python_code
stringlengths
0
4.04M
repo_name
stringlengths
8
58
file_path
stringlengths
5
147
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import unittest import numpy as np import numpy.testing as npt from aepsych.config import Config from aepsych.generators import AxRandomGenerator, RandomGenerator from ax.modelbridge import Models class TestRandomGenerator(unittest.TestCase): def test_randomgen_single(self): # test that RandomGenerator doesn't mess with shapes n = 100 rand = np.zeros((n, 3)) mod = RandomGenerator(lb=[1, 2, 3], ub=[2, 3, 4], dim=3) for i in range(n): rand[i, :] = mod.gen() # check that bounds are right self.assertTrue(np.all(rand[:, 0] > 1)) self.assertTrue(np.all(rand[:, 1] > 2)) self.assertTrue(np.all(rand[:, 2] > 3)) self.assertTrue(np.all(rand[:, 0] < 2)) self.assertTrue(np.all(rand[:, 1] < 3)) self.assertTrue(np.all(rand[:, 2] < 4)) def test_randomgen_batch(self): # test that RandomGenerator doesn't mess with shapes n = 100 mod = RandomGenerator(lb=[1, 2, 3], ub=[2, 3, 4], dim=3) rand = mod.gen(n) # check that bounds are right self.assertTrue((rand[:, 0] > 1).all()) self.assertTrue((rand[:, 1] > 2).all()) self.assertTrue((rand[:, 2] > 3).all()) self.assertTrue((rand[:, 0] < 2).all()) self.assertTrue((rand[:, 1] < 3).all()) self.assertTrue((rand[:, 2] < 4).all()) def test_randomgen_config(self): lb = [-1, 0] ub = [1, 2] config_str = f""" [common] lb = {lb} ub = {ub} """ config = Config(config_str=config_str) gen = RandomGenerator.from_config(config) npt.assert_equal(gen.lb.numpy(), np.array(lb)) npt.assert_equal(gen.ub.numpy(), np.array(ub)) self.assertEqual(gen.dim, len(lb)) def test_axrandom_config(self): config_str = """ [common] parnames = [par1, par2] lb = [-1, 0] ub = [1, 2] outcome_types = [continuous] strategy_names = [init] [init] generator = RandomGenerator [RandomGenerator] seed=231 deduplicate=True """ config = Config(config_str=config_str) gen = AxRandomGenerator.from_config(config, name="init") self.assertEqual(gen.model, Models.UNIFORM) self.assertEqual(gen.model_kwargs["seed"], 231) self.assertTrue(gen.model_kwargs["deduplicate"]) if __name__ == "__main__": unittest.main()
aepsych-main
tests/generators/test_random_generator.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import unittest from aepsych.config import Config from aepsych.generators.completion_criterion import ( MinAsks, MinTotalOutcomeOccurrences, MinTotalTells, RunIndefinitely, ) from aepsych.strategy import AEPsychStrategy class CompletionCriteriaTestCase(unittest.TestCase): def setUp(self): config_str = """ [common] use_ax = True stimuli_per_trial = 1 outcome_types = [binary] parnames = [x] lb = [0] ub = [1] strategy_names = [test_strat] [test_strat] generator = SobolGenerator """ config = Config(config_str=config_str) self.strat = AEPsychStrategy.from_config(config) def test_min_asks(self): config_str = """ [test_strat] min_asks = 2 """ config = Config(config_str=config_str) criterion = MinAsks.from_config(config, "test_strat") self.assertEqual(criterion.threshold, 2) self.assertFalse(criterion.is_met(self.strat.experiment)) self.strat.complete_new_trial({"x": 0.0}, 0.0) self.assertFalse(criterion.is_met(self.strat.experiment)) self.strat.complete_new_trial({"x": 1.0}, 0.0) self.assertFalse(criterion.is_met(self.strat.experiment)) self.strat.gen() self.assertFalse(criterion.is_met(self.strat.experiment)) self.strat.gen() self.assertTrue(criterion.is_met(self.strat.experiment)) def test_min_total_tells(self): config_str = """ [test_strat] min_total_tells = 2 """ config = Config(config_str=config_str) criterion = MinTotalTells.from_config(config, "test_strat") self.assertEqual(criterion.threshold, 2) self.assertFalse(criterion.is_met(self.strat.experiment)) self.strat.gen() self.assertFalse(criterion.is_met(self.strat.experiment)) self.strat.gen() self.assertFalse(criterion.is_met(self.strat.experiment)) self.strat.complete_new_trial({"x": 0.0}, 0.0) self.assertFalse(criterion.is_met(self.strat.experiment)) self.strat.complete_new_trial({"x": 1.0}, 0.0) self.assertTrue(criterion.is_met(self.strat.experiment)) def test_min_total_outcome_occurences(self): config_str = """ [common] outcome_types = [binary] min_total_outcome_occurrences = 2 """ config = Config(config_str=config_str) criterion = MinTotalOutcomeOccurrences.from_config(config, "test_strat") self.assertEqual(criterion.threshold, 2) self.strat.complete_new_trial({"x": 0.0}, 0.0) self.assertFalse(criterion.is_met(self.strat.experiment)) self.strat.complete_new_trial({"x": 1.0}, 0.0) self.assertFalse(criterion.is_met(self.strat.experiment)) self.strat.complete_new_trial({"x": 0.0}, 1.0) self.assertFalse(criterion.is_met(self.strat.experiment)) self.strat.complete_new_trial({"x": 1.0}, 1.0) self.assertTrue(criterion.is_met(self.strat.experiment)) def run_indefinitely(self): config_str = """ [common] outcome_types = [binary] run_indefinitely = False """ config = Config(config_str=config_str) criterion = RunIndefinitely(**RunIndefinitely.from_config(config, "test_strat")) self.assertTrue(criterion.is_met(self.strat.experiment)) config_str = """ [common] outcome_types = [binary] run_indefinitely = True """ config = Config(config_str=config_str) criterion = RunIndefinitely(**RunIndefinitely.from_config(config, "test_strat")) self.assertFalse(criterion.is_met(self.strat.experiment)) if __name__ == "__main__": unittest.main()
aepsych-main
tests/generators/test_completion_criteria.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import unittest from unittest.mock import MagicMock import numpy as np import torch from aepsych.acquisition import MonotonicMCLSE from aepsych.config import Config from aepsych.generators import EpsilonGreedyGenerator, MonotonicRejectionGenerator class TestEpsilonGreedyGenerator(unittest.TestCase): def test_epsilon_greedy(self): seed = 1 torch.manual_seed(seed) np.random.seed(seed) total_trials = 2000 extra_acqf_args = {"target": 0.75, "beta": 1.96} for epsilon in (0.1, 0.5): gen = EpsilonGreedyGenerator( subgenerator=MonotonicRejectionGenerator( acqf=MonotonicMCLSE, acqf_kwargs=extra_acqf_args ), epsilon=epsilon, ) model = MagicMock() gen.subgenerator.gen = MagicMock() for _ in range(total_trials): gen.gen(1, model) self.assertTrue( np.abs(gen.subgenerator.gen.call_count / total_trials - (1 - epsilon)) < 0.01 ) def test_greedyepsilon_config(self): config_str = """ [common] acqf = MonotonicMCLSE [EpsilonGreedyGenerator] subgenerator = MonotonicRejectionGenerator epsilon = .5 """ config = Config() config.update(config_str=config_str) gen = EpsilonGreedyGenerator.from_config(config) self.assertIsInstance(gen.subgenerator, MonotonicRejectionGenerator) self.assertEqual(gen.subgenerator.acqf, MonotonicMCLSE) self.assertEqual(gen.epsilon, 0.5)
aepsych-main
tests/generators/test_epsilon_greedy_generator.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree.
aepsych-main
tests/generators/__init__.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import unittest import numpy as np import numpy.testing as npt import torch from aepsych.config import Config from aepsych.generators import AxSobolGenerator, SobolGenerator from aepsych.utils import make_scaled_sobol from ax.modelbridge import Models class TestSobolGenerator(unittest.TestCase): def test_batchsobol(self): mod = SobolGenerator(lb=[1, 2, 3], ub=[2, 3, 4], dim=3, seed=12345) acq1 = mod.gen(num_points=2) self.assertEqual(acq1.shape, (2, 3)) acq2 = mod.gen(num_points=3) self.assertEqual(acq2.shape, (3, 3)) acq3 = mod.gen() self.assertEqual(acq3.shape, (1, 3)) def test_sobolgen_single(self): # test that SobolGenerator doesn't mess with shapes sobol1 = make_scaled_sobol(lb=[1, 2, 3], ub=[2, 3, 4], size=10, seed=12345) sobol2 = torch.zeros((10, 3)) mod = SobolGenerator(lb=[1, 2, 3], ub=[2, 3, 4], dim=3, seed=12345) for i in range(10): sobol2[i, :] = mod.gen() npt.assert_almost_equal(sobol1.numpy(), sobol2.numpy()) # check that bounds are also right self.assertTrue(torch.all(sobol1[:, 0] > 1)) self.assertTrue(torch.all(sobol1[:, 1] > 2)) self.assertTrue(torch.all(sobol1[:, 2] > 3)) self.assertTrue(torch.all(sobol1[:, 0] < 2)) self.assertTrue(torch.all(sobol1[:, 1] < 3)) self.assertTrue(torch.all(sobol1[:, 2] < 4)) def test_sobol_config(self): config_str = """ [common] lb = [0] ub = [1] parnames = [par1] stimuli_per_trial = 1 [SobolGenerator] seed=12345 """ config = Config() config.update(config_str=config_str) gen = SobolGenerator.from_config(config) npt.assert_equal(gen.lb.numpy(), np.array([0])) npt.assert_equal(gen.ub.numpy(), np.array([1])) self.assertEqual(gen.seed, 12345) self.assertEqual(gen.stimuli_per_trial, 1) def test_pairwise_sobol_sizes(self): for dim in np.arange(1, 4): for nsamp in (3, 5, 7): generator = SobolGenerator( lb=np.arange(dim).tolist(), ub=(1 + np.arange(dim)).tolist(), stimuli_per_trial=2, ) shape_out = (nsamp, dim, 2) self.assertEqual(generator.gen(nsamp).shape, shape_out) def test_axsobol_config(self): config_str = """ [common] parnames = [par1] lb = [0] ub = [1] stimuli_per_trial = 1 outcome_types = [continuous] strategy_names = [init] [init] generator = SobolGenerator [SobolGenerator] seed=12345 scramble=False """ config = Config(config_str=config_str) gen = AxSobolGenerator.from_config(config, name="init") self.assertEqual(gen.model, Models.SOBOL) self.assertEqual(gen.model_kwargs["seed"], 12345) self.assertFalse(gen.model_kwargs["scramble"]) if __name__ == "__main__": unittest.main()
aepsych-main
tests/generators/test_sobol_generator.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import unittest import numpy as np import numpy.testing as npt from aepsych.config import Config from aepsych.generators import ManualGenerator class TestManualGenerator(unittest.TestCase): def test_batchmanual(self): points = np.random.rand(10, 3) mod = ManualGenerator( lb=[0, 0, 0], ub=[1, 1, 1], dim=3, points=points, shuffle=False ) npt.assert_allclose(points, mod.points) # make sure they weren't shuffled acq1 = mod.gen(num_points=2) self.assertEqual(acq1.shape, (2, 3)) acq2 = mod.gen(num_points=3) self.assertEqual(acq2.shape, (3, 3)) acq3 = mod.gen() self.assertEqual(acq3.shape, (1, 3)) with self.assertWarns(RuntimeWarning): acq4 = mod.gen(num_points=10) self.assertEqual(acq4.shape, (4, 3)) def test_manual_generator(self): points = [[0, 0], [0, 1], [1, 0], [1, 1]] config_str = f""" [common] lb = [0, 0] ub = [1, 1] parnames = [par1, par2] [ManualGenerator] points = {points} """ config = Config() config.update(config_str=config_str) gen = ManualGenerator.from_config(config) npt.assert_equal(gen.lb.numpy(), np.array([0, 0])) npt.assert_equal(gen.ub.numpy(), np.array([1, 1])) self.assertFalse(gen.finished) p1 = list(gen.gen()[0]) p2 = list(gen.gen()[0]) p3 = list(gen.gen()[0]) p4 = list(gen.gen()[0]) self.assertEqual(sorted([p1, p2, p3, p4]), points) self.assertTrue(gen.finished) if __name__ == "__main__": unittest.main()
aepsych-main
tests/generators/test_manual_generator.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved # Configuration file for the Sphinx documentation builder. # # This file does only contain a selection of the most common options. For a # full list see the documentation: # http://www.sphinx-doc.org/en/master/config # This source code is licensed under the MIT license found in the # LICENSE file in the scripts directory. # -- Path setup -------------------------------------------------------------- import os import sys # from pkg_resources import get_distribution # sys.path.insert(0, os.path.abspath("../../")) current_dir = os.path.dirname(__file__) target_dir = os.path.abspath(os.path.join(current_dir, "../../")) sys.path.insert(0, target_dir) # base_path = os.path.abspath(os.path.join(__file__, "..", "..", "..", "aepsych")) # print(sys.path, base_path, "======") # sys.path.append(base_path) # -- Project information ----------------------------------------------------- project = "AEPsych" # copyright = "Meta, Inc." author = "Meta, Inc." # get version string # version = get_distribution("aepsych").version version = "" release = "" # -- General configuration --------------------------------------------------- # Sphinx extension modules extensions = [ "sphinx.ext.autodoc", "sphinx.ext.napoleon", "sphinx.ext.doctest", "sphinx.ext.todo", "sphinx.ext.coverage", "sphinx.ext.mathjax", "sphinx.ext.ifconfig", "sphinx.ext.viewcode", ] # Add any paths that contain templates here, relative to this directory. templates_path = ["_templates"] # The suffix(es) of source filenames # source_suffix = [".rst", ".md"] source_suffix = ".rst" # The main toctree document. index_doc = "index" # The language for content autogenerated by Sphinx. language = "en" # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = [] # The name of the Pygments (syntax highlighting) style to use. pygments_style = "sphinx" # Default options for autodoc directives. Applied to all autodoc directives autodoc_default_options = { "undoc-members": True, "show-inheritance": True, "member-order": "bysource", } # show type hints in the method description autodoc_typehints = "description" # Inlcude init docstrings into body of autoclass directives autoclass_content = "both" # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = "alabaster" # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. html_theme_options = {} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". # html_static_path = ["_static"] html_static_path = [] # for now we have no static files to track # Custom sidebar templates, must be a dictionary that maps document names # to template names. # # The default sidebars (for documents that don't match any pattern) are # defined by theme itself. Builtin themes are using these templates by # default: ``['localtoc.html', 'relations.html', 'sourcelink.html', # 'searchbox.html']``. # # html_sidebars = {} # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. html_show_sphinx = False # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. html_show_copyright = False # -- Options for HTMLHelp output --------------------------------------------- # Output file base name for HTML help builder. htmlhelp_basename = "aepsychdoc" # -- Options for LaTeX output ------------------------------------------------ latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (index_doc, "aepsych.tex", "AEPsych Documentation", "Meta, Inc.", "manual") ] # -- Options for manual page output ------------------------------------------ # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [(index_doc, "aepsych", "aepsych Documentation", [author], 1)] # -- Options for Texinfo output ---------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ( index_doc, "aepsych", "AEPsych Documentation", author, "AEPsych", "AEPsych", "Miscellaneous", ) ] # -- Options for Epub output ------------------------------------------------- # Bibliographic Dublin Core info. epub_title = project # The unique identifier of the text. This can be a ISBN number # or the project homepage. # # epub_identifier = '' # A unique identification for the text. # # epub_uid = '' # A list of files that should not be packed into the epub file. epub_exclude_files = ["search.html"] # -- Extension configuration ------------------------------------------------- # -- Options for todo extension ---------------------------------------------- # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = True autodoc_mock_imports = ["botorch"]
aepsych-main
sphinx/source/conf.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from datetime import datetime import numpy as np constants = { "savefolder": "./databases/", "timestamp": datetime.now().strftime("%Y-%m-%d_%H-%M-%S"), "config_path": "./aepsych_config.ini", "seed": 1, } # base parameters in case we don't want AEPsych to manage all 8. base_params = { "spatial_frequency": 2, "orientation": 0, "pedestal": 0.5, "contrast": 0.75, "temporal_frequency": 0, "size": 10, "angle_dist": 0, "eccentricity": 0, } psychopy_vars = { "setSizePix": [1680, 1050], "setWidth": 47.475, "setDistance": 57, "pre_duration_s": 0.0, "stim_duration_s": 5.0, "post_duration_s": 1, "response_wait": 2, "iti": 0, }
aepsych-main
examples/contrast_discrimination_psychopy/experiment_config.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import experiment_config import numpy as np import torch from aepsych_client import AEPsychClient from helpers import HalfGrating from psychopy import core, data, event, gui, monitors, visual from psychopy.tools.filetools import toFile def run_experiment(): seed = experiment_config.constants["seed"] config_path = experiment_config.constants["config_path"] torch.manual_seed(seed) np.random.seed(seed) expInfo = {"observer": "default_observer"} expInfo["dateStr"] = data.getDateStr() # add the current time # present a dialogue to change params dlg = gui.DlgFromDict(expInfo, title="multi-D JND Exp", fixed=["dateStr"]) if dlg.OK: toFile("lastParams.pickle", expInfo) # save params to file for next time else: core.quit() # the user hit cancel so exit screen = monitors.Monitor("testMonitor", gamma=1) screen.setSizePix(experiment_config.psychopy_vars["setSizePix"]) screen.setWidth(experiment_config.psychopy_vars["setWidth"]) screen.setDistance(experiment_config.psychopy_vars["setDistance"]) win = visual.Window( allowGUI=True, units="deg", monitor=screen, bpc=(8, 8, 8), size=experiment_config.psychopy_vars["setSizePix"], fullscr=False, ) screen_text_g = visual.TextStim(win, text=None, alignHoriz="center", color="green") screen_text_r = visual.TextStim(win, text=None, alignHoriz="center", color="red") screen_text = visual.TextStim(win, text=None, alignHoriz="center", color="gray") # display instructions and wait message2 = visual.TextStim( win, pos=[0, +3], text="Hit the space bar key when ready and " "to advance to the next trial after you see a red cross.", ) message1 = visual.TextStim( win, pos=[0, -3], text="You'll see a stimulus. One side will have a grating and the other will be noise." " " "Press left or right corresponding to the side with noise. If you don't know, please guess.", ) message1.draw() message2.draw() win.flip() # to show our newly drawn 'stimuli' # pause until there's a keypress event.waitKeys() # start the trial: draw grating clock = core.Clock() screen_text_r.setText("+") screen_text_r.draw(win=win) win.flip() aepsych_client = AEPsychClient() aepsych_client.configure(config_path=config_path) # create stimulus stim = HalfGrating(**experiment_config.base_params, win=win) i = 0 is_finished = False while not is_finished: ask_response = aepsych_client.ask() trial_params = ask_response["config"] is_finished = ask_response["is_finished"] stim.update(trial_params) print(trial_params) bg_color = np.array([stim.pedestal_psychopy_scale] * 3) win.setColor(bg_color) win.color = bg_color win.flip() screen_text_r.setText("+") screen_text_r.draw(win=win) win.flip() core.wait(experiment_config.psychopy_vars["iti"]) fixation_keys = [] while not fixation_keys: fixation_keys = event.getKeys(keyList=["space"]) fixation_keys = ["space"] ## for debugging if "space" in fixation_keys: screen_text.setText("+") screen_text.draw(win=win) win.flip() noisy_half = "left" if np.random.randint(2) == 0 else "right" clock.reset() keys = stim.draw( noisy_half=noisy_half, win=win, pre_duration_s=experiment_config.psychopy_vars["pre_duration_s"], stim_duration_s=experiment_config.psychopy_vars["stim_duration_s"], ) # keys = event.waitKeys(keyList=["left", "right"]) # phil took out max wait rt = clock.getTime() response = noisy_half in keys print(f"keys:{keys}, ca:{noisy_half}, acc:{response}, rt:{rt}") win.flip() if response: screen_text_g.setText("Correct") screen_text_g.draw() win.flip() else: screen_text_r.setText("Incorrect") screen_text_r.draw() win.flip() # inform bayesopt of the response, needed to calculate next contrast aepsych_client.tell(config=trial_params, outcome=response, rt=rt) # core.wait(experiment_config.psychopy_vars["post_duration_s"]) event.clearEvents() print(f"trial {i}") i = i + 1 win.close() aepsych_client.finalize() core.quit() if __name__ == "__main__": run_experiment()
aepsych-main
examples/contrast_discrimination_psychopy/experiment.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import numpy as np import pyglet from psychopy import core, event from psychopy.visual import Window from psychopy.visual.image import ImageStim pyglet.options["debug_gl"] = False GL = pyglet.gl def polar_to_cartesian(r, theta): z = r * np.exp(1j * np.radians(theta)) return z.real, z.imag def cartesian_to_polar(x, y): z = x + 1j * y return (np.abs(z), np.angle(z, deg=True)) class AnimatedGrating: param_transforms = {"contrast": lambda x: 10 ** x, "pedestal": lambda x: 10 ** x} def __init__( self, spatial_frequency: float, orientation: float, pedestal: float, contrast: float, temporal_frequency: float, eccentricity: float, size: float, angle_dist: float, win: Window, cpd=60, # display cycles per degree Lmin=0, # min luminance in nits Lmax=255, # max luminance in nits res=256, # texture resolution noisy=False, *args, **kw, ): """Generate animated Gabor grating Args: spatial_frequency (float): Spatial frequency. orientation (float): Orientation (degrees) pedestal (float): Background luminance. contrast (float): Stimulus contrast. temporal_frequency (float): Temporal frequency (seconds). eccentricity (float): Stimulus eccentricity relative to center (degrees). size (float): Stimulus size. angle_dist (float): Stimulus angle relative to center. win (Window): Window to render to. cpd (int, optional): Display cycles per degree. Defaults to 60. """ self.spatial_frequency = spatial_frequency self.temporal_frequency = temporal_frequency self.orientation = orientation self.pedestal = pedestal self.contrast = contrast self.settable_params = ( "spatial_frequency", "temporal_frequency", "orientation", "pedestal", "contrast", "size", "eccentricity", "angle_dist", ) self.cpd = cpd self.Lmin = Lmin self.Lmax = Lmax self.res = res self.noisy = noisy self.initial_phase = np.random.uniform(low=0, high=0.2, size=(1)) img = np.zeros((self.res, self.res)) self.win = win self._stim = ImageStim(image=img, mask="gauss", win=win, *args, **kw) # these get set on _stim self.size = size self.eccentricity = eccentricity self.angle_dist = angle_dist def update(self, trial_config): for k, v in trial_config.items(): if k in self.settable_params: if k in self.param_transforms: setattr(self, k, self.param_transforms[k](v[0])) else: setattr(self, k, v[0]) @property def size(self): return self._stim.size @size.setter def size(self, x): self._stim.size = x @property def eccentricity(self): return cartesian_to_polar(*self._stim.pos)[0] @eccentricity.setter def eccentricity(self, x): current_coords = cartesian_to_polar(*self._stim.pos) self._stim.pos = polar_to_cartesian(x, current_coords[1]) @property def angle_dist(self): return cartesian_to_polar(*self._stim.pos)[1] @angle_dist.setter def angle_dist(self, deg): current_coords = cartesian_to_polar(*self._stim.pos) self._stim.pos = polar_to_cartesian(current_coords[0], deg + 90) @property def pedestal_psychopy_scale(self): return self.pedestal * 2 - 1 def draw( self, noisy=False, win=None, pre_duration_s=0.1, stim_duration_s=5.0, *args, **kwargs, ): win = win or self.win clock = core.Clock() clock.reset() self._stim.image = self.get_texture(self.initial_phase, noisy=noisy) while clock.getTime() < pre_duration_s: win.flip() start_time = clock.getTime() while clock.getTime() < pre_duration_s + stim_duration_s: if self.temporal_frequency > 0: newphase = (clock.getTime() - start_time) * self.temporal_frequency self._stim.image = self.get_texture( newphase + self.initial_phase, noisy=noisy ) self._stim.draw() def get_texture(self, phase=0, noisy=False): pedestal_lum = self.pedestal * (self.Lmax - self.Lmin) + self.Lmin grating_max = (self.contrast * (2 * pedestal_lum + self.Lmin) + self.Lmin) / 2 x = np.arange(0, self.res) / self.cpd + phase y = np.arange(0, self.res) / self.cpd + phase x_grid, y_grid = np.meshgrid(x, y) wave = x_grid * np.cos(np.radians(self.orientation)) + y_grid * np.sin( np.radians(self.orientation) ) scaled_imag_wave = 1j * 2 * np.pi * self.spatial_frequency * wave img = grating_max * np.real(np.exp(scaled_imag_wave)) + pedestal_lum # convert from luminance to values in [-1, 1] as psychopy wants img = img / ((self.Lmax - self.Lmin) / 2) - 1 if noisy: flatimg = img.flatten() np.random.shuffle(flatimg) img = flatimg.reshape(self.res, self.res) return img class HalfGrating(AnimatedGrating): """Gabor animated grating, half of which is scrambled into white noise.""" def noisify_half_texture(self, img, noisy_half): img = img.T # transpose so our indexing tricks work flatimg = img.flatten() if noisy_half == "left": noisy = flatimg[: (self.res ** 2) // 2] np.random.shuffle(noisy) img = np.r_[noisy, flatimg[(self.res ** 2) // 2 :]].reshape( self.res, self.res ) else: noisy = flatimg[(self.res ** 2) // 2 :] np.random.shuffle(noisy) img = np.r_[flatimg[: (self.res ** 2) // 2], noisy].reshape( self.res, self.res ) return img.T # untranspose def get_texture(self, phase, noisy_half): img = super().get_texture(phase, noisy=False) img = self.noisify_half_texture(img, noisy_half) return img def draw( self, noisy_half="left", win=None, pre_duration_s=0.1, stim_duration_s=5.0, *args, **kwargs, ): win = win or self.win clock = core.Clock() clock.reset() event.clearEvents() self._stim.image = self.get_texture(self.initial_phase, noisy_half=noisy_half) while clock.getTime() < pre_duration_s: win.flip() start_time = clock.getTime() while True: if self.temporal_frequency > 0: newphase = (clock.getTime() - start_time) * self.temporal_frequency self._stim.image = self.get_texture( newphase + self.initial_phase, noisy_half=noisy_half ) self._stim.draw() keys = event.getKeys(keyList=["left", "right"]) win.flip() if len(keys) > 0: return keys return keys class ExperimentAborted(Exception): pass class QuitHelper: """Helper to quit the experiment by pressing a key twice within 500ms. It quits by simply raising 'ExperimentAborted'. This is necessary because from the separate thread that psychopy checks its global key events in, you cannot raise an Exception in the main thread. """ def __init__(self): self.quit_requested = False self.debounce_timestamp = None def request_quit(self): """Must be called twice in 500ms to set a flag that causes ExperimentAborted to be raised when quit_if_requested is called. This indirection is needed if request_quit is called from a separate thread (as with psychopy global event keys) """ tprev = self.debounce_timestamp tnow = core.getTime() if tprev is not None and tnow - tprev < 0.5: self.quit_requested = True self.debounce_timestamp = tnow def quit_if_requested(self): """Raises ExperimentAborted if request_quit has been called twice in 500ms""" if self.quit_requested: raise ExperimentAborted return True
aepsych-main
examples/contrast_discrimination_psychopy/helpers.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # we have pretty verbose messaging by default, suppress that here import logging import warnings warnings.filterwarnings("ignore") logging.disable(logging.WARNING) # disable anything below warning import os import time from copy import copy from itertools import product from aepsych.benchmark import ( Problem, LSEProblem, BenchmarkLogger, PathosBenchmark, combine_benchmarks, ) from aepsych.benchmark.test_functions import ( make_songetal_testfun, novel_detection_testfun, novel_discrimination_testfun, ) os.environ["OMP_NUM_THREADS"] = "1" os.environ["MKL_NUM_THREADS"] = "1" os.environ["MKL_THREADING_LAYER"] = "GNU" nproc = 94 n_reps = 100 sobol_trials = 5 total_trials = 150 global_seed = 3 log_every = 5 # test functions and boundaries novel_names = ["novel_detection", "novel_discrimination"] novel_testfuns = [novel_detection_testfun, novel_discrimination_testfun] novel_bounds = [{"lb": [-1, -1], "ub": [1, 1]}, {"lb": [-1, -1], "ub": [1, 1]}] song_phenotypes = ["Metabolic", "Sensory", "Metabolic+Sensory", "Older-normal"] song_betavals = [0.2, 0.5, 1, 2, 5, 10] song_testfuns = [ make_songetal_testfun(p, b) for p, b in product(song_phenotypes, song_betavals) ] song_bounds = [{"lb": [-3, -20], "ub": [4, 120]}] * len(song_testfuns) song_names = [f"song_p{p}_b{b}" for p, b in product(song_phenotypes, song_betavals)] all_testfuns = song_testfuns + novel_testfuns all_bounds = song_bounds + novel_bounds all_names = song_names + novel_names combo_logger = BenchmarkLogger(log_every=log_every) # benchmark configs, have to subdivide into 5 # configs Sobol, MCLSETS, and Song vs ours get set up all differently # Song benches bench_config_nonsobol_song = { "common": {"outcome_type": "single_probit", "target": 0.75}, "experiment": { "acqf": [ "MCLevelSetEstimation", "BernoulliMCMutualInformation", "MCPosteriorVariance", ], "modelbridge_cls": "SingleProbitModelbridgeWithSongHeuristic", "init_strat_cls": "SobolStrategy", "opt_strat_cls": "ModelWrapperStrategy", "model": "GPClassificationModel", "parnames": "[context,intensity]", }, "MCLevelSetEstimation": { "target": 0.75, "beta": 3.84, "objective": "ProbitObjective", }, "GPClassificationModel": { "inducing_size": 100, "dim": 2, "mean_covar_factory": [ "song_mean_covar_factory", ], }, "SingleProbitModelbridgeWithSongHeuristic": {"restarts": 10, "samps": 1000}, "SobolStrategy": { "n_trials": [sobol_trials], }, "ModelWrapperStrategy": { "n_trials": [total_trials - sobol_trials], "refit_every": 1, }, } bench_config_sobol_song = { "common": {"outcome_type": "single_probit", "target": 0.75}, "experiment": { "acqf": "MCLevelSetEstimation", "modelbridge_cls": "SingleProbitModelbridgeWithSongHeuristic", "init_strat_cls": "SobolStrategy", "opt_strat_cls": "ModelWrapperStrategy", "model": "GPClassificationModel", "parnames": "[context,intensity]", }, "MCLevelSetEstimation": { "target": 0.75, "beta": 3.84, "objective": "ProbitObjective", }, "GPClassificationModel": { "inducing_size": 100, "dim": 2, "mean_covar_factory": [ "song_mean_covar_factory", ], }, "SingleProbitModelbridgeWithSongHeuristic": {"restarts": 10, "samps": 1000}, "SobolStrategy": { "n_trials": list(range(sobol_trials, total_trials - 1, log_every)), }, "ModelWrapperStrategy": { "n_trials": [1], "refit_every": 1, }, } # non-Song benches bench_config_sobol_rbf = { "common": {"outcome_type": "single_probit", "target": 0.75}, "experiment": { "acqf": "MonotonicMCLSE", "modelbridge_cls": "MonotonicSingleProbitModelbridge", "init_strat_cls": "SobolStrategy", "opt_strat_cls": "ModelWrapperStrategy", "model": "MonotonicGPLSETS", "parnames": "[context,intensity]", }, "MonotonicMCLSE": { "target": 0.75, "beta": 3.84, }, "MonotonicGPLSETS": { "inducing_size": 100, "mean_covar_factory": [ "monotonic_mean_covar_factory", ], "monotonic_idxs": ["[1]", "[]"], "uniform_idxs": "[]", }, "MonotonicSingleProbitModelbridge": {"restarts": 10, "samps": 1000}, "SobolStrategy": { "n_trials": list(range(sobol_trials, total_trials - 1, log_every)), }, "ModelWrapperStrategy": { "n_trials": [1], "refit_every": 1, }, } bench_config_all_but_gplsets_rbf = { "common": {"outcome_type": "single_probit", "target": 0.75}, "experiment": { "acqf": [ "MonotonicMCLSE", "MonotonicBernoulliMCMutualInformation", "MonotonicMCPosteriorVariance", ], "modelbridge_cls": "MonotonicSingleProbitModelbridge", "init_strat_cls": "SobolStrategy", "opt_strat_cls": "ModelWrapperStrategy", "model": "MonotonicRejectionGP", "parnames": "[context,intensity]", }, "MonotonicMCLSE": { "target": 0.75, "beta": 3.84, }, "MonotonicBernoulliMCMutualInformation": {}, "MonotonicMCPosteriorVariance": {}, "MonotonicRejectionGP": { "inducing_size": 100, "mean_covar_factory": [ "monotonic_mean_covar_factory", ], "monotonic_idxs": ["[1]", "[]"], "uniform_idxs": "[]", }, "MonotonicSingleProbitModelbridge": {"restarts": 10, "samps": 1000}, "SobolStrategy": { "n_trials": [sobol_trials], }, "ModelWrapperStrategy": { "n_trials": [total_trials - sobol_trials], "refit_every": 1, }, } bench_config_gplsets_rbf = { "common": {"outcome_type": "single_probit", "target": 0.75}, "experiment": { "acqf": "MonotonicMCLSE", "modelbridge_cls": "MonotonicSingleProbitModelbridge", "init_strat_cls": "SobolStrategy", "opt_strat_cls": "ModelWrapperStrategy", "model": "MonotonicGPLSETS", "parnames": "[context,intensity]", }, "MonotonicMCLSE": { "target": 0.75, "beta": 3.84, }, "MonotonicGPLSETS": { "inducing_size": 100, "mean_covar_factory": [ "monotonic_mean_covar_factory", ], "monotonic_idxs": ["[1]", "[]"], "uniform_idxs": "[]", }, "MonotonicSingleProbitModelbridge": {"restarts": 10, "samps": 1000}, "SobolStrategy": { "n_trials": [sobol_trials], }, "ModelWrapperStrategy": { "n_trials": [total_trials - sobol_trials], "refit_every": 1, }, } all_bench_configs = [ bench_config_sobol_song, bench_config_nonsobol_song, bench_config_sobol_rbf, bench_config_all_but_gplsets_rbf, bench_config_gplsets_rbf, ] def make_problemobj(testfun, lb, ub): # This constructs a Problem from a # test function and bounds class Inner(LSEProblem, Problem): def f(self, x): return testfun(x) obj = Inner(lb=lb, ub=ub) return obj def make_bench(testfun, logger, name, configs, lb, ub): # make a bench object from test function config # and bench config benches = [] problem = make_problemobj(testfun, lb, ub) for config in configs: full_config = copy(config) full_config["common"]["lb"] = str(lb) full_config["common"]["ub"] = str(ub) full_config["common"]["name"] = name benches.append( PathosBenchmark( nproc=nproc, problem=problem, logger=logger, configs=full_config, global_seed=global_seed, n_reps=n_reps, ) ) return combine_benchmarks(*benches) def aggregate_bench_results(all_benchmarks): combo_logger = BenchmarkLogger(log_every=log_every) for bench in all_benchmarks: combo_logger._log.extend(bench.logger._log) out_pd = combo_logger.pandas() return out_pd if __name__ == "__main__": # one benchmark per test function print("Creating benchmark objects...") all_benchmarks = [ make_bench(testfun, combo_logger, name, all_bench_configs, **bounds) for (testfun, bounds, name) in zip(all_testfuns, all_bounds, all_names) ] # start all the benchmarks print("Starting benchmarks...") for bench in all_benchmarks: bench_name = bench.combinations[0]["common"]["name"] print(f"starting {bench_name}...") bench.start_benchmarks() done = False # checkpoint every minute in case something breaks while not done: time.sleep(60) print("Checkpointing benches...") done = True for bench in all_benchmarks: bench_name = bench.combinations[0]["common"]["name"] bench.collate_benchmarks(wait=False) if bench.is_done: print(f"bench {bench_name} is done!") else: done = False temp_results = aggregate_bench_results(all_benchmarks) temp_results.to_csv(f"bench_checkpoint_seed{global_seed}.csv") print("Done with all benchmarks, saving!") final_results = aggregate_bench_results(all_benchmarks) final_results.to_csv(f"bench_final_seed{global_seed}.csv")
aepsych-main
pubs/owenetal/code/benchmark_threshold.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from copy import copy import matplotlib.pyplot as plt import numpy as np import torch from aepsych.benchmark import ( Problem, LSEProblem, BenchmarkLogger, Benchmark, combine_benchmarks, ) from aepsych.benchmark.test_functions import ( make_songetal_testfun, novel_detection_testfun, novel_discrimination_testfun, ) from aepsych.config import Config from aepsych.plotting import plot_strat from aepsych.strategy import SequentialStrategy from scipy.stats import norm global_seed = 3 refit_every = 1 figdir = "./figs/" def plot_audiometric_lse_grids( sobol_trials, opt_trials, phenotype="Metabolic+Sensory", beta=2 ): """ Generates Fig. 8 """ logger = BenchmarkLogger(log_every=5) bench_rbf = { "common": {"pairwise": False, "target": 0.75}, "experiment": { "acqf": "MonotonicMCLSE", "modelbridge_cls": "MonotonicSingleProbitModelbridge", "init_strat_cls": "SobolStrategy", "opt_strat_cls": "ModelWrapperStrategy", "model": "MonotonicRejectionGP", "parnames": "[context,intensity]", }, "MonotonicMCLSE": { "target": 0.75, "beta": 3.84, }, "MonotonicRejectionGP": { "inducing_size": 100, "mean_covar_factory": [ "monotonic_mean_covar_factory", ], "monotonic_idxs": ["[1]", "[]"], "uniform_idxs": "[]", }, "MonotonicSingleProbitModelbridge": {"restarts": 10, "samps": 1000}, "SobolStrategy": { "n_trials": [sobol_trials], }, "ModelWrapperStrategy": { "n_trials": [opt_trials], "refit_every": [refit_every], }, } bench_song = { "common": {"pairwise": False, "target": 0.75}, "experiment": { "acqf": "BernoulliMCMutualInformation", "modelbridge_cls": "SingleProbitModelbridgeWithSongHeuristic", "init_strat_cls": "SobolStrategy", "opt_strat_cls": "ModelWrapperStrategy", "model": "GPClassificationModel", "parnames": "[context,intensity]", }, "GPClassificationModel": { "inducing_size": 100, "dim": 2, "mean_covar_factory": [ "song_mean_covar_factory", ], }, "SingleProbitModelbridgeWithSongHeuristic": {"restarts": 10, "samps": 1000}, "SobolStrategy": { "n_trials": [sobol_trials], }, "ModelWrapperStrategy": { "n_trials": [opt_trials], "refit_every": [refit_every], }, } all_bench_configs = [bench_rbf, bench_song] testfun = make_songetal_testfun(phenotype=phenotype, beta=beta) class AudiometricProblem(LSEProblem, Problem): def f(self, x): return testfun(x) lb = [-3, -20] ub = [4, 120] benches = [] problem = AudiometricProblem(lb, ub) for config in all_bench_configs: full_config = copy(config) full_config["common"]["lb"] = str(lb) full_config["common"]["ub"] = str(ub) benches.append( Benchmark( problem=problem, logger=logger, configs=full_config, global_seed=global_seed, n_reps=1, ) ) combo_bench = combine_benchmarks(*benches) strats = [] for config in combo_bench.combinations: strat = combo_bench.run_experiment(config, logger, seed=global_seed, rep=0) strats.append(strat) titles = [ "Monotonic RBF Model, LSE (ours)", "Nonmonotonic RBF Model, LSE (ours)", "Linear-Additive Model, BALD", ] fig, axes = plt.subplots(2, 2, figsize=(7.5, 6.5)) plotting_axes = [axes[1, 0], axes[0, 1], axes[0, 0]] fig.delaxes(axes[1, 1]) _ = [ plot_strat( strat=strat_, title=title_, ax=ax_, true_testfun=testfun, xlabel="Frequency (kHz)", ylabel="Intensity (dB HL)", flipx=True, logx=True, show=False, include_legend=False, include_colorbar=False ) for ax_, strat_, title_ in zip(plotting_axes, strats, titles) ] fig.tight_layout() handles, labels = axes[1, 0].get_legend_handles_labels() fig.legend(handles, labels, loc="lower right", bbox_to_anchor=(0.8, 0.2)) cbr = fig.colorbar(axes[1, 0].images[0], ax=plotting_axes) cbr.set_label("Probability of Detection") return fig def plot_novel_lse_grids(sobol_trials, opt_trials, funtype="detection"): """ Generates Fig. TBA """ logger = BenchmarkLogger(log_every=opt_trials) # we only care about final perf bench_rbf = { "common": {"pairwise": False, "target": 0.75}, "experiment": { "acqf": "MonotonicMCLSE", "modelbridge_cls": "MonotonicSingleProbitModelbridge", "init_strat_cls": "SobolStrategy", "opt_strat_cls": "ModelWrapperStrategy", "model": "MonotonicRejectionGP", "parnames": "[context,intensity]", }, "MonotonicMCLSE": { "target": 0.75, "beta": 3.84, }, "MonotonicRejectionGP": { "inducing_size": 100, "mean_covar_factory": [ "monotonic_mean_covar_factory", ], "monotonic_idxs": ["[1]", "[]"], "uniform_idxs": "[]", }, "MonotonicSingleProbitModelbridge": {"restarts": 10, "samps": 1000}, "SobolStrategy": { "n_trials": [sobol_trials], }, "ModelWrapperStrategy": { "n_trials": [opt_trials], "refit_every": [refit_every], }, } bench_song = { "common": {"pairwise": False, "target": 0.75}, "experiment": { "acqf": "BernoulliMCMutualInformation", "modelbridge_cls": "SingleProbitModelbridgeWithSongHeuristic", "init_strat_cls": "SobolStrategy", "opt_strat_cls": "ModelWrapperStrategy", "model": "GPClassificationModel", "parnames": "[context,intensity]", }, "GPClassificationModel": { "inducing_size": 100, "dim": 2, "mean_covar_factory": [ "song_mean_covar_factory", ], }, "SingleProbitModelbridgeWithSongHeuristic": {"restarts": 10, "samps": 1000}, "SobolStrategy": { "n_trials": [sobol_trials], }, "ModelWrapperStrategy": { "n_trials": [opt_trials], "refit_every": [refit_every], }, } all_bench_configs = [bench_rbf, bench_song] if funtype == "detection": testfun = novel_detection_testfun yes_label = "Detected trial" no_label = "Nondetected trial" elif funtype == "discrimination": testfun = novel_discrimination_testfun yes_label = "Correct trial" no_label = "Incorrect trial" else: raise RuntimeError("unknown testfun") class NovelProblem(LSEProblem, Problem): def f(self, x): return testfun(x) lb = [-1, -1] ub = [1, 1] benches = [] problem = NovelProblem(lb, ub, gridsize=50) for config in all_bench_configs: full_config = copy(config) full_config["common"]["lb"] = str(lb) full_config["common"]["ub"] = str(ub) benches.append( Benchmark( problem=problem, logger=logger, configs=full_config, global_seed=global_seed, n_reps=1, ) ) combo_bench = combine_benchmarks(*benches) strats = [] for config in combo_bench.combinations: strat = combo_bench.run_experiment(config, logger, seed=global_seed, rep=0) strats.append(strat) titles = [ "Monotonic RBF Model, LSE (ours)", "Nonmonotonic RBF Model, LSE (ours)", "Linear-Additive Model, BALD", ] fig, axes = plt.subplots(2, 2, figsize=(7.5, 6.5)) plotting_axes = [axes[1, 0], axes[0, 1], axes[0, 0]] fig.delaxes(axes[1, 1]) _ = [ plot_strat( strat=strat_, title=title_, ax=ax_, true_testfun=testfun, yes_label=yes_label, no_label=no_label, show=False, include_legend=False, include_colorbar=False ) for ax_, strat_, title_ in zip(plotting_axes, strats, titles) ] fig.tight_layout() handles, labels = axes[1, 0].get_legend_handles_labels() fig.legend(handles, labels, loc="lower right", bbox_to_anchor=(0.8, 0.2)) cbr = fig.colorbar(axes[1, 0].images[0], ax=plotting_axes) cbr.set_label("Probability of Detection") return fig def plot_acquisition_examples(sobol_trials, opt_trials, target_level=0.75): ### Same model, different acqf figure #### configs = { "common": { "pairwise": False, "target": target_level, "lb": "[-3]", "ub": "[3]", }, "experiment": { "acqf": [ "MonotonicMCPosteriorVariance", "MonotonicBernoulliMCMutualInformation", "MonotonicMCLSE", ], "modelbridge_cls": "MonotonicSingleProbitModelbridge", "init_strat_cls": "SobolStrategy", "opt_strat_cls": "ModelWrapperStrategy", "model": "MonotonicRejectionGP", "parnames": "[intensity]", }, "MonotonicMCLSE": { "target": target_level, "beta": 3.84, }, "MonotonicRejectionGP": { "inducing_size": 100, "mean_covar_factory": "monotonic_mean_covar_factory", "monotonic_idxs": "[0]", "uniform_idxs": "[]", }, "MonotonicSingleProbitModelbridge": {"restarts": 10, "samps": 1000}, "SobolStrategy": {"n_trials": sobol_trials}, "ModelWrapperStrategy": { "n_trials": opt_trials, "refit_every": refit_every, }, } def true_testfun(x): return norm.cdf(3 * x) class SimpleLinearProblem(Problem): def f(self, x): return norm.ppf(true_testfun(x)) lb = [-3] ub = [3] logger = BenchmarkLogger() problem = SimpleLinearProblem(lb, ub) bench = Benchmark( problem=problem, logger=logger, configs=configs, global_seed=global_seed, n_reps=1, ) # sobol_trials # now run each for just init trials, taking care to reseed each time strats = [] for c in bench.combinations: np.random.seed(global_seed) torch.manual_seed(global_seed) s = SequentialStrategy.from_config(Config(config_dict=c)) for _ in range(sobol_trials): next_x = s.gen() s.add_data(next_x, [problem.sample_y(next_x)]) strats.append(s) # get first gen from all 3 first_gens = [s.gen() for s in strats] fig, ax = plt.subplots(2, 2) plot_strat( strat=strats[0], title=f"First active trial\n (after {sobol_trials} Sobol trials)", ax=ax[0, 0], true_testfun=true_testfun, target_level=target_level, show=False, include_legend=False ) samps = [ norm.cdf(s.sample(torch.Tensor(g), num_samples=10000)) for s, g in zip(strats, first_gens) ] predictions = [np.mean(s) for s in samps] names = ["First BALV sample", "First BALD sample", "First LSE sample"] markers = ["s", "*", "^"] for i in range(3): ax[0, 0].scatter( first_gens[i][0][0], predictions[i], label=names[i], marker=markers[i], color="black", ) # now run them all for the full duration for s in strats: for _tr in range(opt_trials): next_x = s.gen() s.add_data(next_x, [problem.sample_y(next_x)]) plotting_axes = [ax[0, 1], ax[1, 0], ax[1, 1]] titles = [ f"Monotonic RBF Model,\n BALV, after {sobol_trials+opt_trials} total trials", f"Monotonic RBF Model,\n BALD, after {sobol_trials+opt_trials} total trials", f"Monotonic RBF Model,\n LSE (ours) after {sobol_trials+opt_trials} total trials", ] _ = [ plot_strat( strat=s, title=t, ax=a, true_testfun=true_testfun, target_level=target_level, show=False, include_legend=False ) for a, s, t in zip(plotting_axes, strats, titles) ] fig.tight_layout() handles, labels = ax[0, 0].get_legend_handles_labels() lgd = fig.legend(handles, labels, loc="lower right", bbox_to_anchor=(1.5, 0.25)) # return legend so savefig works correctly return fig, lgd if __name__ == "__main__": audio_lse_grids_fig = plot_audiometric_lse_grids(sobol_trials=5, opt_trials=45) audio_lse_grids_fig.savefig(fname=figdir + "audio_lse_grids_fig.pdf", dpi=200) novel_detection_lse_grids_fig = plot_novel_lse_grids( sobol_trials=5, opt_trials=45, funtype="detection" ) novel_detection_lse_grids_fig.savefig( fname=figdir + "detection_lse_grids_fig.pdf", dpi=200 ) # this is extra hard, run more trials novel_discrimination_lse_grids_fig = plot_novel_lse_grids( sobol_trials=5, opt_trials=95, funtype="discrimination" ) novel_discrimination_lse_grids_fig.savefig( fname=figdir + "discrimination_lse_grids_fig.pdf", dpi=200 ) same_model_different_acq_fig, lgd = plot_acquisition_examples( sobol_trials=5, opt_trials=15 ) same_model_different_acq_fig.savefig( fname=figdir + "same_model_different_acq.pdf", bbox_extra_artists=(lgd,), bbox_inches="tight", dpi=200, )
aepsych-main
pubs/owenetal/code/stratplots.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import gpytorch import matplotlib.pyplot as plt import numpy as np import seaborn as sns import torch from botorch.utils.sampling import draw_sobol_samples from scipy.stats import norm sns.set_theme() from aepsych.config import Config from aepsych.factory import ( default_mean_covar_factory, song_mean_covar_factory, monotonic_mean_covar_factory, ) from aepsych.models import GPClassificationModel, MonotonicRejectionGP from aepsych.models.monotonic_rejection_gp import MixedDerivativeVariationalGP from aepsych.utils import _dim_grid global_seed = 3 def plot_prior_samps_1d(): config = Config( config_dict={ "common": { "outcome_type": "single_probit", "target": 0.75, "lb": "[-3]", "ub": "[3]", }, "default_mean_covar_factory": {}, "song_mean_covar_factory": {}, "monotonic_mean_covar_factory": {"monotonic_idxs": "[0]"}, } ) lb = torch.Tensor([-3]) ub = torch.Tensor([3]) nsamps = 10 gridsize = 50 grid = _dim_grid(lower=lb, upper=ub, dim=1, gridsize=gridsize) np.random.seed(global_seed) torch.random.manual_seed(global_seed) with gpytorch.settings.prior_mode(True): rbf_mean, rbf_covar = default_mean_covar_factory(config) rbf_model = GPClassificationModel( inducing_min=lb, inducing_max=ub, inducing_size=100, mean_module=rbf_mean, covar_module=rbf_covar, ) # add just two samples at high and low rbf_model.set_train_data( torch.Tensor([-3, 3])[:, None], torch.LongTensor([0, 1]) ) rbf_samps = rbf_model(grid).sample(torch.Size([nsamps])) song_mean, song_covar = song_mean_covar_factory(config) song_model = GPClassificationModel( inducing_min=lb, inducing_max=ub, inducing_size=100, mean_module=song_mean, covar_module=song_covar, ) song_model.set_train_data( torch.Tensor([-3, 3])[:, None], torch.LongTensor([0, 1]) ) song_samps = song_model(grid).sample(torch.Size([nsamps])) mono_mean, mono_covar = monotonic_mean_covar_factory(config) mono_model = MonotonicRejectionGP( likelihood="probit-bernoulli", monotonic_idxs=[0], mean_module=mono_mean, covar_module=mono_covar, ) bounds_ = torch.tensor([-3.0, 3.0])[:, None] # Select inducing points mono_model.inducing_points = draw_sobol_samples( bounds=bounds_, n=mono_model.num_induc, q=1 ).squeeze(1) inducing_points_aug = mono_model._augment_with_deriv_index( mono_model.inducing_points, 0 ) scales = ub - lb dummy_train_x = mono_model._augment_with_deriv_index( torch.Tensor([-3, 3])[:, None], 0 ) mono_model.model = MixedDerivativeVariationalGP( train_x=dummy_train_x, train_y=torch.LongTensor([0, 1]), inducing_points=inducing_points_aug, scales=scales, fixed_prior_mean=torch.Tensor([0.75]), covar_module=mono_covar, mean_module=mono_mean, ) mono_samps = mono_model.sample(grid, nsamps) fig, ax = plt.subplots(1, 3, figsize=(7.5, 3)) fig.tight_layout(rect=[0.01, 0.03, 1, 0.9]) fig.suptitle("GP prior samples (probit-transformed)") ax[0].plot(grid.squeeze(), norm.cdf(song_samps.T), "b") ax[0].set_ylabel("Response Probability") ax[0].set_title("Linear kernel") ax[1].plot(grid.squeeze(), norm.cdf(rbf_samps.T), "b") ax[1].set_xlabel("Intensity") ax[1].set_title("RBF kernel (nonmonotonic)") ax[2].plot(grid.squeeze(), norm.cdf(mono_samps.T), "b") ax[2].set_title("RBF kernel (monotonic)") return fig def plot_prior_samps_2d(): config = Config( config_dict={ "common": { "outcome_type": "single_probit", "target": 0.75, "lb": "[-3, -3]", "ub": "[3, 3]", }, "default_mean_covar_factory": {}, "song_mean_covar_factory": {}, "monotonic_mean_covar_factory": {"monotonic_idxs": "[1]"}, } ) lb = torch.Tensor([-3, -3]) ub = torch.Tensor([3, 3]) nsamps = 5 gridsize = 30 grid = _dim_grid(lower=lb, upper=ub, dim=2, gridsize=gridsize) np.random.seed(global_seed) torch.random.manual_seed(global_seed) with gpytorch.settings.prior_mode(True): rbf_mean, rbf_covar = default_mean_covar_factory(config) rbf_model = GPClassificationModel( inducing_min=lb, inducing_max=ub, inducing_size=100, mean_module=rbf_mean, covar_module=rbf_covar, ) # add just two samples at high and low rbf_model.set_train_data(torch.Tensor([-3, -3])[:, None], torch.LongTensor([0])) rbf_samps = rbf_model(grid).sample(torch.Size([nsamps])) song_mean, song_covar = song_mean_covar_factory(config) song_model = GPClassificationModel( inducing_min=lb, inducing_max=ub, inducing_size=100, mean_module=song_mean, covar_module=song_covar, ) song_model.set_train_data( torch.Tensor([-3, -3])[:, None], torch.LongTensor([0]) ) song_samps = song_model(grid).sample(torch.Size([nsamps])) mono_mean, mono_covar = monotonic_mean_covar_factory(config) mono_model = MonotonicRejectionGP( likelihood="probit-bernoulli", monotonic_idxs=[1], mean_module=mono_mean, covar_module=mono_covar, num_induc=1000, ) bounds_ = torch.tensor([-3.0, -3.0, 3.0, 3.0]).reshape(2, -1) # Select inducing points mono_model.inducing_points = draw_sobol_samples( bounds=bounds_, n=mono_model.num_induc, q=1 ).squeeze(1) inducing_points_aug = mono_model._augment_with_deriv_index( mono_model.inducing_points, 0 ) scales = ub - lb dummy_train_x = mono_model._augment_with_deriv_index( torch.Tensor([-3, 3])[None, :], 0 ) mono_model.model = MixedDerivativeVariationalGP( train_x=dummy_train_x, train_y=torch.LongTensor([0]), inducing_points=inducing_points_aug, scales=scales, fixed_prior_mean=torch.Tensor([0.75]), covar_module=mono_covar, mean_module=mono_mean, ) mono_samps = mono_model.sample(grid, nsamps) intensity_grid = np.linspace(-3, 3, gridsize) fig, ax = plt.subplots(1, 3, figsize=(7.5, 3)) fig.tight_layout(rect=[0, 0.03, 1, 0.9]) fig.suptitle("Prior samples") square_samps = np.array([s.reshape((gridsize,) * 2).numpy() for s in song_samps]) plotsamps = norm.cdf(square_samps[:, ::5, :]).T.reshape(gridsize, -1) ax[0].plot(intensity_grid, plotsamps, "b") ax[0].set_title("Linear kernel model") square_samps = np.array([s.reshape((gridsize,) * 2).numpy() for s in rbf_samps]) plotsamps = norm.cdf(square_samps[:, ::5, :]).T.reshape(gridsize, -1) ax[1].plot(intensity_grid, plotsamps, "b") ax[1].set_title("Nonmonotonic RBF kernel model") square_samps = np.array([s.reshape((gridsize,) * 2).numpy() for s in mono_samps]) plotsamps = norm.cdf(square_samps[:, ::5, :]).T.reshape(gridsize, -1) ax[2].plot(intensity_grid, plotsamps, "b") ax[2].set_title("Monotonic RBF kernel model") return fig if __name__ == "__main__": prior_samps_1d = plot_prior_samps_1d() prior_samps_1d.savefig("./figs/prior_samps.pdf", dpi=200)
aepsych-main
pubs/owenetal/code/prior_plots.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the scripts directory. from __future__ import annotations import argparse import json import os import nbformat from bs4 import BeautifulSoup from nbconvert import HTMLExporter, PythonExporter TEMPLATE = """const CWD = process.cwd(); const React = require('react'); const Tutorial = require(`${{CWD}}/core/Tutorial.js`); class TutorialPage extends React.Component {{ render() {{ const {{config: siteConfig}} = this.props; const {{baseUrl}} = siteConfig; return <Tutorial baseUrl={{baseUrl}} tutorialID="{}"/>; }} }} module.exports = TutorialPage; """ JS_SCRIPTS = """ <script src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.1.10/require.min.js"></script> <script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/2.0.3/jquery.min.js"></script> """ # noqa: E501 def validate_tutorial_links(repo_dir: str) -> None: """Checks that all .ipynb files that present are linked on the website, and vice versa, that any linked tutorial has an associated .ipynb file present. """ with open(os.path.join(repo_dir, "website", "tutorials.json"), "r") as infile: tutorial_config = json.load(infile) tutorial_ids = {x["id"] for v in tutorial_config.values() for x in v} tutorials_nbs = { fn.replace(".ipynb", "") for fn in os.listdir(os.path.join(repo_dir, "tutorials")) if fn[-6:] == ".ipynb" } missing_files = tutorial_ids - tutorials_nbs missing_ids = tutorials_nbs - tutorial_ids if missing_files: raise RuntimeError( "The following tutorials are linked on the website, but missing an " f"associated .ipynb file: {missing_files}." ) if missing_ids: print( '\033[93m' + 'Warning: ' + '\x1b[0m' + "The following tutorial files are present, but are not linked on the " "website: {}.".format(", ".join([nbid + ".ipynb" for nbid in missing_ids]))) # raise RuntimeError( # "The following tutorial files are present, but are not linked on the " # "website: {}.".format(", ".join([nbid + ".ipynb" for nbid in missing_ids])) # ) def gen_tutorials(repo_dir: str) -> None: """Generate HTML tutorials for AEPsych Docusaurus site from Jupyter notebooks. Also create ipynb and py versions of tutorial in Docusaurus site for download. """ with open(os.path.join(repo_dir, "website", "tutorials.json"), "r") as infile: tutorial_config = json.load(infile) # create output directories if necessary html_out_dir = os.path.join(repo_dir, "website", "_tutorials") files_out_dir = os.path.join(repo_dir, "website", "static", "files") for d in (html_out_dir, files_out_dir): if not os.path.exists(d): os.makedirs(d) tutorial_ids = {x["id"] for v in tutorial_config.values() for x in v} for tid in tutorial_ids: print(f"Generating {tid} tutorial") # convert notebook to HTML ipynb_in_path = os.path.join(repo_dir, "tutorials", f"{tid}.ipynb") with open(ipynb_in_path, "r") as infile: nb_str = infile.read() nb = nbformat.reads(nb_str, nbformat.NO_CONVERT) # displayname is absent from notebook metadata nb["metadata"]["kernelspec"]["display_name"] = "python3" exporter = HTMLExporter(template_name="classic") html, meta = exporter.from_notebook_node(nb) # pull out html div for notebook soup = BeautifulSoup(html, "html.parser") nb_meat = soup.find("div", {"id": "notebook-container"}) del nb_meat.attrs["id"] nb_meat.attrs["class"] = ["notebook"] html_out = JS_SCRIPTS + str(nb_meat) # generate html file html_out_path = os.path.join( html_out_dir, f"{tid}.html", ) with open(html_out_path, "w") as html_outfile: html_outfile.write(html_out) # generate JS file script = TEMPLATE.format(tid) js_out_path = os.path.join( repo_dir, "website", "pages", "tutorials", f"{tid}.js" ) with open(js_out_path, "w") as js_outfile: js_outfile.write(script) # output tutorial in both ipynb & py form ipynb_out_path = os.path.join(files_out_dir, f"{tid}.ipynb") with open(ipynb_out_path, "w") as ipynb_outfile: ipynb_outfile.write(nb_str) exporter = PythonExporter() script, meta = exporter.from_notebook_node(nb) # make sure to use python3 shebang script = script.replace("#!/usr/bin/env python", "#!/usr/bin/env python3") py_out_path = os.path.join(repo_dir, "website", "static", "files", f"{tid}.py") with open(py_out_path, "w") as py_outfile: py_outfile.write(script) if __name__ == "__main__": parser = argparse.ArgumentParser( description="Generate JS, HTML, ipynb, and py files for tutorials." ) parser.add_argument( "-w", "--repo_dir", metavar="path", required=True, help="aepsych repo directory.", ) args = parser.parse_args() validate_tutorial_links(args.repo_dir) gen_tutorials(args.repo_dir)
aepsych-main
scripts/parse_tutorials.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the scripts directory. from __future__ import annotations import argparse import os from bs4 import BeautifulSoup #The base_url must match the base url in the /website/siteConfig.js # Note if it is not updated API doc searchbar will not be displayed # 1) update base_url below base_url = "/" js_scripts = """ <script type="text/javascript" id="documentation_options" data-url_root="./" src="{0}js/documentation_options.js"></script> <script type="text/javascript" src="{0}js/jquery.js"></script> <script type="text/javascript" src="{0}js/underscore.js"></script> <script type="text/javascript" src="{0}js/doctools.js"></script> <script type="text/javascript" src="{0}js/language_data.js"></script> <script type="text/javascript" src="{0}js/searchtools.js"></script> """.format(base_url) # noqa: E501 # 2) update # Search.loadIndex("/<<update to match baseUrl>>/js/searchindex.js" search_js_scripts = """ <script type="text/javascript"> jQuery(function() { Search.loadIndex("/js/searchindex.js"); }); </script> <script type="text/javascript" id="searchindexloader"></script> """ def parse_sphinx(input_dir, output_dir): for cur, _, files in os.walk(input_dir): for fname in files: if fname.endswith(".html"): with open(os.path.join(cur, fname), "r") as f: soup = BeautifulSoup(f.read(), "html.parser") doc = soup.find("div", {"class": "document"}) wrapped_doc = doc.wrap(soup.new_tag("div", **{"class": "sphinx"})) # add js if fname == "search.html": out = js_scripts + search_js_scripts + str(wrapped_doc) else: out = js_scripts + str(wrapped_doc) output_path = os.path.join(output_dir, os.path.relpath(cur, input_dir)) os.makedirs(output_path, exist_ok=True) with open(os.path.join(output_path, fname), "w") as fout: fout.write(out) # update reference in JS file with open(os.path.join(input_dir, "_static/searchtools.js"), "r") as js_file: js = js_file.read() js = js.replace( "DOCUMENTATION_OPTIONS.URL_ROOT + '_sources/'", "'_sphinx-sources/'" ) with open(os.path.join(input_dir, "_static/searchtools.js"), "w") as js_file: js_file.write(js) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Strip HTML body from Sphinx docs.") parser.add_argument( "-i", "--input_dir", metavar="path", required=True, help="Input directory for Sphinx HTML.", ) parser.add_argument( "-o", "--output_dir", metavar="path", required=True, help="Output directory in Docusaurus.", ) args = parser.parse_args() parse_sphinx(args.input_dir, args.output_dir)
aepsych-main
scripts/parse_sphinx.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. All rights reserved. from __future__ import annotations import argparse import json import os import shutil import nbformat from bs4 import BeautifulSoup from nbconvert import HTMLExporter TEMPLATE = """const CWD = process.cwd(); const React = require('react'); const Demo = require(`${{CWD}}/core/Demo.js`); class DemoPage extends React.Component {{ render() {{ const {{config: siteConfig}} = this.props; const {{baseUrl}} = siteConfig; return <Demo baseUrl={{baseUrl}} demoID="{}" hasWinDemo="{}" hasMacDemo="{}"/>; }} }} module.exports = DemoPage; """ JS_SCRIPTS = """ <script src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.1.10/require.min.js"></script> <script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/2.0.3/jquery.min.js"></script> """ def validate_demo_links(repo_dir: str) -> None: """Checks that all .zip files that present are linked on the website, and vice versa, that any linked demos has an associated .zip file present. """ with open(os.path.join(repo_dir, "website", "demos.json")) as f: demo_config = json.load(f) demo_ids = {x["id"] for v in demo_config.values() for x in v} demo_names = { fn.replace(".zip", "") for fn in os.listdir(os.path.join(repo_dir, "demos")) if fn[-4:] == ".zip" } # Check if the ID is present in the set and if both "_Mac" and "_Win" endings exist for id in demo_ids: if f"{id}_Mac" in demo_names and f"{id}_Win" in demo_names: print(f"Both '{id}_Mac' and {id}_Win' demos .zip files are present.") elif f"{id}_Mac" in demo_names: print(f"Only '{id}_Mac'.zip demo is present.") else: print(f"Only '{id}_Win'.zip demo is present.") def gen_demos(repo_dir: str) -> None: """Generate HTML demos for AEPsych Docusaurus site for download.""" with open(os.path.join(repo_dir, "website", "demos.json"), "r") as f: demo_config = json.load(f) # create output directories if necessary html_out_dir = os.path.join(repo_dir, "website", "_demos") files_out_dir = os.path.join(repo_dir, "website", "static", "files", "demos") for d in (html_out_dir, files_out_dir): if not os.path.exists(d): os.makedirs(d) demo_ids = {x["id"] for v in demo_config.values() for x in v} for d_id in demo_ids: print(f"Generating {d_id} demo") # convert markdown to HTML md_in_path = os.path.join(repo_dir, "demos", "markdown", f"{d_id}.md") with open(md_in_path, "r") as infile: markdown_content = infile.read() notebook_node = nbformat.v4.new_notebook() markdown_cell = nbformat.v4.new_markdown_cell(markdown_content) notebook_node["cells"] = [markdown_cell] exporter = HTMLExporter(template_name="classic") html, meta = exporter.from_notebook_node(notebook_node) # pull out html div for notebook soup = BeautifulSoup(html, "html.parser") nb_meat = soup.find("div", {"id": "notebook-container"}) del nb_meat.attrs["id"] nb_meat.attrs["class"] = ["notebook"] html_out = JS_SCRIPTS + str(nb_meat) # generate html file html_out_path = os.path.join( html_out_dir, f"{d_id}.html", ) with open(html_out_path, "w") as html_outfile: html_outfile.write(html_out) # generate JS file has_mac_demo = os.path.exists(os.path.join(repo_dir, "demos", f"{d_id}_Mac.zip")) has_win_demo = os.path.exists(os.path.join(repo_dir, "demos", f"{d_id}_Win.zip")) script = TEMPLATE.format(d_id,has_win_demo,has_mac_demo) js_out_path = os.path.join(repo_dir, "website", "pages", "demos", f"{d_id}.js") with open(js_out_path, "w") as js_outfile: js_outfile.write(script) # output demo in zip format if has_mac_demo: mac_source_path = os.path.join(repo_dir, "demos", f"{d_id}_Mac.zip") mac_zip_out_path = os.path.join(files_out_dir, f"{d_id}_Mac.zip") shutil.copy(mac_source_path, mac_zip_out_path) if has_win_demo: win_source_path = os.path.join(repo_dir, "demos", f"{d_id}_Win.zip") win_zip_out_path = os.path.join(files_out_dir, f"{d_id}_Win.zip") shutil.copy(win_source_path, win_zip_out_path) if __name__ == "__main__": parser = argparse.ArgumentParser( description="Generate JS, HTML, and zip files for demos." ) parser.add_argument( "-w", "--repo_dir", metavar="path", required=True, help="aepsych repo directory.", ) args = parser.parse_args() validate_demo_links(args.repo_dir) gen_demos(args.repo_dir)
aepsych-main
scripts/parse_demos.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from setuptools import setup with open("README.md") as f: readme = f.read() setup( name="BLINK", version="0.1.0", description="BLINK: Better entity LINKing", url="", # TODO classifiers=[ "Intended Audience :: Science/Research", "License :: OSI Approved :: MIT License", "Programming Language :: Python :: 3.6", "Topic :: Scientific/Engineering :: Artificial Intelligence", ], long_description=readme, long_description_content_type="text/markdown", setup_requires=["setuptools>=18.0",], install_requires=[ "torch>=1.2.0", "pysolr>=3.8.1", "emoji>=0.5.3", "regex>=2019.8.19", "matplotlib>=3.1.0", "tqdm>=4.32.1", "nltk>=3.4.4", "numpy>=1.17.2", "segtok>=1.5.7", "flair>=0.4.3", "pytorch-transformers>=1.2.0", "colorama>=0.4.3", "termcolor>=1.1.0", "faiss-cpu>=1.6.1", ], )
BLINK-main
setup.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import re import os import pysolr import sys import blink.candidate_retrieval.utils as utils def get_model(params): return BM45_Candidate_Generator(params) class Candidate_Generator: def __init__(self, parameters=None): pass def get_candidates(self, mention_data): """Given the mentions from the named entity recognition model, generates candidates for each mention and adds them as an additional field to the mention dictionary""" pass class BM45_Candidate_Generator(Candidate_Generator): ESCAPE_CHARS_RE = re.compile(r'(?<!\\)(?P<char>[&|+\-!(){}[\]\/^"~*?:])') def __init__(self, params): self.solr_address = params["solr_address"] self.raw_solr_fields = params["raw_solr_fields"] self.solr = pysolr.Solr(self.solr_address, always_commit=True, timeout=100) self.rows = params["rows"] self.query = params["query"] self.keys = [k.strip() for k in params["keys"].split(",")] self.c = 0 self.query_arguments = { "fl": "* score", "rows": self.rows, "defType": "edismax", } if params["boosting"] is not None: self.query_arguments["bf"] = params["boosting"] def _filter_result(self, cand, detailed=True): wikidata_id = cand.get("wikidata_id", None) res = { "wikidata_id": wikidata_id, "wikipedia_id": cand["id"], "wikipedia_title": cand["title"], } if detailed: res["aliases"] = cand.get("aliases", None) sents = [] for k in range(0, 10): key = "sent_desc_{}".format(k + 1) sents.append(cand.get(key, "")) res["sentences"] = sents return res def get_candidates(self, mention_data): solr = self.solr # Build query keys = self.keys query = self.query if not self.raw_solr_fields: query = query.format( *[ BM45_Candidate_Generator.solr_escape(mention_data[key]) if key in mention_data else utils.get_sent_context(mention_data, key) for key in keys ] ) else: query = query.format( *[ mention_data[key] if key in mention_data else utils.get_sent_context(mention_data, key) for key in keys ] ) try: results = solr.search(query, **self.query_arguments) except Exception as e: exc_type, exc_obj, exc_tb = sys.exc_info() print("\nException:", exc_type, "- line", exc_tb.tb_lineno) print(repr(e)) c = self.c if c < 10: print( "Exception with: \naddress: {} \nquery: {} \nmention_data: {} \n".format( self.solr_address, query, str(mention_data) ) ) self.c = c + 1 return [] # Filter the data in the retrieved objects, while ignoring the ones without a wikidata_id (only a very small fraction in the dataset; they are noise) filtered_results = [ self._filter_result(cand) for cand in results.docs if "wikidata_id" in cand ] return filtered_results @staticmethod def process_mentions_for_candidate_generator(sentences, mentions): for m in mentions: m["context"] = sentences[m["sent_idx"]] return mentions @staticmethod def solr_escape(string): if (string == "OR") or (string == "AND"): return string.lower() interior = r"\s+(OR|AND)\s+" start = r"^(OR|AND) " end = r" (OR|AND)$" string = re.sub(interior, lambda x: x.group(0).lower(), string) string = re.sub(start, lambda x: x.group(0).lower(), string) string = re.sub(end, lambda x: x.group(0).lower(), string) return BM45_Candidate_Generator.ESCAPE_CHARS_RE.sub(r"\\\g<char>", string)
BLINK-main
blink/candidate_generation.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import argparse import prettytable import blink.main_dense as main_dense import blink.candidate_ranking.utils as utils DATASETS = [ { "name": "AIDA-YAGO2 testa", "filename": "data/BLINK_benchmark/AIDA-YAGO2_testa.jsonl", }, { "name": "AIDA-YAGO2 testb", "filename": "data/BLINK_benchmark/AIDA-YAGO2_testb.jsonl", }, {"name": "ACE 2004", "filename": "data/BLINK_benchmark/ace2004_questions.jsonl"}, {"name": "aquaint", "filename": "data/BLINK_benchmark/aquaint_questions.jsonl"}, { "name": "clueweb - WNED-CWEB (CWEB)", "filename": "data/BLINK_benchmark/clueweb_questions.jsonl", }, {"name": "msnbc", "filename": "data/BLINK_benchmark/msnbc_questions.jsonl"}, { "name": "wikipedia - WNED-WIKI (WIKI)", "filename": "data/BLINK_benchmark/wnedwiki_questions.jsonl", }, ] PARAMETERS = { "faiss_index": None, "index_path": None, "test_entities": None, "test_mentions": None, "interactive": False, "biencoder_model": "models/biencoder_wiki_large.bin", "biencoder_config": "models/biencoder_wiki_large.json", "entity_catalogue": "models/entity.jsonl", "entity_encoding": "models/all_entities_large.t7", "crossencoder_model": "models/crossencoder_wiki_large.bin", "crossencoder_config": "models/crossencoder_wiki_large.json", "output_path": "output", "fast": False, "top_k": 100, } args = argparse.Namespace(**PARAMETERS) logger = utils.get_logger(args.output_path) models = main_dense.load_models(args, logger) table = prettytable.PrettyTable( [ "DATASET", "biencoder accuracy", "recall at 100", "crossencoder normalized accuracy", "overall unormalized accuracy", "support", ] ) for dataset in DATASETS: logger.info(dataset["name"]) PARAMETERS["test_mentions"] = dataset["filename"] args = argparse.Namespace(**PARAMETERS) ( biencoder_accuracy, recall_at, crossencoder_normalized_accuracy, overall_unormalized_accuracy, num_datapoints, predictions, scores, ) = main_dense.run(args, logger, *models) table.add_row( [ dataset["name"], round(biencoder_accuracy, 4), round(recall_at, 4), round(crossencoder_normalized_accuracy, 4), round(overall_unormalized_accuracy, 4), num_datapoints, ] ) logger.info("\n{}".format(table))
BLINK-main
blink/run_benchmark.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from blink.candidate_ranking.bert_reranking import BertReranker def get_model(params): return BertReranker(params)
BLINK-main
blink/reranker.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import pickle import emoji def get_model(parameters): return Wikimedia_Data_Fetcher(parameters["path_to_candidate_data_dict"]) class Wikimedia_Data_Fetcher: def __init__(self, path_to_data): self.data = pickle.load(open(path_to_data, "rb")) def get_data_for_entity(self, entity_data): """Given an entity data dictionary that contains some linking data (ex. title or ID), additional information (ex. description, aliases etc.) is added to the given entity dictionary""" data = self.data title = entity_data["wikipedia_title"] if "wikidata_info" in data[title]: if ("aliases" in data[title]["wikidata_info"]) and ( data[title]["wikidata_info"]["aliases"] ) is not None: aliases = [ alias for alias in data[title]["wikidata_info"]["aliases"] if alias not in emoji.UNICODE_EMOJI ] else: aliases = None else: aliases = None entity_data["aliases"] = aliases sents = [] for k in range(0, 10): key = "sent_desc_{}".format(k + 1) sents.append(data[title].get(key, "")) entity_data["sentences"] = sents return entity_data
BLINK-main
blink/candidate_data_fetcher.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import argparse import json import sys from tqdm import tqdm import logging import torch import numpy as np from colorama import init from termcolor import colored import blink.ner as NER from torch.utils.data import DataLoader, SequentialSampler, TensorDataset from blink.biencoder.biencoder import BiEncoderRanker, load_biencoder from blink.crossencoder.crossencoder import CrossEncoderRanker, load_crossencoder from blink.biencoder.data_process import ( process_mention_data, get_candidate_representation, ) import blink.candidate_ranking.utils as utils from blink.crossencoder.train_cross import modify, evaluate from blink.crossencoder.data_process import prepare_crossencoder_data from blink.indexer.faiss_indexer import DenseFlatIndexer, DenseHNSWFlatIndexer HIGHLIGHTS = [ "on_red", "on_green", "on_yellow", "on_blue", "on_magenta", "on_cyan", ] def _print_colorful_text(input_sentence, samples): init() # colorful output msg = "" if samples and (len(samples) > 0): msg += input_sentence[0 : int(samples[0]["start_pos"])] for idx, sample in enumerate(samples): msg += colored( input_sentence[int(sample["start_pos"]) : int(sample["end_pos"])], "grey", HIGHLIGHTS[idx % len(HIGHLIGHTS)], ) if idx < len(samples) - 1: msg += input_sentence[ int(sample["end_pos"]) : int(samples[idx + 1]["start_pos"]) ] else: msg += input_sentence[int(sample["end_pos"]) :] else: msg = input_sentence print("Failed to identify entity from text:") print("\n" + str(msg) + "\n") def _print_colorful_prediction( idx, sample, e_id, e_title, e_text, e_url, show_url=False ): print(colored(sample["mention"], "grey", HIGHLIGHTS[idx % len(HIGHLIGHTS)])) to_print = "id:{}\ntitle:{}\ntext:{}\n".format(e_id, e_title, e_text[:256]) if show_url: to_print += "url:{}\n".format(e_url) print(to_print) def _annotate(ner_model, input_sentences): ner_output_data = ner_model.predict(input_sentences) sentences = ner_output_data["sentences"] mentions = ner_output_data["mentions"] samples = [] for mention in mentions: record = {} record["label"] = "unknown" record["label_id"] = -1 # LOWERCASE EVERYTHING ! record["context_left"] = sentences[mention["sent_idx"]][ : mention["start_pos"] ].lower() record["context_right"] = sentences[mention["sent_idx"]][ mention["end_pos"] : ].lower() record["mention"] = mention["text"].lower() record["start_pos"] = int(mention["start_pos"]) record["end_pos"] = int(mention["end_pos"]) record["sent_idx"] = mention["sent_idx"] samples.append(record) return samples def _load_candidates( entity_catalogue, entity_encoding, faiss_index=None, index_path=None, logger=None ): # only load candidate encoding if not using faiss index if faiss_index is None: candidate_encoding = torch.load(entity_encoding) indexer = None else: if logger: logger.info("Using faiss index to retrieve entities.") candidate_encoding = None assert index_path is not None, "Error! Empty indexer path." if faiss_index == "flat": indexer = DenseFlatIndexer(1) elif faiss_index == "hnsw": indexer = DenseHNSWFlatIndexer(1) else: raise ValueError("Error! Unsupported indexer type! Choose from flat,hnsw.") indexer.deserialize_from(index_path) # load all the 5903527 entities title2id = {} id2title = {} id2text = {} wikipedia_id2local_id = {} local_idx = 0 with open(entity_catalogue, "r") as fin: lines = fin.readlines() for line in lines: entity = json.loads(line) if "idx" in entity: split = entity["idx"].split("curid=") if len(split) > 1: wikipedia_id = int(split[-1].strip()) else: wikipedia_id = entity["idx"].strip() assert wikipedia_id not in wikipedia_id2local_id wikipedia_id2local_id[wikipedia_id] = local_idx title2id[entity["title"]] = local_idx id2title[local_idx] = entity["title"] id2text[local_idx] = entity["text"] local_idx += 1 return ( candidate_encoding, title2id, id2title, id2text, wikipedia_id2local_id, indexer, ) def __map_test_entities(test_entities_path, title2id, logger): # load the 732859 tac_kbp_ref_know_base entities kb2id = {} missing_pages = 0 n = 0 with open(test_entities_path, "r") as fin: lines = fin.readlines() for line in lines: entity = json.loads(line) if entity["title"] not in title2id: missing_pages += 1 else: kb2id[entity["entity_id"]] = title2id[entity["title"]] n += 1 if logger: logger.info("missing {}/{} pages".format(missing_pages, n)) return kb2id def __load_test(test_filename, kb2id, wikipedia_id2local_id, logger): test_samples = [] with open(test_filename, "r") as fin: lines = fin.readlines() for line in lines: record = json.loads(line) record["label"] = str(record["label_id"]) # for tac kbp we should use a separate knowledge source to get the entity id (label_id) if kb2id and len(kb2id) > 0: if record["label"] in kb2id: record["label_id"] = kb2id[record["label"]] else: continue # check that each entity id (label_id) is in the entity collection elif wikipedia_id2local_id and len(wikipedia_id2local_id) > 0: try: key = int(record["label"].strip()) if key in wikipedia_id2local_id: record["label_id"] = wikipedia_id2local_id[key] else: continue except: continue # LOWERCASE EVERYTHING ! record["context_left"] = record["context_left"].lower() record["context_right"] = record["context_right"].lower() record["mention"] = record["mention"].lower() test_samples.append(record) if logger: logger.info("{}/{} samples considered".format(len(test_samples), len(lines))) return test_samples def _get_test_samples( test_filename, test_entities_path, title2id, wikipedia_id2local_id, logger ): kb2id = None if test_entities_path: kb2id = __map_test_entities(test_entities_path, title2id, logger) test_samples = __load_test(test_filename, kb2id, wikipedia_id2local_id, logger) return test_samples def _process_biencoder_dataloader(samples, tokenizer, biencoder_params): _, tensor_data = process_mention_data( samples, tokenizer, biencoder_params["max_context_length"], biencoder_params["max_cand_length"], silent=True, logger=None, debug=biencoder_params["debug"], ) sampler = SequentialSampler(tensor_data) dataloader = DataLoader( tensor_data, sampler=sampler, batch_size=biencoder_params["eval_batch_size"] ) return dataloader def _run_biencoder(biencoder, dataloader, candidate_encoding, top_k=100, indexer=None): biencoder.model.eval() labels = [] nns = [] all_scores = [] for batch in tqdm(dataloader): context_input, _, label_ids = batch with torch.no_grad(): if indexer is not None: context_encoding = biencoder.encode_context(context_input).numpy() context_encoding = np.ascontiguousarray(context_encoding) scores, indicies = indexer.search_knn(context_encoding, top_k) else: scores = biencoder.score_candidate( context_input, None, cand_encs=candidate_encoding # .to(device) ) scores, indicies = scores.topk(top_k) scores = scores.data.numpy() indicies = indicies.data.numpy() labels.extend(label_ids.data.numpy()) nns.extend(indicies) all_scores.extend(scores) return labels, nns, all_scores def _process_crossencoder_dataloader(context_input, label_input, crossencoder_params): tensor_data = TensorDataset(context_input, label_input) sampler = SequentialSampler(tensor_data) dataloader = DataLoader( tensor_data, sampler=sampler, batch_size=crossencoder_params["eval_batch_size"] ) return dataloader def _run_crossencoder(crossencoder, dataloader, logger, context_len, device="cuda"): crossencoder.model.eval() accuracy = 0.0 crossencoder.to(device) res = evaluate(crossencoder, dataloader, device, logger, context_len, zeshel=False, silent=False) accuracy = res["normalized_accuracy"] logits = res["logits"] if accuracy > -1: predictions = np.argsort(logits, axis=1) else: predictions = [] return accuracy, predictions, logits def load_models(args, logger=None): # load biencoder model if logger: logger.info("loading biencoder model") with open(args.biencoder_config) as json_file: biencoder_params = json.load(json_file) biencoder_params["path_to_model"] = args.biencoder_model biencoder = load_biencoder(biencoder_params) crossencoder = None crossencoder_params = None if not args.fast: # load crossencoder model if logger: logger.info("loading crossencoder model") with open(args.crossencoder_config) as json_file: crossencoder_params = json.load(json_file) crossencoder_params["path_to_model"] = args.crossencoder_model crossencoder = load_crossencoder(crossencoder_params) # load candidate entities if logger: logger.info("loading candidate entities") ( candidate_encoding, title2id, id2title, id2text, wikipedia_id2local_id, faiss_indexer, ) = _load_candidates( args.entity_catalogue, args.entity_encoding, faiss_index=getattr(args, 'faiss_index', None), index_path=getattr(args, 'index_path' , None), logger=logger, ) return ( biencoder, biencoder_params, crossencoder, crossencoder_params, candidate_encoding, title2id, id2title, id2text, wikipedia_id2local_id, faiss_indexer, ) def run( args, logger, biencoder, biencoder_params, crossencoder, crossencoder_params, candidate_encoding, title2id, id2title, id2text, wikipedia_id2local_id, faiss_indexer=None, test_data=None, ): if not test_data and not args.test_mentions and not args.interactive: msg = ( "ERROR: either you start BLINK with the " "interactive option (-i) or you pass in input test mentions (--test_mentions)" "and test entitied (--test_entities)" ) raise ValueError(msg) id2url = { v: "https://en.wikipedia.org/wiki?curid=%s" % k for k, v in wikipedia_id2local_id.items() } stopping_condition = False while not stopping_condition: samples = None if args.interactive: logger.info("interactive mode") # biencoder_params["eval_batch_size"] = 1 # Load NER model ner_model = NER.get_model() # Interactive text = input("insert text:") # Identify mentions samples = _annotate(ner_model, [text]) _print_colorful_text(text, samples) else: if logger: logger.info("test dataset mode") if test_data: samples = test_data else: # Load test mentions samples = _get_test_samples( args.test_mentions, args.test_entities, title2id, wikipedia_id2local_id, logger, ) stopping_condition = True # don't look at labels keep_all = ( args.interactive or samples[0]["label"] == "unknown" or samples[0]["label_id"] < 0 ) # prepare the data for biencoder if logger: logger.info("preparing data for biencoder") dataloader = _process_biencoder_dataloader( samples, biencoder.tokenizer, biencoder_params ) # run biencoder if logger: logger.info("run biencoder") top_k = args.top_k labels, nns, scores = _run_biencoder( biencoder, dataloader, candidate_encoding, top_k, faiss_indexer ) if args.interactive: print("\nfast (biencoder) predictions:") _print_colorful_text(text, samples) # print biencoder prediction idx = 0 for entity_list, sample in zip(nns, samples): e_id = entity_list[0] e_title = id2title[e_id] e_text = id2text[e_id] e_url = id2url[e_id] _print_colorful_prediction( idx, sample, e_id, e_title, e_text, e_url, args.show_url ) idx += 1 print() if args.fast: # use only biencoder continue else: biencoder_accuracy = -1 recall_at = -1 if not keep_all: # get recall values top_k = args.top_k x = [] y = [] for i in range(1, top_k): temp_y = 0.0 for label, top in zip(labels, nns): if label in top[:i]: temp_y += 1 if len(labels) > 0: temp_y /= len(labels) x.append(i) y.append(temp_y) # plt.plot(x, y) biencoder_accuracy = y[0] recall_at = y[-1] print("biencoder accuracy: %.4f" % biencoder_accuracy) print("biencoder recall@%d: %.4f" % (top_k, y[-1])) if args.fast: predictions = [] for entity_list in nns: sample_prediction = [] for e_id in entity_list: e_title = id2title[e_id] sample_prediction.append(e_title) predictions.append(sample_prediction) # use only biencoder return ( biencoder_accuracy, recall_at, -1, -1, len(samples), predictions, scores, ) # prepare crossencoder data context_input, candidate_input, label_input = prepare_crossencoder_data( crossencoder.tokenizer, samples, labels, nns, id2title, id2text, keep_all, ) context_input = modify( context_input, candidate_input, crossencoder_params["max_seq_length"] ) dataloader = _process_crossencoder_dataloader( context_input, label_input, crossencoder_params ) # run crossencoder and get accuracy accuracy, index_array, unsorted_scores = _run_crossencoder( crossencoder, dataloader, logger, context_len=biencoder_params["max_context_length"], ) if args.interactive: print("\naccurate (crossencoder) predictions:") _print_colorful_text(text, samples) # print crossencoder prediction idx = 0 for entity_list, index_list, sample in zip(nns, index_array, samples): e_id = entity_list[index_list[-1]] e_title = id2title[e_id] e_text = id2text[e_id] e_url = id2url[e_id] _print_colorful_prediction( idx, sample, e_id, e_title, e_text, e_url, args.show_url ) idx += 1 print() else: scores = [] predictions = [] for entity_list, index_list, scores_list in zip( nns, index_array, unsorted_scores ): index_list = index_list.tolist() # descending order index_list.reverse() sample_prediction = [] sample_scores = [] for index in index_list: e_id = entity_list[index] e_title = id2title[e_id] sample_prediction.append(e_title) sample_scores.append(scores_list[index]) predictions.append(sample_prediction) scores.append(sample_scores) crossencoder_normalized_accuracy = -1 overall_unormalized_accuracy = -1 if not keep_all: crossencoder_normalized_accuracy = accuracy print( "crossencoder normalized accuracy: %.4f" % crossencoder_normalized_accuracy ) if len(samples) > 0: overall_unormalized_accuracy = ( crossencoder_normalized_accuracy * len(label_input) / len(samples) ) print( "overall unnormalized accuracy: %.4f" % overall_unormalized_accuracy ) return ( biencoder_accuracy, recall_at, crossencoder_normalized_accuracy, overall_unormalized_accuracy, len(samples), predictions, scores, ) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--interactive", "-i", action="store_true", help="Interactive mode." ) # test_data parser.add_argument( "--test_mentions", dest="test_mentions", type=str, help="Test Dataset." ) parser.add_argument( "--test_entities", dest="test_entities", type=str, help="Test Entities." ) # biencoder parser.add_argument( "--biencoder_model", dest="biencoder_model", type=str, default="models/biencoder_wiki_large.bin", help="Path to the biencoder model.", ) parser.add_argument( "--biencoder_config", dest="biencoder_config", type=str, default="models/biencoder_wiki_large.json", help="Path to the biencoder configuration.", ) parser.add_argument( "--entity_catalogue", dest="entity_catalogue", type=str, # default="models/tac_entity.jsonl", # TAC-KBP default="models/entity.jsonl", # ALL WIKIPEDIA! help="Path to the entity catalogue.", ) parser.add_argument( "--entity_encoding", dest="entity_encoding", type=str, # default="models/tac_candidate_encode_large.t7", # TAC-KBP default="models/all_entities_large.t7", # ALL WIKIPEDIA! help="Path to the entity catalogue.", ) # crossencoder parser.add_argument( "--crossencoder_model", dest="crossencoder_model", type=str, default="models/crossencoder_wiki_large.bin", help="Path to the crossencoder model.", ) parser.add_argument( "--crossencoder_config", dest="crossencoder_config", type=str, default="models/crossencoder_wiki_large.json", help="Path to the crossencoder configuration.", ) parser.add_argument( "--top_k", dest="top_k", type=int, default=10, help="Number of candidates retrieved by biencoder.", ) # output folder parser.add_argument( "--output_path", dest="output_path", type=str, default="output", help="Path to the output.", ) parser.add_argument( "--fast", dest="fast", action="store_true", help="only biencoder mode" ) parser.add_argument( "--show_url", dest="show_url", action="store_true", help="whether to show entity url in interactive mode", ) parser.add_argument( "--faiss_index", type=str, default=None, help="whether to use faiss index", ) parser.add_argument( "--index_path", type=str, default=None, help="path to load indexer", ) args = parser.parse_args() logger = utils.get_logger(args.output_path) models = load_models(args, logger) run(args, logger, *models)
BLINK-main
blink/main_dense.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. #
BLINK-main
blink/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import argparse import logging import numpy import os import time import torch from blink.indexer.faiss_indexer import DenseFlatIndexer, DenseHNSWFlatIndexer import blink.candidate_ranking.utils as utils logger = utils.get_logger() def main(params): output_path = params["output_path"] output_dir, _ = os.path.split(output_path) if not os.path.exists(output_dir): os.makedirs(output_dir) logger = utils.get_logger(output_dir) logger.info("Loading candidate encoding from path: %s" % params["candidate_encoding"]) candidate_encoding = torch.load(params["candidate_encoding"]) vector_size = candidate_encoding.size(1) index_buffer = params["index_buffer"] if params["hnsw"]: logger.info("Using HNSW index in FAISS") index = DenseHNSWFlatIndexer(vector_size, index_buffer) else: logger.info("Using Flat index in FAISS") index = DenseFlatIndexer(vector_size, index_buffer) logger.info("Building index.") index.index_data(candidate_encoding.numpy()) logger.info("Done indexing data.") if params.get("save_index", None): index.serialize(output_path) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( "--output_path", required=True, type=str, help="output file path", ) parser.add_argument( "--candidate_encoding", default="models/all_entities_large.t7", type=str, help="file path for candidte encoding.", ) parser.add_argument( "--hnsw", action='store_true', help='If enabled, use inference time efficient HNSW index', ) parser.add_argument( "--save_index", action='store_true', help='If enabled, save index', ) parser.add_argument( '--index_buffer', type=int, default=50000, help="Temporal memory data buffer size (in samples) for indexer", ) params = parser.parse_args() params = params.__dict__ main(params)
BLINK-main
blink/build_faiss_index.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from flair.models import SequenceTagger from flair.data import Sentence def get_model(parameters=None): return Flair(parameters) class NER_model: def __init__(self, parameters=None): pass def predict(self, sents): """Sents: List of plain text consequtive sentences. Returns a dictionary consisting of a list of sentences and a list of mentions, where for each mention AT LEAST (it may give additional information) the following information is given: sent_idx - the index of the sentence that contains the mention text - the textual span that we hypothesise that represents an entity start_pos - the character idx at which the textual mention starts end_pos - the character idx at which the mention ends""" pass class Flair(NER_model): def __init__(self, parameters=None): self.model = SequenceTagger.load("ner") def predict(self, sentences): mentions = [] for sent_idx, sent in enumerate(sentences): sent = Sentence(sent, use_tokenizer=True) self.model.predict(sent) sent_mentions = sent.to_dict(tag_type="ner")["entities"] for mention in sent_mentions: mention["sent_idx"] = sent_idx mentions.extend(sent_mentions) return {"sentences": sentences, "mentions": mentions}
BLINK-main
blink/ner.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import io import json import os import pickle from segtok.segmenter import split_multi ##### Reading helpers ##### def read_sentences_from_file(path_to_file, one_sentence_per_line=True): lines = [] with io.open(path_to_file, mode="r", encoding="utf-8") as file: for line in file: line = line.strip() if line != "": lines.append(line.strip()) if one_sentence_per_line: sentences = lines else: text = " ".join(lines) sentences = list(split_multi(text)) sentences = [sentence for sentence in sentences if sentence != ""] return sentences ##### Printing / writing helpers ##### def get_candidate_summary(candidate): wikipedia_id = candidate["wikipedia_id"] wikidata_id = candidate["wikidata_id"] wikipedia_title = candidate["wikipedia_title"] return "{}, {}, {}".format(wikipedia_id, wikidata_id, wikipedia_title) def present_sentence_mentions(sentence, mentions, output_file): if output_file != None: f = io.open(output_file, mode="a", encoding="utf-8") output = lambda s: f.write("{}\n".format(s)) else: output = lambda s: print(s) output("Sentence: {}".format(sentence)) mention_entity_pairs = [] for mention in mentions: candidates = mention["candidates"] # prediction = mention.get('predicted_candidate_idx', 0) prediction = mention["predicted_candidate_idx"] if prediction < len(candidates): # print(type(mention['prob_assigned_to_candidate'])) # print(mention['prob_assigned_to_candidate']) mention_rep = "{} ({}, {}) - {} (conf. {:.5f})".format( mention["text"], mention["start_pos"], mention["end_pos"], get_candidate_summary(candidates[prediction]), mention["prob_assigned_to_candidate"], ) else: mention_rep = "{} ({}, {}) - {}".format( mention["text"], mention["start_pos"], mention["end_pos"], "No candidate selected", ) mention_entity_pairs.append(mention_rep) if len(mention_entity_pairs) != 0: output("Mention-Entity pairs: \n{}".format("\n".join(mention_entity_pairs))) else: output("No detected mentions") output("") def sentence_mentions_pairs(sentences, mentions): mentions_per_sent = {} for m in mentions: sent_idx = int(m["sent_idx"]) curr_ments = mentions_per_sent.get(sent_idx, []) curr_ments.append(m) mentions_per_sent[sent_idx] = curr_ments pairs = [] for idx, sent in enumerate(sentences): pairs.append((sent, mentions_per_sent.get(idx, []))) return pairs def present_annotated_sentences(sentences, mentions, output_file=None): pairs = sentence_mentions_pairs(sentences, mentions) for sent, ments in pairs: present_sentence_mentions(sent, ments, output_file) def write_dicts_as_json_per_line(list_of_dicts, txt_file_path): with io.open(txt_file_path, mode="w", encoding="utf-8") as file: for idx, mention in enumerate(list_of_dicts): json_string = json.dumps(mention) file.write(json_string) if idx != (len(list_of_dicts) - 1): file.write("\n") def get_mentions_txt_file_path(output_folder_path): os.makedirs(output_folder_path, exist_ok=True) file_name = "mentions.jsonl" path_to_file = os.path.join(output_folder_path, file_name) return path_to_file def get_sentences_txt_file_path(output_folder_path): os.makedirs(output_folder_path, exist_ok=True) file_name = "sentences.jsonl" path_to_file = os.path.join(output_folder_path, file_name) return path_to_file def get_end2end_pickle_output_file_path(output_folder_path): os.makedirs(output_folder_path, exist_ok=True) file_name = "mentions_and_sentences.pickle" path_to_file = os.path.join(output_folder_path, file_name) return path_to_file def write_end2end_pickle_output(sentences, mentions, output_file_id): obj = {"sentences": sentences, "mentions": mentions} with open(get_end2end_pickle_output_file_path(output_file_id), "wb") as file: pickle.dump(obj, file) def get_end2end_pretty_output_file_path(output_folder_path): os.makedirs(output_folder_path, exist_ok=True) file_name = "pretty.txt" path_to_file = os.path.join(output_folder_path, file_name) return path_to_file
BLINK-main
blink/utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import blink.utils as utils import blink.ner as NER import blink.candidate_generation as CG import blink.candidate_data_fetcher as CDF import blink.reranker as R import argparse import shutil def main(parameters): print("Parameters:", parameters) # Read data sentences = utils.read_sentences_from_file( parameters["path_to_input_file"], one_sentence_per_line=parameters["one_sentence_per_line"], ) # Identify mentions ner_model = NER.get_model(parameters) ner_output_data = ner_model.predict(sentences) sentences = ner_output_data["sentences"] mentions = ner_output_data["mentions"] output_folder_path = parameters["output_folder_path"] if ( (output_folder_path is not None) and os.path.exists(output_folder_path) and os.listdir(output_folder_path) ): print( "The given output directory ({}) already exists and is not empty.".format( output_folder_path ) ) answer = input("Would you like to empty the existing directory? [Y/N]\n") if answer.strip() == "Y": print("Deleting {}...".format(output_folder_path)) shutil.rmtree(output_folder_path) else: raise ValueError( "Output directory ({}) already exists and is not empty.".format( output_folder_path ) ) if output_folder_path is not None: utils.write_dicts_as_json_per_line( sentences, utils.get_sentences_txt_file_path(output_folder_path) ) utils.write_dicts_as_json_per_line( mentions, utils.get_mentions_txt_file_path(output_folder_path) ) # Generate candidates and get the data that describes the candidates candidate_generator = CG.get_model(parameters) candidate_generator.process_mentions_for_candidate_generator( sentences=sentences, mentions=mentions ) for mention in mentions: mention["candidates"] = candidate_generator.get_candidates(mention) if parameters["consider_additional_datafetcher"]: data_fetcher = CDF.get_model(parameters) for candidate in mention["candidates"]: data_fetcher.get_data_for_entity(candidate) if output_folder_path is not None: utils.write_dicts_as_json_per_line( mentions, utils.get_mentions_txt_file_path(output_folder_path) ) # Reranking reranking_model = R.get_model(parameters) reranking_model.rerank(mentions, sentences) if output_folder_path is not None: utils.write_dicts_as_json_per_line( mentions, utils.get_mentions_txt_file_path(output_folder_path) ) utils.write_end2end_pickle_output(sentences, mentions, output_folder_path) utils.present_annotated_sentences( sentences, mentions, utils.get_end2end_pretty_output_file_path(output_folder_path), ) # Showcase results utils.present_annotated_sentences(sentences, mentions) if __name__ == "__main__": parser = argparse.ArgumentParser() # Input data parser.add_argument( "--path_to_input_file", "--i", dest="path_to_input_file", type=str, required=True, ) parser.add_argument( "--one_sentence_per_line", action="store_true", help="Set if the input file has one sentence per line", ) # Candidate generation parser.add_argument( "--solr_address", default="http://localhost:8983/solr/wikipedia", type=str, help="The address to the solr index.", ) parser.add_argument( "--query", type=str, default='title:( {} ) OR aliases:" {} " OR sent_desc_1:( {} )^0.5', help="The query following the argument template of str.format", ) parser.add_argument( "--keys", type=str, default="text,text,context", help="The comma separated list of keys to be feeded to str.format with the query as the formating string.", ) parser.add_argument( "--boosting", default="log(sum(num_incoming_links,1))", type=str, help="The address to the solr index.", ) parser.add_argument( "--raw_solr_fields", action="store_true", help="Whether to escape the special characters in the solr queries.", ) # Candidate desciptions and additional data parser.add_argument( "--consider_additional_datafetcher", action="store_true", help="Whether to include some additional data to the candidates using a datafetcher.", ) parser.add_argument( "--path_to_candidate_data_dict", default="data/KB_data/title2enriched_parsed_obj_plus.p", type=str, help="The path to the data used by the data fetcher (the default path points to the wikipedia data).", ) # Reranking parser.add_argument( "--path_to_model", "--m", dest="path_to_model", type=str, required=True, help="The full path to the model.", ) parser.add_argument( "--max_seq_length", default=512, type=int, help="The maximum total input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, and sequences shorter \n" "than this will be padded.", ) parser.add_argument( "--evaluation_batch_size", default=1, type=int, help="Total batch size for evaluation.", ) parser.add_argument( "--top_k", type=int, default=80, help="The number of candidates retrieved by the candiadate generator and considered by the reranker", ) parser.add_argument( "--no_cuda", action="store_true", help="Whether to use CUDA when available" ) parser.add_argument( "--lowercase_flag", action="store_true", help="Whether to lower case the input text. True for uncased models, False for cased models.", ) parser.add_argument( "--context_key", default="tagged_context", type=str, help="The field that contains the mention context.", ) parser.add_argument( "--dataparallel_bert", action="store_true", help="Whether to distributed the candidate generation process.", ) parser.add_argument( "--silent", action="store_true", help="Whether to print progress bars." ) # Output parser.add_argument( "--output_folder_path", "--o", dest="output_folder_path", default=None, type=str, help="A path to the folder where the mentions and sentences are to be dumped. If it is not given, the results would not be saved.", ) args = parser.parse_args() args.rows = args.top_k parameters = args.__dict__ main(parameters)
BLINK-main
blink/main_solr.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from multiprocessing.pool import ThreadPool from candidate_generators import ( Simple_Candidate_Generator, Pregenerated_Candidates_Data_Fetcher, ) import multiprocessing import utils import time import argparse import pickle import os from evaluator import Evaluator from tqdm import tqdm import pysolr from tqdm import tqdm def run_thread(arguments): mentions = arguments["data"] candidate_generator = arguments["candidate_generator"] args = arguments["args"] if args.keep_pregenerated_candidates: data_fetcher = arguments["pregenereted_cands_data_fetcher"] if arguments["id"] == 0: print("Query args: ", candidate_generator.query_arguments) print_query_flag = True for mention in tqdm(mentions): mention["generated_candidates"] = candidate_generator.get_candidates( mention, print_query_flag=print_query_flag ) print_query_flag = False if args.keep_pregenerated_candidates: wikidata_ids = mention["candidates_wikidata_ids"] mention["candidates_data"] = data_fetcher.get_candidates_data( wikidata_ids ) else: for mention in mentions: mention["generated_candidates"] = candidate_generator.get_candidates( mention ) if args.keep_pregenerated_candidates: wikidata_ids = mention["candidates_wikidata_ids"] mention["candidates_data"] = data_fetcher.get_candidates_data( wikidata_ids ) return arguments["id"], mentions def split(a, n): k, m = divmod(len(a), n) return (a[i * k + min(i, m) : (i + 1) * k + min(i + 1, m)] for i in range(n)) def main(args): wall_start = time.time() parameters = get_parameters(args) print("Candidate generator parameters:", parameters) datasets = utils.get_datasets( args.include_aida_train, args.keep_pregenerated_candidates ) if args.single_dataset: datasets = [datasets[0]] mentions = utils.get_list_of_mentions(datasets) # NUM_TREADS = multiprocessing.cpu_count() NUM_THREADS = args.num_threads pool = ThreadPool(NUM_THREADS) # Split the data into approximately equal parts and give one block to each thread data_per_thread = split(mentions, NUM_THREADS) if args.keep_pregenerated_candidates: arguments = [ { "id": idx, "data": data_bloc, "args": args, "candidate_generator": Simple_Candidate_Generator(parameters), "pregenereted_cands_data_fetcher": Pregenerated_Candidates_Data_Fetcher( parameters ), } for idx, data_bloc in enumerate(data_per_thread) ] else: arguments = [ { "id": idx, "data": data_bloc, "args": args, "candidate_generator": Simple_Candidate_Generator(parameters), } for idx, data_bloc in enumerate(data_per_thread) ] results = pool.map(run_thread, arguments) # Merge the results processed_mentions = [] for _id, mentions in results: processed_mentions = processed_mentions + mentions has_gold = 0 pool.terminate() pool.join() execution_time = (time.time() - wall_start) / 60 print("The execution took:", execution_time, " minutes") # Evaluate the generation evaluator = Evaluator(processed_mentions) evaluator.candidate_generation( save_gold_pos=True, save_pregenerated_gold_pos=args.keep_pregenerated_candidates ) # Dump the data if the dump_mentions flag was set if args.dump_mentions: print("Dumping processed mentions") # Create the directory for the mention dumps if it does not exist dump_folder = args.dump_mentions_folder os.makedirs(dump_folder, exist_ok=True) dump_object = {} dump_object["mentions"] = processed_mentions dump_object["total_per_dataset"] = evaluator.total_per_dataset dump_object["has_gold_per_dataset"] = evaluator.has_gold_per_dataset dump_object["parameters"] = parameters dump_object["args"] = args dump_object["execution_time"] = execution_time pickle.dump( dump_object, open(os.path.join(dump_folder, args.dump_file_id), "wb"), protocol=4, ) # evaluator.candidate_generation(max_rank=100) return evaluator.recall def get_parameters(args): parameters = { "collection_name": args.collection_name, "rows": args.rows, "solr_address": args.solr_address, } parameters["query_data"] = {} parameters["query_data"]["string"] = args.query parameters["query_data"]["keys"] = [k.strip() for k in args.keys.split(",")] parameters["boosting"] = args.boosting return parameters if __name__ == "__main__": parser = argparse.ArgumentParser() # Debugging setting parser.add_argument("--single_dataset", dest="single_dataset", action="store_true") parser.set_defaults(single_dataset=False) # Query parameters parser.add_argument( "--query", type=str, default='title:( {} ) OR aliases:" {} " OR sent_desc_1:( {} )^0.5', help="The query following the argument template of q.format", ) parser.add_argument( "--keys", type=str, default="mention,mention,sent_context_curr", help="The comma separated list of keys to be feeded to str.format with the query as the formating string. Example fields `mention`, `query_context`, `query_truncated_10_context` or `query_truncated_25_context`", ) parser.add_argument("--rows", type=int, default=80) parser.add_argument("--collection_name", type=str, default="wikipedia") parser.add_argument("--solr_address", type=str, default="http://localhost:8983") parser.add_argument( "--boosting", type=str, default="log(sum(num_incoming_links,1))" ) # Multithreading parser.add_argument("--num_threads", type=int, required=True) # Candidates dumping parser.add_argument("--dump_mentions", dest="dump_mentions", action="store_true") parser.set_defaults(dump_mentions=False) parser.add_argument( "--dump_mentions_folder", type=str, default="data/mention_dumps" ) parser.add_argument("--dump_file_id", type=str) # Include training dataset parser.add_argument( "--include_aida_train", dest="include_aida_train", action="store_true" ) parser.set_defaults(include_aida_train=False) # Keep pregenerated candidates parser.add_argument( "--keep_pregenerated_candidates", action="store_true", help="Whether to keep the candidates given with the dataset.", ) args = parser.parse_args() print(args) main(args)
BLINK-main
blink/candidate_retrieval/perform_and_evaluate_candidate_retrieval_multithreaded.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import argparse import pysolr import pickle import emoji import time import os parser = argparse.ArgumentParser() parser.add_argument( "--processed_data_file_path", type=str, help="The full path to the data file", required=True, ) parser.add_argument( "--collection_name", type=str, help="The solr collection name, in which the ingestion should be performed", required=True, ) parser.add_argument( "--add_sentence_data", dest="add_sentence_data", action="store_true" ) parser.set_defaults(add_sentence_data=False) parser.add_argument( "--remove_disambiguation_pages", dest="remove_disambiguation_pages", action="store_true", ) parser.set_defaults(remove_disambiguation_pages=False) parser.add_argument("--min_tokens", type=int, default=0) args = parser.parse_args() processed_data_path = args.processed_data_file_path collection_name = args.collection_name # processed_data_path = "/scratch/martinjosifoski/data/en-wiki-filtered-wikidata" def remove_all_docs(): solr.delete(q="*:*") def load_data(): return pickle.load(open(processed_data_path, "rb")) def get_data_for_key(data, title): obj = {} obj["id"] = data[title]["wikipedia_id"] obj["title"] = title if ("wikidata_info" in data[title]) and ( data[title]["wikidata_info"]["wikidata_id"] is not None ): obj["wikidata_id"] = data[title]["wikidata_info"]["wikidata_id"] else: obj["wikidata_id"] = data[title]["wikidata_id_from_index"] description = data[title]["intro_concatenated"] obj["desc"] = description if "wikidata_info" in data[title]: if "description" in data[title]["wikidata_info"]: wikidata_description = data[title]["wikidata_info"]["description"] else: wikidata_description = "" if ("aliases" in data[title]["wikidata_info"]) and ( data[title]["wikidata_info"]["aliases"] ) is not None: aliases = " ".join( [ '"{}"'.format(alias) for alias in data[title]["wikidata_info"]["aliases"] if alias not in emoji.UNICODE_EMOJI ] ) else: aliases = "" else: aliases = "" wikidata_description = "" obj["aliases"] = aliases obj["wikidata_desc"] = wikidata_description obj["num_tokens"] = data[title]["num_tokens"] obj["num_incoming_links"] = data[title].get("num_incoming_links", 0) if args.add_sentence_data: for k in range(0, 10): key = "sent_desc_{}".format(k + 1) obj[key] = data[title].get(key, "") return obj print("Loading data") title2data = load_data() for key in title2data: title2data[key]["intro_concatenated"] = " ".join( [line for line in title2data[key]["intro_lines"] if line != ""] ) # Filter documents with less then `args.min_tokens` tokens if args.min_tokens != 0: print("Removing documents with less then {} tokens".format(args.min_tokens)) print("Number of docs BEFORE removal:", len(title2data)) title2data = { key: value for key, value in title2data.items() if value["num_tokens"] >= args.min_tokens } print("Number of docs AFTER removal:", len(title2data)) print("") # Remove disambiguation pages if args.remove_disambiguation_pages: print("Remove disambiguation pages") print("Number of docs BEFORE removal:", len(title2data)) titles_to_delete = [] for title in title2data: parsed_obj = title2data[title] if ("disambiguation" in title) or ("Disambiguation" in title): titles_to_delete.append(title) else: if (parsed_obj.get("wikidata_info", None) is not None) and ( parsed_obj["wikidata_info"].get("description", None) is not None ): wikidata_info = parsed_obj["wikidata_info"] if ("disambiguation page" in wikidata_info["description"]) or ( "Disambiguation page" in wikidata_info["description"] ): titles_to_delete.append(title) for title in titles_to_delete: del title2data[title] print("Number of docs AFTER removal:", len(title2data)) print("Number of removed docs:", len(titles_to_delete)) print("") ingestion_data = [get_data_for_key(title2data, key) for key in title2data] print("Starting ingestion") wall_start = time.time() l = 0 r = step = 10000 solr = pysolr.Solr( "http://localhost:8983/solr/{}".format(collection_name), always_commit=True, timeout=100, ) c = 0 for r in range(r, len(ingestion_data), step): c += 1 if (c % 10) == 0: print("Processed", c, "batches") temp_data = ingestion_data[l:r] solr.add(temp_data, commit=True) l = r solr.add(ingestion_data[l : len(ingestion_data)], commit=True) solr.commit() print("The processing took:", (time.time() - wall_start) / 60, " minutes")
BLINK-main
blink/candidate_retrieval/data_ingestion.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import pickle import os import argparse import sys parser = argparse.ArgumentParser() parser.add_argument( "--output_folder", type=str, help="The full path to the output folder", required=True, ) args = parser.parse_args() output_folder = args.output_folder output_file_path = os.path.join(output_folder, "en-wiki-filtered-wikidata") if os.path.isfile(output_file_path): print("Output file `{}` already exists!".format(output_file_path)) sys.exit() # Add wikidata_id from the download index to wikipedia articles whenever we have it wikipediaid2wikidataid_file_path = os.path.join( output_folder, "wikipediaid2wikidataid.p" ) wikipedia_data_filtered_file_path = os.path.join(output_folder, "en-wiki-filtered") wikipediaid2wikidataid = pickle.load(open(wikipediaid2wikidataid_file_path, "rb")) wikipedia_data_filtered = pickle.load(open(wikipedia_data_filtered_file_path, "rb")) for key in wikipedia_data_filtered.keys(): wikipedia_id, wikipedia_title = key wikipedia_id = int(wikipedia_id) if wikipedia_id in wikipediaid2wikidataid: wikidata_id = wikipediaid2wikidataid[wikipedia_id] wikipedia_data_filtered[key]["wikidata_id_from_index"] = wikidata_id else: wikipedia_data_filtered[key]["wikidata_id_from_index"] = None # Read the processed wikidata object and generate amenable mappings wikidataid_title2parsed_obj_file_path = os.path.join( output_folder, "wikidataid_title2parsed_obj.p" ) wikidataid_title2parsed_obj = pickle.load( open(wikidataid_title2parsed_obj_file_path, "rb") ) title2parsed_obj = {} wikidataid2parsed_obj = {} for key in wikidataid_title2parsed_obj.keys(): wikidata_id, wikipedia_title = key wikidataid_title2parsed_obj[key]["wikidata_id"] = wikidata_id wikidataid_title2parsed_obj[key]["wikipedia_title"] = wikipedia_title title2parsed_obj[wikipedia_title] = wikidataid_title2parsed_obj[key] wikidataid2parsed_obj[wikidata_id] = wikidataid_title2parsed_obj[key] matched_by_title = 0 not_matched_by_title_list = [] matched_by_id = 0 not_matched_by_anything = [] # link wikipedia with wikidata for key in wikipedia_data_filtered.keys(): wikipedia_id, wikipedia_title = key wikipedia_id = int(wikipedia_id) wikidata_id_from_index = wikipedia_data_filtered[key]["wikidata_id_from_index"] ## 1) TITLE 2) ID ## works better, linking is more accurate if wikipedia_title in title2parsed_obj: matched_by_title += 1 wikipedia_data_filtered[key]["wikidata_info"] = title2parsed_obj[ wikipedia_title ] else: not_matched_by_title_list.append( (wikipedia_id, wikipedia_title, wikidata_id_from_index) ) if (wikidata_id_from_index is not None) and ( wikidata_id_from_index in wikidataid2parsed_obj ): matched_by_id += 1 wikipedia_data_filtered[key]["wikidata_info"] = wikidataid2parsed_obj[ wikidata_id_from_index ] else: not_matched_by_anything.append( (wikipedia_id, wikipedia_title, wikidata_id_from_index) ) ## 1) ID 2) TITLE # if (wikidata_id_from_index is not None) and (wikidata_id_from_index in wikidataid2parsed_obj): # matched_by_id += 1 # wikipedia_data_filtered[key]['wikidata_info'] = wikidataid2parsed_obj[wikidata_id_from_index] # else: # not_matched_by_title_list.append((wikipedia_id, wikipedia_title, wikidata_id_from_index)) # if wikipedia_title in title2parsed_obj: # matched_by_title += 1 # wikipedia_data_filtered[key]['wikidata_info'] = title2parsed_obj[wikipedia_title] # else: # not_matched_by_anything.append((wikipedia_id, wikipedia_title, wikidata_id_from_index)) print("Matched by title:", matched_by_title) print("Matched by id:", matched_by_id) print("Not found:", len(not_matched_by_anything)) print("Dumping", output_file_path) pickle.dump(wikipedia_data_filtered, open(output_file_path, "wb"), protocol=4)
BLINK-main
blink/candidate_retrieval/link_wikipedia_and_wikidata.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import xml.etree.ElementTree as ET import io import re import argparse import os import pickle import sys import urllib.parse import regex parser = argparse.ArgumentParser() parser.add_argument( "--input", type=str, help="The full path to the file to process", required=True ) parser.add_argument( "--output", type=str, help="The full path to the output file", required=True ) args = parser.parse_args() input_file_path = args.input output_file_path = args.output if not os.path.isfile(input_file_path): print("Input file `{}` doesn't exist!".format(output_file_path)) sys.exit() if os.path.isfile(output_file_path): print("Output file `{}` already exists!".format(output_file_path)) sys.exit() xml_end_tag = "</doc>" entities_with_duplicate_titles = set() title2id = {} id_title2parsed_obj = {} num_lines = 0 with io.open(input_file_path, mode="rt", encoding="utf-8", errors="ignore") as f: for line in f: num_lines += 1 c = 0 pattern = re.compile("(<a href=([^>]+)>((?:.(?!\<\/a\>))*.)<\/a>)") docs_failed_xml = 0 with io.open(input_file_path, mode="rt", encoding="utf-8", errors="ignore") as f: for line in f: c += 1 if c % 1000000 == 0: print("Processed: {:.2f}%".format(c * 100 / num_lines)) if line.startswith("<doc id="): doc_xml = ET.fromstring("{}{}".format(line, xml_end_tag)) doc_attr = doc_xml.attrib lines = [] lines.append(line.strip()) if line.startswith("</doc>"): temp_obj = {} temp_obj["url"] = doc_attr["url"] temp_obj["lines"] = lines text = " ".join([l for l in lines if l != ""]) try: doc_xml = ET.fromstring(text) links_xml = doc_xml.getchildren() links = [] for link_xml in links_xml: link = {} link["xml_attributes"] = link_xml.attrib link["text"] = link_xml.text.strip() link["href_unquoted"] = urllib.parse.unquote( link_xml.attrib["href"] ) link_xml.tail = "" link["raw"] = ET.tostring( link_xml, encoding="unicode", method="xml" ) links.append(link) temp_obj["links_xml"] = links except Exception as e: temp_obj["links_xml"] = None docs_failed_xml += 1 text = " ".join([l for l in lines[1:-1] if l != ""]) links = [] for match in pattern.findall(text): raw, href, text = match link = {} link["raw"] = raw link["href_unquoted"] = urllib.parse.unquote(href.strip('"')) link["text"] = text links.append(link) temp_obj["links_regex"] = links id_, title = doc_attr["id"], doc_attr["title"] key = (id_, title) id_title2parsed_obj[key] = temp_obj # # check for duplicate titles # if title in title2id: # entities_with_duplicate_titles.add(id_) # entities_with_duplicate_titles.add(title2id[title]) # print("DUPLICATE TITLE:", id_, title2id[title]) # else: # title2id[title] = id_ print("Processed: {:.2f}%".format(c * 100 / num_lines)) print("Dumping", output_file_path) pickle.dump(id_title2parsed_obj, open(output_file_path, "wb"), protocol=4) # print('Portion of documents with improper xml: {:.2f}%'.format(docs_failed_xml*100/len(id_title2parsed_obj)))
BLINK-main
blink/candidate_retrieval/process_wiki_extractor_output_links.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import xml.etree.ElementTree as ET import io import re import argparse import os import pickle import sys parser = argparse.ArgumentParser() parser.add_argument( "--input", type=str, help="The full path to the file to process", required=True ) parser.add_argument( "--output", type=str, help="The full path to the output file", required=True ) args = parser.parse_args() input_file_path = args.input output_file_path = args.output if not os.path.isfile(input_file_path): print("Input file `{}` doesn't exist!".format(output_file_path)) sys.exit() if os.path.isfile(output_file_path): print("Output file `{}` already exists!".format(output_file_path)) sys.exit() xml_end_tag = "</doc>" entities_with_duplicate_titles = set() title2id = {} id_title2parsed_obj = {} num_lines = 0 with io.open(input_file_path, mode="rt", encoding="utf-8", errors="ignore") as f: for line in f: num_lines += 1 c = 0 with io.open(input_file_path, mode="rt", encoding="utf-8", errors="ignore") as f: for line in f: c += 1 if c % 1000000 == 0: print("Processed: {:.2f}%".format(c * 100 / num_lines)) if line.startswith("<doc id="): doc_xml = ET.fromstring("{}{}".format(line, xml_end_tag)) doc_attr = doc_xml.attrib first_paragraph_flag = True lines = [] continue if not first_paragraph_flag: continue if line.startswith("Section::::") or line.startswith("</doc>"): temp_obj = {} temp_obj["url"] = doc_attr["url"] temp_obj["intro_lines"] = lines id_, title = doc_attr["id"], doc_attr["title"] key = (id_, title) id_title2parsed_obj[key] = temp_obj # # check for duplicate titles # if title in title2id: # entities_with_duplicate_titles.add(id_) # entities_with_duplicate_titles.add(title2id[title]) # print("DUPLICATE TITLE:", id_, title2id[title]) # else: # title2id[title] = id_ first_paragraph_flag = False continue lines.append(line.strip()) print("Dumping", output_file_path) pickle.dump(id_title2parsed_obj, open(output_file_path, "wb"), protocol=4)
BLINK-main
blink/candidate_retrieval/process_wiki_extractor_output.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import re import pickle import os import time import numpy as np """ This script is adapted from https://github.com/lephong/mulrel-nel """ def read_csv_file(path, added_params): data = {} info = True with open(path, "r", encoding="utf8") as f: for line in f: comps = line.strip().split("\t") doc_name = comps[0] + " " + comps[1] mention = comps[2] lctx = comps[3] rctx = comps[4] if comps[6] != "EMPTYCAND": cands = [c.split(",") for c in comps[6:-2]] cands = [ (",".join(c[2:]).replace('"', "%22").replace(" ", "_"), float(c[1])) for c in cands ] else: cands = [] gold = comps[-1].split(",") if gold[0] == "-1": gold = ( ",".join(gold[2:]).replace('"', "%22").replace(" ", "_"), 1e-5, -1, ) else: gold = ( ",".join(gold[3:]).replace('"', "%22").replace(" ", "_"), 1e-5, -1, ) if added_params["generate_cands"]: if info: print("Generating candidates") info = False cands = added_params["cand_generator"].process(mention) if doc_name not in data: data[doc_name] = [] data[doc_name].append( { "mention": mention, "context": (lctx, rctx), "candidates": cands, "gold": gold, } ) return data ### Adds original textual data to pregenerated data def read_conll_file(data, path): conll = {} with open(path, "r", encoding="utf8") as f: cur_sent = None cur_doc = None for line in f: line = line.strip() if line.startswith("-DOCSTART-"): docname = line.split()[1][1:] conll[docname] = {"sentences": [], "mentions": []} cur_doc = conll[docname] cur_sent = [] else: if line == "": cur_doc["sentences"].append(cur_sent) cur_sent = [] else: comps = line.split("\t") tok = comps[0] cur_sent.append(tok) if len(comps) >= 6: bi = comps[1] wikilink = comps[4] if bi == "I": cur_doc["mentions"][-1]["end"] += 1 else: new_ment = { "sent_id": len(cur_doc["sentences"]), "start": len(cur_sent) - 1, "end": len(cur_sent), "wikilink": wikilink, } cur_doc["mentions"].append(new_ment) # merge with data rmpunc = re.compile("[\W]+") for doc_name, content in data.items(): conll_doc = conll[doc_name.split()[0]] content[0]["conll_doc"] = conll_doc cur_conll_m_id = 0 for m in content: mention = m["mention"] gold = m["gold"] while True: cur_conll_m = conll_doc["mentions"][cur_conll_m_id] cur_conll_mention = " ".join( conll_doc["sentences"][cur_conll_m["sent_id"]][ cur_conll_m["start"] : cur_conll_m["end"] ] ) if rmpunc.sub("", cur_conll_mention.lower()) == rmpunc.sub( "", mention.lower() ): m["conll_m"] = cur_conll_m cur_conll_m_id += 1 break else: cur_conll_m_id += 1 return data ##### Check whether an entity is a person and if the doc contains other references with a more descriptive name for the person ##### (ex. John vs John Snow vs John Snow Stark). Then processes the candidate lists for all of the mentions that fit this description. def load_person_names(path): data = [] with open(path, "r", encoding="utf8") as f: for line in f: data.append(line.strip().replace(" ", "_")) return set(data) def find_coref(ment, mentlist, person_names): cur_m = ment["mention"].lower() coref = [] for m in mentlist: if len(m["candidates"]) == 0 or m["candidates"][0][0] not in person_names: continue mention = m["mention"].lower() start_pos = mention.find(cur_m) if start_pos == -1 or mention == cur_m: continue end_pos = start_pos + len(cur_m) - 1 if (start_pos == 0 or mention[start_pos - 1] == " ") and ( end_pos == len(mention) - 1 or mention[end_pos + 1] == " " ): coref.append(m) return coref def with_coref(dataset, person_names): for data_name, content in dataset.items(): for cur_m in content: coref = find_coref(cur_m, content, person_names) if coref is not None and len(coref) > 0: cur_cands = {} for m in coref: for c, p in m["candidates"]: cur_cands[c] = cur_cands.get(c, 0) + p for c in cur_cands.keys(): cur_cands[c] /= len(coref) cur_m["candidates"] = sorted( list(cur_cands.items()), key=lambda x: x[1] )[::-1] ###### def eval(testset, system_pred, nel=False): gold = [] pred = [] for doc_name, content in testset.items(): gold += [c["gold"][0] for c in content] # the gold named entity pred += [ c["pred"][0] for c in system_pred[doc_name] ] # the predicted named entity true_pos = 0 for g, p in zip(gold, pred): if g == p and p != "NIL": true_pos += 1 if nel: NIL_preds = len([p for p in pred if p == "NIL"]) total_discovered_mentions = 0 for doc_name, content in testset.items(): total_discovered_mentions += np.sum( len(ment) for ment in content[0]["ments_per_sent_flair"] ) precision = true_pos / (total_discovered_mentions - NIL_preds) else: precision = true_pos / len([p for p in pred if p != "NIL"]) recall = true_pos / len(gold) f1 = 2 * precision * recall / (precision + recall) return precision, recall, f1 def get_candidate_generator(added_params): if added_params["candidate_generator_type"] == "p_e_m": if "p_e_m_data_path" in added_params: return FetchCandidateEntities(added_params["p_e_m_data_path"]) else: return FetchCandidateEntities() else: pass class CoNLLDataset: """ reading dataset from CoNLL dataset, extracted by https://github.com/dalab/deep-ed/ """ def __init__(self, path, person_path, conll_path, added_params): if added_params["generate_ments_and_cands"]: added_params["generate_cands"] = False if added_params["generate_cands"] or added_params["generate_ments_and_cands"]: added_params["cand_generator"] = get_candidate_generator(added_params) print(added_params) print("load csv") self.train = read_csv_file(path + "/aida_train.csv", added_params) self.testA = read_csv_file(path + "/aida_testA.csv", added_params) self.testB = read_csv_file(path + "/aida_testB.csv", added_params) self.ace2004 = read_csv_file(path + "/wned-ace2004.csv", added_params) self.aquaint = read_csv_file(path + "/wned-aquaint.csv", added_params) self.clueweb = read_csv_file(path + "/wned-clueweb.csv", added_params) self.msnbc = read_csv_file(path + "/wned-msnbc.csv", added_params) self.wikipedia = read_csv_file(path + "/wned-wikipedia.csv", added_params) self.wikipedia.pop("JiΕ™Γ­_TΕ™anovskΓ½ JiΕ™Γ­_TΕ™anovskΓ½", None) print("process coref") person_names = load_person_names(person_path) with_coref(self.train, person_names) with_coref(self.testA, person_names) with_coref(self.testB, person_names) with_coref(self.ace2004, person_names) with_coref(self.aquaint, person_names) with_coref(self.clueweb, person_names) with_coref(self.msnbc, person_names) with_coref(self.wikipedia, person_names) print("load conll") read_conll_file(self.train, conll_path + "/AIDA/aida_train.txt") read_conll_file(self.testA, conll_path + "/AIDA/testa_testb_aggregate_original") read_conll_file(self.testB, conll_path + "/AIDA/testa_testb_aggregate_original") read_conll_file( self.ace2004, conll_path + "/wned-datasets/ace2004/ace2004.conll" ) read_conll_file( self.aquaint, conll_path + "/wned-datasets/aquaint/aquaint.conll" ) read_conll_file(self.msnbc, conll_path + "/wned-datasets/msnbc/msnbc.conll") read_conll_file( self.clueweb, conll_path + "/wned-datasets/clueweb/clueweb.conll" ) read_conll_file( self.wikipedia, conll_path + "/wned-datasets/wikipedia/wikipedia.conll" ) if added_params["generate_cands"]: print( "Number of candidates not present in p_e_m originally, but present when lowercased", len(added_params["cand_generator"].lower_org), ) print( "Number of candidates not present in p_e_m originally, but present in p_e_m_lower when lowercased ", len(added_params["cand_generator"].lower_lower), ) class FetchCandidateEntities(object): """takes as input a string or a list of words and checks if it is inside p_e_m if yes it returns the candidate entities otherwise it returns None. it also checks if string.lower() inside p_e_m and if string.lower() inside p_e_m_low""" def __init__(self, p_e_m_data_path="data/basic_data/p_e_m_data/"): print("Reading p_e_m dictionaries") # return wall_start = time.time() self.lower_org = [] self.lower_lower = [] self.p_e_m = pickle.load( open(os.path.join(p_e_m_data_path, "p_e_m_dict.pickle"), "rb") ) self.p_e_m_lower = pickle.load( open(os.path.join(p_e_m_data_path, "p_e_m_lower_dict.pickle"), "rb") ) self.mention_total_freq = pickle.load( open(os.path.join(p_e_m_data_path, "mention_total_freq.pickle"), "rb") ) print("The reading took:", (time.time() - wall_start) / 60, " minutes") def process(self, span): """span can be either a string or a list of words""" title = span.title() # 'obama 44th president of united states'.title() # 'Obama 44Th President Of United States' title_freq = ( self.mention_total_freq[title] if title in self.mention_total_freq else 0 ) span_freq = ( self.mention_total_freq[span] if span in self.mention_total_freq else 0 ) if title_freq == 0 and span_freq == 0: if span.lower() in self.p_e_m: self.lower_org.append(span) return self.p_e_m[span.lower()] elif span.lower() in self.p_e_m_lower: self.lower_lower.append(span) return self.p_e_m_lower[span.lower()] else: return [] else: if span_freq > title_freq: return self.p_e_m[span] else: return self.p_e_m[title]
BLINK-main
blink/candidate_retrieval/dataset.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import sqlite3 import pickle import os import io import argparse import sys parser = argparse.ArgumentParser() parser.add_argument( "--output", type=str, help="The full path to the data folder", required=True ) args = parser.parse_args() data_folder = args.output output_file_name = "title2enriched_parsed_obj.p" output_file_path = os.path.join(data_folder, output_file_name) if os.path.isfile(output_file_path): print("Output file `{}` already exists!".format(output_file_path)) sys.exit() linktitle2wikidataid_file_name = "linktitle2wikidataid.p" linktitle2wikidataid_path = os.path.join(data_folder, linktitle2wikidataid_file_name) linktitle2wikidataid = pickle.load(open(linktitle2wikidataid_path, "rb")) # Read links data links_file_name = "en-wikilinks-processed" links_file_path = os.path.join(data_folder, links_file_name) links_data = pickle.load(open(links_file_path, "rb")) print("Links data is loaded") # Read full text data full_num_tokens_file_name = "en-wiki-full-text" full_num_tokens_file_path = os.path.join(data_folder, full_num_tokens_file_name) full_num_tokens_data = pickle.load(open(full_num_tokens_file_path, "rb")) print("Full text and number of tokens data is loaded") # Read linked (wikipedia with wikidata) data filtered_and_wikidata_file_name = "en-wiki-filtered-wikidata" filtered_and_wikidata_file_path = os.path.join( data_folder, filtered_and_wikidata_file_name ) filtered_and_wikidata_data = pickle.load(open(filtered_and_wikidata_file_path, "rb")) print("Introduction text, linked with wikidata data is loaded") # Transform the linked data into a title2parsed_obj dictionary # Add the number of tokens information title2parsed_obj = {} for key in filtered_and_wikidata_data.keys(): wikipedia_id, wikipedia_title = key filtered_and_wikidata_data[key]["wikipedia_id"] = wikipedia_id filtered_and_wikidata_data[key]["wikipedia_title"] = wikipedia_title filtered_and_wikidata_data[key]["num_tokens"] = full_num_tokens_data[key][ "num_tokens" ] title2parsed_obj[wikipedia_title] = filtered_and_wikidata_data[key] total = {"xml": 0, "regex": 0} found = {"xml": 0, "regex": 0} not_found = {"xml": [], "regex": []} # Counting using the title for key in links_data.keys(): wikipedia_id, wikipedia_title = key if links_data[key]["links_xml"] != None: links = links_data[key]["links_xml"] total["xml"] = total["xml"] + len(links) for link in links: title = link["href_unquoted"] if title in title2parsed_obj: title2parsed_obj[title]["num_incoming_links"] = ( title2parsed_obj[title].get("num_incoming_links", 0) + 1 ) found["xml"] = found["xml"] + 1 else: not_found["xml"].append(link) else: links = links_data[key]["links_regex"] total["regex"] = total["regex"] + len(links) for link in links: title = link["href_unquoted"] if title in title2parsed_obj: title2parsed_obj[title]["num_incoming_links"] = ( title2parsed_obj[title].get("num_incoming_links", 0) + 1 ) found["regex"] = found["regex"] + 1 else: not_found["regex"].append(link) print( "Matched {:2f}% using only the title".format( (found["xml"] + found["regex"]) * 100 / (total["xml"] + total["regex"]) ) ) # Counting using the index wikidataid2count = {} for link in not_found["xml"] + not_found["regex"]: title = link["href_unquoted"] title = title.replace(" ", "_") if title in linktitle2wikidataid: wikidata_id = linktitle2wikidataid[title] wikidataid2count[wikidata_id] = wikidataid2count.get(wikidata_id, 0) + 1 found["xml"] = found["xml"] + 1 elif title.capitalize() in linktitle2wikidataid: wikidata_id = linktitle2wikidataid[title.capitalize()] wikidataid2count[wikidata_id] = wikidataid2count.get(wikidata_id, 0) + 1 found["xml"] = found["xml"] + 1 print( "Matched {:2f}% by additionally using the title to wikidataid index".format( (found["xml"] + found["regex"]) * 100 / (total["xml"] + total["regex"]) ) ) # Adding the counts from the index to the original dictionary updated = 0 wikdiata_info = 0 wikidata_id_from_index = 0 for key in title2parsed_obj: parsed_obj = title2parsed_obj[key] wikidata_id = None if parsed_obj.get("wikidata_info", None) is not None: wikdiata_info += 1 if parsed_obj["wikidata_info"].get("wikidata_id", None) is not None: wikidata_id = parsed_obj["wikidata_info"]["wikidata_id"] else: if parsed_obj.get("wikidata_id_from_index", None) is not None: wikidata_id_from_index += 1 wikidata_id = parsed_obj["wikidata_id_from_index"] if (wikidata_id is not None) and (wikidata_id in wikidataid2count): parsed_obj["num_incoming_links"] = ( parsed_obj.get("num_incoming_links", 0) + wikidataid2count[wikidata_id] ) updated += 1 print("Dumping", output_file_path) pickle.dump(title2parsed_obj, open(output_file_path, "wb"), protocol=4) # Include unprocessed data and dump it together with the processed data # (convenient if we want to extent the data that we use) for wikipedia_title in title2parsed_obj.keys(): wikipedia_id = title2parsed_obj[wikipedia_title]["wikipedia_id"] key = wikipedia_id, wikipedia_title title2parsed_obj[wikipedia_title]["links_data"] = { "links_xml": links_data[key]["links_xml"], "links_regex": links_data[key]["links_regex"], } title2parsed_obj[wikipedia_title]["lines_full_text"] = full_num_tokens_data[key][ "lines" ] output_file_name = "title2parsed_obj_full_data.p" output_file_path = os.path.join(data_folder, output_file_name) print("Dumping", output_file_path) pickle.dump(title2parsed_obj, open(output_file_path, "wb"), protocol=4)
BLINK-main
blink/candidate_retrieval/enrich_data.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import sys import pickle import subprocess import blink.candidate_retrieval.dataset as D import re import os ESCAPE_CHARS_RE = re.compile(r'(?<!\\)(?P<char>[&|+\-!(){}[\]\/^"~*?:])') def solr_escape(string): if (string == "OR") or (string == "AND"): return string.lower() interior = r"\s+(OR|AND)\s+" start = r"^(OR|AND) " end = r" (OR|AND)$" string = re.sub(interior, lambda x: x.group(0).lower(), string) string = re.sub(start, lambda x: x.group(0).lower(), string) string = re.sub(end, lambda x: x.group(0).lower(), string) return ESCAPE_CHARS_RE.sub(r"\\\g<char>", string) linktitle2id = None def get_wikidata_id_from_link_name(link): global linktitle2id if linktitle2id is None: path_to_file = "data/KB_data/linktitle2wikidataid.p" if os.path.isfile(path_to_file): linktitle2id = pickle.load(open(path_to_file, "rb")) else: subprocess.call( "./blink/candidate_retrieval/scripts/generate_wiki2wikidata_mapping.sh" ) linktitle2id = pickle.load(open(path_to_file, "rb")) return linktitle2id.get(link, None) def get_datasets(get_test_dataset=False, get_pregenereted_candidates_wikidata_id=False): train_and_benchmarking_data_dir = "data/train_and_benchmark_data" datadir = os.path.join( train_and_benchmarking_data_dir, "generated/test_train_data/" ) conll_path = os.path.join( train_and_benchmarking_data_dir, "basic_data/test_datasets/" ) person_path = os.path.join( train_and_benchmarking_data_dir, "basic_data/p_e_m_data/persons.txt" ) p_e_m_path = os.path.join(train_and_benchmarking_data_dir, "basic_data/p_e_m_data/") added_params = { "generate_cands": False, "generate_ments_and_cands": False, "candidate_generator_type": "p_e_m", "p_e_m_data_path": p_e_m_path, } conll = D.CoNLLDataset(datadir, person_path, conll_path, added_params) dev_datasets = [ ("aida-A", conll.testA), ("aida-B", conll.testB), ("msnbc", conll.msnbc), ("aquaint", conll.aquaint), ("ace2004", conll.ace2004), ("clueweb", conll.clueweb), ("wikipedia", conll.wikipedia), ] if get_test_dataset: dev_datasets.append(("aida-train", conll.train)) not_found = [] total = 0 for ds_name, dataset in dev_datasets: print("Processing dataset:", ds_name) for doc_name, content in dataset.items(): for m in content: total += 1 link = m["gold"][0] wikidata_id = get_wikidata_id_from_link_name(link) if wikidata_id is None: not_found.append(m) m["gold_wikidata_id"] = wikidata_id if get_pregenereted_candidates_wikidata_id: cands = [] for candidate in m["candidates"]: link, prob = candidate wikidata_id = get_wikidata_id_from_link_name(link) cands.append((wikidata_id, link, prob)) m["candidates_wikidata_ids"] = cands print("Number of entities:", total) print( "Wikidata ID not found for:", len(not_found), "({:.3f} %)".format(len(not_found) * 1.0 / total), ) return dev_datasets def get_sent_context(mention, key, solr_escaped=True): if not solr_escaped: mention_data_key = "sent_context_orig" else: mention_data_key = "sent_context" if key.endswith("next"): if key.endswith("prev_next"): res = "{} {} {}".format( "" if mention[mention_data_key][0] is None else mention[mention_data_key][0], mention[mention_data_key][1], "" if mention[mention_data_key][2] is None else mention[mention_data_key][2], ) else: res = "{} {}".format( mention[mention_data_key][1], "" if mention[mention_data_key][2] is None else mention[mention_data_key][2], ) elif key.endswith("prev"): res = "{} {}".format( "" if mention[mention_data_key][0] is None else mention[mention_data_key][0], mention[mention_data_key][1], ) else: res = mention[mention_data_key][1] return res.strip() def get_list_of_mentions(dev_datasets): mentions = [] total_invalid = 0 total_valid = 0 for ds_name, dataset in dev_datasets: invalid = 0 valid = 0 print("Processing dataset:", ds_name) for doc_name, content in dataset.items(): sentences = content[0]["conll_doc"]["sentences"] for m in content: gold_wikidata_id = m["gold_wikidata_id"] left_context, right_context = m["context"] m["mention_orig"] = m["mention"] m["mention"] = solr_escape(m["mention"]) if left_context != "EMPTYCTXT": left_context_orig = left_context left_context = solr_escape(left_context) else: left_context = "" if right_context != "EMPTYCTXT": right_context_orig = right_context right_context = solr_escape(right_context) else: right_context = "" m["left_context_orig"] = left_context_orig m["right_context_orig"] = right_context_orig m["query_context"] = "{} {} {}".format( left_context, m["mention"], right_context ).strip() m["query_context_orig"] = "{} {} {}".format( left_context_orig, m["mention_orig"], right_context_orig ).strip() truncated_left_context = " ".join(left_context.split(" ")[-25:]) truncated_right_context = " ".join(right_context.split(" ")[:25]) m["query_truncated_25_context"] = "{} {} {}".format( truncated_left_context, m["mention"], truncated_right_context ).strip() truncated_left_context = " ".join(left_context.split(" ")[-10:]) truncated_right_context = " ".join(right_context.split(" ")[:10]) m["query_truncated_10_context"] = "{} {} {}".format( truncated_left_context, m["mention"], truncated_right_context ).strip() m["dataset_name"] = ds_name m["doc_name"] = doc_name sent_id, start, end = ( m["conll_m"]["sent_id"], m["conll_m"]["start"], m["conll_m"]["end"], ) prev_sent_id = sent_id - 1 next_sent_id = sent_id + 1 sent_orig = " ".join(sentences[sent_id]).strip() m["left_query_sent_context_orig"] = " ".join(sentences[sent_id][:start]) m["right_query_sent_context_orig"] = " ".join(sentences[sent_id][end:]) sent = solr_escape(sent_orig) # try: # context_parts_lower = '{} {} {}'.format(m['left_query_sent_context_orig'], m['mention_orig'], m['right_query_sent_context_orig']).strip().lower() # context_orig_lower = sent_orig.lower() # assert(context_parts_lower == context_orig_lower) # except: # print(context_parts_lower) # print(context_orig_lower) # input("") if prev_sent_id > 0: prev_sent_orig = " ".join(sentences[prev_sent_id]) prev_sent = solr_escape(prev_sent_orig) else: prev_sent_orig = None prev_sent = None if next_sent_id < len(sentences): next_sent_orig = " ".join(sentences[next_sent_id]) next_sent = solr_escape(next_sent_orig) else: next_sent_orig = None next_sent = None m["sent_context"] = (prev_sent, sent, next_sent) m["sent_context_orig"] = (prev_sent_orig, sent_orig, next_sent_orig) # m['sent_context_prev'] = get_sent_context(m, 'sent_context_prev') # m['sent_context_next'] = get_sent_context(m, 'sent_context_next') # m['sent_context_prev_next'] = get_sent_context(m, 'sent_context_prev_next') # m['sent_context_curr'] = get_sent_context(m, 'sent_context_curr') if gold_wikidata_id is None: invalid += 1 continue mentions.append(m) valid += 1 print("Invalid: ", invalid) print("Valid: ", valid) total_invalid += invalid total_valid += valid return mentions def write_candidate_generation_results_for_a_run_to_file(run, results_dump_file_path): txt_file_path = "{}.txt".format(results_dump_file_path) with open(txt_file_path, "a+") as file: id_ = "Q: `{}` === K: `{}` === ID: `{}`".format( run[0]["query"], run[0]["keys"], run[0]["dump_file_id"] ) res = " --- ".join( ["{} - {:.2f}".format(key, run[1][key]) for key in sorted(run[1].keys())] ) file.write("{} === {}\n".format(res, id_)) def write_candidate_generation_execution_time_to_file( results_dump_file_path, execution_time ): txt_file_path = "{}.txt".format(results_dump_file_path) with open(txt_file_path, "a+") as file: file.write("The execution took: {} minutes".format(execution_time)) def write_candidate_generation_results_to_file( runs, results_dump_file_path, execution_time=None ): runs.sort(key=lambda run: -run[1]["overall"]) for run in runs: write_candidate_generation_results_for_a_run_to_file( run, results_dump_file_path ) if execution_time is not None: write_candidate_generation_execution_time_to_file( results_dump_file_path, execution_time )
BLINK-main
blink/candidate_retrieval/utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import pysolr import sys import utils def mention_data_summary(mention): return (mention["mention"], mention["query_truncated_25_context"]) class Simple_Candidate_Generator: def __init__(self, params): self.collection_name = params["collection_name"] self.solr_address = params["solr_address"] self.solr = pysolr.Solr( "{}/solr/{}".format(self.solr_address, self.collection_name), always_commit=True, timeout=100, ) self.rows = params["rows"] self.query_data = params["query_data"] self.c = 0 self.query_arguments = { "fl": "* score", "rows": self.rows, "defType": "edismax", } if params["boosting"] is not None: self.query_arguments["bf"] = params["boosting"] def _filter_result(self, cand): wikidata_id = cand.get("wikidata_id", None) res = { "wikidata_id": wikidata_id, "wikipedia_id": cand["id"], "wikipedia_title": cand["title"], } res["aliases"] = cand.get("aliases", None) sents = [] for k in range(0, 10): key = "sent_desc_{}".format(k + 1) sents.append(cand.get(key, "")) res["sentences"] = sents res["num_incoming_links"] = cand.get("num_incoming_links", 0) res["score"] = cand["score"] return res def get_candidates( self, mention_data, verbose=False, print_number_of_docs_retrieved=False, print_query_flag=False, ): solr = self.solr query_data = self.query_data # Build query keys = query_data["keys"] query = query_data["string"] query = query.format( *[ mention_data[key] if key in mention_data else utils.get_sent_context(mention_data, key) for key in keys ] ) if print_query_flag: print("Query: {}".format(query)) try: results = solr.search(query, **self.query_arguments) except Exception as e: exc_type, exc_obj, exc_tb = sys.exc_info() print("\nException:", exc_type, "- line", exc_tb.tb_lineno) print(repr(e)) c = self.c c += 1 if c < 10: print( "Exception with: \ncollection_name: {} \nquery: {} \nmention_data: {} \ndataset_name: {}\nquery_args: {}\n".format( self.collection_name, query, mention_data_summary(mention_data), mention_data["dataset_name"], str(self.query_arguments), ) ) return [] if print_number_of_docs_retrieved: print("Retrieved {0} result(s).".format(len(results))) # Return the full retrieved objects (debuging purposes) if verbose: return results # Filter the data in the retrieved objects, while ignoring the ones without a wikidata_id (only a very small fraction in the dataset; they are noise) filtered_results = [ self._filter_result(cand) for cand in results.docs if "wikidata_id" in cand ] return filtered_results class Pregenerated_Candidates_Data_Fetcher: def __init__(self, parameters): solr_address = "http://localhost:8983/solr/{}".format( parameters["collection_name"] ) query_arguments = {"fl": "* score", "rows": 1, "defType": "edismax"} query_arguments["bf"] = "log(sum(num_incoming_links,1))" self.solr = pysolr.Solr(solr_address, always_commit=True, timeout=100) self.query_arguments = query_arguments def get_candidates_data(self, candidates_wikidata_ids): candidates_rich = [] for candidate in candidates_wikidata_ids: candidate_data = self.get_candidate_data_for_wikidata_id(candidate[0]) if candidate_data != None: candidate_data["p_e_m_score"] = candidate[2] candidates_rich.append(candidate_data) return candidates_rich @staticmethod def filter_result(cand, detailed=True): wikidata_id = cand.get("wikidata_id", None) res = { "wikidata_id": wikidata_id, "wikipedia_id": cand["id"], "wikipedia_title": cand["title"], } if detailed: res["aliases"] = cand.get("aliases", None) sents = [] for k in range(0, 10): key = "sent_desc_{}".format(k + 1) sents.append(cand.get(key, "")) res["sentences"] = sents return res def get_candidate_data_for_wikidata_id(self, wikidata_id): results = self.solr.search( "wikidata_id:{}".format(wikidata_id), **self.query_arguments ) if len(results) == 0: return None filtered_results = [ Pregenerated_Candidates_Data_Fetcher.filter_result(cand) for cand in results.docs if "wikidata_id" in cand ] return filtered_results[0]
BLINK-main
blink/candidate_retrieval/candidate_generators.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import xml.etree.ElementTree as ET import io import re import argparse import os import pickle import sys parser = argparse.ArgumentParser() parser.add_argument( "--input", type=str, help="The full path to the file to process", required=True ) parser.add_argument( "--output", type=str, help="The full path to the output file", required=True ) args = parser.parse_args() input_file_path = args.input output_file_path = args.output if not os.path.isfile(input_file_path): print("Input file `{}` doesn't exist!".format(output_file_path)) sys.exit() if os.path.isfile(output_file_path): print("Output file `{}` already exists!".format(output_file_path)) sys.exit() xml_end_tag = "</doc>" entities_with_duplicate_titles = set() title2id = {} id_title2parsed_obj = {} num_lines = 0 with io.open(input_file_path, mode="rt", encoding="utf-8", errors="ignore") as f: for line in f: num_lines += 1 c = 0 with io.open(input_file_path, mode="rt", encoding="utf-8", errors="ignore") as f: for line in f: c += 1 if c % 1000000 == 0: print("Processed: {:.2f}%".format(c * 100 / num_lines)) if line.startswith("<doc id="): doc_xml = ET.fromstring("{}{}".format(line, xml_end_tag)) doc_attr = doc_xml.attrib lines = [] continue if line.startswith("</doc>"): temp_obj = {} temp_obj["url"] = doc_attr["url"] temp_obj["lines"] = lines text = " ".join([l for l in lines if l != ""]) temp_obj["num_tokens"] = len(text.split(" ")) id_, title = doc_attr["id"], doc_attr["title"] key = (id_, title) id_title2parsed_obj[key] = temp_obj # check for duplicate titles # if title in title2id: # entities_with_duplicate_titles.add(id_) # entities_with_duplicate_titles.add(title2id[title]) # print("DUPLICATE TITLE:", id_, title2id[title]) # else: # title2id[title] = id_ continue # if it is not a document start or end tag, add it to lines lines.append(line.strip()) print("Processed: {:.2f}%".format(c * 100 / num_lines)) print("Dumping", output_file_path) pickle.dump(id_title2parsed_obj, open(output_file_path, "wb"), protocol=4)
BLINK-main
blink/candidate_retrieval/process_wiki_extractor_output_full.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import bz2 import sys import pickle import os import json import argparse parser = argparse.ArgumentParser() parser.add_argument( "--input", type=str, help="The full path to the wikidata dump for processing", required=True, ) parser.add_argument( "--output", type=str, help="The full path to the output folder", required=True ) args = parser.parse_args() input_file_path = args.input output_file_path = args.output if not os.path.isfile(input_file_path): print("Input file `{}` doesn't exist!".format(output_file_path)) sys.exit() if os.path.isfile(output_file_path): print("Output file `{}` already exists!".format(output_file_path)) sys.exit() id_title2parsed_obj = {} num_lines = 0 with bz2.open(input_file_path, "rt") as f: for line in f: num_lines += 1 c = 0 with bz2.open(input_file_path, "rt") as f: for line in f: c += 1 if c % 1000000 == 0: print("Processed: {:.2f}%".format(c * 100 / num_lines)) try: json_obj = json.loads(line.strip().strip(",")) if ("sitelinks" not in json_obj) or ("enwiki" not in json_obj["sitelinks"]): continue id_, title = json_obj["id"], json_obj["sitelinks"]["enwiki"]["title"] key = id_, title parsed_obj = {} if "en" in json_obj["aliases"]: parsed_obj["aliases"] = [ alias["value"] for alias in json_obj["aliases"]["en"] ] else: parsed_obj["aliases"] = None if "en" in json_obj["labels"]: parsed_obj["wikidata_label"] = json_obj["labels"]["en"]["value"] else: parsed_obj["wikidata_label"] = None if "en" in json_obj["descriptions"]: parsed_obj["description"] = json_obj["descriptions"]["en"]["value"] else: parsed_obj["description"] = None if "enwikiquote" in json_obj["sitelinks"]: parsed_obj["enwikiquote_title"] = json_obj["sitelinks"]["enwikiquote"][ "title" ] id_title2parsed_obj[key] = parsed_obj except Exception as e: line = line.strip().strip(",") if line == "[" or line == "]": continue exc_type, exc_obj, exc_tb = sys.exc_info() print("Exception:", exc_type, "- line", exc_tb.tb_lineno) if len(line) < 30: print("Failed line:", line) print("Processed: {:.2f}%".format(c * 100 / num_lines)) print("Dumping", output_file_path) pickle.dump(id_title2parsed_obj, open(output_file_path, "wb"), protocol=4)
BLINK-main
blink/candidate_retrieval/process_wikidata.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import pickle import nltk.data import argparse import sys from tqdm import tqdm parser = argparse.ArgumentParser() parser.add_argument( "--output", type=str, help="The full path to the data folder", required=True ) args = parser.parse_args() data_folder = args.output output_file_name = "title2enriched_parsed_obj_plus.p" output_file_path = os.path.join(data_folder, output_file_name) if os.path.isfile(output_file_path): print("Output file `{}` already exists!".format(output_file_path)) sys.exit() print("Reading title2parsed_obj data") title2enriched_parsed_obj_file_name = "title2enriched_parsed_obj.p" title2enriched_parsed_obj_path = os.path.join( data_folder, title2enriched_parsed_obj_file_name ) title2parsed_obj = pickle.load(open(title2enriched_parsed_obj_path, "rb")) print("Reading title2parsed_obj_full_data") title2parsed_obj_full_data_file_name = "title2parsed_obj_full_data.p" title2parsed_obj_full_data_full_path = os.path.join( data_folder, title2parsed_obj_full_data_file_name ) title2parsed_obj_full = pickle.load(open(title2parsed_obj_full_data_full_path, "rb")) sent_detector = nltk.data.load("tokenizers/punkt/english.pickle") for title in tqdm(title2parsed_obj_full.keys()): lines = title2parsed_obj_full[title]["lines_full_text"][1:] # remove title lines = [ line for line in lines if not line.startswith("Section::") ] # remove section titles lines = [ line.strip() for line in lines if line != "" ] # remove blank lines and trailing spaces text = " ".join(lines) sentences = sent_detector.tokenize(text) sentences = [sent.strip() for sent in sentences] for k in range(0, min(10, len(sentences))): key = "sent_desc_{}".format(k + 1) value = sentences[k] title2parsed_obj[title][key] = value print("Dumping", output_file_path) pickle.dump(title2parsed_obj, open(output_file_path, "wb"), protocol=4)
BLINK-main
blink/candidate_retrieval/process_intro_sents.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import sqlite3 import pickle import os import argparse parser = argparse.ArgumentParser() parser.add_argument( "--input_file", type=str, help="The full path to the precomputed index", required=True, ) parser.add_argument( "--output_folder", type=str, help="The full path to the output folder", required=True, ) args = parser.parse_args() precomp_index_path = args.input_file output_folder_path = args.output_folder output_file = os.path.join(output_folder_path, "linktitle2wikidataid.p") if not os.path.isfile(output_file): conn = sqlite3.connect(precomp_index_path) cursorObj = conn.cursor() cursorObj.execute("SELECT wikipedia_title, wikidata_id FROM mapping") data = cursorObj.fetchall() linktitle2wikidataid = {item[0]: item[1] for item in data} pickle.dump(linktitle2wikidataid, open(output_file, "wb")) else: print("Output file `{}` already exists!".format(output_file)) output_file = os.path.join(output_folder_path, "wikipediaid2wikidataid.p") if not os.path.isfile(output_file): conn = sqlite3.connect(precomp_index_path) cursorObj = conn.cursor() cursorObj.execute("SELECT wikipedia_id, wikidata_id FROM mapping") data = cursorObj.fetchall() wikipediaid2wikidataid = {item[0]: item[1] for item in data} pickle.dump(wikipediaid2wikidataid, open(output_file, "wb")) else: print("Output file `{}` already exists!".format(output_file))
BLINK-main
blink/candidate_retrieval/generate_wiki2wikidata_mappings.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import matplotlib.pyplot as plt import numpy as np from collections import Counter class Evaluator: def __init__(self, data): self.data = data def candidate_generation( self, max_rank=None, save_gold_pos=False, save_pregenerated_gold_pos=False ): has_gold_per_dataset = {} total_per_dataset = {} recall = {} processed_mentions = self.data if max_rank is None: print("Max rank: None") else: print("Max rank", max_rank) for mention in processed_mentions: dataset_name = mention["dataset_name"] gold_wikidata_id = mention["gold_wikidata_id"] gold_pos = -1 for idx, cand in enumerate(mention["generated_candidates"]): cand_wikidata_id = cand["wikidata_id"] if gold_wikidata_id == cand_wikidata_id: gold_pos = idx + 1 # Because idx starts at 0 break if save_gold_pos: mention["gold_pos"] = gold_pos if gold_pos > 0 and ((max_rank is None) or gold_pos <= max_rank): has_gold = has_gold_per_dataset.get(dataset_name, 0) + 1 has_gold_per_dataset[dataset_name] = has_gold if save_pregenerated_gold_pos: pre_gen_gold_pos = -1 for idx, cand in enumerate(mention["candidates_data"]): cand_wikidata_id = cand["wikidata_id"] if gold_wikidata_id == cand_wikidata_id: pre_gen_gold_pos = idx + 1 # Because idx starts at 0 break mention["pre_gen_candidates_gold_pos"] = pre_gen_gold_pos total = total_per_dataset.get(dataset_name, 0) + 1 total_per_dataset[dataset_name] = total total = 0 has_gold = 0 for dataset_name in total_per_dataset: has_gold_ds = has_gold_per_dataset.get(dataset_name, 0) total_ds = total_per_dataset[dataset_name] has_gold += has_gold_ds total += total_ds recall[dataset_name] = has_gold_ds / total_ds print("Dataset:", dataset_name) print( "Recall (w.r.t candidate generation): {:.3f}".format( recall[dataset_name] ) ) recall["overall"] = has_gold / total print( "Overal recall (w.r.t candidate generation): {:.3f}".format( recall["overall"] ) ) self.has_gold_per_dataset = has_gold_per_dataset self.total_per_dataset = total_per_dataset self.total = total self.has_gold = has_gold self.recall = recall def candidate_generation_recall_at(self, ax=None, max_rank=None): processed_mentions = self.data total_num_of_docs = len(processed_mentions) gold_positions = np.array( [ mention["gold_pos"] for mention in processed_mentions if mention["gold_pos"] >= 0 ] ) if ax == None: fig = plt.figure(figsize=(7, 7)) ax = plt.subplot(111) ax.set_ylabel(str("Recall")) ax.set_xlabel(str("True entity rank")) rank_count_pairs = sorted(Counter(gold_positions).items(), key=lambda x: x[0]) # rank_count_pairs = rank_count_pairs[:k] counts = [i[1] for i in rank_count_pairs] recall = np.cumsum(counts) / total_num_of_docs * 100 rankings = [i[0] for i in rank_count_pairs] if max_rank is not None: for idx, rank in enumerate(rankings): if rank > max_rank: rankings = rankings[:idx] recall = recall[:idx] break ax.plot(rankings, recall)
BLINK-main
blink/candidate_retrieval/evaluator.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import argparse import pickle import json import emoji import sys import os import io import blink.candidate_retrieval.utils as utils from tqdm import tqdm parser = argparse.ArgumentParser() parser.add_argument( "--processed_mention_data_file_path", type=str, help="The full path to the mention data file", default="data/mention_dumps/train_and_eval_data", ) parser.add_argument( "--dump_folder_path", type=str, help="The path to the dump folder", default="data/train_and_benchmark_processed_json", ) # Keep pregenerated candidates parser.add_argument( "--keep_pregenerated_candidates", action="store_true", help="Whether to keep the candidates given with the dataset.", ) args = parser.parse_args() print(args) dump_folder = args.dump_folder_path path_to_processed_mention_data = args.processed_mention_data_file_path os.makedirs(dump_folder, exist_ok=True) print("Reading data") run_dump = pickle.load(open(path_to_processed_mention_data, "rb")) mentions = run_dump["mentions"] dataset2processed_mentions = {} for m in tqdm(mentions): mention_obj = {} mention_obj["candidates"] = m["generated_candidates"] # Gold data mention_obj["gold_pos"] = m["gold_pos"] mention_obj["gold"] = m["gold"] # Mention data mention_obj["text"] = m["mention_orig"] # mention_obj['query_context_50'] = m['query_context_orig'] # mention_obj['query_context_sent_prev_curr_next'] = utils.get_sent_context(m, 'prev_next', solr_escaped=False) # mention_obj['tagged_context_50'] = (m['left_context_orig'], m['right_context_orig']) prev_sent = m["sent_context_orig"][0] if m["sent_context_orig"][0] != None else "" next_sent = m["sent_context_orig"][2] if m["sent_context_orig"][2] != None else "" mention_obj["tagged_query_context_sent_prev_curr_next"] = ( "{} {}".format(prev_sent, m["left_query_sent_context_orig"]).strip(), "{} {}".format(m["right_query_sent_context_orig"], next_sent).strip(), ) mention_obj["tagged_query_context_sent_curr"] = ( m["left_query_sent_context_orig"].strip(), m["right_query_sent_context_orig"].strip(), ) # Keep the candidates given with the dataset (used for the purposes of comparison with baseline) if args.keep_pregenerated_candidates: mention_obj["pregenerated_candidates"] = m["candidates_data"] mention_obj["pregenerated_gold_pos"] = m["pre_gen_candidates_gold_pos"] # Add data to output dics dataset_name = m["dataset_name"] processed_mentions = dataset2processed_mentions.get(dataset_name, []) processed_mentions.append(mention_obj) dataset2processed_mentions[dataset_name] = processed_mentions for dataset_name in dataset2processed_mentions: print("Dumping dataset:", dataset_name) processed_mentions = dataset2processed_mentions[dataset_name] file_name = "{}.jsonl".format(dataset_name) txt_file_path = os.path.join(dump_folder, file_name) # with open(txt_file_path, "w+") as file: with io.open(txt_file_path, mode="w", encoding="utf-8") as file: for idx, mention in enumerate(processed_mentions): json_string = json.dumps(mention) file.write(json_string) if idx != (len(processed_mentions) - 1): file.write("\n")
BLINK-main
blink/candidate_retrieval/json_data_generation.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from collections import OrderedDict from tqdm import tqdm from pytorch_transformers.modeling_utils import CONFIG_NAME, WEIGHTS_NAME from pytorch_transformers.modeling_bert import ( BertPreTrainedModel, BertConfig, BertModel, ) from pytorch_transformers.modeling_roberta import ( RobertaConfig, RobertaModel, ) from pytorch_transformers.tokenization_bert import BertTokenizer from pytorch_transformers.tokenization_roberta import RobertaTokenizer from blink.common.ranker_base import BertEncoder, get_model_obj from blink.common.optimizer import get_bert_optimizer from blink.common.params import ENT_START_TAG, ENT_END_TAG, ENT_TITLE_TAG def load_crossencoder(params): # Init model crossencoder = CrossEncoderRanker(params) return crossencoder class CrossEncoderModule(torch.nn.Module): def __init__(self, params, tokenizer): super(CrossEncoderModule, self).__init__() model_path = params["bert_model"] if params.get("roberta"): encoder_model = RobertaModel.from_pretrained(model_path) else: encoder_model = BertModel.from_pretrained(model_path) encoder_model.resize_token_embeddings(len(tokenizer)) self.encoder = BertEncoder( encoder_model, params["out_dim"], layer_pulled=params["pull_from_layer"], add_linear=params["add_linear"], ) self.config = self.encoder.bert_model.config def forward( self, token_idx_ctxt, segment_idx_ctxt, mask_ctxt, ): embedding_ctxt = self.encoder(token_idx_ctxt, segment_idx_ctxt, mask_ctxt) return embedding_ctxt.squeeze(-1) class CrossEncoderRanker(torch.nn.Module): def __init__(self, params, shared=None): super(CrossEncoderRanker, self).__init__() self.params = params self.device = torch.device( "cuda" if torch.cuda.is_available() and not params["no_cuda"] else "cpu" ) self.n_gpu = torch.cuda.device_count() if params.get("roberta"): self.tokenizer = RobertaTokenizer.from_pretrained(params["bert_model"],) else: self.tokenizer = BertTokenizer.from_pretrained( params["bert_model"], do_lower_case=params["lowercase"] ) special_tokens_dict = { "additional_special_tokens": [ ENT_START_TAG, ENT_END_TAG, ENT_TITLE_TAG, ], } self.tokenizer.add_special_tokens(special_tokens_dict) self.NULL_IDX = self.tokenizer.pad_token_id self.START_TOKEN = self.tokenizer.cls_token self.END_TOKEN = self.tokenizer.sep_token # init model self.build_model() if params["path_to_model"] is not None: self.load_model(params["path_to_model"]) self.model = self.model.to(self.device) self.data_parallel = params.get("data_parallel") if self.data_parallel: self.model = torch.nn.DataParallel(self.model) def load_model(self, fname, cpu=False): if cpu: state_dict = torch.load(fname, map_location=lambda storage, location: "cpu") else: state_dict = torch.load(fname) self.model.load_state_dict(state_dict) def save(self, output_dir): self.save_model(output_dir) self.tokenizer.save_vocabulary(output_dir) def build_model(self): self.model = CrossEncoderModule(self.params, self.tokenizer) def save_model(self, output_dir): if not os.path.exists(output_dir): os.makedirs(output_dir) model_to_save = get_model_obj(self.model) output_model_file = os.path.join(output_dir, WEIGHTS_NAME) output_config_file = os.path.join(output_dir, CONFIG_NAME) torch.save(model_to_save.state_dict(), output_model_file) model_to_save.config.to_json_file(output_config_file) def get_optimizer(self, optim_states=None, saved_optim_type=None): return get_bert_optimizer( [self.model], self.params["type_optimization"], self.params["learning_rate"], fp16=self.params.get("fp16"), ) def score_candidate(self, text_vecs, context_len): # Encode contexts first num_cand = text_vecs.size(1) text_vecs = text_vecs.view(-1, text_vecs.size(-1)) token_idx_ctxt, segment_idx_ctxt, mask_ctxt = to_bert_input( text_vecs, self.NULL_IDX, context_len, ) embedding_ctxt = self.model(token_idx_ctxt, segment_idx_ctxt, mask_ctxt,) return embedding_ctxt.view(-1, num_cand) def forward(self, input_idx, label_input, context_len): scores = self.score_candidate(input_idx, context_len) loss = F.cross_entropy(scores, label_input, reduction="mean") return loss, scores def to_bert_input(token_idx, null_idx, segment_pos): """ token_idx is a 2D tensor int. return token_idx, segment_idx and mask """ segment_idx = token_idx * 0 if segment_pos > 0: segment_idx[:, segment_pos:] = token_idx[:, segment_pos:] > 0 mask = token_idx != null_idx # nullify elements in case self.NULL_IDX was not 0 # token_idx = token_idx * mask.long() return token_idx, segment_idx, mask
BLINK-main
blink/crossencoder/crossencoder.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch import sys import numpy as np from tqdm import tqdm import blink.biencoder.data_process as data from blink.common.params import ENT_START_TAG, ENT_END_TAG def prepare_crossencoder_mentions( tokenizer, samples, max_context_length=32, mention_key="mention", context_key="context", ent_start_token=ENT_START_TAG, ent_end_token=ENT_END_TAG, ): context_input_list = [] # samples X 128 for sample in tqdm(samples): context_tokens = data.get_context_representation( sample, tokenizer, max_context_length, mention_key, context_key, ent_start_token, ent_end_token, ) tokens_ids = context_tokens["ids"] context_input_list.append(tokens_ids) context_input_list = np.asarray(context_input_list) return context_input_list def prepare_crossencoder_candidates( tokenizer, labels, nns, id2title, id2text, max_cand_length=128, topk=100 ): START_TOKEN = tokenizer.cls_token END_TOKEN = tokenizer.sep_token candidate_input_list = [] # samples X topk=10 X 128 label_input_list = [] # samples idx = 0 for label, nn in zip(labels, nns): candidates = [] label_id = -1 for jdx, candidate_id in enumerate(nn[:topk]): if label == candidate_id: label_id = jdx rep = data.get_candidate_representation( id2text[candidate_id], tokenizer, max_cand_length, id2title[candidate_id], ) tokens_ids = rep["ids"] assert len(tokens_ids) == max_cand_length candidates.append(tokens_ids) label_input_list.append(label_id) candidate_input_list.append(candidates) idx += 1 sys.stdout.write("{}/{} \r".format(idx, len(labels))) sys.stdout.flush() label_input_list = np.asarray(label_input_list) candidate_input_list = np.asarray(candidate_input_list) return label_input_list, candidate_input_list def filter_crossencoder_tensor_input( context_input_list, label_input_list, candidate_input_list ): # remove the - 1 : examples for which gold is not among the candidates context_input_list_filtered = [ x for x, y, z in zip(context_input_list, candidate_input_list, label_input_list) if z != -1 ] label_input_list_filtered = [ z for x, y, z in zip(context_input_list, candidate_input_list, label_input_list) if z != -1 ] candidate_input_list_filtered = [ y for x, y, z in zip(context_input_list, candidate_input_list, label_input_list) if z != -1 ] return ( context_input_list_filtered, label_input_list_filtered, candidate_input_list_filtered, ) def prepare_crossencoder_data( tokenizer, samples, labels, nns, id2title, id2text, keep_all=False ): # encode mentions context_input_list = prepare_crossencoder_mentions(tokenizer, samples) # encode candidates (output of biencoder) label_input_list, candidate_input_list = prepare_crossencoder_candidates( tokenizer, labels, nns, id2title, id2text ) if not keep_all: # remove examples where the gold entity is not among the candidates ( context_input_list, label_input_list, candidate_input_list, ) = filter_crossencoder_tensor_input( context_input_list, label_input_list, candidate_input_list ) else: label_input_list = [0] * len(label_input_list) context_input = torch.LongTensor(context_input_list) label_input = torch.LongTensor(label_input_list) candidate_input = torch.LongTensor(candidate_input_list) return ( context_input, candidate_input, label_input, )
BLINK-main
blink/crossencoder/data_process.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import argparse import pickle import torch import json import sys import io import random import time import numpy as np from multiprocessing.pool import ThreadPool from tqdm import tqdm, trange from collections import OrderedDict from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from pytorch_transformers.file_utils import PYTORCH_PRETRAINED_BERT_CACHE from pytorch_transformers.optimization import WarmupLinearSchedule from pytorch_transformers.tokenization_bert import BertTokenizer import blink.candidate_retrieval.utils from blink.crossencoder.crossencoder import CrossEncoderRanker, load_crossencoder import logging import blink.candidate_ranking.utils as utils import blink.biencoder.data_process as data from blink.biencoder.zeshel_utils import DOC_PATH, WORLDS, world_to_id from blink.common.optimizer import get_bert_optimizer from blink.common.params import BlinkParser logger = None def modify(context_input, candidate_input, max_seq_length): new_input = [] context_input = context_input.tolist() candidate_input = candidate_input.tolist() for i in range(len(context_input)): cur_input = context_input[i] cur_candidate = candidate_input[i] mod_input = [] for j in range(len(cur_candidate)): # remove [CLS] token from candidate sample = cur_input + cur_candidate[j][1:] sample = sample[:max_seq_length] mod_input.append(sample) new_input.append(mod_input) return torch.LongTensor(new_input) def evaluate(reranker, eval_dataloader, device, logger, context_length, zeshel=False, silent=True): reranker.model.eval() if silent: iter_ = eval_dataloader else: iter_ = tqdm(eval_dataloader, desc="Evaluation") results = {} eval_accuracy = 0.0 nb_eval_examples = 0 nb_eval_steps = 0 acc = {} tot = {} world_size = len(WORLDS) for i in range(world_size): acc[i] = 0.0 tot[i] = 0.0 all_logits = [] cnt = 0 for step, batch in enumerate(iter_): if zeshel: src = batch[2] cnt += 1 batch = tuple(t.to(device) for t in batch) context_input = batch[0] label_input = batch[1] with torch.no_grad(): eval_loss, logits = reranker(context_input, label_input, context_length) logits = logits.detach().cpu().numpy() label_ids = label_input.cpu().numpy() tmp_eval_accuracy, eval_result = utils.accuracy(logits, label_ids) eval_accuracy += tmp_eval_accuracy all_logits.extend(logits) nb_eval_examples += context_input.size(0) if zeshel: for i in range(context_input.size(0)): src_w = src[i].item() acc[src_w] += eval_result[i] tot[src_w] += 1 nb_eval_steps += 1 normalized_eval_accuracy = -1 if nb_eval_examples > 0: normalized_eval_accuracy = eval_accuracy / nb_eval_examples if zeshel: macro = 0.0 num = 0.0 for i in range(len(WORLDS)): if acc[i] > 0: acc[i] /= tot[i] macro += acc[i] num += 1 if num > 0: logger.info("Macro accuracy: %.5f" % (macro / num)) logger.info("Micro accuracy: %.5f" % normalized_eval_accuracy) else: if logger: logger.info("Eval accuracy: %.5f" % normalized_eval_accuracy) results["normalized_accuracy"] = normalized_eval_accuracy results["logits"] = all_logits return results def get_optimizer(model, params): return get_bert_optimizer( [model], params["type_optimization"], params["learning_rate"], fp16=params.get("fp16"), ) def get_scheduler(params, optimizer, len_train_data, logger): batch_size = params["train_batch_size"] grad_acc = params["gradient_accumulation_steps"] epochs = params["num_train_epochs"] num_train_steps = int(len_train_data / batch_size / grad_acc) * epochs num_warmup_steps = int(num_train_steps * params["warmup_proportion"]) scheduler = WarmupLinearSchedule( optimizer, warmup_steps=num_warmup_steps, t_total=num_train_steps, ) logger.info(" Num optimization steps = %d" % num_train_steps) logger.info(" Num warmup steps = %d", num_warmup_steps) return scheduler def main(params): model_output_path = params["output_path"] if not os.path.exists(model_output_path): os.makedirs(model_output_path) logger = utils.get_logger(params["output_path"]) # Init model reranker = CrossEncoderRanker(params) tokenizer = reranker.tokenizer model = reranker.model # utils.save_model(model, tokenizer, model_output_path) device = reranker.device n_gpu = reranker.n_gpu if params["gradient_accumulation_steps"] < 1: raise ValueError( "Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format( params["gradient_accumulation_steps"] ) ) # An effective batch size of `x`, when we are accumulating the gradient accross `y` batches will be achieved by having a batch size of `z = x / y` # args.gradient_accumulation_steps = args.gradient_accumulation_steps // n_gpu params["train_batch_size"] = ( params["train_batch_size"] // params["gradient_accumulation_steps"] ) train_batch_size = params["train_batch_size"] eval_batch_size = params["eval_batch_size"] grad_acc_steps = params["gradient_accumulation_steps"] # Fix the random seeds seed = params["seed"] random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) if reranker.n_gpu > 0: torch.cuda.manual_seed_all(seed) max_seq_length = params["max_seq_length"] context_length = params["max_context_length"] fname = os.path.join(params["data_path"], "train.t7") train_data = torch.load(fname) context_input = train_data["context_vecs"] candidate_input = train_data["candidate_vecs"] label_input = train_data["labels"] if params["debug"]: max_n = 200 context_input = context_input[:max_n] candidate_input = candidate_input[:max_n] label_input = label_input[:max_n] context_input = modify(context_input, candidate_input, max_seq_length) if params["zeshel"]: src_input = train_data['worlds'][:len(context_input)] train_tensor_data = TensorDataset(context_input, label_input, src_input) else: train_tensor_data = TensorDataset(context_input, label_input) train_sampler = RandomSampler(train_tensor_data) train_dataloader = DataLoader( train_tensor_data, sampler=train_sampler, batch_size=params["train_batch_size"] ) fname = os.path.join(params["data_path"], "valid.t7") valid_data = torch.load(fname) context_input = valid_data["context_vecs"] candidate_input = valid_data["candidate_vecs"] label_input = valid_data["labels"] if params["debug"]: max_n = 200 context_input = context_input[:max_n] candidate_input = candidate_input[:max_n] label_input = label_input[:max_n] context_input = modify(context_input, candidate_input, max_seq_length) if params["zeshel"]: src_input = valid_data["worlds"][:len(context_input)] valid_tensor_data = TensorDataset(context_input, label_input, src_input) else: valid_tensor_data = TensorDataset(context_input, label_input) valid_sampler = SequentialSampler(valid_tensor_data) valid_dataloader = DataLoader( valid_tensor_data, sampler=valid_sampler, batch_size=params["eval_batch_size"] ) # evaluate before training results = evaluate( reranker, valid_dataloader, device=device, logger=logger, context_length=context_length, zeshel=params["zeshel"], silent=params["silent"], ) number_of_samples_per_dataset = {} time_start = time.time() utils.write_to_file( os.path.join(model_output_path, "training_params.txt"), str(params) ) logger.info("Starting training") logger.info( "device: {} n_gpu: {}, distributed training: {}".format(device, n_gpu, False) ) optimizer = get_optimizer(model, params) scheduler = get_scheduler(params, optimizer, len(train_tensor_data), logger) model.train() best_epoch_idx = -1 best_score = -1 num_train_epochs = params["num_train_epochs"] for epoch_idx in trange(int(num_train_epochs), desc="Epoch"): tr_loss = 0 results = None if params["silent"]: iter_ = train_dataloader else: iter_ = tqdm(train_dataloader, desc="Batch") part = 0 for step, batch in enumerate(iter_): batch = tuple(t.to(device) for t in batch) context_input = batch[0] label_input = batch[1] loss, _ = reranker(context_input, label_input, context_length) # if n_gpu > 1: # loss = loss.mean() # mean() to average on multi-gpu. if grad_acc_steps > 1: loss = loss / grad_acc_steps tr_loss += loss.item() if (step + 1) % (params["print_interval"] * grad_acc_steps) == 0: logger.info( "Step {} - epoch {} average loss: {}\n".format( step, epoch_idx, tr_loss / (params["print_interval"] * grad_acc_steps), ) ) tr_loss = 0 loss.backward() if (step + 1) % grad_acc_steps == 0: torch.nn.utils.clip_grad_norm_( model.parameters(), params["max_grad_norm"] ) optimizer.step() scheduler.step() optimizer.zero_grad() if (step + 1) % (params["eval_interval"] * grad_acc_steps) == 0: logger.info("Evaluation on the development dataset") evaluate( reranker, valid_dataloader, device=device, logger=logger, context_length=context_length, zeshel=params["zeshel"], silent=params["silent"], ) logger.info("***** Saving fine - tuned model *****") epoch_output_folder_path = os.path.join( model_output_path, "epoch_{}_{}".format(epoch_idx, part) ) part += 1 utils.save_model(model, tokenizer, epoch_output_folder_path) model.train() logger.info("\n") logger.info("***** Saving fine - tuned model *****") epoch_output_folder_path = os.path.join( model_output_path, "epoch_{}".format(epoch_idx) ) utils.save_model(model, tokenizer, epoch_output_folder_path) # reranker.save(epoch_output_folder_path) output_eval_file = os.path.join(epoch_output_folder_path, "eval_results.txt") results = evaluate( reranker, valid_dataloader, device=device, logger=logger, context_length=context_length, zeshel=params["zeshel"], silent=params["silent"], ) ls = [best_score, results["normalized_accuracy"]] li = [best_epoch_idx, epoch_idx] best_score = ls[np.argmax(ls)] best_epoch_idx = li[np.argmax(ls)] logger.info("\n") execution_time = (time.time() - time_start) / 60 utils.write_to_file( os.path.join(model_output_path, "training_time.txt"), "The training took {} minutes\n".format(execution_time), ) logger.info("The training took {} minutes\n".format(execution_time)) # save the best model in the parent_dir logger.info("Best performance in epoch: {}".format(best_epoch_idx)) params["path_to_model"] = os.path.join( model_output_path, "epoch_{}".format(best_epoch_idx) ) if __name__ == "__main__": parser = BlinkParser(add_model_args=True) parser.add_training_args() parser.add_eval_args() # args = argparse.Namespace(**params) args = parser.parse_args() print(args) params = args.__dict__ main(params)
BLINK-main
blink/crossencoder/train_cross.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import argparse import json import logging import os import torch from tqdm import tqdm from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from pytorch_transformers.tokenization_bert import BertTokenizer from blink.biencoder.biencoder import BiEncoderRanker import blink.biencoder.data_process as data import blink.biencoder.nn_prediction as nnquery import blink.candidate_ranking.utils as utils from blink.biencoder.zeshel_utils import WORLDS, load_entity_dict_zeshel, Stats from blink.common.params import BlinkParser def load_entity_dict(logger, params, is_zeshel): if is_zeshel: return load_entity_dict_zeshel(logger, params) path = params.get("entity_dict_path", None) assert path is not None, "Error! entity_dict_path is empty." entity_list = [] logger.info("Loading entity description from path: " + path) with open(path, 'rt') as f: for line in f: sample = json.loads(line.rstrip()) title = sample['title'] text = sample.get("text", "").strip() entity_list.append((title, text)) if params["debug"] and len(entity_list) > 200: break return entity_list # zeshel version of get candidate_pool_tensor def get_candidate_pool_tensor_zeshel( entity_dict, tokenizer, max_seq_length, logger, ): candidate_pool = {} for src in range(len(WORLDS)): if entity_dict.get(src, None) is None: continue logger.info("Get candidate desc to id for pool %s" % WORLDS[src]) candidate_pool[src] = get_candidate_pool_tensor( entity_dict[src], tokenizer, max_seq_length, logger, ) return candidate_pool def get_candidate_pool_tensor_helper( entity_desc_list, tokenizer, max_seq_length, logger, is_zeshel, ): if is_zeshel: return get_candidate_pool_tensor_zeshel( entity_desc_list, tokenizer, max_seq_length, logger, ) else: return get_candidate_pool_tensor( entity_desc_list, tokenizer, max_seq_length, logger, ) def get_candidate_pool_tensor( entity_desc_list, tokenizer, max_seq_length, logger, ): # TODO: add multiple thread process logger.info("Convert candidate text to id") cand_pool = [] for entity_desc in tqdm(entity_desc_list): if type(entity_desc) is tuple: title, entity_text = entity_desc else: title = None entity_text = entity_desc rep = data.get_candidate_representation( entity_text, tokenizer, max_seq_length, title, ) cand_pool.append(rep["ids"]) cand_pool = torch.LongTensor(cand_pool) return cand_pool def encode_candidate( reranker, candidate_pool, encode_batch_size, silent, logger, is_zeshel, ): if is_zeshel: src = 0 cand_encode_dict = {} for src, cand_pool in candidate_pool.items(): logger.info("Encoding candidate pool %s" % WORLDS[src]) cand_pool_encode = encode_candidate( reranker, cand_pool, encode_batch_size, silent, logger, is_zeshel=False, ) cand_encode_dict[src] = cand_pool_encode return cand_encode_dict reranker.model.eval() device = reranker.device sampler = SequentialSampler(candidate_pool) data_loader = DataLoader( candidate_pool, sampler=sampler, batch_size=encode_batch_size ) if silent: iter_ = data_loader else: iter_ = tqdm(data_loader) cand_encode_list = None for step, batch in enumerate(iter_): cands = batch cands = cands.to(device) cand_encode = reranker.encode_candidate(cands) if cand_encode_list is None: cand_encode_list = cand_encode else: cand_encode_list = torch.cat((cand_encode_list, cand_encode)) return cand_encode_list def load_or_generate_candidate_pool( tokenizer, params, logger, cand_pool_path, ): candidate_pool = None is_zeshel = params.get("zeshel", None) if cand_pool_path is not None: # try to load candidate pool from file try: logger.info("Loading pre-generated candidate pool from: ") logger.info(cand_pool_path) candidate_pool = torch.load(cand_pool_path) except: logger.info("Loading failed. Generating candidate pool") if candidate_pool is None: # compute candidate pool from entity list entity_desc_list = load_entity_dict(logger, params, is_zeshel) candidate_pool = get_candidate_pool_tensor_helper( entity_desc_list, tokenizer, params["max_cand_length"], logger, is_zeshel, ) if cand_pool_path is not None: logger.info("Saving candidate pool.") torch.save(candidate_pool, cand_pool_path) return candidate_pool def main(params): output_path = params["output_path"] if not os.path.exists(output_path): os.makedirs(output_path) logger = utils.get_logger(params["output_path"]) # Init model reranker = BiEncoderRanker(params) tokenizer = reranker.tokenizer model = reranker.model device = reranker.device cand_encode_path = params.get("cand_encode_path", None) # candidate encoding is not pre-computed. # load/generate candidate pool to compute candidate encoding. cand_pool_path = params.get("cand_pool_path", None) candidate_pool = load_or_generate_candidate_pool( tokenizer, params, logger, cand_pool_path, ) candidate_encoding = None if cand_encode_path is not None: # try to load candidate encoding from path # if success, avoid computing candidate encoding try: logger.info("Loading pre-generated candidate encode path.") candidate_encoding = torch.load(cand_encode_path) except: logger.info("Loading failed. Generating candidate encoding.") if candidate_encoding is None: candidate_encoding = encode_candidate( reranker, candidate_pool, params["encode_batch_size"], silent=params["silent"], logger=logger, is_zeshel=params.get("zeshel", None) ) if cand_encode_path is not None: # Save candidate encoding to avoid re-compute logger.info("Saving candidate encoding to file " + cand_encode_path) torch.save(candidate_encoding, cand_encode_path) test_samples = utils.read_dataset(params["mode"], params["data_path"]) logger.info("Read %d test samples." % len(test_samples)) test_data, test_tensor_data = data.process_mention_data( test_samples, tokenizer, params["max_context_length"], params["max_cand_length"], context_key=params['context_key'], silent=params["silent"], logger=logger, debug=params["debug"], ) test_sampler = SequentialSampler(test_tensor_data) test_dataloader = DataLoader( test_tensor_data, sampler=test_sampler, batch_size=params["eval_batch_size"] ) save_results = params.get("save_topk_result") new_data = nnquery.get_topk_predictions( reranker, test_dataloader, candidate_pool, candidate_encoding, params["silent"], logger, params["top_k"], params.get("zeshel", None), save_results, ) if save_results: save_data_dir = os.path.join( params['output_path'], "top%d_candidates" % params['top_k'], ) if not os.path.exists(save_data_dir): os.makedirs(save_data_dir) save_data_path = os.path.join(save_data_dir, "%s.t7" % params['mode']) torch.save(new_data, save_data_path) if __name__ == "__main__": parser = BlinkParser(add_model_args=True) parser.add_eval_args() args = parser.parse_args() print(args) params = args.__dict__ mode_list = params["mode"].split(',') for mode in mode_list: new_params = params new_params["mode"] = mode main(new_params)
BLINK-main
blink/biencoder/eval_biencoder.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # # Utility code for zeshel dataset import json import torch DOC_PATH = "/private/home/ledell/zeshel/data/documents/" WORLDS = [ 'american_football', 'doctor_who', 'fallout', 'final_fantasy', 'military', 'pro_wrestling', 'starwars', 'world_of_warcraft', 'coronation_street', 'muppets', 'ice_hockey', 'elder_scrolls', 'forgotten_realms', 'lego', 'star_trek', 'yugioh' ] world_to_id = {src : k for k, src in enumerate(WORLDS)} def load_entity_dict_zeshel(logger, params): entity_dict = {} # different worlds in train/valid/test if params["mode"] == "train": start_idx = 0 end_idx = 8 elif params["mode"] == "valid": start_idx = 8 end_idx = 12 else: start_idx = 12 end_idx = 16 # load data for i, src in enumerate(WORLDS[start_idx:end_idx]): fname = DOC_PATH + src + ".json" cur_dict = {} doc_list = [] src_id = world_to_id[src] with open(fname, 'rt') as f: for line in f: line = line.rstrip() item = json.loads(line) text = item["text"] doc_list.append(text[:256]) if params["debug"]: if len(doc_list) > 200: break logger.info("Load for world %s." % src) entity_dict[src_id] = doc_list return entity_dict class Stats(): def __init__(self, top_k=1000): self.cnt = 0 self.hits = [] self.top_k = top_k self.rank = [1, 4, 8, 16, 32, 64, 100, 128, 256, 512] self.LEN = len(self.rank) for i in range(self.LEN): self.hits.append(0) def add(self, idx): self.cnt += 1 if idx == -1: return for i in range(self.LEN): if idx < self.rank[i]: self.hits[i] += 1 def extend(self, stats): self.cnt += stats.cnt for i in range(self.LEN): self.hits[i] += stats.hits[i] def output(self): output_json = "Total: %d examples." % self.cnt for i in range(self.LEN): if self.top_k < self.rank[i]: break output_json += " r@%d: %.4f" % (self.rank[i], self.hits[i] / float(self.cnt)) return output_json
BLINK-main
blink/biencoder/zeshel_utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import json import logging import torch from tqdm import tqdm import blink.candidate_ranking.utils as utils from blink.biencoder.zeshel_utils import WORLDS, Stats def get_topk_predictions( reranker, train_dataloader, candidate_pool, cand_encode_list, silent, logger, top_k=10, is_zeshel=False, save_predictions=False, ): reranker.model.eval() device = reranker.device logger.info("Getting top %d predictions." % top_k) if silent: iter_ = train_dataloader else: iter_ = tqdm(train_dataloader) nn_context = [] nn_candidates = [] nn_labels = [] nn_worlds = [] stats = {} if is_zeshel: world_size = len(WORLDS) else: # only one domain world_size = 1 candidate_pool = [candidate_pool] cand_encode_list = [cand_encode_list] logger.info("World size : %d" % world_size) for i in range(world_size): stats[i] = Stats(top_k) oid = 0 for step, batch in enumerate(iter_): batch = tuple(t.to(device) for t in batch) context_input, _, srcs, label_ids = batch src = srcs[0].item() scores = reranker.score_candidate( context_input, None, cand_encs=cand_encode_list[src].to(device) ) values, indicies = scores.topk(top_k) old_src = src for i in range(context_input.size(0)): oid += 1 inds = indicies[i] if srcs[i] != old_src: src = srcs[i].item() # not the same domain, need to re-do new_scores = reranker.score_candidate( context_input[[i]], None, cand_encs=cand_encode_list[src].to(device) ) _, inds = new_scores.topk(top_k) inds = inds[0] pointer = -1 for j in range(top_k): if inds[j].item() == label_ids[i].item(): pointer = j break stats[src].add(pointer) if pointer == -1: continue if not save_predictions: continue # add examples in new_data cur_candidates = candidate_pool[src][inds] nn_context.append(context_input[i].cpu().tolist()) nn_candidates.append(cur_candidates.cpu().tolist()) nn_labels.append(pointer) nn_worlds.append(src) res = Stats(top_k) for src in range(world_size): if stats[src].cnt == 0: continue if is_zeshel: logger.info("In world " + WORLDS[src]) output = stats[src].output() logger.info(output) res.extend(stats[src]) logger.info(res.output()) nn_context = torch.LongTensor(nn_context) nn_candidates = torch.LongTensor(nn_candidates) nn_labels = torch.LongTensor(nn_labels) nn_data = { 'context_vecs': nn_context, 'candidate_vecs': nn_candidates, 'labels': nn_labels, } if is_zeshel: nn_data["worlds"] = torch.LongTensor(nn_worlds) return nn_data
BLINK-main
blink/biencoder/nn_prediction.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. #
BLINK-main
blink/biencoder/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import logging import torch from tqdm import tqdm, trange from torch.utils.data import DataLoader, TensorDataset from pytorch_transformers.tokenization_bert import BertTokenizer from blink.biencoder.zeshel_utils import world_to_id from blink.common.params import ENT_START_TAG, ENT_END_TAG, ENT_TITLE_TAG def select_field(data, key1, key2=None): if key2 is None: return [example[key1] for example in data] else: return [example[key1][key2] for example in data] def get_context_representation( sample, tokenizer, max_seq_length, mention_key="mention", context_key="context", ent_start_token=ENT_START_TAG, ent_end_token=ENT_END_TAG, ): mention_tokens = [] if sample[mention_key] and len(sample[mention_key]) > 0: mention_tokens = tokenizer.tokenize(sample[mention_key]) mention_tokens = [ent_start_token] + mention_tokens + [ent_end_token] context_left = sample[context_key + "_left"] context_right = sample[context_key + "_right"] context_left = tokenizer.tokenize(context_left) context_right = tokenizer.tokenize(context_right) left_quota = (max_seq_length - len(mention_tokens)) // 2 - 1 right_quota = max_seq_length - len(mention_tokens) - left_quota - 2 left_add = len(context_left) right_add = len(context_right) if left_add <= left_quota: if right_add > right_quota: right_quota += left_quota - left_add else: if right_add <= right_quota: left_quota += right_quota - right_add context_tokens = ( context_left[-left_quota:] + mention_tokens + context_right[:right_quota] ) context_tokens = ["[CLS]"] + context_tokens + ["[SEP]"] input_ids = tokenizer.convert_tokens_to_ids(context_tokens) padding = [0] * (max_seq_length - len(input_ids)) input_ids += padding assert len(input_ids) == max_seq_length return { "tokens": context_tokens, "ids": input_ids, } def get_candidate_representation( candidate_desc, tokenizer, max_seq_length, candidate_title=None, title_tag=ENT_TITLE_TAG, ): cls_token = tokenizer.cls_token sep_token = tokenizer.sep_token cand_tokens = tokenizer.tokenize(candidate_desc) if candidate_title is not None: title_tokens = tokenizer.tokenize(candidate_title) cand_tokens = title_tokens + [title_tag] + cand_tokens cand_tokens = cand_tokens[: max_seq_length - 2] cand_tokens = [cls_token] + cand_tokens + [sep_token] input_ids = tokenizer.convert_tokens_to_ids(cand_tokens) padding = [0] * (max_seq_length - len(input_ids)) input_ids += padding assert len(input_ids) == max_seq_length return { "tokens": cand_tokens, "ids": input_ids, } def process_mention_data( samples, tokenizer, max_context_length, max_cand_length, silent, mention_key="mention", context_key="context", label_key="label", title_key='label_title', ent_start_token=ENT_START_TAG, ent_end_token=ENT_END_TAG, title_token=ENT_TITLE_TAG, debug=False, logger=None, ): processed_samples = [] if debug: samples = samples[:200] if silent: iter_ = samples else: iter_ = tqdm(samples) use_world = True for idx, sample in enumerate(iter_): context_tokens = get_context_representation( sample, tokenizer, max_context_length, mention_key, context_key, ent_start_token, ent_end_token, ) label = sample[label_key] title = sample.get(title_key, None) label_tokens = get_candidate_representation( label, tokenizer, max_cand_length, title, ) label_idx = int(sample["label_id"]) record = { "context": context_tokens, "label": label_tokens, "label_idx": [label_idx], } if "world" in sample: src = sample["world"] src = world_to_id[src] record["src"] = [src] use_world = True else: use_world = False processed_samples.append(record) if debug and logger: logger.info("====Processed samples: ====") for sample in processed_samples[:5]: logger.info("Context tokens : " + " ".join(sample["context"]["tokens"])) logger.info( "Context ids : " + " ".join([str(v) for v in sample["context"]["ids"]]) ) logger.info("Label tokens : " + " ".join(sample["label"]["tokens"])) logger.info( "Label ids : " + " ".join([str(v) for v in sample["label"]["ids"]]) ) logger.info("Src : %d" % sample["src"][0]) logger.info("Label_id : %d" % sample["label_idx"][0]) context_vecs = torch.tensor( select_field(processed_samples, "context", "ids"), dtype=torch.long, ) cand_vecs = torch.tensor( select_field(processed_samples, "label", "ids"), dtype=torch.long, ) if use_world: src_vecs = torch.tensor( select_field(processed_samples, "src"), dtype=torch.long, ) label_idx = torch.tensor( select_field(processed_samples, "label_idx"), dtype=torch.long, ) data = { "context_vecs": context_vecs, "cand_vecs": cand_vecs, "label_idx": label_idx, } if use_world: data["src"] = src_vecs tensor_data = TensorDataset(context_vecs, cand_vecs, src_vecs, label_idx) else: tensor_data = TensorDataset(context_vecs, cand_vecs, label_idx) return data, tensor_data
BLINK-main
blink/biencoder/data_process.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import argparse import pickle import torch import json import sys import io import random import time import numpy as np from multiprocessing.pool import ThreadPool from tqdm import tqdm, trange from collections import OrderedDict from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from pytorch_transformers.file_utils import PYTORCH_PRETRAINED_BERT_CACHE from pytorch_transformers.optimization import WarmupLinearSchedule from pytorch_transformers.tokenization_bert import BertTokenizer from pytorch_transformers.modeling_utils import WEIGHTS_NAME from blink.biencoder.biencoder import BiEncoderRanker, load_biencoder import logging import blink.candidate_ranking.utils as utils import blink.biencoder.data_process as data from blink.biencoder.zeshel_utils import DOC_PATH, WORLDS, world_to_id from blink.common.optimizer import get_bert_optimizer from blink.common.params import BlinkParser logger = None # The evaluate function during training uses in-batch negatives: # for a batch of size B, the labels from the batch are used as label candidates # B is controlled by the parameter eval_batch_size def evaluate( reranker, eval_dataloader, params, device, logger, ): reranker.model.eval() if params["silent"]: iter_ = eval_dataloader else: iter_ = tqdm(eval_dataloader, desc="Evaluation") results = {} eval_accuracy = 0.0 nb_eval_examples = 0 nb_eval_steps = 0 for step, batch in enumerate(iter_): batch = tuple(t.to(device) for t in batch) context_input, candidate_input, _, _ = batch with torch.no_grad(): eval_loss, logits = reranker(context_input, candidate_input) logits = logits.detach().cpu().numpy() # Using in-batch negatives, the label ids are diagonal label_ids = torch.LongTensor( torch.arange(params["eval_batch_size"]) ).numpy() tmp_eval_accuracy, _ = utils.accuracy(logits, label_ids) eval_accuracy += tmp_eval_accuracy nb_eval_examples += context_input.size(0) nb_eval_steps += 1 normalized_eval_accuracy = eval_accuracy / nb_eval_examples logger.info("Eval accuracy: %.5f" % normalized_eval_accuracy) results["normalized_accuracy"] = normalized_eval_accuracy return results def get_optimizer(model, params): return get_bert_optimizer( [model], params["type_optimization"], params["learning_rate"], fp16=params.get("fp16"), ) def get_scheduler(params, optimizer, len_train_data, logger): batch_size = params["train_batch_size"] grad_acc = params["gradient_accumulation_steps"] epochs = params["num_train_epochs"] num_train_steps = int(len_train_data / batch_size / grad_acc) * epochs num_warmup_steps = int(num_train_steps * params["warmup_proportion"]) scheduler = WarmupLinearSchedule( optimizer, warmup_steps=num_warmup_steps, t_total=num_train_steps, ) logger.info(" Num optimization steps = %d" % num_train_steps) logger.info(" Num warmup steps = %d", num_warmup_steps) return scheduler def main(params): model_output_path = params["output_path"] if not os.path.exists(model_output_path): os.makedirs(model_output_path) logger = utils.get_logger(params["output_path"]) # Init model reranker = BiEncoderRanker(params) tokenizer = reranker.tokenizer model = reranker.model device = reranker.device n_gpu = reranker.n_gpu if params["gradient_accumulation_steps"] < 1: raise ValueError( "Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format( params["gradient_accumulation_steps"] ) ) # An effective batch size of `x`, when we are accumulating the gradient accross `y` batches will be achieved by having a batch size of `z = x / y` # args.gradient_accumulation_steps = args.gradient_accumulation_steps // n_gpu params["train_batch_size"] = ( params["train_batch_size"] // params["gradient_accumulation_steps"] ) train_batch_size = params["train_batch_size"] eval_batch_size = params["eval_batch_size"] grad_acc_steps = params["gradient_accumulation_steps"] # Fix the random seeds seed = params["seed"] random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) if reranker.n_gpu > 0: torch.cuda.manual_seed_all(seed) # Load train data train_samples = utils.read_dataset("train", params["data_path"]) logger.info("Read %d train samples." % len(train_samples)) train_data, train_tensor_data = data.process_mention_data( train_samples, tokenizer, params["max_context_length"], params["max_cand_length"], context_key=params["context_key"], silent=params["silent"], logger=logger, debug=params["debug"], ) if params["shuffle"]: train_sampler = RandomSampler(train_tensor_data) else: train_sampler = SequentialSampler(train_tensor_data) train_dataloader = DataLoader( train_tensor_data, sampler=train_sampler, batch_size=train_batch_size ) # Load eval data # TODO: reduce duplicated code here valid_samples = utils.read_dataset("valid", params["data_path"]) logger.info("Read %d valid samples." % len(valid_samples)) valid_data, valid_tensor_data = data.process_mention_data( valid_samples, tokenizer, params["max_context_length"], params["max_cand_length"], context_key=params["context_key"], silent=params["silent"], logger=logger, debug=params["debug"], ) valid_sampler = SequentialSampler(valid_tensor_data) valid_dataloader = DataLoader( valid_tensor_data, sampler=valid_sampler, batch_size=eval_batch_size ) # evaluate before training results = evaluate( reranker, valid_dataloader, params, device=device, logger=logger, ) number_of_samples_per_dataset = {} time_start = time.time() utils.write_to_file( os.path.join(model_output_path, "training_params.txt"), str(params) ) logger.info("Starting training") logger.info( "device: {} n_gpu: {}, distributed training: {}".format(device, n_gpu, False) ) optimizer = get_optimizer(model, params) scheduler = get_scheduler(params, optimizer, len(train_tensor_data), logger) model.train() best_epoch_idx = -1 best_score = -1 num_train_epochs = params["num_train_epochs"] for epoch_idx in trange(int(num_train_epochs), desc="Epoch"): tr_loss = 0 results = None if params["silent"]: iter_ = train_dataloader else: iter_ = tqdm(train_dataloader, desc="Batch") for step, batch in enumerate(iter_): batch = tuple(t.to(device) for t in batch) context_input, candidate_input, _, _ = batch loss, _ = reranker(context_input, candidate_input) # if n_gpu > 1: # loss = loss.mean() # mean() to average on multi-gpu. if grad_acc_steps > 1: loss = loss / grad_acc_steps tr_loss += loss.item() if (step + 1) % (params["print_interval"] * grad_acc_steps) == 0: logger.info( "Step {} - epoch {} average loss: {}\n".format( step, epoch_idx, tr_loss / (params["print_interval"] * grad_acc_steps), ) ) tr_loss = 0 loss.backward() if (step + 1) % grad_acc_steps == 0: torch.nn.utils.clip_grad_norm_( model.parameters(), params["max_grad_norm"] ) optimizer.step() scheduler.step() optimizer.zero_grad() if (step + 1) % (params["eval_interval"] * grad_acc_steps) == 0: logger.info("Evaluation on the development dataset") evaluate( reranker, valid_dataloader, params, device=device, logger=logger, ) model.train() logger.info("\n") logger.info("***** Saving fine - tuned model *****") epoch_output_folder_path = os.path.join( model_output_path, "epoch_{}".format(epoch_idx) ) utils.save_model(model, tokenizer, epoch_output_folder_path) output_eval_file = os.path.join(epoch_output_folder_path, "eval_results.txt") results = evaluate( reranker, valid_dataloader, params, device=device, logger=logger, ) ls = [best_score, results["normalized_accuracy"]] li = [best_epoch_idx, epoch_idx] best_score = ls[np.argmax(ls)] best_epoch_idx = li[np.argmax(ls)] logger.info("\n") execution_time = (time.time() - time_start) / 60 utils.write_to_file( os.path.join(model_output_path, "training_time.txt"), "The training took {} minutes\n".format(execution_time), ) logger.info("The training took {} minutes\n".format(execution_time)) # save the best model in the parent_dir logger.info("Best performance in epoch: {}".format(best_epoch_idx)) params["path_to_model"] = os.path.join( model_output_path, "epoch_{}".format(best_epoch_idx), WEIGHTS_NAME, ) reranker = load_biencoder(params) utils.save_model(reranker.model, tokenizer, model_output_path) if params["evaluate"]: params["path_to_model"] = model_output_path evaluate(params, logger=logger) if __name__ == "__main__": parser = BlinkParser(add_model_args=True) parser.add_training_args() parser.add_eval_args() # args = argparse.Namespace(**params) args = parser.parse_args() print(args) params = args.__dict__ main(params)
BLINK-main
blink/biencoder/train_biencoder.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from tqdm import tqdm from pytorch_transformers.modeling_bert import ( BertPreTrainedModel, BertConfig, BertModel, ) from pytorch_transformers.tokenization_bert import BertTokenizer from blink.common.ranker_base import BertEncoder, get_model_obj from blink.common.optimizer import get_bert_optimizer def load_biencoder(params): # Init model biencoder = BiEncoderRanker(params) return biencoder class BiEncoderModule(torch.nn.Module): def __init__(self, params): super(BiEncoderModule, self).__init__() ctxt_bert = BertModel.from_pretrained(params["bert_model"]) cand_bert = BertModel.from_pretrained(params['bert_model']) self.context_encoder = BertEncoder( ctxt_bert, params["out_dim"], layer_pulled=params["pull_from_layer"], add_linear=params["add_linear"], ) self.cand_encoder = BertEncoder( cand_bert, params["out_dim"], layer_pulled=params["pull_from_layer"], add_linear=params["add_linear"], ) self.config = ctxt_bert.config def forward( self, token_idx_ctxt, segment_idx_ctxt, mask_ctxt, token_idx_cands, segment_idx_cands, mask_cands, ): embedding_ctxt = None if token_idx_ctxt is not None: embedding_ctxt = self.context_encoder( token_idx_ctxt, segment_idx_ctxt, mask_ctxt ) embedding_cands = None if token_idx_cands is not None: embedding_cands = self.cand_encoder( token_idx_cands, segment_idx_cands, mask_cands ) return embedding_ctxt, embedding_cands class BiEncoderRanker(torch.nn.Module): def __init__(self, params, shared=None): super(BiEncoderRanker, self).__init__() self.params = params self.device = torch.device( "cuda" if torch.cuda.is_available() and not params["no_cuda"] else "cpu" ) self.n_gpu = torch.cuda.device_count() # init tokenizer self.NULL_IDX = 0 self.START_TOKEN = "[CLS]" self.END_TOKEN = "[SEP]" self.tokenizer = BertTokenizer.from_pretrained( params["bert_model"], do_lower_case=params["lowercase"] ) # init model self.build_model() model_path = params.get("path_to_model", None) if model_path is not None: self.load_model(model_path) self.model = self.model.to(self.device) self.data_parallel = params.get("data_parallel") if self.data_parallel: self.model = torch.nn.DataParallel(self.model) def load_model(self, fname, cpu=False): if cpu: state_dict = torch.load(fname, map_location=lambda storage, location: "cpu") else: state_dict = torch.load(fname) self.model.load_state_dict(state_dict) def build_model(self): self.model = BiEncoderModule(self.params) def save_model(self, output_dir): if not os.path.exists(output_dir): os.makedirs(output_dir) model_to_save = get_model_obj(self.model) output_model_file = os.path.join(output_dir, WEIGHTS_NAME) output_config_file = os.path.join(output_dir, CONFIG_NAME) torch.save(model_to_save.state_dict(), output_model_file) model_to_save.config.to_json_file(output_config_file) def get_optimizer(self, optim_states=None, saved_optim_type=None): return get_bert_optimizer( [self.model], self.params["type_optimization"], self.params["learning_rate"], fp16=self.params.get("fp16"), ) def encode_context(self, cands): token_idx_cands, segment_idx_cands, mask_cands = to_bert_input( cands, self.NULL_IDX ) embedding_context, _ = self.model( token_idx_cands, segment_idx_cands, mask_cands, None, None, None ) return embedding_context.cpu().detach() def encode_candidate(self, cands): token_idx_cands, segment_idx_cands, mask_cands = to_bert_input( cands, self.NULL_IDX ) _, embedding_cands = self.model( None, None, None, token_idx_cands, segment_idx_cands, mask_cands ) return embedding_cands.cpu().detach() # TODO: why do we need cpu here? # return embedding_cands # Score candidates given context input and label input # If cand_encs is provided (pre-computed), cand_ves is ignored def score_candidate( self, text_vecs, cand_vecs, random_negs=True, cand_encs=None, # pre-computed candidate encoding. ): # Encode contexts first token_idx_ctxt, segment_idx_ctxt, mask_ctxt = to_bert_input( text_vecs, self.NULL_IDX ) embedding_ctxt, _ = self.model( token_idx_ctxt, segment_idx_ctxt, mask_ctxt, None, None, None ) # Candidate encoding is given, do not need to re-compute # Directly return the score of context encoding and candidate encoding if cand_encs is not None: return embedding_ctxt.mm(cand_encs.t()) # Train time. We compare with all elements of the batch token_idx_cands, segment_idx_cands, mask_cands = to_bert_input( cand_vecs, self.NULL_IDX ) _, embedding_cands = self.model( None, None, None, token_idx_cands, segment_idx_cands, mask_cands ) if random_negs: # train on random negatives return embedding_ctxt.mm(embedding_cands.t()) else: # train on hard negatives embedding_ctxt = embedding_ctxt.unsqueeze(1) # batchsize x 1 x embed_size embedding_cands = embedding_cands.unsqueeze(2) # batchsize x embed_size x 2 scores = torch.bmm(embedding_ctxt, embedding_cands) # batchsize x 1 x 1 scores = torch.squeeze(scores) return scores # label_input -- negatives provided # If label_input is None, train on in-batch negatives def forward(self, context_input, cand_input, label_input=None): flag = label_input is None scores = self.score_candidate(context_input, cand_input, flag) bs = scores.size(0) if label_input is None: target = torch.LongTensor(torch.arange(bs)) target = target.to(self.device) loss = F.cross_entropy(scores, target, reduction="mean") else: loss_fct = nn.BCEWithLogitsLoss(reduction="mean") # TODO: add parameters? loss = loss_fct(scores, label_input) return loss, scores def to_bert_input(token_idx, null_idx): """ token_idx is a 2D tensor int. return token_idx, segment_idx and mask """ segment_idx = token_idx * 0 mask = token_idx != null_idx # nullify elements in case self.NULL_IDX was not 0 token_idx = token_idx * mask.long() return token_idx, segment_idx, mask
BLINK-main
blink/biencoder/biencoder.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch import os import numpy as np from pytorch_transformers.modeling_bert import ( BertPreTrainedModel, BertConfig, BertModel, ) from pytorch_transformers.tokenization_bert import BertTokenizer from torch.utils.data import DataLoader, SequentialSampler, TensorDataset from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from tqdm import tqdm from pytorch_transformers.optimization import AdamW, WarmupLinearSchedule from pytorch_transformers.file_utils import PYTORCH_PRETRAINED_BERT_CACHE class BertForReranking(BertPreTrainedModel): r""" Inputs: **input_ids**: ``torch.LongTensor`` of shape ``(batch_size, num_choices, sequence_length)``: Indices of input sequence tokens in the vocabulary. The second dimension of the input (`num_choices`) indicates the number of choices to score. To match pre-training, BERT input sequence should be formatted with [CLS] and [SEP] tokens as follows: (a) For sequence pairs: ``tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]`` ``token_type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1`` (b) For single sequences: ``tokens: [CLS] the dog is hairy . [SEP]`` ``token_type_ids: 0 0 0 0 0 0 0`` Indices can be obtained using :class:`pytorch_transformers.BertTokenizer`. See :func:`pytorch_transformers.PreTrainedTokenizer.encode` and :func:`pytorch_transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details. **token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, num_choices, sequence_length)``: Segment token indices to indicate first and second portions of the inputs. The second dimension of the input (`num_choices`) indicates the number of choices to score. Indices are selected in ``[0, 1]``: ``0`` corresponds to a `sentence A` token, ``1`` corresponds to a `sentence B` token (see `BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding`_ for more details). **attention_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, num_choices, sequence_length)``: Mask to avoid performing attention on padding token indices. The second dimension of the input (`num_choices`) indicates the number of choices to score. Mask values selected in ``[0, 1]``: ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens. **head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``: Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``: ``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**. **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``: Labels for computing the multiple choice classification loss. Indices should be in ``[0, ..., num_choices]`` where `num_choices` is the size of the second dimension of the input tensors. (see `input_ids` above) Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: Classification loss. **classification_scores**: ``torch.FloatTensor`` of shape ``(batch_size, num_choices)`` where `num_choices` is the size of the second dimension of the input tensors. (see `input_ids` above). Classification scores (before SoftMax). **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) of shape ``(batch_size, sequence_length, hidden_size)``: Hidden-states of the model at the output of each layer plus the initial embedding outputs. **attentions**: (`optional`, returned when ``config.output_attentions=True``) list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertForMultipleChoice.from_pretrained('bert-base-uncased') choices = ["Hello, my dog is cute", "Hello, my cat is amazing"] input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0) # Batch size 1, 2 choices labels = torch.tensor(1).unsqueeze(0) # Batch size 1 outputs = model(input_ids, labels=labels) loss, classification_scores = outputs[:2] """ def __init__(self, config): super(BertForReranking, self).__init__(config) self.bert = BertModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, 1) self.init_weights() def forward( self, input_ids, token_type_ids=None, attention_mask=None, labels=None, position_ids=None, head_mask=None, entity_mask=None, ): num_choices = input_ids.shape[1] # from batch_size x cands x tokens -> (batch_size x cands) x tokens flat_input_ids = input_ids.view(-1, input_ids.size(-1)) flat_token_type_ids = ( token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None ) flat_attention_mask = ( attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None ) flat_position_ids = ( position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None ) outputs = self.bert( flat_input_ids, position_ids=flat_position_ids, token_type_ids=flat_token_type_ids, attention_mask=flat_attention_mask, head_mask=head_mask, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, num_choices) entity_mask = (1.0 - entity_mask) * -1000.0 reshaped_logits = reshaped_logits + entity_mask outputs = (reshaped_logits,) if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) outputs = (loss,) + outputs return outputs class BertReranker: def __init__(self, parameters): if "path_to_model" not in parameters: parameters["path_to_model"] = parameters["bert_model"] self.parameters = parameters self.device = torch.device( "cuda" if torch.cuda.is_available() and not parameters["no_cuda"] else "cpu" ) self.n_gpu = torch.cuda.device_count() # Load the fine-tuned model and the tokenizer used by it self.model = BertReranker.get_model(parameters) self.model.to(self.device) self.tokenizer = BertReranker.get_tokenizer(parameters) print("The reranking model is loaded") def rerank(self, mentions, sentences): model = self.model tokenizer = self.tokenizer p = self.parameters device = self.device data, tensor_data = BertReranker._process_mentions_for_model( p["context_key"], mentions, tokenizer, p["max_seq_length"], p["top_k"], p["silent"], sentences=sentences, ) sampler = SequentialSampler(tensor_data) dataloader = DataLoader( tensor_data, sampler=sampler, batch_size=p["evaluation_batch_size"] ) softmax = torch.nn.Softmax(dim=1) for input_ids, input_mask, segment_ids, mention_ids, entity_mask in tqdm( dataloader, desc="Inferring" ): input_ids = input_ids.to(device) input_mask = input_mask.to(device) segment_ids = segment_ids.to(device) mention_ids = mention_ids.numpy() entity_mask = entity_mask.to(device) with torch.no_grad(): logits = self.model( input_ids, segment_ids, input_mask, entity_mask=entity_mask )[0] probs = softmax(logits) logits = logits.detach().cpu().numpy() probs = probs.detach().cpu().numpy() predictions = np.argmax(logits, axis=1) for idx, mention_idx in enumerate(mention_ids): pred = predictions[idx].item() mentions[mention_idx]["predicted_candidate_idx"] = pred mentions[mention_idx]["prob_assigned_to_candidate"] = probs[idx][ pred ].item() return mentions def get_scheduler_and_optimizer(self, parameters, train_tensor_data, logger): model = self.model num_train_optimization_steps = ( int( len(train_tensor_data) / parameters["train_batch_size"] / parameters["gradient_accumulation_steps"] ) * parameters["num_train_epochs"] ) num_warmup_steps = int( num_train_optimization_steps * parameters["warmup_proportion"] ) param_optimizer = list(model.named_parameters()) param_optimizer = [n for n in param_optimizer] no_decay = ["bias", "LayerNorm.bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ { "params": [ p for n, p in param_optimizer if not any(nd in n for nd in no_decay) ], "weight_decay": 0.01, }, { "params": [ p for n, p in param_optimizer if any(nd in n for nd in no_decay) ], "weight_decay": 0.0, }, ] optimizer = AdamW( optimizer_grouped_parameters, lr=parameters["learning_rate"], correct_bias=False, ) scheduler = WarmupLinearSchedule( optimizer, warmup_steps=num_warmup_steps, t_total=num_train_optimization_steps, ) logger.info(" Num optimization steps = %d", num_train_optimization_steps) logger.info(" Num warmup steps = %d", num_warmup_steps) return optimizer, scheduler @staticmethod def get_model(parameters): model = BertForReranking.from_pretrained( parameters["path_to_model"], num_labels=parameters["top_k"], cache_dir=os.path.join(str(PYTORCH_PRETRAINED_BERT_CACHE), "local"), ) if parameters["dataparallel_bert"]: model.bert = torch.nn.DataParallel(model.bert) print("Data parallel Bert") return model @staticmethod def get_tokenizer(parameters): tokenizer = BertTokenizer.from_pretrained( parameters["path_to_model"], do_lower_case=parameters["lowercase_flag"] ) return tokenizer @staticmethod def _get_candidate_representation( context_tokens, candidate_desc, tokenizer, max_seq_length, max_sub_seq_length ): """Tokenizes and truncates description; combines it with the tokenized context and generates one input sample for bert""" candidate_desc_tokens = tokenizer.tokenize(candidate_desc) candidate_desc_tokens = candidate_desc_tokens[:max_sub_seq_length] tokens = ( ["[CLS]"] + context_tokens + ["[SEP]"] + candidate_desc_tokens + ["[SEP]"] ) segment_ids = [0] * (len(context_tokens) + 2) + [1] * ( len(candidate_desc_tokens) + 1 ) input_ids = tokenizer.convert_tokens_to_ids(tokens) input_mask = [1] * len(input_ids) # Zero-pad up to the sequence length padding = [0] * (max_seq_length - len(input_ids)) input_ids += padding input_mask += padding segment_ids += padding assert len(input_ids) == max_seq_length assert len(input_mask) == max_seq_length assert len(segment_ids) == max_seq_length return { "tokens": tokens, "input_ids": input_ids, "input_mask": input_mask, "segment_ids": segment_ids, } @staticmethod def _get_mention_context_end2end(mention, sentences): """Given a mention and a list of sentences that follow the blink conventions, it returns a left and right context for the mention""" sent_idx = mention["sent_idx"] prev_sent = sentences[sent_idx - 1] if sent_idx > 0 else "" next_sent = sentences[sent_idx + 1] if sent_idx + 1 < len(sentences) else "" prev_sent = sentences[sent_idx - 1] if False else "" next_sent = sentences[sent_idx + 1] if False else "" sent = sentences[sent_idx] curr_sent_prev = sent[: mention["start_pos"]].strip() curr_sent_next = sent[mention["end_pos"] :].strip() left_context = "{} {}".format(prev_sent, curr_sent_prev).strip() right_context = "{} {}".format(curr_sent_next, next_sent).strip() return (left_context, right_context) @staticmethod def _select_field(samples, field): """Helper function that returns a list of lists, each of which contains the information for all candidates for each sample""" return [ [cand[field] for cand in sample["candidate_features"]] for sample in samples ] @staticmethod def _get_context_token_representation( context_key, sample, tokenizer, max_sub_seq_length, start_token, end_token, mention_text_key="text", tagged=True, ): """Tags the mention, trims the context and concatenates everything to form the context representation""" mention_tokens = ( [start_token] + tokenizer.tokenize(sample[mention_text_key]) + [end_token] ) max_sub_seq_length = (max_sub_seq_length - len(mention_tokens)) // 2 context_left, context_right = sample[context_key] context_left = tokenizer.tokenize(context_left) context_right = tokenizer.tokenize(context_right) if len(context_left) > max_sub_seq_length: context_left = context_left[-max_sub_seq_length:] if len(context_right) > max_sub_seq_length: context_right = context_right[:max_sub_seq_length] context_tokens = context_left + mention_tokens + context_right return context_tokens @staticmethod def _process_mentions_for_model( context_key, mentions, tokenizer, max_seq_length, top_k, silent, start_token="[unused0]", end_token="[unused1]", debug=False, tagged=True, sentences=None, candidates_key="candidates", gold_key="gold_pos", logger=None, ): processed_mentions = [] if debug: mentions = mentions[:200] max_sub_seq_length = (max_seq_length - 3) // 2 if silent: iter_ = mentions else: iter_ = tqdm(mentions) for idx, mention in enumerate(iter_): # if sentences is not none that means that we are processing end2end data for inference if sentences is not None: mention[context_key] = BertReranker._get_mention_context_end2end( mention, sentences ) context_tokens = BertReranker._get_context_token_representation( context_key, mention, tokenizer, max_sub_seq_length, start_token, end_token, ) candidates = mention[candidates_key] candidate_features = [] for candidate in candidates[:top_k]: candidate_desc = " ".join(candidate["sentences"]) candidate_obj = BertReranker._get_candidate_representation( context_tokens, candidate_desc, tokenizer, max_seq_length, max_sub_seq_length, ) candidate_features.append(candidate_obj) entity_mask = [1] * len(candidate_features) + [0] * ( top_k - len(candidate_features) ) if len(candidates) < top_k: candidate_desc = "" padding_candidate_obj = BertReranker._get_candidate_representation( context_tokens, candidate_desc, tokenizer, max_seq_length, max_sub_seq_length, ) for _ in range(top_k - len(candidates)): candidate_features.append(padding_candidate_obj) assert len(candidate_features) == top_k assert len(entity_mask) == top_k if sentences is not None: processed_mentions.append( { "candidate_features": candidate_features, "mention_idx": idx, "entity_mask": entity_mask, } ) else: label = mention[gold_key] - 1 processed_mentions.append( { "candidate_features": candidate_features, "label": label, "entity_mask": entity_mask, } ) all_input_ids = torch.tensor( BertReranker._select_field(processed_mentions, "input_ids"), dtype=torch.long, ) all_input_mask = torch.tensor( BertReranker._select_field(processed_mentions, "input_mask"), dtype=torch.long, ) all_segment_ids = torch.tensor( BertReranker._select_field(processed_mentions, "segment_ids"), dtype=torch.long, ) all_entity_masks = torch.tensor( [s["entity_mask"] for s in processed_mentions], dtype=torch.float ) data = { "all_input_ids": all_input_ids, "all_input_mask": all_input_mask, "all_segment_ids": all_segment_ids, "all_entity_masks": all_entity_masks, } if sentences is not None: all_mention_indices = torch.tensor( [s["mention_idx"] for s in processed_mentions], dtype=torch.long ) data["all_mention_indices"] = all_mention_indices tensor_data = TensorDataset( all_input_ids, all_input_mask, all_segment_ids, all_mention_indices, all_entity_masks, ) else: all_label = torch.tensor( [s["label"] for s in processed_mentions], dtype=torch.long ) data["all_label"] = all_label tensor_data = TensorDataset( all_input_ids, all_input_mask, all_segment_ids, all_label, all_entity_masks, ) if logger != None: logger.info("all_input_ids shape: {}".format(all_input_ids.shape)) logger.info("all_input_mask shape: {}".format(all_input_mask.shape)) logger.info("all_segment_ids shape: {}".format(all_segment_ids.shape)) logger.info("all_entity_masks shape: {}".format(all_entity_masks.shape)) if sentences is not None: logger.info( "all_mention_indices shape: {}".format(all_mention_indices.shape) ) else: logger.info("all_label shape: {}".format(all_label.shape)) return data, tensor_data
BLINK-main
blink/candidate_ranking/bert_reranking.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import io import sys import json import torch import logging import numpy as np from collections import OrderedDict from pytorch_transformers.modeling_utils import CONFIG_NAME, WEIGHTS_NAME from tqdm import tqdm from blink.candidate_ranking.bert_reranking import BertReranker from blink.biencoder.biencoder import BiEncoderRanker def read_dataset(dataset_name, preprocessed_json_data_parent_folder, debug=False): file_name = "{}.jsonl".format(dataset_name) txt_file_path = os.path.join(preprocessed_json_data_parent_folder, file_name) samples = [] with io.open(txt_file_path, mode="r", encoding="utf-8") as file: for line in file: samples.append(json.loads(line.strip())) if debug and len(samples) > 200: break return samples def filter_samples(samples, top_k, gold_key="gold_pos"): if top_k == None: return samples filtered_samples = [ sample for sample in samples if sample[gold_key] > 0 and sample[gold_key] <= top_k ] return filtered_samples def _truncate_seq_pair(tokens_a, tokens_b, max_length): """Truncates a sequence pair in place to the maximum length.""" while True: total_length = len(tokens_a) + len(tokens_b) if total_length <= max_length: break if len(tokens_a) > len(tokens_b): tokens_a.pop() else: tokens_b.pop() def eval_precision_bm45_dataloader(dataloader, ks=[1, 5, 10], number_of_samples=None): label_ids = torch.cat([label_ids for _, _, _, label_ids, _ in dataloader]) label_ids = label_ids + 1 p = {} for k in ks: p[k] = 0 for label in label_ids: if label > 0: for k in ks: if label <= k: p[k] += 1 for k in ks: if number_of_samples is None: p[k] /= len(label_ids) else: p[k] /= number_of_samples return p def accuracy(out, labels): outputs = np.argmax(out, axis=1) return np.sum(outputs == labels), outputs == labels def remove_module_from_state_dict(state_dict): new_state_dict = OrderedDict() for key, value in state_dict.items(): name = "".join(key.split(".module")) new_state_dict[name] = value return new_state_dict def save_model(model, tokenizer, output_dir): """Saves the model and the tokenizer used in the output directory.""" if not os.path.exists(output_dir): os.makedirs(output_dir) model_to_save = model.module if hasattr(model, "module") else model output_model_file = os.path.join(output_dir, WEIGHTS_NAME) output_config_file = os.path.join(output_dir, CONFIG_NAME) torch.save(model_to_save.state_dict(), output_model_file) model_to_save.config.to_json_file(output_config_file) tokenizer.save_vocabulary(output_dir) def get_logger(output_dir=None): if output_dir != None: os.makedirs(output_dir, exist_ok=True) logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, handlers=[ logging.FileHandler( "{}/log.txt".format(output_dir), mode="a", delay=False ), logging.StreamHandler(sys.stdout), ], ) else: logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, handlers=[logging.StreamHandler(sys.stdout)], ) logger = logging.getLogger('Blink') logger.setLevel(10) return logger def write_to_file(path, string, mode="w"): with open(path, mode) as writer: writer.write(string) def get_reranker(parameters): return BertReranker(parameters) def get_biencoder(parameters): return BiEncoderRanker(parameters)
BLINK-main
blink/candidate_ranking/utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import argparse import pickle import torch import json import sys import io import random import sys import time import numpy as np import pprint import shutil from multiprocessing.pool import ThreadPool from tqdm import tqdm, trange from collections import OrderedDict from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from torch.utils.data.distributed import DistributedSampler from pytorch_transformers.file_utils import PYTORCH_PRETRAINED_BERT_CACHE from pytorch_transformers.tokenization_bert import BertTokenizer import blink.candidate_retrieval.utils from blink.candidate_ranking.bert_reranking import BertForReranking import logging import utils from evaluate import evaluate_model_on_dataset, evaluate logger = None def main(parameters): # Read model reranker = utils.get_reranker(parameters) tokenizer = reranker.tokenizer model = reranker.model device = reranker.device n_gpu = reranker.n_gpu if parameters["gradient_accumulation_steps"] < 1: raise ValueError( "Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format( parameters["gradient_accumulation_steps"] ) ) # An effective batch size of `x`, when we are accumulating the gradient accross `y` batches will be achieved by having a batch size of `z = x / y` # args.gradient_accumulation_steps = args.gradient_accumulation_steps // n_gpu parameters["train_batch_size"] = ( parameters["train_batch_size"] // parameters["gradient_accumulation_steps"] ) train_batch_size = parameters["train_batch_size"] evaluation_batch_size = parameters["evaluation_batch_size"] gradient_accumulation_steps = parameters["gradient_accumulation_steps"] # Fix the random seeds seed = parameters["seed"] random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) logger = None number_of_samples_per_dataset = {} if reranker.n_gpu > 0: torch.cuda.manual_seed_all(seed) time_start = time.time() model_output_path = parameters["model_output_path"] # Make sure everything is in order with the output directiory if os.path.exists(model_output_path) and os.listdir(model_output_path): print( "Output directory ({}) already exists and is not empty.".format( model_output_path ) ) answer = input("Would you like to empty the existing directory? [Y/N]\n") if answer.strip() == "Y": print("Deleteing {}...".format(model_output_path)) shutil.rmtree(model_output_path) else: raise ValueError( "Output directory ({}) already exists and is not empty.".format( model_output_path ) ) if not os.path.exists(model_output_path): os.makedirs(model_output_path) utils.write_to_file( os.path.join(model_output_path, "training_parameters.txt"), str(parameters) ) logger = utils.get_logger(model_output_path) logger.info("Starting training") logger.info( "device: {} n_gpu: {}, distributed training: {}".format(device, n_gpu, False) ) ### Load training data train_dataset_name = "aida-train" train_samples = utils.read_dataset( train_dataset_name, parameters["path_to_preprocessed_json_data"] ) train_samples_filtered = utils.filter_samples(train_samples, parameters["top_k"]) logger.info( "Retained {} out of {} samples".format( len(train_samples_filtered), len(train_samples) ) ) number_of_samples_per_dataset[train_dataset_name] = len(train_samples) train_data, train_tensor_data = reranker._process_mentions_for_model( parameters["context_key"], train_samples_filtered, tokenizer, parameters["max_seq_length"], silent=parameters["silent"], logger=logger, top_k=parameters["top_k"], debug=parameters["debug"], ) train_sampler = RandomSampler(train_tensor_data) train_dataloader = DataLoader( train_tensor_data, sampler=train_sampler, batch_size=train_batch_size ) ### ### Loading dev data dev_dataset_name = "aida-A" dev_samples = utils.read_dataset( dev_dataset_name, parameters["path_to_preprocessed_json_data"] ) dev_samples_filtered = utils.filter_samples(dev_samples, parameters["top_k"]) logger.info( "Retained {} out of {} samples".format( len(dev_samples_filtered), len(dev_samples) ) ) number_of_samples_per_dataset[dev_dataset_name] = len(dev_samples) dev_data, dev_tensor_data = reranker._process_mentions_for_model( parameters["context_key"], train_samples_filtered, tokenizer, parameters["max_seq_length"], silent=parameters["silent"], logger=logger, top_k=parameters["top_k"], debug=parameters["debug"], ) dev_sampler = SequentialSampler(dev_tensor_data) dev_dataloader = DataLoader( dev_tensor_data, sampler=dev_sampler, batch_size=evaluation_batch_size ) ### logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_samples_filtered)) logger.info(" Batch size = %d", train_batch_size) logger.info(" Gradient accumulation steps = %d", gradient_accumulation_steps) optimizer, scheduler = reranker.get_scheduler_and_optimizer( parameters, train_tensor_data, logger ) best_epoch_idx = -1 best_score = -1 num_train_epochs = parameters["num_train_epochs"] model.train() for epoch_idx in trange(int(num_train_epochs), desc="Epoch"): tr_loss = 0 results = None for step, batch in enumerate(tqdm(train_dataloader, desc="Batch")): batch = tuple(t.to(device) for t in batch) input_ids, input_mask, segment_ids, label_ids, entity_mask = batch loss, _ = model( input_ids, segment_ids, input_mask, label_ids, entity_mask=entity_mask ) # if n_gpu > 1: # loss = loss.mean() # mean() to average on multi-gpu. if gradient_accumulation_steps > 1: loss = loss / gradient_accumulation_steps tr_loss += loss.item() if (step + 1) % ( parameters["print_tr_loss_opt_steps_interval"] * parameters["gradient_accumulation_steps"] ) == 0: logger.info( "Step {} - epoch {} average loss: {}\n".format( step, epoch_idx, tr_loss / ( parameters["print_tr_loss_opt_steps_interval"] * gradient_accumulation_steps ), ) ) tr_loss = 0 loss.backward() if (step + 1) % gradient_accumulation_steps == 0: torch.nn.utils.clip_grad_norm_( model.parameters(), parameters["max_grad_norm"] ) optimizer.step() scheduler.step() optimizer.zero_grad() if (step + 1) % ( parameters["dev_evaluation_interval"] * gradient_accumulation_steps * train_batch_size ) == 0: logger.info("Evaluation on the development dataset") evaluate_model_on_dataset( model, dev_dataloader, dev_dataset_name, device=device, logger=logger, number_of_samples=number_of_samples_per_dataset[dev_dataset_name], ) model.train() logger.info("\n") logger.info("***** Saving fine - tuned model *****") epoch_output_folder_path = os.path.join( model_output_path, "epoch_{}".format(epoch_idx) ) utils.save_model(model, tokenizer, epoch_output_folder_path) output_eval_file = os.path.join(epoch_output_folder_path, "eval_results.txt") results = evaluate_model_on_dataset( model, dev_dataloader, dev_dataset_name, device=device, logger=logger, path_to_file_to_write_results=output_eval_file, number_of_samples=number_of_samples_per_dataset[dev_dataset_name], ) ls = [best_score, results["normalized_accuracy"]] li = [best_epoch_idx, epoch_idx] best_score = ls[np.argmax(ls)] best_epoch_idx = li[np.argmax(ls)] logger.info("\n") execution_time = (time.time() - time_start) / 60 utils.write_to_file( os.path.join(model_output_path, "training_time.txt"), "The training took {} minutes\n".format(execution_time), ) logger.info("The training took {} minutes\n".format(execution_time)) # save the best model in the parent_dir logger.info("Best performance in epoch: {}".format(best_epoch_idx)) parameters["path_to_model"] = os.path.join( model_output_path, "epoch_{}".format(best_epoch_idx) ) reranker = utils.get_reranker(parameters) utils.save_model(reranker.model, tokenizer, model_output_path) if parameters["evaluate"]: parameters["path_to_model"] = model_output_path evaluate(parameters, logger=logger) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--path_to_preprocessed_json_data", default="data/train_and_benchmark_processed_json", type=str, help="The path to the train and benchmarking data.", ) parser.add_argument( "--bert_model", default="bert-large-cased", type=str, help="Bert pre-trained model selected in the list: bert-base-uncased, " "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.", ) parser.add_argument( "--model_output_path", default=None, type=str, required=True, help="The output directory where the trained model is to be dumped.", ) parser.add_argument( "--context_key", default="tagged_query_context_sent_prev_curr_next", type=str ) parser.add_argument( "--lowercase_flag", action="store_true", help="Whether to lower case the input text. True for uncased models, False for cased models.", ) parser.add_argument("--top_k", default=80, type=int) parser.add_argument( "--max_seq_length", default=512, type=int, help="The maximum total input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, and sequences shorter \n" "than this will be padded.", ) parser.add_argument( "--evaluate", action="store_true", help="Whether to run evaluation." ) parser.add_argument( "--full_evaluation", action="store_true", help="Whether to run the evaluation on all datasets.", ) parser.add_argument( "--evaluate_with_pregenerated_candidates", action="store_true", help="Whether to run in debug mode with only 200 samples.", ) parser.add_argument( "--output_eval_file", default=None, type=str, help="The txt file where the the evaluation results will be written.", ) parser.add_argument( "--debug", action="store_true", help="Whether to run in debug mode with only 200 samples.", ) parser.add_argument( "--silent", action="store_true", help="Whether to print progress bars." ) parser.add_argument( "--train_batch_size", default=8, type=int, help="Total batch size for training." ) parser.add_argument( "--evaluation_batch_size", default=4, type=int, help="Total batch size for evaluation.", ) parser.add_argument( "--dataparallel_bert", action="store_true", help="Whether to distributed the candidate generation process.", ) parser.add_argument("--max_grad_norm", default=1.0, type=float) parser.add_argument( "--learning_rate", default=3e-5, type=float, help="The initial learning rate for Adam.", ) parser.add_argument( "--num_train_epochs", default=3, type=int, help="Total number of training epochs to perform.", ) parser.add_argument( "--print_tr_loss_opt_steps_interval", type=int, default=20, help="Interval of loss printing", ) parser.add_argument( "--dev_evaluation_interval", type=int, default=160, help="Interval for evaluation during training", ) parser.add_argument( "--save_interval", type=int, default=1, help="Interval for model saving" ) parser.add_argument( "--warmup_proportion", default=0.1, type=float, help="Proportion of training to perform linear learning rate warmup for. " "E.g., 0.1 = 10% of training.", ) parser.add_argument( "--no_cuda", action="store_true", help="Whether not to use CUDA when available" ) parser.add_argument( "--seed", type=int, default=12345, help="random seed for initialization" ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=8, help="Number of updates steps to accumualte before performing a backward/update pass.", ) # args = argparse.Namespace(**params) args = parser.parse_args() print(args) parameters = args.__dict__ main(parameters)
BLINK-main
blink/candidate_ranking/train.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import time import utils import torch import utils import argparse import os from bert_reranking import BertReranker from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm def evaluate_model_on_dataset( model, dataloader, dataset_name, device, logger, number_of_samples, eval_bm45_acc=False, path_to_file_to_write_results=None, ): model.eval() eval_accuracy = 0 nb_eval_steps, nb_eval_examples = 0, 0 for input_ids, input_mask, segment_ids, label_ids, entity_mask in tqdm( dataloader, desc="Evaluating" ): input_ids = input_ids.to(device) input_mask = input_mask.to(device) segment_ids = segment_ids.to(device) label_ids = label_ids.to(device) entity_mask = entity_mask.to(device) with torch.no_grad(): tmp_eval_loss, logits = model( input_ids, segment_ids, input_mask, label_ids, entity_mask=entity_mask ) logits = logits.detach().cpu().numpy() label_ids = label_ids.to("cpu").numpy() tmp_eval_accuracy = utils.accuracy(logits, label_ids) eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0) nb_eval_steps += 1 logger.info("\n") normalized_eval_accuracy = eval_accuracy / nb_eval_examples result = {"normalized_accuracy": normalized_eval_accuracy} result["unnormalized_accuracy"] = eval_accuracy / number_of_samples result["candidate_generation_recall"] = nb_eval_examples / number_of_samples if eval_bm45_acc: result["normalized_bm45_recall_@"] = utils.eval_precision_bm45_dataloader( dataloader, [1, 5, 10, 20, 40, 60, 80, 100] ) result["unnormalized_bm45_recall_@"] = utils.eval_precision_bm45_dataloader( dataloader, [1, 5, 10, 20, 40, 60, 80, 100], number_of_samples ) if path_to_file_to_write_results is None: logger.info( "***** Eval results - {} ({} / {} samples) *****\n".format( dataset_name, nb_eval_examples, number_of_samples ) ) for key in sorted(result.keys()): logger.info(" %s = %s", key, str(result[key])) else: with open(path_to_file_to_write_results, "a+") as writer: logger.info( "***** Eval results - {} ({} / {} samples) *****\n".format( dataset_name, nb_eval_examples, number_of_samples ) ) writer.write( "***** Eval results - {} ({} / {} samples) *****\n".format( dataset_name, nb_eval_examples, number_of_samples ) ) for key in sorted(result.keys()): logger.info(" %s = %s", key, str(result[key])) writer.write("%s = %s\n" % (key, str(result[key]))) writer.write("\n") logger.info("\n") return result def evaluate(parameters, logger=None): reranker = utils.get_reranker(parameters) if parameters["full_evaluation"]: eval_datasets = [ "aida-A", "aida-B", "msnbc", "aquaint", "ace2004", "clueweb", "wikipedia", ] else: eval_datasets = ["aida-B"] candidates_key = ( "pregenerated_candidates" if parameters["evaluate_with_pregenerated_candidates"] else "candidates" ) gold_key = ( "pregenerated_gold_pos" if parameters["evaluate_with_pregenerated_candidates"] else "gold_pos" ) number_of_samples_per_dataset = {} total_time = 0 for eval_dataset_name in eval_datasets: time_start = time.time() logger.info("\nEvaluating on the {} dataset".format(eval_dataset_name)) eval_samples = utils.read_dataset( eval_dataset_name, parameters["path_to_preprocessed_json_data"] ) eval_samples_filtered = utils.filter_samples( eval_samples, parameters["top_k"], gold_key ) logger.info( "Retained {} out of {} samples".format( len(eval_samples_filtered), len(eval_samples) ) ) number_of_samples_per_dataset[eval_dataset_name] = len(eval_samples) # if args.num_preprocessing_threads == -1: # eval_data, eval_tensor_data = process_samples_for_model(args.context_key, eval_samples_filtered, tokenizer, args.max_seq_length, logger = logger, top_k = args.top_k, example = False, debug = args.debug, tagged = args.tag_mention, candidates_key = candidates_key, gold_key = gold_key) # else: # eval_data, eval_tensor_data = preprocessing_multithreaded(eval_samples_filtered, logger, args, output_dir=True) eval_data, eval_tensor_data = reranker._process_mentions_for_model( parameters["context_key"], eval_samples_filtered, reranker.tokenizer, parameters["max_seq_length"], parameters["top_k"], parameters["silent"], candidates_key=candidates_key, gold_key=gold_key, debug=parameters["debug"], ) eval_sampler = SequentialSampler(eval_tensor_data) eval_dataloader = DataLoader( eval_tensor_data, sampler=eval_sampler, batch_size=parameters["evaluation_batch_size"], ) if parameters["output_eval_file"] is None: output_eval_file = os.path.join( parameters["path_to_model"], "eval_results.txt" ) else: output_eval_file = parameters["output_eval_file"] result = evaluate_model_on_dataset( reranker.model, eval_dataloader, eval_dataset_name, eval_bm45_acc=True, device=reranker.device, logger=logger, path_to_file_to_write_results=output_eval_file, number_of_samples=number_of_samples_per_dataset[eval_dataset_name], ) execution_time = (time.time() - time_start) / 60 total_time += execution_time if logger != None: logger.info( "The execution for dataset {} took {} minutes".format( eval_dataset_name, execution_time ) ) else: print( "The execution for dataset {} took {} minutes".format( eval_dataset_name, execution_time ) ) if logger != None: logger.info( "The execution for dataset {} took {} minutes".format( eval_dataset_name, execution_time ) ) else: print("The evaluation took:", total_time, " minutes") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--path_to_preprocessed_json_data", default="data/train_and_benchmark_processed_json", type=str, help="The path to the train and benchmarking data.", ) parser.add_argument( "--path_to_model", default=None, type=str, required=True, help="The full path to the model to be evaluated.", ) parser.add_argument("--top_k", default=80, type=int) parser.add_argument( "--max_seq_length", default=512, type=int, help="The maximum total input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, and sequences shorter \n" "than this will be padded.", ) parser.add_argument( "--context_key", default="tagged_query_context_sent_prev_curr_next", type=str ) parser.add_argument( "--lowercase_flag", action="store_true", help="Whether to lower case the input text. True for uncased models, False for cased models.", ) parser.add_argument( "--full_evaluation", action="store_true", help="Whether to run the evaluation on all datasets.", ) parser.add_argument( "--evaluate_with_pregenerated_candidates", action="store_true", help="Whether to run in debug mode with only 200 samples.", ) parser.add_argument( "--evaluation_batch_size", default=8, type=int, help="Total batch size for evaluation.", ) parser.add_argument( "--dataparallel_bert", action="store_true", help="Whether to distributed the candidate generation process.", ) parser.add_argument( "--no_cuda", action="store_true", help="Whether not to use CUDA when available" ) parser.add_argument( "--debug", action="store_true", help="Whether to run in debug mode with only 200 samples.", ) parser.add_argument( "--silent", action="store_true", help="Whether to print progress bars." ) parser.add_argument( "--output_eval_file", default=None, type=str, help="The txt file where the the evaluation results will be written.", ) args = parser.parse_args() print(args) parameters = args.__dict__ evaluate(parameters, logger=utils.get_logger())
BLINK-main
blink/candidate_ranking/evaluate.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # # Provide an argument parser and default command line options for using BLINK. import argparse import importlib import os import sys import datetime ENT_START_TAG = "[unused0]" ENT_END_TAG = "[unused1]" ENT_TITLE_TAG = "[unused2]" class BlinkParser(argparse.ArgumentParser): """ Provide an opt-producer and CLI arguement parser. More options can be added specific by paassing this object and calling ''add_arg()'' or add_argument'' on it. :param add_blink_args: (default True) initializes the default arguments for BLINK package. :param add_model_args: (default False) initializes the default arguments for loading models, including initializing arguments from the model. """ def __init__( self, add_blink_args=True, add_model_args=False, description='BLINK parser', ): super().__init__( description=description, allow_abbrev=False, conflict_handler='resolve', formatter_class=argparse.HelpFormatter, add_help=add_blink_args, ) self.blink_home = os.path.dirname( os.path.dirname(os.path.dirname(os.path.realpath(__file__))) ) os.environ['BLINK_HOME'] = self.blink_home self.add_arg = self.add_argument self.overridable = {} if add_blink_args: self.add_blink_args() if add_model_args: self.add_model_args() def add_blink_args(self, args=None): """ Add common BLINK args across all scripts. """ parser = self.add_argument_group("Common Arguments") parser.add_argument( "--silent", action="store_true", help="Whether to print progress bars." ) parser.add_argument( "--debug", action="store_true", help="Whether to run in debug mode with only 200 samples.", ) parser.add_argument( "--data_parallel", action="store_true", help="Whether to distributed the candidate generation process.", ) parser.add_argument( "--no_cuda", action="store_true", help="Whether not to use CUDA when available", ) parser.add_argument("--top_k", default=10, type=int) parser.add_argument( "--seed", type=int, default=52313, help="random seed for initialization" ) parser.add_argument( "--zeshel", default=True, type=bool, help="Whether the dataset is from zeroshot.", ) def add_model_args(self, args=None): """ Add model args. """ parser = self.add_argument_group("Model Arguments") parser.add_argument( "--max_seq_length", default=256, type=int, help="The maximum total input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, and sequences shorter \n" "than this will be padded.", ) parser.add_argument( "--max_context_length", default=128, type=int, help="The maximum total context input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, and sequences shorter \n" "than this will be padded.", ) parser.add_argument( "--max_cand_length", default=128, type=int, help="The maximum total label input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, and sequences shorter \n" "than this will be padded.", ) parser.add_argument( "--path_to_model", default=None, type=str, required=False, help="The full path to the model to load.", ) parser.add_argument( "--bert_model", default="bert-base-uncased", type=str, help="Bert pre-trained model selected in the list: bert-base-uncased, " "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.", ) parser.add_argument( "--pull_from_layer", type=int, default=-1, help="Layers to pull from BERT", ) parser.add_argument( "--lowercase", action="store_false", help="Whether to lower case the input text. True for uncased models, False for cased models.", ) parser.add_argument("--context_key", default="context", type=str) parser.add_argument( "--out_dim", type=int, default=1, help="Output dimention of bi-encoders.", ) parser.add_argument( "--add_linear", action="store_true", help="Whether to add an additonal linear projection on top of BERT.", ) parser.add_argument( "--data_path", default="data/zeshel", type=str, help="The path to the train data.", ) parser.add_argument( "--output_path", default=None, type=str, required=True, help="The output directory where generated output file (model, etc.) is to be dumped.", ) def add_training_args(self, args=None): """ Add model training args. """ parser = self.add_argument_group("Model Training Arguments") parser.add_argument( "--evaluate", action="store_true", help="Whether to run evaluation." ) parser.add_argument( "--output_eval_file", default=None, type=str, help="The txt file where the the evaluation results will be written.", ) parser.add_argument( "--train_batch_size", default=8, type=int, help="Total batch size for training." ) parser.add_argument("--max_grad_norm", default=1.0, type=float) parser.add_argument( "--learning_rate", default=3e-5, type=float, help="The initial learning rate for Adam.", ) parser.add_argument( "--num_train_epochs", default=1, type=int, help="Number of training epochs.", ) parser.add_argument( "--print_interval", type=int, default=10, help="Interval of loss printing", ) parser.add_argument( "--eval_interval", type=int, default=100, help="Interval for evaluation during training", ) parser.add_argument( "--save_interval", type=int, default=1, help="Interval for model saving" ) parser.add_argument( "--warmup_proportion", default=0.1, type=float, help="Proportion of training to perform linear learning rate warmup for. " "E.g., 0.1 = 10% of training.", ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumualte before performing a backward/update pass.", ) parser.add_argument( "--type_optimization", type=str, default="all_encoder_layers", help="Which type of layers to optimize in BERT", ) parser.add_argument( "--shuffle", type=bool, default=False, help="Whether to shuffle train data", ) def add_eval_args(self, args=None): """ Add model evaluation args. """ parser = self.add_argument_group("Model Evaluation Arguments") parser.add_argument( "--eval_batch_size", default=8, type=int, help="Total batch size for evaluation.", ) parser.add_argument( "--mode", default="valid", type=str, help="Train / validation / test", ) parser.add_argument( "--save_topk_result", action="store_true", help="Whether to save prediction results.", ) parser.add_argument( "--encode_batch_size", default=8, type=int, help="Batch size for encoding." ) parser.add_argument( "--cand_pool_path", default=None, type=str, help="Path for cached candidate pool (id tokenization of candidates)", ) parser.add_argument( "--cand_encode_path", default=None, type=str, help="Path for cached candidate encoding", )
BLINK-main
blink/common/params.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from torch import nn def get_model_obj(model): model = model.module if hasattr(model, "module") else model return model class BertEncoder(nn.Module): def __init__( self, bert_model, output_dim, layer_pulled=-1, add_linear=None): super(BertEncoder, self).__init__() self.layer_pulled = layer_pulled bert_output_dim = bert_model.embeddings.word_embeddings.weight.size(1) self.bert_model = bert_model if add_linear: self.additional_linear = nn.Linear(bert_output_dim, output_dim) self.dropout = nn.Dropout(0.1) else: self.additional_linear = None def forward(self, token_ids, segment_ids, attention_mask): output_bert, output_pooler = self.bert_model( token_ids, segment_ids, attention_mask ) # get embedding of [CLS] token if self.additional_linear is not None: embeddings = output_pooler else: embeddings = output_bert[:, 0, :] # in case of dimensionality reduction if self.additional_linear is not None: result = self.additional_linear(self.dropout(embeddings)) else: result = embeddings return result
BLINK-main
blink/common/ranker_base.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch import os import numpy as np from pytorch_transformers.modeling_bert import ( BertPreTrainedModel, BertConfig, BertModel, ) from pytorch_transformers.tokenization_bert import BertTokenizer from torch import nn from pytorch_transformers.file_utils import PYTORCH_PRETRAINED_BERT_CACHE from pytorch_transformers.optimization import AdamW patterns_optimizer = { 'additional_layers': ['additional'], 'top_layer': ['additional', 'bert_model.encoder.layer.11.'], 'top4_layers': [ 'additional', 'bert_model.encoder.layer.11.', 'encoder.layer.10.', 'encoder.layer.9.', 'encoder.layer.8', ], 'all_encoder_layers': ['additional', 'bert_model.encoder.layer'], 'all': ['additional', 'bert_model.encoder.layer', 'bert_model.embeddings'], } def get_bert_optimizer(models, type_optimization, learning_rate, fp16=False): """ Optimizes the network with AdamWithDecay """ if type_optimization not in patterns_optimizer: print( 'Error. Type optimizer must be one of %s' % (str(patterns_optimizer.keys())) ) parameters_with_decay = [] parameters_with_decay_names = [] parameters_without_decay = [] parameters_without_decay_names = [] no_decay = ['bias', 'gamma', 'beta'] patterns = patterns_optimizer[type_optimization] for model in models: for n, p in model.named_parameters(): if any(t in n for t in patterns): if any(t in n for t in no_decay): parameters_without_decay.append(p) parameters_without_decay_names.append(n) else: parameters_with_decay.append(p) parameters_with_decay_names.append(n) print('The following parameters will be optimized WITH decay:') print(ellipse(parameters_with_decay_names, 5, ' , ')) print('The following parameters will be optimized WITHOUT decay:') print(ellipse(parameters_without_decay_names, 5, ' , ')) optimizer_grouped_parameters = [ {'params': parameters_with_decay, 'weight_decay': 0.01}, {'params': parameters_without_decay, 'weight_decay': 0.0}, ] optimizer = AdamW( optimizer_grouped_parameters, lr=learning_rate, correct_bias=False ) if fp16: optimizer = fp16_optimizer_wrapper(optimizer) return optimizer def ellipse(lst, max_display=5, sep='|'): """ Like join, but possibly inserts an ellipsis. :param lst: The list to join on :param int max_display: the number of items to display for ellipsing. If -1, shows all items :param string sep: the delimiter to join on """ # copy the list (or force it to a list if it's a set) choices = list(lst) # insert the ellipsis if necessary if max_display > 0 and len(choices) > max_display: ellipsis = '...and {} more'.format(len(choices) - max_display) choices = choices[:max_display] + [ellipsis] return sep.join(str(c) for c in choices)
BLINK-main
blink/common/optimizer.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # """ FAISS-based index components. Original from https://github.com/facebookresearch/DPR/blob/master/dpr/indexer/faiss_indexers.py """ import os import logging import pickle import faiss import numpy as np logger = logging.getLogger() class DenseIndexer(object): def __init__(self, buffer_size: int = 50000): self.buffer_size = buffer_size self.index_id_to_db_id = [] self.index = None def index_data(self, data: np.array): raise NotImplementedError def search_knn(self, query_vectors: np.array, top_docs: int): raise NotImplementedError def serialize(self, index_file: str): logger.info("Serializing index to %s", index_file) faiss.write_index(self.index, index_file) def deserialize_from(self, index_file: str): logger.info("Loading index from %s", index_file) self.index = faiss.read_index(index_file) logger.info( "Loaded index of type %s and size %d", type(self.index), self.index.ntotal ) # DenseFlatIndexer does exact search class DenseFlatIndexer(DenseIndexer): def __init__(self, vector_sz: int = 1, buffer_size: int = 50000): super(DenseFlatIndexer, self).__init__(buffer_size=buffer_size) self.index = faiss.IndexFlatIP(vector_sz) def index_data(self, data: np.array): n = len(data) # indexing in batches is beneficial for many faiss index types logger.info("Indexing data, this may take a while.") cnt = 0 for i in range(0, n, self.buffer_size): vectors = [np.reshape(t, (1, -1)) for t in data[i : i + self.buffer_size]] vectors = np.concatenate(vectors, axis=0) self.index.add(vectors) cnt += self.buffer_size logger.info("Total data indexed %d", n) def search_knn(self, query_vectors, top_k): scores, indexes = self.index.search(query_vectors, top_k) return scores, indexes # DenseHNSWFlatIndexer does approximate search class DenseHNSWFlatIndexer(DenseIndexer): """ Efficient index for retrieval. Note: default settings are for hugh accuracy but also high RAM usage """ def __init__( self, vector_sz: int, buffer_size: int = 50000, store_n: int = 128, ef_search: int = 256, ef_construction: int = 200, ): super(DenseHNSWFlatIndexer, self).__init__(buffer_size=buffer_size) # IndexHNSWFlat supports L2 similarity only # so we have to apply DOT -> L2 similairy space conversion with the help of an extra dimension index = faiss.IndexHNSWFlat(vector_sz + 1, store_n) index.hnsw.efSearch = ef_search index.hnsw.efConstruction = ef_construction self.index = index self.phi = 0 def index_data(self, data: np.array): n = len(data) # max norm is required before putting all vectors in the index to convert inner product similarity to L2 if self.phi > 0: raise RuntimeError( "DPR HNSWF index needs to index all data at once," "results will be unpredictable otherwise." ) phi = 0 for i, item in enumerate(data): doc_vector = item norms = (doc_vector ** 2).sum() phi = max(phi, norms) logger.info("HNSWF DotProduct -> L2 space phi={}".format(phi)) self.phi = 0 # indexing in batches is beneficial for many faiss index types logger.info("Indexing data, this may take a while.") cnt = 0 for i in range(0, n, self.buffer_size): vectors = [np.reshape(t, (1, -1)) for t in data[i : i + self.buffer_size]] norms = [(doc_vector ** 2).sum() for doc_vector in vectors] aux_dims = [np.sqrt(phi - norm) for norm in norms] hnsw_vectors = [ np.hstack((doc_vector, aux_dims[i].reshape(-1, 1))) for i, doc_vector in enumerate(vectors) ] hnsw_vectors = np.concatenate(hnsw_vectors, axis=0) self.index.add(hnsw_vectors) cnt += self.buffer_size logger.info("Indexed data %d" % cnt) logger.info("Total data indexed %d" % n) def search_knn(self, query_vectors, top_k): aux_dim = np.zeros(len(query_vectors), dtype="float32") query_nhsw_vectors = np.hstack((query_vectors, aux_dim.reshape(-1, 1))) logger.info("query_hnsw_vectors %s", query_nhsw_vectors.shape) scores, indexes = self.index.search(query_nhsw_vectors, top_k) return scores, indexes def deserialize_from(self, file: str): super(DenseHNSWFlatIndexer, self).deserialize_from(file) # to trigger warning on subsequent indexing self.phi = 1
BLINK-main
blink/indexer/faiss_indexer.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import argparse import json import sys from elq.index.faiss_indexer import DenseFlatIndexer, DenseHNSWFlatIndexer, DenseIVFFlatIndexer import logging import torch import numpy as np from colorama import init from termcolor import colored import torch.nn.functional as F import blink.ner as NER from torch.utils.data import DataLoader, SequentialSampler, TensorDataset from elq.biencoder.biencoder import BiEncoderRanker, load_biencoder, to_bert_input from elq.biencoder.data_process import ( process_mention_data, get_context_representation_single_mention, get_candidate_representation, ) import elq.candidate_ranking.utils as utils import math from elq.vcg_utils.measures import entity_linking_tp_with_overlap from elq.biencoder.utils import batch_reshape_mask_left import os import sys from tqdm import tqdm import pdb import time HIGHLIGHTS = [ "on_red", "on_green", "on_yellow", "on_blue", "on_magenta", "on_cyan", ] from transformers import BertTokenizer tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") def _print_colorful_text(input_tokens, tokenizer, pred_triples): """ pred_triples: Assumes no overlapping triples """ sort_idxs = sorted(range(len(pred_triples)), key=lambda idx: pred_triples[idx][1]) init() # colorful output msg = "" if pred_triples and (len(pred_triples) > 0): msg += tokenizer.decode(input_tokens[0 : int(pred_triples[sort_idxs[0]][1])]) for i, idx in enumerate(sort_idxs): triple = pred_triples[idx] msg += " " + colored( tokenizer.decode(input_tokens[int(triple[1]) : int(triple[2])]), "grey", HIGHLIGHTS[idx % len(HIGHLIGHTS)], ) if i < len(sort_idxs) - 1: msg += " " + tokenizer.decode(input_tokens[ int(triple[2]) : int(pred_triples[sort_idxs[i + 1]][1]) ]) else: msg += " " + tokenizer.decode(input_tokens[int(triple[2]) : ]) else: msg = tokenizer.decode(input_tokens) print("\n" + str(msg) + "\n") def _print_colorful_prediction(all_entity_preds, pred_triples, id2text, id2wikidata): sort_idxs = sorted(range(len(pred_triples)), key=lambda idx: pred_triples[idx][1]) for idx in sort_idxs: print(colored(all_entity_preds[0]['pred_tuples_string'][idx][1], "grey", HIGHLIGHTS[idx % len(HIGHLIGHTS)])) if pred_triples[idx][0] in id2wikidata: print(" Wikidata ID: {}".format(id2wikidata[pred_triples[idx][0]])) print(" Title: {}".format(all_entity_preds[0]['pred_tuples_string'][idx][0])) print(" Score: {}".format(str(all_entity_preds[0]['scores'][idx]))) print(" Triple: {}".format(str(pred_triples[idx]))) print(" Text: {}".format(id2text[pred_triples[idx][0]])) def _load_candidates( entity_catalogue, entity_encoding, faiss_index="none", index_path=None, logger=None, ): if faiss_index == "none": candidate_encoding = torch.load(entity_encoding) indexer = None else: candidate_encoding = None assert index_path is not None, "Error! Empty indexer path." if faiss_index == "flat": indexer = DenseFlatIndexer(1) elif faiss_index == "hnsw": indexer = DenseHNSWFlatIndexer(1) elif faiss_index == "ivfflat": indexer = DenseIVFFlatIndexer(1) else: raise ValueError("Error! Unsupported indexer type! Choose from flat,hnsw,ivfflat.") indexer.deserialize_from(index_path) candidate_encoding = torch.load(entity_encoding) if not os.path.exists("models/id2title.json"): id2title = {} id2text = {} id2wikidata = {} local_idx = 0 with open(entity_catalogue, "r") as fin: lines = fin.readlines() for line in lines: entity = json.loads(line) id2title[str(local_idx)] = entity["title"] id2text[str(local_idx)] = entity["text"] if "kb_idx" in entity: id2wikidata[str(local_idx)] = entity["kb_idx"] local_idx += 1 json.dump(id2title, open("models/id2title.json", "w")) json.dump(id2text, open("models/id2text.json", "w")) json.dump(id2wikidata, open("models/id2wikidata.json", "w")) else: if logger: logger.info("Loading id2title") id2title = json.load(open("models/id2title.json")) if logger: logger.info("Loading id2text") id2text = json.load(open("models/id2text.json")) if logger: logger.info("Loading id2wikidata") id2wikidata = json.load(open("models/id2wikidata.json")) return ( candidate_encoding, indexer, id2title, id2text, id2wikidata, ) def _get_test_samples( test_filename, test_entities_path, logger, ): """ Parses jsonl format with one example per line Each line of the following form IF HAVE LABELS { "id": "WebQTest-12", "text": "who is governor of ohio 2011?", "mentions": [[19, 23], [7, 15]], "tokenized_text_ids": [2040, 2003, 3099, 1997, 4058, 2249, 1029], "tokenized_mention_idxs": [[4, 5], [2, 3]], "label_id": [10902, 28422], "wikidata_id": ["Q1397", "Q132050"], "entity": ["Ohio", "Governor"], "label": [list of wikipedia descriptions] } IF NO LABELS (JUST PREDICTION) { "id": "WebQTest-12", "text": "who is governor of ohio 2011?", } """ if logger: logger.info("Loading test samples") test_samples = [] unknown_entity_samples = [] num_unknown_entity_samples = 0 num_no_gold_entity = 0 ner_errors = 0 with open(test_filename, "r") as fin: lines = fin.readlines() sample_idx = 0 do_setup_samples = True for i, line in enumerate(lines): record = json.loads(line) test_samples.append(record) return test_samples, num_unknown_entity_samples def _process_biencoder_dataloader(samples, tokenizer, biencoder_params, logger): """ Samples: list of examples, each of the form-- IF HAVE LABELS { "id": "WebQTest-12", "text": "who is governor of ohio 2011?", "mentions": [[19, 23], [7, 15]], "tokenized_text_ids": [2040, 2003, 3099, 1997, 4058, 2249, 1029], "tokenized_mention_idxs": [[4, 5], [2, 3]], "label_id": [10902, 28422], "wikidata_id": ["Q1397", "Q132050"], "entity": ["Ohio", "Governor"], "label": [list of wikipedia descriptions] } IF NO LABELS (JUST PREDICTION) { "id": "WebQTest-12", "text": "who is governor of ohio 2011?", } """ if 'label_id' in samples[0]: # have labels tokens_data, tensor_data_tuple, _ = process_mention_data( samples=samples, tokenizer=tokenizer, max_context_length=biencoder_params["max_context_length"], max_cand_length=biencoder_params["max_cand_length"], silent=False, logger=logger, debug=biencoder_params["debug"], add_mention_bounds=(not biencoder_params.get("no_mention_bounds", False)), params=biencoder_params, ) else: samples_text_tuple = [] max_seq_len = 0 for sample in samples: samples_text_tuple # truncate the end if the sequence is too long... encoded_sample = [101] + tokenizer.encode(sample['text'])[:biencoder_params["max_context_length"]-2] + [102] max_seq_len = max(len(encoded_sample), max_seq_len) samples_text_tuple.append(encoded_sample + [0 for _ in range(biencoder_params["max_context_length"] - len(encoded_sample))]) # print(samples_text_tuple) tensor_data_tuple = [torch.tensor(samples_text_tuple)] tensor_data = TensorDataset(*tensor_data_tuple) sampler = SequentialSampler(tensor_data) dataloader = DataLoader( tensor_data, sampler=sampler, batch_size=biencoder_params["eval_batch_size"] ) return dataloader def _run_biencoder( args, biencoder, dataloader, candidate_encoding, samples, num_cand_mentions=50, num_cand_entities=10, device="cpu", sample_to_all_context_inputs=None, threshold=0.0, indexer=None, ): """ Returns: tuple labels (List[int]) [(max_num_mentions_gold) x exs]: gold labels -- returns None if no labels nns (List[Array[int]]) [(# of pred mentions, cands_per_mention) x exs]: predicted entity IDs in each example dists (List[Array[float]]) [(# of pred mentions, cands_per_mention) x exs]: scores of each entity in nns pred_mention_bounds (List[Array[int]]) [(# of pred mentions, 2) x exs]: predicted mention boundaries in each examples mention_scores (List[Array[float]]) [(# of pred mentions,) x exs]: mention score logit cand_scores (List[Array[float]]) [(# of pred mentions, cands_per_mention) x exs]: candidate score logit """ biencoder.model.eval() biencoder_model = biencoder.model if hasattr(biencoder.model, "module"): biencoder_model = biencoder.model.module context_inputs = [] nns = [] dists = [] mention_dists = [] pred_mention_bounds = [] mention_scores = [] cand_scores = [] sample_idx = 0 ctxt_idx = 0 label_ids = None for step, batch in enumerate(tqdm(dataloader)): context_input = batch[0].to(device) mask_ctxt = context_input != biencoder.NULL_IDX with torch.no_grad(): context_outs = biencoder.encode_context( context_input, num_cand_mentions=num_cand_mentions, topK_threshold=threshold, ) embedding_ctxt = context_outs['mention_reps'] left_align_mask = context_outs['mention_masks'] chosen_mention_logits = context_outs['mention_logits'] chosen_mention_bounds = context_outs['mention_bounds'] ''' GET TOP CANDIDATES PER MENTION ''' # (all_pred_mentions_batch, embed_dim) embedding_ctxt = embedding_ctxt[left_align_mask] if indexer is None: try: cand_logits, _, _ = biencoder.score_candidate( context_input, None, text_encs=embedding_ctxt, cand_encs=candidate_encoding.to(device), ) # DIM (all_pred_mentions_batch, num_cand_entities); (all_pred_mentions_batch, num_cand_entities) top_cand_logits_shape, top_cand_indices_shape = cand_logits.topk(num_cand_entities, dim=-1, sorted=True) except: # for memory savings, go through one chunk of candidates at a time SPLIT_SIZE=1000000 done=False while not done: top_cand_logits_list = [] top_cand_indices_list = [] max_chunk = int(len(candidate_encoding) / SPLIT_SIZE) for chunk_idx in range(max_chunk): try: # DIM (num_total_mentions, num_cand_entities); (num_total_mention, num_cand_entities) top_cand_logits, top_cand_indices = embedding_ctxt.mm(candidate_encoding[chunk_idx*SPLIT_SIZE:(chunk_idx+1)*SPLIT_SIZE].to(device).t().contiguous()).topk(10, dim=-1, sorted=True) top_cand_logits_list.append(top_cand_logits) top_cand_indices_list.append(top_cand_indices + chunk_idx*SPLIT_SIZE) if len((top_cand_indices_list[chunk_idx] < 0).nonzero()) > 0: import pdb pdb.set_trace() except: SPLIT_SIZE = int(SPLIT_SIZE/2) break if len(top_cand_indices_list) == max_chunk: # DIM (num_total_mentions, num_cand_entities); (num_total_mentions, num_cand_entities) --> # top_top_cand_indices_shape indexes into top_cand_indices top_cand_logits_shape, top_top_cand_indices_shape = torch.cat( top_cand_logits_list, dim=-1).topk(num_cand_entities, dim=-1, sorted=True) # make indices index into candidate_encoding # DIM (num_total_mentions, max_chunk*num_cand_entities) all_top_cand_indices = torch.cat(top_cand_indices_list, dim=-1) # DIM (num_total_mentions, num_cand_entities) top_cand_indices_shape = all_top_cand_indices.gather(-1, top_top_cand_indices_shape) done = True else: # DIM (all_pred_mentions_batch, num_cand_entities); (all_pred_mentions_batch, num_cand_entities) top_cand_logits_shape, top_cand_indices_shape = indexer.search_knn(embedding_ctxt.cpu().numpy(), num_cand_entities) top_cand_logits_shape = torch.tensor(top_cand_logits_shape).to(embedding_ctxt.device) top_cand_indices_shape = torch.tensor(top_cand_indices_shape).to(embedding_ctxt.device) # DIM (bs, max_num_pred_mentions, num_cand_entities) top_cand_logits = torch.zeros(chosen_mention_logits.size(0), chosen_mention_logits.size(1), top_cand_logits_shape.size(-1)).to( top_cand_logits_shape.device, top_cand_logits_shape.dtype) top_cand_logits[left_align_mask] = top_cand_logits_shape top_cand_indices = torch.zeros(chosen_mention_logits.size(0), chosen_mention_logits.size(1), top_cand_indices_shape.size(-1)).to( top_cand_indices_shape.device, top_cand_indices_shape.dtype) top_cand_indices[left_align_mask] = top_cand_indices_shape ''' COMPUTE FINAL SCORES FOR EACH CAND-MENTION PAIR + PRUNE USING IT ''' # Has NAN for impossible mentions... # log p(entity && mb) = log [p(entity|mention bounds) * p(mention bounds)] = log p(e|mb) + log p(mb) # DIM (bs, max_num_pred_mentions, num_cand_entities) scores = torch.log_softmax(top_cand_logits, -1) + torch.sigmoid(chosen_mention_logits.unsqueeze(-1)).log() ''' DON'T NEED TO RESORT BY NEW SCORE -- DISTANCE PRESERVING (largest entity score still be largest entity score) ''' for idx in range(len(batch[0])): # [(seqlen) x exs] <= (bsz, seqlen) context_inputs.append(context_input[idx][mask_ctxt[idx]].data.cpu().numpy()) # [(max_num_mentions, cands_per_mention) x exs] <= (bsz, max_num_mentions=num_cand_mentions, cands_per_mention) nns.append(top_cand_indices[idx][left_align_mask[idx]].data.cpu().numpy()) # [(max_num_mentions, cands_per_mention) x exs] <= (bsz, max_num_mentions=num_cand_mentions, cands_per_mention) dists.append(scores[idx][left_align_mask[idx]].data.cpu().numpy()) # [(max_num_mentions, 2) x exs] <= (bsz, max_num_mentions=num_cand_mentions, 2) pred_mention_bounds.append(chosen_mention_bounds[idx][left_align_mask[idx]].data.cpu().numpy()) # [(max_num_mentions,) x exs] <= (bsz, max_num_mentions=num_cand_mentions) mention_scores.append(chosen_mention_logits[idx][left_align_mask[idx]].data.cpu().numpy()) # [(max_num_mentions, cands_per_mention) x exs] <= (bsz, max_num_mentions=num_cand_mentions, cands_per_mention) cand_scores.append(top_cand_logits[idx][left_align_mask[idx]].data.cpu().numpy()) return nns, dists, pred_mention_bounds, mention_scores, cand_scores def get_predictions( args, dataloader, biencoder_params, samples, nns, dists, mention_scores, cand_scores, pred_mention_bounds, id2title, threshold=-2.9, mention_threshold=-0.6931, ): """ Arguments: args, dataloader, biencoder_params, samples, nns, dists, pred_mention_bounds Returns: all_entity_preds, num_correct_weak, num_correct_strong, num_predicted, num_gold, num_correct_weak_from_input_window, num_correct_strong_from_input_window, num_gold_from_input_window """ # save biencoder predictions and print precision/recalls num_correct_weak = 0 num_correct_strong = 0 num_predicted = 0 num_gold = 0 num_correct_weak_from_input_window = 0 num_correct_strong_from_input_window = 0 num_gold_from_input_window = 0 all_entity_preds = [] f = errors_f = None if getattr(args, 'save_preds_dir', None) is not None: save_biencoder_file = os.path.join(args.save_preds_dir, 'biencoder_outs.jsonl') f = open(save_biencoder_file, 'w') errors_f = open(os.path.join(args.save_preds_dir, 'biencoder_errors.jsonl'), 'w') # nns (List[Array[int]]) [(num_pred_mentions, cands_per_mention) x exs]) # dists (List[Array[float]]) [(num_pred_mentions, cands_per_mention) x exs]) # pred_mention_bounds (List[Array[int]]) [(num_pred_mentions, 2) x exs] # cand_scores (List[Array[float]]) [(num_pred_mentions, cands_per_mention) x exs]) # mention_scores (List[Array[float]]) [(num_pred_mentions,) x exs]) for batch_num, batch_data in enumerate(dataloader): batch_context = batch_data[0] if len(batch_data) > 1: _, batch_cands, batch_label_ids, batch_mention_idxs, batch_mention_idx_masks = batch_data for b in range(len(batch_context)): i = batch_num * biencoder_params['eval_batch_size'] + b sample = samples[i] input_context = batch_context[b][batch_context[b] != 0].tolist() # filter out padding # (num_pred_mentions, cands_per_mention) scores = dists[i] if args.threshold_type == "joint" else cand_scores[i] cands_mask = (scores[:,0] == scores[:,0]) pred_entity_list = nns[i][cands_mask] if len(pred_entity_list) > 0: e_id = pred_entity_list[0] distances = scores[cands_mask] # (num_pred_mentions, 2) entity_mention_bounds_idx = pred_mention_bounds[i][cands_mask] utterance = sample['text'] if args.threshold_type == "joint": # THRESHOLDING assert utterance is not None top_mentions_mask = (distances[:,0] > threshold) elif args.threshold_type == "top_entity_by_mention": top_mentions_mask = (mention_scores[i] > mention_threshold) elif args.threshold_type == "thresholded_entity_by_mention": top_mentions_mask = (distances[:,0] > threshold) & (mention_scores[i] > mention_threshold) _, sort_idxs = torch.tensor(distances[:,0][top_mentions_mask]).sort(descending=True) # cands already sorted by score all_pred_entities = pred_entity_list[:,0][top_mentions_mask] e_mention_bounds = entity_mention_bounds_idx[top_mentions_mask] chosen_distances = distances[:,0][top_mentions_mask] if len(all_pred_entities) >= 2: all_pred_entities = all_pred_entities[sort_idxs] e_mention_bounds = e_mention_bounds[sort_idxs] chosen_distances = chosen_distances[sort_idxs] # prune mention overlaps e_mention_bounds_pruned = [] all_pred_entities_pruned = [] chosen_distances_pruned = [] mention_masked_utterance = np.zeros(len(input_context)) # ensure well-formed-ness, prune overlaps # greedily pick highest scoring, then prune all overlapping for idx, mb in enumerate(e_mention_bounds): mb[1] += 1 # prediction was inclusive, now make exclusive # check if in existing mentions if args.threshold_type != "top_entity_by_mention" and mention_masked_utterance[mb[0]:mb[1]].sum() >= 1: continue e_mention_bounds_pruned.append(mb) all_pred_entities_pruned.append(all_pred_entities[idx]) chosen_distances_pruned.append(float(chosen_distances[idx])) mention_masked_utterance[mb[0]:mb[1]] = 1 input_context = input_context[1:-1] # remove BOS and sep pred_triples = [( str(all_pred_entities_pruned[j]), int(e_mention_bounds_pruned[j][0]) - 1, # -1 for BOS int(e_mention_bounds_pruned[j][1]) - 1, ) for j in range(len(all_pred_entities_pruned))] entity_results = { "id": sample["id"], "text": sample["text"], "scores": chosen_distances_pruned, } if 'label_id' in sample: # Get LABELS input_mention_idxs = batch_mention_idxs[b][batch_mention_idx_masks[b]].tolist() input_label_ids = batch_label_ids[b][batch_label_ids[b] != -1].tolist() assert len(input_label_ids) == len(input_mention_idxs) gold_mention_bounds = [ sample['text'][ment[0]-10:ment[0]] + "[" + sample['text'][ment[0]:ment[1]] + "]" + sample['text'][ment[1]:ment[1]+10] for ment in sample['mentions'] ] # GET ALIGNED MENTION_IDXS (input is slightly different to model) between ours and gold labels -- also have to account for BOS gold_input = sample['tokenized_text_ids'] # return first instance of my_input in gold_input for my_input_start in range(len(gold_input)): if ( gold_input[my_input_start] == input_context[0] and gold_input[my_input_start:my_input_start+len(input_context)] == input_context ): break # add alignment factor (my_input_start) to predicted mention triples pred_triples = [( triple[0], triple[1] + my_input_start, triple[2] + my_input_start, ) for triple in pred_triples] gold_triples = [( str(sample['label_id'][j]), sample['tokenized_mention_idxs'][j][0], sample['tokenized_mention_idxs'][j][1], ) for j in range(len(sample['label_id']))] num_overlap_weak, num_overlap_strong = entity_linking_tp_with_overlap(gold_triples, pred_triples) num_correct_weak += num_overlap_weak num_correct_strong += num_overlap_strong num_predicted += len(all_pred_entities_pruned) num_gold += len(sample["label_id"]) # compute number correct given the input window pred_input_window_triples = [( str(all_pred_entities_pruned[j]), int(e_mention_bounds_pruned[j][0]), int(e_mention_bounds_pruned[j][1]), ) for j in range(len(all_pred_entities_pruned))] gold_input_window_triples = [( str(input_label_ids[j]), input_mention_idxs[j][0], input_mention_idxs[j][1] + 1, ) for j in range(len(input_label_ids))] num_overlap_weak_window, num_overlap_strong_window = entity_linking_tp_with_overlap(gold_input_window_triples, pred_input_window_triples) num_correct_weak_from_input_window += num_overlap_weak_window num_correct_strong_from_input_window += num_overlap_strong_window num_gold_from_input_window += len(input_mention_idxs) entity_results.update({ "pred_tuples_string": [ [id2title[triple[0]], tokenizer.decode(sample['tokenized_text_ids'][triple[1]:triple[2]])] for triple in pred_triples ], "gold_tuples_string": [ [id2title[triple[0]], tokenizer.decode(sample['tokenized_text_ids'][triple[1]:triple[2]])] for triple in gold_triples ], "pred_triples": pred_triples, "gold_triples": gold_triples, "tokens": input_context, }) if errors_f is not None and (num_overlap_weak != len(gold_triples) or num_overlap_weak != len(pred_triples)): errors_f.write(json.dumps(entity_results) + "\n") else: entity_results.update({ "pred_tuples_string": [ [id2title[triple[0]], tokenizer.decode(input_context[triple[1]:triple[2]])] for triple in pred_triples ], "pred_triples": pred_triples, "tokens": input_context, }) all_entity_preds.append(entity_results) if f is not None: f.write( json.dumps(entity_results) + "\n" ) if f is not None: f.close() errors_f.close() return ( all_entity_preds, num_correct_weak, num_correct_strong, num_predicted, num_gold, num_correct_weak_from_input_window, num_correct_strong_from_input_window, num_gold_from_input_window ) def _save_biencoder_outs(save_preds_dir, nns, dists, pred_mention_bounds, cand_scores, mention_scores, runtime): np.save(os.path.join(save_preds_dir, "biencoder_nns.npy"), nns) np.save(os.path.join(save_preds_dir, "biencoder_dists.npy"), dists) np.save(os.path.join(save_preds_dir, "biencoder_mention_bounds.npy"), pred_mention_bounds) np.save(os.path.join(save_preds_dir, "biencoder_cand_scores.npy"), cand_scores) np.save(os.path.join(save_preds_dir, "biencoder_mention_scores.npy"), mention_scores) with open(os.path.join(save_preds_dir, "runtime.txt"), "w") as wf: wf.write(str(runtime)) def _load_biencoder_outs(save_preds_dir): nns = np.load(os.path.join(save_preds_dir, "biencoder_nns.npy"), allow_pickle=True) dists = np.load(os.path.join(save_preds_dir, "biencoder_dists.npy"), allow_pickle=True) pred_mention_bounds = np.load(os.path.join(save_preds_dir, "biencoder_mention_bounds.npy"), allow_pickle=True) cand_scores = np.load(os.path.join(save_preds_dir, "biencoder_cand_scores.npy"), allow_pickle=True) mention_scores = np.load(os.path.join(save_preds_dir, "biencoder_mention_scores.npy"), allow_pickle=True) runtime = float(open(os.path.join(args.save_preds_dir, "runtime.txt")).read()) return nns, dists, pred_mention_bounds, cand_scores, mention_scores, runtime def display_metrics( num_correct, num_predicted, num_gold, prefix="", ): p = 0 if num_predicted == 0 else float(num_correct) / float(num_predicted) r = 0 if num_gold == 0 else float(num_correct) / float(num_gold) if p + r > 0: f1 = 2 * p * r / (p + r) else: f1 = 0 print("{0}precision = {1} / {2} = {3}".format(prefix, num_correct, num_predicted, p)) print("{0}recall = {1} / {2} = {3}".format(prefix, num_correct, num_gold, r)) print("{0}f1 = {1}".format(prefix, f1)) def load_models(args, logger): # load biencoder model if logger: logger.info("Loading biencoder model") try: with open(args.biencoder_config) as json_file: biencoder_params = json.load(json_file) except json.decoder.JSONDecodeError: with open(args.biencoder_config) as json_file: for line in json_file: line = line.replace("'", "\"") line = line.replace("True", "true") line = line.replace("False", "false") line = line.replace("None", "null") biencoder_params = json.loads(line) break biencoder_params["path_to_model"] = args.biencoder_model biencoder_params["cand_token_ids_path"] = args.cand_token_ids_path biencoder_params["eval_batch_size"] = getattr(args, 'eval_batch_size', 8) biencoder_params["no_cuda"] = (not getattr(args, 'use_cuda', False) or not torch.cuda.is_available()) if biencoder_params["no_cuda"]: biencoder_params["data_parallel"] = False biencoder_params["load_cand_enc_only"] = False if getattr(args, 'max_context_length', None) is not None: biencoder_params["max_context_length"] = args.max_context_length biencoder = load_biencoder(biencoder_params) if biencoder_params["no_cuda"] and type(biencoder.model).__name__ == 'DataParallel': biencoder.model = biencoder.model.module elif not biencoder_params["no_cuda"] and type(biencoder.model).__name__ != 'DataParallel': biencoder.model = torch.nn.DataParallel(biencoder.model) # load candidate entities if logger: logger.info("Loading candidate entities") ( candidate_encoding, indexer, id2title, id2text, id2wikidata, ) = _load_candidates( args.entity_catalogue, args.entity_encoding, args.faiss_index, args.index_path, logger=logger, ) return ( biencoder, biencoder_params, candidate_encoding, indexer, id2title, id2text, id2wikidata, ) def run( args, logger, biencoder, biencoder_params, candidate_encoding, indexer, id2title, id2text, id2wikidata, test_data=None, ): if not test_data and not getattr(args, 'test_mentions', None) and not getattr(args, 'interactive', None): msg = ( "ERROR: either you start BLINK with the " "interactive option (-i) or you pass in input test mentions (--test_mentions)" "and test entities (--test_entities) or manually pass in test data" ) raise ValueError(msg) if getattr(args, 'save_preds_dir', None) is not None and not os.path.exists(args.save_preds_dir): os.makedirs(args.save_preds_dir) print("Saving preds in {}".format(args.save_preds_dir)) stopping_condition = False threshold = float(args.threshold) if args.threshold_type == "top_entity_by_mention": assert args.mention_threshold is not None mention_threshold = float(args.mention_threshold) else: mention_threshold = threshold if args.interactive: while not stopping_condition: if logger: logger.info("interactive mode") # Interactive text = input("insert text: ") # Prepare data samples = [{"id": "-1", "text": text}] dataloader = _process_biencoder_dataloader( samples, biencoder.tokenizer, biencoder_params, logger, ) # Run inference nns, dists, pred_mention_bounds, mention_scores, cand_scores = _run_biencoder( args, biencoder, dataloader, candidate_encoding, samples=samples, num_cand_mentions=args.num_cand_mentions, num_cand_entities=args.num_cand_entities, device="cpu" if biencoder_params["no_cuda"] else "cuda", threshold=mention_threshold, indexer=indexer, ) action = "c" while action == "c": all_entity_preds = get_predictions( args, dataloader, biencoder_params, samples, nns, dists, mention_scores, cand_scores, pred_mention_bounds, id2title, threshold=threshold, mention_threshold=mention_threshold, )[0] pred_triples = all_entity_preds[0]['pred_triples'] _print_colorful_text(all_entity_preds[0]['tokens'], tokenizer, pred_triples) _print_colorful_prediction(all_entity_preds, pred_triples, id2text, id2wikidata) action = input("Next question [n] / change threshold [c]: ") while action != "n" and action != "c": action = input("Next question [n] / change threshold [c]: ") if action == "c": print("Current threshold {}".format(threshold)) while True: threshold = input("New threshold (increase for less cands, decrease for more cands): ") try: threshold = float(threshold) break except: print("Error! Expected float, got {}. Try again.".format(threshold)) else: if not test_data: samples, num_unk = _get_test_samples( args.test_mentions, args.test_entities, logger, ) else: samples = test_data if logger: logger.info("Preparing data for biencoder") dataloader = _process_biencoder_dataloader( samples, biencoder.tokenizer, biencoder_params, None, ) stopping_condition = True # prepare the data for biencoder # run biencoder if predictions not saved if not getattr(args, 'save_preds_dir', None) or not os.path.exists( os.path.join(args.save_preds_dir, 'biencoder_mention_bounds.npy')): # run biencoder if logger: logger.info("Running biencoder...") start_time = time.time() nns, dists, pred_mention_bounds, mention_scores, cand_scores = _run_biencoder( args, biencoder, dataloader, candidate_encoding, samples=samples, num_cand_mentions=args.num_cand_mentions, num_cand_entities=args.num_cand_entities, device="cpu" if biencoder_params["no_cuda"] else "cuda", threshold=mention_threshold, indexer=indexer, ) end_time = time.time() if logger: logger.info("Finished running biencoder") runtime = end_time - start_time if getattr(args, 'save_preds_dir', None): _save_biencoder_outs( args.save_preds_dir, nns, dists, pred_mention_bounds, cand_scores, mention_scores, runtime, ) else: nns, dists, pred_mention_bounds, cand_scores, mention_scores, runtime = _load_biencoder_outs(args.save_preds_dir) assert len(samples) == len(nns) == len(dists) == len(pred_mention_bounds) == len(cand_scores) == len(mention_scores) ( all_entity_preds, num_correct_weak, num_correct_strong, num_predicted, num_gold, num_correct_weak_from_input_window, num_correct_strong_from_input_window, num_gold_from_input_window, ) = get_predictions( args, dataloader, biencoder_params, samples, nns, dists, mention_scores, cand_scores, pred_mention_bounds, id2title, threshold=threshold, mention_threshold=mention_threshold, ) print("*--------*") if num_gold > 0: print("WEAK MATCHING") display_metrics(num_correct_weak, num_predicted, num_gold) print("Just entities within input window...") display_metrics(num_correct_weak_from_input_window, num_predicted, num_gold_from_input_window) print("*--------*") print("STRONG MATCHING") display_metrics(num_correct_strong, num_predicted, num_gold) print("Just entities within input window...") display_metrics(num_correct_strong_from_input_window, num_predicted, num_gold_from_input_window) print("*--------*") print("biencoder runtime = {}".format(runtime)) print("*--------*") return all_entity_preds if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--debug_biencoder", "-db", action="store_true", default=False, help="Debug biencoder" ) # evaluation mode parser.add_argument( "--get_predictions", "-p", action="store_true", default=False, help="Getting predictions mode. Does not filter at crossencoder step." ) parser.add_argument( "--interactive", "-i", action="store_true", help="Interactive mode." ) # test_data parser.add_argument( "--test_mentions", dest="test_mentions", type=str, help="Test Dataset." ) parser.add_argument( "--test_entities", dest="test_entities", type=str, help="Test Entities.", default="models/entity.jsonl", # ALL WIKIPEDIA! ) parser.add_argument( "--save_preds_dir", type=str, help="Directory to save model predictions to." ) parser.add_argument( "--mention_threshold", type=str, default=None, dest="mention_threshold", help="Used if threshold type is `top_entity_by_mention`. " "Threshold for mention score, for which mentions will be pruned if they fall under that threshold. " "Set to '-inf' to get all mentions." ) parser.add_argument( "--threshold", type=str, default="-4.5", dest="threshold", help="Threshold for final joint score, for which examples will be pruned if they fall under that threshold. " "Set to `-inf` to get all entities." ) parser.add_argument( "--num_cand_mentions", type=int, default=50, help="Number of mention candidates to consider per example (at most)" ) parser.add_argument( "--num_cand_entities", type=int, default=10, help="Number of entity candidates to consider per mention (at most)" ) parser.add_argument( "--threshold_type", type=str, default="joint", choices=["joint", "top_entity_by_mention"], help="How to threshold the final candidates. " "`top_entity_by_mention`: get top candidate (with entity score) for each predicted mention bound. " "`joint`: by thresholding joint score." ) # biencoder parser.add_argument( "--biencoder_model", dest="biencoder_model", type=str, default="models/elq_wiki_large.bin", help="Path to the biencoder model.", ) parser.add_argument( "--biencoder_config", dest="biencoder_config", type=str, default="models/elq_large_params.txt", help="Path to the biencoder configuration.", ) parser.add_argument( "--cand_token_ids_path", dest="cand_token_ids_path", type=str, default="models/entity_token_ids_128.t7", # ALL WIKIPEDIA! help="Path to tokenized entity catalogue", ) parser.add_argument( "--entity_catalogue", dest="entity_catalogue", type=str, default="models/entity.jsonl", # ALL WIKIPEDIA! help="Path to the entity catalogue.", ) parser.add_argument( "--entity_encoding", dest="entity_encoding", type=str, default="models/all_entities_large.t7", # ALL WIKIPEDIA! help="Path to the entity catalogue.", ) parser.add_argument( "--eval_batch_size", dest="eval_batch_size", type=int, default=8, help="Crossencoder's batch size for evaluation", ) parser.add_argument( "--faiss_index", dest="faiss_index", type=str, default="hnsw", choices=["hnsw", "flat", "ivfflat", "none"], help="whether to use faiss index", ) parser.add_argument( "--index_path", dest="index_path", type=str, default="models/faiss_hnsw_index.pkl", help="path to load indexer", ) parser.add_argument( "--max_context_length", dest="max_context_length", type=int, help="Maximum length of context. (Don't set to inherit from training config)", ) # output folder parser.add_argument( "--output_path", dest="output_path", type=str, default="output", help="Path to the output.", ) parser.add_argument( "--use_cuda", dest="use_cuda", action="store_true", default=False, help="run on gpu" ) parser.add_argument( "--no_logger", dest="no_logger", action="store_true", default=False, help="don't log progress" ) args = parser.parse_args() logger = None if not args.no_logger: logger = utils.get_logger(args.output_path) logger.setLevel(10) models = load_models(args, logger) run(args, logger, *models)
BLINK-main
elq/main_dense.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import argparse import logging import numpy import os import time import torch from elq.index.faiss_indexer import DenseFlatIndexer, DenseIVFFlatIndexer, DenseHNSWFlatIndexer import elq.candidate_ranking.utils as utils logger = utils.get_logger() def main(params): output_path = params["output_path"] logger.info("Loading candidate encoding from path: %s" % params["candidate_encoding"]) candidate_encoding = torch.load(params["candidate_encoding"]) vector_size = candidate_encoding.size(1) index_buffer = params["index_buffer"] if params["faiss_index"] == "hnsw": logger.info("Using HNSW index in FAISS") index = DenseHNSWFlatIndexer(vector_size, index_buffer) elif params["faiss_index"] == "ivfflat": logger.info("Using IVF Flat index in FAISS") index = DenseIVFFlatIndexer(vector_size, 75, 100) else: logger.info("Using Flat index in FAISS") index = DenseFlatIndexer(vector_size, index_buffer) logger.info("Building index.") index.index_data(candidate_encoding.numpy()) logger.info("Done indexing data.") if params.get("save_index", None): index.serialize(output_path) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( "--output_path", required=True, type=str, help="output file path", ) parser.add_argument( "--candidate_encoding", default="models/all_entities_large.t7", type=str, help="file path for candidte encoding.", ) parser.add_argument( "--faiss_index", type=str, choices=["hnsw", "flat", "ivfflat"], help='Which faiss index to use', ) parser.add_argument( "--save_index", action='store_true', help='If enabled, save index', ) parser.add_argument( '--index_buffer', type=int, default=50000, help="Temporal memory data buffer size (in samples) for indexer", ) params = parser.parse_args() params = params.__dict__ main(params)
BLINK-main
elq/build_faiss_index.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # # Code partially adopted from https://github.com/allenai/allennlp # from typing import Any, Dict, List, Optional, Sequence, Tuple, TypeVar, Union import torch def get_device_of(tensor: torch.Tensor) -> int: """ Returns the device of the tensor. """ if not tensor.is_cuda: return -1 else: return tensor.get_device() def get_range_vector(size: int, device: int) -> torch.Tensor: """ Returns a range vector with the desired size, starting at 0. The CUDA implementation is meant to avoid copy data from CPU to GPU. """ if device > -1: return torch.cuda.LongTensor(size, device=device).fill_(1).cumsum(0) - 1 else: return torch.arange(0, size, dtype=torch.long) def flatten_and_batch_shift_indices(indices: torch.Tensor, sequence_length: int) -> torch.Tensor: """ This is a subroutine for [`batched_index_select`](./util.md#batched_index_select). The given `indices` of size `(batch_size, d_1, ..., d_n)` indexes into dimension 2 of a target tensor, which has size `(batch_size, sequence_length, embedding_size)`. This function returns a vector that correctly indexes into the flattened target. The sequence length of the target must be provided to compute the appropriate offsets. ```python indices = torch.ones([2,3], dtype=torch.long) # Sequence length of the target tensor. sequence_length = 10 shifted_indices = flatten_and_batch_shift_indices(indices, sequence_length) # Indices into the second element in the batch are correctly shifted # to take into account that the target tensor will be flattened before # the indices are applied. assert shifted_indices == [1, 1, 1, 11, 11, 11] ``` # Parameters indices : `torch.LongTensor`, required. sequence_length : `int`, required. The length of the sequence the indices index into. This must be the second dimension of the tensor. # Returns offset_indices : `torch.LongTensor` """ # Shape: (batch_size) if torch.max(indices) >= sequence_length or torch.min(indices) < 0: raise IndexError( f"All elements in indices should be in range (0, {sequence_length - 1})" ) offsets = get_range_vector(indices.size(0), get_device_of(indices)) * sequence_length for _ in range(len(indices.size()) - 1): offsets = offsets.unsqueeze(1) # Shape: (batch_size, d_1, ..., d_n) offset_indices = indices + offsets # Shape: (batch_size * d_1 * ... * d_n) offset_indices = offset_indices.view(-1) return offset_indices def batched_index_select( target: torch.Tensor, indices: torch.LongTensor, flattened_indices: Optional[torch.LongTensor] = None, ) -> torch.Tensor: """ The given `indices` of size `(batch_size, d_1, ..., d_n)` indexes into the sequence dimension (dimension 2) of the target, which has size `(batch_size, sequence_length, embedding_size)`. This function returns selected values in the target with respect to the provided indices, which have size `(batch_size, d_1, ..., d_n, embedding_size)`. This can use the optionally precomputed `flattened_indices` with size `(batch_size * d_1 * ... * d_n)` if given. An example use case of this function is looking up the start and end indices of spans in a sequence tensor. This is used in the [CoreferenceResolver](../models/coreference_resolution/coref.md). Model to select contextual word representations corresponding to the start and end indices of mentions. The key reason this can't be done with basic torch functions is that we want to be able to use look-up tensors with an arbitrary number of dimensions (for example, in the coref model, we don't know a-priori how many spans we are looking up). # Parameters target : `torch.Tensor`, required. A 3 dimensional tensor of shape (batch_size, sequence_length, embedding_size). This is the tensor to be indexed. indices : `torch.LongTensor` A tensor of shape (batch_size, ...), where each element is an index into the `sequence_length` dimension of the `target` tensor. flattened_indices : Optional[torch.Tensor], optional (default = None) An optional tensor representing the result of calling `flatten_and_batch_shift_indices` on `indices`. This is helpful in the case that the indices can be flattened once and cached for many batch lookups. # Returns selected_targets : `torch.Tensor` A tensor with shape [indices.size(), target.size(-1)] representing the embedded indices extracted from the batch flattened target tensor. """ if flattened_indices is None: # Shape: (batch_size * d_1 * ... * d_n) try: flattened_indices = flatten_and_batch_shift_indices(indices, target.size(1)) except: print("indices: {}".format(indices)) print("target: {}".format(target)) flattened_indices = flatten_and_batch_shift_indices(indices, target.size(1)) # Shape: (batch_size * sequence_length, embedding_size) flattened_target = target.view(-1, target.size(-1)) # Shape: (batch_size * d_1 * ... * d_n, embedding_size) flattened_selected = flattened_target.index_select(0, flattened_indices) selected_shape = list(indices.size()) + [target.size(-1)] # Shape: (batch_size, d_1, ..., d_n, embedding_size) selected_targets = flattened_selected.view(*selected_shape) return selected_targets def batched_span_select(target: torch.Tensor, spans: torch.LongTensor) -> torch.Tensor: """ The given `spans` of size `(batch_size, num_spans, 2)` indexes into the sequence dimension (dimension 2) of the target, which has size `(batch_size, sequence_length, embedding_size)`. This function returns segmented spans in the target with respect to the provided span indices. It does not guarantee element order within each span. # Parameters target : `torch.Tensor`, required. A 3 dimensional tensor of shape (batch_size, sequence_length, embedding_size). This is the tensor to be indexed. indices : `torch.LongTensor` A 3 dimensional tensor of shape (batch_size, num_spans, 2) representing start and end indices (both inclusive) into the `sequence_length` dimension of the `target` tensor. # Returns span_embeddings : `torch.Tensor` A tensor with shape (batch_size, num_spans, max_batch_span_width, embedding_size] representing the embedded spans extracted from the batch flattened target tensor. span_mask: `torch.BoolTensor` A tensor with shape (batch_size, num_spans, max_batch_span_width) representing the mask on the returned span embeddings. """ # both of shape (batch_size, num_spans, 1) span_starts, span_ends = spans.split(1, dim=-1) # shape (batch_size, num_spans, 1) # These span widths are off by 1, because the span ends are `inclusive`. span_widths = span_ends - span_starts # We need to know the maximum span width so we can # generate indices to extract the spans from the sequence tensor. # These indices will then get masked below, such that if the length # of a given span is smaller than the max, the rest of the values # are masked. max_batch_span_width = span_widths.max().item() + 1 # Shape: (1, 1, max_batch_span_width) max_span_range_indices = get_range_vector(max_batch_span_width, get_device_of(target)).view( 1, 1, -1 ) # Shape: (batch_size, num_spans, max_batch_span_width) # This is a broadcasted comparison - for each span we are considering, # we are creating a range vector of size max_span_width, but masking values # which are greater than the actual length of the span. # # We're using <= here (and for the mask below) because the span ends are # inclusive, so we want to include indices which are equal to span_widths rather # than using it as a non-inclusive upper bound. span_mask = max_span_range_indices <= span_widths raw_span_indices = span_ends - max_span_range_indices # We also don't want to include span indices which are less than zero, # which happens because some spans near the beginning of the sequence # have an end index < max_batch_span_width, so we add this to the mask here. span_mask = span_mask & (raw_span_indices >= 0) span_indices = torch.nn.functional.relu(raw_span_indices.float()).long() # Shape: (batch_size, num_spans, max_batch_span_width, embedding_dim) span_embeddings = batched_index_select(target, span_indices) return span_embeddings, span_mask
BLINK-main
elq/biencoder/allennlp_span_utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import json import logging import torch from tqdm import tqdm, trange from torch.utils.data import DataLoader, TensorDataset from pytorch_transformers.tokenization_bert import BertTokenizer from blink.biencoder.zeshel_utils import world_to_id from elq.common.params import ENT_START_TAG, ENT_END_TAG, ENT_TITLE_TAG def select_field_with_padding(data, key1, key2=None, pad_idx=-1): max_len = 0 selected_list = [] padding_mask = [] for example in data: if key2 is None: selected_list.append(example[key1]) max_len = max(max_len, len(example[key1])) else: selected_list.append(example[key1][key2]) max_len = max(max_len, len(example[key1][key2])) for i, entry in enumerate(selected_list): # pad to max len pad_list = [1 for _ in range(len(entry))] + [0 for _ in range(max_len - len(entry))] selected_list[i] += [pad_idx for _ in range(max_len - len(entry))] assert len(pad_list) == max_len assert len(selected_list[i]) == max_len padding_mask.append(pad_list) return selected_list, padding_mask def select_field(data, key1, key2=None): if key2 is None: return [example[key1] for example in data] else: return [example[key1][key2] for example in data] def get_context_representation_single_mention( sample, tokenizer, max_seq_length, mention_key="mention", context_key="context", ent_start_token=ENT_START_TAG, ent_end_token=ENT_END_TAG, add_mention_bounds=True, ): mention_tokens = [] if sample[mention_key] and len(sample[mention_key]) > 0: mention_tokens = tokenizer.tokenize(sample[mention_key]) to_subtract = 4 if add_mention_bounds else 2 if len(mention_tokens) > max_seq_length - to_subtract: # -4 as 2 for ent_start and ent_end, 2 for [CLS] and [SEP] mention_tokens = mention_tokens[:max_seq_length - to_subtract] if add_mention_bounds: mention_tokens = [ent_start_token] + mention_tokens + [ent_end_token] context_left = sample[context_key + "_left"] context_right = sample[context_key + "_right"] context_left = tokenizer.tokenize(context_left) context_right = tokenizer.tokenize(context_right) left_quota = (max_seq_length - len(mention_tokens)) // 2 - 1 right_quota = max_seq_length - len(mention_tokens) - left_quota - 2 left_add = len(context_left) right_add = len(context_right) if left_add <= left_quota: if right_add > right_quota: right_quota += left_quota - left_add else: if right_add <= right_quota: left_quota += right_quota - right_add if left_quota <= 0: context_left = [] if right_quota <= 0: context_right = [] context_tokens = ( context_left[-left_quota:] + mention_tokens + context_right[:right_quota] ) context_tokens = ["[CLS]"] + context_tokens + ["[SEP]"] mention_idxs = [ len(context_left[-left_quota:]) + 1, len(context_left[-left_quota:]) + len(mention_tokens) + 1, ] input_ids = tokenizer.convert_tokens_to_ids(context_tokens) padding = [0] * (max_seq_length - len(input_ids)) input_ids += padding assert len(input_ids) == max_seq_length return { "tokens": context_tokens, "ids": input_ids, "mention_idxs": mention_idxs, } def get_context_representation_multiple_mentions_left_right( sample, tokenizer, max_seq_length, mention_key="mention", context_key="context", ent_start_token=ENT_START_TAG, ent_end_token=ENT_END_TAG, ): all_mentions = sample[mention_key] all_context_lefts = sample[context_key + "_left"] all_context_rights = sample[context_key + "_right"] if len(all_mentions[0]) == 0 and len(all_context_lefts[0]) == 0 and len(all_context_rights[0]) == 0: # passed in empty string context_tokens = ["[CLS]", "[SEP]"] input_ids = tokenizer.convert_tokens_to_ids(context_tokens) padding = [0] * (max_seq_length - len(input_ids)) input_ids += padding assert len(input_ids) == max_seq_length return { "tokens": context_tokens, "ids": input_ids, "mention_idxs": [], } mention_tokens = [] for mention in all_mentions: if mention and len(mention) > 0: mention_token = tokenizer.tokenize(mention) if len(mention_token) > max_seq_length - 2: # -2 for [CLS] and [SEP] mention_token = mention_token[:max_seq_length - 2] mention_tokens.append(mention_token) mention_idxs = [] assert len(all_context_lefts) == len(all_context_rights) assert len(all_context_rights) == len(all_mentions) context_tokens = None for c in range(len(all_context_lefts)): context_left = all_context_lefts[c] context_right = all_context_rights[c] context_left = tokenizer.tokenize(context_left) context_right = tokenizer.tokenize(context_right) left_quota = (max_seq_length - len(mention_tokens[c])) // 2 - 1 right_quota = max_seq_length - len(mention_tokens[c]) - left_quota - 2 left_add = len(context_left) right_add = len(context_right) if left_add <= left_quota: if right_add > right_quota: right_quota += left_quota - left_add else: if right_add <= right_quota: left_quota += right_quota - right_add if left_quota <= 0: context_left = [] if right_quota <= 0: context_right = [] context_tokens_itr = ( context_left[-left_quota:] + mention_tokens[c] + context_right[:right_quota] ) context_tokens_itr = ["[CLS]"] + context_tokens_itr + ["[SEP]"] if context_tokens is None: context_tokens = context_tokens_itr else: try: assert context_tokens == context_tokens_itr except: import pdb pdb.set_trace() mention_idxs.append([ len(context_left[-left_quota:]) + 1, len(context_left[-left_quota:]) + len(mention_tokens[c]) + 1, ]) input_ids = tokenizer.convert_tokens_to_ids(context_tokens) padding = [0] * (max_seq_length - len(input_ids)) input_ids += padding assert len(input_ids) == max_seq_length return { "tokens": context_tokens, "ids": input_ids, "mention_idxs": mention_idxs, } def sort_mentions( lst, sort_map=None, ): """ sort_map: {orig_idx: idx in new "sorted" array} """ new_lst = [0 for _ in range(len(lst))] for i in range(len(lst)): new_lst[sort_map[i]] = lst[i] return new_lst def do_sort( sample, orig_idx_to_sort_idx, ): sample['mentions'] = sort_mentions(sample['mentions'], orig_idx_to_sort_idx) sample['label_id'] = sort_mentions(sample['label_id'], orig_idx_to_sort_idx) sample['wikidata_id'] = sort_mentions(sample['wikidata_id'], orig_idx_to_sort_idx) sample['entity'] = sort_mentions(sample['entity'], orig_idx_to_sort_idx) sample['label'] = sort_mentions(sample['label'], orig_idx_to_sort_idx) def get_context_representation_multiple_mentions_idxs( sample, tokenizer, max_seq_length, mention_key, context_key, ent_start_token, ent_end_token, ): ''' Also cuts out mentions beyond that context window ASSUMES MENTION_IDXS ARE SORTED!!!! Returns: List of mention bounds that are [inclusive, exclusive) (make both inclusive later) NOTE: 2nd index of mention bound may be outside of max_seq_length-range (must deal with later) ''' mention_idxs = sample["tokenized_mention_idxs"] input_ids = sample["tokenized_text_ids"] # sort mentions / entities / everything associated # [[orig_index, [start, end]], ....] --> sort by start, then end sort_tuples = [[i[0], i[1]] for i in sorted(enumerate(mention_idxs), key=lambda x:(x[1][0], x[1][1]))] if [tup[1] for tup in sort_tuples] != mention_idxs: orig_idx_to_sort_idx = {itm[0]: i for i, itm in enumerate(sort_tuples)} assert [tup[1] for tup in sort_tuples] == sort_mentions(mention_idxs, orig_idx_to_sort_idx) mention_idxs = [tup[1] for tup in sort_tuples] sample['tokenized_mention_idxs'] = mention_idxs do_sort(sample, orig_idx_to_sort_idx) # TODO SORT EVERYTHING # fit leftmost mention, then all of the others that can reasonably fit... all_mention_spans_range = [mention_idxs[0][0], mention_idxs[-1][1]] while all_mention_spans_range[1] - all_mention_spans_range[0] + 2 > max_seq_length: if len(mention_idxs) == 1: # don't cut further assert mention_idxs[0][1] - mention_idxs[0][0] + 2 > max_seq_length # truncate mention mention_idxs[0][1] = max_seq_length + mention_idxs[0][0] - 2 else: # cut last mention mention_idxs = mention_idxs[:len(mention_idxs) - 1] all_mention_spans_range = [mention_idxs[0][0], mention_idxs[-1][1]] context_left = input_ids[:all_mention_spans_range[0]] all_mention_tokens = input_ids[all_mention_spans_range[0]:all_mention_spans_range[1]] context_right = input_ids[all_mention_spans_range[1]:] left_quota = (max_seq_length - len(all_mention_tokens)) // 2 - 1 right_quota = max_seq_length - len(all_mention_tokens) - left_quota - 2 left_add = len(context_left) right_add = len(context_right) if left_add <= left_quota: # tokens left to add <= quota ON THE LEFT if right_add > right_quota: # add remaining quota to right quota right_quota += left_quota - left_add else: if right_add <= right_quota: # tokens left to add <= quota ON THE RIGHT left_quota += right_quota - right_add # add remaining quota to left quota if left_quota <= 0: left_quota = -len(context_left) # cut entire list (context_left = []) if right_quota <= 0: right_quota = 0 # cut entire list (context_right = []) input_ids_window = context_left[-left_quota:] + all_mention_tokens + context_right[:right_quota] # shift mention_idxs if len(input_ids) <= max_seq_length - 2: try: assert input_ids == input_ids_window except: import pdb pdb.set_trace() else: assert input_ids != input_ids_window cut_from_left = len(context_left) - len(context_left[-left_quota:]) if cut_from_left > 0: # must shift mention_idxs for c in range(len(mention_idxs)): mention_idxs[c] = [ mention_idxs[c][0] - cut_from_left, mention_idxs[c][1] - cut_from_left, ] input_ids_window = [101] + input_ids_window + [102] tokens = tokenizer.convert_ids_to_tokens(input_ids_window) # +1 for CLS token mention_idxs = [[mention[0]+1, mention[1]+1] for mention in mention_idxs] # input_ids = tokenizer.convert_tokens_to_ids(input_ids_window) padding = [0] * (max_seq_length - len(input_ids_window)) input_ids_window += padding assert len(input_ids_window) == max_seq_length return { "tokens": tokens, "ids": input_ids_window, "mention_idxs": mention_idxs, # "pruned_ents": [1 for i in range(len(all_mentions)) if i < len(mention_idxs) else 0], # pruned last N entities, TODO change if changed } def get_candidate_representation( candidate_desc, tokenizer, max_seq_length, candidate_title=None, title_tag=ENT_TITLE_TAG, ): cls_token = tokenizer.cls_token sep_token = tokenizer.sep_token cand_tokens = tokenizer.tokenize(candidate_desc) if candidate_title is not None: title_tokens = tokenizer.tokenize(candidate_title) cand_tokens = title_tokens + [title_tag] + cand_tokens cand_tokens = cand_tokens[: max_seq_length - 2] cand_tokens = [cls_token] + cand_tokens + [sep_token] input_ids = tokenizer.convert_tokens_to_ids(cand_tokens) padding = [0] * (max_seq_length - len(input_ids)) input_ids += padding assert len(input_ids) == max_seq_length return { "tokens": cand_tokens, "ids": [input_ids], } def process_mention_data( samples, tokenizer, max_context_length, max_cand_length, silent, mention_key="mention", context_key="context", label_key="label", title_key='label_title', ent_start_token=ENT_START_TAG, ent_end_token=ENT_END_TAG, title_token=ENT_TITLE_TAG, debug=False, logger=None, add_mention_bounds=True, saved_context_dir=None, candidate_token_ids=None, params=None, ): ''' Returns /inclusive/ bounds ''' extra_ret_values = {} if saved_context_dir is not None and os.path.exists(os.path.join(saved_context_dir, "tensor_tuple.pt")): data = torch.load(os.path.join(saved_context_dir, "data.pt")) tensor_data_tuple = torch.load(os.path.join(saved_context_dir, "tensor_tuple.pt")) return data, tensor_data_tuple, extra_ret_values if candidate_token_ids is None and not debug: candidate_token_ids = torch.load(params["cand_token_ids_path"]) if logger: logger.info("Loaded saved entities info") extra_ret_values["candidate_token_ids"] = candidate_token_ids processed_samples = [] if debug: samples = samples[:200] if silent: iter_ = samples else: iter_ = tqdm(samples) use_world = True ent_start_id = tokenizer.convert_tokens_to_ids(ent_start_token) ent_end_id = tokenizer.convert_tokens_to_ids(ent_end_token) cls_token_id = tokenizer.convert_tokens_to_ids("[CLS]") sep_token_id = tokenizer.convert_tokens_to_ids("[SEP]") for idx, sample in enumerate(iter_): assert not add_mention_bounds, "Adding mention bounds, but we have multiple entities per example" if context_key + "_left" in sample: context_tokens = get_context_representation_multiple_mentions_left_right( sample, tokenizer, max_context_length, mention_key, context_key, ent_start_token, ent_end_token, ) else: context_tokens = get_context_representation_multiple_mentions_idxs( sample, tokenizer, max_context_length, mention_key, context_key, ent_start_token, ent_end_token, ) for i in range(len(context_tokens["mention_idxs"])): context_tokens["mention_idxs"][i][1] -= 1 # make bounds inclusive label = sample[label_key] title = sample.get(title_key) label_ids = sample.get("label_id") if label is None: label = [None] label_ids = [label_ids] # remove those that got pruned off if len(label) > len(context_tokens['mention_idxs']): label = label[:len(context_tokens['mention_idxs'])] label_ids = sample["label_id"][:len(context_tokens['mention_idxs'])] if candidate_token_ids is not None: token_ids = [[candidate_token_ids[label_id].tolist()] for label_id in label_ids] label_tokens = { "tokens": "", "ids": token_ids, } elif not params["freeze_cand_enc"]: label_tokens = [get_candidate_representation( l, tokenizer, max_cand_length, title[i], ) for i, l in enumerate(label)] label_tokens = { k: [label_tokens[l][k] for l in range(len(label_tokens))] for k in label_tokens[0]} else: label_tokens = None if isinstance(sample["label_id"], list): # multiple candidates if len(sample["label_id"]) > len(context_tokens['mention_idxs']): sample["label_id"] = sample["label_id"][:len(context_tokens['mention_idxs'])] label_idx = [int(id) for id in sample["label_id"]] else: assert isinstance(sample["label_id"], int) or isinstance(sample["label_id"], str) label_idx = int(sample["label_id"]) record = { "context": context_tokens, } if not params["freeze_cand_enc"]: record["label"] = label_tokens record["label_idx"] = label_idx if "world" in sample: src = sample["world"] src = world_to_id[src] record["src"] = [src] use_world = True else: use_world = False processed_samples.append(record) if debug and logger: logger.info("====Processed samples: ====") for sample in processed_samples[:5]: logger.info("Context tokens : " + " ".join(sample["context"]["tokens"])) logger.info( "Context ids : " + " ".join([str(v) for v in sample["context"]["ids"]]) ) if not params["freeze_cand_encs"]: logger.info("Label tokens : " + " ".join(sample["label"]["tokens"])) logger.info( "Label ids : " + " ".join([str(v) for v in sample["label"]["ids"]]) ) logger.info("Label_id : %d" % sample["label_idx"]) if use_world: logger.info("Src : %d" % sample["src"][0]) context_vecs = torch.tensor( select_field(processed_samples, "context", "ids"), dtype=torch.long, ) if logger: logger.info("Created context IDs vector") if isinstance(processed_samples[0]["context"]["mention_idxs"][0], int): mention_idx_vecs = torch.tensor( select_field(processed_samples, "context", "mention_idxs"), dtype=torch.long, ).unsqueeze(1) mention_idx_mask = torch.ones(mention_idx_vecs.size(0), dtype=torch.bool).unsqueeze(-1) if logger: logger.info("Created mention positions vector") if not params["freeze_cand_enc"]: cand_vecs = torch.tensor( select_field(processed_samples, "label", "ids"), dtype=torch.long, ) if logger: logger.info("Created candidate IDs vector") label_idx = torch.tensor( select_field(processed_samples, "label_idx"), dtype=torch.long, ).unsqueeze(-1) if logger: logger.info("Created label IDXs vector") else: mention_idx_vecs, mention_idx_mask = select_field_with_padding( processed_samples, "context", "mention_idxs", pad_idx=[0,1], #ensure is a well-formed span ) # (bs, max_num_spans, 2) mention_idx_vecs = torch.tensor(mention_idx_vecs, dtype=torch.long) # (bs, max_num_spans) mention_idx_mask = torch.tensor(mention_idx_mask, dtype=torch.bool) if not params["freeze_cand_enc"]: cand_vecs, cand_mask = select_field_with_padding( processed_samples, "label", "ids", pad_idx=[[0 for _ in range(max_cand_length)]], ) # (bs, max_num_spans, 1, max_cand_length) cand_vecs = torch.tensor(cand_vecs, dtype=torch.long) cand_mask = torch.tensor(cand_mask, dtype=torch.bool) assert (cand_mask == mention_idx_mask).all() or cand_mask.all() if logger: logger.info("Created candidate IDs vector") else: cand_vecs = torch.Tensor(context_vecs.size()) label_idx_vecs, label_idx_mask = select_field_with_padding(processed_samples, "label_idx", pad_idx=-1) # (bs, max_num_spans) label_idx = torch.tensor(label_idx_vecs, dtype=torch.long) label_idx_mask = torch.tensor(label_idx_mask, dtype=torch.bool) assert (label_idx_mask == mention_idx_mask).all() or label_idx_mask.all() if logger: logger.info("Created label IDXs vector") # mention_idx_vecs: (bs, max_num_spans, 2), mention_idx_mask: (bs, max_num_spans) assert len(mention_idx_vecs.size()) == 3 # prune mention_idx_vecs to max_context_length mention_idx_vecs[mention_idx_vecs >= max_context_length] = (max_context_length - 1) if use_world: src_vecs = torch.tensor( select_field(processed_samples, "src"), dtype=torch.long, ) if logger: logger.info("Created source vector") data = { "context_vecs": context_vecs, "mention_idx_vecs": mention_idx_vecs, "cand_vecs": cand_vecs, "label_idx": label_idx, } if use_world: data["src"] = src_vecs tensor_data_tuple = (context_vecs, cand_vecs, src_vecs, label_idx, mention_idx_vecs, mention_idx_mask) else: tensor_data_tuple = (context_vecs, cand_vecs, label_idx, mention_idx_vecs, mention_idx_mask) # save data if saved_context_dir is not None and not os.path.exists(os.path.join(saved_context_dir, "tensor_tuple.pt")): os.makedirs(saved_context_dir, exist_ok=True) torch.save(data, os.path.join(saved_context_dir, "data.pt")) torch.save(tensor_data_tuple, os.path.join(saved_context_dir, "tensor_tuple.pt")) return data, tensor_data_tuple, extra_ret_values
BLINK-main
elq/biencoder/data_process.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch import numpy as np def batch_reshape_mask_left( input_t, selected, pad_idx=0, left_align_mask=None ): """ Left-aligns all ``selected" values in input_t, which is a batch of examples. - input_t: >=2D tensor (N, M, *) - selected: 2D torch.Bool tensor, 2 dims same size as first 2 dims of `input_t` (N, M) - pad_idx represents the padding to be used in the output - left_align_mask: if already precomputed, pass the alignment mask in (mask on the output, corresponding to `selected` on the input) Example: input_t = [[1,2,3,4],[5,6,7,8]] selected = [[0,1,0,1],[1,1,0,1]] output = [[2,4,0],[5,6,8]] """ batch_num_selected = selected.sum(1) max_num_selected = batch_num_selected.max() # (bsz, 2) repeat_freqs = torch.stack([batch_num_selected, max_num_selected - batch_num_selected], dim=-1) # (bsz x 2,) repeat_freqs = repeat_freqs.view(-1) if left_align_mask is None: # (bsz, 2) left_align_mask = torch.zeros(input_t.size(0), 2).to(input_t.device).bool() left_align_mask[:,0] = 1 # (bsz x 2,): [1,0,1,0,...] left_align_mask = left_align_mask.view(-1) # (bsz x max_num_selected,): [1 xrepeat_freqs[0],0 x(M-repeat_freqs[0]),1 xrepeat_freqs[1],0 x(M-repeat_freqs[1]),...] left_align_mask = left_align_mask.repeat_interleave(repeat_freqs) # (bsz, max_num_selected) left_align_mask = left_align_mask.view(-1, max_num_selected) # reshape to (bsz, max_num_selected, *) input_reshape = torch.Tensor(left_align_mask.size() + input_t.size()[2:]).to(input_t.device, input_t.dtype).fill_(pad_idx) input_reshape[left_align_mask] = input_t[selected] # (bsz, max_num_selected, *); (bsz, max_num_selected) return input_reshape, left_align_mask
BLINK-main
elq/biencoder/utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import argparse import faiss import pickle import torch import json import sys import io import random import time import traceback import numpy as np from scipy.special import softmax, expit import torch.nn.functional as F from multiprocessing.pool import ThreadPool from tqdm import tqdm, trange from collections import OrderedDict from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from pytorch_transformers.file_utils import PYTORCH_PRETRAINED_BERT_CACHE from pytorch_transformers.optimization import WarmupLinearSchedule from pytorch_transformers.tokenization_bert import BertTokenizer from elq.biencoder.biencoder import BiEncoderRanker from elq.vcg_utils.measures import entity_linking_tp_with_overlap import logging import elq.candidate_ranking.utils as utils from elq.biencoder.data_process import process_mention_data from blink.biencoder.zeshel_utils import DOC_PATH, WORLDS, world_to_id from blink.common.optimizer import get_bert_optimizer from elq.common.params import ElqParser from elq.index.faiss_indexer import DenseFlatIndexer, DenseHNSWFlatIndexer, DenseIVFFlatIndexer logger = None np.random.seed(1234) # reproducible for FAISS indexer def evaluate( reranker, eval_dataloader, params, device, logger, cand_encs=None, faiss_index=None, get_losses=False, ): reranker.model.eval() if params["silent"]: iter_ = eval_dataloader else: iter_ = tqdm(eval_dataloader, desc="Evaluation") results = {} eval_num_correct = 0.0 eval_num_p = 0.0 eval_num_g = 0.0 nb_eval_examples = 0 nb_eval_steps = 0 overall_loss = 0.0 if cand_encs is not None and not params["freeze_cand_enc"]: torch.cuda.empty_cache() cand_encs = cand_encs.to(device) for step, batch in enumerate(iter_): batch = tuple(t.to(device) for t in batch) context_input = batch[0] candidate_input = batch[1] # (bs, num_actual_spans) label_ids = batch[2].cpu().numpy() if params["freeze_cand_enc"] else None if params["debug"] and label_ids is not None: label_ids[label_ids > 199] = 199 mention_idx = batch[-2].cpu().numpy() mention_idx_mask = batch[-1].cpu().numpy() with torch.no_grad(): # evaluate with joint mention detection if params["freeze_cand_enc"]: context_outs = reranker.encode_context( context_input, num_cand_mentions=50, topK_threshold=-3.5, ) embedding_context = context_outs['mention_reps'].cpu().numpy() pred_mention_mask = context_outs['mention_masks'].cpu().numpy() chosen_mention_bounds = context_outs['mention_bounds'].cpu().numpy() embedding_ctxt = embedding_context[pred_mention_mask] # do faiss search for closest entity # DIM (all_pred_mentions_batch, num_cand_entities); (all_pred_mentions_batch, num_cand_entities) top_cand_logits_shape, top_cand_indices_shape = faiss_index.search_knn(embedding_ctxt, 10) top_cand_logits = np.zeros((pred_mention_mask.shape[0], pred_mention_mask.shape[1], 10), dtype=np.float) top_cand_indices = np.zeros_like(pred_mention_mask, dtype=np.int) top_cand_logits[pred_mention_mask] = top_cand_logits_shape top_cand_indices[pred_mention_mask] = top_cand_indices_shape[:,0] scores = (np.log(softmax(top_cand_logits, -1)) + torch.sigmoid(context_outs['mention_logits'].unsqueeze(-1)).log().cpu().numpy())[:,:,0] tmp_num_correct = 0.0 tmp_num_p = 0.0 tmp_num_g = 0.0 for i, ex in enumerate(top_cand_indices): gold_mb = mention_idx[i][mention_idx_mask[i]] gold_label_ids = label_ids[i][mention_idx_mask[i]] overall_score_mask = scores[i][pred_mention_mask[i]] > -2.5 pred_mb = chosen_mention_bounds[i][pred_mention_mask[i]][overall_score_mask] pred_label_ids = ex[pred_mention_mask[i]][overall_score_mask] gold_triples = [(str(gold_label_ids[j]), gold_mb[j][0], gold_mb[j][1]) for j in range(len(gold_mb))] pred_triples = [(str(pred_label_ids[j]), pred_mb[j][0], pred_mb[j][1]) for j in range(len(pred_mb))] num_overlap_weak, _ = entity_linking_tp_with_overlap(gold_triples, pred_triples) tmp_num_correct += num_overlap_weak tmp_num_p += float(len(pred_triples)) tmp_num_g += float(len(gold_triples)) text_encs = embedding_context else: loss, logits, mention_logits, mention_bounds = reranker( context_input, candidate_input, cand_encs=cand_encs, gold_mention_bounds=batch[-2], gold_mention_bounds_mask=batch[-1], return_loss=True, ) logits = logits.cpu().numpy() # Using in-batch negatives, the label ids are diagonal label_ids = torch.LongTensor(torch.arange(logits.shape[0])) label_ids = label_ids.cpu().numpy() tmp_num_correct = utils.accuracy(logits, label_ids) tmp_num_p = len(batch[-2][batch[-1]]) tmp_num_g = len(batch[-2][batch[-1]]) overall_loss += loss eval_num_correct += tmp_num_correct eval_num_p += tmp_num_p eval_num_g += tmp_num_g nb_eval_steps += 1 if cand_encs is not None: cand_encs = cand_encs.to("cpu") torch.cuda.empty_cache() if nb_eval_steps > 0 and overall_loss > 0: normalized_overall_loss = overall_loss / nb_eval_steps logger.info("Overall loss: %.5f" % normalized_overall_loss) if eval_num_p > 0: normalized_eval_p = eval_num_correct / eval_num_p else: normalized_eval_p = 0.0 if eval_num_g > 0: normalized_eval_r = eval_num_correct / eval_num_g else: normalized_eval_r = 0.0 logger.info("Precision: %.5f" % normalized_eval_p) logger.info("Recall: %.5f" % normalized_eval_r) if normalized_eval_p + normalized_eval_r == 0: f1 = 0 else: f1 = 2 * normalized_eval_p * normalized_eval_r / (normalized_eval_p + normalized_eval_r) logger.info("F1: %.5f" % f1) results["normalized_f1"] = f1 return results def get_optimizer(model, params): return get_bert_optimizer( [model], params["type_optimization"], params["learning_rate"], fp16=params.get("fp16"), ) def get_scheduler(params, optimizer, len_train_data, logger): batch_size = params["train_batch_size"] grad_acc = params["gradient_accumulation_steps"] epochs = params["num_train_epochs"] num_train_steps = int(len_train_data / batch_size / grad_acc) * epochs num_warmup_steps = int(num_train_steps * params["warmup_proportion"]) scheduler = WarmupLinearSchedule( optimizer, warmup_steps=num_warmup_steps, t_total=num_train_steps, ) logger.info(" Num optimization steps = %d" % num_train_steps) logger.info(" Num warmup steps = %d", num_warmup_steps) return scheduler def main(params): model_output_path = params["output_path"] if not os.path.exists(model_output_path): os.makedirs(model_output_path) logger = utils.get_logger(params["output_path"]) # Init model reranker = BiEncoderRanker(params) tokenizer = reranker.tokenizer model = reranker.model device = reranker.device n_gpu = reranker.n_gpu if params["gradient_accumulation_steps"] < 1: raise ValueError( "Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format( params["gradient_accumulation_steps"] ) ) # An effective batch size of `x`, when we are accumulating the gradient accross `y` batches will be achieved by having a batch size of `z = x / y` params["train_batch_size"] = ( params["train_batch_size"] // params["gradient_accumulation_steps"] ) train_batch_size = params["train_batch_size"] eval_batch_size = params["eval_batch_size"] grad_acc_steps = params["gradient_accumulation_steps"] # Fix the random seeds seed = params["seed"] random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) if reranker.n_gpu > 0: torch.cuda.manual_seed_all(seed) # Load train data train_samples = utils.read_dataset("train", params["data_path"]) logger.info("Read %d train samples." % len(train_samples)) logger.info("Finished reading all train samples") # Load eval data try: valid_samples = utils.read_dataset("valid", params["data_path"]) except FileNotFoundError: valid_samples = utils.read_dataset("dev", params["data_path"]) # MUST BE DIVISBLE BY n_gpus if len(valid_samples) > 1024: valid_subset = 1024 else: valid_subset = len(valid_samples) - len(valid_samples) % torch.cuda.device_count() logger.info("Read %d valid samples, choosing %d subset" % (len(valid_samples), valid_subset)) valid_data, valid_tensor_data, extra_ret_values = process_mention_data( samples=valid_samples[:valid_subset], # use subset of valid data tokenizer=tokenizer, max_context_length=params["max_context_length"], max_cand_length=params["max_cand_length"], context_key=params["context_key"], title_key=params["title_key"], silent=params["silent"], logger=logger, debug=params["debug"], add_mention_bounds=(not args.no_mention_bounds), candidate_token_ids=None, params=params, ) candidate_token_ids = extra_ret_values["candidate_token_ids"] valid_tensor_data = TensorDataset(*valid_tensor_data) valid_sampler = SequentialSampler(valid_tensor_data) valid_dataloader = DataLoader( valid_tensor_data, sampler=valid_sampler, batch_size=eval_batch_size ) # load candidate encodings cand_encs = None cand_encs_index = None if params["freeze_cand_enc"]: cand_encs = torch.load(params['cand_enc_path']) logger.info("Loaded saved entity encodings") if params["debug"]: cand_encs = cand_encs[:200] # build FAISS index cand_encs_index = DenseHNSWFlatIndexer(1) cand_encs_index.deserialize_from(params['index_path']) logger.info("Loaded FAISS index on entity encodings") num_neighbors = 10 # evaluate before training results = evaluate( reranker, valid_dataloader, params, cand_encs=cand_encs, device=device, logger=logger, faiss_index=cand_encs_index, ) number_of_samples_per_dataset = {} time_start = time.time() utils.write_to_file( os.path.join(model_output_path, "training_params.txt"), str(params) ) logger.info("Starting training") logger.info( "device: {} n_gpu: {}, distributed training: {}".format(device, n_gpu, False) ) num_train_epochs = params["num_train_epochs"] if params["dont_distribute_train_samples"]: num_samples_per_batch = len(train_samples) train_data, train_tensor_data_tuple, extra_ret_values = process_mention_data( samples=train_samples, tokenizer=tokenizer, max_context_length=params["max_context_length"], max_cand_length=params["max_cand_length"], context_key=params["context_key"], title_key=params["title_key"], silent=params["silent"], logger=logger, debug=params["debug"], add_mention_bounds=(not args.no_mention_bounds), candidate_token_ids=candidate_token_ids, params=params, ) logger.info("Finished preparing training data") else: num_samples_per_batch = len(train_samples) // num_train_epochs trainer_path = params.get("path_to_trainer_state", None) optimizer = get_optimizer(model, params) scheduler = get_scheduler( params, optimizer, num_samples_per_batch, logger ) if trainer_path is not None and os.path.exists(trainer_path): training_state = torch.load(trainer_path) optimizer.load_state_dict(training_state["optimizer"]) scheduler.load_state_dict(training_state["scheduler"]) logger.info("Loaded saved training state") model.train() best_epoch_idx = -1 best_score = -1 logger.info("Num samples per batch : %d" % num_samples_per_batch) for epoch_idx in trange(params["last_epoch"] + 1, int(num_train_epochs), desc="Epoch"): tr_loss = 0 results = None if not params["dont_distribute_train_samples"]: start_idx = epoch_idx * num_samples_per_batch end_idx = (epoch_idx + 1) * num_samples_per_batch train_data, train_tensor_data_tuple, extra_ret_values = process_mention_data( samples=train_samples[start_idx:end_idx], tokenizer=tokenizer, max_context_length=params["max_context_length"], max_cand_length=params["max_cand_length"], context_key=params["context_key"], title_key=params["title_key"], silent=params["silent"], logger=logger, debug=params["debug"], add_mention_bounds=(not args.no_mention_bounds), candidate_token_ids=candidate_token_ids, params=params, ) logger.info("Finished preparing training data for epoch {}: {} samples".format(epoch_idx, len(train_tensor_data_tuple[0]))) batch_train_tensor_data = TensorDataset( *list(train_tensor_data_tuple) ) if params["shuffle"]: train_sampler = RandomSampler(batch_train_tensor_data) else: train_sampler = SequentialSampler(batch_train_tensor_data) train_dataloader = DataLoader( batch_train_tensor_data, sampler=train_sampler, batch_size=train_batch_size ) if params["silent"]: iter_ = train_dataloader else: iter_ = tqdm(train_dataloader, desc="Batch") for step, batch in enumerate(iter_): batch = tuple(t.to(device) for t in batch) context_input = batch[0] candidate_input = batch[1] label_ids = batch[2] if params["freeze_cand_enc"] else None mention_idxs = batch[-2] mention_idx_mask = batch[-1] if params["debug"] and label_ids is not None: label_ids[label_ids > 199] = 199 cand_encs_input = None label_input = None mention_reps_input = None mention_logits = None mention_bounds = None hard_negs_mask = None if params["adversarial_training"]: assert cand_encs is not None and label_ids is not None # due to params["freeze_cand_enc"] being set ''' GET CLOSEST N CANDIDATES (AND APPROPRIATE LABELS) ''' # (bs, num_spans, embed_size) pos_cand_encs_input = cand_encs[label_ids.to("cpu")] pos_cand_encs_input[~mention_idx_mask] = 0 context_outs = reranker.encode_context( context_input, gold_mention_bounds=mention_idxs, gold_mention_bounds_mask=mention_idx_mask, get_mention_scores=True, ) mention_logits = context_outs['all_mention_logits'] mention_bounds = context_outs['all_mention_bounds'] mention_reps = context_outs['mention_reps'] # mention_reps: (bs, max_num_spans, embed_size) -> masked_mention_reps: (all_pred_mentions_batch, embed_size) masked_mention_reps = mention_reps[context_outs['mention_masks']] # neg_cand_encs_input_idxs: (all_pred_mentions_batch, num_negatives) _, neg_cand_encs_input_idxs = cand_encs_index.search_knn(masked_mention_reps.detach().cpu().numpy(), num_neighbors) neg_cand_encs_input_idxs = torch.from_numpy(neg_cand_encs_input_idxs) # set "correct" closest entities to -1 # masked_label_ids: (all_pred_mentions_batch) masked_label_ids = label_ids[mention_idx_mask] # neg_cand_encs_input_idxs: (max_spans_in_batch, num_negatives) neg_cand_encs_input_idxs[neg_cand_encs_input_idxs - masked_label_ids.to("cpu").unsqueeze(-1) == 0] = -1 # reshape back tensor (extract num_spans dimension) # (bs, num_spans, num_negatives) neg_cand_encs_input_idxs_reconstruct = torch.zeros(label_ids.size(0), label_ids.size(1), neg_cand_encs_input_idxs.size(-1), dtype=neg_cand_encs_input_idxs.dtype) neg_cand_encs_input_idxs_reconstruct[mention_idx_mask] = neg_cand_encs_input_idxs neg_cand_encs_input_idxs = neg_cand_encs_input_idxs_reconstruct # create neg_example_idx (corresponding example (in batch) for each negative) # neg_example_idx: (bs * num_negatives) neg_example_idx = torch.arange(neg_cand_encs_input_idxs.size(0)).unsqueeze(-1) neg_example_idx = neg_example_idx.expand(neg_cand_encs_input_idxs.size(0), neg_cand_encs_input_idxs.size(2)) neg_example_idx = neg_example_idx.flatten() # flatten and filter -1 (i.e. any correct/positive entities) # neg_cand_encs_input_idxs: (bs * num_negatives, num_spans) neg_cand_encs_input_idxs = neg_cand_encs_input_idxs.permute(0,2,1) neg_cand_encs_input_idxs = neg_cand_encs_input_idxs.reshape(-1, neg_cand_encs_input_idxs.size(-1)) # mask invalid negatives (actually the positive example) # (bs * num_negatives) mask = ~((neg_cand_encs_input_idxs == -1).sum(1).bool()) # rows without any -1 entry # deletes corresponding negative for *all* spans in that example (deletes at most 3 of 10 negatives / example) # neg_cand_encs_input_idxs: (bs * num_negatives - invalid_negs, num_spans) neg_cand_encs_input_idxs = neg_cand_encs_input_idxs[mask] # neg_cand_encs_input_idxs: (bs * num_negatives - invalid_negs) neg_example_idx = neg_example_idx[mask] # (bs * num_negatives - invalid_negs, num_spans, embed_size) neg_cand_encs_input = cand_encs[neg_cand_encs_input_idxs] # (bs * num_negatives - invalid_negs, num_spans, embed_size) neg_mention_idx_mask = mention_idx_mask[neg_example_idx] neg_cand_encs_input[~neg_mention_idx_mask] = 0 # create input tensors (concat [pos examples, neg examples]) # (bs + bs * num_negatives, num_spans, embed_size) mention_reps_input = torch.cat([ mention_reps, mention_reps[neg_example_idx.to(device)], ]) assert mention_reps.size(0) == pos_cand_encs_input.size(0) # (bs + bs * num_negatives, num_spans) label_input = torch.cat([ torch.ones(pos_cand_encs_input.size(0), pos_cand_encs_input.size(1), dtype=label_ids.dtype), torch.zeros(neg_cand_encs_input.size(0), neg_cand_encs_input.size(1), dtype=label_ids.dtype), ]).to(device) # (bs + bs * num_negatives, num_spans, embed_size) cand_encs_input = torch.cat([ pos_cand_encs_input, neg_cand_encs_input, ]).to(device) hard_negs_mask = torch.cat([mention_idx_mask, neg_mention_idx_mask]) loss, _, _, _ = reranker( context_input, candidate_input, cand_encs=cand_encs_input, text_encs=mention_reps_input, mention_logits=mention_logits, mention_bounds=mention_bounds, label_input=label_input, gold_mention_bounds=mention_idxs, gold_mention_bounds_mask=mention_idx_mask, hard_negs_mask=hard_negs_mask, return_loss=True, ) if grad_acc_steps > 1: loss = loss / grad_acc_steps tr_loss += loss.item() if (step + 1) % (params["print_interval"] * grad_acc_steps) == 0: logger.info( "Step {} - epoch {} average loss: {}\n".format( step, epoch_idx, tr_loss / (params["print_interval"] * grad_acc_steps), ) ) tr_loss = 0 loss.backward() if (step + 1) % grad_acc_steps == 0: torch.nn.utils.clip_grad_norm_( model.parameters(), params["max_grad_norm"] ) optimizer.step() scheduler.step() optimizer.zero_grad() if (step + 1) % (params["eval_interval"] * grad_acc_steps) == 0: logger.info("Evaluation on the development dataset") loss = None # for GPU mem management mention_reps = None mention_reps_input = None label_input = None cand_encs_input = None evaluate( reranker, valid_dataloader, params, cand_encs=cand_encs, device=device, logger=logger, faiss_index=cand_encs_index, get_losses=params["get_losses"], ) model.train() logger.info("\n") logger.info("***** Saving fine - tuned model *****") epoch_output_folder_path = os.path.join( model_output_path, "epoch_{}".format(epoch_idx) ) utils.save_model(model, tokenizer, epoch_output_folder_path) torch.save({ "optimizer": optimizer.state_dict(), "scheduler": scheduler.state_dict(), }, os.path.join(epoch_output_folder_path, "training_state.th")) output_eval_file = os.path.join(epoch_output_folder_path, "eval_results.txt") logger.info("Valid data evaluation") results = evaluate( reranker, valid_dataloader, params, cand_encs=cand_encs, device=device, logger=logger, faiss_index=cand_encs_index, get_losses=params["get_losses"], ) logger.info("Train data evaluation") results = evaluate( reranker, train_dataloader, params, cand_encs=cand_encs, device=device, logger=logger, faiss_index=cand_encs_index, get_losses=params["get_losses"], ) ls = [best_score, results["normalized_f1"]] li = [best_epoch_idx, epoch_idx] best_score = ls[np.argmax(ls)] best_epoch_idx = li[np.argmax(ls)] logger.info("\n") execution_time = (time.time() - time_start) / 60 utils.write_to_file( os.path.join(model_output_path, "training_time.txt"), "The training took {} minutes\n".format(execution_time), ) logger.info("The training took {} minutes\n".format(execution_time)) # save the best model in the parent_dir logger.info("Best performance in epoch: {}".format(best_epoch_idx)) params["path_to_model"] = os.path.join( model_output_path, "epoch_{}".format(best_epoch_idx) ) utils.save_model(reranker.model, tokenizer, model_output_path) if params["evaluate"]: params["path_to_model"] = model_output_path evaluate(params, cand_encs=cand_encs, logger=logger, faiss_index=cand_encs_index) if __name__ == "__main__": parser = ElqParser(add_model_args=True) parser.add_training_args() args = parser.parse_args() print(args) params = args.__dict__ main(params)
BLINK-main
elq/biencoder/train_biencoder.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from tqdm import tqdm from collections import OrderedDict from pytorch_transformers.modeling_bert import ( BertPreTrainedModel, BertConfig, BertModel, ) from pytorch_transformers.tokenization_bert import BertTokenizer from elq.common.ranker_base import BertEncoder, get_model_obj from blink.common.optimizer import get_bert_optimizer from elq.biencoder.allennlp_span_utils import batched_span_select, batched_index_select from elq.biencoder.utils import batch_reshape_mask_left def load_biencoder(params): # Init model biencoder = BiEncoderRanker(params) return biencoder def get_submodel_from_state_dict(state_dict, prefix): # get only submodel specified with prefix 'prefix' from the state_dict new_state_dict = OrderedDict() for key, value in state_dict.items(): if key.startswith(prefix): key = key[len(prefix)+1:] # +1 for '.' new_state_dict[key] = value return new_state_dict class MentionScoresHead(nn.Module): def __init__( self, bert_output_dim, scoring_method="qa_linear", max_mention_length=10, ): super(MentionScoresHead, self).__init__() self.scoring_method = scoring_method self.max_mention_length = max_mention_length if self.scoring_method == "qa_linear": self.bound_classifier = nn.Linear(bert_output_dim, 3) elif self.scoring_method == "qa_mlp" or self.scoring_method == "qa": # for back-compatibility self.bound_classifier = nn.Sequential( nn.Linear(bert_output_dim, bert_output_dim), nn.ReLU(), nn.Dropout(0.1), nn.Linear(bert_output_dim, 3), ) else: raise NotImplementedError() def forward(self, bert_output, mask_ctxt): ''' Retuns scores for *inclusive* mention boundaries ''' # (bs, seqlen, 3) logits = self.bound_classifier(bert_output) if self.scoring_method[:2] == "qa": # (bs, seqlen, 1); (bs, seqlen, 1); (bs, seqlen, 1) start_logprobs, end_logprobs, mention_logprobs = logits.split(1, dim=-1) # (bs, seqlen) start_logprobs = start_logprobs.squeeze(-1) end_logprobs = end_logprobs.squeeze(-1) mention_logprobs = mention_logprobs.squeeze(-1) # impossible to choose masked tokens as starts/ends of spans start_logprobs[~mask_ctxt] = -float("Inf") end_logprobs[~mask_ctxt] = -float("Inf") mention_logprobs[~mask_ctxt] = -float("Inf") # take sum of log softmaxes: # log p(mention) = log p(start_pos && end_pos) = log p(start_pos) + log p(end_pos) # DIM: (bs, starts, ends) mention_scores = start_logprobs.unsqueeze(2) + end_logprobs.unsqueeze(1) # (bs, starts, ends) mention_cum_scores = torch.zeros(mention_scores.size(), dtype=mention_scores.dtype).to(mention_scores.device) # add ends mention_logprobs_end_cumsum = torch.zeros(mask_ctxt.size(0), dtype=mention_scores.dtype).to(mention_scores.device) for i in range(mask_ctxt.size(1)): mention_logprobs_end_cumsum += mention_logprobs[:,i] mention_cum_scores[:,:,i] += mention_logprobs_end_cumsum.unsqueeze(-1) # subtract starts mention_logprobs_start_cumsum = torch.zeros(mask_ctxt.size(0), dtype=mention_scores.dtype).to(mention_scores.device) for i in range(mask_ctxt.size(1)-1): mention_logprobs_start_cumsum += mention_logprobs[:,i] mention_cum_scores[:,(i+1),:] -= mention_logprobs_start_cumsum.unsqueeze(-1) # DIM: (bs, starts, ends) mention_scores += mention_cum_scores # DIM: (starts, ends, 2) -- tuples of [start_idx, end_idx] mention_bounds = torch.stack([ torch.arange(mention_scores.size(1)).unsqueeze(-1).expand(mention_scores.size(1), mention_scores.size(2)), # start idxs torch.arange(mention_scores.size(1)).unsqueeze(0).expand(mention_scores.size(1), mention_scores.size(2)), # end idxs ], dim=-1).to(mask_ctxt.device) # DIM: (starts, ends) mention_sizes = mention_bounds[:,:,1] - mention_bounds[:,:,0] + 1 # (+1 as ends are inclusive) # Remove invalids (startpos > endpos, endpos > seqlen) and renormalize # DIM: (bs, starts, ends) valid_mask = (mention_sizes.unsqueeze(0) > 0) & mask_ctxt.unsqueeze(1) # DIM: (bs, starts, ends) mention_scores[~valid_mask] = -float("inf") # invalids have logprob=-inf (p=0) # DIM: (bs, starts * ends) mention_scores = mention_scores.view(mention_scores.size(0), -1) # DIM: (bs, starts * ends, 2) mention_bounds = mention_bounds.view(-1, 2) mention_bounds = mention_bounds.unsqueeze(0).expand(mention_scores.size(0), mention_scores.size(1), 2) if self.max_mention_length is not None: mention_scores, mention_bounds = self.filter_by_mention_size( mention_scores, mention_bounds, self.max_mention_length, ) return mention_scores, mention_bounds def filter_by_mention_size(self, mention_scores, mention_bounds, max_mention_length): ''' Filter all mentions > maximum mention length mention_scores: torch.FloatTensor (bsz, num_mentions) mention_bounds: torch.LongTensor (bsz, num_mentions, 2) ''' # (bsz, num_mentions) mention_bounds_mask = (mention_bounds[:,:,1] - mention_bounds[:,:,0] <= max_mention_length) # (bsz, num_filtered_mentions) mention_scores = mention_scores[mention_bounds_mask] mention_scores = mention_scores.view(mention_bounds_mask.size(0),-1) # (bsz, num_filtered_mentions, 2) mention_bounds = mention_bounds[mention_bounds_mask] mention_bounds = mention_bounds.view(mention_bounds_mask.size(0),-1,2) return mention_scores, mention_bounds class GetContextEmbedsHead(nn.Module): def __init__(self, mention_aggregation_type, ctxt_output_dim, cand_output_dim, dropout=0.1): """ mention_aggregation_type `all_avg`: average across tokens in mention `fl_avg`: to average across first/last tokens in mention `{all/fl}_linear`: for linear layer over mention `{all/fl}_mlp` to MLP over mention """ super(GetContextEmbedsHead, self).__init__() # for aggregating mention outputs of context encoder self.mention_aggregation_type = mention_aggregation_type.split('_') self.tokens_to_aggregate = self.mention_aggregation_type[0] self.aggregate_method = "_".join(self.mention_aggregation_type[1:]) self.dropout = nn.Dropout(dropout) if self.mention_aggregation_type == 'all_avg' or self.mention_aggregation_type == 'none': assert ctxt_output_dim == cand_output_dim if self.aggregate_method == 'linear': self.mention_agg_linear = nn.Linear(ctxt_output_dim * 2, cand_output_dim) elif self.aggregate_method == 'avg_linear': self.mention_agg_linear = nn.Linear(ctxt_output_dim, cand_output_dim) elif self.aggregate_method == 'mlp': self.mention_agg_mlp = nn.Sequential( nn.Linear(bert_output_dim, bert_output_dim), nn.ReLU(), nn.Dropout(0.1), nn.Linear(bert_output_dim, output_dim), ) else: self.mention_agg_mlp = None def forward(self, bert_output, mention_bounds): ''' bert_output (bs, seqlen, embed_dim) mention_bounds: both bounds are inclusive [start, end] (bs, num_spans, 2) ''' # get embedding of [CLS] token if mention_bounds.size(0) == 0: return mention_bounds if self.tokens_to_aggregate == 'all': ( embedding_ctxt, # (batch_size, num_spans, max_batch_span_width, embedding_size) mask, # (batch_size, num_spans, max_batch_span_width) ) = batched_span_select( bert_output, # (batch_size, sequence_length, embedding_size) mention_bounds, # (batch_size, num_spans, 2) ) embedding_ctxt[~mask] = 0 # 0 out masked elements # embedding_ctxt = (batch_size, num_spans, max_batch_span_width, embedding_size) if self.aggregate_method.startswith('avg'): embedding_ctxt = embedding_ctxt.sum(2) / mask.sum(2).float().unsqueeze(-1) # embedding_ctxt = (batch_size, num_spans, embedding_size) if self.aggregate_method == 'avg_linear': embedding_ctxt = self.mention_agg_linear(embedding_ctxt) # embedding_ctxt = (batch_size, num_spans, output_dim) elif self.tokens_to_aggregate == 'fl': start_embeddings = batched_index_select(bert_output, mention_bounds[:,:,0]) end_embeddings = batched_index_select(bert_output, mention_bounds[:,:,1]) embedding_ctxt = torch.cat([start_embeddings.unsqueeze(2), end_embeddings.unsqueeze(2)], dim=2) # embedding_ctxt = (batch_size, num_spans, 2, embedding_size) if self.aggregate_method == 'avg': embedding_ctxt = embedding_ctxt.mean(2) # embedding_ctxt = (batch_size, num_spans, embedding_size) elif self.aggregate_method == 'linear': embedding_ctxt = embedding_ctxt.view(embedding_ctxt.size(0), embedding_ctxt.size(1), -1) # embedding_ctxt = (batch_size, num_spans, 2 * embedding_size) embedding_ctxt = self.mention_agg_linear(embedding_ctxt) # embedding_ctxt = (batch_size, num_spans, output_dim) else: raise NotImplementedError() return embedding_ctxt class BiEncoderModule(torch.nn.Module): def __init__(self, params): super(BiEncoderModule, self).__init__() ctxt_bert = BertModel.from_pretrained(params["bert_model"], output_hidden_states=True) if params["load_cand_enc_only"]: bert_model = "bert-large-uncased" else: bert_model = params['bert_model'] cand_bert = BertModel.from_pretrained( bert_model, output_hidden_states=True, ) self.context_encoder = BertEncoder( ctxt_bert, params["out_dim"], layer_pulled=params["pull_from_layer"], add_linear=params["add_linear"], ) self.cand_encoder = BertEncoder( cand_bert, params["out_dim"], layer_pulled=params["pull_from_layer"], add_linear=params["add_linear"], ) if params.get("freeze_cand_enc", False): for param in self.cand_encoder.parameters(): param.requires_grad = False self.config = ctxt_bert.config ctxt_bert_output_dim = ctxt_bert.embeddings.word_embeddings.weight.size(1) self.mention_aggregation_type = params.get('mention_aggregation_type', None) self.classification_heads = nn.ModuleDict({}) self.linear_compression = None if self.mention_aggregation_type is not None: classification_heads_dict = {'get_context_embeds': GetContextEmbedsHead( self.mention_aggregation_type, ctxt_bert_output_dim, cand_bert.embeddings.word_embeddings.weight.size(1), )} classification_heads_dict['mention_scores'] = MentionScoresHead( ctxt_bert_output_dim, params["mention_scoring_method"], params.get("max_mention_length", 10), ) self.classification_heads = nn.ModuleDict(classification_heads_dict) elif ctxt_bert_output_dim != cand_bert.embeddings.word_embeddings.weight.size(1): # mapping to make the output dimensions match for dot-product similarity self.linear_compression = nn.Linear(ctxt_bert_output_dim, cand_bert.embeddings.word_embeddings.weight.size(1)) def get_raw_ctxt_encoding( self, token_idx_ctxt, segment_idx_ctxt, mask_ctxt, ): """ Gets raw, shared context embeddings from BERT, to be used by both mention detector and entity linker Returns: torch.FloatTensor (bsz, seqlen, embed_dim) """ raw_ctxt_encoding, _, _ = self.context_encoder.bert_model( token_idx_ctxt, segment_idx_ctxt, mask_ctxt, ) return raw_ctxt_encoding def get_ctxt_mention_scores( self, token_idx_ctxt, segment_idx_ctxt, mask_ctxt, raw_ctxt_encoding = None, ): """ Gets mention scores using raw context encodings Inputs: raw_ctxt_encoding: torch.FloatTensor (bsz, seqlen, embed_dim) Returns: torch.FloatTensor (bsz, num_total_mentions): mention scores/logits torch.IntTensor (bsz, num_total_mentions): mention boundaries """ # (bsz, seqlen, embed_dim) if raw_ctxt_encoding is None: raw_ctxt_encoding = self.get_raw_ctxt_encoding( token_idx_ctxt, segment_idx_ctxt, mask_ctxt, ) # (num_total_mentions,); (num_total_mentions,) return self.classification_heads['mention_scores']( raw_ctxt_encoding, mask_ctxt, ) def prune_ctxt_mentions( self, mention_logits, mention_bounds, num_cand_mentions, threshold, ): ''' Prunes mentions based on mention scores/logits (by either `threshold` or `num_cand_mentions`, whichever yields less candidates) Inputs: mention_logits: torch.FloatTensor (bsz, num_total_mentions) mention_bounds: torch.IntTensor (bsz, num_total_mentions) num_cand_mentions: int threshold: float Returns: torch.FloatTensor(bsz, max_num_pred_mentions): top mention scores/logits torch.IntTensor(bsz, max_num_pred_mentions, 2): top mention boundaries torch.BoolTensor(bsz, max_num_pred_mentions): mask on top mentions torch.BoolTensor(bsz, total_possible_mentions): mask for reshaping from total possible mentions -> max # pred mentions ''' # (bsz, num_cand_mentions); (bsz, num_cand_mentions) top_mention_logits, mention_pos = mention_logits.topk(num_cand_mentions, sorted=True) # (bsz, num_cand_mentions, 2) # [:,:,0]: index of batch # [:,:,1]: index into top mention in mention_bounds mention_pos = torch.stack([torch.arange(mention_pos.size(0)).to(mention_pos.device).unsqueeze(-1).expand_as(mention_pos), mention_pos], dim=-1) # (bsz, num_cand_mentions) top_mention_pos_mask = torch.sigmoid(top_mention_logits).log() > threshold # (total_possible_mentions, 2) # tuples of [index of batch, index into mention_bounds] of what mentions to include mention_pos = mention_pos[top_mention_pos_mask | ( # 2nd part of OR: if nothing is > threshold, use topK that are > -inf ((top_mention_pos_mask.sum(1) == 0).unsqueeze(-1)) & (top_mention_logits > -float("inf")) )] mention_pos = mention_pos.view(-1, 2) # (bsz, total_possible_mentions) # mask of possible logits mention_pos_mask = torch.zeros(mention_logits.size(), dtype=torch.bool).to(mention_pos.device) mention_pos_mask[mention_pos[:,0], mention_pos[:,1]] = 1 # (bsz, max_num_pred_mentions, 2) chosen_mention_bounds, chosen_mention_mask = batch_reshape_mask_left(mention_bounds, mention_pos_mask, pad_idx=0) # (bsz, max_num_pred_mentions) chosen_mention_logits, _ = batch_reshape_mask_left(mention_logits, mention_pos_mask, pad_idx=-float("inf"), left_align_mask=chosen_mention_mask) return chosen_mention_logits, chosen_mention_bounds, chosen_mention_mask, mention_pos_mask def get_ctxt_embeds( self, raw_ctxt_encoding, mention_bounds, ): """ Get candidate scores + embeddings associated with passed-in mention_bounds Input raw_ctxt_encoding: torch.FloatTensor (bsz, seqlen, embed_dim) shared embeddings straight from BERT mention_bounds: torch.IntTensor (bsz, max_num_pred_mentions, 2) top mention boundaries Returns torch.FloatTensor (bsz, max_num_pred_mentions, embed_dim) """ # (bs, max_num_pred_mentions, embed_dim) embedding_ctxt = self.classification_heads['get_context_embeds'](raw_ctxt_encoding, mention_bounds) if self.linear_compression is not None: embedding_ctxt = self.linear_compression(embedding_ctxt) return embedding_ctxt def forward_ctxt( self, token_idx_ctxt, segment_idx_ctxt, mask_ctxt, gold_mention_bounds=None, gold_mention_bounds_mask=None, num_cand_mentions=50, topK_threshold=-4.5, get_mention_scores=True, ): """ If gold_mention_bounds is set, returns mention embeddings of passed-in mention bounds Otherwise, uses top-scoring mentions """ if self.mention_aggregation_type is None: ''' OLD system: don't do mention aggregation (use tokens around mention) ''' embedding_ctxt = self.context_encoder( token_idx_ctxt, segment_idx_ctxt, mask_ctxt, ) # linear mapping to correct context length if self.linear_compression is not None: embedding_ctxt = self.linear_compression(embedding_ctxt) return embedding_ctxt, None, None, None else: ''' NEW system: aggregate mention tokens ''' # (bs, seqlen, embed_size) raw_ctxt_encoding = self.get_raw_ctxt_encoding( token_idx_ctxt, segment_idx_ctxt, mask_ctxt, ) top_mention_bounds = None top_mention_logits = None extra_rets = {} if get_mention_scores: mention_logits, mention_bounds = self.get_ctxt_mention_scores( token_idx_ctxt, segment_idx_ctxt, mask_ctxt, raw_ctxt_encoding, ) extra_rets['all_mention_logits'] = mention_logits extra_rets['all_mention_bounds'] = mention_bounds if gold_mention_bounds is None: ( top_mention_logits, top_mention_bounds, top_mention_mask, all_mention_mask, ) = self.prune_ctxt_mentions( mention_logits, mention_bounds, num_cand_mentions, topK_threshold, ) extra_rets['mention_logits'] = top_mention_logits.view(-1) extra_rets['all_mention_mask'] = all_mention_mask if top_mention_bounds is None: # use gold mention top_mention_bounds = gold_mention_bounds top_mention_mask = gold_mention_bounds_mask assert top_mention_bounds is not None assert top_mention_mask is not None # (bs, num_pred_mentions OR num_gold_mentions, embed_size) embedding_ctxt = self.get_ctxt_embeds( raw_ctxt_encoding, top_mention_bounds, ) # for merging dataparallel, only 1st dimension can differ... return { "mention_reps": embedding_ctxt.view(-1, embedding_ctxt.size(-1)), "mention_bounds": top_mention_bounds.view(-1, top_mention_bounds.size(-1)), "mention_masks": top_mention_mask.view(-1), "mention_dims": torch.tensor(top_mention_mask.size()).unsqueeze(0).to(embedding_ctxt.device), **extra_rets } def forward_candidate( self, token_idx_cands, segment_idx_cands, mask_cands, ): try: return self.cand_encoder( token_idx_cands, segment_idx_cands, mask_cands ) except: print(token_idx_cands.size()) print(segment_idx_cands.size()) print(mask_cands.size()) return torch.rand(token_idx_cands.size()).to(token_idx_cands.device) def forward( self, token_idx_ctxt, segment_idx_ctxt, mask_ctxt, token_idx_cands, segment_idx_cands, mask_cands, gold_mention_bounds=None, gold_mention_bounds_mask=None, num_cand_mentions=50, topK_threshold=-4.5, get_mention_scores=True, ): """ If gold_mention_bounds is set, returns mention embeddings of passed-in mention bounds Otherwise, uses top-scoring mentions """ embedding_ctxt = embedding_cands = top_mention_mask = \ top_mention_logits = top_mention_bounds = all_mention_mask = \ all_mention_logits = all_mention_bounds = max_num_pred_mentions = None context_outs = None cand_outs = None if token_idx_ctxt is not None: context_outs = self.forward_ctxt( token_idx_ctxt, segment_idx_ctxt, mask_ctxt, gold_mention_bounds=gold_mention_bounds, gold_mention_bounds_mask=gold_mention_bounds_mask, num_cand_mentions=num_cand_mentions, topK_threshold=topK_threshold, get_mention_scores=get_mention_scores, ) if token_idx_cands is not None: cand_outs = self.forward_candidate( token_idx_cands, segment_idx_cands, mask_cands ) return context_outs, cand_outs def upgrade_state_dict_named(self, state_dict): prefix = '' current_head_names = [] if not hasattr(self, 'classification_heads') else \ self.classification_heads.keys() # Handle new classification heads present in the state dict. keys_to_delete = [] for k in state_dict.keys(): if not k.startswith(prefix + 'classification_heads.'): continue head_name = k[len(prefix + 'classification_heads.'):].split('.')[0] if head_name not in current_head_names: print( 'WARNING: deleting classification head ({}) from checkpoint ' 'not present in current model: {}'.format(head_name, k) ) keys_to_delete.append(k) for k in keys_to_delete: del state_dict[k] # Copy any newly-added classification heads into the state dict # with their current weights. if hasattr(self, 'classification_heads'): cur_state = self.classification_heads.state_dict() for k, v in cur_state.items(): if prefix + 'classification_heads.' + k not in state_dict: print('Overwriting', prefix + 'classification_heads.' + k) state_dict[prefix + 'classification_heads.' + k] = v class BiEncoderRanker(torch.nn.Module): def __init__(self, params, shared=None): super(BiEncoderRanker, self).__init__() self.params = params self.device = torch.device( "cuda" if torch.cuda.is_available() and not params["no_cuda"] else "cpu" ) self.n_gpu = torch.cuda.device_count() # init tokenizer self.NULL_IDX = 0 self.START_TOKEN = "[CLS]" self.END_TOKEN = "[SEP]" self.tokenizer = BertTokenizer.from_pretrained( params["bert_model"], do_lower_case=params["lowercase"] ) # init model self.build_model() model_path = params.get("path_to_model", None) if model_path is not None: self.load_model( model_path, cand_enc_only=params.get("load_cand_enc_only", False), ) self.model = self.model.to(self.device) self.data_parallel = params.get("data_parallel") if self.data_parallel: self.model = torch.nn.DataParallel(self.model) def load_model(self, fname, cpu=False, cand_enc_only=False): if cpu or not torch.cuda.is_available(): state_dict = torch.load(fname, map_location=torch.device("cpu")) else: state_dict = torch.load(fname) if cand_enc_only: cand_state_dict = get_submodel_from_state_dict(state_dict, 'cand_encoder') self.model.cand_encoder.load_state_dict(cand_state_dict) else: self.model.upgrade_state_dict_named(state_dict) self.model.load_state_dict(state_dict) def build_model(self): self.model = BiEncoderModule(self.params) def save_model(self, output_dir): if not os.path.exists(output_dir): os.makedirs(output_dir) model_to_save = get_model_obj(self.model) output_model_file = os.path.join(output_dir, WEIGHTS_NAME) output_config_file = os.path.join(output_dir, CONFIG_NAME) torch.save(model_to_save.state_dict(), output_model_file) model_to_save.config.to_json_file(output_config_file) def get_optimizer(self, optim_states=None, saved_optim_type=None): return get_bert_optimizer( [self.model], self.params["type_optimization"], self.params["learning_rate"], fp16=self.params.get("fp16"), ) def encode_context( self, cands, gold_mention_bounds=None, gold_mention_bounds_mask=None, num_cand_mentions=50, topK_threshold=-4.5, get_mention_scores=True, ): """ if gold_mention_bounds specified, selects according to gold_mention_bounds, otherwise selects according to top-scoring mentions Returns: Dictionary mention_reps: torch.FloatTensor (bsz, max_num_pred_mentions, embed_dim): mention embeddings mention_masks: torch.BoolTensor (bsz, max_num_pred_mentions): mention padding mask mention_bounds: torch.LongTensor (bsz, max_num_pred_mentions, 2) ( mention_logits: torch.FloatTensor (bsz, max_num_pred_mentions): mention scores/logits all_mention_mask: torch.BoolTensor ((bsz, all_cand_mentions) all_mention_logits: torch.FloatTensor (bsz, all_cand_mentions): all mention scores/logits all_mention_bounds: torch.LongTensor (bsz, all_cand_mentions, 2): all mention bounds ) """ token_idx_cands, segment_idx_cands, mask_cands = to_bert_input( cands, self.NULL_IDX ) context_outs, _ = self.model( token_idx_cands, segment_idx_cands, mask_cands, None, None, None, gold_mention_bounds=gold_mention_bounds, gold_mention_bounds_mask=gold_mention_bounds_mask, num_cand_mentions=num_cand_mentions, topK_threshold=topK_threshold, get_mention_scores=get_mention_scores ) if context_outs['mention_dims'].size(0) <= 1: for key in context_outs: if 'all' in key or key == 'mention_dims': continue context_outs[key] = context_outs[key].view([context_outs['mention_dims'][0,0], -1] + list(context_outs[key].size()[1:])) return context_outs ''' Reshape to (bs, num_mentions, *), iterating across GPUs ''' def init_tensor(shape, dtype, init_value): return init_value * torch.ones( shape ).to(dtype=dtype, device=context_outs['mention_dims'].device) bs = cands.size(0) n_pred_mentions = context_outs['mention_dims'][:,1].max() context_outs_reshape = {} for key in context_outs: if 'all' in key or key == 'mention_dims': context_outs_reshape[key] = context_outs[key] continue # (bsz, max_num_pred_mentions, *) context_outs_reshape[key] = init_tensor( [bs, n_pred_mentions] + list(context_outs[key].size()[1:]), context_outs[key].dtype, -float("inf") if 'logit' in key else 0, ) for idx in range(len(context_outs['mention_dims'])): # reshape gpu_bs = context_outs['mention_dims'][idx, 0] b_width = context_outs['mention_dims'][idx, 1] start_idx = (context_outs['mention_dims'][:idx, 0] * context_outs['mention_dims'][:idx, 1]).sum() end_idx = start_idx + b_width * gpu_bs s_reshape = context_outs['mention_dims'][:idx, 0].sum() e_reshape = s_reshape + gpu_bs for key in context_outs_reshape: if 'all' in key or key == 'mention_dims': continue if len(context_outs[key].size()) == 1: target_tensor = context_outs[key][start_idx:end_idx].view(gpu_bs, b_width) else: target_tensor = context_outs[key][start_idx:end_idx].view(gpu_bs, b_width, -1) context_outs_reshape[key][s_reshape:e_reshape, :b_width] = target_tensor return context_outs_reshape def encode_candidate(self, cands): token_idx_cands, segment_idx_cands, mask_cands = to_bert_input( cands, self.NULL_IDX ) _, embedding_cands = self.model( None, None, None, token_idx_cands, segment_idx_cands, mask_cands ) return embedding_cands # Score candidates given context input and label input # If text_encs/cand_encs is provided (pre-computed), text_vecs/cand_vecs is ignored def score_candidate( self, text_vecs, cand_vecs, text_encs=None, # pre-computed mention encoding cand_encs=None, # pre-computed candidate encoding. gold_mention_bounds=None, gold_mention_bounds_mask=None, num_cand_mentions=50, mention_threshold=-4.5, get_mention_scores=True, hard_negs=False, # (if training) passed in a subset of hard negatives hard_negs_mask=None, # (if hard negs training) mask for gold candidate mentions on all inputs (pos + negs) ): """ text_vecs (bs, max_ctxt_size): cand_vecs (bs, max_num_gold_mentions, 1, max_cand_size): text_encs (batch_num_mentions, embed_size): Pre-encoded mention vectors, masked before input cand_encs (num_ents_to_match [batch_num_total_ents/all_ents], embed_size): Pre-encoded candidate vectors, masked before input """ ''' Compute context representations and/or get mention scores ''' if text_encs is None or get_mention_scores: # embedding_ctxt: (bs, num_gold_mentions/num_pred_mentions, embed_size) context_outs = self.encode_context( text_vecs, gold_mention_bounds=gold_mention_bounds, gold_mention_bounds_mask=gold_mention_bounds_mask, num_cand_mentions=num_cand_mentions, topK_threshold=mention_threshold, get_mention_scores=get_mention_scores, ) mention_logits = None mention_bounds = None if get_mention_scores: mention_logits = context_outs['all_mention_logits'] mention_bounds = context_outs['all_mention_bounds'] if text_encs is None: if gold_mention_bounds is None: # (all_batch_pred_mentions, embed_size) embedding_ctxt = context_outs['mention_reps'][context_outs['mention_masks']] else: # (all_batch_pred_mentions, embed_size) embedding_ctxt = context_outs['mention_reps'][gold_mention_bounds_mask] else: # Context encoding is given, do not need to re-compute embedding_ctxt = text_encs ''' Compute candidate representations ''' if cand_encs is None: # Train time: Compute candidates in batch and compare in-batch negatives # cand_vecs: (bs, num_gold_mentions, 1, cand_width) -> (batch_num_gold_mentions, cand_width) cand_vecs = cand_vecs[gold_mention_bounds_mask].squeeze(1) # (batch_num_gold_mentions, embed_dim) embedding_cands = self.encode_candidate(cand_vecs) else: # (batch_num_gold_mentions, embed_dim) embedding_cands = cand_encs ''' Do inner-product search, or obtain scores on hard-negative entities ''' if hard_negs: assert hard_negs_mask is not None # (num_mention_in_batch, embed_dim) embedding_ctxt = embedding_ctxt[hard_negs_mask] embedding_cands = embedding_cands[hard_negs_mask] embedding_ctxt = embedding_ctxt.unsqueeze(1) # num_mention_in_batch x 1 x embed_size embedding_cands = embedding_cands.unsqueeze(2) # num_mention_in_batch x embed_size x 1 scores = torch.bmm(embedding_ctxt, embedding_cands) # num_mention_in_batch x 1 x 1 scores = torch.squeeze(scores) # (num_mention_in_batch,) return scores, mention_logits, mention_bounds else: # matmul across all cand_encs (in-batch, if cand_encs is None, or across all cand_encs) # (all_batch_pred_mentions, num_cands) # similarity score between ctxt i and cand j all_scores = embedding_ctxt.mm(embedding_cands.t()) return all_scores, mention_logits, mention_bounds # label_input -- negatives provided # If label_input is None, train on in-batch negatives def forward( self, context_input, cand_input, text_encs=None, # pre-computed mention encoding. cand_encs=None, # pre-computed candidate embeddings mention_logits=None, # pre-computed mention logits mention_bounds=None, # pre-computed mention bounds label_input=None, # labels for passed-in (if hard negatives training) gold_mention_bounds=None, gold_mention_bounds_mask=None, hard_negs_mask=None, # should be non-none if we are using negs return_loss=True, ): """ text_encs/cand_encs/label_inputs masked before training In-batch negs training: cand_encs None, label_inputs None, return_loss True Hard negs training: cand_encs non-None, label_inputs non-None, return_loss True cand_encs = all entities in batch + additional hard negatives Inference: cand_encs non-None, label_inputs None, return_loss False cand_encs = all entities in DB cand_encs non-None: set of candidate encodings to search in None: compute in-batch candidate vectors (used as negatives if train mode) label_inputs non-None: labels to use for hard negatives training None: random negatives training and/or inference """ hard_negs = label_input is not None ''' GET CANDIDATE SCORES ''' scores, out_mention_logits, out_mention_bounds = self.score_candidate( context_input, cand_input, hard_negs=hard_negs, cand_encs=cand_encs, text_encs=text_encs, gold_mention_bounds=gold_mention_bounds, gold_mention_bounds_mask=gold_mention_bounds_mask, hard_negs_mask=hard_negs_mask, get_mention_scores=(return_loss and (mention_logits is None or mention_bounds is None)), ) if mention_logits is None: mention_logits = out_mention_logits if mention_bounds is None: mention_bounds = out_mention_bounds if not return_loss: return None, scores, mention_logits, mention_bounds ''' COMPUTE MENTION LOSS (TRAINING MODE) ''' span_loss = 0 if mention_logits is not None and mention_bounds is not None: N = context_input.size(0) # batch size M = gold_mention_bounds.size(1) # num_mentions per instance (just 1, so far) # 1 value span_loss = self.get_span_loss( gold_mention_bounds=gold_mention_bounds, gold_mention_bounds_mask=gold_mention_bounds_mask, mention_logits=mention_logits, mention_bounds=mention_bounds, ) ''' COMPUTE EL LOSS (TRAINING MODE) ''' if hard_negs: ''' Hard negatives (negatives passed in) ''' loss_fct = nn.BCEWithLogitsLoss(reduction="mean") label_input = label_input[hard_negs_mask] # scores: (num_mentions_in_batch,); label_input: (num_mentions_in_batch,) loss = loss_fct(scores, label_input.float()) + span_loss else: ''' Random negatives (use in-batch negatives) ''' # scores: (bs*num_mentions [filtered], bs*num_mentions [filtered]) target = torch.LongTensor(torch.arange(scores.size(1))) target = target.to(self.device) # log P(entity|mention) + log P(mention) = log [P(entity|mention)P(mention)] loss = F.cross_entropy(scores, target, reduction="mean") + span_loss return loss, scores, mention_logits, mention_bounds def get_span_loss( self, gold_mention_bounds, gold_mention_bounds_mask, mention_logits, mention_bounds, ): """ gold_mention_bounds (bs, num_mentions, 2) gold_mention_bounds_mask (bs, num_mentions): mention_logits (bs, all_mentions) menion_bounds (bs, all_mentions, 2) """ loss_fct = nn.BCEWithLogitsLoss(reduction="mean") gold_mention_bounds[~gold_mention_bounds_mask] = -1 # ensure don't select masked to score # triples of [ex in batch, mention_idx in gold_mention_bounds, idx in mention_bounds] # use 1st, 2nd to index into gold_mention_bounds, 1st, 3rd to index into mention_bounds gold_mention_pos_idx = (( mention_bounds.unsqueeze(1) - gold_mention_bounds.unsqueeze(2) # (bs, num_mentions, start_pos * end_pos, 2) ).abs().sum(-1) == 0).nonzero() # gold_mention_pos_idx should have 1 entry per masked element # (num_gold_mentions [~gold_mention_bounds_mask]) gold_mention_pos = gold_mention_pos_idx[:,2] # (bs, total_possible_spans) gold_mention_binary = torch.zeros(mention_logits.size(), dtype=mention_logits.dtype).to(gold_mention_bounds.device) gold_mention_binary[gold_mention_pos_idx[:,0], gold_mention_pos_idx[:,2]] = 1 # prune masked spans mask = mention_logits != -float("inf") masked_mention_logits = mention_logits[mask] masked_gold_mention_binary = gold_mention_binary[mask] # (bs, total_possible_spans) span_loss = loss_fct(masked_mention_logits, masked_gold_mention_binary) return span_loss def to_bert_input(token_idx, null_idx): """ token_idx is a 2D tensor int. """ segment_idx = token_idx * 0 mask = token_idx != null_idx # nullify elements in case self.NULL_IDX was not 0 token_idx = token_idx * mask.long() return token_idx, segment_idx, mask
BLINK-main
elq/biencoder/biencoder.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import io import sys import json import torch import logging import numpy as np from collections import OrderedDict from pytorch_transformers.modeling_utils import CONFIG_NAME, WEIGHTS_NAME from tqdm import tqdm from elq.biencoder.biencoder import BiEncoderRanker def read_dataset(dataset_name, preprocessed_json_data_parent_folder, debug=False): file_name = "{}.jsonl".format(dataset_name) txt_file_path = os.path.join(preprocessed_json_data_parent_folder, file_name) samples = [] with io.open(txt_file_path, mode="r", encoding="utf-8") as file: for line in file: samples.append(json.loads(line.strip())) if debug and len(samples) > 200: break return samples def accuracy(out, labels): outputs = np.argmax(out, axis=1) return np.sum(outputs == labels) def remove_module_from_state_dict(state_dict): new_state_dict = OrderedDict() for key, value in state_dict.items(): name = "".join(key.split(".module")) new_state_dict[name] = value return new_state_dict def save_model(model, tokenizer, output_dir): """Saves the model and the tokenizer used in the output directory.""" if not os.path.exists(output_dir): os.makedirs(output_dir) model_to_save = model.module if hasattr(model, "module") else model output_model_file = os.path.join(output_dir, WEIGHTS_NAME) output_config_file = os.path.join(output_dir, CONFIG_NAME) torch.save(model_to_save.state_dict(), output_model_file) model_to_save.config.to_json_file(output_config_file) tokenizer.save_vocabulary(output_dir) def get_logger(output_dir=None): if output_dir != None: os.makedirs(output_dir, exist_ok=True) logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, handlers=[ logging.FileHandler( "{}/log.txt".format(output_dir), mode="a", delay=False ), logging.StreamHandler(sys.stdout), ], ) else: logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, handlers=[logging.StreamHandler(sys.stdout)], ) logger = logging.getLogger('Blink') logger.setLevel(10) return logger def write_to_file(path, string, mode="w"): with open(path, mode) as writer: writer.write(string) def get_biencoder(parameters): return BiEncoderRanker(parameters)
BLINK-main
elq/candidate_ranking/utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # # Provide an argument parser and default command line options for using ELQ. import argparse import importlib import os import sys import datetime ENT_START_TAG = "[unused0]" ENT_END_TAG = "[unused1]" ENT_TITLE_TAG = "[unused2]" class ElqParser(argparse.ArgumentParser): """ Provide an opt-producer and CLI arguement parser. More options can be added specific by paassing this object and calling ''add_arg()'' or add_argument'' on it. :param add_elq_args: (default True) initializes the default arguments for ELQ package. :param add_model_args: (default False) initializes the default arguments for loading models, including initializing arguments from the model. """ def __init__( self, add_elq_args=True, add_model_args=False, description='ELQ parser', ): super().__init__( description=description, allow_abbrev=False, conflict_handler='resolve', formatter_class=argparse.HelpFormatter, add_help=add_elq_args, ) self.elq_home = os.path.dirname( os.path.dirname(os.path.dirname(os.path.realpath(__file__))) ) os.environ['ELQ_HOME'] = self.elq_home self.add_arg = self.add_argument self.overridable = {} if add_elq_args: self.add_elq_args() if add_model_args: self.add_model_args() def add_elq_args(self, args=None): """ Add common ELQ args across all scripts. """ parser = self.add_argument_group("Common Arguments") parser.add_argument( "--silent", action="store_true", help="Whether to print progress bars." ) parser.add_argument( "--debug", action="store_true", help="Whether to run in debug mode with only 200 samples.", ) parser.add_argument( "--data_parallel", action="store_true", help="Whether to distributed the candidate generation process.", ) parser.add_argument( "--no_cuda", action="store_true", help="Whether not to use CUDA when available", ) parser.add_argument("--top_k", default=10, type=int) parser.add_argument( "--seed", type=int, default=52313, help="random seed for initialization" ) parser.add_argument( "--zeshel", default=True, type=bool, help="Whether the dataset is from zeroshot.", ) def add_model_args(self, args=None): """ Add model args. """ parser = self.add_argument_group("Model Arguments") parser.add_argument( "--max_seq_length", default=256, type=int, help="The maximum total input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, and sequences shorter \n" "than this will be padded.", ) parser.add_argument( "--max_context_length", default=128, type=int, help="The maximum total context input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, and sequences shorter \n" "than this will be padded.", ) parser.add_argument( "--max_cand_length", default=128, type=int, help="The maximum total label input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, and sequences shorter \n" "than this will be padded.", ) parser.add_argument( "--path_to_model", default=None, type=str, required=False, help="The full path to the model to load.", ) parser.add_argument( "--bert_model", default="bert-base-uncased", type=str, help="Bert pre-trained model selected in the list: bert-base-uncased, " "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.", ) parser.add_argument( "--pull_from_layer", type=int, default=-1, help="Layers to pull from BERT", ) parser.add_argument( "--lowercase", action="store_false", help="Whether to lower case the input text. True for uncased models, False for cased models.", ) parser.add_argument("--context_key", default="context", type=str) parser.add_argument("--title_key", default="entity", type=str) parser.add_argument( "--out_dim", type=int, default=1, help="Output dimention of bi-encoders.", ) parser.add_argument( "--add_linear", action="store_true", help="Whether to add an additonal linear projection on top of BERT.", ) parser.add_argument( "--data_path", default="data/zeshel", type=str, help="The path to the train data.", ) parser.add_argument( "--output_path", default=None, type=str, required=True, help="The output directory where generated output file (model, etc.) is to be dumped.", ) parser.add_argument( "--mention_aggregation_type", default=None, type=str, help="Type of mention aggregation (None to just use [CLS] token, " "'all_avg' to average across tokens in mention, 'fl_avg' to average across first/last tokens in mention, " "'{all/fl}_linear' for linear layer over mention, '{all/fl}_mlp' to MLP over mention)", ) parser.add_argument( "--no_mention_bounds", dest="no_mention_bounds", action="store_true", default=False, help="Don't add tokens around target mention. MUST BE FALSE IF 'mention_aggregation_type' is NONE", ) parser.add_argument( "--mention_scoring_method", dest="mention_scoring_method", default="qa_linear", type=str, help="Method for generating/scoring mentions boundaries (options: 'qa_mlp', 'qa_linear', 'BIO')", ) parser.add_argument( "--max_mention_length", dest="max_mention_length", default=10, type=int, help="Maximum length of span to consider as candidate mention", ) def add_training_args(self, args=None): """ Add model training args. """ parser = self.add_argument_group("Model Training Arguments") parser.add_argument( "--evaluate", action="store_true", help="Whether to run evaluation." ) parser.add_argument( "--output_eval_file", default=None, type=str, help="The txt file where the the evaluation results will be written.", ) parser.add_argument( "--train_batch_size", default=8, type=int, help="Total batch size for training." ) parser.add_argument( "--eval_batch_size", default=8, type=int, help="Total batch size for evaluation.", ) parser.add_argument("--max_grad_norm", default=1.0, type=float) parser.add_argument( "--learning_rate", default=3e-5, type=float, help="The initial learning rate for Adam.", ) parser.add_argument( "--num_train_epochs", default=1, type=int, help="Number of training epochs.", ) parser.add_argument( "--print_interval", type=int, default=5, help="Interval of loss printing", ) parser.add_argument( "--eval_interval", type=int, default=40, help="Interval for evaluation during training", ) parser.add_argument( "--save_interval", type=int, default=1, help="Interval for model saving" ) parser.add_argument( "--warmup_proportion", default=0.1, type=float, help="Proportion of training to perform linear learning rate warmup for. " "E.g., 0.1 = 10% of training.", ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumualte before performing a backward/update pass.", ) parser.add_argument( "--type_optimization", type=str, default="all_encoder_layers", help="Which type of layers to optimize in BERT", ) parser.add_argument( "--shuffle", type=bool, default=False, help="Whether to shuffle train data", ) # TODO DELETE LATER!!! parser.add_argument( "--start_idx", default=None, type=int, ) parser.add_argument( "--end_idx", default=None, type=int, ) parser.add_argument( "--last_epoch", default=0, type=int, help="Epoch to restore from when pretraining", ) parser.add_argument( "--path_to_trainer_state", default=None, type=str, required=False, help="The full path to the last checkpoint's training state to load.", ) parser.add_argument( '--dont_distribute_train_samples', default=False, action="store_true", help="Don't distribute all training samples across the epochs (go through all samples every epoch)", ) parser.add_argument( "--freeze_cand_enc", default=False, action="store_true", help="Freeze the candidate encoder", ) parser.add_argument( "--load_cand_enc_only", default=False, action="store_true", help="Only load the candidate encoder from saved model path", ) parser.add_argument( "--cand_enc_path", default="models/all_entities_large.t7", type=str, required=False, help="Filepath to the saved entity encodings.", ) parser.add_argument( "--cand_token_ids_path", default="models/entity_token_ids_128.t7", type=str, required=False, help="Filepath to the saved tokenized entity descriptions.", ) parser.add_argument( "--index_path", default="models/faiss_hnsw_index.pkl", type=str, required=False, help="Filepath to the HNSW index for adversarial training.", ) parser.add_argument( "--adversarial_training", default=False, action="store_true", help="Do adversarial training (only takes effect if `freeze_cand_enc` is set)", ) parser.add_argument( "--get_losses", default=False, action="store_true", help="Get losses during evaluation", ) def add_eval_args(self, args=None): """ Add model evaluation args. """ parser = self.add_argument_group("Model Evaluation Arguments") parser.add_argument( "--mode", default="valid", type=str, help="Train / validation / test", ) parser.add_argument( "--save_topk_result", action="store_true", help="Whether to save prediction results.", ) parser.add_argument( "--encode_batch_size", default=8, type=int, help="Batch size for encoding." ) parser.add_argument( "--cand_pool_path", default=None, type=str, help="Path for candidate pool", ) parser.add_argument( "--cand_encode_path", default=None, type=str, help="Path for candidate encoding", )
BLINK-main
elq/common/params.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from torch import nn import torch def get_model_obj(model): model = model.module if hasattr(model, "module") else model return model class BertEncoder(nn.Module): def __init__( self, bert_model, output_dim, layer_pulled=-1, add_linear=None, ): super(BertEncoder, self).__init__() self.layer_pulled = layer_pulled bert_output_dim = bert_model.embeddings.word_embeddings.weight.size(1) self.bert_model = bert_model self.dropout = nn.Dropout(0.1) if add_linear: self.additional_linear = nn.Linear(bert_output_dim, output_dim) else: self.additional_linear = None def forward(self, token_ids, segment_ids, attention_mask, DEBUG=False): if DEBUG: import pdb pdb.set_trace() try: output_bert, output_pooler, _ = self.bert_model( token_ids, segment_ids, attention_mask ) except RuntimeError as e: print(token_ids.size()) print(segment_ids.size()) print(attention_mask.size()) print(e) import pdb pdb.set_trace() output_bert, output_pooler, _ = self.bert_model( token_ids, segment_ids, attention_mask ) if self.additional_linear is not None: # embeddings = (batch_size, embedding_size) embeddings = output_pooler else: # embeddings = (batch_size, embedding_size) embeddings = output_bert[:, 0, :] # in case of dimensionality reduction if self.additional_linear is not None: result = self.additional_linear(self.dropout(embeddings)) else: result = embeddings return result
BLINK-main
elq/common/ranker_base.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # """ FAISS-based index components. Original from https://github.com/facebookresearch/DPR/blob/master/dpr/indexer/faiss_indexers.py """ import os import logging import pickle import faiss import numpy as np logger = logging.getLogger() class DenseIndexer(object): def __init__(self, buffer_size: int = 50000): self.buffer_size = buffer_size self.index_id_to_db_id = [] self.index = None def index_data(self, data: np.array): raise NotImplementedError def search_knn(self, query_vectors: np.array, top_docs: int): raise NotImplementedError def serialize(self, index_file: str): logger.info("Serializing index to %s", index_file) faiss.write_index(self.index, index_file) def deserialize_from(self, index_file: str): logger.info("Loading index from %s", index_file) self.index = faiss.read_index(index_file) logger.info( "Loaded index of type %s and size %d", type(self.index), self.index.ntotal ) # DenseFlatIndexer does exact search class DenseFlatIndexer(DenseIndexer): def __init__(self, vector_sz: int = 1, buffer_size: int = 50000): super(DenseFlatIndexer, self).__init__(buffer_size=buffer_size) self.index = faiss.IndexFlatIP(vector_sz) def index_data(self, data: np.array): n = len(data) # indexing in batches is beneficial for many faiss index types logger.info("Indexing data, this may take a while.") cnt = 0 for i in range(0, n, self.buffer_size): vectors = [np.reshape(t, (1, -1)) for t in data[i : i + self.buffer_size]] vectors = np.concatenate(vectors, axis=0) self.index.add(vectors) cnt += self.buffer_size logger.info("Total data indexed %d", n) def search_knn(self, query_vectors, top_k): scores, indexes = self.index.search(query_vectors, top_k) return scores, indexes # DenseIVFFlatIndexer does bucketed exact search class DenseIVFFlatIndexer(DenseIndexer): def __init__(self, vector_sz: int = 1, nprobe: int = 10, nlist: int = 100): super(DenseIVFFlatIndexer, self).__init__() self.nprobe = nprobe self.nlist = nlist quantizer = faiss.IndexFlatL2(vector_sz) # the other index self.index = faiss.IndexIVFFlat(quantizer, vector_sz, self.nlist, faiss.METRIC_INNER_PRODUCT) self.index.nprobe = nprobe def index_data(self, data: np.array): n = len(data) # indexing in batches is beneficial for many faiss index types logger.info("Indexing data, this may take a while.") self.index.train(data) self.index.add(data) logger.info("Total data indexed %d", n) def search_knn(self, query_vectors, top_k): scores, indexes = self.index.search(query_vectors, top_k) return scores, indexes # DenseHNSWFlatIndexer does approximate search class DenseHNSWFlatIndexer(DenseIndexer): """ Efficient index for retrieval. Note: default settings are for hugh accuracy but also high RAM usage """ def __init__( self, vector_sz: int, buffer_size: int = 50000, store_n: int = 128, ef_search: int = 256, ef_construction: int = 200, ): super(DenseHNSWFlatIndexer, self).__init__(buffer_size=buffer_size) index = faiss.IndexHNSWFlat(vector_sz, store_n, faiss.METRIC_INNER_PRODUCT) index.hnsw.efSearch = ef_search index.hnsw.efConstruction = ef_construction self.index = index def index_data(self, data: np.array): n = len(data) # indexing in batches is beneficial for many faiss index types logger.info("Indexing data, this may take a while.") self.index.add(data) logger.info("Total data indexed %d" % n) def search_knn(self, query_vectors, top_k): scores, indexes = self.index.search(query_vectors, top_k) return scores, indexes def deserialize_from(self, file: str): super(DenseHNSWFlatIndexer, self).deserialize_from(file) # to trigger warning on subsequent indexing self.phi = 1
BLINK-main
elq/index/faiss_indexer.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import numpy as np def entity_linking_tp_with_overlap(gold, predicted): """ Partially adopted from: https://github.com/UKPLab/starsem2018-entity-linking Counts weak and strong matches :param gold: :param predicted: :return: >>> entity_linking_tp_with_overlap([('Q7366', 14, 18), ('Q780394', 19, 35)], [('Q7366', 14, 16), ('Q780394', 19, 35)]) 2, 1 >>> entity_linking_tp_with_overlap([('Q7366', 14, 18), ('Q780394', 19, 35)], [('Q7366', 14, 16)]) 1, 0 >>> entity_linking_tp_with_overlap([(None, 14, 18), ('Q780394', 19, 35)], [('Q7366', 14, 16)]) 0, 0 >>> entity_linking_tp_with_overlap([(None, 14, 18), (None, )], [(None,)]) 1, 0 >>> entity_linking_tp_with_overlap([('Q7366', ), ('Q780394', )], [('Q7366', 14, 16)]) 1, 0 >>> entity_linking_tp_with_overlap([], [('Q7366', 14, 16)]) 0, 0 """ if not gold or not predicted: return 0, 0 # Add dummy spans, if no spans are given, everything is overlapping per default if any(len(e) != 3 for e in gold): gold = [(e[0], 0, 1) for e in gold] predicted = [(e[0], 0, 1) for e in predicted] # Replace None KB ids with empty strings gold = [("",) + e[1:] if e[0] is None else e for e in gold] predicted = [("",) + e[1:] if e[0] is None else e for e in predicted] gold = sorted(gold, key=lambda x: x[2]) predicted = sorted(predicted, key=lambda x: x[2]) # tracks weak matches lcs_matrix_weak = np.zeros((len(gold), len(predicted)), dtype=np.int16) # tracks strong matches lcs_matrix_strong = np.zeros((len(gold), len(predicted)), dtype=np.int16) for g_i in range(len(gold)): for p_i in range(len(predicted)): gm = gold[g_i] pm = predicted[p_i] # increment lcs_matrix_weak if not (gm[1] >= pm[2] or pm[1] >= gm[2]) and (gm[0].lower() == pm[0].lower()): if g_i == 0 or p_i == 0: lcs_matrix_weak[g_i, p_i] = 1 else: lcs_matrix_weak[g_i, p_i] = 1 + lcs_matrix_weak[g_i - 1, p_i - 1] else: if g_i == 0 and p_i == 0: lcs_matrix_weak[g_i, p_i] = 0 elif g_i == 0 and p_i != 0: lcs_matrix_weak[g_i, p_i] = max(0, lcs_matrix_weak[g_i, p_i - 1]) elif g_i != 0 and p_i == 0: lcs_matrix_weak[g_i, p_i] = max(lcs_matrix_weak[g_i - 1, p_i], 0) elif g_i != 0 and p_i != 0: lcs_matrix_weak[g_i, p_i] = max(lcs_matrix_weak[g_i - 1, p_i], lcs_matrix_weak[g_i, p_i - 1]) # increment lcs_matrix_strong if (gm[1] == pm[1] and pm[2] == gm[2]) and (gm[0].lower() == pm[0].lower()): if g_i == 0 or p_i == 0: lcs_matrix_strong[g_i, p_i] = 1 else: lcs_matrix_strong[g_i, p_i] = 1 + lcs_matrix_strong[g_i - 1, p_i - 1] else: if g_i == 0 and p_i == 0: lcs_matrix_strong[g_i, p_i] = 0 elif g_i == 0 and p_i != 0: lcs_matrix_strong[g_i, p_i] = max(0, lcs_matrix_strong[g_i, p_i - 1]) elif g_i != 0 and p_i == 0: lcs_matrix_strong[g_i, p_i] = max(lcs_matrix_strong[g_i - 1, p_i], 0) elif g_i != 0 and p_i != 0: lcs_matrix_strong[g_i, p_i] = max(lcs_matrix_strong[g_i - 1, p_i], lcs_matrix_strong[g_i, p_i - 1]) weak_match_count = lcs_matrix_weak[len(gold) - 1, len(predicted) - 1] strong_match_count = lcs_matrix_strong[len(gold) - 1, len(predicted) - 1] return weak_match_count, strong_match_count
BLINK-main
elq/vcg_utils/measures.py
import argparse import json import logging import os import random import time import torch from datetime import timedelta WORLDS = { 'american_football', 'doctor_who', 'fallout', 'final_fantasy', 'military', 'pro_wrestling', 'starwars', 'world_of_warcraft', 'coronation_street', 'muppets', 'ice_hockey', 'elder_scrolls', 'forgotten_realms', 'lego', 'star_trek', 'yugioh' } domain_set = {} domain_set['val'] = set(['coronation_street', 'muppets', 'ice_hockey', 'elder_scrolls']) domain_set['test'] = set(['forgotten_realms', 'lego', 'star_trek', 'yugioh']) domain_set['train'] = set(['american_football', 'doctor_who', 'fallout', 'final_fantasy', 'military', 'pro_wrestling', 'starwars', 'world_of_warcraft']) class LogFormatter(): def __init__(self): self.start_time = time.time() def format(self, record): elapsed_seconds = round(record.created - self.start_time) prefix = "%s - %s - %s" % ( record.levelname, time.strftime("%x %X"), timedelta(seconds=elapsed_seconds) ) message = record.getMessage() message = message.replace('\n', '\n' + ' ' * (len(prefix) + 3)) return "%s - %s" % (prefix, message) if message else '' log_formatter = LogFormatter() console_handler = logging.StreamHandler() console_handler.setLevel(logging.INFO) console_handler.setFormatter(log_formatter) logger = logging.getLogger() logger.handlers = [] logger.setLevel(logging.INFO) logger.propagate = False logger.addHandler(console_handler) def load_entity_dict(params): entity_dict = {} entity_map = {} for src in WORLDS: fname = os.path.join(params.document_path, src + ".json") assert os.path.isfile(fname), "File not found! %s" % fname cur_dict = {} doc_map = {} doc_list = [] with open(fname, 'rt') as f: for line in f: line = line.rstrip() item = json.loads(line) doc_id = item["document_id"] title = item["title"] text = item["text"] doc_map[doc_id] = len(doc_list) doc_list.append(item) logger.info("Load for world %s." % src) entity_dict[src] = doc_list entity_map[src] = doc_map return entity_dict, entity_map def convert_data(params, entity_dict, entity_map, mode): if mode == "valid": fname = os.path.join(params.mention_path, "val.json") else: fname = os.path.join(params.mention_path, mode + ".json") fout = open(os.path.join(params.output_path, mode + ".jsonl"), 'wt') cnt = 0 max_tok = 128 with open(fname, 'rt') as f: for line in f: cnt += 1 line = line.rstrip() item = json.loads(line) mention = item["text"].lower() src = item["corpus"] label_doc_id = item["label_document_id"] orig_doc_id = item["context_document_id"] start = item["start_index"] end = item["end_index"] # add context around the mention as well orig_id = entity_map[src][orig_doc_id] text = entity_dict[src][orig_id]["text"].lower() tokens = text.split(" ") assert mention == ' '.join(tokens[start:end + 1]) tokenized_query = mention mention_context_left = tokens[max(0, start - max_tok):start] mention_context_right = tokens[end + 1:min(len(tokens), end + max_tok + 1)] # entity info k = entity_map[src][label_doc_id] ent_title = entity_dict[src][k]['title'] ent_text = entity_dict[src][k]["text"] example = {} example["context_left"] = ' '.join(mention_context_left) example['context_right'] = ' '.join(mention_context_right) example["mention"] = mention example["label"] = ent_text example["label_id"] = k example['label_title'] = ent_title example['world'] = src fout.write(json.dumps(example)) fout.write('\n') fout.close() if __name__ == '__main__': parser = argparse.ArgumentParser(description='Zero-shot Entity Linking Dataset') parser.add_argument( '--document_path', default='data/zeshel/documents', type=str, ) parser.add_argument( '--mention_path', default='data/zeshel/mentions', type=str, ) parser.add_argument( '--output_path', default='data/zeshel/blink_format', type=str, ) params = parser.parse_args() os.makedirs(params.output_path, exist_ok=True) entity_dict, entity_map = load_entity_dict(params) convert_data(params, entity_dict, entity_map, 'train') convert_data(params, entity_dict, entity_map, 'valid') convert_data(params, entity_dict, entity_map, 'test')
BLINK-main
examples/zeshel/create_BLINK_zeshel_data.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from elq.biencoder.biencoder import load_biencoder import elq.candidate_ranking.utils as utils import json import sys import os from tqdm import tqdm import argparse def encode_candidate( reranker, candidate_pool, encode_batch_size, silent, logger, ): reranker.model.eval() device = reranker.device #for cand_pool in candidate_pool: #logger.info("Encoding candidate pool %s" % src) sampler = SequentialSampler(candidate_pool) data_loader = DataLoader( candidate_pool, sampler=sampler, batch_size=encode_batch_size ) if silent: iter_ = data_loader else: iter_ = tqdm(data_loader) cand_encode_list = None for step, batch in enumerate(iter_): cands = batch cands = cands.to(device) cand_encode = reranker.encode_candidate(cands) if cand_encode_list is None: cand_encode_list = cand_encode else: cand_encode_list = torch.cat((cand_encode_list, cand_encode)) return cand_encode_list def load_candidate_pool( tokenizer, params, logger, cand_pool_path, ): candidate_pool = None # try to load candidate pool from file try: logger.info("Loading pre-generated candidate pool from: ") logger.info(cand_pool_path) candidate_pool = torch.load(cand_pool_path) except: logger.info("Loading failed.") assert candidate_pool is not None return candidate_pool parser = argparse.ArgumentParser() parser.add_argument('--path_to_model_config', type=str, required=True, help='filepath to saved model config') parser.add_argument('--path_to_model', type=str, required=True, help='filepath to saved model') parser.add_argument('--entity_dict_path', type=str, required=True, help='filepath to entities to encode (.jsonl file)') parser.add_argument('--saved_cand_ids', type=str, help='filepath to entities pre-parsed into IDs') parser.add_argument('--encoding_save_file_dir', type=str, help='directory of file to save generated encodings', default=None) parser.add_argument('--test', action='store_true', default=False, help='whether to just test encoding subsample of entities') parser.add_argument('--compare_saved_embeds', type=str, help='compare against these saved embeddings') parser.add_argument('--batch_size', type=int, default=512, help='batch size for encoding candidate vectors (default 512)') parser.add_argument('--chunk_start', type=int, default=0, help='example idx to start encoding at (for parallelizing encoding process)') parser.add_argument('--chunk_end', type=int, default=-1, help='example idx to stop encoding at (for parallelizing encoding process)') args = parser.parse_args() try: with open(args.path_to_model_config) as json_file: biencoder_params = json.load(json_file) except json.decoder.JSONDecodeError: with open(args.path_to_model_config) as json_file: for line in json_file: line = line.replace("'", "\"") line = line.replace("True", "true") line = line.replace("False", "false") line = line.replace("None", "null") biencoder_params = json.loads(line) break # model to use biencoder_params["path_to_model"] = args.path_to_model # entities to use biencoder_params["entity_dict_path"] = args.entity_dict_path biencoder_params["degug"] = False biencoder_params["data_parallel"] = True biencoder_params["no_cuda"] = False biencoder_params["max_context_length"] = 32 biencoder_params["encode_batch_size"] = args.batch_size saved_cand_ids = getattr(args, 'saved_cand_ids', None) encoding_save_file_dir = args.encoding_save_file_dir if encoding_save_file_dir is not None and not os.path.exists(encoding_save_file_dir): os.makedirs(encoding_save_file_dir, exist_ok=True) logger = utils.get_logger(biencoder_params.get("model_output_path", None)) biencoder = load_biencoder(biencoder_params) baseline_candidate_encoding = None if getattr(args, 'compare_saved_embeds', None) is not None: baseline_candidate_encoding = torch.load(getattr(args, 'compare_saved_embeds')) candidate_pool = load_candidate_pool( biencoder.tokenizer, biencoder_params, logger, getattr(args, 'saved_cand_ids', None), ) if args.test: candidate_pool = candidate_pool[:10] # encode in chunks to parallelize save_file = None if getattr(args, 'encoding_save_file_dir', None) is not None: save_file = os.path.join( args.encoding_save_file_dir, "{}_{}.t7".format(args.chunk_start, args.chunk_end), ) print("Saving in: {}".format(save_file)) if save_file is not None: f = open(save_file, "w").close() # mark as existing candidate_encoding = encode_candidate( biencoder, candidate_pool[args.chunk_start:args.chunk_end], biencoder_params["encode_batch_size"], biencoder_params["silent"], logger, ) if save_file is not None: torch.save(candidate_encoding, save_file) print(candidate_encoding[0,:10]) if baseline_candidate_encoding is not None: print(baseline_candidate_encoding[0,:10])
BLINK-main
scripts/generate_candidates.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import json import os import requests from bs4 import BeautifulSoup from tqdm import tqdm BEGIN_ENT_TOKEN = "[START_ENT]" END_ENT_TOKEN = "[END_ENT]" url2id_cache = {} def _read_url(url): with urllib.request.urlopen(url) as response: html = response.read() soup = BeautifulSoup(html, features="html.parser") title = soup.title.string.replace(" - Wikipedia", "").strip() return title def _get_pageid_from_api(title, client=None): pageid = None title_html = title.strip().replace(" ", "%20") url = "https://en.wikipedia.org/w/api.php?action=query&titles={}&format=json".format( title_html ) try: # Package the request, send the request and catch the response: r r = requests.get(url) # Decode the JSON data into a dictionary: json_data json_data = r.json() if len(json_data["query"]["pages"]) > 1: print("WARNING: more than one result returned from wikipedia api") for _, v in json_data["query"]["pages"].items(): pageid = v["pageid"] except: pass return pageid def extract_questions(filename): # all the datapoints global_questions = [] # left context so far in the document left_context = [] # working datapoints for the document document_questions = [] # is the entity open open_entity = False # question id in the document question_i = 0 with open(filename) as fin: lines = fin.readlines() for line in tqdm(lines): if "-DOCSTART-" in line: # new document is starting doc_id = line.split("(")[-1][:-2] # END DOCUMENT # check end of entity if open_entity: document_questions[-1]["input"].append(END_ENT_TOKEN) open_entity = False """ #DEBUG for q in document_questions: pp.pprint(q) input("...") """ # add sentence_questions to global_questions global_questions.extend(document_questions) # reset left_context = [] document_questions = [] question_i = 0 else: split = line.split("\t") token = split[0].strip() if len(split) >= 5: B_I = split[1] mention = split[2] # Β YAGO2_entity = split[3] Wikipedia_URL = split[4] Wikipedia_ID = split[5] # Freee_base_id = split[6] if B_I == "I": pass elif B_I == "B": title = Wikipedia_URL.split("/")[-1].replace("_", " ") if Wikipedia_ID == "000": if Wikipedia_URL in url2id_cache: pageid = url2id_cache[Wikipedia_URL] else: pageid = _get_pageid_from_api(title) url2id_cache[Wikipedia_URL] = pageid Wikipedia_ID = pageid q = { "id": "{}:{}".format(doc_id, question_i), "input": left_context.copy() + [BEGIN_ENT_TOKEN], "mention": mention, "Wikipedia_title": title, "Wikipedia_URL": Wikipedia_URL, "Wikipedia_ID": Wikipedia_ID, "left_context": left_context.copy(), "right_context": [], } document_questions.append(q) open_entity = True question_i += 1 else: print("Invalid B_I {}", format(B_I)) sys.exit(-1) # print(token,B_I,mention,Wikipedia_URL,Wikipedia_ID) else: if open_entity: document_questions[-1]["input"].append(END_ENT_TOKEN) open_entity = False left_context.append(token) for q in document_questions: q["input"].append(token) for q in document_questions[:-1]: q["right_context"].append(token) if len(document_questions) > 0 and not open_entity: document_questions[-1]["right_context"].append(token) # FINAL SENTENCE if open_entity: document_questions[-1]["input"].append(END_ENT_TOKEN) open_entity = False # add sentence_questions to global_questions global_questions.extend(document_questions) return global_questions # store on file def store_questions(questions, OUT_FILENAME): if not os.path.exists(os.path.dirname(OUT_FILENAME)): try: os.makedirs(os.path.dirname(OUT_FILENAME)) except OSError as exc: # Guard against race condition if exc.errno != errno.EEXIST: raise with open(OUT_FILENAME, "w+") as fout: for q in questions: json.dump(q, fout) fout.write("\n") def convert_to_BLINK_format(questions): data = [] for q in questions: datapoint = { "context_left": " ".join(q["left_context"]).strip(), "mention": q["mention"], "context_right": " ".join(q["right_context"]).strip(), "query_id": q["id"], "label_id": q["Wikipedia_ID"], "Wikipedia_ID": q["Wikipedia_ID"], "Wikipedia_URL": q["Wikipedia_URL"], "Wikipedia_title": q["Wikipedia_title"], } data.append(datapoint) return data # AIDA-YAGO2 print("AIDA-YAGO2") in_aida_filename = ( "data/train_and_benchmark_data/basic_data/test_datasets/AIDA/AIDA-YAGO2-dataset.tsv" ) aida_questions = extract_questions(in_aida_filename) train = [] testa = [] testb = [] for element in aida_questions: if "testa" in element["id"]: testa.append(element) elif "testb" in element["id"]: testb.append(element) else: train.append(element) print("train: {}".format(len(train))) print("testa: {}".format(len(testa))) print("testb: {}".format(len(testb))) train_blink = convert_to_BLINK_format(train) testa_blink = convert_to_BLINK_format(testa) testb_blink = convert_to_BLINK_format(testb) out_train_aida_filename = "data/BLINK_benchmark/AIDA-YAGO2_train.jsonl" store_questions(train_blink, out_train_aida_filename) out_testa_aida_filename = "data/BLINK_benchmark/AIDA-YAGO2_testa.jsonl" store_questions(testa_blink, out_testa_aida_filename) out_testb_aida_filename = "data/BLINK_benchmark/AIDA-YAGO2_testb.jsonl" store_questions(testb_blink, out_testb_aida_filename) # ACE 2004 print("ACE 2004") in_ace_filename = "data/train_and_benchmark_data/basic_data/test_datasets/wned-datasets/ace2004/ace2004.conll" ace_questions = convert_to_BLINK_format(extract_questions(in_ace_filename)) out_ace_filename = "data/BLINK_benchmark/ace2004_questions.jsonl" store_questions(ace_questions, out_ace_filename) print(len(ace_questions)) # aquaint print("aquaint") in_aquaint_filename = "data/train_and_benchmark_data/basic_data/test_datasets/wned-datasets/aquaint/aquaint.conll" aquaint_questions = convert_to_BLINK_format(extract_questions(in_aquaint_filename)) out_aquaint_filename = "data/BLINK_benchmark/aquaint_questions.jsonl" store_questions(aquaint_questions, out_aquaint_filename) print(len(aquaint_questions)) # Β clueweb - WNED-CWEB (CWEB) print("clueweb - WNED-CWEB (CWEB)") in_clueweb_filename = "data/train_and_benchmark_data/basic_data/test_datasets/wned-datasets/clueweb/clueweb.conll" clueweb_questions = convert_to_BLINK_format(extract_questions(in_clueweb_filename)) out_clueweb_filename = "data/BLINK_benchmark/clueweb_questions.jsonl" store_questions(clueweb_questions, out_clueweb_filename) print(len(clueweb_questions)) # msnbc print("msnbc") in_msnbc_filename = "data/train_and_benchmark_data/basic_data/test_datasets/wned-datasets/msnbc/msnbc.conll" msnbc_questions = convert_to_BLINK_format(extract_questions(in_msnbc_filename)) out_msnbc_filename = "data/BLINK_benchmark/msnbc_questions.jsonl" store_questions(msnbc_questions, out_msnbc_filename) print(len(msnbc_questions)) # wikipedia - WNED-WIKI (WIKI) print("wikipedia - WNED-WIKI (WIKI)") in_wnedwiki_filename = "data/train_and_benchmark_data/basic_data/test_datasets/wned-datasets/wikipedia/wikipedia.conll" wnedwiki_questions = convert_to_BLINK_format(extract_questions(in_wnedwiki_filename)) out_wnedwiki_filename = "data/BLINK_benchmark/wnedwiki_questions.jsonl" store_questions(wnedwiki_questions, out_wnedwiki_filename) print(len(wnedwiki_questions))
BLINK-main
scripts/create_BLINK_benchmark_data.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch import json import os import argparse parser = argparse.ArgumentParser() parser.add_argument('--path_to_saved_chunks', type=str, required=True, help='filepath to directory containing saved chunks') parser.add_argument('--chunk_size', type=int, default=1000000, help='size of each chunk') args = parser.parse_args() CHUNK_SIZES = args.chunk_size all_chunks = [] for fn in range(0, 5903526, CHUNK_SIZES): f_chunk = os.path.join( args.path_to_saved_chunks, '{}_{}.t7'.format(fn, fn+CHUNK_SIZES), ) if not os.path.exists(f_chunk) or os.path.getsize(f_chunk) == 0: continue loaded_chunk = torch.load(f_chunk) all_chunks.append(loaded_chunk[:CHUNK_SIZES]) all_chunks = torch.cat(all_chunks, dim=0) torch.save(all_chunks, os.path.join( args.path_to_saved_chunks, 'all.t7'.format(fn, fn+CHUNK_SIZES), ))
BLINK-main
scripts/merge_candidates.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import json import os import numpy as np import torch from elq.vcg_utils.measures import entity_linking_tp_with_overlap from tqdm import tqdm from transformers import BertTokenizer tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") id2title = json.load(open("models/id2title.json")) def load_dists(all_save_dir, data, split, model, joint_threshold): save_dir = "{}/{}_{}_{}_joint{}_top50cands_final_joint".format(all_save_dir, data, split, model, joint_threshold) if not os.path.exists(save_dir): save_dir += "_0" with open(os.path.join(save_dir, "biencoder_outs.jsonl")) as f: examples = f.readlines() examples = [json.loads(line) for line in examples] biencoder_indices = np.load(os.path.join(save_dir, "biencoder_nns.npy"), allow_pickle=True) # corresponds to biencoder_dists biencoder_dists = np.load(os.path.join(save_dir, "biencoder_dists.npy"), allow_pickle=True) if os.path.exists(os.path.join(save_dir, "biencoder_cand_scores.npy")): cand_dists = np.load(os.path.join(save_dir, "biencoder_cand_scores.npy"), allow_pickle=True) else: cand_dists = np.load(os.path.join(save_dir, "biencoder_cand_dists.npy"), allow_pickle=True) pred_mention_bounds = np.load(os.path.join(save_dir, "biencoder_mention_bounds.npy"), allow_pickle=True) if os.path.exists(os.path.join(save_dir, "biencoder_mention_scores.npy")): mention_dists = np.load(os.path.join(save_dir, "biencoder_mention_scores.npy"), allow_pickle=True) else: mention_dists = [biencoder_dists[i] - torch.log_softmax(torch.tensor(cand_dists[i]), 1).numpy() for i in range(len(biencoder_dists))] # inverse sigmoid mention_dists = [np.log(md / (1 - md)) for md in mention_dists] return examples, biencoder_indices, biencoder_dists, cand_dists, pred_mention_bounds, mention_dists def filter_repeats(pred_triples, pred_scores): # sort pred_triples and pred_scores by pred_scores score_sort_ids = sorted(enumerate(pred_scores), key=lambda x: x[1], reverse=True) pred_triples = [pred_triples[si[0]] for si in score_sort_ids] pred_scores = [score_sort_id[1] for score_sort_id in score_sort_ids] all_pred_entities = {} all_pred_entities_pruned = [] all_pred_scores_pruned = [] for idx, ent in enumerate(pred_triples): if ent[0] in all_pred_entities: continue all_pred_entities_pruned.append(ent) all_pred_scores_pruned.append(pred_scores[idx]) all_pred_entities[ent[0]] = 0 return all_pred_entities_pruned, all_pred_scores_pruned def filter_overlaps(tokens, pred_triples, pred_scores): all_pred_entities_pruned = [] all_pred_scores_pruned = [] mention_masked_utterance = np.zeros(len(tokens)) # ensure well-formed-ness, prune overlaps # greedily pick highest scoring, then prune all overlapping for idx, mb in enumerate(pred_triples): if sum(mention_masked_utterance[mb[1]:mb[2]]) > 0: continue all_pred_entities_pruned.append(mb) all_pred_scores_pruned.append(pred_scores[idx]) mention_masked_utterance[mb[1]:mb[2]] = 1 return all_pred_entities_pruned, all_pred_scores_pruned def filter_repeat_overlaps(tokens, pred_triples, pred_scores): all_pred_entities_pruned = [] all_pred_scores_pruned = [] mention_masked_utterance = {triple[0]: np.zeros(len(tokens)) for triple in pred_triples} # ensure well-formed-ness, prune overlaps # greedily pick highest scoring, then prune all overlapping for idx, mb in enumerate(pred_triples): if sum(mention_masked_utterance[mb[0]][mb[1]:mb[2]]) > 0: continue all_pred_entities_pruned.append(mb) all_pred_scores_pruned.append(pred_scores[idx]) mention_masked_utterance[mb[0]][mb[1]:mb[2]] = 1 return all_pred_entities_pruned, all_pred_scores_pruned # threshold and sort by score def get_threshold_mask_and_sort(mention_dists, cand_dists, biencoder_dists, valid_cands_mask, threshold, top_mention_sort=True): """ top_mention_sort: True: sort top candidates per mention only scores_mask and sorted_idxs has dim (#_valid_examples,) False: sort ALL candidates (assumes multiple candidates per mention) scores_mask and sorted_idxs has dim (#_valid_examples, #_cands) """ mention_scores = mention_dists[valid_cands_mask] if len(mention_scores.shape) > 1: mention_scores = mention_scores[:,0] scores = torch.log_softmax(torch.tensor(cand_dists[valid_cands_mask]), 1) + torch.sigmoid(torch.tensor(mention_scores)).log().unsqueeze(-1) if top_mention_sort: scores_mask = (scores[:,0] > threshold) # sort... _, sorted_idxs = scores[:,0][scores_mask].sort(descending=True) sorted_filtered_scores = scores[scores_mask][sorted_idxs] else: scores_mask = (scores > threshold) # GRAPHQUESTIONS BEST sorted_filtered_scores, sorted_idxs = scores[scores_mask].sort(descending=True) return scores_mask.numpy(), sorted_idxs.numpy(), sorted_filtered_scores.numpy() all_save_dir = "saved_preds" model_type = "finetuned_webqsp" # wiki if model_type == "wiki": model = '{0}_all_ents;all_mention_biencoder_all_avg_true_128_true_true_bert_large_qa_linear;15'.format(model_type) elif model_type == "finetuned_webqsp": model= '{0}_all_ents;all_mention_biencoder_all_avg_true_128_true_true_bert_large_qa_linear;18'.format(model_type) get_topk_cands = True topk = 100 if get_topk_cands: threshold=-float("inf") else: threshold=-5 for data in ["nq", "WebQuestions", "triviaqa"]: if data == "nq": splits = ["train0", "train1", "train2", "dev", "test"] else: splits = ["train", "dev", "test"] for split in splits: ( examples, biencoder_indices, biencoder_dists, cand_dists, pred_mention_bounds, mention_dists ) = load_dists(all_save_dir, data, split, model, "0.0" if model_type == "wiki" else "-inf") new_examples = [] num_correct=0 num_predicted=0 num_gold=0 for i, example in enumerate(tqdm(examples)): # select valid candidates valid_cands_mask = (biencoder_dists[i][:,0] != -1) & (biencoder_dists[i][:,0] == biencoder_dists[i][:,0]) # get scores and masking/sorting by score scores_mask, sorted_idxs, sorted_filtered_scores = get_threshold_mask_and_sort( mention_dists[i], cand_dists[i], biencoder_dists[i], valid_cands_mask, threshold, top_mention_sort=(not get_topk_cands) ) if get_topk_cands: # (filtered_examples, #cands, 2) ex_pred_mention_bounds = np.repeat(np.expand_dims(pred_mention_bounds[i], axis=1), biencoder_indices[i].shape[1], axis=1) # (filtered_examples, #cands,) ex_mention_dists = np.repeat(np.expand_dims(mention_dists[i], axis=1), biencoder_indices[i].shape[1], axis=1) ex_biencoder_indices = biencoder_indices[i] ex_cand_dists = cand_dists[i] else: ex_pred_mention_bounds = pred_mention_bounds[i] ex_mention_dists = mention_dists[i] ex_biencoder_indices = biencoder_indices[i] #[:,0] ex_cand_dists = cand_dists[i] #[:,0] # output threshold_entities_translate, pred_triples, pred_scores threshold_entities = ex_biencoder_indices[valid_cands_mask][scores_mask][sorted_idxs] # (filtered_exs, #cands) / (filtered_cands,) threshold_mention_bounds = ex_pred_mention_bounds[valid_cands_mask][scores_mask][sorted_idxs] # (filtered_exs, 2) / (filtered_cands, 2) threshold_cand_scores = ex_cand_dists[valid_cands_mask][scores_mask][sorted_idxs] # (filtered_exs, #cands) / (filtered_cands,) threshold_mention_scores = ex_mention_dists[valid_cands_mask][scores_mask][sorted_idxs] # (filtered_exs,) / (filtered_cands,) threshold_scores = sorted_filtered_scores # (filtered_exs, #cands) / (filtered_cands,) threshold_entities_translate = {} pred_triples = [] pred_scores = [] example['tokens'] = [101] + example['tokens'] + [102] for m in range(len(threshold_scores)): mb = threshold_mention_bounds[m].tolist() mention_text = tokenizer.decode(example['tokens'][mb[0]:mb[1]+1]) threshold_entities_translate[mention_text] = { "mention_idx": m, "mention_score": float(threshold_mention_scores[m]) } if len(threshold_entities[m].shape) > 0: pred_triples.append([str(threshold_entities[m][0]), mb[0], mb[1]+1]) pred_scores.append(float(threshold_scores[m][0])) threshold_entities_translate[mention_text]["candidate_entities"] = [] threshold_entities_translate[mention_text]["cand_scores"] = threshold_cand_scores[m].tolist() for id in threshold_entities[m]: threshold_entities_translate[mention_text]["candidate_entities"].append(id2title[str(id)]) else: pred_triples.append([str(threshold_entities[m]), mb[0], mb[1]+1]) pred_scores.append(float(threshold_scores[m])) threshold_entities_translate[mention_text]["candidate_entities"] = id2title[str(threshold_entities[m])] threshold_entities_translate[mention_text]["cand_scores"] = float(threshold_cand_scores[m]) new_ex = { "id": example["id"], "text": example["text"], "tokens": example["tokens"], } if "gold_triples" in example: all_pred_entities_pruned = pred_triples all_pred_scores_pruned = pred_scores if get_topk_cands: all_pred_entities_pruned, all_pred_scores_pruned = filter_repeats(pred_triples, pred_scores) all_pred_entities_pruned = all_pred_entities_pruned[:topk] all_pred_scores_pruned = all_pred_scores_pruned[:topk] else: all_pred_entities_pruned, all_pred_scores_pruned = filter_overlaps(example["tokens"], pred_triples, pred_scores) else: all_pred_entities_pruned = pred_triples all_pred_scores_pruned = pred_scores if get_topk_cands: all_pred_entities_pruned, all_pred_scores_pruned = filter_repeats(pred_triples, pred_scores) all_pred_entities_pruned = all_pred_entities_pruned[:topk] all_pred_scores_pruned = all_pred_scores_pruned[:topk] else: all_pred_entities_pruned, all_pred_scores_pruned = filter_overlaps(example["tokens"], pred_triples, pred_scores) new_ex['pred_mentions'] = threshold_entities_translate new_ex['pred_triples'] = [[triple[0], triple[1]-1, triple[2]-1] for triple in all_pred_entities_pruned] new_ex['pred_triples_score'] = all_pred_scores_pruned new_ex['pred_triples_string'] = [ [id2title[triple[0]], tokenizer.decode(example['tokens'][triple[1]:triple[2]])] for triple in all_pred_entities_pruned ] # get scores if "gold_triples" in example: gold_triples = example["gold_triples"] new_ex["gold_triples"] = gold_triples num_overlap_weak, num_overlap_strong = entity_linking_tp_with_overlap(gold_triples, new_ex['pred_triples']) num_correct += num_overlap_weak num_predicted += len(all_pred_entities_pruned) num_gold += len(gold_triples) new_examples.append(new_ex) # compute metrics if num_predicted > 0 and num_gold > 0: p = num_correct / num_predicted r = num_correct / num_gold f1 = 2*p*r / (p+r) print(f1) f1s.append(f1) if get_topk_cands: print("Saving {} {} {}".format(data, split, str(topk))) save_file = "{}_{}_top{}.jsonl".format(split, model_type, str(topk)) else: print("Saving {} {} {}".format(data, split, str(threshold))) save_file = "{}_{}_{}.jsonl".format(split, model_type, str(threshold)) # save with open(os.path.join("/checkpoint/belindali/entity_link/data/{}/saved_preds".format(data), save_file), 'w') as wf: for new_ex in new_examples: b=wf.write(json.dumps(new_ex) + "\n")
BLINK-main
scripts/tune_hyperparams_new.py
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import argparse import builtins import math import os import random import shutil import time import warnings import torch import torch.nn as nn import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.distributed as dist import torch.optim import torch.multiprocessing as mp import torch.utils.data import torch.utils.data.distributed import torchvision.transforms as transforms import torchvision.datasets as datasets import torchvision.models as models from timm.data.auto_augment import rand_augment_transform import moco.loader import moco.builder model_names = sorted( name for name in models.__dict__ if name.islower() and not name.startswith("__") and callable(models.__dict__[name]) ) parser = argparse.ArgumentParser(description="PyTorch ImageNet Training") parser.add_argument("data", metavar="DIR", help="path to dataset") parser.add_argument( "-a", "--arch", metavar="ARCH", default="resnet50", choices=model_names, help="model architecture: " + " | ".join(model_names) + " (default: resnet50)", ) parser.add_argument( "-j", "--workers", default=32, type=int, metavar="N", help="number of data loading workers (default: 32)", ) parser.add_argument( "--epochs", default=100, type=int, metavar="N", help="number of total epochs to run", ) parser.add_argument( "--start-epoch", default=0, type=int, metavar="N", help="manual epoch number (useful on restarts)", ) parser.add_argument( "-b", "--batch-size", default=256, type=int, metavar="N", help="mini-batch size (default: 256), this is the total " "batch size of all GPUs on the current node when " "using Data Parallel or Distributed Data Parallel", ) parser.add_argument( "--lr", "--learning-rate", default=0.03, type=float, metavar="LR", help="initial learning rate", dest="lr", ) parser.add_argument( "--momentum", default=0.9, type=float, metavar="M", help="momentum of SGD solver", ) parser.add_argument( "--wd", "--weight-decay", default=1e-4, type=float, metavar="W", help="weight decay (default: 1e-4)", dest="weight_decay", ) parser.add_argument( "-p", "--print-freq", default=10, type=int, metavar="N", help="print frequency (default: 10)", ) parser.add_argument( "--resume", default="", type=str, metavar="PATH", help="path to latest checkpoint (default: none)", ) parser.add_argument( "--world-size", default=-1, type=int, help="number of nodes for distributed training", ) parser.add_argument( "--rank", default=-1, type=int, help="node rank for distributed training" ) parser.add_argument( "--dist-url", default="tcp://224.66.41.62:23456", type=str, help="url used to set up distributed training", ) parser.add_argument( "--dist-backend", default="nccl", type=str, help="distributed backend" ) parser.add_argument( "--seed", default=None, type=int, help="seed for initializing training. " ) parser.add_argument("--gpu", default=None, type=int, help="GPU id to use.") parser.add_argument( "--multiprocessing-distributed", action="store_true", help="Use multi-processing distributed training to launch " "N processes per node, which has N GPUs. This is the " "fastest way to use PyTorch for either single node or " "multi node data parallel training", ) # moco specific configs: parser.add_argument( "--moco-dim", default=128, type=int, help="feature dimension (default: 128)" ) parser.add_argument( "--moco-k", default=65536, type=int, help="queue size; number of negative keys (default: 65536)", ) parser.add_argument( "--moco-m", default=0.999, type=float, help="moco momentum of updating key encoder (default: 0.999)", ) parser.add_argument( "--moco-t", default=0.2, type=float, help="softmax temperature (default: 0.2)", ) # options for Asymmetry Siamese Representation Learning. parser.add_argument( "--enable-scalemix", default=False, action="store_true", help="enable ScaleMix to generate new views of an image by mixing two " "views of potentially different scales together via binary masking", ) parser.add_argument( "--enable-multicrop", default=False, action="store_true", help="enable MultiCrop to take additional views (commonly in lower " "resolution) from each image per iteration", ) parser.add_argument( "--enable-asymm-aug", default=False, action="store_true", help="enable Asymmetrical Augmentation to form an asymmetric augmentation " "recipes for source and target", ) parser.add_argument( "--enable-asym-bn", default=False, action="store_true", help="enable Asymmetrical BN to employ SyncBN to normalizes batch stats " "over all devices for target decoder", ) parser.add_argument( "--enable-mean-encoding", default=False, action="store_true", help="enable Mean Encoding to perform i.i.d. sampling multiple times and " "take the mean as target encoder output", ) parser.add_argument( "--tag", default="", type=str, help="job tag for checkpoint name." ) def main(): args = parser.parse_args() if args.seed is not None: random.seed(args.seed) torch.manual_seed(args.seed) cudnn.deterministic = True warnings.warn( "You have chosen to seed training. " "This will turn on the CUDNN deterministic setting, " "which can slow down your training considerably! " "You may see unexpected behavior when restarting " "from checkpoints." ) if args.gpu is not None: warnings.warn( "You have chosen a specific GPU. This will completely " "disable data parallelism." ) if args.dist_url == "env://" and args.world_size == -1: args.world_size = int(os.environ["WORLD_SIZE"]) args.distributed = args.world_size > 1 or args.multiprocessing_distributed ngpus_per_node = torch.cuda.device_count() if args.multiprocessing_distributed: # Since we have ngpus_per_node processes per node, the total world_size # needs to be adjusted accordingly args.world_size = ngpus_per_node * args.world_size # Use torch.multiprocessing.spawn to launch distributed processes: the # main_worker process function mp.spawn( main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args) ) else: # Simply call main_worker function main_worker(args.gpu, ngpus_per_node, args) def main_worker(gpu, ngpus_per_node, args): args.gpu = gpu # suppress printing if not master if args.multiprocessing_distributed and args.gpu != 0: def print_pass(*args): pass builtins.print = print_pass if args.gpu is not None: print("Use GPU: {} for training".format(args.gpu)) if args.distributed: if args.dist_url == "env://" and args.rank == -1: args.rank = int(os.environ["RANK"]) if args.multiprocessing_distributed: # For multiprocessing distributed training, rank needs to be the # global rank among all the processes args.rank = args.rank * ngpus_per_node + gpu dist.init_process_group( backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank, ) # create model print("=> creating model '{}'".format(args.arch)) model = moco.builder.MoCo( models.__dict__[args.arch], args.moco_dim, args.moco_k, args.moco_m, args.moco_t, args.enable_asym_bn, ) print(model) if args.distributed: # For multiprocessing distributed, DistributedDataParallel constructor # should always set the single device scope, otherwise, # DistributedDataParallel will use all available devices. if args.gpu is not None: torch.cuda.set_device(args.gpu) model.cuda(args.gpu) # When using a single GPU per process and per # DistributedDataParallel, we need to divide the batch size # ourselves based on the total number of GPUs we have args.batch_size = int(args.batch_size / ngpus_per_node) args.workers = int( (args.workers + ngpus_per_node - 1) / ngpus_per_node ) model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[args.gpu] ) else: model.cuda() # DistributedDataParallel will divide and allocate batch_size to # all available GPUs if device_ids are not set model = torch.nn.parallel.DistributedDataParallel(model) elif args.gpu is not None: torch.cuda.set_device(args.gpu) model = model.cuda(args.gpu) # comment out the following line for debugging raise NotImplementedError("Only DistributedDataParallel is supported.") else: # AllGather implementation (batch shuffle, queue update, etc.) in # this code only supports DistributedDataParallel. raise NotImplementedError("Only DistributedDataParallel is supported.") # define loss function (criterion) and optimizer criterion = nn.CrossEntropyLoss().cuda(args.gpu) optimizer = torch.optim.SGD( model.parameters(), args.lr, momentum=args.momentum, weight_decay=args.weight_decay, ) # optionally resume from a checkpoint if args.resume: if os.path.isfile(args.resume): print("=> loading checkpoint '{}'".format(args.resume)) if args.gpu is None: checkpoint = torch.load(args.resume) else: # Map model to be loaded to specified single gpu. loc = "cuda:{}".format(args.gpu) checkpoint = torch.load(args.resume, map_location=loc) args.start_epoch = checkpoint["epoch"] model.load_state_dict(checkpoint["state_dict"]) optimizer.load_state_dict(checkpoint["optimizer"]) print( "=> loaded checkpoint '{}' (epoch {})".format( args.resume, checkpoint["epoch"] ) ) else: print("=> no checkpoint found at '{}'".format(args.resume)) cudnn.benchmark = True # Data loading code traindir = os.path.join(args.data, "train") normalize = transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ) # MoCo v2's aug: similar to SimCLR https://arxiv.org/abs/2002.05709 if args.enable_multicrop: ratio_range=(0.14,1.0) else: ratio_range=(0.2,1.0) augmentation = [ transforms.RandomResizedCrop(224, scale=ratio_range), transforms.RandomApply( [transforms.ColorJitter(0.4, 0.4, 0.4, 0.1)], # not strengthened p=0.8, ), transforms.RandomGrayscale(p=0.2), transforms.RandomApply([moco.loader.GaussianBlur([0.1, 2.0])], p=0.5), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize, ] """ # --------------------------------------------------------------------------- # # Asymmetric Augmentations # # --------------------------------------------------------------------------- # asymmetric augmentation recipes are formed by stronger and weaker augmentation in source and target. Stronger augmentation introduces a higher variance, that hurts target but helps source, and vice versa for weaker augmentation. # --------------------------------------------------------------------------- # """ augmentation_stronger = [ transforms.RandomResizedCrop(224, scale=ratio_range), transforms.RandomApply( [transforms.ColorJitter(0.4, 0.4, 0.4, 0.1)], # not strengthened p=0.8, ), transforms.RandomGrayscale(p=0.2), transforms.RandomApply([moco.loader.GaussianBlur([0.1, 2.0])], p=0.5), transforms.RandomHorizontalFlip(), rand_augment_transform( "rand-m10-n2-mstd0.5", {"translate_const": 100}, ), transforms.ToTensor(), normalize, ] augmentation_weaker = [ transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize, ] """ # --------------------------------------------------------------------------- # # MultiCrop # # --------------------------------------------------------------------------- # Besides the two basic views needed for Siamese learning, MultiCrop takes additional views from each image per iteration. To alleviate the added computation cost, a common strategy is to have low-resolution crops (e.g., 96Γ—96) instead of standard-resolution crops (224Γ—224) as added views. As a side effect, inputting small crops can potentially increase the variance for an encoder due to the size and crop-distribution changes. # --------------------------------------------------------------------------- # """ augmentation_mini = [ transforms.RandomResizedCrop(96, scale=(0.05, 0.14)), transforms.RandomApply( [transforms.ColorJitter(0.4, 0.4, 0.4, 0.1)], # not strengthened p=0.8, ), transforms.RandomGrayscale(p=0.2), transforms.RandomApply([moco.loader.GaussianBlur([0.1, 2.0])], p=0.5), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize, ] train_dataset = datasets.ImageFolder( traindir, moco.loader.CropsTransform( key_transform=transforms.Compose(augmentation_weaker) if args.enable_asymm_aug else transforms.Compose(augmentation), query_mini_transform=transforms.Compose(augmentation_mini), query_transform=transforms.Compose(augmentation_stronger) if args.enable_asymm_aug else transforms.Compose(augmentation), enable_scalemix=args.enable_scalemix, enable_multicrop=args.enable_multicrop, enable_mean_encoding=args.enable_mean_encoding, ), ) if args.distributed: train_sampler = torch.utils.data.distributed.DistributedSampler( train_dataset ) else: train_sampler = None train_loader = torch.utils.data.DataLoader( train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None), num_workers=args.workers, pin_memory=True, sampler=train_sampler, drop_last=True, ) for epoch in range(args.start_epoch, args.epochs): if args.distributed: train_sampler.set_epoch(epoch) adjust_learning_rate(optimizer, epoch, args) # train for one epoch train(train_loader, model, criterion, optimizer, epoch, args) if not args.multiprocessing_distributed or ( args.multiprocessing_distributed and args.rank % ngpus_per_node == 0 ): save_checkpoint( { "epoch": epoch + 1, "arch": args.arch, "state_dict": model.state_dict(), "optimizer": optimizer.state_dict(), }, is_best=False, filename="checkpoint_{}_{:04d}.pth.tar".format(args.tag, epoch), ) def train(train_loader, model, criterion, optimizer, epoch, args): batch_time = AverageMeter("Time", ":6.3f") data_time = AverageMeter("Data", ":6.3f") losses = AverageMeter("Loss", ":.4e") top1 = AverageMeter("Acc@1", ":6.2f") top5 = AverageMeter("Acc@5", ":6.2f") progress = ProgressMeter( len(train_loader), [batch_time, data_time, losses, top1, top5], prefix="Epoch: [{}]".format(epoch), ) # switch to train mode model.train() end = time.time() for i, (images, _) in enumerate(train_loader): # measure data loading time data_time.update(time.time() - end) if args.gpu is not None: for j in range(len(images)): images[j] = images[j].cuda(args.gpu, non_blocking=True) if args.enable_mean_encoding: q_mini_ind, k_ind = 1, -2 else: q_mini_ind, k_ind = 1, -1 # compute outputs outputs, targets = model( im_q=images[:q_mini_ind], im_q_mini=images[q_mini_ind:k_ind], im_k=images[k_ind:], ) loss = criterion(outputs[0], targets[0]) # Loss for mini multi-crops if args.enable_multicrop: loss += sum( map( lambda crop: criterion(crop[0], crop[1]), zip(outputs[q_mini_ind:], targets[q_mini_ind:]), ) ) / len(outputs[q_mini_ind:]) # acc1/acc5 are (K+1)-way contrast classifier accuracy # measure accuracy and record loss acc1, acc5 = accuracy(outputs[0], targets[0], topk=(1, 5)) losses.update(loss.item(), images[0].size(0)) top1.update(acc1[0], images[0].size(0)) top5.update(acc5[0], images[0].size(0)) # compute gradient and do SGD step optimizer.zero_grad() loss.backward() optimizer.step() # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % args.print_freq == 0: progress.display(i) def save_checkpoint(state, is_best, filename="checkpoint.pth.tar"): torch.save(state, filename) if is_best: shutil.copyfile(filename, "model_best.pth.tar") class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self, name, fmt=":f"): self.name = name self.fmt = fmt self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def __str__(self): fmtstr = "{name} {val" + self.fmt + "} ({avg" + self.fmt + "})" return fmtstr.format(**self.__dict__) class ProgressMeter(object): def __init__(self, num_batches, meters, prefix=""): self.batch_fmtstr = self._get_batch_fmtstr(num_batches) self.meters = meters self.prefix = prefix def display(self, batch): entries = [self.prefix + self.batch_fmtstr.format(batch)] entries += [str(meter) for meter in self.meters] print("\t".join(entries)) def _get_batch_fmtstr(self, num_batches): num_digits = len(str(num_batches // 1)) fmt = "{:" + str(num_digits) + "d}" return "[" + fmt + "/" + fmt.format(num_batches) + "]" def adjust_learning_rate(optimizer, epoch, args): """Decay the learning rate based on schedule""" lr = args.lr lr *= 0.5 * (1.0 + math.cos(math.pi * epoch / args.epochs)) for param_group in optimizer.param_groups: param_group["lr"] = lr def accuracy(output, target, topk=(1,)): """ Computes the accuracy over the k top predictions for the specified values of k """ with torch.no_grad(): maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = ( correct[:k].reshape(-1).float().sum(0, keepdim=True) ) res.append(correct_k.mul_(100.0 / batch_size)) return res if __name__ == "__main__": main()
asym-siam-main
main_moco.py
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import argparse import builtins import math import os import random import shutil import time import warnings import torch import torch.nn as nn import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.distributed as dist import torch.optim import torch.multiprocessing as mp import torch.utils.data import torch.utils.data.distributed import torchvision.transforms as transforms import torchvision.datasets as datasets import torchvision.models as models model_names = sorted( name for name in models.__dict__ if name.islower() and not name.startswith("__") and callable(models.__dict__[name]) ) parser = argparse.ArgumentParser(description="PyTorch ImageNet Training") parser.add_argument("data", metavar="DIR", help="path to dataset") parser.add_argument( "-a", "--arch", metavar="ARCH", default="resnet50", choices=model_names, help="model architecture: " + " | ".join(model_names) + " (default: resnet50)", ) parser.add_argument( "-j", "--workers", default=32, type=int, metavar="N", help="number of data loading workers (default: 32)", ) parser.add_argument( "--epochs", default=90, type=int, metavar="N", help="number of total epochs to run" ) parser.add_argument( "--start-epoch", default=0, type=int, metavar="N", help="manual epoch number (useful on restarts)", ) parser.add_argument( "-b", "--batch-size", default=4096, type=int, metavar="N", help="mini-batch size (default: 4096), this is the total " "batch size of all GPUs on the current node when " "using Data Parallel or Distributed Data Parallel", ) parser.add_argument( "--lr", "--learning-rate", default=0.1, type=float, metavar="LR", help="initial (base) learning rate", dest="lr", ) parser.add_argument("--momentum", default=0.9, type=float, metavar="M", help="momentum") parser.add_argument( "--wd", "--weight-decay", default=0.0, type=float, metavar="W", help="weight decay (default: 0.)", dest="weight_decay", ) parser.add_argument( "-p", "--print-freq", default=10, type=int, metavar="N", help="print frequency (default: 10)", ) parser.add_argument( "--resume", default="", type=str, metavar="PATH", help="path to latest checkpoint (default: none)", ) parser.add_argument( "-e", "--evaluate", dest="evaluate", action="store_true", help="evaluate model on validation set", ) parser.add_argument( "--world-size", default=-1, type=int, help="number of nodes for distributed training", ) parser.add_argument( "--rank", default=-1, type=int, help="node rank for distributed training" ) parser.add_argument( "--dist-url", default="tcp://224.66.41.62:23456", type=str, help="url used to set up distributed training", ) parser.add_argument( "--dist-backend", default="nccl", type=str, help="distributed backend" ) parser.add_argument( "--seed", default=None, type=int, help="seed for initializing training. " ) parser.add_argument("--gpu", default=None, type=int, help="GPU id to use.") parser.add_argument( "--multiprocessing-distributed", action="store_true", help="Use multi-processing distributed training to launch " "N processes per node, which has N GPUs. This is the " "fastest way to use PyTorch for either single node or " "multi node data parallel training", ) # additional configs: parser.add_argument( "--pretrained", default="", type=str, help="path to simsiam pretrained checkpoint" ) parser.add_argument("--lars", action="store_true", help="Use LARS") best_acc1 = 0 def main(): args = parser.parse_args() if args.seed is not None: random.seed(args.seed) torch.manual_seed(args.seed) cudnn.deterministic = True warnings.warn( "You have chosen to seed training. " "This will turn on the CUDNN deterministic setting, " "which can slow down your training considerably! " "You may see unexpected behavior when restarting " "from checkpoints." ) if args.gpu is not None: warnings.warn( "You have chosen a specific GPU. This will completely " "disable data parallelism." ) if args.dist_url == "env://" and args.world_size == -1: args.world_size = int(os.environ["WORLD_SIZE"]) args.distributed = args.world_size > 1 or args.multiprocessing_distributed ngpus_per_node = torch.cuda.device_count() if args.multiprocessing_distributed: # Since we have ngpus_per_node processes per node, the total world_size # needs to be adjusted accordingly args.world_size = ngpus_per_node * args.world_size # Use torch.multiprocessing.spawn to launch distributed processes: the # main_worker process function mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args)) else: # Simply call main_worker function main_worker(args.gpu, ngpus_per_node, args) def main_worker(gpu, ngpus_per_node, args): global best_acc1 args.gpu = gpu # suppress printing if not master if args.multiprocessing_distributed and args.gpu != 0: def print_pass(*args): pass builtins.print = print_pass if args.gpu is not None: print("Use GPU: {} for training".format(args.gpu)) if args.distributed: if args.dist_url == "env://" and args.rank == -1: args.rank = int(os.environ["RANK"]) if args.multiprocessing_distributed: # For multiprocessing distributed training, rank needs to be the # global rank among all the processes args.rank = args.rank * ngpus_per_node + gpu dist.init_process_group( backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank, ) torch.distributed.barrier() # create model print("=> creating model '{}'".format(args.arch)) model = models.__dict__[args.arch]() # freeze all layers but the last fc for name, param in model.named_parameters(): if name not in ["fc.weight", "fc.bias"]: param.requires_grad = False # init the fc layer model.fc.weight.data.normal_(mean=0.0, std=0.01) model.fc.bias.data.zero_() # load from pre-trained, before DistributedDataParallel constructor if args.pretrained: if os.path.isfile(args.pretrained): print("=> loading checkpoint '{}'".format(args.pretrained)) checkpoint = torch.load(args.pretrained, map_location="cpu") # rename moco pre-trained keys state_dict = checkpoint["state_dict"] for k in list(state_dict.keys()): # retain only encoder_q up to before the embedding layer if k.startswith("module.encoder_q") and not k.startswith( "module.encoder_q.fc" ): # remove prefix state_dict[k[len("module.encoder_q.") :]] = state_dict[k] # delete renamed or unused k del state_dict[k] args.start_epoch = 0 msg = model.load_state_dict(state_dict, strict=False) assert set(msg.missing_keys) == {"fc.weight", "fc.bias"} print("=> loaded pre-trained model '{}'".format(args.pretrained)) else: print("=> no checkpoint found at '{}'".format(args.pretrained)) # infer learning rate before changing batch size init_lr = args.lr * args.batch_size / 256 if args.distributed: # For multiprocessing distributed, DistributedDataParallel constructor # should always set the single device scope, otherwise, # DistributedDataParallel will use all available devices. if args.gpu is not None: torch.cuda.set_device(args.gpu) model.cuda(args.gpu) # When using a single GPU per process and per # DistributedDataParallel, we need to divide the batch size # ourselves based on the total number of GPUs we have args.batch_size = int(args.batch_size / ngpus_per_node) args.workers = int((args.workers + ngpus_per_node - 1) / ngpus_per_node) model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[args.gpu] ) else: model.cuda() # DistributedDataParallel will divide and allocate batch_size to all # available GPUs if device_ids are not set model = torch.nn.parallel.DistributedDataParallel(model) elif args.gpu is not None: torch.cuda.set_device(args.gpu) model = model.cuda(args.gpu) else: # DataParallel will divide and allocate batch_size to all available GPUs if args.arch.startswith("alexnet") or args.arch.startswith("vgg"): model.features = torch.nn.DataParallel(model.features) model.cuda() else: model = torch.nn.DataParallel(model).cuda() # define loss function (criterion) and optimizer criterion = nn.CrossEntropyLoss().cuda(args.gpu) # optimize only the linear classifier parameters = list(filter(lambda p: p.requires_grad, model.parameters())) assert len(parameters) == 2 # fc.weight, fc.bias optimizer = torch.optim.SGD( parameters, init_lr, momentum=args.momentum, weight_decay=args.weight_decay ) if args.lars: print("=> use LARS optimizer.") from apex.parallel.LARC import LARC optimizer = LARC(optimizer=optimizer, trust_coefficient=0.001, clip=False) # optionally resume from a checkpoint if args.resume: if os.path.isfile(args.resume): print("=> loading checkpoint '{}'".format(args.resume)) if args.gpu is None: checkpoint = torch.load(args.resume) else: # Map model to be loaded to specified single gpu. loc = "cuda:{}".format(args.gpu) checkpoint = torch.load(args.resume, map_location=loc) args.start_epoch = checkpoint["epoch"] best_acc1 = checkpoint["best_acc1"] if args.gpu is not None: # best_acc1 may be from a checkpoint from a different GPU best_acc1 = best_acc1.to(args.gpu) model.load_state_dict(checkpoint["state_dict"]) optimizer.load_state_dict(checkpoint["optimizer"]) print( "=> loaded checkpoint '{}' (epoch {})".format( args.resume, checkpoint["epoch"] ) ) else: print("=> no checkpoint found at '{}'".format(args.resume)) cudnn.benchmark = True # Data loading code traindir = os.path.join(args.data, "train") valdir = os.path.join(args.data, "val") normalize = transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ) train_dataset = datasets.ImageFolder( traindir, transforms.Compose( [ transforms.RandomResizedCrop(224, scale=(0.08, 1.0)), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize, ] ), ) if args.distributed: train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset) else: train_sampler = None train_loader = torch.utils.data.DataLoader( train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None), num_workers=args.workers, pin_memory=True, sampler=train_sampler, drop_last=True, ) val_loader = torch.utils.data.DataLoader( datasets.ImageFolder( valdir, transforms.Compose( [ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), normalize, ] ), ), batch_size=256, shuffle=False, num_workers=args.workers, pin_memory=True, ) if args.evaluate: validate(val_loader, model, criterion, args) return for epoch in range(args.start_epoch, args.epochs): if args.distributed: train_sampler.set_epoch(epoch) adjust_learning_rate(optimizer, init_lr, epoch, args) # train for one epoch train(train_loader, model, criterion, optimizer, epoch, args) # evaluate on validation set acc1 = validate(val_loader, model, criterion, args) # remember best acc@1 and save checkpoint is_best = acc1 > best_acc1 best_acc1 = max(acc1, best_acc1) if not args.multiprocessing_distributed or ( args.multiprocessing_distributed and args.rank % ngpus_per_node == 0 ): save_checkpoint( { "epoch": epoch + 1, "arch": args.arch, "state_dict": model.state_dict(), "best_acc1": best_acc1, "optimizer": optimizer.state_dict(), }, is_best, ) if epoch == args.start_epoch: sanity_check(model.state_dict(), args.pretrained) def train(train_loader, model, criterion, optimizer, epoch, args): batch_time = AverageMeter("Time", ":6.3f") data_time = AverageMeter("Data", ":6.3f") losses = AverageMeter("Loss", ":.4e") top1 = AverageMeter("Acc@1", ":6.2f") top5 = AverageMeter("Acc@5", ":6.2f") progress = ProgressMeter( len(train_loader), [batch_time, data_time, losses, top1, top5], prefix="Epoch: [{}]".format(epoch), ) """ Switch to eval mode: Under the protocol of linear classification on frozen features/models, it is not legitimate to change any part of the pre-trained model. BatchNorm in train mode may revise running mean/std (even if it receives no gradient), which are part of the model parameters too. """ model.eval() end = time.time() for i, (images, target) in enumerate(train_loader): # measure data loading time data_time.update(time.time() - end) if args.gpu is not None: images = images.cuda(args.gpu, non_blocking=True) target = target.cuda(args.gpu, non_blocking=True) # compute output output = model(images) loss = criterion(output, target) # measure accuracy and record loss acc1, acc5 = accuracy(output, target, topk=(1, 5)) losses.update(loss.item(), images.size(0)) top1.update(acc1[0], images.size(0)) top5.update(acc5[0], images.size(0)) # compute gradient and do SGD step optimizer.zero_grad() loss.backward() optimizer.step() # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % args.print_freq == 0: progress.display(i) def validate(val_loader, model, criterion, args): batch_time = AverageMeter("Time", ":6.3f") losses = AverageMeter("Loss", ":.4e") top1 = AverageMeter("Acc@1", ":6.2f") top5 = AverageMeter("Acc@5", ":6.2f") progress = ProgressMeter( len(val_loader), [batch_time, losses, top1, top5], prefix="Test: " ) # switch to evaluate mode model.eval() with torch.no_grad(): end = time.time() for i, (images, target) in enumerate(val_loader): if args.gpu is not None: images = images.cuda(args.gpu, non_blocking=True) target = target.cuda(args.gpu, non_blocking=True) # compute output output = model(images) loss = criterion(output, target) # measure accuracy and record loss acc1, acc5 = accuracy(output, target, topk=(1, 5)) losses.update(loss.item(), images.size(0)) top1.update(acc1[0], images.size(0)) top5.update(acc5[0], images.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % args.print_freq == 0: progress.display(i) # TODO: this should also be done with the ProgressMeter print( " * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}".format(top1=top1, top5=top5) ) return top1.avg def save_checkpoint(state, is_best, filename="checkpoint.pth.tar"): torch.save(state, filename) if is_best: shutil.copyfile(filename, "model_best.pth.tar") def sanity_check(state_dict, pretrained_weights): """ Linear classifier should not change any weights other than the linear layer. This sanity check asserts nothing wrong happens (e.g., BN stats updated). """ print("=> loading '{}' for sanity check".format(pretrained_weights)) checkpoint = torch.load(pretrained_weights, map_location="cpu") state_dict_pre = checkpoint["state_dict"] for k in list(state_dict.keys()): # only ignore fc layer if "fc.weight" in k or "fc.bias" in k: continue # name in pretrained model k_pre = ( "module.encoder_q." + k[len("module.") :] if k.startswith("module.") else "module.encoder_q." + k ) assert ( state_dict[k].cpu() == state_dict_pre[k_pre] ).all(), "{} is changed in linear classifier training.".format(k) print("=> sanity check passed.") class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self, name, fmt=":f"): self.name = name self.fmt = fmt self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def __str__(self): fmtstr = "{name} {val" + self.fmt + "} ({avg" + self.fmt + "})" return fmtstr.format(**self.__dict__) class ProgressMeter(object): def __init__(self, num_batches, meters, prefix=""): self.batch_fmtstr = self._get_batch_fmtstr(num_batches) self.meters = meters self.prefix = prefix def display(self, batch): entries = [self.prefix + self.batch_fmtstr.format(batch)] entries += [str(meter) for meter in self.meters] print("\t".join(entries)) def _get_batch_fmtstr(self, num_batches): num_digits = len(str(num_batches // 1)) fmt = "{:" + str(num_digits) + "d}" return "[" + fmt + "/" + fmt.format(num_batches) + "]" def adjust_learning_rate(optimizer, init_lr, epoch, args): """Decay the learning rate based on schedule""" cur_lr = init_lr * 0.5 * (1.0 + math.cos(math.pi * epoch / args.epochs)) for param_group in optimizer.param_groups: param_group["lr"] = cur_lr def accuracy(output, target, topk=(1,)): """Computes the accuracy over the k top predictions for the specified values of k""" with torch.no_grad(): maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True) res.append(correct_k.mul_(100.0 / batch_size)) return res if __name__ == "__main__": main()
asym-siam-main
main_lincls.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
asym-siam-main
moco/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import torch import torch.nn as nn class MoCo(nn.Module): """ Build a MoCo model with: a query encoder, a key encoder, and a queue https://arxiv.org/abs/1911.05722 """ def __init__( self, base_encoder, dim=128, K=65536, m=0.999, T=0.07, enable_asym_bn=False, ): """ dim: feature dimension (default: 128) K: queue size; number of negative keys (default: 65536) m: moco momentum of updating key encoder (default: 0.999) T: softmax temperature (default: 0.07) """ super(MoCo, self).__init__() self.K = K self.m = m self.T = T # create the encoders # num_classes is the output fc dimension self.encoder_q = base_encoder(num_classes=dim) self.encoder_k = base_encoder(num_classes=dim) dim_mlp = self.encoder_q.fc.weight.shape[1] self.encoder_q.fc = nn.Sequential( nn.Linear(dim_mlp, dim_mlp), nn.BatchNorm1d(dim_mlp), nn.ReLU(), nn.Linear(dim_mlp, dim_mlp), nn.ReLU(), self.encoder_q.fc, ) self.encoder_k.fc = nn.Sequential( nn.Linear(dim_mlp, dim_mlp), nn.BatchNorm1d(dim_mlp), nn.ReLU(), nn.Linear(dim_mlp, dim_mlp), nn.ReLU(), self.encoder_k.fc, ) """ # --------------------------------------------------------------------------- # # Sync BatchNorm # # --------------------------------------------------------------------------- # Intermediate Sync BatchNorm layers is a way to reduce intra-image variance intarget encoder. Sync BatchNorm leads to a notable improvement when applied to target (as referred β€˜AsymBN’ in our paper) and degeneration to source. # --------------------------------------------------------------------------- # """ if enable_asym_bn: process_group = create_syncbn_process_group(8) self.encoder_k.fc = torch.nn.SyncBatchNorm.convert_sync_batchnorm( self.encoder_k.fc, process_group ) for param_q, param_k in zip( self.encoder_q.parameters(), self.encoder_k.parameters() ): param_k.data.copy_(param_q.data) # initialize param_k.requires_grad = False # not update by gradient # create the queue self.register_buffer("queue", torch.randn(dim, K)) self.queue = nn.functional.normalize(self.queue, dim=0) self.register_buffer("queue_ptr", torch.zeros(1, dtype=torch.long)) @torch.no_grad() def _momentum_update_key_encoder(self): """ Momentum update of the key encoder """ for param_q, param_k in zip( self.encoder_q.parameters(), self.encoder_k.parameters() ): param_k.data = param_k.data * self.m + param_q.data * (1.0 - self.m) @torch.no_grad() def _dequeue_and_enqueue(self, keys): # gather keys before updating queue keys = concat_all_gather(keys) batch_size = keys.shape[0] ptr = int(self.queue_ptr) assert self.K % batch_size == 0 # for simplicity # replace the keys at ptr (dequeue and enqueue) self.queue[:, ptr : ptr + batch_size] = keys.T ptr = (ptr + batch_size) % self.K # move pointer self.queue_ptr[0] = ptr @torch.no_grad() def _batch_shuffle_ddp(self, x): """ Batch shuffle, for making use of BatchNorm. *** Only support DistributedDataParallel (DDP) model. *** """ # gather from all gpus batch_size_this = x.shape[0] x_gather = concat_all_gather(x) batch_size_all = x_gather.shape[0] num_gpus = batch_size_all // batch_size_this # random shuffle index idx_shuffle = torch.randperm(batch_size_all).cuda() # broadcast to all gpus torch.distributed.broadcast(idx_shuffle, src=0) # index for restoring idx_unshuffle = torch.argsort(idx_shuffle) # shuffled index for this gpu gpu_idx = torch.distributed.get_rank() idx_this = idx_shuffle.view(num_gpus, -1)[gpu_idx] return x_gather[idx_this], idx_unshuffle @torch.no_grad() def _batch_unshuffle_ddp(self, x, idx_unshuffle): """ Undo batch shuffle. *** Only support DistributedDataParallel (DDP) model. *** """ # gather from all gpus batch_size_this = x.shape[0] x_gather = concat_all_gather(x) batch_size_all = x_gather.shape[0] num_gpus = batch_size_all // batch_size_this # restored index for this gpu gpu_idx = torch.distributed.get_rank() idx_this = idx_unshuffle.view(num_gpus, -1)[gpu_idx] return x_gather[idx_this] def forward(self, im_q, im_q_mini, im_k): """ Input: im_q: a batch of query images im_k: a batch of key images Output: logits, targets """ # compute query features q_large = [] for im in im_q: _q = self.encoder_q(im) # queries: NxC _q = nn.functional.normalize(_q, dim=1) q_large.append(_q) q_mini = [] for im in im_q_mini: _q_mini = self.encoder_q(im) # queries: NxC _q_mini = nn.functional.normalize(_q_mini, dim=1) q_mini.append(_q_mini) """ # --------------------------------------------------------------------------- # # Mean Encoding # # --------------------------------------------------------------------------- # Mean Encoding is a direct approach to reduce the variance of a random variable by performing i.i.d. sampling multiple times and take the mean as the new variable. Mean Encoding is simply generated by running the same encoder on multiple augmented views of the same image. # --------------------------------------------------------------------------- # """ crop_num = len(im_k) # compute key features with torch.no_grad(): # no gradient to keys self._momentum_update_key_encoder() # update the key encoder im_k = torch.cat(im_k, dim=0) # shuffle for making use of BN im_k, idx_unshuffle = self._batch_shuffle_ddp(im_k) k = self.encoder_k(im_k) # keys: NxC # undo shuffle k = self._batch_unshuffle_ddp(k, idx_unshuffle) cur_size, embedding_length = k.shape k = k.view(crop_num, cur_size // crop_num, embedding_length) k = nn.functional.normalize(torch.mean(k, dim=0), dim=1) logits_list = [] labels_list = [] for q in q_large + q_mini: # compute logits # Einstein sum is more intuitive # positive logits: Nx1 l_pos = torch.einsum("nc,nc->n", [q, k]).unsqueeze(-1) # negative logits: NxK l_neg = torch.einsum("nc,ck->nk", [q, self.queue.clone().detach()]) # logits: Nx(1+K) logits = torch.cat([l_pos, l_neg], dim=1) # apply temperature logits /= self.T # labels: positive key indicators labels = torch.zeros(logits.shape[0], dtype=torch.long).cuda() logits_list.append(logits) labels_list.append(labels) # dequeue and enqueue self._dequeue_and_enqueue(k) return logits_list, labels_list # utils @torch.no_grad() def concat_all_gather(tensor): """ Performs all_gather operation on the provided tensors. *** Warning ***: torch.distributed.all_gather has no gradient. """ tensors_gather = [ torch.ones_like(tensor) for _ in range(torch.distributed.get_world_size()) ] torch.distributed.all_gather(tensors_gather, tensor, async_op=False) output = torch.cat(tensors_gather, dim=0) return output def create_syncbn_process_group(num_gpu_per_group): if num_gpu_per_group == 0: return None world_size = torch.distributed.get_world_size() assert world_size >= num_gpu_per_group assert world_size % num_gpu_per_group == 0 group = None for group_num in range(world_size // num_gpu_per_group): group_ids = range( group_num * num_gpu_per_group, (group_num + 1) * num_gpu_per_group ) cur_group = torch.distributed.new_group(ranks=group_ids) if torch.distributed.get_rank() // num_gpu_per_group == group_num: group = cur_group assert group is not None return group
asym-siam-main
moco/builder.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from PIL import ImageFilter import random import numpy as np """ # --------------------------------------------------------------------------- # # ScaleMix # # --------------------------------------------------------------------------- # ScaleMix generates new views of an image by mixing two views of potentially different scales together via binary masking. The masking strategy follows CutMix. where an entire region - denoted by a box with randomly sampled coordinates - is cropped and pasted. Unlike CutMix, ScaleMix only operates on views from the same image, and the output is a single view of standard size (224x224). This single view can be regarded as an efficient approximation of MultiCrop, without the need to process small crops separately. # --------------------------------------------------------------------------- # """ def scalemix(view1, view2): def random_bbox(lam, H, W): cut_rat = np.sqrt(1.0 - lam) cut_w = np.int(W * cut_rat) cut_h = np.int(H * cut_rat) cx = np.random.randint(W) cy = np.random.randint(H) bbx1 = np.clip(cx - cut_w // 2, 0, W) bby1 = np.clip(cy - cut_h // 2, 0, H) bbx2 = np.clip(cx + cut_w // 2, 0, W) bby2 = np.clip(cy + cut_h // 2, 0, H) return bbx1, bby1, bbx2, bby2 _, h, w = view1.shape lam = np.random.uniform(low=0.0, high=1.0) bbx1, bby1, bbx2, bby2 = random_bbox(lam, h, w) view1[:, bbx1:bbx2, bby1:bby2] = view2[:, bbx1:bbx2, bby1:bby2] return view1 class CropsTransform: """Take two random crops of one image as the query and key.""" def __init__( self, key_transform, query_mini_transform, query_transform, enable_scalemix=False, enable_multicrop=False, enable_mean_encoding=False, ): self.key_transform = key_transform self.query_mini_transform = query_mini_transform self.query_transform = query_transform self.enable_scalemix = enable_scalemix self.enable_multicrop = enable_multicrop self.enable_mean_encoding = enable_mean_encoding def __call__(self, x): crops = [] # Query crop if self.enable_scalemix: q = scalemix(self.query_transform(x), self.query_transform(x),) else: q = self.query_transform(x) crops.append(q) # Query mini crops if self.enable_multicrop: for i in range(6): crops.append(self.query_mini_transform(x)) # Key crop crops.append(self.key_transform(x)) if self.enable_mean_encoding: crops.append(self.key_transform(x)) return crops class GaussianBlur(object): """Gaussian blur augmentation in SimCLR https://arxiv.org/abs/2002.05709""" def __init__(self, sigma=[0.1, 2.0]): self.sigma = sigma def __call__(self, x): sigma = random.uniform(self.sigma[0], self.sigma[1]) x = x.filter(ImageFilter.GaussianBlur(radius=sigma)) return x
asym-siam-main
moco/loader.py
# Copyright 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. An additional grant # of patent rights can be found in the PATENTS file in the same directory. import argparse, json, os """ During rendering, each CLEVR scene file is dumped to disk as a separate JSON file; this is convenient for distributing rendering across multiple machines. This script collects all CLEVR scene files stored in a directory and combines them into a single JSON file. This script also adds the version number, date, and license to the output file. """ parser = argparse.ArgumentParser() parser.add_argument('--input_dir', default='output/scenes') parser.add_argument('--output_file', default='output/CLEVR_misc_scenes.json') parser.add_argument('--version', default='1.0') parser.add_argument('--date', default='7/8/2017') parser.add_argument('--license', default='Creative Commons Attribution (CC-BY 4.0') def main(args): input_files = os.listdir(args.input_dir) scenes = [] split = None for filename in os.listdir(args.input_dir): if not filename.endswith('.json'): continue path = os.path.join(args.input_dir, filename) with open(path, 'r') as f: scene = json.load(f) scenes.append(scene) if split is not None: msg = 'Input directory contains scenes from multiple splits' assert scene['split'] == split, msg else: split = scene['split'] scenes.sort(key=lambda s: s['image_index']) for s in scenes: print(s['image_filename']) output = { 'info': { 'date': args.date, 'version': args.version, 'split': split, 'license': args.license, }, 'scenes': scenes } with open(args.output_file, 'w') as f: json.dump(output, f) if __name__ == '__main__': args = parser.parse_args() main(args)
clevr-dataset-gen-main
image_generation/collect_scenes.py
# Copyright 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. An additional grant # of patent rights can be found in the PATENTS file in the same directory. from __future__ import print_function import math, sys, random, argparse, json, os, tempfile from datetime import datetime as dt from collections import Counter """ Renders random scenes using Blender, each with with a random number of objects; each object has a random size, position, color, and shape. Objects will be nonintersecting but may partially occlude each other. Output images will be written to disk as PNGs, and we will also write a JSON file for each image with ground-truth scene information. This file expects to be run from Blender like this: blender --background --python render_images.py -- [arguments to this script] """ INSIDE_BLENDER = True try: import bpy, bpy_extras from mathutils import Vector except ImportError as e: INSIDE_BLENDER = False if INSIDE_BLENDER: try: import utils except ImportError as e: print("\nERROR") print("Running render_images.py from Blender and cannot import utils.py.") print("You may need to add a .pth file to the site-packages of Blender's") print("bundled python with a command like this:\n") print("echo $PWD >> $BLENDER/$VERSION/python/lib/python3.5/site-packages/clevr.pth") print("\nWhere $BLENDER is the directory where Blender is installed, and") print("$VERSION is your Blender version (such as 2.78).") sys.exit(1) parser = argparse.ArgumentParser() # Input options parser.add_argument('--base_scene_blendfile', default='data/base_scene.blend', help="Base blender file on which all scenes are based; includes " + "ground plane, lights, and camera.") parser.add_argument('--properties_json', default='data/properties.json', help="JSON file defining objects, materials, sizes, and colors. " + "The \"colors\" field maps from CLEVR color names to RGB values; " + "The \"sizes\" field maps from CLEVR size names to scalars used to " + "rescale object models; the \"materials\" and \"shapes\" fields map " + "from CLEVR material and shape names to .blend files in the " + "--object_material_dir and --shape_dir directories respectively.") parser.add_argument('--shape_dir', default='data/shapes', help="Directory where .blend files for object models are stored") parser.add_argument('--material_dir', default='data/materials', help="Directory where .blend files for materials are stored") parser.add_argument('--shape_color_combos_json', default=None, help="Optional path to a JSON file mapping shape names to a list of " + "allowed color names for that shape. This allows rendering images " + "for CLEVR-CoGenT.") # Settings for objects parser.add_argument('--min_objects', default=3, type=int, help="The minimum number of objects to place in each scene") parser.add_argument('--max_objects', default=10, type=int, help="The maximum number of objects to place in each scene") parser.add_argument('--min_dist', default=0.25, type=float, help="The minimum allowed distance between object centers") parser.add_argument('--margin', default=0.4, type=float, help="Along all cardinal directions (left, right, front, back), all " + "objects will be at least this distance apart. This makes resolving " + "spatial relationships slightly less ambiguous.") parser.add_argument('--min_pixels_per_object', default=200, type=int, help="All objects will have at least this many visible pixels in the " + "final rendered images; this ensures that no objects are fully " + "occluded by other objects.") parser.add_argument('--max_retries', default=50, type=int, help="The number of times to try placing an object before giving up and " + "re-placing all objects in the scene.") # Output settings parser.add_argument('--start_idx', default=0, type=int, help="The index at which to start for numbering rendered images. Setting " + "this to non-zero values allows you to distribute rendering across " + "multiple machines and recombine the results later.") parser.add_argument('--num_images', default=5, type=int, help="The number of images to render") parser.add_argument('--filename_prefix', default='CLEVR', help="This prefix will be prepended to the rendered images and JSON scenes") parser.add_argument('--split', default='new', help="Name of the split for which we are rendering. This will be added to " + "the names of rendered images, and will also be stored in the JSON " + "scene structure for each image.") parser.add_argument('--output_image_dir', default='../output/images/', help="The directory where output images will be stored. It will be " + "created if it does not exist.") parser.add_argument('--output_scene_dir', default='../output/scenes/', help="The directory where output JSON scene structures will be stored. " + "It will be created if it does not exist.") parser.add_argument('--output_scene_file', default='../output/CLEVR_scenes.json', help="Path to write a single JSON file containing all scene information") parser.add_argument('--output_blend_dir', default='output/blendfiles', help="The directory where blender scene files will be stored, if the " + "user requested that these files be saved using the " + "--save_blendfiles flag; in this case it will be created if it does " + "not already exist.") parser.add_argument('--save_blendfiles', type=int, default=0, help="Setting --save_blendfiles 1 will cause the blender scene file for " + "each generated image to be stored in the directory specified by " + "the --output_blend_dir flag. These files are not saved by default " + "because they take up ~5-10MB each.") parser.add_argument('--version', default='1.0', help="String to store in the \"version\" field of the generated JSON file") parser.add_argument('--license', default="Creative Commons Attribution (CC-BY 4.0)", help="String to store in the \"license\" field of the generated JSON file") parser.add_argument('--date', default=dt.today().strftime("%m/%d/%Y"), help="String to store in the \"date\" field of the generated JSON file; " + "defaults to today's date") # Rendering options parser.add_argument('--use_gpu', default=0, type=int, help="Setting --use_gpu 1 enables GPU-accelerated rendering using CUDA. " + "You must have an NVIDIA GPU with the CUDA toolkit installed for " + "to work.") parser.add_argument('--width', default=320, type=int, help="The width (in pixels) for the rendered images") parser.add_argument('--height', default=240, type=int, help="The height (in pixels) for the rendered images") parser.add_argument('--key_light_jitter', default=1.0, type=float, help="The magnitude of random jitter to add to the key light position.") parser.add_argument('--fill_light_jitter', default=1.0, type=float, help="The magnitude of random jitter to add to the fill light position.") parser.add_argument('--back_light_jitter', default=1.0, type=float, help="The magnitude of random jitter to add to the back light position.") parser.add_argument('--camera_jitter', default=0.5, type=float, help="The magnitude of random jitter to add to the camera position") parser.add_argument('--render_num_samples', default=512, type=int, help="The number of samples to use when rendering. Larger values will " + "result in nicer images but will cause rendering to take longer.") parser.add_argument('--render_min_bounces', default=8, type=int, help="The minimum number of bounces to use for rendering.") parser.add_argument('--render_max_bounces', default=8, type=int, help="The maximum number of bounces to use for rendering.") parser.add_argument('--render_tile_size', default=256, type=int, help="The tile size to use for rendering. This should not affect the " + "quality of the rendered image but may affect the speed; CPU-based " + "rendering may achieve better performance using smaller tile sizes " + "while larger tile sizes may be optimal for GPU-based rendering.") def main(args): num_digits = 6 prefix = '%s_%s_' % (args.filename_prefix, args.split) img_template = '%s%%0%dd.png' % (prefix, num_digits) scene_template = '%s%%0%dd.json' % (prefix, num_digits) blend_template = '%s%%0%dd.blend' % (prefix, num_digits) img_template = os.path.join(args.output_image_dir, img_template) scene_template = os.path.join(args.output_scene_dir, scene_template) blend_template = os.path.join(args.output_blend_dir, blend_template) if not os.path.isdir(args.output_image_dir): os.makedirs(args.output_image_dir) if not os.path.isdir(args.output_scene_dir): os.makedirs(args.output_scene_dir) if args.save_blendfiles == 1 and not os.path.isdir(args.output_blend_dir): os.makedirs(args.output_blend_dir) all_scene_paths = [] for i in range(args.num_images): img_path = img_template % (i + args.start_idx) scene_path = scene_template % (i + args.start_idx) all_scene_paths.append(scene_path) blend_path = None if args.save_blendfiles == 1: blend_path = blend_template % (i + args.start_idx) num_objects = random.randint(args.min_objects, args.max_objects) render_scene(args, num_objects=num_objects, output_index=(i + args.start_idx), output_split=args.split, output_image=img_path, output_scene=scene_path, output_blendfile=blend_path, ) # After rendering all images, combine the JSON files for each scene into a # single JSON file. all_scenes = [] for scene_path in all_scene_paths: with open(scene_path, 'r') as f: all_scenes.append(json.load(f)) output = { 'info': { 'date': args.date, 'version': args.version, 'split': args.split, 'license': args.license, }, 'scenes': all_scenes } with open(args.output_scene_file, 'w') as f: json.dump(output, f) def render_scene(args, num_objects=5, output_index=0, output_split='none', output_image='render.png', output_scene='render_json', output_blendfile=None, ): # Load the main blendfile bpy.ops.wm.open_mainfile(filepath=args.base_scene_blendfile) # Load materials utils.load_materials(args.material_dir) # Set render arguments so we can get pixel coordinates later. # We use functionality specific to the CYCLES renderer so BLENDER_RENDER # cannot be used. render_args = bpy.context.scene.render render_args.engine = "CYCLES" render_args.filepath = output_image render_args.resolution_x = args.width render_args.resolution_y = args.height render_args.resolution_percentage = 100 render_args.tile_x = args.render_tile_size render_args.tile_y = args.render_tile_size if args.use_gpu == 1: # Blender changed the API for enabling CUDA at some point if bpy.app.version < (2, 78, 0): bpy.context.user_preferences.system.compute_device_type = 'CUDA' bpy.context.user_preferences.system.compute_device = 'CUDA_0' else: cycles_prefs = bpy.context.user_preferences.addons['cycles'].preferences cycles_prefs.compute_device_type = 'CUDA' # Some CYCLES-specific stuff bpy.data.worlds['World'].cycles.sample_as_light = True bpy.context.scene.cycles.blur_glossy = 2.0 bpy.context.scene.cycles.samples = args.render_num_samples bpy.context.scene.cycles.transparent_min_bounces = args.render_min_bounces bpy.context.scene.cycles.transparent_max_bounces = args.render_max_bounces if args.use_gpu == 1: bpy.context.scene.cycles.device = 'GPU' # This will give ground-truth information about the scene and its objects scene_struct = { 'split': output_split, 'image_index': output_index, 'image_filename': os.path.basename(output_image), 'objects': [], 'directions': {}, } # Put a plane on the ground so we can compute cardinal directions bpy.ops.mesh.primitive_plane_add(radius=5) plane = bpy.context.object def rand(L): return 2.0 * L * (random.random() - 0.5) # Add random jitter to camera position if args.camera_jitter > 0: for i in range(3): bpy.data.objects['Camera'].location[i] += rand(args.camera_jitter) # Figure out the left, up, and behind directions along the plane and record # them in the scene structure camera = bpy.data.objects['Camera'] plane_normal = plane.data.vertices[0].normal cam_behind = camera.matrix_world.to_quaternion() * Vector((0, 0, -1)) cam_left = camera.matrix_world.to_quaternion() * Vector((-1, 0, 0)) cam_up = camera.matrix_world.to_quaternion() * Vector((0, 1, 0)) plane_behind = (cam_behind - cam_behind.project(plane_normal)).normalized() plane_left = (cam_left - cam_left.project(plane_normal)).normalized() plane_up = cam_up.project(plane_normal).normalized() # Delete the plane; we only used it for normals anyway. The base scene file # contains the actual ground plane. utils.delete_object(plane) # Save all six axis-aligned directions in the scene struct scene_struct['directions']['behind'] = tuple(plane_behind) scene_struct['directions']['front'] = tuple(-plane_behind) scene_struct['directions']['left'] = tuple(plane_left) scene_struct['directions']['right'] = tuple(-plane_left) scene_struct['directions']['above'] = tuple(plane_up) scene_struct['directions']['below'] = tuple(-plane_up) # Add random jitter to lamp positions if args.key_light_jitter > 0: for i in range(3): bpy.data.objects['Lamp_Key'].location[i] += rand(args.key_light_jitter) if args.back_light_jitter > 0: for i in range(3): bpy.data.objects['Lamp_Back'].location[i] += rand(args.back_light_jitter) if args.fill_light_jitter > 0: for i in range(3): bpy.data.objects['Lamp_Fill'].location[i] += rand(args.fill_light_jitter) # Now make some random objects objects, blender_objects = add_random_objects(scene_struct, num_objects, args, camera) # Render the scene and dump the scene data structure scene_struct['objects'] = objects scene_struct['relationships'] = compute_all_relationships(scene_struct) while True: try: bpy.ops.render.render(write_still=True) break except Exception as e: print(e) with open(output_scene, 'w') as f: json.dump(scene_struct, f, indent=2) if output_blendfile is not None: bpy.ops.wm.save_as_mainfile(filepath=output_blendfile) def add_random_objects(scene_struct, num_objects, args, camera): """ Add random objects to the current blender scene """ # Load the property file with open(args.properties_json, 'r') as f: properties = json.load(f) color_name_to_rgba = {} for name, rgb in properties['colors'].items(): rgba = [float(c) / 255.0 for c in rgb] + [1.0] color_name_to_rgba[name] = rgba material_mapping = [(v, k) for k, v in properties['materials'].items()] object_mapping = [(v, k) for k, v in properties['shapes'].items()] size_mapping = list(properties['sizes'].items()) shape_color_combos = None if args.shape_color_combos_json is not None: with open(args.shape_color_combos_json, 'r') as f: shape_color_combos = list(json.load(f).items()) positions = [] objects = [] blender_objects = [] for i in range(num_objects): # Choose a random size size_name, r = random.choice(size_mapping) # Try to place the object, ensuring that we don't intersect any existing # objects and that we are more than the desired margin away from all existing # objects along all cardinal directions. num_tries = 0 while True: # If we try and fail to place an object too many times, then delete all # the objects in the scene and start over. num_tries += 1 if num_tries > args.max_retries: for obj in blender_objects: utils.delete_object(obj) return add_random_objects(scene_struct, num_objects, args, camera) x = random.uniform(-3, 3) y = random.uniform(-3, 3) # Check to make sure the new object is further than min_dist from all # other objects, and further than margin along the four cardinal directions dists_good = True margins_good = True for (xx, yy, rr) in positions: dx, dy = x - xx, y - yy dist = math.sqrt(dx * dx + dy * dy) if dist - r - rr < args.min_dist: dists_good = False break for direction_name in ['left', 'right', 'front', 'behind']: direction_vec = scene_struct['directions'][direction_name] assert direction_vec[2] == 0 margin = dx * direction_vec[0] + dy * direction_vec[1] if 0 < margin < args.margin: print(margin, args.margin, direction_name) print('BROKEN MARGIN!') margins_good = False break if not margins_good: break if dists_good and margins_good: break # Choose random color and shape if shape_color_combos is None: obj_name, obj_name_out = random.choice(object_mapping) color_name, rgba = random.choice(list(color_name_to_rgba.items())) else: obj_name_out, color_choices = random.choice(shape_color_combos) color_name = random.choice(color_choices) obj_name = [k for k, v in object_mapping if v == obj_name_out][0] rgba = color_name_to_rgba[color_name] # For cube, adjust the size a bit if obj_name == 'Cube': r /= math.sqrt(2) # Choose random orientation for the object. theta = 360.0 * random.random() # Actually add the object to the scene utils.add_object(args.shape_dir, obj_name, r, (x, y), theta=theta) obj = bpy.context.object blender_objects.append(obj) positions.append((x, y, r)) # Attach a random material mat_name, mat_name_out = random.choice(material_mapping) utils.add_material(mat_name, Color=rgba) # Record data about the object in the scene data structure pixel_coords = utils.get_camera_coords(camera, obj.location) objects.append({ 'shape': obj_name_out, 'size': size_name, 'material': mat_name_out, '3d_coords': tuple(obj.location), 'rotation': theta, 'pixel_coords': pixel_coords, 'color': color_name, }) # Check that all objects are at least partially visible in the rendered image all_visible = check_visibility(blender_objects, args.min_pixels_per_object) if not all_visible: # If any of the objects are fully occluded then start over; delete all # objects from the scene and place them all again. print('Some objects are occluded; replacing objects') for obj in blender_objects: utils.delete_object(obj) return add_random_objects(scene_struct, num_objects, args, camera) return objects, blender_objects def compute_all_relationships(scene_struct, eps=0.2): """ Computes relationships between all pairs of objects in the scene. Returns a dictionary mapping string relationship names to lists of lists of integers, where output[rel][i] gives a list of object indices that have the relationship rel with object i. For example if j is in output['left'][i] then object j is left of object i. """ all_relationships = {} for name, direction_vec in scene_struct['directions'].items(): if name == 'above' or name == 'below': continue all_relationships[name] = [] for i, obj1 in enumerate(scene_struct['objects']): coords1 = obj1['3d_coords'] related = set() for j, obj2 in enumerate(scene_struct['objects']): if obj1 == obj2: continue coords2 = obj2['3d_coords'] diff = [coords2[k] - coords1[k] for k in [0, 1, 2]] dot = sum(diff[k] * direction_vec[k] for k in [0, 1, 2]) if dot > eps: related.add(j) all_relationships[name].append(sorted(list(related))) return all_relationships def check_visibility(blender_objects, min_pixels_per_object): """ Check whether all objects in the scene have some minimum number of visible pixels; to accomplish this we assign random (but distinct) colors to all objects, and render using no lighting or shading or antialiasing; this ensures that each object is just a solid uniform color. We can then count the number of pixels of each color in the output image to check the visibility of each object. Returns True if all objects are visible and False otherwise. """ f, path = tempfile.mkstemp(suffix='.png') object_colors = render_shadeless(blender_objects, path=path) img = bpy.data.images.load(path) p = list(img.pixels) color_count = Counter((p[i], p[i+1], p[i+2], p[i+3]) for i in range(0, len(p), 4)) os.remove(path) if len(color_count) != len(blender_objects) + 1: return False for _, count in color_count.most_common(): if count < min_pixels_per_object: return False return True def render_shadeless(blender_objects, path='flat.png'): """ Render a version of the scene with shading disabled and unique materials assigned to all objects, and return a set of all colors that should be in the rendered image. The image itself is written to path. This is used to ensure that all objects will be visible in the final rendered scene. """ render_args = bpy.context.scene.render # Cache the render args we are about to clobber old_filepath = render_args.filepath old_engine = render_args.engine old_use_antialiasing = render_args.use_antialiasing # Override some render settings to have flat shading render_args.filepath = path render_args.engine = 'BLENDER_RENDER' render_args.use_antialiasing = False # Move the lights and ground to layer 2 so they don't render utils.set_layer(bpy.data.objects['Lamp_Key'], 2) utils.set_layer(bpy.data.objects['Lamp_Fill'], 2) utils.set_layer(bpy.data.objects['Lamp_Back'], 2) utils.set_layer(bpy.data.objects['Ground'], 2) # Add random shadeless materials to all objects object_colors = set() old_materials = [] for i, obj in enumerate(blender_objects): old_materials.append(obj.data.materials[0]) bpy.ops.material.new() mat = bpy.data.materials['Material'] mat.name = 'Material_%d' % i while True: r, g, b = [random.random() for _ in range(3)] if (r, g, b) not in object_colors: break object_colors.add((r, g, b)) mat.diffuse_color = [r, g, b] mat.use_shadeless = True obj.data.materials[0] = mat # Render the scene bpy.ops.render.render(write_still=True) # Undo the above; first restore the materials to objects for mat, obj in zip(old_materials, blender_objects): obj.data.materials[0] = mat # Move the lights and ground back to layer 0 utils.set_layer(bpy.data.objects['Lamp_Key'], 0) utils.set_layer(bpy.data.objects['Lamp_Fill'], 0) utils.set_layer(bpy.data.objects['Lamp_Back'], 0) utils.set_layer(bpy.data.objects['Ground'], 0) # Set the render settings back to what they were render_args.filepath = old_filepath render_args.engine = old_engine render_args.use_antialiasing = old_use_antialiasing return object_colors if __name__ == '__main__': if INSIDE_BLENDER: # Run normally argv = utils.extract_args() args = parser.parse_args(argv) main(args) elif '--help' in sys.argv or '-h' in sys.argv: parser.print_help() else: print('This script is intended to be called from blender like this:') print() print('blender --background --python render_images.py -- [args]') print() print('You can also run as a standalone python script to view all') print('arguments like this:') print() print('python render_images.py --help')
clevr-dataset-gen-main
image_generation/render_images.py
# Copyright 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. An additional grant # of patent rights can be found in the PATENTS file in the same directory. import sys, random, os import bpy, bpy_extras """ Some utility functions for interacting with Blender """ def extract_args(input_argv=None): """ Pull out command-line arguments after "--". Blender ignores command-line flags after --, so this lets us forward command line arguments from the blender invocation to our own script. """ if input_argv is None: input_argv = sys.argv output_argv = [] if '--' in input_argv: idx = input_argv.index('--') output_argv = input_argv[(idx + 1):] return output_argv def parse_args(parser, argv=None): return parser.parse_args(extract_args(argv)) # I wonder if there's a better way to do this? def delete_object(obj): """ Delete a specified blender object """ for o in bpy.data.objects: o.select = False obj.select = True bpy.ops.object.delete() def get_camera_coords(cam, pos): """ For a specified point, get both the 3D coordinates and 2D pixel-space coordinates of the point from the perspective of the camera. Inputs: - cam: Camera object - pos: Vector giving 3D world-space position Returns a tuple of: - (px, py, pz): px and py give 2D image-space coordinates; pz gives depth in the range [-1, 1] """ scene = bpy.context.scene x, y, z = bpy_extras.object_utils.world_to_camera_view(scene, cam, pos) scale = scene.render.resolution_percentage / 100.0 w = int(scale * scene.render.resolution_x) h = int(scale * scene.render.resolution_y) px = int(round(x * w)) py = int(round(h - y * h)) return (px, py, z) def set_layer(obj, layer_idx): """ Move an object to a particular layer """ # Set the target layer to True first because an object must always be on # at least one layer. obj.layers[layer_idx] = True for i in range(len(obj.layers)): obj.layers[i] = (i == layer_idx) def add_object(object_dir, name, scale, loc, theta=0): """ Load an object from a file. We assume that in the directory object_dir, there is a file named "$name.blend" which contains a single object named "$name" that has unit size and is centered at the origin. - scale: scalar giving the size that the object should be in the scene - loc: tuple (x, y) giving the coordinates on the ground plane where the object should be placed. """ # First figure out how many of this object are already in the scene so we can # give the new object a unique name count = 0 for obj in bpy.data.objects: if obj.name.startswith(name): count += 1 filename = os.path.join(object_dir, '%s.blend' % name, 'Object', name) bpy.ops.wm.append(filename=filename) # Give it a new name to avoid conflicts new_name = '%s_%d' % (name, count) bpy.data.objects[name].name = new_name # Set the new object as active, then rotate, scale, and translate it x, y = loc bpy.context.scene.objects.active = bpy.data.objects[new_name] bpy.context.object.rotation_euler[2] = theta bpy.ops.transform.resize(value=(scale, scale, scale)) bpy.ops.transform.translate(value=(x, y, scale)) def load_materials(material_dir): """ Load materials from a directory. We assume that the directory contains .blend files with one material each. The file X.blend has a single NodeTree item named X; this NodeTree item must have a "Color" input that accepts an RGBA value. """ for fn in os.listdir(material_dir): if not fn.endswith('.blend'): continue name = os.path.splitext(fn)[0] filepath = os.path.join(material_dir, fn, 'NodeTree', name) bpy.ops.wm.append(filename=filepath) def add_material(name, **properties): """ Create a new material and assign it to the active object. "name" should be the name of a material that has been previously loaded using load_materials. """ # Figure out how many materials are already in the scene mat_count = len(bpy.data.materials) # Create a new material; it is not attached to anything and # it will be called "Material" bpy.ops.material.new() # Get a reference to the material we just created and rename it; # then the next time we make a new material it will still be called # "Material" and we will still be able to look it up by name mat = bpy.data.materials['Material'] mat.name = 'Material_%d' % mat_count # Attach the new material to the active object # Make sure it doesn't already have materials obj = bpy.context.active_object assert len(obj.data.materials) == 0 obj.data.materials.append(mat) # Find the output node of the new material output_node = None for n in mat.node_tree.nodes: if n.name == 'Material Output': output_node = n break # Add a new GroupNode to the node tree of the active material, # and copy the node tree from the preloaded node group to the # new group node. This copying seems to happen by-value, so # we can create multiple materials of the same type without them # clobbering each other group_node = mat.node_tree.nodes.new('ShaderNodeGroup') group_node.node_tree = bpy.data.node_groups[name] # Find and set the "Color" input of the new group node for inp in group_node.inputs: if inp.name in properties: inp.default_value = properties[inp.name] # Wire the output of the new group node to the input of # the MaterialOutput node mat.node_tree.links.new( group_node.outputs['Shader'], output_node.inputs['Surface'], )
clevr-dataset-gen-main
image_generation/utils.py
# Copyright 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. An additional grant # of patent rights can be found in the PATENTS file in the same directory. import json, os, math from collections import defaultdict """ Utilities for working with function program representations of questions. Some of the metadata about what question node types are available etc are stored in a JSON metadata file. """ # Handlers for answering questions. Each handler receives the scene structure # that was output from Blender, the node, and a list of values that were output # from each of the node's inputs; the handler should return the computed output # value from this node. def scene_handler(scene_struct, inputs, side_inputs): # Just return all objects in the scene return list(range(len(scene_struct['objects']))) def make_filter_handler(attribute): def filter_handler(scene_struct, inputs, side_inputs): assert len(inputs) == 1 assert len(side_inputs) == 1 value = side_inputs[0] output = [] for idx in inputs[0]: atr = scene_struct['objects'][idx][attribute] if value == atr or value in atr: output.append(idx) return output return filter_handler def unique_handler(scene_struct, inputs, side_inputs): assert len(inputs) == 1 if len(inputs[0]) != 1: return '__INVALID__' return inputs[0][0] def vg_relate_handler(scene_struct, inputs, side_inputs): assert len(inputs) == 1 assert len(side_inputs) == 1 output = set() for rel in scene_struct['relationships']: if rel['predicate'] == side_inputs[0] and rel['subject_idx'] == inputs[0]: output.add(rel['object_idx']) return sorted(list(output)) def relate_handler(scene_struct, inputs, side_inputs): assert len(inputs) == 1 assert len(side_inputs) == 1 relation = side_inputs[0] return scene_struct['relationships'][relation][inputs[0]] def union_handler(scene_struct, inputs, side_inputs): assert len(inputs) == 2 assert len(side_inputs) == 0 return sorted(list(set(inputs[0]) | set(inputs[1]))) def intersect_handler(scene_struct, inputs, side_inputs): assert len(inputs) == 2 assert len(side_inputs) == 0 return sorted(list(set(inputs[0]) & set(inputs[1]))) def count_handler(scene_struct, inputs, side_inputs): assert len(inputs) == 1 return len(inputs[0]) def make_same_attr_handler(attribute): def same_attr_handler(scene_struct, inputs, side_inputs): cache_key = '_same_%s' % attribute if cache_key not in scene_struct: cache = {} for i, obj1 in enumerate(scene_struct['objects']): same = [] for j, obj2 in enumerate(scene_struct['objects']): if i != j and obj1[attribute] == obj2[attribute]: same.append(j) cache[i] = same scene_struct[cache_key] = cache cache = scene_struct[cache_key] assert len(inputs) == 1 assert len(side_inputs) == 0 return cache[inputs[0]] return same_attr_handler def make_query_handler(attribute): def query_handler(scene_struct, inputs, side_inputs): assert len(inputs) == 1 assert len(side_inputs) == 0 idx = inputs[0] obj = scene_struct['objects'][idx] assert attribute in obj val = obj[attribute] if type(val) == list and len(val) != 1: return '__INVALID__' elif type(val) == list and len(val) == 1: return val[0] else: return val return query_handler def exist_handler(scene_struct, inputs, side_inputs): assert len(inputs) == 1 assert len(side_inputs) == 0 return len(inputs[0]) > 0 def equal_handler(scene_struct, inputs, side_inputs): assert len(inputs) == 2 assert len(side_inputs) == 0 return inputs[0] == inputs[1] def less_than_handler(scene_struct, inputs, side_inputs): assert len(inputs) == 2 assert len(side_inputs) == 0 return inputs[0] < inputs[1] def greater_than_handler(scene_struct, inputs, side_inputs): assert len(inputs) == 2 assert len(side_inputs) == 0 return inputs[0] > inputs[1] # Register all of the answering handlers here. # TODO maybe this would be cleaner with a function decorator that takes # care of registration? Not sure. Also what if we want to reuse the same engine # for different sets of node types? execute_handlers = { 'scene': scene_handler, 'filter_color': make_filter_handler('color'), 'filter_shape': make_filter_handler('shape'), 'filter_material': make_filter_handler('material'), 'filter_size': make_filter_handler('size'), 'filter_objectcategory': make_filter_handler('objectcategory'), 'unique': unique_handler, 'relate': relate_handler, 'union': union_handler, 'intersect': intersect_handler, 'count': count_handler, 'query_color': make_query_handler('color'), 'query_shape': make_query_handler('shape'), 'query_material': make_query_handler('material'), 'query_size': make_query_handler('size'), 'exist': exist_handler, 'equal_color': equal_handler, 'equal_shape': equal_handler, 'equal_integer': equal_handler, 'equal_material': equal_handler, 'equal_size': equal_handler, 'equal_object': equal_handler, 'less_than': less_than_handler, 'greater_than': greater_than_handler, 'same_color': make_same_attr_handler('color'), 'same_shape': make_same_attr_handler('shape'), 'same_size': make_same_attr_handler('size'), 'same_material': make_same_attr_handler('material'), } def answer_question(question, metadata, scene_struct, all_outputs=False, cache_outputs=True): """ Use structured scene information to answer a structured question. Most of the heavy lifting is done by the execute handlers defined above. We cache node outputs in the node itself; this gives a nontrivial speedup when we want to answer many questions that share nodes on the same scene (such as during question-generation DFS). This will NOT work if the same nodes are executed on different scenes. """ all_input_types, all_output_types = [], [] node_outputs = [] for node in question['nodes']: if cache_outputs and '_output' in node: node_output = node['_output'] else: node_type = node['type'] msg = 'Could not find handler for "%s"' % node_type assert node_type in execute_handlers, msg handler = execute_handlers[node_type] node_inputs = [node_outputs[idx] for idx in node['inputs']] side_inputs = node.get('side_inputs', []) node_output = handler(scene_struct, node_inputs, side_inputs) if cache_outputs: node['_output'] = node_output node_outputs.append(node_output) if node_output == '__INVALID__': break if all_outputs: return node_outputs else: return node_outputs[-1] def insert_scene_node(nodes, idx): # First make a shallow-ish copy of the input new_nodes = [] for node in nodes: new_node = { 'type': node['type'], 'inputs': node['inputs'], } if 'side_inputs' in node: new_node['side_inputs'] = node['side_inputs'] new_nodes.append(new_node) # Replace the specified index with a scene node new_nodes[idx] = {'type': 'scene', 'inputs': []} # Search backwards from the last node to see which nodes are actually used output_used = [False] * len(new_nodes) idxs_to_check = [len(new_nodes) - 1] while idxs_to_check: cur_idx = idxs_to_check.pop() output_used[cur_idx] = True idxs_to_check.extend(new_nodes[cur_idx]['inputs']) # Iterate through nodes, keeping only those whose output is used; # at the same time build up a mapping from old idxs to new idxs old_idx_to_new_idx = {} new_nodes_trimmed = [] for old_idx, node in enumerate(new_nodes): if output_used[old_idx]: new_idx = len(new_nodes_trimmed) new_nodes_trimmed.append(node) old_idx_to_new_idx[old_idx] = new_idx # Finally go through the list of trimmed nodes and change the inputs for node in new_nodes_trimmed: new_inputs = [] for old_idx in node['inputs']: new_inputs.append(old_idx_to_new_idx[old_idx]) node['inputs'] = new_inputs return new_nodes_trimmed def is_degenerate(question, metadata, scene_struct, answer=None, verbose=False): """ A question is degenerate if replacing any of its relate nodes with a scene node results in a question with the same answer. """ if answer is None: answer = answer_question(question, metadata, scene_struct) for idx, node in enumerate(question['nodes']): if node['type'] == 'relate': new_question = { 'nodes': insert_scene_node(question['nodes'], idx) } new_answer = answer_question(new_question, metadata, scene_struct) if verbose: print('here is truncated question:') for i, n in enumerate(new_question['nodes']): name = n['type'] if 'side_inputs' in n: name = '%s[%s]' % (name, n['side_inputs'][0]) print(i, name, n['_output']) print('new answer is: ', new_answer) if new_answer == answer: return True return False
clevr-dataset-gen-main
question_generation/question_engine.py
# Copyright 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. An additional grant # of patent rights can be found in the PATENTS file in the same directory. from __future__ import print_function import argparse, json, os, itertools, random, shutil import time import re import question_engine as qeng """ Generate synthetic questions and answers for CLEVR images. Input is a single JSON file containing ground-truth scene information for all images, and output is a single JSON file containing all generated questions, answers, and programs. Questions are generated by expanding templates. Each template contains a single program template and one or more text templates, both with the same set of typed slots; by convention <Z> = Size, <C> = Color, <M> = Material, <S> = Shape. Program templates may contain special nodes that expand into multiple functions during instantiation; for example a "filter" node in a program template will expand into a combination of "filter_size", "filter_color", "filter_material", and "filter_shape" nodes after instantiation, and a "filter_unique" node in a template will expand into some combination of filtering nodes followed by a "unique" node. Templates are instantiated using depth-first search; we are looking for template instantiations where (1) each "unique" node actually refers to a single object, (2) constraints in the template are satisfied, and (3) the answer to the question passes our rejection sampling heuristics. To efficiently handle (1) and (2), we keep track of partial evaluations of the program during each step of template expansion. This together with the use of composite nodes in program templates (filter_unique, relate_filter_unique) allow us to efficiently prune the search space and terminate early when we know that (1) or (2) will be violated. """ parser = argparse.ArgumentParser() # Inputs parser.add_argument('--input_scene_file', default='../output/CLEVR_scenes.json', help="JSON file containing ground-truth scene information for all images " + "from render_images.py") parser.add_argument('--metadata_file', default='metadata.json', help="JSON file containing metadata about functions") parser.add_argument('--synonyms_json', default='synonyms.json', help="JSON file defining synonyms for parameter values") parser.add_argument('--template_dir', default='CLEVR_1.0_templates', help="Directory containing JSON templates for questions") # Output parser.add_argument('--output_questions_file', default='../output/CLEVR_questions.json', help="The output file to write containing generated questions") # Control which and how many images to process parser.add_argument('--scene_start_idx', default=0, type=int, help="The image at which to start generating questions; this allows " + "question generation to be split across many workers") parser.add_argument('--num_scenes', default=0, type=int, help="The number of images for which to generate questions. Setting to 0 " + "generates questions for all scenes in the input file starting from " + "--scene_start_idx") # Control the number of questions per image; we will attempt to generate # templates_per_image * instances_per_template questions per image. parser.add_argument('--templates_per_image', default=10, type=int, help="The number of different templates that should be instantiated " + "on each image") parser.add_argument('--instances_per_template', default=1, type=int, help="The number of times each template should be instantiated on an image") # Misc parser.add_argument('--reset_counts_every', default=250, type=int, help="How often to reset template and answer counts. Higher values will " + "result in flatter distributions over templates and answers, but " + "will result in longer runtimes.") parser.add_argument('--verbose', action='store_true', help="Print more verbose output") parser.add_argument('--time_dfs', action='store_true', help="Time each depth-first search; must be given with --verbose") parser.add_argument('--profile', action='store_true', help="If given then run inside cProfile") # args = parser.parse_args() def precompute_filter_options(scene_struct, metadata): # Keys are tuples (size, color, shape, material) (where some may be None) # and values are lists of object idxs that match the filter criterion attribute_map = {} if metadata['dataset'] == 'CLEVR-v1.0': attr_keys = ['size', 'color', 'material', 'shape'] else: assert False, 'Unrecognized dataset' # Precompute masks masks = [] for i in range(2 ** len(attr_keys)): mask = [] for j in range(len(attr_keys)): mask.append((i // (2 ** j)) % 2) masks.append(mask) for object_idx, obj in enumerate(scene_struct['objects']): if metadata['dataset'] == 'CLEVR-v1.0': keys = [tuple(obj[k] for k in attr_keys)] for mask in masks: for key in keys: masked_key = [] for a, b in zip(key, mask): if b == 1: masked_key.append(a) else: masked_key.append(None) masked_key = tuple(masked_key) if masked_key not in attribute_map: attribute_map[masked_key] = set() attribute_map[masked_key].add(object_idx) scene_struct['_filter_options'] = attribute_map def find_filter_options(object_idxs, scene_struct, metadata): # Keys are tuples (size, color, shape, material) (where some may be None) # and values are lists of object idxs that match the filter criterion if '_filter_options' not in scene_struct: precompute_filter_options(scene_struct, metadata) attribute_map = {} object_idxs = set(object_idxs) for k, vs in scene_struct['_filter_options'].items(): attribute_map[k] = sorted(list(object_idxs & vs)) return attribute_map def add_empty_filter_options(attribute_map, metadata, num_to_add): # Add some filtering criterion that do NOT correspond to objects if metadata['dataset'] == 'CLEVR-v1.0': attr_keys = ['Size', 'Color', 'Material', 'Shape'] else: assert False, 'Unrecognized dataset' attr_vals = [metadata['types'][t] + [None] for t in attr_keys] if '_filter_options' in metadata: attr_vals = metadata['_filter_options'] target_size = len(attribute_map) + num_to_add while len(attribute_map) < target_size: k = (random.choice(v) for v in attr_vals) if k not in attribute_map: attribute_map[k] = [] def find_relate_filter_options(object_idx, scene_struct, metadata, unique=False, include_zero=False, trivial_frac=0.1): options = {} if '_filter_options' not in scene_struct: precompute_filter_options(scene_struct, metadata) # TODO: Right now this is only looking for nontrivial combinations; in some # cases I may want to add trivial combinations, either where the intersection # is empty or where the intersection is equal to the filtering output. trivial_options = {} for relationship in scene_struct['relationships']: related = set(scene_struct['relationships'][relationship][object_idx]) for filters, filtered in scene_struct['_filter_options'].items(): intersection = related & filtered trivial = (intersection == filtered) if unique and len(intersection) != 1: continue if not include_zero and len(intersection) == 0: continue if trivial: trivial_options[(relationship, filters)] = sorted(list(intersection)) else: options[(relationship, filters)] = sorted(list(intersection)) N, f = len(options), trivial_frac num_trivial = int(round(N * f / (1 - f))) trivial_options = list(trivial_options.items()) random.shuffle(trivial_options) for k, v in trivial_options[:num_trivial]: options[k] = v return options def node_shallow_copy(node): new_node = { 'type': node['type'], 'inputs': node['inputs'], } if 'side_inputs' in node: new_node['side_inputs'] = node['side_inputs'] return new_node def other_heuristic(text, param_vals): """ Post-processing heuristic to handle the word "other" """ if ' other ' not in text and ' another ' not in text: return text target_keys = { '<Z>', '<C>', '<M>', '<S>', '<Z2>', '<C2>', '<M2>', '<S2>', } if param_vals.keys() != target_keys: return text key_pairs = [ ('<Z>', '<Z2>'), ('<C>', '<C2>'), ('<M>', '<M2>'), ('<S>', '<S2>'), ] remove_other = False for k1, k2 in key_pairs: v1 = param_vals.get(k1, None) v2 = param_vals.get(k2, None) if v1 != '' and v2 != '' and v1 != v2: print('other has got to go! %s = %s but %s = %s' % (k1, v1, k2, v2)) remove_other = True break if remove_other: if ' other ' in text: text = text.replace(' other ', ' ') if ' another ' in text: text = text.replace(' another ', ' a ') return text def instantiate_templates_dfs(scene_struct, template, metadata, answer_counts, synonyms, max_instances=None, verbose=False): param_name_to_type = {p['name']: p['type'] for p in template['params']} initial_state = { 'nodes': [node_shallow_copy(template['nodes'][0])], 'vals': {}, 'input_map': {0: 0}, 'next_template_node': 1, } states = [initial_state] final_states = [] while states: state = states.pop() # Check to make sure the current state is valid q = {'nodes': state['nodes']} outputs = qeng.answer_question(q, metadata, scene_struct, all_outputs=True) answer = outputs[-1] if answer == '__INVALID__': continue # Check to make sure constraints are satisfied for the current state skip_state = False for constraint in template['constraints']: if constraint['type'] == 'NEQ': p1, p2 = constraint['params'] v1, v2 = state['vals'].get(p1), state['vals'].get(p2) if v1 is not None and v2 is not None and v1 != v2: if verbose: print('skipping due to NEQ constraint') print(constraint) print(state['vals']) skip_state = True break elif constraint['type'] == 'NULL': p = constraint['params'][0] p_type = param_name_to_type[p] v = state['vals'].get(p) if v is not None: skip = False if p_type == 'Shape' and v != 'thing': skip = True if p_type != 'Shape' and v != '': skip = True if skip: if verbose: print('skipping due to NULL constraint') print(constraint) print(state['vals']) skip_state = True break elif constraint['type'] == 'OUT_NEQ': i, j = constraint['params'] i = state['input_map'].get(i, None) j = state['input_map'].get(j, None) if i is not None and j is not None and outputs[i] == outputs[j]: if verbose: print('skipping due to OUT_NEQ constraint') print(outputs[i]) print(outputs[j]) skip_state = True break else: assert False, 'Unrecognized constraint type "%s"' % constraint['type'] if skip_state: continue # We have already checked to make sure the answer is valid, so if we have # processed all the nodes in the template then the current state is a valid # question, so add it if it passes our rejection sampling tests. if state['next_template_node'] == len(template['nodes']): # Use our rejection sampling heuristics to decide whether we should # keep this template instantiation cur_answer_count = answer_counts[answer] answer_counts_sorted = sorted(answer_counts.values()) median_count = answer_counts_sorted[len(answer_counts_sorted) // 2] median_count = max(median_count, 5) if cur_answer_count > 1.1 * answer_counts_sorted[-2]: if verbose: print('skipping due to second count') continue if cur_answer_count > 5.0 * median_count: if verbose: print('skipping due to median') continue # If the template contains a raw relate node then we need to check for # degeneracy at the end has_relate = any(n['type'] == 'relate' for n in template['nodes']) if has_relate: degen = qeng.is_degenerate(q, metadata, scene_struct, answer=answer, verbose=verbose) if degen: continue answer_counts[answer] += 1 state['answer'] = answer final_states.append(state) if max_instances is not None and len(final_states) == max_instances: break continue # Otherwise fetch the next node from the template # Make a shallow copy so cached _outputs don't leak ... this is very nasty next_node = template['nodes'][state['next_template_node']] next_node = node_shallow_copy(next_node) special_nodes = { 'filter_unique', 'filter_count', 'filter_exist', 'filter', 'relate_filter', 'relate_filter_unique', 'relate_filter_count', 'relate_filter_exist', } if next_node['type'] in special_nodes: if next_node['type'].startswith('relate_filter'): unique = (next_node['type'] == 'relate_filter_unique') include_zero = (next_node['type'] == 'relate_filter_count' or next_node['type'] == 'relate_filter_exist') filter_options = find_relate_filter_options(answer, scene_struct, metadata, unique=unique, include_zero=include_zero) else: filter_options = find_filter_options(answer, scene_struct, metadata) if next_node['type'] == 'filter': # Remove null filter filter_options.pop((None, None, None, None), None) if next_node['type'] == 'filter_unique': # Get rid of all filter options that don't result in a single object filter_options = {k: v for k, v in filter_options.items() if len(v) == 1} else: # Add some filter options that do NOT correspond to the scene if next_node['type'] == 'filter_exist': # For filter_exist we want an equal number that do and don't num_to_add = len(filter_options) elif next_node['type'] == 'filter_count' or next_node['type'] == 'filter': # For filter_count add nulls equal to the number of singletons num_to_add = sum(1 for k, v in filter_options.items() if len(v) == 1) add_empty_filter_options(filter_options, metadata, num_to_add) filter_option_keys = list(filter_options.keys()) random.shuffle(filter_option_keys) for k in filter_option_keys: new_nodes = [] cur_next_vals = {k: v for k, v in state['vals'].items()} next_input = state['input_map'][next_node['inputs'][0]] filter_side_inputs = next_node['side_inputs'] if next_node['type'].startswith('relate'): param_name = next_node['side_inputs'][0] # First one should be relate filter_side_inputs = next_node['side_inputs'][1:] param_type = param_name_to_type[param_name] assert param_type == 'Relation' param_val = k[0] k = k[1] new_nodes.append({ 'type': 'relate', 'inputs': [next_input], 'side_inputs': [param_val], }) cur_next_vals[param_name] = param_val next_input = len(state['nodes']) + len(new_nodes) - 1 for param_name, param_val in zip(filter_side_inputs, k): param_type = param_name_to_type[param_name] filter_type = 'filter_%s' % param_type.lower() if param_val is not None: new_nodes.append({ 'type': filter_type, 'inputs': [next_input], 'side_inputs': [param_val], }) cur_next_vals[param_name] = param_val next_input = len(state['nodes']) + len(new_nodes) - 1 elif param_val is None: if metadata['dataset'] == 'CLEVR-v1.0' and param_type == 'Shape': param_val = 'thing' else: param_val = '' cur_next_vals[param_name] = param_val input_map = {k: v for k, v in state['input_map'].items()} extra_type = None if next_node['type'].endswith('unique'): extra_type = 'unique' if next_node['type'].endswith('count'): extra_type = 'count' if next_node['type'].endswith('exist'): extra_type = 'exist' if extra_type is not None: new_nodes.append({ 'type': extra_type, 'inputs': [input_map[next_node['inputs'][0]] + len(new_nodes)], }) input_map[state['next_template_node']] = len(state['nodes']) + len(new_nodes) - 1 states.append({ 'nodes': state['nodes'] + new_nodes, 'vals': cur_next_vals, 'input_map': input_map, 'next_template_node': state['next_template_node'] + 1, }) elif 'side_inputs' in next_node: # If the next node has template parameters, expand them out # TODO: Generalize this to work for nodes with more than one side input assert len(next_node['side_inputs']) == 1, 'NOT IMPLEMENTED' # Use metadata to figure out domain of valid values for this parameter. # Iterate over the values in a random order; then it is safe to bail # from the DFS as soon as we find the desired number of valid template # instantiations. param_name = next_node['side_inputs'][0] param_type = param_name_to_type[param_name] param_vals = metadata['types'][param_type][:] random.shuffle(param_vals) for val in param_vals: input_map = {k: v for k, v in state['input_map'].items()} input_map[state['next_template_node']] = len(state['nodes']) cur_next_node = { 'type': next_node['type'], 'inputs': [input_map[idx] for idx in next_node['inputs']], 'side_inputs': [val], } cur_next_vals = {k: v for k, v in state['vals'].items()} cur_next_vals[param_name] = val states.append({ 'nodes': state['nodes'] + [cur_next_node], 'vals': cur_next_vals, 'input_map': input_map, 'next_template_node': state['next_template_node'] + 1, }) else: input_map = {k: v for k, v in state['input_map'].items()} input_map[state['next_template_node']] = len(state['nodes']) next_node = { 'type': next_node['type'], 'inputs': [input_map[idx] for idx in next_node['inputs']], } states.append({ 'nodes': state['nodes'] + [next_node], 'vals': state['vals'], 'input_map': input_map, 'next_template_node': state['next_template_node'] + 1, }) # Actually instantiate the template with the solutions we've found text_questions, structured_questions, answers = [], [], [] for state in final_states: structured_questions.append(state['nodes']) answers.append(state['answer']) text = random.choice(template['text']) for name, val in state['vals'].items(): if val in synonyms: val = random.choice(synonyms[val]) text = text.replace(name, val) text = ' '.join(text.split()) text = replace_optionals(text) text = ' '.join(text.split()) text = other_heuristic(text, state['vals']) text_questions.append(text) return text_questions, structured_questions, answers def replace_optionals(s): """ Each substring of s that is surrounded in square brackets is treated as optional and is removed with probability 0.5. For example the string "A [aa] B [bb]" could become any of "A aa B bb" "A B bb" "A aa B " "A B " with probability 1/4. """ pat = re.compile(r'\[([^\[]*)\]') while True: match = re.search(pat, s) if not match: break i0 = match.start() i1 = match.end() if random.random() > 0.5: s = s[:i0] + match.groups()[0] + s[i1:] else: s = s[:i0] + s[i1:] return s def main(args): with open(args.metadata_file, 'r') as f: metadata = json.load(f) dataset = metadata['dataset'] if dataset != 'CLEVR-v1.0': raise ValueError('Unrecognized dataset "%s"' % dataset) functions_by_name = {} for f in metadata['functions']: functions_by_name[f['name']] = f metadata['_functions_by_name'] = functions_by_name # Load templates from disk # Key is (filename, file_idx) num_loaded_templates = 0 templates = {} for fn in os.listdir(args.template_dir): if not fn.endswith('.json'): continue with open(os.path.join(args.template_dir, fn), 'r') as f: base = os.path.splitext(fn)[0] for i, template in enumerate(json.load(f)): num_loaded_templates += 1 key = (fn, i) templates[key] = template print('Read %d templates from disk' % num_loaded_templates) def reset_counts(): # Maps a template (filename, index) to the number of questions we have # so far using that template template_counts = {} # Maps a template (filename, index) to a dict mapping the answer to the # number of questions so far of that template type with that answer template_answer_counts = {} node_type_to_dtype = {n['name']: n['output'] for n in metadata['functions']} for key, template in templates.items(): template_counts[key[:2]] = 0 final_node_type = template['nodes'][-1]['type'] final_dtype = node_type_to_dtype[final_node_type] answers = metadata['types'][final_dtype] if final_dtype == 'Bool': answers = [True, False] if final_dtype == 'Integer': if metadata['dataset'] == 'CLEVR-v1.0': answers = list(range(0, 11)) template_answer_counts[key[:2]] = {} for a in answers: template_answer_counts[key[:2]][a] = 0 return template_counts, template_answer_counts template_counts, template_answer_counts = reset_counts() # Read file containing input scenes all_scenes = [] with open(args.input_scene_file, 'r') as f: scene_data = json.load(f) all_scenes = scene_data['scenes'] scene_info = scene_data['info'] begin = args.scene_start_idx if args.num_scenes > 0: end = args.scene_start_idx + args.num_scenes all_scenes = all_scenes[begin:end] else: all_scenes = all_scenes[begin:] # Read synonyms file with open(args.synonyms_json, 'r') as f: synonyms = json.load(f) questions = [] scene_count = 0 for i, scene in enumerate(all_scenes): scene_fn = scene['image_filename'] scene_struct = scene print('starting image %s (%d / %d)' % (scene_fn, i + 1, len(all_scenes))) if scene_count % args.reset_counts_every == 0: print('resetting counts') template_counts, template_answer_counts = reset_counts() scene_count += 1 # Order templates by the number of questions we have so far for those # templates. This is a simple heuristic to give a flat distribution over # templates. templates_items = list(templates.items()) templates_items = sorted(templates_items, key=lambda x: template_counts[x[0][:2]]) num_instantiated = 0 for (fn, idx), template in templates_items: if args.verbose: print('trying template ', fn, idx) if args.time_dfs and args.verbose: tic = time.time() ts, qs, ans = instantiate_templates_dfs( scene_struct, template, metadata, template_answer_counts[(fn, idx)], synonyms, max_instances=args.instances_per_template, verbose=False) if args.time_dfs and args.verbose: toc = time.time() print('that took ', toc - tic) image_index = int(os.path.splitext(scene_fn)[0].split('_')[-1]) for t, q, a in zip(ts, qs, ans): questions.append({ 'split': scene_info['split'], 'image_filename': scene_fn, 'image_index': image_index, 'image': os.path.splitext(scene_fn)[0], 'question': t, 'program': q, 'answer': a, 'template_filename': fn, 'question_family_index': idx, 'question_index': len(questions), }) if len(ts) > 0: if args.verbose: print('got one!') num_instantiated += 1 template_counts[(fn, idx)] += 1 elif args.verbose: print('did not get any =(') if num_instantiated >= args.templates_per_image: break # Change "side_inputs" to "value_inputs" in all functions of all functional # programs. My original name for these was "side_inputs" but I decided to # change the name to "value_inputs" for the public CLEVR release. I should # probably go through all question generation code and templates and rename, # but that could be tricky and take a while, so instead I'll just do it here. # To further complicate things, originally functions without value inputs did # not have a "side_inputs" field at all, and I'm pretty sure this fact is used # in some of the code above; however in the public CLEVR release all functions # have a "value_inputs" field, and it's an empty list for functions that take # no value inputs. Again this should probably be refactored, but the quick and # dirty solution is to keep the code above as-is, but here make "value_inputs" # an empty list for those functions that do not have "side_inputs". Gross. for q in questions: for f in q['program']: if 'side_inputs' in f: f['value_inputs'] = f['side_inputs'] del f['side_inputs'] else: f['value_inputs'] = [] with open(args.output_questions_file, 'w') as f: print('Writing output to %s' % args.output_questions_file) json.dump({ 'info': scene_info, 'questions': questions, }, f) if __name__ == '__main__': args = parser.parse_args() if args.profile: import cProfile cProfile.run('main(args)') else: main(args)
clevr-dataset-gen-main
question_generation/generate_questions.py
# Copyright (c) Facebook, Inc. and its affiliates. import setuptools with open("README.md", "r") as fh: long_description = fh.read() setuptools.setup( name="c3dm", # Replace with your own username version="1.0.0", author="Facebook AI Research", author_email="romansh@fb.com", description="""Code for the paper: Canonical 3D Deformer Maps: \ Unifying parametric and non-parametric methods for \ dense weakly-supervised category reconstruction\ """, long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/facebookresearch/c3dm", packages=setuptools.find_packages(), classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", "Environment :: GPU :: NVIDIA CUDA :: 10.1", "Intended Audience :: Science/Research", "Topic :: Multimedia :: Graphics :: 3D Modeling", ], python_requires='>=3.6', install_requires=[ "torch==1.5.1", "pytorch3d", "pyyaml>=5.3.1", "numpy>=1.17", "pillow>=1.7.2", "trimesh>=3.7.3", "matplotlib", "visdom>=0.1.8.9", "plotly>=4.8.1", ], )
c3dm-main
setup.py
# Copyright (c) Facebook, Inc. and its affiliates. import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import os import torch from torch import nn as nn import torch.nn.functional as Fu import numpy as np from tools.utils import NumpySeedFix, auto_init_args from tools.vis_utils import get_visdom_connection, \ denorm_image_trivial, \ show_projections, \ visdom_plot_pointclouds from tools.functions import masked_kp_mean, avg_l2_dist, \ safe_sqrt, \ argmin_translation, argmin_scale, \ avg_l2_huber, \ find_camera_T from tools.so3 import so3_exponential_map, rand_rot from dataset.dataset_configs import STICKS from PIL import Image class C3DPO(torch.nn.Module): def __init__( self, n_keypoints = 17, shape_basis_size = 10, mult_shape_by_class_mask = False, squared_reprojection_loss = False, n_fully_connected = 1024, n_layers = 6, keypoint_rescale = float(1), keypoint_norm_type = 'to_mean', projection_type = 'orthographic', z_augment = True, z_augment_rot_angle = float(np.pi), z_equivariance = False, z_equivariance_rot_angle = float(np.pi)/4, # < 0 means same as z_augment_rot_angle compose_z_equivariant_rot = True, # TODO: remove this soon! camera_translation = False, camera_xy_translation = True, argmin_translation = False, argmin_translation_test = False, argmin_translation_min_depth = 3., argmin_to_augmented = False, camera_scale = False, argmin_scale = False, argmin_scale_test = False, loss_normalization = 'kp_total_count', independent_phi_for_aug = False, shape_pred_wd = 1., connectivity_setup = 'NONE', custom_param_groups = False, use_huber = False, huber_scaling = 0.1, alpha_bias = True, canonicalization = { 'use': False, 'n_layers': 6, 'n_rand_samples': 4, 'rot_angle': float(np.pi), 'n_fully_connected': 1024, }, linear_instead_of_conv = False, perspective_depth_threshold = 0.1, depth_offset = 0., replace_keypoints_with_input = False, root_joint = 0, loss_weights = { 'l_reprojection': 1., 'l_canonicalization': 1. }, log_vars = [ \ 'objective', 'dist_reprojection', 'l_reprojection', 'l_canonicalization' ], **kwargs ): super(C3DPO, self).__init__() # autoassign constructor params to self auto_init_args(self) # factorization net self.phi = nn.Sequential( \ *make_trunk( dim_in=self.n_keypoints * 3 , # 2 dim loc, 1 dim visibility n_fully_connected=self.n_fully_connected, n_layers=self.n_layers ) ) if linear_instead_of_conv: layer_init_fn = linear_layer else: layer_init_fn = conv1x1 # shape coefficient predictor self.alpha_layer = layer_init_fn( self.n_fully_connected, self.shape_basis_size, init='normal0.01', cnv_args = {'bias': self.alpha_bias, 'kernel_size': 1 } ) # 3D shape predictor self.shape_layer = layer_init_fn( self.shape_basis_size, 3*n_keypoints, init='normal0.01' ) # rotation predictor (predicts log-rotation) self.rot_layer = layer_init_fn(self.n_fully_connected,3,init='normal0.01') if self.camera_translation: # camera translation self.translation_layer = layer_init_fn(self.n_fully_connected,3,init='normal0.01') if self.camera_scale: # camera scale (non-negative predictions) self.scale_layer = nn.Sequential( \ layer_init_fn(self.n_fully_connected,1,init='normal0.01'), nn.Softplus() ) if self.canonicalization['use']: # canonicalization net: self.psi = nn.Sequential( \ *make_trunk( dim_in=self.n_keypoints*3 , n_fully_connected=self.canonicalization['n_fully_connected'], n_layers=self.canonicalization['n_layers'] ) ) self.alpha_layer_psi = conv1x1( \ self.n_fully_connected, self.shape_basis_size, init='normal0.01') # def _get_param_groups(self,lr,wd=0.): # # make sure to set correct weight decay for the shape predictor # shape_param_names = [ 'shape_pred_layer.weight', \ # 'shape_pred_layer.bias' ] # prm_shape = [] # prm_remain = [] # for name,prm in self.named_parameters(): # if not prm.requires_grad: continue # if name in shape_param_names: # prm_list = prm_shape # else: # prm_list = prm_remain # prm_list.append(prm) # p_groups = [ { 'params':prm_remain,'lr':float(lr), \ # 'weight_decay': wd }, # { 'params':prm_shape, 'lr':float(lr), \ # 'weight_decay': float(wd*self.shape_pred_wd) } ] # return p_groups def _get_param_groups(self,lr,wd=0.): assert False # make sure to set correct weight decay for the shape predictor shape_param_names = [ 'shape_pred_layer.weight', \ 'shape_pred_layer.bias' ] prm_shape = [] prm_remain = [] for name,prm in self.named_parameters(): if not prm.requires_grad: continue if name in shape_param_names: prm_list = prm_shape else: prm_list = prm_remain prm_list.append(prm) p_groups = [ { 'params':prm_remain,'lr':float(lr), \ 'weight_decay': wd }, { 'params':prm_shape, 'lr':float(lr), \ 'weight_decay': float(wd*self.shape_pred_wd) } ] return p_groups def forward( self, kp_loc=None, kp_vis=None, \ class_mask=None, K=None, dense_basis=None, \ phi_out = None, dense_basis_mask=None, shape_coeff_in = None, **kwargs ): # dictionary with outputs of the fw pass preds = {} # input sizes ... ba,kp_dim,n_kp = kp_loc.shape dtype = kp_loc.type() assert kp_dim==2, 'bad input keypoint dim' assert n_kp==self.n_keypoints, 'bad # of keypoints!' if self.projection_type=='perspective': kp_loc_cal = self.calibrate_keypoints(kp_loc, K) else: kp_loc_cal = kp_loc # save for later visualisations ... kp_loc_norm, kp_mean, kp_scale = \ self.normalize_keypoints( \ kp_loc_cal, kp_vis, rescale=self.keypoint_rescale ) preds['kp_loc_norm'] = kp_loc_norm preds['kp_mean'], preds['kp_scale'] = kp_mean, kp_scale # run the shape predictor if phi_out is not None: # bypass the predictor and use input preds['phi'] = phi_out else: preds['phi'] = self.run_phi(kp_loc_norm, kp_vis, \ class_mask=class_mask, \ shape_coeff_in=shape_coeff_in) if self.canonicalization['use']: preds['l_canonicalization' ], preds['psi'] = \ self.canonicalization_loss( preds['phi'], \ class_mask=class_mask ) # 3D->2D project shape to camera kp_reprojected, depth = self.camera_projection( \ preds['phi']['shape_camera_coord']) preds['kp_reprojected'] = kp_reprojected if dense_basis is not None: preds['phi_dense'] = self.run_phi_dense(dense_basis, preds['phi']) kp_reprojected_dense, depth_dense = self.camera_projection( \ preds['phi_dense']['shape_camera_coord_dense']) preds['kp_reprojected_dense'] = kp_reprojected_dense preds['depth_dense'] = depth_dense # compute the repro loss for backpropagation if self.loss_normalization=='kp_count_per_image': preds['l_reprojection'] = avg_l2_dist( \ kp_reprojected, kp_loc_norm, mask=kp_vis, squared=self.squared_reprojection_loss ) # print(float(preds['l_reprojection'])) elif self.loss_normalization=='kp_total_count': kp_reprojected_flatten = \ kp_reprojected.permute(1,2,0).contiguous().view(1,2,self.n_keypoints*ba) kp_loc_norm_flatten = \ kp_loc_norm.permute(1,2,0).contiguous().view(1,2,self.n_keypoints*ba) kp_vis_flatten = \ kp_vis.permute(1,0).contiguous().view(1,self.n_keypoints*ba) if self.use_huber: preds['l_reprojection'] = avg_l2_huber( \ kp_reprojected_flatten, kp_loc_norm_flatten, mask=kp_vis_flatten, scaling=self.huber_scaling ) else: assert False preds['l_reprojection'] = avg_l2_dist( \ kp_reprojected_flatten, kp_loc_norm_flatten, mask=kp_vis_flatten, squared=self.squared_reprojection_loss ) else: raise ValueError('undefined loss normalization %s' % self.loss_normalization) if self.squared_reprojection_loss: assert False # compute the average reprojection distance # = easier to interpret than the squared repro loss preds['dist_reprojection'] = avg_l2_dist( \ kp_reprojected, kp_loc_norm, mask=kp_vis, squared=False ) # unnormalize the shape projections kp_reprojected_image = \ self.unnormalize_keypoints(kp_reprojected, kp_mean, \ rescale=self.keypoint_rescale, kp_scale=kp_scale) if dense_basis is not None: kp_reprojected_image_dense = \ self.unnormalize_keypoints( \ preds['kp_reprojected_dense'], kp_mean, \ rescale=self.keypoint_rescale, kp_scale=kp_scale) preds['kp_reprojected_image_dense'] = kp_reprojected_image_dense # projections in the image coordinate frame if self.replace_keypoints_with_input and not self.training: # use the input points kp_reprojected_image = (1-kp_vis[:,None,:]) * kp_reprojected_image + \ kp_vis[:,None,:] * kp_loc_cal preds['kp_reprojected_image'] = kp_reprojected_image # projected 3D shape in the image space # = unprojection of kp_reprojected_image shape_image_coord, depth_image_coord = \ self.camera_unprojection( \ kp_reprojected_image, depth, \ rescale=self.keypoint_rescale, \ kp_scale=kp_scale ) if dense_basis is not None: shape_image_coord_dense, depth_image_coord_dense = \ self.camera_unprojection( \ kp_reprojected_image_dense, depth_dense, \ rescale=self.keypoint_rescale, \ kp_scale=kp_scale ) if self.projection_type=='perspective': preds['kp_reprojected_image_cal'] = kp_reprojected_image preds['shape_image_coord_cal'] = shape_image_coord preds['shape_image_coord'] = \ self.uncalibrate_keypoints(shape_image_coord, K) preds['kp_reprojected_image'], _ = \ self.camera_projection(preds['shape_image_coord']) if dense_basis is not None: preds['shape_image_coord_cal_dense'] = shape_image_coord_dense preds['shape_image_coord_dense'] = \ self.uncalibrate_keypoints(shape_image_coord_dense, K) preds['kp_reprojected_image_dense'], _ = \ self.camera_projection(preds['shape_image_coord_dense']) # if True: # preds['shape_image_coord_dense'].register_hook(\ # lambda grad: print(grad.abs().view(-1).topk(10)[0][-1])) # preds['kp_reprojected_image_dense'].register_hook(\ # lambda grad: print(grad.abs().view(-1).topk(10)[0][-1])) preds['depth_image_coord_dense'] = depth_image_coord_dense elif self.projection_type=='orthographic': preds['shape_image_coord'] = shape_image_coord preds['depth_image_coord'] = depth_image_coord if dense_basis is not None: preds['shape_image_coord_dense'] = shape_image_coord_dense preds['depth_image_coord_dense'] = depth_image_coord_dense else: raise ValueError() # get the final loss preds['objective'] = self.get_objective(preds) assert np.isfinite(preds['objective'].sum().data.cpu().numpy()), "nans!" return preds def camera_projection(self, shape): out = {} depth = shape[:,2:3] if self.projection_type=='perspective': if self.perspective_depth_threshold > 0: depth = torch.clamp(depth, self.perspective_depth_threshold) projections = shape[:,0:2] / depth elif self.projection_type=='orthographic': projections = shape[:,0:2] else: raise ValueError('no such projection type %s' % \ self.projection_type ) return projections, depth def camera_unprojection(self,kp_loc,depth,kp_scale=None,rescale=float(1)): corr_scale = 1./rescale if kp_scale is None else kp_scale / rescale if kp_scale is not None: depth = depth * corr_scale[:,None,None] else: depth = depth * corr_scale if self.projection_type=='perspective': shape = torch.cat((kp_loc * depth, depth), dim=1) elif self.projection_type=='orthographic': shape = torch.cat((kp_loc, depth), dim=1) else: raise ValueError('no such projection type %s' % self.projection_type) return shape, depth def calibrate_keypoints(self, kp_loc, K): # undo the projection matrix assert K is not None orig_shape = kp_loc.shape kp_loc = kp_loc.view(orig_shape[0],2,-1) - K[:,0:2,2:3] focal = torch.stack((K[:,0,0], K[:,1,1]), dim=1) kp_loc = kp_loc / focal[:,:,None] kp_loc = kp_loc.view(orig_shape) return kp_loc def uncalibrate_keypoints(self, kp_loc, K): assert K is not None ba = kp_loc.shape[0] kp_loc = torch.bmm(K, kp_loc.view(ba,3,-1) ).view(kp_loc.shape) return kp_loc def normalize_keypoints( self, kp_loc, kp_vis, rescale=1., kp_mean=None ): if self.keypoint_norm_type=='to_root': if kp_mean is None: # center around the root joint kp_mean = kp_loc[:,:,self.root_joint] kp_loc_norm = kp_loc - kp_mean[:,:,None] kp_scale = None elif self.keypoint_norm_type=='to_mean': if kp_mean is None: # calc the mean of visible points kp_mean = masked_kp_mean( kp_loc, kp_vis ) # remove the mean from the keypoint locations kp_loc_norm = kp_loc - kp_mean[:,:,None] kp_scale = None else: raise BaseException( 'no such kp norm %s' % \ self.keypoint_norm_type ) # rescale kp_loc_norm = kp_loc_norm * rescale return kp_loc_norm, kp_mean, kp_scale def unnormalize_keypoints( self, kp_loc_norm, kp_mean, rescale=1., kp_scale=None, K=None ): kp_loc = kp_loc_norm * (1. / rescale) if kp_scale is not None: kp_loc = kp_loc * kp_scale[:,None,None] kp_loc = (kp_loc.view(kp_loc.shape[0],2,-1) + kp_mean[:, :, None]).view(kp_loc.shape) return kp_loc def run_phi( self, kp_loc, kp_vis, class_mask=None, shape_coeff_in=None, ): preds = {} # batch size ba = kp_loc.shape[0] dtype = kp_loc.type() eps = 1e-4 kp_loc_orig = kp_loc.clone() if self.z_augment and self.training: R_rand = rand_rot( ba, dtype=dtype, max_rot_angle=float(self.z_augment_rot_angle), axes=(0,0,1) ) kp_loc_in = torch.bmm(R_rand[:,0:2,0:2],kp_loc) else: R_rand = torch.eye(3).type(dtype)[None].repeat( (ba,1,1) ) kp_loc_in = kp_loc_orig if self.z_equivariance and self.training: if self.z_equivariance_rot_angle < 0.: zeq_angle = self.z_augment_rot_angle else: zeq_angle = self.z_equivariance_rot_angle # random xy rot R_rand_eq = rand_rot( ba, dtype=dtype, max_rot_angle=float(zeq_angle), axes=(0,0,1) ) kp_loc_in = torch.cat( \ ( kp_loc_in, \ torch.bmm(R_rand_eq[:,0:2,0:2], kp_loc_in if self.compose_z_equivariant_rot else kp_loc_orig) \ ), dim=0 ) kp_vis_in = kp_vis.repeat( (2,1) ) else: kp_vis_in = kp_vis # mask kp_loc by kp_visibility kp_loc_masked = kp_loc_in * kp_vis_in[:,None,:] # vectorize kp_loc_flatten = kp_loc_masked.view(-1, 2*self.n_keypoints) # concatenate visibilities and kp locations l1_input = torch.cat( (kp_loc_flatten,kp_vis_in) , dim=1 ) # pass to network if self.independent_phi_for_aug and l1_input.shape[0]==2*ba: feats = torch.cat([ self.phi(l1_[:,:,None,None]) for \ l1_ in l1_input.split(ba, dim=0) ], dim=0) else: feats = self.phi( l1_input[:,:,None,None] ) # here the network runs once on concatenated input ... maybe split it? # coefficients into the linear basis shape_coeff = self.alpha_layer(feats)[:,:,0,0] if self.z_equivariance and self.training: # use the shape coeff from the second set of preds shape_coeff = shape_coeff[ba:] # take the feats from the first set feats = feats[:ba] if shape_coeff_in is not None: preds['shape_coeff_orig'] = shape_coeff shape_coeff = shape_coeff_in # shape prediction is just a linear layer implemented as a conv shape_canonical = self.shape_layer( \ shape_coeff[:,:,None,None])[:,:,0,0] shape_canonical = shape_canonical.view(ba,3,self.n_keypoints) if self.keypoint_norm_type=='to_root': # make sure we fix the root at 0 root_j = shape_canonical[:,:,self.root_joint] shape_canonical = shape_canonical - root_j[:,:,None] # predict camera params # ... log rotation (exponential representation) R_log = self.rot_layer(feats)[:,:,0,0] # convert from the 3D to 3x3 rot matrix R = so3_exponential_map(R_log) # T vector of the camera if self.camera_translation: T = self.translation_layer(feats)[:,:,0,0] if self.camera_xy_translation: # kill the last z-dim T = T * torch.tensor([1.,1.,0.]).type(dtype)[None,:] else: T = R_log.new_zeros(ba, 3) # offset the translation vector of the camera if self.depth_offset > 0.: T[:,2] = T[:,2] + self.depth_offset # scale of the camera if self.camera_scale: scale = self.scale_layer(feats)[:,0,0,0] else: scale = R_log.new_ones(ba) # rotated+scaled shape into the camera ( Y = sRX + T ) shape_camera_coord = self.apply_similarity_t(shape_canonical,R,T,scale) # undo equivariant transformation if (self.z_equivariance or self.z_augment) and self.training: R_rand_inv = R_rand.transpose(2,1) R = torch.bmm(R_rand_inv,R) T = torch.bmm(R_rand_inv,T[:,:,None])[:,:,0] shape_camera_coord = torch.bmm(R_rand_inv,shape_camera_coord) # estimate translation if self.argmin_translation or \ (self.argmin_translation_test and not self.training) : if self.projection_type=='orthographic': projection, _ = self.camera_projection(shape_camera_coord) if self.argmin_to_augmented: assert False T_amin = argmin_translation( projection, kp_loc_in[:ba], v=kp_vis ) else: T_amin = argmin_translation( projection, kp_loc_orig, v=kp_vis ) T_amin = Fu.pad(T_amin,(0,1),'constant',float(0)) shape_camera_coord = shape_camera_coord + T_amin[:,:,None] T = T + T_amin elif self.projection_type=='perspective': K_ = torch.eye(3).type_as(kp_loc)[None].repeat(ba,1,1) T = find_camera_T(\ K_, shape_camera_coord, kp_loc_orig, v=kp_vis) if self.argmin_translation_min_depth > 0.: T = torch.cat( \ ( T[:,0:2], \ torch.clamp(T[:,2:3], self.argmin_translation_min_depth)), dim = 1 ) shape_camera_coord = shape_camera_coord + T[:,:,None] else: raise ValueError(self.projection_type) # estimate scale if self.argmin_scale or \ (self.argmin_scale_test and not self.training) : assert self.projection_type=='orthographic' # assert False projection, _ = self.camera_projection(shape_camera_coord) scale_correct = argmin_scale(projection, kp_loc_orig, v=kp_vis) scale = scale_correct * scale shape_camera_coord = scale_correct[:,None,None] * shape_camera_coord T = scale_correct[:,None] * T if class_mask is not None and self.mult_shape_by_class_mask: shape_camera_coord = shape_camera_coord * class_mask[:,None,:] shape_canonical = shape_canonical * class_mask[:,None,:] preds['R_log'] = R_log preds['R'] = R preds['scale'] = scale preds['T'] = T preds['shape_camera_coord'] = shape_camera_coord preds['shape_coeff'] = shape_coeff preds['shape_canonical'] = shape_canonical return preds def run_phi_dense(self, dense_basis, phi_out): R, T, scale, shape_coeff = [phi_out[k] for k in ['R', 'T', 'scale', 'shape_coeff']] preds = {} ba, dim, he, wi = dense_basis.shape shape_basis_size = dim // 3 dense_basis_ = dense_basis.view(ba, shape_basis_size, 3*he*wi) shape_coeff_1 = Fu.pad(shape_coeff, (1,0), value=1.) # mean shape goes first if False: dense_basis_decomp = dense_basis_.permute(0, 2, 1).contiguous() dense_basis_decomp = dense_basis_decomp.view(ba, 3, -1) # only rotate the basis dense_basis_decomp_t = \ self.apply_similarity_t(dense_basis_decomp,R,T*0.,scale*0.+1.) dense_basis_decomp_t = \ dense_basis_decomp_t.view(ba,3,he,wi, shape_basis_size) dense_basis_decomp_rot = dense_basis_decomp_t.permute(0,4,1,2,3) preds['dense_basis_rot'] = dense_basis_decomp_rot shape_canonical_dense = torch.bmm(shape_coeff_1[:,None,:], dense_basis_).view(ba, 3, -1) shape_camera_coord_dense = self.apply_similarity_t(shape_canonical_dense,R,T,scale) preds['shape_canonical_dense'] = shape_canonical_dense.view(ba, 3, he, wi) preds['shape_camera_coord_dense'] = shape_camera_coord_dense.view(ba, 3, he, wi) return preds def apply_similarity_t( self, S, R, T, s ): return torch.bmm( R, s[:,None,None] * S ) + T[:,:,None] def canonicalization_loss( self, phi_out, class_mask=None ): shape_canonical = phi_out['shape_canonical'] dtype = shape_canonical.type() ba = shape_canonical.shape[0] n_sample = self.canonicalization['n_rand_samples'] # rotate the canonical point cloud # generate random rotation around all axes R_rand = rand_rot( ba * n_sample, dtype=dtype, max_rot_angle=self.canonicalization['rot_angle'], axes=(1,1,1) ) unrotated = shape_canonical.repeat(n_sample, 1, 1) rotated = torch.bmm( R_rand, unrotated ) psi_out = self.run_psi( rotated ) # psi3( Rrand X ) a , b = psi_out['shape_canonical'] , unrotated if self.use_huber: l_canonicalization = avg_l2_huber(a, b, \ scaling=self.huber_scaling, mask=class_mask.repeat(n_sample,1) if class_mask is not None else None) else: l_canonicalization = avg_l2_dist(a, b, \ squared=self.squared_reprojection_loss, mask=class_mask.repeat(n_sample,1) if class_mask is not None else None) # reshape the outputs in the output list psi_out = { k : v.view( \ self.canonicalization['n_rand_samples'] , \ ba, *v.shape[1:] ) for k,v in psi_out.items() } return l_canonicalization, psi_out def run_psi( self, shape_canonical ): preds = {} # batch size ba = shape_canonical.shape[0] assert shape_canonical.shape[1]==3, '3d inputs only please' # reshape and pass to the network ... l1_input = shape_canonical.view(ba,3*self.n_keypoints) # pass to network feats = self.psi( l1_input[:,:,None,None] ) # coefficients into the linear basis shape_coeff = self.alpha_layer_psi(feats)[:,:,0,0] preds['shape_coeff'] = shape_coeff # use the shape_pred_layer from 2d predictor shape_pred = self.shape_layer( \ shape_coeff[:,:,None,None])[:,:,0,0] shape_pred = shape_pred.view(ba,3,self.n_keypoints) preds['shape_canonical'] = shape_pred return preds def get_objective(self,preds): losses_weighted = [ preds[k] * float(w) for k,w in \ self.loss_weights.items() \ if k in preds ] if not hasattr(self,'_loss_weights_printed') or \ not self._loss_weights_printed: print('-------\nloss_weights:') for k,w in self.loss_weights.items(): print('%20s: %1.2e' % (k,w) ) print('-------') self._loss_weights_printed = True loss = torch.stack(losses_weighted).sum() return loss def get_alpha_mean_complement(self): delta = self.shape_layer.weight.view(3, -1, self.shape_basis_size) alpha_bias = self.alpha_layer.bias.data mu_add = (delta * alpha_bias[None,None,:]).sum(2) return mu_add def reparametrize_mean_shape(self): if self.alpha_layer.bias is None: print('no alpha bias => skipping reparametrization') return else: print('reparametrizing nrsfm model mean') mu = self.shape_layer.bias.data.view(3, self.n_keypoints) mu_add = self.get_alpha_mean_complement() mu_new = mu + mu_add self.shape_layer.bias.data = mu_new.view(-1) self.alpha_layer.bias.data.fill_(0.) self.reparametrized = True def get_mean_shape(self): mu = self.shape_layer.bias.data.view(3, self.n_keypoints) mu_orig = mu.clone() if self.alpha_layer.bias is not None: mu_add = self.get_alpha_mean_complement() mu = mu + mu_add if hasattr(self, 'reparametrized') and self.reparametrized: assert (mu - mu_orig).abs().max() <= 1e-6 return mu def visualize( self, visdom_env, trainmode, \ preds, stats, clear_env=False ): viz = get_visdom_connection(server=stats.visdom_server,\ port=stats.visdom_port ) if not viz.check_connection(): print("no visdom server! -> skipping batch vis") return; if clear_env: # clear visualisations print(" ... clearing visdom environment") viz.close(env=visdom_env,win=None) print('vis into env:\n %s' % visdom_env) it = stats.it[trainmode] epoch = stats.epoch idx_image = 0 title="e%d_it%d_im%d"%(stats.epoch,stats.it[trainmode],idx_image) # get the connectivity pattern sticks = STICKS[self.connectivity_setup] if \ self.connectivity_setup in STICKS else None var_kp = { 'orthographic': 'kp_reprojected_image', 'perspective': 'kp_reprojected_image_uncal'}[self.projection_type] # show reprojections p = np.stack( \ [ preds[k][idx_image].detach().cpu().numpy() \ for k in (var_kp, 'kp_loc') ] ) v = preds['kp_vis'][idx_image].detach().cpu().numpy() show_projections( viz, visdom_env, p, v=v, title=title, cmap__='gist_ncar', markersize=50, sticks=sticks, stickwidth=1, plot_point_order=True, image_path=preds['image_path'][idx_image], win='projections' ) # show 3d reconstruction if True: var3d = { 'orthographic': 'shape_image_coord', 'perspective': 'shape_image_coord_cal'}[self.projection_type] pcl = {'pred': preds[var3d][idx_image].detach().cpu().numpy().copy()} if 'kp_loc_3d' in preds: pcl['gt'] = preds['kp_loc_3d'][idx_image].detach().cpu().numpy().copy() if self.projection_type=='perspective': # for perspective projections, we dont know the scale # so we estimate it here ... scale = argmin_scale( torch.from_numpy(pcl['pred'][None]), torch.from_numpy(pcl['gt'][None]) ) pcl['pred'] = pcl['pred'] * float(scale) elif self.projection_type=='orthographic': pcl['pred'] = pcl['pred'] - pcl['pred'].mean(1) visdom_plot_pointclouds(viz, pcl, visdom_env, title, \ plot_legend=False, markersize=20, \ sticks=sticks, win='3d' ) #TODO: Make these layers nicer + move somewhere else ... def make_trunk( n_fully_connected=None, dim_in=None, n_layers=None, use_bn=True, l2_norm=False, ): layer1 = ConvBNLayer( dim_in, n_fully_connected, use_bn=use_bn, l2_norm=l2_norm ) layers = [layer1] for l in range(n_layers): layers.append( ResLayer(n_fully_connected, int(n_fully_connected/4), use_bn=use_bn, l2_norm=l2_norm) ) # print('made a trunk net:') # print(layers) return layers def conv1x1(in_planes, out_planes, init='no', cnv_args={'bias':True,'kernel_size':1},std=0.01): """1x1 convolution""" cnv = nn.Conv2d(in_planes, out_planes, **cnv_args) # init weights ... if init=='no': pass elif init=='normal0.01': # print("warning: N(0.0.01) conv weight init (different from previous exps)") # print('init std = %1.2e' % std) cnv.weight.data.normal_(0.,std) if cnv.bias is not None: cnv.bias.data.fill_(0.) else: assert False return cnv class ConvBNLayer(nn.Module): def __init__(self, inplanes, planes, use_bn=True, stride=1, l2_norm=False): super(ConvBNLayer, self).__init__() # do a reasonable init cnv_args = {'kernel_size':1, 'stride':stride, 'bias':True} self.conv1 = conv1x1(inplanes, planes, init='normal0.01', cnv_args=cnv_args) self.use_bn = use_bn self.l2_norm = l2_norm if use_bn: self.bn1 = nn.BatchNorm2d(planes) self.relu = nn.ReLU(inplace=True) self.stride = stride def forward(self, x): out = self.conv1(x) if self.l2_norm: out = Fu.normalize(out, dim=1) if self.use_bn: out = self.bn1(out) out = self.relu(out) return out class ResLayer(nn.Module): def __init__(self, inplanes, planes, expansion=4, use_bn=True, l2_norm=False): super(ResLayer, self).__init__() self.expansion=expansion self.conv1 = conv1x1(inplanes, planes,init='normal0.01') if use_bn: self.bn1 = nn.BatchNorm2d(planes) self.conv2 = conv1x1(planes, planes, init='normal0.01' ) if use_bn: self.bn2 = nn.BatchNorm2d(planes) self.conv3 = conv1x1(planes, planes * self.expansion, init='normal0.01') if use_bn: self.bn3 = nn.BatchNorm2d(planes * self.expansion) self.relu = nn.ReLU(inplace=True) self.skip = inplanes==(planes*self.expansion) self.use_bn = use_bn self.l2_norm = l2_norm # print( "reslayer skip = %d" % self.skip ) def forward(self, x): residual = x out = self.conv1(x) if self.l2_norm: out = Fu.normalize(out, dim=1) if self.use_bn: out = self.bn1(out) out = self.relu(out) out = self.conv2(out) if self.l2_norm: out = Fu.normalize(out, dim=1) if self.use_bn: out = self.bn2(out) out = self.relu(out) out = self.conv3(out) if self.l2_norm: out = Fu.normalize(out, dim=1) if self.use_bn: out = self.bn3(out) if self.skip: out += residual out = self.relu(out) return out
c3dm-main
c3dm/c3dpo.py
# Copyright (c) Facebook, Inc. and its affiliates. import argparse import inspect import copy import os import yaml import ast import numpy as np from tools.attr_dict import nested_attr_dict from tools.utils import auto_init_args def convert_to_stringval(cfg_,squeeze=None,stringify_vals=False): out = {} convert_to_stringval_rec( [('ROOT',cfg_)], out, squeeze=squeeze,stringify_vals=stringify_vals) return out def convert_to_stringval_rec( flds, output, squeeze=None, stringify_vals=False): for k,v in flds[-1][1].items(): if isinstance(v,dict): flds_cp = copy.deepcopy(flds) flds_cp.append( (k,v) ) convert_to_stringval_rec( flds_cp, output, squeeze=squeeze, stringify_vals=stringify_vals) else: valname = [] ; valname_full = [] for f in flds[1:]: valname_full.append(squeeze_string(f[0],squeeze)) valname_full.append(squeeze_string(k,squeeze)) valname_full = ".".join(valname_full) if stringify_vals: output[valname_full] = str(v) else: output[valname_full] = v def squeeze_key_string(f,squeeze_inter,squeeze_tail): keys = f.split('.') tail = keys[-1] inter = keys[0:-1] nkeys = len(keys) if nkeys > 1: take_from_each = int(np.floor(float(squeeze_inter-nkeys)/float(nkeys-1))) take_from_each = max(take_from_each,1) for keyi in range(nkeys-1): s = inter[keyi] s = s[0:min(take_from_each,len(s))] inter[keyi] = s tail = squeeze_string(tail,squeeze_tail) inter.append(tail) out = ".".join( inter ) return out def squeeze_string(f,squeeze): if squeeze is None or squeeze > len(f): return f; idx = np.round(np.linspace(0,len(f)-1,squeeze)) idx = idx.astype(int).tolist() f_short = [ f[i] for i in idx ] f_short = str("").join(f_short) return f_short def get_default_args(C): # returns dict of keyword args of a callable C sig = inspect.signature(C) kwargs = {} for pname,defval in dict(sig.parameters).items(): if defval.default==inspect.Parameter.empty: print('skipping %s' % pname) continue else: kwargs[pname] = copy.deepcopy(defval.default) return kwargs def str2bool(v): if v.lower() in ('yes', 'true', 't', 'y', '1'): return True elif v.lower() in ('no', 'false', 'f', 'n', '0'): return False else: raise argparse.ArgumentTypeError('Boolean value expected.') def arg_as_list(s): v = ast.literal_eval(s) if type(v) is not list: raise argparse.ArgumentTypeError("Argument \"%s\" is not a list" % (s)) return v def get_arg_parser(cfg_constructor): dargs = (get_default_args(cfg_constructor) if inspect.isclass(cfg_constructor) else cfg_constructor) dargs_full_name = convert_to_stringval(dargs,stringify_vals=False) parser = argparse.ArgumentParser( description='Auto-initialized argument parser' ) for darg, val in dargs_full_name.items(): tp = type(val) if val is not None else str if tp==bool: parser.add_argument( '--%s' % darg, dest=darg, help=darg, default=val, type=str2bool, ) elif tp == list: parser.add_argument( '--%s' % darg, type=arg_as_list, default=val, help=darg) else: parser.add_argument( '--%s' % darg, dest=darg, help=darg, default=val, type=tp, ) return parser def set_config_from_config(cfg,cfg_set): # cfg_set ... dict with nested options cfg_dot_separated = convert_to_stringval(cfg_set,stringify_vals=False) set_config(cfg,cfg_dot_separated) def set_config_rec(cfg,tgt_key,val,check_only=False): if len(tgt_key) > 1: k = tgt_key.pop(0) if k not in cfg: #raise ValueError('no such config key %s' % k ) cfg[k] = {} set_config_rec(cfg[k],tgt_key,val,check_only=check_only) else: if check_only: assert cfg[tgt_key[0]]==val else: cfg[tgt_key[0]] = val def set_config(cfg,cfg_set): # cfg_set ... dict with .-separated options for cfg_key,cfg_val in cfg_set.items(): # print('setting %s = %s' % (cfg_key,str(cfg_val)) ) cfg_key_split = [ k for k in cfg_key.split('.') if len(k) > 0 ] set_config_rec(cfg,copy.deepcopy(cfg_key_split),cfg_val) set_config_rec(cfg,cfg_key_split,cfg_val,check_only=True) def set_config_from_file(cfg,cfg_filename): # set config from yaml file with open(cfg_filename, 'r') as f: yaml_cfg = yaml.load(f) set_config_from_config(cfg,yaml_cfg) def dump_config(cfg): cfg_filename = os.path.join(cfg.exp_dir,'expconfig.yaml') with open(cfg_filename, 'w') as yaml_file: yaml.dump(cfg, yaml_file, default_flow_style=False)
c3dm-main
c3dm/config.py
# Copyright (c) Facebook, Inc. and its affiliates. import torch from torch import nn from torch.nn import Parameter import torch.nn.functional as Fu import torchvision from torchvision import models from visdom import Visdom import numpy as np from tools.utils import auto_init_args import torchvision import collections class HyperColumNet(nn.Module): def __init__( self, trunk_arch='resnet50', n_upsample=2, hc_layers=[1,2,3,4], hcdim=512, pose_confidence=True, depth_offset=0., smooth=False, encode_input_keypoints = False, kp_encoding_sig=1., dimout=1, dimout_glob = 0, dimout_glob_alpha = 0, n_keypoints=12, architecture='hypercolumns', dilate_start=2, glob_inst_norm=False, final_std=0.01, final_bias=-1., glob_activation=True, pretrained=True ): super().__init__() auto_init_args(self) trunk = getattr(torchvision.models,trunk_arch)(pretrained=pretrained) # nfc = trunk.fc.in_features self.layer0 = torch.nn.Sequential( trunk.conv1, trunk.bn1, trunk.relu, trunk.maxpool ) if self.architecture=='hypercolumns': for l in [1, 2, 3, 4]: lname = 'layer%d'%l setattr(self, lname, getattr(trunk,lname)) for hcl in hc_layers: lname = 'hc_layer%d'%hcl indim = getattr(trunk,'layer%d'%hcl)[-1].conv1.in_channels # if ((self.dimout_glob + self.dimout_glob_alpha) > 0 \ # and hcl==hc_layers[-1]): # if not self.smooth: # glob_layers = [ torch.nn.Conv2d(indim, indim,1,bias=True,padding=0), # torch.nn.ReLU(), # nn.Conv2d(indim, self.dimout_glob+self.dimout_glob_alpha, \ # 1, bias=True, padding=0) ] # if self.glob_activation: # glob_layers.insert(1, \ # torch.nn.InstanceNorm2d(indim) if self.glob_inst_norm \ # else torch.nn.BatchNorm2d(indim)) # else: # glob_layers = [ nn.Conv2d(indim, self.dimout_glob+self.dimout_glob_alpha, \ # 1, bias=True, padding=0) ] # self.final_glob = torch.nn.Sequential(*glob_layers ) if self.encode_input_keypoints: indim += self.n_keypoints if not self.smooth: layer_ = torch.nn.Sequential( \ torch.nn.Conv2d(indim, hcdim, 3, bias=True, padding=1), torch.nn.BatchNorm2d(hcdim), torch.nn.ReLU(), torch.nn.Conv2d(hcdim, hcdim, 3, bias=True, padding=1), ) else: layer_ = torch.nn.Sequential( \ torch.nn.Conv2d(indim, hcdim, 3, bias=True, padding=1), ) setattr(self, lname, layer_) if not self.smooth: up_layers = [ torch.nn.Conv2d(hcdim,hcdim,3,bias=True,padding=1), torch.nn.BatchNorm2d(hcdim), torch.nn.ReLU(), nn.Conv2d(hcdim, dimout, 3, bias=True, padding=1) ] else: up_layers = [ nn.Conv2d(hcdim, dimout, 3, bias=True, padding=1) ] llayer = up_layers[-1] llayer.weight.data = \ llayer.weight.data.normal_(0., self.final_std) if self.final_bias > -1.: llayer.bias.data = \ llayer.bias.data.fill_(self.final_bias) print('hcnet: final bias = %1.2e, final std=%1.2e' % \ (llayer.bias.data.mean(), llayer.weight.data.std()) ) self.final = torch.nn.Sequential(*up_layers) elif self.architecture=='dilated': if self.dimout_glob > 0: raise NotImplementedError('not done yet') # for l in [1, 2, 3, 4]: # lname = 'layer%d'%l # setattr(self, lname, getattr(trunk,lname)) if self.encode_input_keypoints: c1 = self.layer0[0] wsz = list(c1.weight.data.shape) wsz[1] = self.n_keypoints c1_add = c1.weight.data.new_zeros( wsz ).normal_(0.,0.0001) c1.weight.data = torch.cat( (c1.weight.data, c1_add), dim=1 ) c1.in_channels += self.n_keypoints layers = [self.layer0] li = 0 for l in [1,2,3,4]: lname = 'layer%d'%l m = getattr(trunk,lname) if l >= self.dilate_start: for mm in m.modules(): if type(mm) == torch.nn.Conv2d: mm.stride = (1,1) if mm.kernel_size==(3,3): dil = (li+2)**2 mm.dilation = ( dil, dil ) mm.padding = ( dil, dil ) li += 1 layers.append(m) # setattr(self, lname, m) for m in layers[-1][-1].modules(): if hasattr(m, 'out_channels'): lastdim = m.out_channels if True: # deconv for final layer (2x higher resol) layers.append( torch.nn.ConvTranspose2d( \ lastdim, dimout, kernel_size=3, \ stride=2, output_padding=1, padding=1, bias=True) ) else: # classic conv layers.append( torch.nn.Conv2d( \ lastdim, dimout, kernel_size=3, \ stride=1, padding=1, bias=True) ) layers[-1].weight.data = \ layers[-1].weight.data.normal_(0., self.final_std) self.trunk = torch.nn.Sequential(*layers ) self.mean = torch.FloatTensor([0.485, 0.456, 0.406]) self.std = torch.FloatTensor([0.229, 0.224, 0.225]) def get_last_layer_numchannels(self): return getattr(self,'layer4')[-1].conv1.in_channels def norm_image(self, x): mean = self.mean[None,:,None,None].type_as(x) std = self.std[None,:,None,None].type_as(x) return (x - mean) / std def gkernel( self, sz, rel_scale, mu, sig ): g = torch.linspace( 0.5, sz-0.5, sz ).type_as(mu) g = ( (-(g[None,None,:] - mu[:,:,None]*rel_scale)**2) / \ (sig * rel_scale) ).exp() return g def make_kp_encoding(self, kp_loc_vis, im_size, grid_size): rel_scale = [g/i for g,i in zip(grid_size, im_size)] g_x = self.gkernel( grid_size[1], rel_scale[1], kp_loc_vis[:,0,:], self.kp_encoding_sig ) g_y = self.gkernel( grid_size[0], rel_scale[0], kp_loc_vis[:,1,:], self.kp_encoding_sig ) g = g_y[:,:,:,None] * g_x[:,:,None,:] g *= kp_loc_vis[:,2,:,None, None] return g def run_hc(self, images, kp_loc_vis=None, only_glob=False, skip_norm_image=False): if skip_norm_image: x = self.layer0(images) else: x = self.layer0(self.norm_image(images)) x1 = self.layer1(x) x2 = self.layer2(x1) x3 = self.layer3(x2) x4 = self.layer4(x3) x4_avg = x4.mean((2,3), keepdim=True) # TODO: keepdim=False if only_glob: return _, x4_avg # if (self.dimout_glob + self.dimout_glob_alpha) > 0: # out_glob = self.final_glob(x4_avg) # if only_glob: # return out_glob # else: # assert not only_glob xs = [x1, x2, x3, x4] if self.encode_input_keypoints: # append kp_encoding to all xs kp_encoding = self.make_kp_encoding( \ kp_loc_vis, images.shape[2:], x.shape[2:] ) for i in range(len(xs)): kp_up_ = Fu.interpolate( kp_encoding, size=xs[i].shape[2:], mode='bilinear' ) xs[i] = torch.cat( (xs[i], kp_up_), dim=1 ) hc = 0. upsize = None for hcl in self.hc_layers: if upsize==None: upsize = xs[hcl-1].shape[2:] lname = 'hc_layer%d'%hcl f = getattr(self, lname)(xs[hcl-1]) fup = Fu.interpolate(f,size=upsize,mode='bilinear') hc = hc + fup * (1./len(self.hc_layers)) out = self.final(hc) return out, x4_avg # if (self.dimout_glob+self.dimout_glob_alpha) > 0: # return out, out_glob # else: # return out, None def run_dil(self, images, kp_loc_vis=None, only_glob=False, skip_norm_image=False): assert not only_glob, 'not yet implemented' if skip_norm_image: l1in = images else: l1in = self.norm_image(images) if self.encode_input_keypoints: kp_encoding = self.make_kp_encoding( \ kp_loc_vis, images.shape[2:], images.shape[2:] ) l1in = torch.cat( (l1in, kp_encoding), dim=1 ) return self.trunk(l1in) def forward(self, images, kp_loc_vis=None, only_glob=False, skip_norm_image=False): if self.architecture=='dilated': out = self.run_dil(images, kp_loc_vis=kp_loc_vis, only_glob=only_glob, skip_norm_image=skip_norm_image) elif self.architecture=='hypercolumns': out = self.run_hc(images, kp_loc_vis=kp_loc_vis, only_glob=only_glob, skip_norm_image=skip_norm_image) else: raise ValueError() return out # taken from FCRN_pytorch on github class FasterUpProj(nn.Module): # Faster UpProj decorder using pixelshuffle class faster_upconv(nn.Module): def __init__(self, in_channel): super(FasterUpProj.faster_upconv, self).__init__() self.conv1_ = nn.Sequential(collections.OrderedDict([ ('conv1', nn.Conv2d(in_channel, in_channel // 2, kernel_size=3)), ('bn1', nn.BatchNorm2d(in_channel // 2)), ])) self.conv2_ = nn.Sequential(collections.OrderedDict([ ('conv1', nn.Conv2d(in_channel, in_channel // 2, kernel_size=(2, 3))), ('bn1', nn.BatchNorm2d(in_channel // 2)), ])) self.conv3_ = nn.Sequential(collections.OrderedDict([ ('conv1', nn.Conv2d(in_channel, in_channel // 2, kernel_size=(3, 2))), ('bn1', nn.BatchNorm2d(in_channel // 2)), ])) self.conv4_ = nn.Sequential(collections.OrderedDict([ ('conv1', nn.Conv2d(in_channel, in_channel // 2, kernel_size=2)), ('bn1', nn.BatchNorm2d(in_channel // 2)), ])) self.ps = nn.PixelShuffle(2) self.relu = nn.ReLU(inplace=True) def forward(self, x): # print('Upmodule x size = ', x.size()) x1 = self.conv1_(nn.functional.pad(x, (1, 1, 1, 1))) x2 = self.conv2_(nn.functional.pad(x, (1, 1, 0, 1))) x3 = self.conv3_(nn.functional.pad(x, (0, 1, 1, 1))) x4 = self.conv4_(nn.functional.pad(x, (0, 1, 0, 1))) # print(x1.size(), x2.size(), x3.size(), x4.size()) x = torch.cat((x1, x2, x3, x4), dim=1) x = self.ps(x) return x class FasterUpProjModule(nn.Module): def __init__(self, in_channels, smooth=False): super(FasterUpProj.FasterUpProjModule, self).__init__() out_channels = in_channels // 2 self.smooth = smooth self.upper_branch = nn.Sequential(collections.OrderedDict([ ('faster_upconv', FasterUpProj.faster_upconv(in_channels)), ('relu', nn.ReLU(inplace=True)), ('conv', nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)), ('batchnorm', nn.BatchNorm2d(out_channels)), ])) if self.smooth: self.bottom_branch = None else: self.bottom_branch = FasterUpProj.faster_upconv(in_channels) self.relu = nn.ReLU(inplace=True) def forward(self, x): x1 = self.upper_branch(x) if self.smooth: x2 = Fu.interpolate(x[:,:x1.shape[1],:,:],size=x1.shape[2:],mode='bilinear') else: x2 = self.bottom_branch(x) x = x1 + x2 x = self.relu(x) return x def __init__(self, in_channel, n_layers=2, smooth=False, dimout=2): super(FasterUpProj, self).__init__() layers = [] for l in range(n_layers): indim = in_channel // int(2**l) layers.append(self.FasterUpProjModule(indim,smooth=smooth)) last = nn.Conv2d(indim//2, dimout, 3, padding=1) layers.append( last ) self.trunk = nn.Sequential(*layers) def forward(self,x): return self.trunk(x) # def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1): # """3x3 convolution with padding""" # return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, # padding=dilation, groups=groups, bias=False, dilation=dilation) # def upconv(in_planes, out_planes, stride=2, groups=1, dilation=1): # """up convolution""" # kernel_size = 2*(stride-1)+1 # pad = int((kernel_size-1)/2) # return nn.ConvTranspose2d(in_planes, out_planes, kernel_size, stride=stride, \ # padding=pad, output_padding=pad, groups=groups) # def conv1x1(in_planes, out_planes, stride=1): # """1x1 convolution""" # return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) # class UpBottleneck(nn.Module): # expansion = 4 # def __init__(self, inplanes, planes, stride=1, upfactor=2, groups=1, # base_width=64, dilation=1, norm_layer=None): # super(UpBottleneck, self).__init__() # if norm_layer is None: # norm_layer = nn.BatchNorm2d # width = int(planes * (base_width / 64.)) * groups # # Both self.conv2 and self.downsample layers downsample the input when stride != 1 # self.conv1 = conv1x1(inplanes, width) # self.bn1 = norm_layer(width) # self.conv2 = upconv(width, width, upfactor, groups) # self.bn2 = norm_layer(width) # self.conv3 = conv1x1(width, planes * self.expansion) # self.bn3 = norm_layer(planes * self.expansion) # self.relu = nn.ReLU(inplace=True) # self.scale = scale # self.stride = stride # def forward(self, x): # identity = x # out = self.conv1(x) # out = self.bn1(out) # out = self.relu(out) # out = self.conv2(out) # out = self.bn2(out) # out = self.relu(out) # out = self.conv3(out) # out = self.bn3(out) # out += identity # identity = Fu.interpolate(x,size=out.shape[2:],mode='bilinear') # out = self.relu(out) # return out
c3dm-main
c3dm/hypercolumnet.py
c3dm-main
c3dm/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. import copy from functools import lru_cache import math import os import yaml import numpy as np import torch import torch.nn.functional as Fu from pytorch3d.renderer import cameras from pytorch3d.transforms import so3 from visdom import Visdom import c3dpo from hypercolumnet import HyperColumNet from config import get_default_args from tools import model_io from tools import so3 as so3int # TODO: move random 2d rot elsewhere; use 6d from pt3d from tools import vis_utils import tools.eval_functions as eval_func import tools.functions as func from tools.loss_models import AppearanceLoss, GaussianLayer from tools import utils from tools.tensor_accumulator import TensorAccumulator def conv1x1(in_planes, out_planes, init='no', cnv_args={ 'bias': True, 'kernel_size': 1, }, std=0.01): """1x1 convolution""" cnv = torch.nn.Conv2d(in_planes, out_planes, **cnv_args) # init weights ... if init == 'no': pass elif init == 'normal0.01': cnv.weight.data.normal_(0., std) if cnv.bias is not None: cnv.bias.data.fill_(0.) else: assert False return cnv # Module that predicts shape and texture parameters, along with rotation class GlobalHead(torch.nn.Module): def __init__( self, input_channels, alpha_geom_size=0, alpha_tex_size=0, camera_code_size=0, add_shared_layer=True, glob_inst_norm=False, ): super(GlobalHead, self).__init__() if not(alpha_tex_size > 0 or alpha_geom_size >= 0 or camera_code_size > 0): return make_fc_layer = lambda dimout: conv1x1(input_channels, dimout, init='normal0.01') # conv with dimout 0 does not work; use this instead make_degenerate = lambda feat: feat.new_empty(feat.size()[0], 0, 1, 1) # shared layer by all global stuff self.shared_layer = None if add_shared_layer: self.shared_layer = torch.nn.Sequential( make_fc_layer(input_channels), torch.nn.InstanceNorm2d(input_channels) if glob_inst_norm else torch.nn.BatchNorm2d(input_channels), torch.nn.ReLU(), ) self.alpha_geom_layer = ( make_fc_layer(alpha_geom_size) if alpha_geom_size > 0 else make_degenerate if alpha_geom_size == 0 else None ) self.alpha_tex_layer = make_fc_layer(alpha_tex_size) if alpha_tex_size > 0 else None self.rot_layer = make_fc_layer(camera_code_size) if camera_code_size else None def forward(self, feat): if self.shared_layer is not None: feat = self.shared_layer(feat) return tuple([ (head(feat)[:,:,0,0] if head is not None else None) for head in (self.alpha_geom_layer, self.alpha_tex_layer, self.rot_layer) ]) class Model(torch.nn.Module): def __init__( self, TRUNK = get_default_args(HyperColumNet), APPEARANCE_LOSS = get_default_args(AppearanceLoss), nrsfm_exp_path = '', huber_scaling_basis = 0.01, huber_scaling_repro = 0.01, photo_min_k = 6, photo_reenact = False, repro_loss_min_ray_length = 0.0, app_mask_image = False, detach_app = True, uv_model_use_bn = True, uv_model_l2_norm = False, sampled_sil_n_samples = 1000, sampled_sph_chamfer = 0, spherical_embedding_radius = 1., c3dpo_flipped=True, reparametrize_nrsfm_mean = True, scale_aug_range = 0.2, t_aug_range = 0.02, rot_aug_range = 3.14/12., custom_basis_size = -1, n_images_for_app_model = -1, min_depth = 0., argmin_translation_min_depth = 0., argmin_translation_ray_projection = True, ray_reprojection = False, dilate_basis_loss = 0., EMBED_DB = get_default_args(TensorAccumulator), embed_db_eval = False, app_model_mask_gt = False, loss_weights = { 'loss_basis': 1., 'loss_alpha': 0., 'loss_rotation': 0., 'loss_repro': 0.0, 'loss_vgg': 0.0, 'loss_sph_emb_to_cam': 0.0, 'loss_sph_sample_mask': 0.0, 'loss_vgg_app': 0.0, 'loss_l1_app': 0.0, 'loss_ssim_app': 0.0, 'loss_repro_2d': 0.0, 'loss_repro_ray': 0.0, }, log_vars=[ 'objective', 'loss_basis', 'loss_alpha', 'loss_rotation', 'loss_repro', 'loss_repro_2d', 'loss_repro_ray', 'loss_vgg', 'loss_sph_emb_to_cam', 'loss_sph_sample_mask', 'loss_vgg_app', 'loss_l1_app', 'loss_ssim_app', 'sig_avg', # depth error metrics 'pclerr_dist', ], **kwargs ): super(Model, self).__init__() # autoassign constructor params to self utils.auto_init_args(self) assert not uv_model_use_bn and uv_model_l2_norm, 'Do not use BN UV network!' self._load_and_fix_nrsfm() self.alpha_bias = None self.basis_size = custom_basis_size if custom_basis_size >= 0 else self.nrsfm_model.shape_basis_size if self.basis_size == self.nrsfm_model.shape_basis_size: # will be able to compute basis matching loss basis = torch.cat(( self.nrsfm_model.shape_layer.bias.data.view(3, -1, 1), self.nrsfm_model.shape_layer.weight.data.view(3, -1, self.basis_size), ), dim=2) self.nrsfm_model_basis = basis.permute(2,0,1).detach().cuda(0) self.alpha_bias = self.nrsfm_model.alpha_layer.bias[None,:,None,None,None].cuda(0) TRUNK['dimout'] = 3 self.trunk = HyperColumNet(**TRUNK) self._make_glob_layers() if self.trunk.dimout_glob > 0: self._make_texture_model() self._make_geom_deformation_model() # appearance loss self.appearance_loss = AppearanceLoss(**APPEARANCE_LOSS) # init the embed database EMBED_DB['db_dim'] = TRUNK['dimout'] self.embed_db = TensorAccumulator(**EMBED_DB) def _load_and_fix_nrsfm(self): self.nrsfm_model = load_nrsfm_model(self.nrsfm_exp_path) self.nrsfm_model.z_augment = False self.nrsfm_model.z_equivariance = False self.nrsfm_model.canonicalization.use = False self.nrsfm_model.perspective_depth_threshold = \ max(self.nrsfm_model.perspective_depth_threshold, self.min_depth) self.nrsfm_model_kp_rescale = float(self.nrsfm_model.keypoint_rescale) if self.reparametrize_nrsfm_mean: self.nrsfm_model.reparametrize_mean_shape() self.nrsfm_mean_radius = self._get_nrsfm_mean_radius() for prm in self.nrsfm_model.parameters(): prm.requires_grad = False self.nrsfm_model_basis = None self.projection_type = self.nrsfm_model.projection_type assert self.nrsfm_model.keypoint_rescale == 1.0 or self.projection_type == 'orthographic' def _make_glob_layers(self): indim = self.trunk.get_last_layer_numchannels() # TODO: move the relevant config params from trunk dimout_alpha_tex = self.trunk.dimout_glob dimout_alpha_geom = self.basis_size self.global_head = GlobalHead( indim, dimout_alpha_geom, dimout_alpha_tex, 6, glob_inst_norm=self.trunk.glob_inst_norm, ) def _make_texture_model(self): # make MLP mapping basis vectors + app encoding to colors app_dim = 3 + self.trunk.dimout_glob app_layers = c3dpo.make_trunk( dim_in=app_dim, n_fully_connected=512, n_layers=3, use_bn=self.uv_model_use_bn, l2_norm=self.uv_model_l2_norm, ) app_layers.append(torch.nn.Conv2d(512, 3, 1)) self.app_model = torch.nn.Sequential(*app_layers) def _make_geom_deformation_model(self): delta_layers = c3dpo.make_trunk( dim_in=3, n_fully_connected=512, n_layers=3, use_bn=self.uv_model_use_bn, l2_norm=self.uv_model_l2_norm, ) dim_out = (self.basis_size+1)*3 delta_layers.append( torch.nn.Conv2d(512, dim_out, 1) ) if self.trunk.final_std != 0.01: ldelta = delta_layers[-1] ldelta.weight.data = \ ldelta.weight.data.normal_(0., self.trunk.final_std) ldelta.bias.data = \ ldelta.bias.data.fill_(self.trunk.final_bias) print('deltanet: final bias = %1.2e, final std=%1.2e' % \ (ldelta.bias.data.mean(), ldelta.weight.data.std()) ) # delta vectors predicted from the mean vectors self.delta_model = torch.nn.Sequential(*delta_layers) def _get_nrsfm_mean_radius(self): mu = self.nrsfm_model.get_mean_shape().cuda().detach() mumu = mu.mean(dim=1, keepdim=True) return ((mu - mumu) ** 2).mean() ** 0.5 @lru_cache() def _get_image_grid(self, image_size, grid_size): imgrid = func.image_meshgrid( ((0, image_size[0]), (0, image_size[1])), grid_size ) imgrid = imgrid[[1,0]] # convert from yx to xy return imgrid def _get_distance_from_grid(self, predicted_coord, image_size, masks=None, K=None, ray_reprojection=True): ba = predicted_coord.shape[0] imgrid = self._get_image_grid(image_size, predicted_coord.size()[2:]) imgrid = imgrid.type_as(predicted_coord)[None].repeat(ba,1,1,1) if masks is not None: masks = masks.view(ba, -1) if ray_reprojection: #assert self.projection_type=='perspective' imgrid_proj = func.calc_ray_projection( predicted_coord.view(ba,3,-1), imgrid.view(ba,2,-1), K = K, min_depth=self.min_depth, min_r_len=self.repro_loss_min_ray_length, ) err = func.avg_l2_huber( imgrid_proj, predicted_coord.view(ba,3,-1), scaling=self.huber_scaling_repro, mask=masks ) else: shape_reprojected_image, _ = self.nrsfm_model.camera_projection( func.clamp_depth(predicted_coord, self.min_depth) ) if self.projection_type=='perspective': imgrid = self.nrsfm_model.calibrate_keypoints(imgrid, K) err = func.avg_l2_huber( shape_reprojected_image.view(ba,2,-1), imgrid.view(ba,2,-1), scaling=self.huber_scaling_repro, mask=masks, ) return err def _get_mean_basis_embed(self, embed): ba, _, he, wi = embed.shape embed_re = embed.view(ba, self.basis_size+1, 3, he, wi) embed_mean = embed_re[:, 0, :, :, :] # add the bias from the alpha layer! if self.alpha_bias is not None: embed_mean_add = (embed_re[:,1:,:,:,:] * self.alpha_bias).sum(1) embed_mean = embed_mean + embed_mean_add return embed_mean def _get_deltas_and_concat(self, embed): return self.delta_model(embed) def _gather_supervised_embeddings(self, embed, kp_loc, image_size): # uses grid sampler now (grid of size KP x 1) # outputs B x C x KP ba = embed.shape[0] image_size_tensor = torch.tensor(image_size).type_as(embed).flip(0) grid_ = 2. * kp_loc / image_size_tensor[None,:,None] - 1. grid_ = grid_.permute(0,2,1).view(ba, -1, 1, 2) supervised_embed = Fu.grid_sample(embed, grid_, align_corners=False)[:,:,:,0] return supervised_embed def _get_basis_loss(self, kp_loc, kp_vis, embed, alpha, image_size): assert self.nrsfm_model_basis is not None, "NRSFM basis not compatible." ba = kp_loc.shape[0] if self.dilate_basis_loss > 0.: ga = GaussianLayer(sigma=self.dilate_basis_loss, separated=True).cuda() embed = ga(embed) kp_embed_view = self._gather_supervised_embeddings( embed, kp_loc, image_size ) gt_basis = self.nrsfm_model_basis.reshape( -1, self.nrsfm_model.n_keypoints )[None].repeat(ba,1,1).detach() return func.avg_l2_huber( gt_basis, kp_embed_view, scaling=self.huber_scaling_basis, mask=kp_vis[:,None,:], reduce_dims=[], ) def _get_rotation_loss(self, est_rotation, nrsfm_rotation): rel_rotation = torch.eye(3, 3).expand_as(est_rotation) return 1.0 - torch.mean( so3.so3_relative_angle(est_rotation, nrsfm_rotation, cos_angle=True) ) def _adjust_nrsfm_model_kp_scale(self, orig_image_size, image_size): if self.projection_type=='perspective': # dont change ... pass elif self.projection_type=='orthographic': rel_scale = 0.5 * sum( \ float(orig_image_size.mean(0)[i]) / image_size[i] \ for i in (0,1) ) self.nrsfm_model.keypoint_rescale = \ self.nrsfm_model_kp_rescale * rel_scale else: raise ValueError(self.projection_type) def _similarity_aug(self, images, kp_loc, kp_vis, masks=None, depths=None): """ augment images, depths, masks and kp_loc using random similarity transformation """ ba, _, he, wi = images.shape # random scale r_scl = images.new_zeros(ba,).uniform_(1., 1.+self.scale_aug_range) r_rot = so3int.random_2d_rotation(ba, images.type(), self.rot_aug_range) # random translation imdiag = float(np.sqrt(he * wi)) r_t = images.new_zeros(ba,2).uniform_( \ -imdiag*self.t_aug_range, imdiag*self.t_aug_range) # orig image grid grid_ = self._get_image_grid(images.shape[2:], images.shape[2:]) grid_flat = grid_.type_as(images).repeat(ba,1,1,1).view(ba,2,-1) # 1st transform the keypoints kp_loc = torch.bmm(r_rot, kp_loc) kp_loc = kp_loc * r_scl[:,None,None] kp_loc = kp_loc - r_t[:,:,None] # adjust the visibilities ok = (kp_loc[:,0,:] >= 0.) * (kp_loc[:,1,:] >= 0.) * \ (kp_loc[:,0,:] < wi) * (kp_loc[:,1,:] < he) kp_vis = kp_vis * ok.float() kp_loc[kp_vis[:, None, :].expand_as(kp_loc) < 0.5] = 0.0 # then the image but with inverse trans grid_t = torch.bmm(r_rot.permute(0,2,1), grid_flat) grid_t = grid_t / r_scl[:,None,None] grid_t = grid_t + r_t[:,:,None] grid_t = grid_t / torch.FloatTensor([wi,he])[None,:,None].type_as(grid_t) # norm to 0, 1 grid_t = grid_t * 2. - 1. # norm to -1, 1 grid_t = grid_t.view(ba,2,he,wi).permute(0,2,3,1).contiguous() # sample the images, depth, masks images = Fu.grid_sample(images, grid_t, mode='bilinear', align_corners=False) if depths is not None: depths = Fu.grid_sample(depths, grid_t, mode='nearest', align_corners=False) if masks is not None: masks = Fu.grid_sample(masks, grid_t, mode='nearest', align_corners=False) return images, kp_loc, kp_vis, masks, depths def run_on_embed_db(self, preds, texture_desc, K, masks=None, image_size=None): embed = self.embed_db.get_db() embed = embed[None,:,:,None].repeat(preds['phi']['T'].size()[0], 1, 1, 1) # we have to downscale the embeds to make everything well-behaved embed_full = self._get_deltas_and_concat(embed) phi_out = self._get_shapes_and_projections(embed_full, None, preds['phi'], K) out = dict( embed_db_mean=embed_full, embed_db_shape_canonical=phi_out['shape_canonical_dense'], embed_db_shape_camera_coord=phi_out['shape_camera_coord_dense'], ) if texture_desc is not None: app = self._run_app_model(embed_full, texture_desc, embed, skip_sph_assert=True) out['embed_db_app'] = app return out def _merge_masked_tensors(self, pcl, masks): c = pcl.size()[1] pcl = pcl.transpose(0, 1).reshape(1, c, -1) if masks is not None: pcl = pcl[..., :, masks.reshape(-1) > 0.5] return pcl def _assert_spherical_embed(self, embed): norms = (embed**2).sum(1).sqrt() # we assert that the norms are constant (std <= 0.01) # (in case we want to have different radius of the sphere) assert ( embed.shape[1]==3 and float(norms.std()) <= 1e-2 ), 'This can only run on spherical embeds!' def _get_sph_embed_towards_camera_loss(self, embed, masks, R, eps=1e-8): ba = embed.size()[0] embed = embed.reshape(ba, 3, -1) masks = masks.reshape(ba, 1, -1) avg_emb = Fu.normalize((embed * masks).sum(dim=2) / (masks.sum(dim=2) + eps), dim=-1) # Rotated by R, it should be ideally (0, 0, 1) # swap - with + for the non-flipped C3DPO sign = -1.0 if self.c3dpo_flipped else +1.0 loss = 1. + sign * torch.matmul(R, avg_emb[..., None])[:, 2].mean() return loss def _calc_depth_pcl_errs(self, pred, gt, masks=None): # reshape the predicted depth to gt size (and rescale the values too) pred_up = Fu.interpolate(pred, gt.shape[2:], mode='bilinear') errs = eval_func.eval_depth_scale_inv( pred_up.detach(), gt.detach(), masks=masks ) return {'pclerr_dist': errs.mean()} def _get_canonical_shape(self, dense_basis, alpha, masks, target_std=2.0): ba, di, he, wi = dense_basis.size() basis = dense_basis.reshape(ba, -1, 3*he*wi) canon = basis[:, :1, :] + torch.bmm(alpha[:, None, :], basis[:, 1:, :]) return canon.reshape(ba, 3, he, wi) def _argmin_translation(self, shape_camera_coord, shape_proj, shape_vis, K=None): if self.projection_type=='orthographic': projection, _ = self.nrsfm_model.camera_projection(shape_camera_coord) T_amin = func.argmin_translation(projection, shape_proj, v=shape_vis) T = Fu.pad(T_amin, (0,1), 'constant', float(0)) elif self.projection_type=='perspective': ba = shape_camera_coord.size()[0] if K is None: K = torch.eye(3).type_as(shape_proj)[None].expand(ba, 3, 3) if self.argmin_translation_ray_projection: T = func.find_camera_T( K, shape_camera_coord, shape_proj, v=shape_vis ) else: T = func.minimise_2d_residual_over_T( K, shape_camera_coord, shape_proj, v=shape_vis ) else: raise ValueError(self.projection_type) return T def _argmin_camera(self, shape_canonical, masks, grid_normalised, phi): ba = shape_canonical.size()[0] centre = torch.sum( shape_canonical.reshape(ba, 3, -1) * masks.reshape(ba, 1, -1), dim=(0,2,), keepdim=True, ) / masks.sum() shape_centered = shape_canonical.reshape(ba, 3, -1) - centre assert 'R' in phi, "Rotation should be given for argmin_T" shape_camera_rotated = torch.bmm(phi['R'], shape_centered) T = self._argmin_translation( shape_camera_rotated, grid_normalised.expand(shape_camera_rotated[:,:2,:].size()), masks.reshape(ba, -1), K=None, # ! points already calibrated ) min_depth = self.argmin_translation_min_depth if min_depth > 0.: T = torch.cat((T[:,0:2], torch.clamp(T[:,2:3], min_depth)), dim=1) T = T - torch.matmul(phi['R'], centre)[:, :, 0] return T def _get_shapes_and_projections( self, dense_basis, masks, global_desc, K, image_repro_gt=None, alpha=None ): masks = ( masks if masks is not None else dense_basis.new_ones(dense_basis[:, :1, ...].size()) ) assert len(masks.size()) == 4 ba = dense_basis.size()[0] kp_mean = global_desc['kp_mean'] phi = copy.copy(global_desc) rescale = self.nrsfm_model.keypoint_rescale if alpha is not None: phi['shape_coeff'] = alpha if self.projection_type=='perspective': focal = torch.stack((K[:, 0, 0], K[:, 1, 1]), dim=1) p0 = K[:, :2, 2] camera = cameras.SfMPerspectiveCameras( R=phi['R'].permute(0, 2, 1), focal_length=focal, principal_point=p0, device=dense_basis.device, ) else: camera = cameras.SfMOrthographicCameras( R=phi['R'].permute(0, 2, 1), device=dense_basis.device, ) shape_canonical = self._get_canonical_shape( dense_basis, phi['shape_coeff'], masks ) if 'T' not in phi: # the grid has to be calibrated (=pre-multiplied by K^{-1}) first! grid_im_coord = Fu.pad( image_repro_gt.reshape(1, 2, -1).permute(0,2,1), (0, 1), value=1.0 ).repeat(ba, 1, 1) grid_im_coord = camera.unproject_points( grid_im_coord, world_coordinates=False )[:,:,:2].permute(0,2,1) grid_normalised = (grid_im_coord - kp_mean[:,:,None]) * rescale phi['T'] = self._argmin_camera( shape_canonical, masks, grid_normalised, phi ) camera.T = phi['T'] shape_canonical_pt3d = shape_canonical.reshape(ba, 3, -1).permute(0, 2, 1) shape_camera_coord = camera.get_world_to_view_transform().transform_points( shape_canonical_pt3d ) shape_image_coord_cal_dense = shape_camera_coord depth_dense = shape_camera_coord[:,:,2:] shape_proj_image = camera.transform_points(shape_canonical_pt3d) shape_reprojected_image = shape_proj_image[:, :, :2] # correct for the kp normalisation if self.projection_type == 'perspective': shape_image_coord_cal_dense = shape_image_coord_cal_dense + Fu.pad( kp_mean[:,None] * shape_camera_coord[:,:,2:], (0, 1), value=0.0 ) shape_reprojected_image = shape_reprojected_image + (kp_mean * focal)[:, None] else: assert self.projection_type == 'orthographic' shape_image_coord_cal_dense = ( shape_image_coord_cal_dense / rescale + Fu.pad(kp_mean[:,None], (0, 1), value=0.0) ) shape_reprojected_image = ( shape_reprojected_image / rescale + kp_mean[:, None] ) return dict( phi=phi, shape_canonical_dense=shape_canonical, shape_camera_coord_dense=shape_camera_coord.permute(0, 2, 1).reshape_as(shape_canonical), depth_dense=depth_dense.reshape_as(shape_canonical[:, :1]), shape_reprojected_image=shape_reprojected_image.permute(0, 2, 1).reshape_as(shape_canonical[:, :2]), shape_image_coord_cal_dense=shape_image_coord_cal_dense.permute(0, 2, 1).reshape_as(shape_canonical), ) def _get_best_scale(self, preds, image_size): if self.projection_type=='orthographic': shape_camera_coord = preds['shape_image_coord_cal_dense'] ba = shape_camera_coord.shape[0] imgrid = self._get_image_grid(image_size, shape_camera_coord.size()[2:]) imgrid = imgrid.type_as(shape_camera_coord)[None].repeat(ba,1,1,1) projection, depth = self.nrsfm_model.camera_projection(shape_camera_coord) s, T = func.argmin_translation_scale(projection, imgrid, v=preds['embed_masks']) shape_best = torch.cat(( s[:, None, None, None] * shape_camera_coord[:, :2] + T[:, :, None, None], s[:, None, None, None] * shape_camera_coord[:, 2:] ), dim=1) elif self.projection_type=='perspective': # no scale opt here, won't help shape_best = preds['shape_image_coord_cal_dense'] else: raise ValueError(self.projection_type) return shape_best def _get_sampled_sph_loss(self, preds, K, image_size): masks = preds['embed_masks'] ba = masks.shape[0] embed_sphere = torch.randn( size=(ba, 3, self.sampled_sil_n_samples*10, 1), dtype=masks.dtype, device=masks.device) embed_sphere = Fu.normalize( embed_sphere, dim=1) * self.spherical_embedding_radius # adjust the mean! embed_full = self._get_deltas_and_concat(embed_sphere) dense_phi = self._get_shapes_and_projections(embed_full, masks, preds, K) image_coords = dense_phi['shape_reprojected_image'] shape = dense_phi['shape_image_coord_cal_dense'] image_size_tensor = torch.FloatTensor( [s for s in image_size]).type_as(embed_sphere).flip(0) grid = 2. * (image_coords / image_size_tensor[None,:,None,None]) - 1. grid_prm = grid.permute(0, 2, 3, 1) # get all scales until the smallest side is <= 5 samples = [] scl = -1 while min(masks.shape[2:]) > 4: scl += 1 if scl > 0: masks = (Fu.interpolate( masks, scale_factor=0.5, mode='bilinear') > 0.).float() samples.append(Fu.grid_sample(masks, grid_prm, align_corners=False).view(-1)) samples = torch.cat(samples, dim=0) loss = (1 - samples).mean() return { 'loss_sph_sample_mask': loss, 'sph_sample_projs': grid, 'sph_sample_3d': shape, } def _get_photometric_losses( self, images, image_coords, basis_embed, embed_canonical=None, n_min=5, masks=None, texture_desc=None, ): ba = images.shape[0] n_min = min(ba-1, n_min) assert ba > 1, 'batch_size > 1 for photo losses!' assert not (self.photo_reenact and texture_desc is None) image_size = list(images.shape[2:]) image_size_render = list(basis_embed.shape[2:]) image_size_tensor = torch.FloatTensor(image_size).type_as(basis_embed).flip(0) grid = 2. * (image_coords / image_size_tensor[None,:,None,None]) - 1. grid = grid.permute(0, 2, 3, 1) # image warping loss if self.photo_reenact: images_reenact = self._run_app_model( basis_embed, texture_desc[0:1].repeat(ba, 1), embed_canonical ) else: images_reenact = images images_reproject = Fu.grid_sample(images_reenact, grid, align_corners=False) # resample ref image to images_resample resolution images_ref = Fu.interpolate(images[:1], size=images_reproject.shape[2:]) images_ref = images_ref.expand_as(images_reproject) loss_vgg, _, _ = self.appearance_loss(images_reproject, images_ref) loss_vgg = loss_vgg[:, 0] # transplant the rendered image by tokp pooling assert (~torch.isnan(loss_vgg)).all(), "Some photometric loss values are NaN." if masks is not None: # weight the losses by seg masks loss_vgg = masks[:1, 0] * loss_vgg loss_topk, idx_render = torch.topk(loss_vgg[1:], n_min-1, dim=0, largest=False) # make sure we include the target view loss_vgg = (loss_topk.sum(0) + loss_vgg[0]) / n_min idx_render = idx_render[:,None].expand(-1, 3, -1, -1) im_render = { 'loss_vgg': ( torch.gather(images_reproject, 0, idx_render).sum(0) + images_reproject[0] ) / n_min } out = {} out['loss_vgg'] = loss_vgg.mean() out['images_reproject'] = images_reproject.detach() out['images_gt'] = images_ref.detach() out['image_ref_render'] = im_render out['images'] = Fu.interpolate(images, size=images_reproject.shape[2:]).detach() out['images_reenact'] = Fu.interpolate(images_reenact, size=images_reproject.shape[2:]).detach() return out def _mask_gt_image(self, image, mask): avgcol = (image * mask).sum((2, 3)) / mask.sum((2, 3)).clamp(1) image_m = image * mask + (1-mask) * avgcol[:, :, None, None] # blur and mix ga = GaussianLayer(sigma=5., separated=True).cuda() image_mf = ga(image_m) image_m = mask * image_m + (1-mask) * image_mf return image_m def _run_app_model(self, embed, texture_desc, embed_canonical, skip_sph_assert=False): # run the appearance model taking as input per-pixel uv-like # embeddings `embed` and the global appearance descriptor # `texture_desc` n_im_use = self.n_images_for_app_model if \ self.n_images_for_app_model > 0 else embed_canonical.size()[0] texture_desc = texture_desc[:n_im_use] embed_for_app = embed_canonical[:n_im_use] if not skip_sph_assert: self._assert_spherical_embed(embed_for_app) if self.detach_app: embed_for_app = embed_for_app.detach() embed_app = torch.cat(( texture_desc[:,:,None,None].expand(-1,-1,*list(embed.shape[2:])), embed_for_app, ), dim=1) app = self.app_model(embed_app) return app[:, :3] + 0.5 def _get_app_model_losses( self, images, preds_app, masks=None, sigma=None, ): # for now this is the same images_pred = preds_app ba = images_pred.shape[0] image_size = list(images.shape[2:]) image_size_render = list(images_pred.shape[2:]) if masks is not None: # weight the losses by seg masks masks = Fu.interpolate(masks[:ba], size=image_size_render, mode='nearest') # resample ref image to images_resample resolution images_gt = Fu.interpolate(images[:ba], size=image_size_render) # mask the images and do NN interp if self.app_model_mask_gt: images_gt = self._mask_gt_image(images_gt, masks) loss_vgg, loss_rgb, _ = \ self.appearance_loss( images_pred, images_gt, sig=sigma, mask=masks if self.app_mask_image else None ) if masks is not None: # weight the losses by seg masks loss_vgg, loss_rgb = \ [ (masks * l).sum() / torch.clamp(masks.sum(), 1e-1) \ for l in (loss_vgg, loss_rgb,) ] else: loss_vgg, loss_rgb = \ [ l.mean() \ for l in (loss_vgg, loss_rgb,) ] out = {} out['loss_vgg'] = loss_vgg out['loss_l1'] = loss_rgb out['loss_ssim'] = (loss_rgb * 0.0).detach() # not used out['images_pred'] = images_pred out['images_pred_clamp'] = torch.clamp(images_pred,0.,1.) out['images_gt'] = images_gt out['images'] = images_gt return out def forward( self, kp_loc=None, kp_vis=None, kp_conf=None, images=None, epoch_now=None, orig_image_size=None, masks=None, depths=None, K=None, **kwargs ): ba = images.shape[0] # batch size image_size = images.size()[2:] # adjust nrsfm model scale self._adjust_nrsfm_model_kp_scale(orig_image_size, image_size) preds = {} preds['nrsfm_mean_shape'] = self.nrsfm_model.get_mean_shape() if self.training and ( self.scale_aug_range > 0. or self.t_aug_range > 0. or self.rot_aug_range > 0. ): images, kp_loc, kp_vis, masks, depths = \ self._similarity_aug(images, kp_loc, kp_vis, masks=masks, depths=depths) preds.update( { 'images_aug': images, 'kp_loc_aug': kp_loc, 'depths_aug': depths, 'masks_aug': masks } ) embed, glob_features = self.trunk( images, kp_loc_vis = torch.cat((kp_loc, kp_vis[:,None,:]), dim=1) ) embed = Fu.normalize(embed, dim=1) * self.spherical_embedding_radius embed_full = self._get_deltas_and_concat(embed) #embed_masks = (Fu.interpolate(masks, embed.shape[2:], mode='bilinear') > 0.49).float() embed_masks = Fu.interpolate(masks, embed.shape[2:], mode='nearest') image_repro_gt = self._get_image_grid(image_size, embed_full.size()[2:]) preds['embed'] = embed preds['embed_full'] = embed_full preds['embed_masks'] = embed_masks preds['embed_mean'] = self._get_mean_basis_embed(embed_full) preds['image_repro_gt'] = image_repro_gt alpha_geom, texture_desc, rotation_code = self.global_head(glob_features) self.nrsfm_model.eval() preds['nrsfm'] = self.nrsfm_model( kp_loc=kp_loc, kp_vis=kp_vis, dense_basis=None, # estimate dense Phi here K=K, ) assert not self.nrsfm_model.camera_scale # so just ones assert self.nrsfm_model.argmin_translation #preds['kp_mean'] = preds['nrsfm']['kp_mean'] # TODO: this should go away # override top-level preds if regressing directly assert rotation_code is not None assert alpha_geom is not None global_desc = dict( shape_coeff=alpha_geom, R=so3int.so3_6d_to_rot(rotation_code), kp_mean=preds['nrsfm']['kp_mean'], ) preds.update(self._get_shapes_and_projections( embed_full, embed_masks, global_desc, K, image_repro_gt )) preds['shape_image_coord_cal'] = self._gather_supervised_embeddings( preds['shape_image_coord_cal_dense'], # same as uncal for orthographic kp_loc, image_size, ) preds['kp_reprojected_image'] = self._gather_supervised_embeddings( preds['shape_reprojected_image'], kp_loc, image_size, ) # compute NR-SFM Prior loss if self.loss_weights['loss_basis'] > 0.: preds['loss_basis'] = self._get_basis_loss( kp_loc, kp_vis, embed_full, preds['nrsfm']['phi']['shape_coeff'], image_size, ) if self.loss_weights.loss_alpha > 0.: assert alpha_geom is not None preds['loss_alpha'] = func.huber( \ (alpha_geom - preds['nrsfm']['phi']['shape_coeff'])**2, scaling=self.huber_scaling_basis, ).mean() if self.loss_weights.loss_rotation > 0.: preds['loss_rotation'] = self._get_rotation_loss( preds['phi']['R'], preds['nrsfm']['phi']['R'], ) # compute reprojection loss preds['loss_repro_2d'] = self._get_distance_from_grid( preds['shape_image_coord_cal_dense'], image_size, masks=embed_masks, K=K, ray_reprojection=False, ) # preds['loss_repro_ray'] = 0.0 # if self.projection_type == 'perspective': preds['loss_repro_ray'] = self._get_distance_from_grid( preds['shape_image_coord_cal_dense'], image_size, masks=embed_masks, K=K, ray_reprojection=True, ) preds['loss_repro'] = preds['loss_repro_ray'] if self.ray_reprojection else preds['loss_repro_2d'] # perceptual loss preds['photo_out'] = None if self.photo_min_k > 0 and ba > 1: # use the first im as a loss as a target basis_embed_ref = embed_full[:1].expand_as(embed_full) masks_ref = embed_masks[:1].expand_as(embed_masks) phi_onto_ref = self._get_shapes_and_projections(basis_embed_ref, masks_ref, preds['phi'], K) preds['photo_out'] = self._get_photometric_losses( images, phi_onto_ref['shape_reprojected_image'], embed_full, texture_desc=texture_desc, n_min=self.photo_min_k, masks=embed_masks, embed_canonical=embed, ) preds['loss_vgg'] = preds['photo_out']['loss_vgg'] # embedding-camera alignment loss if self.loss_weights['loss_sph_emb_to_cam'] > 0.: preds['loss_sph_emb_to_cam'] = self._get_sph_embed_towards_camera_loss( preds['embed'], embed_masks, preds['phi']['R'].detach() ) # mask sampling loss if self.loss_weights['loss_sph_sample_mask'] > 0.: preds.update(self._get_sampled_sph_loss(preds, K, images.shape[2:])) # appearance model preds['app'] = None if texture_desc is not None: n_im_use = ( self.n_images_for_app_model if self.n_images_for_app_model > 0 else ba ) preds['app'] = self._run_app_model( embed_full[:n_im_use], texture_desc[:n_im_use], embed ) preds['app_out'] = self._get_app_model_losses( images, preds['app'][:, :3], masks=masks, ) for k in ('loss_vgg', 'loss_l1', 'loss_ssim'): preds[k+'_app'] = preds['app_out'][k] # finally get the optimization objective using self.loss_weights preds['objective'] = self.get_objective(preds, epoch_now=epoch_now) # ================= # the rest is only for visualisation/metrics # run on cached embed_db if self.embed_db is not None and self.embed_db_eval: preds.update(self.run_on_embed_db(preds, texture_desc, K, masks=embed_masks, image_size=image_size)) # accumulate into embed db self.embed_db(embed, masks=embed_masks) depth_pcl_metrics = self._calc_depth_pcl_errs( preds['depth_dense'], depths, masks=masks ) preds.update(depth_pcl_metrics) # find the scale of shape_image_coord that minimizes the repro loss preds['shape_image_coord_best_scale'] = self._get_best_scale(preds, image_size) preds['nrsfm_shape_image_coord'] = preds['nrsfm'][{ 'orthographic': 'shape_image_coord', 'perspective': 'shape_image_coord_cal', }[self.projection_type]] # a hack for vis purposes preds['misc'] = {} for k in ('images', 'images_app', 'images_geom', 'embed'): if k in preds: preds['misc'][k] = preds[k].detach() elif k in vars(): preds['misc'][k] = vars()[k] return preds def get_objective(self, preds, epoch_now=None): losses_weighted = { k: preds[k] * float(w) for k, w in self.loss_weights.items() if k in preds and w != 0.0 # avoid adding NaN * 0 } if not hasattr(self,'_loss_weights_printed') or \ not self._loss_weights_printed: print('-------\nloss_weights:') for k,w in self.loss_weights.items(): print('%20s: %1.2e' % (k,w) ) print('-------') print('-------\nweighted losses:') for k,w in losses_weighted.items(): print('%20s: %1.2e' % (k,w) ) print('-------') self._loss_weights_printed = True loss = torch.stack(list(losses_weighted.values())).sum() return loss def visualize( self, visdom_env_imgs, trainmode, \ preds, stats, clear_env=False ): if stats is not None: it = stats.it[trainmode] epoch = stats.epoch viz = vis_utils.get_visdom_connection( server=stats.visdom_server, port=stats.visdom_port, ) else: it = 0 epoch = 0 viz = vis_utils.get_visdom_connection() if not viz.check_connection(): print("no visdom server! -> skipping batch vis") return idx_image = 0 title="e%d_it%d_im%d"%(epoch,it,idx_image) imvar = 'images_aug' if 'images_aug' in preds else 'images' dvar = 'depths_aug' if 'depths_aug' in preds else 'depths' mvar = 'masks_aug' if 'masks_aug' in preds else 'masks' # show depth ds = preds['depth_dense'].cpu().detach().repeat(1,3,1,1) ims = preds[imvar].cpu().detach() ims = Fu.interpolate(ims,size=ds.shape[2:]) if mvar in preds: # mask depths, ims by masks masks = Fu.interpolate(preds[mvar].cpu().detach(), size=ds.shape[2:], mode='nearest' ) ims *= masks ; ds *= masks ds = vis_utils.denorm_image_trivial(ds) if 'pred_mask' in preds: pred_mask = torch.sigmoid(preds['pred_mask'][:, None].detach()).cpu().expand_as(ims) ims_ds = torch.cat( (ims, ds, pred_mask), dim=2 ) else: ims_ds = torch.cat( (ims, ds), dim=2 ) viz.images(ims_ds, env=visdom_env_imgs, opts={'title':title}, win='depth') # show aug images if present imss = [] for k in (imvar, 'images_app', 'images_geom'): if k in preds: ims = preds[k].cpu().detach() ims = Fu.interpolate(ims, scale_factor=0.25) ims = vis_utils.denorm_image_trivial(ims) R, R_gt = preds['phi']['R'], preds['nrsfm']['phi']['R'] angle_to_0 = np.rad2deg( so3.so3_relative_angle(R[0].expand_as(R), R).data.cpu().numpy() ) angle_to_0_gt = np.rad2deg( so3.so3_relative_angle(R_gt[0].expand_as(R_gt), R_gt).data.cpu().numpy() ) if ~np.isnan(angle_to_0).any(): ims = np.stack([ vis_utils.write_into_image( (im*255.).astype(np.uint8), "%dΒ° / %dΒ°" % (d, d_gt), color=(255,0,255) ) for im, d, d_gt in zip(ims.data.numpy(), angle_to_0, angle_to_0_gt) ]) else: ims = (ims.data.numpy()*255.).astype(np.uint8) imss.append(ims) if len(imss) > 0: viz.images( #torch.cat(imss, dim=2), np.concatenate(imss, axis=2).astype(np.float32)/255., env=visdom_env_imgs, opts={'title': title}, win='imaug', ) # show reprojections p1 = preds['kp_loc_aug' if 'kp_loc_aug' in preds else 'kp_loc'][idx_image] p2 = preds['kp_reprojected_image'][idx_image,0:2] p3 = preds['nrsfm']['kp_reprojected_image'][idx_image] p = np.stack([p_.detach().cpu().numpy() for p_ in (p1, p2, p3)]) v = preds['kp_vis'][idx_image].detach().cpu().numpy() vis_utils.show_projections( viz, visdom_env_imgs, p, v=v, title=title, cmap__='rainbow', markersize=50, sticks=None, stickwidth=1, plot_point_order=False, image=preds[imvar][idx_image].detach().cpu().numpy(), win='projections' ) # dense reprojections p1 = preds['image_repro_gt'].detach().cpu() p2 = preds['shape_reprojected_image'][idx_image].detach().cpu() # override mask with downsampled (augmentation applied if any) mvar = 'embed_masks' if mvar in preds: masks = preds[mvar].detach().cpu() #masks = Fu.interpolate(masks, size=p2.shape[1:], mode='nearest') p1 = p1 * masks[idx_image] p2 = p2 * masks[idx_image] # TEMP img = (preds[imvar][idx_image].cpu() * Fu.interpolate( preds[mvar].cpu()[idx_image:idx_image+1], size=preds[imvar][0, 0].size(), mode='nearest' )[0]).data.cpu().numpy() p = np.stack([p_.view(2,-1).numpy() for p_ in (p1, p2)]) vis_utils.show_projections( viz, visdom_env_imgs, p, v=None, title=title, cmap__='rainbow', markersize=1, sticks=None, stickwidth=1, plot_point_order=False, image=img, win='projections_dense' ) vis_utils.show_flow(viz, visdom_env_imgs, p, image=preds[imvar][idx_image].detach().cpu().numpy(), title='flow ' + title, linewidth=1, win='projections_flow', ) if 'sph_sample_projs' in preds: p = preds['sph_sample_projs'][idx_image].detach().cpu().view(2, -1) if 'sph_sample_gt' in preds: p_ = preds['sph_sample_gt'][idx_image].detach().cpu().view(2, -1) p_ = p_.repeat(1, math.ceil(p.shape[1]/p_.shape[1])) p = [p, p_[:, :p.shape[1]]] else: p = [p.view(2, -1)] # p = (torch.stack(p) + 1.) / 2. p = (torch.stack(p) + 1.) / 2. imsize = preds[imvar][idx_image].shape[1:] p[:, 0, :] *= imsize[1] p[:, 1, :] *= imsize[0] vis_utils.show_projections(viz, visdom_env_imgs, p, v=None, title=title + '_spl_sil', cmap__='rainbow', markersize=1, sticks=None, stickwidth=1, plot_point_order=False, image=preds[imvar][idx_image].detach().cpu().numpy(), win='projections_spl_sil' ) merged_embed = self._merge_masked_tensors( preds['embed_full'], preds['embed_masks'] )[..., None] gl_desc_0 = {k: v[:1] for k, v in preds['phi'].items()} merged_with_pivot_phis = self._get_shapes_and_projections( merged_embed, None, gl_desc_0, preds['K'][:1] ) preds['shape_canonical_same_alphas'] = merged_with_pivot_phis[ 'shape_canonical_dense' ][0 ,..., 0] # dense 3d pcl_show = {} vis_list = ['dense3d', 'mean_shape', 'embed_db', 'batch_fused', 'sph_embed'] if self.loss_weights['loss_sph_sample_mask'] > 0: vis_list.append('sph_sample_3d') for vis in vis_list: if vis=='canonical': pcl = preds['shape_canonical_dense'] elif vis=='dense3d': pcl = preds['shape_image_coord_cal_dense'] elif vis=='batch_fused': pcl = preds['shape_canonical_same_alphas'].detach().cpu() pcl = torch.cat((pcl, pcl), dim=0) pcl[3:5,:] = 0.0 pcl[5,:] = 1.0 elif vis=='mean_shape': pcl = preds['embed_mean'] elif vis=='mean_c3dpo_shape': pcl = preds['nrsfm_mean_shape'] elif vis=='shape_canonical': pcl = preds['shape_canonical_dense'] elif vis == 'sph_embed': pcl = preds['embed'].detach().clone() elif vis == 'sph_sample_3d': pcl = preds['sph_sample_3d'][idx_image].detach().cpu().view(3, -1) pcl = torch.cat((pcl, pcl.clone()), dim=0) pcl[4:,:] = 0.0 pcl[3,:] = 1.0 # filtering outliers pcl[:3] -= pcl[:3].mean(dim=1, keepdim=True) # will be centered anyway std = pcl[:3].std(dim=1).max() pcl[:3] = pcl[:3].clamp(-2.5*std, 2.5*std) elif vis == 'embed_db': pcl = self.embed_db.get_db(uniform_sphere=False).cpu().detach().view(3, -1) pcl = torch.cat((pcl, pcl.clone()), dim=0) pcl[3:5,:] = 0.0 pcl[4,:] = 1.0 else: raise ValueError(vis) if vis not in ('mean_c3dpo_shape', 'batch_fused', 'sph_sample_3d', 'embed_db'): pcl_rgb = preds[imvar].detach().cpu() #pcl = Fu.interpolate(pcl.detach().cpu(), pcl_rgb.shape[2:], mode='bilinear') pcl_rgb = Fu.interpolate(pcl_rgb, size=pcl.shape[2:], mode='bilinear') if (mvar in preds): masks = preds[mvar].detach().cpu() masks = Fu.interpolate(masks, \ size=pcl.shape[2:], mode='nearest') else: masks = None pcl = pcl.detach().cpu()[idx_image].view(3,-1) pcl_rgb = pcl_rgb[idx_image].view(3,-1) pcl = torch.cat((pcl, pcl_rgb), dim=0) if masks is not None: masks = masks[idx_image].view(-1) pcl = pcl[:,masks>0.] # if vis == 'sph_embed': # import pdb; pdb.set_trace() if pcl.numel()==0: continue pcl_show[vis] = pcl.numpy() vis_utils.visdom_plotly_pointclouds(viz, pcl_show, visdom_env_imgs, title=title+'_'+vis, markersize=1, sticks=None, win=vis, height=700, width=700 , normalise=True, ) var3d = { 'orthographic': 'shape_image_coord', 'perspective': 'shape_image_coord_cal', }[self.projection_type] sparse_pcl = { 'nrsfm': preds['nrsfm'][var3d][idx_image].detach().cpu().numpy().copy(), 'dense': preds['shape_image_coord_cal'][idx_image].detach().cpu().numpy().copy(), } if 'kp_loc_3d' in preds: sparse_pcl['gt'] = preds['kp_loc_3d'][idx_image].detach().cpu().numpy().copy() if 'class_mask' in preds: class_mask = preds['class_mask'][idx_image].detach().cpu().numpy() sparse_pcl = {k: v*class_mask[None] for k,v in sparse_pcl.items()} vis_utils.visdom_plotly_pointclouds(viz, sparse_pcl, visdom_env_imgs, \ title=title+'_sparse3d', \ markersize=5, \ sticks=None, win='nrsfm_3d', height=500, width=500 ) if 'photo_out' in preds and preds['photo_out'] is not None: # show the source images and their renders ims_src = preds['photo_out']['images'].detach().cpu() ims_repro = preds['photo_out']['images_reproject'].detach().cpu() ims_reenact = preds['photo_out']['images_reenact'].detach().cpu() ims_gt = preds['photo_out']['images_gt'].detach().cpu() # cat all the images ims = torch.cat((ims_src,ims_reenact,ims_repro,ims_gt), dim=2) ims = torch.clamp(ims,0.,1.) viz.images(ims, env=visdom_env_imgs, opts={'title':title}, win='imrepro') im_renders = preds['photo_out']['image_ref_render'] for l in im_renders: im_gt = preds['photo_out']['images_gt'][0].detach().cpu() im_render = im_renders[l].detach().cpu() im = torch.cat((im_gt, im_render), dim=2) im = torch.clamp(im, 0., 1.) viz.image(im, env=visdom_env_imgs, \ opts={'title':title+'_min_render_%s' % l}, win='imrender_%s' % l) if 'app_out' in preds and preds['app_out'] is not None: # show the source images and their predictions ims_src = preds['app_out']['images'].detach().cpu() ims_pred = preds['app_out']['images_pred_clamp'].detach().cpu() ims = torch.cat((ims_src,ims_pred), dim=2) viz.images(ims, env=visdom_env_imgs, opts={'title':title}, win='impred') def load_nrsfm_model(exp_name, get_cfg=False): from dataset.dataset_configs import C3DPO_MODELS, C3DPO_URLS if exp_name in C3DPO_MODELS: exp_path = C3DPO_MODELS[exp_name] else: exp_path = exp_name if not os.path.exists(exp_path): url = C3DPO_URLS[exp_name] print('Downloading C3DPO model %s from %s' % (exp_name, url)) utils.untar_to_dir(url, exp_path) cfg_file = os.path.join(exp_path, 'expconfig.yaml') assert os.path.isfile(cfg_file), 'no config for NR SFM %s!' % cfg_file with open(cfg_file, 'r') as f: cfg = yaml.load(f) # exp = ExperimentConfig(cfg_file=cfg_file) nrsfm_model = c3dpo.C3DPO(**cfg.MODEL) model_path = model_io.find_last_checkpoint(exp_path) assert model_path is not None, "cannot found previous NR SFM model %s" % model_path print("Loading the model from", model_path) model_state_dict, _, _ = model_io.load_model(model_path) nrsfm_model.load_state_dict(model_state_dict, strict=True) if get_cfg: return nrsfm_model, cfg else: return nrsfm_model
c3dm-main
c3dm/model.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import copy, os, sys, time import itertools as itt import yaml # torch imports import numpy as np import torch from dataset.batch_samplers import SceneBatchSampler from dataset.dataset_zoo import dataset_zoo from dataset.eval_zoo import eval_zoo from dataset.c3dpo_annotate import run_c3dpo_model_on_dset from model import Model from config import set_config_from_file, set_config, \ get_arg_parser, dump_config, get_default_args, auto_init_args from tools.attr_dict import nested_attr_dict from tools.utils import get_net_input, pprint_dict from tools import utils from tools.stats import Stats from tools.vis_utils import get_visdom_env from tools.model_io import find_last_checkpoint, purge_epoch, \ load_model, get_checkpoint, save_model from tools.cache_preds import cache_preds def init_model(cfg,force_load=False,clear_stats=False,add_log_vars=None): # get the model model = Model(**cfg.MODEL) # obtain the network outputs that should be logged if hasattr(model,'log_vars'): log_vars = copy.deepcopy(model.log_vars) else: log_vars = ['objective'] if add_log_vars: log_vars.extend(copy.deepcopy(add_log_vars)) visdom_env_charts = get_visdom_env(cfg) + "_charts" # init stats struct stats = Stats( log_vars, visdom_env=visdom_env_charts, \ verbose=False, visdom_server=cfg.visdom_server, \ visdom_port=cfg.visdom_port ) model_path = None if cfg.resume_epoch > 0: model_path = get_checkpoint(cfg.exp_dir,cfg.resume_epoch) elif cfg.resume_epoch == -1: # find the last checkpoint model_path = find_last_checkpoint(cfg.exp_dir) optimizer_state = None if model_path is None and force_load: from dataset.dataset_configs import C3DM_URLS url = C3DM_URLS[cfg.DATASET.dataset_name] print('Downloading C3DM model %s from %s' % (cfg.DATASET.dataset_name, url)) utils.untar_to_dir(url, cfg.exp_dir) model_path = find_last_checkpoint(cfg.exp_dir) if model_path is not None: print( "found previous model %s" % model_path ) if force_load or cfg.resume: print( " -> resuming" ) model_state_dict, stats_load, optimizer_state = load_model(model_path) if not clear_stats: if stats_load is None: print(" -> bad stats! -> clearing") else: stats = stats_load else: print(" -> clearing stats") try: model.load_state_dict(model_state_dict, strict=True) except RuntimeError as e: print('!!!!! cant load state dict in strict mode:') print(e) print('loading in non-strict mode ...') model.load_state_dict(model_state_dict, strict=False) model.log_vars = log_vars else: print( " -> but not resuming -> starting from scratch" ) elif force_load: print('!! CANNOT RESUME FROM A CHECKPOINT !!') # update in case it got lost during load: stats.visdom_env = visdom_env_charts stats.visdom_server = cfg.visdom_server stats.visdom_port = cfg.visdom_port #stats.plot_file = os.path.join(cfg.exp_dir,'train_stats.pdf') stats.synchronize_logged_vars(log_vars) return model, stats, optimizer_state def init_optimizer(model,optimizer_state, PARAM_GROUPS=(), freeze_bn=False, breed='sgd', weight_decay=0.0005, lr_policy='multistep', lr=0.001, gamma=0.1, momentum=0.9, betas=(0.9,0.999), milestones=[100,], max_epochs=300, ): # init the optimizer if hasattr(model,'_get_param_groups'): # use the model function p_groups = model._get_param_groups(lr,wd=weight_decay) else: allprm = [prm for prm in model.parameters() if prm.requires_grad] p_groups = [{'params': allprm, 'lr': lr}] if breed=='sgd': optimizer = torch.optim.SGD( p_groups, lr=lr, \ momentum=momentum, \ weight_decay=weight_decay ) elif breed=='adagrad': optimizer = torch.optim.Adagrad( p_groups, lr=lr, \ weight_decay=weight_decay ) elif breed=='adam': optimizer = torch.optim.Adam( p_groups, lr=lr, \ betas=betas, \ weight_decay=weight_decay ) else: raise ValueError("no such solver type %s" % breed) print(" -> solver type = %s" % breed) if lr_policy=='multistep': scheduler = torch.optim.lr_scheduler.MultiStepLR( \ optimizer, milestones=milestones, gamma=gamma) else: raise ValueError("no such lr policy %s" % lr_policy) # add the max epochs here! scheduler.max_epochs = max_epochs if optimizer_state is not None: print(" -> setting loaded optimizer state") optimizer.load_state_dict(optimizer_state) optimizer.param_groups[0]['momentum'] = momentum optimizer.param_groups[0]['dampening'] = 0.0 optimizer.zero_grad() return optimizer, scheduler def run_training(cfg): # run the training loops # make the exp dir os.makedirs(cfg.exp_dir,exist_ok=True) # set the seed np.random.seed(cfg.seed) # dump the exp config to the exp dir dump_config(cfg) # setup datasets dset_train, dset_val, dset_test = dataset_zoo(**cfg.DATASET) # init loaders if cfg.batch_sampler=='default': trainloader = torch.utils.data.DataLoader( dset_train, num_workers=cfg.num_workers, pin_memory=True, batch_size=cfg.batch_size, shuffle=False ) elif cfg.batch_sampler=='sequence': trainloader = torch.utils.data.DataLoader( dset_train, num_workers=cfg.num_workers, pin_memory=True, batch_sampler=SceneBatchSampler( torch.utils.data.SequentialSampler(dset_train), cfg.batch_size, True, ) ) else: raise BaseException() if dset_val is not None: if cfg.batch_sampler=='default': valloader = torch.utils.data.DataLoader( dset_val, num_workers=cfg.num_workers, pin_memory=True, batch_size=cfg.batch_size, shuffle=False ) elif cfg.batch_sampler=='sequence': valloader = torch.utils.data.DataLoader( dset_val, num_workers=cfg.num_workers, pin_memory=True, batch_sampler=SceneBatchSampler( \ torch.utils.data.SequentialSampler(dset_val), cfg.batch_size, True, ) ) else: raise BaseException() else: valloader = None # test loaders if dset_test is not None: testloader = torch.utils.data.DataLoader(dset_test, num_workers=cfg.num_workers, pin_memory=True, batch_size=cfg.batch_size, shuffle=False, ) _,_,eval_vars = eval_zoo(cfg.DATASET.dataset_name) else: testloader = None eval_vars = None # init the model model, stats, optimizer_state = init_model(cfg,add_log_vars=eval_vars) start_epoch = stats.epoch + 1 # annotate dataset with c3dpo outputs if cfg.annotate_with_c3dpo_outputs: for dset in dset_train, dset_val, dset_test: if dset is not None: run_c3dpo_model_on_dset(dset, cfg.MODEL.nrsfm_exp_path) # move model to gpu model.cuda(0) # init the optimizer optimizer, scheduler = init_optimizer(\ model, optimizer_state=optimizer_state, **cfg.SOLVER) # loop through epochs scheduler.last_epoch = start_epoch for epoch in range(start_epoch, cfg.SOLVER.max_epochs): with stats: # automatic new_epoch and plotting of stats at every epoch start print("scheduler lr = %1.2e" % float(scheduler.get_lr()[-1])) # train loop trainvalidate(model, stats, epoch, trainloader, optimizer, False, \ visdom_env_root=get_visdom_env(cfg), **cfg ) # val loop if valloader is not None: trainvalidate(model, stats, epoch, valloader, optimizer, True, \ visdom_env_root=get_visdom_env(cfg), **cfg ) # eval loop (optional) if testloader is not None: if cfg.eval_interval >= 0: if cfg.eval_interval == 0 or \ ((epoch % cfg.eval_interval)==0 and epoch > 0): torch.cuda.empty_cache() # we have memory heavy eval ... with torch.no_grad(): run_eval(cfg,model,stats,testloader) assert stats.epoch==epoch, "inconsistent stats!" # delete previous models if required if cfg.store_checkpoints_purge > 0 and cfg.store_checkpoints: for prev_epoch in range(epoch-cfg.store_checkpoints_purge): period = cfg.store_checkpoints_purge_except_every if (period > 0 and prev_epoch % period == period - 1): continue purge_epoch(cfg.exp_dir,prev_epoch) # save model if cfg.store_checkpoints: outfile = get_checkpoint(cfg.exp_dir,epoch) save_model(model,stats,outfile,optimizer=optimizer) scheduler.step() def run_evaluation(cfg): np.random.seed(cfg.seed) # setup datasets dset_train, dset_val, dset_test = dataset_zoo(**cfg.DATASET) # test loaders testloader = torch.utils.data.DataLoader( dset_test, num_workers=cfg.num_workers, pin_memory=True, batch_size=cfg.batch_size, shuffle=False, ) _, _, eval_vars = eval_zoo(cfg.DATASET.dataset_name) # init the model model, _, _ = init_model(cfg, force_load=True, add_log_vars=eval_vars) model.cuda(0) model.eval() # init the optimizer #optimizer, scheduler = init_optimizer(model, optimizer_state=optimizer_state, **cfg.SOLVER) # val loop #trainvalidate(model, stats, 0, valloader, optimizer, True, # visdom_env_root=get_visdom_env(cfg), **cfg ) with torch.no_grad(): run_eval(cfg, model, None, testloader) def trainvalidate( model, stats, epoch, loader, optimizer, validation, bp_var='objective', metric_print_interval=5, visualize_interval=0, visdom_env_root='trainvalidate', **kwargs ): if validation: model.eval() trainmode = 'val' else: model.train() trainmode = 'train' t_start = time.time() # clear the visualisations on the first run in the epoch clear_visualisations = True # get the visdom env name visdom_env_imgs = visdom_env_root + "_images_" + trainmode #loader = itt.islice(loader, 1) n_batches = len(loader) for it, batch in enumerate(loader): last_iter = it==n_batches-1 # move to gpu where possible net_input = get_net_input(batch) # add epoch to the set of inputs net_input['epoch_now'] = int(epoch) if (not validation): optimizer.zero_grad() preds = model(**net_input) else: with torch.no_grad(): preds = model(**net_input) # make sure we dont overwrite something assert not any( k in preds for k in net_input.keys() ) preds.update(net_input) # merge everything into one big dict # update the stats logger stats.update(preds,time_start=t_start,stat_set=trainmode) assert stats.it[trainmode]==it, "inconsistent stat iteration number!" # print textual status update if (it%metric_print_interval)==0 or last_iter: stats.print(stat_set=trainmode,max_it=n_batches) # optimizer step if (not validation): loss = preds[bp_var] loss.backward() optimizer.step() # visualize results if (visualize_interval>0) and (it%visualize_interval)==0: model.visualize( visdom_env_imgs, trainmode, \ preds, stats, clear_env=clear_visualisations ) clear_visualisations = False def run_eval(cfg,model,stats,loader): if hasattr(model, 'embed_db_eval'): from dataset.dataset_configs import FILTER_DB_SETTINGS dset_name = cfg['DATASET']['dataset_name'] if dset_name in FILTER_DB_SETTINGS: filter_settings = FILTER_DB_SETTINGS[dset_name] else: filter_settings = FILTER_DB_SETTINGS['default'] print('filter settings: %s' % str(filter_settings)) print('turning embed_db eval on!') prev_embed_db_eval = copy.deepcopy(model.embed_db_eval) model.embed_db_eval = True model.embed_db.filter_db(**filter_settings) eval_script, cache_vars, eval_vars = eval_zoo(cfg.DATASET.dataset_name) if True: cached_preds = cache_preds(model, loader, stats=stats, cache_vars=cache_vars) else: cached_preds = cache_preds(model, loader, stats=stats, cache_vars=cache_vars, eval_mode=False) assert False, 'make sure not to continue beyond here!' results, _ = eval_script(cached_preds, eval_vars=eval_vars) if stats is not None: stats.update(results, stat_set='test') #, log_vars=results.keys()) stats.print(stat_set='test') if hasattr(model, 'embed_db_eval'): model.embed_db_eval = prev_embed_db_eval class ExperimentConfig(object): def __init__( self, cfg_file=None, model_zoo='./data/torch_zoo/', exp_name='test', exp_idx=0, exp_dir='./data/exps/keypoint_densification/default/', gpu_idx=0, resume=True, seed=0, resume_epoch=-1, eval_interval=1, store_checkpoints=True, store_checkpoints_purge=1, store_checkpoints_purge_except_every=25, batch_size=10, num_workers=8, visdom_env='', collect_basis_before_eval=False, visdom_server='http://localhost', visdom_port=8097, metric_print_interval=5, visualize_interval=0, mode='trainval', batch_sampler='sequence', annotate_with_c3dpo_outputs=True, SOLVER = get_default_args(init_optimizer), DATASET = get_default_args(dataset_zoo), MODEL = get_default_args(Model), ): self.cfg = get_default_args(ExperimentConfig) if cfg_file is not None: set_config_from_file(self.cfg,cfg_file) else: auto_init_args(self,tgt='cfg',can_overwrite=True) self.cfg = nested_attr_dict(self.cfg) if __name__ == '__main__': torch.manual_seed(0) np.random.seed(0) # init the exp config exp = ExperimentConfig() set_config_from_file(exp.cfg, sys.argv[1]) mode = 'train' if len(sys.argv) > 2 and sys.argv[2] == '--eval': mode = 'eval' pprint_dict(exp.cfg) #with open('freicars.yaml', 'w') as yaml_file: # yaml.dump(exp.cfg, yaml_file, default_flow_style=False) os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID' os.environ['CUDA_VISIBLE_DEVICES'] = str(exp.cfg.gpu_idx) if not exp.cfg.model_zoo is None: os.environ["TORCH_MODEL_ZOO"] = exp.cfg.model_zoo if mode == 'eval': run_evaluation(exp.cfg) else: run_training(exp.cfg)
c3dm-main
c3dm/experiment.py
# Copyright (c) Facebook, Inc. and its affiliates. import torch import torch.nn.functional as Fu def image_meshgrid(bounds,resol): """ bounds in 3x2 resol in 3x1 """ # he,wi,de = resol # minw,maxw = bounds[0] # minh,maxh = bounds[1] # mind,maxd = bounds[2] axis = [ ((torch.arange(sz).float())/(sz-1))*(b[1]-b[0])+b[0] \ for sz,b in zip(resol,bounds) ] return torch.stack(torch.meshgrid(axis)) def append1(X, mask=1.): """ append 1 as the last dim """ X = torch.cat( (X, X[:,-2:-1]*0. + mask), dim=1 ) return X def depth2pcl( D, K, image_size=None, projection_type='perspective' ): """ convert depth D in B x 1 x He x Wi to a point cloud xyz_world in B x 3 x He x Wi using projection matrix KRT in B x 3 x 7 (K,R,T stacked along dim=2) the convention is: K[R|T] xyz_world = xyz_camera """ grid_size = D.shape[2:4] ba = D.shape[0] if image_size is None: image_size = grid_size he , wi = image_size projection_bounds = torch.FloatTensor( \ [ [0.5,he-0.5], [0.5,wi-0.5], ] ) yx_cam = image_meshgrid(projection_bounds,grid_size).type_as(D) xy_cam = yx_cam[[1,0],:,:] xy_cam = xy_cam[None].repeat(ba,1,1,1) xyz_cam = torch.cat( (xy_cam, D), dim=1 ) if projection_type=='perspective': xyz_world = unproject_from_camera( \ xyz_cam.view(ba,3,-1), K ) xyz_world = xyz_world.view(ba,3,grid_size[0],grid_size[1]) elif projection_type=='orthographic': xyz_world = xyz_cam else: raise ValueError(projection_type) return xyz_world def unproject_from_camera( xyz_cam, K ): """ unprojects the points from the camera coordinates xyz_cam to the world coordinates xyz_world xyz_cam in (B,3,N), 3rd dimension is depth, first two x,y pixel coords projection matrix KRT in B x 3 x 7 (K,R,T stacked along dim=2) """ # decompose KRT xy_cam = xyz_cam[:,0:2,:] depth = xyz_cam[:,2:3,:] # calibrate the points xyz_world = torch.bmm(torch.inverse(K),append1(xy_cam)) # append depth and mult by inverse of the transformation xyz_world = xyz_world * depth return xyz_world
c3dm-main
c3dm/tools/pcl_unproject.py
# Copyright (c) Facebook, Inc. and its affiliates. import torch import torch.nn.functional as Fu import numpy as np import collections import warnings def clamp_depth(X, min_depth): xy, depth = X[:,0:2], X[:,2:] depth = torch.clamp(depth, min_depth) return torch.cat((xy,depth), dim=1) def calc_ray_projection(X, Y, K=None, min_r_len=None, min_depth=None): n = X.shape[2] ba = X.shape[0] append1 = lambda x: \ torch.cat((x,x.new_ones(x.shape[0],1,x.shape[2])), dim=1) if K is None: # Y is already calibrated r = append1(Y) else: r = torch.bmm(torch.inverse(K), append1(Y)) r = Fu.normalize(r, dim=1) if min_depth is not None: X = clamp_depth(X, min_depth) r_len = (X * r).sum(1, keepdim=True) if min_r_len is not None: r_len = torch.clamp(r_len, min_r_len) r_proj = r_len * r return r_proj def minimise_2d_residual_over_T(K, X, Y, v=None): ba, _, n = X.size() append1 = lambda x: torch.cat((x, x.new_ones(x[:,:1,:].size())), dim=1) Y_cam = torch.bmm(torch.inverse(K), append1(Y)) # construct a system AT = b A_u = torch.cat((Y_cam.new_ones(ba, n, 1), Y_cam.new_zeros(ba, n, 1), -Y_cam[:,:1,:].permute(0,2,1)), dim=2) A_v = torch.cat((Y_cam.new_zeros(ba, n, 1), Y_cam.new_ones(ba, n, 1), -Y_cam[:,1:2,:].permute(0,2,1)), dim=2) b_u = (Y_cam[:,0:1,:] * X[:,2:,:] - X[:,0:1,:]).permute(0,2,1) b_v = (Y_cam[:,1:2,:] * X[:,2:,:] - X[:,1:2,:]).permute(0,2,1) res = Y_cam.new_empty(ba, 3) for i in range(ba): if v is not None: A = torch.cat((A_u[i, v[i] > 0., :], A_v[i, v[i] > 0., :]), dim=0) b = torch.cat((b_u[i, v[i] > 0., :], b_v[i, v[i] > 0., :]), dim=0) else: A = torch.cat((A_u[i, :, :], A_v[i, :, :]), dim=0) b = torch.cat((b_u[i, :, :], b_v[i, :, :]), dim=0) #res[i,:] = torch.lstsq(b, A)[0][:3, 0] res[i,:] = torch.matmul(torch.pinverse(A), b)[:, 0] return res # TODO: if used, extract to test def test_minimise_2d_residual_over_T(): K = torch.eye(3)[None,:,:] X = torch.cat((Y, Y.new_ones(1,1,4)), dim=1) Y = torch.tensor([[0.0, 0.0], [0.0, 1.0], [1.0, 0.0], [1.0, 1.0]]).t()[None,:,:] res = minimise_2d_residual_over_T(K, X, Y) assert torch.allclose(res, torch.tensor([[0., 0., 0.]])) X = torch.cat((Y, 2*Y.new_ones(1,1,4)), dim=1) assert torch.allclose(res, torch.tensor([[0., 0., -1.]])) X = torch.cat((Y, Y.new_ones(1,1,4)), dim=1) Y[:,0,:] += 3 assert torch.allclose(res, torch.tensor([[3., 0., 0.]])) def find_camera_T(K, X, Y, v=None, eps=1e-4): """ estimate camera translation given 3D-2D correspondences and cal matrix """ n = X.shape[2] ba = X.shape[0] append1 = lambda x: \ torch.cat((x,x.new_ones(x.shape[0],1,x.shape[2])), dim=1) # projection rays r = torch.bmm(torch.inverse(K), append1(Y)) r = Fu.normalize(r, dim=1) # outer projection ray product (need to permute the array first) rr = r.permute(0,2,1).contiguous().view(n*ba, 3) rr = torch.bmm(rr[:,:,None], rr[:,None,:]) # I - rr Irr = torch.eye(3)[None].type_as(X).repeat(ba*n,1,1) - rr # [rr - I] x rrIx = torch.bmm(-Irr, X.permute(0,2,1).contiguous().view(n*ba, 3, 1)) Irr = Irr.view(ba,-1,3,3) rrIx = rrIx.view(ba,-1,3) if v is not None: Irr = Irr * v[:,:,None,None] rrIx = rrIx * v[:,:,None] Irr_sum = Irr.sum(1) rrIx_sum = rrIx.sum(1) if v is not None: ok = v.sum(1) > 2 # at least three visible rrI_sum_i = Irr_sum * 0. rrI_sum_i[ok] = torch.inverse(Irr_sum[ok]) else: rrI_sum_i = torch.inverse(Irr_sum) T = torch.bmm(rrI_sum_i, rrIx_sum[:,:,None])[:,:,0] return T def image_meshgrid(bounds, resol): """ bounds in 3x2 resol in 3x1 """ # he,wi,de = resol # minw,maxw = bounds[0] # minh,maxh = bounds[1] # mind,maxd = bounds[2] axis = [] for sz, b in zip(resol, bounds): binw = (b[1]-b[0]) / sz g = torch.arange(sz).float().cuda() * binw + 0.5 * binw axis.append(g) return torch.stack(torch.meshgrid(axis)) def masked_kp_mean(kp_loc,kp_vis): visibility_mass = torch.clamp(kp_vis.sum(1),1e-4) kp_mean = (kp_loc*kp_vis[:,None,:]).sum(2) kp_mean = kp_mean / visibility_mass[:,None] return kp_mean def huber(dfsq, scaling=0.03): loss = (safe_sqrt(1+dfsq/(scaling*scaling),eps=1e-4)-1) * scaling return loss def mod1(h): ge1 = (h > 1.).float() le0 = (h < 0.).float() ok = ((h>=0.) * (h<=1.)).float() rem_ge1 = h - h.long().float() rem_le0 = 1. - (-h) - (-h).long().float() h = ge1 * rem_ge1 + le0 * rem_le0 + ok * h return h def avg_l2_huber(x, y, mask=None, scaling=0.03, reduce_dims=[1]): dist = (x - y) ** 2 if reduce_dims: dist = dist.sum(reduce_dims) dist = huber(dist, scaling=float(scaling)) if mask is not None: dist = (dist*mask).sum(1) / \ torch.clamp(mask.sum(1),1.) else: if len(dist.shape)==2 and dist.shape[1] > 1: dist = dist.mean(1) dist = dist.mean() return dist def avg_l2_dist(x,y,squared=False,mask=None,eps=1e-4): diff = x - y dist = (diff*diff).sum(1) if not squared: dist = safe_sqrt(dist,eps=eps) if mask is not None: dist = (dist*mask).sum(1) / \ torch.clamp(mask.sum(1),1.) else: if len(dist.shape)==2 and dist.shape[1] > 1: dist = dist.mean(1) dist = dist.mean() return dist def argmin_translation_scale(x, y, v=None): # find translation/scale "T/s" st. s x + T = y ba = x.shape[0] x = x.view(ba, 2, -1) y = y.view(ba, 2, -1) if v is not None: v = v.view(ba, -1) x_mu = (x * v[:, None]).sum(2) / v.sum(1).clamp(1.)[:, None] y_mu = (y * v[:, None]).sum(2) / v.sum(1).clamp(1.)[:, None] else: x_mu = x.mean(2) y_mu = y.mean(2) x = x - x_mu[:, :, None] y = y - y_mu[:, :, None] s = argmin_scale(x, y, v=v) T = -x_mu * s[:, None] + y_mu return s, T def argmin_translation(x,y,v=None): # find translation "T" st. x + T = y x_mu = x.mean(2) if v is not None: vmass = torch.clamp(v.sum(1,keepdim=True),1e-4) x_mu = (v[:,None,:]*x).sum(2) / vmass y_mu = (v[:,None,:]*y).sum(2) / vmass T = y_mu - x_mu return T def argmin_scale(x,y,v=None): # find scale "s" st.: sx=y if v is not None: # mask invisible x = x * v[:,None,:] y = y * v[:,None,:] xtx = (x*x).sum(1).sum(1) xty = (x*y).sum(1).sum(1) s = xty / torch.clamp(xtx,1e-4) return s def logexploss(x,inv_lbd,coeff=1.,accum=True): lbd = 1 / inv_lbd conj = lbd.log() prob = -x*lbd logl = -(prob+coeff*conj) # neg loglikelyhood if accum: return logl.mean() else: return logl def safe_sqrt(A,eps=float(1e-4)): """ performs safe differentiable sqrt """ return (torch.clamp(A,float(0))+eps).sqrt() def rgb2hsv(im, eps=0.0000001): # img = im * 0.5 + 0.5 img = im # hue = torch.Tensor(im.shape[0], im.shape[2], im.shape[3]).to(im.device) hue = im.new_zeros( im.shape[0], im.shape[2], im.shape[3] ) hue[ img[:,2]==img.max(1)[0] ] = 4.0 + ( (img[:,0]-img[:,1]) / ( img.max(1)[0] - img.min(1)[0] + eps) ) [ img[:,2]==img.max(1)[0] ] hue[ img[:,1]==img.max(1)[0] ] = 2.0 + ( (img[:,2]-img[:,0]) / ( img.max(1)[0] - img.min(1)[0] + eps) ) [ img[:,1]==img.max(1)[0] ] hue[ img[:,0]==img.max(1)[0] ] = (0.0 + ( (img[:,1]-img[:,2]) / ( img.max(1)[0] - img.min(1)[0] + eps) ) [ img[:,0]==img.max(1)[0] ]) % 6 hue[img.min(1)[0]==img.max(1)[0]] = 0.0 hue = hue/6 saturation = ( img.max(1)[0] - img.min(1)[0] ) / ( img.max(1)[0] + eps ) saturation[ img.max(1)[0]==0 ] = 0 value = img.max(1)[0] hsv = torch.stack((hue, saturation, value), dim=1) return hsv def hsv2rgb(hsv): C = hsv[:,2] * hsv[:,1] X = C * ( 1 - ( (hsv[:,0]*6)%2 - 1 ).abs() ) m = hsv[:,2] - C # zero tensor z = hsv[:,0] * 0. h = hsv[:,0] RGB = \ ((h <= 1/6) )[:,None,:,:].float() * torch.stack((C,X,z), dim=1) +\ ((h > 1/6) * (h <= 2/6))[:,None,:,:].float() * torch.stack((X,C,z), dim=1) +\ ((h > 2/6) * (h <= 3/6))[:,None,:,:].float() * torch.stack((z,C,X), dim=1) +\ ((h > 3/6) * (h <= 4/6))[:,None,:,:].float() * torch.stack((z,X,C), dim=1) +\ ((h > 4/6) * (h <= 5/6))[:,None,:,:].float() * torch.stack((X,z,C), dim=1) +\ ((h > 5/6) * (h <= 6/6))[:,None,:,:].float() * torch.stack((C,z,X), dim=1) # if self.hsv[0] < 1/6: # R_hat, G_hat, B_hat = C, X, 0 # elif self.hsv[0] < 2/6: # R_hat, G_hat, B_hat = X, C, 0 # elif self.hsv[0] < 3/6: # R_hat, G_hat, B_hat = 0, C, X # elif self.hsv[0] < 4/6: # R_hat, G_hat, B_hat = 0, X, C # elif self.hsv[0] < 5/6: # R_hat, G_hat, B_hat = X, 0, C # elif self.hsv[0] <= 6/6: # R_hat, G_hat, B_hat = C, 0, X RGB = RGB + m[:,None,:,:] # R, G, B = (R_hat+m), (G_hat+m), (B_hat+m) return RGB def wmean(x, weight, dim=-1): return ( x.mean(dim=dim, keepdim=True) if weight is None else (x*weight[:,None,:]).sum(dim=dim, keepdim=True) / weight[:,None,:].sum(dim=dim, keepdim=True) ) def umeyama(X, Y, weight=None, center=True, allow_reflections=False, eps=1e-9): """ umeyama finds a rigid motion (rotation R and translation T) between two sets of points X and Y s.t. RX+T = Y in the least squares sense Inputs: X ... Batch x 3 x N ... each column is a 3d point Y ... Batch x 3 x N ... each column is a 3d point Outputs: R ... rotation component of rigid motion T ... translation component of rigid motion """ assert X.shape[1]==Y.shape[1] assert X.shape[2]==Y.shape[2] assert X.shape[1]==3 b, _, n = X.size() if center: Xmu = wmean(X, weight) Ymu = wmean(Y, weight) X = X - Xmu Y = Y - Ymu Sxy = ( torch.bmm(Y, X.transpose(2,1)) / n if weight is None else torch.bmm(Y*weight[:,None,:], X.transpose(2,1)*weight[:,:,None]) / weight.sum(-1)[:,None,None] ) U, _, V = torch.svd(Sxy) R = torch.bmm(U, V.transpose(2,1)) if not allow_reflections: s = torch.eye(3, dtype=X.dtype, device=X.device).repeat(b, 1, 1) s[:,-1,-1] = torch.det(R) # R = torch.matmul(s, R) R = torch.matmul(torch.matmul(U, s), V.transpose(2,1)) assert torch.all(torch.det(R) >= 0) T = ( Ymu - torch.bmm(R, Xmu[:,:]) if center else torch.zeros_like(X) )[:,:,0] return R, T def get_edm(pts, pts2=None): dtype = pts.data.type() ba, dim, N = pts.shape if pts2 is not None: edm = torch.bmm(-2. * pts2.transpose(1,2), pts) fNorm1 = (pts*pts).sum(1,keepdim=True) fNorm2 = (pts2*pts2).sum(1,keepdim=True) edm += fNorm2.transpose(1,2) # inplace saves memory edm += fNorm1 # edm = (fNorm2.transpose(1,2) + fGram) + fNorm1 else: fGram = torch.bmm(2 * pts.transpose(1,2), pts) fNorm1 = (pts*pts).sum(1,keepdim=True) edm = (fNorm1.transpose(1,2) - fGram) + fNorm1 return edm.contiguous() def sample_random_xy(xy, mask, n=100): ba = xy.shape[0] xy = xy.reshape(ba, 2, -1) mask = mask.reshape(ba, -1) xy_sample = [] for m_, xy_ in zip(mask, xy): ok = torch.nonzero(m_) if ok.numel() <= 2: warnings.warn('nothing in the mask!') ok = torch.nonzero(m_ + 1).squeeze() ok = ok.squeeze() sel = torch.randint(low=0, high=len(ok), size=(n,), device=xy.device) xy_sample.append(xy_[:, ok[sel]]) xy_sample = torch.stack(xy_sample) return xy_sample def get_mask_chamfer(xy_rdr, gt_mask, image_size, n=100): ba = xy_rdr.shape[0] render_size = gt_mask.shape[2:] grid_gt = image_meshgrid(((0, 2), (0, 2)), render_size) grid_gt = grid_gt.type_as(xy_rdr) - 1. grid_gt = grid_gt[[1, 0]][None].repeat(ba, 1, 1, 1) # sample random points from gt mask gt_samples = sample_random_xy(grid_gt, gt_mask, n=n) # compute chamfer edm = get_edm(gt_samples, xy_rdr) edm = huber(edm, scaling=0.1) loss = 0.5 * (edm.min(dim=1)[0].mean() + edm.min(dim=2)[0].mean()) return loss, gt_samples
c3dm-main
c3dm/tools/functions.py
# Copyright (c) Facebook, Inc. and its affiliates. from tools.utils import auto_init_args import torch import torch.nn.functional as Fu from torch.nn import Parameter from tools.utils import Timer class TensorAccumulator(torch.nn.Module): def __init__(self, db_size=30000, db_dim=3, perc_replace=0.01): super().__init__() auto_init_args(self) db = torch.zeros(db_dim, db_size).float() self.db = Parameter(db) self.db.requires_grad = False self.pointer = 0 self.uniform_sphere_sampling = False def get_db(self, uniform_sphere=False): if uniform_sphere or self.uniform_sphere_sampling: mean_norm = (self.db.data**2).sum(0).sqrt().mean() db = Fu.normalize(torch.randn_like(self.db), dim=0) * mean_norm return db else: if hasattr(self, 'db_f'): return self.db_f.clone() else: return self.db.data def filter_db(self, nn=1e-3, perc_keep=0.9, sig=0.01, lap_size=10, lap_alpha=1.): print('filtering db') if nn < 1.: nn = int(self.db.shape[1] * nn) print('nn size = %d' % nn) db_f = self.density_filter(nn=nn, perc_keep=perc_keep, \ sig=sig, in_db=self.db.data.clone()) if lap_size < 1.: lap_size = int(self.db.shape[1] * lap_size) db_f = self.lap_filter(lap_size=lap_size, lap_alpha=lap_alpha, in_db=db_f) self.db_f = db_f def get_edm(self, pts, pts2=None): dtype = pts.data.type() ba, dim, N = pts.shape if not(pts2 is None): edm = torch.bmm(-2. * pts2.transpose(1,2), pts) fNorm1 = (pts*pts).sum(1,keepdim=True) fNorm2 = (pts2*pts2).sum(1,keepdim=True) edm += fNorm2.transpose(1,2) edm += fNorm1 else: edm = torch.bmm(-2 * pts.transpose(1,2), pts) fNorm1 = (pts*pts).sum(1,keepdim=True) edm += fNorm1.transpose(1,2) edm += fNorm1 return edm.contiguous() def reset(self): self.db.data = torch.zeros(self.db_dim, self.db_size).type_as(self.db.data) self.pointer = 0 def get_nns(self, pts, pts2, nn, bsize=int(1e4)): # nb = int(np.ceil(pts.shape[1] / bsize)) chunks = torch.split(pts, bsize, dim=1) indKNN = [] for chunk in chunks: edm = self.get_edm(pts2[None], chunk[None])[0] _, indKNN_ = torch.topk(edm, k=nn, dim=1, largest=False) indKNN.append(indKNN_) indKNN = torch.cat(indKNN, dim=0) return indKNN def density_filter(self, nn=50, perc_keep=0.9, sig=0.01, in_db=None): print('density filter ...') if in_db is None: pcl = self.db.data else: pcl = in_db indKNN = self.get_nns(pcl, pcl, nn=nn) # edm = self.get_edm(pcl[None])[0] # _, indKNN = torch.topk(edm, k=nn, dim=0, largest=False) NNs = pcl[:,indKNN] dsity = (-((NNs - pcl[:,:,None])**2).sum(0)/sig).exp().sum(1) thr = torch.topk(dsity, \ int((1.-perc_keep)*dsity.shape[0]), largest=False)[0][-1] pcl = pcl[:, dsity>=thr] if in_db is None: self.db.data = pcl else: return pcl def lap_filter(self, lap_size=10, lap_alpha=1., in_db=None): print('lap filter ...') if in_db is None: pcl = self.db.data else: pcl = in_db indKNN = self.get_nns(pcl, pcl, nn=lap_size) NNs = pcl[:,indKNN] pclf = NNs.mean(dim=2) pcl = lap_alpha * pclf + (1-lap_alpha) * pcl if in_db is None: self.db.data = pcl else: return pcl def forward(self, embed=None, masks=None): if not self.training: # gather only on the train set return None ba = embed.shape[0] embed_flat = embed.view(ba,self.db_dim,-1).detach() if masks is not None: mask_flat = masks.view(ba, -1) else: mask_flat = embed_flat[:,0,:] * 0. + 1. # with Timer(): # embed_flat = embed_flat.permute(1,2,0).contiguous().view(1,self.db_dim,-1) # mask_flat = mask_flat.t().contiguous().view(1,-1) for bi, (m, e) in enumerate(zip(mask_flat, embed_flat)): sel = torch.nonzero(m).squeeze() if sel.numel()<=2: continue nsel = max(int(self.db_size * self.perc_replace), 1) if self.pointer >= self.db_size: # randomly replace idx = sel[torch.LongTensor(nsel).random_(0, len(sel))] idx_replace = torch.LongTensor(nsel).random_(0, self.db_size) embed_sel = e[:,idx].detach().data self.db.data[:, idx_replace] = embed_sel else: # keep adding vectors # print('filling db ...') nsel = min(nsel, self.db_size - self.pointer) idx = sel[torch.LongTensor(nsel).random_(0, len(sel))] embed_sel = e[:,idx].detach().data self.db.data[:, self.pointer:(self.pointer+nsel)] = embed_sel self.pointer += nsel # print(self.pointer) return None
c3dm-main
c3dm/tools/tensor_accumulator.py
# -*- coding: utf-8 -*- # Copyright (c) Facebook, Inc. and its affiliates. """Pretty-print tabular data.""" from __future__ import print_function from __future__ import unicode_literals from collections import namedtuple from platform import python_version_tuple import re import math if python_version_tuple() >= ("3", "3", "0"): from collections.abc import Iterable else: from collections import Iterable if python_version_tuple()[0] < "3": from itertools import izip_longest from functools import partial _none_type = type(None) _bool_type = bool _int_type = int _long_type = long _float_type = float _text_type = unicode _binary_type = str def _is_file(f): return isinstance(f, file) else: from itertools import zip_longest as izip_longest from functools import reduce, partial _none_type = type(None) _bool_type = bool _int_type = int _long_type = int _float_type = float _text_type = str _binary_type = bytes basestring = str import io def _is_file(f): return isinstance(f, io.IOBase) try: import wcwidth # optional wide-character (CJK) support except ImportError: wcwidth = None __all__ = ["tabulate", "tabulate_formats", "simple_separated_format"] __version__ = "0.8.4" # minimum extra space in headers MIN_PADDING = 2 # Whether or not to preserve leading/trailing whitespace in data. PRESERVE_WHITESPACE = False _DEFAULT_FLOATFMT="g" _DEFAULT_MISSINGVAL="" # if True, enable wide-character (CJK) support WIDE_CHARS_MODE = wcwidth is not None Line = namedtuple("Line", ["begin", "hline", "sep", "end"]) DataRow = namedtuple("DataRow", ["begin", "sep", "end"]) # A table structure is suppposed to be: # # --- lineabove --------- # headerrow # --- linebelowheader --- # datarow # --- linebewteenrows --- # ... (more datarows) ... # --- linebewteenrows --- # last datarow # --- linebelow --------- # # TableFormat's line* elements can be # # - either None, if the element is not used, # - or a Line tuple, # - or a function: [col_widths], [col_alignments] -> string. # # TableFormat's *row elements can be # # - either None, if the element is not used, # - or a DataRow tuple, # - or a function: [cell_values], [col_widths], [col_alignments] -> string. # # padding (an integer) is the amount of white space around data values. # # with_header_hide: # # - either None, to display all table elements unconditionally, # - or a list of elements not to be displayed if the table has column headers. # TableFormat = namedtuple("TableFormat", ["lineabove", "linebelowheader", "linebetweenrows", "linebelow", "headerrow", "datarow", "padding", "with_header_hide"]) def _pipe_segment_with_colons(align, colwidth): """Return a segment of a horizontal line with optional colons which indicate column's alignment (as in `pipe` output format).""" w = colwidth if align in ["right", "decimal"]: return ('-' * (w - 1)) + ":" elif align == "center": return ":" + ('-' * (w - 2)) + ":" elif align == "left": return ":" + ('-' * (w - 1)) else: return '-' * w def _pipe_line_with_colons(colwidths, colaligns): """Return a horizontal line with optional colons to indicate column's alignment (as in `pipe` output format).""" segments = [_pipe_segment_with_colons(a, w) for a, w in zip(colaligns, colwidths)] return "|" + "|".join(segments) + "|" def _mediawiki_row_with_attrs(separator, cell_values, colwidths, colaligns): alignment = { "left": '', "right": 'align="right"| ', "center": 'align="center"| ', "decimal": 'align="right"| ' } # hard-coded padding _around_ align attribute and value together # rather than padding parameter which affects only the value values_with_attrs = [' ' + alignment.get(a, '') + c + ' ' for c, a in zip(cell_values, colaligns)] colsep = separator*2 return (separator + colsep.join(values_with_attrs)).rstrip() def _textile_row_with_attrs(cell_values, colwidths, colaligns): cell_values[0] += ' ' alignment = { "left": "<.", "right": ">.", "center": "=.", "decimal": ">." } values = (alignment.get(a, '') + v for a, v in zip(colaligns, cell_values)) return '|' + '|'.join(values) + '|' def _html_begin_table_without_header(colwidths_ignore, colaligns_ignore): # this table header will be suppressed if there is a header row return "\n".join(["<table>", "<tbody>"]) def _html_row_with_attrs(celltag, cell_values, colwidths, colaligns): alignment = { "left": '', "right": ' style="text-align: right;"', "center": ' style="text-align: center;"', "decimal": ' style="text-align: right;"' } values_with_attrs = ["<{0}{1}>{2}</{0}>".format(celltag, alignment.get(a, ''), c) for c, a in zip(cell_values, colaligns)] rowhtml = "<tr>" + "".join(values_with_attrs).rstrip() + "</tr>" if celltag == "th": # it's a header row, create a new table header rowhtml = "\n".join(["<table>", "<thead>", rowhtml, "</thead>", "<tbody>"]) return rowhtml def _moin_row_with_attrs(celltag, cell_values, colwidths, colaligns, header=''): alignment = { "left": '', "right": '<style="text-align: right;">', "center": '<style="text-align: center;">', "decimal": '<style="text-align: right;">' } values_with_attrs = ["{0}{1} {2} ".format(celltag, alignment.get(a, ''), header+c+header) for c, a in zip(cell_values, colaligns)] return "".join(values_with_attrs)+"||" def _latex_line_begin_tabular(colwidths, colaligns, booktabs=False): alignment = { "left": "l", "right": "r", "center": "c", "decimal": "r" } tabular_columns_fmt = "".join([alignment.get(a, "l") for a in colaligns]) return "\n".join(["\\begin{tabular}{" + tabular_columns_fmt + "}", "\\toprule" if booktabs else "\\hline"]) LATEX_ESCAPE_RULES = {r"&": r"\&", r"%": r"\%", r"$": r"\$", r"#": r"\#", r"_": r"\_", r"^": r"\^{}", r"{": r"\{", r"}": r"\}", r"~": r"\textasciitilde{}", "\\": r"\textbackslash{}", r"<": r"\ensuremath{<}", r">": r"\ensuremath{>}"} def _latex_row(cell_values, colwidths, colaligns, escrules=LATEX_ESCAPE_RULES): def escape_char(c): return escrules.get(c, c) escaped_values = ["".join(map(escape_char, cell)) for cell in cell_values] rowfmt = DataRow("", "&", "\\\\") return _build_simple_row(escaped_values, rowfmt) def _rst_escape_first_column(rows, headers): def escape_empty(val): if isinstance(val, (_text_type, _binary_type)) and not val.strip(): return ".." else: return val new_headers = list(headers) new_rows = [] if headers: new_headers[0] = escape_empty(headers[0]) for row in rows: new_row = list(row) if new_row: new_row[0] = escape_empty(row[0]) new_rows.append(new_row) return new_rows, new_headers _table_formats = {"simple": TableFormat(lineabove=Line("", "-", " ", ""), linebelowheader=Line("", "-", " ", ""), linebetweenrows=None, linebelow=Line("", "-", " ", ""), headerrow=DataRow("", " ", ""), datarow=DataRow("", " ", ""), padding=0, with_header_hide=["lineabove", "linebelow"]), "plain": TableFormat(lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("", " ", ""), datarow=DataRow("", " ", ""), padding=0, with_header_hide=None), "grid": TableFormat(lineabove=Line("+", "-", "+", "+"), linebelowheader=Line("+", "=", "+", "+"), linebetweenrows=Line("+", "-", "+", "+"), linebelow=Line("+", "-", "+", "+"), headerrow=DataRow("|", "|", "|"), datarow=DataRow("|", "|", "|"), padding=1, with_header_hide=None), "fancy_grid": TableFormat(lineabove=Line("β•’", "═", "β•€", "β••"), linebelowheader=Line("β•ž", "═", "β•ͺ", "β•‘"), linebetweenrows=Line("β”œ", "─", "β”Ό", "─"), linebelow=Line("β•˜", "═", "β•§", "β•›"), headerrow=DataRow("β”‚", "β”‚", "β”‚"), datarow=DataRow("β”‚", "β”‚", "β”‚"), padding=1, with_header_hide=None), "github": TableFormat(lineabove=Line("|", "-", "|", "|"), linebelowheader=Line("|", "-", "|", "|"), linebetweenrows=None, linebelow=None, headerrow=DataRow("|", "|", "|"), datarow=DataRow("|", "|", "|"), padding=1, with_header_hide=["lineabove"]), "pipe": TableFormat(lineabove=_pipe_line_with_colons, linebelowheader=_pipe_line_with_colons, linebetweenrows=None, linebelow=None, headerrow=DataRow("|", "|", "|"), datarow=DataRow("|", "|", "|"), padding=1, with_header_hide=["lineabove"]), "orgtbl": TableFormat(lineabove=None, linebelowheader=Line("|", "-", "+", "|"), linebetweenrows=None, linebelow=None, headerrow=DataRow("|", "|", "|"), datarow=DataRow("|", "|", "|"), padding=1, with_header_hide=None), "jira": TableFormat(lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("||", "||", "||"), datarow=DataRow("|", "|", "|"), padding=1, with_header_hide=None), "presto": TableFormat(lineabove=None, linebelowheader=Line("", "-", "+", ""), linebetweenrows=None, linebelow=None, headerrow=DataRow("", "|", ""), datarow=DataRow("", "|", ""), padding=1, with_header_hide=None), "psql": TableFormat(lineabove=Line("+", "-", "+", "+"), linebelowheader=Line("|", "-", "+", "|"), linebetweenrows=None, linebelow=Line("+", "-", "+", "+"), headerrow=DataRow("|", "|", "|"), datarow=DataRow("|", "|", "|"), padding=1, with_header_hide=None), "rst": TableFormat(lineabove=Line("", "=", " ", ""), linebelowheader=Line("", "=", " ", ""), linebetweenrows=None, linebelow=Line("", "=", " ", ""), headerrow=DataRow("", " ", ""), datarow=DataRow("", " ", ""), padding=0, with_header_hide=None), "mediawiki": TableFormat(lineabove=Line("{| class=\"wikitable\" style=\"text-align: left;\"", "", "", "\n|+ <!-- caption -->\n|-"), linebelowheader=Line("|-", "", "", ""), linebetweenrows=Line("|-", "", "", ""), linebelow=Line("|}", "", "", ""), headerrow=partial(_mediawiki_row_with_attrs, "!"), datarow=partial(_mediawiki_row_with_attrs, "|"), padding=0, with_header_hide=None), "moinmoin": TableFormat(lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=partial(_moin_row_with_attrs,"||",header="'''"), datarow=partial(_moin_row_with_attrs,"||"), padding=1, with_header_hide=None), "youtrack": TableFormat(lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("|| ", " || ", " || "), datarow=DataRow("| ", " | ", " |"), padding=1, with_header_hide=None), "html": TableFormat(lineabove=_html_begin_table_without_header, linebelowheader="", linebetweenrows=None, linebelow=Line("</tbody>\n</table>", "", "", ""), headerrow=partial(_html_row_with_attrs, "th"), datarow=partial(_html_row_with_attrs, "td"), padding=0, with_header_hide=["lineabove"]), "latex": TableFormat(lineabove=_latex_line_begin_tabular, linebelowheader=Line("\\hline", "", "", ""), linebetweenrows=None, linebelow=Line("\\hline\n\\end{tabular}", "", "", ""), headerrow=_latex_row, datarow=_latex_row, padding=1, with_header_hide=None), "latex_raw": TableFormat(lineabove=_latex_line_begin_tabular, linebelowheader=Line("\\hline", "", "", ""), linebetweenrows=None, linebelow=Line("\\hline\n\\end{tabular}", "", "", ""), headerrow=partial(_latex_row, escrules={}), datarow=partial(_latex_row, escrules={}), padding=1, with_header_hide=None), "latex_booktabs": TableFormat(lineabove=partial(_latex_line_begin_tabular, booktabs=True), linebelowheader=Line("\\midrule", "", "", ""), linebetweenrows=None, linebelow=Line("\\bottomrule\n\\end{tabular}", "", "", ""), headerrow=_latex_row, datarow=_latex_row, padding=1, with_header_hide=None), "tsv": TableFormat(lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("", "\t", ""), datarow=DataRow("", "\t", ""), padding=0, with_header_hide=None), "textile": TableFormat(lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("|_. ", "|_.", "|"), datarow=_textile_row_with_attrs, padding=1, with_header_hide=None)} tabulate_formats = list(sorted(_table_formats.keys())) # The table formats for which multiline cells will be folded into subsequent # table rows. The key is the original format specified at the API. The value is # the format that will be used to represent the original format. multiline_formats = { "plain": "plain", "simple": "simple", "grid": "grid", "fancy_grid": "fancy_grid", "pipe": "pipe", "orgtbl": "orgtbl", "jira": "jira", "presto": "presto", "psql": "psql", "rst": "rst", } # TODO: Add multiline support for the remaining table formats: # - mediawiki: Replace \n with <br> # - moinmoin: TBD # - youtrack: TBD # - html: Replace \n with <br> # - latex*: Use "makecell" package: In header, replace X\nY with # \thead{X\\Y} and in data row, replace X\nY with \makecell{X\\Y} # - tsv: TBD # - textile: Replace \n with <br/> (must be well-formed XML) _multiline_codes = re.compile(r"\r|\n|\r\n") _multiline_codes_bytes = re.compile(b"\r|\n|\r\n") _invisible_codes = re.compile(r"\x1b\[\d+[;\d]*m|\x1b\[\d*\;\d*\;\d*m") # ANSI color codes _invisible_codes_bytes = re.compile(b"\x1b\[\d+[;\d]*m|\x1b\[\d*\;\d*\;\d*m") # ANSI color codes def simple_separated_format(separator): """Construct a simple TableFormat with columns separated by a separator. >>> tsv = simple_separated_format("\\t") ; \ tabulate([["foo", 1], ["spam", 23]], tablefmt=tsv) == 'foo \\t 1\\nspam\\t23' True """ return TableFormat(None, None, None, None, headerrow=DataRow('', separator, ''), datarow=DataRow('', separator, ''), padding=0, with_header_hide=None) def _isconvertible(conv, string): try: n = conv(string) return True except (ValueError, TypeError): return False def _isnumber(string): """ >>> _isnumber("123.45") True >>> _isnumber("123") True >>> _isnumber("spam") False >>> _isnumber("123e45678") False >>> _isnumber("inf") True """ if not _isconvertible(float, string): return False elif isinstance(string, (_text_type, _binary_type)) and ( math.isinf(float(string)) or math.isnan(float(string))): return string.lower() in ['inf', '-inf', 'nan'] return True def _isint(string, inttype=int): """ >>> _isint("123") True >>> _isint("123.45") False """ return type(string) is inttype or\ (isinstance(string, _binary_type) or isinstance(string, _text_type))\ and\ _isconvertible(inttype, string) def _isbool(string): """ >>> _isbool(True) True >>> _isbool("False") True >>> _isbool(1) False """ return type(string) is _bool_type or\ (isinstance(string, (_binary_type, _text_type))\ and\ string in ("True", "False")) def _type(string, has_invisible=True, numparse=True): """The least generic type (type(None), int, float, str, unicode). >>> _type(None) is type(None) True >>> _type("foo") is type("") True >>> _type("1") is type(1) True >>> _type('\x1b[31m42\x1b[0m') is type(42) True >>> _type('\x1b[31m42\x1b[0m') is type(42) True """ if has_invisible and \ (isinstance(string, _text_type) or isinstance(string, _binary_type)): string = _strip_invisible(string) if string is None: return _none_type elif hasattr(string, "isoformat"): # datetime.datetime, date, and time return _text_type elif _isbool(string): return _bool_type elif _isint(string) and numparse: return int elif _isint(string, _long_type) and numparse: return int elif _isnumber(string) and numparse: return float elif isinstance(string, _binary_type): return _binary_type else: return _text_type def _afterpoint(string): """Symbols after a decimal point, -1 if the string lacks the decimal point. >>> _afterpoint("123.45") 2 >>> _afterpoint("1001") -1 >>> _afterpoint("eggs") -1 >>> _afterpoint("123e45") 2 """ if _isnumber(string): if _isint(string): return -1 else: pos = string.rfind(".") pos = string.lower().rfind("e") if pos < 0 else pos if pos >= 0: return len(string) - pos - 1 else: return -1 # no point else: return -1 # not a number def _padleft(width, s): """Flush right. >>> _padleft(6, '\u044f\u0439\u0446\u0430') == ' \u044f\u0439\u0446\u0430' True """ fmt = "{0:>%ds}" % width return fmt.format(s) def _padright(width, s): """Flush left. >>> _padright(6, '\u044f\u0439\u0446\u0430') == '\u044f\u0439\u0446\u0430 ' True """ fmt = "{0:<%ds}" % width return fmt.format(s) def _padboth(width, s): """Center string. >>> _padboth(6, '\u044f\u0439\u0446\u0430') == ' \u044f\u0439\u0446\u0430 ' True """ fmt = "{0:^%ds}" % width return fmt.format(s) def _padnone(ignore_width, s): return s def _strip_invisible(s): "Remove invisible ANSI color codes." if isinstance(s, _text_type): return re.sub(_invisible_codes, "", s) else: # a bytestring return re.sub(_invisible_codes_bytes, "", s) def _visible_width(s): """Visible width of a printed string. ANSI color codes are removed. >>> _visible_width('\x1b[31mhello\x1b[0m'), _visible_width("world") (5, 5) """ # optional wide-character support if wcwidth is not None and WIDE_CHARS_MODE: len_fn = wcwidth.wcswidth else: len_fn = len if isinstance(s, _text_type) or isinstance(s, _binary_type): return len_fn(_strip_invisible(s)) else: return len_fn(_text_type(s)) def _is_multiline(s): if isinstance(s, _text_type): return bool(re.search(_multiline_codes, s)) else: # a bytestring return bool(re.search(_multiline_codes_bytes, s)) def _multiline_width(multiline_s, line_width_fn=len): """Visible width of a potentially multiline content.""" return max(map(line_width_fn, re.split("[\r\n]", multiline_s))) def _choose_width_fn(has_invisible, enable_widechars, is_multiline): """Return a function to calculate visible cell width.""" if has_invisible: line_width_fn = _visible_width elif enable_widechars: # optional wide-character support if available line_width_fn = wcwidth.wcswidth else: line_width_fn = len if is_multiline: width_fn = lambda s: _multiline_width(s, line_width_fn) else: width_fn = line_width_fn return width_fn def _align_column_choose_padfn(strings, alignment, has_invisible): if alignment == "right": if not PRESERVE_WHITESPACE: strings = [s.strip() for s in strings] padfn = _padleft elif alignment == "center": if not PRESERVE_WHITESPACE: strings = [s.strip() for s in strings] padfn = _padboth elif alignment == "decimal": if has_invisible: decimals = [_afterpoint(_strip_invisible(s)) for s in strings] else: decimals = [_afterpoint(s) for s in strings] maxdecimals = max(decimals) strings = [s + (maxdecimals - decs) * " " for s, decs in zip(strings, decimals)] padfn = _padleft elif not alignment: padfn = _padnone else: if not PRESERVE_WHITESPACE: strings = [s.strip() for s in strings] padfn = _padright return strings, padfn def _align_column(strings, alignment, minwidth=0, has_invisible=True, enable_widechars=False, is_multiline=False): """[string] -> [padded_string]""" strings, padfn = _align_column_choose_padfn(strings, alignment, has_invisible) width_fn = _choose_width_fn(has_invisible, enable_widechars, is_multiline) s_widths = list(map(width_fn, strings)) maxwidth = max(max(s_widths), minwidth) # TODO: refactor column alignment in single-line and multiline modes if is_multiline: if not enable_widechars and not has_invisible: padded_strings = [ "\n".join([padfn(maxwidth, s) for s in ms.splitlines()]) for ms in strings] else: # enable wide-character width corrections s_lens = [max((len(s) for s in re.split("[\r\n]", ms))) for ms in strings] visible_widths = [maxwidth - (w - l) for w, l in zip(s_widths, s_lens)] # wcswidth and _visible_width don't count invisible characters; # padfn doesn't need to apply another correction padded_strings = ["\n".join([padfn(w, s) for s in (ms.splitlines() or ms)]) for ms, w in zip(strings, visible_widths)] else: # single-line cell values if not enable_widechars and not has_invisible: padded_strings = [padfn(maxwidth, s) for s in strings] else: # enable wide-character width corrections s_lens = list(map(len, strings)) visible_widths = [maxwidth - (w - l) for w, l in zip(s_widths, s_lens)] # wcswidth and _visible_width don't count invisible characters; # padfn doesn't need to apply another correction padded_strings = [padfn(w, s) for s, w in zip(strings, visible_widths)] return padded_strings def _more_generic(type1, type2): types = { _none_type: 0, _bool_type: 1, int: 2, float: 3, _binary_type: 4, _text_type: 5 } invtypes = { 5: _text_type, 4: _binary_type, 3: float, 2: int, 1: _bool_type, 0: _none_type } moregeneric = max(types.get(type1, 5), types.get(type2, 5)) return invtypes[moregeneric] def _column_type(strings, has_invisible=True, numparse=True): """The least generic type all column values are convertible to. >>> _column_type([True, False]) is _bool_type True >>> _column_type(["1", "2"]) is _int_type True >>> _column_type(["1", "2.3"]) is _float_type True >>> _column_type(["1", "2.3", "four"]) is _text_type True >>> _column_type(["four", '\u043f\u044f\u0442\u044c']) is _text_type True >>> _column_type([None, "brux"]) is _text_type True >>> _column_type([1, 2, None]) is _int_type True >>> import datetime as dt >>> _column_type([dt.datetime(1991,2,19), dt.time(17,35)]) is _text_type True """ types = [_type(s, has_invisible, numparse) for s in strings ] return reduce(_more_generic, types, _bool_type) def _format(val, valtype, floatfmt, missingval="", has_invisible=True): """Format a value accoding to its type. Unicode is supported: >>> hrow = ['\u0431\u0443\u043a\u0432\u0430', '\u0446\u0438\u0444\u0440\u0430'] ; \ tbl = [['\u0430\u0437', 2], ['\u0431\u0443\u043a\u0438', 4]] ; \ good_result = '\\u0431\\u0443\\u043a\\u0432\\u0430 \\u0446\\u0438\\u0444\\u0440\\u0430\\n------- -------\\n\\u0430\\u0437 2\\n\\u0431\\u0443\\u043a\\u0438 4' ; \ tabulate(tbl, headers=hrow) == good_result True """ if val is None: return missingval if valtype in [int, _text_type]: return "{0}".format(val) elif valtype is _binary_type: try: return _text_type(val, "ascii") except TypeError: return _text_type(val) elif valtype is float: is_a_colored_number = has_invisible and isinstance(val, (_text_type, _binary_type)) if is_a_colored_number: raw_val = _strip_invisible(val) formatted_val = format(float(raw_val), floatfmt) return val.replace(raw_val, formatted_val) else: return format(float(val), floatfmt) else: return "{0}".format(val) def _align_header(header, alignment, width, visible_width, is_multiline=False, width_fn=None): "Pad string header to width chars given known visible_width of the header." if is_multiline: header_lines = re.split(_multiline_codes, header) padded_lines = [_align_header(h, alignment, width, width_fn(h)) for h in header_lines] return "\n".join(padded_lines) # else: not multiline ninvisible = len(header) - visible_width width += ninvisible if alignment == "left": return _padright(width, header) elif alignment == "center": return _padboth(width, header) elif not alignment: return "{0}".format(header) else: return _padleft(width, header) def _prepend_row_index(rows, index): """Add a left-most index column.""" if index is None or index is False: return rows if len(index) != len(rows): print('index=', index) print('rows=', rows) raise ValueError('index must be as long as the number of data rows') rows = [[v]+list(row) for v,row in zip(index, rows)] return rows def _bool(val): "A wrapper around standard bool() which doesn't throw on NumPy arrays" try: return bool(val) except ValueError: # val is likely to be a numpy array with many elements return False def _normalize_tabular_data(tabular_data, headers, showindex="default"): """Transform a supported data type to a list of lists, and a list of headers. Supported tabular data types: * list-of-lists or another iterable of iterables * list of named tuples (usually used with headers="keys") * list of dicts (usually used with headers="keys") * list of OrderedDicts (usually used with headers="keys") * 2D NumPy arrays * NumPy record arrays (usually used with headers="keys") * dict of iterables (usually used with headers="keys") * pandas.DataFrame (usually used with headers="keys") The first row can be used as headers if headers="firstrow", column indices can be used as headers if headers="keys". If showindex="default", show row indices of the pandas.DataFrame. If showindex="always", show row indices for all types of data. If showindex="never", don't show row indices for all types of data. If showindex is an iterable, show its values as row indices. """ try: bool(headers) is_headers2bool_broken = False except ValueError: # numpy.ndarray, pandas.core.index.Index, ... is_headers2bool_broken = True headers = list(headers) index = None if hasattr(tabular_data, "keys") and hasattr(tabular_data, "values"): # dict-like and pandas.DataFrame? if hasattr(tabular_data.values, "__call__"): # likely a conventional dict keys = tabular_data.keys() rows = list(izip_longest(*tabular_data.values())) # columns have to be transposed elif hasattr(tabular_data, "index"): # values is a property, has .index => it's likely a pandas.DataFrame (pandas 0.11.0) keys = list(tabular_data) if tabular_data.index.name is not None: if isinstance(tabular_data.index.name, list): keys[:0] = tabular_data.index.name else: keys[:0] = [tabular_data.index.name] vals = tabular_data.values # values matrix doesn't need to be transposed # for DataFrames add an index per default index = list(tabular_data.index) rows = [list(row) for row in vals] else: raise ValueError("tabular data doesn't appear to be a dict or a DataFrame") if headers == "keys": headers = list(map(_text_type,keys)) # headers should be strings else: # it's a usual an iterable of iterables, or a NumPy array rows = list(tabular_data) if (headers == "keys" and not rows): # an empty table (issue #81) headers = [] elif (headers == "keys" and hasattr(tabular_data, "dtype") and getattr(tabular_data.dtype, "names")): # numpy record array headers = tabular_data.dtype.names elif (headers == "keys" and len(rows) > 0 and isinstance(rows[0], tuple) and hasattr(rows[0], "_fields")): # namedtuple headers = list(map(_text_type, rows[0]._fields)) elif (len(rows) > 0 and isinstance(rows[0], dict)): # dict or OrderedDict uniq_keys = set() # implements hashed lookup keys = [] # storage for set if headers == "firstrow": firstdict = rows[0] if len(rows) > 0 else {} keys.extend(firstdict.keys()) uniq_keys.update(keys) rows = rows[1:] for row in rows: for k in row.keys(): #Save unique items in input order if k not in uniq_keys: keys.append(k) uniq_keys.add(k) if headers == 'keys': headers = keys elif isinstance(headers, dict): # a dict of headers for a list of dicts headers = [headers.get(k, k) for k in keys] headers = list(map(_text_type, headers)) elif headers == "firstrow": if len(rows) > 0: headers = [firstdict.get(k, k) for k in keys] headers = list(map(_text_type, headers)) else: headers = [] elif headers: raise ValueError('headers for a list of dicts is not a dict or a keyword') rows = [[row.get(k) for k in keys] for row in rows] elif (headers == "keys" and hasattr(tabular_data, "description") and hasattr(tabular_data, "fetchone") and hasattr(tabular_data, "rowcount")): # Python Database API cursor object (PEP 0249) # print tabulate(cursor, headers='keys') headers = [column[0] for column in tabular_data.description] elif headers == "keys" and len(rows) > 0: # keys are column indices headers = list(map(_text_type, range(len(rows[0])))) # take headers from the first row if necessary if headers == "firstrow" and len(rows) > 0: if index is not None: headers = [index[0]] + list(rows[0]) index = index[1:] else: headers = rows[0] headers = list(map(_text_type, headers)) # headers should be strings rows = rows[1:] headers = list(map(_text_type,headers)) rows = list(map(list,rows)) # add or remove an index column showindex_is_a_str = type(showindex) in [_text_type, _binary_type] if showindex == "default" and index is not None: rows = _prepend_row_index(rows, index) elif isinstance(showindex, Iterable) and not showindex_is_a_str: rows = _prepend_row_index(rows, list(showindex)) elif showindex == "always" or (_bool(showindex) and not showindex_is_a_str): if index is None: index = list(range(len(rows))) rows = _prepend_row_index(rows, index) elif showindex == "never" or (not _bool(showindex) and not showindex_is_a_str): pass # pad with empty headers for initial columns if necessary if headers and len(rows) > 0: nhs = len(headers) ncols = len(rows[0]) if nhs < ncols: headers = [""]*(ncols - nhs) + headers return rows, headers def tabulate(tabular_data, headers=(), tablefmt="simple", floatfmt=_DEFAULT_FLOATFMT, numalign="decimal", stralign="left", missingval=_DEFAULT_MISSINGVAL, showindex="default", disable_numparse=False, colalign=None): """Format a fixed width table for pretty printing. >>> print(tabulate([[1, 2.34], [-56, "8.999"], ["2", "10001"]])) --- --------- 1 2.34 -56 8.999 2 10001 --- --------- The first required argument (`tabular_data`) can be a list-of-lists (or another iterable of iterables), a list of named tuples, a dictionary of iterables, an iterable of dictionaries, a two-dimensional NumPy array, NumPy record array, or a Pandas' dataframe. Table headers ------------- To print nice column headers, supply the second argument (`headers`): - `headers` can be an explicit list of column headers - if `headers="firstrow"`, then the first row of data is used - if `headers="keys"`, then dictionary keys or column indices are used Otherwise a headerless table is produced. If the number of headers is less than the number of columns, they are supposed to be names of the last columns. This is consistent with the plain-text format of R and Pandas' dataframes. >>> print(tabulate([["sex","age"],["Alice","F",24],["Bob","M",19]], ... headers="firstrow")) sex age ----- ----- ----- Alice F 24 Bob M 19 By default, pandas.DataFrame data have an additional column called row index. To add a similar column to all other types of data, use `showindex="always"` or `showindex=True`. To suppress row indices for all types of data, pass `showindex="never" or `showindex=False`. To add a custom row index column, pass `showindex=some_iterable`. >>> print(tabulate([["F",24],["M",19]], showindex="always")) - - -- 0 F 24 1 M 19 - - -- Column alignment ---------------- `tabulate` tries to detect column types automatically, and aligns the values properly. By default it aligns decimal points of the numbers (or flushes integer numbers to the right), and flushes everything else to the left. Possible column alignments (`numalign`, `stralign`) are: "right", "center", "left", "decimal" (only for `numalign`), and None (to disable alignment). Table formats ------------- `floatfmt` is a format specification used for columns which contain numeric data with a decimal point. This can also be a list or tuple of format strings, one per column. `None` values are replaced with a `missingval` string (like `floatfmt`, this can also be a list of values for different columns): >>> print(tabulate([["spam", 1, None], ... ["eggs", 42, 3.14], ... ["other", None, 2.7]], missingval="?")) ----- -- ---- spam 1 ? eggs 42 3.14 other ? 2.7 ----- -- ---- Various plain-text table formats (`tablefmt`) are supported: 'plain', 'simple', 'grid', 'pipe', 'orgtbl', 'rst', 'mediawiki', 'latex', 'latex_raw' and 'latex_booktabs'. Variable `tabulate_formats` contains the list of currently supported formats. "plain" format doesn't use any pseudographics to draw tables, it separates columns with a double space: >>> print(tabulate([["spam", 41.9999], ["eggs", "451.0"]], ... ["strings", "numbers"], "plain")) strings numbers spam 41.9999 eggs 451 >>> print(tabulate([["spam", 41.9999], ["eggs", "451.0"]], tablefmt="plain")) spam 41.9999 eggs 451 "simple" format is like Pandoc simple_tables: >>> print(tabulate([["spam", 41.9999], ["eggs", "451.0"]], ... ["strings", "numbers"], "simple")) strings numbers --------- --------- spam 41.9999 eggs 451 >>> print(tabulate([["spam", 41.9999], ["eggs", "451.0"]], tablefmt="simple")) ---- -------- spam 41.9999 eggs 451 ---- -------- "grid" is similar to tables produced by Emacs table.el package or Pandoc grid_tables: >>> print(tabulate([["spam", 41.9999], ["eggs", "451.0"]], ... ["strings", "numbers"], "grid")) +-----------+-----------+ | strings | numbers | +===========+===========+ | spam | 41.9999 | +-----------+-----------+ | eggs | 451 | +-----------+-----------+ >>> print(tabulate([["spam", 41.9999], ["eggs", "451.0"]], tablefmt="grid")) +------+----------+ | spam | 41.9999 | +------+----------+ | eggs | 451 | +------+----------+ "fancy_grid" draws a grid using box-drawing characters: >>> print(tabulate([["spam", 41.9999], ["eggs", "451.0"]], ... ["strings", "numbers"], "fancy_grid")) ╒═══════════╀═══════════╕ β”‚ strings β”‚ numbers β”‚ β•žβ•β•β•β•β•β•β•β•β•β•β•β•ͺ═══════════║ β”‚ spam β”‚ 41.9999 β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚ eggs β”‚ 451 β”‚ β•˜β•β•β•β•β•β•β•β•β•β•β•β•§β•β•β•β•β•β•β•β•β•β•β•β•› "pipe" is like tables in PHP Markdown Extra extension or Pandoc pipe_tables: >>> print(tabulate([["spam", 41.9999], ["eggs", "451.0"]], ... ["strings", "numbers"], "pipe")) | strings | numbers | |:----------|----------:| | spam | 41.9999 | | eggs | 451 | "presto" is like tables produce by the Presto CLI: >>> print(tabulate([["spam", 41.9999], ["eggs", "451.0"]], ... ["strings", "numbers"], "presto")) strings | numbers -----------+----------- spam | 41.9999 eggs | 451 >>> print(tabulate([["spam", 41.9999], ["eggs", "451.0"]], tablefmt="pipe")) |:-----|---------:| | spam | 41.9999 | | eggs | 451 | "orgtbl" is like tables in Emacs org-mode and orgtbl-mode. They are slightly different from "pipe" format by not using colons to define column alignment, and using a "+" sign to indicate line intersections: >>> print(tabulate([["spam", 41.9999], ["eggs", "451.0"]], ... ["strings", "numbers"], "orgtbl")) | strings | numbers | |-----------+-----------| | spam | 41.9999 | | eggs | 451 | >>> print(tabulate([["spam", 41.9999], ["eggs", "451.0"]], tablefmt="orgtbl")) | spam | 41.9999 | | eggs | 451 | "rst" is like a simple table format from reStructuredText; please note that reStructuredText accepts also "grid" tables: >>> print(tabulate([["spam", 41.9999], ["eggs", "451.0"]], ... ["strings", "numbers"], "rst")) ========= ========= strings numbers ========= ========= spam 41.9999 eggs 451 ========= ========= >>> print(tabulate([["spam", 41.9999], ["eggs", "451.0"]], tablefmt="rst")) ==== ======== spam 41.9999 eggs 451 ==== ======== "mediawiki" produces a table markup used in Wikipedia and on other MediaWiki-based sites: >>> print(tabulate([["strings", "numbers"], ["spam", 41.9999], ["eggs", "451.0"]], ... headers="firstrow", tablefmt="mediawiki")) {| class="wikitable" style="text-align: left;" |+ <!-- caption --> |- ! strings !! align="right"| numbers |- | spam || align="right"| 41.9999 |- | eggs || align="right"| 451 |} "html" produces HTML markup: >>> print(tabulate([["strings", "numbers"], ["spam", 41.9999], ["eggs", "451.0"]], ... headers="firstrow", tablefmt="html")) <table> <thead> <tr><th>strings </th><th style="text-align: right;"> numbers</th></tr> </thead> <tbody> <tr><td>spam </td><td style="text-align: right;"> 41.9999</td></tr> <tr><td>eggs </td><td style="text-align: right;"> 451 </td></tr> </tbody> </table> "latex" produces a tabular environment of LaTeX document markup: >>> print(tabulate([["spam", 41.9999], ["eggs", "451.0"]], tablefmt="latex")) \\begin{tabular}{lr} \\hline spam & 41.9999 \\\\ eggs & 451 \\\\ \\hline \\end{tabular} "latex_raw" is similar to "latex", but doesn't escape special characters, such as backslash and underscore, so LaTeX commands may embedded into cells' values: >>> print(tabulate([["spam$_9$", 41.9999], ["\\\\emph{eggs}", "451.0"]], tablefmt="latex_raw")) \\begin{tabular}{lr} \\hline spam$_9$ & 41.9999 \\\\ \\emph{eggs} & 451 \\\\ \\hline \\end{tabular} "latex_booktabs" produces a tabular environment of LaTeX document markup using the booktabs.sty package: >>> print(tabulate([["spam", 41.9999], ["eggs", "451.0"]], tablefmt="latex_booktabs")) \\begin{tabular}{lr} \\toprule spam & 41.9999 \\\\ eggs & 451 \\\\ \\bottomrule \end{tabular} Number parsing -------------- By default, anything which can be parsed as a number is a number. This ensures numbers represented as strings are aligned properly. This can lead to weird results for particular strings such as specific git SHAs e.g. "42992e1" will be parsed into the number 429920 and aligned as such. To completely disable number parsing (and alignment), use `disable_numparse=True`. For more fine grained control, a list column indices is used to disable number parsing only on those columns e.g. `disable_numparse=[0, 2]` would disable number parsing only on the first and third columns. """ if tabular_data is None: tabular_data = [] list_of_lists, headers = _normalize_tabular_data( tabular_data, headers, showindex=showindex) # empty values in the first column of RST tables should be escaped (issue #82) # "" should be escaped as "\\ " or ".." if tablefmt == 'rst': list_of_lists, headers = _rst_escape_first_column(list_of_lists, headers) # optimization: look for ANSI control codes once, # enable smart width functions only if a control code is found plain_text = '\t'.join(['\t'.join(map(_text_type, headers))] + \ ['\t'.join(map(_text_type, row)) for row in list_of_lists]) has_invisible = re.search(_invisible_codes, plain_text) enable_widechars = wcwidth is not None and WIDE_CHARS_MODE if tablefmt in multiline_formats and _is_multiline(plain_text): tablefmt = multiline_formats.get(tablefmt, tablefmt) is_multiline = True else: is_multiline = False width_fn = _choose_width_fn(has_invisible, enable_widechars, is_multiline) # format rows and columns, convert numeric values to strings cols = list(izip_longest(*list_of_lists)) numparses = _expand_numparse(disable_numparse, len(cols)) coltypes = [_column_type(col, numparse=np) for col, np in zip(cols, numparses)] if isinstance(floatfmt, basestring): #old version float_formats = len(cols) * [floatfmt] # just duplicate the string to use in each column else: # if floatfmt is list, tuple etc we have one per column float_formats = list(floatfmt) if len(float_formats) < len(cols): float_formats.extend( (len(cols)-len(float_formats)) * [_DEFAULT_FLOATFMT] ) if isinstance(missingval, basestring): missing_vals = len(cols) * [missingval] else: missing_vals = list(missingval) if len(missing_vals) < len(cols): missing_vals.extend( (len(cols)-len(missing_vals)) * [_DEFAULT_MISSINGVAL] ) cols = [[_format(v, ct, fl_fmt, miss_v, has_invisible) for v in c] for c, ct, fl_fmt, miss_v in zip(cols, coltypes, float_formats, missing_vals)] # align columns aligns = [numalign if ct in [int,float] else stralign for ct in coltypes] if colalign is not None: assert isinstance(colalign, Iterable) for idx, align in enumerate(colalign): aligns[idx] = align minwidths = [width_fn(h) + MIN_PADDING for h in headers] if headers else [0]*len(cols) cols = [_align_column(c, a, minw, has_invisible, enable_widechars, is_multiline) for c, a, minw in zip(cols, aligns, minwidths)] if headers: # align headers and add headers t_cols = cols or [['']] * len(headers) t_aligns = aligns or [stralign] * len(headers) minwidths = [max(minw, max(width_fn(cl) for cl in c)) for minw, c in zip(minwidths, t_cols)] headers = [_align_header(h, a, minw, width_fn(h), is_multiline, width_fn) for h, a, minw in zip(headers, t_aligns, minwidths)] rows = list(zip(*cols)) else: minwidths = [max(width_fn(cl) for cl in c) for c in cols] rows = list(zip(*cols)) if not isinstance(tablefmt, TableFormat): tablefmt = _table_formats.get(tablefmt, _table_formats["simple"]) return _format_table(tablefmt, headers, rows, minwidths, aligns, is_multiline) def _expand_numparse(disable_numparse, column_count): """ Return a list of bools of length `column_count` which indicates whether number parsing should be used on each column. If `disable_numparse` is a list of indices, each of those indices are False, and everything else is True. If `disable_numparse` is a bool, then the returned list is all the same. """ if isinstance(disable_numparse, Iterable): numparses = [True] * column_count for index in disable_numparse: numparses[index] = False return numparses else: return [not disable_numparse] * column_count def _pad_row(cells, padding): if cells: pad = " "*padding padded_cells = [pad + cell + pad for cell in cells] return padded_cells else: return cells def _build_simple_row(padded_cells, rowfmt): "Format row according to DataRow format without padding." begin, sep, end = rowfmt return (begin + sep.join(padded_cells) + end).rstrip() def _build_row(padded_cells, colwidths, colaligns, rowfmt): "Return a string which represents a row of data cells." if not rowfmt: return None if hasattr(rowfmt, "__call__"): return rowfmt(padded_cells, colwidths, colaligns) else: return _build_simple_row(padded_cells, rowfmt) def _append_basic_row(lines, padded_cells, colwidths, colaligns, rowfmt): lines.append(_build_row(padded_cells, colwidths, colaligns, rowfmt)) return lines def _append_multiline_row(lines, padded_multiline_cells, padded_widths, colaligns, rowfmt, pad): colwidths = [w - 2*pad for w in padded_widths] cells_lines = [c.splitlines() for c in padded_multiline_cells] nlines = max(map(len, cells_lines)) # number of lines in the row # vertically pad cells where some lines are missing cells_lines = [(cl + [' '*w]*(nlines - len(cl))) for cl, w in zip(cells_lines, colwidths)] lines_cells = [[cl[i] for cl in cells_lines] for i in range(nlines)] for ln in lines_cells: padded_ln = _pad_row(ln, pad) _append_basic_row(lines, padded_ln, colwidths, colaligns, rowfmt) return lines def _build_line(colwidths, colaligns, linefmt): "Return a string which represents a horizontal line." if not linefmt: return None if hasattr(linefmt, "__call__"): return linefmt(colwidths, colaligns) else: begin, fill, sep, end = linefmt cells = [fill*w for w in colwidths] return _build_simple_row(cells, (begin, sep, end)) def _append_line(lines, colwidths, colaligns, linefmt): lines.append(_build_line(colwidths, colaligns, linefmt)) return lines def _format_table(fmt, headers, rows, colwidths, colaligns, is_multiline): """Produce a plain-text representation of the table.""" lines = [] hidden = fmt.with_header_hide if (headers and fmt.with_header_hide) else [] pad = fmt.padding headerrow = fmt.headerrow padded_widths = [(w + 2*pad) for w in colwidths] if is_multiline: pad_row = lambda row, _: row # do it later, in _append_multiline_row append_row = partial(_append_multiline_row, pad=pad) else: pad_row = _pad_row append_row = _append_basic_row padded_headers = pad_row(headers, pad) padded_rows = [pad_row(row, pad) for row in rows] if fmt.lineabove and "lineabove" not in hidden: _append_line(lines, padded_widths, colaligns, fmt.lineabove) if padded_headers: append_row(lines, padded_headers, padded_widths, colaligns, headerrow) if fmt.linebelowheader and "linebelowheader" not in hidden: _append_line(lines, padded_widths, colaligns, fmt.linebelowheader) if padded_rows and fmt.linebetweenrows and "linebetweenrows" not in hidden: # initial rows with a line below for row in padded_rows[:-1]: append_row(lines, row, padded_widths, colaligns, fmt.datarow) _append_line(lines, padded_widths, colaligns, fmt.linebetweenrows) # the last row without a line below append_row(lines, padded_rows[-1], padded_widths, colaligns, fmt.datarow) else: for row in padded_rows: append_row(lines, row, padded_widths, colaligns, fmt.datarow) if fmt.linebelow and "linebelow" not in hidden: _append_line(lines, padded_widths, colaligns, fmt.linebelow) if headers or rows: return "\n".join(lines) else: # a completely empty table return "" def _main(): """\ Usage: tabulate [options] [FILE ...] Pretty-print tabular data. See also https://bitbucket.org/astanin/python-tabulate FILE a filename of the file with tabular data; if "-" or missing, read data from stdin. Options: -h, --help show this message -1, --header use the first row of data as a table header -o FILE, --output FILE print table to FILE (default: stdout) -s REGEXP, --sep REGEXP use a custom column separator (default: whitespace) -F FPFMT, --float FPFMT floating point number format (default: g) -f FMT, --format FMT set output table format; supported formats: plain, simple, grid, fancy_grid, pipe, orgtbl, rst, mediawiki, html, latex, latex_raw, latex_booktabs, tsv (default: simple) """ import getopt import sys import textwrap usage = textwrap.dedent(_main.__doc__) try: opts, args = getopt.getopt(sys.argv[1:], "h1o:s:F:A:f:", ["help", "header", "output", "sep=", "float=", "align=", "format="]) except getopt.GetoptError as e: print(e) print(usage) sys.exit(2) headers = [] floatfmt = _DEFAULT_FLOATFMT colalign = None tablefmt = "simple" sep = r"\s+" outfile = "-" for opt, value in opts: if opt in ["-1", "--header"]: headers = "firstrow" elif opt in ["-o", "--output"]: outfile = value elif opt in ["-F", "--float"]: floatfmt = value elif opt in ["-C", "--colalign"]: colalign = value.split() elif opt in ["-f", "--format"]: if value not in tabulate_formats: print("%s is not a supported table format" % value) print(usage) sys.exit(3) tablefmt = value elif opt in ["-s", "--sep"]: sep = value elif opt in ["-h", "--help"]: print(usage) sys.exit(0) files = [sys.stdin] if not args else args with (sys.stdout if outfile == "-" else open(outfile, "w")) as out: for f in files: if f == "-": f = sys.stdin if _is_file(f): _pprint_file(f, headers=headers, tablefmt=tablefmt, sep=sep, floatfmt=floatfmt, file=out, colalign=colalign) else: with open(f) as fobj: _pprint_file(fobj, headers=headers, tablefmt=tablefmt, sep=sep, floatfmt=floatfmt, file=out, colalign=colalign) def _pprint_file(fobject, headers, tablefmt, sep, floatfmt, file, colalign): rows = fobject.readlines() table = [re.split(sep, r.rstrip()) for r in rows if r.strip()] print(tabulate(table, headers, tablefmt, floatfmt=floatfmt, colalign=colalign), file=file) if __name__ == "__main__": _main()
c3dm-main
c3dm/tools/tabulate.py
# Copyright (c) Facebook, Inc. and its affiliates. import torch import torch.nn.functional as Fu def find_camera_T(K, X, Y): n = X.shape[2] ba = X.shape[0] append1 = lambda x: \ torch.cat((x,x.new_ones(x.shape[0],1,x.shape[2])), dim=1) # projection rays r = torch.bmm(torch.inverse(K), append1(Y)) r = Fu.normalize(r, dim=1) # outer projection ray product (need to permute the array first) rr = r.permute(0,2,1).contiguous().view(n*ba, 3) rr = torch.bmm(rr[:,:,None], rr[:,None,:]) # I - rr Irr = torch.eye(3)[None].repeat(ba*n,1,1) - rr # [rr - I] x rrIx = torch.bmm(-Irr, X.permute(0,2,1).contiguous().view(n*ba, 3, 1)) Irr_sum = Irr.view(ba,-1,3,3,).sum(1) rrIx_sum = rrIx.view(ba,-1,3).sum(1) rrI_sum_i = torch.inverse(Irr_sum) T = torch.bmm(rrI_sum_i, rrIx_sum[:,:,None])[:,:,0] return T n = 500 # n points ba = 20 # batch size # gt 3D points X = torch.zeros(ba, 3, n).normal_(0., 1.) for focal in torch.linspace(10.,0.1,20): # cam K K = torch.eye(3) K[0,0] = focal K[1,1] = focal K = K[None].repeat(ba,1,1) if False: # persp projections - should give 0 error everywhere T = torch.ones(ba, 3).uniform_()*10. Y = torch.bmm(K, X + T[:,:,None]) Y = Y[:,0:2,:] / Y[:,2:3,:] else: # orth projections - should get higher error with lower focal Y = X[:,0:2] T = find_camera_T(K, X, Y) ## test the repro loss # perspective projections Yp = torch.bmm(K, X + T[:,:,None]) depth_ = Yp[:,2:3, :] Yp = Yp[:,0:2, :] / depth_ # the diff between orth and persp df = ((Y - Yp)**2).sum(1).sqrt().mean(1).mean() print('focal = %1.2f, repro_df = %1.2e, mean_depth = %1.2f' % \ (focal, df, depth_.mean()) )
c3dm-main
c3dm/tools/test_orth2pers.py
# Copyright (c) Facebook, Inc. and its affiliates. import copy def nested_attr_dict(dct): if type(dct) in (dict,AttrDict): dct = AttrDict(dct) for k,v in dct.items(): dct[k] = nested_attr_dict(v) return dct class AttrDict(dict): def __getattr__(self, name): if name in self.__dict__: return self.__dict__[name] elif name in self: return self[name] else: raise AttributeError(name) def __setattr__(self, name, value): if name in self.__dict__: self.__dict__[name] = value else: self[name] = value
c3dm-main
c3dm/tools/attr_dict.py