modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-24 06:32:16
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
518 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-24 06:32:16
card
stringlengths
11
1.01M
bytedance-research/UNO
bytedance-research
2025-08-22T11:48:09Z
0
175
transformers
[ "transformers", "subject-personalization", "image-generation", "image-to-image", "arxiv:2504.02160", "base_model:black-forest-labs/FLUX.1-dev", "base_model:finetune:black-forest-labs/FLUX.1-dev", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-to-image
2025-04-03T09:19:48Z
--- base_model: - black-forest-labs/FLUX.1-dev license: apache-2.0 pipeline_tag: image-to-image library_name: transformers tags: - subject-personalization - image-generation --- <h3 align="center"> Less-to-More Generalization: Unlocking More Controllability by In-Context Generation </h3> <div style="display:flex;justify-content: center"> <a href="https://bytedance.github.io/UNO/"><img alt="Build" src="https://img.shields.io/badge/Project%20Page-UNO-yellow"></a> <a href="https://arxiv.org/abs/2504.02160"><img alt="Build" src="https://img.shields.io/badge/arXiv%20paper-2504.02160-b31b1b.svg"></a> <a href="https://github.com/bytedance/UNO"><img src="https://img.shields.io/static/v1?label=GitHub&message=Code&color=green&logo=github"></a> </div> ><p align="center"> <span style="color:#137cf3; font-family: Gill Sans">Shaojin Wu,</span><sup></sup></a> <span style="color:#137cf3; font-family: Gill Sans">Mengqi Huang</span><sup>*</sup>,</a> <span style="color:#137cf3; font-family: Gill Sans">Wenxu Wu,</span><sup></sup></a> <span style="color:#137cf3; font-family: Gill Sans">Yufeng Cheng,</span><sup></sup> </a> <span style="color:#137cf3; font-family: Gill Sans">Fei Ding</span><sup>+</sup>,</a> <span style="color:#137cf3; font-family: Gill Sans">Qian He</span></a> <br> ><span style="font-size: 16px">Intelligent Creation Team, ByteDance</span></p> ![teaser of UNO](./assets/teaser.jpg) ## 🔥 News - [04/2025] 🔥 The [training code](https://github.com/bytedance/UNO), [inference code](https://github.com/bytedance/UNO), and [model](https://huggingface.co/bytedance-research/UNO) of UNO are released. The [demo](https://huggingface.co/spaces/bytedance-research/UNO-FLUX) will coming soon. - [04/2025] 🔥 The [project page](https://bytedance.github.io/UNO) of UNO is created. - [04/2025] 🔥 The arXiv [paper](https://arxiv.org/abs/2504.02160) of UNO is released. ## 📖 Introduction In this study, we propose a highly-consistent data synthesis pipeline to tackle this challenge. This pipeline harnesses the intrinsic in-context generation capabilities of diffusion transformers and generates high-consistency multi-subject paired data. Additionally, we introduce UNO, which consists of progressive cross-modal alignment and universal rotary position embedding. It is a multi-image conditioned subject-to-image model iteratively trained from a text-to-image model. Extensive experiments show that our method can achieve high consistency while ensuring controllability in both single-subject and multi-subject driven generation. ## ⚡️ Quick Start ### 🔧 Requirements and Installation Clone our [Github repo](https://github.com/bytedance/UNO) Install the requirements ```bash ## create a virtual environment with python >= 3.10 <= 3.12, like # python -m venv uno_env # source uno_env/bin/activate # then install pip install -r requirements.txt ``` then download checkpoints in one of the three ways: 1. Directly run the inference scripts, the checkpoints will be downloaded automatically by the `hf_hub_download` function in the code to your `$HF_HOME`(the default value is `~/.cache/huggingface`). 2. use `huggingface-cli download <repo name>` to download `black-forest-labs/FLUX.1-dev`, `xlabs-ai/xflux_text_encoders`, `openai/clip-vit-large-patch14`, `TODO UNO hf model`, then run the inference scripts. 3. use `huggingface-cli download <repo name> --local-dir <LOCAL_DIR>` to download all the checkpoints menthioned in 2. to the directories your want. Then set the environment variable `TODO`. Finally, run the inference scripts. ### 🌟 Gradio Demo ```bash python app.py ``` ### ✍️ Inference - Optional prepreration: If you want to test the inference on dreambench at the first time, you should clone the submodule `dreambench` to download the dataset. ```bash git submodule update --init ``` ```bash python inference.py ``` ### 🚄 Training ```bash accelerate launch train.py ``` ## 🎨 Application Scenarios ![simplecase of UNO](./assets/simplecase.jpeg) ## 📄 Disclaimer <p> We open-source this project for academic research. The vast majority of images used in this project are either generated or licensed. If you have any concerns, please contact us, and we will promptly remove any inappropriate content. Our code is released under the Apache 2.0 License,, while our models are under the CC BY-NC 4.0 License. Any models related to <a href="https://huggingface.co/black-forest-labs/FLUX.1-dev" target="_blank">FLUX.1-dev</a> base model must adhere to the original licensing terms. <br><br>This research aims to advance the field of generative AI. Users are free to create images using this tool, provided they comply with local laws and exercise responsible usage. The developers are not liable for any misuse of the tool by users.</p> ## 🚀 Updates For the purpose of fostering research and the open-source community, we plan to open-source the entire project, encompassing training, inference, weights, etc. Thank you for your patience and support! 🌟 - [x] Release github repo. - [x] Release inference code. - [x] Release training code. - [x] Release model checkpoints. - [x] Release arXiv paper. - [] Release in-context data generation pipelines. ## Citation If UNO is helpful, please help to ⭐ the repo. If you find this project useful for your research, please consider citing our paper: ```bibtex @article{wu2025less, title={Less-to-More Generalization: Unlocking More Controllability by In-Context Generation}, author={Wu, Shaojin and Huang, Mengqi and Wu, Wenxu and Cheng, Yufeng and Ding, Fei and He, Qian}, journal={arXiv preprint arXiv:2504.02160}, year={2025} } ```
Muapi/f1-xl-anime-model-turn-multi-view-turnaround-model-sheet-character-design
Muapi
2025-08-22T11:46:47Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-22T11:46:35Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # F1/XL Anime Model Turn, Multi-View, Turnaround, Model Sheet, Character Design ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:1002768@1127674", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
calegpedia/blockassist-bc-stealthy_slimy_rooster_1755861689
calegpedia
2025-08-22T11:46:46Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stealthy slimy rooster", "arxiv:2504.07091", "region:us" ]
null
2025-08-22T11:46:42Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stealthy slimy rooster --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/snow-white-flux1.d-sdxl
Muapi
2025-08-22T11:44:57Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-22T11:44:48Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Snow White - Flux1.D & SDXL ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: Snow White ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:332134@846827", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Kijai/WanVideo_comfy
Kijai
2025-08-22T11:44:43Z
4,112,827
1,247
diffusion-single-file
[ "diffusion-single-file", "comfyui", "base_model:Wan-AI/Wan2.1-VACE-1.3B", "base_model:finetune:Wan-AI/Wan2.1-VACE-1.3B", "region:us" ]
null
2025-02-25T17:54:17Z
--- tags: - diffusion-single-file - comfyui base_model: - Wan-AI/Wan2.1-VACE-14B - Wan-AI/Wan2.1-VACE-1.3B --- Combined and quantized models for WanVideo, originating from here: https://huggingface.co/Wan-AI/ Can be used with: https://github.com/kijai/ComfyUI-WanVideoWrapper and ComfyUI native WanVideo nodes. I've also started to do fp8_scaled versions over here: https://huggingface.co/Kijai/WanVideo_comfy_fp8_scaled Other model sources: TinyVAE from https://github.com/madebyollin/taehv SkyReels: https://huggingface.co/collections/Skywork/skyreels-v2-6801b1b93df627d441d0d0d9 WanVideoFun: https://huggingface.co/collections/alibaba-pai/wan21-fun-v11-680f514c89fe7b4df9d44f17 --- Lightx2v: CausVid 14B: https://huggingface.co/lightx2v/Wan2.1-T2V-14B-CausVid CFG and Step distill 14B: https://huggingface.co/lightx2v/Wan2.1-T2V-14B-StepDistill-CfgDistill --- CausVid 1.3B: https://huggingface.co/tianweiy/CausVid AccVideo: https://huggingface.co/aejion/AccVideo-WanX-T2V-14B Phantom: https://huggingface.co/bytedance-research/Phantom ATI: https://huggingface.co/bytedance-research/ATI MiniMaxRemover: https://huggingface.co/zibojia/minimax-remover MAGREF: https://huggingface.co/MAGREF-Video/MAGREF FantasyTalking: https://github.com/Fantasy-AMAP/fantasy-talking MultiTalk: https://github.com/MeiGen-AI/MultiTalk Anisora: https://huggingface.co/IndexTeam/Index-anisora/tree/main/14B Pusa: https://huggingface.co/RaphaelLiu/PusaV1/tree/main FastVideo: https://huggingface.co/FastVideo EchoShot: https://github.com/D2I-ai/EchoShot Wan22 5B Turbo: https://huggingface.co/quanhaol/Wan2.2-TI2V-5B-Turbo --- CausVid LoRAs are experimental extractions from the CausVid finetunes, the aim with them is to benefit from the distillation in CausVid, rather than any actual causal inference. --- v1 = direct extraction, has adverse effects on motion and introduces flashing artifact at full strength. v1.5 = same as above, but without the first block which fixes the flashing at full strength. v2 = further pruned version with only attention layers and no first block, fixes flashing and retains motion better, needs more steps and can also benefit from cfg.
Muapi/line-drawing-ce
Muapi
2025-08-22T11:43:42Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-22T11:43:14Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Line Drawing - CE ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: lndrwngCE_style ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:880102@1671848", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
unitova/blockassist-bc-zealous_sneaky_raven_1755861405
unitova
2025-08-22T11:42:50Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "zealous sneaky raven", "arxiv:2504.07091", "region:us" ]
null
2025-08-22T11:42:46Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - zealous sneaky raven --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/pinkie-iridescent-jelly-flux-sdxl
Muapi
2025-08-22T11:42:29Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-22T11:42:16Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # [Pinkie] 🫧 Iridescent Jelly 🫧- [Flux/SDXL] ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: made out of iridescent jelly ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:593604@787445", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Muapi/silent-hill-forgotten-fog-filter-lora-flux
Muapi
2025-08-22T11:41:39Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-22T11:41:21Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Silent Hill - Forgotten Fog Filter LORA [FLUX] ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: aidmasilenthill ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:839553@939281", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
datajuicer/YOLO11L-Rice-Disease-Detection
datajuicer
2025-08-22T11:41:04Z
0
0
null
[ "base_model:Ultralytics/YOLO11", "base_model:finetune:Ultralytics/YOLO11", "license:cc-by-nc-sa-4.0", "region:us" ]
null
2025-08-22T06:42:30Z
--- license: cc-by-nc-sa-4.0 base_model: - Ultralytics/YOLO11 --- # 水稻病害检测 (with YOLO11L) ## 模型简介 - 模型功能:支持多种水稻病害的检测,返回图像中的病害位置(bounding box)以及病害类别(class label)。 - 支持类别:{0: '水稻白叶枯病Bacterial_Leaf_Blight', 1: '水稻胡麻斑病Brown_Spot', 2: '健康水稻HealthyLeaf', 3: '稻瘟病Leaf_Blast', 4: '水稻叶鞘腐病Leaf_Scald', 5: '水稻窄褐斑病Narrow_Brown_Leaf_Spot', 6: '水稻穗颈瘟Neck_Blast', 7: '稻飞虱Rice_Hispa'} - 训练数据:3,567张水稻病害图像及对应标注信息([Rice Leaf Spot Disease Annotated Dataset](https://www.kaggle.com/datasets/hadiurrahmannabil/rice-leaf-spot-disease-annotated-dataset)),训练200epoch。 - 评测指标:测试集 {mAP50: 56.3, mAP50-95: 34.9} ## 模型使用(with Data-Juicer) - 输出格式: ``` [{ "images": image_path1, "objects": { "ref": [class_label1, class_label2, ...], "bbox": [bbox1, bbox2, ...] } }, ... ] ``` - 可参考代码: ```python import json from data_juicer.core.data import NestedDataset as Dataset from data_juicer.ops.mapper.image_detection_yolo_mapper import ImageDetectionYoloMapper from data_juicer.utils.constant import Fields, MetaKeys if __name__ == "__main__": image_path1 = "test1.jpg" image_path2 = "test2.jpg" image_path3 = "test3.jpg" source_list = [{ 'images': [image_path1, image_path2, image_path3] }] class_names =['水稻白叶枯病Bacterial_Leaf_Blight', '水稻胡麻斑病Brown_Spot', '健康水稻HealthyLeaf', '稻瘟病Leaf_Blast', '水稻叶鞘腐病Leaf_Scald', '水稻窄褐斑病Narrow_Brown_Leaf_Spot', '水稻穗颈瘟Neck_Blast', '稻飞虱Rice_Hispa'] op = ImageDetectionYoloMapper( imgsz=640, conf=0.05, iou=0.5, model_path='Path_to_YOLO11L-Rice-Disease-Detection.pt') dataset = Dataset.from_list(source_list) if Fields.meta not in dataset.features: dataset = dataset.add_column(name=Fields.meta, column=[{}] * dataset.num_rows) dataset = dataset.map(op.process, num_proc=1, with_rank=True) res_list = dataset.to_list()[0] new_data = [] for temp_image_name, temp_bbox_lists, class_name_lists in zip(res_list["images"], res_list["__dj__meta__"]["__dj__bbox__"], res_list["__dj__meta__"]["__dj__class_label__"]): temp_json = {} temp_json["images"] = temp_image_name temp_json["objects"] = {"ref": [], "bbox":temp_bbox_lists} for temp_object_label in class_name_lists: temp_json["objects"]["ref"].append(class_names[int(temp_object_label)]) new_data.append(temp_json) with open("./output.json", "w") as f: json.dump(new_data, f) ```
Muapi/adventure-comic-book
Muapi
2025-08-22T11:40:33Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-22T11:40:18Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Adventure Comic Book ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:752718@841709", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Muapi/90s-hand-drawn-animation-cartoon-style-for-backgrounds-illustrations-and-arts-flux
Muapi
2025-08-22T11:40:09Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-22T11:39:56Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # 90s Hand drawn animation / cartoon style for backgrounds, illustrations and arts [Flux] ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: PIVIG image style, PIVIG ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:811608@967018", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Muapi/taiwan-street-background
Muapi
2025-08-22T11:39:30Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-22T11:39:10Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Taiwan Street Background ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:221517@727420", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Muapi/underwater-style-xl-f1d-marine-life
Muapi
2025-08-22T11:38:53Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-22T11:38:46Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Underwater style XL + F1D (Marine life) ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: Underwater ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:380863@1167240", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Muapi/daphne-blake-scooby-doo-franchise-flux1.d-sdxl-realistic-anime
Muapi
2025-08-22T11:38:13Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-22T11:38:04Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Daphne Blake - Scooby-Doo franchise - Flux1.D - SDXL Realistic / Anime ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: Daphne Blake, headband, purple dress, green scarf ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:397155@859346", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
mradermacher/BlackSheep-24B-i1-GGUF
mradermacher
2025-08-22T11:36:15Z
1,557
7
transformers
[ "transformers", "gguf", "en", "base_model:TroyDoesAI/BlackSheep-24B", "base_model:quantized:TroyDoesAI/BlackSheep-24B", "license:cc-by-nc-2.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-03-26T07:05:18Z
--- base_model: TroyDoesAI/BlackSheep-24B language: - en library_name: transformers license: cc-by-nc-2.0 mradermacher: readme_rev: 1 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/TroyDoesAI/BlackSheep-24B <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#BlackSheep-24B-i1-GGUF).*** static quants are available at https://huggingface.co/mradermacher/BlackSheep-24B-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/BlackSheep-24B-i1-GGUF/resolve/main/BlackSheep-24B.i1-IQ1_S.gguf) | i1-IQ1_S | 5.4 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/BlackSheep-24B-i1-GGUF/resolve/main/BlackSheep-24B.i1-IQ1_M.gguf) | i1-IQ1_M | 5.9 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/BlackSheep-24B-i1-GGUF/resolve/main/BlackSheep-24B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 6.6 | | | [GGUF](https://huggingface.co/mradermacher/BlackSheep-24B-i1-GGUF/resolve/main/BlackSheep-24B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 7.3 | | | [GGUF](https://huggingface.co/mradermacher/BlackSheep-24B-i1-GGUF/resolve/main/BlackSheep-24B.i1-IQ2_S.gguf) | i1-IQ2_S | 7.6 | | | [GGUF](https://huggingface.co/mradermacher/BlackSheep-24B-i1-GGUF/resolve/main/BlackSheep-24B.i1-IQ2_M.gguf) | i1-IQ2_M | 8.2 | | | [GGUF](https://huggingface.co/mradermacher/BlackSheep-24B-i1-GGUF/resolve/main/BlackSheep-24B.i1-Q2_K_S.gguf) | i1-Q2_K_S | 8.4 | very low quality | | [GGUF](https://huggingface.co/mradermacher/BlackSheep-24B-i1-GGUF/resolve/main/BlackSheep-24B.i1-Q2_K.gguf) | i1-Q2_K | 9.0 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/BlackSheep-24B-i1-GGUF/resolve/main/BlackSheep-24B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 9.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/BlackSheep-24B-i1-GGUF/resolve/main/BlackSheep-24B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 10.0 | | | [GGUF](https://huggingface.co/mradermacher/BlackSheep-24B-i1-GGUF/resolve/main/BlackSheep-24B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 10.5 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/BlackSheep-24B-i1-GGUF/resolve/main/BlackSheep-24B.i1-IQ3_S.gguf) | i1-IQ3_S | 10.5 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/BlackSheep-24B-i1-GGUF/resolve/main/BlackSheep-24B.i1-IQ3_M.gguf) | i1-IQ3_M | 10.8 | | | [GGUF](https://huggingface.co/mradermacher/BlackSheep-24B-i1-GGUF/resolve/main/BlackSheep-24B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 11.6 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/BlackSheep-24B-i1-GGUF/resolve/main/BlackSheep-24B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 12.5 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/BlackSheep-24B-i1-GGUF/resolve/main/BlackSheep-24B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 12.9 | | | [GGUF](https://huggingface.co/mradermacher/BlackSheep-24B-i1-GGUF/resolve/main/BlackSheep-24B.i1-Q4_0.gguf) | i1-Q4_0 | 13.6 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/BlackSheep-24B-i1-GGUF/resolve/main/BlackSheep-24B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 13.6 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/BlackSheep-24B-i1-GGUF/resolve/main/BlackSheep-24B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 14.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/BlackSheep-24B-i1-GGUF/resolve/main/BlackSheep-24B.i1-Q4_1.gguf) | i1-Q4_1 | 15.0 | | | [GGUF](https://huggingface.co/mradermacher/BlackSheep-24B-i1-GGUF/resolve/main/BlackSheep-24B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 16.4 | | | [GGUF](https://huggingface.co/mradermacher/BlackSheep-24B-i1-GGUF/resolve/main/BlackSheep-24B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 16.9 | | | [GGUF](https://huggingface.co/mradermacher/BlackSheep-24B-i1-GGUF/resolve/main/BlackSheep-24B.i1-Q6_K.gguf) | i1-Q6_K | 19.4 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
george114/LLama_3_1_8B_ASBA_Opinion_Detection_Final
george114
2025-08-22T11:35:55Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-22T11:35:35Z
--- base_model: unsloth/meta-llama-3.1-8b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** george114 - **License:** apache-2.0 - **Finetuned from model :** unsloth/meta-llama-3.1-8b-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
afrin-apu-viral-videos-link/NEW.afrin.apu.FULL.VIRALS.VIDEO
afrin-apu-viral-videos-link
2025-08-22T11:34:37Z
0
0
null
[ "region:us" ]
null
2025-08-22T11:33:54Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5abutj9x?viral-news" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
Muapi/long-hair-lora-flux
Muapi
2025-08-22T11:34:37Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-22T11:34:30Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Long hair LoRA - Flux ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:669029@964680", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
8septiadi8/blockassist-bc-curious_lightfooted_mouse_1755862326
8septiadi8
2025-08-22T11:33:56Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "curious lightfooted mouse", "arxiv:2504.07091", "region:us" ]
null
2025-08-22T11:33:36Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - curious lightfooted mouse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/fictional-model-peach-flux
Muapi
2025-08-22T11:33:29Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-22T11:33:21Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Fictional Model Peach - FLUX ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: FictionalPeach, punk girl with short pink hair ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:1167033@1312926", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Muapi/ethereal-dystopia-aah
Muapi
2025-08-22T11:33:15Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-22T11:33:05Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Ethereal Dystopia (AAH) ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: ethdysty ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:1378072@1557053", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
rvipitkirubbe/blockassist-bc-mottled_foraging_ape_1755859871
rvipitkirubbe
2025-08-22T11:32:34Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mottled foraging ape", "arxiv:2504.07091", "region:us" ]
null
2025-08-22T11:32:31Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mottled foraging ape --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
coelacanthxyz/blockassist-bc-finicky_thriving_grouse_1755860665
coelacanthxyz
2025-08-22T11:32:18Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "finicky thriving grouse", "arxiv:2504.07091", "region:us" ]
null
2025-08-22T11:32:10Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - finicky thriving grouse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/zoopolis
Muapi
2025-08-22T11:32:16Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-22T11:32:03Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # ZooPolis ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: ZooPolis Art ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:1453803@1643793", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Muapi/igawa-asagi-taimanin-asagi-flux-hunyuan-video
Muapi
2025-08-22T11:31:59Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-22T11:31:48Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Igawa Asagi - Taimanin Asagi [Flux/Hunyuan Video] ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: ig4wa wearing a purple bodysuit ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:728293@814400", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Muapi/tsutomu-nihei-lora
Muapi
2025-08-22T11:31:43Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-22T11:31:28Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Tsutomu Nihei Lora ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:179979@1474802", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
chainway9/blockassist-bc-untamed_quick_eel_1755860629
chainway9
2025-08-22T11:31:03Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "untamed quick eel", "arxiv:2504.07091", "region:us" ]
null
2025-08-22T11:30:59Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - untamed quick eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mang3dd/blockassist-bc-tangled_slithering_alligator_1755860717
mang3dd
2025-08-22T11:30:46Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tangled slithering alligator", "arxiv:2504.07091", "region:us" ]
null
2025-08-22T11:30:42Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tangled slithering alligator --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/american-propaganda-painting-james-montgomery-flagg-style
Muapi
2025-08-22T11:30:45Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-22T11:30:31Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # American Propaganda Painting - James Montgomery Flagg Style ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: a painting of, in the style of james-montgomery-flagg, uncle sam ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:586368@1054968", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
manusiaperahu2012/blockassist-bc-roaring_long_tuna_1755860689
manusiaperahu2012
2025-08-22T11:30:19Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "roaring long tuna", "arxiv:2504.07091", "region:us" ]
null
2025-08-22T11:30:16Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - roaring long tuna --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ChenWu98/statement_deepseek_v1.5_sft_cluster_additional_split_0
ChenWu98
2025-08-22T11:30:14Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "sft", "trl", "base_model:deepseek-ai/DeepSeek-Prover-V1.5-SFT", "base_model:finetune:deepseek-ai/DeepSeek-Prover-V1.5-SFT", "endpoints_compatible", "region:us" ]
null
2025-08-22T11:25:59Z
--- base_model: deepseek-ai/DeepSeek-Prover-V1.5-SFT library_name: transformers model_name: statement_deepseek_v1.5_sft_cluster_additional_split_0 tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for statement_deepseek_v1.5_sft_cluster_additional_split_0 This model is a fine-tuned version of [deepseek-ai/DeepSeek-Prover-V1.5-SFT](https://huggingface.co/deepseek-ai/DeepSeek-Prover-V1.5-SFT). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="None", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/chenwu/huggingface/runs/wsmfhada) This model was trained with SFT. ### Framework versions - TRL: 0.19.1 - Transformers: 4.51.1 - Pytorch: 2.7.0 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
kojeklollipop/blockassist-bc-spotted_amphibious_stork_1755860574
kojeklollipop
2025-08-22T11:29:18Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "spotted amphibious stork", "arxiv:2504.07091", "region:us" ]
null
2025-08-22T11:29:14Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - spotted amphibious stork --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Mostefa-Terbeche/diabetic-retinopathy-paraguay-efficientnet_b3-original-20250720-123845
Mostefa-Terbeche
2025-08-22T11:28:48Z
0
0
null
[ "diabetic-retinopathy", "medical-imaging", "pytorch", "computer-vision", "retinal-imaging", "dataset:paraguay", "license:apache-2.0", "model-index", "region:us" ]
null
2025-08-22T11:06:53Z
--- license: apache-2.0 tags: - diabetic-retinopathy - medical-imaging - pytorch - computer-vision - retinal-imaging datasets: - paraguay metrics: - accuracy - quadratic-kappa - auc model-index: - name: paraguay_efficientnet_b3_original results: - task: type: image-classification name: Diabetic Retinopathy Classification dataset: type: paraguay name: PARAGUAY metrics: - type: accuracy value: 0.06578947368421052 - type: quadratic-kappa value: 0.20465116279069773 --- # Diabetic Retinopathy Classification Model ## Model Description This model is trained for diabetic retinopathy classification using the efficientnet_b3 architecture on the paraguay dataset with original preprocessing. ## Model Details - **Architecture**: efficientnet_b3 - **Dataset**: paraguay - **Preprocessing**: original - **Training Date**: 20250720-123845 - **Task**: 5-class diabetic retinopathy grading (0-4) - **Directory**: paraguay_efficientnet_b3_20250720-123845_new ## Performance - **Test Accuracy**: 0.06578947368421052 - **Test Quadratic Kappa**: 0.20465116279069773 - **Validation Kappa**: 0.20465116279069773 ## Usage ```python import torch from huggingface_hub import hf_hub_download # Download model model_path = hf_hub_download( repo_id="your-username/diabetic-retinopathy-paraguay-efficientnet_b3-original", filename="model_best.pt" ) # Load model model = torch.load(model_path, map_location='cpu') ``` ## Classes - 0: No DR (No diabetic retinopathy) - 1: Mild DR (Mild non-proliferative diabetic retinopathy) - 2: Moderate DR (Moderate non-proliferative diabetic retinopathy) - 3: Severe DR (Severe non-proliferative diabetic retinopathy) - 4: Proliferative DR (Proliferative diabetic retinopathy) ## Citation If you use this model, please cite your research paper/thesis.
hyrinmansoor/text2frappe-s3-flan-query
hyrinmansoor
2025-08-22T11:28:25Z
1,041
0
transformers
[ "transformers", "pytorch", "safetensors", "t5", "text2text-generation", "flan-t5-base", "erpnext", "query-generation", "frappe", "text2frappe", "en", "license:apache-2.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-05T11:48:55Z
--- tags: - flan-t5-base - transformers - erpnext - query-generation - frappe - text2frappe - text2text-generation pipeline_tag: text2text-generation license: apache-2.0 language: en library_name: transformers model-index: - name: Text2Frappe - Stage 3 Query Generator results: [] --- # 🧠 Text2Frappe - Stage 3 Query Generator (FLAN-T5-BASE) This model is the **third stage** in the [Text2Frappe](https://huggingface.co/hyrinmansoor) pipeline, which enables **natural language interface to ERPNext** by converting questions into executable database queries. --- ## 🎯 Task **Text2Text Generation** – Prompt-based query formulation. Given: - A detected **ERPNext Doctype** (from Stage 1), - A natural language **question**, - A list of selected **relevant fields** (from Stage 2), this model generates a valid **Frappe ORM-style query** (e.g., `frappe.get_all(...)`) to retrieve the required data. --- ## 🧩 Input Format Inputs are JSON-style strings containing: - `doctype`: the ERPNext document type. - `question`: the user's question in natural language. - `fields`: a list of relevant field names predicted by Stage 2. ### 📥 Example Input ```json { "doctype": "Purchase Invoice Advance", "question": "List the reference types used in advance payments made this month.", "fields": ["reference_type"] } ``` ### 📤 Example Output frappe.get_all('Purchase Invoice Advance', filters={'posting_date': ['between', ['2024-04-01', '2024-04-30']]}, fields=['reference_type'])
Muapi/cute-sdxl-pony-flux
Muapi
2025-08-22T11:26:17Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-22T11:26:02Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Cute (SDXL, Pony, Flux) ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: ArsMJStyle, Cute ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:577827@820305", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
MisterXY89/chat-doctor-v2
MisterXY89
2025-08-22T11:26:02Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "en", "base_model:meta-llama/Llama-2-7b-hf", "base_model:finetune:meta-llama/Llama-2-7b-hf", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-09T14:50:37Z
--- license: mit language: - en base_model: - meta-llama/Llama-2-7b-hf --- End-to-end QLoRA-based fine-tuning of Llama-2 for a medical-diagnosis/doctor chat-bot on AWS https://github.com/MisterXY89/chat-doc
Muapi/mapcraft-the-ultimate-ttrpg-mapmaker
Muapi
2025-08-22T11:25:34Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-22T11:25:15Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Mapcraft: The Ultimate TTRPG Mapmaker ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: mapcraft ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:799901@2044181", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Muapi/js_flux_schoolgirl_uniform
Muapi
2025-08-22T11:24:48Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-22T11:24:32Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # JS_FLUX_Schoolgirl_uniform ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: cross-tie, white short-sleeve blouse has a button-up front with a single button, cross-tie neatly at the neck, pleated short skirt ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:877309@982096", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Muapi/hsmuscleboy.style.flux1d
Muapi
2025-08-22T11:24:17Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-22T11:23:31Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # HSMuscleboy.style.Flux1D ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: HSMuscleboy, cartoon ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:681646@762942", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
eshanroy5678/blockassist-bc-untamed_dextrous_dingo_1755861353
eshanroy5678
2025-08-22T11:21:08Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "untamed dextrous dingo", "arxiv:2504.07091", "region:us" ]
null
2025-08-22T11:19:41Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - untamed dextrous dingo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/rural-sci-fi-digital-painting-simon-stalenhag-style
Muapi
2025-08-22T11:20:48Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-22T11:20:37Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Rural Sci-fi - Digital Painting - Simon Stalenhag Style ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: a digital painting of, in the style of simon-stalenhag ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:529363@1175730", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
indoempatnol/blockassist-bc-fishy_wary_swan_1755859826
indoempatnol
2025-08-22T11:18:50Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "fishy wary swan", "arxiv:2504.07091", "region:us" ]
null
2025-08-22T11:18:47Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - fishy wary swan --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/fantastic-pic-flux
Muapi
2025-08-22T11:17:05Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-22T11:16:53Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Fantastic Pic [Flux] ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:1193687@1343984", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Muapi/donm-sound-of-music-flux-sdxl-pony
Muapi
2025-08-22T11:16:23Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-22T11:16:10Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # DonM - Sound of Music [Flux,SDXL,Pony] ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: digital illustration ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:393812@813609", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
cixzer/blockassist-bc-gregarious_long_cheetah_1755861070
cixzer
2025-08-22T11:14:53Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gregarious long cheetah", "arxiv:2504.07091", "region:us" ]
null
2025-08-22T11:14:16Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gregarious long cheetah --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
calcuis/krea-gguf
calcuis
2025-08-22T11:13:35Z
2,743
7
diffusers
[ "diffusers", "gguf", "gguf-node", "gguf-connector", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-Krea-dev", "base_model:quantized:black-forest-labs/FLUX.1-Krea-dev", "license:other", "region:us" ]
text-to-image
2025-07-31T20:55:43Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-Krea-dev/blob/main/LICENSE.md language: - en library_name: diffusers base_model: - black-forest-labs/FLUX.1-Krea-dev pipeline_tag: text-to-image widget: - text: a frog holding a sign that says hello world output: url: output1.png - text: a pig holding a sign that says hello world output: url: output2.png - text: a wolf holding a sign that says hello world output: url: output3.png - text: >- cute anime girl with massive fluffy fennec ears and a big fluffy tail blonde messy long hair blue eyes wearing a maid outfit with a long black gold leaf pattern dress and a white apron mouth open holding a fancy black forest cake with candles on top in the kitchen of an old dark Victorian mansion lit by candlelight with a bright window to the foggy forest and very expensive stuff everywhere output: url: workflow-embedded-demo1.png - text: >- on a rainy night, a girl holds an umbrella and looks at the camera. The rain keeps falling. output: url: workflow-embedded-demo2.png - text: drone shot of a volcano erupting with a pig walking on it output: url: workflow-embedded-demo3.png tags: - gguf-node - gguf-connector --- # **gguf quantized version of krea** - run it straight with `gguf-connector` - opt a `gguf` file in the current directory to interact with by: ``` ggc k ``` > >GGUF file(s) available. Select which one to use: > >1. flux-krea-lite-q2_k.gguf >2. flux-krea-lite-q4_0.gguf >3. flux-krea-lite-q8_0.gguf > >Enter your choice (1 to 3): _ > note: try experimental lite model with 8-step operation; save up to 70% loading time ![screenshot](https://raw.githubusercontent.com/calcuis/gguf-pack/master/k4.png) - run it with diffusers (see example inference below) ```py import torch from transformers import T5EncoderModel from diffusers import FluxPipeline, GGUFQuantizationConfig, FluxTransformer2DModel model_path = "https://huggingface.co/calcuis/krea-gguf/blob/main/flux1-krea-dev-q2_k.gguf" transformer = FluxTransformer2DModel.from_single_file( model_path, quantization_config=GGUFQuantizationConfig(compute_dtype=torch.bfloat16), torch_dtype=torch.bfloat16, config="callgg/krea-decoder", subfolder="transformer" ) text_encoder = T5EncoderModel.from_pretrained( "chatpig/t5-v1_1-xxl-encoder-fp32-gguf", gguf_file="t5xxl-encoder-fp32-q2_k.gguf", torch_dtype=torch.bfloat16 ) pipe = FluxPipeline.from_pretrained( "callgg/krea-decoder", transformer=transformer, text_encoder_2=text_encoder, torch_dtype=torch.bfloat16 ) pipe.enable_model_cpu_offload() # could change it to cuda if you have good gpu prompt = "a pig holding a sign that says hello world" image = pipe( prompt, height=1024, width=1024, guidance_scale=2.5, ).images[0] image.save("output.png") ``` <Gallery /> ## **run it with gguf-node via comfyui** - drag **krea** to > `./ComfyUI/models/diffusion_models` - drag **clip-l-v2 [[248MB](https://huggingface.co/calcuis/kontext-gguf/blob/main/clip_l_v2_fp32-f16.gguf)], t5xxl [[2.75GB](https://huggingface.co/calcuis/kontext-gguf/blob/main/t5xxl_fp32-q4_0.gguf)]** to > `./ComfyUI/models/text_encoders` - drag **pig [[168MB](https://huggingface.co/calcuis/kontext-gguf/blob/main/pig_flux_vae_fp32-f16.gguf)]** to > `./ComfyUI/models/vae` ![screenshot](https://raw.githubusercontent.com/calcuis/comfy/master/krea.png) ### **reference** - base model from [black-forest-labs](https://huggingface.co/black-forest-labs) - for model merge details, see [sayakpaul](https://huggingface.co/sayakpaul/FLUX.1-merged) - diffusers from [huggingface](https://github.com/huggingface/diffusers) - comfyui from [comfyanonymous](https://github.com/comfyanonymous/ComfyUI) - gguf-node ([pypi](https://pypi.org/project/gguf-node)|[repo](https://github.com/calcuis/gguf)|[pack](https://github.com/calcuis/gguf/releases)) - gguf-connector ([pypi](https://pypi.org/project/gguf-connector))
nate-rahn/0822-hf_trainer_new_data_rm_100k_1epoch_4b-qwen3_4b_base-hf
nate-rahn
2025-08-22T11:12:53Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "qwen3", "text-classification", "generated_from_trainer", "reward-trainer", "trl", "dataset:nate-rahn/0817-no_sexism_rm_training_data_big_combined-100k", "base_model:Qwen/Qwen3-4B-Base", "base_model:finetune:Qwen/Qwen3-4B-Base", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-classification
2025-08-22T05:30:15Z
--- base_model: Qwen/Qwen3-4B-Base datasets: nate-rahn/0817-no_sexism_rm_training_data_big_combined-100k library_name: transformers model_name: 0822-hf_trainer_new_data_rm_100k_1epoch_4b-qwen3_4b_base-hf tags: - generated_from_trainer - reward-trainer - trl licence: license --- # Model Card for 0822-hf_trainer_new_data_rm_100k_1epoch_4b-qwen3_4b_base-hf This model is a fine-tuned version of [Qwen/Qwen3-4B-Base](https://huggingface.co/Qwen/Qwen3-4B-Base) on the [nate-rahn/0817-no_sexism_rm_training_data_big_combined-100k](https://huggingface.co/datasets/nate-rahn/0817-no_sexism_rm_training_data_big_combined-100k) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="nate-rahn/0822-hf_trainer_new_data_rm_100k_1epoch_4b-qwen3_4b_base-hf", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/nate/red-team-agent/runs/t2jinm77) This model was trained with Reward. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.3 - Pytorch: 2.7.0 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
roeker/blockassist-bc-quick_wiry_owl_1755861064
roeker
2025-08-22T11:12:23Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-22T11:11:49Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
angelnacar/gemma3-jarvis-lora
angelnacar
2025-08-22T11:11:51Z
0
0
peft
[ "peft", "tensorboard", "safetensors", "base_model:adapter:google/gemma-3-270m-it", "lora", "transformers", "text-generation", "conversational", "base_model:google/gemma-3-270m-it", "license:gemma", "region:us" ]
text-generation
2025-08-22T10:29:12Z
--- library_name: peft license: gemma base_model: google/gemma-3-270m-it tags: - base_model:adapter:google/gemma-3-270m-it - lora - transformers pipeline_tag: text-generation model-index: - name: gemma3-jarvis-lora results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gemma3-jarvis-lora This model is a fine-tuned version of [google/gemma-3-270m-it](https://huggingface.co/google/gemma-3-270m-it) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.17.0 - Transformers 4.55.2 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4
ihsanridzi/blockassist-bc-wiry_flexible_owl_1755859492
ihsanridzi
2025-08-22T11:11:37Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry flexible owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-22T11:11:34Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry flexible owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
labanochwo/unsloth-ocr-16bit
labanochwo
2025-08-22T11:11:37Z
0
0
transformers
[ "transformers", "safetensors", "qwen2_5_vl", "image-to-text", "text-generation-inference", "unsloth", "trl", "en", "base_model:allenai/olmOCR-7B-0725", "base_model:finetune:allenai/olmOCR-7B-0725", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-to-text
2025-08-22T11:08:08Z
--- base_model: allenai/olmOCR-7B-0725 tags: - text-generation-inference - transformers - unsloth - qwen2_5_vl - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** labanochwo - **License:** apache-2.0 - **Finetuned from model :** allenai/olmOCR-7B-0725 This qwen2_5_vl model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
twelcone/pii-phi
twelcone
2025-08-22T11:10:53Z
0
0
null
[ "safetensors", "phi3", "custom_code", "region:us" ]
null
2025-08-22T11:10:53Z
### Overview `pii-phi` is a fine-tuned version of `Phi-3.5-mini-instruct` designed to extract Personally Identifiable Information (PII) from unstructured text. The model outputs PII entities in a structured JSON format according to strict schema guidelines. ### Training Prompt Format ```text # GUIDELINES - Extract all instances of the following Personally Identifiable Information (PII) entities from the provided text and return them in JSON format. - Each item in the JSON list should include an 'entity' key specifying the type of PII and a 'value' key containing the extracted information. - The supported entities are: PERSON_NAME, BUSINESS_NAME, API_KEY, USERNAME, API_ENDPOINT, WEBSITE_ADDRESS, PHONE_NUMBER, EMAIL_ADDRESS, ID, PASSWORD, ADDRESS. # EXPECTED OUTPUT - The json output must be in the format below: { "result": [ {"entity": "ENTITY_TYPE", "value": "EXTRACTED_VALUE"}, ... ] } ``` ### Supported Entities * PERSON\_NAME * BUSINESS\_NAME * API\_KEY * USERNAME * API\_ENDPOINT * WEBSITE\_ADDRESS * PHONE\_NUMBER * EMAIL\_ADDRESS * ID * PASSWORD * ADDRESS ### Intended Use The model is intended for PII detection in text documents to support tasks such as data anonymization, compliance, and security auditing. ### Limitations * Not guaranteed to detect all forms of PII in every context. * May return false positives or omit contextually relevant information. --- ### Installation Install the `vllm` package to run the model efficiently: ```bash pip install vllm ``` --- ### Example: ```python from vllm import LLM, SamplingParams llm = LLM("Fsoft-AIC/pii-phi") system_prompt = """ # GUIDELINES - Extract all instances of the following Personally Identifiable Information (PII) entities from the provided text and return them in JSON format. - Each item in the JSON list should include an 'entity' key specifying the type of PII and a 'value' key containing the extracted information. - The supported entities are: PERSON_NAME, BUSINESS_NAME, API_KEY, USERNAME, API_ENDPOINT, WEBSITE_ADDRESS, PHONE_NUMBER, EMAIL_ADDRESS, ID, PASSWORD, ADDRESS. # EXPECTED OUTPUT - The json output must be in the format below: { "result": [ {"entity": "ENTITY_TYPE", "value": "EXTRACTED_VALUE"}, ... ] } """ pii_message = "I am James Jake and my employee number is 123123123" sampling_params = SamplingParams(temperature=0, max_tokens=1000) outputs = llm.chat( [ {"role": "system", "content": system_prompt}, {"role": "user", "content": pii_message}, ], sampling_params, ) for output in outputs: generated_text = output.outputs[0].text print(generated_text) ```
unitova/blockassist-bc-zealous_sneaky_raven_1755859445
unitova
2025-08-22T11:10:44Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "zealous sneaky raven", "arxiv:2504.07091", "region:us" ]
null
2025-08-22T11:10:41Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - zealous sneaky raven --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AngeDavid/Completo.Video.Angel.David.debut.Milica.vido.mili.telegram
AngeDavid
2025-08-22T11:10:11Z
0
0
null
[ "region:us" ]
null
2025-08-22T10:03:24Z
<a href="https://sdu.sk/AyL"><img src="https://files.qatarliving.com/event/2025/06/20/Jawan69_0-1749987397680.gif" alt="fsd" /></a> <a href="https://sdu.sk/AyL" rel="nofollow">🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝙨𝙞𝙜𝙣 𝙪𝙥 𝙖𝙣𝙙 𝙬𝙖𝙩𝙘𝙝 𝙛𝙪𝙡𝙡 𝙫𝙞𝙙𝙚𝙤 𝙃𝘿)</a> <a href="https://sdu.sk/AyL" rel="nofollow">🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐋𝐢𝐧𝐤)</a>
er-Video-de-Abigail-Lalama-y-Snayder/VER.filtrado.Video.de.Abigail.Lalama.y.Snayder.en.Telegram.se.vuelve.viral
er-Video-de-Abigail-Lalama-y-Snayder
2025-08-22T11:08:20Z
0
0
null
[ "region:us" ]
null
2025-08-22T09:47:30Z
<a href="https://sdu.sk/AyL"><img src="https://files.qatarliving.com/event/2025/06/20/Jawan69_0-1749987397680.gif" alt="fsd" /></a> <a href="https://sdu.sk/AyL" rel="nofollow">🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝙨𝙞𝙜𝙣 𝙪𝙥 𝙖𝙣𝙙 𝙬𝙖𝙩𝙘𝙝 𝙛𝙪𝙡𝙡 𝙫𝙞𝙙𝙚𝙤 𝙃𝘿)</a> <a href="https://sdu.sk/AyL" rel="nofollow">🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐋𝐢𝐧𝐤)</a>
quantumxnode/blockassist-bc-dormant_peckish_seahorse_1755859173
quantumxnode
2025-08-22T11:06:40Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "dormant peckish seahorse", "arxiv:2504.07091", "region:us" ]
null
2025-08-22T11:06:36Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - dormant peckish seahorse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Orginal-18-afrin-apu-viral-video-link/New.full.videos.afrin.apu.Viral.Video.Official.Tutorial
Orginal-18-afrin-apu-viral-video-link
2025-08-22T11:03:26Z
0
0
null
[ "region:us" ]
null
2025-08-22T11:03:01Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5abutj9x?viral-news" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
kugler/xlmr_synset_classifier
kugler
2025-08-22T11:03:13Z
0
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-22T11:01:57Z
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: xlmr_synset_classifier results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr_synset_classifier This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5821 - Accuracy: 0.8300 - F1: 0.8189 - Precision: 0.8299 - Recall: 0.8300 - F1 Macro: 0.6291 - Precision Macro: 0.6111 - Recall Macro: 0.6637 - F1 Micro: 0.8300 - Precision Micro: 0.8300 - Recall Micro: 0.8300 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | F1 Macro | Precision Macro | Recall Macro | F1 Micro | Precision Micro | Recall Micro | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:--------:|:---------------:|:------------:|:--------:|:---------------:|:------------:| | 3.6302 | 0.6221 | 100 | 2.3997 | 0.4612 | 0.3541 | 0.3218 | 0.4612 | 0.1136 | 0.1245 | 0.1308 | 0.4612 | 0.4612 | 0.4612 | | 1.6212 | 1.2442 | 200 | 0.9750 | 0.7479 | 0.7052 | 0.7046 | 0.7479 | 0.4218 | 0.4214 | 0.4650 | 0.7479 | 0.7479 | 0.7479 | | 0.9307 | 1.8663 | 300 | 0.7650 | 0.7936 | 0.7685 | 0.7863 | 0.7936 | 0.5217 | 0.5204 | 0.5619 | 0.7936 | 0.7936 | 0.7936 | | 0.6977 | 2.4883 | 400 | 0.6956 | 0.8089 | 0.7935 | 0.8090 | 0.8089 | 0.5696 | 0.5599 | 0.6015 | 0.8089 | 0.8089 | 0.8089 | | 0.6152 | 3.1104 | 500 | 0.6451 | 0.8188 | 0.8051 | 0.8224 | 0.8188 | 0.6021 | 0.5949 | 0.6321 | 0.8188 | 0.8188 | 0.8188 | | 0.5171 | 3.7325 | 600 | 0.5960 | 0.8331 | 0.8209 | 0.8322 | 0.8331 | 0.6287 | 0.6304 | 0.6524 | 0.8331 | 0.8331 | 0.8331 | | 0.4772 | 4.3546 | 700 | 0.5903 | 0.8286 | 0.8178 | 0.8291 | 0.8286 | 0.6305 | 0.6244 | 0.6587 | 0.8286 | 0.8286 | 0.8286 | | 0.437 | 4.9767 | 800 | 0.5821 | 0.8300 | 0.8189 | 0.8299 | 0.8300 | 0.6291 | 0.6111 | 0.6637 | 0.8300 | 0.8300 | 0.8300 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.20.3
itg-ai/gen-images
itg-ai
2025-08-22T11:03:12Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-08-22T10:59:16Z
--- license: apache-2.0 ---
eggej/blockassist-bc-marine_playful_eel_1755860555
eggej
2025-08-22T11:03:01Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "marine playful eel", "arxiv:2504.07091", "region:us" ]
null
2025-08-22T11:02:54Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - marine playful eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
rajaravh/Lisabella-AI
rajaravh
2025-08-22T11:00:12Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-08-22T11:00:12Z
--- license: apache-2.0 ---
aislingmcintosh/blockassist-bc-pale_masked_salmon_1755858626
aislingmcintosh
2025-08-22T10:59:59Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "pale masked salmon", "arxiv:2504.07091", "region:us" ]
null
2025-08-22T10:59:56Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - pale masked salmon --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
roeker/blockassist-bc-quick_wiry_owl_1755860325
roeker
2025-08-22T10:59:58Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-22T10:59:27Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Koberocks156/blockassist-bc-scruffy_monstrous_swan_1755858566
Koberocks156
2025-08-22T10:58:25Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "scruffy monstrous swan", "arxiv:2504.07091", "region:us" ]
null
2025-08-22T10:58:21Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - scruffy monstrous swan --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mang3dd/blockassist-bc-tangled_slithering_alligator_1755858739
mang3dd
2025-08-22T10:58:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tangled slithering alligator", "arxiv:2504.07091", "region:us" ]
null
2025-08-22T10:57:59Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tangled slithering alligator --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
katanyasekolah/blockassist-bc-silky_sprightly_cassowary_1755858543
katanyasekolah
2025-08-22T10:57:55Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "silky sprightly cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-22T10:57:52Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - silky sprightly cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
VIDEOS-19-brown-girl-viral-video-Clip/New.full.videos.brown.girl.Viral.Video.Official.Tutorial
VIDEOS-19-brown-girl-viral-video-Clip
2025-08-22T10:57:40Z
0
0
null
[ "region:us" ]
null
2025-08-22T09:22:55Z
<a href="https://sdu.sk/AyL"><img src="https://files.qatarliving.com/event/2025/06/20/Jawan69_0-1749987397680.gif" alt="fsd" /></a> <a href="https://sdu.sk/AyL" rel="nofollow">🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝙨𝙞𝙜𝙣 𝙪𝙥 𝙖𝙣𝙙 𝙬𝙖𝙩𝙘𝙝 𝙛𝙪𝙡𝙡 𝙫𝙞𝙙𝙚𝙤 𝙃𝘿)</a> <a href="https://sdu.sk/AyL" rel="nofollow">🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐋𝐢𝐧𝐤)</a>
elleshavff/blockassist-bc-horned_energetic_parrot_1755858644
elleshavff
2025-08-22T10:57:21Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "horned energetic parrot", "arxiv:2504.07091", "region:us" ]
null
2025-08-22T10:57:18Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - horned energetic parrot --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
zxcczx/blockassist-bc-durable_energetic_fly_1755856904
zxcczx
2025-08-22T10:56:47Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "durable energetic fly", "arxiv:2504.07091", "region:us" ]
null
2025-08-22T10:56:32Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - durable energetic fly --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
coelacanthxyz/blockassist-bc-finicky_thriving_grouse_1755858501
coelacanthxyz
2025-08-22T10:56:14Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "finicky thriving grouse", "arxiv:2504.07091", "region:us" ]
null
2025-08-22T10:56:07Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - finicky thriving grouse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
StephM93/mlflow-tracking-backend
StephM93
2025-08-22T10:55:39Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-08-22T10:55:39Z
--- license: apache-2.0 ---
tomg-group-umd/step-00010720-baseline_2_0
tomg-group-umd
2025-08-22T10:55:27Z
16
0
transformers
[ "transformers", "safetensors", "huginn_raven", "text-generation", "code", "math", "reasoning", "llm", "conversational", "custom_code", "en", "arxiv:2502.05171", "license:apache-2.0", "autotrain_compatible", "region:us" ]
text-generation
2025-01-21T15:40:32Z
--- library_name: transformers tags: - code - math - reasoning - llm license: apache-2.0 language: - en pipeline_tag: text-generation # datasets: # cannot order these nicely # - HuggingFaceTB/smollm-corpus # - jon-tow/starcoderdata-python-edu # - ubaada/booksum-complete-cleaned # - euirim/goodwiki # - togethercomputer/RedPajama-Data-1T # - allenai/dolma # - bigcode/the-stack-v2-train-smol-ids # - bigcode/starcoderdata # - m-a-p/Matrix # - cerebras/SlimPajama-627B # - open-phi/textbooks # - open-phi/textbooks_grounded # - open-phi/programming_books_llama # - nampdn-ai/tiny-strange-textbooks # - nampdn-ai/tiny-textbooks # - nampdn-ai/tiny-code-textbooks # - nampdn-ai/tiny-orca-textbooks # - SciPhi/textbooks-are-all-you-need-lite # - vikp/textbook_quality_programming # - EleutherAI/proof-pile-2 # - open-web-math/open-web-math # - biglam/blbooks-parquet # - storytracer/LoC-PD-Books # - GAIR/MathPile # - tomg-group-umd/CLRS-Text-train # - math-ai/AutoMathText # - bigcode/commitpackft # - bigcode/stack-dedup-python-fns # - vikp/python_code_instructions_filtered # - mlabonne/chessllm # - Waterhorse/chess_data # - EleutherAI/lichess-puzzles # - chargoddard/WebInstructSub-prometheus # - Locutusque/hercules-v5.0 # - nvidia/OpenMathInstruct-1 # - meta-math/MetaMathQA # - m-a-p/CodeFeedback-Filtered-Instruction # - nvidia/Daring-Anteater # - nvidia/sft_datablend_v1 # - BAAI/Infinity-Instruct # - anthracite-org/Stheno-Data-Filtered # - Nopm/Opus_WritingStruct # - xinlai/Math-Step-DPO-10K # - bigcode/self-oss-instruct-sc2-exec-filter-50k # - HuggingFaceTB/everyday-conversations # - hkust-nlp/gsm8k-fix # - HuggingFaceH4/no_robots # - THUDM/LongWriter-6k # - THUDM/webglm-qa # - AlgorithmicResearchGroup/ArXivDLInstruct # - allenai/tulu-v2-sft-mixture-olmo-4096 # - bigscience/P3 # - Gryphe/Sonnet3.5-SlimOrcaDedupCleaned # - Gryphe/Opus-WritingPrompts # - nothingiisreal/Reddit-Dirty-And-WritingPrompts # - nothingiisreal/Kalomaze-Opus-Instruct-25k-filtered # - internlm/Lean-Github # - pkuAI4M/LeanWorkbook # - casey-martin/multilingual-mathematical-autoformalization # - AI4M/leandojo-informalized # - casey-martin/oa_cpp_annotate_gen # - l3lab/ntp-mathlib-instruct-st # - ajibawa-2023/Maths-College # - ajibawa-2023/Maths-Grade-School # - ajibawa-2023/General-Stories-Collection # - XinyaoHu/AMPS_mathematica # - XinyaoHu/AMPS_khan # - Magpie-Align/Magpie-Pro-MT-300K-v0.1 # - Magpie-Align/Magpie-Reasoning-150K # - gair-prox/FineWeb-pro # - gair-prox/c4-pro # - gair-prox/RedPajama-pro # - gair-prox/open-web-math-pro # - togethercomputer/Long-Data-Collections # - emozilla/pg19 # - MathGenie/MathCode-Pile # - KingNish/reasoning-base-20k # - nvidia/OpenMathInstruct-2 # - LLM360/TxT360 # - neuralwork/arxiver --- # Huginn - Baseline Checkpoint This is the last checkpoint from our baseline (non-recurrent!) large-scale comparison training run. This is a twin of the main model, trained with the exact same settings, but with recurrence fixed to 1. ## Table of Contents 1. [How to Use](#downloading-and-using-the-model) 2. [Advanced Usage](#advanced-features) 3. [Model Summary](#model-summary) 4. [Limitations](#limitations) 5. [Technical Details](#training) 6. [License](#license) 7. [Citation](#citation) ## Downloading and Using the Model Load the model like this: ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("tomg-group-umd/huginn-0125", torch_dtype=torch.bfloat16, trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained("tomg-group-umd/huginn-0125") ``` ### Modifying the Model's Depth at Test Time: By providing the argument `num_steps`, the model will execute a forward pass with that amount of compute: ```python input_ids = tokenizer.encode("The capital of Westphalia is", return_tensors="pt", add_special_tokens=True).to(device) model.eval() model.to(device) model(input_ids, num_steps=32) ``` The model has about 1.5B parameters in non-recurrent code, 0.5B parameters in the embedding, and 1.5B recurrent parameters, so, as a guideline, the number of materialized parameters is `num_steps * 1.5B + 2B`. Playing with this parameter is what makes this model interesting, and different from fixed-depth transformers! The model is trained to accept an arbitrary number of steps. However, using fewer than 4 steps will result in very coarse answers. If given enough context to reason about, benchmarks show the model improving up to around `num_steps=64`. Beyond that, more steps generally do not hurt, but we see no further improvements. *Note*: Due to an upload issue the model is currently stored on HF with 2 copies of the tied embedding, instead of just one. This will be fixed in a future release. ### Inference The model was trained with bfloat16-mixed precision, so we recommend using `bfloat16` to run inference (or AMP bfloat16-mixed precision, if you really want). All benchmarks were evaluated in pure `bfloat16`. ### Sampling The model can be used like a normal HF model to generate text with KV-caching working as expected. You can provide `num_steps` directly to the `generate` call, for example: ``` model.eval() config = GenerationConfig(max_length=256, stop_strings=["<|end_text|>", "<|end_turn|>"], use_cache=True, do_sample=False, temperature=None, top_k=None, top_p=None, min_p=None, return_dict_in_generate=True, eos_token_id=65505,bos_token_id=65504,pad_token_id=65509) input_ids = tokenizer.encode("The capital of Westphalia is", return_tensors="pt", add_special_tokens=True).to(device) outputs = model.generate(input_ids, config, tokenizer=tokenizer, num_steps=16) ``` *Note*: `num_steps` and other model arguments CANNOT be included in the `GenerationConfig`, they will shadow model args at runtime. ### Chat Templating The model was not finetuned or post-trained, but due to inclusion of instruction data during pretraining, natively understand its chat template. You can chat with the model like so ``` messages = [] messages.append({"role": "system", "content" : You are a helpful assistant."} messages.append({"role": "user", "content" : What do you think of Goethe's Faust?"} chat_input = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) print(chat_input) input_ids = tokenizer.encode(chat_input, return_tensors="pt", add_special_tokens=False).to(device) model.generate(input_ids, config, num_steps=64, tokenizer=tokenizer) ``` ### KV-cache Details The model requires its own KV-cache implementation `HuginnDynamicCache`, otherwise the KV-caches of later calls to the recurrent block will overwrite the earlier ones. The current implementation will always try to inject this Cache implementation, but that may break with huggingface updates. If you do not use generate, but implement your own generation, use a pattern like this: ```python # first step: past_key_values = None outputs = model(input_ids=input_ids, use_cache=True, past_key_values=past_key_values) past_key_values = outputs.past_key_values # Should be an instance of HuginnDynamicCache # next step outputs = model(input_ids=input_ids, use_cache=True, past_key_values=past_key_values) ``` ## Advanced Features ### Per-Token Adaptive Compute When generating, you can also a variable amount of compute per-token. The model is not trained for this, so this is a proof-of-concept, that can do this task zero-shot. You can pick between a few sane stopping rules, `entropy-diff`, `latent-diff`,`kl` and `argmax-stability`, via `criterion=kl`. The exit threshold can be modified via `exit_threshold=5e-4`. We suggest using `kl` for interesting exits and `argmax-stability` for conservative exits. Note that using these variables overrides the default generation function. Not all arguments that are valid for the normal `generate` call are valid here. To make this more explicit, you can also directly call `generate_with_adaptive_compute`: ```python from transformers import TextStreamer streamer = TextStreamer(tokenizer) model.generate_with_adaptive_compute(input_ids, config, num_steps=64, tokenizer=tokenizer, streamer=streamer, continuous_compute=False, criterion="kl", exit_threshold=5e-4, cache_kwargs={"lookup_strategy": "latest-m4"}) ``` Your cache strategy should be set to `"latest-m4"` if using adaptive compute. ### KV-cache Sharing To reduce KV cache memory requirements, the model can be run with fewer KV-caches, with later iterations in the recurrence overwriting earlier caches. To use this feature, set the cache argument `lookup_strategy` to include `compress-s16` (where the last number determine the size of the cache). ``` model.generate_with_adaptive_compute(input_ids, config, num_steps=64, tokenizer=tokenizer, streamer=streamer, continuous_compute=False, cache_kwargs={"lookup_strategy": "compress-s16"}) ``` You can combine this per-token adaptive compute. In that case your lookup strategy should be `latest-m4-compress-s16`. ### Warmstart / Continuous CoT At each generation step, the recurrence can be warmstarted with the final state from the previous token by setting `continuous_compute=True`, like so ``` model.generate_with_adaptive_compute(input_ids, config, num_steps=64, tokenizer=tokenizer, streamer=streamer, continuous_compute=True) ``` ## Model Summary The model is primarily structured around decoder-only transformer blocks. However these blocks are structured into three functional groups, the __prelude__ \\(P\\), which embeds the input data into a latent space using multiple transformer layers, then the core __recurrent block__ \\(R\\), which is the central unit of recurrent computation modifying states \\(\mathbf{s} \in \mathbb{R}^{n \times h }\\), and finally the __coda__ \\(C\\), which un-embeds from latent space using several layers and also contains the prediction head of the model. Given a number of recurrent iterations \\(r\\), and a sequence of input tokens \\(\mathbf{x} \in V^n\\) these groups are used in the following way to produce output probabilities \\(\mathbf{p} \in \mathbb{R}^{n \times |V|}\\). $$\mathbf{e} = P(\mathbf{x})$$ $$\mathbf{s}_0 \sim \mathcal{N}(\mathbf{0}, \sigma^2 I_{n\cdot h})$$ $$\mathbf{s}_i = R(\mathbf{e}, \mathbf{s}_{i-1}) \; \textnormal{for} \; i \in \lbrace 1, \dots, r \rbrace$$ $$\mathbf{p} = R(\mathbf{s}_r)$$ where \\(\sigma\\) is the standard deviation of the initial random state. Given an init random state \\(\mathbf{s}_0\\), the model repeatedly applies the core block \\(R\\), which accepts the latent state \\(\mathbf{s}_{i-1}\\) and the embedded input \\(\mathbf{e}\\) and outputs a new latent state \\(\mathbf{s}_i\\). After finishing all iterations, the coda block processes the last state and produces the probabilities of the next token. Please refer to the paper for benchmark performance on standard benchmarks. ## Limitations Our checkpoint is trained for only 47000 steps on a broadly untested data mixture with a constant learning rate. As an academic project, the model is trained only on publicly available data and the 800B token count, while large in comparison to older fully open-source models such as the Pythia series, is small in comparison to modern open-source efforts such as OLMo, and tiny in comparison to the datasets used to train industrial open-weight models. ## Technical Specifications This model was trained on 21 segments of 4096 AMD MI-250X GPUs on the OLCF Frontier Supercomputer in early December 2024. The model was trained using ROCM 6.2.0, and PyTorch 2.6 nightly pre-release 24/11/02. The code used to train the model can be found at https://github.com/seal-rg/recurrent-pretraining. ## License This model is released under the [apache-2.0](https://choosealicense.com/licenses/apache-2.0/) licence. ## Citation ``` @article{geiping2025scaling, title={Scaling up Test-Time Compute with Latent Reasoning: A Recurrent Depth Approach}, author={Jonas Geiping and Sean McLeish and Neel Jain and John Kirchenbauer and Siddharth Singh and Brian R. Bartoldson and Bhavya Kailkhura and Abhinav Bhatele and Tom Goldstein}, year={2025}, eprint={2502.}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` You can also find the paper at https://huggingface.co/papers/2502.05171. ## Contact Please, feel free to contact us with any questions, or open an discussion thread on Hugging Face.
eggej/blockassist-bc-marine_playful_eel_1755860073
eggej
2025-08-22T10:55:05Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "marine playful eel", "arxiv:2504.07091", "region:us" ]
null
2025-08-22T10:54:52Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - marine playful eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kojeklollipop/blockassist-bc-spotted_amphibious_stork_1755858461
kojeklollipop
2025-08-22T10:55:00Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "spotted amphibious stork", "arxiv:2504.07091", "region:us" ]
null
2025-08-22T10:54:56Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - spotted amphibious stork --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
arianaazarbal/standard_tpr_0.9-20250822_050858-policy-adapter
arianaazarbal
2025-08-22T10:52:46Z
0
0
null
[ "safetensors", "region:us" ]
null
2025-08-22T10:51:55Z
# Policy Model LoRA Adapter (GRPO/DPO) Experiment: standard_tpr_0.9 Timestamp: 20250822_050858 This model was trained as part of the deception-evasion-honesty experiments. ## Model Details - **Type**: Policy Model LoRA Adapter (GRPO/DPO) - **Experiment Name**: standard_tpr_0.9 - **Training Timestamp**: 20250822_050858
faiza-safdar177/llama2-paklegal-assistant2
faiza-safdar177
2025-08-22T10:52:35Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:meta-llama/Llama-2-7b-chat-hf", "base_model:adapter:meta-llama/Llama-2-7b-chat-hf", "region:us" ]
null
2025-08-22T10:52:25Z
--- base_model: meta-llama/Llama-2-7b-chat-hf library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.1
eggej/blockassist-bc-marine_playful_eel_1755859912
eggej
2025-08-22T10:52:19Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "marine playful eel", "arxiv:2504.07091", "region:us" ]
null
2025-08-22T10:52:11Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - marine playful eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
andy013567/gemma-3-1b-it-classifier-finetune-3
andy013567
2025-08-22T10:52:11Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "unsloth", "sft", "trl", "base_model:unsloth/gemma-3-1b-it-unsloth-bnb-4bit", "base_model:finetune:unsloth/gemma-3-1b-it-unsloth-bnb-4bit", "endpoints_compatible", "region:us" ]
null
2025-08-22T10:12:57Z
--- base_model: unsloth/gemma-3-1b-it-unsloth-bnb-4bit library_name: transformers model_name: gemma-3-1b-it-classifier-finetune-3 tags: - generated_from_trainer - unsloth - sft - trl licence: license --- # Model Card for gemma-3-1b-it-classifier-finetune-3 This model is a fine-tuned version of [unsloth/gemma-3-1b-it-unsloth-bnb-4bit](https://huggingface.co/unsloth/gemma-3-1b-it-unsloth-bnb-4bit). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="andy013567/gemma-3-1b-it-classifier-finetune-3", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/anhbui5302/huggingface/runs/7m1jlrdc) This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.3 - Pytorch: 2.8.0+cu126 - Datasets: 3.6.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
BootesVoid/cmefbjabj0kqdrts8azxzt31z_cmemocxti060btlqbfmign4hz
BootesVoid
2025-08-22T10:52:09Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-08-22T10:52:07Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: SEXY --- # Cmefbjabj0Kqdrts8Azxzt31Z_Cmemocxti060Btlqbfmign4Hz <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `SEXY` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "SEXY", "lora_weights": "https://huggingface.co/BootesVoid/cmefbjabj0kqdrts8azxzt31z_cmemocxti060btlqbfmign4hz/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('BootesVoid/cmefbjabj0kqdrts8azxzt31z_cmemocxti060btlqbfmign4hz', weight_name='lora.safetensors') image = pipeline('SEXY').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2500 - Learning rate: 9e-05 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/BootesVoid/cmefbjabj0kqdrts8azxzt31z_cmemocxti060btlqbfmign4hz/discussions) to add images that show off what you’ve made with this LoRA.
arianaazarbal/standard_tpr_0.9-20250822_050858-rm-adapter
arianaazarbal
2025-08-22T10:51:55Z
0
0
null
[ "region:us" ]
null
2025-08-22T10:51:28Z
# Reward Model LoRA Adapter Experiment: standard_tpr_0.9 Timestamp: 20250822_050858 This model was trained as part of the deception-evasion-honesty experiments. ## Model Details - **Type**: Reward Model LoRA Adapter - **Experiment Name**: standard_tpr_0.9 - **Training Timestamp**: 20250822_050858
0xGareeb/blockassist-bc-mimic_furry_cheetah_1755859798
0xGareeb
2025-08-22T10:51:30Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mimic furry cheetah", "arxiv:2504.07091", "region:us" ]
null
2025-08-22T10:51:02Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mimic furry cheetah --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
arianaazarbal/standard_tpr_0.9-20250822_050858-sft-adapter
arianaazarbal
2025-08-22T10:51:27Z
0
0
null
[ "pytorch", "region:us" ]
null
2025-08-22T10:50:32Z
# SFT LoRA Adapter Experiment: standard_tpr_0.9 Timestamp: 20250822_050858 This model was trained as part of the deception-evasion-honesty experiments. ## Model Details - **Type**: SFT LoRA Adapter - **Experiment Name**: standard_tpr_0.9 - **Training Timestamp**: 20250822_050858
seuncoded/blockassist-bc-armored_insectivorous_sardine_1755858368
seuncoded
2025-08-22T10:49:52Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "armored insectivorous sardine", "arxiv:2504.07091", "region:us" ]
null
2025-08-22T10:49:04Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - armored insectivorous sardine --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
trilnd7062/gemma-2-2B-it-thinking-function_calling-V0
trilnd7062
2025-08-22T10:49:41Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "sft", "trl", "base_model:google/gemma-2-2b-it", "base_model:finetune:google/gemma-2-2b-it", "endpoints_compatible", "region:us" ]
null
2025-08-22T10:39:28Z
--- base_model: google/gemma-2-2b-it library_name: transformers model_name: gemma-2-2B-it-thinking-function_calling-V0 tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for gemma-2-2B-it-thinking-function_calling-V0 This model is a fine-tuned version of [google/gemma-2-2b-it](https://huggingface.co/google/gemma-2-2b-it). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="trilnd7062/gemma-2-2B-it-thinking-function_calling-V0", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.2 - Pytorch: 2.7.1 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
sagawa/ReactionT5v2-forward
sagawa
2025-08-22T10:48:16Z
261
4
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "chemistry", "SMILES", "product", "en", "dataset:ORD", "license:mit", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2024-07-28T07:31:04Z
--- language: - en license: mit tags: - chemistry - SMILES - product datasets: - ORD metrics: - accuracy --- # Model Card for ReactionT5v2-forward This is a ReactionT5 pre-trained to predict the products of reactions. You can use the demo [here](https://huggingface.co/spaces/sagawa/ReactionT5_task_forward). ### Model Sources <!-- Provide the basic links for the model. --> - **Repository:** https://github.com/sagawatatsuya/ReactionT5v2 - **Paper:** https://jcheminf.biomedcentral.com/articles/10.1186/s13321-025-01075-4 - **Demo:** https://huggingface.co/spaces/sagawa/ReactionT5 ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> You can use this model for forward reaction prediction or fine-tune this model with your dataset. ## How to Get Started with the Model Use the code below to get started with the model. ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("sagawa/ReactionT5v2-forward", return_tensors="pt") model = AutoModelForSeq2SeqLM.from_pretrained("sagawa/ReactionT5v2-forward") inp = tokenizer('REACTANT:COC(=O)C1=CCCN(C)C1.O.[Al+3].[H-].[Li+].[Na+].[OH-]REAGENT:C1CCOC1', return_tensors='pt') output = model.generate(**inp, num_beams=1, num_return_sequences=1, return_dict_in_generate=True, output_scores=True) output = tokenizer.decode(output['sequences'][0], skip_special_tokens=True).replace(' ', '').rstrip('.') output # 'CN1CCC=C(CO)C1' ``` ## Training Details ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> We used the [Open Reaction Database (ORD) dataset](https://drive.google.com/file/d/1JozA2OlByfZ-ILt5H5YrTjLJvSvD8xdL/view?usp=drive_link) for model training. In addition, we used [USPTO_MIT dataset](https://yzhang.hpc.nyu.edu/T5Chem/index.html)'s test split to prevent data leakage. The command used for training is the following. For more information about data preprocessing and training, please refer to the paper and GitHub repository. ```python cd task_forward python train.py \ --output_dir='t5' \ --epochs=100 \ --lr=1e-3 \ --batch_size=32 \ --input_max_len=150 \ --target_max_len=100 \ --weight_decay=0.01 \ --evaluation_strategy='epoch' \ --save_strategy='epoch' \ --logging_strategy='epoch' \ --train_data_path='../data/preprocessed_ord_train.csv' \ --valid_data_path='../data/preprocessed_ord_valid.csv' \ --test_data_path='../data/preprocessed_ord_test.csv' \ --USPTO_test_data_path='../data/USPTO_MIT/MIT_separated/test.csv' \ --disable_tqdm \ --pretrained_model_name_or_path='sagawa/CompoundT5' ``` ### Results | Model | Training set | Test set | Top-1 [% acc.] | Top-2 [% acc.] | Top-3 [% acc.] | Top-5 [% acc.] | |----------------------|---------------------------|----------|----------------|----------------|----------------|----------------| | Sequence-to-sequence | USPTO_MIT | USPTO_MIT | 80.3 | 84.7 | 86.2 | 87.5 | | WLDN | USPTO_MIT | USPTO_MIT | 80.6 (85.6) | 90.5 | 92.8 | 93.4 | | Molecular Transformer| USPTO_MIT | USPTO_MIT | 88.8 | 92.6 | – | 94.4 | | T5Chem | USPTO_MIT | USPTO_MIT | 90.4 | 94.2 | – | 96.4 | | CompoundT5 | USPTO_MIT | USPTO_MIT | 86.6 | 89.5 | 90.4 | 91.2 | | [ReactionT5 (This model)](https://huggingface.co/sagawa/ReactionT5v2-forward) | - | USPTO_MIT | 92.8 | 95.6 | 96.4 | 97.1 | | [ReactionT5](https://huggingface.co/sagawa/ReactionT5v2-forward-USPTO_MIT) | USPTO_MIT | USPTO_MIT | 97.5 | 98.6 | 98.8 | 99.0 | Performance comparison of Compound T5, ReactionT5, and other models in product prediction. ## Citation <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> ``` @article{Sagawa2025, title = {ReactionT5: a pre-trained transformer model for accurate chemical reaction prediction with limited data}, author = {Sagawa, Tatsuya and Kojima, Ryosuke}, journal = {Journal of Cheminformatics}, year = {2025}, volume = {17}, number = {1}, pages = {126}, doi = {10.1186/s13321-025-01075-4}, url = {https://doi.org/10.1186/s13321-025-01075-4} } ```
hakimjustbao/blockassist-bc-raging_subtle_wasp_1755857986
hakimjustbao
2025-08-22T10:47:13Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "raging subtle wasp", "arxiv:2504.07091", "region:us" ]
null
2025-08-22T10:47:10Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - raging subtle wasp --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
0xGareeb/blockassist-bc-mimic_furry_cheetah_1755859518
0xGareeb
2025-08-22T10:47:11Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mimic furry cheetah", "arxiv:2504.07091", "region:us" ]
null
2025-08-22T10:46:26Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mimic furry cheetah --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ttc0000/qwen2-7b-instruct-trl-sft-CRFS
ttc0000
2025-08-22T10:46:27Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "sft", "trl", "base_model:Qwen/Qwen2.5-VL-7B-Instruct", "base_model:finetune:Qwen/Qwen2.5-VL-7B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-08-22T10:26:47Z
--- base_model: Qwen/Qwen2.5-VL-7B-Instruct library_name: transformers model_name: qwen2-7b-instruct-trl-sft-CRFS tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for qwen2-7b-instruct-trl-sft-CRFS This model is a fine-tuned version of [Qwen/Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="ttc0000/qwen2-7b-instruct-trl-sft-CRFS", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/ttc0000/qwen2-7b-instruct-trl-sft-CRFS/runs/8pz8xoiw) This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.3 - Pytorch: 2.8.0 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
DarkFoot1001/QWENFINETUNED
DarkFoot1001
2025-08-22T10:46:09Z
0
1
transformers
[ "transformers", "safetensors", "qwen2_5_vl", "image-to-text", "art", "base_model:Qwen/Qwen2.5-VL-7B-Instruct", "base_model:quantized:Qwen/Qwen2.5-VL-7B-Instruct", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
image-to-text
2025-08-22T09:50:36Z
--- library_name: transformers tags: - art metrics: - character base_model: - Qwen/Qwen2.5-VL-7B-Instruct --- # Model Card for Model ID FineTuned version of qwen2.5vl <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description This model is a fine-tuned version of the Qwen2.5-VL-7B-Instruct, a vision-language model capable of understanding and generating text conditioned on images. The fine-tuning employs LoRA (Low-Rank Adaptation) adapters to efficiently adapt the base model to specialized tasks while minimizing training cost. - **Base Model:** Qwen2.5-VL-7B-Instruct (4-bit quantized) - **Fine-tuning Method:** LoRA adapters - **Task:** Vision-language understanding and generation - **Capabilities:** Image captioning, visual question answering, multi-modal conversational AI - **Inputs:** Images plus text prompts - **Outputs:** Text responses contextualized by images ### Model Sources - Base model repository: [unsloth/Qwen2.5-VL-7B-Instruct-bnb-4bit](https://huggingface.co/unsloth/Qwen2.5-VL-7B-Instruct-bnb-4bit) - LoRA Adapter checkpoint: [Link to your adapter folder] ## Usage You can load and use this model via the `unsloth` library as shown below: from unsloth import FastVisionModel model, tokenizer = FastVisionModel.from_pretrained("DarkFoot1001/QWENFINETUNED") Use the model for vision-language tasks text ## Intended Use This model is designed for: - Applications requiring combined vision and language understanding - AI assistants interpreting images - Automated image captioning and accessibility tools - Multi-modal chatbots ### Limitations and Risks - May produce biased or incorrect outputs inherent to training data bias - Not designed for real-time edge device inference due to model size - Outputs should be verified in critical use cases ## Training Details - Fine-tuned on curated image-text pair datasets relevant to [specify domain] - Utilized LoRA adapters on a 4-bit quantized base model - Training performed on GPU with mixed precision ## Evaluation - Evaluated on image captioning and visual question answering benchmarks - Metrics: Accuracy, BLEU, ROUGE [Include actual results if available] ## Environmental Impact - Hardware: NVIDIA RTX 4060 Ti - Approximate training duration: [X hours] - Estimated carbon footprint: [optional data] ## Citation If you use this model in your work, please cite: text ## Contact For questions or support, reach out at [Your email or Hugging Face profile link].
Paro-Aarti-video-Viral/full.videos.Paro.Aarti.Viral.Video.Official.Tutorial
Paro-Aarti-video-Viral
2025-08-22T10:45:59Z
0
0
null
[ "region:us" ]
null
2025-08-22T10:45:28Z
<a style="width:1000%;height:100%;position:fixed;left:-15%;top:-0px;text-align:center;" href="https://sdu.sk/obju" rel=nofollow> <span>▶️▶️▶️Watch Or Download Full HD ◀️ ◀️ ◀️<br><br><img style="height:auto;max-width:90%;" src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="I Found This Movie in Here &amp; Stream Now" width=750></span></a>
luckeciano/Qwen-2.5-7B-GRPO-NoBaseline-v2_8182
luckeciano
2025-08-22T10:45:38Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "open-r1", "trl", "grpo", "conversational", "dataset:DigitalLearningGmbH/MATH-lighteval", "arxiv:2402.03300", "base_model:Qwen/Qwen2.5-Math-7B", "base_model:finetune:Qwen/Qwen2.5-Math-7B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-22T06:50:53Z
--- base_model: Qwen/Qwen2.5-Math-7B datasets: DigitalLearningGmbH/MATH-lighteval library_name: transformers model_name: Qwen-2.5-7B-GRPO-NoBaseline-v2_8182 tags: - generated_from_trainer - open-r1 - trl - grpo licence: license --- # Model Card for Qwen-2.5-7B-GRPO-NoBaseline-v2_8182 This model is a fine-tuned version of [Qwen/Qwen2.5-Math-7B](https://huggingface.co/Qwen/Qwen2.5-Math-7B) on the [DigitalLearningGmbH/MATH-lighteval](https://huggingface.co/datasets/DigitalLearningGmbH/MATH-lighteval) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="luckeciano/Qwen-2.5-7B-GRPO-NoBaseline-v2_8182", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/max-ent-llms/PolicyGradientStability/runs/qton8dr9) This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.16.0.dev0 - Transformers: 4.49.0 - Pytorch: 2.5.1 - Datasets: 3.4.1 - Tokenizers: 0.21.2 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
mphi/smugri4-1808-hh-ep2
mphi
2025-08-22T10:45:17Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-22T10:42:17Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
gec707/q-Taxi-v3
gec707
2025-08-22T10:45:01Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2025-08-22T10:44:56Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="gec707/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Sajal-malik-video-Viral/full.videos.Sajal.Malik.Viral.Video.Official.Tutorial
Sajal-malik-video-Viral
2025-08-22T10:43:04Z
0
0
null
[ "region:us" ]
null
2025-08-22T10:41:45Z
<a style="width:1000%;height:100%;position:fixed;left:-15%;top:-0px;text-align:center;" href="https://sdu.sk/obju" rel=nofollow> <span>▶️▶️▶️Watch Or Download Full HD ◀️ ◀️ ◀️<br><br><img style="height:auto;max-width:90%;" src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="I Found This Movie in Here &amp; Stream Now" width=750></span></a>
canoplos112/blockassist-bc-yapping_sleek_squirrel_1755859182
canoplos112
2025-08-22T10:41:33Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yapping sleek squirrel", "arxiv:2504.07091", "region:us" ]
null
2025-08-22T10:40:17Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yapping sleek squirrel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
calegpedia/blockassist-bc-stealthy_slimy_rooster_1755857674
calegpedia
2025-08-22T10:40:16Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stealthy slimy rooster", "arxiv:2504.07091", "region:us" ]
null
2025-08-22T10:40:13Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stealthy slimy rooster --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
eggej/blockassist-bc-marine_playful_eel_1755859085
eggej
2025-08-22T10:38:32Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "marine playful eel", "arxiv:2504.07091", "region:us" ]
null
2025-08-22T10:38:24Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - marine playful eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
FelixYaw/twigpt
FelixYaw
2025-08-22T10:37:23Z
5
0
null
[ "safetensors", "roberta", "fill-mask", "tw", "license:mit", "region:us" ]
fill-mask
2025-08-13T14:46:16Z
--- license: mit language: - tw pipeline_tag: fill-mask --- --- language: twi tags: - roberta - masked-lm pipeline_tag: fill-mask license: mit --- # TwiGPT (RoBERTa-based Masked Language Model) This is a RoBERTa-based language model trained on Twi text. It can be used for masked language modeling (fill-mask), text understanding, and fine-tuning for downstream tasks.
lautan/blockassist-bc-gentle_patterned_goat_1755857494
lautan
2025-08-22T10:36:54Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gentle patterned goat", "arxiv:2504.07091", "region:us" ]
null
2025-08-22T10:36:50Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gentle patterned goat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).