python_code
stringlengths
0
4.04M
repo_name
stringlengths
8
58
file_path
stringlengths
5
147
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import json import logging import math import sys from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple, Union import numpy as np import torch from src import dist_utils Number = Union[float, int] logger = logging.getLogger(__name__) def init_logger(is_main=True, is_distributed=False, filename=None): if is_distributed: torch.distributed.barrier() handlers = [logging.StreamHandler(sys.stdout)] if filename is not None: handlers.append(logging.FileHandler(filename=filename)) logging.basicConfig( datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO if is_main else logging.WARN, format="[%(asctime)s] {%(filename)s:%(lineno)d} %(levelname)s - %(message)s", handlers=handlers, ) logging.getLogger("transformers.tokenization_utils").setLevel(logging.ERROR) logging.getLogger("transformers.tokenization_utils_base").setLevel(logging.ERROR) return logger def init_tb_logger(dirname, is_main): tb_logger = None if is_main: try: from torch.utils import tensorboard tb_logger = tensorboard.SummaryWriter(dirname) except: logger.warning("Tensorboard is not available.") return tb_logger def cast_to_precision(model, precision): if precision == "fp32": return model elif precision == "fp16": model.to(torch.float16) elif precision == "bf16": model.to(torch.bfloat16) else: raise ValueError(f"unsupported precision {precision}, must be one of fp32, fp16, bf16") return model class WarmupLinearScheduler(torch.optim.lr_scheduler.LambdaLR): def __init__(self, optimizer, warmup, total, ratio, last_epoch=-1): self.warmup = warmup self.total = total self.ratio = ratio super(WarmupLinearScheduler, self).__init__(optimizer, self.lr_lambda, last_epoch=last_epoch) def lr_lambda(self, step): if step < self.warmup: return (1 - self.ratio) * step / float(max(1, self.warmup)) + self.ratio return max( 0.0, 1.0 + (self.ratio - 1) * (step - self.warmup) / float(max(1.0, self.total - self.warmup)), ) class CosineScheduler(torch.optim.lr_scheduler.LambdaLR): def __init__(self, optimizer, warmup, total, ratio=0.1, last_epoch=-1): self.warmup = warmup self.total = total self.ratio = ratio super(CosineScheduler, self).__init__(optimizer, self.lr_lambda, last_epoch=last_epoch) def lr_lambda(self, step): if step < self.warmup: return float(step) / self.warmup s = float(step - self.warmup) / (self.total - self.warmup) return self.ratio + (1.0 - self.ratio) * math.cos(0.5 * math.pi * s) class FixedScheduler(torch.optim.lr_scheduler.LambdaLR): def __init__(self, optimizer, warmup, total, ratio, last_epoch=-1): self.warmup = warmup self.total = total self.ratio = ratio super(FixedScheduler, self).__init__(optimizer, self.lr_lambda, last_epoch=last_epoch) def lr_lambda(self, step): if step < self.warmup: return float(step) / self.warmup return 1.0 class IndexRefreshScheduler(object): def __init__(self, format_str: str, freeze_retriever_steps: int, train_retriever: bool): """Build an index refresh scheduler format_str: string that specifies the schedule. has the format: startstep-endstep:refreshrate,startstep-endstep:refreshrate e.g. format_str="0-100:10,100-1000000:500" will refresh the index every 10 steps for the first 100 steps and then every 500 steps from step 100 to 1M. Syntactic Sugar for a fixed schedule: can just pass in a single number e.g. format_str="100" will refresh the index every 100 steps -1 to never refresh ) """ self.format_str = format_str self.train_retriever = train_retriever self.freeze_retriever_steps = freeze_retriever_steps self.steps2rates = IndexRefreshScheduler.parse_index_refresh_schedule_string(format_str) @classmethod def parse_index_refresh_schedule_string(cls, format_str): parsed = [] if format_str == "-1": parsed = [(0, 2**32, 2**32)] elif format_str.isdigit(): parsed = [(0, 2**32, int(format_str))] else: for piece in format_str.split(","): startend, rate = piece.split(":") start, end = startend.split("-") parsed.append((int(start), int(end), int(rate))) return parsed def is_time_to_refresh(self, step): if not (self.train_retriever or step == 0): # if retriever is not trained only refresh at step 0 return False if not step == 0 and step < self.freeze_retriever_steps: # freeze first steps return False for st, en, rate in self.steps2rates: if st <= step < en: steps_since_refresh_schedule_change = step - st return (steps_since_refresh_schedule_change % rate) == 0 logger.warn( "cant calculate refresh rate for this step, I dont have data here" " its likely training step is higher than the specificed refresh rate see --index_refresh_rate for help." ) return False def set_dropout(model, dropout_rate): for mod in model.modules(): if isinstance(mod, torch.nn.Dropout): mod.p = dropout_rate def set_optim(opt, model): from src.AdamWFP32Copy import AdamWFP32Copy retr_optimizer = None optim_class = AdamWFP32Copy optim_args = {"weight_decay": opt.weight_decay, "betas": (0.9, opt.beta2), "eps": opt.epsilon} if opt.is_distributed and opt.shard_optim: from fairscale.optim.oss import OSS optim_args["optim"] = optim_class optim_args["force_broadcast_object"] = True optim_class = OSS optimizer = optim_class(params=model.reader.parameters(), lr=opt.lr, **optim_args) if opt.train_retriever: retr_optimizer = optim_class(params=model.retriever.parameters(), lr=opt.lr_retriever, **optim_args) retr_scheduler = None scheduler_args = {"warmup": opt.warmup_steps, "total": opt.total_steps, "ratio": 0.1} if opt.scheduler == "linear": scheduler_class = WarmupLinearScheduler elif opt.scheduler == "cosine": scheduler_class = CosineScheduler elif opt.scheduler == "fixed": scheduler_class = FixedScheduler else: raise ValueError scheduler = scheduler_class(optimizer, **scheduler_args) if opt.train_retriever: retr_scheduler = scheduler_class(retr_optimizer, **scheduler_args) return optimizer, scheduler, retr_optimizer, retr_scheduler def compute_grad_stats(model): with torch.no_grad(): stats = [] for name, p in get_unwrapped_model_if_wrapped(model).reader.named_parameters(): if p.grad is not None: s1 = torch.min(torch.abs(p.grad)).item() s2 = torch.max(torch.abs(p.grad)).item() s3 = torch.mean(torch.abs(p.grad)).item() s4 = torch.linalg.norm(p.grad).item() stats += [s1, s2, s3, s4] else: stats += [0.0, 0.0, 0.0, 0.0] stats = torch.Tensor(stats).cuda() if torch.distributed.is_initialized(): torch.distributed.all_reduce(stats) stats = stats.view(-1, 4) res = {} res["skip_example"] = (torch.any(torch.isinf(stats)) or torch.any(torch.isnan(stats))).item() res["min"] = stats.min(0)[0][0].item() res["max"] = stats.max(0)[0][1].item() res["mean"] = stats.mean(0)[2].item() return res def write_output(glob_path, output_path): files = list(glob_path.glob("*.txt")) files.sort() with open(output_path, "w") as outfile: for path in files: with open(path, "r") as f: lines = f.readlines() for line in lines: outfile.write(line) path.unlink() glob_path.rmdir() def save_distributed_dataset(data, dataset_name, opt): dir_path = Path(opt.checkpoint_dir) / opt.name write_path = dir_path / "tmp_dir" write_path.mkdir(exist_ok=True) tmp_path = write_path / f"{opt.global_rank}.json" with open(tmp_path, "w") as fw: json.dump(data, fw) if opt.is_distributed: torch.distributed.barrier() if opt.is_main: final_path = dir_path / f"{dataset_name}.jsonl" logger.info(f"Writing dataset with scores at {final_path}") results_path = list(write_path.glob("*.json")) results_path.sort() alldata = [] for path in results_path: with open(path, "r") as f: data = json.load(f) alldata.extend(data) path.unlink() with open(final_path, "w") as fout: for ex in alldata: json.dump(ex, fout, ensure_ascii=False) fout.write("\n") write_path.rmdir() def avg_dist_dict(keys, dictionary): avg = {} for m in keys: v = dictionary[m] if len(v) > 0: avg[m] = np.mean(v) else: avg[m] = 0.0 avg[m] = dist_utils.weighted_average(avg[m], len(v))[0] return avg class WeightedAvgStats: """provides an average over a bunch of stats""" def __init__(self): self.raw_stats: Dict[str, float] = defaultdict(float) self.total_weights: Dict[str, float] = defaultdict(float) def update(self, vals: Dict[str, Tuple[Number, Number]]) -> None: for key, (value, weight) in vals.items(): self.raw_stats[key] += value * weight self.total_weights[key] += weight @property def stats(self) -> Dict[str, float]: return {x: self.raw_stats[x] / self.total_weights[x] for x in self.raw_stats.keys()} @property def tuple_stats(self) -> Dict[str, Tuple[float, float]]: return {x: (self.raw_stats[x] / self.total_weights[x], self.total_weights[x]) for x in self.raw_stats.keys()} def reset(self) -> None: self.raw_stats = defaultdict(float) self.total_weights = defaultdict(float) @property def average_stats(self) -> Dict[str, float]: keys = sorted(self.raw_stats.keys()) if torch.distributed.is_initialized(): torch.distributed.broadcast_object_list(keys, src=0) global_dict = {} for k in keys: if not k in self.total_weights: v = 0.0 else: v = self.raw_stats[k] / self.total_weights[k] v, _ = dist_utils.weighted_average(v, self.total_weights[k]) global_dict[k] = v return global_dict def get_unwrapped_model_if_wrapped(model): if hasattr(model, "module"): return model.module return model
atlas-main
src/util.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import copy import torch from src.modeling_bert import BertModel EMBEDDINGS_DIM: int = 768 class Contriever(BertModel): def __init__(self, config, pooling="average", **kwargs): super().__init__(config, add_pooling_layer=False) if not hasattr(config, "pooling"): self.config.pooling = pooling def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, output_attentions=None, output_hidden_states=None, normalize=False, ): model_output = super().forward( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) last_hidden = model_output["last_hidden_state"] last_hidden = last_hidden.masked_fill(~attention_mask[..., None].bool(), 0.0).clone() if self.config.pooling == "average": emb = last_hidden.sum(dim=1).clone() / attention_mask.sum(dim=1)[..., None].clone() elif self.config.pooling == "sqrt": emb = last_hidden.sum(dim=1) / torch.sqrt(attention_mask.sum(dim=1)[..., None].float()) elif self.config.pooling == "cls": emb = last_hidden[:, 0] if normalize: emb = torch.nn.functional.normalize(emb, dim=-1).clone() return emb class BaseRetriever(torch.nn.Module): """A retriever needs to be able to embed queries and passages, and have a forward function""" def __init__(self, *args, **kwargs): super(BaseRetriever, self).__init__() def embed_queries(self, *args, **kwargs): raise NotImplementedError() def embed_passages(self, *args, **kwargs): raise NotImplementedError() def forward(self, *args, is_passages=False, **kwargs): if is_passages: return self.embed_passages(*args, **kwargs) else: return self.embed_queries(*args, **kwargs) def gradient_checkpointing_enable(self): for m in self.children(): m.gradient_checkpointing_enable() def gradient_checkpointing_disable(self): for m in self.children(): m.gradient_checkpointing_disable() class DualEncoderRetriever(BaseRetriever): """Wrapper for standard contriever, or other dual encoders that parameter-share""" def __init__(self, opt, contriever): super(DualEncoderRetriever, self).__init__() self.opt = opt self.contriever = contriever def _embed(self, *args, **kwargs): return self.contriever(*args, **kwargs) def embed_queries(self, *args, **kwargs): return self._embed(*args, **kwargs) def embed_passages(self, *args, **kwargs): return self._embed(*args, **kwargs) class UntiedDualEncoderRetriever(BaseRetriever): """Like DualEncoderRetriever, but dedicated encoders for passage and query embedding""" def __init__(self, opt, query_encoder, passage_encoder=None): """Create the module: if passage_encoder is none, one will be created as a deep copy of query_encoder""" super(UntiedDualEncoderRetriever, self).__init__() self.opt = opt self.query_contriever = query_encoder if passage_encoder is None: passage_encoder = copy.deepcopy(query_encoder) if hasattr(query_encoder, "module") else query_encoder self.passage_contriever = passage_encoder def embed_queries(self, *args, **kwargs): return self.query_contriever(*args, **kwargs) def embed_passages(self, *args, **kwargs): if self.opt.query_side_retriever_training: is_train = self.passage_contriever.training self.passage_contriever.eval() with torch.no_grad(): passage_emb = self.passage_contriever(*args, **kwargs) if is_train: self.passage_contriever.train() else: passage_emb = self.passage_contriever(*args, **kwargs) return passage_emb
atlas-main
src/retrievers.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import logging import string from collections import Counter from typing import Callable import numpy as np import regex from rouge import Rouge rouge = Rouge() logger = logging.getLogger(__name__) # Normalization and score functions from SQuAD evaluation script https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/ def normalize_answer(s: str) -> str: def remove_articles(text): return regex.sub(r"\b(a|an|the)\b", " ", text) def white_space_fix(text): return " ".join(text.split()) def remove_punc(text): exclude = set(string.punctuation) return "".join(ch for ch in text if ch not in exclude) def lower(text): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(s)))) def em(prediction, ground_truth, normalize_fn): return float(normalize_fn(prediction) == normalize_fn(ground_truth)) def f1(prediction, ground_truth, normalize_fn): prediction_tokens = normalize_fn(prediction).split() ground_truth_tokens = normalize_fn(ground_truth).split() common = Counter(prediction_tokens) & Counter(ground_truth_tokens) num_same = sum(common.values()) if num_same == 0: return 0 precision = 1.0 * num_same / len(prediction_tokens) recall = 1.0 * num_same / len(ground_truth_tokens) f1 = (2 * precision * recall) / (precision + recall) return f1 def rouge_wrapper(prediction, ground_truth): try: result = rouge.get_scores(prediction, ground_truth, avg=True) return result["rouge-1"]["f"], result["rouge-2"]["f"], result["rouge-l"]["f"] except: return 0.0, 0.0, 0.0 def f1_score(prediction, ground_truths, normalize_fn: Callable[[str], str] = lambda x: x): return max([f1(prediction, gt, normalize_fn) for gt in ground_truths]) def exact_match_score(prediction, ground_truths, normalize_fn: Callable[[str], str] = lambda x: x): return max([em(prediction, gt, normalize_fn) for gt in ground_truths]) def rouge_score(prediction, ground_truths): ground_truths = [x for x in ground_truths if len(x) > 0] if ( len(prediction) == 0 or len(ground_truths) == 0 ): # check if empty prediction or if there is no hypothesis with len > 0 return 0.0, 0.0, 0.0 scores = [rouge_wrapper(prediction, gt) for gt in ground_truths] rouge1 = max(s[0] for s in scores) rouge2 = max(s[1] for s in scores) rougel = max(s[2] for s in scores) return rouge1, rouge2, rougel
atlas-main
src/evaluation.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import argparse import json import logging from src import dist_utils from src.index import DistributedFAISSIndex, DistributedIndex logger = logging.getLogger(__name__) def load_passages(filenames, maxload=-1): def process_jsonl( fname, counter, passages, world_size, global_rank, maxload, ): def load_item(line): if line.strip() != "": item = json.loads(line) assert "id" in item if "title" in item and "section" in item and len(item["section"]) > 0: item["title"] = f"{item['title']}: {item['section']}" return item else: print("empty line") for line in open(fname): if maxload > -1 and counter >= maxload: break ex = None if (counter % world_size) == global_rank: ex = load_item(line) passages.append(ex) counter += 1 return passages, counter counter = 0 passages = [] global_rank = dist_utils.get_rank() world_size = dist_utils.get_world_size() for filename in filenames: passages, counter = process_jsonl( filename, counter, passages, world_size, global_rank, maxload, ) return passages def save_embeddings_and_index(index, opt: argparse.Namespace) -> None: """ Saves embeddings and passages files. It also saves faiss index files if FAISS mode is used. """ index.save_index(opt.save_index_path, opt.save_index_n_shards) def load_or_initialize_index(opt): if opt.index_mode == "flat": index = DistributedIndex() elif opt.index_mode == "faiss": index = DistributedFAISSIndex(opt.faiss_index_type, opt.faiss_code_size) else: raise ValueError(f"unsupported index mode {opt.index_mode}") if opt.load_index_path is not None: logger.info(f"Loading index from: {opt.load_index_path} with index mode: {opt.index_mode}") if opt.index_mode == "faiss": logger.info(f"loading faiss index type {opt.faiss_index_type} with parameters {opt.faiss_code_size}") index.load_index(opt.load_index_path, opt.save_index_n_shards) passages = [index.doc_map[i] for i in range(len(index.doc_map))] else: logger.info(f"Loading passages from: {opt.passages}") passages = [] if not opt.use_file_passages: passages = load_passages(opt.passages, opt.max_passages) index.init_embeddings(passages) return index, passages
atlas-main
src/index_io.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import errno import logging import os from pathlib import Path from typing import Dict, List, Tuple, Union import torch import transformers import src.fid from src import dist_utils from src.atlas import Atlas from src.retrievers import Contriever, DualEncoderRetriever, UntiedDualEncoderRetriever from src.util import cast_to_precision, set_dropout, set_optim Number = Union[float, int] logger = logging.getLogger(__name__) def get_checkpoint_path(opt): checkpoint_path = Path(opt.checkpoint_dir) / opt.name return checkpoint_path def create_checkpoint_directories(opt): checkpoint_path = get_checkpoint_path(opt) os.makedirs(checkpoint_path, exist_ok=True) if opt.save_index_path: os.makedirs(opt.save_index_path, exist_ok=True) dist_utils.barrier() return checkpoint_path, opt.save_index_path def load_retriever(opt, opt_checkpoint=None): if opt.use_file_passages: return None, None contriever_encoder = Contriever.from_pretrained(opt.retriever_model_path) retriever_tokenizer = transformers.AutoTokenizer.from_pretrained(opt.retriever_model_path) # once you have done query side training you cannot go back to a parameter-tied retriever if opt_checkpoint is not None: retriever_is_untied = opt_checkpoint.query_side_retriever_training or opt.query_side_retriever_training else: retriever_is_untied = opt.query_side_retriever_training if retriever_is_untied: retriever = UntiedDualEncoderRetriever(opt, contriever_encoder) else: retriever = DualEncoderRetriever(opt, contriever_encoder) return retriever, retriever_tokenizer def _convert_state_dict_from_dual_encoder_retriever(state_dict): """handles when we want to load an UntiedDualEncoderRetriever from a DualEncoderRetriever state dict""" new_state_dict = {} for k, tensor in state_dict.items(): if k.startswith("retriever"): new_state_dict[k.replace("retriever.contriever", "retriever.passage_contriever")] = tensor new_state_dict[k.replace("retriever.contriever", "retriever.query_contriever")] = tensor else: new_state_dict[k] = tensor return new_state_dict def load_reader(opt): reader = None if not opt.retrieve_only: reader = src.fid.FiD.from_pretrained(opt.reader_model_type) if opt.compute_crossattention_stats or "eval" in opt.gold_score_mode or "std" in opt.gold_score_mode: reader.overwrite_forward_crossattention() reader.create_crossattention_storage() reader_tokenizer = transformers.AutoTokenizer.from_pretrained(opt.reader_model_type) return reader, reader_tokenizer def _set_reader_encoder_cfg(model, opt): if model.reader is not None: cfg = model.reader.encoder.config cfg.n_context = opt.n_context cfg.bsz = opt.per_gpu_batch_size def _cast_atlas_to_precision(atlas_model, precision): if atlas_model.reader is not None: atlas_model.reader = cast_to_precision(atlas_model.reader, precision) if atlas_model.retriever is not None and precision == "bf16": atlas_model.retriever = cast_to_precision(atlas_model.retriever, precision) def _cast_and_set_attrs_and_send_to_device(model, opt): _set_reader_encoder_cfg(model, opt) set_dropout(model, opt.dropout) _cast_atlas_to_precision(model, opt.precision) model = model.to(opt.device) return model def _load_atlas_model_state(opt, opt_checkpoint, model, model_dict): model_dict = { k.replace("retriever.module", "retriever").replace("reader.module", "reader"): v for k, v in model_dict.items() } if opt.query_side_retriever_training and not opt_checkpoint.query_side_retriever_training: model_dict = _convert_state_dict_from_dual_encoder_retriever(model_dict) if opt.retrieve_only: # dont load reader if in retrieve only mode model_dict = {k: v for k, v in model_dict.items() if not k.startswith("reader")} if opt.use_file_passages: # dont load retriever if in use_file_passages mode model_dict = {k: v for k, v in model_dict.items() if not k.startswith("retriever")} model.load_state_dict(model_dict) model = _cast_and_set_attrs_and_send_to_device(model, opt) return model def load_atlas_model(dir_path, opt, reset_params=False, eval_only=False): epoch_path = os.path.realpath(dir_path) save_path = os.path.join(epoch_path, "model.pth.tar") logger.info(f"Loading {epoch_path}") logger.info(f"loading checkpoint {save_path}") checkpoint = torch.load(save_path, map_location="cpu") opt_checkpoint = checkpoint["opt"] step = checkpoint["step"] model_dict = checkpoint["model"] reader, reader_tokenizer = load_reader(opt) retriever, retriever_tokenizer = load_retriever(opt, opt_checkpoint) model = Atlas(opt, reader, retriever, reader_tokenizer, retriever_tokenizer) model = _load_atlas_model_state(opt, opt_checkpoint, model, model_dict) if eval_only: return model, None, None, None, None, opt_checkpoint, step if not reset_params: optimizer, scheduler, retr_optimizer, retr_scheduler = set_optim(opt_checkpoint, model) scheduler.load_state_dict(checkpoint["scheduler"]) optimizer.load_state_dict(checkpoint["optimizer"]) else: optimizer, scheduler, retr_optimizer, retr_scheduler = set_optim(opt, model) return model, optimizer, scheduler, retr_optimizer, retr_scheduler, opt_checkpoint, step def init_atlas_model(opt, eval_only): reader, reader_tokenizer = load_reader(opt) retriever, retriever_tokenizer = load_retriever(opt) model = Atlas(opt, reader, retriever, reader_tokenizer, retriever_tokenizer) model = _cast_and_set_attrs_and_send_to_device(model, opt) if eval_only: return model, None, None, None, None, opt, 0 optimizer, scheduler, retr_optimizer, retr_scheduler = set_optim(opt, model) return model, optimizer, scheduler, retr_optimizer, retr_scheduler, opt, 0 def load_or_initialize_atlas_model(opt, eval_only=False): """ Either initializes a Atlas from t5 and contriever or loads one from disk. if opt.model_path is "none" and {opt.checkpoint_dir/opt.name} doesn't exist, it will init a Atlas or, if opt.model_path is "none" and {opt.checkpoint_dir/opt.name} does exist, it will load the Atlas at opt.checkpoint_dir/opt.name/latest or, if opt.model_path is not "none" it will load the saved Atlas in opt.model_path """ checkpoint_path = get_checkpoint_path(opt) latest_checkpoint_path = os.path.join(checkpoint_path, "checkpoint", "latest") if opt.model_path == "none": if not os.path.exists(latest_checkpoint_path): # Fresh run: return init_atlas_model(opt, eval_only) else: # Resume run load_path, reset_params = latest_checkpoint_path, False else: # fresh finetune run, initialized from old model load_path, reset_params = opt.model_path, True model, optimizer, scheduler, retr_optimizer, retr_scheduler, opt_checkpoint, loaded_step = load_atlas_model( load_path, opt, reset_params=reset_params, eval_only=eval_only ) logger.info(f"Model loaded from {load_path}") step = 0 if opt.model_path != "none" else loaded_step return model, optimizer, scheduler, retr_optimizer, retr_scheduler, opt, step def save_atlas_model(model, optimizer, scheduler, retr_optimizer, retr_scheduler, step, opt, dir_path, name): if opt.save_optimizer and opt.shard_optim: optimizer.consolidate_state_dict() if retr_optimizer: retr_optimizer.consolidate_state_dict() if not opt.is_main: return 0 def symlink_force(target, link_name): try: os.symlink(target, link_name) except OSError as e: if e.errno == errno.EEXIST: os.remove(link_name) os.symlink(target, link_name) else: raise e model_to_save = model.module if hasattr(model, "module") else model path = os.path.join(dir_path, "checkpoint") epoch_path = os.path.join(path, name) # "step-%s" % step) os.makedirs(epoch_path, exist_ok=True) cp = os.path.join(path, "latest") fp = os.path.join(epoch_path, "model.pth.tar") optim_state = optimizer.state_dict() if opt.save_optimizer else None if retr_optimizer and opt.save_optimizer: retr_optim_state = retr_optimizer.state_dict() else: retr_optim_state = None checkpoint = { "step": step, "model": model_to_save.state_dict(), "optimizer": optim_state, "retr_optimizer": retr_optim_state, "scheduler": scheduler.state_dict(), "retr_scheduler": retr_scheduler.state_dict() if retr_scheduler else None, "opt": opt, } torch.save(checkpoint, fp) symlink_force(epoch_path, cp) if opt.save_optimizer and opt.shard_optim: optimizer._all_states = []
atlas-main
src/model_io.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch from torch.optim import adamw as _adamw AdamW = _adamw.AdamW adamw = _adamw.F.adamw class AdamWFP32Copy(AdamW): r"""Implements AdamW algorithm. .. math:: \begin{aligned} &\rule{110mm}{0.4pt} \\ &\textbf{input} : \gamma \text{(lr)}, \: \beta_1, \beta_2 \text{(betas)}, \: \theta_0 \text{(params)}, \: f(\theta) \text{(objective)}, \: \epsilon \text{ (epsilon)} \\ &\hspace{13mm} \lambda \text{(weight decay)}, \: \textit{amsgrad}, \: \textit{maximize} \\ &\textbf{initialize} : m_0 \leftarrow 0 \text{ (first moment)}, v_0 \leftarrow 0 \text{ ( second moment)}, \: \widehat{v_0}^{max}\leftarrow 0 \\[-1.ex] &\rule{110mm}{0.4pt} \\ &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\ &\hspace{5mm}\textbf{if} \: \textit{maximize}: \\ &\hspace{10mm}g_t \leftarrow -\nabla_{\theta} f_t (\theta_{t-1}) \\ &\hspace{5mm}\textbf{else} \\ &\hspace{10mm}g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \\ &\hspace{5mm} \theta_t \leftarrow \theta_{t-1} - \gamma \lambda \theta_{t-1} \\ &\hspace{5mm}m_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1) g_t \\ &\hspace{5mm}v_t \leftarrow \beta_2 v_{t-1} + (1-\beta_2) g^2_t \\ &\hspace{5mm}\widehat{m_t} \leftarrow m_t/\big(1-\beta_1^t \big) \\ &\hspace{5mm}\widehat{v_t} \leftarrow v_t/\big(1-\beta_2^t \big) \\ &\hspace{5mm}\textbf{if} \: amsgrad \\ &\hspace{10mm}\widehat{v_t}^{max} \leftarrow \mathrm{max}(\widehat{v_t}^{max}, \widehat{v_t}) \\ &\hspace{10mm}\theta_t \leftarrow \theta_t - \gamma \widehat{m_t}/ \big(\sqrt{\widehat{v_t}^{max}} + \epsilon \big) \\ &\hspace{5mm}\textbf{else} \\ &\hspace{10mm}\theta_t \leftarrow \theta_t - \gamma \widehat{m_t}/ \big(\sqrt{\widehat{v_t}} + \epsilon \big) \\ &\rule{110mm}{0.4pt} \\[-1.ex] &\bf{return} \: \theta_t \\[-1.ex] &\rule{110mm}{0.4pt} \\[-1.ex] \end{aligned} For further details regarding the algorithm we refer to `Decoupled Weight Decay Regularization`_. Args: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float, optional): learning rate (default: 1e-3) betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999)) eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-8) weight_decay (float, optional): weight decay coefficient (default: 1e-2) amsgrad (boolean, optional): whether to use the AMSGrad variant of this algorithm from the paper `On the Convergence of Adam and Beyond`_ (default: False) maximize (bool, optional): maximize the params based on the objective, instead of minimizing (default: False) foreach (bool, optional): whether foreach implementation of optimizer is used (default: None) .. _Decoupled Weight Decay Regularization: https://arxiv.org/abs/1711.05101 .. _On the Convergence of Adam and Beyond: https://openreview.net/forum?id=ryQu7f-RZ """ @torch.no_grad() def step(self, closure=None, scale=1.0): """Performs a single optimization step. Args: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: with torch.enable_grad(): loss = closure() for group in self.param_groups: params_with_grad = [] grads = [] exp_avgs = [] exp_avg_sqs = [] state_sums = [] max_exp_avg_sqs = [] state_steps = [] amsgrad = group["amsgrad"] beta1, beta2 = group["betas"] for p in group["params"]: if p.grad is None: continue pgrad = p.grad state = self.state[p] # State initialization if len(state) == 0: state["step"] = 0 state["float32copy"] = p.to(torch.float32, memory_format=torch.preserve_format) p = state["float32copy"] # Exponential moving average of gradient values state["exp_avg"] = torch.zeros_like(p, memory_format=torch.preserve_format) # Exponential moving average of squared gradient values state["exp_avg_sq"] = torch.zeros_like(p, memory_format=torch.preserve_format) if amsgrad: # Maintains max of all exp. moving avg. of sq. grad. values state["max_exp_avg_sq"] = torch.zeros_like(p, memory_format=torch.preserve_format) p = state["float32copy"] params_with_grad.append(p) # grads.append(p.grad) if pgrad.is_sparse: raise RuntimeError("AdamW does not support sparse gradients") grads.append(pgrad.float() / scale) exp_avgs.append(state["exp_avg"]) exp_avg_sqs.append(state["exp_avg_sq"]) if amsgrad: max_exp_avg_sqs.append(state["max_exp_avg_sq"]) # update the steps for each param group update state["step"] += 1 # record the step after step update state_steps.append(state["step"]) adam_params = { "params": params_with_grad, "grads": grads, "exp_avgs": exp_avgs, "exp_avg_sqs": exp_avg_sqs, "max_exp_avg_sqs": max_exp_avg_sqs, "state_steps": state_steps, "amsgrad": amsgrad, "beta1": beta1, "beta2": beta2, "lr": group["lr"], "weight_decay": group["weight_decay"], "eps": group["eps"], } if "maximize" in group: adam_params["maximize"] = group["maximize"] if "foreach" in group: adam_params["foreach"] = group["foreach"] adamw(**adam_params) for p in group["params"]: if p.grad is None: continue state = self.state[p] p.copy_(state["float32copy"]) return loss
atlas-main
src/AdamWFP32Copy.py
# coding=utf-8 # Copyright 2018 Mesh TensorFlow authors, T5 Authors and HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch T5 model. """ import copy import math import os import warnings import torch from torch import nn from torch.nn import CrossEntropyLoss from torch.utils.checkpoint import checkpoint from transformers.activations import ACT2FN from transformers.file_utils import ( DUMMY_INPUTS, DUMMY_MASK, add_start_docstrings, add_start_docstrings_to_model_forward, is_torch_fx_proxy, replace_return_docstrings, ) from transformers.modeling_outputs import ( BaseModelOutput, BaseModelOutputWithPastAndCrossAttentions, Seq2SeqLMOutput, Seq2SeqModelOutput, ) from transformers.modeling_utils import PreTrainedModel, find_pruneable_heads_and_indices, prune_linear_layer from transformers.utils import logging from transformers.utils.model_parallel_utils import assert_device_map, get_device_map from transformers.models.t5.configuration_t5 import T5Config logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "T5Config" _TOKENIZER_FOR_DOC = "T5Tokenizer" _CHECKPOINT_FOR_DOC = "t5-small" #################################################### # This dict contains ids and associated url # for the pretrained weights provided with the models #################################################### T5_PRETRAINED_MODEL_ARCHIVE_LIST = [ "t5-small", "t5-base", "t5-large", "t5-3b", "t5-11b", # See all T5 models at https://huggingface.co/models?filter=t5 ] #################################################### # This is a conversion method from TF 1.0 to PyTorch # More details: https://medium.com/huggingface/from-tensorflow-to-pytorch-265f40ef2a28 #################################################### def load_tf_weights_in_t5(model, config, tf_checkpoint_path): """Load tf checkpoints in a pytorch model.""" try: import re import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise tf_path = os.path.abspath(tf_checkpoint_path) logger.info(f"Converting TensorFlow checkpoint from {tf_path}") # Load weights from TF model init_vars = tf.train.list_variables(tf_path) names = [] tf_weights = {} for name, shape in init_vars: logger.info(f"Loading TF weight {name} with shape {shape}") array = tf.train.load_variable(tf_path, name) names.append(name) tf_weights[name] = array for txt_name in names: name = txt_name.split("/") # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v # which are not required for using pretrained model if any( n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"] for n in name ): logger.info(f"Skipping {'/'.join(name)}") tf_weights.pop(txt_name, None) continue if "_slot_" in name[-1]: logger.info(f"Skipping {'/'.join(name)}") tf_weights.pop(txt_name, None) continue pointer = model array = tf_weights[txt_name] for m_name in name: if re.fullmatch(r"[A-Za-z]+_\d+", m_name): scope_names = re.split(r"_(\d+)", m_name) else: scope_names = [m_name] if scope_names[0] in ["kernel", "scale", "embedding"]: pointer = getattr(pointer, "weight") elif scope_names[0] == "self_attention": pointer = getattr(pointer, "layer") pointer = pointer[0] elif scope_names[0] == "enc_dec_attention": pointer = getattr(pointer, "layer") pointer = pointer[1] elif scope_names[0] == "dense_relu_dense": pointer = getattr(pointer, "layer") pointer = pointer[2] elif scope_names[0] == "rms_norm": if hasattr(pointer, "layer_norm"): pointer = getattr(pointer, "layer_norm") elif hasattr(pointer, "final_layer_norm"): pointer = getattr(pointer, "final_layer_norm") elif scope_names[0] == "scale": pointer = getattr(pointer, "weight") elif scope_names[0] == "output_bias" or scope_names[0] == "beta": pointer = getattr(pointer, "bias") elif scope_names[0] == "squad": pointer = getattr(pointer, "classifier") elif scope_names[0] == "decoder" and name[1] == "logits": continue elif scope_names[0] == "logits": pointer = getattr(pointer, "lm_head") elif scope_names[0] == "wi" and len(scope_names) > 1 and scope_names[1].isdigit(): pointer = getattr(pointer, f"wi_{scope_names[1]}") continue else: try: pointer = getattr(pointer, scope_names[0]) except AttributeError: logger.info(f"Skipping {'/'.join(name)}") continue if len(scope_names) >= 2: num = int(scope_names[1]) pointer = pointer[num] if scope_names[0] not in ["kernel", "scale", "embedding"]: pointer = getattr(pointer, "weight") if scope_names[0] != "embedding": logger.info(f"Transposing numpy weight of shape {array.shape} for {name}") array = np.transpose(array) try: assert ( pointer.shape == array.shape ), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" except AssertionError as e: e.args += (pointer.shape, array.shape) raise logger.info(f"Initialize PyTorch weight {name}") pointer.data = torch.from_numpy(array.astype(np.float32)) tf_weights.pop(txt_name, None) logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys())}.") return model #################################################### # PyTorch Models are constructed by sub-classing # - torch.nn.Module for the layers and # - PreTrainedModel for the models (it-self a sub-class of nn.Module) #################################################### PARALLELIZE_DOCSTRING = r""" This is an experimental feature and is a subject to change at a moment's notice. Uses a device map to distribute attention modules of the model across several devices. If no device map is given, it will evenly distribute blocks across all devices. Args: device_map (`Dict[int, list]`, optional, defaults to None): A dictionary that maps attention modules to devices. Note that the embedding module and LMHead are always automatically mapped to the first device (for esoteric reasons). That means that the first device should have fewer attention modules mapped to it than other devices. For reference, the t5 models have the following number of attention modules: - t5-small: 6 - t5-base: 12 - t5-large: 24 - t5-3b: 24 - t5-11b: 24 Example: ```python # Here is an example of a device map on a machine with 4 GPUs using t5-3b, which has a total of 24 attention modules: model = T5ForConditionalGeneration.from_pretrained('t5-3b') device_map = {0: [0, 1, 2], 1: [3, 4, 5, 6, 7, 8, 9], 2: [10, 11, 12, 13, 14, 15, 16], 3: [17, 18, 19, 20, 21, 22, 23]} model.parallelize(device_map) ``` """ DEPARALLELIZE_DOCSTRING = r""" Moves the model to cpu from a model parallel state. Example: ```python # On a 4 GPU machine with t5-3b: model = T5ForConditionalGeneration.from_pretrained('t5-3b') device_map = {0: [0, 1, 2], 1: [3, 4, 5, 6, 7, 8, 9], 2: [10, 11, 12, 13, 14, 15, 16], 3: [17, 18, 19, 20, 21, 22, 23]} model.parallelize(device_map) # Splits the model across several devices model.deparallelize() # Put the model back on cpu and cleans memory by calling torch.cuda.empty_cache() ``` """ class T5LayerNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): """ Construct a layernorm module in the T5 style No bias and no subtraction of mean. """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): # layer norm should always be calculated in float32 variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) # convert into half-precision if necessary if self.weight.dtype in [torch.float16, torch.bfloat16]: hidden_states = hidden_states.to(self.weight.dtype) return self.weight * hidden_states class T5DenseReluDense(nn.Module): def __init__(self, config): super().__init__() self.wi = nn.Linear(config.d_model, config.d_ff, bias=False) self.wo = nn.Linear(config.d_ff, config.d_model, bias=False) self.dropout = nn.Dropout(config.dropout_rate) def forward(self, hidden_states): hidden_states = self.wi(hidden_states) hidden_states = nn.functional.relu(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.wo(hidden_states) # hidden_states = torch.clamp(hidden_states, -1000, 1000) return hidden_states class T5DenseGatedGeluDense(nn.Module): def __init__(self, config): super().__init__() self.wi_0 = nn.Linear(config.d_model, config.d_ff, bias=False) self.wi_1 = nn.Linear(config.d_model, config.d_ff, bias=False) self.wo = nn.Linear(config.d_ff, config.d_model, bias=False) self.dropout = nn.Dropout(config.dropout_rate) self.gelu_act = ACT2FN["gelu_new"] def forward(self, hidden_states): hidden_gelu = self.wi_0(hidden_states) hidden_gelu = self.gelu_act(hidden_gelu.float()).type_as(hidden_states) hidden_linear = self.wi_1(hidden_states) hidden_states = hidden_gelu * hidden_linear hidden_states = self.dropout(hidden_states) hidden_states = self.wo(hidden_states) # hidden_states = torch.clamp(hidden_states, -1000, 1000) return hidden_states class T5LayerFF(nn.Module): def __init__(self, config): super().__init__() if config.feed_forward_proj == "relu": self.DenseReluDense = T5DenseReluDense(config) elif config.feed_forward_proj == "gated-gelu": self.DenseReluDense = T5DenseGatedGeluDense(config) else: raise ValueError( f"{self.config.feed_forward_proj} is not supported. Choose between `relu` and `gated-gelu`" ) self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) self.dropout = nn.Dropout(config.dropout_rate) def forward(self, hidden_states): forwarded_states = self.layer_norm(hidden_states) forwarded_states = self.DenseReluDense(forwarded_states) hidden_states = hidden_states + self.dropout(forwarded_states) return hidden_states class T5Attention(nn.Module): def __init__(self, config: T5Config, has_relative_attention_bias=False): super().__init__() self.is_decoder = config.is_decoder self.has_relative_attention_bias = has_relative_attention_bias self.relative_attention_num_buckets = config.relative_attention_num_buckets self.d_model = config.d_model self.key_value_proj_dim = config.d_kv self.n_heads = config.num_heads self.dropout = config.dropout_rate self.inner_dim = self.n_heads * self.key_value_proj_dim # Mesh TensorFlow initialization to avoid scaling before softmax self.q = nn.Linear(self.d_model, self.inner_dim, bias=False) self.k = nn.Linear(self.d_model, self.inner_dim, bias=False) self.v = nn.Linear(self.d_model, self.inner_dim, bias=False) self.o = nn.Linear(self.inner_dim, self.d_model, bias=False) if self.has_relative_attention_bias: self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads) self.pruned_heads = set() self.gradient_checkpointing = False def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices(heads, self.n_heads, self.key_value_proj_dim, self.pruned_heads) # Prune linear layers self.q = prune_linear_layer(self.q, index) self.k = prune_linear_layer(self.k, index) self.v = prune_linear_layer(self.v, index) self.o = prune_linear_layer(self.o, index, dim=1) # Update hyper params self.n_heads = self.n_heads - len(heads) self.inner_dim = self.key_value_proj_dim * self.n_heads self.pruned_heads = self.pruned_heads.union(heads) @staticmethod def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128): """ Adapted from Mesh Tensorflow: https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593 Translate relative position to a bucket number for relative attention. The relative position is defined as memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for small absolute relative_position and larger buckets for larger absolute relative_positions. All relative positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket. This should allow for more graceful generalization to longer sequences than the model has been trained on Args: relative_position: an int32 Tensor bidirectional: a boolean - whether the attention is bidirectional num_buckets: an integer max_distance: an integer Returns: a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets) """ relative_buckets = 0 if bidirectional: num_buckets //= 2 relative_buckets += (relative_position > 0).to(torch.long) * num_buckets relative_position = torch.abs(relative_position) else: relative_position = -torch.min(relative_position, torch.zeros_like(relative_position)) # now relative_position is in the range [0, inf) # half of the buckets are for exact increments in positions max_exact = num_buckets // 2 is_small = relative_position < max_exact # The other half of the buckets are for logarithmically bigger bins in positions up to max_distance relative_postion_if_large = max_exact + ( torch.log(relative_position.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact) ).to(torch.long) relative_postion_if_large = torch.min( relative_postion_if_large, torch.full_like(relative_postion_if_large, num_buckets - 1) ) relative_buckets += torch.where(is_small, relative_position, relative_postion_if_large) return relative_buckets def compute_bias(self, query_length, key_length): """Compute binned relative position bias""" context_position = torch.arange( query_length, dtype=torch.long, device=self.relative_attention_bias.weight.device )[:, None] memory_position = torch.arange(key_length, dtype=torch.long, device=self.relative_attention_bias.weight.device)[ None, : ] relative_position = memory_position - context_position # shape (query_length, key_length) relative_position_bucket = self._relative_position_bucket( relative_position, # shape (query_length, key_length) bidirectional=(not self.is_decoder), num_buckets=self.relative_attention_num_buckets, ) values = self.relative_attention_bias(relative_position_bucket) # shape (query_length, key_length, num_heads) values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length) return values def forward( self, hidden_states, mask=None, key_value_states=None, position_bias=None, past_key_value=None, layer_head_mask=None, query_length=None, use_cache=False, output_attentions=False, ): """ Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states). """ # Input is (batch_size, seq_length, dim) # Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length) # past_key_value[0] is (batch_size, n_heads, q_len - 1, dim_per_head) batch_size, seq_length = hidden_states.shape[:2] real_seq_length = seq_length if past_key_value is not None: assert ( len(past_key_value) == 2 ), f"past_key_value should have 2 past states: keys and values. Got { len(past_key_value)} past states" real_seq_length += past_key_value[0].shape[2] if query_length is None else query_length key_length = real_seq_length if key_value_states is None else key_value_states.shape[1] def shape(states): """projection""" return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2) def unshape(states): """reshape""" return states.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim) def project(hidden_states, proj_layer, key_value_states, past_key_value): """projects hidden states correctly to key/query states""" if key_value_states is None: # self-attn # (batch_size, n_heads, seq_length, dim_per_head) hidden_states = shape(proj_layer(hidden_states)) elif past_key_value is None: # cross-attn # (batch_size, n_heads, seq_length, dim_per_head) hidden_states = shape(proj_layer(key_value_states)) if past_key_value is not None: if key_value_states is None: # self-attn # (batch_size, n_heads, key_length, dim_per_head) hidden_states = torch.cat([past_key_value, hidden_states], dim=2) else: # cross-attn hidden_states = past_key_value return hidden_states # get query states query_states = shape(self.q(hidden_states)) # (batch_size, n_heads, seq_length, dim_per_head) # get key/value states key_states = project( hidden_states, self.k, key_value_states, past_key_value[0] if past_key_value is not None else None ) value_states = project( hidden_states, self.v, key_value_states, past_key_value[1] if past_key_value is not None else None ) # compute scores scores = torch.matmul( query_states, key_states.transpose(3, 2) ) # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9 if position_bias is None: if not self.has_relative_attention_bias: position_bias = torch.zeros( (1, self.n_heads, real_seq_length, key_length), device=scores.device, dtype=scores.dtype ) if self.gradient_checkpointing and self.training: position_bias.requires_grad = True else: position_bias = self.compute_bias(real_seq_length, key_length) # if key and values are already calculated # we want only the last query position bias if past_key_value is not None: position_bias = position_bias[:, :, -hidden_states.size(1) :, :] if mask is not None: position_bias = position_bias + mask # (batch_size, n_heads, seq_length, key_length) scores += position_bias attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as( scores ) # (batch_size, n_heads, seq_length, key_length) attn_weights = nn.functional.dropout( attn_weights, p=self.dropout, training=self.training ) # (batch_size, n_heads, seq_length, key_length) # Mask heads if we want to if layer_head_mask is not None: attn_weights = attn_weights * layer_head_mask attn_output = unshape(torch.matmul(attn_weights, value_states)) # (batch_size, seq_length, dim) attn_output = self.o(attn_output) present_key_value_state = (key_states, value_states) if (self.is_decoder and use_cache) else None outputs = (attn_output,) + (present_key_value_state,) + (position_bias,) if output_attentions: outputs = outputs + (attn_weights,) return outputs class T5LayerSelfAttention(nn.Module): def __init__(self, config, has_relative_attention_bias=False): super().__init__() self.SelfAttention = T5Attention(config, has_relative_attention_bias=has_relative_attention_bias) self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) self.dropout = nn.Dropout(config.dropout_rate) def forward( self, hidden_states, attention_mask=None, position_bias=None, layer_head_mask=None, past_key_value=None, use_cache=False, output_attentions=False, ): normed_hidden_states = self.layer_norm(hidden_states) attention_output = self.SelfAttention( normed_hidden_states, mask=attention_mask, position_bias=position_bias, layer_head_mask=layer_head_mask, past_key_value=past_key_value, use_cache=use_cache, output_attentions=output_attentions, ) hidden_states = hidden_states + self.dropout(attention_output[0]) outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them return outputs class T5LayerCrossAttention(nn.Module): def __init__(self, config): super().__init__() self.EncDecAttention = T5Attention(config, has_relative_attention_bias=False) self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) self.dropout = nn.Dropout(config.dropout_rate) def forward( self, hidden_states, key_value_states, attention_mask=None, position_bias=None, layer_head_mask=None, past_key_value=None, use_cache=False, query_length=None, output_attentions=False, ): normed_hidden_states = self.layer_norm(hidden_states) attention_output = self.EncDecAttention( normed_hidden_states, mask=attention_mask, key_value_states=key_value_states, position_bias=position_bias, layer_head_mask=layer_head_mask, past_key_value=past_key_value, use_cache=use_cache, query_length=query_length, output_attentions=output_attentions, ) layer_output = hidden_states + self.dropout(attention_output[0]) outputs = (layer_output,) + attention_output[1:] # add attentions if we output them return outputs class T5Block(nn.Module): def __init__(self, config, has_relative_attention_bias=False): super().__init__() self.is_decoder = config.is_decoder self.layer = nn.ModuleList() self.layer.append(T5LayerSelfAttention(config, has_relative_attention_bias=has_relative_attention_bias)) if self.is_decoder: self.layer.append(T5LayerCrossAttention(config)) self.layer.append(T5LayerFF(config)) def forward( self, hidden_states, attention_mask=None, position_bias=None, encoder_hidden_states=None, encoder_attention_mask=None, encoder_decoder_position_bias=None, layer_head_mask=None, cross_attn_layer_head_mask=None, past_key_value=None, use_cache=False, output_attentions=False, return_dict=True, ): if past_key_value is not None: assert self.is_decoder, "Only decoder can use `past_key_values`" expected_num_past_key_values = 2 if encoder_hidden_states is None else 4 if len(past_key_value) != expected_num_past_key_values: raise ValueError( f"There should be {expected_num_past_key_values} past states. " f"{'2 (past / key) for cross attention. ' if expected_num_past_key_values == 4 else ''}" f"Got {len(past_key_value)} past key / value states" ) self_attn_past_key_value = past_key_value[:2] cross_attn_past_key_value = past_key_value[2:] else: self_attn_past_key_value, cross_attn_past_key_value = None, None self_attention_outputs = self.layer[0]( hidden_states, attention_mask=attention_mask, position_bias=position_bias, layer_head_mask=layer_head_mask, past_key_value=self_attn_past_key_value, use_cache=use_cache, output_attentions=output_attentions, ) hidden_states, present_key_value_state = self_attention_outputs[:2] attention_outputs = self_attention_outputs[2:] # Keep self-attention outputs and relative position weights # clamp inf values to enable fp16 training # if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any(): if torch.isinf(hidden_states).any(): print("a") clamp_value = torch.finfo(hidden_states.dtype).max - 1000 hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) do_cross_attention = self.is_decoder and encoder_hidden_states is not None if do_cross_attention: # the actual query length is unknown for cross attention # if using past key value states. Need to inject it here if present_key_value_state is not None: query_length = present_key_value_state[0].shape[2] else: query_length = None cross_attention_outputs = self.layer[1]( hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, position_bias=encoder_decoder_position_bias, layer_head_mask=cross_attn_layer_head_mask, past_key_value=cross_attn_past_key_value, query_length=query_length, use_cache=use_cache, output_attentions=output_attentions, ) hidden_states = cross_attention_outputs[0] # clamp inf values to enable fp16 training # if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any(): if torch.isinf(hidden_states).any(): print("b") clamp_value = torch.finfo(hidden_states.dtype).max - 1000 hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) # Combine self attn and cross attn key value states if present_key_value_state is not None: present_key_value_state = present_key_value_state + cross_attention_outputs[1] # Keep cross-attention outputs and relative position weights attention_outputs = attention_outputs + cross_attention_outputs[2:] # Apply Feed Forward layer hidden_states = self.layer[-1](hidden_states) # clamp inf values to enable fp16 training # if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any(): if torch.isinf(hidden_states).any(): print(f"c {torch.linalg.norm(hidden_states).item()}") clamp_value = torch.finfo(hidden_states.dtype).max - 1000 hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) outputs = (hidden_states,) if use_cache: outputs = outputs + (present_key_value_state,) + attention_outputs else: outputs = outputs + attention_outputs return outputs # hidden-states, present_key_value_states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights) class T5PreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = T5Config load_tf_weights = load_tf_weights_in_t5 base_model_prefix = "transformer" is_parallelizable = True supports_gradient_checkpointing = True @property def dummy_inputs(self): input_ids = torch.tensor(DUMMY_INPUTS) input_mask = torch.tensor(DUMMY_MASK) dummy_inputs = { "decoder_input_ids": input_ids, "input_ids": input_ids, "decoder_attention_mask": input_mask, } return dummy_inputs def _init_weights(self, module): """Initialize the weights""" factor = self.config.initializer_factor # Used for testing weights initialization if isinstance(module, T5LayerNorm): module.weight.data.fill_(factor * 1.0) elif isinstance(module, (T5Model, T5ForConditionalGeneration, T5EncoderModel)): # Mesh TensorFlow embeddings initialization # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L1624 module.shared.weight.data.normal_(mean=0.0, std=factor * 1.0) elif isinstance(module, T5DenseReluDense): # Mesh TensorFlow FF initialization # See https://github.com/tensorflow/mesh/blob/master/mesh_tensorflow/transformer/transformer_layers.py#L56 # and https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L89 module.wi.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) if hasattr(module.wi, "bias") and module.wi.bias is not None: module.wi.bias.data.zero_() module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5)) if hasattr(module.wo, "bias") and module.wo.bias is not None: module.wo.bias.data.zero_() elif isinstance(module, T5DenseGatedGeluDense): module.wi_0.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) if hasattr(module.wi_0, "bias") and module.wi_0.bias is not None: module.wi_0.bias.data.zero_() module.wi_1.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) if hasattr(module.wi_1, "bias") and module.wi_1.bias is not None: module.wi_1.bias.data.zero_() module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5)) if hasattr(module.wo, "bias") and module.wo.bias is not None: module.wo.bias.data.zero_() elif isinstance(module, T5Attention): # Mesh TensorFlow attention initialization to avoid scaling before softmax # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/attention.py#L136 d_model = self.config.d_model key_value_proj_dim = self.config.d_kv n_heads = self.config.num_heads module.q.weight.data.normal_(mean=0.0, std=factor * ((d_model * key_value_proj_dim) ** -0.5)) module.k.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5)) module.v.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5)) module.o.weight.data.normal_(mean=0.0, std=factor * ((n_heads * key_value_proj_dim) ** -0.5)) if module.has_relative_attention_bias: module.relative_attention_bias.weight.data.normal_(mean=0.0, std=factor * ((d_model) ** -0.5)) def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, (T5Attention, T5Stack)): module.gradient_checkpointing = value def _shift_right(self, input_ids): decoder_start_token_id = self.config.decoder_start_token_id pad_token_id = self.config.pad_token_id assert ( decoder_start_token_id is not None ), "self.model.config.decoder_start_token_id has to be defined. In T5 it is usually set to the pad_token_id. See T5 docs for more information" # shift inputs to the right if is_torch_fx_proxy(input_ids): # Item assignment is not supported natively for proxies. shifted_input_ids = torch.full(input_ids.shape[:-1] + (1,), decoder_start_token_id) shifted_input_ids = torch.cat([shifted_input_ids, input_ids[..., :-1]], dim=-1) else: shifted_input_ids = input_ids.new_zeros(input_ids.shape) shifted_input_ids[..., 1:] = input_ids[..., :-1].clone() shifted_input_ids[..., 0] = decoder_start_token_id assert pad_token_id is not None, "self.model.config.pad_token_id has to be defined." # replace possible -100 values in labels by `pad_token_id` shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) assert torch.all(shifted_input_ids >= 0).item(), "Verify that `shifted_input_ids` has only positive values" return shifted_input_ids class T5Stack(T5PreTrainedModel): def __init__(self, config, embed_tokens=None): super().__init__(config) self.embed_tokens = embed_tokens self.is_decoder = config.is_decoder self.block = nn.ModuleList( [T5Block(config, has_relative_attention_bias=bool(i == 0)) for i in range(config.num_layers)] ) self.final_layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) self.dropout = nn.Dropout(config.dropout_rate) # Initialize weights and apply final processing self.post_init() # Model parallel self.model_parallel = False self.device_map = None self.gradient_checkpointing = False @add_start_docstrings(PARALLELIZE_DOCSTRING) def parallelize(self, device_map=None): # Check validity of device_map self.device_map = ( get_device_map(len(self.block), range(torch.cuda.device_count())) if device_map is None else device_map ) assert_device_map(self.device_map, len(self.block)) self.model_parallel = True self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + str(min(self.device_map.keys())) self.last_device = "cuda:" + str(max(self.device_map.keys())) # Load onto devices for k, v in self.device_map.items(): for layer in v: cuda_device = "cuda:" + str(k) self.block[layer] = self.block[layer].to(cuda_device) # Set embed_tokens to first layer self.embed_tokens = self.embed_tokens.to(self.first_device) # Set final layer norm to last device self.final_layer_norm = self.final_layer_norm.to(self.last_device) @add_start_docstrings(PARALLELIZE_DOCSTRING) def deparallelize(self): self.model_parallel = False self.device_map = None self.first_device = "cpu" self.last_device = "cpu" for i in range(len(self.block)): self.block[i] = self.block[i].to("cpu") self.embed_tokens = self.embed_tokens.to("cpu") self.final_layer_norm = self.final_layer_norm.to("cpu") torch.cuda.empty_cache() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, new_embeddings): self.embed_tokens = new_embeddings def forward( self, input_ids=None, attention_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, inputs_embeds=None, head_mask=None, cross_attn_head_mask=None, past_key_values=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): # Model parallel if self.model_parallel: torch.cuda.set_device(self.first_device) self.embed_tokens = self.embed_tokens.to(self.first_device) use_cache = use_cache if use_cache is not None else self.config.use_cache output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: err_msg_prefix = "decoder_" if self.is_decoder else "" raise ValueError( f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time" ) elif input_ids is not None: input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: err_msg_prefix = "decoder_" if self.is_decoder else "" raise ValueError(f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds") if inputs_embeds is None: assert self.embed_tokens is not None, "You have to initialize the model with valid token embeddings" inputs_embeds = self.embed_tokens(input_ids) batch_size, seq_length = input_shape # required mask seq length can be calculated via length of past mask_seq_length = past_key_values[0][0].shape[2] + seq_length if past_key_values is not None else seq_length if use_cache is True: assert self.is_decoder, f":obj:`use_cache` can only be set to `True` if {self} is used as a decoder" if attention_mask is None: attention_mask = torch.ones(batch_size, mask_seq_length).to(inputs_embeds.device) if self.is_decoder and encoder_attention_mask is None and encoder_hidden_states is not None: encoder_seq_length = encoder_hidden_states.shape[1] encoder_attention_mask = torch.ones( batch_size, encoder_seq_length, device=inputs_embeds.device, dtype=torch.long ) # initialize past_key_values with `None` if past does not exist if past_key_values is None: past_key_values = [None] * len(self.block) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape, inputs_embeds.device) # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.is_decoder and encoder_hidden_states is not None: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=inputs_embeds.device) encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = None # Prepare head mask if needed head_mask = self.get_head_mask(head_mask, self.config.num_layers) cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers) present_key_value_states = () if use_cache else None all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None all_cross_attentions = () if (output_attentions and self.is_decoder) else None position_bias = None encoder_decoder_position_bias = None hidden_states = self.dropout(inputs_embeds) for i, (layer_module, past_key_value) in enumerate(zip(self.block, past_key_values)): layer_head_mask = head_mask[i] cross_attn_layer_head_mask = cross_attn_head_mask[i] # Model parallel if self.model_parallel: torch.cuda.set_device(hidden_states.device) # Ensure that attention_mask is always on the same device as hidden_states if attention_mask is not None: attention_mask = attention_mask.to(hidden_states.device) if position_bias is not None: position_bias = position_bias.to(hidden_states.device) if encoder_hidden_states is not None: encoder_hidden_states = encoder_hidden_states.to(hidden_states.device) if encoder_extended_attention_mask is not None: encoder_extended_attention_mask = encoder_extended_attention_mask.to(hidden_states.device) if encoder_decoder_position_bias is not None: encoder_decoder_position_bias = encoder_decoder_position_bias.to(hidden_states.device) if layer_head_mask is not None: layer_head_mask = layer_head_mask.to(hidden_states.device) if cross_attn_layer_head_mask is not None: cross_attn_layer_head_mask = cross_attn_layer_head_mask.to(hidden_states.device) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if self.gradient_checkpointing and self.training: if use_cache: logger.warn( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False def create_custom_forward(module): def custom_forward(*inputs): return tuple(module(*inputs, use_cache, output_attentions)) return custom_forward layer_outputs = checkpoint( create_custom_forward(layer_module), hidden_states, extended_attention_mask, position_bias, encoder_hidden_states, encoder_extended_attention_mask, encoder_decoder_position_bias, layer_head_mask, cross_attn_layer_head_mask, None, # past_key_value is always None with gradient checkpointing ) else: layer_outputs = layer_module( hidden_states, attention_mask=extended_attention_mask, position_bias=position_bias, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, encoder_decoder_position_bias=encoder_decoder_position_bias, layer_head_mask=layer_head_mask, cross_attn_layer_head_mask=cross_attn_layer_head_mask, past_key_value=past_key_value, use_cache=use_cache, output_attentions=output_attentions, ) # layer_outputs is a tuple with: # hidden-states, key-value-states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights) if use_cache is False: layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:] hidden_states, present_key_value_state = layer_outputs[:2] # We share the position biases between the layers - the first layer store them # layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights), # (cross-attention position bias), (cross-attention weights) position_bias = layer_outputs[2] if self.is_decoder and encoder_hidden_states is not None: encoder_decoder_position_bias = layer_outputs[4 if output_attentions else 3] # append next layer key value states if use_cache: present_key_value_states = present_key_value_states + (present_key_value_state,) if output_attentions: all_attentions = all_attentions + (layer_outputs[3],) if self.is_decoder: all_cross_attentions = all_cross_attentions + (layer_outputs[5],) # Model Parallel: If it's the last layer for that device, put things on the next device if self.model_parallel: for k, v in self.device_map.items(): if i == v[-1] and "cuda:" + str(k) != self.last_device: hidden_states = hidden_states.to("cuda:" + str(k + 1)) hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.dropout(hidden_states) # Add last layer if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, present_key_value_states, all_hidden_states, all_attentions, all_cross_attentions, ] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=present_key_value_states, hidden_states=all_hidden_states, attentions=all_attentions, cross_attentions=all_cross_attentions, ) T5_START_DOCSTRING = r""" The T5 model was proposed in [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. It's an encoder decoder transformer pre-trained in a text-to-text denoising generative setting. This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`T5Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ T5_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. T5 is a model with relative position embeddings so you should be able to pad the inputs on both the right and the left. Indices can be obtained using [`T5Tokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for detail. [What are input IDs?](../glossary#input-ids) To know more on how to prepare `input_ids` for pretraining take a look a [T5 Training](./t5#training). attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`T5Tokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) T5 uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). To know more on how to prepare `decoder_input_ids` for pretraining take a look at [T5 Training](./t5#training). decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. decoder_head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): Tuple consists of (`last_hidden_state`, `optional`: *hidden_states*, `optional`: *attentions*) `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` is a sequence of hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be input (see `past_key_values`). This is useful if you want more control over how to convert `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value of `inputs_embeds`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ T5_ENCODER_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. T5 is a model with relative position embeddings so you should be able to pad the inputs on both the right and the left. Indices can be obtained using [`T5Tokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for detail. To know more on how to prepare `input_ids` for pretraining take a look a [T5 Training](./t5#training). attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ # Warning message for FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask __HEAD_MASK_WARNING_MSG = """ The input argument `head_mask` was split into two arguments `head_mask` and `decoder_head_mask`. Currently, `decoder_head_mask` is set to copy `head_mask`, but this feature is deprecated and will be removed in future versions. If you do not want to use any `decoder_head_mask` now, please set `decoder_head_mask = torch.ones(num_layers, num_heads)`. """ @add_start_docstrings( "The bare T5 Model transformer outputting raw hidden-states without any specific head on top.", T5_START_DOCSTRING, ) class T5Model(T5PreTrainedModel): _keys_to_ignore_on_load_missing = [ r"encoder\.embed_tokens\.weight", r"decoder\.embed_tokens\.weight", ] _keys_to_ignore_on_load_unexpected = [ r"decoder\.block\.0\.layer\.1\.EncDecAttention\.relative_attention_bias\.weight", ] def __init__(self, config: T5Config): super().__init__(config) self.shared = nn.Embedding(config.vocab_size, config.d_model) encoder_config = copy.deepcopy(config) encoder_config.is_decoder = False encoder_config.use_cache = False encoder_config.is_encoder_decoder = False self.encoder = T5Stack(encoder_config, self.shared) decoder_config = copy.deepcopy(config) decoder_config.is_decoder = True decoder_config.is_encoder_decoder = False decoder_config.num_layers = config.num_decoder_layers self.decoder = T5Stack(decoder_config, self.shared) # Initialize weights and apply final processing self.post_init() # Model parallel self.model_parallel = False self.device_map = None @add_start_docstrings(PARALLELIZE_DOCSTRING) def parallelize(self, device_map=None): self.device_map = ( get_device_map(len(self.encoder.block), range(torch.cuda.device_count())) if device_map is None else device_map ) assert_device_map(self.device_map, len(self.encoder.block)) self.encoder.parallelize(self.device_map) self.decoder.parallelize(self.device_map) self.model_parallel = True @add_start_docstrings(DEPARALLELIZE_DOCSTRING) def deparallelize(self): self.encoder.deparallelize() self.decoder.deparallelize() self.encoder = self.encoder.to("cpu") self.decoder = self.decoder.to("cpu") self.model_parallel = False self.device_map = None torch.cuda.empty_cache() def get_input_embeddings(self): return self.shared def set_input_embeddings(self, new_embeddings): self.shared = new_embeddings self.encoder.set_input_embeddings(new_embeddings) self.decoder.set_input_embeddings(new_embeddings) def get_encoder(self): return self.encoder def get_decoder(self): return self.decoder def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(T5_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids=None, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, encoder_outputs=None, past_key_values=None, inputs_embeds=None, decoder_inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" Returns: Example: ```python >>> from transformers import T5Tokenizer, T5Model >>> tokenizer = T5Tokenizer.from_pretrained('t5-small') >>> model = T5Model.from_pretrained('t5-small') >>> input_ids = tokenizer("Studies have been shown that owning a dog is good for you", return_tensors="pt").input_ids # Batch size 1 >>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1 >>> # forward pass >>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) >>> last_hidden_states = outputs.last_hidden_state ```""" use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask if head_mask is not None and decoder_head_mask is None: if self.config.num_layers == self.config.num_decoder_layers: warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning) decoder_head_mask = head_mask # Encode if needed (training, first prediction pass) if encoder_outputs is None: encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): encoder_outputs = BaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) hidden_states = encoder_outputs[0] if self.model_parallel: torch.cuda.set_device(self.decoder.first_device) # Set device for model parallelism if self.model_parallel: torch.cuda.set_device(self.decoder.first_device) hidden_states = hidden_states.to(self.decoder.first_device) if decoder_input_ids is not None: decoder_input_ids = decoder_input_ids.to(self.decoder.first_device) if attention_mask is not None: attention_mask = attention_mask.to(self.decoder.first_device) if decoder_attention_mask is not None: decoder_attention_mask = decoder_attention_mask.to(self.decoder.first_device) # Decode decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, inputs_embeds=decoder_inputs_embeds, past_key_values=past_key_values, encoder_hidden_states=hidden_states, encoder_attention_mask=attention_mask, head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if not return_dict: return decoder_outputs + encoder_outputs return Seq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) @add_start_docstrings("""T5 Model with a `language modeling` head on top. """, T5_START_DOCSTRING) class T5ForConditionalGeneration(T5PreTrainedModel): _keys_to_ignore_on_load_missing = [ r"encoder\.embed_tokens\.weight", r"decoder\.embed_tokens\.weight", r"lm_head\.weight", ] _keys_to_ignore_on_load_unexpected = [ r"decoder\.block\.0\.layer\.1\.EncDecAttention\.relative_attention_bias\.weight", ] def __init__(self, config): super().__init__(config) self.model_dim = config.d_model self.shared = nn.Embedding(config.vocab_size, config.d_model) encoder_config = copy.deepcopy(config) encoder_config.is_decoder = False encoder_config.use_cache = False encoder_config.is_encoder_decoder = False self.encoder = T5Stack(encoder_config, self.shared) decoder_config = copy.deepcopy(config) decoder_config.is_decoder = True decoder_config.is_encoder_decoder = False decoder_config.num_layers = config.num_decoder_layers self.decoder = T5Stack(decoder_config, self.shared) self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() # Model parallel self.model_parallel = False self.device_map = None @add_start_docstrings(PARALLELIZE_DOCSTRING) def parallelize(self, device_map=None): self.device_map = ( get_device_map(len(self.encoder.block), range(torch.cuda.device_count())) if device_map is None else device_map ) assert_device_map(self.device_map, len(self.encoder.block)) self.encoder.parallelize(self.device_map) self.decoder.parallelize(self.device_map) self.lm_head = self.lm_head.to(self.decoder.first_device) self.model_parallel = True @add_start_docstrings(DEPARALLELIZE_DOCSTRING) def deparallelize(self): self.encoder.deparallelize() self.decoder.deparallelize() self.encoder = self.encoder.to("cpu") self.decoder = self.decoder.to("cpu") self.lm_head = self.lm_head.to("cpu") self.model_parallel = False self.device_map = None torch.cuda.empty_cache() def get_input_embeddings(self): return self.shared def set_input_embeddings(self, new_embeddings): self.shared = new_embeddings self.encoder.set_input_embeddings(new_embeddings) self.decoder.set_input_embeddings(new_embeddings) def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def get_output_embeddings(self): return self.lm_head def get_encoder(self): return self.encoder def get_decoder(self): return self.decoder @add_start_docstrings_to_model_forward(T5_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids=None, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, encoder_outputs=None, past_key_values=None, inputs_embeds=None, decoder_inputs_embeds=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ..., config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` Returns: Examples: ```python >>> from transformers import T5Tokenizer, T5ForConditionalGeneration >>> tokenizer = T5Tokenizer.from_pretrained('t5-small') >>> model = T5ForConditionalGeneration.from_pretrained('t5-small') >>> # training >>> input_ids = tokenizer('The <extra_id_0> walks in <extra_id_1> park', return_tensors='pt').input_ids >>> labels = tokenizer('<extra_id_0> cute dog <extra_id_1> the <extra_id_2>', return_tensors='pt').input_ids >>> outputs = model(input_ids=input_ids, labels=labels) >>> loss = outputs.loss >>> logits = outputs.logits >>> # inference >>> input_ids = tokenizer("summarize: studies have shown that owning a dog is good for you", return_tensors="pt").input_ids # Batch size 1 >>> outputs = model.generate(input_ids) >>> print(tokenizer.decode(outputs[0], skip_special_tokens=True)) >>> # studies have shown that owning a dog is good for you. ```""" use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask if head_mask is not None and decoder_head_mask is None: if self.config.num_layers == self.config.num_decoder_layers: warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning) decoder_head_mask = head_mask # Encode if needed (training, first prediction pass) if encoder_outputs is None: # Convert encoder inputs in embeddings if needed encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): encoder_outputs = BaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) hidden_states = encoder_outputs[0] if self.model_parallel: torch.cuda.set_device(self.decoder.first_device) if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None: # get decoder inputs from shifting lm labels to the right decoder_input_ids = self._shift_right(labels) # Set device for model parallelism if self.model_parallel: torch.cuda.set_device(self.decoder.first_device) hidden_states = hidden_states.to(self.decoder.first_device) if decoder_input_ids is not None: decoder_input_ids = decoder_input_ids.to(self.decoder.first_device) if attention_mask is not None: attention_mask = attention_mask.to(self.decoder.first_device) if decoder_attention_mask is not None: decoder_attention_mask = decoder_attention_mask.to(self.decoder.first_device) # Decode decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, inputs_embeds=decoder_inputs_embeds, past_key_values=past_key_values, encoder_hidden_states=hidden_states, encoder_attention_mask=attention_mask, head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = decoder_outputs[0] # Set device for model parallelism if self.model_parallel: torch.cuda.set_device(self.encoder.first_device) self.lm_head = self.lm_head.to(self.encoder.first_device) sequence_output = sequence_output.to(self.lm_head.weight.device) if self.config.tie_word_embeddings: # Rescale output before projecting on vocab # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586 sequence_output = sequence_output * (self.model_dim**-0.5) lm_logits = self.lm_head(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss(ignore_index=-100) loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1)) # TODO(thom): Add z_loss https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L666 if not return_dict: output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs return ((loss,) + output) if loss is not None else output return Seq2SeqLMOutput( loss=loss, logits=lm_logits, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) def prepare_inputs_for_generation( self, input_ids, past=None, attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, use_cache=None, encoder_outputs=None, **kwargs, ): # cut decoder_input_ids if past is used if past is not None: input_ids = input_ids[:, -1:] return { "decoder_input_ids": input_ids, "past_key_values": past, "encoder_outputs": encoder_outputs, "attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, "use_cache": use_cache, } def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): return self._shift_right(labels) def _reorder_cache(self, past, beam_idx): # if decoder past is not included in output # speedy decoding is disabled and no need to reorder if past is None: logger.warning("You might want to consider setting `use_cache=True` to speed up decoding") return past reordered_decoder_past = () for layer_past_states in past: # get the correct batch idx from layer past batch dim # batch dim of `past` is at 2nd position reordered_layer_past_states = () for layer_past_state in layer_past_states: # need to set correct `past` for each of the four key / value states reordered_layer_past_states = reordered_layer_past_states + ( layer_past_state.index_select(0, beam_idx.to(layer_past_state.device)), ) assert reordered_layer_past_states[0].shape == layer_past_states[0].shape assert len(reordered_layer_past_states) == len(layer_past_states) reordered_decoder_past = reordered_decoder_past + (reordered_layer_past_states,) return reordered_decoder_past @add_start_docstrings( "The bare T5 Model transformer outputting encoder's raw hidden-states without any specific head on top.", T5_START_DOCSTRING, ) class T5EncoderModel(T5PreTrainedModel): authorized_missing_keys = [ r"encoder\.embed_tokens\.weight", ] def __init__(self, config: T5Config): super().__init__(config) self.shared = nn.Embedding(config.vocab_size, config.d_model) encoder_config = copy.deepcopy(config) encoder_config.use_cache = False encoder_config.is_encoder_decoder = False self.encoder = T5Stack(encoder_config, self.shared) # Initialize weights and apply final processing self.post_init() # Model parallel self.model_parallel = False self.device_map = None @add_start_docstrings(PARALLELIZE_DOCSTRING) def parallelize(self, device_map=None): self.device_map = ( get_device_map(len(self.encoder.block), range(torch.cuda.device_count())) if device_map is None else device_map ) assert_device_map(self.device_map, len(self.encoder.block)) self.encoder.parallelize(self.device_map) self.model_parallel = True @add_start_docstrings(DEPARALLELIZE_DOCSTRING) def deparallelize(self): self.encoder.deparallelize() self.encoder = self.encoder.to("cpu") self.model_parallel = False self.device_map = None torch.cuda.empty_cache() def get_input_embeddings(self): return self.shared def set_input_embeddings(self, new_embeddings): self.shared = new_embeddings self.encoder.set_input_embeddings(new_embeddings) def get_encoder(self): return self.encoder def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(T5_ENCODER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids=None, attention_mask=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" Returns: Example: ```python >>> from transformers import T5Tokenizer, T5EncoderModel >>> tokenizer = T5Tokenizer.from_pretrained('t5-small') >>> model = T5EncoderModel.from_pretrained('t5-small') >>> input_ids = tokenizer("Studies have been shown that owning a dog is good for you", return_tensors="pt").input_ids # Batch size 1 >>> outputs = model(input_ids=input_ids) >>> last_hidden_states = outputs.last_hidden_state ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) return encoder_outputs
atlas-main
src/modeling_t5.py
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch BERT model.""" import math import os import warnings from dataclasses import dataclass from typing import List, Optional, Tuple, Union import torch import torch.utils.checkpoint from packaging import version from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from transformers.activations import ACT2FN from transformers.modeling_outputs import ( BaseModelOutputWithPastAndCrossAttentions, BaseModelOutputWithPoolingAndCrossAttentions, CausalLMOutputWithCrossAttentions, MaskedLMOutput, MultipleChoiceModelOutput, NextSentencePredictorOutput, QuestionAnsweringModelOutput, SequenceClassifierOutput, TokenClassifierOutput, ) from transformers.modeling_utils import ( PreTrainedModel, apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer, ) from transformers.utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from transformers.models.bert.configuration_bert import BertConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "bert-base-uncased" _CONFIG_FOR_DOC = "BertConfig" _TOKENIZER_FOR_DOC = "BertTokenizer" BERT_PRETRAINED_MODEL_ARCHIVE_LIST = [ "bert-base-uncased", "bert-large-uncased", "bert-base-cased", "bert-large-cased", "bert-base-multilingual-uncased", "bert-base-multilingual-cased", "bert-base-chinese", "bert-base-german-cased", "bert-large-uncased-whole-word-masking", "bert-large-cased-whole-word-masking", "bert-large-uncased-whole-word-masking-finetuned-squad", "bert-large-cased-whole-word-masking-finetuned-squad", "bert-base-cased-finetuned-mrpc", "bert-base-german-dbmdz-cased", "bert-base-german-dbmdz-uncased", "cl-tohoku/bert-base-japanese", "cl-tohoku/bert-base-japanese-whole-word-masking", "cl-tohoku/bert-base-japanese-char", "cl-tohoku/bert-base-japanese-char-whole-word-masking", "TurkuNLP/bert-base-finnish-cased-v1", "TurkuNLP/bert-base-finnish-uncased-v1", "wietsedv/bert-base-dutch-cased", # See all BERT models at https://huggingface.co/models?filter=bert ] class BertLayerNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): """ Construct a layernorm module in the T5 style No bias and no subtraction of mean. """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.bias = nn.Parameter(torch.zeros(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): # layer norm should always be calculated in float32 mean = hidden_states.to(torch.float32).mean(-1, keepdim=True) variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True) hidden_states = (hidden_states - mean) * torch.rsqrt(variance + self.variance_epsilon) # convert into half-precision if necessary if self.weight.dtype in [torch.float16, torch.bfloat16]: hidden_states = hidden_states.to(self.weight.dtype) return self.weight * hidden_states + self.bias def load_tf_weights_in_bert(model, config, tf_checkpoint_path): """Load tf checkpoints in a pytorch model.""" try: import re import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise tf_path = os.path.abspath(tf_checkpoint_path) logger.info(f"Converting TensorFlow checkpoint from {tf_path}") # Load weights from TF model init_vars = tf.train.list_variables(tf_path) names = [] arrays = [] for name, shape in init_vars: logger.info(f"Loading TF weight {name} with shape {shape}") array = tf.train.load_variable(tf_path, name) names.append(name) arrays.append(array) for name, array in zip(names, arrays): name = name.split("/") # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v # which are not required for using pretrained model if any( n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"] for n in name ): logger.info(f"Skipping {'/'.join(name)}") continue pointer = model for m_name in name: if re.fullmatch(r"[A-Za-z]+_\d+", m_name): scope_names = re.split(r"_(\d+)", m_name) else: scope_names = [m_name] if scope_names[0] == "kernel" or scope_names[0] == "gamma": pointer = getattr(pointer, "weight") elif scope_names[0] == "output_bias" or scope_names[0] == "beta": pointer = getattr(pointer, "bias") elif scope_names[0] == "output_weights": pointer = getattr(pointer, "weight") elif scope_names[0] == "squad": pointer = getattr(pointer, "classifier") else: try: pointer = getattr(pointer, scope_names[0]) except AttributeError: logger.info(f"Skipping {'/'.join(name)}") continue if len(scope_names) >= 2: num = int(scope_names[1]) pointer = pointer[num] if m_name[-11:] == "_embeddings": pointer = getattr(pointer, "weight") elif m_name == "kernel": array = np.transpose(array) try: if pointer.shape != array.shape: raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched") except AssertionError as e: e.args += (pointer.shape, array.shape) raise logger.info(f"Initialize PyTorch weight {name}") pointer.data = torch.from_numpy(array) return model class BertEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1))) if version.parse(torch.__version__) > version.parse("1.6.0"): self.register_buffer( "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False, ) def forward( self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0 ): if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] if position_ids is None: position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length] # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves # issue #5664 if token_type_ids is None: if hasattr(self, "token_type_ids"): buffered_token_type_ids = self.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings if self.position_embedding_type == "absolute": position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings embeddings = self.LayerNorm(embeddings.float()).type_as(embeddings) embeddings = self.dropout(embeddings) return embeddings class BertSelfAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.position_embedding_type = position_embedding_type or getattr(config, "position_embedding_type", "absolute") if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": self.max_position_embeddings = config.max_position_embeddings self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) self.is_decoder = config.is_decoder def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: mixed_query_layer = self.query(hidden_states) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_layer = past_key_value[0] value_layer = past_key_value[1] attention_mask = encoder_attention_mask elif is_cross_attention: key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) attention_mask = encoder_attention_mask elif past_key_value is not None: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) key_layer = torch.cat([past_key_value[0], key_layer], dim=2) value_layer = torch.cat([past_key_value[1], value_layer], dim=2) else: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_layer, value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": seq_length = hidden_states.size()[1] position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1) distance = position_ids_l - position_ids_r positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility if self.position_embedding_type == "relative_key": relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores elif self.position_embedding_type == "relative_key_query": relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in BertModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores.float(), dim=-1).type_as(attention_scores) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) if self.is_decoder: outputs = outputs + (past_key_value,) return outputs class BertSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = hidden_states + input_tensor hidden_states = self.LayerNorm(hidden_states.float()).type_as(hidden_states) return hidden_states class BertAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() self.self = BertSelfAttention(config, position_embedding_type=position_embedding_type) self.output = BertSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: self_outputs = self.self( hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs class BertIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states class BertOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = hidden_states + input_tensor hidden_states = self.LayerNorm(hidden_states.float()).type_as(hidden_states) return hidden_states class BertLayer(nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = BertAttention(config) self.is_decoder = config.is_decoder self.add_cross_attention = config.add_cross_attention if self.add_cross_attention: if not self.is_decoder: raise ValueError(f"{self} should be used as a decoder model if cross attention is added") self.crossattention = BertAttention(config, position_embedding_type="absolute") self.intermediate = BertIntermediate(config) self.output = BertOutput(config) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None self_attention_outputs = self.attention( hidden_states, attention_mask, head_mask, output_attentions=output_attentions, past_key_value=self_attn_past_key_value, ) attention_output = self_attention_outputs[0] # if decoder, the last output is tuple of self-attn cache if self.is_decoder: outputs = self_attention_outputs[1:-1] present_key_value = self_attention_outputs[-1] else: outputs = self_attention_outputs[1:] # add self attentions if we output attention weights cross_attn_present_key_value = None if self.is_decoder and encoder_hidden_states is not None: if not hasattr(self, "crossattention"): raise ValueError( f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers by setting `config.add_cross_attention=True`" ) # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None cross_attention_outputs = self.crossattention( attention_output, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, cross_attn_past_key_value, output_attentions, ) attention_output = cross_attention_outputs[0] outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights # add cross-attn cache to positions 3,4 of present_key_value tuple cross_attn_present_key_value = cross_attention_outputs[-1] present_key_value = present_key_value + cross_attn_present_key_value layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output ) outputs = (layer_output,) + outputs # if decoder, return the attn key/values as the last output if self.is_decoder: outputs = outputs + (present_key_value,) return outputs def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output class BertEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([BertLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None next_decoder_cache = () if use_cache else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None past_key_value = past_key_values[i] if past_key_values is not None else None if self.gradient_checkpointing and self.training: if use_cache: logger.warning( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, past_key_value, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(layer_module), hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, ) else: layer_outputs = layer_module( hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[-1],) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if self.config.add_cross_attention: all_cross_attentions = all_cross_attentions + (layer_outputs[2],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, next_decoder_cache, all_hidden_states, all_self_attentions, all_cross_attentions, ] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, ) class BertPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output class BertPredictionHeadTransform(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) if isinstance(config.hidden_act, str): self.transform_act_fn = ACT2FN[config.hidden_act] else: self.transform_act_fn = config.hidden_act self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states.float()).type_as(hidden_states) return hidden_states class BertLMPredictionHead(nn.Module): def __init__(self, config): super().__init__() self.transform = BertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states class BertOnlyMLMHead(nn.Module): def __init__(self, config): super().__init__() self.predictions = BertLMPredictionHead(config) def forward(self, sequence_output: torch.Tensor) -> torch.Tensor: prediction_scores = self.predictions(sequence_output) return prediction_scores class BertOnlyNSPHead(nn.Module): def __init__(self, config): super().__init__() self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, pooled_output): seq_relationship_score = self.seq_relationship(pooled_output) return seq_relationship_score class BertPreTrainingHeads(nn.Module): def __init__(self, config): super().__init__() self.predictions = BertLMPredictionHead(config) self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, sequence_output, pooled_output): prediction_scores = self.predictions(sequence_output) seq_relationship_score = self.seq_relationship(pooled_output) return prediction_scores, seq_relationship_score class BertPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = BertConfig load_tf_weights = load_tf_weights_in_bert base_model_prefix = "bert" supports_gradient_checkpointing = True _keys_to_ignore_on_load_missing = [r"position_ids"] def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, BertEncoder): module.gradient_checkpointing = value @dataclass class BertForPreTrainingOutput(ModelOutput): """ Output type of [`BertForPreTraining`]. Args: loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss. prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). seq_relationship_logits (`torch.FloatTensor` of shape `(batch_size, 2)`): Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax). hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None prediction_logits: torch.FloatTensor = None seq_relationship_logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None BERT_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`BertConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ BERT_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`BertTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare Bert Model transformer outputting raw hidden-states without any specific head on top.", BERT_START_DOCSTRING, ) class BertModel(BertPreTrainedModel): """ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of cross-attention is added between the self-attention layers, following the architecture described in [Attention is all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass. """ def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.embeddings = BertEmbeddings(config) self.encoder = BertEncoder(config) self.pooler = BertPooler(config) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( processor_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPoolingAndCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if self.config.is_decoder: use_cache = use_cache if use_cache is not None else self.config.use_cache else: use_cache = False if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape device = input_ids.device if input_ids is not None else inputs_embeds.device # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if attention_mask is None: attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) if token_type_ids is None: if hasattr(self.embeddings, "token_type_ids"): buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device) # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, past_key_values_length=past_key_values_length, ) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, ) @add_start_docstrings( """ Bert Model with two heads on top as done during the pretraining: a `masked language modeling` head and a `next sentence prediction (classification)` head. """, BERT_START_DOCSTRING, ) class BertForPreTraining(BertPreTrainedModel): def __init__(self, config): super().__init__(config) self.bert = BertModel(config) self.cls = BertPreTrainingHeads(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings @add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=BertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, next_sentence_label: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], BertForPreTrainingOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` next_sentence_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see `input_ids` docstring) Indices should be in `[0, 1]`: - 0 indicates sequence B is a continuation of sequence A, - 1 indicates sequence B is a random sequence. kwargs (`Dict[str, any]`, optional, defaults to *{}*): Used to hide legacy arguments that have been deprecated. Returns: Example: ```python >>> from transformers import BertTokenizer, BertForPreTraining >>> import torch >>> tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") >>> model = BertForPreTraining.from_pretrained("bert-base-uncased") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> prediction_logits = outputs.prediction_logits >>> seq_relationship_logits = outputs.seq_relationship_logits ``` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output, pooled_output = outputs[:2] prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output) total_loss = None if labels is not None and next_sentence_label is not None: loss_fct = CrossEntropyLoss() masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1)) total_loss = masked_lm_loss + next_sentence_loss if not return_dict: output = (prediction_scores, seq_relationship_score) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return BertForPreTrainingOutput( loss=total_loss, prediction_logits=prediction_scores, seq_relationship_logits=seq_relationship_score, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """Bert Model with a `language modeling` head on top for CLM fine-tuning.""", BERT_START_DOCSTRING ) class BertLMHeadModel(BertPreTrainedModel): _keys_to_ignore_on_load_unexpected = [r"pooler"] _keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"] def __init__(self, config): super().__init__(config) if not config.is_decoder: logger.warning("If you want to use `BertLMHeadModel` as a standalone, add `is_decoder=True.`") self.bert = BertModel(config, add_pooling_layer=False) self.cls = BertOnlyMLMHead(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings @add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.Tensor]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]` past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). Returns: Example: ```python >>> from transformers import BertTokenizer, BertLMHeadModel, BertConfig >>> import torch >>> tokenizer = BertTokenizer.from_pretrained("bert-base-cased") >>> config = BertConfig.from_pretrained("bert-base-cased") >>> config.is_decoder = True >>> model = BertLMHeadModel.from_pretrained("bert-base-cased", config=config) >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> prediction_logits = outputs.logits ``` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: use_cache = False outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) lm_loss = None if labels is not None: # we are doing next-token prediction; shift prediction scores and input ids by one shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous() labels = labels[:, 1:].contiguous() loss_fct = CrossEntropyLoss() lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((lm_loss,) + output) if lm_loss is not None else output return CausalLMOutputWithCrossAttentions( loss=lm_loss, logits=prediction_scores, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) def prepare_inputs_for_generation(self, input_ids, past=None, attention_mask=None, **model_kwargs): input_shape = input_ids.shape # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly if attention_mask is None: attention_mask = input_ids.new_ones(input_shape) # cut decoder_input_ids if past is used if past is not None: input_ids = input_ids[:, -1:] return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past} def _reorder_cache(self, past, beam_idx): reordered_past = () for layer_past in past: reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),) return reordered_past @add_start_docstrings("""Bert Model with a `language modeling` head on top.""", BERT_START_DOCSTRING) class BertForMaskedLM(BertPreTrainedModel): _keys_to_ignore_on_load_unexpected = [r"pooler"] _keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"] def __init__(self, config): super().__init__(config) if config.is_decoder: logger.warning( "If you want to use `BertForMaskedLM` make sure `config.is_decoder=False` for " "bi-directional self-attention." ) self.bert = BertModel(config, add_pooling_layer=False) self.cls = BertOnlyMLMHead(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings @add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( processor_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], MaskedLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() # -100 index = padding token masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **model_kwargs): input_shape = input_ids.shape effective_batch_size = input_shape[0] # add a dummy token if self.config.pad_token_id is None: raise ValueError("The PAD token should be defined for generation") attention_mask = torch.cat([attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))], dim=-1) dummy_token = torch.full( (effective_batch_size, 1), self.config.pad_token_id, dtype=torch.long, device=input_ids.device ) input_ids = torch.cat([input_ids, dummy_token], dim=1) return {"input_ids": input_ids, "attention_mask": attention_mask} @add_start_docstrings( """Bert Model with a `next sentence prediction (classification)` head on top.""", BERT_START_DOCSTRING, ) class BertForNextSentencePrediction(BertPreTrainedModel): def __init__(self, config): super().__init__(config) self.bert = BertModel(config) self.cls = BertOnlyNSPHead(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=NextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[Tuple[torch.Tensor], NextSentencePredictorOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see `input_ids` docstring). Indices should be in `[0, 1]`: - 0 indicates sequence B is a continuation of sequence A, - 1 indicates sequence B is a random sequence. Returns: Example: ```python >>> from transformers import BertTokenizer, BertForNextSentencePrediction >>> import torch >>> tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") >>> model = BertForNextSentencePrediction.from_pretrained("bert-base-uncased") >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." >>> next_sentence = "The sky is blue due to the shorter wavelength of blue light." >>> encoding = tokenizer(prompt, next_sentence, return_tensors="pt") >>> outputs = model(**encoding, labels=torch.LongTensor([1])) >>> logits = outputs.logits >>> assert logits[0, 0] < logits[0, 1] # next sentence was random ``` """ if "next_sentence_label" in kwargs: warnings.warn( "The `next_sentence_label` argument is deprecated and will be removed in a future version, use `labels` instead.", FutureWarning, ) labels = kwargs.pop("next_sentence_label") return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] seq_relationship_scores = self.cls(pooled_output) next_sentence_loss = None if labels is not None: loss_fct = CrossEntropyLoss() next_sentence_loss = loss_fct(seq_relationship_scores.view(-1, 2), labels.view(-1)) if not return_dict: output = (seq_relationship_scores,) + outputs[2:] return ((next_sentence_loss,) + output) if next_sentence_loss is not None else output return NextSentencePredictorOutput( loss=next_sentence_loss, logits=seq_relationship_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Bert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, BERT_START_DOCSTRING, ) class BertForSequenceClassification(BertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.config = config self.bert = BertModel(config) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( processor_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Bert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, BERT_START_DOCSTRING, ) class BertForMultipleChoice(BertPreTrainedModel): def __init__(self, config): super().__init__(config) self.bert = BertModel(config) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, 1) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) @add_code_sample_docstrings( processor_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=MultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, num_choices) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return MultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Bert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, BERT_START_DOCSTRING, ) class BertForTokenClassification(BertPreTrainedModel): _keys_to_ignore_on_load_unexpected = [r"pooler"] def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.bert = BertModel(config, add_pooling_layer=False) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( processor_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Bert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, BERT_START_DOCSTRING, ) class BertForQuestionAnswering(BertPreTrainedModel): _keys_to_ignore_on_load_unexpected = [r"pooler"] def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.bert = BertModel(config, add_pooling_layer=False) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( processor_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, start_positions: Optional[torch.Tensor] = None, end_positions: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
atlas-main
src/modeling_bert.py
# coding=utf-8 # Copyright 2018 Mesh TensorFlow authors, T5 Authors and HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import types import torch from torch import nn from transformers.utils import logging from src.modeling_t5 import T5ForConditionalGeneration, T5Stack logger = logging.get_logger(__name__) class FiDStack(T5Stack): def __init__(self, config, embed_tokens=None): super().__init__(config, embed_tokens=embed_tokens) def forward( self, input_ids=None, attention_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, inputs_embeds=None, head_mask=None, cross_attn_head_mask=None, past_key_values=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): if not self.is_decoder: input_ids = input_ids.view(input_ids.size(0) * self.config.n_context, -1) attention_mask = attention_mask.view(attention_mask.size(0) * self.config.n_context, -1) output = super().forward( input_ids=input_ids, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, inputs_embeds=inputs_embeds, head_mask=head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if not self.is_decoder: if not return_dict: last_hidden_states = output[0] last_hidden_state = last_hidden_states.view(self.config.bsz, -1, last_hidden_states.size(-1)) output = tuple( last_hidden_state, *output[1:], ) else: last_hidden_state = output.last_hidden_state output.last_hidden_state = last_hidden_state.view(self.config.bsz, -1, last_hidden_state.size(-1)) return output class FiD(T5ForConditionalGeneration): _keys_to_ignore_on_load_missing = [ r"encoder\.embed_tokens\.weight", r"decoder\.embed_tokens\.weight", r"lm_head\.weight", ] _keys_to_ignore_on_load_unexpected = [ r"decoder\.block\.0\.layer\.1\.EncDecAttention\.relative_attention_bias\.weight", ] def __init__(self, config): super().__init__(config) self.model_dim = config.d_model self.shared = nn.Embedding(config.vocab_size, config.d_model) encoder_config = copy.deepcopy(config) encoder_config.is_decoder = False encoder_config.use_cache = False encoder_config.is_encoder_decoder = False self.encoder = FiDStack(encoder_config, self.shared) decoder_config = copy.deepcopy(config) decoder_config.is_decoder = True decoder_config.is_encoder_decoder = False decoder_config.num_layers = config.num_decoder_layers self.decoder = FiDStack(decoder_config, self.shared) self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() # Model parallel self.model_parallel = False self.device_map = None def set_checkpoint(self, use_checkpoint): """ Enable or disable checkpointing in the encoder. See https://pytorch.org/docs/stable/checkpoint.html """ for mod in self.encoder.encoder.block: mod.use_checkpoint = use_checkpoint def reset_score_storage(self): """ Reset score storage, only used when cross-attention scores are saved to train a retriever. """ for mod in self.decoder.block: mod.layer[1].EncDecAttention.score_storage = None mod.layer[1].EncDecAttention.normalized_score_storage = None mod.layer[1].EncDecAttention.prob_storage = None @torch.no_grad() def get_crossattention_scores(self, n_passages, mask, labels, ids, mode="all", mask_query=None): """ Cross-attention scores are aggregated to obtain a single scalar per passage. This scalar can be seen as a similarity score between the question and the input passage. It is obtained by averaging the cross-attention scores obtained on the first decoded token over heads, layers, and tokens of the input passage. More details in Distilling Knowledge from Reader to Retriever: https://arxiv.org/abs/2012.04584. """ scores, norms, probs = [], [], [] for mod in self.decoder.block: scores.append(mod.layer[1].EncDecAttention.score_storage) norms.append(mod.layer[1].EncDecAttention.normalized_score_storage) probs.append(mod.layer[1].EncDecAttention.prob_storage) scores = torch.stack(scores) norms = torch.stack(norms) probs = torch.stack(probs) output = {} if "scores" in mode or "all" in mode: self.aggregate_value(scores, mask, labels, n_passages, ids, mask_query, output, prefix="scores") if "probs" in mode or "all" in mode: self.aggregate_value(probs, mask, labels, n_passages, ids, mask_query, output, prefix="probs") if "norms" in mode or "all" in mode: self.aggregate_value(norms, mask, labels, n_passages, ids, mask_query, output, prefix="norms") return output def aggregate_value(self, scores, mask, labels, n_passages, ids, mask_query=None, output={}, prefix=""): n_layers, bsz, n_tokens, total_tokens = scores.size() ids = ids.view(bsz, n_passages, -1) scores = scores.view(n_layers, bsz, n_tokens, n_passages, -1) mask = mask.view(bsz, n_passages, -1) scores = scores.masked_fill(~mask[None, :, None], 0.0) ntokens_sum = 256 * n_layers * (~(labels == -100)).sum(dim=[1])[:, None] ntokens_wquery = mask.sum(dim=[2]) * n_layers * (~(labels == -100)).sum(dim=[1])[:, None] ntokens_first = mask.sum(dim=[2]) * n_layers # Compute scores based on topk scores scores = scores.sum(dim=[0]) for k in [5, 10, 20]: topkscores = self.get_topk_score(k, scores, mask, labels, n_layers) output[f"{prefix}top{k}"] = topkscores scores = scores.masked_fill((labels == -100)[:, :, None, None], 0.0) scores_wquery = scores.sum(dim=[1, 3]) scores_wquery_sepmask = scores.masked_fill(~(ids == 1)[:, None], 0).sum(dim=[1, 3]) output[f"{prefix}nosep"] = scores_wquery_sepmask / ntokens_sum output[f"{prefix}first"] = scores[:, 0].sum(dim=[2]) / ntokens_first output[f"{prefix}sum"] = scores_wquery / ntokens_sum output[f"{prefix}avg"] = scores_wquery / ntokens_wquery scores_woquery = None # Compute scores based on scores without query if not mask_query is None: output[f"{prefix}woquery"] = self.get_woquery_score(scores, mask_query, mask, labels, n_layers) return output def get_topk_score(self, topk, scores, mask, labels, n_layers): topkscores = torch.topk(scores, k=topk, dim=-1)[0].sum(dim=[3]) topkscores = topkscores.masked_fill((labels == -100)[:, :, None], 0.0) ntokens_top = n_layers * (~(labels == -100)).sum(dim=[1])[:, None] topkscores = topkscores.sum(dim=1) / (topk * ntokens_top) return topkscores def get_woquery_score(self, scores, mask_query, mask, labels, n_layers): if scores.size(-1) > mask_query.size(-1): zero_padding = torch.zeros( [mask_query.size(0), scores.size(-1) - mask_query.size(-1)], device=mask_query.device, dtype=torch.bool ) mask_query = torch.cat([mask_query, zero_padding], dim=-1) mask_query = mask * (~mask_query[:, None]) scores_woquery = scores.masked_fill(~mask_query[:, None], 0.0) # ntokens_woquery = mask_query.sum(dim=[2]) * n_layers * (~(labels==-100)).sum(dim=[1])[:, None] ntokens_woquery = 256 * n_layers * (~(labels == -100)).sum(dim=[1])[:, None] scores_woquery = scores_woquery.sum(dim=[1, 3]) return scores_woquery / ntokens_woquery def overwrite_forward_crossattention(self): """ Replace cross-attention forward function, only used to save cross-attention scores. """ for mod in self.decoder.block: xattn = mod.layer[1].EncDecAttention xattn.forward = types.MethodType(cross_attention_forward, xattn) def create_crossattention_storage(self): for mod in self.decoder.block: xattn = mod.layer[1].EncDecAttention xattn.score_storage = None xattn.normalized_score_storage = None xattn.prob_storage = None def cross_attention_forward( self, hidden_states, mask=None, key_value_states=None, position_bias=None, past_key_value=None, layer_head_mask=None, query_length=None, use_cache=False, output_attentions=False, ): """ Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states). """ # Input is (batch_size, seq_length, dim) # Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length) # past_key_value[0] is (batch_size, n_heads, q_len - 1, dim_per_head) batch_size, seq_length = hidden_states.shape[:2] real_seq_length = seq_length if past_key_value is not None: assert ( len(past_key_value) == 2 ), f"past_key_value should have 2 past states: keys and values. Got { len(past_key_value)} past states" real_seq_length += past_key_value[0].shape[2] if query_length is None else query_length key_length = real_seq_length if key_value_states is None else key_value_states.shape[1] def shape(states): """projection""" return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2) def unshape(states): """reshape""" return states.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim) def project(hidden_states, proj_layer, key_value_states, past_key_value): """projects hidden states correctly to key/query states""" if key_value_states is None: # self-attn # (batch_size, n_heads, seq_length, dim_per_head) hidden_states = shape(proj_layer(hidden_states)) elif past_key_value is None: # cross-attn # (batch_size, n_heads, seq_length, dim_per_head) hidden_states = shape(proj_layer(key_value_states)) if past_key_value is not None: if key_value_states is None: # self-attn # (batch_size, n_heads, key_length, dim_per_head) hidden_states = torch.cat([past_key_value, hidden_states], dim=2) else: # cross-attn hidden_states = past_key_value return hidden_states # get query states query_states = shape(self.q(hidden_states)) # (batch_size, n_heads, seq_length, dim_per_head) # get key/value states key_states = project( hidden_states, self.k, key_value_states, past_key_value[0] if past_key_value is not None else None ) value_states = project( hidden_states, self.v, key_value_states, past_key_value[1] if past_key_value is not None else None ) # compute scores scores = torch.matmul( query_states, key_states.transpose(3, 2) ) # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9 if position_bias is None: if not self.has_relative_attention_bias: position_bias = torch.zeros( (1, self.n_heads, real_seq_length, key_length), device=scores.device, dtype=scores.dtype ) if self.gradient_checkpointing and self.training: position_bias.requires_grad = True else: position_bias = self.compute_bias(real_seq_length, key_length) # if key and values are already calculated # we want only the last query position bias if past_key_value is not None: position_bias = position_bias[:, :, -hidden_states.size(1) :, :] if mask is not None: position_bias = position_bias + mask # (batch_size, n_heads, seq_length, key_length) scores += position_bias attn_weights = nn.functional.softmax(scores.float(), dim=-1) # .type_as(scores) if hasattr(self, "score_storage"): with torch.no_grad(): self.score_storage = scores.detach().mean(dim=1) self.prob_storage = attn_weights.detach().mean(dim=1) self.normalized_score_storage = ( (torch.norm(value_states.float(), dim=-1)[:, :, None] * attn_weights).detach().mean(dim=1) ) attn_weights = nn.functional.dropout(attn_weights.type_as(scores), p=self.dropout, training=self.training) # Mask heads if we want to if layer_head_mask is not None: attn_weights = attn_weights * layer_head_mask attn_output = unshape(torch.matmul(attn_weights, value_states)) # (batch_size, seq_length, dim) attn_output = self.o(attn_output) present_key_value_state = (key_states, value_states) if (self.is_decoder and use_cache) else None outputs = (attn_output,) + (present_key_value_state,) + (position_bias,) if output_attentions: outputs = outputs + (attn_weights,) return outputs
atlas-main
src/fid.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import copy import logging import math import time from functools import reduce from typing import List, Optional, Union import numpy as np import torch import torch.nn as nn from src import dist_utils from src.retrievers import EMBEDDINGS_DIM logger = logging.getLogger(__name__) IGNORE_INDEX: int = -100 BERT_MAX_SEQ_LENGTH: int = 512 def encode_passages(batch, tokenizer, max_length): bsz = len(batch) n = max([len(example) for example in batch]) batch = [example + [""] * (n - len(example)) for example in batch] batch = reduce(lambda a, b: a + b, batch) tokens = tokenizer( batch, padding="max_length", max_length=max_length, return_tensors="pt", truncation=True, ) tokens = {k: v.view(bsz, n, -1) for k, v in tokens.items()} return tokens class Atlas(nn.Module): def __init__(self, opt, reader, retriever, reader_tokenizer, retriever_tokenizer): super(Atlas, self).__init__() self.reader = reader self.retriever = retriever self.reader_tokenizer = reader_tokenizer self.retriever_tokenizer = retriever_tokenizer self.opt = opt self.READER_ALL_TOKENS = list(self.reader_tokenizer.vocab.values()) def _get_fp16_retriever_copy(self): if hasattr(self.retriever, "module"): retriever_to_copy = self.retriever.module else: retriever_to_copy = self.retriever return copy.deepcopy(retriever_to_copy).half().eval() @torch.no_grad() def build_index(self, index, passages, gpu_embedder_batch_size, logger=None): n_batch = math.ceil(len(passages) / gpu_embedder_batch_size) retrieverfp16 = self._get_fp16_retriever_copy() total = 0 for i in range(n_batch): batch = passages[i * gpu_embedder_batch_size : (i + 1) * gpu_embedder_batch_size] batch = [self.opt.retriever_format.format(**example) for example in batch] batch_enc = self.retriever_tokenizer( batch, padding="longest", return_tensors="pt", max_length=min(self.opt.text_maxlength, gpu_embedder_batch_size), truncation=True, ) embeddings = retrieverfp16(**_to_cuda(batch_enc), is_passages=True) index.embeddings[:, total : total + len(embeddings)] = embeddings.T total += len(embeddings) if i % 500 == 0 and i > 0: logger.info(f"Number of passages encoded: {total}") dist_utils.barrier() logger.info(f"{total} passages encoded on process: {dist_utils.get_rank()}") if not index.is_index_trained(): logger.info(f"Building faiss indices") index.train_index() @torch.no_grad() def _retrieve( self, index, topk, query, query_ids_retriever, query_mask_retriever, batch_metadata=None, filtering_fun=None, iter_stats={}, ): self.retriever.eval() if len(query) > 0: query_emb = self.retriever(query_ids_retriever, query_mask_retriever, is_passages=False) else: query_emb = torch.empty((0, EMBEDDINGS_DIM)).cuda() # TODO: broken if self.training: self.retriever.train() search_start = time.time() if filtering_fun is not None: passages, scores = index.search_knn(query_emb, topk * self.opt.filtering_overretrieve_ratio) passages, scores = filtering_fun(batch_metadata, passages, scores, topk, training=self.training) else: passages, scores = index.search_knn(query_emb, topk) iter_stats["runtime/search"] = (time.time() - search_start, 1) return passages, scores, query_emb @torch.no_grad() def retrieve_with_rerank( self, index, topk, query, query_ids_retriever, query_mask_retriever, batch_metadata=None, filtering_fun=None, iter_stats={}, ): bsz = len(query) to_rerank = self.opt.n_to_rerank_with_retrieve_with_rerank # first, do the retrieval passages, _, query_emb = self._retrieve( index, to_rerank, query, query_ids_retriever, query_mask_retriever, batch_metadata, filtering_fun, iter_stats, ) retrieverfp16 = self._get_fp16_retriever_copy() fstr = self.opt.retriever_format flat_passage_strings = [fstr.format(**p) for ps in passages for p in ps] encoder_batch_size = min(len(flat_passage_strings), self.opt.per_gpu_embedder_batch_size) passage_emb, output_passages, output_scores = ( query_emb.new_zeros(len(flat_passage_strings), query_emb.shape[-1]), [], [], ) for b in range(0, len(flat_passage_strings), encoder_batch_size): batch = flat_passage_strings[b : b + encoder_batch_size] batch_enc = self.retriever_tokenizer( batch, padding="longest", return_tensors="pt", max_length=min(self.opt.text_maxlength, BERT_MAX_SEQ_LENGTH), truncation=True, ) batch_emb = retrieverfp16(**_to_cuda(batch_enc), is_passages=True).to(query_emb) passage_emb[b : b + encoder_batch_size] = batch_emb passage_emb = passage_emb.view(bsz, to_rerank, -1) retriever_scores = torch.einsum("id, ijd->ij", [query_emb, passage_emb]) top_retriever_scores, top_retriever_inds = torch.topk(retriever_scores, topk, dim=1) for i in range(bsz): output_passages.append([passages[i][j] for j in top_retriever_inds[i]]) output_scores.append(top_retriever_scores[i].tolist()) return output_passages, output_scores @torch.no_grad() def retrieve(self, *args, **kwargs): retrieve_func = self.retrieve_with_rerank if self.opt.retrieve_with_rerank else self._retrieve passages, scores = retrieve_func(*args, **kwargs)[:2] return passages, scores def append_query(self, query, passages): return [self.opt.encoder_format.format(query=query, **p) for p in passages] def retriever_tokenize(self, query): if self.retriever_tokenizer: query_enc = self.retriever_tokenizer( query, max_length=min(self.opt.text_maxlength, BERT_MAX_SEQ_LENGTH), padding="max_length", truncation=True, return_tensors="pt", ) query_enc = _to_cuda(query_enc) else: query_enc = None return _to_cuda(query_enc) def reader_tokenize(self, query, target, target_tokens): if target_tokens is None: if self.opt.decoder_prompt_format is not None: modified_query = [self.opt.decoder_prompt_format.format_map({"query": q}) for q in query] target = [q + t for (q, t) in zip(modified_query, target)] query_mask = self.reader_tokenizer( modified_query, max_length=self.opt.target_maxlength, padding="max_length", truncation=True, return_tensors="pt", add_special_tokens=False, )["attention_mask"] if self.opt.decoder_format is not None: target = [self.opt.decoder_format.format(target=t) for t in target] target = [t + "</s>" if not t.endswith("</s>") else t for t in target] target_tokens = self.reader_tokenizer( target, max_length=self.opt.target_maxlength, padding="max_length", truncation=True, return_tensors="pt", add_special_tokens=False, ) decoder_input_ids = self.reader._shift_right(target_tokens["input_ids"]) labels = target_tokens["input_ids"].masked_fill(~target_tokens["attention_mask"].bool(), IGNORE_INDEX) # If decoder prompt is not None mask labels such that the model is not trained to predict the prompt if self.opt.decoder_prompt_format is not None: query_mask = self.reader_tokenizer( modified_query, max_length=self.opt.target_maxlength, padding="max_length", truncation=True, return_tensors="pt", add_special_tokens=False, )["attention_mask"] padding = torch.zeros((query_mask.size(0), target_tokens["input_ids"].size(-1) - query_mask.size(-1))) query_mask = torch.cat([query_mask, padding], dim=1) labels = labels.masked_fill(query_mask.bool(), IGNORE_INDEX) return labels.cuda(), decoder_input_ids.cuda() def tokenize(self, query, target, target_tokens): if query is None and target is None: return None, None, None assert ( target_tokens is None or self.opt.decoder_prompt_format is None ), "decoder_prompt_format not compatible with target tokenized in iterator" query_enc = self.retriever_tokenize(query) if not self.opt.use_file_passages else None labels, decoder_input_ids = self.reader_tokenize(query, target, target_tokens) return query_enc, labels, decoder_input_ids def tokenize_passages(self, query, passages): if len(query) == 0: return None, None query_passages = [self.append_query(q, p) for q, p in zip(query, passages)] fstr = self.opt.retriever_format retriever_passages = [[fstr.format(**p) for p in example] for example in passages] if self.retriever_tokenizer: retriever_tok = encode_passages( retriever_passages, self.retriever_tokenizer, min(self.opt.text_maxlength, BERT_MAX_SEQ_LENGTH), ) retriever_tok = _to_cuda(retriever_tok) else: retriever_tok = None reader_tok = encode_passages(query_passages, self.reader_tokenizer, self.opt.text_maxlength) reader_tok = _to_cuda(reader_tok) return reader_tok, retriever_tok def perplexity_score(self, reader_ids, reader_mask, decoder_input_ids, labels, cfg, bsz): with torch.no_grad(): self.reader.eval() total_context = reader_ids.size(1) cfg.n_context = 1 cfg.bsz = bsz * total_context reader_ids_score = reader_ids.view(bsz * total_context, -1) reader_mask_score = reader_mask.view(bsz * total_context, -1) repeated_decoder_input_ids = torch.repeat_interleave(decoder_input_ids, total_context, dim=0) repeated_labels = torch.repeat_interleave(labels, total_context, dim=0) reader_output = self.reader( input_ids=reader_ids_score.cuda(), attention_mask=reader_mask_score.cuda(), decoder_input_ids=repeated_decoder_input_ids, labels=repeated_labels, use_cache=False, ) token_loss = nn.functional.cross_entropy( reader_output.logits.view(-1, reader_output.logits.size(-1)), repeated_labels.flatten(), reduction="none", ) gold_score = token_loss.view(bsz, total_context, -1) z = (repeated_labels.view(bsz, total_context, -1) > -1).sum(dim=-1) gold_score = -gold_score.sum(dim=-1) / z return gold_score def eval_score(self, reader_ids, reader_mask, decoder_input_ids, labels, cfg, bsz, mask_query): self.reader.eval() self.reader.reset_score_storage() cfg.bsz = reader_ids.size(0) cfg.n_context = reader_ids.size(1) reader_ids_score = reader_ids.view(reader_ids.size(0), -1) reader_mask_score = reader_mask.view(reader_mask.size(0), -1) with torch.no_grad(): reader_output = self.reader( input_ids=reader_ids_score, attention_mask=reader_mask_score, decoder_input_ids=decoder_input_ids, labels=labels, use_cache=False, ) crossattention_scores = self.reader.get_crossattention_scores( cfg.n_context, reader_mask_score, labels=labels, ids=reader_ids, mode=self.opt.gold_score_mode, mask_query=mask_query, ) gold_score = select_crossattention_scores(crossattention_scores, self.opt.gold_score_mode) if self.training: self.reader.train() return gold_score def loop_score(self, reader_ids, reader_mask, decoder_input_ids, labels, cfg, bsz): with torch.no_grad(): total_context = reader_ids.size(1) doc_len = reader_ids.size(-1) self.reader.eval() cfg.bsz = bsz cfg.n_context = total_context reader_ids_score_eval = reader_ids.view(reader_ids.size(0), -1) reader_mask_score_eval = reader_mask.view(reader_mask.size(0), -1) # forward pass for calculating and caching the encoder states: reader_output_eval = self.reader( input_ids=reader_ids_score_eval, attention_mask=reader_mask_score_eval, decoder_input_ids=decoder_input_ids, labels=labels, use_cache=False, ) eval_hidden_state = reader_output_eval.encoder_last_hidden_state # run n_docs - 1 forward passes to calculate pp when leaving a doc out gold_scores = [] for loo_index in range(total_context): reader_mask_loo = reader_mask.clone() reader_mask_loo[:, loo_index] = False # mask out this doc loo_output_eval = self.reader( encoder_outputs=[eval_hidden_state], attention_mask=reader_mask_loo.view(bsz, (total_context) * doc_len), decoder_input_ids=decoder_input_ids, labels=labels, use_cache=False, ) token_loss = nn.functional.cross_entropy( loo_output_eval.logits.view(-1, loo_output_eval.logits.size(-1)), labels.view(-1), reduction="none" ) mean_loss = token_loss.view(bsz, labels.shape[-1]).sum(dim=-1) / (labels > -1).sum(-1) gold_scores.append(mean_loss) gold_score = torch.stack(gold_scores, dim=1) return gold_score @torch.no_grad() def emdr_score(self, reader_ids, reader_mask, decoder_input_ids, labels, cfg, bsz): self.reader.eval() cfg.n_context = 1 cfg.bsz = bsz * self.opt.retriever_n_context reader_ids_score = reader_ids.view(bsz * self.opt.retriever_n_context, -1) reader_mask_score = reader_mask.view(bsz * self.opt.retriever_n_context, -1) repeated_decoder_input_ids = torch.repeat_interleave(decoder_input_ids, self.opt.retriever_n_context, dim=0) repeated_labels = torch.repeat_interleave(labels, self.opt.retriever_n_context, dim=0) reader_output = self.reader( input_ids=reader_ids_score.cuda(), attention_mask=reader_mask_score.cuda(), labels=repeated_labels, use_cache=False, ) gold_score = reader_output.logits return gold_score def forward( self, index, query, target, target_tokens=None, passages=None, batch_metadata=None, filtering_fun=None, use_cache=False, train_retriever=False, iter_stats={}, ): forward_start = time.time() bsz = len(query) query_mask_reader = ( self.reader_tokenizer.batch_encode_plus( query, max_length=self.opt.text_maxlength, padding="longest", truncation=True, return_tensors="pt", add_special_tokens=False, )["attention_mask"] .bool() .cuda() ) query_enc, labels, decoder_input_ids = self.tokenize(query, target, target_tokens) if not self.opt.use_file_passages: retrieve_start = time.time() passages, _ = self.retrieve( index, self.opt.retriever_n_context, query, query_enc["input_ids"], query_enc["attention_mask"], batch_metadata=batch_metadata, filtering_fun=filtering_fun, iter_stats=iter_stats, ) iter_stats["runtime/retrieve"] = (time.time() - retrieve_start, 1) reader_tokens, retriever_tokens = self.tokenize_passages(query, passages) reader_ids = reader_tokens["input_ids"] # FIXME reader_mask = reader_tokens["attention_mask"].bool() n_context_training = min(self.opt.n_context, reader_ids.size(1)) cfg = self.reader.encoder.config retriever_loss = None if train_retriever: if self.opt.use_gradient_checkpoint_retriever: self.retriever.gradient_checkpointing_enable() query_emb = self.retriever(**query_enc, is_passages=False) if "std" in self.opt.gold_score_mode: retriever_tokens = {k: v[:, :n_context_training] for k, v in retriever_tokens.items()} retriever_tokens = {k: v.reshape(-1, v.size(-1)) for k, v in retriever_tokens.items()} passage_emb = self.retriever(**retriever_tokens, is_passages=True).to(query_emb) passage_emb = passage_emb.view(bsz, -1, passage_emb.size(-1)) retriever_score = torch.einsum("id, ijd->ij", [query_emb, passage_emb]) if self.opt.use_gradient_checkpoint_retriever: self.retriever.gradient_checkpointing_disable() if "eval" in self.opt.gold_score_mode: gold_score = self.eval_score( reader_ids, reader_mask, decoder_input_ids, labels, cfg, bsz, query_mask_reader ) elif "loop" in self.opt.gold_score_mode: gold_score = self.loop_score(reader_ids, reader_mask, decoder_input_ids, labels, cfg, bsz) elif "ppmean" in self.opt.gold_score_mode: gold_score = self.perplexity_score(reader_ids, reader_mask, decoder_input_ids, labels, cfg, bsz) elif "emdr" in self.opt.gold_score_mode: gold_score = self.emdr_score(reader_ids, reader_mask, decoder_input_ids, labels, cfg, bsz) self.reader.reset_score_storage() if self.training: self.reader.train() cfg.bsz = reader_ids.size(0) cfg.n_context = n_context_training reader_ids_training = reader_ids[:, :n_context_training].contiguous() reader_mask_training = reader_mask[:, :n_context_training].contiguous() reader_ids_training = reader_ids_training.view(reader_ids.size(0), -1) reader_mask_training = reader_mask_training.view(reader_mask.size(0), -1) if self.opt.use_gradient_checkpoint_reader: self.reader.gradient_checkpointing_enable() reader_output = self.reader( input_ids=reader_ids_training, attention_mask=reader_mask_training, decoder_input_ids=decoder_input_ids, labels=labels, use_cache=False, ) reader_loss = reader_output[0] if self.opt.use_gradient_checkpoint_reader: self.reader.gradient_checkpointing_disable() if train_retriever: if self.opt.compute_crossattention_stats or "std" in self.opt.gold_score_mode: crossattention_scores = self.reader.get_crossattention_scores( n_context_training, reader_mask_training.cuda(), ids=reader_ids_training.cuda(), mask_query=query_mask_reader.cuda(), labels=labels, mode="all", ) if "std" in self.opt.gold_score_mode: gold_score = select_crossattention_scores( crossattention_scores, self.opt.gold_score_mode ).detach() # TODO: is detach really useful here? retriever_score = retriever_score / np.sqrt(query_emb.size(-1)) if self.opt.compute_crossattention_stats: with torch.no_grad(): for k, v in crossattention_scores.items(): corr = torch.corrcoef(torch.stack([gold_score.view(-1), v.view(-1)])) corr = corr[0, 1].item() if np.isnan(corr): corr = 0.0 iter_stats[f"corr/{k}"] = (corr, len(query)) if gold_score is not None: gold_score = gold_score.float() retriever_score = retriever_score.float() if self.opt.gold_score_mode == "emdr": retriever_loss = self.logprob(retriever_score, gold_score, labels) else: retriever_loss = self.kldivloss(retriever_score, gold_score) self.reader.reset_score_storage() iter_stats["loss/reader_loss"] = (reader_loss.item(), len(query)) if retriever_loss is not None: iter_stats["loss/retriever_loss"] = (retriever_loss.item(), len(query)) iter_stats["runtime/forward"] = (time.time() - forward_start, 1) return reader_loss, retriever_loss def kldivloss(self, score, gold_score): gold_score = torch.softmax(gold_score / self.opt.temperature_gold, dim=-1) score = torch.nn.functional.log_softmax(score / self.opt.temperature_score, dim=-1) return torch.nn.KLDivLoss()(score, gold_score) def logprob(self, score, gold_score, labels): with torch.no_grad(): repeated_labels = torch.repeat_interleave(labels, self.opt.retriever_n_context, dim=0) repeated_labels[repeated_labels == IGNORE_INDEX] = 0 mask_labels = labels >= 0 gold_log_prob = torch.nn.functional.log_softmax(gold_score / self.opt.temperature_gold, dim=-1) gold_log_probs = torch.gather(gold_log_prob, dim=-1, index=repeated_labels[..., None]).view( gold_log_prob.size(0), -1 ) gold_log_probs = gold_log_probs.view(score.size(0), score.size(1), -1) log_score = torch.nn.functional.log_softmax(score / self.opt.temperature_score, dim=-1) log_prob = gold_log_probs + log_score[..., None] logsumprobs = torch.logsumexp(log_prob, dim=1) loss = -1 * torch.sum(logsumprobs * mask_labels) / torch.sum(mask_labels) return loss @torch.no_grad() def compute_reader_loss_and_logits(self, tokens, decoder_input_ids, labels): cfg = self.reader.encoder.config cfg.bsz = tokens["input_ids"].size(0) cfg.n_context = min(self.opt.n_context, tokens["input_ids"].size(1)) reader_loss = self.reader( input_ids=tokens["input_ids"].cuda().view(tokens["input_ids"].size(0), -1), attention_mask=tokens["attention_mask"].cuda().view(tokens["attention_mask"].size(0), -1), decoder_input_ids=decoder_input_ids.cuda(), labels=labels.cuda(), use_cache=False, ) return reader_loss[0].cpu().item(), reader_loss[1] @torch.no_grad() def generate(self, tokens, query, choices=None): cfg = self.reader.encoder.config cfg.bsz = tokens["input_ids"].size(0) cfg.n_context = min(self.opt.n_context, tokens["input_ids"].size(1)) tokens = {k: v.view(v.size(0), -1) for k, v in tokens.items()} bos_token_id = None prefix_allowed_tokens_fn = None if self.opt.decoder_prompt_format is not None: prefix_str = [self.opt.decoder_prompt_format.format_map({"query": q}) for q in query] prefix_allowed_tokens_fn = self.get_prefix_allowed_tokens_fn(prefix_str) outputs = self.reader.generate( input_ids=tokens["input_ids"].cuda(), attention_mask=tokens["attention_mask"].cuda(), num_return_sequences=1, max_length=self.opt.generation_max_length, min_length=self.opt.generation_min_length, num_beams=self.opt.generation_num_beams, length_penalty=self.opt.generation_length_penalty, forced_bos_token_id=bos_token_id, prefix_allowed_tokens_fn=prefix_allowed_tokens_fn, ) return outputs def get_prefix_allowed_tokens_fn(self, prefix_str: Optional[str] = None): if prefix_str: prefix_tokens_ids = self.reader_tokenizer.batch_encode_plus(prefix_str, add_special_tokens=False)[ "input_ids" ] def prefix_allowed_tokens_fn(batch_id: int, input_ids: torch.Tensor) -> List[int]: if input_ids.shape[-1] > len(prefix_tokens_ids[batch_id]): return self.READER_ALL_TOKENS return prefix_tokens_ids[batch_id][input_ids.shape[-1] - 1] else: prefix_allowed_tokens_fn = None return prefix_allowed_tokens_fn def select_crossattention_scores(scores, mode): if "eval" in mode: return scores[mode[len("eval") :]] elif "std" in mode: return scores[mode[len("std") :]] def _to_cuda(tok_dict): return {k: v.cuda() for k, v in tok_dict.items()}
atlas-main
src/atlas.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import datetime import os import subprocess from logging import getLogger import torch logger = getLogger() def init_distributed_mode_torchrun(params): """ Handle single and multi-GPU for singe-node jobs with torchrun. Initialize the following variables: - n_nodes - node_id - local_rank - global_rank - world_size For NCCL verbose mode, use: os.environ["NCCL_DEBUG"] = "INFO" """ params.local_rank = int(os.environ["LOCAL_RANK"]) params.node_id = 0 params.n_nodes = 1 params.global_rank = int(os.environ["RANK"]) params.world_size = int(os.environ["WORLD_SIZE"]) # define whether this is the master process / if we are in distributed mode params.is_main = params.node_id == 0 and params.local_rank == 0 params.multi_node = params.n_nodes > 1 params.multi_gpu = params.world_size > 1 params.is_distributed = True # summary PREFIX = "%i - " % params.global_rank # set GPU device if params.is_distributed: torch.cuda.set_device(params.local_rank) device = torch.device("cuda", params.local_rank) else: device = torch.device("cuda" if torch.cuda.is_available() else "cpu") params.device = device # initialize multi-GPU if params.is_distributed: # http://pytorch.apachecn.org/en/0.3.0/distributed.html#environment-variable-initialization # 'env://' will read these environment variables: # WORLD_SIZE - required; can be set either here, or in a call to init function # RANK - required; can be set either here, or in a call to init function # print("Initializing PyTorch distributed ...") # Fix for if gloo sockets are inconsistent p1 = subprocess.Popen(["ip", "r"], stdout=subprocess.PIPE) p2 = subprocess.Popen(["grep", "default"], stdin=p1.stdout, stdout=subprocess.PIPE) p1.stdout.close() gloo_socket_ifname = subprocess.check_output(["awk", "{print $5}"], stdin=p2.stdout).decode("utf-8").strip() p2.stdout.close() os.environ["GLOO_SOCKET_IFNAME"] = gloo_socket_ifname torch.distributed.init_process_group( init_method="env://", backend="nccl", ) global GLOO_GROUP GLOO_GROUP = torch.distributed.new_group( list(range(params.world_size)), backend="gloo", timeout=datetime.timedelta(0, 600), )
atlas-main
src/torchrun_utils.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch import torch.distributed as dist from src import slurm class Gather(torch.autograd.Function): @staticmethod def forward(ctx, x: torch.tensor): output = [torch.zeros_like(x) for _ in range(dist.get_world_size())] dist.all_gather(output, x) return tuple(output) @staticmethod def backward(ctx, *grads): all_gradients = torch.stack(grads) dist.all_reduce(all_gradients) return all_gradients[dist.get_rank()] def gather_wgrad(x: torch.tensor, dim: int = 0): if not dist.is_initialized(): return x x_gather = Gather.apply(x) x_gather = torch.cat(x_gather, dim=dim) return x_gather @torch.no_grad() def all_gather(x: torch.tensor, dim: int = 0): if not dist.is_initialized(): return x x_gather = [torch.ones_like(x) for _ in range(dist.get_world_size())] dist.all_gather(x_gather, x) x_gather = torch.cat(x_gather, dim=dim) return x_gather @torch.no_grad() def varsize_all_gather(x: torch.Tensor, dim: int = 0): """all_gather tensors of different sizes along the specified dimension with concatenation""" if not dist.is_initialized(): return x size = x.size(dim) tensor_size = torch.tensor(size, device=x.device, dtype=torch.int64) all_sizes = [torch.zeros_like(tensor_size) for _ in range(dist.get_world_size())] dist.all_gather(all_sizes, tensor_size) max_size = max([s.item() for s in all_sizes]) padding_tuple_size = [max_size - size if k == dim else x.size(k) for k in range(x.ndim)] tensor_tuple_size = [max_size if k == dim else x.size(k) for k in range(x.ndim)] if size != max_size: padding = torch.empty(size=padding_tuple_size, dtype=x.dtype, device=x.device) x = torch.cat((x, padding), dim=dim) tensor_list = [torch.empty(tensor_tuple_size, device=x.device, dtype=x.dtype) for s in all_sizes] dist.all_gather(tensor_list=tensor_list, tensor=x) tensor_list = [torch.narrow(tensor, dim, start=0, length=all_sizes[k]) for k, tensor in enumerate(tensor_list)] output = torch.cat(tensor_list, dim=dim) return output @torch.no_grad() def varsize_gather(x: torch.Tensor, dst: int = 0, dim: int = 0): """gather tensors of different sizes along the specified dimension""" if not dist.is_initialized(): return x size = x.size(dim) tensor_size = torch.tensor(size, device=x.device, dtype=torch.int64) all_sizes = [torch.zeros_like(tensor_size) for _ in range(dist.get_world_size())] dist.all_gather(all_sizes, tensor_size) max_size = max([s.item() for s in all_sizes]) padding_tuple_size = [max_size - size if k == dim else x.size(k) for k in range(x.ndim)] tensor_tuple_size = [max_size if k == dim else x.size(k) for k in range(x.ndim)] if size != max_size: padding = torch.empty(size=padding_tuple_size, dtype=x.dtype, device=x.device) x = torch.cat((x, padding), dim=dim) if get_rank() == dst: tensor_list = [torch.empty(tensor_tuple_size, device=x.device, dtype=x.dtype) for s in all_sizes] else: tensor_list = None dist.gather(x, gather_list=tensor_list, dst=dst) if get_rank() == dst: tensor_list = [torch.narrow(tensor, dim, start=0, length=all_sizes[k]) for k, tensor in enumerate(tensor_list)] return tensor_list @torch.no_grad() def get_varsize(x: torch.Tensor, dim: int = 0): """gather tensors of different sizes along the first dimension""" if not dist.is_initialized(): return torch.tensor([x.size(dim)]) # determine max size size = torch.tensor([x.size(dim)], device=x.device, dtype=torch.int) allsizes = [torch.zeros_like(size) for _ in range(dist.get_world_size())] dist.all_gather(allsizes, size) allsizes = torch.cat(allsizes) return allsizes @torch.no_grad() def gather_number(x): if not dist.is_initialized(): return [x] output = [None for _ in range(get_world_size())] dist.all_gather_object(output, x, group=slurm.get_gloo_group()) return output def barrier(): if dist.is_initialized(): torch.distributed.barrier() def get_rank(): if not dist.is_available(): return 0 if not dist.is_initialized(): return 0 return dist.get_rank() def is_main(): return get_rank() == 0 def get_world_size(): if not dist.is_initialized(): return 1 else: return dist.get_world_size() def average_main(x): if not dist.is_initialized(): return x if dist.is_initialized() and dist.get_world_size() > 1: dist.reduce(x, 0, op=dist.ReduceOp.SUM) if is_main(): x = x / dist.get_world_size() return x def sum_main(x): if not dist.is_initialized(): return x if dist.is_initialized() and dist.get_world_size() > 1: dist.reduce(x, 0, op=dist.ReduceOp.SUM) return x def weighted_average(x, count): if not dist.is_initialized(): if isinstance(x, torch.Tensor): x = x.item() return x, count t_loss = torch.tensor([x * count]).cuda() t_total = torch.tensor([count]).cuda() t_loss = sum_main(t_loss) t_total = sum_main(t_total) return (t_loss / t_total).item(), t_total.item()
atlas-main
src/dist_utils.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import copy import itertools import string import torch from transformers.tokenization_utils_base import PreTrainedTokenizerBase from src.evaluation import exact_match_score from src.options import Options from src.tasks.base import BaseTask def _get_permutation_orderings(N, permutations_type): li = list(range(N)) if permutations_type == "cyclic": orderings = [li[N - i :] + li[: N - i] for i in range(N)] elif permutations_type == "all": orderings = list(itertools.permutations(li)) else: orderings = [li] return orderings class Task(BaseTask): metrics = ["debiased_accuracy", "accuracy", "eval_loss"] def __init__(self, opt: Options, tokenizer: PreTrainedTokenizerBase, *args, **kwargs): super().__init__() self.tokenizer = tokenizer self.maximum_question_length = 356 self.choices = string.ascii_uppercase[: opt.multiple_choice_num_options] self.choice2index = {o: self.tokenizer(o)["input_ids"][0] for o in self.choices} @staticmethod def get_multiple_choice_question_prompt(tokenizer, question, choices, maximum_length=356): def _length_in_tokens(string): return len(tokenizer(string)["input_ids"]) def _get_prompt(question, choices_wseparator): preprocessed_question = f"question: {question.strip()} options: {choices_wseparator} answer: <extra_id_0>" return preprocessed_question choices_wseparator = " ".join([f"({L}) {T}" for L, T in choices.items()]).strip() question_with_options = _get_prompt(question, choices_wseparator) if _length_in_tokens(question_with_options) > maximum_length: max_qlen = maximum_length - _length_in_tokens(_get_prompt("", choices_wseparator)) truncated_question = tokenizer.decode( tokenizer(question)["input_ids"][-max_qlen:], skip_special_tokens=True ) question_with_options = _get_prompt(truncated_question, choices_wseparator) return question_with_options def process(self, example, *args, **kwargs): preprocessed_question = self.get_multiple_choice_question_prompt( self.tokenizer, example["question"], example["options"], maximum_length=self.maximum_question_length ) target = f'<extra_id_0> {example["answer"]}' return { "query": preprocessed_question, "target": target, "choices": self.choices, "passages": [{"title": "", "text": ""}], "answers": [example["answer"]], "metadata": example, } @staticmethod def get_permutations(example, permutations_type): """clones example according to permutations_type (either "none", 'cyclic' or 'full'""" options, answer = example["options"], example["answer"] uid = example["question"] + " ".join(options.values()) choice_keys = list(sorted(options.keys())) choice_values = [options[l] for l in choice_keys] orderings = _get_permutation_orderings(len(choice_keys), permutations_type) permuted_examples = [] for ordering in orderings: permuted_options = {l: choice_values[o] for l, o in zip(choice_keys, ordering)} permuted_answer = [k for k, ans in permuted_options.items() if ans == options[answer]][0] permed_example = copy.deepcopy(example) permed_example["options"] = permuted_options permed_example["answer"] = permuted_answer permed_example["is_original"] = permuted_options == example["options"] permed_example["uid"] = uid permuted_examples.append(permed_example) return permuted_examples @staticmethod def data_iterator(*args, **kwargs): # wrap base data iterator in the case of permuting examples super_iterator = super(Task, Task).data_iterator(*args, **kwargs) perms_type = ( kwargs["opt"].multiple_choice_eval_permutations if kwargs.get("is_eval", False) else kwargs["opt"].multiple_choice_train_permutations ) for example in super_iterator: for permed_item in Task.get_permutations(example, perms_type): yield permed_item def evaluation(self, prediction, ground_truths): sample_metrics = {"accuracy": exact_match_score(prediction, ground_truths)} return sample_metrics def get_choice_logits(self, logits): prediction_logits = { letter: logits[1, letter_index].cpu().item() for letter, letter_index in self.choice2index.items() } return prediction_logits def _get_original_instance(self, permutations): return [p for p in permutations if p["metadata"]["is_original"]][0] def _marginalize_across_permutations(self, permutations): original_instance = self._get_original_instance(permutations) text_answer_2_letter = {v: k for k, v in original_instance["metadata"]["options"].items()} aggregate_probs = {} for perm in permutations: logits = torch.tensor([perm["choice_logits"][c] for c in self.choices]) probs = torch.softmax(logits, dim=0).tolist() perm_text_options = [perm["metadata"]["options"][c] for c in self.choices] for t, p in zip(perm_text_options, probs): aggregate_probs.setdefault(t, []).append(p) marginalized = {text_answer_2_letter[t]: torch.tensor(v).mean().item() for t, v in aggregate_probs.items()} return marginalized, aggregate_probs def _reduce_permutations(self, dataset_wpred): to_agg = {} for output in dataset_wpred: to_agg.setdefault(output["metadata"]["uid"], []).append(output) output_dataset_wpred = [] for _, perms in to_agg.items(): original_instance = copy.deepcopy(self._get_original_instance(perms)) scores, all_scores = self._marginalize_across_permutations(perms) del original_instance["choice_logits"] original_instance["choice_probs"] = scores original_instance["generation"] = max(scores.items(), key=lambda x: x[1])[0] original_instance["choice_probs"] = scores original_instance["all_probs"] = all_scores original_instance["permutations"] = perms output_dataset_wpred.append(original_instance) return output_dataset_wpred def evaluation_postprocessing(self, metrics, dataset_with_predictions): dataset_with_predictions = self._reduce_permutations(dataset_with_predictions) metrics["debiased_accuracy"] = [ float(d["generation"] == d["metadata"]["answer"]) for d in dataset_with_predictions ] return metrics, dataset_with_predictions
atlas-main
src/tasks/multiple_choice.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from src.evaluation import exact_match_score from src.tasks.base import BaseTask class Task(BaseTask): metrics = ["accuracy"] def process(self, example, *args, **kwargs): clean_input = example["claim"] clean_target = "" if "label" in example: target = example["label"] if target == "NOT ENOUGH INFO": clean_target = "maybe" elif target == "REFUTES": clean_target = "false" elif target == "SUPPORTS": clean_target = "true" if not "passages" in example: example["passages"] = [{"title": "", "text": ""}] example["metadata"] = example.get("metadata", {}) example["query"] = f"question: {clean_input} answer: <extra_id_0>" if clean_target is not None: example["target"] = f"<extra_id_0> {clean_target}" example["passages"] = [{"title": "", "text": ""}] example["metadata"]["clean_target"] = clean_target example["answers"] = [clean_target] return example def evaluation(self, prediction, ground_truths): sample_metrics = {"accuracy": exact_match_score(prediction, ground_truths)} return sample_metrics
atlas-main
src/tasks/fever.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import random from transformers.tokenization_utils_base import PreTrainedTokenizerBase from src.evaluation import exact_match_score, f1_score, rouge_score from src.options import Options from src.tasks.base import BaseTask, filter_results_by_id class Task(BaseTask): metrics = ["eval_loss", "accuracy", "f1", "rouge_1", "rouge_2", "rouge_L"] def __init__(self, opt: Options, tokenizer: PreTrainedTokenizerBase, *args, **kwargs): self.tokenizer = tokenizer self.min_words = opt.min_words_per_lm_instance self.mlm_noise_density = opt.mlm_noise_density self.mlm_mean_noise_span_length = opt.mlm_mean_noise_span_length self.text_maxlength = opt.text_maxlength def filter(self, *args, **kwargs): """Remove the passage we are trying to denoise from retrieved results""" return filter_results_by_id(*args, **kwargs) def process(self, example, *args, **kwargs): """Noises the target field using T5 MLM masking, saves the orginal target in metadata,""" clean_target = example["text"] if len(clean_target.strip()) == 0: return None if self.min_words is not None and len(clean_target.split()) < self.min_words: return None output_example = {} inp, out = self.apply_mlm_noise( self.tokenizer, clean_target, self.mlm_noise_density, self.mlm_mean_noise_span_length, self.text_maxlength, ) if not "passages" in example: output_example["passages"] = [{"title": "", "text": ""}] output_example["query"] = inp output_example["target"] = out output_example["metadata"] = example output_example["metadata"]["clean_target"] = clean_target return output_example def evaluation(self, prediction, ground_truths): sample_metrics = {} sample_metrics["accuracy"] = exact_match_score(prediction, ground_truths) sample_metrics["f1"] = f1_score(prediction, ground_truths) rouge_1, rouge_2, rouge_L = rouge_score(prediction, ground_truths) sample_metrics["rouge_1"] = rouge_1 sample_metrics["rouge_2"] = rouge_2 sample_metrics["rouge_L"] = rouge_L return sample_metrics @staticmethod def apply_mlm_noise( tokenizer, text, mlm_noise_density, mlm_mean_noise_span_length, max_input_length, ): tokens = tokenizer(text, add_special_tokens=False, max_length=max_input_length, truncation=True)["input_ids"] length = len(tokens) num_noise_tokens = max(round(length * mlm_noise_density), 1) num_noise_spans = max(round(num_noise_tokens / mlm_mean_noise_span_length), 1) num_nonnoise_tokens = length - num_noise_tokens def _get_span_lengths(num_items, num_segments): positions = [i < (num_segments - 1) for i in range(num_items - 1)] random.shuffle(positions) positions.append(True) output, prev_span_start = [], -1 for i, n in enumerate(positions): if n: output.append(i - prev_span_start) prev_span_start = i return output noise_span_lengths = _get_span_lengths(num_noise_tokens, num_noise_spans) nonnoise_span_lengths = _get_span_lengths(num_nonnoise_tokens, num_noise_spans) inputs, outputs, offset = [], [], 0 for i, (inp_length, out_length) in enumerate(zip(nonnoise_span_lengths, noise_span_lengths)): sentinel_id = tokenizer.additional_special_tokens_ids[i] inputs += tokens[offset : offset + inp_length] + [sentinel_id] offset += inp_length outputs += [sentinel_id] + tokens[offset : offset + out_length] offset += out_length return tokenizer.decode(inputs), tokenizer.decode(outputs)
atlas-main
src/tasks/mlm.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from . import base, fever, kilt, lm, mlm, multiple_choice, qa, section AVAILABLE_TASKS = {m.__name__.split(".")[-1]: m for m in [base, mlm, lm, multiple_choice, kilt, section, fever, qa]} def get_task(opt, tokenizer): if opt.task not in AVAILABLE_TASKS: raise ValueError(f"{opt.task} not recognised") task_module = AVAILABLE_TASKS[opt.task] return task_module.Task(opt, tokenizer)
atlas-main
src/tasks/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import logging from src.evaluation import exact_match_score, f1_score, rouge_score from src.options import Options from src.tasks.base import BaseTask, filter_results_by_id logger = logging.getLogger(__name__) class Task(BaseTask): metrics = ["eval_loss", "accuracy", "f1", "rouge_1", "rouge_2", "rouge_L"] def __init__(self, opt: Options, *args, **kwargs): self.min_words = opt.min_words_per_lm_instance def process(self, example, *args, **kwargs): if not "section" in example or len(example["section"].strip()) == 0: return query = ", ".join([example["title"], example["section"]]) text = example["text"] if len(text.strip()) == 0: return if self.min_words is not None and len(text.split()) < self.min_words: return if not "passages" in example: example["passages"] = [{"title": "", "text": ""}] example["query"] = query example["target"] = text example["metadata"] = {} example["metadata"]["id"] = example["id"] return example def evaluation(self, prediction, ground_truths): sample_metrics = {} sample_metrics["accuracy"] = exact_match_score(prediction, ground_truths) sample_metrics["f1"] = f1_score(prediction, ground_truths) rouge_1, rouge_2, rouge_L = rouge_score(prediction, ground_truths) sample_metrics["rouge_1"] = rouge_1 sample_metrics["rouge_2"] = rouge_2 sample_metrics["rouge_L"] = rouge_L return sample_metrics def filter(self, *args, **kwargs): """Remove the passage we are trying to generate from retrieved results""" return filter_results_by_id(*args, **kwargs)
atlas-main
src/tasks/section.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import random from typing import List from src.evaluation import exact_match_score, f1_score, normalize_answer from src.tasks.base import BaseTask class Task(BaseTask): metrics = ["accuracy", "exact_match", "f1"] def process(self, example, *args, **kwargs): clean_input = example["input"] answers = list(self.get_gold_answers(example)) if "filename" in example and "fever" in example["filename"]: answers = ["true" if a == "SUPPORTS" else "false" for a in answers] clean_target = random.choice(answers) if not "passages" in example: example["passages"] = [{"title": "", "text": ""}] example["metadata"] = example.get("metadata", {}) example["query"] = f"question: {clean_input} answer: <extra_id_0>" example["target"] = f"<extra_id_0> {clean_target}" example["answers"] = answers example["passages"] = [{"title": "", "text": ""}] example["metadata"]["clean_target"] = clean_target return example def get_gold_answers(self, gold): ground_truths = set() for item in gold["output"]: if "answer" in item and item["answer"] and len(item["answer"].strip()) > 0: ground_truths.add(item["answer"].strip()) return ground_truths def evaluation(self, prediction: str, ground_truths: List[str]): sample_metrics = { "accuracy": exact_match_score(prediction, ground_truths), "exact_match": exact_match_score(prediction, ground_truths, normalize_answer), "f1": f1_score(prediction, ground_truths, normalize_answer), } return sample_metrics
atlas-main
src/tasks/kilt.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import logging import random import re from src.evaluation import exact_match_score, f1_score, rouge_score from src.options import Options from src.tasks.base import BaseTask, filter_results_by_id logger = logging.getLogger(__name__) class Task(BaseTask): metrics = ["eval_loss", "accuracy", "f1", "rouge_1", "rouge_2", "rouge_L"] def __init__(self, opt: Options, *args, **kwargs): self.min_words = opt.min_words_per_lm_instance self.min_context_ratio = opt.min_lm_context_ratio self.max_context_ratio = opt.max_lm_context_ratio def filter(self, *args, **kwargs): """Remove the passage we are trying to generate from retrieved results""" return filter_results_by_id(*args, **kwargs) def process(self, example, *args, **kwargs): text = example["text"] if len(text.strip()) == 0: return if self.min_words is not None and len(text.split()) < self.min_words: return inp, out = self.split(text, self.min_context_ratio, self.max_context_ratio) if not "passages" in example: example["passages"] = [{"title": "", "text": ""}] example["query"] = inp example["target"] = out example["metadata"] = {} example["metadata"]["id"] = example["id"] return example @staticmethod def split(text, min_context_ratio, max_context_ratio): """Splits text into two segments for langauge modelling. Left segment is conditioning context, right segment is for generating. The left segment must be between min_context_ratio and max_context_ratio of right segement in terms of length. """ words = re.split(r"(\S+)", text) min_length = int(max(2, len(words) * min_context_ratio)) max_length = int(max(min(len(words) - 2, len(words) * max_context_ratio), min_length + 1)) split_idx = random.randint(min_length, max_length) inp = "".join(words[:split_idx]) out = "".join(words[split_idx:]) return inp, out def evaluation(self, prediction, ground_truths): sample_metrics = {} sample_metrics["accuracy"] = exact_match_score(prediction, ground_truths) sample_metrics["f1"] = f1_score(prediction, ground_truths) rouge_1, rouge_2, rouge_L = rouge_score(prediction, ground_truths) sample_metrics["rouge_1"] = rouge_1 sample_metrics["rouge_2"] = rouge_2 sample_metrics["rouge_L"] = rouge_L return sample_metrics
atlas-main
src/tasks/lm.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import json import logging import random from collections import defaultdict from src.evaluation import exact_match_score logger = logging.getLogger(__name__) class BaseTask(object): metrics = ["accuracy", "eval_loss"] def __init__(self, *args, **kwargs): self.filter = None @staticmethod def data_iterator(filenames, world_rank=-1, world_size=-1, repeat_if_less_than_world_size=False, *args, **kwargs): if isinstance(filenames, str): filenames = [filenames] def _iter(): # iterate over files return (line for filename in filenames for line in open(filename, encoding="utf-8")) def _stop(): # stop iterating over data when at least one example has been fed to each worker return (total_yielded >= world_size) if repeat_if_less_than_world_size else (total_yielded > 0) total_yielded = 0 while not _stop(): for line in _iter(): total_yielded += 1 if world_rank > -1 and total_yielded % world_size != world_rank: continue example = json.loads(line) yield example @staticmethod def batch_iterator(data_iterator, batch_size, drop_last=False, shuffle=False): if shuffle: data_iterator = BaseTask.shuffle_iterator(data_iterator) batch = defaultdict(lambda: []) batch["__size__"] = 0 batch_counter = 0 for example in data_iterator: for k, v in example.items(): batch[k].append(v) batch["__size__"] += 1 if batch["__size__"] == batch_size: batch_counter += 1 yield batch batch = defaultdict(lambda: []) batch["__size__"] = 0 if batch["__size__"] > 0 and not drop_last: yield batch def evaluation(self, prediction, ground_truths): """most basic evaluation: checks if prediction matches ground truth""" sample_metrics = {"accuracy": exact_match_score(prediction, ground_truths)} return sample_metrics @staticmethod def shuffle_iterator(dataset): d = list(dataset) random.shuffle(d) for x in d: yield x def process(self, example, *args, **kwargs): """most basic example processing, should be overwritten in subclasses""" assert "target" in example, "base task requires a `target` field string to be defined" assert "query" in example, "base task requires a `query` field string to be defined" assert type(example["target"]) == str, "base task requires a `target` field string to be defined" assert type(example["query"]) == str, "base task requires a `query` field string to be defined" if not "passages" in example: example["passages"] = [{"title": "", "text": ""}] return example def evaluation_postprocessing(self, metrics, dataset_with_predictions): """do any necessary postprocessing of generated predictions or metrics after the evaluation loop""" return metrics, dataset_with_predictions def filter_results_by_id(batch_metadata, passages, scores, topk, training=False): """ Removes retrieved passages from retrieved set if their id is the same as the instance in the batch metadata. Useful for MLM or LM where we dont want model to "cheat" by retrieving the passgage it is denoising/generating. If, once violating passages are removed, there are < topk results, the violating passages will be added back, in with a warning """ if batch_metadata is None: logger.warning("Trying to filter a batch with no metadata - probably a padding instance - just return the topk") return [ps[:topk] for ps in passages], [ss[:topk] for ss in scores] def _same_passage_chunk(source_metadata, passage): return passage["id"] == source_metadata["id"] output_passages, output_scores = [], [] for metadata, passage_li, scores_li in zip(batch_metadata, passages, scores): filtered_passages_and_scores, violating_passages_and_scores = [], [] for (p, s) in zip(passage_li, scores_li): if not _same_passage_chunk(metadata, p): filtered_passages_and_scores.append((p, s)) else: violating_passages_and_scores.append((p, s)) if topk > len(filtered_passages_and_scores): logger.warning(f"{len(filtered_passages_and_scores)} passages after filtering for topk = {topk}") filtered_passages_and_scores += violating_passages_and_scores filtered_passages, filtered_scores = zip(*filtered_passages_and_scores) output_passages.append(filtered_passages) output_scores.append(filtered_scores) return [ps[:topk] for ps in output_passages], [ss[:topk] for ss in output_scores]
atlas-main
src/tasks/base.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import random from src.evaluation import exact_match_score, f1_score, normalize_answer from src.options import Options from src.tasks.base import BaseTask class Task(BaseTask): metrics = ["exact_match", "f1", "eval_loss"] def __init__(self, opt: Options, *args, **kwargs): super().__init__() self.qa_prompt_format_str = opt.qa_prompt_format def get_qa_prompt(self, question: str) -> str: return self.qa_prompt_format_str.format(question=question) def process(self, example, *args, **kwargs): if "target" in example: target = example["target"] elif "answers" in example: target = random.choice(example["answers"]) else: target = None if not "passages" in example: example["passages"] = [{"title": "", "text": ""}] example["metadata"] = example.get("metadata", {}) example["query"] = self.get_qa_prompt(example["question"]) if target is not None: example["target"] = f"<extra_id_0> {target}" return example def evaluation(self, prediction, ground_truths): sample_metrics = { "exact_match": exact_match_score(prediction, ground_truths, normalize_answer), "f1": f1_score(prediction, ground_truths, normalize_answer), } return sample_metrics
atlas-main
src/tasks/qa.py
#!/usr/bin/python # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import argparse import re import os import glob import shutil parser = argparse.ArgumentParser( description='Generates XML RTL descriptor file for OpenCL compilation', epilog='', formatter_class=argparse.RawTextHelpFormatter ) requiredNamed = parser.add_argument_group('required named arguments') requiredNamed.add_argument('--input', '-i', metavar='<input file>', type=str, nargs=1, required=True, help='input file') requiredNamed.add_argument('--output_xml', '-x', metavar='<output file>', type=str, nargs=1, required=True, help='output file') requiredNamed.add_argument('--output_rtl', '-t', metavar='<output file>', type=str, nargs=1, required=True, help='output file') requiredNamed.add_argument('--rtl_root', '-r', metavar='<rtl root>', type=str, nargs=1, required=True, help='rtl root location') requiredNamed.add_argument('--output_stub', '-s', metavar='<output file>', type=str, nargs=1, required=True, help='output file') args = parser.parse_args() input_file = open(args.input[0], 'r') output_xml = open(args.output_xml[0], 'w') output_rtl = open(args.output_rtl[0], 'w') output_stub = open(args.output_stub[0], 'w') type_width = None acc_width = None product_width = None acc_divide_cycles = None type_divide_cycles = None rtl_files = [] stub_files = [] def include_sv_files(file_list, cur_dir=False): for filename in file_list: if (not cur_dir): filename = os.path.join(args.rtl_root[0], filename) rtl_files.append(filename) def include_files(file_list, cur_dir=False): for filename in file_list: if (not cur_dir): filename = os.path.join(args.rtl_root[0], filename) shutil.copyfile(filename, os.path.basename(filename)) def include_stub_files(file_list): for filename in file_list: stub_files.append(filename) def set_type_width(w): # FIXME: huh? globals()['type_width'] = w def set_acc_width(w): globals()['acc_width'] = w def set_product_width(w): globals()['product_width'] = w def set_acc_divide_cycles(c): globals()['acc_divide_cycles'] = c def set_type_divide_cycles(c): globals()['type_divide_cycles'] = c lines = [] doing_python = 0 code_block = '' comment_indent = '' RE_PYTHON_BLOCK_BEGIN = re.compile(r"^(\s*)START_PY(\s*)$") RE_PYTHON_BLOCK_END = re.compile(r'^(\s*)END_PY(\s*)$') for line in input_file: reg0 = re.search(RE_PYTHON_BLOCK_BEGIN, line) reg1 = re.search(RE_PYTHON_BLOCK_END, line) if doing_python == 0 and reg0: doing_python = 1 code_block = '' lines.append(reg0.group(1) + '\n<!-- python -->\n') comment_indent = reg0.group(1) elif doing_python == 1 and reg1: doing_python = 0 try: exec(code_block) except Exception: print("Error in code:\n" + code_block + "\n") raise lines.append(reg1.group(1) + '\n<!-- end python -->\n') elif doing_python == 1: dum = re.sub(r"^(" + comment_indent + r")", r'', line) code_block += dum else: # Main XML block line = re.sub('(TYPE_WIDTH)', '{}'.format(type_width), line) line = re.sub('(ACC_WIDTH)', '{}'.format(acc_width), line) line = re.sub('(PRODUCT_WIDTH)', '{}'.format(product_width), line) line = re.sub('(ACC_DIVIDE_CYCLES)', '{}'.format(acc_divide_cycles), line) line = re.sub('(TYPE_DIVIDE_CYCLES)', '{}'.format(type_divide_cycles), line) lines.append(line) for line in lines: output_xml.write(line) input_file.close() output_xml.close() # write the single RTL file for filename in rtl_files: f = open(filename, 'r') output_rtl.write("// ***\n// *** RTL from source file {}\n// ***\n\n".format(filename)) for line in f: output_rtl.write(line) f.close() output_rtl.write("\n\n"); output_rtl.close() # write the single stub OpenCL file for filename in stub_files: f = open(filename, 'r') output_stub.write("// ***\n// *** OpenCL from source file {}\n// ***\n\n".format(filename)) for line in f: output_stub.write(line) f.close() output_stub.write("\n\n"); output_stub.close()
deepfloat-main
bitstream/build_xml.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import argparse import os import shutil import time import glob import subprocess import sys import math import fpga import fpga_resnet import torch from torch.utils.cpp_extension import CppExtension, BuildExtension import torchvision.models as models import validate aocx_file = 'loglib' ext, dev = fpga.init_fpga(aocx_file) class FpgaNN(): def __init__(self, model, mul_factor=1.0): self.model = model self.output_p = None self.mul_factor = mul_factor def forward(self, input): input_p = ext.to_posit(*dev, input) self.output_p = self.model.forward(*dev, input_p) # FIXME: attempt to fix d2h copy assert dev[2].blockingWait() return ext.to_float(*dev, self.output_p).mul_(self.mul_factor) def forward_p(self, input): input_p = ext.to_posit(*dev, input) self.output_p = self.model.forward(*dev, input_p) def forward_f(self): return ext.to_float(*dev, self.output_p).mul_(self.mul_factor) def get_fpga_mods(model): def append_mod(mods, m, name): mods.append([name, m]) mods = [] for m, name in zip([model.conv1, model.maxpool], ['conv1', 'maxpool']): append_mod(mods, m, name) for layer, layer_name in zip([model.layer1, model.layer2, model.layer3, model.layer4], ['layer1', 'layer2', 'layer3', 'layer4']): for idx, seq in enumerate(layer): for m, name in zip([seq.conv1, seq.conv2], ['conv1', 'conv2']): append_mod(mods, m, '{}.{}.{}'.format(layer_name, idx, name)) if (hasattr(seq, 'conv3')): append_mod(mods, seq.conv3, '{}.{}.{}'.format(layer_name, idx, 'conv3')) if (seq.downsample): append_mod(mods, seq.downsample, '{}.{}.{}.0'.format(layer_name, idx, 'downsample')) append_mod(mods, seq.add, '{}.{}.{}'.format(layer_name, idx, 'add')) for m, name in zip([model.avgpool, model.fc], ['avgpool', 'fc']): append_mod(mods, m, name) return mods cpu_model = models.resnet50(True) cpu_model.eval() fc_n_scale = -4 fpga_model = fpga_resnet.resnet50(ext, *dev) fpga_model.fc.setOutputScale(fc_n_scale) fpga_resnet.fuse_resnet_params(ext, dev, cpu_model, fpga_model, fc_mul=1.0) loader = validate.make_loader(batch_size=16, random=False) scale = 2.0 ** fc_n_scale mod = FpgaNN(fpga_model, 1.0 / scale) print('ResNet-50 {}:'.format(aocx_file)) validate.validate(loader, limit=None, fpga_h=mod, # reference_model=cpu_model) reference_model=None)
deepfloat-main
py/run_fpga_resnet.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import argparse import os import shutil import time import glob import subprocess import sys import math import fpga import validate import torch import torch.nn as nn import torchvision.models as models import torchvision.models.resnet as resnet # def fuse_bn(conv, bn): # conv_w = conv.weight.clone() # conv_b = None # if (conv.bias): # conv_b = conv.bias.clone() # else: # conv_b = torch.FloatTensor(conv_w.size(0)).zero_() # for c in range(conv_w.size(0)): # bn_mean = bn.running_mean[c] # bn_var = bn.running_var[c] # bn_weight = bn.weight[c] # bn_bias = bn.bias[c] # inv_var = 1.0 / math.sqrt(bn_var + 1e-5) # conv_w[c].mul_(bn_weight * inv_var) # conv_b[c].add_(-bn_mean * inv_var * bn_weight + bn_bias) # return conv_w, conv_b # def fuse_resnet_params(m): # convs = [] # convs.append([m.conv1, m.bn1]) # for seq in [m.layer1, m.layer2, m.layer3, m.layer4]: # for bb in seq: # convs.append([bb.conv1, bb.bn1]) # convs.append([bb.conv2, bb.bn2]) # if (bb.conv3): # convs.append([bb.conv3, bb.bn3]) # if (bb.downsample): # convs.append([bb.downsample[0], bb.downsample[1]]) # params = [] # for c in convs: # w, b = fuse_bn(c[0], c[1]) # params.append(['conv', [w, b]]) # params.append(['fc', [m.fc.weight, m.fc.bias]]) # return params # def orig_resnet_params(m): # modules = [] # modules.extend([['conv', m.conv1], ['bn', m.bn1]]) # for seq in [m.layer1, m.layer2, m.layer3, m.layer4]: # for bb in seq: # modules.extend([['conv', bb.conv1], ['bn', bb.bn1]]) # modules.extend([['conv', bb.conv2], ['bn', bb.bn2]]) # if (bb.conv3): # modules.extend([['conv', bb.conv3], ['bn', bb.bn3]]) # if (bb.downsample): # modules.extend([['conv', bb.downsample[0]], ['bn', bb.downsample[1]]]) # modules.append(['fc', m.fc]) # params = [] # for m in modules: # if (m[0] == 'conv'): # if (m[1].bias != None): # params.append([m[0], [m[1].weight, # m[1].bias]]) # else: # params.append([m[0], [m[1].weight]]) # elif (m[0] == 'bn'): # params.append([m[0], [m[1].running_mean, # m[1].running_var, # m[1].weight, # m[1].bias]]) # elif (m[0] == 'fc'): # params.append([m[0], [m[1].weight, # m[1].bias]]) # return params # destructiely updates conv def fuse_bn(conv, bn): conv_w = conv.weight conv_b = None if (conv.bias): conv_b = conv.bias else: conv_b = torch.FloatTensor(conv_w.size(0)).zero_() conv.bias = torch.nn.Parameter(conv_b) for c in range(conv_w.size(0)): bn_mean = bn.running_mean[c] bn_var = bn.running_var[c] bn_weight = bn.weight[c] bn_bias = bn.bias[c] inv_var = 1.0 / math.sqrt(bn_var + 1e-5) conv_w[c].mul_(bn_weight * inv_var) conv_b[c].add_(-bn_mean * inv_var * bn_weight + bn_bias) # param_stats = [] # act_stats = [] # def get_stats(t): # t_abs = t.abs() # t_sort = t_abs.view(t_abs.nelement()).sort()[0] # num = t_sort.nelement() # return [t_sort[int(0.5 * num)].item(), # t_sort[int(0.9 * num)].item(), # t_sort[int(0.95 * num)].item(), # t_sort[int(0.99 * num)].item(), # t_sort[int(0.995 * num)].item(), # t_sort[int(0.999 * num)].item(), # t_sort[-1].item()] # def print_act(name, t): # act_stats.append([name, get_stats(t)]) # def print_params(name, m): # w = get_stats(m.weight) # b = None # if m.bias is not None: # b = get_stats(m.bias) # param_stats.append([name, w, b]) def new_forward(self, x): residual = x out = self.conv1(x) out = self.relu(out) out = self.conv2(out) out = self.relu(out) if (hasattr(self, 'conv3')): out = self.conv3(out) if self.downsample is not None: residual = self.downsample[0](x) out += residual out = self.relu(out) return out def new_resnet_forward(self, x): x = self.conv1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.fc(x) return x def fuse_resnet_params(m): resnet.Bottleneck.forward = new_forward resnet.ResNet.forward = new_resnet_forward m.fused = True fuse_bn(m.conv1, m.bn1) del m.bn1 for seq in [m.layer1, m.layer2, m.layer3, m.layer4]: seq.fused = True for bb in seq: bb.fused = True fuse_bn(bb.conv1, bb.bn1) del bb.bn1 fuse_bn(bb.conv2, bb.bn2) del bb.bn2 if (hasattr(bb, 'conv3')): fuse_bn(bb.conv3, bb.bn3) del bb.bn3 if (bb.downsample): fuse_bn(bb.downsample[0], bb.downsample[1]) del bb.downsample[1]
deepfloat-main
py/examine_resnet.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import argparse import os import shutil import time import glob import subprocess import sys import math import torch from torch.utils.cpp_extension import CppExtension, BuildExtension def init_fpga(aocx_file, dir='../bitstream'): files = [] files.extend(glob.glob('../cpp/utils/*.cpp')) files.extend(glob.glob('../cpp/ops/*.cpp')) files.extend(glob.glob('../cpp/layers/*.cpp')) files.append('../cpp/PythonInterface.cpp') aocl_compile_conf = subprocess.check_output( ['aocl', 'compile-config']).decode('utf-8').strip() aocl_link_conf = subprocess.check_output( ['aocl', 'link-config']).decode('utf-8').strip() ext = torch.utils.cpp_extension.load( name='fpga_extension', sources=files, extra_cflags=[aocl_compile_conf, '-g'], extra_ldflags=[aocl_link_conf], extra_include_paths=['../cpp/'], verbose=False) dev = ext.fpga_init(dir, aocx_file) return ext, dev
deepfloat-main
py/fpga.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch import math from torch.utils.cpp_extension import CppExtension, BuildExtension def inspect(name, ext, context, program, queue, x): return # f = ext.to_float(context, program, queue, x).abs_() # print('{}: mean {} max {}'.format(name, f.mean(), f.max())) class Sequential(): def __init__(self, *args): self.modules = [*args] def __len__(self): return len(self.modules) def __getitem__(self, idx): return self.modules[idx] def add(self, *args): for a in arg: self.modules.append(a) def forward(self, context, program, queue, x): for m in self.modules: x = m.forward(context, program, queue, x) return x class BasicBlock(): expansion = 1 def __init__(self, ext, context, program, queue, inplanes, planes, stride=1, downsample=None): self.ext = ext self.conv1 = ext.Conv2d(context, program, queue, inplanes, planes, 3, stride, 1, 1, False, 0, 0) self.relu1 = ext.ReLU(context, program, queue) self.conv2 = ext.Conv2d(context, program, queue, planes, planes, 3, 1, 1, 1, False, 0, 0) self.relu2 = ext.ReLU(context, program, queue) self.downsample = downsample self.stride = stride self.add = ext.Add(context, program, queue, 0, 0, 0) def forward(self, context, program, queue, x): residual = x ext = self.ext out = self.conv1.forward(context, program, queue, x) inspect("conv1", ext, context, program, queue, out) out = self.relu1.forward(context, program, queue, out) inspect("relu1", ext, context, program, queue, out) out = self.conv2.forward(context, program, queue, out) inspect("conv2", ext, context, program, queue, out) if self.downsample is not None: residual = self.downsample.forward(context, program, queue, x) inspect("residual downsample", ext, context, program, queue, residual) self.add.setAdd(residual) # inspect("residual", ext, context, program, queue, residual) out = self.add.forward(context, program, queue, out) # inspect("add", ext, context, program, queue, out) out = self.relu2.forward(context, program, queue, out) inspect("relu2", ext, context, program, queue, out) return out class Bottleneck(): expansion = 4 def __init__(self, ext, context, program, queue, inplanes, planes, stride=1, downsample=None): self.ext = ext self.conv1 = ext.Conv2d(context, program, queue, inplanes, planes, 1, 1, 0, 0, False, 0, 0) self.relu1 = ext.ReLU(context, program, queue) self.conv2 = ext.Conv2d(context, program, queue, planes, planes, 3, stride, 1, 1, False, 0, 0) self.relu2 = ext.ReLU(context, program, queue) self.conv3 = ext.Conv2d(context, program, queue, planes, planes * self.expansion, 1, 1, 0, 0, False, 0, 0) self.relu3 = ext.ReLU(context, program, queue) self.downsample = downsample self.stride = stride self.add = ext.Add(context, program, queue, 0, 0, 0) def forward(self, context, program, queue, x): residual = x ext = self.ext out = self.conv1.forward(context, program, queue, x) inspect("bottleneck conv1", ext, context, program, queue, out) out = self.relu1.forward(context, program, queue, out) inspect("bottleneck relu1", ext, context, program, queue, out) out = self.conv2.forward(context, program, queue, out) inspect("bottleneck conv2", ext, context, program, queue, out) out = self.relu2.forward(context, program, queue, out) inspect("bottleneck relu2", ext, context, program, queue, out) out = self.conv3.forward(context, program, queue, out) inspect("bottleneck conv3", ext, context, program, queue, out) if self.downsample is not None: residual = self.downsample.forward(context, program, queue, x) inspect("residual downsample", ext, context, program, queue, residual) self.add.setAdd(residual) out = self.add.forward(context, program, queue, out) inspect("bottleneck add", ext, context, program, queue, out) out = self.relu3.forward(context, program, queue, out) inspect("bottleneck relu3", ext, context, program, queue, out) return out class ResNet(): def __init__(self, ext, context, program, queue, block, layers, num_classes=1000): self.inplanes = 64 self.ext = ext self.conv1 = ext.Conv2d(context, program, queue, 3, 64, 7, 2, 3, 3, False, 0, 0) self.relu = ext.ReLU(context, program, queue) self.maxpool = ext.Pool2d(context, program, queue, 3, 2, 1, 1, ext.PoolOp.Max, 0, 0) self.layer1 = self._make_layer(ext, context, program, queue, block, 64, layers[0]) self.layer2 = self._make_layer(ext, context, program, queue, block, 128, layers[1], stride=2) self.layer3 = self._make_layer(ext, context, program, queue, block, 256, layers[2], stride=2) self.layer4 = self._make_layer(ext, context, program, queue, block, 512, layers[3], stride=2) self.avgpool = ext.Pool2d(context, program, queue, 7, 1, 0, 0, ext.PoolOp.Avg, 0, 0) self.view = ext.View(context, program, queue, [[0], [1, 2, 3]]) self.fc = ext.Linear(context, program, queue, 512 * block.expansion, num_classes, True, 0, 0) def _make_layer(self, ext, context, program, queue, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = ext.Conv2d(context, program, queue, self.inplanes, planes * block.expansion, 1, stride, 0, 0, False, 0, 0) layers = [] layers.append(block(ext, context, program, queue, self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(ext, context, program, queue, self.inplanes, planes)) return Sequential(*layers) def forward(self, context, program, queue, x): ext = self.ext inspect("input", ext, context, program, queue, x) x = self.conv1.forward(context, program, queue, x) inspect("conv1", ext, context, program, queue, x) x = self.relu.forward(context, program, queue, x) inspect("relu1", ext, context, program, queue, x) x = self.maxpool.forward(context, program, queue, x) inspect("maxpool", ext, context, program, queue, x) x = self.layer1.forward(context, program, queue, x) inspect("layer1 out", ext, context, program, queue, x) x = self.layer2.forward(context, program, queue, x) inspect("layer2 out", ext, context, program, queue, x) x = self.layer3.forward(context, program, queue, x) inspect("layer3 out", ext, context, program, queue, x) x = self.layer4.forward(context, program, queue, x) inspect("layer4 out", ext, context, program, queue, x) x = self.avgpool.forward(context, program, queue, x) inspect("avgpool out", ext, context, program, queue, x) x = self.view.forward(context, program, queue, x) inspect("view out", ext, context, program, queue, x) x = self.fc.forward(context, program, queue, x) inspect("fc out", ext, context, program, queue, x) return x def resnet18(ext, context, program, queue, pretrained=False, **kwargs): model = ResNet(ext, context, program, queue, BasicBlock, [2, 2, 2, 2], **kwargs) return model def resnet34(ext, context, program, queue, pretrained=False, **kwargs): model = ResNet(ext, context, program, queue, BasicBlock, [3, 4, 6, 3], **kwargs) return model def resnet50(ext, context, program, queue, pretrained=False, **kwargs): model = ResNet(ext, context, program, queue, Bottleneck, [3, 4, 6, 3], **kwargs) return model def resnet101(ext, context, program, queue, pretrained=False, **kwargs): model = ResNet(ext, context, program, queue, Bottleneck, [3, 4, 23, 3], **kwargs) return model def resnet152(ext, context, program, queue, pretrained=False, **kwargs): model = ResNet(ext, context, program, queue, Bottleneck, [3, 8, 36, 3], **kwargs) return model def fuse_bn(conv, bn): conv_w = conv.weight.clone() conv_b = None if (conv.bias): conv_b = conv.bias.clone() else: conv_b = torch.FloatTensor(conv_w.size(0)).zero_() for c in range(conv_w.size(0)): bn_mean = bn.running_mean[c] bn_var = bn.running_var[c] bn_weight = bn.weight[c] bn_bias = bn.bias[c] inv_var = 1.0 / math.sqrt(bn_var + 1e-5) conv_w[c].mul_(bn_weight * inv_var) conv_b[c].add_(-bn_mean * inv_var * bn_weight + bn_bias) return conv_w, conv_b def apply_params(ext, dev, w, b, m): w_p = ext.to_posit(*dev, w) b_p = ext.to_posit(*dev, b) m.setWeight(*dev, w_p) m.setBias(*dev, b_p) def fuse_apply_params(ext, dev, conv, bn, out_conv, w_scale=1.0, b_scale=1.0): w, b = fuse_bn(conv, bn) # w.mul_(w_scale) # b.mul_(b_scale) apply_params(ext, dev, w, b, out_conv) def fuse_resnet_params(ext, dev, m_in, m_out, fc_mul=1.0): fuse_apply_params(ext, dev, m_in.conv1, m_in.bn1, m_out.conv1) for seq_in, seq_out in zip([m_in.layer1, m_in.layer2, m_in.layer3, m_in.layer4], [m_out.layer1, m_out.layer2, m_out.layer3, m_out.layer4]): for bb_in, bb_out in zip(seq_in, seq_out): fuse_apply_params(ext, dev, bb_in.conv1, bb_in.bn1, bb_out.conv1) fuse_apply_params(ext, dev, bb_in.conv2, bb_in.bn2, bb_out.conv2) if (hasattr(bb_in, 'conv3')): fuse_apply_params(ext, dev, bb_in.conv3, bb_in.bn3, bb_out.conv3) if (bb_in.downsample): fuse_apply_params(ext, dev, bb_in.downsample[0], bb_in.downsample[1], bb_out.downsample) apply_params(ext, dev, m_in.fc.weight.mul(fc_mul), m_in.fc.bias.mul(fc_mul), m_out.fc) def gather_act(ext, dev, model): def append_act(ext, dev, acts, m): acts.append(m.getInput()) acts = [] for m in [model.conv1, model.relu, model.maxpool]: append_act(ext, dev, acts, m) for l in [model.layer1, model.layer2, model.layer3, model.layer4]: for s in l: for m in [s.conv1, s.relu1, s.conv2, s.relu2]: append_act(ext, dev, acts, m) if (hasattr(s, 'conv3')): append_act(ext, act, acts, s.conv3) if (s.downsample): append_act(ext, act, acts, s.downsample) append_act(ext, act, acts, s.add) for m in [model.avgpool, model.fc]: append_act(ext, dev, acts, m) return acts
deepfloat-main
py/fpga_resnet.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import argparse import os import shutil import time import glob import subprocess import sys import math import torch import torch.nn as nn import torch.utils.data import torch.utils.data.distributed import torchvision.transforms as transforms import torchvision.datasets as datasets import torchvision.models as models class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def accuracy(output, target, topk=(1,)): """Computes the precision@k for the specified values of k""" maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0, keepdim=True) res.append(correct_k.mul_(100.0 / batch_size)) return res def validate(val_loader, limit, fpga_h=None, reference_model=None): batch_time = AverageMeter() losses = AverageMeter() top1 = AverageMeter() top5 = AverageMeter() end = time.time() ref_batch_time = AverageMeter() ref_losses = AverageMeter() ref_top1 = AverageMeter() ref_top5 = AverageMeter() ref_end = time.time() limit = limit or -1 criterion = nn.CrossEntropyLoss() count = 0 for i, (input, target) in enumerate(val_loader): count = count + 1 if (count > limit and not (limit == -1)): break if (fpga_h): end = time.time() # fpga_h.forward_p(input) if (reference_model): ref_end = time.time() ref_output = reference_model.forward(input) # ref_target_var = torch.autograd.Variable(target, volatile=True) ref_target_var = torch.autograd.Variable(target) ref_loss = criterion(ref_output, ref_target_var) prec1, prec5 = accuracy(ref_output, target, topk=(1, 5)) ref_losses.update(ref_loss.item(), input.size(0)) ref_top1.update(prec1[0], input.size(0)) ref_top5.update(prec5[0], input.size(0)) # measure elapsed time ref_batch_time.update(time.time() - ref_end) print('CPU float32: [{0}/{1}]\t' 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' 'Loss {loss.val:.4f} ({loss.avg:.4f})\t' 'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t' 'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format( (i + 1) * val_loader.batch_size, len(val_loader) * val_loader.batch_size, batch_time=ref_batch_time, loss=ref_losses, top1=ref_top1, top5=ref_top5)) sys.stdout.flush() if (fpga_h): # output = fpga_h.forward_f() output = fpga_h.forward(input) # target_var = torch.autograd.Variable(target, volatile=True) target_var = torch.autograd.Variable(target) loss = criterion(output, target_var) prec1, prec5 = accuracy(output, target, topk=(1, 5)) losses.update(loss.item(), input.size(0)) top1.update(prec1[0], input.size(0)) top5.update(prec5[0], input.size(0)) # measure elapsed time batch_time.update(time.time() - end) print('FPGA: [{0}/{1}]\t' 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' 'Loss {loss.val:.4f} ({loss.avg:.4f})\t' 'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t' 'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format( (i + 1) * val_loader.batch_size, len(val_loader) * val_loader.batch_size, batch_time=batch_time, loss=losses, top1=top1, top5=top5)) sys.stdout.flush() # return top1.avg.item(), top5.avg.item() def make_loader(batch_size, random=False, seed=1): valdir = '/home/jhj/imagenet/data/local/packages/ai-group.imagenet-full-size/prod/imagenet_full_size/val' normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) dataset = datasets.ImageFolder(valdir, transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), normalize, ])) sampler = None if random: sampler = torch.utils.data.RandomSampler(dataset) torch.manual_seed(seed) return torch.utils.data.DataLoader( dataset, sampler=sampler, batch_size=batch_size, shuffle=False, num_workers=0) def sample_loader(loader): for (input, target) in loader: return input, target
deepfloat-main
py/validate.py
#!/usr/bin/python3 # Simple Python Fixed-Point Module (SPFPM) # (C)Copyright 2006-2018, RW Penney # This file is (C)Copyright 2006-2018, RW Penney # and is released under the Python-2.4.2 license # (see http://www.python.org/psf/license), # it therefore comes with NO WARRANTY, and NO CLAIMS OF FITNESS FOR ANY PURPOSE. # However, the author welcomes *constructive* feedback # and bug-fixes via: rwpenney 'AT' users 'DOT' sourceforge 'DOT' net """ The Simple Python Fixed-Point Module (SPFPM) provides objects of types FXnum and FXfamily which implement basic mathematical operations on fixed-point binary numbers (i.e. having a fixed number of fractional binary digits, with the number of integer digits being either arbitrary or subject to a user-defined limit). FXnum objects exist within a user-controllable collection of families managed by the FXfamily class, which sets the number of fractional & integer digits for each family. This can be used, for example, to ensure that a set of 8-bit quantities can be manipulated consistently and kept separate from a set of 200-bit quantities in the same program. Conversion between FXnum objects in different families is supported, but solely through an explicit cast. >>> x = FXnum(2.1) # default FXfamily, with 64-bits >>> print(x) 2.10000000000000008881 >>> x = FXnum(21) / 10 # fractional error ~1/2^64 or ~5e-20 >>> print(x) 2.09999999999999999996 >>> rx = x.sqrt() # rx created in same family as x >>> print(rx) 1.44913767461894385735 >>> v = x + 2 * rx >>> print(v) 4.99827534923788771467 >>> y = FXnum(3.2, FXfamily(12)) # lower-precision 12-bit number >>> ly = y.log() # ly created in same family as y >>> print(ly) # fractional error ~1/2^12 or ~2e-4 1.1628 >>> print(ly.exp()) 3.1987 >>> fy = float(y) >>> print(fy) 3.199951171875 >>> # a = x + y # throws exception - different families >>> a = x + FXnum(y, _defaultFamily) >>> print(a) 5.30007324218749999996 >>> b = rx + x # ok - same families >>> # c = rx + ly # throws exception - different families >>> d = ly + y # ok - same families >>> a = FXnum(1.4, FXfamily(12, 4)) # limit magnitude to 2^(4-1) >>> print(a) 1.3999 >>> print(a * 5, a * -5) 6.9995 -6.9995 >>> #print(a * 6, a * -6) # throws exception indicating overflow >>> fam = FXfamily(200) >>> print(fam.pi) 3.1415926535897932384626433832795028841971693993751058209749444 >>> # Accurate to 60 decimal places ^- first error Note: Be careful not to assume that a large number of fractional bits within a number will necessarily mean large accuracy. For example, computations involving exponentiation and logarithms are intrinsically vulnerable to magnifying mere rounding errors in their inputs into significant errors in their outputs. This is a fact of life with any approximation to real arithmetic using finite-precision quantities. SPFPM is provided as-is, with no warranty of any form. """ SPFPM_VERSION = '1.4.4' class FXfamily(object): """Descriptor of the accuracy of a set of fixed-point numbers. This class defines the fixed-point resolution of a set of FXnum objects. All arithmetic operations between FXnum objects that are not explicitly cast into a different FXfamily must share the same FXfamily. Multiple FXfamily objects can exist within the same application so that, for example, sets of 12-bit, 32-bit & 200-bit quantities can be manipulated concurrently. """ def __init__(self, n_bits=64, n_intbits=None): self.fraction_bits = n_bits # Bits to right of binary point self.integer_bits = n_intbits # Bits to left of binary point (including sign) self.scale = 1 << n_bits self._roundup = 1 << (n_bits - 1) try: thresh = 1 << (n_bits + n_intbits - 1) def validate(scaledval): if scaledval >= thresh or scaledval < -thresh: raise FXoverflowError except: def validate(scaledval): return self.validate = validate # Cached values of various mathematical constants: self._exp1, self._log2, self._pi, self._sqrt2 = (None,) * 4 @property def resolution(self): """The number of fractional binary digits""" return self.fraction_bits @property def exp1(self): """Inverse natural logarithm of unity.""" if self._exp1 is None: # Brute-force calculation of exp(1) using augmented accuracy: augfamily = self.augment() augexp = FXnum(1, augfamily)._rawexp() arg = 1 / FXnum(4, augfamily) q0 = arg._rawexp() q1 = q0 * q0 augexp = q1 * q1 self._exp1 = FXnum(augexp, self) return self._exp1 @property def log2(self): """Natural logarithm of two.""" if self._log2 is None: # Brute-force calculation of log(2) using augmented accuracy # via log(2) = 5log(3^12 / 2^19) - 12log(3^5 / 2^8) augfamily = self.augment() q0 = FXnum((3 ** 12) - (1 << 19), augfamily) >> 19 q1 = FXnum((3 ** 5) - (1 << 8), augfamily) >> 8 auglog2 = (5 * q0._rawlog(isDelta=True) - 12 * q1._rawlog(isDelta=True)) self._log2 = FXnum(auglog2, self) return self._log2 @property def pi(self): """Ratio of circle's perimeter to its diameter.""" if self._pi is None: # Use Bailey–Borwein–Plouffe representation of Pi, # involving powers of 1/16 and simple rational terms: augfamily = self.augment() augpi = augfamily(0) k4 = 0 while True: k8 = k4 * 2 term = (4 / augfamily(k8 + 1) - 2 / augfamily(k8 + 4) - 1 / augfamily(k8 + 5) - 1 / augfamily(k8 + 6)) >> k4 if term.scaledval == 0: break augpi += term k4 += 4 self._pi = FXnum(augpi, self) return self._pi @property def sqrt2(self): """Square-root of two.""" if self._sqrt2 is None: augfamily = self.augment() x = FXnum(3, augfamily) >> 1 while True: # Apply Newton-Raphson iteration to f(x)=2/(x*x)-1: delta = (x * (2 - x * x)) >> 2 x += delta if abs(delta.scaledval) <= 1: break self._sqrt2 = FXnum(x, self) return self._sqrt2 @property def unity(self): """The multiplicative identity.""" return FXnum(1, self) @property def zero(self): """The additive identity.""" return FXnum(0, self) def __hash__(self): return hash(self.fraction_bits) def __repr__(self): return 'FXfamily(n_bits={}, n_intbits={})'.format(self.fraction_bits, self.integer_bits) def __eq__(self, other): try: return (self.fraction_bits == other.fraction_bits and self.integer_bits == other.integer_bits) except AttributeError: return false def __ne__(self, other): try: return (self.fraction_bits != other.fraction_bits or self.integer_bits != other.integer_bits) except AttributeError: return true def __call__(self, val): """Create a fixed-point number within this family.""" return FXnum(val, family=self) def convert(self, other, other_val): """Convert number from different number of fraction-bits""" bit_inc = self.fraction_bits - other.fraction_bits if bit_inc == 0: return other_val elif bit_inc > 0: new_val = other_val << bit_inc if other_val > 0: new_val |= 1 << (bit_inc - 1) else: new_val |= ((1 << (bit_inc -1)) - 1) return new_val else: # Safest approach is to truncate bits, rather than rounding: return (other_val >> -bit_inc) def augment(self, opcount=None): """Construct new FXfamily with enhanced resolution. The returned FXfamily will have an increased number of fractional bits, sufficient to accommodate the worst-case accumulation of 1-LSB errors over the specified number of operations. If the supplied operation-count is None, then this defaults to the existing number of fractional digits. """ nb = opcount if opcount is not None else self.fraction_bits augbits = 4 while nb > 0: augbits += 1 nb >>= 1 return FXfamily(self.fraction_bits + augbits) # ^^^ class FXfamily ^^^ _defaultFamily = FXfamily() #### # Exceptions # class FXexception(ArithmeticError): """Base-class of exceptions generated by SPFPM operations""" class FXdomainError(FXexception): """Signal that input argument of mathematical function is unsuitable""" class FXoverflowError(FXexception): """Signal that value has overflowed its most-significant bit""" class FXfamilyError(FXexception, TypeError): """Signal that family-types of FXnums in binary operation are mismatched""" class FXbrokenError(FXexception): """Signal some form of internal error, e.g. broken logic""" class FXnum(object): """Representation of a binary fixed-point real number.""" __slots__ = ('family', 'scaledval') def __init__(self, val=0, family=_defaultFamily, **kwargs): self.family = family converter = family.convert try: # Assume that val is similar to FXnum: self.scaledval = converter(val.family, val.scaledval) except AttributeError: self.scaledval = kwargs.get('scaled_value', int(val * family.scale)) self.family.validate(self.scaledval) @classmethod def _rawbuild(cls, fam, sv): """Shortcut for creating new FXnum instance, for internal use only.""" num = object.__new__(cls) fam.validate(sv) num.family = fam num.scaledval = sv return num def __hash__(self): return hash(self.scaledval) ^ hash(self.family) def __repr__(self): """Create unambiguous string representation of self""" return 'FXnum(family={}, scaled_value={})'.format(self.family, self.scaledval) # Conversion operations: def __int__(self): """Cast to integer""" if self.scaledval >= 0: return int(self.scaledval // self.family.scale) else: return int((self.scaledval + self.family.scale - 1) // self.family.scale) def __float__(self): """Cast to floating-point""" return float(self.scaledval) / float(self.family.scale) def _CastOrFail_(self, other): """Turn number into FXnum or check that it is in same family""" try: # Binary operations must involve members of same family if self.family != other.family: raise FXfamilyError(1) except AttributeError: # Automatic casting from types other than FXnum is allowed: other = FXnum(other, self.family) return other # Unary arithmetic operations: def __abs__(self): """Modulus""" if self.scaledval < 0: return -self else: return self def __neg__(self): """Change sign""" return FXnum._rawbuild(self.family, -self.scaledval) def __pos__(self): """Identity operation""" return self # Arithmetic comparison tests: def __eq__(self, other): """Equality test""" other = self._CastOrFail_(other) return self.scaledval == other.scaledval and self.family == other.family def __ne__(self, other): """Inequality test""" other = self._CastOrFail_(other) return self.scaledval != other.scaledval def __ge__(self, other): """Greater-or-equal test""" other = self._CastOrFail_(other) return self.scaledval >= other.scaledval def __gt__(self, other): """Greater-than test""" other = self._CastOrFail_(other) return self.scaledval > other.scaledval def __le__(self, other): """Less-or-equal test""" other = self._CastOrFail_(other) return self.scaledval <= other.scaledval def __lt__(self, other): """Greater-than test""" other = self._CastOrFail_(other) return self.scaledval < other.scaledval def __bool__(self): """Test for truth/falsehood""" return (self.scaledval != 0) def __nonzero__(self): """Test for non-zero""" return (self.scaledval != 0) # Arithmetic combinations: def __add__(self, other): """Add another number""" other = self._CastOrFail_(other) return FXnum._rawbuild(self.family, (self.scaledval + other.scaledval)) def __radd__(self, other): return FXnum(other, self.family) + self def __sub__(self, other): """Subtract another number""" other = self._CastOrFail_(other) return FXnum._rawbuild(self.family, (self.scaledval - other.scaledval)) def __rsub__(self, other): return FXnum(other, self.family) - self def __mul__(self, other): """Multiply by another number""" other = self._CastOrFail_(other) return FXnum._rawbuild(self.family, ((self.scaledval * other.scaledval + self.family._roundup) // self.family.scale)) def __rmul__(self, other): return FXnum(other, self.family) * self def __lshift__(self, shift): return FXnum._rawbuild(self.family, (self.scaledval << shift)) def __rshift__(self, shift): return FXnum._rawbuild(self.family, (self.scaledval >> shift)) def __truediv__(self, other): """Divide by another number (without truncation)""" other = self._CastOrFail_(other) return FXnum._rawbuild(self.family, ((self.scaledval * self.family.scale + self.family._roundup) // other.scaledval)) __div__ = __truediv__ def __rtruediv__(self, other): return FXnum(other, self.family) / self __rdiv__ = __rtruediv__ # Printing/converstion routines: def __str__(self): """Convert number (as decimal) into string""" return self.toDecimalString() def toDecimalString(self, precision=None, round10=False): """Convert number (as decimal) into string precision - The maximum number of digits after the decimal point. round10 - Round last decimal digit of fractional part, by adding 0.5/10^precision. """ # Despite rebinding costs, list+join idiom appears slower here # than string concatenation building 'rep' from successive digits famScale = self.family.scale if precision is None or not isinstance(precision, int): precision = int((3 + self.family.fraction_bits) / 3.32) # Each fractional bit adds about log_10(2) decimal digits val = self.scaledval rep = '' if self.scaledval < 0: rep = '-' val *= -1 if round10: # Round (decimal) fractional part by adding half of last-digit: decimalScale = 10 ** precision val = (val * decimalScale + famScale // 2) // decimalScale whole = val // famScale frac = val - whole * famScale rep += str(whole) if frac != 0 and precision > 0: rep += '.' idx = 0 while idx < precision and frac != 0: frac *= 10 q = frac // famScale rep += str(q) frac -= q * famScale idx += 1 return rep def toBinaryString(self, logBase=1, twosComp=True): """Convert number into string in base 2/4/8/16 logBase - log_2 of the number base for printing. (e.g. 1 for binary, 3 for octal, 4 for hexadecimal). This must be no greater than 4. twosComp - Whether to convert negative numbers into twos-complement form. If this is False, then negative numbers are simply prefixed by a minus sign. Note that when negative numbers are converted to twos-complement form, this may involve estimating how many bits are needed to contain the integer part if this is not specified by the FXfamily. """ if not isinstance(logBase, int) or logBase > 4 or logBase < 1: raise ValueError('Cannot convert to base greater than 16') sign, prefix = 1, '' if self.scaledval < 0 and not twosComp: sign, prefix = -1, '-' (bits, intDigits, fracDigits) = \ (sign * self)._toTwosComplement(logBase) digits = [] mask = (1 << logBase) - 1 for dig in range(intDigits+fracDigits): digits.append('{:1x}'.format(bits & mask)) bits >>= logBase digits = ''.join(reversed(digits)) return prefix + digits[:-fracDigits] + '.' + digits[-fracDigits:] def _toTwosComplement(self, logBase=1): """Convert binary representation to twos-complement for printing. This will convert negative numbers into their twos-complement form, and automatically guess the number of digits required to represent the integer part of the invoking number. The returned bit-pattern is aligned so that it has a whole number of digits (in base 1<<logBase) both before and after the binary/octal/hexadecimal-point. """ fracDigits = (self.family.resolution + logBase - 1) // logBase bitPattern = self.scaledval if self.family.integer_bits is not None: intDigits = (self.family.integer_bits + logBase - 1) // logBase else: intDigits = 1 intPart = self.scaledval >> self.family.resolution if intPart >= 0: while intPart >= (1 << (intDigits * logBase)): intDigits += 1 else: while (1 << (intDigits * logBase - 1)) + intPart < 0: intDigits += 1 if bitPattern < 0: bitPattern += 1 << (intDigits * logBase + self.family.resolution) bitPattern <<= (fracDigits * logBase - self.family.resolution) return (bitPattern, intDigits, fracDigits) # Mathematical functions: def __pow__(self, other, modulus=None): """Evaluate self ^ other""" assert modulus is None if self == 0: return self.family.unity ipwr = int(other) rmdr = (other -ipwr) if rmdr == 0: frac = self.family.unity else: frac = (rmdr * self.log()).exp() return self.intpower(ipwr) * frac def __rpow__(self, other): return FXnum(other, self.family) ** self def intpower(self, pwr): """Compute integer power by repeated squaring""" assert isinstance(pwr, int) invert = False if pwr < 0: pwr *= -1 invert = True result = self.family.unity term = self while True: if pwr & 1: result *= term pwr >>= 1 if not pwr: break term *= term if invert: result = FXnum(1, self.family) / result return result def sqrt(self): """Compute square-root of given number.""" if self.scaledval < 0: raise FXdomainError elif self.scaledval == 0: return self # Calculate crude initial approximation: rt = FXnum(family=self.family, scaled_value=(1 << (self.family.fraction_bits // 2))) val = self.scaledval while val > 0: val >>= 2 rt.scaledval <<= 1 # Refine approximation by Newton iteration: while True: delta = (rt - self / rt) >> 1 rt -= delta if delta.scaledval == 0: break return rt def exp(self): """Compute exponential of given number""" pwr = int(self) return (self - pwr)._rawexp() * (self.family.exp1 ** pwr) def _rawexp(self): """Brute-force exponential of given number (assumed smallish)""" ex = self.family.unity term = self.family.unity idx = 1 while True: term *= self / idx ex += term idx += 1 if term.scaledval == 0: break return ex def log(self): """Compute (natural) logarithm of given number""" if self.scaledval <= 0: raise FXdomainError elif self == 1: return FXnum(0, self.family) uprthresh = FXnum(1.6, self.family) lwrthresh = uprthresh / 2 count = 0 val = self while val > uprthresh: val /= 2 count += 1 while val < lwrthresh: val *= 2 count -= 1 return val._rawlog() + count * self.family.log2 def _rawlog(self, isDelta=False): """Compute (natural) logarithm of given number (assumed close to 1)""" lg = self.family.zero if isDelta: z = self / (self + 2) else: z = (self - 1) / (self + 1) z2 = z * z term = 2 * z idx = 1 while True: lg += term / idx term *= z2 idx += 2 if term.scaledval == 0: break return lg def sin(self): """Compute sine of given number (as angle in radians)""" (ang, idx, reflect) = self._angnorm() idx = idx % 4 if idx == 0: sn = ang._rawQsine(False) elif idx == 1: sn = ang._rawQsine(True) elif idx == 2: sn = -ang._rawQsine(False) elif idx == 3: sn = -ang._rawQsine(True) else: raise FXbrokenError if reflect: sn *= -1 return sn def asin(self): """Compute inverse sine of given number""" arg = self reflect = False if self < 0: arg *= -1 reflect = True if arg <= 0.5: asn = arg._rawarcsin() else: # apply 1-cos2t transformation: cs2 = (1 - arg) / 2 if cs2 < 0: raise FXdomainError asn = self.family.pi / 2 - 2 * cs2.sqrt()._rawarcsin() if reflect: asn *= -1 return asn def _rawarcsin(self): """Brute-force inverse-sine of given number. This requires roughly as many integer bits as fractional bits, in order to accommodate (2n!)/(n!n!). """ asn = FXnum(1, self.family) x2 = self * self x2n = x2 half = self.family.unity / 2 nCn = 2 # (2n)! / ((n!)^2) idx = 1 while True: delta = x2n * ((FXnum(nCn, self.family) >> (2 * idx)) / (2 * idx + 1)) asn += delta if delta.scaledval == 0: break idx += 1 x2n *= x2 nCn = (nCn * 2 * (2 * idx - 1)) // idx return self * asn def cos(self): """Compute cosine of given number (as angle in radians)""" (ang, idx, reflect) = self._angnorm() idx = idx % 4 if idx == 0: cs = ang._rawQsine(True) elif idx == 1: cs = -ang._rawQsine(False) elif idx == 2: cs = -ang._rawQsine(True) elif idx == 3: cs = ang._rawQsine(False) else: raise FXbrokenError return cs def acos(self): """Compute inverse cosine of given number""" arg = self reflect = False if self < 0: arg *= -1 reflect = True if arg <= 0.5: acs = self.family.pi / 2 - arg._rawarcsin() else: # apply 1-cos2t transformation: sn2 = (1 - arg) / 2 if sn2 < 0: raise FXdomainError acs = 2 * (sn2.sqrt())._rawarcsin() if reflect: acs = self.family.pi - acs return acs def sincos(self): """Compute sine & cosine of given number (as angle in radians)""" (ang, idx, reflect) = self._angnorm() osn = ang._rawQsine(False) ocs = ang._rawQsine(True) # transform according to sin(ang+offset), cos(ang+offset): idx = idx % 4 if idx == 0: (sn, cs) = (osn, ocs) elif idx == 1: (sn, cs) = (ocs, -osn) elif idx == 2: (sn, cs) = (-osn, -ocs) elif idx == 3: (sn, cs) = (-ocs, osn) else: raise FXbrokenError if reflect: sn *= -1 return (sn, cs) def _angnorm(self): """Helper function for reducing angle modulo 2.Pi""" reflect = False ang = self if ang < 0: ang *= -1 reflect = True # Find nearest multiple of pi/2: halfpi = self.family.pi / 2 idx = int(ang / halfpi + 0.5) ang -= idx * halfpi return (ang, idx, reflect) def _rawQsine(self, doCos=False, doHyp=False): """Helper function for brute-force calculation of sine & cosine""" sn = self.family.zero if doHyp: x2 = self * self else: x2 = -self * self term = self.family.unity if doCos: idx = 1 else: idx = 2 while True: sn += term term *= x2 / (idx * (idx + 1)) idx += 2 if term.scaledval == 0: break if doCos: return sn else: return self * sn def tan(self): """Compute tangent of given number (as angle in radians)""" (sn, cs) = self.sincos() return sn / cs def atan(self): """Compute inverse-tangent of given number (as angle in radians)""" reflect = False recip = False double = False tan = self if tan < 0: tan *= -1 reflect = True if tan > 1: tan = 1 / tan recip = True if tan > 0.414: tan = ((1 + tan * tan).sqrt() - 1) / tan double = True ang = tan._rawarctan() if double: ang *= 2 if recip: ang = self.family.pi / 2 - ang if reflect: ang *= -1 return ang def _rawarctan(self): """Brute-force inverse-tangent of given number (for |self|<1).""" atn = 1 x2 = self * self omx2 = 1 - x2 opx2 = 1 + x2 x4 = x2 * x2 term = x2 idx = 1 while True: # Combine pair of successive terms with opposite signs: delta = term * (4 * idx * omx2 + opx2) / (16 * idx * idx - 1) atn -= delta term *= x4 idx += 1 if delta.scaledval == 0: break return self * atn # ^^^ class FXnum ^^^ if __name__ == "__main__": import doctest try: doctest.testmod() except TypeError: print("*** Problems running doctest module ***") # vim: set ts=4 sw=4 et:
deepfloat-main
rtl/log/luts/FixedPoint.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import FixedPoint import math import argparse import io parser = argparse.ArgumentParser( description='Generates pow2 and log2 tables for log-linear conversions', epilog='', formatter_class=argparse.RawTextHelpFormatter ) group = parser.add_argument_group('arguments') def str2bool(v): if v.lower() in ('yes', 'true', 't', 'y', '1'): return True elif v.lower() in ('no', 'false', 'f', 'n', '0'): return False else: raise argparse.ArgumentTypeError('Boolean value expected.') parser.add_argument("--mem", type=str2bool, nargs='?', const=True, default=False, help="generate memory tables") group.add_argument('--bits_in', '-bi', metavar='<bits in>', type=int, nargs=1, required=True, help='bits for input') group.add_argument('--bits_out', '-bo', metavar='<bits out>', type=int, nargs=1, required=True, help='bits for output') parser.add_argument('--log', type=str2bool, nargs='?', const=True, default=False, help="generate log2 table only") parser.add_argument('--pow', type=str2bool, nargs='?', const=True, default=False, help="generate pow2 table only") parser.add_argument('--pow_delta', type=str2bool, nargs='?', const=True, default=False, help="generate pow2 delta table only") parser.add_argument('--log_delta', type=str2bool, nargs='?', const=True, default=False, help="generate log2 delta table only") parser.add_argument('--str', type=str2bool, nargs='?', const=True, default=False, help="print to stdout only") def get_r2ne(x, bits): str = x.toBinaryString() assert str[1] == '.' keep_bit = str[2+bits-1] == '1' guard_bit = str[2+bits] == '1' round_bit = str[2+bits+1] == '1' sticky_bits = str[2+bits+2:].find('1') != -1 round_down = (not guard_bit) or ((not keep_bit) and guard_bit and (not round_bit) and (not sticky_bits)) return not round_down def get_fraction(x, bits=-1): str = x.toBinaryString() # Find the fixed point idx = str.find('.') if bits == -1: return str[idx+1:] else: return str[idx+1:idx+1+bits] args = parser.parse_args() overlaps = {} # # Non-delta # def get_pow2_expansion(i, in_bits, out_bits, enable_rounding=True): prec_bits = out_bits * 4 fam20 = FixedPoint.FXfamily(prec_bits) x = (FixedPoint.FXnum(i, fam20) / (2 ** in_bits)) orig_x = x orig_str = x.toBinaryString()[2:2+in_bits] x = pow(2, x) pow2_str = x.toBinaryString() keep_bit = pow2_str[2+out_bits-1] == '1' guard_bit = pow2_str[2+out_bits] == '1' round_bit = pow2_str[2+out_bits+1] == '1' sticky_bits = pow2_str[2+out_bits+2:].find('1') != -1 round_down = (not guard_bit) or ((not keep_bit) and guard_bit and (not round_bit) and (not sticky_bits)) if (not round_down and enable_rounding): add = FixedPoint.FXnum(1, fam20) >> out_bits x = x + add before_round = pow2_str[2:2+out_bits] after_round = x.toBinaryString()[2:2+out_bits] is_overlap = False if after_round in overlaps: is_overlap = True else: overlaps[after_round] = True # can also formulate as what to subtract, excepting 0 # print(orig_str, (x - (1 + orig_x)).toBinaryString()[2+2:4 + out_bits - 2]) return orig_str, before_round, after_round, not round_down, is_overlap def get_log2_expansion(i, in_bits, out_bits, enable_rounding=True): prec_bits = out_bits * 4 fam20 = FixedPoint.FXfamily(prec_bits) x = (FixedPoint.FXnum(i, fam20) / (2 ** in_bits)) orig_str = x.toBinaryString()[2:2+in_bits] x = (x + 1).log() / math.log(2) pow2_str = x.toBinaryString() keep_bit = pow2_str[2+out_bits-1] == '1' guard_bit = pow2_str[2+out_bits] == '1' round_bit = pow2_str[2+out_bits+1] == '1' sticky_bits = pow2_str[2+out_bits+2:].find('1') != -1 round_down = (not guard_bit) or ((not keep_bit) and guard_bit and (not round_bit) and (not sticky_bits)) if (not round_down and enable_rounding): add = FixedPoint.FXnum(1, fam20) >> out_bits x = x + add before_round = pow2_str[2:2+out_bits] after_round = x.toBinaryString()[2:2+out_bits] is_overlap = False if after_round in overlaps: is_overlap = True else: overlaps[after_round] = True return orig_str, before_round, after_round, not round_down, is_overlap # # delta # def get_pow2_delta_expansion(i, in_bits, out_bits, enable_rounding=True): prec_bits = out_bits * 4 fam20 = FixedPoint.FXfamily(prec_bits) x = (FixedPoint.FXnum(i, fam20) / (2 ** in_bits)) orig_x = x orig_str = x.toBinaryString()[2:2+in_bits] pow2_x = pow(2, x) pow2_str = x.toBinaryString() round_up = get_r2ne(pow2_x, out_bits) pow2_round_x = pow2_x if (round_up and enable_rounding): add = FixedPoint.FXnum(1, fam20) >> out_bits pow2_round_x = pow2_x + add # As an out_bits-sized fixed point number fam_out = FixedPoint.FXfamily(out_bits) y = FixedPoint.FXnum(pow2_round_x, fam_out) cur = FixedPoint.FXnum(i, fam_out) / (2 ** in_bits) # This is what we are encoding, all values except for 0 are negative delta_y = y - cur delta_y = delta_y << 3 delta_y_truncated = FixedPoint.FXnum(delta_y, FixedPoint.FXfamily(out_bits-3)) delta_y_truncated = delta_y_truncated - 7 # print(y.toBinaryString(), cur.toBinaryString(), (y - cur).toBinaryString(), get_fraction(delta_y_truncated)) # Now, see if we can recover y from delta_y_truncated recover_y = FixedPoint.FXnum(delta_y_truncated, fam_out) recover_y = recover_y + 7 recover_y = recover_y >> 3 recover_val = cur + recover_y assert recover_val == y before_round = get_fraction(pow2_x, out_bits) after_round = get_fraction(pow2_round_x, out_bits) return orig_str, after_round, get_fraction(delta_y_truncated) def get_log2_delta_expansion(i, in_bits, out_bits, enable_rounding=True): prec_bits = out_bits * 4 fam20 = FixedPoint.FXfamily(prec_bits) x = (FixedPoint.FXnum(i, fam20) / (2 ** in_bits)) orig_x = x orig_str = x.toBinaryString()[2:2+in_bits] log2_x = (x + 1).log() / math.log(2) log2_str = x.toBinaryString() round_up = get_r2ne(log2_x, out_bits) log2_round_x = log2_x if (round_up and enable_rounding): add = FixedPoint.FXnum(1, fam20) >> out_bits log2_round_x = log2_x + add # As an out_bits-sized fixed point number fam_out = FixedPoint.FXfamily(out_bits) y = FixedPoint.FXnum(log2_round_x, fam_out) cur = FixedPoint.FXnum(i, fam_out) / (2 ** in_bits) # This is what we are encoding, all values except for 0 are negative delta_y = y - cur delta_y = delta_y << 3 # print('cur {} round {} delta {}'.format(cur.toBinaryString(), y.toBinaryString(), delta_y.toBinaryString())) delta_y_truncated = FixedPoint.FXnum(delta_y, FixedPoint.FXfamily(out_bits-3)) delta_y_truncated = delta_y_truncated - 7 # Now, see if we can recover y from delta_y_truncated recover_y = FixedPoint.FXnum(delta_y_truncated, fam_out) recover_y = recover_y + 7 recover_y = recover_y >> 3 recover_val = cur + recover_y # print('here', recover_val.toBinaryString()) assert recover_val == y before_round = get_fraction(log2_x, out_bits) after_round = get_fraction(log2_round_x, out_bits) return orig_str, after_round, get_fraction(delta_y_truncated) # # module generation # def gen_pow2(file, gen_mem, in_bits, out_bits): if (not gen_mem): header = """ module Pow2LUT_{}x{} (input [{}:0] in, output logic [{}:0] out); always_comb begin case (in) """.format(in_bits, out_bits, in_bits-1, out_bits-1) file.write(header) had_overlap = False for i in range(2 ** in_bits): in_fixed, before_fixed, out_fixed, r, is_overlap = get_pow2_expansion(i, in_bits, out_bits) if (gen_mem): file.write(out_fixed) file.write('\n') else: overlap_str = '' if (is_overlap and r): had_overlap = True overlap_str = ' // overlap + round' elif (is_overlap): had_overlap = True overlap_str = ' // overlap' elif (r): had_overlap = True overlap_str = ' // round' file.write(' {}\'b{}: out = {}\'b{};{}\n'.format( in_bits, in_fixed, out_bits, out_fixed, overlap_str)) if (not gen_mem): file.write(' default: out = {}\'b{};\n'.format(out_bits, 'x' * out_bits)) file.write(' endcase\n') file.write(' end\n') file.write('endmodule\n') def gen_log2(file, gen_mem, in_bits, out_bits): if (not gen_mem): header = """ module Log2LUT_{}x{} (input [{}:0] in, output logic [{}:0] out); always_comb begin case (in) """.format(in_bits, out_bits, in_bits-1, out_bits) file.write(header) had_overlap = False for i in range(2 ** in_bits): in_fixed, before_fixed, out_fixed, r, is_overlap = get_log2_expansion(i, in_bits, out_bits, True) if (i < 2 ** (in_bits - 1) or out_fixed != ('0' * out_bits)): r = False if (gen_mem): file.write('{}{}\n'.format(int(r), out_fixed)) else: overlap_str = '' if (is_overlap and r): had_overlap = True overlap_str = ' // overlap + round' elif (is_overlap): had_overlap = True overlap_str = ' // overlap' elif (r): had_overlap = True overlap_str = ' // round' file.write(' {}\'b{}: out = {}\'b{}{};{}\n'.format( in_bits, in_fixed, out_bits + 1, int(r), out_fixed, overlap_str)) if (not gen_mem): file.write(' default: out = {}\'b{};\n'.format(out_bits + 1, 'x' * (out_bits + 1))) file.write(' endcase\n') file.write(' end\n') file.write('endmodule\n') def gen_pow2_delta(file, gen_mem, in_bits, out_bits): if (not gen_mem): header = """ module Pow2DeltaLUT_{}x{} (input [{}:0] in, output logic [{}:0] out); always_comb begin case (in) """.format(in_bits, out_bits, in_bits-1, out_bits-4) file.write(header) for i in range(2 ** in_bits): in_fixed, out_fixed, delta = get_pow2_delta_expansion(i, in_bits, out_bits) if (gen_mem): file.write(delta) file.write('\n') else: file.write(' {}\'b{}: out = {}\'b{};\n'.format( in_bits, in_fixed, out_bits-3, delta)) if (not gen_mem): file.write(' default: out = {}\'b{};\n'.format(out_bits-3, 'x' * (out_bits-3))) file.write(' endcase\n') file.write(' end\n') file.write('endmodule\n') def gen_log2_delta(file, gen_mem, in_bits, out_bits): if (not gen_mem): header = """ module Log2DeltaLUT_{}x{} (input [{}:0] in, output logic [{}:0] out); always_comb begin case (in) """.format(in_bits, out_bits, in_bits-1, out_bits-4) file.write(header) for i in range(2 ** in_bits): in_fixed, out_fixed, delta = get_log2_delta_expansion(i, in_bits, out_bits) if (gen_mem): file.write(delta) file.write('\n') else: file.write(' {}\'b{}: out = {}\'b{};\n'.format( in_bits, in_fixed, out_bits-3, delta)) if (not gen_mem): file.write(' default: out = {}\'b{};\n'.format(out_bits-3, 'x' * (out_bits-3))) file.write(' endcase\n') file.write(' end\n') file.write('endmodule\n') # def gen_pow2_mem(file, in_bits, out_bits): # header = """ # module Pow2Mem_{}x{} # (input [{}:0] in, # output logic [{}:0] out); # logic [{}:0] mem[0:(2**{})-1]; # initial begin # $readmemb("pow2_{}x{}.hex", mem); # end # always_comb begin # out = mem[in]; # end # endmodule # """.format(in_bits, out_bits, in_bits-1, out_bits-1, out_bits-1, in_bits, in_bits, out_bits) # file.write(header) # def gen_log2_mem(file, in_bits, out_bits): # header = """ # module Log2Mem_{}x{} # (input [{}:0] in, # output logic [{}:0] out); # logic [{}:0] mem[0:(2**{})-1]; # initial begin # $readmemb("log2_{}x{}.hex", mem); # end # always_comb begin # out = mem[in]; # end # endmodule # """.format(in_bits, out_bits, in_bits-1, out_bits, out_bits, in_bits, in_bits, out_bits) # file.write(header) in_bits = args.bits_in[0] out_bits = args.bits_out[0] def make_file(name): if (args.str): return io.StringIO() return open(name, 'w') def close_file(f): if (args.str): print(f.getvalue()) else: f.close() if (args.pow): f = make_file('Pow2LUT_{}x{}.sv'.format(in_bits, out_bits)) gen_pow2(f, False, in_bits, out_bits) close_file(f) # if (args.mem): # f = make_file('Pow2Mem_{}x{}.sv'.format(in_bits, out_bits)) # gen_pow2_mem(f, in_bits, out_bits) # close_file(f) # f = make_file('pow2_{}x{}.hex'.format(in_bits, out_bits)) # gen_pow2(f, True, in_bits, out_bits) # close_file(f) if (args.pow_delta): f = make_file('Pow2DeltaLUT_{}x{}.sv'.format(in_bits, out_bits)) gen_pow2_delta(f, False, in_bits, out_bits) close_file(f) if (args.log): f = make_file('Log2LUT_{}x{}.sv'.format(in_bits, out_bits)) gen_log2(f, False, in_bits, out_bits) close_file(f) if (args.log_delta): f = make_file('Log2DeltaLUT_{}x{}.sv'.format(in_bits, out_bits)) gen_log2_delta(f, False, in_bits, out_bits) close_file(f) # if (args.mem): # f = make_file('Log2Mem_{}x{}.sv'.format(in_bits, out_bits)) # gen_log2_mem(f, in_bits, out_bits) # close_file(f) # f = make_file('log2_{}x{}.hex'.format(in_bits, out_bits)) # gen_log2(f, True, out_bits, in_bits) # close_file(f)
deepfloat-main
rtl/log/luts/gen_tables.py
AutoCTR-main
utils/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from __future__ import absolute_import, division, print_function, unicode_literals import logging import numpy as np import torch from graphviz import Digraph from torch.autograd import Variable logger = logging.getLogger(__name__) def size_to_str(size): return "(" + (", ").join(["%d" % v for v in size]) + ")" def visualize(model): feats = create_fake_feats(model.feature_config) pred = model(feats) return net_visual(pred, params=dict(model.named_parameters())) # default batch size = 2 so that BN layers can work def create_fake_feats(feature_config, batch_size=2): num_dense_feat = len(feature_config.dense.features) feats = {"dense": torch.FloatTensor(np.random.rand(batch_size, num_dense_feat))} feats.update( { feat.name: { "data": torch.LongTensor([]), "offsets": torch.LongTensor([0] * batch_size), } for feat in feature_config.sparse.features } ) return feats def net_visual(var, params=None): """ Produces Graphviz representation of PyTorch autograd graph. Blue nodes are the Variables that require grad, orange are Tensors saved for backward in torch.autograd.Function Args: var: output Variable params: dict of (name, Variable) to add names to node that require grad (TODO: make optional) """ if params is not None: assert all(isinstance(p, Variable) for p in params.values()) param_map = {id(v): k for k, v in params.items()} node_attr = { "style": "filled", "shape": "box", "align": "left", "fontsize": "12", "ranksep": "0.1", "height": "0.2", } graph_attr = {"size": "12,12"} dot = Digraph(node_attr=node_attr, graph_attr=graph_attr) seen = set() output_nodes = ( (var.grad_fn,) if not isinstance(var, tuple) else tuple(v.grad_fn for v in var) ) def add_nodes(var): if var not in seen: if torch.is_tensor(var): # note: this used to show .saved_tensors in pytorch0.2, but stopped # working as it was moved to ATen and Variable-Tensor merged dot.node(str(id(var)), size_to_str(var.size()), fillcolor="orange") elif hasattr(var, "variable"): u = var.variable name = param_map[id(u)] if params is not None else "" node_name = "%s\n %s" % (name, size_to_str(u.size())) dot.node(str(id(var)), node_name, fillcolor="lightblue") elif var in output_nodes: dot.node( str(id(var)), str(type(var).__name__), fillcolor="darkolivegreen1" ) else: dot.node(str(id(var)), str(type(var).__name__)) seen.add(var) if hasattr(var, "next_functions"): for u in var.next_functions: if u[0] is not None: dot.edge(str(id(u[0])), str(id(var))) add_nodes(u[0]) if hasattr(var, "saved_tensors"): for t in var.saved_tensors: dot.edge(str(id(t)), str(id(var))) add_nodes(t) # handle multiple outputs if isinstance(var, tuple): for v in var: add_nodes(v.grad_fn) else: add_nodes(var.grad_fn) _resize_graph(dot) return dot def _resize_graph(dot, size_per_element=0.15, min_size=12): """Resize the graph according to how much content it contains. Modify the graph in place. """ # Get the approximate number of nodes and edges num_rows = len(dot.body) content_size = num_rows * size_per_element size = max(min_size, content_size) size_str = str(size) + "," + str(size) dot.graph_attr.update(size=size_str)
AutoCTR-main
utils/viz_utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from __future__ import absolute_import, division, print_function, unicode_literals import os import sys sys.path.append('gen-py') import argparse import json from block_config import ttypes as b_config from config import ttypes as config def get_args(): parser = argparse.ArgumentParser( description="Neural Recommendation Model Searching Script for Kaggle Dataset" ) # configs for final fit only parser.add_argument("--model-file", type=str, default="", help="a json file contain the model structure for final fit") parser.add_argument("--save-model", action="store_true", default=False, help="save model or not during the final fit process") # configs for search and final fit parser.add_argument("--data-file", type=str, default="", help="data for search or final fit") parser.add_argument("--data-set-name", type=str, default="", help="dataset name", choices=["criteo", "avazu", "kdd2012"]) parser.add_argument("--log-freq", type=int, default=10, help="log freqency of model training (# of epochs)") parser.add_argument("--splits", type=str, default="0.8:0.1", help="split of train,val,test, e.g., 0.8:0.1 means 80% train, 10% val, 10% test") parser.add_argument("--batch-size", type=int, default=100, help="batch size for training each model") parser.add_argument("--hash-size", type=int, default=10000, help="hash size for the features") parser.add_argument("--learning-rate", type=float, default=0.001, help="learning rate of each model") parser.add_argument("--nepochs", type=int, default=50, help="maximum epoch for training a model") parser.add_argument("--num-workers", type=int, default=4, help="number of workers (cpus) to preprocess data") parser.add_argument("--num-trainers", type=int, default=1, help="number of training for cpu training, currently this is abandoned and to be removed, we only support gpu training now") parser.add_argument("--repeat-checker-off", action="store_true", default=False, help="check and avoid repeating searching same architectures") parser.add_argument( "--save-model-path", type=str, default="", help="the file path to save the models during the search process" ) parser.add_argument("--search-nepochs", type=int, default=3, help="number of search iterations") parser.add_argument( "--reward-type", default="logloss", type=str, choices=["logloss", "auc"], help="measurement for the search model to compare models" ) parser.add_argument( "--searcher-type", default="random", type=str, choices=["random", "evo"], help="search algorithm" ) parser.add_argument("--max-num-block", type=int, default=5, help="maximum number of blocks in each model in the search space") parser.add_argument( "--feature-processing-type", default="", type=str, choices=["idasp"], help="if we want to treat dense feature as sparse features" ) # hyperparameters for proposed evo algorithm parser.add_argument("--population-size", type=int, default=3, help="size of the population, it also decides how many random initialization architectures we will do") parser.add_argument("--candidate-size", type=float, default=2, help="number of candidates to be picked from the population, the best one will be used to generate offsprings") parser.add_argument("--sampler-type", type=int, default=10, help="number of neigbors for each candidate") parser.add_argument("--historical-sample-path", type=str, default="", help="path for historical architectures to warm start the evo searcher") parser.add_argument("--historical-sample-num", type=int, default=0, help="number of historical architectures to warm start the evo searcher") parser.add_argument( "--survival-type", default="comb", type=str, choices=["age", "fit", "mix", "comb"], help="survival type, comb is multi-objective survival function, mix is a two-step survival function" ) # search space config parser.add_argument( "--macro-space-type", type=int, default=config.MacroSearchSpaceType.INPUT_GROUP, help="search space for features, either group sparse/dense features or not, please check out the /if/config.thrift for more detail" ) parser.add_argument( "--micro-space-types", default="close", type=str, choices=[ "close", "micro_mlp", ], help="micro search space for blocks, currently only mlp have a micro space hyperparameter (units in each mlp layer), close means do not search mlp units", ) # general search config parser.add_argument("--num-machines", type=int, default=1, help="number of GPUs to be used") parser.add_argument("--waiting-time", type=float, default=30, help="waiting time for checking if the current running models are complete, default: check every 30 seconds") parser.add_argument("--resume-file", type=str, default="", help="the file path to resume the search process") parser.add_argument("--fbl-kill-time", type=float, default=1800, help="time to kill a model during search, this is used to avoid some model crush and stuck during training") parser.add_argument("--numpy-seed", type=int, default=123, help="numpy seed") parser.add_argument("--torch-seed", type=int, default=4321, help="torch seed") parser.add_argument("--warm-start-emb", action="store_true", default=False, help="if we have a `.ckp` model weight to warm start the embeddings of the sparse features in each model") # gpu config parser.add_argument("--use-gpu", action="store_true", default=False, help="use gpu or not") parser.add_argument("--maxLoad", type=float, default=0.5, help="only load a model when the current used load of this gpu is lower than maxLoad") parser.add_argument("--maxMemory", type=float, default=0.5, help="only load a model when the current used memory of this gpu is lower than maxMemory") parser.add_argument("--save-batches", action="store_true", default=False, help="if we want to save the training data batches in the gpu memory, this will accelerate the speed") parser.add_argument("--save-val-batches", action="store_true", default=False, help="if we want to save the validation data batches in the gpu memory, this will accelerate the speed") parser.add_argument("--total-gpus", type=int, default=1, help="total number of gpus on the machine") parser.add_argument("--excludeID", type=str, default="", help="") args = parser.parse_args() if not args.save_model_path: args.save_model_path = os.path.join(os.getcwd(), "results") return args def get_micro_space_types(args): micro_space_types = args.micro_space_types.replace(" ", "") micro_space_types = micro_space_types.split(",") micro_space_types = list(set(micro_space_types)) micro_space_configs = [] if "close" in micro_space_types: return [config.MicroSearchSpaceType(close=config.MicroClose())] elif "micro_mlp" in micro_space_types: micro_space_configs.append( config.MicroSearchSpaceType( micro_mlp=config.MicroMLPConfig(arc=[32, 64, 128, 256, 512, 1024]) ) ) elif "micro_cin" in micro_space_types: micro_space_configs.append( config.MicroSearchSpaceType( micro_cin=config.MicroCINConfig( arc=[64, 128, 256], num_of_layers=[1, 2, 3] ) ) ) elif "micro_attention" in micro_space_types: micro_space_configs.append( config.MicroSearchSpaceType( micro_attention=config.MicroAttentionConfig( num_of_layers=[1, 2, 3], num_of_heads=[1, 2, 3], att_embed_dim=[], dropout_prob=[], ) ) ) else: raise ValueError("Error micro space type.") return micro_space_configs def get_feature_processing_type(args): feature_processing_type = args.feature_processing_type.replace(" ", "") feature_processing_type = feature_processing_type.split(",") feature_processing_type = list(set(feature_processing_type)) feature_processing_configs = [] if feature_processing_type != [""]: if "idasp" in feature_processing_type: feature_processing_configs.append( config.FeatureProcessingType(idasp=config.InputDenseAsSparse()) ) else: raise ValueError("Error micro space type.") return feature_processing_configs def get_searcher_config(args): block_types = [ b_config.ExtendedBlockType.MLP_DENSE, # b_config.ExtendedBlockType.MLP_EMB, # b_config.ExtendedBlockType.CROSSNET, # b_config.ExtendedBlockType.FM_DENSE, b_config.ExtendedBlockType.FM_EMB, # b_config.ExtendedBlockType.DOTPROCESSOR_DENSE, b_config.ExtendedBlockType.DOTPROCESSOR_EMB, # b_config.ExtendedBlockType.CAT_DENSE, # b_config.ExtendedBlockType.CAT_EMB, # b_config.ExtendedBlockType.CIN, # b_config.ExtendedBlockType.ATTENTION, ] if args.searcher_type == "random": searcher_config = config.SearcherConfig( random_searcher=config.RandomSearcherConfig( max_num_block=args.max_num_block, block_types=block_types, macro_space_type=args.macro_space_type, micro_space_types=get_micro_space_types(args), feature_processing_type=get_feature_processing_type(args), ) ) elif args.searcher_type == "evo": searcher_config = config.SearcherConfig( evolutionary_searcher=config.EvolutionarySearcherConfig( max_num_block=args.max_num_block, block_types=block_types, population_size=args.population_size, candidate_size=max(1, int(args.candidate_size)), macro_space_type=args.macro_space_type, micro_space_types=get_micro_space_types(args), feature_processing_type=get_feature_processing_type(args), ) ) return searcher_config def get_trainer_config(args): fp = os.getcwd() if args.data_set_name == "criteo": input_summary = json.load(open(fp + "/utils/fblearner_template/criteo_search.json")) elif args.data_set_name == "avazu": input_summary = json.load(open(fp + "/utils/fblearner_template/avazu_search.json")) elif args.data_set_name == "kdd2012": input_summary = json.load(open(fp + "/utils/fblearner_template/kdd2012_search.json")) else: input_summary = json.load(open(fp + "/utils/fblearner_template/criteo_search.json")) return input_summary, args def get_final_fit_trainer_config(args): fp = os.getcwd() if args.data_set_name == "criteo": input_summary = json.load(open(fp + "/utils/fblearner_template/criteo_transfer.json")) elif args.data_set_name == "avazu": input_summary = json.load(open(fp + "/utils/fblearner_template/avazu_transfer.json")) elif args.data_set_name == "kdd2012": input_summary = json.load(open(fp + "/utils/fblearner_template/kdd2012_transfer.json")) else: input_summary = json.load(open(fp + "/utils/fblearner_template/criteo_transfer.json")) return input_summary, args def get_phenotype(args): filenames = [args.model_file] model_config_dicts = [] for filename in filenames: with open(filename) as fp: model_config_dict = json.load(fp) fp.close() model_config_dicts.append(model_config_dict) return filenames, model_config_dicts
AutoCTR-main
utils/search_utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from __future__ import absolute_import, division, print_function, unicode_literals import sys sys.path.append('gen-py') import logging from collections import namedtuple from copy import deepcopy import numpy as np import torch from torch.utils.data import DataLoader, Dataset from config import ttypes as config ReaderOption = namedtuple("ReaderOption", ["type", "options"]) logger = logging.getLogger(__name__) kEpsilon = 1e-10 class DenseDataset(Dataset): """Dense dataset.""" def __init__(self, X, y, sample_weights=None): self.X = torch.FloatTensor(X) self.y = torch.FloatTensor(y) if sample_weights is not None: self.sample_weights = torch.FloatTensor(sample_weights) else: self.sample_weights = None def __len__(self): return len(self.y) def __getitem__(self, idx): sample = {} sample["label"] = self.y[idx] sample["dense"] = self.X[idx] if self.sample_weights is not None: sample["weight"] = self.sample_weights[idx] return sample def share_memory_(self): self.X.share_memory_() self.y.share_memory_() if self.sample_weights is not None: self.sample_weights.share_memory_() ############################################################ # criteo data utils ############################################################ class CriteoDataset(Dataset): """Criteo dataset.""" def __init__(self, X_cat, X_int, y, dense_transform=None): self.X_cat, self.X_int, self.y, self.dense_transform = ( torch.LongTensor(X_cat), torch.FloatTensor(X_int), torch.FloatTensor(y), dense_transform, ) def __len__(self): return len(self.y) def __getitem__(self, idx): # Criteo data only have categorical features as sparse feature sample = { "sparse_{}".format(i): torch.tensor([v + 1]) for i, v in enumerate(self.X_cat[idx]) } sample["label"] = self.y[idx] sample["dense"] = ( self.X_int[idx] if self.dense_transform is None else self.dense_transform(self.X_int[idx]) ) return sample def share_memory_(self): self.X_cat.share_memory_() self.X_int.share_memory_() self.y.share_memory_() ############################################################ # synthetic data utils ############################################################ def _set_random_seed(seed=0): np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) class SyntheticDataset(Dataset): """Synthetic dataset.""" def __init__( self, num_dense, num_sparse, max_sparse_id, num_samples, batch_size, id_list_configs, ): _set_random_seed() # We generate 10k examples and then reuse the these examples during # data reading data_num_samples = 10000 self.num_batches = data_num_samples // batch_size self.num_batch_samples = num_samples // batch_size # Limit the number of examples as we are only doing benchmarking for # synthetic data set. dense = torch.randn((self.num_batches, batch_size, num_dense)) label = torch.randint(2, size=(self.num_batches, batch_size)) weight = None # torch.ones((self.num_batches, batch_size)) assert ( len(id_list_configs) == num_sparse or len(id_list_configs) == 1 ), "len(id_list_configs) != num_sparse: {0} vs {1}".format( len(id_list_configs), num_sparse ) if len(id_list_configs) == 1: id_list_configs = [deepcopy(id_list_configs[0]) for _ in range(num_sparse)] sparse_id_list_len = [ [ [ min(max(0, int(x)), config.truncation) for x in np.random.normal( config.mean, config.std, size=(batch_size) ) ] for config in id_list_configs ] for _ in range(self.num_batches) ] sparse = [] for k in range(self.num_batches): sparse_batch = [] for i in range(num_sparse): sparse_batch.append({}) ids = [] offsets = [0] for j in range(batch_size): id_list_len = sparse_id_list_len[k][i][j] ids.extend(np.random.randint(max_sparse_id, size=id_list_len)) offsets.append(offsets[-1] + id_list_len) sparse_batch[i]["data"] = torch.tensor(ids) sparse_batch[i]["offsets"] = torch.tensor(offsets[:-1]) sparse.append(sparse_batch) self.data = [] for i in range(self.num_batches): batch = {} batch["dense"] = dense[i] batch["label"] = label[i] batch["weight"] = weight[i] if weight is not None else None batch["sparse"] = [sparse[i][j] for j in range(num_sparse)] self.data.append(batch) def __len__(self): return self.num_batch_samples def __getitem__(self, idx): return self.data[idx % self.num_batches] def synthetic_data_generator( num_dense, num_sparse, max_sparse_id, num_samples, batch_size, id_list_configs ): _set_random_seed() # Limit the number of examples as we are only doing benchmarking for # synthetic data set. data_num_batches = min(1000, min(100000, num_samples) // batch_size) dense = torch.randn((data_num_batches, batch_size, num_dense)) label = torch.randint(2, size=(data_num_batches, batch_size)) # weight = torch.ones((data_num_batches, batch_size)) assert ( len(id_list_configs) == num_sparse or len(id_list_configs) == 1 ), "len(id_list_configs) != num_sparse: {0} vs {1}".format( len(id_list_configs), num_sparse ) if len(id_list_configs) == 1: id_list_configs = [deepcopy(id_list_configs[0]) for _ in range(num_sparse)] sparse_id_list_len = [ [ [ min(max(0, int(x)), config.truncation) for x in np.random.normal(config.mean, config.std, size=(batch_size)) ] for config in id_list_configs ] for _ in range(data_num_batches) ] sparse = [] for k in range(data_num_batches): sparse_batch = [] for i in range(num_sparse): sparse_batch.append({}) ids = [] offsets = [0] for j in range(batch_size): id_list_len = sparse_id_list_len[k][i][j] ids.extend(np.random.randint(max_sparse_id, size=id_list_len)) offsets.append(offsets[-1] + id_list_len) sparse_batch[i]["data"] = torch.tensor(ids) sparse_batch[i]["offsets"] = torch.tensor(offsets[:-1]) sparse.append(sparse_batch) data = [] for i in range(data_num_batches): batch = {} batch["dense"] = dense[i] batch["label"] = label[i] batch["weight"] = None # weight[i] batch["sparse"] = [sparse[i][j] for j in range(num_sparse)] data.append(batch) return data def get_split_indices(splits, num_samples): if np.sum(splits) >= 1.0: raise ValueError("sum of splits should be smaller than 1.0") bins = list(np.cumsum([0.0] + list(splits))) bins.append(1.0) indices = [ range(int(bins[i] * num_samples), int(bins[i + 1] * num_samples)) for i in range(len(splits) + 1) ] if any(len(indice) <= 0 for indice in indices): raise ValueError( "Split {} is causing empty partitions: {}".format( splits, [len(indice) for indice in indices] ) ) return indices def split_dense_dataset(data, splits, sample_weights=None): """ dataset: Dataset splits: array of split ratio of length L, will create L+1 dataloaders according to the ratio, the last partition is 1.0-sum(splits); if None, return the entire dataset in dataloader example: splits= [0.8, 0.1] for a 80%, 10%, 10% splits between train, validation, eval """ num_samples = len(data["y"]) indices = get_split_indices(splits=splits, num_samples=num_samples) logger.info( "Split data into partitions with size: {}".format( [len(indice) for indice in indices] ) ) datasets = [] for indice in indices: dataset = DenseDataset( data["X"][indice], data["y"][indice], None if sample_weights is None else sample_weights[indice], ) datasets.append(dataset) return datasets def load_and_split_dataset(npz_file, splits=None): """ dataset: Dataset splits: array of split ratio of length L, will create L+1 dataloaders according to the ratio, the last partition is 1.0-sum(splits); if None, return the entire dataset in dataloader example: splits= [0.8, 0.1] for a 80%, 10%, 10% splits between train, validation, eval """ data = np.load(npz_file) if splits is None: return CriteoDataset(X_cat=data["X_cat"], X_int=data["X_int"], y=data["y"]) num_samples = len(data["y"]) indices = get_split_indices(splits=splits, num_samples=num_samples) logger.info( "Split data into partitions with size: {}".format( [len(indice) for indice in indices] ) ) return [ CriteoDataset( X_cat=data["X_cat"][indice], X_int=data["X_int"][indice], y=data["y"][indice], ) for indice in indices ] ############################################################ # batch processors ############################################################ def _save_transforms(dense_transform, filename): torch.save({"dense_transform": dense_transform}, filename) def _load_transforms(filename): state = torch.load(filename) return state["dense_transform"] # the __call__ method for a BatchProcessor should return label, feats, weight: # label: a (batch_size,) FloatTensor for labels # weight: optional, None or (batch_size,) FloatTensor for per sample weights # feats: dict for features # feats['dense']: (batch_size, num_dense) FloatTensor for dense features # feats['[sparse_feature_name]]']: for each sparse feature name (consistent # with feature_config), it is a dict with two keys: # 'data' and 'offsets'. See EmbeddingBag doc for the supported types. class BatchProcessor(object): def __init__( self, feature_config=None, dense_transform=None, device=None, dense_feature_clamp=-1.0, ): self.feature_config = deepcopy(feature_config) self.dense_transform = dense_transform self.device = torch.device("cpu") if device is None else device self.dense_feature_clamp = dense_feature_clamp def save_transforms(self, filename): _save_transforms(self.dense_transform, filename) def load_transforms(self, filename): self.dense_transform = _load_transforms(filename) def share_memory(self): if self.dense_transform is not None: self.dense_transform.share_memory_() def __call__(self): raise NotImplementedError class DenseBatchProcessor(BatchProcessor): def __call__(self, mini_batch): for k, v in mini_batch.items(): if k == "dense": v = v if self.dense_transform is None else self.dense_transform(v) mini_batch[k] = v.to(device=self.device, dtype=torch.float32) elif k in ["label", "weight"]: mini_batch[k] = v.to(device=self.device, dtype=torch.float32) else: raise ValueError("invalid mini_batch key") label = mini_batch.pop("label", None) weight = mini_batch.pop("weight", None) return label, mini_batch, weight class CriteoBatchProcessor(BatchProcessor): def __call__(self, mini_batch, transform=True, reverse=0): if reverse == 1: for k, v in mini_batch.items(): if k in ["dense", "label"]: mini_batch[k] = v.to(device=self.device, dtype=torch.float32) else: mini_batch[k] = { "data": v["data"].to(device=self.device, dtype=torch.long), "offsets": None, } elif reverse == 2: for k, v in mini_batch.items(): if k in ["dense", "label"]: mini_batch[k] = v.to(device=torch.device("cpu"), dtype=torch.float32) else: mini_batch[k] = { "data": v["data"].to(device=torch.device("cpu"), dtype=torch.long), "offsets": None, } else: if transform: for k, v in mini_batch.items(): if k == "dense": v = v if self.dense_transform is None else self.dense_transform(v) mini_batch[k] = v.to(device=self.device, dtype=torch.float32) elif k == "label": mini_batch[k] = v.to(device=self.device, dtype=torch.float32) else: mini_batch[k] = { "data": v.to(device=self.device, dtype=torch.long), "offsets": None, } # else: # for k, v in mini_batch.items(): # mini_batch[k] = v # label = mini_batch.pop("label", None) label = mini_batch["label"] # Criteo does not have sample weights weight = None return label, mini_batch, weight def loadDataset(file): """ Loads dataset from NumPy format. Inputs: file (str): path to the npz file of dataset (Kaggle or Terabyte) Outputs: X_cat (np.ndarray): categorical features X_int (np.ndarray): continuous features y (np.ndarray): labels counts (list): number of categories for each categorical feature """ # load and preprocess data with np.load(file) as data: X_int = data["X_int"] X_cat = data["X_cat"] y = data["y"] counts = data["counts"] return X_cat, X_int, y, counts ############################################################ # dense transform ############################################################ class DenseTransform(object): def __init__(self, mean, std): self.mean = mean.cpu() self.std = std.cpu() def __call__(self, dense): return (dense - self.mean) / self.std def share_memory_(self): self.mean.share_memory_() self.std.share_memory_() def create_dense_transform(train_dataloader, batch_processor, num_batches): mean = 0.0 num_samples = 0 for i_batch, sample_batched in enumerate(train_dataloader): if i_batch >= num_batches: break _, feats, _ = batch_processor(mini_batch=sample_batched) dense = feats["dense"] num_samples += dense.shape[0] mean += torch.sum(dense.to(dtype=torch.float), dim=0) mean /= num_samples var = 0.0 num_samples = 0 for i_batch, sample_batched in enumerate(train_dataloader): if i_batch >= num_batches: break _, feats, _ = batch_processor(mini_batch=sample_batched) dense = feats["dense"] num_samples += dense.shape[0] var += torch.sum((dense.to(dtype=torch.float) - mean) ** 2, dim=0) std = torch.sqrt((var + kEpsilon) / num_samples) return DenseTransform(mean=mean, std=std) def create_dense_transform_from_synthetic(): # Due to the dense features are sampled from normal distribution, # we simply set mean and std based on normal distribution. # We add this part is for benchmark purpose. return DenseTransform(mean=torch.tensor(0), std=torch.tensor(1)) def prepare_data(data_options, performance_options, CUDA="cuda:0", pin_memory=False): if data_options.getType() == config.DataConfig.FROM_FILE: data_option = data_options.get_from_file() ( datasets, batch_processor, train_dataloader, val_dataloader, eval_dataloader, ) = prepare_criteo_data(data_option, performance_options, CUDA, pin_memory) else: raise ValueError("Unknown data option type.") dense_transform = create_dense_transform( train_dataloader, batch_processor, num_batches=int(data_option.num_samples_meta / data_option.batch_size), ) batch_processor.dense_transform = dense_transform return datasets, batch_processor, train_dataloader, val_dataloader, eval_dataloader def prepare_criteo_data(data_options, performance_options, CUDA, pin_memory=False): logger.info("Loading data from {}".format(data_options.data_file)) datasets = load_and_split_dataset( npz_file=data_options.data_file, splits=data_options.splits ) logger.info("Data loaded") # pin_memory=True, train_dataloader, val_dataloader, eval_dataloader = ( DataLoader(dataset, batch_size=data_options.batch_size, pin_memory=pin_memory, num_workers=performance_options.num_readers) for dataset in datasets ) batch_processor = CriteoBatchProcessor( device=( torch.device(CUDA) if performance_options.use_gpu else torch.device("cpu") ) ) return datasets, batch_processor, train_dataloader, val_dataloader, eval_dataloader
AutoCTR-main
utils/data.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from __future__ import absolute_import, division, print_function, unicode_literals import logging from copy import deepcopy import torch.nn as nn from block_config import ttypes as b_config from nasrec.blocks import set_block_from_config from .base_net import BaseNet from .utils import ( Optimizers, apply_emb, create_emb_dict, create_optimizers_for_dense, create_optimizers_for_embed, ) logger = logging.getLogger(__name__) class NASRecNet(BaseNet): def __init__(self, model_config, feature_config): super(NASRecNet, self).__init__(model_config, feature_config) self.nasrec_net_option = self.model_config.get_nasrec_net() self.num_block = len(self.nasrec_net_option.block_configs) self._init_model_params() self._build_arc() def _init_model_params(self): self.sparse_hash_size = { item.name: int(item.hash_size) for item in self.sparse_feature_options.features } self.feat_dim = { "dense": {0: [self.num_dense_feat]}, "sparse": { 0: [self.sparse_feature_options.embed_dim] * self.num_sparse_feat }, } def _build_arc(self): self.emb_dict = create_emb_dict(self.sparse_feature_options) self.blocks = nn.ModuleList() for block_config in self.nasrec_net_option.block_configs: block = set_block_from_config(block_config, self.feat_dim) self.feat_dim = block.dim_config(self.feat_dim) self.blocks.append(block) # build up final block self.blocks.append(self._build_final_block()) def _build_final_block(self): """Construct the final block """ dense = deepcopy(self.feat_dim["dense"]) sparse = deepcopy(self.feat_dim["sparse"]) # make dicts of all features id (including intermidiate features) for block_id in dense: if len(dense[block_id]) > 0: dense[block_id] = list(range(dense[block_id][0])) else: dense[block_id] = [] for block_id in sparse: sparse[block_id] = list(range(len(sparse[block_id]))) # remove the features that has already been used as intermidiate input for block_id in range(0, self.num_block): dense_feat = self.blocks[block_id].feat_dense_id sparse_feat = self.blocks[block_id].feat_sparse_id for former_block_id in dense_feat: tmp_ids = dense_feat[former_block_id] dense[former_block_id] = ( ( [] if tmp_ids == [-1] else list(set(dense[former_block_id]) - set(tmp_ids)) ) if former_block_id in dense else [] ) for former_block_id in sparse_feat: tmp_ids = sparse_feat[former_block_id] sparse[former_block_id] = ( ( [] if tmp_ids == [-1] else list(set(sparse[former_block_id]) - set(tmp_ids)) ) if former_block_id in sparse else [] ) # convert feature dicts (dense & sparse) to feature configs feat_configs = [] for block_id, feat_list in dense.items(): if block_id in sparse: feat_config = b_config.FeatSelectionConfig( block_id=block_id, dense=feat_list, sparse=sparse[block_id] ) else: feat_config = b_config.FeatSelectionConfig( block_id=block_id, dense=feat_list, sparse=[] ) feat_configs.append(feat_config) for block_id, feat_list in sparse.items(): if block_id in dense: continue else: feat_config = b_config.FeatSelectionConfig( block_id=block_id, dense=[], sparse=feat_list ) feat_configs.append(feat_config) # construct the MLP block config block_config = b_config.BlockConfig( mlp_block=b_config.MLPBlockConfig( name="MLPBlock", block_id=self.num_block + 1, arc=[1], type=b_config.BlockType(dense=b_config.DenseBlockType()), input_feat_config=feat_configs, ly_act=False, ) ) return set_block_from_config(block_config, self.feat_dim) def get_optimizers(self): optimizers = Optimizers() # add dense optimizers create_optimizers_for_dense( optimizers, named_parameters=self.named_parameters(), dense_optim_config=self.dense_feature_options.optim, ) # add sparse optimizers create_optimizers_for_embed( optimizers, emb_dict=self.emb_dict, sparse_feature_options=self.sparse_feature_options, ) return optimizers def forward(self, feats): # process sparse features(using embeddings), resulting in a list of row vectors feat_dict = {"dense": {0: feats["dense"]}} # if self.num_dense_feat > 0 else [] ly = apply_emb(feats, self.emb_dict, self.sparse_hash_size) feat_dict["sparse"] = { 0: {feat_id: ly[feat_id] for feat_id in range(self.num_sparse_feat)} } # blocks for qq, block in enumerate(self.blocks): feat_dict = block(feat_dict) p = feat_dict["dense"][self.blocks[-1].block_id] return p.view(-1)
AutoCTR-main
models/nas_modules.py
AutoCTR-main
models/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from __future__ import absolute_import, division, print_function, unicode_literals import sys sys.path.append('gen-py') import logging import torch from config import ttypes as config from .nas_modules import NASRecNet logger = logging.getLogger(__name__) def build_model(model_config, feature_config): if model_config.getType() == config.ModelConfig.NASREC_NET: return build_nasrec_net(model_config, feature_config) else: raise ValueError("Unknown model type.") def build_nasrec_net(model_config, feature_config): return NASRecNet(model_config=model_config, feature_config=feature_config) def save_model(filename, model): logger.warning("Saving model to {}".format(filename)) state = { "state_dict": model.state_dict(), "model_config": model.model_config, "feature_config": model.feature_config, } torch.save(state, filename) def load_model(filename): logger.warning("Loading model from {}".format(filename)) state = torch.load(filename, map_location='cpu') model_config = state["model_config"] feature_config = state["feature_config"] model = build_model(model_config=model_config, feature_config=feature_config) model.load_state_dict(state["state_dict"]) return model
AutoCTR-main
models/builder.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from __future__ import absolute_import, division, print_function, unicode_literals import logging import torch import torch.nn as nn from config import ttypes as config logger = logging.getLogger(__name__) def apply_emb(feats, emb_dict, sparse_hash_size): ly = [] for name, E in emb_dict.items(): if name not in feats: raise ValueError("feature {} missing from input! ".format(name)) val = feats[name] hash_size = sparse_hash_size[name] V = E(input=torch.remainder(val["data"], hash_size), offsets=val["offsets"]) ly.append(V) return ly def create_mlp(ln, ly_act=False): ln = list(ln) layers = nn.ModuleList() for i in range(1, len(ln) - 1): layers.append(nn.Linear(int(ln[i - 1]), int(ln[i]), bias=True)) layers.append(nn.ReLU()) layers.append(nn.Linear(int(ln[-2]), int(ln[-1]), bias=True)) if ly_act: layers.append(nn.ReLU()) return torch.nn.Sequential(*layers) def create_emb(sparse_feature, comm_embed_dim): embed_dim = ( sparse_feature.embed_dim if sparse_feature.embed_dim > 0 else comm_embed_dim ) hash_size = sparse_feature.hash_size if sparse_feature.pooling.getType() == config.PoolingConfig.SUM: mode = "sum" elif sparse_feature.pooling.getType() == config.PoolingConfig.AVG: mode = "mean" else: raise ValueError( "Unknown pooling option: {}".format(sparse_feature.pooling.getType()) ) # return nn.EmbeddingBag(hash_size, embed_dim, sparse=True, mode=mode) a = nn.EmbeddingBag(hash_size, embed_dim, sparse=True, mode=mode) nn.init.normal_(a.weight, 0, 0.01) return a def create_emb_dict(sparse_feature_options): comm_embed_dim = sparse_feature_options.embed_dim return nn.ModuleDict( { item.name: create_emb(sparse_feature=item, comm_embed_dim=comm_embed_dim) for item in sparse_feature_options.features } ) def create_optim(params, optim_config): if optim_config.getType() == config.OptimConfig.SGD: opt_config = optim_config.get_sgd() return torch.optim.SGD( params, lr=opt_config.lr, momentum=opt_config.momentum, dampening=opt_config.dampening, weight_decay=opt_config.weight_decay, nesterov=opt_config.nesterov, ) elif optim_config.getType() == config.OptimConfig.ADAGRAD: opt_config = optim_config.get_adagrad() return torch.optim.Adagrad( params, lr=opt_config.lr, lr_decay=opt_config.lr_decay, weight_decay=opt_config.weight_decay, initial_accumulator_value=opt_config.initial_accumulator_value, ) elif optim_config.getType() == config.OptimConfig.SPARSE_ADAM: opt_config = optim_config.get_sparse_adam() return torch.optim.SparseAdam( params, lr=opt_config.lr, betas=(opt_config.betas0, opt_config.betas1), eps=opt_config.eps, ) elif optim_config.getType() == config.OptimConfig.ADAM: opt_config = optim_config.get_adam() return torch.optim.Adam( params, lr=opt_config.lr, weight_decay=opt_config.weight_decay, amsgrad=opt_config.amsgrad, betas=(opt_config.betas0, opt_config.betas1), eps=opt_config.eps, ) elif optim_config.getType() == config.OptimConfig.RMSPROP: opt_config = optim_config.get_rmsprop() return torch.optim.RMSprop( params, lr=opt_config.lr, weight_decay=opt_config.weight_decay, alpha=opt_config.alpha, momentum=opt_config.momentum, centered=opt_config.centered, eps=opt_config.eps, ) else: raise ValueError("unknown optimizer type: {}".format(optim_config)) class Optimizers(object): def __init__(self, optimizers=None, named_optimizers=None): self.optimizers = [] if optimizers is None else optimizers self.named_optimizers = {} if named_optimizers is None else named_optimizers def add(self, optimizer, name=None): if name is None: self.optimizers.append(optimizer) else: assert ( name not in self.named_optimizers ), "optimizer for {} already exist!".format(name) self.named_optimizers[name] = optimizer def zero_grad(self): for optimizer in self.optimizers: optimizer.zero_grad() for _, optimizer in self.named_optimizers.items(): optimizer.zero_grad() def step(self): for optimizer in self.optimizers: optimizer.step() for _, optimizer in self.named_optimizers.items(): optimizer.step() # Assumes that embedding params have [sparse_name_key] (default "emb_dict") # in their name. It is true for embeddings created via # self.emb_dict = create_emb_dict(self.sparse_feature_options) def create_optimizers_for_dense( optimizers, named_parameters, dense_optim_config, sparse_name_key="emb_dict" ): params = [param for name, param in named_parameters if sparse_name_key not in name] logger.info( "Creating optim for non-embedding params with config: " "{}.".format(dense_optim_config) ) logger.info( "Creating optim for non-embedding params list:" ", ".join([name for name, _ in named_parameters if sparse_name_key not in name]) ) optimizers.add( create_optim(params=params, optim_config=dense_optim_config), name="dense" ) def create_optimizers_for_embed(optimizers, emb_dict, sparse_feature_options): sparse_optim_config = sparse_feature_options.optim for item in sparse_feature_options.features: name = item.name item_optim_config = sparse_optim_config if item.optim is None else item.optim logger.info( "Creating optim for {} with config: {}".format(name, item_optim_config) ) optimizers.add( create_optim( params=emb_dict[name].parameters(), optim_config=item_optim_config ), name=name, )
AutoCTR-main
models/utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from __future__ import absolute_import, division, print_function, unicode_literals import logging from copy import deepcopy import torch.nn as nn logger = logging.getLogger(__name__) class BaseNet(nn.Module): def __init__(self, model_config, feature_config): super(BaseNet, self).__init__() # for serilization purpose self.model_config = deepcopy(model_config) self.feature_config = deepcopy(feature_config) self.dense_feature_options = self.feature_config.dense self.sparse_feature_options = self.feature_config.sparse self.num_dense_feat = len(self.dense_feature_options.features) self.num_sparse_feat = len(self.sparse_feature_options.features) def _build_arc(self): raise NotImplementedError def get_optimizers(self): raise NotImplementedError def forward(self, fs): raise NotImplementedError
AutoCTR-main
models/base_net.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from __future__ import absolute_import, division, print_function, unicode_literals import logging import math import numpy as np import lightgbm as lgb import scipy.stats as ss from config import ttypes as config from models.nas_modules import NASRecNet from .base_searcher import BaseSearcher logger = logging.getLogger(__name__) def nCr(n,r): f = math.factorial return f(n) / f(r) / f(n-r) def prob_comb(population_size, candidate_size): prob = [] for rank in range(population_size, 0, -1): prob.append(nCr(rank + candidate_size-1, candidate_size)/nCr(population_size + candidate_size, candidate_size + 1)) return prob class EvolutionaryController(BaseSearcher): """Aging evolution: https://arxiv.org/abs/1802.01548 """ def __init__(self, searcher_config, feature_config): super(EvolutionaryController, self).__init__(searcher_config, feature_config) self.controller_option = searcher_config.get_evolutionary_searcher() self._init_base_searcher_params() self.population_size = self.controller_option.population_size self.candidate_size = self.controller_option.candidate_size self.all_arc_vecs = None self.all_rewards = None self.all_params = None self.all_flops = None self.sampler_type = 1 self.eval_at = 3 self._build_arc() self.sample_prob = prob_comb(self.population_size, self.candidate_size) def _build_arc(self): self.population_arc_queue = [] self.population_val_queue = [] def _selection_candidate(self, type=0): if type == 0: candidate_indices = np.sort( np.random.choice( self.population_size, self.candidate_size, replace=False ) ) candidate_arcs = list( map(self.population_arc_queue.__getitem__, candidate_indices) ) candidate_vals = list( map(self.population_val_queue.__getitem__, candidate_indices) ) best_arc_idx = np.argmin(candidate_vals) best_arc = candidate_arcs[best_arc_idx] elif type == 1: rank = ss.rankdata(np.array(self.population_val_queue), method='ordinal') tmp_prob = [self.sample_prob[i-1] for i in rank] best_arc_idx = np.random.choice(list(range(self.population_size)), p=tmp_prob) best_arc = self.population_arc_queue[best_arc_idx] return best_arc_idx, best_arc def sample(self, batch_size=1, return_config=False, is_initial=True): """sample a batch_size number of NasRecNets from the controller, where each node is made up of a set of blocks with number self.num_blocks. If is_initial=True, random sample a batch size of arcs into population, else sample a candidate size arch from population queue, get the best one, mutate the best one to a new arch, repeat this a batch_size of time. """ if batch_size < 1: raise ValueError("Wrong batch_size.") nasrec_nets, all_vec_configs, nasrec_arc_vecs = [], [], [] for _ in range(batch_size): if is_initial: vecs, vec_configs = self.random_sample() else: best_arc_idx, best_arc = self._selection_candidate(type=1) # mutate to get child if self.sampler_type > 1: vecs, vec_configs = self.ML_sampler(parent=best_arc) else: vecs, vec_configs = self.mutate_arc(parent=best_arc) arc_vec = np.concatenate(vecs) nasrec_arc_vecs.append(arc_vec) all_vec_configs.append(vec_configs) block_configs = self.vecs_to_model_config(vec_configs) model_config = config.ModelConfig( nasrec_net=config.NASRecNetConfig(block_configs=block_configs) ) if return_config: nasrec_nets.append(model_config) else: nasrec_nets.append(NASRecNet(model_config, self.feature_config)) return nasrec_nets, [], all_vec_configs, nasrec_arc_vecs def update(self, actions, rewards, survival_type="age"): """add k new archs into the population queue and kick out the k oldest archs""" # add child to right of population self.population_arc_queue += actions self.population_val_queue += rewards if survival_type == "age": self.population_arc_queue = self.population_arc_queue[-self.population_size:] self.population_val_queue = self.population_val_queue[-self.population_size:] elif survival_type == "comb": self.comb() else: if survival_type == "fit": idx = sorted( range(len(self.population_val_queue)), key=lambda i: self.population_val_queue[i], reverse=True )[-self.population_size:] elif survival_type == "mix": division = int(0.5 * self.population_size) tmp_rewards = self.population_val_queue[:-division] idx = sorted(range(len(tmp_rewards)), key=lambda i: tmp_rewards[i], reverse=True)[-division:] age_arcs = self.population_arc_queue[-division:] age_vals = self.population_val_queue[-division:] self.population_arc_queue = np.array(self.population_arc_queue)[idx].tolist() self.population_val_queue = np.array(self.population_val_queue)[idx].tolist() if survival_type == "mix": self.population_arc_queue += age_arcs self.population_val_queue += age_vals # if keep_largest: # idx = sorted( # range(len(self.population_val_queue)), # key=lambda i: self.population_val_queue[i], reverse=True # )[-self.population_size:] # self.population_arc_queue = np.array(self.population_arc_queue)[idx].tolist() # self.population_val_queue = np.array(self.population_val_queue)[idx].tolist() # else: # # remove dead from left of population if exceed population_size # self.population_arc_queue = self.population_arc_queue[-self.population_size :] # self.population_val_queue = self.population_val_queue[-self.population_size :] if self.sampler_type > 1: # QQ TODO: build GBDT_rank: self.update_GBDT() def comb(self, trade_off=[0.1, 1, 0.1, 1]): if len(self.all_rewards) <= self.population_size: self.population_arc_queue = self.all_actions[-self.population_size:] self.population_val_queue = self.all_rewards[-self.population_size:] else: if trade_off[3] == 0: rank_weight = ss.rankdata(np.array(self.all_rewards)) / len(self.all_rewards) age_weight = np.array(range(len(self.all_rewards), 0, -1)) / len(self.all_rewards) age_weight[:self.population_size] = age_weight[self.population_size - 1] flops_weight = ss.rankdata(np.array(self.all_flops)) / len(self.all_flops) all_weight = trade_off[0] * rank_weight + trade_off[1] * age_weight + trade_off[2] * flops_weight idx = np.array( sorted(range(len(all_weight)), key=lambda i: all_weight[i]))[:self.population_size]# < self.population_size # [-division:] self.population_arc_queue = np.array(self.all_actions)[idx].tolist() self.population_val_queue = np.array(self.all_rewards)[idx].tolist() elif trade_off[3] == 1: age_weight = np.array(range(len(self.all_rewards), 0, -1)) / len(self.all_rewards) age_weight[:self.population_size] = age_weight[self.population_size - 1] # filter with age weight idx1 = np.array( sorted(range(len(age_weight)), key=lambda i: age_weight[i]))[:2*self.population_size] age_rewards = np.array(self.all_rewards)[idx1].tolist() age_actions = np.array(self.all_actions)[idx1].tolist() age_flops = np.array(self.all_flops)[idx1].tolist() rank_weight = ss.rankdata(np.array(age_rewards)) / len(age_rewards) age_weight = np.array(age_weight)[idx1] flops_weight = ss.rankdata(np.array(age_flops)) / len(age_flops) all_weight = trade_off[0] * rank_weight + trade_off[1] * age_weight + trade_off[2] * flops_weight idx2 = np.array( sorted(range(len(all_weight)), key=lambda i: all_weight[i]))[:self.population_size] # < self.population_size # [-division:] self.population_arc_queue = np.array(age_actions)[idx2].tolist() self.population_val_queue = np.array(age_rewards)[idx2].tolist() def update_GBDT(self): k = len(self.all_arc_vecs) r = 0.8 # create dataset for lightgbm X_train, X_test, y_train1, y_test1 = self.all_arc_vecs[:int(k * r)], \ self.all_arc_vecs[int(k * r):], \ self.all_rewards[:int(k * r)], \ self.all_rewards[int(k * r):] X_train, X_test, y_train1, y_test1 = np.array(X_train), \ np.array(X_test), \ np.array(y_train1), \ np.array(y_test1) logger.warning('Train Shape {}{}{}{}'.format(X_train.shape, X_test.shape, y_train1.shape, y_test1.shape)) y_train = ss.rankdata(-y_train1) - 1 y_test = ss.rankdata(-y_test1) - 1 y_train = y_train.astype(int) y_test = y_test.astype(int) lgb_train = lgb.Dataset(X_train, y_train, group=np.array([len(y_train)])) # free_raw_data=False lgb_eval = lgb.Dataset(X_test, y_test, group=np.array([len(y_test)]), reference=lgb_train) # ,free_raw_data=False # specify your configurations as a dict params = { 'boosting_type': 'gbdt', 'objective': 'lambdarank', # 'regression', # 'metric': "ndcg", # "auc", #"ndcg", # {'l2', 'l1'}, 'label_gain': np.array(list(range(len(y_train)))) * 2, # 'max_depth': 3, # 'num_leaves': 31, 'learning_rate': 0.05, 'feature_fraction': 0.9, 'bagging_fraction': 0.8, 'eval_at': self.eval_at, 'bagging_freq': 5, 'verbose': 0, 'num_threads': 5, } logger.warning('Starting training...') # train self.gbm = lgb.train(params, lgb_train, num_boost_round=1500, valid_sets=lgb_eval, early_stopping_rounds=150) logger.warning('Finish training...') def ML_sampler(self, parent): vecs_list, arc_vec_list, vec_configs_list = [], [], [] i = 0 while i < self.sampler_type: vecs, vec_configs = self.mutate_arc(parent=parent) arc_vec = np.concatenate(vecs) # check current repeat_idx = ( [] if not arc_vec_list else np.where( np.sum(abs(np.array(arc_vec_list) - arc_vec), 1) == 0 )[0] ) if len(repeat_idx) != 0: logger.warning("The architecture is same with: {}.".format(repeat_idx)) continue # check all repeat_idx = ( [] if not self.all_arc_vecs else np.where( np.sum(abs(np.array(self.all_arc_vecs) - arc_vec), 1) == 0 )[0] ) if len(repeat_idx) != 0: logger.warning("The architecture is same all_arc_vectors with: {}.".format(repeat_idx)) continue vecs_list.append(vecs) arc_vec_list.append(arc_vec) vec_configs_list.append(vec_configs) i += 1 logger.warning('Test Shape {}'.format(np.array(arc_vec_list).shape)) y_pred = self.gbm.predict(np.array(arc_vec_list), num_iteration=self.gbm.best_iteration) idx = np.where(y_pred == np.max(y_pred))[0][0] return vecs_list[idx], vec_configs_list[idx]
AutoCTR-main
nasrec/evolutionary_controller.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from __future__ import absolute_import, division, print_function, unicode_literals import logging from copy import deepcopy import numpy as np import torch import torch.nn as nn from block_config import ttypes as b_config from config import ttypes as config logger = logging.getLogger(__name__) class BaseSearcher(nn.Module): def __init__(self, searcher_config, feature_config): super(BaseSearcher, self).__init__() # for serilization purpose self.searcher_config = deepcopy(searcher_config) self.feature_config = deepcopy(feature_config) self.dense_feature_options = self.feature_config.dense self.sparse_feature_options = self.feature_config.sparse self.num_dense_feat = len(self.dense_feature_options.features) self.num_sparse_feat = len(self.sparse_feature_options.features) def _set_micro_space_from_config(self): # get micro space type list self.micro_space_types = [ space_type.getType() for space_type in self.controller_option.micro_space_types ] # get feature processig type list self.feature_processing_type = [ processing_type.getType() for processing_type in self.controller_option.feature_processing_type ] # set up corresponding micro space for space_type in self.controller_option.micro_space_types: if space_type.getType() == config.MicroSearchSpaceType.MICRO_MLP: self.micro_mlp_option = space_type.get_micro_mlp() elif space_type.getType() == config.MicroSearchSpaceType.MICRO_CIN: self.micro_cin_option = space_type.get_micro_cin() if len(self.micro_cin_option.arc) == 0: self.micro_cin_option.arc = [128] if len(self.micro_cin_option.num_of_layers) == 0: self.micro_cin_option.num_of_layers = [1] elif space_type.getType() == config.MicroSearchSpaceType.MICRO_ATTENTION: self.micro_attention_option = space_type.get_micro_attention() if len(self.micro_attention_option.num_of_layers) == 0: self.micro_attention_option.num_of_layers = [1] if len(self.micro_attention_option.num_of_heads) == 0: self.micro_attention_option.num_of_heads = [2] if len(self.micro_attention_option.att_embed_dim) == 0: self.micro_attention_option.att_embed_dim = [10] if len(self.micro_attention_option.dropout_prob) == 0: self.micro_attention_option.dropout_prob = [0.0] def _init_base_searcher_params(self): # get micro search space configurations self._set_micro_space_from_config() # constraint search space if ( self.controller_option.macro_space_type == config.MacroSearchSpaceType.INPUT_GROUP ): self.num_dense_feat = 1 self.num_sparse_feat = 1 # length of the DAG to be searched (exclude the final clf layer) self.num_blocks = self.controller_option.max_num_block # block_types to be searched self.block_types = list(set(self.controller_option.block_types)) self.num_block_type = len(self.block_types) if self.num_block_type == 0: raise ValueError("Should provide at least one block type to be searched.") # construct dictionaries to map between int and block types self.type_int_dict = { self.block_types[i]: i for i in range(self.num_block_type) } self.int_type_dict = { i: self.block_types[i] for i in range(self.num_block_type) } # all tokens to be searched self.num_tokens = { "block_type": self.num_block_type, "dense_feat": self.num_dense_feat, "sparse_feat": self.num_sparse_feat, "skip_connect": self.num_blocks, } self.token_names = ["block_type", "dense_feat", "sparse_feat", "skip_connect"] if ( self.controller_option.macro_space_type == config.MacroSearchSpaceType.INPUT_ELASTIC_PRIOR ): # constraint search space with smooth learnable priors self.num_tokens["elastic_prior"] = 2 self.token_names.append("elastic_prior") self.num_total_tokens = sum(v for _, v in self.num_tokens.items()) if config.MicroSearchSpaceType.MICRO_MLP in self.micro_space_types: if ( b_config.ExtendedBlockType.MLP_DENSE in self.controller_option.block_types ): self.num_tokens["mlp_dense"] = len(self.micro_mlp_option.arc) self.token_names.append("mlp_dense") self.num_total_tokens += 1 if b_config.ExtendedBlockType.MLP_EMB in self.controller_option.block_types: self.num_tokens["mlp_emb"] = len(self.micro_mlp_option.arc) self.token_names.append("mlp_emb") self.num_total_tokens += 1 if config.MicroSearchSpaceType.MICRO_CIN in self.micro_space_types: if b_config.ExtendedBlockType.CIN in self.controller_option.block_types: self.num_tokens["cin"] = len(self.micro_cin_option.arc) + len( self.micro_cin_option.num_of_layers ) self.token_names.append("cin") self.num_total_tokens += 1 if len(self.micro_cin_option.arc) > 0 else 0 self.num_total_tokens += ( 1 if len(self.micro_cin_option.num_of_layers) > 0 else 0 ) if config.MicroSearchSpaceType.MICRO_ATTENTION in self.micro_space_types: if ( b_config.ExtendedBlockType.ATTENTION in self.controller_option.block_types ): self.att_num_tokens = { "head": len(self.micro_attention_option.num_of_heads), "layer": len(self.micro_attention_option.num_of_layers), "emb": len(self.micro_attention_option.att_embed_dim), "drop": len(self.micro_attention_option.dropout_prob), } self.num_tokens["attention"] = sum( v for _, v in self.att_num_tokens.items() ) self.token_names.append("attention") for _, v in self.att_num_tokens.items(): self.num_total_tokens += 1 if v != 0 else 0 def _build_arc(self): raise NotImplementedError def sample(self): raise NotImplementedError def update(self): raise NotImplementedError def random_sample(self): vec_configs, vecs = [], [] for b_id in range(self.num_blocks): # macro random search block_type_vec = np.random.multinomial( 1, [1.0 / self.num_block_type] * self.num_block_type ) block_type_id = np.argmax(block_type_vec) dense_feat_vec = np.random.binomial(1, 0.5, self.num_dense_feat) sparse_feat_vec = np.random.binomial(1, 0.5, self.num_sparse_feat) skip_connection_vec = np.random.binomial(1, 0.5, self.num_blocks) skip_connection_vec[b_id:] = 0 # cannot connect with later block vec_config = { "block_type": block_type_id, "dense_feat": dense_feat_vec, "sparse_feat": sparse_feat_vec, "skip_connect": skip_connection_vec, } # micro random search mlp_dense_vec, mlp_emb_vec, cin_vec, att_vec = ( np.array([]), np.array([]), np.array([]), np.array([]), ) if config.MicroSearchSpaceType.MICRO_MLP in self.micro_space_types: if ( b_config.ExtendedBlockType.MLP_DENSE in self.controller_option.block_types ): mlp_dense_vec = np.argmax( np.random.multinomial( 1, [1.0 / len(self.micro_mlp_option.arc)] * len(self.micro_mlp_option.arc), ) ) vec_config["mlp_dense"] = mlp_dense_vec mlp_dense_vec = np.array([mlp_dense_vec]) if ( b_config.ExtendedBlockType.MLP_EMB in self.controller_option.block_types ): mlp_emb_vec = np.argmax( np.random.multinomial( 1, [1.0 / len(self.micro_mlp_option.arc)] * len(self.micro_mlp_option.arc), ) ) vec_config["mlp_emb"] = mlp_emb_vec mlp_emb_vec = np.array([mlp_emb_vec]) if config.MicroSearchSpaceType.MICRO_CIN in self.micro_space_types: if b_config.ExtendedBlockType.CIN in self.controller_option.block_types: cin_width = np.argmax( np.random.multinomial( 1, [1.0 / len(self.micro_cin_option.arc)] * len(self.micro_cin_option.arc), ) ) cin_depth = np.argmax( np.random.multinomial( 1, [1.0 / len(self.micro_cin_option.num_of_layers)] * len(self.micro_cin_option.num_of_layers), ) ) cin_vec = np.array([cin_width, cin_depth]) vec_config["cin"] = {"width": cin_width, "depth": cin_depth} if config.MicroSearchSpaceType.MICRO_ATTENTION in self.micro_space_types: if ( b_config.ExtendedBlockType.ATTENTION in self.controller_option.block_types ): att_head = np.argmax( np.random.multinomial( 1, [1.0 / self.att_num_tokens["head"]] * self.att_num_tokens["head"], ) ) att_layer = np.argmax( np.random.multinomial( 1, [1.0 / self.att_num_tokens["layer"]] * self.att_num_tokens["layer"], ) ) att_emb_dim = np.argmax( np.random.multinomial( 1, [1.0 / self.att_num_tokens["emb"]] * self.att_num_tokens["emb"], ) ) att_dropout_prob = np.argmax( np.random.multinomial( 1, [1.0 / self.att_num_tokens["drop"]] * self.att_num_tokens["drop"], ) ) att_vec = np.array( [att_head, att_layer, att_emb_dim, att_dropout_prob] ) vec_config["attention"] = { "head": att_head, "layer": att_layer, "emb": att_emb_dim, "drop": att_dropout_prob, } block_vec = np.concatenate( [ block_type_vec, dense_feat_vec, sparse_feat_vec, skip_connection_vec, mlp_dense_vec, mlp_emb_vec, cin_vec, att_vec, ] ) vecs.append(block_vec) vec_configs.append(vec_config) # cat the config of a architecture to one vector return vecs, vec_configs def block_type_to_int(self, block_config): if block_config.getType() == b_config.BlockConfig.MLP_BLOCK: block_option = block_config.get_mlp_block() key = ( b_config.ExtendedBlockType.MLP_DENSE if block_option.type.getType() == b_config.BlockType.DENSE else b_config.ExtendedBlockType.MLP_EMB ) elif block_config.getType() == b_config.BlockConfig.CROSSNET_BLOCK: block_option = block_config.get_crossnet_block() key = b_config.ExtendedBlockType.CROSSNET elif block_config.getType() == b_config.BlockConfig.FM_BLOCK: block_option = block_config.get_fm_block() key = ( b_config.ExtendedBlockType.FM_DENSE if block_option.type.getType() == b_config.BlockType.DENSE else b_config.ExtendedBlockType.FM_EMB ) elif block_config.getType() == b_config.BlockConfig.DOTPROCESSOR_BLOCK: block_option = block_config.get_dotprocessor_block() key = ( b_config.ExtendedBlockType.DOTPROCESSOR_DENSE if block_option.type.getType() == b_config.BlockType.DENSE else b_config.ExtendedBlockType.DOTPROCESSOR_EMB ) elif block_config.getType() == b_config.BlockConfig.CAT_BLOCK: block_option = block_config.get_cat_block() key = ( b_config.ExtendedBlockType.CAT_DENSE if block_option.type.getType() == b_config.BlockType.DENSE else b_config.ExtendedBlockType.CAT_EMB ) elif block_config.getType() == b_config.BlockConfig.CIN: block_option = block_config.get_cin_block() key = b_config.ExtendedBlockType.CIN elif block_config.getType() == b_config.BlockConfig.ATTENTION: block_option = block_config.get_attention_block() key = b_config.ExtendedBlockType.ATTENTION return self.type_int_dict[key], block_option def vecs_to_model_config(self, vecs): block_configs = [] for block_id, vec in enumerate(vecs): block_configs.append(self.vec_to_block_config(vec, block_id + 1)) return block_configs def vec_to_block_config(self, vec, block_id): """convert a controller vector to block_config """ # split a vector and convert the corresponding part to the id format block_type_id = ( vec["block_type"].numpy()[0] if type(vec["block_type"]) is torch.Tensor else vec["block_type"] ) input_dense = vec["dense_feat"] input_sparse = vec["sparse_feat"] skip_connection = vec["skip_connect"] if ( self.controller_option.macro_space_type == config.MacroSearchSpaceType.INPUT_GROUP ): input_dense_id = [-1] if input_dense == 1 else [] input_sparse_id = [-1] if input_sparse == 1 else [] else: input_dense_id = [i for i, e in enumerate(input_dense) if e == 1] input_sparse_id = [i for i, e in enumerate(input_sparse) if e == 1] skip_connection_id = [ i + 1 for i, e in enumerate(skip_connection) if e == 1 and i + 1 < block_id ] dense_as_sparse = ( True if config.FeatureProcessingType.IDASP in self.feature_processing_type else False ) # construct input config # orignal input features input_feat_config = [ b_config.FeatSelectionConfig( block_id=0, dense=input_dense_id, sparse=input_sparse_id ) ] # input from other blocks' outputs input_feat_config += [ b_config.FeatSelectionConfig(block_id=id, dense=[-1], sparse=[-1]) for id in skip_connection_id ] comm_embed_dim = self.sparse_feature_options.embed_dim block_type = self.int_type_dict[block_type_id] if block_type == b_config.ExtendedBlockType.CROSSNET: block_config = b_config.BlockConfig( crossnet_block=b_config.CrossNetBlockConfig( name="CrossNetBlocks", block_id=block_id, num_of_layers=1, input_feat_config=input_feat_config, cross_feat_config=input_feat_config, ) ) elif block_type == b_config.ExtendedBlockType.ATTENTION: head, layer, emb, drop = ( ( self.micro_attention_option.num_of_heads[vec["attention"]["head"]], self.micro_attention_option.num_of_layers[ vec["attention"]["layer"] ], self.micro_attention_option.att_embed_dim[vec["attention"]["emb"]], self.micro_attention_option.dropout_prob[vec["attention"]["drop"]], ) if "attention" in vec else (2, 1, 10, 0.0) ) block_config = b_config.BlockConfig( attention_block=b_config.AttentionBlockConfig( name="AttentionBlock", block_id=block_id, input_feat_config=input_feat_config, emb_config=b_config.EmbedBlockType( comm_embed_dim=comm_embed_dim, dense_as_sparse=dense_as_sparse ), att_embed_dim=emb, num_of_heads=head, num_of_layers=layer, dropout_prob=drop, use_res=True, batchnorm=False, ) ) elif block_type == b_config.ExtendedBlockType.CIN: arc = ( [self.micro_cin_option.arc[vec["cin"]["width"]]] * self.micro_cin_option.num_of_layers[vec["cin"]["depth"]] if "cin" in vec else [128] ) block_config = b_config.BlockConfig( cin_block=b_config.CINBlockConfig( name="CINBlock", block_id=block_id, emb_config=b_config.EmbedBlockType( comm_embed_dim=comm_embed_dim, dense_as_sparse=dense_as_sparse ), arc=arc, split_half=True, input_feat_config=input_feat_config, ) ) elif block_type == b_config.ExtendedBlockType.MLP_DENSE: arc = ( self.micro_mlp_option.arc[vec["mlp_dense"]] if "mlp_dense" in vec else 128 ) block_config = b_config.BlockConfig( mlp_block=b_config.MLPBlockConfig( name="MLPBlock", block_id=block_id, arc=[arc], type=b_config.BlockType(dense=b_config.DenseBlockType()), input_feat_config=input_feat_config, ) ) elif block_type == b_config.ExtendedBlockType.MLP_EMB: arc = self.micro_mlp_option.arc[vec["mlp_emb"]] if "mlp_emb" in vec else 128 block_config = b_config.BlockConfig( mlp_block=b_config.MLPBlockConfig( name="MLPBlock", block_id=block_id, arc=[arc], type=b_config.BlockType( emb=b_config.EmbedBlockType( comm_embed_dim=comm_embed_dim, dense_as_sparse=dense_as_sparse, ) ), input_feat_config=input_feat_config, ) ) elif block_type == b_config.ExtendedBlockType.FM_DENSE: block_config = b_config.BlockConfig( fm_block=b_config.FMBlockConfig( name="FMBlock", block_id=block_id, type=b_config.BlockType(dense=b_config.DenseBlockType()), input_feat_config=input_feat_config, ) ) elif block_type == b_config.ExtendedBlockType.FM_EMB: block_config = b_config.BlockConfig( fm_block=b_config.FMBlockConfig( name="FMBlock", block_id=block_id, type=b_config.BlockType( emb=b_config.EmbedBlockType( comm_embed_dim=comm_embed_dim, dense_as_sparse=dense_as_sparse, ) ), input_feat_config=input_feat_config, ) ) elif block_type == b_config.ExtendedBlockType.DOTPROCESSOR_DENSE: block_config = b_config.BlockConfig( dotprocessor_block=b_config.DotProcessorBlockConfig( name="DotProcessorBlock", block_id=block_id, type=b_config.BlockType(dense=b_config.DenseBlockType()), input_feat_config=input_feat_config, ) ) elif block_type == b_config.ExtendedBlockType.DOTPROCESSOR_EMB: block_config = b_config.BlockConfig( dotprocessor_block=b_config.DotProcessorBlockConfig( name="DotProcessorBlock", block_id=block_id, type=b_config.BlockType( emb=b_config.EmbedBlockType( comm_embed_dim=comm_embed_dim, dense_as_sparse=dense_as_sparse, ) ), input_feat_config=input_feat_config, ) ) elif block_type == b_config.ExtendedBlockType.CAT_DENSE: block_config = b_config.BlockConfig( cat_block=b_config.CatBlockConfig( name="CatBlock", block_id=block_id, type=b_config.BlockType(dense=b_config.DenseBlockType()), input_feat_config=input_feat_config, ) ) elif block_type == b_config.ExtendedBlockType.CAT_EMB: block_config = b_config.BlockConfig( cat_block=b_config.CatBlockConfig( name="CatBlock", block_id=block_id, type=b_config.BlockType( emb=b_config.EmbedBlockType( comm_embed_dim=comm_embed_dim, dense_as_sparse=dense_as_sparse, ) ), input_feat_config=input_feat_config, ) ) return block_config def dicts_to_vecs(self, dicts): vecs = [] for block in dicts: for token_name in self.num_tokens: if token_name in ["block_type"]: tmp_vec = np.zeros([self.num_tokens[token_name]]) tmp_vec[block[token_name]] = 1.0 vecs.append(tmp_vec) elif token_name in ["mlp_dense", "mlp_emb"]: tmp_vec = np.array([block[token_name]]) vecs.append(tmp_vec) elif token_name == "cin": tmp_vec = np.array([block["cin"]["width"], block["cin"]["depth"]]) vecs.append(tmp_vec) elif token_name == "attention": tmp_vec = np.array( [ block["attention"]["head"], block["attention"]["layer"], block["attention"]["emb"], block["attention"]["drop"], ] ) vecs.append(tmp_vec) else: vecs.append(block[token_name]) return vecs def _action_equal(self, action1, action2): return ( action1 == action2 if type(action1) == dict else np.array_equal(action1, action2) ) def mutate_arc(self, parent): child = deepcopy(parent) # 1. choose block to mutate block_id = np.random.choice(self.num_blocks, 1)[0] # 2. choose one token of a block to mutate (e.g., block_type, dense_feat) token_name = np.random.choice(self.token_names, 1)[0] while token_name == "skip_connect" and block_id == 0: block_id = np.random.choice(self.num_blocks, 1)[0] token_name = np.random.choice(self.token_names, 1)[0] while ( token_name == "cin" and len(self.micro_cin_option.arc) == 1 and len(self.micro_cin_option.num_of_layers) == 1 ) or ( token_name == "attention" and self.att_num_tokens["head"] == 1 and self.att_num_tokens["layer"] == 1 and self.att_num_tokens["emb"] == 1 and self.att_num_tokens["drop"] == 1 ): token_name = np.random.choice(self.token_names, 1)[0] # 3. mutate the corresponding token new_action = child[block_id][token_name] while self._action_equal(new_action, child[block_id][token_name]): if token_name in ["block_type", "mlp_dense", "mlp_emb"]: new_action_vec = np.random.multinomial( 1, [1.0 / self.num_tokens[token_name]] * self.num_tokens[token_name] ) new_action = np.argmax(new_action_vec) elif token_name == "cin": cin_width = np.argmax( np.random.multinomial( 1, [1.0 / len(self.micro_cin_option.arc)] * len(self.micro_cin_option.arc), ) ) cin_depth = np.argmax( np.random.multinomial( 1, [1.0 / len(self.micro_cin_option.num_of_layers)] * len(self.micro_cin_option.num_of_layers), ) ) new_action = {"width": cin_width, "depth": cin_depth} elif token_name == "attention": head = np.argmax( np.random.multinomial( 1, [1.0 / self.att_num_tokens["head"]] * self.att_num_tokens["head"], ) ) layer = np.argmax( np.random.multinomial( 1, [1.0 / self.att_num_tokens["layer"]] * self.att_num_tokens["layer"], ) ) emb = np.argmax( np.random.multinomial( 1, [1.0 / self.att_num_tokens["emb"]] * self.att_num_tokens["emb"], ) ) drop = np.argmax( np.random.multinomial( 1, [1.0 / self.att_num_tokens["drop"]] * self.att_num_tokens["drop"], ) ) new_action = {"head": head, "layer": layer, "emb": emb, "drop": drop} else: new_action = np.random.binomial(1, 0.5, self.num_tokens[token_name]) child[block_id][token_name] = new_action vecs = self.dicts_to_vecs(child) return vecs, child
AutoCTR-main
nasrec/base_searcher.py
AutoCTR-main
nasrec/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from __future__ import absolute_import, division, print_function, unicode_literals import logging import torch from config import ttypes as config from .evolutionary_controller import EvolutionaryController from .random_controller import RandomController logger = logging.getLogger(__name__) def build_searcher(searcher_config, feature_config): if searcher_config.getType() == config.SearcherConfig.RANDOM_SEARCHER: return build_random_searcher(searcher_config, feature_config) elif searcher_config.getType() == config.SearcherConfig.EVOLUTIONARY_SEARCHER: return build_evolutionary_searcher(searcher_config, feature_config) else: raise ValueError("Unknown searcher type.") def build_random_searcher(searcher_config, feature_config): return RandomController( searcher_config=searcher_config, feature_config=feature_config ) def build_evolutionary_searcher(searcher_config, feature_config): return EvolutionaryController( searcher_config=searcher_config, feature_config=feature_config ) def save_searcher(filename, searcher): logger.info("Saving searcher to {}".format(filename)) state = { "state_dict": searcher.state_dict(), "searcher_config": searcher.searcher_config, "feature_config": searcher.feature_config, } torch.save(state, filename) def load_searcher(filename): logger.info("Loading searcher from {}".format(filename)) state = torch.load(filename) searcher_config = state["searcher_config"] feature_config = state["feature_config"] searcher = build_searcher( searcher_config=searcher_config, feature_config=feature_config ) searcher.load_state_dict(state["state_dict"]) return searcher
AutoCTR-main
nasrec/builder.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from __future__ import absolute_import, division, print_function, unicode_literals import logging import numpy as np from config import ttypes as config from models.nas_modules import NASRecNet from .base_searcher import BaseSearcher logger = logging.getLogger(__name__) class RandomController(BaseSearcher): def __init__(self, searcher_config, feature_config): super(RandomController, self).__init__(searcher_config, feature_config) self.controller_option = searcher_config.get_random_searcher() self._init_base_searcher_params() def _build_arc(self): pass def sample(self, batch_size=1, return_config=False): """Samples a batch_size number of NasRecNets from the controller, where each node is made up of a set of blocks with number self.num_blocks """ if batch_size < 1: raise ValueError("Wrong batch_size.") nasrec_nets, all_vec_configs, nasrec_arc_vecs = [], [], [] for _ in range(batch_size): vecs, vec_configs = self.random_sample() arc_vec = np.concatenate(vecs) nasrec_arc_vecs.append(arc_vec) all_vec_configs.append(vec_configs) block_configs = self.vecs_to_model_config(vec_configs) model_config = config.ModelConfig( nasrec_net=config.NASRecNetConfig(block_configs=block_configs) ) if return_config: nasrec_nets.append(model_config) else: nasrec_nets.append(NASRecNet(model_config, self.feature_config)) return nasrec_nets, [], all_vec_configs, nasrec_arc_vecs def update(self, probs, rewards): pass
AutoCTR-main
nasrec/random_controller.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from __future__ import absolute_import, division, print_function, unicode_literals import logging import numpy as np import torch import torch.nn as nn from graphviz import Digraph logger = logging.getLogger(__name__) def reward_normalization(rewards, alpha=3, bias=0.5): return rewards # return 0.5 * np.tanh((rewards - bias) * alpha) + 0.5 def clean_feat_id(feat_ids, feat_dim, feat_type): """check and modify feat_ids, remove nonexist features and empty block Args: feat_ids: dictionary of {block:feat_ids} to be cleaned feat_dim: dictionary of {block:feat_dim} used to clean feat_ids feat_type: a string indicating feature type (i.e., "dense" or "sprase") """ tmp = { k: [ feat_id for feat_id in set(feat_ids[k]) if feat_id < (feat_dim[k][0] if feat_type is "dense" else len(feat_dim[k])) ] for k in set(feat_ids).intersection(set(feat_dim)) } # remove empty and sorted return {k: sorted(v) for k, v in tmp.items() if v} def create_emb_converter( num_dense_feat, feat_sparse_id, feat_sparse_dim, comm_embed_dim, num_dense_as_sp=0 ): # set embedding layers feat_emb = nn.ModuleDict() # set dense emb layer if num_dense_feat > 0: feat_emb["dense"] = ( nn.Linear(num_dense_feat, comm_embed_dim, bias=True) if num_dense_feat != comm_embed_dim else nn.Identity() ) if num_dense_as_sp > 0: feat_emb["dense_as_sparse"] = nn.Embedding(num_dense_as_sp, comm_embed_dim) # set sparse emb layer feat_emb["sparse"] = nn.ModuleDict() sparse_in_dim = get_sparse_feat_dim(feat_sparse_id, feat_sparse_dim) for block in feat_sparse_id: feat_emb["sparse"][str(block)] = nn.ModuleDict() if feat_sparse_id[block] == [-1]: for feat_id in range(len(sparse_in_dim[block])): feat_emb["sparse"][str(block)][str(feat_id)] = ( nn.Linear(sparse_in_dim[block][feat_id], comm_embed_dim, bias=True) if sparse_in_dim[block][feat_id] != comm_embed_dim else nn.Identity() ) else: for feat_id in feat_sparse_id[block]: feat_emb["sparse"][str(block)][str(feat_id)] = ( nn.Linear(sparse_in_dim[block][feat_id], comm_embed_dim, bias=True) if sparse_in_dim[block][feat_id] != comm_embed_dim else nn.Identity() ) return feat_emb def convert_to_emb( feat_dict, feat_emb_layers, num_dense_feat, feat_sparse_id, comm_embed_dim, num_dense_as_sp=0, ): """ :param num_dense_as_sp: # of input dense features to be treated as sparse features """ # embedding all features into the same length and concatenate them into a matrix # dense feat = [] if num_dense_feat <= 0 else [feat_emb_layers["dense"](feat_dict["dense"])] # sparse sp_feats = [] for block in feat_sparse_id: if feat_sparse_id[block] == [-1]: for feat_id, sp in feat_dict["sparse"][block].items(): emb = feat_emb_layers["sparse"][str(block)][str(feat_id)] sp = sp.to(dtype=torch.float) sp_feats.append(emb(sp)) else: for feat_id in feat_sparse_id[block]: emb = feat_emb_layers["sparse"][str(block)][str(feat_id)] sp = feat_dict["sparse"][block][feat_id] sp = sp.to(dtype=torch.float) sp_feats.append(emb(sp)) # dense_to_sparse if num_dense_as_sp > 0: emb_table = feat_emb_layers["dense_as_sparse"]( torch.tensor(list(range(num_dense_as_sp))) ) emb_table = emb_table.repeat([feat_dict["dense_as_sparse"].shape[0], 1, 1]) dense_as_sp_feat = emb_table * feat_dict["dense_as_sparse"][:, :, None] # concatenation if feat + sp_feats: feat = torch.cat(feat + sp_feats, dim=1) batch_size = feat.shape[0] feat = feat.view((batch_size, -1, comm_embed_dim)) if num_dense_as_sp > 0: feat = torch.cat([feat, dense_as_sp_feat], dim=1) else: feat = dense_as_sp_feat return feat def cat_feats(feat_dict, feat_sparse_id): # concatenate all features into one row vector feat = [] if feat_dict["dense"].nelement() == 0 else [feat_dict["dense"]] sp_feats = [] for block, feat_ids in feat_sparse_id.items(): if feat_ids == [-1]: for feat_id in feat_dict["sparse"][block]: sp = feat_dict["sparse"][block][feat_id] sp = sp.to(dtype=torch.float) sp_feats.append(sp) else: for feat_id in feat_sparse_id[block]: sp = feat_dict["sparse"][block][feat_id] sp = sp.to(dtype=torch.float) sp_feats.append(sp) return torch.cat(feat + sp_feats, dim=1) def extract_dense_feat(feat_dense_dict, feat_dense_id): # extract dense = [] for block, feat_id in feat_dense_id.items(): if feat_dense_dict[block].nelement() != 0: dense.append( feat_dense_dict[block] if feat_id == [-1] else feat_dense_dict[block][:, feat_id] ) return torch.cat(dense, dim=1) if dense else torch.Tensor([]) def config_to_dict(feat_configs): feat_dense_id = { feat_config.block_id: feat_config.dense for feat_config in feat_configs if len(feat_config.dense) } feat_sparse_id = { feat_config.block_id: feat_config.sparse for feat_config in feat_configs if len(feat_config.sparse) } return feat_dense_id, feat_sparse_id def get_sparse_feat_dim(feat_id_dict, feat_dim_dict): # get sparse feature dimension sparse_in_dim = {} for block, feat_ids in feat_id_dict.items(): if feat_ids == [-1]: sparse_in_dim[block] = feat_dim_dict[block] else: sparse_in_dim[block] = {} for feat_id in feat_ids: sparse_in_dim[block][feat_id] = feat_dim_dict[block][feat_id] return sparse_in_dim def get_sparse_feat_dim_num(feat_id_dict, feat_dim_dict): # get sparse feature dimension num_sparse_in_dim = 0 for block, feat_ids in feat_id_dict.items(): if feat_ids == [-1]: num_sparse_in_dim += sum(feat_dim_dict[block]) else: for feat_id in feat_ids: num_sparse_in_dim += feat_dim_dict[block][feat_id] return num_sparse_in_dim def create_crossnet(num_of_layers, num_input_feat): weight_w = torch.nn.ModuleList( [torch.nn.Linear(num_input_feat, 1, bias=False) for _ in range(num_of_layers)] ) weight_b = torch.nn.ParameterList( [ torch.nn.Parameter(torch.zeros((num_input_feat,))) for _ in range(num_of_layers) ] ) batchnorm = torch.nn.ModuleList( [nn.BatchNorm1d(num_input_feat, affine=False) for _ in range(num_of_layers)] ) return weight_w, weight_b, batchnorm def create_cin(layer_sizes, field_nums): conv_layers, bias_layers, activation_layers = ( nn.ModuleList(), nn.ParameterList(), nn.ModuleList(), ) for i, size in enumerate(layer_sizes): single_conv_layer = nn.Conv2d( in_channels=1, out_channels=size, kernel_size=(field_nums[i], field_nums[0]) ) conv_layers.append(single_conv_layer) bias_layers.append( nn.Parameter(torch.nn.init.normal_(torch.empty(size), mean=0.0, std=1e-6)) ) activation_layers.append(nn.ReLU()) return conv_layers, bias_layers, activation_layers def create_transformer( emb_dim, att_embed_dim, num_of_heads, num_of_layers, use_res, use_batchnorm ): w_query, w_key, w_value, w_res, bn = ( nn.ModuleList(), nn.ModuleList(), nn.ModuleList(), nn.ModuleList(), nn.ModuleList(), ) num_units = att_embed_dim * num_of_heads emb_dim = [emb_dim] + (num_of_layers - 1) * [num_units] for l in range(num_of_layers): w_query.append(nn.Linear(emb_dim[l], num_units, bias=True)) w_key.append(nn.Linear(emb_dim[l], num_units, bias=True)) w_value.append(nn.Linear(emb_dim[l], num_units, bias=True)) if use_res: w_res.append(nn.Linear(emb_dim[l], num_units, bias=True)) if use_batchnorm: bn.append(nn.BatchNorm1d(num_units)) return w_query, w_key, w_value, w_res, bn def nasnet_visual(nasrec_model): """ function to visualize the nasrec net model """ dot = Digraph(comment="Graph", format="png") with dot.subgraph() as s: s.attr(rank="same") s.node("0_d", "Dense", color="red") s.node("0_s", "Sparse", color="red") block_name = [] for i, block in enumerate(nasrec_model.blocks): block_name.append(block.__str__() + "Block") dot.node( str(i + 1), str(i + 1) + "_" + block_name[-1], shape="box", color="green" ) dense = block.feat_dense_id sparse = block.feat_sparse_id skip_block_id = set(dense.keys()).union(set(sparse.keys())) cross_dense = [] cross_sparse = [] if block_name[-1] == "CrossNet": cross_dense = block.cross_feat_dense_id cross_sparse = block.cross_feat_sparse_id skip_block_id = skip_block_id.union(set(cross_dense.keys())) skip_block_id = skip_block_id.union(set(cross_sparse.keys())) for id in skip_block_id: if id == 0: if id in dense or (cross_dense and id in cross_dense): dot.edge("0_d", str(i + 1)) if id in sparse or (cross_sparse and id in cross_sparse): dot.edge("0_s", str(i + 1)) else: dot.edge(str(id), str(i + 1)) return dot
AutoCTR-main
nasrec/utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from __future__ import absolute_import, division, print_function, unicode_literals import logging from copy import deepcopy import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from block_config import ttypes as b_config from models.utils import create_mlp from .utils import ( cat_feats, clean_feat_id, config_to_dict, convert_to_emb, create_cin, create_crossnet, create_emb_converter, create_transformer, extract_dense_feat, get_sparse_feat_dim_num, ) logger = logging.getLogger(__name__) def set_block_from_config(block_config, feat_dim): if block_config is None: return None name2block = { b_config.BlockConfig.MLP_BLOCK: MLPBlock, b_config.BlockConfig.CROSSNET_BLOCK: CrossNetBlock, b_config.BlockConfig.FM_BLOCK: FMBlock, b_config.BlockConfig.DOTPROCESSOR_BLOCK: DotProcessorBlock, b_config.BlockConfig.CAT_BLOCK: CatBlock, b_config.BlockConfig.CIN_BLOCK: CINBlock, b_config.BlockConfig.ATTENTION_BLOCK: AttentionBlock, } block_name = block_config.getType() # block_config.name block = name2block[block_name] return block(block_config, feat_dim) def save_block(block, filename): logger.info("Saving block to {}".format(filename)) state = { "state_dict": block.state_dict(), "block_config": block.block_config, "feat_dim": {"dense": block.feat_dense_dim, "sparse": block.feat_sparse_dim}, } torch.save(state, filename) def load_block(filename): logger.info("Loading model from {}".format(filename)) state = torch.load(filename) block_config = state["block_config"] feat_dim = state["feat_dim"] block = set_block_from_config(block_config=block_config, feat_dim=feat_dim) block.load_state_dict(state["state_dict"]) return block class BaseBlock(nn.Module): def __init__(self, block_config, feat_dim): super(BaseBlock, self).__init__() # for serilization purpose self.block_config = deepcopy(block_config) # extract input feat_dim dictionary {block_id: feat_dim (list)} self.feat_dense_dim = feat_dim["dense"] self.feat_sparse_dim = feat_dim["sparse"] def _init_basic_block_params(self): self.block_id = self.block_option.block_id self.input_feat_config = self.block_option.input_feat_config # convert input feat_id into dictionary format {block_id: feat_id (list)} self.feat_dense_id, self.feat_sparse_id = config_to_dict( self.block_option.input_feat_config ) # check and modify feat_ids self.feat_dense_id = clean_feat_id( self.feat_dense_id, self.feat_dense_dim, "dense" ) self.feat_sparse_id = clean_feat_id( self.feat_sparse_id, self.feat_sparse_dim, "sparse" ) # get input feature number # dense feature self.num_dense_feat = sum( ( self.feat_dense_dim[b][0] # all dense feats in block b if self.feat_dense_id[b] == [-1] else len(self.feat_dense_id[b]) ) for b in self.feat_dense_id ) self.num_sparse_feat = sum( ( len(self.feat_sparse_dim[b]) if self.feat_sparse_id[b] == [-1] else len(self.feat_sparse_id[b]) ) for b in self.feat_sparse_id ) def _refine_emb_arc(self): # refine the arc if the raw input dense feature are treated as sparse # treat input dense features in block 0 as sparse features if existed self.dense_as_sparse_id, self.num_dense_as_sparse_feat = None, 0 if self.emb_config.dense_as_sparse and 0 in self.feat_dense_id: self.dense_as_sparse_id = self.feat_dense_id.pop(0) self.num_dense_as_sparse_feat = ( self.feat_dense_dim[0][0] if self.dense_as_sparse_id == [-1] else len(self.dense_as_sparse_id) ) self.num_dense_feat -= self.num_dense_as_sparse_feat self.num_sparse_feat += self.num_dense_as_sparse_feat def forward(self, feat_dict): raise NotImplementedError def dim_config(self, feat_dim): raise NotImplementedError def __str__(self): return type(self).__name__[:-5] class MLPBlock(BaseBlock): def __init__(self, block_config, feat_dim): super(MLPBlock, self).__init__(block_config, feat_dim) self.block_option = self.block_config.get_mlp_block() self._init_basic_block_params() self._build_arc() def _build_arc(self): if self.num_sparse_feat + self.num_dense_feat == 0: return if self.block_option.type.getType() == b_config.BlockType.DENSE: # set mlp layer self.num_input_feat = self.num_dense_feat if self.num_sparse_feat > 0: self.num_input_feat += get_sparse_feat_dim_num( self.feat_sparse_id, self.feat_sparse_dim ) self.layers = create_mlp( [self.num_input_feat] + self.block_option.arc, ly_act=self.block_option.ly_act, ) elif self.block_option.type.getType() == b_config.BlockType.EMB: self.emb_config = self.block_option.type.get_emb() self._refine_emb_arc() # set embeding layer self.feat_emb = create_emb_converter( self.num_dense_feat, self.feat_sparse_id, self.feat_sparse_dim, self.emb_config.comm_embed_dim, self.num_dense_as_sparse_feat, ) # set mlp layer self.layers = create_mlp( [self.emb_config.comm_embed_dim] + self.block_option.arc, ly_act=self.block_option.ly_act, ) else: raise ValueError("Unsupported configuration for MLPBlock type.") def dim_config(self, feat_dim): if self.num_sparse_feat + self.num_dense_feat != 0: if self.block_option.type.getType() == b_config.BlockType.DENSE: feat_dim["dense"][self.block_id] = [self.block_option.arc[-1]] elif self.block_option.type.getType() == b_config.BlockType.EMB: if self.num_dense_feat > 0: feat_dim["sparse"][self.block_id] = [self.block_option.arc[-1]] * ( self.num_sparse_feat + 1 ) else: feat_dim["sparse"][self.block_id] = [ self.block_option.arc[-1] ] * self.num_sparse_feat return feat_dim def forward(self, feat_dict): if self.num_sparse_feat + self.num_dense_feat == 0: return feat_dict # extract dense features based on id extracted_feat_dict = { "dense": extract_dense_feat(feat_dict["dense"], self.feat_dense_id), "sparse": feat_dict["sparse"], } if self.block_option.type.getType() == b_config.BlockType.DENSE: feat = cat_feats(extracted_feat_dict, self.feat_sparse_id) try: p = self.layers(feat) except: exit() feat_dict["dense"][self.block_id] = p elif self.block_option.type.getType() == b_config.BlockType.EMB: if self.num_dense_as_sparse_feat > 0: extracted_feat_dict["dense_as_sparse"] = ( feat_dict["dense"][0] if self.dense_as_sparse_id == [-1] else feat_dict["dense"][0][:, self.dense_as_sparse_id] ) feat = convert_to_emb( extracted_feat_dict, self.feat_emb, self.num_dense_feat, self.feat_sparse_id, self.emb_config.comm_embed_dim, self.num_dense_as_sparse_feat, ) p = self.layers(feat) feat_dict["sparse"][self.block_id] = { feat_id: p[:, feat_id] for feat_id in range(p.shape[1]) # 1 for dense } return feat_dict def __str__(self): return ( super().__str__() + "(" + ", ".join(str(item) for item in self.block_option.arc) + ")" ) class CrossNetBlock(BaseBlock): def __init__(self, block_config, feat_dim): super(CrossNetBlock, self).__init__(block_config, feat_dim) self.block_option = self.block_config.get_crossnet_block() self.num_of_layers = self.block_option.num_of_layers self._init_basic_block_params() self._init_cross_params() self._build_arc() def _init_cross_params(self): # cross input feat id self.cross_feat_config = self.block_option.cross_feat_config # convert cross input feat_id into dictionary format {block_id: feat_id (list)} self.cross_feat_dense_id, self.cross_feat_sparse_id = config_to_dict( self.block_option.cross_feat_config ) # check and modify feat_ids self.cross_feat_dense_id = clean_feat_id( self.cross_feat_dense_id, self.feat_dense_dim, "dense" ) self.cross_feat_sparse_id = clean_feat_id( self.cross_feat_sparse_id, self.feat_sparse_dim, "dense" ) # get cross input feature number # dense feature self.cross_num_dense_feat_per_block = [] for b in self.cross_feat_dense_id: self.cross_num_dense_feat_per_block += ( self.feat_dense_dim[b] # all dense feats in block b if self.cross_feat_dense_id[b] == [-1] else [len(self.cross_feat_dense_id[b])] ) # sparse feature self.cross_num_sparse_feat_per_block = [] for b in self.cross_feat_sparse_id: self.cross_num_sparse_feat_per_block += ( self.feat_sparse_dim[b] if self.cross_feat_sparse_id[b] == [-1] else [len(self.cross_feat_sparse_id[b])] ) self.cross_num_dense_feat = sum(self.cross_num_dense_feat_per_block) self.cross_num_sparse_feat = sum(self.cross_num_sparse_feat_per_block) # remodify feat_ids if the block is emtpy block if ( self.num_sparse_feat + self.num_dense_feat == 0 or self.cross_num_dense_feat + self.cross_num_sparse_feat == 0 ): self.feat_dense_id = {} self.feat_sparse_id = {} self.cross_feat_dense_id = {} self.cross_feat_sparse_id = {} def _build_arc(self): if ( self.num_sparse_feat + self.num_dense_feat == 0 or self.cross_num_dense_feat + self.cross_num_sparse_feat == 0 ): return self.num_input_feat = self.num_dense_feat self.num_input_feat += get_sparse_feat_dim_num( self.feat_sparse_id, self.feat_sparse_dim ) self.cross_num_input_feat = self.cross_num_dense_feat self.cross_num_input_feat += get_sparse_feat_dim_num( self.cross_feat_sparse_id, self.feat_sparse_dim ) if self.num_input_feat != self.cross_num_input_feat: # construct a embedding layer self.emb_layer = nn.Linear(self.cross_num_input_feat, self.num_input_feat) self.weight_w, self.weight_b, self.batchnorm = create_crossnet( self.num_of_layers, self.num_input_feat ) def dim_config(self, feat_dim): if ( self.num_sparse_feat + self.num_dense_feat != 0 and self.cross_num_dense_feat + self.cross_num_sparse_feat != 0 ): feat_dim["dense"][self.block_id] = [self.num_input_feat] return feat_dim def forward(self, feat_dict): if ( self.num_sparse_feat + self.num_dense_feat == 0 or self.cross_num_dense_feat + self.cross_num_sparse_feat == 0 ): return feat_dict # extract dense features based on id extracted_feat_dict = { "dense": extract_dense_feat(feat_dict["dense"], self.feat_dense_id), "sparse": feat_dict["sparse"], } cross_feat_dict = { "dense": extract_dense_feat(feat_dict["dense"], self.cross_feat_dense_id), "sparse": feat_dict["sparse"], } # concatenate two feature dicts into two vectors feat = cat_feats(extracted_feat_dict, self.feat_sparse_id) cross_feat = cat_feats(cross_feat_dict, self.cross_feat_sparse_id) # crossnet if self.num_input_feat != self.cross_num_input_feat: cross_feat = self.emb_layer(cross_feat) for i in range(self.num_of_layers): feat = cross_feat * self.weight_w[i](feat) + self.weight_b[i] + feat if self.block_option.batchnorm: feat = self.batchnorm[i](feat) feat_dict["dense"][self.block_id] = feat return feat_dict def __str__(self): return super().__str__() class FMBlock(BaseBlock): def __init__(self, block_config, feat_dim): super(FMBlock, self).__init__(block_config, feat_dim) self.block_option = self.block_config.get_fm_block() self._init_basic_block_params() self._build_arc() def _build_arc(self): if self.num_sparse_feat + self.num_dense_feat == 0: return if self.block_option.type.getType() == b_config.BlockType.DENSE: self.num_input_feat = self.num_dense_feat if self.num_sparse_feat > 0: self.num_input_feat += get_sparse_feat_dim_num( self.feat_sparse_id, self.feat_sparse_dim ) # set FM layer # first order embedding layer self.weight_w_first = nn.Parameter( torch.nn.init.normal_(torch.empty(self.num_input_feat)) ) self.weight_b_first = nn.Parameter( torch.nn.init.normal_(torch.empty(self.num_input_feat)) ) # second order embedding layer self.weight_w_second = nn.Parameter( torch.nn.init.normal_(torch.empty(self.num_input_feat)) ) self.weight_b_second = nn.Parameter( torch.nn.init.normal_(torch.empty(self.num_input_feat)) ) elif self.block_option.type.getType() == b_config.BlockType.EMB: self.emb_config = self.block_option.type.get_emb() self._refine_emb_arc() # set FM layer # first order embedding layer self.first_order_feat_emb = create_emb_converter( self.num_dense_feat, self.feat_sparse_id, self.feat_sparse_dim, 1, self.num_dense_as_sparse_feat, ) # second order embedding layer self.second_order_feat_emb = create_emb_converter( self.num_dense_feat, self.feat_sparse_id, self.feat_sparse_dim, self.emb_config.comm_embed_dim, self.num_dense_as_sparse_feat, ) else: raise ValueError("Unsupported configuration for FMBlock type.") def dim_config(self, feat_dim): if self.num_sparse_feat + self.num_dense_feat != 0: feat_dim["dense"][self.block_id] = [1] return feat_dim def forward(self, feat_dict): if self.num_sparse_feat + self.num_dense_feat == 0: return feat_dict # extract dense features based on id extracted_feat_dict = { "dense": extract_dense_feat(feat_dict["dense"], self.feat_dense_id), "sparse": feat_dict["sparse"], } # compute FM layer if self.block_option.type.getType() == b_config.BlockType.DENSE: feat = cat_feats(extracted_feat_dict, self.feat_sparse_id) feat1 = feat * self.weight_w_first + self.weight_b_first feat2 = feat * self.weight_w_second + self.weight_b_second p = self.fm_sum(feat1, feat2) elif self.block_option.type.getType() == b_config.BlockType.EMB: if self.num_dense_as_sparse_feat > 0: extracted_feat_dict["dense_as_sparse"] = ( feat_dict["dense"][0] if self.dense_as_sparse_id == [-1] else feat_dict["dense"][0][:, self.dense_as_sparse_id] ) feat1 = convert_to_emb( extracted_feat_dict, self.first_order_feat_emb, self.num_dense_feat, self.feat_sparse_id, 1, self.num_dense_as_sparse_feat, ) feat2 = convert_to_emb( extracted_feat_dict, self.second_order_feat_emb, self.num_dense_feat, self.feat_sparse_id, self.emb_config.comm_embed_dim, self.num_dense_as_sparse_feat, ) p = self.fm_sum(feat1, feat2) feat_dict["dense"][self.block_id] = p return feat_dict def fm_sum(self, feat1, feat2): if self.block_option.type.getType() == b_config.BlockType.DENSE: # first order p1 = torch.sum(feat1, 1) # second order sum_square = torch.pow(torch.sum(feat2, 1), 2) square_sum = torch.sum(torch.pow(feat2, 2), 1) p2 = (sum_square - square_sum) * 0.5 p = p1 + p2 elif self.block_option.type.getType() == b_config.BlockType.EMB: p1 = torch.sum(feat1, [1, 2]) sum_square = torch.pow(torch.sum(feat2, 1), 2) square_sum = torch.sum(torch.pow(feat2, 2), 1) p2 = (sum_square - square_sum) * 0.5 p = p1 + torch.sum(p2, 1) return p[:, None] def __str__(self): return super().__str__() class DotProcessorBlock(BaseBlock): def __init__(self, block_config, feat_dim): super(DotProcessorBlock, self).__init__(block_config, feat_dim) self.block_option = self.block_config.get_dotprocessor_block() self._init_basic_block_params() self._build_arc() def _build_arc(self): if self.num_sparse_feat + self.num_dense_feat == 0: return if self.block_option.type.getType() == b_config.BlockType.DENSE: self.num_input_feat = self.num_dense_feat if self.num_sparse_feat > 0: self.num_input_feat += get_sparse_feat_dim_num( self.feat_sparse_id, self.feat_sparse_dim ) # set DP layer self.weight_w = nn.Parameter( torch.nn.init.normal_(torch.empty(self.num_input_feat)) ) self.weight_b = nn.Parameter( torch.nn.init.normal_(torch.empty(self.num_input_feat)) ) elif self.block_option.type.getType() == b_config.BlockType.EMB: self.emb_config = self.block_option.type.get_emb() self._refine_emb_arc() self.num_input_feat = 1 + self.num_sparse_feat # set Embedding Layer self.feat_emb = create_emb_converter( self.num_dense_feat, self.feat_sparse_id, self.feat_sparse_dim, self.emb_config.comm_embed_dim, self.num_dense_as_sparse_feat, ) else: raise ValueError("Unsupported configuration for DotProcessorBlock type.") def dim_config(self, feat_dim): if self.num_sparse_feat + self.num_dense_feat != 0: feat_dim["dense"][self.block_id] = [ int(self.num_input_feat * (self.num_input_feat + 1) / 2) ] return feat_dim def forward(self, feat_dict): if self.num_sparse_feat + self.num_dense_feat == 0: return feat_dict # extract dense features based on id extracted_feat_dict = { "dense": extract_dense_feat(feat_dict["dense"], self.feat_dense_id), "sparse": feat_dict["sparse"], } # compute DP layer if self.block_option.type.getType() == b_config.BlockType.DENSE: feat = cat_feats(extracted_feat_dict, self.feat_sparse_id) feat = feat * self.weight_w + self.weight_b p = self.dp_sum(feat[:, :, None]) elif self.block_option.type.getType() == b_config.BlockType.EMB: if self.num_dense_as_sparse_feat > 0: extracted_feat_dict["dense_as_sparse"] = ( feat_dict["dense"][0] if self.dense_as_sparse_id == [-1] else feat_dict["dense"][0][:, self.dense_as_sparse_id] ) feat = convert_to_emb( extracted_feat_dict, self.feat_emb, self.num_dense_feat, self.feat_sparse_id, self.emb_config.comm_embed_dim, self.num_dense_as_sparse_feat, ) p = self.dp_sum(feat) feat_dict["dense"][self.block_id] = p return feat_dict def dp_sum(self, feat): Z = torch.matmul(feat, torch.transpose(feat, 1, 2)) Zflat = Z.view((feat.shape[0], -1)) num_ints = int(self.num_input_feat * (self.num_input_feat + 1) / 2) return Zflat[:, :num_ints] def __str__(self): return super().__str__() class CatBlock(BaseBlock): def __init__(self, block_config, feat_dim): super(CatBlock, self).__init__(block_config, feat_dim) self.block_option = self.block_config.get_cat_block() self._init_basic_block_params() self._build_arc() def _build_arc(self): if self.num_sparse_feat + self.num_dense_feat == 0: return if self.block_option.type.getType() == b_config.BlockType.DENSE: self.num_input_feat = self.num_dense_feat if self.num_sparse_feat > 0: self.num_input_feat += get_sparse_feat_dim_num( self.feat_sparse_id, self.feat_sparse_dim ) elif self.block_option.type.getType() == b_config.BlockType.EMB: self.emb_config = self.block_option.type.get_emb() self._refine_emb_arc() self.num_input_feat = 1 + self.num_sparse_feat # set Embedding Layer self.feat_emb = create_emb_converter( self.num_dense_feat, self.feat_sparse_id, self.feat_sparse_dim, self.emb_config.comm_embed_dim, self.num_dense_as_sparse_feat, ) else: raise ValueError("Unsupported configuration for CatBlock type.") def dim_config(self, feat_dim): if self.num_sparse_feat + self.num_dense_feat != 0: if self.block_option.type.getType() == b_config.BlockType.DENSE: feat_dim["dense"][self.block_id] = [self.num_input_feat] elif self.block_option.type.getType() == b_config.BlockType.EMB: feat_dim["sparse"][self.block_id] = ( [self.emb_config.comm_embed_dim] * (self.num_sparse_feat + 1) if self.num_dense_feat > 0 else [self.emb_config.comm_embed_dim] * self.num_sparse_feat ) return feat_dim def forward(self, feat_dict): if self.num_sparse_feat + self.num_dense_feat == 0: return feat_dict # extract dense features based on id extracted_feat_dict = { "dense": extract_dense_feat(feat_dict["dense"], self.feat_dense_id), "sparse": feat_dict["sparse"], } # compute Cat layer if self.block_option.type.getType() == b_config.BlockType.DENSE: p = cat_feats(extracted_feat_dict, self.feat_sparse_id) feat_dict["dense"][self.block_id] = ( p[:, None] if self.num_input_feat == 1 else p ) elif self.block_option.type.getType() == b_config.BlockType.EMB: if self.num_dense_as_sparse_feat > 0: extracted_feat_dict["dense_as_sparse"] = ( feat_dict["dense"][0] if self.dense_as_sparse_id == [-1] else feat_dict["dense"][0][:, self.dense_as_sparse_id] ) p = convert_to_emb( extracted_feat_dict, self.feat_emb, self.num_dense_feat, self.feat_sparse_id, self.emb_config.comm_embed_dim, self.num_dense_as_sparse_feat, ) feat_dict["sparse"][self.block_id] = { feat_id: p[:, feat_id] for feat_id in range(p.shape[1]) # 1 for dense } return feat_dict def __str__(self): return super().__str__() class CINBlock(BaseBlock): """Compressed Interaction Network used in xDeepFM. https://arxiv.org/pdf/1803.05170.pdf. """ def __init__(self, block_config, feat_dim): super(CINBlock, self).__init__(block_config, feat_dim) self.block_option = self.block_config.get_cin_block() self.layer_sizes = self.block_option.arc self._init_basic_block_params() self._build_arc() def _build_arc(self): if self.num_sparse_feat + self.num_dense_feat == 0: return self.emb_config = self.block_option.emb_config self._refine_emb_arc() self.field_nums = [self.num_sparse_feat + 1] for i, size in enumerate(self.layer_sizes): if self.block_option.split_half: if i != len(self.layer_sizes) - 1 and size % 2 > 0: raise ValueError( "layer_size must be even number except for the last layer when split_half=True" ) self.field_nums.append(size // 2) else: self.field_nums.append(size) # set embeding layers self.feat_emb = create_emb_converter( self.num_dense_feat, self.feat_sparse_id, self.feat_sparse_dim, self.emb_config.comm_embed_dim, self.num_dense_as_sparse_feat, ) # set CIN convolutional layers self.conv_layers, self.bias_layers, self.activation_layers = create_cin( self.layer_sizes, self.field_nums ) def dim_config(self, feat_dim): if self.num_sparse_feat + self.num_dense_feat != 0: feat_dim["dense"][self.block_id] = ( [sum(self.layer_sizes[:-1]) // 2 + self.layer_sizes[-1]] if self.block_option.split_half else [sum(self.layer_sizes)] ) return feat_dim def forward(self, feat_dict): if self.num_sparse_feat + self.num_dense_feat == 0: return feat_dict # extract dense features based on id extracted_feat_dict = { "dense": extract_dense_feat(feat_dict["dense"], self.feat_dense_id), "sparse": feat_dict["sparse"], } if self.num_dense_as_sparse_feat > 0: extracted_feat_dict["dense_as_sparse"] = ( feat_dict["dense"][0] if self.dense_as_sparse_id == [-1] else feat_dict["dense"][0][:, self.dense_as_sparse_id] ) # get feature matrix X0 feat = convert_to_emb( extracted_feat_dict, self.feat_emb, self.num_dense_feat, self.feat_sparse_id, self.emb_config.comm_embed_dim, self.num_dense_as_sparse_feat, ) if feat.dim() != 3: raise ValueError( "Unexpected inputs dimensions %d, expect to be 3 dimensions" % (feat.dim()) ) p = self.cin(feat) feat_dict["dense"][self.block_id] = p return feat_dict def cin(self, feat): dim = feat.shape[-1] p = [] hidden_nn_layers = [feat] cross_feats = torch.split(hidden_nn_layers[0], dim * [1], 2) for l_idx, layer_size in enumerate(self.layer_sizes): curr_feats = torch.split(hidden_nn_layers[-1], dim * [1], 2) dot_result_m = torch.stack( [ torch.bmm(curr_feats[t_idx], t.transpose(1, 2)) for t_idx, t in enumerate(cross_feats) ] ) dot_result_m = dot_result_m.view( -1, 1, dot_result_m.shape[2], dot_result_m.shape[3] ) # apply conv, add bias, activation curr_out = torch.squeeze(self.conv_layers[l_idx](dot_result_m)) curr_out = curr_out.view(dim, -1, layer_size) # (dim * batch_size * Hk) curr_out = curr_out + self.bias_layers[l_idx] curr_out = self.activation_layers[l_idx](curr_out) curr_out = curr_out.permute(1, 2, 0) if self.block_option.split_half: if l_idx != len(self.layer_sizes) - 1: next_hidden, direct_connect = torch.split( curr_out, 2 * [layer_size // 2], 1 ) else: direct_connect = curr_out next_hidden = 0 else: direct_connect = curr_out next_hidden = curr_out p.append(direct_connect) hidden_nn_layers.append(next_hidden) return torch.cat(p, 1).sum(-1) def __str__(self): return super().__str__() class AttentionBlock(BaseBlock): def __init__(self, block_config, feat_dim): super(AttentionBlock, self).__init__(block_config, feat_dim) self.block_option = self.block_config.get_attention_block() self._init_basic_block_params() self._build_arc() def _build_arc(self): if self.num_sparse_feat + self.num_dense_feat == 0: return self.emb_config = self.block_option.emb_config self.att_embed_dim = self.block_option.att_embed_dim self.num_of_heads = self.block_option.num_of_heads self.num_of_layers = self.block_option.num_of_layers self.use_res = self.block_option.use_res self.use_batchnorm = self.block_option.batchnorm self._dropout_p = self.block_option.dropout_prob self._refine_emb_arc() # set embeding layers self.feat_emb = create_emb_converter( self.num_dense_feat, self.feat_sparse_id, self.feat_sparse_dim, self.emb_config.comm_embed_dim, self.num_dense_as_sparse_feat, ) # set attention params self.query_layers, self.key_layers, self.value_layers, self.res_layers, self.bn_layers = create_transformer( self.emb_config.comm_embed_dim, self.att_embed_dim, self.num_of_heads, self.num_of_layers, self.use_res, self.use_batchnorm, ) def dim_config(self, feat_dim): if self.num_sparse_feat + self.num_dense_feat != 0: if self.num_dense_feat > 0: feat_dim["sparse"][self.block_id] = [ self.att_embed_dim * self.num_of_heads ] * (self.num_sparse_feat + 1) else: feat_dim["sparse"][self.block_id] = [ self.att_embed_dim * self.num_of_heads ] * self.num_sparse_feat return feat_dim def forward(self, feat_dict): if self.num_sparse_feat + self.num_dense_feat == 0: return feat_dict # extract dense features based on id extracted_feat_dict = { "dense": extract_dense_feat(feat_dict["dense"], self.feat_dense_id), "sparse": feat_dict["sparse"], } if self.num_dense_as_sparse_feat > 0: extracted_feat_dict["dense_as_sparse"] = ( feat_dict["dense"][0] if self.dense_as_sparse_id == [-1] else feat_dict["dense"][0][:, self.dense_as_sparse_id] ) # get feature matrix X0 feat = convert_to_emb( extracted_feat_dict, self.feat_emb, self.num_dense_feat, self.feat_sparse_id, self.emb_config.comm_embed_dim, self.num_dense_as_sparse_feat, ) if feat.dim() != 3: raise ValueError( "Unexpected inputs dimensions %d, expect to be 3 dimensions" % (feat.dim()) ) p = self.transformer(feat) feat_dict["sparse"][self.block_id] = { feat_id: p[:, feat_id] for feat_id in range(p.shape[1]) # 1 for dense } return feat_dict def transformer(self, feat): attention = feat for l in range(self.num_of_layers): Q = F.relu(self.query_layers[l](attention)) K = F.relu(self.key_layers[l](attention)) V = F.relu(self.value_layers[l](attention)) if self.use_res: V_res = F.relu(self.res_layers[l](attention)) # Split and concat Q_ = torch.cat(Q.split(split_size=self.att_embed_dim, dim=2), dim=0) K_ = torch.cat(K.split(split_size=self.att_embed_dim, dim=2), dim=0) V_ = torch.cat(V.split(split_size=self.att_embed_dim, dim=2), dim=0) # calculate QK^T weights = torch.matmul(Q_, K_.transpose(1, 2)) # normalize with sqrt(dk) weights = weights / np.sqrt(self.att_embed_dim) # put it to softmax weights = F.softmax(weights, dim=-1) # apply dropout weights = F.dropout(weights, self._dropout_p) # multiply it with V attention = torch.matmul(weights, V_) # convert attention back to its input original size restore_chunk_size = int(attention.size(0) / self.num_of_heads) attention = torch.cat( attention.split(split_size=restore_chunk_size, dim=0), dim=2 ) # residual connection if self.use_res: attention += V_res # TODO: do we need this? attention = F.relu(attention) # apply batch normalization if self.use_batchnorm: attention = self.bn_layers[l](attention.transpose(1, 2)).transpose(1, 2) return attention def __str__(self): return super().__str__()
AutoCTR-main
nasrec/blocks.py
# # Autogenerated by Thrift # # DO NOT EDIT UNLESS YOU ARE SURE THAT YOU KNOW WHAT YOU ARE DOING # @generated #
AutoCTR-main
gen-py/__init__.py
# # Autogenerated by Thrift # # DO NOT EDIT UNLESS YOU ARE SURE THAT YOU KNOW WHAT YOU ARE DOING # @generated # from __future__ import absolute_import import six from thrift.util.Recursive import fix_spec from thrift.Thrift import * from thrift.protocol.TProtocol import TProtocolException import block_config.ttypes from .ttypes import *
AutoCTR-main
gen-py/config/constants.py
# # Autogenerated by Thrift # # DO NOT EDIT UNLESS YOU ARE SURE THAT YOU KNOW WHAT YOU ARE DOING # @generated # __all__ = ['ttypes', 'constants']
AutoCTR-main
gen-py/config/__init__.py
# # Autogenerated by Thrift # # DO NOT EDIT UNLESS YOU ARE SURE THAT YOU KNOW WHAT YOU ARE DOING # @generated # from __future__ import absolute_import import six from thrift.util.Recursive import fix_spec from thrift.Thrift import * from thrift.protocol.TProtocol import TProtocolException import block_config.ttypes import pprint import warnings from thrift import Thrift from thrift.transport import TTransport from thrift.protocol import TBinaryProtocol from thrift.protocol import TCompactProtocol from thrift.protocol import THeaderProtocol fastproto = None if not '__pypy__' in sys.builtin_module_names: try: from thrift.protocol import fastproto except ImportError: pass all_structs = [] UTF8STRINGS = bool(0) or sys.version_info.major >= 3 __all__ = ['UTF8STRINGS', 'MacroSearchSpaceType', 'DataFromFileConfig', 'DataConfig', 'MicroClose', 'MicroMLPConfig', 'MicroCINConfig', 'MicroAttentionConfig', 'MicroSearchSpaceType', 'InputDenseAsSparse', 'FeatureProcessingType', 'NASRecNetConfig', 'RandomSearcherConfig', 'EvolutionarySearcherConfig', 'SearcherConfig', 'ModelConfig', 'SGDOptimConfig', 'AdagradOptimConfig', 'SparseAdamOptimConfig', 'AdamOptimConfig', 'RMSpropOptimConfig', 'OptimConfig', 'SumPooling', 'AvgPooling', 'PoolingConfig', 'SparseFeatureItem', 'SparseFeatureConfig', 'DenseFeatureConfig', 'FeatureConfig', 'BCEWithLogitsLoss', 'BCELoss', 'MSELoss', 'LossConfig', 'LoggingConfig', 'TrainConfig', 'EvalConfig', 'CheckpointConfig', 'KoskiReaderConfig', 'PerformanceConfig'] class MacroSearchSpaceType: INPUT_DIFF = 1 INPUT_GROUP = 2 INPUT_DIFF_PRIOR = 3 INPUT_ELASTIC_PRIOR = 4 _VALUES_TO_NAMES = { 1: "INPUT_DIFF", 2: "INPUT_GROUP", 3: "INPUT_DIFF_PRIOR", 4: "INPUT_ELASTIC_PRIOR", } _NAMES_TO_VALUES = { "INPUT_DIFF": 1, "INPUT_GROUP": 2, "INPUT_DIFF_PRIOR": 3, "INPUT_ELASTIC_PRIOR": 4, } class DataFromFileConfig: """ Attributes: - data_file - batch_size - num_batches - splits - num_samples_meta """ thrift_spec = None thrift_field_annotations = None thrift_struct_annotations = None __init__ = None @staticmethod def isUnion(): return False def read(self, iprot): if (isinstance(iprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0) self.checkRequired() return if (isinstance(iprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2) self.checkRequired() return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRING: self.data_file = iprot.readString().decode('utf-8') if UTF8STRINGS else iprot.readString() else: iprot.skip(ftype) elif fid == 2: if ftype == TType.I32: self.batch_size = iprot.readI32() else: iprot.skip(ftype) elif fid == 3: if ftype == TType.I32: self.num_batches = iprot.readI32() else: iprot.skip(ftype) elif fid == 4: if ftype == TType.LIST: self.splits = [] (_etype3, _size0) = iprot.readListBegin() if _size0 >= 0: for _i4 in six.moves.range(_size0): _elem5 = iprot.readFloat() self.splits.append(_elem5) else: while iprot.peekList(): _elem6 = iprot.readFloat() self.splits.append(_elem6) iprot.readListEnd() else: iprot.skip(ftype) elif fid == 5: if ftype == TType.I32: self.num_samples_meta = iprot.readI32() else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() self.checkRequired() def checkRequired(self): return def write(self, oprot): if (isinstance(oprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0)) return if (isinstance(oprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2)) return oprot.writeStructBegin('DataFromFileConfig') if self.data_file != None: oprot.writeFieldBegin('data_file', TType.STRING, 1) oprot.writeString(self.data_file.encode('utf-8')) if UTF8STRINGS and not isinstance(self.data_file, bytes) else oprot.writeString(self.data_file) oprot.writeFieldEnd() if self.batch_size != None: oprot.writeFieldBegin('batch_size', TType.I32, 2) oprot.writeI32(self.batch_size) oprot.writeFieldEnd() if self.num_batches != None: oprot.writeFieldBegin('num_batches', TType.I32, 3) oprot.writeI32(self.num_batches) oprot.writeFieldEnd() if self.splits != None: oprot.writeFieldBegin('splits', TType.LIST, 4) oprot.writeListBegin(TType.FLOAT, len(self.splits)) for iter7 in self.splits: oprot.writeFloat(iter7) oprot.writeListEnd() oprot.writeFieldEnd() if self.num_samples_meta != None: oprot.writeFieldBegin('num_samples_meta', TType.I32, 5) oprot.writeI32(self.num_samples_meta) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def __repr__(self): L = [] padding = ' ' * 4 if self.data_file is not None: value = pprint.pformat(self.data_file, indent=0) value = padding.join(value.splitlines(True)) L.append(' data_file=%s' % (value)) if self.batch_size is not None: value = pprint.pformat(self.batch_size, indent=0) value = padding.join(value.splitlines(True)) L.append(' batch_size=%s' % (value)) if self.num_batches is not None: value = pprint.pformat(self.num_batches, indent=0) value = padding.join(value.splitlines(True)) L.append(' num_batches=%s' % (value)) if self.splits is not None: value = pprint.pformat(self.splits, indent=0) value = padding.join(value.splitlines(True)) L.append(' splits=%s' % (value)) if self.num_samples_meta is not None: value = pprint.pformat(self.num_samples_meta, indent=0) value = padding.join(value.splitlines(True)) L.append(' num_samples_meta=%s' % (value)) return "%s(%s)" % (self.__class__.__name__, "\n" + ",\n".join(L) if L else '') def __eq__(self, other): if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) # Override the __hash__ function for Python3 - t10434117 if not six.PY2: __hash__ = object.__hash__ class DataConfig(object): """ Attributes: - from_file """ thrift_spec = None __init__ = None __EMPTY__ = 0 FROM_FILE = 1 @staticmethod def isUnion(): return True def get_from_file(self): assert self.field == 1 return self.value def set_from_file(self, value): self.field = 1 self.value = value def getType(self): return self.field def __repr__(self): value = pprint.pformat(self.value) member = '' if self.field == 1: padding = ' ' * 10 value = padding.join(value.splitlines(True)) member = '\n %s=%s' % ('from_file', value) return "%s(%s)" % (self.__class__.__name__, member) def read(self, iprot): self.field = 0 self.value = None if (isinstance(iprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, True], utf8strings=UTF8STRINGS, protoid=0) self.checkRequired() return if (isinstance(iprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, True], utf8strings=UTF8STRINGS, protoid=2) self.checkRequired() return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRUCT: from_file = DataFromFileConfig() from_file.read(iprot) assert self.field == 0 and self.value is None self.set_from_file(from_file) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if (isinstance(oprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, True], utf8strings=UTF8STRINGS, protoid=0)) return if (isinstance(oprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, True], utf8strings=UTF8STRINGS, protoid=2)) return oprot.writeUnionBegin('DataConfig') if self.field == 1: oprot.writeFieldBegin('from_file', TType.STRUCT, 1) from_file = self.value from_file.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeUnionEnd() def __eq__(self, other): if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class MicroClose: thrift_spec = None thrift_field_annotations = None thrift_struct_annotations = None @staticmethod def isUnion(): return False def read(self, iprot): if (isinstance(iprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0) self.checkRequired() return if (isinstance(iprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2) self.checkRequired() return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() self.checkRequired() def checkRequired(self): return def write(self, oprot): if (isinstance(oprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0)) return if (isinstance(oprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2)) return oprot.writeStructBegin('MicroClose') oprot.writeFieldStop() oprot.writeStructEnd() def __repr__(self): L = [] padding = ' ' * 4 return "%s(%s)" % (self.__class__.__name__, "\n" + ",\n".join(L) if L else '') def __eq__(self, other): if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) # Override the __hash__ function for Python3 - t10434117 if not six.PY2: __hash__ = object.__hash__ class MicroMLPConfig: """ Attributes: - arc """ thrift_spec = None thrift_field_annotations = None thrift_struct_annotations = None __init__ = None @staticmethod def isUnion(): return False def read(self, iprot): if (isinstance(iprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0) self.checkRequired() return if (isinstance(iprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2) self.checkRequired() return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.LIST: self.arc = [] (_etype11, _size8) = iprot.readListBegin() if _size8 >= 0: for _i12 in six.moves.range(_size8): _elem13 = iprot.readI32() self.arc.append(_elem13) else: while iprot.peekList(): _elem14 = iprot.readI32() self.arc.append(_elem14) iprot.readListEnd() else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() self.checkRequired() def checkRequired(self): return def write(self, oprot): if (isinstance(oprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0)) return if (isinstance(oprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2)) return oprot.writeStructBegin('MicroMLPConfig') if self.arc != None: oprot.writeFieldBegin('arc', TType.LIST, 1) oprot.writeListBegin(TType.I32, len(self.arc)) for iter15 in self.arc: oprot.writeI32(iter15) oprot.writeListEnd() oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def __repr__(self): L = [] padding = ' ' * 4 if self.arc is not None: value = pprint.pformat(self.arc, indent=0) value = padding.join(value.splitlines(True)) L.append(' arc=%s' % (value)) return "%s(%s)" % (self.__class__.__name__, "\n" + ",\n".join(L) if L else '') def __eq__(self, other): if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) # Override the __hash__ function for Python3 - t10434117 if not six.PY2: __hash__ = object.__hash__ class MicroCINConfig: """ Attributes: - arc - num_of_layers """ thrift_spec = None thrift_field_annotations = None thrift_struct_annotations = None __init__ = None @staticmethod def isUnion(): return False def read(self, iprot): if (isinstance(iprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0) self.checkRequired() return if (isinstance(iprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2) self.checkRequired() return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.LIST: self.arc = [] (_etype19, _size16) = iprot.readListBegin() if _size16 >= 0: for _i20 in six.moves.range(_size16): _elem21 = iprot.readI32() self.arc.append(_elem21) else: while iprot.peekList(): _elem22 = iprot.readI32() self.arc.append(_elem22) iprot.readListEnd() else: iprot.skip(ftype) elif fid == 2: if ftype == TType.LIST: self.num_of_layers = [] (_etype26, _size23) = iprot.readListBegin() if _size23 >= 0: for _i27 in six.moves.range(_size23): _elem28 = iprot.readI32() self.num_of_layers.append(_elem28) else: while iprot.peekList(): _elem29 = iprot.readI32() self.num_of_layers.append(_elem29) iprot.readListEnd() else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() self.checkRequired() def checkRequired(self): return def write(self, oprot): if (isinstance(oprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0)) return if (isinstance(oprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2)) return oprot.writeStructBegin('MicroCINConfig') if self.arc != None: oprot.writeFieldBegin('arc', TType.LIST, 1) oprot.writeListBegin(TType.I32, len(self.arc)) for iter30 in self.arc: oprot.writeI32(iter30) oprot.writeListEnd() oprot.writeFieldEnd() if self.num_of_layers != None: oprot.writeFieldBegin('num_of_layers', TType.LIST, 2) oprot.writeListBegin(TType.I32, len(self.num_of_layers)) for iter31 in self.num_of_layers: oprot.writeI32(iter31) oprot.writeListEnd() oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def __repr__(self): L = [] padding = ' ' * 4 if self.arc is not None: value = pprint.pformat(self.arc, indent=0) value = padding.join(value.splitlines(True)) L.append(' arc=%s' % (value)) if self.num_of_layers is not None: value = pprint.pformat(self.num_of_layers, indent=0) value = padding.join(value.splitlines(True)) L.append(' num_of_layers=%s' % (value)) return "%s(%s)" % (self.__class__.__name__, "\n" + ",\n".join(L) if L else '') def __eq__(self, other): if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) # Override the __hash__ function for Python3 - t10434117 if not six.PY2: __hash__ = object.__hash__ class MicroAttentionConfig: """ Attributes: - num_of_layers - num_of_heads - att_embed_dim - dropout_prob """ thrift_spec = None thrift_field_annotations = None thrift_struct_annotations = None __init__ = None @staticmethod def isUnion(): return False def read(self, iprot): if (isinstance(iprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0) self.checkRequired() return if (isinstance(iprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2) self.checkRequired() return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.LIST: self.num_of_layers = [] (_etype35, _size32) = iprot.readListBegin() if _size32 >= 0: for _i36 in six.moves.range(_size32): _elem37 = iprot.readI32() self.num_of_layers.append(_elem37) else: while iprot.peekList(): _elem38 = iprot.readI32() self.num_of_layers.append(_elem38) iprot.readListEnd() else: iprot.skip(ftype) elif fid == 2: if ftype == TType.LIST: self.num_of_heads = [] (_etype42, _size39) = iprot.readListBegin() if _size39 >= 0: for _i43 in six.moves.range(_size39): _elem44 = iprot.readI32() self.num_of_heads.append(_elem44) else: while iprot.peekList(): _elem45 = iprot.readI32() self.num_of_heads.append(_elem45) iprot.readListEnd() else: iprot.skip(ftype) elif fid == 3: if ftype == TType.LIST: self.att_embed_dim = [] (_etype49, _size46) = iprot.readListBegin() if _size46 >= 0: for _i50 in six.moves.range(_size46): _elem51 = iprot.readI32() self.att_embed_dim.append(_elem51) else: while iprot.peekList(): _elem52 = iprot.readI32() self.att_embed_dim.append(_elem52) iprot.readListEnd() else: iprot.skip(ftype) elif fid == 4: if ftype == TType.LIST: self.dropout_prob = [] (_etype56, _size53) = iprot.readListBegin() if _size53 >= 0: for _i57 in six.moves.range(_size53): _elem58 = iprot.readFloat() self.dropout_prob.append(_elem58) else: while iprot.peekList(): _elem59 = iprot.readFloat() self.dropout_prob.append(_elem59) iprot.readListEnd() else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() self.checkRequired() def checkRequired(self): return def write(self, oprot): if (isinstance(oprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0)) return if (isinstance(oprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2)) return oprot.writeStructBegin('MicroAttentionConfig') if self.num_of_layers != None: oprot.writeFieldBegin('num_of_layers', TType.LIST, 1) oprot.writeListBegin(TType.I32, len(self.num_of_layers)) for iter60 in self.num_of_layers: oprot.writeI32(iter60) oprot.writeListEnd() oprot.writeFieldEnd() if self.num_of_heads != None: oprot.writeFieldBegin('num_of_heads', TType.LIST, 2) oprot.writeListBegin(TType.I32, len(self.num_of_heads)) for iter61 in self.num_of_heads: oprot.writeI32(iter61) oprot.writeListEnd() oprot.writeFieldEnd() if self.att_embed_dim != None: oprot.writeFieldBegin('att_embed_dim', TType.LIST, 3) oprot.writeListBegin(TType.I32, len(self.att_embed_dim)) for iter62 in self.att_embed_dim: oprot.writeI32(iter62) oprot.writeListEnd() oprot.writeFieldEnd() if self.dropout_prob != None: oprot.writeFieldBegin('dropout_prob', TType.LIST, 4) oprot.writeListBegin(TType.FLOAT, len(self.dropout_prob)) for iter63 in self.dropout_prob: oprot.writeFloat(iter63) oprot.writeListEnd() oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def __repr__(self): L = [] padding = ' ' * 4 if self.num_of_layers is not None: value = pprint.pformat(self.num_of_layers, indent=0) value = padding.join(value.splitlines(True)) L.append(' num_of_layers=%s' % (value)) if self.num_of_heads is not None: value = pprint.pformat(self.num_of_heads, indent=0) value = padding.join(value.splitlines(True)) L.append(' num_of_heads=%s' % (value)) if self.att_embed_dim is not None: value = pprint.pformat(self.att_embed_dim, indent=0) value = padding.join(value.splitlines(True)) L.append(' att_embed_dim=%s' % (value)) if self.dropout_prob is not None: value = pprint.pformat(self.dropout_prob, indent=0) value = padding.join(value.splitlines(True)) L.append(' dropout_prob=%s' % (value)) return "%s(%s)" % (self.__class__.__name__, "\n" + ",\n".join(L) if L else '') def __eq__(self, other): if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) # Override the __hash__ function for Python3 - t10434117 if not six.PY2: __hash__ = object.__hash__ class MicroSearchSpaceType(object): """ Attributes: - close - micro_mlp - micro_cin - micro_attention """ thrift_spec = None __init__ = None __EMPTY__ = 0 CLOSE = 1 MICRO_MLP = 2 MICRO_CIN = 3 MICRO_ATTENTION = 4 @staticmethod def isUnion(): return True def get_close(self): assert self.field == 1 return self.value def get_micro_mlp(self): assert self.field == 2 return self.value def get_micro_cin(self): assert self.field == 3 return self.value def get_micro_attention(self): assert self.field == 4 return self.value def set_close(self, value): self.field = 1 self.value = value def set_micro_mlp(self, value): self.field = 2 self.value = value def set_micro_cin(self, value): self.field = 3 self.value = value def set_micro_attention(self, value): self.field = 4 self.value = value def getType(self): return self.field def __repr__(self): value = pprint.pformat(self.value) member = '' if self.field == 1: padding = ' ' * 6 value = padding.join(value.splitlines(True)) member = '\n %s=%s' % ('close', value) if self.field == 2: padding = ' ' * 10 value = padding.join(value.splitlines(True)) member = '\n %s=%s' % ('micro_mlp', value) if self.field == 3: padding = ' ' * 10 value = padding.join(value.splitlines(True)) member = '\n %s=%s' % ('micro_cin', value) if self.field == 4: padding = ' ' * 16 value = padding.join(value.splitlines(True)) member = '\n %s=%s' % ('micro_attention', value) return "%s(%s)" % (self.__class__.__name__, member) def read(self, iprot): self.field = 0 self.value = None if (isinstance(iprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, True], utf8strings=UTF8STRINGS, protoid=0) self.checkRequired() return if (isinstance(iprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, True], utf8strings=UTF8STRINGS, protoid=2) self.checkRequired() return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRUCT: close = MicroClose() close.read(iprot) assert self.field == 0 and self.value is None self.set_close(close) else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRUCT: micro_mlp = MicroMLPConfig() micro_mlp.read(iprot) assert self.field == 0 and self.value is None self.set_micro_mlp(micro_mlp) else: iprot.skip(ftype) elif fid == 3: if ftype == TType.STRUCT: micro_cin = MicroCINConfig() micro_cin.read(iprot) assert self.field == 0 and self.value is None self.set_micro_cin(micro_cin) else: iprot.skip(ftype) elif fid == 4: if ftype == TType.STRUCT: micro_attention = MicroAttentionConfig() micro_attention.read(iprot) assert self.field == 0 and self.value is None self.set_micro_attention(micro_attention) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if (isinstance(oprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, True], utf8strings=UTF8STRINGS, protoid=0)) return if (isinstance(oprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, True], utf8strings=UTF8STRINGS, protoid=2)) return oprot.writeUnionBegin('MicroSearchSpaceType') if self.field == 1: oprot.writeFieldBegin('close', TType.STRUCT, 1) close = self.value close.write(oprot) oprot.writeFieldEnd() if self.field == 2: oprot.writeFieldBegin('micro_mlp', TType.STRUCT, 2) micro_mlp = self.value micro_mlp.write(oprot) oprot.writeFieldEnd() if self.field == 3: oprot.writeFieldBegin('micro_cin', TType.STRUCT, 3) micro_cin = self.value micro_cin.write(oprot) oprot.writeFieldEnd() if self.field == 4: oprot.writeFieldBegin('micro_attention', TType.STRUCT, 4) micro_attention = self.value micro_attention.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeUnionEnd() def __eq__(self, other): if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class InputDenseAsSparse: thrift_spec = None thrift_field_annotations = None thrift_struct_annotations = None @staticmethod def isUnion(): return False def read(self, iprot): if (isinstance(iprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0) self.checkRequired() return if (isinstance(iprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2) self.checkRequired() return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() self.checkRequired() def checkRequired(self): return def write(self, oprot): if (isinstance(oprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0)) return if (isinstance(oprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2)) return oprot.writeStructBegin('InputDenseAsSparse') oprot.writeFieldStop() oprot.writeStructEnd() def __repr__(self): L = [] padding = ' ' * 4 return "%s(%s)" % (self.__class__.__name__, "\n" + ",\n".join(L) if L else '') def __eq__(self, other): if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) # Override the __hash__ function for Python3 - t10434117 if not six.PY2: __hash__ = object.__hash__ class FeatureProcessingType(object): """ Attributes: - idasp """ thrift_spec = None __init__ = None __EMPTY__ = 0 IDASP = 1 @staticmethod def isUnion(): return True def get_idasp(self): assert self.field == 1 return self.value def set_idasp(self, value): self.field = 1 self.value = value def getType(self): return self.field def __repr__(self): value = pprint.pformat(self.value) member = '' if self.field == 1: padding = ' ' * 6 value = padding.join(value.splitlines(True)) member = '\n %s=%s' % ('idasp', value) return "%s(%s)" % (self.__class__.__name__, member) def read(self, iprot): self.field = 0 self.value = None if (isinstance(iprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, True], utf8strings=UTF8STRINGS, protoid=0) self.checkRequired() return if (isinstance(iprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, True], utf8strings=UTF8STRINGS, protoid=2) self.checkRequired() return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRUCT: idasp = InputDenseAsSparse() idasp.read(iprot) assert self.field == 0 and self.value is None self.set_idasp(idasp) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if (isinstance(oprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, True], utf8strings=UTF8STRINGS, protoid=0)) return if (isinstance(oprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, True], utf8strings=UTF8STRINGS, protoid=2)) return oprot.writeUnionBegin('FeatureProcessingType') if self.field == 1: oprot.writeFieldBegin('idasp', TType.STRUCT, 1) idasp = self.value idasp.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeUnionEnd() def __eq__(self, other): if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class NASRecNetConfig: """ Attributes: - block_configs """ thrift_spec = None thrift_field_annotations = None thrift_struct_annotations = None __init__ = None @staticmethod def isUnion(): return False def read(self, iprot): if (isinstance(iprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0) self.checkRequired() return if (isinstance(iprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2) self.checkRequired() return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.LIST: self.block_configs = [] (_etype67, _size64) = iprot.readListBegin() if _size64 >= 0: for _i68 in six.moves.range(_size64): _elem69 = block_config.ttypes.BlockConfig() _elem69.read(iprot) self.block_configs.append(_elem69) else: while iprot.peekList(): _elem70 = block_config.ttypes.BlockConfig() _elem70.read(iprot) self.block_configs.append(_elem70) iprot.readListEnd() else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() self.checkRequired() def checkRequired(self): return def write(self, oprot): if (isinstance(oprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0)) return if (isinstance(oprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2)) return oprot.writeStructBegin('NASRecNetConfig') if self.block_configs != None: oprot.writeFieldBegin('block_configs', TType.LIST, 1) oprot.writeListBegin(TType.STRUCT, len(self.block_configs)) for iter71 in self.block_configs: iter71.write(oprot) oprot.writeListEnd() oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def __repr__(self): L = [] padding = ' ' * 4 if self.block_configs is not None: value = pprint.pformat(self.block_configs, indent=0) value = padding.join(value.splitlines(True)) L.append(' block_configs=%s' % (value)) return "%s(%s)" % (self.__class__.__name__, "\n" + ",\n".join(L) if L else '') def __eq__(self, other): if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) # Override the __hash__ function for Python3 - t10434117 if not six.PY2: __hash__ = object.__hash__ class RandomSearcherConfig: """ Attributes: - max_num_block - block_types - macro_space_type - micro_space_types - feature_processing_type """ thrift_spec = None thrift_field_annotations = None thrift_struct_annotations = None __init__ = None @staticmethod def isUnion(): return False def read(self, iprot): if (isinstance(iprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0) self.checkRequired() return if (isinstance(iprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2) self.checkRequired() return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.I32: self.max_num_block = iprot.readI32() else: iprot.skip(ftype) elif fid == 2: if ftype == TType.LIST: self.block_types = [] (_etype75, _size72) = iprot.readListBegin() if _size72 >= 0: for _i76 in six.moves.range(_size72): _elem77 = iprot.readI32() self.block_types.append(_elem77) else: while iprot.peekList(): _elem78 = iprot.readI32() self.block_types.append(_elem78) iprot.readListEnd() else: iprot.skip(ftype) elif fid == 3: if ftype == TType.I32: self.macro_space_type = iprot.readI32() else: iprot.skip(ftype) elif fid == 5: if ftype == TType.LIST: self.micro_space_types = [] (_etype82, _size79) = iprot.readListBegin() if _size79 >= 0: for _i83 in six.moves.range(_size79): _elem84 = MicroSearchSpaceType() _elem84.read(iprot) self.micro_space_types.append(_elem84) else: while iprot.peekList(): _elem85 = MicroSearchSpaceType() _elem85.read(iprot) self.micro_space_types.append(_elem85) iprot.readListEnd() else: iprot.skip(ftype) elif fid == 6: if ftype == TType.LIST: self.feature_processing_type = [] (_etype89, _size86) = iprot.readListBegin() if _size86 >= 0: for _i90 in six.moves.range(_size86): _elem91 = FeatureProcessingType() _elem91.read(iprot) self.feature_processing_type.append(_elem91) else: while iprot.peekList(): _elem92 = FeatureProcessingType() _elem92.read(iprot) self.feature_processing_type.append(_elem92) iprot.readListEnd() else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() self.checkRequired() def checkRequired(self): return def write(self, oprot): if (isinstance(oprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0)) return if (isinstance(oprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2)) return oprot.writeStructBegin('RandomSearcherConfig') if self.max_num_block != None: oprot.writeFieldBegin('max_num_block', TType.I32, 1) oprot.writeI32(self.max_num_block) oprot.writeFieldEnd() if self.block_types != None: oprot.writeFieldBegin('block_types', TType.LIST, 2) oprot.writeListBegin(TType.I32, len(self.block_types)) for iter93 in self.block_types: oprot.writeI32(iter93) oprot.writeListEnd() oprot.writeFieldEnd() if self.macro_space_type != None: oprot.writeFieldBegin('macro_space_type', TType.I32, 3) oprot.writeI32(self.macro_space_type) oprot.writeFieldEnd() if self.micro_space_types != None: oprot.writeFieldBegin('micro_space_types', TType.LIST, 5) oprot.writeListBegin(TType.STRUCT, len(self.micro_space_types)) for iter94 in self.micro_space_types: iter94.write(oprot) oprot.writeListEnd() oprot.writeFieldEnd() if self.feature_processing_type != None: oprot.writeFieldBegin('feature_processing_type', TType.LIST, 6) oprot.writeListBegin(TType.STRUCT, len(self.feature_processing_type)) for iter95 in self.feature_processing_type: iter95.write(oprot) oprot.writeListEnd() oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def __repr__(self): L = [] padding = ' ' * 4 if self.max_num_block is not None: value = pprint.pformat(self.max_num_block, indent=0) value = padding.join(value.splitlines(True)) L.append(' max_num_block=%s' % (value)) if self.block_types is not None: value = pprint.pformat(self.block_types, indent=0) value = padding.join(value.splitlines(True)) L.append(' block_types=%s' % (value)) if self.macro_space_type is not None: value = pprint.pformat(self.macro_space_type, indent=0) value = padding.join(value.splitlines(True)) L.append(' macro_space_type=%s' % (value)) if self.micro_space_types is not None: value = pprint.pformat(self.micro_space_types, indent=0) value = padding.join(value.splitlines(True)) L.append(' micro_space_types=%s' % (value)) if self.feature_processing_type is not None: value = pprint.pformat(self.feature_processing_type, indent=0) value = padding.join(value.splitlines(True)) L.append(' feature_processing_type=%s' % (value)) return "%s(%s)" % (self.__class__.__name__, "\n" + ",\n".join(L) if L else '') def __eq__(self, other): if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) # Override the __hash__ function for Python3 - t10434117 if not six.PY2: __hash__ = object.__hash__ class EvolutionarySearcherConfig: """ Attributes: - max_num_block - block_types - population_size - candidate_size - macro_space_type - micro_space_types - feature_processing_type """ thrift_spec = None thrift_field_annotations = None thrift_struct_annotations = None __init__ = None @staticmethod def isUnion(): return False def read(self, iprot): if (isinstance(iprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0) self.checkRequired() return if (isinstance(iprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2) self.checkRequired() return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.I32: self.max_num_block = iprot.readI32() else: iprot.skip(ftype) elif fid == 2: if ftype == TType.LIST: self.block_types = [] (_etype99, _size96) = iprot.readListBegin() if _size96 >= 0: for _i100 in six.moves.range(_size96): _elem101 = iprot.readI32() self.block_types.append(_elem101) else: while iprot.peekList(): _elem102 = iprot.readI32() self.block_types.append(_elem102) iprot.readListEnd() else: iprot.skip(ftype) elif fid == 3: if ftype == TType.I32: self.population_size = iprot.readI32() else: iprot.skip(ftype) elif fid == 4: if ftype == TType.I32: self.candidate_size = iprot.readI32() else: iprot.skip(ftype) elif fid == 5: if ftype == TType.I32: self.macro_space_type = iprot.readI32() else: iprot.skip(ftype) elif fid == 7: if ftype == TType.LIST: self.micro_space_types = [] (_etype106, _size103) = iprot.readListBegin() if _size103 >= 0: for _i107 in six.moves.range(_size103): _elem108 = MicroSearchSpaceType() _elem108.read(iprot) self.micro_space_types.append(_elem108) else: while iprot.peekList(): _elem109 = MicroSearchSpaceType() _elem109.read(iprot) self.micro_space_types.append(_elem109) iprot.readListEnd() else: iprot.skip(ftype) elif fid == 8: if ftype == TType.LIST: self.feature_processing_type = [] (_etype113, _size110) = iprot.readListBegin() if _size110 >= 0: for _i114 in six.moves.range(_size110): _elem115 = FeatureProcessingType() _elem115.read(iprot) self.feature_processing_type.append(_elem115) else: while iprot.peekList(): _elem116 = FeatureProcessingType() _elem116.read(iprot) self.feature_processing_type.append(_elem116) iprot.readListEnd() else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() self.checkRequired() def checkRequired(self): return def write(self, oprot): if (isinstance(oprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0)) return if (isinstance(oprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2)) return oprot.writeStructBegin('EvolutionarySearcherConfig') if self.max_num_block != None: oprot.writeFieldBegin('max_num_block', TType.I32, 1) oprot.writeI32(self.max_num_block) oprot.writeFieldEnd() if self.block_types != None: oprot.writeFieldBegin('block_types', TType.LIST, 2) oprot.writeListBegin(TType.I32, len(self.block_types)) for iter117 in self.block_types: oprot.writeI32(iter117) oprot.writeListEnd() oprot.writeFieldEnd() if self.population_size != None: oprot.writeFieldBegin('population_size', TType.I32, 3) oprot.writeI32(self.population_size) oprot.writeFieldEnd() if self.candidate_size != None: oprot.writeFieldBegin('candidate_size', TType.I32, 4) oprot.writeI32(self.candidate_size) oprot.writeFieldEnd() if self.macro_space_type != None: oprot.writeFieldBegin('macro_space_type', TType.I32, 5) oprot.writeI32(self.macro_space_type) oprot.writeFieldEnd() if self.micro_space_types != None: oprot.writeFieldBegin('micro_space_types', TType.LIST, 7) oprot.writeListBegin(TType.STRUCT, len(self.micro_space_types)) for iter118 in self.micro_space_types: iter118.write(oprot) oprot.writeListEnd() oprot.writeFieldEnd() if self.feature_processing_type != None: oprot.writeFieldBegin('feature_processing_type', TType.LIST, 8) oprot.writeListBegin(TType.STRUCT, len(self.feature_processing_type)) for iter119 in self.feature_processing_type: iter119.write(oprot) oprot.writeListEnd() oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def __repr__(self): L = [] padding = ' ' * 4 if self.max_num_block is not None: value = pprint.pformat(self.max_num_block, indent=0) value = padding.join(value.splitlines(True)) L.append(' max_num_block=%s' % (value)) if self.block_types is not None: value = pprint.pformat(self.block_types, indent=0) value = padding.join(value.splitlines(True)) L.append(' block_types=%s' % (value)) if self.population_size is not None: value = pprint.pformat(self.population_size, indent=0) value = padding.join(value.splitlines(True)) L.append(' population_size=%s' % (value)) if self.candidate_size is not None: value = pprint.pformat(self.candidate_size, indent=0) value = padding.join(value.splitlines(True)) L.append(' candidate_size=%s' % (value)) if self.macro_space_type is not None: value = pprint.pformat(self.macro_space_type, indent=0) value = padding.join(value.splitlines(True)) L.append(' macro_space_type=%s' % (value)) if self.micro_space_types is not None: value = pprint.pformat(self.micro_space_types, indent=0) value = padding.join(value.splitlines(True)) L.append(' micro_space_types=%s' % (value)) if self.feature_processing_type is not None: value = pprint.pformat(self.feature_processing_type, indent=0) value = padding.join(value.splitlines(True)) L.append(' feature_processing_type=%s' % (value)) return "%s(%s)" % (self.__class__.__name__, "\n" + ",\n".join(L) if L else '') def __eq__(self, other): if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) # Override the __hash__ function for Python3 - t10434117 if not six.PY2: __hash__ = object.__hash__ class SearcherConfig(object): """ Attributes: - random_searcher - evolutionary_searcher """ thrift_spec = None __init__ = None __EMPTY__ = 0 RANDOM_SEARCHER = 1 EVOLUTIONARY_SEARCHER = 2 @staticmethod def isUnion(): return True def get_random_searcher(self): assert self.field == 1 return self.value def get_evolutionary_searcher(self): assert self.field == 2 return self.value def set_random_searcher(self, value): self.field = 1 self.value = value def set_evolutionary_searcher(self, value): self.field = 2 self.value = value def getType(self): return self.field def __repr__(self): value = pprint.pformat(self.value) member = '' if self.field == 1: padding = ' ' * 16 value = padding.join(value.splitlines(True)) member = '\n %s=%s' % ('random_searcher', value) if self.field == 2: padding = ' ' * 22 value = padding.join(value.splitlines(True)) member = '\n %s=%s' % ('evolutionary_searcher', value) return "%s(%s)" % (self.__class__.__name__, member) def read(self, iprot): self.field = 0 self.value = None if (isinstance(iprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, True], utf8strings=UTF8STRINGS, protoid=0) self.checkRequired() return if (isinstance(iprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, True], utf8strings=UTF8STRINGS, protoid=2) self.checkRequired() return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRUCT: random_searcher = RandomSearcherConfig() random_searcher.read(iprot) assert self.field == 0 and self.value is None self.set_random_searcher(random_searcher) else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRUCT: evolutionary_searcher = EvolutionarySearcherConfig() evolutionary_searcher.read(iprot) assert self.field == 0 and self.value is None self.set_evolutionary_searcher(evolutionary_searcher) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if (isinstance(oprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, True], utf8strings=UTF8STRINGS, protoid=0)) return if (isinstance(oprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, True], utf8strings=UTF8STRINGS, protoid=2)) return oprot.writeUnionBegin('SearcherConfig') if self.field == 1: oprot.writeFieldBegin('random_searcher', TType.STRUCT, 1) random_searcher = self.value random_searcher.write(oprot) oprot.writeFieldEnd() if self.field == 2: oprot.writeFieldBegin('evolutionary_searcher', TType.STRUCT, 2) evolutionary_searcher = self.value evolutionary_searcher.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeUnionEnd() def __eq__(self, other): if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class ModelConfig(object): """ Attributes: - nasrec_net """ thrift_spec = None __init__ = None __EMPTY__ = 0 NASREC_NET = 1 @staticmethod def isUnion(): return True def get_nasrec_net(self): assert self.field == 1 return self.value def set_nasrec_net(self, value): self.field = 1 self.value = value def getType(self): return self.field def __repr__(self): value = pprint.pformat(self.value) member = '' if self.field == 1: padding = ' ' * 11 value = padding.join(value.splitlines(True)) member = '\n %s=%s' % ('nasrec_net', value) return "%s(%s)" % (self.__class__.__name__, member) def read(self, iprot): self.field = 0 self.value = None if (isinstance(iprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, True], utf8strings=UTF8STRINGS, protoid=0) self.checkRequired() return if (isinstance(iprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, True], utf8strings=UTF8STRINGS, protoid=2) self.checkRequired() return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRUCT: nasrec_net = NASRecNetConfig() nasrec_net.read(iprot) assert self.field == 0 and self.value is None self.set_nasrec_net(nasrec_net) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if (isinstance(oprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, True], utf8strings=UTF8STRINGS, protoid=0)) return if (isinstance(oprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, True], utf8strings=UTF8STRINGS, protoid=2)) return oprot.writeUnionBegin('ModelConfig') if self.field == 1: oprot.writeFieldBegin('nasrec_net', TType.STRUCT, 1) nasrec_net = self.value nasrec_net.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeUnionEnd() def __eq__(self, other): if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class SGDOptimConfig: """ Attributes: - lr - momentum - dampening - nesterov - weight_decay """ thrift_spec = None thrift_field_annotations = None thrift_struct_annotations = None __init__ = None @staticmethod def isUnion(): return False def read(self, iprot): if (isinstance(iprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0) self.checkRequired() return if (isinstance(iprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2) self.checkRequired() return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.FLOAT: self.lr = iprot.readFloat() else: iprot.skip(ftype) elif fid == 2: if ftype == TType.FLOAT: self.momentum = iprot.readFloat() else: iprot.skip(ftype) elif fid == 3: if ftype == TType.FLOAT: self.dampening = iprot.readFloat() else: iprot.skip(ftype) elif fid == 4: if ftype == TType.BOOL: self.nesterov = iprot.readBool() else: iprot.skip(ftype) elif fid == 5: if ftype == TType.FLOAT: self.weight_decay = iprot.readFloat() else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() self.checkRequired() def checkRequired(self): return def write(self, oprot): if (isinstance(oprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0)) return if (isinstance(oprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2)) return oprot.writeStructBegin('SGDOptimConfig') if self.lr != None: oprot.writeFieldBegin('lr', TType.FLOAT, 1) oprot.writeFloat(self.lr) oprot.writeFieldEnd() if self.momentum != None: oprot.writeFieldBegin('momentum', TType.FLOAT, 2) oprot.writeFloat(self.momentum) oprot.writeFieldEnd() if self.dampening != None: oprot.writeFieldBegin('dampening', TType.FLOAT, 3) oprot.writeFloat(self.dampening) oprot.writeFieldEnd() if self.nesterov != None: oprot.writeFieldBegin('nesterov', TType.BOOL, 4) oprot.writeBool(self.nesterov) oprot.writeFieldEnd() if self.weight_decay != None: oprot.writeFieldBegin('weight_decay', TType.FLOAT, 5) oprot.writeFloat(self.weight_decay) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def __repr__(self): L = [] padding = ' ' * 4 if self.lr is not None: value = pprint.pformat(self.lr, indent=0) value = padding.join(value.splitlines(True)) L.append(' lr=%s' % (value)) if self.momentum is not None: value = pprint.pformat(self.momentum, indent=0) value = padding.join(value.splitlines(True)) L.append(' momentum=%s' % (value)) if self.dampening is not None: value = pprint.pformat(self.dampening, indent=0) value = padding.join(value.splitlines(True)) L.append(' dampening=%s' % (value)) if self.nesterov is not None: value = pprint.pformat(self.nesterov, indent=0) value = padding.join(value.splitlines(True)) L.append(' nesterov=%s' % (value)) if self.weight_decay is not None: value = pprint.pformat(self.weight_decay, indent=0) value = padding.join(value.splitlines(True)) L.append(' weight_decay=%s' % (value)) return "%s(%s)" % (self.__class__.__name__, "\n" + ",\n".join(L) if L else '') def __eq__(self, other): if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) # Override the __hash__ function for Python3 - t10434117 if not six.PY2: __hash__ = object.__hash__ class AdagradOptimConfig: """ Attributes: - lr - lr_decay - weight_decay - initial_accumulator_value """ thrift_spec = None thrift_field_annotations = None thrift_struct_annotations = None __init__ = None @staticmethod def isUnion(): return False def read(self, iprot): if (isinstance(iprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0) self.checkRequired() return if (isinstance(iprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2) self.checkRequired() return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.FLOAT: self.lr = iprot.readFloat() else: iprot.skip(ftype) elif fid == 2: if ftype == TType.FLOAT: self.lr_decay = iprot.readFloat() else: iprot.skip(ftype) elif fid == 3: if ftype == TType.FLOAT: self.weight_decay = iprot.readFloat() else: iprot.skip(ftype) elif fid == 4: if ftype == TType.FLOAT: self.initial_accumulator_value = iprot.readFloat() else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() self.checkRequired() def checkRequired(self): return def write(self, oprot): if (isinstance(oprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0)) return if (isinstance(oprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2)) return oprot.writeStructBegin('AdagradOptimConfig') if self.lr != None: oprot.writeFieldBegin('lr', TType.FLOAT, 1) oprot.writeFloat(self.lr) oprot.writeFieldEnd() if self.lr_decay != None: oprot.writeFieldBegin('lr_decay', TType.FLOAT, 2) oprot.writeFloat(self.lr_decay) oprot.writeFieldEnd() if self.weight_decay != None: oprot.writeFieldBegin('weight_decay', TType.FLOAT, 3) oprot.writeFloat(self.weight_decay) oprot.writeFieldEnd() if self.initial_accumulator_value != None: oprot.writeFieldBegin('initial_accumulator_value', TType.FLOAT, 4) oprot.writeFloat(self.initial_accumulator_value) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def __repr__(self): L = [] padding = ' ' * 4 if self.lr is not None: value = pprint.pformat(self.lr, indent=0) value = padding.join(value.splitlines(True)) L.append(' lr=%s' % (value)) if self.lr_decay is not None: value = pprint.pformat(self.lr_decay, indent=0) value = padding.join(value.splitlines(True)) L.append(' lr_decay=%s' % (value)) if self.weight_decay is not None: value = pprint.pformat(self.weight_decay, indent=0) value = padding.join(value.splitlines(True)) L.append(' weight_decay=%s' % (value)) if self.initial_accumulator_value is not None: value = pprint.pformat(self.initial_accumulator_value, indent=0) value = padding.join(value.splitlines(True)) L.append(' initial_accumulator_value=%s' % (value)) return "%s(%s)" % (self.__class__.__name__, "\n" + ",\n".join(L) if L else '') def __eq__(self, other): if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) # Override the __hash__ function for Python3 - t10434117 if not six.PY2: __hash__ = object.__hash__ class SparseAdamOptimConfig: """ Attributes: - lr - betas0 - betas1 - eps """ thrift_spec = None thrift_field_annotations = None thrift_struct_annotations = None __init__ = None @staticmethod def isUnion(): return False def read(self, iprot): if (isinstance(iprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0) self.checkRequired() return if (isinstance(iprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2) self.checkRequired() return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.FLOAT: self.lr = iprot.readFloat() else: iprot.skip(ftype) elif fid == 2: if ftype == TType.FLOAT: self.betas0 = iprot.readFloat() else: iprot.skip(ftype) elif fid == 3: if ftype == TType.FLOAT: self.betas1 = iprot.readFloat() else: iprot.skip(ftype) elif fid == 4: if ftype == TType.FLOAT: self.eps = iprot.readFloat() else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() self.checkRequired() def checkRequired(self): return def write(self, oprot): if (isinstance(oprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0)) return if (isinstance(oprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2)) return oprot.writeStructBegin('SparseAdamOptimConfig') if self.lr != None: oprot.writeFieldBegin('lr', TType.FLOAT, 1) oprot.writeFloat(self.lr) oprot.writeFieldEnd() if self.betas0 != None: oprot.writeFieldBegin('betas0', TType.FLOAT, 2) oprot.writeFloat(self.betas0) oprot.writeFieldEnd() if self.betas1 != None: oprot.writeFieldBegin('betas1', TType.FLOAT, 3) oprot.writeFloat(self.betas1) oprot.writeFieldEnd() if self.eps != None: oprot.writeFieldBegin('eps', TType.FLOAT, 4) oprot.writeFloat(self.eps) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def __repr__(self): L = [] padding = ' ' * 4 if self.lr is not None: value = pprint.pformat(self.lr, indent=0) value = padding.join(value.splitlines(True)) L.append(' lr=%s' % (value)) if self.betas0 is not None: value = pprint.pformat(self.betas0, indent=0) value = padding.join(value.splitlines(True)) L.append(' betas0=%s' % (value)) if self.betas1 is not None: value = pprint.pformat(self.betas1, indent=0) value = padding.join(value.splitlines(True)) L.append(' betas1=%s' % (value)) if self.eps is not None: value = pprint.pformat(self.eps, indent=0) value = padding.join(value.splitlines(True)) L.append(' eps=%s' % (value)) return "%s(%s)" % (self.__class__.__name__, "\n" + ",\n".join(L) if L else '') def __eq__(self, other): if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) # Override the __hash__ function for Python3 - t10434117 if not six.PY2: __hash__ = object.__hash__ class AdamOptimConfig: """ Attributes: - lr - amsgrad - weight_decay - betas0 - betas1 - eps """ thrift_spec = None thrift_field_annotations = None thrift_struct_annotations = None __init__ = None @staticmethod def isUnion(): return False def read(self, iprot): if (isinstance(iprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0) self.checkRequired() return if (isinstance(iprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2) self.checkRequired() return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.FLOAT: self.lr = iprot.readFloat() else: iprot.skip(ftype) elif fid == 2: if ftype == TType.BOOL: self.amsgrad = iprot.readBool() else: iprot.skip(ftype) elif fid == 3: if ftype == TType.FLOAT: self.weight_decay = iprot.readFloat() else: iprot.skip(ftype) elif fid == 4: if ftype == TType.FLOAT: self.betas0 = iprot.readFloat() else: iprot.skip(ftype) elif fid == 5: if ftype == TType.FLOAT: self.betas1 = iprot.readFloat() else: iprot.skip(ftype) elif fid == 6: if ftype == TType.FLOAT: self.eps = iprot.readFloat() else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() self.checkRequired() def checkRequired(self): return def write(self, oprot): if (isinstance(oprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0)) return if (isinstance(oprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2)) return oprot.writeStructBegin('AdamOptimConfig') if self.lr != None: oprot.writeFieldBegin('lr', TType.FLOAT, 1) oprot.writeFloat(self.lr) oprot.writeFieldEnd() if self.amsgrad != None: oprot.writeFieldBegin('amsgrad', TType.BOOL, 2) oprot.writeBool(self.amsgrad) oprot.writeFieldEnd() if self.weight_decay != None: oprot.writeFieldBegin('weight_decay', TType.FLOAT, 3) oprot.writeFloat(self.weight_decay) oprot.writeFieldEnd() if self.betas0 != None: oprot.writeFieldBegin('betas0', TType.FLOAT, 4) oprot.writeFloat(self.betas0) oprot.writeFieldEnd() if self.betas1 != None: oprot.writeFieldBegin('betas1', TType.FLOAT, 5) oprot.writeFloat(self.betas1) oprot.writeFieldEnd() if self.eps != None: oprot.writeFieldBegin('eps', TType.FLOAT, 6) oprot.writeFloat(self.eps) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def __repr__(self): L = [] padding = ' ' * 4 if self.lr is not None: value = pprint.pformat(self.lr, indent=0) value = padding.join(value.splitlines(True)) L.append(' lr=%s' % (value)) if self.amsgrad is not None: value = pprint.pformat(self.amsgrad, indent=0) value = padding.join(value.splitlines(True)) L.append(' amsgrad=%s' % (value)) if self.weight_decay is not None: value = pprint.pformat(self.weight_decay, indent=0) value = padding.join(value.splitlines(True)) L.append(' weight_decay=%s' % (value)) if self.betas0 is not None: value = pprint.pformat(self.betas0, indent=0) value = padding.join(value.splitlines(True)) L.append(' betas0=%s' % (value)) if self.betas1 is not None: value = pprint.pformat(self.betas1, indent=0) value = padding.join(value.splitlines(True)) L.append(' betas1=%s' % (value)) if self.eps is not None: value = pprint.pformat(self.eps, indent=0) value = padding.join(value.splitlines(True)) L.append(' eps=%s' % (value)) return "%s(%s)" % (self.__class__.__name__, "\n" + ",\n".join(L) if L else '') def __eq__(self, other): if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) # Override the __hash__ function for Python3 - t10434117 if not six.PY2: __hash__ = object.__hash__ class RMSpropOptimConfig: """ Attributes: - lr - alpha - weight_decay - momentum - centered - eps """ thrift_spec = None thrift_field_annotations = None thrift_struct_annotations = None __init__ = None @staticmethod def isUnion(): return False def read(self, iprot): if (isinstance(iprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0) self.checkRequired() return if (isinstance(iprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2) self.checkRequired() return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.FLOAT: self.lr = iprot.readFloat() else: iprot.skip(ftype) elif fid == 2: if ftype == TType.FLOAT: self.alpha = iprot.readFloat() else: iprot.skip(ftype) elif fid == 3: if ftype == TType.FLOAT: self.weight_decay = iprot.readFloat() else: iprot.skip(ftype) elif fid == 4: if ftype == TType.FLOAT: self.momentum = iprot.readFloat() else: iprot.skip(ftype) elif fid == 5: if ftype == TType.BOOL: self.centered = iprot.readBool() else: iprot.skip(ftype) elif fid == 6: if ftype == TType.FLOAT: self.eps = iprot.readFloat() else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() self.checkRequired() def checkRequired(self): return def write(self, oprot): if (isinstance(oprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0)) return if (isinstance(oprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2)) return oprot.writeStructBegin('RMSpropOptimConfig') if self.lr != None: oprot.writeFieldBegin('lr', TType.FLOAT, 1) oprot.writeFloat(self.lr) oprot.writeFieldEnd() if self.alpha != None: oprot.writeFieldBegin('alpha', TType.FLOAT, 2) oprot.writeFloat(self.alpha) oprot.writeFieldEnd() if self.weight_decay != None: oprot.writeFieldBegin('weight_decay', TType.FLOAT, 3) oprot.writeFloat(self.weight_decay) oprot.writeFieldEnd() if self.momentum != None: oprot.writeFieldBegin('momentum', TType.FLOAT, 4) oprot.writeFloat(self.momentum) oprot.writeFieldEnd() if self.centered != None: oprot.writeFieldBegin('centered', TType.BOOL, 5) oprot.writeBool(self.centered) oprot.writeFieldEnd() if self.eps != None: oprot.writeFieldBegin('eps', TType.FLOAT, 6) oprot.writeFloat(self.eps) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def __repr__(self): L = [] padding = ' ' * 4 if self.lr is not None: value = pprint.pformat(self.lr, indent=0) value = padding.join(value.splitlines(True)) L.append(' lr=%s' % (value)) if self.alpha is not None: value = pprint.pformat(self.alpha, indent=0) value = padding.join(value.splitlines(True)) L.append(' alpha=%s' % (value)) if self.weight_decay is not None: value = pprint.pformat(self.weight_decay, indent=0) value = padding.join(value.splitlines(True)) L.append(' weight_decay=%s' % (value)) if self.momentum is not None: value = pprint.pformat(self.momentum, indent=0) value = padding.join(value.splitlines(True)) L.append(' momentum=%s' % (value)) if self.centered is not None: value = pprint.pformat(self.centered, indent=0) value = padding.join(value.splitlines(True)) L.append(' centered=%s' % (value)) if self.eps is not None: value = pprint.pformat(self.eps, indent=0) value = padding.join(value.splitlines(True)) L.append(' eps=%s' % (value)) return "%s(%s)" % (self.__class__.__name__, "\n" + ",\n".join(L) if L else '') def __eq__(self, other): if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) # Override the __hash__ function for Python3 - t10434117 if not six.PY2: __hash__ = object.__hash__ class OptimConfig(object): """ Attributes: - sgd - adagrad - sparse_adam - adam - rmsprop """ thrift_spec = None __init__ = None __EMPTY__ = 0 SGD = 1 ADAGRAD = 2 SPARSE_ADAM = 3 ADAM = 4 RMSPROP = 5 @staticmethod def isUnion(): return True def get_sgd(self): assert self.field == 1 return self.value def get_adagrad(self): assert self.field == 2 return self.value def get_sparse_adam(self): assert self.field == 3 return self.value def get_adam(self): assert self.field == 4 return self.value def get_rmsprop(self): assert self.field == 5 return self.value def set_sgd(self, value): self.field = 1 self.value = value def set_adagrad(self, value): self.field = 2 self.value = value def set_sparse_adam(self, value): self.field = 3 self.value = value def set_adam(self, value): self.field = 4 self.value = value def set_rmsprop(self, value): self.field = 5 self.value = value def getType(self): return self.field def __repr__(self): value = pprint.pformat(self.value) member = '' if self.field == 1: padding = ' ' * 4 value = padding.join(value.splitlines(True)) member = '\n %s=%s' % ('sgd', value) if self.field == 2: padding = ' ' * 8 value = padding.join(value.splitlines(True)) member = '\n %s=%s' % ('adagrad', value) if self.field == 3: padding = ' ' * 12 value = padding.join(value.splitlines(True)) member = '\n %s=%s' % ('sparse_adam', value) if self.field == 4: padding = ' ' * 5 value = padding.join(value.splitlines(True)) member = '\n %s=%s' % ('adam', value) if self.field == 5: padding = ' ' * 8 value = padding.join(value.splitlines(True)) member = '\n %s=%s' % ('rmsprop', value) return "%s(%s)" % (self.__class__.__name__, member) def read(self, iprot): self.field = 0 self.value = None if (isinstance(iprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, True], utf8strings=UTF8STRINGS, protoid=0) self.checkRequired() return if (isinstance(iprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, True], utf8strings=UTF8STRINGS, protoid=2) self.checkRequired() return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRUCT: sgd = SGDOptimConfig() sgd.read(iprot) assert self.field == 0 and self.value is None self.set_sgd(sgd) else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRUCT: adagrad = AdagradOptimConfig() adagrad.read(iprot) assert self.field == 0 and self.value is None self.set_adagrad(adagrad) else: iprot.skip(ftype) elif fid == 3: if ftype == TType.STRUCT: sparse_adam = SparseAdamOptimConfig() sparse_adam.read(iprot) assert self.field == 0 and self.value is None self.set_sparse_adam(sparse_adam) else: iprot.skip(ftype) elif fid == 4: if ftype == TType.STRUCT: adam = AdamOptimConfig() adam.read(iprot) assert self.field == 0 and self.value is None self.set_adam(adam) else: iprot.skip(ftype) elif fid == 5: if ftype == TType.STRUCT: rmsprop = RMSpropOptimConfig() rmsprop.read(iprot) assert self.field == 0 and self.value is None self.set_rmsprop(rmsprop) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if (isinstance(oprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, True], utf8strings=UTF8STRINGS, protoid=0)) return if (isinstance(oprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, True], utf8strings=UTF8STRINGS, protoid=2)) return oprot.writeUnionBegin('OptimConfig') if self.field == 1: oprot.writeFieldBegin('sgd', TType.STRUCT, 1) sgd = self.value sgd.write(oprot) oprot.writeFieldEnd() if self.field == 2: oprot.writeFieldBegin('adagrad', TType.STRUCT, 2) adagrad = self.value adagrad.write(oprot) oprot.writeFieldEnd() if self.field == 3: oprot.writeFieldBegin('sparse_adam', TType.STRUCT, 3) sparse_adam = self.value sparse_adam.write(oprot) oprot.writeFieldEnd() if self.field == 4: oprot.writeFieldBegin('adam', TType.STRUCT, 4) adam = self.value adam.write(oprot) oprot.writeFieldEnd() if self.field == 5: oprot.writeFieldBegin('rmsprop', TType.STRUCT, 5) rmsprop = self.value rmsprop.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeUnionEnd() def __eq__(self, other): if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class SumPooling: thrift_spec = None thrift_field_annotations = None thrift_struct_annotations = None @staticmethod def isUnion(): return False def read(self, iprot): if (isinstance(iprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0) self.checkRequired() return if (isinstance(iprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2) self.checkRequired() return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() self.checkRequired() def checkRequired(self): return def write(self, oprot): if (isinstance(oprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0)) return if (isinstance(oprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2)) return oprot.writeStructBegin('SumPooling') oprot.writeFieldStop() oprot.writeStructEnd() def __repr__(self): L = [] padding = ' ' * 4 return "%s(%s)" % (self.__class__.__name__, "\n" + ",\n".join(L) if L else '') def __eq__(self, other): if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) # Override the __hash__ function for Python3 - t10434117 if not six.PY2: __hash__ = object.__hash__ class AvgPooling: thrift_spec = None thrift_field_annotations = None thrift_struct_annotations = None @staticmethod def isUnion(): return False def read(self, iprot): if (isinstance(iprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0) self.checkRequired() return if (isinstance(iprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2) self.checkRequired() return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() self.checkRequired() def checkRequired(self): return def write(self, oprot): if (isinstance(oprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0)) return if (isinstance(oprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2)) return oprot.writeStructBegin('AvgPooling') oprot.writeFieldStop() oprot.writeStructEnd() def __repr__(self): L = [] padding = ' ' * 4 return "%s(%s)" % (self.__class__.__name__, "\n" + ",\n".join(L) if L else '') def __eq__(self, other): if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) # Override the __hash__ function for Python3 - t10434117 if not six.PY2: __hash__ = object.__hash__ class PoolingConfig(object): """ Attributes: - sum - avg """ thrift_spec = None __init__ = None __EMPTY__ = 0 SUM = 1 AVG = 2 @staticmethod def isUnion(): return True def get_sum(self): assert self.field == 1 return self.value def get_avg(self): assert self.field == 2 return self.value def set_sum(self, value): self.field = 1 self.value = value def set_avg(self, value): self.field = 2 self.value = value def getType(self): return self.field def __repr__(self): value = pprint.pformat(self.value) member = '' if self.field == 1: padding = ' ' * 4 value = padding.join(value.splitlines(True)) member = '\n %s=%s' % ('sum', value) if self.field == 2: padding = ' ' * 4 value = padding.join(value.splitlines(True)) member = '\n %s=%s' % ('avg', value) return "%s(%s)" % (self.__class__.__name__, member) def read(self, iprot): self.field = 0 self.value = None if (isinstance(iprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, True], utf8strings=UTF8STRINGS, protoid=0) self.checkRequired() return if (isinstance(iprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, True], utf8strings=UTF8STRINGS, protoid=2) self.checkRequired() return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRUCT: sum = SumPooling() sum.read(iprot) assert self.field == 0 and self.value is None self.set_sum(sum) else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRUCT: avg = AvgPooling() avg.read(iprot) assert self.field == 0 and self.value is None self.set_avg(avg) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if (isinstance(oprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, True], utf8strings=UTF8STRINGS, protoid=0)) return if (isinstance(oprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, True], utf8strings=UTF8STRINGS, protoid=2)) return oprot.writeUnionBegin('PoolingConfig') if self.field == 1: oprot.writeFieldBegin('sum', TType.STRUCT, 1) sum = self.value sum.write(oprot) oprot.writeFieldEnd() if self.field == 2: oprot.writeFieldBegin('avg', TType.STRUCT, 2) avg = self.value avg.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeUnionEnd() def __eq__(self, other): if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class SparseFeatureItem: """ Attributes: - name - hash_size - embed_dim - optim - pooling """ thrift_spec = None thrift_field_annotations = None thrift_struct_annotations = None __init__ = None @staticmethod def isUnion(): return False def read(self, iprot): if (isinstance(iprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0) self.checkRequired() return if (isinstance(iprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2) self.checkRequired() return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRING: self.name = iprot.readString().decode('utf-8') if UTF8STRINGS else iprot.readString() else: iprot.skip(ftype) elif fid == 2: if ftype == TType.I32: self.hash_size = iprot.readI32() else: iprot.skip(ftype) elif fid == 3: if ftype == TType.I32: self.embed_dim = iprot.readI32() else: iprot.skip(ftype) elif fid == 4: if ftype == TType.STRUCT: self.optim = OptimConfig() self.optim.read(iprot) else: iprot.skip(ftype) elif fid == 5: if ftype == TType.STRUCT: self.pooling = PoolingConfig() self.pooling.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() self.checkRequired() def checkRequired(self): return def write(self, oprot): if (isinstance(oprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0)) return if (isinstance(oprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2)) return oprot.writeStructBegin('SparseFeatureItem') if self.name != None: oprot.writeFieldBegin('name', TType.STRING, 1) oprot.writeString(self.name.encode('utf-8')) if UTF8STRINGS and not isinstance(self.name, bytes) else oprot.writeString(self.name) oprot.writeFieldEnd() if self.hash_size != None: oprot.writeFieldBegin('hash_size', TType.I32, 2) oprot.writeI32(self.hash_size) oprot.writeFieldEnd() if self.embed_dim != None: oprot.writeFieldBegin('embed_dim', TType.I32, 3) oprot.writeI32(self.embed_dim) oprot.writeFieldEnd() if self.optim != None: oprot.writeFieldBegin('optim', TType.STRUCT, 4) self.optim.write(oprot) oprot.writeFieldEnd() if self.pooling != None: oprot.writeFieldBegin('pooling', TType.STRUCT, 5) self.pooling.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def __repr__(self): L = [] padding = ' ' * 4 if self.name is not None: value = pprint.pformat(self.name, indent=0) value = padding.join(value.splitlines(True)) L.append(' name=%s' % (value)) if self.hash_size is not None: value = pprint.pformat(self.hash_size, indent=0) value = padding.join(value.splitlines(True)) L.append(' hash_size=%s' % (value)) if self.embed_dim is not None: value = pprint.pformat(self.embed_dim, indent=0) value = padding.join(value.splitlines(True)) L.append(' embed_dim=%s' % (value)) if self.optim is not None: value = pprint.pformat(self.optim, indent=0) value = padding.join(value.splitlines(True)) L.append(' optim=%s' % (value)) if self.pooling is not None: value = pprint.pformat(self.pooling, indent=0) value = padding.join(value.splitlines(True)) L.append(' pooling=%s' % (value)) return "%s(%s)" % (self.__class__.__name__, "\n" + ",\n".join(L) if L else '') def __eq__(self, other): if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) # Override the __hash__ function for Python3 - t10434117 if not six.PY2: __hash__ = object.__hash__ class SparseFeatureConfig: """ Attributes: - features - embed_dim - optim """ thrift_spec = None thrift_field_annotations = None thrift_struct_annotations = None __init__ = None @staticmethod def isUnion(): return False def read(self, iprot): if (isinstance(iprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0) self.checkRequired() return if (isinstance(iprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2) self.checkRequired() return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.LIST: self.features = [] (_etype123, _size120) = iprot.readListBegin() if _size120 >= 0: for _i124 in six.moves.range(_size120): _elem125 = SparseFeatureItem() _elem125.read(iprot) self.features.append(_elem125) else: while iprot.peekList(): _elem126 = SparseFeatureItem() _elem126.read(iprot) self.features.append(_elem126) iprot.readListEnd() else: iprot.skip(ftype) elif fid == 2: if ftype == TType.I32: self.embed_dim = iprot.readI32() else: iprot.skip(ftype) elif fid == 3: if ftype == TType.STRUCT: self.optim = OptimConfig() self.optim.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() self.checkRequired() def checkRequired(self): return def write(self, oprot): if (isinstance(oprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0)) return if (isinstance(oprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2)) return oprot.writeStructBegin('SparseFeatureConfig') if self.features != None: oprot.writeFieldBegin('features', TType.LIST, 1) oprot.writeListBegin(TType.STRUCT, len(self.features)) for iter127 in self.features: iter127.write(oprot) oprot.writeListEnd() oprot.writeFieldEnd() if self.embed_dim != None: oprot.writeFieldBegin('embed_dim', TType.I32, 2) oprot.writeI32(self.embed_dim) oprot.writeFieldEnd() if self.optim != None: oprot.writeFieldBegin('optim', TType.STRUCT, 3) self.optim.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def __repr__(self): L = [] padding = ' ' * 4 if self.features is not None: value = pprint.pformat(self.features, indent=0) value = padding.join(value.splitlines(True)) L.append(' features=%s' % (value)) if self.embed_dim is not None: value = pprint.pformat(self.embed_dim, indent=0) value = padding.join(value.splitlines(True)) L.append(' embed_dim=%s' % (value)) if self.optim is not None: value = pprint.pformat(self.optim, indent=0) value = padding.join(value.splitlines(True)) L.append(' optim=%s' % (value)) return "%s(%s)" % (self.__class__.__name__, "\n" + ",\n".join(L) if L else '') def __eq__(self, other): if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) # Override the __hash__ function for Python3 - t10434117 if not six.PY2: __hash__ = object.__hash__ class DenseFeatureConfig: """ Attributes: - features - optim """ thrift_spec = None thrift_field_annotations = None thrift_struct_annotations = None __init__ = None @staticmethod def isUnion(): return False def read(self, iprot): if (isinstance(iprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0) self.checkRequired() return if (isinstance(iprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2) self.checkRequired() return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.LIST: self.features = [] (_etype131, _size128) = iprot.readListBegin() if _size128 >= 0: for _i132 in six.moves.range(_size128): _elem133 = iprot.readString().decode('utf-8') if UTF8STRINGS else iprot.readString() self.features.append(_elem133) else: while iprot.peekList(): _elem134 = iprot.readString().decode('utf-8') if UTF8STRINGS else iprot.readString() self.features.append(_elem134) iprot.readListEnd() else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRUCT: self.optim = OptimConfig() self.optim.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() self.checkRequired() def checkRequired(self): return def write(self, oprot): if (isinstance(oprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0)) return if (isinstance(oprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2)) return oprot.writeStructBegin('DenseFeatureConfig') if self.features != None: oprot.writeFieldBegin('features', TType.LIST, 1) oprot.writeListBegin(TType.STRING, len(self.features)) for iter135 in self.features: oprot.writeString(iter135.encode('utf-8')) if UTF8STRINGS and not isinstance(iter135, bytes) else oprot.writeString(iter135) oprot.writeListEnd() oprot.writeFieldEnd() if self.optim != None: oprot.writeFieldBegin('optim', TType.STRUCT, 2) self.optim.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def __repr__(self): L = [] padding = ' ' * 4 if self.features is not None: value = pprint.pformat(self.features, indent=0) value = padding.join(value.splitlines(True)) L.append(' features=%s' % (value)) if self.optim is not None: value = pprint.pformat(self.optim, indent=0) value = padding.join(value.splitlines(True)) L.append(' optim=%s' % (value)) return "%s(%s)" % (self.__class__.__name__, "\n" + ",\n".join(L) if L else '') def __eq__(self, other): if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) # Override the __hash__ function for Python3 - t10434117 if not six.PY2: __hash__ = object.__hash__ class FeatureConfig: """ Attributes: - dense - sparse """ thrift_spec = None thrift_field_annotations = None thrift_struct_annotations = None __init__ = None @staticmethod def isUnion(): return False def read(self, iprot): if (isinstance(iprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0) self.checkRequired() return if (isinstance(iprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2) self.checkRequired() return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRUCT: self.dense = DenseFeatureConfig() self.dense.read(iprot) else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRUCT: self.sparse = SparseFeatureConfig() self.sparse.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() self.checkRequired() def checkRequired(self): return def write(self, oprot): if (isinstance(oprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0)) return if (isinstance(oprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2)) return oprot.writeStructBegin('FeatureConfig') if self.dense != None: oprot.writeFieldBegin('dense', TType.STRUCT, 1) self.dense.write(oprot) oprot.writeFieldEnd() if self.sparse != None: oprot.writeFieldBegin('sparse', TType.STRUCT, 2) self.sparse.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def __repr__(self): L = [] padding = ' ' * 4 if self.dense is not None: value = pprint.pformat(self.dense, indent=0) value = padding.join(value.splitlines(True)) L.append(' dense=%s' % (value)) if self.sparse is not None: value = pprint.pformat(self.sparse, indent=0) value = padding.join(value.splitlines(True)) L.append(' sparse=%s' % (value)) return "%s(%s)" % (self.__class__.__name__, "\n" + ",\n".join(L) if L else '') def __eq__(self, other): if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) # Override the __hash__ function for Python3 - t10434117 if not six.PY2: __hash__ = object.__hash__ class BCEWithLogitsLoss: thrift_spec = None thrift_field_annotations = None thrift_struct_annotations = None @staticmethod def isUnion(): return False def read(self, iprot): if (isinstance(iprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0) self.checkRequired() return if (isinstance(iprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2) self.checkRequired() return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() self.checkRequired() def checkRequired(self): return def write(self, oprot): if (isinstance(oprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0)) return if (isinstance(oprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2)) return oprot.writeStructBegin('BCEWithLogitsLoss') oprot.writeFieldStop() oprot.writeStructEnd() def __repr__(self): L = [] padding = ' ' * 4 return "%s(%s)" % (self.__class__.__name__, "\n" + ",\n".join(L) if L else '') def __eq__(self, other): if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) # Override the __hash__ function for Python3 - t10434117 if not six.PY2: __hash__ = object.__hash__ class BCELoss: thrift_spec = None thrift_field_annotations = None thrift_struct_annotations = None @staticmethod def isUnion(): return False def read(self, iprot): if (isinstance(iprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0) self.checkRequired() return if (isinstance(iprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2) self.checkRequired() return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() self.checkRequired() def checkRequired(self): return def write(self, oprot): if (isinstance(oprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0)) return if (isinstance(oprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2)) return oprot.writeStructBegin('BCELoss') oprot.writeFieldStop() oprot.writeStructEnd() def __repr__(self): L = [] padding = ' ' * 4 return "%s(%s)" % (self.__class__.__name__, "\n" + ",\n".join(L) if L else '') def __eq__(self, other): if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) # Override the __hash__ function for Python3 - t10434117 if not six.PY2: __hash__ = object.__hash__ class MSELoss: thrift_spec = None thrift_field_annotations = None thrift_struct_annotations = None @staticmethod def isUnion(): return False def read(self, iprot): if (isinstance(iprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0) self.checkRequired() return if (isinstance(iprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2) self.checkRequired() return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() self.checkRequired() def checkRequired(self): return def write(self, oprot): if (isinstance(oprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0)) return if (isinstance(oprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2)) return oprot.writeStructBegin('MSELoss') oprot.writeFieldStop() oprot.writeStructEnd() def __repr__(self): L = [] padding = ' ' * 4 return "%s(%s)" % (self.__class__.__name__, "\n" + ",\n".join(L) if L else '') def __eq__(self, other): if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) # Override the __hash__ function for Python3 - t10434117 if not six.PY2: __hash__ = object.__hash__ class LossConfig(object): """ Attributes: - bcewithlogits - bce - mse """ thrift_spec = None __init__ = None __EMPTY__ = 0 BCEWITHLOGITS = 1 BCE = 2 MSE = 3 @staticmethod def isUnion(): return True def get_bcewithlogits(self): assert self.field == 1 return self.value def get_bce(self): assert self.field == 2 return self.value def get_mse(self): assert self.field == 3 return self.value def set_bcewithlogits(self, value): self.field = 1 self.value = value def set_bce(self, value): self.field = 2 self.value = value def set_mse(self, value): self.field = 3 self.value = value def getType(self): return self.field def __repr__(self): value = pprint.pformat(self.value) member = '' if self.field == 1: padding = ' ' * 14 value = padding.join(value.splitlines(True)) member = '\n %s=%s' % ('bcewithlogits', value) if self.field == 2: padding = ' ' * 4 value = padding.join(value.splitlines(True)) member = '\n %s=%s' % ('bce', value) if self.field == 3: padding = ' ' * 4 value = padding.join(value.splitlines(True)) member = '\n %s=%s' % ('mse', value) return "%s(%s)" % (self.__class__.__name__, member) def read(self, iprot): self.field = 0 self.value = None if (isinstance(iprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, True], utf8strings=UTF8STRINGS, protoid=0) self.checkRequired() return if (isinstance(iprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, True], utf8strings=UTF8STRINGS, protoid=2) self.checkRequired() return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRUCT: bcewithlogits = BCEWithLogitsLoss() bcewithlogits.read(iprot) assert self.field == 0 and self.value is None self.set_bcewithlogits(bcewithlogits) else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRUCT: bce = BCELoss() bce.read(iprot) assert self.field == 0 and self.value is None self.set_bce(bce) else: iprot.skip(ftype) elif fid == 3: if ftype == TType.STRUCT: mse = MSELoss() mse.read(iprot) assert self.field == 0 and self.value is None self.set_mse(mse) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if (isinstance(oprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, True], utf8strings=UTF8STRINGS, protoid=0)) return if (isinstance(oprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, True], utf8strings=UTF8STRINGS, protoid=2)) return oprot.writeUnionBegin('LossConfig') if self.field == 1: oprot.writeFieldBegin('bcewithlogits', TType.STRUCT, 1) bcewithlogits = self.value bcewithlogits.write(oprot) oprot.writeFieldEnd() if self.field == 2: oprot.writeFieldBegin('bce', TType.STRUCT, 2) bce = self.value bce.write(oprot) oprot.writeFieldEnd() if self.field == 3: oprot.writeFieldBegin('mse', TType.STRUCT, 3) mse = self.value mse.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeUnionEnd() def __eq__(self, other): if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class LoggingConfig: """ Attributes: - log_freq - tb_log_freq - tb_log_model_weight_hist - tb_log_pr_curve_batch - tb_log_model_weight_filter_regex """ thrift_spec = None thrift_field_annotations = None thrift_struct_annotations = None __init__ = None @staticmethod def isUnion(): return False def read(self, iprot): if (isinstance(iprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0) self.checkRequired() return if (isinstance(iprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2) self.checkRequired() return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.I32: self.log_freq = iprot.readI32() else: iprot.skip(ftype) elif fid == 2: if ftype == TType.I32: self.tb_log_freq = iprot.readI32() else: iprot.skip(ftype) elif fid == 3: if ftype == TType.BOOL: self.tb_log_model_weight_hist = iprot.readBool() else: iprot.skip(ftype) elif fid == 4: if ftype == TType.BOOL: self.tb_log_pr_curve_batch = iprot.readBool() else: iprot.skip(ftype) elif fid == 5: if ftype == TType.LIST: self.tb_log_model_weight_filter_regex = [] (_etype139, _size136) = iprot.readListBegin() if _size136 >= 0: for _i140 in six.moves.range(_size136): _elem141 = iprot.readString().decode('utf-8') if UTF8STRINGS else iprot.readString() self.tb_log_model_weight_filter_regex.append(_elem141) else: while iprot.peekList(): _elem142 = iprot.readString().decode('utf-8') if UTF8STRINGS else iprot.readString() self.tb_log_model_weight_filter_regex.append(_elem142) iprot.readListEnd() else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() self.checkRequired() def checkRequired(self): return def write(self, oprot): if (isinstance(oprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0)) return if (isinstance(oprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2)) return oprot.writeStructBegin('LoggingConfig') if self.log_freq != None: oprot.writeFieldBegin('log_freq', TType.I32, 1) oprot.writeI32(self.log_freq) oprot.writeFieldEnd() if self.tb_log_freq != None: oprot.writeFieldBegin('tb_log_freq', TType.I32, 2) oprot.writeI32(self.tb_log_freq) oprot.writeFieldEnd() if self.tb_log_model_weight_hist != None: oprot.writeFieldBegin('tb_log_model_weight_hist', TType.BOOL, 3) oprot.writeBool(self.tb_log_model_weight_hist) oprot.writeFieldEnd() if self.tb_log_pr_curve_batch != None: oprot.writeFieldBegin('tb_log_pr_curve_batch', TType.BOOL, 4) oprot.writeBool(self.tb_log_pr_curve_batch) oprot.writeFieldEnd() if self.tb_log_model_weight_filter_regex != None: oprot.writeFieldBegin('tb_log_model_weight_filter_regex', TType.LIST, 5) oprot.writeListBegin(TType.STRING, len(self.tb_log_model_weight_filter_regex)) for iter143 in self.tb_log_model_weight_filter_regex: oprot.writeString(iter143.encode('utf-8')) if UTF8STRINGS and not isinstance(iter143, bytes) else oprot.writeString(iter143) oprot.writeListEnd() oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def __repr__(self): L = [] padding = ' ' * 4 if self.log_freq is not None: value = pprint.pformat(self.log_freq, indent=0) value = padding.join(value.splitlines(True)) L.append(' log_freq=%s' % (value)) if self.tb_log_freq is not None: value = pprint.pformat(self.tb_log_freq, indent=0) value = padding.join(value.splitlines(True)) L.append(' tb_log_freq=%s' % (value)) if self.tb_log_model_weight_hist is not None: value = pprint.pformat(self.tb_log_model_weight_hist, indent=0) value = padding.join(value.splitlines(True)) L.append(' tb_log_model_weight_hist=%s' % (value)) if self.tb_log_pr_curve_batch is not None: value = pprint.pformat(self.tb_log_pr_curve_batch, indent=0) value = padding.join(value.splitlines(True)) L.append(' tb_log_pr_curve_batch=%s' % (value)) if self.tb_log_model_weight_filter_regex is not None: value = pprint.pformat(self.tb_log_model_weight_filter_regex, indent=0) value = padding.join(value.splitlines(True)) L.append(' tb_log_model_weight_filter_regex=%s' % (value)) return "%s(%s)" % (self.__class__.__name__, "\n" + ",\n".join(L) if L else '') def __eq__(self, other): if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) # Override the __hash__ function for Python3 - t10434117 if not six.PY2: __hash__ = object.__hash__ class TrainConfig: """ Attributes: - logging_config - nepochs - early_stop_on_val_loss - loss """ thrift_spec = None thrift_field_annotations = None thrift_struct_annotations = None __init__ = None @staticmethod def isUnion(): return False def read(self, iprot): if (isinstance(iprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0) self.checkRequired() return if (isinstance(iprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2) self.checkRequired() return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRUCT: self.logging_config = LoggingConfig() self.logging_config.read(iprot) else: iprot.skip(ftype) elif fid == 3: if ftype == TType.I32: self.nepochs = iprot.readI32() else: iprot.skip(ftype) elif fid == 5: if ftype == TType.BOOL: self.early_stop_on_val_loss = iprot.readBool() else: iprot.skip(ftype) elif fid == 6: if ftype == TType.STRUCT: self.loss = LossConfig() self.loss.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() self.checkRequired() def checkRequired(self): return def write(self, oprot): if (isinstance(oprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0)) return if (isinstance(oprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2)) return oprot.writeStructBegin('TrainConfig') if self.logging_config != None: oprot.writeFieldBegin('logging_config', TType.STRUCT, 1) self.logging_config.write(oprot) oprot.writeFieldEnd() if self.nepochs != None: oprot.writeFieldBegin('nepochs', TType.I32, 3) oprot.writeI32(self.nepochs) oprot.writeFieldEnd() if self.early_stop_on_val_loss != None: oprot.writeFieldBegin('early_stop_on_val_loss', TType.BOOL, 5) oprot.writeBool(self.early_stop_on_val_loss) oprot.writeFieldEnd() if self.loss != None: oprot.writeFieldBegin('loss', TType.STRUCT, 6) self.loss.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def __repr__(self): L = [] padding = ' ' * 4 if self.logging_config is not None: value = pprint.pformat(self.logging_config, indent=0) value = padding.join(value.splitlines(True)) L.append(' logging_config=%s' % (value)) if self.nepochs is not None: value = pprint.pformat(self.nepochs, indent=0) value = padding.join(value.splitlines(True)) L.append(' nepochs=%s' % (value)) if self.early_stop_on_val_loss is not None: value = pprint.pformat(self.early_stop_on_val_loss, indent=0) value = padding.join(value.splitlines(True)) L.append(' early_stop_on_val_loss=%s' % (value)) if self.loss is not None: value = pprint.pformat(self.loss, indent=0) value = padding.join(value.splitlines(True)) L.append(' loss=%s' % (value)) return "%s(%s)" % (self.__class__.__name__, "\n" + ",\n".join(L) if L else '') def __eq__(self, other): if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) # Override the __hash__ function for Python3 - t10434117 if not six.PY2: __hash__ = object.__hash__ class EvalConfig: """ Attributes: - logging_config - loss - compute_ne """ thrift_spec = None thrift_field_annotations = None thrift_struct_annotations = None __init__ = None @staticmethod def isUnion(): return False def read(self, iprot): if (isinstance(iprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0) self.checkRequired() return if (isinstance(iprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2) self.checkRequired() return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRUCT: self.logging_config = LoggingConfig() self.logging_config.read(iprot) else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRUCT: self.loss = LossConfig() self.loss.read(iprot) else: iprot.skip(ftype) elif fid == 3: if ftype == TType.BOOL: self.compute_ne = iprot.readBool() else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() self.checkRequired() def checkRequired(self): return def write(self, oprot): if (isinstance(oprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0)) return if (isinstance(oprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2)) return oprot.writeStructBegin('EvalConfig') if self.logging_config != None: oprot.writeFieldBegin('logging_config', TType.STRUCT, 1) self.logging_config.write(oprot) oprot.writeFieldEnd() if self.loss != None: oprot.writeFieldBegin('loss', TType.STRUCT, 2) self.loss.write(oprot) oprot.writeFieldEnd() if self.compute_ne != None: oprot.writeFieldBegin('compute_ne', TType.BOOL, 3) oprot.writeBool(self.compute_ne) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def __repr__(self): L = [] padding = ' ' * 4 if self.logging_config is not None: value = pprint.pformat(self.logging_config, indent=0) value = padding.join(value.splitlines(True)) L.append(' logging_config=%s' % (value)) if self.loss is not None: value = pprint.pformat(self.loss, indent=0) value = padding.join(value.splitlines(True)) L.append(' loss=%s' % (value)) if self.compute_ne is not None: value = pprint.pformat(self.compute_ne, indent=0) value = padding.join(value.splitlines(True)) L.append(' compute_ne=%s' % (value)) return "%s(%s)" % (self.__class__.__name__, "\n" + ",\n".join(L) if L else '') def __eq__(self, other): if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) # Override the __hash__ function for Python3 - t10434117 if not six.PY2: __hash__ = object.__hash__ class CheckpointConfig: """ Attributes: - ckp_interval - ckp_path """ thrift_spec = None thrift_field_annotations = None thrift_struct_annotations = None __init__ = None @staticmethod def isUnion(): return False def read(self, iprot): if (isinstance(iprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0) self.checkRequired() return if (isinstance(iprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2) self.checkRequired() return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.I32: self.ckp_interval = iprot.readI32() else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRING: self.ckp_path = iprot.readString().decode('utf-8') if UTF8STRINGS else iprot.readString() else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() self.checkRequired() def checkRequired(self): return def write(self, oprot): if (isinstance(oprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0)) return if (isinstance(oprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2)) return oprot.writeStructBegin('CheckpointConfig') if self.ckp_interval != None: oprot.writeFieldBegin('ckp_interval', TType.I32, 1) oprot.writeI32(self.ckp_interval) oprot.writeFieldEnd() if self.ckp_path != None: oprot.writeFieldBegin('ckp_path', TType.STRING, 2) oprot.writeString(self.ckp_path.encode('utf-8')) if UTF8STRINGS and not isinstance(self.ckp_path, bytes) else oprot.writeString(self.ckp_path) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def __repr__(self): L = [] padding = ' ' * 4 if self.ckp_interval is not None: value = pprint.pformat(self.ckp_interval, indent=0) value = padding.join(value.splitlines(True)) L.append(' ckp_interval=%s' % (value)) if self.ckp_path is not None: value = pprint.pformat(self.ckp_path, indent=0) value = padding.join(value.splitlines(True)) L.append(' ckp_path=%s' % (value)) return "%s(%s)" % (self.__class__.__name__, "\n" + ",\n".join(L) if L else '') def __eq__(self, other): if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) # Override the __hash__ function for Python3 - t10434117 if not six.PY2: __hash__ = object.__hash__ class KoskiReaderConfig: """ Attributes: - prefetch_capacity - pin_memory - num_workers """ thrift_spec = None thrift_field_annotations = None thrift_struct_annotations = None __init__ = None @staticmethod def isUnion(): return False def read(self, iprot): if (isinstance(iprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0) self.checkRequired() return if (isinstance(iprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2) self.checkRequired() return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.I64: self.prefetch_capacity = iprot.readI64() else: iprot.skip(ftype) elif fid == 2: if ftype == TType.BOOL: self.pin_memory = iprot.readBool() else: iprot.skip(ftype) elif fid == 3: if ftype == TType.I32: self.num_workers = iprot.readI32() else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() self.checkRequired() def checkRequired(self): return def write(self, oprot): if (isinstance(oprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0)) return if (isinstance(oprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2)) return oprot.writeStructBegin('KoskiReaderConfig') if self.prefetch_capacity != None: oprot.writeFieldBegin('prefetch_capacity', TType.I64, 1) oprot.writeI64(self.prefetch_capacity) oprot.writeFieldEnd() if self.pin_memory != None: oprot.writeFieldBegin('pin_memory', TType.BOOL, 2) oprot.writeBool(self.pin_memory) oprot.writeFieldEnd() if self.num_workers != None: oprot.writeFieldBegin('num_workers', TType.I32, 3) oprot.writeI32(self.num_workers) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def __repr__(self): L = [] padding = ' ' * 4 if self.prefetch_capacity is not None: value = pprint.pformat(self.prefetch_capacity, indent=0) value = padding.join(value.splitlines(True)) L.append(' prefetch_capacity=%s' % (value)) if self.pin_memory is not None: value = pprint.pformat(self.pin_memory, indent=0) value = padding.join(value.splitlines(True)) L.append(' pin_memory=%s' % (value)) if self.num_workers is not None: value = pprint.pformat(self.num_workers, indent=0) value = padding.join(value.splitlines(True)) L.append(' num_workers=%s' % (value)) return "%s(%s)" % (self.__class__.__name__, "\n" + ",\n".join(L) if L else '') def __eq__(self, other): if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) # Override the __hash__ function for Python3 - t10434117 if not six.PY2: __hash__ = object.__hash__ class PerformanceConfig: """ Attributes: - use_gpu - num_readers - num_trainers - ckp_config - data_queue_maxsize - reader_threads - num_gpu - enable_profiling - koski - omp_num_threads """ thrift_spec = None thrift_field_annotations = None thrift_struct_annotations = None __init__ = None @staticmethod def isUnion(): return False def read(self, iprot): if (isinstance(iprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0) self.checkRequired() return if (isinstance(iprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2) self.checkRequired() return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.BOOL: self.use_gpu = iprot.readBool() else: iprot.skip(ftype) elif fid == 2: if ftype == TType.I32: self.num_readers = iprot.readI32() else: iprot.skip(ftype) elif fid == 3: if ftype == TType.I32: self.num_trainers = iprot.readI32() else: iprot.skip(ftype) elif fid == 4: if ftype == TType.STRUCT: self.ckp_config = CheckpointConfig() self.ckp_config.read(iprot) else: iprot.skip(ftype) elif fid == 5: if ftype == TType.I32: self.data_queue_maxsize = iprot.readI32() else: iprot.skip(ftype) elif fid == 6: if ftype == TType.I32: self.reader_threads = iprot.readI32() else: iprot.skip(ftype) elif fid == 7: if ftype == TType.I32: self.num_gpu = iprot.readI32() else: iprot.skip(ftype) elif fid == 8: if ftype == TType.BOOL: self.enable_profiling = iprot.readBool() else: iprot.skip(ftype) elif fid == 9: if ftype == TType.STRUCT: self.koski = KoskiReaderConfig() self.koski.read(iprot) else: iprot.skip(ftype) elif fid == 10: if ftype == TType.I32: self.omp_num_threads = iprot.readI32() else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() self.checkRequired() def checkRequired(self): return def write(self, oprot): if (isinstance(oprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0)) return if (isinstance(oprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2)) return oprot.writeStructBegin('PerformanceConfig') if self.use_gpu != None: oprot.writeFieldBegin('use_gpu', TType.BOOL, 1) oprot.writeBool(self.use_gpu) oprot.writeFieldEnd() if self.num_readers != None: oprot.writeFieldBegin('num_readers', TType.I32, 2) oprot.writeI32(self.num_readers) oprot.writeFieldEnd() if self.num_trainers != None: oprot.writeFieldBegin('num_trainers', TType.I32, 3) oprot.writeI32(self.num_trainers) oprot.writeFieldEnd() if self.ckp_config != None: oprot.writeFieldBegin('ckp_config', TType.STRUCT, 4) self.ckp_config.write(oprot) oprot.writeFieldEnd() if self.data_queue_maxsize != None: oprot.writeFieldBegin('data_queue_maxsize', TType.I32, 5) oprot.writeI32(self.data_queue_maxsize) oprot.writeFieldEnd() if self.reader_threads != None: oprot.writeFieldBegin('reader_threads', TType.I32, 6) oprot.writeI32(self.reader_threads) oprot.writeFieldEnd() if self.num_gpu != None: oprot.writeFieldBegin('num_gpu', TType.I32, 7) oprot.writeI32(self.num_gpu) oprot.writeFieldEnd() if self.enable_profiling != None and self.enable_profiling != self.thrift_spec[8][4]: oprot.writeFieldBegin('enable_profiling', TType.BOOL, 8) oprot.writeBool(self.enable_profiling) oprot.writeFieldEnd() if self.koski != None: oprot.writeFieldBegin('koski', TType.STRUCT, 9) self.koski.write(oprot) oprot.writeFieldEnd() if self.omp_num_threads != None and self.omp_num_threads != self.thrift_spec[10][4]: oprot.writeFieldBegin('omp_num_threads', TType.I32, 10) oprot.writeI32(self.omp_num_threads) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def __repr__(self): L = [] padding = ' ' * 4 if self.use_gpu is not None: value = pprint.pformat(self.use_gpu, indent=0) value = padding.join(value.splitlines(True)) L.append(' use_gpu=%s' % (value)) if self.num_readers is not None: value = pprint.pformat(self.num_readers, indent=0) value = padding.join(value.splitlines(True)) L.append(' num_readers=%s' % (value)) if self.num_trainers is not None: value = pprint.pformat(self.num_trainers, indent=0) value = padding.join(value.splitlines(True)) L.append(' num_trainers=%s' % (value)) if self.ckp_config is not None: value = pprint.pformat(self.ckp_config, indent=0) value = padding.join(value.splitlines(True)) L.append(' ckp_config=%s' % (value)) if self.data_queue_maxsize is not None: value = pprint.pformat(self.data_queue_maxsize, indent=0) value = padding.join(value.splitlines(True)) L.append(' data_queue_maxsize=%s' % (value)) if self.reader_threads is not None: value = pprint.pformat(self.reader_threads, indent=0) value = padding.join(value.splitlines(True)) L.append(' reader_threads=%s' % (value)) if self.num_gpu is not None: value = pprint.pformat(self.num_gpu, indent=0) value = padding.join(value.splitlines(True)) L.append(' num_gpu=%s' % (value)) if self.enable_profiling is not None: value = pprint.pformat(self.enable_profiling, indent=0) value = padding.join(value.splitlines(True)) L.append(' enable_profiling=%s' % (value)) if self.koski is not None: value = pprint.pformat(self.koski, indent=0) value = padding.join(value.splitlines(True)) L.append(' koski=%s' % (value)) if self.omp_num_threads is not None: value = pprint.pformat(self.omp_num_threads, indent=0) value = padding.join(value.splitlines(True)) L.append(' omp_num_threads=%s' % (value)) return "%s(%s)" % (self.__class__.__name__, "\n" + ",\n".join(L) if L else '') def __eq__(self, other): if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) # Override the __hash__ function for Python3 - t10434117 if not six.PY2: __hash__ = object.__hash__ all_structs.append(DataFromFileConfig) DataFromFileConfig.thrift_spec = ( None, # 0 (1, TType.STRING, 'data_file', True, None, 2, ), # 1 (2, TType.I32, 'batch_size', None, 100, 2, ), # 2 (3, TType.I32, 'num_batches', None, -1, 2, ), # 3 (4, TType.LIST, 'splits', (TType.FLOAT,None), [ 0.800000, 0.100000, ], 2, ), # 4 (5, TType.I32, 'num_samples_meta', None, 100000, 2, ), # 5 ) DataFromFileConfig.thrift_struct_annotations = { } DataFromFileConfig.thrift_field_annotations = { } def DataFromFileConfig__init__(self, data_file=None, batch_size=DataFromFileConfig.thrift_spec[2][4], num_batches=DataFromFileConfig.thrift_spec[3][4], splits=DataFromFileConfig.thrift_spec[4][4], num_samples_meta=DataFromFileConfig.thrift_spec[5][4],): self.data_file = data_file self.batch_size = batch_size self.num_batches = num_batches if splits is self.thrift_spec[4][4]: splits = [ 0.800000, 0.100000, ] self.splits = splits self.num_samples_meta = num_samples_meta DataFromFileConfig.__init__ = DataFromFileConfig__init__ def DataFromFileConfig__setstate__(self, state): state.setdefault('data_file', None) state.setdefault('batch_size', 100) state.setdefault('num_batches', -1) state.setdefault('splits', [ 0.800000, 0.100000, ]) state.setdefault('num_samples_meta', 100000) self.__dict__ = state DataFromFileConfig.__getstate__ = lambda self: self.__dict__.copy() DataFromFileConfig.__setstate__ = DataFromFileConfig__setstate__ all_structs.append(DataConfig) DataConfig.thrift_spec = ( None, # 0 (1, TType.STRUCT, 'from_file', [DataFromFileConfig, DataFromFileConfig.thrift_spec, False], None, 2, ), # 1 ) DataConfig.thrift_struct_annotations = { } DataConfig.thrift_field_annotations = { } def DataConfig__init__(self, from_file=None,): self.field = 0 self.value = None if from_file is not None: assert self.field == 0 and self.value is None self.field = 1 self.value = from_file DataConfig.__init__ = DataConfig__init__ all_structs.append(MicroClose) MicroClose.thrift_spec = ( ) MicroClose.thrift_struct_annotations = { } MicroClose.thrift_field_annotations = { } all_structs.append(MicroMLPConfig) MicroMLPConfig.thrift_spec = ( None, # 0 (1, TType.LIST, 'arc', (TType.I32,None), None, 2, ), # 1 ) MicroMLPConfig.thrift_struct_annotations = { } MicroMLPConfig.thrift_field_annotations = { } def MicroMLPConfig__init__(self, arc=None,): self.arc = arc MicroMLPConfig.__init__ = MicroMLPConfig__init__ def MicroMLPConfig__setstate__(self, state): state.setdefault('arc', None) self.__dict__ = state MicroMLPConfig.__getstate__ = lambda self: self.__dict__.copy() MicroMLPConfig.__setstate__ = MicroMLPConfig__setstate__ all_structs.append(MicroCINConfig) MicroCINConfig.thrift_spec = ( None, # 0 (1, TType.LIST, 'arc', (TType.I32,None), None, 2, ), # 1 (2, TType.LIST, 'num_of_layers', (TType.I32,None), [ 1, 2, 3, ], 2, ), # 2 ) MicroCINConfig.thrift_struct_annotations = { } MicroCINConfig.thrift_field_annotations = { } def MicroCINConfig__init__(self, arc=None, num_of_layers=MicroCINConfig.thrift_spec[2][4],): self.arc = arc if num_of_layers is self.thrift_spec[2][4]: num_of_layers = [ 1, 2, 3, ] self.num_of_layers = num_of_layers MicroCINConfig.__init__ = MicroCINConfig__init__ def MicroCINConfig__setstate__(self, state): state.setdefault('arc', None) state.setdefault('num_of_layers', [ 1, 2, 3, ]) self.__dict__ = state MicroCINConfig.__getstate__ = lambda self: self.__dict__.copy() MicroCINConfig.__setstate__ = MicroCINConfig__setstate__ all_structs.append(MicroAttentionConfig) MicroAttentionConfig.thrift_spec = ( None, # 0 (1, TType.LIST, 'num_of_layers', (TType.I32,None), [ 1, 2, 3, ], 2, ), # 1 (2, TType.LIST, 'num_of_heads', (TType.I32,None), [ 1, 2, 3, ], 2, ), # 2 (3, TType.LIST, 'att_embed_dim', (TType.I32,None), [ 10, ], 2, ), # 3 (4, TType.LIST, 'dropout_prob', (TType.FLOAT,None), [ 0.00000, 0.200000, 0.400000, ], 2, ), # 4 ) MicroAttentionConfig.thrift_struct_annotations = { } MicroAttentionConfig.thrift_field_annotations = { } def MicroAttentionConfig__init__(self, num_of_layers=MicroAttentionConfig.thrift_spec[1][4], num_of_heads=MicroAttentionConfig.thrift_spec[2][4], att_embed_dim=MicroAttentionConfig.thrift_spec[3][4], dropout_prob=MicroAttentionConfig.thrift_spec[4][4],): if num_of_layers is self.thrift_spec[1][4]: num_of_layers = [ 1, 2, 3, ] self.num_of_layers = num_of_layers if num_of_heads is self.thrift_spec[2][4]: num_of_heads = [ 1, 2, 3, ] self.num_of_heads = num_of_heads if att_embed_dim is self.thrift_spec[3][4]: att_embed_dim = [ 10, ] self.att_embed_dim = att_embed_dim if dropout_prob is self.thrift_spec[4][4]: dropout_prob = [ 0.00000, 0.200000, 0.400000, ] self.dropout_prob = dropout_prob MicroAttentionConfig.__init__ = MicroAttentionConfig__init__ def MicroAttentionConfig__setstate__(self, state): state.setdefault('num_of_layers', [ 1, 2, 3, ]) state.setdefault('num_of_heads', [ 1, 2, 3, ]) state.setdefault('att_embed_dim', [ 10, ]) state.setdefault('dropout_prob', [ 0.00000, 0.200000, 0.400000, ]) self.__dict__ = state MicroAttentionConfig.__getstate__ = lambda self: self.__dict__.copy() MicroAttentionConfig.__setstate__ = MicroAttentionConfig__setstate__ all_structs.append(MicroSearchSpaceType) MicroSearchSpaceType.thrift_spec = ( None, # 0 (1, TType.STRUCT, 'close', [MicroClose, MicroClose.thrift_spec, False], None, 2, ), # 1 (2, TType.STRUCT, 'micro_mlp', [MicroMLPConfig, MicroMLPConfig.thrift_spec, False], None, 2, ), # 2 (3, TType.STRUCT, 'micro_cin', [MicroCINConfig, MicroCINConfig.thrift_spec, False], None, 2, ), # 3 (4, TType.STRUCT, 'micro_attention', [MicroAttentionConfig, MicroAttentionConfig.thrift_spec, False], None, 2, ), # 4 ) MicroSearchSpaceType.thrift_struct_annotations = { } MicroSearchSpaceType.thrift_field_annotations = { } def MicroSearchSpaceType__init__(self, close=None, micro_mlp=None, micro_cin=None, micro_attention=None,): self.field = 0 self.value = None if close is not None: assert self.field == 0 and self.value is None self.field = 1 self.value = close if micro_mlp is not None: assert self.field == 0 and self.value is None self.field = 2 self.value = micro_mlp if micro_cin is not None: assert self.field == 0 and self.value is None self.field = 3 self.value = micro_cin if micro_attention is not None: assert self.field == 0 and self.value is None self.field = 4 self.value = micro_attention MicroSearchSpaceType.__init__ = MicroSearchSpaceType__init__ all_structs.append(InputDenseAsSparse) InputDenseAsSparse.thrift_spec = ( ) InputDenseAsSparse.thrift_struct_annotations = { } InputDenseAsSparse.thrift_field_annotations = { } all_structs.append(FeatureProcessingType) FeatureProcessingType.thrift_spec = ( None, # 0 (1, TType.STRUCT, 'idasp', [InputDenseAsSparse, InputDenseAsSparse.thrift_spec, False], None, 2, ), # 1 ) FeatureProcessingType.thrift_struct_annotations = { } FeatureProcessingType.thrift_field_annotations = { } def FeatureProcessingType__init__(self, idasp=None,): self.field = 0 self.value = None if idasp is not None: assert self.field == 0 and self.value is None self.field = 1 self.value = idasp FeatureProcessingType.__init__ = FeatureProcessingType__init__ all_structs.append(NASRecNetConfig) NASRecNetConfig.thrift_spec = ( None, # 0 (1, TType.LIST, 'block_configs', (TType.STRUCT,[block_config.ttypes.BlockConfig, block_config.ttypes.BlockConfig.thrift_spec, True]), None, 2, ), # 1 ) NASRecNetConfig.thrift_struct_annotations = { } NASRecNetConfig.thrift_field_annotations = { } def NASRecNetConfig__init__(self, block_configs=None,): self.block_configs = block_configs NASRecNetConfig.__init__ = NASRecNetConfig__init__ def NASRecNetConfig__setstate__(self, state): state.setdefault('block_configs', None) self.__dict__ = state NASRecNetConfig.__getstate__ = lambda self: self.__dict__.copy() NASRecNetConfig.__setstate__ = NASRecNetConfig__setstate__ all_structs.append(RandomSearcherConfig) RandomSearcherConfig.thrift_spec = ( None, # 0 (1, TType.I32, 'max_num_block', None, 3, 2, ), # 1 (2, TType.LIST, 'block_types', (TType.I32,block_config.ttypes.ExtendedBlockType), None, 2, ), # 2 (3, TType.I32, 'macro_space_type', MacroSearchSpaceType, 1, 2, ), # 3 None, # 4 (5, TType.LIST, 'micro_space_types', (TType.STRUCT,[MicroSearchSpaceType, MicroSearchSpaceType.thrift_spec, True]), None, 2, ), # 5 (6, TType.LIST, 'feature_processing_type', (TType.STRUCT,[FeatureProcessingType, FeatureProcessingType.thrift_spec, True]), [ ], 2, ), # 6 ) RandomSearcherConfig.thrift_struct_annotations = { } RandomSearcherConfig.thrift_field_annotations = { } def RandomSearcherConfig__init__(self, max_num_block=RandomSearcherConfig.thrift_spec[1][4], block_types=None, macro_space_type=RandomSearcherConfig.thrift_spec[3][4], micro_space_types=None, feature_processing_type=RandomSearcherConfig.thrift_spec[6][4],): self.max_num_block = max_num_block self.block_types = block_types self.macro_space_type = macro_space_type self.micro_space_types = micro_space_types if feature_processing_type is self.thrift_spec[6][4]: feature_processing_type = [ ] self.feature_processing_type = feature_processing_type RandomSearcherConfig.__init__ = RandomSearcherConfig__init__ def RandomSearcherConfig__setstate__(self, state): state.setdefault('max_num_block', 3) state.setdefault('block_types', None) state.setdefault('macro_space_type', 1) state.setdefault('micro_space_types', None) state.setdefault('feature_processing_type', [ ]) self.__dict__ = state RandomSearcherConfig.__getstate__ = lambda self: self.__dict__.copy() RandomSearcherConfig.__setstate__ = RandomSearcherConfig__setstate__ all_structs.append(EvolutionarySearcherConfig) EvolutionarySearcherConfig.thrift_spec = ( None, # 0 (1, TType.I32, 'max_num_block', None, 3, 2, ), # 1 (2, TType.LIST, 'block_types', (TType.I32,block_config.ttypes.ExtendedBlockType), None, 2, ), # 2 (3, TType.I32, 'population_size', None, 10, 2, ), # 3 (4, TType.I32, 'candidate_size', None, 5, 2, ), # 4 (5, TType.I32, 'macro_space_type', MacroSearchSpaceType, 1, 2, ), # 5 None, # 6 (7, TType.LIST, 'micro_space_types', (TType.STRUCT,[MicroSearchSpaceType, MicroSearchSpaceType.thrift_spec, True]), None, 2, ), # 7 (8, TType.LIST, 'feature_processing_type', (TType.STRUCT,[FeatureProcessingType, FeatureProcessingType.thrift_spec, True]), [ ], 2, ), # 8 ) EvolutionarySearcherConfig.thrift_struct_annotations = { } EvolutionarySearcherConfig.thrift_field_annotations = { } def EvolutionarySearcherConfig__init__(self, max_num_block=EvolutionarySearcherConfig.thrift_spec[1][4], block_types=None, population_size=EvolutionarySearcherConfig.thrift_spec[3][4], candidate_size=EvolutionarySearcherConfig.thrift_spec[4][4], macro_space_type=EvolutionarySearcherConfig.thrift_spec[5][4], micro_space_types=None, feature_processing_type=EvolutionarySearcherConfig.thrift_spec[8][4],): self.max_num_block = max_num_block self.block_types = block_types self.population_size = population_size self.candidate_size = candidate_size self.macro_space_type = macro_space_type self.micro_space_types = micro_space_types if feature_processing_type is self.thrift_spec[8][4]: feature_processing_type = [ ] self.feature_processing_type = feature_processing_type EvolutionarySearcherConfig.__init__ = EvolutionarySearcherConfig__init__ def EvolutionarySearcherConfig__setstate__(self, state): state.setdefault('max_num_block', 3) state.setdefault('block_types', None) state.setdefault('population_size', 10) state.setdefault('candidate_size', 5) state.setdefault('macro_space_type', 1) state.setdefault('micro_space_types', None) state.setdefault('feature_processing_type', [ ]) self.__dict__ = state EvolutionarySearcherConfig.__getstate__ = lambda self: self.__dict__.copy() EvolutionarySearcherConfig.__setstate__ = EvolutionarySearcherConfig__setstate__ all_structs.append(SearcherConfig) SearcherConfig.thrift_spec = ( None, # 0 (1, TType.STRUCT, 'random_searcher', [RandomSearcherConfig, RandomSearcherConfig.thrift_spec, False], None, 2, ), # 1 (2, TType.STRUCT, 'evolutionary_searcher', [EvolutionarySearcherConfig, EvolutionarySearcherConfig.thrift_spec, False], None, 2, ), # 2 ) SearcherConfig.thrift_struct_annotations = { } SearcherConfig.thrift_field_annotations = { } def SearcherConfig__init__(self, random_searcher=None, evolutionary_searcher=None,): self.field = 0 self.value = None if random_searcher is not None: assert self.field == 0 and self.value is None self.field = 1 self.value = random_searcher if evolutionary_searcher is not None: assert self.field == 0 and self.value is None self.field = 2 self.value = evolutionary_searcher SearcherConfig.__init__ = SearcherConfig__init__ all_structs.append(ModelConfig) ModelConfig.thrift_spec = ( None, # 0 (1, TType.STRUCT, 'nasrec_net', [NASRecNetConfig, NASRecNetConfig.thrift_spec, False], None, 2, ), # 1 ) ModelConfig.thrift_struct_annotations = { } ModelConfig.thrift_field_annotations = { } def ModelConfig__init__(self, nasrec_net=None,): self.field = 0 self.value = None if nasrec_net is not None: assert self.field == 0 and self.value is None self.field = 1 self.value = nasrec_net ModelConfig.__init__ = ModelConfig__init__ all_structs.append(SGDOptimConfig) SGDOptimConfig.thrift_spec = ( None, # 0 (1, TType.FLOAT, 'lr', None, 0.0100000, 2, ), # 1 (2, TType.FLOAT, 'momentum', None, 0.00000, 2, ), # 2 (3, TType.FLOAT, 'dampening', None, 0.00000, 2, ), # 3 (4, TType.BOOL, 'nesterov', None, False, 2, ), # 4 (5, TType.FLOAT, 'weight_decay', None, 0.00000, 2, ), # 5 ) SGDOptimConfig.thrift_struct_annotations = { } SGDOptimConfig.thrift_field_annotations = { } def SGDOptimConfig__init__(self, lr=SGDOptimConfig.thrift_spec[1][4], momentum=SGDOptimConfig.thrift_spec[2][4], dampening=SGDOptimConfig.thrift_spec[3][4], nesterov=SGDOptimConfig.thrift_spec[4][4], weight_decay=SGDOptimConfig.thrift_spec[5][4],): self.lr = lr self.momentum = momentum self.dampening = dampening self.nesterov = nesterov self.weight_decay = weight_decay SGDOptimConfig.__init__ = SGDOptimConfig__init__ def SGDOptimConfig__setstate__(self, state): state.setdefault('lr', 0.0100000) state.setdefault('momentum', 0.00000) state.setdefault('dampening', 0.00000) state.setdefault('nesterov', False) state.setdefault('weight_decay', 0.00000) self.__dict__ = state SGDOptimConfig.__getstate__ = lambda self: self.__dict__.copy() SGDOptimConfig.__setstate__ = SGDOptimConfig__setstate__ all_structs.append(AdagradOptimConfig) AdagradOptimConfig.thrift_spec = ( None, # 0 (1, TType.FLOAT, 'lr', None, 0.0100000, 2, ), # 1 (2, TType.FLOAT, 'lr_decay', None, 0.00000, 2, ), # 2 (3, TType.FLOAT, 'weight_decay', None, 0.00000, 2, ), # 3 (4, TType.FLOAT, 'initial_accumulator_value', None, 0.00000, 2, ), # 4 ) AdagradOptimConfig.thrift_struct_annotations = { } AdagradOptimConfig.thrift_field_annotations = { } def AdagradOptimConfig__init__(self, lr=AdagradOptimConfig.thrift_spec[1][4], lr_decay=AdagradOptimConfig.thrift_spec[2][4], weight_decay=AdagradOptimConfig.thrift_spec[3][4], initial_accumulator_value=AdagradOptimConfig.thrift_spec[4][4],): self.lr = lr self.lr_decay = lr_decay self.weight_decay = weight_decay self.initial_accumulator_value = initial_accumulator_value AdagradOptimConfig.__init__ = AdagradOptimConfig__init__ def AdagradOptimConfig__setstate__(self, state): state.setdefault('lr', 0.0100000) state.setdefault('lr_decay', 0.00000) state.setdefault('weight_decay', 0.00000) state.setdefault('initial_accumulator_value', 0.00000) self.__dict__ = state AdagradOptimConfig.__getstate__ = lambda self: self.__dict__.copy() AdagradOptimConfig.__setstate__ = AdagradOptimConfig__setstate__ all_structs.append(SparseAdamOptimConfig) SparseAdamOptimConfig.thrift_spec = ( None, # 0 (1, TType.FLOAT, 'lr', None, 0.00100000, 2, ), # 1 (2, TType.FLOAT, 'betas0', None, 0.900000, 2, ), # 2 (3, TType.FLOAT, 'betas1', None, 0.999000, 2, ), # 3 (4, TType.FLOAT, 'eps', None, 1.00000e-08, 2, ), # 4 ) SparseAdamOptimConfig.thrift_struct_annotations = { } SparseAdamOptimConfig.thrift_field_annotations = { } def SparseAdamOptimConfig__init__(self, lr=SparseAdamOptimConfig.thrift_spec[1][4], betas0=SparseAdamOptimConfig.thrift_spec[2][4], betas1=SparseAdamOptimConfig.thrift_spec[3][4], eps=SparseAdamOptimConfig.thrift_spec[4][4],): self.lr = lr self.betas0 = betas0 self.betas1 = betas1 self.eps = eps SparseAdamOptimConfig.__init__ = SparseAdamOptimConfig__init__ def SparseAdamOptimConfig__setstate__(self, state): state.setdefault('lr', 0.00100000) state.setdefault('betas0', 0.900000) state.setdefault('betas1', 0.999000) state.setdefault('eps', 1.00000e-08) self.__dict__ = state SparseAdamOptimConfig.__getstate__ = lambda self: self.__dict__.copy() SparseAdamOptimConfig.__setstate__ = SparseAdamOptimConfig__setstate__ all_structs.append(AdamOptimConfig) AdamOptimConfig.thrift_spec = ( None, # 0 (1, TType.FLOAT, 'lr', None, 0.00100000, 2, ), # 1 (2, TType.BOOL, 'amsgrad', None, False, 2, ), # 2 (3, TType.FLOAT, 'weight_decay', None, 0.00000, 2, ), # 3 (4, TType.FLOAT, 'betas0', None, 0.900000, 2, ), # 4 (5, TType.FLOAT, 'betas1', None, 0.999000, 2, ), # 5 (6, TType.FLOAT, 'eps', None, 1.00000e-08, 2, ), # 6 ) AdamOptimConfig.thrift_struct_annotations = { } AdamOptimConfig.thrift_field_annotations = { } def AdamOptimConfig__init__(self, lr=AdamOptimConfig.thrift_spec[1][4], amsgrad=AdamOptimConfig.thrift_spec[2][4], weight_decay=AdamOptimConfig.thrift_spec[3][4], betas0=AdamOptimConfig.thrift_spec[4][4], betas1=AdamOptimConfig.thrift_spec[5][4], eps=AdamOptimConfig.thrift_spec[6][4],): self.lr = lr self.amsgrad = amsgrad self.weight_decay = weight_decay self.betas0 = betas0 self.betas1 = betas1 self.eps = eps AdamOptimConfig.__init__ = AdamOptimConfig__init__ def AdamOptimConfig__setstate__(self, state): state.setdefault('lr', 0.00100000) state.setdefault('amsgrad', False) state.setdefault('weight_decay', 0.00000) state.setdefault('betas0', 0.900000) state.setdefault('betas1', 0.999000) state.setdefault('eps', 1.00000e-08) self.__dict__ = state AdamOptimConfig.__getstate__ = lambda self: self.__dict__.copy() AdamOptimConfig.__setstate__ = AdamOptimConfig__setstate__ all_structs.append(RMSpropOptimConfig) RMSpropOptimConfig.thrift_spec = ( None, # 0 (1, TType.FLOAT, 'lr', None, 0.0100000, 2, ), # 1 (2, TType.FLOAT, 'alpha', None, 0.990000, 2, ), # 2 (3, TType.FLOAT, 'weight_decay', None, 0.00000, 2, ), # 3 (4, TType.FLOAT, 'momentum', None, 0.00000, 2, ), # 4 (5, TType.BOOL, 'centered', None, False, 2, ), # 5 (6, TType.FLOAT, 'eps', None, 1.00000e-08, 2, ), # 6 ) RMSpropOptimConfig.thrift_struct_annotations = { } RMSpropOptimConfig.thrift_field_annotations = { } def RMSpropOptimConfig__init__(self, lr=RMSpropOptimConfig.thrift_spec[1][4], alpha=RMSpropOptimConfig.thrift_spec[2][4], weight_decay=RMSpropOptimConfig.thrift_spec[3][4], momentum=RMSpropOptimConfig.thrift_spec[4][4], centered=RMSpropOptimConfig.thrift_spec[5][4], eps=RMSpropOptimConfig.thrift_spec[6][4],): self.lr = lr self.alpha = alpha self.weight_decay = weight_decay self.momentum = momentum self.centered = centered self.eps = eps RMSpropOptimConfig.__init__ = RMSpropOptimConfig__init__ def RMSpropOptimConfig__setstate__(self, state): state.setdefault('lr', 0.0100000) state.setdefault('alpha', 0.990000) state.setdefault('weight_decay', 0.00000) state.setdefault('momentum', 0.00000) state.setdefault('centered', False) state.setdefault('eps', 1.00000e-08) self.__dict__ = state RMSpropOptimConfig.__getstate__ = lambda self: self.__dict__.copy() RMSpropOptimConfig.__setstate__ = RMSpropOptimConfig__setstate__ all_structs.append(OptimConfig) OptimConfig.thrift_spec = ( None, # 0 (1, TType.STRUCT, 'sgd', [SGDOptimConfig, SGDOptimConfig.thrift_spec, False], None, 2, ), # 1 (2, TType.STRUCT, 'adagrad', [AdagradOptimConfig, AdagradOptimConfig.thrift_spec, False], AdagradOptimConfig(**{ }), 2, ), # 2 (3, TType.STRUCT, 'sparse_adam', [SparseAdamOptimConfig, SparseAdamOptimConfig.thrift_spec, False], None, 2, ), # 3 (4, TType.STRUCT, 'adam', [AdamOptimConfig, AdamOptimConfig.thrift_spec, False], None, 2, ), # 4 (5, TType.STRUCT, 'rmsprop', [RMSpropOptimConfig, RMSpropOptimConfig.thrift_spec, False], None, 2, ), # 5 ) OptimConfig.thrift_struct_annotations = { } OptimConfig.thrift_field_annotations = { } def OptimConfig__init__(self, sgd=None, adagrad=OptimConfig.thrift_spec[2][4], sparse_adam=None, adam=None, rmsprop=None,): self.field = 0 self.value = None if sgd is not None: assert self.field == 0 and self.value is None self.field = 1 self.value = sgd if adagrad is not None: assert self.field == 0 and self.value is None self.field = 2 self.value = adagrad if sparse_adam is not None: assert self.field == 0 and self.value is None self.field = 3 self.value = sparse_adam if adam is not None: assert self.field == 0 and self.value is None self.field = 4 self.value = adam if rmsprop is not None: assert self.field == 0 and self.value is None self.field = 5 self.value = rmsprop OptimConfig.__init__ = OptimConfig__init__ all_structs.append(SumPooling) SumPooling.thrift_spec = ( ) SumPooling.thrift_struct_annotations = { } SumPooling.thrift_field_annotations = { } all_structs.append(AvgPooling) AvgPooling.thrift_spec = ( ) AvgPooling.thrift_struct_annotations = { } AvgPooling.thrift_field_annotations = { } all_structs.append(PoolingConfig) PoolingConfig.thrift_spec = ( None, # 0 (1, TType.STRUCT, 'sum', [SumPooling, SumPooling.thrift_spec, False], SumPooling(**{ }), 2, ), # 1 (2, TType.STRUCT, 'avg', [AvgPooling, AvgPooling.thrift_spec, False], None, 2, ), # 2 ) PoolingConfig.thrift_struct_annotations = { } PoolingConfig.thrift_field_annotations = { } def PoolingConfig__init__(self, sum=PoolingConfig.thrift_spec[1][4], avg=None,): self.field = 0 self.value = None if sum is not None: assert self.field == 0 and self.value is None self.field = 1 self.value = sum if avg is not None: assert self.field == 0 and self.value is None self.field = 2 self.value = avg PoolingConfig.__init__ = PoolingConfig__init__ all_structs.append(SparseFeatureItem) SparseFeatureItem.thrift_spec = ( None, # 0 (1, TType.STRING, 'name', True, None, 2, ), # 1 (2, TType.I32, 'hash_size', None, 10000, 2, ), # 2 (3, TType.I32, 'embed_dim', None, -1, 2, ), # 3 (4, TType.STRUCT, 'optim', [OptimConfig, OptimConfig.thrift_spec, True], None, 1, ), # 4 (5, TType.STRUCT, 'pooling', [PoolingConfig, PoolingConfig.thrift_spec, True], PoolingConfig(**{ "sum" : SumPooling(**{ }), }), 2, ), # 5 ) SparseFeatureItem.thrift_struct_annotations = { } SparseFeatureItem.thrift_field_annotations = { } def SparseFeatureItem__init__(self, name=None, hash_size=SparseFeatureItem.thrift_spec[2][4], embed_dim=SparseFeatureItem.thrift_spec[3][4], optim=None, pooling=SparseFeatureItem.thrift_spec[5][4],): self.name = name self.hash_size = hash_size self.embed_dim = embed_dim self.optim = optim if pooling is self.thrift_spec[5][4]: pooling = PoolingConfig(**{ "sum" : SumPooling(**{ }), }) self.pooling = pooling SparseFeatureItem.__init__ = SparseFeatureItem__init__ def SparseFeatureItem__setstate__(self, state): state.setdefault('name', None) state.setdefault('hash_size', 10000) state.setdefault('embed_dim', -1) state.setdefault('optim', None) state.setdefault('pooling', PoolingConfig(**{ "sum" : SumPooling(**{ }), })) self.__dict__ = state SparseFeatureItem.__getstate__ = lambda self: self.__dict__.copy() SparseFeatureItem.__setstate__ = SparseFeatureItem__setstate__ all_structs.append(SparseFeatureConfig) SparseFeatureConfig.thrift_spec = ( None, # 0 (1, TType.LIST, 'features', (TType.STRUCT,[SparseFeatureItem, SparseFeatureItem.thrift_spec, False]), [ ], 2, ), # 1 (2, TType.I32, 'embed_dim', None, -1, 2, ), # 2 (3, TType.STRUCT, 'optim', [OptimConfig, OptimConfig.thrift_spec, True], None, 2, ), # 3 ) SparseFeatureConfig.thrift_struct_annotations = { } SparseFeatureConfig.thrift_field_annotations = { } def SparseFeatureConfig__init__(self, features=SparseFeatureConfig.thrift_spec[1][4], embed_dim=SparseFeatureConfig.thrift_spec[2][4], optim=None,): if features is self.thrift_spec[1][4]: features = [ ] self.features = features self.embed_dim = embed_dim self.optim = optim SparseFeatureConfig.__init__ = SparseFeatureConfig__init__ def SparseFeatureConfig__setstate__(self, state): state.setdefault('features', [ ]) state.setdefault('embed_dim', -1) state.setdefault('optim', None) self.__dict__ = state SparseFeatureConfig.__getstate__ = lambda self: self.__dict__.copy() SparseFeatureConfig.__setstate__ = SparseFeatureConfig__setstate__ all_structs.append(DenseFeatureConfig) DenseFeatureConfig.thrift_spec = ( None, # 0 (1, TType.LIST, 'features', (TType.STRING,True), None, 2, ), # 1 (2, TType.STRUCT, 'optim', [OptimConfig, OptimConfig.thrift_spec, True], None, 2, ), # 2 ) DenseFeatureConfig.thrift_struct_annotations = { } DenseFeatureConfig.thrift_field_annotations = { } def DenseFeatureConfig__init__(self, features=None, optim=None,): self.features = features self.optim = optim DenseFeatureConfig.__init__ = DenseFeatureConfig__init__ def DenseFeatureConfig__setstate__(self, state): state.setdefault('features', None) state.setdefault('optim', None) self.__dict__ = state DenseFeatureConfig.__getstate__ = lambda self: self.__dict__.copy() DenseFeatureConfig.__setstate__ = DenseFeatureConfig__setstate__ all_structs.append(FeatureConfig) FeatureConfig.thrift_spec = ( None, # 0 (1, TType.STRUCT, 'dense', [DenseFeatureConfig, DenseFeatureConfig.thrift_spec, False], None, 2, ), # 1 (2, TType.STRUCT, 'sparse', [SparseFeatureConfig, SparseFeatureConfig.thrift_spec, False], None, 2, ), # 2 ) FeatureConfig.thrift_struct_annotations = { } FeatureConfig.thrift_field_annotations = { } def FeatureConfig__init__(self, dense=None, sparse=None,): self.dense = dense self.sparse = sparse FeatureConfig.__init__ = FeatureConfig__init__ def FeatureConfig__setstate__(self, state): state.setdefault('dense', None) state.setdefault('sparse', None) self.__dict__ = state FeatureConfig.__getstate__ = lambda self: self.__dict__.copy() FeatureConfig.__setstate__ = FeatureConfig__setstate__ all_structs.append(BCEWithLogitsLoss) BCEWithLogitsLoss.thrift_spec = ( ) BCEWithLogitsLoss.thrift_struct_annotations = { } BCEWithLogitsLoss.thrift_field_annotations = { } all_structs.append(BCELoss) BCELoss.thrift_spec = ( ) BCELoss.thrift_struct_annotations = { } BCELoss.thrift_field_annotations = { } all_structs.append(MSELoss) MSELoss.thrift_spec = ( ) MSELoss.thrift_struct_annotations = { } MSELoss.thrift_field_annotations = { } all_structs.append(LossConfig) LossConfig.thrift_spec = ( None, # 0 (1, TType.STRUCT, 'bcewithlogits', [BCEWithLogitsLoss, BCEWithLogitsLoss.thrift_spec, False], None, 2, ), # 1 (2, TType.STRUCT, 'bce', [BCELoss, BCELoss.thrift_spec, False], None, 2, ), # 2 (3, TType.STRUCT, 'mse', [MSELoss, MSELoss.thrift_spec, False], None, 2, ), # 3 ) LossConfig.thrift_struct_annotations = { } LossConfig.thrift_field_annotations = { } def LossConfig__init__(self, bcewithlogits=None, bce=None, mse=None,): self.field = 0 self.value = None if bcewithlogits is not None: assert self.field == 0 and self.value is None self.field = 1 self.value = bcewithlogits if bce is not None: assert self.field == 0 and self.value is None self.field = 2 self.value = bce if mse is not None: assert self.field == 0 and self.value is None self.field = 3 self.value = mse LossConfig.__init__ = LossConfig__init__ all_structs.append(LoggingConfig) LoggingConfig.thrift_spec = ( None, # 0 (1, TType.I32, 'log_freq', None, 10000, 2, ), # 1 (2, TType.I32, 'tb_log_freq', None, -1, 2, ), # 2 (3, TType.BOOL, 'tb_log_model_weight_hist', None, False, 2, ), # 3 (4, TType.BOOL, 'tb_log_pr_curve_batch', None, True, 2, ), # 4 (5, TType.LIST, 'tb_log_model_weight_filter_regex', (TType.STRING,True), [ "sparse", ], 2, ), # 5 ) LoggingConfig.thrift_struct_annotations = { } LoggingConfig.thrift_field_annotations = { } def LoggingConfig__init__(self, log_freq=LoggingConfig.thrift_spec[1][4], tb_log_freq=LoggingConfig.thrift_spec[2][4], tb_log_model_weight_hist=LoggingConfig.thrift_spec[3][4], tb_log_pr_curve_batch=LoggingConfig.thrift_spec[4][4], tb_log_model_weight_filter_regex=LoggingConfig.thrift_spec[5][4],): self.log_freq = log_freq self.tb_log_freq = tb_log_freq self.tb_log_model_weight_hist = tb_log_model_weight_hist self.tb_log_pr_curve_batch = tb_log_pr_curve_batch if tb_log_model_weight_filter_regex is self.thrift_spec[5][4]: tb_log_model_weight_filter_regex = [ "sparse", ] self.tb_log_model_weight_filter_regex = tb_log_model_weight_filter_regex LoggingConfig.__init__ = LoggingConfig__init__ def LoggingConfig__setstate__(self, state): state.setdefault('log_freq', 10000) state.setdefault('tb_log_freq', -1) state.setdefault('tb_log_model_weight_hist', False) state.setdefault('tb_log_pr_curve_batch', True) state.setdefault('tb_log_model_weight_filter_regex', [ "sparse", ]) self.__dict__ = state LoggingConfig.__getstate__ = lambda self: self.__dict__.copy() LoggingConfig.__setstate__ = LoggingConfig__setstate__ all_structs.append(TrainConfig) TrainConfig.thrift_spec = ( None, # 0 (1, TType.STRUCT, 'logging_config', [LoggingConfig, LoggingConfig.thrift_spec, False], None, 2, ), # 1 None, # 2 (3, TType.I32, 'nepochs', None, 1, 2, ), # 3 None, # 4 (5, TType.BOOL, 'early_stop_on_val_loss', None, True, 2, ), # 5 (6, TType.STRUCT, 'loss', [LossConfig, LossConfig.thrift_spec, True], LossConfig(**{ "bcewithlogits" : BCEWithLogitsLoss(**{ }), }), 2, ), # 6 ) TrainConfig.thrift_struct_annotations = { } TrainConfig.thrift_field_annotations = { } def TrainConfig__init__(self, logging_config=None, nepochs=TrainConfig.thrift_spec[3][4], early_stop_on_val_loss=TrainConfig.thrift_spec[5][4], loss=TrainConfig.thrift_spec[6][4],): self.logging_config = logging_config self.nepochs = nepochs self.early_stop_on_val_loss = early_stop_on_val_loss if loss is self.thrift_spec[6][4]: loss = LossConfig(**{ "bcewithlogits" : BCEWithLogitsLoss(**{ }), }) self.loss = loss TrainConfig.__init__ = TrainConfig__init__ def TrainConfig__setstate__(self, state): state.setdefault('logging_config', None) state.setdefault('nepochs', 1) state.setdefault('early_stop_on_val_loss', True) state.setdefault('loss', LossConfig(**{ "bcewithlogits" : BCEWithLogitsLoss(**{ }), })) self.__dict__ = state TrainConfig.__getstate__ = lambda self: self.__dict__.copy() TrainConfig.__setstate__ = TrainConfig__setstate__ all_structs.append(EvalConfig) EvalConfig.thrift_spec = ( None, # 0 (1, TType.STRUCT, 'logging_config', [LoggingConfig, LoggingConfig.thrift_spec, False], None, 2, ), # 1 (2, TType.STRUCT, 'loss', [LossConfig, LossConfig.thrift_spec, True], LossConfig(**{ "bcewithlogits" : BCEWithLogitsLoss(**{ }), }), 2, ), # 2 (3, TType.BOOL, 'compute_ne', None, True, 2, ), # 3 ) EvalConfig.thrift_struct_annotations = { } EvalConfig.thrift_field_annotations = { } def EvalConfig__init__(self, logging_config=None, loss=EvalConfig.thrift_spec[2][4], compute_ne=EvalConfig.thrift_spec[3][4],): self.logging_config = logging_config if loss is self.thrift_spec[2][4]: loss = LossConfig(**{ "bcewithlogits" : BCEWithLogitsLoss(**{ }), }) self.loss = loss self.compute_ne = compute_ne EvalConfig.__init__ = EvalConfig__init__ def EvalConfig__setstate__(self, state): state.setdefault('logging_config', None) state.setdefault('loss', LossConfig(**{ "bcewithlogits" : BCEWithLogitsLoss(**{ }), })) state.setdefault('compute_ne', True) self.__dict__ = state EvalConfig.__getstate__ = lambda self: self.__dict__.copy() EvalConfig.__setstate__ = EvalConfig__setstate__ all_structs.append(CheckpointConfig) CheckpointConfig.thrift_spec = ( None, # 0 (1, TType.I32, 'ckp_interval', None, 10, 2, ), # 1 (2, TType.STRING, 'ckp_path', True, "", 2, ), # 2 ) CheckpointConfig.thrift_struct_annotations = { } CheckpointConfig.thrift_field_annotations = { } def CheckpointConfig__init__(self, ckp_interval=CheckpointConfig.thrift_spec[1][4], ckp_path=CheckpointConfig.thrift_spec[2][4],): self.ckp_interval = ckp_interval self.ckp_path = ckp_path CheckpointConfig.__init__ = CheckpointConfig__init__ def CheckpointConfig__setstate__(self, state): state.setdefault('ckp_interval', 10) state.setdefault('ckp_path', "") self.__dict__ = state CheckpointConfig.__getstate__ = lambda self: self.__dict__.copy() CheckpointConfig.__setstate__ = CheckpointConfig__setstate__ all_structs.append(KoskiReaderConfig) KoskiReaderConfig.thrift_spec = ( None, # 0 (1, TType.I64, 'prefetch_capacity', None, 128, 2, ), # 1 (2, TType.BOOL, 'pin_memory', None, True, 2, ), # 2 (3, TType.I32, 'num_workers', None, 4, 2, ), # 3 ) KoskiReaderConfig.thrift_struct_annotations = { } KoskiReaderConfig.thrift_field_annotations = { } def KoskiReaderConfig__init__(self, prefetch_capacity=KoskiReaderConfig.thrift_spec[1][4], pin_memory=KoskiReaderConfig.thrift_spec[2][4], num_workers=KoskiReaderConfig.thrift_spec[3][4],): self.prefetch_capacity = prefetch_capacity self.pin_memory = pin_memory self.num_workers = num_workers KoskiReaderConfig.__init__ = KoskiReaderConfig__init__ def KoskiReaderConfig__setstate__(self, state): state.setdefault('prefetch_capacity', 128) state.setdefault('pin_memory', True) state.setdefault('num_workers', 4) self.__dict__ = state KoskiReaderConfig.__getstate__ = lambda self: self.__dict__.copy() KoskiReaderConfig.__setstate__ = KoskiReaderConfig__setstate__ all_structs.append(PerformanceConfig) PerformanceConfig.thrift_spec = ( None, # 0 (1, TType.BOOL, 'use_gpu', None, False, 2, ), # 1 (2, TType.I32, 'num_readers', None, 4, 2, ), # 2 (3, TType.I32, 'num_trainers', None, 1, 2, ), # 3 (4, TType.STRUCT, 'ckp_config', [CheckpointConfig, CheckpointConfig.thrift_spec, False], CheckpointConfig(**{ "ckp_interval" : 10, }), 2, ), # 4 (5, TType.I32, 'data_queue_maxsize', None, 100, 2, ), # 5 (6, TType.I32, 'reader_threads', None, 8, 2, ), # 6 (7, TType.I32, 'num_gpu', None, 1, 2, ), # 7 (8, TType.BOOL, 'enable_profiling', None, False, 1, ), # 8 (9, TType.STRUCT, 'koski', [KoskiReaderConfig, KoskiReaderConfig.thrift_spec, False], None, 1, ), # 9 (10, TType.I32, 'omp_num_threads', None, 0, 1, ), # 10 ) PerformanceConfig.thrift_struct_annotations = { } PerformanceConfig.thrift_field_annotations = { } def PerformanceConfig__init__(self, use_gpu=PerformanceConfig.thrift_spec[1][4], num_readers=PerformanceConfig.thrift_spec[2][4], num_trainers=PerformanceConfig.thrift_spec[3][4], ckp_config=PerformanceConfig.thrift_spec[4][4], data_queue_maxsize=PerformanceConfig.thrift_spec[5][4], reader_threads=PerformanceConfig.thrift_spec[6][4], num_gpu=PerformanceConfig.thrift_spec[7][4], enable_profiling=PerformanceConfig.thrift_spec[8][4], koski=None, omp_num_threads=PerformanceConfig.thrift_spec[10][4],): self.use_gpu = use_gpu self.num_readers = num_readers self.num_trainers = num_trainers if ckp_config is self.thrift_spec[4][4]: ckp_config = CheckpointConfig(**{ "ckp_interval" : 10, }) self.ckp_config = ckp_config self.data_queue_maxsize = data_queue_maxsize self.reader_threads = reader_threads self.num_gpu = num_gpu self.enable_profiling = enable_profiling self.koski = koski self.omp_num_threads = omp_num_threads PerformanceConfig.__init__ = PerformanceConfig__init__ def PerformanceConfig__setstate__(self, state): state.setdefault('use_gpu', False) state.setdefault('num_readers', 4) state.setdefault('num_trainers', 1) state.setdefault('ckp_config', CheckpointConfig(**{ "ckp_interval" : 10, })) state.setdefault('data_queue_maxsize', 100) state.setdefault('reader_threads', 8) state.setdefault('num_gpu', 1) state.setdefault('enable_profiling', False) state.setdefault('koski', None) state.setdefault('omp_num_threads', 0) self.__dict__ = state PerformanceConfig.__getstate__ = lambda self: self.__dict__.copy() PerformanceConfig.__setstate__ = PerformanceConfig__setstate__ fix_spec(all_structs) del all_structs
AutoCTR-main
gen-py/config/ttypes.py
# # Autogenerated by Thrift # # DO NOT EDIT UNLESS YOU ARE SURE THAT YOU KNOW WHAT YOU ARE DOING # @generated # from __future__ import absolute_import import six from thrift.util.Recursive import fix_spec from thrift.Thrift import * from thrift.protocol.TProtocol import TProtocolException from .ttypes import *
AutoCTR-main
gen-py/block_config/constants.py
# # Autogenerated by Thrift # # DO NOT EDIT UNLESS YOU ARE SURE THAT YOU KNOW WHAT YOU ARE DOING # @generated # __all__ = ['ttypes', 'constants']
AutoCTR-main
gen-py/block_config/__init__.py
# # Autogenerated by Thrift # # DO NOT EDIT UNLESS YOU ARE SURE THAT YOU KNOW WHAT YOU ARE DOING # @generated # from __future__ import absolute_import import six from thrift.util.Recursive import fix_spec from thrift.Thrift import * from thrift.protocol.TProtocol import TProtocolException import pprint import warnings from thrift import Thrift from thrift.transport import TTransport from thrift.protocol import TBinaryProtocol from thrift.protocol import TCompactProtocol from thrift.protocol import THeaderProtocol fastproto = None if not '__pypy__' in sys.builtin_module_names: try: from thrift.protocol import fastproto except ImportError: pass all_structs = [] UTF8STRINGS = bool(0) or sys.version_info.major >= 3 __all__ = ['UTF8STRINGS', 'ExtendedBlockType', 'FeatSelectionConfig', 'DenseBlockType', 'EmbedBlockType', 'BlockType', 'MLPBlockConfig', 'CrossNetBlockConfig', 'FMBlockConfig', 'DotProcessorBlockConfig', 'CatBlockConfig', 'CINBlockConfig', 'AttentionBlockConfig', 'BlockConfig'] class ExtendedBlockType: MLP_DENSE = 1 MLP_EMB = 2 CROSSNET = 3 FM_DENSE = 4 FM_EMB = 5 DOTPROCESSOR_DENSE = 6 DOTPROCESSOR_EMB = 7 CAT_DENSE = 8 CAT_EMB = 9 CIN = 10 ATTENTION = 11 _VALUES_TO_NAMES = { 1: "MLP_DENSE", 2: "MLP_EMB", 3: "CROSSNET", 4: "FM_DENSE", 5: "FM_EMB", 6: "DOTPROCESSOR_DENSE", 7: "DOTPROCESSOR_EMB", 8: "CAT_DENSE", 9: "CAT_EMB", 10: "CIN", 11: "ATTENTION", } _NAMES_TO_VALUES = { "MLP_DENSE": 1, "MLP_EMB": 2, "CROSSNET": 3, "FM_DENSE": 4, "FM_EMB": 5, "DOTPROCESSOR_DENSE": 6, "DOTPROCESSOR_EMB": 7, "CAT_DENSE": 8, "CAT_EMB": 9, "CIN": 10, "ATTENTION": 11, } class FeatSelectionConfig: """ Attributes: - block_id - dense - sparse """ thrift_spec = None thrift_field_annotations = None thrift_struct_annotations = None __init__ = None @staticmethod def isUnion(): return False def read(self, iprot): if (isinstance(iprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0) self.checkRequired() return if (isinstance(iprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2) self.checkRequired() return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.I32: self.block_id = iprot.readI32() else: iprot.skip(ftype) elif fid == 2: if ftype == TType.LIST: self.dense = [] (_etype3, _size0) = iprot.readListBegin() if _size0 >= 0: for _i4 in six.moves.range(_size0): _elem5 = iprot.readI32() self.dense.append(_elem5) else: while iprot.peekList(): _elem6 = iprot.readI32() self.dense.append(_elem6) iprot.readListEnd() else: iprot.skip(ftype) elif fid == 3: if ftype == TType.LIST: self.sparse = [] (_etype10, _size7) = iprot.readListBegin() if _size7 >= 0: for _i11 in six.moves.range(_size7): _elem12 = iprot.readI32() self.sparse.append(_elem12) else: while iprot.peekList(): _elem13 = iprot.readI32() self.sparse.append(_elem13) iprot.readListEnd() else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() self.checkRequired() def checkRequired(self): return def write(self, oprot): if (isinstance(oprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0)) return if (isinstance(oprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2)) return oprot.writeStructBegin('FeatSelectionConfig') if self.block_id != None: oprot.writeFieldBegin('block_id', TType.I32, 1) oprot.writeI32(self.block_id) oprot.writeFieldEnd() if self.dense != None: oprot.writeFieldBegin('dense', TType.LIST, 2) oprot.writeListBegin(TType.I32, len(self.dense)) for iter14 in self.dense: oprot.writeI32(iter14) oprot.writeListEnd() oprot.writeFieldEnd() if self.sparse != None: oprot.writeFieldBegin('sparse', TType.LIST, 3) oprot.writeListBegin(TType.I32, len(self.sparse)) for iter15 in self.sparse: oprot.writeI32(iter15) oprot.writeListEnd() oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def __repr__(self): L = [] padding = ' ' * 4 if self.block_id is not None: value = pprint.pformat(self.block_id, indent=0) value = padding.join(value.splitlines(True)) L.append(' block_id=%s' % (value)) if self.dense is not None: value = pprint.pformat(self.dense, indent=0) value = padding.join(value.splitlines(True)) L.append(' dense=%s' % (value)) if self.sparse is not None: value = pprint.pformat(self.sparse, indent=0) value = padding.join(value.splitlines(True)) L.append(' sparse=%s' % (value)) return "%s(%s)" % (self.__class__.__name__, "\n" + ",\n".join(L) if L else '') def __eq__(self, other): if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) # Override the __hash__ function for Python3 - t10434117 if not six.PY2: __hash__ = object.__hash__ class DenseBlockType: thrift_spec = None thrift_field_annotations = None thrift_struct_annotations = None @staticmethod def isUnion(): return False def read(self, iprot): if (isinstance(iprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0) self.checkRequired() return if (isinstance(iprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2) self.checkRequired() return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() self.checkRequired() def checkRequired(self): return def write(self, oprot): if (isinstance(oprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0)) return if (isinstance(oprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2)) return oprot.writeStructBegin('DenseBlockType') oprot.writeFieldStop() oprot.writeStructEnd() def __repr__(self): L = [] padding = ' ' * 4 return "%s(%s)" % (self.__class__.__name__, "\n" + ",\n".join(L) if L else '') def __eq__(self, other): if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) # Override the __hash__ function for Python3 - t10434117 if not six.PY2: __hash__ = object.__hash__ class EmbedBlockType: """ Attributes: - comm_embed_dim - dense_as_sparse """ thrift_spec = None thrift_field_annotations = None thrift_struct_annotations = None __init__ = None @staticmethod def isUnion(): return False def read(self, iprot): if (isinstance(iprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0) self.checkRequired() return if (isinstance(iprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2) self.checkRequired() return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.I32: self.comm_embed_dim = iprot.readI32() else: iprot.skip(ftype) elif fid == 2: if ftype == TType.BOOL: self.dense_as_sparse = iprot.readBool() else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() self.checkRequired() def checkRequired(self): return def write(self, oprot): if (isinstance(oprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0)) return if (isinstance(oprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2)) return oprot.writeStructBegin('EmbedBlockType') if self.comm_embed_dim != None: oprot.writeFieldBegin('comm_embed_dim', TType.I32, 1) oprot.writeI32(self.comm_embed_dim) oprot.writeFieldEnd() if self.dense_as_sparse != None: oprot.writeFieldBegin('dense_as_sparse', TType.BOOL, 2) oprot.writeBool(self.dense_as_sparse) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def __repr__(self): L = [] padding = ' ' * 4 if self.comm_embed_dim is not None: value = pprint.pformat(self.comm_embed_dim, indent=0) value = padding.join(value.splitlines(True)) L.append(' comm_embed_dim=%s' % (value)) if self.dense_as_sparse is not None: value = pprint.pformat(self.dense_as_sparse, indent=0) value = padding.join(value.splitlines(True)) L.append(' dense_as_sparse=%s' % (value)) return "%s(%s)" % (self.__class__.__name__, "\n" + ",\n".join(L) if L else '') def __eq__(self, other): if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) # Override the __hash__ function for Python3 - t10434117 if not six.PY2: __hash__ = object.__hash__ class BlockType(object): """ Attributes: - dense - emb """ thrift_spec = None __init__ = None __EMPTY__ = 0 DENSE = 1 EMB = 2 @staticmethod def isUnion(): return True def get_dense(self): assert self.field == 1 return self.value def get_emb(self): assert self.field == 2 return self.value def set_dense(self, value): self.field = 1 self.value = value def set_emb(self, value): self.field = 2 self.value = value def getType(self): return self.field def __repr__(self): value = pprint.pformat(self.value) member = '' if self.field == 1: padding = ' ' * 6 value = padding.join(value.splitlines(True)) member = '\n %s=%s' % ('dense', value) if self.field == 2: padding = ' ' * 4 value = padding.join(value.splitlines(True)) member = '\n %s=%s' % ('emb', value) return "%s(%s)" % (self.__class__.__name__, member) def read(self, iprot): self.field = 0 self.value = None if (isinstance(iprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, True], utf8strings=UTF8STRINGS, protoid=0) self.checkRequired() return if (isinstance(iprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, True], utf8strings=UTF8STRINGS, protoid=2) self.checkRequired() return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRUCT: dense = DenseBlockType() dense.read(iprot) assert self.field == 0 and self.value is None self.set_dense(dense) else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRUCT: emb = EmbedBlockType() emb.read(iprot) assert self.field == 0 and self.value is None self.set_emb(emb) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if (isinstance(oprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, True], utf8strings=UTF8STRINGS, protoid=0)) return if (isinstance(oprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, True], utf8strings=UTF8STRINGS, protoid=2)) return oprot.writeUnionBegin('BlockType') if self.field == 1: oprot.writeFieldBegin('dense', TType.STRUCT, 1) dense = self.value dense.write(oprot) oprot.writeFieldEnd() if self.field == 2: oprot.writeFieldBegin('emb', TType.STRUCT, 2) emb = self.value emb.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeUnionEnd() def __eq__(self, other): if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class MLPBlockConfig: """ Attributes: - name - block_id - input_feat_config - type - arc - ly_act """ thrift_spec = None thrift_field_annotations = None thrift_struct_annotations = None __init__ = None @staticmethod def isUnion(): return False def read(self, iprot): if (isinstance(iprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0) self.checkRequired() return if (isinstance(iprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2) self.checkRequired() return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRING: self.name = iprot.readString().decode('utf-8') if UTF8STRINGS else iprot.readString() else: iprot.skip(ftype) elif fid == 2: if ftype == TType.I32: self.block_id = iprot.readI32() else: iprot.skip(ftype) elif fid == 3: if ftype == TType.LIST: self.input_feat_config = [] (_etype19, _size16) = iprot.readListBegin() if _size16 >= 0: for _i20 in six.moves.range(_size16): _elem21 = FeatSelectionConfig() _elem21.read(iprot) self.input_feat_config.append(_elem21) else: while iprot.peekList(): _elem22 = FeatSelectionConfig() _elem22.read(iprot) self.input_feat_config.append(_elem22) iprot.readListEnd() else: iprot.skip(ftype) elif fid == 4: if ftype == TType.STRUCT: self.type = BlockType() self.type.read(iprot) else: iprot.skip(ftype) elif fid == 5: if ftype == TType.LIST: self.arc = [] (_etype26, _size23) = iprot.readListBegin() if _size23 >= 0: for _i27 in six.moves.range(_size23): _elem28 = iprot.readI32() self.arc.append(_elem28) else: while iprot.peekList(): _elem29 = iprot.readI32() self.arc.append(_elem29) iprot.readListEnd() else: iprot.skip(ftype) elif fid == 6: if ftype == TType.BOOL: self.ly_act = iprot.readBool() else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() self.checkRequired() def checkRequired(self): return def write(self, oprot): if (isinstance(oprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0)) return if (isinstance(oprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2)) return oprot.writeStructBegin('MLPBlockConfig') if self.name != None: oprot.writeFieldBegin('name', TType.STRING, 1) oprot.writeString(self.name.encode('utf-8')) if UTF8STRINGS and not isinstance(self.name, bytes) else oprot.writeString(self.name) oprot.writeFieldEnd() if self.block_id != None: oprot.writeFieldBegin('block_id', TType.I32, 2) oprot.writeI32(self.block_id) oprot.writeFieldEnd() if self.input_feat_config != None: oprot.writeFieldBegin('input_feat_config', TType.LIST, 3) oprot.writeListBegin(TType.STRUCT, len(self.input_feat_config)) for iter30 in self.input_feat_config: iter30.write(oprot) oprot.writeListEnd() oprot.writeFieldEnd() if self.type != None: oprot.writeFieldBegin('type', TType.STRUCT, 4) self.type.write(oprot) oprot.writeFieldEnd() if self.arc != None: oprot.writeFieldBegin('arc', TType.LIST, 5) oprot.writeListBegin(TType.I32, len(self.arc)) for iter31 in self.arc: oprot.writeI32(iter31) oprot.writeListEnd() oprot.writeFieldEnd() if self.ly_act != None: oprot.writeFieldBegin('ly_act', TType.BOOL, 6) oprot.writeBool(self.ly_act) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def __repr__(self): L = [] padding = ' ' * 4 if self.name is not None: value = pprint.pformat(self.name, indent=0) value = padding.join(value.splitlines(True)) L.append(' name=%s' % (value)) if self.block_id is not None: value = pprint.pformat(self.block_id, indent=0) value = padding.join(value.splitlines(True)) L.append(' block_id=%s' % (value)) if self.input_feat_config is not None: value = pprint.pformat(self.input_feat_config, indent=0) value = padding.join(value.splitlines(True)) L.append(' input_feat_config=%s' % (value)) if self.type is not None: value = pprint.pformat(self.type, indent=0) value = padding.join(value.splitlines(True)) L.append(' type=%s' % (value)) if self.arc is not None: value = pprint.pformat(self.arc, indent=0) value = padding.join(value.splitlines(True)) L.append(' arc=%s' % (value)) if self.ly_act is not None: value = pprint.pformat(self.ly_act, indent=0) value = padding.join(value.splitlines(True)) L.append(' ly_act=%s' % (value)) return "%s(%s)" % (self.__class__.__name__, "\n" + ",\n".join(L) if L else '') def __eq__(self, other): if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) # Override the __hash__ function for Python3 - t10434117 if not six.PY2: __hash__ = object.__hash__ class CrossNetBlockConfig: """ Attributes: - name - block_id - input_feat_config - num_of_layers - cross_feat_config - batchnorm """ thrift_spec = None thrift_field_annotations = None thrift_struct_annotations = None __init__ = None @staticmethod def isUnion(): return False def read(self, iprot): if (isinstance(iprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0) self.checkRequired() return if (isinstance(iprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2) self.checkRequired() return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRING: self.name = iprot.readString().decode('utf-8') if UTF8STRINGS else iprot.readString() else: iprot.skip(ftype) elif fid == 2: if ftype == TType.I32: self.block_id = iprot.readI32() else: iprot.skip(ftype) elif fid == 3: if ftype == TType.LIST: self.input_feat_config = [] (_etype35, _size32) = iprot.readListBegin() if _size32 >= 0: for _i36 in six.moves.range(_size32): _elem37 = FeatSelectionConfig() _elem37.read(iprot) self.input_feat_config.append(_elem37) else: while iprot.peekList(): _elem38 = FeatSelectionConfig() _elem38.read(iprot) self.input_feat_config.append(_elem38) iprot.readListEnd() else: iprot.skip(ftype) elif fid == 4: if ftype == TType.I32: self.num_of_layers = iprot.readI32() else: iprot.skip(ftype) elif fid == 5: if ftype == TType.LIST: self.cross_feat_config = [] (_etype42, _size39) = iprot.readListBegin() if _size39 >= 0: for _i43 in six.moves.range(_size39): _elem44 = FeatSelectionConfig() _elem44.read(iprot) self.cross_feat_config.append(_elem44) else: while iprot.peekList(): _elem45 = FeatSelectionConfig() _elem45.read(iprot) self.cross_feat_config.append(_elem45) iprot.readListEnd() else: iprot.skip(ftype) elif fid == 6: if ftype == TType.BOOL: self.batchnorm = iprot.readBool() else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() self.checkRequired() def checkRequired(self): return def write(self, oprot): if (isinstance(oprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0)) return if (isinstance(oprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2)) return oprot.writeStructBegin('CrossNetBlockConfig') if self.name != None: oprot.writeFieldBegin('name', TType.STRING, 1) oprot.writeString(self.name.encode('utf-8')) if UTF8STRINGS and not isinstance(self.name, bytes) else oprot.writeString(self.name) oprot.writeFieldEnd() if self.block_id != None: oprot.writeFieldBegin('block_id', TType.I32, 2) oprot.writeI32(self.block_id) oprot.writeFieldEnd() if self.input_feat_config != None: oprot.writeFieldBegin('input_feat_config', TType.LIST, 3) oprot.writeListBegin(TType.STRUCT, len(self.input_feat_config)) for iter46 in self.input_feat_config: iter46.write(oprot) oprot.writeListEnd() oprot.writeFieldEnd() if self.num_of_layers != None: oprot.writeFieldBegin('num_of_layers', TType.I32, 4) oprot.writeI32(self.num_of_layers) oprot.writeFieldEnd() if self.cross_feat_config != None: oprot.writeFieldBegin('cross_feat_config', TType.LIST, 5) oprot.writeListBegin(TType.STRUCT, len(self.cross_feat_config)) for iter47 in self.cross_feat_config: iter47.write(oprot) oprot.writeListEnd() oprot.writeFieldEnd() if self.batchnorm != None: oprot.writeFieldBegin('batchnorm', TType.BOOL, 6) oprot.writeBool(self.batchnorm) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def __repr__(self): L = [] padding = ' ' * 4 if self.name is not None: value = pprint.pformat(self.name, indent=0) value = padding.join(value.splitlines(True)) L.append(' name=%s' % (value)) if self.block_id is not None: value = pprint.pformat(self.block_id, indent=0) value = padding.join(value.splitlines(True)) L.append(' block_id=%s' % (value)) if self.input_feat_config is not None: value = pprint.pformat(self.input_feat_config, indent=0) value = padding.join(value.splitlines(True)) L.append(' input_feat_config=%s' % (value)) if self.num_of_layers is not None: value = pprint.pformat(self.num_of_layers, indent=0) value = padding.join(value.splitlines(True)) L.append(' num_of_layers=%s' % (value)) if self.cross_feat_config is not None: value = pprint.pformat(self.cross_feat_config, indent=0) value = padding.join(value.splitlines(True)) L.append(' cross_feat_config=%s' % (value)) if self.batchnorm is not None: value = pprint.pformat(self.batchnorm, indent=0) value = padding.join(value.splitlines(True)) L.append(' batchnorm=%s' % (value)) return "%s(%s)" % (self.__class__.__name__, "\n" + ",\n".join(L) if L else '') def __eq__(self, other): if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) # Override the __hash__ function for Python3 - t10434117 if not six.PY2: __hash__ = object.__hash__ class FMBlockConfig: """ Attributes: - name - block_id - input_feat_config - type """ thrift_spec = None thrift_field_annotations = None thrift_struct_annotations = None __init__ = None @staticmethod def isUnion(): return False def read(self, iprot): if (isinstance(iprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0) self.checkRequired() return if (isinstance(iprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2) self.checkRequired() return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRING: self.name = iprot.readString().decode('utf-8') if UTF8STRINGS else iprot.readString() else: iprot.skip(ftype) elif fid == 2: if ftype == TType.I32: self.block_id = iprot.readI32() else: iprot.skip(ftype) elif fid == 3: if ftype == TType.LIST: self.input_feat_config = [] (_etype51, _size48) = iprot.readListBegin() if _size48 >= 0: for _i52 in six.moves.range(_size48): _elem53 = FeatSelectionConfig() _elem53.read(iprot) self.input_feat_config.append(_elem53) else: while iprot.peekList(): _elem54 = FeatSelectionConfig() _elem54.read(iprot) self.input_feat_config.append(_elem54) iprot.readListEnd() else: iprot.skip(ftype) elif fid == 4: if ftype == TType.STRUCT: self.type = BlockType() self.type.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() self.checkRequired() def checkRequired(self): return def write(self, oprot): if (isinstance(oprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0)) return if (isinstance(oprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2)) return oprot.writeStructBegin('FMBlockConfig') if self.name != None: oprot.writeFieldBegin('name', TType.STRING, 1) oprot.writeString(self.name.encode('utf-8')) if UTF8STRINGS and not isinstance(self.name, bytes) else oprot.writeString(self.name) oprot.writeFieldEnd() if self.block_id != None: oprot.writeFieldBegin('block_id', TType.I32, 2) oprot.writeI32(self.block_id) oprot.writeFieldEnd() if self.input_feat_config != None: oprot.writeFieldBegin('input_feat_config', TType.LIST, 3) oprot.writeListBegin(TType.STRUCT, len(self.input_feat_config)) for iter55 in self.input_feat_config: iter55.write(oprot) oprot.writeListEnd() oprot.writeFieldEnd() if self.type != None: oprot.writeFieldBegin('type', TType.STRUCT, 4) self.type.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def __repr__(self): L = [] padding = ' ' * 4 if self.name is not None: value = pprint.pformat(self.name, indent=0) value = padding.join(value.splitlines(True)) L.append(' name=%s' % (value)) if self.block_id is not None: value = pprint.pformat(self.block_id, indent=0) value = padding.join(value.splitlines(True)) L.append(' block_id=%s' % (value)) if self.input_feat_config is not None: value = pprint.pformat(self.input_feat_config, indent=0) value = padding.join(value.splitlines(True)) L.append(' input_feat_config=%s' % (value)) if self.type is not None: value = pprint.pformat(self.type, indent=0) value = padding.join(value.splitlines(True)) L.append(' type=%s' % (value)) return "%s(%s)" % (self.__class__.__name__, "\n" + ",\n".join(L) if L else '') def __eq__(self, other): if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) # Override the __hash__ function for Python3 - t10434117 if not six.PY2: __hash__ = object.__hash__ class DotProcessorBlockConfig: """ Attributes: - name - block_id - input_feat_config - type """ thrift_spec = None thrift_field_annotations = None thrift_struct_annotations = None __init__ = None @staticmethod def isUnion(): return False def read(self, iprot): if (isinstance(iprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0) self.checkRequired() return if (isinstance(iprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2) self.checkRequired() return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRING: self.name = iprot.readString().decode('utf-8') if UTF8STRINGS else iprot.readString() else: iprot.skip(ftype) elif fid == 2: if ftype == TType.I32: self.block_id = iprot.readI32() else: iprot.skip(ftype) elif fid == 3: if ftype == TType.LIST: self.input_feat_config = [] (_etype59, _size56) = iprot.readListBegin() if _size56 >= 0: for _i60 in six.moves.range(_size56): _elem61 = FeatSelectionConfig() _elem61.read(iprot) self.input_feat_config.append(_elem61) else: while iprot.peekList(): _elem62 = FeatSelectionConfig() _elem62.read(iprot) self.input_feat_config.append(_elem62) iprot.readListEnd() else: iprot.skip(ftype) elif fid == 4: if ftype == TType.STRUCT: self.type = BlockType() self.type.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() self.checkRequired() def checkRequired(self): return def write(self, oprot): if (isinstance(oprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0)) return if (isinstance(oprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2)) return oprot.writeStructBegin('DotProcessorBlockConfig') if self.name != None: oprot.writeFieldBegin('name', TType.STRING, 1) oprot.writeString(self.name.encode('utf-8')) if UTF8STRINGS and not isinstance(self.name, bytes) else oprot.writeString(self.name) oprot.writeFieldEnd() if self.block_id != None: oprot.writeFieldBegin('block_id', TType.I32, 2) oprot.writeI32(self.block_id) oprot.writeFieldEnd() if self.input_feat_config != None: oprot.writeFieldBegin('input_feat_config', TType.LIST, 3) oprot.writeListBegin(TType.STRUCT, len(self.input_feat_config)) for iter63 in self.input_feat_config: iter63.write(oprot) oprot.writeListEnd() oprot.writeFieldEnd() if self.type != None: oprot.writeFieldBegin('type', TType.STRUCT, 4) self.type.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def __repr__(self): L = [] padding = ' ' * 4 if self.name is not None: value = pprint.pformat(self.name, indent=0) value = padding.join(value.splitlines(True)) L.append(' name=%s' % (value)) if self.block_id is not None: value = pprint.pformat(self.block_id, indent=0) value = padding.join(value.splitlines(True)) L.append(' block_id=%s' % (value)) if self.input_feat_config is not None: value = pprint.pformat(self.input_feat_config, indent=0) value = padding.join(value.splitlines(True)) L.append(' input_feat_config=%s' % (value)) if self.type is not None: value = pprint.pformat(self.type, indent=0) value = padding.join(value.splitlines(True)) L.append(' type=%s' % (value)) return "%s(%s)" % (self.__class__.__name__, "\n" + ",\n".join(L) if L else '') def __eq__(self, other): if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) # Override the __hash__ function for Python3 - t10434117 if not six.PY2: __hash__ = object.__hash__ class CatBlockConfig: """ Attributes: - name - block_id - input_feat_config - type """ thrift_spec = None thrift_field_annotations = None thrift_struct_annotations = None __init__ = None @staticmethod def isUnion(): return False def read(self, iprot): if (isinstance(iprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0) self.checkRequired() return if (isinstance(iprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2) self.checkRequired() return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRING: self.name = iprot.readString().decode('utf-8') if UTF8STRINGS else iprot.readString() else: iprot.skip(ftype) elif fid == 2: if ftype == TType.I32: self.block_id = iprot.readI32() else: iprot.skip(ftype) elif fid == 3: if ftype == TType.LIST: self.input_feat_config = [] (_etype67, _size64) = iprot.readListBegin() if _size64 >= 0: for _i68 in six.moves.range(_size64): _elem69 = FeatSelectionConfig() _elem69.read(iprot) self.input_feat_config.append(_elem69) else: while iprot.peekList(): _elem70 = FeatSelectionConfig() _elem70.read(iprot) self.input_feat_config.append(_elem70) iprot.readListEnd() else: iprot.skip(ftype) elif fid == 4: if ftype == TType.STRUCT: self.type = BlockType() self.type.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() self.checkRequired() def checkRequired(self): return def write(self, oprot): if (isinstance(oprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0)) return if (isinstance(oprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2)) return oprot.writeStructBegin('CatBlockConfig') if self.name != None: oprot.writeFieldBegin('name', TType.STRING, 1) oprot.writeString(self.name.encode('utf-8')) if UTF8STRINGS and not isinstance(self.name, bytes) else oprot.writeString(self.name) oprot.writeFieldEnd() if self.block_id != None: oprot.writeFieldBegin('block_id', TType.I32, 2) oprot.writeI32(self.block_id) oprot.writeFieldEnd() if self.input_feat_config != None: oprot.writeFieldBegin('input_feat_config', TType.LIST, 3) oprot.writeListBegin(TType.STRUCT, len(self.input_feat_config)) for iter71 in self.input_feat_config: iter71.write(oprot) oprot.writeListEnd() oprot.writeFieldEnd() if self.type != None: oprot.writeFieldBegin('type', TType.STRUCT, 4) self.type.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def __repr__(self): L = [] padding = ' ' * 4 if self.name is not None: value = pprint.pformat(self.name, indent=0) value = padding.join(value.splitlines(True)) L.append(' name=%s' % (value)) if self.block_id is not None: value = pprint.pformat(self.block_id, indent=0) value = padding.join(value.splitlines(True)) L.append(' block_id=%s' % (value)) if self.input_feat_config is not None: value = pprint.pformat(self.input_feat_config, indent=0) value = padding.join(value.splitlines(True)) L.append(' input_feat_config=%s' % (value)) if self.type is not None: value = pprint.pformat(self.type, indent=0) value = padding.join(value.splitlines(True)) L.append(' type=%s' % (value)) return "%s(%s)" % (self.__class__.__name__, "\n" + ",\n".join(L) if L else '') def __eq__(self, other): if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) # Override the __hash__ function for Python3 - t10434117 if not six.PY2: __hash__ = object.__hash__ class CINBlockConfig: """ Attributes: - name - block_id - input_feat_config - emb_config - arc - split_half """ thrift_spec = None thrift_field_annotations = None thrift_struct_annotations = None __init__ = None @staticmethod def isUnion(): return False def read(self, iprot): if (isinstance(iprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0) self.checkRequired() return if (isinstance(iprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2) self.checkRequired() return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRING: self.name = iprot.readString().decode('utf-8') if UTF8STRINGS else iprot.readString() else: iprot.skip(ftype) elif fid == 2: if ftype == TType.I32: self.block_id = iprot.readI32() else: iprot.skip(ftype) elif fid == 3: if ftype == TType.LIST: self.input_feat_config = [] (_etype75, _size72) = iprot.readListBegin() if _size72 >= 0: for _i76 in six.moves.range(_size72): _elem77 = FeatSelectionConfig() _elem77.read(iprot) self.input_feat_config.append(_elem77) else: while iprot.peekList(): _elem78 = FeatSelectionConfig() _elem78.read(iprot) self.input_feat_config.append(_elem78) iprot.readListEnd() else: iprot.skip(ftype) elif fid == 4: if ftype == TType.STRUCT: self.emb_config = EmbedBlockType() self.emb_config.read(iprot) else: iprot.skip(ftype) elif fid == 5: if ftype == TType.LIST: self.arc = [] (_etype82, _size79) = iprot.readListBegin() if _size79 >= 0: for _i83 in six.moves.range(_size79): _elem84 = iprot.readI32() self.arc.append(_elem84) else: while iprot.peekList(): _elem85 = iprot.readI32() self.arc.append(_elem85) iprot.readListEnd() else: iprot.skip(ftype) elif fid == 6: if ftype == TType.BOOL: self.split_half = iprot.readBool() else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() self.checkRequired() def checkRequired(self): return def write(self, oprot): if (isinstance(oprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0)) return if (isinstance(oprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2)) return oprot.writeStructBegin('CINBlockConfig') if self.name != None: oprot.writeFieldBegin('name', TType.STRING, 1) oprot.writeString(self.name.encode('utf-8')) if UTF8STRINGS and not isinstance(self.name, bytes) else oprot.writeString(self.name) oprot.writeFieldEnd() if self.block_id != None: oprot.writeFieldBegin('block_id', TType.I32, 2) oprot.writeI32(self.block_id) oprot.writeFieldEnd() if self.input_feat_config != None: oprot.writeFieldBegin('input_feat_config', TType.LIST, 3) oprot.writeListBegin(TType.STRUCT, len(self.input_feat_config)) for iter86 in self.input_feat_config: iter86.write(oprot) oprot.writeListEnd() oprot.writeFieldEnd() if self.emb_config != None: oprot.writeFieldBegin('emb_config', TType.STRUCT, 4) self.emb_config.write(oprot) oprot.writeFieldEnd() if self.arc != None: oprot.writeFieldBegin('arc', TType.LIST, 5) oprot.writeListBegin(TType.I32, len(self.arc)) for iter87 in self.arc: oprot.writeI32(iter87) oprot.writeListEnd() oprot.writeFieldEnd() if self.split_half != None: oprot.writeFieldBegin('split_half', TType.BOOL, 6) oprot.writeBool(self.split_half) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def __repr__(self): L = [] padding = ' ' * 4 if self.name is not None: value = pprint.pformat(self.name, indent=0) value = padding.join(value.splitlines(True)) L.append(' name=%s' % (value)) if self.block_id is not None: value = pprint.pformat(self.block_id, indent=0) value = padding.join(value.splitlines(True)) L.append(' block_id=%s' % (value)) if self.input_feat_config is not None: value = pprint.pformat(self.input_feat_config, indent=0) value = padding.join(value.splitlines(True)) L.append(' input_feat_config=%s' % (value)) if self.emb_config is not None: value = pprint.pformat(self.emb_config, indent=0) value = padding.join(value.splitlines(True)) L.append(' emb_config=%s' % (value)) if self.arc is not None: value = pprint.pformat(self.arc, indent=0) value = padding.join(value.splitlines(True)) L.append(' arc=%s' % (value)) if self.split_half is not None: value = pprint.pformat(self.split_half, indent=0) value = padding.join(value.splitlines(True)) L.append(' split_half=%s' % (value)) return "%s(%s)" % (self.__class__.__name__, "\n" + ",\n".join(L) if L else '') def __eq__(self, other): if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) # Override the __hash__ function for Python3 - t10434117 if not six.PY2: __hash__ = object.__hash__ class AttentionBlockConfig: """ Attributes: - name - block_id - input_feat_config - emb_config - att_embed_dim - num_of_heads - num_of_layers - dropout_prob - use_res - batchnorm """ thrift_spec = None thrift_field_annotations = None thrift_struct_annotations = None __init__ = None @staticmethod def isUnion(): return False def read(self, iprot): if (isinstance(iprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0) self.checkRequired() return if (isinstance(iprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2) self.checkRequired() return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRING: self.name = iprot.readString().decode('utf-8') if UTF8STRINGS else iprot.readString() else: iprot.skip(ftype) elif fid == 2: if ftype == TType.I32: self.block_id = iprot.readI32() else: iprot.skip(ftype) elif fid == 3: if ftype == TType.LIST: self.input_feat_config = [] (_etype91, _size88) = iprot.readListBegin() if _size88 >= 0: for _i92 in six.moves.range(_size88): _elem93 = FeatSelectionConfig() _elem93.read(iprot) self.input_feat_config.append(_elem93) else: while iprot.peekList(): _elem94 = FeatSelectionConfig() _elem94.read(iprot) self.input_feat_config.append(_elem94) iprot.readListEnd() else: iprot.skip(ftype) elif fid == 4: if ftype == TType.STRUCT: self.emb_config = EmbedBlockType() self.emb_config.read(iprot) else: iprot.skip(ftype) elif fid == 5: if ftype == TType.I32: self.att_embed_dim = iprot.readI32() else: iprot.skip(ftype) elif fid == 6: if ftype == TType.I32: self.num_of_heads = iprot.readI32() else: iprot.skip(ftype) elif fid == 7: if ftype == TType.I32: self.num_of_layers = iprot.readI32() else: iprot.skip(ftype) elif fid == 8: if ftype == TType.FLOAT: self.dropout_prob = iprot.readFloat() else: iprot.skip(ftype) elif fid == 9: if ftype == TType.BOOL: self.use_res = iprot.readBool() else: iprot.skip(ftype) elif fid == 10: if ftype == TType.BOOL: self.batchnorm = iprot.readBool() else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() self.checkRequired() def checkRequired(self): return def write(self, oprot): if (isinstance(oprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0)) return if (isinstance(oprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2)) return oprot.writeStructBegin('AttentionBlockConfig') if self.name != None: oprot.writeFieldBegin('name', TType.STRING, 1) oprot.writeString(self.name.encode('utf-8')) if UTF8STRINGS and not isinstance(self.name, bytes) else oprot.writeString(self.name) oprot.writeFieldEnd() if self.block_id != None: oprot.writeFieldBegin('block_id', TType.I32, 2) oprot.writeI32(self.block_id) oprot.writeFieldEnd() if self.input_feat_config != None: oprot.writeFieldBegin('input_feat_config', TType.LIST, 3) oprot.writeListBegin(TType.STRUCT, len(self.input_feat_config)) for iter95 in self.input_feat_config: iter95.write(oprot) oprot.writeListEnd() oprot.writeFieldEnd() if self.emb_config != None: oprot.writeFieldBegin('emb_config', TType.STRUCT, 4) self.emb_config.write(oprot) oprot.writeFieldEnd() if self.att_embed_dim != None: oprot.writeFieldBegin('att_embed_dim', TType.I32, 5) oprot.writeI32(self.att_embed_dim) oprot.writeFieldEnd() if self.num_of_heads != None: oprot.writeFieldBegin('num_of_heads', TType.I32, 6) oprot.writeI32(self.num_of_heads) oprot.writeFieldEnd() if self.num_of_layers != None: oprot.writeFieldBegin('num_of_layers', TType.I32, 7) oprot.writeI32(self.num_of_layers) oprot.writeFieldEnd() if self.dropout_prob != None: oprot.writeFieldBegin('dropout_prob', TType.FLOAT, 8) oprot.writeFloat(self.dropout_prob) oprot.writeFieldEnd() if self.use_res != None: oprot.writeFieldBegin('use_res', TType.BOOL, 9) oprot.writeBool(self.use_res) oprot.writeFieldEnd() if self.batchnorm != None: oprot.writeFieldBegin('batchnorm', TType.BOOL, 10) oprot.writeBool(self.batchnorm) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def __repr__(self): L = [] padding = ' ' * 4 if self.name is not None: value = pprint.pformat(self.name, indent=0) value = padding.join(value.splitlines(True)) L.append(' name=%s' % (value)) if self.block_id is not None: value = pprint.pformat(self.block_id, indent=0) value = padding.join(value.splitlines(True)) L.append(' block_id=%s' % (value)) if self.input_feat_config is not None: value = pprint.pformat(self.input_feat_config, indent=0) value = padding.join(value.splitlines(True)) L.append(' input_feat_config=%s' % (value)) if self.emb_config is not None: value = pprint.pformat(self.emb_config, indent=0) value = padding.join(value.splitlines(True)) L.append(' emb_config=%s' % (value)) if self.att_embed_dim is not None: value = pprint.pformat(self.att_embed_dim, indent=0) value = padding.join(value.splitlines(True)) L.append(' att_embed_dim=%s' % (value)) if self.num_of_heads is not None: value = pprint.pformat(self.num_of_heads, indent=0) value = padding.join(value.splitlines(True)) L.append(' num_of_heads=%s' % (value)) if self.num_of_layers is not None: value = pprint.pformat(self.num_of_layers, indent=0) value = padding.join(value.splitlines(True)) L.append(' num_of_layers=%s' % (value)) if self.dropout_prob is not None: value = pprint.pformat(self.dropout_prob, indent=0) value = padding.join(value.splitlines(True)) L.append(' dropout_prob=%s' % (value)) if self.use_res is not None: value = pprint.pformat(self.use_res, indent=0) value = padding.join(value.splitlines(True)) L.append(' use_res=%s' % (value)) if self.batchnorm is not None: value = pprint.pformat(self.batchnorm, indent=0) value = padding.join(value.splitlines(True)) L.append(' batchnorm=%s' % (value)) return "%s(%s)" % (self.__class__.__name__, "\n" + ",\n".join(L) if L else '') def __eq__(self, other): if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) # Override the __hash__ function for Python3 - t10434117 if not six.PY2: __hash__ = object.__hash__ class BlockConfig(object): """ Attributes: - mlp_block - crossnet_block - fm_block - dotprocessor_block - cat_block - cin_block - attention_block """ thrift_spec = None __init__ = None __EMPTY__ = 0 MLP_BLOCK = 1 CROSSNET_BLOCK = 2 FM_BLOCK = 3 DOTPROCESSOR_BLOCK = 4 CAT_BLOCK = 5 CIN_BLOCK = 6 ATTENTION_BLOCK = 7 @staticmethod def isUnion(): return True def get_mlp_block(self): assert self.field == 1 return self.value def get_crossnet_block(self): assert self.field == 2 return self.value def get_fm_block(self): assert self.field == 3 return self.value def get_dotprocessor_block(self): assert self.field == 4 return self.value def get_cat_block(self): assert self.field == 5 return self.value def get_cin_block(self): assert self.field == 6 return self.value def get_attention_block(self): assert self.field == 7 return self.value def set_mlp_block(self, value): self.field = 1 self.value = value def set_crossnet_block(self, value): self.field = 2 self.value = value def set_fm_block(self, value): self.field = 3 self.value = value def set_dotprocessor_block(self, value): self.field = 4 self.value = value def set_cat_block(self, value): self.field = 5 self.value = value def set_cin_block(self, value): self.field = 6 self.value = value def set_attention_block(self, value): self.field = 7 self.value = value def getType(self): return self.field def __repr__(self): value = pprint.pformat(self.value) member = '' if self.field == 1: padding = ' ' * 10 value = padding.join(value.splitlines(True)) member = '\n %s=%s' % ('mlp_block', value) if self.field == 2: padding = ' ' * 15 value = padding.join(value.splitlines(True)) member = '\n %s=%s' % ('crossnet_block', value) if self.field == 3: padding = ' ' * 9 value = padding.join(value.splitlines(True)) member = '\n %s=%s' % ('fm_block', value) if self.field == 4: padding = ' ' * 19 value = padding.join(value.splitlines(True)) member = '\n %s=%s' % ('dotprocessor_block', value) if self.field == 5: padding = ' ' * 10 value = padding.join(value.splitlines(True)) member = '\n %s=%s' % ('cat_block', value) if self.field == 6: padding = ' ' * 10 value = padding.join(value.splitlines(True)) member = '\n %s=%s' % ('cin_block', value) if self.field == 7: padding = ' ' * 16 value = padding.join(value.splitlines(True)) member = '\n %s=%s' % ('attention_block', value) return "%s(%s)" % (self.__class__.__name__, member) def read(self, iprot): self.field = 0 self.value = None if (isinstance(iprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, True], utf8strings=UTF8STRINGS, protoid=0) self.checkRequired() return if (isinstance(iprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, True], utf8strings=UTF8STRINGS, protoid=2) self.checkRequired() return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRUCT: mlp_block = MLPBlockConfig() mlp_block.read(iprot) assert self.field == 0 and self.value is None self.set_mlp_block(mlp_block) else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRUCT: crossnet_block = CrossNetBlockConfig() crossnet_block.read(iprot) assert self.field == 0 and self.value is None self.set_crossnet_block(crossnet_block) else: iprot.skip(ftype) elif fid == 3: if ftype == TType.STRUCT: fm_block = FMBlockConfig() fm_block.read(iprot) assert self.field == 0 and self.value is None self.set_fm_block(fm_block) else: iprot.skip(ftype) elif fid == 4: if ftype == TType.STRUCT: dotprocessor_block = DotProcessorBlockConfig() dotprocessor_block.read(iprot) assert self.field == 0 and self.value is None self.set_dotprocessor_block(dotprocessor_block) else: iprot.skip(ftype) elif fid == 5: if ftype == TType.STRUCT: cat_block = CatBlockConfig() cat_block.read(iprot) assert self.field == 0 and self.value is None self.set_cat_block(cat_block) else: iprot.skip(ftype) elif fid == 6: if ftype == TType.STRUCT: cin_block = CINBlockConfig() cin_block.read(iprot) assert self.field == 0 and self.value is None self.set_cin_block(cin_block) else: iprot.skip(ftype) elif fid == 7: if ftype == TType.STRUCT: attention_block = AttentionBlockConfig() attention_block.read(iprot) assert self.field == 0 and self.value is None self.set_attention_block(attention_block) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if (isinstance(oprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, True], utf8strings=UTF8STRINGS, protoid=0)) return if (isinstance(oprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, True], utf8strings=UTF8STRINGS, protoid=2)) return oprot.writeUnionBegin('BlockConfig') if self.field == 1: oprot.writeFieldBegin('mlp_block', TType.STRUCT, 1) mlp_block = self.value mlp_block.write(oprot) oprot.writeFieldEnd() if self.field == 2: oprot.writeFieldBegin('crossnet_block', TType.STRUCT, 2) crossnet_block = self.value crossnet_block.write(oprot) oprot.writeFieldEnd() if self.field == 3: oprot.writeFieldBegin('fm_block', TType.STRUCT, 3) fm_block = self.value fm_block.write(oprot) oprot.writeFieldEnd() if self.field == 4: oprot.writeFieldBegin('dotprocessor_block', TType.STRUCT, 4) dotprocessor_block = self.value dotprocessor_block.write(oprot) oprot.writeFieldEnd() if self.field == 5: oprot.writeFieldBegin('cat_block', TType.STRUCT, 5) cat_block = self.value cat_block.write(oprot) oprot.writeFieldEnd() if self.field == 6: oprot.writeFieldBegin('cin_block', TType.STRUCT, 6) cin_block = self.value cin_block.write(oprot) oprot.writeFieldEnd() if self.field == 7: oprot.writeFieldBegin('attention_block', TType.STRUCT, 7) attention_block = self.value attention_block.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeUnionEnd() def __eq__(self, other): if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) all_structs.append(FeatSelectionConfig) FeatSelectionConfig.thrift_spec = ( None, # 0 (1, TType.I32, 'block_id', None, None, 2, ), # 1 (2, TType.LIST, 'dense', (TType.I32,None), None, 2, ), # 2 (3, TType.LIST, 'sparse', (TType.I32,None), None, 2, ), # 3 ) FeatSelectionConfig.thrift_struct_annotations = { } FeatSelectionConfig.thrift_field_annotations = { } def FeatSelectionConfig__init__(self, block_id=None, dense=None, sparse=None,): self.block_id = block_id self.dense = dense self.sparse = sparse FeatSelectionConfig.__init__ = FeatSelectionConfig__init__ def FeatSelectionConfig__setstate__(self, state): state.setdefault('block_id', None) state.setdefault('dense', None) state.setdefault('sparse', None) self.__dict__ = state FeatSelectionConfig.__getstate__ = lambda self: self.__dict__.copy() FeatSelectionConfig.__setstate__ = FeatSelectionConfig__setstate__ all_structs.append(DenseBlockType) DenseBlockType.thrift_spec = ( ) DenseBlockType.thrift_struct_annotations = { } DenseBlockType.thrift_field_annotations = { } all_structs.append(EmbedBlockType) EmbedBlockType.thrift_spec = ( None, # 0 (1, TType.I32, 'comm_embed_dim', None, None, 2, ), # 1 (2, TType.BOOL, 'dense_as_sparse', None, False, 2, ), # 2 ) EmbedBlockType.thrift_struct_annotations = { } EmbedBlockType.thrift_field_annotations = { } def EmbedBlockType__init__(self, comm_embed_dim=None, dense_as_sparse=EmbedBlockType.thrift_spec[2][4],): self.comm_embed_dim = comm_embed_dim self.dense_as_sparse = dense_as_sparse EmbedBlockType.__init__ = EmbedBlockType__init__ def EmbedBlockType__setstate__(self, state): state.setdefault('comm_embed_dim', None) state.setdefault('dense_as_sparse', False) self.__dict__ = state EmbedBlockType.__getstate__ = lambda self: self.__dict__.copy() EmbedBlockType.__setstate__ = EmbedBlockType__setstate__ all_structs.append(BlockType) BlockType.thrift_spec = ( None, # 0 (1, TType.STRUCT, 'dense', [DenseBlockType, DenseBlockType.thrift_spec, False], None, 2, ), # 1 (2, TType.STRUCT, 'emb', [EmbedBlockType, EmbedBlockType.thrift_spec, False], None, 2, ), # 2 ) BlockType.thrift_struct_annotations = { } BlockType.thrift_field_annotations = { } def BlockType__init__(self, dense=None, emb=None,): self.field = 0 self.value = None if dense is not None: assert self.field == 0 and self.value is None self.field = 1 self.value = dense if emb is not None: assert self.field == 0 and self.value is None self.field = 2 self.value = emb BlockType.__init__ = BlockType__init__ all_structs.append(MLPBlockConfig) MLPBlockConfig.thrift_spec = ( None, # 0 (1, TType.STRING, 'name', True, "MLPBlock", 2, ), # 1 (2, TType.I32, 'block_id', None, None, 2, ), # 2 (3, TType.LIST, 'input_feat_config', (TType.STRUCT,[FeatSelectionConfig, FeatSelectionConfig.thrift_spec, False]), None, 2, ), # 3 (4, TType.STRUCT, 'type', [BlockType, BlockType.thrift_spec, True], None, 2, ), # 4 (5, TType.LIST, 'arc', (TType.I32,None), None, 2, ), # 5 (6, TType.BOOL, 'ly_act', None, True, 2, ), # 6 ) MLPBlockConfig.thrift_struct_annotations = { } MLPBlockConfig.thrift_field_annotations = { } def MLPBlockConfig__init__(self, name=MLPBlockConfig.thrift_spec[1][4], block_id=None, input_feat_config=None, type=None, arc=None, ly_act=MLPBlockConfig.thrift_spec[6][4],): self.name = name self.block_id = block_id self.input_feat_config = input_feat_config self.type = type self.arc = arc self.ly_act = ly_act MLPBlockConfig.__init__ = MLPBlockConfig__init__ def MLPBlockConfig__setstate__(self, state): state.setdefault('name', "MLPBlock") state.setdefault('block_id', None) state.setdefault('input_feat_config', None) state.setdefault('type', None) state.setdefault('arc', None) state.setdefault('ly_act', True) self.__dict__ = state MLPBlockConfig.__getstate__ = lambda self: self.__dict__.copy() MLPBlockConfig.__setstate__ = MLPBlockConfig__setstate__ all_structs.append(CrossNetBlockConfig) CrossNetBlockConfig.thrift_spec = ( None, # 0 (1, TType.STRING, 'name', True, "CrossNetBlock", 2, ), # 1 (2, TType.I32, 'block_id', None, None, 2, ), # 2 (3, TType.LIST, 'input_feat_config', (TType.STRUCT,[FeatSelectionConfig, FeatSelectionConfig.thrift_spec, False]), None, 2, ), # 3 (4, TType.I32, 'num_of_layers', None, 2, 2, ), # 4 (5, TType.LIST, 'cross_feat_config', (TType.STRUCT,[FeatSelectionConfig, FeatSelectionConfig.thrift_spec, False]), None, 2, ), # 5 (6, TType.BOOL, 'batchnorm', None, False, 2, ), # 6 ) CrossNetBlockConfig.thrift_struct_annotations = { } CrossNetBlockConfig.thrift_field_annotations = { } def CrossNetBlockConfig__init__(self, name=CrossNetBlockConfig.thrift_spec[1][4], block_id=None, input_feat_config=None, num_of_layers=CrossNetBlockConfig.thrift_spec[4][4], cross_feat_config=None, batchnorm=CrossNetBlockConfig.thrift_spec[6][4],): self.name = name self.block_id = block_id self.input_feat_config = input_feat_config self.num_of_layers = num_of_layers self.cross_feat_config = cross_feat_config self.batchnorm = batchnorm CrossNetBlockConfig.__init__ = CrossNetBlockConfig__init__ def CrossNetBlockConfig__setstate__(self, state): state.setdefault('name', "CrossNetBlock") state.setdefault('block_id', None) state.setdefault('input_feat_config', None) state.setdefault('num_of_layers', 2) state.setdefault('cross_feat_config', None) state.setdefault('batchnorm', False) self.__dict__ = state CrossNetBlockConfig.__getstate__ = lambda self: self.__dict__.copy() CrossNetBlockConfig.__setstate__ = CrossNetBlockConfig__setstate__ all_structs.append(FMBlockConfig) FMBlockConfig.thrift_spec = ( None, # 0 (1, TType.STRING, 'name', True, "FMBlock", 2, ), # 1 (2, TType.I32, 'block_id', None, None, 2, ), # 2 (3, TType.LIST, 'input_feat_config', (TType.STRUCT,[FeatSelectionConfig, FeatSelectionConfig.thrift_spec, False]), None, 2, ), # 3 (4, TType.STRUCT, 'type', [BlockType, BlockType.thrift_spec, True], None, 2, ), # 4 ) FMBlockConfig.thrift_struct_annotations = { } FMBlockConfig.thrift_field_annotations = { } def FMBlockConfig__init__(self, name=FMBlockConfig.thrift_spec[1][4], block_id=None, input_feat_config=None, type=None,): self.name = name self.block_id = block_id self.input_feat_config = input_feat_config self.type = type FMBlockConfig.__init__ = FMBlockConfig__init__ def FMBlockConfig__setstate__(self, state): state.setdefault('name', "FMBlock") state.setdefault('block_id', None) state.setdefault('input_feat_config', None) state.setdefault('type', None) self.__dict__ = state FMBlockConfig.__getstate__ = lambda self: self.__dict__.copy() FMBlockConfig.__setstate__ = FMBlockConfig__setstate__ all_structs.append(DotProcessorBlockConfig) DotProcessorBlockConfig.thrift_spec = ( None, # 0 (1, TType.STRING, 'name', True, "DotProcessorBlock", 2, ), # 1 (2, TType.I32, 'block_id', None, None, 2, ), # 2 (3, TType.LIST, 'input_feat_config', (TType.STRUCT,[FeatSelectionConfig, FeatSelectionConfig.thrift_spec, False]), None, 2, ), # 3 (4, TType.STRUCT, 'type', [BlockType, BlockType.thrift_spec, True], None, 2, ), # 4 ) DotProcessorBlockConfig.thrift_struct_annotations = { } DotProcessorBlockConfig.thrift_field_annotations = { } def DotProcessorBlockConfig__init__(self, name=DotProcessorBlockConfig.thrift_spec[1][4], block_id=None, input_feat_config=None, type=None,): self.name = name self.block_id = block_id self.input_feat_config = input_feat_config self.type = type DotProcessorBlockConfig.__init__ = DotProcessorBlockConfig__init__ def DotProcessorBlockConfig__setstate__(self, state): state.setdefault('name', "DotProcessorBlock") state.setdefault('block_id', None) state.setdefault('input_feat_config', None) state.setdefault('type', None) self.__dict__ = state DotProcessorBlockConfig.__getstate__ = lambda self: self.__dict__.copy() DotProcessorBlockConfig.__setstate__ = DotProcessorBlockConfig__setstate__ all_structs.append(CatBlockConfig) CatBlockConfig.thrift_spec = ( None, # 0 (1, TType.STRING, 'name', True, "CatBlock", 2, ), # 1 (2, TType.I32, 'block_id', None, None, 2, ), # 2 (3, TType.LIST, 'input_feat_config', (TType.STRUCT,[FeatSelectionConfig, FeatSelectionConfig.thrift_spec, False]), None, 2, ), # 3 (4, TType.STRUCT, 'type', [BlockType, BlockType.thrift_spec, True], None, 2, ), # 4 ) CatBlockConfig.thrift_struct_annotations = { } CatBlockConfig.thrift_field_annotations = { } def CatBlockConfig__init__(self, name=CatBlockConfig.thrift_spec[1][4], block_id=None, input_feat_config=None, type=None,): self.name = name self.block_id = block_id self.input_feat_config = input_feat_config self.type = type CatBlockConfig.__init__ = CatBlockConfig__init__ def CatBlockConfig__setstate__(self, state): state.setdefault('name', "CatBlock") state.setdefault('block_id', None) state.setdefault('input_feat_config', None) state.setdefault('type', None) self.__dict__ = state CatBlockConfig.__getstate__ = lambda self: self.__dict__.copy() CatBlockConfig.__setstate__ = CatBlockConfig__setstate__ all_structs.append(CINBlockConfig) CINBlockConfig.thrift_spec = ( None, # 0 (1, TType.STRING, 'name', True, "CINBlock", 2, ), # 1 (2, TType.I32, 'block_id', None, None, 2, ), # 2 (3, TType.LIST, 'input_feat_config', (TType.STRUCT,[FeatSelectionConfig, FeatSelectionConfig.thrift_spec, False]), None, 2, ), # 3 (4, TType.STRUCT, 'emb_config', [EmbedBlockType, EmbedBlockType.thrift_spec, False], None, 2, ), # 4 (5, TType.LIST, 'arc', (TType.I32,None), None, 2, ), # 5 (6, TType.BOOL, 'split_half', None, True, 2, ), # 6 ) CINBlockConfig.thrift_struct_annotations = { } CINBlockConfig.thrift_field_annotations = { } def CINBlockConfig__init__(self, name=CINBlockConfig.thrift_spec[1][4], block_id=None, input_feat_config=None, emb_config=None, arc=None, split_half=CINBlockConfig.thrift_spec[6][4],): self.name = name self.block_id = block_id self.input_feat_config = input_feat_config self.emb_config = emb_config self.arc = arc self.split_half = split_half CINBlockConfig.__init__ = CINBlockConfig__init__ def CINBlockConfig__setstate__(self, state): state.setdefault('name', "CINBlock") state.setdefault('block_id', None) state.setdefault('input_feat_config', None) state.setdefault('emb_config', None) state.setdefault('arc', None) state.setdefault('split_half', True) self.__dict__ = state CINBlockConfig.__getstate__ = lambda self: self.__dict__.copy() CINBlockConfig.__setstate__ = CINBlockConfig__setstate__ all_structs.append(AttentionBlockConfig) AttentionBlockConfig.thrift_spec = ( None, # 0 (1, TType.STRING, 'name', True, "AttentionBlock", 2, ), # 1 (2, TType.I32, 'block_id', None, None, 2, ), # 2 (3, TType.LIST, 'input_feat_config', (TType.STRUCT,[FeatSelectionConfig, FeatSelectionConfig.thrift_spec, False]), None, 2, ), # 3 (4, TType.STRUCT, 'emb_config', [EmbedBlockType, EmbedBlockType.thrift_spec, False], None, 2, ), # 4 (5, TType.I32, 'att_embed_dim', None, 10, 2, ), # 5 (6, TType.I32, 'num_of_heads', None, 2, 2, ), # 6 (7, TType.I32, 'num_of_layers', None, 1, 2, ), # 7 (8, TType.FLOAT, 'dropout_prob', None, 0.00000, 2, ), # 8 (9, TType.BOOL, 'use_res', None, True, 2, ), # 9 (10, TType.BOOL, 'batchnorm', None, False, 2, ), # 10 ) AttentionBlockConfig.thrift_struct_annotations = { } AttentionBlockConfig.thrift_field_annotations = { } def AttentionBlockConfig__init__(self, name=AttentionBlockConfig.thrift_spec[1][4], block_id=None, input_feat_config=None, emb_config=None, att_embed_dim=AttentionBlockConfig.thrift_spec[5][4], num_of_heads=AttentionBlockConfig.thrift_spec[6][4], num_of_layers=AttentionBlockConfig.thrift_spec[7][4], dropout_prob=AttentionBlockConfig.thrift_spec[8][4], use_res=AttentionBlockConfig.thrift_spec[9][4], batchnorm=AttentionBlockConfig.thrift_spec[10][4],): self.name = name self.block_id = block_id self.input_feat_config = input_feat_config self.emb_config = emb_config self.att_embed_dim = att_embed_dim self.num_of_heads = num_of_heads self.num_of_layers = num_of_layers self.dropout_prob = dropout_prob self.use_res = use_res self.batchnorm = batchnorm AttentionBlockConfig.__init__ = AttentionBlockConfig__init__ def AttentionBlockConfig__setstate__(self, state): state.setdefault('name', "AttentionBlock") state.setdefault('block_id', None) state.setdefault('input_feat_config', None) state.setdefault('emb_config', None) state.setdefault('att_embed_dim', 10) state.setdefault('num_of_heads', 2) state.setdefault('num_of_layers', 1) state.setdefault('dropout_prob', 0.00000) state.setdefault('use_res', True) state.setdefault('batchnorm', False) self.__dict__ = state AttentionBlockConfig.__getstate__ = lambda self: self.__dict__.copy() AttentionBlockConfig.__setstate__ = AttentionBlockConfig__setstate__ all_structs.append(BlockConfig) BlockConfig.thrift_spec = ( None, # 0 (1, TType.STRUCT, 'mlp_block', [MLPBlockConfig, MLPBlockConfig.thrift_spec, False], None, 2, ), # 1 (2, TType.STRUCT, 'crossnet_block', [CrossNetBlockConfig, CrossNetBlockConfig.thrift_spec, False], None, 2, ), # 2 (3, TType.STRUCT, 'fm_block', [FMBlockConfig, FMBlockConfig.thrift_spec, False], None, 2, ), # 3 (4, TType.STRUCT, 'dotprocessor_block', [DotProcessorBlockConfig, DotProcessorBlockConfig.thrift_spec, False], None, 2, ), # 4 (5, TType.STRUCT, 'cat_block', [CatBlockConfig, CatBlockConfig.thrift_spec, False], None, 2, ), # 5 (6, TType.STRUCT, 'cin_block', [CINBlockConfig, CINBlockConfig.thrift_spec, False], None, 2, ), # 6 (7, TType.STRUCT, 'attention_block', [AttentionBlockConfig, AttentionBlockConfig.thrift_spec, False], None, 2, ), # 7 ) BlockConfig.thrift_struct_annotations = { } BlockConfig.thrift_field_annotations = { } def BlockConfig__init__(self, mlp_block=None, crossnet_block=None, fm_block=None, dotprocessor_block=None, cat_block=None, cin_block=None, attention_block=None,): self.field = 0 self.value = None if mlp_block is not None: assert self.field == 0 and self.value is None self.field = 1 self.value = mlp_block if crossnet_block is not None: assert self.field == 0 and self.value is None self.field = 2 self.value = crossnet_block if fm_block is not None: assert self.field == 0 and self.value is None self.field = 3 self.value = fm_block if dotprocessor_block is not None: assert self.field == 0 and self.value is None self.field = 4 self.value = dotprocessor_block if cat_block is not None: assert self.field == 0 and self.value is None self.field = 5 self.value = cat_block if cin_block is not None: assert self.field == 0 and self.value is None self.field = 6 self.value = cin_block if attention_block is not None: assert self.field == 0 and self.value is None self.field = 7 self.value = attention_block BlockConfig.__init__ = BlockConfig__init__ fix_spec(all_structs) del all_structs
AutoCTR-main
gen-py/block_config/ttypes.py
AutoCTR-main
trainers/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from __future__ import absolute_import, division, print_function, unicode_literals import logging import torch from config import ttypes as config logger = logging.getLogger(__name__) def build_loss(model, loss_config): if loss_config.getType() == config.LossConfig.BCEWITHLOGITS: logger.warning( "Creating BCEWithLogitsLoss: {}".format(loss_config.get_bcewithlogits()) ) return torch.nn.BCEWithLogitsLoss(reduction="none") elif loss_config.getType() == config.LossConfig.MSE: logger.warning("Creating MSELoss: {}".format(loss_config.get_mse())) return torch.nn.MSELoss(reduction="none") elif loss_config.getType() == config.LossConfig.BCE: logger.warning("Creating BCELoss: {}".format(loss_config.get_bce())) return torch.nn.BCELoss(reduction="none") else: raise ValueError("Unknown loss type.") # TODO add equal weight training and calibration for ads data def apply_loss(loss, pred, label, weight=None): E = loss(pred, label) return torch.mean(E) if weight is None else torch.mean(E * weight.view(-1))
AutoCTR-main
trainers/loss.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from __future__ import absolute_import, division, print_function, unicode_literals import logging import re import time import numpy as np import torch logger = logging.getLogger(__name__) def log_train_info( start_time, i_batch="N/A", i_epoch="N/A", trainer_id="N/A", num_batches=1, total_loss=0, batch_size=None, num_samples=None, sample_weight_sum=None, ctr=None, lock=None, on_gpu=False, trainer_logger=None, ): """ Args: total_loss, the sum of the averaged per batch loss """ if on_gpu: torch.cuda.synchronize() curr_time = time.time() if trainer_logger is None: trainer_logger = logger if lock is not None: lock.acquire() try: if num_samples is None: assert ( batch_size is not None ), "batch_size and num_samples cannot both be None." num_samples = num_batches * batch_size if sample_weight_sum is None: assert ( batch_size is not None ), "batch_size and sample_weight_sum cannot both be None." sample_weight_sum = num_batches * batch_size loss = total_loss / sample_weight_sum ne = calculate_ne(loss, ctr) if ctr is not None else "N/A" trainer_logger.warning( "Trainer {} finished iteration {} of epoch {}, " "{:.2f} qps, " "window loss: {}, " "window NE: {}".format( trainer_id, i_batch, i_epoch, num_samples / (curr_time - start_time), loss, ne, ) ) finally: if lock is not None: lock.release() return (loss, ne) if ctr is not None else loss log_eval_info = log_train_info def log_tb_info_batch( writer, model, pred, label, optimizer, # not used logging_options, iter, start_time, trainer_id=None, total_loss=0, batch_size=-1, # not used num_batches=-1, # not used sample_weight_sum=None, avg_loss=None, ctr=None, lock=None, ): """ Note that the reported value is the mean of per batch mean, which is different from mean of the whole history Args: total_loss, the sum of the averaged per batch loss """ if writer is None: return if lock is not None: lock.acquire() try: if avg_loss is None: assert ( total_loss is not None and sample_weight_sum is not None ), "cannot compute avg_loss" avg_loss = total_loss / sample_weight_sum writer.add_scalar( "{}batch/train_metric/loss".format( "" if trainer_id is None else "trainer_{}/".format(trainer_id) ), avg_loss, iter, ) if ctr is not None: ne = calculate_ne(avg_loss, ctr) writer.add_scalar( "{}batch/train_metric/ne".format( "" if trainer_id is None else "trainer_{}/".format(trainer_id) ), ne, iter, ) if logging_options.tb_log_pr_curve_batch: writer.add_pr_curve("PR Curve", label, pred, iter) if logging_options.tb_log_model_weight_hist: for name, param in model.named_parameters(): if any( re.search(pattern, name) for pattern in logging_options.tb_log_model_weight_filter_regex ): continue writer.add_histogram(name, param.clone().cpu().data.numpy(), iter) finally: if lock is not None: lock.release() def need_to_log_batch(counter, logging_options, batch_size): return ( logging_options.log_freq > 0 and (counter + 1) % max(1, int(logging_options.log_freq / batch_size)) == 0 ) def need_to_log_tb(counter, logging_options, batch_size): tb_log_freq = logging_options.tb_log_freq return ( tb_log_freq > 0 and (counter + 1) % max(1, int(tb_log_freq / batch_size)) == 0 ) def is_checkpoint(counter, ckp_interval, ckp_path): return ckp_interval > 0 and ckp_path and (counter + 1) % ckp_interval == 0 def calculate_ne(logloss, ctr): if ctr <= 0.0 or ctr >= 1.0: logger.error("CTR should be between 0.0 and 1.0") return 0.0 if logloss == 0.0 else np.inf return -logloss / (ctr * np.log(ctr) + (1.0 - ctr) * np.log(1 - ctr))
AutoCTR-main
trainers/utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from __future__ import absolute_import, division, print_function, unicode_literals import logging import time import numpy as np import torch from sklearn.metrics import roc_auc_score from .loss import apply_loss, build_loss from .utils import log_tb_info_batch, log_train_info, need_to_log_batch, need_to_log_tb from models.builder import save_model try: from fblearner.flow.util.visualization_utils import summary_writer except ImportError: pass logger = logging.getLogger(__name__) np.set_printoptions(precision=5) torch.set_printoptions(precision=5) THRESHOLD = -1 # -1 #7500 VAL_THRESHOLD = -1 def train( model, train_options, train_dataloader=None, batch_processor=None, device=None, val_dataloader=None, trainer_id=0, send_end=None, train_dataloader_batches=None, val_dataloader_batches=None, batch_size=1024, eval_dataloader=None, eval_dataloader_batches=None, save_model_name=None, ): try: writer = summary_writer() except Exception: logger.error("Failed to create the tensorboard summary writer.") writer = None prev_avg_val_loss, is_improving, is_local_optimal = None, True, False optimizer = model.get_optimizers() loss = build_loss(model, loss_config=train_options.loss) output = [] logging_options = train_options.logging_config batch_size = batch_size if train_dataloader_batches is None: train_dataloader_batches = train_dataloader is_train_dataloader = True else: is_train_dataloader = False if val_dataloader_batches is None: val_dataloader_batches = val_dataloader is_val_dataloader = True else: is_val_dataloader = False if eval_dataloader_batches is None: eval_dataloader_batches = eval_dataloader is_eval_dataloader = True else: is_eval_dataloader = False for i_epoch in range(0, train_options.nepochs): start_time_epoch = time.time() num_batches, avg_loss_epoch, q1, q2 = train_epoch( model=model, loss=loss, optimizer=optimizer, batch_processor=batch_processor, trainer_id=trainer_id, i_epoch=i_epoch, device=device, logging_options=logging_options, writer=writer, train_dataloader_batches=train_dataloader_batches, batch_size=batch_size, is_dataloader=is_train_dataloader, ) logger.warning("Epoch:{}, Time for training: {}".format(i_epoch, time.time() - start_time_epoch)) avg_loss_epoch = log_train_info( start_time=start_time_epoch, i_batch=num_batches, i_epoch=i_epoch, trainer_id=trainer_id, total_loss=avg_loss_epoch * num_batches * batch_size, num_batches=num_batches, batch_size=batch_size, ) if writer is not None: writer.add_scalar("train_metric/loss_epoch", avg_loss_epoch, i_epoch) output.append({"i_epoch": i_epoch, "avg_train_loss": avg_loss_epoch}) if val_dataloader_batches is not None: avg_val_loss, _, _, avg_auc = evaluate( model=model, loss=loss, dataloader=val_dataloader_batches, batch_processor=batch_processor, device=device, batch_size=batch_size, is_dataloader=is_val_dataloader, i_epoch=i_epoch, ) output[-1]["avg_val_loss"] = avg_val_loss output[-1]["roc_auc_score"] = avg_auc if eval_dataloader_batches is not None: avg_eval_loss, _, _, avg_eval_auc = evaluate( model=model, loss=loss, dataloader=eval_dataloader_batches, batch_processor=batch_processor, device=device, batch_size=batch_size, is_dataloader=is_eval_dataloader, i_epoch=i_epoch, ) output[-1]["avg_eval_loss"] = avg_eval_loss output[-1]["eval_roc_auc_score"] = avg_eval_auc # check if local optimal ( is_local_optimal, is_improving, prev_avg_val_loss, ) = _check_local_optimal( i_epoch, is_improving, avg_val_loss, prev_avg_val_loss ) # break if is local optimal if is_local_optimal and train_options.early_stop_on_val_loss: break if save_model_name: save_model(save_model_name, model) if writer is not None: writer.add_scalar("val_metric/loss_epoch", avg_val_loss, i_epoch) logger.warning("Epoch:{}, validation loss: {}, roc_auc_score: {}, time: {}, q1: {}, q2: {}".format(i_epoch, avg_val_loss, avg_auc, time.time() - start_time_epoch, np.sum( q1), np.sum( q2))) if writer is not None: writer.close() if send_end: send_end.send(output) return output def _check_local_optimal(i_epoch, is_improving, avg_val_loss, prev_avg_val_loss): is_local_optimal = i_epoch > 0 and is_improving and avg_val_loss > prev_avg_val_loss is_improving = i_epoch == 0 or prev_avg_val_loss > avg_val_loss prev_avg_val_loss = avg_val_loss return is_local_optimal, is_improving, prev_avg_val_loss def train_epoch( model, loss, optimizer, batch_processor, logging_options, device, trainer_id, i_epoch, lock=None, writer=None, train_dataloader_batches=None, batch_size=1024, is_dataloader=True, ): model.train() start_time, loss_val, num_batches, sample_weight_sum = time.time(), 0.0, 0, 0.0 start_time_tb, loss_val_tb, sample_weight_sum_tb = (time.time(), 0.0, 0.0) loss_val_epoch, total_num_batches, sample_weight_sum_epoch = ( 0.0, len(train_dataloader_batches), 0.0, ) batch_size = batch_size q1, q2 = [], [] qq3 = time.perf_counter() for i_batch, sample_batched in enumerate(train_dataloader_batches): if not is_dataloader and i_batch <= THRESHOLD: label, feats, weight = sample_batched elif not is_dataloader and i_batch > THRESHOLD and i_epoch > 0: label, feats, weight = batch_processor(mini_batch=sample_batched, reverse=1) else: try: label, feats, weight = batch_processor(mini_batch=sample_batched) except: i_epoch += 1 label, feats, weight = batch_processor(mini_batch=sample_batched, reverse=1) # forward pass z_pred = model(feats=feats) # backward pass E = apply_loss(loss, z_pred, label, weight) optimizer.zero_grad() E.backward() qq1 = time.perf_counter() dd3 = qq1 - qq3 # torch.cuda.synchronize() # wait for mm to finish qq2 = time.perf_counter() optimizer.step() # torch.cuda.synchronize() # wait for mm to finish qq3 = time.perf_counter() loss_val_batch = E.detach().cpu().numpy() * batch_size sample_weight_sum_batch = ( batch_size if weight is None else torch.sum(weight).detach() ) num_batches += 1 loss_val += loss_val_batch loss_val_tb += loss_val_batch loss_val_epoch += loss_val_batch sample_weight_sum += sample_weight_sum_batch sample_weight_sum_tb += sample_weight_sum_batch sample_weight_sum_epoch += sample_weight_sum_batch if need_to_log_batch(i_batch, logging_options, batch_size): log_train_info( i_batch=i_batch, i_epoch=i_epoch, trainer_id=trainer_id, start_time=start_time, total_loss=loss_val, num_batches=num_batches, sample_weight_sum=sample_weight_sum, batch_size=batch_size, lock=lock, ) start_time, loss_val, num_batches, sample_weight_sum = ( time.time(), 0.0, 0, 0.0, ) if writer is not None and need_to_log_tb(i_batch, logging_options, batch_size): log_tb_info_batch( writer=writer, model=model, pred=z_pred, label=label, optimizer=optimizer, logging_options=logging_options, iter=total_num_batches * i_epoch + i_batch, start_time=start_time_tb, trainer_id=trainer_id, avg_loss=loss_val_tb / sample_weight_sum_tb, lock=lock, ) start_time_tb, loss_val_tb, sample_weight_sum_tb = (time.time(), 0.0, 0.0) dd1 = qq2 - qq1 dd2 = qq3 - qq2 q1.append(dd2) q2.append(dd3) if not is_dataloader and i_batch > THRESHOLD: label, feats, weight = batch_processor(mini_batch=sample_batched, reverse=2) avg_loss = loss_val_epoch / sample_weight_sum_epoch return i_batch, avg_loss, q1, q2 def evaluate(model, loss, dataloader, batch_processor, device, batch_size=1024, is_dataloader=True, i_epoch=0): model.eval() preds = [] labels = [] batch_size = batch_size loss_val, sample_weight_sum = 0.0, 0.0 for i_batch, sample_batched in enumerate(dataloader): if not is_dataloader and i_batch <= VAL_THRESHOLD: label, feats, weight = sample_batched elif not is_dataloader and i_batch > VAL_THRESHOLD and i_epoch > 0: label, feats, weight = batch_processor(mini_batch=sample_batched, reverse=1) else: try: label, feats, weight = batch_processor(mini_batch=sample_batched) except: i_epoch += 1 label, feats, weight = batch_processor(mini_batch=sample_batched, reverse=1) # forward pass z_pred = model(feats=feats) # preds.append(z_pred.detach().cpu().numpy()) # labels.append(label.detach().cpu().numpy()) preds += z_pred.detach().cpu().numpy().tolist() labels += label.detach().cpu().numpy().tolist() E = apply_loss(loss, z_pred, label, weight) loss_val += E.detach().cpu().numpy() * batch_size sample_weight_sum += ( batch_size if weight is None else torch.sum(weight).detach().cpu().numpy() ) if not is_dataloader and i_batch > VAL_THRESHOLD: label, feats, weight = batch_processor(mini_batch=sample_batched, reverse=2) # logger.warning("loss_val: {}, weight_sum {}".format(dataloader, is_dataloader)) avg_loss = loss_val / sample_weight_sum # labels = np.asarray(labels).flatten() # preds = np.asarray(preds).flatten() try: avg_auc = roc_auc_score(labels, preds) except Exception: idx = np.isfinite(preds) avg_auc = roc_auc_score(np.array(labels)[idx], np.array(preds)[idx]) return avg_loss, labels, preds, avg_auc
AutoCTR-main
trainers/simple_final.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from __future__ import absolute_import, division, print_function, unicode_literals import logging import time import numpy as np import torch from sklearn.metrics import roc_auc_score from .loss import apply_loss, build_loss from .utils import log_tb_info_batch, log_train_info, need_to_log_batch, need_to_log_tb try: from fblearner.flow.util.visualization_utils import summary_writer except ImportError: pass logger = logging.getLogger(__name__) np.set_printoptions(precision=5) torch.set_printoptions(precision=5) THRESHOLD = 30000 # 7500 # -1 #7500 VAL_THRESHOLD = 10000 def train( model, train_options, train_dataloader=None, batch_processor=None, device=None, val_dataloader=None, trainer_id=0, send_end=None, train_dataloader_batches=None, val_dataloader_batches=None, batch_size=1024, ): try: writer = summary_writer() except Exception: logger.error("Failed to create the tensorboard summary writer.") writer = None prev_avg_val_loss, is_improving, is_local_optimal = None, True, False optimizer = model.get_optimizers() loss = build_loss(model, loss_config=train_options.loss) output = [] logging_options = train_options.logging_config batch_size = batch_size if train_dataloader_batches is None: train_dataloader_batches = train_dataloader is_train_dataloader = True else: is_train_dataloader = False if val_dataloader_batches is None: val_dataloader_batches = val_dataloader is_val_dataloader = True else: is_val_dataloader = False for i_epoch in range(0, train_options.nepochs): start_time_epoch = time.time() num_batches, avg_loss_epoch, q1, q2 = train_epoch( model=model, loss=loss, optimizer=optimizer, batch_processor=batch_processor, trainer_id=trainer_id, i_epoch=i_epoch, device=device, logging_options=logging_options, writer=writer, train_dataloader_batches=train_dataloader_batches, batch_size=batch_size, is_dataloader=is_train_dataloader, ) logger.warning("Epoch:{}, Time for training: {}".format(i_epoch, time.time() - start_time_epoch)) avg_loss_epoch = log_train_info( start_time=start_time_epoch, i_batch=num_batches, i_epoch=i_epoch, trainer_id=trainer_id, total_loss=avg_loss_epoch * num_batches * batch_size, num_batches=num_batches, batch_size=batch_size, ) if writer is not None: writer.add_scalar("train_metric/loss_epoch", avg_loss_epoch, i_epoch) output.append({"i_epoch": i_epoch, "avg_train_loss": avg_loss_epoch}) if val_dataloader_batches is not None: avg_val_loss, _, _, avg_auc = evaluate( model=model, loss=loss, dataloader=val_dataloader_batches, batch_processor=batch_processor, device=device, batch_size=batch_size, is_dataloader=is_val_dataloader, i_epoch=i_epoch, ) output[-1]["avg_val_loss"] = avg_val_loss output[-1]["roc_auc_score"] = avg_auc # check if local optimal ( is_local_optimal, is_improving, prev_avg_val_loss, ) = _check_local_optimal( i_epoch, is_improving, avg_val_loss, prev_avg_val_loss ) # break if is local optimal if is_local_optimal and train_options.early_stop_on_val_loss: break if writer is not None: writer.add_scalar("val_metric/loss_epoch", avg_val_loss, i_epoch) logger.warning("Epoch:{}, validation loss: {}, roc_auc_score: {}, time: {}, q1: {}, q2: {}".format(i_epoch, avg_val_loss, avg_auc, time.time() - start_time_epoch, np.sum(q1), np.sum(q2))) if writer is not None: writer.close() if send_end: send_end.send(output) return output def _check_local_optimal(i_epoch, is_improving, avg_val_loss, prev_avg_val_loss): is_local_optimal = i_epoch > 0 and is_improving and avg_val_loss > prev_avg_val_loss is_improving = i_epoch == 0 or prev_avg_val_loss > avg_val_loss prev_avg_val_loss = avg_val_loss return is_local_optimal, is_improving, prev_avg_val_loss def train_epoch( model, loss, optimizer, batch_processor, logging_options, device, trainer_id, i_epoch, lock=None, writer=None, train_dataloader_batches=None, batch_size=1024, is_dataloader=True, ): model.train() start_time, loss_val, num_batches, sample_weight_sum = time.time(), 0.0, 0, 0.0 start_time_tb, loss_val_tb, sample_weight_sum_tb = (time.time(), 0.0, 0.0) loss_val_epoch, total_num_batches, sample_weight_sum_epoch = ( 0.0, len(train_dataloader_batches), 0.0, ) batch_size = batch_size q1, q2 = [], [] qq3 = time.perf_counter() for i_batch, sample_batched in enumerate(train_dataloader_batches): if not is_dataloader and i_batch <= THRESHOLD: label, feats, weight = sample_batched elif not is_dataloader and i_batch > THRESHOLD and i_epoch > 0: label, feats, weight = batch_processor(mini_batch=sample_batched, reverse=1) else: label, feats, weight = batch_processor(mini_batch=sample_batched) # forward pass z_pred = model(feats=feats) # backward pass E = apply_loss(loss, z_pred, label, weight) optimizer.zero_grad() E.backward() qq1 = time.perf_counter() dd3 = qq1 - qq3 # torch.cuda.synchronize() # wait for mm to finish qq2 = time.perf_counter() optimizer.step() # torch.cuda.synchronize() # wait for mm to finish qq3 = time.perf_counter() loss_val_batch = E.detach().cpu().numpy() * batch_size sample_weight_sum_batch = ( batch_size if weight is None else torch.sum(weight).detach() ) num_batches += 1 loss_val += loss_val_batch loss_val_tb += loss_val_batch loss_val_epoch += loss_val_batch sample_weight_sum += sample_weight_sum_batch sample_weight_sum_tb += sample_weight_sum_batch sample_weight_sum_epoch += sample_weight_sum_batch if need_to_log_batch(i_batch, logging_options, batch_size): log_train_info( i_batch=i_batch, i_epoch=i_epoch, trainer_id=trainer_id, start_time=start_time, total_loss=loss_val, num_batches=num_batches, sample_weight_sum=sample_weight_sum, batch_size=batch_size, lock=lock, ) start_time, loss_val, num_batches, sample_weight_sum = ( time.time(), 0.0, 0, 0.0, ) if writer is not None and need_to_log_tb(i_batch, logging_options, batch_size): log_tb_info_batch( writer=writer, model=model, pred=z_pred, label=label, optimizer=optimizer, logging_options=logging_options, iter=total_num_batches * i_epoch + i_batch, start_time=start_time_tb, trainer_id=trainer_id, avg_loss=loss_val_tb / sample_weight_sum_tb, lock=lock, ) start_time_tb, loss_val_tb, sample_weight_sum_tb = (time.time(), 0.0, 0.0) dd1 = qq2-qq1 dd2 = qq3-qq2 q1.append(dd2) q2.append(dd3) if not is_dataloader and i_batch > THRESHOLD: label, feats, weight = batch_processor(mini_batch=sample_batched, reverse=2) avg_loss = loss_val_epoch / sample_weight_sum_epoch return i_batch, avg_loss, q1, q2 def evaluate(model, loss, dataloader, batch_processor, device, batch_size=1024, is_dataloader=True, i_epoch=0): model.eval() preds = [] labels = [] batch_size = batch_size loss_val, sample_weight_sum = 0.0, 0.0 for i_batch, sample_batched in enumerate(dataloader): if not is_dataloader and i_batch <= VAL_THRESHOLD: label, feats, weight = sample_batched elif not is_dataloader and i_batch > VAL_THRESHOLD and i_epoch > 0: label, feats, weight = batch_processor(mini_batch=sample_batched, reverse=1) else: label, feats, weight = batch_processor(mini_batch=sample_batched) # forward pass z_pred = model(feats=feats) # preds.append(z_pred.detach().cpu().numpy()) # labels.append(label.detach().cpu().numpy()) preds += z_pred.detach().cpu().numpy().tolist() labels += label.detach().cpu().numpy().tolist() E = apply_loss(loss, z_pred, label, weight) loss_val += E.detach().cpu().numpy() * batch_size sample_weight_sum += ( batch_size if weight is None else torch.sum(weight).detach().cpu().numpy() ) if not is_dataloader and i_batch > VAL_THRESHOLD: label, feats, weight = batch_processor(mini_batch=sample_batched, reverse=2) avg_loss = loss_val / sample_weight_sum # labels = np.asarray(labels).flatten() # preds = np.asarray(preds).flatten() try: avg_auc = roc_auc_score(labels, preds) except Exception: idx = np.isfinite(preds) if len(np.array(labels)[idx]) > 1: logger.warning("Valid value for AUC: {}".format(idx)) avg_auc = roc_auc_score(np.array(labels)[idx], np.array(preds)[idx]) else: avg_auc = np.nan return avg_loss, labels, preds, avg_auc
AutoCTR-main
trainers/simple.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from __future__ import absolute_import, division, print_function, unicode_literals import sys sys.path.append('gen-py') import json import logging import os import pickle import time import numpy as np import torch # os.system(f"mount -o remount,size={60*1024*1024*1024} /dev/shm") from thrift.protocol import TSimpleJSONProtocol from thrift.util import Serializer from config import ttypes as config from models.nas_modules import NASRecNet from trainers.simple_final import train as simple_train from utils.data import prepare_data from utils.search_utils import get_args, get_final_fit_trainer_config, get_phenotype from torch.multiprocessing import Pipe, Process, set_start_method set_start_method('spawn', force=True) import resource rlimit = resource.getrlimit(resource.RLIMIT_NOFILE) resource.setrlimit(resource.RLIMIT_NOFILE, (100000, rlimit[1])) import GPUtil logging.basicConfig(level=logging.WARNING) logger = logging.getLogger(__name__) jfactory = TSimpleJSONProtocol.TSimpleJSONProtocolFactory() THRESHOLD = -1 # -1 # 7500 VAL_THRESHOLD = -1 if __name__ == "__main__": # get arguments args = get_args() logger.warning("All Args: {}".format(args)) # set seeds np.random.seed(args.numpy_seed) torch.manual_seed(args.torch_seed) excludeID = [int(id) for id in args.excludeID.split(",")] if args.excludeID else [] # get model filenames, model_config_dicts = get_phenotype(args) # get trainer config input_summary, args = get_final_fit_trainer_config(args) # change dataset to small dataset input_summary["data_options"]["from_file"]["data_file"] = args.data_file input_summary["data_options"]["from_file"]["batch_size"] = args.batch_size # change train_options input_summary["train_options"]["nepochs"] = args.nepochs input_summary["train_options"]["logging_config"]["log_freq"] = 100000 input_summary["train_options"]["logging_config"]["tb_log_freq"] = 100000 # change performance_options input_summary["performance_options"]["num_readers"] = args.num_workers input_summary["performance_options"]["num_trainers"] = args.num_trainers input_summary["performance_options"]["use_gpu"] = args.use_gpu # change optimizer input_summary["feature_options"]["dense"]["optim"]["adam"]["lr"] = args.learning_rate input_summary["feature_options"]["sparse"]["optim"]["sparse_adam"]["lr"] = args.learning_rate # # change feature hashing size # for i, feature in enumerate(input_summary["feature_options"]["sparse"]["features"]): # if feature["hash_size"] > args.hash_size: # input_summary["feature_options"]["sparse"]["features"][i]["hash_size"] = args.hash_size # data_options splits = [float(p) for p in args.splits.split(":")] input_summary["data_options"]["from_file"]["splits"] = splits # extract feature config for searcher construction and trainer train_options = Serializer.deserialize( jfactory, json.dumps(input_summary["train_options"]), config.TrainConfig(), ) # extract feature config for searcher construction and trainer feature_config = Serializer.deserialize( jfactory, json.dumps(input_summary["feature_options"]), config.FeatureConfig(), ) data_options = Serializer.deserialize( jfactory, json.dumps(input_summary["data_options"]), config.DataConfig(), ) performance_options = Serializer.deserialize( jfactory, json.dumps(input_summary["performance_options"]), config.PerformanceConfig(), ) # for datasaving purpose batch_processor, train_dataloader, val_dataloader, eval_dataloader, \ train_dataloader_batches, val_dataloader_batches, eval_dataloader_batches \ = {}, {}, {}, {}, {}, {}, {} for id in range(args.total_gpus): if id not in excludeID: CUDA = 'cuda:' + str(id) if len(batch_processor) == 0: ( _, # datasets batch_processor[CUDA], train_dataloader, val_dataloader, eval_dataloader, ) = prepare_data(data_options, performance_options, CUDA, pin_memory=False) else: ( _, # datasets batch_processor[CUDA], _, _, _, # eval_dataloader ) = prepare_data(data_options, performance_options, CUDA, pin_memory=True) train_dataloader = None val_dataloader = None eval_dataloader = None train_dataloader_batches[CUDA] = None val_dataloader_batches[CUDA] = None eval_dataloader_batches[CUDA] = None if args.save_batches: train_dataloader_batches[CUDA] = [] if len(batch_processor) == 1: for i_batch, sample_batched in enumerate(train_dataloader): if i_batch % 100 == 0: logger.warning("i_batch {}".format(i_batch)) train_dataloader_batches[CUDA].append(sample_batched) mark = CUDA # if args.save_val_batches: val_dataloader_batches[CUDA] = [] if len(batch_processor) == 1: for i_batch, sample_batched in enumerate(val_dataloader): if i_batch % 100 == 0: logger.warning("i_batch {}".format(i_batch)) val_dataloader_batches[CUDA].append(sample_batched) mark = CUDA # if args.save_val_batches: eval_dataloader_batches[CUDA] = [] if len(batch_processor) == 1: for i_batch, sample_batched in enumerate(eval_dataloader): if i_batch % 100 == 0: logger.warning("i_batch {}".format(i_batch)) eval_dataloader_batches[CUDA].append(sample_batched) mark = CUDA if args.save_batches: for i_batch, sample_batched in enumerate(train_dataloader_batches[mark]): if i_batch % 100 == 0: logger.warning("process_first_cuda_i_batch {}".format(i_batch)) if i_batch <= THRESHOLD: train_dataloader_batches[mark][i_batch] = batch_processor[mark]( mini_batch=sample_batched) if args.save_val_batches: for i_batch, sample_batched in enumerate(val_dataloader_batches[mark]): if i_batch % 100 == 0: logger.warning("process_first_cuda_i_batch {}".format(i_batch)) if i_batch <= VAL_THRESHOLD: val_dataloader_batches[mark][i_batch] = batch_processor[mark]( mini_batch=sample_batched) for i_batch, sample_batched in enumerate(eval_dataloader_batches[mark]): if i_batch % 100 == 0: logger.warning("process_first_cuda_i_batch {}".format(i_batch)) if i_batch <= VAL_THRESHOLD: eval_dataloader_batches[mark][i_batch] = batch_processor[mark]( mini_batch=sample_batched) try: deviceIDs = GPUtil.getAvailable(order='random', limit=1, maxLoad=args.maxLoad, maxMemory=args.maxMemory, excludeID=excludeID) CUDA = 'cuda:' + str(deviceIDs[0]) except Exception: logger.warning("No available device!") for model_id, model_config_dict in enumerate(model_config_dicts): nasrec_net = Serializer.deserialize( jfactory, json.dumps(model_config_dict), config.ModelConfig(), ) tmp_model = NASRecNet(nasrec_net, feature_config) tmp_model.to(device=CUDA) svfolder = os.path.join(args.save_model_path, "results", "final_fit") svname = os.path.join(svfolder, filenames[model_id].split("/")[-1][:-5] + ".ckp") if not os.path.exists(svfolder): os.makedirs(svfolder) output = simple_train(tmp_model, train_options, train_dataloader, batch_processor[CUDA], CUDA, val_dataloader, 0, None, # send_end, train_dataloader_batches[CUDA], val_dataloader_batches[CUDA], args.batch_size, eval_dataloader, eval_dataloader_batches[CUDA], save_model_name= svname if args.save_model else None, ) logger.warning("Outputs of Model {} is: {}".format(filenames[model_id], output))
AutoCTR-main
scripts/final_fit.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import argparse import os import pandas as pd import math import numpy as np from sklearn.model_selection import StratifiedKFold from sklearn import preprocessing def preprocess_criteo(datafile): train_path="train.txt" # train_path="train.txt" train_path = os.path.join(datafile, train_path) f1 = open(train_path,'r') dic= {} # generate three fold. # train_x: value # train_i: index # train_y: label f_train_value = open(os.path.join(datafile, 'train_x.txt'),'w') f_train_index = open(os.path.join(datafile, 'train_i.txt'),'w') f_train_label = open(os.path.join(datafile, 'train_y.txt'),'w') num_dense, num_sparse = 13, 26 num_feature = num_dense + num_sparse for i in range(num_feature): dic[i] = {} cnt_train = 0 #for debug #limits = 10000 index = [1] * num_sparse for line in f1: cnt_train +=1 if cnt_train % 100000 ==0: print('now train cnt : %d\n' % cnt_train) #if cnt_train > limits: # break split = line.strip('\n').split('\t') # 0-label, 1-13 numerical, 14-39 category for i in range(num_dense, num_feature): #dic_len = len(dic[i]) if split[i+1] not in dic[i]: # [1, 0] 1 is the index for those whose appear times <= 10 0 indicates the appear times dic[i][split[i+1]] = [1,0] dic[i][split[i+1]][1] += 1 if dic[i][split[i+1]][0] == 1 and dic[i][split[i+1]][1] > 10: index[i-num_dense] += 1 dic[i][split[i+1]][0] = index[i-num_dense] f1.close() print('total entries :%d\n' % (cnt_train - 1)) # calculate number of category features of every dimension kinds = [num_dense] for i in range(num_dense, num_feature): kinds.append(index[i-num_dense]) print('number of dimensions : %d' % (len(kinds)-1)) print(kinds) for i in range(1,len(kinds)): kinds[i] += kinds[i-1] print(kinds) # make new data f1 = open(train_path,'r') cnt_train = 0 print('remake training data...\n') for line in f1: cnt_train +=1 if cnt_train % 100000 ==0: print('now train cnt : %d\n' % cnt_train) #if cnt_train > limits: # break entry = ['0'] * num_feature index = [None] * num_feature split = line.strip('\n').split('\t') label = str(split[0]) for i in range(num_dense): if split[i+1] != '': entry[i] = (split[i+1]) index[i] = (i+1) for i in range(num_dense, num_feature): if split[i+1] != '': entry[i] = '1' index[i] = (dic[i][split[i+1]][0]) for j in range(num_sparse): index[num_dense+j] += kinds[j] index = [str(item) for item in index] f_train_value.write(' '.join(entry)+'\n') f_train_index.write(' '.join(index)+'\n') f_train_label.write(label+'\n') f1.close() f_train_value.close() f_train_index.close() f_train_label.close() def preprocess_avazu(datafile): train_path = './train.csv' f1 = open(train_path, 'r') dic = {} f_train_value = open('./train_x.txt', 'w') f_train_index = open('./train_i.txt', 'w') f_train_label = open('./train_y.txt', 'w') debug = False tune = False Bound = [5] * 24 label_index = 1 Column = 24 numr_feat = [] numerical = [0] * Column numerical[label_index] = -1 cate_feat = [] for i in range(Column): if (numerical[i] == 0): cate_feat.extend([i]) index_cnt = 0 index_others = [0] * Column Max = [0] * Column for i in numr_feat: index_others[i] = index_cnt index_cnt += 1 numerical[i] = 1 for i in cate_feat: index_others[i] = index_cnt index_cnt += 1 for i in range(Column): dic[i] = dict() cnt_line = 0 for line in f1: cnt_line += 1 if (cnt_line == 1): continue # header if (cnt_line % 1000000 == 0): print ("cnt_line = %d, index_cnt = %d" % (cnt_line, index_cnt)) if (debug == True): if (cnt_line >= 10000): break split = line.strip('\n').split(',') for i in cate_feat: if (split[i] != ''): if split[i] not in dic[i]: dic[i][split[i]] = [index_others[i], 0] dic[i][split[i]][1] += 1 if (dic[i][split[i]][0] == index_others[i] and dic[i][split[i]][1] == Bound[i]): dic[i][split[i]][0] = index_cnt index_cnt += 1 if (tune == False): label = split[label_index] if (label != '0'): label = '1' index = [0] * (Column - 1) value = ['0'] * (Column - 1) for i in range(Column): cur = i if (i == label_index): continue if (i > label_index): cur = i - 1 if (numerical[i] == 1): index[cur] = index_others[i] if (split[i] != ''): value[cur] = split[i] # Max[i] = max(int(split[i]), Max[i]) else: if (split[i] != ''): index[cur] = dic[i][split[i]][0] value[cur] = '1' if (split[i] == ''): value[cur] = '0' f_train_index.write(' '.join(str(i) for i in index) + '\n') f_train_value.write(' '.join(value) + '\n') f_train_label.write(label + '\n') f1.close() f_train_index.close() f_train_value.close() f_train_label.close() print ("Finished!") print ("index_cnt = %d" % index_cnt) # print ("max number for numerical features:") # for i in numr_feat: # print ("no.:%d max: %d" % (i, Max[i])) def preprocess_kdd(datafile): #coding=utf-8 #Email of the author: zjduan@pku.edu.cn ''' 0. Click: 1. Impression(numerical) 2. DisplayURL: (categorical) 3. AdID:(categorical) 4. AdvertiserID:(categorical) 5. Depth:(numerical) 6. Position:(numerical) 7. QueryID: (categorical) the key of the data file 'queryid_tokensid.txt'. 8. KeywordID: (categorical)the key of 'purchasedkeyword_tokensid.txt'. 9. TitleID: (categorical)the key of 'titleid_tokensid.txt'. 10. DescriptionID: (categorical)the key of 'descriptionid_tokensid.txt'. 11. UserID: (categorical)the key of 'userid_profile.txt' 12. User's Gender: (categorical) 13. User's Age: (categorical) ''' train_path = './training.txt' f1 = open(train_path, 'r') f2 = open('./userid_profile.txt', 'r') dic = {} f_train_value = open('./train_x.txt', 'w') f_train_index = open('./train_i.txt', 'w') f_train_label = open('./train_y.txt', 'w') debug = False tune = False Column = 12 Field = 13 numr_feat = [1,5,6] numerical = [0] * Column cate_feat = [2,3,4,7,8,9,10,11] index_cnt = 0 index_others = [0] * (Field + 1) Max = [0] * 12 numerical[0] = -1 for i in numr_feat: index_others[i] = index_cnt index_cnt += 1 numerical[i] = 1 for i in cate_feat: index_others[i] = index_cnt index_cnt += 1 for i in range(Field + 1): dic[i] = dict() ###init user_dic user_dic = dict() cnt_line = 0 for line in f2: cnt_line += 1 if (cnt_line % 1000000 == 0): print ("cnt_line = %d, index_cnt = %d" % (cnt_line, index_cnt)) # if (debug == True): # if (cnt_line >= 10000): # break split = line.strip('\n').split('\t') user_dic[split[0]] = [split[1], split[2]] if (split[1] not in dic[12]): dic[12][split[1]] = [index_cnt, 0] index_cnt += 1 if (split[2] not in dic[13]): dic[13][split[2]] = [index_cnt, 0] index_cnt += 1 cnt_line = 0 for line in f1: cnt_line += 1 if (cnt_line % 1000000 == 0): print ("cnt_line = %d, index_cnt = %d" % (cnt_line, index_cnt)) if (debug == True): if (cnt_line >= 10000): break split = line.strip('\n').split('\t') for i in cate_feat: if (split[i] != ''): if split[i] not in dic[i]: dic[i][split[i]] = [index_others[i], 0] dic[i][split[i]][1] += 1 if (dic[i][split[i]][0] == index_others[i] and dic[i][split[i]][1] == 10): dic[i][split[i]][0] = index_cnt index_cnt += 1 if (tune == False): label = split[0] if (label != '0'): label = '1' index = [0] * Field value = ['0'] * Field for i in range(1, 12): if (numerical[i] == 1): index[i - 1] = index_others[i] if (split[i] != ''): value[i - 1] = split[i] Max[i] = max(int(split[i]), Max[i]) else: if (split[i] != ''): index[i - 1] = dic[i][split[i]][0] value[i - 1] = '1' if (split[i] == ''): value[i - 1] = '0' if (i == 11 and split[i] == '0'): value[i - 1] = '0' ### gender and age if (split[11] == '' or (split[11] not in user_dic)): index[12 - 1] = index_others[12] value[12 - 1] = '0' index[13 - 1] = index_others[13] value[13 - 1] = '0' else: index[12 - 1] = dic[12][user_dic[split[11]][0]][0] value[12 - 1] = '1' index[13 - 1] = dic[13][user_dic[split[11]][1]][0] value[13 - 1] = '1' f_train_index.write(' '.join(str(i) for i in index) + '\n') f_train_value.write(' '.join(value) + '\n') f_train_label.write(label + '\n') f1.close() f_train_index.close() f_train_value.close() f_train_label.close() print ("Finished!") print ("index_cnt = %d" % index_cnt) print ("max number for numerical features:") for i in numr_feat: print ("no.:%d max: %d" % (i, Max[i])) def _load_data(_nrows=None, debug = False, datafile=""): TRAIN_X = os.path.join(datafile, 'train_x.txt') TRAIN_Y = os.path.join(datafile, 'train_y.txt') print(TRAIN_X) print(TRAIN_Y) train_x = pd.read_csv(TRAIN_X,header=None,sep=' ',nrows=_nrows, dtype=np.float) train_y = pd.read_csv(TRAIN_Y,header=None,sep=' ',nrows=_nrows, dtype=np.int32) train_x = train_x.values train_y = train_y.values.reshape([-1]) print('data loading done!') print('training data : %d' % train_y.shape[0]) assert train_x.shape[0]==train_y.shape[0] return train_x, train_y def save_x_y(fold_index, train_x, train_y, datafile): train_x_name = "train_x.npy" train_y_name = "train_y.npy" _get = lambda x, l: [x[i] for i in l] for i in range(len(fold_index)): print("now part %d" % (i+1)) part_index = fold_index[i] Xv_train_, y_train_ = _get(train_x, part_index), _get(train_y, part_index) save_dir_Xv = os.path.join(datafile, "part" + str(i+1)) save_dir_y = os.path.join(datafile, "part" + str(i+1)) if (os.path.exists(save_dir_Xv) == False): os.makedirs(save_dir_Xv) if (os.path.exists(save_dir_y) == False): os.makedirs(save_dir_y) save_path_Xv = os.path.join(save_dir_Xv, train_x_name) save_path_y = os.path.join(save_dir_y, train_y_name) np.save(save_path_Xv, Xv_train_) np.save(save_path_y, y_train_) def save_i(fold_index, datafile): _get = lambda x, l: [x[i] for i in l] TRAIN_I = os.path.join(datafile, 'train_i.txt') train_i = pd.read_csv(TRAIN_I,header=None,sep=' ',nrows=None, dtype=np.int32) train_i = train_i.values feature_size = train_i.max() + 1 print ("feature_size = %d" % feature_size) feature_size = [feature_size] feature_size = np.array(feature_size) np.save(os.path.join(datafile, "feature_size.npy"), feature_size) # pivot = 40000000 # test_i = train_i[pivot:] # train_i = train_i[:pivot] # print("test_i size: %d" % len(test_i)) print("train_i size: %d" % len(train_i)) # np.save("../data/test/test_i.npy", test_i) for i in range(len(fold_index)): print("now part %d" % (i+1)) part_index = fold_index[i] Xi_train_ = _get(train_i, part_index) save_path_Xi = os.path.join(datafile, "part" + str(i+1), 'train_i.npy') np.save(save_path_Xi, Xi_train_) def stratifiedKfold(datafile): train_x, train_y = _load_data(datafile=datafile) print('loading data done!') folds = list(StratifiedKFold(n_splits=10, shuffle=True, random_state=2018).split(train_x, train_y)) fold_index = [] for i,(train_id, valid_id) in enumerate(folds): fold_index.append(valid_id) print("fold num: %d" % (len(fold_index))) fold_index = np.array(fold_index) np.save(os.path.join(datafile, "fold_index.npy"), fold_index) save_x_y(fold_index, train_x, train_y, datafile=datafile) print("save train_x_y done!") fold_index = np.load(os.path.join(datafile, "fold_index.npy"), allow_pickle=True) save_i(fold_index, datafile=datafile) print("save index done!") def scale(x): if x > 2: x = int(math.log(float(x))**2) return x def scale_dense_feat(datafile, dataset_name): if args.dataset_name == "criteo": num_dense = 13 elif args.dataset_name == "avazu": return True elif args.dataset_name == "kdd": num_dense = 3 for i in range(1,11): print('now part %d' % i) data = np.load(os.path.join(datafile, 'part'+str(i), 'train_x.npy'), allow_pickle=True) part = data[:,:num_dense] for j in range(part.shape[0]): if j % 100000 ==0: print(j) part[j] = list(map(scale, part[j])) np.save(os.path.join(datafile, 'part' + str(i), 'train_x2.npy'), data) def print_shape(name, var): print("Shape of {}: {}".format(name, var.shape)) def check_existing_file(filename, force): if os.path.isfile(filename): print("file {} already exists!".format(filename)) if not force: raise ValueError("aborting, use --force if you want to processed") else: print("Will override the file!") def sample_data(args): output_data_file = "{}{}.npz".format(args.data_file, args.save_filename) check_existing_file(output_data_file, args.force) data = np.load(args.sample_data_file, allow_pickle=True) X_cat, X_int, y = data["X_cat"], data["X_int"], data["y"] print_shape("X_cat", X_cat) print_shape("X_int", X_int) print_shape("y", y) print("total number of data points: {}".format(len(y))) print( "saving first {} data points to {}{}.npz".format( args.num_samples, args.data_file, args.save_filename ) ) np.savez_compressed( "{}{}.npz".format(args.data_file, args.save_filename), X_int=X_int[0 : args.num_samples, :], X_cat=X_cat[0 : args.num_samples, :], y=y[0 : args.num_samples], ) def compress_ids(feature, raw_to_new={}): if raw_to_new is None: start_idx = 1 raw_to_new = {} else: start_idx = 0 for i in range(len(feature)): if feature[i] not in raw_to_new: raw_to_new[feature[i]] = len(raw_to_new) + start_idx feature[i] = raw_to_new[feature[i]] return raw_to_new def final_preprocess(datafile): X_int = [] X_cat = [] y = [] missing_sparse = [] if args.dataset_name == "criteo": num_dense, num_sparse = 13, 26 TRAIN_X = "train_x2.npy" elif args.dataset_name == "avazu": num_dense, num_sparse = 0, 23 TRAIN_X = "train_x.npy" elif args.dataset_name == "kdd": num_dense, num_sparse = 3, 10 TRAIN_X = "train_x2.npy" TRAIN_Y = "train_y.npy" TRAIN_I = "train_i.npy" for i in [3,4,5,6,7,8,9,10,2,1]:#range(1,11): # todo f = np.load(os.path.join(datafile, "part" + str(i), TRAIN_I), "r", allow_pickle=True) g = np.load(os.path.join(datafile, "part" + str(i), TRAIN_X), "r", allow_pickle=True) h = np.load(os.path.join(datafile, "part" + str(i), TRAIN_Y), "r", allow_pickle=True) X_int_split = np.array(g[:, 0:num_dense]) X_cat_split = np.array(f[:, num_dense:]) y_split = h missing_sparse_split = np.array(g[:,0:]) indices = np.arange(len(y_split)) indices = np.random.permutation(indices) # shuffle data X_cat_split = X_cat_split[indices] X_int_split = X_int_split[indices] y_split = y_split[indices].astype(np.float32) missing_sparse_split = missing_sparse_split[indices] X_int.append(X_int_split) X_cat.append(X_cat_split) y.append(y_split) missing_sparse.append(missing_sparse_split) X_int = np.concatenate(X_int) X_cat = np.concatenate(X_cat) y = np.concatenate(y) missing_sparse = np.concatenate(missing_sparse) print("expected feature size", X_cat.max() + 1) flat = X_cat.flatten() fset = set(flat) print("expected size", len(fset)) missing_sparse_maps = [] for i in range(num_sparse): missing_slice = missing_sparse[:,i] if 0 in missing_slice: locs = np.where(missing_slice==0)[0] missing_sparse_maps.append({X_cat[locs[0],i]:0}) else: missing_sparse_maps.append(None) raw_to_new_ids = [] for i in range(X_cat.shape[1]): print("compressing the ids for the {}-th feature.".format(i)) raw_to_new_ids.append(compress_ids(X_cat[:, i], missing_sparse_maps[i])) total = 0 hashsizes = [] for i in range(len(raw_to_new_ids)): hashsize = max(raw_to_new_ids[i].values())+1 # 1 is for the zero hashsizes.append(hashsize) print("sparse_" + str(i),"\t", hashsize) total += hashsize if args.dataset_name == "criteo": hashsize_filename = "criteo_hashsizes.npy" finaldata_filename = "criteo_processed.npz" elif args.dataset_name == "avazu": hashsize_filename = "avazu_hashsizes.npy" finaldata_filename = "avazu_processed.npz" elif args.dataset_name == "kdd": hashsize_filename = "kdd2012_hashsizes.npy" finaldata_filename = "kdd2012_processed.npz" np.save(os.path.join(datafile, hashsize_filename), np.array(hashsizes)) np.savez_compressed(os.path.join(datafile, finaldata_filename), X_int=X_int, X_cat=X_cat, y=y) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Parse Data") parser.add_argument("--dataset-name", default="criteo", choices=["criteo", "avazu", "kdd"]) parser.add_argument("--data-file", type=str, default="") parser.add_argument("--sample-data-file", type=str, default="") parser.add_argument("--save-filename", type=str, default="") parser.add_argument("--mode", type=str, default="raw") parser.add_argument("--num-samples", type=int, default=1000) parser.add_argument("--force", action="store_true", default=False) args = parser.parse_args() if args.mode == "raw": print( "Load raw data and parse (compress id to consecutive space, " "shuffle within ds) and save it." ) if args.dataset_name == "criteo": preprocess_criteo(datafile=args.data_file) elif args.dataset_name == "avazu": preprocess_avazu(datafile=args.data_file) elif args.dataset_name == "kdd": preprocess_kdd(datafile=args.data_file) print("Start stratifiedKfold!") stratifiedKfold(datafile=args.data_file) print("Start scaling!") scale_dense_feat(datafile=args.data_file, dataset_name=args.dataset_name) print("Final preprocessing stage!") final_preprocess(datafile=args.data_file) print("Finish data preprocessing!") elif args.mode == "sample": print("Load processed data and take the first K data points and save it.") sample_data(args) else: raise ValueError("Unknown mode: {}".format(args.mode))
AutoCTR-main
scripts/preprocess.py
AutoCTR-main
scripts/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from __future__ import absolute_import, division, print_function, unicode_literals import sys sys.path.append('gen-py') import json import logging import os import pickle import time import copy import numpy as np import torch from thrift.protocol import TSimpleJSONProtocol from thrift.util import Serializer from config import ttypes as config from models.nas_modules import NASRecNet from models.builder import load_model from nasrec.builder import build_searcher, load_searcher, save_searcher from nasrec.utils import reward_normalization from trainers.simple import train as simple_train from utils.data import prepare_data from utils.search_utils import get_args, get_trainer_config, get_searcher_config from torch.multiprocessing import Pipe, Process, set_start_method from thop import profile set_start_method('spawn', force=True) import resource rlimit = resource.getrlimit(resource.RLIMIT_NOFILE) resource.setrlimit(resource.RLIMIT_NOFILE, (100000, rlimit[1])) import GPUtil logging.basicConfig(level=logging.WARNING) logger = logging.getLogger(__name__) jfactory = TSimpleJSONProtocol.TSimpleJSONProtocolFactory() if __name__ == "__main__": # get arguments args = get_args() logger.warning("All Args: {}".format(args)) # set seeds np.random.seed(args.numpy_seed) torch.manual_seed(args.torch_seed) excludeID = [int(id) for id in args.excludeID.split(",")] if args.excludeID else [] deviceIDs = GPUtil.getAvailable(order='first', limit=1, maxLoad=0.9, maxMemory=0.8, excludeID=excludeID) CUDA = 'cuda:' + str(deviceIDs[0]) device = torch.device("cpu") if args.use_gpu: if torch.cuda.is_available(): torch.backends.cudnn.deterministic = True device = torch.device(CUDA) else: print("WARNING: CUDA is not available on this machine, proceed with CPU") # load warm start emb dict if args.warm_start_emb: if args.data_set_name == "criteo": ckp_name = "warm_start_criteo.ckp" elif args.data_set_name == "avazu": ckp_name = "warm_start_avazu.ckp" elif args.data_set_name == "kdd2012": ckp_name = "warm_start_kdd2012.ckp" warm_start_filename = os.path.join(args.save_model_path, "models", ckp_name) warm_start_model = load_model(warm_start_filename) warm_start_emb_dict = warm_start_model.emb_dict # get trainer config input_summary, args = get_trainer_config(args) # change dataset to small dataset input_summary["data_options"]["from_file"]["data_file"] = args.data_file input_summary["data_options"]["from_file"]["batch_size"] = args.batch_size # change train_options input_summary["train_options"]["nepochs"] = args.nepochs input_summary["train_options"]["logging_config"]["log_freq"] = 100000 input_summary["train_options"]["logging_config"]["tb_log_freq"] = 100000 # change performance_options input_summary["performance_options"]["num_readers"] = args.num_workers input_summary["performance_options"]["num_trainers"] = args.num_trainers input_summary["performance_options"]["use_gpu"] = args.use_gpu # change optimizer input_summary["feature_options"]["dense"]["optim"]["adam"]["lr"] = args.learning_rate input_summary["feature_options"]["sparse"]["optim"]["sparse_adam"]["lr"] = args.learning_rate # change feature hashing size for i, feature in enumerate(input_summary["feature_options"]["sparse"]["features"]): if feature["hash_size"] > args.hash_size: input_summary["feature_options"]["sparse"]["features"][i]["hash_size"] = args.hash_size # extract feature config for searcher construction and trainer train_options = Serializer.deserialize( jfactory, json.dumps(input_summary["train_options"]), config.TrainConfig(), ) # extract feature config for searcher construction and trainer feature_config = Serializer.deserialize( jfactory, json.dumps(input_summary["feature_options"]), config.FeatureConfig(), ) data_options = Serializer.deserialize( jfactory, json.dumps(input_summary["data_options"]), config.DataConfig(), ) performance_options = Serializer.deserialize( jfactory, json.dumps(input_summary["performance_options"]), config.PerformanceConfig(), ) # construct temporal directory to save models if args.resume_file: temp_dir = os.path.join( args.save_model_path, args.searcher_type, args.data_set_name, args.resume_file, ) rewards = np.load(os.path.join(temp_dir, "rewards.npy"), allow_pickle=True).tolist() all_roc_aucs = np.load(os.path.join(temp_dir, "all_roc_aucs.npy"), allow_pickle=True).tolist() all_arc_vecs = np.load(os.path.join(temp_dir, "all_arc_vecs.npy"), allow_pickle=True).tolist() all_actions = np.load(os.path.join(temp_dir, "all_actions.npy"), allow_pickle=True).tolist() all_params = np.load(os.path.join(temp_dir, "all_params.npy"), allow_pickle=True).tolist() all_flops = np.load(os.path.join(temp_dir, "all_flops.npy"), allow_pickle=True).tolist() finished_model = np.load(os.path.join(temp_dir, "finished_model.npy"), allow_pickle=True).tolist() fbl_meta = np.load(os.path.join(temp_dir, "fbl_meta.npy"), allow_pickle=True).tolist() # unpickling meta data with open(os.path.join(temp_dir, "meta.txt"), "rb") as fp: [ best_val_loss, best_model, best_name, best_fbl_id, total_model, epoch, ] = pickle.load(fp) fp.close() searcher = load_searcher(os.path.join(temp_dir, "searcher.ckp")) if args.searcher_type == "evo": is_initial = np.load(os.path.join(temp_dir, "is_initial.npy"), allow_pickle=True).tolist() if args.searcher_type == "evo": searcher.all_arc_vecs = all_arc_vecs searcher.all_actions = all_actions searcher.all_params = all_params searcher.all_flops = all_flops searcher.all_rewards = rewards searcher.all_roc_aucs = all_roc_aucs if args.survival_type == "age": searcher.population_arc_queue = all_actions[-searcher.population_size:] searcher.population_val_queue = rewards[-searcher.population_size:] elif args.survival_type == "comb": searcher.comb() else: if args.survival_type == "fit": idx = sorted(range(len(rewards)), key=lambda i: rewards[i], reverse=True)[ -searcher.population_size:] elif args.survival_type == "mix": division = int(0.5 * searcher.population_size) tmp_rewards = rewards[:-division] idx = sorted(range(len(tmp_rewards)), key=lambda i: tmp_rewards[i], reverse=True)[-division:] searcher.population_arc_queue = np.array(all_actions)[idx].tolist() searcher.population_val_queue = np.array(rewards)[idx].tolist() if args.survival_type == "mix": searcher.population_arc_queue += all_actions[-division:] searcher.population_val_queue += rewards[-division:] logger.warning("Total_resume_length: arc_{}, val_{}".format( len(searcher.population_arc_queue), len(searcher.population_val_queue) )) searcher.sampler_type = args.sampler_type searcher.update_GBDT() else: if args.save_model_path: temp_dir = os.path.join( args.save_model_path, args.searcher_type, args.data_set_name, time.strftime("%Y%m%d-%H%M%S"), ) if not os.path.exists(temp_dir): os.makedirs(temp_dir) # construct searcher searcher_config = get_searcher_config(args) searcher = build_searcher(searcher_config, feature_config) searcher.to(device=device) best_val_loss = np.Inf best_model = None best_name = None best_fbl_id = None fbl_meta = [] rewards = [] all_roc_aucs = [] finished_model = [] total_model = -1 epoch = 0 # for checking repreated architectures all_arc_vecs = [] # mark all actions (block_configs) all_actions = [] all_params = [] all_flops = [] if args.searcher_type == "evo": is_initial = True all_forward_node_ids = [] all_virtual_losses = [] logger.warning("The running history is save in {}".format(temp_dir)) fbl_run_queue = [] fbl_result_queue = [] fbl_device_queue = [] fbl_time_queue = [] fbl_name_queue = [] fbl_id_queue = [] nasrec_net_queue = [] nasrec_arc_vec_queue = [] action_queue = [] params_queue = [] flops_queue = [] # for datasaving purpose batch_processor, train_dataloader, val_dataloader, \ val_dataloader_batches, train_dataloader_batches = {}, {}, {}, {}, {} for id in range(args.total_gpus): if id not in excludeID: CUDA = 'cuda:' + str(id) if len(batch_processor) == 0: ( _, # datasets batch_processor[CUDA], train_dataloader, val_dataloader, _, # eval_dataloader ) = prepare_data(data_options, performance_options, CUDA) else: ( _, # datasets batch_processor[CUDA], _, _, _, # eval_dataloader ) = prepare_data(data_options, performance_options, CUDA) if args.save_batches: train_dataloader_batches[CUDA] = [] val_dataloader_batches[CUDA] = [] if len(batch_processor) == 1: for i_batch, sample_batched in enumerate(train_dataloader): if i_batch % 100 == 0: logger.warning("i_batch {}".format(i_batch)) train_dataloader_batches[CUDA].append(sample_batched) for i_batch, sample_batched in enumerate(val_dataloader): if i_batch % 100 == 0: logger.warning("i_batch {}".format(i_batch)) val_dataloader_batches[CUDA].append(sample_batched) mark = CUDA else: train_dataloader_batches[CUDA] = [[]] * len(train_dataloader_batches[mark]) val_dataloader_batches[CUDA] = [[]] * len(val_dataloader_batches[mark]) for i_batch, sample_batched in enumerate(train_dataloader_batches[mark]): train_dataloader_batches[CUDA][i_batch] = {} if i_batch % 100 == 0: logger.warning("copy i_batch {}".format(i_batch)) for k, v in sample_batched.items(): train_dataloader_batches[CUDA][i_batch][k] = v.clone().detach() # train_dataloader_batches[CUDA] = train_dataloader_batches[mark] for i_batch, sample_batched in enumerate(train_dataloader_batches[CUDA]): if i_batch % 100 == 0: logger.warning("process_i_batch {}".format(i_batch)) train_dataloader_batches[CUDA][i_batch] = batch_processor[CUDA]( mini_batch=sample_batched) for i_batch, sample_batched in enumerate(val_dataloader_batches[mark]): val_dataloader_batches[CUDA][i_batch] = {} if i_batch % 100 == 0: logger.warning("copy i_batch {}".format(i_batch)) for k, v in sample_batched.items(): val_dataloader_batches[CUDA][i_batch][k] = v.clone().detach() # val_dataloader_batches[CUDA] = val_dataloader_batches[mark] for i_batch, sample_batched in enumerate(val_dataloader_batches[CUDA]): if i_batch % 100 == 0: logger.warning("process_i_batch {}".format(i_batch)) val_dataloader_batches[CUDA][i_batch] = batch_processor[CUDA]( mini_batch=sample_batched) else: train_dataloader_batches[CUDA] = None val_dataloader_batches[CUDA] = None if args.save_batches: for i_batch, sample_batched in enumerate(train_dataloader_batches[mark]): if i_batch % 100 == 0: logger.warning("process_first_cuda_i_batch {}".format(i_batch)) train_dataloader_batches[mark][i_batch] = batch_processor[mark]( mini_batch=sample_batched) for i_batch, sample_batched in enumerate(val_dataloader_batches[mark]): if i_batch % 100 == 0: logger.warning("process_first_cuda_i_batch {}".format(i_batch)) val_dataloader_batches[mark][i_batch] = batch_processor[mark]( mini_batch=sample_batched) logger.warning("batch_processor {}".format(batch_processor)) # load historical samples (could from other searchers) if args.historical_sample_path and args.historical_sample_num: hist_dir = args.historical_sample_path rewards = np.load(os.path.join(hist_dir, "rewards.npy"), allow_pickle=True).tolist()[ : args.historical_sample_num ] all_actions = np.load(os.path.join(hist_dir, "all_actions.npy"), allow_pickle=True).tolist()[ : args.historical_sample_num ] # TODO: all_params, all_flops try: all_params = np.load(os.path.join(hist_dir, "all_params.npy"), allow_pickle=True).tolist()[ : args.historical_sample_num ] all_flops = np.load(os.path.join(hist_dir, "all_flops.npy"), allow_pickle=True).tolist()[ : args.historical_sample_num ] except: finished_model = np.load(os.path.join(hist_dir, "finished_model.npy"), allow_pickle=True).tolist() all_params, all_flops = [], [] # Get the flops and params of the model for i_batch, sample_batched in enumerate(train_dataloader_batches[CUDA]): _, feats, _ = sample_batched break for nasrec_net_fp in finished_model: with open(nasrec_net_fp, "r") as fp: nasrec_net_config = json.load(fp) nasrec_net = Serializer.deserialize( jfactory, json.dumps(nasrec_net_config), config.ModelConfig(), ) tmp_model = NASRecNet(nasrec_net, feature_config) tmp_model.to(device=CUDA) flops, params = profile(tmp_model, inputs=(feats, ), verbose=False) flops = flops * 1.0 / args.batch_size all_params.append(params) all_flops.append(flops) np.save(os.path.join(hist_dir, "all_params.npy"), np.array(all_params)) np.save(os.path.join(hist_dir, "all_flops.npy"), np.array(all_flops)) all_params = np.load(os.path.join(hist_dir, "all_params.npy"), allow_pickle=True).tolist()[ : args.historical_sample_num ] all_flops = np.load(os.path.join(hist_dir, "all_flops.npy"), allow_pickle=True).tolist()[ : args.historical_sample_num ] logger.warning( "resume_all_params: {} all_flops: {}".format(all_params, all_flops) ) # convert actions to vecs (we do not direcly read the vecs # since we may change the vectorized expression of an arc) all_arc_vecs = [ np.concatenate(searcher.dicts_to_vecs(action)) for action in all_actions ] finished_model = np.load(os.path.join(hist_dir, "finished_model.npy"), allow_pickle=True).tolist()[ : args.historical_sample_num ] fbl_meta = np.load(os.path.join(hist_dir, "fbl_meta.npy"), allow_pickle=True).tolist()[ : args.historical_sample_num ] for mp_old in finished_model: with open(mp_old, "r") as fp: nasrec_net_old = json.load(fp) fp.close() mp_new = os.path.join(temp_dir, mp_old.split("/")[-1]) with open(mp_new, "w") as fp: json.dump(nasrec_net_old, fp) fp.close() # unpickling meta data best_idx = np.argmin(rewards) best_val_loss = rewards[best_idx] best_name, best_fbl_id = fbl_meta[best_idx] logger.warning( "resume_best_val_loss: {} best_idx: {} best_name {}, best_fbl_id {}".format( best_val_loss, best_idx, best_name, best_fbl_id ) ) best_model_filename = os.path.join( hist_dir, finished_model[best_idx].split("/")[-1] ) with open(best_model_filename, "r") as fp: best_model = json.load(fp) fp.close() total_model = args.historical_sample_num epoch = args.historical_sample_num if args.searcher_type == "evo": searcher.all_arc_vecs = all_arc_vecs searcher.all_actions = all_actions searcher.all_params = all_params searcher.all_flops = all_flops searcher.all_rewards = rewards # searcher.all_roc_aucs = all_roc_aucs if args.survival_type == "age": searcher.population_arc_queue = all_actions[-searcher.population_size:] searcher.population_val_queue = rewards[-searcher.population_size:] elif args.survival_type == "comb": searcher.comb() else: if args.survival_type == "fit": idx = sorted(range(len(rewards)), key=lambda i: rewards[i], reverse=True)[ -searcher.population_size:] elif args.survival_type == "mix": division = int(0.5 * searcher.population_size) tmp_rewards = rewards[:-division] idx = sorted(range(len(tmp_rewards)), key=lambda i: tmp_rewards[i], reverse=True)[-division:] searcher.population_arc_queue = np.array(all_actions)[idx].tolist() searcher.population_val_queue = np.array(rewards)[idx].tolist() if args.survival_type == "mix": searcher.population_arc_queue += all_actions[-division:] searcher.population_val_queue += rewards[-division:] logger.warning("Total_hist_length: arc_{}, val_{}".format( len(searcher.population_arc_queue), len(searcher.population_val_queue) )) if len(searcher.population_arc_queue) == searcher.population_size: is_initial = False searcher.sampler_type = args.sampler_type searcher.update_GBDT() while epoch < args.search_nepochs: while len(fbl_run_queue) < args.num_machines: logger.info( "Using fblearner training with {} trainers.".format(args.num_trainers) ) # Three steps NAS # 1. generate arcs if args.searcher_type == "evo": nasrec_net, _, actions, nasrec_arc_vecs = searcher.sample( batch_size=1, return_config=True, is_initial=is_initial ) else: nasrec_net, log_prob, actions, nasrec_arc_vecs = searcher.sample( batch_size=1, return_config=True ) nasrec_net = nasrec_net[0] action = actions[0] nasrec_arc_vec = nasrec_arc_vecs[0] total_model += 1 # check if an arch has already been searched before repeat_idx = ( [] if not all_arc_vecs or args.repeat_checker_off else np.where( np.sum(abs(np.array(all_arc_vecs) - nasrec_arc_vec), 1) == 0 )[0] ) if len(repeat_idx) != 0: logger.warning("The architecture is same with: {}.".format(repeat_idx)) continue repeat_idx_1 = ( [] if not nasrec_arc_vec_queue or args.repeat_checker_off else np.where( np.sum(abs(np.array(nasrec_arc_vec_queue) - nasrec_arc_vec), 1) == 0 )[0] ) # TODO: check correctness if len(repeat_idx_1) != 0: logger.warning("The architecture is same with the current running: {}.".format(repeat_idx_1)) continue # 2. put on fblearner to get performance model_option = Serializer.serialize(jfactory, nasrec_net) model_option = json.loads(model_option) input_summary["model_option"] = model_option basename = ( "[exp autoctr] nasnet_model_search_" + args.searcher_type + "_macro_space_type_" + str(args.macro_space_type) + "_" + str(total_model) + "_updated_model_" + str(epoch) ) try: if len(repeat_idx) != 0: break # TODO: device deviceIDs = GPUtil.getAvailable(order='random', limit=1, maxLoad=args.maxLoad, maxMemory=args.maxMemory, excludeID=excludeID) CUDA = 'cuda:' + str(deviceIDs[0]) except Exception: logger.warning("No available device!") try: recv_end, send_end = Pipe(False) tmp_model = NASRecNet(nasrec_net, feature_config) if args.warm_start_emb: tmp_model.emb_dict = copy.deepcopy(warm_start_emb_dict) tmp_model.to(device=CUDA) # Get the flops and params of the model for i_batch, sample_batched in enumerate(train_dataloader_batches[CUDA]): _, feats, _ = sample_batched break flops, params = profile(tmp_model, inputs=(feats, ), verbose=False) flops = flops * 1.0 / args.batch_size logger.warning("The current flops {}, params {}".format(flops, params)) # launch a subprocess for model training new_fbl_run = Process(target=simple_train, args=(tmp_model, train_options, None, # train_dataloader[CUDA], batch_processor[CUDA], CUDA, None, 0, send_end, train_dataloader_batches[CUDA], val_dataloader_batches[CUDA], args.batch_size # args.save_batches, )) new_fbl_run.start() fbl_id_queue.append(total_model) fbl_run_queue.append(new_fbl_run) fbl_result_queue.append(recv_end) fbl_device_queue.append(CUDA) fbl_time_queue.append(0) fbl_name_queue.append(basename) nasrec_net_queue.append(model_option) nasrec_arc_vec_queue.append(nasrec_arc_vec) action_queue.append(action) params_queue.append(params) flops_queue.append(flops) except Exception: logger.warning("Model are cannot be registered now!!") if len(repeat_idx) != 0: # has repeated arch (fbl_name, fbl_id) = fbl_meta[repeat_idx[0]] rewards.append(rewards[repeat_idx[0]]) model_filename = finished_model[repeat_idx[0]] with open(model_filename, "r") as fp: nasrec_net = json.load(fp) fp.close() nasrec_arc_vec = all_arc_vecs[repeat_idx[0]] action = all_actions[repeat_idx[0]] params = all_params[repeat_idx[0]] flops = all_flops[repeat_idx[0]] else: # check the status of all the current models mark = args.num_machines while mark == args.num_machines: fbl_time_queue = [t + args.waiting_time for t in fbl_time_queue] mark = 0 for i, fbl_run in enumerate(fbl_run_queue): if ( fbl_run.exitcode is None and fbl_time_queue[i] <= args.fbl_kill_time ): mark += 1 else: break logger.warning("All model are currently running!") time.sleep(args.waiting_time) # get the terminated workflow fbl_run = fbl_run_queue.pop(mark) fbl_result = fbl_result_queue.pop(mark) fbl_device = fbl_device_queue.pop(mark) fbl_time = fbl_time_queue.pop(mark) fbl_name = fbl_name_queue.pop(mark).split("_") fbl_id = fbl_id_queue.pop(mark) nasrec_net = nasrec_net_queue.pop(mark) nasrec_arc_vec = nasrec_arc_vec_queue.pop(mark) action = action_queue.pop(mark) params = params_queue.pop(mark) flops = flops_queue.pop(mark) if fbl_time > args.fbl_kill_time: fbl_run.terminate() logger.warning( "Model #_{} training Failed. ID: {}".format(fbl_name[-4], fbl_id) ) epoch -= 1 continue # there exist a model successed in queue logger.warning("mark {}, len(fbl_run_queue) {}".format(mark, len(fbl_run_queue))) try: output = fbl_result.recv() except Exception: # Failed to extract results due to some transient issue. logger.warning( "The results of model #_{} are failed to be obtained. ID: {}. DeviceID: {}".format( fbl_name[-4], fbl_id, fbl_device ) ) epoch -= 1 continue logger.warning( "Outputs of Model f{}_M_{}_S_{}: {}".format( fbl_id, fbl_name[-4], fbl_name[-1], output ) ) if output[-2]["avg_val_loss"] is None or np.isnan(output[-2]["avg_val_loss"]) \ or output[-2]["roc_auc_score"] is None or np.isnan(output[-2]["roc_auc_score"]): # Output is NaN sometimes. logger.warning( "Model #_{} validation output is Invalid (None)! ID: {}".format( fbl_name[-4], fbl_id ) ) epoch -= 1 continue all_roc_aucs.append([output[-2]["avg_val_loss"], output[-2]["roc_auc_score"]]) if args.reward_type == "logloss": rewards.append(output[-2]["avg_val_loss"]) elif args.reward_type == "auc": rewards.append(1 - output[-2]["roc_auc_score"]) model_filename = os.path.join( temp_dir, "M_" + str(fbl_name[-4]) + "_S_" + str(fbl_name[-1]) + ".json" ) finished_model.append(model_filename) fbl_meta.append((fbl_name, fbl_id)) all_arc_vecs.append(nasrec_arc_vec) all_actions.append(action) all_params.append(params) all_flops.append(flops) if args.save_model_path: try: logger.info("Saving model to {}".format(temp_dir)) with open(model_filename, "w") as fp: json.dump(nasrec_net, fp) fp.close() np.save(os.path.join(temp_dir, "rewards.npy"), np.array(rewards)) np.save(os.path.join(temp_dir, "all_roc_aucs.npy"), np.array(all_roc_aucs)) np.save( os.path.join(temp_dir, "all_arc_vecs.npy"), np.array(all_arc_vecs) ) np.save( os.path.join(temp_dir, "all_actions.npy"), np.array(all_actions) ) np.save( os.path.join(temp_dir, "all_params.npy"), np.array(all_params) ) np.save( os.path.join(temp_dir, "all_flops.npy"), np.array(all_flops) ) np.save( os.path.join(temp_dir, "finished_model.npy"), np.array(finished_model), ) np.save(os.path.join(temp_dir, "fbl_meta.npy"), np.array(fbl_meta)) if args.searcher_type == "evo": np.save(os.path.join(temp_dir, "is_initial.npy"), np.array(is_initial)) except Exception: logger.warning("Failed to save the model") # update best arc if rewards[-1] < best_val_loss: best_fbl_id, best_model, best_val_loss, best_name = ( fbl_id, nasrec_net, rewards[-1], fbl_name, ) if args.save_model_path: try: logger.warning("Saving the best model to {}".format(temp_dir)) model_filename = os.path.join(temp_dir, "Best_Model" + ".json") with open(model_filename, "w") as fp: json.dump(best_model, fp) fp.close() with open(os.path.join(temp_dir, "best_model_id.txt"), "w") as fp: fp.write( "M_" + str(fbl_name[-4]) + "_S_" + str(fbl_name[-1]) + ".json" + "\n" ) fp.close() except Exception: logger.warning("Failed to save the best model") # pickling meta data for resume purpose if args.save_model_path: with open(os.path.join(temp_dir, "meta.txt"), "wb") as fp: pickle.dump( [ best_val_loss, best_model, best_name, best_fbl_id, total_model, epoch, ], fp, ) fp.close() logger.warning( "{} model has been finished. The current best arc is: f{}_M_{}_S_{}. Its avg_val_loss is {}.".format( len(rewards), best_fbl_id, best_name[-4], best_name[-1], best_val_loss ) ) # 3. update searcher epoch = len(rewards) # epoch += 1 logger.warning("Searcher update epoch {}.".format(epoch)) if args.searcher_type == "evo": searcher.all_arc_vecs = all_arc_vecs searcher.all_actions = all_actions searcher.all_params = all_params searcher.all_flops = all_params searcher.all_rewards = rewards searcher.all_roc_aucs = all_roc_aucs searcher.update([action], [rewards[-1]], survival_type=args.survival_type) logger.warning("Total_length update: arc_{}, val_{}".format( len(searcher.population_arc_queue), len(searcher.population_val_queue) )) if ( is_initial and len(searcher.population_arc_queue) == args.population_size ): is_initial = False for proc in fbl_run_queue: proc.terminate() fbl_run_queue = [] fbl_time_queue = [] fbl_name_queue = [] fbl_id_queue = [] nasrec_net_queue = [] nasrec_arc_vec_queue = [] action_queue = [] params_queue = [] flops_queue = [] # save searcher save_searcher(os.path.join(temp_dir, "searcher.ckp"), searcher) # Kill all remaining workflows on fblearner for proc in fbl_run_queue: proc.terminate() logger.warning( "The best arc is: f{}_M_{}_S_{}. Its avg_val_loss is {}.".format( best_fbl_id, best_name[-4], best_name[-1], best_val_loss ) ) logger.warning("\nAll avg_val_loss are {}.".format(rewards)) if args.save_model_path: try: logger.warning("Saving the best model to {}".format(temp_dir)) model_filename = os.path.join( temp_dir, "Best_Model_M_" + str(fbl_name[-4]) + "_S_" + str(fbl_name[-1]) + ".json", ) with open(model_filename, "w") as fp: json.dump(best_model, fp) fp.close() except Exception: logger.warning("Failed to save the best model")
AutoCTR-main
scripts/search.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE_CC-BY-NC4.0 file in the root directory of this source tree. import argparse import glob, json, os, re import tarfile, zipfile import urllib.request import xml.etree.ElementTree as et import numpy as np import pandas as pd from nltk.tokenize import sent_tokenize from nltk_data.init import init_nltk_data def download_files(directory, urls, unzipped_filename): """download files from the given URLs to a local directory""" # Create a directory to store the downloaded files download_directory = os.path.join(directory, "downloaded_files") if not os.path.exists(download_directory): os.mkdir(download_directory) # Loop through the URLs and download each file for dataset_name, url in urls.items(): filename = url.split("/")[-1] filepath = os.path.join(download_directory, filename) # Download the file if os.path.exists(filepath): print(f"Skipping downloading {dataset_name} as it already exists.") else: urllib.request.urlretrieve(url, filepath) print(f"Successfully downloaded {dataset_name}") if os.path.exists( os.path.join(download_directory, unzipped_filename[dataset_name]) ): print(f"Skipping extracting {dataset_name} as it already has been done.") else: if dataset_name == "ReClor": # Unzip the password-protected file with zipfile.ZipFile(filepath, "r") as z: z.extractall( os.path.join(download_directory, "reclor"), pwd=bytes("for_non-commercial_research_purpose_only", "utf-8"), ) elif dataset_name == "MCScript2.0": with zipfile.ZipFile(filepath, "r") as z: z.extractall(os.path.join(download_directory, "mcscript")) elif url[-3:] == "zip": # Unzip the file with zipfile.ZipFile(filepath, "r") as z: z.extractall(download_directory) elif url[-3:] == ".gz": # Extract the archive to the same folder with tarfile.open(filepath, "r") as t: t.extractall(download_directory) print(f"Successfully extracted {dataset_name}") return download_directory def process_sciq(download_directory): """process the SciQ json files and return Pandas df""" train = pd.read_json( os.path.join(download_directory, "SciQ dataset-2 3/train.json") ) val = pd.read_json(os.path.join(download_directory, "SciQ dataset-2 3/valid.json")) joined = pd.concat([train, val], keys=["train", "val"]) # remove fill-in-the-blank sciQ = joined.loc[~joined.question.str.contains("_")] # use NLTK sent tokenizer to count the number of sentences in the passage sciQ["num_sentences"] = sciQ.support.apply(lambda x: sent_tokenize(x)).str.len() sciQ["passage_id"] = sciQ.support.apply(hash) # randomly shuffle answers newcolnames = ["answer1", "answer2", "answer3", "answer4"] np.random.seed(0) sciQ[newcolnames] = sciQ.apply( lambda x: pd.Series( np.random.choice( x[["distractor1", "distractor2", "distractor3", "correct_answer"]], 4, replace=False, ), index=newcolnames, ), axis=1, ) # retrieve correct answer def get_correct_answer_num(row): for i in [1, 2, 3, 4]: if row["correct_answer"] == row["answer" + str(i)]: return i # finalize format and filter out long passages sciQ["correct_answer_num"] = sciQ.apply(get_correct_answer_num, axis=1) sciQ["passage_id"] = sciQ.groupby("support").ngroup() sciQ_reset = ( sciQ.loc[sciQ.support.str.len() >= 1] .reset_index() .rename(columns={"support": "passage", "level_1": "question_id"}) ) sciQ_reset["split"] = sciQ_reset.level_0.apply(lambda x: "dev" if x == "val" else x) sciQ_reset["dataset"] = "sciQ" return sciQ_reset.loc[sciQ_reset.num_sentences <= 25][final_table_columns] def process_multirc(download_directory): """process the MultiRC json files and return Pandas df""" with open(os.path.join(download_directory, "splitv2/dev_83-fixedIds.json")) as f: multirc_dev = json.load(f)["data"] with open(os.path.join(download_directory, "splitv2/train_456-fixedIds.json")) as f: multirc_train = json.load(f)["data"] # unpack json format to pandas table i = 0 multirc_dict = {} reg_str = "</b>(.*?)<br>" for split, data in {"dev": multirc_dev, "train": multirc_train}.items(): for para in data: res = re.findall(reg_str, para["paragraph"]["text"]) para_text = " ".join(res) num_sents = len(res) for q in para["paragraph"]["questions"]: multirc_dict[i] = { "split": split, "passage_id": para["id"], "passage": para_text, "num_sentences": num_sents, "question_dict": q, } i += 1 unpacked = pd.DataFrame.from_dict(multirc_dict, orient="index") # get number of answers and correct answers def get_num_correct(q): return sum(a["isAnswer"] for a in q["answers"]) unpacked["num_correct_answers"] = unpacked.question_dict.apply(get_num_correct) unpacked["num_answers"] = unpacked.apply( lambda x: len(x["question_dict"]["answers"]), axis=1 ) # filter questions that match Belebele format and where passages aren't too long one_answer = unpacked.loc[ (unpacked.num_correct_answers == 1) & (unpacked.num_answers >= 4) & (unpacked.num_sentences <= 25) ].copy() # randomly shuffle answers and reformat np.random.seed(0) newcolnames = [ "question", "question_id", "answer1", "answer2", "answer3", "answer4", "correct_answer", "correct_answer_num", ] def process_question(question): newcols = {"question": question["question"], "question_id": question["idx"]} answers = question["answers"] while len(answers) != 4 or (not any(a["isAnswer"] for a in answers)): answers = np.random.choice(question["answers"], 4, replace=False) for i in [1, 2, 3, 4]: newcols["answer" + str(i)] = answers[i - 1]["text"] if answers[i - 1]["isAnswer"]: newcols["correct_answer"] = answers[i - 1]["text"] newcols["correct_answer_num"] = i return pd.Series(newcols) one_answer[newcolnames] = one_answer.question_dict.apply(process_question) one_answer["dataset"] = "MultiRC" return one_answer[final_table_columns] def process_mcscript(download_directory): """process the MCScript xml files and return Pandas df""" # unpack xml format to pandas table mc_script_dict = {} i = 0 # only using train data, not taking dev or test set. xtree = et.parse(os.path.join(download_directory, f"mcscript/train-data.xml")) xroot = xtree.getroot() for node in xroot: passage_id = node.attrib.get("id") text = node.find("text").text # use NLTK sent tokenizer to count the number of sentences in the passage num_sentences = len(sent_tokenize(text)) for q in node.find("questions"): mc_script_dict[i] = { "split": "train", "passage_id": passage_id, "passage": text, "question_id": q.attrib.get("id"), "question": q.attrib.get("text"), "num_sentences": num_sentences, } correct_answer = "" correct_ans_id = -1 for ans in q: ans_id = ans.attrib.get("id") mc_script_dict[i]["answer_" + ans_id] = ans.attrib.get("text") if ans.attrib.get("correct") == "True": correct_answer = mc_script_dict[i]["answer_" + ans_id] correct_ans_id = ans_id if correct_ans_id == -1: print(mc_script_dict[i]) mc_script_dict[i]["correct_answer"] = correct_answer mc_script_dict[i]["correct_answer_id"] = "answer_" + correct_ans_id i += 1 mc_script_unpacked = pd.DataFrame.from_dict(mc_script_dict, orient="index") mc_script_unpacked = mc_script_unpacked.loc[mc_script_unpacked.num_sentences <= 25] # shuffle and reformat questions newcols = ["answer1", "answer2", "answer3", "answer4", "correct_answer_num"] def process_mcscript_row(row): new_dict = {} similar_rows = mc_script_unpacked.loc[ (mc_script_unpacked.split == row.split) & (mc_script_unpacked.passage_id == row.passage_id) & (mc_script_unpacked.question_id != row.question_id) ] similar_answers = similar_rows[["answer_0", "answer_1"]].to_numpy().flatten() while len(new_dict.keys()) == 0: if len(similar_rows) == 0: two_ans = np.random.choice( mc_script_unpacked.correct_answer, 2, replace=False ) else: two_ans = np.random.choice(similar_answers, 2, replace=False) if (two_ans[0] in row[["answer_0", "answer_1"]]) or ( two_ans[1] in row[["answer_0", "answer_1"]] ): continue new_ans = np.random.choice( np.concatenate([two_ans, row[["answer_0", "answer_1"]]]), 4, replace=False, ) for i in [1, 2, 3, 4]: new_dict["answer" + str(i)] = new_ans[i - 1] if new_ans[i - 1] == row["correct_answer"]: new_dict["correct_answer_num"] = i return pd.Series(new_dict) np.random.seed(0) mc_script_unpacked[newcols] = mc_script_unpacked.apply(process_mcscript_row, axis=1) mc_script_unpacked["dataset"] = "MCScript2.0" return mc_script_unpacked[final_table_columns] def process_mctest(download_directory): """process the MCTest tsv files and return Pandas df""" mc500_raw = {} # not using test split for split in ["train", "dev"]: raw_df = pd.read_csv( os.path.join(download_directory, f"MCTest/mc500.{split}.tsv"), sep="\t", names=[ "mc500_id", "metadata", "passage", "question1", "MC_answer1.1", "MC_answer1.2", "MC_answer1.3", "MC_answer1.4", "question2", "MC_answer2.1", "MC_answer2.2", "MC_answer2.3", "MC_answer2.4", "question3", "MC_answer3.1", "MC_answer3.2", "MC_answer3.3", "MC_answer3.4", "question4", "MC_answer4.1", "MC_answer4.2", "MC_answer4.3", "MC_answer4.4", ], ) ans_df = pd.read_csv( os.path.join(download_directory, f"MCTest/mc500.{split}.ans"), sep="\t", names=[ "question1_answer", "question2_answer", "question3_answer", "question4_answer", ], ) joined_df = raw_df.merge(ans_df, left_index=True, right_index=True) mc500_raw[split] = joined_df mc500_all_raw = pd.concat(mc500_raw.values()) # extract answer values to correct format def get_answer_values(row, num): conversion = {"A": "1", "B": "2", "C": "3", "D": "4"} answer_column = ( "MC_answer" + str(num) + "." + conversion[row[f"question{str(num)}_answer"]] ) return row[answer_column] for num in [1, 2, 3, 4]: mc500_all_raw[f"question{str(num)}_answer"] = mc500_all_raw.apply( get_answer_values, args=[num], axis=1 ) # melt to get question and answer columns in one dataframe dfq = mc500_all_raw.melt( id_vars=["mc500_id", "passage"], value_vars=["question1", "question2", "question3", "question4"], value_name="question", var_name="question_number", ) dfa1 = mc500_all_raw.melt( id_vars=["mc500_id", "passage"], value_vars=["MC_answer1.1", "MC_answer2.1", "MC_answer3.1", "MC_answer4.1"], value_name="MC_answer1", ) dfa2 = mc500_all_raw.melt( id_vars=["mc500_id", "passage"], value_vars=["MC_answer1.2", "MC_answer2.2", "MC_answer3.2", "MC_answer4.2"], value_name="MC_answer2", ) dfa3 = mc500_all_raw.melt( id_vars=["mc500_id", "passage"], value_vars=["MC_answer1.3", "MC_answer2.3", "MC_answer3.3", "MC_answer4.3"], value_name="MC_answer3", ) dfa4 = mc500_all_raw.melt( id_vars=["mc500_id", "passage"], value_vars=["MC_answer1.4", "MC_answer2.4", "MC_answer3.4", "MC_answer4.4"], value_name="MC_answer4", ) dfca = mc500_all_raw.melt( id_vars=["mc500_id", "passage"], value_vars=[ "question1_answer", "question2_answer", "question3_answer", "question4_answer", ], value_name="correct_answer", ) mc500_all = pd.concat( [ dfq, dfa1.drop(["mc500_id", "passage", "variable"], axis=1), dfa2.drop(["mc500_id", "passage", "variable"], axis=1), dfa3.drop(["mc500_id", "passage", "variable"], axis=1), dfa4.drop(["mc500_id", "passage", "variable"], axis=1), dfca.drop(["mc500_id", "passage", "variable"], axis=1), ], axis=1, ) # extract the prefix to the questions which details the number of sentences required in the passage to answer mc500_all["sent_required"] = mc500_all.question.str.split(":").str[0].str.strip() mc500_all["question"] = mc500_all.question.str.split(":").str[1].str.strip() # use NLTK sent tokenizer to count the number of sentences in the passage mc500_all["num_sentences"] = mc500_all.passage.apply( lambda x: sent_tokenize(x) ).str.len() def get_correct_answer_num(row): for i in [1, 2, 3, 4]: if row["MC_answer" + str(i)] == row["correct_answer"]: return i mc500_all["correct_answer_num"] = mc500_all.apply(get_correct_answer_num, axis=1) mc500_all["passage_id"] = mc500_all.mc500_id.apply(lambda x: x.split(".")[-1]) mc500_all["question_id"] = mc500_all.question_number.str.replace("question", "") mc500_all["dataset"] = "MCTest_500" mc500_all["split"] = [a[1] for a in mc500_all.mc500_id.str.split(".")] return mc500_all.loc[mc500_all.num_sentences <= 25].rename( mapper=(lambda x: x.replace("MC_", "")), axis=1 )[final_table_columns] def process_race(download_directory): """process the RACE txt files and return Pandas df""" # unpack all the .txt files of the dataset into a single pandas table race_dict = {} i = 0 for split in ["dev", "train"]: for level in ["middle", "high"]: for file in glob.glob( os.path.join(download_directory, f"RACE/{split}/{level}/*.txt") ): with open(file) as f: file_str = f.read() file_dict = json.loads(file_str) num_sentences = len(sent_tokenize(file_dict["article"])) num_qs = len(file_dict["answers"]) for q in range(num_qs): race_dict[i] = { "split": split, "level": level, "passage_id": file_dict["id"], "passage": file_dict["article"], "question_id": q, "question": file_dict["questions"][q], "num_sentences": num_sentences, } # rename answer columns for j in range(len(file_dict["options"][q])): race_dict[i]["answer" + str(j + 1)] = file_dict["options"][q][j] race_dict[i]["correct_answer_num"] = ( ord(file_dict["answers"][q]) - 64 ) race_dict[i]["correct_answer"] = file_dict["options"][q][ race_dict[i]["correct_answer_num"] - 1 ] i += 1 race_unpacked = pd.DataFrame.from_dict(race_dict, orient="index") # remove fill-in-the-blank questions race_unpacked = race_unpacked.loc[~race_unpacked.question.str.contains("_")] race_unpacked["dataset"] = "RACE" return race_unpacked.loc[race_unpacked.num_sentences <= 25][final_table_columns] def process_reclor(download_directory): """process the ReClor json files and return Pandas df""" # unpack the json format to into a pandas table reclor_dict = {} i = 0 for split in ["train", "val"]: # did not include test with open(os.path.join(download_directory, f"reclor/{split}.json")) as f: file_str = f.read() file_dict = json.loads(file_str) if split == "val": split = "dev" for item in file_dict: idx = item["id_string"].split("_")[-1] reclor_dict[i] = { "split": split, "passage_id": idx, "question_id": idx, "passage": item["context"], "question": item["question"], } for j in range(len(item["answers"])): reclor_dict[i]["answer" + str(j + 1)] = item["answers"][j] reclor_dict[i]["correct_answer_num"] = item["label"] + 1 reclor_dict[i]["correct_answer"] = item["answers"][item["label"]] i += 1 reclor_unpacked = pd.DataFrame.from_dict(reclor_dict, orient="index") reclor_unpacked["dataset"] = "ReClor" return reclor_unpacked[final_table_columns] if __name__ == "__main__": os.environ["HTTPS_PROXY"] = "http://fwdproxy:8080" parser = argparse.ArgumentParser( description="Assemble samples from numerous datasets and generate a JSON to serve as the training set for Belebele" ) parser.add_argument( "--data_path", help="Path to the json dataset", ) parser.add_argument( "--downloads_path", help="Path to folder where all the files required to assemble the training set will be downloaded", default=".", ) parser.add_argument( "--output_file", help="Path to file with the final training set (in tsv format)", default="belebele_training_set.tsv", ) args = parser.parse_args() # the URLs to download urls = { "MultiRC": "https://cogcomp.seas.upenn.edu/multirc/data/mutlirc-v2.zip", "MCScript2.0": "https://fedora.clarin-d.uni-saarland.de/sfb1102/MCScript-2.0.zip", "MCTest": "https://mattr1.github.io/mctest/data/MCTest.zip", "RACE": "http://www.cs.cmu.edu/~glai1/data/race/RACE.tar.gz", "SciQ": "https://ai2-public-datasets.s3.amazonaws.com/sciq/SciQ.zip", "ReClor": "https://github.com/yuweihao/reclor/releases/download/v1/reclor_data.zip", } # the name of the files once unzipped unzipped_filenames = { "MultiRC": "splitv2", "ReClor": "reclor", "RACE": "RACE", "SciQ": "SciQ dataset-2 3", "MCScript2.0": "mcscript", "MCTest": "MCTest", } downloads_repo = download_files(args.downloads_path, urls, unzipped_filenames) final_table_columns = [ "dataset", "split", "passage_id", "question_id", "passage", "question", "answer1", "answer2", "answer3", "answer4", "correct_answer", "correct_answer_num", ] init_nltk_data() multirc_ready = process_multirc(downloads_repo) print("Finished processing MultiRC.") print("Starting to process MCScript2.0... this may take around 5 minutes") mcscript_ready = process_mcscript(downloads_repo) print("Finished processing MCScript2.0.") mctest_ready = process_mctest(downloads_repo) print("Finished processing MCTest.") sciq_ready = process_sciq(downloads_repo) print("Finished processing SciQ.") reclor_ready = process_reclor(downloads_repo) print("Finished processing ReClor.") race_ready = process_race(downloads_repo) print("Finished processing RACE... now joining them altogether.") combined = pd.concat( [ sciq_ready, mcscript_ready, mctest_ready, multirc_ready, race_ready, reclor_ready, ] ) combined.to_csv(args.output_file, sep="\t") print(f"Finished creating training set and dumped into {args.output_file}") print( "Beware when loading the data from the tsv, there are many newline characters, double quotes, single quotes, etc., especially in the RACE passages." )
belebele-main
assemble_training_set.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import os from setuptools import find_packages, setup REQUIRES = [ "matplotlib", "torch", "scipy", "SQLAlchemy==1.4.46", "dill", "pandas", "aepsych_client==0.3.0", "statsmodels", "ax-platform==0.3.1", "botorch==0.8.3", ] BENCHMARK_REQUIRES = ["tqdm", "pathos", "multiprocess"] DEV_REQUIRES = BENCHMARK_REQUIRES + [ "coverage", "flake8", "black", "numpy>=1.20", "sqlalchemy-stubs", # for mypy stubs "mypy", "parameterized", "scikit-learn", # used in unit tests ] VISUALIZER_REQUIRES = [ "voila==0.3.6", "ipywidgets==7.6.5", ] with open("README.md", "r") as fh: long_description = fh.read() with open(os.path.join("aepsych", "version.py"), "r") as fh: for line in fh.readlines(): if line.startswith("__version__"): version = line.split('"')[1] setup( name="aepsych", version=version, python_requires=">=3.8", packages=find_packages(), description="Adaptive experimetation for psychophysics", long_description=long_description, long_description_content_type="text/markdown", install_requires=REQUIRES, extras_require={ "dev": DEV_REQUIRES, "benchmark": BENCHMARK_REQUIRES, "visualizer": VISUALIZER_REQUIRES, }, entry_points={ "console_scripts": [ "aepsych_server = aepsych.server.server:main", "aepsych_database = aepsych.server.utils:main", ], }, )
aepsych-main
setup.py
#!/usr/bin/env python3 # Copyright 2004-present Facebook. All Rights Reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from os import path from setuptools import find_packages, setup this_directory = path.abspath(path.dirname(__file__)) with open(path.join(this_directory, "Readme.md"), encoding="utf-8") as f: long_description = f.read() setup( name="aepsych_client", version="0.3.0", packages=find_packages(), long_description=long_description, long_description_content_type="text/markdown", )
aepsych-main
clients/python/setup.py
aepsych-main
clients/python/tests/__init__.py
#!/usr/bin/env python3 # Copyright 2004-present Facebook. All Rights Reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import json import unittest import uuid from unittest.mock import MagicMock, patch import torch from aepsych.acquisition import MCPosteriorVariance from aepsych.generators import OptimizeAcqfGenerator, SobolGenerator from aepsych.models import GPClassificationModel from aepsych.server import AEPsychServer from aepsych_client import AEPsychClient from torch import tensor class MockStrategy: def gen(self, num_points): self._count = self._count + num_points return torch.tensor([[0.0]]) class RemoteServerTestCase(unittest.TestCase): def setUp(self): database_path = "./{}.db".format(str(uuid.uuid4().hex)) self.s = AEPsychServer(database_path=database_path) self.client = AEPsychClient(connect=False) self.client._send_recv = MagicMock( wraps=lambda x: json.dumps(self.s.handle_request(x)) ) def tearDown(self): self.s.cleanup() # cleanup the db if self.s.db is not None: self.s.db.delete_db() @patch( "aepsych.strategy.Strategy.gen", new=MockStrategy.gen, ) def test_client(self): config_str = """ [common] lb = [0] ub = [1] parnames = [x] stimuli_per_trial = 1 outcome_types = [binary] strategy_names = [init_strat, opt_strat] acqf = MCPosteriorVariance model = GPClassificationModel [init_strat] min_asks = 1 generator = SobolGenerator min_total_outcome_occurrences = 0 [opt_strat] min_asks = 1 generator = OptimizeAcqfGenerator min_total_outcome_occurrences = 0 """ self.client.configure(config_str=config_str, config_name="first_config") self.assertEqual(self.s.strat_id, 0) self.assertEqual(self.s.strat.strat_list[0].min_asks, 1) self.assertEqual(self.s.strat.strat_list[1].min_asks, 1) self.assertIsInstance(self.s.strat.strat_list[0].generator, SobolGenerator) self.assertIsInstance( self.s.strat.strat_list[1].generator, OptimizeAcqfGenerator ) self.assertIsInstance(self.s.strat.strat_list[1].model, GPClassificationModel) self.assertEqual(self.s.strat.strat_list[1].generator.acqf, MCPosteriorVariance) response = self.client.ask() self.assertSetEqual(set(response["config"].keys()), {"x"}) self.assertEqual(len(response["config"]["x"]), 1) self.assertTrue(0 <= response["config"]["x"][0] <= 1) self.assertFalse(response["is_finished"]) self.assertEqual(self.s.strat._count, 1) self.client.tell(config={"x": [0]}, outcome=1) self.assertEqual(self.s._strats[0].x, tensor([[0.0]])) self.assertEqual(self.s._strats[0].y, tensor([[1.0]])) self.client.tell(config={"x": [0]}, outcome=1, model_data=False) self.assertEqual(self.s._strats[0].x, tensor([[0.0]])) self.assertEqual(self.s._strats[0].y, tensor([[1.0]])) response = self.client.ask() self.assertTrue(response["is_finished"]) self.client.configure(config_str=config_str, config_name="second_config") self.assertEqual(self.s.strat._count, 0) self.assertEqual(self.s.strat_id, 1) self.client.resume(config_name="first_config") self.assertEqual(self.s.strat_id, 0) self.client.resume(config_name="second_config") self.assertEqual(self.s.strat_id, 1) self.client.finalize() class LocalServerTestCase(RemoteServerTestCase): def setUp(self): database_path = "./{}.db".format(str(uuid.uuid4().hex)) self.s = AEPsychServer(database_path=database_path) self.client = AEPsychClient(server=self.s) def test_warns_ignored_args(self): with self.assertWarns(UserWarning): AEPsychClient(ip="0.0.0.0", port=5555, server=self.s) if __name__ == "__main__": unittest.main()
aepsych-main
clients/python/tests/test_client.py
#!/usr/bin/env python3 # Copyright 2004-present Facebook. All Rights Reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import json import socket import warnings from typing import Any, Dict, List, Optional, TYPE_CHECKING, Union if TYPE_CHECKING: from aepsych.server import AEPsychServer class ServerError(RuntimeError): pass class AEPsychClient: def __init__( self, ip: Optional[str] = None, port: Optional[int] = None, connect: bool = True, server: "AEPsychServer" = None, ) -> None: """Python client for AEPsych using built-in python sockets. By default it connects to a localhost server matching AEPsych defaults. Args: ip (str, optional): IP to connect to (default: localhost). port (str, optional): Port to connect on (default: 5555). connect (bool): Connect as part of init? Defaults to True. server (AEPsychServer, optional): An in-memory AEPsychServer object to connect to. If this is not None, the other arguments will be ignored. """ self.configs = [] self.config_names = {} self.server = server if server is not None and (ip is not None or port is not None): warnings.warn( "AEPsychClient will ignore ip and port since it was given a server object!", UserWarning, ) if server is None: ip = ip or "0.0.0.0" port = port or 5555 self.socket = socket.socket() if connect: self.connect(ip, port) def load_config_index(self) -> None: """Loads the config index when server is not None""" self.configs = [] for i in range(self.server.n_strats): self.configs.append(i) def connect(self, ip: str, port: int) -> None: """Connect to the server. Args: ip (str): IP to connect to. port (str): Port to connect on. """ addr = (ip, port) self.socket.connect(addr) def finalize(self) -> None: """Let the server know experiment is complete.""" request = {"message": "", "type": "exit"} self._send_recv(request) def _send_recv(self, message) -> str: if self.server is not None: return self.server.handle_request(message) message = bytes(json.dumps(message), encoding="utf-8") self.socket.send(message) response = self.socket.recv(4096).decode("utf-8") # TODO this is hacky but we don't consistencly return json # from the server so we can't check for a status if response[:12] == "server_error": error_message = response[13:] raise ServerError(error_message) return response def ask( self, num_points: int = 1 ) -> Union[Dict[str, List[float]], Dict[int, Dict[str, Any]]]: """Get next configuration from server. Args: num_points[int]: Number of points to return. Returns: Dict[int, Dict[str, Any]]: Next configuration(s) to evaluate. If using the legacy backend, this is formatted as a dictionary where keys are parameter names and values are lists of parameter values. If using the Ax backend, this is formatted as a dictionary of dictionaries where the outer keys are trial indices, the inner keys are parameter names, and the values are parameter values. """ request = {"message": {"num_points": num_points}, "type": "ask"} response = self._send_recv(request) if isinstance(response, str): response = json.loads(response) return response def tell_trial_by_index( self, trial_index: int, outcome: int, model_data: bool = True, **metadata: Dict[str, Any], ) -> None: """Update the server on a trial that already has a trial index, as provided by `ask`. Args: outcome (int): Outcome that was obtained. model_data (bool): If True, the data will be recorded in the db and included in the server's model. If False, the data will be recorded in the db, but will not be used by the model. Defaults to True. trial_index (int): The associated trial index of the config. metadata (optional kwargs) is passed to the extra_info field on the server. Raises: AssertionError if server failed to acknowledge the tell. """ request = { "type": "tell", "message": { "outcome": outcome, "model_data": model_data, "trial_index": trial_index, }, "extra_info": metadata, } self._send_recv(request) def tell( self, config: Dict[str, List[Any]], outcome: int, model_data: bool = True, **metadata: Dict[str, Any], ) -> None: """Update the server on a configuration that was executed. Use this method when using the legacy backend or for manually-generated trials without an associated trial_index when uding the Ax backend. Args: config (Dict[str, str]): Config that was evaluated. outcome (int): Outcome that was obtained. metadata (optional kwargs) is passed to the extra_info field on the server. model_data (bool): If True, the data will be recorded in the db and included in the server's model. If False, the data will be recorded in the db, but will not be used by the model. Defaults to True. Raises: AssertionError if server failed to acknowledge the tell. """ request = { "type": "tell", "message": { "config": config, "outcome": outcome, "model_data": model_data, }, "extra_info": metadata, } self._send_recv(request) def configure( self, config_path: str = None, config_str: str = None, config_name: str = None ) -> None: """Configure the server and prepare for data collection. Note that either config_path or config_str must be passed. Args: config_path (str, optional): Path to a config.ini. Defaults to None. config_str (str, optional): Config.ini encoded as a string. Defaults to None. config_name (str, optional): A name to assign to this config internally for convenience. Raises: AssertionError if neither config path nor config_str is passed. """ if config_path is not None: assert config_str is None, "if config_path is passed, don't pass config_str" with open(config_path, "r") as f: config_str = f.read() elif config_str is not None: assert ( config_path is None ), "if config_str is passed, don't pass config_path" request = { "type": "setup", "message": {"config_str": config_str}, } idx = int(self._send_recv(request)) self.configs.append(idx) if config_name is not None: self.config_names[config_name] = idx def resume(self, config_id: int = None, config_name: str = None): """Resume a previous config from this session. To access available configs, use client.configs or client.config_names Args: config_id (int, optional): ID of config to resume. config_name (str, optional): Name config to resume. Raises: AssertionError if name or ID does not exist, or if both name and ID are passed. """ if config_id is not None: assert config_name is None, "if config_id is passed, don't pass config_name" assert ( config_id in self.configs ), f"No strat with index {config_id} was created!" elif config_name is not None: assert config_id is None, "if config_name is passed, don't pass config_id" assert ( config_name in self.config_names.keys() ), f"{config_name} not known, know {self.config_names.keys()}!" config_id = self.config_names[config_name] request = { "type": "resume", "message": {"strat_id": config_id}, } self._send_recv(request) def __del___(self): self.finalize()
aepsych-main
clients/python/aepsych_client/client.py
#!/usr/bin/env python3 # Copyright 2004-present Facebook. All Rights Reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from .client import AEPsychClient __all__ = ["AEPsychClient"]
aepsych-main
clients/python/aepsych_client/__init__.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import abc import ast import configparser import json import warnings from types import ModuleType from typing import Any, ClassVar, Dict, List, Mapping, Optional, Sequence, TypeVar import botorch import gpytorch import numpy as np import torch from aepsych.version import __version__ _T = TypeVar("_T") class Config(configparser.ConfigParser): # names in these packages can be referred to by string name registered_names: ClassVar[Dict[str, object]] = {} def __init__( self, config_dict: Optional[Mapping[str, Any]] = None, config_fnames: Optional[Sequence[str]] = None, config_str: Optional[str] = None, ): """Initialize the AEPsych config object. This can be used to instantiate most objects in AEPsych by calling object.from_config(config). Args: config_dict (Mapping[str, str], optional): Mapping to build configuration from. Keys are section names, values are dictionaries with keys and values that should be present in the section. Defaults to None. config_fnames (Sequence[str], optional): List of INI filenames to load configuration from. Defaults to None. config_str (str, optional): String formatted as an INI file to load configuration from. Defaults to None. """ super().__init__( inline_comment_prefixes=("#"), empty_lines_in_values=False, default_section="common", interpolation=configparser.ExtendedInterpolation(), converters={ "list": self._str_to_list, "tensor": self._str_to_tensor, "obj": self._str_to_obj, "array": self._str_to_array, }, allow_no_value=True, ) self.update( config_dict=config_dict, config_fnames=config_fnames, config_str=config_str, ) def _get( self, section, conv, option, *, raw=False, vars=None, fallback=configparser._UNSET, **kwargs, ): """ Override configparser to: 1. Return from common if a section doesn't exist. This comes up any time we have a module fully configured from the common/default section. 2. Pass extra **kwargs to the converter. """ try: return conv( self.get( section=section, option=option, raw=raw, vars=vars, fallback=fallback, ), **kwargs, ) except configparser.NoSectionError: return conv( self.get( section="common", option=option, raw=raw, vars=vars, fallback=fallback, ), **kwargs, ) # Convert config into a dictionary (eliminate duplicates from defaulted 'common' section.) def to_dict(self, deduplicate=True): _dict = {} for section in self: _dict[section] = {} for setting in self[section]: if deduplicate and section != "common" and setting in self["common"]: continue _dict[section][setting] = self[section][setting] return _dict # Turn the metadata section into JSON. def jsonifyMetadata(self) -> str: configdict = self.to_dict() return json.dumps(configdict["metadata"]) # Turn the entire config into JSON format. def jsonifyAll(self) -> str: configdict = self.to_dict() return json.dumps(configdict) def update( self, config_dict: Mapping[str, str] = None, config_fnames: Sequence[str] = None, config_str: str = None, ): """Update this object with a new configuration. Args: config_dict (Mapping[str, str], optional): Mapping to build configuration from. Keys are section names, values are dictionaries with keys and values that should be present in the section. Defaults to None. config_fnames (Sequence[str], optional): List of INI filenames to load configuration from. Defaults to None. config_str (str, optional): String formatted as an INI file to load configuration from. Defaults to None. """ if config_dict is not None: self.read_dict(config_dict) if config_fnames is not None: read_ok = self.read(config_fnames) if len(read_ok) < 1: raise FileNotFoundError if config_str is not None: self.read_string(config_str) # Deprecation warning for "experiment" section if "experiment" in self: for i in self["experiment"]: self["common"][i] = self["experiment"][i] del self["experiment"] def _str_to_list(self, v: str, element_type: _T = float) -> List[_T]: if v[0] == "[" and v[-1] == "]": if v == "[]": # empty list return [] else: return [element_type(i.strip()) for i in v[1:-1].split(",")] else: return [v.strip()] def _str_to_array(self, v: str) -> np.ndarray: v = ast.literal_eval(v) return np.array(v, dtype=float) def _str_to_tensor(self, v: str) -> torch.Tensor: return torch.Tensor(self._str_to_list(v)) def _str_to_obj(self, v: str, fallback_type: _T = str, warn: bool = True) -> object: try: return self.registered_names[v] except KeyError: if warn: warnings.warn(f'No known object "{v}"!') return fallback_type(v) def __repr__(self): return f"Config at {hex(id(self))}: \n {str(self)}" @classmethod def register_module(cls: _T, module: ModuleType): """Register a module with Config so that objects in it can be referred to by their string name in config files. Args: module (ModuleType): Module to register. """ cls.registered_names.update( { name: getattr(module, name) for name in module.__all__ if not isinstance(getattr(module, name), ModuleType) } ) @classmethod def register_object(cls: _T, obj: object): """Register an object with Config so that it can be referred to by its string name in config files. Args: obj (object): Object to register. """ if obj.__name__ in cls.registered_names.keys(): warnings.warn( f"Registering {obj.__name__} but already" + f"have {cls.registered_names[obj.__name__]}" + "registered under that name!" ) cls.registered_names.update({obj.__name__: obj}) def get_section(self, section): sec = {} for setting in self[section]: if section != "common" and setting in self["common"]: continue sec[setting] = self[section][setting] return sec def __str__(self): _str = "" for section in self: sec = self.get_section(section) _str += f"[{section}]\n" for setting in sec: _str += f"{setting} = {self[section][setting]}\n" return _str def convert_to_latest(self): self.convert(self.version, __version__) def convert(self, from_version: str, to_version: str) -> None: """Converts a config from an older version to a newer version. Args: from_version (str): The version of the config to be converted. to_version (str): The version the config should be converted to. """ if from_version == "0.0": self["common"]["strategy_names"] = "[init_strat, opt_strat]" if "experiment" in self: for i in self["experiment"]: self["common"][i] = self["experiment"][i] bridge = self["common"]["modelbridge_cls"] n_sobol = self["SobolStrategy"]["n_trials"] n_opt = self["ModelWrapperStrategy"]["n_trials"] if bridge == "PairwiseProbitModelbridge": self["init_strat"] = { "generator": "PairwiseSobolGenerator", "min_asks": n_sobol, } self["opt_strat"] = { "generator": "PairwiseOptimizeAcqfGenerator", "model": "PairwiseProbitModel", "min_asks": n_opt, } if "PairwiseProbitModelbridge" in self: self["PairwiseOptimizeAcqfGenerator"] = self[ "PairwiseProbitModelbridge" ] if "PairwiseGP" in self: self["PairwiseProbitModel"] = self["PairwiseGP"] elif bridge == "MonotonicSingleProbitModelbridge": self["init_strat"] = { "generator": "SobolGenerator", "min_asks": n_sobol, } self["opt_strat"] = { "generator": "MonotonicRejectionGenerator", "model": "MonotonicRejectionGP", "min_asks": n_opt, } if "MonotonicSingleProbitModelbridge" in self: self["MonotonicRejectionGenerator"] = self[ "MonotonicSingleProbitModelbridge" ] elif bridge == "SingleProbitModelbridge": self["init_strat"] = { "generator": "SobolGenerator", "min_asks": n_sobol, } self["opt_strat"] = { "generator": "OptimizeAcqfGenerator", "model": "GPClassificationModel", "min_asks": n_opt, } if "SingleProbitModelbridge" in self: self["OptimizeAcqfGenerator"] = self["SingleProbitModelbridge"] else: raise NotImplementedError( f"Refactor for {bridge} has not been implemented!" ) if "ModelWrapperStrategy" in self: if "refit_every" in self["ModelWrapperStrategy"]: self["opt_strat"]["refit_every"] = self["ModelWrapperStrategy"][ "refit_every" ] del self["common"]["model"] if to_version == __version__: if self["common"]["outcome_type"] == "single_probit": self["common"]["stimuli_per_trial"] = "1" self["common"]["outcome_types"] = "[binary]" if self["common"]["outcome_type"] == "single_continuous": self["common"]["stimuli_per_trial"] = "1" self["common"]["outcome_types"] = "[continuous]" if self["common"]["outcome_type"] == "pairwise_probit": self["common"]["stimuli_per_trial"] = "2" self["common"]["outcome_types"] = "[binary]" del self["common"]["outcome_type"] @property def version(self) -> str: """Returns the version number of the config.""" # TODO: implement an explicit versioning system # Try to infer the version if "stimuli_per_trial" in self["common"] and "outcome_types" in self["common"]: return __version__ if "common" in self and "strategy_names" in self["common"]: return "0.1" elif ( "SobolStrategy" in self or "ModelWrapperStrategy" in self or "EpsilonGreedyModelWrapperStrategy" in self ): return "0.0" else: raise RuntimeError("Unrecognized config format!") class ConfigurableMixin(abc.ABC): @abc.abstractclassmethod def get_config_options(cls, config: Config, name: str) -> Dict[str, Any]: # noqa raise NotImplementedError( f"get_config_options hasn't been defined for {cls.__name__}!" ) @classmethod def from_config(cls, config: Config, name: Optional[str] = None): return cls(**cls.get_config_options(config, name)) Config.register_module(gpytorch.likelihoods) Config.register_module(gpytorch.kernels) Config.register_module(botorch.acquisition) Config.registered_names["None"] = None
aepsych-main
aepsych/config.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. __version__ = "0.4.0"
aepsych-main
aepsych/version.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import warnings from typing import Callable, Iterable, List, Optional, Union import matplotlib.pyplot as plt import numpy as np from aepsych.strategy import Strategy from aepsych.utils import get_lse_contour, get_lse_interval, make_scaled_sobol from scipy.stats import norm def plot_strat( strat: Strategy, ax: Optional[plt.Axes] = None, true_testfun: Optional[Callable] = None, cred_level: float = 0.95, target_level: Optional[float] = 0.75, xlabel: Optional[str] = None, ylabel: Optional[str] = None, yes_label: str = "Yes trial", no_label: str = "No trial", flipx: bool = False, logx: bool = False, gridsize: int = 30, title: str = "", save_path: Optional[str] = None, show: bool = True, include_legend: bool = True, include_colorbar: bool = True, ) -> None: """Creates a plot of a strategy, showing participants responses on each trial, the estimated response function and threshold, and optionally a ground truth response threshold. Args: strat (Strategy): Strategy object to be plotted. Must have a dimensionality of 2 or less. ax (plt.Axes, optional): Matplotlib axis to plot on (if None, creates a new axis). Default: None. true_testfun (Callable, optional): Ground truth response function. Should take a n_samples x n_parameters tensor as input and produce the response probability at each sample as output. Default: None. cred_level (float): Percentage of posterior mass around the mean to be shaded. Default: 0.95. target_level (float): Response probability to estimate the threshold of. Default: 0.75. xlabel (str): Label of the x-axis. Default: "Context (abstract)". ylabel (str): Label of the y-axis (if None, defaults to "Response Probability" for 1-d plots or "Intensity (Abstract)" for 2-d plots). Default: None. yes_label (str): Label of trials with response of 1. Default: "Yes trial". no_label (str): Label of trials with response of 0. Default: "No trial". flipx (bool): Whether the values of the x-axis should be flipped such that the min becomes the max and vice versa. (Only valid for 2-d plots.) Default: False. logx (bool): Whether the x-axis should be log-transformed. (Only valid for 2-d plots.) Default: False. gridsize (int): The number of points to sample each dimension at. Default: 30. title (str): Title of the plot. Default: ''. save_path (str, optional): File name to save the plot to. Default: None. show (bool): Whether the plot should be shown in an interactive window. Default: True. include_legend (bool): Whether to include the legend in the figure. Default: True. include_colorbar (bool): Whether to include the colorbar indicating the probability of "Yes" trials. Default: True. """ assert ( "binary" in strat.outcome_types ), f"Plotting not supported for outcome_type {strat.outcome_types[0]}" if target_level is not None and not hasattr(strat.model, "monotonic_idxs"): warnings.warn( "Threshold estimation may not be accurate for non-monotonic models." ) if ax is None: _, ax = plt.subplots() if xlabel is None: xlabel = "Context (abstract)" dim = strat.dim if dim == 1: if ylabel is None: ylabel = "Response Probability" _plot_strat_1d( strat, ax, true_testfun, cred_level, target_level, xlabel, ylabel, yes_label, no_label, gridsize, ) elif dim == 2: if ylabel is None: ylabel = "Intensity (abstract)" _plot_strat_2d( strat, ax, true_testfun, cred_level, target_level, xlabel, ylabel, yes_label, no_label, flipx, logx, gridsize, include_colorbar, ) elif dim == 3: raise RuntimeError("Use plot_strat_3d for 3d plots!") else: raise NotImplementedError("No plots for >3d!") ax.set_title(title) if include_legend: anchor = (1.4, 0.5) if include_colorbar and dim > 1 else (1, 0.5) plt.legend(loc="center left", bbox_to_anchor=anchor) if save_path is not None: plt.savefig(save_path, bbox_inches="tight") if show: plt.tight_layout() if include_legend or (include_colorbar and dim > 1): plt.subplots_adjust(left=0.1, bottom=0.25, top=0.75) plt.show() def _plot_strat_1d( strat: Strategy, ax: plt.Axes, true_testfun: Optional[Callable], cred_level: float, target_level: Optional[float], xlabel: str, ylabel: str, yes_label: str, no_label: str, gridsize: int, ): """Helper function for creating 1-d plots. See plot_strat for an explanation of the arguments.""" x, y = strat.x, strat.y assert x is not None and y is not None, "No data to plot!" grid = strat.model.dim_grid(gridsize=gridsize) samps = norm.cdf(strat.model.sample(grid, num_samples=10000).detach()) phimean = samps.mean(0) ax.plot(np.squeeze(grid), phimean) if cred_level is not None: upper = np.quantile(samps, cred_level, axis=0) lower = np.quantile(samps, 1 - cred_level, axis=0) ax.fill_between( np.squeeze(grid), lower, upper, alpha=0.3, hatch="///", edgecolor="gray", label=f"{cred_level*100:.0f}% posterior mass", ) if target_level is not None: from aepsych.utils import interpolate_monotonic threshold_samps = [ interpolate_monotonic( grid.squeeze().numpy(), s, target_level, strat.lb[0], strat.ub[0] ) for s in samps ] thresh_med = np.mean(threshold_samps) thresh_lower = np.quantile(threshold_samps, q=1 - cred_level) thresh_upper = np.quantile(threshold_samps, q=cred_level) ax.errorbar( thresh_med, target_level, xerr=np.r_[thresh_med - thresh_lower, thresh_upper - thresh_med][:, None], capsize=5, elinewidth=1, label=f"Est. {target_level*100:.0f}% threshold \n(with {cred_level*100:.0f}% posterior \nmass marked)", ) if true_testfun is not None: true_f = true_testfun(grid) ax.plot(grid, true_f.squeeze(), label="True function") if target_level is not None: true_thresh = interpolate_monotonic( grid.squeeze().numpy(), true_f.squeeze(), target_level, strat.lb[0], strat.ub[0], ) ax.plot( true_thresh, target_level, "o", label=f"True {target_level*100:.0f}% threshold", ) ax.scatter( x[y == 0, 0], np.zeros_like(x[y == 0, 0]), marker=3, color="r", label=no_label, ) ax.scatter( x[y == 1, 0], np.zeros_like(x[y == 1, 0]), marker=3, color="b", label=yes_label, ) ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) return ax def _plot_strat_2d( strat: Strategy, ax: plt.Axes, true_testfun: Optional[Callable], cred_level: float, target_level: Optional[float], xlabel: str, ylabel: str, yes_label: str, no_label: str, flipx: bool, logx: bool, gridsize: int, include_colorbar: bool, ): """Helper function for creating 2-d plots. See plot_strat for an explanation of the arguments.""" x, y = strat.x, strat.y assert x is not None and y is not None, "No data to plot!" # make sure the model is fit well if we've been limiting fit time strat.model.fit(train_x=x, train_y=y, max_fit_time=None) grid = strat.model.dim_grid(gridsize=gridsize) fmean, _ = strat.model.predict(grid) phimean = norm.cdf(fmean.reshape(gridsize, gridsize).detach().numpy()).T extent = np.r_[strat.lb[0], strat.ub[0], strat.lb[1], strat.ub[1]] colormap = ax.imshow( phimean, aspect="auto", origin="lower", extent=extent, alpha=0.5 ) if flipx: extent = np.r_[strat.lb[0], strat.ub[0], strat.ub[1], strat.lb[1]] colormap = ax.imshow( phimean, aspect="auto", origin="upper", extent=extent, alpha=0.5 ) else: extent = np.r_[strat.lb[0], strat.ub[0], strat.lb[1], strat.ub[1]] colormap = ax.imshow( phimean, aspect="auto", origin="lower", extent=extent, alpha=0.5 ) # hacky relabel to be in logspace if logx: locs = np.arange(strat.lb[0], strat.ub[0]) ax.set_xticks(ticks=locs) ax.set_xticklabels(2.0**locs) ax.plot(x[y == 0, 0], x[y == 0, 1], "ro", alpha=0.7, label=no_label) ax.plot(x[y == 1, 0], x[y == 1, 1], "bo", alpha=0.7, label=yes_label) if target_level is not None: # plot threshold mono_grid = np.linspace(strat.lb[1], strat.ub[1], num=gridsize) context_grid = np.linspace(strat.lb[0], strat.ub[0], num=gridsize) thresh_75, lower, upper = get_lse_interval( model=strat.model, mono_grid=mono_grid, target_level=target_level, cred_level=cred_level, mono_dim=1, lb=mono_grid.min(), ub=mono_grid.max(), gridsize=gridsize, ) ax.plot( context_grid, thresh_75, label=f"Est. {target_level*100:.0f}% threshold \n(with {cred_level*100:.0f}% posterior \nmass shaded)", ) ax.fill_between( context_grid, lower, upper, alpha=0.3, hatch="///", edgecolor="gray" ) if true_testfun is not None: true_f = true_testfun(grid).reshape(gridsize, gridsize) true_thresh = get_lse_contour( true_f, mono_grid, level=target_level, lb=strat.lb[-1], ub=strat.ub[-1] ) ax.plot(context_grid, true_thresh, label="Ground truth threshold") ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) if include_colorbar: colorbar = plt.colorbar(colormap, ax=ax) colorbar.set_label(f"Probability of {yes_label}") def plot_strat_3d( strat: Strategy, parnames: Optional[List[str]] = None, outcome_label: str = "Yes Trial", slice_dim: int = 0, slice_vals: Union[List[float], int] = 5, contour_levels: Optional[Union[Iterable[float], bool]] = None, probability_space: bool = False, gridsize: int = 30, extent_multiplier: Optional[List[float]] = None, save_path: Optional[str] = None, show: bool = True, ): """Creates a plot of a 2d slice of a 3D strategy, showing the estimated model or probability response and contours Args: strat (Strategy): Strategy object to be plotted. Must have a dimensionality of 3. parnames (str list): list of the parameter names outcome_label (str): The label of the outcome variable slice_dim (int): dimension to slice on dim_vals (list of floats or int): values to take slices; OR number of values to take even slices from contour_levels (iterable of floats or bool, optional): List contour values to plot. Default: None. If true, all integer levels. probability_space (bool): Whether to plot probability. Default: False gridsize (int): The number of points to sample each dimension at. Default: 30. extent_multiplier (list, optional): multipliers for each of the dimensions when plotting. Default:None save_path (str, optional): File name to save the plot to. Default: None. show (bool): Whether the plot should be shown in an interactive window. Default: True. """ assert strat.model is not None, "Cannot plot without a model!" contour_levels_list = contour_levels or [] if parnames is None: parnames = ["x1", "x2", "x3"] # Get global min/max for all slices if probability_space: vmax = 1 vmin = 0 if contour_levels is True: contour_levels_list = [0.75] else: d = make_scaled_sobol(strat.lb, strat.ub, 2000) post = strat.model.posterior(d) fmean = post.mean.squeeze().detach().numpy() vmax = np.max(fmean) vmin = np.min(fmean) if contour_levels is True: contour_levels_list = np.arange(np.ceil(vmin), vmax + 1) # slice_vals is either a list of values or an integer number of values to slice on if type(slice_vals) is int: slices = np.linspace(strat.lb[slice_dim], strat.ub[slice_dim], slice_vals) slices = np.around(slices, 4) elif type(slice_vals) is not list: raise TypeError("slice_vals must be either an integer or a list of values") else: slices = np.array(slice_vals) _, axs = plt.subplots(1, len(slices), constrained_layout=True, figsize=(20, 3)) for _i, dim_val in enumerate(slices): img = plot_slice( axs[_i], strat, parnames, slice_dim, dim_val, vmin, vmax, gridsize, contour_levels_list, probability_space, extent_multiplier, ) plt_parnames = np.delete(parnames, slice_dim) axs[0].set_ylabel(plt_parnames[1]) cbar = plt.colorbar(img, ax=axs[-1]) if probability_space: cbar.ax.set_ylabel(f"Probability of {outcome_label}") else: cbar.ax.set_ylabel(outcome_label) for clevel in contour_levels_list: # type: ignore cbar.ax.axhline(y=clevel, c="w") if save_path is not None: plt.savefig(save_path) if show: plt.show() def plot_slice( ax, strat, parnames, slice_dim, slice_val, vmin, vmax, gridsize=30, contour_levels=None, lse=False, extent_multiplier=None, ): """Creates a plot of a 2d slice of a 3D strategy, showing the estimated model or probability response and contours Args: strat (Strategy): Strategy object to be plotted. Must have a dimensionality of 3. ax (plt.Axes): Matplotlib axis to plot on parnames (str list): list of the parameter names slice_dim (int): dimension to slice on slice_vals (float): value to take the slice along that dimension vmin (float): global model minimum to use for plotting vmax (float): global model maximum to use for plotting gridsize (int): The number of points to sample each dimension at. Default: 30. contour_levels (int list): Contours to plot. Default: None lse (bool): Whether to plot probability. Default: False extent_multiplier (list, optional): multipliers for each of the dimensions when plotting. Default:None """ extent = np.c_[strat.lb, strat.ub].reshape(-1) x = strat.model.dim_grid(gridsize=gridsize, slice_dims={slice_dim: slice_val}) if lse: fmean, fvar = strat.predict(x) fmean = fmean.detach().numpy().reshape(gridsize, gridsize) fmean = norm.cdf(fmean) else: post = strat.model.posterior(x) fmean = post.mean.squeeze().detach().numpy().reshape(gridsize, gridsize) # optionally rescale extents to correct values if extent_multiplier is not None: extent_scaled = extent * np.repeat(extent_multiplier, 2) dim_val_scaled = slice_val * extent_multiplier[slice_dim] else: extent_scaled = extent dim_val_scaled = slice_val plt_extents = np.delete(extent_scaled, [slice_dim * 2, slice_dim * 2 + 1]) plt_parnames = np.delete(parnames, slice_dim) img = ax.imshow( fmean.T, extent=plt_extents, origin="lower", aspect="auto", vmin=vmin, vmax=vmax ) ax.set_title(parnames[slice_dim] + "=" + str(dim_val_scaled)) ax.set_xlabel(plt_parnames[0]) if len(contour_levels) > 0: ax.contour( fmean.T, contour_levels, colors="w", extent=plt_extents, origin="lower", aspect="auto", ) return img
aepsych-main
aepsych/plotting.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import sys from gpytorch.likelihoods import BernoulliLikelihood, GaussianLikelihood from . import acquisition, config, factory, generators, models, strategy, utils from .config import Config from .likelihoods import BernoulliObjectiveLikelihood from .models import GPClassificationModel from .strategy import SequentialStrategy, Strategy __all__ = [ # modules "acquisition", "config", "factory", "models", "strategy", "utils", "generators", # classes "GPClassificationModel", "Strategy", "SequentialStrategy", "BernoulliObjectiveLikelihood", "BernoulliLikelihood", "GaussianLikelihood", ] try: from . import benchmark __all__ += ["benchmark"] except ImportError: pass Config.register_module(sys.modules[__name__])
aepsych-main
aepsych/__init__.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from __future__ import annotations import time import warnings from copy import copy from typing import Any, Dict, List, Optional, Sequence, Tuple, Type, Union import numpy as np import torch from aepsych.config import Config, ConfigurableMixin from aepsych.generators.base import AEPsychGenerationStep, AEPsychGenerator from aepsych.generators.sobol_generator import AxSobolGenerator, SobolGenerator from aepsych.models.base import ModelProtocol from aepsych.utils import ( _process_bounds, get_objectives, get_parameters, make_scaled_sobol, ) from aepsych.utils_logging import getLogger from ax.core.base_trial import TrialStatus from ax.modelbridge.generation_strategy import GenerationStrategy from ax.plot.contour import interact_contour from ax.plot.slice import plot_slice from ax.service.ax_client import AxClient from ax.utils.notebook.plotting import render from botorch.exceptions.errors import ModelFittingError logger = getLogger() def ensure_model_is_fresh(f): def wrapper(self, *args, **kwargs): if self.can_fit and not self._model_is_fresh: starttime = time.time() if self._count % self.refit_every == 0 or self.refit_every == 1: logger.info("Starting fitting (no warm start)...") # don't warm start self.fit() else: logger.info("Starting fitting (warm start)...") # warm start self.update() logger.info(f"Fitting done, took {time.time()-starttime}") self._model_is_fresh = True return f(self, *args, **kwargs) return wrapper class Strategy(object): """Object that combines models and generators to generate points to sample.""" _n_eval_points: int = 1000 def __init__( self, generator: AEPsychGenerator, lb: Union[np.ndarray, torch.Tensor], ub: Union[np.ndarray, torch.Tensor], stimuli_per_trial: int, outcome_types: Sequence[Type[str]], dim: Optional[int] = None, min_total_tells: int = 0, min_asks: int = 0, model: Optional[ModelProtocol] = None, refit_every: int = 1, min_total_outcome_occurrences: int = 1, max_asks: Optional[int] = None, keep_most_recent: Optional[int] = None, min_post_range: Optional[float] = None, name: str = "", run_indefinitely: bool = False, ): """Initialize the strategy object. Args: generator (AEPsychGenerator): The generator object that determines how points are sampled. lb (Union[numpy.ndarray, torch.Tensor]): Lower bounds of the parameters. ub (Union[numpy.ndarray, torch.Tensor]): Upper bounds of the parameters. dim (int, optional): The number of dimensions in the parameter space. If None, it is inferred from the size of lb and ub. min_total_tells (int): The minimum number of total observations needed to complete this strategy. min_asks (int): The minimum number of points that should be generated from this strategy. model (ModelProtocol, optional): The AEPsych model of the data. refit_every (int): How often to refit the model from scratch. min_total_outcome_occurrences (int): The minimum number of total observations needed for each outcome before the strategy will finish. Defaults to 1 (i.e., for binary outcomes, there must be at least one "yes" trial and one "no" trial). max_asks (int, optional): The maximum number of trials to generate using this strategy. If None, there is no upper bound (default). keep_most_recent (int, optional): Experimental. The number of most recent data points that the model will be fitted on. This may be useful for discarding noisy data from trials early in the experiment that are not as informative as data collected from later trials. When None, the model is fitted on all data. min_post_range (float, optional): Experimental. The required difference between the posterior's minimum and maximum value in probablity space before the strategy will finish. Ignored if None (default). name (str): The name of the strategy. Defaults to the empty string. run_indefinitely (bool): If true, the strategy will run indefinitely until finish() is explicitly called. Other stopping criteria will be ignored. Defaults to False. """ self.is_finished = False if run_indefinitely: warnings.warn( f"Strategy {name} will run indefinitely until finish() is explicitly called. Other stopping criteria will be ignored." ) elif min_total_tells > 0 and min_asks > 0: warnings.warn( "Specifying both min_total_tells and min_asks > 0 may lead to unintended behavior." ) if model is not None: assert ( len(outcome_types) == model._num_outputs ), f"Strategy has {len(outcome_types)} outcomes, but model {type(model).__name__} supports {model._num_outputs}!" assert ( stimuli_per_trial == model.stimuli_per_trial ), f"Strategy has {stimuli_per_trial} stimuli_per_trial, but model {type(model).__name__} supports {model.stimuli_per_trial}!" if isinstance(model.outcome_type, str): assert ( len(outcome_types) == 1 and outcome_types[0] == model.outcome_type ), f"Strategy outcome types is {outcome_types} but model outcome type is {model.outcome_type}!" else: assert set(outcome_types) == set( model.outcome_type ), f"Strategy outcome types is {outcome_types} but model outcome type is {model.outcome_type}!" self.run_indefinitely = run_indefinitely self.lb, self.ub, self.dim = _process_bounds(lb, ub, dim) self.min_total_outcome_occurrences = min_total_outcome_occurrences self.max_asks = max_asks self.keep_most_recent = keep_most_recent self.min_post_range = min_post_range if self.min_post_range is not None: assert model is not None, "min_post_range must be None if model is None!" self.eval_grid = make_scaled_sobol( lb=self.lb, ub=self.ub, size=self._n_eval_points ) self.x = None self.y = None self.n = 0 self.min_asks = min_asks self._count = 0 self.min_total_tells = min_total_tells self.stimuli_per_trial = stimuli_per_trial self.outcome_types = outcome_types if self.stimuli_per_trial == 1: self.event_shape: Tuple[int, ...] = (self.dim,) if self.stimuli_per_trial == 2: self.event_shape = (self.dim, self.stimuli_per_trial) self.model = model self.refit_every = refit_every self._model_is_fresh = False self.generator = generator self.has_model = self.model is not None if self.generator._requires_model: assert self.model is not None, f"{self.generator} requires a model!" if self.min_asks == self.min_total_tells == 0: warnings.warn( "strategy.min_asks == strategy.min_total_tells == 0. This strategy will not generate any points!", UserWarning, ) self.name = name def normalize_inputs(self, x, y): """converts inputs into normalized format for this strategy Args: x (np.ndarray): training inputs y (np.ndarray): training outputs Returns: x (np.ndarray): training inputs, normalized y (np.ndarray): training outputs, normalized n (int): number of observations """ assert ( x.shape == self.event_shape or x.shape[1:] == self.event_shape ), f"x shape should be {self.event_shape} or batch x {self.event_shape}, instead got {x.shape}" if x.shape == self.event_shape: x = x[None, :] if self.x is None: x = np.r_[x] else: x = np.r_[self.x, x] if self.y is None: y = np.r_[y] else: y = np.r_[self.y, y] n = y.shape[0] return torch.Tensor(x), torch.Tensor(y), n # TODO: allow user to pass in generator options @ensure_model_is_fresh def gen(self, num_points: int = 1): """Query next point(s) to run by optimizing the acquisition function. Args: num_points (int, optional): Number of points to query. Defaults to 1. Other arguments are forwared to underlying model. Returns: np.ndarray: Next set of point(s) to evaluate, [num_points x dim]. """ self._count = self._count + num_points return self.generator.gen(num_points, self.model) @ensure_model_is_fresh def get_max(self, constraints=None): constraints = constraints or {} return self.model.get_max(constraints) @ensure_model_is_fresh def get_min(self, constraints=None): constraints = constraints or {} return self.model.get_min(constraints) @ensure_model_is_fresh def inv_query(self, y, constraints=None, probability_space=False): constraints = constraints or {} return self.model.inv_query(y, constraints, probability_space) @ensure_model_is_fresh def predict(self, x, probability_space=False): return self.model.predict(x=x, probability_space=probability_space) @ensure_model_is_fresh def get_jnd(self, *args, **kwargs): return self.model.get_jnd(*args, **kwargs) @ensure_model_is_fresh def sample(self, x, num_samples=None): return self.model.sample(x, num_samples=num_samples) def finish(self): self.is_finished = True @property def finished(self): if self.is_finished: return True if self.run_indefinitely: return False if hasattr(self.generator, "finished"): # defer to generator if possible return self.generator.finished if self.y is None: # always need some data before switching strats return False if self.max_asks is not None and self._count >= self.max_asks: return True if "binary" in self.outcome_types: n_yes_trials = (self.y == 1).sum() n_no_trials = (self.y == 0).sum() sufficient_outcomes = ( n_yes_trials >= self.min_total_outcome_occurrences and n_no_trials >= self.min_total_outcome_occurrences ) else: sufficient_outcomes = True if self.min_post_range is not None: fmean, _ = self.model.predict(self.eval_grid, probability_space=True) meets_post_range = (fmean.max() - fmean.min()) >= self.min_post_range else: meets_post_range = True finished = ( self._count >= self.min_asks and self.n >= self.min_total_tells and sufficient_outcomes and meets_post_range ) return finished @property def can_fit(self): return self.has_model and self.x is not None and self.y is not None @property def n_trials(self): warnings.warn( "'n_trials' is deprecated and will be removed in a future release. Specify 'min_asks' instead.", DeprecationWarning, ) return self.min_asks def add_data(self, x, y): self.x, self.y, self.n = self.normalize_inputs(x, y) self._model_is_fresh = False def fit(self): if self.can_fit: if self.keep_most_recent is not None: try: self.model.fit( self.x[-self.keep_most_recent :], self.y[-self.keep_most_recent :], ) except (ModelFittingError): logger.warning( "Failed to fit model! Predictions may not be accurate!" ) else: try: self.model.fit(self.x, self.y) except (ModelFittingError): logger.warning( "Failed to fit model! Predictions may not be accurate!" ) else: warnings.warn("Cannot fit: no model has been initialized!", RuntimeWarning) def update(self): if self.can_fit: if self.keep_most_recent is not None: try: self.model.update( self.x[-self.keep_most_recent :], self.y[-self.keep_most_recent :], ) except (ModelFittingError): logger.warning( "Failed to fit model! Predictions may not be accurate!" ) else: try: self.model.update(self.x, self.y) except (ModelFittingError): logger.warning( "Failed to fit model! Predictions may not be accurate!" ) else: warnings.warn("Cannot fit: no model has been initialized!", RuntimeWarning) @classmethod def from_config(cls, config: Config, name: str): lb = config.gettensor(name, "lb") ub = config.gettensor(name, "ub") dim = config.getint(name, "dim", fallback=None) stimuli_per_trial = config.getint(name, "stimuli_per_trial", fallback=1) outcome_types = config.getlist(name, "outcome_types", element_type=str) gen_cls = config.getobj(name, "generator", fallback=SobolGenerator) generator = gen_cls.from_config(config) model_cls = config.getobj(name, "model", fallback=None) if model_cls is not None: model = model_cls.from_config(config) else: model = None acqf_cls = config.getobj(name, "acqf", fallback=None) if acqf_cls is not None and hasattr(generator, "acqf"): if generator.acqf is None: generator.acqf = acqf_cls generator.acqf_kwargs = generator._get_acqf_options(acqf_cls, config) min_asks = config.getint(name, "min_asks", fallback=0) min_total_tells = config.getint(name, "min_total_tells", fallback=0) refit_every = config.getint(name, "refit_every", fallback=1) if model is not None and not generator._requires_model: if refit_every < min_asks: warnings.warn( f"Strategy '{name}' has refit_every < min_asks even though its generator does not require a model. Consider making refit_every = min_asks to speed up point generation.", UserWarning, ) keep_most_recent = config.getint(name, "keep_most_recent", fallback=None) min_total_outcome_occurrences = config.getint( name, "min_total_outcome_occurrences", fallback=1 if "binary" in outcome_types else 0, ) min_post_range = config.getfloat(name, "min_post_range", fallback=None) keep_most_recent = config.getint(name, "keep_most_recent", fallback=None) n_trials = config.getint(name, "n_trials", fallback=None) if n_trials is not None: warnings.warn( "'n_trials' is deprecated and will be removed in a future release. Specify 'min_asks' instead.", DeprecationWarning, ) min_asks = n_trials return cls( lb=lb, ub=ub, stimuli_per_trial=stimuli_per_trial, outcome_types=outcome_types, dim=dim, model=model, generator=generator, min_asks=min_asks, refit_every=refit_every, min_total_outcome_occurrences=min_total_outcome_occurrences, min_post_range=min_post_range, keep_most_recent=keep_most_recent, min_total_tells=min_total_tells, name=name, ) class SequentialStrategy(object): """Runs a sequence of strategies defined by its config All getter methods defer to the current strat Args: strat_list (list[Strategy]): TODO make this nicely typed / doc'd """ def __init__(self, strat_list: List[Strategy]): self.strat_list = strat_list self._strat_idx = 0 self._suggest_count = 0 @property def _strat(self): return self.strat_list[self._strat_idx] def __getattr__(self, name: str): # return current strategy's attr if it's not a container attr if "strat_list" not in vars(self): raise AttributeError("Have no strategies in container, what happened?") return getattr(self._strat, name) def _make_next_strat(self): if (self._strat_idx + 1) >= len(self.strat_list): warnings.warn( "Ran out of generators, staying on final generator!", RuntimeWarning ) return # populate new model with final data from last model assert ( self.x is not None and self.y is not None ), "Cannot initialize next strategy; no data has been given!" self.strat_list[self._strat_idx + 1].add_data(self.x, self.y) self._suggest_count = 0 self._strat_idx = self._strat_idx + 1 def gen(self, num_points: int = 1, **kwargs): if self._strat.finished: self._make_next_strat() self._suggest_count = self._suggest_count + num_points return self._strat.gen(num_points=num_points, **kwargs) def finish(self): self._strat.finish() @property def finished(self): return self._strat_idx == (len(self.strat_list) - 1) and self._strat.finished def add_data(self, x, y): self._strat.add_data(x, y) @classmethod def from_config(cls, config: Config): strat_names = config.getlist("common", "strategy_names", element_type=str) # ensure strat_names are unique assert len(strat_names) == len( set(strat_names) ), f"Strategy names {strat_names} are not all unique!" strats = [] for name in strat_names: strat = Strategy.from_config(config, str(name)) strats.append(strat) return cls(strat_list=strats) class AEPsychStrategy(ConfigurableMixin): is_finished = False def __init__(self, ax_client: AxClient): self.ax_client = ax_client self.ax_client.experiment.num_asks = 0 @classmethod def get_config_options(cls, config: Config, name: Optional[str] = None) -> Dict: # TODO: Fix the mypy errors strat_names: List[str] = config.getlist("common", "strategy_names", element_type=str) # type: ignore steps = [] for name in strat_names: generator = config.getobj(name, "generator", fallback=AxSobolGenerator) # type: ignore opts = generator.get_config_options(config, name) step = AEPsychGenerationStep(**opts) steps.append(step) # Add an extra step at the end that we can `ask` endlessly. final_step = copy(step) final_step.completion_criteria = [] steps.append(final_step) parameters = get_parameters(config) parameter_constraints = config.getlist( "common", "par_constraints", element_type=str, fallback=None ) objectives = get_objectives(config) seed = config.getint("common", "random_seed", fallback=None) strat = GenerationStrategy(steps=steps) ax_client = AxClient(strat, random_seed=seed) ax_client.create_experiment( name="experiment", parameters=parameters, parameter_constraints=parameter_constraints, objectives=objectives, ) return {"ax_client": ax_client} @property def finished(self) -> bool: if self.is_finished: return True self.strat._maybe_move_to_next_step() return len(self.strat._steps) == (self.strat.current_step.index + 1) def finish(self): self.is_finished = True def gen(self, num_points: int = 1): x, _ = self.ax_client.get_next_trials(max_trials=num_points) self.strat.experiment.num_asks += num_points return x def complete_new_trial(self, config, outcome): _, trial_index = self.ax_client.attach_trial(config) self.complete_existing_trial(trial_index, outcome) def complete_existing_trial(self, trial_index, outcome): self.ax_client.complete_trial(trial_index, outcome) @property def experiment(self): return self.ax_client.experiment @property def strat(self): return self.ax_client.generation_strategy @property def can_fit(self): return ( self.strat.model is not None and len(self.experiment.trial_indices_by_status[TrialStatus.COMPLETED]) > 0 ) def _warn_on_outcome_mismatch(self): ax_model = self.ax_client.generation_strategy.model aepsych_model = ax_model.model.surrogate.model if ( hasattr(aepsych_model, "outcome_type") and aepsych_model.outcome_type != "continuous" ): warnings.warn( "Cannot directly plot non-continuous outcomes. Plotting the latent function instead." ) def plot_contours( self, density: int = 50, slice_values: Optional[Dict[str, Any]] = None ): """Plot predictions for a 2-d slice of the parameter space. Args: density: Number of points along each parameter to evaluate predictions. slice_values: A dictionary {name: val} for the fixed values of the other parameters. If not provided, then the mean of numeric parameters or the mode of choice parameters will be used. """ assert ( len(self.experiment.parameters) > 1 ), "plot_contours requires at least 2 parameters! Use 'plot_slice' instead." ax_model = self.ax_client.generation_strategy.model self._warn_on_outcome_mismatch() render( interact_contour( model=ax_model, metric_name="objective", density=density, slice_values=slice_values, ) ) def plot_slice( self, param_name: str, density: int = 50, slice_values: Optional[Dict[str, Any]] = None, ): """Plot predictions for a 1-d slice of the parameter space. Args: param_name: Name of parameter that will be sliced density: Number of points along slice to evaluate predictions. slice_values: A dictionary {name: val} for the fixed values of the other parameters. If not provided, then the mean of numeric parameters or the mode of choice parameters will be used. """ self._warn_on_outcome_mismatch() ax_model = self.ax_client.generation_strategy.model render( plot_slice( model=ax_model, param_name=param_name, metric_name="objective", density=density, slice_values=slice_values, ) ) def get_pareto_optimal_parameters(self): return self.ax_client.get_pareto_optimal_parameters()
aepsych-main
aepsych/strategy.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import logging import logging.config import os logger = logging.getLogger() def getLogger(level=logging.INFO, log_path="logs") -> logging.Logger: my_format = "%(asctime)-15s [%(levelname)-7s] %(message)s" os.makedirs(log_path, exist_ok=True) logging_config = { "version": 1, "disable_existing_loggers": True, "formatters": {"standard": {"format": my_format}}, "handlers": { "default": { "level": level, "class": "logging.StreamHandler", "formatter": "standard", }, "file": { "class": "logging.FileHandler", "level": logging.DEBUG, "filename": f"{log_path}/bayes_opt_server.log", "formatter": "standard", }, }, "loggers": { "": {"handlers": ["default", "file"], "level": level, "propagate": False}, }, } logging.config.dictConfig(logging_config) return logger
aepsych-main
aepsych/utils_logging.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from collections.abc import Iterable from configparser import NoOptionError from typing import Dict, List, Mapping, Optional, Tuple import numpy as np import torch from ax.service.utils.instantiation import ObjectiveProperties from scipy.stats import norm from torch.quasirandom import SobolEngine def make_scaled_sobol(lb, ub, size, seed=None): lb, ub, ndim = _process_bounds(lb, ub, None) grid = SobolEngine(dimension=ndim, scramble=True, seed=seed).draw(size) # rescale from [0,1] to [lb, ub] grid = lb + (ub - lb) * grid return grid def promote_0d(x): if not isinstance(x, Iterable): return [x] return x def dim_grid( lower: torch.Tensor, upper: torch.Tensor, dim: int, gridsize: int = 30, slice_dims: Optional[Mapping[int, float]] = None, ) -> torch.Tensor: """Create a grid Create a grid based on lower, upper, and dim. Parameters ---------- - lower ('int') - lower bound - upper ('int') - upper bound - dim ('int) - dimension - gridsize ('int') - size for grid - slice_dims (Optional, dict) - values to use for slicing axes, as an {index:value} dict Returns ---------- grid : torch.FloatTensor Tensor """ slice_dims = slice_dims or {} lower, upper, _ = _process_bounds(lower, upper, None) mesh_vals = [] for i in range(dim): if i in slice_dims.keys(): mesh_vals.append(slice(slice_dims[i] - 1e-10, slice_dims[i] + 1e-10, 1)) else: mesh_vals.append(slice(lower[i].item(), upper[i].item(), gridsize * 1j)) return torch.Tensor(np.mgrid[mesh_vals].reshape(dim, -1).T) def _process_bounds(lb, ub, dim) -> Tuple[torch.Tensor, torch.Tensor, int]: """Helper function for ensuring bounds are correct shape and type.""" lb = promote_0d(lb) ub = promote_0d(ub) if not isinstance(lb, torch.Tensor): lb = torch.tensor(lb) if not isinstance(ub, torch.Tensor): ub = torch.tensor(ub) lb = lb.float() ub = ub.float() assert lb.shape[0] == ub.shape[0], "bounds should be of equal shape!" if dim is not None: if lb.shape[0] == 1: lb = lb.repeat(dim) ub = ub.repeat(dim) else: assert lb.shape[0] == dim, "dim does not match shape of bounds!" else: dim = lb.shape[0] for i, (l, u) in enumerate(zip(lb, ub)): assert ( l <= u ), f"Lower bound {l} is not less than or equal to upper bound {u} on dimension {i}!" return lb, ub, dim def interpolate_monotonic(x, y, z, min_x=-np.inf, max_x=np.inf): # Ben Letham's 1d interpolation code, assuming monotonicity. # basic idea is find the nearest two points to the LSE and # linearly interpolate between them (I think this is bisection # root-finding) idx = np.searchsorted(y, z) if idx == len(y): return float(max_x) elif idx == 0: return float(min_x) x0 = x[idx - 1] x1 = x[idx] y0 = y[idx - 1] y1 = y[idx] x_star = x0 + (x1 - x0) * (z - y0) / (y1 - y0) return x_star def get_lse_interval( model, mono_grid, target_level, cred_level=None, mono_dim=-1, n_samps=500, lb=-np.inf, ub=np.inf, gridsize=30, **kwargs, ): xgrid = torch.Tensor( np.mgrid[ [ slice(model.lb[i].item(), model.ub[i].item(), gridsize * 1j) for i in range(model.dim) ] ] .reshape(model.dim, -1) .T ) samps = model.sample(xgrid, num_samples=n_samps, **kwargs) samps = [s.reshape((gridsize,) * model.dim) for s in samps.detach().numpy()] contours = np.stack( [ get_lse_contour(norm.cdf(s), mono_grid, target_level, mono_dim, lb, ub) for s in samps ] ) if cred_level is None: return np.mean(contours, 0.5, axis=0) else: alpha = 1 - cred_level qlower = alpha / 2 qupper = 1 - alpha / 2 upper = np.quantile(contours, qupper, axis=0) lower = np.quantile(contours, qlower, axis=0) median = np.quantile(contours, 0.5, axis=0) return median, lower, upper def get_lse_contour(post_mean, mono_grid, level, mono_dim=-1, lb=-np.inf, ub=np.inf): return np.apply_along_axis( lambda p: interpolate_monotonic(mono_grid, p, level, lb, ub), mono_dim, post_mean, ) def get_jnd_1d(post_mean, mono_grid, df=1, mono_dim=-1, lb=-np.inf, ub=np.inf): interpolate_to = post_mean + df return ( np.array( [interpolate_monotonic(mono_grid, post_mean, ito) for ito in interpolate_to] ) - mono_grid ) def get_jnd_multid(post_mean, mono_grid, df=1, mono_dim=-1, lb=-np.inf, ub=np.inf): return np.apply_along_axis( lambda p: get_jnd_1d(p, mono_grid, df=df, mono_dim=mono_dim, lb=lb, ub=ub), mono_dim, post_mean, ) def _get_ax_parameters(config): range_parnames = config.getlist("common", "parnames", element_type=str, fallback=[]) lb = config.getlist("common", "lb", element_type=float, fallback=[]) ub = config.getlist("common", "ub", element_type=float, fallback=[]) assert ( len(range_parnames) == len(lb) == len(ub) ), f"Length of parnames ({range_parnames}), lb ({lb}), and ub ({ub}) don't match!" range_params = [ { "name": parname, "type": "range", "value_type": config.get(parname, "value_type", fallback="float"), "log_scale": config.getboolean(parname, "log_scale", fallback=False), "bounds": [l, u], } for parname, l, u in zip(range_parnames, lb, ub) ] choice_parnames = config.getlist( "common", "choice_parnames", element_type=str, fallback=[] ) choices = [ config.getlist(parname, "choices", element_type=str, fallback=["True", "False"]) for parname in choice_parnames ] choice_params = [ { "name": parname, "type": "choice", "value_type": config.get(parname, "value_type", fallback="str"), "is_ordered": config.getboolean(parname, "is_ordered", fallback=False), "values": choice, } for parname, choice in zip(choice_parnames, choices) ] fixed_parnames = config.getlist( "common", "fixed_parnames", element_type=str, fallback=[] ) values = [] for parname in fixed_parnames: try: try: value = config.getfloat(parname, "value") except ValueError: value = config.get(parname, "value") values.append(value) except NoOptionError: raise RuntimeError(f"Missing value for fixed parameter {parname}!") fixed_params = [ { "name": parname, "type": "fixed", "value": value, } for parname, value in zip(fixed_parnames, values) ] return range_params, choice_params, fixed_params def get_parameters(config) -> List[Dict]: range_params, choice_params, fixed_params = _get_ax_parameters(config) return range_params + choice_params + fixed_params def get_dim(config) -> int: range_params, choice_params, _ = _get_ax_parameters(config) # Need to sum dimensions added by both range and choice parameters dim = len(range_params) # 1 dim per range parameter for par in choice_params: if par["is_ordered"]: dim += 1 # Ordered choice params are encoded like continuous parameters elif len(par["values"]) > 2: dim += len( par["values"] ) # Choice parameter is one-hot encoded such that they add 1 dim for every choice else: dim += ( len(par["values"]) - 1 ) # Choice parameters with n_choices < 3 add n_choices - 1 dims return dim def get_objectives(config) -> Dict: outcome_types: List[str] = config.getlist( "common", "outcome_types", element_type=str ) if len(outcome_types) > 1: for out_type in outcome_types: assert ( out_type == "continuous" ), "Multiple outcomes is only currently supported for continuous outcomes!" outcome_names: List[str] = config.getlist( "common", "outcome_names", element_type=str, fallback=None ) if outcome_names is None: outcome_names = [f"outcome_{i+1}" for i in range(len(outcome_types))] objectives = {} for out_name in outcome_names: minimize = config.getboolean(out_name, "minimize", fallback=False) threshold = config.getfloat(out_name, "threshold", fallback=None) objectives[out_name] = ObjectiveProperties( minimize=minimize, threshold=threshold ) return objectives
aepsych-main
aepsych/utils.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from __future__ import annotations import itertools import time from random import shuffle from typing import Any, Callable, Dict, List, Mapping, Optional, Tuple, Union import numpy as np import pandas as pd import torch from aepsych.config import Config from aepsych.strategy import ensure_model_is_fresh, SequentialStrategy from tqdm.contrib.itertools import product as tproduct from .problem import Problem class Benchmark: """ Benchmark base class. This class wraps standard functionality for benchmarking models including generating cartesian products of run configurations, running the simulated experiment loop, and logging results. TODO make a benchmarking tutorial and link/refer to it here. """ def __init__( self, problems: List[Problem], configs: Mapping[str, Union[str, list]], seed: Optional[int] = None, n_reps: int = 1, log_every: Optional[int] = 10, ) -> None: """Initialize benchmark. Args: problems (List[Problem]): Problem objects containing the test function to evaluate. configs (Mapping[str, Union[str, list]]): Dictionary of configs to run. Lists at leaves are used to construct a cartesian product of configurations. seed (int, optional): Random seed to use for reproducible benchmarks. Defaults to randomized seeds. n_reps (int, optional): Number of repetitions to run of each configuration. Defaults to 1. log_every (int, optional): Logging interval during an experiment. Defaults to logging every 10 trials. """ self.problems = problems self.n_reps = n_reps self.combinations = self.make_benchmark_list(**configs) self._log: List[Dict[str, object]] = [] self.log_every = log_every # shuffle combinations so that intermediate results have a bit of everything shuffle(self.combinations) if seed is None: # explicit cast because int and np.int_ are different types self.seed = int(np.random.randint(0, 200)) else: self.seed = seed def make_benchmark_list(self, **bench_config) -> List[Dict[str, float]]: """Generate a list of benchmarks to run from configuration. This constructs a cartesian product of config dicts using lists at the leaves of the base config Returns: List[dict[str, float]]: List of dictionaries, each of which can be passed to aepsych.config.Config. """ # This could be a generator but then we couldn't # know how many params we have, tqdm wouldn't work, etc, # so we materialize the full list. def gen_combinations(d): keys, values = d.keys(), d.values() # only go cartesian on list leaves values = [v if type(v) == list else [v] for v in values] combinations = itertools.product(*values) return [dict(zip(keys, c)) for c in combinations] keys, values = bench_config.keys(), bench_config.values() return [ dict(zip(keys, c)) for c in itertools.product(*(gen_combinations(v) for v in values)) ] def materialize_config(self, config_dict): materialized_config = {} for key, value in config_dict.items(): materialized_config[key] = { k: v._evaluate(config_dict) if isinstance(v, DerivedValue) else v for k, v in value.items() } return materialized_config @property def num_benchmarks(self) -> int: """Return the total number of runs in this benchmark. Returns: int: Total number of runs in this benchmark. """ return len(self.problems) * len(self.combinations) * self.n_reps def make_strat_and_flatconfig( self, config_dict: Mapping[str, str] ) -> Tuple[SequentialStrategy, Dict[str, str]]: """From a config dict, generate a strategy (for running) and flattened config (for logging) Args: config_dict (Mapping[str, str]): A run configuration dictionary. Returns: Tuple[SequentialStrategy, Dict[str,str]]: A tuple containing a strategy object and a flat config. """ config = Config() config.update(config_dict=config_dict) strat = SequentialStrategy.from_config(config) flatconfig = self.flatten_config(config) return strat, flatconfig def run_experiment( self, problem: Problem, config_dict: Dict[str, Any], seed: int, rep: int, ) -> Tuple[List[Dict[str, Any]], Union[SequentialStrategy, None]]: """Run one simulated experiment. Args: config_dict (Dict[str, str]): AEPsych configuration to use. seed (int): Random seed for this run. rep (int): Index of this repetition. Returns: Tuple[List[Dict[str, object]], SequentialStrategy]: A tuple containing a log of the results and the strategy as of the end of the simulated experiment. This is ignored in large-scale benchmarks but useful for one-off visualization. """ torch.manual_seed(seed) np.random.seed(seed) config_dict["common"]["lb"] = str(problem.lb.tolist()) config_dict["common"]["ub"] = str(problem.ub.tolist()) config_dict["problem"] = problem.metadata materialized_config = self.materialize_config(config_dict) # no-op config is_invalid = materialized_config["common"].get("invalid_config", False) if is_invalid: return [{}], None strat, flatconfig = self.make_strat_and_flatconfig(materialized_config) problem_metadata = { f"problem_{key}": value for key, value in problem.metadata.items() } total_gentime = 0.0 total_fittime = 0.0 i = 0 results = [] while not strat.finished: starttime = time.time() next_x = strat.gen() gentime = time.time() - starttime total_gentime += gentime next_y = [problem.sample_y(next_x)] strat.add_data(next_x, next_y) # strat usually defers model fitting until it is needed # (e.g. for gen or predict) so that we don't refit # unnecessarily. But for benchmarking we want to time # fit and gen separately, so we force a strat update # so we can time fit vs gen. TODO make this less awkward starttime = time.time() ensure_model_is_fresh(lambda x: None)(strat._strat) fittime = time.time() - starttime total_fittime += fittime if (self.log_at(i) or strat.finished) and strat.has_model: metrics = problem.evaluate(strat) result = { "fit_time": fittime, "cum_fit_time": total_fittime, "gen_time": gentime, "cum_gen_time": total_gentime, "trial_id": i, "rep": rep, "seed": seed, "final": strat.finished, "strat_idx": strat._strat_idx, } result.update(problem_metadata) result.update(flatconfig) result.update(metrics) results.append(result) i = i + 1 return results, strat def run_benchmarks(self): """Run all the benchmarks, sequentially.""" for i, (rep, config, problem) in enumerate( tproduct(range(self.n_reps), self.combinations, self.problems) ): local_seed = i + self.seed results, _ = self.run_experiment(problem, config, seed=local_seed, rep=rep) if results != [{}]: self._log.extend(results) def flatten_config(self, config: Config) -> Dict[str, str]: """Flatten a config object for logging. Args: config (Config): AEPsych config object. Returns: Dict[str,str]: A flat dictionary (that can be used to build a flat pandas data frame). """ flatconfig = {} for s in config.sections(): flatconfig.update({f"{s}_{k}": v for k, v in config[s].items()}) return flatconfig def log_at(self, i: int) -> bool: """Check if we should log on this trial index. Args: i (int): Trial index to (maybe) log at. Returns: bool: True if this trial should be logged. """ if self.log_every is not None: return i % self.log_every == 0 else: return False def pandas(self) -> pd.DataFrame: return pd.DataFrame(self._log) class DerivedValue(object): """ A class for dynamically generating config values from other config values during benchmarking. """ def __init__(self, args: List[Tuple[str, str]], func: Callable) -> None: """Initialize DerivedValue. Args: args (List[Tuple[str]]): Each tuple in this list is a pair of strings that refer to keys in a nested dictionary. func (Callable): A function that accepts args as input. For example, consider the following: benchmark_config = { "common": { "model": ["GPClassificationModel", "FancyNewModelToBenchmark"], "acqf": "MCLevelSetEstimation" }, "init_strat": { "min_asks": [10, 20], "generator": "SobolGenerator" }, "opt_strat": { "generator": "OptimizeAcqfGenerator", "min_asks": DerivedValue( [("init_strat", "min_asks"), ("common", "model")], lambda x,y : 100 - x if y == "GPClassificationModel" else 50 - x) } } Four separate benchmarks would be generated from benchmark_config: 1. model = GPClassificationModel; init trials = 10; opt trials = 90 2. model = GPClassificationModel; init trials = 20; opt trials = 80 3. model = FancyNewModelToBenchmark; init trials = 10; opt trials = 40 4. model = FancyNewModelToBenchmark; init trials = 20; opt trials = 30 Note that if you can also access problem names into func by including ("problem", "name") in args. """ self.args = args self.func = func def _evaluate(self, benchmark_config: Dict) -> Any: """Fetches values of self.args from benchmark_config and evaluates self.func on them.""" _args = [benchmark_config[outer][inner] for outer, inner in self.args] return self.func(*_args)
aepsych-main
aepsych/benchmark/benchmark.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import itertools import logging import time import traceback from copy import deepcopy from pathlib import Path from random import shuffle from typing import Any, Dict, List, Mapping, Optional, Tuple, Union import aepsych.utils_logging as utils_logging import multiprocess.context as ctx import numpy as np import pathos import torch from aepsych.benchmark import Benchmark from aepsych.benchmark.problem import Problem from aepsych.strategy import SequentialStrategy ctx._force_start_method("spawn") # fixes problems with CUDA and fork logger = utils_logging.getLogger(logging.INFO) class PathosBenchmark(Benchmark): """Benchmarking class for parallelized benchmarks using pathos""" def __init__(self, nproc: int = 1, *args, **kwargs): """Initialize pathos benchmark. Args: nproc (int, optional): Number of cores to use. Defaults to 1. """ super().__init__(*args, **kwargs) # parallelize over jobs, so each job should be 1 thread only num_threads = torch.get_num_threads() num_interopt_threads = torch.get_num_interop_threads() if num_threads > 1 or num_interopt_threads > 1: raise RuntimeError( "PathosBenchmark parallelizes over threads," + "and as such is incompatible with torch being threaded. " + "Please call `torch.set_num_threads(1)` and " + "`torch.set_num_interop_threads(1)` before using PathosBenchmark!" ) cores_available = pathos.multiprocessing.cpu_count() if nproc >= cores_available: raise RuntimeError( f"Requesting a benchmark with {nproc} cores but " + f"machine has {cores_available} cores! It is highly " "recommended to leave at least 1-2 cores open for OS tasks." ) self.pool = pathos.pools.ProcessPool(nodes=nproc) def __del__(self): # destroy the pool (for when we're testing or running # multiple benchmarks in one script) but if the GC already # cleared the underlying multiprocessing object (usually on # the final call), don't do anything. if hasattr(self, "pool") and self.pool is not None: try: self.pool.close() self.pool.join() self.pool.clear() except TypeError: pass def run_experiment( self, problem: Problem, config_dict: Dict[str, Any], seed: int, rep: int, ) -> Tuple[List[Dict[str, Any]], Union[SequentialStrategy, None]]: """Run one simulated experiment. Args: config_dict (Dict[str, Any]): AEPsych configuration to use. seed (int): Random seed for this run. rep (int): Index of this repetition. Returns: Tuple[List[Dict[str, Any]], SequentialStrategy]: A tuple containing a log of the results and the strategy as of the end of the simulated experiment. This is ignored in large-scale benchmarks but useful for one-off visualization. """ # copy things that we mutate local_config = deepcopy(config_dict) try: return super().run_experiment(problem, local_config, seed, rep) except Exception as e: logging.error( f"Error on config {config_dict}: {e}!" + f"Traceback follows:\n{traceback.format_exc()}" ) return [], SequentialStrategy([]) def __getstate__(self): self_dict = self.__dict__.copy() if "pool" in self_dict.keys(): del self_dict["pool"] if "futures" in self_dict.keys(): del self_dict["futures"] return self_dict def run_benchmarks(self): """Run all the benchmarks, Note that this blocks while waiting for benchmarks to complete. If you would like to start benchmarks and periodically collect partial results, use start_benchmarks and then call collate_benchmarks(wait=False) on some interval. """ self.start_benchmarks() self.collate_benchmarks(wait=True) def start_benchmarks(self): """Start benchmark run. This does not block: after running it, self.futures holds the status of benchmarks running in parallel. """ def run_discard_strat(*conf): logger, _ = self.run_experiment(*conf) return logger self.all_sim_configs = [ (problem, config_dict, self.seed + seed, rep) for seed, (problem, config_dict, rep) in enumerate( itertools.product(self.problems, self.combinations, range(self.n_reps)) ) ] shuffle(self.all_sim_configs) self.futures = [ self.pool.apipe(run_discard_strat, *conf) for conf in self.all_sim_configs ] @property def is_done(self) -> bool: """Check if the benchmark is done. Returns: bool: True if all futures are cleared and benchmark is done. """ return len(self.futures) == 0 def collate_benchmarks(self, wait: bool = False) -> None: """Collect benchmark results from completed futures. Args: wait (bool, optional): If true, this method blocks and waits on all futures to complete. Defaults to False. """ newfutures = [] while self.futures: item = self.futures.pop() if wait or item.ready(): results = item.get() # filter out empty results from invalid configs results = [r for r in results if r != {}] if isinstance(results, list): self._log.extend(results) else: newfutures.append(item) self.futures = newfutures def run_benchmarks_with_checkpoints( out_path: str, benchmark_name: str, problems: List[Problem], configs: Mapping[str, Union[str, list]], global_seed: Optional[int] = None, n_chunks: int = 1, n_reps_per_chunk: int = 1, log_every: Optional[int] = None, checkpoint_every: int = 60, n_proc: int = 1, serial_debug: bool = False, ) -> None: """Runs a series of benchmarks, saving both final and intermediate results to .csv files. Benchmarks are run in sequential chunks, each of which runs all combinations of problems/configs/reps in parallel. This function should always be used using the "if __name__ == '__main__': ..." idiom. Args: out_path (str): The path to save the results to. benchmark_name (str): A name give to this set of benchmarks. Results will be saved in files named like "out_path/benchmark_name_chunk{chunk_number}_out.csv" problems (List[Problem]): Problem objects containing the test function to evaluate. configs (Mapping[str, Union[str, list]]): Dictionary of configs to run. Lists at leaves are used to construct a cartesian product of configurations. global_seed (int, optional): Global seed to use for reproducible benchmarks. Defaults to randomized seeds. n_chunks (int): The number of chunks to break the results into. Each chunk will contain at least 1 run of every combination of problem and config. n_reps_per_chunk (int, optional): Number of repetitions to run each problem/config in each chunk. log_every (int, optional): Logging interval during an experiment. Defaults to only logging at the end. checkpoint_every (int): Save intermediate results every checkpoint_every seconds. n_proc (int): Number of processors to use. serial_debug: debug serially? """ Path(out_path).mkdir( parents=True, exist_ok=True ) # make an output folder if not exist if serial_debug: out_fname = Path(f"{out_path}/{benchmark_name}_out.csv") print(f"Starting {benchmark_name} benchmark (serial debug mode)...") bench = Benchmark( problems=problems, configs=configs, seed=global_seed, n_reps=n_reps_per_chunk * n_chunks, log_every=log_every, ) bench.run_benchmarks() final_results = bench.pandas() final_results.to_csv(out_fname) else: for chunk in range(n_chunks): out_fname = Path(f"{out_path}/{benchmark_name}_chunk{chunk}_out.csv") intermediate_fname = Path( f"{out_path}/{benchmark_name}_chunk{chunk}_checkpoint.csv" ) print(f"Starting {benchmark_name} benchmark... chunk {chunk} ") bench = PathosBenchmark( nproc=n_proc, problems=problems, configs=configs, seed=None, n_reps=n_reps_per_chunk, log_every=log_every, ) if global_seed is None: global_seed = int(np.random.randint(0, 200)) bench.seed = ( global_seed + chunk * bench.num_benchmarks ) # HACK. TODO: make num_benchmarks a property of bench configs bench.start_benchmarks() while not bench.is_done: time.sleep(checkpoint_every) collate_start = time.time() print( f"Checkpointing {benchmark_name} chunk {chunk}..., {len(bench.futures)}/{bench.num_benchmarks} alive" ) bench.collate_benchmarks(wait=False) temp_results = bench.pandas() if len(temp_results) > 0: temp_results["rep"] = temp_results["rep"] + n_reps_per_chunk * chunk temp_results.to_csv(intermediate_fname) print( f"Collate done in {time.time()-collate_start} seconds, {len(bench.futures)}/{bench.num_benchmarks} left" ) print(f"{benchmark_name} chunk {chunk} fully done!") final_results = bench.pandas() final_results["rep"] = final_results["rep"] + n_reps_per_chunk * chunk final_results.to_csv(out_fname)
aepsych-main
aepsych/benchmark/pathos_benchmark.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from .benchmark import Benchmark, DerivedValue from .pathos_benchmark import PathosBenchmark, run_benchmarks_with_checkpoints from .problem import LSEProblem, Problem from .test_functions import ( discrim_highdim, make_songetal_testfun, modified_hartmann6, novel_detection_testfun, novel_discrimination_testfun, ) __all__ = [ "Benchmark", "DerivedValue", "PathosBenchmark", "PathosBenchmark", "Problem", "LSEProblem", "make_songetal_testfun", "novel_detection_testfun", "novel_discrimination_testfun", "modified_hartmann6", "discrim_highdim", "run_benchmarks_with_checkpoints", ]
aepsych-main
aepsych/benchmark/__init__.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from functools import cached_property from typing import Any, Dict, Union import aepsych import numpy as np import torch from aepsych.strategy import SequentialStrategy, Strategy from aepsych.utils import make_scaled_sobol from scipy.stats import bernoulli, norm, pearsonr class Problem: """Wrapper for a problem or test function. Subclass from this and override f() to define your test function. """ n_eval_points = 1000 @cached_property def eval_grid(self): return make_scaled_sobol(lb=self.lb, ub=self.ub, size=self.n_eval_points) @property def name(self) -> str: raise NotImplementedError def f(self, x): raise NotImplementedError @cached_property def lb(self): return self.bounds[0] @cached_property def ub(self): return self.bounds[1] @property def bounds(self): raise NotImplementedError @property def metadata(self) -> Dict[str, Any]: """A dictionary of metadata passed to the Benchmark to be logged. Each key will become a column in the Benchmark's output dataframe, with its associated value stored in each row.""" return {"name": self.name} def p(self, x: np.ndarray) -> np.ndarray: """Evaluate response probability from test function. Args: x (np.ndarray): Points at which to evaluate. Returns: np.ndarray: Response probability at queries points. """ return norm.cdf(self.f(x)) def sample_y(self, x: np.ndarray) -> np.ndarray: """Sample a response from test function. Args: x (np.ndarray): Points at which to sample. Returns: np.ndarray: A single (bernoulli) sample at points. """ return bernoulli.rvs(self.p(x)) def f_hat(self, model: aepsych.models.base.ModelProtocol) -> torch.Tensor: """Generate mean predictions from the model over the evaluation grid. Args: model (aepsych.models.base.ModelProtocol): Model to evaluate. Returns: torch.Tensor: Posterior mean from underlying model over the evaluation grid. """ f_hat, _ = model.predict(self.eval_grid) return f_hat @cached_property def f_true(self) -> np.ndarray: """Evaluate true test function over evaluation grid. Returns: torch.Tensor: Values of true test function over evaluation grid. """ return self.f(self.eval_grid).detach().numpy() @cached_property def p_true(self) -> torch.Tensor: """Evaluate true response probability over evaluation grid. Returns: torch.Tensor: Values of true response probability over evaluation grid. """ return norm.cdf(self.f_true) def p_hat(self, model: aepsych.models.base.ModelProtocol) -> torch.Tensor: """Generate mean predictions from the model over the evaluation grid. Args: model (aepsych.models.base.ModelProtocol): Model to evaluate. Returns: torch.Tensor: Posterior mean from underlying model over the evaluation grid. """ p_hat, _ = model.predict(self.eval_grid, probability_space=True) return p_hat def evaluate( self, strat: Union[Strategy, SequentialStrategy], ) -> Dict[str, float]: """Evaluate the strategy with respect to this problem. Extend this in subclasses to add additional metrics. Metrics include: - mae (mean absolute error), mae (mean absolute error), max_abs_err (max absolute error), pearson correlation. All of these are computed over the latent variable f and the outcome probability p, w.r.t. the posterior mean. Squared and absolute errors (miae, mise) are also computed in expectation over the posterior, by sampling. - Brier score, which measures how well-calibrated the outcome probability is, both at the posterior mean (plain brier) and in expectation over the posterior (expected_brier). Args: strat (aepsych.strategy.Strategy): Strategy to evaluate. Returns: Dict[str, float]: A dictionary containing metrics and their values. """ # we just use model here but eval gets called on strat in case we need it in downstream evals # for example to separate out sobol vs opt trials model = strat.model assert model is not None, "Cannot evaluate strategy without a model!" # always eval f f_hat = self.f_hat(model).detach().numpy() p_hat = self.p_hat(model).detach().numpy() assert ( self.f_true.shape == f_hat.shape ), f"self.f_true.shape=={self.f_true.shape} != f_hat.shape=={f_hat.shape}" mae_f = np.mean(np.abs(self.f_true - f_hat)) mse_f = np.mean((self.f_true - f_hat) ** 2) max_abs_err_f = np.max(np.abs(self.f_true - f_hat)) corr_f = pearsonr(self.f_true.flatten(), f_hat.flatten())[0] mae_p = np.mean(np.abs(self.p_true - p_hat)) mse_p = np.mean((self.p_true - p_hat) ** 2) max_abs_err_p = np.max(np.abs(self.p_true - p_hat)) corr_p = pearsonr(self.p_true.flatten(), p_hat.flatten())[0] brier = np.mean(2 * np.square(self.p_true - p_hat)) # eval in samp-based expectation over posterior instead of just mean fsamps = model.sample(self.eval_grid, num_samples=1000).detach().numpy() try: psamps = ( model.sample(self.eval_grid, num_samples=1000, probability_space=True) # type: ignore .detach() .numpy() ) except TypeError: # vanilla models don't have proba_space samps, TODO maybe we should add them psamps = norm.cdf(fsamps) ferrs = fsamps - self.f_true[None, :] miae_f = np.mean(np.abs(ferrs)) mise_f = np.mean(ferrs**2) perrs = psamps - self.p_true[None, :] miae_p = np.mean(np.abs(perrs)) mise_p = np.mean(perrs**2) expected_brier = (2 * np.square(self.p_true[None, :] - psamps)).mean() metrics = { "mean_abs_err_f": mae_f, "mean_integrated_abs_err_f": miae_f, "mean_square_err_f": mse_f, "mean_integrated_square_err_f": mise_f, "max_abs_err_f": max_abs_err_f, "pearson_corr_f": corr_f, "mean_abs_err_p": mae_p, "mean_integrated_abs_err_p": miae_p, "mean_square_err_p": mse_p, "mean_integrated_square_err_p": mise_p, "max_abs_err_p": max_abs_err_p, "pearson_corr_p": corr_p, "brier": brier, "expected_brier": expected_brier, } return metrics class LSEProblem(Problem): """Level set estimation problem. This extends the base problem class to evaluate the LSE/threshold estimate in addition to the function estimate. """ threshold = 0.75 @property def metadata(self) -> Dict[str, Any]: """A dictionary of metadata passed to the Benchmark to be logged. Each key will become a column in the Benchmark's output dataframe, with its associated value stored in each row.""" md = super().metadata md["threshold"] = self.threshold return md def f_threshold(self, model=None): try: inverse_torch = model.likelihood.objective.inverse def inverse_link(x): return inverse_torch(torch.tensor(x)).numpy() except AttributeError: inverse_link = norm.ppf return float(inverse_link(self.threshold)) @cached_property def true_below_threshold(self) -> np.ndarray: """ Evaluate whether the true function is below threshold over the eval grid (used for proper scoring and threshold missclassification metric). """ return (self.p(self.eval_grid) <= self.threshold).astype(float) def evaluate(self, strat: Union[Strategy, SequentialStrategy]) -> Dict[str, float]: """Evaluate the model with respect to this problem. For level set estimation, we add metrics w.r.t. the true threshold: - brier_p_below_{thresh), the brier score w.r.t. p(f(x)<thresh), in contrast to regular brier, which is the brier score for p(phi(f(x))=1), and the same for misclassification error. Args: strat (aepsych.strategy.Strategy): Strategy to evaluate. Returns: Dict[str, float]: A dictionary containing metrics and their values, including parent class metrics. """ metrics = super().evaluate(strat) # we just use model here but eval gets called on strat in case we need it in downstream evals # for example to separate out sobol vs opt trials model = strat.model assert model is not None, "Cannot make predictions without a model!" # TODO bring back more threshold error metrics when we more clearly # define what "threshold" means in high-dim. # Predict p(below threshold) at test points p_l = model.p_below_threshold(self.eval_grid, self.f_threshold(model)) # Brier score on level-set probabilities thresh = self.threshold brier_name = f"brier_p_below_{thresh}" metrics[brier_name] = np.mean(2 * np.square(self.true_below_threshold - p_l)) # Classification error classerr_name = f"missclass_on_thresh_{thresh}" metrics[classerr_name] = np.mean( p_l * (1 - self.true_below_threshold) + (1 - p_l) * self.true_below_threshold ) return metrics
aepsych-main
aepsych/benchmark/problem.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import io import math from typing import Callable import numpy as np import pandas as pd from scipy.interpolate import CubicSpline, interp1d from scipy.stats import norm # manually scraped data from doi:10.1007/s10162-013-0396-x fig 2 raw = """\ freq,thresh,phenotype 0.25,6.816404934,Older-normal 0.5,5.488517768,Older-normal 1,3.512856308,Older-normal 2,5.909671334,Older-normal 3,6.700337017,Older-normal 4,10.08761498,Older-normal 6,13.46962853,Older-normal 8,12.97026073,Older-normal 0.25,5.520856346,Sensory 0.5,4.19296918,Sensory 1,5.618122764,Sensory 2,19.83681866,Sensory 3,42.00403606,Sensory 4,53.32679981,Sensory 6,62.0527006,Sensory 8,66.08775286,Sensory 0.25,21.2291323,Metabolic 0.5,22.00676227,Metabolic 1,24.24163372,Metabolic 2,33.92590956,Metabolic 3,41.35626176,Metabolic 4,47.17294402,Metabolic 6,54.1174655,Metabolic 8,58.31446133,Metabolic 0.25,20.25772154,Metabolic+Sensory 0.5,20.71121368,Metabolic+Sensory 1,21.97442369,Metabolic+Sensory 2,37.48866818,Metabolic+Sensory 3,53.17814263,Metabolic+Sensory 4,64.01507567,Metabolic+Sensory 6,75.00818649,Metabolic+Sensory 8,76.61433583,Metabolic+Sensory""" dubno_data = pd.read_csv(io.StringIO(raw)) def make_songetal_threshfun(x: np.ndarray, y: np.ndarray) -> Callable[[float], float]: """Generate a synthetic threshold function by interpolation of real data. Real data is from Dubno et al. 2013, and procedure follows Song et al. 2017, 2018. See make_songetal_testfun for more detail. Args: x (np.ndarray): Frequency y (np.ndarray): Threshold Returns: Callable[[float], float]: Function that interpolates the given frequencies and thresholds and returns threshold as a function of frequency. """ f_interp = CubicSpline(x, y, extrapolate=False) f_extrap = interp1d(x, y, fill_value="extrapolate") def f_combo(x): # interpolate first interpolated = f_interp(x) # whatever is nan needs extrapolating interpolated[np.isnan(interpolated)] = f_extrap(x[np.isnan(interpolated)]) return interpolated return f_combo def make_songetal_testfun( phenotype: str = "Metabolic", beta: float = 1 ) -> Callable[[np.ndarray, bool], np.ndarray]: """Make an audiometric test function following Song et al. 2017. To do so,we first compute a threshold by interpolation/extrapolation from real data, then assume a linear psychometric function in intensity with slope beta. Args: phenotype (str, optional): Audiometric phenotype from Dubno et al. 2013. Specifically, one of "Metabolic", "Sensory", "Metabolic+Sensory", or "Older-normal". Defaults to "Metabolic". beta (float, optional): Psychometric function slope. Defaults to 1. Returns: Callable[[np.ndarray, bool], np.ndarray]: A test function taking a [b x 2] array of points and returning the psychometric function value at those points. Raises: AssertionError: if an invalid phenotype is passed. References: Song, X. D., Garnett, R., & Barbour, D. L. (2017). Psychometric function estimation by probabilistic classification. The Journal of the Acoustical Society of America, 141(4), 2513–2525. https://doi.org/10.1121/1.4979594 """ valid_phenotypes = ["Metabolic", "Sensory", "Metabolic+Sensory", "Older-normal"] assert phenotype in valid_phenotypes, f"Phenotype must be one of {valid_phenotypes}" x = dubno_data[dubno_data.phenotype == phenotype].freq.values y = dubno_data[dubno_data.phenotype == phenotype].thresh.values # first, make the threshold fun threshfun = make_songetal_threshfun(x, y) # now make it into a test function def song_testfun(x, cdf=False): logfreq = x[..., 0] intensity = x[..., 1] thresh = threshfun(2**logfreq) return ( norm.cdf((intensity - thresh) / beta) if cdf else (intensity - thresh) / beta ) return song_testfun def novel_discrimination_testfun(x: np.ndarray) -> np.ndarray: """Evaluate novel discrimination test function from Owen et al. The threshold is roughly parabolic with context, and the slope varies with the threshold. Adding to the difficulty is the fact that the function is minimized at f=0 (or p=0.5), corresponding to discrimination being at chance at zero stimulus intensity. Args: x (np.ndarray): Points at which to evaluate. Returns: np.ndarray: Value of function at these points. """ freq = x[..., 0] amp = x[..., 1] context = 2 * (0.05 + 0.4 * (-1 + 0.2 * freq) ** 2 * freq**2) return 2 * (amp + 1) / context def novel_detection_testfun(x: np.ndarray) -> np.ndarray: """Evaluate novel detection test function from Owen et al. The threshold is roughly parabolic with context, and the slope varies with the threshold. Args: x (np.ndarray): Points at which to evaluate. Returns: np.ndarray: Value of function at these points. """ freq = x[..., 0] amp = x[..., 1] context = 2 * (0.05 + 0.4 * (-1 + 0.2 * freq) ** 2 * freq**2) return 4 * (amp + 1) / context - 4 def discrim_highdim(x: np.ndarray) -> np.ndarray: amp = x[..., 0] freq = x[..., 1] vscale = x[..., 2] vshift = x[..., 3] variance = x[..., 4] asym = x[..., 5] phase = x[..., 6] period = x[..., 7] context = ( -0.5 * vscale * np.cos(period * 0.6 * math.pi * freq + phase) + vscale / 2 + vshift ) * ( -1 * asym * np.sin(period * 0.6 * math.pi * 0.5 * freq + phase) + (2 - asym) ) - 1 z = (amp - context) / (variance + variance * (1 + context)) p = norm.cdf(z) p = (1 - 0.5) * p + 0.5 # Floor at p=0.5 p = np.clip(p, 0.5, 1 - 1e-5) # clip so that norm.ppf doesn't go to inf return norm.ppf(p) def modified_hartmann6(X): """ The modified Hartmann6 function used in Lyu et al. """ C = np.r_[0.2, 0.22, 0.28, 0.3] a_t = np.c_[ [8, 3, 10, 3.5, 1.7, 6], [0.5, 8, 10, 1.0, 6, 9], [3, 3.5, 1.7, 8, 10, 6], [10, 6, 0.5, 8, 1.0, 9], ].T p_t = ( 10 ** (-4) * np.c_[ [1312, 1696, 5569, 124, 8283, 5886], [2329, 4135, 8307, 3736, 1004, 9991], [2348, 1451, 3522, 2883, 3047, 6650], [4047, 8828, 8732, 5743, 1091, 381], ].T ) y = 0.0 for i, C_i in enumerate(C): t = 0 for j in range(6): t += a_t[i, j] * ((X[j] - p_t[i, j]) ** 2) y += C_i * np.exp(-t) return -10 * (float(y) - 0.1)
aepsych-main
aepsych/benchmark/test_functions.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import datetime import logging import os import uuid from contextlib import contextmanager from pathlib import Path from typing import Dict import aepsych.database.tables as tables from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker from sqlalchemy.orm.session import close_all_sessions logger = logging.getLogger() class Database: def __init__(self, db_path=None): if db_path is None: db_path = "./databases/default.db" db_dir, db_name = os.path.split(db_path) self._db_name = db_name self._db_dir = db_dir if os.path.exists(db_path): logger.info(f"Found DB at {db_path}, appending!") else: logger.info(f"No DB found at {db_path}, creating a new DB!") self._engine = self.get_engine() def get_engine(self): if not hasattr(self, "_engine") or self._engine is None: self._full_db_path = Path(self._db_dir) self._full_db_path.mkdir(parents=True, exist_ok=True) self._full_db_path = self._full_db_path.joinpath(self._db_name) self._engine = create_engine(f"sqlite:///{self._full_db_path.as_posix()}") # create the table metadata and tables tables.Base.metadata.create_all(self._engine) # create an ongoing session to be used. Provides a conduit # to the db so the instantiated objects work properly. Session = sessionmaker(bind=self.get_engine()) self._session = Session() return self._engine def delete_db(self): if self._engine is not None and self._full_db_path.exists(): close_all_sessions() self._full_db_path.unlink() self._engine = None def is_update_required(self): return ( tables.DBMasterTable.requires_update(self._engine) or tables.DbReplayTable.requires_update(self._engine) or tables.DbStratTable.requires_update(self._engine) or tables.DbConfigTable.requires_update(self._engine) or tables.DbRawTable.requires_update(self._engine) or tables.DbParamTable.requires_update(self._engine) or tables.DbOutcomeTable.requires_update(self._engine) ) def perform_updates(self): """Perform updates on known tables. SQLAlchemy doesn't do alters so they're done the old fashioned way.""" tables.DBMasterTable.update(self._engine) tables.DbReplayTable.update(self._engine) tables.DbStratTable.update(self._engine) tables.DbConfigTable.update(self._engine) tables.DbRawTable.update(self, self._engine) tables.DbParamTable.update(self._engine) tables.DbOutcomeTable.update(self._engine) @contextmanager def session_scope(self): """Provide a transactional scope around a series of operations.""" Session = sessionmaker(bind=self.get_engine()) session = Session() try: yield session session.commit() except Exception as err: logger.error(f"db session use failed: {err}") session.rollback() raise finally: session.close() # @retry(stop_max_attempt_number=8, wait_exponential_multiplier=1.8) def execute_sql_query(self, query: str, vals: Dict[str, str]): """Execute an arbitrary query written in sql.""" with self.session_scope() as session: return session.execute(query, vals).fetchall() def get_master_records(self): """Grab the list of master records.""" records = self._session.query(tables.DBMasterTable).all() return records def get_master_record(self, experiment_id): """Grab the list of master record for a specific experiment (master) id.""" records = ( self._session.query(tables.DBMasterTable) .filter(tables.DBMasterTable.experiment_id == experiment_id) .all() ) if 0 < len(records): return records[0] return None def get_replay_for(self, master_id): """Get the replay records for a specific master row.""" master_record = self.get_master_record(master_id) if master_record is not None: return master_record.children_replay return None def get_strats_for(self, master_id=0): """Get the strat records for a specific master row.""" master_record = self.get_master_record(master_id) if master_record is not None and len(master_record.children_strat) > 0: return [c.strat for c in master_record.children_strat] return None def get_strat_for(self, master_id, strat_id=-1): """Get a specific strat record for a specific master row.""" master_record = self.get_master_record(master_id) if master_record is not None and len(master_record.children_strat) > 0: return master_record.children_strat[strat_id].strat return None def get_config_for(self, master_id): """Get the strat records for a specific master row.""" master_record = self.get_master_record(master_id) if master_record is not None: return master_record.children_config[0].config return None def get_raw_for(self, master_id): """Get the raw data for a specific master row.""" master_record = self.get_master_record(master_id) if master_record is not None: return master_record.children_raw return None def get_all_params_for(self, master_id): """Get the parameters for all the iterations of a specific experiment.""" raw_record = self.get_raw_for(master_id) params = [] if raw_record is not None: for raw in raw_record: for param in raw.children_param: params.append(param) return params return None def get_param_for(self, master_id, iteration_id): """Get the parameters for a specific iteration of a specific experiment.""" raw_record = self.get_raw_for(master_id) if raw_record is not None: for raw in raw_record: if raw.unique_id == iteration_id: return raw.children_param return None def get_all_outcomes_for(self, master_id): """Get the outcomes for all the iterations of a specific experiment.""" raw_record = self.get_raw_for(master_id) outcomes = [] if raw_record is not None: for raw in raw_record: for outcome in raw.children_outcome: outcomes.append(outcome) return outcomes return None def get_outcome_for(self, master_id, iteration_id): """Get the outcomes for a specific iteration of a specific experiment.""" raw_record = self.get_raw_for(master_id) if raw_record is not None: for raw in raw_record: if raw.unique_id == iteration_id: return raw.children_outcome return None def record_setup( self, description, name, extra_metadata=None, id=None, request=None, participant_id=None, ) -> str: self.get_engine() if id is None: master_table = tables.DBMasterTable() master_table.experiment_description = description master_table.experiment_name = name master_table.experiment_id = str(uuid.uuid4()) if participant_id is not None: master_table.participant_id = participant_id else: master_table.participant_id = str( uuid.uuid4() ) # no p_id specified will result in a generated UUID master_table.extra_metadata = extra_metadata self._session.add(master_table) logger.debug(f"record_setup = [{master_table}]") else: master_table = self.get_master_record(id) if master_table is None: raise RuntimeError(f"experiment id {id} doesn't exist in the db.") record = tables.DbReplayTable() record.message_type = "setup" record.message_contents = request if "extra_info" in request: record.extra_info = request["extra_info"] record.timestamp = datetime.datetime.now() record.parent = master_table logger.debug(f"record_setup = [{record}]") self._session.add(record) self._session.commit() # return the master table if it has a link to the list of child rows # tis needs to be passed into all future calls to link properly return master_table def record_message(self, master_table, type, request) -> None: # create a linked setup table record = tables.DbReplayTable() record.message_type = type record.message_contents = request if "extra_info" in request: record.extra_info = request["extra_info"] record.timestamp = datetime.datetime.now() record.parent = master_table self._session.add(record) self._session.commit() def record_raw(self, master_table, model_data, timestamp=None): raw_entry = tables.DbRawTable() raw_entry.model_data = model_data if timestamp is None: raw_entry.timestamp = datetime.datetime.now() else: raw_entry.timestamp = timestamp raw_entry.parent = master_table self._session.add(raw_entry) self._session.commit() return raw_entry def record_param(self, raw_table, param_name, param_value) -> None: param_entry = tables.DbParamTable() param_entry.param_name = param_name param_entry.param_value = param_value param_entry.parent = raw_table self._session.add(param_entry) self._session.commit() def record_outcome(self, raw_table, outcome_name, outcome_value) -> None: outcome_entry = tables.DbOutcomeTable() outcome_entry.outcome_name = outcome_name outcome_entry.outcome_value = outcome_value outcome_entry.parent = raw_table self._session.add(outcome_entry) self._session.commit() def record_strat(self, master_table, strat): strat_entry = tables.DbStratTable() strat_entry.strat = strat strat_entry.timestamp = datetime.datetime.now() strat_entry.parent = master_table self._session.add(strat_entry) self._session.commit() def record_config(self, master_table, config): config_entry = tables.DbConfigTable() config_entry.config = config config_entry.timestamp = datetime.datetime.now() config_entry.parent = master_table self._session.add(config_entry) self._session.commit() def list_master_records(self): master_records = self.get_master_records() print("Listing master records:") for record in master_records: print( f'\t{record.unique_id} - name: "{record.experiment_name}" experiment id: {record.experiment_id}' )
aepsych-main
aepsych/database/db.py
aepsych-main
aepsych/database/__init__.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from __future__ import absolute_import, division, print_function, unicode_literals import logging import pickle from collections.abc import Iterable from aepsych.config import Config from aepsych.version import __version__ from sqlalchemy import ( Boolean, Column, DateTime, Float, ForeignKey, Integer, PickleType, String, ) from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import relationship, sessionmaker logger = logging.getLogger() Base = declarative_base() """ Original Schema CREATE TABLE master ( unique_id INTEGER NOT NULL, experiment_name VARCHAR(256), experiment_description VARCHAR(2048), experiment_id VARCHAR(10), PRIMARY KEY (unique_id), UNIQUE (experiment_id) ); CREATE TABLE replay_data ( unique_id INTEGER NOT NULL, timestamp DATETIME, message_type VARCHAR(64), message_contents BLOB, master_table_id INTEGER, PRIMARY KEY (unique_id), FOREIGN KEY(master_table_id) REFERENCES master (unique_id) ); """ class DBMasterTable(Base): """ Master table to keep track of all experiments and unique keys associated with the experiment """ __tablename__ = "master" unique_id = Column(Integer, primary_key=True, autoincrement=True) experiment_name = Column(String(256)) experiment_description = Column(String(2048)) experiment_id = Column(String(10), unique=True) participant_id = Column(String(50), unique=True) extra_metadata = Column(String(4096)) # JSON-formatted metadata children_replay = relationship("DbReplayTable", back_populates="parent") children_strat = relationship("DbStratTable", back_populates="parent") children_config = relationship("DbConfigTable", back_populates="parent") children_raw = relationship("DbRawTable", back_populates="parent") @classmethod def from_sqlite(cls, row): this = DBMasterTable() this.unique_id = row["unique_id"] this.experiment_name = row["experiment_name"] this.experiment_description = row["experiment_description"] this.experiment_id = row["experiment_id"] return this def __repr__(self): return ( f"<DBMasterTable(unique_id={self.unique_id})" f", experiment_name={self.experiment_name}, " f"experiment_description={self.experiment_description}, " f"experiment_id={self.experiment_id})>" ) @staticmethod def update(engine): logger.info("DBMasterTable : update called") if not DBMasterTable._has_column(engine, "extra_metadata"): DBMasterTable._add_column(engine, "extra_metadata") if not DBMasterTable._has_column(engine, "participant_id"): DBMasterTable._add_column(engine, "participant_id") @staticmethod def requires_update(engine): return not DBMasterTable._has_column( engine, "extra_metadata" ) or not DBMasterTable._has_column(engine, "participant_id") @staticmethod def _has_column(engine, column: str): result = engine.execute( "SELECT COUNT(*) FROM pragma_table_info('master') WHERE name='{0}'".format( column ) ) rows = result.fetchall() count = rows[0][0] return count != 0 @staticmethod def _add_column(engine, column: str): try: result = engine.execute( "SELECT COUNT(*) FROM pragma_table_info('master') WHERE name='{0}'".format( column ) ) rows = result.fetchall() count = rows[0][0] if 0 == count: logger.debug( "Altering the master table to add the {0} column".format(column) ) engine.execute( "ALTER TABLE master ADD COLUMN {0} VARCHAR".format(column) ) engine.commit() except Exception as e: logger.debug(f"Column already exists, no need to alter. [{e}]") class DbReplayTable(Base): __tablename__ = "replay_data" use_extra_info = False unique_id = Column(Integer, primary_key=True, autoincrement=True) timestamp = Column(DateTime) message_type = Column(String(64)) # specify the pickler to allow backwards compatibility between 3.7 and 3.8 message_contents = Column(PickleType(pickler=pickle)) extra_info = Column(PickleType(pickler=pickle)) master_table_id = Column(Integer, ForeignKey("master.unique_id")) parent = relationship("DBMasterTable", back_populates="children_replay") __mapper_args__ = {} @classmethod def from_sqlite(cls, row): this = DbReplayTable() this.unique_id = row["unique_id"] this.timestamp = row["timestamp"] this.message_type = row["message_type"] this.message_contents = row["message_contents"] this.master_table_id = row["master_table_id"] if "extra_info" in row: this.extra_info = row["extra_info"] else: this.extra_info = None this.strat = row["strat"] return this def __repr__(self): return ( f"<DbReplayTable(unique_id={self.unique_id})" f", timestamp={self.timestamp}, " f"message_type={self.message_type}" f", master_table_id={self.master_table_id})>" ) @staticmethod def _has_extra_info(engine): result = engine.execute( "SELECT COUNT(*) FROM pragma_table_info('replay_data') WHERE name='extra_info'" ) rows = result.fetchall() count = rows[0][0] return count != 0 @staticmethod def _configs_require_conversion(engine): Base.metadata.create_all(engine) Session = sessionmaker(bind=engine) session = Session() results = session.query(DbReplayTable).all() for result in results: if result.message_contents["type"] == "setup": config_str = result.message_contents["message"]["config_str"] config = Config(config_str=config_str) if config.version < __version__: return True # assume that if any config needs to be refactored, all of them do return False @staticmethod def update(engine): logger.info("DbReplayTable : update called") if not DbReplayTable._has_extra_info(engine): DbReplayTable._add_extra_info(engine) if DbReplayTable._configs_require_conversion(engine): DbReplayTable._convert_configs(engine) @staticmethod def requires_update(engine): return not DbReplayTable._has_extra_info( engine ) or DbReplayTable._configs_require_conversion(engine) @staticmethod def _add_extra_info(engine): try: result = engine.execute( "SELECT COUNT(*) FROM pragma_table_info('replay_data') WHERE name='extra_info'" ) rows = result.fetchall() count = rows[0][0] if 0 == count: logger.debug( "Altering the replay_data table to add the extra_info column" ) engine.execute("ALTER TABLE replay_data ADD COLUMN extra_info BLOB") engine.commit() except Exception as e: logger.debug(f"Column already exists, no need to alter. [{e}]") @staticmethod def _convert_configs(engine): Session = sessionmaker(bind=engine) session = Session() results = session.query(DbReplayTable).all() for result in results: if result.message_contents["type"] == "setup": config_str = result.message_contents["message"]["config_str"] config = Config(config_str=config_str) if config.version < __version__: config.convert_to_latest() new_str = str(config) new_message = {"type": "setup", "message": {"config_str": new_str}} if "version" in result.message_contents: new_message["version"] = result.message_contents["version"] result.message_contents = new_message session.commit() logger.info("DbReplayTable : updated old configs.") class DbStratTable(Base): __tablename__ = "strat_data" unique_id = Column(Integer, primary_key=True, autoincrement=True) timestamp = Column(DateTime) strat = Column(PickleType(pickler=pickle)) master_table_id = Column(Integer, ForeignKey("master.unique_id")) parent = relationship("DBMasterTable", back_populates="children_strat") @classmethod def from_sqlite(cls, row): this = DbStratTable() this.unique_id = row["unique_id"] this.timestamp = row["timestamp"] this.strat = row["strat"] this.master_table_id = row["master_table_id"] return this def __repr__(self): return ( f"<DbStratTable(unique_id={self.unique_id})" f", timestamp={self.timestamp} " f", master_table_id={self.master_table_id})>" ) @staticmethod def update(engine): logger.info("DbStratTable : update called") @staticmethod def requires_update(engine): return False class DbConfigTable(Base): __tablename__ = "config_data" unique_id = Column(Integer, primary_key=True, autoincrement=True) timestamp = Column(DateTime) config = Column(PickleType(pickler=pickle)) master_table_id = Column(Integer, ForeignKey("master.unique_id")) parent = relationship("DBMasterTable", back_populates="children_config") @classmethod def from_sqlite(cls, row): this = DbConfigTable() this.unique_id = row["unique_id"] this.timestamp = row["timestamp"] this.strat = row["config"] this.master_table_id = row["master_table_id"] return this def __repr__(self): return ( f"<DbStratTable(unique_id={self.unique_id})" f", timestamp={self.timestamp} " f", master_table_id={self.master_table_id})>" ) @staticmethod def update(engine): logger.info("DbConfigTable : update called") @staticmethod def requires_update(engine): return False class DbRawTable(Base): """ Fact table to store the raw data of each iteration of an experiment. """ __tablename__ = "raw_data" unique_id = Column(Integer, primary_key=True, autoincrement=True) timestamp = Column(DateTime) model_data = Column(Boolean) master_table_id = Column(Integer, ForeignKey("master.unique_id")) parent = relationship("DBMasterTable", back_populates="children_raw") children_param = relationship("DbParamTable", back_populates="parent") children_outcome = relationship("DbOutcomeTable", back_populates="parent") @classmethod def from_sqlite(cls, row): this = DbRawTable() this.unique_id = row["unique_id"] this.timestamp = row["timestamp"] this.model_data = row["model_data"] this.master_table_id = row["master_table_id"] return this def __repr__(self): return ( f"<DbRawTable(unique_id={self.unique_id})" f", timestamp={self.timestamp} " f", master_table_id={self.master_table_id})>" ) @staticmethod def update(db, engine): logger.info("DbRawTable : update called") # Get every master table for master_table in db.get_master_records(): # Get raw tab for message in master_table.children_replay: if message.message_type != "tell": continue timestamp = message.timestamp # Deserialize pickle message message_contents = message.message_contents # Get outcome outcomes = message_contents["message"]["outcome"] # Get parameters params = message_contents["message"]["config"] # Get model_data model_data = message_contents["message"].get("model_data", True) db_raw_record = db.record_raw( master_table=master_table, model_data=bool(model_data), timestamp=timestamp, ) for param_name, param_value in params.items(): if isinstance(param_value, Iterable) and type(param_value) != str: if len(param_value) == 1: db.record_param( raw_table=db_raw_record, param_name=str(param_name), param_value=float(param_value[0]), ) else: for j, v in enumerate(param_value): db.record_param( raw_table=db_raw_record, param_name=str(param_name) + "_stimuli" + str(j), param_value=float(v), ) else: db.record_param( raw_table=db_raw_record, param_name=str(param_name), param_value=float(param_value), ) if isinstance(outcomes, Iterable) and type(outcomes) != str: for j, outcome_value in enumerate(outcomes): if ( isinstance(outcome_value, Iterable) and type(outcome_value) != str ): if len(outcome_value) == 1: outcome_value = outcome_value[0] else: raise ValueError( "Multi-outcome values must be a list of lists of length 1!" ) db.record_outcome( raw_table=db_raw_record, outcome_name="outcome_" + str(j), outcome_value=float(outcome_value), ) else: db.record_outcome( raw_table=db_raw_record, outcome_name="outcome", outcome_value=float(outcomes), ) @staticmethod def requires_update(engine): """Check if the raw table is empty, and data already exists.""" n_raws = engine.execute("SELECT COUNT (*) FROM raw_data").fetchone()[0] n_tells = engine.execute( "SELECT COUNT (*) FROM replay_data \ WHERE message_type = 'tell'" ).fetchone()[0] if n_raws == 0 and n_tells != 0: return True return False class DbParamTable(Base): """ Dimension table to store the parameters of each iteration of an experiment. Supports multiple parameters per iteration, and multiple stimuli per parameter. """ __tablename__ = "param_data" unique_id = Column(Integer, primary_key=True, autoincrement=True) param_name = Column(String(50)) param_value = Column(String(50)) iteration_id = Column(Integer, ForeignKey("raw_data.unique_id")) parent = relationship("DbRawTable", back_populates="children_param") @classmethod def from_sqlite(cls, row): this = DbParamTable() this.unique_id = row["unique_id"] this.param_name = row["param_name"] this.param_value = row["param_value"] this.iteration_id = row["iteration_id"] return this def __repr__(self): return ( f"<DbParamTable(unique_id={self.unique_id})" f", iteration_id={self.iteration_id}>" ) @staticmethod def update(engine): logger.info("DbParamTable : update called") @staticmethod def requires_update(engine): return False class DbOutcomeTable(Base): """ Dimension table to store the outcomes of each iteration of an experiment. Supports multiple outcomes per iteration. """ __tablename__ = "outcome_data" unique_id = Column(Integer, primary_key=True, autoincrement=True) outcome_name = Column(String(50)) outcome_value = Column(Float) iteration_id = Column(Integer, ForeignKey("raw_data.unique_id")) parent = relationship("DbRawTable", back_populates="children_outcome") @classmethod def from_sqlite(cls, row): this = DbOutcomeTable() this.unique_id = row["unique_id"] this.outcome_name = row["outcome_name"] this.outcome_value = row["outcome_value"] this.iteration_id = row["iteration_id"] return this def __repr__(self): return ( f"<DbOutcomeTable(unique_id={self.unique_id})" f", iteration_id={self.iteration_id}>" ) @staticmethod def update(engine): logger.info("DbOutcomeTable : update called") @staticmethod def requires_update(engine): return False
aepsych-main
aepsych/database/tables.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from __future__ import annotations from typing import Any import torch from gpytorch.kernels.rbf_kernel_grad import RBFKernelGrad class RBFKernelPartialObsGrad(RBFKernelGrad): """An RBF kernel over observations of f, and partial/non-overlapping observations of the gradient of f. gpytorch.kernels.rbf_kernel_grad assumes a block structure where every partial derivative is observed at the same set of points at which x is observed. This generalizes that by allowing f and any subset of the derivatives of f to be observed at different sets of points. The final column of x1 and x2 needs to be an index that identifies what is observed at that point. It should be 0 if this observation is of f, and i if it is of df/dxi. """ def forward( self, x1: torch.Tensor, x2: torch.Tensor, diag: bool = False, **params: Any ) -> torch.Tensor: # Extract grad index from each grad_idx1 = x1[..., -1].to(dtype=torch.long) grad_idx2 = x2[..., -1].to(dtype=torch.long) K = super().forward(x1[..., :-1], x2[..., :-1], diag=diag, **params) # Compute which elements to return n1 = x1.shape[-2] n2 = x2.shape[-2] d = x1.shape[-1] - 1 p1 = [(i * (d + 1)) + int(grad_idx1[i]) for i in range(n1)] p2 = [(i * (d + 1)) + int(grad_idx2[i]) for i in range(n2)] if not diag: return K[..., p1, :][..., p2] else: return K[..., p1] def num_outputs_per_input(self, x1: torch.Tensor, x2: torch.Tensor) -> int: return 1
aepsych-main
aepsych/kernels/rbf_partial_grad.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree.
aepsych-main
aepsych/kernels/__init__.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. r""" """ from __future__ import annotations from typing import Optional import torch from aepsych.acquisition.monotonic_rejection import MonotonicMCAcquisition from botorch.acquisition.input_constructors import acqf_input_constructor from botorch.acquisition.monte_carlo import MCAcquisitionFunction from botorch.acquisition.objective import MCAcquisitionObjective from botorch.models.model import Model from botorch.sampling.base import MCSampler from botorch.sampling.normal import SobolQMCNormalSampler from botorch.utils.transforms import t_batch_mode_transform from torch import Tensor from torch.distributions.bernoulli import Bernoulli def bald_acq(obj_samples: torch.Tensor) -> torch.Tensor: """Evaluate Mutual Information acquisition function. With latent function F and X a hypothetical observation at a new point, I(F; X) = I(X; F) = H(X) - H(X |F), H(X |F ) = E_{f} (H(X |F =f ) i.e., we take the posterior entropy of the (Bernoulli) observation X given the current model posterior and subtract the conditional entropy on F, that being the mean entropy over the posterior for F. This is equivalent to the BALD acquisition function in Houlsby et al. NeurIPS 2012. Args: obj_samples (torch.Tensor): Objective samples from the GP, of shape num_samples x batch_shape x d_out Returns: torch.Tensor: Value of acquisition at samples. """ mean_p = obj_samples.mean(dim=0) posterior_entropies = Bernoulli(mean_p).entropy().squeeze(-1) sample_entropies = Bernoulli(obj_samples).entropy() conditional_entropies = sample_entropies.mean(dim=0).squeeze(-1) return posterior_entropies - conditional_entropies class BernoulliMCMutualInformation(MCAcquisitionFunction): """Mutual Information acquisition function for a bernoulli outcome. Given a model and an objective link function, calculate the mutual information of a trial at a new point and the distribution on the latent function. Objective here should give values in (0, 1) (e.g. logit or probit). """ def __init__( self, model: Model, objective: MCAcquisitionObjective, sampler: Optional[MCSampler] = None, ) -> None: r"""Single Bernoulli mutual information for active learning Args: model (Model): A fitted model. objective (MCAcquisitionObjective): An MCAcquisitionObjective representing the link function (e.g., logistic or probit) sampler (MCSampler, optional): The sampler used for drawing MC samples. """ if sampler is None: sampler = SobolQMCNormalSampler(sample_shape=torch.Size([1024])) super().__init__( model=model, sampler=sampler, objective=objective, X_pending=None ) @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: r"""Evaluate mutual information on the candidate set `X`. Args: X: A `batch_size x q x d`-dim Tensor. Returns: Tensor of shape `batch_size x q` representing the mutual information of a hypothetical trial at X that active learning hopes to maximize. """ post = self.model.posterior(X) samples = self.sampler(post) return self.acquisition(self.objective(samples, X)) def acquisition(self, obj_samples: torch.Tensor) -> torch.Tensor: """Evaluate the acquisition function value based on samples. Args: obj_samples (torch.Tensor): Samples from the model, transformed through the objective. Returns: torch.Tensor: value of the acquisition function (BALD) at the input samples. """ # RejectionSampler drops the final dim so we reaugment it # here for compatibility with non-Monotonic MCAcquisition if len(obj_samples.shape) == 2: obj_samples = obj_samples[..., None] return bald_acq(obj_samples) @acqf_input_constructor(BernoulliMCMutualInformation) def construct_inputs_mi( model, training_data, objective=None, sampler=None, **kwargs, ): return { "model": model, "objective": objective, "sampler": sampler, } class MonotonicBernoulliMCMutualInformation(MonotonicMCAcquisition): def acquisition(self, obj_samples: torch.Tensor) -> torch.Tensor: """Evaluate the acquisition function value based on samples. Args: obj_samples (torch.Tensor): Samples from the model, transformed through the objective. Returns: torch.Tensor: value of the acquisition function (BALD) at the input samples. """ # TODO this is identical to nono-monotonic BALV acquisition with a different # base class mixin, consider redesigning? # RejectionSampler drops the final dim so we reaugment it # here for compatibility with non-Monotonic MCAcquisition if len(obj_samples.shape) == 2: obj_samples = obj_samples[..., None] return bald_acq(obj_samples)
aepsych-main
aepsych/acquisition/mutual_information.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from typing import Optional, Union import torch from aepsych.acquisition.objective import ProbitObjective from botorch.acquisition.input_constructors import acqf_input_constructor from botorch.acquisition.monte_carlo import ( MCAcquisitionFunction, MCAcquisitionObjective, MCSampler, ) from botorch.models.model import Model from botorch.sampling.normal import SobolQMCNormalSampler from botorch.utils.transforms import t_batch_mode_transform from torch import Tensor class MCLevelSetEstimation(MCAcquisitionFunction): def __init__( self, model: Model, target: Union[float, Tensor] = 0.75, beta: Union[float, Tensor] = 3.84, objective: Optional[MCAcquisitionObjective] = None, sampler: Optional[MCSampler] = None, ) -> None: r"""Monte-carlo level set estimation. Args: model: A fitted model. target: the level set (after objective transform) to be estimated beta: a parameter that governs explore-exploit tradeoff objective: An MCAcquisitionObjective representing the link function (e.g., logistic or probit.) applied on the samples. Can be implemented via GenericMCObjective. sampler: The sampler used for drawing MC samples. """ if sampler is None: sampler = SobolQMCNormalSampler(sample_shape=torch.Size([512])) if objective is None: objective = ProbitObjective() super().__init__(model=model, sampler=sampler, objective=None, X_pending=None) self.objective = objective self.beta = beta self.target = target def acquisition(self, obj_samples: torch.Tensor) -> torch.Tensor: """Evaluate the acquisition based on objective samples. Usually you should not call this directly unless you are subclassing this class and modifying how objective samples are generated. Args: obj_samples (torch.Tensor): Samples from the model, transformed by the objective. Should be samples x batch_shape. Returns: torch.Tensor: Acquisition function at the sampled values. """ mean = obj_samples.mean(dim=0) variance = obj_samples.var(dim=0) # prevent numerical issues if probit makes all the values 1 or 0 variance = torch.clamp(variance, min=1e-5) delta = torch.sqrt(self.beta * variance) return delta - torch.abs(mean - self.target) @t_batch_mode_transform() def forward(self, X: torch.Tensor) -> torch.Tensor: """Evaluate the acquisition function Args: X (torch.Tensor): Points at which to evaluate. Returns: torch.Tensor: Value of the acquisition functiona at these points. """ post = self.model.posterior(X) samples = self.sampler(post) # num_samples x batch_shape x q x d_out return self.acquisition(self.objective(samples, X)).squeeze(-1) @acqf_input_constructor(MCLevelSetEstimation) def construct_inputs_lse( model, training_data, objective=None, target=0.75, beta=3.84, sampler=None, **kwargs, ): return { "model": model, "objective": objective, "target": target, "beta": beta, "sampler": sampler, }
aepsych-main
aepsych/acquisition/lse.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from typing import Any, Dict, Optional, Tuple import torch from botorch.acquisition.objective import PosteriorTransform from gpytorch.models import GP from gpytorch.utils.quadrature import GaussHermiteQuadrature1D from torch import Tensor from torch.distributions import Normal from .bvn import bvn_cdf def posterior_at_xstar_xq( model: GP, Xstar: Tensor, Xq: Tensor, posterior_transform: Optional[PosteriorTransform] = None, ) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]: """ Evaluate the posteriors of f at single point Xstar and set of points Xq. Args: model: The model to evaluate. Xstar: (b x 1 x d) tensor. Xq: (b x m x d) tensor. Returns: Mu_s: (b x 1) mean at Xstar. Sigma2_s: (b x 1) variance at Xstar. Mu_q: (b x m) mean at Xq. Sigma2_q: (b x m) variance at Xq. Sigma_sq: (b x m) covariance between Xstar and each point in Xq. """ # Evaluate posterior and extract needed components Xext = torch.cat((Xstar, Xq), dim=-2) posterior = model.posterior(Xext, posterior_transform=posterior_transform) mu = posterior.mean[..., :, 0] Mu_s = mu[..., 0].unsqueeze(-1) Mu_q = mu[..., 1:] Cov = posterior.distribution.covariance_matrix Sigma2_s = Cov[..., 0, 0].unsqueeze(-1) Sigma2_q = torch.diagonal(Cov[..., 1:, 1:], dim1=-1, dim2=-2) Sigma_sq = Cov[..., 0, 1:] return Mu_s, Sigma2_s, Mu_q, Sigma2_q, Sigma_sq def lookahead_levelset_at_xstar( model: GP, Xstar: Tensor, Xq: Tensor, posterior_transform: Optional[PosteriorTransform] = None, **kwargs: Dict[str, Any], ): """ Evaluate the look-ahead level-set posterior at Xq given observation at xstar. Args: model: The model to evaluate. Xstar: (b x 1 x d) observation point. Xq: (b x m x d) reference points. gamma: Threshold in f-space. Returns: Px: (b x m) Level-set posterior at Xq, before observation at xstar. P1: (b x m) Level-set posterior at Xq, given observation of 1 at xstar. P0: (b x m) Level-set posterior at Xq, given observation of 0 at xstar. py1: (b x 1) Probability of observing 1 at xstar. """ Mu_s, Sigma2_s, Mu_q, Sigma2_q, Sigma_sq = posterior_at_xstar_xq( model=model, Xstar=Xstar, Xq=Xq, posterior_transform=posterior_transform ) try: gamma = kwargs.get("gamma") except KeyError: raise RuntimeError("lookahead_levelset_at_xtar requires passing gamma!") # Compute look-ahead components Norm = torch.distributions.Normal(0, 1) Sigma_q = torch.sqrt(Sigma2_q) b_q = (gamma - Mu_q) / Sigma_q Phi_bq = Norm.cdf(b_q) denom = torch.sqrt(1 + Sigma2_s) a_s = Mu_s / denom Phi_as = Norm.cdf(a_s) Z_rho = -Sigma_sq / (Sigma_q * denom) Z_qs = bvn_cdf(a_s, b_q, Z_rho) Px = Phi_bq py1 = Phi_as P1 = Z_qs / py1 P0 = (Phi_bq - Z_qs) / (1 - py1) return Px, P1, P0, py1 def lookahead_p_at_xstar( model: GP, Xstar: Tensor, Xq: Tensor, posterior_transform: Optional[PosteriorTransform] = None, **kwargs: Dict[str, Any], ) -> Tuple[Tensor, Tensor, Tensor, Tensor]: """ Evaluate the look-ahead response probability posterior at Xq given observation at xstar. Uses the approximation given in expr. 9 in: Zhao, Guang, et al. "Efficient active learning for Gaussian process classification by error reduction." Advances in Neural Information Processing Systems 34 (2021): 9734-9746. Args: model: The model to evaluate. Xstar: (b x 1 x d) observation point. Xq: (b x m x d) reference points. kwargs: ignored (here for compatibility with other kinds of lookahead) Returns: Px: (b x m) Response posterior at Xq, before observation at xstar. P1: (b x m) Response posterior at Xq, given observation of 1 at xstar. P0: (b x m) Response posterior at Xq, given observation of 0 at xstar. py1: (b x 1) Probability of observing 1 at xstar. """ Mu_s, Sigma2_s, Mu_q, Sigma2_q, Sigma_sq = posterior_at_xstar_xq( model=model, Xstar=Xstar, Xq=Xq, posterior_transform=posterior_transform ) probit = Normal(0, 1).cdf def lookahead_inner(f_q): mu_tilde_star = Mu_s + (f_q - Mu_q) * Sigma_sq / Sigma2_q sigma_tilde_star = Sigma2_s - (Sigma_sq**2) / Sigma2_q return probit(mu_tilde_star / torch.sqrt(sigma_tilde_star + 1)) * probit(f_q) pstar_marginal_1 = probit(Mu_s / torch.sqrt(1 + Sigma2_s)) pstar_marginal_0 = 1 - pstar_marginal_1 pq_marginal_1 = probit(Mu_q / torch.sqrt(1 + Sigma2_q)) quad = GaussHermiteQuadrature1D() fq_mvn = Normal(Mu_q, torch.sqrt(Sigma2_q)) joint_ystar1_yq1 = quad(lookahead_inner, fq_mvn) joint_ystar0_yq1 = pq_marginal_1 - joint_ystar1_yq1 # now we need from the joint to the marginal on xq lookahead_pq1 = joint_ystar1_yq1 / pstar_marginal_1 lookahead_pq0 = joint_ystar0_yq1 / pstar_marginal_0 return pq_marginal_1, lookahead_pq1, lookahead_pq0, pstar_marginal_1 def approximate_lookahead_levelset_at_xstar( model: GP, Xstar: Tensor, Xq: Tensor, gamma: float, posterior_transform: Optional[PosteriorTransform] = None, ) -> Tuple[Tensor, Tensor, Tensor, Tensor]: """ The look-ahead posterior approximation of Lyu et al. Args: model: The model to evaluate. Xstar: (b x 1 x d) observation point. Xq: (b x m x d) reference points. gamma: Threshold in f-space. Returns: Px: (b x m) Level-set posterior at Xq, before observation at xstar. P1: (b x m) Level-set posterior at Xq, given observation of 1 at xstar. P0: (b x m) Level-set posterior at Xq, given observation of 0 at xstar. py1: (b x 1) Probability of observing 1 at xstar. """ Mu_s, Sigma2_s, Mu_q, Sigma2_q, Sigma_sq = posterior_at_xstar_xq( model=model, Xstar=Xstar, Xq=Xq, posterior_transform=posterior_transform ) Norm = torch.distributions.Normal(0, 1) Mu_s_pdf = torch.exp(Norm.log_prob(Mu_s)) Mu_s_cdf = Norm.cdf(Mu_s) # Formulae from the supplement of the paper (Result 2) vnp1_p = Mu_s_pdf**2 / Mu_s_cdf**2 + Mu_s * Mu_s_pdf / Mu_s_cdf # (C.4) p_p = Norm.cdf(Mu_s / torch.sqrt(1 + Sigma2_s)) # (C.5) vnp1_n = Mu_s_pdf**2 / (1 - Mu_s_cdf) ** 2 - Mu_s * Mu_s_pdf / ( 1 - Mu_s_cdf ) # (C.6) p_n = 1 - p_p # (C.7) vtild = vnp1_p * p_p + vnp1_n * p_n Sigma2_q_np1 = Sigma2_q - Sigma_sq**2 / ((1 / vtild) + Sigma2_s) # (C.8) Px = Norm.cdf((gamma - Mu_q) / torch.sqrt(Sigma2_q)) P1 = Norm.cdf((gamma - Mu_q) / torch.sqrt(Sigma2_q_np1)) P0 = P1 # Same because we ignore value of y in this approximation py1 = 0.5 * torch.ones(*Px.shape[:-1], 1) # Value doesn't matter because P1 = P0 return Px, P1, P0, py1
aepsych-main
aepsych/acquisition/lookahead_utils.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from __future__ import annotations import torch from botorch.posteriors import Posterior from botorch.sampling.base import MCSampler from torch import Tensor class RejectionSampler(MCSampler): """ Samples from a posterior subject to the constraint that samples in constrained_idx should be >= 0. If not enough feasible samples are generated, will return the least violating samples. """ def __init__( self, num_samples: int, num_rejection_samples: int, constrained_idx: Tensor ): """Initialize RejectionSampler Args: num_samples (int): Number of samples to return. Note that if fewer samples than this number are positive in the required dimension, the remaining samples returned will be the "least violating", i.e. closest to 0. num_rejection_samples (int): Number of samples to draw before rejecting. constrained_idx (Tensor): Indices of input dimensions that should be constrained positive. """ self.num_samples = num_samples self.num_rejection_samples = num_rejection_samples self.constrained_idx = constrained_idx super().__init__(sample_shape=torch.Size([num_samples])) def forward(self, posterior: Posterior) -> Tensor: """Run the rejection sampler. Args: posterior (Posterior): The unconstrained GP posterior object to perform rejection samples on. Returns: Tensor: Kept samples. """ samples = posterior.rsample( sample_shape=torch.Size([self.num_rejection_samples]) ) assert ( samples.shape[-1] == 1 ), "Batches not supported" # TODO T68656582 handle batches later constrained_samps = samples[:, self.constrained_idx, 0] valid = (constrained_samps >= 0).all(dim=1) if valid.sum() < self.num_samples: worst_violation = constrained_samps.min(dim=1)[0] keep = torch.argsort(worst_violation, descending=True)[: self.num_samples] else: keep = torch.where(valid)[0][: self.num_samples] return samples[keep, :, :]
aepsych-main
aepsych/acquisition/rejection_sampler.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import sys from ..config import Config from .lookahead import ApproxGlobalSUR, EAVC, GlobalMI, GlobalSUR, LocalMI, LocalSUR from .lse import MCLevelSetEstimation from .mc_posterior_variance import MCPosteriorVariance, MonotonicMCPosteriorVariance from .monotonic_rejection import MonotonicMCLSE from .mutual_information import ( BernoulliMCMutualInformation, MonotonicBernoulliMCMutualInformation, ) from .objective import ( FloorGumbelObjective, FloorLogitObjective, FloorProbitObjective, ProbitObjective, semi_p, ) lse_acqfs = [ MonotonicMCLSE, GlobalMI, GlobalSUR, ApproxGlobalSUR, EAVC, LocalMI, LocalSUR, ] __all__ = [ "BernoulliMCMutualInformation", "MonotonicBernoulliMCMutualInformation", "MonotonicMCLSE", "MCPosteriorVariance", "MonotonicMCPosteriorVariance", "MCPosteriorVariance", "MCLevelSetEstimation", "ProbitObjective", "FloorProbitObjective", "FloorLogitObjective", "FloorGumbelObjective", "GlobalMI", "GlobalSUR", "ApproxGlobalSUR", "EAVC", "LocalMI", "LocalSUR", "semi_p", ] Config.register_module(sys.modules[__name__])
aepsych-main
aepsych/acquisition/__init__.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from typing import Optional import torch from aepsych.acquisition.monotonic_rejection import MonotonicMCAcquisition from aepsych.acquisition.objective import ProbitObjective from botorch.acquisition.input_constructors import acqf_input_constructor from botorch.acquisition.monte_carlo import MCAcquisitionFunction from botorch.acquisition.objective import MCAcquisitionObjective from botorch.models.model import Model from botorch.sampling.base import MCSampler from botorch.sampling.normal import SobolQMCNormalSampler from botorch.utils.transforms import t_batch_mode_transform from torch import Tensor def balv_acq(obj_samps: torch.Tensor) -> torch.Tensor: """Evaluate BALV (posterior variance) on a set of objective samples. Args: obj_samps (torch.Tensor): Samples from the GP, transformed by the objective. Should be samples x batch_shape. Returns: torch.Tensor: Acquisition function value. """ # the output of objective is of shape num_samples x batch_shape x d_out # objective should project the last dimension to 1d, # so incoming should be samples x batch_shape, we take var in samp dim return obj_samps.var(dim=0).squeeze(-1) class MCPosteriorVariance(MCAcquisitionFunction): r"""Posterior variance, computed using samples so we can use objective/transform""" def __init__( self, model: Model, objective: Optional[MCAcquisitionObjective] = None, sampler: Optional[MCSampler] = None, ) -> None: r"""Posterior Variance of Link Function Args: model: A fitted model. objective: An MCAcquisitionObjective representing the link function (e.g., logistic or probit.) applied on the difference of (usually 1-d) two samples. Can be implemented via GenericMCObjective. sampler: The sampler used for drawing MC samples. """ if sampler is None: sampler = SobolQMCNormalSampler(sample_shape=torch.Size([512])) if objective is None: objective = ProbitObjective() super().__init__(model=model, sampler=sampler, objective=None, X_pending=None) self.objective = objective @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: r"""Evaluate MCPosteriorVariance on the candidate set `X`. Args: X: A `batch_size x q x d`-dim Tensor Returns: Posterior variance of link function at X that active learning hopes to maximize """ # the output is of shape batch_shape x q x d_out post = self.model.posterior(X) samples = self.sampler(post) # num_samples x batch_shape x q x d_out return self.acquisition(self.objective(samples, X)) def acquisition(self, obj_samples: torch.Tensor) -> torch.Tensor: # RejectionSampler drops the final dim so we reaugment it # here for compatibility with non-Monotonic MCAcquisition if len(obj_samples.shape) == 2: obj_samples = obj_samples[..., None] return balv_acq(obj_samples) @acqf_input_constructor(MCPosteriorVariance) def construct_inputs( model, training_data, objective=None, sampler=None, **kwargs, ): return { "model": model, "objective": objective, "sampler": sampler, } class MonotonicMCPosteriorVariance(MonotonicMCAcquisition): def acquisition(self, obj_samples: torch.Tensor) -> torch.Tensor: return balv_acq(obj_samples)
aepsych-main
aepsych/acquisition/mc_posterior_variance.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from math import pi as _pi import torch inv_2pi = 1 / (2 * _pi) _neg_inv_sqrt2 = -1 / (2**0.5) def _gauss_legendre20(dtype): _abscissae = torch.tensor( [ 0.9931285991850949, 0.9639719272779138, 0.9122344282513259, 0.8391169718222188, 0.7463319064601508, 0.6360536807265150, 0.5108670019508271, 0.3737060887154196, 0.2277858511416451, 0.07652652113349733, ], dtype=dtype, ) _weights = torch.tensor( [ 0.01761400713915212, 0.04060142980038694, 0.06267204833410906, 0.08327674157670475, 0.1019301198172404, 0.1181945319615184, 0.1316886384491766, 0.1420961093183821, 0.1491729864726037, 0.1527533871307259, ], dtype=dtype, ) abscissae = torch.cat([1.0 - _abscissae, 1.0 + _abscissae], dim=0) weights = torch.cat([_weights, _weights], dim=0) return abscissae, weights def _ndtr(x: torch.Tensor) -> torch.Tensor: """ Standard normal CDF. Called <phid> in Genz's original code. """ return 0.5 * torch.erfc(_neg_inv_sqrt2 * x) def _bvnu( dh: torch.Tensor, dk: torch.Tensor, r: torch.Tensor, ) -> torch.Tensor: """ Primary subroutine for bvnu() """ # Precompute some terms h = dh k = dk hk = h * k x, w = _gauss_legendre20(dtype=dh.dtype) asr = 0.5 * torch.asin(r) sn = torch.sin(asr[..., None] * x) res = (sn * hk[..., None] - 0.5 * (h**2 + k**2)[..., None]) / (1 - sn**2) res = torch.sum(w * torch.exp(res), dim=-1) res = res * inv_2pi * asr + _ndtr(-h) * _ndtr(-k) return torch.clip(res, 0, 1) def bvn_cdf( xu: torch.Tensor, yu: torch.Tensor, r: torch.Tensor, ) -> torch.Tensor: """ Evaluate the bivariate normal CDF. WARNING: Implements only the routine for moderate levels of correlation. Will be inaccurate and should not be used for correlations larger than 0.925. Standard (mean 0, var 1) bivariate normal distribution with correlation r. Evaluated from -inf to xu, and -inf to yu. Based on function developed by Alan Genz: http://www.math.wsu.edu/faculty/genz/software/matlab/bvn.m based in turn on Drezner, Z and G.O. Wesolowsky, (1989), On the computation of the bivariate normal inegral, Journal of Statist. Comput. Simul. 35, pp. 101-107. Args: xu: Upper limits for cdf evaluation in x yu: Upper limits for cdf evaluation in y r: BVN correlation Returns: Tensor of cdf evaluations of same size as xu, yu, and r. """ p = 1 - _ndtr(-xu) - _ndtr(-yu) + _bvnu(xu, yu, r) return torch.clip(p, 0, 1)
aepsych-main
aepsych/acquisition/bvn.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from __future__ import annotations from typing import Optional, Tuple from ax.models.torch.botorch_modular.acquisition import Acquisition from botorch.acquisition.objective import MCAcquisitionObjective, PosteriorTransform class AEPsychAcquisition(Acquisition): def get_botorch_objective_and_transform( self, **kwargs ) -> Tuple[Optional[MCAcquisitionObjective], Optional[PosteriorTransform]]: objective, transform = super().get_botorch_objective_and_transform(**kwargs) if "objective" in self.options: objective = self.options.pop("objective") return objective, transform
aepsych-main
aepsych/acquisition/acquisition.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from typing import Optional, Tuple, cast import numpy as np import torch from aepsych.utils import make_scaled_sobol from botorch.acquisition import AcquisitionFunction from botorch.acquisition.input_constructors import acqf_input_constructor from botorch.acquisition.objective import PosteriorTransform from botorch.models.gpytorch import GPyTorchModel from botorch.utils.transforms import t_batch_mode_transform from scipy.stats import norm from torch import Tensor from .lookahead_utils import ( approximate_lookahead_levelset_at_xstar, lookahead_levelset_at_xstar, lookahead_p_at_xstar, ) def Hb(p: Tensor): """ Binary entropy. Args: p: Tensor of probabilities. Returns: Binary entropy for each probability. """ epsilon = torch.tensor(np.finfo(float).eps) p = torch.clamp(p, min=epsilon, max=1 - epsilon) return -torch.nan_to_num(p * torch.log2(p) + (1 - p) * torch.log2(1 - p)) def MI_fn(Px: Tensor, P1: Tensor, P0: Tensor, py1: Tensor) -> Tensor: """ Average mutual information. H(p) - E_y*[H(p | y*)] Args: Px: (b x m) Level-set posterior before observation P1: (b x m) Level-set posterior given observation of 1 P0: (b x m) Level-set posterior given observation of 0 py1: (b x 1) Probability of observing 1 Returns: (b) tensor of mutual information averaged over Xq. """ mi = Hb(Px) - py1 * Hb(P1) - (1 - py1) * Hb(P0) return mi.sum(dim=-1) def ClassErr(p: Tensor) -> Tensor: """ Expected classification error, min(p, 1-p). """ return torch.min(p, 1 - p) def SUR_fn(Px: Tensor, P1: Tensor, P0: Tensor, py1: Tensor) -> Tensor: """ Stepwise uncertainty reduction. Expected reduction in expected classification error given observation at Xstar, averaged over Xq. Args: Px: (b x m) Level-set posterior before observation P1: (b x m) Level-set posterior given observation of 1 P0: (b x m) Level-set posterior given observation of 0 py1: (b x 1) Probability of observing 1 Returns: (b) tensor of SUR values. """ sur = ClassErr(Px) - py1 * ClassErr(P1) - (1 - py1) * ClassErr(P0) return sur.sum(dim=-1) def EAVC_fn(Px: Tensor, P1: Tensor, P0: Tensor, py1: Tensor) -> Tensor: """ Expected absolute value change. Expected absolute change in expected level-set volume given observation at Xstar. Args: Px: (b x m) Level-set posterior before observation P1: (b x m) Level-set posterior given observation of 1 P0: (b x m) Level-set posterior given observation of 0 py1: (b x 1) Probability of observing 1 Returns: (b) tensor of EAVC values. """ avc1 = torch.abs((Px - P1).sum(dim=-1)) avc0 = torch.abs((Px - P0).sum(dim=-1)) return py1.squeeze(-1) * avc1 + (1 - py1).squeeze(-1) * avc0 class LookaheadAcquisitionFunction(AcquisitionFunction): def __init__( self, model: GPyTorchModel, target: Optional[float], lookahead_type: str = "levelset", ) -> None: """ A localized look-ahead acquisition function. Args: model: The gpytorch model. target: Threshold value to target in p-space. """ super().__init__(model=model) if lookahead_type == "levelset": self.lookahead_fn = lookahead_levelset_at_xstar assert target is not None, "Need a target for levelset lookahead!" self.gamma = norm.ppf(target) elif lookahead_type == "posterior": self.lookahead_fn = lookahead_p_at_xstar self.gamma = None else: raise RuntimeError(f"Got unknown lookahead type {lookahead_type}!") ## Local look-ahead acquisitions class LocalLookaheadAcquisitionFunction(LookaheadAcquisitionFunction): def __init__( self, model: GPyTorchModel, lookahead_type: str = "levelset", target: Optional[float] = None, posterior_transform: Optional[PosteriorTransform] = None, ) -> None: """ A localized look-ahead acquisition function. Args: model: The gpytorch model. target: Threshold value to target in p-space. """ super().__init__(model=model, target=target, lookahead_type=lookahead_type) self.posterior_transform = posterior_transform @t_batch_mode_transform(expected_q=1) def forward(self, X: Tensor) -> Tensor: """ Evaluate acquisition function at X. Args: X: (b x 1 x d) point at which to evalaute acquisition function. Returns: (b) tensor of acquisition values. """ Px, P1, P0, py1 = self.lookahead_fn( model=self.model, Xstar=X, Xq=X, gamma=self.gamma, posterior_transform=self.posterior_transform, ) # Return shape here has m=1. return self._compute_acqf(Px, P1, P0, py1) def _compute_acqf(self, Px: Tensor, P1: Tensor, P0: Tensor, py1: Tensor) -> Tensor: raise NotImplementedError class LocalMI(LocalLookaheadAcquisitionFunction): def _compute_acqf(self, Px: Tensor, P1: Tensor, P0: Tensor, py1: Tensor) -> Tensor: return MI_fn(Px, P1, P0, py1) class LocalSUR(LocalLookaheadAcquisitionFunction): def _compute_acqf(self, Px: Tensor, P1: Tensor, P0: Tensor, py1: Tensor) -> Tensor: return SUR_fn(Px, P1, P0, py1) @acqf_input_constructor(LocalMI, LocalSUR) def construct_inputs_local_lookahead( model: GPyTorchModel, training_data, lookahead_type="levelset", target: Optional[float] = None, posterior_transform: Optional[PosteriorTransform] = None, **kwargs, ): return { "model": model, "lookahead_type": lookahead_type, "target": target, "posterior_transform": posterior_transform, } ## Global look-ahead acquisitions class GlobalLookaheadAcquisitionFunction(LookaheadAcquisitionFunction): def __init__( self, model: GPyTorchModel, lookahead_type: str = "levelset", target: Optional[float] = None, posterior_transform: Optional[PosteriorTransform] = None, query_set_size: Optional[int] = 256, Xq: Optional[Tensor] = None, ) -> None: """ A global look-ahead acquisition function. Args: model: The gpytorch model. target: Threshold value to target in p-space. Xq: (m x d) global reference set. """ super().__init__(model=model, target=target, lookahead_type=lookahead_type) self.posterior_transform = posterior_transform assert ( Xq is not None or query_set_size is not None ), "Must pass either query set size or a query set!" if Xq is not None and query_set_size is not None: assert Xq.shape[0] == query_set_size, ( "If passing both Xq and query_set_size," + "first dim of Xq should be query_set_size, got {Xq.shape[0]} != {query_set_size}" ) if Xq is None: # cast to an int in case we got a float from Config, which # would raise on make_scaled_sobol query_set_size = cast(int, query_set_size) # make mypy happy assert int(query_set_size) == query_set_size # make sure casting is safe # if the asserts above pass and Xq is None, query_set_size is not None so this is safe query_set_size = int(query_set_size) # cast Xq = make_scaled_sobol(model.lb, model.ub, query_set_size) self.register_buffer("Xq", Xq) @t_batch_mode_transform(expected_q=1) def forward(self, X: Tensor) -> Tensor: """ Evaluate acquisition function at X. Args: X: (b x 1 x d) point at which to evalaute acquisition function. Returns: (b) tensor of acquisition values. """ Px, P1, P0, py1 = self._get_lookahead_posterior(X) return self._compute_acqf(Px, P1, P0, py1) def _get_lookahead_posterior( self, X: Tensor ) -> Tuple[Tensor, Tensor, Tensor, Tensor]: Xq_batch = self.Xq.expand(X.shape[0], *self.Xq.shape) return self.lookahead_fn( model=self.model, Xstar=X, Xq=Xq_batch, gamma=self.gamma, posterior_transform=self.posterior_transform, ) def _compute_acqf(self, Px: Tensor, P1: Tensor, P0: Tensor, py1: Tensor) -> Tensor: raise NotImplementedError class GlobalMI(GlobalLookaheadAcquisitionFunction): def _compute_acqf(self, Px: Tensor, P1: Tensor, P0: Tensor, py1: Tensor) -> Tensor: return MI_fn(Px, P1, P0, py1) class GlobalSUR(GlobalLookaheadAcquisitionFunction): def _compute_acqf(self, Px: Tensor, P1: Tensor, P0: Tensor, py1: Tensor) -> Tensor: return SUR_fn(Px, P1, P0, py1) class ApproxGlobalSUR(GlobalSUR): def __init__( self, model: GPyTorchModel, lookahead_type="levelset", target: Optional[float] = None, query_set_size: Optional[int] = 256, Xq: Optional[Tensor] = None, ) -> None: assert ( lookahead_type == "levelset" ), f"ApproxGlobalSUR only supports lookahead on level set, got {lookahead_type}!" super().__init__( model=model, target=target, lookahead_type=lookahead_type, query_set_size=query_set_size, Xq=Xq, ) def _get_lookahead_posterior( self, X: Tensor ) -> Tuple[Tensor, Tensor, Tensor, Tensor]: Xq_batch = self.Xq.expand(X.shape[0], *self.Xq.shape) return approximate_lookahead_levelset_at_xstar( model=self.model, Xstar=X, Xq=Xq_batch, gamma=self.gamma, posterior_transform=self.posterior_transform, ) class EAVC(GlobalLookaheadAcquisitionFunction): def _compute_acqf(self, Px: Tensor, P1: Tensor, P0: Tensor, py1: Tensor) -> Tensor: return EAVC_fn(Px, P1, P0, py1) class MOCU(GlobalLookaheadAcquisitionFunction): """ MOCU acquisition function given in expr. 4 of: Zhao, Guang, et al. "Uncertainty-aware active learning for optimal Bayesian classifier." International Conference on Learning Representations (ICLR) 2021. """ def _compute_acqf(self, Px: Tensor, P1: Tensor, P0: Tensor, py1: Tensor) -> Tensor: current_max_query = torch.maximum(Px, 1 - Px) # expectation w.r.t. y* of the max of pq lookahead_pq1_max = torch.maximum(P1, 1 - P1) lookahead_pq0_max = torch.maximum(P0, 1 - P0) lookahead_max_query = lookahead_pq1_max * py1 + lookahead_pq0_max * (1 - py1) return (lookahead_max_query - current_max_query).mean(-1) class SMOCU(GlobalLookaheadAcquisitionFunction): """ SMOCU acquisition function given in expr. 11 of: Zhao, Guang, et al. "Bayesian active learning by soft mean objective cost of uncertainty." International Conference on Artificial Intelligence and Statistics (AISTATS) 2021. """ def __init__(self, k, *args, **kwargs): super().__init__(*args, **kwargs) self.k = k def _compute_acqf(self, Px: Tensor, P1: Tensor, P0: Tensor, py1: Tensor) -> Tensor: stacked = torch.stack((Px, 1 - Px), dim=-1) current_softmax_query = torch.logsumexp(self.k * stacked, dim=-1) / self.k # expectation w.r.t. y* of the max of pq lookahead_pq1_max = torch.maximum(P1, 1 - P1) lookahead_pq0_max = torch.maximum(P0, 1 - P0) lookahead_max_query = lookahead_pq1_max * py1 + lookahead_pq0_max * (1 - py1) return (lookahead_max_query - current_softmax_query).mean(-1) class BEMPS(GlobalLookaheadAcquisitionFunction): """ BEMPS acquisition function given in: Tan, Wei, et al. "Diversity Enhanced Active Learning with Strictly Proper Scoring Rules." Advances in Neural Information Processing Systems 34 (2021). """ def __init__(self, scorefun, *args, **kwargs): super().__init__(*args, **kwargs) self.scorefun = scorefun def _compute_acqf(self, Px: Tensor, P1: Tensor, P0: Tensor, py1: Tensor) -> Tensor: current_score = self.scorefun(Px) lookahead_pq1_score = self.scorefun(P1) lookahead_pq0_score = self.scorefun(P0) lookahead_expected_score = lookahead_pq1_score * py1 + lookahead_pq0_score * ( 1 - py1 ) return (lookahead_expected_score - current_score).mean(-1) @acqf_input_constructor(GlobalMI, GlobalSUR, ApproxGlobalSUR, EAVC, MOCU, SMOCU, BEMPS) def construct_inputs_global_lookahead( model: GPyTorchModel, training_data, lookahead_type="levelset", target: Optional[float] = None, posterior_transform: Optional[PosteriorTransform] = None, query_set_size: Optional[int] = 256, Xq: Optional[Tensor] = None, **kwargs, ): lb = [bounds[0] for bounds in kwargs["bounds"]] ub = [bounds[1] for bounds in kwargs["bounds"]] Xq = Xq if Xq is not None else make_scaled_sobol(lb, ub, query_set_size) return { "model": model, "lookahead_type": lookahead_type, "target": target, "posterior_transform": posterior_transform, "query_set_size": query_set_size, "Xq": Xq, }
aepsych-main
aepsych/acquisition/lookahead.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from __future__ import annotations from typing import Optional import torch from botorch.acquisition.acquisition import AcquisitionFunction from botorch.acquisition.objective import IdentityMCObjective, MCAcquisitionObjective from botorch.models.model import Model from torch import Tensor from .rejection_sampler import RejectionSampler class MonotonicMCAcquisition(AcquisitionFunction): """ Acquisition function base class for use with the rejection sampling monotonic GP. This handles the bookkeeping of the derivative constraint points -- implement specific monotonic MC acquisition in subclasses. """ def __init__( self, model: Model, deriv_constraint_points: torch.Tensor, num_samples: int = 32, num_rejection_samples: int = 1024, objective: Optional[MCAcquisitionObjective] = None, ) -> None: """Initialize MonotonicMCAcquisition Args: model (Model): Model to use, usually a MonotonicRejectionGP. num_samples (int, optional): Number of samples to keep from the rejection sampler. . Defaults to 32. num_rejection_samples (int, optional): Number of rejection samples to draw. Defaults to 1024. objective (Optional[MCAcquisitionObjective], optional): Objective transform of the GP output before evaluating the acquisition. Defaults to identity transform. """ super().__init__(model=model) self.deriv_constraint_points = deriv_constraint_points self.num_samples = num_samples self.num_rejection_samples = num_rejection_samples self.sampler_shape = torch.Size([]) if objective is None: assert model.num_outputs == 1 objective = IdentityMCObjective() else: assert isinstance(objective, MCAcquisitionObjective) self.add_module("objective", objective) def forward(self, X: Tensor) -> Tensor: """Evaluate the acquisition function at a set of points. Args: X (Tensor): Points at which to evaluate the acquisition function. Should be (b) x q x d, and q should be 1. Returns: Tensor: Acquisition function value at these points. """ # This is currently doing joint samples over (b), and requiring q=1 # TODO T68656582 support batches properly. if len(X.shape) == 3: assert X.shape[1] == 1, "q must be 1" Xfull = torch.cat((X[:, 0, :], self.deriv_constraint_points), dim=0) else: Xfull = torch.cat((X, self.deriv_constraint_points), dim=0) if not hasattr(self, "sampler") or Xfull.shape != self.sampler_shape: self._set_sampler(X.shape) self.sampler_shape = Xfull.shape posterior = self.model.posterior(Xfull) samples = self.sampler(posterior) assert len(samples.shape) == 3 # Drop derivative samples samples = samples[:, : X.shape[0], :] # NOTE: Squeeze below makes sure that we pass in the same `X` that was used # to generate the `samples`. This is necessitated by `MCAcquisitionObjective`, # which verifies that `samples` and `X` have the same q-batch size. obj_samples = self.objective(samples, X=X.squeeze(-2) if X.ndim == 3 else X) return self.acquisition(obj_samples) def _set_sampler(self, Xshape: torch.Size) -> None: sampler = RejectionSampler( num_samples=self.num_samples, num_rejection_samples=self.num_rejection_samples, constrained_idx=torch.arange( Xshape[0], Xshape[0] + self.deriv_constraint_points.shape[0] ), ) self.add_module("sampler", sampler) def acquisition(self, obj_samples: torch.Tensor) -> torch.Tensor: raise NotImplementedError class MonotonicMCLSE(MonotonicMCAcquisition): def __init__( self, model: Model, deriv_constraint_points: torch.Tensor, target: float, num_samples: int = 32, num_rejection_samples: int = 1024, beta: float = 3.84, objective: Optional[MCAcquisitionObjective] = None, ) -> None: """Level set estimation acquisition function for use with monotonic models. Args: model (Model): Underlying model object, usually should be MonotonicRejectionGP. target (float): Level set value to target (after the objective). num_samples (int, optional): Number of MC samples to draw in MC acquisition. Defaults to 32. num_rejection_samples (int, optional): Number of rejection samples from which to subsample monotonic ones. Defaults to 1024. beta (float, optional): Parameter of the LSE acquisition function that governs exploration vs exploitation (similarly to the same parameter in UCB). Defaults to 3.84 (1.96 ** 2), which maps to the straddle heuristic of Bryan et al. 2005. objective (Optional[MCAcquisitionObjective], optional): Objective transform. Defaults to identity transform. """ self.beta = beta self.target = target super().__init__( model=model, deriv_constraint_points=deriv_constraint_points, num_samples=num_samples, num_rejection_samples=num_rejection_samples, objective=objective, ) def acquisition(self, obj_samples: torch.Tensor) -> torch.Tensor: mean = obj_samples.mean(dim=0) variance = obj_samples.var(dim=0) # prevent numerical issues if probit makes all the values 1 or 0 variance = torch.clamp(variance, min=1e-5) delta = torch.sqrt(self.beta * variance) return delta - torch.abs(mean - self.target)
aepsych-main
aepsych/acquisition/monotonic_rejection.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from __future__ import annotations from typing import Optional import torch from botorch.acquisition.objective import MCAcquisitionObjective from torch import Tensor from torch.distributions.normal import Normal class AEPsychObjective(MCAcquisitionObjective): def inverse(self, samples: Tensor, X: Optional[Tensor] = None) -> Tensor: raise NotImplementedError class ProbitObjective(AEPsychObjective): """Probit objective Transforms the input through the normal CDF (probit). """ def forward(self, samples: Tensor, X: Optional[Tensor] = None) -> Tensor: """Evaluates the objective (normal CDF). Args: samples (Tensor): GP samples. X (Optional[Tensor], optional): ignored, here for compatibility with MCAcquisitionObjective. Returns: Tensor: [description] """ return Normal(loc=0, scale=1).cdf(samples.squeeze(-1)) def inverse(self, samples: Tensor, X: Optional[Tensor] = None) -> Tensor: """Evaluates the inverse of the objective (normal PPF). Args: samples (Tensor): GP samples. X (Optional[Tensor], optional): ignored, here for compatibility with MCAcquisitionObjective. Returns: Tensor: [description] """ return Normal(loc=0, scale=1).icdf(samples.squeeze(-1)) class FloorLinkObjective(AEPsychObjective): """ Wrapper for objectives to add a floor, when the probability is known not to go below it. """ def __init__(self, floor=0.5): self.floor = floor super().__init__() def forward(self, samples: Tensor, X: Optional[Tensor] = None) -> Tensor: """Evaluates the objective for input x and floor f Args: samples (Tensor): GP samples. X (Optional[Tensor], optional): ignored, here for compatibility with MCAcquisitionObjective. Returns: Tensor: outcome probability. """ return self.link(samples.squeeze(-1)) * (1 - self.floor) + self.floor def inverse(self, samples: Tensor, X: Optional[Tensor] = None) -> Tensor: """Evaluates the inverse of the objective. Args: samples (Tensor): GP samples. X (Optional[Tensor], optional): ignored, here for compatibility with MCAcquisitionObjective. Returns: Tensor: [description] """ return self.inverse_link((samples - self.floor) / (1 - self.floor)) def link(self, samples): raise NotImplementedError def inverse_link(self, samples): raise NotImplementedError @classmethod def from_config(cls, config): floor = config.getfloat(cls.__name__, "floor") return cls(floor=floor) class FloorLogitObjective(FloorLinkObjective): """ Logistic sigmoid (aka expit, aka logistic CDF), but with a floor so that its output is between floor and 1.0. """ def link(self, samples): return torch.special.expit(samples) def inverse_link(self, samples): return torch.special.logit(samples) class FloorGumbelObjective(FloorLinkObjective): """ Gumbel CDF but with a floor so that its output is between floor and 1.0. Note that this is not the standard Gumbel distribution, but rather the left-skewed Gumbel that arises as the log of the Weibull distribution, e.g. Treutwein 1995, doi:10.1016/0042-6989(95)00016-X. """ def link(self, samples): return torch.nan_to_num( -torch.special.expm1(-torch.exp(samples)), posinf=1.0, neginf=0.0 ) def inverse_link(self, samples): return torch.log(-torch.special.log1p(-samples)) class FloorProbitObjective(FloorLinkObjective): """ Probit (aka Gaussian CDF), but with a floor so that its output is between floor and 1.0. """ def link(self, samples): return Normal(0, 1).cdf(samples) def inverse_link(self, samples): return Normal(0, 1).icdf(samples)
aepsych-main
aepsych/acquisition/objective/objective.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from __future__ import annotations from typing import Optional import torch from aepsych.config import Config from aepsych.likelihoods import LinearBernoulliLikelihood from botorch.acquisition.objective import MCAcquisitionObjective from gpytorch.likelihoods import Likelihood from torch import Tensor class SemiPObjectiveBase(MCAcquisitionObjective): """Wraps the semi-parametric transform into an objective that correctly extracts various things """ # because we have an extra dim for the SemiP batch dimension, # all the q-batch output shape checks fail, disable them here _verify_output_shape: bool = False def __init__(self, stim_dim: int = 0): super().__init__() self.stim_dim = stim_dim class SemiPProbabilityObjective(SemiPObjectiveBase): """Wraps the semi-parametric transform into an objective that gives outcome probabilities """ def __init__(self, likelihood: Likelihood = None, *args, **kwargs): """Evaluates the probability objective. Args: likelihood (Likelihood). Underlying SemiP likelihood (which we use for its objective/link) other arguments are passed to the base class (notably, stim_dim). """ super().__init__(*args, **kwargs) self.likelihood = likelihood or LinearBernoulliLikelihood() def forward(self, samples: Tensor, X: Tensor) -> Tensor: """Evaluates the probability objective. Args: samples (Tensor): GP samples. X (Tensor): Inputs at which to evaluate objective. Unlike most AEPsych objectives, we need X here to split out the intensity dimension. Returns: Tensor: Response probabilities at the specific X values and function samples. """ Xi = X[..., self.stim_dim] # the output of LinearBernoulliLikelihood is (nsamp x b x n x 1) # but the output of MCAcquisitionObjective should be `nsamp x *batch_shape x q` # so we remove the final dim return self.likelihood.p(function_samples=samples, Xi=Xi).squeeze(-1) @classmethod def from_config(cls, config: Config): classname = cls.__name__ likelihood_cls = config.getobj(classname, "likelihood", fallback=None) if likelihood_cls is not None: if hasattr(likelihood_cls, "from_config"): likelihood = likelihood_cls.from_config(config) else: likelihood = likelihood_cls() else: likelihood = None # fall back to __init__ default return cls(likelihood=likelihood) class SemiPThresholdObjective(SemiPObjectiveBase): """Wraps the semi-parametric transform into an objective that gives the threshold distribution. """ def __init__(self, target: float, likelihood=None, *args, **kwargs): """Evaluates the probability objective. Args: target (float): the threshold to evaluate. likelihood (Likelihood): Underlying SemiP likelihood (which we use for its inverse link) other arguments are passed to the base class (notably, stim_dim). """ super().__init__(*args, **kwargs) self.likelihood = likelihood or LinearBernoulliLikelihood() self.fspace_target = self.likelihood.objective.inverse(torch.tensor(target)) def forward(self, samples: Tensor, X: Optional[Tensor] = None) -> Tensor: """Evaluates the probability objective. Args: samples (Tensor): GP samples. X (Tensor, optional): Ignored, here for compatibility with the objective API. Returns: Tensor: Threshold probabilities at the specific GP sample values. """ offset = samples[..., 0, :] slope = samples[..., 1, :] return (self.fspace_target + slope * offset) / slope @classmethod def from_config(cls, config: Config): classname = cls.__name__ likelihood_cls = config.getobj(classname, "likelihood", fallback=None) if likelihood_cls is not None: if hasattr(likelihood_cls, "from_config"): likelihood = likelihood_cls.from_config(config) else: likelihood = likelihood_cls() else: likelihood = None # fall back to __init__ default target = config.getfloat(classname, "target", fallback=0.75) return cls(likelihood=likelihood, target=target)
aepsych-main
aepsych/acquisition/objective/semi_p.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import sys from ...config import Config from .objective import ( AEPsychObjective, FloorGumbelObjective, FloorLogitObjective, FloorProbitObjective, ProbitObjective, ) from .semi_p import SemiPProbabilityObjective, SemiPThresholdObjective __all__ = [ "AEPsychObjective", "FloorGumbelObjective", "FloorLogitObjective", "FloorProbitObjective", "ProbitObjective", "SemiPProbabilityObjective", "SemiPThresholdObjective", ] Config.register_module(sys.modules[__name__])
aepsych-main
aepsych/acquisition/objective/__init__.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree.
aepsych-main
aepsych/means/__init__.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from __future__ import annotations import torch from gpytorch.means.constant_mean import ConstantMean class ConstantMeanPartialObsGrad(ConstantMean): """A mean function for use with partial gradient observations. This follows gpytorch.means.constant_mean_grad and sets the prior mean for derivative observations to 0, though unlike that function it allows for partial observation of derivatives. The final column of input should be an index that is 0 if the observation is of f, or i if it is of df/dxi. """ def forward(self, input: torch.Tensor) -> torch.Tensor: idx = input[..., -1].to(dtype=torch.long) > 0 mean_fit = super(ConstantMeanPartialObsGrad, self).forward(input[..., ~idx, :]) sz = mean_fit.shape[:-1] + torch.Size([input.shape[-2]]) mean = torch.zeros(sz) mean[~idx] = mean_fit return mean
aepsych-main
aepsych/means/constant_partial_grad.py