy': self.loader = lambda x: np.load(six.BytesIO(x)) else: def load_npz(x): x = np.load(six.BytesIO(x)) return x['feat'] if 'feat' in x else x['arr_0'] # normally it should be 'feat', but under cocotest_bu, the key is saved to be 'z' mistakenly. self.loader = load_npz if db_path.endswith('.lmdb'): self.db_type = 'lmdb' self.env = lmdb.open(db_path, subdir=os.path.isdir(db_path), readonly=True, lock=False, readahead=False, meminit=False) elif db_path.endswith('.pth'): # Assume a key,value dictionary self.db_type = 'pth' self.feat_file = torch.load(db_path) self.loader = lambda x: x print('HybridLoader: ext is ignored') elif db_path.endswith('h5'): self.db_type = 'h5' self.loader = lambda x: np.array(x).astype('float32') else: self.db_type = 'dir' self.in_memory = in_memory if self.in_memory: self.features = {} def get(self, key): if self.in_memory and key in self.features: # We save f_input because we want to save the # compressed bytes to save memory f_input = self.features[key] elif self.db_type == 'lmdb': env = self.env with env.begin(write=False) as txn: byteflow = txn.get(key.encode()) f_input = byteflow elif self.db_type == 'pth': f_input = self.feat_file[key] elif self.db_type == 'h5': f_input = h5py.File(self.db_path, 'r')[key] else: f_input = open(os.path.join(self.db_path, key + self.ext), 'rb').read() if self.in_memory and key not in self.features: self.features[key] = f_input # load image feat = self.loader(f_input) return feat class Dataset(data.Dataset): def get_vocab_size(self): return self.vocab_size def get_vocab(self): return self.ix_to_word def get_seq_length(self): return self.seq_length def __init__(self, opt): self.opt = opt self.seq_per_img = opt.seq_per_img # feature related options self.use_fc = getattr(opt, 'use_fc', True) self.use_att = getattr(opt, 'use_att', True) self.use_box = getattr(opt, 'use_box', 0) self.use_trace = getattr(opt, 'use_trace', 0) self.use_trace_feat = getattr(opt, 'use_trace_feat', 0) self.norm_att_feat = getattr(opt, 'norm_att_feat', 0) self.norm_box_feat = getattr(opt, 'norm_box_feat', 0) self.dataset_choice = getattr(opt, 'dataset_choice', 'coco') self.trace_max_length = getattr(opt, 'trace_max_length', 225) # load the json file which contains additional information about the dataset print('DataLoader loading json file: ', opt.input_json) self.info = json.load(open(self.opt.input_json)) if 'ix_to_word' in self.info: self.ix_to_word = self.info['ix_to_word'] self.vocab_size = len(self.ix_to_word) print('vocab size is ', self.vocab_size) # open the hdf5 file print('DataLoader loading h5 file: ', opt.input_fc_dir, opt.input_att_dir, opt.input_box_dir, opt.input_label_h5) """ Setting input_label_h5 to none is used when only doing generation. For example, when you need to test on coco test set. """ if self.opt.input_label_h5 != 'none': self.h5_label_file = h5py.File(self.opt.input_label_h5, 'r', driver='core') # load in the sequence data seq_size = self.h5_label_file['labels'].shape self.label = self.h5_label_file['labels'][:] self.seq_length = seq_size[1] print('max sequence length in data is', self.seq_length) # load the pointers in full to RAM (should be small enough) self.label_start_ix = self.h5_label_file['label_start_ix'][:] self.label_end_ix = self.h5_label_file['label_end_ix'][:] else: self.seq_length = 1 self.data_in_memory = getattr(opt, 'data_in_memory', False) self.fc_loader = HybridLoader(self.opt.input_fc_dir, '.npy', in_memory=self.data_in_memory) self.att_loader = HybridLoader(self.opt.input_att_dir, '.npz', in_memory=self.data_in_memory) self.box_loader = HybridLoader(self.opt.input_box_dir, '.npy', in_memory=self.data_in_memory) self.trace_loader = HybridLoader(self.opt.input_trace_dir, '.npy', in_memory=self.data_in_memory) self.trace_class_label_loader = HybridLoader(self.opt.input_trace_class_label_dir, '.npy', in_memory=self.data_in_memory) self.trace_feat_loader = HybridLoader(self.opt.input_trace_feat_dir, '.npy', in_memory=self.data_in_memory) self.dataset_choice = getattr(opt, 'dataset_choice', 'coco') self.num_images = len(self.info['images']) # self.label_start_ix.shape[0] print('read %d image features' %(self.num_images)) # separate out indexes for each of the provided splits self.split_ix = {'train': [], 'val': [], 'test': []} for ix in range(len(self.info['images'])): img = self.info['images'][ix] if not 'split' in img: self.split_ix['train'].append(ix) self.split_ix['val'].append(ix) self.split_ix['test'].append(ix) elif img['split'] == 'train': self.split_ix['train'].append(ix) elif img['split'] == 'val' and (self.dataset_choice in ['coco', 'ade20k']): # self.split_ix['val'].append(ix) self.split_ix['test'].append(ix) elif img['split'] == 'test' and (self.dataset_choice in ['coco', 'ade20k']): pass elif img['split'] == 'val' and self.dataset_choice in ['flk30k', 'openimg']: # pass elif img['split'] == 'test' and self.dataset_choice in ['flk30k', 'openimg']: # self.split_ix['val'].append(ix) self.split_ix['test'].append(ix) elif opt.train_only == 0: # restval self.split_ix['train'].append(ix) print('assigned %d images to split train' %len(self.split_ix['train'])) print('assigned %d images to split val' %len(self.split_ix['val'])) print('assigned %d images to split test' %len(self.split_ix['test'])) def get_captions(self, ix, seq_per_img): # fetch the sequence labels ix1 = self.label_start_ix[ix] - 1 #label_start_ix starts from 1 ix2 = self.label_end_ix[ix] - 1 ncap = ix2 - ix1 + 1 # number of captions available for this image assert ncap > 0, 'an image does not have any label. this can be handled but right now isn\'t' if ncap < seq_per_img: # we need to subsample (with replacement) seq = np.zeros([seq_per_img, self.seq_length], dtype = 'int') for q in range(seq_per_img): ixl = random.randint(ix1,ix2) seq[q, :] = self.label[ixl, :self.seq_length] else: ixl = random.randint(ix1, ix2 - seq_per_img + 1) seq = self.label[ixl: ixl + seq_per_img, :self.seq_length] return seq def collate_func(self, batch, split): seq_per_img = self.seq_per_img fc_batch = [] att_batch = [] label_batch = [] trace_batch = [] box_batch = [] wrapped = False infos = [] gts = [] for sample in batch: # fetch image tmp_fc, tmp_att, tmp_trace, tmp_box, tmp_seq, \ ix, it_pos_now, tmp_wrapped = sample if tmp_wrapped: wrapped = True fc_batch.append(tmp_fc) att_batch.append(tmp_att) trace_batch.append(tmp_trace) box_batch.append(tmp_box) tmp_label = np.zeros([seq_per_img, self.seq_length + 2], dtype = 'int') if hasattr(self, 'h5_label_file'): # if there is ground truth tmp_label[:, 1 : self.seq_length + 1] = tmp_seq label_batch.append(tmp_label) # Used for reward evaluation if hasattr(self, 'h5_label_file'): # if there is ground truth gts.append(self.label[self.label_start_ix[ix] - 1: self.label_end_ix[ix]]) else: gts.append([]) # record associated info as well info_dict = {} info_dict['ix'] = ix info_dict['id'] = self.info['images'][ix]['id'] info_dict['file_path'] = self.info['images'][ix].get('file_path', '') infos.append(info_dict) # #sort by att_feat length # fc_batch, att_batch, label_batch, gts, infos = \ # zip(*sorted(zip(fc_batch, att_batch, np.vsplit(label_batch, batch_size), gts, infos), key=lambda x: len(x[1]), reverse=True)) # commented for classification # fc_batch, att_batch, trace_batch, box_batch, label_batch, gts, infos = \ # zip(*sorted(zip(fc_batch, att_batch, trace_batch, box_batch, label_batch, gts, infos), key=lambda x: 0, reverse=True)) data = {} data['fc_feats'] = np.stack(fc_batch) # merge att_feats max_att_len = max([_.shape[0] for _ in att_batch]) data['att_feats'] = np.zeros([len(att_batch), max_att_len, att_batch[0].shape[1]], dtype = 'float32') data['box_feats'] = np.zeros([len(box_batch), max_att_len, box_batch[0].shape[1]], dtype='float32') assert att_batch[0].shape[0] == box_batch[0].shape[0], 'box should have same shape[0] with att' for i in range(len(att_batch)): data['att_feats'][i, :att_batch[i].shape[0]] = att_batch[i] data['box_feats'][i, :box_batch[i].shape[0]] = box_batch[i] data['att_masks'] = np.zeros(data['att_feats'].shape[:2], dtype='float32') for i in range(len(att_batch)): data['att_masks'][i, :att_batch[i].shape[0]] = 1 # merge trace_feats max_trace_len = max([_.shape[0] for _ in trace_batch]) data['trace_feats'] = np.zeros([len(trace_batch), max_trace_len, trace_batch[0].shape[1]], dtype='float32') for i in range(len(trace_batch)): data['trace_feats'][i, :trace_batch[i].shape[0]] = trace_batch[i] data['trace_masks'] = np.zeros(data['trace_feats'].shape[:2], dtype='float32') for i in range(len(trace_batch)): data['trace_masks'][i, :trace_batch[i].shape[0]] = 1 data['labels'] = np.vstack(label_batch) # generate mask nonzeros = np.array(list(map(lambda x: (x != 0).sum()+2, data['labels']))) mask_batch = np.zeros([data['labels'].shape[0], self.seq_length + 2], dtype = 'float32') for ix, row in enumerate(mask_batch): row[:nonzeros[ix]] = 1 data['masks'] = mask_batch data['labels'] = data['labels'].reshape(len(batch), seq_per_img, -1) data['masks'] = data['masks'].reshape(len(batch), seq_per_img, -1) data['gts'] = gts # all ground truth captions of each images data['bounds'] = {'it_pos_now': it_pos_now, # the it_pos_now of the last sample 'it_max': len(self.split_ix[split]), 'wrapped': wrapped} data['infos'] = infos data = {k:torch.from_numpy(v) if type(v) is np.ndarray else v for k,v in data.items()} # Turn all ndarray to torch tensor return data def __getitem__(self, index): """This function returns a tuple that is further passed to collate_fn """ ix, it_pos_now, wrapped = index #self.split_ix[index] if self.use_trace: trace_feat = self.trace_loader.get(str(self.info['images'][ix]['id'])).astype('float32')[:self.trace_max_length] # for classification # trace_class_label = self.trace_class_label_loader.get(str(self.info['images'][ix]['id'])).astype('float32') + 1 # do -1 when using in loss # trace_feat = np.concatenate([np.reshape(trace_class_label, [-1,1]), trace_feat], 1) ### for using grid level feature, commented for using trace box feature if self.use_trace_feat: trace_grid_feat = self.trace_feat_loader.get(str(self.info['images'][ix]['id'])).astype('float32') # for gird feature with 14*14, 2048+2 # trace_grid_feat = np.reshape(trace_grid_feat, [14*14, 2048]) # grid_resolution = 14 # grid_x = torch.arange(grid_resolution).unsqueeze(0).repeat(grid_resolution, 1).view(-1).unsqueeze(1) # grid_y = torch.arange(grid_resolution).unsqueeze(1).repeat(1, grid_resolution).view(-1).unsqueeze(1) # trace_grid_feat = np.concatenate([trace_grid_feat, grid_x, grid_y], 1) # if self.use_trace_feat: # then concat trace_feat # grid_resolution = 14 # currently it's 14*14 grid # trace_grid_feat = self.trace_feat_loader.get(str(self.info['images'][ix]['id'])).astype('float32') # trace_grid_feat = np.transpose(np.reshape(trace_grid_feat, [2048, -1])) # tmp_trace_center_xy = np.stack([(trace_feat[:, 0]+trace_feat[:, 2])/2, # (trace_feat[:, 1]+trace_feat[:, 3])/2], 1) # tmp_trace_center_xy = np.clip(tmp_trace_center_xy, 0., 1.) # tmp_trace_grid_idx = np.clip(np.floor(tmp_trace_center_xy[:,1]*grid_resolution), 0, grid_resolution-1)*grid_resolution + \ # np.clip(np.floor(tmp_trace_center_xy[:,0]*grid_resolution), 0, grid_resolution-1) # trace_grid_feat = trace_grid_feat[tmp_trace_grid_idx.astype(int), :] # [T, 1024/2048] # extend the trace_feat by sigma=0.1 # sigma = 0.1 # trace_feat[:, 0] = trace_feat[:, 0] - sigma # trace_feat[:, 1] = trace_feat[:, 1] - sigma # trace_feat[:, 2] = trace_feat[:, 2] + sigma # trace_feat[:, 3] = trace_feat[:, 3] + sigma # trace_feat = np.clip(trace_feat, 0., 1.) # trace_feat[:, 4] = (trace_feat[:,2] - trace_feat[:,0]) * (trace_feat[:,3] - trace_feat[:,1]) if self.use_trace_feat: # concat location and grid feat trace_feat = np.concatenate([trace_feat, trace_grid_feat], 1) else: trace_feat = np.zeros((0, 0), dtype='float32') if self.use_att: att_feat = self.att_loader.get(str(self.info['images'][ix]['id'])) # Reshape to K x C att_feat = att_feat.reshape(-1, att_feat.shape[-1]) if self.norm_att_feat: att_feat = att_feat / np.linalg.norm(att_feat, 2, 1, keepdims=True) if self.use_box: box_feat = self.box_loader.get(str(self.info['images'][ix]['id'])) if self.dataset_choice == 'flk30k': x1, y1, x2, y2, w, h = np.hsplit(box_feat, 6) box_feat = np.hstack((x1, y1, x2, y2, (x2 - x1) * (y2 - y1))) elif self.dataset_choice == 'ade20k' or self.dataset_choice == 'openimg': # 4-d x1, y1, x2, y2 = np.hsplit(box_feat, 4) box_feat = np.hstack((x1, y1, x2, y2, (x2 - x1) * (y2 - y1))) else: # devided by image width and height x1,y1,x2,y2 = np.hsplit(box_feat, 4) h,w = self.info['images'][ix]['height'], self.info['images'][ix]['width'] box_feat = np.hstack((x1/w, y1/h, x2/w, y2/h, (x2-x1)*(y2-y1)/(w*h))) # question? x2-x1+1?? else: box_feat = np.zeros((0, 0), dtype='float32') # if self.use_box: # box_feat = self.box_loader.get(str(self.info['images'][ix]['id'])) # # devided by image width and height # x1,y1,x2,y2 = np.hsplit(box_feat, 4) # h,w = self.info['images'][ix]['height'], self.info['images'][ix]['width'] # box_feat = np.hstack((x1/w, y1/h, x2/w, y2/h, (x2-x1)*(y2-y1)/(w*h))) # question? x2-x1+1?? # if self.norm_box_feat: # box_feat = box_feat / np.linalg.norm(box_feat, 2, 1, keepdims=True) # att_feat = np.hstack([att_feat, box_feat]) # # sort the features by the size of boxes # att_feat = np.stack(sorted(att_feat, key=lambda x:x[-1], reverse=True)) else: att_feat = np.zeros((0,0), dtype='float32') if self.use_fc: try: fc_feat = self.fc_loader.get(str(self.info['images'][ix]['id'])) except: # Use average of attention when there is no fc provided (For bottomup feature) fc_feat = att_feat.mean(0) else: fc_feat = np.zeros((0), dtype='float32') if hasattr(self, 'h5_label_file'): seq = self.get_captions(ix, self.seq_per_img) else: seq = None return (fc_feat, att_feat, trace_feat, box_feat, seq, ix, it_pos_now, wrapped) def __len__(self): return len(self.info['images']) class DataLoader: def __init__(self, opt): self.opt = opt self.batch_size = self.opt.batch_size self.dataset = Dataset(opt) # Initialize loaders and iters self.loaders, self.iters = {}, {} for split in ['train', 'val', 'test']: if split == 'train': sampler = MySampler(self.dataset.split_ix[split], shuffle=True, wrap=True) else: sampler = MySampler(self.dataset.split_ix[split], shuffle=False, wrap=False) self.loaders[split] = data.DataLoader(dataset=self.dataset, batch_size=self.batch_size, sampler=sampler, pin_memory=True, num_workers=4, # 4 is usually enough collate_fn=lambda x: self.dataset.collate_func(x, split), drop_last=False) self.iters[split] = iter(self.loaders[split]) def get_batch(self, split): try: data = next(self.iters[split]) except StopIteration: self.iters[split] = iter(self.loaders[split]) data = next(self.iters[split]) return data def reset_iterator(self, split): self.loaders[split].sampler._reset_iter() self.iters[split] = iter(self.loaders[split]) def get_vocab_size(self): return self.dataset.get_vocab_size() @property def vocab_size(self): return self.get_vocab_size() def get_vocab(self): return self.dataset.get_vocab() def get_seq_length(self): return self.dataset.get_seq_length() @property def seq_length(self): return self.get_seq_length() def state_dict(self): def get_prefetch_num(split): if self.loaders[split].num_workers > 0: return (self.iters[split]._send_idx - self.iters[split]._rcvd_idx) * self.batch_size else: return 0 return {split: loader.sampler.state_dict(get_prefetch_num(split)) \ for split, loader in self.loaders.items()} def load_state_dict(self, state_dict=None): if state_dict is None: return for split in self.loaders.keys(): self.loaders[split].sampler.load_state_dict(state_dict[split]) class MySampler(data.sampler.Sampler): def __init__(self, index_list, shuffle, wrap): self.index_list = index_list self.shuffle = shuffle self.wrap = wrap # if wrap, there will be not stop iteration called # wrap True used during training, and wrap False used during test. self._reset_iter() def __iter__(self): return self def __next__(self): wrapped = False if self.iter_counter == len(self._index_list): self._reset_iter() if self.wrap: wrapped = True else: raise StopIteration() if len(self._index_list) == 0: # overflow when 0 samples return None elem = (self._index_list[self.iter_counter], self.iter_counter+1, wrapped) self.iter_counter += 1 return elem def next(self): return self.__next__() def _reset_iter(self): if self.shuffle: rand_perm = npr.permutation(len(self.index_list)) self._index_list = [self.index_list[_] for _ in rand_perm] else: self._index_list = self.index_list self.iter_counter = 0 def __len__(self): return len(self.index_list) def load_state_dict(self, state_dict=None): if state_dict is None: return self._index_list = state_dict['index_list'] self.iter_counter = state_dict['iter_counter'] def state_dict(self, prefetched_num=None): prefetched_num = prefetched_num or 0 return { 'index_list': self._index_list, 'iter_counter': self.iter_counter - prefetched_num }
connect-caption-and-trace-main
captioning/data/dataloader.py
from __future__ import absolute_import from __future__ import division from __future__ import print_function import json import h5py import lmdb import os import numpy as np import numpy.random as npr import random import torch import torch.utils.data as data import multiprocessing import six class HybridLoader: """ If db_path is a director, then use normal file loading If lmdb, then load from lmdb The loading method depend on extention. in_memory: if in_memory is True, we save all the features in memory For individual np(y|z)s, we don't need to do that because the system will do this for us. Should be useful for lmdb or h5. (Copied this idea from vilbert) """ def __init__(self, db_path, ext, in_memory=False): self.db_path = db_path self.ext = ext if self.ext == '.npy': self.loader = lambda x: np.load(six.BytesIO(x)) else: def load_npz(x): x = np.load(six.BytesIO(x)) return x['feat'] if 'feat' in x else x['z'] # normally it should be 'feat', but under cocotest_bu, the key is saved to be 'z' mistakenly. self.loader = load_npz if db_path.endswith('.lmdb'): self.db_type = 'lmdb' self.env = lmdb.open(db_path, subdir=os.path.isdir(db_path), readonly=True, lock=False, readahead=False, meminit=False) elif db_path.endswith('.pth'): # Assume a key,value dictionary self.db_type = 'pth' self.feat_file = torch.load(db_path) self.loader = lambda x: x print('HybridLoader: ext is ignored') elif db_path.endswith('h5'): self.db_type = 'h5' self.loader = lambda x: np.array(x).astype('float32') else: self.db_type = 'dir' self.in_memory = in_memory if self.in_memory: self.features = {} def get(self, key): if self.in_memory and key in self.features: # We save f_input because we want to save the # compressed bytes to save memory f_input = self.features[key] elif self.db_type == 'lmdb': env = self.env with env.begin(write=False) as txn: byteflow = txn.get(key.encode()) f_input = byteflow elif self.db_type == 'pth': f_input = self.feat_file[key] elif self.db_type == 'h5': f_input = h5py.File(self.db_path, 'r')[key] else: f_input = open(os.path.join(self.db_path, key + self.ext), 'rb').read() if self.in_memory and key not in self.features: self.features[key] = f_input # load image feat = self.loader(f_input) return feat class Dataset(data.Dataset): def get_vocab_size(self): return self.vocab_size def get_vocab(self): return self.ix_to_word def get_seq_length(self): return self.seq_length def __init__(self, opt): self.opt = opt self.seq_per_img = opt.seq_per_img # feature related options self.use_fc = getattr(opt, 'use_fc', True) self.use_att = getattr(opt, 'use_att', True) self.use_box = getattr(opt, 'use_box', 0) self.use_trace = getattr(opt, 'use_trace', 0) self.use_trace_feat = getattr(opt, 'use_trace_feat', 0) self.norm_att_feat = getattr(opt, 'norm_att_feat', 0) self.norm_box_feat = getattr(opt, 'norm_box_feat', 0) # load the json file which contains additional information about the dataset print('DataLoader loading json file: ', opt.input_json) self.info = json.load(open(self.opt.input_json)) self.union_vocab_json = json.load(open('./data/coco_LN_union_vocab.json')) if 'ix_to_word' in self.info: self.ix_to_word = self.union_vocab_json['ix_to_word'] #self.info['ix_to_word'] self.vocab_size = len(self.ix_to_word) print('vocab size is ', self.vocab_size) # open the hdf5 file print('DataLoader loading h5 file: ', opt.input_fc_dir, opt.input_att_dir, opt.input_box_dir, opt.input_label_h5) """ Setting input_label_h5 to none is used when only doing generation. For example, when you need to test on coco test set. """ if self.opt.input_label_h5 != 'none': ### for show-control-tell dataset on coco caption self.show_coco_h5_label_file = h5py.File('data/coco_in_LN_vocab_labels.h5', 'r', driver='core') show_seq_size = self.show_coco_h5_label_file['labels'].shape self.show_seq_length = show_seq_size[1] self.show_label = self.show_coco_h5_label_file['labels'][:] self.show_label_start_ix = self.show_coco_h5_label_file['label_start_ix'][:] self.show_label_end_ix = self.show_coco_h5_label_file['label_end_ix'][:] ############################################## self.h5_label_file = h5py.File(self.opt.input_label_h5, 'r', driver='core') # load in the sequence data seq_size = self.h5_label_file['labels'].shape self.label = self.h5_label_file['labels'][:] self.seq_length = seq_size[1] print('max sequence length in data is', self.seq_length) # load the pointers in full to RAM (should be small enough) self.label_start_ix = self.h5_label_file['label_start_ix'][:] self.label_end_ix = self.h5_label_file['label_end_ix'][:] else: self.seq_length = 1 self.data_in_memory = getattr(opt, 'data_in_memory', False) self.fc_loader = HybridLoader(self.opt.input_fc_dir, '.npy', in_memory=self.data_in_memory) self.att_loader = HybridLoader(self.opt.input_att_dir, '.npz', in_memory=self.data_in_memory) self.box_loader = HybridLoader(self.opt.input_box_dir, '.npy', in_memory=self.data_in_memory) self.trace_loader = HybridLoader(self.opt.input_trace_dir, '.npy', in_memory=self.data_in_memory) self.show_trace_loader = HybridLoader('./data/show_control_tell_box_seq', '.npy', in_memory=self.data_in_memory) self.show_gate_label_loader = HybridLoader('./data/show_control_tell_box_gate_label', '.npy', in_memory=self.data_in_memory) self.trace_class_label_loader = HybridLoader(self.opt.input_trace_class_label_dir, '.npy', in_memory=self.data_in_memory) self.trace_feat_loader = HybridLoader(self.opt.input_trace_feat_dir, '.npy', in_memory=self.data_in_memory) self.num_images = len(self.info['images']) # self.label_start_ix.shape[0] print('read %d image features' %(self.num_images)) # separate out indexes for each of the provided splits self.split_ix = {'train': [], 'val': [], 'test': []} ### load the Kaparthy split tmp_cocotalk_json = json.load(open('/home/zihang/Research/Localized_Narratives/ImageCaptioning.pytorch/data/cocotalk.json')) for ix in range(len(tmp_cocotalk_json['images'])): img = tmp_cocotalk_json['images'][ix] if not 'split' in img: self.split_ix['train'].append(ix) self.split_ix['val'].append(ix) self.split_ix['test'].append(ix) elif img['split'] == 'train': self.split_ix['train'].append(ix) elif img['split'] == 'val': # pass elif img['split'] == 'test': self.split_ix['val'].append(ix) ###zihang self.split_ix['test'].append(ix) #self.split_ix['test'].append(ix) ###zihang #self.split_ix['test'].append(ix) ###zihang elif opt.train_only == 0: # restval self.split_ix['train'].append(ix) # for ix in range(len(self.info['images'])): # img = self.info['images'][ix] # if not 'split' in img: # self.split_ix['train'].append(ix) # self.split_ix['val'].append(ix) # self.split_ix['test'].append(ix) # elif img['split'] == 'train': # self.split_ix['train'].append(ix) # elif img['split'] == 'val': # # pass # elif img['split'] == 'test': # self.split_ix['val'].append(ix) ###zihang # self.split_ix['test'].append(ix) # #self.split_ix['test'].append(ix) ###zihang # #self.split_ix['test'].append(ix) ###zihang # elif opt.train_only == 0: # restval # self.split_ix['train'].append(ix) print('assigned %d images to split train' %len(self.split_ix['train'])) print('assigned %d images to split val' %len(self.split_ix['val'])) print('assigned %d images to split test' %len(self.split_ix['test'])) def get_captions(self, ix, seq_per_img): # fetch the sequence labels ix1 = self.label_start_ix[ix] - 1 #label_start_ix starts from 1 ix2 = self.label_end_ix[ix] - 1 ncap = ix2 - ix1 + 1 # number of captions available for this image assert ncap > 0, 'an image does not have any label. this can be handled but right now isn\'t' if ncap < seq_per_img: # we need to subsample (with replacement) seq = np.zeros([seq_per_img, self.seq_length], dtype = 'int') for q in range(seq_per_img): ixl = random.randint(ix1,ix2) seq[q, :] = self.label[ixl, :self.seq_length] else: ixl = random.randint(ix1, ix2 - seq_per_img + 1) seq = self.label[ixl: ixl + seq_per_img, :self.seq_length] return seq def get_captions_show(self, ix, seq_per_img): # fetch the sequence labels ix1 = self.show_label_start_ix[ix] - 1 # label_start_ix starts from 1 ix2 = self.show_label_end_ix[ix] - 1 ncap = ix2 - ix1 + 1 # number of captions available for this image assert ncap > 0, 'an image does not have any label. this can be handled but right now isn\'t' # if ncap < seq_per_img: # # we need to subsample (with replacement) # seq = np.zeros([seq_per_img, self.show_seq_length], dtype='int') # for q in range(seq_per_img): # ixl = random.randint(ix1, ix2) # seq[q, :] = self.show_label[ixl, :self.show_seq_length] # else: # ixl = random.randint(ix1, ix2 - seq_per_img + 1) # seq = self.show_label[ixl: ixl + seq_per_img, :self.show_seq_length] ### zihang: temporarily load all captions for the image ixl = ix1 # get first 5 instead of random seq = self.show_label[ixl: ixl + seq_per_img, :self.show_seq_length] # seq = self.show_label[ix1:ix2+1, :self.show_seq_length] return seq def collate_func(self, batch, split): seq_per_img = self.seq_per_img fc_batch = [] att_batch = [] label_batch = [] trace_batch = [] box_batch = [] show_trace_feat_batch = [] show_label_batch = [] show_gate_label_batch = [] wrapped = False infos = [] gts = [] for sample in batch: # fetch image tmp_fc, tmp_att, tmp_trace, tmp_box, tmp_seq, \ ix, it_pos_now, tmp_wrapped, tmp_show_seq, tmp_show_trace_feat, tmp_show_gate_label_orig = sample if tmp_wrapped: wrapped = True fc_batch.append(tmp_fc) att_batch.append(tmp_att) trace_batch.append(tmp_trace) box_batch.append(tmp_box) # show-control-tell for tmp_i in range(tmp_show_trace_feat.shape[0]): show_trace_feat_batch.append(tmp_show_trace_feat[tmp_i]) # append the trace feats of one caption sentence tmp_label = np.zeros([seq_per_img, self.seq_length + 2], dtype = 'int') if hasattr(self, 'h5_label_file'): # if there is ground truth tmp_label[:, 1 : self.seq_length + 1] = tmp_seq label_batch.append(tmp_label) tmp_show_label = np.zeros([5, self.show_seq_length + 2], dtype='int') tmp_show_label[:, 1: self.show_seq_length + 1] = tmp_show_seq show_label_batch.append(tmp_show_label) # for gate tmp_show_gate_label = np.zeros([5, self.show_seq_length + 2], dtype='int') tmp_show_gate_label[:, 1: self.show_seq_length + 1] = tmp_show_gate_label_orig[:5, :self.show_seq_length] show_gate_label_batch.append(tmp_show_gate_label) # Used for reward evaluation if hasattr(self, 'h5_label_file'): # if there is ground truth gts.append(self.label[self.label_start_ix[ix] - 1: self.label_end_ix[ix]]) else: gts.append([]) # record associated info as well info_dict = {} info_dict['ix'] = ix info_dict['id'] = self.info['images'][ix]['id'] info_dict['file_path'] = self.info['images'][ix].get('file_path', '') infos.append(info_dict) # #sort by att_feat length # fc_batch, att_batch, label_batch, gts, infos = \ # zip(*sorted(zip(fc_batch, att_batch, np.vsplit(label_batch, batch_size), gts, infos), key=lambda x: len(x[1]), reverse=True)) # commented for classification # fc_batch, att_batch, trace_batch, box_batch, label_batch, gts, infos = \ # zip(*sorted(zip(fc_batch, att_batch, trace_batch, box_batch, label_batch, gts, infos), key=lambda x: 0, reverse=True)) data = {} data['fc_feats'] = np.stack(fc_batch) # merge att_feats max_att_len = max([_.shape[0] for _ in att_batch]) data['att_feats'] = np.zeros([len(att_batch), max_att_len, att_batch[0].shape[1]], dtype = 'float32') data['box_feats'] = np.zeros([len(box_batch), max_att_len, box_batch[0].shape[1]], dtype='float32') assert att_batch[0].shape[0] == box_batch[0].shape[0], 'box should have same shape[0] with att' for i in range(len(att_batch)): data['att_feats'][i, :att_batch[i].shape[0]] = att_batch[i] data['box_feats'][i, :box_batch[i].shape[0]] = box_batch[i] data['att_masks'] = np.zeros(data['att_feats'].shape[:2], dtype='float32') for i in range(len(att_batch)): data['att_masks'][i, :att_batch[i].shape[0]] = 1 # set att_masks to None if attention features have same length #commented by zihang # if data['att_masks'].sum() == data['att_masks'].size: # data['att_masks'] = None # merge trace_feats max_trace_len = max([_.shape[0] for _ in trace_batch]) data['trace_feats'] = np.zeros([len(trace_batch), max_trace_len, trace_batch[0].shape[1]], dtype='float32') for i in range(len(trace_batch)): data['trace_feats'][i, :trace_batch[i].shape[0]] = trace_batch[i] data['trace_masks'] = np.zeros(data['trace_feats'].shape[:2], dtype='float32') for i in range(len(trace_batch)): data['trace_masks'][i, :trace_batch[i].shape[0]] = 1 # set trace_masks to None if attention features have same length #commented by zihang # if data['trace_masks'].sum() == data['trace_masks'].size: # data['trace_masks'] = None # merge show-control-tell trace feats max_trace_len = max([_.shape[0] for _ in show_trace_feat_batch]) data['show_trace_feats'] = np.zeros([len(show_trace_feat_batch), max_trace_len, show_trace_feat_batch[0].shape[1]], dtype='float32') for i in range(len(show_trace_feat_batch)): data['show_trace_feats'][i, :show_trace_feat_batch[i].shape[0]] = show_trace_feat_batch[i] data['show_trace_masks'] = np.zeros(data['show_trace_feats'].shape[:2], dtype='float32') for i in range(len(show_trace_feat_batch)): data['show_trace_masks'][i, :show_trace_feat_batch[i].shape[0]] = 1 for i in range(data['show_trace_feats'].shape[0]): for j in range(data['show_trace_feats'].shape[1]): if data['show_trace_feats'][i,j,0] < 0: data['show_trace_masks'][i, j] = 0 data['show_trace_feats'] = np.clip(data['show_trace_feats'], 0., 1.) data['labels'] = np.vstack(label_batch) data['show_labels'] = np.expand_dims(np.vstack(show_label_batch), 1) data['show_gate_labels'] = np.expand_dims(np.vstack(show_gate_label_batch), 1) # generate mask nonzeros = np.array(list(map(lambda x: (x != 0).sum()+2, data['labels']))) mask_batch = np.zeros([data['labels'].shape[0], self.seq_length + 2], dtype = 'float32') for ix, row in enumerate(mask_batch): row[:nonzeros[ix]] = 1 data['masks'] = mask_batch data['labels'] = data['labels'].reshape(len(batch), seq_per_img, -1) data['masks'] = data['masks'].reshape(len(batch), seq_per_img, -1) # generate mask for show-control-tell nonzeros = np.array(list(map(lambda x: (x != 0).sum() + 2, data['show_labels']))) mask_batch = np.zeros([data['show_labels'].shape[0], self.show_seq_length + 2], dtype='float32') for ix, row in enumerate(mask_batch): row[:nonzeros[ix]] = 1 data['show_masks'] = np.expand_dims(mask_batch, 1) data['gts'] = gts # all ground truth captions of each images data['bounds'] = {'it_pos_now': it_pos_now, # the it_pos_now of the last sample 'it_max': len(self.split_ix[split]), 'wrapped': wrapped} # print('In dataloader', len(self.split_ix[split]), split, infos)###zihang data['infos'] = infos data = {k:torch.from_numpy(v) if type(v) is np.ndarray else v for k,v in data.items()} # Turn all ndarray to torch tensor return data def __getitem__(self, index): """This function returns a tuple that is further passed to collate_fn """ ix, it_pos_now, wrapped = index #self.split_ix[index] show_trace_feat = self.show_trace_loader.get(str(self.info['images'][ix]['id'])).astype('float32')[:5] show_gate_label = self.show_gate_label_loader.get(str(self.info['images'][ix]['id'])).astype('float32') # print(show_trace_feat.shape, ix) try: assert show_trace_feat.shape[2] == 5 except: print(show_trace_feat.shape, ix) if self.use_trace: trace_feat = self.trace_loader.get(str(self.info['images'][ix]['id'])).astype('float32') # for classification # trace_class_label = self.trace_class_label_loader.get(str(self.info['images'][ix]['id'])).astype('float32') + 1 # do -1 when using in loss # trace_feat = np.concatenate([np.reshape(trace_class_label, [-1,1]), trace_feat], 1) ### for using grid level feature, commented for using trace box feature if self.use_trace_feat: trace_grid_feat = self.trace_feat_loader.get(str(self.info['images'][ix]['id'])).astype('float32') # for gird feature with 14*14, 2048+2 # trace_grid_feat = np.reshape(trace_grid_feat, [14*14, 2048]) # grid_resolution = 14 # grid_x = torch.arange(grid_resolution).unsqueeze(0).repeat(grid_resolution, 1).view(-1).unsqueeze(1) # grid_y = torch.arange(grid_resolution).unsqueeze(1).repeat(1, grid_resolution).view(-1).unsqueeze(1) # trace_grid_feat = np.concatenate([trace_grid_feat, grid_x, grid_y], 1) # if self.use_trace_feat: # then concat trace_feat # grid_resolution = 14 # currently it's 14*14 grid # trace_grid_feat = self.trace_feat_loader.get(str(self.info['images'][ix]['id'])).astype('float32') # trace_grid_feat = np.transpose(np.reshape(trace_grid_feat, [2048, -1])) # tmp_trace_center_xy = np.stack([(trace_feat[:, 0]+trace_feat[:, 2])/2, # (trace_feat[:, 1]+trace_feat[:, 3])/2], 1) # tmp_trace_center_xy = np.clip(tmp_trace_center_xy, 0., 1.) # tmp_trace_grid_idx = np.clip(np.floor(tmp_trace_center_xy[:,1]*grid_resolution), 0, grid_resolution-1)*grid_resolution + \ # np.clip(np.floor(tmp_trace_center_xy[:,0]*grid_resolution), 0, grid_resolution-1) # trace_grid_feat = trace_grid_feat[tmp_trace_grid_idx.astype(int), :] # [T, 1024/2048] # extend the trace_feat by sigma=0.1 # sigma = 0.1 # trace_feat[:, 0] = trace_feat[:, 0] - sigma # trace_feat[:, 1] = trace_feat[:, 1] - sigma # trace_feat[:, 2] = trace_feat[:, 2] + sigma # trace_feat[:, 3] = trace_feat[:, 3] + sigma # trace_feat = np.clip(trace_feat, 0., 1.) # trace_feat[:, 4] = (trace_feat[:,2] - trace_feat[:,0]) * (trace_feat[:,3] - trace_feat[:,1]) if self.use_trace_feat: # concat location and grid feat trace_feat = np.concatenate([trace_feat, trace_grid_feat], 1) else: trace_feat = np.zeros((0, 0), dtype='float32') if self.use_att: att_feat = self.att_loader.get(str(self.info['images'][ix]['id'])) # Reshape to K x C att_feat = att_feat.reshape(-1, att_feat.shape[-1]) if self.norm_att_feat: att_feat = att_feat / np.linalg.norm(att_feat, 2, 1, keepdims=True) if self.use_box: # zihang updated version box_feat = self.box_loader.get(str(self.info['images'][ix]['id'])) # devided by image width and height x1,y1,x2,y2 = np.hsplit(box_feat, 4) h,w = self.info['images'][ix]['height'], self.info['images'][ix]['width'] box_feat = np.hstack((x1/w, y1/h, x2/w, y2/h, (x2-x1)*(y2-y1)/(w*h))) # question? x2-x1+1?? else: box_feat = np.zeros((0, 0), dtype='float32') # if self.use_box: # box_feat = self.box_loader.get(str(self.info['images'][ix]['id'])) # # devided by image width and height # x1,y1,x2,y2 = np.hsplit(box_feat, 4) # h,w = self.info['images'][ix]['height'], self.info['images'][ix]['width'] # box_feat = np.hstack((x1/w, y1/h, x2/w, y2/h, (x2-x1)*(y2-y1)/(w*h))) # question? x2-x1+1?? # if self.norm_box_feat: # box_feat = box_feat / np.linalg.norm(box_feat, 2, 1, keepdims=True) # att_feat = np.hstack([att_feat, box_feat]) # # sort the features by the size of boxes # att_feat = np.stack(sorted(att_feat, key=lambda x:x[-1], reverse=True)) else: att_feat = np.zeros((0,0), dtype='float32') if self.use_fc: try: fc_feat = self.fc_loader.get(str(self.info['images'][ix]['id'])) except: # Use average of attention when there is no fc provided (For bottomup feature) fc_feat = att_feat.mean(0) else: fc_feat = np.zeros((0), dtype='float32') if hasattr(self, 'h5_label_file'): seq = self.get_captions(ix, self.seq_per_img) seq_show = self.get_captions_show(ix, 5) else: seq = None return (fc_feat, att_feat, trace_feat, box_feat, seq, ix, it_pos_now, wrapped, seq_show, show_trace_feat, show_gate_label) def __len__(self): return len(self.info['images']) class DataLoader: def __init__(self, opt): self.opt = opt self.batch_size = self.opt.batch_size self.dataset = Dataset(opt) # Initialize loaders and iters self.loaders, self.iters = {}, {} for split in ['train', 'val', 'test']: if split == 'train': sampler = MySampler(self.dataset.split_ix[split], shuffle=True, wrap=True) else: sampler = MySampler(self.dataset.split_ix[split], shuffle=False, wrap=False) self.loaders[split] = data.DataLoader(dataset=self.dataset, batch_size=self.batch_size, sampler=sampler, pin_memory=True, num_workers=4, # 4 is usually enough collate_fn=lambda x: self.dataset.collate_func(x, split), drop_last=False) self.iters[split] = iter(self.loaders[split]) def get_batch(self, split): # print('In Dataloader, get_batch', split)###zihang try: data = next(self.iters[split]) except StopIteration: self.iters[split] = iter(self.loaders[split]) data = next(self.iters[split]) return data def reset_iterator(self, split): self.loaders[split].sampler._reset_iter() self.iters[split] = iter(self.loaders[split]) def get_vocab_size(self): return self.dataset.get_vocab_size() @property def vocab_size(self): return self.get_vocab_size() def get_vocab(self): return self.dataset.get_vocab() def get_seq_length(self): return self.dataset.get_seq_length() @property def seq_length(self): return self.get_seq_length() def state_dict(self): def get_prefetch_num(split): if self.loaders[split].num_workers > 0: return (self.iters[split]._send_idx - self.iters[split]._rcvd_idx) * self.batch_size else: return 0 return {split: loader.sampler.state_dict(get_prefetch_num(split)) \ for split, loader in self.loaders.items()} def load_state_dict(self, state_dict=None): if state_dict is None: return for split in self.loaders.keys(): self.loaders[split].sampler.load_state_dict(state_dict[split]) class MySampler(data.sampler.Sampler): def __init__(self, index_list, shuffle, wrap): self.index_list = index_list self.shuffle = shuffle self.wrap = wrap # if wrap, there will be not stop iteration called # wrap True used during training, and wrap False used during test. self._reset_iter() def __iter__(self): return self def __next__(self): wrapped = False if self.iter_counter == len(self._index_list): self._reset_iter() if self.wrap: wrapped = True else: raise StopIteration() if len(self._index_list) == 0: # overflow when 0 samples return None elem = (self._index_list[self.iter_counter], self.iter_counter+1, wrapped) self.iter_counter += 1 return elem def next(self): return self.__next__() def _reset_iter(self): if self.shuffle: rand_perm = npr.permutation(len(self.index_list)) self._index_list = [self.index_list[_] for _ in rand_perm] else: self._index_list = self.index_list self.iter_counter = 0 def __len__(self): return len(self.index_list) def load_state_dict(self, state_dict=None): if state_dict is None: return self._index_list = state_dict['index_list'] self.iter_counter = state_dict['iter_counter'] def state_dict(self, prefetched_num=None): prefetched_num = prefetched_num or 0 return { 'index_list': self._index_list, 'iter_counter': self.iter_counter - prefetched_num }
connect-caption-and-trace-main
captioning/data/dataloader_show_control_tell.py
from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import base64 import numpy as np import csv import sys import zlib import time import mmap import argparse parser = argparse.ArgumentParser() # output_dir parser.add_argument('--downloaded_feats', default='data/bu_data', help='downloaded feature directory') parser.add_argument('--output_dir', default='data/cocobu', help='output feature files') args = parser.parse_args() csv.field_size_limit(sys.maxsize) FIELDNAMES = ['image_id', 'image_w','image_h','num_boxes', 'boxes', 'features'] infiles = ['trainval/karpathy_test_resnet101_faster_rcnn_genome.tsv', 'trainval/karpathy_val_resnet101_faster_rcnn_genome.tsv',\ 'trainval/karpathy_train_resnet101_faster_rcnn_genome.tsv.0', \ 'trainval/karpathy_train_resnet101_faster_rcnn_genome.tsv.1'] os.makedirs(args.output_dir+'_att') os.makedirs(args.output_dir+'_fc') os.makedirs(args.output_dir+'_box') for infile in infiles: print('Reading ' + infile) with open(os.path.join(args.downloaded_feats, infile), "r") as tsv_in_file: reader = csv.DictReader(tsv_in_file, delimiter='\t', fieldnames = FIELDNAMES) for item in reader: item['image_id'] = int(item['image_id']) item['num_boxes'] = int(item['num_boxes']) for field in ['boxes', 'features']: item[field] = np.frombuffer(base64.decodestring(item[field].encode('ascii')), dtype=np.float32).reshape((item['num_boxes'],-1)) np.savez_compressed(os.path.join(args.output_dir+'_att', str(item['image_id'])), feat=item['features']) np.save(os.path.join(args.output_dir+'_fc', str(item['image_id'])), item['features'].mean(0)) np.save(os.path.join(args.output_dir+'_box', str(item['image_id'])), item['boxes'])
connect-caption-and-trace-main
scripts/make_bu_data.py
""" Preprocess a raw json dataset into features files for use in data_loader.py Input: json file that has the form [{ file_path: 'path/img.jpg', captions: ['a caption', ...] }, ...] example element in this list would look like {'captions': [u'A man with a red helmet on a small moped on a dirt road. ', u'Man riding a motor bike on a dirt road on the countryside.', u'A man riding on the back of a motorcycle.', u'A dirt path with a young person on a motor bike rests to the foreground of a verdant area with a bridge and a background of cloud-wreathed mountains. ', u'A man in a red shirt and a red hat is on a motorcycle on a hill side.'], 'file_path': u'val2014/COCO_val2014_000000391895.jpg', 'id': 391895} This script reads this json, does some basic preprocessing on the captions (e.g. lowercase, etc.), creates a special UNK token, and encodes everything to arrays Output: two folders of features """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import json import argparse from random import shuffle, seed import string # non-standard dependencies: import h5py from six.moves import cPickle import numpy as np import torch import torchvision.models as models import skimage.io from torchvision import transforms as trn preprocess = trn.Compose([ #trn.ToTensor(), trn.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) from captioning.utils.resnet_utils import myResnet import captioning.utils.resnet as resnet def main(params): net = getattr(resnet, params['model'])() net.load_state_dict(torch.load(os.path.join(params['model_root'],params['model']+'.pth'))) my_resnet = myResnet(net) my_resnet.cuda() my_resnet.eval() imgs = json.load(open(params['input_json'], 'r')) imgs = imgs['images'] N = len(imgs) seed(123) # make reproducible dir_fc = params['output_dir']+'_fc' dir_att = params['output_dir']+'_att' if not os.path.isdir(dir_fc): os.mkdir(dir_fc) if not os.path.isdir(dir_att): os.mkdir(dir_att) for i,img in enumerate(imgs): # load the image I = skimage.io.imread(os.path.join(params['images_root'], img['filepath'], img['filename'])) # handle grayscale input images if len(I.shape) == 2: I = I[:,:,np.newaxis] I = np.concatenate((I,I,I), axis=2) I = I.astype('float32')/255.0 I = torch.from_numpy(I.transpose([2,0,1])).cuda() I = preprocess(I) with torch.no_grad(): tmp_fc, tmp_att = my_resnet(I, params['att_size']) # write to pkl np.save(os.path.join(dir_fc, str(img['cocoid'])), tmp_fc.data.cpu().float().numpy()) np.savez_compressed(os.path.join(dir_att, str(img['cocoid'])), feat=tmp_att.data.cpu().float().numpy()) if i % 1000 == 0: print('processing %d/%d (%.2f%% done)' % (i, N, i*100.0/N)) print('wrote ', params['output_dir']) if __name__ == "__main__": parser = argparse.ArgumentParser() # input json parser.add_argument('--input_json', required=True, help='input json file to process into hdf5') parser.add_argument('--output_dir', default='data', help='output h5 file') # options parser.add_argument('--images_root', default='', help='root location in which images are stored, to be prepended to file_path in input json') parser.add_argument('--att_size', default=14, type=int, help='14x14 or 7x7') parser.add_argument('--model', default='resnet101', type=str, help='resnet101, resnet152') parser.add_argument('--model_root', default='./data/imagenet_weights', type=str, help='model root') args = parser.parse_args() params = vars(args) # convert to ordinary dict print('parsed input parameters:') print(json.dumps(params, indent = 2)) main(params)
connect-caption-and-trace-main
scripts/prepro_feats.py
# coding: utf-8 """ Create a reference json file used for evaluation with `coco-caption` repo. Used when reference json is not provided, (e.g., flickr30k, or you have your own split of train/val/test) """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import json import argparse import sys import hashlib from random import shuffle, seed def main(params): imgs = json.load(open(params['input_json'][0], 'r'))['images'] # tmp = [] # for k in imgs.keys(): # for img in imgs[k]: # img['filename'] = img['image_id'] # k+'/'+img['image_id'] # img['image_id'] = int( # int(hashlib.sha256(img['image_id']).hexdigest(), 16) % sys.maxint) # tmp.append(img) # imgs = tmp # create output json file out = {'info': {'description': 'This is stable 1.0 version of the 2014 MS COCO dataset.', 'url': 'http://mscoco.org', 'version': '1.0', 'year': 2014, 'contributor': 'Microsoft COCO group', 'date_created': '2015-01-27 09:11:52.357475'}, 'licenses': [{'url': 'http://creativecommons.org/licenses/by-nc-sa/2.0/', 'id': 1, 'name': 'Attribution-NonCommercial-ShareAlike License'}, {'url': 'http://creativecommons.org/licenses/by-nc/2.0/', 'id': 2, 'name': 'Attribution-NonCommercial License'}, {'url': 'http://creativecommons.org/licenses/by-nc-nd/2.0/', 'id': 3, 'name': 'Attribution-NonCommercial-NoDerivs License'}, {'url': 'http://creativecommons.org/licenses/by/2.0/', 'id': 4, 'name': 'Attribution License'}, {'url': 'http://creativecommons.org/licenses/by-sa/2.0/', 'id': 5, 'name': 'Attribution-ShareAlike License'}, {'url': 'http://creativecommons.org/licenses/by-nd/2.0/', 'id': 6, 'name': 'Attribution-NoDerivs License'}, {'url': 'http://flickr.com/commons/usage/', 'id': 7, 'name': 'No known copyright restrictions'}, {'url': 'http://www.usa.gov/copyright.shtml', 'id': 8, 'name': 'United States Government Work'}], 'type': 'captions'} out.update({'images': [], 'annotations': []}) cnt = 0 empty_cnt = 0 for i, img in enumerate(imgs): if img['split'] == 'train': continue out['images'].append( {'id': img.get('cocoid', img['imgid'])}) for j, s in enumerate(img['sentences']): if len(s) == 0: continue s = ' '.join(s['tokens']) out['annotations'].append( {'image_id': out['images'][-1]['id'], 'caption': s, 'id': cnt}) cnt += 1 json.dump(out, open(params['output_json'], 'w')) print('wrote ', params['output_json']) if __name__ == "__main__": parser = argparse.ArgumentParser() # input json parser.add_argument('--input_json', nargs='+', required=True, help='input json file to process into hdf5') parser.add_argument('--output_json', default='data.json', help='output json file') args = parser.parse_args() params = vars(args) # convert to ordinary dict print('parsed input parameters:') print(json.dumps(params, indent=2)) main(params)
connect-caption-and-trace-main
scripts/prepro_reference_json.py
""" Precompute ngram counts of captions, to accelerate cider computation during training time. """ import os import json import argparse from six.moves import cPickle import captioning.utils.misc as utils from collections import defaultdict import sys sys.path.append("cider") from pyciderevalcap.ciderD.ciderD_scorer import CiderScorer def get_doc_freq(refs, params): tmp = CiderScorer(df_mode="corpus") for ref in refs: tmp.cook_append(None, ref) tmp.compute_doc_freq() return tmp.document_frequency, len(tmp.crefs) def build_dict(imgs, wtoi, params): wtoi['<eos>'] = 0 count_imgs = 0 refs_words = [] refs_idxs = [] for img in imgs: if (params['split'] == img['split']) or \ (params['split'] == 'train' and img['split'] == 'restval') or \ (params['split'] == 'all'): #(params['split'] == 'val' and img['split'] == 'restval') or \ ref_words = [] ref_idxs = [] for sent in img['sentences']: if hasattr(params, 'bpe'): sent['tokens'] = params.bpe.segment(' '.join(sent['tokens'])).strip().split(' ') tmp_tokens = sent['tokens'] + ['<eos>'] tmp_tokens = [_ if _ in wtoi else 'UNK' for _ in tmp_tokens] ref_words.append(' '.join(tmp_tokens)) ref_idxs.append(' '.join([str(wtoi[_]) for _ in tmp_tokens])) refs_words.append(ref_words) refs_idxs.append(ref_idxs) count_imgs += 1 print('total imgs:', count_imgs) ngram_words, count_refs = get_doc_freq(refs_words, params) ngram_idxs, count_refs = get_doc_freq(refs_idxs, params) print('count_refs:', count_refs) return ngram_words, ngram_idxs, count_refs def main(params): imgs = json.load(open(params['input_json'], 'r')) dict_json = json.load(open(params['dict_json'], 'r')) itow = dict_json['ix_to_word'] wtoi = {w:i for i,w in itow.items()} # Load bpe if 'bpe' in dict_json: import tempfile import codecs codes_f = tempfile.NamedTemporaryFile(delete=False) codes_f.close() with open(codes_f.name, 'w') as f: f.write(dict_json['bpe']) with codecs.open(codes_f.name, encoding='UTF-8') as codes: bpe = apply_bpe.BPE(codes) params.bpe = bpe imgs = imgs['images'] ngram_words, ngram_idxs, ref_len = build_dict(imgs, wtoi, params) utils.pickle_dump({'document_frequency': ngram_words, 'ref_len': ref_len}, open(params['output_pkl']+'-words.p','wb')) utils.pickle_dump({'document_frequency': ngram_idxs, 'ref_len': ref_len}, open(params['output_pkl']+'-idxs.p','wb')) if __name__ == "__main__": parser = argparse.ArgumentParser() # input json parser.add_argument('--input_json', default='data/dataset_coco.json', help='input json file to process into hdf5') parser.add_argument('--dict_json', default='data/cocotalk.json', help='output json file') parser.add_argument('--output_pkl', default='data/coco-all', help='output pickle file') parser.add_argument('--split', default='all', help='test, val, train, all') args = parser.parse_args() params = vars(args) # convert to ordinary dict main(params)
connect-caption-and-trace-main
scripts/prepro_ngrams.py
import argparse import h5py import os import numpy as np import json from tqdm import tqdm def main(params): imgs = json.load(open(params['input_json'], 'r')) imgs = imgs['images'] N = len(imgs) if params['fc_input_dir'] is not None: print('processing fc') with h5py.File(params['fc_output']) as file_fc: for i, img in enumerate(tqdm(imgs)): npy_fc_path = os.path.join( params['fc_input_dir'], str(img['cocoid']) + '.npy') d_set_fc = file_fc.create_dataset( str(img['cocoid']), data=np.load(npy_fc_path)) file_fc.close() if params['att_input_dir'] is not None: print('processing att') with h5py.File(params['att_output']) as file_att: for i, img in enumerate(tqdm(imgs)): npy_att_path = os.path.join( params['att_input_dir'], str(img['cocoid']) + '.npz') d_set_att = file_att.create_dataset( str(img['cocoid']), data=np.load(npy_att_path)['feat']) file_att.close() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--input_json', required=True, help='input json file to process into hdf5') parser.add_argument('--fc_output', default='data', help='output h5 filename for fc') parser.add_argument('--att_output', default='data', help='output h5 file for att') parser.add_argument('--fc_input_dir', default=None, help='input directory for numpy fc files') parser.add_argument('--att_input_dir', default=None, help='input directory for numpy att files') args = parser.parse_args() params = vars(args) # convert to ordinary dict print('parsed input parameters:') print(json.dumps(params, indent=2)) main(params)
connect-caption-and-trace-main
scripts/dump_to_h5df.py
""" Preprocess a raw json dataset into hdf5/json files for use in data_loader.py Input: json file that has the form [{ file_path: 'path/img.jpg', captions: ['a caption', ...] }, ...] example element in this list would look like {'captions': [u'A man with a red helmet on a small moped on a dirt road. ', u'Man riding a motor bike on a dirt road on the countryside.', u'A man riding on the back of a motorcycle.', u'A dirt path with a young person on a motor bike rests to the foreground of a verdant area with a bridge and a background of cloud-wreathed mountains. ', u'A man in a red shirt and a red hat is on a motorcycle on a hill side.'], 'file_path': u'val2014/COCO_val2014_000000391895.jpg', 'id': 391895} This script reads this json, does some basic preprocessing on the captions (e.g. lowercase, etc.), creates a special UNK token, and encodes everything to arrays Output: a json file and an hdf5 file The hdf5 file contains several fields: /labels is (M,max_length) uint32 array of encoded labels, zero padded /label_start_ix and /label_end_ix are (N,) uint32 arrays of pointers to the first and last indices (in range 1..M) of labels for each image /label_length stores the length of the sequence for each of the M sequences The json file has a dict that contains: - an 'ix_to_word' field storing the vocab in form {ix:'word'}, where ix is 1-indexed - an 'images' field that is a list holding auxiliary information for each image, such as in particular the 'split' it was assigned to. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import json import argparse from random import shuffle, seed import string # non-standard dependencies: import h5py import numpy as np import torch import torchvision.models as models import skimage.io from PIL import Image def build_vocab(imgs, params): count_thr = params['word_count_threshold'] # count up the number of words counts = {} for img in imgs: for sent in img['sentences']: for w in sent['tokens']: counts[w] = counts.get(w, 0) + 1 cw = sorted([(count,w) for w,count in counts.items()], reverse=True) print('top words and their counts:') print('\n'.join(map(str,cw[:20]))) # print some stats total_words = sum(counts.values()) print('total words:', total_words) bad_words = [w for w,n in counts.items() if n <= count_thr] vocab = [w for w,n in counts.items() if n > count_thr] bad_count = sum(counts[w] for w in bad_words) print('number of bad words: %d/%d = %.2f%%' % (len(bad_words), len(counts), len(bad_words)*100.0/len(counts))) print('number of words in vocab would be %d' % (len(vocab), )) print('number of UNKs: %d/%d = %.2f%%' % (bad_count, total_words, bad_count*100.0/total_words)) # lets look at the distribution of lengths as well sent_lengths = {} for img in imgs: for sent in img['sentences']: txt = sent['tokens'] nw = len(txt) sent_lengths[nw] = sent_lengths.get(nw, 0) + 1 max_len = max(sent_lengths.keys()) print('max length sentence in raw data: ', max_len) print('sentence length distribution (count, number of words):') sum_len = sum(sent_lengths.values()) for i in range(max_len+1): print('%2d: %10d %f%%' % (i, sent_lengths.get(i,0), sent_lengths.get(i,0)*100.0/sum_len)) # lets now produce the final annotations if bad_count > 0: # additional special UNK token we will use below to map infrequent words to print('inserting the special UNK token') vocab.append('UNK') for img in imgs: img['final_captions'] = [] for sent in img['sentences']: txt = sent['tokens'] caption = [w if counts.get(w,0) > count_thr else 'UNK' for w in txt] img['final_captions'].append(caption) return vocab def encode_captions(imgs, params, wtoi): """ encode all captions into one large array, which will be 1-indexed. also produces label_start_ix and label_end_ix which store 1-indexed and inclusive (Lua-style) pointers to the first and last caption for each image in the dataset. """ max_length = params['max_length'] N = len(imgs) M = sum(len(img['final_captions']) for img in imgs) # total number of captions label_arrays = [] label_start_ix = np.zeros(N, dtype='uint32') # note: these will be one-indexed label_end_ix = np.zeros(N, dtype='uint32') label_length = np.zeros(M, dtype='uint32') caption_counter = 0 counter = 1 for i,img in enumerate(imgs): n = len(img['final_captions']) assert n > 0, 'error: some image has no captions' Li = np.zeros((n, max_length), dtype='uint32') for j,s in enumerate(img['final_captions']): label_length[caption_counter] = min(max_length, len(s)) # record the length of this sequence caption_counter += 1 for k,w in enumerate(s): if k < max_length: Li[j,k] = wtoi[w] # note: word indices are 1-indexed, and captions are padded with zeros label_arrays.append(Li) label_start_ix[i] = counter label_end_ix[i] = counter + n - 1 counter += n L = np.concatenate(label_arrays, axis=0) # put all the labels together assert L.shape[0] == M, 'lengths don\'t match? that\'s weird' assert np.all(label_length > 0), 'error: some caption had no words?' print('encoded captions to array of size ', L.shape) return L, label_start_ix, label_end_ix, label_length def main(params): imgs = json.load(open(params['input_json'], 'r')) imgs = imgs['images'] seed(123) # make reproducible # create the vocab vocab = build_vocab(imgs, params) itow = {i+1:w for i,w in enumerate(vocab)} # a 1-indexed vocab translation table wtoi = {w:i+1 for i,w in enumerate(vocab)} # inverse table # encode captions in large arrays, ready to ship to hdf5 file L, label_start_ix, label_end_ix, label_length = encode_captions(imgs, params, wtoi) # create output h5 file N = len(imgs) f_lb = h5py.File(params['output_h5']+'_label.h5', "w") f_lb.create_dataset("labels", dtype='uint32', data=L) f_lb.create_dataset("label_start_ix", dtype='uint32', data=label_start_ix) f_lb.create_dataset("label_end_ix", dtype='uint32', data=label_end_ix) f_lb.create_dataset("label_length", dtype='uint32', data=label_length) f_lb.close() # create output json file out = {} out['ix_to_word'] = itow # encode the (1-indexed) vocab out['images'] = [] for i,img in enumerate(imgs): jimg = {} jimg['split'] = img['split'] if 'filename' in img: jimg['file_path'] = os.path.join(img.get('filepath', ''), img['filename']) # copy it over, might need if 'cocoid' in img: jimg['id'] = img['cocoid'] # copy over & mantain an id, if present (e.g. coco ids, useful) elif 'imgid' in img: jimg['id'] = img['imgid'] if params['images_root'] != '': with Image.open(os.path.join(params['images_root'], img['filepath'], img['filename'])) as _img: jimg['width'], jimg['height'] = _img.size out['images'].append(jimg) json.dump(out, open(params['output_json'], 'w')) print('wrote ', params['output_json']) if __name__ == "__main__": parser = argparse.ArgumentParser() # input json parser.add_argument('--input_json', required=True, help='input json file to process into hdf5') parser.add_argument('--output_json', default='data.json', help='output json file') parser.add_argument('--output_h5', default='data', help='output h5 file') parser.add_argument('--images_root', default='', help='root location in which images are stored, to be prepended to file_path in input json') # options parser.add_argument('--max_length', default=16, type=int, help='max length of a caption, in number of words. captions longer than this get clipped.') parser.add_argument('--word_count_threshold', default=5, type=int, help='only words that occur more than this number of times will be put in vocab') args = parser.parse_args() params = vars(args) # convert to ordinary dict print('parsed input parameters:') print(json.dumps(params, indent = 2)) main(params)
connect-caption-and-trace-main
scripts/prepro_labels.py
import torch import scipy.optimize import numpy as np m = 10 pred = torch.rand([10, m, 4]) label = torch.rand([10, m, 4]) def local_OT(D): p = D.shape[1]; m = D.shape[2] # construct the cx, ax=b x = torch.rand([10,m*m]) A = torch.zeros([m+m,m*m]) b = torch.ones([m+m]) for i in range(p): A[i, (i)*m:(i+1)*m] = 1 for i in range(m): for j in range(p): A[p+i, j*m+i] = 1 A_local = torch.zeros([m, m, m]) for i in range(m): if i+2<=m-1: A_local[i, i, i+2:] = 1 if i-2 >=0: A_local[i, i, :i-1] = 1 A_local = A_local.view([m, m*m]) b_local = torch.zeros([m]) A = torch.cat([A, A_local], 0).numpy() b = torch.cat([b, b_local], 0).numpy() T_list = [] for i in range(D.shape[0]): c = D[i].view(-1).detach().cpu().numpy() sol = scipy.optimize.linprog(c, A_eq = A, b_eq = b, bounds=(0, None)) sol_x = torch.from_numpy(sol.x).view([p,m]) T_list.append(sol_x) T = torch.stack(T_list, 0) return (T>0.5).float() # binarize it T = local_OT(torch.rand([10,20,20])) print('finish')
connect-caption-and-trace-main
scripts/my_local_optimal_transport.py
# copy from https://github.com/Lyken17/Efficient-PyTorch/tools from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import os.path as osp import os, sys import os.path as osp from PIL import Image import six import string import lmdb import pickle import tqdm import numpy as np import argparse import json import torch import torch.utils.data as data from torch.utils.data import DataLoader import csv csv.field_size_limit(sys.maxsize) FIELDNAMES = ['image_id', 'status'] class FolderLMDB(data.Dataset): def __init__(self, db_path, fn_list=None): self.db_path = db_path self.env = lmdb.open(db_path, subdir=osp.isdir(db_path), readonly=True, lock=False, readahead=False, meminit=False) if fn_list is not None: self.length = len(fn_list) self.keys = fn_list else: raise Error def __getitem__(self, index): env = self.env with env.begin(write=False) as txn: byteflow = txn.get(self.keys[index].encode()) # load image imgbuf = byteflow buf = six.BytesIO() buf.write(imgbuf) buf.seek(0) try: if args.extension == '.npz': feat = np.load(buf)['feat'] else: feat = np.load(buf) except Exception as e: print(self.keys[index], e) return None return feat def __len__(self): return self.length def __repr__(self): return self.__class__.__name__ + ' (' + self.db_path + ')' def make_dataset(dir, extension): images = [] dir = os.path.expanduser(dir) for root, _, fnames in sorted(os.walk(dir)): for fname in sorted(fnames): if has_file_allowed_extension(fname, [extension]): path = os.path.join(root, fname) images.append(path) return images def raw_reader(path): with open(path, 'rb') as f: bin_data = f.read() return bin_data def raw_npz_reader(path): with open(path, 'rb') as f: bin_data = f.read() try: npz_data = np.load(six.BytesIO(bin_data))['feat'] except Exception as e: print(path) npz_data = None print(e) return bin_data, npz_data def raw_npy_reader(path): with open(path, 'rb') as f: bin_data = f.read() try: npy_data = np.load(six.BytesIO(bin_data)) except Exception as e: print(path) npy_data = None print(e) return bin_data, npy_data class Folder(data.Dataset): def __init__(self, root, loader, extension, fn_list=None): super(Folder, self).__init__() self.root = root if fn_list: samples = [os.path.join(root, str(_)+extension) for _ in fn_list] else: samples = make_dataset(self.root, extension) self.loader = loader self.extension = extension self.samples = samples def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: (sample, target) where target is class_index of the target class. """ path = self.samples[index] sample = self.loader(path) return (path.split('/')[-1].split('.')[0],) + sample def __len__(self): return len(self.samples) def folder2lmdb(dpath, fn_list, write_frequency=5000): directory = osp.expanduser(osp.join(dpath)) print("Loading dataset from %s" % directory) if args.extension == '.npz': dataset = Folder(directory, loader=raw_npz_reader, extension='.npz', fn_list=fn_list) else: dataset = Folder(directory, loader=raw_npy_reader, extension='.npy', fn_list=fn_list) data_loader = DataLoader(dataset, num_workers=16, collate_fn=lambda x: x) # lmdb_path = osp.join(dpath, "%s.lmdb" % (directory.split('/')[-1])) lmdb_path = osp.join("%s.lmdb" % (directory)) isdir = os.path.isdir(lmdb_path) print("Generate LMDB to %s" % lmdb_path) db = lmdb.open(lmdb_path, subdir=isdir, map_size=1099511627776 * 2, readonly=False, meminit=False, map_async=True) txn = db.begin(write=True) tsvfile = open(args.output_file, 'a') writer = csv.DictWriter(tsvfile, delimiter='\t', fieldnames=FIELDNAMES) names = [] all_keys = [] for idx, data in enumerate(tqdm.tqdm(data_loader)): # print(type(data), data) name, byte, npz = data[0] if npz is not None: txn.put(name.encode(), byte) all_keys.append(name) names.append({'image_id': name, 'status': str(npz is not None)}) if idx % write_frequency == 0: print("[%d/%d]" % (idx, len(data_loader))) print('writing') txn.commit() txn = db.begin(write=True) # write in tsv for name in names: writer.writerow(name) names = [] tsvfile.flush() print('writing finished') # write all keys txn.put("keys".encode(), pickle.dumps(all_keys)) # finish iterating through dataset txn.commit() for name in names: writer.writerow(name) tsvfile.flush() tsvfile.close() print("Flushing database ...") db.sync() db.close() def parse_args(): """ Parse input arguments """ parser = argparse.ArgumentParser(description='Generate bbox output from a Fast R-CNN network') # parser.add_argument('--json) parser.add_argument('--input_json', default='./data/dataset_coco.json', type=str) parser.add_argument('--output_file', default='.dump_cache.tsv', type=str) parser.add_argument('--folder', default='./data/cocobu_att', type=str) parser.add_argument('--extension', default='.npz', type=str) args = parser.parse_args() return args if __name__ == "__main__": global args args = parse_args() args.output_file += args.folder.split('/')[-1] if args.folder.find('/') > 0: args.output_file = args.folder[:args.folder.rfind('/')+1]+args.output_file print(args.output_file) img_list = json.load(open(args.input_json, 'r'))['images'] fn_list = [str(_['cocoid']) for _ in img_list] found_ids = set() try: with open(args.output_file, 'r') as tsvfile: reader = csv.DictReader(tsvfile, delimiter='\t', fieldnames=FIELDNAMES) for item in reader: if item['status'] == 'True': found_ids.add(item['image_id']) except: pass fn_list = [_ for _ in fn_list if _ not in found_ids] folder2lmdb(args.folder, fn_list) # Test existing. found_ids = set() with open(args.output_file, 'r') as tsvfile: reader = csv.DictReader(tsvfile, delimiter='\t', fieldnames=FIELDNAMES) for item in reader: if item['status'] == 'True': found_ids.add(item['image_id']) folder_dataset = FolderLMDB(args.folder+'.lmdb', list(found_ids)) data_loader = DataLoader(folder_dataset, num_workers=16, collate_fn=lambda x: x) for data in tqdm.tqdm(data_loader): assert data[0] is not None
connect-caption-and-trace-main
scripts/dump_to_lmdb.py
import numpy as np import os import h5py import numpy as np import jsonlines import re import json # The first directory should lead to your feature files extracted by detectrons, and the box_only and feats_only are the new folders for saving bounding boxes and features (which will be used during training). i = 0 for f in os.listdir('/mnt/m2/Datasets/ADE20k/full_images_feats/features/'): i += 1 item = np.load('/mnt/m2/Datasets/ADE20k/full_images_feats/features/'+f) id = f.split('.jpg')[0] np.save('/mnt/m2/Datasets/ADE20k/full_images_feats/box_only/'+str(id), item['norm_bb']) np.savez('/mnt/m2/Datasets/ADE20k/full_images_feats/feats_only/'+str(id), item['box_feats']) if i % 1000 == 0: print('Processing #', i) print('finish!')
connect-caption-and-trace-main
scripts/prepare_feats_boxes_from_npz.py
""" Preprocess a raw json dataset into hdf5/json files for use in data_loader.lua Input: json file that has the form [{ file_path: 'path/img.jpg', captions: ['a caption', ...] }, ...] example element in this list would look like {'captions': [u'A man with a red helmet on a small moped on a dirt road. ', u'Man riding a motor bike on a dirt road on the countryside.', u'A man riding on the back of a motorcycle.', u'A dirt path with a young person on a motor bike rests to the foreground of a verdant area with a bridge and a background of cloud-wreathed mountains. ', u'A man in a red shirt and a red hat is on a motorcycle on a hill side.'], 'file_path': u'val2014/COCO_val2014_000000391895.jpg', 'id': 391895} This script reads this json, does some basic preprocessing on the captions (e.g. lowercase, etc.), creates a special UNK token, and encodes everything to arrays Output: a json file and an hdf5 file The hdf5 file contains several fields: /labels is (M,max_length) uint32 array of encoded labels, zero padded /label_start_ix and /label_end_ix are (N,) uint32 arrays of pointers to the first and last indices (in range 1..M) of labels for each image /label_length stores the length of the sequence for each of the M sequences The json file has a dict that contains: - an 'ix_to_word' field storing the vocab in form {ix:'word'}, where ix is 1-indexed - an 'images' field that is a list holding auxiliary information for each image, such as in particular the 'split' it was assigned to. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import json import argparse from random import shuffle, seed import string # non-standard dependencies: import h5py import numpy as np import torch import torchvision.models as models import skimage.io from PIL import Image import codecs import tempfile from subword_nmt import learn_bpe, apply_bpe # python scripts/build_bpe_subword_nmt.py --input_json data/dataset_coco.json --output_json data/cocotalkbpe.json --output_h5 data/cocotalkbpe def build_vocab(imgs, params): # count up the number of words captions = [] for img in imgs: for sent in img['sentences']: captions.append(' '.join(sent['tokens'])) captions='\n'.join(captions) all_captions = tempfile.NamedTemporaryFile(delete=False) all_captions.close() with open(all_captions.name, 'w') as txt_file: txt_file.write(captions) # codecs_output = tempfile.NamedTemporaryFile(delete=False) codecs_output.close() with codecs.open(codecs_output.name, 'w', encoding='UTF-8') as output: learn_bpe.learn_bpe(codecs.open(all_captions.name, encoding='UTF-8'), output, params['symbol_count']) with codecs.open(codecs_output.name, encoding='UTF-8') as codes: bpe = apply_bpe.BPE(codes) tmp = tempfile.NamedTemporaryFile(delete=False) tmp.close() tmpout = codecs.open(tmp.name, 'w', encoding='UTF-8') for _, img in enumerate(imgs): img['final_captions'] = [] for sent in img['sentences']: txt = ' '.join(sent['tokens']) txt = bpe.segment(txt).strip() img['final_captions'].append(txt.split(' ')) tmpout.write(txt) tmpout.write('\n') if _ < 20: print(txt) tmpout.close() tmpin = codecs.open(tmp.name, encoding='UTF-8') vocab = learn_bpe.get_vocabulary(tmpin) vocab = sorted(vocab.keys(), key=lambda x: vocab[x], reverse=True) # Always insert UNK print('inserting the special UNK token') vocab.append('UNK') print('Vocab size:', len(vocab)) os.remove(all_captions.name) with open(codecs_output.name, 'r') as codes: bpe = codes.read() os.remove(codecs_output.name) os.remove(tmp.name) return vocab, bpe def encode_captions(imgs, params, wtoi): """ encode all captions into one large array, which will be 1-indexed. also produces label_start_ix and label_end_ix which store 1-indexed and inclusive (Lua-style) pointers to the first and last caption for each image in the dataset. """ max_length = params['max_length'] N = len(imgs) M = sum(len(img['final_captions']) for img in imgs) # total number of captions label_arrays = [] label_start_ix = np.zeros(N, dtype='uint32') # note: these will be one-indexed label_end_ix = np.zeros(N, dtype='uint32') label_length = np.zeros(M, dtype='uint32') caption_counter = 0 counter = 1 for i,img in enumerate(imgs): n = len(img['final_captions']) assert n > 0, 'error: some image has no captions' Li = np.zeros((n, max_length), dtype='uint32') for j,s in enumerate(img['final_captions']): label_length[caption_counter] = min(max_length, len(s)) # record the length of this sequence caption_counter += 1 for k,w in enumerate(s): if k < max_length: Li[j,k] = wtoi[w] # note: word indices are 1-indexed, and captions are padded with zeros label_arrays.append(Li) label_start_ix[i] = counter label_end_ix[i] = counter + n - 1 counter += n L = np.concatenate(label_arrays, axis=0) # put all the labels together assert L.shape[0] == M, 'lengths don\'t match? that\'s weird' assert np.all(label_length > 0), 'error: some caption had no words?' print('encoded captions to array of size ', L.shape) return L, label_start_ix, label_end_ix, label_length def main(params): imgs = json.load(open(params['input_json'], 'r')) imgs = imgs['images'] seed(123) # make reproducible # create the vocab vocab, bpe = build_vocab(imgs, params) itow = {i+1:w for i,w in enumerate(vocab)} # a 1-indexed vocab translation table wtoi = {w:i+1 for i,w in enumerate(vocab)} # inverse table # encode captions in large arrays, ready to ship to hdf5 file L, label_start_ix, label_end_ix, label_length = encode_captions(imgs, params, wtoi) # create output h5 file N = len(imgs) f_lb = h5py.File(params['output_h5']+'_label.h5', "w") f_lb.create_dataset("labels", dtype='uint32', data=L) f_lb.create_dataset("label_start_ix", dtype='uint32', data=label_start_ix) f_lb.create_dataset("label_end_ix", dtype='uint32', data=label_end_ix) f_lb.create_dataset("label_length", dtype='uint32', data=label_length) f_lb.close() # create output json file out = {} out['ix_to_word'] = itow # encode the (1-indexed) vocab out['images'] = [] out['bpe'] = bpe for i,img in enumerate(imgs): jimg = {} jimg['split'] = img['split'] if 'filename' in img: jimg['file_path'] = os.path.join(img['filepath'], img['filename']) # copy it over, might need if 'cocoid' in img: jimg['id'] = img['cocoid'] # copy over & mantain an id, if present (e.g. coco ids, useful) if params['images_root'] != '': with Image.open(os.path.join(params['images_root'], img['filepath'], img['filename'])) as _img: jimg['width'], jimg['height'] = _img.size out['images'].append(jimg) json.dump(out, open(params['output_json'], 'w')) print('wrote ', params['output_json']) if __name__ == "__main__": parser = argparse.ArgumentParser() # input json parser.add_argument('--input_json', required=True, help='input json file to process into hdf5') parser.add_argument('--output_json', default='data.json', help='output json file') parser.add_argument('--output_h5', default='data', help='output h5 file') parser.add_argument('--images_root', default='', help='root location in which images are stored, to be prepended to file_path in input json') # options parser.add_argument('--max_length', default=16, type=int, help='max length of a caption, in number of words. captions longer than this get clipped.') parser.add_argument('--symbol_count', default=10000, type=int, help='only words that occur more than this number of times will be put in vocab') args = parser.parse_args() params = vars(args) # convert to ordinary dict print('parsed input parameters:') print(json.dumps(params, indent = 2)) main(params)
connect-caption-and-trace-main
scripts/build_bpe_subword_nmt.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ This is the main script used for training Classy Vision jobs. This can be used for training on your local machine, using CPU or GPU, and for distributed training. This script also supports Tensorboard, Visdom and checkpointing. Example: For training locally, simply specify a configuration file and whether to use CPU or GPU: $ ./classy_train.py --device gpu --config configs/my_config.json For distributed training, this can be invoked via :func:`torch.distributed.launch`. For instance $ python -m torch.distributed.launch \ --nnodes=1 \ --nproc_per_node=1 \ --master_addr=localhost \ --master_port=29500 \ --use_env \ classy_train.py \ --config=configs/resnet50_synthetic_image_classy_config.json \ --log_freq=100 For other use cases, try $ ./classy_train.py --help """ import logging import os from datetime import datetime from pathlib import Path import torch from classy_vision.generic.distributed_util import get_rank, get_world_size from classy_vision.generic.opts import check_generic_args, parse_train_arguments from classy_vision.generic.registry_utils import import_all_packages_from_directory from classy_vision.generic.util import load_json from classy_vision.hooks import ( CheckpointHook, LossLrMeterLoggingHook, ModelComplexityHook, ProfilerHook, ProgressBarHook, TensorboardPlotHook, VisdomHook, ) from tasks.biasamp_classification_task import FineTuningTask, build_task from classy_vision.trainer import DistributedTrainer, LocalTrainer from torchvision import set_image_backend, set_video_backend from torch.nn.modules.loss import CrossEntropyLoss from torch.distributed.elastic.multiprocessing.errors import record try: import hydra import omegaconf hydra_available = True except ImportError: hydra_available = False @record def main(args, config): # Global flags torch.manual_seed(0) set_image_backend(args.image_backend) set_video_backend(args.video_backend) task = build_task(config) # Load checkpoint, if available. if args.checkpoint_load_path: task.set_checkpoint(args.checkpoint_load_path) # Load a checkpoint contraining a pre-trained model. This is how we # implement fine-tuning of existing models. if args.pretrained_checkpoint_path: assert isinstance( task, FineTuningTask ), "Can only use a pretrained checkpoint for fine tuning tasks" task.set_pretrained_checkpoint(args.pretrained_checkpoint_path) # Configure hooks to do tensorboard logging, checkpoints and so on. # `configure_hooks` adds default hooks, while extra hooks can be specified # in config file and stored in `task.hooks`. Here, we merge them when we # set the final hooks of the task. task.set_hooks(configure_hooks(args, config) + task.hooks) # LocalTrainer is used for a single replica. DistributedTrainer will setup # training to use PyTorch's DistributedDataParallel. trainer_class = {"none": LocalTrainer, "ddp": DistributedTrainer}[ args.distributed_backend ] trainer = trainer_class() logging.info( f"Starting training on rank {get_rank()} worker. " f"World size is {get_world_size()}" ) # That's it! When this call returns, training is done. trainer.train(task) output_folder = Path(args.checkpoint_folder).resolve() logging.info("Training successful!") logging.info(f'Results of this training run are available at: "{output_folder}"') def configure_hooks(args, config): hooks = [LossLrMeterLoggingHook(args.log_freq), ModelComplexityHook()] # Make a folder to store checkpoints and tensorboard logging outputs suffix = datetime.now().isoformat() base_folder = Path(__file__).parent / f"hold_output/output_{suffix}" print('checkpoint folder: ' + args.checkpoint_folder) if args.checkpoint_folder != "": base_folder = Path(args.checkpoint_folder) args.checkpoint_folder = base_folder / "checkpoints" os.makedirs(args.checkpoint_folder, exist_ok=True) args.checkpoint_folder = str(args.checkpoint_folder) logging.info(f"Logging outputs to {base_folder}") logging.info(f"Logging checkpoints to {args.checkpoint_folder}") if not args.skip_tensorboard: try: from torch.utils.tensorboard import SummaryWriter os.makedirs(Path(base_folder) / "tensorboard", exist_ok=True) tb_writer = SummaryWriter(log_dir=Path(base_folder) / "tensorboard") hooks.append(TensorboardPlotHook(tb_writer)) except ImportError: logging.warning("tensorboard not installed, skipping tensorboard hooks") args_dict = vars(args) args_dict["config"] = config print('checkpoint folder: ' + args.checkpoint_folder) hooks.append( CheckpointHook( args.checkpoint_folder, args_dict, checkpoint_period=args.checkpoint_period ) ) if args.profiler: hooks.append(ProfilerHook()) if args.show_progress: hooks.append(ProgressBarHook()) if args.visdom_server != "": hooks.append(VisdomHook(args.visdom_server, args.visdom_port)) return hooks if hydra_available: @hydra.main(config_path="hydra_configs", config_name="args") def hydra_main(cfg): args = cfg check_generic_args(cfg) config = omegaconf.OmegaConf.to_container(cfg.config) main(args, config) # run all the things: if __name__ == "__main__": logger = logging.getLogger() logger.setLevel(logging.INFO) logging.info("Classy Vision's default training script.") # This imports all modules in the same directory as classy_train.py # Because of the way Classy Vision's registration decorators work, # importing a module has a side effect of registering it with Classy # Vision. This means you can give classy_train.py a config referencing your # custom module (e.g. my_dataset) and it'll actually know how to # instantiate it. file_root = Path(__file__).parent import_all_packages_from_directory(file_root) if hydra_available: hydra_main() else: args = parse_train_arguments() config = load_json(args.config_file) main(args, config)
cv_bias_amplification-main
my-project-release/my-project/classy_train.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from pathlib import Path from classy_vision.generic.registry_utils import import_all_modules FILE_ROOT = Path(__file__).parent # Automatically import any Python files in the losses/ directory import_all_modules(FILE_ROOT, "losses")
cv_bias_amplification-main
my-project-release/my-project/losses/__init__.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch.nn.functional as F from classy_vision.losses import ClassyLoss, register_loss @register_loss("one_hot_binary_ce_loss") class OneHotBinaryCELoss(ClassyLoss): def forward(self, input, target): labels = F.one_hot(target, num_classes=10).float() return F.binary_cross_entropy(input, labels) @classmethod def from_config(cls, config): # We don't need anything from the config return cls()
cv_bias_amplification-main
my-project-release/my-project/losses/one_hot_binary_ce_loss.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import contextlib import copy import enum import json import logging import math import multiprocessing as mp import time from typing import Any, Dict, List, NamedTuple, Optional, Union import os import torch import torch.nn as nn from classy_vision.dataset import ClassyDataset, build_dataset from classy_vision.dataset.transforms.mixup import MixupTransform from classy_vision.generic.distributed_util import ( all_reduce_mean, barrier, init_distributed_data_parallel_model, is_distributed_training_run, ) from classy_vision.generic.util import ( Timer, copy_model_to_gpu, get_torch_version, load_and_broadcast_checkpoint, master_params, recursive_copy_to_gpu, split_batchnorm_params, update_classy_state, ) from classy_vision.hooks import CheckpointHook, ClassyHook, build_hooks from classy_vision.losses import ClassyLoss, build_loss from classy_vision.meters import ClassyMeter, build_meters from classy_vision.models import ClassyModel, build_model from classy_vision.optim import ( ClassyOptimizer, build_optimizer, build_optimizer_schedulers, ) from classy_vision.optim.zero import ZeRO from torch.distributed import broadcast from . import register_task, build_task from classy_vision.tasks.classy_task import ClassyTask from classy_vision.tasks.fine_tuning_task import FineTuningTask try: import apex apex_available = True except ImportError: apex_available = False try: from torch.cuda.amp import GradScaler as TorchGradScaler except ImportError: pass try: from fairscale.optim.grad_scaler import ShardedGradScaler fairscale_available = True except ImportError: fairscale_available = False class AmpType(enum.Enum): # Automatic Mixed Precision supported types APEX = enum.auto() PYTORCH = enum.auto() class BroadcastBuffersMode(enum.Enum): DISABLED = enum.auto() # Enable DistributedDataParallel's broadcast_buffers option, synchronizing # model buffers every forward pass. FORWARD_PASS = enum.auto() # Similar to FORWARD_PASS, but only synchronizes model buffers once # per epoch, between train and test phases. If your motivation for # synchronizing buffers is for buffers to be consistent during eval, use # this instead of FORWARD_PASS to reduce training overhead. BEFORE_EVAL = enum.auto() class BatchNormSyncMode(enum.Enum): DISABLED = enum.auto() # No Synchronized Batch Normalization PYTORCH = enum.auto() # Use torch.nn.SyncBatchNorm APEX = enum.auto() # Use apex.parallel.SyncBatchNorm, needs apex to be installed class LastBatchInfo(NamedTuple): loss: torch.Tensor output: torch.Tensor target: torch.Tensor sample: Dict[str, Any] step_data: Dict[str, Any] @register_task("biasamp_classification_task") class BiasAmpClassificationTask(ClassyTask): """Basic classification training task. This task encapsultates all of the components and steps needed to train a classifier using a :class:`classy_vision.trainer.ClassyTrainer`. Assumes a train / test phase per each epoch and that the datasets have the same API as the map-style Dataset class in `torch.utils.data.dataset <https://pytorch.org/docs/stable/data.html #torch.utils.data.Dataset>`_ (in particular, this task makes use of the len). If you are using an `IterableDataset <https://pytorch.org/docs/ stable/data.html#torch.utils.data.IterableDataset>`_ then a custom task may be appropriate. :var loss: Loss (see :class:`classy_vision.losses.ClassyLoss`) function used for computing the loss in each forward pass :var datasets: Mapping from a ``phase_type`` in ["train", "test'] to dataset used for training (or testing) :var meters: List of meters (see :class:`classy_vision.meters.ClassyMeter`) to calculate during training :var num_epochs: Number of epochs (passes over dataset) to train :var test_only: Used to only run the test phase :var base_model: Model to be trained, unwrapped in DDP or DP wrappers :var optimizer: Optimizer used in train step :var optimizer_schedulers: Dictionary. Key is the name of the optimizer option (e.g. lr), value is a ClassyParamScheduler :var checkpoint: Serializable dict which represents state in training :var phases: List of phase specific information, e.g. if phase is train / test. :var hooks: List of hooks to apply during training :var train: Phase type, if true it means we are training, false means testing :var distributed_model: Base model, but wrapped in DDP (DistributedDataParallel) :var phase_idx: Current phase id, first phase is 0, if task has not started training then returns -1 :var train_phase_idx: Only counts train phases :var num_updates: Number of total parameter updates applied to model by the optimizer :var data_iterator: Iterator which can be used to obtain batches :var losses: Loss curve :var perf_log: list of training speed measurements, to be logged :var clip_grad_norm: maximum gradient norm (default None) :var simulated_global_batchsize: batch size simulated via gradient accumulation :var optimizer_period: apply optimizer after this many steps; derived from simulated_global_batchsize, default 1. """ def __init__(self): """Constructs a ClassificationTask""" super().__init__() self.base_loss = None self.datasets = {} self.meters = [] self.num_epochs = 1 self.test_phase_period = 1 self.train_phases_per_epoch = 0 self.test_only = False self.base_model = None self.optimizer = None self.optimizer_schedulers = {} self.checkpoint_dict = None self.checkpoint_path = None self.checkpoint_load_strict = True self.phases = [] self.hooks = [] self.train = True self.distributed_model = None self.distributed_loss = None self.phase_idx = -1 self.train_phase_idx = -1 self.num_updates = 0 self.dataloader = None self.data_iterator = None self.losses = [] self.broadcast_buffers_mode: BroadcastBuffersMode = ( BroadcastBuffersMode.BEFORE_EVAL ) self.amp_args = None self.amp_type = None self.amp_grad_scaler = None self.mixup_transform = None self.perf_log = [] self.last_batch = None self.batch_norm_sync_mode = BatchNormSyncMode.DISABLED self.find_unused_parameters = False self.use_gpu = torch.cuda.is_available() self.dataloader_mp_context = "fork" self.bn_weight_decay = False self._train_only = True self.clip_grad_norm = None self.simulated_global_batchsize = None self.optimizer_period = 1 self.ddp_bucket_cap_mb = 25 self.use_sharded_ddp = False self.fp16_grad_compress = False def set_use_sharded_ddp(self, use_sharded_ddp: bool): self.use_sharded_ddp = use_sharded_ddp if self.use_sharded_ddp: logging.info("Using Sharded DDP") return self def set_use_gpu(self, use_gpu: bool): self.use_gpu = use_gpu assert ( not self.use_gpu or torch.cuda.is_available() ), "CUDA required to train on GPUs" return self def set_clip_grad_norm(self, clip_grad_norm: Optional[float]): """Sets maximum gradient norm. None means gradient clipping is disabled. Defaults to None.""" self.clip_grad_norm = clip_grad_norm if clip_grad_norm is None: logging.info("Disabled gradient norm clipping.") else: logging.info( f"Enabled gradient norm clipping with threshold: {clip_grad_norm}" ) return self def set_simulated_global_batchsize(self, simulated_global_batchsize: Optional[int]): """Sets a simulated batch size by gradient accumulation. Gradient accumulation adds up gradients from multiple minibatches and steps the optimizer every N train_steps, where N is optimizer_period. When enabled, the very last train_steps might end up not updating the model, depending on the number of total steps. None means gradient accumulation is disabled. Defaults to None.""" self.simulated_global_batchsize = simulated_global_batchsize return self def set_checkpoint(self, checkpoint_path: str): """Sets checkpoint on task. Args: checkpoint_path: The path to load the checkpoint from. Can be a file or a directory. See :func:`load_checkpoint` for more information. """ self.checkpoint_path = checkpoint_path return self def set_checkpoint_load_strict(self, checkpoint_load_strict: bool): """Sets checkpoint on task. Args: checkpoint_load_strict: Whether to use load_strict when copying model weights """ self.checkpoint_load_strict = checkpoint_load_strict return self def _set_checkpoint_dict(self, checkpoint_dict: Dict[str, Any]): """Sets the checkpoint dict in the task. Only used for testing. Args: checkpoint_dict: A serializable dict representing current task state """ self.checkpoint_dict = checkpoint_dict return self def set_num_epochs(self, num_epochs: Union[int, float]): """Set number of epochs to be run. Args: num_epochs: Number of epochs to run task """ self.num_epochs = num_epochs return self def set_test_phase_period(self, test_phase_period: int): """Set the period of test phase. Args: test_phase_period: The period of test phase """ self.test_phase_period = test_phase_period return self def set_dataset(self, dataset: ClassyDataset, phase_type: str): """Set dataset for phase type on task Args: dataset: ClassyDataset for returning samples. phase_type: str must be one of "train" or "test" """ assert phase_type in [ "train", "test", ], "phase_type must be in ['train', 'test']" self.datasets[phase_type] = dataset if phase_type == "train": self.train_phases_per_epoch = getattr(dataset, "phases_per_epoch", 1) else: self._train_only = False return self def set_dataloader_mp_context(self, dataloader_mp_context: Optional[str]): """Set the multiprocessing context used by the dataloader. The context can be either 'spawn', 'fork', 'forkserver' or None (uses the default context). See https://docs.python.org/3/library/multiprocessing.html#multiprocessing.get_context for more details.""" self.dataloader_mp_context = dataloader_mp_context return self def set_optimizer(self, optimizer: ClassyOptimizer): """Set optimizer for task Args: optimizer: optimizer for task """ self.optimizer = optimizer return self def set_loss(self, loss: ClassyLoss): """Set loss function for task Args: loss: loss for task """ self.base_loss = loss return self def set_meters(self, meters: List["ClassyMeter"]): """Set meters for task Args: meters: list of meters to compute during training """ self.meters = meters return self def set_distributed_options( self, broadcast_buffers_mode: BroadcastBuffersMode = BroadcastBuffersMode.BEFORE_EVAL, batch_norm_sync_mode: BatchNormSyncMode = BatchNormSyncMode.DISABLED, batch_norm_sync_group_size: int = 0, find_unused_parameters: bool = False, bucket_cap_mb: int = 25, fp16_grad_compress: bool = False, ): """Set distributed options. Args: broadcast_buffers_mode: Broadcast buffers mode. See :class:`BroadcastBuffersMode` for options. batch_norm_sync_mode: Batch normalization synchronization mode. See :class:`BatchNormSyncMode` for options. batch_norm_sync_group_size: Group size to use for synchronized batch norm. 0 means that the stats are synchronized across all replicas. For efficient synchronization, set it to the number of GPUs in a node ( usually 8). find_unused_parameters: See :class:`torch.nn.parallel.DistributedDataParallel` for information. bucket_cap_mb: See :class:`torch.nn.parallel.DistributedDataParallel` for information. Raises: RuntimeError: If batch_norm_sync_mode is `BatchNormSyncMode.APEX` and apex is not installed. """ self.broadcast_buffers_mode = broadcast_buffers_mode if batch_norm_sync_group_size > 0: if not batch_norm_sync_mode == BatchNormSyncMode.APEX: # this should ideally work with PyTorch Sync BN as well, but it # fails while initializing DDP for some reason. raise ValueError( "batch_norm_sync_group_size can be > 0 only when " "Apex Synchronized Batch Normalization is being used." ) self.batch_norm_sync_group_size = batch_norm_sync_group_size if batch_norm_sync_mode == BatchNormSyncMode.DISABLED: logging.info("Synchronized Batch Normalization is disabled") else: if batch_norm_sync_mode == BatchNormSyncMode.APEX and not apex_available: raise RuntimeError("apex is not installed") msg = f"Using Synchronized Batch Normalization using {batch_norm_sync_mode}" if self.batch_norm_sync_group_size > 0: msg += f" and group size {batch_norm_sync_group_size}" logging.info(msg) self.batch_norm_sync_mode = batch_norm_sync_mode if find_unused_parameters: logging.info("Enabling find_unused_parameters in DDP") self.find_unused_parameters = find_unused_parameters self.ddp_bucket_cap_mb = bucket_cap_mb if fp16_grad_compress: if get_torch_version() < [1, 8]: raise RuntimeError( "FP16 grad compression is only supported since PyTorch 1.8" ) logging.info("Enabling FP16 grad compression") self.fp16_grad_compress = fp16_grad_compress return self def set_hooks(self, hooks: List["ClassyHook"]): """Set hooks for task Args: hooks: List of hooks to apply during training """ from classy_vision.hooks import ClassyHook assert isinstance(hooks, list) assert all(isinstance(hook, ClassyHook) for hook in hooks) assert len({hook.name() for hook in hooks}) == len( hooks ), "Cannot have repeated hooks of the same class" # TODO (zyan3): we move checkpoint hook to the end of the list because some hooks # may change the state of the model, and we want to save changed state in the checkpoint. # This is temporary fix. non_checkpoint_hooks = [ hook for hook in hooks if not isinstance(hook, CheckpointHook) ] checkpoint_hooks = [hook for hook in hooks if isinstance(hook, CheckpointHook)] hooks = non_checkpoint_hooks + checkpoint_hooks self.hooks = hooks return self def set_model(self, model: ClassyModel): """Set model for task Args: model: Model to be trained """ self.base_model = model return self def set_test_only(self, test_only: bool): """Set test only flag Args: test_only: If true, only test phases will be run """ self.test_only = test_only return self def set_bn_weight_decay(self, bn_weight_decay: bool): assert type(bn_weight_decay) == bool self.bn_weight_decay = bn_weight_decay return self def set_amp_args(self, amp_args: Optional[Dict[str, Any]]): """Disable / enable apex.amp and set the automatic mixed precision parameters. apex.amp can be utilized for mixed / half precision training. Args: amp_args: Dictionary containing arguments to be passed to amp.initialize. Set to None to disable amp. To enable mixed precision training, pass amp_args={"opt_level": "O1"} here. See https://nvidia.github.io/apex/amp.html for more info. Raises: RuntimeError: If opt_level is not None and apex is not installed. Warning: apex needs to be installed to utilize this feature. """ self.amp_args = amp_args if amp_args is None: logging.info("AMP disabled") else: # Check that the requested AMP type is known try: self.amp_type = AmpType[self.amp_args["amp_type"].upper()] except KeyError: logging.info("AMP type not specified, defaulting to Apex") self.amp_type = AmpType.APEX # Check for CUDA availability, required for both Apex and Pytorch AMP if not torch.cuda.is_available(): raise RuntimeError( "AMP is required but CUDA is not supported, cannot enable AMP" ) # Check for Apex availability if self.amp_type == AmpType.APEX and not apex_available: raise RuntimeError( "Apex AMP is required but Apex is not installed, cannot enable AMP" ) if self.use_sharded_ddp: if self.amp_type == AmpType.APEX: raise RuntimeError( "ShardedDDP has been requested, which is incompatible with Apex AMP" ) if not fairscale_available: raise RuntimeError( "ShardedDDP has been requested, but fairscale is not installed in the current environment" ) # Set Torch AMP grad scaler, used to prevent gradient underflow elif self.amp_type == AmpType.PYTORCH: if self.use_sharded_ddp: logging.info("Using ShardedGradScaler to manage Pytorch AMP") self.amp_grad_scaler = ShardedGradScaler() else: self.amp_grad_scaler = TorchGradScaler() logging.info(f"AMP enabled with args {amp_args}") return self def set_mixup_transform(self, mixup_transform: Optional["MixupTransform"]): """Disable / enable mixup transform for data augmentation Args:: mixup_transform: a callable object which performs mixup data augmentation """ self.mixup_transform = mixup_transform if mixup_transform is None: logging.info("mixup disabled") else: logging.info("mixup enabled") return self def set_optimizer_schedulers(self, schedulers): self.optimizer_schedulers = schedulers return self @classmethod def from_config(cls, config: Dict[str, Any]) -> "ClassificationTask": """Instantiates a ClassificationTask from a configuration. Args: config: A configuration for a ClassificationTask. See :func:`__init__` for parameters expected in the config. Returns: A ClassificationTask instance. """ test_only = config.get("test_only", False) if not test_only: # TODO Make distinction between epochs and phases in optimizer clear train_phases_per_epoch = config["dataset"]["train"].get( "phases_per_epoch", 1 ) optimizer_config = config["optimizer"] optimizer_config["num_epochs"] = ( config["num_epochs"] * train_phases_per_epoch ) optimizer = build_optimizer(optimizer_config) param_schedulers = build_optimizer_schedulers(optimizer_config) datasets = {} phase_types = ["train", "test"] for phase_type in phase_types: if phase_type in config["dataset"]: datasets[phase_type] = build_dataset(config["dataset"][phase_type]) loss = build_loss(config["loss"]) amp_args = config.get("amp_args") meters = build_meters(config.get("meters", {})) model = build_model(config["model"]) mixup_transform = None if config.get("mixup") is not None: assert "alpha" in config["mixup"], "key alpha is missing in mixup dict" mixup_transform = MixupTransform( config["mixup"]["alpha"], num_classes=config["mixup"].get("num_classes"), cutmix_alpha=config["mixup"].get("cutmix_alpha", 0), cutmix_minmax=config["mixup"].get("cutmix_minmax"), mix_prob=config["mixup"].get("mix_prob", 1.0), switch_prob=config["mixup"].get("switch_prob", 0.5), mode=config["mixup"].get("mode", "batch"), label_smoothing=config["mixup"].get("label_smoothing", 0.0), ) # hooks config is optional hooks_config = config.get("hooks") hooks = [] if hooks_config is not None: hooks = build_hooks(hooks_config) distributed_config = config.get("distributed", {}) distributed_options = { "broadcast_buffers_mode": BroadcastBuffersMode[ distributed_config.get("broadcast_buffers", "before_eval").upper() ], "batch_norm_sync_mode": BatchNormSyncMode[ distributed_config.get("batch_norm_sync_mode", "disabled").upper() ], "batch_norm_sync_group_size": distributed_config.get( "batch_norm_sync_group_size", 0 ), "find_unused_parameters": distributed_config.get( "find_unused_parameters", False ), "bucket_cap_mb": distributed_config.get("bucket_cap_mb", 25), "fp16_grad_compress": distributed_config.get("fp16_grad_compress", False), } task = ( cls() .set_num_epochs(config["num_epochs"]) .set_test_phase_period(config.get("test_phase_period", 1)) .set_loss(loss) .set_test_only(test_only) .set_model(model) .set_meters(meters) .set_amp_args(amp_args) .set_mixup_transform(mixup_transform) .set_distributed_options(**distributed_options) .set_hooks(hooks) .set_bn_weight_decay(config.get("bn_weight_decay", False)) .set_clip_grad_norm(config.get("clip_grad_norm")) .set_simulated_global_batchsize(config.get("simulated_global_batchsize")) .set_use_sharded_ddp(config.get("use_sharded_ddp", False)) ) if not test_only: task.set_optimizer(optimizer) task.set_optimizer_schedulers(param_schedulers) use_gpu = config.get("use_gpu") if use_gpu is not None: task.set_use_gpu(use_gpu) for phase_type in datasets: task.set_dataset(datasets[phase_type], phase_type) # NOTE: this is a private member and only meant to be used for # logging/debugging purposes. See __repr__ implementation task._config = config return task @property def num_batches_per_phase(self): """Returns number of batches in current phase iterator""" return len(self.data_iterator) @property def model(self): """Returns model used in training (can be wrapped with DDP)""" return ( self.distributed_model if is_distributed_training_run() else self.base_model ) @property def loss(self): """Returns loss used in training (can be wrapped with DDP)""" return self.distributed_loss if self.distributed_loss else self.base_loss @property def phase_type(self): """Returns current phase type. String with value "train" or "test" """ return "train" if self.train else "test" @property def eval_phase_idx(self): """Returns current evaluation phase""" return self.phase_idx - self.train_phase_idx - 1 def get_total_training_phases(self): """ Returns the total number of "train" phases in the task """ num_training_phases = 0 for phase in self.phases: if phase["train"] is True: num_training_phases += 1 return num_training_phases def get_total_test_phases(self): """ Returns the total number of "test" phases in the task """ num_test_phases = 0 for phase in self.phases: if phase["train"] is False: num_test_phases += 1 return num_test_phases def _build_phases(self): """Returns list of phases from config. These phases will look like: { train: is this a train or test phase? optimizer: optimizer settings } - If this is a test only run, then only test phases will be generated - If this is a training run with both train and test datasets, then x phases = x train phases + x test phases, interleaved. If test_phase_period > 1, test phases are only added after test_phase_period train phases. The last phase is always a test phase. - If this is a training run with only a train dataset, then x phases = x train phases. """ if not self.test_only: phases = [ {"train": True} for _ in range(math.ceil(self.train_phases_per_epoch * self.num_epochs)) ] if self._train_only: return phases final_phases = [] for i, phase in enumerate(phases): final_phases.append(phase) if (i + 1) % self.test_phase_period == 0: final_phases.append({"train": False}) if final_phases[-1]["train"]: final_phases.append({"train": False}) return final_phases return [{"train": False} for _ in range(self.num_epochs)] def build_dataloader_from_dataset(self, dataset, **kwargs): """Builds a dataloader from the provided dataset Args: dataset: A ClassyDataset kwargs: Additional kwargs to pass during dataloader construction for derived classes """ return dataset.iterator( phase_type=self.phase_type, current_phase_id=self.train_phase_idx if self.train else 0, pin_memory=self.use_gpu and torch.cuda.device_count() > 1, multiprocessing_context=mp.get_context(self.dataloader_mp_context), **kwargs, ) def build_dataloaders_for_current_phase(self): """Builds dataloader(s) for the current phase. Deriving classes can override this method to support custom behavior, like supporting multiple dataloaders in parallel. """ self.dataloader = self.build_dataloader_from_dataset( self.datasets[self.phase_type] ) def prepare_optimizer(self, optimizer, model, loss=None): bn_params, other_params = split_batchnorm_params(model) if loss is not None: bn_params_loss, params_loss = split_batchnorm_params(loss) bn_params = bn_params + bn_params_loss other_params = other_params + params_loss bn_schedulers = self.optimizer_schedulers.copy() if not self.bn_weight_decay: bn_schedulers["weight_decay"] = 0 param_groups = [{"params": other_params, **self.optimizer_schedulers}] if len(bn_params) > 0: param_groups.append({"params": bn_params, **bn_schedulers}) self.optimizer.set_param_groups(param_groups) def prepare(self): """Prepares task for training, populates all derived attributes""" self.phases = self._build_phases() self.train = False if self.test_only else self.train if self.batch_norm_sync_mode == BatchNormSyncMode.PYTORCH: self.base_model = nn.SyncBatchNorm.convert_sync_batchnorm(self.base_model) elif self.batch_norm_sync_mode == BatchNormSyncMode.APEX: sync_bn_process_group = apex.parallel.create_syncbn_process_group( self.batch_norm_sync_group_size ) self.base_model = apex.parallel.convert_syncbn_model( self.base_model, process_group=sync_bn_process_group ) # move the model and loss to the right device if self.use_gpu: self.base_model, self.base_loss = copy_model_to_gpu( self.base_model, self.base_loss ) else: self.base_loss.cpu() self.base_model.cpu() if self.optimizer is not None: self.prepare_optimizer( optimizer=self.optimizer, model=self.base_model, loss=self.base_loss ) if self.amp_args is not None: if self.amp_type == AmpType.APEX: # Initialize apex.amp. This updates the model and the PyTorch optimizer ( # if training, which is wrapped by the ClassyOptimizer in self.optimizer). # Please note this must happen before loading the checkpoint, cause # there's amp state to be restored. if self.optimizer is None: self.base_model = apex.amp.initialize( self.base_model, optimizers=None, **self.amp_args ) else: self.base_model, self.optimizer.optimizer = apex.amp.initialize( self.base_model, self.optimizer.optimizer, **self.amp_args ) if self.simulated_global_batchsize is not None: if self.simulated_global_batchsize % self.get_global_batchsize() != 0: raise ValueError( f"Global batch size ({self.get_global_batchsize()}) must divide " f"simulated_global_batchsize ({self.simulated_global_batchsize})" ) else: self.simulated_global_batchsize = self.get_global_batchsize() self.optimizer_period = ( self.simulated_global_batchsize // self.get_global_batchsize() ) if self.optimizer_period > 1: logging.info( f"Using gradient accumulation with a period of {self.optimizer_period}" ) if self.checkpoint_path: self.checkpoint_dict = load_and_broadcast_checkpoint(self.checkpoint_path) classy_state_dict = ( None if self.checkpoint_dict is None else self.checkpoint_dict["classy_state_dict"] ) if classy_state_dict is not None: state_load_success = update_classy_state(self, classy_state_dict) assert ( state_load_success ), "Update classy state from checkpoint was unsuccessful." self.init_distributed_data_parallel_model() def init_distributed_data_parallel_model(self): """ Initialize `torch.nn.parallel.distributed.DistributedDataParallel <https://pytorch.org/ docs/stable/nn.html#distributeddataparallel>`_. Needed for distributed training. This is where a model should be wrapped by DDP. """ if not is_distributed_training_run(): return assert ( self.distributed_model is None ), "init_ddp_non_elastic must only be called once" broadcast_buffers = ( self.broadcast_buffers_mode == BroadcastBuffersMode.FORWARD_PASS ) if self.use_sharded_ddp: if not isinstance(self.optimizer, ZeRO): raise ValueError( "ShardedDataParallel engine should only be used in conjunction with ZeRO optimizer" ) from fairscale.nn.data_parallel import ShardedDataParallel # Replace the original DDP wrap by the shard-aware ShardedDDP self.distributed_model = ShardedDataParallel( module=self.base_model, sharded_optimizer=self.optimizer.optimizer, broadcast_buffers=broadcast_buffers, ) else: self.distributed_model = init_distributed_data_parallel_model( self.base_model, broadcast_buffers=broadcast_buffers, find_unused_parameters=self.find_unused_parameters, bucket_cap_mb=self.ddp_bucket_cap_mb, ) if self.fp16_grad_compress: from torch.distributed.algorithms import ddp_comm_hooks # FP16 hook is stateless and only takes a process group as the state. # We use the default process group so we set the state to None. process_group = None self.distributed_model.register_comm_hook( process_group, ddp_comm_hooks.default_hooks.fp16_compress_hook ) if ( isinstance(self.base_loss, ClassyLoss) and self.base_loss.has_learned_parameters() ): logging.info("Initializing distributed loss") self.distributed_loss = init_distributed_data_parallel_model( self.base_loss, broadcast_buffers=broadcast_buffers, find_unused_parameters=self.find_unused_parameters, bucket_cap_mb=self.ddp_bucket_cap_mb, ) @property def where(self): """Returns the proportion of training that has completed. If in test only mode, returns proportion of testing completed Returned value is a float in the range [0, 1) """ current_step = self.num_updates / self.get_global_batchsize() num_phases = ( self.get_total_test_phases() if self.test_only else self.get_total_training_phases() ) if self.num_batches_per_phase <= 0: raise RuntimeError("No batches to read. Is the dataset empty?") num_steps = num_phases * self.num_batches_per_phase where = current_step / num_steps return where def get_classy_state(self, deep_copy: bool = False): """Returns serialiable state of task Args: deep_copy: If true, does a deep copy of state before returning. """ optimizer_state = {} if self.optimizer is not None: optimizer_state = self.optimizer.get_classy_state() classy_state_dict = { "train": self.train, "base_model": self.base_model.get_classy_state(), "meters": [meter.get_classy_state() for meter in self.meters], "optimizer": optimizer_state, "phase_idx": self.phase_idx, "train_phase_idx": self.train_phase_idx, "num_updates": self.num_updates, "losses": self.losses, "hooks": {hook.name(): hook.get_classy_state() for hook in self.hooks}, "loss": {}, } if "train" in self.datasets and self._is_checkpointable_dataset( self.datasets["train"] ): classy_state_dict["train_dataset_iterator"] = self.datasets[ "train" ].get_classy_state() if isinstance(self.base_loss, ClassyLoss): classy_state_dict["loss"] = self.base_loss.get_classy_state() if self.amp_args is not None: if self.amp_type == AmpType.APEX: classy_state_dict["amp"] = apex.amp.state_dict() elif self.amp_grad_scaler is not None: classy_state_dict["amp"] = self.amp_grad_scaler.state_dict() if deep_copy: classy_state_dict = copy.deepcopy(classy_state_dict) return classy_state_dict def set_classy_state(self, state): """Set task state Args: state: Dict containing state of a task """ self.train = False if self.test_only else state["train"] self.base_model.set_classy_state(state["base_model"]) if self.test_only: # if we're only testing, just need the state of the model to be updated return self.phase_idx = state["phase_idx"] self.num_updates = state["num_updates"] self.train_phase_idx = state["train_phase_idx"] self.losses = state["losses"] for meter, meter_state in zip(self.meters, state["meters"]): meter.set_classy_state(meter_state) if self.optimizer is not None: self.optimizer.set_classy_state(state["optimizer"]) if state.get("loss") and isinstance(self.base_loss, ClassyLoss): self.base_loss.set_classy_state(state["loss"]) if "amp" in state: if self.amp_type == AmpType.APEX: apex.amp.load_state_dict(state["amp"]) else: self.amp_grad_scaler.load_state_dict(state["amp"]) for hook in self.hooks: # we still want to be able to run when new hooks are added or old # hooks are removed if hook.name() in state["hooks"]: hook.set_classy_state(state["hooks"][hook.name()]) else: logging.warning(f"No state found for hook: {hook.name()}") if "train" in self.datasets and self._is_checkpointable_dataset( self.datasets["train"] ): self.datasets["train"].set_classy_state(state.get("train_dataset_iterator")) @staticmethod def _is_checkpointable_dataset(dataset): return hasattr(dataset, "get_classy_state") and hasattr( dataset, "set_classy_state" ) def eval_step(self): self.last_batch = None # Process next sample with Timer() as timer: sample = next(self.data_iterator) assert isinstance(sample, dict) and "input" in sample and "target" in sample, ( f"Returned sample [{sample}] is not a map with 'input' and" + "'target' keys" ) target = sample["target"] if self.use_gpu: sample = recursive_copy_to_gpu(sample, non_blocking=True) # Optional Pytorch AMP context torch_amp_context = ( torch.cuda.amp.autocast() if self.amp_type == AmpType.PYTORCH else contextlib.suppress() ) with torch.no_grad(), torch_amp_context: output = self.model(sample["input"]) local_loss = self.compute_loss(output, sample) loss = local_loss.detach().clone() self.losses.append(loss.data.cpu().item()) self.update_meters(output, sample) # Move some data to the task so hooks get a chance to access it self.last_batch = LastBatchInfo( loss=loss, output=output, target=target, sample=sample, step_data={"sample_fetch_time": timer.elapsed_time}, ) def check_inf_nan(self, loss): if loss == float("inf") or loss == float("-inf") or loss != loss: raise FloatingPointError(f"Loss is infinity or NaN: {loss}") def _should_do_step(self): """Tells if we will be performing an optimizer step. Returns True always if there is no gradient accumulation. With gradient accumulation returns True only when the gradients will be synchronized and we will be performing an optimizer step. """ update_idx = self.num_updates // self.get_global_batchsize() return (update_idx % self.optimizer_period) == self.optimizer_period - 1 def train_step(self): """Train step to be executed in train loop.""" self.last_batch = None # Process next sample with Timer() as timer: sample = next(self.data_iterator) assert isinstance(sample, dict) and "input" in sample and "target" in sample, ( f"Returned sample [{sample}] is not a map with 'input' and" + "'target' keys" ) # Copy sample to GPU target = sample["target"] if self.use_gpu: sample = recursive_copy_to_gpu(sample, non_blocking=True) if self.mixup_transform is not None: sample = self.mixup_transform(sample) # Optional Pytorch AMP context torch_amp_context = ( torch.cuda.amp.autocast() if self.amp_type == AmpType.PYTORCH else contextlib.suppress() ) # only sync with DDP when we need to perform an optimizer step # an optimizer step can be skipped if gradient accumulation is enabled do_step = self._should_do_step() ctx_mgr_model = ( self.distributed_model.no_sync() if self.distributed_model is not None and not do_step else contextlib.suppress() ) ctx_mgr_loss = ( self.distributed_loss.no_sync() if self.distributed_loss is not None and not do_step else contextlib.suppress() ) with ctx_mgr_model, ctx_mgr_loss: # Forward pass with torch.enable_grad(), torch_amp_context: output = self.model(sample["input"]) local_loss = self.compute_loss(output, sample) loss = local_loss.detach().clone() self.losses.append(loss.data.cpu().item()) self.update_meters(output, sample) # Backwards pass + optimizer step self.run_optimizer(local_loss) self.num_updates += self.get_global_batchsize() # Move some data to the task so hooks get a chance to access it self.last_batch = LastBatchInfo( loss=loss, output=output, target=target, sample=sample, step_data={"sample_fetch_time": timer.elapsed_time}, ) def compute_loss(self, model_output, sample): return self.loss(model_output, sample["target"]) def run_optimizer(self, loss): """Runs backwards pass and update the optimizer""" self.check_inf_nan(loss) # Gradient accumulation logic. We always set optimizer_period, even # if gradient accumulation is disabled. Assumes all batches have the # same size update_idx = self.num_updates // self.get_global_batchsize() do_zero_grad = (update_idx % self.optimizer_period) == 0 do_step = self._should_do_step() if do_zero_grad: self.optimizer.zero_grad() if self.amp_type == AmpType.APEX: with apex.amp.scale_loss(loss, self.optimizer.optimizer) as scaled_loss: scaled_loss.backward() elif self.amp_type == AmpType.PYTORCH: self.amp_grad_scaler.scale(loss).backward() else: loss.backward() if do_step: # Handle gradient accumulation related gradient rescaling if self.optimizer_period != 1: self._rescale_gradients(1 / self.optimizer_period) # Clipping must happen after grad accumulation if self.clip_grad_norm is not None: self._clip_gradients(self.clip_grad_norm) if self.amp_type == AmpType.PYTORCH: # If using mixed precision, handle underflow-related scaling # See https://pytorch.org/docs/stable/amp.html#gradient-scaling # for context self.amp_grad_scaler.step(self.optimizer, where=self.where) self.amp_grad_scaler.update() else: self.optimizer.step(where=self.where) def _rescale_gradients(self, scale): for param in master_params(self.optimizer): if param.grad is not None: param.grad.data.mul_(scale) def _clip_gradients(self, max_norm): nn.utils.clip_grad_norm_(master_params(self.optimizer), max_norm) def update_meters(self, model_output, sample): target = sample["target"].detach().cpu() model_output = model_output.detach().cpu() # Update meters for meter in self.meters: meter.update(model_output, target, is_train=self.train) def synchronize_losses(self): """Average the losses across the different replicas""" # Average losses across nodes losses_tensor = torch.tensor(self.losses) synchronized_losses_tensor = all_reduce_mean(losses_tensor) self.losses = synchronized_losses_tensor.tolist() def advance_phase(self): """Performs bookkeeping / task updates between phases Increments phase idx, resets meters, resets loss history, resets counters, shuffles dataset, rebuilds iterators, and sets the train / test state for phase. """ logging.debug("Advancing phase") # Reset meters for next phase / epoch for meter in self.meters: meter.reset() # Reset loss history for next epoch self.losses = [] # Setup new phase self.phase_idx += 1 phase = self.phases[self.phase_idx] self.train = True if phase["train"] else False if self.train: self.train_phase_idx += 1 # Re-build dataloader & re-create iterator anytime membership changes. self.build_dataloaders_for_current_phase() self.create_data_iterators() # Set up pytorch module in train vs eval mode, update optimizer. self._set_model_train_mode() def done_training(self): """Stop condition for training""" return self.phase_idx + 1 >= len(self.phases) def create_data_iterators(self): """Creates data iterator(s) for the current phase.""" # Delete iterator explicitly so that all dataloader processes # are cleaned up. del self.data_iterator self.data_iterator = iter(self.dataloader) def _set_model_train_mode(self): """Set train mode for model""" phase = self.phases[self.phase_idx] self.base_model.train(phase["train"]) self.base_loss.train(phase["train"]) if ( self.broadcast_buffers_mode == BroadcastBuffersMode.BEFORE_EVAL and not self.train ): self._broadcast_buffers() def _broadcast_buffers(self): """Explicitly synchronize buffers across all devices.""" if self.distributed_model is None: return buffers = list(self.base_model.buffers()) if len(buffers) > 0: logging.info("Synchronizing buffers before evaluation.") for buffer in buffers: broadcast(buffer, 0, group=self.distributed_model.process_group) # TODO: Functions below should be better abstracted into the dataloader # abstraction def get_batchsize_per_replica(self): """Return local replica's batchsize for dataset (e.g. batchsize per GPU)""" return self.datasets[self.phase_type].get_batchsize_per_replica() def get_global_batchsize(self): """Return global batchsize across all trainers""" return self.datasets[self.phase_type].get_global_batchsize() def on_start(self): for hook in self.hooks: hook.on_start(self) def on_phase_start(self): self.phase_start_time_total = time.perf_counter() self.advance_phase() for hook in self.hooks: hook.on_phase_start(self) self.phase_start_time_train = time.perf_counter() def on_phase_end(self): self.log_phase_end(self.phase_type) if self.train: self.optimizer.on_epoch(where=self.where) logging.debug("Syncing losses on phase end...") self.synchronize_losses() logging.debug("...losses synced") logging.debug("Syncing meters on phase end...") for meter in self.meters: meter.sync_state() logging.debug("...meters synced") barrier() for hook in self.hooks: hook.on_phase_end(self) self.perf_log = [] self.log_phase_end(f"{self.phase_type}_total") if hasattr(self.datasets[self.phase_type], "on_phase_end"): self.datasets[self.phase_type].on_phase_end() def on_end(self): for hook in self.hooks: hook.on_end(self) def log_phase_end(self, tag): start_time = ( self.phase_start_time_train if tag == self.phase_type else self.phase_start_time_total ) phase_duration = time.perf_counter() - start_time im_per_sec = ( self.get_global_batchsize() * self.num_batches_per_phase ) / phase_duration self.perf_log.append( {"tag": tag, "phase_idx": self.train_phase_idx, "im_per_sec": im_per_sec} ) def __repr__(self): if hasattr(self, "_config"): config = json.dumps(self._config, indent=4) return f"{super().__repr__()} initialized with config:\n{config}" return super().__repr__()
cv_bias_amplification-main
my-project-release/my-project/tasks/biasamp_classification_task.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import traceback from pathlib import Path from classy_vision.generic.registry_utils import import_all_modules from classy_vision.tasks.classy_task import ClassyTask from classy_vision.tasks.fine_tuning_task import FineTuningTask FILE_ROOT = Path(__file__).parent TASK_REGISTRY = {} TASK_CLASS_NAMES = set() TASK_REGISTRY_TB = {} TASK_CLASS_NAMES_TB = {} def build_task(config): """Builds a ClassyTask from a config. This assumes a 'name' key in the config which is used to determine what task class to instantiate. For instance, a config `{"name": "my_task", "foo": "bar"}` will find a class that was registered as "my_task" (see :func:`register_task`) and call .from_config on it.""" task = TASK_REGISTRY[config["name"]].from_config(config) return task def register_task(name): """Registers a ClassyTask subclass. This decorator allows Classy Vision to instantiate a subclass of ClassyTask from a configuration file, even if the class itself is not part of the Classy Vision framework. To use it, apply this decorator to a ClassyTask subclass, like this: .. code-block:: python @register_task('my_task') class MyTask(ClassyTask): ... To instantiate a task from a configuration file, see :func:`build_task`.""" def register_task_cls(cls): if name in TASK_REGISTRY: msg = "Cannot register duplicate task ({}). Already registered at \n{}\n" raise ValueError(msg.format(name, TASK_REGISTRY_TB[name])) if not issubclass(cls, ClassyTask): raise ValueError( "Task ({}: {}) must extend ClassyTask".format(name, cls.__name__) ) if cls.__name__ in TASK_CLASS_NAMES: msg = ( "Cannot register task with duplicate class name({})." + "Previously registered at \n{}\n" ) raise ValueError( msg.format(cls.__name__, TASK_CLASS_NAMES_TB[cls.__name__]) ) tb = "".join(traceback.format_stack()) TASK_REGISTRY[name] = cls TASK_CLASS_NAMES.add(cls.__name__) TASK_REGISTRY_TB[name] = tb TASK_CLASS_NAMES_TB[cls.__name__] = tb return cls return register_task_cls from .biasamp_classification_task import BiasAmpClassificationTask # isort:skip # from .fine_tuning_task import FineTuningTask # isort:skip __all__ = [ "ClassyTask", # "FineTuningTask", "build_task", "register_task", "BiasAmpClassificationTask", ] # automatically import any Python files in the tasks/ directory import_all_modules(FILE_ROOT, "tasks")
cv_bias_amplification-main
my-project-release/my-project/tasks/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from torchvision.datasets import FashionMNIST import torch.utils.data import torch from torchvision import datasets, transforms import classy_vision.generic.util as util import torchvision import math import numpy as np import json from classy_vision.dataset import ClassyDataset, build_dataset, register_dataset from classy_vision.dataset.transforms import build_transforms, ClassyTransform, register_transform from PIL import Image # Handle dataset so that we only get a subset of images (`task_classes`). # Perform overlay transform (`attr_classes`) for a specific proportion of images (`epsilon`) with a specific strength (`eta`). @register_dataset("cifar100_random_sample_train") class CIFAR100RandomSampleTrain(ClassyDataset): def __init__(self, batchsize_per_replica, shuffle, transform, num_samples, dataset_size, p, seed, class_mapping): # Grab original dataset dataset = torchvision.datasets.CIFAR100(root='./', download=True, train='train') # Instantiate storage for task images self.valid_cifar_idx_tasks = [] # will become a list of original idxs for the task-class subset. self.mapped_classes = [] # will become a list of mapped classes for the task-class subset. valid_cifar_idx_tasks_breakdown = {i:[] for i in range(0,len(class_mapping))} # key=task-class, value(to be)=original idx # Store indices for task images for i in range(len(dataset)): valid_cifar_idx_tasks_breakdown[dataset[i][1]].append(i) # Shuffle task images for selecting subset with util.torch_seed(seed): with util.numpy_seed(seed): for key, _ in valid_cifar_idx_tasks_breakdown.items(): np.random.shuffle(valid_cifar_idx_tasks_breakdown[key]) class_size = int(np.rint(500*dataset_size)) # Collect task images and class mappings for CIFAR100 subset for key, _ in valid_cifar_idx_tasks_breakdown.items(): self.valid_cifar_idx_tasks.extend(valid_cifar_idx_tasks_breakdown[key][0:class_size]) self.mapped_classes.extend([class_mapping[key]]*class_size) # Assign attribute based on task-class probability attr_breakdown = {} # key(to be)=task-class, value(to be)=attr-class with util.torch_seed(seed+1): with util.numpy_seed(seed+1): for key, _ in valid_cifar_idx_tasks_breakdown.items(): hold = [1] * (int)(np.round(class_size * p[class_mapping[key]], 0)) + [0] * (int)(np.round(class_size * (1.0-p[class_mapping[key]]), 0)) np.random.shuffle(hold) attr_breakdown[key] = hold # Assign overlay image based on attribute-class assignment self.valid_attrs = [None]*class_size*100 # will become a list of attr-classes, aligned with corresponding idxs in task_idx_list for key, _ in valid_cifar_idx_tasks_breakdown.items(): for cifar_task_idx, attr in zip(valid_cifar_idx_tasks_breakdown[key], attr_breakdown[key]): # this assumes that the dataset ordering does not change between iterations. self.valid_attrs[self.valid_cifar_idx_tasks.index(cifar_task_idx)] = 'b' if attr else 'a' # Confirm there are the right number of samples assert num_samples == len(self.valid_cifar_idx_tasks) assert num_samples == len(self.mapped_classes) assert num_samples == len(self.valid_attrs) super().__init__(dataset, batchsize_per_replica, shuffle, transform, num_samples) def __getitem__(self, idx: int): assert idx >= 0 and idx < len( self.valid_cifar_idx_tasks ), "Provided idx ({}) is outside of dataset range".format(idx) sample = list(self.dataset[self.valid_cifar_idx_tasks[idx]]) img = sample[0] mapped_label = self.mapped_classes[idx] attribute = self.valid_attrs[idx] # perform overlay transform assert isinstance(img, Image.Image), "img should be PIL Image. Got {}".format( type(img) ) img = np.asarray(img) img_dtype = img.dtype img = 255 - img if attribute == 'b' else img sample[0] = Image.fromarray(img.astype(img_dtype)) sample.append(idx) sample.append(mapped_label) sample.append(attribute) sample = tuple(sample) # TODO: Update future transforms with this new ordering. if self.transform is None: return sample return self.transform(sample) def __len__(self): return len(self.valid_cifar_idx_tasks) @classmethod def from_config(cls, config): transform = build_transforms(config["transforms"]) return cls( batchsize_per_replica=config["batchsize_per_replica"], shuffle=config["shuffle"], transform=transform, num_samples=config["num_samples"], dataset_size=config["dataset_size"], p=config["p"], seed=config["seed"], class_mapping=config["class_mapping"] )
cv_bias_amplification-main
my-project-release/my-project/datasets/cifar100_random_sample.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from PIL import Image import numpy as np from typing import Any, Callable, Dict, List, Optional, Tuple, Union import json from classy_vision.dataset.transforms import build_transforms, ClassyTransform, register_transform from classy_vision.dataset import build_dataset import classy_vision.generic.util as util from collections.abc import Iterable import cv2 import random import time import logging @register_transform("invert") class Invert(ClassyTransform): """With probablity p_class, invert the image. Args: p (dict <int: float>): Probabilities for each class. seed (int): Seed used for replication. """ def __init__(self, p, seed): self.p = p self.seed = seed def __call__(self, sample): """ Args: sample (tuple): Image to be altered and its class Returns: tuple: (Altered image, class) """ img = sample[0] original_label = sample[1] sample_id = sample[2] mapped_label = sample[3] assert isinstance(img, Image.Image), "img should be PIL Image. Got {}".format( type(img) ) img = np.asarray(img) img_dtype = img.dtype if self.seed >= 0: with util.torch_seed(self.seed + sample_id): with util.numpy_seed(self.seed + sample_id): attribute = 'b' if np.random.rand() < self.p[mapped_label] else 'a' else: attribute = 'b' if np.random.rand() < self.p[mapped_label] else 'a' img = 255 - img if attribute == 'b' else img img = img.astype(img_dtype) return (Image.fromarray(img), original_label, sample_id, mapped_label, attribute) def __repr__(self): return self.__class__.__name__ @register_transform("invert_exact") class InvertExact(ClassyTransform): """Invert the image according to the provided inversion list. Args: invert (list <int>): Whether or not the image at index i should be inverted """ def __init__(self, invert): self.invert = invert def __call__(self, sample): """ Args: sample (tuple): Image to be altered and its class Returns: tuple: (Altered image, class) """ img = sample[0] original_label = sample[1] sample_id = sample[2] mapped_label = sample[3] assert isinstance(img, Image.Image), "img should be PIL Image. Got {}".format( type(img) ) img = np.asarray(img) img_dtype = img.dtype attribute = 'b' if self.invert[sample_id] else 'a' img = 255 - img if attribute == 'b' else img img = img.astype(img_dtype) return (Image.fromarray(img), original_label, sample_id, mapped_label, attribute) def __repr__(self): return self.__class__.__name__ @register_transform("assign_class") class AssignClass(ClassyTransform): """Re-assign each image class to a given class. Args: classes (dict <int: int>): New class assignments, with current class:new class """ def __init__(self, classes): self.classes = classes def __call__(self, sample): """ Args: sample (tuple): Class to be altered and its image. Returns: tuple: (Altered image, class) """ img = sample[0] label = sample[1] sample_id = sample[2] return (img, label, sample_id, self.classes[label]) def __repr__(self): return self.__class__.__name__ @register_transform("swap_task_attr") class SwapTaskAttr(ClassyTransform): """Switch the task and attribute. Converts the original attribute to a numeric form. """ def __call__(self, sample): img = sample[0] original_label = sample[1] sample_id = sample[2] mapped_label = sample[3] attribute = sample[4] return (img, original_label, sample_id, ord(attribute)-97, mapped_label) def __repr__(self): return self.__class__.__name__ @register_transform("assign_class_str") class AssignClassStr(ClassyTransform): """Re-assign the image to a given class. Args: classes (dict <int: int>): New class assignments, with current class:new class """ def __init__(self, classes): self.classes = classes def __call__(self, sample): """ Args: sample (tuple): Class to be altered and its image. Returns: tuple: (Altered image, class) """ img = sample[0] label = sample[1] sample_id = sample[2] attribute = sample[3] return (img, label, sample_id, attribute, self.classes[str(label)]) def __repr__(self): return self.__class__.__name__ @register_transform("rand_assign_class_rand_invert") class RandAssignClassRandInvert(ClassyTransform): """Helper function to make configs easier to write. Warning: Requires dataset to be registered before transform is called. Requires dataset to be cheap to do one pass over to create maps when transform is created Randomly assigns the original class targets to a new, smaller, set of class targets. The original class set will be evenly divided among the new classes Then inverts images with probability p based on the probability map provided. Args: num_new_classes (int): New set of classes invert_probs (array[float]): Inversion probability for each class dataset_name (string): Already registered dataset for retrieving class info exact (bool): Exact number of inversions (i.e. class_1: 0.5 => exactly half of of class_1 images will be inverted vs flipping a coin for each image) assignment_seed (optional int): This is the seed used for the random generation ... must be same if you want the class mapping to match for test set inversion_seed (optional int): This is the seed for actually inverting each image. If None, uses time. """ def __init__(self, num_new_classes, invert_probs, dataset_config, exact=True, assignment_seed=0, inversion_seed=0): # assertions assert len(invert_probs) == num_new_classes, "inversion probabilities must match the number of final classes" assert assignment_seed is not None, "Assignment seed cannot be None otherwise it will be impossible to track the mapping" for i in range(0, num_new_classes): assert invert_probs[i] >= 0.0 and invert_probs[i] <= 1.0, "Valid probabilities must be provided" if inversion_seed is None: inversion_seed = int(time.time()) # For most datasets, only the name is required, we set batchsize, shuffle, transforms, num_workers dataset_config["batchsize_per_replica"] = 1 dataset_config["shuffle"] = False dataset_config["transforms"] = [] dataset_config["num_workers"] = 0 # Get target mapping directly from dataset dataset = build_dataset(dataset_config) index_to_class_mapping = {} target_counts = {} for i in range(0, len(dataset)): sample = dataset[i] index_to_class_mapping[i] = {"original_target": sample[1]} if sample[1] not in target_counts: target_counts[sample[1]] = 0 target_counts[sample[1]] += 1 target_list = list(target_counts.keys()) target_list.sort() new_target_list = [] quotient = len(target_list) // num_new_classes remainder = len(target_list) % num_new_classes # Create correct number of new class instances for i in range(0, num_new_classes): num = quotient if i < remainder: num += 1 new_target_list += [i for j in range(0, num)] with util.numpy_seed(assignment_seed): np.random.shuffle(new_target_list) class_mapping = dict(zip(target_list, new_target_list)) logging.info("Classy mapping: {}".format(str(class_mapping))) self.random_assign = AssignClass(class_mapping) # Now that we have our random assignment, need our exact list inversion_counts = {} for i in range(0, len(target_counts)): if class_mapping[i] not in inversion_counts: inversion_counts[class_mapping[i]] = 0 inversion_counts[class_mapping[i]] += target_counts[i] target_to_inversion_lists = {} target_to_inversion_iterators = [] for i in range(0, len(invert_probs)): prob = invert_probs[i] count = inversion_counts[i] target_to_inversion_lists[i] = [0] * round(count * (1 - prob)) + [1] * round(count * prob) with util.numpy_seed(inversion_seed): np.random.shuffle(target_to_inversion_lists[i]) target_to_inversion_iterators.append(iter(target_to_inversion_lists[i])) inversions = [None] * len(dataset) for i in range(0, len(dataset)): it = target_to_inversion_iterators[class_mapping[index_to_class_mapping[i]["original_target"]]] inversions[i] = next(it) logging.info("Inversions: {}".format(str(inversions))) self.exact_invert = InvertExact(inversions) def __call__(self, sample): new_sample = self.random_assign(sample) new_sample = self.exact_invert(new_sample) return new_sample def __repr__(self): return self.__class__.__name__ @register_transform("PadToSize") class PadToSize(ClassyTransform): """ Pad the input PIL Image so that it has the specified size. The image is returned unchanged if at least one dimension of the original image is larger than the corresponding dimension in the requested size. Args: size (sequence): Output size (height, width) border_type (string): The type cv2 border type to use. pad_both_sides (bool): True: add padding to both sides to keep the image in the centre; False: add padding to the right and/or bottom. """ def __init__( self, size, border_type="BORDER_CONSTANT", pad_both_sides=True, ): self.size = size self.pad_both_sides = pad_both_sides self.border_type = self._getBorderType(border_type) assert ( isinstance(size, Iterable) and len(size) == 2 ), "Got inappropriate size arg: {}. Expected a sequence (h, w)".format( type(size) ) def _pad(self, img: Image.Image) -> Image.Image: padding = self._get_padding(img) assert len(padding) == 2 padding_tlbr = self._get_padding_tlbr(padding) if ( padding_tlbr[0] > 0 or padding_tlbr[1] > 0 or padding_tlbr[2] > 0 or padding_tlbr[3] > 0 ): padded = cv2.copyMakeBorder( cv2.cvtColor(np.asarray(img), cv2.COLOR_RGB2BGR), padding_tlbr[0], padding_tlbr[2], padding_tlbr[1], padding_tlbr[3], self.border_type, value=[0, 0, 0], # black ) result_img = Image.fromarray(cv2.cvtColor(padded, cv2.COLOR_BGR2RGB)) return result_img def _getBorderType(self, border_type: str) -> int: if border_type == "BORDER_CONSTANT": return cv2.BORDER_CONSTANT elif border_type == "BORDER_REFLECT": return cv2.BORDER_REFLECT elif border_type == "BORDER_REFLECT_101": return cv2.BORDER_REFLECT_101 elif border_type == "BORDER_REPLICATE": return cv2.BORDER_REPLICATE elif border_type == "BORDER_WRAP": return cv2.BORDER_WRAP else: assert f'unsupported border type "{border_type}"' def _get_padding(self, img: Image.Image) -> Iterable: img_width, img_height = img.size return (self.size[0] - img_height, self.size[1] - img_width) def _get_padding_tlbr(self, padding: Iterable) -> Iterable: top_padding = padding[0] // 2 if self.pad_both_sides else 0 left_padding = padding[1] // 2 if self.pad_both_sides else 0 bottom_padding = padding[0] - top_padding right_padding = padding[1] - left_padding return [top_padding, left_padding, bottom_padding, right_padding] def __call__(self, img: Image.Image) -> Image.Image: """ Args: img (PIL Image): Image to be padded. Returns: PIL Image: Padded image with dimensions (h, w). """ assert isinstance(img, Image.Image), "img should be PIL Image. Got {}".format( type(img) ) img_width, img_height = img.size if img_height > self.size[0] or img_width > self.size[1]: return img else: return self._pad(img) def __repr__(self): return ( self.__class__.__name__ + "(size={0}, border_type={1}, pad_both_sides={2})".format( self.size, self.border_type, repr(self.pad_both_sides), ) )
cv_bias_amplification-main
my-project-release/my-project/datasets/inversion_transforms.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Any, Callable, Dict, Optional, Union from classy_vision.dataset import ClassyDataset, register_dataset from classy_vision.dataset.core.random_image_datasets import ( RandomImageBinaryClassDataset, SampleType, ) from classy_vision.dataset.transforms import ClassyTransform, build_transforms from torchvision.datasets import CIFAR100 import torch.utils.data import torch import torchvision from classy_vision.dataset import ClassyDataset, build_dataset, register_dataset from classy_vision.dataset.transforms import build_transforms @register_dataset("cifar100_train") class CIFAR100Train(ClassyDataset): def __init__(self, batchsize_per_replica, shuffle, transform, num_samples): dataset = torchvision.datasets.CIFAR100(root='./', download=True, train='train') super().__init__(dataset, batchsize_per_replica, shuffle, transform, num_samples) def __getitem__(self, idx: int): assert idx >= 0 and idx < len( self.dataset ), "Provided idx ({}) is outside of dataset range".format(idx) sample = list(self.dataset[idx]) sample.append(idx) sample = tuple(sample) if self.transform is None: return sample return self.transform(sample) @classmethod def from_config(cls, config): transform = build_transforms(config["transforms"]) return cls( batchsize_per_replica=config["batchsize_per_replica"], shuffle=config["shuffle"], transform=transform, num_samples=None, ) @register_dataset("cifar100_test") class MyClassyDatasetCIFAR100Test(ClassyDataset): def __init__(self, batchsize_per_replica, shuffle, transform, num_samples): dataset = torchvision.datasets.CIFAR100(root='./', download=True, train=False) super().__init__(dataset, batchsize_per_replica, shuffle, transform, num_samples) def __getitem__(self, idx: int): assert idx >= 0 and idx < len( self.dataset ), "Provided idx ({}) is outside of dataset range".format(idx) sample = list(self.dataset[idx]) sample.append(idx) sample = tuple(sample) if self.transform is None: return sample return self.transform(sample) @classmethod def from_config(cls, config): transform = build_transforms(config["transforms"]) return cls( batchsize_per_replica=config["batchsize_per_replica"], shuffle=config["shuffle"], transform=transform, num_samples=None, )
cv_bias_amplification-main
my-project-release/my-project/datasets/cifar100.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from pathlib import Path from classy_vision.generic.registry_utils import import_all_modules FILE_ROOT = Path(__file__).parent # Automatically import any Python files in the datasets/ directory import_all_modules(FILE_ROOT, "datasets")
cv_bias_amplification-main
my-project-release/my-project/datasets/__init__.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Any, Callable, Dict, Optional, Union from classy_vision.dataset import ClassyDataset, register_dataset from classy_vision.dataset.core.random_image_datasets import ( RandomImageBinaryClassDataset, SampleType, ) from classy_vision.dataset.transforms import ClassyTransform, build_transforms from torchvision.datasets import FashionMNIST import torch.utils.data import torch import torchvision from classy_vision.dataset import ClassyDataset, build_dataset, register_dataset from classy_vision.dataset.transforms import build_transforms @register_dataset("fashionmnist_train") class FashionMNISTTrain(ClassyDataset): def __init__(self, batchsize_per_replica, shuffle, transform, num_samples): dataset = torchvision.datasets.FashionMNIST(root='./', download=True, train='train') super().__init__(dataset, batchsize_per_replica, shuffle, transform, num_samples) def __getitem__(self, idx: int): assert idx >= 0 and idx < len( self.dataset ), "Provided idx ({}) is outside of dataset range".format(idx) sample = list(self.dataset[idx]) sample.append(idx) sample = tuple(sample) if self.transform is None: return sample return self.transform(sample) @classmethod def from_config(cls, config): transform = build_transforms(config["transforms"]) return cls( batchsize_per_replica=config["batchsize_per_replica"], shuffle=config["shuffle"], transform=transform, num_samples=None, ) @register_dataset("fashionmnist_test") class FashionMNISTTest(ClassyDataset): def __init__(self, batchsize_per_replica, shuffle, transform, num_samples): dataset = torchvision.datasets.FashionMNIST(root='./', download=True, train=False) super().__init__(dataset, batchsize_per_replica, shuffle, transform, num_samples) def __getitem__(self, idx: int): assert idx >= 0 and idx < len( self.dataset ), "Provided idx ({}) is outside of dataset range".format(idx) sample = list(self.dataset[idx]) sample.append(idx) sample = tuple(sample) if self.transform is None: return sample return self.transform(sample) @classmethod def from_config(cls, config): transform = build_transforms(config["transforms"]) return cls( batchsize_per_replica=config["batchsize_per_replica"], shuffle=config["shuffle"], transform=transform, num_samples=None, )
cv_bias_amplification-main
my-project-release/my-project/datasets/fashionmnist.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Any, Callable, Dict, Optional, Union from classy_vision.dataset import ClassyDataset, register_dataset from classy_vision.dataset.core.random_image_datasets import ( RandomImageBinaryClassDataset, SampleType, ) from classy_vision.dataset.transforms import ClassyTransform, build_transforms from torchvision.datasets import FashionMNIST import torch.utils.data import torch import torchvision from classy_vision.dataset import ClassyDataset, build_dataset, register_dataset from classy_vision.dataset.transforms import build_transforms import numpy as np import classy_vision.generic.util as util from PIL import Image # Handle dataset so that we only get a subset of images (`task_classes`). # Perform overlay transform (`attr_classes`) for a specific proportion of images (`epsilon`) with a specific strength (`eta`). @register_dataset("cifar10_train_overlay") class CIFAR10TrainOverlay(ClassyDataset): def __init__(self, batchsize_per_replica, shuffle, transform, num_samples, task_classes, attr_classes, eta, epsilon, seed): # Set up necessary variables assert len(task_classes) == 2 # assume class size = 2 for now assert len(attr_classes) == 2 # assume class size = 2 for now p = [np.round(0.5 + (epsilon * 0.01), 2), np.round(0.5 - (epsilon * 0.01), 2)] self.eta = eta # Grab original dataset dataset = torchvision.datasets.CIFAR10(root='./', download=True, train='train') # Instantiate storage for task and attribute images self.valid_cifar_idx_tasks = [] # will become a list of original idxs for the task-class subset. valid_cifar_idx_tasks_breakdown = {i:[] for i in task_classes} # key=task-class, value(to be)=original idx valid_cifar_idx_attrs_breakdown = {i:[] for i in attr_classes} # key=attr-class, value(to be)=original idx # Store indices for task and attribute images for i in range(len(dataset)): if dataset[i][1] in task_classes: self.valid_cifar_idx_tasks.append(i) valid_cifar_idx_tasks_breakdown[dataset[i][1]].append(i) if dataset[i][1] in attr_classes: valid_cifar_idx_attrs_breakdown[dataset[i][1]].append(i) # Shuffle attribute images for random pairing with util.torch_seed(seed): with util.numpy_seed(seed): for key, _ in valid_cifar_idx_attrs_breakdown.items(): np.random.shuffle(valid_cifar_idx_attrs_breakdown[key]) # Assign attribute-class based on task-class probability attr_breakdown = {} # key(to be)=task-class, value(to be)=attr-class for t, t_i in zip(task_classes, range(len(task_classes))): hold = [attr_classes[0]] * (int)(np.round(len(valid_cifar_idx_tasks_breakdown[t]) * p[t_i], 0)) + [attr_classes[1]] * (int)(np.round(len(valid_cifar_idx_tasks_breakdown[t]) * (1.0-p[t_i]), 0)) with util.torch_seed(seed+1): with util.numpy_seed(seed+1): np.random.shuffle(hold) attr_breakdown[t] = hold # Assign overlay image based on attribute-class assignment self.valid_cifar_idx_attrs= [None]*num_samples # will become a list of original idxs for the attr-class subset, aligned with corresponding idxs in task_idx_list self.valid_attrs = [None]*num_samples # will become a list of attr-classes, aligned with corresponding idxs in task_idx_list attr_pointers = {attr:0 for attr in attr_classes} # used to parse self.attr_idx_subset for exact assignment for key, _ in valid_cifar_idx_tasks_breakdown.items(): for cifar_task_idx, attr in zip(valid_cifar_idx_tasks_breakdown[key], attr_breakdown[key]): # images at a given `idx` for both attr_idx_list and task_idx_list should be overlayed on each other. # we use the pointers to ensure that a unique attr-class image is used for each task-class image. # this assumes that the dataset ordering does not change between iterations. self.valid_cifar_idx_attrs[self.valid_cifar_idx_tasks.index(cifar_task_idx)] = valid_cifar_idx_attrs_breakdown[attr][attr_pointers[attr]] self.valid_attrs[self.valid_cifar_idx_tasks.index(cifar_task_idx)] = attr attr_pointers[attr] += 1 # Confirm there are the right number of samples assert num_samples == len(self.valid_cifar_idx_tasks) assert num_samples == len(self.valid_cifar_idx_attrs) super().__init__(dataset, batchsize_per_replica, shuffle, transform, num_samples) def __getitem__(self, idx: int): assert idx >= 0 and idx < len( self.valid_cifar_idx_tasks ), "Provided idx ({}) is outside of dataset range".format(idx) sample = list(self.dataset[self.valid_cifar_idx_tasks[idx]]) overlay_sample = list(self.dataset[self.valid_cifar_idx_attrs[idx]]) attribute = self.valid_attrs[idx] sample.append(idx) # perform overlay transform img = sample[0] overlay_img = overlay_sample[0] assert isinstance(img, Image.Image), "img should be PIL Image. Got {}".format( type(img) ) sample[0] = Image.blend(img, overlay_img, self.eta*0.01) sample.append(attribute) sample = tuple(sample) # TODO: Update future transforms with this new ordering. if self.transform is None: return sample return self.transform(sample) def __len__(self): return len(self.valid_cifar_idx_tasks) @classmethod def from_config(cls, config): transform = build_transforms(config["transforms"]) return cls( batchsize_per_replica=config["batchsize_per_replica"], shuffle=config["shuffle"], transform=transform, num_samples=config["num_samples"], task_classes=config["task_classes"], attr_classes = config["attr_classes"], eta=config["eta"], epsilon=config["epsilon"], seed=config["seed"] ) # Handle dataset so that we only get a subset of images (`task_classes`). # Perform overlay transform (`attr_classes`) for a specific proportion of images (`epsilon`) with a specific strength (`eta`). @register_dataset("cifar10_test_overlay") class CIFAR10TestOverlay(ClassyDataset): def __init__(self, batchsize_per_replica, shuffle, transform, num_samples, task_classes, attr_classes, eta, epsilon, seed): # Set up necessary variables assert len(task_classes) == 2 # assume class size = 2 for now assert len(attr_classes) == 2 # assume class size = 2 for now p = [np.round(0.5 + (epsilon * 0.01), 2), np.round(0.5 - (epsilon * 0.01), 2)] self.eta = eta # Grab original dataset dataset = torchvision.datasets.CIFAR10(root='./', download=True, train=False) # Instantiate storage for task and attribute images self.valid_cifar_idx_tasks = [] # will become a list of original idxs for the task-class subset. valid_cifar_idx_tasks_breakdown = {i:[] for i in task_classes} # key=task-class, value(to be)=original idx valid_cifar_idx_attrs_breakdown = {i:[] for i in attr_classes} # key=attr-class, value(to be)=original idx # Store indices for task and attribute images for i in range(len(dataset)): if dataset[i][1] in task_classes: self.valid_cifar_idx_tasks.append(i) valid_cifar_idx_tasks_breakdown[dataset[i][1]].append(i) if dataset[i][1] in attr_classes: valid_cifar_idx_attrs_breakdown[dataset[i][1]].append(i) # Shuffle attribute images for random pairing with util.torch_seed(seed): with util.numpy_seed(seed): for key, _ in valid_cifar_idx_attrs_breakdown.items(): np.random.shuffle(valid_cifar_idx_attrs_breakdown[key]) # Assign attribute-class based on task-class probability attr_breakdown = {} # key(to be)=task-class, value(to be)=attr-class for t, t_i in zip(task_classes, range(len(task_classes))): hold = [attr_classes[0]] * (int)(np.round(len(valid_cifar_idx_tasks_breakdown[t]) * p[t_i], 0)) + [attr_classes[1]] * (int)(np.round(len(valid_cifar_idx_tasks_breakdown[t]) * (1.0-p[t_i]), 0)) with util.torch_seed(seed+1): with util.numpy_seed(seed+1): np.random.shuffle(hold) attr_breakdown[t] = hold # Assign overlay image based on attribute-class assignment self.valid_cifar_idx_attrs= [None]*num_samples # will become a list of original idxs for the attr-class subset, aligned with corresponding idxs in task_idx_list self.valid_attrs = [None]*num_samples # will become a list of attr-classes, aligned with corresponding idxs in task_idx_list attr_pointers = {attr:0 for attr in attr_classes} # used to parse self.attr_idx_subset for exact assignment for key, _ in valid_cifar_idx_tasks_breakdown.items(): for cifar_task_idx, attr in zip(valid_cifar_idx_tasks_breakdown[key], attr_breakdown[key]): # images at a given `idx` for both attr_idx_list and task_idx_list should be overlayed on each other. # we use the pointers to ensure that a unique attr-class image is used for each task-class image. # this assumes that the dataset ordering does not change between iterations. self.valid_cifar_idx_attrs[self.valid_cifar_idx_tasks.index(cifar_task_idx)] = valid_cifar_idx_attrs_breakdown[attr][attr_pointers[attr]] self.valid_attrs[self.valid_cifar_idx_tasks.index(cifar_task_idx)] = attr attr_pointers[attr] += 1 # Confirm there are the right number of samples assert num_samples == len(self.valid_cifar_idx_tasks) assert num_samples == len(self.valid_cifar_idx_attrs) super().__init__(dataset, batchsize_per_replica, shuffle, transform, num_samples) def __getitem__(self, idx: int): assert idx >= 0 and idx < len( self.valid_cifar_idx_tasks ), "Provided idx ({}) is outside of dataset range".format(idx) sample = list(self.dataset[self.valid_cifar_idx_tasks[idx]]) overlay_sample = list(self.dataset[self.valid_cifar_idx_attrs[idx]]) attribute = self.valid_attrs[idx] sample.append(idx) # perform overlay transform img = sample[0] overlay_img = overlay_sample[0] assert isinstance(img, Image.Image), "img should be PIL Image. Got {}".format( type(img) ) sample[0] = Image.blend(img, overlay_img, self.eta*0.01) sample.append(attribute) sample = tuple(sample) # TODO: Update future transforms with this new ordering. if self.transform is None: return sample return self.transform(sample) def __len__(self): return len(self.valid_cifar_idx_tasks) @classmethod def from_config(cls, config): transform = build_transforms(config["transforms"]) return cls( batchsize_per_replica=config["batchsize_per_replica"], shuffle=config["shuffle"], transform=transform, num_samples=config["num_samples"], task_classes=config["task_classes"], attr_classes = config["attr_classes"], eta=config["eta"], epsilon=config["epsilon"], seed=config["seed"] )
cv_bias_amplification-main
my-project-release/my-project/datasets/cifar10_overlay.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from pathlib import Path from classy_vision.generic.registry_utils import import_all_modules FILE_ROOT = Path(__file__).parent # Automatically import any Python files in the models/ directory import_all_modules(FILE_ROOT, "models")
cv_bias_amplification-main
my-project-release/my-project/models/__init__.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch from torch import Tensor import torch.nn as nn from typing import Type, Any, Callable, Union, List, Optional from torchvision.models.resnet import Bottleneck, BasicBlock, conv1x1 import torch.nn as nn import torchvision.models as models from classy_vision.models import ClassyModel, register_model import math @register_model("custom_resnet") class CustomResNet(ClassyModel): def __init__( self, channels: int, num_classes: int, layers: List[int], block: Optional[Type[Union[BasicBlock, Bottleneck]]] = None, zero_init_residual: bool = False, groups: int = 1, width_per_group: int = 64, replace_stride_with_dilation: Optional[List[bool]] = None, norm_layer: Optional[Callable[..., nn.Module]] = None ) -> None: block = BasicBlock self.inplanes = 64 super(CustomResNet, self).__init__() self.conv1 = nn.Conv2d(channels, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.avgpool = nn.AvgPool2d(7) self.fc = nn.Linear(256 * block.expansion, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() @classmethod def from_config(cls, config): # This method takes a configuration dictionary # and returns an instance of the class. In this case, # we'll let the number of classes be configurable. return cls( channels=config["channels"], num_classes=config["num_classes"], layers=config["layers"] ) def _make_layer(self, block: Type[Union[BasicBlock, Bottleneck]], planes: int, blocks: int, stride: int = 1, dilate: bool = False) -> nn.Sequential: downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def _forward_impl(self, x: Tensor) -> Tensor: x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.fc(x) return x def forward(self, x: Tensor) -> Tensor: return self._forward_impl(x)
cv_bias_amplification-main
my-project-release/my-project/models/custom_resnet.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from copy import error import torch import torch.utils.data import ast import itertools import json import numpy as np import pandas as pd import random import sys from classy_vision.dataset import ClassyDataset, build_dataset, register_dataset from classy_vision.generic.util import load_checkpoint import classy_vision.generic.util as util from classy_vision.models import ClassyModel from PIL import Image sys.path.append('../../..') from datasets.inversion_transforms import AssignClass, Invert from models.custom_resnet import CustomResNet #### TODO: Change according to your directory structure. CHECKPOINT_PATH = "" #### root = './' EXPERIMENT_NAME = "fashionmnist" # used to store experiment configs and results IDS_TEST = "./test_ids.txt" # used to designate file of sample ids for each test image NBINS = 15 # used to designate the number of bins for overconfidence measures NUM_CHECKPOINTS = None NUM_SAMPLES_TEST = 10_000 TRANSFORMS ={ # used to designate which transforms to apply or change "invert_exact": {}, "assign_class": {}, "normalize": { "mean": [0.2860], "std": [0.3530] } } TEST_DATASET = "fashionmnist_test" VISUALIZE = False # designate if plots should be shown CLASS_ASSIGNMENTS = [ [1, 1, 0, 1, 0, 0, 0, 0, 1, 1], [1, 1, 1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 0, 0, 1, 1, 0, 1, 0, 0], [0, 1, 1, 0, 1, 0, 1, 0, 1, 0], [1, 0, 0, 1, 1, 1, 1, 0, 0, 0], [0, 0, 0, 0, 1, 1, 1, 1, 0, 1], [1, 1, 0, 0, 0, 0, 1, 1, 0, 1], [1, 0, 0, 0, 1, 0, 1, 1, 0, 1], [1, 0, 1, 0, 0, 1, 0, 1, 1, 0], [1, 1, 0, 0, 0, 1, 0, 0, 1, 1], [1, 0, 1, 0, 1, 0, 0, 1, 0, 1], [0, 1, 0, 0, 1, 0, 0, 1, 1, 1], [1, 1, 1, 0, 0, 0, 0, 1, 0, 1], [0, 0, 1, 1, 1, 0, 1, 0, 1, 0], [1, 0, 1, 0, 1, 1, 0, 0, 1, 0], [1, 0, 0, 1, 0, 0, 0, 1, 1, 1], [1, 0, 0, 1, 0, 1, 0, 0, 1, 1], [0, 0, 1, 0, 1, 1, 1, 1, 0, 0], [1, 1, 1, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 1, 1, 1, 0] ] sm = torch.nn.Softmax() def get_model_results(model, dataset, attributes, tasks): """Get model results needed for directional bias amplification measurements. Args: dataset (ClassyDataset): ClassyDataset, generally of test data attributes (List): list of distinct attributes tasks (List): list of distinct tasks Returns: results (List x List): nested list of size attributes x tasks with number of instances with that input attribute and predicted task """ predictions = [] attributes_in = [] targets = [] percents = [] model.eval() for k in dataset.iterator(): attributes_in.append(k['attribute']) targets.append(k['target']) result = model(k['input']).data predictions.append(result.numpy().argmax(axis=1)) percents.append(sm(result)) flat_attributes = [item for sublist in attributes_in for item in sublist] flat_targets = [item for sublist in targets for item in sublist] flat_predictions = [item for sublist in predictions for item in sublist] flat_percents = [float(max(item)) for sublist in percents for item in sublist] results_in = np.zeros((len(attributes), len(tasks))) results_pred = np.zeros((len(attributes), len(tasks))) results_correct = np.zeros((len(attributes), len(tasks))) total = 0 correct = 0 for a, t, p in zip(flat_attributes, flat_targets, flat_predictions): results_in[attributes[a]][t] = results_in[attributes[a]][t] + 1 results_pred[attributes[a]][p] = results_pred[attributes[a]][p] + 1 results_correct[attributes[a]][t] += 1 if t == p else 0 total += 1 correct = correct + 1 if t == p else correct # TESTING return flat_attributes, flat_predictions, flat_targets return results_in, results_pred, correct * 1.0 / total, np.array(flat_predictions), np.array(flat_targets), np.array(flat_percents), results_correct / results_in def format_results(results, attributes, tasks): """Format results for readability. Args: results (List): nested list of size attributes x tasks with number of instances with that attribute and task attributes (List): list of distinct attributes tasks (List): list of distinct tasks Returns: dict<(attribute, task), value> : dict with number of instances with that attribute and task """ return {key: results[attributes[key[0]]][key[1]] for key in list(itertools.product(attributes, tasks))} def calc_bias_amp_at(res, res_h, attributes, tasks): """Perform directional bias amplification a->t as defined in https://arxiv.org/pdf/2102.12594.pdf. 1. Instantiate `results`, which will store the values defined in the paper's summation expression. Looping over all attributes and tasks... 2. Generate probabilities needed for y_at, delta_at calculations defined in the paper. p_attr = P(Attribute_a = 1) p_attr_h = P(Attribute_a-hat = 1) p_task = P(Task_t = 1) p_task_h = P(Task_t-hat = 1) p_attr_task = P(Attribute_a = 1, Task_t = 1) p_attr_h_task_h = P(Attribute_a-hat = 1, Task_t = 1) p_task_h_cond_attr_h = P(Task_t-hat = 1 | Attribute_a-hat = 1) p_task_cond_attr = P(Task_t = 1 | Attribute_a = 1) 3. Calculate y_at, delta_at, and expression inside of summation, and save to `results`. 4. Perform summation and BiasAmp_at calculation. Args: res (List x List): nested list of size attributes x tasks with number of instances that have attribute and task, generally the training input or test input resh (List x List): nested list of size attributes x tasks with number of instances that have attribute and task, generally the test output attributes (List): list of distinct attributes tasks (List): list of distinct tasks Returns: results (dict<(attribute, task), value>): dict with value inside equation summation with the attribute and task bias_amp_at (float): directional bias amplification a->t metric """ results = {key: 0 for key in list(itertools.product(attributes, tasks))} for key, value in results.items(): attr = key[0] task = key[1] p_attr = np.sum(res[attributes[attr]]) / np.sum(np.matrix(res)) p_attr_h = np.sum(res_h[attributes[attr]]) / np.sum(np.matrix(res_h)) p_task = np.sum(res, axis=0)[task] / np.sum(np.matrix(res)) p_task_h = np.sum(res_h, axis=0)[task] / np.sum(np.matrix(res_h)) p_attr_task = res[attributes[attr]][task] / np.sum(np.matrix(res)) p_attr_h_task_h = res_h[attributes[attr]][task] / np.sum(np.matrix(res_h)) p_task_h_cond_attr_h = p_attr_h_task_h / p_attr_h p_task_cond_attr = p_attr_task / p_attr y_at = p_attr_task > (p_attr * p_task) delta_at = p_task_h_cond_attr_h - p_task_cond_attr print(str(key)+".... y_at: " + str(y_at) + ", delta_at: " + str(delta_at)) results[key] = (y_at * delta_at) + ((1 - y_at) * (-1 * delta_at)) bias_amp_at = (1 / (len(attributes) * len(tasks))) * sum(results.values()) return results, bias_amp_at def get_binned_metrics(percents, predictions, targets, nbins): acc_bins = [] conf_bins = [] count_bins = [] assert 0 not in percents for i in range(0, nbins): filter = np.where((percents > (i)/nbins) & (percents <= (i+1)/nbins)) perc = percents[filter] pred = predictions[filter] targ = targets[filter] acc = sum(pred==targ)/len(pred) if len(pred) != 0 else np.nan conf = sum(perc)/len(perc) if len(perc) != 0 else np.nan acc_bins.append(acc) conf_bins.append(conf) count_bins.append(len(pred)) return acc_bins, conf_bins, count_bins def get_ece(acc_bins, conf_bins, count_bins, nbins): ece = 0 for i in range(0, nbins): ece += (count_bins[i] / sum(count_bins)) * abs(acc_bins[i] - conf_bins[i]) if acc_bins[i] is not np.nan else 0 return ece def get_mce(acc_bins, conf_bins, nbins): mce = 0.0 for i in range(0, nbins): mce = np.maximum(mce, abs(acc_bins[i] - conf_bins[i])) if acc_bins[i] is not np.nan else mce return mce def get_p(epsilon, num_classes, inversion_config): p = [] if inversion_config['type'] == "fixed": class_list = [] if inversion_config['assign'] == "custom": class_list = inversion_config['custom_selection'] elif inversion_config['assign'] == "shuffle": random.seed(inversion_config['seed']) class_list = random.sample(range(num_classes), inversion_config['num_inversion_classes']) for i in range(num_classes): if i in class_list: p.append(np.round(0.5 + (epsilon * 0.01), 2)) else: p.append(np.round(0.5 - (epsilon * 0.01), 2)) elif inversion_config['type'] == "evenly_spaced": for i in range(num_classes): min = np.round(0.5 - (epsilon * 0.01), 2) p.append(np.round(min + (i * (2 * epsilon * 0.01) / (num_classes - 1)), 2)) return p def run_measurements(name, json_template, class_assignment, epsilon, num_classes, p, train_seed, test_seed, checkpoint_dir, checkpoint): print("\nRunning \"" + checkpoint_dir + "\" .") transforms = [] if "assign_class" in TRANSFORMS: transforms.append({"name": "assign_class", "classes": class_assignment}) if "invert_exact" in TRANSFORMS: invert_original = [] assert NUM_SAMPLES_TEST % len(p) == 0, "Dataset not evenly divisible by number of classes." class_size = NUM_SAMPLES_TEST / len(class_assignment) with util.torch_seed(test_seed): with util.numpy_seed(test_seed): for c in class_assignment: hold = [1] * (int)(np.round(class_size * p[c], 0)) + [0] * (int)(np.round(class_size * (1-p[c]), 0)) np.random.shuffle(hold) invert_original.extend(hold) with open(IDS_TEST, 'r') as f: test_ids = json.load(f) invert_mapped = [0] * NUM_SAMPLES_TEST for k in range(0, NUM_SAMPLES_TEST): invert_mapped[k] = invert_original[int((test_ids[str(k)]['class'] * class_size) + test_ids[str(k)]['index'])] transforms.append({"name": "invert_exact", "invert": invert_mapped}) key_transforms = [{"name": "ToTensor"}] if "normalize" in TRANSFORMS: key_transforms.append({ "name": "Normalize", "mean": TRANSFORMS['normalize']['mean'], "std": TRANSFORMS['normalize']['std'], }) transforms.extend([ {"name": "tuple_to_map", "list_of_map_keys": ["input", "original_target", "sample_id", "target", "attribute"]}, { "name": "apply_transform_to_key", "transforms": key_transforms, "key": "input" } ]) test_dataset_config = { "name": TEST_DATASET, "batchsize_per_replica": 128, "shuffle": True, "transforms": transforms, "num_workers": 8 } my_dataset_test = build_dataset(test_dataset_config) checkpoint_data = load_checkpoint(checkpoint_dir) model = ClassyModel.from_checkpoint(checkpoint_data) attributes = {"a": 0, "b": 1} tasks = [i for i in range(num_classes)] test_results_in, test_results_pred, acc, predictions, targets, percents, accuracy_breakdown = get_model_results(model, my_dataset_test, attributes, tasks) accuracy_breakdown = format_results(accuracy_breakdown, attributes, tasks) accuracy_breakdown = {str(k): v for k, v in accuracy_breakdown.items()} biasamp_breakdown, biasamp = calc_bias_amp_at(test_results_in, test_results_pred, attributes, tasks) biasamp_breakdown = {str(k): v for k, v in biasamp_breakdown.items()} acc_bins, conf_bins, count_bins = get_binned_metrics(percents, predictions, targets, NBINS) print(acc) print(format_results(test_results_in, attributes, tasks)) print(format_results(test_results_pred, attributes, tasks)) print(biasamp_breakdown) names.append(name) epsilons.append(epsilon) train_seeds.append(train_seed) test_seeds.append(test_seed) checkpoints.append(checkpoint) accuracies.append(acc) biasamps.append(biasamp) test_predictions.append(format_results(test_results_pred, attributes, tasks)) acc_bins_list.append(acc_bins) conf_bins_list.append(conf_bins) count_bins_list.append(count_bins) eces.append(get_ece(acc_bins, conf_bins, count_bins, NBINS)) mces.append(get_mce(acc_bins, conf_bins, NBINS)) accuracy_breakdowns.append(accuracy_breakdown) biasamp_breakdowns.append(biasamp_breakdown) json_templates.append(json_template) # Set up and run measurements names = [] epsilons = [] train_seeds = [] test_seeds = [] checkpoints = [] accuracies = [] biasamps = [] test_predictions = [] acc_bins_list = [] count_bins_list = [] conf_bins_list = [] eces = [] mces = [] accuracy_breakdowns = [] biasamp_breakdowns = [] json_templates = [] try: original_results = pd.read_csv('../../' + EXPERIMENT_NAME + '/results_overconf.csv', index_col=False) except: original_results = None manifest_df = pd.read_csv('../../' + EXPERIMENT_NAME + '/scripts/manifest.txt') for _, row in manifest_df.iterrows(): json_template = row['json_template'] class_assignment = CLASS_ASSIGNMENTS[row['class_assignment_mapping']] epsilon = row['epsilon'] num_classes = row['n_classes'] p = [float(x) for x in row['probabilities'][1:-1].split(' ')] train_seed = row['train_seed'] test_seed = row['test_seed'] counter = row['counter_id'] name = row['name'] checkpoint_dir = CHECKPOINT_PATH + name[:-5] + '/checkpoints/' run_measurements( name = name, json_template = json_template, class_assignment = class_assignment, epsilon = epsilon, num_classes = num_classes, p = p, train_seed = train_seed, test_seed = test_seed, checkpoint_dir = checkpoint_dir, checkpoint = None ) if counter % 10 == 0: data = {"name": names, "epsilon": epsilons, "train_seed": train_seeds, "test_seed": test_seeds, "checkpoint_number": checkpoints, "acc@1": accuracies, "biasamp": biasamps, "bins": NBINS, "acc_bins": acc_bins_list, "conf_bins": conf_bins_list, "count_bins": count_bins_list, "ece": eces, "mce": mces, "accuracy_breakdown": accuracy_breakdowns, "biasamp_breakdown": biasamp_breakdowns, "json_templates": json_templates } df = pd.DataFrame.from_dict(data) if original_results is not None: combined_df = pd.concat([original_results, df]) combined_df.to_csv('../../' + EXPERIMENT_NAME + '/results_overconf.csv', index=False) else: df.to_csv('../../' + EXPERIMENT_NAME + '/results_overconf.csv', index=False) data = {"name": names, "epsilon": epsilons, "train_seed": train_seeds, "test_seed": test_seeds, "checkpoint_number": checkpoints, "acc@1": accuracies, "biasamp": biasamps, "bins": NBINS, "acc_bins": acc_bins_list, "conf_bins": conf_bins_list, "count_bins": count_bins_list, "ece": eces, "mce": mces, "accuracy_breakdown": accuracy_breakdowns, "biasamp_breakdown": biasamp_breakdowns, "json_templates": json_templates } df = pd.DataFrame.from_dict(data) if original_results is not None: combined_df = pd.concat([original_results, df]) combined_df.to_csv('../../' + EXPERIMENT_NAME + '/results_overconf.csv', index=False) else: df.to_csv('../../' + EXPERIMENT_NAME + '/results_overconf.csv', index=False)
cv_bias_amplification-main
my-project-release/my-project/configs/fashionmnist/scripts/training_measurements.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # Run from within the /scripts folder. import json import numpy as np import pandas as pd import classy_vision.generic.util as util import random import os CONFIG_PATH = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) CLASS_ASSIGNMENTS = [ [1, 1, 0, 1, 0, 0, 0, 0, 1, 1], [1, 1, 1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 0, 0, 1, 1, 0, 1, 0, 0], [0, 1, 1, 0, 1, 0, 1, 0, 1, 0], [1, 0, 0, 1, 1, 1, 1, 0, 0, 0], [0, 0, 0, 0, 1, 1, 1, 1, 0, 1], [1, 1, 0, 0, 0, 0, 1, 1, 0, 1], [1, 0, 0, 0, 1, 0, 1, 1, 0, 1], [1, 0, 1, 0, 0, 1, 0, 1, 1, 0], [1, 1, 0, 0, 0, 1, 0, 0, 1, 1], [1, 0, 1, 0, 1, 0, 0, 1, 0, 1], [0, 1, 0, 0, 1, 0, 0, 1, 1, 1], [1, 1, 1, 0, 0, 0, 0, 1, 0, 1], [0, 0, 1, 1, 1, 0, 1, 0, 1, 0], [1, 0, 1, 0, 1, 1, 0, 0, 1, 0], [1, 0, 0, 1, 0, 0, 0, 1, 1, 1], [1, 0, 0, 1, 0, 1, 0, 0, 1, 1], [0, 0, 1, 0, 1, 1, 1, 1, 0, 0], [1, 1, 1, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 1, 1, 1, 0] ] COUNTER = 1000 # used to name the experiments and associated config EPSILONS = range(0, 55, 5) EXPERIMENT_NAME = "fashionmnist" # used to store experiment configs and results IDS_TEST = "./test_ids.txt" # used to designate file of sample ids for each test image IDS_TRAIN = "./train_ids.txt" # used to designate the file of sample ids for each train image INVERSION_CONFIGS = [{ # used to designate which classes should be inverted "type": "fixed", # used to designate how inversion probabilities should be calculated "assign": "custom", # should we use a "custom" class assignment with "custom_selection", or "shuffle" randomly with a fixed "num_classes" "custom_selection": [0], "num_inversion_classes": None, "seed": None } ] JSON_BASE = None # used to calculate base json when JSON type is custom JSON_TYPE = "template" # used to determine which base json to build the config from JSON_TEMPLATES = [ # used to designate template config "config_template.json" ] NUM_MODELS = 1 # number of models per epsilon-class assignment combination NUM_SAMPLES_TEST = 10_000 NUM_SAMPLES_TRAIN = 60_000 SEED_BASE = 0 SEED_TEST = 100_000 # seed, or "None" to indicate get_test_seed() should be used TRANSFORMS = { # used to designate which transforms to apply or change "assign_class": None, "invert_exact": None } def get_p(epsilon, num_classes, inversion_config): p = [] if inversion_config['type'] == "fixed": class_list = [] if inversion_config['assign'] == "custom": class_list = inversion_config['custom_selection'] for i in range(num_classes): if i in class_list: p.append(np.round(0.5 + (epsilon * 0.01), 2)) else: p.append(np.round(0.5 - (epsilon * 0.01), 2)) return p def get_train_seed(model_i): return ((model_i + SEED_BASE + 2) * 100_000) def get_test_seed(model_i): return SEED_TEST if SEED_TEST else model_i def get_base_json(json_type, template, counter=None): if json_type == "template": return template config_paths = [] output_directories = [] names = [] epsilons = [] train_seeds = [] test_seeds = [] json_templates = [] class_assignment_mappings = [] probabilities = [] n_classes= [] depths = [] counter_ids = [] for template in JSON_TEMPLATES: for class_assignment in CLASS_ASSIGNMENTS: for epsilon in EPSILONS: for inversion_config in INVERSION_CONFIGS: num_classes = len(set(class_assignment)) p = get_p(epsilon, num_classes, inversion_config) for model_i in range(0, NUM_MODELS): with open(get_base_json(JSON_TYPE, template, COUNTER)) as f: data = json.load(f) invert_exact_index_train = -1 invert_exact_index_test = -1 for i in range(len(data['dataset']['train']['transforms'])): if "invert_exact" in TRANSFORMS.keys() and data['dataset']['train']['transforms'][i]['name'] == 'invert_exact': invert_original = [] assert NUM_SAMPLES_TRAIN % len(p) == 0, "Dataset not evenly divisible by number of classes." class_size = NUM_SAMPLES_TRAIN / len(class_assignment) train_seed = get_train_seed(CLASS_ASSIGNMENTS.index(class_assignment)) with util.torch_seed(train_seed): with util.numpy_seed(train_seed): for c in class_assignment: hold = [1] * (int)(np.round(class_size * p[c], 0)) + [0] * (int)(np.round(class_size * (1-p[c]), 0)) np.random.shuffle(hold) invert_original.extend(hold) with open(IDS_TRAIN, 'r') as f: train_ids = json.load(f) invert_mapped = [0] * NUM_SAMPLES_TRAIN for k in range(0, NUM_SAMPLES_TRAIN): invert_mapped[k] = invert_original[int((train_ids[str(k)]['class'] * class_size) + train_ids[str(k)]['index'])] data['dataset']['train']['transforms'][i]['invert'] = invert_mapped if data['dataset']['train']['transforms'][i]['name'] == 'invert_exact': invert_exact_index_train = i if "assign_class" in TRANSFORMS.keys() and data['dataset']['train']['transforms'][i]['name'] == 'assign_class': data['dataset']['train']['transforms'][i]['classes'] = class_assignment for i in range(len(data['dataset']['test']['transforms'])): if "invert_exact" in TRANSFORMS.keys() and data['dataset']['test']['transforms'][i]['name'] == 'invert_exact': invert_original = [] assert NUM_SAMPLES_TEST % len(p) == 0, "Dataset not evenly divisible by number of classes." class_size = NUM_SAMPLES_TEST / len(class_assignment) test_seed = get_test_seed(model_i) with util.torch_seed(test_seed): with util.numpy_seed(test_seed): for c in class_assignment: hold = [1] * (int)(np.round(class_size * p[c], 0)) + [0] * (int)(np.round(class_size * (1-p[c]), 0)) np.random.shuffle(hold) invert_original.extend(hold) with open(IDS_TEST, 'r') as f: test_ids = json.load(f) invert_mapped = [0] * NUM_SAMPLES_TEST for k in range(0, NUM_SAMPLES_TEST): invert_mapped[k] = invert_original[int((test_ids[str(k)]['class'] * class_size) + test_ids[str(k)]['index'])] data['dataset']['test']['transforms'][i]['invert'] = invert_mapped if data['dataset']['test']['transforms'][i]['name'] == 'invert_exact': invert_exact_index_test = i if "assign_class" in TRANSFORMS.keys() and data['dataset']['test']['transforms'][i]['name'] == 'assign_class': data['dataset']['test']['transforms'][i]['classes'] = class_assignment data['model']['num_classes'] = num_classes filename = 'config_' + EXPERIMENT_NAME + '_bias_test_' + str(COUNTER) +'.json' model_folder_path = CONFIG_PATH + '/models/' if (not os.path.exists(CONFIG_PATH)): raise Exception(CONFIG_PATH + " not a valid config path") if (not os.path.exists(model_folder_path)): os.mkdir(model_folder_path) config_path = model_folder_path + filename with open(config_path, 'w') as out: json.dump(data, out, indent=4) COUNTER += 1 config_paths.append(config_path) output_directories.append(EXPERIMENT_NAME) names.append(filename) epsilons.append(epsilon) train_seeds.append(train_seed) test_seeds.append(test_seed) json_templates.append(template) class_assignment_mappings.append(CLASS_ASSIGNMENTS.index(class_assignment)) probabilities.append(str(p).replace(',', '')) n_classes.append(num_classes) counter_ids.append(COUNTER) data = { "config_path": config_paths, "output_dir": output_directories, "name": names, "epsilon": epsilons, "train_seed": train_seeds, "test_seed": test_seeds, "json_template": json_templates, "class_assignment_mapping": class_assignment_mappings, "probabilities": probabilities, "n_classes": n_classes, "counter_id": counter_ids } df = pd.DataFrame.from_dict(data) df.to_csv('../../' + EXPERIMENT_NAME + '/scripts/manifest.txt', index=False)
cv_bias_amplification-main
my-project-release/my-project/configs/fashionmnist/scripts/generate_experiment_configs.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from copy import error import torch import torch.utils.data import ast import itertools import json import numpy as np import pandas as pd import random import sys from classy_vision.dataset import ClassyDataset, build_dataset, register_dataset from classy_vision.generic.util import load_checkpoint import classy_vision.generic.util as util from classy_vision.models import ClassyModel from PIL import Image sys.path.append('../../..') from datasets.inversion_transforms import AssignClass, Invert #### TODO: Change according to your directory structure. CHECKPOINT_PATH = "" #### root = './' EXPERIMENT_NAME = "cifar100_width" # used to store experiment configs and results IDS_TEST = "./test_ids_cifar100.txt" # used to designate file of sample ids for each test image NBINS = 15 # used to designate the number of bins for overconfidence measures NUM_SAMPLES_TEST = 10_000 TRANSFORMS ={ # used to designate which transforms to apply or change "invert_exact": {}, "assign_class": {}, "normalize": { "mean": [0.5071, 0.4867, 0.4408], "std": [0.2675, 0.2565, 0.2761] } } TEST_DATASET = "cifar100_test" VISUALIZE = False # designate if plots should be shown CLASS_ASSIGNMENTS = [ [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0], [1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0], [0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0], [1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1], [1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1], [0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0], [0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1], [0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1], [1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1], [0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1], [0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0], [0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0], [0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0], [1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0], [1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1], [0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0], [0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1] ] NUM_CHECKPOINTS = range(18, 999, 20) sm = torch.nn.Softmax() def get_model_results(model, dataset, attributes, tasks): """Get model results needed for directional bias amplification measurements. Args: dataset (ClassyDataset): ClassyDataset, generally of test data attributes (List): list of distinct attributes tasks (List): list of distinct tasks Returns: results (List x List): nested list of size attributes x tasks with number of instances with that input attribute and predicted task """ predictions = [] attributes_in = [] targets = [] percents = [] model.eval() for k in dataset.iterator(): attributes_in.append(k['attribute']) targets.append(k['target']) result = model(k['input']).data predictions.append(result.numpy().argmax(axis=1)) percents.append(sm(result)) flat_attributes = [item for sublist in attributes_in for item in sublist] flat_targets = [item for sublist in targets for item in sublist] flat_predictions = [item for sublist in predictions for item in sublist] flat_percents = [float(max(item)) for sublist in percents for item in sublist] results_in = np.zeros((len(attributes), len(tasks))) results_pred = np.zeros((len(attributes), len(tasks))) results_correct = np.zeros((len(attributes), len(tasks))) total = 0 correct = 0 for a, t, p in zip(flat_attributes, flat_targets, flat_predictions): results_in[attributes[a]][t] = results_in[attributes[a]][t] + 1 results_pred[attributes[a]][p] = results_pred[attributes[a]][p] + 1 results_correct[attributes[a]][t] += 1 if t == p else 0 total += 1 correct = correct + 1 if t == p else correct # TESTING return flat_attributes, flat_predictions, flat_targets return results_in, results_pred, correct * 1.0 / total, np.array(flat_predictions), np.array(flat_targets), np.array(flat_percents), results_correct / results_in def format_results(results, attributes, tasks): """Format results for readability. Args: results (List): nested list of size attributes x tasks with number of instances with that attribute and task attributes (List): list of distinct attributes tasks (List): list of distinct tasks Returns: dict<(attribute, task), value> : dict with number of instances with that attribute and task """ return {key: results[attributes[key[0]]][key[1]] for key in list(itertools.product(attributes, tasks))} def calc_bias_amp_at(res, res_h, attributes, tasks): """Perform directional bias amplification a->t as defined in https://arxiv.org/pdf/2102.12594.pdf. 1. Instantiate `results`, which will store the values defined in the paper's summation expression. Looping over all attributes and tasks... 2. Generate probabilities needed for y_at, delta_at calculations defined in the paper. p_attr = P(Attribute_a = 1) p_attr_h = P(Attribute_a-hat = 1) p_task = P(Task_t = 1) p_task_h = P(Task_t-hat = 1) p_attr_task = P(Attribute_a = 1, Task_t = 1) p_attr_h_task_h = P(Attribute_a-hat = 1, Task_t = 1) p_task_h_cond_attr_h = P(Task_t-hat = 1 | Attribute_a-hat = 1) p_task_cond_attr = P(Task_t = 1 | Attribute_a = 1) 3. Calculate y_at, delta_at, and expression inside of summation, and save to `results`. 4. Perform summation and BiasAmp_at calculation. Args: res (List x List): nested list of size attributes x tasks with number of instances that have attribute and task, generally the training input or test input resh (List x List): nested list of size attributes x tasks with number of instances that have attribute and task, generally the test output attributes (List): list of distinct attributes tasks (List): list of distinct tasks Returns: results (dict<(attribute, task), value>): dict with value inside equation summation with the attribute and task bias_amp_at (float): directional bias amplification a->t metric """ results = {key: 0 for key in list(itertools.product(attributes, tasks))} for key, value in results.items(): attr = key[0] task = key[1] p_attr = np.sum(res[attributes[attr]]) / np.sum(np.matrix(res)) p_attr_h = np.sum(res_h[attributes[attr]]) / np.sum(np.matrix(res_h)) p_task = np.sum(res, axis=0)[task] / np.sum(np.matrix(res)) p_task_h = np.sum(res_h, axis=0)[task] / np.sum(np.matrix(res_h)) p_attr_task = res[attributes[attr]][task] / np.sum(np.matrix(res)) p_attr_h_task_h = res_h[attributes[attr]][task] / np.sum(np.matrix(res_h)) p_task_h_cond_attr_h = p_attr_h_task_h / p_attr_h p_task_cond_attr = p_attr_task / p_attr y_at = p_attr_task > (p_attr * p_task) delta_at = p_task_h_cond_attr_h - p_task_cond_attr print(str(key)+".... y_at: " + str(y_at) + ", delta_at: " + str(delta_at)) results[key] = (y_at * delta_at) + ((1 - y_at) * (-1 * delta_at)) bias_amp_at = (1 / (len(attributes) * len(tasks))) * sum(results.values()) return results, bias_amp_at def get_binned_metrics(percents, predictions, targets, nbins): acc_bins = [] conf_bins = [] count_bins = [] assert 0 not in percents for i in range(0, nbins): filter = np.where((percents > (i)/nbins) & (percents <= (i+1)/nbins)) perc = percents[filter] pred = predictions[filter] targ = targets[filter] acc = sum(pred==targ)/len(pred) if len(pred) != 0 else np.nan conf = sum(perc)/len(perc) if len(perc) != 0 else np.nan acc_bins.append(acc) conf_bins.append(conf) count_bins.append(len(pred)) return acc_bins, conf_bins, count_bins def get_ece(acc_bins, conf_bins, count_bins, nbins): ece = 0 for i in range(0, nbins): ece += (count_bins[i] / sum(count_bins)) * abs(acc_bins[i] - conf_bins[i]) if acc_bins[i] is not np.nan else 0 return ece def get_mce(acc_bins, conf_bins, nbins): mce = 0.0 for i in range(0, nbins): mce = np.maximum(mce, abs(acc_bins[i] - conf_bins[i])) if acc_bins[i] is not np.nan else mce return mce def get_p(epsilon, num_classes, inversion_config): p = [] if inversion_config['type'] == "fixed": class_list = [] if inversion_config['assign'] == "custom": class_list = inversion_config['custom_selection'] elif inversion_config['assign'] == "shuffle": random.seed(inversion_config['seed']) class_list = random.sample(range(num_classes), inversion_config['num_inversion_classes']) for i in range(num_classes): if i in class_list: p.append(np.round(0.5 + (epsilon * 0.01), 2)) else: p.append(np.round(0.5 - (epsilon * 0.01), 2)) elif inversion_config['type'] == "evenly_spaced": for i in range(num_classes): min = np.round(0.5 - (epsilon * 0.01), 2) p.append(np.round(min + (i * (2 * epsilon * 0.01) / (num_classes - 1)), 2)) return p def run_measurements(name, json_template, class_assignment, epsilon, num_classes, p, train_seed, test_seed, checkpoint_dir, checkpoint): print("\nRunning \"" + checkpoint_dir + "\" .") transforms = [] if "assign_class" in TRANSFORMS: transforms.append({"name": "assign_class", "classes": class_assignment}) if "invert" in TRANSFORMS: transforms.append({"name": "invert", "p": list(p), "seed": SEED_TEST}) if "invert_exact" in TRANSFORMS: invert_original = [] assert NUM_SAMPLES_TEST % len(p) == 0, "Dataset not evenly divisible by number of classes." class_size = NUM_SAMPLES_TEST / len(class_assignment) with util.torch_seed(test_seed): with util.numpy_seed(test_seed): for c in class_assignment: hold = [1] * (int)(np.round(class_size * p[c], 0)) + [0] * (int)(np.round(class_size * (1-p[c]), 0)) np.random.shuffle(hold) invert_original.extend(hold) with open(IDS_TEST, 'r') as f: test_ids = json.load(f) invert_mapped = [0] * NUM_SAMPLES_TEST for k in range(0, NUM_SAMPLES_TEST): invert_mapped[k] = invert_original[int((test_ids[str(k)]['class'] * class_size) + test_ids[str(k)]['index'])] transforms.append({"name": "invert_exact", "invert": invert_mapped}) if "swap_binary_task" in TRANSFORMS: transforms.append({"name": "swap_binary_task"}) if "swap_task_attr" in TRANSFORMS: transforms.append({"name": "swap_task_attr"}) key_transforms = [{"name": "ToTensor"}] if "normalize" in TRANSFORMS: key_transforms.append({ "name": "Normalize", "mean": TRANSFORMS['normalize']['mean'], "std": TRANSFORMS['normalize']['std'], }) transforms.extend([ {"name": "tuple_to_map", "list_of_map_keys": ["input", "original_target", "sample_id", "target", "attribute"]}, { "name": "apply_transform_to_key", "transforms": key_transforms, "key": "input" } ]) test_dataset_config = { "name": TEST_DATASET, "batchsize_per_replica": 128, "shuffle": True, "transforms": transforms, "num_workers": 8 } my_dataset_test = build_dataset(test_dataset_config) checkpoint_data = load_checkpoint(checkpoint_dir) model = ClassyModel.from_checkpoint(checkpoint_data) attributes = {"a": 0, "b": 1} tasks = [i for i in range(num_classes)] test_results_in, test_results_pred, acc, predictions, targets, percents, accuracy_breakdown = get_model_results(model, my_dataset_test, attributes, tasks) accuracy_breakdown = format_results(accuracy_breakdown, attributes, tasks) accuracy_breakdown = {str(k): v for k, v in accuracy_breakdown.items()} biasamp_breakdown, biasamp = calc_bias_amp_at(test_results_in, test_results_pred, attributes, tasks) biasamp_breakdown = {str(k): v for k, v in biasamp_breakdown.items()} acc_bins, conf_bins, count_bins = get_binned_metrics(percents, predictions, targets, NBINS) print(acc) print(format_results(test_results_in, attributes, tasks)) print(format_results(test_results_pred, attributes, tasks)) print(biasamp_breakdown) names.append(name) epsilons.append(epsilon) train_seeds.append(train_seed) test_seeds.append(test_seed) checkpoints.append(checkpoint) accuracies.append(acc) biasamps.append(biasamp) test_predictions.append(format_results(test_results_pred, attributes, tasks)) acc_bins_list.append(acc_bins) conf_bins_list.append(conf_bins) count_bins_list.append(count_bins) eces.append(get_ece(acc_bins, conf_bins, count_bins, NBINS)) mces.append(get_mce(acc_bins, conf_bins, NBINS)) accuracy_breakdowns.append(accuracy_breakdown) biasamp_breakdowns.append(biasamp_breakdown) json_templates.append(json_template) # Set up and run measurements names = [] epsilons = [] train_seeds = [] test_seeds = [] checkpoints = [] accuracies = [] biasamps = [] test_predictions = [] acc_bins_list = [] count_bins_list = [] conf_bins_list = [] eces = [] mces = [] accuracy_breakdowns = [] biasamp_breakdowns = [] json_templates = [] try: original_results = pd.read_csv('../../' + EXPERIMENT_NAME + '/results_overconf_checkpoints.csv', index_col=False) except: original_results = None manifest_df = pd.read_csv('../../' + EXPERIMENT_NAME + '/scripts/manifest.txt') for _, row in manifest_df.iterrows(): json_template = row['json_template'] class_assignment = CLASS_ASSIGNMENTS[row['class_assignment_mapping']] epsilon = row['epsilon'] num_classes = row['n_classes'] p = [float(x) for x in row['probabilities'][1:-1].split(' ')] train_seed = row['train_seed'] test_seed = row['test_seed'] counter = row['counter_id'] name = row['name'] checkpoint_dir = CHECKPOINT_PATH + name[:-5] + '/checkpoints/' run_measurements( name = name, json_template = json_template, class_assignment = class_assignment, epsilon = epsilon, num_classes = num_classes, p = p, train_seed = train_seed, test_seed = test_seed, checkpoint_dir = checkpoint_dir, checkpoint = None ) if counter % 10 == 0: data = {"name": names, "epsilon": epsilons, "train_seed": train_seeds, "test_seed": test_seeds, "checkpoint_number": checkpoints, "acc@1": accuracies, "biasamp": biasamps, "bins": NBINS, "acc_bins": acc_bins_list, "conf_bins": conf_bins_list, "count_bins": count_bins_list, "ece": eces, "mce": mces, "accuracy_breakdown": accuracy_breakdowns, "biasamp_breakdown": biasamp_breakdowns, "json_templates": json_templates } df = pd.DataFrame.from_dict(data) if original_results is not None: combined_df = pd.concat([original_results, df]) combined_df.to_csv('../../' + EXPERIMENT_NAME + '/results_overconf.csv', index=False) else: df.to_csv('../../' + EXPERIMENT_NAME + '/results_overconf.csv', index=False) data = {"name": names, "epsilon": epsilons, "train_seed": train_seeds, "test_seed": test_seeds, "checkpoint_number": checkpoints, "acc@1": accuracies, "biasamp": biasamps, "bins": NBINS, "acc_bins": acc_bins_list, "conf_bins": conf_bins_list, "count_bins": count_bins_list, "ece": eces, "mce": mces, "accuracy_breakdown": accuracy_breakdowns, "biasamp_breakdown": biasamp_breakdowns, "json_templates": json_templates } df = pd.DataFrame.from_dict(data) if original_results is not None: combined_df = pd.concat([original_results, df]) combined_df.to_csv('../../' + EXPERIMENT_NAME + '/results_overconf.csv', index=False) else: df.to_csv('../../' + EXPERIMENT_NAME + '/results_overconf.csv', index=False)
cv_bias_amplification-main
my-project-release/my-project/configs/cifar100_width/scripts/training_measurements.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import json import numpy as np import classy_vision.generic.util as util import random import pandas as pd import os CONFIG_PATH = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) CLASS_ASSIGNMENTS = [ [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0], [1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0], [0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0], [1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1], [1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1], [0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0], [0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1], [0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1], [1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1], [0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1], [0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0], [0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0], [0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0], [1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0], [1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1], [0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0], [0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1] ] COUNTER = 1000 # used to name the experiments and associated config EPSILONS = range(0, 60, 10) EXPERIMENT_NAME = "cifar100_width" # used to store experiment configs and results WIDTHS = [4, 8, 16, 32, 64] IDS_TEST = "./test_ids_cifar100.txt" # used to designate file of sample ids for each test image IDS_TRAIN = "./train_ids_cifar100.txt" # used to designate the file of sample ids for each train image INVERSION_CONFIGS = [{ # used to designate which classes should be inverted "type": "fixed", # used to designate how inversion probabilities should be calculated "assign": "custom", # should we use a "custom" class assignment with "custom_selection", or "shuffle" randomly with a fixed "num_classes" "custom_selection": [0], "num_inversion_classes": None, "seed": None } ] JSON_BASE = None # used to calculate base json when JSON type is custom JSON_TYPE = "template" # used to determine which base json to build the config from JSON_TEMPLATES = [ # used to designate template config "config_template_cifar100_resnet110_gpu1_lrmultistep.json", ] NUM_MODELS = 1 # number of models per epsilon-class assignment combination NUM_SAMPLES_TEST = 10_000 NUM_SAMPLES_TRAIN = 50_000 SEED_BASE = 0 SEED_TEST = 100_000 # seed, or "None" to indicate get_test_seed() should be used TRANSFORMS = { # used to designate which transforms to apply or change "assign_class": None, "invert_exact": None } def get_p(epsilon, num_classes, inversion_config): p = [] if inversion_config['type'] == "fixed": class_list = [] if inversion_config['assign'] == "custom": class_list = inversion_config['custom_selection'] elif inversion_config['assign'] == "shuffle": random.seed(inversion_config['seed']) class_list = random.sample(range(num_classes), inversion_config['num_inversion_classes']) for i in range(num_classes): if i in class_list: p.append(np.round(0.5 + (epsilon * 0.01), 2)) else: p.append(np.round(0.5 - (epsilon * 0.01), 2)) elif inversion_config['type'] == "evenly_spaced": for i in range(num_classes): min = np.round(0.5 - (epsilon * 0.01), 2) p.append(np.round(min + (i * (2 * epsilon * 0.01) / (num_classes - 1)), 2)) return p def get_train_seed(model_i): return ((model_i + SEED_BASE + 2) * 100_000) def get_test_seed(model_i): return SEED_TEST if SEED_TEST else model_i def get_base_json(json_type, template, counter=None): if json_type == "template": return template if json_type == "custom": return '../configs/' + str(EXPERIMENT_NAME) + '/config_' + str(EXPERIMENT_NAME) + "_bias_test_" + str(counter + JSON_BASE) + '.json' config_paths = [] output_directories = [] names = [] epsilons = [] train_seeds = [] test_seeds = [] json_templates = [] class_assignment_mappings = [] probabilities = [] n_classes= [] counter_ids = [] for width in WIDTHS: for class_assignment in CLASS_ASSIGNMENTS: for epsilon in EPSILONS: for inversion_config in INVERSION_CONFIGS: num_classes = len(set(class_assignment)) p = get_p(epsilon, num_classes, inversion_config) for model_i in range(0, NUM_MODELS): with open(get_base_json(JSON_TYPE, JSON_TEMPLATES[0], COUNTER)) as f: data = json.load(f) invert_exact_index_train = -1 invert_exact_index_test = -1 for i in range(len(data['dataset']['train']['transforms'])): if "invert_exact" in TRANSFORMS.keys() and data['dataset']['train']['transforms'][i]['name'] == 'invert_exact': invert_original = [] assert NUM_SAMPLES_TRAIN % len(p) == 0, "Dataset not evenly divisible by number of classes." class_size = NUM_SAMPLES_TRAIN / len(class_assignment) train_seed = get_train_seed(CLASS_ASSIGNMENTS.index(class_assignment)) with util.torch_seed(train_seed): with util.numpy_seed(train_seed): for c in class_assignment: hold = [1] * (int)(np.round(class_size * p[c], 0)) + [0] * (int)(np.round(class_size * (1-p[c]), 0)) np.random.shuffle(hold) invert_original.extend(hold) with open(IDS_TRAIN, 'r') as f: train_ids = json.load(f) invert_mapped = [0] * NUM_SAMPLES_TRAIN for k in range(0, NUM_SAMPLES_TRAIN): invert_mapped[k] = invert_original[int((train_ids[str(k)]['class'] * class_size) + train_ids[str(k)]['index'])] data['dataset']['train']['transforms'][i]['invert'] = invert_mapped if data['dataset']['train']['transforms'][i]['name'] == 'invert_exact': invert_exact_index_train = i if "assign_class" in TRANSFORMS.keys() and data['dataset']['train']['transforms'][i]['name'] == 'assign_class': data['dataset']['train']['transforms'][i]['classes'] = class_assignment for i in range(len(data['dataset']['test']['transforms'])): if "invert_exact" in TRANSFORMS.keys() and data['dataset']['test']['transforms'][i]['name'] == 'invert_exact': invert_original = [] assert NUM_SAMPLES_TEST % len(p) == 0, "Dataset not evenly divisible by number of classes." class_size = NUM_SAMPLES_TEST / len(class_assignment) test_seed = get_test_seed(model_i) with util.torch_seed(test_seed): with util.numpy_seed(test_seed): for c in class_assignment: hold = [1] * (int)(np.round(class_size * p[c], 0)) + [0] * (int)(np.round(class_size * (1-p[c]), 0)) np.random.shuffle(hold) invert_original.extend(hold) with open(IDS_TEST, 'r') as f: test_ids = json.load(f) invert_mapped = [0] * NUM_SAMPLES_TEST for k in range(0, NUM_SAMPLES_TEST): invert_mapped[k] = invert_original[int((test_ids[str(k)]['class'] * class_size) + test_ids[str(k)]['index'])] data['dataset']['test']['transforms'][i]['invert'] = invert_mapped if data['dataset']['test']['transforms'][i]['name'] == 'invert_exact': invert_exact_index_test = i if "assign_class" in TRANSFORMS.keys() and data['dataset']['test']['transforms'][i]['name'] == 'assign_class': data['dataset']['test']['transforms'][i]['classes'] = class_assignment data['model']['init_planes'] = width data['model']['heads'][0]['in_plane'] = 4 * width filename = 'config_' + EXPERIMENT_NAME + '_bias_test_' + str(COUNTER) +'.json' model_folder_path = CONFIG_PATH + '/models/' if (not os.path.exists(CONFIG_PATH)): raise Exception(CONFIG_PATH + " not a valid config path") if (not os.path.exists(model_folder_path)): os.mkdir(model_folder_path) config_path = model_folder_path + filename with open(config_path, 'w') as out: json.dump(data, out, indent=4) COUNTER += 1 config_paths.append(config_path) output_directories.append(EXPERIMENT_NAME) names.append(filename) epsilons.append(epsilon) train_seeds.append(train_seed) test_seeds.append(test_seed) json_templates.append(width) class_assignment_mappings.append(CLASS_ASSIGNMENTS.index(class_assignment)) probabilities.append(str(p).replace(',', '')) n_classes.append(num_classes) counter_ids.append(COUNTER) data = { "config_path": config_paths, "output_dir": output_directories, "name": names, "epsilon": epsilons, "train_seed": train_seeds, "test_seed": test_seeds, "json_template": json_templates, "class_assignment_mapping": class_assignment_mappings, "probabilities": probabilities, "n_classes": n_classes, "counter_id": counter_ids } df = pd.DataFrame.from_dict(data) df.to_csv('../../' + EXPERIMENT_NAME + '/scripts/manifest.txt', index=False)
cv_bias_amplification-main
my-project-release/my-project/configs/cifar100_width/scripts/generate_experiment_configs.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from copy import error import torch import torch.utils.data import ast import itertools import json import numpy as np import pandas as pd import random import sys from classy_vision.dataset import ClassyDataset, build_dataset, register_dataset from classy_vision.generic.util import load_checkpoint import classy_vision.generic.util as util from classy_vision.models import ClassyModel from PIL import Image sys.path.append('../../..') from datasets.inversion_transforms import AssignClass, Invert #### TODO: Change according to your directory structure. CHECKPOINT_PATH = "" #### root = './' EXPERIMENT_NAME = "cifar100" # used to store experiment configs and results IDS_TEST = "./test_ids_cifar100.txt" # used to designate file of sample ids for each test image NBINS = 15 # used to designate the number of bins for overconfidence measures NUM_SAMPLES_TEST = 10_000 TRANSFORMS ={ # used to designate which transforms to apply or change "invert_exact": {}, "assign_class": {}, "normalize": { "mean": [0.5071, 0.4867, 0.4408], "std": [0.2675, 0.2565, 0.2761] } } TEST_DATASET = "cifar100_test" VISUALIZE = False # designate if plots should be shown CLASS_ASSIGNMENTS = [ [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0], [1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0], [0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0], [1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1], [1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1], [0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0], [0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1], [0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1], [1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1], [0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1], [0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0], [0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0], [0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0], [1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0], [1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1], [0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0], [0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1] ] NUM_CHECKPOINTS = range(18, 999, 20) sm = torch.nn.Softmax() def get_model_results(model, dataset, attributes, tasks): """Get model results needed for directional bias amplification measurements. Args: dataset (ClassyDataset): ClassyDataset, generally of test data attributes (List): list of distinct attributes tasks (List): list of distinct tasks Returns: results (List x List): nested list of size attributes x tasks with number of instances with that input attribute and predicted task """ predictions = [] attributes_in = [] targets = [] percents = [] model.eval() for k in dataset.iterator(): attributes_in.append(k['attribute']) targets.append(k['target']) result = model(k['input']).data predictions.append(result.numpy().argmax(axis=1)) percents.append(sm(result)) flat_attributes = [item for sublist in attributes_in for item in sublist] flat_targets = [item for sublist in targets for item in sublist] flat_predictions = [item for sublist in predictions for item in sublist] flat_percents = [float(max(item)) for sublist in percents for item in sublist] results_in = np.zeros((len(attributes), len(tasks))) results_pred = np.zeros((len(attributes), len(tasks))) results_correct = np.zeros((len(attributes), len(tasks))) total = 0 correct = 0 for a, t, p in zip(flat_attributes, flat_targets, flat_predictions): results_in[attributes[a]][t] = results_in[attributes[a]][t] + 1 results_pred[attributes[a]][p] = results_pred[attributes[a]][p] + 1 results_correct[attributes[a]][t] += 1 if t == p else 0 total += 1 correct = correct + 1 if t == p else correct # TESTING return flat_attributes, flat_predictions, flat_targets return results_in, results_pred, correct * 1.0 / total, np.array(flat_predictions), np.array(flat_targets), np.array(flat_percents), results_correct / results_in def format_results(results, attributes, tasks): """Format results for readability. Args: results (List): nested list of size attributes x tasks with number of instances with that attribute and task attributes (List): list of distinct attributes tasks (List): list of distinct tasks Returns: dict<(attribute, task), value> : dict with number of instances with that attribute and task """ return {key: results[attributes[key[0]]][key[1]] for key in list(itertools.product(attributes, tasks))} def calc_bias_amp_at(res, res_h, attributes, tasks): """Perform directional bias amplification a->t as defined in https://arxiv.org/pdf/2102.12594.pdf. 1. Instantiate `results`, which will store the values defined in the paper's summation expression. Looping over all attributes and tasks... 2. Generate probabilities needed for y_at, delta_at calculations defined in the paper. p_attr = P(Attribute_a = 1) p_attr_h = P(Attribute_a-hat = 1) p_task = P(Task_t = 1) p_task_h = P(Task_t-hat = 1) p_attr_task = P(Attribute_a = 1, Task_t = 1) p_attr_h_task_h = P(Attribute_a-hat = 1, Task_t = 1) p_task_h_cond_attr_h = P(Task_t-hat = 1 | Attribute_a-hat = 1) p_task_cond_attr = P(Task_t = 1 | Attribute_a = 1) 3. Calculate y_at, delta_at, and expression inside of summation, and save to `results`. 4. Perform summation and BiasAmp_at calculation. Args: res (List x List): nested list of size attributes x tasks with number of instances that have attribute and task, generally the training input or test input resh (List x List): nested list of size attributes x tasks with number of instances that have attribute and task, generally the test output attributes (List): list of distinct attributes tasks (List): list of distinct tasks Returns: results (dict<(attribute, task), value>): dict with value inside equation summation with the attribute and task bias_amp_at (float): directional bias amplification a->t metric """ results = {key: 0 for key in list(itertools.product(attributes, tasks))} for key, value in results.items(): attr = key[0] task = key[1] p_attr = np.sum(res[attributes[attr]]) / np.sum(np.matrix(res)) p_attr_h = np.sum(res_h[attributes[attr]]) / np.sum(np.matrix(res_h)) p_task = np.sum(res, axis=0)[task] / np.sum(np.matrix(res)) p_task_h = np.sum(res_h, axis=0)[task] / np.sum(np.matrix(res_h)) p_attr_task = res[attributes[attr]][task] / np.sum(np.matrix(res)) p_attr_h_task_h = res_h[attributes[attr]][task] / np.sum(np.matrix(res_h)) p_task_h_cond_attr_h = p_attr_h_task_h / p_attr_h p_task_cond_attr = p_attr_task / p_attr y_at = p_attr_task > (p_attr * p_task) delta_at = p_task_h_cond_attr_h - p_task_cond_attr print(str(key)+".... y_at: " + str(y_at) + ", delta_at: " + str(delta_at)) results[key] = (y_at * delta_at) + ((1 - y_at) * (-1 * delta_at)) bias_amp_at = (1 / (len(attributes) * len(tasks))) * sum(results.values()) return results, bias_amp_at def get_binned_metrics(percents, predictions, targets, nbins): acc_bins = [] conf_bins = [] count_bins = [] assert 0 not in percents for i in range(0, nbins): filter = np.where((percents > (i)/nbins) & (percents <= (i+1)/nbins)) perc = percents[filter] pred = predictions[filter] targ = targets[filter] acc = sum(pred==targ)/len(pred) if len(pred) != 0 else np.nan conf = sum(perc)/len(perc) if len(perc) != 0 else np.nan acc_bins.append(acc) conf_bins.append(conf) count_bins.append(len(pred)) return acc_bins, conf_bins, count_bins def get_ece(acc_bins, conf_bins, count_bins, nbins): ece = 0 for i in range(0, nbins): ece += (count_bins[i] / sum(count_bins)) * abs(acc_bins[i] - conf_bins[i]) if acc_bins[i] is not np.nan else 0 return ece def get_mce(acc_bins, conf_bins, nbins): mce = 0.0 for i in range(0, nbins): mce = np.maximum(mce, abs(acc_bins[i] - conf_bins[i])) if acc_bins[i] is not np.nan else mce return mce def get_p(epsilon, num_classes, inversion_config): p = [] if inversion_config['type'] == "fixed": class_list = [] if inversion_config['assign'] == "custom": class_list = inversion_config['custom_selection'] elif inversion_config['assign'] == "shuffle": random.seed(inversion_config['seed']) class_list = random.sample(range(num_classes), inversion_config['num_inversion_classes']) for i in range(num_classes): if i in class_list: p.append(np.round(0.5 + (epsilon * 0.01), 2)) else: p.append(np.round(0.5 - (epsilon * 0.01), 2)) elif inversion_config['type'] == "evenly_spaced": for i in range(num_classes): min = np.round(0.5 - (epsilon * 0.01), 2) p.append(np.round(min + (i * (2 * epsilon * 0.01) / (num_classes - 1)), 2)) return p def run_measurements(name, json_template, class_assignment, epsilon, num_classes, p, train_seed, test_seed, checkpoint_dir, checkpoint): print("\nRunning \"" + checkpoint_dir + "\" .") transforms = [] if "assign_class" in TRANSFORMS: transforms.append({"name": "assign_class", "classes": class_assignment}) if "invert" in TRANSFORMS: transforms.append({"name": "invert", "p": list(p), "seed": SEED_TEST}) if "invert_exact" in TRANSFORMS: invert_original = [] assert NUM_SAMPLES_TEST % len(p) == 0, "Dataset not evenly divisible by number of classes." class_size = NUM_SAMPLES_TEST / len(class_assignment) with util.torch_seed(test_seed): with util.numpy_seed(test_seed): for c in class_assignment: hold = [1] * (int)(np.round(class_size * p[c], 0)) + [0] * (int)(np.round(class_size * (1-p[c]), 0)) np.random.shuffle(hold) invert_original.extend(hold) with open(IDS_TEST, 'r') as f: test_ids = json.load(f) invert_mapped = [0] * NUM_SAMPLES_TEST for k in range(0, NUM_SAMPLES_TEST): invert_mapped[k] = invert_original[int((test_ids[str(k)]['class'] * class_size) + test_ids[str(k)]['index'])] transforms.append({"name": "invert_exact", "invert": invert_mapped}) if "swap_binary_task" in TRANSFORMS: transforms.append({"name": "swap_binary_task"}) if "swap_task_attr" in TRANSFORMS: transforms.append({"name": "swap_task_attr"}) key_transforms = [{"name": "ToTensor"}] if "normalize" in TRANSFORMS: key_transforms.append({ "name": "Normalize", "mean": TRANSFORMS['normalize']['mean'], "std": TRANSFORMS['normalize']['std'], }) transforms.extend([ {"name": "tuple_to_map", "list_of_map_keys": ["input", "original_target", "sample_id", "target", "attribute"]}, { "name": "apply_transform_to_key", "transforms": key_transforms, "key": "input" } ]) test_dataset_config = { "name": TEST_DATASET, "batchsize_per_replica": 128, "shuffle": True, "transforms": transforms, "num_workers": 8 } my_dataset_test = build_dataset(test_dataset_config) checkpoint_data = load_checkpoint(checkpoint_dir) model = ClassyModel.from_checkpoint(checkpoint_data) attributes = {"a": 0, "b": 1} tasks = [i for i in range(num_classes)] test_results_in, test_results_pred, acc, predictions, targets, percents, accuracy_breakdown = get_model_results(model, my_dataset_test, attributes, tasks) accuracy_breakdown = format_results(accuracy_breakdown, attributes, tasks) accuracy_breakdown = {str(k): v for k, v in accuracy_breakdown.items()} biasamp_breakdown, biasamp = calc_bias_amp_at(test_results_in, test_results_pred, attributes, tasks) biasamp_breakdown = {str(k): v for k, v in biasamp_breakdown.items()} acc_bins, conf_bins, count_bins = get_binned_metrics(percents, predictions, targets, NBINS) print(acc) print(format_results(test_results_in, attributes, tasks)) print(format_results(test_results_pred, attributes, tasks)) print(biasamp_breakdown) names.append(name) epsilons.append(epsilon) train_seeds.append(train_seed) test_seeds.append(test_seed) checkpoints.append(checkpoint) accuracies.append(acc) biasamps.append(biasamp) test_predictions.append(format_results(test_results_pred, attributes, tasks)) acc_bins_list.append(acc_bins) conf_bins_list.append(conf_bins) count_bins_list.append(count_bins) eces.append(get_ece(acc_bins, conf_bins, count_bins, NBINS)) mces.append(get_mce(acc_bins, conf_bins, NBINS)) accuracy_breakdowns.append(accuracy_breakdown) biasamp_breakdowns.append(biasamp_breakdown) json_templates.append(json_template) # Set up and run measurements names = [] epsilons = [] train_seeds = [] test_seeds = [] checkpoints = [] accuracies = [] biasamps = [] test_predictions = [] acc_bins_list = [] count_bins_list = [] conf_bins_list = [] eces = [] mces = [] accuracy_breakdowns = [] biasamp_breakdowns = [] json_templates = [] try: original_results = pd.read_csv('../../' + EXPERIMENT_NAME + '/results_overconf_checkpoints.csv', index_col=False) except: original_results = None manifest_df = pd.read_csv('../../' + EXPERIMENT_NAME + '/scripts/manifest.txt') for _, row in manifest_df.iterrows(): json_template = row['json_template'] class_assignment = CLASS_ASSIGNMENTS[row['class_assignment_mapping']] epsilon = row['epsilon'] num_classes = row['n_classes'] p = [float(x) for x in row['probabilities'][1:-1].split(' ')] train_seed = row['train_seed'] test_seed = row['test_seed'] counter = row['counter_id'] name = row['name'] if counter == 1001: continue if NUM_CHECKPOINTS == None: checkpoint_dir = CHECKPOINT_PATH + name[:-5] + '/checkpoints/' run_measurements( name = name, json_template = json_template, class_assignment = class_assignment, epsilon = epsilon, num_classes = num_classes, p = p, train_seed = train_seed, test_seed = test_seed, checkpoint_dir = checkpoint_dir, checkpoint = None ) if counter % 10 == 0: data = {"name": names, "epsilon": epsilons, "train_seed": train_seeds, "test_seed": test_seeds, "checkpoint_number": checkpoints, "acc@1": accuracies, "biasamp": biasamps, "bins": NBINS, "acc_bins": acc_bins_list, "conf_bins": conf_bins_list, "count_bins": count_bins_list, "ece": eces, "mce": mces, "accuracy_breakdown": accuracy_breakdowns, "biasamp_breakdown": biasamp_breakdowns, "json_templates": json_templates } df = pd.DataFrame.from_dict(data) if original_results is not None: combined_df = pd.concat([original_results, df]) combined_df.to_csv('../../' + EXPERIMENT_NAME + '/results_overconf.csv', index=False) else: df.to_csv('../../' + EXPERIMENT_NAME + '/results_overconf.csv', index=False) else: for checkpoint in NUM_CHECKPOINTS: checkpoint_dir = CHECKPOINT_PATH + name[:-5] + '/checkpoints/model_phase-' + str(checkpoint) + '_end.torch' run_measurements( name = name, json_template = json_template, class_assignment = class_assignment, epsilon = epsilon, num_classes = num_classes, p = p, train_seed = train_seed, test_seed = test_seed, checkpoint_dir = checkpoint_dir, checkpoint = checkpoint ) if (checkpoint + 2) % 100 == 0: data = {"name": names, "epsilon": epsilons, "train_seed": train_seeds, "test_seed": test_seeds, "checkpoint_number": checkpoints, "acc@1": accuracies, "biasamp": biasamps, "bins": NBINS, "acc_bins": acc_bins_list, "conf_bins": conf_bins_list, "count_bins": count_bins_list, "ece": eces, "mce": mces, "accuracy_breakdown": accuracy_breakdowns, "biasamp_breakdown": biasamp_breakdowns, "json_templates": json_templates } df = pd.DataFrame.from_dict(data) if original_results is not None: combined_df = pd.concat([original_results, df]) combined_df.to_csv('../../' + EXPERIMENT_NAME + '/results_overconf.csv', index=False) else: df.to_csv('../../' + EXPERIMENT_NAME + '/results_overconf.csv', index=False) data = {"name": names, "epsilon": epsilons, "train_seed": train_seeds, "test_seed": test_seeds, "checkpoint_number": checkpoints, "acc@1": accuracies, "biasamp": biasamps, "bins": NBINS, "acc_bins": acc_bins_list, "conf_bins": conf_bins_list, "count_bins": count_bins_list, "ece": eces, "mce": mces, "accuracy_breakdown": accuracy_breakdowns, "biasamp_breakdown": biasamp_breakdowns, "json_templates": json_templates } df = pd.DataFrame.from_dict(data) if original_results is not None: combined_df = pd.concat([original_results, df]) combined_df.to_csv('../../' + EXPERIMENT_NAME + '/results_overconf.csv', index=False) else: df.to_csv('../../' + EXPERIMENT_NAME + '/results_overconf.csv', index=False)
cv_bias_amplification-main
my-project-release/my-project/configs/cifar100/scripts/training_measurements_checkpoints.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import json import numpy as np import classy_vision.generic.util as util import random import pandas as pd import os CONFIG_PATH = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) CLASS_ASSIGNMENTS = [ [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0], [1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0], [0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0], [1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1], [1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1], [0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0], [0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1], [0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1], [1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1], [0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1], [0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0], [0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0], [0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0], [1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0], [1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1], [0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0], [0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1] ] COUNTER = 1000 # used to name the experiments and associated config EPSILONS = range(0, 60, 10) EXPERIMENT_NAME = "cifar100" # used to store experiment configs and results DEPTHS = {110: [[18, 18, 18], "block2-17"], 92: [[15, 15, 15], "block2-14"], 74: [[12, 12, 12], "block2-11"], 56: [[9, 9, 9], "block2-8"], 50: [[8, 8, 8], "block2-7"], 44: [[7, 7, 7], "block2-6"], 38: [[6, 6, 6], "block2-5"], 32: [[5, 5, 5], "block2-4"], 32: [[5, 5, 5], "block2-4"], 26: [[4, 4, 4], "block2-3"], 20: [[3, 3, 3], "block2-2"], 14: [[2, 2, 2], "block2-1"], 8: [[1, 1, 1], "block2-0"],} IDS_TEST = "./test_ids_cifar100.txt" # used to designate file of sample ids for each test image IDS_TRAIN = "./train_ids_cifar100.txt" # used to designate the file of sample ids for each train image INVERSION_CONFIGS = [{ # used to designate which classes should be inverted "type": "fixed", # used to designate how inversion probabilities should be calculated "assign": "custom", # should we use a "custom" class assignment with "custom_selection", or "shuffle" randomly with a fixed "num_classes" "custom_selection": [0], "num_inversion_classes": None, "seed": None } ] JSON_BASE = None # used to calculate base json when JSON type is custom JSON_TYPE = "template" # used to determine which base json to build the config from JSON_TEMPLATES = [ # used to designate template config "config_template_cifar100_resnetx_gpu1_lrmultistep.json", ] NUM_MODELS = 1 # number of models per epsilon-class assignment combination NUM_SAMPLES_TEST = 10_000 NUM_SAMPLES_TRAIN = 50_000 SEED_BASE = 0 SEED_TEST = 100_000 # seed, or "None" to indicate get_test_seed() should be used TRANSFORMS = { # used to designate which transforms to apply or change "assign_class": None, "invert_exact": None } def get_p(epsilon, num_classes, inversion_config): p = [] if inversion_config['type'] == "fixed": class_list = [] if inversion_config['assign'] == "custom": class_list = inversion_config['custom_selection'] elif inversion_config['assign'] == "shuffle": random.seed(inversion_config['seed']) class_list = random.sample(range(num_classes), inversion_config['num_inversion_classes']) for i in range(num_classes): if i in class_list: p.append(np.round(0.5 + (epsilon * 0.01), 2)) else: p.append(np.round(0.5 - (epsilon * 0.01), 2)) elif inversion_config['type'] == "evenly_spaced": for i in range(num_classes): min = np.round(0.5 - (epsilon * 0.01), 2) p.append(np.round(min + (i * (2 * epsilon * 0.01) / (num_classes - 1)), 2)) return p def get_train_seed(model_i): return ((model_i + SEED_BASE + 2) * 100_000) def get_test_seed(model_i): return SEED_TEST if SEED_TEST else model_i def get_base_json(json_type, template, counter=None): if json_type == "template": return template if json_type == "custom": return '../configs/' + str(EXPERIMENT_NAME) + '/config_' + str(EXPERIMENT_NAME) + "_bias_test_" + str(counter + JSON_BASE) + '.json' config_paths = [] output_directories = [] names = [] epsilons = [] train_seeds = [] test_seeds = [] json_templates = [] class_assignment_mappings = [] probabilities = [] n_classes= [] depths = [] counter_ids = [] for depth in DEPTHS: for class_assignment in CLASS_ASSIGNMENTS: for epsilon in EPSILONS: for inversion_config in INVERSION_CONFIGS: num_classes = len(set(class_assignment)) p = get_p(epsilon, num_classes, inversion_config) for model_i in range(0, NUM_MODELS): with open(get_base_json(JSON_TYPE, JSON_TEMPLATES[0], COUNTER)) as f: data = json.load(f) invert_exact_index_train = -1 invert_exact_index_test = -1 for i in range(len(data['dataset']['train']['transforms'])): if "invert_exact" in TRANSFORMS.keys() and data['dataset']['train']['transforms'][i]['name'] == 'invert_exact': invert_original = [] assert NUM_SAMPLES_TRAIN % len(p) == 0, "Dataset not evenly divisible by number of classes." class_size = NUM_SAMPLES_TRAIN / len(class_assignment) train_seed = get_train_seed(CLASS_ASSIGNMENTS.index(class_assignment)) with util.torch_seed(train_seed): with util.numpy_seed(train_seed): for c in class_assignment: hold = [1] * (int)(np.round(class_size * p[c], 0)) + [0] * (int)(np.round(class_size * (1-p[c]), 0)) np.random.shuffle(hold) invert_original.extend(hold) with open(IDS_TRAIN, 'r') as f: train_ids = json.load(f) invert_mapped = [0] * NUM_SAMPLES_TRAIN for k in range(0, NUM_SAMPLES_TRAIN): invert_mapped[k] = invert_original[int((train_ids[str(k)]['class'] * class_size) + train_ids[str(k)]['index'])] data['dataset']['train']['transforms'][i]['invert'] = invert_mapped if data['dataset']['train']['transforms'][i]['name'] == 'invert_exact': invert_exact_index_train = i if "assign_class" in TRANSFORMS.keys() and data['dataset']['train']['transforms'][i]['name'] == 'assign_class': data['dataset']['train']['transforms'][i]['classes'] = class_assignment for i in range(len(data['dataset']['test']['transforms'])): if "invert_exact" in TRANSFORMS.keys() and data['dataset']['test']['transforms'][i]['name'] == 'invert_exact': invert_original = [] assert NUM_SAMPLES_TEST % len(p) == 0, "Dataset not evenly divisible by number of classes." class_size = NUM_SAMPLES_TEST / len(class_assignment) test_seed = get_test_seed(model_i) with util.torch_seed(test_seed): with util.numpy_seed(test_seed): for c in class_assignment: hold = [1] * (int)(np.round(class_size * p[c], 0)) + [0] * (int)(np.round(class_size * (1-p[c]), 0)) np.random.shuffle(hold) invert_original.extend(hold) with open(IDS_TEST, 'r') as f: test_ids = json.load(f) invert_mapped = [0] * NUM_SAMPLES_TEST for k in range(0, NUM_SAMPLES_TEST): invert_mapped[k] = invert_original[int((test_ids[str(k)]['class'] * class_size) + test_ids[str(k)]['index'])] data['dataset']['test']['transforms'][i]['invert'] = invert_mapped if data['dataset']['test']['transforms'][i]['name'] == 'invert_exact': invert_exact_index_test = i if "assign_class" in TRANSFORMS.keys() and data['dataset']['test']['transforms'][i]['name'] == 'assign_class': data['dataset']['test']['transforms'][i]['classes'] = class_assignment data['model']['num_blocks'] = DEPTHS[depth][0] data['model']['heads'][0]['fork_block'] = DEPTHS[depth][1] data['model']['num_classes'] = num_classes filename = 'config_' + EXPERIMENT_NAME + '_bias_test_' + str(COUNTER) +'.json' model_folder_path = CONFIG_PATH + '/models/' if (not os.path.exists(CONFIG_PATH)): raise Exception(CONFIG_PATH + " not a valid CONFIG_PATH") if (not os.path.exists(model_folder_path)): os.mkdir(model_folder_path) config_path = model_folder_path + filename with open(config_path, 'w') as out: json.dump(data, out, indent=4) COUNTER += 1 config_paths.append(config_path) output_directories.append(EXPERIMENT_NAME) names.append(filename) epsilons.append(epsilon) train_seeds.append(train_seed) test_seeds.append(test_seed) json_templates.append(depth) class_assignment_mappings.append(CLASS_ASSIGNMENTS.index(class_assignment)) probabilities.append(str(p).replace(',', '')) n_classes.append(num_classes) counter_ids.append(COUNTER) data = { "config_path": config_paths, "output_dir": output_directories, "name": names, "epsilon": epsilons, "train_seed": train_seeds, "test_seed": test_seeds, "json_template": json_templates, "class_assignment_mapping": class_assignment_mappings, "probabilities": probabilities, "n_classes": n_classes, "counter_id": counter_ids } df = pd.DataFrame.from_dict(data) df.to_csv('../../' + EXPERIMENT_NAME + '/scripts/manifest.txt', index=False)
cv_bias_amplification-main
my-project-release/my-project/configs/cifar100/scripts/generate_experiment_configs.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from copy import error import torch import torch.utils.data import ast import itertools import json import numpy as np import pandas as pd import random import sys from classy_vision.dataset import ClassyDataset, build_dataset, register_dataset from classy_vision.generic.util import load_checkpoint import classy_vision.generic.util as util from classy_vision.models import ClassyModel from PIL import Image sys.path.append('../../..') from datasets.inversion_transforms import AssignClass, Invert root = './' #### TODO: Change according to your directory structure. CHECKPOINT_PATH = "" #### EXPERIMENT_NAME = "cifar10_overlay" # used to store experiment configs and results NBINS = 15 # used to designate the number of bins for overconfidence measures NUM_CHECKPOINTS = None NUM_SAMPLES_TEST = 2_000 TRANSFORMS ={ # used to designate which transforms to apply or change "assign_class_str": {}, "normalize": { "mean": [ 0.4914, 0.4822, 0.4465], "std": [ 0.247, 0.243, 0.261] } } TEST_DATASET = "cifar10_test_overlay" VISUALIZE = False # designate if plots should be shown CLASS_ASSIGNMENTS = [{'task': [5, 9], 'attr': [2, 4]}, {'task': [8, 7], 'attr': [3, 2]}, {'task': [7, 1], 'attr': [5, 2]}, {'task': [4, 0], 'attr': [9, 6]}, {'task': [2, 4], 'attr': [6, 3]}, {'task': [6, 8], 'attr': [7, 4]}, {'task': [8, 5], 'attr': [4, 1]}, {'task': [3, 4], 'attr': [5, 6]}, {'task': [1, 8], 'attr': [0, 2]}, {'task': [3, 5], 'attr': [2, 6]}, {'task': [5, 9], 'attr': [3, 4]}, {'task': [3, 7], 'attr': [8, 1]}, {'task': [0, 6], 'attr': [8, 1]}, {'task': [3, 1], 'attr': [0, 4]}, {'task': [6, 7], 'attr': [2, 5]}, {'task': [6, 9], 'attr': [2, 0]}, {'task': [5, 3], 'attr': [6, 7]}, {'task': [9, 2], 'attr': [1, 8]}, {'task': [3, 8], 'attr': [9, 2]}, {'task': [8, 0], 'attr': [4, 5]}] sm = torch.nn.Softmax() def get_model_results(model, dataset, attributes, tasks): """Get model results needed for directional bias amplification measurements. Args: dataset (ClassyDataset): ClassyDataset, generally of test data attributes (List): list of distinct attributes tasks (List): list of distinct tasks Returns: results (List x List): nested list of size attributes x tasks with number of instances with that input attribute and predicted task """ predictions = [] attributes_in = [] targets = [] percents = [] model.eval() for k in dataset.iterator(): attributes_in.append(k['attribute']) targets.append(k['target']) result = model(k['input']).data predictions.append(result.numpy().argmax(axis=1)) percents.append(sm(result)) flat_attributes = [item for sublist in attributes_in for item in sublist] flat_targets = [item for sublist in targets for item in sublist] flat_predictions = [item for sublist in predictions for item in sublist] flat_percents = [float(max(item)) for sublist in percents for item in sublist] results_in = np.zeros((len(attributes), len(tasks))) results_pred = np.zeros((len(attributes), len(tasks))) results_correct = np.zeros((len(attributes), len(tasks))) total = 0 correct = 0 for a, t, p in zip(flat_attributes, flat_targets, flat_predictions): a = int(a) results_in[attributes[a]][t] = results_in[attributes[a]][t] + 1 results_pred[attributes[a]][p] = results_pred[attributes[a]][p] + 1 results_correct[attributes[a]][t] += 1 if t == p else 0 total += 1 correct = correct + 1 if t == p else correct # TESTING return flat_attributes, flat_predictions, flat_targets return results_in, results_pred, correct * 1.0 / total, np.array(flat_predictions), np.array(flat_targets), np.array(flat_percents), results_correct / results_in def format_results(results, attributes, tasks): """Format results for readability. Args: results (List): nested list of size attributes x tasks with number of instances with that attribute and task attributes (List): list of distinct attributes tasks (List): list of distinct tasks Returns: dict<(attribute, task), value> : dict with number of instances with that attribute and task """ return {key: results[attributes[key[0]]][key[1]] for key in list(itertools.product(attributes, tasks))} def calc_bias_amp_at(res, res_h, attributes, tasks): """Perform directional bias amplification a->t as defined in https://arxiv.org/pdf/2102.12594.pdf. 1. Instantiate `results`, which will store the values defined in the paper's summation expression. Looping over all attributes and tasks... 2. Generate probabilities needed for y_at, delta_at calculations defined in the paper. p_attr = P(Attribute_a = 1) p_attr_h = P(Attribute_a-hat = 1) p_task = P(Task_t = 1) p_task_h = P(Task_t-hat = 1) p_attr_task = P(Attribute_a = 1, Task_t = 1) p_attr_h_task_h = P(Attribute_a-hat = 1, Task_t = 1) p_task_h_cond_attr_h = P(Task_t-hat = 1 | Attribute_a-hat = 1) p_task_cond_attr = P(Task_t = 1 | Attribute_a = 1) 3. Calculate y_at, delta_at, and expression inside of summation, and save to `results`. 4. Perform summation and BiasAmp_at calculation. Args: res (List x List): nested list of size attributes x tasks with number of instances that have attribute and task, generally the training input or test input resh (List x List): nested list of size attributes x tasks with number of instances that have attribute and task, generally the test output attributes (List): list of distinct attributes tasks (List): list of distinct tasks Returns: results (dict<(attribute, task), value>): dict with value inside equation summation with the attribute and task bias_amp_at (float): directional bias amplification a->t metric """ results = {key: 0 for key in list(itertools.product(attributes, tasks))} for key, value in results.items(): attr = key[0] task = key[1] p_attr = np.sum(res[attributes[attr]]) / np.sum(np.matrix(res)) p_attr_h = np.sum(res_h[attributes[attr]]) / np.sum(np.matrix(res_h)) p_task = np.sum(res, axis=0)[task] / np.sum(np.matrix(res)) p_task_h = np.sum(res_h, axis=0)[task] / np.sum(np.matrix(res_h)) p_attr_task = res[attributes[attr]][task] / np.sum(np.matrix(res)) p_attr_h_task_h = res_h[attributes[attr]][task] / np.sum(np.matrix(res_h)) p_task_h_cond_attr_h = p_attr_h_task_h / p_attr_h p_task_cond_attr = p_attr_task / p_attr y_at = p_attr_task > (p_attr * p_task) delta_at = p_task_h_cond_attr_h - p_task_cond_attr print(str(key)+".... y_at: " + str(y_at) + ", delta_at: " + str(delta_at)) results[key] = (y_at * delta_at) + ((1 - y_at) * (-1 * delta_at)) bias_amp_at = (1 / (len(attributes) * len(tasks))) * sum(results.values()) return results, bias_amp_at def get_binned_metrics(percents, predictions, targets, nbins): acc_bins = [] conf_bins = [] count_bins = [] assert 0 not in percents for i in range(0, nbins): filter = np.where((percents > (i)/nbins) & (percents <= (i+1)/nbins)) perc = percents[filter] pred = predictions[filter] targ = targets[filter] acc = sum(pred==targ)/len(pred) if len(pred) != 0 else np.nan conf = sum(perc)/len(perc) if len(perc) != 0 else np.nan acc_bins.append(acc) conf_bins.append(conf) count_bins.append(len(pred)) return acc_bins, conf_bins, count_bins def get_ece(acc_bins, conf_bins, count_bins, nbins): ece = 0 for i in range(0, nbins): ece += (count_bins[i] / sum(count_bins)) * abs(acc_bins[i] - conf_bins[i]) if acc_bins[i] is not np.nan else 0 return ece def get_mce(acc_bins, conf_bins, nbins): mce = 0.0 for i in range(0, nbins): mce = np.maximum(mce, abs(acc_bins[i] - conf_bins[i])) if acc_bins[i] is not np.nan else mce return mce def get_p(epsilon, num_classes, inversion_config): p = [] if inversion_config['type'] == "fixed": class_list = [] if inversion_config['assign'] == "custom": class_list = inversion_config['custom_selection'] elif inversion_config['assign'] == "shuffle": random.seed(inversion_config['seed']) class_list = random.sample(range(num_classes), inversion_config['num_inversion_classes']) for i in range(num_classes): if i in class_list: p.append(np.round(0.5 + (epsilon * 0.01), 2)) else: p.append(np.round(0.5 - (epsilon * 0.01), 2)) elif inversion_config['type'] == "evenly_spaced": for i in range(num_classes): min = np.round(0.5 - (epsilon * 0.01), 2) p.append(np.round(min + (i * (2 * epsilon * 0.01) / (num_classes - 1)), 2)) return p def run_measurements(name, json_template, class_assignment, epsilon, num_classes, p, train_seed, test_seed, checkpoint_dir, checkpoint): print("\nRunning \"" + checkpoint_dir + "\" .") transforms = [] if "assign_class_str" in TRANSFORMS: transforms.append({"name": "assign_class_str", "classes": {str(class_assignment["task"][0]): 0, str(class_assignment["task"][1]): 1}}) key_transforms = [{"name": "ToTensor"}] if "normalize" in TRANSFORMS: key_transforms.append({ "name": "Normalize", "mean": TRANSFORMS['normalize']['mean'], "std": TRANSFORMS['normalize']['std'], }) transforms.extend([ {"name": "tuple_to_map", "list_of_map_keys": [ "input", "original_target", "sample_id", "attribute", "target" ] }, { "name": "apply_transform_to_key", "transforms": key_transforms, "key": "input" } ]) test_dataset_config = { "name": TEST_DATASET, "batchsize_per_replica": 128, "shuffle": True, "transforms": transforms, "num_workers": 8, "num_samples": 2_000, "task_classes": class_assignment["task"], "attr_classes": class_assignment["attr"], "eta": eta, "epsilon": epsilon, "seed": test_seed } my_dataset_test = build_dataset(test_dataset_config) checkpoint_data = load_checkpoint(checkpoint_dir) model = ClassyModel.from_checkpoint(checkpoint_data) attributes = {class_assignment["attr"][0]: 0, class_assignment["attr"][1]: 1} tasks = [i for i in range(num_classes)] test_results_in, test_results_pred, acc, predictions, targets, percents, accuracy_breakdown = get_model_results(model, my_dataset_test, attributes, tasks) accuracy_breakdown = format_results(accuracy_breakdown, attributes, tasks) accuracy_breakdown = {str(k): v for k, v in accuracy_breakdown.items()} biasamp_breakdown, biasamp = calc_bias_amp_at(test_results_in, test_results_pred, attributes, tasks) biasamp_breakdown = {str(k): v for k, v in biasamp_breakdown.items()} acc_bins, conf_bins, count_bins = get_binned_metrics(percents, predictions, targets, NBINS) print(acc) print(format_results(test_results_in, attributes, tasks)) print(format_results(test_results_pred, attributes, tasks)) print(biasamp_breakdown) names.append(name) epsilons.append(epsilon) etas.append(eta) train_seeds.append(train_seed) test_seeds.append(test_seed) checkpoints.append(checkpoint) accuracies.append(acc) biasamps.append(biasamp) test_predictions.append(format_results(test_results_pred, attributes, tasks)) acc_bins_list.append(acc_bins) conf_bins_list.append(conf_bins) count_bins_list.append(count_bins) eces.append(get_ece(acc_bins, conf_bins, count_bins, NBINS)) mces.append(get_mce(acc_bins, conf_bins, NBINS)) accuracy_breakdowns.append(accuracy_breakdown) biasamp_breakdowns.append(biasamp_breakdown) json_templates.append(json_template) # Set up and run measurements names = [] epsilons = [] etas = [] train_seeds = [] test_seeds = [] checkpoints = [] accuracies = [] biasamps = [] test_predictions = [] acc_bins_list = [] count_bins_list = [] conf_bins_list = [] eces = [] mces = [] accuracy_breakdowns = [] biasamp_breakdowns = [] json_templates = [] try: original_results = pd.read_csv('../../' + EXPERIMENT_NAME + '/results_overconf.csv', index_col=False) except: original_results = None manifest_df = pd.read_csv('../../' + EXPERIMENT_NAME + '/scripts/manifest.txt') for _, row in manifest_df.iterrows(): json_template = row['json_template'] class_assignment = CLASS_ASSIGNMENTS[row['class_assignment_mapping']] epsilon = row['epsilon'] eta = row['eta'] num_classes = row['n_classes'] p = [float(x) for x in row['probabilities'][1:-1].split(' ')] train_seed = row['train_seed'] test_seed = row['test_seed'] counter = row['counter_id'] name = row['name'] if NUM_CHECKPOINTS == None: checkpoint_dir = CHECKPOINT_PATH + name[:-5] + '/checkpoints/' run_measurements( name = name, json_template = json_template, class_assignment = class_assignment, epsilon = epsilon, num_classes = num_classes, p = p, train_seed = train_seed, test_seed = test_seed, checkpoint_dir = checkpoint_dir, checkpoint = None ) if counter % 10 == 0: data = {"name": names, "epsilon": epsilons, "eta": etas, "train_seed": train_seeds, "test_seed": test_seeds, "checkpoint_number": checkpoints, "acc@1": accuracies, "biasamp": biasamps, "bins": NBINS, "acc_bins": acc_bins_list, "conf_bins": conf_bins_list, "count_bins": count_bins_list, "ece": eces, "mce": mces, "accuracy_breakdown": accuracy_breakdowns, "biasamp_breakdown": biasamp_breakdowns, "json_templates": json_templates } df = pd.DataFrame.from_dict(data) if original_results is not None: combined_df = pd.concat([original_results, df]) combined_df.to_csv('../../' + EXPERIMENT_NAME + '/results_overconf.csv', index=False) else: df.to_csv('../../' + EXPERIMENT_NAME + '/results_overconf.csv', index=False) data = {"name": names, "epsilon": epsilons, "eta": etas, "train_seed": train_seeds, "test_seed": test_seeds, "checkpoint_number": checkpoints, "acc@1": accuracies, "biasamp": biasamps, "bins": NBINS, "acc_bins": acc_bins_list, "conf_bins": conf_bins_list, "count_bins": count_bins_list, "ece": eces, "mce": mces, "accuracy_breakdown": accuracy_breakdowns, "biasamp_breakdown": biasamp_breakdowns, "json_templates": json_templates } df = pd.DataFrame.from_dict(data) if original_results is not None: combined_df = pd.concat([original_results, df]) combined_df.to_csv('../../' + EXPERIMENT_NAME + '/results_overconf.csv', index=False) else: df.to_csv('../../' + EXPERIMENT_NAME + '/results_overconf.csv', index=False)
cv_bias_amplification-main
my-project-release/my-project/configs/cifar10_overlay/scripts/training_measurements.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import json import numpy as np import classy_vision.generic.util as util import random import pandas as pd import os CONFIG_PATH = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) CLASS_ASSIGNMENTS = [{'task': [5, 9], 'attr': [2, 4]}, {'task': [8, 7], 'attr': [3, 2]}, {'task': [7, 1], 'attr': [5, 2]}, {'task': [4, 0], 'attr': [9, 6]}, {'task': [2, 4], 'attr': [6, 3]}, {'task': [6, 8], 'attr': [7, 4]}, {'task': [8, 5], 'attr': [4, 1]}, {'task': [3, 4], 'attr': [5, 6]}, {'task': [1, 8], 'attr': [0, 2]}, {'task': [3, 5], 'attr': [2, 6]}, {'task': [5, 9], 'attr': [3, 4]}, {'task': [3, 7], 'attr': [8, 1]}, {'task': [0, 6], 'attr': [8, 1]}, {'task': [3, 1], 'attr': [0, 4]}, {'task': [6, 7], 'attr': [2, 5]}, {'task': [6, 9], 'attr': [2, 0]}, {'task': [5, 3], 'attr': [6, 7]}, {'task': [9, 2], 'attr': [1, 8]}, {'task': [3, 8], 'attr': [9, 2]}, {'task': [8, 0], 'attr': [4, 5]}] COUNTER = 1000 # used to name the experiments and associated config EPSILONS = range(20, 50, 10) ETAS = range(0, 101, 10) EXPERIMENT_NAME = "cifar10_overlay" # used to store experiment configs and results IDS_TEST = "./test_ids_cifar10.txt" # used to designate file of sample ids for each test image IDS_TRAIN = "./train_ids_cifar10.txt" # used to designate the file of sample ids for each train image INVERSION_CONFIGS = [{ # used to designate which classes should be inverted "type": "fixed", # used to designate how inversion probabilities should be calculated "assign": "custom", # should we use a "custom" class assignment with "custom_selection", or "shuffle" randomly with a fixed "num_classes" "custom_selection": [0], "num_inversion_classes": None, "seed": None } ] JSON_BASE = None # used to calculate base json when JSON type is custom JSON_TYPE = "template" # used to determine which base json to build the config from JSON_TEMPLATES = [ # used to designate template config "config_template_cifar10_resnet110_gpu1_lrmultistep.json" ] NUM_MODELS = 1 # number of models per epsilon-class assignment combination NUM_SAMPLES_TEST = 2_000 NUM_SAMPLES_TRAIN = 10_000 SEED_BASE = 0 SEED_TEST = 100_000 # seed, or "None" to indicate get_test_seed() should be used TRANSFORMS = { # used to designate which transforms to apply or change "assign_class_str": None } def get_p(epsilon, num_classes, inversion_config): p = [] if inversion_config['type'] == "fixed": class_list = [] if inversion_config['assign'] == "custom": class_list = inversion_config['custom_selection'] elif inversion_config['assign'] == "shuffle": random.seed(inversion_config['seed']) class_list = random.sample(range(num_classes), inversion_config['num_inversion_classes']) for i in range(num_classes): if i in class_list: p.append(np.round(0.5 + (epsilon * 0.01), 2)) else: p.append(np.round(0.5 - (epsilon * 0.01), 2)) elif inversion_config['type'] == "evenly_spaced": for i in range(num_classes): min = np.round(0.5 - (epsilon * 0.01), 2) p.append(np.round(min + (i * (2 * epsilon * 0.01) / (num_classes - 1)), 2)) return p def get_train_seed(model_i): return ((model_i + SEED_BASE + 2) * 100_000) def get_test_seed(model_i): return SEED_TEST if SEED_TEST else model_i def get_base_json(json_type, template, counter=None): if json_type == "template": return template if json_type == "custom": return '../configs/' + str(EXPERIMENT_NAME) + '/config_' + str(EXPERIMENT_NAME) + "_bias_test_" + str(counter + JSON_BASE) + '.json' config_paths = [] output_directories = [] names = [] epsilons = [] etas = [] train_seeds = [] test_seeds = [] json_templates = [] class_assignment_mappings = [] probabilities = [] n_classes= [] depths = [] counter_ids = [] for template in JSON_TEMPLATES: for class_assignment in CLASS_ASSIGNMENTS: for epsilon in EPSILONS: for eta in ETAS: for inversion_config in INVERSION_CONFIGS: num_classes = len(set(class_assignment)) p = get_p(epsilon, num_classes, inversion_config) for model_i in range(0, NUM_MODELS): with open(get_base_json(JSON_TYPE, template, COUNTER)) as f: data = json.load(f) train_seed = get_train_seed(CLASS_ASSIGNMENTS.index(class_assignment)) test_seed = get_test_seed(model_i) for i in range(len(data['dataset']['train']['transforms'])): if "assign_class_str" in TRANSFORMS.keys() and data['dataset']['train']['transforms'][i]['name'] == 'assign_class_str': data['dataset']['train']['transforms'][i]['classes'] = {class_assignment["task"][0]: 0, class_assignment["task"][1]: 1} for i in range(len(data['dataset']['test']['transforms'])): if "assign_class_str" in TRANSFORMS.keys() and data['dataset']['test']['transforms'][i]['name'] == 'assign_class_str': data['dataset']['test']['transforms'][i]['classes'] = {class_assignment["task"][0]: 0, class_assignment["task"][1]: 1} data['model']['num_classes'] = num_classes data['dataset']['train']['num_samples'] = 10_000 data['dataset']['train']['task_classes'] = class_assignment["task"] data['dataset']['train']['attr_classes'] = class_assignment["attr"] data['dataset']['train']['eta'] = eta data['dataset']['train']['epsilon'] = epsilon data['dataset']['train']['seed'] = train_seed data['dataset']['test']['num_samples'] = 2_000 data['dataset']['test']['task_classes'] = class_assignment["task"] data['dataset']['test']['attr_classes'] = class_assignment["attr"] data['dataset']['test']['eta'] = eta data['dataset']['test']['epsilon'] = epsilon data['dataset']['test']['seed'] = test_seed filename = 'config_' + EXPERIMENT_NAME + '_bias_test_' + str(COUNTER) +'.json' model_folder_path = CONFIG_PATH + '/models/' if (not os.path.exists(CONFIG_PATH)): raise Exception(CONFIG_PATH + " not a valid config path") if (not os.path.exists(model_folder_path)): os.mkdir(model_folder_path) config_path = model_folder_path + filename with open(config_path, 'w') as out: json.dump(data, out, indent=4) COUNTER += 1 config_paths.append(config_path) output_directories.append(EXPERIMENT_NAME) names.append(filename) epsilons.append(epsilon) etas.append(eta) train_seeds.append(train_seed) test_seeds.append(test_seed) json_templates.append(template) class_assignment_mappings.append(CLASS_ASSIGNMENTS.index(class_assignment)) probabilities.append(str(p).replace(',', '')) n_classes.append(num_classes) counter_ids.append(COUNTER) data = { "config_path": config_paths, "output_dir": output_directories, "name": names, "epsilon": epsilons, "eta": etas, "train_seed": train_seeds, "test_seed": test_seeds, "json_template": json_templates, "class_assignment_mapping": class_assignment_mappings, "probabilities": probabilities, "n_classes": n_classes, "counter_id": counter_ids } df = pd.DataFrame.from_dict(data) df.to_csv('../../' + EXPERIMENT_NAME + '/scripts/manifest.txt', index=False)
cv_bias_amplification-main
my-project-release/my-project/configs/cifar10_overlay/scripts/generate_experiment_configs.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from copy import error import torch import torch.utils.data import ast import itertools import json import numpy as np import pandas as pd import random import sys from classy_vision.dataset import ClassyDataset, build_dataset, register_dataset from classy_vision.generic.util import load_checkpoint import classy_vision.generic.util as util from classy_vision.models import ClassyModel from PIL import Image sys.path.append('../../..') from datasets.inversion_transforms import AssignClass, Invert root = './' #### TODO: Change according to your directory structure. CHECKPOINT_PATH = "" #### EXPERIMENT_NAME = "cifar100_trainingsize" # used to store experiment configs and results NBINS = 15 # used to designate the number of bins for overconfidence measures NUM_CHECKPOINTS = None NUM_SAMPLES_TEST = 10_000 TRANSFORMS ={ # used to designate which transforms to apply or change "invert_exact": {}, "assign_class": {}, "normalize": { "mean": [0.5071, 0.4867, 0.4408], "std": [0.2675, 0.2565, 0.2761] } } TEST_DATASET = "cifar100_test" IDS_TEST = "./test_ids_cifar100.txt" # used to designate file of sample ids for each test image VISUALIZE = False # designate if plots should be shown CLASS_ASSIGNMENTS = [ [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0], [1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0], [0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0], [1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1], [1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1], [0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0], [0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1], [0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1], [1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1], [0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1], [0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0], [0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0], [0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0], [1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0], [1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1], [0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0], [0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1] ] sm = torch.nn.Softmax() def get_model_results(model, dataset, attributes, tasks): """Get model results needed for directional bias amplification measurements. Args: dataset (ClassyDataset): ClassyDataset, generally of test data attributes (List): list of distinct attributes tasks (List): list of distinct tasks Returns: results (List x List): nested list of size attributes x tasks with number of instances with that input attribute and predicted task """ predictions = [] attributes_in = [] targets = [] percents = [] model.eval() for k in dataset.iterator(): attributes_in.append(k['attribute']) targets.append(k['target']) result = model(k['input']).data predictions.append(result.numpy().argmax(axis=1)) percents.append(sm(result)) flat_attributes = [item for sublist in attributes_in for item in sublist] flat_targets = [item for sublist in targets for item in sublist] flat_predictions = [item for sublist in predictions for item in sublist] flat_percents = [float(max(item)) for sublist in percents for item in sublist] results_in = np.zeros((len(attributes), len(tasks))) results_pred = np.zeros((len(attributes), len(tasks))) results_correct = np.zeros((len(attributes), len(tasks))) total = 0 correct = 0 for a, t, p in zip(flat_attributes, flat_targets, flat_predictions): results_in[attributes[a]][t] = results_in[attributes[a]][t] + 1 results_pred[attributes[a]][p] = results_pred[attributes[a]][p] + 1 results_correct[attributes[a]][t] += 1 if t == p else 0 total += 1 correct = correct + 1 if t == p else correct # TESTING return flat_attributes, flat_predictions, flat_targets return results_in, results_pred, correct * 1.0 / total, np.array(flat_predictions), np.array(flat_targets), np.array(flat_percents), results_correct / results_in def format_results(results, attributes, tasks): """Format results for readability. Args: results (List): nested list of size attributes x tasks with number of instances with that attribute and task attributes (List): list of distinct attributes tasks (List): list of distinct tasks Returns: dict<(attribute, task), value> : dict with number of instances with that attribute and task """ return {key: results[attributes[key[0]]][key[1]] for key in list(itertools.product(attributes, tasks))} def calc_bias_amp_at(res, res_h, attributes, tasks): """Perform directional bias amplification a->t as defined in https://arxiv.org/pdf/2102.12594.pdf. 1. Instantiate `results`, which will store the values defined in the paper's summation expression. Looping over all attributes and tasks... 2. Generate probabilities needed for y_at, delta_at calculations defined in the paper. p_attr = P(Attribute_a = 1) p_attr_h = P(Attribute_a-hat = 1) p_task = P(Task_t = 1) p_task_h = P(Task_t-hat = 1) p_attr_task = P(Attribute_a = 1, Task_t = 1) p_attr_h_task_h = P(Attribute_a-hat = 1, Task_t = 1) p_task_h_cond_attr_h = P(Task_t-hat = 1 | Attribute_a-hat = 1) p_task_cond_attr = P(Task_t = 1 | Attribute_a = 1) 3. Calculate y_at, delta_at, and expression inside of summation, and save to `results`. 4. Perform summation and BiasAmp_at calculation. Args: res (List x List): nested list of size attributes x tasks with number of instances that have attribute and task, generally the training input or test input resh (List x List): nested list of size attributes x tasks with number of instances that have attribute and task, generally the test output attributes (List): list of distinct attributes tasks (List): list of distinct tasks Returns: results (dict<(attribute, task), value>): dict with value inside equation summation with the attribute and task bias_amp_at (float): directional bias amplification a->t metric """ results = {key: 0 for key in list(itertools.product(attributes, tasks))} for key, value in results.items(): attr = key[0] task = key[1] p_attr = np.sum(res[attributes[attr]]) / np.sum(np.matrix(res)) p_attr_h = np.sum(res_h[attributes[attr]]) / np.sum(np.matrix(res_h)) p_task = np.sum(res, axis=0)[task] / np.sum(np.matrix(res)) p_task_h = np.sum(res_h, axis=0)[task] / np.sum(np.matrix(res_h)) p_attr_task = res[attributes[attr]][task] / np.sum(np.matrix(res)) p_attr_h_task_h = res_h[attributes[attr]][task] / np.sum(np.matrix(res_h)) p_task_h_cond_attr_h = p_attr_h_task_h / p_attr_h p_task_cond_attr = p_attr_task / p_attr y_at = p_attr_task > (p_attr * p_task) delta_at = p_task_h_cond_attr_h - p_task_cond_attr print(str(key)+".... y_at: " + str(y_at) + ", delta_at: " + str(delta_at)) results[key] = (y_at * delta_at) + ((1 - y_at) * (-1 * delta_at)) bias_amp_at = (1 / (len(attributes) * len(tasks))) * sum(results.values()) return results, bias_amp_at def get_binned_metrics(percents, predictions, targets, nbins): acc_bins = [] conf_bins = [] count_bins = [] assert 0 not in percents for i in range(0, nbins): filter = np.where((percents > (i)/nbins) & (percents <= (i+1)/nbins)) perc = percents[filter] pred = predictions[filter] targ = targets[filter] acc = sum(pred==targ)/len(pred) if len(pred) != 0 else np.nan conf = sum(perc)/len(perc) if len(perc) != 0 else np.nan acc_bins.append(acc) conf_bins.append(conf) count_bins.append(len(pred)) return acc_bins, conf_bins, count_bins def get_ece(acc_bins, conf_bins, count_bins, nbins): ece = 0 for i in range(0, nbins): ece += (count_bins[i] / sum(count_bins)) * abs(acc_bins[i] - conf_bins[i]) if acc_bins[i] is not np.nan else 0 return ece def get_mce(acc_bins, conf_bins, nbins): mce = 0.0 for i in range(0, nbins): mce = np.maximum(mce, abs(acc_bins[i] - conf_bins[i])) if acc_bins[i] is not np.nan else mce return mce def get_p(epsilon, num_classes, inversion_config): p = [] if inversion_config['type'] == "fixed": class_list = [] if inversion_config['assign'] == "custom": class_list = inversion_config['custom_selection'] elif inversion_config['assign'] == "shuffle": random.seed(inversion_config['seed']) class_list = random.sample(range(num_classes), inversion_config['num_inversion_classes']) for i in range(num_classes): if i in class_list: p.append(np.round(0.5 + (epsilon * 0.01), 2)) else: p.append(np.round(0.5 - (epsilon * 0.01), 2)) elif inversion_config['type'] == "evenly_spaced": for i in range(num_classes): min = np.round(0.5 - (epsilon * 0.01), 2) p.append(np.round(min + (i * (2 * epsilon * 0.01) / (num_classes - 1)), 2)) return p def run_measurements(name, json_template, class_assignment, epsilon, num_classes, p, train_seed, test_seed, checkpoint_dir, d_s, checkpoint): print("\nRunning \"" + checkpoint_dir + "\" .") transforms = [] if "assign_class" in TRANSFORMS: transforms.append({"name": "assign_class", "classes": class_assignment}) if "invert" in TRANSFORMS: transforms.append({"name": "invert", "p": list(p), "seed": SEED_TEST}) if "invert_exact" in TRANSFORMS: invert_original = [] assert NUM_SAMPLES_TEST % len(p) == 0, "Dataset not evenly divisible by number of classes." class_size = NUM_SAMPLES_TEST / len(class_assignment) with util.torch_seed(test_seed): with util.numpy_seed(test_seed): for c in class_assignment: hold = [1] * (int)(np.round(class_size * p[c], 0)) + [0] * (int)(np.round(class_size * (1-p[c]), 0)) np.random.shuffle(hold) invert_original.extend(hold) with open(IDS_TEST, 'r') as f: test_ids = json.load(f) invert_mapped = [0] * NUM_SAMPLES_TEST for k in range(0, NUM_SAMPLES_TEST): invert_mapped[k] = invert_original[int((test_ids[str(k)]['class'] * class_size) + test_ids[str(k)]['index'])] transforms.append({"name": "invert_exact", "invert": invert_mapped}) if "swap_binary_task" in TRANSFORMS: transforms.append({"name": "swap_binary_task"}) if "swap_task_attr" in TRANSFORMS: transforms.append({"name": "swap_task_attr"}) key_transforms = [{"name": "ToTensor"}] if "normalize" in TRANSFORMS: key_transforms.append({ "name": "Normalize", "mean": TRANSFORMS['normalize']['mean'], "std": TRANSFORMS['normalize']['std'], }) transforms.extend([ {"name": "tuple_to_map", "list_of_map_keys": ["input", "original_target", "sample_id", "target", "attribute"]}, { "name": "apply_transform_to_key", "transforms": key_transforms, "key": "input" } ]) test_dataset_config = { "name": TEST_DATASET, "batchsize_per_replica": 128, "shuffle": True, "transforms": transforms, "num_workers": 8 } my_dataset_test = build_dataset(test_dataset_config) checkpoint_data = load_checkpoint(checkpoint_dir) model = ClassyModel.from_checkpoint(checkpoint_data) attributes = {"a": 0, "b": 1} tasks = [i for i in range(num_classes)] test_results_in, test_results_pred, acc, predictions, targets, percents, accuracy_breakdown = get_model_results(model, my_dataset_test, attributes, tasks) accuracy_breakdown = format_results(accuracy_breakdown, attributes, tasks) accuracy_breakdown = {str(k): v for k, v in accuracy_breakdown.items()} biasamp_breakdown, biasamp = calc_bias_amp_at(test_results_in, test_results_pred, attributes, tasks) biasamp_breakdown = {str(k): v for k, v in biasamp_breakdown.items()} acc_bins, conf_bins, count_bins = get_binned_metrics(percents, predictions, targets, NBINS) print(acc) print(format_results(test_results_in, attributes, tasks)) print(format_results(test_results_pred, attributes, tasks)) print(biasamp_breakdown) names.append(name) epsilons.append(epsilon) train_seeds.append(train_seed) test_seeds.append(test_seed) checkpoints.append(checkpoint) accuracies.append(acc) biasamps.append(biasamp) test_predictions.append(format_results(test_results_pred, attributes, tasks)) acc_bins_list.append(acc_bins) conf_bins_list.append(conf_bins) count_bins_list.append(count_bins) eces.append(get_ece(acc_bins, conf_bins, count_bins, NBINS)) mces.append(get_mce(acc_bins, conf_bins, NBINS)) accuracy_breakdowns.append(accuracy_breakdown) biasamp_breakdowns.append(biasamp_breakdown) json_templates.append(json_template) dataset_sizes.append(d_s) # Set up and run measurements names = [] epsilons = [] train_seeds = [] test_seeds = [] checkpoints = [] accuracies = [] biasamps = [] test_predictions = [] acc_bins_list = [] count_bins_list = [] conf_bins_list = [] eces = [] mces = [] accuracy_breakdowns = [] biasamp_breakdowns = [] json_templates = [] dataset_sizes = [] try: original_results = pd.read_csv('../../' + EXPERIMENT_NAME + '/results_overconf.csv', index_col=False) except: original_results = None manifest_df = pd.read_csv('../../' + EXPERIMENT_NAME + '/scripts/manifest.txt') for _, row in manifest_df.iterrows(): json_template = row['json_template'] class_assignment = CLASS_ASSIGNMENTS[row['class_assignment_mapping']] epsilon = row['epsilon'] num_classes = row['n_classes'] p = [float(x) for x in row['probabilities'][1:-1].split(' ')] d_s = row['dataset_size'] train_seed = row['train_seed'] test_seed = row['test_seed'] counter = row['counter_id'] name = row['name'] checkpoint_dir = CHECKPOINT_PATH + name[:-5] + '/checkpoints/' run_measurements( name = name, json_template = json_template, class_assignment = class_assignment, epsilon = epsilon, num_classes = num_classes, p = p, train_seed = train_seed, test_seed = test_seed, checkpoint_dir = checkpoint_dir, d_s = d_s, checkpoint = None ) if counter % 10 == 0: data = {"name": names, "epsilon": epsilons, "train_seed": train_seeds, "test_seed": test_seeds, "checkpoint_number": checkpoints, "acc@1": accuracies, "biasamp": biasamps, "bins": NBINS, "acc_bins": acc_bins_list, "conf_bins": conf_bins_list, "count_bins": count_bins_list, "ece": eces, "mce": mces, "accuracy_breakdown": accuracy_breakdowns, "biasamp_breakdown": biasamp_breakdowns, "json_templates": json_templates, "dataset_size": dataset_sizes } df = pd.DataFrame.from_dict(data) if original_results is not None: combined_df = pd.concat([original_results, df]) combined_df.to_csv('../../' + EXPERIMENT_NAME + '/results_overconf.csv', index=False) else: df.to_csv('../../' + EXPERIMENT_NAME + '/results_overconf.csv', index=False) data = {"name": names, "epsilon": epsilons, "train_seed": train_seeds, "test_seed": test_seeds, "checkpoint_number": checkpoints, "acc@1": accuracies, "biasamp": biasamps, "bins": NBINS, "acc_bins": acc_bins_list, "conf_bins": conf_bins_list, "count_bins": count_bins_list, "ece": eces, "mce": mces, "accuracy_breakdown": accuracy_breakdowns, "biasamp_breakdown": biasamp_breakdowns, "json_templates": json_templates, "dataset_size": dataset_sizes } df = pd.DataFrame.from_dict(data) if original_results is not None: combined_df = pd.concat([original_results, df]) combined_df.to_csv('../../' + EXPERIMENT_NAME + '/results_overconf.csv', index=False) else: df.to_csv('../../' + EXPERIMENT_NAME + '/results_overconf.csv', index=False)
cv_bias_amplification-main
my-project-release/my-project/configs/cifar100_trainingsize/scripts/training_measurements.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import json import numpy as np import classy_vision.generic.util as util import random import pandas as pd import os CONFIG_PATH = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) CLASS_ASSIGNMENTS = [ [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0], [1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0], [0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0], [1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1], [1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1], [0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0], [0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1], [0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1], [1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1], [0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1], [0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0], [0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0], [0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0], [1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0], [1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1], [0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0], [0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1] ] DATASET_SIZES = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0] COUNTER = 1000 # used to name the experiments and associated config EPSILONS = range(0, 60, 10) EXPERIMENT_NAME = "cifar100_trainingsize" # used to store experiment configs and results IDS_TEST = "./test_ids_cifar100.txt" # used to designate file of sample ids for each test image IDS_TRAIN = "./train_ids_cifar100.txt" # used to designate the file of sample ids for each train image INVERSION_CONFIGS = [{ # used to designate which classes should be inverted "type": "fixed", # used to designate how inversion probabilities should be calculated "assign": "custom", # should we use a "custom" class assignment with "custom_selection", or "shuffle" randomly with a fixed "num_classes" "custom_selection": [0], "num_inversion_classes": None, "seed": None } ] JSON_BASE = None # used to calculate base json when JSON type is custom JSON_TYPE = "template" # used to determine which base json to build the config from JSON_TEMPLATES = [ # used to designate template config "config_template_cifar100subset_resnet110_gpu1_lrmultistep.json" ] NUM_MODELS = 1 # number of models per epsilon-class assignment combination NUM_SAMPLES_TEST = 10_000 NUM_SAMPLES_TRAIN = 50_000 SEED_BASE = 0 SEED_TEST = 100_000 # seed, or "None" to indicate get_test_seed() should be used TRANSFORMS = { # used to designate which transforms to apply or change "assign_class": None, "invert_exact": None } def get_p(epsilon, num_classes, inversion_config): p = [] if inversion_config['type'] == "fixed": class_list = [] if inversion_config['assign'] == "custom": class_list = inversion_config['custom_selection'] elif inversion_config['assign'] == "shuffle": random.seed(inversion_config['seed']) class_list = random.sample(range(num_classes), inversion_config['num_inversion_classes']) for i in range(num_classes): if i in class_list: p.append(np.round(0.5 + (epsilon * 0.01), 2)) else: p.append(np.round(0.5 - (epsilon * 0.01), 2)) elif inversion_config['type'] == "evenly_spaced": for i in range(num_classes): min = np.round(0.5 - (epsilon * 0.01), 2) p.append(np.round(min + (i * (2 * epsilon * 0.01) / (num_classes - 1)), 2)) return p def get_train_seed(model_i): return ((model_i + SEED_BASE + 2) * 100_000) def get_test_seed(model_i): return SEED_TEST if SEED_TEST else model_i def get_base_json(json_type, template, counter=None): if json_type == "template": return template if json_type == "custom": return '../configs/' + str(EXPERIMENT_NAME) + '/config_' + str(EXPERIMENT_NAME) + "_bias_test_" + str(counter + JSON_BASE) + '.json' config_paths = [] output_directories = [] names = [] epsilons = [] dataset_sizes = [] train_seeds = [] test_seeds = [] json_templates = [] class_assignment_mappings = [] probabilities = [] n_classes= [] depths = [] counter_ids = [] for template in JSON_TEMPLATES: for class_assignment in CLASS_ASSIGNMENTS: for epsilon in EPSILONS: for d_s in DATASET_SIZES: for inversion_config in INVERSION_CONFIGS: num_classes = len(set(class_assignment)) p = get_p(epsilon, num_classes, inversion_config) for model_i in range(0, NUM_MODELS): with open(get_base_json(JSON_TYPE, template, COUNTER)) as f: data = json.load(f) train_seed = get_train_seed(CLASS_ASSIGNMENTS.index(class_assignment)) test_seed = get_test_seed(model_i) for i in range(len(data['dataset']['train']['transforms'])): if "assign_class_str" in TRANSFORMS.keys() and data['dataset']['train']['transforms'][i]['name'] == 'assign_class_str': data['dataset']['train']['transforms'][i]['classes'] = {class_assignment["task"][0]: 0, class_assignment["task"][1]: 1} for i in range(len(data['dataset']['test']['transforms'])): if "assign_class_str" in TRANSFORMS.keys() and data['dataset']['test']['transforms'][i]['name'] == 'assign_class_str': data['dataset']['test']['transforms'][i]['classes'] = {class_assignment["task"][0]: 0, class_assignment["task"][1]: 1} data['model']['num_classes'] = 2 data['num_epochs'] = (int)(np.rint(500 * (1/d_s))) data['optimizer']['param_schedulers']['lr']['milestones'] = [(int)(np.rint(1*(1/d_s))), (int)(np.rint(250*(1/d_s))), (int)(np.rint(375*(1/d_s)))] data['dataset']['train']['num_samples'] = (int)(np.rint(NUM_SAMPLES_TRAIN * d_s)) data['dataset']['train']['dataset_size'] = d_s data['dataset']['train']['p'] = p data['dataset']['train']['seed'] = train_seed data['dataset']['train']['class_mapping'] = class_assignment for i in range(len(data['dataset']['test']['transforms'])): if "invert_exact" in TRANSFORMS.keys() and data['dataset']['test']['transforms'][i]['name'] == 'invert_exact': invert_original = [] assert NUM_SAMPLES_TEST % len(p) == 0, "Dataset not evenly divisible by number of classes." class_size = NUM_SAMPLES_TEST / len(class_assignment) test_seed = get_test_seed(model_i) with util.torch_seed(test_seed): with util.numpy_seed(test_seed): for c in class_assignment: hold = [1] * (int)(np.round(class_size * p[c], 0)) + [0] * (int)(np.round(class_size * (1-p[c]), 0)) np.random.shuffle(hold) invert_original.extend(hold) with open(IDS_TEST, 'r') as f: test_ids = json.load(f) invert_mapped = [0] * NUM_SAMPLES_TEST for k in range(0, NUM_SAMPLES_TEST): invert_mapped[k] = invert_original[int((test_ids[str(k)]['class'] * class_size) + test_ids[str(k)]['index'])] data['dataset']['test']['transforms'][i]['invert'] = invert_mapped if data['dataset']['test']['transforms'][i]['name'] == 'invert_exact': invert_exact_index_test = i if "assign_class" in TRANSFORMS.keys() and data['dataset']['test']['transforms'][i]['name'] == 'assign_class': data['dataset']['test']['transforms'][i]['classes'] = class_assignment filename = 'config_' + EXPERIMENT_NAME + '_bias_test_' + str(COUNTER) +'.json' model_folder_path = CONFIG_PATH + '/models/' if (not os.path.exists(CONFIG_PATH)): raise Exception(CONFIG_PATH + " not a valid config path") if (not os.path.exists(model_folder_path)): os.mkdir(model_folder_path) config_path = model_folder_path + filename with open(config_path, 'w') as out: json.dump(data, out, indent=4) COUNTER += 1 config_paths.append(config_path) output_directories.append(EXPERIMENT_NAME) names.append(filename) epsilons.append(epsilon) dataset_sizes.append(d_s) train_seeds.append(train_seed) test_seeds.append(test_seed) json_templates.append(template) class_assignment_mappings.append(CLASS_ASSIGNMENTS.index(class_assignment)) probabilities.append(str(p).replace(',', '')) n_classes.append(num_classes) counter_ids.append(COUNTER) data = { "config_path": config_paths, "output_dir": output_directories, "name": names, "epsilon": epsilons, "dataset_size": dataset_sizes, "train_seed": train_seeds, "test_seed": test_seeds, "json_template": json_templates, "class_assignment_mapping": class_assignment_mappings, "probabilities": probabilities, "n_classes": n_classes, "counter_id": counter_ids } df = pd.DataFrame.from_dict(data) df.to_csv('../../' + EXPERIMENT_NAME + '/scripts/manifest.txt', index=False)
cv_bias_amplification-main
my-project-release/my-project/configs/cifar100_trainingsize/scripts/generate_experiment_configs.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from copy import error import torch import torch.utils.data import ast import itertools import json import numpy as np import pandas as pd import random import sys from classy_vision.dataset import ClassyDataset, build_dataset, register_dataset from classy_vision.generic.util import load_checkpoint import classy_vision.generic.util as util from classy_vision.models import ClassyModel from PIL import Image sys.path.append('../../..') from datasets.inversion_transforms import AssignClass, Invert #### TODO: Change according to your directory structure. CHECKPOINT_PATH = "" #### root = './' EXPERIMENT_NAME = "cifar100_regularization" # used to store experiment configs and results IDS_TEST = "./test_ids_cifar100.txt" # used to designate file of sample ids for each test image NBINS = 15 # used to designate the number of bins for overconfidence measures NUM_SAMPLES_TEST = 10_000 TRANSFORMS ={ # used to designate which transforms to apply or change "invert_exact": {}, "assign_class": {}, "normalize": { "mean": [0.5071, 0.4867, 0.4408], "std": [0.2675, 0.2565, 0.2761] } } TEST_DATASET = "cifar100_test" VISUALIZE = False # designate if plots should be shown CLASS_ASSIGNMENTS = [ [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0], [1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0], [0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0], [1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1], [1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1], [0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0], [0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1], [0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1], [1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1], [0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1], [0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0], [0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0], [0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0], [1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0], [1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1], [0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0], [0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1] ] NUM_CHECKPOINTS = range(18, 999, 20) sm = torch.nn.Softmax() def get_model_results(model, dataset, attributes, tasks): """Get model results needed for directional bias amplification measurements. Args: dataset (ClassyDataset): ClassyDataset, generally of test data attributes (List): list of distinct attributes tasks (List): list of distinct tasks Returns: results (List x List): nested list of size attributes x tasks with number of instances with that input attribute and predicted task """ predictions = [] attributes_in = [] targets = [] percents = [] model.eval() for k in dataset.iterator(): attributes_in.append(k['attribute']) targets.append(k['target']) result = model(k['input']).data predictions.append(result.numpy().argmax(axis=1)) percents.append(sm(result)) flat_attributes = [item for sublist in attributes_in for item in sublist] flat_targets = [item for sublist in targets for item in sublist] flat_predictions = [item for sublist in predictions for item in sublist] flat_percents = [float(max(item)) for sublist in percents for item in sublist] results_in = np.zeros((len(attributes), len(tasks))) results_pred = np.zeros((len(attributes), len(tasks))) results_correct = np.zeros((len(attributes), len(tasks))) total = 0 correct = 0 for a, t, p in zip(flat_attributes, flat_targets, flat_predictions): results_in[attributes[a]][t] = results_in[attributes[a]][t] + 1 results_pred[attributes[a]][p] = results_pred[attributes[a]][p] + 1 results_correct[attributes[a]][t] += 1 if t == p else 0 total += 1 correct = correct + 1 if t == p else correct # TESTING return flat_attributes, flat_predictions, flat_targets return results_in, results_pred, correct * 1.0 / total, np.array(flat_predictions), np.array(flat_targets), np.array(flat_percents), results_correct / results_in def format_results(results, attributes, tasks): """Format results for readability. Args: results (List): nested list of size attributes x tasks with number of instances with that attribute and task attributes (List): list of distinct attributes tasks (List): list of distinct tasks Returns: dict<(attribute, task), value> : dict with number of instances with that attribute and task """ return {key: results[attributes[key[0]]][key[1]] for key in list(itertools.product(attributes, tasks))} def calc_bias_amp_at(res, res_h, attributes, tasks): """Perform directional bias amplification a->t as defined in https://arxiv.org/pdf/2102.12594.pdf. 1. Instantiate `results`, which will store the values defined in the paper's summation expression. Looping over all attributes and tasks... 2. Generate probabilities needed for y_at, delta_at calculations defined in the paper. p_attr = P(Attribute_a = 1) p_attr_h = P(Attribute_a-hat = 1) p_task = P(Task_t = 1) p_task_h = P(Task_t-hat = 1) p_attr_task = P(Attribute_a = 1, Task_t = 1) p_attr_h_task_h = P(Attribute_a-hat = 1, Task_t = 1) p_task_h_cond_attr_h = P(Task_t-hat = 1 | Attribute_a-hat = 1) p_task_cond_attr = P(Task_t = 1 | Attribute_a = 1) 3. Calculate y_at, delta_at, and expression inside of summation, and save to `results`. 4. Perform summation and BiasAmp_at calculation. Args: res (List x List): nested list of size attributes x tasks with number of instances that have attribute and task, generally the training input or test input resh (List x List): nested list of size attributes x tasks with number of instances that have attribute and task, generally the test output attributes (List): list of distinct attributes tasks (List): list of distinct tasks Returns: results (dict<(attribute, task), value>): dict with value inside equation summation with the attribute and task bias_amp_at (float): directional bias amplification a->t metric """ results = {key: 0 for key in list(itertools.product(attributes, tasks))} for key, value in results.items(): attr = key[0] task = key[1] p_attr = np.sum(res[attributes[attr]]) / np.sum(np.matrix(res)) p_attr_h = np.sum(res_h[attributes[attr]]) / np.sum(np.matrix(res_h)) p_task = np.sum(res, axis=0)[task] / np.sum(np.matrix(res)) p_task_h = np.sum(res_h, axis=0)[task] / np.sum(np.matrix(res_h)) p_attr_task = res[attributes[attr]][task] / np.sum(np.matrix(res)) p_attr_h_task_h = res_h[attributes[attr]][task] / np.sum(np.matrix(res_h)) p_task_h_cond_attr_h = p_attr_h_task_h / p_attr_h p_task_cond_attr = p_attr_task / p_attr y_at = p_attr_task > (p_attr * p_task) delta_at = p_task_h_cond_attr_h - p_task_cond_attr print(str(key)+".... y_at: " + str(y_at) + ", delta_at: " + str(delta_at)) results[key] = (y_at * delta_at) + ((1 - y_at) * (-1 * delta_at)) bias_amp_at = (1 / (len(attributes) * len(tasks))) * sum(results.values()) return results, bias_amp_at def get_binned_metrics(percents, predictions, targets, nbins): acc_bins = [] conf_bins = [] count_bins = [] assert 0 not in percents for i in range(0, nbins): filter = np.where((percents > (i)/nbins) & (percents <= (i+1)/nbins)) perc = percents[filter] pred = predictions[filter] targ = targets[filter] acc = sum(pred==targ)/len(pred) if len(pred) != 0 else np.nan conf = sum(perc)/len(perc) if len(perc) != 0 else np.nan acc_bins.append(acc) conf_bins.append(conf) count_bins.append(len(pred)) return acc_bins, conf_bins, count_bins def get_ece(acc_bins, conf_bins, count_bins, nbins): ece = 0 for i in range(0, nbins): ece += (count_bins[i] / sum(count_bins)) * abs(acc_bins[i] - conf_bins[i]) if acc_bins[i] is not np.nan else 0 return ece def get_mce(acc_bins, conf_bins, nbins): mce = 0.0 for i in range(0, nbins): mce = np.maximum(mce, abs(acc_bins[i] - conf_bins[i])) if acc_bins[i] is not np.nan else mce return mce def get_p(epsilon, num_classes, inversion_config): p = [] if inversion_config['type'] == "fixed": class_list = [] if inversion_config['assign'] == "custom": class_list = inversion_config['custom_selection'] elif inversion_config['assign'] == "shuffle": random.seed(inversion_config['seed']) class_list = random.sample(range(num_classes), inversion_config['num_inversion_classes']) for i in range(num_classes): if i in class_list: p.append(np.round(0.5 + (epsilon * 0.01), 2)) else: p.append(np.round(0.5 - (epsilon * 0.01), 2)) elif inversion_config['type'] == "evenly_spaced": for i in range(num_classes): min = np.round(0.5 - (epsilon * 0.01), 2) p.append(np.round(min + (i * (2 * epsilon * 0.01) / (num_classes - 1)), 2)) return p def run_measurements(name, json_template, class_assignment, epsilon, num_classes, p, train_seed, test_seed, checkpoint_dir, checkpoint): print("\nRunning \"" + checkpoint_dir + "\" .") transforms = [] if "assign_class" in TRANSFORMS: transforms.append({"name": "assign_class", "classes": class_assignment}) if "invert" in TRANSFORMS: transforms.append({"name": "invert", "p": list(p), "seed": SEED_TEST}) if "invert_exact" in TRANSFORMS: invert_original = [] assert NUM_SAMPLES_TEST % len(p) == 0, "Dataset not evenly divisible by number of classes." class_size = NUM_SAMPLES_TEST / len(class_assignment) with util.torch_seed(test_seed): with util.numpy_seed(test_seed): for c in class_assignment: hold = [1] * (int)(np.round(class_size * p[c], 0)) + [0] * (int)(np.round(class_size * (1-p[c]), 0)) np.random.shuffle(hold) invert_original.extend(hold) with open(IDS_TEST, 'r') as f: test_ids = json.load(f) invert_mapped = [0] * NUM_SAMPLES_TEST for k in range(0, NUM_SAMPLES_TEST): invert_mapped[k] = invert_original[int((test_ids[str(k)]['class'] * class_size) + test_ids[str(k)]['index'])] transforms.append({"name": "invert_exact", "invert": invert_mapped}) if "swap_binary_task" in TRANSFORMS: transforms.append({"name": "swap_binary_task"}) if "swap_task_attr" in TRANSFORMS: transforms.append({"name": "swap_task_attr"}) key_transforms = [{"name": "ToTensor"}] if "normalize" in TRANSFORMS: key_transforms.append({ "name": "Normalize", "mean": TRANSFORMS['normalize']['mean'], "std": TRANSFORMS['normalize']['std'], }) transforms.extend([ {"name": "tuple_to_map", "list_of_map_keys": ["input", "original_target", "sample_id", "target", "attribute"]}, { "name": "apply_transform_to_key", "transforms": key_transforms, "key": "input" } ]) test_dataset_config = { "name": TEST_DATASET, "batchsize_per_replica": 128, "shuffle": True, "transforms": transforms, "num_workers": 8 } my_dataset_test = build_dataset(test_dataset_config) checkpoint_data = load_checkpoint(checkpoint_dir) model = ClassyModel.from_checkpoint(checkpoint_data) attributes = {"a": 0, "b": 1} tasks = [i for i in range(num_classes)] test_results_in, test_results_pred, acc, predictions, targets, percents, accuracy_breakdown = get_model_results(model, my_dataset_test, attributes, tasks) accuracy_breakdown = format_results(accuracy_breakdown, attributes, tasks) accuracy_breakdown = {str(k): v for k, v in accuracy_breakdown.items()} biasamp_breakdown, biasamp = calc_bias_amp_at(test_results_in, test_results_pred, attributes, tasks) biasamp_breakdown = {str(k): v for k, v in biasamp_breakdown.items()} acc_bins, conf_bins, count_bins = get_binned_metrics(percents, predictions, targets, NBINS) print(acc) print(format_results(test_results_in, attributes, tasks)) print(format_results(test_results_pred, attributes, tasks)) print(biasamp_breakdown) names.append(name) epsilons.append(epsilon) train_seeds.append(train_seed) test_seeds.append(test_seed) checkpoints.append(checkpoint) accuracies.append(acc) biasamps.append(biasamp) test_predictions.append(format_results(test_results_pred, attributes, tasks)) acc_bins_list.append(acc_bins) conf_bins_list.append(conf_bins) count_bins_list.append(count_bins) eces.append(get_ece(acc_bins, conf_bins, count_bins, NBINS)) mces.append(get_mce(acc_bins, conf_bins, NBINS)) accuracy_breakdowns.append(accuracy_breakdown) biasamp_breakdowns.append(biasamp_breakdown) json_templates.append(json_template) # Set up and run measurements names = [] epsilons = [] train_seeds = [] test_seeds = [] checkpoints = [] accuracies = [] biasamps = [] test_predictions = [] acc_bins_list = [] count_bins_list = [] conf_bins_list = [] eces = [] mces = [] accuracy_breakdowns = [] biasamp_breakdowns = [] json_templates = [] try: original_results = pd.read_csv('../../' + EXPERIMENT_NAME + '/results_overconf_checkpoints.csv', index_col=False) except: original_results = None manifest_df = pd.read_csv('../../' + EXPERIMENT_NAME + '/scripts/manifest.txt') for _, row in manifest_df.iterrows(): json_template = row['json_template'] class_assignment = CLASS_ASSIGNMENTS[row['class_assignment_mapping']] epsilon = row['epsilon'] num_classes = row['n_classes'] p = [float(x) for x in row['probabilities'][1:-1].split(' ')] train_seed = row['train_seed'] test_seed = row['test_seed'] counter = row['counter_id'] name = row['name'] checkpoint_dir = CHECKPOINT_PATH + name[:-5] + '/checkpoints/' run_measurements( name = name, json_template = json_template, class_assignment = class_assignment, epsilon = epsilon, num_classes = num_classes, p = p, train_seed = train_seed, test_seed = test_seed, checkpoint_dir = checkpoint_dir, checkpoint = None ) if counter % 10 == 0: data = {"name": names, "epsilon": epsilons, "train_seed": train_seeds, "test_seed": test_seeds, "checkpoint_number": checkpoints, "acc@1": accuracies, "biasamp": biasamps, "bins": NBINS, "acc_bins": acc_bins_list, "conf_bins": conf_bins_list, "count_bins": count_bins_list, "ece": eces, "mce": mces, "accuracy_breakdown": accuracy_breakdowns, "biasamp_breakdown": biasamp_breakdowns, "json_templates": json_templates } df = pd.DataFrame.from_dict(data) if original_results is not None: combined_df = pd.concat([original_results, df]) combined_df.to_csv('../../' + EXPERIMENT_NAME + '/results_overconf.csv', index=False) else: df.to_csv('../../' + EXPERIMENT_NAME + '/results_overconf.csv', index=False) data = {"name": names, "epsilon": epsilons, "train_seed": train_seeds, "test_seed": test_seeds, "checkpoint_number": checkpoints, "acc@1": accuracies, "biasamp": biasamps, "bins": NBINS, "acc_bins": acc_bins_list, "conf_bins": conf_bins_list, "count_bins": count_bins_list, "ece": eces, "mce": mces, "accuracy_breakdown": accuracy_breakdowns, "biasamp_breakdown": biasamp_breakdowns, "json_templates": json_templates } df = pd.DataFrame.from_dict(data) if original_results is not None: combined_df = pd.concat([original_results, df]) combined_df.to_csv('../../' + EXPERIMENT_NAME + '/results_overconf.csv', index=False) else: df.to_csv('../../' + EXPERIMENT_NAME + '/results_overconf.csv', index=False)
cv_bias_amplification-main
my-project-release/my-project/configs/cifar100_regularization/scripts/training_measurements.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import json import numpy as np import classy_vision.generic.util as util import random import pandas as pd import os CONFIG_PATH = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) CLASS_ASSIGNMENTS = [ [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0], [1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0], [0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0], [1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1], [1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1], [0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0], [0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1], [0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1], [1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1], [0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1], [0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0], [0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0], [0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0], [1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0], [1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1], [0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0], [0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1] ] COUNTER = 1000 # used to name the experiments and associated config EPSILONS = range(0, 60, 10) EXPERIMENT_NAME = "cifar100_regularization" # used to store experiment configs and results WEIGHT_DECAYS = np.logspace(-5, -2, 8) IDS_TEST = "./test_ids_cifar100.txt" # used to designate file of sample ids for each test image IDS_TRAIN = "./train_ids_cifar100.txt" # used to designate the file of sample ids for each train image INVERSION_CONFIGS = [{ # used to designate which classes should be inverted "type": "fixed", # used to designate how inversion probabilities should be calculated "assign": "custom", # should we use a "custom" class assignment with "custom_selection", or "shuffle" randomly with a fixed "num_classes" "custom_selection": [0], "num_inversion_classes": None, "seed": None } ] JSON_BASE = None # used to calculate base json when JSON type is custom JSON_TYPE = "template" # used to determine which base json to build the config from JSON_TEMPLATES = [ # used to designate template config "config_template_cifar100_resnet110_gpu1_lrmultistep.json", ] NUM_MODELS = 1 # number of models per epsilon-class assignment combination NUM_SAMPLES_TEST = 10_000 NUM_SAMPLES_TRAIN = 50_000 SEED_BASE = 0 SEED_TEST = 100_000 # seed, or "None" to indicate get_test_seed() should be used TRANSFORMS = { # used to designate which transforms to apply or change "assign_class": None, "invert_exact": None } def get_p(epsilon, num_classes, inversion_config): p = [] if inversion_config['type'] == "fixed": class_list = [] if inversion_config['assign'] == "custom": class_list = inversion_config['custom_selection'] elif inversion_config['assign'] == "shuffle": random.seed(inversion_config['seed']) class_list = random.sample(range(num_classes), inversion_config['num_inversion_classes']) for i in range(num_classes): if i in class_list: p.append(np.round(0.5 + (epsilon * 0.01), 2)) else: p.append(np.round(0.5 - (epsilon * 0.01), 2)) elif inversion_config['type'] == "evenly_spaced": for i in range(num_classes): min = np.round(0.5 - (epsilon * 0.01), 2) p.append(np.round(min + (i * (2 * epsilon * 0.01) / (num_classes - 1)), 2)) return p def get_train_seed(model_i): return ((model_i + SEED_BASE + 2) * 100_000) def get_test_seed(model_i): return SEED_TEST if SEED_TEST else model_i def get_base_json(json_type, template, counter=None): if json_type == "template": return template if json_type == "custom": return '../configs/' + str(EXPERIMENT_NAME) + '/config_' + str(EXPERIMENT_NAME) + "_bias_test_" + str(counter + JSON_BASE) + '.json' config_paths = [] output_directories = [] names = [] epsilons = [] train_seeds = [] test_seeds = [] json_templates = [] class_assignment_mappings = [] probabilities = [] n_classes= [] counter_ids = [] for weight_decay in WEIGHT_DECAYS: for class_assignment in CLASS_ASSIGNMENTS: for epsilon in EPSILONS: for inversion_config in INVERSION_CONFIGS: num_classes = len(set(class_assignment)) p = get_p(epsilon, num_classes, inversion_config) for model_i in range(0, NUM_MODELS): with open(get_base_json(JSON_TYPE, JSON_TEMPLATES[0], COUNTER)) as f: data = json.load(f) invert_exact_index_train = -1 invert_exact_index_test = -1 for i in range(len(data['dataset']['train']['transforms'])): if "invert_exact" in TRANSFORMS.keys() and data['dataset']['train']['transforms'][i]['name'] == 'invert_exact': invert_original = [] assert NUM_SAMPLES_TRAIN % len(p) == 0, "Dataset not evenly divisible by number of classes." class_size = NUM_SAMPLES_TRAIN / len(class_assignment) train_seed = get_train_seed(CLASS_ASSIGNMENTS.index(class_assignment)) with util.torch_seed(train_seed): with util.numpy_seed(train_seed): for c in class_assignment: hold = [1] * (int)(np.round(class_size * p[c], 0)) + [0] * (int)(np.round(class_size * (1-p[c]), 0)) np.random.shuffle(hold) invert_original.extend(hold) with open(IDS_TRAIN, 'r') as f: train_ids = json.load(f) invert_mapped = [0] * NUM_SAMPLES_TRAIN for k in range(0, NUM_SAMPLES_TRAIN): invert_mapped[k] = invert_original[int((train_ids[str(k)]['class'] * class_size) + train_ids[str(k)]['index'])] data['dataset']['train']['transforms'][i]['invert'] = invert_mapped if data['dataset']['train']['transforms'][i]['name'] == 'invert_exact': invert_exact_index_train = i if "assign_class" in TRANSFORMS.keys() and data['dataset']['train']['transforms'][i]['name'] == 'assign_class': data['dataset']['train']['transforms'][i]['classes'] = class_assignment for i in range(len(data['dataset']['test']['transforms'])): if "invert_exact" in TRANSFORMS.keys() and data['dataset']['test']['transforms'][i]['name'] == 'invert_exact': invert_original = [] assert NUM_SAMPLES_TEST % len(p) == 0, "Dataset not evenly divisible by number of classes." class_size = NUM_SAMPLES_TEST / len(class_assignment) test_seed = get_test_seed(model_i) with util.torch_seed(test_seed): with util.numpy_seed(test_seed): for c in class_assignment: hold = [1] * (int)(np.round(class_size * p[c], 0)) + [0] * (int)(np.round(class_size * (1-p[c]), 0)) np.random.shuffle(hold) invert_original.extend(hold) with open(IDS_TEST, 'r') as f: test_ids = json.load(f) invert_mapped = [0] * NUM_SAMPLES_TEST for k in range(0, NUM_SAMPLES_TEST): invert_mapped[k] = invert_original[int((test_ids[str(k)]['class'] * class_size) + test_ids[str(k)]['index'])] data['dataset']['test']['transforms'][i]['invert'] = invert_mapped if data['dataset']['test']['transforms'][i]['name'] == 'invert_exact': invert_exact_index_test = i if "assign_class" in TRANSFORMS.keys() and data['dataset']['test']['transforms'][i]['name'] == 'assign_class': data['dataset']['test']['transforms'][i]['classes'] = class_assignment data['optimizer']['weight_decay'] = weight_decay filename = 'config_' + EXPERIMENT_NAME + '_bias_test_' + str(COUNTER) +'.json' model_folder_path = CONFIG_PATH + '/models/' if (not os.path.exists(CONFIG_PATH)): raise Exception(CONFIG_PATH + " not a valid config path") if (not os.path.exists(model_folder_path)): os.mkdir(model_folder_path) config_path = model_folder_path + filename with open(config_path, 'w') as out: json.dump(data, out, indent=4) COUNTER += 1 config_paths.append(config_path) output_directories.append(EXPERIMENT_NAME) names.append(filename) epsilons.append(epsilon) train_seeds.append(train_seed) test_seeds.append(test_seed) json_templates.append(weight_decay) class_assignment_mappings.append(CLASS_ASSIGNMENTS.index(class_assignment)) probabilities.append(str(p).replace(',', '')) n_classes.append(num_classes) counter_ids.append(COUNTER) data = { "config_path": config_paths, "output_dir": output_directories, "name": names, "epsilon": epsilons, "train_seed": train_seeds, "test_seed": test_seeds, "json_template": json_templates, "class_assignment_mapping": class_assignment_mappings, "probabilities": probabilities, "n_classes": n_classes, "counter_id": counter_ids } df = pd.DataFrame.from_dict(data) df.to_csv('../../' + EXPERIMENT_NAME + '/scripts/manifest.txt', index=False)
cv_bias_amplification-main
my-project-release/my-project/configs/cifar100_regularization/scripts/generate_experiment_configs.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from copy import error import torch import torch.utils.data import ast import itertools import json import numpy as np import pandas as pd import random import sys from classy_vision.dataset import ClassyDataset, build_dataset, register_dataset from classy_vision.generic.util import load_checkpoint import classy_vision.generic.util as util from classy_vision.models import ClassyModel from PIL import Image sys.path.append('../../..') from datasets.inversion_transforms import AssignClass, Invert root = './' #### TODO: Change according to your directory structure. CHECKPOINT_PATH = "" #### EXPERIMENT_NAME = "cifar100_swapped" # used to store experiment configs and results IDS_TEST = "./test_ids_cifar100.txt" # used to designate file of sample ids for each test image NBINS = 15 # used to designate the number of bins for overconfidence measures NUM_SAMPLES_TEST = 10_000 TRANSFORMS ={ # used to designate which transforms to apply or change "invert_exact": {}, "assign_class": {}, "swap_task_attr": {}, "normalize": { "mean": [0.5071, 0.4867, 0.4408], "std": [0.2675, 0.2565, 0.2761] } } TEST_DATASET = "cifar100_test" VISUALIZE = False # designate if plots should be shown CLASS_ASSIGNMENTS = [ [1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1], [0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0], [0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0], [1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1], [1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1], [1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0], [1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1], [1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1], [1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1], [1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1], [1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0], [0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0], [1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1], [1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1], [1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1], [0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1], [1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1], [1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1], [1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0], [0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1], [0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0], [1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1], [1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0], [1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0], [0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0], [0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1], [0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0]] NUM_CHECKPOINTS = 50 sm = torch.nn.Softmax() def get_model_results(model, dataset, attributes, tasks): """Get model results needed for directional bias amplification measurements. Args: dataset (ClassyDataset): ClassyDataset, generally of test data attributes (List): list of distinct attributes tasks (List): list of distinct tasks Returns: results (List x List): nested list of size attributes x tasks with number of instances with that input attribute and predicted task """ predictions = [] attributes_in = [] targets = [] percents = [] model.eval() for k in dataset.iterator(): attributes_in.append(k['attribute']) targets.append(k['target']) result = model(k['input']).data predictions.append(result.numpy().argmax(axis=1)) percents.append(sm(result)) flat_attributes = [item for sublist in attributes_in for item in sublist] flat_targets = [item for sublist in targets for item in sublist] flat_predictions = [item for sublist in predictions for item in sublist] flat_percents = [float(max(item)) for sublist in percents for item in sublist] results_in = np.zeros((len(attributes), len(tasks))) results_pred = np.zeros((len(attributes), len(tasks))) results_correct = np.zeros((len(attributes), len(tasks))) total = 0 correct = 0 for a, t, p in zip(flat_attributes, flat_targets, flat_predictions): a = int(a) t = int(t) results_in[attributes[a]][t] = results_in[attributes[a]][t] + 1 results_pred[attributes[a]][p] = results_pred[attributes[a]][p] + 1 results_correct[attributes[a]][t] += 1 if t == p else 0 total += 1 correct = correct + 1 if t == p else correct # TESTING return flat_attributes, flat_predictions, flat_targets return results_in, results_pred, correct * 1.0 / total, np.array(flat_predictions), np.array(flat_targets), np.array(flat_percents), results_correct / results_in def format_results(results, attributes, tasks): """Format results for readability. Args: results (List): nested list of size attributes x tasks with number of instances with that attribute and task attributes (List): list of distinct attributes tasks (List): list of distinct tasks Returns: dict<(attribute, task), value> : dict with number of instances with that attribute and task """ return {key: results[attributes[key[0]]][key[1]] for key in list(itertools.product(attributes, tasks))} def calc_bias_amp_at(res, res_h, attributes, tasks): """Perform directional bias amplification a->t as defined in https://arxiv.org/pdf/2102.12594.pdf. 1. Instantiate `results`, which will store the values defined in the paper's summation expression. Looping over all attributes and tasks... 2. Generate probabilities needed for y_at, delta_at calculations defined in the paper. p_attr = P(Attribute_a = 1) p_attr_h = P(Attribute_a-hat = 1) p_task = P(Task_t = 1) p_task_h = P(Task_t-hat = 1) p_attr_task = P(Attribute_a = 1, Task_t = 1) p_attr_h_task_h = P(Attribute_a-hat = 1, Task_t = 1) p_task_h_cond_attr_h = P(Task_t-hat = 1 | Attribute_a-hat = 1) p_task_cond_attr = P(Task_t = 1 | Attribute_a = 1) 3. Calculate y_at, delta_at, and expression inside of summation, and save to `results`. 4. Perform summation and BiasAmp_at calculation. Args: res (List x List): nested list of size attributes x tasks with number of instances that have attribute and task, generally the training input or test input resh (List x List): nested list of size attributes x tasks with number of instances that have attribute and task, generally the test output attributes (List): list of distinct attributes tasks (List): list of distinct tasks Returns: results (dict<(attribute, task), value>): dict with value inside equation summation with the attribute and task bias_amp_at (float): directional bias amplification a->t metric """ results = {key: 0 for key in list(itertools.product(attributes, tasks))} for key, value in results.items(): attr = key[0] task = key[1] p_attr = np.sum(res[attributes[attr]]) / np.sum(np.matrix(res)) p_attr_h = np.sum(res_h[attributes[attr]]) / np.sum(np.matrix(res_h)) p_task = np.sum(res, axis=0)[task] / np.sum(np.matrix(res)) p_task_h = np.sum(res_h, axis=0)[task] / np.sum(np.matrix(res_h)) p_attr_task = res[attributes[attr]][task] / np.sum(np.matrix(res)) p_attr_h_task_h = res_h[attributes[attr]][task] / np.sum(np.matrix(res_h)) p_task_h_cond_attr_h = p_attr_h_task_h / p_attr_h p_task_cond_attr = p_attr_task / p_attr y_at = p_attr_task > (p_attr * p_task) delta_at = p_task_h_cond_attr_h - p_task_cond_attr print(str(key)+".... y_at: " + str(y_at) + ", delta_at: " + str(delta_at)) results[key] = (y_at * delta_at) + ((1 - y_at) * (-1 * delta_at)) bias_amp_at = (1 / (len(attributes) * len(tasks))) * sum(results.values()) return results, bias_amp_at def get_binned_metrics(percents, predictions, targets, nbins): acc_bins = [] conf_bins = [] count_bins = [] assert 0 not in percents for i in range(0, nbins): filter = np.where((percents > (i)/nbins) & (percents <= (i+1)/nbins)) perc = percents[filter] pred = predictions[filter] targ = targets[filter] acc = sum(pred==targ)/len(pred) if len(pred) != 0 else np.nan conf = sum(perc)/len(perc) if len(perc) != 0 else np.nan acc_bins.append(acc) conf_bins.append(conf) count_bins.append(len(pred)) return acc_bins, conf_bins, count_bins def get_ece(acc_bins, conf_bins, count_bins, nbins): ece = 0 for i in range(0, nbins): ece += (count_bins[i] / sum(count_bins)) * abs(acc_bins[i] - conf_bins[i]) if acc_bins[i] is not np.nan else 0 return ece def get_mce(acc_bins, conf_bins, nbins): mce = 0.0 for i in range(0, nbins): mce = np.maximum(mce, abs(acc_bins[i] - conf_bins[i])) if acc_bins[i] is not np.nan else mce return mce def get_p(epsilon, num_classes, inversion_config): p = [] if inversion_config['type'] == "fixed": class_list = [] if inversion_config['assign'] == "custom": class_list = inversion_config['custom_selection'] elif inversion_config['assign'] == "shuffle": random.seed(inversion_config['seed']) class_list = random.sample(range(num_classes), inversion_config['num_inversion_classes']) for i in range(num_classes): if i in class_list: p.append(np.round(0.5 + (epsilon * 0.01), 2)) else: p.append(np.round(0.5 - (epsilon * 0.01), 2)) elif inversion_config['type'] == "evenly_spaced": for i in range(num_classes): min = np.round(0.5 - (epsilon * 0.01), 2) p.append(np.round(min + (i * (2 * epsilon * 0.01) / (num_classes - 1)), 2)) return p def run_measurements(name, json_template, class_assignment, epsilon, num_classes, p, train_seed, test_seed, checkpoint_dir, checkpoint): print("\nRunning \"" + checkpoint_dir + "\" .") transforms = [] if "assign_class" in TRANSFORMS: transforms.append({"name": "assign_class", "classes": class_assignment}) if "invert" in TRANSFORMS: transforms.append({"name": "invert", "p": list(p), "seed": SEED_TEST}) if "invert_exact" in TRANSFORMS: invert_original = [] assert NUM_SAMPLES_TEST % len(p) == 0, "Dataset not evenly divisible by number of classes." class_size = NUM_SAMPLES_TEST / len(class_assignment) with util.torch_seed(test_seed): with util.numpy_seed(test_seed): for c in class_assignment: hold = [1] * (int)(np.round(class_size * p[c], 0)) + [0] * (int)(np.round(class_size * (1-p[c]), 0)) np.random.shuffle(hold) invert_original.extend(hold) with open(IDS_TEST, 'r') as f: test_ids = json.load(f) invert_mapped = [0] * NUM_SAMPLES_TEST for k in range(0, NUM_SAMPLES_TEST): invert_mapped[k] = invert_original[int((test_ids[str(k)]['class'] * class_size) + test_ids[str(k)]['index'])] transforms.append({"name": "invert_exact", "invert": invert_mapped}) if "swap_binary_task" in TRANSFORMS: transforms.append({"name": "swap_binary_task"}) if "swap_task_attr" in TRANSFORMS: transforms.append({"name": "swap_task_attr"}) key_transforms = [{"name": "ToTensor"}] if "normalize" in TRANSFORMS: key_transforms.append({ "name": "Normalize", "mean": TRANSFORMS['normalize']['mean'], "std": TRANSFORMS['normalize']['std'], }) transforms.extend([ {"name": "tuple_to_map", "list_of_map_keys": ["input", "original_target", "sample_id", "target", "attribute"]}, { "name": "apply_transform_to_key", "transforms": key_transforms, "key": "input" } ]) test_dataset_config = { "name": TEST_DATASET, "batchsize_per_replica": 128, "shuffle": True, "transforms": transforms, "num_workers": 8 } my_dataset_test = build_dataset(test_dataset_config) checkpoint_data = load_checkpoint(checkpoint_dir) model = ClassyModel.from_checkpoint(checkpoint_data) attributes = {0: 0, 1: 1} tasks = [i for i in range(num_classes)] test_results_in, test_results_pred, acc, predictions, targets, percents, accuracy_breakdown = get_model_results(model, my_dataset_test, attributes, tasks) accuracy_breakdown = format_results(accuracy_breakdown, attributes, tasks) accuracy_breakdown = {str(k): v for k, v in accuracy_breakdown.items()} biasamp_breakdown, biasamp = calc_bias_amp_at(test_results_in, test_results_pred, attributes, tasks) biasamp_breakdown = {str(k): v for k, v in biasamp_breakdown.items()} acc_bins, conf_bins, count_bins = get_binned_metrics(percents, predictions, targets, NBINS) print(acc) print(format_results(test_results_in, attributes, tasks)) print(format_results(test_results_pred, attributes, tasks)) print(biasamp_breakdown) names.append(name) epsilons.append(epsilon) train_seeds.append(train_seed) test_seeds.append(test_seed) checkpoints.append(checkpoint) accuracies.append(acc) biasamps.append(biasamp) test_predictions.append(format_results(test_results_pred, attributes, tasks)) acc_bins_list.append(acc_bins) conf_bins_list.append(conf_bins) count_bins_list.append(count_bins) eces.append(get_ece(acc_bins, conf_bins, count_bins, NBINS)) mces.append(get_mce(acc_bins, conf_bins, NBINS)) accuracy_breakdowns.append(accuracy_breakdown) biasamp_breakdowns.append(biasamp_breakdown) json_templates.append(json_template) # Set up and run measurements names = [] epsilons = [] train_seeds = [] test_seeds = [] checkpoints = [] accuracies = [] biasamps = [] test_predictions = [] acc_bins_list = [] count_bins_list = [] conf_bins_list = [] eces = [] mces = [] accuracy_breakdowns = [] biasamp_breakdowns = [] json_templates = [] try: original_results = pd.read_csv('../../' + EXPERIMENT_NAME + '/results_overconf_checkpoints.csv', index_col=False) except: original_results = None manifest_df = pd.read_csv('../../' + EXPERIMENT_NAME + '/scripts/manifest.txt') for _, row in manifest_df.iterrows(): json_template = row['json_template'] class_assignment = CLASS_ASSIGNMENTS[row['class_assignment_mapping']] epsilon = row['epsilon'] num_classes = row['n_classes'] p = [float(x) for x in row['probabilities'][1:-1].split(' ')] train_seed = row['train_seed'] test_seed = row['test_seed'] counter = row['counter_id'] name = row['name'] for checkpoint in range(18, 999, 20): checkpoint_dir = CHECKPOINT_PATH + name[:-5] + '/checkpoints/model_phase-' + str(checkpoint) + '_end.torch' run_measurements( name = name, json_template = json_template, class_assignment = class_assignment, epsilon = epsilon, num_classes = num_classes, p = p, train_seed = train_seed, test_seed = test_seed, checkpoint_dir = checkpoint_dir, checkpoint = checkpoint ) if (checkpoint + 2) % 100 == 0: data = {"name": names, "epsilon": epsilons, "train_seed": train_seeds, "test_seed": test_seeds, "checkpoint_number": checkpoints, "acc@1": accuracies, "biasamp": biasamps, "bins": NBINS, "acc_bins": acc_bins_list, "conf_bins": conf_bins_list, "count_bins": count_bins_list, "ece": eces, "mce": mces, "accuracy_breakdown": accuracy_breakdowns, "biasamp_breakdown": biasamp_breakdowns, "json_templates": json_templates } df = pd.DataFrame.from_dict(data) if original_results is not None: combined_df = pd.concat([original_results, df]) combined_df.to_csv('../../' + EXPERIMENT_NAME + '/results_overconf_checkpoints.csv', index=False) else: df.to_csv('../../' + EXPERIMENT_NAME + '/results_overconf_checkpoints.csv', index=False) data = {"name": names, "epsilon": epsilons, "train_seed": train_seeds, "test_seed": test_seeds, "checkpoint_number": checkpoints, "acc@1": accuracies, "biasamp": biasamps, "bins": NBINS, "acc_bins": acc_bins_list, "conf_bins": conf_bins_list, "count_bins": count_bins_list, "ece": eces, "mce": mces, "accuracy_breakdown": accuracy_breakdowns, "biasamp_breakdown": biasamp_breakdowns, "json_templates": json_templates } df = pd.DataFrame.from_dict(data) if original_results is not None: combined_df = pd.concat([original_results, df]) combined_df.to_csv('../../' + EXPERIMENT_NAME + '/results_overconf_checkpoints.csv', index=False) else: df.to_csv('../../' + EXPERIMENT_NAME + '/results_overconf_checkpoints.csv', index=False)
cv_bias_amplification-main
my-project-release/my-project/configs/cifar100_swapped/scripts/training_measurements_checkpoints.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import json import numpy as np import classy_vision.generic.util as util import random import pandas as pd import os CONFIG_PATH = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) CLASS_ASSIGNMENTS = [ [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0], [1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0], [0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0], [1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1], [1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1], [0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0], [0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1], [0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1], [1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1], [0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1], [0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0], [0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0], [0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0], [1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0], [1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1], [0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0], [0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1], [1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1], [0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0], [0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0], [1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1], [1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1], [1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0], [1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1], [1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1], [1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1], [1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1], [1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0], [0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0], [1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1], [1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1], [1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1], [0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1], [1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1], [1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1], [1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0], [0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1], [0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0], [1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1], [1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0], [1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0], [0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0], [0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1], [0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0]] COUNTER = 1000 # used to name the experiments and associated config EPSILONS = range(0, 60, 10) EXPERIMENT_NAME = "cifar100_swapped" # used to store experiment configs and results IDS_TEST = "./test_ids_cifar100.txt" # used to designate file of sample ids for each test image IDS_TRAIN = "./train_ids_cifar100.txt" # used to designate the file of sample ids for each train image INVERSION_CONFIGS = [{ # used to designate which classes should be inverted "type": "fixed", # used to designate how inversion probabilities should be calculated "assign": "custom", # should we use a "custom" class assignment with "custom_selection", or "shuffle" randomly with a fixed "num_classes" "custom_selection": [0], "num_inversion_classes": None, "seed": None } ] JSON_BASE = None # used to calculate base json when JSON type is custom JSON_TYPE = "template" # used to determine which base json to build the config from JSON_TEMPLATES = [ # used to designate template config "config_template_cifar100_resnet110_gpu1_lrmultistep.json" ] NUM_MODELS = 1 # number of models per epsilon-class assignment combination NUM_SAMPLES_TEST = 10_000 NUM_SAMPLES_TRAIN = 50_000 SEED_BASE = 0 SEED_TEST = 100_000 # seed, or "None" to indicate get_test_seed() should be used TRANSFORMS = { # used to designate which transforms to apply or change "assign_class": None, "invert_exact": None, "swap_task_attr": None } def get_p(epsilon, num_classes, inversion_config): p = [] if inversion_config['type'] == "fixed": class_list = [] if inversion_config['assign'] == "custom": class_list = inversion_config['custom_selection'] elif inversion_config['assign'] == "shuffle": random.seed(inversion_config['seed']) class_list = random.sample(range(num_classes), inversion_config['num_inversion_classes']) for i in range(num_classes): if i in class_list: p.append(np.round(0.5 + (epsilon * 0.01), 2)) else: p.append(np.round(0.5 - (epsilon * 0.01), 2)) elif inversion_config['type'] == "evenly_spaced": for i in range(num_classes): min = np.round(0.5 - (epsilon * 0.01), 2) p.append(np.round(min + (i * (2 * epsilon * 0.01) / (num_classes - 1)), 2)) return p def get_train_seed(model_i): return ((model_i + SEED_BASE + 2) * 100_000) def get_test_seed(model_i): return SEED_TEST if SEED_TEST else model_i def get_base_json(json_type, template, counter=None): if json_type == "template": return template if json_type == "custom": return '../configs/' + str(EXPERIMENT_NAME) + '/config_' + str(EXPERIMENT_NAME) + "_bias_test_" + str(counter + JSON_BASE) + '.json' config_paths = [] output_directories = [] names = [] epsilons = [] train_seeds = [] test_seeds = [] json_templates = [] class_assignment_mappings = [] probabilities = [] n_classes= [] depths = [] counter_ids = [] for template in JSON_TEMPLATES: for class_assignment in CLASS_ASSIGNMENTS: for epsilon in EPSILONS: for inversion_config in INVERSION_CONFIGS: num_classes = len(set(class_assignment)) p = get_p(epsilon, num_classes, inversion_config) for model_i in range(0, NUM_MODELS): with open(get_base_json(JSON_TYPE, template, COUNTER)) as f: data = json.load(f) invert_exact_index_train = -1 invert_exact_index_test = -1 for i in range(len(data['dataset']['train']['transforms'])): if "invert_exact" in TRANSFORMS.keys() and data['dataset']['train']['transforms'][i]['name'] == 'invert_exact': invert_original = [] assert NUM_SAMPLES_TRAIN % len(p) == 0, "Dataset not evenly divisible by number of classes." class_size = NUM_SAMPLES_TRAIN / len(class_assignment) train_seed = get_train_seed(CLASS_ASSIGNMENTS.index(class_assignment)) with util.torch_seed(train_seed): with util.numpy_seed(train_seed): for c in class_assignment: hold = [1] * (int)(np.round(class_size * p[c], 0)) + [0] * (int)(np.round(class_size * (1-p[c]), 0)) np.random.shuffle(hold) invert_original.extend(hold) with open(IDS_TRAIN, 'r') as f: train_ids = json.load(f) invert_mapped = [0] * NUM_SAMPLES_TRAIN for k in range(0, NUM_SAMPLES_TRAIN): invert_mapped[k] = invert_original[int((train_ids[str(k)]['class'] * class_size) + train_ids[str(k)]['index'])] data['dataset']['train']['transforms'][i]['invert'] = invert_mapped if data['dataset']['train']['transforms'][i]['name'] == 'invert_exact': invert_exact_index_train = i if "assign_class" in TRANSFORMS.keys() and data['dataset']['train']['transforms'][i]['name'] == 'assign_class': data['dataset']['train']['transforms'][i]['classes'] = class_assignment if "swap_task_attr" in TRANSFORMS.keys(): assert "swap_binary_task" not in TRANSFORMS.keys() data['dataset']['train']['transforms'].insert(invert_exact_index_train + 1, {"name": "swap_task_attr"}) for i in range(len(data['dataset']['test']['transforms'])): if "invert_exact" in TRANSFORMS.keys() and data['dataset']['test']['transforms'][i]['name'] == 'invert_exact': invert_original = [] assert NUM_SAMPLES_TEST % len(p) == 0, "Dataset not evenly divisible by number of classes." class_size = NUM_SAMPLES_TEST / len(class_assignment) test_seed = get_test_seed(model_i) with util.torch_seed(test_seed): with util.numpy_seed(test_seed): for c in class_assignment: hold = [1] * (int)(np.round(class_size * p[c], 0)) + [0] * (int)(np.round(class_size * (1-p[c]), 0)) np.random.shuffle(hold) invert_original.extend(hold) with open(IDS_TEST, 'r') as f: test_ids = json.load(f) invert_mapped = [0] * NUM_SAMPLES_TEST for k in range(0, NUM_SAMPLES_TEST): invert_mapped[k] = invert_original[int((test_ids[str(k)]['class'] * class_size) + test_ids[str(k)]['index'])] data['dataset']['test']['transforms'][i]['invert'] = invert_mapped if data['dataset']['test']['transforms'][i]['name'] == 'invert_exact': invert_exact_index_test = i if "assign_class" in TRANSFORMS.keys() and data['dataset']['test']['transforms'][i]['name'] == 'assign_class': data['dataset']['test']['transforms'][i]['classes'] = class_assignment if "swap_task_attr" in TRANSFORMS.keys(): assert "swap_binary_task" not in TRANSFORMS.keys() data['dataset']['test']['transforms'].insert(invert_exact_index_test + 1, {"name": "swap_task_attr"}) data['model']['num_classes'] = num_classes filename = 'config_' + EXPERIMENT_NAME + '_bias_test_' + str(COUNTER) +'.json' model_folder_path = CONFIG_PATH + '/models/' if (not os.path.exists(CONFIG_PATH)): raise Exception(CONFIG_PATH + " not a valid config path") if (not os.path.exists(model_folder_path)): os.mkdir(model_folder_path) config_path = model_folder_path + filename with open(config_path, 'w') as out: json.dump(data, out, indent=4) COUNTER += 1 config_paths.append(config_path) output_directories.append(EXPERIMENT_NAME) names.append(filename) epsilons.append(epsilon) train_seeds.append(train_seed) test_seeds.append(test_seed) json_templates.append(template) class_assignment_mappings.append(CLASS_ASSIGNMENTS.index(class_assignment)) probabilities.append(str(p).replace(',', '')) n_classes.append(num_classes) counter_ids.append(COUNTER) data = { "config_path": config_paths, "output_dir": output_directories, "name": names, "epsilon": epsilons, "train_seed": train_seeds, "test_seed": test_seeds, "json_template": json_templates, "class_assignment_mapping": class_assignment_mappings, "probabilities": probabilities, "n_classes": n_classes, "counter_id": counter_ids } df = pd.DataFrame.from_dict(data) df.to_csv('../../' + EXPERIMENT_NAME + '/scripts/manifest.txt', index=False)
cv_bias_amplification-main
my-project-release/my-project/configs/cifar100_swapped/scripts/generate_experiment_configs.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from pathlib import Path from classy_vision.generic.registry_utils import import_all_modules FILE_ROOT = Path(__file__).parent # Automatically import any Python files in the datasets/ directory import_all_modules(FILE_ROOT, "trainer")
cv_bias_amplification-main
my-project-release/my-project/trainer/__init__.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging from typing import Optional from classy_vision.generic.distributed_util import set_cpu_device, set_cuda_device_index from classy_vision.trainer.classy_trainer import ClassyTrainer class GPUTrainer(ClassyTrainer): """Trainer to be used if you want want use only a single training process.""" def __init__(self, rank): self.rank = rank def train(self, task): if task.use_gpu: logging.info("Using GPU, CUDA device index: {}".format(0)) set_cuda_device_index(self.rank) else: logging.info("Using CPU") set_cpu_device() super().train(task)
cv_bias_amplification-main
my-project-release/my-project/trainer/gpu_trainer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree.
Clockwork-main
__init__.py
#!/usr/bin/env python3 # pyre-stricts # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree.s import asyncio from planner.config import ( PlannerConfig, get_algorithm, get_task_fetcher, ) from planner.plan_writer import PlanWriter from planner.planner import Planner """ This file is not production code and is not gauranteed to always run or be up to date. It is just a useful tool for Varun to test the planner without modifying any production code. """ def main() -> int: config = PlannerConfig( task_fetcher=get_task_fetcher("hard_coded"), scheduling_algorithm=get_algorithm("right_based"), plan_writer=PlanWriter(), ) planner = Planner(config=config) return asyncio.run(planner.run()) if __name__ == "__main__": """ Runs one iteration of the planner. """ exit(main())
Clockwork-main
main.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from __future__ import annotations import logging import sys import traceback from common.data_types import UnixtimeAssignments from planner.config import PlannerConfig, TaskPoolConfig __ALL__ = ["Planner"] logging.basicConfig(stream=sys.stdout, level=logging.DEBUG) logger: logging.Logger = logging.getLogger(__name__) class Planner: def __init__(self, config: PlannerConfig) -> None: self.config: PlannerConfig = config async def run(self) -> int: ret_code = 0 try: pool = self.config.task_pool plan = await self.execute_task_pool(pool) await self.config.plan_writer.overwrite_plan(plan) except Exception: etype, value, tb = sys.exc_info() traceback.print_exception(etype, value, tb) ret_code = 1 return ret_code @staticmethod async def execute_task_pool(pool: TaskPoolConfig) -> UnixtimeAssignments: tasks = await pool.task_fetcher.fetch() plan = await pool.scheduling_algorithm.run(tasks) missing_from_plan = frozenset(tasks - set(plan.keys())) logger.debug( f"Planning Finished | In Plan: {len(plan)} | Missing from Plan: {len(missing_from_plan)}", ) return plan
Clockwork-main
planner/planner.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from __future__ import annotations from dataclasses import dataclass from typing import Optional from algorithm.algorithm import ( SchedulingAlgorithm, NullAlgorithm, ReturnZero, RightBased, ) from algorithm.task_fetchers import ( TaskFetcher, HardCodedTaskFetcher, ) from planner.plan_writer import PlanWriter __ALL__ = [ "PlannerConfig", "TaskPoolConfig", "get_algorithm", "get_task_fetcher", ] def get_algorithm(short_name: str, *args, **kwargs) -> SchedulingAlgorithm: """ This is the official registry of all available planning algorithms """ registry = { "do_nothing": NullAlgorithm, "return_zero": ReturnZero, "right_based": RightBased, } return registry[short_name](*args, **kwargs) def get_task_fetcher(short_name: str, *args, **kwargs) -> TaskFetcher: """ This is the official registry of all available task fetchers """ registry = { "hard_coded": HardCodedTaskFetcher, } return registry[short_name](*args, **kwargs) @dataclass class TaskPoolConfig: task_fetcher: TaskFetcher scheduling_algorithm: SchedulingAlgorithm class PlannerConfig: def __init__( self, task_fetcher: TaskFetcher, scheduling_algorithm: SchedulingAlgorithm, plan_writer: Optional[PlanWriter] = None, ) -> None: self.task_pool: TaskPoolConfig = TaskPoolConfig( task_fetcher, scheduling_algorithm ) self.plan_writer: Optional[PlanWriter] = plan_writer
Clockwork-main
planner/config.py