python_code
stringlengths
0
4.04M
repo_name
stringlengths
8
58
file_path
stringlengths
5
147
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree.
Clockwork-main
planner/__init__.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from __future__ import annotations import logging import sys from common.data_types import UnixtimeAssignments __ALL__ = ["PlanWriter"] logging.basicConfig(stream=sys.stdout, level=logging.DEBUG) logger: logging.Logger = logging.getLogger(__name__) class PlanWriter: """ This class contains methods that writes the Clockwork plans to a production datastore """ def __init__(self) -> None: pass async def overwrite_plan(self, plan: UnixtimeAssignments) -> None: logger.debug(f'Final Plan: {plan}')
Clockwork-main
planner/plan_writer.py
#!/usr/bin/env python3 # pyre-strict # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from __future__ import annotations import asyncio from abc import ABC from typing import FrozenSet import logging import sys from algorithm.right_based import ( algorithm as rb_algo, metadata as rb_meta, ) from common.data_types import TaskInstance, UnixtimeAssignments from common.time_interval import Minutes from common.timestamp import Timestamp __ALL__ = ["SchedulingAlgorithm", "DummyTestPlan", "NullAlgorithm"] logging.basicConfig(stream=sys.stdout, level=logging.DEBUG) logger: logging.Logger = logging.getLogger(__name__) class SchedulingAlgorithm(ABC): """ Your __init__ function must have a signature matching def __init__(self, *args: List[str], **kwargs: Dict[str, str]) -> None for example def __init__(self, namespace: str) -> None: ... """ async def run(self, tasks: FrozenSet[TaskInstance]) -> UnixtimeAssignments: """ If a specific subclass of SchedulingAlgorithm does requires arguments in addition to the list of tasks, they should be passed in through __init__ run() should return a Dict of size `len(tasks)` which maps each task instance to a valid unixtime. The unixtime outputted here will be used as the dispatch time in the Dataswarm Scheduler service. """ raise NotImplementedError() class RightBased(SchedulingAlgorithm): async def run(self, tasks: FrozenSet[TaskInstance]) -> UnixtimeAssignments: granularity = Minutes(1) ( spark_metadata, presto_metadata, spark_max_size, presto_max_size, ) = await asyncio.gather( rb_meta.get_spark_metadata(tasks), rb_meta.get_presto_metadata(tasks), rb_meta.get_max_spark_resources(), rb_meta.get_max_presto_resources(), ) logger.debug(f'Presto Metadata Size {len(presto_metadata)}') presto_plan = rb_algo.schedule_tasks( presto_metadata, granularity=granularity, max_size=presto_max_size ) logger.debug(f'Presto Plan Size {len(presto_plan)}') logger.debug(f'Spark Metadata Size {len(spark_metadata)}') spark_plan = rb_algo.schedule_tasks( spark_metadata, granularity=granularity, max_size=spark_max_size ) logger.debug(f'Spark Metadata Size {len(spark_plan)}') plan = {} for task_instance in tasks: unique_task = task_instance.unique_task if unique_task in spark_plan: plan[task_instance] = task_instance.period_id.midnight + spark_plan[unique_task] elif unique_task in presto_plan: plan[task_instance] = task_instance.period_id.midnight + presto_plan[unique_task] return plan class NullAlgorithm(SchedulingAlgorithm): async def run(self, tasks: FrozenSet[TaskInstance]) -> UnixtimeAssignments: return {} class ReturnZero(SchedulingAlgorithm): """ Schedules every task to run on January 1st 1970 (effectively 0 delay) """ async def run(self, tasks: FrozenSet[TaskInstance]) -> UnixtimeAssignments: return {task: Timestamp(0) for task in tasks}
Clockwork-main
algorithm/algorithm.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from __future__ import annotations from abc import ABC from typing import FrozenSet from common.data_types import TaskInstance from common.timestamp import Timestamp class TaskFetcher(ABC): """ Your __init__ function must have a signature matching def __init__(self, *args: List[str], **kwargs: Dict[str, str]) -> None for example def __init__(self, namespace: str) -> None: ... """ async def fetch(self) -> FrozenSet[TaskInstance]: """ This method should be a self-contained callable taking no arguments. If a specific subclass TaskFetcher does require arguments, they should be passed in through __init__ fetch() should return all matching and currently-active task instances. It is ultimately up to the individual fetcher what that means. One simple example might be to find the next-in-line to be scheduled task instances matching some filters """ raise NotImplementedError() class HardCodedTaskFetcher(TaskFetcher): async def fetch(self) -> FrozenSet[TaskInstance]: return frozenset([ TaskInstance('task1', Timestamp(0)), TaskInstance('task2', Timestamp(0)), TaskInstance('task3', Timestamp(0)), TaskInstance('task4', Timestamp(10)), TaskInstance('task5', Timestamp(10)), TaskInstance('task6', Timestamp(10)), ])
Clockwork-main
algorithm/task_fetchers.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree.
Clockwork-main
algorithm/__init__.py
#!/usr/bin/env python3 # pyre-strict # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from __future__ import annotations from typing import Dict import logging import sys from common.data_types import UniqueTask from common.skyline_math import SkylineTracker from common.time_interval import TimeInterval from algorithm.right_based.metadata import RightBasedMetadata __all__ = ["schedule_tasks"] logging.basicConfig(stream=sys.stdout, level=logging.DEBUG) logger: logging.Logger = logging.getLogger(__name__) def schedule_tasks( metadata: Dict[UniqueTask, RightBasedMetadata], granularity: TimeInterval, max_size: float, ) -> Dict[UniqueTask, TimeInterval]: global_skyline: SkylineTracker = SkylineTracker( granularity=granularity, max_size=max_size ) task_metadata_tuples = sorted(metadata.items(), key=lambda x: x[1], reverse=True) assignments = {} for i, (task, meta) in enumerate(task_metadata_tuples): if i % 1000 == 0: logger.debug(f"Scheduled {i}/{len(task_metadata_tuples)}, {len(assignments)} accepted") start_time = meta.max_start_time while start_time >= meta.min_start_time: if global_skyline.can_add(start_time, meta.skyline): global_skyline.add_job(start_time, meta.skyline) assignments[task] = start_time break elif can_decrement(start_time, granularity): start_time -= granularity else: break return assignments def can_decrement(time: TimeInterval, interval: TimeInterval) -> bool: try: _ = time - interval return True except Exception: return False
Clockwork-main
algorithm/right_based/algorithm.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from __future__ import annotations from dataclasses import dataclass, field from typing import Dict, FrozenSet, List, Tuple from common.data_types import TaskInstance, UniqueTask from common.skyline_math import SkylineBlock from common.time_interval import Seconds @dataclass class RightBasedMetadata: min_start_time: Seconds max_start_time: Seconds skyline: List[SkylineBlock] order_tuple: Tuple[Seconds, Seconds] = field(init=False) def __post_init__(self) -> None: self.order_tuple = (self.min_start_time, self.max_start_time) assert self.max_start_time >= self.min_start_time def __lt__(self, other: RightBasedMetadata) -> bool: return self.order_tuple < other.order_tuple def __lte__(self, other: RightBasedMetadata) -> bool: return self.order_tuple <= other.order_tuple def __gt__(self, other: RightBasedMetadata) -> bool: return self.order_tuple > other.order_tuple def __gte__(self, other: RightBasedMetadata) -> bool: return self.order_tuple >= other.order_tuple async def get_max_spark_resources() -> float: return 3 async def get_max_presto_resources() -> float: return 3 async def get_presto_metadata( tasks: FrozenSet[TaskInstance], ) -> Dict[UniqueTask, RightBasedMetadata]: return { UniqueTask('task1', Seconds(0)): RightBasedMetadata( min_start_time=Seconds(10), max_start_time=Seconds(20), skyline=[SkylineBlock(Seconds(1), 1.0)], ), UniqueTask('task5', Seconds(10)):RightBasedMetadata( min_start_time=Seconds(15), max_start_time=Seconds(35), skyline=[SkylineBlock(Seconds(5), 1.0)], ) , UniqueTask('task6', Seconds(10)): RightBasedMetadata( min_start_time=Seconds(50), max_start_time=Seconds(60), skyline=[SkylineBlock(Seconds(5), 1.0)], ), } async def get_spark_metadata( tasks: FrozenSet[TaskInstance], ) -> Dict[UniqueTask, RightBasedMetadata]: return { UniqueTask('task2', Seconds(0)): RightBasedMetadata( min_start_time=Seconds(0), max_start_time=Seconds(100), skyline=[SkylineBlock(Seconds(1), 1.0), SkylineBlock(Seconds(2), 2.0)], ), UniqueTask('task3', Seconds(0)): RightBasedMetadata( min_start_time=Seconds(100), max_start_time=Seconds(100), skyline=[SkylineBlock(Seconds(5), 2.0)], ), UniqueTask('task4', Seconds(10)): RightBasedMetadata( min_start_time=Seconds(19), max_start_time=Seconds(59), skyline=[SkylineBlock(Seconds(4), 4.0)], ), }
Clockwork-main
algorithm/right_based/metadata.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree.
Clockwork-main
algorithm/right_based/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree.
Clockwork-main
algorithm/tests/__init__.py
#!/usr/bin/env python3 # pyre-strict # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from __future__ import annotations import unittest from algorithm.right_based.algorithm import schedule_tasks from algorithm.right_based.metadata import RightBasedMetadata from common.data_types import UniqueTask from common.skyline_math import SkylineBlock from common.time_interval import Seconds class TestParallelGraph(unittest.TestCase): # Two jobs set to run at the same time where only one can run at a time def test_two_nodes_same_start_time(self) -> None: skyline = [SkylineBlock(Seconds(1), 1)] task_a = UniqueTask("task_a", Seconds(0)) task_b = UniqueTask("task_b", Seconds(0)) pool = { task_a: RightBasedMetadata( min_start_time=Seconds(0), max_start_time=Seconds(1), skyline=skyline, ), task_b: RightBasedMetadata( min_start_time=Seconds(0), max_start_time=Seconds(1), skyline=skyline, ), } res = schedule_tasks(pool, granularity=Seconds(1), max_size=1) self.assertIn( res, [ { task_a: Seconds(0), task_b: Seconds(1), }, { task_a: Seconds(1), task_b: Seconds(0), }, ], ) class TestTandemGraph(unittest.TestCase): # Test a linked list of nodes def test_two_tasks_back_to_back(self) -> None: skyline = [SkylineBlock(Seconds(1), 1)] first = UniqueTask("first", Seconds(0)) second = UniqueTask("second", Seconds(0)) pool = { first: RightBasedMetadata( min_start_time=Seconds(0), max_start_time=Seconds(0), skyline=skyline ), second: RightBasedMetadata( min_start_time=Seconds(1), max_start_time=Seconds(1), skyline=skyline ), } res = schedule_tasks(pool, granularity=Seconds(1), max_size=2) self.assertEquals( res, { first: Seconds(0), second: Seconds(1) }, ) class TestStaggardSkylines(unittest.TestCase): # Check that two skyline blocks can be stacked on top of each other def test_overlapping_skylines(self) -> None: skyline = [ SkylineBlock(Seconds(1), 1), SkylineBlock(Seconds(1), 2), ] reflected_sykline = [ SkylineBlock(Seconds(1), 2), SkylineBlock(Seconds(1), 1), ] task_a = UniqueTask("first", Seconds(0)) task_b = UniqueTask("second", Seconds(0)) pool = { task_a: RightBasedMetadata( min_start_time=Seconds(0), max_start_time=Seconds(0), skyline=skyline ), task_b: RightBasedMetadata( min_start_time=Seconds(0), max_start_time=Seconds(0), skyline=reflected_sykline ) } res = schedule_tasks(pool, granularity=Seconds(1), max_size=3) self.assertIn( res, [ { task_a: Seconds(0), task_b: Seconds(0), }, ] ) # these two skylines cannot be partially stacked def test_back_to_back(self) -> None: skyline = [ SkylineBlock(Seconds(1), 1), SkylineBlock(Seconds(1), 2), ] task_a = UniqueTask("first", Seconds(0)) task_b = UniqueTask("second", Seconds(0)) pool = { task_a: RightBasedMetadata( min_start_time=Seconds(0), max_start_time=Seconds(1), skyline=skyline ), task_b: RightBasedMetadata( min_start_time=Seconds(0), max_start_time=Seconds(1), skyline=skyline ) } res = schedule_tasks(pool, granularity=Seconds(1), max_size=3) self.assertIn( res, [ { task_a: Seconds(0), task_b: Seconds(1), }, { task_a: Seconds(1), task_b: Seconds(0), }, ] ) class Infeasible(unittest.TestCase): def test_infeasible_simple(self) -> None: skyline = [SkylineBlock(Seconds(1), 1)] task_a = UniqueTask("task_a", Seconds(0)) task_b = UniqueTask("task_b", Seconds(0)) pool = { task_a: RightBasedMetadata( min_start_time=Seconds(0), max_start_time=Seconds(0), skyline=skyline, ), task_b: RightBasedMetadata( min_start_time=Seconds(0), max_start_time=Seconds(0), skyline=skyline, ), } res = schedule_tasks(pool, granularity=Seconds(1), max_size=1) self.assertIn( res, [ { task_a: Seconds(0), }, { task_b: Seconds(0), }, ], ) def test_infesible_complex(self) -> None: skyline = [SkylineBlock(Seconds(1), 1)] start_at_9a = UniqueTask("start_at_9a", Seconds(0)) start_at_9b = UniqueTask("start_at_9b", Seconds(0)) start_whenever = UniqueTask("start_whenever", Seconds(0)) start_between_8_and_10 = UniqueTask("start_between_8_and_10", Seconds(0)) pool = { start_at_9a: RightBasedMetadata( min_start_time=Seconds(9), max_start_time=Seconds(9), skyline=skyline, ), start_at_9b: RightBasedMetadata( min_start_time=Seconds(9), max_start_time=Seconds(9), skyline=skyline, ), start_whenever: RightBasedMetadata( min_start_time=Seconds(0), max_start_time=Seconds(10), skyline=skyline, ), start_between_8_and_10: RightBasedMetadata( min_start_time=Seconds(8), max_start_time=Seconds(10), skyline=skyline, ), } res = schedule_tasks(pool, granularity=Seconds(1), max_size=1) self.assertIn( res, [ { start_between_8_and_10: Seconds(10), start_at_9a: Seconds(9), start_whenever: Seconds(8), }, { start_between_8_and_10: Seconds(10), start_at_9b: Seconds(9), start_whenever: Seconds(8), }, ], )
Clockwork-main
algorithm/tests/test_right_based.py
#!/usr/bin/self.env python3 # pyre-strict # pyre-ignore-all-errors[29] # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from __future__ import annotations from enum import Enum from datetime import timedelta class TimeInterval(object): def __init__(self, value: int, unit: TimeUnit) -> None: self._time = timedelta(seconds=0) self._set_time(int(value), unit) @property def seconds(self) -> int: return self.get_time_scalar(TimeUnit.SECONDS) @property def minutes(self) -> int: return self.get_time_scalar(TimeUnit.MINUTES) @property def hours(self) -> int: return self.get_time_scalar(TimeUnit.HOURS) @property def days(self) -> int: return self.get_time_scalar(TimeUnit.DAYS) def get_time_scalar(self, unit: TimeUnit) -> int: return int(self._time.total_seconds()) // self._seconds_to_multiple(unit) def rescale(self, output_unit: TimeUnit) -> TimeInterval: return TimeInterval(self.get_time_scalar(output_unit), output_unit) def __repr__(self) -> str: return str(self._time) def __eq__(self, other: TimeInterval) -> bool: return other._time == self._time def __lt__(self, other: TimeInterval) -> bool: return self._time < other._time def __le__(self, other: TimeInterval) -> bool: return self._time <= other._time def __gt__(self, other: TimeInterval) -> bool: return self._time > other._time def __add__(self, other: TimeInterval) -> TimeInterval: total_time_delta = self._time + other._time total_seconds = int(total_time_delta.total_seconds()) return TimeInterval(total_seconds, TimeUnit.SECONDS) def __sub__(self, other: TimeInterval) -> TimeInterval: if other._time > self._time: raise InvalidTimeAmount( "{} - {} results in negative time. Use the timedelta class.", self, other, ) total_time_delta = self._time - other._time total_seconds = int(total_time_delta.total_seconds()) return TimeInterval(total_seconds, TimeUnit.SECONDS) def __hash__(self) -> int: return self.seconds def _seconds_to_multiple(self, unit: TimeUnit) -> int: if unit == TimeUnit.SECONDS: return 1 if unit == TimeUnit.MINUTES: return 60 if unit == TimeUnit.HOURS: return 3600 elif unit == TimeUnit.DAYS: return 3600 * 24 else: raise NotImplementedError('Programmer failed to add a enum option.') def _set_time(self, value: int, unit: TimeUnit) -> None: if value < 0: raise InvalidTimeAmount( "Invalid input " + str(value) + " time is negative." ) if unit == TimeUnit.SECONDS: self._time = timedelta(seconds=value) elif unit == TimeUnit.MINUTES: self._time = timedelta(minutes=value) elif unit == TimeUnit.HOURS: self._time = timedelta(hours=value) elif unit == TimeUnit.DAYS: self._time = timedelta(days=value) else: raise NotImplementedError('Programmer failed to add a enum option.') class Seconds(TimeInterval): def __init__(self, seconds: int) -> None: super().__init__(seconds, TimeUnit.SECONDS) class Minutes(TimeInterval): def __init__(self, minutes: int) -> None: super().__init__(minutes, TimeUnit.MINUTES) class Hours(TimeInterval): def __init__(self, hours: int) -> None: super().__init__(hours, TimeUnit.HOURS) class Days(TimeInterval): def __init__(self, days: int) -> None: super().__init__(days, TimeUnit.DAYS) class TimeUnit(Enum): SECONDS = 's' MINUTES = 'm' HOURS = 'hr' DAYS = 'd' class InvalidTimeAmount(Exception): pass
Clockwork-main
common/time_interval.py
#!/usr/bin/self.env python3 # pyre-strict # pyre-ignore-all-errors[29] # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from __future__ import annotations from enum import Enum from typing import Union class Memory(object): def __init__(self, value: Union[float, int], unit: MemoryUnit) -> None: self._set_bytes(value, unit) @property def B(self) -> int: return self.get_memory_scalar(MemoryUnit.B) @property def KB(self) -> int: return self.get_memory_scalar(MemoryUnit.KB) @property def MB(self) -> int: return self.get_memory_scalar(MemoryUnit.MB) @property def GB(self) -> int: return self.get_memory_scalar(MemoryUnit.GB) @property def TB(self) -> int: return self.get_memory_scalar(MemoryUnit.TB) def get_memory_scalar(self, unit: MemoryUnit) -> int: return self._bytes // self._base_unit_multiple(unit) def rescale(self, output_unit: MemoryUnit) -> Memory: return Memory(self.get_memory_scalar(output_unit), output_unit) def get_mem_str(self, unit: MemoryUnit) -> str: return str(self.get_memory_scalar(unit)) + unit.value def __repr__(self) -> str: if self.B >= 1024 ** 4: return self.get_mem_str(unit=MemoryUnit.GB) elif self.B >= 1024 ** 3: return self.get_mem_str(unit=MemoryUnit.MB) elif self.B >= 1024 ** 2: return self.get_mem_str(unit=MemoryUnit.KB) return self.get_mem_str(unit=MemoryUnit.B) def __bool__(self) -> bool: return self > B(0) def __eq__(self, other: Memory) -> bool: return self.B == other.B def __lt__(self, other: Memory) -> bool: return self.B < other.B def __le__(self, other: Memory) -> bool: return self.B <= other.B def __gt__(self, other: Memory) -> bool: return self.B > other.B def __ge__(self, other: Memory) -> bool: return self.B >= other.B def __add__(self, other: Memory) -> Memory: return Memory(other.B + self.B, MemoryUnit.B) def __mul__(self, other: Union[float, int]) -> Memory: return Memory(other * self.B, MemoryUnit.B) def __rmul__(self, other: Union[float, int]) -> Memory: return self * other def __sub__(self, other: Memory) -> Memory: if other.B > self.B: raise InvalidMemoryAmount(f"{self} - {other} results in negative memory.") return Memory(self.B - other.B, MemoryUnit.B) def _set_bytes(self, value: Union[float, int], input_unit: MemoryUnit) -> None: if value < 0: raise InvalidMemoryAmount("Memory must always be positive.") elif value in {float("inf"), float("NaN"), float("-inf")}: raise InvalidMemoryAmount(f"Memory must be real: {value}") self._bytes = int(value * self._base_unit_multiple(input_unit)) def _base_unit_multiple(self, unit: MemoryUnit) -> int: if unit == MemoryUnit.B: return 1 elif unit == MemoryUnit.KB: return 1024 elif unit == MemoryUnit.MB: return 1024 ** 2 elif unit == MemoryUnit.GB: return 1024 ** 3 elif unit == MemoryUnit.TB: return 1024 ** 4 else: raise NotImplementedError("Programmer failed to add a enum option.") class B(Memory): def __init__(self, B: Union[float, int]) -> None: super().__init__(B, MemoryUnit.B) class KB(Memory): def __init__(self, KB: Union[float, int]) -> None: super().__init__(KB, MemoryUnit.KB) class MB(Memory): def __init__(self, MB: Union[float, int]) -> None: super().__init__(MB, MemoryUnit.MB) class GB(Memory): def __init__(self, GB: Union[float, int]) -> None: super().__init__(GB, MemoryUnit.GB) class TB(Memory): def __init__(self, TB: Union[float, int]) -> None: super().__init__(TB, MemoryUnit.TB) class TB(Memory): def __init__(self, TB: Union[float, int]) -> None: super().__init__(TB, MemoryUnit.TB) def str_to_memory(mem_repr: str) -> Memory: """ Input Examples: "100mb", "22gb", "8tb", "0", "8.5 TB" """ mem_repr = mem_repr.upper().strip() if mem_repr == "0": return Memory(0, unit=MemoryUnit.B) units = [ MemoryUnit.TB, MemoryUnit.GB, MemoryUnit.MB, MemoryUnit.KB, MemoryUnit.B, # Bytes must go last, b/c every other unit ends in B ] for unit in units: if mem_repr.endswith(unit.value): try: digit = mem_repr[: -len(unit.value)].strip() value = float(digit) except ValueError: raise InvalidMemoryInput(f"Memory value is not a number: {digit}") return Memory(value, unit) raise InvalidMemoryInput(f"Invalid memory units. Input: {mem_repr}") class MemoryUnit(Enum): B = "B" KB = "KB" MB = "MB" GB = "GB" TB = "TB" class InvalidMemoryAmount(ValueError): pass class InvalidMemoryInput(ValueError): pass
Clockwork-main
common/memory.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import operator from dataclasses import dataclass from typing import Callable, Dict, Generator, List from common.time_interval import Seconds, TimeInterval @dataclass class SkylineBlock: duration: TimeInterval size: float def __post_init__(self): assert self.size >= 0, "Skyline size must be positive" class SkylineBoundsExceeded(Exception): pass class SkylineTracker: """ This abstraction represents a global skyline of jobs that have been scheduled to run at particular points in time. This abstraction implicitly expects non-negative values for all SkylineBlocks (i.e. the allowable range of a skyline is bounded by zero_baseline and max_size). Any operation that exceeds these bounds will raise an SkylineBoundsExceeded error """ def __init__(self, granularity: TimeInterval, max_size: float) -> None: self._granularity = granularity self._max_size = max_size self.time_series: Dict[TimeInterval, float] = {} @property def granularity(self) -> TimeInterval: return self._granularity def can_add(self, start_time: TimeInterval, blocks: List[SkylineBlock]) -> bool: try: self._get_updated_time_series(start_time, blocks, operator.add) return True except Exception: return False def can_remove(self, start_time: TimeInterval, blocks: List[SkylineBlock]) -> bool: try: self._get_updated_time_series(start_time, blocks, operator.sub) return True except Exception: return False def add_job(self, start_time: TimeInterval, blocks: List[SkylineBlock]) -> None: self.time_series = self._get_updated_time_series( start_time, blocks, operator.add ) def remove_job(self, start_time: TimeInterval, blocks: List[SkylineBlock]) -> None: self.time_series = self._get_updated_time_series( start_time, blocks, operator.sub ) def _get_updated_time_series( self, start_time: TimeInterval, blocks: List[SkylineBlock], op: Callable[[float, float], float], ) -> Dict[TimeInterval, float]: return self._merge_time_series( self.time_series, self._make_time_series(start_time, blocks), op ) def _merge_time_series( self, series_a: Dict[TimeInterval, float], series_b: Dict[TimeInterval, float], op: Callable[[float, float], float], ) -> Dict[TimeInterval, float]: all_times = set(series_a.keys()).union(series_b) new_time_series = {} for time in all_times: new_size = op(series_a.get(time, 0), series_b.get(time, 0)) new_time_series[time] = new_size if not (0 <= new_size <= self._max_size): raise SkylineBoundsExceeded() return new_time_series def _make_time_series( self, start_time: TimeInterval, blocks: List[SkylineBlock] ) -> Dict[TimeInterval, float]: time = start_time block_to_time_bins = [] for block in blocks: start = self._bin(time) inclusive_end = self._bin(time + block.duration - Seconds(1)) bins = list( self._time_range(start, inclusive_end, self.granularity, inclusive=True) ) block_to_time_bins.append((block, bins)) time += block.duration time_series = {} for block, bins in block_to_time_bins: for t_bin in bins: time_series[t_bin] = max(time_series.get(t_bin, 0), block.size) return time_series def _bin(self, time: TimeInterval) -> TimeInterval: return Seconds( (time.seconds // self._granularity.seconds) * self._granularity.seconds ) def _time_range( self, start: TimeInterval, end: TimeInterval, step: TimeInterval, inclusive: bool = False, ) -> Generator[TimeInterval, None, None]: time = start while time < end or (inclusive and time == end): yield time time += step
Clockwork-main
common/skyline_math.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree.
Clockwork-main
common/__init__.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from __future__ import annotations from dataclasses import dataclass from typing import Dict, FrozenSet from common.timestamp import Timestamp from common.time_interval import Days, Seconds __ALL__ = ["TaskInstance", "UnixtimeAssignments"] @dataclass class TaskInstance: task_id: str period_id: Timestamp def __hash__(self) -> int: # Note, the existence of __hash__ implies that TaskInstances # should always be immutable return hash((self.task_id, self.period_id.unixtime)) def __eq__(self, other: TaskInstance) -> bool: return (self.task_id == other.task_id) and (self.period_id == other.period_id) @property def unique_task(self) -> UniqueTask: return UniqueTask( self.task_id, Seconds((self.period_id - self.period_id.midnight).seconds), ) @dataclass class UniqueTask: task_id: str offset: Seconds def __post_init__(self) -> None: if self.offset >= Days(1): raise ValueError( f'A unique task offset: {self.offset.seconds} greater than a day makes no sense.' ) def __hash__(self) -> int: # Note, the existence of __hash__ implies that UniqueTask # should always be immutable return hash((self.task_id, self.offset.seconds)) UnixtimeAssignments = Dict[TaskInstance, Timestamp] UnscheduledTasks = FrozenSet[TaskInstance]
Clockwork-main
common/data_types.py
#!/usr/bin/env python3 # pyre-strict # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from __future__ import annotations import datetime import time from typing import Any, overload import sys from common.time_interval import Days, Seconds, TimeInterval __ALL__ = [ "Timestamp", "Now", "TwentyFourHoursFromNow", "MidnightToday", "TimeZero", ] # This is only used for Printing the str representation of a timestamp class Timestamp(object): def __init__(self, unixtime: int) -> None: if unixtime < 0: raise InvalidTime(f"Unixtime cannot be negative: {unixtime}") elif unixtime > 32503680000: raise InvalidTime(f"Unixtime greater year 3000: {unixtime}") self._time = int(unixtime) @property def midnight(self) -> int: """ For this example code we will assume midnight is 0 """ return Timestamp(0) @property def unixtime(self) -> int: return self._time @property def ds(self) -> str: return self._localized_time().strftime("%Y-%m-%d") def _to_str(self) -> str: if self.unixtime < 100_000: # useful for testing return f"Timestamp({self.unixtime})" return self._localized_time().strftime("%Y-%m-%d %H:%M:%S %Z%z") def __repr__(self) -> str: return self._to_str() def __hash__(self) -> int: return hash(self.unixtime) def __eq__(self, other: Timestamp) -> bool: return self.unixtime == other.unixtime def __lt__(self, other: Timestamp) -> bool: return self.unixtime < other.unixtime def __le__(self, other: Timestamp) -> bool: return self.unixtime <= other.unixtime def __gt__(self, other: Timestamp) -> bool: return self.unixtime > other.unixtime def __ge__(self, other: Timestamp) -> bool: return self.unixtime >= other.unixtime def __add__(self, other: TimeInterval) -> Timestamp: return Timestamp(self.unixtime + other.seconds) def __radd__(self, other: TimeInterval) -> Timestamp: return Timestamp(self.unixtime + other.seconds) @overload def __sub__(self, other: TimeInterval) -> Timestamp: pass @overload def __sub__(self, other: Timestamp) -> TimeInterval: pass def __sub__(self, other): # pyre-fixme if isinstance(other, Timestamp): return Seconds(self.unixtime - other.unixtime) else: return Timestamp(self.unixtime - other.seconds) def __hash__(self) -> int: return self.unixtime class TimeZero(Timestamp): """ Jan 1st 1970 Midnight UTC """ def __init__(self) -> None: super().__init__(0) class InvalidTime(Exception): pass
Clockwork-main
common/timestamp.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import subprocess import sys from setuptools import setup, find_packages, Extension from setuptools import Extension, find_packages, setup if sys.version_info < (3, 6): sys.exit("Sorry, Python >= 3.6 is required for fairseq.") def write_version_py(): with open(os.path.join("fairseq", "version.txt")) as f: version = f.read().strip() # append latest commit hash to version string try: sha = ( subprocess.check_output(["git", "rev-parse", "HEAD"]) .decode("ascii") .strip() ) version += "+" + sha[:7] except Exception: pass # write version info to fairseq/version.py with open(os.path.join("fairseq", "version.py"), "w") as f: f.write('__version__ = "{}"\n'.format(version)) return version version = write_version_py() with open("README.md") as f: readme = f.read() if sys.platform == "darwin": extra_compile_args = ["-stdlib=libc++", "-O3"] else: extra_compile_args = ["-std=c++11", "-O3"] class NumpyExtension(Extension): """Source: https://stackoverflow.com/a/54128391""" def __init__(self, *args, **kwargs): self.__include_dirs = [] super().__init__(*args, **kwargs) @property def include_dirs(self): import numpy return self.__include_dirs + [numpy.get_include()] @include_dirs.setter def include_dirs(self, dirs): self.__include_dirs = dirs extensions = [ Extension( "fairseq.libbleu", sources=[ "fairseq/clib/libbleu/libbleu.cpp", "fairseq/clib/libbleu/module.cpp", ], extra_compile_args=extra_compile_args, ), NumpyExtension( "fairseq.data.data_utils_fast", sources=["fairseq/data/data_utils_fast.pyx"], language="c++", extra_compile_args=extra_compile_args, ), NumpyExtension( "fairseq.data.token_block_utils_fast", sources=["fairseq/data/token_block_utils_fast.pyx"], language="c++", extra_compile_args=extra_compile_args, ), ] cmdclass = {} try: # torch is not available when generating docs from torch.utils import cpp_extension extensions.extend( [ cpp_extension.CppExtension( "fairseq.libbase", sources=[ "fairseq/clib/libbase/balanced_assignment.cpp", ], ) ] ) # extensions.extend( # [ # cpp_extension.CppExtension( # "fairseq.libnat", # sources=[ # "fairseq/clib/libnat/edit_dist.cpp", # ], # ) # ] # ) if "CUDA_HOME" in os.environ: extensions.extend( [ # cpp_extension.CppExtension( # "fairseq.libnat_cuda", # sources=[ # "fairseq/clib/libnat_cuda/edit_dist.cu", # "fairseq/clib/libnat_cuda/binding.cpp", # ], # ), cpp_extension.CppExtension( "fairseq.ngram_repeat_block_cuda", sources=[ "fairseq/clib/cuda/ngram_repeat_block_cuda.cpp", "fairseq/clib/cuda/ngram_repeat_block_cuda_kernel.cu", ], ), ] ) cmdclass["build_ext"] = cpp_extension.BuildExtension except ImportError: pass if "READTHEDOCS" in os.environ: # don't build extensions when generating docs extensions = [] if "build_ext" in cmdclass: del cmdclass["build_ext"] # use CPU build of PyTorch dependency_links = [ "https://download.pytorch.org/whl/cpu/torch-1.7.0%2Bcpu-cp36-cp36m-linux_x86_64.whl" ] else: dependency_links = [] if "clean" in sys.argv[1:]: # Source: https://bit.ly/2NLVsgE print("deleting Cython files...") import subprocess subprocess.run( ["rm -f fairseq/*.so fairseq/**/*.so fairseq/*.pyd fairseq/**/*.pyd"], shell=True, ) extra_packages = [] if os.path.exists(os.path.join("fairseq", "model_parallel", "megatron", "mpu")): extra_packages.append("fairseq.model_parallel.megatron.mpu") def do_setup(package_data): setup( name="fairseq", version=version, description="Facebook AI Research Sequence-to-Sequence Toolkit", url="https://github.com/pytorch/fairseq", classifiers=[ "Intended Audience :: Science/Research", "License :: OSI Approved :: MIT License", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Topic :: Scientific/Engineering :: Artificial Intelligence", ], long_description=readme, long_description_content_type="text/markdown", setup_requires=[ "cython", 'numpy<1.20.0; python_version<"3.7"', 'numpy; python_version>="3.7"', "setuptools>=18.0", ], install_requires=[ "cffi", "cython", 'dataclasses; python_version<"3.7"', "hydra-core>=1.0.7,<1.1", "omegaconf<2.1", 'numpy<1.20.0; python_version<"3.7"', 'numpy; python_version>="3.7"', "regex", "sacrebleu>=1.4.12", # "torch", "tqdm", "bitarray", # "torchaudio>=0.8.0", ], dependency_links=dependency_links, packages=find_packages( exclude=[ "examples", "examples.*", "scripts", "scripts.*", "tests", "tests.*", ] ) + extra_packages, package_data=package_data, ext_modules=extensions, test_suite="tests", entry_points={ "console_scripts": [ "fairseq-eval-lm = fairseq_cli.eval_lm:cli_main", "fairseq-generate = fairseq_cli.generate:cli_main", "fairseq-hydra-train = fairseq_cli.hydra_train:cli_main", "fairseq-interactive = fairseq_cli.interactive:cli_main", "fairseq-preprocess = fairseq_cli.preprocess:cli_main", "fairseq-score = fairseq_cli.score:cli_main", "fairseq-train = fairseq_cli.train:cli_main", "fairseq-validate = fairseq_cli.validate:cli_main", ], }, cmdclass=cmdclass, zip_safe=False, ) def get_files(path, relative_to="fairseq"): all_files = [] for root, _dirs, files in os.walk(path, followlinks=True): root = os.path.relpath(root, relative_to) for file in files: if file.endswith(".pyc"): continue all_files.append(os.path.join(root, file)) return all_files if __name__ == "__main__": try: # symlink examples into fairseq package so package_data accepts them fairseq_examples = os.path.join("fairseq", "examples") if "build_ext" not in sys.argv[1:] and not os.path.exists(fairseq_examples): os.symlink(os.path.join("..", "examples"), fairseq_examples) package_data = { "fairseq": ( get_files(fairseq_examples) + get_files(os.path.join("fairseq", "config")) ) } do_setup(package_data) finally: if "build_ext" not in sys.argv[1:] and os.path.islink(fairseq_examples): os.unlink(fairseq_examples)
bart_ls-main
fairseq-py/setup.py
#!/usr/bin/env python3 -u # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Legacy entry point. Use fairseq_cli/train.py or fairseq-train instead. """ from fairseq_cli.train import cli_main if __name__ == "__main__": cli_main()
bart_ls-main
fairseq-py/train.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """isort:skip_file""" import functools import importlib dependencies = [ "dataclasses", "hydra", "numpy", "omegaconf", "regex", "requests", "torch", ] # Check for required dependencies and raise a RuntimeError if any are missing. missing_deps = [] for dep in dependencies: try: importlib.import_module(dep) except ImportError: # Hack: the hydra package is provided under the "hydra-core" name in # pypi. We don't want the user mistakenly calling `pip install hydra` # since that will install an unrelated package. if dep == "hydra": dep = "hydra-core" missing_deps.append(dep) if len(missing_deps) > 0: raise RuntimeError("Missing dependencies: {}".format(", ".join(missing_deps))) # only do fairseq imports after checking for dependencies from fairseq.hub_utils import ( # noqa; noqa BPEHubInterface as bpe, TokenizerHubInterface as tokenizer, ) from fairseq.models import MODEL_REGISTRY # noqa # torch.hub doesn't build Cython components, so if they are not found then try # to build them here try: import fairseq.data.token_block_utils_fast # noqa except ImportError: try: import cython # noqa import os from setuptools import sandbox sandbox.run_setup( os.path.join(os.path.dirname(__file__), "setup.py"), ["build_ext", "--inplace"], ) except ImportError: print( "Unable to build Cython components. Please make sure Cython is " "installed if the torch.hub model you are loading depends on it." ) # automatically expose models defined in FairseqModel::hub_models for _model_type, _cls in MODEL_REGISTRY.items(): for model_name in _cls.hub_models().keys(): globals()[model_name] = functools.partial( _cls.from_pretrained, model_name, )
bart_ls-main
fairseq-py/hubconf.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. #!/usr/bin/env python from fb_sweep import sweep from fb_sweep.sweep import hyperparam """ python fb_sweep/sweep_model_denoising_easy_mask.py -p md_joint_g512 \ -d /fsx/xwhan/data/pretrain_corpus/long \ -g 8 -n 8 -t -1 --partition a100 --checkpoints-dir /checkpoints/xwhan/model_denoising --resume-failed --no-wandb """ def get_grid(args): grid = [] total_num_udpates = 100000 warmup_updates = 500 num_data_loaders = 4 arch = "loco_variant_large" task = "model_based_denoising" criterion = "model_based_denoising" adam_eps = 1e-06 weight_decay = 0.01 lr = 3e-5 update_freq = 1 grid += [ hyperparam( "--restore-file", "/data/home/xwhan/fairseq-py/checkpoints/local_large_v0/model.pt", # "/checkpoints/xwhan/model_denoising/md_fixf_512.loco_large.ms8192.ts8192.mt1024.uf2.mu100000.brk_complete.dr0.1.atdr0.1.actdr0.0.wd0.01.bsz1.adam.beta9999.eps1e-06.clip0.1.s42.lr3e-05.warm500.memfp16.sample0.2.noise0.1.ngpu64/checkpoint_last.pt" # "/data/home/xwhan/fairseq-py/checkpoints/local_large_v0/model.pt", # "/data/home/xwhan/fairseq-py/checkpoints/loco_scratch_roberta/model.pt", # "/checkpoints/xwhan/model_denoising/model_denoisng_joint.loco_large.ms8192.ts8192.mt1024.uf1.mu100000.brk_complete.dr0.1.atdr0.1.actdr0.0.wd0.01.bsz4.adam.beta9999.eps1e-06.clip0.1.s42.lr3e-05.warm500.memfp16.sample0.2.noise0.1.ngpu32/checkpoint_last.pt" # "/data/home/xwhan/fairseq-py/checkpoints/local_large_v0/model.pt", ), ] # model settings grid += [ hyperparam("--arch", arch, save_dir_key=lambda val: val), hyperparam("--task", task), hyperparam("--criterion", criterion), hyperparam("--use-xformers"), hyperparam("--attention-name", "bs_local"), hyperparam("--xformer-config", '{"block_size": 1024, "max_seq_len": 8192}'), hyperparam("--generator-xformer-config", '{"block_size": 512, "max_seq_len": 8192}'), hyperparam("--train-subset", "train" if not args.local else "valid"), hyperparam("--train-generator"), hyperparam("--easy-span-ops", ['sample'], save_dir_key=lambda val: f"sm_{val}"), ] grid += [ hyperparam("--max-source-positions", 8192, save_dir_key=lambda val: f"ms{val}"), hyperparam("--tokens-per-sample", 8192, save_dir_key=lambda val: f"ts{val}"), hyperparam("--max-target-positions", 1024, save_dir_key=lambda val: f"mt{val}"), hyperparam("--update-freq", update_freq, save_dir_key=lambda val: f"uf{val}"), hyperparam( "--max-update", total_num_udpates, save_dir_key=lambda val: f"mu{val}" ), hyperparam("--required-batch-size-multiple", 1), hyperparam( "--sample-break-mode", ["complete"], save_dir_key=lambda val: f"brk_{val}" ), ] # regularization grid += [ hyperparam("--dropout", 0.1, save_dir_key=lambda val: f"dr{val}"), hyperparam("--attention-dropout", 0.1, save_dir_key=lambda val: f"atdr{val}"), hyperparam("--relu-dropout", 0.0, save_dir_key=lambda val: f"actdr{val}"), hyperparam("--weight-decay", weight_decay, save_dir_key=lambda val: f"wd{val}"), ] # optimization settings grid += [ hyperparam("--batch-size", 4, save_dir_key=lambda val: f"bsz{val}"), hyperparam("--optimizer", "adam", save_dir_key=lambda val: val), hyperparam("--adam-betas", "(0.9, 0.98)", save_dir_key=lambda val: "beta9999"), hyperparam("--adam-eps", adam_eps, save_dir_key=lambda val: f"eps{val}"), hyperparam("--clip-norm", 0.1, save_dir_key=lambda val: f"clip{val}"), hyperparam("--checkpoint-activations"), ] # lr scheduler grid += [ hyperparam("--seed", 42, save_dir_key=lambda val: f"s{val}"), hyperparam("--lr-scheduler", "polynomial_decay"), hyperparam("--lr", lr, save_dir_key=lambda val: f"lr{val}"), hyperparam("--total-num-update", total_num_udpates), hyperparam( "--warmup-updates", warmup_updates, save_dir_key=lambda val: f"warm{val}" ), ] grid += [ hyperparam("--memory-efficient-fp16", save_dir_key=lambda val: "memfp16"), ] # data loading settings grid += [ hyperparam("--num-workers", num_data_loaders), ] # validation and checkpoint settings grid += [ hyperparam("--no-epoch-checkpoints"), hyperparam("--reset-meters"), hyperparam("--reset-optimizer"), hyperparam("--reset-dataloader"), ] grid += [ hyperparam("--share-all-embeddings"), hyperparam("--layernorm-embedding"), hyperparam("--share-decoder-input-output-embed"), ] # logging settings grid += [ hyperparam("--skip-invalid-size-inputs-valid-test"), hyperparam("--log-format", "json"), hyperparam("--log-interval", 10), hyperparam("--combine-val"), hyperparam("--save-interval-updates", 10000), ] grid += [ hyperparam("--sample-ratio", 0.2, save_dir_key=lambda val: f"sample{val}"), hyperparam("--noise-density", 0.1, save_dir_key=lambda val: f"noise{val}"), ] if args.local: grid += [ hyperparam("--log-format", "json"), hyperparam("--log-interval", 10), ] return grid def postprocess_hyperparams(args, config): """Postprocess a given hyperparameter configuration.""" pass if __name__ == "__main__": sweep.main(get_grid, postprocess_hyperparams)
bart_ls-main
fairseq-py/fb_sweep/sweep_model_denoising_easy_mask.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. #!/usr/bin/env python """ Usage: ./fb_sweep/sweep_lm_wikitext103_transformer_xl.py \ -d ~myleott/data/data-bin/wikitext-103/ \ -p wt103.transformer_xl \ -t 1 -g 4 \ --snapshot-code --snapshot-recurse-dirs fairseq,fairseq_cli,examples/truncated_bptt \ --constraint volta32gb --partition dev """ import sweep from sweep import hyperparam def get_grid(args): target_batch_size = 60 max_batch_size_on_v100 = 15 num_gpus = args.num_gpus * args.num_nodes batch_size_per_gpu = min(max_batch_size_on_v100, target_batch_size // num_gpus) update_freq = target_batch_size // (batch_size_per_gpu * num_gpus) assert target_batch_size == update_freq * batch_size_per_gpu * num_gpus return [ hyperparam("--fp16", save_dir_key=lambda val: "fp16"), hyperparam("--max-update", 200000), hyperparam("--user-dir", "examples/truncated_bptt"), hyperparam("--task", "truncated_bptt_lm"), hyperparam("--tokens-per-sample", 150), hyperparam("--arch", "transformer_xl", save_dir_key=lambda val: val), hyperparam("--n-layer", 16), hyperparam("--d-model", 410), hyperparam("--n-head", 10), hyperparam("--d-head", 41), hyperparam("--d-inner", 2100), hyperparam("--dropout", 0.1), hyperparam("--dropatt", 0.0), hyperparam("--mem-len", 150), hyperparam("--optimizer", "adam", save_dir_key=lambda val: val), hyperparam("--clip-norm", 0.25, save_dir_key=lambda val: f"cl{val}"), hyperparam("--lr-scheduler", "cosine", save_dir_key=lambda val: val), hyperparam("--warmup-updates", 0), hyperparam("--lr", 0.00025, save_dir_key=lambda val: f"lr{val}"), hyperparam("--batch-size", batch_size_per_gpu), hyperparam("--update-freq", update_freq), hyperparam("--seed", [2], save_dir_key=lambda val: f"s{val}"), hyperparam("--log-format", "json"), hyperparam("--log-interval", 25 if not args.local else 1), ] def postprocess_hyperparams(args, config): """Postprocess a given hyperparameter configuration.""" pass if __name__ == "__main__": sweep.main(get_grid, postprocess_hyperparams)
bart_ls-main
fairseq-py/fb_sweep/sweep_lm_wikitext103_transformer_xl.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. #!/usr/bin/env python """ Usage: ./fb_sweep/apdative_span_sweep.py\ -d ~daju/data/enwik8/eos-data-bin/ \ -p enwiki8.adaptivespan \ -t 1 -g 4 \ --snapshot-code --snapshot-recurse-dirs fairseq,fairseq_cli,examples/truncated_bptt \ --constraint volta32gb --partition dev """ import sweep from sweep import hyperparam def get_grid(args): target_batch_size = 64 # max_batch_size_on_v100 = 16 num_gpus = args.num_gpus * args.num_nodes batch_size_per_gpu = target_batch_size // num_gpus update_freq = target_batch_size // (batch_size_per_gpu * num_gpus) assert target_batch_size == update_freq * batch_size_per_gpu * num_gpus return [ hyperparam("--fp16", save_dir_key=lambda val: "fp16"), hyperparam("--fp16-no-flatten-grads"), hyperparam("--max-update", 600000), hyperparam("--user-dir", "examples/adaptive_span"), hyperparam("--task", "truncated_bptt_lm"), hyperparam("--tokens-per-sample", 512), hyperparam("--arch", "adaptive_span", save_dir_key=lambda val: val), hyperparam("--n-layer", 12), hyperparam("--d-model", 512), hyperparam("--n-head", 8), hyperparam("--d-inner", 2048), hyperparam("--dropout", 0.3), hyperparam("--attn-span", 8192), hyperparam( "--optimizer", "adagrad_with_grad_clip", save_dir_key=lambda val: val ), hyperparam("--adagrad-clip", 0.03, save_dir_key=lambda val: f"ag_cl{val}"), hyperparam("--validate-interval-updates", 1000), hyperparam("--save-interval-updates", 1000), hyperparam("--lr-scheduler", "fixed", save_dir_key=lambda val: val), hyperparam("--warmup-updates", [32000], save_dir_key=lambda val: f"wu{val}",), hyperparam("--batch-size-valid", batch_size_per_gpu * 2), hyperparam("--lr", [0.07], save_dir_key=lambda val: f"lr{val}"), hyperparam("--criterion", "adaptive_span_loss"), hyperparam("--batch-size", batch_size_per_gpu), hyperparam("--update-freq", update_freq), hyperparam("--seed", [2], save_dir_key=lambda val: f"s{val}"), hyperparam("--log-format", "json"), hyperparam("--log-interval", 25 if not args.local else 1), hyperparam( "--aux-loss-scaler", [0.0000005], save_dir_key=lambda val: f"loss{val}", ), ] def postprocess_hyperparams(args, config): """Postprocess a given hyperparameter configuration.""" pass if __name__ == "__main__": sweep.main(get_grid, postprocess_hyperparams)
bart_ls-main
fairseq-py/fb_sweep/sweep_adaptive_span.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. #!/usr/bin/env python import sweep from sweep import hyperparam def get_grid(args): grid = [] total_num_udpates = 20000 warmup_updates = 500 num_data_loaders = 4 arch = "bart_large" task = "translation" criterion = "label_smoothed_cross_entropy" adam_eps = 1e-08 weight_decay = 0.01 update_freq = 4 if args.num_nodes == 1 else 1 grid += [ hyperparam( "--restore-file", "/private/home/namangoyal/src/fairseq_denoising_codepush/fairseq-py/bart.large/model.pt", ) ] # model settings grid += [ hyperparam("--arch", arch, save_dir_key=lambda val: val), hyperparam("--task", task), hyperparam("--criterion", criterion), hyperparam("--source-lang", "source"), hyperparam("--target-lang", "target"), hyperparam("--truncate-source"), hyperparam("--label-smoothing", 0.1, save_dir_key=lambda val: f"ls{val}"), ] grid += [ hyperparam("--max-tokens", 2048, save_dir_key=lambda val: f"mt{val}"), hyperparam("--update-freq", update_freq, save_dir_key=lambda val: f"uf{val}"), hyperparam( "--max-update", total_num_udpates, save_dir_key=lambda val: f"mu{val}" ), hyperparam("--required-batch-size-multiple", 1), ] # regularization grid += [ hyperparam("--dropout", 0.1, save_dir_key=lambda val: f"dr{val}"), hyperparam("--attention-dropout", 0.1, save_dir_key=lambda val: f"atdr{val}"), hyperparam("--relu-dropout", 0.0, save_dir_key=lambda val: f"actdr{val}"), hyperparam("--weight-decay", weight_decay, save_dir_key=lambda val: f"wd{val}"), ] # optimization settings grid += [ hyperparam("--optimizer", "adam", save_dir_key=lambda val: val), hyperparam("--adam-betas", "(0.9, 0.999)", save_dir_key=lambda val: "beta9999"), hyperparam("--adam-eps", adam_eps, save_dir_key=lambda val: f"eps{val}"), hyperparam("--clip-norm", 0.1, save_dir_key=lambda val: f"clip{val}"), ] # lr scheduler grid += [ hyperparam("--lr-scheduler", "polynomial_decay"), hyperparam("--lr", 3e-05, save_dir_key=lambda val: f"lr{val}"), hyperparam("--total-num-update", total_num_udpates), hyperparam( "--warmup-updates", warmup_updates, save_dir_key=lambda val: f"warm{val}" ), ] grid += [ hyperparam("--fp16", save_dir_key=lambda val: "fp16"), ] # data loading settings grid += [ hyperparam("--num-workers", num_data_loaders), ] # validation and checkpoint settings grid += [ # hyperparam("--no-save"), hyperparam("--no-epoch-checkpoints"), hyperparam("--reset-meters"), hyperparam("--reset-optimizer"), ] grid += [ hyperparam("--share-all-embeddings"), hyperparam("--layernorm-embedding"), hyperparam("--share-decoder-input-output-embed"), ] # logging settings grid += [ hyperparam("--skip-invalid-size-inputs-valid-test"), hyperparam("--log-format", "json"), hyperparam("--log-interval", 10), ] if args.local: grid += [ hyperparam("--log-format", "json"), hyperparam("--log-interval", 1), ] return grid def postprocess_hyperparams(args, config): """Postprocess a given hyperparameter configuration.""" pass if __name__ == "__main__": sweep.main(get_grid, postprocess_hyperparams)
bart_ls-main
fairseq-py/fb_sweep/sweep_bart_cnn.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. #!/usr/bin/env python import sweep from sweep import hyperparam def get_grid(args): grid = [] total_num_udpates = 50000 max_epoch = 50 warmup_updates = 10 num_data_loaders = 4 arch = "bart_large" task = "summarization" criterion = "label_smoothed_cross_entropy" adam_eps = 1e-08 weight_decay = 0.01 grid += [ hyperparam( "--restore-file", "/data/home/xwhan/fairseq-py/checkpoints/bart.large.cnn.extended4K-1K/model.pt", ) ] # model settings grid += [ hyperparam("--arch", arch, save_dir_key=lambda val: val), hyperparam("--task", task), hyperparam("--criterion", criterion), hyperparam("--max-source-positions", 4096), hyperparam("--max-target-positions", 1024), hyperparam("--source-lang", "source"), hyperparam("--target-lang", "target"), hyperparam("--truncate-source"), hyperparam("--label-smoothing", 0.1, save_dir_key=lambda val: f"ls{val}"), # hyperparam("--truncate-target"), ] grid += [ hyperparam("--batch-size", 1, save_dir_key=lambda val: f"mt{val}"), hyperparam("--batch-size-valid", 1), hyperparam("--update-freq", [1,2], save_dir_key=lambda val: f"uf{val}"), hyperparam( "--max-epoch", max_epoch, save_dir_key=lambda val: f"me{val}" ), hyperparam("--required-batch-size-multiple", 1), ] # regularization grid += [ hyperparam("--dropout", 0.1, save_dir_key=lambda val: f"dr{val}"), hyperparam("--attention-dropout", 0.1, save_dir_key=lambda val: f"atdr{val}"), hyperparam("--relu-dropout", 0.0, save_dir_key=lambda val: f"actdr{val}"), hyperparam("--weight-decay", weight_decay, save_dir_key=lambda val: f"wd{val}"), ] # optimization settings grid += [ hyperparam("--seed", 42, save_dir_key=lambda val: f"s{val}"), hyperparam("--optimizer", "adam", save_dir_key=lambda val: val), hyperparam("--adam-betas", "(0.9, 0.999)", save_dir_key=lambda val: "beta9999"), hyperparam("--total-num-update", total_num_udpates), hyperparam("--adam-eps", adam_eps, save_dir_key=lambda val: f"eps{val}"), hyperparam("--clip-norm", 0.1, save_dir_key=lambda val: f"clip{val}"), ] # lr scheduler grid += [ hyperparam("--lr-scheduler", "polynomial_decay"), hyperparam("--lr", [3e-5, 5e-6], save_dir_key=lambda val: f"lr{val}"), hyperparam( "--warmup-updates", warmup_updates, save_dir_key=lambda val: f"warm{val}" ), ] grid += [ hyperparam("--fp16", save_dir_key=lambda val: "fp16"), ] # data loading settings grid += [ hyperparam("--num-workers", num_data_loaders), ] # validation and checkpoint settings grid += [ # hyperparam("--no-save"), hyperparam("--no-epoch-checkpoints"), hyperparam("--reset-meters"), hyperparam("--reset-optimizer"), hyperparam("--reset-dataloader"), hyperparam("--validate-interval-updates", 20), hyperparam("--best-checkpoint-metric", "rougel", save_dir_key=lambda val: f"cmetric{val}") ] grid += [ hyperparam("--share-all-embeddings"), hyperparam("--layernorm-embedding"), hyperparam("--share-decoder-input-output-embed"), hyperparam("--find-unused-parameters") ] # logging settings grid += [ hyperparam("--skip-invalid-size-inputs-valid-test"), hyperparam("--maximize-best-checkpoint-metric"), hyperparam("--log-format", "json"), hyperparam("--keep-last-epochs", 1), hyperparam("--log-interval", 10), hyperparam("--eval-rouge"), hyperparam("--eval-rouge-args", '{"beam": 4, "max_len_b": 300, "lenpen": 2.0, "no_repeat_ngram_size": 3}') ] if args.local: grid += [ hyperparam("--log-format", "json"), hyperparam("--log-interval", 1), ] return grid def postprocess_hyperparams(args, config): """Postprocess a given hyperparameter configuration.""" pass if __name__ == "__main__": sweep.main(get_grid, postprocess_hyperparams)
bart_ls-main
fairseq-py/fb_sweep/sweep_ami_icsi.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. #!/usr/bin/env python from fb_sweep import sweep from fb_sweep.sweep import hyperparam def get_grid(args): max_update = 300000 eff_bsz = 512 max_sentences = 2 update_freq = ( 1 if args.local or "test" in args.prefix else int((eff_bsz * 8) / (max_sentences * args.num_nodes * args.num_gpus)) ) save_interval = 2000 warmup_updates = 3000 peak_lr = 1.5e-04 return [ hyperparam( "--train-subset", "train13" if args.local or "test" in args.prefix else "train", ), hyperparam( "--valid-subset", "valid" if args.local or "test" in args.prefix else "valid,valid1,valid2,valid3,valid4", ), hyperparam("--memory-efficient-fp16", save_dir_key=lambda val: "me_fp16"), hyperparam("--num-workers", 2), hyperparam("--model-parallel-size", min(8, args.num_gpus)), hyperparam("--criterion", "vocab_parallel_cross_entropy"), hyperparam("--save-interval-updates", save_interval), hyperparam("--no-epoch-checkpoints"), hyperparam("--task", "language_modeling"), hyperparam("--sample-break-mode", "none", save_dir_key=lambda val: f"bm_{val}"), hyperparam("--tokens-per-sample", 1024, save_dir_key=lambda val: f"tps{val}"), hyperparam( "--arch", "transformer_lm_megatron_big", save_dir_key=lambda val: val ), hyperparam( "--share-decoder-input-output-embed", save_dir_key=lambda val: "share" ), hyperparam("--optimizer", "adam", save_dir_key=lambda val: val), hyperparam("--adam-betas", "(0.9, 0.98)", save_dir_key=lambda val: "b2_0.98"), hyperparam("--adam-eps", 1e-8, save_dir_key=lambda val: f"eps{val}"), hyperparam("--clip-norm", 0.0, save_dir_key=lambda val: f"cl{val}"), hyperparam("--lr-scheduler", "inverse_sqrt"), hyperparam("--lr", peak_lr, save_dir_key=lambda val: f"lr{val}"), hyperparam( "--warmup-updates", warmup_updates, save_dir_key=lambda val: f"wu{val}" ), hyperparam("--weight-decay", 0.01, save_dir_key=lambda val: f"wd{val}"), hyperparam("--dropout", 0.1, save_dir_key=lambda val: f"dr{val}"), hyperparam("--attention-dropout", 0.1, save_dir_key=lambda val: f"atdr{val}"), hyperparam("--batch-size", max_sentences, save_dir_key=lambda val: f"ms{val}"), hyperparam("--required-batch-size-multiple", 1), hyperparam("--update-freq", update_freq, save_dir_key=lambda val: f"uf{val}"), hyperparam("--max-update", max_update, save_dir_key=lambda val: f"mu{val}"), hyperparam("--bucket-cap-mb", "200"), hyperparam("--seed", 1, save_dir_key=lambda val: f"s{val}"), hyperparam("--log-format", "json"), hyperparam("--log-interval", 1), hyperparam("--fast-stat-sync"), ] def postprocess_hyperparams(args, config): """Postprocess a given hyperparameter configuration.""" pass if __name__ == "__main__": sweep.main(get_grid, postprocess_hyperparams)
bart_ls-main
fairseq-py/fb_sweep/sweep_megatron_lm.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. #!/usr/bin/env python import sweep from sweep import hyperparam from sweep_wmt_en2de_transformer_big_common import get_common_grid COMMON_GRID = get_common_grid() def get_grid(args): return COMMON_GRID + [ hyperparam("--optimizer", "adam", save_dir_key=lambda val: val), hyperparam("--distributed-wrapper", "DDP", save_dir_key=lambda val: f"{val}"), ] def postprocess_hyperparams(args, config): """Postprocess a given hyperparameter configuration.""" pass if __name__ == "__main__": sweep.main(get_grid, postprocess_hyperparams)
bart_ls-main
fairseq-py/fb_sweep/sweep_wmt_en2de_transformer_big_ddp.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. #!/usr/bin/env python import sweep from sweep import hyperparam def get_grid(args): max_update = 100000 return [ hyperparam("--train-subset", "train" if not args.local else "valid"), hyperparam("--fp16", save_dir_key=lambda val: "fp16"), # hyperparam('--memory-efficient-fp16', save_dir_key=lambda val: 'me_fp16'), hyperparam("--num-workers", 2), hyperparam("--save-interval-updates", 10000), hyperparam("--no-epoch-checkpoints"), hyperparam("--task", "language_modeling"), hyperparam("--sample-break-mode", "none", save_dir_key=lambda val: f"bm_{val}"), hyperparam("--tokens-per-sample", 1024, save_dir_key=lambda val: f"tps{val}"), # hyperparam('--arch', 'transformer_lm_gpt', save_dir_key=lambda val: val), hyperparam("--arch", "transformer_lm_gpt2_small", save_dir_key=lambda val: val), # hyperparam('--arch', 'transformer_lm_gpt2_medium', save_dir_key=lambda val: val), # hyperparam('--arch', 'transformer_lm_gpt2_big', save_dir_key=lambda val: val), hyperparam( "--share-decoder-input-output-embed", save_dir_key=lambda val: "share" ), hyperparam("--optimizer", "adam", save_dir_key=lambda val: val), hyperparam("--adam-betas", "(0.9, 0.98)", save_dir_key=lambda val: "b2_0.98"), hyperparam("--adam-eps", 1e-8, save_dir_key=lambda val: f"eps{val}"), hyperparam("--clip-norm", 0.0, save_dir_key=lambda val: f"cl{val}"), hyperparam("--lr-scheduler", "polynomial_decay"), hyperparam("--lr", 50e-4, save_dir_key=lambda val: f"lr{val}"), hyperparam("--total-num-update", max_update), hyperparam("--warmup-updates", 10000, save_dir_key=lambda val: f"wu{val}"), hyperparam("--dropout", 0.1, save_dir_key=lambda val: f"dr{val}"), hyperparam("--attention-dropout", 0.1, save_dir_key=lambda val: f"atdr{val}"), hyperparam("--weight-decay", 0.01, save_dir_key=lambda val: f"wd{val}"), hyperparam("--batch-size", 2, save_dir_key=lambda val: f"ms{val}"), hyperparam("--required-batch-size-multiple", 1), hyperparam("--update-freq", 1, save_dir_key=lambda val: f"uf{val}"), hyperparam("--max-update", max_update, save_dir_key=lambda val: f"mu{val}"), hyperparam("--seed", 1, save_dir_key=lambda val: f"s{val}"), hyperparam("--log-format", "json"), hyperparam("--log-interval", 25), ] def postprocess_hyperparams(args, config): """Postprocess a given hyperparameter configuration.""" pass if __name__ == "__main__": sweep.main(get_grid, postprocess_hyperparams)
bart_ls-main
fairseq-py/fb_sweep/sweep_gpt2_lm.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest from agg_results import make_sweep_table, find_common_prefix class TestAggResults(unittest.TestCase): def test_make_sweep_table(self): test_data_glob = "fb_sweep/mock_results/*/*.log" df = make_sweep_table(test_data_glob, log_pattern="valid", interactive=True) # these next two checks break if without removing common prefix from keys assert "valid_ppl" not in df.columns assert "ppl" in df.columns train_inner_df = make_sweep_table( test_data_glob, log_pattern="train_inner", interactive=True ) assert train_inner_df.ppl.notnull().all() train_df = make_sweep_table( test_data_glob, log_pattern="train", interactive=True ) assert train_df.ppl.notnull().all() assert train_df.shape[1] == train_inner_df.shape[1] == 15 def test_find_common_prefix(self): assert find_common_prefix([]) == "" assert find_common_prefix(["train_wall"]) == "" assert find_common_prefix(["train_wall", "train_ppl"]) == "train_" assert find_common_prefix(["train_wall", "train_ppl", "wall"]) == "" assert ( find_common_prefix(["train_wall", "train_ppl", "train_train_wall"]) == "train_" )
bart_ls-main
fairseq-py/fb_sweep/test_agg_results.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. #!/usr/bin/env python import sweep from sweep import hyperparam def get_grid(args): return [ hyperparam("--train-subset", "train" if not args.local else "valid"), hyperparam("--fp16"), # hyperparam('--memory-efficient-fp16', save_dir_key=lambda val: 'me_fp16'), hyperparam("--num-workers", 2), hyperparam("--log-interval", 1), hyperparam("--optimizer", "adam"), hyperparam("--no-epoch-checkpoints"), hyperparam("--no-save"), hyperparam("--task", "dummy_lm", save_dir_key=lambda val: val), hyperparam("--tokens-per-sample", 512), hyperparam("--max-sentences", 2), # hyperparam('--arch', 'transformer_lm_gpt', save_dir_key=lambda val: val), hyperparam("--arch", "transformer_lm_gpt2_tiny"), hyperparam("--log-format", "json"), hyperparam("--max-update", 10), hyperparam("--lr", 3e-4), ] def postprocess_hyperparams(args, config): """Postprocess a given hyperparameter configuration.""" pass if __name__ == "__main__": sweep.main(get_grid, postprocess_hyperparams)
bart_ls-main
fairseq-py/fb_sweep/sweep_dummy_lm.py
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import sweep from sweep import hyperparam PREDIFINED_GRID_FUNCTION = {} def register_grid(name): def register_grid_func(fn): if name not in PREDIFINED_GRID_FUNCTION: PREDIFINED_GRID_FUNCTION[name] = fn return fn return register_grid_func def get_predefined_grid(name): if name not in PREDIFINED_GRID_FUNCTION: return [] else: return PREDIFINED_GRID_FUNCTION[name]() def add_extra_options_func(parser): parser.add_argument("--max-update", help="max update", default=40000) parser.add_argument( "--finetune-from-model", help="finetune from a pretrained model", type=str, default=None, ) parser.add_argument( "--max-tokens", help="max tokens per batch", type=int, default=3584 ) parser.add_argument("--arch", default="transformer") parser.add_argument("--task", default="translation") # equivalent to training on 16x GPUs parser.add_argument("--update-freq", default=4) # use double the default learning rate, since we're using --update-freq=16 # per token learning should be approximately constant; # ideally momentent and 2nd momentent of adam should be adjusted accordingly but less important parser.add_argument("--lr", default=10e-4) parser.add_argument( "--ddp-backend", default=None, ) parser.add_argument( "--source-lang", help="source language for translation", type=str ) parser.add_argument( "--target-lang", help="target language for translation", type=str ) @register_grid("transformer_16_16") def get_transformer_16_16_grid(): return [ hyperparam("--arch", "transformer", save_dir_key=lambda val: val), hyperparam( "--share-all-embeddings", True, binary_flag=True, save_dir_key=lambda val: "shem", ), hyperparam("--encoder-layers", 16, save_dir_key=lambda val: f"ELS{val}"), hyperparam("--decoder-layers", 16, save_dir_key=lambda val: f"DLS{val}"), # this is a multiplier of embed dim hyperparam( "--encoder-ffn-embed-dim", 4 * 1024, save_dir_key=lambda val: f"encffnx{val}", ), hyperparam( "--decoder-ffn-embed-dim", 4 * 1024, save_dir_key=lambda val: f"decffnx{val}", ), hyperparam("--encoder-embed-dim", 1024, save_dir_key=lambda val: f"E{val}"), hyperparam("--decoder-embed-dim", 1024), hyperparam("--encoder-attention-heads", 16, save_dir_key=lambda val: f"H{val}"), hyperparam("--decoder-attention-heads", 16), hyperparam( "--encoder-normalize-before", True, binary_flag=True, save_dir_key=lambda _: "NBF", ), hyperparam("--decoder-normalize-before", True, binary_flag=True), hyperparam("--attention-dropout", 0.1, save_dir_key=lambda val: f"ATTDRP{val}"), hyperparam("--relu-dropout", 0.0, save_dir_key=lambda val: f"RELDRP{val}"), ] @register_grid("mbart_large") def get_transformer_mbart_large_grid(): return [ hyperparam("--arch", "mbart_large", save_dir_key=lambda val: val), hyperparam("--lang-tok-style", "mbart"), hyperparam( "--layernorm-embedding", binary_flag=True, save_dir_key=lambda val: "lnemb" ), hyperparam("--encoder-learned-pos"), hyperparam("--decoder-learned-pos"), hyperparam("--encoder-normalize-before"), hyperparam("--decoder-normalize-before"), hyperparam("--share-all-embeddings"), hyperparam("--share-decoder-input-output-embed"), hyperparam("--attention-dropout", 0.1, save_dir_key=lambda val: f"ATTDRP{val}"), hyperparam("--relu-dropout", 0.0, save_dir_key=lambda val: f"RELDRP{val}"), ] @register_grid("transformer_12_12") def get_transformer_12_12_grid(): return [ hyperparam("--arch", "transformer", save_dir_key=lambda val: val), hyperparam( "--share-all-embeddings", True, binary_flag=True, save_dir_key=lambda val: "shem", ), hyperparam("--encoder-layers", 12, save_dir_key=lambda val: f"ELS{val}"), hyperparam("--decoder-layers", 12, save_dir_key=lambda val: f"DLS{val}"), # this is a multiplier of embed dim hyperparam( "--encoder-ffn-embed-dim", 4 * 1024, save_dir_key=lambda val: f"encffnx{val}", ), hyperparam( "--decoder-ffn-embed-dim", 4 * 1024, save_dir_key=lambda val: f"decffnx{val}", ), hyperparam("--encoder-embed-dim", 1024, save_dir_key=lambda val: f"E{val}"), hyperparam("--decoder-embed-dim", 1024), hyperparam("--encoder-attention-heads", 16, save_dir_key=lambda val: f"H{val}"), hyperparam("--decoder-attention-heads", 16), hyperparam( "--encoder-normalize-before", True, binary_flag=True, save_dir_key=lambda _: "NBF", ), hyperparam("--decoder-normalize-before", True, binary_flag=True), hyperparam("--attention-dropout", 0.1, save_dir_key=lambda val: f"ATTDRP{val}"), hyperparam("--relu-dropout", 0.0, save_dir_key=lambda val: f"RELDRP{val}"), ] def get_grid(args): max_update = args.max_update task = args.task grids = [ hyperparam("--fp16", save_dir_key=lambda val: "fp16"), hyperparam("--max-update", max_update), hyperparam( "--source-lang", args.source_lang, save_dir_key=lambda val: f"@{val}" ), hyperparam( "--target-lang", args.target_lang, save_dir_key=lambda val: f"@{val}" ), hyperparam( "--update-freq", args.update_freq, save_dir_key=lambda val: f"up{val}" ), hyperparam("--task", task), hyperparam( "--share-all-embeddings", [True], binary_flag=True, save_dir_key=lambda val: "shareemb", ), hyperparam("--optimizer", "adam", save_dir_key=lambda val: val), hyperparam( "--adam-betas", "(0.9, 0.98)", save_dir_key=lambda val: "beta0.9,0.98" ), hyperparam("--lr-scheduler", "inverse_sqrt"), hyperparam("--warmup-init-lr", 1e-7, save_dir_key=lambda val: f"initlr{val}"), hyperparam("--warmup-updates", 4000, save_dir_key=lambda val: f"warmup{val}"), hyperparam("--lr", args.lr, save_dir_key=lambda val: f"lr{val}"), hyperparam("--stop-min-lr", 1e-9), hyperparam("--clip-norm", 0.0, save_dir_key=lambda val: f"clip{val}"), hyperparam("--dropout", 0.3, save_dir_key=lambda val: f"drop{val}"), hyperparam("--weight-decay", 0.0, save_dir_key=lambda val: f"wd{val}"), hyperparam("--criterion", "label_smoothed_cross_entropy"), hyperparam("--label-smoothing", 0.1, save_dir_key=lambda val: f"ls{val}"), hyperparam("--seed", [2], save_dir_key=lambda val: f"seed{val}"), hyperparam("--log-format", "json"), hyperparam("--log-interval", 100 if not args.local else 10), ] if args.ddp_backend: grids.append( hyperparam( "--ddp-backend", args.ddp_backend, save_dir_key=lambda val: f"{val}" ) ) if args.max_tokens: grids.append( hyperparam( "--max-tokens", args.max_tokens, save_dir_key=lambda val: f"maxtok{val}" ), ) if args.finetune_from_model: grids.append(hyperparam("--finetune-from-model", args.finetune_from_model)) arch_grid = get_predefined_grid(args.arch) arch_grid = ( arch_grid if arch_grid else [ hyperparam("--arch", args.arch, save_dir_key=lambda val: val), ] ) grids += arch_grid return grids def postprocess_hyperparams(args, config): """Postprocess a given hyperparameter configuration.""" pass if __name__ == "__main__": sweep.main( get_grid, postprocess_hyperparams, add_extra_options_func=add_extra_options_func )
bart_ls-main
fairseq-py/fb_sweep/sweep_translation.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. #!/usr/bin/env python from itertools import takewhile from glob import glob import json from pathlib import Path import re from typing import List, Dict import os try: import pandas as pd from fire import Fire except ImportError: raise ImportError( "results aggregation has extra dependencies. Run `pip install pandas fire tabulate`." ) def find_common_prefix(parsed_keys: List[str]) -> str: # Finding common prefix using itertools.takewhile if len(parsed_keys) <= 1: return "" return "".join( c[0] for c in takewhile(lambda x: all(x[0] == y for y in x), zip(*parsed_keys)) ) def remove_prefix(text: str, prefix: str): if text.startswith(prefix): return text[len(prefix):] return text def remove_common_prefix_from_keys(entry: Dict[str, str]): common_prefix = find_common_prefix(entry.keys()) if not common_prefix: return entry else: return {remove_prefix(k, common_prefix): v for k, v in entry.items()} def find_last_matching_line(reversed_lns: List[str], pattern: str) -> Dict[str, str]: """ Find a line with train loss in it and try to read it to json.""" matched_line = None for l in reversed_lns: if pattern in l and "epoch" in l: matched_line = l break if matched_line is None: raise ValueError(f"none of lines had the substring {pattern}") if "{" in matched_line: # log_format == 'json': strang = matched_line.split("|")[-1] record = json.loads(strang) elif pattern == "train_inner": strang = matched_line.split("|")[-1] record = parse_train_inner_record(strang) else: record = parse_pipe_separated_record(matched_line) epoch = record.pop("epoch", None) sanitized_record = remove_common_prefix_from_keys(record) sanitized_record["epoch"] = epoch return sanitized_record def parse_pipe_separated_record(rec2): pipe_sep = [ x.strip() for x in rec2.split("INFO")[-1].split("|") if x.strip().count(" ") == 1 ] return dict([entry.split(" ") for entry in pipe_sep]) def parse_train_inner_record(record): kv_pairs: str = re.compile(r"(\/ \d+\s)(.+)").search(record).groups()[-1] return dict([entry.strip().split("=") for entry in kv_pairs.split(",")]) def find_all_matching_lines(lns, pattern="train_inner"): """Read train_inner logs (each step)""" records = [] for l in lns: if pattern not in l: continue strang = l.split("|")[-1] record = json.loads(strang) records.append(record) return pd.DataFrame(records).pipe(tryfloat) def tryfloat(x): if isinstance(x, pd.Series): try: return x.astype(float) except Exception: return x elif isinstance(x, pd.DataFrame): return x.apply(tryfloat) else: try: return float(x) except TypeError: return x def reverse_readline(filename, buf_size=8192): """A generator that returns the lines of a file in reverse order""" with open(filename) as fh: segment = None offset = 0 fh.seek(0, os.SEEK_END) file_size = remaining_size = fh.tell() while remaining_size > 0: offset = min(file_size, offset + buf_size) fh.seek(file_size - offset) buffer = fh.read(min(remaining_size, buf_size)) remaining_size -= buf_size lines = buffer.split("\n") # The first line of the buffer is probably not a complete line so # we'll save it and append it to the last line of the next buffer # we read if segment is not None: # If the previous chunk starts right from the beginning of line # do not concat the segment to the last line of new chunk. # Instead, yield the segment first if buffer[-1] != "\n": lines[-1] += segment else: yield segment segment = lines[0] for index in range(len(lines) - 1, 0, -1): if lines[index]: yield lines[index] # Don't yield None if the file was empty if segment is not None: yield segment def make_sweep_table( pattern, log_pattern="train_inner", csv_path=None, keep_cols=None, sort_col=None, interactive=False, ): """ For each file matching pattern, extract the last json line matching log_pattern, tabulate. Args: pattern: (str) files to consider, e.g. /checkpoint/sshleifer/2020-11-23/*/train.log* (should be quoted on command line) log_pattern: (str): usually train, train_inner or valid csv_path: (str) where to save if suffix is .md will save markdown, otherwise csv. keep_cols: (list) (comma separated from CL) column names to show sort_col: (str) column to sort resulting table by interactive: (bool) just return the DataFrame Usage: ./fb_sweep/agg_results.py "/checkpoint/sshleifer/2020-12-1*/big_run*/train.log" \ --log-pattern valid \ --csv_path big_run_sweep_results \ --keep_cols train_ppl,train_wps,train_loss \ --sort_col train_wps """ records = [] matches = list(glob(pattern, recursive=True)) if not matches: raise FileNotFoundError(f"found no files matching {pattern}") for f in matches: lns = reverse_readline(f) try: record = find_last_matching_line(lns, pattern=log_pattern) except ValueError as e: print(f"failed to parse {f} with {str(e)}") continue record["parent_path"] = Path(f).parent.name record["fname"] = Path(f).name if f.startswith("multirun/"): # produced by hydra _, date, t, *__ = f.split("/") record["date"] = f"{date}-{t}" records.append(record) if len(records) == 0: raise ValueError( f"None of the {len(matches)} log files are ready to be parsed." ) df = pd.DataFrame(records) # Use the more informative path column. For sweep output this is parent path. # For manual log files it's usually fname path_col = ( "parent_path" if (df["parent_path"].nunique() > df["fname"].nunique()) else "fname" ) df = df.set_index(path_col).pipe(tryfloat).round(2).sort_index() df = df.rename(columns=lambda x: x.replace(".", "_")) if keep_cols is not None: df = df[list(keep_cols)] if sort_col is not None: df = df.sort_values(sort_col) if interactive: return df if csv_path is not None: if csv_path.endswith("md"): df.to_markdown(Path(csv_path).open("w")) else: df.to_csv(csv_path) print(df.to_markdown(tablefmt="grid")) if __name__ == "__main__": # Usage: see docstring of make_sweep_table Fire(make_sweep_table)
bart_ls-main
fairseq-py/fb_sweep/agg_results.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. #!/usr/bin/env python import sweep from sweep import hyperparam MODEL = { "levenshtein_transformer": "lev_base", "levenshtein_transformer_wmt_en_de": "lev_base", "levenshtein_transformer_big": "lev_big", "levenshtein_transformer_wmt_en_de_big": "lev_big", "nonautoregressive_transformer": "nat", "nacrf_transformer": "nat_crf", "iterative_nonautoregressive_transformer": "inat", "cmlm_transformer": "cmlm", "insertion_transformer": "ins", } def get_at_grid(args): """ Auto-regressive Transformer """ return [ hyperparam("--fp16", save_dir_key=lambda val: "fp16"), # hyperparam('--ddp-backend', 'no_c10d', save_dir_key=lambda val: 'no_c10d'), hyperparam("--max-update", 300000), # equivalent to training on 16x GPUs # hyperparam('--update-freq', 16, save_dir_key=lambda val: f'updatefreq{val}'), hyperparam("--arch", ["transformer_small"], save_dir_key=lambda val: val), hyperparam( "--share-all-embeddings", [True], binary_flag=True, save_dir_key=lambda val: "shareemb", ), hyperparam("--optimizer", "adam", save_dir_key=lambda val: val), hyperparam( "--adam-betas", "(0.9, 0.98)", save_dir_key=lambda val: "beta0.9,0.98" ), hyperparam("--lr-scheduler", "inverse_sqrt"), hyperparam("--warmup-init-lr", 1e-7, save_dir_key=lambda val: f"initlr{val}"), hyperparam("--warmup-updates", 4000, save_dir_key=lambda val: f"warmup{val}"), # use double the default learning rate, since we're using --update-freq=16 hyperparam("--lr", 0.0005, save_dir_key=lambda val: f"lr{val}"), hyperparam("--stop-min-lr", 1e-9), hyperparam("--clip-norm", 25, save_dir_key=lambda val: f"clip{val}"), hyperparam("--dropout", 0.1, save_dir_key=lambda val: f"drop{val}"), hyperparam("--weight-decay", 0.0001, save_dir_key=lambda val: f"wd{val}"), hyperparam("--criterion", "label_smoothed_cross_entropy"), hyperparam("--label-smoothing", 0.1, save_dir_key=lambda val: f"ls{val}"), hyperparam("--max-tokens", 4096, save_dir_key=lambda val: f"maxtok{val}"), hyperparam("--seed", [2], save_dir_key=lambda val: f"seed{val}"), hyperparam("--keep-last-epochs", 15), hyperparam("--keep-interval-updates", 5), hyperparam("--log-format", "simple"), hyperparam("--log-interval", 100), ] def get_grid_levenshtein(args): return [ # task, model, criterion hyperparam("--task", "translation_lev"), hyperparam( "--arch", "levenshtein_transformer_wmt_en_de", save_dir_key=lambda val: MODEL[val], ), # hyperparam('--arch', [ # 'levenshtein_transformer_wmt_en_de_big', # 'levenshtein_transformer_wmt_en_de' # ], # save_dir_key=lambda val: MODEL[val]), hyperparam("--criterion", "label_smoothed_dual_imitation"), hyperparam("--noise", "random_delete"), # task specific hyperparam("--fixed-validation-seed", 7), hyperparam("--append-bos", binary_flag=True), # model hyperparam("--encoder-learned-pos", binary_flag=True), hyperparam( "--decoder-learned-pos", binary_flag=True, save_dir_key=lambda val: f"lp" if val else f"sp", ), hyperparam("--share-all-embeddings", binary_flag=True), hyperparam( "--apply-bert-init", binary_flag=True, save_dir_key=lambda val: f"bert" if val else f"", ), hyperparam("--early-exit", "(6,6,6)", save_dir_key=lambda val: f"ext-{val}"), # general hyperparam("--activation-fn", "gelu", save_dir_key=lambda val: f"act-{val}"), # hyperparam('--max-tokens', 8192, save_dir_key=lambda val: f'b{val}'), hyperparam("--max-tokens", 4096, save_dir_key=lambda val: f"b8192"), hyperparam("--update-freq", 2), hyperparam("--fp16", binary_flag=True), hyperparam("--optimizer", "adam"), hyperparam("--lr", 0.0005, save_dir_key=lambda val: f"lr{val}"), hyperparam("--stop-min-lr", "1e-09"), hyperparam("--lr-scheduler", "inverse_sqrt"), hyperparam("--max-update", 400000), hyperparam("--warmup-updates", 10000), hyperparam("--keep-last-epochs", 15), hyperparam("--keep-interval-updates", 5), hyperparam("--warmup-init-lr", "1e-07"), hyperparam("--adam-betas", "(0.9, 0.999)"), hyperparam("--dropout", 0.3), hyperparam("--label-smoothing", 0.1), hyperparam("--weight-decay", 0.01), hyperparam("--save-interval-updates", 10000), hyperparam("--log-format", "simple"), hyperparam("--log-interval", 5), hyperparam("--seed", 2), # hyperparam('--seed', [1, 11], save_dir_key=lambda val: f'prefix{val % 10}'), # hyperparam('--seed', [3, 5, 7, 13, 15, 17], save_dir_key=lambda val: f'prefix{val % 10}'), # hyperparam('--seed', 5, save_dir_key=lambda val: f'fuse-0.{val}'), ] def get_grid_progressive(args): return [ # task, model, criterion hyperparam("--task", "translation_lev"), hyperparam("--arch", "progressive_transformer"), hyperparam("--criterion", "label_smoothed_dual_imitation"), hyperparam("--noise", "full_mask"), # task specific hyperparam("--fixed-validation-seed", 7), hyperparam("--append-bos", binary_flag=True), # model hyperparam("--encoder-learned-pos", binary_flag=True), hyperparam( "--decoder-learned-pos", binary_flag=True, save_dir_key=lambda val: f"lp" if val else f"sp", ), hyperparam("--share-all-embeddings", binary_flag=True), hyperparam( "--apply-bert-init", binary_flag=True, save_dir_key=lambda val: f"bert" if val else f"", ), # model specific hyperparam("--passing-unk", binary_flag=True, save_dir_key=lambda val: f"pu"), hyperparam("--pred-length-offset", binary_flag=True), # hyperparam('--sg-length-pred', binary_flag=True, save_dir_key=lambda val: f'sg' if val else f''), hyperparam("--output-checker", binary_flag=True), hyperparam("--pred-length-format", "mean"), hyperparam("--length-loss-factor", 0.1, save_dir_key=lambda val: f"lf{val}"), hyperparam("--fixed-depth", 9, save_dir_key=lambda val: f"d-{val}"), # general hyperparam("--activation-fn", "gelu", save_dir_key=lambda val: f"act-{val}"), hyperparam("--max-tokens", 5192, save_dir_key=lambda val: f"bz{val}"), hyperparam("--fp16", binary_flag=True), hyperparam("--optimizer", "adam"), hyperparam("--lr", 0.0005, save_dir_key=lambda val: f"lr{val}"), hyperparam("--stop-min-lr", "1e-09"), hyperparam("--lr-scheduler", "inverse_sqrt"), hyperparam("--max-update", 400000), hyperparam("--warmup-updates", 10000), hyperparam("--keep-last-epochs", 15), hyperparam("--keep-interval-updates", 5), hyperparam("--warmup-init-lr", "1e-07"), hyperparam("--adam-betas", "(0.9, 0.999)"), hyperparam("--dropout", 0.3), hyperparam("--label-smoothing", 0.1), hyperparam("--weight-decay", 0.01), hyperparam("--save-interval-updates", 10000), hyperparam("--log-format", "simple"), hyperparam("--log-interval", 5), ] def get_grid_nat(args): return [ # task, model, criterion hyperparam("--task", "translation_lev"), hyperparam( "--arch", "nonautoregressive_transformer", save_dir_key=lambda val: MODEL[val], ), hyperparam("--criterion", "label_smoothed_dual_imitation"), # task specific hyperparam("--fixed-validation-seed", 7), hyperparam("--append-bos", binary_flag=True), hyperparam("--noise", "full_mask"), # model hyperparam("--encoder-learned-pos", binary_flag=True), hyperparam( "--decoder-learned-pos", binary_flag=True, save_dir_key=lambda val: f"lp" if val else f"sp", ), hyperparam("--share-all-embeddings", binary_flag=True), hyperparam( "--apply-bert-init", binary_flag=True, save_dir_key=lambda val: f"bert" if val else f"", ), # length prediction hyperparam("--pred-length-offset", binary_flag=True), # hyperparam('--sg-length-pred', binary_flag=True, save_dir_key=lambda val: f'sg' if val else f''), hyperparam("--length-loss-factor", 0.1, save_dir_key=lambda val: f"lf{val}"), hyperparam( "--src-embedding-copy", binary_flag=True, save_dir_key=lambda val: "cp" ), # n-gram loss # hyperparam('--ngram-predictor', # 4, # save_dir_key=lambda val: f'{val}-gram'), # general hyperparam("--activation-fn", "gelu", save_dir_key=lambda val: f"act-{val}"), hyperparam("--max-tokens", 4096, save_dir_key=lambda val: f"b{val}"), hyperparam("--fp16", binary_flag=True), hyperparam("--optimizer", "adam"), hyperparam("--lr", 0.0005, save_dir_key=lambda val: f"lr{val}"), hyperparam("--stop-min-lr", "1e-09"), hyperparam("--lr-scheduler", "inverse_sqrt"), hyperparam("--max-update", 400000), hyperparam("--warmup-updates", 10000), hyperparam("--keep-last-epochs", 15), hyperparam("--keep-interval-updates", 5), hyperparam("--warmup-init-lr", "1e-07"), hyperparam("--adam-betas", "(0.9, 0.999)"), hyperparam("--dropout", 0.3), hyperparam("--label-smoothing", 0.1), hyperparam("--weight-decay", 0.01), hyperparam("--save-interval-updates", 10000), hyperparam("--log-format", "simple"), hyperparam("--log-interval", 5), # hyperparam('--seed', [1, 2, 3, 4, 5, 6, 7], save_dir_key=lambda val: f'rb-{val}'), ] def get_grid_nacrf(args): return [ # task, model, criterion hyperparam("--task", "translation_lev"), hyperparam("--arch", "nacrf_transformer", save_dir_key=lambda val: MODEL[val]), hyperparam("--criterion", "nat_loss"), # task specific hyperparam("--fixed-validation-seed", 7), hyperparam("--noise", "full_mask"), # model hyperparam("--encoder-learned-pos", binary_flag=True), hyperparam( "--decoder-learned-pos", binary_flag=True, save_dir_key=lambda val: f"lp" if val else f"sp", ), hyperparam("--share-all-embeddings", binary_flag=True), hyperparam( "--apply-bert-init", binary_flag=True, save_dir_key=lambda val: f"bert" if val else f"", ), # length prediction hyperparam("--pred-length-offset", binary_flag=True), # hyperparam('--sg-length-pred', binary_flag=True, save_dir_key=lambda val: f'sg' if val else f''), hyperparam("--length-loss-factor", 0.1, save_dir_key=lambda val: f"lf{val}"), # general hyperparam("--activation-fn", "gelu", save_dir_key=lambda val: f"act-{val}"), hyperparam("--max-tokens", 8192, save_dir_key=lambda val: f"b{val}"), hyperparam("--fp16", binary_flag=True), hyperparam("--optimizer", "adam"), hyperparam("--lr", 0.0005, save_dir_key=lambda val: f"lr{val}"), hyperparam("--stop-min-lr", "1e-09"), hyperparam("--lr-scheduler", "inverse_sqrt"), hyperparam("--max-update", 400000), hyperparam("--warmup-updates", 10000), hyperparam("--keep-last-epochs", 15), hyperparam("--keep-interval-updates", 5), hyperparam("--warmup-init-lr", "1e-07"), hyperparam("--adam-betas", "(0.9, 0.999)"), hyperparam("--dropout", 0.3), hyperparam("--label-smoothing", 0.1), hyperparam("--weight-decay", 0.01), hyperparam("--save-interval-updates", 10000), hyperparam("--log-format", "simple"), hyperparam("--log-interval", 5), ] def get_grid_inat(args): return [ # task, model, criterion hyperparam("--task", "translation_lev"), hyperparam( "--arch", "iterative_nonautoregressive_transformer", save_dir_key=lambda val: MODEL[val], ), hyperparam("--criterion", "label_smoothed_dual_imitation"), # task specific hyperparam("--fixed-validation-seed", 7), hyperparam("--append-bos", binary_flag=True), hyperparam("--noise", "full_mask"), # model hyperparam("--encoder-learned-pos", True, binary_flag=True), hyperparam( "--decoder-learned-pos", True, binary_flag=True, save_dir_key=lambda val: f"lp" if val else f"sp", ), hyperparam("--share-all-embeddings", binary_flag=True), hyperparam( "--apply-bert-init", binary_flag=True, save_dir_key=lambda val: f"bert" if val else f"", ), # iterative refinement settings hyperparam("--train-step", 3, save_dir_key=lambda val: f"iter{val}"), hyperparam("--dae-ratio", 0.5, save_dir_key=lambda val: f"dae{val}"), hyperparam( "--stochastic-approx", True, binary_flag=True, save_dir_key=lambda val: "sa" ), # length prediction hyperparam("--pred-length-offset", binary_flag=True), # hyperparam('--sg-length-pred', binary_flag=True, save_dir_key=lambda val: f'sg' if val else f''), hyperparam("--length-loss-factor", 0.1, save_dir_key=lambda val: f"lf{val}"), # hyperparam('--src-embedding-copy', [True, False], # binary_flag=True, # save_dir_key=lambda val: 'copy'), # n-gram loss # hyperparam('--ngram-predictor', # 4, # save_dir_key=lambda val: f'{val}-gram'), # general hyperparam("--activation-fn", "gelu", save_dir_key=lambda val: f"{val}"), hyperparam("--max-tokens", 2048, save_dir_key=lambda val: f"b{val}"), hyperparam("--update-freq", 2, save_dir_key=lambda val: f"u{val}"), hyperparam("--fp16", binary_flag=True), hyperparam("--optimizer", "adam"), hyperparam("--lr", 0.0005, save_dir_key=lambda val: f"lr{val}"), hyperparam("--stop-min-lr", "1e-09"), hyperparam("--lr-scheduler", "inverse_sqrt"), hyperparam("--max-update", 400000), hyperparam("--warmup-updates", 10000), hyperparam("--keep-last-epochs", 5), hyperparam("--keep-interval-updates", 5), hyperparam("--warmup-init-lr", "1e-07"), hyperparam("--adam-betas", "(0.9, 0.999)"), hyperparam("--dropout", 0.3), hyperparam("--label-smoothing", 0.1), hyperparam("--weight-decay", 0.01), hyperparam("--save-interval-updates", 10000), hyperparam("--log-format", "simple"), hyperparam("--log-interval", 5), # hyperparam('--seed', [1, 2, 3, 4, 5, 6, 7], save_dir_key=lambda val: f'rb-{val}'), ] def get_grid_cmlm(args): return [ # task, model, criterion hyperparam("--task", "translation_lev"), hyperparam("--arch", "cmlm_transformer", save_dir_key=lambda val: MODEL[val]), hyperparam("--criterion", "label_smoothed_dual_imitation"), # task specific hyperparam("--fixed-validation-seed", 7), hyperparam("--append-bos", binary_flag=True), hyperparam("--noise", "random_mask"), # model hyperparam("--encoder-learned-pos", True, binary_flag=True), hyperparam( "--decoder-learned-pos", True, binary_flag=True, save_dir_key=lambda val: f"lp" if val else f"sp", ), hyperparam("--share-all-embeddings", binary_flag=True), hyperparam( "--apply-bert-init", binary_flag=True, save_dir_key=lambda val: f"bert" if val else f"", ), # length prediction hyperparam("--pred-length-offset", binary_flag=True), # hyperparam('--sg-length-pred', binary_flag=True, save_dir_key=lambda val: f'sg' if val else f''), hyperparam("--length-loss-factor", 0.1, save_dir_key=lambda val: f"lf{val}"), # general hyperparam("--activation-fn", "gelu", save_dir_key=lambda val: f"{val}"), hyperparam("--max-tokens", 4096, save_dir_key=lambda val: f"b{val}"), hyperparam("--update-freq", 2, save_dir_key=lambda val: f"u{val}"), hyperparam("--fp16", binary_flag=True), hyperparam("--optimizer", "adam"), hyperparam("--lr", 0.0005, save_dir_key=lambda val: f"lr{val}"), hyperparam("--stop-min-lr", "1e-09"), hyperparam("--lr-scheduler", "inverse_sqrt"), hyperparam("--max-update", 400000), hyperparam("--warmup-updates", 10000), hyperparam("--keep-last-epochs", 5), hyperparam("--keep-interval-updates", 5), hyperparam("--warmup-init-lr", "1e-07"), hyperparam("--adam-betas", "(0.9, 0.999)"), hyperparam("--dropout", 0.3), hyperparam("--label-smoothing", 0.1), hyperparam("--weight-decay", 0.01), hyperparam("--save-interval-updates", 10000), hyperparam("--log-format", "simple"), hyperparam("--log-interval", 5), ] def get_grid_insertion(args): return [ # task, model, criterion hyperparam("--task", "translation_lev"), hyperparam( "--arch", "insertion_transformer", save_dir_key=lambda val: MODEL[val] ), hyperparam("--criterion", "label_smoothed_dual_imitation"), hyperparam("--noise", "random_delete"), # task specific hyperparam("--fixed-validation-seed", 7), hyperparam("--append-bos", binary_flag=True), # model hyperparam("--encoder-learned-pos", binary_flag=True), hyperparam( "--decoder-learned-pos", binary_flag=True, save_dir_key=lambda val: f"lp" if val else f"sp", ), hyperparam("--share-all-embeddings", binary_flag=True), hyperparam( "--apply-bert-init", binary_flag=True, save_dir_key=lambda val: f"bert" if val else f"", ), hyperparam( "--label-tau", 1, save_dir_key=lambda val: f"tau{val}" if val < 1000 else f"uniform", ), # general hyperparam("--activation-fn", "gelu", save_dir_key=lambda val: f"act-{val}"), # hyperparam('--max-tokens', 6144, save_dir_key=lambda val: f'bz{val}'), hyperparam("--max-tokens", 8192, save_dir_key=lambda val: f"b{val}"), hyperparam("--fp16", binary_flag=True), hyperparam("--optimizer", "adam"), hyperparam("--lr", 0.0005, save_dir_key=lambda val: f"lr{val}"), hyperparam("--stop-min-lr", "1e-09"), hyperparam("--lr-scheduler", "inverse_sqrt"), hyperparam("--max-update", 400000), hyperparam("--warmup-updates", 10000), hyperparam("--warmup-init-lr", "1e-07"), hyperparam("--adam-betas", "(0.9, 0.999)"), hyperparam("--dropout", 0.3), hyperparam("--label-smoothing", 0.1), hyperparam("--weight-decay", 0.01), hyperparam("--save-interval-updates", 10000), hyperparam("--keep-last-epochs", 15), hyperparam("--keep-interval-updates", 5), hyperparam("--log-format", "simple"), hyperparam("--log-interval", 5), # hyperparam('--seed', [1, 2, 3, 4, 5, 6, 7], save_dir_key=lambda val: f'rb-{val}'), ] def postprocess_hyperparams(args, config): """Postprocess a given hyperparameter configuration.""" # if config['--seq-beam'].current_value <= 8: # config['--max-tokens'].current_value = 400 # else: # config['--max-tokens'].current_value = 300 # decoder_embed_dim = config['--decoder_embed_dim'].current_value # # config['--decoder-ffn-embed-dim'] = 4 * decoder_embed_dim # config['--decoder-attention-heads'] = decoder_embed_dim // 16 # dataset, name = sweep_datasets(config['--seed'].current_value) # args.data = dataset # args.prefix = name # args.seed = 1 if __name__ == "__main__": sweep.main(get_grid_nacrf, postprocess_hyperparams) # sweep.main(get_grid_levenshtein_pp, postprocess_hyperparams) # sweep.main(get_at_grid, postprocess_hyperparams) # sweep.main(get_grid_inat, postprocess_hyperparams) # sweep.main(get_grid_nat, postprocess_hyperparams) # sweep.main(get_grid_levenshtein, postprocess_hyperparams) # sweep.main(get_grid_progressive, postprocess_hyperparams) # sweep.main(get_grid_cmlm, postprocess_hyperparams) # sweep.main(get_grid_insertion, postprocess_hyperparams) # sweep.main(get_grid_reinforce, postprocess_hyperparams)
bart_ls-main
fairseq-py/fb_sweep/sweep_nonautoregressive_translation.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. #!/usr/bin/env python from fb_sweep import sweep from fb_sweep.sweep import hyperparam def get_grid(args): grid = [] total_num_udpates = 100000 warmup_updates = 500 num_data_loaders = 4 arch = "bart_large" task = "denoising" criterion = "cross_entropy" adam_eps = 1e-06 weight_decay = 0.01 update_freq = 1 grid += [ hyperparam( "--restore-file", "/data/home/xwhan/fairseq-py/checkpoints/bart.large/model.pt", ) ] # model settings grid += [ hyperparam("--arch", arch, save_dir_key=lambda val: val), hyperparam("--task", task), hyperparam("--criterion", criterion), ] grid += [ hyperparam("--max-tokens", 2048, save_dir_key=lambda val: f"mt{val}"), hyperparam("--update-freq", update_freq, save_dir_key=lambda val: f"uf{val}"), hyperparam( "--max-update", total_num_udpates, save_dir_key=lambda val: f"mu{val}" ), hyperparam("--required-batch-size-multiple", 1), hyperparam( "--sample-break-mode", ["complete"], save_dir_key=lambda val: f"brk_{val}" ), ] # regularization grid += [ hyperparam("--dropout", 0.1, save_dir_key=lambda val: f"dr{val}"), hyperparam("--attention-dropout", 0.1, save_dir_key=lambda val: f"atdr{val}"), hyperparam("--relu-dropout", 0.0, save_dir_key=lambda val: f"actdr{val}"), hyperparam("--weight-decay", weight_decay, save_dir_key=lambda val: f"wd{val}"), ] # optimization settings grid += [ hyperparam("--optimizer", "adam", save_dir_key=lambda val: val), hyperparam("--adam-betas", "(0.9, 0.98)", save_dir_key=lambda val: "beta9999"), hyperparam("--adam-eps", adam_eps, save_dir_key=lambda val: f"eps{val}"), hyperparam("--clip-norm", 0.1, save_dir_key=lambda val: f"clip{val}"), ] # lr scheduler grid += [ hyperparam("--lr-scheduler", "polynomial_decay"), hyperparam("--lr", 1e-05, save_dir_key=lambda val: f"lr{val}"), hyperparam("--total-num-update", total_num_udpates), hyperparam( "--warmup-updates", warmup_updates, save_dir_key=lambda val: f"warm{val}" ), ] grid += [ hyperparam("--fp16", save_dir_key=lambda val: "fp16"), ] # data loading settings grid += [ hyperparam("--num-workers", num_data_loaders), ] # validation and checkpoint settings grid += [ # hyperparam("--no-save"), hyperparam("--no-epoch-checkpoints"), hyperparam("--reset-meters"), hyperparam("--reset-optimizer"), ] grid += [ hyperparam("--share-all-embeddings"), hyperparam("--layernorm-embedding"), hyperparam("--share-decoder-input-output-embed"), ] # logging settings grid += [ hyperparam("--skip-invalid-size-inputs-valid-test"), hyperparam("--log-format", "json"), hyperparam("--log-interval", 10), ] grid += [ hyperparam("--poisson-lambda", 3.5, save_dir_key=lambda val: f"poi_lam{val}"), hyperparam("--mask", 0.3, save_dir_key=lambda val: f"mask{val}"), hyperparam( "--mask-length", "span-poisson", save_dir_key=lambda val: f"mask_len{val}" ), hyperparam("--replace-length", 1, save_dir_key=lambda val: f"rpl_len{val}"), hyperparam("--rotate", 0, save_dir_key=lambda val: f"rotate{val}"), hyperparam("--mask-random", 0.1, save_dir_key=lambda val: f"mask_rand{val}"), hyperparam("--insert", 0, save_dir_key=lambda val: f"ins{val}"), hyperparam( "--permute-sentences", 1.0, save_dir_key=lambda val: f"perm_sen{val}" ), ] if args.local: grid += [ hyperparam("--log-format", "json"), hyperparam("--log-interval", 1), ] return grid def postprocess_hyperparams(args, config): """Postprocess a given hyperparameter configuration.""" pass if __name__ == "__main__": sweep.main(get_grid, postprocess_hyperparams)
bart_ls-main
fairseq-py/fb_sweep/sweep_bart_large.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. #!/usr/bin/env python import sweep from sweep import hyperparam from sweep_wmt_en2de_transformer_big_common import get_common_grid COMMON_GRID = get_common_grid() def get_grid(args): return COMMON_GRID + [ hyperparam( "--distributed-wrapper", "SlowMo", save_dir_key=lambda val: f"{val}" ), hyperparam( "--slowmo-momentum", 0.5, save_dir_key=lambda val: f"slowmo_mom{val}" ), hyperparam( "--slowmo-algorithm", "LocalSGD", save_dir_key=lambda val: "localsgd" ), hyperparam( "--localsgd-frequency", 3, save_dir_key=lambda val: f"localsgd_freq{val}" ), hyperparam("--nprocs-per-node", 8), ] def postprocess_hyperparams(args, config): """Postprocess a given hyperparameter configuration.""" pass if __name__ == "__main__": sweep.main(get_grid, postprocess_hyperparams)
bart_ls-main
fairseq-py/fb_sweep/sweep_wmt_en2de_transformer_big_localsgd.py
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import sweep from sweep import hyperparam PREDIFINED_GRID_FUNCTION = {} def register_grid(name): def register_grid_func(fn): if name not in PREDIFINED_GRID_FUNCTION: PREDIFINED_GRID_FUNCTION[name] = fn return fn return register_grid_func def get_predefined_grid(name): if name not in PREDIFINED_GRID_FUNCTION: return [] else: return PREDIFINED_GRID_FUNCTION[name]() def add_extra_options_func(parser): parser.add_argument("--max-update", help="max update", default=40000) parser.add_argument( "--finetune-from-model", help="finetune from a pretrained model", type=str, default=None, ) parser.add_argument( "--lang-dict", help="a file containing a list of languages to support", type=str, default=None, ) parser.add_argument( "--max-tokens", help="max tokens per batch", type=int, default=None ) parser.add_argument("--arch", default="transformer") parser.add_argument("--task", default="translation_multi_simple_epoch") parser.add_argument( "--langs", default=None, type=str, help="a list of languages comma sperated languages which can appear in lang-pairs; " "note that the ordering determines language token IDs", ) parser.add_argument( "--lang-pairs", help="lang pairs for multilingual training", type=str ) parser.add_argument( "--sampling-method", help="sampling method", default="temperature" ) parser.add_argument( "--sampling-temperature", help="sampling temperature", default=5 ) parser.add_argument( "--encoder-langtok", help="add src language token to encoder", default="src" ) parser.add_argument("--decoder-langtok", default=True, action="store_true") parser.add_argument("--virtual-epoch-size", default=None) parser.add_argument("--virtual-data-size", default=None) # equivalent to training on 16x GPUs parser.add_argument("--update-freq", default=16) # use double the default learning rate, since we're using --update-freq=16 # per token learning should be approximately constant; # ideally momentent and 2nd momentent of adam should be adjusted accordingly but less important parser.add_argument("--lr", default=10e-4) parser.add_argument("--dropout", default=0.1) parser.add_argument( "--ddp-backend", default=None, ) parser.add_argument( "--enable-reservsed-directions-shared-datasets", default=False, action="store_true", ) parser.add_argument("--save-interval-updates", default=None) @register_grid("transformer_24_24") def get_transformer_24_24_grid(): return [ hyperparam("--arch", "transformer", save_dir_key=lambda val: val), hyperparam( "--share-all-embeddings", True, binary_flag=True, save_dir_key=lambda val: "shem", ), hyperparam("--encoder-layers", 24, save_dir_key=lambda val: f"ELS{val}"), hyperparam("--decoder-layers", 24, save_dir_key=lambda val: f"DLS{val}"), # this is a multiplier of embed dim hyperparam( "--encoder-ffn-embed-dim", 8 * 1024, save_dir_key=lambda val: f"encffnx{val}", ), hyperparam( "--decoder-ffn-embed-dim", 8 * 1024, save_dir_key=lambda val: f"decffnx{val}", ), hyperparam("--encoder-embed-dim", 1024, save_dir_key=lambda val: f"E{val}"), hyperparam("--decoder-embed-dim", 1024), hyperparam("--encoder-attention-heads", 16, save_dir_key=lambda val: f"H{val}"), hyperparam("--decoder-attention-heads", 16), hyperparam( "--encoder-normalize-before", True, binary_flag=True, save_dir_key=lambda _: "NBF", ), hyperparam("--decoder-normalize-before", True, binary_flag=True), hyperparam("--attention-dropout", 0.1, save_dir_key=lambda val: f"ATTDRP{val}"), hyperparam("--relu-dropout", 0.0, save_dir_key=lambda val: f"RELDRP{val}"), hyperparam("--memory-efficient-fp16", True, binary_flag=True), hyperparam("--encoder-layerdrop", 0.05), hyperparam("--decoder-layerdrop", 0.05), ] @register_grid("transformer_16_16") def get_transformer_16_16_grid(): return [ hyperparam("--arch", "transformer", save_dir_key=lambda val: val), hyperparam( "--share-all-embeddings", True, binary_flag=True, save_dir_key=lambda val: "shem", ), hyperparam("--encoder-layers", 16, save_dir_key=lambda val: f"ELS{val}"), hyperparam("--decoder-layers", 16, save_dir_key=lambda val: f"DLS{val}"), # this is a multiplier of embed dim hyperparam( "--encoder-ffn-embed-dim", 4 * 1024, save_dir_key=lambda val: f"encffnx{val}", ), hyperparam( "--decoder-ffn-embed-dim", 4 * 1024, save_dir_key=lambda val: f"decffnx{val}", ), hyperparam("--encoder-embed-dim", 1024, save_dir_key=lambda val: f"E{val}"), hyperparam("--decoder-embed-dim", 1024), hyperparam("--encoder-attention-heads", 16, save_dir_key=lambda val: f"H{val}"), hyperparam("--decoder-attention-heads", 16), hyperparam( "--encoder-normalize-before", True, binary_flag=True, save_dir_key=lambda _: "NBF", ), hyperparam("--decoder-normalize-before", True, binary_flag=True), hyperparam("--attention-dropout", 0.1, save_dir_key=lambda val: f"ATTDRP{val}"), hyperparam("--relu-dropout", 0.0, save_dir_key=lambda val: f"RELDRP{val}"), ] @register_grid("mbart_large") def get_transformer_mbart_large_grid(): return [ hyperparam("--arch", "mbart_large", save_dir_key=lambda val: val), hyperparam("--lang-tok-style", "mbart"), hyperparam( "--layernorm-embedding", binary_flag=True, save_dir_key=lambda val: "lnemb" ), hyperparam("--encoder-learned-pos"), hyperparam("--decoder-learned-pos"), hyperparam("--encoder-normalize-before"), hyperparam("--decoder-normalize-before"), hyperparam("--share-all-embeddings"), hyperparam("--share-decoder-input-output-embed"), hyperparam("--attention-dropout", 0.1, save_dir_key=lambda val: f"ATTDRP{val}"), hyperparam("--relu-dropout", 0.0, save_dir_key=lambda val: f"RELDRP{val}"), hyperparam("--warmup-updates", 2000, save_dir_key=lambda val: f"warmup{val}"), ] @register_grid("transformer_12_12") def get_transformer_12_12_grid(): return [ hyperparam("--arch", "transformer", save_dir_key=lambda val: val), hyperparam( "--share-all-embeddings", True, binary_flag=True, save_dir_key=lambda val: "shem", ), hyperparam("--encoder-layers", 12, save_dir_key=lambda val: f"ELS{val}"), hyperparam("--decoder-layers", 12, save_dir_key=lambda val: f"DLS{val}"), # this is a multiplier of embed dim hyperparam( "--encoder-ffn-embed-dim", 4 * 1024, save_dir_key=lambda val: f"encffnx{val}", ), hyperparam( "--decoder-ffn-embed-dim", 4 * 1024, save_dir_key=lambda val: f"decffnx{val}", ), hyperparam("--encoder-embed-dim", 1024, save_dir_key=lambda val: f"E{val}"), hyperparam("--decoder-embed-dim", 1024), hyperparam("--encoder-attention-heads", 16, save_dir_key=lambda val: f"H{val}"), hyperparam("--decoder-attention-heads", 16), hyperparam( "--encoder-normalize-before", True, binary_flag=True, save_dir_key=lambda _: "NBF", ), hyperparam("--decoder-normalize-before", True, binary_flag=True), hyperparam("--attention-dropout", 0.1, save_dir_key=lambda val: f"ATTDRP{val}"), hyperparam("--relu-dropout", 0.0, save_dir_key=lambda val: f"RELDRP{val}"), ] def get_grid(args): max_update = args.max_update task = args.task sampling_method = args.sampling_method sampling_temperature = args.sampling_temperature encoder_langtok = args.encoder_langtok grids = [ hyperparam("--fp16", save_dir_key=lambda val: "fp16"), hyperparam("--max-update", max_update), hyperparam("--update-freq", args.update_freq), hyperparam("--task", task), hyperparam("--lang-pairs", args.lang_pairs), hyperparam( "--encoder-langtok", encoder_langtok, save_dir_key=lambda val: f"ent{val}" ), hyperparam( "--sampling-method", sampling_method, save_dir_key=lambda val: f"SPL_{val}" ), hyperparam( "--sampling-temperature", sampling_temperature, save_dir_key=lambda val: f"tmp{val}", ), hyperparam( "--share-all-embeddings", [True], binary_flag=True, save_dir_key=lambda val: "shareemb", ), hyperparam("--optimizer", "adam", save_dir_key=lambda val: val), hyperparam("--adam-eps", 1e-06), hyperparam( "--adam-betas", "(0.9, 0.98)", save_dir_key=lambda val: "beta0.9,0.98" ), hyperparam("--lr-scheduler", "inverse_sqrt"), hyperparam("--warmup-init-lr", 1e-7, save_dir_key=lambda val: f"initlr{val}"), hyperparam("--warmup-updates", 4000, save_dir_key=lambda val: f"warmup{val}"), hyperparam("--lr", args.lr, save_dir_key=lambda val: f"lr{val}"), hyperparam("--stop-min-lr", 1e-9), hyperparam("--clip-norm", 0.0, save_dir_key=lambda val: f"clip{val}"), hyperparam("--dropout", args.dropout, save_dir_key=lambda val: f"drop{val}"), hyperparam("--weight-decay", 0.0, save_dir_key=lambda val: f"wd{val}"), hyperparam("--criterion", "label_smoothed_cross_entropy"), hyperparam("--label-smoothing", 0.1, save_dir_key=lambda val: f"ls{val}"), hyperparam("--max-tokens", 3584, save_dir_key=lambda val: f"maxtok{val}"), hyperparam("--seed", [2], save_dir_key=lambda val: f"seed{val}"), hyperparam("--log-format", "json"), hyperparam("--log-interval", 100 if not args.local else 10), ] if args.ddp_backend: grids.append( hyperparam( "--ddp-backend", args.ddp_backend, save_dir_key=lambda val: f"{val}" ) ) if args.decoder_langtok: grids.append( hyperparam( "--decoder-langtok", [True], binary_flag=True, save_dir_key=lambda val: "det", ) ) if args.virtual_data_size: grids.append(hyperparam("--virtual-data-size", args.virtual_data_size)) if args.virtual_epoch_size: grids.append(hyperparam("--virtual-epoch-size", args.virtual_epoch_size)) if args.lang_dict: grids.append(hyperparam("--lang-dict", args.lang_dict)) if args.langs: grids.append(hyperparam("--langs", args.langs)) if args.max_tokens: grids.append(hyperparam("--max-tokens", args.max_tokens)) if args.finetune_from_model: grids.append(hyperparam("--finetune-from-model", args.finetune_from_model)) if args.enable_reservsed_directions_shared_datasets: grids.append( hyperparam( "--enable-reservsed-directions-shared-datasets", [True], binary_flag=True, ) ) if args.save_interval_updates: grids.append( hyperparam("--save-interval-updates", args.save_interval_updates), ) arch_grid = get_predefined_grid(args.arch) arch_grid = ( arch_grid if arch_grid else [ hyperparam("--arch", args.arch, save_dir_key=lambda val: val), ] ) grids += arch_grid return grids def postprocess_hyperparams(args, config): """Postprocess a given hyperparameter configuration.""" pass if __name__ == "__main__": sweep.main( get_grid, postprocess_hyperparams, add_extra_options_func=add_extra_options_func )
bart_ls-main
fairseq-py/fb_sweep/sweep_translation_multi_simple_epoch.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. #!/usr/bin/env python import sweep from sweep import hyperparam # These hyperparameters are tuned for RoBERTa-large tasks = { "MNLI": { "data": "/private/home/myleott/data/data-bin/MNLI-bin", "--num-classes": 3, "--lr": 1e-5, "--batch-size": 32, "--max-update": 123873, }, "QNLI": { "data": "/private/home/myleott/data/data-bin/QNLI-bin", "--num-classes": 2, "--lr": 1e-5, "--batch-size": 32, "--max-update": 33112, }, "QQP": { "data": "/private/home/myleott/data/data-bin/QQP-bin", "--num-classes": 2, "--lr": 1e-5, "--batch-size": 32, "--max-update": 113272, }, "RTE": { "data": "/private/home/myleott/data/data-bin/RTE-bin", "--num-classes": 2, "--lr": 2e-5, "--batch-size": 16, "--max-update": 2036, }, "SST-2": { "data": "/private/home/myleott/data/data-bin/SST-2-bin", "--num-classes": 2, "--lr": 1e-5, "--batch-size": 32, "--max-update": 20935, }, "MRPC": { "data": "/private/home/myleott/data/data-bin/MRPC-bin", "--num-classes": 2, "--lr": 1e-5, "--batch-size": 16, "--max-update": 2296, }, "CoLA": { "data": "/private/home/myleott/data/data-bin/CoLA-bin", "--num-classes": 2, "--lr": 1e-5, "--batch-size": 16, "--max-update": 5336, }, "STS-B": { "data": "/private/home/myleott/data/data-bin/STS-B-bin", "--num-classes": 1, "--lr": 2e-5, "--batch-size": 16, "--max-update": 3598, "--regression-target": True, "--best-checkpoint-metric": "loss", "--maximize-best-checkpoint-metric": False, }, } # convert a dataset path to the name of the dataset def get_save_dir_key(data_dir): for task_name, task_config in tasks.items(): if task_config["data"] == data_dir: return task_name raise Exception def get_grid(args): model_size = "large" return [ hyperparam("--train-subset", "train" if not args.local else "valid"), hyperparam( "data", list(tasks.keys()), positional_arg=True, save_dir_key=lambda val: get_save_dir_key(val), ), hyperparam("--no-epoch-checkpoints"), hyperparam("--no-last-checkpoints"), hyperparam("--no-save-optimizer-state"), hyperparam("--save-interval-updates", 1000), hyperparam("--reset-optimizer"), hyperparam("--reset-dataloader"), hyperparam("--reset-meters"), hyperparam("--best-checkpoint-metric", "accuracy"), hyperparam("--maximize-best-checkpoint-metric", [True], binary_flag=True), hyperparam( "--restore-file", "/private/home/myleott/roberta." + model_size + "/model.pt", ), hyperparam("--fp16", save_dir_key=lambda val: "fp16"), hyperparam("--ddp-backend", "no_c10d"), hyperparam("--num-workers", 1 if not args.local else 0), hyperparam( "--task", "sentence_prediction", save_dir_key=lambda val: "sentpred" ), hyperparam("--init-token", 0, save_dir_key=lambda val: f"bos{val}"), hyperparam("--separator-token", 2, save_dir_key=lambda val: f"sep{val}"), hyperparam("--max-positions", 512), hyperparam("--regression-target", [False], binary_flag=True), hyperparam("--arch", "roberta_" + model_size, save_dir_key=lambda val: val), hyperparam("--bpe", "gpt2"), hyperparam("--criterion", "sentence_prediction"), hyperparam("--num-classes", [None]), hyperparam("--optimizer", "adam", save_dir_key=lambda val: val), hyperparam("--adam-betas", "(0.9, 0.98)", save_dir_key=lambda val: "b2_0.98"), hyperparam("--adam-eps", 1e-6, save_dir_key=lambda val: f"eps{val}"), hyperparam("--clip-norm", 0.0, save_dir_key=lambda val: f"clip{val}"), hyperparam("--lr-scheduler", "polynomial_decay"), hyperparam("--lr", [None], save_dir_key=lambda val: f"lr{val}"), hyperparam("--warmup-updates", [None], save_dir_key=lambda val: f"wu{val}"), hyperparam("--total-num-update", [None]), hyperparam("--dropout", 0.1, save_dir_key=lambda val: f"dr{val}"), hyperparam("--attention-dropout", 0.1, save_dir_key=lambda val: f"atdr{val}"), hyperparam("--weight-decay", 0.01, save_dir_key=lambda val: f"wd{val}"), hyperparam("--batch-size", [None], save_dir_key=lambda val: f"ms{val}"), hyperparam("--required-batch-size-multiple", 1), hyperparam("--update-freq", 1, save_dir_key=lambda val: f"uf{val}"), hyperparam("--max-update", [None], save_dir_key=lambda val: f"mu{val}"), hyperparam("--seed", [1], save_dir_key=lambda val: f"s{val}"), hyperparam("--log-format", "json"), hyperparam("--log-interval", 25), ] def postprocess_hyperparams(args, config): """Postprocess a given hyperparameter configuration.""" # apply task-specific overrides t = config["data"].current_value # current task name for k, v in tasks[t].items(): assert k in config config[k].current_value = v # configure number of updates (warmup and total) config["--warmup-updates"].current_value = int( 0.06 * config["--max-update"].current_value ) config["--total-num-update"].current_value = config["--max-update"].current_value if __name__ == "__main__": sweep.main(get_grid, postprocess_hyperparams)
bart_ls-main
fairseq-py/fb_sweep/sweep_roberta_large_glue.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. #!/usr/bin/env python import sweep from sweep import hyperparam def get_grid(args): max_update = 500000 return [ hyperparam("--train-subset", "train" if not args.local else "valid"), hyperparam("--skip-invalid-size-inputs-valid-test"), hyperparam("--fast-stat-sync", save_dir_key=lambda _: "faststatsync"), hyperparam("--memory-efficient-fp16", save_dir_key=lambda val: "me_fp16"), hyperparam("--num-workers", 2), hyperparam("--task", "masked_lm"), hyperparam("--criterion", "masked_lm"), hyperparam("--arch", "roberta_large", save_dir_key=lambda val: val), hyperparam( "--sample-break-mode", "complete", save_dir_key=lambda val: "cmpltdoc" ), hyperparam("--tokens-per-sample", 512, save_dir_key=lambda val: f"tps{val}"), hyperparam("--optimizer", "adam", save_dir_key=lambda val: val), hyperparam("--adam-betas", "(0.9, 0.98)", save_dir_key=lambda val: "b2_0.98"), hyperparam("--adam-eps", 1e-6, save_dir_key=lambda val: f"eps{val}"), hyperparam("--clip-norm", 0.0, save_dir_key=lambda val: f"cl{val}"), hyperparam("--lr-scheduler", "polynomial_decay"), hyperparam("--lr", 6e-4, save_dir_key=lambda val: f"lr{val}"), hyperparam("--warmup-updates", 24000, save_dir_key=lambda val: f"wu{val}"), hyperparam("--total-num-update", max_update), hyperparam("--dropout", 0.1, save_dir_key=lambda val: f"dr{val}"), hyperparam("--attention-dropout", 0.1, save_dir_key=lambda val: f"atdr{val}"), hyperparam("--weight-decay", 0.01, save_dir_key=lambda val: f"wd{val}"), hyperparam("--batch-size", 32, save_dir_key=lambda val: f"ms{val}"), hyperparam("--update-freq", 1, save_dir_key=lambda val: f"uf{val}"), hyperparam("--max-update", max_update, save_dir_key=lambda val: f"mu{val}"), hyperparam("--seed", 1, save_dir_key=lambda val: f"s{val}"), hyperparam("--log-format", "json"), hyperparam("--log-interval", 25), ] def postprocess_hyperparams(args, config): """Postprocess a given hyperparameter configuration.""" pass if __name__ == "__main__": sweep.main(get_grid, postprocess_hyperparams)
bart_ls-main
fairseq-py/fb_sweep/sweep_roberta_base.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. #!/usr/bin/env python import sweep from sweep import hyperparam def get_grid(args): target_batch_size = 128 max_tokens = 2048 tokens_per_sample = 512 batch_size_per_gpu = max_tokens // tokens_per_sample num_gpus = args.num_gpus * args.num_nodes update_freq = target_batch_size // batch_size_per_gpu // num_gpus return [ hyperparam("--fp16", save_dir_key=lambda val: "fp16"), hyperparam("--max-update", 50000), hyperparam("--task", "language_modeling"), #hyperparam("--arch", "hf_gpt2", save_dir_key=lambda val: val), hyperparam("--arch", "transformer_lm_gpt", save_dir_key=lambda val: val), hyperparam("--share-decoder-input-output-embed", save_dir_key=lambda val: "shareemb"), hyperparam("--dropout", 0.1, save_dir_key=lambda val: f"drop{val}"), hyperparam("--optimizer", "adam", save_dir_key=lambda val: val), hyperparam( "--adam-betas", "(0.9, 0.98)", save_dir_key=lambda val: "beta0.9,0.98" ), hyperparam("--weight-decay", 0.01, save_dir_key=lambda val: f"wd{val}"), hyperparam("--clip-norm", 0.0, save_dir_key=lambda val: f"clip{val}"), hyperparam("--lr", 5e-4, save_dir_key=lambda val: f"lr{val}"), hyperparam("--lr-scheduler", "inverse_sqrt"), hyperparam("--warmup-updates", 4000, save_dir_key=lambda val: f"warmup{val}"), hyperparam("--warmup-init-lr", 1e-7, save_dir_key=lambda val: f"initlr{val}"), hyperparam( "--tokens-per-sample", tokens_per_sample, save_dir_key=lambda val: f"sampletok{val}" ), hyperparam( "--sample-break-mode", "none", save_dir_key=lambda val: f"break{val}" ), hyperparam("--max-tokens", max_tokens, save_dir_key=lambda val: f"maxtok{val}"), hyperparam("--update-freq", update_freq, save_dir_key=lambda val: f"updatefreq{val}"), hyperparam("--seed", [2], save_dir_key=lambda val: f"seed{val}"), hyperparam("--log-format", "json"), hyperparam("--log-interval", 25), ] def postprocess_hyperparams(args, config): """Postprocess a given hyperparameter configuration.""" pass if __name__ == "__main__": sweep.main(get_grid, postprocess_hyperparams)
bart_ls-main
fairseq-py/fb_sweep/sweep_lm_wikitext103_transformer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. #!/usr/bin/env python3 def set_data_based_on_shortname(args): def set_data(fmt, num_shards): if num_shards == 0: args.data = fmt.format(0) else: args.data = ":".join([fmt.format(i) for i in range(num_shards)]) # mmap datasets if args.data == "CC-NEWS-en.v7.1": set_data("/private/home/myleott/data/data-bin/CC-NEWS-en.v7.1/shard{}", 10) elif args.data == "fb_posts": set_data("/data/tmp/fb_posts.en.2018-2019.bpe.mmap-bin/shard{}", 100) elif args.data == "fb_posts_gfs": set_data( "/mnt/vol/gfsai-flash2-east/ai-group/users/myleott/fb_posts/fb_posts.en.2018-2019.bpe.mmap-bin/shard{}", 100, ) elif args.data == "bookwiki_aml-mmap-bin": set_data("/data/tmp/bookwiki_aml-mmap-bin/shard{}", 5) elif args.data == "bookwiki_aml_CC-NEWS-en.v7.1": set_data("/data/tmp/bookwiki_aml_CC-NEWS-en.v7.1/shard{}", 5) # old datasets elif args.data == "CC-NEWS-en.v6": set_data("/private/home/myleott/data/data-bin/CC-NEWS-en.v6", 0) elif args.data == "CC-NEWS-en.v9": set_data( "/private/home/namangoyal/fairseq-py/data-bin/CC-NEWS-en.v9/shard{}", 100 ) elif args.data == "bookwiki": set_data("/private/home/myleott/data/data-bin/bookwiki.10shards/shard{}", 10) elif args.data == "bookwiki_full": set_data("/private/home/myleott/data/data-bin/bookwiki-bin", 0) elif args.data == "fb_posts_old": set_data("/data/tmp/mono.english.public.2018-2019.shard{}.sents.bpe-bin", 100) elif args.data == "fb_posts_gfs": set_data( "/mnt/vol/gfsai-flash2-east/ai-group/users/myleott/fb_posts/en/mono.english.public.2018-2019.shard{}.sents.bpe-bin", 100, ) elif args.data == "wmt19_en_news_docs": set_data( "/private/home/myleott/data/data-bin/wmt19_en_news_docs/wmt19_en_news_docs.bpe.shard{}", 100, ) else: set_data(args.data, 0) return args
bart_ls-main
fairseq-py/fb_sweep/sweep_lm_data.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. #!/usr/bin/env python import sweep from sweep import hyperparam from sweep_wmt_en2de_transformer_big_common import get_common_grid COMMON_GRID = get_common_grid() def get_grid(args): return COMMON_GRID + [ hyperparam( "--distributed-wrapper", "SlowMo", save_dir_key=lambda val: f"slowmo" ), hyperparam( "--slowmo-momentum", 0.5, save_dir_key=lambda val: f"slowmo_mom{val}" ), hyperparam("--slowmo-algorithm", "SGP", save_dir_key=lambda val: "sgp"), hyperparam("--nprocs-per-node", 8), ] def postprocess_hyperparams(args, config): """Postprocess a given hyperparameter configuration.""" pass if __name__ == "__main__": sweep.main(get_grid, postprocess_hyperparams)
bart_ls-main
fairseq-py/fb_sweep/sweep_wmt_en2de_transformer_big_sgp.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. #!/usr/bin/env python from sweep import hyperparam def get_common_grid(): return [ hyperparam("--fp16", save_dir_key=lambda val: "fp16"), hyperparam("--ddp-backend", "c10d", save_dir_key=lambda val: "no_c10d"), hyperparam("--max-epoch", 70), hyperparam("--arch", "transformer_wmt_en_de_big", save_dir_key=lambda val: val), hyperparam( "--share-all-embeddings", [True], binary_flag=True, save_dir_key=lambda val: "shareemb", ), hyperparam("--optimizer", "adam", save_dir_key=lambda val: val), hyperparam( "--adam-betas", "(0.9, 0.98)", save_dir_key=lambda val: "beta0.9,0.98" ), hyperparam("--lr-scheduler", "inverse_sqrt"), hyperparam("--warmup-init-lr", 1e-7, save_dir_key=lambda val: f"initlr{val}"), hyperparam("--warmup-updates", 4000, save_dir_key=lambda val: f"warmup{val}"), hyperparam("--lr", 0.001, save_dir_key=lambda val: f"lr{val}"), hyperparam("--stop-min-lr", 1e-9), hyperparam("--clip-norm", 0.0, save_dir_key=lambda val: f"clip{val}"), hyperparam("--dropout", 0.3, save_dir_key=lambda val: f"drop{val}"), hyperparam("--weight-decay", 0.0, save_dir_key=lambda val: f"wd{val}"), hyperparam("--criterion", "label_smoothed_cross_entropy"), hyperparam("--label-smoothing", 0.1, save_dir_key=lambda val: f"ls{val}"), hyperparam("--max-tokens", 3584, save_dir_key=lambda val: f"maxtok{val}"), hyperparam("--seed", [2], save_dir_key=lambda val: f"seed{val}"), hyperparam("--log-format", "json"), hyperparam("--log-interval", 25), hyperparam("--save-interval", 1), ]
bart_ls-main
fairseq-py/fb_sweep/sweep_wmt_en2de_transformer_big_common.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. #!/usr/bin/env python import sweep from sweep import hyperparam def get_grid(args): """ Replicates the `16-bit+cumul+2x lr` results from Table 1 of "Scaling Neural Machine Translation" (https://arxiv.org/abs/1806.00187) """ return [ hyperparam("--fp16", save_dir_key=lambda val: "fp16"), hyperparam("--ddp-backend", "fully_sharded", save_dir_key=lambda val: val), # hyperparam("--cpu-offload"), # hyperparam("--no-reshard-after-forward"), hyperparam("--max-epoch", 70), # equivalent to training on 16x GPUs hyperparam( "--update-freq", 16 if not args.local else 1, save_dir_key=lambda val: f"updatefreq{val}", ), hyperparam("--arch", "transformer_wmt_en_de_big", save_dir_key=lambda val: val), hyperparam( "--share-all-embeddings", [True], binary_flag=True, save_dir_key=lambda val: "shareemb", ), hyperparam("--optimizer", "adam", save_dir_key=lambda val: val), hyperparam( "--adam-betas", "(0.9, 0.98)", save_dir_key=lambda val: "beta0.9,0.98" ), hyperparam("--lr-scheduler", "inverse_sqrt"), hyperparam("--warmup-init-lr", 1e-7, save_dir_key=lambda val: f"initlr{val}"), hyperparam("--warmup-updates", 4000, save_dir_key=lambda val: f"warmup{val}"), # use double the default learning rate, since we're using --update-freq=16 hyperparam("--lr", 10e-4, save_dir_key=lambda val: f"lr{val}"), hyperparam("--stop-min-lr", 1e-9), hyperparam("--clip-norm", 0.0, save_dir_key=lambda val: f"clip{val}"), hyperparam("--dropout", 0.3, save_dir_key=lambda val: f"drop{val}"), hyperparam("--weight-decay", 0.0, save_dir_key=lambda val: f"wd{val}"), hyperparam("--criterion", "label_smoothed_cross_entropy"), hyperparam("--label-smoothing", 0.1, save_dir_key=lambda val: f"ls{val}"), hyperparam("--max-tokens", 3584, save_dir_key=lambda val: f"maxtok{val}"), hyperparam("--seed", [2], save_dir_key=lambda val: f"seed{val}"), hyperparam("--log-format", "json"), hyperparam("--log-interval", 100 if not args.local else 10), ] def postprocess_hyperparams(args, config): """Postprocess a given hyperparameter configuration.""" pass if __name__ == "__main__": sweep.main(get_grid, postprocess_hyperparams)
bart_ls-main
fairseq-py/fb_sweep/sweep_wmt_en2de_transformer_big.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. #!/usr/bin/env python """ Usage: ./fb_sweep/sweep_lm_enwik8_transformer_xl.py \ -d ~daju/data/enwik8/eos-data-bin/ \ -p enwiki8.transformer_xl \ -t 1 -g 4 \ --snapshot-code --snapshot-recurse-dirs fairseq,fairseq_cli,examples/truncated_bptt \ --constraint volta32gb """ import sweep from sweep import hyperparam def get_grid(args): target_batch_size = 60 max_batch_size_on_v100 = 15 num_gpus = args.num_gpus * args.num_nodes batch_size_per_gpu = min(max_batch_size_on_v100, target_batch_size // num_gpus) update_freq = target_batch_size // (batch_size_per_gpu * num_gpus) assert target_batch_size == update_freq * batch_size_per_gpu * num_gpus return [ hyperparam("--fp16", save_dir_key=lambda val: "fp16"), hyperparam("--max-update", 400000), hyperparam("--user-dir", "examples/truncated_bptt"), hyperparam("--task", "truncated_bptt_lm"), hyperparam("--tokens-per-sample", 512), hyperparam("--arch", "transformer_xl", save_dir_key=lambda val: val), hyperparam("--n-layer", 12), hyperparam("--d-model", 512), hyperparam("--n-head", 8), hyperparam("--d-head", 64), hyperparam("--d-inner", 2048), hyperparam("--dropout", 0.1), hyperparam("--dropatt", 0.0), hyperparam("--mem-len", 512), hyperparam("--optimizer", "adam", save_dir_key=lambda val: val), hyperparam("--clip-norm", 0.25, save_dir_key=lambda val: f"cl{val}"), hyperparam("--lr-scheduler", "cosine", save_dir_key=lambda val: val), hyperparam("--warmup-updates", 0), hyperparam("--lr", 0.00025, save_dir_key=lambda val: f"lr{val}"), hyperparam("--batch-size", batch_size_per_gpu), hyperparam("--update-freq", update_freq), hyperparam("--seed", [2], save_dir_key=lambda val: f"s{val}"), hyperparam("--log-format", "json"), hyperparam("--log-interval", 25 if not args.local else 1), ] def postprocess_hyperparams(args, config): """Postprocess a given hyperparameter configuration.""" pass if __name__ == "__main__": sweep.main(get_grid, postprocess_hyperparams)
bart_ls-main
fairseq-py/fb_sweep/sweep_lm_enwik8_transformer_xl.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. #!/usr/bin/env python import sweep from sweep import hyperparam def get_grid(args): config = "8k" # 2k if config == "8k": max_update = 100000 save_interval = 5000 valid_interval = 5000 update_freq = 1 lr = 5.2e-4 warmup = 5000 else: max_update = 100000 save_interval = 5000 valid_interval = 5000 update_freq = 4 lr = 5e-4 warmup = 5000 seeds = [0] grid = [ # hyperparam('--train-subset', 'train' if not args.local else 'test'), hyperparam("--train-subset", "valid"), hyperparam("--fp16", save_dir_key=lambda val: "fp16"), hyperparam("--num-workers", 4), hyperparam("--task", "multilingual_masked_lm"), hyperparam("--criterion", "masked_lm"), hyperparam("--arch", "roberta_large", save_dir_key=lambda val: val), hyperparam("--sample-break-mode", "complete", save_dir_key=lambda val: "cmplt"), hyperparam("--tokens-per-sample", 512, save_dir_key=lambda val: f"tps{val}"), hyperparam("--optimizer", "adam", save_dir_key=lambda val: val), hyperparam("--adam-betas", "(0.9, 0.98)", save_dir_key=lambda val: "b2_0.98"), hyperparam("--adam-eps", 1e-6, save_dir_key=lambda val: f"eps{val}"), hyperparam("--clip-norm", 1.0, save_dir_key=lambda val: f"cl{val}"), hyperparam("--lr-scheduler", "polynomial_decay"), hyperparam("--lr", lr, save_dir_key=lambda val: f"lr{val}"), hyperparam("--warmup-updates", warmup, save_dir_key=lambda val: f"wu{val}"), hyperparam("--total-num-update", max_update), hyperparam("--dropout", 0.1, save_dir_key=lambda val: f"dr{val}"), hyperparam("--attention-dropout", 0.1, save_dir_key=lambda val: f"atdr{val}"), hyperparam("--weight-decay", 0.01, save_dir_key=lambda val: f"wd{val}"), # hyperparam('--max-tokens', 3200, save_dir_key=lambda val: f'mt{val}'), hyperparam("--batch-size", 12, save_dir_key=lambda val: f"ms{val}"), hyperparam("--update-freq", update_freq, save_dir_key=lambda val: f"uf{val}"), hyperparam("--max-update", max_update, save_dir_key=lambda val: f"mu{val}"), hyperparam( "--multilang-sampling-alpha", 0.7, save_dir_key=lambda val: f"s{val}" ), ] grid += [ hyperparam("--skip-invalid-size-inputs-valid-test"), hyperparam("--log-format", "json"), hyperparam("--log-interval", 100), ] # random seed grid += [ hyperparam("--seed", seeds, save_dir_key=lambda val: f"seed{val}"), ] grid += [ hyperparam("--validate-interval", valid_interval), ] grid += [ hyperparam("--save-interval-updates", save_interval), hyperparam("--no-epoch-checkpoints"), ] if args.local: grid += [ hyperparam("--log-format", "json"), hyperparam("--log-interval", 1), ] return grid def postprocess_hyperparams(args, config): """Postprocess a given hyperparameter configuration.""" pass if __name__ == "__main__": sweep.main(get_grid, postprocess_hyperparams)
bart_ls-main
fairseq-py/fb_sweep/sweep_multilingual_masked_lm.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. #!/usr/bin/env python from fb_sweep import sweep from fb_sweep.sweep import hyperparam CC25 = sorted( [ "en_XX", "ar_AR", "de_DE", "es_XX", "fr_XX", "hi_IN", "it_IT", "ja_XX", "ko_KR", "nl_XX", "ru_RU", "zh_CN", "tr_TR", "vi_VN", "ro_RO", "my_MM", "ne_NP", "si_LK", "cs_CZ", "lt_LT", "kk_KZ", "gu_IN", "fi_FI", "et_EE", "lv_LV", ] ) CC50 = CC25 + sorted( [ "af_ZA", "az_AZ", "bn_IN", "fa_IR", "he_IL", "hr_HR", "id_ID", "ka_GE", "km_KH", "mk_MK", "ml_IN", "mn_MN", "mr_IN", "pl_PL", "ps_AF", "pt_XX", "sv_SE", "sw_KE", "ta_IN", "te_IN", "th_TH", "tl_XX", "uk_UA", "ur_PK", "xh_ZA", ] ) def get_grid(args): grid = [] total_num_udpates = 500000 warmup_updates = 10000 num_data_loaders = 4 arch = "mbart_large" break_mode = "complete_doc" # Denoising params poisson_lambda = [3.5] mask_p = [0.3] mask_length = ["span-poisson"] replace_length = [1] rotate = [0] mask_random = [0.1] insert = [0] sentence_permute = [1.0] max_tokens = 1024 # 2048 max_sentences = 32 max_source_positions = None max_target_positions = None save_interval = 5000 adam_eps = 1e-6 peak_lr = 3e-4 update_freq = 9 seeds = [2] valid_subsets = "valid" fp16 = True task = "multilingual_denoising" criterion = "cross_entropy" lr_scheduler = "poly" weight_decay = 0.01 continued_pretraining = True if continued_pretraining: restore_file = "/private/home/namangoyal/src/fairseq_megatron_codepush/fairseq-py/mbart.cc25/model.pt" grid += [hyperparam("--restore-file", restore_file)] grid += [ hyperparam("--reset-lr-scheduler"), hyperparam("--reset-meters"), hyperparam("--reset-optimizer"), hyperparam("--reset-dataloader"), ] grid + [ "--no-whole-word-mask-langs", ",".join(["ja_XX", "km_KH", "th_TH", "zh_CN", "zh_TW"]), ] if args.local: grid += [hyperparam("--train-subset", "valid")] grid += [hyperparam("--add-lang-token", save_dir_key=lambda x: "lgtkn")] grid += [hyperparam("--langs", ",".join(CC50), save_dir_key=lambda x: "cc50")] # data settings grid += [ hyperparam("--dataset-impl", "mmap"), ] grid += [ hyperparam("--bpe", "sentencepiece", save_dir_key=lambda x: "spm"), hyperparam( "--sentencepiece-model", "/private/home/namangoyal/src/fairseq_megatron_codepush/fairseq-py/mbart.cc25/sentence.bpe.model", ), ] # model settings grid += [ hyperparam("--arch", arch, save_dir_key=lambda val: val), hyperparam("--criterion", criterion), ] grid += [ hyperparam( "--multilang-sampling-alpha", 0.7, save_dir_key=lambda val: f"alp{val}" ), ] # Default is complete_doc if break_mode == "complete": grid += [ hyperparam( "--sample-break-mode", break_mode, save_dir_key=lambda val: f"bm{val}" ), ] # batch size grid += [ hyperparam("--tokens-per-sample", 512, save_dir_key=lambda val: f"tps{val}"), hyperparam("--max-tokens", max_tokens, save_dir_key=lambda val: f"mt{val}"), hyperparam("--update-freq", update_freq, save_dir_key=lambda val: f"uf{val}"), hyperparam( "--max-update", total_num_udpates, save_dir_key=lambda val: f"mu{val}" ), ] if max_sentences is not None: grid += [ hyperparam( "--batch-size", max_sentences, save_dir_key=lambda val: f"ms{val}" ), ] if max_source_positions is not None: grid += [ hyperparam( "--max-source-positions", max_source_positions, save_dir_key=lambda val: f"msp{val}", ), ] if max_target_positions is not None: grid += [ hyperparam( "--max-target-positions", max_target_positions, save_dir_key=lambda val: f"mtp{val}", ), ] grid += [ hyperparam("--encoder-normalize-before", save_dir_key=lambda val: "enb"), hyperparam("--decoder-normalize-before", save_dir_key=lambda val: "dnb"), ] # task settings grid += [ hyperparam("--task", task), hyperparam("--required-batch-size-multiple", 8), ] # regularization grid += [ hyperparam("--dropout", 0.1, save_dir_key=lambda val: f"dr{val}"), hyperparam("--attention-dropout", 0.1, save_dir_key=lambda val: f"atdr{val}"), hyperparam("--relu-dropout", 0.0, save_dir_key=lambda val: f"actdr{val}"), hyperparam("--weight-decay", weight_decay, save_dir_key=lambda val: f"wd{val}"), ] # optimization settings grid += [ hyperparam("--optimizer", "adam", save_dir_key=lambda val: val), # hyperparam("--adam-betas", "(0.9, 0.98)", save_dir_key=lambda val: "beta998"), hyperparam("--adam-eps", adam_eps, save_dir_key=lambda val: f"eps{val}"), hyperparam("--clip-norm", 0.1, save_dir_key=lambda val: f"clip{val}"), ] # lr scheduler grid += [ hyperparam("--lr-scheduler", "polynomial_decay"), hyperparam("--lr", peak_lr, save_dir_key=lambda val: f"lr{val}"), hyperparam("--total-num-update", total_num_udpates), hyperparam( "--warmup-updates", warmup_updates, save_dir_key=lambda val: f"wrm{val}" ), ] if fp16: grid += [ hyperparam("--fp16", save_dir_key=lambda val: "fp16"), ] # data loading settings grid += [ hyperparam("--num-workers", num_data_loaders), hyperparam("--valid-subset", valid_subsets), ] grid += [ hyperparam("--save-interval-updates", save_interval), hyperparam("--no-epoch-checkpoints"), ] grid += [ hyperparam( "--poisson-lambda", poisson_lambda, save_dir_key=lambda val: f"lam{val}" ), hyperparam("--mask", mask_p, save_dir_key=lambda val: f"mask{val}"), hyperparam( "--mask-length", mask_length, save_dir_key=lambda val: f"msklen{val}" ), hyperparam( "--replace-length", replace_length, save_dir_key=lambda val: f"rpllen{val}" ), hyperparam("--rotate", rotate, save_dir_key=lambda val: f"rot{val}"), hyperparam( "--mask-random", mask_random, save_dir_key=lambda val: f"mskrnd{val}" ), hyperparam("--insert", insert, save_dir_key=lambda val: f"ins{val}"), hyperparam( "--permute-sentences", sentence_permute, save_dir_key=lambda val: f"prmsen{val}", ), ] # logging settings grid += [ hyperparam("--skip-invalid-size-inputs-valid-test"), hyperparam("--log-format", "json"), hyperparam("--log-interval", 1000), ] # random seed grid += [ hyperparam("--seed", seeds, save_dir_key=lambda val: f"seed{val}"), ] if args.local: grid += [ hyperparam("--log-format", "json"), hyperparam("--log-interval", 1), ] return grid def postprocess_hyperparams(args, config): """Postprocess a given hyperparameter configuration.""" pass if __name__ == "__main__": sweep.main(get_grid, postprocess_hyperparams)
bart_ls-main
fairseq-py/fb_sweep/sweep_mbart.py
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from fb_sweep import sweep from fb_sweep.sweep import hyperparam """ python fb_sweep/long_pretrain/sweep_t5_baseline.py -p t5_all_corpus \ -g 8 -n 16 -t 1 --partition a100 --checkpoints-dir /fsx/xwhan/checkpoints/long_denoising --resume-failed \ --baseline-model /data/home/xwhan/fairseq-py/checkpoints/bart.large.block16k.pool.t5.span3/model.pt --snapshot-code --local python fb_sweep/long_pretrain/sweep_t5_baseline.py -p from_scratch \ -g 8 -n 1 -t 1 --partition a100 --checkpoints-dir /checkpoints/xwhan/long_denoising --resume-failed --snapshot-code --local """ # every thing combines prefix = '/fsx/xwhan/data/pretrain_corpus/pretrain_regimes/c4_books_stories_bookwiki_realnews_dialogue_10shards' SHARDS = [ f'{prefix}/shard0/', f'{prefix}/shard1/', f'{prefix}/shard2/', f'{prefix}/shard3/', f'{prefix}/shard4/', f'{prefix}/shard5/', f'{prefix}/shard6/', f'{prefix}/shard7/', f'{prefix}/shard8/',# # Created on Fri Oct 28 2022 # # Copyright (c) 2022 Your Company # f'{prefix}/shard9/', ] def get_grid(args): grid = [] total_num_udpates = 500000 warmup_updates = 500 num_data_loaders = 4 arch = "bart_large" task = "long_denoising" criterion = "cross_entropy" adam_eps = 1e-06 weight_decay = 0.01 lr = 1e-4 sequence_len = 8192 * 2 bsz = 8192 * 2 // sequence_len update_freq = 1 # large-size experiments bsz = bsz * 4 grid += [ hyperparam( "--custom-dict", f'/data/home/xwhan/fairseq-py/checkpoints/bart.large.block16k.pool.t5.span3/dict.txt' ) ] # model settings grid += [ hyperparam("--arch", arch, save_dir_key=lambda val: val), hyperparam("--fast-stat-sync", save_dir_key=lambda _: "faststatsync"), hyperparam("--task", task), hyperparam("--required-seq-len-multiple", 1024), hyperparam("--criterion", criterion), hyperparam("--pooling-layers", 4, save_dir_key=lambda val: f"pool{val}"), hyperparam("--use-xformers"), hyperparam("--attention-name", "block_noglobal", save_dir_key=lambda val: val), hyperparam("--train-subset", "train" if not args.local else "valid"), ] # task settings grid += [ hyperparam("--truncate-target"), ] grid += [ hyperparam("--max-source-positions", sequence_len, save_dir_key=lambda val: f"ms{val}"), hyperparam("--tokens-per-sample", sequence_len), hyperparam("--max-target-positions", 1024, save_dir_key=lambda val: f"mt{val}"), hyperparam("--update-freq", update_freq, save_dir_key=lambda val: f"uf{val}"), hyperparam( "--max-update", total_num_udpates, save_dir_key=lambda val: f"mu{val}" ), hyperparam( "--sample-break-mode", ["complete"], save_dir_key=lambda val: f"brk_{val}" ), ] # regularization grid += [ hyperparam("--dropout", 0.1, save_dir_key=lambda val: f"dr{val}"), hyperparam("--attention-dropout", 0.1, save_dir_key=lambda val: f"atdr{val}"), hyperparam("--relu-dropout", 0.0, save_dir_key=lambda val: f"actdr{val}"), hyperparam("--weight-decay", weight_decay, save_dir_key=lambda val: f"wd{val}"), ] # optimization settings grid += [ hyperparam("--batch-size", bsz, save_dir_key=lambda val: f"bsz{val}"), hyperparam("--optimizer", "adam", save_dir_key=lambda val: val), hyperparam("--adam-betas", "(0.9, 0.98)"), hyperparam("--adam-eps", adam_eps, save_dir_key=lambda val: f"eps{val}"), hyperparam("--clip-norm", 0.1, save_dir_key=lambda val: f"clip{val}"), hyperparam("--checkpoint-activations"), ] # lr scheduler grid += [ hyperparam("--seed", 42, save_dir_key=lambda val: f"s{val}"), hyperparam("--lr-scheduler", "polynomial_decay"), hyperparam("--lr", lr, save_dir_key=lambda val: f"lr{val}"), hyperparam("--total-num-update", total_num_udpates), hyperparam( "--warmup-updates", warmup_updates, save_dir_key=lambda val: f"warm{val}" ), ] grid += [ hyperparam("--memory-efficient-fp16", save_dir_key=lambda val: "memfp16"), ] # data loading settings grid += [ hyperparam("--num-workers", num_data_loaders), ] noisy_density = 1024 / sequence_len grid += [ hyperparam("--noise-density", noisy_density, save_dir_key=lambda val: f"noise{val}"), hyperparam("--dynamic-span-len", save_dir_key=lambda _: "dynaspan"), ] # validation and checkpoint settings grid += [ hyperparam("--no-epoch-checkpoints"), ] # logging settings grid += [ hyperparam("--skip-invalid-size-inputs-valid-test"), hyperparam("--log-format", "json"), hyperparam("--log-interval", 10), hyperparam("--combine-val"), hyperparam("--save-interval-updates", 20000), ] if args.local: grid += [ hyperparam("--log-format", "json"), hyperparam("--log-interval", 10), ] return grid def postprocess_hyperparams(args, config): """Postprocess a given hyperparameter configuration.""" args.data = ':'.join(SHARDS) if __name__ == "__main__": sweep.main(get_grid, postprocess_hyperparams)
bart_ls-main
fairseq-py/fb_sweep/long_pretrain/sweep_t5_baseline.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. #!/usr/bin/env python from fb_sweep import sweep from fb_sweep.sweep import hyperparam """ python fb_sweep/long_pretrain/sweep_model_denoising.py -p md_vanilla_c4_r6 \ -g 8 -n 16 -t 1 --partition a100 --checkpoints-dir /data/home/xwhan/checkpoints/model_denoising --resume-failed \ --baseline-model /data/home/xwhan/fairseq-py/checkpoints/md.base.16k.pool4.span3.r6/model.pt --snapshot-code \ --local """ # shards on /fsx # prefix = '/data/home/xwhan/data/pretrain_regimes/assembled_c4' prefix = '/fsx/xwhan/data/pretrain_corpus/pretrain_regimes/c4_10shards' SHARDS = [ f'{prefix}/shard0/', f'{prefix}/shard1/', f'{prefix}/shard2/', f'{prefix}/shard3/', f'{prefix}/shard4/', f'{prefix}/shard5/', f'{prefix}/shard6/', f'{prefix}/shard7/', f'{prefix}/shard8/', f'{prefix}/shard9/', ] def get_grid(args): grid = [] total_num_udpates = 500000 warmup_updates = 500 num_data_loaders = 2 arch = "loco_base" task = "model_based_denoising" criterion = "model_based_denoising" adam_eps = 1e-06 weight_decay = 0.01 lr = 1e-4 sequence_len = 8192 * 2 bsz = 8192 * 2 // sequence_len update_freq = 2 grid += [ hyperparam( "--custom-dict", # f'/data/home/xwhan/fairseq-py/checkpoints/base.md.8k.pool4.span5/dict.txt' '/data/home/xwhan/fairseq-py/checkpoints/md.base.16k.pool4.span3.r6/dict.txt' ) ] # model settings grid += [ hyperparam("--arch", arch, save_dir_key=lambda val: val), hyperparam("--task", task), hyperparam("--fast-stat-sync", save_dir_key=lambda _: "faststatsync"), hyperparam("--criterion", criterion), hyperparam("--required-seq-len-multiple", 1024), hyperparam("--use-xformers"), hyperparam("--attention-name", "block_noglobal", save_dir_key=lambda val: val), hyperparam("--pooling-layers", 4, save_dir_key=lambda val: f"pool{val}"), # hyperparam("--train-subset", "train" if not args.local else "valid"), hyperparam("--train-generator"), hyperparam("--generator-layers", 6), ] grid += [ hyperparam("--max-source-positions", sequence_len, save_dir_key=lambda val: f"ms{val}"), hyperparam("--tokens-per-sample", sequence_len), hyperparam("--max-target-positions", 1024, save_dir_key=lambda val: f"mt{val}"), hyperparam("--update-freq", update_freq, save_dir_key=lambda val: f"uf{val}"), hyperparam( "--max-update", total_num_udpates, save_dir_key=lambda val: f"mu{val}" ), hyperparam("--required-batch-size-multiple", 1), hyperparam( "--sample-break-mode", ["complete"], save_dir_key=lambda val: f"brk_{val}" ), ] # regularization grid += [ hyperparam("--dropout", 0.0, save_dir_key=lambda val: f"dr{val}"), hyperparam("--attention-dropout", 0.0, save_dir_key=lambda val: f"atdr{val}"), hyperparam("--relu-dropout", 0.0, save_dir_key=lambda val: f"actdr{val}"), hyperparam("--weight-decay", weight_decay, save_dir_key=lambda val: f"wd{val}"), ] # optimization settings grid += [ hyperparam("--batch-size", bsz, save_dir_key=lambda val: f"bsz{val}"), hyperparam("--optimizer", "adam", save_dir_key=lambda val: val), hyperparam("--adam-betas", "(0.9, 0.98)", save_dir_key=lambda val: "beta9999"), hyperparam("--adam-eps", adam_eps, save_dir_key=lambda val: f"eps{val}"), hyperparam("--clip-norm", 0.1, save_dir_key=lambda val: f"clip{val}"), hyperparam("--mlm-loss-weight", 1, save_dir_key=lambda val: f"mlm{val}"), # hyperparam("--checkpoint-activations"), ] # lr scheduler grid += [ hyperparam("--seed", 42, save_dir_key=lambda val: f"s{val}"), hyperparam("--lr-scheduler", "polynomial_decay"), hyperparam("--lr", lr, save_dir_key=lambda val: f"lr{val}"), hyperparam("--total-num-update", total_num_udpates), hyperparam( "--warmup-updates", warmup_updates, save_dir_key=lambda val: f"warm{val}" ), ] grid += [ hyperparam("--memory-efficient-fp16", save_dir_key=lambda val: "memfp16"), ] # data loading settings grid += [ hyperparam("--num-workers", num_data_loaders), ] # validation and checkpoint settings grid += [ hyperparam("--no-epoch-checkpoints"), ] # logging settings grid += [ hyperparam("--skip-invalid-size-inputs-valid-test"), hyperparam("--log-format", "json"), hyperparam("--log-interval", 1 if args.local else 20), hyperparam("--combine-val"), hyperparam("--save-interval-updates", 20000), ] grid += [ hyperparam("--sample-ratio", 0.2, save_dir_key=lambda val: f"sample{val}"), hyperparam("--noise-density", 0.0625, save_dir_key=lambda val: f"noise{val}"), hyperparam("--dynamic-span-len", save_dir_key=lambda _: "dynaspan"), # hyperparam("--mean-noise-span-length", 5, save_dir_key=lambda val: f"spanlen{val}"), ] if args.local: grid += [ hyperparam("--log-format", "json"), hyperparam("--log-interval", 10), ] return grid def postprocess_hyperparams(args, config): """Postprocess a given hyperparameter configuration.""" args.data = ':'.join(SHARDS) if __name__ == "__main__": sweep.main(get_grid, postprocess_hyperparams)
bart_ls-main
fairseq-py/fb_sweep/long_pretrain/sweep_model_denoising.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. #!/usr/bin/env python from fb_sweep import sweep from fb_sweep.sweep import hyperparam """ python fb_sweep/long_pretrain/sweep_pegasus.py -p pegasus_vanilla_c4 \ -g 8 -n 8 -t -1 --partition a100 --checkpoints-dir /fsx/xwhan/checkpoints/pegasus --resume-failed \ --baseline-model /data/home/xwhan/fairseq-py/checkpoints/bart.base.block16k.pool/model.pt \ --local """ # # shards on /data # prefix = '/data/home/xwhan/data' prefix = '/fsx/xwhan/data/pretrain_corpus/pretrain_regimes/c4_10shards' SHARDS = [ f'{prefix}/shard0/', f'{prefix}/shard1/', f'{prefix}/shard2/', f'{prefix}/shard3/', f'{prefix}/shard4/', f'{prefix}/shard5/', f'{prefix}/shard6/', f'{prefix}/shard7/', f'{prefix}/shard8/', f'{prefix}/shard9/', ] def get_grid(args): grid = [] total_num_udpates = 500000 warmup_updates = 500 num_data_loaders = 8 arch = "bart_base" task = "pegasus" criterion = "cross_entropy" adam_eps = 1e-06 weight_decay = 0.01 lr = 1e-4 sequence_len = 8192 * 2 bsz = 8192 * 2 // sequence_len update_freq = 2 # grid += [ # hyperparam( # "--restore-file", # "/data/home/xwhan/fairseq-py/checkpoints/bart_block8k_pool/model.pt", # # "/data/home/xwhan/fairseq-py/checkpoints/bart.large.block8k/model.pt", # # "/checkpoints/xwhan/pegasus/pegasus.bart_large.mt1024.msp8192.mtp1024.uf8.mu100000.brk_complete.dr0.1.atdr0.1.actdr0.0.wd0.01.bsz1.adam.beta9999.eps1e-06.clip0.1.s42.lr3e-05.warm500.memfp16.ngpu32/checkpoint_best.pt" # ), # ] grid += [ hyperparam( "--custom-dict", f'/data/home/xwhan/fairseq-py/checkpoints/bart.base.block16k.pool/dict.txt' ) ] # model settings grid += [ hyperparam("--arch", arch, save_dir_key=lambda val: val), hyperparam("--fast-stat-sync", save_dir_key=lambda _: "faststatsync"), hyperparam("--task", task), hyperparam("--required-seq-len-multiple", 1024), hyperparam("--criterion", criterion), hyperparam("--pooling-layers", 4, save_dir_key=lambda val: f"pool{val}"), hyperparam("--use-xformers"), hyperparam("--attention-name", "block_noglobal", save_dir_key=lambda val: val), # hyperparam("--xformer-config", '{"window_size": 512}'), # hyperparam("--attention-name", "bs_local", save_dir_key=lambda val: val), # hyperparam("--xformer-config", '{"block_size": 1024, "max_seq_len": 8192}'), hyperparam("--train-subset", "train" if not args.local else "valid"), ] # task settings grid += [ hyperparam("--max-target-len", 1024, save_dir_key=lambda val: f"mt{val}"), hyperparam("--truncate-target"), ] grid += [ hyperparam("--max-source-positions", sequence_len, save_dir_key=lambda val: f"msp{val}"), hyperparam("--tokens-per-sample", sequence_len, save_dir_key=lambda val: f"tps{val}"), hyperparam("--max-target-positions", 1024, save_dir_key=lambda val: f"mtp{val}"), hyperparam("--update-freq", update_freq, save_dir_key=lambda val: f"uf{val}"), hyperparam( "--max-update", total_num_udpates, save_dir_key=lambda val: f"mu{val}" ), hyperparam( "--sample-break-mode", ["complete"], save_dir_key=lambda val: f"brk_{val}" ), hyperparam("--mask-ratio", 0.0625, save_dir_key=lambda val: f"ms{val}") ] # regularization grid += [ hyperparam("--dropout", 0.1, save_dir_key=lambda val: f"dr{val}"), hyperparam("--attention-dropout", 0.1, save_dir_key=lambda val: f"atdr{val}"), hyperparam("--relu-dropout", 0.0, save_dir_key=lambda val: f"actdr{val}"), hyperparam("--weight-decay", weight_decay, save_dir_key=lambda val: f"wd{val}"), ] # optimization settings grid += [ hyperparam("--batch-size", bsz, save_dir_key=lambda val: f"bsz{val}"), hyperparam("--optimizer", "adam", save_dir_key=lambda val: val), hyperparam("--adam-betas", "(0.9, 0.98)", save_dir_key=lambda val: "beta9999"), hyperparam("--adam-eps", adam_eps, save_dir_key=lambda val: f"eps{val}"), hyperparam("--clip-norm", 0.1, save_dir_key=lambda val: f"clip{val}"), hyperparam("--fp16-scale-tolerance", 0.1, save_dir_key=lambda val: f"fst{val}") ] # lr scheduler grid += [ hyperparam("--seed", 42, save_dir_key=lambda val: f"s{val}"), hyperparam("--lr-scheduler", "polynomial_decay"), hyperparam("--lr", lr, save_dir_key=lambda val: f"lr{val}"), hyperparam("--total-num-update", total_num_udpates), hyperparam( "--warmup-updates", warmup_updates, save_dir_key=lambda val: f"warm{val}" ), ] grid += [ hyperparam("--memory-efficient-fp16", save_dir_key=lambda val: "memfp16"), ] # data loading settings grid += [ hyperparam("--num-workers", num_data_loaders), ] # validation and checkpoint settings grid += [ hyperparam("--no-epoch-checkpoints"), ] # logging settings grid += [ hyperparam("--skip-invalid-size-inputs-valid-test"), hyperparam("--log-format", "json"), hyperparam("--log-interval", 10), hyperparam("--combine-val"), hyperparam("--save-interval-updates", 10000), ] if args.local: grid += [ hyperparam("--log-format", "json"), hyperparam("--log-interval", 10), ] return grid def postprocess_hyperparams(args, config): """Postprocess a given hyperparameter configuration.""" args.data = ':'.join(SHARDS) if __name__ == "__main__": sweep.main(get_grid, postprocess_hyperparams)
bart_ls-main
fairseq-py/fb_sweep/long_pretrain/sweep_pegasus.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. #!/usr/bin/env python import sweep from sweep import hyperparam def get_grid(args): model_size = 'large' fp16 = True # some models will run into issues with fp16 max_update = 64000 num_gpu = 64 max_positions = 4096 window_size_ablation = False # These parameterers can be fixed tokens_per_batch = 4096 * 64 * 2 tokens_per_gpu = 4096 * 2 if model_size == 'large' and (not window_size_ablation) else 4096 * 4 tokens_per_gpu = (tokens_per_gpu // 2) if not fp16 else tokens_per_gpu update_freq = tokens_per_batch // (tokens_per_gpu * num_gpu) warm_up_steps = 500 # warm_up_steps = int(0.06 * max_update) return [ hyperparam("--train-subset", "train" if not args.local else "valid"), hyperparam("--skip-invalid-size-inputs-valid-test"), hyperparam("--memory-efficient-fp16", save_dir_key=lambda val: "me_fp16"), hyperparam("--fast-stat-sync", save_dir_key=lambda _: "faststatsync"), hyperparam("--num-workers", 2), hyperparam("--task", "masked_lm"), hyperparam("--criterion", "masked_lm"), hyperparam("--max-positions", max_positions), hyperparam( "--sample-break-mode", "complete_doc", save_dir_key=lambda val: f"brk_{val}" ), hyperparam("--tokens-per-sample", max_positions, save_dir_key=lambda val: f"tps{val}"), hyperparam("--optimizer", "adam", save_dir_key=lambda val: val), hyperparam("--adam-betas", "(0.9, 0.98)", save_dir_key=lambda val: "b2_0.98"), hyperparam("--adam-eps", 1e-6, save_dir_key=lambda val: f"eps{val}"), hyperparam("--clip-norm", 0.0, save_dir_key=lambda val: f"cl{val}"), hyperparam("--lr-scheduler", "polynomial_decay"), hyperparam("--lr", 3e-5, save_dir_key=lambda val: f"lr{val}"), hyperparam("--warmup-updates", warm_up_steps, save_dir_key=lambda val: f"wu{val}"), # use more updates for performer, 500 for other models hyperparam("--total-num-update", max_update), hyperparam("--dropout", 0.1, save_dir_key=lambda val: f"dr{val}"), hyperparam("--attention-dropout", 0.1, save_dir_key=lambda val: f"atdr{val}"), hyperparam("--weight-decay", 0.01, save_dir_key=lambda val: f"wd{val}"), hyperparam("--batch-size", tokens_per_gpu // max_positions, save_dir_key=lambda val: f"ms{val}"), hyperparam("--update-freq", update_freq, save_dir_key=lambda val: f"uf{val}"), hyperparam("--max-update", max_update, save_dir_key=lambda val: f"mu{val}"), hyperparam("--seed", 42, save_dir_key=lambda val: f"s{val}"), hyperparam("--log-format", "json"), hyperparam("--log-interval", 100), hyperparam("--combine-val"), hyperparam("--keep-last-epochs", 1), hyperparam("--save-interval-updates", 16000), # increased as it will save on epoch end hyperparam("--ddp-backend", "no_c10d"), hyperparam("--arch", f"roberta_{model_size}", save_dir_key=lambda val: val), hyperparam("--use-xformers"), hyperparam("--attention-name", "block"), hyperparam("--xformer-config", '{"window_size": 512}'), hyperparam("--restore-file", "/data/home/xwhan/fairseq-py/checkpoints/roberta.large.block-512/model.pt") ] def postprocess_hyperparams(args, config): """Postprocess a given hyperparameter configuration.""" pass if __name__ == "__main__": sweep.main(get_grid, postprocess_hyperparams)
bart_ls-main
fairseq-py/fb_sweep/long_pretrain/sweep_from_roberta.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from fairseq.models.bart import BARTModel from fairseq.tasks.denoising import DenoisingTask from fairseq.tasks.pegasus import PegasusTask from fairseq.dataclass.utils import convert_namespace_to_omegaconf import os import torch hub = BARTModel.from_pretrained('/data/home/xwhan/fairseq-py/checkpoints/bart.base', checkpoint_file='model.pt') task = hub.task bart = hub.model model_args = hub.cfg.model model_args.max_source_positions = 1024 * 16 model_args.max_target_positions = 1024 model_args.alibi = False model_args.pooling_layers = 4 checkpoint_path = "/data/home/xwhan/fairseq-py/checkpoints/bart.base" dictionary = DenoisingTask.load_dictionary(os.path.join(checkpoint_path, 'dict.txt')) state = torch.load(os.path.join(checkpoint_path, 'model.pt'), map_location=torch.device('cpu')) task = PegasusTask(model_args, dictionary) long_cfg = convert_namespace_to_omegaconf(model_args) long_model = task.build_model(long_cfg.model) ##### encoder staff ##### long_model.encoder.embed_tokens.load_state_dict(bart.encoder.embed_tokens.state_dict()) long_model.encoder.layernorm_embedding.load_state_dict(bart.encoder.layernorm_embedding.state_dict()) # 2. attention layers long_model.encoder.layers.load_state_dict(bart.encoder.layers.state_dict(), strict=False) # 3. embed_positions, longer if not model_args.alibi: pos_limit, _ = bart.encoder.embed_positions.weight.shape new_pos_limit, embed_dim = long_model.encoder.embed_positions.weight.shape new_pos_embed = bart.encoder.embed_positions.weight.new_empty(new_pos_limit, embed_dim) step = pos_limit - 2 for start in range(2, new_pos_limit, step): new_pos_embed[start:start+step] = bart.encoder.embed_positions.weight[2:] long_model.encoder.embed_positions.weight.data = new_pos_embed ##### decoder staff ##### long_model.decoder.load_state_dict(bart.decoder.state_dict()) save_path = '/data/home/xwhan/fairseq-py/checkpoints/bart.base.block16k.pool' print(len(dictionary)) dictionary.save(os.path.join(save_path, 'dict.txt')) state['args'] = model_args state['model'] = long_model.state_dict() if 'criterion' in state: del state['criterion'] state['extra_state'] = {"epoch": 0} state['last_optimizer_state'] = None torch.save(state, os.path.join(save_path, 'model.pt'))
bart_ls-main
fairseq-py/fb_sweep/long_pretrain/initialize_models_pegasus.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import datetime import hashlib import itertools import os import random import shlex import shutil import subprocess import textwrap from collections import OrderedDict from glob import iglob BASH_IF_CLAUSE = """ if [ "$SLURM_ARRAY_TASK_ID" = "{index}" ]; then {srun_cmd} fi """ def main(get_grid, postprocess_hyperparams, args): def dry_run(msg): if args.dry_run: print(f"| dry-run: {msg}") return args.dry_run if args.local: args.num_nodes = 1 # compute all possible hyperparameter configurations grid = get_grid(args) grid_product = list(itertools.product(*[hp.values for hp in grid])) # randomly shuffle configurations random.seed(args.seed) random.shuffle(grid_product) launch_train(args, grid, grid_product, dry_run, postprocess_hyperparams) def copy_all_python_files( source, snapshot_main_dir, code_snapshot_hash, recurse_dirs="fairseq" ): """ Copies following files from source to destination: a) all *.py files at direct source location. b) all fairseq/*.py recursively (default); recurse through comma-separated recurse_dirs """ def all_pys(recurse_dirs): yield from iglob(os.path.join(source, "*.py")) for d in recurse_dirs.split(","): yield from iglob(os.path.join(source, d, "**/*.py"), recursive=True) yield from iglob(os.path.join(source, d, "**/*.so"), recursive=True) yield from iglob(os.path.join(source, d, "**/*.yaml"), recursive=True) os.makedirs(snapshot_main_dir, exist_ok=True) destination = os.path.join(snapshot_main_dir, code_snapshot_hash) assert not os.path.exists(destination), "Code snapshot: {0} alredy exists".format( code_snapshot_hash ) os.makedirs(destination) for filepath in all_pys(recurse_dirs): directory, filename = os.path.split(filepath) if directory: os.makedirs(os.path.join(destination, directory), exist_ok=True) shutil.copy2( os.path.join(source, filepath), os.path.join(destination, filepath) ) return destination def run_setup(args, config, dry_run): # compute save_dir save_dir_key = ".".join( filter( lambda save_dir_key: save_dir_key is not None, [hp.get_save_dir_key() for hp in config.values()], ) ) save_dir_key = save_dir_key.replace(",", "_") num_total_gpus = args.num_nodes * args.num_gpus if args.use_jobarray: save_dir = os.path.join( args.checkpoints_dir, args.jobarray_name, f"{args.prefix}.{save_dir_key}.ngpu{num_total_gpus}" ) else: save_dir = os.path.join( args.checkpoints_dir, f"{args.prefix}.{save_dir_key}.ngpu{num_total_gpus}" ) # create save directory if it doesn't exist if not os.path.exists(save_dir): if not dry_run(f"create directory: {save_dir}"): os.makedirs(save_dir) # copy baseline model checkpoint_last = os.path.join(save_dir, "checkpoint_last.pt") if ( args.baseline_model and not os.path.exists(checkpoint_last) and not dry_run(f"initialize with baseline model: {args.baseline_model}") ): if not os.path.exists(args.baseline_model): raise FileNotFoundError( f"Cannot find baseline model: {args.baseline_model}" ) shutil.copyfile(args.baseline_model, checkpoint_last) # create slurm log dir for job arrays if args.use_jobarray: slurm_dir = os.path.join(args.checkpoints_dir, args.jobarray_name, "slurm_logs") if not os.path.exists(slurm_dir): if not dry_run(f"create directory: {slurm_dir}"): os.makedirs(slurm_dir) return save_dir_key, save_dir, slurm_dir else: return save_dir_key, save_dir def is_job_valid(args, save_dir, dry_run): # check for whether the run failed if has_finished(save_dir): if args.resume_finished: dry_run(f"restart previously finished run: {save_dir}") else: print(f"skip finished run (override with --resume-finished): {save_dir}") return False elif has_failed(save_dir): if args.resume_failed: dry_run(f"resume failed run: {save_dir}") else: print(f"skip failed run (override with --resume-failed): {save_dir}") return False elif has_started(save_dir): print(f"skip in progress run: {save_dir}") return False return True def set_env(args, env, dry_run): if "OMP_NUM_THREADS" not in env: env["OMP_NUM_THREADS"] = "2" if args.local: if not dry_run("start training locally"): if "CUDA_VISIBLE_DEVICES" not in env: env["CUDA_VISIBLE_DEVICES"] = ",".join(map(str, range(args.num_gpus))) env["NCCL_DEBUG"] = "INFO" else: if args.num_nodes > 1: env["NCCL_SOCKET_IFNAME"] = "^docker0,lo" env["NCCL_DEBUG"] = "INFO" env["FI_PROVIDER"] = "efa" # env["FI_OFI_RXR_RX_COPY_UNEXP"] = '1' # # env["FI_EFA_MR_CACHE_ENABLE"] = '1' # env["FI_OFI_RXR_RX_COPY_OOO"] = '1' # # env["FI_OFI_RXR_INLINE_MR_ENABLE"] = '1' # env["NCCL_TREE_THRESHOLD"] = '0' # env["NCCL_SOCKET_IFNAME"] = "ens5" # env["NCCL_NET_SHARED_BUFFERS"] = "0" def gen_train_command(args, env, config, destination, save_dir, save_dir_key): # generate train command train_cmd = [args.python, os.path.join(destination, args.script)] train_cmd.extend(["--distributed-world-size", str(args.num_nodes * args.num_gpus)]) if args.num_nodes > 1: train_cmd.extend( [ "--distributed-port", str(get_random_port()), ] ) if args.data is not None: train_cmd.extend([args.data]) train_cmd.extend(["--save-dir", save_dir]) if not args.no_tensorboard: _dir = args.tensorboard_logdir if _dir is None: # _dir = os.path.join( # "/fsx/", # For AWS cluster "/checkpoint" -> "/checkpoints" # env["USER"], # "checkpoints", # "tensorboard_logs", # str(datetime.date.today()), # ) _dir = os.path.join(args.checkpoints_dir, 'tb') tensorboard_logdir = os.path.join( _dir, f"{args.prefix}.{save_dir_key}.ngpu{str(args.num_nodes * args.num_gpus)}" ) train_cmd.extend(["--tensorboard-logdir", tensorboard_logdir]) if not args.no_wandb: if "WANDB_API_KEY" in env and "WANDB_BASE_URL" in env: if "--wandb-project" not in config: project = str(datetime.date.today()) train_cmd.extend(["--wandb-project", project]) if "WANDB_RUN_GROUP" not in env: env["WANDB_RUN_GROUP"] = args.prefix if "WANDB_RUN_ID" not in env: env["WANDB_RUN_ID"] = ( hashlib.md5(os.path.basename(save_dir).encode('utf-8')).hexdigest() ) for hp in config.values(): train_cmd.extend(map(str, hp.get_cli_args())) return train_cmd def gen_post_commands(args, save_dir): post_cmds = [] if args.post_steps: for post_step in args.post_steps: if os.path.isfile(post_step): from pathlib import Path post_cmd = Path(post_step).read_text() else: post_cmd = post_step post_cmd = post_cmd.strip().format( job_dir=save_dir, data_dir=args.data ) # assume to provide job_dir post_cmds.append(post_cmd) return post_cmds def gen_srun_command_and_str(args, env, save_dir_key, train_log, train_stderr, train_cmd, post_cmds): base_srun_cmd = [ "srun", "--job-name", f"{args.prefix}.{save_dir_key}", "--output", train_log, "--error", train_stderr, "--open-mode", "append", "--unbuffered", ] if args.salloc: excluded_hosts = os.environ.get("EXCLUDED_HOSTS", None) included_hosts = os.environ.get("INCLUDED_HOSTS", None) base_srun_cmd += [ "--nodes", str(args.num_nodes), "--ntasks", str(args.num_nodes), ] base_srun_cmd += ["-x", excluded_hosts] if excluded_hosts is not None else [] base_srun_cmd += ["-w", included_hosts] if included_hosts is not None else [] srun_cmd = base_srun_cmd + train_cmd srun_cmd_str = " ".join(map(shlex.quote, srun_cmd)) for post_cmd in post_cmds: post_cmd_str = " ".join(map(shlex.quote, base_srun_cmd)) + f" {post_cmd}" srun_cmd_str = f"({srun_cmd_str} && {post_cmd_str})" if len(srun_cmd_str) > 0 else post_cmd_str return srun_cmd, srun_cmd_str def gen_sbatch_command_and_str(args, job_name, train_log, train_stderr, destination, srun_cmd_str, array_length=None): excluded_hosts = os.environ.get("EXCLUDED_HOSTS", None) included_hosts = os.environ.get("INCLUDED_HOSTS", None) sbatch_cmd = [ "sbatch", "--job-name", job_name, "--gpus", str(args.num_gpus * args.num_nodes), "--nodes", str(args.num_nodes), "--ntasks-per-node", "1", "--cpus-per-task", str(int(8 * args.num_gpus)), "--output", train_log, "--error", train_stderr, "--open-mode", "append", # '--no-requeue', "--signal", "B:USR1@180", ] if array_length is not None: sbatch_cmd += ["--array", f"0-{array_length-1}"] if args.constraint: sbatch_cmd += ["--constraint", args.constraint] if args.partition: sbatch_cmd += ["--partition", args.partition] if args.reservation: sbatch_cmd += ["--reservation", args.reservation] if args.exclusive: sbatch_cmd += ["--exclusive"] if args.comment: comment = args.comment if args.snapshot_code: comment += ", Code Location: {0}".format(destination) sbatch_cmd += ["--comment", comment] elif args.snapshot_code: sbatch_cmd += ["--comment", "Code Location: {0}".format(destination)] if args.dep is not None: sbatch_cmd.extend(["-d", str(args.dep)]) if args.time is not None: sbatch_cmd.extend(["--time", args.time]) # # remove mem requirements for AWS # if args.mem is not None: # sbatch_cmd += ["--mem", args.mem] # else: # sbatch_cmd += ["--mem-per-cpu", "7G"] sbatch_cmd += ["-x", excluded_hosts] if excluded_hosts is not None else [] sbatch_cmd += ["-w", included_hosts] if included_hosts is not None else [] wrapped_cmd = requeue_support() + "\n" + srun_cmd_str if array_length is None: wrapped_cmd = wrapped_cmd + " \n wait $! \n sleep 610 & \n wait $!" sbatch_cmd += ["--wrap", wrapped_cmd] sbatch_cmd_str = " ".join(map(shlex.quote, sbatch_cmd)) return sbatch_cmd, sbatch_cmd_str def local_run(args, env, train_cmd, post_cmds, dry_run): assert args.num_nodes == 1, "distributed training cannot be combined with --local" if not dry_run("start training locally"): if "CUDA_VISIBLE_DEVICES" not in env: env["CUDA_VISIBLE_DEVICES"] = ",".join(map(str, range(args.num_gpus))) env["NCCL_DEBUG"] = "INFO" train_proc = subprocess.Popen(train_cmd, env=env) train_proc.wait() for post_cmd in post_cmds: post_cmd_proc = subprocess.Popen(post_cmd, shell=True, env=env) post_cmd_proc.wait() def run_batch(env, sbatch_cmd_str, sbatch_cmd): print(f"running command: {sbatch_cmd_str}\n") with subprocess.Popen(sbatch_cmd, stdout=subprocess.PIPE, env=env) as train_proc: stdout = train_proc.stdout.read().decode("utf-8") try: job_id = int(stdout.rstrip().split()[-1]) print(f"Launched job {job_id}") except IndexError: job_id = None return job_id, stdout def write_git_commit(args, train_log): with open(train_log, "a") as train_log_h: # log most recent git commit git_commit = subprocess.check_output("git log | head -n 1", shell=True, encoding="utf-8") print(git_commit.rstrip(), file=train_log_h) if args.baseline_model: print(f"baseline model: {args.baseline_model}", file=train_log_h) def dry_run_batch(env, train_log, train_stderr, sbatch_cmd_str, sbatch_cmd, dry_run): dry_run("start remote training") dry_run(f"- log stdout to: {train_log}") dry_run(f"- log stderr to: {train_stderr}") dry_run(f"- run command: {sbatch_cmd_str}") sbatch_cmd += ["--test-only"] with subprocess.Popen(sbatch_cmd, stdout=subprocess.PIPE, env=env) as train_proc: stdout = train_proc.stdout.read().decode("utf-8") print(stdout) def launch_train(args, grid, grid_product, dry_run, postprocess_hyperparams): destination = "" if args.snapshot_code: # Currently hash is just the current time in ISO format. # Remove colons since they cannot be escaped in POSIX PATH env vars. code_snapshot_hash = datetime.datetime.now().isoformat().replace(":", "_") destination = copy_all_python_files( ".", os.path.join(args.snapshot_root, "slurm_snapshot_code"), code_snapshot_hash, args.snapshot_recurse_dirs, ) os.environ["PYTHONPATH"] = destination + ":" + os.environ.get("PYTHONPATH", "") # set environment env = os.environ.copy() set_env(args, env, dry_run) # start training srun_cmd_str_list = [] train_log_list = [] for i, hp_values in enumerate(grid_product): if i == args.num_trials: break config = OrderedDict() for hp, value in zip(grid, hp_values): config[hp.name] = hp config[hp.name].current_value = value # postprocess hyperparams postprocess_hyperparams(args, config) if args.use_jobarray: save_dir_key, save_dir, slurm_dir = run_setup(args, config, dry_run) else: save_dir_key, save_dir = run_setup(args, config, dry_run) # check if job failed, exists, finished if not is_job_valid(args, save_dir, dry_run): continue # generate train command train_cmd = gen_train_command(args, env, config, destination, save_dir, save_dir_key) # post cmds post_cmds = gen_post_commands(args, save_dir) train_log = os.path.join(save_dir, "train.log") train_stderr = os.path.join(save_dir, "train.stderr.%j") # %j = slurm job id srun_cmd, srun_cmd_str = gen_srun_command_and_str( args, env, save_dir_key, train_log, train_stderr, train_cmd, post_cmds ) # launch each job individually if not args.use_jobarray: job_id = None if args.dry_run: train_cmd_str = " ".join(train_cmd) dry_run(f"train command: {train_cmd_str}") for post_cmd in post_cmds: dry_run(f"post steps command: {post_cmd}") if args.local: local_run(args, env, train_cmd, post_cmds, dry_run) else: srun_cmd_str = srun_cmd_str + " &" # build command if not args.salloc: job_name = f"{args.prefix}.{save_dir_key}" sbatch_cmd, sbatch_cmd_str = gen_sbatch_command_and_str( args, job_name, train_log, train_stderr, destination, srun_cmd_str ) else: sbatch_cmd = srun_cmd sbatch_cmd_str = srun_cmd_str if args.dry_run: dry_run_batch(env, train_log, train_stderr, sbatch_cmd_str, sbatch_cmd, dry_run) else: write_git_commit(args, train_log) with open(train_log, "a") as train_log_h: job_id, stdout = run_batch(env, sbatch_cmd_str, sbatch_cmd) print(stdout, file=train_log_h) if job_id is not None: print("Launched {}".format(job_id)) if args.sequential and not args.local and job_id is not None: args.dep = job_id else: train_log_list.append(train_log) srun_cmd_str_list.append(srun_cmd_str) if not args.dry_run: write_git_commit(args, train_log) # aggregate cmds and launch single job array if args.use_jobarray: aggregate_cmd = "" for i, srun_cmd_str in enumerate(srun_cmd_str_list): aggregate_cmd = aggregate_cmd + BASH_IF_CLAUSE.format(index=i, srun_cmd=srun_cmd_str) job_name = args.jobarray_name slurm_stdout_log = os.path.join(slurm_dir, "slrm_stdout.%j") slurm_stderr_log = os.path.join(slurm_dir, "slrm_stderr.%j") array_length = len(srun_cmd_str_list) sbatch_cmd, sbatch_cmd_str = gen_sbatch_command_and_str( args, job_name, slurm_stdout_log, slurm_stderr_log, destination, aggregate_cmd, array_length=array_length ) if args.dry_run: dry_run_batch(env, slurm_stdout_log, slurm_stderr_log, sbatch_cmd_str, sbatch_cmd, dry_run) else: job_id, stdout = run_batch(env, sbatch_cmd_str, sbatch_cmd) for train_log in train_log_list: with open(train_log, "a") as train_log_h: print(stdout, file=train_log_h) def has_finished(save_dir): train_log = os.path.join(save_dir, "train.log") if not os.path.exists(train_log): return False with open(train_log, "r") as h: lines = h.readlines() if len(lines) == 0: return False if "done training" in lines[-1]: return True return False def has_failed(save_dir): if not os.path.exists(save_dir): return False # find max job id job_ids = [] for fn in os.listdir(save_dir): if fn.startswith("train.stderr."): job_ids.append(int(fn.split(".")[-1])) if len(job_ids) == 0: return False max_job_id = max(job_ids) def _has_failed(stderr_fn): with open(stderr_fn, "r") as h: for line in h: if len(line.strip()) > 0: # assume that any output in stderr indicates an error return True return False return _has_failed(os.path.join(save_dir, f"train.stderr.{max_job_id}")) def has_started(save_dir): train_log = os.path.join(save_dir, "train.log") if not os.path.exists(train_log): return False return True def get_random_port(): old_state = random.getstate() random.seed() port = random.randint(10000, 20000) random.setstate(old_state) return port def requeue_support(): return textwrap.dedent( """ trap_handler () { echo "Caught signal: " $1 # SIGTERM must be bypassed if [ "$1" = "TERM" ]; then echo "bypass sigterm" else # Submit a new job to the queue echo "Requeuing " $SLURM_JOB_ID scontrol requeue $SLURM_JOB_ID fi } # Install signal handler trap 'trap_handler USR1' USR1 trap 'trap_handler TERM' TERM """ )
bart_ls-main
fairseq-py/fb_sweep/sweep/slurm.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import datetime import os import socket from typing import List, Optional def csv_str_list(x): return [y.strip() for y in x.split(",")] def get_args(add_extra_options_func=None, input_args: Optional[List[str]] = None): """ input_args (List[str]): strings to parse, defaults to sys.argv """ parser = argparse.ArgumentParser("Script for launching hyperparameter sweeps ") parser.add_argument("--grid", help="grid function we used", default=None) parser.add_argument("--pair", help="language direction", default=None) parser.add_argument("-d", "--data", help="path to data directory") parser.add_argument( "-p", "--prefix", required=True, help="save checkpoints and logs in <checkpoints-dir>/<prefix>.<save_dir_key>", ) parser.add_argument( "-t", "--num-trials", required=True, type=int, help="number of random hyperparam configurations to try (-1 for grid search)", ) parser.add_argument( "-g", "--num-gpus", type=int, required=True, help="number of GPUs per node" ) parser.add_argument( "-n", "--num-nodes", type=int, default=1, help="number of nodes for distributed training", ) parser.add_argument("--seed", type=int, default=1234) parser.add_argument( "--baseline-model", help="path to baseline model from which to resume training" ) parser.add_argument( "--force-checkpoints-dir", help="force using a given checkpoint dir" ) parser.add_argument( "--resume-failed", action="store_true", help="resume any runs that failed (assumes --num-trials and --seed are the same)", ) parser.add_argument( "--resume-finished", action="store_true", help="force any runs that finished to begin again (uncommon)", ) parser.add_argument( "--dry-run", action="store_true", help="output only a list of actions to perform without performing them", ) parser.add_argument("--local", action="store_true", help="run job locally") parser.add_argument("--debug", action="store_true", help="debug") parser.add_argument("--script", default="train.py", help="script to launch") parser.add_argument( "--python", default="python", help="path to nonstandard python binary" ) try: import torch_xla # noqa tpu = True except ImportError: tpu = False hostname = socket.gethostname() if "fair" in hostname: default_backend = "slurm" parser.add_argument( "--checkpoints-dir", default=os.path.join( "/checkpoint", os.environ["USER"], str(datetime.date.today()) ), help="save checkpoints and logs in <checkpoints-dir>/<prefix>.<save_dir_key>", ) elif tpu: default_backend = "tpu" parser.add_argument( "--checkpoints-dir", default=os.path.join( "/mnt/fairseq_data", os.environ["USER"], "checkpoints", str(datetime.date.today()), ), help="save checkpoints and logs in <checkpoints-dir>/<prefix>.<save_dir_key>", ) else: # default_backend = "fblearner" # parser.add_argument( # "--checkpoints-dir", # default=os.path.join( # "/mnt/vol/gfsai-east/ai-group/users", # os.environ["USER"], # "checkpoints", # str(datetime.date.today()), # ), # help="save checkpoints and logs in <checkpoints-dir>/<prefix>.<save_dir_key>", # ) # for AWS cluster default_backend = "slurm" parser.add_argument( "--checkpoints-dir", default=os.path.join( "/checkpoints", os.environ["USER"], str(datetime.date.today()) ), help="save checkpoints and logs in <checkpoints-dir>/<prefix>.<save_dir_key>", ) parser.add_argument( "--log-main-dir", default=None, help="dir to store log in addition to stdout. If this " "is not set, it will be set to args.checkpoints_dir", ) parser.add_argument( "--backend", choices=["fblearner", "chronos", "slurm", "tpu"], default=default_backend, ) # FBLearner params parser.add_argument("--entitlement", help="entitlement to use", default="gpu_fair") parser.add_argument( "--run-as-secure-group", help="secure group to use", default="oncall_fairseq" ) parser.add_argument( "--capabilities", help="capabilities: e.g. GPU_V100_HOST,GPU_V100_32G_HOST", type=csv_str_list, default=None, ) # for manifold in fblearner parser.add_argument( "--manifold-max-parallel", default=8, type=int, help="set ManifoldPathHandler max_parallel download number", ) parser.add_argument( "--manifold-timeout-sec", default=1800, type=int, help="set ManifoldPathHandler timeout seconds", ) parser.add_argument( "--manifold-has-user-data", default=None, type=lambda x: x.lower() not in ("no", "false", "f", "n", "0") if x is not None else None, help="set ManifoldPathHandler has_user_data option", ) parser.add_argument( "--manifold-num-retries", default=15, type=int, help="set ManifoldPathHandler num_retries option", ) parser.add_argument( "--manifold-ttl", default=None, type=int, help="A manifold resource's time-to-live, applied to all manifold written resources. By default, there is no TTL.", ) # for manifold in fblearner # Chronos params parser.add_argument("--hostgroup", help="hostgroup to use") parser.add_argument("--host-filter", help="host filter") parser.add_argument("--fbpkg", help="use the given fbpkg") parser.add_argument("--build-only", action="store_true") # Slurm params parser.add_argument( "--salloc", action="store_true", help="run agaist current allocation" ) parser.add_argument("--partition", help="partition to run on", default="learnfair") parser.add_argument("--reservation", help="reservation to run on") parser.add_argument( "--exclusive", action="store_true", help="if set, get exclusive host" ) parser.add_argument( "--dep", metavar="JOBID", type=int, help="add JOBID as a dependency (i.e., wait for it to finish)", ) parser.add_argument( "--sequential", action="store_true", help="schedule jobs to run sequentially" ) parser.add_argument( "--time", default="4320", help="expected job duration in minutes" ) parser.add_argument("--mem", "--mem", help="memory to request") parser.add_argument( "--constraint", metavar="CONSTRAINT", help='gpu constraint, if any. e.g. "volta"', ) parser.add_argument("--comment", help="comment string") parser.add_argument( "--snapshot-code", action="store_true", default=False, help="Flag for creating a snapshot of training code while creating slurm job," ' path is "./slurm_snapshot_code/<TIME_ISO_FORMAT/>:", ' "can find time from comment of slurm job.", ) parser.add_argument( "--snapshot-root", type=str, default=".", help="root path for saving the snapshot code.", ) parser.add_argument( "--snapshot-recurse-dirs", default="fairseq,fairseq_cli", help="comma-separated directories from where to recursively copy *.py, *.so and *.yaml files", ) parser.add_argument( "--tensorboard-logdir", help="save tensorboard logs in <tensorboard-logdir>/<prefix>.<save_dir_key>", ) parser.add_argument( "--no-tensorboard", action="store_true", help="disable tensorboard logging" ) parser.add_argument( "--no-wandb", action="store_true", help="disable WandB logging" ) parser.add_argument( "--post-steps", nargs="+", help="additional steps to execute after the primary job is complete. " "this can be a file with the steps, or a string. some placeholders such as " "{job_dir} will be replaced", ) parser.add_argument('--use-jobarray', action='store_true', help="Submit sweep as job-array") parser.add_argument('--jobarray-name', type=str, default=None, help="Folder name for job-array. Defaults to <jobarray_timestamp>") # GCP params parser.add_argument("--tpu", help="tpu to use") if add_extra_options_func is not None: add_extra_options_func(parser) args = parser.parse_args(input_args) if args.use_jobarray: if args.jobarray_name is None: ja_hash = datetime.datetime.now().isoformat().replace(':', '_') args.jobarray_name = f'jobarray_{ja_hash}' assert not args.local, 'Job array should not be local' assert not args.sequential, 'Cannot have both sequential and jobarray' return args class hyperparam(object): """Base class for defining hyperparameters.""" def __init__( self, name, values=None, binary_flag=False, save_dir_key=None, positional_arg=False, ): """ Arguments: - name : the name of the hyperparameter (e.g., `--dropout`) - values : the set of values to sweep over (e.g., `[0.0, 0.1, 0.2]`) - binary_flag : whether the hyperparameter uses a boolean flag (e.g., `--no-save`) - save_dir_key : function that takes the hyperparameter value and returns the "key" to be appended to the output directory name - positional_arg : whether the hyperparameter is a positional argument """ self.name = name if values is None: # syntactic sugar for binary flags self.values = [True] self.binary_flag = True else: self.values = values if isinstance(values, list) else [values] self.binary_flag = binary_flag self.save_dir_key = save_dir_key self.positional_arg = positional_arg self.current_value = None if positional_arg and name.startswith("-"): raise ValueError( f"positional arguments must not start with a dash ({name})" ) if len(self.values) > 1 and self.save_dir_key is None: raise ValueError( f"{name} has more than one value but is missing a save_dir_key!" ) def get_cli_args(self): if self.binary_flag: return [self.name] if self.current_value else [] elif self.positional_arg: return [self.current_value] else: return [self.name, self.current_value] def get_save_dir_key(self): if self.save_dir_key is None: return None if self.binary_flag: return self.save_dir_key(1) if self.current_value else None return self.save_dir_key(self.current_value) def main( get_grid, postprocess_hyperparams, add_extra_options_func=None, scheduler_args: Optional[List[str]] = None, ): args = get_args(add_extra_options_func, scheduler_args) if args.backend == "fblearner": from .fblearner import main as backend_main elif args.backend == "chronos": from .chronos import main as backend_main elif args.backend == "slurm": from .slurm import main as backend_main elif args.backend == "tpu": from .tpu import main as backend_main get_grid = get_grid[args.grid] if args.grid is not None else get_grid backend_main(get_grid, postprocess_hyperparams, args)
bart_ls-main
fairseq-py/fb_sweep/sweep/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import itertools import os import random import shlex import subprocess from collections import OrderedDict def main(get_grid, postprocess_hyperparams, args): assert args.local or args.tpu is not None, "--tpu is required for TPU jobs" # compute all possible hyperparameter configurations grid = get_grid(args) grid_product = list(itertools.product(*[hp.values for hp in grid])) # randomly shuffle configurations random.seed(args.seed) random.shuffle(grid_product) for i, hp_values in enumerate(grid_product): config = OrderedDict() for hp, value in zip(grid, hp_values): config[hp.name] = hp config[hp.name].current_value = value # postprocess hyperparams postprocess_hyperparams(args, config) # launch training launch_train(args, config) if i == args.num_trials - 1: break def launch_train(args, config): def dry_run(msg): if args.dry_run: print(f"| dry-run: {msg}") return args.dry_run # compute save_dir save_dir_key = ".".join( filter( lambda save_dir_key: save_dir_key is not None, [hp.get_save_dir_key() for hp in config.values()], ) ) save_dir_key = save_dir_key.replace(",", "_") num_total_gpus = args.num_nodes * args.num_gpus if args.force_checkpoints_dir: raise NotImplementedError save_dir = os.path.join( args.checkpoints_dir, f"{args.prefix}.{save_dir_key}.ntpu{num_total_gpus}", ) # create save directory if it doesn't exist if not os.path.exists(save_dir): if not dry_run(f"create directory: {save_dir}"): os.makedirs(save_dir) # os.chmod(save_dir, 0o777) # if has_started(save_dir) and not args.resume_checkpoints_dir: # print(f'skip in progress run: {save_dir}') # return # generate train command cmd_args = [ "python", "/mnt/fairseq_data/fairseq-py/train.py", "--distributed-world-size", str(args.num_nodes * args.num_gpus), "--tpu", ] if not args.local: cmd_args = [ "python", "-m", "torch_xla.distributed.xla_dist", "--tpu", args.tpu, "--conda-env", "torch-xla-nightly", "--", ] + cmd_args if args.data: cmd_args += [args.data] cmd_args += ["--save-dir", save_dir] for hp in config.values(): if hp.name == "--fp16": hp.name = "--bf16" cmd_args.extend(map(str, hp.get_cli_args())) cmd_args_str = " ".join(map(shlex.quote, cmd_args)) if args.dry_run: dry_run(f"train command: {cmd_args_str}") # initialize train log train_log = os.path.join(save_dir, "train.log") if not dry_run(f"create train.log at: {train_log}"): with open(train_log, "a") as train_log_h: train_log_h.write("") os.chmod(train_log, 0o777) if args.dry_run: print("| dry-run: start training") print(f"| dry-run: - run command: {cmd_args_str}") else: subprocess.Popen(cmd_args).wait() return train_log def has_started(save_dir): train_log = os.path.join(save_dir, "train.log") if not os.path.exists(train_log): return False return True def get_random_port(): old_state = random.getstate() random.seed() port = random.randint(10000, 20000) random.setstate(old_state) return port
bart_ls-main
fairseq-py/fb_sweep/sweep/tpu.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import itertools import json import os import random import shlex import shutil import subprocess import tempfile from collections import OrderedDict from fairseq.file_io import PathManager def main(get_grid, postprocess_hyperparams, args): if args.manifold_has_user_data is None: raise ValueError( "fblearner backend requires --manifold-has-user-data be specified explicitly" ) try: from iopath.fb.manifold import ManifoldPathHandler PathManager.register_handler( ManifoldPathHandler( max_parallel=16, timeout_sec=1800, has_user_data=args.manifold_has_user_data, ) ) except KeyError: print("| ManifoldPathHandler already registered.") # compute all possible hyperparameter configurations grid = get_grid(args) grid_product = list(itertools.product(*[hp.values for hp in grid])) # randomly shuffle configurations random.seed(args.seed) random.shuffle(grid_product) sweep_config = {} save_dirs = [] for i, hp_values in enumerate(grid_product): config = OrderedDict() for hp, value in zip(grid, hp_values): config[hp.name] = hp config[hp.name].current_value = value # postprocess hyperparams postprocess_hyperparams(args, config) # setup training x = setup_train(args, config) if x is not None: cmd_args = x["cmd_args"] cmd_args.extend( [ "--manifold-max-parallel", str(args.manifold_max_parallel), "--manifold-timeout-sec", str(args.manifold_timeout_sec), "--manifold-has-user-data", str(args.manifold_has_user_data), "--manifold-num-retries", str(args.manifold_num_retries), ] ) if args.manifold_ttl is not None: cmd_args.extend( [ "--manifold-ttl", str(args.manifold_ttl), ] ) if args.tensorboard_logdir: cmd_args.extend( [ "--tensorboard-logdir", args.tensorboard_logdir, "--tensorboard-manifold", ] ) sweep_config[x["train_log_path"]] = cmd_args save_dirs.append(x["save_dir"]) if i == args.num_trials - 1: break if len(save_dirs) == 0: return with tempfile.NamedTemporaryFile("w") as h: config = { "cmd_args": [], "num_nodes": args.num_nodes, "num_gpus_per_node": args.num_gpus, "fp16": any( "--fp16" in cmd_args or "--memory-efficient-fp16" in cmd_args for cmd_args in sweep_config.values() ), "sweep_config": sweep_config, "gang_affinity": False, "capabilities": getattr(args, "capabilities", None), "memory": int(args.mem) if args.mem is not None else None, } h.write(json.dumps(config)) h.flush() # build flow command prefix = args.prefix.rstrip("_") num_total_gpus = args.num_nodes * args.num_gpus flow_cmd = [ "/usr/local/bin/flow-cli", "canary", #'--py-version', '>=3', "--mode", "opt", "--entitlement", str(args.entitlement), "--run-as-secure-group", args.run_as_secure_group, "--parameters-file", str(h.name), "--name", f"{prefix}.ngpu{num_total_gpus}", "fairseq.train.train_workflow" # TODO put stuff in --notes, e.g., repro command ] cmd = " ".join(map(shlex.quote, flow_cmd)) if args.dry_run: print("| dry-run: start remote training") print(f"| dry-run: - run command: {cmd}") else: subprocess.Popen( flow_cmd, cwd=os.path.join( "/data/users", os.environ["USER"], "fbsource/fbcode", ), ).wait() def setup_train(args, config): def dry_run(msg): if args.dry_run: print(f"| dry-run: {msg}") return args.dry_run # compute save_dir save_dir_key = ".".join( filter( lambda save_dir_key: save_dir_key is not None, [hp.get_save_dir_key() for hp in config.values()], ) ) save_dir_key = save_dir_key.replace(",", "_") num_total_gpus = args.num_nodes * args.num_gpus subdir_name = f"{args.prefix}.{save_dir_key}.ngpu{num_total_gpus}" save_dir = os.path.join(args.checkpoints_dir, subdir_name) log_main_dir = ( args.log_main_dir if args.log_main_dir is not None else args.checkpoints_dir ) log_dir = os.path.join(log_main_dir, subdir_name) # create save directory if it doesn't exist if not os.path.exists(save_dir): if not dry_run(f"create directory: {save_dir}"): PathManager.mkdirs(save_dir) PathManager.chmod(save_dir, 0o777) # copy baseline model checkpoint_last = os.path.join(save_dir, "checkpoint_last.pt") if ( args.baseline_model and not os.path.exists(checkpoint_last) and not dry_run(f"initialize with baseline model: {args.baseline_model}") ): if not os.path.exists(args.baseline_model): raise FileNotFoundError( f"Cannot find baseline model: {args.baseline_model}" ) shutil.copyfile(args.baseline_model, checkpoint_last) # TODO make this work # check for whether the run failed # if has_finished(save_dir): # if args.resume_finished: # dry_run(f'restart previously finished run: {save_dir}') # else: # print(f'skip finished run (override with --resume-finished): {save_dir}') # return # elif has_failed(save_dir): # if args.resume_failed: # dry_run(f'resume failed run: {save_dir}') # else: # print(f'skip failed run (override with --resume-failed): {save_dir}') # return # elif has_started(save_dir): if has_started(log_dir) and not (args.resume_finished or args.resume_failed): # if not resume previous runs explicitly, take it as started print(f"skip in progress run: {log_dir}") return # generate train command cmd_args = [args.data, "--save-dir", save_dir, "--log-dir", log_dir] for hp in config.values(): cmd_args.extend(map(str, hp.get_cli_args())) if args.dry_run: cmd_args_str = " ".join(cmd_args) dry_run(f"train command: train.par {cmd_args_str}") # initialize train log train_log = os.path.join(log_dir, "train.log") if not dry_run(f"create train.log at: {train_log}"): PathManager.mkdirs(log_dir) PathManager.chmod(log_dir, 0o777) with PathManager.open(train_log, "a") as train_log_h: train_log_h.write("") PathManager.chmod(train_log, 0o777) return { "cmd_args": cmd_args, "save_dir": save_dir, "save_dir_key": save_dir_key, "train_log_path": train_log, } # def has_finished(save_dir): # train_log = os.path.join(save_dir, 'train.log') # if not os.path.exists(train_log): # return False # with open(train_log, 'r') as h: # lines = h.readlines() # if len(lines) == 0: # return False # if 'done training' in lines[-1]: # return True # return False # # # def has_failed(save_dir): # if not os.path.exists(save_dir): # return False # # # find max job id # job_ids = [] # for fn in os.listdir(save_dir): # if fn.startswith('train.stderr.'): # job_ids.append(int(fn.split('.')[-1])) # if len(job_ids) == 0: # return False # max_job_id = max(job_ids) # # def _has_failed(stderr_fn): # with open(stderr_fn, 'r') as h: # for line in h: # if len(line.strip()) > 0: # # assume that any output in stderr indicates an error # return True # return False # # return _has_failed(os.path.join(save_dir, f'train.stderr.{max_job_id}')) def has_started(log_dir): train_log = os.path.join(log_dir, "train.log") if not os.path.exists(train_log): return False return True
bart_ls-main
fairseq-py/fb_sweep/sweep/fblearner.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import itertools import os import random import shlex import subprocess import sys import tempfile import time from collections import OrderedDict import libfb.py.fbpkg as fbpkg def main(get_grid, postprocess_hyperparams, args): assert args.hostgroup is not None, "--hostgroup is required for Chronos jobs" # compute all possible hyperparameter configurations grid = get_grid(args) grid_product = list(itertools.product(*[hp.values for hp in grid])) # randomly shuffle configurations random.seed(args.seed) random.shuffle(grid_product) # build train fbpkg if not args.local and args.fbpkg is not None: train_fbpkg = args.fbpkg else: # build train.par if args.debug: mode = "dbg" elif args.local: mode = "dev-nosan" else: mode = "opt" buck_cmd = [ "/usr/local/bin/buck", "build", "@mode/" + mode, "deeplearning/projects/fairseq-py:fb_train", ] buck_cmd_str = " ".join(map(shlex.quote, buck_cmd)) if args.dry_run: print(f"| dry-run: {buck_cmd_str}") else: subprocess.Popen( buck_cmd, cwd=os.path.join( "/data/users", os.environ["USER"], "fbsource/fbcode", ), ).wait() if args.dry_run: print(f"| dry_run: build fbpkg") elif args.local: train_fbpkg = None else: train_fbpkg = fbpkg.build_version( "fairseq", build_config=fbpkg.BuildConfig( paths=[ os.path.join( "/data/users", os.environ["USER"], "fbsource/fbcode", "buck-out/gen/deeplearning/projects/fairseq-py/fb_train.par", ) ], ), ephemeral=True, expire="2w", )[0].identifier if args.build_only: sys.exit(0) if args.dry_run: train_fbpkg = "fb_train.par" for i, hp_values in enumerate(grid_product): config = OrderedDict() for hp, value in zip(grid, hp_values): config[hp.name] = hp config[hp.name].current_value = value # postprocess hyperparams postprocess_hyperparams(args, config) # launch training launch_train(args, config, train_fbpkg) if i == args.num_trials - 1: break def launch_train(args, config, train_fbpkg): def dry_run(msg): if args.dry_run: print(f"| dry-run: {msg}") return args.dry_run # compute save_dir save_dir_key = ".".join( filter( lambda save_dir_key: save_dir_key is not None, [hp.get_save_dir_key() for hp in config.values()], ) ) save_dir_key = save_dir_key.replace(",", "_") num_total_gpus = args.num_nodes * args.num_gpus x = int(time.time()) if not args.force_checkpoints_dir: save_dir = os.path.join( args.checkpoints_dir, f"{args.prefix}.{save_dir_key}.ngpu{num_total_gpus}.{x}", ) else: save_dir = args.force_checkpoints_dir # create save directory if it doesn't exist if not os.path.exists(save_dir): if not dry_run(f"create directory: {save_dir}"): os.makedirs(save_dir) os.chmod(save_dir, 0o777) # if has_started(save_dir) and not args.resume_checkpoints_dir: # print(f'skip in progress run: {save_dir}') # return # generate train command cmd_args = [] if args.data: cmd_args += [args.data] cmd_args += ["--save-dir", save_dir] for hp in config.values(): cmd_args.extend(map(str, hp.get_cli_args())) cmd_args_str = " ".join(map(shlex.quote, cmd_args)) if args.dry_run: dry_run(f"train command: fb_train.par {cmd_args_str}") # initialize train log train_log = os.path.join(save_dir, "train.log") if not dry_run(f"create train.log at: {train_log}"): with open(train_log, "a") as train_log_h: train_log_h.write("") os.chmod(train_log, 0o777) # write script script = get_script( port=get_random_port(), world_size=(args.num_nodes * args.num_gpus), train_fbpkg=train_fbpkg, cmd_args_str=cmd_args_str, stdout=train_log, stderr_prefix=os.path.join(save_dir, "train.stderr"), baseline_model_src=args.baseline_model, baseline_model_dst=os.path.join(save_dir, "checkpoint_last.pt"), ) with tempfile.NamedTemporaryFile("w") as h: if not dry_run(f"write script to: {h.name}\n\n{script}"): h.write(script) h.flush() # crun crun_cmd = [ "/usr/local/chronos/scripts/crun", "--print-url", "--mailwhen", "onFailure", "--hostgroup", str(args.hostgroup), "--gang-size", str(args.num_nodes), "-G", str(args.num_gpus), "-C", str(10 * args.num_gpus), "-M", ("-1" if args.num_gpus == 8 else str(29 * args.num_gpus)), #'--host-filter', 'gpu_model=="Tesla V100-SXM2-16GB"', h.name, ] crun_cmd_str = " ".join(map(shlex.quote, crun_cmd)) env = os.environ.copy() if args.local: assert ( args.num_nodes == 1 ), "distributed training cannot be combined with --local" if not dry_run("start training locally"): if "CUDA_VISIBLE_DEVICES" not in env: env["CUDA_VISIBLE_DEVICES"] = ",".join( map(str, range(args.num_gpus)) ) with tempfile.TemporaryDirectory() as tmpdir: os.chmod(tmpdir, 0o777) subprocess.Popen( [ os.path.join( "/data/users", os.environ["USER"], "fbsource/fbcode", "buck-out/gen/deeplearning/projects/fairseq-py/fb_train.par", ) ] + cmd_args, env=env, cwd=tmpdir, ).wait() else: if args.dry_run: print("| dry-run: start remote training") print(f"| dry-run: - run command: {crun_cmd_str}") else: subprocess.Popen(crun_cmd).wait() return train_log def get_script( port, world_size, train_fbpkg, cmd_args_str, stdout, stderr_prefix, baseline_model_src, baseline_model_dst, ): if baseline_model_src is not None: link_baseline = f""" if [ ! -e {baseline_model_dst} ]; then cp {baseline_model_src} {baseline_model_dst}.tmp mv {baseline_model_dst}.tmp {baseline_model_dst} fi """ wait_baseline = f""" while [ ! -e {baseline_model_dst} ]; do sleep 5 done """ else: link_baseline = ":" wait_baseline = ":" node_size = world_size if world_size < 8 else 8 if world_size > 1: distributed = """\ --distributed-init-method zeus://$CHRONOS_JOB_ID \ --distributed-world-size $WORLD_SIZE \ --distributed-rank $RANK """ else: distributed = "" save_dir = os.path.dirname(baseline_model_dst) return f"""#!/bin/bash /usr/local/bin/fbpkg fetch {train_fbpkg} #if [ $(nvidia-smi | grep "No running processes found" | wc -l) != "1" ]; then # echo "Error: there are other running GPU processes" # exit 1 #fi export MASTER_ADDR=$(/usr/local/chronos/scripts/clist -F name,hostname -n | grep $(echo $CHRONOS_JOB_NAME | sed "s/_GANG_MEMBER$//") | cut -d' ' -f 3).facebook.com export MASTER_PORT={port} export WORLD_SIZE={world_size} export RANK=$(({node_size}*CHRONOS_GANG_MEMBER_ID)) echo MASTER_ADDR: $MASTER_ADDR echo MASTER_PORT: $MASTER_PORT echo WORLD_SIZE: $WORLD_SIZE echo RANK: $RANK export NCCL_DEBUG=INFO export NCCL_MIN_NRINGS=8 export NCCL_NSOCKS_PERTHREAD=1 export NCCL_SOCKET_NTHREADS=4 export NCCL_BUFFSIZE=16777216 # disable trees export NCCL_TREE_THRESHOLD=0 ## disable libgpumon #export CUDA_INJECTION64_PATH=none nvidia-smi export ulimit -a ifconfig ping6 -c 5 $MASTER_ADDR if [ $RANK -eq 0 ]; then {link_baseline} else {wait_baseline} fi mkdir -p {save_dir} chmod 777 {save_dir} LD_LIBRARY_PATH=/mnt/vol/gfsai-flash3-east/ai-group/users/myleott/nccl_2.4.8-1:$LD_LIBRARY_PATH ./fb_train.par {cmd_args_str} {distributed} """ def has_started(save_dir): train_log = os.path.join(save_dir, "train.log") if not os.path.exists(train_log): return False return True def get_random_port(): old_state = random.getstate() random.seed() port = random.randint(10000, 20000) random.setstate(old_state) return port
bart_ls-main
fairseq-py/fb_sweep/sweep/chronos.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. #!/usr/bin/env python """ python fb_sweep/long_finetune/sweep_summ.py -p ss_large_all \ -d /fsx/xwhan/data/summscreen/fd-bin \ -g 8 -n 1 -t -1 --partition a100 --checkpoints-dir /fsx/xwhan/checkpoints/summscreen --resume-failed --snapshot-code \ --baseline-model /fsx/xwhan/checkpoints/long_denoising/t5_all_corpus.bart_large.faststatsync.pool4.block_noglobal.ms16384.mt1024.uf1.mu500000.brk_complete.dr0.1.atdr0.1.actdr0.0.wd0.01.bsz4.adam.eps1e-06.clip0.1.s42.lr0.0001.warm500.memfp16.noise0.0625.dynaspan.ngpu128/model_100k.pt --no-wandb --local python fb_sweep/long_finetune/sweep_block_baseline.py -p pubmed_nopre_baseline \ -d /fsx/xwhan/data/pubmed-dataset-bin \ -g 8 -n 2 -t -1 --partition a100 --checkpoints-dir /fsx/xwhan/checkpoints/pubmed --resume-failed --snapshot-code \ --baseline-model /data/home/xwhan/fairseq-py/checkpoints/bart.large.block16k.pool/model.pt --no-wandb --local python fb_sweep/long_finetune/sweep_summ.py -p arxiv_large_all \ -d /fsx/xwhan/data/arxiv-dataset-bin \ -g 8 -n 2 -t -1 --partition a100 --checkpoints-dir /fsx/xwhan/checkpoints/arxiv --resume-failed --snapshot-code \ --baseline-model /fsx/xwhan/checkpoints/long_denoising/t5_all_corpus.bart_large.faststatsync.pool4.block_noglobal.ms16384.mt1024.uf1.mu500000.brk_complete.dr0.1.atdr0.1.actdr0.0.wd0.01.bsz4.adam.eps1e-06.clip0.1.s42.lr0.0001.warm500.memfp16.noise0.0625.dynaspan.ngpu128/model_100k.pt --no-wandb python fb_sweep/long_finetune/sweep_block_baseline.py -p gov_nopre_baseline \ -d /fsx/xwhan/data//gov_report-bin \ -g 8 -n 2 -t -1 --partition a100 --checkpoints-dir /fsx/xwhan/checkpoints/gov --resume-failed --snapshot-code \ --baseline-model /data/home/xwhan/fairseq-py/checkpoints/bart.large.block16k.pool/model.pt --no-wandb --no-wandb --local python fb_sweep/long_finetune/sweep_block_baseline.py -p tvm_nopre_baseline \ -d /fsx/xwhan/data/summscreen/tv-bin \ -g 8 -n 1 -t -1 --partition lowpri --checkpoints-dir /fsx/xwhan/checkpoints/tvm --resume-failed --snapshot-code \ --baseline-model /data/home/xwhan/fairseq-py/checkpoints/bart.large.block16k.pool/model.pt --no-wandb --time 600 python fb_sweep/long_finetune/sweep_summ.py -p bsum_large_all \ -d /fsx/xwhan/data/booksum-chapters-bin \ -g 1 -n 1 -t -1 --partition a100 --checkpoints-dir /fsx/xwhan/checkpoints/bsum --resume-failed --snapshot-code \ --baseline-model /fsx/xwhan/checkpoints/long_denoising/t5_all_corpus.bart_large.faststatsync.pool4.block_noglobal.ms16384.mt1024.uf1.mu500000.brk_complete.dr0.1.atdr0.1.actdr0.0.wd0.01.bsz4.adam.eps1e-06.clip0.1.s42.lr0.0001.warm500.memfp16.noise0.0625.dynaspan.ngpu128/model_100k.pt --no-wandb --local """ from fb_sweep import sweep from fb_sweep.sweep import hyperparam def get_grid(args): grid = [] total_num_udpates = 10000 warmup_updates = 200 num_data_loaders = 2 # arch = "bart_base" arch = 'bart_large' task = "summarization" criterion = "label_smoothed_cross_entropy" lrs = [3e-4, 1e-4] source, target = 'src', 'tgt' bsz = 4 if 'base' in arch else 2 update_freq = 2 if 'base' in arch else 4 dropout = 0 if 'base' in arch: bsz = 4 update_freq = 2 grid += [ hyperparam("--checkpoint-activations"), ] else: bsz, update_freq = 2, 4 grid += [ hyperparam("--checkpoint-activations"), ] if 'arxiv' in args.data: max_epoch = 7 # arxiv generate_args = '{"beam": 4, "max_len_b": 300, "lenpen": 2.0, "no_repeat_ngram_size": 3, "min_len": 20}' elif 'tv' in args.data: total_num_udpates = 15000 max_epoch = 60 source, target = 'source', 'target' generate_args = '{"beam": 4, "max_len_b": 700, "lenpen": 2.0, "no_repeat_ngram_size": 3, "min_len": 20}' bsz, update_freq = 4, 2 elif 'summscreen' in args.data: max_epoch = 130 dropout = [0, 0.2] generate_args = '{"beam": 4, "max_len_b": 300, "lenpen": 2.0, "no_repeat_ngram_size": 3, "min_len": 20}' elif 'gov_report' in args.data: max_epoch = 40 generate_args = '{"beam": 4, "max_len_b": 450, "lenpen": 2.0, "no_repeat_ngram_size": 3, "min_len": 60}' elif 'booksum' in args.data: max_epoch = 50 generate_args = '{"beam": 4, "max_len_b": 450, "lenpen": 2.0, "no_repeat_ngram_size": 3, "min_len": 20}' elif 'pubmed' in args.data: max_epoch = 12 #TODO needs to be increased for better performance from 10 generate_args = '{"beam": 4, "max_len_b": 400, "lenpen": 2.0, "no_repeat_ngram_size": 3, "min_len": 20}' else: assert False, "Max epoch not set for this dataset" adam_eps = 1e-08 max_source_positions = 1024*16 # model to use grid += [ # hyperparam( # "--restore-file", # f"{pretrain_path}seq2seq_100k.pt", # # "/data/home/xwhan/fairseq-py/checkpoints/bart.large.block16k/model.pt" # ), hyperparam( "--custom-dict", # f'/data/home/xwhan/fairseq-py/checkpoints/bart.base.block8k.pool.t5/dict.txt' # t5 pretrain # "/data/home/xwhan/fairseq-py/checkpoints/bart.large.block16k.pool.t5.span3/dict.txt", # "/checkpoints/xwhan/model_denoising/md_joint.loco_base.faststatsync.block_sw.pool4.ms8192.mt1024.uf4.mu100000.brk_complete_doc.dr0.1.atdr0.1.actdr0.0.wd0.01.bsz1.adam.beta9999.eps1e-06.clip0.1.s42.lr0.0001.warm500.memfp16.sample0.2.noise0.1.spanlen5.ngpu64/dict.txt" # f'{pretrain_path}/dict.txt' "/data/home/xwhan/fairseq-py/checkpoints/bart.large.block16k.pool/dict.txt" ) ] # model settings grid += [ hyperparam("--arch", arch, save_dir_key=lambda val: val), # hyperparam("--train-subset", "train" if not args.local else "valid"), hyperparam("--task", task), hyperparam("--required-seq-len-multiple", 1024), hyperparam("--criterion", criterion), hyperparam("--max-epoch", max_epoch, save_dir_key=lambda val: f"mep{val}"), hyperparam("--max-source-positions", max_source_positions, save_dir_key=lambda val: f"sl{val}"), hyperparam("--max-target-positions", 1024), hyperparam("--source-lang", source), hyperparam("--target-lang", target), hyperparam("--truncate-source"), hyperparam("--truncate-target"), hyperparam("--label-smoothing", 0.1, save_dir_key=lambda val: f"ls{val}"), hyperparam("--pooling-layers", 4, save_dir_key=lambda val: f"pool{val}"), hyperparam("--use-xformers"), hyperparam("--attention-name", ['block_noglobal'], save_dir_key=lambda val: val), # hyperparam("--xformer-config", '{"num_global_tokens": 64}') ] grid += [ hyperparam("--batch-size", bsz, save_dir_key=lambda val: f"mt{val}"), hyperparam("--batch-size-valid", 2 if 'gov' in args.data else 4), hyperparam("--update-freq", update_freq, save_dir_key=lambda val: f"uf{val}"), hyperparam("--required-batch-size-multiple", 1), ] # regularization grid += [ hyperparam("--dropout", dropout, save_dir_key=lambda val: f"dr{val}"), hyperparam("--attention-dropout", 0.1, save_dir_key=lambda val: f"atdr{val}"), hyperparam("--relu-dropout", 0.0, save_dir_key=lambda val: f"actdr{val}"), hyperparam("--weight-decay", 0.01, save_dir_key=lambda val: f"wd{val}"), ] # optimization settings grid += [ hyperparam("--seed", [3, 42], save_dir_key=lambda val: f"s{val}"), hyperparam("--optimizer", "adam", save_dir_key=lambda val: val), hyperparam("--adam-betas", "(0.9, 0.999)", save_dir_key=lambda val: "beta9999"), hyperparam("--adam-eps", adam_eps, save_dir_key=lambda val: f"eps{val}"), hyperparam("--clip-norm", 0.1, save_dir_key=lambda val: f"clip{val}"), # hyperparam("--fp16-scale-tolerance", 0.25), # ] # lr schedule4 grid += [ hyperparam("--lr-scheduler", "polynomial_decay"), hyperparam("--lr", lrs, save_dir_key=lambda val: f"lr{val}"), hyperparam("--total-num-update", total_num_udpates, save_dir_key=lambda val: f"mu{val}"), hyperparam( "--warmup-updates", warmup_updates, save_dir_key=lambda val: f"warm{val}" ), ] grid += [ hyperparam("--memory-efficient-fp16", save_dir_key=lambda val: "memfp16"), ] # data loading settings grid += [ hyperparam("--num-workers", num_data_loaders), ] valid_interval_updates = 500 if ('arxiv' in args.data or 'pubmed' in args.data) else 200 # validation and checkpoint settings grid += [ hyperparam("--validate-interval", int(max_epoch // 5)), hyperparam("--no-epoch-checkpoints"), hyperparam("--validate-interval-updates", 10 if args.local else valid_interval_updates), hyperparam("--best-checkpoint-metric", "rouge_avg", save_dir_key=lambda val: f"cmetric{val}") ] # logging settings grid += [ hyperparam("--skip-invalid-size-inputs-valid-test"), hyperparam("--maximize-best-checkpoint-metric"), hyperparam("--log-format", "json"), hyperparam("--log-interval", 10), hyperparam("--eval-rouge"), hyperparam("--eval-rouge-args", generate_args), ] if args.local: grid += [ hyperparam("--log-format", "json"), hyperparam("--log-interval", 1), ] return grid def postprocess_hyperparams(args, config): """Postprocess a given hyperparameter configuration.""" pass if __name__ == "__main__": sweep.main(get_grid, postprocess_hyperparams)
bart_ls-main
fairseq-py/fb_sweep/long_finetune/sweep_block_baseline.py
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ python fb_sweep/long_finetune/sweep_summ.py -p ss_large_all \ -d /fsx/xwhan/data/summscreen/fd-bin \ -g 8 -n 1 -t -1 --partition a100 --checkpoints-dir /fsx/xwhan/checkpoints/summscreen --resume-failed --snapshot-code \ --baseline-model /fsx/xwhan/checkpoints/long_denoising/t5_all_corpus.bart_large.faststatsync.pool4.block_noglobal.ms16384.mt1024.uf1.mu500000.brk_complete.dr0.1.atdr0.1.actdr0.0.wd0.01.bsz4.adam.eps1e-06.clip0.1.s42.lr0.0001.warm500.memfp16.noise0.0625.dynaspan.ngpu128/model_100k.pt --no-wandb --local """ from fb_sweep import sweep from fb_sweep.sweep import hyperparam def get_grid(args): grid = [] total_num_udpates = 10000 warmup_updates = 200 num_data_loaders = 4 # arch = "bart_base" arch = 'bart_large' task = "summarization" criterion = "label_smoothed_cross_entropy" lrs = [3e-4, 1e-4] source, target = 'src', 'tgt' dropout = 0 if 'base' in arch: bsz = 4 update_freq = 2 grid += [ hyperparam("--checkpoint-activations"), ] else: bsz, update_freq = 2, 4 grid += [ hyperparam("--checkpoint-activations"), ] if 'arxiv' in args.data: lrs = [3e-4, 1e-4, 4e-4] max_epoch = 8 # arxiv generate_args = '{"beam": 4, "max_len_b": 300, "lenpen": 2.0, "no_repeat_ngram_size": 3, "min_len": 20}' elif 'tv' in args.data: total_num_udpates = 15000 dropout = [0] max_epoch = 60 source, target = 'source', 'target' generate_args = '{"beam": 4, "max_len_b": 700, "lenpen": 2.0, "no_repeat_ngram_size": 3, "min_len": 20}' bsz, update_freq = 2, 2 elif 'summscreen' in args.data: lrs = [5e-5, 3e-5] warmup_updates = [200, 500, 1000] max_epoch = 130 dropout = [0, 0.2] generate_args = '{"beam": 4, "max_len_b": 300, "lenpen": 2.0, "no_repeat_ngram_size": 3, "min_len": 20}' elif 'gov_report' in args.data: lrs = [3e-4, 5e-5, 4e-4] total_num_udpates = 15000 max_epoch = 70 generate_args = '{"beam": 4, "max_len_b": 450, "lenpen": 2.0, "no_repeat_ngram_size": 3, "min_len": 60}' elif 'booksum' in args.data: max_epoch = 60 update_freq = 4 generate_args = '{"beam": 4, "max_len_b": 450, "lenpen": 4.0, "no_repeat_ngram_size": 3, "min_len": 20}' elif 'pubmed' in args.data: lrs = [1e-4] max_epoch = 12 # TODO needs to be increased for better performance from 10 generate_args = '{"beam": 4, "max_len_b": 400, "lenpen": 2.0, "no_repeat_ngram_size": 3, "min_len": 20}' else: assert False, "Max epoch not set for this dataset" adam_eps = 1e-08 max_source_positions = 1024*16 # model to use grid += [ # hyperparam( # "--restore-file", # f"{pretrain_path}seq2seq_100k.pt", # # "/data/home/xwhan/fairseq-py/checkpoints/bart.large.block16k/model.pt" # ), hyperparam( "--custom-dict", # f'/data/home/xwhan/fairseq-py/checkpoints/bart.base.block8k.pool.t5/dict.txt' # t5 pretrain "/data/home/xwhan/fairseq-py/checkpoints/bart.large.block16k.pool.t5.span3/dict.txt", # "/checkpoints/xwhan/model_denoising/md_joint.loco_base.faststatsync.block_sw.pool4.ms8192.mt1024.uf4.mu100000.brk_complete_doc.dr0.1.atdr0.1.actdr0.0.wd0.01.bsz1.adam.beta9999.eps1e-06.clip0.1.s42.lr0.0001.warm500.memfp16.sample0.2.noise0.1.spanlen5.ngpu64/dict.txt" # f'{pretrain_path}/dict.txt' # "/data/home/xwhan/fairseq-py/checkpoints/bart.base.block16k.pool/dict.txt" ) ] # grid += [ # hyperparam("--ddp-backend", "no_c10d"), # ] # model settings grid += [ hyperparam("--arch", arch, save_dir_key=lambda val: val), # hyperparam("--train-subset", "train" if not args.local else "valid"), hyperparam("--task", task), hyperparam("--required-seq-len-multiple", 1024), hyperparam("--criterion", criterion), hyperparam("--max-epoch", max_epoch, save_dir_key=lambda val: f"mep{val}"), hyperparam("--max-source-positions", max_source_positions, save_dir_key=lambda val: f"sl{val}"), hyperparam("--max-target-positions", 1024), hyperparam("--source-lang", source), hyperparam("--target-lang", target), hyperparam("--truncate-source"), hyperparam("--truncate-target"), hyperparam("--label-smoothing", 0.1, save_dir_key=lambda val: f"ls{val}"), hyperparam("--pooling-layers", 4, save_dir_key=lambda val: f"pool{val}"), hyperparam("--use-xformers"), hyperparam("--attention-name", ['block_noglobal'], save_dir_key=lambda val: val), ] grid += [ hyperparam("--batch-size", bsz, save_dir_key=lambda val: f"mt{val}"), hyperparam("--batch-size-valid", 2 if 'gov' in args.data else 4), hyperparam("--update-freq", update_freq, save_dir_key=lambda val: f"uf{val}"), hyperparam("--required-batch-size-multiple", 1), ] # regularization grid += [ hyperparam("--dropout", dropout, save_dir_key=lambda val: f"dr{val}"), hyperparam("--attention-dropout", [0.1, 0], save_dir_key=lambda val: f"atdr{val}"), hyperparam("--relu-dropout", 0.0, save_dir_key=lambda val: f"actdr{val}"), hyperparam("--weight-decay", 0.01, save_dir_key=lambda val: f"wd{val}"), ] # optimization settings grid += [ hyperparam("--seed", [3, 42], save_dir_key=lambda val: f"s{val}"), hyperparam("--optimizer", "adam", save_dir_key=lambda val: val), hyperparam("--adam-betas", "(0.9, 0.999)", save_dir_key=lambda val: "beta9999"), hyperparam("--adam-eps", adam_eps, save_dir_key=lambda val: f"eps{val}"), hyperparam("--clip-norm", [0.1, 0], save_dir_key=lambda val: f"clip{val}"), ] # lr schedule4 grid += [ hyperparam("--lr-scheduler", "polynomial_decay"), hyperparam("--lr", lrs, save_dir_key=lambda val: f"lr{val}"), hyperparam("--total-num-update", total_num_udpates, save_dir_key=lambda val: f"mu{val}"), hyperparam( "--warmup-updates", warmup_updates, save_dir_key=lambda val: f"warm{val}" ), ] grid += [ hyperparam("--memory-efficient-fp16", save_dir_key=lambda val: "memfp16"), ] # data loading settings grid += [ hyperparam("--num-workers", num_data_loaders), ] valid_interval_updates = 500 if ('arxiv' in args.data or 'pubmed' in args.data or 'govreport' in args.data) else 200 # validation and checkpoint settings grid += [ hyperparam("--validate-interval", int(max_epoch // 5)), hyperparam("--no-epoch-checkpoints"), hyperparam("--validate-interval-updates", 10 if args.local else valid_interval_updates), hyperparam("--best-checkpoint-metric", "rouge_avg", save_dir_key=lambda val: f"cmetric{val}") ] # logging settings grid += [ hyperparam("--skip-invalid-size-inputs-valid-test"), hyperparam("--maximize-best-checkpoint-metric"), hyperparam("--log-format", "json"), hyperparam("--log-interval", 10), hyperparam("--eval-rouge"), hyperparam("--eval-rouge-args", generate_args), ] if args.local: grid += [ hyperparam("--log-format", "json"), hyperparam("--log-interval", 1), ] return grid def postprocess_hyperparams(args, config): """Postprocess a given hyperparameter configuration.""" pass if __name__ == "__main__": sweep.main(get_grid, postprocess_hyperparams)
bart_ls-main
fairseq-py/fb_sweep/long_finetune/sweep_summ.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. #!/usr/bin/env python from fb_sweep import sweep from fb_sweep.sweep import hyperparam """ python fb_sweep/long_finetune/sweep_qmsum.py -p qmsum_best_r3f \ -d /fsx/xwhan/data/QMSum/data/raw-bin \ -g 8 -n 1 -t -1 --partition hipri --checkpoints-dir /checkpoints/xwhan/qmsum --resume-failed --snapshot-code \ --baseline-model /fsx/xwhan/checkpoints/long_denoising/t5_all_corpus.bart_large.faststatsync.pool4.block_noglobal.ms16384.mt1024.uf1.mu500000.brk_complete.dr0.1.atdr0.1.actdr0.0.wd0.01.bsz4.adam.eps1e-06.clip0.1.s42.lr0.0001.warm500.memfp16.noise0.0625.dynaspan.ngpu128/model_100k.pt --local --time 1440 ### test model denoising python fb_sweep/long_finetune/sweep_qmsum.py -p qmsum_md \ -d /fsx/xwhan/data/QMSum/data/raw-bin \ -g 8 -n 1 -t -1 --partition lowpri --checkpoints-dir /checkpoints/xwhan/qmsum --resume-failed --snapshot-code \ --baseline-model /data/home/xwhan/checkpoints/model_denoising/md_assembled_c4.loco_base.faststatsync.block_noglobal.pool4.ms16384.mt1024.uf2.mu100000.brk_complete.dr0.0.atdr0.0.actdr0.0.wd0.01.bsz1.adam.beta9999.eps1e-06.clip0.1.s42.lr0.0001.warm500.memfp16.sample0.2.noise0.0625.dynaspan.ngpu128/model_100k.pt --time 1440 """ def get_grid(args): grid = [] # total_num_udpates = 5000 total_num_udpates = 8000 # larger for r3f warmup_updates = [100, 200] num_data_loaders = 4 arch = "bart_large" task = "summarization" criterion = "label_smoothed_cross_entropy" adam_eps = 1e-08 max_source_positions = 1024*16 max_epoch = 150 # which model to use grid += [ # hyperparam("--train-subset", "train" if not args.local else "valid"), # # "/checkpoints/xwhan/model_denoising/md_joint_g512.loco_large.ms8192.ts8192.mt1024.uf2.mu100000.brk_complete.dr0.1.atdr0.1.actdr0.0.wd0.01.bsz4.adam.beta9999.eps1e-06.clip0.1.s42.lr3e-05.warm500.memfp16.sample0.2.noise0.1.ngpu32/seq2seq_100k.pt", # ), # hyperparam( # "--custom-dict", # "/checkpoints/xwhan/model_denoising/md_joint_pool.loco_large.pool4.ms8192.ts8192.mt1024.uf1.mu100000.brk_complete.dr0.1.atdr0.1.actdr0.0.wd0.01.bsz4.adam.beta9999.eps1e-06.clip0.1.s42.lr3e-05.warm500.memfp16.sample0.2.noise0.1.ngpu64/dict.txt" # # f'/checkpoints/xwhan/model_denoising/md_joint_g512.loco_large.ms8192.ts8192.mt1024.uf2.mu100000.brk_complete.dr0.1.atdr0.1.actdr0.0.wd0.01.bsz4.adam.beta9999.eps1e-06.clip0.1.s42.lr3e-05.warm500.memfp16.sample0.2.noise0.1.ngpu32/dict.txt' # ) hyperparam( "--custom-dict", # f'/data/home/xwhan/fairseq-py/checkpoints/bart.base.block16k/dict.txt', # '/data/home/xwhan/fairseq-py/checkpoints/md.base.16k.pool4.span3.a6/dict.txt' '/data/home/xwhan/fairseq-py/checkpoints/bart.large.block16k.pool.t5.span3/dict.txt' ) ] if 'base' in arch: bsz = 4 update_freq = 2 grid += [ hyperparam("--checkpoint-activations"), ] else: bsz, update_freq = 4, 1 grid += [ hyperparam("--checkpoint-activations"), ] # better finetuning criterion = "label_smoothed_cross_entropy_r3f" bsz = bsz//2 update_freq = update_freq*2 grid += [ hyperparam("--noise-type", ["uniform"], save_dir_key=lambda val: f"noise{val}"), hyperparam("--r3f-lambda", [0.01], save_dir_key=lambda val: f"r3f{val}"), hyperparam("--user-dir", "examples/rxf/rxf_src"), hyperparam("--ddp-backend", "no_c10d"), hyperparam("--reset-optimizer"), ] # model settings grid += [ hyperparam("--arch", arch, save_dir_key=lambda val: val), hyperparam("--required-seq-len-multiple", 1024), hyperparam("--task", task), hyperparam("--criterion", criterion), hyperparam("--max-epoch", max_epoch, save_dir_key=lambda val: f"mep{val}"), hyperparam("--max-source-positions", max_source_positions, save_dir_key=lambda val: f"sl{val}"), hyperparam("--max-target-positions", 1024), hyperparam("--source-lang", "source"), hyperparam("--target-lang", "target"), hyperparam("--truncate-source"), hyperparam("--label-smoothing", 0.1, save_dir_key=lambda val: f"ls{val}"), hyperparam("--query-based"), hyperparam("--max-query-positions", 45, save_dir_key=lambda val: f"mq{val}"), hyperparam("--pad-query", 0, save_dir_key=lambda val: f"pad_q{val}"), hyperparam("--input-pattern", ['mixed'], save_dir_key=lambda val: f"{val}"), hyperparam("--use-xformers"), hyperparam("--pooling-layers",4, save_dir_key=lambda val: f"pool{val}"), hyperparam("--attention-name", ['block_noglobal'], save_dir_key=lambda val: val), ] grid += [ hyperparam("--batch-size", bsz, save_dir_key=lambda val: f"mt{val}"), hyperparam("--batch-size-valid", 4), hyperparam("--update-freq", update_freq, save_dir_key=lambda val: f"uf{val}"), hyperparam("--required-batch-size-multiple", 1), ] # regularization grid += [ hyperparam("--dropout", 0.1, save_dir_key=lambda val: f"dr{val}"), hyperparam("--attention-dropout", 0.1, save_dir_key=lambda val: f"atdr{val}"), hyperparam("--relu-dropout", 0.0, save_dir_key=lambda val: f"actdr{val}"), hyperparam("--weight-decay", 0.01, save_dir_key=lambda val: f"wd{val}"), ] # optimization settings grid += [ hyperparam("--seed", [3, 5], save_dir_key=lambda val: f"s{val}"), hyperparam("--optimizer", "adam", save_dir_key=lambda val: val), hyperparam("--adam-betas", "(0.9, 0.999)", save_dir_key=lambda val: "beta9999"), hyperparam("--adam-eps", adam_eps, save_dir_key=lambda val: f"eps{val}"), hyperparam("--clip-norm", 0.1, save_dir_key=lambda val: f"clip{val}"), ] # lr scheduler grid += [ hyperparam("--lr-scheduler", "polynomial_decay"), hyperparam("--lr", [5e-5, 1e-4], save_dir_key=lambda val: f"lr{val}"), hyperparam("--total-num-update", total_num_udpates, save_dir_key=lambda val: f"mu{val}"), hyperparam( "--warmup-updates", warmup_updates, save_dir_key=lambda val: f"warm{val}" ), ] grid += [ hyperparam("--memory-efficient-fp16", save_dir_key=lambda val: "fp16"), ] # data loading settings grid += [ hyperparam("--num-workers", num_data_loaders), ] # validation and checkpoint settings grid += [ hyperparam("--validate-interval", int(max_epoch // 5)), hyperparam("--no-epoch-checkpoints"), hyperparam("--validate-interval-updates", 200 if not args.local else 10), hyperparam("--best-checkpoint-metric", "rouge_avg", save_dir_key=lambda val: f"cmetric{val}") ] # logging settings grid += [ hyperparam("--skip-invalid-size-inputs-valid-test"), hyperparam("--maximize-best-checkpoint-metric"), hyperparam("--log-format", "json"), hyperparam("--log-interval", 10), hyperparam("--eval-rouge"), hyperparam("--eval-rouge-args", '{"beam": 4, "max_len_b": 256, "lenpen": 2.0, "no_repeat_ngram_size": 3, "min_len": 20}'), ] if args.local: grid += [ hyperparam("--log-format", "json"), hyperparam("--log-interval", 1), ] return grid def postprocess_hyperparams(args, config): """Postprocess a given hyperparameter configuration.""" pass if __name__ == "__main__": sweep.main(get_grid, postprocess_hyperparams)
bart_ls-main
fairseq-py/fb_sweep/long_finetune/sweep_qmsum.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. #!/usr/bin/env python from fb_sweep import sweep from fb_sweep.sweep import hyperparam """ ### r3f and ft on the scrolls python fb_sweep/long_finetune/sweep_nli.py -p contract_r3f \ -d /fsx/xwhan/data/scrolls/contract_nli/bin \ -g 8 -n 1 -t -1 --partition lowpri --checkpoints-dir /checkpoints/xwhan/contract --resume-failed --snapshot-code --baseline-model /fsx/xwhan/checkpoints/long_denoising/t5_all_corpus.bart_large.faststatsync.pool4.block_noglobal.ms16384.mt1024.uf1.mu500000.brk_complete.dr0.1.atdr0.1.actdr0.0.wd0.01.bsz4.adam.eps1e-06.clip0.1.s42.lr0.0001.warm500.memfp16.noise0.0625.dynaspan.ngpu128/model_100k.pt --time 1440 --local """ def get_grid(args): grid = [] total_num_udpates = 8000 warmup_updates = 200 # warmup_updates = 800 num_data_loaders = 8 arch = "bart_large" # arch = "bart_prelayernorm" task = "qa" criterion = "label_smoothed_cross_entropy" adam_eps = 1e-08 max_source_positions = 1024*16 update_freq = 1 max_q_pos = 35 generate_args = '{"beam": 4, "max_len_b": 6, "lenpen": 3.0, "no_repeat_ngram_size": 3}' max_epochs = 60 bsz = 4 # better finetuning criterion = "label_smoothed_cross_entropy_r3f" # bsz = bsz//2 # update_freq = update_freq*2 grid += [ hyperparam("--noise-type", ["uniform"], save_dir_key=lambda val: f"noise{val}"), hyperparam("--r3f-lambda", [0.01], save_dir_key=lambda val: f"r3f{val}"), hyperparam("--user-dir", "examples/rxf/rxf_src"), hyperparam("--ddp-backend", "no_c10d"), hyperparam("--reset-optimizer"), ] # which model to use grid += [ hyperparam( "--custom-dict", '/data/home/xwhan/fairseq-py/checkpoints/bart.large.block16k.pool.t5.span3/dict.txt' ) ] # model settings grid += [ hyperparam("--arch", arch, save_dir_key=lambda val: val), hyperparam("--task", task), hyperparam("--required-seq-len-multiple", 1024), hyperparam("--criterion", criterion), hyperparam("--max-epoch", max_epochs, save_dir_key=lambda val: f"mep{val}"), hyperparam("--max-source-positions", max_source_positions, save_dir_key=lambda val: f"sl{val}"), hyperparam("--max-target-positions", 1024), hyperparam("--source-lang", "source"), hyperparam("--target-lang", "target"), hyperparam("--truncate-source"), hyperparam("--label-smoothing", 0.1, save_dir_key=lambda val: f"ls{val}"), hyperparam("--max-query-positions", max_q_pos), # narrativeqa 35 hyperparam("--pad-query", 0, save_dir_key=lambda val: f"pad_q{val}"), hyperparam("--input-pattern", ['mixed'], save_dir_key=lambda val: f"ip{val}"), hyperparam("--use-xformers"), hyperparam("--pooling-layers", 4, save_dir_key=lambda val: f"pool{val}"), hyperparam("--attention-name", ['block_noglobal'], save_dir_key=lambda val: val), # hyperparam("--xformer-config", '{"num_global_tokens": 64}') ] grid += [ hyperparam("--batch-size", bsz, save_dir_key=lambda val: f"mt{val}"), hyperparam("--batch-size-valid", 4), hyperparam("--update-freq", update_freq, save_dir_key=lambda val: f"uf{val}"), hyperparam("--required-batch-size-multiple", 1), ] # regularization grid += [ hyperparam("--dropout", 0.1, save_dir_key=lambda val: f"dr{val}"), hyperparam("--attention-dropout", 0.1, save_dir_key=lambda val: f"atdr{val}"), hyperparam("--relu-dropout", 0.0, save_dir_key=lambda val: f"actdr{val}"), hyperparam("--weight-decay", 0.01, save_dir_key=lambda val: f"wd{val}"), ] # optimization settings grid += [ hyperparam("--seed", [3, 42], save_dir_key=lambda val: f"s{val}"), hyperparam("--optimizer", "adam", save_dir_key=lambda val: val), hyperparam("--adam-betas", "(0.9, 0.999)"), hyperparam("--adam-eps", adam_eps, save_dir_key=lambda val: f"eps{val}"), hyperparam("--clip-norm", 0.1, save_dir_key=lambda val: f"clip{val}"), hyperparam("--checkpoint-activations"), ] # lr scheduler grid += [ hyperparam("--lr-scheduler", "polynomial_decay"), hyperparam("--lr", [5e-5, 3e-5], save_dir_key=lambda val: f"lr{val}"), hyperparam("--total-num-update", total_num_udpates, save_dir_key=lambda val: f"mu{val}"), hyperparam( "--warmup-updates", warmup_updates, save_dir_key=lambda val: f"warm{val}" ), ] grid += [ hyperparam("--memory-efficient-fp16", save_dir_key=lambda val: "memfp16"), ] # data loading settings grid += [ hyperparam("--num-workers", num_data_loaders), ] metric = 'em' # validation and checkpoint settings grid += [ hyperparam("--validate-interval", int(max_epochs // 5)), hyperparam("--no-epoch-checkpoints"), hyperparam("--validate-interval-updates", 200 if not args.local else 10), hyperparam("--best-checkpoint-metric", metric, save_dir_key=lambda val: f"cmetric{val}") ] # logging settings grid += [ hyperparam("--skip-invalid-size-inputs-valid-test"), hyperparam("--maximize-best-checkpoint-metric"), hyperparam("--log-format", "json"), hyperparam("--log-interval", 10), hyperparam("--eval-f1"), hyperparam("--generate-args", generate_args), ] if args.local: grid += [ hyperparam("--log-format", "json"), hyperparam("--log-interval", 1), ] return grid def postprocess_hyperparams(args, config): """Postprocess a given hyperparameter configuration.""" pass if __name__ == "__main__": sweep.main(get_grid, postprocess_hyperparams)
bart_ls-main
fairseq-py/fb_sweep/long_finetune/sweep_nli.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. #!/usr/bin/env python from fb_sweep import sweep from fb_sweep.sweep import hyperparam """ python fb_sweep/long_finetune/sweep_qa.py -p narrative_best \ -d /fsx/xwhan/data/narrativeqa-bin \ -g 8 -n 1 -t -1 --partition lowpri --checkpoints-dir /checkpoints/xwhan/narrativeqa --resume-failed --snapshot-code --baseline-model /fsx/xwhan/checkpoints/long_denoising/t5_all_corpus.bart_large.faststatsync.pool4.block_noglobal.ms16384.mt1024.uf1.mu500000.brk_complete.dr0.1.atdr0.1.actdr0.0.wd0.01.bsz4.adam.eps1e-06.clip0.1.s42.lr0.0001.warm500.memfp16.noise0.0625.dynaspan.ngpu128/model_100k.pt --time 1440 python fb_sweep/long_finetune/sweep_qa.py -p qasper_best \ -d /fsx/xwhan/data/qasper-bin \ -g 8 -n 1 -t -1 --partition lowpri --checkpoints-dir /checkpoints/xwhan/qasper --resume-failed --snapshot-code --baseline-model /fsx/xwhan/checkpoints/long_denoising/t5_all_corpus.bart_large.faststatsync.pool4.block_noglobal.ms16384.mt1024.uf1.mu500000.brk_complete.dr0.1.atdr0.1.actdr0.0.wd0.01.bsz4.adam.eps1e-06.clip0.1.s42.lr0.0001.warm500.memfp16.noise0.0625.dynaspan.ngpu128/model_100k.pt --time 1440 python fb_sweep/long_finetune/sweep_qa.py -p qasper_block \ -d /fsx/xwhan/data/qasper-bin \ -g 8 -n 1 -t -1 --partition hipri --checkpoints-dir /checkpoints/xwhan/qasper --resume-failed --snapshot-code --baseline-model /data/home/xwhan/fairseq-py/checkpoints/bart.large.block16k/model.pt --local python fb_sweep/long_finetune/sweep_qa.py -p narrative_block \ -d /fsx/xwhan/data/narrativeqa-bin \ -g 8 -n 1 -t -1 --partition hipri --checkpoints-dir /checkpoints/xwhan/narrativeqa --resume-failed --snapshot-code --baseline-model /data/home/xwhan/fairseq-py/checkpoints/bart.large.block16k/model.pt --time 1440 python fb_sweep/long_finetune/sweep_qa.py -p quality_best -d /fsx/xwhan/data/quality/bin -g 8 -n 1 -t -1 --partition lowpri --checkpoints-dir /checkpoints/xwhan/quality --resume-failed --snapshot-code --baseline-model /fsx/xwhan/checkpoints/long_denoising/t5_all_corpus.bart_large.faststatsync.pool4.block_noglobal.ms16384.mt1024.uf1.mu500000.brk_complete.dr0.1.atdr0.1.actdr0.0.wd0.01.bsz4.adam.eps1e-06.clip0.1.s42.lr0.0001.warm500.memfp16.noise0.0625.dynaspan.ngpu128/model_100k.pt --time 1440 python fb_sweep/long_finetune/sweep_qa.py -p quality_block -d /fsx/xwhan/data/quality/bin -g 8 -n 1 -t -1 --partition hipri --checkpoints-dir /checkpoints/xwhan/quality --resume-failed --snapshot-code --baseline-model /data/home/xwhan/fairseq-py/checkpoints/bart.large.block16k/model.pt --time 1440 --local ### test the model-denoising variant python fb_sweep/long_finetune/sweep_qa.py -p qasper_md \ -d /fsx/xwhan/data/qasper-bin \ -g 8 -n 1 -t -1 --partition hipri --checkpoints-dir /checkpoints/xwhan/qasper --resume-failed --snapshot-code --baseline-model /data/home/xwhan/checkpoints/model_denoising/md_assembled_c4.loco_base.faststatsync.block_noglobal.pool4.ms16384.mt1024.uf2.mu100000.brk_complete.dr0.0.atdr0.0.actdr0.0.wd0.01.bsz1.adam.beta9999.eps1e-06.clip0.1.s42.lr0.0001.warm500.memfp16.sample0.2.noise0.0625.dynaspan.ngpu128/model_100k.pt --local ### r3f and ft on the scrolls python fb_sweep/long_finetune/sweep_qa.py -p qasper_best_r3f \ -d /fsx/xwhan/data/scrolls/qasper/bin \ -g 8 -n 1 -t -1 --partition hipri --checkpoints-dir /checkpoints/xwhan/qasper --resume-failed --snapshot-code --baseline-model /fsx/xwhan/checkpoints/long_denoising/t5_all_corpus.bart_large.faststatsync.pool4.block_noglobal.ms16384.mt1024.uf1.mu500000.brk_complete.dr0.1.atdr0.1.actdr0.0.wd0.01.bsz4.adam.eps1e-06.clip0.1.s42.lr0.0001.warm500.memfp16.noise0.0625.dynaspan.ngpu128/model_100k.pt --local --time 1440 python fb_sweep/long_finetune/sweep_qa.py -p quality_best_no_r3f -d /fsx/xwhan/data/scrolls/quality/bin -g 8 -n 1 -t -1 --partition lowpri --checkpoints-dir /checkpoints/xwhan/quality --resume-failed --snapshot-code --baseline-model /fsx/xwhan/checkpoints/long_denoising/t5_all_corpus.bart_large.faststatsync.pool4.block_noglobal.ms16384.mt1024.uf1.mu500000.brk_complete.dr0.1.atdr0.1.actdr0.0.wd0.01.bsz4.adam.eps1e-06.clip0.1.s42.lr0.0001.warm500.memfp16.noise0.0625.dynaspan.ngpu128/model_100k.pt --time 1440 python fb_sweep/long_finetune/sweep_qa.py -p narrative_no_r3f \ -d /fsx/xwhan/data/scrolls/narrative_qa/bin \ -g 8 -n 1 -t -1 --partition lowpri --checkpoints-dir /checkpoints/xwhan/narrativeqa --resume-failed --snapshot-code --baseline-model /fsx/xwhan/checkpoints/long_denoising/t5_all_corpus.bart_large.faststatsync.pool4.block_noglobal.ms16384.mt1024.uf1.mu500000.brk_complete.dr0.1.atdr0.1.actdr0.0.wd0.01.bsz4.adam.eps1e-06.clip0.1.s42.lr0.0001.warm500.memfp16.noise0.0625.dynaspan.ngpu128/model_100k.pt --time 1440 --local """ def get_grid(args): grid = [] total_num_udpates = 8000 warmup_updates = 200 # warmup_updates = 800 num_data_loaders = 8 arch = "bart_large" # arch = "bart_prelayernorm" task = "qa" criterion = "label_smoothed_cross_entropy" adam_eps = 1e-08 max_source_positions = 1024*16 # bs_xformer_config = '{"block_size": 1024, "max_seq_len": 16384, "global_blocks": 2}' update_freq = 1 if 'narrative' in args.data: max_q_pos = 32 generate_args = '{"beam": 4, "max_len_b": 20, "lenpen": 3.0, "no_repeat_ngram_size": 3}' max_epochs = 8 update_freq = 4 elif 'qasper' in args.data: max_q_pos = 32 generate_args = '{"beam": 4, "max_len_b": 80, "lenpen": 3.0, "no_repeat_ngram_size": 3}' # 100 0.013 left; 80 0.026 left; 50 0.08 left max_epochs = 120 elif 'quality' in args.data: max_q_pos = 200 generate_args = '{"beam": 4, "max_len_b": 50, "lenpen": 3.0, "no_repeat_ngram_size": 3}' max_epochs = 60 bsz = 2 # better finetuning # criterion = "label_smoothed_cross_entropy_r3f" # bsz = bsz//2 # update_freq = update_freq*2 # grid += [ # hyperparam("--noise-type", ["uniform"], save_dir_key=lambda val: f"noise{val}"), # hyperparam("--r3f-lambda", [0.01], save_dir_key=lambda val: f"r3f{val}"), # hyperparam("--user-dir", "examples/rxf/rxf_src"), # hyperparam("--ddp-backend", "no_c10d"), # hyperparam("--reset-optimizer"), # ] # which model to use grid += [ hyperparam( "--custom-dict", # "/data/home/xwhan/fairseq-py/checkpoints/bart.base.block16k.pool/dict.txt", # "/data/home/xwhan/fairseq-py/checkpoints/bart.base.block8k.pool.t5/dict.txt", '/data/home/xwhan/fairseq-py/checkpoints/bart.large.block16k.pool.t5.span3/dict.txt' # "/data/home/xwhan/fairseq-py/checkpoints/bart.large.block16k/dict.txt" # '/data/home/xwhan/fairseq-py/checkpoints/md.base.16k.pool4.span3.a6/dict.txt' ) ] # model settings grid += [ hyperparam("--arch", arch, save_dir_key=lambda val: val), hyperparam("--task", task), hyperparam("--required-seq-len-multiple", 1024), hyperparam("--criterion", criterion), hyperparam("--max-epoch", max_epochs, save_dir_key=lambda val: f"mep{val}"), hyperparam("--max-source-positions", max_source_positions, save_dir_key=lambda val: f"sl{val}"), hyperparam("--max-target-positions", 1024), hyperparam("--source-lang", "source"), hyperparam("--target-lang", "target"), hyperparam("--truncate-source"), hyperparam("--label-smoothing", 0.1, save_dir_key=lambda val: f"ls{val}"), hyperparam("--max-query-positions", max_q_pos), # narrativeqa 35 hyperparam("--pad-query", 0, save_dir_key=lambda val: f"pad_q{val}"), hyperparam("--input-pattern", ['mixed'], save_dir_key=lambda val: f"ip{val}"), hyperparam("--use-xformers"), hyperparam("--pooling-layers", 4, save_dir_key=lambda val: f"pool{val}"), hyperparam("--attention-name", ['block_noglobal'], save_dir_key=lambda val: val), # hyperparam("--xformer-config", '{"num_global_tokens": 64}') ] grid += [ hyperparam("--batch-size", bsz, save_dir_key=lambda val: f"mt{val}"), hyperparam("--batch-size-valid", 4), hyperparam("--update-freq", update_freq, save_dir_key=lambda val: f"uf{val}"), hyperparam("--required-batch-size-multiple", 1), ] # regularization grid += [ hyperparam("--dropout", 0.1, save_dir_key=lambda val: f"dr{val}"), hyperparam("--attention-dropout", 0.1, save_dir_key=lambda val: f"atdr{val}"), hyperparam("--relu-dropout", 0.0, save_dir_key=lambda val: f"actdr{val}"), hyperparam("--weight-decay", 0.01, save_dir_key=lambda val: f"wd{val}"), ] # optimization settings grid += [ hyperparam("--seed", [3, 42], save_dir_key=lambda val: f"s{val}"), hyperparam("--optimizer", "adam", save_dir_key=lambda val: val), hyperparam("--adam-betas", "(0.9, 0.999)"), hyperparam("--adam-eps", adam_eps, save_dir_key=lambda val: f"eps{val}"), hyperparam("--clip-norm", 0.1, save_dir_key=lambda val: f"clip{val}"), hyperparam("--checkpoint-activations"), ] # lr scheduler grid += [ hyperparam("--lr-scheduler", "polynomial_decay"), hyperparam("--lr", [5e-5, 3e-5], save_dir_key=lambda val: f"lr{val}"), hyperparam("--total-num-update", total_num_udpates, save_dir_key=lambda val: f"mu{val}"), hyperparam( "--warmup-updates", warmup_updates, save_dir_key=lambda val: f"warm{val}" ), ] grid += [ hyperparam("--memory-efficient-fp16", save_dir_key=lambda val: "memfp16"), ] # data loading settings grid += [ hyperparam("--num-workers", num_data_loaders), ] metric = 'em' if 'quality' in args.data else 'f1' # validation and checkpoint settings grid += [ hyperparam("--validate-interval", int(max_epochs // 5)), hyperparam("--no-epoch-checkpoints"), hyperparam("--validate-interval-updates", 200 if not args.local else 10), hyperparam("--best-checkpoint-metric", metric, save_dir_key=lambda val: f"cmetric{val}") ] # logging settings grid += [ hyperparam("--skip-invalid-size-inputs-valid-test"), hyperparam("--maximize-best-checkpoint-metric"), hyperparam("--log-format", "json"), hyperparam("--log-interval", 10), hyperparam("--eval-f1"), hyperparam("--generate-args", generate_args), ] if args.local: grid += [ hyperparam("--log-format", "json"), hyperparam("--log-interval", 1), ] return grid def postprocess_hyperparams(args, config): """Postprocess a given hyperparameter configuration.""" pass if __name__ == "__main__": sweep.main(get_grid, postprocess_hyperparams)
bart_ls-main
fairseq-py/fb_sweep/long_finetune/sweep_qa.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import io import os import string import tempfile import unittest import torch from fairseq import tokenizer from fairseq.data import Dictionary class TestDictionary(unittest.TestCase): def test_finalize(self): txt = [ "A B C D", "B C D", "C D", "D", ] ref_ids1 = list( map( torch.IntTensor, [ [4, 5, 6, 7, 2], [5, 6, 7, 2], [6, 7, 2], [7, 2], ], ) ) ref_ids2 = list( map( torch.IntTensor, [ [7, 6, 5, 4, 2], [6, 5, 4, 2], [5, 4, 2], [4, 2], ], ) ) # build dictionary d = Dictionary() for line in txt: d.encode_line(line, add_if_not_exist=True) def get_ids(dictionary): ids = [] for line in txt: ids.append(dictionary.encode_line(line, add_if_not_exist=False)) return ids def assertMatch(ids, ref_ids): for toks, ref_toks in zip(ids, ref_ids): self.assertEqual(toks.size(), ref_toks.size()) self.assertEqual(0, (toks != ref_toks).sum().item()) ids = get_ids(d) assertMatch(ids, ref_ids1) # check finalized dictionary d.finalize() finalized_ids = get_ids(d) assertMatch(finalized_ids, ref_ids2) # write to disk and reload with tempfile.NamedTemporaryFile(mode="w") as tmp_dict: d.save(tmp_dict.name) d = Dictionary.load(tmp_dict.name) reload_ids = get_ids(d) assertMatch(reload_ids, ref_ids2) assertMatch(finalized_ids, reload_ids) def test_overwrite(self): # for example, Camembert overwrites <unk>, <s> and </s> dict_file = io.StringIO( "<unk> 999 #fairseq:overwrite\n" "<s> 999 #fairseq:overwrite\n" "</s> 999 #fairseq:overwrite\n" ", 999\n" "▁de 999\n" ) d = Dictionary() d.add_from_file(dict_file) self.assertEqual(d.index("<pad>"), 1) self.assertEqual(d.index("foo"), 3) self.assertEqual(d.index("<unk>"), 4) self.assertEqual(d.index("<s>"), 5) self.assertEqual(d.index("</s>"), 6) self.assertEqual(d.index(","), 7) self.assertEqual(d.index("▁de"), 8) def test_no_overwrite(self): # for example, Camembert overwrites <unk>, <s> and </s> dict_file = io.StringIO( "<unk> 999\n" "<s> 999\n" "</s> 999\n" ", 999\n" "▁de 999\n" ) d = Dictionary() with self.assertRaisesRegex(RuntimeError, "Duplicate"): d.add_from_file(dict_file) def test_space(self): # for example, character models treat space as a symbol dict_file = io.StringIO(" 999\n" "a 999\n" "b 999\n") d = Dictionary() d.add_from_file(dict_file) self.assertEqual(d.index(" "), 4) self.assertEqual(d.index("a"), 5) self.assertEqual(d.index("b"), 6) def test_add_file_to_dict(self): counts = {} num_lines = 100 per_line = 10 with tempfile.TemporaryDirectory("test_sampling") as data_dir: filename = os.path.join(data_dir, "dummy.txt") with open(filename, "w", encoding="utf-8") as data: for c in string.ascii_letters: line = f"{c} " * per_line for _ in range(num_lines): data.write(f"{line}\n") counts[c] = per_line * num_lines per_line += 5 dict = Dictionary() Dictionary.add_file_to_dictionary( filename, dict, tokenizer.tokenize_line, 10 ) dict.finalize(threshold=0, nwords=-1, padding_factor=8) for c in string.ascii_letters: count = dict.get_count(dict.index(c)) self.assertEqual( counts[c], count, f"{c} count is {count} but should be {counts[c]}" ) if __name__ == "__main__": unittest.main()
bart_ls-main
fairseq-py/tests/test_dictionary.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import functools import unittest from typing import Any, Dict, Sequence import fairseq import fairseq.options import fairseq.tasks import torch from tests.utils import dummy_dictionary VOCAB_SIZE = 100 @fairseq.tasks.register_task("fake_task") class FakeTask(fairseq.tasks.LegacyFairseqTask): def __init__(self, args): super().__init__(args) self.dictionary = dummy_dictionary(VOCAB_SIZE - 4) assert len(self.dictionary) == VOCAB_SIZE @property def source_dictionary(self): return self.dictionary @property def target_dictionary(self): return self.dictionary @functools.lru_cache() def get_toy_model( device: str, architecture: str = "roberta_enc_dec", **extra_args: Any, ): assert device in ("gpu", "cpu") kwargs = { "arch": architecture, # Use characteristics dimensions "encoder_layers": 3, "encoder_embed_dim": 12, "encoder_ffn_embed_dim": 14, "encoder_attention_heads": 4, "decoder_layers": 3, "decoder_embed_dim": 12, "decoder_ffn_embed_dim": 14, "decoder_attention_heads": 4, # Disable dropout so we have comparable tests. "dropout": 0, "attention_dropout": 0, "activation_dropout": 0, "encoder_layerdrop": 0, # required args "tokens_per_sample": 256, "data": "/tmp/test_roberta", } kwargs.update(extra_args) fake_task = FakeTask(kwargs) args = fairseq.options.get_args( task="online_backtranslation", mono_langs="en,ro", valid_lang_pairs="en-ro", **kwargs, ) torch.manual_seed(0) model = fake_task.build_model(args) if device == "gpu": model.cuda() return fake_task, model def mk_sample( lang: str, device: str, tok: Sequence[int] = None, batch_size: int = 2 ) -> Dict[str, Any]: assert device in ("gpu", "cpu") if not tok: if lang == "en": tok = [10, 11, 12, 13, 14, 15, 2] else: tok = [20, 21, 22, 23, 24, 25, 26, 27, 2] batch = torch.stack([torch.tensor(tok, dtype=torch.long)] * batch_size) if device == "gpu": batch = batch.cuda() sample = { "net_input": { "src_tokens": batch, "prev_output_tokens": batch, "src_lengths": torch.tensor( [len(tok)] * batch_size, dtype=torch.long, device=batch.device ), }, "target": batch[:, 1:], } return sample def cpu_gpu(fn): def helper(self): fn(self, "cpu") if torch.cuda.is_available(): fn(self, "gpu") return helper def architectures(fn): def helper(self): for arch in ["roberta_enc_dec", "transformer"]: fn(self, arch) return helper class RobertaTest(unittest.TestCase): def assertTensorEqual(self, t1, t2, delta: float = 1e-6): self.assertEqual(t1.size(), t2.size(), "size mismatch") if delta == 0.0: self.assertEqual(t1.ne(t2).long().sum(), 0) else: self.assertEqual(((t2 - t1).abs() > delta).long().sum(), 0) def assertSharing(self, model, link_groups: Sequence[Sequence[str]]): ids = {} for group in link_groups: group_ids = {name: id(params(model, name)) for name in group} shared_id = group_ids[group[0]] self.assertEqual(group_ids, {name: shared_id for name in group}) self.assertNotIn(shared_id, ids) ids[shared_id] = group def test_roberta_shared_params(self): _, roberta = get_toy_model("cpu", architecture="roberta") self.assertSharing( roberta, [ [ "encoder.sentence_encoder.embed_tokens.weight", "encoder.lm_head.weight", ] ], ) _, roberta = get_toy_model( "cpu", architecture="roberta", untie_weights_roberta=True ) self.assertSharing( roberta, [ ["encoder.sentence_encoder.embed_tokens.weight"], ["encoder.lm_head.weight"], ], ) def test_roberta_enc_dec_shared_params(self): # 3 distinct embeddings _, enc_dec = get_toy_model("cpu", architecture="roberta_enc_dec") self.assertSharing( enc_dec, [ ["encoder.embed_tokens.weight"], ["decoder.embed_tokens.weight"], ["decoder.output_projection.weight"], ], ) # 2 distinct embeddings, one for encoder, one for decoder _, enc_dec = get_toy_model( "cpu", architecture="roberta_enc_dec", share_decoder_input_output_embed=True ) self.assertSharing( enc_dec, [ ["encoder.embed_tokens.weight"], [ "decoder.embed_tokens.weight", "decoder.output_projection.weight", ], ], ) # shared embeddings _, enc_dec = get_toy_model( "cpu", architecture="roberta_enc_dec", share_all_embeddings=True ) self.assertSharing( enc_dec, [ [ "encoder.embed_tokens.weight", "decoder.embed_tokens.weight", "decoder.output_projection.weight", ] ], ) def test_roberta_max_positions_is_correctly_set(self): device = "cpu" task, model = get_toy_model(device) max_pos = model.max_decoder_positions() self.assertEqual(max_pos, 256) self.assertEqual(max_pos, model.decoder.max_positions()) self.assertEqual(max_pos, model.encoder.max_positions()) self.assertEqual(max_pos, model.encoder.embed_positions.max_positions) sentence = [31 for _ in range(max_pos)] sample = mk_sample("en", device, sentence, batch_size=1) self.assertEqual(list(sample["net_input"]["src_lengths"]), [max_pos]) self.assertEqual(len(sample["net_input"]["src_tokens"][0]), max_pos) x, _ = model.forward(**sample["net_input"]) self.assertEqual(x.shape, (1, max_pos, VOCAB_SIZE)) @cpu_gpu def test_roberta_forward_backward(self, device: str): _, model = get_toy_model(device) sample = mk_sample("en", device) en_tokens = sample["net_input"]["src_tokens"] (bs, l) = en_tokens.shape # Forward logits, _ = model(**sample["net_input"]) self.assertEqual(logits.shape, (bs, l, VOCAB_SIZE)) # Backward loss = logits.sum() loss.backward() @cpu_gpu def test_roberta_forward_backward_bs1(self, device: str): _, model = get_toy_model(device) sample = mk_sample("en", device, batch_size=1) o, _ = model.forward(**sample["net_input"]) loss = o.sum() sample2 = mk_sample("ro", device, batch_size=1) o, _ = model.forward(**sample2["net_input"]) loss += o.sum() loss.backward() @cpu_gpu def test_roberta_batching(self, device: str): """ Checks that the batch of size 2 give twice the same results than the batch of size 1. """ _, model = get_toy_model(device) sample = mk_sample("en", device, batch_size=1) slen = sample["net_input"]["src_lengths"][0] sample2 = mk_sample("en", device, batch_size=2) with torch.no_grad(): z = model.encoder.forward( sample["net_input"]["src_tokens"], sample["net_input"]["src_lengths"] ) z = z["encoder_out"][-1] logits, _ = model.forward(**sample["net_input"]) z2 = model.encoder.forward( sample2["net_input"]["src_tokens"], sample["net_input"]["src_lengths"] ) z2 = z2["encoder_out"][-1] logits2, _ = model.forward(**sample2["net_input"]) self.assertEqual(z.shape, (slen, 1, 12)) self.assertEqual(z2.shape, (slen, 2, 12)) self.assertTensorEqual(logits2[0], logits2[1]) self.assertTensorEqual(logits[0], logits2[0]) @cpu_gpu def test_roberta_incremental_decoder(self, device: str): """ Checks that incremental decoding yields the same result than non incremental one. """ task, model = get_toy_model(device) en_sample = mk_sample("en", device) en_tokens = en_sample["net_input"]["src_tokens"] ro_sample = mk_sample("ro", device) ro_tokens = ro_sample["net_input"]["src_tokens"] en_enc = model.encoder.forward( en_tokens, src_lengths=en_sample["net_input"]["src_lengths"] ) (bs, tgt_len) = ro_tokens.shape # Decode without incremental state ro_dec, _ = model.decoder.forward(ro_tokens, encoder_out=en_enc) self.assertEqual(ro_dec.shape, (bs, tgt_len, VOCAB_SIZE)) self.assertTensorEqual(ro_dec[0], ro_dec[1]) # Decode with incremental state inc_state = {} ro_dec_inc = [] for l in range(tgt_len): ro, _ = model.decoder.forward( ro_tokens[:, : l + 1], encoder_out=en_enc, incremental_state=inc_state ) self.assertEqual(ro.shape, (bs, 1, VOCAB_SIZE)) ro_dec_inc.append(ro) for l in range(tgt_len): # Intra-batch self.assertTensorEqual(ro_dec_inc[l][0], ro_dec_inc[l][1]) # Incremental vs non-incremental self.assertTensorEqual(ro_dec_inc[l][:, 0], ro_dec[:, l]) def params(model, name): if "." not in name: return getattr(model, name) prefix, name = name.split(".", 1) return params(getattr(model, prefix), name)
bart_ls-main
fairseq-py/tests/test_roberta.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest import torch from fairseq import utils class TestUtils(unittest.TestCase): def test_convert_padding_direction(self): pad = 1 left_pad = torch.LongTensor( [ [2, 3, 4, 5, 6], [1, 7, 8, 9, 10], [1, 1, 1, 11, 12], ] ) right_pad = torch.LongTensor( [ [2, 3, 4, 5, 6], [7, 8, 9, 10, 1], [11, 12, 1, 1, 1], ] ) self.assertAlmostEqual( right_pad, utils.convert_padding_direction( left_pad, pad, left_to_right=True, ), ) self.assertAlmostEqual( left_pad, utils.convert_padding_direction( right_pad, pad, right_to_left=True, ), ) def test_make_positions(self): pad = 1 left_pad_input = torch.LongTensor( [ [9, 9, 9, 9, 9], [1, 9, 9, 9, 9], [1, 1, 1, 9, 9], ] ) left_pad_output = torch.LongTensor( [ [2, 3, 4, 5, 6], [1, 2, 3, 4, 5], [1, 1, 1, 2, 3], ] ) right_pad_input = torch.LongTensor( [ [9, 9, 9, 9, 9], [9, 9, 9, 9, 1], [9, 9, 1, 1, 1], ] ) right_pad_output = torch.LongTensor( [ [2, 3, 4, 5, 6], [2, 3, 4, 5, 1], [2, 3, 1, 1, 1], ] ) self.assertAlmostEqual( left_pad_output, utils.make_positions(left_pad_input, pad), ) self.assertAlmostEqual( right_pad_output, utils.make_positions(right_pad_input, pad), ) def test_clip_grad_norm_(self): params = torch.nn.Parameter(torch.zeros(5)).requires_grad_(False) grad_norm = utils.clip_grad_norm_(params, 1.0) self.assertTrue(torch.is_tensor(grad_norm)) self.assertEqual(grad_norm, 0.0) params = [torch.nn.Parameter(torch.zeros(5)) for i in range(3)] for p in params: p.grad = torch.full((5,), fill_value=2.0) grad_norm = utils.clip_grad_norm_(params, 1.0) exp_grad_norm = torch.full((15,), fill_value=2.0).norm() self.assertTrue(torch.is_tensor(grad_norm)) self.assertEqual(grad_norm, exp_grad_norm) grad_norm = utils.clip_grad_norm_(params, 1.0) self.assertAlmostEqual(grad_norm, torch.tensor(1.0)) def test_resolve_max_positions_with_tuple(self): resolved = utils.resolve_max_positions(None, (2000, 100, 2000), 12000) self.assertEqual(resolved, (2000, 100, 2000)) def assertAlmostEqual(self, t1, t2): self.assertEqual(t1.size(), t2.size(), "size mismatch") self.assertLess(utils.item((t1 - t2).abs().max()), 1e-4) if __name__ == "__main__": unittest.main()
bart_ls-main
fairseq-py/tests/test_utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest from copy import deepcopy from dataclasses import dataclass from typing import Optional import torch from fairseq.models.ema import EMA class DummyModule(torch.nn.Module): def __init__(self) -> None: """LightningModule for testing purposes Args: epoch_min_loss_override (int, optional): Pass in an epoch that will be set to the minimum validation loss for testing purposes (zero based). If None this is ignored. Defaults to None. """ super().__init__() self.layer = torch.nn.Linear(in_features=32, out_features=2) self.another_layer = torch.nn.Linear(in_features=2, out_features=2) def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.layer(x) return self.another_layer(x) @dataclass class EMAConfig(object): ema_decay: float = 0.99 ema_start_update: int = 0 ema_fp32: bool = False ema_seed_model: Optional[str] = None class TestEMAGPU(unittest.TestCase): def assertTorchAllClose(self, x, y, atol=1e-8, rtol=1e-5, msg=None): diff = x.float() - y.float() diff_norm = torch.norm(diff) other_norm = torch.norm(y.float()) if msg is None: msg = "|input - other| > {} + {} * |other|".format( atol, rtol ) self.assertLessEqual( diff_norm, atol + rtol * other_norm, msg=msg, ) def test_ema(self): model = DummyModule() optimizer = torch.optim.SGD(model.parameters(), lr=0.01) state = deepcopy(model.state_dict()) config = EMAConfig() ema = EMA(model, config) # set decay ema._set_decay(config.ema_decay) self.assertEqual(ema.get_decay(), config.ema_decay) # get model self.assertEqual(ema.get_model(), ema.model) # Since fp32 params is not used, it should be of size 0 self.assertEqual(len(ema.fp32_params), 0) # EMA step x = torch.randn(32) y = model(x) loss = y.sum() loss.backward() optimizer.step() ema.step(model) ema_state_dict = ema.get_model().state_dict() for key, param in model.state_dict().items(): prev_param = state[key] ema_param = ema_state_dict[key] if "version" in key: # Do not decay a model.version pytorch param continue self.assertTorchAllClose( ema_param, config.ema_decay * prev_param + (1 - config.ema_decay) * param, ) # Since fp32 params is not used, it should be of size 0 self.assertEqual(len(ema.fp32_params), 0) # Load EMA into model model2 = DummyModule() ema.reverse(model2) for key, param in model2.state_dict().items(): ema_param = ema_state_dict[key] self.assertTrue( torch.allclose(ema_param, param) ) def test_ema_fp32(self): model = DummyModule().half() optimizer = torch.optim.SGD(model.parameters(), lr=0.01) state = deepcopy(model.state_dict()) config = EMAConfig(ema_fp32=True) ema = EMA(model, config) x = torch.randn(32) y = model(x.half()) loss = y.sum() loss.backward() optimizer.step() ema.step(model) for key, param in model.state_dict().items(): prev_param = state[key] ema_param = ema.get_model().state_dict()[key] if "version" in key: # Do not decay a model.version pytorch param continue self.assertIn(key, ema.fp32_params) # EMA update is done in fp32, and hence the EMA param must be # closer to the EMA update done in fp32 than in fp16. self.assertLessEqual( torch.norm( ema_param.float() - (config.ema_decay * prev_param.float() + (1 - config.ema_decay) * param.float()).half().float() ), torch.norm( ema_param.float() - (config.ema_decay * prev_param + (1 - config.ema_decay) * param).float() ), ) self.assertTorchAllClose( ema_param, (config.ema_decay * prev_param.float() + (1 - config.ema_decay) * param.float()).half(), ) def test_ema_fp16(self): model = DummyModule().half() optimizer = torch.optim.SGD(model.parameters(), lr=0.01) state = deepcopy(model.state_dict()) config = EMAConfig(ema_fp32=False) ema = EMA(model, config) # Since fp32 params is not used, it should be of size 0 self.assertEqual(len(ema.fp32_params), 0) x = torch.randn(32) y = model(x.half()) loss = y.sum() loss.backward() optimizer.step() ema.step(model) for key, param in model.state_dict().items(): prev_param = state[key] ema_param = ema.get_model().state_dict()[key] if "version" in key: # Do not decay a model.version pytorch param continue # EMA update is done in fp16, and hence the EMA param must be # closer to the EMA update done in fp16 than in fp32. self.assertLessEqual( torch.norm( ema_param.float() - (config.ema_decay * prev_param + (1 - config.ema_decay) * param).float() ), torch.norm( ema_param.float() - (config.ema_decay * prev_param.float() + (1 - config.ema_decay) * param.float()).half().float() ), ) self.assertTorchAllClose( ema_param, config.ema_decay * prev_param + (1 - config.ema_decay) * param, ) # Since fp32 params is not used, it should be of size 0 self.assertEqual(len(ema.fp32_params), 0) if __name__ == "__main__": unittest.main()
bart_ls-main
fairseq-py/tests/test_ema.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest from fairseq.data import iterators class TestIterators(unittest.TestCase): def test_counting_iterator_index(self, ref=None, itr=None): # Test the indexing functionality of CountingIterator if ref is None: assert itr is None ref = list(range(10)) itr = iterators.CountingIterator(ref) else: assert len(ref) == 10 assert itr is not None self.assertTrue(itr.has_next()) self.assertEqual(itr.n, 0) self.assertEqual(next(itr), ref[0]) self.assertEqual(itr.n, 1) self.assertEqual(next(itr), ref[1]) self.assertEqual(itr.n, 2) itr.skip(3) self.assertEqual(itr.n, 5) self.assertEqual(next(itr), ref[5]) itr.skip(2) self.assertEqual(itr.n, 8) self.assertEqual(list(itr), [ref[8], ref[9]]) self.assertFalse(itr.has_next()) def test_counting_iterator_length_mismatch(self): ref = list(range(10)) # When the underlying iterable is longer than the CountingIterator, # the remaining items in the iterable should be ignored itr = iterators.CountingIterator(ref, total=8) self.assertEqual(list(itr), ref[:8]) # When the underlying iterable is shorter than the CountingIterator, # raise an IndexError when the underlying iterable is exhausted itr = iterators.CountingIterator(ref, total=12) self.assertRaises(IndexError, list, itr) def test_counting_iterator_take(self): # Test the "take" method of CountingIterator ref = list(range(10)) itr = iterators.CountingIterator(ref) itr.take(5) self.assertEqual(len(itr), len(list(iter(itr)))) self.assertEqual(len(itr), 5) itr = iterators.CountingIterator(ref) itr.take(5) self.assertEqual(next(itr), ref[0]) self.assertEqual(next(itr), ref[1]) itr.skip(2) self.assertEqual(next(itr), ref[4]) self.assertFalse(itr.has_next()) def test_grouped_iterator(self): # test correctness x = list(range(10)) itr = iterators.GroupedIterator(x, 1) self.assertEqual(list(itr), [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9]]) itr = iterators.GroupedIterator(x, 4) self.assertEqual(list(itr), [[0, 1, 2, 3], [4, 5, 6, 7], [8, 9]]) itr = iterators.GroupedIterator(x, 5) self.assertEqual(list(itr), [[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]) # test the GroupIterator also works correctly as a CountingIterator x = list(range(30)) ref = list(iterators.GroupedIterator(x, 3)) itr = iterators.GroupedIterator(x, 3) self.test_counting_iterator_index(ref, itr) def test_sharded_iterator(self): # test correctness x = list(range(10)) itr = iterators.ShardedIterator(x, num_shards=1, shard_id=0) self.assertEqual(list(itr), x) itr = iterators.ShardedIterator(x, num_shards=2, shard_id=0) self.assertEqual(list(itr), [0, 2, 4, 6, 8]) itr = iterators.ShardedIterator(x, num_shards=2, shard_id=1) self.assertEqual(list(itr), [1, 3, 5, 7, 9]) itr = iterators.ShardedIterator(x, num_shards=3, shard_id=0) self.assertEqual(list(itr), [0, 3, 6, 9]) itr = iterators.ShardedIterator(x, num_shards=3, shard_id=1) self.assertEqual(list(itr), [1, 4, 7, None]) itr = iterators.ShardedIterator(x, num_shards=3, shard_id=2) self.assertEqual(list(itr), [2, 5, 8, None]) # test CountingIterator functionality x = list(range(30)) ref = list(iterators.ShardedIterator(x, num_shards=3, shard_id=0)) itr = iterators.ShardedIterator(x, num_shards=3, shard_id=0) self.test_counting_iterator_index(ref, itr) def test_counting_iterator_buffered_iterator_take(self): ref = list(range(10)) buffered_itr = iterators.BufferedIterator(2, ref) itr = iterators.CountingIterator(buffered_itr) itr.take(5) self.assertEqual(len(itr), len(list(iter(itr)))) self.assertEqual(len(itr), 5) buffered_itr = iterators.BufferedIterator(2, ref) itr = iterators.CountingIterator(buffered_itr) itr.take(5) self.assertEqual(len(buffered_itr), 5) self.assertEqual(len(list(iter(buffered_itr))), 5) buffered_itr = iterators.BufferedIterator(2, ref) itr = iterators.CountingIterator(buffered_itr) itr.take(5) self.assertEqual(next(itr), ref[0]) self.assertEqual(next(itr), ref[1]) itr.skip(2) self.assertEqual(next(itr), ref[4]) self.assertFalse(itr.has_next()) self.assertRaises(StopIteration, next, buffered_itr) ref = list(range(4, 10)) buffered_itr = iterators.BufferedIterator(2, ref) itr = iterators.CountingIterator(buffered_itr, start=4) itr.take(5) self.assertEqual(len(itr), 5) self.assertEqual(len(buffered_itr), 1) self.assertEqual(next(itr), ref[0]) self.assertFalse(itr.has_next()) self.assertRaises(StopIteration, next, buffered_itr) if __name__ == "__main__": unittest.main()
bart_ls-main
fairseq-py/tests/test_iterators.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest from typing import Dict, List import tests.utils as test_utils import torch from fairseq import utils from fairseq.data import ( Dictionary, LanguagePairDataset, TransformEosDataset, data_utils, noising, ) class TestDataNoising(unittest.TestCase): def _get_test_data_with_bpe_cont_marker(self, append_eos=True): """ Args: append_eos: if True, each input sentence in the source tokens tensor will have an EOS appended to the end. Returns: vocabs: BPE vocab with continuation markers as suffixes to denote non-end of word tokens. This is the standard BPE format used in fairseq's preprocessing. x: input tensor containing numberized source tokens, with EOS at the end if append_eos is true src_lengths: and source lengths. """ vocab = Dictionary() vocab.add_symbol("he@@") vocab.add_symbol("llo") vocab.add_symbol("how") vocab.add_symbol("are") vocab.add_symbol("y@@") vocab.add_symbol("ou") vocab.add_symbol("n@@") vocab.add_symbol("ew") vocab.add_symbol("or@@") vocab.add_symbol("k") src_tokens = [ ["he@@", "llo", "n@@", "ew", "y@@", "or@@", "k"], ["how", "are", "y@@", "ou"], ] x, src_lengths = x, src_lengths = self._convert_src_tokens_to_tensor( vocab=vocab, src_tokens=src_tokens, append_eos=append_eos ) return vocab, x, src_lengths def _get_test_data_with_bpe_end_marker(self, append_eos=True): """ Args: append_eos: if True, each input sentence in the source tokens tensor will have an EOS appended to the end. Returns: vocabs: BPE vocab with end-of-word markers as suffixes to denote tokens at the end of a word. This is an alternative to fairseq's standard preprocessing framework and is not generally supported within fairseq. x: input tensor containing numberized source tokens, with EOS at the end if append_eos is true src_lengths: and source lengths. """ vocab = Dictionary() vocab.add_symbol("he") vocab.add_symbol("llo_EOW") vocab.add_symbol("how_EOW") vocab.add_symbol("are_EOW") vocab.add_symbol("y") vocab.add_symbol("ou_EOW") vocab.add_symbol("n") vocab.add_symbol("ew_EOW") vocab.add_symbol("or") vocab.add_symbol("k_EOW") src_tokens = [ ["he", "llo_EOW", "n", "ew_EOW", "y", "or", "k_EOW"], ["how_EOW", "are_EOW", "y", "ou_EOW"], ] x, src_lengths = x, src_lengths = self._convert_src_tokens_to_tensor( vocab=vocab, src_tokens=src_tokens, append_eos=append_eos ) return vocab, x, src_lengths def _get_test_data_with_word_vocab(self, append_eos=True): """ Args: append_eos: if True, each input sentence in the source tokens tensor will have an EOS appended to the end. Returns: vocabs: word vocab x: input tensor containing numberized source tokens, with EOS at the end if append_eos is true src_lengths: and source lengths. """ vocab = Dictionary() vocab.add_symbol("hello") vocab.add_symbol("how") vocab.add_symbol("are") vocab.add_symbol("you") vocab.add_symbol("new") vocab.add_symbol("york") src_tokens = [ ["hello", "new", "york", "you"], ["how", "are", "you", "new", "york"], ] x, src_lengths = self._convert_src_tokens_to_tensor( vocab=vocab, src_tokens=src_tokens, append_eos=append_eos ) return vocab, x, src_lengths def _convert_src_tokens_to_tensor( self, vocab: Dictionary, src_tokens: List[List[str]], append_eos: bool ): src_len = [len(x) for x in src_tokens] # If we have to append EOS, we include EOS in counting src length if append_eos: src_len = [length + 1 for length in src_len] x = torch.LongTensor(len(src_tokens), max(src_len)).fill_(vocab.pad()) for i in range(len(src_tokens)): for j in range(len(src_tokens[i])): x[i][j] = vocab.index(src_tokens[i][j]) if append_eos: x[i][j + 1] = vocab.eos() x = x.transpose(1, 0) return x, torch.LongTensor(src_len) def assert_eos_at_end(self, x, x_len, eos): """Asserts last token of every sentence in x is EOS """ for i in range(len(x_len)): self.assertEqual( x[x_len[i] - 1][i], eos, ( "Expected eos (token id {eos}) at the end of sentence {i} " "but got {other} instead" ).format(i=i, eos=eos, other=x[i][-1]), ) def assert_word_dropout_correct(self, x, x_noised, x_len, l_noised): # Expect only the first word (2 bpe tokens) of the first example # was dropped out self.assertEqual(x_len[0] - 2, l_noised[0]) for i in range(l_noised[0]): self.assertEqual(x_noised[i][0], x[i + 2][0]) def test_word_dropout_with_eos(self): vocab, x, x_len = self._get_test_data_with_bpe_cont_marker(append_eos=True) with data_utils.numpy_seed(1234): noising_gen = noising.WordDropout(vocab) x_noised, l_noised = noising_gen.noising(x, x_len, 0.2) self.assert_word_dropout_correct( x=x, x_noised=x_noised, x_len=x_len, l_noised=l_noised ) self.assert_eos_at_end(x=x_noised, x_len=l_noised, eos=vocab.eos()) def assert_word_blanking_correct(self, x, x_noised, x_len, l_noised, unk): # Expect only the first word (2 bpe tokens) of the first example # was blanked out self.assertEqual(x_len[0], l_noised[0]) for i in range(l_noised[0]): if i < 2: self.assertEqual(x_noised[i][0], unk) else: self.assertEqual(x_noised[i][0], x[i][0]) def test_word_blank_with_eos(self): vocab, x, x_len = self._get_test_data_with_bpe_cont_marker(append_eos=True) with data_utils.numpy_seed(1234): noising_gen = noising.WordDropout(vocab) x_noised, l_noised = noising_gen.noising(x, x_len, 0.2, vocab.unk()) self.assert_word_blanking_correct( x=x, x_noised=x_noised, x_len=x_len, l_noised=l_noised, unk=vocab.unk() ) self.assert_eos_at_end(x=x_noised, x_len=l_noised, eos=vocab.eos()) def generate_unchanged_shuffle_map(self, length): return {i: i for i in range(length)} def assert_word_shuffle_matches_expected( self, x, x_len, max_shuffle_distance: int, vocab: Dictionary, expected_shufle_maps: List[Dict[int, int]], expect_eos_at_end: bool, bpe_end_marker=None, ): """ This verifies that with a given x, x_len, max_shuffle_distance, and vocab, we get the expected shuffle result. Args: x: Tensor of shape (T x B) = (sequence_length, batch_size) x_len: Tensor of length B = batch_size max_shuffle_distance: arg to pass to noising expected_shuffle_maps: List[mapping] where mapping is a Dict[old_index, new_index], mapping x's elements from their old positions in x to their new positions in x. expect_eos_at_end: if True, check the output to make sure there is an EOS at the end. bpe_end_marker: str denoting the BPE end token. If this is not None, we set the BPE cont token to None in the noising classes. """ bpe_cont_marker = None if bpe_end_marker is None: bpe_cont_marker = "@@" with data_utils.numpy_seed(1234): word_shuffle = noising.WordShuffle( vocab, bpe_cont_marker=bpe_cont_marker, bpe_end_marker=bpe_end_marker ) x_noised, l_noised = word_shuffle.noising( x, x_len, max_shuffle_distance=max_shuffle_distance ) # For every example, we have a different expected shuffle map. We check # that each example is shuffled as expected according to each # corresponding shuffle map. for i in range(len(expected_shufle_maps)): shuffle_map = expected_shufle_maps[i] for k, v in shuffle_map.items(): self.assertEqual(x[k][i], x_noised[v][i]) # Shuffling should not affect the length of each example for pre_shuffle_length, post_shuffle_length in zip(x_len, l_noised): self.assertEqual(pre_shuffle_length, post_shuffle_length) if expect_eos_at_end: self.assert_eos_at_end(x=x_noised, x_len=l_noised, eos=vocab.eos()) def test_word_shuffle_with_eos(self): vocab, x, x_len = self._get_test_data_with_bpe_cont_marker(append_eos=True) # Assert word shuffle with max shuffle distance 0 causes input to be # unchanged self.assert_word_shuffle_matches_expected( x=x, x_len=x_len, max_shuffle_distance=0, vocab=vocab, expected_shufle_maps=[ self.generate_unchanged_shuffle_map(example_len) for example_len in x_len ], expect_eos_at_end=True, ) # Assert word shuffle with max shuffle distance 3 matches our expected # shuffle order self.assert_word_shuffle_matches_expected( x=x, x_len=x_len, vocab=vocab, max_shuffle_distance=3, expected_shufle_maps=[ self.generate_unchanged_shuffle_map(x_len[0]), {0: 0, 1: 3, 2: 1, 3: 2}, ], expect_eos_at_end=True, ) def test_word_shuffle_with_eos_nonbpe(self): """The purpose of this is to test shuffling logic with word vocabs""" vocab, x, x_len = self._get_test_data_with_word_vocab(append_eos=True) # Assert word shuffle with max shuffle distance 0 causes input to be # unchanged self.assert_word_shuffle_matches_expected( x=x, x_len=x_len, max_shuffle_distance=0, vocab=vocab, expected_shufle_maps=[ self.generate_unchanged_shuffle_map(example_len) for example_len in x_len ], expect_eos_at_end=True, ) # Assert word shuffle with max shuffle distance 3 matches our expected # shuffle order self.assert_word_shuffle_matches_expected( x=x, x_len=x_len, vocab=vocab, max_shuffle_distance=3, expected_shufle_maps=[ {0: 0, 1: 1, 2: 3, 3: 2}, {0: 0, 1: 2, 2: 1, 3: 3, 4: 4}, ], expect_eos_at_end=True, ) def test_word_shuffle_without_eos(self): """Same result as word shuffle with eos except no EOS at end""" vocab, x, x_len = self._get_test_data_with_bpe_cont_marker(append_eos=False) # Assert word shuffle with max shuffle distance 0 causes input to be # unchanged self.assert_word_shuffle_matches_expected( x=x, x_len=x_len, max_shuffle_distance=0, vocab=vocab, expected_shufle_maps=[ self.generate_unchanged_shuffle_map(example_len) for example_len in x_len ], expect_eos_at_end=False, ) # Assert word shuffle with max shuffle distance 3 matches our expected # shuffle order self.assert_word_shuffle_matches_expected( x=x, x_len=x_len, vocab=vocab, max_shuffle_distance=3, expected_shufle_maps=[ self.generate_unchanged_shuffle_map(x_len[0]), {0: 0, 1: 3, 2: 1, 3: 2}, ], expect_eos_at_end=False, ) def test_word_shuffle_without_eos_with_bpe_end_marker(self): """Same result as word shuffle without eos except using BPE end token""" vocab, x, x_len = self._get_test_data_with_bpe_end_marker(append_eos=False) # Assert word shuffle with max shuffle distance 0 causes input to be # unchanged self.assert_word_shuffle_matches_expected( x=x, x_len=x_len, max_shuffle_distance=0, vocab=vocab, expected_shufle_maps=[ self.generate_unchanged_shuffle_map(example_len) for example_len in x_len ], expect_eos_at_end=False, bpe_end_marker="_EOW", ) # Assert word shuffle with max shuffle distance 3 matches our expected # shuffle order self.assert_word_shuffle_matches_expected( x=x, x_len=x_len, vocab=vocab, max_shuffle_distance=3, expected_shufle_maps=[ self.generate_unchanged_shuffle_map(x_len[0]), {0: 0, 1: 3, 2: 1, 3: 2}, ], expect_eos_at_end=False, bpe_end_marker="_EOW", ) def assert_no_eos_at_end(self, x, x_len, eos): """Asserts that the last token of each sentence in x is not EOS """ for i in range(len(x_len)): self.assertNotEqual( x[x_len[i] - 1][i], eos, "Expected no eos (token id {eos}) at the end of sentence {i}.".format( eos=eos, i=i ), ) def test_word_dropout_without_eos(self): """Same result as word dropout with eos except no EOS at end""" vocab, x, x_len = self._get_test_data_with_bpe_cont_marker(append_eos=False) with data_utils.numpy_seed(1234): noising_gen = noising.WordDropout(vocab) x_noised, l_noised = noising_gen.noising(x, x_len, 0.2) self.assert_word_dropout_correct( x=x, x_noised=x_noised, x_len=x_len, l_noised=l_noised ) self.assert_no_eos_at_end(x=x_noised, x_len=l_noised, eos=vocab.eos()) def test_word_blank_without_eos(self): """Same result as word blank with eos except no EOS at end""" vocab, x, x_len = self._get_test_data_with_bpe_cont_marker(append_eos=False) with data_utils.numpy_seed(1234): noising_gen = noising.WordDropout(vocab) x_noised, l_noised = noising_gen.noising(x, x_len, 0.2, vocab.unk()) self.assert_word_blanking_correct( x=x, x_noised=x_noised, x_len=x_len, l_noised=l_noised, unk=vocab.unk() ) self.assert_no_eos_at_end(x=x_noised, x_len=l_noised, eos=vocab.eos()) def _get_noising_dataset_batch( self, src_tokens_no_pad, src_dict, append_eos_to_tgt=False, ): """ Constructs a NoisingDataset and the corresponding ``LanguagePairDataset(NoisingDataset(src), src)``. If *append_eos_to_tgt* is True, wrap the source dataset in :class:`TransformEosDataset` to append EOS to the clean source when using it as the target. """ src_dataset = test_utils.TestDataset(data=src_tokens_no_pad) noising_dataset = noising.NoisingDataset( src_dataset=src_dataset, src_dict=src_dict, seed=1234, max_word_shuffle_distance=3, word_dropout_prob=0.2, word_blanking_prob=0.2, noising_class=noising.UnsupervisedMTNoising, ) tgt = src_dataset language_pair_dataset = LanguagePairDataset( src=noising_dataset, tgt=tgt, src_sizes=None, src_dict=src_dict ) language_pair_dataset = TransformEosDataset( language_pair_dataset, src_dict.eos(), append_eos_to_tgt=append_eos_to_tgt, ) dataloader = torch.utils.data.DataLoader( dataset=language_pair_dataset, batch_size=2, collate_fn=language_pair_dataset.collater, ) denoising_batch_result = next(iter(dataloader)) return denoising_batch_result def test_noising_dataset_with_eos(self): src_dict, src_tokens, _ = self._get_test_data_with_bpe_cont_marker( append_eos=True ) # Format data for src_dataset src_tokens = torch.t(src_tokens) src_tokens_no_pad = [] for src_sentence in src_tokens: src_tokens_no_pad.append( utils.strip_pad(tensor=src_sentence, pad=src_dict.pad()) ) denoising_batch_result = self._get_noising_dataset_batch( src_tokens_no_pad=src_tokens_no_pad, src_dict=src_dict ) eos, pad = src_dict.eos(), src_dict.pad() # Generated noisy source as source expected_src = torch.LongTensor( [[4, 5, 10, 11, 8, 12, 13, eos], [pad, pad, pad, 6, 8, 9, 7, eos]] ) # Original clean source as target (right-padded) expected_tgt = torch.LongTensor( [[4, 5, 10, 11, 8, 12, 13, eos], [6, 7, 8, 9, eos, pad, pad, pad]] ) generated_src = denoising_batch_result["net_input"]["src_tokens"] tgt_tokens = denoising_batch_result["target"] self.assertTensorEqual(expected_src, generated_src) self.assertTensorEqual(expected_tgt, tgt_tokens) def test_noising_dataset_without_eos(self): """ Similar to test noising dataset with eos except that we have to set *append_eos_to_tgt* to ``True``. """ src_dict, src_tokens, _ = self._get_test_data_with_bpe_cont_marker( append_eos=False ) # Format data for src_dataset src_tokens = torch.t(src_tokens) src_tokens_no_pad = [] for src_sentence in src_tokens: src_tokens_no_pad.append( utils.strip_pad(tensor=src_sentence, pad=src_dict.pad()) ) denoising_batch_result = self._get_noising_dataset_batch( src_tokens_no_pad=src_tokens_no_pad, src_dict=src_dict, append_eos_to_tgt=True, ) eos, pad = src_dict.eos(), src_dict.pad() # Generated noisy source as source expected_src = torch.LongTensor( [[4, 5, 10, 11, 8, 12, 13], [pad, pad, pad, 6, 8, 9, 7]] ) # Original clean source as target (right-padded) expected_tgt = torch.LongTensor( [[4, 5, 10, 11, 8, 12, 13, eos], [6, 7, 8, 9, eos, pad, pad, pad]] ) generated_src = denoising_batch_result["net_input"]["src_tokens"] tgt_tokens = denoising_batch_result["target"] self.assertTensorEqual(expected_src, generated_src) self.assertTensorEqual(expected_tgt, tgt_tokens) def assertTensorEqual(self, t1, t2): self.assertEqual(t1.size(), t2.size(), "size mismatch") self.assertEqual(t1.ne(t2).long().sum(), 0) if __name__ == "__main__": unittest.main()
bart_ls-main
fairseq-py/tests/test_noising.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import tempfile import unittest import torch from fairseq.data.dictionary import Dictionary from fairseq.models.lstm import LSTMModel from fairseq.tasks.fairseq_task import LegacyFairseqTask DEFAULT_TEST_VOCAB_SIZE = 100 class DummyTask(LegacyFairseqTask): def __init__(self, args): super().__init__(args) self.dictionary = get_dummy_dictionary() if getattr(self.args, "ctc", False): self.dictionary.add_symbol("<ctc_blank>") self.src_dict = self.dictionary self.tgt_dict = self.dictionary @property def source_dictionary(self): return self.src_dict @property def target_dictionary(self): return self.dictionary def get_dummy_dictionary(vocab_size=DEFAULT_TEST_VOCAB_SIZE): dummy_dict = Dictionary() # add dummy symbol to satisfy vocab size for id, _ in enumerate(range(vocab_size)): dummy_dict.add_symbol("{}".format(id), 1000) return dummy_dict def get_dummy_task_and_parser(): """ to build a fariseq model, we need some dummy parse and task. This function is used to create dummy task and parser to faciliate model/criterion test Note: we use FbSpeechRecognitionTask as the dummy task. You may want to use other task by providing another function """ parser = argparse.ArgumentParser( description="test_dummy_s2s_task", argument_default=argparse.SUPPRESS ) DummyTask.add_args(parser) args = parser.parse_args([]) task = DummyTask.setup_task(args) return task, parser class TestJitLSTMModel(unittest.TestCase): def _test_save_and_load(self, scripted_module): with tempfile.NamedTemporaryFile() as f: scripted_module.save(f.name) torch.jit.load(f.name) def assertTensorEqual(self, t1, t2): t1 = t1[~torch.isnan(t1)] # can cause size mismatch errors if there are NaNs t2 = t2[~torch.isnan(t2)] self.assertEqual(t1.size(), t2.size(), "size mismatch") self.assertEqual(t1.ne(t2).long().sum(), 0) def test_jit_and_export_lstm(self): task, parser = get_dummy_task_and_parser() LSTMModel.add_args(parser) args = parser.parse_args([]) args.criterion = "" model = LSTMModel.build_model(args, task) scripted_model = torch.jit.script(model) self._test_save_and_load(scripted_model) def test_assert_jit_vs_nonjit_(self): task, parser = get_dummy_task_and_parser() LSTMModel.add_args(parser) args = parser.parse_args([]) args.criterion = "" model = LSTMModel.build_model(args, task) model.eval() scripted_model = torch.jit.script(model) scripted_model.eval() idx = len(task.source_dictionary) iter = 100 # Inject random input and check output seq_len_tensor = torch.randint(1, 10, (iter,)) num_samples_tensor = torch.randint(1, 10, (iter,)) for i in range(iter): seq_len = seq_len_tensor[i] num_samples = num_samples_tensor[i] src_token = (torch.randint(0, idx, (num_samples, seq_len)),) src_lengths = torch.randint(1, seq_len + 1, (num_samples,)) src_lengths, _ = torch.sort(src_lengths, descending=True) # Force the first sample to have seq_len src_lengths[0] = seq_len prev_output_token = (torch.randint(0, idx, (num_samples, 1)),) result = model(src_token[0], src_lengths, prev_output_token[0], None) scripted_result = scripted_model( src_token[0], src_lengths, prev_output_token[0], None ) self.assertTensorEqual(result[0], scripted_result[0]) self.assertTensorEqual(result[1], scripted_result[1]) if __name__ == "__main__": unittest.main()
bart_ls-main
fairseq-py/tests/test_lstm_jitable.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import copy import unittest import torch from torch.cuda.amp import autocast, GradScaler from fairseq.optim import build_optimizer @unittest.skipIf(not torch.cuda.is_available(), "test requires a GPU") class TestGradientScalingAMP(unittest.TestCase): def setUp(self): self.x = torch.tensor([2.0]).cuda().half() weight = 3.0 bias = 5.0 self.error = 1.0 self.target = torch.tensor([self.x * weight + bias + self.error]).cuda() self.loss_fn = torch.nn.L1Loss() self.model = torch.nn.Linear(1, 1) self.model.weight.data = torch.tensor([[weight]]) self.model.bias.data = torch.tensor([bias]) self.model.cuda() self.params = list(self.model.parameters()) self.namespace_dls = argparse.Namespace( optimizer="adam", lr=[0.1], adam_betas="(0.9, 0.999)", adam_eps=1e-8, weight_decay=0.0, threshold_loss_scale=1, min_loss_scale=1e-4, ) self.scaler = GradScaler( init_scale=1, growth_interval=1, ) def run_iter(self, model, params, optimizer): optimizer.zero_grad() with autocast(): y = model(self.x) loss = self.loss_fn(y, self.target) self.scaler.scale(loss).backward() self.assertEqual(loss, torch.tensor(1.0, device="cuda:0", dtype=torch.float16)) self.scaler.unscale_(optimizer) grad_norm = optimizer.clip_grad_norm(0) self.assertAlmostEqual(grad_norm.item(), 2.2361, 4) self.scaler.step(optimizer) self.scaler.update() self.assertEqual( model.weight, torch.tensor( [[3.1]], device="cuda:0", requires_grad=True ), ) self.assertEqual( model.bias, torch.tensor( [5.1], device="cuda:0", requires_grad=True ), ) self.assertEqual(self.scaler.get_scale(), 2.0) def test_automatic_mixed_precision(self): model = copy.deepcopy(self.model) params = list(model.parameters()) optimizer = build_optimizer(self.namespace_dls, params) self.run_iter(model, params, optimizer)
bart_ls-main
fairseq-py/tests/test_amp_optimizer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest import torch from fairseq.modules.sparse_multihead_attention import SparseMultiheadAttention class TestSparseMultiheadAttention(unittest.TestCase): def test_sparse_multihead_attention(self): attn_weights = torch.randn(1, 8, 8) bidirectional_sparse_mask = torch.tensor( [ [0, 0, 0, 0, 0, float("-inf"), float("-inf"), 0], [0, 0, 0, 0, 0, float("-inf"), float("-inf"), 0], [0, 0, 0, 0, 0, float("-inf"), float("-inf"), 0], [0, 0, 0, 0, 0, float("-inf"), float("-inf"), 0], [float("-inf"), float("-inf"), float("-inf"), 0, 0, 0, 0, 0], [float("-inf"), float("-inf"), float("-inf"), 0, 0, 0, 0, 0], [float("-inf"), float("-inf"), float("-inf"), 0, 0, 0, 0, 0], [float("-inf"), float("-inf"), float("-inf"), 0, 0, 0, 0, 0], ] ) bidirectional_attention = SparseMultiheadAttention( 16, 1, stride=4, expressivity=1, is_bidirectional=True ) bidirectional_attention_sparse_mask = ( bidirectional_attention.buffered_sparse_mask(attn_weights, 8, 8) ) torch.all( torch.eq(bidirectional_attention_sparse_mask, bidirectional_sparse_mask) ) sparse_mask = torch.tensor( [ [ 0, float("-inf"), float("-inf"), float("-inf"), float("-inf"), float("-inf"), float("-inf"), float("-inf"), ], [ 0, 0, float("-inf"), float("-inf"), float("-inf"), float("-inf"), float("-inf"), float("-inf"), ], [ 0, 0, 0, float("-inf"), float("-inf"), float("-inf"), float("-inf"), float("-inf"), ], [ 0, 0, 0, 0, float("-inf"), float("-inf"), float("-inf"), float("-inf"), ], [0, 0, 0, 0, 0, float("-inf"), float("-inf"), float("-inf")], [ float("-inf"), float("-inf"), float("-inf"), 0, 0, 0, float("-inf"), float("-inf"), ], [ float("-inf"), float("-inf"), float("-inf"), 0, 0, 0, 0, float("-inf"), ], [float("-inf"), float("-inf"), float("-inf"), 0, 0, 0, 0, 0], ] ) attention = SparseMultiheadAttention( 16, 1, stride=4, expressivity=1, is_bidirectional=False ) attention_sparse_mask = attention.buffered_sparse_mask(attn_weights, 8, 8) torch.all(torch.eq(attention_sparse_mask, sparse_mask)) if __name__ == "__main__": unittest.main()
bart_ls-main
fairseq-py/tests/test_sparse_multihead_attention.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest import uuid from fairseq import metrics class TestMetrics(unittest.TestCase): def test_nesting(self): with metrics.aggregate() as a: metrics.log_scalar("loss", 1) with metrics.aggregate() as b: metrics.log_scalar("loss", 2) self.assertEqual(a.get_smoothed_values()["loss"], 1.5) self.assertEqual(b.get_smoothed_values()["loss"], 2) def test_new_root(self): with metrics.aggregate() as a: metrics.log_scalar("loss", 1) with metrics.aggregate(new_root=True) as b: metrics.log_scalar("loss", 2) self.assertEqual(a.get_smoothed_values()["loss"], 1) self.assertEqual(b.get_smoothed_values()["loss"], 2) def test_nested_new_root(self): with metrics.aggregate() as layer1: metrics.log_scalar("loss", 1) with metrics.aggregate(new_root=True) as layer2: metrics.log_scalar("loss", 2) with metrics.aggregate() as layer3: metrics.log_scalar("loss", 3) with metrics.aggregate(new_root=True) as layer4: metrics.log_scalar("loss", 4) metrics.log_scalar("loss", 1.5) self.assertEqual(layer4.get_smoothed_values()["loss"], 4) self.assertEqual(layer3.get_smoothed_values()["loss"], 3) self.assertEqual(layer2.get_smoothed_values()["loss"], 2.5) self.assertEqual(layer1.get_smoothed_values()["loss"], 1.25) def test_named(self): name = str(uuid.uuid4()) metrics.reset_meters(name) with metrics.aggregate(name): metrics.log_scalar("loss", 1) metrics.log_scalar("loss", 3) with metrics.aggregate(name): metrics.log_scalar("loss", 2) self.assertEqual(metrics.get_smoothed_values(name)["loss"], 1.5) def test_nested_duplicate_names(self): name = str(uuid.uuid4()) metrics.reset_meters(name) with metrics.aggregate(name): metrics.log_scalar("loss", 1) with metrics.aggregate() as other: with metrics.aggregate(name): metrics.log_scalar("loss", 2) metrics.log_scalar("loss", 6) self.assertEqual(metrics.get_smoothed_values(name)["loss"], 3) self.assertEqual(other.get_smoothed_values()["loss"], 2) if __name__ == "__main__": unittest.main()
bart_ls-main
fairseq-py/tests/test_metrics.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import contextlib import logging import unittest from io import StringIO from unittest.mock import MagicMock, patch import torch from fairseq import checkpoint_utils, data from omegaconf import OmegaConf def mock_trainer(epoch, num_updates, iterations_in_epoch): trainer = MagicMock() trainer.load_checkpoint.return_value = { "train_iterator": { "epoch": epoch, "iterations_in_epoch": iterations_in_epoch, "shuffle": False, }, } trainer.get_num_updates.return_value = num_updates return trainer def mock_dict(): d = MagicMock() d.pad.return_value = 1 d.eos.return_value = 2 d.unk.return_value = 3 return d def get_trainer_and_epoch_itr(epoch, epoch_size, num_updates, iterations_in_epoch): tokens = torch.LongTensor(list(range(epoch_size))).view(1, -1) tokens_ds = data.TokenBlockDataset( tokens, sizes=[tokens.size(-1)], block_size=1, pad=0, eos=1, include_targets=False, ) trainer = mock_trainer(epoch, num_updates, iterations_in_epoch) dataset = data.LanguagePairDataset( tokens_ds, tokens_ds.sizes, mock_dict(), shuffle=False ) epoch_itr = data.EpochBatchIterator( dataset=dataset, collate_fn=dataset.collater, batch_sampler=[[i] for i in range(epoch_size)], ) return trainer, epoch_itr def get_mock_cfg(finetune_from_model): cfg_mock = OmegaConf.create( { "checkpoint": { "save_dir": None, "optimizer_overrides": "{}", "reset_dataloader": False, "reset_meters": False, "reset_optimizer": False, "reset_lr_scheduler": False, "finetune_from_model": finetune_from_model, "model_parallel_size": 1, "restore_file": "checkpoint_last.pt", }, "common": { "model_parallel_size": 1, }, } ) return cfg_mock class TestLoadCheckpoint(unittest.TestCase): def setUp(self): self.cfg_mock = get_mock_cfg(None) self.patches = { "os.makedirs": MagicMock(), "os.path.join": MagicMock(), "os.path.isfile": MagicMock(return_value=True), "os.path.isabs": MagicMock(return_value=False), "fairseq.file_io.PathManager.exists": MagicMock(return_value=False), } self.applied_patches = [patch(p, d) for p, d in self.patches.items()] [p.start() for p in self.applied_patches] logging.disable(logging.CRITICAL) def tearDown(self): patch.stopall() logging.disable(logging.NOTSET) def test_load_partial_checkpoint(self): with contextlib.redirect_stdout(StringIO()): trainer, epoch_itr = get_trainer_and_epoch_itr(2, 150, 200, 50) trainer.get_train_iterator = MagicMock(return_value=epoch_itr) _, epoch_itr = checkpoint_utils.load_checkpoint( self.cfg_mock.checkpoint, trainer ) self.assertEqual(epoch_itr.epoch, 2) self.assertEqual(epoch_itr.iterations_in_epoch, 50) itr = epoch_itr.next_epoch_itr(shuffle=False) self.assertEqual(epoch_itr.epoch, 2) self.assertEqual(epoch_itr.iterations_in_epoch, 50) self.assertEqual(next(itr)["net_input"]["src_tokens"][0].item(), 50) self.assertEqual(epoch_itr.iterations_in_epoch, 51) for _ in range(150 - 52): next(itr) self.assertEqual(epoch_itr.iterations_in_epoch, 149) self.assertTrue(itr.has_next()) next(itr) self.assertFalse(itr.has_next()) itr = epoch_itr.next_epoch_itr(shuffle=False) self.assertTrue(itr.has_next()) self.assertEqual(epoch_itr.epoch, 3) self.assertEqual(epoch_itr.iterations_in_epoch, 0) def test_load_full_checkpoint(self): with contextlib.redirect_stdout(StringIO()): trainer, epoch_itr = get_trainer_and_epoch_itr(2, 150, 300, 150) trainer.get_train_iterator = MagicMock(return_value=epoch_itr) _, epoch_itr = checkpoint_utils.load_checkpoint( self.cfg_mock.checkpoint, trainer ) itr = epoch_itr.next_epoch_itr(shuffle=False) self.assertEqual(epoch_itr.epoch, 3) self.assertEqual(epoch_itr.iterations_in_epoch, 0) self.assertEqual(next(itr)["net_input"]["src_tokens"][0].item(), 0) def test_load_no_checkpoint(self): with contextlib.redirect_stdout(StringIO()): trainer, epoch_itr = get_trainer_and_epoch_itr(1, 150, 0, 0) trainer.get_train_iterator = MagicMock(return_value=epoch_itr) self.patches["os.path.isfile"].return_value = False _, epoch_itr = checkpoint_utils.load_checkpoint( self.cfg_mock.checkpoint, trainer ) itr = epoch_itr.next_epoch_itr(shuffle=False) self.assertEqual(epoch_itr.epoch, 1) self.assertEqual(epoch_itr.iterations_in_epoch, 0) self.assertEqual(next(itr)["net_input"]["src_tokens"][0].item(), 0) def test_finetune_from_model_args_conflict(self): with contextlib.redirect_stdout(StringIO()): trainer, epoch_itr = get_trainer_and_epoch_itr(1, 150, 0, 0) trainer.get_train_iterator = MagicMock(return_value=epoch_itr) for arg in [ "reset_optimizer", "reset_lr_scheduler", "reset_meters", "reset_dataloader", ]: with self.subTest(arg=arg): cfg_mock = get_mock_cfg("/temp/checkpoint_pretrained.pt") cfg_mock["checkpoint"][arg] = True with self.assertRaises(Exception) as context: _, _ = checkpoint_utils.load_checkpoint( cfg_mock.checkpoint, trainer ) self.assertTrue( "--finetune-from-model can not be set together with either --reset-optimizer" " or reset_lr_scheduler or reset_meters or reset_dataloader" in str(context.exception) ) def test_finetune_from_model(self): with contextlib.redirect_stdout(StringIO()): trainer, epoch_itr = get_trainer_and_epoch_itr(1, 150, 0, 0) trainer.get_train_iterator = MagicMock(return_value=epoch_itr) from_model_path = "/temp/checkpoint_pretrained.pt" def mock_finetune_exist(path): if path == from_model_path: return True else: return False self.patches[ "fairseq.file_io.PathManager.exists" ].side_effect = mock_finetune_exist cfg_mock = get_mock_cfg(from_model_path) cfg_mock.checkpoint.restore_file = "checkpoint_last.pt" _, _ = checkpoint_utils.load_checkpoint(cfg_mock.checkpoint, trainer) ( checkpoint_path, reset_optimizer, reset_lr_scheduler, optimizer_overrides, ) = trainer.load_checkpoint.call_args[0] reset_meters = trainer.load_checkpoint.call_args[1]["reset_meters"] self.assertTrue(reset_optimizer) self.assertTrue(reset_lr_scheduler) self.assertTrue(reset_meters) def test_finetune_from_model_resume(self): with contextlib.redirect_stdout(StringIO()): trainer, epoch_itr = get_trainer_and_epoch_itr(1, 150, 0, 0) trainer.get_train_iterator = MagicMock(return_value=epoch_itr) from_model_path = "/temp/checkpoint_pretrained.pt" # launch second time # both restore_file=checkpoint_last.pt and finetune_from_model are set def mock_finetune_exist(path): if path == from_model_path or path.endsWith("checkpoint_last.pt"): return True else: return False self.patches[ "fairseq.file_io.PathManager.exists" ].side_effect = mock_finetune_exist cfg_mock = get_mock_cfg(from_model_path) cfg_mock.checkpoint.restore_file = "checkpoint_last.pt" _, _ = checkpoint_utils.load_checkpoint(cfg_mock.checkpoint, trainer) ( checkpoint_path, reset_optimizer, reset_lr_scheduler, optimizer_overrides, ) = trainer.load_checkpoint.call_args[0] reset_meters = trainer.load_checkpoint.call_args[1]["reset_meters"] self.assertFalse(reset_optimizer) self.assertFalse(reset_lr_scheduler) self.assertFalse(reset_meters) if __name__ == "__main__": unittest.main()
bart_ls-main
fairseq-py/tests/test_train.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import unittest try: import boto3 from fairseq.fb_pathhandlers import S3PathHandler except ImportError: boto3 = None S3PathHandler = None # Hack to make the test cases ordered. # https://stackoverflow.com/questions/4005695/changing-order-of-unit-tests-in-python unittest.TestLoader.sortTestMethodsUsing = lambda _, x, y: y > x @unittest.skipIf(not boto3, "Requires boto3 install") class TestsS3(unittest.TestCase): s3_auth = False skip_s3_auth_required_tests_message = ( "Provide an s3 project and bucket you are" + "authorised against, then set the s3_auth flag to True" ) ############################################# # Shared ############################################# @classmethod def setUpClass(cls): # NOTE: user can change these locations. cls.s3_bucket = "fairusersglobal" cls.s3_rel_path = os.path.expandvars("users/$USER/private/home/$USER/.fairseq/test_s3_pathhandler") cls.s3_full_path = "s3://" + cls.s3_bucket + "/" + cls.s3_rel_path cls.s3_pathhandler = S3PathHandler() @classmethod def tearDownClass(cls, _s3_auth=s3_auth): if not _s3_auth: return # Recursive deletion is not implemented, # so let's delete each file and directory. # Delete all files cls.s3_pathhandler._rm("/".join([cls.s3_full_path, "dir1", "f1_write_string"])) cls.s3_pathhandler._rm("/".join([cls.s3_full_path, "dir1", "f2_write_bytes"])) cls.s3_pathhandler._rm("/".join([cls.s3_full_path, "dir2", "f1_write_string_from_local"])) cls.s3_pathhandler._rm("/".join([cls.s3_full_path, "dir2", "f2_write_bytes_from_local"])) cls.s3_pathhandler._rm("/".join([cls.s3_full_path, "dir2", "f3_write_string_from_local"])) cls.s3_pathhandler._rm("/".join([cls.s3_full_path, "dir2", "f4_write_bytes_from_local"])) # Delete all directories. cls.s3_pathhandler._rm("/".join([cls.s3_full_path, "dir3", "dir4/"])) for i in (1, 2, 3): cls.s3_pathhandler._rm("/".join([cls.s3_full_path, f"dir{i}/"])) assert cls.s3_pathhandler._ls(cls.s3_full_path) == [] ############################################# # Up here, test class attributes, # and helpers that don't require S3 access. ############################################# def test_00_supported_prefixes(self): supported_prefixes = self.s3_pathhandler._get_supported_prefixes() self.assertEqual(supported_prefixes, ["s3://"]) # # Require S3 Authentication ====> ############################################# # Organization of s3 setup # dir1/ # f1 <- small (via open) # f2 <- large checkpoint file (via open) # dir2/ # f3 <- small (via copy(), from dir1) # f4 <- large checkpoint file (via copy_from_local) # dir3/ # dir4/ ############################################# ############################################# # auth # Just check that client loads properly ############################################# @unittest.skipIf(not s3_auth, skip_s3_auth_required_tests_message) def test_01_add_client_to_handler(self): self.s3_pathhandler._get_client( "/".join([self.s3_full_path, "path", "file.txt"]) ) # self.assertTrue(isinstance(self.s3_pathhandler.client, botocore.client.S3)) # TODO # TODO: make sure that the error message displays properly if authentication is messed up. ############################################# # mkdirs # Set up the dirs # (in BASE) # +dir1 # +dir2 # +dir3 # +dir4 ############################################# @unittest.skipIf(not s3_auth, skip_s3_auth_required_tests_message) def test_02_mkdirs_must_end_with_slash(self): with self.assertRaises(AssertionError): self.s3_pathhandler._mkdirs("/".join([self.s3_full_path, "fail"])) @unittest.skipIf(not s3_auth, skip_s3_auth_required_tests_message) def test_03_mkdirs(self): # dir{1,2,3} in BASE for i in (1, 2, 3): self.s3_pathhandler._mkdirs("/".join([self.s3_full_path, f"dir{i}/"])) # Make a nested directory in dir3 self.s3_pathhandler._mkdirs("/".join([self.s3_full_path, "dir3/dir4/"])) ############################################# # open (w/wb) # +f1 # +f2 ############################################# @unittest.skipIf(not s3_auth, skip_s3_auth_required_tests_message) def test_04_open_write_mode(self): with self.s3_pathhandler._open("/".join([self.s3_full_path, "dir1", "f1_write_string"]), 'w') as f: f.write("This is a test of writing a string.") with self.s3_pathhandler._open("/".join([self.s3_full_path, "dir1", "f2_write_bytes"]), 'wb') as f: f.write(b"This is a test of writing bytes.") ############################################# # open (r/rb) # read f1 # read f2 ############################################# @unittest.skipIf(not s3_auth, skip_s3_auth_required_tests_message) def test_05_open_read_mode(self): with self.s3_pathhandler._open("/".join([self.s3_full_path, "dir1", "f1_write_string"]), 'r') as f: self.assertEqual( f.read(), "This is a test of writing a string." ) with self.s3_pathhandler._open("/".join([self.s3_full_path, "dir1", "f2_write_bytes"]), 'rb') as f: self.assertEqual( f.read(), b"This is a test of writing bytes." ) ############################################# # isdir / isfile / exists # test dir{1,2,3,4} # test f{1,2} # test nonexistants ############################################# @unittest.skipIf(not s3_auth, skip_s3_auth_required_tests_message) def test_06_exists(self): # Path does not exist (if file) self.assertFalse(self.s3_pathhandler._exists("/".join([self.s3_full_path, "dir1", "FAIL"]))) # Path does not exist (if dir) self.assertFalse(self.s3_pathhandler._exists("/".join([self.s3_full_path, "FAIL/"]))) # Path exists (is file) self.assertTrue(self.s3_pathhandler._exists("/".join([self.s3_full_path, "dir1", "f1_write_string"]))) # Path exists (is dir) self.assertTrue(self.s3_pathhandler._exists("/".join([self.s3_full_path, "dir1/"]))) @unittest.skipIf(not s3_auth, skip_s3_auth_required_tests_message) def test_07_isdir(self): # Path does not exist (if file) self.assertFalse(self.s3_pathhandler._isdir("/".join([self.s3_full_path, "dir1", "FAIL"]))) # Path does not exist (if dir) self.assertFalse(self.s3_pathhandler._isdir("/".join([self.s3_full_path, "FAIL/"]))) # Path exists (is file) self.assertFalse(self.s3_pathhandler._isdir("/".join([self.s3_full_path, "dir1", "f1_write_string"]))) # Path exists (is dir) self.assertTrue(self.s3_pathhandler._isdir("/".join([self.s3_full_path, "dir1/"]))) @unittest.skipIf(not s3_auth, skip_s3_auth_required_tests_message) def test_08_isfile(self): # Path does not exist (if file) self.assertFalse(self.s3_pathhandler._isfile("/".join([self.s3_full_path, "dir1", "FAIL"]))) # Path does not exist (if dir) self.assertFalse(self.s3_pathhandler._isfile("/".join([self.s3_full_path, "FAIL/"]))) # Path exists (is file) self.assertTrue(self.s3_pathhandler._isfile("/".join([self.s3_full_path, "dir1", "f1_write_string"]))) # Path exists (is dir) self.assertFalse(self.s3_pathhandler._isfile("/".join([self.s3_full_path, "dir1/"]))) ############################################# # copy # copy f1 -> f3 ############################################# @unittest.skipIf(not s3_auth, skip_s3_auth_required_tests_message) def test_09_copy(self): self.assertTrue( self.s3_pathhandler._copy( "/".join([self.s3_full_path, "dir1", "f1_write_string"]), "/".join([self.s3_full_path, "dir2", "f3_write_string"]) ) ) ############################################# # ls # ls dir{1,2,3,4} ############################################# @unittest.skipIf(not s3_auth, skip_s3_auth_required_tests_message) def test_10_ls(self): # Path does not exist (if file) self.assertEqual([], self.s3_pathhandler._ls("/".join([self.s3_full_path, "dir1", "FAIL"]))) # Path does not exist (if dir) self.assertEqual([], self.s3_pathhandler._ls("/".join([self.s3_full_path, "FAIL/"]))) # Path exists (is file) self.assertEqual( ["/".join([self.s3_rel_path, "dir1", "f1_write_string"])], self.s3_pathhandler._ls("/".join([self.s3_full_path, "dir1", "f1_write_string"])) ) # Path exists (is dir) self.assertEqual( { "/".join([self.s3_rel_path, "dir1/"]), # TODO: should the trailing slash be "/".join([self.s3_rel_path, "dir1", "f1_write_string"]), "/".join([self.s3_rel_path, "dir1", "f2_write_bytes"]) }, set(self.s3_pathhandler._ls("/".join([self.s3_full_path, "dir1/"]))) ) ############################################# # rm # rm f3 ############################################# @unittest.skipIf(not s3_auth, skip_s3_auth_required_tests_message) def test_11_rm(self): path = "/".join([self.s3_full_path, "dir2", "f3_write_string"]) self.assertTrue(self.s3_pathhandler._exists(path)) self.assertTrue(self.s3_pathhandler._isfile(path)) self.assertFalse(self.s3_pathhandler._isdir(path)) self.s3_pathhandler._rm(path) self.assertFalse(self.s3_pathhandler._exists(path)) self.assertFalse(self.s3_pathhandler._isfile(path)) self.assertFalse(self.s3_pathhandler._isdir(path)) ############################################# # get_local_path # Retrieve f{1,2} # Check file contents. ############################################# @unittest.skipIf(not s3_auth, skip_s3_auth_required_tests_message) def test_12_get_local_path(self): s3_path_f1 = "/".join([self.s3_full_path, "dir1", "f1_write_string"]) s3_path_f2 = "/".join([self.s3_full_path, "dir1", "f2_write_bytes"]) local_path_f1 = self.s3_pathhandler._get_local_path(s3_path_f1) local_path_f2 = self.s3_pathhandler._get_local_path(s3_path_f2) with open(local_path_f1, 'r') as f: self.assertEqual( f.read(), "This is a test of writing a string." ) with open(local_path_f2, 'rb') as f: self.assertEqual( f.read(), b"This is a test of writing bytes." ) @unittest.skipIf(not s3_auth, skip_s3_auth_required_tests_message) def test_13_get_local_path_idempotent(self): """ Call _get_local_path multiple times. Check that we keep returning the same cached copy instead of redownloading. """ s3_path_f1 = "/".join([self.s3_full_path, "dir1", "f1_write_string"]) REPEATS = 3 local_paths = [self.s3_pathhandler._get_local_path(s3_path_f1) for _ in range(REPEATS)] for local_path in local_paths[1:]: self.assertEqual(local_path, local_paths[0]) with open(local_paths[0], 'r') as f: self.assertEqual( f.read(), "This is a test of writing a string." ) # TODO: make sure it fails if asked for a directory # TODO: make sure that the returned path is appropriately placed. ############################################## # copy_from_local # Upload local copies of f1, f2 -> f3, f4. # Check contents via open(), and via another get_local_path ############################################## @unittest.skipIf(not s3_auth, skip_s3_auth_required_tests_message) def test_14_copy_from_local(self): s3_src_path_f1 = "/".join([self.s3_full_path, "dir1", "f1_write_string"]) s3_src_path_f2 = "/".join([self.s3_full_path, "dir1", "f2_write_bytes"]) local_path_f1 = self.s3_pathhandler._get_local_path(s3_src_path_f1) local_path_f2 = self.s3_pathhandler._get_local_path(s3_src_path_f2) s3_dst_path_f1 = "/".join([self.s3_full_path, "dir2", "f1_write_string_from_local"]) s3_dst_path_f2 = "/".join([self.s3_full_path, "dir2", "f2_write_bytes_from_local"]) self.assertTrue(self.s3_pathhandler._copy_from_local(local_path_f1, s3_dst_path_f1)) self.assertTrue(self.s3_pathhandler._copy_from_local(local_path_f2, s3_dst_path_f2)) ############################################# # symlink # should fail ############################################# @unittest.skipIf(not s3_auth, skip_s3_auth_required_tests_message) def test_15_symlink(self): s3_src_path_f1 = "/".join([self.s3_full_path, "dir1", "f1_write_string"]) s3_dst_path_f1 = "/".join([self.s3_full_path, "dir2", "f1_write_string_symlink"]) with self.assertRaises(NotImplementedError): self.s3_pathhandler._symlink(s3_src_path_f1, s3_dst_path_f1)
bart_ls-main
fairseq-py/tests/fb_test_pathhandlers.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import unittest import tests.utils as test_utils import torch from fairseq.sequence_scorer import SequenceScorer class TestSequenceScorer(unittest.TestCase): def test_sequence_scorer(self): # construct dummy dictionary d = test_utils.dummy_dictionary(vocab_size=2) self.assertEqual(d.pad(), 1) self.assertEqual(d.eos(), 2) self.assertEqual(d.unk(), 3) eos = d.eos() w1 = 4 w2 = 5 # construct dataloader data = [ { "source": torch.LongTensor([w1, w2, eos]), "target": torch.LongTensor([w1, w2, w1, eos]), }, { "source": torch.LongTensor([w2, eos]), "target": torch.LongTensor([w2, w1, eos]), }, { "source": torch.LongTensor([w2, eos]), "target": torch.LongTensor([w2, eos]), }, ] data_itr = test_utils.dummy_dataloader(data) # specify expected output probabilities args = argparse.Namespace() unk = 0.0 args.beam_probs = [ # step 0: torch.FloatTensor( [ # eos w1 w2 [0.0, unk, 0.6, 0.4], # sentence 1 [0.0, unk, 0.4, 0.6], # sentence 2 [0.0, unk, 0.7, 0.3], # sentence 3 ] ), # step 1: torch.FloatTensor( [ # eos w1 w2 [0.0, unk, 0.2, 0.7], # sentence 1 [0.0, unk, 0.8, 0.2], # sentence 2 [0.7, unk, 0.1, 0.2], # sentence 3 ] ), # step 2: torch.FloatTensor( [ # eos w1 w2 [0.10, unk, 0.50, 0.4], # sentence 1 [0.15, unk, 0.15, 0.7], # sentence 2 [0.00, unk, 0.00, 0.0], # sentence 3 ] ), # step 3: torch.FloatTensor( [ # eos w1 w2 [0.9, unk, 0.05, 0.05], # sentence 1 [0.0, unk, 0.00, 0.0], # sentence 2 [0.0, unk, 0.00, 0.0], # sentence 3 ] ), ] expected_scores = [ [0.6, 0.7, 0.5, 0.9], # sentence 1 [0.6, 0.8, 0.15], # sentence 2 [0.3, 0.7], # sentence 3 ] task = test_utils.TestTranslationTask.setup_task(args, d, d) model = task.build_model(args) scorer = SequenceScorer(task.target_dictionary) for sample in data_itr: hypos = task.inference_step(scorer, [model], sample) for id, hypos_id in zip(sample["id"].tolist(), hypos): self.assertHypoTokens(hypos_id[0], data[id]["target"]) self.assertHypoScore(hypos_id[0], expected_scores[id]) def assertHypoTokens(self, hypo, tokens): self.assertTensorEqual(hypo["tokens"], torch.LongTensor(tokens)) def assertHypoScore(self, hypo, pos_probs, normalized=True, lenpen=1.0): pos_scores = torch.FloatTensor(pos_probs).log() self.assertAlmostEqual(hypo["positional_scores"], pos_scores) self.assertEqual(pos_scores.numel(), hypo["tokens"].numel()) score = pos_scores.sum() if normalized: score /= pos_scores.numel() ** lenpen self.assertLess(abs(score - hypo["score"]), 1e-6) def assertAlmostEqual(self, t1, t2): self.assertEqual(t1.size(), t2.size(), "size mismatch") self.assertLess((t1 - t2).abs().max(), 1e-4) def assertTensorEqual(self, t1, t2): self.assertEqual(t1.size(), t2.size(), "size mismatch") self.assertEqual(t1.ne(t2).long().sum(), 0) if __name__ == "__main__": unittest.main()
bart_ls-main
fairseq-py/tests/test_sequence_scorer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import unittest from fairseq.dataclass.utils import convert_namespace_to_omegaconf from fairseq.models.transformer import TransformerModel from tests.test_sequence_generator import get_dummy_task_and_parser class TestInferenceDropout(unittest.TestCase): def setUp(self): self.task, self.parser = get_dummy_task_and_parser() TransformerModel.add_args(self.parser) self.args = self.parser.parse_args([]) self.args.encoder_layers = 2 self.args.decoder_layers = 1 logging.disable(logging.CRITICAL) def tearDown(self): logging.disable(logging.NOTSET) def test_sets_inference_dropout_to_true(self): self.args.retain_dropout = True self.transformer_model = TransformerModel.build_model(self.args, self.task) cfg = convert_namespace_to_omegaconf(self.args) self.transformer_model.prepare_for_inference_(cfg) assert self.transformer_model.encoder.dropout_module.apply_during_inference assert self.transformer_model.decoder.dropout_module.apply_during_inference for layer in self.transformer_model.encoder.layers: assert layer.dropout_module.apply_during_inference def test_inference_dropout_false_by_default(self): self.transformer_model = TransformerModel.build_model(self.args, self.task) cfg = convert_namespace_to_omegaconf(self.args) self.transformer_model.prepare_for_inference_(cfg) assert not self.transformer_model.encoder.dropout_module.apply_during_inference assert not self.transformer_model.decoder.dropout_module.apply_during_inference for layer in self.transformer_model.encoder.layers: assert not layer.dropout_module.apply_during_inference for layer in self.transformer_model.decoder.layers: assert not layer.dropout_module.apply_during_inference def test_applies_training_mode(self): self.transformer_model = TransformerModel.build_model(self.args, self.task) assert self.transformer_model.encoder.dropout_module.training for layer in self.transformer_model.encoder.layers: assert layer.dropout_module.training self.transformer_model.eval() assert not self.transformer_model.decoder.dropout_module.training for layer in self.transformer_model.encoder.layers: assert not layer.dropout_module.training def test_retain_modules(self): self.args.retain_dropout = True self.args.retain_dropout_modules = [ "TransformerEncoder", "TransformerEncoderLayer", ] self.transformer_model = TransformerModel.build_model(self.args, self.task) cfg = convert_namespace_to_omegaconf(self.args) self.transformer_model.prepare_for_inference_(cfg) assert self.transformer_model.encoder.dropout_module.apply_during_inference assert not self.transformer_model.decoder.dropout_module.apply_during_inference for layer in self.transformer_model.decoder.layers: assert not layer.dropout_module.apply_during_inference
bart_ls-main
fairseq-py/tests/test_inference_dropout.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest import torch from fairseq.modules.multihead_attention import MultiheadAttention class TestMultiheadAttention(unittest.TestCase): def test_append_prev_key_padding_mask(self): bsz = 1 src_len = 4 cases = [ # no padding mask (None, None, None), # current padding mask only ( torch.tensor([[1]]).bool(), None, torch.tensor([[0, 0, 0, 1]]).bool(), ), # previous padding mask only ( None, torch.tensor([[0, 1, 0]]).bool(), torch.tensor([[0, 1, 0, 0]]).bool(), ), # both padding masks ( torch.tensor([[1]]).bool(), torch.tensor([[0, 1, 0]]).bool(), torch.tensor([[0, 1, 0, 1]]).bool(), ), # prev_key_padding_mask already full ( torch.tensor([[0, 1, 0, 1]]).bool(), None, torch.tensor([[0, 1, 0, 1]]).bool(), ), # key_padding_mask already full ( None, torch.tensor([[0, 1, 0, 1]]).bool(), torch.tensor([[0, 1, 0, 1]]).bool(), ), ] for c in cases: key_padding_mask = MultiheadAttention._append_prev_key_padding_mask( c[0], c[1], batch_size=bsz, src_len=src_len, static_kv=False, ) if key_padding_mask is not None: self.assertTrue( torch.all(torch.eq(key_padding_mask, c[2])), f"Unexpected resultant key padding mask: {key_padding_mask}" f" given current: {c[0]} and previous: {c[1]}", ) self.assertEqual(key_padding_mask.size(0), bsz) self.assertEqual(key_padding_mask.size(1), src_len) else: self.assertIsNone(c[2]) if __name__ == "__main__": unittest.main()
bart_ls-main
fairseq-py/tests/test_multihead_attention.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest import numpy as np from fairseq.data.data_utils_fast import batch_by_size_fn from fairseq.data.data_utils_fast import batch_by_size_vec class TestBatchBySize(unittest.TestCase): @classmethod def batch_by_size_baseline( cls, indices, num_tokens_vec, max_tokens, max_sentences, bsz_mult, ): """Simple, reliable and slow implementation of batch by size """ batches = [] start = 0 while start < len(indices): for end in range(start + 1, len(indices) + 1): max_val = max(num_tokens_vec[pos] for pos in range(start, end)) sent_count = end - start num_tokens = max_val * sent_count overflow = num_tokens > max_tokens > 0 or sent_count > max_sentences > 0 terminate = overflow or end == len(indices) if overflow: sent_count -= 1 if terminate: if sent_count > bsz_mult: sent_count = sent_count - sent_count % bsz_mult batches.append(indices[start : start + sent_count]) start = start + sent_count break return batches @classmethod def _get_error_message( cls, max_sentences, max_tokens, bsz_mult, num_tokens_vec, validation, results ): return f"""Reference batch_by_size implementation should produce same output as the baseline method. Params: max_sentences={max_sentences}, max_tokens={max_tokens}, bsz_mult={bsz_mult}, num_tokens_vec={num_tokens_vec}, expected_batches={validation}, returned_batches={results}""" def _compare_results( self, indices_len, batch_by_size_impl, max_sentences, max_tokens, bsz_mult, num_tokens_vec, ): indices = np.array(list(range(indices_len))) validation = self.batch_by_size_baseline( indices, num_tokens_vec, max_tokens=max_tokens, max_sentences=max_sentences, bsz_mult=bsz_mult, ) results = batch_by_size_impl( indices, num_tokens_vec, max_tokens=max_tokens, max_sentences=max_sentences, bsz_mult=bsz_mult, ) error_msg = self._get_error_message( max_sentences, max_tokens, bsz_mult, num_tokens_vec, validation, results ) self.assertEqual(len(validation), len(results), error_msg) for first, second in zip(validation, results): self.assertTrue(np.array_equal(first, second), error_msg) def _run_compare_with_baseline_sweep(self, batch_by_size_impl): """Compare reference batch_by_size implementation with batch_by_size_baseline across a dense grid of hyperparam values""" MAX_MAX_TOKENS = 10 NUM_TOKENS_VECS_COUNT = 5 for indices_len in [10, 11]: # try odd and even len of indices for max_sentences in range(0, indices_len + 2): for max_tokens in range(0, MAX_MAX_TOKENS): for bsz_mult in range(1, max(MAX_MAX_TOKENS, indices_len) + 2): for _ in range(NUM_TOKENS_VECS_COUNT): num_tokens_vec = np.random.randint( 0, max_tokens + 1, size=indices_len ) self._compare_results( indices_len, batch_by_size_impl, max_sentences, max_tokens, bsz_mult, num_tokens_vec, ) class TestBatchBySizeVec(TestBatchBySize): def test_compare_with_baseline(self): self._run_compare_with_baseline_sweep(batch_by_size_vec) class TestBatchBySizeFn(TestBatchBySize): def test_compare_with_baseline(self): def batch_by_size_fn_wrapper( indices, num_tokens_vec, max_tokens, max_sentences, bsz_mult, ): def num_tokens_fn(idx): return num_tokens_vec[idx] return batch_by_size_fn( indices, num_tokens_fn, max_tokens, max_sentences, bsz_mult ) self._run_compare_with_baseline_sweep(batch_by_size_fn_wrapper) if __name__ == "__main__": unittest.main()
bart_ls-main
fairseq-py/tests/test_data_utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import random import string import typing as tp import unittest from collections import Counter from tempfile import NamedTemporaryFile, TemporaryDirectory from fairseq.data import Dictionary, indexed_dataset from fairseq.data.huffman import ( HuffmanCodeBuilder, HuffmanCoder, HuffmanMMapIndexedDataset, HuffmanMMapIndexedDatasetBuilder, ) POPULATION = string.ascii_letters + string.digits def make_sentence() -> tp.List[str]: length = random.randint(10, 50) return random.choices( population=POPULATION, k=length, weights=range(1, len(POPULATION) + 1) ) def make_data(length=1000) -> tp.List[tp.List[str]]: return ( [make_sentence() for _ in range(0, length)] # add all the symbols at least once + [list(string.ascii_letters), list(string.digits)] ) def make_counts(data: tp.List[tp.List[str]]) -> Counter: return Counter([symbol for sentence in data for symbol in sentence]) def make_code_builder(data: tp.List[tp.List[str]]) -> HuffmanCodeBuilder: builder = HuffmanCodeBuilder() for sentence in data: builder.add_symbols(*sentence) return builder class TestCodeBuilder(unittest.TestCase): def test_code_builder_can_count(self): data = make_data() counts = make_counts(data) builder = make_code_builder(data) self.assertEqual(builder.symbols, counts) def test_code_builder_can_add(self): data = make_data() counts = make_counts(data) builder = make_code_builder(data) new_builder = builder + builder self.assertEqual(new_builder.symbols, counts + counts) def test_code_builder_can_io(self): data = make_data() builder = make_code_builder(data) with NamedTemporaryFile() as tmp_fp: builder.to_file(tmp_fp.name) other_builder = HuffmanCodeBuilder.from_file(tmp_fp.name) self.assertEqual(builder.symbols, other_builder.symbols) class TestCoder(unittest.TestCase): def test_coder_can_io(self): data = make_data() builder = make_code_builder(data) coder = builder.build_code() with NamedTemporaryFile() as tmp_fp: coder.to_file(tmp_fp.name) other_coder = HuffmanCoder.from_file(tmp_fp.name) self.assertEqual(coder, other_coder) def test_coder_can_encode_decode(self): data = make_data() builder = make_code_builder(data) coder = builder.build_code() encoded = [coder.encode(sentence) for sentence in data] decoded = [[n.symbol for n in coder.decode(enc)] for enc in encoded] self.assertEqual(decoded, data) unseen_data = make_data() unseen_encoded = [coder.encode(sentence) for sentence in unseen_data] unseen_decoded = [ [n.symbol for n in coder.decode(enc)] for enc in unseen_encoded ] self.assertEqual(unseen_decoded, unseen_data) def build_dataset(prefix, data, coder): with HuffmanMMapIndexedDatasetBuilder(prefix, coder) as builder: for sentence in data: builder.add_item(sentence) def sizes(data): return [len(sentence) for sentence in data] class TestHuffmanDataset(unittest.TestCase): def test_huffman_can_encode_decode(self): data = make_data() builder = make_code_builder(data) coder = builder.build_code() with TemporaryDirectory() as dirname: prefix = os.path.join(dirname, "test1") build_dataset(prefix, data, coder) dataset = HuffmanMMapIndexedDataset(prefix) self.assertEqual(len(dataset), len(data)) decoded = [list(dataset.get_symbols(i)) for i in range(0, len(dataset))] self.assertEqual(decoded, data) data_sizes = [i.item() for i in dataset.sizes] self.assertEqual(data_sizes, sizes(data)) def test_huffman_compresses(self): data = make_data() builder = make_code_builder(data) coder = builder.build_code() with TemporaryDirectory() as dirname: prefix = os.path.join(dirname, "huffman") build_dataset(prefix, data, coder) prefix_mmap = os.path.join(dirname, "mmap") mmap_builder = indexed_dataset.make_builder( indexed_dataset.data_file_path(prefix_mmap), "mmap", vocab_size=len(POPULATION), ) dictionary = Dictionary() for c in POPULATION: dictionary.add_symbol(c) dictionary.finalize() for sentence in data: mmap_builder.add_item(dictionary.encode_line(" ".join(sentence))) mmap_builder.finalize(indexed_dataset.index_file_path(prefix_mmap)) huff_size = os.stat(indexed_dataset.data_file_path(prefix)).st_size mmap_size = os.stat(indexed_dataset.data_file_path(prefix_mmap)).st_size self.assertLess(huff_size, mmap_size) def test_huffman_can_append(self): data1 = make_data() builder = make_code_builder(data1) coder = builder.build_code() with TemporaryDirectory() as dirname: prefix1 = os.path.join(dirname, "test1") build_dataset(prefix1, data1, coder) data2 = make_data() prefix2 = os.path.join(dirname, "test2") build_dataset(prefix2, data2, coder) prefix3 = os.path.join(dirname, "test3") with HuffmanMMapIndexedDatasetBuilder(prefix3, coder) as builder: builder.append(prefix1) builder.append(prefix2) dataset = HuffmanMMapIndexedDataset(prefix3) self.assertEqual(len(dataset), len(data1) + len(data2)) decoded1 = [list(dataset.get_symbols(i)) for i in range(0, len(data1))] self.assertEqual(decoded1, data1) decoded2 = [ list(dataset.get_symbols(i)) for i in range(len(data1), len(dataset)) ] self.assertEqual(decoded2, data2) data_sizes = [i.item() for i in dataset.sizes] self.assertEqual(data_sizes[: len(data1)], sizes(data1)) self.assertEqual(data_sizes[len(data1) : len(dataset)], sizes(data2)) if __name__ == "__main__": unittest.main()
bart_ls-main
fairseq-py/tests/test_huffman.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import contextlib import logging import os import tempfile import unittest from io import StringIO from unittest.mock import patch from fairseq import checkpoint_utils from omegaconf import OmegaConf from tests.utils import ( create_dummy_data, preprocess_translation_data, train_translation_model, ) class TestCheckpointUtils(unittest.TestCase): def setUp(self): logging.disable(logging.CRITICAL) def tearDown(self): logging.disable(logging.NOTSET) @contextlib.contextmanager def _train_transformer(self, seed, extra_args=None): if extra_args is None: extra_args = [] with tempfile.TemporaryDirectory(f"_train_transformer_seed{seed}") as data_dir: create_dummy_data(data_dir) preprocess_translation_data(data_dir) train_translation_model( data_dir, "transformer_iwslt_de_en", [ "--encoder-layers", "3", "--decoder-layers", "3", "--encoder-embed-dim", "8", "--decoder-embed-dim", "8", "--seed", str(seed), ] + extra_args, ) yield os.path.join(data_dir, "checkpoint_last.pt") def test_load_model_ensemble_and_task(self): # with contextlib.redirect_stdout(StringIO()): with self._train_transformer(seed=123) as model1: with self._train_transformer(seed=456) as model2: ensemble, cfg, task = checkpoint_utils.load_model_ensemble_and_task( filenames=[model1, model2] ) self.assertEqual(len(ensemble), 2) # after Transformer has been migrated to Hydra, this will probably # become cfg.common.seed self.assertEqual(ensemble[0].args.seed, 123) self.assertEqual(ensemble[1].args.seed, 456) # the task from the first model should be returned self.assertTrue("seed123" in task.cfg.data) # last cfg is saved self.assertEqual(cfg.common.seed, 456) def test_prune_state_dict(self): with contextlib.redirect_stdout(StringIO()): extra_args = ["--encoder-layerdrop", "0.01", "--decoder-layerdrop", "0.01"] with self._train_transformer(seed=1, extra_args=extra_args) as model: ensemble, cfg, task = checkpoint_utils.load_model_ensemble_and_task( filenames=[model], arg_overrides={ "encoder_layers_to_keep": "0,2", "decoder_layers_to_keep": "1", }, ) self.assertEqual(len(ensemble), 1) self.assertEqual(len(ensemble[0].encoder.layers), 2) self.assertEqual(len(ensemble[0].decoder.layers), 1) def test_torch_persistent_save_async(self): state_dict = {} filename = "async_checkpoint.pt" with patch(f"{checkpoint_utils.__name__}.PathManager.opena") as mock_opena: with patch(f"{checkpoint_utils.__name__}._torch_persistent_save") as mock_save: checkpoint_utils.torch_persistent_save( state_dict, filename, async_write=True ) mock_opena.assert_called_with(filename, "wb") mock_save.assert_called() if __name__ == "__main__": unittest.main()
bart_ls-main
fairseq-py/tests/test_checkpoint_utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest from unittest import mock class TestIOPath(unittest.TestCase): def test_no_iopath(self): from .test_reproducibility import TestReproducibility with mock.patch.dict("sys.modules", {"iopath": None}): # reuse reproducibility tests, which are e2e tests that should cover # most checkpoint related functionality TestReproducibility._test_reproducibility(self, "test_reproducibility") def test_no_supports_rename(self): from .test_reproducibility import TestReproducibility with mock.patch("fairseq.file_io.PathManager.supports_rename") as mock_fn: mock_fn.return_value = False TestReproducibility._test_reproducibility(self, "test_reproducibility") if __name__ == "__main__": unittest.main()
bart_ls-main
fairseq-py/tests/test_iopath.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import collections import unittest import numpy as np from fairseq.data import ListDataset, ResamplingDataset class TestResamplingDataset(unittest.TestCase): def setUp(self): self.strings = ["ab", "c", "def", "ghij"] self.weights = [4.0, 2.0, 7.0, 1.5] self.size_ratio = 2 self.dataset = ListDataset( self.strings, np.array([len(s) for s in self.strings]) ) def _test_common(self, resampling_dataset, iters): assert len(self.dataset) == len(self.strings) == len(self.weights) assert len(resampling_dataset) == self.size_ratio * len(self.strings) results = {"ordered_by_size": True, "max_distribution_diff": 0.0} totalfreqs = 0 freqs = collections.defaultdict(int) for epoch_num in range(iters): resampling_dataset.set_epoch(epoch_num) indices = resampling_dataset.ordered_indices() assert len(indices) == len(resampling_dataset) prev_size = -1 for i in indices: cur_size = resampling_dataset.size(i) # Make sure indices map to same sequences within an epoch assert resampling_dataset[i] == resampling_dataset[i] # Make sure length of sequence is correct assert cur_size == len(resampling_dataset[i]) freqs[resampling_dataset[i]] += 1 totalfreqs += 1 if prev_size > cur_size: results["ordered_by_size"] = False prev_size = cur_size assert set(freqs.keys()) == set(self.strings) for s, weight in zip(self.strings, self.weights): freq = freqs[s] / totalfreqs expected_freq = weight / sum(self.weights) results["max_distribution_diff"] = max( results["max_distribution_diff"], abs(expected_freq - freq) ) return results def test_resampling_dataset_batch_by_size_false(self): resampling_dataset = ResamplingDataset( self.dataset, self.weights, size_ratio=self.size_ratio, batch_by_size=False, seed=0, ) results = self._test_common(resampling_dataset, iters=1000) # For batch_by_size = False, the batches should be returned in # arbitrary order of size. assert not results["ordered_by_size"] # Allow tolerance in distribution error of 2%. assert results["max_distribution_diff"] < 0.02 def test_resampling_dataset_batch_by_size_true(self): resampling_dataset = ResamplingDataset( self.dataset, self.weights, size_ratio=self.size_ratio, batch_by_size=True, seed=0, ) results = self._test_common(resampling_dataset, iters=1000) # For batch_by_size = True, the batches should be returned in # increasing order of size. assert results["ordered_by_size"] # Allow tolerance in distribution error of 2%. assert results["max_distribution_diff"] < 0.02 if __name__ == "__main__": unittest.main()
bart_ls-main
fairseq-py/tests/test_resampling_dataset.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import shutil import tempfile import unittest from fairseq import options from fairseq.dataclass.utils import convert_namespace_to_omegaconf from fairseq.data.data_utils import raise_if_valid_subsets_unintentionally_ignored from .utils import create_dummy_data, preprocess_lm_data, train_language_model def make_lm_config( data_dir=None, extra_flags=None, task="language_modeling", arch="transformer_lm_gpt2_tiny", ): task_args = [task] if data_dir is not None: task_args += [data_dir] train_parser = options.get_training_parser() train_args = options.parse_args_and_arch( train_parser, [ "--task", *task_args, "--arch", arch, "--optimizer", "adam", "--lr", "0.0001", "--max-tokens", "500", "--tokens-per-sample", "500", "--save-dir", data_dir, "--max-epoch", "1", ] + (extra_flags or []), ) cfg = convert_namespace_to_omegaconf(train_args) return cfg def write_empty_file(path): with open(path, "w"): pass assert os.path.exists(path) class TestValidSubsetsErrors(unittest.TestCase): """Test various filesystem, clarg combinations and ensure that error raising happens as expected""" def _test_case(self, paths, extra_flags): with tempfile.TemporaryDirectory() as data_dir: [ write_empty_file(os.path.join(data_dir, f"{p}.bin")) for p in paths + ["train"] ] cfg = make_lm_config(data_dir, extra_flags=extra_flags) raise_if_valid_subsets_unintentionally_ignored(cfg) def test_default_raises(self): with self.assertRaises(ValueError): self._test_case(["valid", "valid1"], []) with self.assertRaises(ValueError): self._test_case( ["valid", "valid1", "valid2"], ["--valid-subset", "valid,valid1"] ) def partially_specified_valid_subsets(self): with self.assertRaises(ValueError): self._test_case( ["valid", "valid1", "valid2"], ["--valid-subset", "valid,valid1"] ) # Fix with ignore unused self._test_case( ["valid", "valid1", "valid2"], ["--valid-subset", "valid,valid1", "--ignore-unused-valid-subsets"], ) def test_legal_configs(self): self._test_case(["valid"], []) self._test_case(["valid", "valid1"], ["--ignore-unused-valid-subsets"]) self._test_case(["valid", "valid1"], ["--combine-val"]) self._test_case(["valid", "valid1"], ["--valid-subset", "valid,valid1"]) self._test_case(["valid", "valid1"], ["--valid-subset", "valid1"]) self._test_case( ["valid", "valid1"], ["--combine-val", "--ignore-unused-valid-subsets"] ) self._test_case( ["valid1"], ["--valid-subset", "valid1"] ) # valid.bin doesn't need to be ignored. def test_disable_validation(self): self._test_case([], ["--disable-validation"]) self._test_case(["valid", "valid1"], ["--disable-validation"]) def test_dummy_task(self): cfg = make_lm_config(task="dummy_lm") raise_if_valid_subsets_unintentionally_ignored(cfg) def test_masked_dummy_task(self): cfg = make_lm_config(task="dummy_masked_lm") raise_if_valid_subsets_unintentionally_ignored(cfg) class TestCombineValidSubsets(unittest.TestCase): def _train(self, extra_flags): with self.assertLogs() as logs: with tempfile.TemporaryDirectory("test_transformer_lm") as data_dir: create_dummy_data(data_dir, num_examples=20) preprocess_lm_data(data_dir) shutil.copyfile(f"{data_dir}/valid.bin", f"{data_dir}/valid1.bin") shutil.copyfile(f"{data_dir}/valid.idx", f"{data_dir}/valid1.idx") train_language_model( data_dir, "transformer_lm", ["--max-update", "0", "--log-format", "json"] + extra_flags, run_validation=False, ) return [x.message for x in logs.records] def test_combined(self): flags = ["--combine-valid-subsets"] logs = self._train(flags) assert any(["valid1" in x for x in logs]) # loaded 100 examples from valid1 assert not any(["valid1_ppl" in x for x in logs]) # metrics are combined def test_subsets(self): flags = ["--valid-subset", "valid,valid1"] logs = self._train(flags) assert any(["valid_ppl" in x for x in logs]) # loaded 100 examples from valid1 assert any(["valid1_ppl" in x for x in logs]) # metrics are combined
bart_ls-main
fairseq-py/tests/test_valid_subset_checks.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree.
bart_ls-main
fairseq-py/tests/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest import tests.utils as test_utils import torch from fairseq.data import ( BacktranslationDataset, LanguagePairDataset, TransformEosDataset, ) from fairseq.sequence_generator import SequenceGenerator class TestBacktranslationDataset(unittest.TestCase): def setUp(self): ( self.tgt_dict, self.w1, self.w2, self.src_tokens, self.src_lengths, self.model, ) = test_utils.sequence_generator_setup() dummy_src_samples = self.src_tokens self.tgt_dataset = test_utils.TestDataset(data=dummy_src_samples) self.cuda = torch.cuda.is_available() def _backtranslation_dataset_helper( self, remove_eos_from_input_src, remove_eos_from_output_src, ): tgt_dataset = LanguagePairDataset( src=self.tgt_dataset, src_sizes=self.tgt_dataset.sizes, src_dict=self.tgt_dict, tgt=None, tgt_sizes=None, tgt_dict=None, ) generator = SequenceGenerator( [self.model], tgt_dict=self.tgt_dict, max_len_a=0, max_len_b=200, beam_size=2, unk_penalty=0, ) backtranslation_dataset = BacktranslationDataset( tgt_dataset=TransformEosDataset( dataset=tgt_dataset, eos=self.tgt_dict.eos(), # remove eos from the input src remove_eos_from_src=remove_eos_from_input_src, ), src_dict=self.tgt_dict, backtranslation_fn=( lambda sample: generator.generate([self.model], sample) ), output_collater=TransformEosDataset( dataset=tgt_dataset, eos=self.tgt_dict.eos(), # if we remove eos from the input src, then we need to add it # back to the output tgt append_eos_to_tgt=remove_eos_from_input_src, remove_eos_from_src=remove_eos_from_output_src, ).collater, cuda=self.cuda, ) dataloader = torch.utils.data.DataLoader( backtranslation_dataset, batch_size=2, collate_fn=backtranslation_dataset.collater, ) backtranslation_batch_result = next(iter(dataloader)) eos, pad, w1, w2 = self.tgt_dict.eos(), self.tgt_dict.pad(), self.w1, self.w2 # Note that we sort by src_lengths and add left padding, so actually # ids will look like: [1, 0] expected_src = torch.LongTensor([[w1, w2, w1, eos], [pad, pad, w1, eos]]) if remove_eos_from_output_src: expected_src = expected_src[:, :-1] expected_tgt = torch.LongTensor([[w1, w2, eos], [w1, w2, eos]]) generated_src = backtranslation_batch_result["net_input"]["src_tokens"] tgt_tokens = backtranslation_batch_result["target"] self.assertTensorEqual(expected_src, generated_src) self.assertTensorEqual(expected_tgt, tgt_tokens) def test_backtranslation_dataset_no_eos_in_output_src(self): self._backtranslation_dataset_helper( remove_eos_from_input_src=False, remove_eos_from_output_src=True, ) def test_backtranslation_dataset_with_eos_in_output_src(self): self._backtranslation_dataset_helper( remove_eos_from_input_src=False, remove_eos_from_output_src=False, ) def test_backtranslation_dataset_no_eos_in_input_src(self): self._backtranslation_dataset_helper( remove_eos_from_input_src=True, remove_eos_from_output_src=False, ) def assertTensorEqual(self, t1, t2): self.assertEqual(t1.size(), t2.size(), "size mismatch") self.assertEqual(t1.ne(t2).long().sum(), 0) if __name__ == "__main__": unittest.main()
bart_ls-main
fairseq-py/tests/test_backtranslation_dataset.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import contextlib import unittest import tempfile from io import StringIO import numpy as np from tests.utils import create_dummy_data, preprocess_lm_data, train_language_model try: from pyarrow import plasma from fairseq.data.plasma_utils import PlasmaView, PlasmaStore PYARROW_AVAILABLE = True except ImportError: PYARROW_AVAILABLE = False dummy_path = "dummy" @unittest.skipUnless(PYARROW_AVAILABLE, "") class TestPlasmaView(unittest.TestCase): def setUp(self) -> None: self.tmp_file = tempfile.NamedTemporaryFile() # noqa: P201 self.path = self.tmp_file.name self.server = PlasmaStore.start(path=self.path, nbytes=10000) self.client = plasma.connect(self.path, num_retries=10) def tearDown(self) -> None: self.client.disconnect() self.tmp_file.close() self.server.kill() def test_two_servers_do_not_share_object_id_space(self): data_server_1 = np.array([0, 1]) data_server_2 = np.array([2, 3]) server_2_path = self.path with tempfile.NamedTemporaryFile() as server_1_path: server = PlasmaStore.start(path=server_1_path.name, nbytes=10000) arr1 = PlasmaView( data_server_1, dummy_path, 1, plasma_path=server_1_path.name ) assert len(arr1.client.list()) == 1 assert (arr1.array == data_server_1).all() arr2 = PlasmaView(data_server_2, dummy_path, 1, plasma_path=server_2_path) assert (arr2.array == data_server_2).all() assert (arr1.array == data_server_1).all() server.kill() def test_hash_collision(self): data_server_1 = np.array([0, 1]) data_server_2 = np.array([2, 3]) arr1 = PlasmaView(data_server_1, dummy_path, 1, plasma_path=self.path) assert len(arr1.client.list()) == 1 arr2 = PlasmaView(data_server_2, dummy_path, 1, plasma_path=self.path) assert len(arr1.client.list()) == 1 assert len(arr2.client.list()) == 1 assert (arr2.array == data_server_1).all() # New hash key based on tuples arr3 = PlasmaView( data_server_2, dummy_path, (1, 12312312312, None), plasma_path=self.path ) assert ( len(arr2.client.list()) == 2 ), "No new object was created by using a novel hash key" assert ( arr3.object_id in arr2.client.list() ), "No new object was created by using a novel hash key" assert ( arr3.object_id in arr3.client.list() ), "No new object was created by using a novel hash key" del arr3, arr2, arr1 @staticmethod def _assert_view_equal(pv1, pv2): np.testing.assert_array_equal(pv1.array, pv2.array) def test_putting_same_array_twice(self): data = np.array([4, 4, 4]) arr1 = PlasmaView(data, dummy_path, 1, plasma_path=self.path) assert len(self.client.list()) == 1 arr1b = PlasmaView( data, dummy_path, 1, plasma_path=self.path ) # should not change contents of store arr1c = PlasmaView( None, dummy_path, 1, plasma_path=self.path ) # should not change contents of store assert len(self.client.list()) == 1 self._assert_view_equal(arr1, arr1b) self._assert_view_equal(arr1, arr1c) PlasmaView( data, dummy_path, 2, plasma_path=self.path ) # new object id, adds new entry assert len(self.client.list()) == 2 new_client = plasma.connect(self.path) assert len(new_client.list()) == 2 # new client can access same objects assert isinstance(arr1.object_id, plasma.ObjectID) del arr1b del arr1c def test_plasma_store_full_raises(self): with tempfile.NamedTemporaryFile() as new_path: server = PlasmaStore.start(path=new_path.name, nbytes=10000) with self.assertRaises(plasma.PlasmaStoreFull): # 2000 floats is more than 2000 bytes PlasmaView( np.random.rand(10000, 1), dummy_path, 1, plasma_path=new_path.name ) server.kill() def test_object_id_overflow(self): PlasmaView.get_object_id("", 2 ** 21) def test_training_lm_plasma(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_transformer_lm") as data_dir: create_dummy_data(data_dir) preprocess_lm_data(data_dir) train_language_model( data_dir, "transformer_lm", ["--use-plasma-view", "--plasma-path", self.path], run_validation=True, )
bart_ls-main
fairseq-py/tests/test_plasma_utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import contextlib import logging import os import tempfile import unittest from io import StringIO import torch from tests.test_binaries import ( create_dummy_roberta_head_data, train_masked_lm, train_roberta_head, ) from tests.utils import ( create_dummy_data, generate_main, preprocess_lm_data, preprocess_translation_data, train_translation_model, ) class TestTranslation(unittest.TestCase): def setUp(self): logging.disable(logging.CRITICAL) def tearDown(self): logging.disable(logging.NOTSET) @unittest.skipIf(not torch.cuda.is_available(), "test requires a GPU") def test_fb_levenshtein_transformer(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory( "test_fb_levenshtein_transformer" ) as data_dir: create_dummy_data(data_dir) preprocess_translation_data(data_dir, ["--joined-dictionary"]) train_translation_model( data_dir, "fb_levenshtein_transformer", [ "--apply-bert-init", "--early-exit", "6,6,6", "--criterion", "nat_loss", ], task="translation_lev", ) generate_main( data_dir, [ "--task", "translation_lev", "--iter-decode-max-iter", "9", "--iter-decode-eos-penalty", "0", "--print-step", ], ) if __name__ == "__main__": unittest.main()
bart_ls-main
fairseq-py/tests/fb_test_binaries.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import contextlib import logging import json import os import random import sys import tempfile import unittest from io import StringIO from typing import List, Dict import torch from fairseq import options from fairseq_cli import eval_lm, train from tests.utils import ( create_dummy_data, generate_main, preprocess_lm_data, preprocess_summarization_data, preprocess_translation_data, create_laser_data_and_config_json, train_translation_model, train_language_model, ) try: import transformers # noqa has_hf_transformers = True except ImportError: has_hf_transformers = False class TestTranslation(unittest.TestCase): def setUp(self): logging.disable(logging.CRITICAL) def tearDown(self): logging.disable(logging.NOTSET) def test_fconv(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_fconv") as data_dir: create_dummy_data(data_dir) preprocess_translation_data(data_dir) train_translation_model(data_dir, "fconv_iwslt_de_en") generate_main(data_dir) def test_raw(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_fconv_raw") as data_dir: create_dummy_data(data_dir) preprocess_translation_data(data_dir, ["--dataset-impl", "raw"]) train_translation_model( data_dir, "fconv_iwslt_de_en", ["--dataset-impl", "raw"] ) generate_main(data_dir, ["--dataset-impl", "raw"]) def test_update_freq(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_update_freq") as data_dir: create_dummy_data(data_dir) preprocess_translation_data(data_dir) train_translation_model( data_dir, "fconv_iwslt_de_en", ["--update-freq", "3"] ) generate_main(data_dir) def test_max_positions(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_max_positions") as data_dir: create_dummy_data(data_dir) preprocess_translation_data(data_dir) with self.assertRaises(Exception) as context: train_translation_model( data_dir, "fconv_iwslt_de_en", ["--max-target-positions", "5"], ) self.assertTrue( "skip this example with --skip-invalid-size-inputs-valid-test" in str(context.exception) ) train_translation_model( data_dir, "fconv_iwslt_de_en", [ "--max-target-positions", "5", "--skip-invalid-size-inputs-valid-test", ], ) with self.assertRaises(Exception) as context: generate_main(data_dir) generate_main(data_dir, ["--skip-invalid-size-inputs-valid-test"]) def test_generation(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_sampling") as data_dir: create_dummy_data(data_dir) preprocess_translation_data(data_dir) train_translation_model(data_dir, "fconv_iwslt_de_en") generate_main( data_dir, [ "--sampling", "--temperature", "2", "--beam", "2", "--nbest", "2", ], ) generate_main( data_dir, [ "--sampling", "--sampling-topk", "3", "--beam", "2", "--nbest", "2", ], ) generate_main( data_dir, [ "--sampling", "--sampling-topp", "0.2", "--beam", "2", "--nbest", "2", ], ) generate_main( data_dir, [ "--diversity-rate", "0.5", "--beam", "6", ], ) with self.assertRaises(ValueError): generate_main( data_dir, [ "--diverse-beam-groups", "4", "--match-source-len", ], ) generate_main(data_dir, ["--prefix-size", "2"]) generate_main(data_dir, ["--retain-dropout"]) def test_eval_bleu(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_eval_bleu") as data_dir: create_dummy_data(data_dir) preprocess_translation_data(data_dir) train_translation_model( data_dir, "fconv_iwslt_de_en", [ "--eval-bleu", "--eval-bleu-print-samples", "--eval-bleu-remove-bpe", "--eval-bleu-detok", "space", "--eval-bleu-args", '{"beam": 4, "min_len": 10}', ], ) def test_lstm(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_lstm") as data_dir: create_dummy_data(data_dir) preprocess_translation_data(data_dir) train_translation_model( data_dir, "lstm_wiseman_iwslt_de_en", [ "--encoder-layers", "2", "--decoder-layers", "2", "--encoder-embed-dim", "8", "--decoder-embed-dim", "8", "--decoder-out-embed-dim", "8", ], ) generate_main(data_dir) def test_lstm_bidirectional(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_lstm_bidirectional") as data_dir: create_dummy_data(data_dir) preprocess_translation_data(data_dir) train_translation_model( data_dir, "lstm", [ "--encoder-layers", "2", "--encoder-bidirectional", "--encoder-hidden-size", "16", "--encoder-embed-dim", "8", "--decoder-embed-dim", "8", "--decoder-out-embed-dim", "8", "--decoder-layers", "2", ], ) generate_main(data_dir) def test_transformer(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_transformer") as data_dir: create_dummy_data(data_dir) preprocess_translation_data(data_dir) train_translation_model( data_dir, "transformer_iwslt_de_en", [ "--encoder-layers", "2", "--decoder-layers", "2", "--encoder-embed-dim", "8", "--decoder-embed-dim", "8", ], run_validation=True, ) generate_main(data_dir) def test_multilingual_transformer(self): # test with all combinations of encoder/decoder lang tokens encoder_langtok_flags = [ [], ["--encoder-langtok", "src"], ["--encoder-langtok", "tgt"], ] decoder_langtok_flags = [[], ["--decoder-langtok"]] with contextlib.redirect_stdout(StringIO()): for i in range(len(encoder_langtok_flags)): for j in range(len(decoder_langtok_flags)): enc_ltok_flag = encoder_langtok_flags[i] dec_ltok_flag = decoder_langtok_flags[j] with tempfile.TemporaryDirectory( f"test_multilingual_transformer_{i}_{j}" ) as data_dir: create_dummy_data(data_dir) preprocess_translation_data(data_dir) train_translation_model( data_dir, arch="multilingual_transformer", task="multilingual_translation", extra_flags=[ "--encoder-layers", "2", "--decoder-layers", "2", "--encoder-embed-dim", "8", "--decoder-embed-dim", "8", ] + enc_ltok_flag + dec_ltok_flag, lang_flags=["--lang-pairs", "in-out,out-in"], run_validation=True, extra_valid_flags=enc_ltok_flag + dec_ltok_flag, ) generate_main( data_dir, extra_flags=[ "--task", "multilingual_translation", "--lang-pairs", "in-out,out-in", "--source-lang", "in", "--target-lang", "out", ] + enc_ltok_flag + dec_ltok_flag, ) @unittest.skipIf( sys.platform.lower() == "darwin", "skip latent depth test on MacOS" ) def test_multilingual_translation_latent_depth(self): # test with latent depth in encoder, decoder, or both encoder_latent_layer = [[], ["--encoder-latent-layer"]] decoder_latent_layer = [[], ["--decoder-latent-layer"]] with contextlib.redirect_stdout(StringIO()): for i in range(len(encoder_latent_layer)): for j in range(len(decoder_latent_layer)): if i == 0 and j == 0: continue enc_ll_flag = encoder_latent_layer[i] dec_ll_flag = decoder_latent_layer[j] with tempfile.TemporaryDirectory( f"test_multilingual_translation_latent_depth_{i}_{j}" ) as data_dir: create_dummy_data(data_dir) preprocess_translation_data( data_dir, extra_flags=["--joined-dictionary"] ) train_translation_model( data_dir, arch="latent_multilingual_transformer", task="multilingual_translation_latent_depth", extra_flags=[ "--user-dir", "examples/latent_depth/latent_depth_src", "--encoder-layers", "2", "--decoder-layers", "2", "--encoder-embed-dim", "8", "--decoder-embed-dim", "8", "--share-encoders", "--share-decoders", "--sparsity-weight", "0.1", ] + enc_ll_flag + dec_ll_flag, lang_flags=["--lang-pairs", "in-out,out-in"], run_validation=True, extra_valid_flags=[ "--user-dir", "examples/latent_depth/latent_depth_src", ] + enc_ll_flag + dec_ll_flag, ) generate_main( data_dir, extra_flags=[ "--user-dir", "examples/latent_depth/latent_depth_src", "--task", "multilingual_translation_latent_depth", "--lang-pairs", "in-out,out-in", "--source-lang", "in", "--target-lang", "out", ] + enc_ll_flag + dec_ll_flag, ) def test_translation_multi_simple_epoch(self): # test with all combinations of encoder/decoder lang tokens encoder_langtok_flags = [ [], ["--encoder-langtok", "src"], ["--encoder-langtok", "tgt"], ] decoder_langtok_flags = [[], ["--decoder-langtok"]] with contextlib.redirect_stdout(StringIO()): for i in range(len(encoder_langtok_flags)): for j in range(len(decoder_langtok_flags)): enc_ltok_flag = encoder_langtok_flags[i] dec_ltok_flag = decoder_langtok_flags[j] with tempfile.TemporaryDirectory( f"test_translation_multi_simple_epoch_{i}_{j}" ) as data_dir: create_dummy_data(data_dir) preprocess_translation_data( data_dir, extra_flags=["--joined-dictionary"] ) train_translation_model( data_dir, arch="transformer", task="translation_multi_simple_epoch", extra_flags=[ "--encoder-layers", "2", "--decoder-layers", "2", "--encoder-embed-dim", "8", "--decoder-embed-dim", "8", "--sampling-method", "temperature", "--sampling-temperature", "1.5", "--virtual-epoch-size", "1000", ] + enc_ltok_flag + dec_ltok_flag, lang_flags=["--lang-pairs", "in-out,out-in"], run_validation=True, extra_valid_flags=enc_ltok_flag + dec_ltok_flag, ) generate_main( data_dir, extra_flags=[ "--task", "translation_multi_simple_epoch", "--lang-pairs", "in-out,out-in", "--source-lang", "in", "--target-lang", "out", ] + enc_ltok_flag + dec_ltok_flag, ) def test_translation_multi_simple_epoch_no_vepoch(self): # test with all combinations of encoder/decoder lang tokens with contextlib.redirect_stdout(StringIO()): enc_ltok_flag = ["--encoder-langtok", "src"] dec_ltok_flag = ["--decoder-langtok"] with tempfile.TemporaryDirectory( "test_translation_multi_simple_epoch_dict" ) as data_dir: create_dummy_data(data_dir) preprocess_translation_data(data_dir, extra_flags=[]) train_translation_model( data_dir, arch="transformer", task="translation_multi_simple_epoch", extra_flags=[ "--encoder-layers", "2", "--decoder-layers", "2", "--encoder-embed-dim", "8", "--decoder-embed-dim", "8", "--sampling-method", "temperature", "--sampling-temperature", "1.5", ] + enc_ltok_flag + dec_ltok_flag, lang_flags=["--lang-pairs", "in-out"], run_validation=True, extra_valid_flags=enc_ltok_flag + dec_ltok_flag, ) generate_main( data_dir, extra_flags=[ "--task", "translation_multi_simple_epoch", "--lang-pairs", "in-out", "--source-lang", "in", "--target-lang", "out", ] + enc_ltok_flag + dec_ltok_flag, ) def test_translation_multi_simple_epoch_dicts(self): # test with all combinations of encoder/decoder lang tokens with contextlib.redirect_stdout(StringIO()): enc_ltok_flag = ["--encoder-langtok", "src"] dec_ltok_flag = ["--decoder-langtok"] with tempfile.TemporaryDirectory( "test_translation_multi_simple_epoch_dict" ) as data_dir: create_dummy_data(data_dir) preprocess_translation_data(data_dir, extra_flags=[]) train_translation_model( data_dir, arch="transformer", task="translation_multi_simple_epoch", extra_flags=[ "--encoder-layers", "2", "--decoder-layers", "2", "--encoder-embed-dim", "8", "--decoder-embed-dim", "8", "--sampling-method", "temperature", "--sampling-temperature", "1.5", "--virtual-epoch-size", "1000", ] + enc_ltok_flag + dec_ltok_flag, lang_flags=["--lang-pairs", "in-out"], run_validation=True, extra_valid_flags=enc_ltok_flag + dec_ltok_flag, ) generate_main( data_dir, extra_flags=[ "--task", "translation_multi_simple_epoch", "--lang-pairs", "in-out", "--source-lang", "in", "--target-lang", "out", ] + enc_ltok_flag + dec_ltok_flag, ) def test_translation_multi_simple_epoch_src_tgt_dict_spec(self): # test the specification of explicit --src-dict and --tgt-dict with contextlib.redirect_stdout(StringIO()): enc_ltok_flag = ["--encoder-langtok", "src"] dec_ltok_flag = ["--decoder-langtok"] with tempfile.TemporaryDirectory( "test_translation_multi_simple_epoch_dict" ) as data_dir: create_dummy_data(data_dir) preprocess_translation_data(data_dir, extra_flags=[]) train_translation_model( data_dir, arch="transformer", task="translation_multi_simple_epoch", extra_flags=[ "--source-dict", f"{data_dir}/dict.in.txt", "--target-dict", f"{data_dir}/dict.out.txt", "--encoder-layers", "2", "--decoder-layers", "2", "--encoder-embed-dim", "8", "--decoder-embed-dim", "8", "--sampling-method", "temperature", "--sampling-temperature", "1.5", "--virtual-epoch-size", "1000", ] + enc_ltok_flag + dec_ltok_flag, lang_flags=["--lang-pairs", "in-out"], run_validation=True, extra_valid_flags=enc_ltok_flag + dec_ltok_flag, ) generate_main( data_dir, extra_flags=[ "--task", "translation_multi_simple_epoch", "--lang-pairs", "in-out", "--source-lang", "in", "--target-lang", "out", ] + enc_ltok_flag + dec_ltok_flag, ) def test_transformer_cross_self_attention(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory( "test_transformer_cross_self_attention" ) as data_dir: create_dummy_data(data_dir) preprocess_translation_data(data_dir) train_translation_model( data_dir, "transformer_iwslt_de_en", [ "--encoder-layers", "2", "--decoder-layers", "2", "--encoder-embed-dim", "8", "--decoder-embed-dim", "8", "--decoder-embed-dim", "8", "--no-cross-attention", "--cross-self-attention", ], run_validation=True, ) generate_main(data_dir, extra_flags=[]) def test_transformer_pointer_generator(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory( "test_transformer_pointer_generator" ) as data_dir: create_dummy_data(data_dir) preprocess_summarization_data(data_dir) train_translation_model( data_dir, "transformer_pointer_generator", extra_flags=[ "--user-dir", "examples/pointer_generator/pointer_generator_src", "--encoder-layers", "2", "--decoder-layers", "2", "--encoder-embed-dim", "8", "--decoder-embed-dim", "8", "--alignment-layer", "-1", "--alignment-heads", "1", "--source-position-markers", "0", ], run_validation=True, extra_valid_flags=[ "--user-dir", "examples/pointer_generator/pointer_generator_src", ], ) generate_main( data_dir, extra_flags=[ "--user-dir", "examples/pointer_generator/pointer_generator_src", ], ) def test_lightconv(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_lightconv") as data_dir: create_dummy_data(data_dir) preprocess_translation_data(data_dir) train_translation_model( data_dir, "lightconv_iwslt_de_en", [ "--encoder-conv-type", "lightweight", "--decoder-conv-type", "lightweight", "--encoder-embed-dim", "8", "--decoder-embed-dim", "8", ], ) generate_main(data_dir) def test_dynamicconv(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_dynamicconv") as data_dir: create_dummy_data(data_dir) preprocess_translation_data(data_dir) train_translation_model( data_dir, "lightconv_iwslt_de_en", [ "--encoder-conv-type", "dynamic", "--decoder-conv-type", "dynamic", "--encoder-embed-dim", "8", "--decoder-embed-dim", "8", ], ) generate_main(data_dir) def test_cmlm_transformer(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_cmlm_transformer") as data_dir: create_dummy_data(data_dir) preprocess_translation_data(data_dir, ["--joined-dictionary"]) train_translation_model( data_dir, "cmlm_transformer", [ "--apply-bert-init", "--criterion", "nat_loss", "--noise", "full_mask", "--pred-length-offset", "--length-loss-factor", "0.1", ], task="translation_lev", ) generate_main( data_dir, [ "--task", "translation_lev", "--iter-decode-max-iter", "9", "--iter-decode-eos-penalty", "0", "--print-step", ], ) def test_nonautoregressive_transformer(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory( "test_nonautoregressive_transformer" ) as data_dir: create_dummy_data(data_dir) preprocess_translation_data(data_dir, ["--joined-dictionary"]) train_translation_model( data_dir, "nonautoregressive_transformer", [ "--apply-bert-init", "--src-embedding-copy", "--criterion", "nat_loss", "--noise", "full_mask", "--pred-length-offset", "--length-loss-factor", "0.1", ], task="translation_lev", ) generate_main( data_dir, [ "--task", "translation_lev", "--iter-decode-max-iter", "0", "--iter-decode-eos-penalty", "0", "--print-step", ], ) # def test_nat_crf_transformer(self): # with contextlib.redirect_stdout(StringIO()): # with tempfile.TemporaryDirectory('test_nat_crf_transformer') as data_dir: # create_dummy_data(data_dir) # preprocess_translation_data(data_dir, ['--joined-dictionary']) # train_translation_model(data_dir, 'nacrf_transformer', [ # '--apply-bert-init', '--criterion', # 'nat_loss', '--noise', 'full_mask', '--pred-length-offset', # '--length-loss-factor', '0.1', # '--word-ins-loss-factor', '0.5', # '--crf-lowrank-approx', '1', # '--crf-beam-approx', '1' # ], task='translation_lev') # generate_main(data_dir, [ # '--task', 'translation_lev', # '--iter-decode-max-iter', '0', # '--iter-decode-eos-penalty', '0', # '--print-step', # ]) def test_iterative_nonautoregressive_transformer(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory( "test_iterative_nonautoregressive_transformer" ) as data_dir: create_dummy_data(data_dir) preprocess_translation_data(data_dir, ["--joined-dictionary"]) train_translation_model( data_dir, "iterative_nonautoregressive_transformer", [ "--apply-bert-init", "--src-embedding-copy", "--criterion", "nat_loss", "--noise", "full_mask", "--stochastic-approx", "--dae-ratio", "0.5", "--train-step", "3", ], task="translation_lev", ) generate_main( data_dir, [ "--task", "translation_lev", "--iter-decode-max-iter", "9", "--iter-decode-eos-penalty", "0", "--print-step", ], ) def test_insertion_transformer(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_insertion_transformer") as data_dir: create_dummy_data(data_dir) preprocess_translation_data(data_dir, ["--joined-dictionary"]) train_translation_model( data_dir, "insertion_transformer", [ "--apply-bert-init", "--criterion", "nat_loss", "--noise", "random_mask", ], task="translation_lev", ) generate_main( data_dir, [ "--task", "translation_lev", "--iter-decode-max-iter", "9", "--iter-decode-eos-penalty", "0", "--print-step", ], ) def test_mixture_of_experts(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_moe") as data_dir: create_dummy_data(data_dir) preprocess_translation_data(data_dir) train_translation_model( data_dir, "transformer_iwslt_de_en", [ "--task", "translation_moe", "--user-dir", "examples/translation_moe/translation_moe_src", "--method", "hMoElp", "--mean-pool-gating-network", "--num-experts", "3", "--encoder-layers", "2", "--decoder-layers", "2", "--encoder-embed-dim", "8", "--decoder-embed-dim", "8", ], ) generate_main( data_dir, [ "--task", "translation_moe", "--user-dir", "examples/translation_moe/translation_moe_src", "--method", "hMoElp", "--mean-pool-gating-network", "--num-experts", "3", "--gen-expert", "0", ], ) def test_alignment(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_alignment") as data_dir: create_dummy_data(data_dir, alignment=True) preprocess_translation_data(data_dir, ["--align-suffix", "align"]) train_translation_model( data_dir, "transformer_align", [ "--encoder-layers", "2", "--decoder-layers", "2", "--encoder-embed-dim", "8", "--decoder-embed-dim", "8", "--load-alignments", "--alignment-layer", "1", "--criterion", "label_smoothed_cross_entropy_with_alignment", ], run_validation=True, ) generate_main(data_dir) def test_laser_lstm(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_laser_lstm") as data_dir: laser_config_file = create_laser_data_and_config_json(data_dir) train_translation_model( laser_config_file.name, "laser_lstm", [ "--user-dir", "examples/laser/laser_src", "--weighting-alpha", "0.3", "--encoder-bidirectional", "--encoder-hidden-size", "512", "--encoder-layers", "5", "--decoder-layers", "1", "--encoder-embed-dim", "320", "--decoder-embed-dim", "320", "--decoder-lang-embed-dim", "32", "--save-dir", data_dir, "--disable-validation", ], task="laser", lang_flags=[], ) def test_laser_transformer(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_laser_transformer") as data_dir: laser_config_file = create_laser_data_and_config_json(data_dir) train_translation_model( laser_config_file.name, "laser_transformer", [ "--user-dir", "examples/laser/laser_src", "--weighting-alpha", "0.3", "--encoder-embed-dim", "320", "--decoder-embed-dim", "320", "--decoder-lang-embed-dim", "32", "--save-dir", data_dir, "--disable-validation", ], task="laser", lang_flags=[], ) def test_alignment_full_context(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_alignment") as data_dir: create_dummy_data(data_dir, alignment=True) preprocess_translation_data(data_dir, ["--align-suffix", "align"]) train_translation_model( data_dir, "transformer_align", [ "--encoder-layers", "2", "--decoder-layers", "2", "--encoder-embed-dim", "8", "--decoder-embed-dim", "8", "--load-alignments", "--alignment-layer", "1", "--criterion", "label_smoothed_cross_entropy_with_alignment", "--full-context-alignment", ], run_validation=True, ) generate_main(data_dir) def test_transformer_layerdrop(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_transformer_layerdrop") as data_dir: create_dummy_data(data_dir) preprocess_translation_data(data_dir) train_translation_model( data_dir, "transformer_iwslt_de_en", [ "--encoder-layers", "3", "--decoder-layers", "3", "--encoder-embed-dim", "8", "--decoder-embed-dim", "8", "--encoder-layerdrop", "0.01", "--decoder-layerdrop", "0.01", ], ) generate_main(data_dir) generate_main( data_dir, [ "--model-overrides", "{'encoder_layers_to_keep':'0,2','decoder_layers_to_keep':'1'}", ], ) class TestStories(unittest.TestCase): def setUp(self): logging.disable(logging.CRITICAL) def tearDown(self): logging.disable(logging.NOTSET) def test_fconv_self_att_wp(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_fconv_self_att_wp") as data_dir: create_dummy_data(data_dir) preprocess_translation_data(data_dir) config = [ "--encoder-layers", "[(128, 3)] * 2", "--decoder-layers", "[(128, 3)] * 2", "--decoder-attention", "True", "--encoder-attention", "False", "--gated-attention", "True", "--self-attention", "True", "--project-input", "True", "--encoder-embed-dim", "8", "--decoder-embed-dim", "8", "--decoder-out-embed-dim", "8", "--multihead-self-attention-nheads", "2", ] train_translation_model(data_dir, "fconv_self_att_wp", config) generate_main(data_dir) # fusion model os.rename( os.path.join(data_dir, "checkpoint_last.pt"), os.path.join(data_dir, "pretrained.pt"), ) config.extend( [ "--pretrained", "True", "--pretrained-checkpoint", os.path.join(data_dir, "pretrained.pt"), "--save-dir", os.path.join(data_dir, "fusion_model"), ] ) train_translation_model(data_dir, "fconv_self_att_wp", config) class TestLanguageModeling(unittest.TestCase): def setUp(self): logging.disable(logging.CRITICAL) def tearDown(self): logging.disable(logging.NOTSET) def test_fconv_lm(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_fconv_lm") as data_dir: create_dummy_data(data_dir) preprocess_lm_data(data_dir) train_language_model( data_dir, "fconv_lm", [ "--decoder-layers", "[(850, 3)] * 2 + [(1024,4)]", "--decoder-embed-dim", "280", "--optimizer", "nag", "--lr", "0.1", ], ) eval_lm_main(data_dir) generate_main( data_dir, [ "--task", "language_modeling", "--sample-break-mode", "eos", "--tokens-per-sample", "500", ], ) def test_transformer_lm(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_transformer_lm") as data_dir: create_dummy_data(data_dir) preprocess_lm_data(data_dir) train_language_model( data_dir, "transformer_lm", ["--add-bos-token", '--nval', '1'], run_validation=True, ) eval_lm_main(data_dir) eval_lm_main(data_dir, extra_flags=["--context-window", "25"]) generate_main( data_dir, [ "--task", "language_modeling", "--sample-break-mode", "eos", "--tokens-per-sample", "500", ], ) def test_transformer_lm_with_adaptive_softmax(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory( "test_transformer_lm_with_adaptive_softmax" ) as data_dir: create_dummy_data(data_dir) preprocess_lm_data(data_dir) train_language_model( data_dir, "transformer_lm", [ "--add-bos-token", "--criterion", "adaptive_loss", "--adaptive-softmax-cutoff", "5,10,15", ], run_validation=True, ) eval_lm_main(data_dir) generate_main( data_dir, [ "--task", "language_modeling", "--sample-break-mode", "eos", "--tokens-per-sample", "500", ], ) def test_lightconv_lm(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_lightconv_lm") as data_dir: create_dummy_data(data_dir) preprocess_lm_data(data_dir) train_language_model( data_dir, "lightconv_lm", ["--add-bos-token"], run_validation=True, ) eval_lm_main(data_dir) generate_main( data_dir, [ "--task", "language_modeling", "--sample-break-mode", "eos", "--tokens-per-sample", "500", ], ) def test_lstm_lm(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_lstm_lm") as data_dir: create_dummy_data(data_dir) preprocess_lm_data(data_dir) train_language_model( data_dir, "lstm_lm", ["--add-bos-token"], run_validation=True, ) eval_lm_main(data_dir) generate_main( data_dir, [ "--task", "language_modeling", "--sample-break-mode", "eos", "--tokens-per-sample", "500", ], ) def test_lstm_lm_residuals(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_lstm_lm_residuals") as data_dir: create_dummy_data(data_dir) preprocess_lm_data(data_dir) train_language_model( data_dir, "lstm_lm", ["--add-bos-token", "--residuals"], run_validation=True, ) eval_lm_main(data_dir) generate_main( data_dir, [ "--task", "language_modeling", "--sample-break-mode", "eos", "--tokens-per-sample", "500", ], ) @unittest.skipIf(not has_hf_transformers, "skip test if transformers is missing") def test_transformer_xl_bptt_lm(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_transformer_xl_bptt_lm") as data_dir: create_dummy_data(data_dir) preprocess_lm_data(data_dir) task_flags = [ "--user-dir", "examples/truncated_bptt", "--task", "truncated_bptt_lm", "--batch-size", "2", "--tokens-per-sample", "50", ] train_language_model( data_dir=data_dir, arch="transformer_xl", extra_flags=task_flags + [ "--n-layer", "2", ], task="truncated_bptt_lm", run_validation=True, extra_valid_flags=task_flags, ) eval_lm_main(data_dir, extra_flags=task_flags) # Train with activation offloading train_language_model( data_dir=data_dir, arch="transformer_xl", extra_flags=task_flags + [ "--n-layer", "2", "--offload-activations", ], task="truncated_bptt_lm", run_validation=True, extra_valid_flags=task_flags, ) class TestMaskedLanguageModel(unittest.TestCase): def setUp(self): logging.disable(logging.CRITICAL) def tearDown(self): logging.disable(logging.NOTSET) def test_legacy_masked_lm(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_legacy_mlm") as data_dir: create_dummy_data(data_dir) preprocess_lm_data(data_dir) train_legacy_masked_language_model(data_dir, "masked_lm") def test_roberta_masked_lm(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_roberta_mlm") as data_dir: create_dummy_data(data_dir) preprocess_lm_data(data_dir) train_masked_lm( data_dir, "roberta_base", extra_flags=["--encoder-layers", "2"] ) def test_roberta_sentence_prediction(self): num_classes = 3 with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_roberta_head") as data_dir: create_dummy_roberta_head_data(data_dir, num_classes=num_classes) preprocess_lm_data(os.path.join(data_dir, "input0")) preprocess_lm_data(os.path.join(data_dir, "label")) train_roberta_head(data_dir, "roberta_base", num_classes=num_classes) def test_roberta_regression_single(self): num_classes = 1 with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory( "test_roberta_regression_single" ) as data_dir: create_dummy_roberta_head_data( data_dir, num_classes=num_classes, regression=True ) preprocess_lm_data(os.path.join(data_dir, "input0")) train_roberta_head( data_dir, "roberta_base", num_classes=num_classes, extra_flags=["--regression-target"], ) def test_roberta_regression_multiple(self): num_classes = 3 with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory( "test_roberta_regression_multiple" ) as data_dir: create_dummy_roberta_head_data( data_dir, num_classes=num_classes, regression=True ) preprocess_lm_data(os.path.join(data_dir, "input0")) train_roberta_head( data_dir, "roberta_base", num_classes=num_classes, extra_flags=["--regression-target"], ) def test_linformer_roberta_masked_lm(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_linformer_roberta_mlm") as data_dir: create_dummy_data(data_dir) preprocess_lm_data(data_dir) train_masked_lm( data_dir, "linformer_roberta_base", extra_flags=[ "--user-dir", "examples/linformer/linformer_src", "--encoder-layers", "2", ], ) def test_linformer_roberta_sentence_prediction(self): num_classes = 3 with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_linformer_roberta_head") as data_dir: create_dummy_roberta_head_data(data_dir, num_classes=num_classes) preprocess_lm_data(os.path.join(data_dir, "input0")) preprocess_lm_data(os.path.join(data_dir, "label")) train_roberta_head( data_dir, "linformer_roberta_base", num_classes=num_classes, extra_flags=["--user-dir", "examples/linformer/linformer_src"], ) def test_linformer_roberta_regression_single(self): num_classes = 1 with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory( "test_linformer_roberta_regression_single" ) as data_dir: create_dummy_roberta_head_data( data_dir, num_classes=num_classes, regression=True ) preprocess_lm_data(os.path.join(data_dir, "input0")) train_roberta_head( data_dir, "linformer_roberta_base", num_classes=num_classes, extra_flags=[ "--regression-target", "--user-dir", "examples/linformer/linformer_src", ], ) def test_linformer_roberta_regression_multiple(self): num_classes = 3 with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory( "test_linformer_roberta_regression_multiple" ) as data_dir: create_dummy_roberta_head_data( data_dir, num_classes=num_classes, regression=True ) preprocess_lm_data(os.path.join(data_dir, "input0")) train_roberta_head( data_dir, "linformer_roberta_base", num_classes=num_classes, extra_flags=[ "--regression-target", "--user-dir", "examples/linformer/linformer_src", ], ) def _test_pretrained_masked_lm_for_translation(self, learned_pos_emb, encoder_only): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_mlm") as data_dir: create_dummy_data(data_dir) preprocess_lm_data(data_dir) train_legacy_masked_language_model( data_dir, arch="masked_lm", extra_args=("--encoder-learned-pos",) if learned_pos_emb else (), ) with tempfile.TemporaryDirectory( "test_mlm_translation" ) as translation_dir: create_dummy_data(translation_dir) preprocess_translation_data( translation_dir, extra_flags=["--joined-dictionary"] ) # Train transformer with data_dir/checkpoint_last.pt train_translation_model( translation_dir, arch="transformer_from_pretrained_xlm", extra_flags=[ "--decoder-layers", "1", "--decoder-embed-dim", "32", "--decoder-attention-heads", "1", "--decoder-ffn-embed-dim", "32", "--encoder-layers", "1", "--encoder-embed-dim", "32", "--encoder-attention-heads", "1", "--encoder-ffn-embed-dim", "32", "--pretrained-xlm-checkpoint", "{}/checkpoint_last.pt".format(data_dir), "--activation-fn", "gelu", "--max-source-positions", "500", "--max-target-positions", "500", ] + ( ["--encoder-learned-pos", "--decoder-learned-pos"] if learned_pos_emb else [] ) + (["--init-encoder-only"] if encoder_only else []), task="translation_from_pretrained_xlm", ) def test_pretrained_masked_lm_for_translation_learned_pos_emb(self): self._test_pretrained_masked_lm_for_translation(True, False) def test_pretrained_masked_lm_for_translation_sinusoidal_pos_emb(self): self._test_pretrained_masked_lm_for_translation(False, False) def test_pretrained_masked_lm_for_translation_encoder_only(self): self._test_pretrained_masked_lm_for_translation(True, True) def test_r4f_roberta(self): num_classes = 3 with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_r4f_roberta_head") as data_dir: create_dummy_roberta_head_data(data_dir, num_classes=num_classes) preprocess_lm_data(os.path.join(data_dir, "input0")) preprocess_lm_data(os.path.join(data_dir, "label")) train_roberta_head( data_dir, "roberta_base", num_classes=num_classes, extra_flags=[ "--user-dir", "examples/rxf/rxf_src", "--criterion", "sentence_prediction_r3f", "--spectral-norm-classification-head", ], ) def train_legacy_masked_language_model(data_dir, arch, extra_args=()): train_parser = options.get_training_parser() # TODO: langs should be in and out right? train_args = options.parse_args_and_arch( train_parser, [ "--task", "cross_lingual_lm", data_dir, "--arch", arch, # Optimizer args "--optimizer", "adam", "--lr-scheduler", "reduce_lr_on_plateau", "--lr-shrink", "0.5", "--lr", "0.0001", "--stop-min-lr", "1e-09", # dropout, attention args "--dropout", "0.1", "--attention-dropout", "0.1", # MLM args "--criterion", "legacy_masked_lm_loss", "--masked-lm-only", "--monolingual-langs", "in,out", "--num-segment", "5", # Transformer args: use a small transformer model for fast training "--encoder-layers", "1", "--encoder-embed-dim", "32", "--encoder-attention-heads", "1", "--encoder-ffn-embed-dim", "32", # Other training args "--max-tokens", "500", "--tokens-per-sample", "500", "--save-dir", data_dir, "--max-epoch", "1", "--no-progress-bar", "--distributed-world-size", "1", "--dataset-impl", "raw", "--num-workers", "0", ] + list(extra_args), ) train.main(train_args) class TestOptimizers(unittest.TestCase): def setUp(self): logging.disable(logging.CRITICAL) def tearDown(self): logging.disable(logging.NOTSET) def test_optimizers(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_optimizers") as data_dir: # Use just a bit of data and tiny model to keep this test runtime reasonable create_dummy_data(data_dir, num_examples=10, maxlen=5) preprocess_translation_data(data_dir) optimizers = ["adafactor", "adam", "nag", "adagrad", "sgd", "adadelta"] last_checkpoint = os.path.join(data_dir, "checkpoint_last.pt") for optimizer in optimizers: if os.path.exists(last_checkpoint): os.remove(last_checkpoint) train_translation_model( data_dir, "lstm", [ "--required-batch-size-multiple", "1", "--encoder-layers", "1", "--encoder-hidden-size", "32", "--decoder-layers", "1", "--optimizer", optimizer, ], ) generate_main(data_dir) def read_last_log_entry( logs: List[logging.LogRecord], logger_name: str ) -> Dict[str, float]: for x in reversed(logs): if x.name == logger_name: return json.loads(x.message) raise ValueError(f"No entries from {logger_name} found in captured logs") class TestActivationCheckpointing(unittest.TestCase): base_flags = [ "--encoder-layers", "2", "--decoder-layers", "2", "--encoder-embed-dim", "8", "--decoder-embed-dim", "8", "--restore-file", "x.pt", "--log-format", "json", "--log-interval", "1", "--max-update", "2", ] def _train(self, data_dir, extra_flags): with self.assertLogs() as logs: train_translation_model( data_dir, "transformer_iwslt_de_en", self.base_flags + extra_flags, run_validation=True, extra_valid_flags=["--log-format", "json"], ) return logs.records def test_activation_offloading_does_not_change_metrics(self): """Neither ----checkpoint-activations nor --offload-activations should change loss""" with tempfile.TemporaryDirectory("test_transformer_with_act_cpt") as data_dir: with self.assertLogs(): create_dummy_data(data_dir, num_examples=20) preprocess_translation_data(data_dir) offload_logs = self._train(data_dir, ["--offload-activations"]) baseline_logs = self._train(data_dir, []) assert len(baseline_logs) == len(offload_logs) baseline_valid_stats = read_last_log_entry(baseline_logs, "valid") offload_valid_stats = read_last_log_entry(offload_logs, "valid") baseline_train_stats = read_last_log_entry(baseline_logs, "train") offload_train_stats = read_last_log_entry(offload_logs, "train") assert ( baseline_train_stats["train_loss"] == offload_train_stats["train_loss"] ) assert ( baseline_valid_stats["valid_loss"] == offload_valid_stats["valid_loss"] ) def test_activation_checkpointing_does_not_change_metrics(self): """--checkpoint-activations should not change loss""" with tempfile.TemporaryDirectory("test_transformer_with_act_cpt") as data_dir: with self.assertLogs(): create_dummy_data(data_dir, num_examples=20) preprocess_translation_data(data_dir) ckpt_logs = self._train(data_dir, ["--checkpoint-activations"]) baseline_logs = self._train(data_dir, []) assert len(baseline_logs) == len(ckpt_logs) baseline_train_stats = read_last_log_entry(baseline_logs, "train") ckpt_train_stats = read_last_log_entry(ckpt_logs, "train") assert baseline_train_stats["train_loss"] == ckpt_train_stats["train_loss"] baseline_valid_stats = read_last_log_entry(baseline_logs, "valid") ckpt_valid_stats = read_last_log_entry(ckpt_logs, "valid") assert baseline_valid_stats["valid_loss"] == ckpt_valid_stats["valid_loss"] def create_dummy_roberta_head_data( data_dir, num_examples=100, maxlen=10, num_classes=2, regression=False ): input_dir = "input0" def _create_dummy_data(filename): random_data = torch.rand(num_examples * maxlen) input_data = 97 + torch.floor(26 * random_data).int() if regression: output_data = torch.rand((num_examples, num_classes)) else: output_data = 1 + torch.floor(num_classes * torch.rand(num_examples)).int() with open(os.path.join(data_dir, input_dir, filename + ".out"), "w") as f_in: label_filename = filename + ".label" if regression else filename + ".out" with open(os.path.join(data_dir, "label", label_filename), "w") as f_out: offset = 0 for i in range(num_examples): # write example input ex_len = random.randint(1, maxlen) ex_str = " ".join(map(chr, input_data[offset : offset + ex_len])) print(ex_str, file=f_in) # write example label if regression: class_str = " ".join(map(str, output_data[i].numpy())) print(class_str, file=f_out) else: class_str = "class{}".format(output_data[i]) print(class_str, file=f_out) offset += ex_len os.mkdir(os.path.join(data_dir, input_dir)) os.mkdir(os.path.join(data_dir, "label")) _create_dummy_data("train") _create_dummy_data("valid") _create_dummy_data("test") def train_masked_lm(data_dir, arch, extra_flags=None): train_parser = options.get_training_parser() train_args = options.parse_args_and_arch( train_parser, [ "--task", "masked_lm", data_dir, "--arch", arch, "--optimizer", "adam", "--lr", "0.0001", "--criterion", "masked_lm", "--batch-size", "500", "--save-dir", data_dir, "--max-epoch", "1", "--no-progress-bar", "--distributed-world-size", "1", "--ddp-backend", "no_c10d", "--num-workers", "0", ] + (extra_flags or []), ) train.main(train_args) def train_roberta_head(data_dir, arch, num_classes=2, extra_flags=None): train_parser = options.get_training_parser() train_args = options.parse_args_and_arch( train_parser, [ "--task", "sentence_prediction", data_dir, "--arch", arch, "--encoder-layers", "2", "--num-classes", str(num_classes), "--optimizer", "adam", "--lr", "0.0001", "--criterion", "sentence_prediction", "--max-tokens", "500", "--max-positions", "500", "--batch-size", "500", "--save-dir", data_dir, "--max-epoch", "1", "--no-progress-bar", "--distributed-world-size", "1", "--ddp-backend", "no_c10d", "--num-workers", "0", ] + (extra_flags or []), ) train.main(train_args) def eval_lm_main(data_dir, extra_flags=None): eval_lm_parser = options.get_eval_lm_parser() eval_lm_args = options.parse_args_and_arch( eval_lm_parser, [ data_dir, "--path", os.path.join(data_dir, "checkpoint_last.pt"), "--no-progress-bar", "--num-workers", "0", ] + (extra_flags or []), ) eval_lm.main(eval_lm_args) if __name__ == "__main__": unittest.main()
bart_ls-main
fairseq-py/tests/test_binaries.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import sys import unittest import torch from fairseq.token_generation_constraints import * def tensorize(constraints: List[List[int]]) -> torch.Tensor: return [torch.tensor(x) for x in constraints] class TestHelperRoutines(unittest.TestCase): def setUp(self): self.examples = [ ([[]], torch.tensor([[0]])), ([[], []], torch.tensor([[0], [0]])), ([[torch.tensor([1, 2])], []], torch.tensor([[1, 1, 2, 0], [0, 0, 0, 0]])), ( [ [ torch.tensor([3, 1, 2]), torch.tensor([3]), torch.tensor([4, 5, 6, 7]), ], [], [torch.tensor([1, 8, 9, 10, 1, 4, 11, 12])], ], torch.tensor( [ [3, 3, 1, 2, 0, 3, 0, 4, 5, 6, 7, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 8, 9, 10, 1, 4, 11, 12, 0, 0, 0], ] ), ), ] def test_packing(self): """Ensures the list of lists of tensors gets packed correctly.""" for batch_constraints, expected_tensor in self.examples: packed = pack_constraints(batch_constraints) assert torch.equal(packed, expected_tensor) class TestUnorderedConstraintState(unittest.TestCase): def setUp(self): # Tuples of (contraint set, expected printed graph, token counts per node) self.examples = [ ( tensorize([[1, 2, 3], [1, 3], [1, 4], [4, 5, 6, 7], [1], [4, 5]]), "([None].False#6 ([1].True#4 ([2].False#1 [3].True#1) [3].True#1 [4].True#1) ([4].False#2 ([5].True#2 ([6].False#1 [7].True#1))))", {1: 4, 2: 1, 3: 2, 4: 3, 5: 2, 6: 1, 7: 1}, ), ([], "[None].False#0", {}), (tensorize([[0]]), "([None].False#1 [0].True#1)", {0: 1}), ( tensorize([[100000, 1, 2, 3, 4, 5]]), "([None].False#1 ([100000].False#1 ([1].False#1 ([2].False#1 ([3].False#1 ([4].False#1 [5].True#1))))))", {100000: 1, 1: 1, 2: 1, 3: 1, 4: 1, 5: 1}, ), ( tensorize([[1, 2], [1, 2]]), "([None].False#2 ([1].False#2 [2].True#2))", {1: 2, 2: 2}, ), ( tensorize([[1, 2], [3, 4]]), "([None].False#2 ([1].False#1 [2].True#1) ([3].False#1 [4].True#1))", {1: 1, 2: 1, 3: 1, 4: 1}, ), ] self.sequences = [ ( self.examples[0][0], [], {"bank": 0, "num_completed": 0, "finished": False, "is_root": True}, ), ( self.examples[0][0], [1, 2], {"bank": 2, "num_completed": 0, "finished": False, "is_root": False}, ), ( self.examples[0][0], [1, 2, 94], {"bank": 1, "num_completed": 1, "finished": False, "is_root": True}, ), ( self.examples[0][0], [1, 3, 999, 1, 4], {"bank": 4, "num_completed": 2, "finished": False, "is_root": False}, ), ( self.examples[0][0], [1, 3, 999, 1, 4, 999], {"bank": 4, "num_completed": 2, "finished": False, "is_root": True}, ), ( self.examples[0][0], [4, 5, 6, 8], {"bank": 2, "num_completed": 1, "finished": False, "is_root": True}, ), ( self.examples[0][0], # Tricky, because in last three, goes down [1->4] branch, could miss [1] and [4->5] # [[1, 2, 3], [1, 3], [1, 4], [4, 5, 6, 7], [1], [4, 5]], [1, 2, 3, 1, 3, 1, 4, 4, 5, 6, 7, 1, 4, 5], {"bank": 14, "num_completed": 6, "finished": True, "is_root": False}, ), ( self.examples[0][0], [1, 2, 3, 999, 1, 3, 1, 4, 4, 5, 6, 7, 1, 4, 5, 117], {"bank": 14, "num_completed": 6, "finished": True, "is_root": True}, ), ( tensorize([[1], [2, 3]]), # Should not be able to get credit for entering 1 a second time [1, 1], {"bank": 1, "num_completed": 1, "finished": False, "is_root": True}, ), ( self.examples[4][0], [1, 2, 1, 2], {"bank": 4, "num_completed": 2, "finished": True, "is_root": False}, ), ( self.examples[4][0], [1, 2, 1, 2, 1], {"bank": 4, "num_completed": 2, "finished": True, "is_root": True}, ), ( self.examples[5][0], [1, 2, 3, 4, 5], {"bank": 4, "num_completed": 2, "finished": True, "is_root": True}, ), ] def test_graphs(self): """ Test whether unordered graph systems are created correctly. """ for example in self.examples: constraints, expected, gold_counts = example c = ConstraintNode.create(constraints) assert ( ConstraintNode.print_graph(c) == expected ), f"got {ConstraintNode.print_graph(c)}, expected {expected}" assert ( c.token_counts() == gold_counts ), f"{c} got {c.token_counts()} wanted {gold_counts}" def test_next_tokens(self): """ Tests that the set of next tokens is correct. """ for example in self.examples: constraints, expected, gold_counts = example root = ConstraintNode.create(constraints) root_tokens = set(root.children.keys()) for sequence in constraints: state = UnorderedConstraintState(root) for token in sequence: all_tokens = root_tokens.union(state.node.children.keys()) assert ( all_tokens == state.next_tokens() ), f"ALL {all_tokens} NEXT {state.next_tokens()}" state = state.advance(token) def test_sequences(self): for constraints, tokens, expected in self.sequences: state = UnorderedConstraintState.create(pack_constraints([constraints])[0]) for token in tokens: state = state.advance(token) result = {} for attr in expected.keys(): result[attr] = getattr(state, attr) assert ( result == expected ), f"TEST({tokens}) GOT: {result} WANTED: {expected}" class TestOrderedConstraintState(unittest.TestCase): def setUp(self): self.sequences = [ ( tensorize([[1, 2, 3], [1, 3], [1, 4], [4, 5, 6, 7], [1], [4, 5]]), [], {"bank": 0, "num_completed": 0, "finished": False, "is_root": True}, ), ( tensorize([[1, 2, 3], [1, 3], [1, 4], [4, 5, 6, 7], [1], [4, 5]]), [1, 2], {"bank": 2, "num_completed": 0, "finished": False, "is_root": False}, ), ( tensorize([[1, 2, 3], [1, 3], [1, 4], [4, 5, 6, 7], [1], [4, 5]]), [1, 2, 94], {"bank": 0, "num_completed": 0, "finished": False, "is_root": True}, ), ( tensorize([[1, 2, 3], [1, 3], [1, 4], [4, 5, 6, 7], [1], [4, 5]]), [1, 3, 999, 1, 4], {"bank": 0, "num_completed": 0, "finished": False, "is_root": True}, ), ( tensorize([[1, 2, 3], [1, 3], [1, 4], [4, 5, 6, 7], [1], [4, 5]]), [1, 2, 3, 999, 999], {"bank": 3, "num_completed": 1, "finished": False, "is_root": False}, ), ( tensorize([[1, 2, 3], [1, 3], [1, 4], [4, 5, 6, 7], [1], [4, 5]]), [1, 2, 3, 77, 1, 3, 1], {"bank": 6, "num_completed": 2, "finished": False, "is_root": False}, ), ( tensorize([[1, 2, 3], [1, 3], [1, 4], [4, 5, 6, 7], [1], [4, 5]]), [1, 2, 3, 1, 3, 1, 4, 4, 5, 6, 7, 1, 4, 5], {"bank": 14, "num_completed": 6, "finished": True, "is_root": False}, ), ( tensorize([[1, 2, 3], [1, 3], [1, 4], [4, 5, 6, 7], [1], [4, 5]]), [1, 2, 999, 1, 2, 3, 999, 1, 3, 1, 4, 4, 5, 6, 7, 1, 4, 5, 117], {"bank": 14, "num_completed": 6, "finished": True, "is_root": False}, ), ( tensorize([[1], [2, 3]]), [1, 1], {"bank": 1, "num_completed": 1, "finished": False, "is_root": False}, ), ( tensorize([[1, 2], [1, 2]]), [1, 2, 1, 2], {"bank": 4, "num_completed": 2, "finished": True, "is_root": False}, ), ( tensorize([[1, 2], [1, 2]]), [1, 2, 1, 2, 1], {"bank": 4, "num_completed": 2, "finished": True, "is_root": False}, ), ( tensorize([[1, 2], [3, 4]]), [1, 2, 3, 4, 5], {"bank": 4, "num_completed": 2, "finished": True, "is_root": False}, ), ] def test_sequences(self): for i, (constraints, tokens, expected) in enumerate(self.sequences): state = OrderedConstraintState.create(pack_constraints([constraints])[0]) for token in tokens: state = state.advance(token) result = {} for attr in expected.keys(): result[attr] = getattr(state, attr) assert ( result == expected ), f"TEST({tokens}) GOT: {result} WANTED: {expected}" if __name__ == "__main__": unittest.main()
bart_ls-main
fairseq-py/tests/test_constraints.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import copy import unittest import tests.utils as test_utils import torch from fairseq.criterions.cross_entropy import CrossEntropyCriterion from fairseq.criterions.label_smoothed_cross_entropy import ( LabelSmoothedCrossEntropyCriterion, ) class TestLabelSmoothing(unittest.TestCase): def setUp(self): # build dictionary self.d = test_utils.dummy_dictionary(3) vocab = len(self.d) self.assertEqual(vocab, 4 + 3) # 4 special + 3 tokens self.assertEqual(self.d.pad(), 1) self.assertEqual(self.d.eos(), 2) self.assertEqual(self.d.unk(), 3) pad, eos, unk, w1, w2, w3 = 1, 2, 3, 4, 5, 6 # noqa: F841 # build dataset self.data = [ # the first batch item has padding { "source": torch.LongTensor([w1, eos]), "target": torch.LongTensor([w1, eos]), }, { "source": torch.LongTensor([w1, eos]), "target": torch.LongTensor([w1, w1, eos]), }, ] self.sample = next(test_utils.dummy_dataloader(self.data)) # build model self.args = argparse.Namespace() self.args.sentence_avg = False self.args.report_accuracy = False self.args.probs = ( torch.FloatTensor( [ # pad eos unk w1 w2 w3 [0.05, 0.05, 0.1, 0.05, 0.3, 0.4, 0.05], [0.05, 0.10, 0.2, 0.05, 0.2, 0.3, 0.10], [0.05, 0.15, 0.3, 0.05, 0.1, 0.2, 0.15], ] ) .unsqueeze(0) .expand(2, 3, 7) ) # add batch dimension self.task = test_utils.TestTranslationTask.setup_task(self.args, self.d, self.d) self.model = self.task.build_model(self.args) def test_nll_loss(self): self.args.label_smoothing = 0.1 nll_crit = CrossEntropyCriterion.build_criterion(self.args, self.task) smooth_crit = LabelSmoothedCrossEntropyCriterion.build_criterion( self.args, self.task ) nll_loss, nll_sample_size, nll_logging_output = nll_crit( self.model, self.sample ) smooth_loss, smooth_sample_size, smooth_logging_output = smooth_crit( self.model, self.sample ) self.assertLess(abs(nll_loss - nll_logging_output["loss"]), 1e-6) self.assertLess(abs(nll_loss - smooth_logging_output["nll_loss"]), 1e-6) def test_padding(self): self.args.label_smoothing = 0.1 crit = LabelSmoothedCrossEntropyCriterion.build_criterion(self.args, self.task) loss, _, logging_output = crit(self.model, self.sample) def get_one_no_padding(idx): # create a new sample with just a single batch item so that there's # no padding sample1 = next(test_utils.dummy_dataloader([self.data[idx]])) args1 = copy.copy(self.args) args1.probs = args1.probs[idx, :, :].unsqueeze(0) model1 = self.task.build_model(args1) loss1, _, _ = crit(model1, sample1) return loss1 loss1 = get_one_no_padding(0) loss2 = get_one_no_padding(1) self.assertAlmostEqual(loss, loss1 + loss2) def test_reduction(self): self.args.label_smoothing = 0.1 crit = LabelSmoothedCrossEntropyCriterion.build_criterion(self.args, self.task) loss, _, logging_output = crit(self.model, self.sample, reduce=True) unreduced_loss, _, _ = crit(self.model, self.sample, reduce=False) self.assertAlmostEqual(loss, unreduced_loss.sum()) def test_zero_eps(self): self.args.label_smoothing = 0.0 nll_crit = CrossEntropyCriterion.build_criterion(self.args, self.task) smooth_crit = LabelSmoothedCrossEntropyCriterion.build_criterion( self.args, self.task ) nll_loss, nll_sample_size, nll_logging_output = nll_crit( self.model, self.sample ) smooth_loss, smooth_sample_size, smooth_logging_output = smooth_crit( self.model, self.sample ) self.assertAlmostEqual(nll_loss, smooth_loss) def assertAlmostEqual(self, t1, t2): self.assertEqual(t1.size(), t2.size(), "size mismatch") self.assertLess((t1 - t2).abs().max(), 1e-6) if __name__ == "__main__": unittest.main()
bart_ls-main
fairseq-py/tests/test_label_smoothing.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import json import os import random import sys from io import StringIO import torch import torch.nn.functional as F from fairseq import options, utils from fairseq.data import Dictionary from fairseq.data.language_pair_dataset import collate from fairseq.models import ( FairseqEncoder, FairseqEncoderDecoderModel, FairseqIncrementalDecoder, ) from fairseq.models.fairseq_encoder import EncoderOut from fairseq.tasks import LegacyFairseqTask from fairseq_cli import generate, interactive, preprocess, train, validate import fairseq.distributed.utils as distributed_utils from fairseq.dataclass.utils import convert_namespace_to_omegaconf def dummy_dictionary(vocab_size, prefix="token_"): d = Dictionary() for i in range(vocab_size): token = prefix + str(i) d.add_symbol(token) d.finalize(padding_factor=1) # don't add extra padding symbols return d def dummy_dataloader( samples, padding_idx=1, eos_idx=2, batch_size=None, ): if batch_size is None: batch_size = len(samples) # add any missing data to samples for i, sample in enumerate(samples): if "id" not in sample: sample["id"] = i # create dataloader dataset = TestDataset(samples) dataloader = torch.utils.data.DataLoader( dataset, batch_size=batch_size, collate_fn=(lambda samples: collate(samples, padding_idx, eos_idx)), ) return iter(dataloader) def sequence_generator_setup(): # construct dummy dictionary d = dummy_dictionary(vocab_size=2) eos = d.eos() w1 = 4 w2 = 5 # construct source data src_tokens = torch.LongTensor([[w1, w2, eos], [w1, w2, eos]]) src_lengths = torch.LongTensor([2, 2]) args = argparse.Namespace() unk = 0.0 args.beam_probs = [ # step 0: torch.FloatTensor( [ # eos w1 w2 # sentence 1: [0.0, unk, 0.9, 0.1], # beam 1 [0.0, unk, 0.9, 0.1], # beam 2 # sentence 2: [0.0, unk, 0.7, 0.3], [0.0, unk, 0.7, 0.3], ] ), # step 1: torch.FloatTensor( [ # eos w1 w2 prefix # sentence 1: [1.0, unk, 0.0, 0.0], # w1: 0.9 (emit: w1 <eos>: 0.9*1.0) [0.0, unk, 0.9, 0.1], # w2: 0.1 # sentence 2: [0.25, unk, 0.35, 0.4], # w1: 0.7 (don't emit: w1 <eos>: 0.7*0.25) [0.00, unk, 0.10, 0.9], # w2: 0.3 ] ), # step 2: torch.FloatTensor( [ # eos w1 w2 prefix # sentence 1: [0.0, unk, 0.1, 0.9], # w2 w1: 0.1*0.9 [ 0.6, unk, 0.2, 0.2, ], # w2 w2: 0.1*0.1 (emit: w2 w2 <eos>: 0.1*0.1*0.6) # sentence 2: [ 0.60, unk, 0.4, 0.00, ], # w1 w2: 0.7*0.4 (emit: w1 w2 <eos>: 0.7*0.4*0.6) [0.01, unk, 0.0, 0.99], # w2 w2: 0.3*0.9 ] ), # step 3: torch.FloatTensor( [ # eos w1 w2 prefix # sentence 1: [ 1.0, unk, 0.0, 0.0, ], # w2 w1 w2: 0.1*0.9*0.9 (emit: w2 w1 w2 <eos>: 0.1*0.9*0.9*1.0) [ 1.0, unk, 0.0, 0.0, ], # w2 w1 w1: 0.1*0.9*0.1 (emit: w2 w1 w1 <eos>: 0.1*0.9*0.1*1.0) # sentence 2: [ 0.1, unk, 0.5, 0.4, ], # w2 w2 w2: 0.3*0.9*0.99 (emit: w2 w2 w2 <eos>: 0.3*0.9*0.99*0.1) [ 1.0, unk, 0.0, 0.0, ], # w1 w2 w1: 0.7*0.4*0.4 (emit: w1 w2 w1 <eos>: 0.7*0.4*0.4*1.0) ] ), ] task = TestTranslationTask.setup_task(args, d, d) model = task.build_model(args) tgt_dict = task.target_dictionary return tgt_dict, w1, w2, src_tokens, src_lengths, model def create_dummy_data(data_dir, num_examples=100, maxlen=20, alignment=False): def _create_dummy_data(filename): data = torch.rand(num_examples * maxlen) data = 97 + torch.floor(26 * data).int() with open(os.path.join(data_dir, filename), "w") as h: offset = 0 for _ in range(num_examples): ex_len = random.randint(1, maxlen) ex_str = " ".join(map(chr, data[offset : offset + ex_len])) print(ex_str, file=h) offset += ex_len def _create_dummy_alignment_data(filename_src, filename_tgt, filename): with open(os.path.join(data_dir, filename_src), "r") as src_f, open( os.path.join(data_dir, filename_tgt), "r" ) as tgt_f, open(os.path.join(data_dir, filename), "w") as h: for src, tgt in zip(src_f, tgt_f): src_len = len(src.split()) tgt_len = len(tgt.split()) avg_len = (src_len + tgt_len) // 2 num_alignments = random.randint(avg_len // 2, 2 * avg_len) src_indices = torch.floor(torch.rand(num_alignments) * src_len).int() tgt_indices = torch.floor(torch.rand(num_alignments) * tgt_len).int() ex_str = " ".join( [ "{}-{}".format(src, tgt) for src, tgt in zip(src_indices, tgt_indices) ] ) print(ex_str, file=h) _create_dummy_data("train.in") _create_dummy_data("train.out") _create_dummy_data("valid.in") _create_dummy_data("valid.out") _create_dummy_data("test.in") _create_dummy_data("test.out") if alignment: _create_dummy_alignment_data("train.in", "train.out", "train.align") _create_dummy_alignment_data("valid.in", "valid.out", "valid.align") _create_dummy_alignment_data("test.in", "test.out", "test.align") def preprocess_lm_data(data_dir): preprocess_parser = options.get_preprocessing_parser() preprocess_args = preprocess_parser.parse_args( [ "--only-source", "--trainpref", os.path.join(data_dir, "train.out"), "--validpref", os.path.join(data_dir, "valid.out"), "--testpref", os.path.join(data_dir, "test.out"), "--destdir", data_dir, ] ) preprocess.main(preprocess_args) def preprocess_translation_data(data_dir, extra_flags=None): preprocess_parser = options.get_preprocessing_parser() preprocess_args = preprocess_parser.parse_args( [ "--source-lang", "in", "--target-lang", "out", "--trainpref", os.path.join(data_dir, "train"), "--validpref", os.path.join(data_dir, "valid"), "--testpref", os.path.join(data_dir, "test"), "--thresholdtgt", "0", "--thresholdsrc", "0", "--destdir", data_dir, ] + (extra_flags or []), ) preprocess.main(preprocess_args) def preprocess_summarization_data(data_dir, extra_flags=None): preprocess_parser = options.get_preprocessing_parser() preprocess_args = preprocess_parser.parse_args( [ "--source-lang", "in", "--target-lang", "out", "--trainpref", os.path.join(data_dir, "train"), "--validpref", os.path.join(data_dir, "valid"), "--testpref", os.path.join(data_dir, "test"), "--thresholdtgt", "0", "--thresholdsrc", "0", "--joined-dictionary", "--destdir", data_dir, ] + (extra_flags or []), ) preprocess.main(preprocess_args) def create_laser_data_and_config_json(data_dir): src_langs = ["de", "fr", "ru", "tr", "zh"] tgt_langs = ["en", "es"] config_json = {} config_train_json = [] src_vocab = None tgt_vocab = None for src_lang in src_langs: for tgt_lang in tgt_langs: langpair_folder = f"{src_lang}-{tgt_lang}" langpair_path = os.path.join(data_dir, langpair_folder) os.mkdir(langpair_path) create_dummy_data(langpair_path) preprocess_translation_data(langpair_path, ["--dataset-impl", "cached"]) src_vocab = os.path.join(langpair_path, "dict.in.txt") tgt_vocab = os.path.join(langpair_path, "dict.out.txt") config_train_json.append( { "id": 0 if tgt_lang == "en" else 1, "src": os.path.join(langpair_path, "train.in-out.in"), "tgt": os.path.join(langpair_path, "train.in-out.out"), } ) config_json["src_vocab"] = src_vocab config_json["tgt_vocab"] = tgt_vocab config_json["train"] = config_train_json with open(os.path.join(data_dir, "laserconfig.json"), "w") as config_file: json.dump(config_json, config_file) return config_file def train_translation_model( data_dir, arch, extra_flags=None, task="translation", run_validation=False, lang_flags=None, extra_valid_flags=None, world_size=1, ): if lang_flags is None: lang_flags = [ "--source-lang", "in", "--target-lang", "out", ] train_parser = options.get_training_parser() train_args = options.parse_args_and_arch( train_parser, [ "--task", task, data_dir, "--save-dir", data_dir, "--arch", arch, "--optimizer", "nag", "--lr", "0.05", "--max-tokens", "500", "--max-epoch", "1", "--no-progress-bar", "--distributed-world-size", str(world_size), "--num-workers", "0", ] + lang_flags + (extra_flags or []), ) cfg = convert_namespace_to_omegaconf(train_args) distributed_utils.call_main(cfg, train.main) if run_validation: # test validation validate_parser = options.get_validation_parser() validate_args = options.parse_args_and_arch( validate_parser, [ "--task", task, data_dir, "--path", os.path.join(data_dir, "checkpoint_last.pt"), "--valid-subset", "valid", "--max-tokens", "500", "--no-progress-bar", "--num-workers", "0", ] + lang_flags + (extra_valid_flags or []), ) validate.main(validate_args) def generate_main(data_dir, extra_flags=None, path=None): if extra_flags is None: extra_flags = [ "--print-alignment", ] if path is None: path = os.path.join(data_dir, "checkpoint_last.pt") generate_parser = options.get_generation_parser() generate_args = options.parse_args_and_arch( generate_parser, [ data_dir, "--path", path, "--beam", "3", "--batch-size", "64", "--max-len-b", "5", "--gen-subset", "valid", "--no-progress-bar", "--num-workers", "0", ] + (extra_flags or []), ) # evaluate model in batch mode generate.main(generate_args) # evaluate model interactively generate_args.buffer_size = 0 generate_args.input = "-" generate_args.batch_size = None orig_stdin = sys.stdin sys.stdin = StringIO("h e l l o\n") interactive.main(generate_args) sys.stdin = orig_stdin class TestDataset(torch.utils.data.Dataset): def __init__(self, data): super().__init__() self.data = data self.sizes = None def __getitem__(self, index): return self.data[index] def __len__(self): return len(self.data) class TestTranslationTask(LegacyFairseqTask): def __init__(self, args, src_dict, tgt_dict, model): super().__init__(args) self.src_dict = src_dict self.tgt_dict = tgt_dict self.model = model @classmethod def setup_task(cls, args, src_dict=None, tgt_dict=None, model=None): return cls(args, src_dict, tgt_dict, model) def build_model(self, args): return TestModel.build_model(args, self) @property def source_dictionary(self): return self.src_dict @property def target_dictionary(self): return self.tgt_dict class TestModel(FairseqEncoderDecoderModel): def __init__(self, encoder, decoder): super().__init__(encoder, decoder) @classmethod def build_model(cls, args, task): encoder = TestEncoder(args, task.source_dictionary) decoder = TestIncrementalDecoder(args, task.target_dictionary) return cls(encoder, decoder) class TestEncoder(FairseqEncoder): def __init__(self, args, dictionary): super().__init__(dictionary) self.args = args def forward(self, src_tokens, src_lengths=None, **kwargs): return EncoderOut( encoder_out=src_tokens, encoder_padding_mask=None, encoder_embedding=None, encoder_states=None, src_tokens=None, src_lengths=None, ) def reorder_encoder_out(self, encoder_out, new_order): return EncoderOut( encoder_out=encoder_out.encoder_out.index_select(0, new_order), encoder_padding_mask=None, encoder_embedding=None, encoder_states=None, src_tokens=None, src_lengths=None, ) class TestIncrementalDecoder(FairseqIncrementalDecoder): def __init__(self, args, dictionary): super().__init__(dictionary) assert hasattr(args, "beam_probs") or hasattr(args, "probs") args.max_decoder_positions = getattr(args, "max_decoder_positions", 100) self.args = args def forward(self, prev_output_tokens, encoder_out=None, incremental_state=None): if incremental_state is not None: prev_output_tokens = prev_output_tokens[:, -1:] bbsz = prev_output_tokens.size(0) vocab = len(self.dictionary) src_len = encoder_out.encoder_out.size(1) tgt_len = prev_output_tokens.size(1) # determine number of steps if incremental_state is not None: # cache step number step = utils.get_incremental_state(self, incremental_state, "step") if step is None: step = 0 utils.set_incremental_state(self, incremental_state, "step", step + 1) steps = [step] else: steps = list(range(tgt_len)) # define output in terms of raw probs if hasattr(self.args, "probs"): assert ( self.args.probs.dim() == 3 ), "expected probs to have size bsz*steps*vocab" probs = self.args.probs.index_select(1, torch.LongTensor(steps)) else: probs = torch.FloatTensor(bbsz, len(steps), vocab).zero_() for i, step in enumerate(steps): # args.beam_probs gives the probability for every vocab element, # starting with eos, then unknown, and then the rest of the vocab if step < len(self.args.beam_probs): probs[:, i, self.dictionary.eos() :] = self.args.beam_probs[step] else: probs[:, i, self.dictionary.eos()] = 1.0 # random attention attn = torch.rand(bbsz, tgt_len, src_len) dev = prev_output_tokens.device return probs.to(dev), {"attn": [attn.to(dev)]} def get_normalized_probs(self, net_output, log_probs, _): # the decoder returns probabilities directly probs = net_output[0] if log_probs: return probs.log() else: return probs def max_positions(self): return self.args.max_decoder_positions class TestReshapingEncoder(FairseqEncoder): def __init__(self, args, dictionary): super().__init__(dictionary) self.args = args def forward(self, src_tokens, src_lengths=None, **kwargs): b_sz, t_sz = src_tokens.shape padding_needed = t_sz % 2 x = src_tokens if padding_needed > 0: padding_needed = 2 - padding_needed x = F.pad(x, (0, padding_needed)) return EncoderOut( encoder_out=x.view(b_sz, -1, 2), encoder_padding_mask=None, encoder_embedding=None, encoder_states=None, src_tokens=None, src_lengths=None, ) def reorder_encoder_out(self, encoder_out, new_order): return EncoderOut( encoder_out=encoder_out.encoder_out.index_select(0, new_order), encoder_padding_mask=None, encoder_embedding=None, encoder_states=None, src_tokens=None, src_lengths=None, ) class TestReshapingModel(FairseqEncoderDecoderModel): def __init__(self, encoder, decoder): super().__init__(encoder, decoder) @classmethod def build_model(cls, args, task): encoder = TestReshapingEncoder(args, task.source_dictionary) decoder = TestIncrementalDecoder(args, task.target_dictionary) return cls(encoder, decoder) class TestAdditionalInputEncoder(FairseqEncoder): def __init__(self, args, dictionary): super().__init__(dictionary) self.args = args def forward(self, src_tokens, src_lengths=None, **kwargs): assert "fancy_other_input" in kwargs assert kwargs["fancy_other_input"] is not None return EncoderOut( encoder_out=src_tokens, encoder_padding_mask=None, encoder_embedding=None, encoder_states=None, src_tokens=None, src_lengths=None, ) def reorder_encoder_out(self, encoder_out, new_order): return EncoderOut( encoder_out=encoder_out.encoder_out.index_select(0, new_order), encoder_padding_mask=None, encoder_embedding=None, encoder_states=None, src_tokens=None, src_lengths=None, ) class TestAdditionalInputModel(FairseqEncoderDecoderModel): def __init__(self, encoder, decoder): super().__init__(encoder, decoder) @classmethod def build_model(cls, args, task): encoder = TestAdditionalInputEncoder(args, task.source_dictionary) decoder = TestIncrementalDecoder(args, task.target_dictionary) return cls(encoder, decoder) def forward(self, src_tokens, src_lengths, prev_output_tokens, **kwargs): encoder_out = self.encoder(src_tokens, src_lengths=src_lengths, **kwargs) decoder_out = self.decoder( prev_output_tokens, encoder_out=encoder_out, **kwargs ) return decoder_out def train_language_model( data_dir, arch, extra_flags=None, run_validation=False, extra_valid_flags=None, task="language_modeling", world_size=1, ): train_parser = options.get_training_parser() train_args = options.parse_args_and_arch( train_parser, [ "--task", task, data_dir, "--arch", arch, "--optimizer", "adam", "--lr", "0.0001", "--max-tokens", "500", "--tokens-per-sample", "500", "--save-dir", data_dir, "--max-epoch", "1", "--no-progress-bar", "--distributed-world-size", str(world_size), "--ddp-backend", "no_c10d", "--num-workers", "0", ] + (extra_flags or []), ) cfg = convert_namespace_to_omegaconf(train_args) distributed_utils.call_main(cfg, train.main) if run_validation: # test validation validate_parser = options.get_validation_parser() validate_args = options.parse_args_and_arch( validate_parser, [ "--task", task, data_dir, "--path", os.path.join(data_dir, "checkpoint_last.pt"), "--valid-subset", "valid", "--max-tokens", "500", "--no-progress-bar", "--num-workers", "0", ] + (extra_valid_flags or []), ) validate.main(validate_args)
bart_ls-main
fairseq-py/tests/utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import unittest from typing import Sequence from fairseq.data import LanguagePairDataset, ListDataset, RoundRobinZipDatasets from tests.test_train import mock_dict def lang_pair_dataset(lengths: Sequence[int]) -> LanguagePairDataset: tokens = [[i] * l for i, l in enumerate(lengths)] return LanguagePairDataset(ListDataset(tokens), lengths, mock_dict()) def sample(id: int, length: int): return {"id": id, "source": [id] * length, "target": None} class TestDataset(unittest.TestCase): def setUp(self): logging.disable(logging.CRITICAL) def tearDown(self): logging.disable(logging.NOTSET) def test_round_robin_zip_datasets(self): long_dataset = lang_pair_dataset([10, 9, 8, 11]) short_dataset = lang_pair_dataset([11, 9]) dataset = RoundRobinZipDatasets({"a": long_dataset, "b": short_dataset}) # Dataset is now sorted by sentence length dataset.ordered_indices() assert dataset.longest_dataset is long_dataset self.assertEqual(dict(dataset[0]), {"a": sample(2, 8), "b": sample(1, 9)}) # The item 2 of dataset 'a' is with item (2 % 2 = 0) of dataset 'b' self.assertEqual(dict(dataset[2]), {"a": sample(0, 10), "b": sample(1, 9)}) def test_round_robin_zip_datasets_filtered(self): long_dataset = lang_pair_dataset([10, 20, 8, 11, 1000, 7, 12]) short_dataset = lang_pair_dataset([11, 20, 9, 1000]) dataset = RoundRobinZipDatasets({"a": long_dataset, "b": short_dataset}) # Dataset is now sorted by sentence length idx = dataset.ordered_indices() idx, _ = dataset.filter_indices_by_size(idx, {"a": 19, "b": 900}) self.assertEqual(list(idx), [0, 1, 2, 3, 4]) self.assertEqual(dict(dataset[0]), {"a": sample(5, 7), "b": sample(2, 9)}) self.assertEqual(dict(dataset[2]), {"a": sample(0, 10), "b": sample(1, 20)}) self.assertEqual(dict(dataset[4]), {"a": sample(6, 12), "b": sample(0, 11)}) def test_round_robin_zip_datasets_filtered_with_tuple(self): long_dataset = lang_pair_dataset([10, 20, 8, 11, 1000, 7, 12]) short_dataset = lang_pair_dataset([11, 20, 9, 1000]) dataset = RoundRobinZipDatasets({"a": long_dataset, "b": short_dataset}) # Dataset is now sorted by sentence length idx = dataset.ordered_indices() idx, _ = dataset.filter_indices_by_size(idx, 19) self.assertEqual(list(idx), [0, 1, 2, 3, 4]) self.assertEqual(dict(dataset[0]), {"a": sample(5, 7), "b": sample(2, 9)}) self.assertEqual(dict(dataset[2]), {"a": sample(0, 10), "b": sample(2, 9)}) self.assertEqual(dict(dataset[4]), {"a": sample(6, 12), "b": sample(2, 9)})
bart_ls-main
fairseq-py/tests/test_dataset.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest import torch import torch.nn as nn from fairseq.modules import ConvTBC class TestConvTBC(unittest.TestCase): def test_convtbc(self): # ksz, in_channels, out_channels conv_tbc = ConvTBC(4, 5, kernel_size=3, padding=1) # out_channels, in_channels, ksz conv1d = nn.Conv1d(4, 5, kernel_size=3, padding=1) conv_tbc.weight.data.copy_(conv1d.weight.data.transpose(0, 2)) conv_tbc.bias.data.copy_(conv1d.bias.data) input_tbc = torch.randn(7, 2, 4, requires_grad=True) input1d = input_tbc.data.transpose(0, 1).transpose(1, 2) input1d.requires_grad = True output_tbc = conv_tbc(input_tbc) output1d = conv1d(input1d) self.assertAlmostEqual( output_tbc.data.transpose(0, 1).transpose(1, 2), output1d.data ) grad_tbc = torch.randn(output_tbc.size()) grad1d = grad_tbc.transpose(0, 1).transpose(1, 2).contiguous() output_tbc.backward(grad_tbc) output1d.backward(grad1d) self.assertAlmostEqual( conv_tbc.weight.grad.data.transpose(0, 2), conv1d.weight.grad.data ) self.assertAlmostEqual(conv_tbc.bias.grad.data, conv1d.bias.grad.data) self.assertAlmostEqual( input_tbc.grad.data.transpose(0, 1).transpose(1, 2), input1d.grad.data ) def assertAlmostEqual(self, t1, t2): self.assertEqual(t1.size(), t2.size(), "size mismatch") self.assertLess((t1 - t2).abs().max(), 1e-4) if __name__ == "__main__": unittest.main()
bart_ls-main
fairseq-py/tests/test_convtbc.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest from collections import OrderedDict import torch from fairseq.data import LanguagePairDataset, TokenBlockDataset from fairseq.data.multi_corpus_dataset import MultiCorpusDataset from tests.test_train import mock_dict class TestMultiCorpusDataset(unittest.TestCase): def setUp(self): d = mock_dict() tokens_1 = torch.LongTensor([i for i in range(1, 5000, 2)]).view(1, -1) tokens_ds1 = TokenBlockDataset( tokens_1, sizes=[tokens_1.size(-1)], block_size=1, pad=0, eos=1, include_targets=False, ) self.dataset_1 = LanguagePairDataset( tokens_ds1, tokens_ds1.sizes, d, shuffle=False ) tokens_2 = torch.LongTensor([i for i in range(0, 5000, 2)]).view(1, -1) tokens_ds2 = TokenBlockDataset( tokens_2, sizes=[tokens_2.size(-1)], block_size=1, pad=0, eos=1, include_targets=False, ) self.dataset_2 = LanguagePairDataset( tokens_ds2, tokens_ds2.sizes, d, shuffle=False ) def _test_sample_helper( self, distribution, ): m = MultiCorpusDataset( OrderedDict({0: self.dataset_1, 1: self.dataset_2}), distribution=distribution, seed=0, sort_indices=True, ) m.set_epoch(1) indices = m.ordered_indices() count_sample_from_first_dataset = 0 items = set() for i in indices: item = m[i]["source"].item() if item % 2 == 1: count_sample_from_first_dataset += 1 items.add(item) sample_from_first_ds_percentage = ( 1.0 * count_sample_from_first_dataset / len(indices) ) self.assertLess( abs(sample_from_first_ds_percentage - distribution[0]), 0.01, ) self.assertEqual( len(items), int(min(len(self.dataset_1), len(indices) * distribution[0]) + min(len(self.dataset_1), len(indices) * distribution[1])) ) print(distribution) def test_multi_corpus_dataset(self): for distribution in [[0.5, 0.5], [0.1, 0.9], [0.9, 0.1]]: self._test_sample_helper(distribution=distribution)
bart_ls-main
fairseq-py/tests/test_multi_corpus_dataset.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import copy import logging import unittest import torch from fairseq.optim.fp16_optimizer import FP16Optimizer, MemoryEfficientFP16Optimizer from omegaconf import OmegaConf @unittest.skipIf(not torch.cuda.is_available(), "test requires a GPU") class TestGradientScaling(unittest.TestCase): def setUp(self): self.x = torch.tensor([2.0]).cuda().half() weight = 3.0 bias = 5.0 self.error = 1.0 self.target = torch.tensor([self.x * weight + bias + self.error]).cuda().half() self.loss_fn = torch.nn.L1Loss() self.model = torch.nn.Linear(1, 1) self.model.weight.data = torch.tensor([[weight]]) self.model.bias.data = torch.tensor([bias]) self.model.cuda().half() self.params = list(self.model.parameters()) self.cfg_dls = OmegaConf.create( { "optimization": { "lr": [0.1], }, "optimizer": { "_name": "adam", "lr": [0.1], "adam_betas": "(0.9, 0.999)", "adam_eps": 1e-8, "weight_decay": 0.0, }, "common": { "fp16_init_scale": 1, "fp16_scale_window": 1, "fp16_scale_tolerance": 1, "threshold_loss_scale": 1, "min_loss_scale": 1e-4, "tpu": False, }, } ) logging.disable(logging.CRITICAL) def tearDown(self): logging.disable(logging.NOTSET) def run_iter(self, model, params, optimizer): optimizer.zero_grad() y = model(self.x) loss = self.loss_fn(y, self.target) optimizer.backward(loss) self.assertEqual(loss, torch.tensor(1.0, device="cuda:0", dtype=torch.float16)) grad_norm = optimizer.clip_grad_norm(0) self.assertAlmostEqual(grad_norm.item(), 2.2361, 4) optimizer.step() self.assertEqual( model.weight, torch.tensor( [[3.0996]], device="cuda:0", dtype=torch.float16, requires_grad=True ), ) self.assertEqual( model.bias, torch.tensor( [5.1016], device="cuda:0", dtype=torch.float16, requires_grad=True ), ) self.assertEqual(optimizer.scaler.loss_scale, 2.0) def test_mixed_precision(self): model = copy.deepcopy(self.model) params = list(model.parameters()) optimizer = FP16Optimizer.build_optimizer(self.cfg_dls, params) self.run_iter(model, params, optimizer) self.assertTrue( all( torch.all( fp32_params.eq( torch.tensor( [3.1000, 5.1000], device="cuda:0", requires_grad=True ) ) ) for fp32_params in optimizer.fp32_params.values() ) ) def test_memory_efficient(self): model = copy.deepcopy(self.model) params = list(model.parameters()) optimizer = MemoryEfficientFP16Optimizer.build_optimizer(self.cfg_dls, params) self.run_iter(model, params, optimizer) if __name__ == "__main__": unittest.main()
bart_ls-main
fairseq-py/tests/test_fp16_optimizer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import logging import unittest import torch from fairseq.optim.adam import FairseqAdam from fairseq.optim.fp16_optimizer import MemoryEfficientFP16Optimizer from omegaconf import OmegaConf @unittest.skipIf(not torch.cuda.is_available(), "test requires a GPU") class TestMemoryEfficientFP16(unittest.TestCase): def setUp(self): logging.disable(logging.CRITICAL) def tearDown(self): logging.disable(logging.NOTSET) def test_load_state_dict(self): # define simple FP16 model model = torch.nn.Linear(5, 5).cuda().half() params = list(model.parameters()) # initialize memory efficient FP16 optimizer # with pseudo DictConfigs optimizer = FairseqAdam( cfg=OmegaConf.create( vars( argparse.Namespace( adam_betas="(0.9, 0.999)", adam_eps=1e-8, weight_decay=0.0, lr=[0.00001], ) ) ), params=params, ) me_optimizer = MemoryEfficientFP16Optimizer( cfg=OmegaConf.create( { "common": vars( argparse.Namespace( fp16_init_scale=1, fp16_scale_window=1, fp16_scale_tolerance=1, threshold_loss_scale=1, min_loss_scale=1e-4, ) ) } ), params=params, optimizer=optimizer, ) # optimizer state is created in the first step loss = model(torch.rand(5).cuda().half()).sum() me_optimizer.backward(loss) me_optimizer.step() # reload state state = me_optimizer.state_dict() me_optimizer.load_state_dict(state) for k, v in me_optimizer.optimizer.state.items(): self.assertTrue(k.dtype == torch.float16) for v_i in v.values(): if torch.is_tensor(v_i): self.assertTrue(v_i.dtype == torch.float32) if __name__ == "__main__": unittest.main()
bart_ls-main
fairseq-py/tests/test_memory_efficient_fp16.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest import tests.utils as test_utils import torch from fairseq.data import TokenBlockDataset class TestTokenBlockDataset(unittest.TestCase): def _build_dataset(self, data, **kwargs): sizes = [len(x) for x in data] underlying_ds = test_utils.TestDataset(data) return TokenBlockDataset(underlying_ds, sizes, **kwargs) def test_eos_break_mode(self): data = [ torch.tensor([5, 4, 3, 2, 1], dtype=torch.long), torch.tensor([1], dtype=torch.long), torch.tensor([8, 7, 6, 1], dtype=torch.long), ] ds = self._build_dataset(data, block_size=None, pad=0, eos=1, break_mode="eos") self.assertEqual(ds[0].tolist(), [5, 4, 3, 2, 1]) self.assertEqual(ds[1].tolist(), [1]) self.assertEqual(ds[2].tolist(), [8, 7, 6, 1]) data = [ torch.tensor([5, 4, 3, 2, 1], dtype=torch.long), torch.tensor([8, 7, 6, 1], dtype=torch.long), torch.tensor([1], dtype=torch.long), ] ds = self._build_dataset(data, block_size=None, pad=0, eos=1, break_mode="eos") self.assertEqual(ds[0].tolist(), [5, 4, 3, 2, 1]) self.assertEqual(ds[1].tolist(), [8, 7, 6, 1]) self.assertEqual(ds[2].tolist(), [1]) def test_block_break_mode(self): data = [ torch.tensor([5, 4, 3, 2, 1], dtype=torch.long), torch.tensor([8, 7, 6, 1], dtype=torch.long), torch.tensor([9, 1], dtype=torch.long), ] ds = self._build_dataset(data, block_size=3, pad=0, eos=1, break_mode="none") self.assertEqual(ds[0].tolist(), [5, 4, 3]) self.assertEqual(ds[1].tolist(), [2, 1, 8]) self.assertEqual(ds[2].tolist(), [7, 6, 1]) self.assertEqual(ds[3].tolist(), [9, 1]) def test_complete_break_mode(self): data = [ torch.tensor([5, 4, 3, 2, 1], dtype=torch.long), torch.tensor([8, 7, 6, 1], dtype=torch.long), torch.tensor([9, 1], dtype=torch.long), ] ds = self._build_dataset( data, block_size=6, pad=0, eos=1, break_mode="complete" ) self.assertEqual(ds[0].tolist(), [5, 4, 3, 2, 1]) self.assertEqual(ds[1].tolist(), [8, 7, 6, 1, 9, 1]) data = [ torch.tensor([4, 3, 2, 1], dtype=torch.long), torch.tensor([5, 1], dtype=torch.long), torch.tensor([1], dtype=torch.long), torch.tensor([6, 1], dtype=torch.long), ] ds = self._build_dataset( data, block_size=3, pad=0, eos=1, break_mode="complete" ) self.assertEqual(ds[0].tolist(), [4, 3, 2, 1]) self.assertEqual(ds[1].tolist(), [5, 1, 1]) self.assertEqual(ds[2].tolist(), [6, 1]) def test_4billion_tokens(self): """Regression test for numpy type promotion issue https://github.com/numpy/numpy/issues/5745""" data = [torch.tensor(list(range(10000)), dtype=torch.long)] * 430000 ds = self._build_dataset( data, block_size=6, pad=0, eos=1, break_mode="complete" ) ds[-1] # __getitem__ works start, end = ds.slice_indices[-1] assert end > 4294967295 # data must be sufficiently large to overflow uint32 assert not isinstance( end + 1, float ) # this would also raise, since np.uint64(1) + 1 => 2.0 if __name__ == "__main__": unittest.main()
bart_ls-main
fairseq-py/tests/test_token_block_dataset.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import tempfile import unittest import math import numpy as np import tests.utils as test_utils import torch from fairseq import search from fairseq.data.dictionary import Dictionary from fairseq.models.transformer import TransformerModel from fairseq.sequence_generator import EnsembleModel, SequenceGenerator from fairseq.ngram_repeat_block import NGramRepeatBlock from fairseq.tasks.fairseq_task import LegacyFairseqTask DEFAULT_TEST_VOCAB_SIZE = 100 class DummyTask(LegacyFairseqTask): def __init__(self, args): super().__init__(args) self.dictionary = get_dummy_dictionary() if getattr(self.args, "ctc", False): self.dictionary.add_symbol("<ctc_blank>") self.src_dict = self.dictionary self.tgt_dict = self.dictionary @property def source_dictionary(self): return self.src_dict @property def target_dictionary(self): return self.dictionary def get_dummy_dictionary(vocab_size=DEFAULT_TEST_VOCAB_SIZE): dummy_dict = Dictionary() # add dummy symbol to satisfy vocab size for id, _ in enumerate(range(vocab_size)): dummy_dict.add_symbol("{}".format(id), n=1000) return dummy_dict def get_dummy_task_and_parser(): """ to build a fariseq model, we need some dummy parse and task. This function is used to create dummy task and parser to faciliate model/criterion test Note: we use FbSpeechRecognitionTask as the dummy task. You may want to use other task by providing another function """ parser = argparse.ArgumentParser( description="test_dummy_s2s_task", argument_default=argparse.SUPPRESS ) DummyTask.add_args(parser) args = parser.parse_args([]) task = DummyTask.setup_task(args) return task, parser class TestJitSequenceGeneratorBase(unittest.TestCase): def setUp(self): self.task, self.parser = get_dummy_task_and_parser() eos = self.task.tgt_dict.eos() src_tokens = torch.randint(3, 50, (2, 10)).long() src_tokens = torch.cat((src_tokens, torch.LongTensor([[eos], [eos]])), -1) src_lengths = torch.LongTensor([2, 10]) self.sample = { "net_input": {"src_tokens": src_tokens, "src_lengths": src_lengths} } TransformerModel.add_args(self.parser) args = self.parser.parse_args([]) args.encoder_layers = 2 args.decoder_layers = 1 self.transformer_model = TransformerModel.build_model(args, self.task) def assertOutputEqual(self, hypo, pos_probs): pos_scores = torch.FloatTensor(pos_probs).log() self.assertTensorSizeEqual(hypo["positional_scores"], pos_scores) self.assertTensorSizeEqual(pos_scores.numel(), hypo["tokens"].numel()) def assertTensorSizeEqual(self, t1, t2): self.assertEqual(t1.size(), t2.size(), "size mismatch") def assertAlmostEqual(self, t1, t2): self.assertEqual(t1.size(), t2.size(), "size mismatch") self.assertLess((t1 - t2).abs().max(), 1e-4) def assertTensorEqual(self, t1, t2): self.assertEqual(t1.size(), t2.size(), "size mismatch") self.assertEqual(t1.ne(t2).long().sum(), 0) def assertHypoEqual(self, h1, h2): "Check two hypos are equal" self.assertTensorEqual(h1["tokens"], h2["tokens"]) self.assertAlmostEqual(h1["positional_scores"], h2["positional_scores"]) self.assertLess(abs(h1["score"] - h2["score"]), 1e-6) self.assertAlmostEqual(h1["attention"], h2["attention"]) def _test_save_and_load(self, scripted_module): with tempfile.NamedTemporaryFile() as f: scripted_module.save(f.name) torch.jit.load(f.name) JIT_MSG = "Targeting OSS scriptability for the 1.6 release" @unittest.skipIf(torch.__version__ < "1.6.0", JIT_MSG) class TestJitSequenceGenerator(TestJitSequenceGeneratorBase): def test_export_transformer(self): model = self.transformer_model torch.jit.script(model) def test_ensemble_sequence_generator(self): model = self.transformer_model generator = SequenceGenerator( [model], self.task.tgt_dict, beam_size=2, no_repeat_ngram_size=2, max_len_b=10, ) scripted_model = torch.jit.script(generator) self._test_save_and_load(scripted_model) def test_export_ensemble_model(self): model = self.transformer_model ensemble_models = EnsembleModel([model]) torch.jit.script(ensemble_models) class TestExportSearch(unittest.TestCase): def setUp(self): task, _ = get_dummy_task_and_parser() self.tgt_dict = task.tgt_dict self.min_top1_prob = 0.4 def test_export_diverse_bs(self): search_strategy = search.DiverseBeamSearch( self.tgt_dict, num_groups=2, diversity_strength=0.0 ) torch.jit.script(search_strategy) def test_export_sampling(self): low_sampling_topp = self.min_top1_prob / 2.0 search_strategy = search.Sampling( self.tgt_dict, sampling_topp=low_sampling_topp ) torch.jit.script(search_strategy) def test_export_diverse_siblings_search(self): search_strategy = search.DiverseSiblingsSearch( self.tgt_dict, diversity_rate=0.5 ) torch.jit.script(search_strategy) class TestSequenceGeneratorBase(unittest.TestCase): def assertHypoTokens(self, hypo, tokens): self.assertTensorEqual(hypo["tokens"], torch.LongTensor(tokens)) def assertHypoScore(self, hypo, pos_probs, normalized=True, lenpen=1.0): pos_scores = torch.FloatTensor(pos_probs).log() self.assertAlmostEqual(hypo["positional_scores"], pos_scores) self.assertEqual(pos_scores.numel(), hypo["tokens"].numel()) score = pos_scores.sum() if normalized: score /= pos_scores.numel() ** lenpen self.assertLess(abs(score - hypo["score"]), 1e-6) def assertAlmostEqual(self, t1, t2): self.assertEqual(t1.size(), t2.size(), "size mismatch") self.assertLess((t1 - t2).abs().max(), 1e-4) def assertTensorEqual(self, t1, t2): self.assertEqual(t1.size(), t2.size(), "size mismatch") self.assertEqual(t1.ne(t2).long().sum(), 0) class TestSequenceGenerator(TestSequenceGeneratorBase): def setUp(self): ( self.tgt_dict, self.w1, self.w2, src_tokens, src_lengths, self.model, ) = test_utils.sequence_generator_setup() self.sample = { "net_input": {"src_tokens": src_tokens, "src_lengths": src_lengths} } def test_with_normalization(self): generator = SequenceGenerator([self.model], self.tgt_dict, beam_size=2) hypos = generator.forward(self.sample) eos, w1, w2 = self.tgt_dict.eos(), self.w1, self.w2 # sentence 1, beam 1 self.assertHypoTokens(hypos[0][0], [w1, eos]) self.assertHypoScore(hypos[0][0], [0.9, 1.0]) # sentence 1, beam 2 self.assertHypoTokens(hypos[0][1], [w2, w1, w2, eos]) self.assertHypoScore(hypos[0][1], [0.1, 0.9, 0.9, 1.0]) # sentence 2, beam 1 self.assertHypoTokens(hypos[1][0], [w1, w2, w1, eos]) self.assertHypoScore(hypos[1][0], [0.7, 0.4, 0.4, 1.0]) # sentence 2, beam 2 self.assertHypoTokens(hypos[1][1], [w1, w2, eos]) self.assertHypoScore(hypos[1][1], [0.7, 0.4, 0.6]) def test_without_normalization(self): # Sentence 1: unchanged from the normalized case # Sentence 2: beams swap order generator = SequenceGenerator( [self.model], self.tgt_dict, beam_size=2, normalize_scores=False ) hypos = generator.forward(self.sample) eos, w1, w2 = self.tgt_dict.eos(), self.w1, self.w2 # sentence 1, beam 1 self.assertHypoTokens(hypos[0][0], [w1, eos]) self.assertHypoScore(hypos[0][0], [0.9, 1.0], normalized=False) # sentence 1, beam 2 self.assertHypoTokens(hypos[0][1], [w2, w1, w2, eos]) self.assertHypoScore(hypos[0][1], [0.1, 0.9, 0.9, 1.0], normalized=False) # sentence 2, beam 1 self.assertHypoTokens(hypos[1][0], [w1, w2, eos]) self.assertHypoScore(hypos[1][0], [0.7, 0.4, 0.6], normalized=False) # sentence 2, beam 2 self.assertHypoTokens(hypos[1][1], [w1, w2, w1, eos]) self.assertHypoScore(hypos[1][1], [0.7, 0.4, 0.4, 1.0], normalized=False) def test_with_lenpen_favoring_short_hypos(self): lenpen = 0.6 generator = SequenceGenerator( [self.model], self.tgt_dict, beam_size=2, len_penalty=lenpen ) hypos = generator.forward(self.sample) eos, w1, w2 = self.tgt_dict.eos(), self.w1, self.w2 # sentence 1, beam 1 self.assertHypoTokens(hypos[0][0], [w1, eos]) self.assertHypoScore(hypos[0][0], [0.9, 1.0], lenpen=lenpen) # sentence 1, beam 2 self.assertHypoTokens(hypos[0][1], [w2, w1, w2, eos]) self.assertHypoScore(hypos[0][1], [0.1, 0.9, 0.9, 1.0], lenpen=lenpen) # sentence 2, beam 1 self.assertHypoTokens(hypos[1][0], [w1, w2, eos]) self.assertHypoScore(hypos[1][0], [0.7, 0.4, 0.6], lenpen=lenpen) # sentence 2, beam 2 self.assertHypoTokens(hypos[1][1], [w1, w2, w1, eos]) self.assertHypoScore(hypos[1][1], [0.7, 0.4, 0.4, 1.0], lenpen=lenpen) def test_with_lenpen_favoring_long_hypos(self): lenpen = 5.0 generator = SequenceGenerator( [self.model], self.tgt_dict, beam_size=2, len_penalty=lenpen ) hypos = generator.forward(self.sample) eos, w1, w2 = self.tgt_dict.eos(), self.w1, self.w2 # sentence 1, beam 1 self.assertHypoTokens(hypos[0][0], [w2, w1, w2, eos]) self.assertHypoScore(hypos[0][0], [0.1, 0.9, 0.9, 1.0], lenpen=lenpen) # sentence 1, beam 2 self.assertHypoTokens(hypos[0][1], [w1, eos]) self.assertHypoScore(hypos[0][1], [0.9, 1.0], lenpen=lenpen) # sentence 2, beam 1 self.assertHypoTokens(hypos[1][0], [w1, w2, w1, eos]) self.assertHypoScore(hypos[1][0], [0.7, 0.4, 0.4, 1.0], lenpen=lenpen) # sentence 2, beam 2 self.assertHypoTokens(hypos[1][1], [w1, w2, eos]) self.assertHypoScore(hypos[1][1], [0.7, 0.4, 0.6], lenpen=lenpen) def test_maxlen(self): generator = SequenceGenerator( [self.model], self.tgt_dict, beam_size=2, max_len_b=2 ) hypos = generator.forward(self.sample) eos, w1, w2 = self.tgt_dict.eos(), self.w1, self.w2 # sentence 1, beam 1 self.assertHypoTokens(hypos[0][0], [w1, eos]) self.assertHypoScore(hypos[0][0], [0.9, 1.0]) # sentence 1, beam 2 self.assertHypoTokens(hypos[0][1], [w2, w2, eos]) self.assertHypoScore(hypos[0][1], [0.1, 0.1, 0.6]) # sentence 2, beam 1 self.assertHypoTokens(hypos[1][0], [w1, w2, eos]) self.assertHypoScore(hypos[1][0], [0.7, 0.4, 0.6]) # sentence 2, beam 2 self.assertHypoTokens(hypos[1][1], [w2, w2, eos]) self.assertHypoScore(hypos[1][1], [0.3, 0.9, 0.01]) def test_encoder_with_different_output_len(self): args = self.model.encoder.args task = test_utils.TestTranslationTask.setup_task( args, self.tgt_dict, self.tgt_dict ) reshaping_model = test_utils.TestReshapingModel.build_model(args, task) generator = SequenceGenerator( [reshaping_model], self.tgt_dict, beam_size=2, max_len_b=2 ) hypos = generator.forward(self.sample) for sent in [0, 1]: for beam in [0, 1]: assert hypos[sent][beam]["attention"] is not None def test_generation_with_additional_input(self): args = self.model.encoder.args task = test_utils.TestTranslationTask.setup_task( args, self.tgt_dict, self.tgt_dict ) add_input_model = test_utils.TestAdditionalInputModel.build_model(args, task) generator = SequenceGenerator([add_input_model], self.tgt_dict, beam_size=2) sample = self.sample.copy() sample["net_input"]["fancy_other_input"] = sample["net_input"]["src_tokens"] hypos = generator.forward(self.sample) eos, w1, w2 = self.tgt_dict.eos(), self.w1, self.w2 # sentence 1, beam 1 self.assertHypoTokens(hypos[0][0], [w1, eos]) self.assertHypoScore(hypos[0][0], [0.9, 1.0]) @unittest.skipUnless(torch.cuda.is_available(), "") class TestRepeatNgramBlocking(TestSequenceGeneratorBase): @classmethod def setUpClass(cls): ( cls.tgt_dict, cls.w1, cls.w2, src_tokens, src_lengths, cls.model, ) = test_utils.sequence_generator_setup() return cls def test_finds_repetitive_tokens(self): bsz, vocab_size, beam_size, step = 2, 4, 1, 3 generated_tok = torch.tensor( [[2, 2, 2, 2], [3, 3, 3, 3]], dtype=torch.long, device="cuda" ) lprobs = torch.zeros((beam_size * bsz, vocab_size), device="cuda") desired_result = lprobs.new_tensor( [[0.0, 0.0, -math.inf, 0.0], [0.0, 0.0, 0.0, -math.inf]] ) cuda_ext_result, baseline_result = self._compare_cuda_ext_to_default_implem( bsz, beam_size, generated_tok, lprobs, step, 2 ) self.assertTensorEqual(cuda_ext_result, desired_result) self.assertTensorEqual(baseline_result, desired_result) @unittest.skipIf(torch.__version__ < "1.6.0", JIT_MSG) def test_jit_no_extension(self): bsz, vocab_size, beam_size, step = 2, 4, 1, 3 generated_tok = torch.tensor( [[2, 2, 2, 2], [3, 3, 3, 3]], dtype=torch.long, device="cuda" ) lprobs = torch.zeros((beam_size * bsz, vocab_size), device="cuda") blocker = NGramRepeatBlock(2, use_extension=False) base_result = blocker(generated_tok, lprobs.clone(), bsz, beam_size, step) scripted_blocker = torch.jit.script(blocker) jit_result = scripted_blocker( generated_tok, lprobs.clone(), bsz, beam_size, step ) self.assertTensorEqual(base_result, jit_result) def test_ngram_blocking_same_as_default_implem(self): """Test that cuda extension returns same things as default impl in many settings.""" vocab_size = 4 step = 6 for _ in range(2): block_param = np.random.choice([1, 2, 3, 4]) batch_size = np.random.randint(1, 8) beam_size = np.random.choice([1, 2, 4, 8]) lprobs = torch.zeros((beam_size * batch_size, vocab_size), device="cuda") generated_tok = torch.tensor( np.random.randint( 0, vocab_size, size=(batch_size * beam_size, step + 1) ), device="cuda", dtype=torch.long, ) self._compare_cuda_ext_to_default_implem( batch_size, beam_size, generated_tok, lprobs, step, block_param, ) def _compare_cuda_ext_to_default_implem( self, bsz, beam_size, generated_tok, lprobs, step, block_param ): """Assert that cuda extension and default implem return the same thing.""" blocker = NGramRepeatBlock(block_param) assert blocker.use_extension, "Extension not compiled" cuda_ext_result = blocker( generated_tok, lprobs.clone(), bsz, beam_size, step, ) blocker.use_extension = False baseline_result = blocker( generated_tok, lprobs.clone(), bsz, beam_size, step, ) self.assertTensorEqual(cuda_ext_result, baseline_result) blocker.use_extension = True return cuda_ext_result, baseline_result class TestDiverseBeamSearch(TestSequenceGeneratorBase): def setUp(self): # construct dummy dictionary d = test_utils.dummy_dictionary(vocab_size=2) self.assertEqual(d.pad(), 1) self.assertEqual(d.eos(), 2) self.assertEqual(d.unk(), 3) self.eos = d.eos() self.w1 = 4 self.w2 = 5 # construct source data self.src_tokens = torch.LongTensor( [ [self.w1, self.w2, self.eos], [self.w1, self.w2, self.eos], ] ) self.src_lengths = torch.LongTensor([2, 2]) args = argparse.Namespace() unk = 0.0 args.beam_probs = [ # step 0: torch.FloatTensor( [ # eos w1 w2 # sentence 1: [0.0, unk, 0.9, 0.1], # beam 1 [0.0, unk, 0.9, 0.1], # beam 2 # sentence 2: [0.0, unk, 0.7, 0.3], [0.0, unk, 0.7, 0.3], ] ), # step 1: torch.FloatTensor( [ # eos w1 w2 # sentence 1: [0.0, unk, 0.6, 0.4], [0.0, unk, 0.6, 0.4], # sentence 2: [0.25, unk, 0.35, 0.4], [0.25, unk, 0.35, 0.4], ] ), # step 2: torch.FloatTensor( [ # eos w1 w2 # sentence 1: [1.0, unk, 0.0, 0.0], [1.0, unk, 0.0, 0.0], # sentence 2: [0.9, unk, 0.1, 0.0], [0.9, unk, 0.1, 0.0], ] ), ] task = test_utils.TestTranslationTask.setup_task(args, d, d) self.model = task.build_model(args) self.tgt_dict = task.target_dictionary def test_diverse_beam_search(self): search_strategy = search.DiverseBeamSearch( self.tgt_dict, num_groups=2, diversity_strength=0.0 ) generator = SequenceGenerator( [self.model], self.tgt_dict, beam_size=2, search_strategy=search_strategy, ) sample = { "net_input": { "src_tokens": self.src_tokens, "src_lengths": self.src_lengths, } } hypos = generator.forward(sample) eos, w1, w2 = self.eos, self.w1, self.w2 # sentence 1, beam 1 self.assertHypoTokens(hypos[0][0], [w1, w1, eos]) self.assertHypoScore(hypos[0][0], [0.9, 0.6, 1.0]) # sentence 1, beam 2 self.assertHypoTokens(hypos[0][1], [w1, w1, eos]) self.assertHypoScore(hypos[0][1], [0.9, 0.6, 1.0]) # sentence 2, beam 1 self.assertHypoTokens(hypos[1][0], [w1, w2, eos]) self.assertHypoScore(hypos[1][0], [0.7, 0.4, 0.9]) # sentence 2, beam 2 self.assertHypoTokens(hypos[1][1], [w1, w2, eos]) self.assertHypoScore(hypos[1][1], [0.7, 0.4, 0.9]) class TestDiverseSiblingsSearch(TestDiverseBeamSearch): def assertHypoScore( self, hypo, pos_probs, sibling_rank, diversity_rate, normalized=True, lenpen=1.0 ): pos_scores = torch.FloatTensor(pos_probs).log() pos_scores.sub_(torch.Tensor(sibling_rank) * diversity_rate) self.assertAlmostEqual(hypo["positional_scores"], pos_scores) self.assertEqual(pos_scores.numel(), hypo["tokens"].numel()) score = pos_scores.sum() if normalized: score /= pos_scores.numel() ** lenpen self.assertLess(abs(score - hypo["score"]), 1e-6) def test_diverse_beam_search(self): search_strategy = search.DiverseSiblingsSearch( self.tgt_dict, diversity_rate=0.5 ) generator = SequenceGenerator( [self.model], self.tgt_dict, beam_size=2, search_strategy=search_strategy ) sample = { "net_input": { "src_tokens": self.src_tokens, "src_lengths": self.src_lengths, } } hypos = generator.forward(sample) eos, w1, w2 = self.eos, self.w1, self.w2 # sentence 1, beam 1 self.assertHypoTokens(hypos[0][0], [w1, w1, eos]) self.assertHypoScore(hypos[0][0], [0.9, 0.6, 1.0], [0, 1, 1], 0.5) # sentence 1, beam 2 self.assertHypoTokens(hypos[0][1], [w1, w2, eos]) self.assertHypoScore(hypos[0][1], [0.9, 0.4, 1.0], [0, 2, 1], 0.5) # sentence 2, beam 1 self.assertHypoTokens(hypos[1][0], [w1, w2, eos]) self.assertHypoScore(hypos[1][0], [0.7, 0.4, 0.9], [0, 1, 1], 0.5) # sentence 2, beam 2 self.assertHypoTokens(hypos[1][1], [w1, w1, eos]) self.assertHypoScore(hypos[1][1], [0.7, 0.35, 0.9], [0, 2, 1], 0.5) class TestPrefixBeamSearch(TestSequenceGeneratorBase): def setUp(self): # construct dummy dictionary vocab_size = 10 d = test_utils.dummy_dictionary(vocab_size=vocab_size) self.assertEqual(d.pad(), 1) self.assertEqual(d.eos(), 2) self.assertEqual(d.unk(), 3) self.eos = d.eos() self.w1 = 4 self.w2 = 5 self.beam_size = 3 # construct prefix data self.tokens = torch.LongTensor( [ [self.w1, self.w2, self.eos], ] ) self.token_lengths = torch.LongTensor([2]) args = argparse.Namespace() unk = 0.0 args.beam_probs = [ # prefix step 0: torch.FloatTensor( [ # eos [0.0, unk] + [1.0 / vocab_size] * vocab_size # beam 1 ] * self.beam_size ), ] * vocab_size task = test_utils.TestTranslationTask.setup_task(args, d, d) self.model = task.build_model(args) self.tgt_dict = task.target_dictionary def test_prefix_beam_search(self): search_strategy = search.BeamSearch(self.tgt_dict) generator = SequenceGenerator( [self.model], self.tgt_dict, beam_size=self.beam_size, search_strategy=search_strategy, ) sample = { "net_input": { "src_tokens": self.tokens, "src_lengths": self.token_lengths, } } # make sure test sample doesn't break any assertion generator.forward(sample, prefix_tokens=self.tokens[:, :-1]) class TestTopPSamplingSearch(TestSequenceGeneratorBase): def setUp(self): # construct dummy dictionary d = test_utils.dummy_dictionary(vocab_size=2) self.assertEqual(d.pad(), 1) self.assertEqual(d.eos(), 2) self.assertEqual(d.unk(), 3) self.eos = d.eos() self.w1 = 4 self.w2 = 5 # construct source data self.src_tokens = torch.LongTensor( [ [self.w1, self.w2, self.eos], [self.w1, self.w2, self.eos], ] ) self.src_lengths = torch.LongTensor([2, 2]) args = argparse.Namespace() unk = 0.0 # The minimal probability of top 2 tokens. self.min_top2_prob = 0.75 # The minimal probability of the top 1 token. self.min_top1_prob = 0.4 w1_prob = self.min_top1_prob w2_prob = self.min_top2_prob - self.min_top1_prob eos_prob = 1 - self.min_top2_prob args.beam_probs = [ # step 0: torch.FloatTensor( [ # eos w1 w2 [0.0, unk, 1.0, 0.0], [0.0, unk, 1.0, 0.0], [0.0, unk, 1.0, 0.0], [0.0, unk, 1.0, 0.0], ] ), # step 1: torch.FloatTensor( [ # eos w1 w2 [eos_prob, unk, w1_prob, w2_prob], [eos_prob, unk, w1_prob, w2_prob], [eos_prob, unk, w1_prob, w2_prob], [eos_prob, unk, w1_prob, w2_prob], ] ), # step 2: torch.FloatTensor( [ # eos w1 w2 [1.0, unk, 0.0, 0.0], [1.0, unk, 0.0, 0.0], [1.0, unk, 0.0, 0.0], [1.0, unk, 0.0, 0.0], ] ), ] task = test_utils.TestTranslationTask.setup_task(args, d, d) self.model = task.build_model(args) self.tgt_dict = task.target_dictionary def test_topp_sampling_search_low_prob(self): # Given a prob low enough to top-P sampling, we expect only the top # 1 token to be sampled, which always results in the same output. low_sampling_topp = self.min_top1_prob / 2.0 search_strategy = search.Sampling( self.tgt_dict, sampling_topp=low_sampling_topp ) generator = SequenceGenerator( [self.model], self.tgt_dict, beam_size=2, search_strategy=search_strategy ) sample = { "net_input": { "src_tokens": self.src_tokens, "src_lengths": self.src_lengths, } } hypos = generator.forward(sample) eos, w1 = self.eos, self.w1 # sentence 1, beam 1 self.assertHypoTokens(hypos[0][0], [w1, w1, eos]) self.assertHypoScore(hypos[0][0], [1.0, 0.4, 1.0]) # sentence 1, beam 2 self.assertHypoTokens(hypos[0][1], [w1, w1, eos]) self.assertHypoScore(hypos[0][1], [1.0, 0.4, 1.0]) # sentence 2, beam 1 self.assertHypoTokens(hypos[1][0], [w1, w1, eos]) self.assertHypoScore(hypos[1][0], [1.0, 0.4, 1.0]) # sentence 2, beam 2 self.assertHypoTokens(hypos[1][1], [w1, w1, eos]) self.assertHypoScore(hypos[1][1], [1.0, 0.4, 1.0]) def test_topp_sampling_search_high_prob(self): # Given a prob high enough to top-P sampling, any of the top 2 # tokens could be sampled. This can cause different outputs. high_sampling_topp = (self.min_top1_prob + self.min_top2_prob) / 2.0 search_strategy = search.Sampling( self.tgt_dict, sampling_topp=high_sampling_topp ) generator = SequenceGenerator( [self.model], self.tgt_dict, beam_size=2, search_strategy=search_strategy ) sample = { "net_input": { "src_tokens": self.src_tokens, "src_lengths": self.src_lengths, } } hypos = generator.forward(sample) eos, w1, w2 = self.eos, self.w1, self.w2 # sentence 1, beam 1 self.assertTrue( self.hypoTokens(hypos[0][0], [w1, w1, eos]) or self.hypoTokens(hypos[0][0], [w1, w2, eos]) ) self.assertTrue( self.hypoScore(hypos[0][0], [1.0, 0.4, 1.0]) or self.hypoScore(hypos[0][0], [1.0, 0.35, 1.0]) ) # sentence 1, beam 2 self.assertTrue( self.hypoTokens(hypos[0][1], [w1, w1, eos]) or self.hypoTokens(hypos[0][1], [w1, w2, eos]) ) self.assertTrue( self.hypoScore(hypos[0][1], [1.0, 0.4, 1.0]) or self.hypoScore(hypos[0][1], [1.0, 0.35, 1.0]) ) # sentence 2, beam 1 self.assertTrue( self.hypoTokens(hypos[1][0], [w1, w1, eos]) or self.hypoTokens(hypos[1][0], [w1, w2, eos]) ) self.assertTrue( self.hypoScore(hypos[1][0], [1.0, 0.4, 1.0]) or self.hypoScore(hypos[1][0], [1.0, 0.35, 1.0]) ) # sentence 2, beam 2 self.assertTrue( self.hypoTokens(hypos[1][1], [w1, w1, eos]) or self.hypoTokens(hypos[1][1], [w1, w2, eos]) ) self.assertTrue( self.hypoScore(hypos[1][1], [1.0, 0.4, 1.0]) or self.hypoScore(hypos[1][1], [1.0, 0.35, 1.0]) ) def hypoTokens(self, hypo, tokens): return self.tensorEqual(hypo["tokens"], torch.LongTensor(tokens)) def hypoScore(self, hypo, pos_probs, normalized=True, lenpen=1.0): pos_scores = torch.FloatTensor(pos_probs).log() if not self.almostEqual(hypo["positional_scores"], pos_scores): return False if pos_scores.numel() != hypo["tokens"].numel(): return False score = pos_scores.sum() if normalized: score /= pos_scores.numel() ** lenpen return abs(score - hypo["score"]) < 1e-6 def almostEqual(self, t1, t2): return t1.size() == t2.size() and (t1 - t2).abs().max() < 1e-4 def tensorEqual(self, t1, t2): return t1.size() == t2.size() and t1.ne(t2).long().sum() == 0 if __name__ == "__main__": unittest.main()
bart_ls-main
fairseq-py/tests/test_sequence_generator.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import shutil import tempfile import unittest from typing import Optional class TestFileChunker(unittest.TestCase): _tmpdir: Optional[str] = None _tmpfile: Optional[str] = None _line_content = "Hello, World\n" _num_bytes = None _num_lines = 200 _num_splits = 20 @classmethod def setUpClass(cls) -> None: cls._num_bytes = len(cls._line_content.encode("utf-8")) cls._tmpdir = tempfile.mkdtemp() with open(os.path.join(cls._tmpdir, "test.txt"), "w") as f: cls._tmpfile = f.name for _i in range(cls._num_lines): f.write(cls._line_content) f.flush() @classmethod def tearDownClass(cls) -> None: # Cleanup temp working dir. if cls._tmpdir is not None: shutil.rmtree(cls._tmpdir) # type: ignore def test_find_offsets(self): from fairseq.file_chunker_utils import find_offsets offsets = find_offsets(self._tmpfile, self._num_splits) self.assertEqual(len(offsets), self._num_splits + 1) (zero, *real_offsets, last) = offsets self.assertEqual(zero, 0) for i, o in enumerate(real_offsets): self.assertEqual( o, self._num_bytes + ((i + 1) * self._num_bytes * self._num_lines / self._num_splits), ) self.assertEqual(last, self._num_bytes * self._num_lines) def test_readchunks(self): from fairseq.file_chunker_utils import Chunker, find_offsets offsets = find_offsets(self._tmpfile, self._num_splits) for start, end in zip(offsets, offsets[1:]): with Chunker(self._tmpfile, start, end) as lines: all_lines = list(lines) num_lines = self._num_lines / self._num_splits self.assertAlmostEqual( len(all_lines), num_lines, delta=1 ) # because we split on the bites, we might end up with one more/less line in a chunk self.assertListEqual( all_lines, [self._line_content for _ in range(len(all_lines))] )
bart_ls-main
fairseq-py/tests/test_file_chunker_utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest from argparse import ArgumentParser from dataclasses import dataclass, field from fairseq.dataclass import FairseqDataclass from fairseq.dataclass.utils import gen_parser_from_dataclass @dataclass class A(FairseqDataclass): data: str = field(default="test", metadata={"help": "the data input"}) num_layers: int = field(default=200, metadata={"help": "more layers is better?"}) @dataclass class B(FairseqDataclass): bar: A = field(default=A()) foo: int = field(default=0, metadata={"help": "not a bar"}) @dataclass class D(FairseqDataclass): arch: A = field(default=A()) foo: int = field(default=0, metadata={"help": "not a bar"}) @dataclass class C(FairseqDataclass): data: str = field(default="test", metadata={"help": "root level data input"}) encoder: D = field(default=D()) decoder: A = field(default=A()) lr: int = field(default=0, metadata={"help": "learning rate"}) class TestDataclassUtils(unittest.TestCase): def test_argparse_convert_basic(self): parser = ArgumentParser() gen_parser_from_dataclass(parser, A(), True) args = parser.parse_args(["--num-layers", '10', "the/data/path"]) self.assertEqual(args.num_layers, 10) self.assertEqual(args.data, "the/data/path") def test_argparse_recursive(self): parser = ArgumentParser() gen_parser_from_dataclass(parser, B(), True) args = parser.parse_args(["--num-layers", "10", "--foo", "10", "the/data/path"]) self.assertEqual(args.num_layers, 10) self.assertEqual(args.foo, 10) self.assertEqual(args.data, "the/data/path") def test_argparse_recursive_prefixing(self): self.maxDiff = None parser = ArgumentParser() gen_parser_from_dataclass(parser, C(), True, "") args = parser.parse_args( [ "--encoder-arch-data", "ENCODER_ARCH_DATA", "--encoder-arch-num-layers", "10", "--encoder-foo", "10", "--decoder-data", "DECODER_DATA", "--decoder-num-layers", "10", "--lr", "10", "the/data/path", ] ) self.assertEqual(args.encoder_arch_data, "ENCODER_ARCH_DATA") self.assertEqual(args.encoder_arch_num_layers, 10) self.assertEqual(args.encoder_foo, 10) self.assertEqual(args.decoder_data, "DECODER_DATA") self.assertEqual(args.decoder_num_layers, 10) self.assertEqual(args.lr, 10) self.assertEqual(args.data, "the/data/path") if __name__ == "__main__": unittest.main()
bart_ls-main
fairseq-py/tests/test_dataclass_utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest import torch from fairseq.data import LanguagePairDataset, TokenBlockDataset from fairseq.data.concat_dataset import ConcatDataset from tests.test_train import mock_dict class TestConcatDataset(unittest.TestCase): def setUp(self): d = mock_dict() tokens_1 = torch.LongTensor([1]).view(1, -1) tokens_ds1 = TokenBlockDataset( tokens_1, sizes=[tokens_1.size(-1)], block_size=1, pad=0, eos=1, include_targets=False, ) self.dataset_1 = LanguagePairDataset( tokens_ds1, tokens_ds1.sizes, d, shuffle=False ) tokens_2 = torch.LongTensor([2]).view(1, -1) tokens_ds2 = TokenBlockDataset( tokens_2, sizes=[tokens_2.size(-1)], block_size=1, pad=0, eos=1, include_targets=False, ) self.dataset_2 = LanguagePairDataset( tokens_ds2, tokens_ds2.sizes, d, shuffle=False ) def test_concat_dataset_basics(self): d = ConcatDataset([self.dataset_1, self.dataset_2]) assert len(d) == 2 assert d[0]["source"][0] == 1 assert d[1]["source"][0] == 2 d = ConcatDataset([self.dataset_1, self.dataset_2], sample_ratios=[1, 2]) assert len(d) == 3 assert d[0]["source"][0] == 1 assert d[1]["source"][0] == 2 assert d[2]["source"][0] == 2 d = ConcatDataset([self.dataset_1, self.dataset_2], sample_ratios=[2, 1]) assert len(d) == 3 assert d[0]["source"][0] == 1 assert d[1]["source"][0] == 1 assert d[2]["source"][0] == 2
bart_ls-main
fairseq-py/tests/test_concat_dataset.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import contextlib import logging import unittest from io import StringIO import torch from fairseq import fb_hub @unittest.skipIf(not torch.cuda.is_available(), "test requires a GPU") class TestTranslationHub(unittest.TestCase): def setUp(self): logging.disable(logging.CRITICAL) def tearDown(self): logging.disable(logging.NOTSET) @torch.no_grad() def test_transformer_wmt14_en_fr(self): with contextlib.redirect_stdout(StringIO()): # Load an En-Fr Transformer model trained on WMT'14 data en2fr = fb_hub.load( "transformer.wmt14.en-fr", tokenizer="moses", bpe="subword_nmt" ) en2fr.eval() # disable dropout # Translate with beam search fr = en2fr.translate("Hello world!", beam=5) self.assertEqual(fr, "Bonjour à tous !") # Manually tokenize en_toks = en2fr.tokenize("Hello world!") self.assertEqual(en_toks, "Hello world !") # Manually apply BPE en_bpe = en2fr.apply_bpe(en_toks) self.assertEqual(en_bpe, "H@@ ello world !") # Manually binarize en_bin = en2fr.binarize(en_bpe) self.assertEqual(en_bin.tolist(), [329, 14044, 682, 812, 2]) # Generate five translations with top-k sampling fr_bin = en2fr.generate(en_bin, beam=5, sampling=True, sampling_topk=20) self.assertEqual(len(fr_bin), 5) # Convert one of the samples to a string and detokenize fr_sample = fr_bin[0]["tokens"] fr_bpe = en2fr.string(fr_sample) fr_toks = en2fr.remove_bpe(fr_bpe) fr = en2fr.detokenize(fr_toks) self.assertEqual(fr, en2fr.decode(fr_sample)) # Batched translation fr_batch = en2fr.translate(["Hello world", "The cat sat on the mat."]) self.assertEqual( fr_batch, ["Bonjour à tous.", "Le chat était assis sur le tapis."] ) @torch.no_grad() def test_transformer_wmt19_en_de_single_model(self): with contextlib.redirect_stdout(StringIO()): # Load an En-De Transformer model trained on WMT'19 data en2de = fb_hub.load( "transformer.wmt19.en-de.single_model", tokenizer="moses", bpe="fastbpe" ) en2de.eval() # disable dropout # Access the underlying TransformerModel self.assertTrue(isinstance(en2de.models[0], torch.nn.Module)) # Translate from En-De de = en2de.translate( "PyTorch Hub is a pre-trained model repository designed to facilitate research reproducibility." ) self.assertEqual( de, "PyTorch Hub ist ein vorgefertigtes Modell-Repository, das die Reproduzierbarkeit der Forschung erleichtern soll.", ) @unittest.skipIf(not torch.cuda.is_available(), "test requires a GPU") class TestLMHub(unittest.TestCase): def setUp(self): logging.disable(logging.CRITICAL) def tearDown(self): logging.disable(logging.NOTSET) @torch.no_grad() def test_transformer_lm_wmt19_en(self): with contextlib.redirect_stdout(StringIO()): # Load an English LM trained on WMT'19 News Crawl data en_lm = fb_hub.load("transformer_lm.wmt19.en") en_lm.eval() # disable dropout # Sample from the language model en_lm.sample( "Barack Obama", beam=1, sampling=True, sampling_topk=10, temperature=0.8 ) ppl = ( en_lm.score("Barack Obama is coming to Sydney and New Zealand")[ "positional_scores" ] .mean() .neg() .exp() ) self.assertAlmostEqual(ppl.item(), 4.2739, places=4) @unittest.skipIf(not torch.cuda.is_available(), "test requires a GPU") class TestRobertaHub(unittest.TestCase): def setUp(self): logging.disable(logging.CRITICAL) def tearDown(self): logging.disable(logging.NOTSET) @torch.no_grad() def test_roberta_base(self): with contextlib.redirect_stdout(StringIO()): # Load RoBERTa roberta = fb_hub.load("roberta.base") roberta.eval() # disable dropout # Apply Byte-Pair Encoding (BPE) to input text tokens = roberta.encode("Hello world!") self.assertEqual(tokens.tolist(), [0, 31414, 232, 328, 2]) self.assertEqual(roberta.decode(tokens), "Hello world!") # Extract the last layer's features last_layer_features = roberta.extract_features(tokens) self.assertEqual(last_layer_features.size(), torch.Size([1, 5, 768])) # Extract all layer's features (layer 0 is the embedding layer) all_layers = roberta.extract_features(tokens, return_all_hiddens=True) self.assertEqual(len(all_layers), 13) self.assertTrue(torch.all(all_layers[-1] == last_layer_features)) # Register a new (randomly initialized) classification head roberta.register_classification_head("new_task", num_classes=3) logprobs = roberta.predict("new_task", tokens) # noqa # Test mask filling res = roberta.fill_mask( "The first Star wars movie came out in <mask>", topk=3 ) self.assertEqual(len(res), 3) self.assertEqual(res[0][2], " 1977") @torch.no_grad() def test_roberta_large_mnli(self): with contextlib.redirect_stdout(StringIO()): # Download RoBERTa already finetuned for MNLI roberta = fb_hub.load("roberta.large.mnli") roberta.eval() # disable dropout for evaluation # Encode a pair of sentences and make a prediction tokens = roberta.encode( "Roberta is a heavily optimized version of BERT.", "Roberta is not very optimized.", ) prediction = roberta.predict("mnli", tokens).argmax().item() self.assertEqual(prediction, 0) # contradiction # Encode another pair of sentences tokens = roberta.encode( "Roberta is a heavily optimized version of BERT.", "Roberta is based on BERT.", ) prediction = roberta.predict("mnli", tokens).argmax().item() self.assertEqual(prediction, 2) # entailment # Test batched prediction from fairseq.data.data_utils import collate_tokens batch_of_pairs = [ [ "Roberta is a heavily optimized version of BERT.", "Roberta is not very optimized.", ], [ "Roberta is a heavily optimized version of BERT.", "Roberta is based on BERT.", ], ["potatoes are awesome.", "I like to run."], ["Mars is very far from earth.", "Mars is very close."], ] batch = collate_tokens( [roberta.encode(pair[0], pair[1]) for pair in batch_of_pairs], pad_idx=1 ) logprobs = roberta.predict("mnli", batch) self.assertEqual(logprobs.argmax(dim=1).tolist(), [0, 2, 1, 0]) @torch.no_grad() def test_roberta_large_wsc(self): with contextlib.redirect_stdout(StringIO()): roberta = fb_hub.load("roberta.large.wsc", user_dir="examples/roberta/wsc") roberta.eval() # disable dropout ans = roberta.disambiguate_pronoun( "The _trophy_ would not fit in the brown suitcase because [it] was too big." ) self.assertTrue(ans) ans = roberta.disambiguate_pronoun( "The trophy would not fit in the brown _suitcase_ because [it] was too big." ) self.assertFalse(ans) ans = roberta.disambiguate_pronoun( "The city councilmen refused the demonstrators a permit because [they] feared violence." ) self.assertEqual(ans, "The city councilmen") ans = roberta.disambiguate_pronoun( "The city councilmen refused the demonstrators a permit because [they] advocated violence." ) self.assertEqual(ans, "demonstrators") @torch.no_grad() def test_camembert(self): with contextlib.redirect_stdout(StringIO()): camembert = fb_hub.load("camembert.v0") camembert.eval() # disable dropout # Filling masks masked_line = "Le camembert est <mask> :)" res = camembert.fill_mask(masked_line, topk=3) self.assertEqual(len(res), 3) self.assertEqual(res[0][2], " délicieux") # Extract the last layer's features line = "J'aime le camembert!" tokens = camembert.encode(line) last_layer_features = camembert.extract_features(tokens) self.assertEqual(last_layer_features.size(), torch.Size([1, 10, 768])) # Extract all layer's features (layer 0 is the embedding layer) all_layers = camembert.extract_features(tokens, return_all_hiddens=True) self.assertEqual(len(all_layers), 13) self.assertTrue(torch.all(all_layers[-1] == last_layer_features)) @torch.no_grad() def test_xlmr(self): with contextlib.redirect_stdout(StringIO()): xlmr = fb_hub.load("xlmr.large") xlmr.eval() # disable dropout # Test sentencepiece en_tokens = xlmr.encode("Hello world!") self.assertEqual(en_tokens.tolist(), [0, 35378, 8999, 38, 2]) xlmr.decode(en_tokens) # 'Hello world!' zh_tokens = xlmr.encode("你好,世界") self.assertEqual(zh_tokens.tolist(), [0, 6, 124084, 4, 3221, 2]) xlmr.decode(zh_tokens) # '你好,世界' hi_tokens = xlmr.encode("नमस्ते दुनिया") self.assertEqual(hi_tokens.tolist(), [0, 68700, 97883, 29405, 2]) xlmr.decode(hi_tokens) # 'नमस्ते दुनिया' ar_tokens = xlmr.encode("مرحبا بالعالم") self.assertEqual(ar_tokens.tolist(), [0, 665, 193478, 258, 1705, 77796, 2]) xlmr.decode(ar_tokens) # 'مرحبا بالعالم' fr_tokens = xlmr.encode("Bonjour le monde") self.assertEqual(fr_tokens.tolist(), [0, 84602, 95, 11146, 2]) xlmr.decode(fr_tokens) # 'Bonjour le monde' # Extract the last layer's features last_layer_features = xlmr.extract_features(zh_tokens) self.assertEqual(last_layer_features.size(), torch.Size([1, 6, 1024])) # Extract all layer's features (layer 0 is the embedding layer) all_layers = xlmr.extract_features(zh_tokens, return_all_hiddens=True) self.assertEqual(len(all_layers), 25) self.assertTrue(torch.all(all_layers[-1] == last_layer_features)) @unittest.skipIf(not torch.cuda.is_available(), "test requires a GPU") class TestBartHub(unittest.TestCase): def setUp(self): logging.disable(logging.CRITICAL) def tearDown(self): logging.disable(logging.NOTSET) @torch.no_grad() def test_bart_base(self): with contextlib.redirect_stdout(StringIO()): # Load BART bart = fb_hub.load("bart.base") bart.eval() # disable dropout # Test mask filling (beam = topk = 3) res = bart.fill_mask(["The cat <mask> on the <mask>."], topk=3)[0] self.assertEqual(len(res), 3) self.assertEqual(res[0][0], "The cat was on the ground.") self.assertEqual(res[1][0], "The cat was on the floor.") self.assertEqual(res[2][0], "The cat was sitting on the couch") # Test mask filling (beam = 10, topk = 3) res = bart.fill_mask(["The cat <mask> on the <mask>."], topk=3, beam=10)[0] self.assertEqual(len(res), 3) self.assertEqual(res[0][0], "The cat was on the ground.") self.assertEqual(res[1][0], "The cat was on the floor.") self.assertEqual(res[2][0], "The cat sleeps on the couch.") # Test mask filling (beam = 10, topk = 3, match_source_len = False) res = bart.fill_mask( ["The cat <mask> on the <mask>."], topk=3, beam=10, match_source_len=False, )[0] self.assertEqual(len(res), 3) self.assertEqual(res[0][0], "The cat was on the ground.") self.assertEqual(res[1][0], "The cat was asleep on the couch.") self.assertEqual(res[2][0], "The cat was on the floor.") # Test mask filling (beam = 10, topk = 3) and batch size > 1 res = bart.fill_mask( ["The cat <mask> on the <mask>.", "The dog <mask> on the <mask>."], topk=3, beam=10, ) self.assertEqual(len(res), 2) self.assertEqual(len(res[0]), 3) self.assertEqual(res[0][0][0], "The cat was on the ground.") self.assertEqual(res[0][1][0], "The cat was on the floor.") self.assertEqual(res[0][2][0], "The cat sleeps on the couch.") self.assertEqual(len(res[1]), 3) self.assertEqual(res[1][0][0], "The dog was on the ground.") self.assertEqual(res[1][1][0], "The dog lay on the ground.") self.assertEqual(res[1][2][0], "The dog was asleep on the couch") @torch.no_grad() def test_bart_large(self): with contextlib.redirect_stdout(StringIO()): # Load BART bart = fb_hub.load("bart.large") bart.eval() # disable dropout # Apply Byte-Pair Encoding (BPE) to input text tokens = bart.encode("Hello world!") self.assertEqual(tokens.tolist(), [0, 31414, 232, 328, 2]) self.assertEqual(bart.decode(tokens), "Hello world!") # Extract the last layer's features last_layer_features = bart.extract_features(tokens) self.assertEqual(last_layer_features.size(), torch.Size([1, 5, 1024])) # Extract all layer's features from decoder (layer 0 is the embedding layer) all_layers = bart.extract_features(tokens, return_all_hiddens=True) self.assertEqual(len(all_layers), 13) self.assertTrue(torch.all(all_layers[-1] == last_layer_features)) # Register a new (randomly initialized) classification head bart.register_classification_head("new_task", num_classes=3) logprobs = bart.predict("new_task", tokens) # noqa @torch.no_grad() def test_bart_large_mnli(self): with contextlib.redirect_stdout(StringIO()): # Download BART already finetuned for MNLI bart = fb_hub.load("bart.large.mnli") bart.eval() # disable dropout for evaluation # Encode a pair of sentences and make a prediction tokens = bart.encode( "BART is a seq2seq model.", "BART is not sequence to sequence." ) prediction = bart.predict("mnli", tokens).argmax().item() self.assertEqual(prediction, 0) # contradiction # Encode another pair of sentences tokens = bart.encode( "BART is denoising autoencoder.", "BART is version of autoencoder." ) prediction = bart.predict("mnli", tokens).argmax().item() self.assertEqual(prediction, 2) # entailment # Test batched prediction from fairseq.data.data_utils import collate_tokens batch_of_pairs = [ ["BART is a seq2seq model.", "BART is not sequence to sequence."], ["BART is denoising autoencoder.", "BART is version of autoencoder."], ] batch = collate_tokens( [bart.encode(pair[0], pair[1]) for pair in batch_of_pairs], pad_idx=1 ) logprobs = bart.predict("mnli", batch) self.assertEqual(logprobs.argmax(dim=1).tolist(), [0, 2]) @torch.no_grad() def test_bart_large_cnn(self): with contextlib.redirect_stdout(StringIO()): # Download BART already finetuned for MNLI bart = fb_hub.load("bart.large.cnn") bart.eval() # disable dropout for evaluation hypothesis = bart.sample( [ """This is the first time anyone has been \ recorded to run a full marathon of 42.195 kilometers \ (approximately 26 miles) under this pursued landmark time. \ It was not, however, an officially sanctioned world record, \ as it was not an "open race" of the IAAF. His time was \ 1 hour 59 minutes 40.2 seconds. Kipchoge ran in Vienna, Austria. \ It was an event specifically designed to help Kipchoge \ break the two hour barrier. Kenyan runner Eliud Kipchoge \ has run a marathon in less than two hours.""" ] ) # Encode a pair of sentences and make a prediction self.assertEqual( hypothesis[0], """Eliud Kipchoge has run a marathon in less than two hours. \ Kenyan ran in Vienna, Austria. It was not an officially sanctioned world record.""", ) def test_bart_cnn_output_order(self): # BartModel.generate used to return outputs in the wrong order bart = torch.hub.load("pytorch/fairseq", "bart.large.cnn").eval() input_sentences = ["This sentence is the longest sentence that is used in this unit test.", "This is short.", "This sentence is in the middle."] inputs = [bart.encode(x) for x in input_sentences] outputs = bart.generate(inputs, beam=1, max_length=10) self.assertEqual( bart.decode(outputs[0][0]["tokens"]), "This sentence is the longest sentence that is used in this unit test.", ) self.assertEqual(bart.decode(outputs[1][0]["tokens"]), "This is short.") self.assertEqual( bart.decode(outputs[2][0]["tokens"]), "This sentence is in the middle." ) if __name__ == "__main__": unittest.main()
bart_ls-main
fairseq-py/tests/fb_test_hub.py